\backsim

SIEMENS

Industrial IC Data Book 1985

Microprocessors \quad Microcontrollers \square Peripherals \quad Support Memory ■ Telecom ■ Data Converters ■ SMPS Controllers

Table of Contents

General Information

Summary of Types

Microcontroller and Microprocessor Components

Peripheral and Support Components

Memory Components
\qquad

Telecom Components

Data Conversion Components
\qquad

Switched Mode Power Supply (SMPS) Components

SIEMENS

Industrial IC
 Data Book 1985

Table of Contents

Page

1. General Information
1.1 Type designation code for ICs 15
1.2 Mounting instructions 15
1.3 Processing guidelines for ICs 16
Identification
Scope
Handling of devices
Storage
Transport
Incoming inspection
Material and mounting
Electrical tests
Packaging of assembled PC boards or flat pack unitsUltrasonic cleaning of ICs
1.4 Electrical and environmental ratings 19
Maximum ratings
Electrical characteristics
Operating data
1.5 Mechanical dimensions 20
Package dimensions
Shipping tube dimensions
1.6 Quality and reliability 33
Quality assurance system
Quality specifications
Quality conformance
Reliability
1.7 Thermal coefficients 40
2. Summary of Types
2.1 Component selection guide 43
3. Microcontroller and Microprocessor Components
SAB 8031/8051 8-bit single chip microcomputer 49
SAB 8031/8051-EXT 8 -bit single chip microcomputer with extended temperature range 65
SAB 8031A/8051A $\quad 8$-bit single chip microcomputer 81
SAB 8031A/8051A-EXT 8-bit single chip microcomputer with extended temperature range 99
SAB 8032A/8052A $\quad 8$-bit single chip microcomputer 117
SAB 80C482 8-bit single chip CMOS microcomputer 133
SAB 8086 16-bit microprocessor 161
SAB 8088 16-bit microprocessor with 8 -bit data bus interface 199
SAB 80186 High integration 16-bit microprocessor 229
SAB 80188 High integration 16-bit microprocessor with 8-bit data bus interface 231
SAB 80286 High performance 16-bit microprocessor with memory management and protection 233

Table of Contents

4. Peripheral and Support Components Page
SAB 1791/93/95/97 Floppy disk formatter/controller 299
SAB 2793A/97A Floppy disk formatter/controller. 325
SAB 8237A High performance programmable DMA controller 353
SAB 8256A Programmable multifunction UART (MUART) 369
SAB 8259A Programmable interrupt controller 395
SAB 8275 Programmable CRT controller 405
SAB 8276 Small system CRT controller 433
SAB 8282A/8283A Octal latch 459
SAB 8284B Clock generator and driver for SAB 8086 family processors 465
SAB 8286A/8287A Octal bus transceiver 479
SAB 8288A Bus controller for SAB 8086 family processors 485
SAB 8289 Bus arbiter for SAB 8086 family processors 495
SAB 82258 Advanced DMA controller for 8 or 16 -bit systems 507
SAB 82284 Clock generator and ready interface for SAB 80286 family processors 555
SAB 82288 Bus controller for SAB 80286 family processors 567
SAB 82289 Bus arbiter for SAB 80286 family processors 593
SAB 82731 Dot rate generator 595
5. Memory Components
SAB 81C50/81C51 CMOS static ram; 256×8-bit with multiplex bus interface 625
SAB 81C52 CMOS static ram; 256×8-bit with multiplex bus interface 631
HYB 4164 Dynamic ram; 65, 536×1 1-bit 639
HYB 41256 Dynamic ram; 262, $144 \times$ 1-bit 653
HYB 41257 Dynamic ram; 262, 144×1-bit with nibble mode 669
6. Telecom Components
PEB 2030 Frame alignment circuit 689
PEB 2040 Memory time switch 697
PEB 2050 Peripheral board controller 713
PEB 2051 Peripheral board controller 733
PEB 2060 Programmable digital signal processing CODEC-FILTER 751
PSB 6520 Tone ringer 769
PSB 6521 Tone ringer 781
PSB 6620 Ring detector 795
PSB 8590 DTMF generator/dialer 801
PSB 8591 DTMF generator/dialer 819
PSB 8592 DTMF generator/dialer 843
SAB 80C482 8 -bit single chip CMOS microcomputer 133
SAB 81C50/81C51 CMOS static ram; 256×8-bit with multiplex bus interface 625
Page
SAB 81C52 CMOS static ram; 256×8-bit with multiplex bus interface 631
PSB 7510 CMOS LCD controller 853
7. Data Conversion Components
SDA 5200N 6-bit flash A/D converter 875
SDA 5200S 6-bit flash A/D converter 881
SDA 6020 6-bit flash A/D converter 887
SDA 8005 8-bit high speed D/A converter 893
SDA 8010 8 -bit flash A/D converter 905
8. Switched Mode Power Supply (SMPS) Components
TDA 4600-2/4600-2D Control IC for switched mode power supplies 919
TDA 4601/4601D Control IC for switched mode power supplies 929
TDA 4700/4700A Control IC for switched mode power supplies 943
TDA 4714A/4714B Control IC for switched mode power supplies 957
TDA 4716A/4716B Control IC for switched mode power supplies 969
TDA 4718/4718A Control IC for switched mode power supplies 981
9. Integrated Circuits for Consumer Applications
9.1 VHF/UHF Video Modulator IC TDA 5660P
9.2 Video IF ICs

\qquad
TBA 1440G, TBA 1441, TDA 5510, TDA 2440, TDA 2441, TDA 5400, TDA 5410 , TDA 5430, TDA 6000
9.3 Video Single Pole Double Throw Switch IC TDA 5850
9.4 Quasiparallel Sound (Split Sound) Amplifier TDA 4282T
9.5 Video IF/Quasiparallel Sound (Split Sound) Combo ICs TDA 5830-2, TDA 5835
9.6 TV Stereo/Dual Sound (German Standard) and Matrix IC TDA 6600
9.7 ICs for Switched Mode Power Supplies
TDA 4600-2, TDA 4600-2D, TDA 4601, TDA 4601D
9.8 IC for Pin Cushion Correction in CRT Applications TDA 4610
*See Consumer Data Book or contact your local Siemens Representative.

Table of Contents

Page
9.9 Programmable Multistandard Sync Pulse Generator S 178A
9.10 High Frequency PrescalersSDA 2211, SDA 2311, SDA 4042, S 89, SDA 4211
9.11 Phase Locked Loop (PLL) DevicesSDA 2112-2, SDA 3002, SDA 3112, SDA 3202, SDA 3203
9.12 Application Oriented Single Chip Microcomputers SDA 2010, SDA 2011, SDA 2030, SDA 2110, SDA 3010, SDA 3110, SAB 80215, SAB 80315
9.13 IR Transmitter ICs, Preamplifiers, ReceiversSDA 2008, SDA 2208, TDA 4050B, SAB 4209,
9.14 Non Volatile Memories SDA 2116, SDA 2216
9.15 Display Drivers and Controllers.SDA 2131, SDA 2005, UAA 170, UAA 180, SDA 2014
9.16 Audio Control ICs
TDA 4290-2S, TDA 4292, TDA 6200
9.17 AF Power AmplifiersS 1531G, TDA 1037, TDA 1037D, TDA 4930, TDA 4926, TDA 4935
9.18 Tuner/Mixer ICs/FM Receivers
TUA 2000-4, S 042P, TBB 469, TBB 1469, TBB 2469
9.19 FM IF Amplifiers with DemodulatorS 041P, TBA 120S, TBA 120T, TBA 120U, TBA 129, TBA 130, TBA 229,TDA 1047, TDA 4200-3, TDA 4210-3
9.20 AM IF Amplifiers with Demodulator
TCA 440, TDA 1046, TDA 4001, TDA 1048G, TDA 2048
9.21 AM/FM-IF Combination IC TDA 4100, TDA 4110X
9.22 PLL for AM/FM Receivers
SDA 2120, S 187B
9.23 FM Stereo Decoders
TCA 4500A, TCA 4511
*See Consumer Data Book or contact your local Siemens Representative.10
Page
9.24 Photoelectric Devices
TFA 1001 W
9.25 Timer ICs
SAB 0529, SAB 0529G
9.26 Phase Control ICs
TLE 3101, TLE 3102, TLE 3103, TLE 3104, S 576A, S 576B, S 576C, S 576D, TCA 785
9.27 DC Motor Control
TCA 955, TCA 2365, TLE 4201A/S
9.28 Window Discriminator ICs
TCA 965
9.29 Threshold Switches
TCA 105, TCA 105G, TCA 345A
9.30 Programmable Diode Matrix S 353, S 1353, S 2353
9.31 Audible Signal Devices
SAB 0600, SAB 0601, SAB 0602, SAB 0700
9.32 Sensor ICs, Proximity Switches, Hall Effect Devices TCA 305A/G, TCA 355B/G, HKZ 101, HKZ 101S, TLE 4903, SAS 231W

[^0]General Information

1.1 Type Designation Code For ICs

The IC type designations are based on the European code system of Pro Electron.* The code system is explained in the Pro Electron brochure D 15, 1982 edition, which can be obtained from:

Pro Electron
Boulevard de Waterloo 103
1000 Brussels, Belgium
*Some exceptions exist.

1.2 Mounting Instructions

Plastic Package With 8, 14, 16, 18, 20, 22, 24, 28, or 40 Pins
The pins are bent downwards in a 90° angle and fit into holes with a diameter of between 0.7 and 0.9 mm spaced 2.54 mm apart. The dimension x (see figure below) is given in the mechanical dimension drawings for the various packages.
The bottom of the package will not touch the PC board after insertion because the pins have shoulders just below the package (see figure below).
After the package is inserted into the PC board, it is advisable to bend the ends of two pins at an angle of approx. 30° to the board so that the package does not have to be pressed down during soldering. Plastic packages are soldered on that side of the PCB facing away from the package.
The maximum permissable soldering temperature is $265^{\circ} \mathrm{C}$ (max. 10 s) for manual soldering and $240^{\circ} \mathrm{C}$ ($\max 4 \mathrm{~s}$) for dip soldering.

Figure 1

Power Package With 9 Pins

Power packages generally have wider pins than standard plastic packages; meaning the hole diameter on the PCB must be between 1.1 and 1.8 mm . If the pins are bent, there should be no stress between the pins and the package. The minimum distance between the package and the bending point is 2 mm .
The soldering temperatures for power packages are the same as for plastic packages.

Micropack Packages

Mounting instructions for components available in a micropack are found within the Data Sheet.

Precautions

Ensure that no current is able to flow between the solder bath or soldering iron and the PCB. It is advisable to ground the pins that are to be soldered as well as the solder bath or soldering iron.
When they are being prepared and inserted in a PCB, integrated circuits should be protected against static charging. Under no circumstances may the components be removed or inserted while the operating voltage is switched on.
The increase in chip temperature during the soldering process results in a temporary increase in electrostatic sensitivity of integrated circuits. Special precautions should therefore be taken against line transients, e.g. through the switching of inductive loads.

1.3 Processing Guidelines For ICs

Integrated circuits (ICs) are electrostatic-sensitive (ESS) devices. The requirement for greater packing density has led to increasingly small structures on semiconductor chips, with the result that today every IC, whether bipolar, MOS, or CMOS, has to be protected against electrostatics.
MOS and CMOS devices generally have integrated protective circuits and it is hardly possible any more for them to be destroyed by purely static electricity. On the other hand, there is acute danger from electrostatic discharges (ESD).
Of the multitude of possible sources of discharge, charged devices should be mentioned in addition to charged persons. With low-resistance discharges, it is possible for peak power amounting to kilowatts to be produced.
For the protection of devices, the following principles should be observed:
a) Reduction of charging voltage, below 200 V if possible. Means which are effective here are an increase in relative humidty to $\geq 60 \%$ and the replacement of highly charging plastics by antistatic materials.
b) With every kind of contact with the device pins a charge equalization is to be expected. This should always be highly resistive (ideally $R=10^{6}$ to 10^{8} ohms).
All in all this means that ICs call for special handling, because uncontrolled charges, voltages from ungrounded equipment or persons, surge voltage spikes and similar influences, can destroy a device. Even if devices have protective circuits (e.g. protective diodes) on their inputs, the following guidelines for their handling should nevertheless be observed.

Identification

The packing of ESS devices is provided with the following label by the manufacturer.

A

Scope

The guidelines apply to the storage, transport, testing, and processing of all kinds of ICs, as well as equipment and soldered circuit boards that contain such components.

Handling of Devices

1. ICs must be left in their containers until they are processed.
2. ICs may only be handled at specially equipped work stations. These stations must have work surfaces covered with a conductive material of the order of 10^{6} to 10^{9} ohms to ground.
3. With humidity of $>50 \%$ pure cotton clothing is sufficient. In the case of chargeable synthetic fibers, the clothing should be worn close-fitting. A wrist strap grounded across a resistor of 5×10^{4} to 10^{5} ohms must be worn snugly on the skin.
4. If conductive floors, $R=5 \times 10^{4}$ to 10^{7} ohms are provided, further protection can be achieved by using so-called MOS chairs and shoes with a conductive sole (R $=10^{5}$ to 10^{7} ohms).
5. All transport containers for ESS devices and assembled circuit boards must first be brought to the same potential by being placed on the work surface or touched by the operator before the individual devices may be handled. The potential equalization should be accross a resistor of 10^{6} to 10^{8} ohms.
6. When loading machines and production devices, it should be noted that the devices come out of the transport magazine charged and can be damaged if they touch metal, e.g. machine parts.
Example 1) conductive (black) tubes.
The devices may be destroyed in the tube by charged persons or come out of the tube charged if this is emptied by a charged person. Conductive tubes may only be handled at ESS work stations (highresistance work-station and person grounded).
Example 2) anti-static (transparent) tubes.
The devices cannot be destroyed by charged persons in the tube (there may be a rare exception in the case of custom ICs with unprotected gate pins). The devices can be endangered as in 1) when the tube is emptied if the tube, especially at low humidity, is no longer sufficiently anti-static after a long period of storage (> 1 year).
In both cases, damage can be avoided by discharging the devices across a grounded adapter of high-resistance material ($=10^{6}$ to $10^{8} \mathrm{ohms}$) between the tube and the machine.
The use of metal tubes - especially of anodized aluminum - is not advisable because of the danger of low-resistance device discharge.

Storage

ESS devices should only be stored in identified locations provided for the purpose. During storage, the devices should remain in the packing in which they are supplied. The storage temperature should not exceed $60^{\circ} \mathrm{C}$.

Transport

ESS devices in approved packing tubes should only be transported in suitable containers of conductive or longterm anti-static-treated plastic or possibly unvarnished wood. Containers of high-charging plastic or very low-resistance materials are in like manner unsuitable.

Transfer cars and their rollers should exhibit adequate electrical resistance ($\mathrm{R}<10^{6}$ ohms). Sliding contacts and grounding chains will not reliably eliminate charges.

Incoming Inspection

At incoming inspection, the above guidelines should be observed. Otherwise any right to refund or replacement if devices fail inspection may be lost.

Material and Mounting

1. The drive belts of machines used for the processing of the devices (e.g. bending and cutting machines, conveyor belts), should be treated with anti-static spray (e.g. anti-static spray 100 from Kontaktchemie).
2. If ESS devices have to be soldered or desoldered manually, soldering irons with thyristor control should not be used. Siemens EMI-suppression capacitors of the type B 81711-B31...-B36 are recommended to protect against line transients.
3. Circuit boards fitted and soldered with ESS devices are always to be considered electrostatically sensitive.

Electrical Tests

1. The devices should be processed with observation of these guidelines. Before assembled and soldered circuit boards are tested, remove any shorting rings.
2. Test receptacles must not have voltage applied when individual devices or assembled circuit boards are inserted or withdrawn, unless specifications state otherwise. Ensure that the testers do not produce any voltage spikes, either when being turned on and off in normal operation or if the power fuse blows or other fuses respond.
3. Signal voltages may only be applied to the inputs of ICs when or after the supply voltage is turned on. They must be disconnected before or when the supply voltage is turned off.
4. Observe any notes and instructions in the respective data books.

Packing Of Assembled PC Boards or Flatpack Units

The packing material should exhibit low volume conductivity: 10^{5} ohm-cm $<\rho<10^{10}$ ohm-cm.
In most cases - especially with humidity of $>40 \%$ - this requirement is fulfilled by simple corrugated board. Better protection is obtained with bags of conductive polyethylene foam (e.g. RCAS 1200 from Richmond of Redlands, CA).
One should always ensure that boards cannot touch.
In special cases, it may be necessary to provide protection against strong electric fields, such as can be generated by conveyor belts for example. For this purpose, a sheath of aluminum foil is recommended, although direct contact between the foil and the PCB must be avoided. Cardboard boxes with an aluminum-foil lining, such as those used for shipping Siemens devices, are available from Laber of Munich.

Ultrasonic Cleaning Of ICs

The following recommendation applies to plastic packages. For cavity packages (metal and also ceramic), separate regulations have to be observed.

Freon and isopropyl alcohol (trade name: propanol) can be used as solvents. These solvents can also be used for plastic packages because they do not eat into the plastic material.
An ultrasonic bath in double halfwave operation is advisable because of the low component stress.

The ultrasonic limits are as follows:
sound frequency $\quad f>40 \mathrm{KHz}$
exposure $\quad t<2 \mathrm{~min}$.
alternating sound pressure $p<0.29$ bar
sound power $\quad \mathrm{N}<\mathrm{W}^{2} \mathrm{~cm}^{2 /} / \mathrm{liter}$

1.4 Electrical And Environmental Ratings Maximum Ratings

The maximum ratings are absolute limits. The IC may be destroyed if only a single one of these values is exceeded.

Electrical Characteristics

The electrical characteristics include the guaranteed tolerances of the values maintained by an IC for the specified operating range.
The typical characteristics are mean values that can be expected on the basis of the production. Unless otherwise specified, the typical characteristics apply to $T_{\text {amb }}=25^{\circ} \mathrm{C}$ and the given supply voltage.

Operating Data

The functions stated in the circuit description are fulfilled within the range of the operating data.

1.5 Mechanical Dimensions

Package Dimensions

Plastic plug-in package 20 A 8 DIN 41866
8 pins, DIP

Approx. weight 0.7 g

Plastic plug-in package 20 A 14 DIN 41866
14 pins, DIP

Approx. weight 1.1 g

Plastic power package,
with cooling fin and 9 pins, SIP (TDA 4601)

Approx. weight 1.9 g

General Information

Plastic plug-in package 20 A 16 DIN 41866, 16 pins, DIP

Approx. weight 1.2 g

Ceramic package, 16 pins, DIC

Approx. weight 1.4 g

Plastic plug-in package 20 A 18 DIN 41866, 18 pins, DIP

Approx. weight 1.3 g

Ceramic package, 18 pins, DIC

Approx. weight 2.7 g

General Information

Plastic plug-in package 20 A 20 DIN 41866, 20 pins, DIP

Approx. weight 1.5 g

Plastic plug-in package 20 D 22 DIN 41866, 22 pins, DIP

Approx. weight 2.1 g

Plastic plug-in package 20 B 24 DIN 41866, 24 pins, DIP

Approx. weight 2.5 g

Ceramic package, 24 pins, DIC

Approx. weight 3 g

Plastic plug-in package 20 B 28 DIN 41866, 28 pins, DIP

Approx. weight 3 g

Plastic plug-in package 20B 40 DIN 41866, 40 pins, DIP

Approx. weight 5.9 g

General Information

Ceramic package, 40 pins, DIC (SAB 8086)

Approx. weight 6.8 g

Ceramic package, 40 pins, DIC

Approx. weight 5.9 g

General Information

Ceramic package, 68 pins, LCC

MICROPACK, 64 connections

1.6 Quality And Reliability Quality Assurance System

The high quality and reliability of integrated circuits from Siemens is the result of a carefully arranged production which is systematically checked and controlled at each production stage.
The procedures are subject to a quality assurance system; full details are given in the brochure "Siemens Quality Assurance System-Integrated Circuits" (SQS-IC).
Figure 1 shows the most important stages of the "SQS-IC". A quality assurance (QA) department which is independent of production and development, is responsible for the selected control measures, acceptance procedures, and information feedback loops. This department has state-of-the-art test and measuring equipment at its disposal, works according to approved methods of statistical quality control, and is provided with facilities for accelerated life and environmental tests used for both qualification and routine monitoring tests.

Figure 1

The latest methods and equipment for preparation and analysis are employed to achieve a continuous development of quality and reliability.

Quality Specifications

The delivery quality of integrated circuits is specified as follows:

1. Maximum ratings and tolerance limits of the characteristics.
2. Sampling inspection, AQL values (acceptable quality level)

Inspection by attributes ${ }^{1)}$ is based on the identical sampling inspection plans DIN 40080, (or) MIL-STD-105, inspection level II, normal inspection, or IEC 410.

A delivery lot for which the defect percentage for a certain characteristic is equal or less than the specified AQL value, will most probably (more than 95\%) be accepted in the appropriate sampling inspection.
The average defect percentage of delivered products lies, in general, clearly below the AQL value and is known as the average outgoing quality (AOQ). Only the number of defective units is evaluated in the sampling inspection.

3. Defects

A defect exists if a component characteristic does not correspond to the specifications in the data sheet.
The defects are classified as total defects, defects in the electrical features, and defects in the mechanical features. Unless otherwise agreed upon, the AQL values in section 5 apply to the various defect types.

4. Classification of defects

Total defect: - open contact or short circuit within a specified temperature range

- no marking, or wrong type and/or direction of marking
- wrong marking of pin 1
- mixed with wrong versions/types
- components not aligned within one rail/tube
- broken package and/or pins

Defects in the electrical features: - exceeding electrical specification limits
Defects in the
mechanical features: - defects on the package surface

- type marking hard to identify
- bent pins
- wrong dimensions

1) Inspection for a characteristic for which only two mutually exclusive properties are specified (good/bad).

5. AQL table

AQL values
Defect type Bipolar IC MOS IC
Total defect (mechanical and electrical) 0.1 0.25

Defect in the electrical features
0.4 0.4

Defect in the mechanical features
0.4
0.4

AQL value 1.5 applies to switching times

6. Incoming inspection

The tests carries out by the manufacturer are intended to render expensive incoming inspection by the user unnecessary. If the user, however, wants to carry out such inspections, we recommend the use of a sampling inspection plan as described in section 7. The test method used must be agreed upon between customer and supplier.
The following information is required to adjust a possible claim:
test circuit, sample size, number of defective items found, sample of evidence, packing list.

7. Sampling inspection plan for normal inspection

in accordance with DIN 40080 or MIL-Std-105 D, inspection level II, or IEC410

$A=$ Acceptance number, i.e. the maximum number of defective sample units up to which the lot is accepted.
$B=$ Rejection number, i.e. the number of defective sample units which must at least be found for the lot to be rejected.

Additional requirement

As the combination Acceptance 0 and Rejection 1 has a low degree of significance, the next larger size should be sampled.

Quality Conformance

Each integrated circuit is subject to a final test at the end of the production process. Those tests are carried out by computer-controlled, automatic test systems because hundred of thousands of operating conditions as well as many static and dynamic parameters are to be considered. Moreover, the test systems are extremely reliable and reproducible. The quality assurance department carries out a final check in the form of a lot-by-lot sampling inspection to additionally ensure this minimum failure rate as well as the acceptable quality level (AQL). Sampling inspection is performed in accordance with the inspection plans of DIN 40080, as well as of the identical MIL-STD-105 or IEC 410.

The table below shows the results of such sampling inspections performed with hundred of thousands of ICs in 1984. Those results correspond to the average outgoing quality (AOQ), and are specified as defectives per million.

	Total defects AOQ (dpm)	Sum of electrical defects AOQ (dpm)	Sum of mechanical defects AOQ (dpm)
SSI/MSI ≤ 1000 gate functions LSI/VLSI ≥ 1000 gate functions	60	300	500

Due to the low failure rate, the user generally need not perform an incoming inspection.

Reliability

Measures taken during development

The reliability of ICs is already considerably influenced at the development stage. Siemens has, therefore, fixed certain design standards for the development of circuit and layout, specifying e.g. minimum width and spacing of conductive layers on a chip, dimensions and electrical parameters of protective circuits for electrostatic charge, etc. An examination with the aid of carefully arranged programs operated on large-scale computers, guarantees the immediate identification and elimination of unintentional offenses against those design standards.

In-process control during production

The manufacturing of integrated circuits comprises several hundred production steps. As each step is to be executed with utmost accuracy, the in-process control is of outstanding importance. Some processes require more than a hundred different test measures. The tests have been arranged such that the individual process steps can be reproduced continuously.
The decreasing failure rates reflect the never ending effort in this direction; in the course of years they have been reduced considerably despite an immense rise in the IC's complexity.

Figure 2

Figure 2 shows the general course of the failure rate for digital MOS ICs in fit for the years 1970 to 1983. The increasing complexity as regards gate functions/chip is also specified.

Reliability monitoring

The general course of the IC's failure rate versus time is shown by a so-called "bathtu'" curve (figure 3). The failure rate has its peak during the first few operating hours (early failure period). After the early failure period has decayed, the "constant" failure rate period starts during which the failures may occur at an approximately uniform rate. This period ends with a repeated rise of the curve during the wear-out failure period. For IC's, however, the latter period lies usually far beyond the service life specified for the individual equipment.

Figure 3

Reliability tests for ICs are usually destructive examinations. They are, therefore, carried out with samples. Most failure mechanisms can be accelerated by means of higher temperatures. Due to the temperature dependence of the failure mechanisms, it is possible to simulate a future operational behavior within a short time by applying high temperatures; this is called life test.
The acceleration factor B for the life test can be obtained from the Arrhenius Equation

$$
B=\exp \left[\left(\frac{E A}{k}\right)\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)\right]
$$

where T_{2} is the temperature at which the life test is performed, T_{1} is the assumed operating temperature, and k is the Boltzmann constant.
Important for factor B is the activation energy E_{A}. It lies between 0.3 and 1.3 eV and differs considerably for individual failure mechanisms.
For all Siemens ICs, the reliability data from life tests is converted to an operating temperature of $T_{\text {amb }}=40^{\circ} \mathrm{C}$, assuming an average activation energy of 0.4 eV . The acceleration factor for life tests is thus 24, compared with operational behavior. This method considers also failure mechanisms with low activation energy, i.e. which are only slightly accelerated by the temperature effect.
Various reliability tests are periodically performed with IC types that are representative of a certain production line-this is described in the brochure "SQS-IC". Such tests are e.g. humidity test at $85^{\circ} \mathrm{C}$ and 85% relative humidity, pressure cooker test, as well as life tests up to 1000 hours and more. Test results are available in the form of summary reports.

1.7 Thermal Coefficients
 Plastic Packages

Type/ Pins	Mounting Area $\mathrm{mm} \times \mathrm{mm}$	Chip Size mm^{2}	$\mathrm{R}_{\mathrm{thsA}}$ ${ }^{\circ} \mathrm{K} / \mathrm{W}$
DIL 8	2.0×3.0	4	108
14	$2.0 \times 3.6 \mathrm{~N}$	$4 / 5$	$79 / 77$
	$3.5 \times 4.2 \mathrm{~N}$	$4 / 7 / 12$	$72 / 67 / 62$
16	2.0×3.6	$4 / 5$	$77 / 75$
	3.5×5.0	$4 / 7 / 15$	$71 / 65 / 59$
	3.5×6.5	8	63
18	3.7×10.2	25	60
	2.8×3.6	$4 / 7$	$70 / 65$
20	3.5×5.5	$4 / 7 / 15$	$66 / 60 / 55$
	$3.8 \times 5.5 \mathrm{~N}$	$7 / 17$	$65 / 60$
22	4.0×7.8	18	56
24	4.5×5.5	$7 / 21$	$56 / 47$
28	4.2×5.2	$7 / 18$	$55 / 52$
	6.2×7.2	$7 / 30 / 40$	$49 / 45 / 44$
40	4.2×5.2	$7 / 18$	$51 / 48$
	6.0×7.5	$7 / 30 / 40$	$45 / 41 / 40$
	6.0×7.5	$7 / 30 / 40$	$43 / 39 / 38$

$N=$ new package, $S=$ special package according to package catalogue

Ceramic multi-layer packages

Type/ Pins	Mounting Area $m m \times m m$	Chip Size mm^{2}	$\mathrm{R}_{\mathrm{thSA}}$ K / W
DIC 16	$3.9 \times 6.1 \mathrm{~S}$ $5.6 \times 10 \mathrm{~N}$	$4 / 7 / 15$	$78 / 71 / 65$
	$3.9 \times 5.6 \mathrm{~S}$	40	55
24	$6.5 \times 6.5 \mathrm{~S}$	$7 / 7 / 13$	$75 / 68 / 63$
40	$7.8 \times 7.8 \mathrm{~S}$	$7 / 30 / 46$	$54 / 46$
	$9.0 \times 9.0 \mathrm{~N}$	$7 / 30 / 46$	$49 / 42 / 37$
		$45 / 38 / 36$	

$\mathrm{N}=$ new package, $\mathrm{S}=$ special package according to package catalogue.
Plastic power package

Type/ Pins	Mounting Area $m m \times m m$	Chip Size mm^{2}	$\mathrm{R}_{\mathrm{thSA}}$ ${ }^{\circ} \mathrm{K} / \mathrm{W}$	$\mathrm{R}_{\mathrm{thsc}}$ ${ }^{\circ} \mathrm{K} / \mathrm{W}$
SIL 9	2.5×3.4 3.4×4.3	4.7 7	60	2.2
			60	2.2

$N=$ new package, $S=$ special package according to package catalogue.

Summary of Types

Siemens Part No. Function Page
2.1 Component Selection GuideMicrocontroller and Microprocessor Components
SAB 8031-P $\quad 8$-bit single chip microcomputer without internal ROM, 12 MHz 49
SAB 8031-10-P $\quad 8$-bit single chip microcomputer without internal ROM, 10 MHz 49
SAB 8031-T40/85-P $\quad 8$-bit single chip microcomputer without internal ROM, $10 \mathrm{MHz},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temp. range 65
SAB 8031-T40/110-P 8 -bit single chip microcomputer without internal ROM, $8 \mathrm{MHz},-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$ temp. range 65
SAB 8031A-P $\quad 8$-bit single chip microcomputer without internal ROM, 12 MHz 81
SAB 8031A-15-P $\quad 8$-bit single chip microcomputer without internal ROM, 15 MHz 81
SAB 8031A-T40/85-P 8 -bit single chip microcomputer without internal ROM, $12 \mathrm{MHz},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temp. range 99
SAB 8031A-T40/110-P 8 -bit single chip microcomputer without internal ROM, $10 \mathrm{MHz},-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$ temp. range 99
SAB 8032A-P $\quad 8$-bit single chip microcomputer without internal ROM, 12 MHz , (enhanced SAB 8031A-P) 117
SAB 8051-P 8-bit single chip microcomputer with internal mask programmed ROM, 12 MHz 49
SAB 8051-10-P $\quad 8$-bit single chip microcomputer with internal mask programmed ROM, 10 MHz 49
SAB 8051-T40/85-P $\quad 8$-bit single chip microcomputer with internal mask programmed ROM, $10 \mathrm{MHz},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temp. range 65
SAB 8051-T-40/110-P 8-bit single chip microcomputer with internal mask programmed ROM, $8 \mathrm{MHz},-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$ temp. range 65
SAB 8051A-P 8-bit single chip microcomputer with internal mask programmed ROM, 12 MHz 81
SAB 8051A-15-P $\quad 8$-bit single chip microcomputer with internal mask programmed ROM, 15 MHz 81
SAB 8051A-T40/85-P 8 -bit single chip microcomputer with internal mask programmed ROM, $12 \mathrm{MHz},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temp. range 99
SAB 8051A-T40/110-P 8-bit single chip microcomputer with internal mask programmed ROM, $10 \mathrm{MHz},-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$ temp. range 99
SAB 8052A-P $\quad 8$-bit single chip microcomputer with internal mask programmed ROM, 12 MHz , (enhanced SAB 8051A-P) 117
SAB 8086-P 16-bit microprocessor, 5 MHz 161
SAB 8086-C 16 -bit microprocessor, 5 MHz 161

Siemens Part No.	Function Page
SAB 8086-1-P	16-bit microprocessor, $10 \mathrm{MHz} \mathrm{}. \mathrm{}$.
SAB 8086-1-C	16-bit microprocessor, 10 MHz 161
SAB 8086-2-P	16-bit microprocessor, 8 MHz . 161
SAB 8086-2-C	16-bit microprocessor, 8 MHz 161
SAB 8088-P	16-bit microprocessor with 8 -bit data bus interface, 5 MHz . 199
SAB 8088-2-P	16-bit microprocessor, with 8 -bit data bus interface, 8 MHz . 199
SAB 80186-C	High integration 16-bit microprocessor, 8 MHz 2229
SAB 80188-C	High integration 16-bit microprocessor with 8 -bit data bus interface, 8 MHz
SAB 80286-C	High performance 16-bit microprocessor, $8 \mathrm{MHz}, \mathrm{LCC} .233$
SAB 80286-6-C	High performance 16-bit microprocessor, 6 MHz , LCC. 233
SAB 80286-CG	High performance 16-bit microprocessor, $8 \mathrm{MHz}, \mathrm{PGA} .233$
SAB 80286-6-CG	High performance 16-bit microprocessor, $6 \mathrm{MHz}, \mathrm{PGA} .233$
SAB 80C482-P	8 -bit single chip CMOS microcomputer with internal mask programmed ROM, 3 MHz (80 C 48 with special features) \qquad
Peripheral and Support Components	
SAB 1791-02-P	Floppy disk controller with inverted data bus 299
SAB 1793-02-P	Floppy disk controller with non-inverted data bus . . . 299
SAB 1795-02-P	Floppy disk controller with inverted data bus and side select output . 299
SAB 1797-02-P	Floppy disk controller with non-inverted data bus and side select output . 299
SAB 2793A-02-P	Floppy disk controller with non-inveited data bus, built in data separator and write precompensation logic . 325
SAB 2797A-02-P	Floppy disk controller with non-inverted data bus, side select output, and built in data separator and write precompensation logic . 325
SAB 8237A-P	8 -bit high performance programmable DMA controller, 3 MHz . 353
SAB 8237A-5-P	8 -bit high performance programmable DMA controller, 5 MHz . 353
SAB 8256A-P	Programmable multi-function component with timers/counters, an interrupt controller, baud rate generator, serial and parallel ports 369
SAB 8256A-2-P	Programmable multi-function component with timers/counters, an interrupt controller, baud rate, generator, serial and parallel ports (faster version of the SAB 8256A) . 369
SAB 8259A	Programmable interrupt controller, 5 MHz 395
SAB 8259A-2-P	Programmable interrupt controller, 8 MHz 395
SAB 8275-P	Programmable CRT controller, 2 MHz 405
SAB 8275-2-P	Programmable CRT controller, 3 MHz 405

Siemens Part No.	Function	Page
SAB 8276-P	Small system CRT controller	433
SAB 8282A	8 -bit non-inverting octal latch	459
SAB 8283A	8 -bit inverting octal latch.	459
SAB 8284B-P	Clock generator and driver for SAB 8086 family processors, 8 MHz	465
SAB 8284B-1-P	Clock generator and driver for SAB 8086 family processors, 10 MHz	465
SAB 8286A-P	8 -bit non-inverting octal bus transceiver	479
SAB 8287A-P	8 -bit inverting octal bus transceiver .	479
SAB 8288A-P	Bus controller for SAB 8086 family processors	485
SAB 8289-P	Bus arbiter for SAB 8086 family processors, 8 MHz	495
SAB 8289-1-P	Bus arbiter for SAB 8086 family processors, 10 MHz .	495
SAB 82258-C	Advanced DMA controller for 8 or 16 -bit systems, 8 MHz , LCC .	$.507$
SAB 82258-6-C	Advanced DMA controller for 8 or 16 -bit systems, 6 MHz , LCC.	$.507$
SAB 82258-CG	Advanced DMA controller for 8 or 16 -bit systems, 8 MHz , PGA .	$.507$
SAB 82258-6-CG	Advanced DMA controller for 8 or 16 -bit systems, 6 MHz , PGA .	$.507$
SAB 82284-P	Clock generator and driver for SAB 80286 family processors, 8 MHz	555
SAB 82284-6-P	Clock generator and driver for SAB 80286 family processors, 6 MHz	555
SAB 82288-P	Bus controller for SAB 8086 family processors ..	567
SAB 82288-6-P	Bus controller for SAB 8086 family processors, 6 MHz	. 567
SAB 82289-P	Bus arbiter for SAB 80286 family processors	593
SAB 82289-6-P	Bus arbiter for SAB 80286 family processors, 6 MHz .	593
SAB 82731-P	Dot rate generator, 50 MHz	595
SAB 82731-2-P	Dot rate generator, 80 MHz	595
Memory Components		
SAB 81C50-P	CMOS 256×8-bit static RAM with multiplex bus interface	625
SAB 81C51-P	CMOS 256×8-bit static RAM with multiplex bus interface	625
SAB 81C52-P	CMOS 256×8-bit static RAM with multiplex bus interface	
HYB 4164-P1	Dynamic RAM; 65, 536×1, access time 120 ns	639
HYB 4164-P2	Dynamic RAM; 65, 536×1, access time 150 ns	639
HYB 4164-P3	Dynamic RAM; 65, 536×1, access time 200 ns	639
HYB 41256-P12	Dynamic RAM; 262, 144×1, access time 120 ns	653
HYB 41256-P15	Dynamic RAM; 262, 144×1, access time 150 ns	653
HYB 41256-P20	Dynamic RAM; 262, 144×1, access time 200 ns	653
HYB 41257-P12	Dynamic RAM; 262, 144×1 with nibble mode, access time 120 ns	669
HYB 41257-P15	Dynamic RAM; 262, 144×1 with nibble mode, access time 150 ns .	

	Siemens Part No.	Function	Page
	HYB 41257-P20	Dynamic RAM; 262, 144×1 with nibble mode, access time 200 ns	669
	Telecom Components		
	PEB 2030-C	Frame alignment circuit for synchronization of 2.048 MHz PCM systems	689
	PEB 2040-C	Memory time switch for 2.048 MHz and 8.192	
	PEB 2050-C	MHz PCM systems Peripheral board controller, line card controller for $1.536 \mathrm{MHz}, 1.544 \mathrm{MHz}, 2.048 \mathrm{MHz}, 3.072 \mathrm{MHz}$, and 4.096 MHz PCM systems	697 713
	PEB 2051-C	Peripheral board controller, variation of PEB 2050	733
	PEB 2060-P	Programmable digital signal processing CODEC- FILTER, CMOS	751
	PSB 6520-P	Tone ringer, replaces mechanical bell in telephone	769
	PSB 6521-P	Tone ringer, replaces mechanical bell in telephone	781
	PSB 6620-P	Ring detector, senses ringing signal in telephone	795
	PSB 8590-P	Dual-tone multi-frequency generator/dialer	801
	PSB 8591-P	Dual-tone multi-frequency generator/dialer	819
	PSB 8592-P	Dual-tone multi-frequency generator/dialer, CMOS	843
	SAB 80C482-P	8 -bit single chip CMOS microcomputer with internal mask programmed ROM, 3 MHz (80C48 with special features)	133
	SAB 81C50-P	CMOS 256×8-bit static RAM with multiplex bus interface	
	SAB 81C51-P	CMOS 256×8-bit static RAM with multiplex bus interface	625
	SAB 81C52-P	CMOS 256×8-bit static RAM with multiplex bus interface	631
	PSB 7510	Numeric LCD controller, 64-pin micropack, CMOS	853
	Data Conversion Components		
	SDA 5200N-C	6-bit, 100 MHz , monolithic A/D flash converter	875
	SDA 5200S-C	6 -bit, 100 MHz , monolithic A/D flash converter	881
	SDA 6020-C	6 -bit, 50 MHz , monolithic A/D flash converter	887
	SDA 8005-C	8 -bit high speed monolithic D/A flash converter	893
	SDA 8010-C	8 -bit, 100 MHz , monolithic A/D flash converter	905
	Switched Mode Power Supply Components		
	TDA 4600-2	Control IC for switched mode power supplies, 9 pin SIP	919
	TDA 4600-2D-P	Control IC for switched mode power supplies	919
	TDA 4601	Control IC for switched mode power supplies, 9 pin SIP	929
	TDA 4601D-P	Control IC for switched mode power supplies	929
	TDA 4700-C	Control IC for switched mode power supplies	943
	TDA 4700A-P	Control IC for switched mode power supplies	943
	TDA 4714A-P	Control IC for switched mode power supplies	957
	TDA 4716A-P	Control IC for switched mode power supplies	
	TDA 4718-C	Control IC for switched mode power supplies	
46	TDA 4718A-P	Control IC for switched mode power supplies	981

[^1]
SAB 8031/8051 8-Bit Single Chip Microcomputer

SAB 8031/8031-10 Control Oriented CPU With RAM and I/O
SAB 8051/8051-10 An SAB 8031 With Factory Mask-Programmable ROM

- $4 \mathrm{~K} \times 8$ ROM
- 128×8 RAM
- Four 8-Bit Ports, 32 I/O Lines
- Two 16-Bit Timer/Event Counters
- High-Performance Full-Duplex

Serial Channel

- External Memory Expandable to 128 K
- Compatible with SAB 8080/8085

Peripherals

- SAB 8031/8051 12 MHz Operation
- SAB 8031-10/8051-10 10 MHz Operation
- Boolean Processor
- SAB 8048 Architecture Enhanced with:

Non-Paged Jumps
Direct Addressing
Four 8-Register Banks
Stack Depth Up to 128-Bytes
Multiply, Divide, Subtract, Compare

- Most Instructions Execute in $1 \mu \mathrm{~s}$
- $4 \mu \mathrm{~s}$ Multiply and Divide
Pin Configuration

The SAB 8031/8051 is a stand-alone, high-performiance single-chip computer fabricated in +5 V advanced N -channel, silicon gate Siemens MYMOS technology and packaged in a 40-pin DIP. It provides the hardware features, architectural enhancements and new instructions that are necessary to make it a powerful and cost effective controller for applications requiring up to 64 K bytes of program memory and/or up to 64 K bytes of data storage.
The SAB 8051 contains a non-volatile $4 \mathrm{~K} \times 8$ readonly program memory; a volatile $128 \times 8 \mathrm{read} /$ write data memory; 32 I/O lines; two 16-bit timer/ counters; a five-source, two-priority-level, nested interrupt structure; a serial I/O port for either multiprocessor communications, I/O expansion, or full duplex UART; and on-chip oscillator and clock circuits. The SAB 8031 is identical, except that it lacks
the program memory. For systems that require extra capability, the SAB 8051 can be expanded using standard TTL compatible memories and the byte oriented SAB 8080 and SAB 8085 peripherals.
The SAB 8051 microcomputer, like the SAB 8048, is efficient both as a controller and as an arithmetic processor. The SAB 8051 has extensive facilities for binary and BCD arithmetic and excels in bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% one-byte. 41\% two-byte, and 15\% three-byte instructions. With a 12 MHz crystal, 58% of the instructions execute in $1.0 \mu \mathrm{~s}, 40 \%$ in $2.0 \mu \mathrm{~s}$ and multiply and divide require only $4.0 \mu \mathrm{~s}$. Among the many instructions added to the standard SAB 8048 instruction set are multiply, divide, subtract and compare.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Functions
P1.0-P1.7	1-8	1/O	Port 1 is an 8-bit quasi-bidirectional I/O port. It is used for the low-order address byte during program verification. Port 1 can sink/source three LS TTL loads.
RST/VPD	9	I	A high level on this pin resets the SAB 8051. A small internal pulldown resistor permits power-on reset using only a capacitor connected to VCC. If VPD is held within its spec while VCC drops below spec, VPD will provide standby power to the RAM. When VPD is low, the RAM's current is drawn from VCC.
P3.0-P3.7	10-17	1/0	Port 3 is an 8 -bit quasi-bidirectional I/O port. It also contains the interrupt, timer, serial port and $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. Port 3 can sink/source three LS TTL loads. The secondary functions are assigned to the pins of Port 3, as follows: - RXD/data (P3.0). Serial port's receiver data input (asynchronous) or data input/output (synchronous). - TXD/clock (P3.1). Serial port's transmitter data output (asynchronous) or clock output (synchronous). - INTO (P3.2). Interrupt 0 input or gate control input for counter 0. - INT1 (P3.3). Interrupt 1 input or gate control input for counter 1. -- T0 (P3.4). Input to counter 0. - T1. (P3.5). Input to counter 1. - $\overline{W R}$ (P3.6). The write control signal latches the data byte from Port 0 into the External Data Memory. - $\overline{\mathrm{RD}}$ (P3.7). The read control signal enables External Data Memory to Port 0.
$\begin{aligned} & \text { XTAL1 } \\ & \text { XTAL2 } \end{aligned}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	1	XTAL 1 Input to the oscillator's high gain amplifier. Required when a crystal is used. Connect to VSS when external source is used on XTAL2. XTAL2 Output from the oscillator's amplifier. Input to the internal timing circuitry. A crystal or external source can be used.
P2.D-P2.7	21-28	1/0	Port 2 is an 8 -bit quasi-bidirectional I/O port. It also emits the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification. Port 2 can sink/source three LS TTL loads.
$\overline{\text { PSEN }}$	29	0	The Program Store Enable output is a control signal that enables the external Program Memory to the bus during external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. Remains high during internal program execution.
ALE	30	0	Provides Address Latch Enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access.

Pin Definitions and Functions (continued)

Symbol	Number	Input (II) Output (O)	Functions
$\overline{\overline{E A}}$	31	1	When held at a TTL high level, the SAB 8051 executes instructions from the internal ROM when the PC is less than 4096. When held at a TTL low level, the SAB 8051 fetches all instructions from external Program Memory.
PQ.0-P0.7	$39-32$	$1 / O$	Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification. Port 0 can sink/source eight LS TTL loads.
VCC	40		+5V power supply during operation and program verification.
VSS	20		Circuit ground potential.

Block Diagram

Instruction Set Description

Mnemonic	Description	Byte	Cycle

Arithmetic operations

ADD	A, Rn	Add register to Accumulator	1	1
ADD	A, direct	Add direct byte to Accumulator	2	1
ADD	A, @Ri	Add indirect RAM to Accumulator	1	1
ADD	A, \#data	Add immediate data to Accumulator	2	1
ADDC	A, Rn	Add register to Accumulator with Carry flag	1	1
ADDC	A,direct	Add direct byte to A with Carry flag	2	1
ADDC	A,@Ri	Add indirect RAM to A with Carry flag	1	1
ADDC	A, \#data	Add immediate data to A with Carry flag	2	1
SUBB	A,Rn	Subtract register from A with Borrow	1	1
SUBB	A,direct	Subtract direct byte from A with Borrow	2	1
SUBB	A,@Ri	Subtract indirect RAM from A w/Borrow	1	1
SUBB	A, \#data	Subtract immediate data from A w/Borrow	2	1
INC	A	Increment Accumulator	1	1
INC	Rn	Increment register	1	1
INC	direct	Increment direct byte	2	1
INC	@Ri	Increment indirect RAM	1	1
DEC	A	Decrement Accumulator	1	1
DEC	Rn	Decrement register	1	1
DEC	direct	Decrement direct byte	2	1
DEC	@Ri	Decrement indirect RAM	1	1
INC	DPTR	Increment Data Pointer	1	2
MUL	AB	Multiply A \& B	1	4
DIV	AB	Divide A \& B	1	4
DA	A	Decimal Adjust Accumulator	1	1

Logical operations

ANL	A,Rn	AND register to Accumulator	1	1
ANL	A,direct	AND direct byte to Accumulator	2	1
ANL	A,@Ri	AND indirect RAM to Accumulator	1	1
ANL	A,\#data	AND immediate data to Accumulator	2	1
ANL	direct,A	AND Accumulator to direct byte	2	1

Instruction Set Description (continued)

Mnemonic		Description	Byte	Cycle
ANL	direct, \#data	AND immediate data to direct byte	3	2
ORL	A,Rn	OR register to Accumulator	1	1
ORL	A,direct	OR direct byte to Accumulator	2	1
ORL	A,@Ri	OR indirect RAM to Accumulator	1	1
ORL	A, \# data	OR immediate data to Accumulator	2	1
ORL	direct, A	OR Accumulator to direct byte	2	1
ORL	direct, \#data	UR immediate data to direct byte	3	2
$\times \mathrm{RL}$	A,Rn	Exclusive-OR register to Accumulator	1	1
XRL	A,direct	Exclusive-OR direct byte to Accumulator	2	1
XRL	A,@Ri	Exclusive-OR indirect RAM to A	1	1
$\times \mathrm{RL}$	A, \# data	Exclusive-OR immediate data to A	2	1
XRL	direct, A	Exclusive-OR Accumulator to direct byte	2	1
XRL	direct,\#data	Exclusive-OR immediate data to direct	3	2
CLR	A	Clear Accumulator	1	1
CPL	A	Complement Accumulator	1	1
RL.	A	Rotate Accumulator Left	1	1
RLC	A	Rotate A Left through the Carry flag	1	1
RR	A	Rotate Accumulator Right	1	1
RRC	A	Rotate A Right through Carry flag	1	1
SWAP	A	Swap nibbles within the Accumulator	1	1

Data transfer

MOV	A,Rn	Move register to Accumulator	1	1
MOV	A,direct	Move direct byte to Accumulator	2	1
MOV	A, Ri	Move indirect RAM to Accumulator	1	1
MOV	Rn,A	Rn,data	Move immediate data to Accumulator	2
MOV	Rn,\#data	Move Accumulator to register	1	1
MOV	direct,A	Move direct byte to register	2	2
MOV	direct, direct	Move immediate data to register	2	1
MOV		Move Accumulator to direct byte	2	1
MOV			2	2

Instruction Set Description (continued)

Mnemonic		Description	Byte	Cycle
MOV	direct,@Ri	Move indirect RAM to direct byte	2	2
MOV	direct,\#data	Move immediate data to direct byte	3	2
MOV	@Ri,A	Move Accumulator to indirect RAM	1	1
MOV	@Ri,direct	Move direct byte to indirect RAM	2	2
MOV	DPTR,\#data 16	Load Data Pointer with a 16-bit constant	3	2

Data transfer (cont.)

MOVC	A,@A+DPTR	Move Code byte relative to DPTR to A	1	2
MOVC	A,@A+PC	Move Code byte relative to PC to A	1	2
MOVX	A,@Ri	Move External RAM (8-bit addr) to A	1	2
MOVX	A,@DPTR	Move External RAM (16-bit addr) to A	1	2
MOVX	@Ri,A	Move A to External RAM (8-bit addr)	1	2
MOVX	direct	direct	Move A to External RAM (16-bit addr)	1
PUSH	A,direct	Push direct byte onto stack	Pop direct byte from stack	2
POP	Exchange register with Accumulator	1	1	
$X C H$	A, @Ri	Exchange direct byte with Accumulator	2	1
$X C H$		Exchange low-order Digit ind. RAM w/A	1	1
$X C H$			1	1
$X C H D$				2

Boolean variable manipulation

CLR	C	Clear Carry flag	1	1
CLR	bit	Clear direct bit	2	1
SETB	C	Set Carry flag	1	1
SETB	bit	Set direct Bit	2	1
CPL	Complement Carry flag	1	1	
CPL	C,bit	C,/bit	C,bit	AND direct bit to Carry flag
ANL	Com complement of direct bit to Carry	2	1	
ANL	C,bit	OR direct bit to Carry flag	2	2
ORL	OR complement of direct bit to Carry	2	2	
ORL	Move direct bit to Carry flag	2	2	
MOV	Move Carry flag to direct bit	2	1	
MOV			2	2

Instruction Set Description (continued)

Mnemonic	Description	Byte	Cycle

Program and machine control

ACALL	addr 11	Absolute Subroutine Call	2	2
LCALL	addr 16	Long Subroutine Call	3	2
RET		Return from subroutine	1	2
RETI		Return from interrupt	1	2
AJMP	addr 11	Absolute Jump	2	2
LJMP	addr 16	Long Jump	3	2
SJMP	rel	Short Jump (relative addr)	2	2
JMP	@A+DPTR	Jump indirect relative to the DPTR	1	2
JZ	rel	Jump if Accumulator is Zero	2	2
JNZ	rel	Jump if Accumulator is Not Zero	2	2
JC	rel	Jump if Carry flag is set	2	2
JNC	rel	Jump if Carry flag is not set	2	2
JB	bit,rel	Jump if direct Bit set	3	2
JNB	bit,rel	Jump if direct Bit Not set	3	2
JBC	bit,rel	Jump if direct Bit is set \& Clear bit	3	2
CJNE	A,direct,rel	Compare direct to A \& Jump if Not Equal	3	2
CJNE	A, \#data, rel	Comp. immed. to A \& Jump if Not Equal	3	2
CJNE	Rn,\#data, rel	Comp. immed. to reg. \& Jump if Not Equal	3	2
CJNE	@Ri,\#data, rel	Comp.immed. to ind. \& Jump if Not Equal	3	2
DJNZ	Rn,rel	Decrement register \& Jump if Not Zero	2	2
DJNZ	direct,rel	Decrement direct \& Jump if Not Zero	3	2
NOP		No operation	1	1

Notes on data addressing modes:

Rn - Working register R0-R7
direct - 128 internal RAM locations, any I/O port, control or status register
@Ri - Indirect internal RAM location addressed by register R0 or R1
\#data - 8-bit constant included in instruction
\#data 16 - 16-bit constant included as bytes $2 \& 3$ of instruction
bit - 128 software flags, any I/O pin, control or status bit

Notes on program addressing modes:
addr 16 - Destination address for LCALL \& LJMP may be anywhere within the 64-Kilobyte program memory address space.
addr 11 - Destination address for ACALL \& AJMP will be within the same 2-Kilobyte page of program memory as the first byte of the following instruction.
rel - SJMP and all conditional jumps include an 8-bit offset byte. Range is $+127 /-128$ bytes relative to first byte of the following instruction.

Instruction Opcodes in Hexadecimal Order

Hex Code	Number of Bytes	Mnemonic	Operands	Hex Code	Number of Bytes	Mnemonic	Operands
00	1	NOP		34	2	ADDC	A, \#data
01	2	AJMP	code addr	35	2	ADDC	A, data addr
02	3	LJMP	code addr	36	1	ADDC	A,@R0
03	1	RR	A	37	1	ADDC	A,@R1
04	1	INC	A	38	1	ADDC	A,R0
05	2	INC	data addr	39	1	ADDC	A, R1
06	1	INC	@RO	3A	1	ADDC	A, R2
07	1	INC	@R1	3B	1	ADDC	A, R3
08	1	INC	R0	3C	1	ADDC	A, R4
09	1	INC	R1	3D	1	ADDC	A, R5
OA	1	INC	R2	3 E	1	ADDC	A, R7
OB	1	INC	R3	3F	1	ADDC	A, R7
OC	1	INC	R4	40	2	JC	code addr
OD	1	INC	R5	41	2	AJMP	code addr
OE	1	INC	R6	42	2	ORL	data addr, A
OF	1	INC	R7	43	3	ORL	data addr, \#data
10	3	JBC	bit addr code addr	44	2	ORL	A, \#data
11	2	ACALL	code addr	45	2	ORL	A, data addr
12	3	LCALL	code addr	46	1	ORL	A, @R0
13	1	RRC	A	47	1	ORL	A, @R1
14	1	DEC	A	48	1	ORL	A, RO
15	2	DEC	data addr	49	1	ORL	A, R1
16	1	DEC	@RO	4A	1	ORL	A, R2
17	1	DEC	@R1	4B	1	ORL	A, R3
18	1	DEC	R0	4 C	1	ORL	A, R4
19	1	DEC	R1	4D	1	ORL	A, R5
1A	1	DEC	R2	4E	1	ORL	A, R6
1 B	1	DEC	R3	4F	1	ORL	A, R7
1 C	1	DEC	R4	50	2	JNC	code addr
1D	1	DEC	R5	51	2	ACALL	code addr
1E	1	DEC	R6	52	2	ANL	data addr, A
1 F	1	DEC	R7	53	3	ANL	data addr, \#data
20	3	JB	bit addr code addr	54	2	ANL	A, \#data
21	2	AJMP	code addr	55	2	ANL	A,data addr
22	1	RET		56	1	ANL	A,@R0
23	1	RL	A	57	1	ANL	A, @R1
24	2	ADD	A, \# data	58	1	ANL	A,R0
25	2	ADD	A,data addr	59	1	ANL	A, R1
26	1	ADD	A,@R0	5A	1	ANL	A, R2
27	1	ADD	A, @R1	5B	1	ANL	A, R3
28	1	ADD	A, RO	5 C	1	ANL	A, R4
29	1	ADD	A, R1	5D	1	ANL	A, R5
2A	1	ADD	A, R2	5E	1	ANL	A,R6
2B	1	ADD	A, R3	5F	1	ANL	A,R7
2C	1	ADD	A, R4	60	2	$J Z$	code addr
2D	1	ADD	A, R5	61	2	AJMP	code addr
2 E	1	ADD	A, R6	62	2	XRL	data addr, A
2 F	1	ADD	A, R7	63	3	XRL	data addr, \#data
30	3	JNB	bit addr, code addr	64	2	XRL	A, \# data
31	2	ACALL	code addr	65	2	XRL	A, data addr
32	1	RETI		66	1	XRL	A, @R0
33	1	RLC	A	67	1	XRL	A,@R1

Instruction Opcodes in Hexadecimal Order (continued)

Hex Code	Number of Bytes	Mnemonic	Operands
68	1	XRL	A, RO
69	1	XRL	A, R1
6A	1	XRL	A,R2
6B	1	XRL	A, R3
6C	1	XRL	A,R4
6D	1	XRL	A, R5
6E	1	XRL	A,R6
6F	1	XRL	A, R7
70	2	JNZ	code addr
71	2	ACALL	code addr
72	2	ORL	C,bit addr
73	1	JMP	@A+DPTR
74	2	MOV	A,\#data
75	3	MOV	data addr, \#data
76	2	MOV	@RO,\#data
77	2	MOV	@R1, \#data
78	2	MOV	R0,\#data
79	2	MOV	R1, \#data
7A	2	MOV	R2,\#data
7B	2	MOV	R3, \# data
7C	2	MOV	R4, \# data
7 D	2	MOV	R5, \#data
7E	2	MOV	R6,\#data
7 F	2	MOV	R7, \#data
80	2	SJMP	code addr
81	2	AJMP	code addr
82	2	ANL	C,bit addr
83	1	MOVC	A,@A+PC
84	1	DIV	$A B$
85	3	MOV	data addr,data addr
86	2	MOV	data addr,@R0
87	2	MOV	data addr,@R1
88	2	MOV	data addr,R0
89	2	MOV	data addr,R1
8A	2	MOV	data addr, R2
8B	2	MOV	data addr, R3
8C	2	MOV	data addr, R4
8D	2	MOV	data addr, R5
8E	2	MOV	data addr, R6
8F	2	MOV	data addr,R7
90	3	MOV	DPTR,\#data
91	2	ACALL	code addr
92	2	MOV	bit addr, C
93	1	MOVC	A,@A+DPTR
94	2	SUBB	A, \#data
95	2	SUBB	A, data addr
96	1	SUBB	A, @R0
97	1	SUBB	A, @R1
98	1	SUBB	A, RO
99	1	SUBB	A, R1
9A	1	SUBB	A, R2
9 B	1	SUBB	A, R3

Hex Code	Number of Bytes	Mnemonic	Operands
9C	1	SUBB	A, R4
9D	1	SUBB	A,R5
9 E	1	SUBB	A,R6
9F	1	SUBB	A, R7
A0	2	ORL	C,/bit addr
A1	2	AJMP	code addr
A2	2	MOV	C,bit addr
A3	1	INC	DPTR
A4	1	MUL	$A B$
A5		reserved	
A6	2	MOV	@R0,data addr
A7	2	MOV	@R1,data addr
A8	2	MOV	R0,data addr
A9	2	MOV	R1,data addr
AA	2	MOV	R2,data addr
$A B$	2	MOV	R3,data addr
$A C$	2	MOV	R4,data addr
AD	2	MOV	R5,data addr
AE	2	MOV	R6,data addr
AF	2	MOV	R7,data addr
B0	2	ANL	C,/bit addr
B1	2	ACALL	code addr
B2	2	CPL	bit addr
B3	1	CPL	C
B4	3	CJNE	A, \#data, code addr
B5	3	CJNE	A,data addr,code addr
B6	3	CJNE	@R0,\#data,code addr
B7	3	CJNE	@R1,\#data,code addr
B8	3	CJNE	R0, \#data, code addr
B9	3	CJNE	R1,\#data,code addr
BA	3	CJNE	R2, \#data,code addr
BB	3	CJNE	R3, \#data, code addr
BC	3	CJNE	R4, \# data, code addr
BD	3	CJNE	R5,\#data,code addr
BE	3	CJNE	R6,\#data,code addr
BF	3	CJNE	R7, \#data, code addr
CO	2	PUSH	data addr
C1	2	AJMP	code addr
C2	2	CLR	bit addr
C3	1	CLR	C
C4	1	SWAP	A
C5	2	XCH	A,data addr
C6	1	XCH	A,@R0
C7	1	XCH	A, @R1
C8	1	XCH	A,R0
C9	1	XCH	A, R1
CA	1	XCH	A, R2
CB	1	XCH	A, R3
CC	1	XCH	A,R4
CD	1	XCH	A, R5
CE	1	XCH	A,R6
CF	1	XCH	A, R7

Instruction Opcodes in Hexadecimal Order (continued)

Hex Code	Number of Bytes	Mnemonic	Operands
D0	2	POP	data addr
D1	2	ACALL	code addr
D2	2	SETB	bit addr
D3	1	SETB	C
D4	1	DA	A
D5	3	DJNZ	data addr,code addr
D6	1	XCHD	A, @R0
D7	1	XCHD	A,@R1
D8	2	DJNZ	R0,code addr
D9	2	DJNZ	R1, code addr
DA	2	DJNZ	R2,code addr
DB	2	DJNZ	R3,code addr
DC	2	DJNZ	R4,code addr
DD	2	DJNZ	R5,code addr
DE	2	DJNZ	R6,code addr
DF	2	DJNZ	R7,code addr
E0	1	MOVX	A,@DPTR
E1	2	AJMP	code addr
E2	1	MOVX	A,@R0
E3	1	MOVX	A,@R1
E4	1	CLR	A
E5	2	MOV	A,data addr
E6	1	MOV	A, @R0
E7	1	MOV	A, @R1
E8	1	MOV	A, R0
E9	1	MOV	A, R1
EA	1	MOV	A, R2
EB	1	MOV	A, R3
EC	1	MOV	A,R4
ED	1	MOV	A,R5
EE	1	MOV	A,R6
EF	1	MOV	A, R7
F0	1	MOVX	@DPTR,A
F1	2	ACALL	code addr
F2	1	MOVX	@RO,A
F3	1	MOVX	@R1,A
F4	1	CPL	A
F5	2	MOV	data addr, A
F6	1	MOV	@RO,A
F7	1	MOV	@R1,A
F8	1	MOV	RO,A
F9	1	MOV	R1, A
FA	1	MOV	R2,A
FB	1	MOV	R3, A
FC	1	MOV	R4,A
FD	1	MOV	R5, A
FE	1	MOV	R6, A
FF	1	MOV	R7, A

Absolute Maximum Ratings ${ }^{11}$

Ambient Temperature Under Bias
Storage Temperature
Voltage on Any Pin with Respect to Ground (VSS)
Power Dissipation

$$
\begin{array}{r}
0 \text { to } 70^{\circ} \mathrm{C} \\
-65 \text { to }+150^{\circ} \mathrm{C} \\
-0.5 \text { to }+\quad 7 \mathrm{~V} \\
2 \mathrm{~W}
\end{array}
$$

D.C. Characteristics

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 5 \% ; \mathrm{VSS}=0 \mathrm{~V}$

Symbol	Parameter	Limit Values			Unit	Test Condition
		Min.	Typ.	Max.		
VIL	Input Low Voltage	-0.5	-	0.8	V	-
VIH	Input High Voltage (Except RST/VPD and XTAL2)	2.0		$V C C+0.5$		
VIH1	Input High Voltage to RST/VPD for Reset, XTAL2	2.5		-		XTAL1 to VSS
VPD	Power Down Voltage To RST/VPD	4.5		5.5		$V C C=O V$
VOL	Output Low Voltage Ports 1, 2, 3	-		0.45		$\mathrm{IOL}=1.6 \mathrm{~mA}$
VOL1	Output Low Voltage Port 0, ALE, /PSEN					$\mathrm{IOL}=3.2 \mathrm{~mA}$
VOH	Output High Voltage Ports 1, 2, 3	2.4		-		$\mathrm{IOH}=-60 \mu \mathrm{~A}$
VOH1	Output High Voltage Port 0, ALE, /PSEN					$1 \mathrm{OH}=-400 \mu \mathrm{~A}$
IIL	Logical 0 Input Current Ports 1, 2, 3	-		-800	$\because \mathrm{A}$	$\mathrm{VIL}=0.45 \mathrm{~V}$
IIL2	Logical 0 Input Current XTAL 2			-2.0	mA	$\begin{aligned} & \text { XTAL } 1=\mathrm{VSS} \\ & \mathrm{VIL}=0.45 \mathrm{~V} \end{aligned}$
IIH1	Input High Current to RST/VPD for Reset			500	$\mu \mathrm{A}$	$V I N=V C C-1.5 \mathrm{~V}$
ILI	Input Leakage Current To Port 0,/EA			± 10		$0<$ VIN $<$ VCC
ICC	Power Supply Current		125	160	mA	-
IPD	Power Down Current		10	20		
ClO	Capacitance of I/O Buffer		-	10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$

1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

A.C. Characteristics for SAB 8031/8051

$\mathrm{TA} 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$; VSS $=0 \mathrm{~V}$
(CL for Port 0, ALE and PSEN Outputs $=100 \mathrm{pF}$; CL for All Other Outputs $=80 \mathrm{pF}$)

Program Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		12 MHz Clock		Variable Clock$1 / \mathrm{TCLCL}=1.2 \mathrm{MHz} \text { to } 12 \mathrm{MHz}$		
		Min	Max	Min	Max	
TLHLL	ALE Pulse Width	127	-	2TCLCL-40	-	ns
TAVLL	Address Setup to ALE	53		TCLCL-30		
TLLAX 1	Address Hold After ALE	48		TCLCL-35		
TLLIV	ALE to Valid Instr In	-	233	-	4TCLCL-100	
TLLPL	ALE to $\overline{\text { PSEN }}$	58	-	TCLCL-25	-	
TPLPH	PSEN Pulse Width	215		3TCLCL-35		
TPLIV	$\overline{\text { PSEN }}$ to Valid Instr In	-	150	-	3TCLCL-100	
TPXIX	Input Instr Hold After PSEN	0	-	0	-	
TPXIZ*)	Input Instr Float After $\overline{\text { PSEN }}$	-	63	-	TCLCL-20	
TPXAV*)	Address Valid After $\overline{\text { PSEN }}$	75	-	TCLCL-8	-	
TAVIV	Address to Valid Instr In	-	302	-	5TCLCL-115	
TAZPL	Address Float to PSEN	0	-	0	-	

External Data Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		12 MHz Clock		Variable Clock$1 / \text { TCLCL }=1.2 \mathrm{MHz} \text { to } 12 \mathrm{MHz}$		
		Min	Max	Min	Max	
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400	-	6TCLCL-100	-	ns
TWLWH	$\overline{W R}$ Pulse Width			6TCLCL-100		
TLLAX2	Address Hold After ALE	132		2TCLCL-35		
TRLDV	$\overline{\mathrm{RD}}$ to Valid Data In	-	250	-	5TCLCL-165	
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0	-	0	-	
TRHDZ	Data Float After $\overline{\mathrm{R}} \overline{\mathrm{D}}$	-	97	-	2TCLCL-70	
TLLDV	ALE to Valid Data In		517		8TCLCL-150	
TAVDV	Address to Valid Data In		585		9TCLCL-165	
TLLWL	ALE to $\overline{W R}$ or $\overline{\mathrm{RD}}$	200	300	3TCLCL-50	3 TCLCL +50	
TAVWL	Address to $\overline{W R}$ or $\overline{R D}$	203	-	4TCLCL-130	-	
TWHLH	$\overline{W R}$ or $\overline{\text { RD }}$ High to ALE High	43	123	TCLCL-40	TCLCL +40	
TDVWX	Data Valid to $\overline{W R}$ Transition	33		TCLCL-50		
TQVWH	Data Setup Before $\overline{W R}$	433	-	7TCLCL-150	-	
TWHOX	Data Hold After $\overline{W R}$	33		TCLCL-50		
TRLAZ	Address Float After $\overline{\mathrm{RD}}$	-	0	-	0	

[^2]
A.C. Characteristics for SAB 8031-10/8051-10

$T A 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$; VSS $=0 \mathrm{~V}$

Program Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		10 MHz Clock		Variable Clock$1 / \mathrm{TCLCL}=1.2 \mathrm{MHz} \text { to } 10 \mathrm{MHz}$		
		Min	Max	Min	Max	
TLHLL	ALE Pulse Width	160	-	2TCLCL-40	-	ns
TAVLL	Address Setup to ALE	70		TCLCL-30		
TLLAX1	Address Hold After ALE	65		TCLCL-35		
TLLIV	ALE to Valid Instr In	-	300	-	4TCLCL-100	
TLLPL	ALE to $\overline{\text { SSEN }}$	75	-	TCLCL-25	-	
TPLPH	PSEN Pulse Width	265		3TCLCL-35		
TPLIV	P $\bar{P} E \bar{N}$ to Valid Instr In	-	200	-	3TCLCL-100	
TPXIX	Input Instr Hold After PSEN	0	-	0	-	
TPXIZ*)	Input Instr Float After $\overline{\text { PSEN }}$	-	80	-	TCLCL-20	
TPXAV*)	Address Valid After $\overline{\text { PSEN }}$	92	-	TCLCL-8	-	
TAVIV	Address to Valid Instr In	-	385	-	5TCLCL-115	
TAZPL	Address Float to PSEN	0	-	0	-	

External Data Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		10 MHz Clock		Variable Clock$1 / \mathrm{TCLCL}=1.2 \mathrm{MHz} \text { to } 10 \mathrm{MHz}$		
		Min	Max	Min	Max	
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	500	-	6TCLCL-100	-	ns
TWLWH	$\overline{\text { WR Pulse Width }}$			6TCLCL-100		
TLLAX 2	Address Hold After ALE	165		2TCLCL-35		
TRLDV	$\overline{\mathrm{RD}}$ to Valid Data In	-	335	-	5TCLCL-165	
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0	-	0	-	
TRHDZ	Data Float After $\overline{\mathrm{RD}}$	-	130	-	2TCLCL-70	
TLLDV	ALE to Valid Data In		650		8TCLCL-150	
TAVDV	Address to Valid Data In		735		9TCLCL-165	
TLLWL	ALE to $\overline{W R}$ or $\overline{\mathrm{RD}}$	250	350	3TCLCL-50	3TCLCL+50	
TAVWL	Address to $\overline{W R}$ or $\overline{\mathrm{RD}}$	270	-	4TCLCL-130	-	
TWHLH	$\overline{W R}$ or $\overline{\mathrm{RD}}$ High to ALE High	60	140	TCLCL-40	TCLCL+40	
TDVWX	Data Valid to $\overline{W R}$ Transition	50		TCLCL-50		
TQVWH	Data Setup Before $\overline{W R}$	550	-	7TCLCL-150	-	
TWHOX	Data Hold After $\overline{W R}$	50		TCLCL-50		
TRLAZ	Address Float After $\overline{\mathrm{RD}}$	-	0	-	0	

[^3]
External Clock Drive XTAL2

Symbol	Parameter	Limit Values		Unit
		Variable ClockFreq $=1.2 \mathrm{MHz}$ to $12 \mathrm{MHz}(8031 / 8051)$Freq $=1.2 \mathrm{MHz}$ to $10 \mathrm{MHz}(8031-10 / 8051-10)$		
		Min	Max	
TCLCL	Oscillator Period 8031/8051 Oscillator Period 8031-10/8051-10	$\begin{aligned} & 83.3 \\ & 100 \end{aligned}$	833.3	ns
TCHCX	High Time	20	TCLCL-TCLCX	
TCLCX	Low Time		TCLCL-TCHCX	
TCLCH	Rise Time	-	20	
$\underline{\text { TCHCL }}$	Fall Time			

External Clock Cycle

A.C. Testing Input, Output, Float Waveforms

A.C. testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ".

Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
For timing purposes, the float state is defined as the point at which a P0 pin sinks 3.2 mA or sources $400 \mu \mathrm{~A}$ at the voltage test levels.

Waveforms

Program Memory Read Cycle

Data Memory Read Cycle

Data Memory Write Cycle

Recommended Oscillator Circuits

$C=30 \mathrm{pF} \pm 10 \mathrm{pF}$

Crystal Oscillator Mode

74LSO4

Driving from External Source

SAB 8031/8051 8-Bit Single Chip Microcomputer

Extended Temperature Range: | | -40 to $+85^{\circ} \mathrm{C}$ |
| ---: | :--- |
| | -40 to $+110^{\circ} \mathrm{C}$ |

SAB 8051-P-T40/85
SAB 8051-P-T40/110
Mask Programmable ROM

SAB 8031-P-T40/85
SAB 8031-P-T40/110
External ROM
- Boolean Processor
- SAB 8048 Architecture Enhanced with:
- Non-Paged Jumps
- Direct Addressing
- Four 8-Register Banks
- Stack Depth Up to 128-Bytes
- Multiply, Divide, Subtract, Compare
- Single +5 V Power Supply with $\pm 10 \%$ Voltage Margins

Pin Configuration

The SAB 8031/8051 for the two extended temperature ranges (Industrial temperature range:
-40 to $+85^{\circ} \mathrm{C}$, Automative temperature range:
-40 to +110 C) is fully compatible with the standard SAB 8031/8051 with respect to architecture, instruction set, and software portability.

The SAB 8031/8051 is a stand-alone, high-performance single-chip computer fabricated in +5 V advanced N-channel, silicon gate Siemens MYMOS technology and packaged in a 40-pin DIP.

The SAB 8031 is identical to the SAB 8051, except that it lacks the program memory.

The SAB 8051 microcomputer, like the SAB 8048, is efficient both as a controller and as an arithmetic processor. The SAB 8051 has extensive facilities for binary and BCD arithmetic and excels in bit-handling capabilities. Among the many instructions added to the standard SAB 8048 instruction set are multiply, divide, subtract and compare.

Pin Description

Symbol	Number	Input (I) Output (O)	Function
P1.0-P1.7	1-8	1/0	Port 1 is an 8-bit quasi-bidirectional I/O port. It is used for the low-order address byte during program verification.
RST/VPD	9	1	A high level on this pin resets the SAB 8051. A small internal pulldown resistor permits power-on reset using only a capacitor connected to VCC. If VPD is held within its spec while VCC drops below spec, VPD will provide standby power to the RAM. When VPD is low, the RAM's current is drawn from VCC.
P3.0-P3.7	10-17	1/0	Port 3 is an 8 -bit quasi-bidirectional I/O port. It also contains the interrupt, timer, serial port and $\overline{R D}$ and $\overline{W R}$ pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. The secondary functions are assigned to the pins of Port 3, as follows: - RXD/data (P3.0). Serial port's receiver data input (asynchronous) or data input/output (synchronous). - TXD/clock (P3.1). Serial port's transmitter data output (asynchronous) or clock output (synchronous). - INTO (P3.2). Interrupt 0 input or gate control input for counter 0. - $\overline{\text { INT1 (P3.3). Interrupt }} 1$ input or gatè control input for counter 1. - T0 (P3.4). Input to counter 0. - T1 (P3.5). Input to counter 1. - $\overline{W R}$ (P3.6). The write control signal latches the data byte from Port 0 into the External Data Memory. - $\overline{\mathrm{RD}}$ (P3.7). The read control signal enables External Data Memory to Port 0.
$\begin{aligned} & \text { XTAL1 } \\ & \text { XTAL2 } \end{aligned}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	1	XTAL 1 Input to the oscillator's high gain amplifier. Required when a crystal is used. Connect to VSS when external source is used on XTAL2. XTAL2 Output from the oscillator's amplifier. Input to the internal timing circuitry. A crystal or external source can be used.
P2.0-P2.7	21-28	1/0	Port 2 is an 8-bit quasi-bidirectional I/O port. It also emits the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification.
$\overline{\text { PSEN }}$	29	0	The Program Store Enable output is a control signal that enables the external Program Memory to the bus during external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. Remains high during internal program execution.
ALE	30	0	Provides Address Latch Enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access.

Symbol	Number	Input (I) Output (O)	Function
$\overline{\mathrm{EA}}$	31	1	When held at a high level, the SAB 8051 executes instructions from the internal ROM when the PC is less than 4096. When held at a low level, the SAB 8051 fetches all instructions from external Program Memory.
P0.Ø-P0.7	$39-32$	I/O	Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification.
VCC	40		+5V power supply during operation and program verification.
VSS	20		Circuit ground potential.

Block Diagram

Instruction Set Description

Mnemonic	Description	Byte	Cycle

Arithmetic operations

ADD	A, Rn	Add register to Accumulator	1	1
ADD	A, direct	Add direct byte to Accumulator	2	1
ADD	A, @Ri	Add indirect RAM to Accumulator	1	1
ADD	A, \#data	Add immediate data to Accumulator	2	1
ADDC	A, Rn	Add register to Accumulator with Carry flag	1	1
ADDC	A, direct	Add direct byte to A with Carry flag	2	1
ADDC	A,@Ri	Add indirect RAM to A with Carry flag	1	1
ADDC	A,\#data	Add immediate data to A with Carry flag	2	1
SUBB	A, Rn	Subtract register from A with Borrow	1	1
SUBB	A,direct	Subtract direct byte from A with Borrow	2	1
SUBB	A,@Ri	Subtract indirect RAM from A w/Borrow	1	1
SUBB	A,\#data	Subtract immediate data from A w/Borrow	2	1
INC	A	Increment Accumulator	1	1
INC	Rn	Increment register	1	1
INC	direct	Increment direct byte	2	1
INC	@Ri	Increment indirect RAM	1	1
DEC	A	Decrement Accumulator	1	1
DEC	Rn	Decrement register	1	1
DEC	direct	Decrement direct byte	2	1
DEC	@Ri	Decrement indirect RAM	1	1
INC	DPTR	Increment Data Pointer	1	2
MUL	$A B$	Multiply A \& B	1	4
DIV	AB	Divide A \& B	1	4
DA	A	Decimal Adjust Accumulator	1	1

Logical operations

ANL	A,Rn	AND register to Accumulator	1	1
ANL	A,direct	AND direct byte to Accumulator	2	1
ANL	A,@Ri	AND indirect RAM to Accumulator	1	1
ANL	A,\#data	AND immediate data to Accumulator	2	1
ANL	direct,A	AND Accumulator to direct byte	2	1

SAB 8031/8051 Ext. Temp.

Mnemonic		Description	Byte	Cycle
ANL	direct, \#data	AND immediate data to direct byte	3	2
ORL	A, Rn	OR register to Accumulator	1	1
ORL	A,direct	OR direct byte to Accumulator	2	1
ORL	A, @Ri	OR indirect RAM to Accumulator	1	1
ORL	A,\#data	OR immediate data to Accumulator	2	1
ORL	direct, A	OR Accumulator to direct byte	2	1
ORL	direct,\#data	OR immediate data to direct byte	3	2
XRL	A,Rn	Exclusive-OR register to Accumulator	1	1
XRL	A,direct	Exclusive-OR direct byte to Accumulator	2	1
XRL	A, @Ri	Exclusive-OR indirect RAM to A	1	1
XRL	A, \#data	Exclusive-OR immediate data to A	2	1
XRL	direct, A	Exclusive-OR Accumulator to direct byte	2	1
XRL	direct, \#data	Exclusive-OR immediate data to direct	3	2
CLR	A	Clear Accumulator	1	1
CPL	A	Complement Accumulator	1	1
RL	A	Rotate Accumulator Left	1	1
RLC	A	Rotate A Left through the Carry flag	1	1
RR	A	Rotate Accumulator Right	1	1
RRC	A	Rotate A Right through Carry flag	1	1
SWAP	A	Swap nibbles within the Accumulator	1	1

Data transfer

MOV	A,Rn	Move register to Accumulator	1	1
MOV	A,direct	Move direct byte to Accumulator	2	1
MOV	A,@Ri	Move indirect RAM to Accumulator	1	1
MOV	A,\#data	Move immediate data to Accumulator	2	1
MOV	Rn,direct	Rn,\#data	Move Accumulator to register	1
MOV	direct,A	Move direct byte to register	1	
MOV	direct,Rn	Move Accumulator to direct byte	2	2
MOV		Move register to direct byte	2	1
MOV		Move direct byte to direct	2	2

SAB 8031/8051 Ext. Temp.

Mnemonic		Description	Byte	Cycle
MOV	direct,@Ri	Move indirect RAM to direct byte	2	2
MOV	direct,\#data	Move immediate data to direct byte	3	2
MOV	@Ri,A	Move Accumulator to indirect RAM	1	1
MOV	@Ri,direct	Move direct byte to indirect RAM	2	2
MOV	@Ri,\#data	Move immediate data to indirect RAM	2	1
MOV	DPTR,\#data 16	Load Data Pointer with a 16-bit constant	3	2

Data transfer (cont.)

MOVC	A,@A+DPTR	Move Code byte relative to DPTR to A	1	2
MOVC	A,@A+PC	Move Code byte relative to PC to A	1	2
MOVX	A,@Ri	Move External RAM (8-bit addr) to A	1	\cdot
MOVX	A,@DPTR	Move External RAM (16-bit addr) to A	1	2
MOVX	@Ri,A	Move A to External RAM (8-bit addr)	1	2
MOVX	@DPTR,A	Move A to External RAM (16-bit addr)	1	2
PUSH	direct	Push direct byte onto stack	Pop direct byte from stack	Exchange register with Accumulator
POP	A,direct	Exchange direct byte with Accumulator	2	2
XCH	A,@Ri	Exchange indirect RAM with A	2	1
$X C H$	Exchange low-order Digit ind. RAM w/A	1	1	
$X C H$			1	1
$X C H D$				2

Boolean variable manipulation

CLR	C	Clear Carry flag	1	1
CLR	bit	Clear direct bit	2	1
SETB	C	Set Carry flag	1	1
SETB	bit	Set direct Bit	2	1
CPL	Cit	Complement Carry flag	1	1
CPL	C,bit	Complement direct bit	2	1
ANL	C,bit	AND direct bit to Carry flag	2	2
ANL	C, bit	OR direct bit to Carry flag	2	2
ORL	OR complement of direct bit to Carry	2	2	
ORL		Move direct bit to Carry flag	2	1
MOV	Move Carry flag to direct bit	2	2	
MOV			2	

Mnemonic		Description	Byte	Cycle
Program and machine control				
ACALL	addr 11	Absolute Subroutine Call	2	2
LCALL	addr 16	Long Subroutine Call	3	2
RET		Return from subroutine	1	2
RETI		Return from interrupt	1	2
AJMP	addr 11	Absolute Jump	2	2
LJMP	addr 16	Long Jump	3	2
SJMP	rel	Short Jump (relative addr)	2	2
JMP	@A+DPTR	Jump indirect relative to the DPTR	1	2
JZ	rel	Jump if Accumulator is Zero	2	2
JNZ	rel	Jump if Accumulator is Not Zero	2	2
JC	rel	Jump if Carry flag is set	2	2
JNC	rel	Jump if Carry flag not set	2	2
JB	bit,rel	Jump if direct Bit set	3	2
JNB	bit,rel	Jump if direct Bit not set	3	2
JBC	bit,rel	Jump if direct Bit is set \& Clear bit	3	2
CJNE	A, direct,rel	Compare direct to A \& Jump if Not Equal	3	2
CJNE	A, \#data, rel	Comp. immed. to A \& Jump if Not Equal	3	2
CJNE	Rn,\#data, rel	Comp. immed. to reg. \& Jump if Not Equal	3	2
CJNE	@Ri,\#data,rel	Comp.immed. to ind. \& Jump if Not Equal	3	2
DJNZ	Rn,rel	Decrement register \& Jump if Not Zero	2	2
DJNZ	direct,rel	Decrement direct \& Jump if Not Zero	3	2
NOP		No operation	1	1

Notes on data addressing modes:

Rn - Working register R0-R7
direct - 128 internal RAM locations, any I/O port, control or status register
$@$ Ri - Indirect internal RAM location addressed by register R0 or R1
\#data - 8-bit constant included in instruction
\#data 16 - 16-bit constant included as bytes $2 \& 3$ of instruction
bit -128 software flags, any I/O pin, control or status bit

Notes on program addressing modes:
addr 16 - Destination address for LCALL \& LJMP may be anywhere within the 64-Kilobyte program memory address space.
addr 11 - Destination address for ACALL \& AJMP will be within the same 2-Kilobyte page of program memory as the first byte of the following instruction.
rel - SJMP and all conditional jumps include an 8-bit offset byte. Range is $+127 /-128$ bytes relative to first byte of the following instruction.

Instruction Opcodes in Hexadecimal Order

Hex Code	Number of Bytes	Mnemonic	Operands
00	1	NOP	
01	2	AJMP	code addr
02	3	LJMP	code addr
03	1	RR	A
04	1	INC	A
05	2	INC	data addr
06	1	INC	@R0
07	1	INC	@R1
08	1	INC	R0
09	1	INC	R1
OA	1	INC	R2
OB	1	INC	R3
OC	1	INC	R4
OD	1	INC	R5
OE	1	INC	R6
OF	1	INC	R7
10	3	JBC	bit addr code addr
11	2	ACALL	code addr
12	3	LCALL	code addr
13	1	RRC	A
14	1	DEC	A
15	2	DEC	data addr
16	1	DEC	@R0
17	1	DEC	@R1
18	1	DEC	R0
19	1	DEC	R1
1A	1	DEC	R2
1B	1	DEC	R3
1 C	1	DEC	R4
1D	1	DEC	R5
1 E	1	DEC	R6
1 F	1	DEC	R7
20	3	JB	bit addr code addr
21	2	AJMP	code addr
22	1	RET	
23	1	RL	A
24	2	ADD	A, \#data
25	2	ADD	A,data addr
26	1	ADD	A,@R0
27	1	ADD	A,@R1
28	1	ADD	A,R0
29	1	ADD	A, R1
2A	1	ADD	A,R2
2B	1	ADD	A, R3
2C	1	ADD	A,R4
2D	1	ADD	A,R5
2E	1	ADD	A,R6
2F	1	ADD	A, R7
30	3	JNB	bit addr, code addr
31	2	ACALL	code addr
32	1	RETI	
33	1	RLC	A

Hex Code	Number of Bytes	Mnemonic	Operands
34	2	ADDC	A, \#data
35	2	ADDC	A,data addr
36	1	ADDC	A, @R0
37	1	ADDC	A,@R1
38	1	ADDC	A, R0
39	1	ADDC	A, R1
3A	1	ADDC	A, R2
3B	1	ADDC	A, R3
3 C	1	ADDC	A,R4
3D	1	ADDC	A, R5
3E	1	ADDC	A, R7
$3 F$	1	ADDC	A, R7
40	2	JC	code addr
41	2	AJMP	code addr
42	2	ORL	data addr, A
43	3	ORL	data addr, \#data
44	2	ORL	A,\#data
45	2	ORL	A, data addr
46	1	ORL	A,@R0
47	1	ORL	A, @R1
48	1	ORL	A, RO
49	1	ORL	A, R1
4A	1	ORL	A, R2
4B	1	ORL	A, R3
4C	1	ORL	A,R4
4D	1	ORL	A, R5
4E	1	ORL	A, R6
4F	1	ORL	A, R7
50	2	JNC	code addr
51	2	ACALL	code addr
52	2	ANL	data addr, A
53	3	ANL	data addr, \#data
54	2	ANL	A, \#data
55	2	ANL	A, data addr
56	1	ANL	A,@RO
57	1	ANL	A, @R1
58	1	ANL	A,R0
59	1	ANL	A, R1
5A	1	ANL	A, R2
5B	1	ANL	A, R3
5C	1	ANL	A,R4
5D	1	ANL	A,R5
5E	1	ANL	A, R6
5 F	1	ANL	A,R7
60	2	JZ	code addr
61	2	AJMP	code addr
62	2	XRL	data addr, A
63	3	XRL	data addr, \#data
64	2	XRL	A, \# data
65	2	XRL	A, data addr
66	1	XRL	A, @R0
67	1	XRL	A,@R1

Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code	Number of Bytes	Mnemonic	Operands
68	1	XRL	A,RO
69	1	XRL	A,R1
6 A	1	XRL	A,R2
6B	1	XRL	A, R3
6C	1	XRL	A,R4
6D	1	XRL	A,R5
6 E	1	XRL	A,R6
6 F	1	XRL	A, R7
70	2	JNZ	code addr
71	2	ACALL	code addr
72	2	ORL	C,bit addr
73	1	JMP	@A+DPTR
74	2	MOV	A, \#data
75	3	MOV	data addr, \#data
76	2	MOV	@R0,\#data
77	2	MOV	@R1,\#data
78	2	MOV	RO,\#data
79	2	MOV	R1, \#data
7A	2	MOV	R2,\#data
7B	2	MOV	R3, \#data
7 C	2	MOV	R4, \#data
7D	2	MOV	R5, \#data
7E	2	MOV	R6,\#data
7F	2	MOV	R7, \#data
80	2	SJMP	code addr
81	2	AJMP	code addr
82	2	ANL	C,bit addr
83	1	MOVC	A,@A+PC
84	1	DIV	AB
85	3	MOV	data addr,data addr
86	2	MOV	data addr,@R0
87	2	MOV	data addr,@R1
88	2	MOV	data addr,R0
89	2	MOV	data addr, R1
8A	2	MOV	data addr, R2
8B	2	MOV	data addr, R3
8C	2	MOV	data addr, R4
8D	2	MOV	data addr,R5
8E	2	MOV	data addr, R6
8F	2	MOV	data addr, R7
90	3	MOV	DPTR,\#data
91	2	ACALL	code addr
92	2	MOV	bit addr, C
93	1	MOVC	A,@A+DPTR
94	2	SUBB	A, \#data
95	2	SUBB	A, data addr
96	1	SUBB	A, @RO
97	1	SUBB	A,@R1
98	1	SUBB	A, RO
99	1	SUBB	A, R1
9A	1	SUBB	A,R2
9 B	1	SUBB	A, R3

Hex Code	Number of Bytes	Mnemonic	Operands
9C	1	SUBB	A, R4
9D	1	SUBB	A, R5
9E	1	SUBB	A, R6
9F	1	SUBB	A,R7
A0	2	ORL	C,/bit addr
A1	2	AJMP	code addr
A2	2	MOV	C,bit addr
A3	1	INC	DPTR
A4	1	MUL	AB
A5		reserved	
A6	2	MOV	@R0,data addr
A7	2	MOV	@R1,data addr
A8	2	MOV	R0,data addr
A9	2	MOV	R1,data addr
$A A^{\prime}$	2	MOV	R2,data addr
AB	2	MOV	R3,data addr
AC	2	MOV	R4, data addr
AD	2	MOV	R5,data addr
AE	2	MOV	R6,data addr
AF	2	MOV	R7, data addr
B0	2	ANL	C,/bit addr
B1	2	ACALL	code addr
B2	2	CPL	bit addr
B3	1	CPL	C
B4	3	CJNE	A, \#data,code addr
B5	3	CJNE	A,data addr,code addr
B6	3	CJNE	@R0,\#data,code addr
B7	3	CJNE	@R1,\#data,code addr
B8	3	CJNE	R0,\#data,code addr
B9	3	CJNE	R1,\#data,code addr
BA	3	CJNE	R2,\#data, code addr
BB	3	CJNE	R3,\#data, code addr
BC	3	CJNE	R4, \#data, code addr
BD	3	CJNE	R5,\#data, code addr
BE	3	CJNE	R6, \#data,code addr
BF	3	CJNE	R7,\#data,code addr
C0	2	PUSH	data addr
C1	2	AJMP	code addr
C2	2	CLR	bit addr
C3	!	CLR	C
C4	1	SWAP	A
C5	2	XCH	A,data addr
C6	1	XCH	A,@R0
C7	1	XCH	A,@R1
C8	1	XCH	A,R0
C9	1	XCH	A, R1
CA	1	XCH	A, R2
CB	1	XCH	A, R3
CC	1	XCH	A,R4
CD	1	XCH	A,R5
CE	1	XCH	A,R6
CF	1	XCH	A,R7

Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code	Number of Bytes	Mnemonic	Operands
D0	2	POP	data addr
D1	2	ACALL	code addr
D2	2	SETB	bit addr
D3	1	SETB	C
D4	1	DA	A
D5	3	DJNZ	data addr,code addr
D6	1	XCHD	A, @RO
D7	1	XCHD	A, @R1
D8	2	DJNZ	R0,code addr
D9	2	DJNZ	R1,code addr
DA	2	DJNZ	R2,code addr
DB	2	DJNZ	R3,code addr
DC	2	DJNZ	R4,code addr
DD	2	DJNZ	R5,code addr
DE	2	DJNZ	R6,code addr
DF	2	DJNZ	R7, code addr
E0	1	MOVX	A,@DPTR
E1	2	AJMP	code addr
E2	1	MOVX	A, @R0
E3	1	MOVX	A,@R1
E4	1	CLR	A
E5	2	MOV	A,data addr
E6	1	MOV	A, @R0
E7	1	MOV	A, @R1
E8	1	MOV	A, RO
E9	1	MOV	A, R1
EA	1	MOV	A, R2
EB	1	MOV	A, R3
EC	1	MOV	A, R4
ED	1	MOV	A, R5
EE	1	MOV	A, R6
EF	1	MOV	A, R7
F0	1	MOVX	@DPTR,A
F1	2	ACALL	code addr
F2	1	MOVX	@R0,A
F3	1	MOVX	@R1,A
F4	1	CPL	A
F5	2	MOV	data addr,A
F6	1	MOV	@RO,A
F7	1	MOV	@R1,A
F8	1	MOV	R0, A
F9	1	MOV	R1, A
FA	1	MOV	R2,A
FB	1	MOV	R3, A
FC	1	MOV	R4, A
FD	1	MOV	R5,A
FE	1	MOV	R6, A
FF	1	MOV	R7,A

Absolute Maximum Ratings ${ }^{1 /}$

Ambient Temperature Under Bias
Storage Temperature
Voltage on Any Pin with Respect to Ground (VSS) Power Dissipation

$$
\begin{aligned}
& -40 \text { to }+85^{\circ} \mathrm{C} \text { for } \mathrm{T} 40 / 85 \\
& -40 \text { to }+110^{\circ} \mathrm{C} \text { for } \mathrm{T} 40 / 110 \\
& -65 \text { to }+150^{\circ} \mathrm{C} \\
& -0.5 \text { to }+7 \mathrm{~V} \\
& 2 \mathrm{~W}
\end{aligned}
$$

D.C. Characteristics
$V C C=5 \mathrm{~V} \pm 10 \% ; V S S=0 \mathrm{~V} ; \mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$ for $\mathrm{T} 40 / 85$;

$$
\mathrm{TA}=-40 \text { to }+110^{\circ} \mathrm{C} \text { for } \mathrm{T} 40 / 110
$$

1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SAB 8031/8051 Ext. Temp.

A.C. Characteristics for T40/85

$\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$; VSS $=0 \mathrm{~V}$; TA $=-40$ to $+85^{\circ} \mathrm{C}$
(CL for Port 0, ALE and PSEN Outputs $=100 \mathrm{pF}$; CL for All Other Outputs $=80 \mathrm{pF}$)

Program Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		10 MHz Clock		Variable Clock$1 / \mathrm{TCLCL}=1.2 \mathrm{MHz} \text { to } 10 \mathrm{MHz}$		
		Min	Max	Min	Max	
TLHLL	ALE Pulse Width	160	-	2TCLCL-40	-	ns
TAVLL	Address Setup to ALE	70		TCLCL-30		
TLLAX	Address Hold After ALE	65		TCLCL-35		
TLLIV	ALE To Valid Instr In	-	300	-	4TCLCL-100	
TLLPL	ALE To PSEN	75	-	TCLCL-25	-	
TPLPH	PSEN Pulse Width	265		3TCLCL-35		
TPLIV	$\overline{\text { PSEN To Valid Instr In }}$	-	200	-	3TCLCL-100	
TPXIX	Input Instr Hold After $\overline{\text { PSEN }}$	0	-	0	-	
TPXIZ*)	Input Instr Float After PSEN	-	80	-	TCLCL-20	
TPXAV*)	Address Valid After PSEN	92	-	TCLCL-8	-	
TAVIV	Address To Valid Instr In	-	385	-	5TCLCL-115	
TAZPL	Address Float To $\overline{\text { PSEN }}$	0	-	0	-	

External Data Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		10 MHz Clock		Variable Clock $1 /$ TCLCL $=1.2 \mathrm{MHz}$ to 10 MHz		
		Min	Max	Min	Max	
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	500	-	6TCLCL-100	-	ns
TWLWH	$\overline{\text { WR Pulse Width }}$			6TCLCL-100		
TLLAX	Address Hold After ALE	65		TCLCL-35		
TRLDV	$\overline{\mathrm{RD}}$ To Valid Data In	-	335	-	5TCLCL-165	
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0	-	0	-	
TRHDZ	Data Float After $\overline{\mathrm{RD}}$	-	130	-	2TCLCL-70	
TLLDV	Ále To Valid Data In		650		8TCLCL-150	
TAVDV	Address To Valid Data In		735		9TCLCL-165	
TLLWL	ALE To $\overline{W R}$ or $\overline{\mathrm{RD}}$	250	350	3TCLCL-50	3 TCLCL +50	
TAVWL	Address To $\overline{W R}$ or $\overline{\text { RD }}$	270	-	4TCLCL-130	-	
TWHLH	$\overline{W R}$ or $\overline{\text { RD }}$ High To ALE High	60	140	TCLCL-40	TCLCL +40	
TDVWX	Data Valid To $\overline{W R}$ Transition	50	-	TCLCL-50	-	
TQVWH	Data Setup Before $\overline{W R}$	550		7TCLCL-150		
TWHQX	Data Hold After $\overline{W R}$	50		TCLCL-50		
TRLAZ	Address Float After $\overline{\mathrm{RD}}$	-	0	-	0	

[^4]
A.C. Characteristics for T40/110

$V C C=5 \mathrm{~V} \pm 10 \% ; V S S=0 \mathrm{~V} ; T A=-40$ to $+110^{\circ} \mathrm{C}$
(CL for Port 0, ALE and PSEN Outputs $=100 \mathrm{pF}$; CL for All Other Outputs $=80 \mathrm{pF}$)
Program Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		8 MHz Clock		Variable Clock$1 / \mathrm{TCLCL}=1.2 \mathrm{MHz} \text { to } 8 \mathrm{MHz}$		
		Min	Max	Min	Max	
TLHLL	ALE Pulse Width	210	-	2TCLCL-40	-	ns
TAVLL	Address Setup to ALE	90		TCLCL-35		
TLLAX	Address Hold After ALE	85		TCLCL-40		
TLLIV	ALE To Valid Instr In	-	375	-	4TCLCL-125	
TLLPL	ALE To PSEN	100	-	TCLCL-25	-	
TPLPH	PSEN Pulse Width	340		3TCLCL-35		
TPLIV	$\overline{\text { PSEN }}$ To Valid Instr In	-	250	-	3TCLCL-125	
TPXIX	Input Instr Hold After PSEN	0	-	0	-	
TPXIZ*)	Input Instr Float After $\overline{\text { PSEN }}$	-	105	-	TCLCL-20	
TPXAV*)	Address Valid After $\overline{\text { PSEN }}$	112	-	TCLCL-13	-	
TAVIV	Address To Valid Instr In	-	485	-	5TCLCL-140	
TAZPL	Address Float To $\overline{\text { PSEN }}$	0	-	0	-	

External Data Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		8 MHz Clock		Variable Clock$1 / \mathrm{TCLCL}=1.2 \mathrm{MHz} \text { to } 8 \mathrm{MHz}$		
		Min	Max	Min	Max	
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	650	-	6TCLCL-100	-	ns
TWLWH	$\overline{\text { WR Pulse Width }}$			6TCLCL-100		
TLLAX	Address Hold After ALE	85		TCLCL-40		
TRLDV	$\overline{\mathrm{RD}}$ To Valid Data In	-	460	-	5TCLCL-165	
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0	-	0	-	
TRHDZ	Data Float After $\overline{\mathrm{RD}}$	-	180	-	2TCLCL-70	
TLLDV	ALE To Valid Data In		850		8TCLCL-150	
TAVDV	Address To Valid Data In		960		9TCLCL-165	
TLLWL	ALE To $\overline{W R}$ or $\overline{\mathrm{RD}}$	325	425	3TCLCL-50	3 TCLCL+50	
TAVWL	Address To $\overline{W R}$ or $\overline{R D}$	370	-	4TCLCL-130	-	
TWHLH	$\overline{W R}$ or $\overline{\text { RD High To ALE High }}$	85	165	TCLCL-40	TCLCL+40	
TDVWX	Data Valid To $\overline{W R}$ Transition	75		TCLCL-50		
TQVWH	Data Setup Before $\overline{W R}$	725	-	7TCLCL-150	-	
TWHQX	Data Hold After $\overline{W R}$	75		TCLCL-50		
TRLAZ	Address Float After $\overline{\mathrm{RD}}$	-	0	-	0	

[^5]
External Clock Drive XTAL2

Symbol	Parameter	Limit Values		Unit
		$\begin{gathered} \text { Variable Clock } \\ \text { Freq }=1.2 \mathrm{MHz} \text { to } 10 \mathrm{MHz}(\mathrm{~T} 40 / 85) \\ \text { Freq }=1.2 \mathrm{MHz} \text { to } 8 \mathrm{MHz}(\mathrm{~T} 40 / 110) \end{gathered}$		
		Min	Max	
TCLCL	$\begin{array}{ll}\text { Oscillator Period } & \\ & \text { T40/85 } \\ & \text { T40/110 }\end{array}$	$\begin{aligned} & 100 \\ & 125 \end{aligned}$	833.3	ns
TCHCX	High Time	20	TCLCL-TCLCX	
TCLCX	Low Time		TCLCL-TCHCX	
TCLCH	Rise Time	-	20	
TCHCL	Fall Time			

External Clock Cycle

A.C. Testing Input, Output, Float Waveforms

AC testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ".
Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
For timing purposes, the float state is defined as the point at which a PO pin sinks 3.2 mA or sources $400 \mu \mathrm{~A}$ at the voltage test levels.

Waveforms

Program Memory Read Cycle

Data Memory Read Cycle

Data Memory Write Cycle

Recommended Oscillator Circuits

$C=30 \mathrm{pF} \pm 10 \mathrm{pF}$

Crystal Oscillator Mode

Driving from External Source

SAB 8031A/8051A SAB 8031A-15/8051A-15 8-Bit Single Chip Microcomputer

SAB 8031A/8031A-15 Control Oriented CPU with RAM and I/O
SAB 8051A/8051A-15 A SAB 8031A with Factory Mask-Programmable ROM

- SAB 8031A/8051A, 12 MHz Operation SAB 8031A-15/8051A-15, 15 MHz Operation
- $4 \mathrm{~K} \times 8 \mathrm{ROM}$
- 128×8 RAM
- Four 8-Bit Ports, 32 I/O Lines
- Two 16-Bit Timer/Event Counters
- High-Performance Full-Duplex

Serial Channel

- External Memory Expandable to 128K
- Compatible with SAB 8080/8085 Peripherals
- Boolean Processor
- 218 User Bit-Addressable Locations
- Most Instruction Execute in: $1 \mu \mathrm{~s}$ (SAB 8031A/8051A) 800 ns (SAB 8031A-15/8051A-15)
- $4 \mu \mathrm{~s}(3.2 \mu \mathrm{~s})$ Multiply and Divide
Pin Configuration

The SAB 8031A/8051A is a stand-alone, highperformance single-chip computer fabricated in +5 V advanced Siemens MYMOS technology and packaged in a 40-pin DIP. It provides the hardware features, architectural enhancements and new instructions that are necessary to make it a powerful and cost effective controller for applications requiring up to 64 Kbytes of program memory and/or up to 64 Kbytes of data storage.
The SAB 8051A contains a non-volatile $4 \mathrm{~K} \times 8$ readonly program memory; a volatile 128×8 read/write
data memory; 32 I/O lines; two 16-bit timer/ counters; a five-source, two-priority-level, nested interrupt structure; a serial I/O port for either multiprocessor communications, 1/O expansion, or full duplex UART; and on-chip oscillator and clock circuits. The SAB 8031A is identical, except that it lacks the program memory.
For systems that require extra capability, the SAB 8051A can be expanded using standard TTL compatible memories and the byte oriented SAB 8080 and SAB 8085 peripherals.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Functions
P1.0-P1.7	1-8	I/O	Port 1 is an 8 -bit quasi-bidirectional I/O port. It is used for the low-order address byte during program verification. Port 1 can sink/source four LS TTL loads.
RST/VPD	9	1	A high level on this pin resets the SAB 8051A. A small internal pulldown resistor permits power-on reset using only a capacitor connected to VCC. If VPD is held within its spec while VCC drops below spec, VPD will provide standby power to the RAM. When VPD is low, the RAM's current is drawn from VCC.
P3.0-P3.7	10-17	1/0	Port 3 is an 8 -bit quasi-bidirectional I/O port. It also contains the interrupt, timer, serial port and $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. Port 3 can sink/source four LS TTL loads. The secondary functions are assigned to the pins of Port 3, as follows: - RXD/data (P3.0). Serial port's receiver data input (asynchronous) or data input/output (synchronous). - TXD/clock (P3.1). Serial port's transmitter data output (asynchronous) or clock output (synchronous). - $\overline{\text { NTO }}$ (P3.2). Interrupt 0 input or gate control input for counter 0. - $\overline{\mathrm{INT} 1}$ (P3.3). Interrupt 1 input or gate control input for counter 1. - T0 (P3.4). Input to counter 0. - T1 (P3.5). Input to counter 1. - $\overline{W R}$ (P3.6). The write control signal latches the data byte from port 0 into the external data memory. - $\overline{\mathrm{RD}}$ (P3.7). The read control signal enables external data memory to port 0.
$\begin{aligned} & \text { XTAL1 } \\ & \text { XTAL2 } \end{aligned}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	1	XTAL 1 input to the oscillator's high gain amplifier. Required when a crystal is used. Connect to VSS when external source is used on XTAL 2. XTAL 2 output from the oscillator's amplifier. Input to the internal timing circuitry. A crystal or external source can be used.
P2.0-P2.7	21-28	1/O	Port 2 is an 8 -bit quasi-bidirectional I/O port. It also emits the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification. Port 2 can sink/source four LS TTL loads.
$\overline{\text { PSEN }}$	29	0	The program store enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. Remains high during internal program execution.
ALE	30	0	Provides address latch enable output used for latching the address into external memory during normal operation. It is activated every six osscillator periods except during an external data memory access.

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Functions
EA	31	1	When held at a TTL high level, the SAB 8051A executes instructions from the internal ROM when the PC is less than 4096. When held at a TTL low level, the SAB 8051A fetches all instructions from external program memory. For the SAB 8031A this pin must be tied low.
P0.0-P0.7	$39-32$	I/O	Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification. Port 0 can sink/source eight LS TTL loads.
VCC	40		+5V power supply during operation and program verification.
VSS	20		Circuit ground potential.

Block Diagram

Instruction Set Description

Mnemonic	Description	Byte	Cycle

Arithmetic operations

ADD	A, Rn	Add register to Accumulator	1	1
ADD	A, direct	Add direct byte to Accumulator	2	1
ADD	A, @Ri	Add indirect RAM to Accumulator	1	1
ADD	A, \# data	Add immediate data to Accumulator	2	1
ADDC	A,Rn	Add register to Accumulator with Carry flag	1	1
ADDC	A,direct	Add direct byte to Accu with Carry flag	2	1
ADDC	A,@Ri	Add indirect RAM to Accu with Carry flag	1	1
ADDC	A, \#data	Add immediate data to Accu with Carry flag	2.	1
SUBB	A,Rn	Subtract register from Accu with borrow	1	1
SUBB	A, direct	Subtract direct byte from Accu with borrow	2	1
SUBB	A, @Ri	Subtract indirect RAM from A with borrow	1	1
SUBB	A, \# data	Subtract immediate data from A with borrow	2	1
INC	A	Increment Accumulator	1	1
INC	Rn	Increment register	1	1
INC	direct	Increment direct byte	2	1
INC	@Ri	Increment indirect RAM	1	1
DEC	A	Decrement Accumulator	1	1
DEC	Rn	Decrement register	1	1
DEC	direct	Decrement direct byte	2	1
DEC	@Ri	Decrement indirect RAM	1	1
INC	DPTR	Increment data pointer	1	2
MUL	$A B$	Multiply A \& B	1	4
DIV	$A B$	Divide A \& B	1	4
DA	A	Decimal adjust Accumulator	1	1

Logical operations

ANL	A,Rn	AND register to Accumulator	1	1
ANL	A,direct	AND direct byte to Accumulator	2	1
ANL	A,@Ri	AND indirect RAM to Accurrulator	1	1
ANL	A,\#data	AND immediate data to Accumulator	2	1
ANL	direct,A	AND Accumulator to direct byte	2	1

Instruction Set Description (continued)

Mnemonic		Description	Byte	Cycle
ANL	direct,\#data	AND immediate data to direct byte	3	2
ORL	A, Rn	OR register to Accumulator	1	1
ORL	A,direct	OR direct byte to Accumulator	2	1
ORL	A,@Ri	OR indirect RAM to Accumulator	1	1
ORL	A, \#data	OR immediate data to Accumulator	2	1
ORL	direct, A	OR Accumulator to direct byte	2	1
ORL	direct,\#data	OR immediate data to direct byte	3	2
XRL	A,Rn	Exclusive-OR register to Accumulator	1	1
XRL	A,direct	Exclusive-OR direct byte to Accumulator	2	1
XRL	A,@Ri	Exclusive-OR indirect RAM to Accumulator	1	1
XRL	A, \#data	Exclusive-OR immediate data to Accumulator	2	1
XRL	direct, A	Exclusive-OR Accumulator to direct byte	2	1
XRL	direct,\#data	Exclusive-OR immediate data to direct	3	2
CLR	A	Clear Accumulator	1	1
CPL	A	Complement Accumulator	1	1
RL	A	Rotate Accumulator left	1	1
RLC	A	Rotate A left through the Carry flag	1	1
RR	A	Rotate Accumulator right	1	1
RRC	A	Rotate A right through Carry flag	1	1
SWAP	A	Swap nibbles within the Accumulator	1	1

Data transfer

MOV	A,Rn	Move register to Accumulator	1	1
MOV	A,direct	Move direct byte to Accumulator	2	1
MOV	A,@Ri	Move indirect RAM to Accumulator	1	1
MOV	A,\#data	Move immediate data to Accumulator	2	1
MOV	Rn,direct	Rn,\#data	Move Accumulator to register	1
MOV	direct,A	Move direct byte to register	1	
MOV	Mov	direct,	Move Accumulator to direct byte	Move register to direct byte
MOV		2	2	1
MOV			2	2

Instruction Set Description (continued)

Mnemonic		Description	Byte	Cycle
MOV	direct,@Ri	Move indirect RAM to direct byte	2	2
MOV	direct,\#data	Move immediate data to direct byte	3	2
MOV	@Ri,A	Move Accumulator to indirect RAM	1	1
MOV	@Ri,direct	Move direct byte to indirect RAM	2	2
MOV	@Ri,\#data	Move immediate data to indirect RAM	2	1
MOV	DPTR,\#data 16	Load data pointer with a 16-bit constant	3	2

Data transfer (cont.)

MOVC	A,@A+DPTR	Move code byte relative to DPTR to Accumulator	1	2
MOVC	A,@A+PC	Move code byte relative to PC to Accumulator	1	2
MOVX	A,@Ri	Move external RAM (8-bit addr) to Accumulator	1	2
MOVX	A,@DPTR	Move external RAM (16-bit addr) to Accumulator	1	2
MOVX	@Ri,A	Move A to external RAM (8-bit addr)	1	2
MOVX	@DPTR,A	Move A to external RAM (16-bit addr)	1	2
PUSH	direct	A,Rn	Push direct byte onto stack	Pop direct byte from stack
POP	A,@Ri	Exchange register with Accumulator	1	1
$X C H$	A,@Ri	Exchange direct byte with Accumulator	2	1
$X C H$	Exchange indirect RAM with Accumulator	1	1	
$X C H$			2	2
$X C H D$				

Boolean variable manipulation

CLR	C	Clear Carry flag	1	1
CLR	bit	Clear direct bit	2	1
SETB	C	Set Carry flag	1	1
SETB	bit	Set direct bit	2	1
CPL	bit	Complement Carry flag	1	1
CPL	C, bit	Complement direct bit	AND direct bit to Carry flag	2
ANL	C,/bit	C,bit	ORD complement of direct bit to Carry	2
ANL	ORt,	OR complement of direct bit to Carry	2	2
ORL		Move direct bit to Carry flag	2	2
MOV	Move Carry flag to direct bit	2	1	
MOV			2	2

Instruction Set Description (continued)

Mnemonic	Description	Byte	Cycle

Program and machine control

ACALL	addr 11	Absolute subroutine call	2	2
LCALL	addr 16	Long subroutine call	3	2
RET		Return from subroutine	1	2
RETI		Return from interrupt	1	2
AJMP	addr 11	Absolute jump	2	2
LJMP	addr 16	Long jump	3	2
SJMP	rel	Short jump (relative addr)	2	2
JMP	@A+DPTR	Jump indirect relative to the DPTR	1	2
JZ	rel	Jump if Accumulator is zero	2	2
JNZ	rel	Jump if Accumulator is not zero	2	2
JC	rel	Jump if Carry flag is set	2	2
JNC	rel	Jump if Carry flag is not set	2	2
JB	bit,rel	Jump if direct bit set	3	2
JNB	bit,rel	Jump if direct bit not set	3	2
JBC	bit,rel	Jump if direct bit is set and clear bit	3	2
CJNE	A, direct, rel	Compare direct to accu and jump if not equal	3	2
CJNE	A, \#data,rel	Comp. immed. to accu and jump if not equal	3	2
CJNE	Rn, \#data, rel	Comp. immed. to reg. and jump if not equal	3	2
CJNE	@Ri,\#data, rel	Comp.immed. to ind. and jump if not equal	3	2
DJNZ	Rn,rel	Decrement register and jump if not zero	2	2
DJNZ	direct,rel	Decrement direct and jump if not zero	3	2
NOP		No operation	1	1

Notes on data addressing modes:

Rn - Working register R0-R7
direct - 128 internal RAM locations, any I/O port, control or status register
@Ri - Indirect internal RAM location addressed by register R0 or R1
\#data - 8-bit constant included in instruction
\#data 16 - 16-bit constant included as bytes $2 \& 3$ of instruction
bit - 128 software flags, any 1/O pin, control or status bit
A - Accumulator

Notes on program addressing modes:
addr 16 - Destination address for LCALL \& LJMP may be anywhere within the 64-Kbyte program memory address space.
addr 11 - Destination address for ACALL \& AJMP will be within the same 2-Kbyte page of program memory as the first byte of the following instruction.
rel \quad SJMP and all conditional jumps include an 8-bit offset byte. Range is $+127 /-128$ bytes relative to first byte of the following instruction.

Instruction Opcodes in Hexadecimal Order

Hex Code	Number of Bytes	Mnemonic	Operands
00	1	NOP	
01	2	AJMP	code addr
02	3	LJMP	code addr
03	1	RR	A
04	1	INC	A
05	2	INC	data addr
06	1	INC	@RO
07	1	INC	@R1
08	1	INC	RO
09	1	INC	R1
OA	1	INC	R2
OB	1	INC	R3
OC	1	INC	R4
OD	1	INC	R5
OE	1	INC	R6
OF	1	INC	R7
10	3	JBC	bit addr code addr
11	2	ACALL	code addr
12	3	LCALL	code addr
13	1	RRC	A
14	1	DEC	A
15	2	DEC	data addr
16	1	DEC	@RO
17	1	DEC	@R1
18	1	DEC	R0
19	1	DEC	R1
1 A	1	DEC	R2
1B	1	DEC	R3
1 C	1	DEC	R4
1 D	1	DEC	R5
1E	1	DEC	R6
1F	1	DEC	R7
20	3	JB	bit addr code addr
21	2	AJMP	code addr
22	1	RET	
23	1	RL	A
24	2	ADD	A, \# data
25	2	ADD	A, data addr
26	1	ADD	A,@R0
27	1	ADD	A, @R1
28	1	ADD	A,R0
29	1	ADD	A, R1
2A	1	ADD	A, R2
2B	1	ADD	A, R3
2 C	1	ADD	A,R4
2D	1	ADD	A, R5
2E	1	ADD	A, R6
2 F	1	ADD	A, R7
30	3	JNB	bit addr, code addr
31	2	ACALL	code addr
32	1	RETI	
33	1	RLC	A

Hex Code	Number of Bytes	Mnemonic	Operands
34	2	ADDC	A, \#data
35	2	ADDC	A,data addr
36	1	ADDC	A,@RO
37	1	ADDC	A,@R1
38	1	ADDC	A, RO
39	1	ADDC	A, R1
3A	1	ADDC	A,R2
3B	1	ADDC	A, R3
3 C	1	ADDC	A,R4
3D	1	ADDC	A, R5
3E	1	ADDC	A,R7
3F	1	ADDC	A,R7
40	2	JC	code addr
41	2	AJMP	code addr
42	2	ORL	data addr, A
43	3	ORL	data addr, \#data
44	2	ORL	A, \#data
45	2	ORL	A,data addr
46	1	ORL	A,@R0
47	1	ORL	A, @R1
48	1	ORL	A,R0
49	1	ORL	A, R1
4A	1	ORL	A, R2
4B	1	ORL	A, R3
4 C	1	ORL	A,R4
4D	1	ORL	A,R5
4E	1	ORL	A, R6
4F	1	ORL	A, R7
50	2	JNC	code addr
51	2	ACALL	code addr
52	2	ANL	data addr,A
53	3	ANL	data addr, \#data
54	2	ANL	A,\#data
55	2	ANL	A,data addr
56	1	ANL	A, @R0
57	1	ANL	A,@R1
58	1	ANL	A,R0
59	1	ANL	A, R1
5A	1	ANL	A,R2
5B	1	ANL	A, R3
5 C	1	ANL	A,R4
5D	1	ANL	A,R5
5E	1	ANL	A,R6
5 F	1	ANL	A,R7
60	2	JZ	code addr
61	2	AJMP	code addr
62	2	XRL	data addr, A
63	3	XRL	data addr, \#data
64	2	XRL	A,\#data
65	2	XRL	A, data addr
66	1	XRL	A,@R0
67	1	XRL	A,@R1

Instruction Opcodes in Hexadecimal Order (continued)

Hex Code	Number of Bytes	Mnemonic	Operands	Hex Code	Number of Bytes	Mnemonic	Operands
68	1	XRL	A,R0	9C	1	SUBB	A,R4
69	1	XRL	A, R1	9D	1	SUBB	A, R5
6 A	1	XRL	A, R2	9 E	1	SUBB	A, R6
6B	1	XRL	A, R3	9 F	1	SUBB	A,R7
6C	1	XRL	A,R4	A0	2	ORL	C,/bit addr
6 D	1	XRL	A, R5	A1	2	AJMP	code addr
6 E	1	XRL	A, R6	A2	2	MOV	C,bit addr
6 F	1	XRL	A, R7	A3	1	INC	DPTR
70	2	JNZ	code addr	A4	1	MUL	$A B$
71	2	ACALL	code addr	A5		reserved	
72	2	ORL	C,bit addr	A6	2	MOV	@R0,data addr
73	1	JMP	@A+DPTR	A7	2	MOV	@R1,data addr
74	2	MOV	A, \#data	A8	2	MOV	R0,data addr
75	3	MOV	data addr, \#data	A9	2	MOV	R1,data addr
76	2	MOV	@R0,\#data	AA	2	MOV	R2,data addr
77	2	MOV	@R1,\#data	$A B$	2	MOV	R3,data addr
78	2	MOV	R0,\#data	AC	2	MOV	R4, data addr
79	2	MOV	R1, \#data	$A D$	2	MOV	R5,data addr
7A	2	MOV	R2, \#data	AE	2	MOV	R6,data addr
7B	2	MOV	R3, \#data	AF	2	MOV	R7,data addr
7 C	2	MOV	R4, \#data	B0	2	ANL	C,/bit addr
7 D	2	MOV	R5, \#data	B1	2	ACALL	code addr
7E	2	MOV	R6, \#data	B2	2	CPL	bit addr
7F	2	MOV	R7, \#data	B3	1	CPL	C
80	2	SJMP	code addr	B4	3	CJNE	A, \#data, code addr
81	2	AJMP	code addr	B5	3	CJNE	A,data addr, code addr
82	2	ANL	C,bit addr	B6	3	CJNE	@R0,\#data,code addr
83	1	MOVC	A,@A+PC	B7	3	CJNE	@R1,\#data,code addr
84	1	DIV	AB	B8	3	CJNE	R0,\#data, code addr
85	3	MOV	data addr,data addr	B9	3	CJNE	R1, \#data, code addr
86	2	MOV	data addr,@R0	BA	3	CJNE	R2,\#data, code addr
87	2	MOV	data addr,@R1	BB	3	CJNE	R3, \#data, code addr
88	2	MOV	data addr,R0	BC	3	CJNE	R4, \#data, code addr
89	2	MOV	data addr, R1	BD	3	CJNE	R5, \#data, code addr
8A	2	MOV	data addr, R2	BE	3	CJNE	R6,\#data, code addr
8B	2	MOV	data addr, R3	BF	3	CJNE	R7,\#data, code addr
8C	2	MOV	data addr,R4	C0	2	PUSH	data addr
8D	2	MOV	data addr,R5	C1	2	AJMP	code addr
8E	2	MOV	data addr,R6	C2	2	CLR	bit addr
8F	2	MOV	data addr, R7	C3	1	CLR	C
90	3	MOV	DPTR,\#data	C4	1	SWAP	A
91	2	ACALL	code addr	C5	2	XCH	A,data addr
92	2	MOV	bit addr, C	C6	1	$\dot{\mathrm{X}} \mathrm{CH}$	A, @R0
93	1	MOVC	A, @A+DPTR	C7	1	XCH	A,@R1
94	2	SUBB	A, \#data	C8	1	XCH	A, R0
95	2	SUBB	A,data addr	C9	1	XCH	A, R1
96	1	SUBB	A,@R0	CA	1	XCH	A,R2
97	1	SUBB	A,@R1	CB	1	XCH	A, R3
98	1	SUBB	A,R0	CC	1	XCH	A,R4
99	1	SUBB	A, R1	CD	1	XCH	A,R5
9A	1	SUBB	A, R2	CE	1	XCH	A,R6
9B	1	SUBB	A, R3	CF	1	XCH	A, R7

Instruction Opcodes in Hexadecimal Order (continued)

Hex Code	Number of Bytes	Mnemonic	Operands
D0	2	POP	data addr
D1	2	ACALL	code addr
D2	2	SETB	bit addr
D3	1	SETB	C
D4	1	DA	A
D5	3	DJNZ	data addr, code addr
D6	1	XCHD	A,@R0
D7	1	XCHD	A, @R1
D8	2	DJNZ	R0,code addr
D9	2	DJNZ	R1,code addr
DA	2	DJNZ	R2,code addr
DB	2	DJNZ	R3,code addr
DC	2	DJNZ	R4,code addr
DD	2	DJNZ	R5,code addr
DE	2	DJNZ	R6,code addr
DF	2	DJNZ	R7,code addr
E0	1	MOVX	A,@DPTR
E1	2	AJMP	code addr
E2	1	MOVX	A,@R0
E3	1	MOVX	A, @R1
E4	1	CLR	A
E5	2	MOV	A,data addr
E6	1	MOV	A,@R0
E7	1	MOV	A, @R1
E8	1	MOV	A, R0
E9	1	MOV	A, R1
EA	1	MOV	A, R2
EB	1	MOV	A, R3
EC	1	MOV	A,R4
ED	1	MOV	A, R5
EE	1	MOV	A, R6
EF	1	MOV	A, R7
F0	1	MOVX	@DPTR,A
F1	2	ACALL	code addr
F2	1	MOVX	@RO,A
F3	1	MOVX	@R1,A
F4	1	CPL	A
F5	2	MOV	data addr, A
F6	1	MOV	@R0,A
F7	1	MOV	@R1,A
F8	1	MOV	R0,A
F9	1	MOV	R1, A
FA	1	MOV	R2,A
FB	1	MOV	R3, A
FC	1	MOV	R4, A
FD	1	MOV	R5,A
FE	1	MOV	R6,A
FF	1	MOV	R7,A

Absolute Maximum Ratings ${ }^{1 /}$

Ambient Temperature Under Bias	0 to $70^{\circ} \mathrm{C}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with Respect to Ground (VSS)	-0.5 to +7 V
Power Dissipation	

D.C. Characteristics

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{VSS}=0 \mathrm{~V}$

Symbol	Parameter	Limit Values		Unit	Test Condition
		Min.	Max.		
VIL	Input Low Voltage	-0.5	0.8	V	-
VIH	Input High Voltage (Except RST/VPD and XTAL2)	2.0	$V C C+0.5$		
VIH1	Input High Voltage to RST/VPD for Reset, XTAL2	2.5			XTAL1 to VSS
VPD	Power Down Voltage to RST/VPD	4.5	5.5		$V C C=0 V$
VOL	Output Low Voltage Ports 1, 2, 3	-	0.45		$\mathrm{IOL}=1.6 \mathrm{~mA}$
VOL1	Output Low Voltage Port 0, ALE, /PSEN				$\mathrm{IOL}=3.2 \mathrm{~mA}$
VOH	Output High Voltage Ports 1, 2, 3	2.4	-		$\mathrm{IOH}=-80 \mu \mathrm{~A}$
VOH1	Output High Voltage Port 0, ALE, /PSEN				$\mathrm{IOH}=-400 \mu \mathrm{~A}$
IIL	Logical 0 Input Current Ports 1, 2, 3	-	-800	$\mu \mathrm{A}$	$\mathrm{VIL}=0.45 \mathrm{~V}$
ILL2	Logical 0 Input Current XTAL 2		-2.0	mA	$\begin{aligned} & \mathrm{XTAL1}=\mathrm{VSS} \\ & \mathrm{VIL}=0.45 \mathrm{~V} \end{aligned}$
IIH1	Input High Current to RST/VPD for Reset		500	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VCC}-1.5 \mathrm{~V}$
ILI	Input Leakage Current to Port 0,/EA		± 10		$\mathrm{OV}<\mathrm{VIN}<\mathrm{VCC}$
ICC	Power Supply Current SAB 8031A/8051A SAB 8031A-15/8051A-15		$\begin{aligned} & 125 \\ & 140 \end{aligned}$	mA	All outputs disconnected
IPD	Power Down Current		10		$V C C=O V$
ClO	Capacitance of I/O Buffer		10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$

1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

A.C. Characteristics for SAB 8031A/8051A

TA 0 to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{VSS}=0 \mathrm{~V}$
(CL for Port 0, ALE and PSEN Outputs $=100 \mathrm{pF}$; CL for All Other Outputs $=80 \mathrm{pF}$)
Program Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		12 MHz Clock		Variable Clock $1 / \mathrm{TCLCL}=1.2 \mathrm{MHz}$ to 12 MH :		
		Min	Max	Min	Max	
TLHLL	ALE Pulse Width	127	-	2TCLCL-40	-	ns
TAVLL	Address Setup to ALE	53		TCLCL-30		
TLLAX1	Address Hold After ALE	48		TCLCL-35		
TLLIV	ALE to Valid Instr In	-	233	-	4TCLCL-100	
TLLPL	ALE to PSEN	58	-	TCLCL-25	-	
TPLPH	$\overline{\text { PSEN Pulse Width }}$	215		3TCLCL-35		
TPLIV	$\overline{\text { PSEN }}$ to Valid Instr In	-	150	-	3TCLCL-100	
TPXIX	Input Instr Hold After PSEN	0	-	0	-	
TPXIZ*)	Input Instr Float After PSEN	-	63	-	TCLCL-20	
TPXAV*)	Address Valid After $\overline{\text { PSEN }}$	75	-	TCLCL-8	-	
TAVIV	Address to Valid Instr In	-	302	-	5TCLCL-115	
TAZPL	Address Float to PSEN	0	-	0	-	

External Data Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		12 MHz Clock		Variable Clock $1 /$ TCLCL $=1.2 \mathrm{MHz}$ to 12 MHz		
		Min	Max	Min	Max	
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400	-	6TCLCL-100	-	ns
TWLWH	$\overline{\text { WR Pulse Width }}$					
TLLAX2	Address Hold After ALE	132		2TCLCL-35		
TRLDV	$\overline{\mathrm{RD}}$ to Valid Data In	-	250	-	5TCLCL-165	
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0	-	0	-	
TRHDZ	Data Float After $\overline{\mathrm{RD}}$	-	97	-	2TCLCL-70	
TLLDV	ALE to Valid Data In		517		8TCLCL-150	
TAVDV	Address to Valid Data In		585		9TCLCL-165	
TLLWL	ALE to $\overline{W R}$ or $\overline{R D}$	200	300	3TCLCL-50	3 TCLCL + 50	
TAVWL	Address to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$	203	-	4TCLCL-130	-	
TWHLH	$\overline{W R}$ or $\overline{\text { RD }}$ High to ALE High	43	123	TCLCL-40	TCLCL +40	
TDVWX	Data Valid to $\overline{W R}$ Transition	33	-	TCLCL-50	-	
TQVWH	Data Setup Before $\overline{W R}$	433		7TCLCL-150		
TWHQX	Data Hold After WR	33		TCLCL-50		
TRLAZ	Address Float After $\overline{\mathrm{R}} \overline{\mathrm{D}}$	-	0	-	0	

[^6]
External Clock Drive XTAL2

Symbol	Parameter		Values	Unit
		Variable Clock Freq $=1.2 \mathrm{MHz}$ to 12 MHz		
		Min	Max	
TCLCL	Oscillator Period	83.3	833.3	ns
TCHCX	High Time	20	TCLCL-TCLCX	
TCLCK	Low Time		TCLCL-TCHCX	
TCLCH	Rise Time	-	20	
TCHCL	Fall Time			

ROIV Verification Characteristics for SAB 8051A
$T A=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; V C C=5 \mathrm{~V} \pm 10 \% ; V S S=0 \mathrm{~V}$

Symbol	Parameter	Limit Values		Unit
			Min	Max
TAVQV	Address to Valid Data			
TELQV	Enable to Valid Data		48 TCLCL	ns
TEHQZ	Data Float after Enable	0		
$1 /$ TCLCL	Oscillator Frequency	4	6	MHz

ROM Verification

Address: $\mathrm{P} 1.0-\mathrm{P} 1.7=\mathrm{A} 0-\mathrm{A} 7$
P2.0-P2.3 = A8-A11
Data: Port $0=$ D0-D7
Inputs:
P2.4-P2.6, $\overline{\mathrm{PSEN}}=\mathrm{VSS}$
Port $0=D 0-D 7$
ALE, $\overline{E A}=$ TTL high level
RST/VPD $=\mathrm{VIH} 1$

A.C. Characteristics for SAB 8031A-15/8051A-15

TA 0 to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; V S S=0 \mathrm{~V}$
(CL for Port 0, ALE and $\overline{\text { PSEN Outputs }}=100 \mathrm{pF} ; \mathrm{CL}$ for All Other Outputs $=80 \mathrm{pF}$)
Program Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		15 MHz Clock		Variable Clock $1 / T C L C L=1.2 \mathrm{MHz}$ to 15 MHz		
		Min	Max	Min	Max	
TLHLL	ALE Pulse Width	93	--	2TCLCL-40	-	ns
TAVLL	Address Setup to ALE	37		TCLCL-30		
TLLAX1	Address Hold After ALE	32		TCLCL-35		
TLLIV	ALE to Valid Instr In	-	167	-	4TCLCL-100	
TLL.PL	ALE to $\overline{\text { PSEN }}$	42	-	TCLCL-25	-	
TPLPH	$\overline{\text { PSEN Pulse Width }}$	165		3TCLCL-35		
TPLIV	$\overline{\text { PSEN }}$ to Valid Instr In	-	100	-	3TCLCL-100	
TPXIX	Input Instr Hold After $\overline{\text { PSEN }}$	0	-	0	-	
TPXIZ*)	Input Instr Float After PSEN	-	52	-	TCLCL-15	
TPXAV*)	Address Valid After $\overline{\text { PSEN }}$	64	-	TCLCL-3	-	
TAVIV	Address to Valid Instr In	-	243	-	5TCLCL-90	
TAZPL	Address Float to $\overline{\text { PSEN }}$	0	-	0	-	

External Data Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		15 MHz Clock		Variable Clock $1 / \mathrm{TCLCL}=1.2 \mathrm{MHz}$ to 15 MHz		
		Min	Max	Min	Max	
TRLRH	$\overline{\text { RD Pulse Width }}$	300	-	6TCLCL-100	-	ns
TWLWH	$\bar{W} \bar{R}$ Pulse Width					
TLLAX 2	Address Hold After ALE	98		2TCLCL-35		
TRLDV	$\overline{\mathrm{RD}}$ to Valid Data In	-	168	-	5 TCLCL-165	
TRHDX	Data Hold After $\overline{R D}$	0	-	0	-	
TRHDZ	Data Float After $\overline{\mathrm{RD}}$	-	63	-	2TCLCL-70	
TLLDV	ALE to Valid Data In		383		8TCLCL-150	
TAVDV	Address to Valid Data In		435		9TCLCL-165	
TLLWL	ALE to WR or RD	150	250	3TCLCL-50	$3 T C L C L+50$	
TAVWL	Address to $\bar{W} \bar{R}$ or $\overline{\mathrm{RD}}$	137	-	4TCL.CL-130	-	
TWHLH	$\overline{W R}$ or $\bar{R} \bar{D}$ High to ALE High	27	107	TCLCL-40	TCLCL+40	
TDVWX	Data Valid to WR Transition	17	-	TCLCL-50	-	
TQVWH	Data Setup Before WR	317		7TCLCL-150		
TWHQX	Data Hold After $\bar{W} R$	17		TCLCL-50		
TRLAZ	Address Float After $\overline{\mathrm{R} D}$	-	0	-	0	

[^7]
External Clock Drive XTAL2

Symbol	Parameter	Limit Values		
		Variable Clock Freq $=1.2 \mathrm{MHz}$ to 15 MHz		
		Min	Max	
TCLCL	Oscillator Period	66.6	833.3	
TCHCX	High Time	ns		
TCLCK	Low Time		TCLCL-TCLCX	
TCLCH	Rise Time		TCLCL-TCHCX	
TCHCL	Fall Time		15	

ROM Verification Characteristics for SAB 8051A-15
$\mathrm{TA}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{VSS}=0 \mathrm{~V}$

Symbol	Parameter	Limit Values		Unit
		Min	Max	
TAVQV	Address to Valid Data			
TELQV	Enable to Valid Data		48 TCLCL	ns
TEHQZ	Data Float after Enable	0		
$1 /$ TCLCL	Oscillator Frequency	4	6	MHz

ROM Verification

Address:	$\mathrm{P} 1.0-\mathrm{P} 1.7=\mathrm{AO}-\mathrm{A7}$	Inputs:
	$\mathrm{P} 2.0-\mathrm{P} 2.3=\mathrm{P} 2.4-\mathrm{P} 2.6, \overline{\mathrm{PSEN}}=\mathrm{VSS}$	
Data:	Port 0	$=\mathrm{A} 11$

Waveforms

Program Memory Read Cycle

Data Memory Read Cycle

Data Memory Write Cycle

A.C. Testing Input, Output, Float Waveforms

A.C. testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ".

Timing measurements are made at 2.0 V for a logic " 1 " ans 0.8 V for a logic " 0 ".
For timing purposes, the float state is defined as the point at which a PO pin sinks 3.2 mA or sources $400 \mu \mathrm{~A}$ at the voltage test levels.

External Clock Cycle

Recommended Oscillator Circuits

$C=30 \mathrm{pF} \pm 10 \mathrm{pF}$

Crystal Oscillator Mode

74 LSO 4

Driving from External Source

SAB 8031A/8051A Ext. Temp. 8-Bit Single Chip Microcomputer

Extended Temperature Range: -40 to $+85^{\circ} \mathrm{C}$
-40 to $+110^{\circ} \mathrm{C}$
SAB 8051A-12-P-T40/85
SAB 8051A-10-P-T40/110
Mask Programmable ROM

- Advanced Version of the SAB 8031/8051 for Extended Temperature Range
- SAB 8031A/8051A-12-T40/85: 12 MHz Operation
- SAB 8031A/8051A-10-T40/110: 10 MHz Operation
- $4 \mathrm{~K} \times 8$ ROM
- 128×8 RAM
- Four 8-bit Ports, 32 I/O Lines

SAB 8031A-12-P-T40/85
SAB 8031A-10-P-T40/110
External ROM
- Two 16-bit Timer/Event Counters
- High-Performance Full-Duplex Serial Channel
- External Memory Expandable up to 128 K
- Compatible with SAB 8080/8085 Peripherals
- Boolean Processor
- 218 User bit-Addressable Locations
- Most Instructions Execute in $1 \mu \mathrm{~s}$
- $4 \mu \mathrm{~s}$ Multiply and Divide

Pin Configuration

The SAB 8031A/8051A for the two extended temperature ranges (Industrial temperature range: -40 to $+85^{\circ} \mathrm{C}$, Automotive temperature range: -40 to $+110^{\circ} \mathrm{C}$) is fully compatible with the standard SAB 8031A/8051A with respect to architecture, instruction set, and software portability. The SAB 8031A/8051A is a stand-alone, highperformance single-chip computer fabricated in +5 V advanced N -channel, silicon gate Siemens MYMOS technology and packaged in a 40-pin DIP. The SAB 8051A contains a non-volatile $4 \mathrm{~K} \times 8$ readonly program memory; a volatile $128 \times 8 \mathrm{read} /$ write
data memory; 32 I/O lines; two 16-bit timer/ counters; a five-source, two-priority-level, nested interrupt structure; a serial I/O port for either multiprocessor communications, I/O expansion, or full duplex UART; and on-chip oscillator and clock circuits. The SAB 8031A is identical, except that it lacks the program memory.
For systems that require extra capability, the SAB 8051A can be expanded using standard TTL compatible memories and the byte oriented SAB 8080 and SAB 8085 peripherals.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Functions
P1.0-P1.7	1-8	I/O	Port 1 is an 8 -bit quasi-bidirectional I/O port. It is used for the low-order address byte during program verification.
RST/VPD	9	1	A high level on this pin resets the SAB 8051A. A small internal pulldown resistor permits power-on reset using only a capacitor connected to VCC. If VPD is held within its spec while VCC drops below spec, VPD will provide standby power to the RAM. When VPD is low, the RAM's current is drawn from VCC.
P3.0-P3.7	10-17	1/0	Port 3 is an 8-bit quasi-bidirectional I/O port. It also contains the interrupt, timer, serial port and $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. The secondary functions are assigned to the pins of Port 3, as follows: - RXD/data (P3.0). Serial port's receiver data input (asynchronous) or data input/output (synchronous). - TXD/clock (P3.1). Serial port's transmitter data output (asynchronous) or clock output (synchronous). - INTO (P3.2). Interrupt 0 input or gate control input for counter 0 . - $\overline{\text { INT1 }}$ (P3.3). Interrupt 1 input or gate control input for counter 1. - TO (P3.4). Input to counter 0. - T1 (P3.5). Input to counter 1. - $\overline{\mathrm{WR}}$ (P3.6). The write control signal latches the data byte from Port 0 into the External Data Memory. - $\overline{\mathrm{RD}}$ (P3.7). The read control signal enables External Data Memory to Port 0 .
$\begin{aligned} & \text { XTAL1 } \\ & \text { XTAL2 } \end{aligned}$	$\begin{array}{\|l} \hline 19 \\ 18 \end{array}$	1	XTAL 1 Input to the oscillator's high gain amplifier. Required when a crystal is used. Connect to VSS when external source is used on XTAL2. XTAL2 Output from the oscillator's amplifier. Input to the internal timing circuitry. A crystal or external source can be used.
P2.0-P2.7	21-28	1/0	Port 2 is an 8 -bit quasi-bidirectional I/O port. It also emits the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification.
PSEN	29	0	The Program Store Enable output is a control signal that enables the external Program Memory to the bus during external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. Remains high during internal program execution.
ALE	30	0	Provides Address Latch Enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access.

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
$\overline{\text { EA }}$	31	1	When held at a high level, the SAB 8051A executes instructions from the internal ROM when the PC is less than 4096. When held at a low level, the SAB 8051A fetches all instructions from external Program Memory. For the SAB 8031A this pin must be tied low.
PQ.0-PØ.7	$39-32$	$1 / \mathrm{O}$	Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification.
VCC	40		+5V power supply during operation and program verification.
VSS	20		Circuit ground potential.

Block Diagram

SAB 8031A/8051A Ext. Temp.

Instruction Set Description

Mnemonic	Description	Byte	Cycle

Arithmetic operations

ADD	A, Rn	Add register to Accumulator	1	1
ADD	A, direct	Add direct byte to Accumulator	2	1
ADD	A, @Ri	Add indirect RAM to Accumulator	1	1
ADD	A, \#data	Add immediate data to Accumulator	2	1
ADDC	A,Rn	Add register to Accumulator with Carry flag	1	1
ADDC	A,direct	Add direct byte to A with Carry flag	2	1
ADDC	A,@Ri	Add indirect RAM to A with Carry flag	1	1
ADDC	A, \#data	Add immediate data to A with Carry flag	2	1
SUBB	A,Rn	Subtract register from A with Borrow	1	1
SUBB	A,direct	Subtract direct byte from A with Borrow	2	1
SUBB	A,@Ri	Subtract indirect RAM from A w/Borrow	1	1
SUBB	A, \#data	Subtract immediate data from A w/Borrow	2	1
INC	A	Increment Accumulator	1	1
INC	Rn	Increment register	1	1
INC	direct	Increment direct byte	2	1
INC	@Ri	Increment indirect RAM	1	1
DEC	A	Decrement Accumulator	1	1
DEC	Rn	Decrement register	1	1
DEC	direct	Decrement direct byte	2	1
DEC	@Ri	Decrement indirect RAM	1	1
INC	DPTR	Increment Data Pointer	1	2
MUL	$A B$	Multiply A \& B	1	4
DIV	$A B$	Divide A \& B	1	4
DA	A	Decimal Adjust Accumulator	1	1

Logical operations

ANL	A,Rn	AND register to Accumulator	1	1
ANL	A,direct	AND direct byte to Accumulator	2	1
ANL	A,@Ri	AND indirect RAM to Accumulator	1	1
ANL	A,\#data	AND immediate data to Accumulator	2	1
ANL	direct,A	AND Accumulator to direct byte	2	1

Instruction Set Description (continued)

Mnemonic		Description	Byte	Cycle
ANL	direct,\#data	AND immediate data to direct byte	3	2
ORL	A, Rn	OR register to Accumulator	1	1
ORL	A, direct	OR direct byte to Accumulator	2	1
ORL	A,@Ri	OR indirect RAM to Accumulator	1	1
ORL	A,\#data	OR immediate data to Accumulator	2	1
ORL	direct, A	OR Accumulator to direct byte	2	1
ORL	direct,\#data	OR immediate data to direct byte	3	2
XRL	A,Rn	Exclusive-OR register to Accumulator	1	1
XRL	A, direct	Exclusive-OR direct byte to Accumulator	2	1
XRL	A,@Ri	Exclusive-OR indirect RAM to A	1	1
XRL	A,\#data	Exclusive-OR immediate data to A	2	1
XRL	direct, A	Exclusive-OR Accumulator to direct byte	2	1
XRL	direct,\#data	Exclusive-OR immediate data to direct	3	2
CLR	A	Clear Accumulator	1	1
CPL	A	Complement Accumulator	1	1
RL	A	Rotate Accumulator Left	1	1
RLC	A	Rotate A Left through the Carry flag	1	1
RR	A	Rotate Accumulator Right	1	1
RRC	A	Rotate A Right through Carry flag	1	1
SWAP	A	Swap nibble's within the Accumulator	1	1

Data transfer

MOV	A,Rn	Move register to Accumulator	1	1
MOV	A,direct $\quad{ }^{*}$)	Move direct byte to Accumulator	2	1
MOV	A,@Ri	Move indirect RAM to Accumulator	1	1
MOV	A,\#data	Move immediate data to Accumulator	2	1
MOV	Rn,A	Move Accumulator to register	1	1
MOV	Rn,\#data	direct,A	Move	Move Accumulator to direct byte
MOV	direct,Rn	Move register to direct byte	2	2
MOV	direct,direct	Move direct byte to direct	2	1
MOV			2	1

[^8]
Instruction Set Description (continued)

Mnemonic		Description	Byte	Cycle
MOV	direct,@Ri	Move indirect RAM to direct byte	2	2
MOV	direct,\#data	Move immediate data to direct byte	3	2
MOV	@Ri,A	Move Accumulator to indirect RAM	1	1
MOV	@Ri,direct	Move direct byte to indirect RAM	2	2
MOV	@Ri,\#data	Move immediate data to indirect RAM	2	1
MOV	DPTR,\#data 16	Load Data Pointer with a 16-bit constant	3	2

Data transfer (cont.)

MOVC	A,@A+DPTR	Move Code byte relative to DPTR to A	1	2
MOVC	A,@A+PC	Move Code byte relative to PC to A	1	2
MOVX	A,@Ri	Move External RAM (8-bit addr) to A	1	2
MOVX	A,@DPTR	Move External RAM (16-bit addr) to A	1	2
MOVX	@Ri,A	Move A to External RAM (8-bit addr)	1	2
MOVX	@DPTR,A	Move A to External RAM (16-bit addr)	1	2
PUSH	direct	Push direct byte onto stack	2	2
POP	A,direct	A,@Ri	Pop direct byte from stack	Exchange direct byte with Accumulator
XCH	A,@Ri	Exchange indirect RAM with A	2	2
$X C H$			1	1
$X C H$			1	
$X C H D$				1

Boolean variable manipulation

CLR	C	Clear Carry flag	1	1
CLR	bit	Clear direct bit	2	1
SETB	C	Set Carry flag	1	1
SETB	bit	Set direct Bit	2	1
CPL	C	Complement Carry flag	1	1
CPL	C,bit	Complement direct bit	2	1
ANL	C,bit	C,/bit	AND direct bit to Carry flag	2
ANL	C,bit	OR direct bit to Carry flag	2	2
ORL	bit,C	Move direct bit to Carry flag	2	2
ORL		Move Carry flag to direct bit	2	2
MOV			2	1
MOV			2	2

Instruction Set Description (continued)

Mnemonic		Description	Byte	Cycle
Program and machine control				
ACALL	addr 11	Absolute Subroutine Call	2	2
LCALL	addr 16	Long Subroutine Call	3	2
RET		Return from subroutine	1	2
RETI		Return from interrupt	1	2
AJMP	addr 11	Absolute Jump	2	2
LJMP	addr 16	Long Jump	3	2
SJMP	rel	Short Jump (relative addr)	2	2
JMP	@A+DPTR	Jump indirect relative to the DPTR	1	2
JZ	rel	Jump if Accumulator is Zero	2	2
JNZ	rel	Jump if Accumulator is Not Zero	2	2
JC	rel	Jump if Carry flag is set	2	2
JNC	rel	Jump if Carry flag not set	2	2
JB	bit,rel	Jump if direct Bit set	3	2
JNB	bit,rel	Jump if direct Bit not set	3	2
JBC	bit,rel	Jump if direct Bit is set \& Clear bit	3	2
CJNE	A,direct,rel	Compare direct to A \& Jump if Not Equal	3	2
CJNE	A,\#data,rel	Comp. immed. to A \& Jump if Not Equal	3	2
CJNE	Rn,\#data, rel	Comp. immed. to reg. \& Jump if Not Equal	3	2
CJNE	@Ri,\#data,rel	Comp.immed. to ind. \& Jump if Not Equal	3	2
DJNZ	Rn,rel	Decrement register \& Jump if Not Zero	2	2
DJNZ	direct, rel	Decrement direct \& Jump if Not Zero	3	2
NOP		No operation	1	1

Notes on data addressing modes:

Rn - Working register R0-R7
direct - 128 internal RAM locations, any I/O port, control or status register
@Ri - Indirect internal RAM location addressed by register R0 or R1
\#data - 8-bit constant included in instruction
\#data 16 - 16-bit constant included as bytes $2 \& 3$ of instruction
bit - 128 software flags, any I/O pin, control or status bit

Notes on program addressing modes:
addr 16 - Destination address for LCALL \& LJMP may be anywhere within the 64-Kilobyte program memory address space.
addr 11 - Destination address for ACALL \& AJMP will be within the same 2-Kilobyte page of program memory as the first byte of the following instruction.
rel - SJMP and all conditional jumps include an 8-bit offset byte. Range is $+127 /-128$ bytes relative to first byte of the following instruction.

Instruction Opcodes in Hexadecimal Order

Hex Code	Number of Bytes	Mnemonic	Operands	Hex Code	Number of Bytes	Mnemonic	Operands
00	1	NOP		34	2	ADDC	A, \#data
01	2	AJMP	code addr	35	2	ADDC	A, data addr
02	3	LJMP	code addr	36	1	ADDC	A, @R0
03	1	RR	A	37	1	ADDC	A,@R1
04	1	INC	A	38	1	ADDC	A, R0
05	2	INC	data addr	39	1	ADDC	A, R1
06	1	INC	@R0	3A	1	ADDC	A, R2
07	1	INC	@R1	3B	1	ADDC	A, R3
08	1	INC	RO	3 C	1	ADDC	A, R4
09	1	INC	R1	3D	1	ADDC	A,R5
OA	1	INC	R2	3E	1	ADDC	A,R7
OB	1	INC	R3	3 F	1	ADDC	A,R7
OC	1	INC	R4	40	2	JC	code addr
OD	1	INC	R5	41	2	AJMP	code addr
OE	1	INC	R6	42	2	ORL	data addr, A
OF	1	INC	R7	43	3	ORL	data addr,\#data
10	3	JBC	bit addr code addr	44	2	ORL	A, \#data
11	2	ACALL	code addr	45	2	ORL	A,data addr
12	3	LCALL	code addr	46	1	ORL	A,@R0
13	1	RRC	A	47	1	ORL	A, @R1
14	1	DEC	A	48	1	ORL	A, R0
15	2	DEC	data addr	49	1	ORL	A, R1
16	1	DEC	@RO	4A	1	ORL	A, R2
17	1	DEC	@R1	4 B	1	ORL	A, R3
18	1	DEC	R0	4C	1	ORL	A,R4
19	1	DEC	R1	4D	1	ORL	A, R5
1A	1	DEC	R2	4E	1	ORL	A,R6
1B	1	DEC	R3	4F	1	ORL	A,R7
1 C	1	DEC	R4	50	2	JNC	code addr
1D	1	DEC	R5	51	2	ACALL	code addr
1E	1	DEC	R6	52	2	ANL	data addr, A
1F	1	DEC	R7	53	3	ANL	data addr,\#data
20	3	JB	bit addr code addr	54	2	ANL	A, \#data
21	2	AJMP	code addr	55	2	ANL	A,data addr
22	1	RET		56	1	ANL	A,@R0
23	1	RL	A	57	1	ANL	A,@R1
24	2	ADD	A, \# data	58	1	ANL	A,R0
25	2	ADD	A,data addr	59	1	ANL	A,R1
26	1	ADD	A,@R0	5A	1	ANL	A, R2
27	1	ADD	A,@R1	5B	1	ANL	A, R3
28	1	ADD	A,R0	5C	1	ANL	A,R4
29	1	ADD	A, R1	5D	1	ANL	A, R5
2A	1	ADD	A, R2	5 E	1	ANL	A, R6
2B	1	ADD	A, R3	5F	1	ANL	A, R7
2C	1	ADD	A,R4	60	2	JZ	code addr
2D	1	ADD	A, R5	61	2	AJMP	code addr
2E	1	ADD	A, R6	62	2	XRL	data addr, A
2 F	1	ADD	A,R7	63	3	XRL	data addr, \#data
30	3	JNB	bit addr, code addr	64	2	XRL	A, \#data
31	2	ACALL	code addr	65	2	XRL	A,data addr
32	1	RETI		66	1	XRL	A, @R0
33	1	RLC	A	67	1	XRL	A,@R1

Instruction Opcodes in Hexadecimal Order (continued)

Hex Code	Number of Bytes	Mnemonic	Operands	Hex Code	Number of Bytes	Mnemonic	Operands
68	1	XRL	A, RO	9 C	1	SUBB	A, R4
69	1	XRL	A, R1	9D	1	SUBB	A,R5
6 A	1	XRL	A, R2	9E	1	SUBB	A, R6
6B	1	XRL	A, R3	9 F	1	SUBB	A,R7
6C	1	XRL	A, R4	A0	2	ORL	C,/bit addr
6D	1	XRL	A, R5	A1	2	AJMP	code addr
6 E	1	XRL	A,R6	A2	2	MOV	C,bit addr
6 F	1	XRL	A,R7	A3	1	INC	DPTR
70	2	JNZ	code addr	A4	1	MUL	AB
71	2	ACALL	code addr	A5		reserved	
72	2	ORL	C,bit addr	A6	2	MOV	@R0,data addr
73	1	JMP	@A+DPTR	A7	2	MOV	@R1,data addr
74	2	MOV	A,\#data	A8	2	MOV	R0,data addr
75	3	MOV	data addr, \#data	A9	2	MOV	R1, data addr
76	2	MOV	@R0,\#data	AA	2	MOV	R2,data addr
77	2	MOV	@R1,\#data	$A B$	2	MOV	R3,data addr
78	2	MOV	R0,\#data	AC	2	MOV	R4, data addr
79	2	MOV	R1,\#data	$A D$	2	MOV	R5,data addr
7 A	2	MOV	R2,\#data	AE	2	MOV	R6,data addr
7B	2	MOV	R3,\#data	AF	2	MOV	R7, data addr
7 C	2	MOV	R4, \#data	B0	2	ANL	C,/bit addr
7 D	2	MOV	R5, \#data	B1	2	ACALL	code addr
7E	2	MOV	R6,\#data	B2	2	CPL	bit addr
7F	2	MOV	R7, \#data	B3	1	CPL	C
80	2	SJMP	code addr	B4	3	CJNE	A,\#data, code addr
81	2	AJMP	code addr	B5	3	CJNE	A,data addr,code addr
82	2	ANL	C, bit addr	B6	3	CJNE	@R0,\#data,code addr
83	1	MOVC	A,@A+PC	B7	3	CJNE	@R1,\#data,code addr
84	1	DIV	AB	B8	3	CJNE	R0,\#data, code addr
85	3	MOV	data addr,data addr	B9	3	CJNE	R1,\#data,code addr
86	2	MOV	data addr,@R0	BA	3	CJNE	R2,\#data, code addr
87	2	MOV	data addr,@R1	BB	3	CJNE	R3,\#data, code addr
88	2	MOV	data addr, R0	BC	3	CJNE	R4,\#data, code addr
89	2	MOV	data addr, R1	BD	3	CJNE	R5,\#data, code addr
8A	2	MOV	data addr, R2	BE	3	CJNE	R6,\#data, code addr
8B	2	MOV	data addr, R3	BF	3	CJNE	R7,\#data, code addr
8C	2	MOV	data addr, R4	C0	2	PUSH	data addr
8D	2	MOV	data addr, R5	C1	2	AJMP	code addr
8E	2	MOV	data addr, R6	C2	2	CLR	bit addr
8F	2	MOV	data addr, R7	C3	1	CLR	C
90	3	MOV	DPTR, \#data	C4	1	SWAP	A
91	2	ACALL	code addr	C5	2	XCH	A, data addr
92	2	MOV	bit addr, C	C6	1	XCH	A,@R0
93	1	MOVC	A,@A+DPTR	C7	1	XCH	A, @R1
94	2	SUBB	A,\#data	C8	1	XCH	A,R0
95	2	SUBB	A, data addr	C9	1	XCH	A, R1
96	1	SUBB	A,@R0	CA	1	XCH	A,R2
97	1	SUBB	A, @R1	CB	1	XCH	A, R3
98	1	SUBB	A,Ro	CC	1	XCH	A,R4
99	1	SUBB	A, R1	CD	1	XCH	A,R5
9A	1	SUBB	A, R2	CE	1	XCH	A, R6
9B	1	SUBB	A, R3	CF	1	XCH	A,R7

Instruction Opcodes in Hexadecimal Order (continued)

Hex Code	Number of Bytes	Mnemonic	Operands
DO	2	POP	data addr
D1	2	ACALL	code addr
D2	2	SETB	bit addr
D3	1	SETB	C
D4	1	DA	A
D5	3	DJNZ	data addr,code addr
D6	1	XCHD	A,@R0
D7	1	XCHD	A,@R1
D8	2	DJNZ	RO, code addr
D9	2	DJNZ	R1,code addr
DA	2	DJNZ	R2,code addr
DB	2	DJNZ	R3,code addr
DC	2	DJNZ	R4,code addr
DD	2	DJNZ	R5,code addr
DE	2	DJNZ	R6,code addr
DF	2	DJNZ	R7, code addr
E0	1	MOVX	A,@DPTR
E1	2	AJMP	code addr
E2	1	MOVX	A,@R0
E3	1	MOVX	A,@R1
E4	1	CLR	A
E5	2	MOV	A,data addr *)
E6	1	MOV	A, @R0
E7	1	MOV	A,@R1
E8	1	MOV	A, RO
E9	1	MOV	A, R1
EA	1	MOV	A, R2
EB	1	MOV	A, R3
EC	1	MOV	A,R4
ED	1	MOV	A, R5
EE	1	MOV	A, R6
EF	1	MOV	A,R7
F0	1	MOVX	@DPTR,A
F1	2	ACALL	code addr
F2	1	MOVX	@RO,A
F3	1	MOVX	@ R1,A
F4	1	CPL	A
F5	2	MOV	data addr, A
F6	1	MOV	@RO,A
F7	1	MOV	@R1,A
F8	1	MOV	R0, A
F9	1	MOV	R1, A
FA	1	MOV	R2,A
FB	1	MOV	R3, A
FC	1	MOV	R4, A
FD	1	MOV	R5,A
FE	1	MOV	R6, A
FF	1	MOV	R7,A

[^9]
Absolute Maximum Ratings ${ }^{1 /}$

Ambient Temperature Under Bias
Storage Temperature
Voltage on Any Pin with Respect to Ground (VSS)

$$
\begin{aligned}
& -40 \text { to }+85^{\circ} \mathrm{C} \text { for } \mathrm{T} 40 / 85 \\
& -40 \text { to }+110^{\circ} \mathrm{C} \text { for } \mathrm{T} 40 / 110 \\
& -65 \text { to }+150^{\circ} \mathrm{C} \\
& -0.5 \text { to }+7 \mathrm{~V} \\
& 2 \mathrm{~W}
\end{aligned}
$$

Power Dissipation

D.C. Characteristics

$V C C=5 \mathrm{~V} \pm 10 \% ; V S S=0 \mathrm{~V} \quad \mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$ for $\mathrm{T} 40 / 85$;
$T A=-40$ to $+110^{\circ} \mathrm{C}$ for $\mathrm{T} 40 / 110$

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
VIL	Input Low Voltage	-0.5	0.8	V	-
VIH	Input High Voltage except RST/VPD and XTAL2	2.0	$V C C+0.5$		
VIH1	Input High Voltage to RST/VPD for Reset, XTAL2	2.5			XTAL 1 to VSS
VPD	Power Down Voltage To RST/VPD	4.5	5.5		$V C C=0 V$
VOL	Output Low Voltage Ports 1, 2, 3	-	0.45		$1 \mathrm{OL}=1.6 \mathrm{~mA}$
VOL1	Output Low Voltage Port 0, ALE, /PSEN				$\mathrm{IOL}=3.2 \mathrm{~mA}$
VOH	Output High Voltage Ports 1, 2, 3	2.4	-		$\mathrm{IOH}=-80 \mu \mathrm{~A}$
VOH1	Output High Voltage Port 0, ALE, /PSEN				$\mathrm{IOH}=-400 \mu \mathrm{~A}$
IIL	Logical 0 Input Current Ports 1, 2, 3	-	-800	$\mu \mathrm{A}$	$\mathrm{VIL}=0.45 \mathrm{~V}$
IIL2	Logical 0 Input Current XTAL2		-2.5	mA	$\begin{aligned} & \text { XTAL1 }=\mathrm{VSS} \\ & \text { VIL }=0.45 \mathrm{~V} \end{aligned}$
IIH1	Input High Current to RST/VPD for Reset		500	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VCC}-1.5 \mathrm{~V}$
ILI	Input Leakage Current to Port 0,/EA		± 10		$0<$ VIN $<$ VCC
ICC	Power Supply Current		150	mA	-
IPD	Power Down Current		15		
ClO	Capacitance of I/O Buffer		10	pF	$\mathrm{fc}=1 \mathrm{MHz}$

[^10]
A.C. Characteristics for T40/85

$\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{VSS}=0 \mathrm{~V} ; \mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$
(CL for Port 0, ALE and PSEN Outputs $=100 \mathrm{pF}$; CL for All Other Outputs $=80 \mathrm{pF}$)

Program Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		12 MHz Clock		Variable Clock $1 /$ TCLCL $=1.2 \mathrm{MHz}$ to 12 MHz		
		Min	Max	Min	Max	
TLHLL	ALE Pulse Width	127	-	2TCLCL-40	-	ns
TAVLL	Address Setup to ALE	53		TCLCL-30		
TLLAX1	Address Hold After ALE	48		TCLCL-35		
TLLIV	ALE To Valid Instr In	-	233	-	4TCLCL-100	
TLLPL	ALE To PSEN	58	-	TCLCL-25	-	
TPLPH	PSEN Pulse Width	215		3TCLCL-35		
TPLIV	$\overline{\text { PSEN }}$ To Valid Instr In	-	150	-	3TCLCL-100	
TPXIX	Input Instr Hold After PSEN	0	-	0	-	
TPXIZ*)	Input Instr Float After PSEN	-	63	-	TCLCL-20	
TPXAV*)	Address Valid After $\overline{\text { PSEN }}$	75	-	TCLCL-8	-	
TAVIV	Address To Valid Instr In	-	302	-	5TCLCL-115	
TAZPL	Address Float To $\overline{\text { PSEN }}$	0	-	0	-	

External Data Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		12 MHz Clock		Variable Clock $1 /$ TCLCL $=1.2 \mathrm{MHz}$ to 12 MHz		
		Min	Max	Min	Max	
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400	-	6TCLCL-100	-	ns
TWLWH	$\overline{\text { WR Pulse Width }}$			6TCLCL-100		
TLLAX 2	Address Hold After ALE	132		2TCLCL-35		
TRLDV	$\overline{\mathrm{RD}}$ To Valid Data In	-	250	-	5TCLCL-165	
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0	-	0	-	
TRHDZ	Data Float After $\overline{\mathrm{RD}}$	-	97	-	2TCLCL-70	
TLLDV	ALE To Valid Data In		517		8TCLCL-150	
TAVDV	Address To Valid Data In		585		9TCLCL-165	
TLLWL	ALE To $\overline{W R}$ or $\overline{\mathrm{RD}}$	200	300	3TCLCL-50	3TCLCL+50	
TAVWL	Address To $\overline{W R}$ or $\overline{\mathrm{RD}}$	203	-	4TCLCL-130	-	
TWHLH	$\overline{\text { WR }}$ or $\overline{\mathrm{RD}}$ High To ALE High	43	123	TCLCL-40	TCLCL+40	
TDVWX	Data Valid To WR Transition	33		TCLCL-50		
TQVWH	Data Setup Before $\bar{W} R$	433	-	7TCLCL-150	-	
TWHQX	Data Hold After $\overline{W R}$	33		TCLCL-50		
TRLAZ	Address Float After $\overline{\mathrm{RD}}$	-	0	-	0	

[^11]
A.C. Characteristics for T40/110

$\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{VSS}=0 \mathrm{~V} ; \mathrm{TA}=-40$ to $+110^{\circ} \mathrm{C}$
(CL for Port 0, ALE and PSEN Outputs $=100 \mathrm{pF}$; CL for All Other Outputs $=80 \mathrm{pF}$)
Program Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		10 MHz Clock		Variable Clock$1 / \mathrm{TCLCL}=1.2 \mathrm{MHz} \text { to } 10 \mathrm{MHz}$		
		Min	Max	Min	Max	
TLHLL	ALE Pulse Width	160	-	2TCLCL-40	-	ns
TAVLL	Address Setup to ALE	70		TCLCL-30		
TLLAX1	Address Hold After ALE	65		TCLCL-35		
TLLIV	ALE To Valid Instr In	-	300	-	4TCLCL-100	
TLLPL	ALE To PSEN	75	-	TCLCL-25	-	
TPLPH	$\overline{\text { PSEN Pulse Width }}$	265		3TCLCL-35		
TPLIV	$\overline{\text { PSEN }}$ To Valid Instr In	-	200	-	3TCLCL-100	
TPXIX	Input Instr Hold After $\overline{\text { PSEN }}$	0	-	0	-	
TPXIZ*)	Input Instr Float After $\overline{\text { PSEN }}$	-	80	-	TCLCL-20	
TPXAV*)	Address Valid After PSEN	92	-	TCLCL-8	-	
TAVIV	Address To Valid Instr In	-	385	-	5TCLCL-115	
TAZPL	Address Float To $\overline{\text { PSEN }}$	0	-	0	-	

External Data Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		10 MHz Clock		Variable Clock$1 / \mathrm{TCLCL}=1.2 \mathrm{MHz} \text { to } 10 \mathrm{MHz}$		
		Min	Max	Min	Max	
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	500	-	6TCLCL-100	-	ns
TWLWH	$\overline{\text { WR Pulse Width }}$			6TCLCL-100		
TLLAX2	Address Hold After ALE	165		2TCLCL-35		
TRLDV	$\overline{\mathrm{RD}}$ To Valid Data In	-	335	-	5TCLCL-165	
TRHDX	Data Hold After $\overline{\mathrm{RD}}$	0	-	0	-	
TRHDZ	Data Float After $\overline{\mathrm{RD}}$	-	130	-	2TCLCL-70	
TLLDV	ALE To Valid Data In		650		8TCLCL-150	
TAVDV	Address To Valid Data In		735		9TCLCL-165	
TLLWL	ALE To $\overline{W R}$ or $\overline{\mathrm{RD}}$	250	350	3TCLCL-50	3 TCLCL+50	
TAVWL	Address To $\overline{W R}$ or $\overline{R D}$	270	-	4TCLCL-130	-	
TWHLH	$\overline{\text { WR }}$ or $\overline{\mathrm{RD}}$ High To ALE High	60	140	TCLCL-40	TCLCL+40	
TDVWX	Data Valid To $\overline{W R}$ Transition	50		TCLCL-50		
TQVWH	Data Setup Before $\overline{W R}$	550	-	7TCLCL-150	-	
TWHQX	Data Hold After \bar{W} R	50		TCLCL-50		
TRLAZ	Address Float After $\overline{\mathrm{R}} \overline{\mathrm{D}}$	-	0	-	0	

[^12]SAB 8031A/8051A Ext. Temp.

External Clock Drive XTAL2

Symbol	Parameter	Limit Values		Unit
		$\begin{aligned} & \text { Variable Clock } \\ & \text { Freq }=1.2 \mathrm{MHz} \text { to } 12 \mathrm{MHz}(\mathrm{~T} 40 / 85) \\ & \text { Freq }=1.2 \mathrm{MHz} \text { to } 10 \mathrm{MHz}(\mathrm{~T} 40 / 110) \end{aligned}$		
		Min	Max	
TCLCL	$\begin{array}{r} \text { Oscillator Period T40/85 } \\ \text { T40/110 } \end{array}$	$\begin{aligned} & 83.3 \\ & 100 \end{aligned}$	833.3	ns
TCHCX	High Time	20	TCLCL-TCLCX	
TCLCX	Low Time		TCLCL-TCHCX	
TCLCH	Rise Time	-	20	
TCHCL	Fall Time			

External Clock Cycle

A.C. Testing Input, Output, Float Waveforms

AC testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ".
Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
For timing purposes, the float state is defined as the point at which a P0 pin sinks 3.2 mA or sources $400 \mu \mathrm{~A}$ at the voltage test levels.

ROM Verification Characteristics
 -

$T A=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{VSS}=0 \mathrm{~V}$

Symbol	Parameter	Limit Values		Unit
		Min	Max	
TAVQV	Address to Valid Data			ns
TELQV	Enable to Valid Data		48 TCLCL	
TEHOZ	Data Float after Enable	0	6	MHz
$1 / \mathrm{TCLCL}$	Oscillator Frequency	4		

ROM Verification

Address: $\mathrm{P} 1.0-\mathrm{P} 1.7=\mathrm{A} 0-\mathrm{A} 7$
$\mathrm{P} 2.0-\mathrm{P} 2.3=\mathrm{A} 8-\mathrm{A} 11$
Data: Port $0=D 0-D 7$

Inputs: P2.4-P2.6, $\overline{\text { PSEN }}=$ VSS
$A L E, \overline{E A}=$ TTL high level
RST/VPD $=$ VIH1

Waveforms

Program Memory Read Cycle

Data Memory Read Cycle

Recommended Oscillator Circuits

$\mathrm{C}=30 \mathrm{pF} \pm 10 \mathrm{pF}$

Crystal Oscillator Mode

Driving from External Source

SAB 8032A/8052A 8-Bit Single Chip Microcomputer

SAB 8032A Control-oriented CPU with RAM and I/O
SAB 8052A A SAB 8032A with factory mask-programmable ROM

- $8 \mathrm{~K} \times 8$ ROM (SAB 8052A only)
- 256×8 RAM
- Four 8-bit ports, 32 I/O lines
- Three 16-bit timer/event counters
- High-performance full-duplex serial channel
- External memory expandable to 128 Kbytes
- Compatible with SAB 8080/8085 peripherals

\author{

- Timer 2 capture capability
 - Variable transmit/receive baud rate capability
 - Boolean processor
 - Most instructions execute in $1 \mu \mathrm{~s}$
 - 4μ s multiply and divide
 - Upward compatible with SAB 8031A/8051A
}

Pin Configuration

Logic Symbol

The SAB 8032A/8052A is a stand-alone, high-performance single-chip microcomputer fabricated in +5 V advanced N -channel, silicon gate Siemens MYMOS technology, packaged in a 40-pin DIP. It is upward compatible with the SAB 8031A/8051A. It provides the hardware features, architectural enhancements, and instructions that are necessary to make it a powerful and cost effective controller for applications requiring up to 64 Kbytes of program memory and/or up to 64 Kbytes of data memory.
The SAB 8052A contains a non-volatile $8 \mathrm{~K} \times 8$ read-
only program memory; a volatile 256×8 read/write data memory; 32 I/O lines; three 16-bit timer/ counters; a six-source, two-priority-level, nested interrupt structure; a serial I/O port for either multiprocessor communications, I/O expansion, or full duplex UART; as well as on-chip oscillator and clock circuits. The SAB 8032A is identical, except that it lacks the program memory.
For systems that require extra capability, the SAB 8052A can be expanded using standard TTL compatible memories and the byte oriented SAB 8080 and SAB 8085 peripherals.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (0)	Function
P1.0-P1.7	1-8	I/O	Port 1 is an 8 -bit quasi-bidirectional $/ / O$ port. It is used for the low-order address byte during program verification. Port 1 can sink/source four LS TTL loads. Pins P1.0 and P1.1 also correspond to the special functions T2, external input to Timer 2, and T2EX, Timer 2 trigger input. The output latch on these two special function pins must be programmed to a one (1) for that function to operate.
RST/VPD	9	1	A high level on this pin resets the SAB 8052A. A small internal pulldown resistor permits power-on reset using only a capacitor connected to VCC. If VPD is held within its spec while VCC drops below spec, VPD will provide standby power to the RAM. When VPD is low, the RAM's current is drawn from VCC.
P3.0-P3.7	10-17	I/O	Port 3 is an 8 -bit quasi-bidirectional I/O port. It also contains the interrupt, timer, serial port and $\overline{\mathrm{RD}}$ and $\overline{W R}$ pins that are used by various options. The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. Port 3 can sink/source four LS TTL loads. The secondary functions are assigned to the pins of Port 3, as follows: - RXD/data (P3.0). Serial port's receiver data input (asynchronous) or data input/output (synchronous). - TXD/clock (P3.1). Serial port's transmitter data output (asynchronous) or clock output (synchronous). - $\overline{\mathrm{INTO}}$ (P3.2). Interrupt 0 input or gate control input for counter 0. - $\overline{\operatorname{NT1}}$ (P3.3). Interrupt 1 input or gate control input for counter 1. - T0 (P3.4). Input to counter 0. - T1 (P3.5). Input to counter 1. - $\overline{W R}$ (P3.6). The write control signal latches the data byte from port 0 into the external data memory. - $\overline{\mathrm{RD}}$ (P3.7). The read control signal enables external data memory to port 0.
$\begin{aligned} & \text { XTAL1 } \\ & \text { XTAL2 } \end{aligned}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	1	XTAL 1 input to the oscillator's high gain amplifier. Required when a crystal is used. Connect to VSS when external source is used on XTAL 2. XTAL 2 output from the oscillator's amplifier. Input to the internal timing circuitry. A crystal or external source can be used.
P2.0-P2.7	21-28	1/O	Port 2 is an 8 -bit quasi-bidirectional I/O port. It also emits the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification. Port 2 can sink/source four LS TTL loads.
PSEN	29	0	The program store enable output is a control signal that enables the external program memory to the bus during external fetch operations. It is activated every six oscillator periods, except during external data memory accesses. Remains high during internal program execution.

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
ALE	30	0	Provides address latch enable output used for latching the address into external memory during normal operation. It is activated every six oscillator periods except during an external data memory access.
$\overline{\mathrm{EA}}$	31	1	When held at a TTL high level, the SAB 8052A executes instructions from the internal ROM when the PC is lessthan 8192. When held at a TTL low level, the SAB 8052A fetches all instructions from external program memory. For the SAB 8032A this pin must be tied low.
P0.0-P0.7	$39-32$	I/O	Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification. Port 0 can sink/source eight LS TTL loads.
VCC	40		+5V power supply during operation and program verification.
VSS	20		Circuit ground potential.

Block Diagram

Instruction Set Description

Mnemonic	Description	Byte	Cycle

Arithmetic operations

ADD	A, Rn	Add register to Accumulator	1	1
ADD	A, direct	Add direct byte to Accumulator	2	1
ADD	A, @Ri	Add indirect RAM to Accumulator	1	1
ADD	A, \#data	Add immediate data to Accumulator	2	1
ADDC	A,Rn	Add register to Accumulator with Carry flag	1	1
ADDC	A,direct	Add direct byte to Accu with Carry flag	2	1
ADDC	A. $\left(\begin{array}{l}\text { Ri }\end{array}\right.$	Add indirert R ΔM in Δ rell with Carry flag	?	$!$
ADDC	A, \#data	Add immediate data to Accu with Carry flag	2	1
SUBB	A, Rn	Subtract register from Accu with borrow	1	1
SUBB	A, direct	Subtract direct byte from Accu with borrow	2	1
SUBB	A,@Ri	Subtract indirect RAM from A with borrow	1	1
SUBB	A, \#data	Subtract immediate data from A with borrow	2	1
INC	A	Increment Accumulator	1	1
INC	Rn	Increment register	1	1
INC	direct	Increment direct byte	2	1
INC	$@$ R	Increment indirect RAM	1	1
DEC	A	Decrement Accumulator	1	1
DEC	Rn	Decrement register	1	1
DEC	direct	Decrement direct byte	2	1
DEC	$@ \mathrm{Ri}$	Decrement indirect RAM	1	1
INC	DPTR	Increment data pointer	1	2
MUL	$A B$	Multiply A \& B	1	4
DIV	AB	Divide A \& B	1	4
DA	A	Decimal adjust Accumulator	1	1

Logical operations

ANL	A,Rn	AND register to Accumulator	1	1
ANL	A,direct	AND direct byte to Accumulator	2	1
ANL	A,@Ri	AND indirect RAM to Accumulator	1	1
ANL	A,\#data	AND immediate data to Accumulator	2	1
ANL	direct,A	AND Accumulator to direct byte	2	1

Instruction Set Description (continued)

Mnemonic		Description	Byte	Cycle
ANL	direct, \# data	AND immediate data to direct byte	3	2
ORL	A, Rn	OR register to Accumulator	1	1
ORL	A, direct	OR direct byte to Accumulator	2	1
ORL	A,@Ri	OR indirect RAM to Accumulator	1	1
ORL	A, \#data	OR immediate data to Accumulator	2	1
ORL	direct, A	OR Accumulator to direct byte	2	1
ORL	direct,\#data	OR immediate data to direct byte	3	2
XRL	A,Rn	Exclusive-OR register to Accumulator	1	1
XRL	A,direct	Exclusive-OR direct byte to Accumulator	2	1
XRL	A,@Ri	Exclusive-OR indirect RAM to Accumulator	1	1
XRL	A, \#data	Exclusive-OR immediate data to Accumulator	2	1
XRL	direct, A	Exclusive-OR Accumulator to direct byte	2	1
XRL	direct,\#data	Exclusive-OR immediate data to direct	3	2
CLR	A	Clear Accumulator	1	1
CPL	A	Complement Accumulator	1	1
RL	A	Rotate Accumulator left	1	1
RLC	A	Rotate A left through the Carry flag	1	1
RR	A	Rotate Accumulator right	1	1
RRC	A	Rotate A right through Carry flag	1	1
SWAP	A	Swap nibbles within the Accumulator	1	1

Data transfer

MOV	A,Rn	Move register to Accumulator	1	1
MOV	A,direct *	Move direct byte to Accumulator	2	1
MOV	A,@Ri	Move indirect RAM to Accumulator	1	1
MOV	R,\#data	Move immediate data to Accumulator	2	1
MOV	Rn,direct	Rn,\#data	Move Accumulator to register	1
MOV	direct,A	Move direct byte to register	1	
MOV	Move immediate data to register	2	2	
MOV	direct, direct	Move direct byte to direct	2	1
MOV		2	1	

[^13]
Instruction Set Description (continued)

Mnemonic		Description	Byte	Cycle
MOV	direct,@Ri	Move indirect RAM to direct byte	2	2
MOV	direct,\#data	Move immediate data to direct byte	3	2
MOV	@Ri,A	Move Accumulator to indirect RAM	1	1
MOV	@Ri,direct	Move direct byte to indirect RAM	2	2
MOV	@Ri,\#data	Move immediate data to indirect RAM	2	1
MOV	DPTR,\#data 16	Load data pointer with a 16-bit constant	3	2

Data transfer (cont.)

MOVC	A,@A+DPTR	Move code byte relative to DPTR to Accumulator	1	2
MOVC	A,@A+PC	Move code byte relative to PC to Accumulator	1	2
MOVX	A,@Ri	Move external RAM (8-bit addr) to Accumulator	1	2
MOVX	A,@DPTR	Move external RAM (16-bit addr) to Accumulator	1	2
MOVX	@Ri,A	Move A to external RAM (8-bit addr)	1	2
MOVX	@DPTR,A	Move A to external RAM (16-bit addr)	1	2
PUSH	direct	Push direct byte onto stack	2	2
POP	A,Rn	Pop direct byte from stack	Exchange register with Accu,nulator	1
XCH	A,@Ri	Exchange direct byte with Accumulator	2	1
$X C H$	Exchange indirect RAM with Accumulator	1	1	
$X C H$	Exchange low-order digit ind. RAM with Accu	1	1	
$X C H D$			2	2

Boolean variable manipulation

CLR	C	Clear Carry flag	1	1
CLR	bit	Clear direct bit	2	1
SETB	C	Set Carry flag	1	1
SETB	bit	Set direct bit	2	1
CPL	bit	Complement Carry flag	1	1
CPL	C, bit	C,bit	AND direct bit to Carry flag	2
ANL	C,/bit	ORD complement of direct bit to Carry	2	1
ANL	C,bit	OR complement of direct bit to Carry	2	2
ORL	Mit,C	Move direct bit to Carry flag	2	2
ORL			2	2
MOV			2	2
MOV			2	

Instruction Set Description (continued)

Mnemonic	Description	Byte	Cycle

Program and machine control

ACALL	addr 11	Absolute subroutine call	2	2
LCALL	addr 16	Long subroutine call	3	2
RET		Return from subroutine	1	2
RETI		Return from interrupt	1	2
AJMP	addr 11	Absolute jump	2	2
LJMP	addr 16	Long jump	3	2
SJMP	rel	Short jump (relative addr)	2	2
JMP	@A+DPTR	Jump indirect relative to the DPTR	1	2
JZ	rel	Jump if Accumulator is zero	2	2
JNZ	rel	Jump if Accumulator is not zero	2	2
JC	rel	Jump if Carry flag is set	2	2
JNC	rel	Jump if Carry flag is not set	2	2
JB	bit,rel	Jump if direct bit set	3	2
JNB	bit,rel	Jump if direct bit not set	3	2
JBC	bit,rel	Jump if direct bit is set and clear bit	3	2
CJNE	A,direct,rel	Compare direct to Accu and jump if not equal	3	2
CJNE	A, \#data, rel	Comp. immed. to Accu and jump if not equal	3	2
CJNE	Rn, \#data, rel	Comp. immed. to reg. and jump if not equal	3	2
CJNE	@Ri, \#data, rel	Comp.immed. to ind. and jump if not equal	3	2
DJNZ	Rn,rel	Decrement register and jump if not zero	2	2
DJNZ	direct,rel	Decrement direct and jump if not zero	3	2
NOP		No operation	1	1

Notes on data addressing modes:

Rn - Working register R0-R7
direct - 128 internal RAM locations, any I/O port, control or status register
$@ \mathrm{Ri}$ - Indirect internal RAM location addressed by register R0 or R1
\#data - 8-bit constant included in instruction
\#data 16 - 16-bit constant included as bytes $2 \& 3$ of instruction
bit - 128 software flags, any I/O pin, control or status bit
A - Accumulator

Notes on program addressing modes:
addr 16 - Destination address for LCALL \& LJMP may be anywhere within the 64-Kbyte program memory address space.
addr 11 - Destination address for ACALL \& AJMP will be within the same 2-Kbyte page of program memory as the first byte of the following instruction.
rel - SJMP and all conditional jumps include an 8-bit offset byte. Range is $+127 /-128$ bytes relative to first byte of the following instruction.

All mnemonics copyrighted © Intel Corporation 1979

Instruction Opcodes in Hexadecimal Order

Hex Code	Number of Bytes	Mnemonic	Operands
00	1	NOP	
01	2	AJMP	code addr
02	3	LJMP	code addr
03	1	RR	A
04	1	INC	A
05	2	INC	data addr
06	1	INC	@R0
07	1	INC	@R1
08	1	INC	R0
09	1	INC	R1
OA	1	INC	R2
OB	1	INC	R3
\bigcirc	$!$!	윽
OD	1	INC	R5
OE	1	INC	R6
OF	1	INC	R7
10	3	JBC	bit addr code addr
11	2	ACALL	code addr
12	3	LCALL	code addr
13	1	RRC	A
14	1	DEC	A
15	2	DEC	data addr
16	1	DEC	@R0
17	1	DEC	@R1
18	1	DEC	RO
19	1	DEC	R1
1A	1	DEC	R2
1B	1	DEC	R3
1 C	1	DEC	R4
1D	1	DEC	R5
1E	1	DEC	R6
1F	1	DEC	R7
20	3	JB	bit addr code addr
21	2	AJMP	code addr
22	1	RET	
23	1	RL	A
24	2	ADD	A, \#data
25	2	ADD	A, data addr
26	1	ADD	A,@R0
27	1	ADD	A,@R1
28	1	ADD	A, R0
29	1	ADD	A, R1
2A	1	ADD	A, R2
2B	1	ADD	A, R3
2C	1	ADD	A,R4
2D	1	ADD	A, R5
2E	1	ADD	A,R6
2 F	1	ADD	A,R7
30	3	JNB	bit addr, code addr
31	2	ACALL	code addr
32	1	RETI	
33	1	RLC	A

Hex Code	Number of Bytes	Mnemonic	Operands
34	2	ADDC	A, \#data
35	2	ADDC	A, data addr
36	1	ADDC	A,@R0
37	1	ADDC	A, @R1
38	1	ADDC	A,R0
39	1	ADDC	A, R1
3A	1	ADDC	A, R2
3B	1	ADDC	A, R3
3 C	1	ADDC	A,R4
3D	1	ADDC	A, R5
3E	1	ADDC	A, R7
3F	1	ADDC	A, R7
40	2	- ${ }^{\text {c }}$	cuie aviui
41	2	AJMP	code addr
42	2	ORL	data addr, A
43	3	ORL	data addr, \#data
44	2	ORL	A,\#data
45	2	ORL	A, data addr
46	1	ORL	A,@R0
47	1	ORL	A, @R1
48	1	ORL	A, R0
49	1	ORL	A, R1
4A	1	ORL	A, R2
4B	1	ORL	A, R3
4C	1	ORL	A, R4
4D	1	ORL	A,R5
4E	1	ORL	A,R6
4F	1	ORL	A, R7
50	2	JNC	code addr
51	2	ACALL	code addr
52	2	ANL	data addr, A
53	3	ANL	data addr, \#data
54	2	ANL	A,\#data
55	2	ANL	A,data addr
56	1	ANL	A, @R0
57	1	ANL	A, @R1
58	1	ANL	A,R0
59	1	ANL	A,R1
5A	1	ANL	A, R2
5B	1	ANL	A, R3
5 C	1	ANL	A,R4
5D	1	ANL	A,R5
5 E	1	ANL	A,R6
5 F	1	ANL	A,R7
60	2	JZ	code addr
61	2	AJMP	code addr
62	2	XRL	data addr, A
63	3	XRL	data addr,\#data
64	2	XRL	A, \#data
65	2	XRL	A,data addr
66	1	XRL	A,@R0
67	1	XRL	A,@R1

Instruction Opcodes in Hexadecimal Order (continued)

Hex Code	Number of Bytes	Mnemonic	Operands
68	1	XRL	A,RO
69	1	XRL	A, R1
6A	1	XRL	A, R2
6B	1	XRL	A, R3
6C	1	XRL	A, R4
6D	1	XRL	A, R5
6E	1	XRL	A, R6
6F	1	XRL	A,R7
70	2	JNZ	code addr
71	2	ACALL	code addr
72	2	ORL	C,bit addr
73	1	JMP	@A+DPTR
74	2	MOV	A, \#data
75	3	MOV	data addr, \#data
76	2	MOV	@R0,\#data
77	2	MOV	@R1,\#data
78	2	MOV	R0, \#data
79	2	MOV	R1,\#data
7A	2	MOV	R2,\#data
7B	2	MOV	R3,\#data
7C	2	MOV	R4, \#data
7D	2	MOV	R5,\#data
7E	2	MOV	R6,\#data
7F	2	MOV	R7, \#data
80	2	SJMP	code addr
81	2	AJMP	code addr.
82	2	ANL	C,bit addr
83	1	MOVC	A,@A+PC
84	1	DIV	AB
85	3	MOV	data addr,data addr
86	2	MOV	data addr,@R0
87	2	MOV	data addr,@R1
88	2	MOV	data addr,R0
89	2	MOV	data addr, R1
8A	2	MOV	data addr, R2
8B	2	MOV	data addr, R3
8C	2	MOV	data addr, R4
8D	2	MOV	data addr, R5
8E	2	MOV	data addr,R6
8F	2	MOV	data addr, R7
90	3	MOV	DPTR,\#data
91	2	ACALL	code addr
92	2	MOV	bit addr, C
93	1	MOVC	A,@A+DPTR
94	2	SUBB	A, \#data
95	2	SUBB	A,data addr
96	1	SUBB	A,@R0
97	1	SUBB	A,@R1
98	1	SUBB	A,R0
99	1	SUBB	A, R1
9A	1	SUBB	A, R2
9B	1	SUBB	A, R3

Hex Code	Number of Bytes	Mnemonic	Operands
9 C	1	SUBB	A, R4
9D	1	SUBB	A,R5
9 E	1	SUBB	A,R6
9F	1	SUBB	A, R7
A0	2	ORL	C,/bit addr
A1	2	AJMP	code addr
A2	2	MOV	C,bit addr
A3	1	INC	DPTR
A4	1	MUL	$A B$
A5		reserved	
A6	2	MOV	@R0,data addr
A7	2	MOV	@R1,data addr
A8	2	MOV	R0,data addr
A9	2	MOV	R1,data addr
AA	2	MOV	R2,data addr
$A B$	2	MOV	R3,data addr
AC	2	MOV	R4, data addr
AD	2	MOV	R5,data addr
$A E$	2	MOV	R6,data addr
AF	2	MOV	R7,data addr
B0	2	ANL	C,/bit addr
B1	2	ACALL	code addr
B2	2	CPL	bit addr
B3	1	CPL	C
B4	3	CJNE	A,\#data,code addr
B5	3	CJNE	A,data addr,code addr
B6	3	CJNE	@R0,\#data,code addr
B7	3	CJNE	@R1,\#data,code addr
B8	3	CJNE	R0,\#data, code addr
B9	3	CJNE	R1,\#data, code addr
BA	3	CJNE	R2,\#data, code addr
BB	3	CJNE	R3, \#data, code addr
BC	3	CJNE	R4,\#data, code addr
BD	3	CJNE	R5,\#data,code addr
BE	3	CJNE	R6,\#data, code addr
BF	3	CJNE	R7,\#data,code addr
C0	2	PUSH	data addr
C1	2	AJMP	code addr
C2	2	CLR	bit addr
C3	1	CLR	C
C4	1	SWAP	A
C5	2	XCH	A,data addr
C6	1	XCH	A,@R0
C7	1	XCH	A,@R1
C8	1	XCH	A,RO
C9	1	XCH	A, R1
CA	1	XCH	A, R2
CB	1	XCH	A, R3
CC	1	XCH	A, R4
CD	1	XCH	A, R5
CE	1	XCH	A,R6
CF	1	XCH	A,R7

Instruction Opcodes in Hexadecimal Order (continued)

Hex Code	Number of Bytes	Mnemonic	Operands
D0	2	POP	data addr
D1	2	ACALL	code addr
D2	2	SETB	bit addr
D3	1	SETB	C
D4	1	DA	A
D5	3	DJNZ	data addr,code addr
D6	1	XCHD	A,@R0
D7	1	XCHD	A, @R1
D8	2	DJNZ	R0,code addr
D9	2	DJNZ	R1,code addr
DA	2	DJNZ	R2,code addr
DB	2	DJNZ	R3,code addr
CC	2	DJiNu	RA, iuvie aucuir
DD	2	DJNZ	R5,code addr
DE	2	DJNZ	R6,code addr
DF	2	DJNZ	R7, code addr
E0	1	MOVX	A,@DPTR
E1	2	AJMP	code addr
E2	1	MOVX	A, @R0
E3	1	MOVX	A,@R1
E4	1	CLR	A
E5	2	MOV	A,data addr
E6	1	MOV	A, @R0
E7	1	MOV	A,@R1
E8	1	MOV	A,R0
E9	1	MOV	A, R1
EA	1	MOV	A, R2
EB	1	MOV	A, R3
EC	1	MOV	A,R4
ED	1	MOV	A, R5
EE	1	MOV	A, R6
EF	1	MOV	A,R7
F0	1	MOVX	@DPTR,A
F1	2	ACALL	code addr
F2	1	MOVX	@RO,A
F3	1	MOVX	@R1,A
F4	1	CPL	A
F5	2	MOV	data addr, A
F6	1	MOV	@RO,A
F7	1	MOV	@R1,A
F8	1	MOV	RO,A
F9	1	MOV	R1, A
FA	1	MOV	R2,A
FB	1	MOV	R3, A
FC	1	MOV	R4, A
FD	1	MOV	R5,A
FE	1	MOV	R6, A
FF	1	MOV	R7,A

[^14]
Absolute Maximum Ratings ${ }^{11}$

Ambient Temperature under Bias	0 to $70^{\circ} \mathrm{C}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with Respect to Ground (VSS)	-0.5 to +7 V
Power Dissipation	

D.C. Characteristics

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{VSS}=0 \mathrm{~V}$

Symbol	Parameter	Limit Values		Unit	Test Condition
		Min.	Max.		
VIL	Input Low Voltage	-0.5	0.8	V	-
VIH	Input High Voltage (Except RST/VPD and XTAL2)	2.0	VCC +0.5		
VIH1	Input High Voltage to RST/VPD for Reset, XTAL2	2.5			XTAL1 to VSS
VPD	Power Down Voltage to RST/VPD	4.5	5.5		$V C C=0 V$
VOL	Output Low Voltage Ports 1, 2, 3	-	0.45		$\mathrm{IOL}=1.6 \mathrm{~mA}$
VOL1	Output Low Voltage Port 0, ALE, PSEN				$\mathrm{IOL}=3.2 \mathrm{~mA}$
$\overline{\mathrm{VOH}}$	Output High Voltage Ports 1, 2, 3	2.4	-		$1 \mathrm{OH}=-80 \mu \mathrm{~A}$
VOH1	Output High Voltage Port 0, ALE, PSEN				$\mathrm{IOH}=-400 \mu \mathrm{~A}$
IIL	Logical 0 Input Current Ports 1, 2, 3	-	-800	$\mu \mathrm{A}$	$\mathrm{VIL}=0.45 \mathrm{~V}$
IIL2	Logical 0 Input Current XTAL 2		-2.0	mA	$\begin{aligned} & \text { XTAL1 }=\mathrm{VSS} \\ & \text { VIL }=0.45 \mathrm{~V} \end{aligned}$
IIH1	Input High Current to RST/VPD for Reset		500	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VCC}-1.5 \mathrm{~V}$
ILI	Input Leakage Current to Port 0, EA		± 10		$\mathrm{OV}<\mathrm{VIN}<\mathrm{VCC}$
ICC	Power Supply Current		175	mA	All outputs disconnected
IPD	Power Down Current		15		$V C C=0 V$
ClO	Capacitance of I/O Buffer		10	pF	$\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$

[^15]
A.C. Characteristics

$\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$; VSS $=0 \mathrm{~V}$
(CL for Port 0, ALE and $\overline{\text { PSEN Outputs }}=100 \mathrm{pF}$; CL for All Other Outputs $=80 \mathrm{pF}$)

Program Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		12 MHz Clock		$\begin{gathered} \text { Variable Clock } \\ 1 / \mathrm{TCLCL}=1.2 \mathrm{MHz} \text { to } 12 \mathrm{MHz} \\ \hline \end{gathered}$		
		Min	Max	Min	Max	
TLHLL	ALE Pulse Width	127	-	2TCLCL-40	-	ns
TAVLL	Address Setup to ALE	53		TCLCL-30		
TLLAX1	Address Hold after ALE	48		TCLCL-35		
TLLIV	ALE to Valid Instr In	-	233	-	4TCLCL-100	
TLLPL	ALE to $\overline{\text { PSEN }}$	58		TCLCL-25		
TPLPH	PSEN Pulse Width	215		3TCLCL-35	-	
TPLIV	$\overline{\text { PSEN }}$ to Valid Instr In	-	150	-	3TCLCL-100	
TPXIX	Input Instr Hold after PSEN	0	-	0	-	
TPXIZ*)	Input Instr Float after $\overline{\text { PSEN }}$	-	63	-	TCLCL-20	
TPXAV*)	Address Valid after PSEN	75	-	TCLCL-8	-	
TAVIV	Address to Valid Instr In	-	302	-	5TCLCL-115	
TAZPL	Address Float to $\overline{\text { PSEN }}$	0	-	0	-	

External Data Memory Characteristics

Symbol	Parameter	Limit Values				Unit
		12 MHz Clock		Variable Clock$1 / \mathrm{TCLCL}=1.2 \mathrm{MHz} \text { to } 12 \mathrm{MHz}$		
		Min	Max	Min	Max	
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	400	-	6TCLCL-100	-	ns
TWLWH	$\overline{\text { WR Pulse Width }}$					
TLLAX 2	Address Hoid after ALE	132		2TCLCL-35		
TRLDV	$\overline{\mathrm{RD}}$ to Valid Data In	-	250	-	5TCLCL-165	
TRHDX	Data Hold after $\overline{\mathrm{RD}}$	0	-	0	-	
TRHDZ	Data Float after $\overline{\mathrm{RD}}$	-	97	-	2TCLCL-70	
TLLDV	ALE to Valid Data In		517		8TCLCL-150	
TAVDV	Address to Valid Data In		585		9TCLCL-165	
TLLWL	ALE to $\overline{W R}$ or $\overline{\mathrm{RD}}$	200	300	3TCLCL-50	3 TCLCL+50	
TAVWL	Address to $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$	203	-	4TCLCL-130	-	
TWHLH	$\overline{W R}$ or $\overline{\text { RD High to ALE High }}$	43	123	TCLCL-40	TCLCL +40	
TDVWX	Data Valid to $\overline{\mathrm{WR}}$ Transition	33		TCLCL-50		
TQVWH	Data Setup before $\overline{W R}$	433	-	7TCLCL-150	-	
TWHOX	Data Hold after WR	33		TCLCL-50		
TRLAZ	Address Float after $\overline{\mathrm{RD}}$	-	0	-	0	

[^16]
External Clock Drive XTAL2

Symbol	Parameter		Values	Unit
		$\begin{gathered} \text { Variable Clock } \\ \text { Freq }=1.2 \mathrm{MHz} \text { to } 12 \mathrm{MHz} \end{gathered}$		
		Min	Max	
TCLCL	Oscillator Period	83.3	833.3	ns
TCHCX	High Time	20	TCLCL-TCLCX	
TCLCX	Low Time		TCLCL-TCHCX	
TCLCH	Rise Time	-	20	
TCHCL	Fall Time			

External Clock Cycle

A.C. Testing Input, Output, Float Waveforms

A.C. testing inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ".

Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".
For timing purposes, the float state is defined as the point at which a P0 pin sinks 3.2 mA or sources $400 \mu \mathrm{~A}$ at the voltage test levels.

Waveforms

Program Memory Read Cycle

Data Memory Read Cycle

Data Memory Write Cycle

Recommended Oscillator Circuits

$C=30 \mathrm{pF} \pm 10 \mathrm{pF}$

Crystal Oscillator Mode

Driving from External Source

ROM Verification Characteristics

$T A=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$; VSS $=0 \mathrm{~V}$

Symbol	Parameter	Limit Values		Unit
		Min	Max	
TAVQV	Address to Valid Data	-	48 TCLCL	ns
telov	Enable to Valid Data			
TEHOZ	Data Float after Enable	0		
1/TCLCL	Oscillator Frequency	4	6	MHz

ROM Verification

Address: $\mathrm{P} 1.0-\mathrm{P} 1.7=\mathrm{A} 0-\mathrm{A} 7$
$\mathrm{P} 2.0-\mathrm{P} 2.4=\mathrm{A} 8-\mathrm{A} 12$
Data: Port $0=$ D0-D7
Inputs: P2.5-P2.6, $\overline{\text { PSEN }}=$ VSS
ALE, EA $=$ TTL high level
RST/VPD $=$ VIH1

SAB 80C482 (SM 850) 8-Eint Single Chip Microcomputer

Preliminary data

CMOS circuit
The SAB 80 C 482 is a low-power, advanced CMOS member of the popular SAB 8048 family. The SAB 80C482 contains double-sized program memory and 4 additional I/O lines. For systems that require extra capability, the SAB 80C482 can easily be expanded using CMOS external memories. The onchip mask-programmable keyboard wake-up offers a convenient solution for a power-saving keyboard scanner. The SAB 80C482 has the same cycle time at about half the SAB 8048 clock frequency. The 100% static operation provides the possibility to optimize between power consumption and program speed.
The CMOS design of the SAB 80C482 opens new application areas that require battery operation, low power standby, wide voltage range, and the ability to maintain operation during AC power line interruptions. These applications include telecommunications, automotive, consumer, portable, and hand-held instruments.

O $2 \mathrm{~K} \times 8$ ROM
064×8 RAM
O 31 I/O lines
$\bigcirc 2.66 \mu \mathrm{~s}$ cycle time (with 3 MHz crystal)
O Automatic power-on reset

- Keyboard wake-up

O Very low power consumption

- Normal: $1.2 \mathrm{~mA} @ 5 \mathrm{~V}$ © 8 s cycle
© Halt $0.4 \mathrm{~mA} @ 5 \mathrm{~V} @ 8 \mu \mathrm{~s}$ cycle
O Standby: $2 \mu \mathrm{~A} @ 5 \mathrm{~V}$
© 100\% static operation
(3) Supply voltage: 2.5 to 6 V

Pin configuration
(top view)
(top view)

Pin description

Pin No.	Symbol	Description
2	XTAL1	Oscillator input; one side of crystal input
3	XTAL2	Oscillator output; other side of crystal input
40	OSCEN	Oscillator enable input (Schmitt-Trigger input) A high signal enables oscillator to run A low signal stops oscillator and initializes standby mode
4	RESET	Input used to initialize processor (active low).
6	$\overline{\text { INT }}$	Interrupt input with internal pull-up resistor. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after reset. HALT mode is terminated by interrupt (active low).
8	$\overline{R D} / \overline{E A}$	Output strobe activated during a bus read. Can be used to enable transfer of data on the bus from an external device. Used as a read strobe to external data memory (active low). External access input which forces all program memory fetches to reference external memory. Active only during the initialization time (RESET at low)! (active low).
9	TO/ $\overline{\text { PSEN }}$	Input pin testable using the instructions JTO and JNTO until disabled through an execution of instructions SEL'MBO or SEL MB1. Program store enable. This output is enabled through the first execution of instructions SEL MBO or SEL MB1. It can be disabled only through a new RESET initialization. it occurs only during a fetch to external program memory (active low).
10	$\overline{W R} / \overline{V E R}$	Output strobe during a bus write. Used as write strobe to external data memory (active low). ROM verification input is low during the initialization time (RESET at low). The contents of the internal ROM can be read without program execution.

Pin No.	Symbol	Description
11	ALE	Address latch enable. This signal occurs once during each cycle and is useful as clock output. Negative edge of ALE strobes address into external data and program memory.
$12 . .19$	DBO...DB7	True bidirectional port which can be written or read synchron- ously using WR, RD strobes. Contains the 8 low-order program counter bits during an external program memory fetch, and receives the addressed instruction under the control of PSEN. Also contains the address and data during an external RAM data store instruc- tion, under control of ALE, RD, and WR. 4-bit quasi-bidirectional port. Internal pull-up resistors. This port contains the four high order program-counter bits during an external program memory fetch. 4-bit quasi-bidirectional port. Internal pull-up resistors. Keyboard wake-up capability mask-programmable.
5,7,	P60..P63	P40...P43
25,26	P10...P17	Keybit quasi-bidirectional port. Internal pull-up resistors. Key- 8-bit board wake-up capability mask-programmable.
$35 \ldots 34$	P50...P53	4-bit quasi-bidirectional port. Internal pull-up resistors. Key- board wake-up capability mask-programmable.
39	T1	Input pin testable using JT1, and JNT1 instructions. Can be designated as timer/counter input using the STRT CNT instruc- tion. Power supply Circuit GND potential (0 V)
20	VDD	VSS

Oscillator

The on-board oscillator is a high-gain resonant circuit with a frequency range between 0 and 3 MHz . The clock frequency is determined by the resonator (e.g. crystal) connected between the pins XTAL1 and XTAL2.

8-bit timer/counter

The SAB 80 C 842 contains a timer/counter to aid the user in counting and generating accurate time delays without placing a burden on the processor for these functions.

Timer

Execution of a START T instruction connects an internal clock to the counter input. The XTAL frequency divided by 256 is the timer input frequency.

Counter

Execution of a START CNT instruction connects the T1 pin to the counter input and enables the counter. Subsequent high-to-low transition on T1 pin must be held low for at least one machine cycle to ensure it is not missed. The counter may be incremented only once throughout three instruction cycles. There is no minimum frequency limit.

Program memory

The resident program memory consists of 2048 bytes. There are three particulary important locations in program memory:

1. Location 0:

Executing the initialization reset causes the first instruction to be fetched from location 0.
2. Location 3:

Execution starts at location 3 after the interrupt input (pin 6) of the processor has gone low (if interrupt is enabled).
3. Location 7:

A timer/counter interrupt resulting from timer/counter overflow (if enabled).

Program memory configurations

1. Internal 2 Kbyte ROM

- pin 9 is available as TO input
- port 4 serves only as $1 / O$ port

2. Internal 2 Kbyte ROM and additional, external 2 Kbyte ROM

- with external access, instruction words are read in via bus (data bus, DB).
- an SEL MBO or an SEL MB1 instruction must be executed before using the data bus for external program store access.
- execution of SEL MB1 instruction followed by CALL or JMP enables exceeding internal 2 Kbyte limits and accessing of external ROM.
- external program memory access causes loading of program counter bits PC8 through PC11 at port lines 40 to 43. PCO through PC7 appear on bus during the falling edge of ALE.
- execution of MOVP3 A, @A instruction causes internal ROM (bank 0) to be selected.
- internal ROM is automatically selected during every execution of an interrupt service routine.
- in second cycle of MOVX instrúction no $\overline{\operatorname{PSEN}}$ signal appears and $\overline{R D}$ or $\overline{W R}$ signal is active. Port 4 is not affected.

3. External 4 Kbyte ROM, internal ROM disabled

- sole access to external 4 Kbyte ROM is initiated by logic 0 at pin 8 ($\overline{\mathrm{RD}} / \overline{\mathrm{EA}}$) during initialization time (RESET at low). At the machine cycle 78 test logic calls up status from pin 8.
- pin 9 serves as $\overline{\text { PSEN }}$ output.
- program counter bits PCO through PC7 appear at DB0 through DB7 and PC8 through PC11 appear at port lines P40 through P43.
- execution of MOVP3 A, © A instruction or interrupt routine selects automatically lower 2 Kbytes of external ROM.

4. Internal ROM verification without program execution

- pin $10(\overline{\mathrm{WR}} / \overline{\mathrm{VER}})$ is tested at the machine cycle 78 during the initialization time (RESET at low). The low level at this pin forces the SAB 80 C 482 to the verification mode.
- contents of internal ROM appear on lines DBO through DB7
- program-counter bits PCO through PC7 appear at DBO through DB7 and PC8 through PC11 at port lines P40 through P43.
- ALE and $\overline{\text { PSEN }}$ are enabled.

Reset

The reset signal sets the microcomputer to a defined initial state. There are two possibilities to reacn tinis state.

1. by an external signal at pin 4 (RESET)
2. by an internal signal generated through the built-in power-on-reset circuit.

If the oscillator is enabled (OSCEN at high), reset performs the following functions:

1. sets program counter to zero ($\mathrm{PC}=00 \mathrm{H}$)
2. sets stack pointer to zero ($\mathrm{SP}=\mathrm{OOH}$)
3. selects register bank 0
4. selects memory bank 0 (internal ROM)
5. sets bus to high impedance state
(except when $\overline{R D} / \overline{E A}$ or $\overline{W R} / \overline{V E R}$ is at low)
6. sets ports $1,4,5,6$ to input mode
7. stops counter/timer
8. enables pin 9 as test input TO
9. disables interrupts
10. clears timer flag
11. releases HALT mode
12. does not affect internal RAM contents

Timing diagrams for power-on and external reset are shown in fig. a) and b).

Figure a) Internal power-on reset

Figure b) External reset

[^17]
Interrupt

The SAB 80 C 482 has the same interrupt logic as the SAB 8048. The interrupt can be initialized through two possible sources:

1. external low active signal at pin INT
2. overflow of the internal counter/timer.

Keyboard wake-up

The SAB 80 C 482 has a special on-chip circuitry for a convenient keyboard-scanning named "Keyboard wake-up". Four NAND gates can be connected to the ports P10-13, P14-17, P50-53 and P60-63 by mask programming. The outputs of these gates are interconnected in the NOR manner. The resulting output controls the release from the HALT mode.
This means, the SAB 80 C 482 can be "waked up" on any keystroke without the necessity of using a double contact keyboard.

HALT mode

After execution of the HALT instruction the processor enters the HALT mode where the internal clocks and internal logic are disabled. The oscillator is running. In the HALT mode, power consumption is about $1 / 3$ of normal SAB 80 C 482 operation.
HALT mode can be released in three different ways:

1. by low pulse on the RESET pin (program starts at address location 0)
2. via keyboard wake-up (program continues at address location PC+1)
3. by low pulse on the $\overline{\mathbb{N T}}$ pin (if interrupt is enabled the interrupt subroutine starting at the address location 3 is executed. After its execution, or if interrupt is disabled, program continues at address location PC+1.)

Standby

Standby provides additional, drastic power consumption savings over the HALT mode.
Standby is initiated by forcing the OSCEN pin to low state. Oscillator operation is discontinued. While in standby, the following data is maintained:

1. internal RAM
2. stack pointer
3. program counter
4. memory bank status
5. TO/PSEN status
6. $1 / O$ status on all ports
7. all internal logic states

It is possible, but not recommended, to put the SAB 80 C 482 on standby without regard to the running program. Stopping at any time in the instruction cycle can result in an undefinod status. Conecquentit, it is advisabit to entei standiuy oniy irom the rialit state or it an external reset signal is applied. The $\overline{\text { RES }}$ pin must be forced at least 2.5 cycles earlier to the low level than the OSCEN pin.
If the SAB 80 C 482 has entered the standby from the HALT mode, it is still in the HALT mode after the OSCEN pin has been forced high. In the second case, the RES pin has to be held at least for the oscillator built-up period plus one cycle at low level after the OSCEN pin has been forced high.

Instruction set

There are five new instructions in addition to the SAB 8048 instruction set:

DEC	@ RO	instruction code	CO
DEC	@ R1	instruction code	C1
DJNZ	@ RO, addr	instruction code	EO
DJNZ	@ R1, addr	instruction code	E1
HALT		instruction code	F3

The following SAB 8048 instructions are not available:

IN	A, P2	instruction code	OA
MOVD	A, P7	instruction code	OF
OUTL	P2, A	instruction code	$3 A$
MOVD	P7, A	instruction code	$3 F$
ENTO	CLK	instruction code	75
JF1	addr	instruction code	76
CLR	FO	instruction code	85
ORL	P2, \# data	instruction code	8A
ORLD	P7, A	instruction code	$8 F$
CPL	FO	instruction code	95
ANL	P2, \# data	instruction code	$9 A$
ANLD	P7, A	instruction code	$9 F$
CLR	F1	instruction code	A5
CPL	F1	instruction code	B5
JFO	addr	instruction code	B6
MOV	A, PSW	instruction code	C7
MOV	PSW, A	instruction code	D7

The opcode of the following instruction has been changed:
JNI
addr
instruction code
$66(8048=86)$

Symbols and abbreviations

A	Accumulator
AC	Auxiliary carry
addr	Program memory address
An	Accumulator bit n
Bb	Bit designator $b=0$ to 7
BS	Bank switch
BUS	Bus port
CY	Carry
CLK	Clock
CNT	Fuent enunter
data	8-Bit number or expression
DBF	Memory bank flipflop
1	Interrupt
PC	Program counter
Pp	Port designator $p=4$ to 6
P1	Port 1
PSW	Program status word
Ri	Register designator $\mathrm{i}=0,1$
Rr	Register designator $\mathrm{r}=0$ to 7
SP	Stack pointer
T	Timer
TF	Timer/counter flag
TO/T1	Test 0, test 1
X	Mnemonic for external RAM
*	Immediate data prefix
(1)	Indirect address prefix
(X)	Contents of X
((X))	Contents of location addressed by (X)
\leftarrow	Is replaced by
\leftrightarrow	Is exchanged with
AND	Logical AND operation
OR	Logical OR operation
XOR	Logical EXOR operation

Mnemonic	Function	Description	Hex code	Flag	Bytes	Cycles

Accumulator and register move instructions

MOV A, Rr	$(A) \leftarrow(R r)$	Move register to accumulator	F8-FF	1	1
MOV A, Ri	$(A)-((R i))$	Move data memory to accumulator	FO-F1	1	1
MOV A, \# data	(A) - data	Move data to accumulator	23	2	2
MOV Rr, A	$(R r)-(A)$	Move accumulator to register	A8-AF	1	1
MOV @ Ri, A	$((R i))-(A)$	Move accumulator to data memory	AO-A1	1	1
MOV Rr, \# data	$(\mathrm{Rr})-$ data	Move data to register	B8-BF	2	2
MOV @ Ri, \# data	((Ri)) - data	Move data to data memory	B0-B1	2	2
MOVX A, @ Ri	$(A)-((R i))$	Move external data to accumulator	80-81	1	2
MOVX @ Ri, A	$((R i))-(A)$	Move accumulator to external data memory	90-91	1	2
XCH A, Rr	$(\mathrm{A}) \rightarrow(\mathrm{R})$	Exchange register and accumulator	28-2F	1	1
XCH A, © Ri	$(A) \rightarrow((R i))$	Exchange data memory and accumulator	20-21	1	1
XCHD A, © RI	$\begin{aligned} & (\mathrm{AO}-3) \\ & ((\mathrm{RiO}-3)) \end{aligned}$	Exchange nibble of data memory and accumulator	30-31	1	1
MOVP3 A, © A	$\begin{aligned} & \text { save (PC) } \\ & (P C 0-7)-(A) \\ & \text { (PC8-11) } \\ & 011 \mathrm{~B} \\ & (A)-(1 P C)) \\ & \text { restore PC } \\ & \hline \end{aligned}$	Move data from page 3 of program memory to accumulator	E3	1	2
MOVP A, © A	$\begin{aligned} & \text { save }(P C) \\ & (P C O-7)-(A) \\ & (A)-((P C)) \\ & \text { restore } P C \\ & \hline \end{aligned}$	Move data from current page of program to accumulator	A3	1	2
SWAP A	$\begin{aligned} & (A 4-7) \\ & (\mathrm{AO}-3) \end{aligned}$	Exchange accumulator nibbles	47	1	1

Mnemonic	Function	Description	Hex code	Flag	Bytes	Cycles

Timer/counter move instructions

MOV A, T	(A) - (T)	Read counter/timer into accumulator	42		1	1
MOV T, A	(T) - (A)	Load counter/timer from accumulator	62		1	1

Port move instructions

IN A, P1	$(\mathrm{A})-(\mathrm{P} 1)$	Move data at port 1 to accumulator	09	1	2
OUTL P1, A	$(\mathrm{P} 1)$ - (A)	Output aceumulatnr nn port 1	30	$!$	2
ANL P1, \# data	(P1) - (P1) AND data	Logical AND port 1 with data	99	2	2
ORL P1, \# data	(P1) - (P1) OR data	Logical OR port 1 with data	89	2	2
IN A, BUS	(A) - (BUS)	Move data on bus to accumulator	08	1	2
OUTL BUS, A	(BUS) - A	Output accumulator on bus	02	1	2
ANL BUS. \# data	(BUS) (BUS) AND data	Logical AND bus with data	98	2	2
ORL BUS, \# data	(BUS) (BUS) OR data	Logical OR bus with data	88	2	2
MOVD A, Pp	$\begin{aligned} & (\mathrm{AO}-3)-(\mathrm{Pp}) \\ & (\mathrm{A} 4-7)-0 \end{aligned}$	Move data at port 4-6 to accumulator	OC-OE	1	2
MOVD Pp, A	$(\mathrm{Pp})-(\mathrm{AO}-3)$	Output accumulator on port 4-6	$3 C-3 E$	1	2
ANLD Pp, A	$\begin{aligned} & (\mathrm{Pp})-(\mathrm{AO}-3) \\ & \text { AND }(\mathrm{Pp}) \end{aligned}$	Logical AND accumulator with port 4-6	9C-9E	1	2
ORLD Pp, A	$\begin{aligned} & (P p)-(A O-3) \\ & O R(P p) \end{aligned}$	Logical OR accumulator with port 4-6	8C-8E	1	2

Mnemonic	Function	Description	Hex code	Flag	Bytes	Cycles

Arithmetic accumulator instructions

ADD A. Rr	$(\mathrm{A})-(\mathrm{A})+(\mathrm{Rr})$	Add register to accumulator	68-6F	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{CY} \end{aligned}$	1	1
ADD A, © Ri	$\begin{aligned} & (\mathrm{A})- \\ & (\mathrm{A})+((\mathrm{Ri}) \end{aligned}$	Add data memory to accumulator	60-61	$\begin{aligned} & \hline A C \\ & C Y \\ & \hline \end{aligned}$	1	1
ADD A, \# data	(A) - (A) + data	Add data to accumulator	03	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{CY} \\ & \hline \end{aligned}$	2	2
ADDC A, Rr	$\begin{aligned} & \text { (A) } \\ & \text { (A) }+(\mathrm{Rr})+ \\ & (\mathrm{CY}) \end{aligned}$	Add register and carry to accumulator	78-7F	AC CY	1	1
ADDC A, @ Ri	$\begin{aligned} & \text { (A) } \\ & (\mathrm{A})+((\mathrm{Ri}))+ \\ & (\mathrm{CY}) \end{aligned}$	Add data memory and carry to accumulator	70-71	$\begin{aligned} & A D \\ & C Y \end{aligned}$	1	1
ADDC A, \# data	$\begin{aligned} & (\mathrm{A})-(\mathrm{A})+ \\ & \text { data }+(\mathrm{CY}) \\ & \hline \end{aligned}$	Add data and carry to accumulator	13	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{CY} \\ & \hline \end{aligned}$	2	2
INC A	$(A)-(A)+1$	Increment accumulator by 1	17		1	1
DEC A	$(A)-(A)-1$	Decrement accumulator by 1	07		1	1
DA A		Decimal adjust accumulator	57	$\begin{aligned} & A C \\ & C Y \end{aligned}$	1	1

Arithmetic register instructions

INC Rr	$(\mathrm{Rr})-(\mathrm{Rr})+1$	Increment register by 1	18-1F	1	1
DEC Rr	$(\mathrm{Rr})-(\mathrm{Rr})-1$	Decrement register by 1	C8-CF	1	1
DEC © Ri	$\begin{aligned} & ((\mathrm{Ri}))- \\ & ((\mathrm{Ri}))+1 \end{aligned}$	Decrement data memory by 1	C0-C1	1	1
INC © Ri	$\begin{aligned} & ((\mathrm{Ri}))+ \\ & ((\mathrm{Ri}))+1 \end{aligned}$	Increment data memory by 1	10-11	1	1
DJNZ Rr, addr	$\begin{aligned} & \text { (Rr)-(Rr)-1} \\ & \text { if }(\mathrm{Rr}) \neq 0 \\ & \text { (PCO-7)-addr } \end{aligned}$	Decrement register by 1 and jump if register not zero	E8-EF	2	2
DJNZ © Ri, addr	$\begin{aligned} & \text { ((Ri))- } \\ & ((\mathrm{Ri}))-1 \\ & \text { if }((\mathrm{Ri})) \neq 0 \\ & \text { (PCO- } 7) \text {-addr } \end{aligned}$	Decrement data memory by 1 and jump if data memory is not zero	EO-E1	2	2

Mnemonic	Function	Description	Hex code	Flag	Bytes	Cycles

Logical accumulator and register instructions

ANL A, Rr	(A) - (A) AND (Rr)	Logical AND accumulator with register	58-5F	1	1
ANL A, © Ri	(A) - (A) AND ((Ri))	Logical AND accumulator with data memory	50-51	1	1
ANL A, \% data	(A) (A) AND data	Logical AND accumulator with data	53	2	2
ORL A, Rr	(A) - (A) OR (Rr)	Logical OR accumulator with register	48-4F	1	1
$\overline{\text { ORL A, © Ri }}$	(A) - (A) OR ((Ri))	Logical OR accumulator with data memory	40-41	1	1
ORL A, \# data	(A) - (A) OR data	Logical OR accumulator with data	43	2	2
XRL A, Rr	(A) - (A) XOR (Rr)	Logical XOR accumulator with register	D8-DF	1	1
XRL A, © Ri	(A) - (A) XOR ((Ri))	Logical XOR accumulator with data memory	D0-D1	1	1
XRL A, \# data	(A) - (A) XOR data	Logical XOR accumulator with data	D3	2	2
CLR A	(A) -0	Clear accumulator	27	1	1
CPL A	$(\mathrm{A})-(\bar{A})$	Complement accumulator	37	1	1

Mnemonic	Function	Description	Hex code	Flag	Bytes	Cycles

Rotate instructions

RL A	(An +1) - (An)	Shift accumulator 1 bit to left	E7		1	1
RLC A	(An +1) - (An) (CY) - (A7) (AO) - (CY)	Shift accumulator 1 bit to left through carry	F7	CY	1	1
RR A	(An) - (An +1)	Shift accumulator 1 bit to right	77		1	1
RRC A	(An) - (An + 1) (CY) - (AO) (A7) - (CY)	Shift accumulator 1 bit to right through carry	67	CY	1	1

Flag instructions

CLR C	$($ CY $)-0$	Clear carry bit	97	CY	1	1
CPL C	$(C Y)-(\overline{C Y})$	Complement carry bit	A7	CY	1	1

Mnemonic	Function	Description	Hex code	Flag	Bytes	Cycles

Branch instructions

JMP addr	$\begin{aligned} & \text { (PCO-7) }- \\ & \text { addr 0-7 } \\ & \text { (PC8-10) }- \\ & \text { addr 8-10 } \\ & \text { (PC11) - DBF } \end{aligned}$	Jump to address, page 0 1 2 3 4 5 6 7 7	04 24 44• 64 84 A4 C4 E4		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$
JMPP © A	$\begin{aligned} & (P C O-7)- \\ & (!A!) \end{aligned}$	Jump to address dafinad in program memory	B3		1	2
JC addr	$\begin{aligned} & \text { if }(\mathrm{CY})=1 \\ & \text { (PCO-7)-addr } \end{aligned}$	Jump to address if carry $=1$	F6		2	2
JNC addr	$\begin{aligned} & \text { if }(\mathrm{CY})=0 \\ & \text { (} \mathrm{PCO}-7)-\mathrm{addr} \end{aligned}$	Jump to address if carry $=0$	E6		2	2
JZ addr	$\begin{aligned} & \text { if }(A)=0 \\ & \text { (PCO-7)-addr } \end{aligned}$	Jump to address if accumulator $=0$	C6		2	2
JNZ addr	$\begin{aligned} & \text { if }(A)>0 \\ & \text { (PCO-7)-addr } \end{aligned}$	Jump to address if accumulator >0	96		2	2
JTO addr	$\begin{aligned} & \text { if } T O=1 \\ & \text { (PCO-7) - addr } \end{aligned}$	Jump to address if TO is High	36		2	2
JNTO addr	$\begin{aligned} & \text { if TO }=0 \\ & \text { (PCO-7) - addr } \end{aligned}$	Jump to address if TO is Low	26		2	2
JT1 addr	$\begin{aligned} & \text { if } T 1=1 \\ & \text { (PCO-7)-addr } \end{aligned}$	Jump to address if T 1 is High	56		2	2
JNT1 addr	$\begin{aligned} & \text { if } \mathrm{T}=0 \\ & \text { (PCO-7) - addr } \end{aligned}$	Jump to address if T1 is Low	46		2	2
JTF addr	$\begin{aligned} & \text { if } T F=1 \\ & \text { (PCO-7) - addr } \\ & \text { (TF) }-0 \\ & \hline \end{aligned}$	Jump to address if counter/timer flag $=1$	16	TF	2	2
JNI addr	$\begin{aligned} & \text { if } \mathbb{N F}=0 \\ & \text { (PCO-7) - addr } \end{aligned}$	Jump to address if interrupt input Low	66		2	2
JBb addr	$\begin{aligned} & \text { if }(\mathrm{An})=1 \\ & (\mathrm{PCO}-7)-\mathrm{addr} \end{aligned}$	Jump to address, $n=0$ if bit n of 1 accumulator $=1$ 2 3 4 5 6 7	$\begin{aligned} & 12 \\ & 32 \\ & 52 \\ & 72 \\ & 92 \\ & \text { B2 } \\ & \text { D2 } \\ & \text { F2 } \\ & \hline \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{\|l} \hline 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ \hline \end{array}$

Mnemonic	Function	Description	Hex code	Flag	Bytes	Cycles

Subroutine instructions

CALL addr	$\begin{aligned} & \hline((S P))- \\ & (P C O-11, \\ & \text { PSW4-7) } \\ & \text { (SP) }-(S P)+1 \\ & \text { (PCO-10)- } \\ & \text { addr 0-10 } \\ & \text { (PC11) - DBF } \end{aligned}$	 Jump to page 0 subroutine 1 2 3 4 5 6 7 7 	$\begin{aligned} & 14 \\ & 34 \\ & 54 \\ & 74 \\ & 94 \\ & \text { B4 } \\ & \text { D4 } \\ & \text { F4 } \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$
RET	$\begin{aligned} & (S P)-(S P)-1 \\ & (P C)-((S P)) \\ & \hline \end{aligned}$	Return without PSW Restore	83		1	2
RETR	$\begin{aligned} & (S P)-(S P)-1 \\ & (P C)-((S P)) \\ & (P S W 4-7)- \\ & ((S P)) \end{aligned}$	Return with PSW Restore	93	$\begin{aligned} & \hline C Y \\ & A C \\ & D B F \end{aligned}$	1	2

Mnemonic	Function	Description	Hex code	Flag	Bytes	Cycles

Control instructions

STRT T		Start timer	55		1	1
STRT CNT		Start counter	45		1	1
STOP TCNT		Stop timer/counter	65		1	1
EN TCNTI		Enable timer/ counter interrupt	25		1	1
DIS TCNTI		Disable timer/ counter interrupt	35		1	1
Eív i		tnable external interrupt	05		1	1
DIS I	Disable external interrupt	15		1	1	
SEL RBO		Select register bank 0	C5	BS	1	1
SEL RB1		Select register bank 1 Select program- memory bank 0	E5	BS	1	1
SEL MBO		Select program- memory bank 1	F5	1	1	
SEL MB1		No operation	00		1	1
NOP		HALT instruction	F3		1	1
HALT					1	

Maximum ratings

	$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$
Ambient temperature under bias	$T_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$
Storage temperature	$V_{\text {DD }}$	0 to 7	V
Supply voltage ref. to GND $\left(V_{\mathrm{sS}}\right)$	$P_{\text {tot }}$	1	W
Total power dissipation		-0.3 to $V_{D D}$	V

DC characteristics
$T_{\text {amb }}=0$ to $70^{\circ} \mathrm{C} ; V_{D D}=2.5$ to $6 \mathrm{~V} ; V_{S S}=0 \mathrm{~V}$

		Test conditions	Min.	Typ.	Max.	
L input voltage (all except XTAL1, XTAL2, RESET)	$V_{\text {IL }}$		-0.1		0.75	v
L input voltage (XTAL1, XTAL2, RESET)	$\begin{aligned} & V_{\text {LI }} \\ & V_{\text {LLI }} \end{aligned}$	$V_{D D}<4.5 \mathrm{~V}$	-0.1		$\begin{aligned} & 0.75 \\ & 0.25 \end{aligned}$	v
H input voltage (all except XTAL1, XTAL2, RESET	$V_{\text {IH }}$		$0.7 \times V_{D D}$		$V_{D O}$	v
H input voltage (XTAL1, XTAL2, RESET	$V_{1 H 1}$		$0.7 \times V_{D D}$		$V_{D D}$	v
L output voltage (BUS, RD, WR, PSEN, ALE)	$V_{\text {oL }}$	$I_{O L}=1.0 \mathrm{~mA}$			0.45	v
L output voltage (all other outputs)	$V_{\text {OLI }}$	$I_{0 L}=1.0 \mathrm{~mA}$			0.45	v
H output voltage (BUS, RD, WR, PSEN, ALE)	$V_{\text {OH }}$	$I_{\mathrm{OH}}=1.0 \mathrm{~mA}$	$0.75 \times V_{\text {DD }}$			v
H output voltage; low impedance (all other outputs), high impedance	$\begin{aligned} & V_{\text {OH1 }} \\ & V_{\mathrm{OH} 1} \end{aligned}$	$\begin{aligned} & I_{\mathrm{OH}}=1 \mathrm{~mA} \\ & I_{\mathrm{OH}}=1 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.75 \times V_{D D} \\ & 0.75 \times V_{D D} \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input leakage current (Port1, 4, 5, 6)	$I_{\text {LLP }}$	$v_{\text {IN }} \leq v_{\text {IL }}$			-5	$\mu \mathrm{A}$
Input leakage current (RESET, T1)	$I_{\text {ILC }}$	$V_{\text {SS }} \leq V_{\text {IN }} \leq V_{\text {DD }}$			± 1	$\mu \mathrm{A}$
Input leakage current	I_{11}	$V_{\text {SI }}=V_{D D}$			+1	$\mu \mathrm{A}$
(INT; pullup)		$V_{\text {IN }} \leq V_{\text {IV }}$			-5	$\mu \mathrm{A}$
Input current XTAL	$I_{\text {XT }}$	$V_{\text {SS }} \leq V_{\text {IN }} \leq V_{\text {DD }}$			± 10	$\mu \mathrm{A}$
Output leakage current (For bus and TO in high-impedance states)	I_{01}	$V_{\text {IN }} \leq V_{\text {IL }}$			± 1	$\mu \mathrm{A}$
Total supply current	$I_{\text {DD }}$	$\begin{aligned} & 1 \mathrm{MHz} ; 5 \mathrm{~V} \\ & 3 \mathrm{MHz} ; 5 \mathrm{~V} \\ & 500 \mathrm{kHz} ; 5 \mathrm{~V} \end{aligned}$		$\begin{array}{\|l} 1.2 \\ 4.2 \\ 0.9 \end{array}$	1.4	mA mA mA
HALT supply current	$I_{\text {DD }}$	$1 \mathrm{MHz} ; 5 \mathrm{~V}$ 3 MHz 5 V 500 kHz ; 5 V		$\begin{aligned} & 550 \\ & 250 \end{aligned}$	400	μA μA μA
Power-down mode	$I_{\text {DD }}$	5 V		1	2	$\mu \mathrm{A}$
Operation supply voltage	V_{00}		2.5		6	v

AC characteristics

$T_{\text {amb }}=0$ to $70^{\circ} \mathrm{C} ; V_{D D}=5 \mathrm{~V} ; V_{\mathrm{SS}}=0 \mathrm{~V} ; f_{\mathrm{OSC}}=3 \mathrm{MHz}$
$C_{\mathrm{L}}=40 \mathrm{pF}$

	Test conditions

ALE pulse width
Address set-up before ALE
Address hold from ALE
Control pulse width
PSEN
RQD, WR
Data set-up before WR
Data hold after WR
Cycle time
Data hold after RD
Instr. hold after PSEN
$\overline{R D}$ to data in
PSEN to data in
Address set-up before WR
Address set-up to data at $\overline{R D}$
at PSEN
Address float to
RD
PSEN
WR to ALE
PSEN to ALE
ALE to RD
ADDRESS Time Port 4

	Test conditions	Min.	Typ.	Max.	
$t_{L L}$	$\begin{aligned} & t_{C Y}=2.66 \mu \mathrm{~s} \\ & C_{\mathrm{L}}=40 \mathrm{pF} \end{aligned}$	800	833	160	ns
$t_{\text {AL }}$		120	166		ns
$t_{\text {LA }}$		0			ns
$t_{\text {cc }}$		300	333		ns
$t_{c c}$		1300	1333		ns
$t_{\text {ow }}$		1300	1333		ns
$t_{\text {wo }}$		300	333		ns
$t_{C Y}$		2.66			us
$t_{\text {DR }}$		0		300	ns
$t_{\text {DR }}$		0		300	ns
$t_{\text {RD }}$				1200	ns
$t_{\text {RD }}$				300	ns
$t_{\text {AW }}$		2000			ns
$t_{A D}$		3500			ns
$t_{\text {AD }}$		500			ns
$t_{\text {AFC }}$		166	333		ns
$t_{\text {AFC }}$		140	166		ns
$t_{\text {cA }}$			333		ns
$t_{\text {cA }}$			1333		ns
$t_{\text {cA }}$		0		50	ns
$t_{\text {ADD }}$			666		ns

Time parameters versus f_{OSC}

Symbol	Parameter	
t	$1 / f_{\mathrm{OSC}}$	$\mu \mathrm{s}$
t_{Cr}	$8 t$	$\mu \mathrm{~s}$

Read from external data memory

t_{LL}	$2.5 t$	$\mu \mathrm{~s}$
t_{CA}	-	$\mu \mathrm{s}$
t_{AFC}	$1.0 t$	$\mu \mathrm{~s}$
t_{CC}	$4.0 t$	$\mu \mathrm{~s}$
t_{DR}	-	$\mu \mathrm{s}$
t_{RD}	$3.5 t$	$\mu \mathrm{~s}$
t_{AD}	$10.5 t$	$\mu \mathrm{~s}$

Write into external data memory

t_{CA}	$1.0 t$	$\mu \mathrm{~s}$
t_{cC}	$4.0 t$	$\mu \mathrm{~s}$
t_{WD}	$1.0 t$	$\mu \mathrm{~s}$
t_{DW}	$4.0 t$	$\mu \mathrm{~s}$
t_{AW}	$6.0 t$	$\mu \mathrm{~s}$

Instruction fetch from external program memory

t_{AL}	$0.5 t$	$\mu \mathrm{~s}$
t_{CA}	$4.0 t$	$\mu \mathrm{~s}$
t_{LA}	-	$\mu \mathrm{s}$
t_{CC}	$1.0 t$	$\mu \mathrm{~s}$
t_{DR}	-	$\mu \mathrm{s}$
t_{RD}	$0.5 t$	$\mu \mathrm{~s}$
t_{AD}	$-1.5 t$	$\mu \mathrm{~s}$
t_{ADO}	$2.0 t$	$\mu \mathrm{~s}$
t_{AFC}	$0.5 t$	$\mu \mathrm{~s}$

Application example "Intelligent Telephone Set"

Features of this telephone set

- direct and indirect redialing
- short dialing (10 memories)
- auto dialing by special keys
- babysitter function
- LC-display control
- electronic keylock
- clock function
- rate signaling

SAB 8086 16-Bit Microprocessor

SAB 8086-2 8 MHz
SAB 8086-1 10 MHz

- Direct Addressing Capability to 1 MByte of Memory
- Assembly Language Compatible with SAB 8080 / SAB 8085
- 14 Word, By 16-Bit Register Set with Symmetrical Operations
- 8- and 16-Bit Signed and Unsigned Arithmetic in Binary or Decimal Including Multiply and Divide

SAB $8086 \quad 5 \mathrm{MHz}$

- Bit, Byte, Word, and Block Operations
- 24 Operand Addressing Modes
- Clock Rate upto

10 MHz (SAB 8086-1)

- Compatible with Industry Standard 8086
- In plastic and ceramic package

Figure 1. Pin Diagram
GND -12

Figure 2. Pin Names

$A D_{0-15}$	Address/Data	A_{16-19}	Address
\bar{S}_{0-2}	Status	S_{3-7}	Status
INTR	Interrupt Request	BHE	Bus High Enable
CLK	Clock	HOLD	Hold
QS_{0-1}	Queue Status	HLDA	Hold Acknowledge
TEST	Test for Busy	$\overline{\mathrm{WR}}$	Write
READY	Ready	DT/ $/ \overline{\mathrm{R}}$	Bus Driver Transmit/
RESET	Chip Reset		Receive
MN/ $\overline{M X}$	Minimum/Maximum	$\overline{\mathrm{DEN}}$	Bus Driver Enable
	Mode	ALE	Address Latch Enable
$\overline{\mathrm{RD}}$	Read	INTA	Interrupt Acknowledge
$\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}_{0-1}$	Request/Grant	NMI	Non-maskable
LOCK	Bus Lock		Interrupt
$\mathrm{M} / \overline{\mathrm{IO}}$	Memory/IO	GND	Ground
		$V_{\text {CC }}$	+5 Volts

SAB 8086 is a new generation, high performance 16-bit Microprocessor implemented in +5 Volts, depletion load, N channel, silicon gate Siemens MYMOS technology packaged in a 40 pin package. It is 100 percent compatible with the industry
standard 8086. With features like string handling, 16-bit arithmetic with multiply and divide it significantly increases system performance. It is highly suited for multiprocessor applications in various configurations.

Functional Pin Definition

The following pin function descriptions are for SAB 8086 systems in either minimum or maximum mode. The "Local Bus" in these descriptions is
the direct multiplexed bus interface connection to the SAB 8086 (without regard to additional bus buffers).

Number	Symbol	Input (I) Output (O)	Function		
$\begin{aligned} & 2-16 \\ & 39 \end{aligned}$	$A D_{0}-A D_{15}$	1/O	These lines constitute the time multiplexed memory I/O address $\left(T_{1}\right)$ and data (T_{2}, T_{3}, T_{4}) bus. A_{0} is analogous to $\overline{B H E}$ for the lower byte of the data bus, pins $D_{7}-D_{0}$. It is LOW during T_{1} when a byte is to be transferred on the lower portion of the bus in memory or I/O operations. Eight-bit oriented devices tied to the lower half would normally use A_{0} to condition chip select functions. These lines are active HIGH and float to 3 -state OFF during interrupt acknowledge and local bus "hold acknowledge".		
35-38	$\begin{aligned} & \hat{n}_{10} / \mathrm{S}_{3} \\ & \mathrm{~A}_{17} / \mathrm{S}_{4} \\ & \mathrm{~A}_{18} / \mathrm{S}_{5} \\ & \mathrm{~A}_{19} / \mathrm{S}_{6} \end{aligned}$	0	Suriliy T_{1} liese are the four most signiticant address lines for memory operations. During I/O operations these lines are LOW. During memory and I/O operations, status information is available on these lines during T_{2}, T_{3}, T_{w} and T_{4}. The status of the interrupt enable FLAG bit (S_{5}) is updated at the beginning of each CLK cycle. $\mathrm{A}_{17} / \mathrm{S}_{4}$ and $\mathrm{A}_{16} / \mathrm{S}_{3}$ are encoded as follows:		
			$\mathrm{A}_{17} / \mathrm{S}_{4}$	$\mathrm{A}_{16} / \mathrm{S}_{3}$	Characteristics
			$\begin{array}{\|l\|} \hline 0 \text { (LOW) } \\ 0 \\ 1 \text { (HIGH) } \\ 1 \\ S_{6} \text { is } 0 \\ (\text { LOW) } \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Alternate Data Stack Code or None Data
			This information indicates which relocation register is presently being used for data accessing. These lines float to 3 -state OFF during local bus "hold acknowledge".		
34	$\overline{\mathrm{BHE}} / \mathrm{S}_{7}$	0	During T_{1} the bus high enable signal ($\left.\overline{\mathrm{BHE}}\right)$ should be used to enable data onto the most significant half of the data bus, pins $D_{15}-D_{8}$. Eight-bit oriented devices tied to the upper half of the bus would normally use BHE to condition chip select functions. $\overline{\text { BHE }}$ is LOW during T_{1} for read, write, and interrupt acknowledge cycles when a byte is to be transferred on the high portion of the bus. The S_{7} status information is available during $\mathrm{T}_{2}, \mathrm{~T}_{3}$, and T_{4}. The signal is active LOW, and floats to 3 -state OFF in "hold". It is LOW during T_{1} for the first interrupt acknowledge cycle.		
32	$\overline{\mathrm{RD}}$	0	Read strobe indicates that the processor is performing a memory or I/O read cycle, depending on the state of the S_{2} pin. This signal is used to read devices which reside on the SAB 8086 local bus. RD is active LOW during T_{2}, T_{3} and T_{w} of any read cycle, and is guaranteed to remain HIGH in T_{2} until the SAB 8086 local bus has floated. This signal floats to 3 -state OFF in "hold acknowledge".		

Number	Symbol	Input (I) Output (O)	Function
22	READY	1	READY is the acknowledgement from the addressed memory or I/O device that it will complete the data transfer. The RDY signal from memoryl/O is synchronized by the SAB 8284A Clock Generator to form READY. This signal is active HIGH. The SAB 8086 READY input is not synchronized. Correct operation is not guaranteed if the setup and hold times are not met.
18	INTR	1	Interrupt request is a level triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be internally masked by software reseting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH.
23	TEST	1	The TEST input is examined by the "Wait" instruction. If the TEST input is LOW execution continues, otherwise the processor waits in an "Idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK.
17	NMI	1	Non-maskable interrupt is an edge triggered input which causes a type 2 interrupt. A subroutine is vectored to via interrupt vector lookup table located in system memory. NMI is not maskable internally by software. A transition from a LOW to HIGH initiates the interrupt at the end of the current instruction. This input is internally synchronized.
21	RESET	1	RESET causes the processor to immediately terminate its present activity. The signal must be active HIGH for at least four clock cycles. It restarts execution, as described in the Instruction Set description, when RESET returns LOW. RESET is internally synchronized.
19	CLK	1	The clock provides the basic timing for the processor and bus controller. It is asymmetric with a 33% duty cycle to provide optimized internal timing.
33	MN/MX	1	Minimum/Maximum: indicates what mode the processor is to operate in. The two modes are discussed in the following sections.
40	$V_{c c}$		+5 V (power supply)
1,20	GND		GND (ground)

The following pin function descriptions are for the SAB 8086/8288 system in maximum mode (i.e. $M N / \overline{M X}=G N D)$. Only the pin functions which are
unique to maximum mode are described; all other pin functions are as already described.

Number	Symbol	Input (I) Output (O)	Function			
26-28	$\overline{\mathrm{S}_{2}}, \overline{\mathrm{~S}_{1}}, \overline{\mathrm{~S}_{0}}$	0	These status lines are encoded as follows:			
			S_{2}	S_{1}	S_{0}	Characteristics
			$\begin{aligned} & 0 \text { (LOW) } \\ & 0 \\ & 0 \\ & 0 \\ & 1 \text { (HIGH) } \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	0 0 1 1 0 0 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Interrupt Acknowledge Read I/O Port Write I/O Port Halt Code Access Read Memory Write Memory Passive

Status is active during $T_{4}, T_{1,}$, and T_{2} and is returned to the passive state $(1,1,1)$ during T_{3} or during T_{w} when READY is HIGH. This status is used by the SAB 8288 Bus Controller to generate all memory and I/O access control signals. Any change by S_{2}, S_{1}, or S_{0} during T_{4} is used to indicate the beginning of a bus cycle, and the return to the passive state in T_{3} or T_{w} is used to indicate the end of a bus cycle. These signals float to 3-state OFF in "hold acknowledge".

The request/grant pins are used by other local bus masters to force the processor to release the local bus at the end of the processor's current bus cycle. Each pin is bidirectional with $\overline{\mathrm{RQ}} / \mathrm{GT}_{0}$ having higher priority than $\overline{\mathrm{RO}} / \overline{\mathrm{GT}}_{1} \cdot \overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ has an internal pull-up resistor so may be left unconnected. The request/grant sequence is as follows (see Figure 14):

1. A pulse of 1 CLK wide from another local bus master indicates a local bus request ("hold") to the SAB 8086 (pulse1).
2. During the CPU's next T_{4} or T_{1} a pulse 1 CLK wide from the SAB 8086 to the requesting master (pulse 2) indicates that the SAB 8086 has allowed the local bus to float and that it will enter the "hold acknowledge" state at the next CLK. The CPU's bus interface unit is disconnected logically from the local bus during "hold acknowledge".
3. A pulse 1 CLK wide from the requesting master indicates to the SAB 8086 (pulse 3) that the "hold" request is about to end and that the SAB 8086 can reclaim the local bus at the next CLK.
Each master-master exchange of the local bus is a sequence of 3 pulses. There must be one dead CLK cycle after each bus exchange. Pulses are active LOW.
If the request is made while the CPU is performing a memory cycle, it will release the local bus during T_{4} of the cycle when all the following conditions are met:
4. Request occurs on or before T_{2}.
5. Current cycle is not the low byte of a word (on an odd address).
6. Current cycle is not the first acknowledge of an interrupt acknowledge sequence.
7. A locked instruction is not currently executing.

Number	Symbol	Input (I) Output (O)	Function		
29	$\overline{\text { LOCK }}$	0	The LOCK output indicates that other system bus masters are not to gain control of the system bus while LOCK is active LOW. The LOCK signal is activated by the "LOCK" prefix instruction and remains active until the completion of the next instruction. This signal is active LOW, and floats to 3 -state OFF in "hold acknowledge".		
24-25	$\mathrm{QS}_{1}, \mathrm{OS}_{0}$	0	QS_{1} and QS_{0} provide status to allow external tracking of the internal SAB 8086 instruction queue.		
			QS_{1}	QS ${ }_{0}$	Characteristics
			$\begin{aligned} & 0 \text { (LOW) } \\ & 0 \\ & 1 \text { (HIGH) } \\ & 1 \end{aligned}$	0 1 0 1	No Operation First Byte of Op Code from Queue Empty the Queue Subsequent Byte from Queue
			The queue status is valid during the C.LK cycle after which the queue operation is performed.		

The following pin function descriptions are for the SAB 8086 minimum mode (i.e. $M N / \overline{M X}=V_{C C}$).
Only the pin functions which are unique to
minimum mode are described; all other pin functions are as described before.

Number	Symbol	Input (I) Output (O)	Function
28	$\mathrm{M} / \overline{\mathrm{IO}}$	0	This status line is logically equivalent to S_{2} in the maximum mode. It is used to distinguish a memory access from an I/O access. $\mathrm{M} / \overline{\mathrm{IO}}$ becomes valid in the T_{4} preceding a bus cycle and remains valid until the final T_{4} of the cycle ($\mathrm{M}=\mathrm{HIGH}, \mathrm{IO}=\mathrm{LOW}$). $\mathrm{M} / \overline{\mathrm{IO}}$ floats to 3-state OFF in local bus "hold acknowledge".
29	$\overline{W R}$	0	Write strobe indicates that the processor is performing a write memory or write I/O cycle, depending on the state of the $\mathrm{M} / \overline{\mathrm{IO}}$ signal. $\overline{\mathrm{WR}}$ is active for $\mathrm{T}_{2}, \mathrm{~T}_{3}$ and T_{w} of any write cycle. It is active LOW, and floats to 3-state OFF in local bus "hold acknowledge"
24	$\overline{\text { INTA }}$	0	$\overline{\mathrm{INTA}}$ is used as a read strobe for interrupt acknowledge cycles. It is active LOW during T_{2}, T_{3} and T_{w} of each interrupt acknowledge cycle.
25	ALE	0	Address latch enable is provided by the processor to latch the address into the SAB 8282/SAB 8283 address latch. It is a HIGH pulse active during T_{1} of any bus cycle. Note that ALE is never floated.
27	$D T / \bar{R}$	0	Data transmit/receive is needed in minimum system that desires to use a SAB 8286/SAB 8287 data bus transceiver. It is used to control the direction of data flow through the transceiver. Logically $D T / \bar{R}$ is equivalent to S, in the maximum mode, and its timing is the same as for $M / I \bar{O}$. ($T=$ HIGH, $R=$ LOW). This signal floats to 3 -state OFF in local bus "hold acknowledge".
26	$\overline{\mathrm{DE}}$	0	Data enable is provided as an output enable for the SAB 8286/SAB 8287 in a minimum system which uses the transceiver. DEN is active LOW during each memory and I/O access and for INTA cycles. For a read or INTA cycle it is active from the middle of T_{2} until the middle of T_{4}, while for a write cycle it is active from the beginning of T_{2} until the middle of T_{4}. $\overline{\text { DEN }}$ floats to 3 -state OFF in local bus "hold acknowledge".
30-31	HOLD HLDA	1	HOLD indicates that another master is requesting a local bus "hold". To be acknowledged, HOLD must be active HIGH. The processor receiving the "hold" request will issue HLDA (HIGH) as an acknowledgement in the middle of T_{4} or T_{1}. Simultaneous with the issuance of HLDA the processor will float the local bus and control lines. After HOL.D is detected as being LOW, the processor will lower HLDA, and when the processor needs to run another cycle, it will again drive the local bus and control lines. HOLD is not an asynchronous input. External synchronization should be provided if the system cannot otherwise guarantee the setup time. The same rules as for $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ apply regarding when the local bus will be released.

Figure 3. Functional Block Diagram

Figure 4. Memory Organization

Functional Description

The internal functions of the SAB 8086 processor are partitioned logically into two processing units. The first is the Bus Interface Unit (BIU) and the second is the Execution Unit (EU) as shown in the block diagram of Figure 3.

The bus interface unit provides the functions related to instruction fetching and queuing, operand fetch and store, and address relocation. The overlap of instruction pre-fetching provided by this unit serves to increase processor performance through improved bus bandwidth utilization. Up to 6 bytes of the instruction stream can be queued while waiting for decoding and execution.

The instruction stream queuing mechanism allows the BIU to keep the memory utilized very efficiently. Whenever there is space for at least 2 bytes in the
queue, the BIU will attempt a word fetch memory cycle. This greatly reduces "dead time" on the memory bus.
The execution unit receives pre-fetched instructions from the BIU queue and provides un-relocated operand addresses to the BIU. Memory operands are passed through the BIU for processing by the EU, which passes results to the BIU for storage.
The processor provides a 20-bit address to memory which locates the byte being referenced. The memory is logically organized as a linear array of 1 million bytes, addressed as $00000(\mathrm{H})$ to FFFFF(H). The memory can be further logically divided into code, data, alternate data, and stack segments of up to 64 Kbytes each, with each segment falling on 16-byte boundaries. (See Figure 4)

Minimum and Maximum Modes

The requirements for supporting minimum and maximum SAB 8086 systems are sufficiently different that they cannot be done efficiently with 40 uniquely defined pins. Consequently, the SAB 8086 is equipped with a strap pin (MN/MX) which defines the system configuration.
The definition of a certain subset of the pins changes dependent on the condition of the strap pin.
When MN/ $\overline{M X}$ pin is strapped to GND, the SAB 8086 treats pins 24 through 31 in maximum mode. An SAB 8288 bus controller interprets status information coded into $\overline{\mathrm{S}}_{0}, \overline{\mathrm{~S}}_{1}, \overline{\mathrm{~S}}_{2}$ to generate bus timing and control signals.
When the $M N / \overline{M X}$ pin is strapped to $V_{c c}$, the SAB 8086 generates bus control signals itself on pins 24 through 31, as shown in parentheses in Figure 1.

Bus Operation

The SAB 8086 has a combined address and data bus commonly referred to as a time multiplexed bus.
Each processor bus cycle consists of at least four CLK cycles. These are referred to as T_{1}, T_{2}, T_{3} and T_{4} (see Figure 5). The address is emitted from the processor during T_{1} and data transfer occurs on the bus during T_{3} and $T_{4} . T_{2}$ is used primarily for changing the direction of the bus during read operations. In the event that a "NOT READY" indication is given by the addressed device, "Wait" states (T_{w}) are inserted between T_{3} and T_{4}. Each inserted "Wait" state is of the same duration as a CLK cycle. Periods can occur between SAB 8086 bus cycles. These are referred to as "Idle" states (T_{i}) or inactive CLK cycles. The processor uses these cycles for internal housekeeping.
During T_{1} of any bus cycle the ALE (Address Latch Enable) signal is emitted (by either the processor or the SAB 8288 bus controller, depending on the $\mathrm{MN} / \overline{\mathrm{MX}}$ strap). At the trailing edge of this pulse, a valid address and certain status information for the cycle may be latched.

Status bits $\overline{\mathrm{S}_{\mathfrak{0}}}, \overline{\mathrm{S}_{1}}$, and $\overline{\mathrm{S}_{2}}$ are used, in maximum mode, by the bus controller to identify the type of bus transaction according to the following table:

$\overline{\mathrm{S}}_{2}$	$\overline{\mathrm{~S}}_{1}$	$\overline{\mathrm{~S}}_{0}$	Characteristics
0 (LOW)	0	0	Interrupt Acknowledge
0	0	1	Read I/O
0	1	0	Write I/O
0	1	1	Halt
$1(\mathrm{HIGH})$	0	0	Instruction Fetch
1	0	1	Read Data from Memory
1	1	0	Write Data to Memory
1	1	1	Passive (no bus cycle)

Status bits S_{3} through S_{7} are multiplexed with highorder address bits and the $\overline{\mathrm{BHE}}$ signal, and are therefore valid during T_{2} through $T_{4} . S_{3}$ and S_{4} indicate which segment register (see Instruction Set description) was used for this bus cycle in forming the address, according to the following table:

S_{4}	$\mathrm{~S}_{3}$	Characteristics
0 (LOW)	0	Alternate Data (extra segment) 0
1 (HIGH)	0	Stack
1	1	Code or None

S_{5} is a reflection of the PSW interrupt enable bit. $\mathrm{S}_{6}=0$ and S_{7} is a spare status bit.

Figure 5. Basic System Timing

I/O Addressing

In the SAB 8086, 1/O operations can address up to a maximum of $64 \mathrm{~K} \mathrm{I/O} \mathrm{byte} \mathrm{registers} \mathrm{or} 32 \mathrm{~K} \mathrm{I/O}$ word registers.
The I/O address appears in the same format as the memory address on bus lines $A_{15}-A_{0}$. The address lines $A_{19}-A_{16}$ are zero in I/O operations.
The variable I/O instructions which use register DX as a pointer have full address capability while the direct I/O instructions directly address one or two of the 256 I/O byte locations in page 0 of the 1/O address space.

System Components

Processors
SAB 8088 - 100\% Compatible CPU with SAB 8086 with 8-bit bus
SAB 8087 - Numeric Data Processor. Coprocessor to SAB 8086 and SAB 8088.
SAB 8089 - Input/ Output Processor.

Support Circuits

SAB 8282 Octal Latch
SAB 8283 Octal Latch (Inverting)
SAB 8284A Clock Generator and Driver
SAB 8286 Octal Bus Transceiver
SAB 8287 Octal Bus Transceiver (Inverting)
SAB 8288 Bus Controller
SAB 8289 Bus Arbiter
SAB 8259A Programmable Interrupt Controller

Typical Applications

SAB 8086 is a general purpose 16-bit microprocessor which can be used for applications ranging from process control to data processing. Figures 6 and 7 show typical system configurations for SAB 8086 familiy components.

Figure 6. Minimum Mode SAB 8086 Typical System Configuration

Figure 7. Maximum Mode SAB 8086 Typical System Configuration

SAB 8086

Instruction Set Summary

DATA TRANSFER
MOV = Move

Register / memory to / from register
Immediate to register/memory
Immediate to register
Memory to accumulator
Accumulator to memory
Register/memory to segment register
Segment register to register/memory
$76543210 \quad 76543210 \quad 7654321076543210$

100010 dw	mod reg r/m		
1100011 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
1011 w reg	data	data if $w=1$	
1010000 w	addr-low	addr-high	
1010001 w	addr-low	addr-high	
10001110	mod $0 \mathrm{reg} \mathrm{r} / \mathrm{m}$		
10001100	mod $0 \mathrm{reg} \mathrm{r} / \mathrm{m}$		

PUSH = Push:

Register/memory
Register
Segment register

$P O P=P o p:$
Register/memory
Register
Segment register

XCHG = Exchange:
Register/memory with register
Register with accumulator

IN = Input from:
Fixed port
Variable port

1110010 w	port
1110110 w	

OUT = Output to:
Fixed port
Variable port
XLAT = Translate byte to AL
LEA = Load EA to register
LDS = Load pointer to DS
LES = Load pointer to ES
LAHF = Load AH with flags
SAHF = Store AH into flags
PUSHF = Push flags
POPF = Pop flags

ARITHMETIC

ADD = Add:
Reg./memory with register to either Immediate to register/memory

Immediate to accumulator

ADC = Add with carry:

Reg./memory with register to either Immediate to register/memory

Immediate to accumulator

INC = Increment:
Register/memory
Register
AAA $=$ ASCII adjust for add
DAA = Decimal adjust for add
$76543210 \quad 76543210 \quad 7654321076543210$

1110011 w	port
1110111 w	
11010111	
10001101	mod reg r/m
11000101	mod reg r/m
11000100	mod reg r/m
10011111	
10011110	
10011100	
10011101	

000000 dw	$\bmod \mathrm{reg} \mathrm{r} / \mathrm{m}$		
100000 sw	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{s}: \mathrm{w}=01$
0000010 w	data	data if $w=1$	

000100 dw	$\bmod \mathrm{reg} \mathrm{r} / \mathrm{m}$		
100000 sw	$\bmod 010 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{s}: \mathrm{w}=01$
0001010 w	data	data if $w=1$	

| 1111111 w | $\bmod 000 \mathrm{r} / \mathrm{m}$ |
| :--- | :--- | :--- |

01000 reg
00110111
00100111

SUB $=$ Subtract:
Reg./memory and register to either
Immediate from register/memory Immediate from accumulator

SBB $=$ Subtract with borrow

Reg./memory and register to either Immediate from register/memory Immediate from accumulator

DEC = Decrement:
Register/memory
Register
NEG = Change sign

CMP = Compare:

Register/memory and register
Immediate with register/memory
Immediate with accumulator
AAS = ASCII adjust for subtract
DAS $=$ Decimal adjust for subtract
MUL $=$ Multiply (unsigned)
IMUL $=$ Integer multiply (signed)
AAM = ASCII adjust for multiply
DIV $=$ Divide (unsigned)
IDIV $=$ Integer divide (signed)
AAD $=$ ASCII adjust for divide
CBW = Convert byte to word
CWD $=$ Convert word to double word

76543210765432107654321076543210

| 001010 dw | $\mathrm{mod} \mathrm{reg} \mathrm{r} / \mathrm{m}$ | |
| :---: | :---: | :---: | :---: |
| 100000 sw $\bmod 101 \mathrm{r} / \mathrm{m}$ data
 data if $\mathrm{s}: \mathrm{w}=01$
 0010110 w data data if $\mathrm{w}=1$ | | |

000110 dw	$\bmod \mathrm{reg} \mathrm{r} / \mathrm{m}$		
100000 sw	$\bmod 011 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{s}: \mathrm{w}=01$
0001110 w	data	data if $w=1$	

76543210765432107654321076543210

001110 dw	mod reg r/m		
100000 sw	$\bmod 111 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{s}: \mathrm{w}=01$
0011110 w	data	data if $w=1$	
00111111			
00101111			
1111011 w	$\bmod 100 \mathrm{r} / \mathrm{m}$		
1111011 w	$\bmod 101 \mathrm{r} / \mathrm{m}$		
11010100	00001010		
1111011 w	$\bmod 110 \mathrm{r} / \mathrm{m}$		
1111011 w	$\bmod 111 \mathrm{r} / \mathrm{m}$		
11010101	00001010		
10011000			
10011001			

LOGIC

NOT = Invert
SHL/SAL $=$ Shift logical/arithmetic left
$\mathbf{S H R}=$ Shift logical right
SAR $=$ Shift arithmetic right
ROL $=$ Rotate left
ROR $=$ Rotate right
RCL $=$ Rotate through carry flag left
RCR $=$ Rotate through carry right

AND = And:
Reg/memory and register to either Immediate to register/memory Immediate to accumulator

TEST = And function to flags, no result:
Register/memory and register
Immediate data and register/memory
Immediate data and accumulator
$\mathrm{OR}=\mathrm{Or}:$
Reg/memory and register to either
Immediate to register/memory
Immediate to accumulator

$X O R=$ Exclusive or:

Reg./memory and register to either
Immediate to register/memory
Immediate to accumulator
$76543210 \quad 76543210 \quad 7654321076543210$

1111011 w	$\bmod 010 \mathrm{r} / \mathrm{m}$

110100 vw	$\bmod 100 \mathrm{r} / \mathrm{m}$
110100 vw	$\bmod 101 \mathrm{r} / \mathrm{m}$
110100 vw	$\bmod 111 \mathrm{r} / \mathrm{m}$
110100 vw	$\bmod 000 \mathrm{r} / \mathrm{m}$
110100 vw	$\bmod 001 \mathrm{r} / \mathrm{m}$
110100 vw	$\bmod 010 \mathrm{r} / \mathrm{m}$
110100 vw	$\bmod 011 \mathrm{r} / \mathrm{m}$

| 001000 dw | $\bmod \mathrm{reg} \mathrm{r} / \mathrm{m}$ | |
| :---: | :---: | :---: | :---: |
| 1000000 w $\bmod 100 \mathrm{r} / \mathrm{m}$ data | data if $\mathrm{w}=1$ | |
| 0010010 w | data | data if $\mathrm{w}=1$ |

1000010 w	$\mathrm{mod} \mathrm{reg} \mathrm{r} / \mathrm{m}$

1111011 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{w}=1$

1010100 w	data	data if $w=1$

000010 dw	$\bmod \mathrm{reg} \mathrm{r} / \mathrm{m}$		
1000000 w $\bmod 001 \mathrm{r} / \mathrm{m}$ data	data if $\mathrm{w}=1$		
0000110 w	data	data if $\mathrm{w}=1$	

| 001100 dw | $\bmod \mathrm{reg} \mathrm{r} / \mathrm{m}$ | |
| :---: | :---: | :---: | :---: |
| 1000000 w $\bmod 110 \mathrm{r} / \mathrm{m}$ data | data if $\mathrm{w}=1$ | |
| 0011010 w data data if $w=1$ | | |

STRING MANIPULATION
$R E P=$ Repeat
MOVS $=$ Move byte $/$ word
CMPS = Compare byte/word
SCAS = Scan byte/word
LODS = Load byte/word to AL/AX
STDS $=$ Store byte/word from AL/A

CONTROL TRANSFER

CALL = Call:

Direct within segment
Indirect within segment
Direct intersegment

Indirect intersegment

JMP = Unconditional Jump:
Direct within segment
Direct within segment short
Indirect within segment
Direct intersegment

Indirect intersegment

765432107654321076543210
11110012
1010010 w
1010011 w

1010111 w
1010110 w
1010101 w

11101000	disp-low	disp-high

11111111	$\bmod 010 \mathrm{r} / \mathrm{m}$

10011010	offset-low	offset-high
	seg-low	seg-high

11111111	$\bmod 011 \mathrm{r} / \mathrm{m}$

11101001	disp-low	disp-high
11101011	disp	
11111111	mod $100 \mathrm{r} / \mathrm{m}$	
11101010 offset-low offset-high seg-low seg-high		
11111111	mod $101 \mathrm{r} / \mathrm{m}$	

SAB 8086

RET $=$ Return from CALL:

Within segment
Within seg. adding immed to SP
Intersegment
Intersegment adding immediable to SP
JE/JZ = Jump on equal/zero
JL/JNGE = Jump on less/not greater or equal
JLE/JNG = Jump on less or equal/not greater
JB/JNAE = Jump on below/not above or equal
JBE/JNA = Jump on below or equal/ not above

JP/JPE = Jump on parity/parity even
$\mathbf{J O}=$ Jump on overflow
$\mathbf{J S}=$ Jump on sign
JNE/JNZ = Jump on not equal/not zero
JNL/JGE = Jump on not less/greater or equal
JNLE/JG = Jump on not less or equal/ greater
JNB/JAE = Jump on not below/above or equal
JNBE/JA = Jump on not below or equal/above

JNP/JPO = Jump on not par/par odd
JNO = Jump on not overflow
JNS = Jump on not sign
LOOP $=$ Loop CX times
LOOPZ/LOOPE = Loop while zero/equal
LOOPNZ/LOOPNE = Loop while not zero/equal
$\mathbf{J C X Z}=$ Jump on CX zero

765432107654321076543210

11000011

11000010	data-low	data-high

11001011

11001010	data-low	data-high

01110100	disp
01111100	disp
01111110	disp

01111110	disp
01110010	disp
01110110	disp
01111010	disp
01110000	disp

| 01111000 | disp |
| :--- | :--- | :--- |

01110101	disp
01111101	disp
01111111	disp

01110011	disp
01110111	disp
01111011	disp
01110001	disp

01111001	disp
11100010	disp

| 11100001 | disp |
| :--- | :--- | :--- |

| 11100000 | disp |
| :--- | :--- | :--- |

| 11100011 | disp |
| :--- | :--- | :--- |

$\mathbf{I N T}=$ Interrupt
Type specified
Type 3
INTO = Interrupt on overflow
IRET $=$ Interrupt return

PROCESSOR CONTROL

CLC = Clear carry
CMC = Complement carry
$\mathbf{S T C}=$ Set Carry
CLD $=$ Clear direction
STD $=$ Set direction
$\mathbf{C L I}=$ Clear interrupt
$\mathbf{S T I}=$ Set interrupt
HLT $=$ Halt
WAIT = Wait
ESC $=$ Escape (to external device)
LOCK = Bus lock prefix

7654321076543210

11001101	type
11001100	
11001110	
11001111	
1	

11111000
11110101
11111001
11111100
11111101
11111010
11111011
11110100
10011011

$11011 \times \times x$	$\bmod \times \times \times r / m$

11110000

Footnotes:

$\mathrm{AL}=8$-bit accumulator
$A X=16$-bit accumulator
$C X=$ Count register
DS = Data segment
$E S=$ Extra segment
Above/below refers to unsigned value.
Greater = more positive;
Less $=$ less positive (more negative) signed values
if $d=1$ then "to" reg; if $d=0$ then "from" reg
if $w=1$ then word instruction; if $w=0$ then byte instruction
if mod $=11$ then r / m is treated as a REG field
if $\bmod =00$ then DISP $=0^{*}$, disp-low and disp-high are ahsent
if $\bmod =01$ then DISP $=$ disp-low sign-extended to 16-bits, disp high is absent
if mod $=10$ then DISP $=$ disp-high: disp low
if $\mathrm{r} / \mathrm{m}=000$ then $E A=(B X)+(S I)+$ DISP
if $\mathrm{r} / \mathrm{m}=001$ then $E A=(B X)+(D I)+$ DISP
if $\mathrm{r} / \mathrm{m}=010$ then $E A=(B P)+(S I)+$ DISP
if $\mathrm{r} / \mathrm{m}=011$ then $E A=(B P)+(D I)+D I S P$
if $\mathrm{r} / \mathrm{m}=100$ then $E A=(\mathrm{SI})+$ DISP
if $\mathrm{r} / \mathrm{m}=101$ then $E A=(\mathrm{D})+$ DISP
if $\mathrm{r} / \mathrm{m}=110$ then $E A=(B P)+D I S P^{*}$
if $\mathrm{r} / \mathrm{m}=111$ then $E A=(B X)+$ DISP
DISP follows 2nd byte of instruction (before data if required)
*except if $\bmod =00$ and $\mathrm{r} / \mathrm{m}=110$ then $\mathrm{EA}=$ disp-high:disp-low.
if $s: w=01$ then 16 -bits of immediate data from the operand
it $\mathrm{s}: \mathrm{w}=11$ then an immediate data byte is sign extended to form the 16 -bit operand
if $v=0$ then "count" $=1$; if $v=1$ then "count" in (CL)
x = don't care
z is used for string primitives for comparsion with ZF FLAG
SEGMENT OVERRIDE PREFIX
001 reg 110

REG is assigned according to the following table

16-Bit ($w=1$)	8 -Bit ($\mathbf{w}=0$)	Segment
000 AX	000 AL	00 ES
001 CX	001 CL	01 CS
010 DX	010 DL	10 SS
011 BX	011 BL	11 DS
100 SP	100 AH	
101 BP	101 CH	
110 SI	110 DH	
111 DI	111 BH	

Instruction which reference the flag register file as a 16 -bit object use the symbol FLAGS to represent the file:

FLAGS $=X: X: X: X:(O F):(D F):(I F):(T F):(S F):(Z F):$ $X:(A F): X:(P F): X:(C F)$

Absolute maximum ratings *)

Ambient Temperature Under Bias
Storage Temperature
Voltage on any Pin with Respect to Ground Power Dissipation

0 to $70^{\circ} \mathrm{C}$
-65 to $+150^{\circ} \mathrm{C}$
-1.0 to +7 V 2.5 Watt

D.C. Characteristics

SAB 8086: $T_{A}=0$ to $70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 10 \%$
SAB 8086-1/8086-2: $T_{A}=0$ to $70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
$V_{\text {LI }}$	Input Low Voltage	-0.5	+0.8	V	-
$V_{1 H}$	Input High Voltage	2.0	$v_{c c}+0.5$		
$V_{\text {OL }}$	Output Low Voltage	-	0.45		$I_{0 L}=2.0 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4	-		$I_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$I_{\text {cc }}$	Power Supply Current SAB 8086 SAB 8086-2 SAB 8086-1	-	$\begin{aligned} & 340 \\ & 350 \\ & 360 \\ & \hline \end{aligned}$	mA	$T_{\text {A }}=25^{\circ} \mathrm{C}$
$\underline{I_{\text {LI }}}$	Input Leakage Current		± 10	$\mu \mathrm{A}$	$\mathrm{OV} \leq V_{\mathbb{I N}} \leq V_{\text {cc }}$
$\underline{I_{1}}$	Output Leakage Current				$0.45 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq V_{\text {cc }}$
$V_{\text {cL }}$	Clock Input Low Voltage	-0.5	+0.6	V	-
$V_{\text {ch }}$	Clock Input High Voltage	3.9	$v_{\text {cc }}+1.0$		
$C_{\text {IN }}$	Capacitance of Input Buffer (All input except $\left.A D_{0}-A D_{15}, \overline{R Q} / \overline{G T}\right)$	-	15	pF	$\mathrm{fc}=1 \mathrm{MHz}$
ClO_{10}	Capacitance of I/O Buffer $\left(A D_{0}-A D_{15}, \overline{R Q} / \overline{G T}\right)$				

*) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

A.C. Characteristics for SAB 8086/8086-2

SAB 8086: $T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, V_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
SAB 8086-2: $T_{A}=0$ to $70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%$
Minimum Complexity System (Figures 8, 9, 12, 15)
Timing Requirements

Symbol	Parameter	Limit Values				Units	Test Conditions
		SAB 8086		SAB 8086-2			
		Min.	Max.	Min.	Max.		
TCLCL	CLK Cycle Period SAB 8086	200	500	125	500	ns	-
TCLCH	CLK Low Time	118	-	68			
TCHCL	CLK High Time	69		44			
TCH1CH2	CLK Rise Time	-	10	-	10		From 1.0 to 3.5 V
TCL2CL1	CLK Fall Time						From 3.5 to 1.0 V
TDVCL	Data in Setup Time	30	-	20	-		-
TCLDX	Data in Hold Time	10		10			
TR1VCL	RDY Setup Time into SAB 8284A $\left.{ }^{1}\right)^{2}$)	35		35			
TCLR1X	RDY Hold Time into SAB 8284A $\left.{ }^{1}\right)^{2}$)	0		0			
TRYHCH	READY Setup Time into SAB 8086	118		68			
TCHRYX	READY Hold Time into SAB 8086	30		20			
TRYLCL	READY Inactive to CLK ${ }^{3}$)	-8		-8			
THVCH	HOLD Setup Time	35		20			
TINVCH	INTR, NMI, TEST Setup Time ${ }^{2}$)	30		15			
TILIH	Input Rise Time (Except CLK)	-	20	-	20		From 0.8 to 2.0 V
TIHIL	Input Fall Time (Except CLK)		12		12		From 2.0 to 0.8 V

[^18]
Timing Responses

Symbol	Parameter	Limit Values				Units	Test Conditions
		SAB 8086		SAB 8086-2			
		Min.	Max.	Min.	Max.		
TCLAV	Address Valid Delay	10	110	10	60	ns	$C_{L}=20-100 \mathrm{pF}$ for all SAB 8086 Outputs (In addition to SAB 8086 self-load)
TCLAX	Address Hold Time		-		-		
TCLAZ	Address Float Delay	TCLAX	80	TCLAX	50		
TLHLL	ALE Width	TCLCH-20	-	TCLCH-10	-		
TCLLH	ALE Active Delay		80		50		
TCHLL	ALE Inactive Delay		85		55		
TLLAX	Address Hold Time to ALE Inactive	TCHCL-10	-	TCHCL-10	-		
TCLDV	Data Valid Delay	10	110	10	60		
TCHDX	Data Hold Time		-				
TWHDX	Data Hold Time After WR	TCLCH-30		TCLCH-30			
TCVCTV	Control Active Delay 1	10	110	10	70		
TCHCTV	Control Active Delay 2				60		
TCVCTX	Control Inactive Delay				70		
TAZRL	Address Float to READ Active	0	-	0	-		
TCLRL	$\overline{\mathrm{RD}}$ Active Delay	10	165	10	100		
TCLRH	$\overline{\mathrm{RD}}$ Inactive Delay		150		80		
TRHAV	$\overline{\mathrm{RD}}$ Inactive to Next Address Active	TCLCL-45	-	TCLCL-40	-		
TCLHAV	HLDA Valid Delay	10	160	10	100		
TRLRH	$\overline{\mathrm{RD}}$ Width	2TCLCL-75	-	2TCLCL-50	-		
TWLWH	$\overline{\text { WR Width }}$	2TCLCL-60		2TCLCL-40			
TAVAL	Address Valid to ALE Low	TCLCH-60		TCLCH-40			
TOLOH	Output Rise Time		20		20		From 0.8 to 2.0 V
TOHOL	Output Fall Time		12		12		From 2.0 to 0.8 V

Max Mode System (Using SAB 8288 Bus Controller) (Figures 10-14) Timing Requirements

Symbol	Parameter	Limit Values				Units	Test Conditions
		SAB 8086		SAB 8086-2			
		Min.	Max.	Min.	Max.		
TCLCL	CLK Cycle Period SAB 8086	200	500	125	500	ns	-
TCLCH	CLK Low Time	118	-	68	-		
TCHCL	CLK High Time	69		44			
TCH1CH2	CLK Rise Time	-	10	-	10		From 1.0 to 3.5 V
TCL2CL1	CLK Fall Time						From 3.5 to 1.0 V
TDVCL	Data In Setup Time	30	-	20	-		
TCLDX	Data In Hold Time	10		10			
TR1VCL	RDY Setup Time into SAB 8284A $\left.{ }^{1}\right)^{2}$)	35		35			
TCLR1X	RDY Hold Time into SAB 8284A $\left.{ }^{1}\right)^{2}$)	0		0			-
TRYHCH	READY Setup Time into SAB-8086	118		68			
TCHRYX	READY Hold Time into SAB 8086	30		20			
TRYLCL	READY Inactive to CLK ${ }^{4}$)	-8		-8			
TINVCH	Setup Time for Recognition \qquad (INTR, NMI, $\overline{\text { TEST }})^{2}$)	30		15			
TGVCH	$\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ Setup Time						
TCHGX	$\overline{\mathrm{RQ}}$ Hold Time into SAB 8086	40		30			
TILIH	Input Rise Time (Except CLK)	-	20	-	20		From 0.8 to 2.0 V
TIHIL	Input Fall Time (Except CLK)		12		12		From 2.0 to 0.8 V

[^19]SAB 8086

Timing Responses

Symbol	Parameter	Limit Values				Units	Test Conditions
		SAB 8086		SAB 8086-2			
		Min.	Max.	Min.	Max.		
TCLML	Command Active Delay ${ }^{1}$)	10	35	10	35	ns	$C_{L}=20-100 \mathrm{pF}$ for all SAB 8086 Outputs (In addition to SAB 8086 self-load)
TCLMH	Command Inactive Delay ${ }^{1}$)						
TRYHSH	READY Active to Status Passive ${ }^{3}$)	-	110	-	65		
TCHSV	Status Active Delay	10		10	60		
TCLSH	Status Inactive Delay		130		70		
TCLAV	Address Valid Delay		110		60		
TCLAX	Address Hold Time		-		-		
TCLAZ	Address Float Delay	TCLAX	80	TCLAX	50		
TSVLH	Status Valid to ALE High ${ }^{1}$)	-	20	-	20		
TSVMCH	Status Valid to MCE High ${ }^{1}$)						
TCLLH	CLK Low to ALE Valid ${ }^{1}$)						
TCLMCH	CLK Low to MCE High ${ }^{1}$)						
TCHLL	ALE Inactive Delay ${ }^{1}$)	4	15	4	15		
TCLDV	Data Valid Delay	10	110	10	60		
TCHDX	Data Hold Time		-		-		
TCVNV	Control Active Delay ${ }^{1}$)	5	45	5	45		
TCVNX	Control Inactive Delay ${ }^{1}$)	10		10			

[^20]SAB 8086

Symbol	Parameter	Limit Values				Units	Test Conditions
		SAB 8086		SAB 8086-2			
		Min.	Max.	Min.	Max.		
TAZRL	Address Float to READ Active	0	-	0	-	ns	$C_{L}=20-100 \mathrm{pF}$ for all SAB 8086 Outputs (In addition to SAB 8086 self-load)
TCLRL	$\overline{\mathrm{RD}}$ Active Delay	10	165	10	100		
TCLRH	$\overline{\mathrm{RD}}$ Inactive Delay		150		80		
TRHAV	$\overline{\mathrm{RD}}$ Inactive to Next Address Active	TCLCL-45	-	TCLCL-40	-		
TCHDTL	Direction Control Active Delay ${ }^{1}$)	-	50	-	50		
TCHDTH	Direction Control illaciive Uetay ${ }^{1}$;		30		30		
TCLGL	GT Active Delay	0	85	0	50		
TCLGH	$\overline{\mathrm{GT}}$ Inactive Delay						
TRLRH	$\overline{\mathrm{RD}}$ Width	2TCLCL-75	-	2TCLCL-50	-		
TOLOH	Output Rise Time	-	20		20		From 0.8 to 2.0 V
TOHOL	Output Fall Time		12		12		From 2.0 to 0.8 V

${ }^{1}$) Signal at SAB 8284A or SAB 8288 shown for reference only.
${ }^{2}$) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
${ }^{3}$) Applies only to T_{3} and wait states.
${ }^{4}$) Applies only to T_{2} state (8 ns into T_{3}).

A.C. Characteristics for SAB 8086-1

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, V_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Minimum Complexity System (Figures 8, 9, 12, 15)
Timing Requirements (Preliminary)

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
TCLCL	CLKCycle Period	100	500		
TCLCH	CLK Low Time	53			-
TCHCL	CLK High Time	39			
TCH1CH2	CLK Rise Time		10		From 1.0 to 3.5 V
TCL1CL2	CLK Fall Time				From 3.5 to 1.0 V
TDVCL	Data in Setup Time	5			
TCLDX	Data in Hold Time	10			
TR1VCL	RDY Setup Time into SAB 8284A $\left.{ }^{1}\right)^{2}$)	35		ns	
TCLR1X	RDY Hold Time into SAB $\left.8284 A^{1}\right)^{2}$)	0			
TRYHCH	READY Setup Time into SAB 8086	53	-		-
TCHRYX	READY Hold Time into SAB 8086	20			
TRYLCL	READY Inactive to CLK ${ }^{3}$)	-10			
THVCH	HOLD Setup Time	20			
TINVCH		15			
TILIH	Input Rise Time (Except CLK)	-	20		From 0.8 to 2.0 V
TILHIL	Input Fall Time (Except CLK)		12		From 2.0 to 0.8 V

[^21]SAB 8086

Timing Responses SAB 8086-1 (Preliminary)

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
TCLAV	Address Valid Delay	10	50	ns	$C_{\mathrm{L}}=20-100 \mathrm{pF}$ for all SAB 8086 Outputs (In addition to SAB 8086 self-load)
TCLAX	Address Hold Time		-		
TCLAZ	Address Float Delay		40		
TLHLL	ALE Width	TCLCH-10	--		
TCLLH	ALE Active Delay	-	40		
TCHLL	ALE Inactive Delay		45		
TLLAX	Address Hold Time to ALE Inactive	TCHCL-10	-		
TCLごv	D̄aıa vaiia	10	50		
TCHDX	Data Hold Time		-		
TWHDX	Data Hold Time After WR	TCLCH-25			
TCVCTX	Control Active Delay 1	10	50		
TCHCTV	Control Active Delay 2		45		
TCVCTX	Control Inactive Delay		50		
TAZRL	Address Float to READ Active	0	-		
TCLRL	$\overline{\mathrm{RD}}$ Active Delay	10	70		
TCLRH	$\overline{\mathrm{RD}}$ Inactive Delay		60		
TRHAV	$\overline{\mathrm{RD}}$ Inactive to Next Address Active	TCLCL-35	-		
TCLHAV	HLDA Valid Delay	10	60		
TRLRH	$\overline{\mathrm{RD}}$ Width	2TCLCL-40	-		
TWLWH	WR Width	2TCLCL-35			
TAVAL	Address Valid to ALE Low	TCLCH-35			
TOLOH	Output Rise Time	-	20		From 0.8 to 2.0 V
TOHOL	Output Fall Time		12		From 2.0 to 0.8 V

Max Mode System (Using SAB 8288 Bus Controller) (Figures 10-14)
Timing Requirements SAB 8086-1 (Preliminary)

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
TCLCL	CLK Cycle Period	100	500	ns	-
TCLCH	CLK Low Time	53	-		
TCHCL	CLK High Time	39			
TCH1CH2	CLK Rise Time	-	10		From 1.0 to 3.5 V
TCL2CL1	CLK Fall Time				From 3.5 to 1.0 V
TDVCL	Data In Setup Time	5			
TCLDX	Data In Hold Time	10			
TR1VCL	RDY Setup Time into SAB 8284A $\left.{ }^{1}\right)^{2}$)	35			
TCLR1X	RDY Hold Time into SAB $\left.8284 A^{1}\right)^{2}$)	0			
TRYHCH	READY Setup Time into SAB 8086	53			
TCHRYX	READY Hold Time into SAB 8086	20			
TRYLCL	READY Inactive to $C L K^{3}$)	-10			
TINVCH	Setup Time for Recognition (INTR, NMI, TEST) ${ }^{2}$)	15			
TGVCH	$\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ Setup Time	12			
TCHGX	$\overline{\mathrm{RQ}}$ Hold Time into SAB 8086	20			
TILIH	Input Rise Time (Except CLK)	-	20		From 0.8 to 2.0 V
TIHIL	Input Fall Time (Except CLK)		12		From 2.0 to 0.8 V

${ }^{1}$) Signal at SAB 8284A or SAB 8288 shown for reference only.
${ }^{2}$) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
${ }^{3}$) Applies only to T_{2} state (8 ns into T_{3}).

SAB 8086

Timing Responses SAB 8086-1 (Preliminary)

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
TCLML	Command Active Delay ${ }^{1}$)	10	35	ns	$C_{L}=20-100 \mathrm{pF}$ for all SAB 8086 Outputs (In addition to SAB 8086 self-load)
TCLMH	Command Inactive Delay ${ }^{1}$)				
TRYHSH	READY Active to Status Passive ${ }^{2}$)	-	45		
TCHSV	Status Active Delay	10			
TCLSH	Status Inactive Delay		55		
TCLAV	Address Valid Delay		50		
TCLAX	Address Hold Time		-		
ICLAL	Address Hoat Delay		40		
TSVLH	Status Valid to ALE High ${ }^{1}$)	-	20		
TSVMCH	Status Valid to MCE High ${ }^{1}$)				
TCLLH	CLK Low to ALE Valid')				
TCLMCH	CLK Low to MCE High ${ }^{1}$)				
TCHLL	ALE Inactive Delay ${ }^{1}$)	4	15		
TCLDV	Data Valid Delay	10	50		
TCHDX	Data Hold Time		-		
TCVNV	Control Active Delay ${ }^{\prime}$)	5	45		
TCVNX	Control Inactive Delay ${ }^{1}$)	10			

${ }^{1}$) Signal at SAB 8284A or SAB8288 shown for reference only.
${ }^{2}$) Applies only to T_{2} and wait states.

Timing Responses SAB 8086-1 (continued) (Preliminary)

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
TAZRL	Address Float to READ Active	0	-	ns	$C_{L}=20-100 \mathrm{pF}$ for all SAB 8086 Outputs (In addition to SAB 8086 self-load)
TCLRL	$\overline{\mathrm{RD}}$ Active Delay	10	70		
TCLRH	$\overline{\mathrm{RD}}$ Inactive Delay		60		
TRHAV	$\overline{\mathrm{RD}}$ Inactive to Next Address Active	TCLCL-35	-		
TCHDTL	Direction Control Active Delay ${ }^{1}$)	-	50		
TCHDTH	Direction Control Inactive Delay ${ }^{1}$)		30		
TCLGL	$\overline{\mathrm{GT}}$ Active Delay	0	45		
ṪCLGH	$\overline{\text { GT Inactive Delay }}$				
TRLRH	$\overline{\mathrm{RD}}$ Width	2TCLCL-40	-		
TOLOH	Output Rise Time	-	20		From 0.8 to 2.0 V
TOHOL	Output Fall Time		12		From 2.0 to o.8V

${ }^{1}$) Signal at SAB 8284A or SAB 8288 shown for reference only.
${ }^{2}$) Applies only to T_{3} and wait states.

Figure 8. Bus Timing - Minimum Mode System

Figure 9. SAB 8086 Bus Timing - Minimum Mode System (cont'd)

${ }^{1}$) All signals switch between V_{OH} and V_{OL} unless otherwise specified.
${ }^{2}$) RDY is sampled near the end of T_{2}, T_{3}, T_{w} to determine if T_{w} machines states are to be-inserted.
${ }^{3}$) Two INTA cycles run back to back. The SAB 8086 local ADDR/DATA Bus is floating during both INTA cycles. Control signals shown for second INTA cycle.
${ }^{4}$) Signals at SAB 8284A are shown for reference only.
${ }^{5}$) All timing measurements are made at 1.5 V unless otherwise noted.

Figure 10. SAB 8086 Bus Timing - Maximum Mode System (Using SAB 8288)

Figure 11. SAB 8086 Bus Timing - Maximum Mode System (Using SAB 8288) (cont.)

WRITE CYCLE

INTA CYCLE

Software HALT -

${ }^{1}$) All Signals switch between V_{OH} and V_{OL} unless otherwise specified.
${ }^{2}$) RDY is sampled near the end of T_{2}, T_{3}, T_{w} to determine if T_{w} machines states are to be inserted.
${ }^{3}$) Cascade address is valid between first and second INTA cycle.
${ }^{4}$) Two INTA cycles run back-to-back. The SAB 8086 local ADDR/DATA Bus is floating during both INTA cycles. Control for pointer address is shown for second INTA cycle.
${ }^{5}$) Signals at SAB 8284A or SAB 8288 are shown for reference only.
${ }^{6}$) The issuance of the SAB 8288 command and control signals ($\overline{\mathrm{MRDC}}, \overline{\mathrm{MWTC}}, \overline{\mathrm{AMWC}}, \overline{\mathrm{IORC}}$,
$\overline{I O W C}, \overline{A I O W C}, \overline{I N T A}$ and DEN) lags the active HIGH SAB 8288 DEN.
${ }^{7}$) All timing measurements are made at 1.5 V unless otherwise noted.
${ }^{8}$) Status inactive in state just prior to T_{4}.

Figure 12. Asynchronous Signal Recognition

${ }^{1}$) Setup requirements for asynchronous signals only to guarantee recognition at next CLK

Figure 13. Bus Lock Signal Timing (Maximum Mode Only)

Figure 14. Request/Grant Sequence Timing (Maximum Mode Only)

${ }^{1}$) The coprocessor may not drive the buses outside the region shown without risking contention

Figure 15. Hold/Hold Acknowledge Timing (Minimum Mode Only)

.

SAB 8088
 8-Bit Microprocessor

SAB $8088 \quad 5 \mathrm{MHz}$

- 8 Bit Data Bus Interface
- 16 Bit Internal Architecture
- Direct Addressing Capability to

1 MByte of Memory

- Software Compatible with SAB 8086
- 14-Word by 16-Bit Register Set with

Symetrical Operations

- Byte, Word, and Block Operations

SAB 8088-2 8 MHz

- 24 Operand Addressing Modes
- 8-Bit and 16-Bit Signed and Unsigned Arithmetic in Binary or Decimal, Including Multiply and Divide
- Two Clock Rates:

5 MHz for SAB 8088
8 MHz for SAB 8088-2

- Compatible with Industry Standard 8088

SAB 8088 is a high-performance 8-bit microprocessor implemented in +5 volts, advanced Siemens MYMOS technology, packaged in a 40-pin package. It is 100 percent compatible with the industry standard 8088. With features like string
handling, 16 -bit arithmetic with multiply and divide it significantly increases system performance.
It is highly suited for multiprocessor applications in various configurations.

Pin Definitions and Functions

The following pin function descriptions are for SAB 8088 systems in either minimum or maximum mode. The "local bus" in these descriptions is
the direct multiplexed bus interface connection to the SAB 8088 (without regard to additional bus buffers).

Symbol	Number	Input (I) Output (O)	Function		
AD7-AD0	9-16	1/O	ADDRESS DATA BUS: These lines constitute the time multiplexed memory I/O address (T1) and data (T2, T3, Tw, and T4) bus. These lines are active HIGH and float to 3 -state OFF during interrupt acknowledge and local bus "hold acknowledge".		
A15-A8	39, 2-8	0	ADDRESS BUS: These lines provide address bits 8 through 15 for the entire bus cycle (T1-T4). These lines do not have to be latched by ALE to remain valid. A15-A8 are active HIGH and float to 3-state OFF during interrupt acknowledge and local bus "hold acknowledae".		
A19/S6, A18/S5, A17/S4, A16/S3	34-38	0	ADRESS/STATUS: During T1, these are the four most significant address lines for memory operations. During I/O operations, these lines are LOW. During memory and I/O operations, status information is available on these lines during T2, T3, Tw and T4. S6 is always low. The status of the interrupt enable flag bit (S5) is updated at the beginning of each clock cycle. S4 and S3 are encoded as shown.		
			S4	S3	Characteristics
				$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Alternate Data Stack Code or None Data
			This information indicates which segment register is presently being used for data accessing. These lines float to 3-state OFF during local bus "hold acknowledge".		
$\overline{\mathrm{RD}}$	32	0	READ: Read strobe indicates that the processor is performing a memory or I/O read cycle, depending on the state of the $10 / \bar{M}$ pin or S2. This signal is used to read devices which reside on the SAB 8088 local bus. RD is active LOW during T2, T3 and Tw of any read cycle, and is guaranteed to remain HIGH in T2 until the SAB 8088 local bus has floated. This signal floats to 3 -state OFF in "hold acknowledge".		
READY	22	1	READY: is the acknowledgement from the addressed memory or I/O device that it will complete the data transfer. The RDY signal from memory or I/O is synchronized by the SAB 8284A/ 8284B clock generator to form READY. This signal is active HIGH. The SAB 8088 READY input is not synchronized. Correct operation is not guaranteed if the set up and hold times are not met.		
INTR	18	1	INTERRUPT REQUEST: is a level triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH.		

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
$\overline{\text { TEST }}$	23	1	TEST: input is examined by the "wait for test" instruction. If the TEST input is LOW, execution continues, otherwise the processor waits in an "idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK.
NMI	17	1	NON-MASKABLE INTERRUPT: is an edge triggered input which causes a type 2 interrupt. A subroutine is vectored to via interrupt vector lookup table located in system memory. NMI is not maskable internally by software. A transition from a LOW to HIGH initiates the interrupt at the end of the current instruction. This input is internally synchronized.
RESET	21	1	RESET: causes the processor to immediately terminate its present activity. The signal must be active HIGH for at least four clock cycles. It restarts execution, as described in the instruction set description, when RESET returns LOW. RESET is internally synchronized.
CLK	19	1	CLOCK: provides the basic timing for the processor and bus controller. It is asymmetric with a 33% duty cycle to provide optimized internal timing.
VCC	40	-	POWER SUPPLY + +5V)
GND	1,20	-	GROUND (OV)
$M N / \overline{M X}$	33	1	MINIMUM/MAXIMUM: indicates what mode the processor is to operate in. The two modes are discussed in the following sections.

The following pin function descriptions are for the $S A B 8088$ minimum mode (i.e. $M N / \overline{M X}=V C C$). Only the pin functions which are unique to

$10 / \bar{M}$	28	0	STATUS LINE: is an inverted maximum mode $\overline{\mathrm{S}} \overline{2}$. It is used to distinguish a memory access from an $1 / O$ access. $10 / \bar{M}$ becomes valid in the T4 preceding a bus cycle and remains valid until the final T4 of the cycle ($1 / \mathrm{O}=\mathrm{HIGH}, \mathrm{M}=\mathrm{LOW}$). $10 / \bar{M}$ floats to 3 -state OFF in local bus "hold acknowledge".
$\overline{W R}$	29	0	WRITE: strobe indicates that the processor is performing a write memory or write I/O cycle depending on the state of the $10 / \bar{M}$ signal. $\overline{W R}$ is active for T2, T3, and Tw of any write cycle It is active LOW, and floats to 3 -state OFF in local bus "hold acknowledge".
$\overline{\text { INTA }}$	24	0	INTA: is used as a read strobe for interrupt acknowledge cycles. It is active LOW during T2, T3, and Tw of each interrupt acknowledge cycle.

Pin Definitions and Functions (continued)

Symbol	Number	Input (1) Output (O)	Function			
ALE	25	0	ADDRESS LATCH ENABLE: is provided by the processor to latch the address into the SAB 8282 /8282A/8283/8283A address latch. It is a HIGH pulse active durıng clock low of T1 of any bus cycle. Note that ALE is never floated.			
$D T / \bar{R}$	27	0	DATA TRANSMIT/RECEIVE: is needed in a minimum system that desires to use an SAB 8286/8286A/8287/8287A data bus transceiver. It is used to control the direction of data flow through the transceiver. Logically, DT/ $\overline{\mathrm{R}}$ is equivalent to $\overline{\mathrm{S}} \mathrm{i}$ in the maximum mode, and its timing is the came as for lo inn ($T=$ HIGH, $R=$ LOW). This signal floats to 3 -state OFF in local "hold acknowledge".			
$\overline{\overline{D E N}}$	26	0	DATA ENABLE: is provided as an output enable for the SAB 8286/8286A/ 8287/8287A in a minimum system which uses the transceiver. DEN is active LOW during each memory and I/O access, and for INTA cycles. For a read or INTA cycle, it is active from the middle of T2 until the middle of T4, while for a write cycle, it is active from the beginning of T2 until the middle of T4. $\overline{\text { DEN }}$ floats to 3 -state OFF during local bus "hold acknowledge".			
HOLD, HLDA	31, 30	1/0	HOLD: indicates that another master is requesting a local bus "hold". To be acknowledged, HOLD must be active HIGH. The processor receiving the "hold" request will issue HLDA (HIGH) as an acknowledgement, in the middle of a T4 or T1 clock cycle. Simultaneous with the issuance of HLDA the processor will float the local bus and control lines. After HOLD is detected as being LOW, the processor lowers HLDA, and when the processor needs to run another cycle, it will again drive the local bus and control lines. Hold is not an asynchronous input. External synchronization should be provided if the system cannot otherwise guarantee the set up time.			
$\overline{\text { SSO }}$	34	0	STATUS LINE: is logically equivalent to $\overline{\mathrm{SO}}$ in the maximum mode. The combination of $\overline{S S O}, I O / \bar{M}$ and $D T / \bar{R}$ allows the system to completely decode the current bus cycle status.			
			IO/ \bar{M}	DT/ $\overline{\mathrm{R}}$	$\overline{\text { SSO }}$	Characteristics
			$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1	Interrupt Acknowledge Read I/O Port Write I/O Port Halt Code access Read memory Write memory Passive

Pin Definitions and Functions (continued)

The following pin function descriptions are for the SAB 8088/8288 system in maximum'node (i.e. MN/MX GND). Only the pin functions which
are unique to maximum mode are described. All other pin functions are as described above.

Symbol	Number	Input (I) Output (O)	Function			
S2, S1, S0	$28 \quad 26$	0	STATUS: is active during clock high of $T 4, T 1$, and $T 2$, and is returned to the passive state $(1,1,1)$ during T3 or during Tw when READY is HIGH. This status is used by the SAB 8288/8288A bus controller to generate all memory and 1/O access control signals. Any change by S 2 , S 1 , or $\overline{\mathrm{S} 0}$ during T4 is used to indicate the beginning of a bus cycle, and the return to the passive state in T3 or Tw is used to indicate the end of a bus cycle. These signals float to 3 -state OFF during "hold acknowledge" During the first clock cycle after RESET becomes active, these signals are active HIGH. After this first clock, they float to 3 -state OFF.			
			$\overline{\mathrm{S} 2}$	S1	S̄0	Characteristics
			0 0 0 0 1 1 1 1	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Interrupt Acknowledge Read I/O Port Write I/O Port Halt Code access Read memory Write memory Passive
$\frac{\mathrm{RO} / \mathrm{GTO}}{\mathrm{RQ} / \overline{\mathrm{GT}} 1}$	$\begin{aligned} & 31 \\ & 30 \end{aligned}$	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \end{aligned}$		T/ the or's hav pull gra se of ates 1). ga AB 8 he S ent PU' cal HO se o SAB to the aster alses e. P	NT: pi esso nt high esis que CLK al bu T1 to th 088 "ho inte urin OLD K w 8 (p nd CLK ster ere sare	are used by other local bus masters release the local bus at the end of the ycle. Each pin is bidirectional with iority than $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$. $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ has an o may be left unconnected. The s as follows (See page 28): drom another local bus master quest ("hold") to the SAB 8088 cycle, a pulse one clock wide from questing master (pulse 2), indicates allowed the local bus to float and that cknowledge" state at the next CLK. unit is disconnected logically from old acknowledge". The same rules ply as for when the bus is released. from the requesting master indicates 3) that the "hold" request is he SAB 8088 can reclaim the local CPU then enters T4. ange of the local bus is a sequence of be one idle CLK cycle after each bus ve LOW.

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function	
			If the request is made while the CPU is performing a memory cycle, it will release the local bus during T4 of the cycle when all the following conditions are met: 1. Request occurs on or before T2. 2. Current cycle is not the low byte of a word. 3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence. 4. A locked instruction is not currently executing. If the local bus is idle when the request is made the twn possible events will follow: 1. Local bus will be released during the next clock. 2. A memory cycle will start within 3 clocks. Now the four rules for a currently active memory cycle apply with condition number 1 already satisfied.	
$\overline{\text { LOCK }}$	29	0	LOCK: indicates that other system bus masters are not to gain control of the system bus while LOCK is active (LOW). The LOCK signal is activated by the "LOCK" prefix instruction and remains active until the completion of the next instruction. This signal is active LOW, and floats to 3 -state off in "hold acknowledge".	
QS1, QS0	24, 25	O	QUEUE STATUS: provide status to allow external tracking of the internal SAB 8088 instruction queue. The queue status is valid during the CLK cycle after which the queue operation is performed.	
			QS1 OS0	Characteristics
			0 0 0 1 1 0 1 1	No operation First Byte of opcode from queue Empty the queue Subsequent byte from queue
-	34	0	Pin 34 is always high in the maximum mode.	

Block Diagram

Functional Description

Memory Organization

The processor provides a 20-bit address to memory which locates the byte being referenced. The memory is organized as a linear array of up to 1 million bytes, addressed as $00000(\mathrm{H})$ to $\operatorname{FFFFF}(\mathrm{H})$. The memory is logically divided into code, data, extra data, and stack segments of up to 64 Kbytes each, with each segment falling on 16-byte boundaries.

All memory references are made relative to base addresses contained in high speed segment registers. The segment types were chosen based on the addressing needs of programs. The segment register to be selected is automatically chosen according to the rules of the following table. All infüriatiun in vir seyment type share the same logical attributes (e.g. code or data). By structuring memory into relocatable areas of similar characteristics and by automatically selecting segment registers, programs are shorter, faster, and more structured.

Word (16-bit) operands can be located on even or odd address boundaries. For address and data operands, the least significant byte of the word is stored in the lower valued address location and the most significant byte in the next higher address location. The BIU will automatically execute two fetch or write cycles for 16-bit operands.

Certain locations in memory are reserved for specific CPU operations. Locations from addresses FFFFOH trough FFFFFH are reserved for operations including a jump to the initial system initialization routine. Following RESET, the CPU will always begin execution at location FFFFOH where the jump must be located. Locations 00000 H through 003 FFH are reserved for interrupt operations. Four-
 and a 16-bit offset address direct program flow to one of the 256 possible interrupt service routines. The pointer elements are assumed to have been stored at their respective places in reserved memory prior to the occurrence of interrupts.

Minimum and Maximum Modes

The requirements for supporting minimum and maximum SAB 8088 systems are sufficiently different that they cannot be done efficiently with 40 uniquely defined pins. Consequently, the SAB 8088 is equipped with a strap pin (MN/MX) which defines the system configuration. The definition of a certain subset of the pins changes, dependent on the condition of the strap pin. When the MN/MX pin is strapped to GND, the SAB 8088 defines pins 24 through 31 and 34 in maximum mode. When the $M N / \overline{M X}$ pin is strapped to VCC, the SAB 8088 generates bus control signals itself on pins 24 through 31 and 34 .
The minimum mode SAB 8088 can be used with either a multıplexed or demultiplexed bus. The multiplexed bus configuration is compatible with the SAB 8085A multiplexed bus peripherals (e.g. SAB 8155) and provides the user with a minımum chıp count system. This architecture provides the 8088 processing power in a highly integrated form.
The demultiplexed mode requires one latch (for 64 K addressability) or two latches (for a full megabyte of addressing). A thırd latch can be used for buffering if the address bus loading requires it An SAB 8286/8286A or SAB 8287/8287A transceiver can also be used if data bus buffering is required. The SAB 8088 provides $\overline{\mathrm{DEN}}$ and DT/ $\overline{\mathrm{R}}$ to control the transceiver, and ALE to latch the addresses. This configuration of the minimum mode provides the standard demultiplexed bus structure with heavy bus buffering and relaxed bus timing requirements.
The maximum mode employs the SAB 8288/8288A bus controller. The SAB 8288/8288A decodes status lines $\overline{\mathrm{S} 0}, \overline{\mathrm{~S} 1}$, and $\overline{\mathrm{S} 2}$, and provides the system with all bus control signals. Moving the bus control to the SAB 8288/8288A provides better source and sink current capability to the control lines, and frees the SAB 8088 pins for extended large system features. Hardware lock, queue status, and two request/grant interfaces are provided by the SAB 8088 in maximum mode. These features allow co-processors in local bus and remote bus configurations.

Bus Operation

The SAB 8088 address/data bus is broken into three parts - the lower eight address/data bits (AD0-AD7), the midle eight address bits (A8-A15), and the upper four address bits (A16-A19). The address/ data bits and the highest four address bits are time multiplexed. This technique provides the most efficient use of pins on the processor, permitting the use of a standard 40 lead package. The middle eight address bits are not multiplexed, i.e. they remain valid through hout each bus cycle. In addition, the bus can be demultiplexed at the processor with a single address latch if a standard, non-multiplexed bus is desired for the system.
Each processor bus cycle consists of at least four CLK cycles. These are referred to as T1, T2, T3 and T4. The address is emitted from the processor during T1 and data transfer occurs on the bus during T3 and T4. T2 is used primarily for changing the direction of the bus during read operations. In the event that a "NOT READY" indication is given by the addressed device, "wait" states (Tw) are inserted between T3 and T4. Each inserted "wait" state is of the same duration as a CLK cycle. Periods can occur between SAB 8088 driven bus cycles. These are referred to as "idle" states (Ti), or inactive CLK cycles. The processor uses these cycles for internal housekeeping.
During T1 of any bus cycle, the ALE (address latch enable) signal is emitted (by either the processor or the SAB 8288/8288A bus controller, depending on the $M N / \bar{M} \bar{X}$ strap). At the trailing edge of this pulse, a valid address and certain status information for the cycle may be latched.

Basic System Timing

Status bits $\overline{\mathrm{S0}}, \overline{\mathrm{~S} 1}$, and $\overline{\mathrm{S} 2}$ are used by the bus controller, in maximum mode, to identify the type of bus transaction according to the following table:

$\overline{\mathrm{S}} 2$	$\overline{\mathrm{~S}} 1$	$\overline{\mathrm{~S}} 0$	Characteristics
0 (LOW)	0	0	Interrupt Acknowledge
0	0	1	Read I/O
0	1	0	Write I/O
0	1	1	Halt
1 (HIGH)	0	0	Instruction Fetch
1	0	1	Read Data from Memory
1	1	0	Write Data to Memory
1	1	1	Passive (no bus cycle)

Status bits S3 through S6 are multiplexed with high. order address bits and are therefore valid during T2 through T4. S3 and S4 indicate which segment register was used for this bus cycle in forming the address according to the following table:

S4	S3	Characteristics
0 (LOW)	0	Alternate Data (extra segment) 0
1 (HIGH)	0	Stack
1	1	Code or None

S5 is a reflection of the PSW interrupt enable bit. S6 is always equal to 0 .

I/O Addressing

In the SAB 8088, I/O operations can address up to a maximum of $64 \mathrm{~K} / / O$ registers. The $/ / O$ address appears in the same format as the memory address on bus lines A15--A0. The address lines A19-A16 are zero in I/O operations. The variable 1/O instructions, which use register $D X$ as a pointer have full address capability, while the direct I/O instructions directly address one or two of the 256 I/O byte locations in page 0 of the $1 / 0$ address space. I/O ports are addressed in the same manner as memory locations.
Designers familiar with the SAB 8085 or upgrading an SAB 8085 design should note that the SAB 8085 addresses $1 / \mathrm{O}$ with an 8 -bit address on both halves of the 16 -bit address bus. The SAB 8088 uses a full 16 -bit address on its lower 16 address lines.

System Components

Support Circuits

SAB 8282/8282A Octal Latch
SAB 8283/8283A Octal Latch (Inverting)
SAB 8284A/8284B Clock Generator and Driver
SAB 8286/8286A Octal Bus Transceıver
SAB 8287/8287A Octal Bus Transceiver (Inverting)
SAB 8288/8288A Bus Controller
SAB $8289 \quad$ Bus Arbiter
SAB 8259A Programmable Interrupt Controller

Typical Applications

The SAB 8088 is a general purpose 8-bit microprocessor which can be used for applications ranging from process control to data processing. On page 12 are shown typical system configurations for SAB 8088 familiy components.

Minimum Mode SAB 8088 Typical System Configuration

Maximum Mode SAB 8088 Typical System Configuration

data transfer

76543210765432107654321076543210

Register / memory to / from register
Immediate to register/memory
Immediate to registe
Memory to accumulator
Accumulator to memon
Register/memory to segment registe
Segment register to register/memory

100010 dw	mod reg r/m		
1100011 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
1011 w reg	data	data if $w=1$	
1010000 w	addr-low	addr-high	
1010001 w	addr-low	addr-high	
10001110	mod 0 reg r / m		
10001100	mod $0 \mathrm{regr} / \mathrm{m}$		

PUSH = Push:

Register/memory
Register
Segment register

11111111
01010 mod 110 rim
000 reg 110

$\mathbf{P O P}=\mathbf{P o p}:$
Register/memory
Register
Segment register

10001111
$01011 \mathrm{mod} 000 \mathrm{r} / \mathrm{m}$
010
000 reg 111

XCHG = Exchange:
Register/memory with register
Register with accumulator

1000011 w	mod reg r/m
10010 reg	

IN = Input from:
Fixed port
Variable port

OUT $=$ Output to:
Fixed port
Variable port
XLAT $=$ Translate byte to $A L$
LEA $=$ Load EA to register
LDS $=$ Load pointer to DS
LES = Load pointer to ES
LAHF $=\operatorname{Load} A H$ wth flags
SAHF = Store AH into flags
PUSHF = Push flags
POPF = Pod flaqs

ARITHMETIC

Reg /memorv with register to either Immediate to register/memory Immediate to accumulator

ADC = Add with carrv

Reg /memory with register to ether Immediate to register:memory Immediate to accumulator

INC = Increment
Register/memory
Register
$A A A=A S C I I$ adjust for add
DAA : Decimal adjust for add

76543210765432107654321076543210

1110011 w	port
1110:11w	
11010111	
10001101	mod reg r/m
11000101	mod regr/m

000000 dw	modregr'm	
100000 sw mod $000 \mathrm{r}^{\prime} \mathrm{m}$ data data if $\mathrm{sw}-01$ 0000010 w data datailw		

000.00 dw	mod reg r / m		
:00000sw	$\bmod 010 \mathrm{t} / \mathrm{m}$	data	dataifsw 01
0001010 w	data	data if w 1	

1111111 w
$0 \bmod 000 \mathrm{r} / \mathrm{m}$
01000 reg
00110111
00100111

SUB = Subtract:
Reg /memory and register to ether Immediate from register/memory Immediate from accumulator

001010 dw	mod reg r/m		
100000 sw	$\bmod 101 \mathrm{r} / \mathrm{m}$	data	data if s : $\mathrm{w}=01$
0010110 w	data	data if $w=1$	

NOT $=$ Invert
SHL/SAL $=$ Shift logical/arithmetic lef1
SHR $=$ Shift logical right
SAR $=$ Shift arithmetic right
ROL $=$ Rotate left
ROR $=$ Rotate right
RCL $=$ Rotate through carry flag left
RCR $=$ Rotate through carry right

AND = And

Reg/memory and register to etther
Immediate to register/memory
Immediate to accumulator

TEST $=$ And function to flags, no result
Register/memory and register
Immediate data and register/memory Immediate data and accumulator
$\mathbf{O R}=\mathbf{O r}:$
Reg/memory and register to etther Immediate to register/memory Immediate to accumulator

XOR = Exclusive or:

Reg /memory and register to either Immediate to register/memory Immediate to accumulator

1111001 z
1010010 w
1010011 w
1010111 w
1010110 w
1010101 w

CONTROL TRANSFER
CALL Call
Drect within segment
Indirect within segment
Direct intersegment
indirect intersegment

11101000	disp-low	disp-high
11111111	mod $010 \mathrm{r} / \mathrm{m}$	
10011010	offset-low	offset-high
	seg-low	seg-high

JMP Unconditional Jump.
Direct within segment
Direct within segment short
Indirect within segment
Direct intersegment
indirect intersegmen

11101001	disp-low	disp-high
11101011	disp	
11111111	mod $100 \mathrm{r} / \mathrm{m}$	
11101010	offset-low	offset-high
	seg-low	seg-high
		11111111 mod $101 \mathrm{r} / \mathrm{m}$

$76543210 \quad 76543210 \quad 76543210$
Within segment
Within seg adding immed to SP
Intersegment
Intersegment adding immediable to SP
JE/JZ - Jump on equal/zero
JL/JNGE Jump on less/not greater or equal
JLE/JNG : Jump on less or equal/not greater
JB/JNAE = Jump on below/not above or equal
JBE/JNA = Jump on below or equal not above
JP/JPE = Jump on parity/parity even
JO = Jump on overflow
JS - Jump on sign
JNE/JNZ - Jump on not equal/not zero JNL/JGE $=$ Jump on not less/greater or equal
JNLE/JG = Jump on not less or equal/ greater
JNB/JAE = Jump on not below/above or equal
JNBE/JA $=$ Jump on not below or equal/above

JNP/JPO = Jump on not par/par odd
JNO = Jump on not overflow
JNS = Jump on not sign
LOOP $=$ Loop CX times
LOOPZ/LOOPE $=$ Loop while zero/equal
LOOPNZ/LOOPNE $=$ Loop while not zero/equal
JCXZ $=$ Jump on CX zero

11000011		
11000010	data low	data high
11001011		
11001010	data-low	data high
01110100	disp	
011111100	disp	
01111110	disp	
01110010	disp	
01110110	disp	
01111010	disp	
01110000	disp	
01111000	disp	
011110101	disp	
011111101	disp	
011111111	disp	
01110011	disp	
01110111	disp	
01111011	disp	
01110001	disp	
011111001	disp	
11100010	disp	
11100001	disp	
11100000	disp	
11100011	disp	

int Interrupt

Type 3
INTO Interrupt on overflow
IRET Interrupt return

11001101	type
11001100	
11001110	
11001111	

PROCESSOR CONTROL

CLC Clear carry
CMC Complement carry
SIC Set Carry
CLO Clear direction
STD Set direction
CLI Clear interrup
SII Set interrupt
HLT Halt
wait wait
ESC Escape to externai device
LOCK Bus lock prefix

oootnotes

AL 8-bit accumulator
AX - 16 -bit accumulator
CX Count register
DS Data segmen
ES Extra segment
Above/below refers to unsigned value
Greater more positive.
Less less positive (more negative) signed va ues
$\begin{array}{ll}\text { if } d & 1 \text { then "to" reg. if } d \quad 0 \text { then "from" reg }\end{array}$
if w ithen word instruction, if $w=0$ then byt instruction

If mod 11 then r / m is treated as a REG field
If mod 00 then DISP - 0^{*}. disp-low and disp high
are absent disp-low sign-extended to 01 then DISP
16-bits. disp high is absent
f mod 10 then DISP disp.high displow
If $\mathrm{r} / \mathrm{m} \quad 000$ then EA (BX) - (SI) - DISP
If $\mathrm{r} / \mathrm{m} \quad 001$ then EA $(\mathrm{BX}) \cdot(\mathrm{DI})$ + DISP
if r / m 010 then EA (BP) (SI). DISP
frim 011 then EA (BP) - (DI). DISP
f $\mathrm{r} / \mathrm{m} \quad 100$ then EA - (SI) - DISP
from 101 then EA (DI). DISP
$\begin{array}{lll}\text { If } \mathrm{r} / \mathrm{m} & 110 \text { then EA } & (\mathrm{DP}) \text {. DISP } \\ \text { DISP. }\end{array}$
if r / m lim thenEA 111 thenEA \quad (BX). DISP
DISP follows 2nd byte of instruction thefore data if required)
except if mod 00 and $\mathrm{r} / \mathrm{m} \quad 110$ then EA
disp-high disp-low

If s w - 01 then 16 -bits of immediate data from the operand
it sw 11 then an immediate data byte is sign ended to form the 16 -bit operand
iv 0 then "count" 1, if $v 1$ then "count" in (CL)
\times don't care
2 is used for string primitives for comparsion with ZF FLAG SEGMENT OVERRIDE PREFIX
001 reg 110

REG is assigned according to the following table
16-Bit (w 1) 8-Bit (w 0) Segment

011 BX
100 SP
101 BP
110 SI
111 D
110 SI
111 DI
111 BH
Instruction which reference the flag register file as a 16 -bit object use the symbol FLAGS to

FLAGS $\times \times \times \times$ $X(A F) X(P F) X \cdot(C F)$

Absolute Maximum Ratings *)

Ambient Temperature Undeı Bias
Storage Temperature
Voltage on any Pin with Respect to Ground Power Dissipation

0 to $70^{\circ} \mathrm{C}$ -65 to $+150^{\circ} \mathrm{C}$ -1.0 to +7 V 2.5 Watt

D.C. Characteristics

$S A B 8088: \quad T A=0$ to $70 \cdot C, V C C=5 \mathrm{~V} \pm 10 \%$
$S A B 8088-2: T A=0$ to $70 C, V C C=5 V \pm 5 \%$

Symbol	Parameter	Limit Values		Unit	Test Conditions
		Min.	Max.		
VIL	Input Low Voltage	-0.5	+0.8	V	-
VIH	Input High Voltage	2.0	$V C C+0.5$		
VOL	Output Low Voltage	-	0.45		$1 \mathrm{OL}=2.0 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-		$I \mathrm{OH}=-400 \mu \mathrm{~A}$
ICC	Power Supply Current SAB 8088 SAB 8088-2	-	$\begin{aligned} & 340 \\ & 350 \end{aligned}$	mA	All outputs open $T \mathrm{~A}=25^{\circ} \mathrm{C}$
ILI	Input Leakage Current		± 10	$\mu \mathrm{A}$	$O V \leq V I N \leq V C C$
ILO	Output Leakage Current				$0.45 \mathrm{~V} \leq$ VOUT $\leq V C C$
VCL	Clock Input Low Voltage	-0.5	+0.6	V	-
VCH	Clock Input High Voltage	3.9	$V C C+1.0$		
CIN	Capacitance of Input Buffer (All input except ADO-AD7, $\overline{R O} / \overline{G T})$	-	15	pF	$f \mathrm{c}=1 \mathrm{MHz}$
ClO	Capacitance of $1 / O$ Buffer (AD0-AD7, $\overline{\mathrm{RO}} / \overline{\mathrm{GT}}$)				

${ }^{*}$) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

A.C. Characteristics

$S A B$ 8088: $T A=0$ to $70 C, V C C=5 V \pm 10 \%$
$S A B 8088-2: T A=0$ to $70 C, V C C=5 V \pm 5 \%$

Minimum Complexity System
Timing Requirements

Symbol	Parameter	Limit Values				Unit	Test Condition
		SAB 8088		SAB 8088-2			
		Min.	Max.	Min.	Max.		
TCLCL	CLK Cycle Period	200	500	125	500	ns	-
TClCHir	Clk Low lime	118	-	68	-		
TCHCL	CLK High Time	69		44			
TCH1CH2	CLK Rise Time	-	10	-	10		From 1.0 to 3.5 V
TCL2CL1	CLK Fall Time						From 3.5 to 1.0 V
TDVCL	Data in Setup Time	30	-	20	-		
TCLDX	Data in Hold Time	10		10			
TR1VCL	RDY Setup Time into SAB 8284A/8284B $\left.{ }^{1}\right)^{2}$)	35		35			
TCLR1X	RDY Hold Time into SAB 8284A/8284B $\left.{ }^{1}\right)^{2}$)	0		0			-
TRYHCH	READY Setup Time into SAB 8088	118		68			
TCHRYX	READY Hold Time into SAB 8088	30		20			
TRYLCL	READY Inactive to $C L K^{3}$)	-8		-8			
THVCH	HOLD Setup Time	35		20			
TINVCH	INTR, NMI, TEST Setup Time ${ }^{2}$)	30		15			
TILIH	Input Rise Time (Except CLK)	-	20	-	20		From 0.8 to 2.0 V
TIHIL	Input Fall Time (Except CLK)		12		12		From 2.0 to 0.8 V

${ }^{1}$) Signal at SAB 8284A/8284B shown for reference only.
${ }^{2}$) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
${ }^{3}$) Applies only to T2 state (8 ns into T3).

Timing Responses

Symbol	Parameter	Limit Values				Unit	Test Condition
		SAB 8088		SAB 8088-2			
		Min.	Max.	Min.	Max.		
TCLAV	Address Valid Delay	10	110	10	60	ns	$C_{L}=20-100 \mathrm{pF}$ for all SAB 8088 Outputs in addition to the internal loads
TCLAX	Address Hold Time		-		-		
TCLAZ	Address Float Delay	TCLAX	80	TCLAX	50		
TLHLL	ALE Width	TCLCH-20	-	TCLCH-10	-		
TCLLH	ALE Active Delay		80		50		
TCHLL	ALE Inactive Delay		85		55		
TLLAX	Address Hold Time to ALE Inactive	TCHCL-10	-	TCHCL-10	-		
TCLDV	Data Valid Delay	10	110	10	60		
TCHDX	Data Hold Time		-		-		
TWHDX	Data Hold Time After $\bar{W} R$	TCLCH-30		TCLCH-30			
TCVCTV	Control Active Delay 1	10	110	10	70		
TCHCTV	Control Active Delay 2				60		
TCVCTX	Control Inactive Delay				70		
TAZRL	Address Float to READ Active	0	-	0	-		
TCLRL	$\overline{\mathrm{RD}}$ Active Delay	10	165	10	100		
TCLRH	$\overline{\mathrm{RD}}$ Inactive Delay		150		80		
TRHAV	$\overline{\mathrm{R}} \overline{\mathrm{D}}$ Inactive to Next Address Active	TCLCL-45	-	TCLCL-40	-		
TCLHAV	HLDA Valid Delay	10	160	10	100		
TRLRH	RD Width	2TCLCL-75	-	2TCLCL-50	--		
TWLWH	\bar{W} Width	2TCLCL-60		2TCLCL-40			
TAVAL	Address Valid to ALE Low	TCLCH-60		TCLCH-40			
TOLOH	Output Rise Time		20		20		From 0.8 to 2.0 V
TOHOL	Output Fall Time		12		12		From 2.0 to 0.8 V

Bus Timing - Minimum Mode System

Notes see next page

Bus Timing - Minimum Mode System (cont'd)

${ }^{1}$) All signals switch between $V O H$ and $V O L$ unless otherwise specified.
${ }^{2}$) RDY is sampled near the end of T2, T3, Tw to determine if Tw machines states are to be inserted.
${ }^{3}$) Two INTA cycles run back to back. The SAB 8088 local ADDR/DATA Bus is floating during both INTA cycles. Control signals shown for second INTA cycle.
${ }^{4}$) Signals at $S A B 8284 A / 8284 B$ are shown for reference only.
${ }^{5}$) All timing measurements are made at 1.5 V unless otherwise noted.

Max Mode System (Using SAB 8288/8288A Bus Controller)
Timing Requirements

Symbol	Parameter	Limit Values				Unit	Test Condition
		SAB 8088		SAB 8088-2			
		Min.	Max.	Min.	Max.		
TCLCL	CLK Cycle Period	200	500	125	500	ns	-
TCLCH	CLK Low Time	118	-	68	-		
TCHCL	CLK High Time	69		44			
TCH1CH2	CLK Rise Time	-	10	-	10		From 1.0 to 3.5 V
TCL2CL1	CLK Fall Time						From 3.5 to 1.0 V
TDVCL	Data In Setup Time	30	-	20	-		
TCLDX	Data In Hold Time	10		10			
TR1VCL	RDY Setup Time into SAB 8284A $\left./ 8284 B^{1}\right)^{2}$)	35		35			
TCLR1X	RDY Hold Time into SAB 8284A (8284B $\left.{ }^{1}\right)^{2}$)	0		0			-
TRYHCH	READY Setup Time into SAB 8088	118		68			
TCHRYX	READY Hold Time into SAB 8088	30		20			
TRYLCL	READY Inactive to CLK ${ }^{3}$)	-8		-8			
TINVCH	Setup Time for Recognition \qquad (INTR, NMI, $\left.\overline{T E S T})^{2}\right)$	30		15			
TGVCH	$\bar{R} \bar{Q} / \overline{\mathrm{GT}}$ Setup Time						
TCHGX	$\overline{\mathrm{RQ}}$ Hold Time into SAB 8088	40		30			
TILIH	Input Rise Time (Except CLK)	-	20	-	20		From 0.8 to 2.0 V
TIHIL	Input Fall Time (Except CLK)		12		12		From 2.0 to 0.8 V

${ }^{1}$) Signal at SAB 8284A/8284B or SAB 8288/8288A shown for reference only.
${ }^{2}$) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
${ }^{3}$) Applies only to T2 state (8 ns into T 3).

Timing Responses

Symbol	Parameter	Limit Values				Unit	Test Condition
		SAB 8088		SAB 8088-2			
		Min.	Max.	Min.	Max.		
TCLML	Command Active Delay ')	10	35	10	35	ns	CL $\quad 20 \quad 100 \mathrm{pF}$ for all SAB 8088 Outputs in addition to the internal loads
TCLMH	Command Inactive Delay')						
TRYHSH	READY Active to Status Passive ${ }^{\text { }}$	-	110	-	65		
TCHSV	Status Active Delay	10		10	60		
TCLSH	Status Inactive Delay		130		70		
TCLAV	Address Valid Delay		110		60		
TCLAX	Address Hold Time		-		-		
TCLAZ	Address Float Delay	TCLAX	80	TCLAX	50		
TSVLH	Status Valid to ALE High ${ }^{1}$)	-	20	-	20		
TSVMCH	Status Valid to MCE High ${ }^{1}$)						
TCLLH	CLK Low to ALE Valid ')						
TCLMCH	CLK Low to MCE High ';						
TCHLL	ALE Inactive Delay ${ }^{1}$)	4	15	4	15		
TCLDV	Data Valid Delay	10	110	10	60		
TCHDX	Data Hold Time		-		-		
TCVNV	Control Active Delay ')	5	45	5	45		
TCVNX	Control Inactive Delay ${ }^{\text {') }}$	10		10			

${ }^{1}$) Signal at SAB 8284A/8284B or SAB 8288/8288A shown for reference only.
${ }^{2}$) Applies only to T 2 state (8 ns into T3).

SAB 8088

Symbol	Parameter	Limit Values				Unit	Test Condition
		SAB 8088		SAB 8088-2			
		Min.	Max.	Min.	Max.		
TAZRL	Address Float to READ Active	0	--	0	-		
TCLRL	$\bar{R} \bar{D}$ Active Delay		165		100		
TCLRH	R̄D Inactive Delay		150		80		
TRHAV	$\overline{R D}$ Inactive to Next Address Active	TCLCL-45	-	TCLCL - 40	-		$C L=20-100 \mathrm{pF}$
TCHDTL	Direction Control Active Delay ${ }^{1}$)		50		50		Outputs in addition to the
TCHDTH	Direction Control illaulive Deidy ';	-	30	-	30		
TCLGL	$\overline{\text { GT Active Delay }}$		85		50		
TCLGH	$\overline{\mathrm{G}}$ T Inactive Delay						
TRLRH	R̄D Width	2TCLCL. 75	-	2TCLCL - 50	-		
TOLOH	Output Rise Time	-	20	-	20		From 0.8 to 2.0 V
TOHOL	Output Fall Tıme		12		12		From 2.0 to 0.8 V

${ }^{1}$) Signal at SAB 8284A/8284B or SAB 8288/8288A shown for reference only.

Bus Timing - Maximum Mode System (Using SAB 8288/8288A)

Notes see next page.

Bus Timing - Maximum Mode System (Using SAB 8288/8288A)

WRITE CYCLE

Software HALT -
($\overline{D E N}=V O L ; \overline{R D}, \overline{M R D C}, \overline{O R C}, \overline{M W T C}, \overline{A M W C}, \overline{O W C}, \overline{A O W C}, \overline{N T A}, D T / \bar{R}=V O H$)

${ }^{1}$) All Signals switch between $V O H$ and $V O L$ unless otherwise specified.
${ }^{2}$) RDY is sampled near the end of T2, T3, Tw to determine if Tw machines states are to be inserted.
${ }^{3}$) Cascade address is valid between first and second INTA cycle.
${ }^{4}$) Two INTA cycles run back-to-back. The SAB 8088 local ADDR/DATA Bus is floating during both INTA cycles. Control for pointer address is shown for second INTA cycle.
${ }^{5}$) Signals at SAB 8284A/8284B or SAB 8288/8288A are shown for reference only.
${ }^{6}$) The issuance of the SAB 8288/8288A command and control signals ($\overline{\mathrm{MRDC}}, \overline{\mathrm{MWTC}}, \overline{\mathrm{AMWC}}, \overline{\text { IORC }}$, $\overline{I O W C}, \overline{\mathrm{AIOWC}}, \overline{\mathrm{INTA}}$ and DEN) lags the active HIGH SAB 8288/8288A DEN.
${ }^{7}$) All timing measurements are made at 1.5 V unless otherwise noted.
${ }^{8}$) Status inactive in state just prior to T4.

Asynchronous Signal Recognition

${ }^{1}$) Setup requirements for asynchronous signals only to guarantee recognition at next CLK

Bus Lock Signal Timing (Maximum Mode Only)

Request/Grant Sequence Timing (Maximum Mode Only)

${ }^{1}$) The coprocessor may not drive the buses outside the region shown without risking contention

Hold/Hold Acknowledge Timing (Minimum Mode Only)

Input/Output Waveforms for A.C.-Tests

A.C. Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 " The clock is driven at 4.3 V and 0.25 V . Timing measurements are made at 1.5 V for both a logic " 1 " and " 0 ".

Load Circuit for A.C.-Tests

CL includes Jig Capacitance

SAR 80186

Migh Integration 16 -道i Microprocessor

- Integrated Feature Set
—Enhanced SAB 8086-2 CPU
-Clock Generator
-2 Independent, High-Speed DMA Channels
- Programmable Interrupt Controller
-3 Programmable 16-bit Timers
-Programmable Memory and Peripheral
Chip-Select Logic
-Programmable Wait State Generator
- Local Bus Controller
- High Performance Processor
-2 Times the Performance of the
Standard SAB 8086
-4 MByte/Sec Bus Bandwidth Interface
- Direct Addressing Capability to 1 MByte of Memory
- Completely Object Code Compatible with All Existing SAB 8086/8088 Software - 10 New Instruction Types
- Complete System Development Support
- Fully Compatible with Industry Standard 80186

SAB 80188 High Integration 8-Bit Microprocessor

- Integrated Feature Set
—Enhanced SAB 8088-2 CPU
-Clock Generator
-2 Independent, High-Speed DMA Channels
-Programmable Interrupt Controller
-3 Programmable 16-bit Timers
-Programmable Memory and Peripheral Chip-Select Logic
-Programmable Wait State Generator
- Local Bus Controller
- 8-Bit Data Bus Interface; 16-Bit Internal architecture
- High Performance 8 MHz Processor
-2 Times the Performance of the
Standard SAB 8088
-2 MByte/Sec Bus Bandwidth Interface
- Completely Object Code Compatible with All Existing SAB 8086/8088 Software
-10 New Instruction Types
- Direct Addressing Capability to 1 MByte of Memory
- Complete System Development Support
- Fully Compatible with Industry Standard 80188

SAB 80188 Block Diagram

SAB 80286 High Performance Microprocessor with Memory Management and Protection

- High-Performance Processor (up to Six Times the SAB 8086)
- Large Address Space:
- 16 Megabytes Physical
- 1 Gigabyte Virtual per Task
- Integrated Memory Management, Four-Level Memory Protection and Support for Virtual Memory and Operating Systems
- Two SAB 8086 Upward-Compatible Operating Modes:
- SAB 8086 Real Address Mode
- Protected Virtual Address Mode
- High Bandwidth Bus Interface
(8 Megabyte/s)
- Full Hardware and Software Support

The SAB 80286 is an advanced, high-performance microprocessor with specially optimized capabilities for multiple user and multitasking systems. The SAB 80286 has built-in memory protection that supports operating system and task isolation as well as program and data privacy within tasks. An 8 MHz SAB 80286 provides up to six times greater throughput than the standard 5 MHz SAB 8086. The SAB 80286 includes memory management capabilities that map up to 2^{30} (one gigabyte) of virtual address space per task into 2^{24} bytes (16 megabytes) of physical memory.
The SAB 80286 is upward-compatible with SAB 8086/ 8088 software. Using SAB 8086 real address mode, the SAB 80286 is object codecompatible with existing SAB 8086/8088 software. In protected
virtual address mode, the SAB 80286 is source codecompatible with SAB 8086/8088 software and may require upgrading to use virtual addresses supported by SAB 80286's integrated memory management and protection mechanism. Both modes operate at full SAB 80286 performance and execute a superset of the SAB 8086/8088 instructions. The SAB 80286 provides special operations to support the efficient implementation and execution of operating systems. For example, one instruction can end execution of one task, save its state, switch to a new task, load its state, and start execution of the new task. The SAB 80286 also supports virtual memory systems by providing a segment-notpresent exception and restartable instructions.

Pin Configuration

LCC package

Component pad view - as viewed from underside of component when mounted on the board.

PC board view - as viewed from the component side of the pc board.

Note: N.C. Pads must not be connected.

Pin grid array package

Bottom view
Top view

Pin Definitions and Functions

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function	
A23-A0	7-34	0	ADDRESS BUS outputs physical memory and I/O port addresses. A0 is LOW when data is to be transferred on pins D7-0. A23-A10 are LOW during I/O transfers. The address bus is active HIGH and floats to Tri-state OFF during bus hold acknowledge.	
RESET	29	I	SYSTEM RESET clears the internal logic of the SAB 80286 and is active HIGH. The SAB 80286 may be reinitialized at any time a LOW to HIGH transition on RESET which remains active for more than 16 system clock cycles. During RESET active, the output pins of the SAB 80286 enter the state shown below:	
				Pin state during reset
			Pin value	Pin names
			$\begin{aligned} & 1 \text { (HIGH) } \\ & 0 \text { (LOW) } \\ & \text { Tri-state OFF } \end{aligned}$	$\overline{\mathrm{SO}}, \overline{\mathrm{S}}, \overline{\mathrm{PEACK}}, \mathrm{A} 23-\mathrm{A} 0, \overline{\mathrm{BHE}}, \overline{\text { LOCK }}$ M/IO, COD/INTA, HLDA D15 - D0

Operation of the SAB 80286 begins after a HIGH to LOW transition on RESET. The HIGH to LOW transition of RESET must be synchronous to the system clock. Approximately 50 system clock cycles are required by the SAB 80286 for internal initializations before performing the first bus cycle to fetch code from the poweron execution address.
A LOW to HIGH transition of RESET synchronous to the system clock will end a processor cycle at the second HIGH to LOW transition of the system clock. The LOW to HIGH transition of RESET may be asynchronous to the system clock; however, in this case it cannot be predetermined which phase of the processor clock will occur during the next system clock period. Synchronous LOW to HIGH transitions of RESET are required only for systems where the processor clock must be phase-synchronous to another clock.

SYSTEM CLOCK provides the fundamental timing for SAB 80286 systems. It is divided by two (inside the SAB 80286) to generate the processor clock. The internal divide-by-two circuitry can be synchronized to an external clock generator by a LOW to HIGH transition on the RESET input.

D15-D0	$36-51$	I O
$\overline{\text { BUSY }}$	53,54	I
ERROR	DATA BUS inputs data during memory, I/O, and interrupt acknow- ledge read cycles: outputs data during memory and I/O write cycles. The data bus is active HIGH and floats to Tri-state OFF during bus hold acknowledge.	

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
INTR	57	1	INTERRUPT REQUEST requests the SAB 80286 to suspend its current program execution and service a pending external request. Interrupt requests are masked whenever the interrupt enable bit in the flag word is cleared. When the SAB 80286 responds to an interrupt request, it performs two interrupt acknowledge bus cycles to read an 8-bit interrupt vector that identifies the source of the interrupt. To assure program interruption, INTR must remain active until the first interrupt acknowledge cycle is completed. INTR is sampled at the beginning of each processor cycle and must be active HIGH at least two processor cycles before the current instruction ends in order to interrupt before the next instruction. INTR is level sensitive, active HIGH, and may be asynchronous to the system clock.
NMI	59	1	NON-MASKABLE INTERRUPT REQUEST interrupts the SAB 80286 with an internally supplied vector value of 2 . No interrupt acknowledge cycles are performed. The interrupt enable bit in the SAB 80286 flag word does not affect this input. The NMI input is active HIGH, may be asynchronous to the system clock, and is edge-triggered after internal synchronization. For proper recognition, the input must have been previously LOW for at least four system clock cycles and remain HIGH for at least four system clock cycles.
READY	63	I	BUS READY terminates a bus cycle. Bus cycles are extended without limit until terminated by $\overline{\text { READY }}$ LOW. $\overline{\text { READY }}$ is an active LOW synchronous input requiring setup and hold times relative to the system clock be met for correct operation. $\overline{\text { READY }}$ is ignored during bus hold acknowledge.
$\begin{aligned} & \text { HOLD } \\ & \text { HLDA } \end{aligned}$	$\begin{aligned} & 64 \\ & 65 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	BUS HOLD REQUEST AND HOLD ACKNOWLEDGE control ownership of the SAB 80286 local bus. The HOLD input allows another local bus master to request control of the local bus. When control is granted, the SAB 80286 will float its bus drivers to Tri-state OFF and then activate HLDA, thus entering the bus hold acknowledge condition. The local bus will remain granted to the requesting master until HOLD becomes inactive which results in the SAB 80286 deactivating HLDA and regaining control of the local bus. This terminates the bus hold acknowledge condition, HOLD may be asynchronous to the system clock. These signals are active HIGH.
COD/INTA	66	0	CODE/INTERRUPT ACKNOWLEDGE distinguishes instruction fetch cycles from memory data read cycles. Also distinguishes interrupt acknowledge cycles from I/O cycles. COD/INTA floats to Tri-state OFF during bus hold acknowledge.
$\mathrm{M} / \overline{\mathrm{IO}}$	67	0	MEMORY I/O SELECT distinguishes memory access from I/O access. If HIGH during Ts, a memory cycle or a halt/shutdown cycle is in progress. If LOW, an I/O cycle or an interrupt acknowledge cycle is in progress $\mathrm{M} / \overline{\mathrm{O}}$ floats to Tri-state OFF during bus hold acknowledge.

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
LOCK	68	0	BUS LOCK indicates that other system bus masters are not to gain control of the system bus following the current bus cycle. The LOCK signal may be activated explicitly by the "LOCK"" instruction prefix or automatically by SAB 80286 hardware during memory XCHG instructions, interrupt acknowledge, or descriptor table access. LOCK is active LOW and floats to Tri-state OFF during bus hold acknowledge.
VCC	30,62	-	POWER SUPPLY (+5V)
VSS	$9,35,60$	-	I
CAP	52	GROUND (OV)	

Functional Description

Introduction

The SAB 80286 is an advanced, high-performance microprocessor with specially optimized capabilities for multiple user and multitasking systems. Depending on the application, the SAB 80286's performance is up to six times faster than that of the standard 5 MHz SAB 8086, while providing complete upward software compatibility with the Siemens 16-bit CPU family (SAB 8086/88, SAB 80186/88):
The SAB 80286 operates in two modes: real address mode (8086 mode) and protected virtual address mode. Both modes execute a superset of the SAB 8086/88 instruction set. In real address mode programs use real addresses with up to one megabyte of address space. Programs use virtual addresses in piutecieú viriuai audress moae, also called protected mode. In protected mode, the SAB 80286 CPU automatically maps 1 gigabyte of virtual addresses per task into a 16 megabyte real address space. This mode also provides memory protection to isolate the operating system and ensure privacy of each task's programs and data. Both modes provide the same basic instruction set, registers, and addressing modes.
The following functional description describes first the basic SAB 80286 architecture common to both modes, second the real address mode, and thirdly the protected mode.

Basic Architecture

The processors of the Intel/Siemens 16 -bit CPU family all contain the same basic set of registers,
instructions, and addressing modes. Therefore, the SAB 80286 processor is upward-compatible with the SAB 8086, 8088 and 80186 CPUs.

Register Set

The SAB 80286 basic architecture has fifteen registers as shown below. These registers are grouped into the following four categories:
General registers: Eight 16 -bit general purpose registers used to contain arithmetic and logical operands. Four of these (AX, BX, CX, and DX) can be used either in their entirety as 16 -bit words or split into pairs of separate 8 -bit registers.
Segment registers: Four 16-bit special purpose registers select, at any given time, the segments of memory that are immediately addressable for
 Organization).
Base and index registers: Four of the general purpose registers may also be used to determine offset addresses of operands in memory. These registers may contain base addresses or indexes to particular locations within a segment. The addressing mode determines the specific registers used for operand address calculations.
Status and control registers: The three 16-bit special purpose registers in the figure below record or control certain aspects of the SAB 80286 processor state including the instruction pointer which contains the offset address of the next sequential instruction to be executed.

Status and Control Register Bit Functions

Flags Word Description

The flags word (flags) records specific characteristics of the result of logical and arithmetic instructions (bits $0,2,4,7$, and 11) and controls the operation of the SAB 80286 within a given operating mode (bits 8 and 9). Flags is a 16 -bit register. The function of the flag bits is given in table 1.

Instruction Set

The instruction set is divided into seven categories: data transfer, arithmetic, shift/rotate/logical, string manipulation, control transfer, high level instructions, and processor control.
An SAB 80286 instruction can reference zero, one, or two operands; where an operand resides in a register, in the instruction itself, or in memory. Zero-operand instructions (e.g. NOP and HLT) are
usually one byte long. One-operand instructions (e.g. INC and DEC) are usually two bytes long but some are encoded in only one byte. One-operand instructions may reference a register or memory location. Tow-operand instructions permit the following six types of instruction operations:

- register to register
- memory to register
- immediate data to register
- memory to memory
- register to memory
- immediate data to memory

Two-operand instructions (e.g. MOV and ADD) are usually three to six bytes long. Memory to memory operations are provided by a special class of string instructions requiring one to three bytes. For detailed instruction formats and encodings refer to the instruction set summary.

Table 1
Flags Word Bit Functions

Bit position	Name	Functions		
0	CF	Carry Flag - Set on high-order bit carry or borrow; cleared otherwise		
2	AF	Parity Flag - Set if low-order 8 bits of result contain an even number of 1-bits; cleared otherwise		
4	ZF	Set on carry from or borrow to the low-order 4 bits of AL; cleared otherwise		
6	SF	Zero Flag - Set if result is zero; cleared otherwise		
7	TF	Sign Flag - Set equal to high-order bit of result (0 if positive, 1 if negative)		
11	Sveriiow Fiag - Set if result is a positive number too large or a negative number			
too smali (excluding sign bit) to fit in destination operand; cleared otherwise			,	Single Step Flag - Once set, a single step interrupt occurs after the next
:---				
instruction has been executed. TF is cleared by the single step interrupt	,			

Memory Organization

Memory is organized as sets of variable length segments. Each segment is a linear contiguous sequence of up to $64 \mathrm{~K}\left(2^{16}\right) 8$-bit bytes. Memory is addressed using a two-component address
(a pointer) that consists of a 16 -bit segment selector, and a 16-bit offset. The segment selector indicates the desired segment in memory. The offset component indicates the desired byte address within the segment.

Two Component Address

Table 2
Segment Register Selection Rules

Memory reference needed	Segment register used	Implicit segment selection rule
Instructions	Code (CS)	Automatic with instruction prefetch
Stack	Stack (SS)	All stack pushes and pops. Any memory reference which uses BP as a base register
Local data	Data (DS)	All data references except when relative to stack or string destination
Externed (global) data	Extra (ES)	Alternate data segment and destination of string operation

All instructions that address operands in memory must specify the segment and the offset. For speed and compact instruction encoding, segment selectors are usually stored in the high-speed segment registers. An instruction need specify only the desired segment register and an offset in order to address a memory operand.
Most instructions need not explicitly specify which segment register is used. The correct segment register is automatically chosen according to the rules of table 2.
These rules follow the way programs are written as independent modules that require areas for code and data, a stack, and access to external data areas. Special segment override instruction prefixes allow the implicit segment register selection rules to be overridden for special cases. The stack, data, and extra segments may coincide for simple programs. To access operands not residing in one of the four immediately available segments, a full 32-bit pointer or a new segment selector must be loaded.

Addressing Modes

The SAB 80286 provides a total of eight adressing modes for instructions to specify operands. Two addressing modes are provided for instructions that operate on register or immediate operands:
Register operand mode: The operand is located in one of the 8 or 16-bit general registers.

Immediate operand mode: The operand is included in the instruction.

Direct mode: The operand's offset is contained in the instruction as an 8 or 16-bit displacement element.
Register indirect mode: The operand's offset is in one of the registers $\mathrm{SI}, \mathrm{DI}, \mathrm{BX}$, or BP .

Based mode: The operand's offset is the sum of an 8 or 16 -bit displacement and the contents of a base register ($B X$ or $B P$).

Indexed mode: The operand's offset is the sum of an 8 or 16 -bit displacement and the contents of an index register (SI or DI).
Based indexed mode: The operand's offset is the sum of the contents of a base register and an index register.
Based indexed mode with displacement: The operand's offset is the sum of a base register's contents, an index register's contents, and an 8 or 16-bit displacement.

Data Types

The SAB 80286 directly supports the following data types:
Integer:
A signed binary numeric value contained in an 8-bit byte or a 16-bit word. All operations assume a 2's complement representation. Signed 32 and 64 -bit integers are supported using the numeric data processor extension.
Ordinal:
An unsigned binary numeric value contained in an 8 -bit byte or 16 -bit word.
Pointer:
A 32-bit quantity, composed of a segment selector component and an offset component. Each component is a 16 -bit word.

String:

A contiguous sequence of bytes or words. A string may contain between 1 byte and 64 Kbytes.
ASCII:
A byte representation of alphanumeric and control characters using the ASCII standard of character representation.
BCD:
A byte (unpacked) representation of the decimal digits 0 to 9 .

Packed BCD:
A byte (packed) representation of two decimal digits 0 to 9 storing one digit in each nibble of the byte.
Floating Point:
A signed 32,64, or 80-bit real number representation (Floating point operands are supported using the extended processor configuration with SAB 80287).

I/O Space

The I/O space consists of 64 K 8 -bit or 32 K 16 -bit ports. I/O instructions address the I/O space with either an 8 -bit port address, specified in the instruction, or a 16-bit port address in the DX register, 8 -bit port addresses are zero extended such that A15-A8 are LOW. I/O port addresses 00F8(H) through $00 \mathrm{FF}(\mathrm{H})$ are reserved.

Table 3
Interrupt Vector Assignments

Function	Interrupt Number	Related instructions	Return address before instruction causing exception?
Divide error exception	0	DIV, IDIV	Yes
Single step interrupt	1	All	-
NMI interrupt	2	All	-
Breakpoint interrupt	3	INT	-
INT0 detected overflow exception	4	INTO	No
BOUND range exceeded exception	5	BOUND	Yes
Invalid opcode exception	6	any undefined opcode	Yes
Processor extension not available exception	7	ESC or WAIT	Yes
Reserved	$8-15$		-
Processor extension error interrupt	16	ESC or WAIT	-
Reserved	$17-31$		-
User defined	$32-255$		-

Interrupts

An interrupt transfers execution to a new program Iccation. The old program address (CS:IP) and machine state (flags) are saved on the stack to allow resumption of the interrupted program. Interrupts fall into three classes: hardware initiated, INT instructions, and instruction exceptions. Hardwareinitiated interrupts occur in response to an external input and are classified as non-maskable or maskable. Programs may cause an interrupt with an INT instruction. Instruction exceptions occur when an unusual condition, which prevents further instruction processing, is detected while attempting to execute an instruction. The return address from an exception will always point at the instruction causing the exception and include any leading instruction prefixes.
A table containing up to 256 pointers defines the proper interrupt service routine for each interrupt. Interrupts 0 to 31, some of which are used for instruction exceptions, are reserved. For each inter-
rupt, an 8 -bit vector must be supplied to the SAB 80286 which identifies the appropriate table entry. Exceptions supply the interrupt vector internally. INT instructions contain or imply the vector and allow access to all 256 interrupts. Maskable hardware initiated interrupts supply the 8 -bit vector to the CPU during an interrupt acknowledge bus sequence. Non-maskable hardware interrupts use a predefined internally supplied vector.

Single step interrupt

The SAB 80286 has an internal interrupt that allows programs to execute one instruction at a time. It is called the single step interrupt and is controlled by the single step flag bit (TF) in the flag word. Once this bit is set, an internal single step interrupt will occur after the next instruction has been executed. The interrupt clears the TF bit and uses an internally supplied vector of 1 . The IRET instruction is used to set the TF bit and transfer control to the next instruction to be single-stepped.

Interrupt Priorities

When simultaneous interrupt requests occur, they are processed in a fixed order as shown in table 4. Interrupt processing involves saving the flags, return address, and setting CS:IP to point at the first instruction of the interrupt handler. If other inter-
rupts remain enabled they are processed before the first instruction of the current interrupt handler is executed. The last interrupt processed is therefore the first one serviced.

Table 4
Interrupt Processing Order

Order	Interrupt
1	Instruction exception
2	Single step
3	NMI
4	Processor extension segment overrun
5	INTR
6	INT instruction

Initialization and processor reset

Processor initialization or start up is accomplished by driving the RESET input pin HIGH. RESET forces the SAB 80286 to terminate all execution and local bus activity. No instruction or bus activity will occur as long as RESET is active. After RESET became inactive and an internal processing interval has elapsed, the SAB 80286 begins execution in real address mode with the instruction at physical location FFFFFO(H). RESET also sets some registers to predefined values as shown in table 5.
A23 to A20 will be HIGH when the SAB 80286 performs memory references relative to the CS register until CS is changed. A23 to A20 will be zero for references to the DS, ES, or SS segments. Changing CS in real address mode will force A23 to A20 LOW whenever CS is used again. The initial CS:IP value of F000:FFF0 provides 64 Kbytes of code space for initialization code without changing CS.

Table 5
SAB 80286 Initial Register State after RESET

Flag word	$0002(\mathrm{H})$
Machine status word	FFFO(H)
Instruction pointer	FFFO(H)
Code segment	FOOO(H)
Data segment	$0000(\mathrm{H})$
Extra segment	$0000(\mathrm{H})$
Stack segment	$0000(\mathrm{H})$

Machine Status Word Description

The machine status word (MSW) records when a task switch takes place and controls the operating mode of the SAB 80286. It is a 16-bit register of which the lower four bits are used. One bit places the CPU-into protected mode, while the other three bits, as shown in table 6, control the processor extension interface. After RESET, this register contains FFFO(H) which places the SAB 80286 in real address mode.

Table 6
MSW Bit Functions

Bit position	Name	Function
0	PE	Protected mode enable places the SAB 80286 into protected mode and cannot be cleared except by RESET
1	MP	Monitor processor extension allows WAIT instructions to cause a processor extension not present exception (number 7)
2	TS	Emulate processor extension causes a processor extension not present exception (number 7) on ESC instructions to allow emulating a processor extension
3	Task switched indicates that the next instruction using a processor extension will cause exception 7, allowina software to test whether the surrent procescer extension context belongs to the current task	

The LMSW and SMSW instructions can load and store the MSW in real address mode. The
recommended use of TS, EM, and MP is shown in table 7.

Table 7
Recommended MSW Encodings For Processor Extension Control

TS	MP	EM	Recommended use	Instructions causing exception 7
0	0	0	Initial encoding after RESET. SAB 20286 operation is identical with SAB 8086/88 operation	none
0	0	1	No processor extension is available. Software will emulate its function	ESC
1	0	1	No processor extension is available. Software will emulate its function. The current processor extension context may belong to another task	ESC
0	1	0	A processor extension exists	
1	1	0	A processor extension exists. The current processor extension context may belong to another task. The exception on WAIT allows software to test for an error pending from a previous processor extension operation	ESC or WAIT

Halt

The HLT instruction stops program execution and prevents the CPU from using the local bus until restarted. Either NMI, INTR with IF = 1, or RESET
will force the SAB 80286 out of halt. If interrupted the saved CS:IP will point to the next instruction after the HLT.

Real Address Mode

The SAB 80286 executes a fully upward-compatible superset of the SAB 8086's instruction set in real address mode. In real address mode, the SAB 80286 is object code compatible with SAB 8086 and SAB 8088 software. The real address mode architecture (registers and addressing modes) is exactly as described in the SAB 80286 basic architecture section of this functional description.

Memory Size

Physical memory is a contiguous array of up to 1,048,576 bytes (one megabyte) addressed by pins A0 through A19 and $\overline{\mathrm{BHE}}$. A20 through A23 may be ignored.

Memory Addressing

In real address mode the processor generates 20-bit physical addresses directly from a 20-bit-segment base address and a 16-bit offset.

The selector portion of a pointer is interpreted as the upper 16 bits of a 20-bit segment address. The lower four bits of the 20-bit segment addresses are always zero. Segment addresses, therefore, begin on multiples of 16 bytes. See figure on address calculation for a graphic representation of address formation.
All segments in real address mode are 64 Kbytes in size and may be read, written, or executed. An exception or interrupt can occur if data operands or instructions attempt to wrap around the end of a segment (e.g. a word with its low-order byte at offset FFFF(H) and its high-order byte at offset $0000(\mathrm{H})$. If, in real address mode, the information contained in a segment does not use the full 64 Kbytes, the unused end of the segment may be overlayed by another segment to reduce physical memory requirements.

Real Address Mode, Address Calculation

Table 8
Real Address Mode, Addressing Interrupts

Function	Interrupt number	Related instructions	Return address before instruction?
Interrupt table limit too small exception	8	INT vector is not within table limit	Yes
Processor extension segment overrun interrupt	9	ESC with memory operand extending beyond offset FFFF(H)	No
Segment overrun exception	13	Word memory reference with offset $=$ FFFF(H) or an attempt to execute past the end of a segment	Yes

Interrupts

Taivie ō snows the interrupt vectors reserved tor exceptions and interrupts which indicate an addressing error. The exceptions leave the CPU in the state existing before attempting to execute the failing instruction (except for PUSH, POP, PUSHA, or POPA).

Shutdown

Shutdown occurs when a severe error is detected that prevents further instruction processing by the CPU. Shutdown and halt are externally signalled via a halt bus operation. They can be distinguished by A1 HIGH for halt and A1 LOW for shutdown. In real address mode, shutdown can occur under two conditions:

- Exceptions 8 or 13 happen and the IDT limit does not include the interrupt vector.
- A CALL, INT or POP instruction attempts to wrap around the stack segment when SP is not even.
An NMI input can bring the CPU out of shutdown if the IDT limit is at least $000 \mathrm{~F}(\mathrm{H})$ and SP is greater than $0005(\mathrm{H})$, otherwise shutdown can only be exited via the RESET input.

Protected Virtual Address Mode

The SAB 80286 executes a fully upward-compatible superset of the SAB 8086 instruction set in protected virtual address mode (protected mode). Protected mode also provides memory management and protection mechanisms and associated instructions.
The SAB 80286 enters protected virtual address mode from real address mode by setting the PE (Protection Enable) bit of the machine status word with the Load Machine Status Word (LMSW) instruction. Protected mode offers extended physical and virtual memory address space, memory protection mechanisms, and new operations to support operating system and virtual memory.

All registers, instructions and addressing modes
 section of the functional description remain the same. Programs for the SAB 8086, SAB 8088, SAB 80186 and real address mode SAB 80286 can be run in protected mode: however, embedded constants for segment selectors are different.

Memory Size

The protected mode SAB 80286 provides a 1 gigabyte virtual address space per task mapped into a 16 megabyte physical address space defined by the address pins $\mathrm{A} 23-\mathrm{A} 0$ and $\overline{\mathrm{BHE}}$. The virtual address space may be larger than the physical address space since any use of an address that does not map to a physical memory location will cause a restartable exception.

Memory Addressing

As in real address mode, protected mode uses 32-bit pointers, consisting of 16 -bit selector and offset components. The selector, however, specifies an index into a memory resident table rather than the upper 16 -bits of a real memory address. The 24 -bit base address of the desired segment is obtained from the tables in memory. The 16 -bit offset is added to the segment base address to form the physical address as shown in the figure below. The tables are automatically referenced by the CPU whenever a segment register is loaded with a selector. All SAB 80286 instructions which load a segment register will reference the memory-based tables without additional software. The memory-based tables contain 8 byte values called descriptors.

Protected Mode, Memory Addressing

Descriptors

Descriptors define the use of memory. Special types of descriptors also define new functions for transfer of control and task switching. The SAB 80286 has segment descriptors for code, stack and data segments, as well as system control descriptors for special system data segments and control transfer operations. Descriptor accesses are performed as locked bus operations to assure descriptor integrity in multiprocessor systems.

Code and data segment descriptors ($\mathrm{S}=1$)
Besides segment base addresses, code and data descriptors contain other segment attributes including segment size (1 to 64 Kbytes), access rights (read only, read/write, execute only, and execute/ read), and presence in memory (for virtual memory systems; figure and table next page). Any segment usage violating a segment attribute indicated by the segment descriptor will prevent the memory cycle and cause an exception or interrupt.

Code or Data Segment Descriptor

Access Rights Byte Definition

Code and data (including stack data) are stored in two types of segments: code segments and data segments. Both types are identified and defined by segment descriptors ($S=1$). Code segments are identified by the executable (E) bit set to 1 in the descriptor access rights byte, whereas the data segments have the E bit set to \emptyset.

System segment descriptors ($\mathbf{S}=\mathbf{0}$, type $=1-3$)
In addition to code and data segment descriptors, the protected mode SAB 80286 defines system segment descriptors. These descriptors define special system data segments which contain a table of descriptors (local descriptor table descriptor) or segments which contain the execution state of a task (task state segment descriptor).
The figure and table on next page show the formats for the special system data segment descriptors.

System Segment Descriptor

System Segment Descriptor Fields

Name	Value	Description
TYPE	1	Available task state segment Local descriptor table descriptor Busy task state segment
P	3	Descriptor contents are not valid Descriptor contents are valid
DPL	0	Descriptor privilege level
BASE	$0-3$	Base address of special system data segment in real memory
LIMIT	24-bit number	16-bit number

Gate Descriptors ($\mathrm{S}=0$, Type $=4-7$)

Gates are used to control access to entry points within the target code segment. The gate descriptors are call gates, task gates, interrupt gates and trap gates. Gates provide a level of indirection between the source and destination of the control transfer. This indirection allows the CPU to automatically perform protection checks and control entry point of the destination. Call gates are used to change privilege levels (see privilege), task gates are used to perform a task switch, and interrupt and trap gates are used to specify interrupt service routines. The interrupt gate disables interrupts (resets IF) while the trap gate does not.

The figure and table below show the format of the gate descriptors. The descriptor contains a destination pointer that points to the descriptor of the target segment and the entry point offset. The destination selector in an interrupt gate, trap gate, and call gate must refer to a code segment descriptor. Exception 13 is generated when the gate is used if a destination selector does not refer to the correct descriptor type.

Gate Descriptor

Gate Descriptor Fields

Name	Value	Description					
	4	- Call gate					
TYPE	5	- Task gate					
	6	- Interrupt gate					
	7	- Trap gate	$	$	P	0	- Descriptor contents are not valid
:---	:---	:---					
	1	- Descriptor contents are valid					
DPL	$0-3$	Descriptor Privilege level					
WORD	$0-31$	Number of words to copy from callers stack to called procedures stack. Only used with call gate					
DESTINATION	16 -bit	Selector to the target code segment (call, interrupt or trap gate)					
selector	16-bit offset	Entry point within the target code segment					
DESTINATION							

Segment Descriptor Cache Registers

A segment descriptor cache register is assigned to each of the four segment registers (CS, SS, DS, ES). Segment descriptors are automatically loaded (cached) into a segment descriptor cache register (see figure) whenever the associated segment register is loaded with a selector. Only segment descriptors may be loaded into segment descriptor cache registers. Once loaded, all references to that segment of memory use the cached descriptor information instead of reaccessing memory. The descriptor cache registers are not visible to programs. No instructions exist to store their contents. They only change when a segment register is loaded.

Selector Fields

A protected mode selector has three fields: descriptor entry index, local or global descriptor table indicator (TI), and selector privilege (RPL) as shown in the figure on selector fields. These fields select one of two memory-based tables of descriptors, select the appropriate table entry and allow highspeed testing of the selector's privilege attribute (refer to privilege discussion below).

Descriptor Cache Registers

Selector Fields

Selector			
		Index	
	15	32	1
Bits	Name	Function	
1-0	Requested Privilege Level (RPL)	Indicates Selector Privilege Level Desired	
2	Table Indicator (TI)	```TI=0 Use Global Descriptor Tabl (GDT) Tl=1 Use Local Descriptor Table (LDT)```	
15-3	Index	Select Descriptor Entry in Table	

Local and Global Descriptor Tables (LDT, GDT)

Two tables of descriptors, called descriptor tables, contain all descriptors accessible by a task at any given time. A descriptor table is a linear array of up to 8192 descriptors. The upper 13 bits of the selector value are an index into a descriptor table. Each table has a 24-bit base register to locate the
descriptor table in physical memory and a 16-bit limit register that confine descriptor access to the defined limits of the table as shown in the figure below. A restartable exception (13) will occur if an attempt is made to reference a descriptor outside the table limits.

Local and Global Descriptor Table Definition

Global Descriptor Table and Interrupt Descriptor Table Data Type

Interrupt Descriptor Table

The protected mode SAB 80286 has a third descriptor table, called the interrupt descriptor table (DT) (see figure below), used to define up to 256 interrupts. It may contain only task gates, interrupt gates and trap gates. The IDT (interrupt
descriptor table) has a 24 -bit base and 16 -bit limit register in the CPU. References to IDT entries are made via INT instructions, external interrupt vectors, or exceptions. The IDT must be at least 256 bytes in size to allocate space for all reserved interrupts.

Interrupt Descriptor Table Definition

Privilege

The SAB 80286 has a four-level hierarchical privilege system which controls the use of privileged instructions and access to descriptors
(and their associated segments) within a task (figure below). The privilege levels are numbered 0 through 3. Level 0 is the most privileged level.

Hierarchical Privilege Levels

High Speed Operating System Interface

Protection

The SAB 80286 includes mechanisms to protect critical instructions that affect the CPU execution state (e.g. HLT) and code or data segments from improper usage. These mechanisms are grouped under the term "protection" and have three forms:
Restricted usage of segments (e.g. no write allowed to read-only data segments). The only segments available for use are defined by descriptors in the local descriptor table (LDT) and global descriptor table (GDT).

Restricted access to segments via the rules of privilege and descriptor usage.
Privileged instructions or operations that may only be executed at certain privilege levels as determined by the CPL and I/O privilege level (IOPL). The !OP! ic defincd by hits 14 and 13 of the flay word.

These checks are performed for all instructions and can be split into three categories: segment load checks (table 9), operand reference checks (table 10), and privileged instruction checks (table 11). Any violation of the rules shown will result in an exception. A not-present exception related to the stack segment causes exception 12.
The IRET and POPF instructions do not perform some of their defined functions if CPL is not of sufficient privilege (numerically small enough). No exceptions or other indication are given when these conditions occur.

The IF bit is not changed if CPL > IOPL.
The IOPL field of the flag word is not changed if $\mathrm{CPL}>0$.

Table 9
Segment Register Load Checks

Error description	Exception number
Descriptor table limit exceeded	13
Segment descriptor not present	11 or 12
Privilege rules violated	13
Invalid descriptor/segment type	
segment register load:	
- read only data segment load to	
SS	
- special control descriptor load to	13
DS, ES, SS	
- execute only segment load to	
DS, ES, SS	
- data segment load to CS	
load to SS	

Table 10
Operand Reference Checks

Error description	Exception number
Write into code segment	13
Read from execute-only code	13
segment	13
Write to read-only data segment	12 or 13
Segment limit exceeded ${ }^{11}$	

${ }^{1)}$ Carry out in offset calculations is ignored.
Table 11
Privileged Instruction Checks

Error description	Exception numper
CPL >0 when executing the following instructions LIDT, LLDT, LGDT, LTR, LMSW, CTS, HLT	13
CPL $>$ IOPL when executing the following instructions INS, IN, OUTS, OUT, STI, CLI, LOCK	13

Exceptions

The SAB 80286 detects several types of exceptions and interrupts in protected mode (see table 12). Most of then are restartable after the exceptional condition is removed. Interrupt handlers for most exceptions receive an error code, pushed on the stack after the return address, that identifies the selector involved (0 if none). The return address normally points to the failing instruction, including all leading prefixes. For a processor extension segment overrun exception, the return address will not point at the ESC instruction that caused the exception; however, the processor extension registers may contain the address of the failing instruction.

Table 12
Protected Mode Exceptions

Interrupt vector	Function	Return address at failing instruction?	Always restart- able?	Error code on stack?
8	Double exception detected	yes	no	yes
9	Processor extension segment overrun	no	no	no
10	Invalid task state segment	Segment not present	yes	yes

${ }^{1)}$ When a PUSHA instruction attempts to wrap around the stack segment, the machine state after the exception will not be restartable. This condition is identified by the value of the saved SP being either 0000(H), $0001(\mathrm{H})$, FFFE (H), or $\operatorname{FFFF}(\mathrm{H})$.

Special Operations

Task Switch Operation

The SAB 80286 provides a built-in task switch operation which saves the entire SAB 80286 execution state (registers, address space, and a link to the previous task), loads a new execution state, and commences execution in the new task. Like gates, the task switch operation is invoked by executing an inter-segment JMP or CALL instruction which refers to a task state segment (TSS) or task gate descriptor in the GDT or LDT. An INT instruction, exception, or external interrupt may also invoke the task switch operation by selecting a task gate descriptor in the associated IDT descriptor entry.
The TSS descriptor points at a segment (see figure on next page) containing the entire SAB 80286 execution state while a task gate descriptor contains a TSS selector. The limit field must be $>002 \mathrm{~B}(\mathrm{H})$.
The task state segment is marked busy by changing the descriptor type field from type 1 to type 3 . Use of a selector that references a busy task state segment causes exception 13.

Processor Extension Context Switching

The context of a processor extension (such as the SAB 80287 numerics processor) is not changed by the task switch operation. A processor extension context need only be changed when a different task attempts to use the processor extension (which still contains the context of a previous task).
Whenever the SAB 80286 switches tasks, it sets the task switched (TS) bit of the MSW. TS indicates that a processor extension context may belong to a different task than the current one. The processor extension not present exception (7) will occur when attempting to execute an ESC or WAIT instruction if TS = 1 and a processor extension is present (MP = 1 in MSW).

Double Fault and Shutdown

If two seperate exceptions are detected during a single instruction execution, the SAB 80286 performs the double fault exception (8). If an exception occurs during processing of the double fault exception, the SAB 80286 will enter shutdown. During shutdown no further instructions or exceptions are processed. Either NMI (CPU remains in protected mode) or RESET (CPU exits protected mode) can force the SAB 80286 out of shutdown. Shutdown is externally signalled via a HALT bus operation with A1 HIGH.

Task State Segment and TSS Registers

System Interface

The SAB 80286 system interface appears in two forms: a local bus and a system bus. The local bus consists of address, data, status, and control signals at the pins of the CPU. A system bus is any buffered version of the local bus. A system bus may also differ from the local bus in terms of coding of status and control lines and/or timing and loading of signals. The SAB 80286 family includes several devices to generate standard system buses such as the IEEE 796 standard Multibus ${ }^{\text {® }}$

Bus Interface Signals and Timing

The SAB 80286 local bus interfaces the SAB 80286 to local memory and I/O components. The interface has 24 address lines, 16 data lines, and 8 status and control signals.
The SAB 80286 CPU, SAB 82284 clock generator, SAB 82288 bus controller, SAB 82289 bus arbiter, SAB 8286A/8287A transceivers, and SAB 8282A/ 8283A latches provide a buffered and decoded system bus interface. The SAB 82284 generates the system clock and synchronizes READY and RESET. The SAB 82288 converts bus operation status encoded by the SAB 80286 into command and bus control signals.
The SAB 82289 bus arbiter generates Multibus bus arbitration signals. These components can provide the timing and electrical power drive levels required for most system bus interfaces including the Multibus.

Physical Memory and I/O Interface

A maximum of 16 megabytes of physical memory can be addressed in protected mode. One megabyte can be addressed in real address mode. Memory is accessible as bytes or words. Words consist of any two consecutive bytes addressed with the least significant byte stored in the lowest address.
The I/O address space contains 64 K addresses in both modes. The I/O space is accessible as either bytes or words, as is memory. Byte-wide peripheral devices may be attached to either the upper or lower byte of the data bus. An interrupt controller such as the SAB 8259A must be connected to the lower byte of the data bus (D7-D0) for proper return of the interrupt vector.

Bus Operation

The SAB 80286 uses a double frequency system clock (CLK input) to control bus timing. All signals on the local bus are measured relative to the system CLK input. The CPU divides the system clock by 2 to produce the internal processor clock, which determines bus state. Each processor clock is composed of two system clock cycles named phase 1 and phase 2. The SAB 82284 clock generator output (PCLK) identifies the next phase of the processor clock (see figure on system and processor clock relationship).

System and Processor Clock Relationship

Six types of bus operations are supported: memory read, memory write, I/O read, I/O write, interrupt acknowledge, and halt/shutdown. Data can be transferred at a maximum rate of one word per two processor clock cycles.
The SAB 80286 bus has three basic states: idle (TI), send status (TS), and perform command (TC). The SAB 80286 CPU also has a fourth local bus state called hold (TH). TH indicates that the SAB 80286 has surrendered control of the local bus to another bus master in response to a HOLD request.
Each bus state is one processor clock long. The figure below shows the four SAB 80286 local bus states and allowed transitions.

Pipelined Addressing

The SAB 80286 uses a local bus interface with
 for data access. Pipelined timing allows bus operations to be performed in two processor cycles,
while allowing each individual bus operation to last for three processor cycles.
The timing of the address outputs is pipelined such that the address of the next bus operation becomes available during the current bus operation. Or in other words, the first clock of the next bus operation is overlapped with the last clock of the current bus operation. Therefore, address decoder and routing logic can operate in advance of the next bus operation. External address latches may hold the address stable for the entire bus operation, and provide additional ac and dc buffering.
The SAB 80286 does not maintain the address of the current bus operation during all TC states. Instead, the address for the next bus operation may be emitted during phase 2 of any TC. The address remains valid during phase 1 of the first TC to quarantee hold time. relative to $A I F$, fnr the addrese latch inputs.

SAB 80286 Bus States

Basic Bus Cycle

Bus Cycle Termination

At maximum transfer rates, the SAB 80286 bus alternates between the status and command states. The bus status signals become inactive after TS so that they may correctly signal the start of the next bus operation after the completion of the current cycle. No external indication of TC exists on the SAB 80286 local bus. The bus master and bus controller enter TC directly after TS, and continue executing TC cycles until terminated by READY.

READY Operation

The current bus master and SAB 82288 bus controller terminate each bus operation simultaneously to achieve maximum bus bandwidth. Both are informed in advance by $\overline{\text { READY }}$ active which identifies the last TC cycle of the current bus operation. The bus master and bus controller must see the same sense of the $\overline{R E A D Y}$ signal, there by requiring $\overline{R E A D Y}$ be synchronous to the system clock.

Synchronous Ready

The SAB 82284 clock generator provides $\overline{\text { READY }}$ synchronization from both synchronous and asynchronous sources (see figure on next page). The synchronous ready input (SRDY) of the clock generator is sampled with the falling edge of CLK at the end of phase 1 of each TC. The state of SRDY is then transferred to the bus master and bus controller via the READY output line.

Asynchronous Ready

Many systems have devices of subsystems that are asynchronous to the system clock. As a result, their ready outputs cannot be guaranteed to meet the SAB 82284 SRDY setup and hold time requirements. But the SAB 82284 asynchronous ready input ($\overline{\mathrm{ARDY}}$) is designed to accept such signals. The $\bar{A} \overline{R D Y}$ input is sampled at the beginning of each TC cycle by SAB 82¿84 synchronization logic. This provides one system CLK cycle time to resolve its value before transferring it to the bus master and bus controller.

Synchronous and Asynchronous Ready

1) $\overline{\text { SRDYEN }}$ is active low
2) If $\overline{S R D Y E N}$ is high, the state of $\overline{S R D Y}$ will not effect $\overline{\operatorname{READY}}$
3) $\overline{A R D Y E N}$ is active low
$\overline{\text { ARDY }}$ or $\overline{\text { ARDYEN }}$ must be HIGH at the end of TS. $\overline{\text { ARDY cannot be used to terminate a bus cycle with }}$ no wait states.
Each ready input of the SAB 82284 has an enable pin (SRDYEN and $\overline{\text { ARDYEN }}$) to select whether the current bus operation will be terminated by the synchronous or asynchronous ready. Either of the ready inputs may terminate a bus operation. These enable inputs are active low and have the same timing as their respective ready inputs. An address decode logic usually selects whether the current bus operation should be terminated by ARDY or SRDY.

Hold and HLDA

HOLD and HLDA allow another bus master to gain control of the local bus by placing the SAB 80286 bus into the Th state. The sequence of events required to pass control between the SAB 80286 and another local bus master is shown in the next figure.

Multibus Write Terminated by Asynchronous Ready with Bus Hold

1) Status lines are not driven by SAB 80286 yet remain high due to pullup resistors in SAB 80288 and SAB 82289 during HOLD state.
2) Address, $\mathrm{M} / \overline{\mathrm{IO}}$ and COD/INTA may start floating during any TC depending on when internal SAB 80286 bus arbiter decides to release bus to external HOLD. The float starts in $\varnothing 2$ of TC.
3) $\overline{\mathrm{BHE}}$ and $\overline{\mathrm{LOCK}}$ may start floating after the end of any TC depending on when internal SAB 80286 bus arbiter decides to release bus to external HOLD. The float starts in $\varnothing 1$ of TC.
4) The minimum HOLD to HLDA time in shown. Maximum is one TH longer.
5) The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending as shown.
ói Tine minimum HŨLD in HLDA tıme is shown. Maximum is a function of the instruction, type of bus cycle and other machine status (i.e., interrupts, waits, lock, etc.)
6) Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example. Synchronous ready state in ignored after ready is signalled via the asynchronous input.

Processor Extension Transfers

The processor extension interface uses I/O port addresses 00F8(H), 00FA(H), and 00FC(H) which are part of the I/O port address range reserved. An ESC instruction with EM $=0$ and $\mathrm{TS}=0$ will perform I/O bus operations to one or more of these I/O port addresses independent of the value of IOPL and CPL.
ESC instructions with memory references enable the CPU to accept PEREQ inputs for processor extension operand transfers. The CPU will determine the operand starting address and read/ write status of the instruction. For each operand transfer, two or three bus operations are performed, one word transfer with I/O port address 00FA(H) and one or two bus operations with memory. Three bus operations are required for each word operand aligned on an odd byte address.

Interrupt Acknowledge Sequence

The figure Interrupt Acknowledge Sequence illustrates a sequence performed by the SAB 80286 in response to an INTR input. An interrupt acknowledge sequence consists of two INTA bus operations. The first allows a master SAB 8259A programmable interrupt controller (PIC) to determine which if any of its slaves should return the interrupt vector. An eight-bit vector is read by the SAB 80286 during the
second INTA bus operation to select an interrupt handler routine from the interrupt table.
The master cascade enable (MCE) signal of the SAB 82288 is used to enable the cascade address drivers, during INTA bus operations (see interrupt acknowledge sequence figure), onto the local address bus for distribution to slave interrupt controllers via the system address bus. The SAB 80286 emits the $\overline{\text { LOCK }}$ signal (active LOW) during TS of both INTA bus operations. A local bus "hold" request will not be honored until the end of the second INTA bus operation.

Three idle processor clocks are provided by the SAB 80286 between INTA bus operations to allow for the minimum INTA to INTA time and CAS (cascade address) out delay of the SAB 8259A. The second INTA bus operation must always have at least one extra TC state added via logic controlling READY. A23-A0 are in Tri-state OFF until the first TC state of the second INTA bus operation. This prevents bus contention between the cascade address drivers and CPU address drivers. The extra TC state provides time for the SAB 80286 to resume driving the address lines for subsequent bus operations.

Local Bus Usage Priorities

The SAB 80286 local bus is shared among several internal units and external HOLD requests. In case of simultaneous requests, their relative priorities are:
(Highest)
Any transfers which assert $\overline{\text { LOCK }}$ either explicitly (via the LOCK instruction prefix) or implicitly (i.e. segment descriptor access, interrupt acknowledge sequence, or an XCHG with memory).
The second of the two byte bus operations required for an odd-aligned word operand.
The second or third cycle of a processor extension data transfer.
Local bus request via HOLD input.
Processor extension data operand transfer via PEREQ input.
Data transfer performed by EU as part of an instruction.

(Lowest)

An instruction prefetch request from BU. The EU wil inhibit prefetching two processor clocks in advance of any data transfer to minimize waiting by EU for a prefetch to finish.

Interrupt Acknowledge Sequence

Halt or Shutdown Cycles

The SAB 80286 externally indicates halt or shutdown conditions as a bus operation. These conditions occur due to an HLT instruction or multiple protection exceptions while attempting to execute one instruction. A halt or shutdown bus operation is signalled when $\overline{\mathrm{S} 1, \overline{\mathrm{~S} 0} \text { and COD//ָTA }}$ are LOW and M/ $\overline{\mathrm{O}}$ is HIGH. A1 HIGH indicates halt, and A1 LOW indicates shutdown. The SAB 82288 bus controller does not issue ALE, nor is READY required to terminate a halt or shutdown bus operation.
During halt or shutdown, the SAB 80286 may service PEREO or HOLD requests. A processor extension segment overrun exception during shutdown will inhibit further service of PEREQ. Either NMI or RESET will force the SAB 80286 out of halt or shutdown. An INTR, if interrupts are enabled, üi à piucessur exiension segment overrun exception will also force the SAB 80286 out of halt.

1) Data is ignored.
2) First INTA cycle should have at least one wait state inserted to meet SAB 8259A minimum INTA pulse width.
3) Second INTA cycle must have at least one wait state inserted since the CPU will not drive A23-A0. $\overline{B H E}$, and $\overline{\text { LOCK }}$ until after the first TC state.
The CPU-imposed one clock delay prevents bus contention between cascade address buffer being disabled by MCE \downarrow and address outputs. Without the wait state, the SAB 80286 address will not be valid for a memory cycle started immediately after the second INTA cycle. The SAB 8259A also requires one wait state for minimum INTA pulse width.
4) $\overline{\text { LOCK }}$ is activated during the INTA cycles to prevent the SAB 82289 from releasing the bus between INTA cycles in a multimaster system.
5) A23-A0 exit Tri-state OFF during $\varnothing 2$ of the second TC in the INTA cycle.

System Configuration

The versatile bus structure of the SAB 80286 microsystem, with a full complement of support chips, allows flexible configuration of a wide range of system. The basic configuration shown above is similar to an SAB 80286 maximum mode system. It includes the CPU plus an SAB 8259A interrupt controller, SAB 82284 clock generator and the SAB 82288 bus controller. The latches (SAB 8282A
and SAB 8283A) and transceivers (SAB 8286A and SAB 8287A) used in an SAB 8086 system may be used in a SAB 80286 microsystem.
As indicated by the dashed lines in the figure above, the ability to add processor extensions is an integral feature of SAB 80286 microsystems. The processor extension interface allows external hardware to perform special functions and transfer data concurrently with CPU execution of other instructions. Full system integrity is maintained because the SAB 80826 supervises all data transfers and instruction execution for the processor extension. The SAB 80287 numeric processor extension (NPX), for example, uses this interface. The SAB 80287 has all the instructions and data types of an SAB 8087. The SAB 80287 NPX can perform numeric calculations and data transfers concurrently with CPU piuyram execution. ivumerics code and data have the same integrity as all other information protected by the SAB 80286 protection mechanism.
The SAB 80286 can overlap chip select decoding and address propagation during the data transfer for the previous bus operation. This information is latched into the SAB 8282A/8283A's by ALE in the middle of a TS cycle. The latched chip select and address information remains stable during the bus operation while the next cycles address is being decoded and propagated into the system. Decode logic can be implemented with a high-speed bipolar PROM.
The optional decode logic shown in the figure on basic system configuration takes advantage of the overlap between address and data of the SAB 80286 bus cycle to generate advance memory and ' 10 -select signals. This minimizes system performance degradation caused by address propagation and decode delays. In addition to selection of memory and I / O, the advance selects may be used with configurations supporting local and system buses to enable the appropriate bus interface for each bus cycle. The COD/INTA and M/IO signals are applied to the decode logic to distinguish between interrupt, I / O, code, and data bus cycles. By adding the SAB 82289 bus arbiter chip, the SAB 80286 provides a Multibus system bus interface. A second SAB 82288 bus controller and additional latches and transceivers could be added to the local bus. This configuration allows the SAB 80286 to support an on-board bus for local memory and peripherals, and the Multibus for system bus interfacing.

Basic SAB 80286 System Configuration

Table 13
SAB 80286 Systems, Recommended Pullup Resistor Values

SAB 80286 Pin and name	Pullup value	Purpose
4-S1	$20 \mathrm{~K} \Omega \pm 10 \%$	Pull $\overline{\mathrm{SO}}, \overline{\mathrm{S1}}$, and $\overline{\text { PEACK }}$ inactive during SAB 80286 hold periods
5-S0		
6-PEACK		
53-ERROR	$20 \mathrm{k} \Omega \pm 10 \%$	Pull $\overline{E R R O R}$ and $\overline{B U S Y}$ inactive when SAB 80287 not present (or temporarily removed from socket)
54-BUSY		
63-\̄RADY	$910 \Omega \pm 5 \%$	Pull $\overline{R E A D Y}$ inactive within required minimum time $C L=150 \mathrm{pF}$, $\mathrm{IR} \leq 7 \mathrm{~mA}$)

Absolute Maximum Ratings *)

Temperature under bias
Storage temperature
Voltage on any pin with respect to ground Power dissipation

$$
\begin{array}{r}
0 \text { to }+70^{\circ} \mathrm{C} \\
-65 \text { to }+150^{\circ} \mathrm{C} \\
-1.0 \text { to } \begin{array}{r}
\mathrm{V} \\
3.6 \mathrm{~W}
\end{array}
\end{array}
$$

D.C. Characteristics

$\left(T A=0\right.$ to $\left.70^{\circ} \mathrm{C} ; V C C=+5 \mathrm{~V} \pm 5 \%\right)$

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
VIL	Input LOW voltage	-0.5	+0.8	V	-
VIH	Input HIGH voltage	2.0	VCC +0.5		
VOL	Output LOW voltage	-	0.45		$\mathrm{IOL}=3.0 \mathrm{~mA}$
VOH	Output HIGH voltage	2.4	-		$\mathrm{IOH}=400 \mu \mathrm{~A}$
ICC		-	600	mA	$\mathrm{TA}=0^{\circ} \mathrm{C}$
			390		$\mathrm{TA}=70^{\circ} \mathrm{C}$
ILI	Input leakage current		± 10	$\because \mathrm{A}$	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{VCC}$
IIL	Input sustaining current on $\overline{B U S Y}$ and ERROR	30	500		$\mathrm{VIN}=0 \mathrm{~V}$
ILO	Output leakage current	-	± 10		$0.45 \mathrm{~V} \leq \mathrm{VOUT} \leq \mathrm{VCC}$
ILO	Output leakage current		± 1	mA	$0 \mathrm{~V} \leq \mathrm{VOUT} \leq 0.45 \mathrm{~V}$
VCL	Clock input LOW voltage	-0.5	+0.6	V	-
VCH	Clock input HIGH voltage	3.8	VCC +1.0		
CIN	Capacitance of inputs (all input exept CLK)	-	10	pF	$\mathrm{fc}=1 \mathrm{MHz}$
CO	Capacitance of I/O or outputs		20		
CCLK	Capacitance of CLK, $\overline{R E A D Y}$, $\overline{B U S Y}, \overline{E R R O R}$, and RESET inputs		12		

[^22]
A.C. Characteristics SAB 80286

($\mathrm{TA}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \pm 5 \%$)
AC timings are referenced to 0.8 V and 2.0 V points of signals as illustrated in data sheet waveforms, unless otherwise noted.

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
1	System clock (CLK) period	62	250	ns	-
2	System clock (CLK) LOW time	15	225		at 0.6 V
3	System clock (CLK) HIGH time	25	235		at 3.2 V
17	System clock (CLK) rise time	-	10		1.0 V to 3.5 V
18	System clock (CLK) fall time				3.5 V to 1.0 V
4	Async inputs, setup time				
5	Async inputs, hold time	20			1)
6	RESET setup time				
7	RESET hold time	0			
8	Read data setup time	10			-
9	Read data hold time	5			
10	$\overline{\text { READY }}$ setup time	38.5			
11	$\overline{\text { READY }}$ hold time	25			
12	Status PEACK valid delay	0	37.5		
13	Address valid delay		60		2) 3)
14	Write data valid delay		50		
15	Address/status/data float delay		60		2) 4)
16	HLDA valid delay				2) 3)

1) Asynchronous inputs are INTR, NMI, HOLD, PEREQ, $\overline{E R R O R}$, and $\overline{B U S Y}$. The specification is given only for testing purposes, to assure recognition at a specific CLK edge.
2) Delay from 0.8 V on the $C L K$ to 0.8 V or 2.0 V or float on the output as apropriate for valid or floating condition.
3) Output load $\mathrm{CL}=100 \mathrm{pF}$
4) Float condition occurs when output current is less than ILO in magnitude.

SAB 82284 Timing Requirements

| Symbol | Parameter | Limit values | | | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | Test condition

1) These times are given for testing purposes to assure a predetermined action

SAB 82288 Timing Requirements

Symbol	Parameter		Limit values		Unit	Test condition
			Min.	Max.		
12	CMDLY setup time		20		ns	
13	CMDLT hold time		0			
30 29	Command delay from CLK	Command inactive Command active	3	20		$\begin{aligned} & \mathrm{CL}=300 \mathrm{pF} \text { max } \\ & \mathrm{IOL}=32 \mathrm{~mA} \text { max } \\ & 1 \mathrm{OH}=5 \mathrm{~mA} \text { max } \end{aligned}$
16	ALE active delay			15		
17	ALE inactive delay		-	20		
19	DT/ $\overline{\mathrm{R}}$ read active delay		0			
22	DT/信 read inactive delay		10	40		$\mathrm{CL}=150 \mathrm{pF}$
20	DEN read active delay					IOL $=16 \mathrm{~mA}$ max $\mathrm{IOH}=-1 \mathrm{~mA} \max$
21	DEN read inactive delay		3	15		
23	DEN write active delay		-	30		
24	DEN write inactive delay		3			

A.C. Characteristics SAB 80286-6

(TA $=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \pm 5 \%$)
AC timings are referenced to 0.8 V and 2.0 V points of signals as illustrated in data sheet waveforms, unless otherwise noted.

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
1	System clock (CLK) period	83	250	ns	-
2	System clock (CLK) LOW time	20	250		at 0.6 V
3	System clock (CLK) HIGH time	25	0		at 3.2 V
17	System clock (CLK) rise time	-	10		1.0 V to 3.5 V
18	System clock (CLK) fall time				3.5 V to 1.0 V
4	Async inputs, setup time	30			
5	Async inputs, hold time				$1)$
6	RESET setup time	25			
7	RESET hold time	0			
8	Read data setup time	20			-
9	Read data hold time	8			
10	$\overline{\text { READY }}$ setup time	50			
11	$\overline{\text { READY }}$ hold time	35			
12	Status PEACK valid delay	0	55		
13	Address valid delay		80		2) 3)
14	Write data valid delay		65		
15	Address/status/data float delay		80		2) 4)
16	HLDA valid delay				2) 3)

1) Asynchronous inputs are INTR, NMI, HOLD, PEREQ, $\overline{E R R O R}$, and $\overline{B U S Y}$. The specification is given only for testing purposes, to assure recognition at a specific CLK edge.
2) Delay from 0.8 V on the CLK to 0.8 V or 2.0 V or float on the output as apropriate for valid or floating condition.
3) Output load $\mathrm{CL}=100 \mathrm{pF}$
4) Float condition occurs when output current is less than ILO in magnitude.

SAB 80286

SAB 82284-6 Timing Requirements

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
11	$\overline{\text { SRDY/SRDYEN setup time }}$	25	-	ns	-
12	$\overline{\text { SRDY/SRDYEN }}$ hold time	0			
13	$\overline{\text { ARDY }} / \overline{\text { ARDYEN }}$ setup time	5			1)
14	$\overline{\text { ARDY }} / \overline{\text { ARDYEN }}$ hold time	30			
19	PCLK delay	0	45		$\begin{aligned} & \mathrm{CL}=75 \mathrm{pF} \\ & \mathrm{IOL}=5 \mathrm{~mA} \\ & \mathrm{IOH}=-1 \mathrm{~mA} \end{aligned}$

1) These times are given for testing purposes to assure a predetermined action

SAB 82288-6 Timing Requirements

Symbol	Parameter		Limit values		Unit	Test condition
			Min.	Max.		
12	CMDLY setup time		25		ns	
13	CMDLT hold time		0			
30 29	Command delay from CLK	Command inactive Command active	3	30 40		$\begin{aligned} & \mathrm{CL}=300 \mathrm{pF} \text { max } \\ & \mathrm{IOL}=32 \mathrm{~mA} \text { max } \\ & \mathrm{IOH}=5 \mathrm{~mA} \text { max } \end{aligned}$
16	ALE active delay			25		
17	ALE inactive delay		-	35		
19	DT/ $\overline{\mathrm{R}}$ read active delay			40		
22	DT/甭 read inactive delay		5	45		$C L=150 \mathrm{pF}$
20	DEN read active delay		0	50		IOL $=16 \mathrm{~mA}$ max $\mathrm{IOH}=-1 \mathrm{~mA} \max$
21	DEN read inactive delay		3	40		
23	DEN write active delay		-	35		
24	DEN write inactive delay		3			

Waveforms

Major cyçle timing

Asynchronous Input Signal Timing

1) PCLK indicates which processor cycle phase will occur on the next CLK, PCLK may not indicate the correct phase until the first bus cycle is performed.
2) These inputs are asynchronous. The setup and hold times shown assure recognition for testing purposes.

Reset Input Timing and Subsequent Processor Cycle Phase

1) When RESET meets the setup time shown, the next CLK will start or repeat $\varnothing 2$ of a processor cycle.

Exiting and Entering Hold

1) These signals may not be driven by the SAB 80286 during the time shown. The worst case in terms of latest float time is shown.
2) The data bus will be driven as shown if the last cycle before Tl in the diagram was a write TC.
3) The SAB 80286 floats its status pins during TH. Pullup resistors in SAB 80288 keep these signals high.
4) For HOLD request set up to HLDA (refer to figure on Multibus write terminated by async ready).
5) $\overline{B H E}$ and $\overline{\mathrm{LOCK}}$ are driven at this time but will not become valid until TS.
6) The data bus will remain in Tii-state OFF if a read cycle is performed.

7) $\overline{\text { PEACK }}$ always goes active during the first bus operation of a processor extension data operand transfer sequence. The first bus operation will be either a memory read at operand address or I/O read at port address 00FA(H).
8) To prevent a second processor extension data operand transfer, the worst case maximum time (shown above) is: $3 \times$ (1)-(11) \max-(4) min . The actual, configuration-dependent, maximum time is: $3 \times$ (1)-(11) max. -(4) $\min +A X 2 \times$ (1).
A is the number of extra TC states added to either the first or second bus operation of the processor extension data operand transfer sequence.

Initial SAB 80286 pin state during RESET

1) Setup time for RESET \uparrow may be violated with the consideration that $\varnothing 1$ of the processor clock may begin one system CLK period later.
2) Setup and hold times for RESET \downarrow must be met for proper operation.
3) The data bus is only guaranteed to be in Tri-state OFF at the time shown.

Instruction Format Examples

A. Short Opcode Format Example

Byte
Byte 2
Byte 3
Byte 4
Byte 5
765432107654321076543210

B. Long Opcode Format Example

SAB 80286 Instruction set summary

Instruction Timing Notes

The instruction clock counts listed below establish the maximum execution rate of the SAB 80286.
With no delays in bus cycles, the actual clock count of an SAB 80286 program will average 5% more than the calculated clock count, due to instruction sequences which execute faster than they can be fetched from memory.

To calculate elapsed times for instruction sequences multiply the sum of all instruction clock counts, as listed in the table below, by the processor clock period. An 8 MHz processor clock has a clock period of 125 nanoseconds and requires an SAB 80286 system clock (CLK input) of 16 MHz .

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded, and is ready for execution. Control transfer instruction clock counts include all time required to fetch, decode, and prepare the next instruction for execution.
2. Bus cycles do not require wait states.
3. There are no processor extension data transfer or local bus HOLD requests.
4. No exceptions occur during instruction execution.

Instruction Set Summary Notes

Addressing displacements selected by the MOD field are not shown. If necessary they appear after the instruction fields shown.
Above/below refers to unsigned value Greater refers to positive signed value
Less refers to less positive (more negative) signed values
if $d=1$ then to register; if $d=0$ then from register
if $w=1$ then word instruction; if $w=0$ then byte instruction
if $s=0$ then 16 -bit immediate data form the operand
if $s=1$ then an immediate data byte is signextended to form the 16 -bit operand
x don't care
Z used for string primitives for comparison with ZF FLAG

If two clock counts are given, the smaller refers to a register operand and the larger refers to a memory operand

* = add one clock if offset calculation requires summing 3 elements
$\mathrm{n}=$ number of times repeated
$m=$ number of bytes of code in next instruction Level(L) - Lexical nesting level of the procedure

The following comments describe possible exceptions, side effects, and allowed usage for instructions in both operating modes of the SAB 80286.

Real address mode only

1. This is a protected mode instruction. Attempted execution in real address mode will result in an undefined opcode exception (6).
2. A segment overrun exception (13) will occur if a word operand reference at offset $\operatorname{FFFF}(\mathrm{H})$ is attempted.
3. This instruction may be executed in real address mode to initialize the CPU for protected mode.
4. The IOPL and NT fields will remain 0.
5. Processor extension segment overrun interrupt (9) will occur if the operand exceeds the segment limit.

Either mode

6. An exception may occur, depending on the value of the operand.
7. $\overline{\text { LOCK }}$ is automatically asserted regardless of the presence or absence of the LOCK instruction prefix.
8. $\overline{L O C K}$ does not remain active between all operand transfers.

Protected virtual address mode only

9. A general protection exception (13) will occur if the memory operand can not be used due to either a segment limit or access rights violation. If a stacksegment limit is violated, a stack segment overrun exception (12) occurs.
10. For segment load operations, the CPL, RPL and DPL must agree with privilege rules to avoid an exception. The segment must be present to avoid a not-present exception (11). If the SS register is the destination and a segment notpresent violation occurs, a stack exception (12) occurs.
11. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert $\overline{\text { LOCK }}$ to maintain descriptor integrity in multiprocessor systems.
12. JMP, CALL, INT, RET, IRET instructions referring to another code segment will cause a general protection exception (13) if any privilege rule is violated.
13. A general protection exception (13) occurs if CPL $\neq 0$.
14. A general protection exception (13) occurs if CPL>IOPL.
15. The IF field of the flag word is not updated if CPL $>$ IOPL. The IOPL field is updated only if $C P L=0$.
16. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the instruction does not return a result and the zero flag is cleared.
17. If the starting address of the memory operand violates a segment limit, or an invalid access is attempted, a general protection exception (13) will occur before the ESC instruction is executed. A stack segment overrun exception (12) will occur if the stack limit is violated by the operand's starting address. If a segment limit is violated during an attempted data transfer then a processor extension segment overrun exception (9) occurs.
18. The destination of an INT, JMP, CALL, RET or IRET instruction must be in the defined limit of a code segment or a general protection exception (13) will occur.

Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems.

Function	Format			Clock Count		Comments	
				Real address mode	Protected virtual address mode	Real address mode	Protected virtual address mode
Data Transfer (Continued)							
POPA $=$ Pop All	01100001	-... ${ }^{-\infty}$		19	19	2	9
XCHG = Exchange:							
Register/memory with register	1000011 w	mod reg r/m		3, 5 *	3,5*	2,7	7,9
Register with accumulator	10010 reg			3	3		
$\mathbf{I N}=$ Input from:							
Fixed port	1110010 w	port		5	5		14
Variable port	1110110 w			5	5		14
OUT = Output to:							
Fixed port	1110011 w	port		3	3		14
Variable port	1110111 w			3	3		14
XLAT $=$ Translate byte to AL	11010111			5	5		9
LEA = Load EA to register	10001101	mod reg r/m		3*	3 *		
LDS = Load pointer to DS	11000101	mod reg r/m	$(\bmod \neq 11)$	7 *	21 *	2	9, 10, 11
LES = Load pointer to ES	11000100	mod reg r/m	$\langle\bmod \neq 11)$	7 *	21 *	2	9, 10, 11
LAHF = Load AH with flags	10011111			2	2		
SAHF = Store AH into flags	10011110			2	2		
PUSHF = Push flags	10011100			3	3	2	9
POPF $=$ Pop flags	10011101			5	5	2,4	2,4

Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems

Function	Format				Clock Count		Comments		
					Real address mode	Protected virtual address mode	Real address mode	Protected virtual address mode	
Arithmetic									
ADD = Add:									
Reg/memory with register to either	00000 dw	mod reg. r/m			2, 7^{*}	2, 7^{*}	2	9	
Immediate to register memory	100000 sw	mod $000 \mathrm{r} / \mathrm{m}$	data	data if s w = 17	3,7*	3,7 *	2	9	
Immediate to accumulator	0000010 w	data	data if $\mathrm{w}=1$		3	3			
ADC = Add with carry;									
Reg memory with register to either	000100 dw	mod reg r/m			2, 7^{*}	2, 7 *	2	9	
Immediate to register/memory	100000 sw	mod $010 \mathrm{r} / \mathrm{m}$	data	data if s w = C 1	3, 7 *	3, 7 *	2	9	
Immediate to accumulator	0001010 w	data	data if $w=1$		3	3			
INC = Increment									
Register memory	1111111 w	$\bmod 000 \mathrm{r} / \mathrm{m}$			2,7*	2,7*	2	9	
Register	01000 reg				2	2			
SUB = Subtract									
Reg memory and register to either	\|001010dw		mod reg r/m			2, 7 *	2,7*	2	9
Immediate from register memory	100000 sw	mod $101 \mathrm{r} / \mathrm{m}$	data	data if s w = 01]	3, 7 *	3, 7 *	2	9	
Immediate from accumulator	0010110 w	data	data if $\mathrm{w}=1$		3	3			
SSB = Subtract with borrow:									
Reg/memory and register to either	000110dw\|	mod reg r/m			2, 7 *	2,7*	2	9	
Immediate from register/memory	100000 sw	mod $011 \mathrm{r} / \mathrm{m}$	data	data if s w=01]	3, 7 *	3,7 *	2	9	
Immediate from accumulator	0001110 w	data	data if $\mathrm{w}=1$		3	3			

Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems.

Function	Format		Clock Count		Comments	
			Real address mode	Protected virtual address mode	Real address mode	Protected virtual address mode
Arithmetic (Continued):						
DEC = Decrement:						
Register memory	1111111 w $\bmod 001 \mathrm{r} / \mathrm{m}$		2,7*	2,7*	2	9
Register	01001 reg		2	2		
CMP = Compare:						
Register memory with register	00011101 w $\mathrm{modreg} \mathrm{r/m}$		2,6*	2, 6 *	2	9
Register with register/memory	0011100 w mod reg r/m		2,7*	2,7*	2	9
Immediate with register memory	100000 sw $\bmod 111 \mathrm{r} / \mathrm{m}$	data \quad data if $\mathrm{s} w=01$	3,6*	3, 6 *	2	9
Immediate with accumulator		data if $w=1$	3	3		
NEG = Change sign	1111011 w $\bmod 011 \mathrm{r} / \mathrm{m}$		2	7 *	2	7
AAA = ASCII adjust for add	00110111		3	3		
DAA $=$ Decimal adjust for add	00100111		3	3		
AAS $=$ ASCII adjust for subtract	00111111		3	3		
DAS = Decimal adjust for substract	00101111		3	3		
MUL = Multiply (unsigned): register-byte	$1111011 \mathrm{w} / \mathrm{mod} 100 \mathrm{r} / \mathrm{m}$		13	13		
register-word			21	21		
memory-byte			16 *	16 *	2	9
menory-word			24 *	24 *	2	9
IMUL = Integer multiply (signed): register-byte	1111011 m $\bmod 101 \mathrm{r} / \mathrm{m}$		13	13		
register-word			21	21		
memory-byte			16 *	16 *	2	9
memory-word			24 *	24 *	2	9

Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems.

Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems.

Function	Format				Clock Count		Comments	
					Real address mode	Protected virtual address mode	Real address mode	Protected virtual address mode
Arithmetic (Continued):								
AND = And:					2, 7^{*}	2,7*	2	9
Immediate to register/memory	1000000 w	mod $100 \mathrm{r} / \mathrm{m}$	data	data if $w=1$	3,7 *	3, 7 *	2	9
Immediate to accumulator	0010010 w	data	data $\mathrm{f} \mathrm{w}=1$		3	3		
TEST = And function to flags, no result:								
Register/memory and register	1000010 w	mod reg r/m			2,6*	2,6*	2	9
Immediate data and register/memory	1111011 w	mod $000 \mathrm{r} / \mathrm{m}$	data	data if $w=1$	3,6*	3,6*	2	9
Immediate data and accumulator	1010100 w	data	data if $w=1$		3	3		
OR = Or:								
Reg/memory and register to either	000010 dw	mod reg r/m			2,7*	2,7*	2	9
Immediate to register/memory	1000000 w	mod $001 \mathrm{r} / \mathrm{m}$	data	data if w = 1	3, 7^{*}	3, 7^{*}	2	9
Immediate to accumulator	0000110 w	data	data if $w=1$		3	3		
XOR = Exclusive or:								
Reg/memory and register to either	001100 dw	mod reg r/m			2, 7 *	2, 7 *	2	9
Immediate to register/memory	1000000 w	mod $110 \mathrm{r} / \mathrm{m}$	data	data if w = 1	3, 7 *	3, 7 *	2	9
Immediate to accumulator	0011010 w	data	data if w=1		3	3		
NOT = Invert register/memory	1111011 w	mod $010 \mathrm{r} / \mathrm{m}$			2,7*	2,7 *	2	9

Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems.

Function	Format
Control transfer CALL $~=~ C a l l: ~$	
Direct within segment	
Register/memory indirect within segment Direct intersegment	11101000 disp-low disp-high 11111111 mod $010 \mathrm{r} / \mathrm{m}$
	10011010 segment offset

Protected mode only (direct intersegment):

Via cali gate to same privilege level
Via call gate to different privilege level, no parameters
Via call gate to different privilege level, x parameters
Via TSS
Via task gate
Indirect intersegment

$$
11111111 \quad \bmod 011 \mathrm{r} / \mathrm{m} \quad(\bmod \neq 11)
$$

Protected mode only (indirect intersegment):

Via call gate to same privileg level
Via call gate different privilege level, no parameters
Via call gate to different privilege level, x parameters
Via TSS
Via task gate

Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems.

Function	Format			Clock Count		Comments	
				Real address mode	Protected virtual address mode	Real address mode	Protected virtual address mode
Control transfer (Continued): JMP = Unconditional jump:							
Short/long	11101011	disp-low		$7+m$	$7+m$		18
Direct within segment	11101001	disp-low	disp-high	$7+m$	$7+m$		18
Register/memory indirect within segment	11101010	mod $010 \mathrm{r} / \mathrm{m}$		7+m, $11+\mathrm{m}^{*}$	7+m, 11+m*	2	9, 18
Direct intersegment	11101010	segment	offset	$11+m$	$23+m$		11,12,18
		segment	elector				
Protected mode only (direct intersegment):							
Via call gate to same privilege level Via TSS Via task gate					$\begin{aligned} & 38+m \\ & 175+m \end{aligned}$ $180+m$		$\begin{aligned} & 8,11,12,18 \\ & 8,11,12,18 \\ & 8,11,12,18 \end{aligned}$
Indirect intersegment	11111111	mod $101 \mathrm{r} / \mathrm{m}$	$(\bmod \neq 11)$	$15+\mathrm{m}^{*}$	$26+\mathrm{m}^{*}$	2	8,9,11,12,18
Protected mode only (indirect interseg Via call gate to same privilege level Via TSS Via task gate	ment):				$\begin{aligned} & 41+\mathrm{m}^{*} \\ & 178+\mathrm{m}^{*} \\ & 183+\mathrm{m}^{*} \end{aligned}$		$\begin{aligned} & 8,9,11,12,18 \\ & 8,9,11,12,18 \\ & 8,9,11,12,18 \end{aligned}$
RET $=$ Return from CALL:							
Within segment	11000011			$11+m$	$11+m$	2	8,9,18
Whthin seg adding immediate to SP	11000010	data-low	data-high	$11+\mathrm{m}$	$11+m$	2	8,9,18
Intersegment	11001011			15+m	$25+m$	2	8,9,11,12,18
Intersegment adding immediate to SP	11001010	data-low	data-high	$15+\mathrm{m}$		2	8,9,11,12,18
Protected mode only (RET):							

Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems.

Function	Format		Clock Count		Comments	
			Real address mode	Protected virtual address mode	Real address mode	Protected virtual address mode
Control transfer (Continued):						
JE/JZ = Jump on equal/zero	01110100	disp	$7+\mathrm{m}$ or 3	$7+m$ or 3		18
JL/JNGE = Jump on less/not greater equal	01111100	disp	$7+\mathrm{m}$ or 3	$7+\mathrm{m}$ or 3		18
JLE/JNG = Jump on less or equal/not greater	01111110	disp	$7+\mathrm{m}$ or 3	$7+m$ or 3		18
JB/JNAE = Jump on below/not above or equal	01110010	disp	$7+m$ or 3	$7+\mathrm{m}$ or 3		18
JBE/JNA = Jump on below or equal/not above	01110110	disp	$7+\mathrm{m}$ or 3	$7+m$ or 3		18
JP/JPE = Jump on parity/parity even	01111010	disp	$7+m$ or 3	$7+m$ or 3		18
JO = Jump on overflow	01110000	disp	$7+m$ or 3	$7+m$ or 3		18
JS = Jump on sign	01111000	disp	$7+m$ or 3	$7+m$ or 3		18
JNE/JNZ = Jump on not equal/not zero	01110101	disp	$7+\mathrm{m}$ or 3	$7+m$ or 3		18
JNL/JGE = Jump on not less/greater or equal	01111101	disp	$7+\mathrm{m}$ or 3	$7+m$ or 3		18
JNLE/JG = Jump on not less or equal/greater	01111111	disp	$7+\mathrm{m}$ or 3	$7+m$ or 3		18
JNB/JAE = Jump on not below/above or equal	01110011	disp	$7+\mathrm{m}$ or 3	$7+m$ or 3		18
JNBE/JA = Jump on not below or equal/above	01110111	disp	$7+\mathrm{m}$ or 3	$7+m$ or 3		18
JNP/JPO = Jump on not par/par odd	01111011	disp	$7+\mathrm{m}$ or 3	$7+m$ or 3		18
JNO = Jump on not overflow	01110001	disp	$7+\mathrm{m}$ or 3	$7+m$ or 3		18
JNS = Jump on not sign	01111001	disp	$7+m$ or 3	$7+m$ or 3		18
LOOP = Loop CX times	11100010	disp	$8+m$ or 4	$8+m$ or 4		18
LOOPZ/LOOPE = Loop while zero/equal	11100001	disp	$8+m$ or 4	$8+m$ or 4		18
LOOPNZ/LOOPNE = Loop while not zero/equal	11100000	disp	$8+\mathrm{m}$ or 4	$8+m$ or 4		18
JCXZ = Jump on CX zero	11100011	disp	$8+m$ or 4	$8+m$ or 4		18

Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems.

Function Format	Clock Count		Comments	
	Real address mode	Protected virtual address mode	Real address mode	Protected virtual address mode
Control transfer (Continued):				
ENTER Enterprocedire L-0. L-1 L-1 LEAVE $=$ Leaveprocedure	$\begin{aligned} & 11 \\ & 15+4(4,1 \\ & 5 \\ & 5 \end{aligned}$	11 15 $16+414-11$ 5	$\begin{aligned} & 2,8 \\ & 2,8 \\ & 2,8 \\ & 2,8 \end{aligned}$	$\begin{aligned} & 8,9 \\ & 8,9 \\ & 8,9 \\ & 8,9 \\ & 8,9 \end{aligned}$
INT = interrupt:				
Type specified \quad11001101 type	$23+m$		2,7,8	
Type $3 \quad 11001100$	$23+m$		2,7,8	
INTO = Interrupt on overflow $\quad 11001110$	$\left\lvert\, \begin{aligned} & 24+m \text { or } 3 \\ & 13 \text { if no } \end{aligned}\right.$	(3 if no	2, 6, 8	
Protected mode only: Via interrupt or trap gate to same privilege level Via interrupt or trap gate to fit different privilege level Via Task Gate	interrupt)	interrupt) $\begin{aligned} & 40+m \\ & 78+m \\ & 167+m \end{aligned}$		$\begin{aligned} & 7,8,11,12,18 \\ & 7,8,11,12,18 \\ & 7,8,11,12,18 \end{aligned}$
IRET $=$ Interrupt return 11001111	$17+m$	$31+m$	2, 4	8,9,11,12,15,18
Protected mode only: To different privilege level To different task (NT = 1)		$\begin{aligned} & 55+m \\ & 169+m \end{aligned}$		$\begin{array}{r} 8,9,11,12,15,18 \\ 8,9,11,12,18 \end{array}$
	13	13* Use INT clock countif excep tion 51	$12,6$	

Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems.

Function	Format		Clock Count		Comments	
			Real address mode	Protected virtual address mode	Real address mode	Protected virtual address mode
Processor Control						
CLC $=$ Clear carry	11111000		2	2		
CMC = Complement carry	11110101		2	2		
STC $=$ Set carry	11111001		2	2		
CLD $=$ Clear direction	11111100		2	2		
STD $=$ Set direction	11111101		2	2		
CLI = Clear interrupt	11111010		3	3		14
$\mathbf{S T I}=$ Set interrupt	11111011		2	2		14
HLT $=$ Halt	11110100		2	2		13
WAIT = Wait	10011011		3	3		
LOCK = Bus lock prefix	11110000		0	0		14
CTS - Clear task switched flag	00001111	00000110	2	2	3	13
ESC $=$ Processor extension escape	11011 TTT	mod LLL r/m	9-20 *	9-20 *	5,8	8, 17
	(TTTLLL are opcode to processor extension)					
SEG = Segment override prefix	001 reg 110		0	0		

Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems.
SAB 80286

[^23]
Notes:

The effective address (EA) of the memory operand is computed according to the mod and r / m fields:
if $\bmod =11$ then r / m is treated as a REG field
if $\bmod =00$ then DISP $=0 *$, disp-low and disp-high are absent
if $\bmod =01$ then DISP $=$ disp-low sign-extended to 16-bits, disp-high is absent
if $\bmod =10$ then DISP $=$ disp-high: disp-low
if $\mathrm{r} / \mathrm{m}=000$ then $E A=(B X)+(S I)+$ DISP
if $\mathrm{r} / \mathrm{m}=001$ then $E A=(B X)+(\mathrm{DI})+$ DISP
if $\mathrm{r} / \mathrm{m}=010$ then $E A=(B P)+(\mathrm{SI})+D I S P$
if $\mathrm{r} / \mathrm{m}=011$ then $E A=(B P)+(\mathrm{DI})+$ DISP
if $\mathrm{r} / \mathrm{m}=100$ then $E A=(\mathrm{SI})+$ DISP
if $\mathrm{r} / \mathrm{m}=101$ then $\mathrm{EA}=(\mathrm{DI})+$ DISP
if $\mathrm{r} / \mathrm{m}=110$ then $E A=(B P)+$ DISP *
if $r / m=111$ then $E A=(B X)+$ DISP
DISP follows 2nd byte of instruction (Before data if required)

* except if $\bmod =00$ and $r / m=110$ then EA $=$ disp-high: disp-low.

REG is assigned according to the following table:

16 -bit $(w=1)$	8 -bit $(w=0)$
000 AX	000 AL
001 CX	001 CL
010 DX	010 DL
011 BX	011 BL
100 SP	100 AH
101 BP	101 CH
110 SI	110 DH
111 DI	111 DI

The physical addresses of all operands addressed by the BP register are computed using the SS segment register. The physical addresses of the destination operands of the string primitive operations (those addressed by the DI register) are computed using the ES segment, which may not be overridden.

segment override prefix

$\begin{array}{lllllll}0 & 0 & 1\end{array}$ reg 1110
reg is assigned according to the following:

	Segment register
00	ES
01	CS
10	SS
11	DS

SAB 179X
 Floppy Disk Formatter/ Controller Family

FEATURES	SAB	SAB	SAB	SAB
1791	1793	1795	1797	
Single Density (FM)	X	X	X	X
Double Density (MFM)	X	X	X	X
True Data Bus		X		X
Inverted Data Bus	X		X	
Write Precomp	X	X	X	X
Side Selection Output			X	X

- Two VFO Control Signals -RG \& VFOE
- Soft Sector Format Compatibility
- Automatic Track Seek with Verification
- Accomodates Single and Double Density Formats IBM 3740 Single Density (FM)
IBM System 34 Double Density (MFM)
- Read Mode

Single/Multiple Sector Read with Automatic
Search or Entire Track Read
Selectable 128 Byte or Variable length Sector

Pin Connections

SAB 179X is a floppy disk controller family of N -channel MOS LSI components designed to interface with SAB 8080/8085/8086/8051 family

- Write Mode

Single/Multiple Sector Write with Automatic Sector Search
Entire Track Write for Diskette Formatting

- System Compatibility

Double Buffering of Data 8 Bit Bi-Directional Bus for Data, Control and Status DMA or Programmed Data Transfers All Inputs and Outputs are TTL Compatible On-Chip Track and Sector Registers/Comprehensive Status Information

- Programmable Controls Selectable Track to Track Stepping Time Side Select Compare
- Write Precompensation
- Window Extension
- Incorprorates Encoding/Decoding and Address Mark Circuitry
- For $8^{\prime \prime}$ and 5'.4"

Floppy Disks

- Compatıble with Industry Standard 179X

Logic Diagram

1) SAB $1791 / 1793=R G$, SAB $1795 / 7=$ SSO 2) SAB 1793/SAB 1797= True Bus
processors. Its flexibility and ease of use makes it an ideal floppy disk interface between conventional floppy disks and all computer systems.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (0)	Function
NC	1	-	NO CONNECTION - Pin 1 is internally connected to a back bias generator and must be left open by the user.
$\overline{\overline{M R}}$	19	1	$\overline{\text { MASTER RESET - A logic low (} 50 \mu \mathrm{~s} \text { min.) on this input resets }}$ the device and loads HEX 03 into the command register. The Not Ready (Status Bit 7) is reset during MR ACTIVE. When MR is brought to a logic high a RESTORE Command is executed, regardless of the state of the Ready signal from the drive. Also, HEX 01 is loaded into sector register.
$\overline{\overline{W E}}$	2	1	WRITE ENABLE - A logic low on this input gates data on the DAL into the selected register when $\overline{\mathrm{CS}}$ is low.
$\overline{\overline{C S}}$	3	1	CHIP SELECT - A logic low on this input selects the chip and c:ables conitiputer cuminnumication with the device.
$\overline{\mathrm{RE}}$	4	1	$\overline{R E A D} \operatorname{ENABLE}-A$ logic low on this input controls the placement of data from a selected i egister on the DAL when $\overline{C S}$ is low.
A®, A1	5,6	1	REGISTER SELECT LINES - These inputs select the register to receive/transfer data on the DAL lines under $\overline{R E}$ and $\overline{W E}$ contro:
$\begin{aligned} & \overline{\overline{\mathrm{DALO}}} \\ & \text { to } \\ & \overline{\mathrm{DAL7}} \end{aligned}$	$\begin{array}{r} 7 \\ \text { to } \\ 14 \end{array}$	1/0	DATA ACCESS LINES - Eight bit inverted (SAB 1791/5) or true (SAB 1793/7) bidirectional bus used for transfer of data, control, and status. This bus is receiver enabled by WE or transmitter enabled by $\overline{R E}$. Drive capability is 1 TTL Load
CLK	24	1	CLOCK - This input requires a free-running square wave clock for internal timing reference. $2 \mathrm{MHz} \pm 1 \%$ with 50% duty cycle. $1 \mathrm{MHz} \pm 1 \%$ for mini-floppies.
DRQ	38	0	DATA REQUEST - This open drain output indicates that the DR contains assembled data in Read operations, or the DR is empty in Write operations. This signal is reset when serviced by the computer through reading or loading the DR in Read or Write operations, respectively. Use 10 K pull-up resistor to +5 V .
INTRQ	39	0	INTERRUPT REQUEST - This open drain output is set at the completion of any command and is reset when the STA TUS register is read or the command register is written to. Use 10 K pull-up resistor to +5 V .
STEP	15	0	STEP - The step output contains a pulse for each step.
DIRC	16	0	DIRECTION - Direction Output is active high when stepping in, active low when stepping out.
EARLY	17	0	EARLY - Indicates that the WRITE DATA pulse occurring while Early is active (high) should be shifted early for write precompensation.
LATE	18	0	LATE - Indicates that the write data pulse occuring while Late is active (high) should be shifted late for write precompensation.

Syimbol	Number	Input (I) Output (O)	Function
$\overline{\text { TEST }}$	22	1	$\overline{\text { TEST }}$.-. This input is used for testing purposes only and should be tied to +5 V or left open by the user unless interfacing to voice coll actuated motors.
HLT	23	1	HEAD LOAD TIMING - When a logic high is found on the HLT input the head is assumed to be engaged.
$\overline{R G}$	25	0	READ GATE (SAB 1791/3) - A high level on this output indicates to the data separator circuitry that 2 bytes of zeros in single density, or 4 bytes of either zeros or ones in double density have been encountered, and is used for synchronization.
SSO	25	0	SIDE SELECT OUTPUT (SAB 1795/1797) - The logic level of the Side Select Output is directly controlled by the , S' flag in Type II or III commands. When $U=1$, SSO is set to a logic 1 . When $U=\emptyset$, SSO is set to a logic \emptyset. The SSO is compared with side information in the sector ID field. If they do not compare, status bit 4 (RNF) is set. The Side Select Output is only updated at the beginning of a Type II or III cormmand. It is forced to a logic Øupon a MASTER RESET condition.
RCLK	26	1	READ CLOCK - A nominal square-wave clock signal derived from the data stream must be provided to this input. Phasing (i. e. RCLK transitions) relative to RAW READ is important but polarity (RCLK high or low) is not.
$\overline{\overline{R A W} \text { READ }}$	27	1	$\overline{R A W} \overline{R E A D}$ - The data input signal directly from the drive. This input shall be a negative pulse for each recorded flux transition.
HLD	28	0	HEAD LOAD - The HLD output controls the loading of the Read-Write head against the media.
TG43	29	0	TRACK GREATER THAN 43 - This output informs the drive that the Read/Write head is positioned between tracks 44-76. This output is valid only during Read and Write Commands.
WG	30	0	WRITE GATE -- This output is made valid before writing is to be performed on the diskette.
WD	31	0	WRITE DATA - A 200 ns (MFM) or 500 ns (FM) output pulse per flux transition. WD contains the unique Address marks as well as data and clock in both FM and MFM formats.
READY	32	1	READY - This input indicates disk readiness and is sampled for a logic high before Read or Write commands are performed. If Ready is low the Read or Write operation is not performed and an interrupt is generated. Type I operations are performed regardless of the state of Ready. The Ready input appears in inverted format as Status Register bit 7.

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
$\overline{\text { WF/VFOE }}$	33	1/0	$\overline{\text { WRITE FAULT VFO ENABLE - This is a bidirectional signal used }}$ to signify writing faults at the drive, and to enable the external PLO data separator. When WG $=1$, $\operatorname{Pin} 33$ functions as a WF input. If $W F=\emptyset$, any write comınand will immediately be terminated. When WG $=\emptyset, \operatorname{Pin} 33$ functions as a VFOE output. VFOE will go low during a read operation after the head has loaded and settled (HLT - 1). On the SAB 1795/7, it will remain low until the last bit of the second CRC byte in the ID field. VFOE will then go high until 8 bytes (MFM) or 4 bytes (FM) before the Address Mark. It will then go active until the last bit of the second CRC byte of the Data Field. On the SAB1791/3, VFOE will remain low until the end of the Data Field. This pin has an internal 100 kOhm pull-up resistor.
TRaの	31	!	Write head is positioned over Track $\emptyset \varnothing$.
IP	35	1	$\overline{\text { NDEX PULSE }}$ - This input informs the SAB 179X when the index hole is encountered on the diskette
WPRT	36	1	$\overline{\text { WRITE PROTECT }}$ - This input is sampled whenever a Write Command is received. A logic low terminates the command and sets the Write Protect Status bit.
$\overline{\text { DDEN }}$	37	1	$\overline{\text { DOUBLE DENSITY }}$ - This pin selects either single or double density operation. When $\overline{D D E N}=\emptyset$, double density is selected. When $\overline{D D E N}=1$, single density is selected.
VCC	21	-	POWER SUPPLY (+5 V).
VDD	40	-	POWER SUPPLY (+12 V).
VSS	20	-	GROUND (0 V)

1) Not used on SAB $1792 / S A B 1794$

General Description

The SAB 179X are MOS LSI devices which perform the functions of a Floppy Disk Formatter/Controller in a single chip implementation. The SAB 179X is IBM 3740 compatible in single density mode (FM) and System 34 compatible in Double Density Mode (MFM). These include address mark detection, FM and MFM encode and decode logic, window extension, and write precompensation. The processor interface consists of an 8-bit bidirectional bus for data, status, and control word
transfers. The SAB $179 \times$ is set up to operate on a multiplexed bus with other bus-oriented devices. The SAB 179X is fabricated in N-channel Silicon Gate MOS technology and is TTL compatible on all inputs and outputs. The SAB 1793 is identical to the SAB 1791 except the DAL lines are TRUE for systems that utilize true data busses.
The SAB 1795/7 has a side select output for controlling double sided drives.

Command Register (CR) - This 8-bit register holds the command presently being executed. This register should not be loaded when the device is busy unless the new command is a force interrupt. The command register can be loaded from the DAL, but not read onto the DAL.
Status Register (STR) - This 8-bit register holds device Status information. The meaning of the Status bits is a function of the type of command previously executed. This register can be read onto the DAL, but not loaded from the DAL.
CRC Logic - This logic is used to check or to generate the 16 -bit Cyclic Redundancy Check (CRC). The polynomial is: $\mathrm{G}(\mathrm{x})=\mathrm{x}^{16}+\mathrm{x}^{12}+\mathrm{x}^{5}+1$. The CRC includes al! information starting with the address mark and up to the CRC characters. The CRC register is preset to ones prior to data being shifted through the circuit.
Arithmetic/Logic Unit (ALU) - The ALU is a serial comparator, incrementer, and decrementer and is used for register modification and comparisons with the disk recorded ID field.
Timing and Control - All computer and Floppy Disk Interface controls are generated through this logic. The internal device timing is generated from an external crystal clock.
The SAB 179X has two different modes of operation according to the state of $\overline{D D E N}$. When $\overline{D D E N}=0$ double density (MFM) is assumed. When $\overline{D D E N}=1$, single density (FM) is assumed.
AM Detector - The address mark detector detects ID, data and index address marks during read and write operations.

Processor Interface

The interface to the processor is accomplished through the eight Data Access Lines ($\overline{\mathrm{DAL}}$) and associated control signals. The $\overline{\mathrm{DAL}}$ are used to transfer Data, Status, and Control words out of, or into the SAB 179X. The $\overline{D A L}$ are three state buffers that are enabled as output drivers when Chip Select $(\overline{\mathrm{CS}})$ and Read Enable ($\overline{\mathrm{RE}}$) are active (low logic state) or act as input receivers when $\overline{\mathrm{CS}}$ and Write Enable ($\overline{W E}$) are active.
When transfer of data with the Floppy Disk Controller is required by the host processor, the device address is decoded and $\overline{\mathrm{CS}}$ is made low. The address bits $A 1$ and $A \emptyset$, combined with the signals $\overline{R E}$ during a Read operation or $\overline{W E}$ during a Write operation are interpreted as selecting the following registers:

A1-A	READ $(\overline{R E})$	WRITE $(\overline{W E})$
00	Status Register	Command Regıster
01	Track Register	Track Register
10	Sector Register	Sector Register
11	Data Register	Data Register

During Direct Memory Access (DMA) types of data transfers between the Data Register of the SAB 179X and the processor, the Data Request (DRQ) output is used in Data Transfer control. This signal also appears as status bit 1 during Read and Write operations.
On Disk Read operations the Data Request is activated (set high) when an assembled serial input byte is transferred in parallel to the Data Register. This bit is cleared when the Data Register is read by the processor. If the Data Register is read after one or more characters are lost, by having new data
transferred into the register prior to processor readout, the Lost Data bit is set in the Status Register. The Read operation continues until the end of sector is reached.
On Disk Write operations the data Request is activated when the Data Register transfers its contents to the Data Shift Register, and requires a new data byte. It is reset when the Data Register is loaded with new data by the processor. If new data is not loaded at the time the next serial byte is required by the Floppy Disk, a byte of zeroes is written on the diskette and the Lost Data bit is set in the Status Register.
At the completion of every command an INTRQ is generated. INTRQ is reset by either reading the Status Register or by loading the command register with a new command. In addition, INTRQ is generated if a Force Interrupt command condition is met.
Because of internal sync cycles, certain time delays must be observed when operating under programmed I/O. They are:

		Delay * Req'd. ${ }^{1 \prime}$	
Operation	Next Operation	FM	MFM
Write to Command Reg.	Read Busy Bit (Status Bit $\emptyset)$	$12 \mu \mathrm{~s}$	$6 \mu \mathrm{~s}$
Write to Command Reg.	Read Status Bits 1-7	$28 \mu \mathrm{~s}$	$14 \mu \mathrm{~s}$
Write Any Register	Read From Diff. Register	0	\emptyset

1) Times double for CLK $=1 \mathrm{MHz}$
(Minifloppies)

Floppy Disk Interface

The SAB 179X has two modes of operation according to the state of $\overline{\text { DDEN (Pin 37). When }}$ $\overline{\mathrm{DDEN}}=1$, single density is selected. In either case, the CLK input ($\operatorname{Pin} 24$) is at 2 MHz . However, when interfacing with the mini-floppy, the CLK input is set at 1 MHz for both single density and double density. When the clock is at 2 MHz , the stepping rates of 3 , 6,10 , and 15 ms are obtainable. When CLK equals 1 MHz these times are doubled.

Head Positioning

Five commands cause positioning of the Read-Write head (see Command Section). The period of each positioning step is specified by the r field in bits 1 and \emptyset of the command word. After the last üiteciiullai step an aadıtıonal 1 b milliseconds of head settling time takes place if the Verify flag is set in Type I commands. Note that this time doubles to 30 ms for a 1 MHz clock. If $\overline{\mathrm{TEST}}=\emptyset$, there is zero settling time. There is also a 15 ms head settling time if the E flag is set in any Type II or III command.
The rates can be applied to a Step-Direction Motor through the device interface.

Step-A $2 \mu \mathrm{~s}$ (MFM) or $4 \mu \mathrm{~s}$ (FM) pulse is provided as an output to the drive. For every step pulse issued, the drive moves one track location in a direction determined by the direction output.
Direction (DIRC) - The Direction signal is active high when stepping in and low when stepping out. The Direction signal is valid 12μ s before the first stepping pulse is generated. When a Seek, Step or Restore command is executed an optional verification of Read-Write head position can be performed by setting bit $2(V=1)$ in the command word to a logic 1 . The verification operation begins at the end of the 15 millisecond settling time after the head is loaded against the media. The track number from the first encountered iD ricilu is iunnpareu ayainst the contents of the Track Register. If the track numbers compare and the ID Field Cyclic Redundancy Check (CRC) is correct, the verify operation is complete and an INTRQ is generated with no errors. The SAB 179X must find an ID field with correct track number and correct CRC within 5 revolutions of the media; otherwise the seek error is set and an INTRQ is generated.

Stepping Rates

CLK DDEN R1 R0	$\begin{aligned} & 2 \mathrm{MHz} \\ & \emptyset \\ & \overline{\text { TEST }}=1 \end{aligned}$	$\begin{aligned} & 2 \mathrm{MHz} \\ & 1 \\ & \frac{\mathrm{TEST}}{}=1 \end{aligned}$	$\begin{aligned} & 1 \mathrm{MHz} \\ & \emptyset \\ & \overline{\mathrm{TEST}}=1 \end{aligned}$	$\begin{aligned} & 1 \mathrm{MHz} \\ & 1 \\ & \overline{\text { TEST }}=1 \end{aligned}$	$\begin{aligned} & 2 \mathrm{MHz} \\ & \frac{\mathrm{x}}{\mathrm{TEST}}=\emptyset \end{aligned}$	$\begin{aligned} & 1 \mathrm{MHz} \\ & \times \\ & \hline \text { TEST }=\emptyset \end{aligned}$
R1						
$\emptyset \square$	3 ms	3 ms	6 ms	6 ms	$184 \mu \mathrm{~s}$	$368 \mu \mathrm{~s}$
01	6 ms	6 ms	12 ms	12 ms	$190 \mu \mathrm{~s}$	$380 \mu \mathrm{~s}$
10	10 ms	10 ms	20 ms	20 ms	$198 \mu \mathrm{~s}$	$396 \mu \mathrm{~s}$
11	15 ms	15 ms	30 ms	30 ms	$208 \mu \mathrm{~s}$	$416 \mu \mathrm{~s}$

The Head Load (HLD) output controls the movement of the read/write head against the media. HLD is activated at the beginning of a Type I command if the h flag is set ($h=:=1$), at the end of the Type I command if the verify flag ($V=1$), or upon receipt of any Type II or III command. Once HLD is active it remains active until either a Type I command is received with ($h=\emptyset$ and $V=\emptyset$); or if the SAB 179 X is in an idle state (non-busy) and 15 index pulses have occurred.

Head Load Timing (HLT) is an input to the SAB 179X which is used for the head engage time. When $H L T=1$, the SAB 179 X assumes the head is completely engaged. The head engage time is typically 30 to 100 ms depending on drive. The low to high transition on HLD is typically used to fire a one shot. The output of the one shot is then used for HLT and supplied as an input to the SAB 179X.

Head Load Timing

When both HLD and HLT are true, the SAB 179 X will then read from or write to the medıa. The "and" of HLD and HLT appears as a status bit in Type I status.
In summary for the Type I commands: if $h=\emptyset$ and $V=\emptyset, H L D$ is reset. If $h=1$ and $V=\emptyset$, HLD is set at the beginning of the command and HLT is not sampled nor is there an internal 15 ms delay. If $\mathrm{h}=\emptyset$ and $V=1, H L D$ is set near the end of the command, an internal 15 ms occurs, and the SAB 179X
waits for HLT to be true. If $h=1$ and $V=1$, HLD is set at the beginning of the command. Near the end of the command, after all the steps have been issued, an internal 15 ms delay occurs and the SAB 179X then waits for HLT to occur.
For Type II and III commands with E flag off, HLD is made active and HLT is sampled until true. With E flag on, HLD is made active, an internal 15 ms delay occurs and then HLT is sampled until true.

General Disk Read Operations

Sector lengths of $128,256,512$ or 1024 are obtainable in either FM or MFM formats. For FM, $\overline{D D E N}$ should be placed to logical "1." For MFM formats, $\overline{D D E N}$ should be placed to a logical " \emptyset." Sector lengths are determined at format time by the fourth byte in the "ID" field.

Sector Length Table*)	
Sector Length	Number of Bytes
Field (hex)	in Sector (decimal)
$\emptyset 0$	128
$\emptyset 1$	256
$\emptyset 2$	512
$\emptyset 3$	1024

*) SAB 1795/97 may, ソary-
The number of sectors per track as far as the SAB 179X is concerned can be from 1 to 255 sectors. The number of tracks as far as the SAB 179X is concerned is from 0 to 255 tracks.
For read operations in $8^{\prime \prime}$ double density the SAB 179X requires RAW READ Data (Pin 27) signal which is a 200 ns pulse per flux transition and a Read clock (RCLK) signal to indicate flux transition spacings. The RCLK (Pin 26) signal is provided by some drives but if not it may be derived externally by Phase locked loop, one shots, or counter techniques. In addition a Read Gate Signal is provided as an output (Pin 25) on SAB 179193 which can be used to inform phase lock loops when to acquire synchronization. When reading from the media in FM, RG is made true when 2 bytes of zeroes are detected. The SAB 179X must find an address mark within the next 10 bytes; otherwise RG is reset and the search for 2 bytes of zeroes begins all over again. If an address mark is found within 10 bytes, RG remains true as long as the $S A B 179 X$ is deriving any useful information from the data stream. Similarly for MFM, RG is made active when 4 bytes of " $\emptyset 0$ " or "FF" are detected. The SAB 179X must find an address mark within the next 16 bytes, otherwise RG is reset and search resumes. During read operations (WG $=0$), the $\overline{\mathrm{VFOE}}$ (Pin 33) is provided for phase lock loop synchronization. VFOE will got active low when:
a) Both HLT and HLD are True
b) Settling Time, if programmed, has expired
c) The SAB 179 X is inspecting data off the disk If $\overline{W F} / \overline{\mathrm{VFOE}}$ is not used, this pin may be left open, as it has an internal pull-up resistor.

General Disk Write Operations

When writing is to take place on the diskette the Write Gate (WG) output is activated, allowing current to flow into the Read/Write head. As a precaution to erroneous writing the first data byte must be loaded into the Data Register in response to a Data Request from the SAB 179X before the Write Gate signal can be activated. Writing is inhibited when the Write Protect input is a logic low, in which case any Write command is immediately terminated, an interrupt is generated and the Write Protect status bit is set. The Write $\overline{F a u l t}$ input, when activated, signifies a writing fault condition detected in disk drive electronics such as failure to detect write current flow when the Write Gate is activated. On detection of this fault the SǠ̈ liyx termınates the current command, and sets the Write Fault bit (bit 5) in the Status Word. The Write Fault input should be made inactive when the Write Gate output becomes inactive.

For write operations, the SAB 179X provides Write Gate (Pin 30) and Write Data (Pin 31) outputs. Write data consists of a series of 500 ns pulses in FM ($\overline{\mathrm{DDEN}}=1$) and 200 ns pulses in MFM ($\overline{\mathrm{DDEN}}=\emptyset$). Write Data provides the unique address marks in both formats.
Also during write, two additional signals are provided for write precompensation. These are EARLY ($\operatorname{Pin} 17$) and LATE (P in 18). EARLY is active true when the WD pulse appearing on ($\operatorname{Pin} 30$) is to be written EARLY. LATE is active true when the WD pulse is to be written LATE. If both EARLY and LATE are low when the WD pulse is present, the WD pulse is to be written at nominal. Since write precompensation values vary from disk manufacturer to disk manufacturer, the actual value is determined by several one shots or delay lines which are located external to the SAB 179X The write precompensation signals EARLY and LATE are valid for the duration of WD in both FM and MFM formats.

Ready

Whenever a Read or Write command (Type II or III) is received the SAB 179X samples the Ready input. If this input is logic low the command is not executed and an interrupt is generated. All Type I commands are performed regardless of the state of the Ready input. Also, whenever a Type II or III command is received, the TG43 signal output is updated.

Command Description

The SAB 179X accepts eleven commands. Command words should only be loaded in the Command Register when the Busy status bit is off (Status bit Ø). The one exception is the Force Interrupt command. Whenever a command is being executed, the Busy status bit is set. When a command is completed, an interrupt is generated and the Busy status bit is

Status Register

Upon recerpt of any command, except, the Force Interrupt command, the Busy Status bit is set and the rest of the status bits are updated or cleared for the new command. If the Force Interrupt Command is recerved whe n there is a current command under execution, the Busy status bit is reset, and the rest of the status bits are unchanged. If the Force Interrupt command is received when there is not a current command under execution, the Busy Status bit is reset and the rest of the status bits are updated or cleared. In this case, Status reflects the Type I commands.
reset. The Status Register indicares whether the completed conmmand encountered ari error or was fault tree For ease of discussion, commands are divided into four types.
Commands and types are summarized on next page.

The user has the option of reading the status register through program control or using the DRQ line with DMA or interrupt methods. When the Data register is read the DRQ bit in the status register and the DRQ line are automatically reset. A write to the Data register also causes both DRQ's to reset.
The busy bit in the status may be monitored with a user program to determine when a command is complete, in lieu of using the INTRQ line. When using the INTRQ, a busy status check is not recommended because a read of the status register to determine the condition of busy will reset the INTRQ line.

(Bits)							
7	6	5	4	3	2	1	0
S 7	S 6	S 5	S 4	S 3	S 2	S 1	S 0

Status varies according to the type of command executed.

Command Summary

Commands for SAB 1791, SAB 1793										Commands for SAB 1795, SAB 1797							
		Bits								Bits							
Type	Command	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
1	Restore	\emptyset	0	0	0	h	V	r_{1}	r_{0}	\emptyset	0	\emptyset	0	h	V	r_{1}	r_{0}
1	Seek	0	0	0	1	h	V	r_{1}	r_{0}	\emptyset	0	\emptyset	1	h	V	r_{1}	r_{0}
1	Step	0	\emptyset	1	T	h	V	r_{1}	r_{0}	0	0	1	T	h	V	r_{1}	r_{0}
1	Step-in	\emptyset	1	0	T	h	V	r_{1}	r_{0}	\emptyset	1	\emptyset	T	h	V	r_{1}	r_{0}
I	Step-out	0	1	1	T	h	V	r_{1}	r_{0}	0	1	1	T	h	V	r_{1}	r_{0}
11	Read Sector	1	\emptyset	0	m	S	E	C	\emptyset	1	0	\emptyset	m	L	E	U	0
11	Write Sector	1	0	1	m	S	E	C	a_{0}	1	0	1	m	L	E	U	a_{0}
III	Read Address	1	1	0	\emptyset	\emptyset	E	\emptyset	0	1	1	\emptyset	0	0	E	U	0
III	Read Track	1	1	1	0	\emptyset	E	0	0	1	1	1	0	\emptyset	E	U	0
III	Write Track	1	1	1	1	\emptyset	E	\emptyset	\emptyset	1	1	1	1	\emptyset	E	U	0
IV	Force Interrupt	1	1	0	1	I_{3}	I_{2}	I_{1}	10	1	1	\emptyset	1	1_{3}	I_{2}	I_{1}	10

Flag Summary

Command Type	$\begin{gathered} \mathrm{Bit} \\ \mathrm{No}(\mathrm{~s}) \end{gathered}$		Description				
1	0,1	$r_{1} r_{0}=$ Stepping Motor Rate					
1	2	$V=$ Track Number Verify Flag	$V=\emptyset$, No verify $V=1$, Verify on destination track				
1	3	h = Head Load Flag	$h=\emptyset$, Unload head at beginning $h=1$, Load head at beginning				
1	4	T = Track Update Flag	$\begin{aligned} & T=\emptyset, \text { No update } \\ & T=1, \text { Update track register } \end{aligned}$				
II \& III	\emptyset	$\mathrm{a}_{6}=$ Data Address Mark	$\begin{aligned} & a_{\ell}=\emptyset, F B(D A M) \\ & a_{\varnothing}=1, F 8(\text { deleted } D A M) \end{aligned}$				
11	1	$C=$ Side Compare Flag	$C=\emptyset$, Disable side compare $C=1$, Enable side compare				
11 \& III	1	$U=$ Update SSO	$U=\emptyset$, Update SSO to \emptyset $U=1$, Update SSO to 1				
11 \& III	2	$E=15 \mathrm{~ms}$ Delay	$\begin{aligned} & E=0, \text { No } 15 \mathrm{~ms} \text { delay } \\ & E=1,15 \mathrm{~ms} \text { delay } \end{aligned}$				
II	3	S = Side Compare Flag	$\begin{aligned} & S=\emptyset, \text { Compare for side } \emptyset \\ & S=1, \text { Compare for side } 1 \end{aligned}$				
II	3 L = Sector Length Flag						
				LSB's a	ctor	gth in 10	Field 11
			$L=0$	256	512	1024	128
			$\mathrm{L}=1$	128	256	512	1024
11	4	$\mathrm{m}=$ Multiple Record Flag	$m=\emptyset$, Single record $m=1$, Multiple records				
IV	$\text { Q-3 } \begin{aligned} I_{x} & =\text { Interrupt Condition Flags } \\ I_{0} & =1 \text { Not Ready To Ready Tr } \\ I_{1} & =1 \text { Ready To Not Ready Tr: } \\ I_{2} & =1 \text { Index Pulse } \\ I_{3} & =1 \text { Immediate Interrupt, R } \\ I_{3}-I_{1} & =0 \text { Terminate With No Inte } \end{aligned}$		n n A Reset (INTRQ)				

Status Register Summary

Bit	All Type I Commands	Read Address	Read Sector	Read Track	Write Sector	Write Track
S7	NOT READY					
S6	WRITE	\emptyset	\emptyset	\emptyset	WRITE	WRITE
	PROTECT				P YOTECT	PROTECT
S5	HEAD LOADED	0	RECORD TYPE	0	WRITE FAULT	WRITE FAULT
S4	SEEK ERROR	RNF	RNF	0	RNF	\emptyset
S3	CRC ERROR	CRC ERROR	CRC ERROR	0	CRC ERROR	\emptyset
S2	TRACK 0	LOST DATA				
S1	INDEX	DRQ	DRQ	DRQ	DRQ	DRQ
Sø	BUSY	BUSY	BUSY	BUSY	BUSY	BUSY

Status for Type I Commands

Bit	Name	Meaning
S7	NOT READY	This bit when set indicates the drive is not ready. When reset it indicates that the drive is ready. This bit is an inverted copy of the Ready input and logically "ored" with MR.
S6	PROTECTED	When set, indicates Write Protect is activated. This bit is an inverted copy of $\overline{\text { WRPT }}$ input.
S5	HEAD LOADED	When set, it indicates the head is loaded and engaged. This bit is a logical "and" of HLD and HLT signals.
S4	SEEK ERROR	When set, the desired track was not verified. This bit is reset to \emptyset when updated.
S3	CRC ERROR	CRC encountered in ID field.
S2	TRACK $\varnothing \varnothing$	When set, indicates Read/Write head is positioned to Track \varnothing. This bit is an inverted copy of the TRøØ input.
S1	INDEX	When set, indicates index mark detected from drive. This bit is an inverted copy of the IP input.
SØ	BUSY	When set command is in progress. When reset no command is in progress.

Status for Type II and III Commands

Bit	Name	Meaning
S7	NOT READY	This bit when set indicates the drive is not ready. When reset, it indicates that the drive is ready. This bit is an inverted copy of the Ready input and "ored" with MR. The Type II and III Commands will not execute unless the drive is ready.
S6	WRITE PROTECT	On Read Record: Not Used. On Read Track: Not Used. On any Write: It indicates a Write Protect. This bit is reset when updated.
S5.	RECORD TYPE/ WRITE FAULT	On Read Record: It indicates the record-type code from data field address mark. 1 = Deleted Data Mark. $\emptyset=$ Data Mark. On any Write: It indicates a Write Fault. This bit is reset when updated.
S4	RECORD NOT FOUND (RNF)	When set, it indicates that the desired track, sector, or side were not found. This bit is reset when updated.
S3	CRC ERROR	If S4 is set, an error is found in one or more ID fields; otherwise it indicates error in data field. This bit is reset when updated.
S2	LOST DATA	When set, it indicates the computer did not respond to DRQ in one byte time. This bit is reset to zero when updated.
S1	DATA REQUEST	This bit is a copy of the DRQ output. When set, it indicates the DR is full on a Read Operation or the DR is empty on a Write operation. This bit is reset to zero when updated.
Sø	BUSY	When set, command is under execution. When reset, no command is under execution.

Formatting the Disk

Formatting the disk is a relatively simple task when operating programmed I/O or when operating under DMA with a large amount of memory. Data and gap information must be provided at the computer interface. Formatting the disk is accomplished by positioning the R/W head over the desired track number and issuing the Write Track command.

Upon receipt of the Write Track command, the head is loaded and the Busy Status bis is set. Writing starts with the leading edge of the first encountered index pulse and continues until the next index pulse, at which time the interrupt is activated. The Data Request is activated immediately upon receiving the command, but writing will not start until after the first byte has been loaded into the nate Regictor. If the DR has nct boco ivaúaut hy the time the index pulse is encountered the operation is terminated making the device Not Busy, the Lost Data Status Bit is set, and the Interrupt is activated. If a byte is not present in the DR when needed, a byte of zeroes is substituted.
This sequence continues from one index mark to the next index mark. Normally, whatever data pattern appears in the data register is written on the disk with a normal clock pattern. However, if the SAB 179X detects a data pattern of F5 through FE in the data register, this is interpreted as data address marks with missing clocks or CRC generation.
The CRC generator is initialized when any data byte from F8 to FE is about to be tranferred from the DR to the DSR in FM or by receipt of F5 in MFM.
An F7 pattern will generate two CRC characters in FM or MFM. As a consequence, the patterns F5 through FE must not appear in the gaps, data fields, or ID fields. Also, CRC's must be generated by an $F 7$ pattern.

Disks may be formatted in IBM 3740 or System 34 formats with sector lengths of $128,256,512$, or 1024 bytes.

IBM 3740 Format - 128 Bytes/Sector ($8^{\prime \prime}$)

Shown below is the IBM single-density format with 128 bytes/sector. In order to format a diskette, the user must issue the Write Track command, and load the data register with the following values. For every byte to be written, there is one data request.

Number of Bytes	Hex Value of Byte Written
40	FF (or (6) ${ }^{3 /}$
6	00
1	FC (Index Mark)
26	FF (or ©0)
115	00
1	FE (ID Address Mark)
1	Track Number
1	Side Number (00 or 01)
1	Sector Number (1 thru 1A)
1	00
1	F7 (2 CRC's written)
11	FF (or ©0)
6	00
1	FB (Data Address Mark)
128	Data (IBM uses E5)
1	F7 (2 CRC's written)
27	FF (or 60)
247°	FF (or 00)

${ }^{11}$ Write bracketed field 26 times
${ }^{2)}$ Continue writing until SAB 179X interrupts out. Approx. 247 bytes.
${ }^{3 /}$ Optional ' \varnothing ' on SAB 1795/7 only.

IBM System 34 Format 256 Bytes/Sector ($8^{\prime \prime}$)

Shown below is the IBM dual-diensity format with 256 bytes/sector. In order to format a diskette the user must issue the Write Track command and load the data register with the following values. For every byte to be written, there is one data request.

Number of Bytes	Hex value of Byte written
80	4 E
12	00
3	F6 (writes C2)
1	FC (Index Mark)
1) 50	4E
12	00
3	F5
1	FE (ID Address Mark)
1	Track Number (\emptyset through 4C)
1	Side Number (0 or 1)
1	Sector Number (1 through 1A)
1	$\emptyset 1$ (Sector length)
1	F7 (2 CRCs written)
22	4 E
12	0
3	F5 (writes A1)
1	FB (Data Adress Mark)
256	DATA
1	F7 (2 CRCs written)
54	4E
$598{ }^{21}$	4E

${ }^{17}$ Write bracketed field 26 times
${ }^{2)}$ Continue writing until SAB179X interrupts out. Approx. 598 bytes.

Recommended - 128 Bytes/Sector (Mini-Diskette)

Shown below is the Recommended single-density format with 128 bytes/sector. In order to format a diskette, the user must issue the Write Track command, and load the data register with the following values. For every byte to be written, there is one data request.

Number of Bytes	Hex Value of Byte Written
40	FF (or $80{ }^{3}$)
6	00
1	FE (ID Address Mark)
1	Track Numer
1	Side Number (00 or 01)
1	Sector Number (1 through 1A)
1	an (Sertnr length!
1	F7 (2 CRC's writteri)
11	FF (or $\theta(0)^{3)}$
6	D0
1	FB (Data Address Mark)
128	Data (IBM uses E5)
1	F7 (2 CRC's written)
10	FF (or $\emptyset \theta)^{3}$)
369^{21}	FF (or 00$)^{3}$

${ }^{11}$ Write bracketed field 16 times
${ }^{2)}$ Continue writing until SAB 179X interrupts out. Approx 369 bytes.
${ }^{3)}$ Optional ' $\emptyset \emptyset$ ' on SAB 1795/7 only.

Recommended Single Density Format (Mini-Diskette)

256 Bytes/Sector (Mini-Diskette)

Shown below is the recommended dual-density format with 256 bytes/sector. In order to format a diskette the user must issue the Write Track command and load the data register with the following values. For every byte to be written, there is one data request.

Number of Bytes	Hex value of Byte written
1400	4 E
12	$\emptyset \emptyset$
3	F5 (Writes A1)
1	FE (ID Address Mark)
1	Track Number (\emptyset through 4C)
1	Side Number (Ø or 1)
1	Sector Number (1 through 1A)
1	$\emptyset 1$ (Sector Length)
1	F7 (2 CRCs written)
22	4 AE
12	$\emptyset \emptyset$
3	F5 (Writes A1)
1	FB (Data Address Mark)
256	DATA
1	F7 (2 CRCs written)
24	$4 E$
718^{21}	$4 E$

${ }^{11}$ Write bracketed field 26 times
${ }^{2)}$ Continue writing until SAB 179X interrupts out. Approx. 718 bytes.

Non-standards Formats

Variations in the recommended formats are possible to a limited extent if the following requirements are met:

1) Sector size must be $128,256,512$ of 1024 bytes.
2) Gap 2 cannot be varied from the recommended format.
3) 3 bytes of A1 must be used in MFM.

In addition, the Index Address Mark is not required for operation by the SAB 179X. Gap 1, 3, and 4 lengths can be as short as 2 bytes for SAB 179X operation, however PPL lock up time, motor speed variation, write-splice area, etc. will add more bytes to each gap to achieve proper operation. It is recommended that the recommended format be used for highest system reliabilitv.

	FM	MFM
Gap I	16 bytes FF	32 bytes 4 E
Gap II	11 bytes FF	22 bytes 4 E
3)	6 bytes $\emptyset \emptyset$	12 bytes $\emptyset \emptyset$
		3 bytes A1
Gap III	10 bytes FF	24 bytes 4 E
4)	4 bytes $\emptyset \emptyset$	8 bytes $\emptyset \emptyset$
		3 bytes A 1
Gap IV	16 bytes FF	16 bytes 4 E

${ }^{3)}$ Byte counts must be exact.
${ }^{4)}$ Byte counts are minimum, except exactly 3 bytes of A1 must be written in MFM.

Control Bytes for Initialization

Data Pattern in DR (Hex.)	SAB 179X Interpretation in FM (DDEN = 1)	SAB 179X Interpretation in MFM (DDEN = Ø)
$\emptyset \emptyset$ through F4	Write ØØ through F4 with CLK = FF	Write $\emptyset 0$ through F4, in MFM
F5	Not Allowed	Write A1 ${ }^{1 \prime}$ in MFM, Preset CRC
F6	Not Allowed	Write C2 ${ }^{2)}$ in MFM
F7	Generate 2 CRC bytes	Generate 2 CRC bytes
F8 through FB	Write F8 through FB, Clk $=$ C7, Preset CRC	Write F8 through FB, in MFM
FC	Write FC with CIk = D7	Write FC in MFM
FD	Write FD with CIk = FF	Write FD in MFM
FE	Write FE, CIk $=$ C7, Present CRC	Write FE in MFM
FF	Write FF with CIk = FF	Write FF in MFM

[^24]

Absolute maximum ratings ${ }^{1 /}$

Operating Temperature Storage Temperaturs VDD with Respect to Vss (Ground)
Max. Voltage to any input with Respect to VSS

$$
\begin{array}{r}
0 \text { to } 70^{\circ} \mathrm{C} \\
-65 \text { to }+150^{\circ} \mathrm{C} \\
+15 \text { to }-0.3 \mathrm{~V} \\
+15 \text { to }-0.3 \mathrm{~V}
\end{array}
$$

D. C. Characteristics

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{VDD}=+12 \mathrm{~V} \pm 5 \% ; \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{VSS}=\mathrm{OV}$

Symbol	Parameter	Limit Values			Unit	Test Condition
		Min.	Typ.	Max.		
IIL	Input Leakage	-	--	10	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VDD}{ }^{\prime \prime}$
10L	Output Leakage					$\mathrm{VOUT}=\mathrm{VDD}$
VIH	Input High Voltage	2.6		-	V	
VIL	Input Low Voltage	-		0.8		
$\overline{\mathrm{VOH}}$	Output High Voltage	2.8		-		$10=-100 \mu \mathrm{~A}$
VOL	Output Low Voltage	-		045		$10=1.6 \mathrm{~mA}$
ICC	Power Supply Current		35	60	$m \Delta$	
IDD	Power Supply Current		10	15	m. ${ }^{\text {. }}$	--
PD	Power Dissipation		-	06	W	

Capacitance ${ }^{3 /}$

Symbol	Parameter	Limit Value (max.)	Unit	Test Condition
CIN	Input Capacitance	15	pF	Unmeasured pins returned to GND
COUT	Output Capacitance			

[^25]
A.C. Characteristics

$\mathrm{TA}=0$ to $70 \mathrm{C}, \mathrm{VDD}=+12 \mathrm{~V} \pm 5 \% ; \mathrm{VSS}=0 \mathrm{~V}, \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \%$
All tıming readings at $\mathrm{VOL} \quad 0.8 \mathrm{~V}$ and $\mathrm{VOH} \quad 2.0 \mathrm{~V}$

Read Enable Timing

Symbol	Parameter	Limit Values			Unit	Test Condition
		Min.	Typ.	Max.		
TSET	Setup ADDR \& CS to $\overline{\mathrm{RE}}$	50	-	-	ns	-
THLD	Hold ADDR \& CS from $\overline{\mathrm{RE}}$	10				
TRE	$\overline{\mathrm{RE}}$ Pulse Width	400				$C L=50 \mathrm{pf}$
TDRR	DRQ Reset from $\overline{\mathrm{RE}}$	-	400	500		
TIRR	INTRQ Reset from $\overline{\mathrm{RE}}$		500	3000		-
TDACC	Data Access from $\overline{\mathrm{RE}}$		-	350		$C L=50 \mathrm{pf}$
TDOH	Data Hold from $\overline{\mathrm{RE}}$	50		150		

DRQ rising edge: Indıcates that the data register has assembled data.
DRQ falling edge: Indicates that the data register was read.
INTRQ rising edge: Occurs at end of command.
INTRQ falling edge: Indicates that the status register was read.

[^26]2) TService (worst case)
$-\mathrm{FM}=27.5 \mu \mathrm{~s}$
$-\mathrm{MFM}=13.5 \mu \mathrm{~s}$

Write Enable Timing

Symbol	Parameter	Limit Values			Units	Test Conditions
		Min.	Typ.	Max.		
TSET	Setup ADDR \& CS to $\overline{W E}$	50	-	-	ns	-
THLD	Hold ADDR \& CS from $\overline{\mathrm{WE}}$	10				
TWE	$\overline{\text { WE Pulse Width }}$	350				
TDRR	DRQ Reset from $\overline{\text { WE }}$	-	400	500		
TIRR	INTRQ Reset from $\overline{\text { WE }}$		500	3000		
TDS	Data Setup to $\overline{W E}$	250	-	-		
TDH	Data Hold from $\overline{W E}$	70				

DRQ rising edge: Indicates that the data register is empty.
DRQ falling edge: Indicates that the data regıster is loaded.
INTRQ rising edge: Indicate the end of a command.
INTRQ falling edge: Indicates that the command register is written to.

[^27]SAB 179X

Input Data Timing

Symbol	Parameter	Limit Values			Units	Test Conditions
		Min.	Typ.	Max.		
Tpw	RAW READ Pulse Width	100	200	-	ns	1)
Tbc	तिAW READ Cycle Time ${ }^{2!}$	1500	2000			800ns@ $70^{\circ} \mathrm{C}$
Tc	RCLK Cycle Time ${ }^{31}$					1800 ns @ 70 C
Tx1	RCLK hold to $\overline{\text { RAW READ }}$	40	-			1)
Tx2	RAW READ hold to RCLK					1)

${ }^{13}$ Pulse width on RAW READ (Pin 27) is normally $100-300 \mathrm{~ns}$. However, pulse may be any width if pulse is entirely within window. If pulse occurs in both windows, then pulse width must be less than 300ns for MFM at CLK $=2 \mathrm{MHz}$ and 600 ns for FM at 2 MHz . Times double for 1 MHz .
${ }^{21} \mathrm{tbc}$ should be $2 \mu \mathrm{~s}$, nominal in MFM and $4 \mu \mathrm{~s}$ nominal in FM. Times double when CLK $=1 \mathrm{MHz}$.
${ }^{3)}$ RCLK may be high or low during $\overline{R A W} \overline{R E} \bar{D} \bar{D}$ (Polarity is unimportant).

					Nominal		
Diskette	Mode	$\overline{\text { DDEN }}$	CLK	Ta	Tb	Tc	
$8^{\prime \prime}$	MFM	0	2 MHz	$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	
$8^{\prime \prime}$	FM	1	2 MHz	$2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$4 \mu \mathrm{~s}$	
$5^{\prime \prime}$	MFM	0	1 MHz	$2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$4 \mu \mathrm{~s}$	
$5^{\prime \prime}$	FM	1	1 MHz	$4 \mu \mathrm{~s}$	$4 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	

[^28]
Write Data Timing (All Times Double when CLK = 1 MHz)

Symbol	Parameter	Limit Values			Units	Test Conditions
		Min.	Typ.	Max.		
Twp	Write Data Pulse Width	$\begin{aligned} & 450 \\ & 150 \end{aligned}$	$\begin{aligned} & 500 \\ & 200 \end{aligned}$	$\begin{aligned} & 550 \\ & 250 \end{aligned}$	ns	$\begin{aligned} & \text { FM } \\ & \text { MFM } \end{aligned}$
Twg	Write Gate to Write Data	-	2	-	$\mu \mathrm{s}$	FM MFM
Tbc	Write data cycle Time		$\begin{aligned} & 2,3 \\ & \text { or } 4 \end{aligned}$			\pm CLK Error
Ts	Early (Late) to Write Data	125			ns	MFM
Th	Early (Late) from Write Data					
Twf	Write Gate off from WD	-	2 1		$\mu \mathrm{S}$	FM MFM
Twd1	WD Valid to CLK	$\begin{array}{r} 100 \\ 50 \end{array}$	-		ns	$\begin{aligned} & \mathrm{CLK}=1 \mathrm{MHz} \\ & \mathrm{CLK}=2 \mathrm{MHz} \end{aligned}$
Twd2	WD Valid after CLK	$\begin{array}{r} 100 \\ 30 \end{array}$				$\begin{aligned} & \mathrm{CLK}=1 \mathrm{MHz} \\ & \mathrm{CLK}=2 \mathrm{MHz} \end{aligned}$

Write Data/Clock Relationship ($\overline{\mathrm{DDEN}}=\emptyset$)
WD must have rising edge in first shaded area and trailing edge in second shaded area

Miscellaneous Timing

Symbol	Parameter	Limit Values			Units	Test Conditions
		Min.	Typ.	Max.		
TCD1	Clock Duty (LOW)	230		20000	ns	2)
TCD2	Clock Duty (HIGH)	200				
TSTP	Step Pulse Output	2 or 4	-	-	$\mu \mathrm{s}$	
TDIR	Dir Setup to Step	-	12			\pm CLK Error
TMR	Master Reset Pulse Width	50				
TIP	Index Pulse Width	10	-			2)
TWF	Write Fault Pulse Width	20				

[^29]
SAB 279xA

Floppy Disk Formanterl
Controller Family

Features	SAB $2791 A$	SAB	SAB 2793A	SAB $2795 A$
2797A				

- On-Chip PLL Data Separator
- On-Chip Write Precompensation Logic
- Single +5 V Supply
- Accommodates Single and Double Density Formats IBM 3740 Single Density (FM)
IBM System 34 Double Density (MFM)
- Automatic Seek with Verify
- Multiple Sector Read/Write
- TTL Compatible
- Programable Control

Selectable Track-to-Track Access Head Load Timing

- Software Compatible with the SAB 179X Floppy Disk Formatter/Controller Family
- Soft Sector Format Compatibility

Pin Connections

1) $\mathrm{SAB} 2791 \mathrm{~A} / 2793 \mathrm{~A}=\overline{\mathrm{ENMF}}$ 2) $\mathrm{SAB} 2793 \mathrm{~A} / 2797 \mathrm{~A}=$ True Bus SAB 2795A/2797A = SSO

Logic Diagram

SAB 279XA is a floppy disk controller family of N -channel MOS LSI components designed to interface with SAB 8080/8051 family processors. Its flexibility and ease of use makes it an ideal floppy disk interface between conventional floppy disks and all computer systems. Software compatible with its predecessor, the SAB 179X, the device also contains a high performance Phase-

Lock-Loop Data Separator as well as Write Precompensation Logic.
When operating in Double Density mode, Write Precompensation is automatically engaged to a value programmed via an external potentiometer. An on-chip VCO and phase comparator allows adjustable frequency range for $51 / 4$ " -8 " Floppy Disk and Micro Floppy Disk Interface.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Functions
ENP	1	1	ENABLEPRECOMP- A logic high on this input enables write precompensation to be performed on the Write Data output
$\overline{\overline{W E}}$	2	1	WRITEENABLE- A logic low on this input gates data on the DAL into the selected register when $\overline{\mathrm{CS}}$ is low
$\overline{\overline{C S}}$	3	1	CHIP SELECT - A logic low on this input selects the chip and enables computer communication with the device
$\overline{\overline{R E}}$	4	1	READENABLE- A logic low on this input controls the placement of data from a
A0, A1	5,6	1	REGISTER SELECTLINES- These inputs select the register to receive/transfer data on the DAL lines under $\overline{R E}$ and $\overline{W E}$ control:
$\frac{\overline{\overline{\mathrm{DALD}}} \mathrm{to}}{\overline{\mathrm{DAL7}}}$	7-14	1/O	DATAACCESS LINES - Eight bit directional bus used for transfer of commands, status and data. These lines are inverted on SAB 2791A and SAB 2795A.
STEP	15	0	STEP- The step output contains a pulse for each step
DIRC	16	0	DIRECTION - Direction output is active high when stepping in, active low when stepping out
$\overline{\overline{5} / 8}$	17	1	51/4", 8" SELECT- This input selects the internal VCO frequency for use with $5^{\frac{1}{4}} \mathbf{4}^{\prime \prime}$ drives or 8" drives
RPW	18	I	READ PULSE WIDTH - An external potentiometer tied to this input controls the phase comparator within the data separator
$\overline{\overline{M R}}$	19	1	MASTERRESET - A logic low ($50 \mu \mathrm{sec}$ min.) on this input resets the device and loads hex 03 into the command register. The Not Ready bit (Status bit 7) is reset during $\overline{M R}$ active. When $\overline{M R}$ is brought to a logic high a Restore command is executed, regardless of the state of the Ready signal from the drive. Also hex 01 is loaded into Sector Register.
$\overline{\overline{T E S T}}$	22	1	TEST - A logic low on this input allows adjustment of external resistors by enabling internal signals to appear on selected pins

Symbol	Number	Input (I) Output (O)	Functions
PUMP	23	0	PUMP - High-impedance output signal which is forced high or low to increase/decrease the VCO frequency
CLK	24	1	CLOCK- This input requires a free-running 50% duty cycle square wave clock for internal timing reference, $2 \mathrm{MHz} \pm 1 \%$ for $8^{\prime \prime}$ drives, $1 \mathrm{MHz} \pm 1 \%$ for mini-floppies
$\overline{\text { ENMF }}$	25	1	ENABLE MINI-FLOPPY (SAB 2791A/2793A) - A logic low on this input enables an internal divide by 2 of the master clock. This allows both $5^{1 / 4^{\prime \prime}}$ and $8^{\prime \prime}$ drive operation with a single 2 MHz clock. For a 1 MHz clock on Pin 24, this line must be left open or tied to a logic 1
SSO	25	0	SIDE SELECT OUTPUT(SAB 2795A/2797A) - The logic level of the Side Select output is directly controlled by the U flag in Type II or III commands. When $U=1, S S O$ is set to a logic 1 . When $U=0$, SSO is set to a logic 0 . The SSO is compared with the side information in the sector ID field. If they do not compare, Status Bit 4 (RNF) is set. The Side Select output is only updated at the beginning of a Type II or III command. It is forced to a logic 0 upon a master reset condition
VCO	26	-	VOLTAGE CONTROLLED OSCILLATOR An external capacitor tied to this pin adjusts the VCO center frequency
$\overline{\text { RAWREAD }}$	27	1	RAWREAD - The data input signal directly from the drive. This input shall be a negative pulse for each recorded flux transition
HLD	28	0	HEAD LOAD - The HLD output controls the loading of the Read/Write head against the media
TG43	29	0	TRACK GREATER THAN 43- This output informs the drive that the Read/Write head is positioned between tracks 44 and 76. This output is valid only during read and write commands
WG	30	0	WRITE GATE - This output is made valid before writing is to be performed on the diskette
WD	31	0	WRITE DATA- MFM or FM output pulse per flux transition. WD contains the unique address marks as well as data and clock in both FM and MFM formats
READY	32	1	READY- This input indicates disk readiness and is sampled for a logic high before read or write commands are performed. If Ready is low the read or write operation is not performed and an interrupt is generated. Type l operations are performed regardless of the state of Ready. The Ready input appears in inverted format as Status Register bit 7

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Functions
WPW	33	1	WRITE PRECOMP WIDTH - An external potentiometer tied to this input controls the amount of delay in write precompensation mode
$\overline{\text { TRøठ }}$	34	1	TRACK 00 - This input informs the SAB 279XA that the Read/Write head is positioned over Track $\varnothing 0$
$\overline{\mathrm{P}}$	35	1	INDEXPUULSE- This input informs the SAB 279XA when the index hole is encountered on the diskette
$\overline{\text { WPRT }}$	36	1	WRITE PROTECT - This input is sampled whenever a write command is received. A logıc low termınates the command and sets the Write Protect status bit
$\overline{\text { DDEN }}$	37	1	DOUBLEDENSITY- This input pin selects either single or double density operation. When $\overline{D D E N}=0$, double density is selected. When $\overline{\mathrm{DDEN}}=1$, single density is selected
DRQ	38	0	DATAREQUEST- This output indicates that the Data Register contains assembled data in read operations, or the DR is empty in write operations. This signal is reset when serviced by the computer through reading or loading the Data Register
INTRQ	39	0	INTERRUPTREQUEST - This output is set at the completion of any command and is reset iwhen the Status Register is read or the Command Register is written to
HLT	40	i	HEAD LOAD TIMING - When a logic high is found on the HLT input the head is assumed to be engaged. It is typically derived from a single shot triggered by HI.D
VCC	21	-	POWER SUPFLY $(+5 \mathrm{~V})$
VSS	20	-	GROUND (0V)

General Description

The SAB 279XA are N-channel MOS LSI devices which perform the functions of a Floppy Disk Formatter/Controller in a single chip implementation. The SAB 279XA is IBM 3740 compatible in single density mode (FM) and System 34 compatible in Double Density Mode (MFM). The SAB 297XA contains all the features of its predecessor, the SAB 179X, plus a high performance phase-lock-lopp data separator as well as write precompensation logic. In double density mode, write precompensation is automatically engaged to a value programmed via an external potentiometer. In order to maintain compatibility, the SAB 179X and SAB 279XA designs were made as close as possible with the computer interface, instruction

Organization

The Floppy Disk Formatter block diagram is illustrated on page 5 . The primary sections include the parallel processor interface and the Floppy Disk interface.
Data Shift Register (DSR) - This 8-bit register assembles serial data from the Read Data input (RAW READ) during read operations and transfers serial data to the Write Data output during write operations.
Data Register (DR)-This 8-bit register is used as a holding register during disk read and write operations. In disk read operations the assembled data byte is transferred in parallel to the Data Register from the Data Shift Register. In disk write operations information is transferred in parallel from the Data Register to the Data Shift Register. When executing the Seek command the Data Register holds the address of the desired track position. This register is loaded from the DAL and gated onto the DAL under processor control.
Track Register (TR) - This 8-bit register holds the track number of the current Read/Write head position. It is incremented by one every time the head is stepped in (towards track 76) and decremented by one when the head is stepped out (towards track $00)$. The contents of the register are compared with the recorded track number in the ID field during disk read, write and verify operations. The Track Register can be loaded from or transferred to the DAL. This register should not be loaded when the device is busy.
Sector Register (SR) - This 8-bit register holds the address of the desired sector position. The contents of the register are compared with the recorded sector number in the ID field during disk read or write operations. The Sector Register contents can be loaded from or transferred to the DAL. This register should not be loaded when the device is busy.
set, and I / O registers being identical. Also, head load control is identical in each case, the actual pin assignments vary only by a few pins from any one to another.
The processor interface consists of an 8-bit bidirectional bus for data, status, and control word transfers. The SAB 279XA is set up to operate on a multiplexed bus with other bus-oriented devices. The SAB 279XA is TTL compatible on all inputs and outputs. The outputs will drive one TTL load or three LS loads. The SAB 2793A is identical with the SAB 2791A, except that the DAL lines are true for systems that utilize true data busses.
The SAB 2795A/97A has a side select output for controlling double sided drives.

Command Register (CR) - This 8-bit register holds the command presently being executed. This register should not be loaded when the device is busy unless the new command is a Force Interrupt command. The command register can be loaded from the DAL, but not read onto the DAL.

Status Register (STR) - This 8-bit register holds device status information. The meaning of the status bits is a function of the type of command previously executed. This register can be read onto the DAL, but not loaded from the DAL.
CRC Logic - This logic is used to check or to generate the 16 -bit Cyclic Redundancy Check (CRC). The polynomial is: $G(x)=x^{16}+x^{12}+x^{5}+1$
The CRC includes all information starting with the address mark und up to the CRC character. The CRC register is preset to ones prior to data being shifted through the circuit.
Arithmetic/Logic Unit (ALU) - The ALU is a serial comparator, incrementer, and decrementer and is used for register modification and comparisons with the disk recorded ID field.

Timing and Control - All computer and Floppy Disk interface controls are generated through this logic. The internal device timing is generated from an external crystal clock.
AM Detector - The address mark detector detects ID, data and index address marks during read and write operations.
Write Precompensation - enables write precompensation to be performed on the Write Data output.
Data Separator - a high performance phase-lockloop data separator with on-chip VCO and phase comparator allows adjustable frequency range for $5^{1 / 4^{\prime \prime}}$ or $8^{\prime \prime}$ Floppy Disk interfacing.

Processor Interface

The interface to the processor is accomplished through the eight Data Access Lines (DAL) and associated control signals. The DAL are used to transfer data, status, and control words out of, or into the SAB 279XA. The DAL are three state buffers that are enabled as output drivers when Chip Select (CS) and Read Enable ($\overline{\mathrm{RE}}$) are active (low logic state) or act as input receivers when $\overline{\mathrm{CS}}$ and Write Enable ($\overline{\mathrm{WE}}$) are active.
When transfer of data with the Floppy Disk Controller is required by the host processor, the device address is decoded and $\overline{\mathrm{CS}}$ is made low. The address bits $A 1$ and $A 0$, combined with the signals $\overline{R E}$ during a read operation or $\bar{W} E$ during a write operation are interpreted as selector for the following registers:

A1	A0	READ	WRITE
0	0	Status Register	Command Register
0	1	Track Register	Track Register
1	0	Sector Register	Sector Register
1	1	Data Register	Data Register

During direct memory access (DMA) types of data are transferred between the Data Register of the SAB 279XA and the processor, the Data Request (DRQ) output is used in data transfer control This signal also appears as status bit 1 during read and write operations.
In disk read operations the Data Request is activated (set high) when an assembled serial input byte is transferred in parallel to the Data Register. This bit is cleared when the Data Register is read by the processor. If the Data Register is read after one or more characters have been lost by having transferred new data into the register prior to processor readout, the Lost Data bit is set in the Status Register. The read operation continues until the end of sector is reached.

In disk write operations the Data Request is activated when the Data Register transfers its contents to the Data Shift Register, and requires a new data byte. It is reset when the Data Register is loaded with new data by the processor. If new data is not loaded at the time the next serial byte is required by the Floppy Disk, a byte of zeroes is written on the diskette and the Lost Data bit is set in the Status Register.
Upon completion of every command an INTRQ is generated. INTRQ is reset either by reading the Status Register or by loading the Command Register with a new command. In addition, INTRQ is generated if a Force Interrupt command condition is met. The SAB 279XA has two modes of operating depending on the state of $\overline{D D E N}$ (Pin 37). When $\overline{D D E N}=1$, Single Density (FM) is selected. When $\overline{D D E N}=0$, Double Density (MFM) is selected. In either case, the CLK input ($\operatorname{Pin} 24$) is set at 2 MHz for $8^{\prime \prime}$ drives or 1 MHz for $5^{1 /{ }^{\prime \prime}}$ " drives.
On the SAB 2791A/2793A, the ENMF input (Pin 25) can be used for controlling both, $51 / 4$ " and $8^{\prime \prime}$ drives with a single 2 MHz clock. When $\overline{\mathrm{ENMF}}=0$, an internal divide by 2 of the CLK is performed. When $\overline{\mathrm{ENMF}}=1$, no divide takes place. This allows the use of a 2 MHz clock for both, $5 \frac{1 / 4}{}{ }^{\prime \prime}$ and $8^{\prime \prime}$ configurations.
The internal VCO frequency must also be set to the proper value. The $\overline{5} / 8$ input (Pin 17) is used to select data separator operation by internally dividing the read clock. When $\overline{5} / 8=0,5 \frac{1}{4}{ }^{\prime \prime}$ data separation is selected; when $\overline{5} / 8=1,8^{\prime \prime}$ drive data separation is selected.

CLOCK (24)	$\overline{\text { ENMF (25) }}$	$\overline{5} / 8(17)$	DRIVE
2 MHz	1	1	$8^{\prime \prime}$
2 MHz	0	0	$5^{1 / 4^{\prime \prime}}$
1 MHz	1	0	$5^{1 / 4^{\prime \prime}}$

All other conditions are invalid.

Functional Description

The SAB 279XA is software compatible with the SAB 179X series of Floppy Disk Controllers. Commands, status, and data transfers are performed in the same way. Software generated for the SAB 179X can be transferred to a SAB 279XA system without modification.
In addition to the SAB 179X, the SAB 279XA contains an internal data separator and write precompensation circuit. The TEST (Pin 22) line is used to adjust both, data separator and precompensation. When $\overline{T E S T}=0$, the WD (Pin 31) line is internally connected to the output of the write precomp single shot. Adjustment of the WPW (Pin 33) line can then be accomplished. A second single shot tracks the precomp setting at approximately $3: 1$ to ensure adequate Write Data nulse widthe to meot drive spocifications.
Similarly, data separation is also adjusted with $\overline{T E S T}=0$. The TG43 (Pin 29) line is internally connected to the output of the read data single shot, which is adjusted via the RPW (Pin 18) line. The DIRC (Pin 16) line contains the read clock output (500 kHz for $8^{\prime \prime}$ drives). The VCO trimming capacitor (Pin 26) is adjusted to center frequency.
Internal timing signals are used to generate pulses during the adjustment mode so that these adjustments can be made while the device is in operation. The TEST line also contains a pull-up resistor, so adjustments can be performed simply by grounding the TEST pin, overriding the pull-up. The TEST pin cannot be used to disable stepping rates during operation as its function is quite different from the SAB 179X.
Other pins on the device also include pull-up resistors and may be left open to satisfy a logic 1 condition. These are: ENP, $\overline{5} / 8, \overline{E N M F}, \overline{W P R T}$, $\overline{\mathrm{DDEN}}, \mathrm{HLT}, \overline{\mathrm{TEST}}$, and $\overline{\mathrm{MR}}$.

General Disk Read Operation

Sector lengths of $128,256,512$ or 1024 are obtainable either in FM or MFM formats. For FM, $\overline{D D E} \bar{N}$ should be placed to logic 1. For MFM formats, $\overline{D D E N}$ should be placed to a logic 0 . Sector lengths are determined at format time by the fourth byte in the ID field.

Sector Length Table*	
Sector Length	Number of Bytes Field (hex)
00	128
01	256
02	512
03	1024

[^30]The number of sectors per track as far as the SAB 279XA is concerned can be from 1 to 255 sectors. The number of tracks as far as the SAB 279XA is concerned is from 0 to 255 tracks. For IBM 3740 compatibility, sector lengths are 128 bytes with 26 sectors per track. For System 34 compatibility (MFM), sector lengths are 256 bytes/sector with 26 sectors/track; or lengths of 1024 bytes/sector with 8 sectors/track.

General Disk Write Operation

When writing is to take place on the diskette the Write Gate (WG) output is activated, allowing current to flow into the Read/Write head. As a prosaution to crroncous waitiny tíe firsi úaia inyie must be loaded into the Data Register in response to a Data Request from the SAB 279XA before the Write Gate Signal can be activated. Writing is inhibited when the Write Protect input is logic low, in which case any write command is immediately terminated, an interrupt is generated and the Write Protect status bit is set.
For write operations, the SAB 279XA provides Write Gate (Pin 30) and Write Data (Pin 31) outputs. Write Data consists of a series of pulses set to a width approximately three times greater than the precomp adjustment. Write Data provides the unique address marks in both formats.

Ready

Whenever a read or write command (Type II or III) is received the SAB 279XA samples the Ready input. If this input is logic low the command is not executed and an interrupt is generated. All Type I commands are performed regardless of the state of the Ready input. Also, whenever a Type II or III command is received, the TG43 signal output is updated. TG 43 may be tied to ENP to enable write precompensation on tracks 44-76.

Write Precompensation

When operating in double density mode ($\overline{\mathrm{DDEN}}=$ 0), the SAB 279XA has the capabillty of providing a user-defined precompensation value for Write Data. An external potentiometer (10K) tied to the WPW signal (Pin 33) allows a setting of 100 to 300 ns from nominal.
Setting the write precomp value is accomplished by forcing the TEST line (Pin 22) to a logic 0 . A stream of pulses can then be seen on the Write Data (Pin 31) line. Adjust the WPW Potentiometer for the desired pulse width. This adjustment may be performed incircuit since Write Gate (Pin 30) is inactive while $\overline{\mathrm{TEST}}=0$.

Data Separation

The SAB 279XA can operate with either an external data separator or its own internal recovery circuit. The condition of the TEST line (Pin 22) in conjunction with $\overline{M R}$ (Pin 19) will select internal or external mode.
To program the SAB 279XA for external VCO, a $\overline{M R}$ pulse must be applied while $\overline{T E S T}=0$. A clock equivalent to eight times the data rate (e. g., 4.0 MHz for $8^{\prime \prime}$ double density) is applied to the VCO input (Pin 26). The feedback reference voltage is available on the Pump output (Pin 23) for external integration to control the VCO. TEST is returned to a logic 1 for normal operation. Note: To maintain this mode, $\overline{\mathrm{TEST}}$ must be held low whenever $\overline{\mathrm{MR}}$ is applied. For internal VCO operation, the TEST line must be high during the $\overline{M R}$ pulse, then set to a logic 0 for the adjustment procedure.
A 50 k Potentiometer tied to the RPW input (Pin 18) is used to set the internal Read Data pulse for proper phasing. With a scope on Pin 29 (TG43), adjust the RPW pulse for $1 / 8$ of the data rate (250 ns for $8^{\prime \prime}$ Double Density). An externai variable capacitor of typically $5-60 \mathrm{pF}$ is tied to the VCO input (Pin 26) for adjusting center frequency. With a frequency counter on Pin 16 (DIRC) adjust the trimmer cap to yield the appropriate data rate (500 kHz for 8 " Double Density). The $\overline{\mathrm{DDEN}}$ line must be low while the $\overline{5} / 8$ line is held high or the adjustment times above will be doubled.

VCO Operation

After adjustments have been made, the TEST pin is returned to a logic 1 and the device is ready for operation. Adjustments may be made in-circuit since the DIRC and TG43 lines may toggle without affecting the drive.
The PUMP output (Pin 23) consists of positive and negative pulses. Their duration is equivalent to the pnase difference of incoming Data vs. VCO frequency. This signai is internally connected to the VCO input, but a filter is needed to connect these pulses to a slow moving DC voltage.
The internal phase-detector is unsymmetrical for a random distribution of data puises by a factor of two, in favor of a PUMP UP condition. Therefore it is desirable to have a PUMP DOWN rwice as responsive to prevent run-away during a lock attempt. A first order lag-lead filter can be used at the PUMP output (PIN 23). This filter controls the instantaneous response of the VCO to bit-shifted data (jitter) as well as the response to normal frequency shift i.e. the lock-up time. A balance must be accomplished between the two conditions to inhibit overresponsiveness to jitter and to prevent an extremely wide lock-up response leading to PUMP run-away. The filter affects these two reactions in mutually opposite directions.

The following Filter Circuit is recommended for 8" FM/MFM:

Since $5 \frac{1}{4}$ " Drives operate at exactly one-half the data rate ($250 \mathrm{Kbytes} / \mathrm{sec}$) the above capacitor should be doubled to 0.2 or $0.22 \mu \mathrm{~F}$.

Command Summary

Commands for SAB 2791A, SAB 2793A										Commands for SAB 2795A, SAB 2797A							
		Bits								Bits							
Type	Command	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
1	Restore	0	0	0	0	h	V	r_{1}	r_{0}	0	0	0	0	h	V	r_{1}	r_{0}
1	Seek	0	0	0	1	h	V	r_{1}	r_{0}	0	0	0	1	h	V	r_{1}	r_{0}
1	Step	0	0	1	T	h	V	r_{1}	r_{0}	0	0	1	T	h	V	r_{1}	r_{0}
1	Step-in	0	1	0	T	h	V	r_{1}	r_{0}	0	1	0	T	h	V	r_{1}	r_{0}
1	Step-out	0	1	1	T	h	V	r_{1}.	r_{0}	0	1	1	T	h	V	r_{1}	r_{0}
II	Read-Sector	1	0	0	m	S	E	C	0	1	0	0	m	L	E	U	0
11	Write Sector	1	0	1	m	S	E	C	a_{0}	1	0	1	m	L	E	U	a_{0}
III	Read Address	1	1	0	0	0	E	0	0	1	1	0	0	0	E	U	0
III	Read Track	1	1	1	0	0	E	0	0	1	1	1	0	0	E	U	0
III	Write Track	1	1	1	1	0	E	0	0	1	1	1	1	0	E	U	0
IV	Force Interrupt	1	1	0	1	13	1.	1.	1.	1	1	0	1	12	12	1.	1.

Flag Summary

Command Type	Bit	Description				
1	$r_{1}, r_{0}=$ Stepping Motor Rate	see page 13 for details				
1	$V=$ Track Number Verify Flag	$V=0$, No verify $V=1$, Verify on destination track				
1	h = Head Load Flag	$h=0$, Unload head at beginning $h=1$, Load head at beginning				
1	T = Track Update Flag	$\begin{aligned} T & =0, \text { No update } \\ T & =1, \text { Update track register } \end{aligned}$				
11 \& III	$a_{0} \quad=$ Data Address Mark	$\begin{aligned} & a_{0}=0, F B \text { (DAM) } \\ & a_{0}=1, F 8 \text { (deleted DAM) } \end{aligned}$				
11	C = Side Compare Flag	$\begin{aligned} & C=0, \text { Disable side compare } \\ & C=1, \text { Enable side compare } \end{aligned}$				
II \& III	$U=$ Update SSO	$U=0$, Update SSO to 0 $U=1$, Update SSO to 1				
11 \& III	$\mathrm{E}=15 \mathrm{~ms}$ Delay	$\begin{aligned} & \mathrm{E}=0, \text { No } 15 \mathrm{~ms} \text { delay } \\ & \mathrm{E}=1,15 \mathrm{~ms} \text { delay (} 30 \mathrm{~ms} \text { for } 1 \mathrm{MHz} \text { clock) } \end{aligned}$				
11	S = Side Compare Flag	$\begin{aligned} & S=0, \text { Compare for side } 0 \\ & S=1, \text { Compare for side } 1 \end{aligned}$				
11	$\begin{array}{ll} L & =\text { Sector Length Flag } \\ L & =1 \text { (implicit) for SAB 2791A/93A } \end{array}$					
		LSB's Sector Length in ID Field				
		$L \quad=0$	256	512	1024	128
		$\mathrm{L}=1$	128	256	512	1024
11	$\mathrm{m}=$ Multiple Record Flag	$\begin{aligned} & m=0, \text { Single record } \\ & m=1, \text { Multiple records } \end{aligned}$				
IV	$1 \mathbf{x}=\quad$ Interrupt Condition Flags $10=1$: Interrupt on Not Ready to Ready Transition I1=1: Interrupt on Ready to Not Ready Transition $12=1$: Interrupt on next Index Pulse I3 = 1: Immediate Interrupt, requires a Reset* $13-10=0$: Terminate with no interrupt (INTRQ)					

Status Register Summary

Bit	All Typel Commands	Read Address	Read Sector	Read Track	Write Sector	Write Track
S7	NOT READY	NOT READY	NOTREADY	NOT READY	NOT READY	NOT READY
S6	WRITE	0	0	0	WRITE	WRITE
	PROTECT				PROTECT	PROTECT
S5	HEAD LOADED	0	RECORD TYPE	0	0	0
S4	SEEK ERROR	RNF	RNF	0	RNF	0
S3	CRC ERROR	CRC ERROR	CRC ERROR	0	CRCERROR	0
S2	TRACK 00	LOST DATA				
S1	INDEX	DRQ	DRQ	DRQ	DRQ	DRQ
S0	BUSY	BUSY	BUSY	BUSY	BUSY	BUSY

Status for Type I Commands

Bit	Name	Meaning
S7	NOT READY	This bit, when set, indicates that the drive is not ready. When reset, it indicates that the drive is ready. This bit is an inverted copy of the Ready input and logically "ored" with MR.
S6	WRITE PROTECT	When set, indicates that Write Protect is activated. This bit is an inverted copy of $\overline{\text { WPRT }}$ input.
S5	HEAD LOADED	When set, it indicates that the head is loaded and engaged. This bit is a logical "And" of HLD and HLT signals.
S4	SEEK ERROR	When set, the desired track was not verified. This bit is reset to 0 when updated.
S3	CRC ERROR	CRC encountered in ID field.
S2	TRACK00	When set, indicates that Read/Write head is positioned to Track 00. This bit is an inverted copy of the TR00 input.
S1	INDEX	When set, indicates that index mark is detected from drive. This bit is an inverted copy of the \bar{P} input.
S0	BUSY	When set, command is in progress. When reset, no command is in progress.

Status for Type II and III Commands

Bit	Name	Meaning
S7	NOT READY	This bit, when set, indicates that the drive is not ready. When reset, it indicates that the drive is ready. This bit is an inverted copy of the Ready input and "ored" with MR. The Type Il and Ill Commands will not execute unless the drive is ready.
S6	WRITE PROTECT	For Read Record: not used. For Read Track: not used. On any Write: It indicates a Write Protect. This bit is reset, when updated.
S5	RECORD TYPE	For Read Record: It indicates the record-type code from data field address mark. 1 = Deleted Data Mark. 0 = Data Mark. For any Write: forced to a zero.
S4	RECORD NOT FOUND (RNF)	When set, it indicates that the desired track, sector, or side were not found. This bit is reset when updated.
S3	CRCERROR	If S4 is set, an error is found in one or more ID fields; otherwise it indicates error in data field. This bit is reset when updated.
S2	LOST DATA	When set, it indicates that the computer did not respond to DRQ in one byte time. This bit is reset to zero when updated.
S1	DATA REQUEST	This bit is a copy of the DRQ output. When set, it indicates that the DR is full on a read Operation or the DR is empty on a write operation. This bit is reset to zero when updated.
S0	BUSY	When set, command is under execution. When reset, no command is under execution.

Summary of Adjustment Procedures

Write Precompensation

1) Set $\overline{\text { TEST }}$ (Pin 22) to a logic high.
2) Strobe $\overline{M R}(\operatorname{Pin} 19)$.
3) Set TEST (Pin 22) to a logic low.
4) Observe pulse width on WD (Pin 31).
5) Adjust WPW (Pin 33) for desired pulse width (Precomp Value).
6) Set TEST (Pin 22) to a logic high.

Data Separator

1) Set $\overline{\text { TEST (Pin 22) to a logic high. }}$
2) Strobe $\overline{M R}$ (Pin 19). Ensure that $\overline{5} / 8$, and $\overline{D D E N}$ are set properiy.
3) Set $\overline{T E} \overline{S T}$ (Pin 22) to a logic low.
4) Observe pulse width on TG43 (Pin 29).
5) Adjust RPW (Pin 18) for $1 / 8$ of the read clock (250 ns for $8^{\prime \prime}$ DD, 500 ns for $5 \frac{1}{4}{ }^{\prime \prime}$ DD, etc.).

6) Adjust variable capacitor on VCO pin for data rate (500 kHz for $8^{\prime \prime} \mathrm{DD}, 250 \mathrm{kHz}$ for $5^{\frac{1}{4} 4^{\prime \prime}} \mathrm{DD}$, etc.).
7) Set TEST (Pin 22) to a logic high.

NOTE: To maintain internal VCO operation, insure that $\overline{T E S T}=1$ whenever a master reset pulse is applied.

Status Register

Upon receipt of any command, except the Force Interrupt command, the Busy Status bit is set and the rest of the status bits are updated or cleared for the new command. If the Force Interrupt command is received when there is a current command under execution, the Busy status bit is reset, and the rest of the status bits are unchanged. If the Force Interrupt command is received when there is not a current command under execution, the Busy Status bit is reset and the rest of the status bits are updated or cleared as after a Type I command.
The user has the option of readıng the Status Register through progiam control or using the DRQ line with DMA or interrupt methods. When the Data Register is read the DRQ bit in the Status Register and the DRQ line are automatically reset. A write to the Data Register also cause both DRQs to reset. The Busy bit in the status may be monitored with a user program to determine when a command is complete, in lieu of using the INTRQ line. When using the INTRQ, a busy status check is not recommended because a read of the Status Register to deiermine the condition of Busy will reset the INTRO line.

The format of the Status Register is shown below:

(BITS)							
7	6	5	4	3	2	1	0
S 7	S 6	S 5	S 4	S 3	S 2	S 1	S 0

Status varies according to the type of command executed as shown on page 11.

Because of internal sync cycles, certain time delays. must be observed when operating under programmed I/O. They are:

Operation	Next Operation	Delay Req'd.	
		FM	MFM
Write to Command Reg.	Read Busy Bit (Status Bit 0)	$12 \mu \mathrm{~s}$	$6 \mu \mathrm{~s}$
Write to Command Reg.	Read Status Bits $1-7$	$28 \mu \mathrm{~s}$	$14 \mu \mathrm{~s}$
Write to	Read From Diff. Register	0	0

Times double when clock $=1 \mathrm{MHz}$

Command Description

The SAB 279XA will accept eleven commands. Command words should only be loaded in the Command Register when the Busy status bit is off (Status bit 0). The only exception is the Force Interrupt command. Whenever a command is being executed, the Busv status bit is set. When a

Type I Commands

The Type I commands include the Restore, Seek, Step, Step-In, and Step-Out commands. Each of the Type I commands contains a rate field (r_{0}, r_{1}) which determines the stepping motor rate.
A $2 \mu \mathrm{~s}$ (MFM) or $4 \mu \mathrm{~s}$ (FM) pulse is provided as an output to the drive. For every step pulse issued, the drive moves one track location in a direction determined by the Direction output. The chip steps the drive in the same direction it has been stepped previously, unless the command changes the direction. The Direction signal is active high when stepping in and low when stepping out. The Direction signal is valid 12μ s before the first stepping pulse is generated. The rates can be applied to a StepDirection motor through the device interface.

Stepping Rates

CLK		2 MHz	1 MHz
r 1	r 0	TEST $=1$	TEST -1
0	0	3 ms	6 ms
0	1	6 ms	12 ms
1	0	10 ms	20 ms
1	1	15 ms	30 ms

After the last directional step, additional 15 milliseconds of head settling time are generated if the Verify flag is set in Type I commands. Note that this time doubles to 30 ms for a 1 MHz clock. There is also a 15 ms head settling time if the E flag is set in any Type II or III command.
When a Seek, Step or Restore command is executed an optional verification of Read/Write head position can be performed by setting bit $2(V=1)$ in the
command is completed, an interrupt is generated and the Busy status bit is reset. The Status Register indicates whether the completed command er:countered an error or was fault-free. For ease of discussion, commands are divided into fijur ty pes. Commands and types are summarizod on pag: 10.
command word to a logic 1. The verification operation begins at the end of the 15 miliisticond settling time after the head is loaded agaii:st the media. The track number from the first encountered ID field is compared against the conients of the Track Register. If the track numbers compare and the ID field Cyclic Redundancy Check (CRC) is correct, the verify operation is complete and an INTRQ is generated with no errors. If there is a match but not a valid CRC, the CRC Error status bit is set (Status bit 3), and the next encountered ID field is read from the disk for the verification operation. The SAB 279XA must find an ID field with correct track number and correct CRC within 5 revoltuions of the media; otherwise the Seek Error is set and an INTRQ is generated. If $V=0$, no verification is performed. The Head Load (HLD) output controls the movement of the Read/Write head against the media. HLD is activated at the beginning of a Type I command if the h flag is set $(h=1)$, at the end of the Type I command if the Verify flag is set ($\mathrm{V}=-1$), or upon receipt of any Type II or III command. Once HLD is active it remains active until either a Type I command is received with $h=0$ and $V=0$; or if the SAB 279XA is in an idel state (non-busy) and 15 index pulses have occured.
Head Load Timing (HLT) is an input to the SAB 279XA which is used for the head engage time. When HLT $=1$, the SAB 279XA assumes the head is completely engaged. The head engage time is typically 30 to 100 ms depending on drive. The low to high transition on HLD is typically used to fire a single shot. The output of the single shot is then used for HLT and supplied as an input to the SAB 279XA.

Head Load Timing

When both HLD and HLT are true, the SAB 279XA will then read trom or write to the media. The "And" of HLD and HLT appears as status bit 5 in Type I status.

Summary of the Type I commands:
If $h=0$ and $V=0$, HLD is reset.
If $h=1$ and $V=0$, HLD is set at the beginning of the command and HLT is not sampled nor is there an internal 15 ms delay.
If $h=0$ and $V=1, H L D$ is set near the end of the command, an internal 15 ms occurs, and the SAB $279 \times$ waits for HLT to be true.
If $h=1$ and $V=1, H L D$ is set at the beginning of the command.
Near the end of the command, after all the steps have been issued, an internal 15 ms delay occurs and the SAB 279X then waits for HLT to occur. For Type II and III commands with E flag off, HLD is made active and HLT is sampled until true. With E flag on, HLD is made active, an internal 15 ms delay occurs and then HLT is sampled until true.

Restore (Seek Track ${ }^{\boldsymbol{\sigma}}$)

Upon receipt of this command the Track 00 (TRø0) input is sampled. If $\overline{T R 00}$ is active low indicating the Read/Write head is positioned over track 0, the Track Register is loaded with zeroes and an interrupt is generated. If TR00 is not active lo N, stepping pulses at a rate specified by the $r_{1} r_{0}$ field are issued until the $\overline{\text { TR00 }}$ input is activated. At this time the Track Register is loaded with zeroes and an interrupt is generated. If the TRØ0 input does not go active low after 255 stepping pulses, the SAB 279XA terminates operation, interrupts, and sets the Seek error status bit. A verification operation takes place if the V flag is set. The h bit allows the head to be loaded at the start of command. Note that the Restore command is always executed when $\overline{M R}$ goes from an active to an inactive state.

Seek

This command assumes that the Track Register contains the track number of the current position of the Read/Write head and the Data Register contains the desired track number. The SAB 279XA will update the Track Register and issue stepping pulses in the appropriate direction until the contents of the Track Register are equal to the contents of the Data Register (the desired track location). A verification operation takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the termination of the command. Note: When using multiple drives, the Track Register must be updated for the drive selected before seek commands are issued.

Step

Upon receipt of this command, the SAB 279XA issues one stepping pulse to the disk drive. The stepping motor direction is the same as in the previous Step command. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the V flag is on. If the T flag is on, the Track Register is updated. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the termination of the command.

Step-In

Upon receipt of this command, the SAB 279XA issues one stepping pulse in the direction towards track 76. If the T flag is on, the Track Register is incremented by one. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the termination of the command.

Step-Out

Upon receipt of this command, the SAB 279XA issues one stepping pulse in the direction twoards track 0 . If the T flag is on, the Track Register is decremented by one. After a delay determined by the $r_{1} r_{0}$ field, a verification takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the termination of the command.

Type II Commands

The Type II Commands are the Read Sector and Write Sector commands. Prior to loading a Type II command into the Command Register the computer must load the Sector Register with the desired sector number. Upon receipt of the Type II command, the Busy status bit is set. If the E flag is 1 (this is the normal case) HLD is made active and HLT is sampled after a 15 ms delay. If the E flag is 0 , the head is loaded and HLT is sampled without a 15 ms delay.
When an ID field is located on the disk, the SAB 279XA compares the track number on the ID field with the Track Register. If they do not match, the next encountered ID field is read and a comparison is again made. If there has been a match, the Sector Number of the ID field is compared with the Sector Register. If there is no sector match, the next encountered ID field is read off the disk and again compared. If the ID field CRC is correct, the data field is then located and will be either written into, or read from depending upon the command. The SAB 279XA must find an ID field with a track number, sector number, side number, and CRC within 5 revolutions of the disk; otherwise, the Record-Not-Found status bit is set (Status bit 4) and the command is terminated with an interrupt. Each of the Type II commands contains an m flag which determines if multiple records (sectors) are to be read or written, depending upon the command. If $m=0$, a single sector is read or written and an interrupt is generated at the termination of the command. If $m=1$, multiple records are read or written with the Sector Register internally updated so that an address verification can occur on the next record. The SAB 279XA will continue to read or write multiple records and update the Sector Register in numerical ascending sequence until the Sector register exceeds the number of sectors on the track or until the Force Interrupt command is loaded into the Command Register, which terminates the command and generates an interrupt.
For example: If the SAB 279XA is instructed to read sector 27 and there are only 26 on the track, the Sector Register exceeds the number available. The SAB 279XA will search for 5 disk revolutions, interrupt out, reset Busy, and set the Record-Not-Found status bit.

Exceptions

On the SAB 2795A/97A devices, the SSO output is not affected during Type I commands, and an internal side compare does not take place when the (V) Verify flag V is on.

The Type II commands for SAB 2795A/97A also contain Side Select Compare flags. When $C=0$ (bit 1) no side comparison is made. When $C=1$, the LSB of the side number is read off the ID field of the disk and compared with the contents of the (S) flag (bit 3). If the S flag corresponds to the side number recorded in the ID field, the SAB 279XA continues with the ID search. If a comparison is not made within 5 index pulses, the interrupt line is made active and the Record-Not-Found status bit is set.
The Type II and III commands for the SAB 2795A/97A contain a Side Select flag (bit 1). When $U=0$, SSO is updated to 0 . Similarly, $U=1$ updates SSO to 1 . The chip compares the SSO to the ID field. If they do not correspond within 5 revolutions the interrupt line is made active and the RNF status bit is set. The SAB 2795A/97A Read Sector and Write Sector commands include an L flag. The L flag, in conjunction with the sector length byte of the ID Field, allows different byte lenghts to be implemented in each sector. For IBM compatibility, the L flag should be set to a one.

Read Sector

Upon receipt of the Read Sector command, the head is loaded, the Busy status bit set, and when an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, the data field is presented to the computer. The Data Address Mark of the data field must be found within 30 bytes in single density and 43 bytes in double density of the last ID field CRC byte; if not, the ID field search is repeated. When the first character or byte of the data field has been shifted through the DSR, it is transferred to the $D R$, and DRQ is generated. When the next byte is accumulated in the DSR, it is transferred to the DR and another DRQ is generated. If the computer has not read the previous contents of the DR before a new character is transferred that character is lost and the Lost Data status bit is set. This sequence continues until the complete data field has been input to the computer. If there is a CRC error at the end of the data field, the CRC Error status bit is set, and the command is terminated (even if it is a multiple sector command).

At the end of the read operation, the type of Data Address Mark encountered in the data field is recorded in the Status Register (bit 5) as shown:

Status Bit 5	
1	Deleted Data Mark
0	Data Mark

Write Sector

Upon receipt of the Write Sector command, the head is loaded (HLD active) and the Busy status bit is set. When an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, a DRQ is generated. The SAB 279XA counts off 11 bytes in single density
 and the Write Gate (WG) output is made active if the DRQ is serviced (i.e., the DR has been loaded by the computer). If DRQ has not been serviced, the command is terminated and the Lost Data status bit is set. If the DRQ has been serviced, the WG is made active and six bytes of zeroes in single density and 12 bytes in double density are then written on the

Types III Commands

Read Address

Upon receipt of the Read Address command, the head is loaded and the Busy status bit is set. The next encountered ID field is then read from the disk, and the six data bytes of the ID field are assembled and transferred to the DR. And DRQ is generated for each byte. The six bytes of the ID field are shown below:

TRACK ADDR	SIDE NUMBER	SECTOR ADDRESS	SECTOR LENGTH	CRC 1	CRC 2
1	2	3	4	5	6

Although the CRC characters are transferred to the computer, the SAB 279XA checks for validity and the CRC Error status bit is set if there is a CRC error. The track address of the ID field is written into the Sector Register so that a comparison can be made by the host. At the end of the operation an interrupt is generated and the Busy status bit is reset.

Read Track

Upon receipt of the Read Track command, the head is loaded, and the Busy status bit is set. Reading starts with the leading edge of the first encountered index pulse and continues until the next index pulse.
disk. At this time the Data Address Mark is written on the disk as determined by the a_{0} field of the command as shown below:

a_{0}	Data Address Mark (Bit 0)
1	Deleted Data Mark
0	Data Mark

The SAB 279XA then writes the data field and generates DRQs to the computer. If the DRQ is not serviced in time for continous writing, the Lost Data status bit is set and a byte of zeroes is written on the disk. The command is not terminated. After the last data byte has been written on the disk, the twobyte CRC is computed internally and written on the disk tollowed by one byte of hex FE in FM or in MFM. The WG output is then deactivated. For a 2 MHz clock the INTRQ is set between 8 and $12 \mu \mathrm{sec}$ after the last CRC byte has been written. For partial sector writing, the proper method is to write the data and fill the balance with zeroes. By letting the chip fill the zeroes, errors may be masked by the Lost Data status and improper CRC bytes.

All gap, header, and data bytes are assembled and transferred to the Data Register. DRQs are generated for each byte. The accumulation of bytes is synchronized to each address mark encountered. An interrupt is generated at the termination of the command.
This command has several characteristics which make it suitable for diagnostic purposes. They are: no CRC checking is performed; gap information is included in the data stream; the internal side compare is not performed; and the address mark detector is on for the duration of the command. Because the A.M. detector is always on, write splices or noise may cause the chip to look for an A.M. If an address mark does not appear on schedule with the Lost Data status flag being set. The ID A.M., ID field, ID CRC bytes, DAM, data and data CRC bytes for each sector will be correct. The gap bytes may be read incorrectly during writesplice time because of synchronization.

Write Track Formatting the Disk

Formatting the disk is a relatively simple task when operating programmed I/O or when operating under DMA with a large amount of memory. Data and gap information must be provided at the computer interface. Formatting the disk is accomplished
by positioning the R/W head over the desired track number and issuing the Write Track command. Upon receipt of the Write Track command, the head is loaded and the Busy status bit is set. Writing starts with the leading edge of the first encountered index pulse and continues until the next index pulse, at which time the interrupt is activated. The data request is activated immediately upon receiving the command, but writing will not start before the first byte is luaded into the Data Register If the DR has not been loaded by the time the index pulse is encountered the operation is terminated by making the device not busy. The Lost Data status bit is set, and the interrupt is activated. If a byte is not present in the DR when needed, a byte of zeroes is substituted.

This sequence continues from one index mark to the next index mark. Normally, whatever data pattern appears in the Data Register, it is written on the disk with a normal clock pattern. However, if the SAB 279XA detects a data pattern of F5 thru FE in the Data Register. This is interpreted as Data Address Marks with missing clocks or CRC generation. The CRC generator is initialized when any data byte from F8 to FE is about to be transferred from the DR to the DSR or by receipt of F5 in MFM. An F7 pattern will generate two CRC characters in FM or MFM As a consequence, the patterns F5 thru FE must not appear in the gaps, data fields, or ID fieids. Also, CRCs must be generated by an F7 pattern. Disks may be formatted in IBM 3740 or System 34 formats with sector lengths of 128,256 , 512 , or 1024 bytes.

Control Bytes for Initialization

Data Pattern in DR (HEX)	SAB 279XA Interpretation in FM $(\overline{D D E N}=1)$	SAB 279XA Interpretation in MFM ($\overline{\text { DDEN }}=0$)
00 thru F4	Write 00 thru F4 with CLK = FF	Write 00 thru F4, in MFM
F5	Not Allowed	Write A1 ${ }^{11}$ in MFM, Preset CRC
F6	Not Allowed	Write $\mathrm{C} 2^{21}$ in MFM
F7	Generate 2 CRC Bytes	Generate 2 CRC Bytes
F8thru FB	Write F8 thru FB, CLK = C7, Preset CRC	Write F8 thru FB, in MFM
FC	Write FC with CLK = D7	Write FC in MFM
FD	Write FD with CLK = FF	Write FD in MFM
FE	Write FE, CLk $=$ C7, Preset CRC	Write FE in MFM
FF	Write FF with CLK = FF	Write FF in MFM

${ }^{1)}$ Missing clock transition between bits 4 and 5
${ }^{2)}$ Missing clock transition between bits 3 and 4

Type IV Commands

The Force Interrupt command is generally used to terminate a multiple sector Read or Write command or to ensure Type I status in the Status Register. This command can be loaded into the Command Register at any time. If there is a current command under execution (Busy status bit set) the command will be terminated and the Busy status bit reset. The lower four bits of the command determine the conditional interrupt as follows:
10: Not-Ready to Ready Transition
11: Ready to Not-Ready Transition
12: Every Index Pulse
13: Immediate Interrupt
The conditional interrupt is enabled when the corresponding bit positions of the command ($13-10$) are set to a1. Then, when the condition for interrupt is met, the INTRQ line will go high signifying that the condition specified has occurred. If $13-10$ are all set to zero (hex D0), no interrupt will occur but any command presently under execution will be immediately terminated. When using the immediate interrupt condition ($13=1$), an interrupt will be immediately generated and the current
command terminated. Reading the status or writing to the Command Register will not automatically clear the interrupt. The hex D0 is the only command that will enable the immediate interrupt (hex D8) to clear on a subsequent load Command Register or read Status Register operation. Follow a hex D8 with D0 command. Wait $8 \mu \mathrm{~s}$ (double density) or 16μ s (single density) before issuing a new command after issuing a Force Interrupt command (times double when clock $=1 \mathrm{MHz}$). Loading a new command sooner than this will nullify the forced interrupt. Forced interrupt stops any command at the end of an internal micro-instruction and generates INTRQ when the specified condition is met. Forced interrupt will wait until ALU operations in progress are completed (CRC calculations, comparisons, etc.). More than one condition may be set at a time. If for example, the Ready to Not-Ready condition ($11=1$) and the Every Index Pulse $(12=1)$ are both set, the resultant command would be hex DA. The OR function is performed so that either a Ready to NotReady or the next Index Pulse will cause an interrupt condition.

Formats

IBM 3740 Format - 128 Bytes/Sector ($\mathbf{8}^{\prime \prime}$)
Shown below is the IBM single-density format with 128 bytes/sector. In order to format a diskette, the user must issue the Write Track command, and load the Data Register with the following values. For every byte to be written, there is one data request.

Number of Bytes	Hex Value of Byte Written
40	$\mathrm{FF}(\mathrm{or} 00)^{3)}$
6	00
1	FC (Index Mark)
26	FF (or 00)
1) 6	00
?	CE ! \cap Addrece MAar!
1	Track Number
1	Side Number (00 or 01)
1	Sector Number (1 thru 1A)
1	00
1	F7 (2 CRCs written)
11	FF (or 00)
6	00
1	FB (Data Address Mark)
128	Data (E5)
1	F7 (2 CRCs written)
27	FF (or 00)
247^{21}	FF (or 00)

IBM System 34 Format - 256 Bytes/Sector ($8^{\prime \prime}$)
Shown in the following table is the IBM doubledensity format with 256 bytes/sector. In order to format a diskette the user must issue the Write Track command and load the Data Register with the following values. For every byte to be written, there is one data request.

Number of Bytes	Hex Value of Byte Written
80	4 EE
12	00
3	F6 (writes C2)
1	FC (Index Mark)
50	45
12	00
3	F5 (writes A1)
1	FE (ID Address Mark)
1	Track Number (0 through 4C)
1	Side Number (0 or 1)
1	Sector Number (1 through 1A)
1	01 (Sector length)
1	F7 (2 CRCs written)
22	4 E
12	00
3	F5 (writes A1)
1	FB (Data Address Mark)
256	Data (E5)
1	F7 (2 CRCs written)
54	4 E
$598^{2)}$	4 E

[^31]
Recommended - 128 Bytes/Sector (Mini-Diskette)

Shown below is the recommended single-density format with 128 bytes/sector. In order to format a diskette, the user must issue the Write Track command, and load the Data Register with the following values. For every byte to be written, there is one data request.

Number of Bytes
11 Hex Value of Byte Written 6 FF (or 00) 1 00 1 FE (ID Address Mark) 1 Srack Number 1 Side Number (00 or 01) 1 Sector Number (1 through 10) 1 F7 (Sector length) 11 FF (or 00) 6 00 1 FB (Data Address Mark) 128 Data (E5) 1 F7 (2 CRCs written) 10 FF (or00) $349^{2)}$ FF (or 00)

Non-Standard Formats

Variations in the IBM formats are possible to a limited extent if the following requirements are met:

1. Sector size must be $128,256,512$ or 1024 bytes.
2. Gap 2 cannot be varied from the recommended format.
3. 3 bytes of A1 must be used in MFM.

In addition, the Index Address Mark is not required for operation by the SAB 279XA. Gap 1, 3, and 4 lengths can be as short as 2 bytes for SAB 279XA operation, however, PLL lock up time, motor speed variation, write-splice area, etc., will add more bytes to each gap to achieve proper operation. It is recommended that the IBM format should be used for highest system reliability.

	FM	MFM
Gap I	16 bytes FF	32 bytes 4E
Gap II	11 bytes FF	22 bytes 4E
3)	6 bytes 00	12 bytes 00
A1		
Gap III	10 bytes FF	24 bytes 4E
4)	4 bytes 00	8 bytes 00
		3 bytes A1
Gap IV	16 bytes FF	16 bytes 4E

Recommended-256 Bytes/Sector (Mini-Diskette)

Shown below is the recommended double-density format with 256 bytes/sector. In order to format a diskette the user must issue the Write Track command and load the Data Register with the following values. For every byte to be written, there is one data request.

Number of Bytes Hex Value of Byte Written 60 4 E 12 00 3 F5 (Writes A1) 1 FE (ID Address Mark) 1 Track Number (0 through 4C) 1 Side Number (0 or 1) 1 Sector Number (1 through 10) 1 01 (Sector Length) 1 F7 (2 CRCs written) 22 $4 E$ 12 00 3 F5 (Write A1) 1 FB (Data Address Mark) 256 Data (E5) 1 F7 (2 CRCs written) 24 $4 E$ $718^{2)}$ $4 E$

${ }^{1)}$ Write bracketed field 16 times.
${ }^{2)}$ Continue writing until SAB 279XA interrupts out. Approx. 349 (718) bytes.
${ }^{3)}$ Byte counts must be exact.
${ }^{4)}$ Byte counts are minimum, except exactly 3 bytes of A1 must be written in MFM.

Absolut Maximum Ratings ${ }^{1 /}$

Ambient Temperature Under Bias
Storage Temperature
Voltage on Any Pin with
Respect to Ground (VSS)
Power Dissipation

$$
\begin{array}{r}
0 \text { to }+70^{\circ} \mathrm{C} \\
-65 \text { to }+150^{\circ} \mathrm{C} \\
-0.5 \text { to }+7 \mathrm{~V} \\
2 \mathrm{~W}
\end{array}
$$

D.C. Characteristics

$T A=0$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}^{\circ}=+5 \mathrm{~V} \pm 5 \%, \mathrm{VSS}=0 \mathrm{~V}$

Symbol	Parameter	Limit Values			Unit	Test Conditions
		Min.	Typ.	Max.		
IIL 1	Input Leakage Current ${ }^{2 \prime}$	-	-	10	$\mu \mathrm{A}$	VIN = VCC
IIL 2	Internal Leakage Current ${ }^{\text {2) }}$	100		1700		$\mathrm{VIN}=O \mathrm{~V}$
IOL	Output Leakage Current	-		10		VOUT = VCC
VIH	Input High Voltage	2.0		-	V	-
VIL	Input Low Voltage	-		0.8		
VOH	Output High Voltage	2.4		-		$1 \mathrm{OH}=-100 \mu \mathrm{~A}$
VOL	Output Low Voltage	-		0.45		$\mathrm{IOL}=1.6 \mathrm{~mA}$
VOHP	Output High PUMP	2.2		-		$1 \mathrm{OHP}=-1.0 \mathrm{~mA}$
VOLP	Output Low PUMP	-		0.2		IOLP $=+1.0 \mathrm{~mA}$
ICC	Supply Current	-	70	150	mA	All outputs open

Capacitance ${ }^{3)}$

Symbol	Parameter	Limit Value (max.)	Unit	Test Condition
CIN	Input Capacitance	15	pF	Unmeasured pins returned to GND
COUT	Output Capacitance	15		

[^32]
A.C. Characteristics

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=+5 \mathrm{~V} \pm 5 \% ; \mathrm{VSS}=0 \mathrm{~V}$.
All timing readings at $\mathrm{VOL}=0.8 \mathrm{~V}$ and $\mathrm{VOH}=2.0 \mathrm{~V}$.

Read Enable Timing

Symbol	Parameter	Limit Values			Units	Test Conditions
		Min.	Typ.	Max.		
TSET	Setup ADDR \& CS to $\overline{\mathrm{RE}}$	50	-	-	ns	
THLD	Hold ADDR \& CS from $\overline{\mathrm{RE}}$	10				
TRE	$\overline{\mathrm{RE}}$ Pulse Width	200				$\mathrm{CL}=50 \mathrm{pF}$
TDRR	DRQ Reset from $\overline{\mathrm{RE}}$	-	100	200		
TIRR	INTRQ Reset from $\overline{\mathrm{RE}}$		500	3000		
TnACr	nata \/a! id from $\overline{R E}$		100	200		$\mathrm{CL}=50 \mathrm{pF}$
TDOH	Data Hold from $\overline{\mathrm{RE}}$	20	-	150		

Read Enable Timing

DRO rising edge: Indicates that the data register has assembled data.
DRQ falling edge: Indicates that the data register was read.
INTRQ rising edge: Occurs at end of command.
INTRQ falling edge: Indicates that the status register was read.

1) $\overline{\mathrm{C}} \overline{\mathrm{S}}$ may be permanently tied LOW if desired.
2) T Service (worst case)
${ }^{3)}$ Time doubles when CLK $==1 \mathrm{MHz}$.

$$
\begin{aligned}
& -\mathrm{FM}=27.5 \mu \mathrm{~s} \\
& -\mathrm{MFM}=13.5 \mu \mathrm{~s}
\end{aligned}
$$

Write Enable Timing

Symbol	Parameter	Limit Values			Units	Test Conditions
		Min.	Typ.	Max.		
TSET	Setup ADDR \& CS to $\overline{W E}$	50	-	.	ns	
THLD	Hold ADDR \& CS from WE	10				
TWE	$\overline{W E}$ Pulse Width	200				
TDRR	DRQ Reset from $\overline{W E}$	-	100	200		
TIRR	INTRQ Reset from $\overline{W E}$		500	3000		
TDS	Data Setup to WE	150		-		
TDH	Data Hold from WE	50				

Write Enable Timing

DRQ rising edge: Indicates that the data register is empty.
DRQ falling edge: Indicates that the data register is loaded.
INTRQ rising edge: Indicate the end of a command.
INTRQ falling edge: Indicates that the command register is written to.
${ }^{1)}$ CS may permanently tied LOW if desired. When writing Data into Sector, Track or Data Register, the User cannot read this register until at least $4 \mu \mathrm{~s}$ in MFM after the rising edge of WE. When writing into the Command Register status is not valid until some $28 \mu \mathrm{~s}$ in $\mathrm{FM} / 14 \mu \mathrm{~s}$ in MFM later. These times double when $C L K=1 \mathrm{MHz}$.
2) T Service (worst case); $\mathrm{FM}=23.5 \mu \mathrm{~s} ; \mathrm{MFM}=11.5 \mu \mathrm{~s}$.
${ }^{3)}$ Time doubles when CLK $=1 \mathrm{MHz}$.

Miscellaneous Timing

Symbol	Parameter	Limit Values			Unit	Test Conditions	
		Min.	Typ.	Max.			
TCD 1	Clock Duty (low)	230	250	20000	ns	-	
TCD 2	Clock Duty (high)						
TSTP ${ }^{1}$	Step Pulse Output	2 or 4	-	--	$\mu \mathrm{s}$		
TDIR	DIRC Setup to Step	-	12			\pm CLK Erro	
TMR	Master Reset Pulse Width	50	-			-	
TIP	Index Pulse Width	10					
RPW	Read Window Pulse Width	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	-	$\begin{array}{r} 700 \\ 1400 \end{array}$	ns	MFM $\mathrm{FM} \pm 15 \%$	Input 0-5V
	Precomp Adjust	100		300		MFM	
WPW	Write Data Pulse Width	200	300	400		$\begin{aligned} & \text { Prer.nmn }=10 \cap \mathrm{nc} \\ & \text { MFM } \end{aligned}$	
		600	900	1200		Precomp $=300 \mathrm{~ns}$ MFM	
VCO	Free Run Voltage Controlled Oscillator, Adjustable by Ext. Capacitor on Pin 26 Oscillator, Adjustable	6.0	-	-	MHz	Cext $=\emptyset$	
		-	4.0			Cext $=35 \mathrm{p}$	
	Pump Up + 25\%	5.0	-			$\mathrm{PU}=2.2 \mathrm{~V}$,	Cext $=35 \mathrm{pF}$
	Pump Down - 25\%	-		3.0		$\overline{\mathrm{PD}}=0.2 \mathrm{~V}$,	Cext $=35 \mathrm{pF}$
	5\% Change VCC	3.8		4.2		Cext $=35 \mathrm{p}$	
		3.5		-		$\mathrm{TA}=75^{\circ} \mathrm{C}$,	Cext $=35 \mathrm{pF}$
	Adjustable External Capacitor	20	35	100	pF	$\mathrm{VCO}=4.0$	MHz nom.
RCLK	Derived Read Clock = VCO: 8, 16, 32	-	500	-	kHz	$\overline{\text { DDEN }}=\emptyset$ $\overline{5} / 8=1$	$\begin{aligned} & \mathrm{VCO}=4.0 \\ & \mathrm{MHz} \end{aligned}$
			250			$\begin{aligned} & \hline \overline{\mathrm{DDEN}}=\emptyset \\ & \overline{5} / 8 \quad=\emptyset \\ & \hline \end{aligned}$	
			250			$\begin{array}{ll} \hline \overline{\mathrm{DDEN}} & =1 \\ 5 / 8 & =1 \end{array}$	
			125			$\begin{array}{ll} \hline \overline{\mathrm{DDEN}} & =1 \\ 5 / 8 & =\emptyset \end{array}$	
$\begin{aligned} & \hline \text { PU/ } \\ & \text { DON } \end{aligned}$	PU/ $\overline{\text { PD }}$ Time On (Pulse Width)		-	250	ns	MFM	
				500		FM	

[^33]
Miscellaneous Timing

SAB 279XA

Read Data Timing

Symbol	Parameter	Limit Values			Units	Test Conditions
		Min.	Typ.	Max.		
TPW	$\overline{\text { RAW READ }}$ Pulse Width	100	200	-	ns	-
TBC	RAW READ Cycle Time	1500	2000			

Read Data Timing

Write Data Timing

Symbol	Parameter	Limit Values			Units	Test Conditions
		Min.	Typ.	Max.		
TWP	Write Data Pulse Width	400	500	600	ns	FM
		200	250	300		MFM
TWG	Write Gate to Write Data		2		\ldots	FM
			1			MFM
TWF	Write Gate off from WD		2			FM
			1			MFM

All Times double when CLK $=1 \mathrm{MHz}$; no Write precompensation.

Write Data Timing

SAB 8237A, SAB 8237A-5 High Performance Programmable DMA Controller

- Four Independent DMA Channels
- Enable/Disable Control of Individual DMA Requests
- Memory-to-Memory Transfers
- Memory Block Initialization
- Address Increment or Decrement
- Independent Autoinitialization of all Channels
- High performance: Transfers up to 1.6 MBytes/Second with 5 MHz SAB 8237A-5
- Directly Expandable to any Number of Channels
- End of Process Input for Terminating Transfers
- Software DMA Requests
- Independent Polarity Control for DREQ and DACK Signals
- Single +5 V Power Supply
- 40 Pin Dual-In-Line Package
- Fully compatible with the Industry Standard 9517A/8237A

The SAB 8237A Multimode Direct Memory Access (DMA) Controller is designed to improve system performance by allowing external devices to directly t_{a} ansfer information to or from system memory. Memory-to-memory transfer capability is also provided.
The SAB 8237 A contains four independent channels, each with a separate register set, and may be expanded to any number of channels by cascading additional controller chips. The three basic transfer modes allow programmability of the types of

DMA service by the user. Each channel can be individually programmed to Autoinitialize to its original state following an End of Process ($\overline{\mathrm{EOP}}$). Each channel has a full 64 K address and word count capability.
The SAB 8237A is fabricated in +5 V advanced N -channel, silicon gate Siemens MYMOS technology and packaged in a 40-pin DIP. The SAB 8237A-5 is the 5 MHz version of the standard $3 \mathrm{MHz} \mathrm{SAB} \mathrm{8237A} \mathrm{respectively}$.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Function
$\overline{\text { IOR }}$	1	I/O	I/O READ I/O Read is a bidirectional active low three-state line. In the idle cycle, it is an input control signal used by the CPU to read the control registers. In the Active cycle, it is an output control signal used by the SAB 8237A to access data from a peripheral device during a DMA Write transfer.
$\overline{\text { IOW }}$	2		
	3	$1 / O$	I/O WRITE I/O Write is a bidirectional active low three-state line. In the idle cycle it is an input control signal used by the CPU to load information into the SAB 8237A. In the Active cycle it is an output control signal used by the SAB 8237A to load data to a peripheral device during a DMA Read transfer. Write operations by the CPU to the SAB 8237A require a rising
$\overline{\text { MEMR }}$			
AEN			
IOW edge following each data byte transfer. It is not sufficient			
to hold the IOW pin low and toggle CS.			

Symbol	Number	Input (I) Output (O)	Function		
HRQ	10	O	HOLD REQUEST The Hold Request to the CPU is used by the DMA to request control of the system bus. Software requests or unmasked DREQs cause the SAB 8237A to issue HRQ.		
$\overline{\text { CS }}$	11	1	1		CHIP SELECT
:---					
Chip Select is an active low input used to select the SAB 8237A					
as an I/O device during an I/O Read or I/O Write by the host					
CPU. This allows CPU communication on the data bus. During					
multiple transfers to or from the SAB 8237A by the host CPU					
CS may be held low providing IOR or IOW is toggled following					
each transfer.					

Symbol	Number	Input (I) Output (O)	Function
A0-A3	32-35	I/O	ADDRESS $\emptyset-3$ The four least significant address lines are bidirectional 3-state signals. During DMA idle cycles they, are inputs and allow the host CPU to load or read control registers. When the DMA is active, they are outputs and provide the lower 4-bits of the output address.
A4-A7	37-40	0	ADDRESS 4-7 The four most significant address lines are three-state outputs and provide four bits of address. These lines are enabled only during DMA service.
$\overline{\text { EOP }}$	36	1/O	END OF PROCESS $\overline{E O P}$ is an active low bidirectional open-drain signal providing information concerning the completion of DMA service. When $\overline{\mathrm{EOP}}$ low to provide the peripheral with a completion signal. $\overline{E O P}$ may also be pulled low by the peripheral to cause premature completion. The reception of $\overline{E O P}$, either internal or external, causes the currently active channel to terminate the service, to set its TC bit in the Status register and to reset its request bit. If Autoinitialization is selected for the channel, the current registers will be updated from the base registers. Otherwise the channel's mask bit will be set and the register contents will remain unaltered. During memory-to-memory transfers, $\overline{E O P}$ will be output when the TC for channel 1 occurs. $\overline{E O P}$ always applies to the channel with an active DACK; external EOPs are disregarded when DACK0-DACK3 are all inactive if the DMA is in state SI. In situations where two or more SAB 8237A DMAs are cascaded, the $\overline{E O P}$ pins should be logically OR'ed (not wire-OR'ed). Because EOP is an open-drain signal, an external pullup resistor is required. Values of $3.3 \mathrm{k} \Omega$ or $4.7 \mathrm{k} \Omega$ are recommanded; the EOP pin cannot sink the current passed by a $1 \mathrm{k} \Omega$ pullup.
VCC	31	-	POWER SUPPLY (+5 V)
GND	20	-	GROUND (0V)

Block Diagram

Register Description

Current Address Register

Each channel has a 16 -bit Current Address register. This register holds the value of the address used during DMA transfers. The address is automatically incremented or decremented after each transfer and the intermediate values of the address are stored in the Current Address register during the transfer.

Current Word Count Register

Each channel has a 16 -bit Current Word Count register. This register should be programmed with, and will return on a CPU read, a value one less than the number of words to be transferred.
The word count is decremented after each transfer. The intermediate value of the word count is stored in tite register during the transter. vvnen the value in the register goes to zero, a TC will be generated.

Base Address and Base Word Count Registers

Each channel has a pair of Base Address and Base Word Count registers. These 16 -bit registers store the original values of their associated current registers. During Autoinitialize these values are used to restore the current registers to their original values. The base registers are written simultaneously with their corresponding current register in 8 -bit bytes during DMA programming by the microprocessor.

Command Register

This 8-bit register controls the operation of the SAB 8237A. It is programmed by the microprocessor in the Program Condition and is cleared by Reset.

Mode Registers

Each channel has a 6-bit Mode register associated with it. When the register is being written to by the microprocessor in the Program Condition, bits \emptyset and 1 determine which channel Mode register it to be written.

Request Register

The SAB 8237A can respond to requests for DMA service which are initiated by software as well as by a DREQ. Each channel has a request bit associated with it in the 4-bit Request register. These are nonmaskable and subject to prioritization by the Priority Encoder network. Each register bit is set or reset separately under software control or is cleared upon generation of a TC or external EOP. The entire register is cleared by a Reset.

Mask Register

Each channel has associated with it a mask bit which can be set to disable the incoming DREQ. Each mask bit is set when its associated channel produces an EOP if the channel is not programmed for Autoinitialize. Each bit of the 4-bit Mask register may also be set or cleared separately under software control. The entire register is also set by a Reset.

Status Register

The Status registers may be read out of the SAB 8237A by the microprocessor. It indicates which channels have reached a terminal count and which channels have pending DMA requests.

Tenitúa

The Temporary.register is used to hold data during memory-to-memory transfers. Following the completion of the transfers, the last word moved can be read by the microprocessor in the Program Condition.

Functional Description

DMA Operation

The SAB 8237A is designed to operate in two major cycles. These are called Idle and Activa cycles. Each device cycle is made up of a number of states. State I (SI) is the inactive state. It is entered when the SAB 8237A has no valid DMA requests pending. While in SI , the DMA controller is inactive but may be in the Program Condition, being programmed by the processor. State $\emptyset(S \emptyset)$ is the first state of a DMA service. The SAB 8237A has requested a hold but the processor has not yet returned an acknowledge. An acknowledge from the CPU will signal that transfers may begin. S1, S2, S3 and S4 are the working states of the DMA service. If more time is needed to complete a transfer than is available with normal timing, wait states (SW) can be inserted before S4 by the use of the Ready line on the SAB 8237A.
Memory-to-memory transfers require a read-from and a write-to-memory to complete each transfer. The states, which resemble the normal working states, use two digit numbers for identification. Eight states are required for each complete transfer. The first four states (S11, S12, S13, S14) are used for the read-from-memory half and the last four states (S21, S22, S23 and S24) for the write-tomemory half of the transfer.

Idle Cycle

When no channel is requesting service, the SAB 8237A will enter the Idle cycle and perform "SI" states. In this cycle the SAB 8237A will sample the DREQ lines every clock cycle to determine if any channel is requesting a DMA service. The device will also sample $\overline{C S}$, looking for an attempt by the microprocessor to write or read the internal registers of the SAB 8237A.

Active Cycle

When the SAR 8237A is in the Idle cycle and a channel requests a DMA service, the device will output a HRQ to the microprocessor and enter the Active cycle. It is in this cycle that the DMA service will take place, in one of four modes:

Single Transfer Mode

In Single Transfer mode, the SAB 8237A will make a one-byte transfer during each HRQ/HLDA handshake. When DREQ goes active, HRQ will go active. After the CPU responds by driving HRQ active, a one-byte transfer will take place. Following the transfer, HRQ will go inactive, the word count will be decremented and the address will be either incremented or decremented.

Block Transfer Mode

In Block Transfer mode, the SAB 8237A will continue making transfers until a TC (caused by the word count going to zero) or an external End of Process ($\overline{\mathrm{EOP}}$) is encountered.

Demand Transfer Mode

In Demand Transfer mode the device will continue making transfers until a TC or external $\overline{E O P}$ is encountered or until DREQ goes inactive. Thus, the device requesting service may discontinue transfers by bringing DREQ inactive. Service may be resumed by asserting an active DREQ once again.

Cascade Mode

This mode is used to cascade more than one SAB 8237A together for simple system expansion. The HRQ and HLDA signals from the additional SAB 8237A are connected to the DREQ and DACK signals of a channel of the initial SAB 8237A.

TRANSFER TYPES

Each of the three active transfer modes can perform three different types of transfers. These are Read, Write and Verify. Write transfers move data from an I/O device to the memory by activating $\overline{\mathrm{IOR}}$ and $\overline{M E M W}$. Read transfers move data from memory to an I/O device by activating $\overline{M E M R}$ and $\overline{\mathrm{IOW}}$. Verify transfers are pseudo transfers; the SAB8237A operates as in Read or Write transfers génerating addresses, responding to $\overline{E O P}$, etc., however, the memory and I/O control lines remain inactive.

Memory-to-Memory

The SAB8237A includes a block move capability that allows blocks of data to be moved from one memory adress space to another. Channel \emptyset forms the source address and channel 1 forms the destination address. The channel 1 word conunt icuead Δ memory-to-memory transfer is initiated by setting a software DMA request for channel \emptyset.

Autoinitialize

By programming a bit in the Mode register a channel may be set up for an Autoinitialize operation. During Autoinitialization, the original values of the Current Address and Current Word Count registers are automatically restored from the Base Address and Base Word Count registers of that channel following EOP.

Extended Write

For Flyby Transactions late write is normally used, as this allows sufficient time for the $\overline{\overline{O R}}$ signal to get data from the peripheral onto the bus before $\overline{M E M W}$ is activated. In some systems, performance can be improved by starting the write cycle earlier.

Address Generation

In order to reduce pin count, the SAB 8237A multiplexes the eight higher order address bits on the data lines. State S1 is used to output the higher order address bits to an external latch from which they may be placed on the address bus. The falling edge of Address Strobe (ADSTB) is used to load these bits from the data lines to the latch. Address Enable (AEN) is used to enable the bits onto the address bus through a 3-state enable. The lower order address bits are output by the SAB 8237A directly. To save time and speed transfers, the SAB 8237A executes S1 states only when updating of A8-A15 in the latch is necessary.

Compressed Timing

In order to achieve even greater throughput where system characteristics permit, the SAB 8237A can compress the transfer time to two clock cycles. By removing state S 3 the read pulse width is made equal to the write pulse width and a transfer consists only of state S2 to change the address and state S4 to perform the read/write.

Priority

The SAB 8237A has two types of priority encoding available as software selectable options. The first is Fixed Priority which fixes the channels in priority order based upon the descending value of their number. The channel with the lowest priority is 3 followed by 2,1 and the highest priority channel 0 . The second schema is Rotating Priority. The last channel to get service becomes the Inwest nrinrity, channel with the others rotating accordingly.

Software Commands

There are two special software commands which can be executed in the Program Condition. Clear First/Last Flip/Flop: This command may be issued prior to writing or reading SAB 8237A address or word count information. This initializes the Flip/Flop to a known state so that subsequent accesses to register contents by the microprocessor will address lower and upper bytes in the correct sequence.
Master Clear: This software instruction has the same effect as the hardware Reset. The Command, Status, Request, Temporary and Internal First/Last Flip/Flop registers are cleared and the Mask register is set.

Absolute Maximum Ratings ${ }^{1)}$

Ambient Temperature Under Bias	0 to	$70^{\circ} \mathrm{C}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$	
Voltage on Any Pin with Respect to Ground (VSS)	-0.5 to +V Power Dissipation	2 W

D.C. Characteristics

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$; VSS $=0 \mathrm{~V}$

Symbol	Parameter	Limit Values			Unit	Test Condition
		Min.	Typ. ${ }^{2 \prime}$	Max.		
VOH	Output High Voltage	2.4	-	-	V	$I O H=-200 \mu \mathrm{~A}$
		3.3				$I O H=-100 \mu \mathrm{~A}(\mathrm{HRQ}$ only)
VOL	Output Low Voltage	-		0.40		$\mathrm{IOL}=3.2 \mathrm{~mA}$
VIH	Input High Voltage	2.0		$V C C+0.5$		-
VIL	Input Low Voitage	-0.5		0.8		
ILI	Input Load Current	--		± 10	$\mu \mathrm{A}$	$0 V \leq V I N \leq V C C$
ILO	Output Leakaye Current					$0.4 \mathrm{~V} \leq \mathrm{VOUT}$ < VCC
ICC	VCC Supply Current		110	130	mA	All outputs disconnected
			130	150		
C.O	Output Capacitance		4	8	pF	$\mathrm{fc}=1.0 \mathrm{MHz}$, Inputs $=0 \mathrm{~V}$
Cl	Input Capacitance		8	15		
ClO	I/O Capacitance		10	18		

1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2) Typical values are for $\mathrm{TA}:=25^{\circ} \mathrm{C}$, nominal supply voltage and nominal processing parameters.

A.C. Characteristics

$T A=0$ to $70^{\circ} \mathrm{C} ; V C C=5 \mathrm{~V} \pm 5 \% ; V S S=0 \mathrm{~V}$
DMA (Master) Mode

Symbol	Parameter	Limit Values				Unit
		8237A		8237A-5		
		Min.	Max.	Min.	Max.	
TAEL	AEN High from CLK Low (S1) Delay Time	-	300	-	200	ns
TAET	AEN Low from CLK High (S1) Delay Time		200		130	
TAFAB	ADR Active to Float Delay from CLK High		150		90	
TAFC	$\overline{\text { READ }}$ or WRITE Float from CLK High		150		120	
TAFDB	DB Active to Float Delay from CLK High		250		170	
TAHR	ADR from $\overline{\text { READ }}$ High Hold Time	TCY-100	-	TCY-100	-	
TAHS	DB from ADSTB Low Hold Time	50		40		
TAHW	ADR from WRITE High Hold Time	TCY -50		TCY -50		
TAK	DACK Valid from CLK Low Delay Time ${ }^{11}$	-	250	-	170	
	$\overline{\text { EOP }}$ High from CLK High Delay Time ${ }^{21}$		250		170	
	$\overline{\text { EOP }}$ Low to CLK High Delay Time		250		170	
TASM	ADR Stable from CLK High		250		170	
TASS	DB to ADSTB Low Setup Time	100		100	ns	
TCH	CLK High Time (transitions $\leq 10 \mathrm{~ns}$)	120		80		
TCL	CLK Low Time (transitions $\leq 10 \mathrm{~ns}$)	150		68		
TCY	CLK Cycle Time	320		200		
TDCL	CLK High to $\overline{\text { READ }}$ or WRITE Low Delay ${ }^{31}$		270		190	
TDCTR			270		190	
TDCTW	WRITE High from CLK High (S4) Delay Time ${ }^{\text {3 }}$	-	200	-	130	
TDQ1	HRQ Valid from CLK High Delay Time ${ }^{4)}$		160		120	
TDQ2	HRQ Valid from CLK High Delay Time		250		120	
TEPS	$\overline{\text { EOP }}$ Low from CLK Low Setup Time	60	-	40	-	
TEPW	$\overline{\text { EOP Pulse Width }}$	300		220		
TFAAB	ADR Float to Active Delay from CLK High		250		170	
TFAC	$\overline{\text { READ }}$ or WRITE Active from CLK High		200		150	
TFADB	DB Float to Active Delay from CLK High		300		200	

[^34]| Symbol | Parameter | Limit Values | | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 8237A | | 8237A-5 | | |
| | | Min. | Max. | Min. | Max. | |
| THS | HLDA Valid to CLK High Setup Time | 100 | - | 75 | - | ns |
| TIDH | Input Data from $\overline{\text { MEMR }}$ High Hold Time | 0 | | 0 | | |
| TIDS | Input Data to $\overline{M E M R}$ High Setup Time | 250 | | 170 | | |
| TODH | Output Data from $\overline{\text { MEMW }}$ High Hold Time | 20 | | 10 | | |
| TODV | Output Data Valid to $\overline{\text { MEMW }}$ High ${ }^{5)}$ | 200 | | 125 | | |
| TOS | DREQ to CLK Low (S1, S4) Setup Time ${ }^{11}$ | 0 | | 0 | | |
| TRH | CLK to READY Low Hold Time | 20 | | 20 | | |
| TRS | READY to CLK Low Setup Time | 100 | | 60 | | |
| TSTL | ADSTB High from CLK High Delay Time | - | 200 | - | 130 | |
| TSTT | ADSTB Low from CLK High Delay Time | | 140 | | 90 | |
| TOH | DREQ from DACK Valid Hold Time | 0 | - | 0 | - | |
| TRQHA | HRQ to HLDA Delay Time | 1 | | 1 | | clk |

1) DREQ and DACK signals may be active high or low. Timing diagrams assume the active high mode.
2) $\overline{E O P}$ is an open collector output. This parameter assumes the presence of a $2.2 \mathrm{k} \Omega$ pullup to VCC.
3) The net $\overline{I O W}$ or $\overline{M E M W}$ pulse width for normal write will be TCY -100 ns and for extended write will be 2TCY -100 ns. The net $\overline{I O R}$ or $\overline{M E M R}$ pulse width for normal read will be 2TCY -50 ns and for compressed read will be TCY -50 ns.
4) TDQ is specified for two different output high levels. TDQ1 is measured at 2.0 V . TDQ2 is measured a 3.3 V . The value for TDQ2 assumes an external $3.3 \mathrm{k} \Omega$ pull-up resistor connected from HRQ to VCC.
5) If N wait states are added during the write-to-memory half of a memory-to-memory transfer, this parameter will increase by N (TCY).

Peripheral (Slave) Mode

Symbol	Parameter	Limit Values				Unit
		8237A		8237A-5		
		Min.	Max.	Min.	Max.	
TAR	ADR Valid or $\overline{C S}$ Low to $\overline{\text { READ }}$ Low	50	-	50	-	ns
TAW	ADR Valid to WRITE High Setup Time	200		130		
TCW	$\overline{\mathrm{CS}}$ Low to WRITE High Setup Time	200		130		
TDW	Data Valid to WRITE High Setup Time	200		130		
TRA	ADR or $\overline{C S}$ Hold from $\overline{\text { READ }}$ High	0		0		
TRDE	Data Access from $\overline{R E A D}$ Low ${ }^{11}$	-	200	-	140	
TADT	ÓO Fival Delay from $\overline{\text { KtaU }}$ High	20	100	0	70	
TRSTD	Power Supply High to RESET Low Setup Time	500	-	500	-	
TRSTS	RESET to First $\overline{\text { OWR }}$	2 TCY		2 TCY		
TRSTW	RESET Pulse Width	300		300		
TRW	$\overline{\text { READ Width }}$	300		200		
TWA	ADR from WRITE High Hold Time	20		20		
TWC	CS High from WRITE High Hold Time	20		20		
TWD	Data from WRITE High Hold Time	30		30		
TWWS	WRITE Width	200		160		

1) Output loading is 1 TTL gate plus 150 pF capacitance, unless otherwise noted.

Input Waveforms for AC-Tests

Slave Mode Write Timing

Slave Mode Read Timing

1) Successive read and/or write operation by the CPU to program or examine the controller must be timed to allow at least 600μ s for the SAB 8237A and at least 400 ns for the SAB 8237A-5, as recovery time between active read or write pulses.

DMA Transfer Timing

1) DREQ should be held active until DACK is returned.

Memory-to-Memory Transfer Timing

Ready Timing

Compressed Transfer Timing

Reset Timing

SAB 8256A, SAB 8256A-2 Programmable Multifunction UART (MUART)

- SAB 8256A compatible with processors up to 3 MHz system clock (e.g. SAB 8085A, SAB 8048, SAB 8051).
SAB 8256A-2 compatible with processors up to 8 MHz system clock (e.g. SAB 8085A-2, SAB 8086 - minimum mode, SAB 80186).
- Full-Duplex asynchronous serial interface with programmable 5-8 data bits, 0.75-2 stop bits, parity generation and checking.
- Internal baud rate generator programmable for 50-19200 Baud; 0-1 Megabaud possible with external baud rate clock.
- Interrupt Controller with 8 priority levels; each level independently maskable, programmable for normal and fully nested operation with SAB 8085 and SAB 8086 processor families.
- Five programmable 8-bit counter/timers, internal or external clock, four are cascadable to two 16-bit counter/timers.
- Two 8-bit I/O ports, bit programmable for input/output, hand-shake mode supported.

SAB 8256A integrates four of the most used peripheral functions in a microcomputer system into a 40 pin package: serial interface, parallel interface, timer/counter and interrupt controller. It is primarily suited for system like SAB 8048, SAB 8085, SAB 8086, SAB 8088, SAB 80186 and

SAB 80188 which have a multiplexed bus. With some additional circuitry, it can also be used with other processors. All the functions of SAB 8256A are programmable by software, leading to a great flexibility in system design.

Pin Description and Functions

Symbol	Pin No.	Input (I) Output (O)	Function
$\begin{aligned} & \mathrm{AD0} \text { - AD4, } \\ & \mathrm{DB5}-\mathrm{DB7} \end{aligned}$	1-8	1/0	Interface to Multiplexed Bus Bidirectional lines to 8 data bits and 5 least significant address bits which are latched internally on the falling edge of ALE.
ALE	9	I	Adress Latch Enable The five least significant address bits and $\overline{\mathrm{CS}}$ are latched on the falling edge of ALE into an internal register.
$\overline{\mathrm{RD}}$	10	1	Read Control The microprocessor reads data from the chip when this signal is low.
$\overline{W R}$	11	1	Write Contro! The microprocessor writes data into the chip with a low on this pin.
RESET	12	1	Reset A high on this pin forces the chip to its initial state. The chip remains in this state till control information is written into the chip.
$\overline{\mathrm{CS}}$	13	1	Chip Select A low on this pin during ALE enables the bus interface of the chip. Neither read nor write operations are possible without this enable. The signal has no effect on the internal operation of the chip.
$\overline{\text { INTA }}$	14	1	Interrupt Acknowledge The microprocessor informs the chip a low on this pin that an interrupt request is being serviced, if this functions has been enabled.
INT	15	0	Interrupt Request The chip demands interrupt service from the microprocessor with a high on this output.
EXTINT	16	1	External Interrupt An external source can request interrupt service through this input. The source can be either a peripheral or another SAB 8256A with its INT pin as the signal source. The input is level sensitive (high). The request must be held high until the processor acknowledges it.
CLK	17	1	System Clock Clock on this input is the reference clock for various function like timers, baud rate generator etc.

Symbol	Pin No.	Input (I) Output (O)	Function
$\overline{\mathrm{R} \times \mathrm{C}}$	18	1/0	Receiver Clock If this pin is programmed as an output, it provides a low-to-high transition at the sampling point of each received data bit (excluding the framing bits). When programmed as an input, an externally generated receiver clock must be connected to this pin. At DC, its frequency can range up to 1.024 MHz matching the receiver baud rate. The internal baud rate generator is disabled if this pin is used as input.
$R \times D$	19	I	Receiver Data Input for serial data, which is converted to parallel format while discarding the framing bits and then is made available for the processor.
$\overline{\text { CTS }}$	21	1	Clear to Send This input enables the serial transmitter. If 1, 1.5 or 2 stop bits are selected, $\overline{\mathrm{CTS}}$ is level sensitive. As long as $\overline{\mathrm{CTS}}$ is low, any character loaded into the transmitter buffer register will be transmitted serially. For continuous transmission, this input must be tied to low. A single negative going pulse causes the transmission of a single character previously loaded into the transmitter buffer register. If the transmitter buffer is empty, this pulse will be ignored. If this pulse occurs during the transmission of a character upto the time where 0.5 of the first (or the only) stop bit is sent out, it will be ignored. If it occurs afterwards, but before the end of the stop bits the next character will be transmitted immediatly following the current one. If $\overline{\mathrm{CTS}}$ is still high when the transmitter register is sending the last stop bit, the transmitter will enter its idle state until the next high-to-low transition on $\overline{\mathrm{CTS}}$ occurs. If 0.75 stop bits is chosen, $\overline{\text { CTS }}$ input is edge sensitive. A negative edge on CTS results in the immediate transmission of the next character. The length of the stop bits is determined by the time interval between the beginning of the first stop bit and the next negative edge on $\overline{C T S}$. A high-to-low transition has no effect if the transmitter buffer is empty or if the time interval between the beginning of the stop bit and next negative edge is less than 0.75 bit. A high or a low level or a low-to-high transition has no effect on the transmitter for the 0.75 stop bit mode.
$\overline{\mathrm{T} \times \mathrm{C}}$	22	1/0	Transmitter Clock The function of this pin can be programmed in 3 configurations. As an output it delivers the transmitter clock corresponding to the baud rate. If programmed as an input, an external r!ock of 32 or 64 times the baud rate that is common to transmitter and receiver, or a $1 \times$ clock matching the baud rate which is used for the transmitter only, can be tied to this pin. The maximum frequency is 1.024 MHz . Thus, baud rates ranging from 0 to $16 \mathrm{Kbaud}(64 \times$) or from 0 to $32 \mathrm{Kbaud}(32 \times$) or from 0 to 1.024 Mbaud ($1 \times$) are possible. The internal baud rate generator is disabled if $\overline{T \times C}$ is selected as input.

Symbol	Pin No.	Input (I) Output (O)	Function
$T \times D$	23	0	Transmitter Data Serial data output. The parallel data received from the processor and the framing bits added by the SAB 8256A are sent out serially over this output when the transmitter is enabled by the $\overline{\mathrm{CTS}}$ signal.
P27-P20	24-31	1/0	Parallel I/O Port 2 The eight general purpose I/O pins of parallel port 2 can be configured in sets of four pins (nibbles) as inputs or outputs or 8 bit I/O with handshake (control-signals at port 1). In the nibble mode the output signals are latched whereas the input signals are not. In the handshake mode both inputs and outputs are latched.
FiT-Fio	ふ̄z-	I/U	Parallel I/O Port 1 Each one of these 8 pins can be programmed as input or output. Alternatively these pins can serve as control pins which extends considerably the functional spectrum of the chip. The pins are assigned special functions implicitly by programming. All outputs are latched whereas inputs are not.
$V_{\text {cc }}$	40	-	Power Supply (+5 V)
GND	20	-	Ground (0 V)

Functional Description

Bus Interface

The bus interface unit, consisting of bus drivers, address latches and bus control logic, interfaces the SAB 8256A to the data, address and control busses of a microcomputer system. The chip is selected by the $\overline{\mathrm{CS}}$ signal, which is latched into the chip along with address lines AD@-AD4 by the ALE signal.
$\overline{W R}$ and $\overline{R D}$ signals are used to write data into and read data from SAB 8256A.
Signals INT und INTA are used to handle interrupt protocol with the processor.
RESET signal resets the chip to its initial state.

Counter/Timer

Five programmable counter/timers can be used in several modes. Each can be used as an 8-bit timer while two can alternatively serve as counters. Counter/timer 2 and timer 4 as well as 3 counter/ timer and timer 5 can be cascaded to 16-bit counter/ timers. All counter/timers function as binary down-counters with a programmable initial value and generate an interrupt request on their 1 to 0 transition. An internal register is provided for the initial count of timer 5 and with an external trigger pulse it is possible to reload the initial value into timer 5 (also for cascaded counter/timer 3 and timer 5).
A common clock source with a frequency of either 1 KHz or 16 KHz is available for the timers. In addition, for counters 2,3 and the cascaded counters, an external clock source can be provided through two pins of part 1.

Asynchronous Serial Interface

For double buffered full-duplex operations both transmitter and receiver have two registers. The received data (5 to 8 data bits, programmable) is assembled to parallel format in the receiver register, the framing bits (Start, Stop, and Parity) are stripped off and stored into the receiver buffer register. The data to be transmitted is first loaded into the transmitter buffer register and then sent out through the transmitter register.
Controlling the CTS signal, single characters on character strings can be transmitted. Baud rate clock (50 to 19,200 Baud) is generated on the chip which is common to both the receiver and the transmitter. It is also possible to provide an external baud rate clock (common or separate for receiver and transmititei; tu p̈riviǘ inauc raies irom \bar{v} to 1.024 Mbaud.

Parallel Interface

The parallel interface consists of two 8-bit ports programmable as inputs or outputs. Each pin of port 1 can be programmed separately as an input or an output. They can also be used as control pins. Ports 2 can be programmed as input our output in two 4-bit groups. Port 2 can also be used as an 8-bit input or output port with handshake signals.

Assignment of Control Signals to Port 1

Pins Port 1	P17	P16	P15	P14	P13	P12	P11 P10
Control Function	External interrupt input	Break-In detect input	Trigger input for timer 5 (cascaded counter/ timer $3+5$)	Output of the clock of the internal baudrategenerator	Clock input for counter 3	Clock input for counter 2	Handshake Control Signals for Port 2

Interrupt Controller

The interrupt controller manages 12 interrupt sources (10 internal and 2 external) on 8 priority levels. Normal (every interrupt request immediately recognized) and "fully nested" (recognition based on priority) modes are supported.
The interrupt controller supports various methods of connecting SAB 8256A to the processor. Firstly, the true interrupt mode using INT and INTA signals for interrupt protocol), secondly, a combination of polling and interrupt (using INT and interrupt address registers). The interrupt protocols of SAB 8048, SAB 8085A, SAB 8086, SAB 8088, SAB 80186 and SAB 80188 are directly supported.

Programming the SAB 8256A

The functional characteristics of SAB 8256A can be programmed by writing appropriate control information into it. It is specially designed for ease of programming. It is hence possible to alter individual bits in certain registers like e.g. the Interrupt Mask Register and Command Register 3. All functions of SAB 8256A can be easily used because each unit (e.g. counter/timer, serial interface) has specially assigned registers which can be directly read or written.

Write Registers								Address				Read Registers								J
SAB 8085 Mode: AD3 SAB 8086 Mode: AD4										AD1	ADø									0.
									AD3	AD2	AD1									$\stackrel{\sim}{0}$
CL1	CLD	S1	Sø	BRKI	BITI	8086	FRQ	\emptyset	\emptyset	\emptyset	\emptyset	CL1	CLø	S1	Sø	BRKI	BITI	8086	FRQ	$\underset{\sim}{\infty}$
Command Word 1 Co.mmand Register																				9

PEN	EP	C1	$C \emptyset$	B3	B2	B1	$B \emptyset$	\emptyset	\emptyset	\emptyset	1	PEN	EP	C1	C0	B3	B2	B1	$B \emptyset$
Command Word 2												Command Register 2							

SET	$R \times E$	IAE	NIE	END	SBRK	TBRK	SRES	\emptyset	D	1	\emptyset	0	$R \times E$	IAE	NIE	\emptyset	SBRK	TBRK	\emptyset

T35	T24	T5C	CT3	CT2	P2C2	P2C1	P2C0	0	\emptyset	1	1	T35	T24	T5C	CT3	CT2	P2C2	P2C1	P2C0
Mode Word												Mode Register							
P17	P16	P15	P14	P13	P12	P11	P10	0	1	\emptyset	\emptyset	P17	P16	P15	P14	P13	P12	P11	P10

L7	L6	L5	L4	L3	L2	L1	Lø	\emptyset	1	0	1	L7	L6	L5	L4	L3	L2	L1	Lø
Interrupt-Level Enable Word Interrupt Mask Reg																			

Write Registers								Address				Read Registers							
SAB 8085 Mode: AD3 SAB 8086 Mode: AD4										$\begin{aligned} & \text { AD1 } \\ & \text { AD2 } \end{aligned}$	$\begin{aligned} & \text { AD0 } \\ & \text { AD1 } \end{aligned}$								
L7	L6	L5	L4	L3	L2	L1	L0	0	1	1	0	D7	D6	D5	D4	D3	D2	D1	D0
Interrupt-Level Disable Word												Interrupt Address Register							
D7	D6	D5	D4	D3	D2	D1	D0	0	1	1	1	D7	D6	D5	D4	D3	D2	D1	D0
Transmitter Buffer												Receiver Buffer							
D7	D6	D5	D4	D3	D2	D1	D0	1	0	\emptyset	\emptyset	D7	D6	D5	D4	D3	D2	D1	D0
Write Port 1												Read Port 1							
D7	D6	D5	D4	D3	D2	D1	Dø	1	0	\emptyset	1	D7	D6	D5	D4	D3	D2	D1	D0
Write Port 2												Read Port 2							
D7	D6	D5	D4	D3	D2	D1	Dø	1	\emptyset	1	\emptyset	D7	D6	D5	D4	D3	D2	D1	D0
Write Timer 1												Read Timer 1							
D7	D6	D5	D4	D3	D2	D1	D0	1	0	1	1	D7	D6	D5	D4	D3	D2	D1	D0
Write Timer/Counter 2												Read Timer/Counter 2							

SAB 8256A

SAB 8085 Mode: AD3 AD2 AD1 ADØ SAB 8086 Mode: AD4 AD3 AD2 AD1

D7	D6	D5	D4	D3	D2	D1	D0	1	1	0	\emptyset	D7	D6	D5	D4	D3	D2	D1	Dø

Write Timer/Counter 3
Read Timer/Counter 3

D7	D6	D5	D4	D3	D2	D1	D0	1	1
Write Timer 5									

D7	D6	D5	D4	D3	D2	D1	D

Read Timer 5

\emptyset	RS4	RS3	RS2	RS1	RSø	TME	DSC	1	1	1	1	INT	RBF	TBE	TRE	BD	PE	OE	FE
Modification Word Status Register																			

Programming

Command Word 1

Command Word 2

Command Word 3

[^35]Mode Word

Port 2 Control
Timer/Counter 2 Mode
Timer/Counter 3 Mode
Timer 5 Mode
Cascade Counter/Timer 2 and Timer 4
Cascade Counter/Timer 3 and Timer 5

Port 1 Control World

Input/Output Mode of Ports 1 Pins

Interrupt-Level Enable Word

| L 7 | L 6 | I 5 | L 4 | L 2 | L 2 | L 1 | L 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | L

Enable Interrupt Levels

Interrupt-Level Disable Word

Disable Interrupt Levels

Determination of Interrupt Level

Reading the Interrupt Address Register

Interrupt Level

Response to INTA

SAB 8085-Mode (RST-instruction in response to $\overline{\text { INTA }}$)

1	1	D5	D4	D3	1	1	1
L							

Interrupt Level
SAB 8086-Mode (Interrupt Vector in response to second INTA)

\emptyset	1	0	0	0	D 2	D 1	D 0
L							

Interrupt Level

Modification Word

\emptyset	RS4	RS3	RS2	RS1	RS0	TME	DSC

Disable Start Bit Check
Transmission Mode Enable
Receiver Sampling Point

Status Register

Framing Error/Transmission Mode Indication
Overrun Error
Parity Error
Break Detect or Break-in Detect
Transmitter Register Empty
Transmitter Buffer Empty
Receiver Buffer Full
Interrupt Pending

Absolute Maximum Ratings ${ }^{11}$

Ambient Temperature Under Bias	0 to $70^{\circ} \mathrm{C}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin With Respect to Ground	-0.5 to +7 V
Power Dissipation	1 W

D.C. Characteristics

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}, V_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, V_{\mathrm{SS}}=0 \mathrm{~V}$ (when not otherwise specified)

Symbol	Parameter	Limit Values		Unit	Test Condition
		Min.	Max.		
$V_{\text {IL }}$	Input Low Voltage	-0.5	0.8	V	-
V1\%	'iniput i liỳi 'víliaye	2.0	$\ddot{v}_{C C}+\bar{u} . \overline{5}$		
$V_{\text {OL }}$	Output Low Voltage	-	0.45		$I_{\text {OL }}=2.5 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4	-		$I_{\text {OH }}=-400 \mu \mathrm{~A}$
$I_{\text {IL }}$	Input Leakage	-	± 10	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$ to $V_{\text {CC }}$
$\mathrm{I}_{\mathrm{L} \mathrm{O}}$	Output Leakage Current				$V_{\text {OUT }}=0 \mathrm{~V}$ to $V_{\text {CC }}$
$I_{\text {cc }}$	$V_{\text {CC }}$ Supply Current		190	mA	-

Capacitance ${ }^{2)}$

Symbol	Parameter	Limit Value (Max.)	Unit	Test Condition
$C_{I N}$	Input Capacitance	10	pF	$f_{\mathrm{C}}=1 \mathrm{MHz}$ Unmeasured pins returned to GND
$C_{1 / O}$	I/O Capacitance	20		

1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2) This parameter is periodically sampled and not 100% tested.

A.C. Characteristics

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \% ; V_{\mathrm{SS}}=0 \mathrm{~V}$

Test Conditions

Capacitive load $C_{\mathrm{L}}=150 \mathrm{pF}$
The timings are with respect to the following levels:
H-level: 2.0 V
L-level: 0.8 V
Rise and fall times: 20 ns
The timings are valid for an internal clock of 1.024 MHz .

Symbol	Parameter	Limit Values				Unit	Test Condition
		SAB 8256A		SAB 8256A-2			
		Min.	Max.	Min.	Max.		
t AC	$\overline{\mathrm{STB}} \downarrow$ to $\overline{\mathrm{BF}} \downarrow$	-	300	-	300	ns	
t ACK	$\overline{\text { ACK Pulse Width }}$	t ADP	-	t ADP	-	-	
$t \mathrm{AD}$	Address Stable to Data Valid		400		230		
t ADP	$\overline{\mathrm{ACK}} \downarrow$ to $\overline{\mathrm{OBF}} \uparrow$		300		300	ns	
t AED	$\overline{\mathrm{OBF}} \downarrow$ to $\overline{\mathrm{ACK}} \downarrow$	0	-	0	-		
$t \mathrm{Al}$	$\overline{\text { ACK }} \uparrow$ to INT \uparrow	-	$1.5 t \mathrm{CY}$	-	$1.5 t \mathrm{CY}$	-	
$t \mathrm{AL}$	Address Stable to ALE \downarrow	50		30			
$t \mathrm{CC}$	$\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ Pulse widths	300		200		ns	
$t \mathrm{CL}$	$\overline{\mathrm{RD}} \uparrow$ or $\overline{\mathrm{WR}} \uparrow$ to Next ALE \uparrow	50		25			
$t \mathrm{CPI}$	Counter input Cycle Time (P12, P13,)	2.2	-	2.2	-	$\mu \mathrm{s}$	
t CSL	$\overline{\mathrm{CS}}$ Stable to ALE \downarrow	60		10		ns	
t CTS	CTS Pulse Width for Single Character Transmission	${ }^{1}$)		${ }^{1}$)		-	
$t \mathrm{CY}$	System Clock Period	300		195		ns	
t DEI		-	1.5 t CY	-	$1.5 t \mathrm{CY}$	-	
t DEX	EXTINT \uparrow to INT \uparrow		200		200	ns	
t DH	$\overline{\text { STB } \uparrow \text { to P2 Data Stable }}$	10	-	10	-		
$t \mathrm{DPI}$	Interrupt Request on P17 to INT \uparrow	-	$1.5 t \mathrm{CY}$	-	$1.5 t \mathrm{CY}$	-	
t DSI	P2 Data Stable before $\overline{\text { STB }} \downarrow$	10	-	10	-		
t DTX	$\overline{T \times C} \downarrow$ to $T \times D$ Data Valid	-	300	-	300		
t DW	Data Valid before $\overline{\mathrm{WR}} \uparrow$	250	-	150	-		
t HEA		30		30			
$t \mathrm{HIA}$	INT \downarrow after $\overline{\text { INTA }} \uparrow$ or $\overline{\mathrm{RD}} \uparrow$	-	300	-	300	ns	
t LA	$\overline{\mathrm{CS}}$ and Address valid after ALE \downarrow	50		20			
$t \mathrm{LC}$	ALE \downarrow to $\overline{\mathrm{RD}} \downarrow$ or $\overline{\mathrm{WR}} \downarrow$	60	-	20	-		
$t \mathrm{LL}$	ALE Pulse width	100		50			

Notes see next page.

Symbol	Parameter	Limit Values				Unit	Test Condition
		SAB 8256A		SAB 8256A-2			
		Min.	Max.	Min.	Max.		
$t \mathrm{Pl}$	Pulse Width of Interrupt Request on P17	1.1	-	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	-	MS	-
$t \mathrm{PP}$	Counter 5 Load (P15 \downarrow) before Next Clock Pulse on P13 \uparrow						
$t \mathrm{PR}$	P1, P2 Data Stable before $\overline{\mathrm{RD}} \downarrow$	300		300		ns	
$t \mathrm{RD}$	Data Valid after $\overline{\mathrm{RD}} \downarrow$	-	200	-	150		
$t \mathrm{RDE}$	$\overline{\mathrm{RD}} \downarrow$ to Data Drivers Active	10	100	10	50		
t RDF	Data Bus Float After $\overline{\mathrm{RD}} \uparrow$						
t RES	RESET Pulse Width	300	-	300	-		
$t \mathrm{RI}$	$\overline{\mathrm{RD}} \uparrow$ to $\overline{\mathrm{IBF}} \uparrow$	-	300	-	300		
$\overline{\mathrm{K}} \overline{\mathrm{F}}$		5ū	-	5ū	-		
t RRD	Data Bit Start to $\overline{\mathrm{R} \times \mathrm{C}} \downarrow$	300	$\left.{ }^{2}\right)$	150	${ }^{2}$)		${ }^{3}$)
$t \mathrm{RV}$	$\overline{\overline{R D}} \uparrow$ or $\overline{W R} \uparrow$ to Next		-		-		$\overline{\mathrm{CS}}=$ Low
t SCY	Serial Clock Period ($32 \times, 64 \times$)	975		975			
t SPD	Serial Clock High ($32 \times, 64 \times$)	350		350			
t SPW	Serial Clock Low ($32 \times, 64 \times$)						
t STB	Strobe Pulse Width	t AC		$t \mathrm{AC}$		-	
t TCY	Serial Clock Period ($1 \times$)	975		975		ns	
t TPD	Serial Clock High ($1 \times$)	350		350			
t TIH	Load Pulse for Counter 5 (P15)-High	1.1		1.1		115	
t TIL	Load Pulse for Counter 5 (P15)-Low						
t TPI	Counter Input \uparrow (P12, P13) to INT \uparrow at Terminal Count	-	2.5	-	2.5		
t TPW	Serial Clock Low (1)	350	-	350	-	ns	
t TRV	Time between 2 readcycles onto the same counter/timer	1.1		1.1		US	
$t \mathrm{WD}$	Data Hold after $\overline{W R} \uparrow$	40		30		ns	
$t \mathrm{WP}$	P1, P2 Data Valid after $\bar{W} \mathrm{R} \uparrow$	-	300	-	300		
t WPH	Count Clock (P12, P13) High	1.1	-	1.1	-	US	
t WPL	Count Clock (P12, P13) Low						
t WPO		-	300		300	ns	
$t \mathrm{f}$	Clock Fall Time		30		30		
t ФН	Clock High	105	-	65	-		
$t \Phi$	Clock Low						
$t r$	Clock Rise Time	-	30	-	30		
${ }^{1}$) $1 / 32$ bit length with transmitter clock with a baud rate factor of 32 or 64 100 ns when baud rate factor $=1$		${ }^{2}$) $300 \mathrm{~ns}+(1 / 32$ bit length) ${ }^{3}$) Sampling time at bit center					

Waveforms

System Clock

Write Cycle (Processor \rightarrow SAB 8256A)

Read Cycle (SAB 8256A \rightarrow Processor)

Interrupt Timings

Basic Output from Port 1 and Port 2

Basic Input from Port 1 and Port 2

1) If INTA is enabled, RSTn instruction is output on INTA (SAB 8085 mode) or interrupt vector is output on second INTA (SAB 8086 mode) other-
wise, interrupt address is output on a read address register operation.

Input from Port 2 in Hand-shake mode

(Control signals from Port 1)

Output from Port 2 in Hand-shake mode
(Control signals from Port 1)

1) Instead of $\overline{\mathrm{NTA}}, \overline{\mathrm{RD}}$ can serve as interrupt acknowledge (reading the interrupt address register).
2) Read from channel 2.
3) If INTA is enabled, RSTn instruction is output on INTA (SAB 8085 mode) or interrupt vector is output on second INTA (8086 mode) otherwise, interrupt address is output on a read address register operation.

Count Pulse Timings and

Zero-Crossing of Counter

P12, P 13
(Counter Input)

Loading Timer 5 (or Cascaded Counter/Timer 3 and 5) and
Zero-Crossing of Counters (Cascaded Counter/Timer 3 and 5)

Trigger Pulse for Timer 5 (Cascaded Event Counter/Timer 3 and 5)

Reading event counters/timers

ALE

Reset Timing

RESET

$\overline{\text { CTS }}$ for Single Character Transmission

CTS

External Baud Rate Clock for Serial Interface
$\overline{T \times C}$
($64 x$ and $32 x$ Baud Rate, Input)

$\overline{T \times C}, \overline{R \times C}$
(1x Baud Rate, Input)

Transmitter and Receiver Clock from Internal Clock Source

Data Bit Output on Serial Interface

$\overline{T \times C}$

(1×Baud Rate.
Input)

Data Bit Input on Serial Interface

Continuous Reception of Characters on Serial Interface without error conditions

1) Character format for this example: 6 Data bits with Parity bit and one Stop bit.
2) Set or Reset bit 6 of Command Register 3 (Enable Receiver)
3) Receiver Buffer Loaded
4) Read Receiver Buffer Register
5) Receiver is active even though no data is sent or Status bit set.

No Status bits are altered when $\overline{\mathrm{RD}}$ is active.

Error Conditions during Reception of Characters on the Serial Interface

1) Character format for this example: 6 Data bits without Parity and one Stop bit
2) Receiver Buffer Register Loaded
3) Overrun error
4) Framing error
5) Interrupt from receiver buffer register loading
6) Interrupt from Overrun error
7) Interrupt from framing error and loading receiver buffer register

No Status bits are altered when $\overline{\mathrm{RD}}$ is active.

Transmission of Characters on Serial Interface

1) Load Transmitter buffer register
2) Transmitter buffer register is empty
3) Transmitter register is empty
4) Character format for this example: 7 Data bits with Parity bit and 2 Stop bits
5) Loading of transmitter buffer register must be completed before CTS goes low
6) Interrupt due to transmitter buffer register empty
7) Interrupt due to transmitter register empty

No Status bits are altered when $\overline{\mathrm{RD}}$ is active.

- SAB 8086 and SAB 8080/85 Family Compatible
- Eight-Level Priority Controller
- Expandable to 64 Levels
- Programmable Interrupt Modes
- Individual Request Mask Capability
- Single +5 V Supply (No Clocks)
- 28-Pin Dual-In-Line Package

SAB 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupis without additional circuitry. It is packaged in a 28-pin DIP, uses NMOS technology and requires a single +5 V supply. Circuitry is static, requiring no clock input.

The SAB 8259A is designed to minimize the sofiware and real time overhead in handling
multi-level priority interrupts. It has several modes, permitting optimization for a variety of system requirements.

SAB 8259A is fully upward compatible with SAB 8259. Software originally written for SAB 8259 will operate the SAB 8259A in all SAB 8259 equivalent modes (SAB 8080,85, NonBuffered, Edge Triggered).

Functional Pin Definition

Symbol	Pin No.	Input (I) Output (O)	Function
$\overline{\overline{C S}}$	1	I	Chip Select A low an this pin enables $\overline{R D}$ and $\overline{W R}$ communication between the CPU and the SAB 8259A. INTA functions are independent of $\overline{\mathrm{CS}}$.
$\overline{W R}$	2	1	Write A low on this pin when $\overline{C S}$ is low, enables the SAB 8259A to accept command words from the CPU.
$\overline{\mathrm{RD}}$	3	1	Read A low on this pin when $\overline{\mathrm{CS}}$ is low, enables the SAB 8259A to release status onto the data bus for the CPU.
D7-DØ	4-11	1/0	Bidirectional Data Bus Control, status and interrupt vector information is transferred via this bus.
CAS0-CAS1	12, 13, 15	1/0	Cascade Lines The CAS lines form a private SAB 8259A bus to control a multiple SAB 8259A structure. These pins are outputs for a master SAB 8259A and inputs for a slave SAB 8259A.
$\overline{\mathrm{SP}} / \overline{\mathrm{EN}}$	16	1/0	Slave Program/Enable Buffer This is dual function pin. When in the Buffered Mode it can be used as an output to control buffer transceivers (EN). When not in the buffered mode it is used as an input to designate a master ($S P=1$) or slave ($\mathrm{SP}=\emptyset$).
INT	17	0	Interrupt This pin goes high whenever a valid interrupt request is asserted. It is used to interrupt the CPU, thus it is connected to the CPU's interrupt pin.
IR0-IR7	18-25	1	Interrupt Requests Asynchronous inputs. An interrupt request can be generated by raising an IR input (low io high) and holding it high until it is acknowledged (Edge Triggered Mode), or just by a high level on an IR input (Level Triggered Mode).
$\overline{\text { INTA }}$	26	1	Interrupt Acknowledge This pin is used to enable SAB 8259A interrupi-vector data onto the data bus. This is done by a sequence of interrupt acknowledge pulses issued by the CPU.
A 0	27	1	A0 Address Line This pin acts in conjunction with the $\overline{C S}, \overline{W R}$ and $\overline{R D}$ pins. It is used by the SAB 8259A to decipher between various Command Words the CPU writes and status the CPU wishes to read. It is typically connected to the CPU AØ address line (A1 for SAB 8086/SAB 8088)
VCC	28	1	Power Supply (+5 V)
GND	14	1	Ground (0V)

Interface to Standard System Bus

Functional Description

General

The SAB 8259A is a device specifically designed for use in real time, interrupt driven microcomputer systems. It manages eight levels or requests and has built-in features for expandability to other SAB 8259A's (up to 64 levels). It is programmed by the system's software as an I/O peripheral. A selection of priority modes is available to the programmer so that the manner in which the requests are processed by the SAB 8259A can be configured to match his system requirements. The priority modes can be changed or reconfigured dynamically ai any time during the main program. This means that the complete interrupi siructure can be defined as required, based on the total sysiem environmeni.

Interrupt Request Register (IRR) and In-Service Register (ISR)

The inierrupts ai the IR inpui lines are handled by two registers in cascade, the Interrupi Requesi Register (IRR) and the In-Service Register (ISR). The IRR is used io siore all the interrupi levels which are requesting service, and ine ISR is used io store all the inierrupt levels which are being serviced.

Priority Resolver

This logic block deiermines the priorities of the bits set in the IRR. The highest priority is selected and strobed into the corresponding bit of the ISR during INTA pulse.

Interrupt Mask Register (IMR)

The IMR stores the bits which mask the interrupt lines to be masked. The IMR operates on the IRR. Masking of a higher priority input will not affect the interrupt request lines of lower priority.

INT (Interrupt)

This output goes directly to the CPU interrupt input. The VOH level on this line is designed to be fully compatible with the SAB 8080A, SAB 8085A, SAB 8086 and SAB 8088.

INTA (Interrupt Acknowledge)

$\overline{\text { INTA }}$ pulses will cause the SAB 8259 A to release vecioring information onto the data bus. The format of this daia depends on the sysiem mode ($\mu \mathrm{PM}$) of the SAB 8259A.

Data Bus Buffer

This 3-state, bidirectional 8-bit buffer is used to interface the SAB 8259A to the system Data Bus. Control words and status information are transferred through the Data Bus Buffer.

Read/Write Control Logic

The function of this block is to accept Output commands from CPU. It contains the Initialization Command Word (ICW) registers and Operation Command Word (OCW) registers which store the various control formats for device operation. This function block also allows the status of the SAB 8259A to be transferred onto the Daia Bus.

$\overline{\mathbf{C S}}$ (Chip Select)

A LOW on this input enables the SAB 8259A. No reading or writing of the chip will occur unless the device is selecied.

$\overline{\mathrm{WR}}$ (Write)

A LOW on this inpui enables the CPU to write control words (ICWs and OCWs) io the SAB 8259A.

$\overline{\mathrm{RD}}$ (Read)

A LOW on this input enables the SAB 8259A io send the status of the Interrupt Request Register (IRR), In-Service Register (ISR), the Interrupt Mask Regisier (IMR), or the Inierrupt level onio the Data Bus.

A0

This input signal is used in conjunction with $\overline{W R}$ and $\overrightarrow{\mathrm{RD}}$ signals to write commands into the various command registers, as well as reading the various command registers, as well as reading the various status registers of the chip. This line can be tied directly to one of the address lines.

The Cascade Buffer/Comparator

This function block stores and compares the IDs of all SAB 8259A's used in the system. The associated three I/O pins (CAS0-2) are outputs when the SAB 8259A is used as a master and are inputs when the SAB 8259A is used as a slave. As a master, the SAB 8259A sends the ID of the interrupting slave device onto the CAS $\emptyset-2$ lines. The slave thus selected will send its preprogrammed subroutine address onto the Data Bus during the next one or two consecuiive INTA pulses.

Interrupt Sequence

The powerful features of the SAB 8259A in a microcomputer system are its programmability and the interrupt routine addressing capability. The latter allows direct or indirect jumping to the specific interrupt routine requested without any polling of the interrupting devices. The normal sequence of events during an interrupt depends on the type of CPU being used.

The events occur as follows in an SAB 8080/85 system:

1. One or more of the INTERRUPT REQUEST lines (IR7-ø) are raised high, setting the corresponding IRR bit(s).
2. The SAB 8259A evaluates these requests, and sends an INT to the CPU, if appropriate.
3. The CPU acknowledges the INT and responds with an INTA pulse.
4. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set, and the corresponding IRR bit is reset. The SAB 8259A will also release a CALL instruction code (11001101) onio the 8-bit Data Bus through its D7-Ø pins.
5. This CALL instruction will initiate two more $\overline{\mathrm{NTA}}$ pulses to be sent to the SAB 8259A from the CPU group.
6. These two $\overline{\operatorname{INTA}}$ pulses allow the SAB 8259A to release its preprogrammed subroutine address onio the Data Bus. The lower 8-bit address is
released at the first INTA pulse and the higher 8 -bit address is released at the second $\overline{\mathrm{INTA}}$ pulse.
7. These completes the 3-byte CALL instruction released by the SAB 8259A. In the AEOI mode the ISR bit is reset at the end of the third INTA pulse. Otherwise, the ISR bit remains set until an appropriate EOI command is issued at the end of the interrupt sequence.

The events occuring in an SAB 8086/SAB 8088 system are the same until step 4.
4. Upon receiving an IINTA from the CPU group, the highest priority ISR bit is set and the corresponding IRR bit is reset. The SAB 8259A does not drive the Data Bus during this cycle.
5. The SAB 8086/SAB 8088 CPU will initiate a second INTA pulse. During this pulse, the SAB 8259A releases an 8-bit pointer onto the Data Bus where it is ready by the CPU.
6. This completes the interrupt cycle. In the AEOI mode the ISR bit is reset at the end of the second INTA pulse. Otherwise, the ISR bit remains set until an appropriate EOI command is issued at the end of the interrupt subroutine.
If no interrupt request is present at step 4 of either sequence (i.e. the request was too short in duration) the SAB 8259A will issue an interrupt level 7. Both the vectoring bytes and the CAS lines will look like an interrupt level 7 was requested.

Absolute Maximum Ratings*)

Ambient Temperature Under Bias
Storage Temperature
-40 to $85^{\circ} \mathrm{C}$

Voltage on Any Pin with Respect to Ground
Power Dissipation
1 Watt

D.C. Characteristics

$T A=0$ to $70^{\circ} \mathrm{C}, V C C=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
VIL	Input Low Voltage	-0.5	0.8	V	-
VIH	Input High Voltage	2.0	$\begin{aligned} & V C C \\ & +0.5 \mathrm{~V} \end{aligned}$		
VOL	Output Low Voltage	-	0.45		$1 \mathrm{OL}=2.2 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-		$/ \mathrm{OH}=-400 \mu \mathrm{~A}$
VOH (INT)	Interrupt Output High Voltage	3.5			$1 \mathrm{OH}=-100 \mu \mathrm{~A}$
		2.4			$/ \mathrm{OH}=-400 \mu \mathrm{~A}$
/LI	Input Load Current	-	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leqslant V \mathrm{NIN} \leqslant V C C$
/LOL	Output Leakage Current		-10		$0.45 \mathrm{~V} \leqslant$ VOUT $\leqslant V C C$
ICC	VCC Supply Current		85	mA	-
/LIR	IR Input Load Current		-300	$\mu \mathrm{A}$	$V I N=O V$
			10		$V I N=V C C$

*) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device

Capacitance

$T \mathrm{~A}=25^{\circ} \mathrm{C}, \mathrm{VCC}=\mathrm{GND}=0 \mathrm{~V}$

Symbol	Parameter	Limit Values		Unit	Test Conditions
		Min.	Max.		
CIN	Input Capacitance	-	10	$\mu \mathrm{F}$	$f \mathrm{C}=1 \mathrm{MHz}$
Cl / O	I/O Capacitance		20		Unmeasured pins returned to VSS

A.C. Characteristics

$T A=0$ to $70^{\circ} \mathrm{C}, V C C=5 \mathrm{~V} \pm 10 \%$

Timing Requirements

Symbol	Parameter	Limit Values						Units	Test Con-ditions
		SAB8259A-8		SAB8259A		SAB8259A-2			
		Min.	Max.	Min.	Max.	Min.	Max.		
TAHRL	$\mathrm{A} ⿹ / \overline{\mathrm{CS}}$ Setup to $\overline{\mathrm{RD}} / \overline{\mathrm{NTA}} \downarrow$	50		0		0			
TRHAX	A \emptyset /टS Hold after $\overline{\mathrm{RD}} / \overline{\mathrm{N}}$ TA \uparrow	5		0		0			
TRLRH	$\overline{\mathrm{RD}}$ Pulse Width	420		235		160			
TAHWL	A $\emptyset / \overline{\mathrm{C} S}$ Setup to $\overline{W R} \downarrow$	50		0		0			-
TWHAX	Aø/ $\overline{\mathrm{CS}}$ Hold after $\overline{W R} \uparrow$	20		0		0			
TWLWH	$\overline{\text { WR Pulse Width }}$	400	-	290	-	190	-	ns	
TDVWH	Data Setup to $\overline{W R} \downarrow$	300		240		160			
TWHDX	Data Hold after WR \uparrow	40		0		0			
TJLJH	Interrupt Request Width (Low)	100		100		100			1)
TCVIAL	Cascade Setup to Second or Third $\overline{\text { NTA }} \downarrow$ (Slave Only)	55		55		40			
TRHRL	End of $\overline{\mathrm{RD}}$ to Next Command	160		160		160			-
TWHRL	End of $\overline{W R}$ to Next Command	190		190		190			

${ }^{1)}$ This is the low time required to clear the input latch in the edge triggered mode.

Timing Responses

Symbol	Parameter	Limit Values						Units	Test Conditions
		SAB8259A-8		SAB8259A		SAB8259A-2			
		Min.	Max.	Min.	Max.	Min.	Max.		
TRLDV	Data Valid from $\overline{\mathrm{R}}$ / $/ \overline{\mathrm{NTA}}$.	-	300		200		120		C of Data Bus =
TRHDZ	Data Float after $\overline{\mathrm{RD}} / \mathrm{INTA} \uparrow$	10	200		100		85		100 pF
TJHIH	Interrupi Output Delay		400		350		300		C of Daia Bus
TIALCV	Cascade Valid from First INTA \downarrow (Master Only)		565		565		360		Max.test $C=100 \mathrm{pF}$ Min. tesi $C=15 \mathrm{pF}$
TRLEL	Enable Active from $\overline{\mathrm{RD}} \downarrow$ or $\overline{\text { NTA }} \downarrow$		160		125		100		CINT $=100 \mathrm{pF}$
TRHEH	Enable Inactive from $\overline{\mathrm{RD}} \uparrow$ or $\overline{\operatorname{NTTA}} \uparrow$		325		150		150		
TAHDV	Data Valid from Stable Address		350		200				CCascade $=100 \mathrm{pF}$
TCVDV	Cascade Valid to Valid Data		300		300		200		

A.C. Testing Input, Output Waveform

Input/Output

AC testing: inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ".
Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

A.C. Testing Load Circuit

$C L=100 \mathrm{pF}$
$C L$ includes jig capacitance

Waveforms

OTHER TIMING

Notes: Interrupt output must remain HIGH at least until leading edge of first INTA.

1. Cycle 1 in SAB 8086/88 systems, the Data Bus is not active.

SAB 8275

Programmable CRT Controller

－Programmable screen and character format
－ 6 independent visual field attributes
－ 11 visual character attributes （graphics capability）
－Cursor control（4 types）
－Light pen detection and registers
－SAB 8051，SAB 8085，SAB 8086 and SAB 8088 compatible
－Dual row buffers
－Programmable DMA burst mode
－Single +5 V supply
－High performance MYMOS technology
－Fully compatible with industry standard 8275

Pin configuration		Pin Names	
		LCO－LC3	Line Count
		DRQ	DMA Request
$1 \mathrm{cos} \square$	40 Fvec	DACK	DMA Acknowledge
LC2 \square_{2}	${ }_{39}{ }^{20}$	HRTC	Horizontal Retrace
$\mathrm{cc}^{1} \mathrm{O}^{3}$	$38 \square$ Lai	VRTC	Vertical Retrace
$1 \mathrm{CO} \square_{4}^{4}$	$37 \square$ Lten	$\overline{\mathrm{RD}}$	Read Input
DRA－5	${ }_{36}{ }^{36}$ صrvs	WR	Write Input
HRTC \square°	${ }_{34}{ }^{3} \mathrm{OPPA} 1$	LPEN	Light Pen
vRte \square^{8}	$33 . \operatorname{cpao}$	DB0－DB7	Bidirectional Three－State Data Bus Lines
तबव，	SAB ${ }^{32}$ 习 ${ }^{\text {atGT }}$	LA0，LA1	Line Attribute Codes
	8275 31 DIRQ	LTEN	Light Enable
OBO_{12}	${ }_{29}{ }^{30} \mathrm{\square cc} 6$	RVV	Reverse Video
$081 \square^{13}$	${ }_{28}$ Пccs	VSP	Video Suppression
${ }^{\text {DB2 }} \square^{14}$	${ }_{27}{ }^{\text {Fecs }}$	GPA0，GPA1	General Purpose Attribute Codes
	$\begin{aligned} & 26 \square \mathrm{CC3} \\ & \\ & 25 \end{aligned}$	HLGT	Highlight
$085{ }^{0} 17$	${ }_{24}{ }^{25} \mathrm{ClCl}$	IRQ	Interrupt Request
$086{ }^{18}$	${ }_{23}$ 万cco	CCLK	Character Clock
087 \square_{1}^{19}	${ }^{22}$ 卫cs	CC0－CC6	Character Codes
GND \square^{20}	${ }^{21} \square^{40}$	$\overline{\overline{C S}}$	Chip Select
		A0	Port Address

The SAB 8275 programmable CRT controller is a single chip device to interface CRT raster scan displays．It is manufactured in Siemens advanced MYMOS technology．Its primary function is to refresh the display by buffering the information from main memory and keeping track of the
display position of the screen．The flexibility designed into the SAB 8275 will allow simple interface to almost any raster scan CRT display with a minimum of external hardware and software overhead．

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Function
$\begin{aligned} & \text { LC3 } \\ & \text { LC2 } \\ & \text { LC1 } \\ & \text { LC0 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	0	LINE COUNT: Output from the line counter which is used to address the character generator for the line positions on the screen.
DRQ	5	0	DMA REQUEST: Output signal to the SAB 8237A DMA controller requesting a DMA cycle.
$\overline{\text { DACK }}$	6	1	DMA ACKNOWLEDGE: Input signal from the SAB 8237A DMA controller acknowledging that the requested DMA cycle has been granted.
HRTC	7	0	HORIZONTAL RETRACE: Output signal which is active during the programmed horizontal retrace interval. During this period the VSP output is high and the LTEN output is low.
VRTC	8	0	VERTICAL RETRACE: Output signal which is active during the programmed vertical retrace interval. During this period the VSP output is high and the LTEN output is low.
$\overline{\mathrm{RD}}$	9	1	READ INPUT: A control signal to read registers.
$\overline{W R}$	10	1	WRITE INPUT: A control signal to write commands into the control registers or write data into the row buffers during a DMA cycle.
LPEN	11	1	LIGHT PEN: Input signal from the CRT system signifying that a light pen signal has been detected.
DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7	$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	1/0	BIDIRECTIONAL THREE-STATE DATA BUS LINES: The outputs are enable during a read of the C or P ports.
$\begin{aligned} & \text { LAO } \\ & \text { LA1 } \end{aligned}$	$\begin{array}{\|l\|} 39 \\ 38 \end{array}$	0	LINE ATTRIBUTE CODES: These attribute codes have to be decoded externally by the dot/timing logic to generate the horizontal and vertical line combinations for the graphic displays specified by the character attribute codes.
LTEN	37	0	LIGHT ENABLE: Output signal used to enable the video signal to the CRT. This output is active at the programmed underline cursor position, and at positions specified by attribute codes.
RVV	36	0	REVERSE VIDEO: Output signal used to indicate the CRT circuitry to reverse the video signal. This output is active at the cursor position if a reverse video block cursor is programmed or at the positions specified by the field attribute codes.

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
VSP	35	0	VIDEO SUPPRESSION: Output signal used to blank the video signal to the CRT. This output is active: - During the horizontal and vertical retrace intervals. - at the top and bottom lines of rows if underline is programmed to be number 8 or greater. - when an end of row or end of screen code is detected. - when a DMA underrun occurs. - at regular intervals (1/16 frames frequency for cursor, 1/32 frame frequency for character and field attributes) to create blinking displays as specified by cursor, character attribute, or field attribute programming.
$\begin{aligned} & \text { GPA1, } \\ & \text { GPA0 } \end{aligned}$	$\begin{aligned} & 34 \\ & 33 \end{aligned}$	0	GENERAL-PURPOSE ATTRIBUTE CODES: Outputs which are enable by the general purpose field attribute codes.
HLGT	32	0	HIGHLIGHT: Output signal used to intensify the display at particular positions on the screen as specified by the character attribute codes or field attribute codes.
IRO	31	0	INTERRUPT REQUEST.
CCLK	30	1	CHARACTER CLOCK (from dot/timing logic).
CC6 CC5 CC4 CC3 CC2 CC1 CCO	$\begin{aligned} & 29 \\ & 28 \\ & 27 \\ & 26 \\ & 25 \\ & 24 \\ & 23 \end{aligned}$	0	CHARACTER CODES: Output from the row buffers used for character selection in the character generator.
$\overline{\text { CS }}$	22	1	CHIP SELECT: The read and write are enabled by $\overline{\mathrm{CS}}$.
A0	21	1	PORT ADDRESS: A high input on A0 selects the " C " port or command registers and a low input selects the " P " port or parameter registers.
VCC	40	-	+5V Power supply.
GND	20	-	Ground (0, V)

SAB 8275 Block diagram showing counter and register functions

Functional Description

Data bus buffer

This three-state, bidirectional, 8-bit buffer is used to interface the SAB 8275 to the system data bus.

This functional block accepts inputs from the system control bus and generates control signals for overall device operation. It contains the command, parameter, and status registers that store various control formats for the device functional definition.

A0	Operation	Register
0	Read	PREG
0	Write	PREG
1	Read	SREG
1	Write	CREG

AO	$\overline{R D}$	$\overline{W R}$	$\overline{C S}$	
0	1	0	0	Write SAB 8275 parameter
0	0	1	0	Read SAB 8275 parameter
1	1	0	0	Write SAB 8275 command
1	0	1	0	Read SAB 8275 status
X	1	1	0	Three-state
X	X	X	1	Three-state

$\overline{\mathrm{RD}}$ (Read)
A "low" on this input informs the SAB 8275 that the CPU is reading data or status information from the SAB 8275.

$\overline{\mathrm{WR}}$ (Write)

A "low" on this input informs the SAB 8275 that the CPU is writing data or control words to the SAB 8275.

$\overline{\mathbf{C S}}$ (Chip select)

A "low" on this input selects the SAB 8275. No reading or writing will occur unless the device is selected. When $\overline{\mathrm{CS}}$ is high, the data bus in the float state and $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ will have no effect on the chip.

DRQ (DMA request)

A "high" on this output informs the DMA controller that the SAB 8275 desires a DMA transfer.
$\overline{\text { DACK }}$ (DMA acknowledge)
A "low" on this input informs the SAB 8275 that a DMA cycle is in progress.

IRQ (Interrupt request)

A "high" on this output informs the CPU that the SAB 8275 desires interrupt service.

Character counter

The character counter is a programmable counter that is used to determine the number of characters to be displayed per row and the length of the horizontal retrace interval. It is driven by the CCLK (character clock) input, which should be a derivative of the external dot clock.

Line counter

The line counter is a programmable counter that is used to determine the number of horizontal lines (sweeps) per character row. Its outputs are used to address the external character generator ROM.

Row counter

The row counter is a programmable counter that is used to determine the number of character rows to be displayed per frame and length of the vertical retrace interval.

Light pen registers

The light pen registers are two registers that store the contents of the character counter and the row counter whenever there is a rising edge on the LPEN (Light Pen) input.

Note: Software correction is required.

Raster timing and video controls

The raster timing circuitry controls the timing of the HRTC (Horizontal Retrace) and VRTC (Vertical Retrace) outputs. The video control circuitry controls the generation of LAO-1 (line attribute), HGLT (highlight), RVV (reverse video), LTEN (Light enable), VSP (video suppress), and GPAO-1 (general purpose attribute) outputs.

Row buffers

The row buffers are two 80 character buffers. They are filled from the microcomputer system memory with the character codes to be displayed. While one row buffer is displaying a row of characters, the other is being filled with the next row of characters.

FIFOs

There are two 16 character FIFOs in the 8275 . They are used to provide extra row buffer length in the transparent attribute mode.

Buffer input/output controllers

The buffer input/output controliers decode the characters being placed in the row buffers. If the character is a character attribute, field attribute or special code, these controllers control the appropriate action (Examples: An "end of screenstop DMA" special code will cause the buffer input controller to stop further DMA requests. A "highlight" field attribute will cause the buffer output controller to activate the HGLT output).

System Operation

The SAB 8275 is programmable to a large number of different display formats. It provides raster timing, display row buffering, visual attribute decoding, cursor timing, and light pen detection.

It is designed to interface with the SAB 8237A DMA controller and standard character generator ROMs for dot matrix decoding. Dot level timing must be provided by external circuitry.

SAB 8275 Block diagram showing systems operation

Raster timing

The character counter is driven by the character clock input (CCLK). It counts out the characters being displayed (programmable from 1 to 80). It then causes the line counterto increment, and it starts counting out the horizontal retrace (programmable from 2 to 32). This is constantly repeated.
The line counter is driven by the character counter. It is used to generate the line address outputs (LCO-3) for the character generator. After it counts all of the lines in a character row (programmable from 1 to 16), it increments the row counter, and starts over again. (See Character Format Section for detailed description of Line Counter functions.)

The row counter is an internal counter driven by the line counter. It controls the functions of the row buffers and counts the number of character rows displayed.
After the row counter counts all of the rows in a frame (programmable from 1 to 64), it starts counting out the vertical retrace interval (programmable from 1 to 4).
The video suppression output (VSP) is active during horizontal and vertical retrace intervals.
Dot level timing circuitry must synchronize these outputs with the video signal to the CRT display.

DMA timing

The SAB 8275 can be programmed to request burst DMA transfers of 1 to 8 characters. The interval between bursts is also programmable (from 0 to 55 character clock periods ± 1). This allows the user to tailor his DMA overhead to fit his system needs.
The first DMA request of the frame occurs one row time before the end of vertical retrace. DMA requests continue as programmed, until the row buffer is filled. If the row buffer is filled in the middle of a burst, the SAB 8275 terminates the burst and resets
the burst counter. No more DMA requests will occur until the beginning of the next row. At that time, DMA requests are activated as programrned until the other buffer is filled.

The DMA request for a row will start at the first character clock of the preceding row. If the burst mode is used, the first DMA request may occur a number of character clocks later. This number is equal to the programmed burst space.
If, for any reason, there is a DMA underrun, a flag in the status word will be set.

The DMA controller is typically initialized for the next frame at the end of the current frame.

Interrupt timing

The SAB 8275 can be programmed to generate an interrupt request at the end of each frame. This can
be used to reinitialize the DMA controller. If the SAB 8275 interrupt enable flag is set, an interrupt request will occur at the beginning of the last display row.

Beginning of interrupt request

IRQ will go inactive after the status register is read.

A reset command will also cause IRQ to go inactive, but this is not recommended during normal service.
Another method of reinitializing the DMA controller is to have the DMA controller itself interrupt on terminal count. With this method, the SAB 8275 interrupt enable flag should not be set.

Note: Upon power-up, the SAB 8275 interrupt Enable Flag may be set. As a result, the user's cold start routine should write a reset command to the SAB 8275 before system interrupts are enabled.

General systems operational description

The SAB 8275 provides a "window" into the microcomputer system memory.
Display characters are retrieved from memory and displayed on a row by row basis. The SAB 8275 has two row buffers. While one row buffer is being used for display, the other is being filled with the next row of characters to be displayed. The number of display characters per row and the number of character rows per frame are software programmable, providing easy interface to most CRT displays. (see programming section.)
The SAB 8275 requests DMA to fill the row buffer that is not being used for display. DMA burst length and spacing is programmable. (See programming section.)
The SAB 8275 displays character rows one line at a time.
The number of lines per character row, the underline position, and blanking of top and bottom lines are programmable. (See programming section.)
The SAB 8275 provides special control codes which can be used to minimize DMA or software overhead. It also provides visual attribute codes to cause special action or symbols on the screen without the use of the character generator (see visual attribute section).
The SAB 8275 also controls raster timing. This is done by generating horizontal retrace (HRTC) and
vertical retrace (VRTC) signals. The timing of these signals is programmable.
The SAB 8275 can generate a cursor. Cursor location and format are programmable. (See programming section.)
The SAB 8275 has a light pen input and registers. The light pen input is used to load the registers. Light pen registers can be read on command. (See programming section.)

Display row buffering

Before the start of a frame, the SAB 8275 requests DMA and one row buffer is filled with characters.
When the first horizontal sweep is started, character codes are output to the character generator from the row buffer just filled. Simultaneously, DMA begins filling the other row buffer with the next row of characters.
After all the lines of the character row are scanned, the roles of the two row buffers are reversed and the same procedure is followed for the next row.
This is repeated until all of the character rows are displayed.

Screen format

The SAB 8275 can be programmed to generate from 1 to 80 characters per row, and from 1 to 64 rows per frame.
The SAB 8275 can also be programmed to blank alternate rows. In this mode, the first row is displayed, the second blanked, the third displayed, etc. DMA is not requested for the blanked rows.

Row format

The SAB 8275 is designed to hold the line count stable while outputting the appropriate character codes during each horizontal sweep. The line count is incremented during horizontal retrace and the whole row of character codes are output again during the next sweep. This is continued until the whole character row is displayed.

The number of lines (horizontal sweeps) per character row is programmable from 1 to 16.

The output of the line counter can be programmed to be in one of two modes.

In mode 0, the output of the line counter is the same as the line number.
In mode 1, the line counter is offset by one from the line number.
Note: In mode 1, while the first line (line number 0) is being displayed, the last count is output by line counter.

Mode 0 is use ful for character generators that leave address zero blank and start at address 1 , Mode 1 is useful for character generators which start at address zero.

Underline placement is also programmable (from line number 0 to 15). This is independent of the line counter mode.

If the line number of the underline is greater than 7 (line number MSB = 1), then the top and bottom lines will be blanked.

If the line number of the underline is less than or equal to 7 (line number $\mathrm{MSB}=0$), then the top and bottom lines will not be blanked.
If the line number underline is greater than the maximum number of lines, the underline will not appear.

Blanking is accomplished by the VSP (Video Suppression) signal. Underline is accomplished by the LTEN (light enable) signal.

Dot format

Dot width and character width are dependent upon the external timing and control circuitry.
Dot level timing circuitry should be designed to accept the parallel output of the character generator and shift it out serially at the rate required by the CRT display.

Dot width is a function of dot clock frequency.
Character width is a function of the character generator width.
Horizontal character spacing is a function of the shift register length.
Note: Video control and timing signals must be synchronized with the video signal due to the character generator access delay.

Visual Attributes and Special Codes

The characters processed by the SAB 8275 are 8 -bit quantities. The character code outputs provide the character generator with 7 bits of address. The most significant bit is the extra bit and it is used to determine if it is a normal display character ($\mathrm{MSB}=0$), or if it is a Visual Attribute or Special Code (MSB = 1).

There are two types of visual attribute codes.
They are character attributes and field attributes.

Character attribute codes

Character attribute codes are codes that can be used to generate graphics symbols without the use of a character generator. This is accomplished by selectively activating the line attribute outputs (LAO-1), the video suppression output (VSP), and the light enable output. The dot level timing circuitry can use these signals to generate the proper symbols.

Character attributes can be programmed to blink or be highlighted individually. Blinking is accomplished with the video suppression output (VSP). Blink frequency is equal to the screen refresh frequency divided by 32. Highlighting is accomplished by activating the highlight output (HGLT).

Character attributes

MSB LSB

11 C C C C B H

Four special codes are available to help reduce memory, software or DMA overhead.

Special control character
MSB LSB
111100 SS
SPECIALCONTROL CODE

S	S	Function
0	0	End of Row
0	1	End of Row-stop DMA
1	0	End of Screen
1	1	End of Screen-stop DMA

The End-of-Row code (00) activates VSP and holds it to the end of the line.

The End-of-Row-Stop DMA code (01) causes the DMA control logic to stop DMA for the rest of the row when it is written into the row buffer. It affects the display in the same way as the end-of-row code (00).
The end-of-screen code (10) activates VSP and holds it to the end of the frame.

The end-of-screen-stop DMA code (11) causes the DMA control logic to stop DMA for the rest of the frame when it is written into the row buffer. It affects the display in the same way as the end-of-screen code (10).
If the stop DMA feature is not used, all characters after an end-of-row character are ignored, except for the end-of-screen character, which operates normally. All characters after an end-of-screen character are ignored.
Note: If a stop DMA character is not the last character in a burst or row, DMA is not stopped until after the next character is read. In this situation, a dummy character must be placed in memory after the stop DMA character.

Field attributes

The field attributes are control codes which affect the visual characteristics for a field of characters, starting at the character following the code up to, and including, the character which precedes the next field attribute code, or up to the end of the frame. The field attributes are reset during the vertical retrace interval.
There are six field attributes:

1. Blink - Characters following the code are caused to blink by activating the Video Suppression Output (VSP). The blink frequency is equal to the screen refresh frequency divided by 32.
2. Highlight - Characters following the code are caused to be highlighted by activating the Highlight Output (HGLT).
3. Reverse Video - Characters following the code are caused to appear with reverse video by activating the Reverse Video Output (RVV).
4. Underline - Characters following the code are caused to be underlined by activating the Light Enable Output (LTEN).
5, 6. General Purpose - There are two additional SAB 8275 outputs which act as general purpose, independently programmable field attributes. GPAO-1 are active high outputs.

Field attribute code

$\mathrm{H}=1$ for highlighting
$U=1$ for underline
$B=1$ for blinking
$\mathrm{GG}=\mathrm{GPA} 1, \mathrm{GPAO}$
$R=1$ for reverse video

* More than one attribute can be enabled at the same time. If the blinking and reverse video attributes are enabled simultaneously, only the reversed characters will blink.

The SAB 8275 can be programmed to provide visible or invisible field attribute characters.
If the SAB 8275 is programmed in the visible field attribute mode, all field attributes will occupy a position on the screen. They will appear as blanks caused by activation of the video suppression output (VSP). The chosen visual attributes are activated after this blanked character.
If the SAB 8275 is programmed in the invisible field attribute mode, the SAB 8275 FIFO is activated.
Each row buffer has a corresponding FIFO. These FIFOs are 16 characters by 7 bits in size.
When a field attribute is placed in the row buffer during DMA, the buffer input controller recognizes it and places the next character in the proper FIFO.
When a field attribute is placed in the buffer output controller during display, it causes the controller to immediately put a character from the FIFO on the character code outputs (CCO-8). The chosen visual attributes are also activated.
Since the FIFO in 16 characters long, no more then 16 field attribute characters may be used per line in this mode. If more are used, a bit in the status word is set and the first characters in the FIFO are written over and lost.
Note: Since the FIFO is 7 bits wide, the MSB of any characters put in it are stripped off. Therefore, a visual attribute or special code must not immediately follow a field attribute code. If this situation does occur, the visual attribute or special code will be treated as normal display character.

Field and character attribute interaction

Character attribute symbols are affected by the reverse video (RVV) and general purpose (GPA0-1) field attributes. They are not affected by underline, blink or highlight field attribute; however, these characteristics can be programmed individually for character attribute symbols.

Cursor timing

The cursor location is determined by a cursor row register and a character position register which are located by command to the controller. The cursor can be programmed to appear on the display as:

1. a blinking underline
2. a blinking reverse video block
3. a non-blinking underline
4. a non-blinking reverse video block

The cursor blinking frequency is equal to the screen refresh frequency divided by 16.
If a non-blinking reverse video cursor appears in a non-blinking reverse video field, the cursor will appear as a normal video block.
If a non-blinking underline cursor appears in a nonblinking underline field, the cursor will not be visible.

Light pen detection

A light pen consists of a micro switch and a tiny light sensor. When the light pen is pressed against the CRT screen, the micro switch enable the light sensor. When the raster sweep reaches the light sensor, it triggers the light pen output.
If the output of the light pen is presented to the SAB 8275 LPEN input, the row and character position coordinates are stored in a pair of registers. These registers can be read on command. A bit in the status word is set, indicating that the light pen signal was detected. The LPEN input must be a 0 to 1 transition for proper operation.
Note: Due to internal and external delays, the character position coordinate will be off by at least three character positions. This has to be corrected in software.

Device programming

The SAB 8275 has two programming registers, the command register (CREG) and the parameter register (PREG). It also has a status register (SREG). The command register can only be written into and the Status registers can only be read from. They are addressed as follows:

A_{0}	operation	register
0	Read	PREG
0	Write	PREG
1	Read	SREG
1	Write	CREG

The SAB 8275 expects to receive a command and a sequence of 0 to 4 parameters, depending on the command. If the proper number of parameter bytes are not received before another command is given, a status flag is set, indicating an improper command.

Instruction Set

The SAB 8275 instruction set consists of 8 commands

Command	No. of parameter bytes
Reset	4
Start Display	0
Stop Display	0
Read Light Pen	2
Load Cursor	2
Enable Interrupt	0
Disable Interrupt	0
Preset Counters	0
In addition, the status of the SAB 8275 (SREG) can	
be read by the CPU at any time.	

1 Reset command

Action - After the reset command is written, DMA requests stop, SAB 8275 interrupts are disabled, and the VSP output is used to blank the screen. HRTC and VRTC continue to run. HRTC and VRTC timing are random on power-up.

Parameter-S Spaced rows

S	Functions
0	Normal rows
1	Spaced Rows

Parameter-HHHHHHH Horizontal characters/row

H	No. of characters per row						
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	2
0	0	0	0	0	1	0	3
			.			.	
			\cdot			.	
1	0	0	1	1	1	1	.
1	0	1	0	0	0	0	80
			\cdot			Undefined	
			\cdot			.	
1	1	1	1	1	1	1	.

Parameter - VV Vertical retrace row count

V	V	No. of row counts per VRTC
0	0	1
0	1	2
1	0	3
1	1	4

As parameters are written, the screen composition is defined.

Parameter-RRRRRR Vertical rows/frame

R	R	R	R	R	R	No. of rows/frame
0	0	0	0	0	0	1
0	0	0	0	0	1	2
0	0	0	0	1	0	3
			\cdot			\cdot
			\cdot			\cdot
1	1	1	1	1	1	64

Parameter - UUUU				Underline placement Line number of underline
U	U	U	\cup	
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
				.
				-
				16
1	1	1	1	16

Note: uuuu MSB determines blanking of top and botton lines ($1=$ blanked, $0=$ not blanked).

Parameter-LLLL Number of lines per character row

L	L	L	L	No. of lines/row
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
	.		.	
	.		.	
1	1	1	1	.

Parameter-ZZZZ Horizontal retrace count

Z	Z	Z	Z	No. of character counts per HRTC
0	0	0	0	2
0	0	0	1	4
0	0	1	0	6
		\cdot		.
		\cdot		.
1	1	1	1	32

Parameter - M Line Counter Mode

M	Line counter mode
0	Mode 0 (non-offset)
1	Mode 1 (offset by 1 count)

Parameter - F Field attribute mode

F	Field attribute mode
0	Transparent
1	Non-transparent

Parameter-CC Cursor format

C	C	Cursor format
0	0	Blinking reverse video block
0	1	Blinking underline
1	0	Nonblinking reverse video block
1	1	Nonblinking underling

2 Start display command

| | | | | | | | | Data bus | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Operation | AO | Description | | MSB | | | | LSB | | | |
| Command | Write | 1 | Start display | | 0 | 0 | 1 | S | S | S | B | B |
| No parameters | | | | | | | | | | | | |

SSS Burst space code

S	S	S	No. of character clocks between DMA requests	
0	0	0	0	
0	0	1	7	
0	1	0	15	
0	1	1	23	
1	0	0	31	
1	0	1	39	
1	1	0	47	
1	1	1	55	

BB Burst count code

B	B	No. of DMA cycles per burst
0	0	1
0	1	2
1	0	4
1	1	8

Action - SAB 8275 interrupts are enabled, DMA requests begin, video is enabled, interrupt enable and video enable status flags are set.

3 Stop display command

							Data bus					
	Operation	AO	Description		MSB				LSB			
Command	Write	1	Stop display		0	1	0	0	0	0	0	0
No parameters												

Action - Disables video, interrupts remain enabled. HRTC and VRTC continue to run, video enable status flag is reset, and the "Start display" command must be given to re-enable the display.

4 Read light pen command

| | | | | Data bus | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Operation | A0 | Description | MSB | | LSB | | | | | |
| Command | Write | 1 | read light pen | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| Parameters | Read | 0 | Char. number | (Char. position
 in row)
 (Row number) | | | | | | | |
| | Read | 0 | Row number | | | | | | | | |

Action - The SAB 8275 is conditioned to supply the contents of the light pen position registers in the next two read cycles of the parameter register.
Status flags are not affected.

5 Load cursor position

	Operation	A0	Description		MSB	Data bus	LSB				
Command	Write	1	Load cursor	1	0	0	0	0	0	0	0
Parameters	Write	0	Char. number	(Char. position in row) (Row number)							
	Write	0	Row number								

Action - The SAB 8275 is conditioned to place, the next two parameter bytes into the cursor position registers. Status flags not affected.

6 Enable interrupt command

	Operation	A0	Description		MSB	Data bus	LSB			
Command	Write	1	Enable interrupt	1	0	1	0	0	0	0

Action - The interrupt enable status flag is set and interrupts are enabled.

7 Disable interrupt command

	Operation	A0	Description		MSB		Data bus				
Command	Write	1	Disable interrupt	1	1	0	0	0	0	0	0
No parameters											

Action - Interrupts are disabled and the interrupt enable status flag is reset.

8 Preset counters command

	Operation	A0	Description	MSB	Data bus	LSB				
Command	Write	1	Preset counters	1	1	1	0	0	0	0

Action-The internal timing counters are preset, corresponding to a screen display position at the top left corner. Two character clocks are required for this operation. The counters will remain in this state until any other command is given.
This command is useful for system debug and synchronization of clustered CRT displays on a single CPU. After this command, two additional clock cycles are required before the first character of the first row is put out.

Status flags

	Operation	AO	Description	MSB
Command	Read	1	Status word	OIEIRLPICVE DU FO

IE - (Interrupt Enable) Set or reset by command. It enables vertical retrace interrupt. It is automatically set by a "Start Display" command reset with the "Reset" command.
IR - (Interrupt Request) This flag is set at the beginning of display of the last row of the frame if the interrupt enable flag is set. It is reset after a status read operation.

LP - This flag is set when the light pen input (LPEN) is activated and the light pen registers have been loaded. This flag is automatically reset after a status read.
IC - (Improper Command) This flag is set when a command parameter string is too long or too short. The flag is automatically reset after a status read.
VE - (Video Enable) This flag indicates that video operation of the CRT is enabled. This flag is set on a "Start Display" command, and reset on a "Stop Display" or "Reset" command.
DU - (DMA Underrun) This flag is set whenever a data underrun occurs during DMA transfers. Upon detection of DU, the DMA operation is stopped and the screen is blanked until after the vertical retrace interval. This flag is reset after a status read.

FO - (FIFO Overrun) This flag is set whenever the FIFO is overrun. It is reset on a status read.

Absolute Maximum Ratings ${ }^{17}$

Temperature under bias
Storage temperature
All output ans supply and supply voltages All input voltages
Power dissipation

$$
\begin{aligned}
& 0 \text { to }+70^{\circ} \mathrm{C} \\
& -65 \text { to }+150^{\circ} \mathrm{C} \\
& -0,5 \text { to }+7 \mathrm{~V} \\
& -0,5 \text { to }+5,5 \mathrm{~V} \\
& 1,0 \mathrm{~W}
\end{aligned}
$$

DC Characteristics

($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$)

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
VIL	Input low voltage	-0.5	0.8	V	-
VIH	Input high voltage	2.0	VCC +0.5 V		
VOL	Output low voltage	-	0.45		$\mathrm{IOL}=2.2 \mathrm{~mA}$
VOH	Output high voltage	2.4	-		$\mathrm{IOH}=-400 \mu \mathrm{~A}$
IIL	Input load current	-	± 10	$\mu \mathrm{A}$	VIN = VCC to OV
IOFL	Output float leakage				$\mathrm{VOUT}=\mathrm{VCC}$ to 0.45 V
ICC	VCC supply current		160	mA	-

Capacitance

$\left(T A=25^{\circ} \mathrm{C}, \mathrm{VCC}=G N D=0 \mathrm{~V}\right)$

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
CIN	Input capacitance	-	10	pF	$\mathrm{fc}=1 \mathrm{MHz}$
Cl / O	I/O capacitance		20		Unmeasured pins returned to GND

1) Stresses above those listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

AC Characteristics (SAB 8275)

(TA $=0 \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, G N D=0 \mathrm{~V}$)

Clock timing

Symbol	Parameter	Limit values		Units	Test condition
		Min.	Max.		
TCLK	Clock period	480			
TKH	Clock high	240	-		
TKL	Clock low	160			
TKR	Clock rise	5	30		
TKF	Clock fall				

Bus parameters

Read cycle

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TAR	Address stable before READ	0	-	ns	-
TRA	Address hold time for READ				
TRR	READ pulse width	250			
TRD	Data delay from READ	-	200		$C L=150 \mathrm{pF}$
TDF	READ to data floating		100		

Write cycle

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TAW	Address stable before WRITE	0			
TWA	Address hold time for WRITE				
TWW	WRITE pulse width	250			
TDW	Data seting time for WRITE	150			
TWD	Data hold time for WRITE	0			

Other timings

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TCC	Character code output delay	-	150	ns	$C L=50 \mathrm{pF}$
THR	Horizontal retrace output delay		200		
TLC	Line count output delay		400		
TAT	Control-attribute output delay		275		
TVR	Vertical retrace output delay				
TRI	IRQ \downarrow from RD \uparrow		250		
TWQ	DRQ \uparrow from WR \uparrow				
TRQ	DRQ \downarrow from WR \downarrow		200		
TLR	DACK \downarrow to WR \downarrow	0	-		-
TRL	WR \uparrow to DACK \uparrow				
TPR	LPEN rise	-	50		
TPH	LPEN hold	100	-		

AC Characteristics (SAB 8275-2)

$\left(\mathrm{TA}=0 \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}$)
Clock timing

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TCLK	Clock period	320			
TKH	Clock high	120	-		
TKL	Clock low	5			
TKR	Clock rise	5	30		
TKF	Clock fall				

Bus parameters

Read cycle

Symbol	Parameter	Limit value		Unit	Test condition
		Min.	Max.		
TAR	Address stable before READ	0	-	ns	
TRA	Address hold time for READ				-
TRR	READ pulse width	250			
TRD	Data delay from READ	-	200		$\mathrm{CL}=150 \mathrm{pF}$
TDF	READ to data floating		100		$\mathrm{CL}=150 \mathrm{pF}$

Write cycle

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TAW	Address stable before WRITE	0			
TWA	Address hold time for WRITE				
TWW	WRITE pulse width	250	-	ns	-
TDW	Data seting time for WRITE	150			
TWD	Data hold time for WRITE	0			

Other timings

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TCC	Character code output delay	-	15	ns	$C L=50 \mathrm{pF}$
THR	Horizontal retrace output delay				
TLC	Line count output delay		250		
TAT	Control-attribute output delay				
TVR	Vertical retrace output delay				
TRI	$\mathrm{IRQ} \downarrow$ from RD \uparrow				
TWQ	DRQ \uparrow from WR \uparrow				
TRQ	DRQ \downarrow from $W R \downarrow$		200		
TLR	DACK \downarrow to $\mathrm{WR} \downarrow$	0	-		-
TRL	WR \uparrow to DACK \uparrow				
TPR	LPEN rise	-	50		
TPH	LPEN hold	100	-		

A.C. Testing input/output

AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ".
Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

A.C. Testing load circuit

CL Includes Jig Capacitance

Waveforms

Typical dot level timing

CCLK*

CCO-CC6

* CCLK is a Multiple of the Dot Clock and an Input to the SAB 8275

Line timing

Row timing

Frame timing

Interrupt timing

DMA timing

LPEN

Write timing

Read timing

Clock timing

SAB 8276 Small System CRT Controller

- Programmable screen and character format
- 6 independent visual attributes
- Cursor control (4 types)
- SAB 8051, SAB 8085, SAB 8086 and SAB 8088 compatible
- Dual row buffers
- Programmable DMA burst mode
- Single +5 V supply
- High performance MYMOS technology
- Fully compatible with industry standard 8276

The SAB 8276 Small System CRT Controller is a single chip device to interface CRT raster scan displays. It is manufactured in Siemens advanced MYMOS technology. Its primary function is to refresh the display by buffering the information from main memory and keeping track of the
display position of the screen. The flexibility designed into the SAB 8276 will allow simple interface to almost any raster scan CRT display with a minimum of external hardware and software overhead.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Function
$\begin{aligned} & \text { LC3 } \\ & \text { LC2 } \\ & \text { LC1 } \\ & \text { LC0 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	0	LINE COUNT: Output from the line counter which is used to address the character generator for the line positions on the screen.
BRDY	5	1	BUFFER READY: Output signal indicating that a row buffer is ready for loading of character data.
$\overline{\mathrm{BS}}$	6	0	BUFFER SELECT: Input signal enabling $\overline{W R}$ for character data into the row buffers.
HRTC	7	0	HORIZONTAL RETRACE: Output signal which is active during the programmed horizontal retrace interval. During this period the VSP output is high and the LTEN output is low.
VRTC	8	0	VERTICAL RETRACE: Output signal which is active during the programmed vertical retrace interval. During this period the VSP output is high and the LTEN output is low.
$\overline{\mathrm{RD}}$	9	1	READ INPUT: A control signal to read registers.
$\overline{W R}$	10	1	WRITE INPUT: A control signal to write commands into the control registers or write data into the row buffers during a DMA cycle.
NC	11		No Connection
DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7	$\begin{aligned} & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	1/O	BIDIRECTIONAL THREE-STATE DATA BUS LINES: The outputs are enable during a read of the C or P ports.
NC	38/39		No Connection
LTEN	37	0	LIGHT ENABLE: Output signal used to enable the video signal to the CRT. This output is active at the programmed underline cursor position, and at positions specified by attribute codes.
RVV	36	0	REVERSE VIDEO: Output signal used to indicate the CRT circuitry to reverse the video signal. This output is active at the cursor position if a reverse video block cursor is programmed or at the positions specified by the field attribute codes.

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
VSP	35	0	VIDEO SUPPRESSION: Output signal used to blank the video signal to the CRT. This output is active: - During the horizontal and vertical retrace intervals. - at the top and bottom lines of rows if underline is programmed to be number 8 or greater. - when an end of row or end of screen code is detected. - when a DMA underrun occurs. - at regular intervals ($1 / 16$ frames frequency for cursor, 1/32 frame frequency for character and field attributes) to create blinking displays as specified by cursor or field attribute programming.
GPA1 GPA0	$\begin{aligned} & 34 \\ & 33 \end{aligned}$	0	GENERAL-PURPOSE ATTRIBUTE CODES: Outputs which are enable by the general purpose field attribute codes.
HLGT	32	0	HIGHLIGHT: Output signal used to intensify the display at particular positions on the screen as specified by the character attribute codes or field attribute codes.
INT	31	0	INTERRUPT OUTPUT
CCLK	30	1	CHARACTER CLOCK (from dot/timing logic).
CC6 CC5 CC4 CC3 CC2 CC1 CCO	$\begin{aligned} & 29 \\ & 28 \\ & 27 \\ & 26 \\ & 25 \\ & 24 \\ & 23 \end{aligned}$	0	CHARACTER CODES: Output from the row buffers used for character selection in the character generator.
$\overline{\mathrm{CS}}$	22	1	CHIP SELECT: The read and write are enabled by $\overline{\mathrm{CS}}$.
C / \bar{P}	21	1	PORT ADDRESS: A high input on C / \bar{P} selects " C " port or command registers and a low input selects the " P " port or parameter registers.
VCC	40	-	+5V Power supply.
GND	20	-	Ground (0V)

SAB 8276 Block diagram showing counter and register functions

Functional Description

Data bus buffer

This three-state, bidirectional, 8-bit buffer is used to interface the SAB 8276 to the system data bus.
This functional block accepts inputs from the system control bus and generates control signals for overall device operation. It contains the command, parameter, and status registers that store various control formats for the device functional definition.

C / \bar{P}	Operation	Register
0	Read	Reserved
0	Write	Parameter
1	Read	STATUS
1	Write	COMMAND

$\mathrm{C} / \overline{\mathrm{P}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{CS}}$	$\overline{\mathrm{BS}}$	
0	0	1	0	1	Reserved
0	1	0	0	1	Write 8276 Parameter
1	0	1	0	1	Read 8276 Status
1	1	0	0	1	Write 8276 Command
X	1	0	1	0	Write 8276 Row Buffer
X	1	1	X	X	High Impedance
X	X	X	1	1	High Impedance

$\overline{\mathrm{RD}}$ (Read)

A "low" on this input informs the SAB 8276 that the CPU is reading data or status information from the SAB 8276.

$\overline{W R}$ (Write)

A"low" on this input informs the SAB 8276 that the CPU is writing data or control words to the SAB 8276.

$\overline{\mathbf{C S}}$ (Chip select)

A "low" on this input selects the SAB 8276. No reading or writing will occur unless the device is selected. When $\overline{\mathrm{CS}}$ is high, the data bus in the float state and $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ will have no effect on the chip.

BRDY (BUFFER READY)

A "high" on this output indicates that the SAB 8276 is ready to receive character data.

$\overline{\mathbf{B S}}$ (BUFFER SELECT)

A "low" on this input enables $\overline{W R}$ of character data to the SAB 8276 row buffers.

INT (Interrupt Output)

A "high" on this output informs the CPU that the SAB 8276 desires interrupt service.

Character counter

The character counter is a programmable counter that is used to determine the number of characters to be displayed per row and the length of the horizontal retrace interval. It is driven by the CCLK (character clock) input, which should be a derivative of the external dot clock.

Line counter

The line counter is a programmable counter that is used to determine the number of horizontal lines (sweeps) per character row. Its outputs are used to address the external character generator ROM.

Row counter

The row counter is a programmable counter that is used to determine the number of character rows to be displayed per frame and length of the vertical retrace interval.

Raster timing and video controls

The raster timing circuitry controls the timing of the HRTC (Horizontal Retrace) and VRTC (Vertical Retrace) outputs. The video control circuitry controls the generation of HGLT (highlight), RVV (reverse video), LTEN (Light enable), VSP (video suppress), and GPAO-1 (general purpose attribute) outputs.

Row buffers

The row buffers are two 80 character buffers. They are filled from the microcomputer system memory with the character codes to be displayed. While one row buffer is displaying a row of characters, the other is being filled with the next row of characters.

Buffer input/output controllers

The buffer input/output controllers decode the characters being placed in the row buffers. If the character is a character attribute, field attribute or special code, these controllers control the appropriate action (Examples: A "HIGHLIGHT" attribute will cause the Buffer Output Controller to activate the HGLT output).

System Operation

The SAB 8276 is programmable to a large number of different display formats. It provides raster timing, display row buffering, visual attribute decoding, cursor timing, and light pen detection.

It is designed to interface with standard character generator for dot matrix decoding.
Dot level must be provided by external circuitry.

SAB 8276 Block diagram showing systems operation

Raster timing

The character counter is driven by the character clock input (CCLK). It counts out the characters being displayed (programmable from 1 to 80). It then cause the line counter to increment, and it starts counting out the horizontal retrace (programmable from 2 to 32). This is constantly repeated.
The line counter is driven by the character counter. It is used to generate the line address outputs (LCO-3) for the character generator. After it counts all of the lines in a character row (programmable from 1 to 16), it increments the row counter, and starts over again. (See Character Format Section for detailed description of Line Counter functions.)

The row counter is an internal counter driven by the line counter. It controls the functions of the row buffers and counts the number of character rows displayed.
After the row counter counts all of the rows in a frame (programmable from 1 to 64), it starts counting out the vertical retrace interval (programmable from 1 to 4).

The video suppression output (VSP) is active during horizontal and vertical retrace intervals.

Dot level timing circuitry must synchronize these outputs with the video signal to the CRT display.

Interrupt timing

The SAB 8276 can be programmed to generate an interrupt request at the end of each frame.

If the SAB 8276 interrupt enable flag is set, an interrupt request will occur at the beginning of the last display row.

Beginning of interrupt request

IRQ will go inactive after the status register is read.

End of interrupt

A reset command will also cause IRQ to go inactive, but this is not recommended during normal service.
Note: Upon power-up, the SAB 8276 interrupt Enable Flag may be set. As a result, the user's cold start routine should write a reset command to the SAB 8276 before system interrupts are enabled.

Generalsystems operational description

Display characters are retrieved from memory and displayed on a row by row basis. The SAB 8276 has two row buffers. While one row buffer is being used for display, the other is being filled with the next row of characters to be displayed. The number of display characters per row and the number of character rows per frame are software programmable, providing easy interface to most CRT displays (see programming section).
The SAB 8276 uses BRDY to request data to fill the row buffer that is not being used for display. The SAB 8276 displays character rows one line at a time. The number of lines per character row, the
underline position, and blanking of top and bottom lines are programmable (see programming section).
The SAB 8276 provides special control codes which can be used to minimize overhead. It also provides visual attribute codes to cause special action on the screen without the use of the character generator (see visual attribute section).
The SAB 8276 also controls raster timing. This is done by generating horizontal retrace (HRTC) and vertical retrace (VRTC) signals. The timing of these signals is programmable.
The SAB 8276 can generate a cursor. Cursor location and format are programmable (see programming section).

Display row buffering

Before the start of a frame, the SAB 8276 uses BRDY and $\overline{\mathrm{BS}}$ to fill one row buffer with characters.

When the first horizontal sweep is started, character codes are output to the character generator from the row buffer just filled. Simultaneously, the other row buffer is filled with the next row of characters.
After all the lines of the character row are scanned, the roles of the two row buffers are reversed and the same procedure is followed for the next row.
This is repeated until all of the character rows are displayed.

Screen format

The SAB 8276 can be programmed to generate from 1 to 80 characters per row, and from 1 to 64 rows per frame.

The SAB 8276 can also be programmed to blank alternate rows. In this mode, the first row is displayed, the second blanked, the third displayed, etc. Display data is not requested for the blanked rows.

Row format

The SAB 8276 is designed to hold the line count stable while outputting the appropriate character codes during each horizontal sweep. The line count is incremented during horizontal retrace and the whole row of character codes are output again during the next sweep. This is continued until the whole character row is displayed.
The number of lines (horizontal sweeps) per character row is programmable from 1 to 16.
The output of the line counter can be programmed to be in one of two modes.
In mode 0 , the output of the line counter is the same as the line number.
In mode 1, the line counter is offset by one from the line number.
Note: In mode 1, while the first line (line number 0) is being displayed, the last count is output by line counter.

Mode 0 is useful for character generators that leave address zero blank and start at address 1 , Mode 1 is useful for character generators which start at address zero.
Underline placement is also programmable (from line number 0 to 15). This is independent of the line counter mode.
If the line number of the underline is greater than 7 (line number MSB $=1$), then the top and bottom lines will be blanked.
If the line number of the underline is less than or equal to 7 (line number $\mathrm{MSB}=0$), then the top and bottom lines will not be blanked.
If the line number underline is greater than the maximum number of lines, the underline will not appear.
Blanking is accomplished by the VSP (Video Suppression) signal. Underline is accomplished by the LTEN (light enable) signal.

Dot format

Dot width and character width are dependent upon the external timing and control circuitry.
Dot level timing circuitry should be designed to accept the parallel output of the character generator and shift it out serially at the rate required by the CRT display.
Dot width is a function of dot clock frequency.
Character width is a function of the character generator width.
Horizontal character spacing is a function of the shift register length.
Note: Video control and timing signals must be synchronized with the video signal due to the character generator access delay.

Visual Attributes and Special Codes

The characters processed by the SAB 8276 are 8 -bit quantities. The character code outputs provide the character generator with 7 bits of address. The most significant bit is the extra bit and it is used to determine if it is a normal display character ($\mathrm{MSB}=0$), or if it is a Visual Attribute or Special Code (MSB $=1$).

Special codes

Four special codes are available to help reduce memory, software or DMA overhead.
Special control character
MSB

1	1	1	1	0	
LSB					

S	S	Function
0	0	End of Row
0	1	End of Row-stop Buffer Loading
1	0	End of Screen
1	1	End of Screen-stop Buffer Loading

The end-of-row code (00) activates VSP and holds it to the end of the line.
The end-of-row Buffer Loading code (BRDY) causes the Buffer Loading control logic to stop Buffer Loading for the rest of the row when it is written into the row buffer. It affects the display in the same way as the end-of-row code (00).
The end-of-screen code (10) activates VSP and holds it to the end of the frame.
The end-of-screen-stop Buffer Loading code (BRDY) causes the Buffer Loading control logic to stop Buffer Loading for the rest of the frame when it is written into the row buffer. It affects the display in the same way as the end-of-screen code (10). If the stop Buffer Loading feature is not used, all characters after an end-of-row character are ignored, except for the end-of-screen character, which operates normally. All characters after an end-of-screen character are ignored.
Note: If a stop Buffer Loading character is not the last character in a burst or row, Buffer Loading is not stopped until after the next character is read. In the situation, a dummy character must be placed in memory after the stop Buffer Loading character.

Field attributes

The field attributes are control codes which affect the visual characteristics for a field of characters, starting at the character following the code up to, and including, the character which precedes the next field attribute code, or up to the end of the frame. The field attributes are reset during the vertical retrace interval.

There are six field attributes:

1. Blink - Characters following the code are caused to blink by activating the Video Suppression Output (VSP). The blink frequency is equal to the screen refresh frequency divided by 32 .
2. Highlight - Characters following the code are caused to be highlighted by activating the Highlight Output (HGLT).
3. Reverse Video - Characters following the code are caused to appear with reverse video by activating the Reverse Video Output (RVV).
4. Underline - Characters following the code are caused to be underlined by activating the Light Enable Output (LTEN).
5, 6. General Purpose - There are two additional SAB 8276 outputs which act as general purpose, independently programmable field attributes. GPA0-1 are active high outputs.

Field attribute code

* More than one attribute can be enabled at the same time. If the blinking and reverse video attributes are enabled simultaneously, only the reversed characters will blink.

Cursor timing

The cursor location is determined by a cursor row register and a character position register which are located by command to the controller. The cursor can be programmed to appear on the display as:

1. a blinking underline
2. a blinking reverse video block
3. a non-blinking underline
4. a non-blinking reverse video block

The cursor blinking frequency is equal to the screen refresh frequency divided by 16.
If a non-blinking reverse video cursor appears in a non-blinking reverse video field, the cursor will appear as a normal video block.
If a non-blinking underline cursor appears in a nonblinking underline field, the cursor will not be visible.

Device programming

The SAB 8276 has two programming registers, the command register and the parameter register. It also has a status register. The command register can only be written into and the Status registers can only be read from. They are addressed as follows:

A_{0}	operation	register
0	Read	Reserved
0	Write	Parameter
1	Read	Status
1	Write	Command

The SAB 8276 expects to receive a command and a sequence of 0 to 4 parameters, depending on the command. If the proper number of parameter bytes are not received before another command is given, a status flag is set, indicating an improper command.

Instruction Set

The SAB 8276 instruction set consists of 7 commands.

Command	No. of parameter bytes
Reset	4
Start Display	0
Stop Display	0
Load Cursor	2
Enable Interrupt	0
Disable Interrupt	0
Preset Counters	0

In addition, the status of the SAB 8276 can be read by the CPU at any time.

1 Reset command

	Operation	C// \bar{P}	Description	Data bus							
											B
Command	Write	1	Reset command	0	0	0	0	0	0	0	0
Parameters	Write	0	Screen comp Byte 1	S	H	H	H	H	H	H	H
	Write	0	Screen comp Byte 2	V	V	R	R	R	R	R	R
	Write	0	Screen comp Byte 3	U	U	U	U	L	L		L
	Write	0	Screen comp Byte 4	M	1	C	C	z	z		z

Action - After the reset command is written, BRDY goes inactive, SAB 8276 interrupts are disabled, and the VSP output is used to blank the screen. HRTC and VRTC continue to run. HRTC and VRTC timing are random on power-up. As parameters are written, the screen composition is defined.

Parameter-S Spaced rows

S	Functions
0	Normal rows
1	Spaced rows

Parameter-HHHHHHH Horizontal characters/row

H	No. of characters per row						
0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	2
0	0	0	0	0	1	0	3
			.			.	
			\cdot				.
1	0	0	1	1	1	1	.
1	0	1	0	0	0	0	80
			\cdot			Undefined	
			\cdot				\cdot
1	1	1	1	1	1	1	\cdot

Parameter - VV Vertical retrace row count

V	V	No. of row counts per VRTC
0	0	1
0	1	2
1	0	3
1	1	4

Parameter - RRRRRR						Vertical rows/frame	
R	R	R	R	R	R	No. of rows/frame	
0	0	0	0	0	0	1	
0	0	0	0	0	1	2	
0	0	0	0	1	0	3	
			.			\cdot	
		\cdot			.		
1	1	1	1	1	1	.	

Parameter-UUUU				Underline placement
U	U	U	U	Line number of underline
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
	.		\cdot	
	\cdot		\cdot	
1	1	1	1	16

Note: uuuu MSB determines blanking of top and bottom lines ($1=$ blanked, $0=$ not blanked).

Parameter-LLLL Number of lines per character row

L	L	L	L	No. of lines/row
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
	.		.	
	.		.	
1	1	1	1	.

Parameter-M Line counter mode

M	Line counter mode
0	Mode 0 (non-offset)
1	Mode 1 (offset by 1 count)

Parameter-ZZZZ Horizontal retrace count

Z	Z	Z	Z	No. of character counts per HRTC
0	0	0	0	2
0	0	0	1	4
0	0	1	0	6
	.		.	
	\cdot		.	
1	1	1	1	.

Parameter - CC Cursor format

C	C	Cursor format
0	0	Blinking reverse video block
0	1	Blinking underline
1	0	Nonblinking reverse video block
1	1	Nonblinking underline

2 Start display command

						Data bus					
	Operation	C/ $/ \bar{P}$	Description		MSB				LSB		
Command	Write	1	Start display		0	0	1	0	0	0	0

Action - SAB 8276 interrupts are enabled, DMA requests begin, video is enabled, interrupt enable and video enable status flags are set.

3 Stop display command

						Data bus					
	Operation	C/ $/ \overline{\mathrm{P}}$	Description		MSB				LSB		
Command	Write	1	Stop display		0	1	0	0	0	0	0
No parameters											

Action - Disables video, interrupts remain enabled. HRTC and VRTC continue to run, video enable status flag is reset, and the "Start display" command must be given to re-enable the display.

4 Load cursor position

				Data bus							
	Operation	$C \bar{P}$	Description	MSB			LSB				
Command	Write	1	Load cursor	1	0	0	0	0	0	0	0
	Write	0	Char. number	(Char. position in row) Parameters	Rrite	0	Row number				

Action - The SAB 8276 is conditioned to place, the next two parameter bytes into the cursor position registers. Status flags not affected.

5 Enable interrupt command

							Data bus			
	Operation	C/ \bar{P}	Description		MSB				LSB	
Command	Write	1	Enable interrupt	1	0	1	0	0	0	0

Action - The interrupt enable status flag is set and interrupts are enabled.

6 Disable interrupt command

							Data bus				
	Operation	C/ $\overline{\mathrm{P}}$	Description	MSB							
Command	Write	1	Disable interrupt	1	1	0	0	0	0	0	0
No parameters											

Action - Interrupts are disabled and the interrupt enable status flag is reset.

7 Preset counters command

							Data bus				
	Operation	C/ \bar{P}	Description		MSB					LSB	
Command	Write	1	Preset counters	1	1	1	0	0	0	0	0
No parameters											

Action - The internal timing counters are preset, corresponding to a screen display position at the top left corner. Two character clocks are required for this operation. The counters will remain in this state until any other command is given.
This command is useful for system debug and synchronization of clustered CRT displays on a single CPU. After this command, two additional clock cycles are required before the first character of the first row is put out.

Status flags

| | Operation | C/ \bar{P} | Description | MSB | Data bus |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Command | Read | 1 | Status
 word | 0 IE IR X IC VE BU | \times |

IE - (Interrupt Enable) Set or reset by command. It enables vertical retrace interrupt. It is automatically set by a "Start Display" command reset with the "Reset" command.
IR - (Interrupt Request) This flag is set at the beginning of display of the last row of the frame if the interrupt enable flag is set. It is reset after a status read operation.
IC - (Improper Command) This flag is set when a command parameter string is too long or too short. The flag is automatically reset after a status read.

VE - (Video Enable) This flag indicates that video operation of the CRT is enabled. This flag is set on a "Start Display" command, and reset on a "Stop Display" or "Reset" command.
BU - (Buffer Underrun) This flag is set whenever a Row Buffer is not filled with character data in time for buffer swap required by the display. Upon activation of this bit, buffer loading ceases, and the screen is blanked until after the vertical retrace interval.

Absolute Maximum Ratings ${ }^{1)}$

Temperature under bias
Storage temperature
All output ans supply and supply voltages
All input voltages
Power dissipation

0 to $+70^{\circ} \mathrm{C}$
-65 to $+150^{\circ} \mathrm{C}$
-0.5 to +7 V
-0.5 to +5.5 V
1.0 W

D.C. Characteristics

(TA $=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$)

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
VIL	Input low voltage	-0.5	0.8	V	-
VIH	Input high voltage	2.0	$\mathrm{VCC}+0.5 \mathrm{~V}$		
VOL	Output low voltage	-	0.45		$\mathrm{IOL}=2.2 \mathrm{~mA}$
VOH	Output high voltage	2.4	-		$1 \mathrm{OH}=-400 \mu \mathrm{~A}$
IIL	Input load current	-	± 10	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VCC}$ to 0 V
IOFL	Output float leakage				$\mathrm{VOUT}=\mathrm{VCC}$ to 0.45 V
ICC	VCC supply current		160	mA	-

Capacitance

$\left(\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{VCC}=\mathrm{GND}=0 \mathrm{~V}\right)$

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		fc $=1 \mathrm{MHz}$
CIN	Input capacitance		10	pF	Unmeasured pins returned to GND
CI / O	I/O capacitance		20		

1) Stresses above those listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

A.C. Characteristics (SAB 8276)

$\left(T A=0\right.$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, G N D=0 \mathrm{~V}$)

Clock timing

Symbol	Parameter	Limit values		Units	Test condition
		Min.	Max.		
TCLK	Clock period	480			
TKH	Clock high	240	-		
TKL	Clock low	160			
TKR	Clock rise	5	30		
TKF	Clock fall				

Bus parameters

Read cycle

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TAR	Address stable before READ	0			
TRA	Address hold time for READ				
TRR	READ pulse width				
TRD	Data delay from READ				
TDF	READ to data floating			200	

Write cycle

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TAW	Address stable before WRITE	0			
TWA	Address hold time for WRITE				
TWW	WRITE pulse width	250	-	ns	-
TDW	Data setting time for WRITE	150			

Other timings

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TCC	Character code output delay	-	150	ns	$\mathrm{CL}=50 \mathrm{pF}$
THR	Horizontal retrace output delay		200		
TLC	Line count output delay		400		
TAT	Control-attribute output delay		275		
TVR	Vertical retrace output delay				
TRI	INT \downarrow from RD \uparrow		250		
TWQ	BRDY \uparrow from WR \uparrow				
TRQ	BRDY \downarrow from WR \downarrow		200		
TLR	$\overline{\mathrm{BS}} \downarrow$ to $\mathrm{WR} \downarrow$	0	-		-
TRL	$\mathrm{WR} \uparrow$ to $\overline{\mathrm{BS}} \uparrow$				

A.C. Characteristics (SAB 8276-2)

$\left(T A=0 \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%, G N D=0 \mathrm{~V}$)
Clock timing

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TCLK	Clock period	320			
TKH	Clock high	120	-		
TKL	Clock low	5	$n s$	-	
TKR	Clock rise				
TKF	Clock fall				

Bus parameters

Read cycle

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TAR	Address stable before READ	0	-	ns	-
TRA	Address hold time for READ				
TRR	READ pulse width	250			
TRD	Data delay from READ	-	200		$C L=150 \mathrm{pF}$
TDF	READ to data floating		100		

Write cycle

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TAW	Address stable before WRITE	0			
TWA	Address hold time for WRITE				
TWW	WRITE pulse width	250	-	ns	-
TDW	Data setting time for WRITE	150			
TWD	Data hold time for WRITE	0			

Other timings

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
TCC	Character code output delay	-	150	ns	$C L=50 \mathrm{pF}$
THR	Horizontal retrace output delay				
TLC	Line count output delay		250		
TAT	Control-attribute output delay				
TVR	Vertical retrace output delay				
TRI	$\mathrm{INT} \downarrow$ from RD \uparrow				
TWQ	BRDY \uparrow from $\mathrm{WR} \uparrow$				
TRQ	BRDY \downarrow from WR \downarrow		200		
TLR	$\overline{\mathrm{BS}} \uparrow$ to $\mathrm{WR} \downarrow$	0	-		-
TRL	$\mathrm{WR} \uparrow$ to $\overline{\mathrm{BS}} \uparrow$				

A.C. Testing input/output

AC Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

A.C. Testing load circuit

CL Includes وוل Capacitance

Waveforms

Typical dot level timing
өк т кк ЛЛЛЛЛЛЛЛЛЛЛЛЛЛЛ

* CCLK is a Multiple of the Dot Clock and an Input to the SAB 8276

Line timing

Frame timing

Interrupt timing

Timing for Buffer Loading

Write timing

Read timing

Clock timing

SAB 8282A/SAB 8283A Octal Latch

- Fully compatible with SAB 8282/SAB 8283
- 40% Less Power Supply Current than Standard SAB 8282/SAB 8283
- Address Latch for

SAB 80286, SAB 80186, SAB 8086, SAB 8085,
SAB 8048 and SAB 8051 Families

- High Output Drive Capability for Driving System Data Bus
- Fully Parallel 8-Bit Data Register and Buffer
- No Output Low Noise when Entering or Leaving High Impedance State
- 3-State Outputs
- Transparent during Active Strobe
- 20-Pin Package

The SAB 8282A and SAB 8283A are 8-bit bipolar latches with 3-state output buffers. They can be used to implement latches, buffers, or multiplexers. The SAB 8283A inverts the input data at its outputs while the SAB 8282A does not.

Thus, all of the principal peripheral and input/output functions of a microcomputer system can be implemented with these devices. This device is fabricated in a fast bipolar ASBC (Advanced Standard Buried Collector) process of Siemens.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Function
STB	11	I	STROBE - STB is an input control pulse used to strobe data at the data input pins $\left(A_{0}-A_{7}\right)$ into the data latches. This signal is active HIGH to admit input data. The data is latched at the HIGH to LOW transition of STB.
$\overline{O E}$	9	I	OUTPUT ENABLE- $\overline{O E}$ is an input control signal which when active LOW enables the contents of the data latches onto the data output pin ($\mathrm{DO}_{0}-\mathrm{DO}_{7}$ or $\overline{\mathrm{DO}_{0}}-\overline{\mathrm{DO}_{7}}$). $\overline{\mathrm{OE}}$ being inactive HIGH forces the output buffers to their high impedance state.
$\mathrm{DI}_{0}-\mathrm{DI}_{7}$	1-8	I	DATA INPUT PINS - Data presented at these pins satisfying setup time requirements when STB is strobed and latched into the data input latches.
$\begin{aligned} & \mathrm{DO}_{0}-\mathrm{DO}_{7} \\ & (\mathrm{SAB} 8282 \mathrm{~A}) \\ & \mathrm{SO}_{\sigma}-\mathrm{DO}_{7} \\ & (\mathrm{SAB} 8283 \mathrm{~A}) \end{aligned}$	12-19	0	DATA OUTPUT PINS - When $\overline{O E}$ is true, the data in the data latches is presented as inverted (SAB 8283A) or non-inverted (SAB 8282A) data onto the data output pins.
$V_{\text {cc }}$	20	-	Power Supply (+5 V)
GND	10	-	Ground (0V)

Functional Description

The SAB 8282A and SAB 8283A octal latches are 8 -bit latches with 3 -state output buffers. Data having satisfied the setup time requirements is latched into the data latches by strobing the STB line HIGH to LOW. Holding the STB line in its active HIGH state makes the latches appear transparent.

Data is presented to the data output pins by activating the $\overline{O E}$ input line. When $\overline{O E}$ is inactive HIGH the output buffers are in their high impedance state. Enabling or disabling the output buffers will not cause negative-going transients to appear on the data output bus.

Absolute Maximum Ratings ${ }^{1)}$

Temperature Under Bias
Storage Temperature
All Output and Supply Voltages
All Input Voltages
Power Dissipation

$$
\begin{aligned}
& 0 \text { to }+70^{\circ} \mathrm{C} \\
& -65 \text { to }+150^{\circ} \mathrm{C} \\
& -0.5 \text { to }+7 \mathrm{~V} \\
& -1.0 \text { to }+5.5 \mathrm{~V} \\
& 1 \mathrm{~W}
\end{aligned}
$$

D. C. Characteristics

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
V_{C}	Input Clamp Voltage	-	-1	V	$I_{C}=-5 \mathrm{~mA}$
$I_{\text {cc }}$	Power Supply Current SAB 8282A SAB 8283A		$\begin{aligned} & 100 \\ & 90 \end{aligned}$	mA	all outputs open
$I_{\text {F }}$	Forward Input Current		-0.2		$V_{F}=0.45 \mathrm{~V}$
$I_{\text {R }}$	Reverse Input Current	-	50	$\mu \mathrm{A}$	$V_{\mathrm{R}}=5.25 \mathrm{~V}$
$V_{\text {OL }}$	Output LOW Voltage		0.45	V	$I_{\text {OL }}=32 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	2.4	-		$I_{\text {OH }}=-5 \mathrm{~mA}$
$I_{\text {OFF }}$	Output Off Current	-	± 50	$\mu \mathrm{A}$	$V_{\text {OFF }}=0.45$ to 5.25 V
$V_{\text {LL }}$	Input LOW Voltage		0.8	V	$V_{C C}=5.0 \mathrm{~V}^{2)}$
$\underline{V_{\text {IH }}}$	Input HIGH Voltage	2.0	-		
$C_{\text {IN }}$	Input Capacitance	-	12	pF	$\begin{aligned} & F=1 \mathrm{MHz} \\ & V_{B A A S}=2.5 \mathrm{~V}, V_{C C}=5 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$

[^36]2) Output Loading: $I_{\mathrm{OL}}=32 \mathrm{~mA} ; I_{\mathrm{OH}}=-5 \mathrm{~mA}$; $C_{\mathrm{L}}=300 \mathrm{pF}$

A.C. Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 10 \%$

Loading

Outputs: $I_{\mathrm{OL}}=32 \mathrm{~mA} ; I_{\mathrm{OH}}=-5 \mathrm{~mA} ; \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
$t_{\text {IVOV }}$	Input to Output Delay - Inverting -Non-Inverting	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 22 \\ & 30 \\ & \hline \end{aligned}$	ns	2)
$t_{\text {SHOV }}$	STB to Output Delay - Inverting -Non-Inverting	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 40 \\ 45 \\ \hline \end{array}$		
$t_{\text {EHOZ }}$	Output Disable Time	5	18		
$t_{\text {ELOV }}$	Output Enable Time	10	30		
$t_{\text {IVSL }}$	Input to STB Setup Time	0	-		
$t_{\text {SLIX }}$	Input to STB Hold Time	25			
$t_{\text {SHSL }}$	STB HIGH Time	15			
$t_{\text {LIL }}, t_{\text {OLOH }}$	Input, Output Rise Time	-	20		From 0.8 to 2.0 V
$t_{\text {IHIL }} t_{\text {OHOL }}$	Input, Output Fall Time		12		From 2.0 to 0.8 V

A.C. Testing Input, Output Waveform

Input/Output

A.C. Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 1.5 V for both a logic " 1 " and " 0 ".

Waveforms

All timing measurements are made at 1.5 V unless otherwise noted.

1) SAB 8283A Only - Output may be momentarily invalid following the high going STB transition.
2) See waveforms and test load circuit.

Output Test Load Circuits

Output Delay vs. Capacitance

SAB 8284B, SAB 8284B-1 Clock Generator and Driver for SAB 8086 Family Processors

- Fully compatible with

SAB 8284A, SAB 8284A-1

- 30% Less Power Supply Current than Standard SAB 8284A, SAB 8284A-1
- Generates the System clock for SAB 8086 and SAB 8088. Processors:
up to 8 MHz with SAB 8284B
up to 10 MHz with SAB 8284B-1
- Uses a Crystal or a TTL Signal for Frequency Source up to 30 MHz
- Provides Synchronization for Synchronous and Asynchronous READY Signals
- 18-Pin Package
- Single +5 V Power Supply
- Generates System Reset Output from Schmitt Trigger Input
- Capable of Clock Synchronization with Other SAB 8284Bs

SAB 8284B is a bipolar clock generator/driver designed to provide clock signals for SAB 8086 and SAB 8088 processors and peripherals. It also contains READY logic for operation with two bus systems and provides the processors required

READY synchronization and timing. Reset logic with hysteresis and synchronization is also provided. This device is fabricated in a fast bipolar ASBC (Advanced Standard Buried Collector) process of Siemens.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Function
$\overline{\overline{\mathrm{AEN}}} \overline{\mathrm{AEN}}$	3, 7	1	ADDRESS ENABLE. $\overline{A E N}$ is an active LOW signal. $\overline{A E N}$ serves to qualify its respective Bus Ready Signal (RDY, or RDY ${ }_{2}$). AEN N_{1} validates RDY ${ }_{1}$ while $\overline{A E N_{2}}$ validates RDY 2 . Two AEN signal inputs are useful in system configurations which permit the processor to access two Multi-Master System Busses. In non Multi-Master configurations the $\overline{A E N}$ signal inputs are tied true (LOW).
$\begin{aligned} & \mathrm{RDY}_{1}, \\ & \mathrm{RDY}_{2} \end{aligned}$	4, 6	1	BUS READY (Transfer Complete). RDY is an active HIGH signal which is an indication from a device located on the system data bus that data has been received, or is available. RDY1 is qualified by $\overline{\operatorname{AEN}}_{1}$ while RDY2 is qualified by $\overline{\mathrm{AEN}}_{2}$.
$\overline{\text { ASYNC }}$	15	1	READY SYNCHRONIZATION SELECT. $\overline{A S Y N C}$ is an input which defines the synchronization mode of the READY logic. When ASYNC is low, two stages of READY synchronization are provided. When ASYNC is left open or HIGH a single stage of READY synchronization is provided.
READY	5	0	READY. READY is an active HIGH signal which is the synchronized RDY signal input. READY is cleared after the guaranteed hold time to the processor has been met.
$\mathrm{X}_{1}, \mathrm{X}_{2}$	16, 17	1	CRYSTALIN. X_{1} and X_{2} are the pins to which a crystal is attached. The crystal frequency is 3 times the desired processor clock frequency.
$\mathrm{F} / \overline{\mathrm{C}}$	13	1	FREQUENCY/CRYSTAL SELECT. F/ $\overline{\mathrm{C}}$ is a strapping option. When strapped LOW, $\mathrm{F} / \overline{\mathrm{C}}$ permits the processors clock to be generated by the crystal. When F/C is strapped HIGH, CLK is generated from the EFI input.
EFI	14	1	EXTERNAL FREQUENCY IN. When $F / \overline{\mathrm{C}}$ is strapped HIGH , CLK is generated from the input frequency appearing on this pin. The input signal is a square wave 3 times the frequency of the desired CLK output.
CLK	8	0	PROCESSOR CLOCK. CLK is the clock output used by the processor and all devices which directly connect to the processor's local bus (i.e., the bipolar support chips and other MOS devices). CLK has an output frequency which is $1 / 3$ of the crystal or EFI input frequency and a $1 / 3$ duty cycle. An output HIGH of 4.5 volts $\left(V_{C C}=5 \mathrm{~V}\right)$ is provided on this pin to drive MOS devices.
PCLK	2	0	PERIPHERAL CLOCK. PCLK is a TTL level peripheral clock signal whose output frequency is $1 / 2$ that of CLK and has 50% duty cycle.
OSC	12	0	OSCILLATOR OUTPUT. OSC is the TTL level output of the internal oscillator circuitry. Its frequency is equal to that of the crystal.
$\overline{\text { RES }}$	11	1	RESET IN. $\overline{R E S}$ is an active LOW signal which is used to generate RESET. The SAB 8284B provides a Schmitt trigger input so that an RC connection can be used to establish the power-up reset of proper duration.

Symbol	Number	Input (I) Output (O)	Function
RESET	10	0	RESET. RESET is an active HIGH signal which is used to reset the SAB 8086 family processors. Its timing characteristics are determined by RES.
CSYNC	1	1	CLOCK SYNCHRONIZATION. CSYNC is an active HIGH signal which allows multiple SAB 8284B to be synchronized to provide clocks that are in phase. When CSYNC is HIGH the internal counters are reset. When CSYNC goes LOW the internal counters are allowed to resume counting. CSYNC needs to be externally synchronized to EFI. When using the internal oscillator CSYNC should be hard-wired to ground.
$V_{C C}$	18	-	Power Supply (+5V)
GND	9	-	Ground (OV)

Figure 2
Block Diagram

Functional Description

General

The SAB 8248B is a single chip block generator/ driver for SAB 8086 and SAB 8088 processors. The chip contains a crystal-controlled oscillator, a divide-by-three counter, "Ready" synchronization and reset logic. Refer to Figure 2 for "Block Diagram" and Figure 1 for "Pin Configuration".

Oscillator

The oscillator circuit of the SAB 8284B is designed primarily for use with an external series resonant fundamental mode crystal from which the basic operating frequency is derived.

The crystal frequency should be selected at three times the required CPU clock. X1 and X2 are the two crystal input crystal connections. For the most stable operation of the oscillator (OSC) output circuit, two series resistors ($\mathrm{R}_{1}=\mathrm{R}_{2}=510 \Omega$) as shown in figure 7 are recommended. The output of the oscillator is buffered and brought out on OSC so that other system timing signals can be derived from this stable, crystal-controlled source.

It is advisable to limit stray capacitances to less than 10 pF on X 1 and X 2 to minimize deviation from operating at the fundamental frequency.

Clock Generator

The clock generator consists of a synchronous divide-by-three counter with a special clear input that inhibits the counting. This clear input (CSYNC) allows the output clock to be synchronized with an external event (such as another SAB 8284B clock). It is necessary to synchronize the CSYNC input to the EFI clock external to the SAB 8284B. This is accomplished with two Schottky flip-flops (see figure 3). The counter output is a 33% duty cycle clock at one-third the input frequency.

The F / \bar{C} input is a strapping pin that selects either the crystal oscillator or the EFI input as the clock for the $\div 3$ counter. If the EFI input is selected as the clock source, the oscillator section can be used independently for another clock source. Output is taken from OSC.

Clock Outputs

The CLK output is a 33% duty cycle MOS clock driver designed to drive the SAB 8086 and SAB 8088 processors directly. PCLK is a TTL level peripheral clock signal whose output frequency is $1 / 2$ that of CLK. PCLK has 50% duty cycle.

Reset Logic

The reset logic provides a Schmitt trigger input ($\overline{\mathrm{RES}}$) and a synchronizing flip-flop to generate the reset timing. The reset signal is synchronized to the falling edge of CLK. A simple RC network can be used to provide power-on reset by utilizing this function of the SAB 8284B. Waveforms for clocks and reset signals are illustrated in Figure 4.

READY Synchronization

Two READY inputs (RDY,$R_{1} Y_{2}$) are provided to accomodate two Multi-Master system busses. Each input has a qualifier ($\overline{\mathrm{AEN}}{ }_{1}$ and $\overline{\mathrm{AEN}}{ }_{2}$, respectively).

The $\overline{\mathrm{AEN}}$ signals validate their respective RDY signals. If a Multi-Master system is not being used the $\overline{A E N}$ pin should be tied LOW.
Synchronization is required for all asynchronous active going edges of either RDY input to guarantee that the RDY setup and hold times are met. Inactivegoing edges of RDY in normally ready systems do not require synchronization but must satisfy RDY setup and hold as a matter of proper system design.
The $\overline{A S Y N C}$ input defines two modes of READY synchronization operation.
When $\overline{\text { ASYNC }}$ is LOW, two stages of synchronization are provided for active READY input signals. Positive-going asynchronous READY inputs will first be synchronized to flip-flop one at the rising edge of CLK (requiring a setup time $t_{\text {R1vCH }}$) and then synchronized to flip-flop two at the next falling edge of CLK, after which time the READY
output will go active (HIGH). Negative-going asynchronous READY inputs will be synchronized directly to flip-flop two at the falling edge of CLK, after which time the READY output will go inactive. This mode of operation is intended for use by asynchronous (normally not ready) devices in the system which cannot be guaranteed by design to meet the required RDY setup timing, $t_{\text {Rivcl, }}$ on each bus cycle (Refer to Figure 5).
When $\overline{\text { ASYNC }}$ is high or left open, the first READY flip-flop is bypassed in the READY synchronization logic. READY inputs are synchronized by flip-flop two on the falling edge of CLK before they are presented to the processor. This mode is available for synchronous devices that can be guaranteed to meet the required RDY time (Refer to Figure 6).
$\overline{\text { ASYNC can be changed on every bus cycle to select }}$ the appropriate mode of synchronization for each device in the system.

Figure 3
CSYNC Synchronization

Absolute maximum ratings ${ }^{11}$

Temperature Under Bias
Storage Temperature
All Output and Supply Voltages
All Input Voltages
Power Dissipation

0 to $70^{\circ} \mathrm{C}$
-65 to $150^{\circ} \mathrm{C}$
-0.5 to 7 V
-1.0 to 5.5 V
1W

D.C. Characteristics

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit Values		Unit	Test Condition
		Min.	Max.		
$I_{\text {F }}$	Forward Input Current ($\overline{\mathrm{ASYNC}})$ Other Inputs	-	$\begin{aligned} & -1.3 \\ & -0.5 \end{aligned}$	mA	$\begin{aligned} & V_{F}=0.45 \mathrm{~V} \\ & V_{F}=0.45 \mathrm{~V} \end{aligned}$
$I_{\text {R }}$	Reverse Input Current ($\overline{\mathrm{ASYNC}}$) Other Inputs		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$	$\begin{aligned} & V_{R}=V_{C C} \\ & V_{R}=5.25 \mathrm{~V} \end{aligned}$
V_{C}	Input Forward Clamp Voltage		-1.0	V	$I_{\mathrm{C}}=-5 \mathrm{~mA}$
$I_{\text {cC }}$	Power Supply Current		110	mA	All outputs open
$V_{\text {IL }}$	Input LOW Voltage		0.8	V	-
$V_{\text {IH }}$	Input HIGH Voltage	2.0	-		
$V_{\text {IHR }}$	Reset Input HIGH Voltage	2.6			
$V_{\text {OL }}$	Output LOW Voltage	-	0.45		5 mA
V_{OH}	Output HIGH Voltage CLK Other Outputs	$\begin{aligned} & 4 \\ & 2.4 \end{aligned}$	-		$\begin{aligned} & -1 \mathrm{~mA} \\ & -1 \mathrm{~mA} \end{aligned}$
$\underline{V_{\text {IHR }}-V_{\text {ILR }}}$	$\overline{\mathrm{RES}}$ Input Hysteresis	0.25			-

${ }^{1}$) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

A.C. Characteristics

$T_{A}=0$ to $+70^{\circ} \mathrm{C} ; V_{C C}=+5 \mathrm{~V} \pm 10 \%$

Timing Requirements

Symbol	Parameter	Limit Values		Unit	Test Condition
		Min.	Max.		
$t_{\text {EHEL }}$	External Frequency HIGH Time	13	-	ns	90\%-90\% VIN
$t_{\text {ELEH }}$	External Frequency LOW Time				$10 \%-10 \% V_{\text {IN }}$
$t_{\text {Elel }}$	EFI Period	$\begin{aligned} & t_{\text {EHEL }}+ \\ & t_{\text {ELEH }}+\delta \end{aligned}$			${ }^{3}$)
	XTAL Frequency	12	25^{7})	M Hz	-
$t_{\text {R1VCL }}$	RDY ${ }_{1}, \mathrm{RDY}_{2}$ Active Setup to CLK	35	-	ns	$\overline{\text { ASYNC }}=\mathrm{HIGH}$
$t_{\text {RivCH }}$	RDY 1_{1}, RDY $_{2}$ Active Setup to CLK				$\overline{\text { ASYNC }}=$ LOW
$t_{\text {RIVCL }}$	RDY ${ }_{1}, \mathrm{RDY}_{2}$ Inactive Setup to CLK				
$t_{\text {CLR1X }}$	RDY ${ }_{1}$, RDY $_{2}$ Hold to CLK	0			
$t_{\text {AYVCL }}$	ASYNC Setup to CLK	50			
$t_{\text {CLAYX }}$	$\overline{\text { ASYNC Hold to CLK }}$	0			
$t_{\text {AlvRIV }}$	$\overline{\mathrm{AEN}}{ }_{1}, \overline{\mathrm{AEN}}_{2}$ Setup to RDY ${ }_{1}, \mathrm{RDY}_{2}$	15			-
$t_{\text {cla } 1 \mathrm{X}}$	$\overline{\mathrm{AEN}_{1}}, \overline{\mathrm{AEN}}$ 2 Hold to CLK	0			
$t_{\text {YHEH }}$	CSYNC Setup to EFI	20			
$t_{\text {EHYL }}$	CSYNC Hold to EFI	10			
$t_{\text {YHYL }}$	CSYNC Width	$2 \cdot t_{\text {ELEL }}$			
$t_{11 \mathrm{HCL}}$	$\overline{\text { RES S Stup to CLK }}$	65			${ }^{4}$)
$t_{\text {CLIIH }}$	$\overline{\mathrm{RES}}$ Hold to CLK	20			
$t_{\underline{\text { IUH }}}$	Input Rise Time	-	20		From 0.8 V to 2.0 V
$t_{\text {IIIL }}$	Input Fall Time		12		From 2.0 V to 0.8 V

Notes see next page.

Timing Responses

Symbol	Parameter	Limit Values		Unit	Test Condition
		Min.	Max.		
$t_{\text {clcl }}$	CLK Cycle Period	100	-	ns	-
$t_{\text {chCL }}$	CLK HIGH Time	$\left.{ }^{1}\right)$			Fig. 7 \& Fig. 8
$t_{\text {cleh }}$	CLK LOW Time	${ }^{2}$)			Fig. 7 \& Fig. 8
$t_{\mathrm{CH}_{1} \mathrm{CH} 2}$ $t_{\mathrm{CL} 2 \mathrm{CL} 1}$	CLK Rise or Fall Time	-	10		1.0 V to 3.5 V
$t_{\text {PHPL }}$	PCLK HIGH Time	$t_{\text {clcl }}-20$			-
$t_{\text {PLPH }}$	PCLK LOW Time	$t_{\text {CLCL }}-20$			
$t_{\text {RYLCL }}$	Ready Inactive to CLK ${ }^{6}$)	-8			Fig. 9 \& Fig. 10
$t_{\text {RYHCH }}$	Ready Active to CLK ${ }^{5}$)	${ }^{2}$)			Fig. 9 \& Fig. 10
$t_{\text {CLIL }}$	CLK to Reset Delay		40		
$t_{\text {CLPH }}$	CLK to PCLK HIGH Delay	-			
$t_{\text {CLPL }}$	CLK to PCLK LOW Delay		22		-
$t_{\text {OLCH }}$	OSC to CLK HIGH Delay	-5			
$t_{\text {OLCL }}$	OSC to CLK LOW Delay	2	35		
$t_{\text {OLOH }}$	Output Rise Time (except CLK)	-	20		From 0.8 V to 2.0 V
$t_{\text {OHOL }}$	Output Fall Time (except CLK)		12		From 2.0 V to 0.8 V

$\left.{ }^{1}\right)\left(1 / 3 t_{\text {CLCL }}\right)+2$ for CLK Freq. $\leqslant 8 \mathrm{MHz}$
$\left(1 / 3 t_{\mathrm{CLCL}}\right)+6$ for CLK Freq. $=10 \mathrm{MHz}$
${ }^{2}$) $\left(2 / 3 t_{\text {CLCL }}\right)-15$ for CLK Freq. $\leqslant 8 \mathrm{MHz}$ $\left(2 / 3 t_{\text {CLCL }}\right)-14$ for CLK Freq. $=10 \mathrm{MHZ}$
${ }^{3}$) $\delta=\mathrm{EFI}$ rise (5 ns max) +EFI fall (5 ns max).
${ }^{4}$) Setup and hold necessary only to guarantee recognition at next clock.
${ }^{5}$) Applies only to T_{3} and T_{W} states.
${ }^{6}$) Applies only to T_{2} states.
${ }^{7}$) 30 MHz for $\mathrm{SAB} 8284 \mathrm{~B}-1$

A.C. Testing

Input/Output Waveform

A.C. Testing: Input are driven at 2.4 V for a Logic " 1 " and 0.45 V for a Logic " 0 ". Timing Measurements are made at 1.5 V for Both a Logic " 1 " and " 0 ".

Load Circuit

$C_{L}=100 \mathrm{pF}$ for CLK
$C_{L}=30 \mathrm{pF}$ for READY

Waveforms

Figure 4
Clocks and Reset Signals

Note All timing measurements are made at 15 V .unless otherwise noted

Figure 5
Ready Signals - Asynchronous Devices

Figure 6
Ready Signals - Synchronous Devices

Testconditions

Figure 7
Clock High- and Low Time; Using X1, X2

$R 1=R 2=510 \Omega$

Figure 8
Clock High- and Low Time; Using EFI

1) $C_{L}=100 \mathrm{pF}$

Figure 9

$R 1=R 2=510 \Omega$

Figure 10
Ready to Clock - Using EFI

${ }^{11} \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
${ }^{2)} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$

SAB 8286A/SAB 8287A Octal Bus Transceiver

- Fully compatible with SAB 8286/SAB 8287
- 40\% Less Power Supply Current than Standard SAB 8286/SAB 8287
- Data Bus Buffer'Driver for SAB 80286, SAB 80186, SAB 8086, SAB 8085, SAB 8048 and SAB 8051 Families
- Fully Parallel 8-Bit Transceivers
- 3-State Outputs
- 20-Pin Package
- No Output Low Noise when Entering or Leaving High Impedance State
- High Output Drive Capability for Driving System Data Bus

The SAB 8286A and SAB 8287A are 8-bit bipolar transceivers with 3-state outputs. The SAB 8287A inverts the input data at its outputs while the SAB 8286A does not. Thus, a wide variety of applications for
buffering in microcomputer systems can be met. This device is fabricated in a fast bipolar ASBC (Advanced Standard Buried Collector) process of Siemens.

Logic Diagrams

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Function
T	11	I	TRANSMIT - T is an input control signal used to control the direction of the transceivers. When HIGH, it configures the transceiver's $B_{0}-B_{7}$ as outputs with $A_{0}-A_{7}$ as inputs. T LOW configures A_{0-7} as the outputs with $B_{0}-B_{7}$ serving as the inputs.
$\overline{\mathrm{OE}}$	9	I	OUTTPUT ENABLE - $\overline{O E}$ is an input control signal used to enable the appropriate output driver (as selected by T) onto its respective bus. This signal is active LOW.
$A_{0}-A_{7}$	1-8	I/O	LOCAL BUS DATA PINS - These pins serve to either present data to or accept data from the processor's local bus depending upon the state of the T pin.
$\begin{aligned} & B_{0}-B_{7} \\ & (\mathrm{SAB} 8286 \mathrm{~A}) \\ & \overline{B_{0}}-\overline{B_{7}} \\ & \text { (SAB 8287A) } \end{aligned}$	12-19	I/O	SYSTEM BUS DATA PINS - These pins serve to either present data to or accept data from the system bus depending upon the state of the T pin.
$V_{C C}$	20	-	Power Supply (+5V)
GND	10	-	Ground (0 V)

Functional Description

The SAB 8286A and SAB 8287A transceivers are δ-bit transceivers with high impedance outputs. With T active HIGH and $\overline{\mathrm{OE}}$ active LOW, data at the $A_{0}-A_{7}$ pins is driven onto the $B_{0}-B_{7}$ pins.

With T inactive LOW and $\overline{O E}$ active LOW, data at the $B_{0}-B_{7}$ pins is driven onto the $A_{0}-A_{7}$ pins. No output low glitching will occur whenever the transceivers are entering or leaving the high impedance state.

Absolute Maximum Ratings ${ }^{11}$

Temperature Under Bias
Storage Temperature
All Output and Supply Voltages
All Input Voltages
Power Dissipation

$$
\begin{aligned}
& 0 \text { to }+70^{\circ} \mathrm{C} \\
& -65 \text { to }+150^{\circ} \mathrm{C} \\
& -0.5 \text { to }+7 \mathrm{~V} \\
& -1.0 \text { to }+5.5 \mathrm{~V} \\
& 1 \mathrm{~W}
\end{aligned}
$$

D. C. Characteristics

$T_{A}=0$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit Values		Unit	Test Condition
		Min.	Max.		
$V_{\text {c }}$	Input Clamp Voltage		-1	V	$I_{\mathrm{C}}=-5 \mathrm{~mA}$
$\underline{I C C}$	Power Supply Current		90	mA	All outputs open
$I_{\text {F }}$	Forward Input Current		-0.2		$V_{F}=0.45 \mathrm{~V}$
$I_{\text {R }}$	Reverse Input Current		50	$\mu \mathrm{A}$	$V_{\text {R }}=5.25 \mathrm{~V}$
$V_{\text {OL }}$	$\begin{array}{r} \text { Output LOW Voltage - B Outputs } \\ - \text { A Outputs } \\ \hline \end{array}$		$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$	V	$\begin{aligned} & I_{\mathrm{OL}}=32 \mathrm{~mA} \\ & I_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$
V_{OH}	$\begin{array}{r} \text { Output HIGH Voltage - B Outputs } \\ - \text { A Outputs } \end{array}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	-		$\begin{aligned} & I_{\mathrm{OH}}=-5 \mathrm{~mA} \\ & I_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\begin{aligned} & I_{\mathrm{OFF}} \\ & I_{\mathrm{OFF}} \end{aligned}$	Output Off Current Output Off Current		$\begin{aligned} & I_{\mathrm{F}} \\ & I_{\mathrm{R}} \end{aligned}$	-	$\begin{aligned} & V_{\text {OFF }}=0.45 \mathrm{~V} \\ & V_{\text {OFF }}=5.25 \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$	Input LOW Voltage - A Side - B Side		$\begin{array}{\|l\|} \hline 0.8 \\ 0.9 \end{array}$	v	$V_{\text {cc }}=5.0 \mathrm{~V}$, See Note 2 $V_{C C}=5.0 \mathrm{~V}$, See Note 2
$V_{\text {IH }}$	Input HIGH Voltage	2.0			$V_{\text {cC }}=5.0 \mathrm{~V}$, See Note 2
$C_{\text {IN }}$	Input Capacitance	-	12	pF	$\begin{aligned} & F=1 \mathrm{MHz} \\ & V_{\text {BIAS }}=2.5 \mathrm{~V}, V_{\mathrm{CC}}=5 \mathrm{~V} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$

[^37]2) B Outputs: $I_{\mathrm{OL}}=32 \mathrm{~mA}$; $I_{\mathrm{OH}}=-5 \mathrm{~mA} ; \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$ A Outputs: $I_{\mathrm{OL}}=16 \mathrm{~mA} ; I_{\mathrm{OH}}=-1 \mathrm{~mA} ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

A.C. Characteristics

$T_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Loading

B Outputs: $I_{\mathrm{OL}}=32 \mathrm{~mA} ; I_{\mathrm{OH}}=-5 \mathrm{~mA} ; C_{\mathrm{L}}=300 \mathrm{pF} \quad$ A Outputs: $I_{\mathrm{OL}}=16 \mathrm{~mA} ; I_{\mathrm{OH}}=-1 \mathrm{~mA} ; C_{\mathrm{L}}=100 \mathrm{pF}$

Symbol	Parameter	Limit Values		Unit	Test Condition
		Min.	Max.		
$t_{\text {IVov }}$	Input to Output Delay Inverting Non-Inverting	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 22 \\ & 30 \end{aligned}$	ns	1)
$t_{\text {EHTV }}$	Transmit/Receive Hold Time	5	-		
$t_{\text {TVEL }}$	Transmit/Receive Setup	10			
$t_{\text {EHOZ }}$	Output Disable Time	5	18		
$t_{\text {ELOV }}$	Output Enable Time	10	30		
$t_{\text {ILIH }}, t_{\text {OLOH }}$	Input, Output Rise Time	-	20		From 0.8 to 2.0 V
$t_{\text {IHIL }}$, OHOL	Input, Output Fall Time		12		From 2.0 to 0.8 V

1) See waveforms and test load circuit.

Waveforms

All timing measurements are made at 1.5 V unless otherwise noted.

Timing

Output Delay vs. Capacitance

Output Test Load Circuit

SAB 8288A Bus Controller for SAB 8086 Family Processors
 - Fully compatible with SAB 8288
 - Provides Wide Flexibility

- 40\% Less Power Supply Current than Standard SAB 8288
- Bipolar Drive Capability
- Provides Advanced Commands
in System Configurations
- 3-State Command Output Drivers
- Configurable for Use with an I/O Bus
- Facilitates Interface to One or Two Multi-Master Busses

SAB 8288A Bus Controller is a 20-pin bipolar component for use with medium-to-large SAB 80186, SAB 80,188, SAB 8086 and SAB 8088 processing systems. The bus controller provides command and control timing generation as well as bipolar bus drive capability while optimizing system performance.

A strapping option on the bus controller configures it for use with a multi-master system bus and separate I/O bus.
This device is fabricated in a fast bipolar ASBC (Advanced Standard Buried Collector) process of Siemens.

Block Diagram

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Function
IOB	1	I	INPUT/OUTPUT BUS MODE - When the IOB is strapped HIGH the SAB 8288A functions in the I/O Bus mode. When it is strapped LOW, the SAB 8288A functions in the System Bus mode. (See sections on I/O Bus and Systems Bus modes).
CLK	2	1	CLOCK - This is a clock signal from the SAB 8284A or SAB 8284B clock generator and serves to establish when command and control signals are generated.
$\overline{\mathrm{S}_{0}}, \overline{\mathrm{~S}_{1}}, \overline{\mathrm{~S}_{2}}$	3, 18, 19	I	STATUS INPUTPINS - These pins are the status input pins from the SAB 80186, SAB 80188, SAB 8086 or SAB 8088 processors. The SAB 8288A decodes these inputs to generate command and control signals at the appropriate time. When these pins are not in use (passive) they are all HIGH. (See chart under Functional Description).

Symbol	Number	Input (I) Output (O)	Function
DT/ \bar{R}	4	0	DATA TRANSMIT/RECEIVE - This signal establishes the direction of data flow through the transceivers. A HIGH on this line indicates Transmit (write to I/O or memory) and a LOW indicates Receive (Read).
ALE	5	0	ADDRESS LATCH ENABLE - This signal serves to strobe an address into the address latches. This signal is active HIGH and latching occurs on the falling (HIGH to LOW) transition. ALE is intended for use with transparent D type latches.
$\overline{\text { AEN }}$	6	1	ADDRESS ENABLE - $\overline{\mathrm{AEN}}$ enables command outputs of the SAB 8288A Bus Controller at least 105 ns after it becomes active (LOW). AEN going inactive immediately 3 -states the command output drivers. $\overline{\text { AEN }}$ does not affect the I/O command lines if the SAB 8288A is in the I/O Bus mode (IOB tied HIGH).
$\overline{\text { MRDC }}$	7	0	MEMORY READ COMMAND - This command line instructs the memory to drive its data onto the data bus. This signal is active LOW.
$\overline{\text { AMWC }}$	8	0	ADVANCED MEMORY WRITE COMMAND - The AMWC issues a memory write command earlier in the machine cycle to give memory devices an early indication of a write instruction. Its timing is the same as a read command signal. $\overline{A M W C}$ is active LOW.
$\overline{\text { MWTC }}$	9	0	MEMORY WRITE COMMAND - This command line instructs the memory to record the data present on the data bus. This signal is active LOW.
$\overline{\text { IOWC }}$	11	0	I/O WRITE COMMAND - This command line instructs an I/O device to read the data on the data bus. This signal is active LOW.
$\overline{\text { AlOWC }}$	12	0	ADVANCED I/O WRITE COMMAND - The AIOWC issues an I/O Write Command earlier in the machine cycle to give I/O devices an early indication of a write instruction. Its timing is the same as a read command signal. AIOWC is active LOW.
$\overline{\text { ORC }}$	13	0	I/O READ COMMAND - This command line instructs an 1/O device to drive its data onto the data bus. This signal is active LOW.
$\overline{\text { INTA }}$	14	0	INTERRUPT ACKNOWLEDGE-This command line tells an interrupting device that its interrupt has been acknowledged and that it should drive vectoring information onto the data bus. This signal is active LOW.
CEN	15	I	COMMAND ENABLE - When this signal is LOW all SAB 8288A command outputs and the DEN and PDEN control outputs are forced to their inactive state. When this signal is HIGH, these same outputs are enabled.
DEN	16	0	DATA ENABLE - This signal serves to enable data transceivers onto either the local or system data bus. This signal is active HIGH.

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
MCE/PDEN	17	0	This is a dual function pin: MCE (IOB is tied LOW) - Master Cascade Enable occurs during an interrupt sequence and serves to read a Cascade. Address from a master PIC (Priority Interrupt Controller) onto the data bus. The MCE signal is active HIGH. PDEN (IOB is tied HIGH) - Peripheral Data Enable enables the data bus transceiver for the I/O bus during I/O instructions. It performs the same function for the I/O bus that DEN performs for the system bus. PDEN is active LOW.
$V_{\text {CC }}$	20	-	Power Supply (+5 V)
GND	10	-	Ground (OV)

Functional Description

The command logic decodes the three SAB 80186, SAB 80188, SAB 8086 or SAB 8088 CPU status lines $\left(\overline{\mathrm{S}_{0}}, \overline{\mathrm{~S}_{1}}, \overline{\mathrm{~S}_{2}}\right)$ to determine what command is to be issued. This chart shows the meaning of each status "word".

$\overline{S 2}$	$\overline{S 1}$	$\overline{\mathrm{~S}}$	Processor State	SAB 8288A Command
\emptyset	\emptyset	\emptyset	Interrupt Acknowledge	$\overline{\text { INTA }}$
\emptyset	\emptyset	1	Read I/O Port	$\overline{\text { IORC }}$
\emptyset	1	\emptyset	Write I/O Port	$\overline{\text { IOWC, } \overline{\text { AlOWC }}}$
\emptyset	1	1	Halt	None
1	\emptyset	\emptyset	Code Access	$\overline{\text { MRDC }}$
1	\emptyset	1	Read Memory	$\overline{\text { MRDC }}$
1	1	\emptyset	Write Memory	$\overline{\text { MWTC }, \overline{\text { AMWC }}}$
1	1	1	Passive	None

The command is issued in one of two ways dependent on the mode of the SAB 8288A Bus Controller.

I/O Bus Mode - The SAB 8288A is in the I/O Bus mode if the IOB pin is strapped HIGH. In the I/O Bus mode all I/O command lines (IORC, IOWC, $\overline{\text { AIOWC, }}$ INTA) are always enabled (i.e., not dependent on $\overline{\text { AEN }}$). When an I/O command is initiated by the processor, the SAB 8288A immediately activates the command lines using $\overline{P D E N}$ and $D T / \bar{R}$ to control the I/O bus transceiver. The I/O command lines should not be used to control the system bus in this configuration because no arbitration is present. This mode allows one SAB 8288A Bus Controller to handle two external busses. No waiting is involved
when the CPU wants to gain access to the I/O bus. Normal memory access requires a "Bus Ready" signal ($\overline{A E N}$ LOW) before it will proceed. It is advantageous to use the IOB mode if I/O or peripherals dedicated to one processor exist in a multi-processor system.
System Bus Mode - The SAB 8288A is in the System Bus mode if the IOB pin is strapped LOW. In this mode no command is issued until 115 ns after the $\overline{\mathrm{AEN}}$ Line is activated (LOW). This mode assumes bus arbitration logic will inform the bus controller (on the $\overline{\mathrm{AEN}}$ line) when the bus is free for use. Both memory and I/O commands wait for bus arbitration. This mode is used when only one bus exists. Here, both I/O and memory are shared by more than one processor.

Command Outputs

The advanced write commands are made available to initiate write procedures early in the machine cycle. This signal can be used to prevent the processor from entering an unnecessary wait state.
The command output are:
$\overline{\text { MRDC }}$ - Memory Read Command
$\overline{\text { MWTC }}$ - Memory Write Command
$\overline{\text { IORC }}$ - I/O Read Command
IOWC - I/O Write Command
$\overline{\text { AMWC - Advanced Memory Write Command }}$
$\overline{\text { AlOWC }}$ - Advanced I/O Write Command
INTA - Interrupt Acknowledge
INTA (Interrupt Acknowledge) acts as an I/O read during an interrupt cycle. Its purpose is to inform an interrupting device that its interrupt is being acknowledged and that it should place vectoring information onto the data bus.

Control Outputs

The control outputs of the SAB 8288A are Data Enable (DEN), Data Transmit/Receive (DT/信) and Master Cascade Enable/Peripheral Data Enable (MCE/ $\overline{P D E N}$). The DEN signal determines when the external bus should be enable onto the local bus. and the $D T / \bar{R}$ determines the direction of data transfer. These two signals usually go to the chip select and direction pins of a transceiver.
The MCE/ $\overline{\text { PDEN }}$ pin changes function with the two modes of the SAB 8288A. When the SAB 8288A is in the IOB mode (IOB HIGH) the PDEN signal serves as a dedicated data enable signal for the I/O or Peripheral System bus.

Interrupt Acknowledge and MCE

The MCE signal is used during an interrupt acknowledge cycle if the SAB 8288A is in the System Bus mode (IOB LOW). During any interrupt sequence there are two interrupt acknowledge cycle no data or address transfers take place. Logic should be provided to mask off MCE during this cycle. Just before the second cycle begins the MCE signal gates a master Priority Interrupt Controller's (PIC) cascade address onto the processor's local bus where ALE (Address Latch Enable) strobes it into the address latches. On the leading edge of the second interrupt cycle the addressed slave PIC gates an interrupt vector onto the system data bus where it is read by the processor.

If the system contains only one PIC, the MCE signal is not used. In this case the second Interrupt Acknowledge signal gates the interrupt vector onto the processor bus.

Address Latch Enable and Halt

Address Latch Enable (ALE) occurs during each machine cycle and serves to strobe the current address into the address latches. ALE also serves to strobe the status ($\left.\overline{\mathrm{S}_{0}}, \overline{\mathrm{~S}_{1}}, \overline{\mathrm{~S}_{2}}\right)$ into a latch for halt state decoding.

Command Enable

The Command Enable (CEN) input acts as a command qualifier for the SAB 8288A. If the CEN pin is high the SAB 8288A functions normally. If the CEN pin is pulled LOW, all command lines are held in their inactive state (not 3-state). This feature can be used to implement memory partitioning and to eliminate address conflicts between system bus devices and resident bus devices.

Absolute Maximum Ratings ${ }^{11}$

Temperature Under Bias
Storage Temperature
All Output and Supply Voltages
All Input Voltages
Power Dissipation

$$
\begin{aligned}
& 0 \text { to }+70^{\circ} \mathrm{C} \\
& -65 \text { to }+150^{\circ} \mathrm{C} \\
& -0.5 \text { to }+7 \mathrm{~V} \\
& -1.0 \text { to }+5.5 \mathrm{~V} \\
& 1 \mathrm{~W}
\end{aligned}
$$

D.C. Characteristics

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
$V_{\text {c }}$	Input Clamp Voltage		-1	v	$I_{C}=-5 \mathrm{~mA}$
$I_{\text {cc }}$	Power Supply Current	-	140	mA	All outputs open
$I_{\text {F }}$	Forward Input Current		-0.7		$V_{F}=0.45 \mathrm{~V}$
$I_{\text {R }}$	Reserve Input Current		50	$\mu \mathrm{A}$	$V_{\mathrm{R}}=V_{\mathrm{cc}}$
$V_{\text {OL }}$	Output Low Voltage Command Outputs Control Outputs		$\begin{array}{\|l} 0.5 \\ 0.5 \end{array}$	V	$\begin{aligned} & I_{\mathrm{OL}}=32 \mathrm{~mA} \\ & I_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$
V_{OH}	Output High Voltage Command Outputs Control Outputs	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	-		$\begin{aligned} & I_{\mathrm{OH}}=-5 \mathrm{~mA} \\ & I_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$V_{\text {IL }}$	Input Low Voltage	-	0.8		-
$V_{1 H}$	Input High Voltage	2.0	-		
$\underline{\text { IOFF }}$	Output Off Current	-	100	$\mu \mathrm{A}$	$V_{\text {OfF }}=0.4$ to 5.25 V

A.C. Characteristics

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$
Timing Requirements

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
$t_{\text {clcl }}$	CLK Cycle Period	100	-	ns	-
$t_{\text {CLCH }}$	CLK Low Time	50			
$t_{\text {CHCL }}$	CLK High Time	30			
$t_{\text {SVCH }}$	Status Active Setup Time	35			
$t_{\text {chsv }}$	Status Active Hold Time	10			
$t_{\text {SHCL }}$	Status Inactive Setup Time	35			
$t_{\text {CLSH }}$	Status Inactive Hold Time	10			
$t_{\text {ILIH }}$	Input, Rise Time	-	20		From 0.8 V to 2.0 V
$t_{\text {IHIL }}$	Input, Fall Time		12		From 2.0 V to 0.8 V

1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Timing Responses

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
$t_{\text {cVNV }}$	Control Active Delay	5	45	ns	$\left.\begin{array}{l}\overline{\text { MRDC }} \\ \overline{\text { IRRC }} \\ \overline{\text { MWTC }} \\ \overline{\text { IOWC }} \\ \overline{\text { INTA }} \\ \overline{\overline{A M W C}} \\ \overline{\text { AIOWC }}\end{array}\right\}$$I_{\mathrm{OL}}=32 \mathrm{~mA}$ $I_{\mathrm{OH}}=-5 \mathrm{~mA}$ $C_{\mathrm{L}}=300 \mathrm{pF}$ Other$I_{O \mathrm{~L}}=16 \mathrm{~mA}$ $I_{\mathrm{OH}}=-1 \mathrm{~mA}$
$t_{\text {CVNX }}$	Control Inactive Delay	10			
$t_{\text {Cl.LH, }}, t_{\text {CLMCH }}$	ALE MCE Active Delay (from CLK)	-	20		
$t_{\text {SVLH }}, t_{\text {SVMCH }}$	ALE MCE Active Delay (from Status)				
$t_{\text {CHLL }}$	AIE Inactive Delay	4	15		
$t_{\text {CLML }}$	Command Active Delay	10	35		
$t_{\text {CLMH }}$	Command Inactive Delay				
$t_{\text {CHDTL }}$	Direction Control Active Delay	-	50		
$t_{\text {CHDTH }}$	Direction Control Inactive Delay		30		
$t_{\text {AELCH }}$	Command Enable Time		40		
$t_{\text {AEHCZ }}$	Command Disable Time				
$t_{\text {AELCV }}$	Enable Delay Time	115	200		
$t_{\text {AEVNV }}$	$\overline{\text { AEN }}$ to DEN	-	20		
$t_{\text {CEVNV }}$	CEN to DEN, PDEN		25		
$t_{\text {CELRH }}$	CEN to Command		$t_{\text {CLML }}$		
$t_{\text {OLOH }}$	Output, Rise Time		20		From 0.8 V to 2.0 V
t_{OHOL}	Output, Fall Time		12		From 2.0 V to 0.8 V

A.C. Testing Input, Output Waveform

Input/Output

A.C. Testing Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". The clock is driven at 4.3 V and 0.25 V timing measurements are made at 1.5 V for both a logic " 1 " and " 0 "

Test Load Circuits - 3-State Command Output Test Load

Test Load Circuits - 3-State Command Output Test Load

Waveforms

1) Address/Data Bus is shown only for reference purposes
2) Leading edge of ALE and MCE is determined by the falling edge of CLK or status going active,
whichever occurs last.
3) All timing measurements are made at 1.5 V unless specified otherwise.

DEN, PDEN Qualification Timing

Address Enable (AEN) Timing (3-State Enable/Disable)

CEN must be low or valid prior to T2 to prevent the command from being generated.

SAB 8289 Bus Arbiter

SAB $8289 \quad 8 \mathrm{MHz}$

SAB 8289-1 10 MHz

- Provides Multi-Master System Bus Protocol
- Synchronizes SAB 8086/SAB 8088 Processors with Multi-Master Bus
- Provides Simple Interface with SAB 8288 Bus Controller
- Four Operating Modes for Flexible System Configuration
- Compatible with Intel Bus Standard MULTIBUS ${ }^{\text {TM }}$ (MULTIBUS is a trademark of INTEL Corporation USA)
- Provides System Bus Arbitration for SAB 8089 IOP in Remote Mode

The SAB 8289 Bus Arbiter is a 20 -pin, 5 -volt-only bipolar component for use with medium to large SAB 8086/SAB 8088 multi-master/multiprocessing systems. The SAB 8289 provides system bus
arbitration for systems with multiple bus masters, such as an SAB 8086 CPU with SAB 8089 IOP in its REMOTE mode, while providing bipolar buffering and drive capability.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Function
$\overline{\mathrm{S} \emptyset}, \overline{\mathrm{S} 1}, \overline{\mathrm{~S} 2}$	1, 18, 19	1	Status Input Pins These pins are the status input pins from a SAB 8086, SAB 8088 or SAB 8089 processor. The SAB 8289 decodes these pins to initiate bus request and surrender actions.
CLK	17	1	Clock This is the clock from the SAB 8284A clock chip and serves to establish when bus arbiter actions are initiated.
$\overline{\text { LOCK }}$	16	I	Lock $\overline{\text { LOCK }}$ is a processor generated signal which when activated (low) serves to prevent the arbiter from surrendering the multi-master system bus to any other bus arbiter, regardless of its priority.
$\overline{\text { CRQLCK }}$	15	1	Common Request Lock $\overline{\text { CROLCK }}$ is an active low signal which serves to prevent the arbiter from surrendering the multi-master system bus to any other bus arbiter requesting the bus through the $\overline{\mathrm{CBRQ}}$ input pin.
RESB	4	I	Resident Bus RESB is a strapping option to configure the arbiter to operate in systems having both a multi-master system bus and a Resident Bus. When it is strapped high the multi-master system bus is requested or surrendered as a function of the SYSB/ $\overline{R E S B}$ input pin. When it is strapped low the SYSB/ $\overline{\operatorname{RESB}}$ input is ignored.
ANYROST	14	1	Any Request ANYROST is a strapping option which permits the multimaster system bus to be surrendered to a lower priority arbiter as though it were an arbiter of higher priority (i.e., when a lower priority arbiter requests the use of the multi-master system bus, the bus is surrendered as soon as it is possible). Strapping CBRQ low and ANYRQST high forces the SAB 8289 arbiter to surrender the multi-master system bus after each transfer cycle. Note that when surrender occurs $\overline{\mathrm{BREQ}}$ is driven false (high).
$\overline{\overline{O B}}$	2	1	10 Bus $\overline{I O B}$ is a strapping option which configures the SAB 8289 Arbiter to operate in systems having both an IO Bus (Peripheral Bus) and a multimaster system bus. The arbiter requests and surrenders the use of the multimaster system bus as a function of the status line, $\overline{\mathbf{S 2}}$. The multi-master system bus is permitted to be surrendered while the processor is performing 10 commands and is requested whenever the processor performs a memory command. Interrupt cycles are assumed as coming from the peripheral bus and are treated as would be an 10 command.
$\overline{\text { AEN }}$	13	0	Address Enable $\overline{\mathrm{AEN}}$ is the output of the SAB 8289 Arbiter to the processor's address latches, to the SAB 8288 Bus Controller and SAB 8284A Clock Generator. $\overline{A E N}$ serves to instruct the Bus Controller and address latches when to tri-state their output drivers.

Symbol	Number	Input (I) Output (O)	Function
SYSB//̄ESB	3	1	System Bus/Resident Bus SYSB/ $\overline{R E S B}$ is an input signal when the arbiter is configured in the S.R. Mode (RESB is strapped high) which serves to determine when the multimaster system bus is requested and when the multi-master system bus surrendering is permitted. The signal is intended to originate from some form of address mapping circuitry such as a decoder or PROM attached to the resident address bus. Signal transitions and glitches are permitted on this pin from $\varnothing 1$ of T4 to $\varnothing 1$ to $T 2$ of the processor cycle. During the period from $\varnothing 1$ of $T 2$ to $\varnothing 1$ of T4 only clean transitions are permitted on this pin (no glitches). If a glitch does occur the arbiter may capture or miss it, and the multi-master system bus may be requested or surrendered, depending upon the state of the glitch. The arbiter requests the multi-master system bus in the S.R. Mode when the state of the SYSB/ $\overline{\operatorname{RESB}}$ pin is high and permits the bus to be surrendered when this pin is low.
$\overline{\text { CBRQ }}$	12	1/0	Common Bus Request $\overline{\mathrm{CBRO}}$ is an input signal which serves to instruct the arbiter if there are any other arbiters of lower priority requesting the use of the multi-master system bus. The CBRQ pins (open-collector output) of all the SAB 8289 Bus Arbiters which are to surrender the multi-master-system bus upon request are connected together. The Bus Arbiter running the current transfer cycle will not itself pull the CBRQ line low. Any other arbiter connected to the $\overline{\mathrm{CBRO}}$ line can request the multi-master system bus. The arbiter presently running the current transfer cycle drops its $\overline{\mathrm{BREQ}}$ signal and surrenders the bus whenever the proper surrender conditions exist. Strapping CBREQ low and ANYRQST - high allows the multi-master system bus to be surrendered after each transfer cycle. See the pin definition of ANYRQST.
$\overline{\text { INIT }}$	6	1	Initialize $\overline{\mathrm{N} I T}$ is an active low multimaster system bus input signal which is used to reset all the bus arbiters on the multi-master system bus. After initialization, no arbiters have the use of the multi-master system bus.
$\overline{\overline{B C L K}}$	5	1	Bus Clock $\overline{\mathrm{BCLK}}$ is the multi-master system bus clock to which all multimaster system bus interface signals are synchronized.
$\overline{\text { BREQ }}$	7	0	Bus Request $\overline{\mathrm{BREQ}}$ is an active low output signal in the parallel Priority Resolving Scheme which the arbiter activates to request the use of the multi-master system bus.
$\overline{\text { BPRN }}$	9	1	Bus Priority In $\overline{B P R N}$ is the active low signal returned to the arbiter to instruct it that it may acquire the multimaster system bus on the next falling edge of BCLK. $\overline{\text { BPRN }}$ indicates to the arbiter that it is the highest priority requesting arbiter presently on the bus. The loss of BPRN instructs the arbiter that it has loss priority to a higher priority arbiter.

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
$\overline{\overline{B P R O}}$	8	O	Bus Priority Out $\overline{\text { BPRO is an active low output signal which is used in the }}$ serial priority resolving scheme where $\overline{\text { BPRO is daisy chained }}$ to $\overline{\text { BPRN of the next lower priority arbiter. }}$
$\overline{\overline{B U S Y}}$	11	I/O	Busy $\overline{\text { BUSY is an active low open collector multi-master system }}$ bus interface signal which is used to instruct all the arbiters on the bus when the multi-master system bus is available. When the multi-master system bus is available the highest requesting arbiter (determined by $\overline{B P R N})$ seizes the bus and pulls $\overline{\text { BUSY low to keep other arbiters off of the bus. When }}$ the arbiter is done with the bus it releases the $\overline{\text { BUSY signal }}$permitting it to go high and thereby allowing another arbiter to acquire the multi-master system bus. VCC$\quad 20$

Functional Description

The SAB 8289 Bus Arbiter operates in conjunction with the SAB 8288 Bus Controller to interface SAB 8086/SAB 8088/ SAB 8089 processors to a multi-master system bus (both the SAB 8086 and the SAB 8088 are configured in their max mode). The processor is unaware of the arbiter's existence and issues commands as though it has exclusive use of the system bus. If the processor does not have the use of the multi-master system bus, the arbiter prevents the Bus Controller (SAB 8288), the data transceivers and the address latches from accessing the system bus (e.g. all bus driver outputs are forced into the high impedance state). Since the command sequence was not issued by the SAB 8288, the system bus will appear as "Not Ready" and the processor will enter wait states. The processor will remain in Wait until the Bus Arbiter acquires the use of the multi-master system bus whereupon the arbiter will allow the bus controller, the data transceivers, and the address latches to access the system. Typically, once the command has been issued and a data transfer has taken place, a transfer acknowledge (XACK) is returned to the processor to indicate "READY" from the accessed slave device. The processor then completes its transfer cycle. Thus the arbiter serves to multiplex a processor (or bus master) onto a multi-master system bus and avoid contention problems between bus masters.

Arbitration between Bus Masters

In general, higher priority masters obtain the bus when a lower priority master completes its present transfer cycle. Lower priority bus masters obtain the bus when a higher priority master is not accessing the system bus. A strapping option (ANYROST) is provided to allow the arbiter to surrender the bus to a lower priority master as though it were a master of higher priority. If there are no other bus masters requesting the bus, the arbiter maintains the bus so long as its processor has not entered the HALT State. The arbiter will not voluntarily surrender the system bus and has to be forced off by another master's bus request, the HALT State being the only exception. Additional strapping options permit other modes of operation wherein the multimaster system bus is surrendered or requested under different sets of conditions.

Modes of Operation

There are two types of processors in the SAB 8086 family. An Input/Output processor (the SAB 8089 IOP) and the SAB $8086 /$ SAB 8088 CPUs . Consequently, there are two basic operating modes in the SAB 8289 bus arbiter. One, the $\overline{\mathrm{IOB}}$ (I/O Peripheral Bus) mode, permits the processor access to both an I/O Peripheral Bus and a multi-master system bus. The second, the RESB (Resident Bus mode), permits the processor to communicate over both a Resident Bus and a multi-master system bus. An I/O Peripheral Bus is a bus where all devices on that bus, including memory, are treated as $1 / O$ devices and are addressed by I/O commands. All memory commands are directed to another bus, the multi-master system bus. A Resident Bus can issue both memory and I / O commands, but it is a distinct and separate bus from the multi-master system bus. The distinction is that the Resident Bus has only one master, providing full availability and being dedicated to that one master.
The $\overline{\mathrm{OB}}$ strapping option configures the SAB 8289 Bus Arbiter into the $\overline{\overline{O B}}$ mode and the strapping option RESB configures it into the RESB mode. It might be noted at this point that if both strapping options are strapped false, the arbiter interfaces the processor to a multi-master system bus only. With both options strapped true, the arbiter interfaces the processor to a multi-master system bus, a Resident Bus, and an I/O Bus.
In the $\overline{O B}$ mode, the processor communicates and controls a host of peripherals over the Peripheral Bus. When the I/O Processor needs to communicate with system memory, it does so over the system memory bus.
The SAB 8086 and SAB 8088 processor can communicate with a Resident Bus and a multimaster system bus. Two bus controllers and only one Bus Arbiter would be needed in such a configuration. In such a system configuration the processor would have access to memory and peripheral of both busses. Memory mapping techniques are applied to select which bus is to be accessed. The SYSB/ $\overline{\operatorname{RESB}}$ input on the arbiter serves to instruct the arbiter as to whether or not the system bus is to be accessed. The signal connected to $\mathrm{SYSB} / \overline{\mathrm{RESB}}$ also enables or disables commands from one of the bus controllers.

Summary of SAB 8289 Modes, Requesting and Relinquisting the Multi-master system bus

Status Lines From SAB 8086 / 88 / 89				$\frac{\text { IOB Mode }}{\text { Only }}$	$10 \frac{\text { RESB (Mode) Only }}{\mathrm{B}=\text { High RESB }=\text { High }}$			IOB Mode RESB Mode IOB=Low RESB = High		Single Bus Mode $1 O B=$ High RESB $=$ Low
		S1	$\overline{\mathrm{SO}}$	IOB = Low	SYSB/ $/ \overline{\text { RESB }}$ SYSB $/ \overline{\text { RESB }}$ $=$ High $=$ Low x x x			$\begin{gathered} \mathrm{SYSB} / \overline{\mathrm{RESB}} \\ =\mathrm{High} \end{gathered}$	$\begin{gathered} \mathrm{SYSB} / \overline{\mathrm{RESB}} \\ =\text { Low } \end{gathered}$	
1/0	0	0	0	x				x	x	
COMMANDS		0	1	x				x	x	
	0	1	0	x				x	x	
HALT	0	1	1	x	x		x	x	x	x
MEM COMMANDS	1	0	0				x		x	
		0	1				x		x	
		1	0				x		x	
IDLE	1	1	1	x	x	'	X	x	X	x

NOTE:

$x=$ Multi-Master System Bus is allowed to be Surrendered.

Mode	Pin Strapping	Multi-Master System Bus	
		Requested**	Surrendered*
Single Bus Multi-Master Mode	$\begin{aligned} & \hline \overline{\mathrm{IOB}}=\mathrm{High} \\ & \text { RESB }=\text { Low } \\ & \hline \end{aligned}$	Whenever the processor's status lines go active	HLT + Tl`CBRQ + HPBRQ***
RESB Mode Only	$\begin{aligned} & \hline \overline{\mathrm{OB}}=\mathrm{High} \\ & \text { RESB }=\mathrm{High} \\ & \hline \end{aligned}$	SYSB $/ \overline{\operatorname{RESB}}=$ High \bullet ACTIVE STATUS	$\begin{aligned} & \text { (SYSB/ } \overline{\text { RESB }}=\text { LOW }+ \text { TI) } \\ & \text { CRBQ }+\mathrm{HLT}+\mathrm{HPBRQ} \end{aligned}$
IOB Mode Only	$\begin{aligned} & \text { IOB=Low } \\ & \text { RESB=Low } \end{aligned}$	Memory Commands	$\begin{aligned} & \text { (I/O Status+TI)•CBRQ+ } \\ & \text { HLT + HPBRQ } \end{aligned}$
IOB Mode•RESB Mode	$\begin{aligned} & \overline{\mathrm{OB}}=\text { Low } \\ & \mathrm{RESB}=\text { High } \end{aligned}$	(Memory Command)• (SYSB/ $\overline{\mathrm{RESB}}=\mathrm{High}$)	((l/O Status Commands)+ SYSB/RESB=LOW) $) \bullet$ CBRQ +HPBRQ*** + HLT

NOTES:

* $\overline{\text { LOCK }}$ prevents surrender of Bus to any other arbiter, $\overline{\mathrm{CRQLCK}}$ prevents surrender of Bus to any lower priority arbiter.
**Except for HALT and Passive or IDLE Status.
***HPBRQ, Higher priority Bus request or $\overline{\mathrm{BPRN}}=1$.

1. $\overline{\mathrm{OB}}$ Active Low.
2. $\mathrm{Tl}=$ Processor Idle Status $\overline{\mathrm{S}} \overline{2}, \overline{\mathrm{~S} 1}, \overline{\mathrm{~S} 0}=111$
3. RESB Active High.
4. $\mathrm{HLT}=$ Processor Halt Status $\overline{\mathrm{S} 2}, \overline{\mathrm{~S} 1}, \overline{\mathrm{~S} 0}=011$
5. + is read as "OR" andeas "AND".

Absolute Maximum Ratings*

Ambient Temperature Under Bias 0 to $70^{\circ} \mathrm{C}$	
Storage Temperature	-65 to $150^{\circ} \mathrm{C}$
All Output and Supply Voltages	-0.5 to 7 V
All Input Voltages	-1.0 to 5.5 V
Power Dissipation	1.5 Watt

D.C. Characteristics

$T A=0$ to $70^{\circ} \mathrm{C}, V C C=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit Values		Unit	Test Condition
		Min.	Max.		
VC	Input Clamp Voltage	-	-1.0	V	$V C C=4.5 \mathrm{~V}, \mathrm{IC}=-5 \mathrm{~mA}$
IF	Input Forward Current		-0.5	mA	$V C C=5.5 \mathrm{~V}, \mathrm{VF}=0.45 \mathrm{~V}$
/R	Reverse Input Leakage Current		60	$\mu \mathrm{A}$	$V C C=5.5 \mathrm{~V}, \mathrm{VR}=5.5 \mathrm{~V}$
VOL	Output Low Voltage $\overline{B U S Y}, \overline{C B R Q}$ $\overline{\mathrm{AEN}}$ $\overline{B P R O}, \overline{B R E Q}$		0.45	V	$\begin{aligned} / \mathrm{OL} & =20 \mathrm{~mA} \\ / \mathrm{OL} & =16 \mathrm{~mA} \\ / \mathrm{OL} & =10 \mathrm{~mA} \end{aligned}$
VOH	Output High Voltage $\overline{B U S Y}, \overline{\mathrm{CBRO}}$	Open Collector			-
	All Other Outputs	2.4	-	V	$1 \mathrm{OH}=400 \mu \mathrm{~A}$
ICC	Power Supply Current	-	165	mA	-
VL	Input Low Voltage		0.8	V	
VH	Input High Voltage	2.0	-	V	
Cin Status	Input Capacitance	-	25	pF	
Cin (Others)	Input Capacitance		12		

*) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended perods may affect device reliability.

A.C. Characteristics

$T A=0$ to $70^{\circ} \mathrm{C}, V C C=5 \mathrm{~V} \pm 10 \%$

Timing Requirements

Symbol	Parameter	Limit Values				Unit	Test Condition
		SAB 8289		SAB 8289-1			
		Min.	Max.	Min.	Max.		
TCLCL	CLK Cycle Period	125	-	100	-	ns	
TCLCH	CLK Low Time	65		53			
TCHCL	CLK High Time	35		35			
TSVCH	Status Active-Setup	65	tCLCL-10	55	TCLCL-10		
TSHCL	Status Inactive-Setup	50		45			
THVCH	Status Active Hold	10	-	10			
THVCL	Status Inactive Hold			10			
TBYSBL	Busy $\uparrow \downarrow$ Setup to BCLK \downarrow	20		20	-		-
TCBSBL	CBRQ $\uparrow \downarrow$ Setup to BCLK \downarrow						
TBLBL	BCLK Cycle Time	100		100			
TBHCL	BCLK High Time	30	$\begin{aligned} & 0.65 \\ & {[\mathrm{TBLBL}]} \\ & \hline \end{aligned}$	30	$\begin{aligned} & 0.65 \\ & {[\text { TBLBL] }} \end{aligned}$		
TCLLL 1	LOCK Inactive Hold	10	-	10	-		
TCLLL2	LOCK Active Setup	40		40			
TPNBL	BPRN $\downarrow \uparrow$ to BCLK Setup Time	15		15			
TCLSR1	SYSB/RESB Setup	0		0			
T:CLSR2	SYSB/RESB Hold	20		20			
TNIH	Initialization Pulse Width	3TBLBL+ 3TCLCL		3TBLBL+ 3TCLCL			
TILIH	Input Rise Time	-	20	-	20		From 0.8 to 2.0 V
TIHIL	Input Fall Time		12		12		From 2.0 to 0.8 V

$\uparrow \downarrow$ Denotes the spec applies to both transitions of the signal.

A.C. Testing Input/Output Waveform

Input/Output

A.C. Testing: Inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". The clock is driven at 4.3 V and 0.25 V . Timing measurements are made at 1.5 V for both a logic " 1 " and " 0 ".

Timing Responses

Symbol	Parameter	Limit Values		Unit	Test Condition
		Min.	Max.		
TBLBRL	BCLK to BREQ Delay $\downarrow \uparrow$	-	35	ns	-
TBLPOH	BCLK to BPRO $\downarrow \uparrow^{1}$)		40		
TPNPO	BPRN $\downarrow \uparrow$ to BPRO $\downarrow \uparrow$ Delay ${ }^{1 /}$		25		
TBLBYL	BCLK to BUSY Low		60		
TBLBYH	BCLK to BUSY Float ${ }^{2 \prime}$		35		
TCLAEH	CLK to AEN High		65		
TBLAEL	BCLK to AEN Low		40		
TBLCBL	BCLK to CBRQ Low		60		
TBLCRH	BCLK to CBRQ Float ${ }^{2 \prime}$		35		
TOLOH	Output Rise Time		20		From 0.8 to 2.0 V
TOHOL	Output Fall Time		12		From 2.0 to 0.8 V

$\downarrow \uparrow$ Denotes the spec applies to both transitions of the signal.

NOTES:

${ }^{1)}$ BCLK generates the first BPRO wherein subsequent BPRO changes lower in the chain are generated through BPRON.
${ }^{2)}$ Measured at 0.5 V above GND.

A.C. Testing Load Circuit

$C \mathrm{~L}=100 \mathrm{pF}$
CL Includes jig capacitance

SAB 8289

NOTES:

1. $\overline{\text { LOCK }}$ active can occur during any state, as long as the relationships shown above with respect to the CLK are maintained.
LOCK inactive has not critical time and can be asynchronous.
$\overline{C R Q L C K}$ has no critical timing and is considered an asynchronous input signal.
2. Glitching of SYSB/ $\overline{\operatorname{RESB}}$ pin is permitted during this time. After 12 of $T 1$, and before 11 of $T 4, S Y S B / \overline{R E S B}$ should be stable.
3. $\overline{A E N}$ leading edge is related to $\overline{B C L K}$, trailing edge to CLK. The trailing edge of AEN occurs after bus priority is lost.

Additional Notes:

The signals related to CLK are typical processor signals, and do not relate to the depicted sequence of events of the signals referenced to $\overline{B C L K}$. The signals shown related to the $\overline{B C L K}$ represent a hypothetical sequence of events for illustration. Assume 3 bus arbiters of priorities 1, 2 and 3 configured in serial priority resolving scheme as shown in Figure 6. Assume arbiter has the bus and is holding busy low. Arbiter \#2 detects its processor wants the bus and pulls low $\overline{B R E Q \# 2}$. If $\overline{B P R N} \# 2$ is high (as shown), arbiter \# 2 will pull low $\overline{C B R Q}$ line. $\overline{\mathrm{CBRO}}$ signals to the higher priority arbiter $\# 1$ that a lower priority arbiter wants the bus. [A higher priority arbiter would be granted BPRN when it makes the bus request rather than having to wait for another arbiter to release the bus through $\overline{C B R Q}]$.** Arbiter \# 1 will relinquish the multi-master system bus when it enters a state not requiring it (see Table 1), by lowering its $\overline{\mathrm{BPRO} \# 1}$ (tied to $\overline{\mathrm{BPRN} \# 2}$) and releasing BUSY. Arbiter \#2 now sees that it has priority from $\overline{\text { BPRN \# } 2}$ being low and releases CBRQ. As soon as BUSY signifies the bus is available (high), arbiter \# 2 pulls BUSY low on next falling edge of BCLK. Note that if arbiter \# 2 didn't want the bus at the time it received priority, it would pass priority to the next lower priority arbiter by lowering its BPRO\#2 [TPNPO].
**Note that even a higher priority arbiter which is acquiring the bus through $\overline{\mathrm{BPRN}}$ will momentarily drop CBRQ until it has acquired the bus.

SAB 82258

 ADMA-Advanced DMA Controller for 16 bit Microcomputer Systems- 16 bit DMA Controller for

16 bit Family Processors
SAB 80286
SAB 8086/88
SAB 80186/188

- 4 Independent Channels
- 16 Mbyte Addressing Range
- 16 Mbyte Byte Count
- Memory Based Communication with CPU
- "On-the-Fly" Compare, Translate and Verify Operations
- Transfer Rates up to 8 Mbyte/sec
- Single and Double Cycle Transfer
- Automatic Chaining of Command Blocks
- Automatic Chaining of Data Blocks
- Multiplexor Mode Operation with 32 Subchannels
- Local and Remote (Stand Alone) Mode of Operation

Figure 2
Function Symbol

SAB 82258 is an advanced DMA (Direct Memory Access) Controller designed especially for the 16 bit microprocessors SAB 80286 and SAB 8086/186/ $88 / 188$. In addition, the operation with other processors is supported by the remote mode. It has 4 independent DMA channels which can transfer data at rates up to $8 \mathrm{Mbytes} /$ second at 8 MHz
clock in a SAB 80286 system or up to 4 Mbytes/ second at 8 MHz in a 8086/80186 system. This great bandwidth allows the user to handle very fast data transfer or a large number of concurrent peripherals. The device is fabricated in advanced +5 Volt N -channel Siemens MYMOS technology and packaged in a 68 pin package.

Modes of Operation, Adaptive Bus Interface

SAB 82258 has been defined to work with all 16 bit processors, i.e. SAB 80286, SAB 80186/188 and SAB 8086/88 without additional support and interface logic. Hence the local busses of above
processors are different in signals, functions and timings, SAB 82258 has an adaptive bus interface to meet the different requirements of these local busses.

Figure 3
Function Symbol in 186 Mode

Figure 4
Function Symbol in Remote Mode

As a result of this, a bus compatibility with identical timing is attained with processors SAB 80286, SAB 80186 and SAB 8086. A compatibility with the 8 bit bus versions of these processors SAB 8088 and SAB 80188 is also guaranteed by defining the
physical bus width of SAB 82258 (per software) as 8 bits. The only difference in operation with SAB 8086 or SAB 80186 is that for SAB 8086 the HOLD pin functions as $\overline{\mathrm{RO}} / \overline{\mathrm{GT}}$ line (if HLDA is held high on RESET).

Figure 5
Mode Selection

SAB 82258 can also operate in a remote or stand alone mode where it is not coupled directly to a processor. Figure 5 shows the way how SAB 82258 detects with which processor or in which mode it is operating. Figure 2 shows the logic pinning in the 286 mode - for operation with SAB 80286. Figure 3 shows the logic pinning in the 186 modefor operation with SAB 80186/188 and SAB 8086/88, and Figure 4 shows the pinning when SAB 82258 is in the remote mode and not directly coupled to a processor.

Pin Definitions and Functions

The pins of SAB 82258 have different meaning for each of the 4 modes of bus operation. The pinning in 286 mode and remote mode as well as 186 and 8086 mode are very similar. Table 1 summarizes the pinning of SAB 82258 in the various modes, the following sections give a detailed description of the pin function in each of the modes.

Table 1 Pin Name and Function

Pin No.	286 mode		Remote mode		186/8086 mode	
	Designation	Input/ Output	Designation	Input/ Output	Designation	Input/ Output
16	HOLD	0	HOLD	0	HOLD or RO/GT	O (186) 1/O (8086)
17	HLDA	1	HLDA	1	HLDA	1
1	BHE	1/0	$\overline{\text { BHE }}$	I/O	$\overline{\text { BHE }}$	I/O
14	M/IO	0	BREL	0	$\overline{\mathrm{S} 2}$	0
11	$\overline{\text { S1 }}$	1/0	$\overline{\text { S1 }}$	0	S1	I/O
13	So	1/0	So	0	So	110
8	$\overline{\mathrm{CS}}$	1	$\overline{\mathrm{CS}}$	1	$\overline{\mathrm{CS}}$	1
2	$\overline{\mathrm{RD}}$	1	$\overline{\mathrm{RD}}$	1	$\overline{\mathrm{RD}}$	I/O
3	$\overline{\mathrm{WR}}$	1	$\overline{W R}$	1	$\overline{W R}$	I/O
10	$\overline{\text { READY }}$	1	$\overline{\text { READY }}$	1	SREADY	1
59	A23	0	A23	0	AREADY	1
58	A22	0	A22	0	ALE	0
57	A21	0	A21	0	DT/ $\overline{\text { R }}$	0
56	A20	0	A20	0	$\overline{\mathrm{DEN}}$	0
55	A19	0	A19	0	A19/S6	0
54	A18	0	A18	0	A18/S5	0
53	A17	0	A17	0	A17/S4	0
52	A16	0	A16	0	A16/S3	0
51	A15	0	A15	0	A15	0
50	A14	0	A14	0	A14	0
49	A13	0	A13	0	A13	0
48	A12	0	A12	0	A12	0
47	A11	0	A11	0	A11	0
46	A10	0	A10	0	A10	0
45	A9	0	A9	0	A9	0
44	A8	0	A8	0	A8	0
42	A7	1/0	A7	I/O	A7	I/O
41	A6	1/0	A6	1/0	A6	I/O
40	A5	1/O	A5	I/O	A5	I/O
39	A4	1/0	A4	I/O	A4	I/O
38	A3	1/O	A3	1/0	A3	I/O
37	A2	1/O	A2	1/O	A2	1/O
36	A1	1/O	A1	1/0	A1	1/O
35	A0	1/0	A0	I/O	A0	1/0

Pin No.	286 mode		Remote mode		186/8086 mode	
	Designation	Input/ Output	Designation	Input/ Output	Designation	Input/ Output
18	D15	I/O	D15	1/0	AD15	I/O
20	D14	I/O	D14	1/0	AD14	I/O
22	D13	1/O	D13	I/O	AD13	1/0
24	D12	I/O	D12	1/0	AD12	I/O
27	D11	I/O	D11	I/O	AD11	1/0
29	D10	I/O	D10	I/O	AD10	1/O
31	D9	I/O	D9	1/O	AD9	I/O
33	D8	I/O	D8	1/O	AD8	I/O
19	D7	I/O	D7	I/O	AD7	1/0
21	D6	I/O	D6	1/O	AD6	1/O
23	D5	I/O	D5	I/O	AD5	1/0
25	D4	I/O	D4	1/0	AD4	1/O
28	D3	1/O	D3	1/O	AD3	1/O
30	D2	1/O	D2	1/0	AD2	1/0
32	D1	I/O	D1	I/O	AD1	1/0
34	D0	I/O	D0	1/O	AD0	1/0
7	DREQ0	1	DREQ0	1	DREQO	1
6	DREQ1	1	DREQ1	1	DREQ1	1
5	DREQ2	1	DREO2	1	DREQ2	1
4	DREQ3	1	DREO3	1	DREQ3	1
61	$\overline{\text { DACKO }}$	0	$\overline{\text { DACKO }}$	0	DACKO	0
62	DACK1	0	$\overline{\text { DACK1 }}$	0	DACK1	0
63	DACK2	0	DACK2	0	$\overline{\text { DACK2 }}$	0
64	$\overline{\text { DACK3 }}$	0	$\overline{\text { DACK }}$	0	DACK3	0
65	EODO	1/O	EODO	1/0	EODO	1/0
66	EOD1	I/O	EOD1	1/0	EOD1	1/0
67	EOD2	1/O	EOD2	1/O	EOD2	1/0
68	EOD3	I/O	EOD3	1/0	EOD3	1/0
15	RESET	1	RESET	1	RESET	1
12	CLK	1	CLK	1	CLK	1
9,43	vSS	(Ground)	VSS	(Ground)	VSS	(Ground)
26,60	VCC	(Power Supply)	VCC	(Power Supply)	VCC	(Power Supply)

Pinning in 286 Mode

In the 286 mode the SAB 82258 bus signals and bus timings are the same as of the SAB 80286 processor. Additional features of SAB 82258 require a slight change in pin definitions. The processor can access internal registers of the SAB 82258. Therefore the bus signals must
support these accesses. This means that some of the bus control signals must be bidirectional and some additional bus control signals are necessary. All pins and their functions are listed below.

Figure 6

Pin Configuration in 286 Mode

Component Pad View - As viewed from underside of component when mounted on the board

PC Board View - As viewed from the component side of the pc board

Table 2
Pin Description for 286 Mode
(Contains also the description for pins identical in all modes)

Symbol	Number	Input (I) Output (O)	Functions
$\overline{\text { BHE }}$	1	I/O	Bus High Enable indicates transfer of data on the upper byte of the data bus, D15-8. Eight-bit oriented devices assigned to the upper byte of the data bus would normally use $\overline{\mathrm{BHE}}$ to condition chip select functions. $\overline{\mathrm{BHE}}$ is active LOW and floats to 3 -state OFF when the SAB 82258 does not own the bus.
			$\overline{\mathrm{BHE}}$ and A0 encodings
			$\overline{\text { BHE }}$ AO Function
			0 0 Word transfer (D15-0) 0 1 Byte transfer on upper half of data bus (D15-8) 1 0 Byte transfer on lower half of data bus (D7-0) 1 1 Odd addressed byte on 8 bit bus (D7-0)
$\overline{\mathrm{RD}}$	2	1	Read command in conjunction with chip select enables reading out of SAB 82258 register which is addressed by the address lines A7-A0. This signal can be asynchronous to SAB 82258 clock.
$\overline{W R}$	3	1	Write command is used for writing into SAB 82258 registers. This signal can be asynchronous to SAB 82258 clock.
$\begin{aligned} & \text { DREQO- } \\ & \text { DREQ3 } \end{aligned}$	4-7	1	DMA request input signals are used for synchronized DMA transfers. DREO3 has the meaning of I/O request (IOREQ) if channel 3 is a multiplexer channel. These signals can be asynchronous to SAB 82258 clock.
$\overline{\text { CS }}$	8	1	Chip select is used to enable the access of a processor to SAB 82258 registers. This access is additionally controlled either by bus status signals or by the Read or Write command signals. Chip select can be asynchronous to SAB 82258 clock.
$\overline{\text { READY }}$	10	1	Bus Ready terminates a bus cycle. Bus cycles are extended without limit until terminated by READY LOW. $\overline{R E A D Y}$ is an active LOW synchronous input requiring setup and hold times relative to the system clock be met for correct operation.

Symbol	Number	Input (I) Output (O)	Functions
$\overline{\mathrm{S} 0}, \overline{\mathrm{~S} 1}$	11, 13	1/0	The bus status signals control the support circuits. The beginning of a bus cycle is indicated by $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 0}$ or both going active. The termination of a bus cycle is indicated by all status signals going inactive in 186 mode or bus ready signal ($\overline{\mathrm{READY}}$) going active in 286 mode. The type of bus cycle is indicated by $\overline{\mathrm{S} 0}, \overline{\mathrm{~S} 1}$ and $\overline{\mathrm{S} 2}$ (in 186 mode) or $M / \overline{\mathrm{IO}}$ (in 286 mode). $\overline{\mathrm{S} 2}$ and $\mathrm{M} / \overline{\mathrm{IO}}$ have the same meaning but in 186 mode the $\overline{\mathrm{S} 2}$ signal can be active only when at least one of $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 0}$ is active, whereas in 286 mode the $\mathrm{M} / \overline{\mathrm{IO}}$ signal is valid with the address on the address lines. SAB 82258 can generate the following bus cycles by activating the status signals (and $\mathrm{M} / \overline{\mathrm{IO}}$ in 286 mode): M/ $\overline{\mathrm{IO}} \overline{\mathrm{S} 1} \quad \overline{\mathrm{So}} \quad$ Cycle Type or $\overline{\mathrm{S}} 2$
			0 0 0 Read I/O-Vector (for Multiplexor channel) 0 0 1 Read from I/O Space Write into I/O Space 0 1 0 No bus cycle, does not occur 0 1 1 1 0 0 Does not occur 1 0 1 Read from Memory Space 1 1 0 Write into Memory Space 1 1 1 No bus cycle
			When SAB 82258 is not the master of the local bus the status signals are used as inputs for detection of synchronous accesses to SAB 82258. The following table shows the bus status and $\overline{C S}$, signals and their interpretation by SAB 82258. $\overline{\mathrm{CS}} \quad \overline{\mathrm{S} 1} \quad \overline{\mathrm{SO}}$ Description
			1 X X SAB 82258 is not selected (no action) 0 0 0 no SAB 82258 access Read from an (no action) 0 0 1 SAB 82258 register Write into an 0 1 0 SAB 82258 register 0 11No bus cycle (Note 1)
			Note 1: SAB 82258 is selected but no synchronous access is activated. In this case SAB 82258 monitors $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals for detection of an asynchronous access.
CLK	12	1	This clock provides the fundamental timing. It must be two times the system clock. It can be directly connected to the SAB 82284 CLK output. It is divided by two to generate the SAB 82258 internal clock. The on chip divide-by-two circuitry can be synchronized to the external clock generator by a LOW to HIGH transition on the RESET input, or by first HIGH to LOW transition on the Status Inputs $\overline{\mathrm{S0}}$ or $\overline{\mathrm{S} 1}$ after RESET.

Symbol	Number	Input (I) Output (O)	Functions
$\mathrm{M} / \overline{\mathrm{IO}}$	14	0	Distinction between memory and I/O space addresses.
RESET	15	I	An activation of the reset signal forces SAB 82258 to the initial state. The reset signal must be synchronous to CLK.
HOLD	16	0	HOLD output, when true, indicates a request for control of the local bus. When the SAB 82258 relinquishes the bus it drops the HOLD output.
HLDA	17	1	HLDA, when true, indicates that the SAB 82258 can acquire the control of the bus. When it goes low SAB 82258 must relinguish the bus at the end of its current cycle. It can be asynchronous to the SAB 82258 clock.
D0-D15	$\begin{array}{\|l\|} \hline 18-25, \\ 27-34 \end{array}$	1/0	Data Bus - This is the bidirectional 16 bit data bus. For use with an 8 bit bus, only the lower 8 data lines D7-D0 are relevant.
A0-A7	35-42	1/0	The lower 8 address lines for DMA transfers. They are also used to input the register address when the processor accesses a SAB 82258 register.
A8-A23	44-59	0	Higher address outputs.
$\frac{\overline{\text { DACKO }}}{\overline{\text { DACK }}}$	61-64	0	The DACKi signal acknowledges the requests on the related DREQi signal. It is activated when the requested transfer(s) is (are) performed. If the channel 3 is a multiplexor channel the signal $\overline{\mathrm{DACK3}}$ has the meaning of l/O acknowledge ($\overline{\mathrm{OACK}}$).
$\frac{\overline{\mathrm{EODO}}}{\overline{\mathrm{EOD} 3}}$	65-68	1/0	The End of DMA signals are implemented as open drain output drivers with a high impedance pull up resistor and thus can be used as bidirectional lines. As outputs the signals are activated for two system clock cycles at the end of the DMA transfer of the corresponding channel (if enabled) or they are activated under program control (EOD output or interrupt output). If the signals are held internally high but forced to low by external circuitry, they act as "End-of-DMA" inputs. The current transfer is aborted and SAB 82258 continues with the next command. Additionally, a special function is possible with the EOD2 pin: this pin can also be used as common interrupt signal for all 4 channels. In this mode this signal is not a open drain output but a pushpull output (output only). The other EOD pins may be used as EOD outputs/inputs described above.
VCC	26,60		Power supply (5V)
VSS	9,43		Ground (0V)

Pinning in 186 Mode

In 186 mode many pins have a different meaning than in the 286 mode. They are listed below (for corresponding 286 names see table 1).

Figure 7
Pin Configuration in 186 Mode

Component Pad View - As viewed
from underside of component when mounted on the board

PC Board View - As viewed from the component side of the pc board

Table 3
Changes of Pin Description in 186 mode

Symbol	Number	Input (I) Output (O)	Functions
$\frac{\overline{\mathrm{RD}}}{\overline{\mathrm{WR}}}$	2,3	1/O	In 186 mode, the $\overline{R D}$ and $\overline{W R}$ pins are additionally used as output pins to support 80186 or 8086 minimum mode systems.
ALE	58	0	Address latch enable signal provides a strobe to separate the address information on the multiplexed AD lines.
$\overline{\text { DEN }}$	56	0	Data enable signal is used for enabling the data transceiver.
DT/ \bar{R}	57	0	Data transmit/receive signal controls the direction of the data transceivers. When LOW, data is transferred to the SAB 82258, when HIGH the ADMA places data on to the data bus.
$\overline{\mathrm{S} 2}$	14	0	Status signal as for SAB 186/8086/88 processors (see also $\overline{\mathrm{S} 1}, \overline{\mathrm{~S} 0}$ description in 286 mode).
AREADY	59	1	This is an asynchronous bus ready signal, the rising edge is internally synchronized, the falling edge must be synchronous to CLK. During reset this signal must be low for entering the 186 mode.
SREADY	10	I	Synchronous ready input. This signal must be synchronized externally. The use of this pin permits a relaxed system-timing specification by eliminating the clock phase which is required for resolving the signal level when using the AREADY input.
CLK	12	1	This is the input for the one time system clock. No internal prescaling is done.
$\begin{aligned} & \text { AD0- } \\ & \text { AD15 } \end{aligned}$	$\begin{aligned} & 18-25 \\ & 27-34 \end{aligned}$	1/0	Lower address and data information is multiplexed on pin AD0-AD15. Additionally the demultiplexed address
$\begin{aligned} & \mathrm{A} 0-\mathrm{A} 7 \\ & \mathrm{~A} 8-\mathrm{A} 15 \end{aligned}$	$\begin{aligned} & 35-42 \\ & 44-51 \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & 0 \end{aligned}$	in
$\begin{aligned} & \text { A16/S3- } \\ & \text { A19/S6 } \end{aligned}$	52, 55	0	The higher address bits are multiplexed with additional status information.

Pinning in 8086 Mode

In 8086 mode the bus arbitration is done via $\overline{R Q} / \overline{G T}$ protocol instead of the HOLD/HLDA protocol in 186
mode. The function of the other pins is identical to 186 mode.

Figure 8
Pin Configuration in $\mathbf{8 0 8 6}$ Mode

Component Pad View - As viewed from underside of component when mounted on the board

PC Board View - As viewed from the component side of the pc board

Table 4
Changes of Pin Description in 8086 Mode

Symbol	Number	Input (I) Output (O)	Functions
$\overline{\mathrm{RG} / \overline{\mathrm{GT}}}$	16	I/O	In the 8086 mode the HOLD input acts as REQUEST// GRANT line. The REQUEST/GRANT protocol implements a one-line communication dialog required to arbitrate the use of the system bus normally done via HOLD/HLDA. The $\overline{\mathrm{RG} / \overline{\mathrm{GT}} \text { signal is active low and has an internal }}$ pullup.
HLDA	17	1	After entering 8086-mode this pin no longer acts as hold- acknowledge input for the bus arbitration with the processor. But it can still be used to force the SAB 82258 off the bus by a low input level (e.g. it a third priority bus master needs the bus).

Pinning in Remote Mode

In remote mode most of the bus signals have the same functions as in the 286 mode. The other pins are listed below.

Figure 9
Pin Configuration in Remote Mode

Component Pad View - As viewed
from underside of component when mounted on the board

PC Board View - As viewed from the component side of the pc board

Table 5
Changes of Pin Description in Remote Mode

Symbol	Number	Input (I) Output (O)	Functions
BREL	14	0	In this mode pin 14 is used to indicate when SAB 82258 has released the control of the local bus.
$\overline{\overline{\mathrm{CS}}}$	8	1	In Remote Mode the $\overline{\mathrm{CS}}$ input has two functions: besides enabling the access to SAB 82258 internal registers it works as an Access Request input. When forced to low it signals the SAB 82258 that another bus master needs access to the local bus of the SAB 82258 (e.g. to read/write SAB 82258 registers). SAB 82258 releases the bus as soon as possible and indicates this by activating the BREL output.
HOLD	16	17	O

Functional Description

General

SAB 82258 is an advanced general purpose DMA controller especially tailored for efficient high speed data transfers on a SAB 80286 as well as an SAB 80186/188 or SAB 8086/88 bus.
It supports two basic operating modes:

- local mode (tightly coupled to a processor) and - remote mode (loosely coupled to a processor).

In the first case SAB 82258 is directly coupled to the CPU and uses the same system support/control devices as the CPU (see figure 10a). This mode is possible with the above mentioned processors.

As a second basic operating mode a remote (stand alone) mode is supported (see fig. 10b). Here the SAB 82258 has his own sets of bus interface circuits and thus can dispose of its own local bus. This allows the DMA-controller to work in parallel to the main CPU and therefore overall system performance could be increased. Besides that, this mode is very useful for the design of modular systems and allows connecting the ADMA to any other processor via the system bus independent of the processor's unique local bus.

Figure 10
Basic ADMA Operating Modes
a) Local Mode

b) Remote Mode

SAB 82258 has four independent DMA channels that can transfer up to $8 \mathrm{Mbytes} / \mathrm{sec}$ in the single cycle mode (2 clocks/transfer). In the 2 cycle transfer mode the maximum rate is $4 \mathrm{Mbytes} / \mathrm{sec}$. Switching between channels induces no time penalty. Thus the overall maximum transfer rate of

8 Mbytes/sec is also valid for multiple channel operation.
This fast operation is possible because of the pipelined architecture of the SAB 82258 that allows the different function units to work in parallel.

Figure 11
Block diagram of SAB 82258

The ADMA supports two address spaces, memory space and I/O space, each with a maximum address range of 16 Mbytes. In addition, the maximum
block length (byte count) is also 16 Mbytes to support applications where large blocks of data have to be transferred (e.g. graphics).

As source or as destination, four parameters can be independently selected:

- Address Space (memory or I/O)
- Physical Bus Width (8 bit or 16 bit),
- Logical Bus Width (same as physical bus width or 8 bit on a 16 bit physical bus) and
- Transfer Direction (increasing, decreasing, fixed pointer or constant value).

If the physical bus width of source or destination does not meet the logical bus width an automatic byte/word assembly (word/byte disassembly) takes place if this minimizes the necessary transfers. The same is true if the logical bus widths of source and destination are different.
Transfers between different address spaces can be performed within one cycle or in two cycles, transfers within one address space can be performed only in two cycles.
The transfers can be executed free running or externally synchronized via DRQ where source or destination synchronization is possible.
In summary, this very symmetrical operation of SAB 82258 gives the user a great amount of design flexibility.

Adaptive Bus Interface

As shown in figure 5 the SAB 82258 bus interface has two basic timing modes: the 286 mode and the 186 mode. In 286 mode SAB 82258 is directly coupled to an SAB 80286, in 186 mode to an SAB 80186 or SAB 80188. For each of these two modes a slightly different variation exists:

- For the 286 mode, the Remote Mode, where the ADMA operates as a bus master on the system bus without being directly coupled to a processor. In this mode SAB 82258 can dispose of its own local bus and the communication with the main processor is done via the system bus. To enable access to ADMA registers by the main processor, SAB 82258 must release its local bus. This "local bus arbitration" in remote mode is done via the $\overline{\mathrm{CS}}$ and BREL lines.
- For the 186 mode the variation is the 8086 mode where the SAB 82258 supports the $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ protocol and thus can be directly coupled to an SAB 8086 or SAB 8088.

Memory Based Communication

The normal communication between the ADMA and the processor is memory based. This means that all necessary data for a transfer is contained in a command block in memory accessible for CPU and SAB 82258 (see figure 12). To start the transfer the CPU loads one of the command pointer registers of SAB 82258 with the address of the command block and then gives a "start channel command". Getting the command SAB 82258 loads the entire command block from memory into its on-chip channel registers and executes it. On completing the operation, channel status information is written back by SAB 82258 into the channel status word contained in the command block in memory. If desired the actual contents of the channel registers, i.e. source pointer, destination pointer and byte count is transferred into the Channel Status Block. The Channel Status Block immediately follows the Command Block in memory (see figure 12).

Figure 12
Memory Based Communication and Command Chaining

Memory Based Communication

Command Chaining

a) Simplest DMA Operation

b) Auto-reload DMA

Command Chaining

Command blocks for any channel can be chained for sequential execution (see figure 12). When SAB 82258 comes to an end with one command, it automatically starts to fetch and execute the next command block until a stop command is found. As a result a chain of command blocks can be executed by the ADMA without any CPU intervention. Due to conditional and unconditional STOP and JUMP commands, quite complex sequences of DMA can be executed by SAB 82258.

Data Chaining

Data chaining permits an automatic, dynamic linking of data blocks scattered in memory. There are two types: list and linked-list data chaining. If for a DMA the source blocks are to be dynamically linked during DMA it is called source chaining and the effect is that of gathering data blocks and sending them out effectively as one block.

If one source block is dynamically broken-up into multiple destination blocks, it is called destination chaining. This results in scattering of a block.
This dynamic linking and un-linking of data blocks makes the logical sequencing of data independent of its physical sequencing in memory.

Figure 13

Data Chaining

a) Linked List Chaining

Linked List
b) List Chaining

In the case of linked list chaining (see figure 13a) each data block has a descriptor containing information on position of data block in memory, length of data block, and a pointer to the next description.
During data transfer the data block 1 is sent out first, then 2 and so on till a 0 is encountered in the byte count field.

The second type of data chaining is List Chaining (figure 13 b).
Unlike linked list chaining, here the data block descriptors are continuous in a block and thus determine the sequence of data blocks. The flexibility lost in terms of predefined sequence is gained in terms of linking time.

"On-The-Fly" Operations

A normal DMA controller blindly transfers data from source to destination without looking at the data. In case of the ADMA on-the-fly operations are executed during the DMA transfer and allow inspection and/or operation on the transferred data. There are three on-the-fly operations possible:

- Mask/Compare,
- Translate and
- Verify

During a mask/compare operation each byte/word transferred is compared to a given pattern. One or more bits can be masked and thus do not contribute to the result of the compare operation. The result can be used by subsequent conditional stop or jump operations.
For translate operation the byte (no word possible) that is fetched from source is added to a translate pointer to build the effective source pointer. The byte pointed to by this pointer is then fetched and sent out to the destination. Of course a mask/ compare operation is possible on the byte sent out.

The verify operation is a type of block compare operation to compare each byte/word of data read from a peripheral with that in a data block in memory. There are three options:

1. Verify with no termination on mismatch (2-cycle transfer only)
2. Verify with termination on mismatch (2-cycle transfer only).
3. Verify and save (single cycle transfer only). Here an actual transfer with compare takes place. The transfer is not stopped on mismatch.

Multiplexer Channel

When programmed to multiplexer mode channel 3 (supported by a multiplexer logic) can be used to service up to 32 subchannel request lines (see figure 14). Thus it is ideally suited to service a large number of relatively slow equipment like CRT terminals, line printers etc. Since multiple subchannels are processed with the resource of one DMA channel, the overhead of subchannel switching, of course, decreases the total effective throughput on the multiplexer channel.

Figure 14a
Multiplexer Channel

Figure 14 b)
Structure of Multiplexer Table

The mask pointer is the address of the appropriate SAB 8259A mask register.

Operating the SAB 82258

Reset

When activating the reset input, SAB 82258 is forced into its initial state. All channels and bus activities are stopped, tristate lines are tristated and the others enter the inactive state.
While the reset input is active line A23/AREADY and HLDA must be forced to the appropriate levels to select the desired bus interface mode (see figures 5 and 36).
After deactivating reset the inactive state is maintained, in addition the state of SAB 82258 registers is as follows:

- General Mode Register, General Burst Register, General Delay Register, General Status Register and the four Channel Status Registers are set to zero,
- the Vector Not Valid bit of the Multiplexer Interrupt Vector Register is set to 1 ,
- all other registers and bits are undefined.

Note that the General Mode Register (GMR) should be loaded first to select the mode of operation
before any other activity is started on the ADMA.

DMA Interface

The DMA interface consists of three lines:

- DRQ - DMA request,
- DACK - DMA acknowledge and
- EOD - end of DMA

The first two lines work as request and acknowledge lines to control synchronized DMA transfers as known from conventional DMA controllers.
A special feature of SAB 82258 are the bidirectional EOD lines. First they can be used as inputs to receive an asynchronous external terminate signal to terminate a running DMA. Second, as an output, they can be used to send out a pulse which interrupts the CPU and/or signals to the peripheral a specific status (e.g. transfer aborted or end of a block or send/receive next block ...).
The EOD output signal can be generated synchronously to a transfer (during the last transfer) or asynchronously to the transfers by a specific command.

In addition the EOD output of channel 2 can be used as a collective interrupt output for all DMA channels while the other three retain their normal function.

Slave Interface

The slave interface is used to access SAB 82258 internal registers. Although nearly all of the communication between CPU and ADMA is done
via memory based data blocks, some direct accesses to ADMA registers are necessary. For example during the initialization phase the general mode registers must be written, or to start a channe! the command pointer register and the general command register must be loaded. Also during the debugging phase it is of great benefit to have access to all of the SAB 82258 internal registers.

The slave interface is enabled by the $\overline{\mathrm{CS}}$ input and consists of the following lines:

- $\overline{\mathrm{S0}}, \overline{\mathrm{~S} 1} \quad-$ Status Lines (inputs)
- $\overline{\mathrm{RD}}, \overline{\mathrm{WR}} \quad$ - Control Lines (inputs)
- A0-A7 - Register Address (inputs)
- D0-D15 - Data Lines (inputs/outputs) and
- AD0-AD15 - Address/Data Lines (inputs/outputs)
for synchronous access in 186 mode
Note, that all of these lines are outputs if SAB 82258 is an active bus master.
In 186 mode and 286 mode two types of accesses are possible:
- Synchronous access by means of the status lines. Processor and SAB 82258 are directly coupled and must use the same clock,
- Asynchronous access by using the control lines $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ (processor and ADMA may have different clocks).
In all modes except the synchronous access in 186 mode the register address must be supplied on address pins A0-A7. Using synchronous access in 186 mode the address information is expected at address/data lines AD0-AD7.
In remote mode only the asynchronous access is possible because SAB 82258 first has to release its local bus to enable the register access. On receiving an access request (activation of $\overline{\mathrm{CS}}$ input) SAB 82258 releases its local bus as soon as possible and signals this by activating the BREL line. Now the CPU can accomplish its access.

Register Set

Figure 15 shows the user visible registers of SAB 82258. A set of 5 registers, called the general registers, is used for all the 4 channels. The mode register is written first after reset and it describes the SAB 82258 environment - bus widths, priorities etc. The General Command Register (GCR) is used to start and stop the DMA transfer on different channels. General Status Register (GSR) shows the status of all the 4 channels; if the channel is running, if interrupt is pending etc. General Burst Register (GBR) and General Delay Register (GDR) are used to specify the bus load which is permissible for SAB 82258.

There is a set of channel registers for each of the 4 channels. Most channel registers serve as cache registers and need to be accessed only for debugging. During normal operation they are automatically loaded by SAB 82258 (see next paragraph).

The layout of register addresses is shown in figure 16. All register lie at even addresses. Locations not designated in figure 16 are reserved.

Figure 15
SAB 82258 Register Set

General Registers

Channel Registers (4 sets; 1 per channel)			
23			
CPR	Command Pointer		
SPR	Source Pointer		
DPR	Destination Pointer		
TTPR	Translate Table Pointer		
LPR	List Pointer		
BCR	Byte Count		
CCR	Channel Command		
	MASKR COMPR DAR		sk
			mpare
			sembly
	15	CSR	Channel Status

Multiplexor Channel Registers

Figure 16
Layout of Register Addresses

Address Bits	Address Bits 7,6			
0-5	00	01	10	11
0	GCR			
2	SCR			
4	GSR			
6				
8	GMR			
A	GBR			
C	GDR			
E				
10	CSR \emptyset	CSR_{1}	CSR_{2}	CSR_{3}
12	DAR \emptyset	DAR_{1}	DAR_{2}	DAR_{3}
14	MASKR \emptyset	MASKR $_{1}$	MASKR 2	MASKR $_{3}$
16	COMPRø	COMPR_{1}	COMPR_{2}	COMPR_{3}
18				MIVR
1A				LVR
1 C				
1 E				
20	CPRLQ	CPR L1	CPRL2	CPRL3
22	$\mathrm{CPR}_{\mathrm{H} \varnothing}$	$\mathrm{CPR}_{\mathrm{H} 1}$	$\mathrm{CPR}_{\mathrm{H} 2}$	CPR H3
24	SPR L	SPR ${ }_{\text {L1 }}$.	SPR L2	SPR L3
26	SPR $\mathrm{H}^{\text {d }}$	SPR H1	SPR H2	SPR H3
28	DPR ${ }_{\text {L }}$	DPR L1	DPR L2	DPR L3
2 A	$\mathrm{DPR}_{\mathrm{H} \varnothing}$	DPR ${ }^{1}$	DPR H_{2}	DPR H_{3}
2 C	TTPRLø	TTPR ${ }_{\text {L1 }}$	TTPR ${ }_{\text {L2 }}$	TTPR ${ }^{\text {L }}$
2 E	TTPR $\mathrm{H} \varnothing$	TTPR ${ }^{\text {H1 }}$	TTPR ${ }^{\text {2 }}$	TTPR H3
30	LPR ${ }_{\text {L }}$	$\mathrm{LPR}_{\mathrm{L} 1}$	$\mathrm{LPR}_{\mathrm{L} 2}$	$L^{\text {LPR }}{ }_{\text {L }} / \mathrm{MTPR}_{\text {L }}$
32	$\mathrm{LPR}_{\mathrm{H} \ell}$	$\mathrm{LPR}_{\mathrm{H} 1}$	$\mathrm{LPR}_{\mathrm{H} 2}$	$L^{\text {LPR }}{ }_{\text {H }} / \mathrm{MTPR}_{\mathrm{H}}$
34				
36				
38	$B C R_{L \emptyset}$	BCRL1	$\mathrm{BCR}_{\mathrm{L} 2}$	BCR_{13}
3 A	$B^{\text {BCR }}$ H \varnothing	$\mathrm{BCR}_{\mathrm{H} 1}$	$\mathrm{BCR}_{\mathrm{H} 2}$	$\mathrm{BCR}_{\mathrm{H} 3}$
3 C	CCRLO	CCRL1	CCRL2	CCRL3
3 E	CCRHD	$\mathrm{CCR}_{\mathrm{H} 1}$	CCRH_{2}	$\mathrm{CCR}^{\text {H3 }}$

```
GCR = General Command Register
SCR = Subchannel Register
GSR = General Status Register
GMR = General Mode Register
GBR = General Burst Register
GDR = General Delay Register
CSR = Channel Status Register
DAR = Data Assembly Register
MASKR = Mask Register
COMPR = Compare Register
```

MIVR = Multiplexor Interrupt Vector Register
LVR = Last Vector Register
CPR = Command Pointer Register
SPR = Source Pointer Register
DPR = Destination Pointer Register
TTPR = Translate Table Pointer Register
LPR = List Pointer Register
MTPR = Multiplexer Table Pointer Register
BCR = Byte Count Register
CCR = Channel Command Register

Register Description

General Mode Register

In the General Mode Register GMR (figure 17) the system wide parameters are specified.

This register should be programmed first after reset.

Figure 17
General Mode Register (GMR)

General Command Register

Individual channels are started and stopped by a command written to the General Command Register

GCR (figure 18). The GCR is directly loaded by the CPU.

Figure 18
General Command Register (GCR)

General Burst and Delay Register

It is possible to restrict the bus load generated by SAB 82258 on the CPU bus by programming the burst and the delay register. The bus load is defined by the formula given in figure 19a. The factor b (burst) is programmed in the General Burst Register GBR, t (delay time) in the General Delay Register GDR (see figure 19 b and c).

Since SAB 82258 can also execute locked bus cycles, the maximum burst length consists of $b+3$ (8 bit bus) or b+2 (16 bit bus) bus cycles. GBR and GDR must be directly loaded by the CPU. Loading GBR with 0 leads to no bus load limitations for SAB 82258 (default after reset).

Figure 19
General Burst and Delay Register
a) Bus Loading

Bus load
due to SAB 82258
$\approx \frac{b}{b+t}$
b) General Burst Register (GBR)

Determines max. number of
Contiguous bus cycles from
SAB 82258

If $G B R=0$, no limit
(default after reset)

c) General Delay Register (GDR)

Determines min. number of
Clocks between burst access
(default after reset $=0$)

General Status Register

The General Status Register GSR (figure 20) shows the current states of all the channels.

Figure 20

General Status Register (GSR)

Channel Commands

The channel commands are contained in the channel command block (figure 12). Up to 22 bits are used to specify the command. There are two types of channel commands:

- Type 1: for data movement
- Type 2: for command chaining control

The command block for a Type 1 command is in general 26 bytes long (see figure 12).
For certain type 1 transfers which, for example, do not use "on-the-fly" match, translate or verify feature, the command is only 16 bits long and only a short command block is necessary (see figure 12).
The Type 1 command fields (see figures 21 and 22) contain information on:
a. Bus width of source and destination
b. If source and/or destination address should be incremented or decremented or kept constant during the transfer
c. If source/destination is in memory or I/O space (local mode) or in system or I/O space (remote mode)
d. If data chaining (list or linked-list) is to be performed
e. If the data transfer is synchronized (source or destination)
f. If an "on-the-fly" match operation and/or translate operation has to be performed
g. If a verify operation has to be performed.

Type 2 command blocks are 6 bytes long (see figure 23) of which the first 2 bytes form the command and the rest is either a relative displacement or an absolute address for the JUMP operation. There are 2 basic type 2 commands (figure 23):
a. JUMP - conditional and non-conditional
b. STOP - conditional and non-conditional

The conditional case tests for either of the 4 condition bits which are altered at the termination of any DMA operation:

- Termination due to byte count end
- Termination due to mask-compare
- Termination due to external terminate
- Verify operation resulting in mismatch.

It is thus possible to JUMP or STOP further execution of commands based on any of these conditions and optionally generate EOD or interrupt signal.
The combination of type 1 and 2 commands gives SAB 82258 a high degree of "programmability". It can thus execute quite complex algorithms with a fairly low demand for CPU service.

Figure 21
Type 1 (DMA) Channel Command

Figure 22
Type 1 Channel Command Extension

Figure 23
Type 2 Command Blocks (for command chaining control)

15
Type 2 Command
Signed 16 -bit Displacement
$-0-$

-Relative JUMP

Type 2 Command
$-0-$
$-0-$

-Conditional STOP
-Unconditional STOP
-STOP and MASK for MUX Channel

Figure 24
Type 2 Command Format

*) Unconditional JUMP when all condition code bits are set 1.

Channel Status Register

For each channel exists a Channel Status Register (see figure 25). This register shows the current state of the appropriate channel.

Figure 25
Channel Status Register

*) Valid only for channel 3 in multiplexer mode. In all other cases 0 is returned.

Multiplexer Channel Registers

These registers are valid only for channel 3 if programmed as multiplexer channel.

Multiplexer Table Pointer Register (MTPR)

This 24 bit register is used to reference the multiplexer table in memory (see figure 14 b). It must be loaded by the CPU. Physically the List Pointer Register is used, since data chaining is not allowed for multiplexer channel.

Multiplexer Interrupt Vector Register

This 8 bit register is read by the CPU to determine which channels are stopped. The vectors of the stopped subchannels are output on subsequent read operations in order of their priority (0 has highest priority).

Figure 26
Multiplexer Interrupt Vector Register (MIVR)

Last Vector Register (LVR)

This 8 bit register holds the last vector read by SAB 82258 (from SAB 8259A). In case of a stop caused by a fatal error on channel 3 , LVR determines the failing subchannel.

Subchannel Register

This 8 bit register must be loaded by the CPU with the desired subchannel number before a subchannel command is written into GCR.

Timings

The bus timings in 286 and Remote mode are identical to that for SAB 80286, in the 186 and 8086 mode the timings are identical to that for SAB 80186. For exact timings see timing diagrams of A.C. Characteristics.

Asynchronous control inputs are specified with setup and hold times which are only meaningful to determine whether the SAB 82258 responds to the signal in the current cycle or the next cycle.

Absolute Maximum Ratings ${ }^{11}$

Temperature Under Bias	0 to $70^{\circ} \mathrm{C}$	
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$	
Voltage on Any Pin with Respect to Ground	-1 to	+7 V
Power Dissipation		3.6 W

D.C. Characteristics ${ }^{2)}$

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=+5 \pm 10 \%$

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
VIL	Input Low Voltage (except CLK)	-0.5	+0.8	V	-
VIH	Input High Voltage (except CLK)	2.0	VCC +0.5		
VOL	Output Low Voltage	-	0.45		$1 \mathrm{OL}=3.0 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-		$\mathrm{IOH}=-400 \mu \mathrm{~A}$
ICC	Power Supply Current	-	450	mA	$\mathrm{TA}=25^{\circ} \mathrm{C}$ all outputs open
ILI	Input Leakage Current				$0 \mathrm{~V} \leq \mathrm{VIN} \leq \mathrm{VCC}$
	$\overline{\mathrm{SO}}, \overline{\mathrm{S} 1}, \overline{\mathrm{~S} 2}, \overline{\mathrm{BHE}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{M} / \overline{\mathrm{IO}}$		-200	$\mu \mathrm{A}$	
	HOLD ($\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ mode), $\overline{\mathrm{EOD}}$		-1.5	mA	
	other pins		± 10	$\mu \mathrm{A}$	
ILO	Output Leakage Current				$0.45 \mathrm{~V} \leq \mathrm{VOUT} \leq \mathrm{VCC}$
VCL	Clock Input Low Voltage	-0.5	+0.6	V	
VCH	Clock Input High Voltage	3.8	VCC +1.0	V	-
CIN	Capacitance of Inputs (except CLK)		10		
CO	Capacitance of I/O or Outputs	-	20	pF	$\mathrm{fc}=1 \mathrm{MHz}$
CCLK	Capacitance of CLK Input		12		

1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2)}$ Clock must be applied.

A.C. Characteristics

$\mathrm{TA}=0$ to $+70^{\circ} \mathrm{C} ; \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%$
Any output timing is measured at 1.5 V .

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		
1	CLK Cycle Period	62.5	250	ns	-
2	CLK Low Time	15	230		at 0.6 V
3	CLK High Time	20	235		at 3.2 V
4	Output Delay	0	60		
5	Output Delay		40		$C L=125 \mathrm{pF}$
6	DATA Setup Time	10	-		-
7	DATA Hold Time	5			
8	READY Setup Time	38.5			
9	READY Hold Time	25			
10	Input Setup Time	20			
11	Input Hold Time				
12	Address Set Up	2.5			
13	Output Delay	0	50		
14	Delay to Float	-	60		
15	Chip Select Set Up	60	-		
16	Command Length	290			at 8 MHz Operation
17	Data Set Up	165			at 8 MHz Operation
18	Address Set Up	80			-
19	Command Inactive	290			
19a	Access Time	-	320		8 MHz Operation

A.C. Characteristics (continued)

Symbol	Parameter	Limit Values		Units	Test Conditions
		Min.	Max.		

CLK Timing for $\mathbf{1 8 6}$ Mode

20	CLK Period	125	500		
21	CLK Low Time	55	-	ns	
22	CLK High Time				
23	CLK Rise Time				
24	CLK Fall Time			1.0 to 3.5 V	

Ready Timing for 186 Mode

25	Ready Active Set Up Time	20	-	ns	-
26	Ready Hold Time	10			
27	Ready Inactive Set Up Time	35			
28	Set Up Time	20			
29	Hold Time	0			
30	Data Delay		50		
31	Status Delay	10	55		
32	Delay to Float		50		

Asynchronous inputs are specified with setup and hold times which are only intended for determination of whether the SAB 82258 responds to the signal in the current cycle or the next cycle.

Waveforms

Figure 27
Timing of an Active Bus Cycle (286 mode)

Note 1: D15-D0 floats during Single Cycle Transfer like a Read Cycle.
Note 2: T2 will be repeated, if READY is inactive.

Figure 28
Timing of an Active Bus Cycle (186 mode)

Note 3: For a Single Cycle Transfer trie timing of AD15-AD $\emptyset, \overline{\mathrm{DEN}}$ and $\mathrm{DT} / \overline{\mathrm{R}}$ is the same as in a Read Bus Cycle.
Note 4: Additional T3 cycles will be inserted if bus is not ready (see fig. 32).

Figure 29
Timing of a Synchronous Access to the SAB 82258 (286 mode)

Figure 30
Timing of a Synchronous Access to the SAB 82258 (186 mode)

Figure 31
Timing of an Asynchronous Access to the SAB 82258

Figure 32
READY Timing (186 mode)

Figure 33
DREQ, DACK Timing (286 mode)

Note 5: The trailing edge of DREOn, as specified in this diayram, is necessary if only one bus cycle should be executed.
A later trailing edge may cause an additional bus cycle (continuous DREQ), if no READY-wait-states are inserted.

Figure 34
DREQ, DACK Timing (186 mode)

Figure 35
BREL, Bus Tristate Timing (Remote mode)

Figure 36

RESET Timing

Figure 37
HOLD, HLDA Timing (286 mode)

Figure 38
HOLD, HLDA Timing (186 mode)

Figure 39

$\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ Timing (8086 mode)

Figure 40
INTOUT, EOD Timing (286 mode)

Figure 41
INTOUT, EOD, CLK Timing (186 mode)

SAB 82284

 Clock Generator and Ready Interface for SAB 80286 Processors
SAB 82284 upto 16 MHz

- Generates System Clock for SAB 80286

Processors

- Uses Crystal or TTL Signal for Frequency Source
- Provides Local READY and Multimaster System Bus READY Synchronization

SAB 82284-6 upto 12 MHz

- 18-Pin Package
- Single +5V Power Supply
- Generates System Reset Output from

Schmitt Trigger Input

The SAB 82284 is a bipolar clock generator/driver which provides clock signals for SAB 80286 processors and support components. It also contains logic to supply $\overline{R E A D Y}$ to the CPU from either
asynchronous or synchronous sources and synchronous RESET from an asynchronous input with hysteresis.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Function
$\overline{\text { ARDY }}$	1	1	ASYNCHRONOUS READY is an active LOW input used to terminate the current bus cycle. The $\overline{\operatorname{ARDY}}$ input is qualified by $\overline{\operatorname{ARDYEN}}$. Inputs to ARDY may be applied asynchronously to CLK. Setup and hold times are given to assure a guaranteed response to synchronous inputs.
$\overline{\text { SRDY }}$	2	1	SYNCHRONOUS READY is an active LOW input used to terminate the current bus cycle. The SRDY input is qualified by the SRDYEN input. Setup and hold times must be satisfied for proper operation.
SRDYEN	3	1	SYNCHRONOUS READY ENABLE is an active LOW input which qualifies SRDY. SRDYEN selects SRDY as the source for $\overline{\text { READY }}$ to the CPU for the current bus cycle. Setup and hold times must be satisfied for proper operation.
$\overline{\text { READY }}$	4	0	READY is an active LOW output which signals the current bus cycle is to be completed. The SRDY, $\overline{\text { SRDYEN }}, \overline{\text { ARDY }}, \overline{\mathrm{ARDYEN}}$, $\overline{\mathrm{S} 1}, \overline{\mathrm{SO}}$ and $\overline{\mathrm{RES}}$ inputs control $\overline{\mathrm{READY}}$ as explained later in the $\overline{\text { EAADY }}$ generator section. $\overline{\text { READY }}$ is an open collector output requiring an external 300 ohm pullup resistor.
EFI	5	1	EXTERNAL FREQUENCY IN drives CLK when the F / \bar{C} input is strapped HIGH. The EFI input frequency must be twice the desired internal processor clock frequency.
F/C	6	1	FREQUENCY/CRYSTAL SELECT is a strapping option to select the source for the CLK output. When F/C is strapped LOW, the internal crystal oscillator drives CLK. When F/C is strapped HIGH, the EFI input drives the CLK output.
X1, X2	7,8	1	CRYSTAL IN are the pins to which a parallel resonant fundamental mode crystal is attached for the internal oscillator. When F / \bar{C} is LOW, the internal oscillator will drive the CLK output at the crystal frequency. The crystal frequency must be twice the desired internal processor clock frequency.
CLK	10	0	SYSTEM CLOCK is the signal used by the processor and support devices which must be synchronous with the processor. The frequency of the CLK output has twice the desired internal processor clock frequency. CLK can drive both TTL and MOS level inputs.
$\overline{\text { RES }}$	11	1	RESET IN is an active LOW input which generates the system reset signal RESET. Signals to $\overline{\operatorname{RES}}$ may be applied asynchronously to CLK. A Schmitt trigger input is provided on $\overline{R E S}$, so that an RC circuit can be used to provide a time delay. Setup and hold times are given to assure a guaranteed response to synchronous inputs.
RESET	12	0	RESET is an active HIGH output which is derived from the $\overline{\text { RES }}$ input. RESET is used to force the system into an initial state. When RESET is active, $\overline{\operatorname{READY}}$ will be active (LOW).

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
PCLK	13	0	PERIPHERAL CLOCK is an output which provides a 50% duty cycle clock with $1 / 2$ the frequency of CLK. PLCK will be in phase with the internal processor clock following the first bus cycle after the processor has been reset.
$\overline{\mathrm{So}}, \overline{\mathrm{S} 1}$	15,16	1	STATUS inputs prepare the SAB 82284 for a subsequent bus cycle. $\overline{\mathrm{S} 0}$ and $\overline{\mathrm{S} 1}$ synchronize PCLK to the internal processor clock and control $\overline{\operatorname{READY}}$. These inputs have pullup resistors to keep them HIGH if nothing is driving them. Setup and hold times must be satisfied for proper operation.
$\overline{\text { ARDYEN }}$	17	1	ASYNCHRONOUS READY ENABLE is an active LOW input which qualifies the $\overline{\operatorname{ARDY}}$ input. $\overline{\operatorname{ARDYEN}}$ selects $\overline{\mathrm{ARDY}}$ as the source of ready for the current bus cycle. Inputs to $\overline{\text { ARDYEN }}$ may be applied asynchronously to CLK. Setup and hold times are given to assure a guaranteed response to synchronous inputs.
VCC	18	-	POWER SUPPLY (+5V)
GND	9	-	GROUND (OV)

Block Diagram

Functional Description

Introduction

The SAB 82284 generates the clock, ready, and reset signals required for SAB 80286 processors and support components. The SAB 82284 is packaged in an 18-pin DIP package and contains a crystal-controlled oscillator, MOS clock generator, peripheral clock generator, Multibus ready synchronization logic, and system reset generation logic.

Clock generator

The CLK output provides the basic timing control for an SAB 80286 system. CLK has output characteristics sufficient to drive MOS devices. CLK is generated by either an internal crystal oscillator or an external source as selected by the F / \bar{C} strapping option. When F / \bar{C} is LOW, the crystal oscillator drives the CLK output. When $\mathrm{F} / \overline{\mathrm{C}}$ is HIGH , the EFI input drives the CLK output. The SAB 82284 provides a second clock output (PCLK) for peripheral devices. PCLK is CLK divided by two. PCLK has a duty cycle of 50% and TTL output drive characteristics. PCLK is normally synchronized to the internal processor clock. After reset, the PCLK signal may be out of phase with the internal processor clock. The $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 0}$ signals of the first bus cycle are used to synchronize PCLK to the internal processor clock. The phase of the PCLK output changes by extending its High time beyond one system clock (see waveforms). PCLK is
forced HIGH whenever either $\overline{\mathrm{SO}}$ or $\overline{\mathrm{S} 1}$ were active (LOW) for the two previous CLK cycles. PCLK continues to oscillate when both $\overline{\mathrm{S0}}$ and $\overline{\mathrm{S} 1}$ are HIGH.
Since the phase of the internal processor clock will not change except during reset, the phase of PCLK will not change except during the first bus cycle after reset.

Oscillator

The oscillator circuit of the SAB 82284 is a linear Pierce oscillator which requires an external, parallel, resonant, fundamental-mode crystal. The output of the oscillator is internally buffered. The crystal frequency chosen should be twice the required internal processor clock frequency. The crystal should have a typical load capacitance of 32 pF .
X1 and X2 are the oscillator crystal connections. For stable operation of the oscillator, two loading capacitors are recommended, as shown in the figure below. The sum of the board capacitance and loading capacitance should equal the values shown. It is advisable to limit stray board capacitances (not including the effect of the loading capacitors or crystal capacitance) to less than 10pF between the $X 1$ and $X 2$ pins.
Decouple VCC and GND as close to the SAB 82284 as possible.

Reset Operation

The reset logic provides the RESET output to force the system into a known, initial state. When the $\overline{R E S}$ input is active (LOW), the RESET output becomes active (HIGH). $\overline{\text { RES }}$ is synchronized internally at the falling edge of CLK before generating the RESET output (see waveforms). Synchronization of the $\overline{R E S}$ input introduces a one or two CLK delay before affecting the RESET output.

At power up, a system does not have a stable VCC and CLK. To prevent spurious activity, $\overline{\mathrm{RES}}$ should be asserted until VCC and CLK stabilize at their operating values. SAB 80286 processors and support components also require their RESET inputs be HIGH a minimum number of CLK cycles. An RC network, as shown below, will keep $\overline{\mathrm{RES}}$ LOW long enough to satisfy both needs.

Typical RC RESET Timing Circuit

A Schmitt trigger input with hysteresis on $\overline{R E S}$ assures a single transition of RESET with an RC circuit on $\overline{\mathrm{RES}}$. The hysteresis separates the input voltage level at which the circuit output switches from HIGH to LOW from the input voltage level at which the circuit output switches from LOW to HIGH. The RES HIGH to LOW input transition voltage is lower than the RES LOW to HIGH input transition voltage. As long as the slope of the $\overline{R E S}$ input voltage remains in the same direction (increasing or decreasing) around the $\overline{\mathrm{RES}}$ input transition voltage, the RESET output will make a single transition.

Ready Operation

The SAB 82284 accepts two ready sources for the system ready signal which terminates the current bus cycle. Either a synchronous ($\overline{\mathrm{SRDY}}$) or asynchronous ready ($\overline{\mathrm{ARDY}}$) source may be used. Each ready input has an enable (SRDYEN and ARDYEN) for selecting the type of ready source required to terminate the current bus cycle. An address decoder would normally select one of the enable inputs.
The figure on synchronous ready mode illustrates the operation of SRDY and SRDYEN. These inputs are sampled on the falling edge of CLK when $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{SO}}$ are inactive and PCLK is HIGH. $\overline{\text { READY }}$ is forced active when both SRDY and SRDYEN are sampled as LOW.

The figure on asynchronous ready mode shows the operation of $\overline{\text { ARDY }}$ and $\overline{\text { ARDYEN }}$. These inputs are sampled by an internal synchronizer at each falling edge of CLK. The output of the synchronizer is then sampled when PCLK is HIGH. If the synchronizer resolved both the $\overline{\operatorname{ARDY}}$ and $\overline{\mathrm{ARDYEN}}$ inputs to have been active (LOW), $\overline{R E A D Y}$ becomes active (LOW) and the SRDY and SRDYEN inputs are ignored.
$\overline{\mathrm{READY}}$ remains active until either $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S0}}$ is sampled LOW, or the ready inputs are sampled as inactive.
$\overline{\text { READY }}$ is enabled (LOW), if either SRDY + $\overline{\text { SRDYEN }}=0$ or $\overline{\text { ARDY }}+\overline{\text { ARDYEN }}=0$ when sampled by the SAB $82284 \overline{\text { READY }}$ generation logic. $\overline{\text { READY }}$ will remain active for at least two CLK cycles.
The $\overline{\text { READY }}$ output has an open-collector driver allowing other ready circuits to be wire ored with it. The READY signal of an SAB 80286 system requires an external 300 ohm pullup resistor. To force the $\overline{\text { READY signal inactive (HIGH) at the start of a bus }}$ cycle, the $\overline{\operatorname{READY}}$ output floats when either $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{SO}}$ are sampled LOW at the falling edge of CLK. Two system clock periods are allowed for the pullup resistor to pull the $\overline{\operatorname{READY}}$ signal to VIH. When RESET is active, $\overline{R E A D Y}$ is forced active one CLK later (see waveforms).

Synchronous Ready Operation

Asynchronous Ready Operation

Absolute Maximum Ratings ${ }^{11}$

Temperature under bias
Storage temperature
All output and supply voltages
All input voltages
Power dissipation

$$
\begin{gathered}
0 \text { to } \quad 70^{\circ} \mathrm{C} \\
-65 \text { to }+150^{\circ} \mathrm{C} \\
-0.5 \text { to }+7 \mathrm{~V} \\
-1.0 \text { to }+5.5 \mathrm{~V} \\
\\
1 \mathrm{Watt}
\end{gathered}
$$

D.C. Characteristics

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
IF	Forward input current	-	-0.5	mA	$V F=0.45 \mathrm{~V}$
IR	Reverse input current		50	$\because \mathrm{A}$	$V R=5.25 \mathrm{~V}$
VC	Input forward clamp voltage		-1.0	V	IC $=-5 \mathrm{~mA}$
ICC	Power supply current		145	mA	-
VIL	Input LOW voltage		0.8	V	
VIH	Input HIGH voltage	2.0	-		
VOL, VCL	Output LOW voltage	-	0.45		$I O L=5 \mathrm{~mA}$
VCH	CLK output HIGH voltage	4.0	-		$1 \mathrm{OH}=-1 \mathrm{~mA}$
VOH	Output HIGH voltage	2.4			
VIHR	$\overline{\mathrm{RES}}$ input HIGH voltage	2.6			-
$\underline{\text { VIHR - VILR }}$	$\overline{\mathrm{RES}}$ input hysteresis	0.25			
Cl	Input capacitance	-	10	pF	

"Stresses above those listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

A.C. Characteristics SAB 82284

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

${ }^{1)} \mathrm{CL}=150 \mathrm{pF}, \mathrm{IOL}=5 \mathrm{~mA}$. With either the internal oscillator with the recommended crystal and load or with the EFI input meeting specification T2 and T3.
2) $\mathrm{CL}=150 \mathrm{pF}, 1 \mathrm{OL}=5 \mathrm{~mA}$
${ }^{3)} \mathrm{CL}=75 \mathrm{pF}, \mathrm{IOL}=5 \mathrm{~mA}$
${ }^{4)}$ This is an asynchronous input. This specification is given for testing purposes only, to assure recognition at a specific clock edge.

A.C. Characteristics SAB 82284-6

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
T1	EFI to CLK delay	-	35	ns	$\begin{aligned} & \text { at } 1.5 \mathrm{~V} \\ & \mathrm{CL}=150 \mathrm{pF} \\ & \mathrm{IOL}=5 \mathrm{~mA} \end{aligned}$
T2	EFI LOW time	35	-		
T3	EFI HIGH time	35			
T4	CLK period	83	500		
T5	CLK LOW time	20	-		$\begin{aligned} & \text { at } 0.6 \mathrm{~V} \text { see }{ }^{11} \\ & \text { at } 3.8 \mathrm{~V} \end{aligned}$
T6	CLK HIGH time	25			
T7	CLK rise time	-	10		from 1.0 V to 3.5 V see ${ }^{2)}$ from 3.5 V to 1.0 V
T8	CLK fall time				
T9	Status setup time	28	-		at 0.8 V and 2.0 V on input and 0.8 V on CLK
T10	Status hold time	0			
T11	$\overline{\text { SRDY }}+\overline{\text { SRDYEN }}$ setup time	25			
T12	$\overline{\text { SRDY }}+\overline{\text { SRDYEN }}$ hold time	0			
T13	$\overline{\text { ARDY }}+\overline{\text { ARDYEN }}$ setup time	5			
T14	$\overline{\text { ARDY }}+\overline{\text { ARDYEN }}$ hold time	30			
T15	$\overline{\text { RES }}$ setup time	25			
T16	$\overline{\mathrm{RES}}$ hold time	10			
T17	$\overline{\text { READY }}$ inactive delay	5			$\begin{aligned} & \text { at } 0.8 \mathrm{~V} \\ & \mathrm{CL}=150 \mathrm{pF} \\ & \mathrm{lOL}=20 \mathrm{~mA} \end{aligned}$
T18	$\overline{\text { READY }}$ active delay	0			
T19	PCLK delay		45		at 0.8 V on CLK to see ${ }^{3)}$
T20	RESET delay		50		
T21	PCLK low time	$\begin{aligned} & \text { T4- } \\ & 20 \end{aligned}$	-		$\begin{aligned} & \text { at } 0.6 \mathrm{~V} \text { see }^{3)} \\ & \text { at } 3.8 \mathrm{~V} \end{aligned}$
T22	PCLK high time				

[^38]
CLK versus EFI

The EFI input LOW and HIGH times as shown are required to guarentee the CLK LOW and HIGH times shown.

RESET and $\overline{\text { READY }}$ Timing versus $\overline{\mathrm{RES}}$ with $\overline{\mathbf{S 1}}$ and $\overline{\mathbf{S 0}} \mathbf{H I G H}$

${ }^{1)}$ This is an asynchronous input. The setup and hold times shown are required to guarantee the response shown.
$\overline{\text { READY }}$ and PCLK Timing with $\overline{\text { RES }}$ HIGH

${ }^{1)}$ This is an asynchronous input. The setup and hold times shown are required to guarantee the response shown.

SAB 82288 Bus Controller for SAB 80286 Processors

SAB 82288 upto 16 MHz

- Provides Commands and Control for Local and System Bus
- Offers Wide Flexibility in System Configurations
- Flexible Command Timing

SAB 82288-6 upto 12 MHz

- Optimal Multibus ${ }^{(19)}$-Compatible Timing
- Control Drivers with 16 mA IOL and Tri-State Command Drivers with 32 mA IOL
- Single +5 V Supply

Pin Configuration	Pin Names		

The SAB 82288 bus controller is a 20-pin MYMOS component for use in SAB 80286 microsystems. The bus controller provides command and control outputs with flexible timing options. Separate command outputs are used for memory and I/O
devices. The data bus is controlled with separate data enable and direction control signals.
Two modes of operation are possible via a strapping option: Multibus-compatible bus cycles, and high-speed bus cycles.
$\overline{\text { Multibus }}{ }^{(11)}$ is a trademark of Intel Corporation.

Pin Definitions and Functions

Pin Definitions and Function (continued)

Symbol	Number	Input (I) Output (O)	Function
CMDLY	7	I	COMMAND DELAY allows delaying the start of a command. CMDLY is an active HIGH input. If sampled HIGH, the command output is not activated and CMDLY is again sampled at the next CLK cycle. When sampled LOW the selected command is enabled. If $\overline{\operatorname{READY}}$ is detected LOW before the command output is activated, the SAB 82288 will terminate the bus cycle, even if no command was issued. Setup and hold times must be satisfied for proper operation. This input may be connected to GND if no delays are required before starting a command.
$\overline{\text { MRDC }}$	8	0	MEMORY READ COMMAND instructs the memory device to place data onto the data bus. This command output is active LOW. The MB and CMDLY inputs control when this output becomes active. $\overline{\operatorname{READY}}$ controls when it becomes inactive.
$\overline{\text { MWTC }}$	9	0	MEMORY WRITE COMMAND instructs a memory device to read the data on the data bus. This command output is active LOW. The MB and CMDLY inputs control when this output becomes active. $\overline{R E A D Y}$ controls when it becomes inactive.
$\overline{\text { OWC }}$	11	0	I/O WRITE COMMAND instructs an I/O device to read the data on the data bus. This command output is active LOW. The MB and CMDLY inputs control when this output becomes active. $\overline{R E A D Y}$ controls when it becomes inactive.
$\overline{\text { IORC }}$	12	0	I/O READ COMMAND instructs an I/O device to place data onto the data bus. This command output is active LOW. The MB and CMDLY inputs control when this output becomes active. $\overline{R E A D Y}$ controls when it becomes inactive.
$\overline{\text { INTA }}$	13	0	INTERRUPT ACKNOWLEDGE tells an interrupting device that its interrupt request is being acknowledged. This command output is active LOW. The MB and CMDLY inputs control when this output becomes active. $\overline{R E A D Y}$ controls when it becomes inactive.
CENL	14	1	COMMAND ENABLE LATCHED is a bus controller select signal which enables the bus controller to respond to the current bus cycle being initiated. CENL is an active HIGH input latched internally at the start of each bus cycle. CENL is used to select the appropriate bus controller for each bus cycle in a system where the CPU has more than one bus it can use. This input may be connected to VCC to select this SAB 82288 for all transfers. No control inputs affect CENL. Setup and hold times must be met for proper operation.

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
CEN/ $\overline{\text { AEN }}$	15	I	COMMAND ENABLE/ADDRESS ENABLE controls the command and DEN outputs of the bus controller. CEN/ $\overline{\operatorname{AEN}}$ inputs may be asynchronous to CLK. Setup and hold times are given to assure a guaranteed response to synchronous inputs. This input may be connected to VCC or GND. When MB is HIGH this pin has the $\overline{\text { AEN }}$ function. $\overline{\text { AEN }}$ is an active LOW input which indicates that the CPU has been granted use of a shared bus and the bus controller command outputs may exit Tri-state OFF and become inactive (HIGH). AEN HIGH indicates that the CPU does not have control of the shared bus and forces the command outputs into Tri-state OFF and DEN inactive (LOW). $\overline{A E N}$ would normally be controlled by an SAB 82289 bus arbiter which activates $\overline{\text { AEN }}$ when that arbiter owns the bus to which the bus controller is attached. When MB is LOW this pin has the CEN function. CEN is an unlatched active HIGH input which allows the bus controller activate its command and DEN outputs. With MB LOW, CEN LOW forces the command and DEN outputs inactive but does not Tri-state them.
DEN	16	0	DATA ENABLE controls when data transceivers connected to the local data bus should be enabled. DEN is an active HIGH control output. DEN is delayed for write cycles in the Multibus mode.
$\mathrm{DT} / \overline{\mathrm{R}}$	17	0	DATA TRANSMIT/RECEIVE establishes the direction of data flow to or from the local data bus. When HIGH, this control output indicates that a write bus cycle is being performed. A LOW indicates a read bus cycle. DEN is always inactive when DT/R changes states. This output is HIGH when no bus cycle is active. $D T / \bar{R}$ is not affected by any of the control inputs.
$\mathrm{M} / \overline{\mathrm{IO}}$	18	1	MEMORY OR I/O SELECT determines whether the current bus cycle is in the memory space or I/O space. When LOW, the current bus cycle is in the I/O space. Setup and hold times must be met for proper operation.
VCC	20	-	POWER SUPPLY (+5 V)
GND	10	-	GROUND (OV)

Block Diagram

Functional Description

Introduction

The SAB 82288 bus controller is used in SAB 80286 systems to provide address latch control, data transceiver control, and standard level-type command outputs. The command outputs are timed and have sufficient drive capabilities for large TTL buses and meet all IEEE-796 requirements for Multibus. A special Multibus mode is provided to statisfy all address/data setup and hold time requirements. Command timing may be tailored to special needs via a CMDLY input to determine the start of a command and READY to determine the end of a command.
Connection to multiple buses is supported with a latched enable input (CENL). An address decoder can determine which, if any, bus controller should be enabled for the bus cycle. This input is latched to allow an address decoder to take full advantage of the pipelined timing on the SAB 80286 local bus.
Buses shared by several bus controllers are supported. An $\overline{\mathrm{AEN}}$ input prevents the bus controller from driving the shared bus command and data
signals except when enabled by an external bus arbiter such as the SAB 82289.
Separate DEN and DT/隹 outputs control the data transceivers for all buses. Bus contention is eliminated by disabling DEN before changing $\mathrm{DT} / \overline{\mathrm{R}}$. The DEN timing allows sufficient time for Tri-state bus drivers to enter Tri-state OFF before enabling other drivers onto the same bus.
The term CPU refers to any SAB 80286 processor or SAB 80286 support component which may become an SAB 80286 local bus master and thereby drive the SAB 82288 status inputs.

Processor Cycle Definition

Any CPU which drives the local bus uses an internal clock which is one half the frequency of the system clock (CLK) (see figure below). Knowledge of the phase of the local bus master's internal clock is required for proper operation of the SAB 80286 local bus. The local bus master informs the bus controller of its internal clock phase when it asserts the status signals. Status signals are always asserted in phase 1 of the local bus master's internal clock.

CLK Relationship to the Processor Clock and Bus T-States

Bus State Definition

The SAB 82288 bus controller has three bus states (see figure below): Idle (TI), Status (TS), and Command (TC). Each bus state is two CLK cycles long. Bus state phases correspond to the internal CPU processor clock phases.

The TI bus state occurs when no bus cycle is currently active on the SAB 80286 local bus. This state may be repeated indefinitely. When control of the local bus is being passed between masters, the bus remains in the TI state.

Bus States

Bus Cycle Definition

The $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 0}$ inputs signal the start of a bus cycle. When either input becomes LOW, a bus cycle is started. The TS bus state is defined to be the two CLK cycles during which either $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 0}$ is active (see figure on bus cycle definition). These inputs are sampled by the SAB 82288 at every falling edge of CLK. When either $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 0}$ is sampled LOW, the next CLK cycle is considered the second phase of the internal CPU clock cycle.
The local bus enters the TC bus state after the TS state. The shortest bus cycle may have one TS state and one TC state. Longer bus cycles are formed by repeating TC states. A repeated TC bus state IS called a wait state.

The $\overline{\operatorname{READY}}$ input determines whether the current TC bus state is to be repeated. The $\overline{\operatorname{READY}}$ input has the same timing and effect for all bus cycles. $\overline{\text { READY }}$ is sampled at the end of each TC bus state to see if it is active. If sampled HIGH, the TC bus state is repeated. This is called inserting a wait state. The control and command outputs do not change during wait states.
When READY is sampled LOW, the current bus cycle is terminated. Note that the bus controller may enter the TS bus state directly from TC if the status lines are sampled active at the next falling edge of CLK.

SAB 82288

Bus Cycle Definition

Table 2 Command and Control Output for each Type Bus Cycle

Type of bus cycle	M/ $\overline{\mathrm{IO}}$	$\overline{\mathrm{S} 1}$	$\overline{\mathrm{SO}}$	Command activated	DT/ $\overline{\mathrm{R}}$ state	ALE, DEN issued?	MCE issued?
Interrupt acknowledge	0	0	0	$\overline{\mathrm{INTA}}$	LOW	yes	yes
VO read	0	0	1	$\overline{\mathrm{IORC}}$	LOW	yes	no
VO write	0	1	0	$\overline{\mathrm{IOWC}}$	HIGH	yes	no
None; idle	0	1	1	none	HIGH	no	no
Halt/shutdown	1	0	0	none	HIGH	no	no
Memory read	1	0	1	$\overline{\text { MRDC }}$	LOW	yes	no
Memory Write	1	1	0	$\overline{\text { MWTC }}$	HIGH	yes	no
None; idle	1	1	1	none	HIGH	no	no

Operating Modes

Two types of buses are supported by the SAB 82288: Multibus and non-Multibus. When the MB input is strapped HIGH, Multibus timing is used. In Multibus mode, the SAB 82288 delays command and data activation to meet IEEE-796 requirements on address to command active and write data to command active setup timing. Multibus mode requires at least one wait state in the bus cycle since the command outputs are delayed. The non-Multibus mode does not delay any outputs and does not require wait states. The MB input affects the timing of the command and DEN outputs.

Command and Control Outputs

The type of bus cycle performed by the local bus master is encoded in the $M / \overline{\mathrm{OO}}, \overline{\mathrm{S} 1}$, and $\overline{\mathrm{S0}}$ inputs. Different command and control outputs are activated depending on the type of bus cycle. Table 2 indicates the cycle decoding done by the SAB 82288 and the effect on command, DT/ \bar{R}, ALE, DEN, and MCE outputs.
Bus cycles come in three forms: read, write, and halt. Read bus cycle include memory read, I/O read, and interrupt acknowledge. The timing of the associated read command outputs ($\overline{\mathrm{MRDC}}, \overline{\mathrm{IORC}}$, and $\overline{\text { NTA }}$), control outputs (ALE, DEN, DT/ \bar{R}) and control inputs (CEN/ $\overline{A E N}, C E N L, ~ C M D L Y, ~ M B, ~ a n d ~$ $\overline{\text { READY }}$) are identical for all read bus cycles. Read cycles differ only in which command output is
activated. The MCE control output is only asserted during interrupt acknowledge cycles. Write bus cycles activate different control and command outputs with different timing than read bus cycles. Memory write and I/O write are write bus cycles whose timing for command outputs ($\overline{\mathrm{MWTC}}$ and $\overline{\mathrm{IOWC}}$), control outputs (ALE, DEN, $\mathrm{DT} / \overline{\mathrm{R}}$) and control inputs (CEN/ $\overline{\mathrm{AEN}}, \mathrm{CENL}, \mathrm{CMDLY}$, MB, and READY) are identical. They differ only in which command output is activated.
Halt bus cycles are different because no command or control output is activated. All control inputs are ignored until the next bus cycle is started via $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{SO}}$.
The basic command and control output timing for read and write bus cycles is shown in the next five figures. Halt bus cycles are not shown since they activate no outputs. The basic idle-read-idle and idle-write-idle bus cycles are shown. The signal label $\overline{\mathrm{CMD}}$ represents the appropriate command output for the bus cycle. For those five figures, the CMDLY input is connected to GND and CENL to VCC. The effects of CENL and CMDLY are described later in the section on control inputs.
The next two figures show non-Multibus cycles. MB is connected to GND while CEN is connected to VCC. The figure below shows a read cycle with no wait states while the figure on the next page shows a write cycle with one wait state. The READY input is shown to illustrate how wait states are added.

Idle-Read-Idle Bus Cycles with MB $=0$

Bus cycles can occur back-to-back with no TI bus states between TC and TS. Back-to-back cycles do not affect the timing of the command and control outputs. Command and control outputs always reach the states shown for the same clock edge (within TS, TC, or following bus state) of a bus cycle. A special case in control timing occurs for back-toback write cycles with $M B=0$. In this case, $\mathrm{DT} / \overline{\mathrm{R}}$ and DEN remain HIGH between the bus cycles (see respective idle-read-idle cycle diagram). The command and ALE output timing does not change.

The figures on page 10 show a Multibus cycle with $M B=1 . \overline{A E N}$ and CMDLY are connected to GND. The effects of CMDLY and $\overline{\mathrm{AEN}}$ are described later in the section on control inputs. The top figure shows a read cycle with one wait state and the figure below shows a write cycle with two wait states. The second wait state of the write cycle is shown only for example purposes and is not required. The READY input is shown to illustrate how wait states are added.

Idle-Write-Idle Bus Cycles with MB $=0$

Write-Write Bus Cycles with MB $=0$

Idle-Read-Idle Bus Cycles with MB $=1$

The MB control input affects the timing of the command and DEN outputs. These outputs are automatically delayed in Multibus mode to satisfy three requirements:

1) 50 ns minimum setup time for valid address before any command output becomes active.
2) 50 ns minimum setup time for valid write data before any write command output becomes active.
3) 65 ns maximum time from when any read command becomes inactive until the slave's read data drivers reach Tri-state OFF.

Three signal transitions are delayed by $\mathrm{MB}=1$ as compared to $\mathrm{MB}=0$:

1) The HIGH to LOW transition of the read command outputs ($\overline{\overline{I O R C},} \overline{\mathrm{MRDC}}$, and $\overline{\mathrm{INTA}}$) is delayed one CLK cycle.
2) The HIGH to LOW transition of the write command outputs ($\overline{\mathrm{OWC}}$ and $\overline{\mathrm{MWTC}}$) is delayed two CLK cycles.
3) The LOW to HIGH transition of DEN for write cycles is delayed one CLK cycle.
Back to back bus cycles with $M B=1$ do not change the timing of any of the command or control outputs. DEN always becomes inactive between bus cycles with $M B=1$.
Except for a halt or shutdown bus cycle, ALE will be issued during the second half of TS for any bus cycle. ALE becomes inactive at the end of the TS to allow latching the address to keep it stable during the entire bus cycle. The address outputs may change during phase 2 of any TC bus state. ALE is not affected by any control input.
The figure below shows how MCE is timed during interrupt acknowledge (INTA) bus cycles. MCE is one CLK cycle longer than ALE to hold the cascade address from a master SAB 8259A valid after the falling edge of ALE. With the exception of the MCE control output, an INTA bus cycle is identical in timing with a read bus cycle. MCE is not affected by any control input.

MCE Operation for an INTA Bus Cycle

Control Inputs

The control inputs can alter the basic timing of command outputs, allow interfacing to multiple buses, and share a bus between different masters. For many SAB 80286 systems, each CPU will have more than one bus which may be used to perform a bus cycle. Normally, a CPU will only have one bus controller active for each bus cycle. Some buses may be shared by more than one CPU (i.e. Multibus) requiring only one of them use the bus at a time.

Systems with multiple and shared buses use two control input signals of the SAB 82288 bus controller, CENL and $\overline{\mathrm{AEN}}$ (see figure on system use of those signals). CENL enables the bus controller to control the current bus cycle. The $\overline{\operatorname{AEN}}$ input prevents a bus controller from driving its command outputs. $\overline{\text { AEN }}$ HIGH means that another bus controller may be driving the shared bus.
In the figure on the $\overline{\operatorname{AEN}}$ and CENL signal, two buses are shown: a local bus and a Multibus. Only one bus is used for each CPU bus cycle. The CENL inputs of the bus controllers select which bus controller is to perform the bus cycle. An address decoder determines which bus to use for each bus cycle. The SAB 82288 connected to the shared Multibus must be selected by CENL and be given access to the Multibus by $\overline{\mathrm{AEN}}$ before it will begin a Multibus operation.

CENL must be sampled HIGH at the end of the TS bus state (see waveforms) to enable the bus controller to activate its command and control outputs. If sampled LOW the commands and DEN
will not go active and DT/ \bar{R} will remain HIGH. The bus controller will ignore the CMDLY, CEN, and $\overline{\text { READY }}$ inputs until another bus cycle is started via $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 0}$. Since an address decoder is commonly used to identify which bus is required for each bus cycle, CENL is latched to avoid the need for latching its input.
The CENL input can affect the DEN control output. When MB $=0$, DEN normally becomes active during phase 2 of TS in write bus cycles. This transition occurs before CENL is sampled. If CENL is sampled LOW, the DEN output will be forced LOW during TC as shown in the timing waveforms.
When $M B=1, C E N / \overline{\text { AEN }}$ becomes $\overline{\text { AEN }}, \overline{\text { AEN }}$ controls when the bus controller command outputs enter and exit Tri-state OFF. $\overline{\mathrm{AEN}}$ is intended to be driven by a bus arbiter, like the SAB 82289, which assures only one bus controller is driving the shared bus at any time. When $\overline{\mathrm{AEN}}$ makes a LOW to HIGH transition, the command outputs immediately enter Tri-state OFF and DEN is forced inactive. An inactive DEN should force the local data transceivers connected to the shared data bus into Tri-state OFF (see next figure). The LOW to HIGH transition of $\overline{\text { AEN }}$ should only occur during TI or TS bus states.
The HIGH to LOW transition of $\overline{\text { AEN }}$ signals that the bus controller may now drive the shared bus command signals. Since a bus cycle may be active or be in the process of starting, $\overline{\mathrm{AEN}}$ can become active during any T-state. $\overline{A E N}$ LOW immediately allows DEN to go to the appropriate state. Three CLK
edges later, the command outputs will go active (see timing waveforms). The Multibus requires this delay for the address and data to be valid on the bus before the commands become active.
When $M B=0, C E N / \overline{A E N}$ becomes CEN. CEN is an asynchronous input which immediately affects the command and DEN outputs. When CEN makes a HIGH to LOW transition, the commands and DEN are immediately forced inactive. When CEN makes a LOW to HIGH transition, the commands and DEN outputs immediately go to the appropriate state (see timing waveforms). $\overline{\text { READY }}$ must still become avtive to terminate a bus cycle if CEN remains LOW for a selected bus controller (CENL was latched HIGH).
Some memory or I/O systems may require more address or write data setup time to command active than provided by the basic command output timing. To provide flexible command timing, the CMDLY input can delay the activation of command outputs. The CMDLY input must be sampled LOW to activate the command outputs. CMDLY does not affect the control outputs ALE, MCE, DEN, and DT/作.
CMDLY is first sampled on the falling edge of the CLK ending TS. If sampled HIGH, the command output is not activated, and CMDLY is again sampled on the next falling edge of CLK. Once sampled LOW, the proper command output becomes active immediately if $M B=0$. If $M B=1$, the proper command goes active no earlier than shown in the figures on page 10.
$\overline{\text { READY }}$ can terminate a bus cycle before CMDLY allows a command to be issued. In this case no commands are issued and the bus controller will deactivate DEN and DT/ \bar{R} in the same manner as if a command had been issued.

Waveforms

The waveforms show the timing relationships of inputs and outputs and do not show all possible transitions of all signals in all modes. Instead, all signal timing relationships are shown via the general cases. Special cases are shown when needed. The waveforms provide some functional descriptions of the SAB 82288; however, most functional descriptions are provided in the figures of section Functional Description.
To find the timing specification for a signal transition in a particular mode, first look for a special case in the waveforms. If no special case applies, then use a timing specification for the same or related function in another mode.

System Use of $\overline{\mathrm{AEN}}$ and CENL

Absolute Maximum Ratings ${ }^{11}$

Ambient temperature under bias
Storage temperature
Voltage on any pin with respect to GND
Power dissipation

$$
\begin{array}{r}
0 \text { to } \quad 70^{\circ} \mathrm{C} \\
-65 \text { to }+150^{\circ} \mathrm{C} \\
-0.5 \text { to }+7 \mathrm{~V} \\
\\
1 \mathrm{~W}
\end{array}
$$

DC Characteristics

$T A=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
ICC	Power supply current	-	100	mA	
IF	Forward input current CLK input Other inputs		$\begin{aligned} & -1 \\ & -5 \end{aligned}$		$V F=0.45 \mathrm{~V}$
IR	Reverse input current		50	$\mu \mathrm{A}$	$V R=V C C$
VOL	LOW output voltage Command outputs Control outputs		0.45	V	$\begin{aligned} \mathrm{IOL} & =32 \mathrm{~mA} \\ \mathrm{IOL} & =16 \mathrm{~mA} \end{aligned}$
VOH	HIGH output voltage Command outputs Control outputs	2.4	-		$\begin{aligned} & \mathrm{IOH}=-5 \mathrm{~mA} \\ & \mathrm{IOH}=-1 \mathrm{~mA} \end{aligned}$
VIL	LOW input voltage	-0.5	0.8		-
VCL	CLK LOW input voltage		0.6		
VIH	HIGH input voltage	2.0			
VCH	CLK HIGH input voltage	3.9	+0.5		
IOFF	Output off current	-	100	$\mu \mathrm{A}$	
CCLK	CLK input capacitance		10	pF	
Cl	Input capacitance				

1) Stresses above those listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

AC Characteristics SAB 82288

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

Notes see next page

AC Characteristics SAB 82288 (cont.)

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
T29	Command active delay	3	20	ns	$\begin{aligned} & \mathrm{IOL}=32 \mathrm{~mA} \\ & \mathrm{IOH}=-5 \mathrm{~mA} \\ & \mathrm{CL}=300 \mathrm{pF} \\ & \text { from } 0.8 \mathrm{~V} \text { on CLK } \\ & \text { to } 0.8 \text { or } 2.0 \mathrm{~V} \\ & \text { on output } \end{aligned}$
T30	Command inactive delay				
T31	Command inactive from CEN	-	25		
T32	Command active from CEN				
T33	Command inactive enable from $\overline{\text { AEN }}$		40		
T34	Command float time				

1) $\overline{\mathrm{AEN}}$ is an asynchronous input. $\overline{\mathrm{AEN}}$ setup and hold times are specified to guarantee the response shown in the waveforms.
2) T27 only applies to bus cycles where $M B=0$, the $S A B 82288$ was selected, and $D E N=0$ when the cycle terminated (because CEN $=0$).

AC Characteristics SAB 82288-6

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

[^39]
AC Characteristics SAB 82288-6 (cont.)

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
T29	Command active delay	3	40	ns	$\begin{aligned} & \mathrm{IOL}=32 \mathrm{~mA} \\ & \mathrm{IOH}=-5 \mathrm{~mA} \\ & \mathrm{CL}=300 \mathrm{pF} \end{aligned}$ from 0.8 V on CLK to 0.8 or 2.0 V on output
T30	Command inactive delay		30		
T31	Command inactive from CEN	-	35		
T32	Command active from CEN		45		
T33	Command inactive enable from $\overline{\text { AEN }}$		40		
T34	Command float time				

1) $\overline{\mathrm{AEN}}$ is an asynchronous input. $\overline{\mathrm{AEN}}$ setup and hold times are specified to guarantee the response shown in the waveforms.
2) T27 only applies to bus cycles where $M B=0$, the $S A B 82288$ was selected, and DEN $=0$ when the cycle terminated (because CEN $=0$).

CLK Characteristics

Status, ALE, MCE, Characteristics

CENL, CMDLY, DEN Characteristics with MB = 0 and CEN = 1 during Write Cycle

AEN Characteristics with MB=1

1) $\overline{\mathrm{AEN}}$ is an asynchronous input. $\overline{\mathrm{AEN}}$ setup and hold time is specified to guarantee the response shown in the waveforms.

Read Cycle Characteristics with MB $=0$ and $C E N=1$

Write Cycle Characteristics with MB = 0 and CEN = 1

SAB 82289

 Bus Arbiter for SAB 80286 Processor Family- Supports Multi-master System Bus Arbitration Protocol
- Synchronizes SAB 80286 Process with Multi-master Bus
- Compatible with IEEE 796 Standard Bus (Multibus*)
- Three Modes of Bus Release Operation for Flexible System Configuration
- Supports ParalleI, Serial, and Rotating Priority Resolving Schemes

The SAB 82289 Bus Arbiter is a 5 -Volt, 20-pin MYMOS component for use in multiple bus master SAB 80286 systems. The SAB 82289 provides a compact solution to system bus arbitration for the SAB 80286 CPU.

The complete IEEE 796 Standard bus arbitration protocol is supported. Three modes of bus release operation support a number of bus usage models.

* Multibus is a trademark of Intel Corporation.

Functional Description

The SAB 82289 Bus Arbiter in conjunction with the SAB 82288 Bus Controller and the SAB 82284 Clock Generator interfaces the SAB 80286 processor or some other bus master to a multi-master system bus. The arbiter multiplexes a processor onto a multi-master system bus. It avoids contention with other bus masters.

The SAB 82289 has two separate state machines which communicate through bus request and release logic. The processor interface state machine is synchronous with the local system clock (CLK) and the multi-master system bus interface state machine is synchronous with the bus clock (BCLK).
The SAB 82289 performs all signalling to request, obtain, and release the system bus. External logic is used to determine which bus cycles require the system bus and to resolve the priorities of simultaneous requests for control of the system bus.

SAB 82731
 Dot Rate Generator

A complete video interface between CRT Controller and CRT Display

SAB 82731-50 MHz
 SAB 82731-2 - 80 MHz

- Dot shift rates up to 80 MHz (SAB 82731-2)
- Character length up to 16 dots
- Proportional character spacing supported
- Half dot shifts for character rounding
- Character attribute processing
- Single 5V power supply
- 40 pin DIP package
- Interface optimized for next generation CRT controllers

The SAB 82731 is a general purpose video interface, which generates a video signal output for the CRT monitor from parallel character and attribute information coming from the character generator and the CRT controller. The SAB 82731
together with minimal hardware, comprises a complete video interface system for the CRT controller and the CRT monitor. The device is fabricated in a fast bipolar ASBC (Advanced Standard Buried Collector) process of Siemens.

Pin Definitions and Functions

Symbol	Number	Input (I) Output (O)	Function
D0-D15	$1-8$, $32-39$	1	Character data parallel inputs
PROG	9	1	Program control input; used to program default width value of CCLK and width of RCLK; the default width value of CCLK and the width of RCLK are latched into the SAB 82731 via D0-D7 at the rising edge of CCLK (active high)
VIDEO	10	0	Video output; provides the dot information clocked by the internal dot clock
RCLK	11	12	Reference clock output; used to generate the timing for the screen columns for data formatting. The period of RCLK is programmable from 6 to 21 times the period of the internal dot clock
CCLK	12	Character clock output; used to clock character and attribute information out of the CRT controller. The period of CCLK is programmable from 3 to 18 times the period of the internal dot clock	
HDOT	13	1	Half dot shift input; the video signal at the video output will be delayed by half dot clock for character rounding (active high)
CBLANK	14	1	Character blank attribute input; the video output is blanked (active high)
WDEF	15	1	Width defeat attribute input; the CCLK period is set to a preprogrammed default value (active high)
CRVV	16	1	Character reverse video attribute input; inverts the character data from DQ-D15 (active high)

Pin Definitions and Functions (continued)

Symbol	Number	Input (I) Output (O)	Function
DW	17	1	Double width attribute input; the internal dot clock frequency and the CCLK frequency are divided by two (active high). The RCLK frequency remains unchanged
W0-W3	18,19	21,22	1
CHOLD	23	1	Clock width inputs; they are used for programming the CCLK clock width on a character by character base
CSYN	24	1	CCLK inhibit input; this signal suppresses the CCLK generation and is used for TAB function (active low)
RRVV	25	CCLK synchronization input; CCLK will be synchronized to RCLK and the video output signal is defined by RRVV (active high)	
DCLK	26	Field reverse video input; the video signal at the video output will be inverted (active high)	
X1-X2	27,28	29	Dot clock output; ECL-level signal intended for test purposes only. Must be grounded via a 3.3k resistor if used
VT	20	1	Inputs for fundamental mode crystal; its frequency must be $1 / 8$ of the required dot clock frequency
VCC	40	20,31	Tuning voltage for PLL-VCO; this output is used to tune the LC-circuit and thus controls the oscillator frequency of the internal dot clock
VSS	20	LC-circuit inputs for PLL-VCO. T1 can be used to provide the SAB 82731 with an external clock	

Figure 1: CRT System Block Diagramm

Figure 2: SAB 82731 Block Diagramm

General Description

The dot rate generator, SAB 82731, in a typical CRT system shown in figure 1, interfaces the CRT controller to the CRT video terminal (Video Interface Logic). It receives the parallel data along with the attribute and control information from the CRT controller, processes it into a serial video signal which can be fed to a video CRT terminal. It also generates the basic dot clock (DCLK), character clock (CCLK) and reference clock (RCLK) signals. CCLK and RCLK are required by the CRT controller.
CRT terminals requiring very high resolution, extremely stable and absolutely flicker-free pictures, place special demands on the dot rate generator. In such applications very high dot rates up to 80 MHz are necessary. This leaves very little time per dot (pixel) to convert the data, attribute, and control information into serial form for the video terminal.

The functions of SAB 82731 are largely determined by the complexity and the demands of the CRT controller it supports. Figure 2 shows the block diagram of the dot rate generator. The dot clock is generated by a voltage controlled LC circuit connected at T1 and T2. Another clock is generated which is crystal controlled and has a frequency $1 / 8$ of the dot clock. This is used to stabilize the dot clock using an on-chip phase locked loop (PLL). This two-oscillator concept enables the use of low cost, fundamental mode crystals.

The 16 bit shift register receives parallel inputs from pins D0-D15. This allows a maximum character width of 16 dots. The minimum width can be 3 dots. The character width is programmable on a character to character base through pins Wø-W3 for proportional character spacing. This also determines the character clock (CCLK) frequency. Programming of the default character width and the reference clock (RCLK) is done through inputs D \emptyset-D7 and PROG. Signal WDEF can be used to switch between the default character width and the one specified dynamically through the lines WD-W3. A special problem is encountered when using variable character width. For example, when tables are formatted on the screen it is essential that every entry in a column starts at the same dot distance (and not the character distance) from the start of line. This is directly supported by SAB 82731 providing a tabulator function using $\overline{\mathrm{CHOLD}}$ signal.

It is possible to shift every line of character by half a dot using the HDOT signal. This feature, known as character rounding, further enhances the quality of high resolution character display. Other features, like blinking of characters, reverse video which improves the readability of text on screen, are directly supported by SAB 82731 using signals CRVV and RRVV from the CRT controller, processing them and effecting the final video signal to show the characters with the desired attributes.

Functional Description

Clock Generation

The most fundamental clock required to run the CRT display is the dot clock which provides the reference for the dot data to be shifted serially to the CRT. In addition, it is basis for the character clock CCLK and the reference clock RCLK required by the CRT controllers.

Dot Clock

The dot clock is derived from on-chip oscillator (T1, T2). Its frequency is determined by an external voltage controlled LC-circuit that has a center
frequency of about two times the desired dot clock frequency. The on-chip PLL-circuit causes via VT this oscillator to be locked to the 16th harmonic of the on-chip crystal oscillator ($\mathrm{X} 1, \mathrm{X} 2$) which is running at $1 / 8$ of the dot clock frequency (see figure 3 a).
Alternatively, the SAB 82731 can be supplied with an external TTL-level clock via T1 that must be two times the dot clock rate (see figure 3b).
The SAB 82731 provides the dot clock at the DCLK output. It is an ECL-level output and is intended for testing and adjustment purposes only.

Figure 3: Clock Generation

a) Internal Clock Generation

b) External Clock Generation

Designing the Oscillator Circuit

The whole external oscillator circuit consists of three parts

- the crystal circuit,
- the voltage controlled LC-circuit and
- the loop filter for the PLL.

Figure 4a shows the general crystal circuit. The crystal must be a fundamental mode series resonant type with a resonant frequency of $1 / 8$ of the desired dot clock frequency. The capacitor $C x$ is necessary if a fine adjustment of the dot clock rate must be done. Figure 4b shows as example how the dot clock frequency can vary with different values of Cx. The capacitors C1 and C2 may be necessary to suppress overtone oscillations if the crystal frequency is below of 6 MHz . The exact values depend on the used crystal and must be determined in an empiric way. The recommended ranges are 1 to 10 nF for C 1 and 0 to 100 pF for C2.
The voltage controlled LC-circuit is shown in figure $4 c$. The effective oscillating LC-circuit consists of the inductance L, the capacitance $C D$ of the varactor diode, and the parasitic capacitance CP. Its resonant frequency is

$$
f R=\frac{1}{2 \pi \sqrt{L \cdot(C D+C P)}}
$$

where $f R$ must be $2 \times$ fDCLK. The value of $C P$ depends on many factors (e.g. layout, single/multilayer board ...), thus it changes from application to application. However a value of about 5 to 15 pF seems to be a good approximation.

The value of $C D$ (capacitive diode) should be determined at a control voltage of 2.5 V to get the lock-in-range as wide as possible. The variation of VT ranges from 1V to VCC-1 which results in a minimum frequency shift of about $6-8 \%$ with respect to the center frequency at 2.5 V .
The value of the inductance L must be determined in such a way that the resulting center frequency lies as near as possible to the needed frequency $f R=2 \times f D C L K$ to guarantee a stable dot clock under all operation conditions. Figure 4 f shows a diagram that will help you find the required inductance L . It is based on the use of the capacitive diode BB 505G that has a capacitance of 12 pF at a control voltage of 2.5 V . The use of other diodes will, of course, lead to other diagrams.
At dot clock frequencies higher than 50 MHz the needed inductance becomes lower than 100 nH . In these cases, it is favorable to integrate the inductance into the board layout. Figure 4 e shows a possible layout for the external oscillator circuit and approximate (measured) values of the inductance of the printed coil (track width and track distance 0.5 mm).

The loop filter converts the current pulses delivered by the PLL into the control voltage VT for the VCO. It is an essential part of the PLL and determines, for example, the lock-in-range and the control action of the PLL. A second-order filter that was found to work well under all operation conditions and over the full frequency range is shown in figure 4d.

Figure 4: Designing the Oscillator Circuit

a) crystal circuit

e) example layout for printed circuit

$\mathrm{CX}(\mathrm{pF})$	$\mathrm{fDCLK}(\mathrm{MHz})$
2.2	64.053
6.8	64.016
15	63.987
33	63.966

(nominal crystal frequency 8 MHz)
b) example for the influence of Cx on the dot clock frequency

VT

$R=12 \mathrm{k} \Omega$
$\mathrm{C}=33 \mathrm{nF}$
$C F=100 \mathrm{pF}$
d) PLL-loop filter

f) L/f-dıagramm

Reference Clock (RCLK)

RCLK is the reference clock output used to generate the timing for the screen layout and to define screen columns for data formatting and tabulator locations. In addition, it is used to clock the field attribute signals into the SAB 82731. The period of RCLK is programmable from 6 to 21 times the period of the
dot clock, i.e. the RCLK high time is 3 dot clock periods and the RCLK low time is programmable from 3 to 18 dot clock periods. It is programmed via D4-D7 at the rising edge of CCLK, when PROG is active (see table and figure 5).
It is recommended to program the RCLK clock width only once after a system reset.

Programming table for the clock width of RCLK

D7	D6	D5	D4	PROG	RCLK period x dot clock period
0	0	0	0	1	16
0	0	0	1	1	17
0	0	1	0	1	18
0	0	1	1	1	19
0	1	0	0	1	20
0	1	0	1	1	21
0	1	1	0	1	
0	1	1	1	1	6
1	0	0	0	1	8
1	0	0	1	1	9
1	0	1	0	1	10
1	0	1	1	1	11
1	1	0	0	1	12
1	1	0	1	1	13
1	1	1	0	1	15
1	1	1	1	1	

Character Clock (CCLK)

CCLK is the fundamental character clock output used to clock character and attribute information out of the CRT controller and into the SAB 82731.
It is a rising edge triggered clock and inside the active character field its period is programmable from 3 to 18 times the period of the dot clock, i.e. the CCLK high time is 2 dot clock periods and the CCLK low time is programmable from 1 to 16 dot clock periods.

When CSVN is active (normally outside the active character field) CCLK is forced to match RCLK. In this case the CCLK high time is 3 dot clock periods instead of 2.
In order to support proportional spacing, the period of CCLK can be reprogrammed at the beginning of each CCLK cycle via the W@-W3 inputs (i.e. at the beginning of each character) if PROG is inactive.

Programming of the character width is done via the clock width inputs W $\emptyset-W 3$ according to the programming table. The W $0-\mathrm{W} 3$ input data is clocked into the SAB 82731 at the rising edge of CCLK and defines the width of the currently displayed character (see figure 6).
If the width defeat attribute (WDEF) is active, the period of CCLK will be set to the programmed default value ignoring the clock width inputs W0-W3. This value is programmable from 3 to 18 times the period of the dot clock via the D0-D3 data inputs, when the PROG input is active (see figure 5).

It is recommended to programm the default CCLK clock width only once after a system reset.
The CCLK clock period will be doubled if the double width attribute (DW) is asserted.
Note:
If the width of CCLK is programmed to 17 or 18 , zeros are shifted out from the internal shift register after the 16 data bits and displayed according to the attribute signal.

Programming table for the clock width of CCLK

PROG $=1$	D3	D2	D1	D \emptyset	CCLK clock period x dot clock period
PROG $=\emptyset$	W3	W2	W1	W \emptyset	
	0	0	0	0	
	0	0	0	1	16
	0	0	1	0	17
					18
	0	0	1	1	
	0	1	0	0	3
	0	1	0	1	4
	0	1	1	0	5
	1	0	0	0	6
	1	0	0	1	7
	1	0	1	0	8
	1	0	1	1	9
	1	1	0	0	10
	1	1	0	1	11
	1	1	1	0	12
	1	1	1	1	13
		14			

Note:

$P R O G=1:$ Programming the CCLK default clock width during the initialization phase via $D \emptyset-D 3$ at the rising edge of CCLK.
$\mathrm{PROG}=\emptyset:$ Programming the clock width of the current CCLK cycle via W $\emptyset-\mathrm{W} 3$ at the rising edge of CCLK.

Clock Initialization Sequence (PROG)

After power on the width of RCLK is a random value between 6 and 21 and the width of CCLK is a random value between 3 and 18.
It is recommended to initialize the SAB 82731 in the following way:

- Activate the CSYN signal.

CCLK is forced to match RCLK, which has a minimum clock width of 6 dot clock periods.

- Apply the clock width information to D0-D3 and D4-D7 according to tables.
- Activate the PROG signal.

The default width of CCLK and the width of RCLK are programmed at the next rising edge of CCLK (see figure 5).

- Remove the PROG signal

CSYN can be removed at the beginning of the next active data field.

Figure 5: Clock Initialization

Character Data Signals

The character data signals are normally provided by the character ROM and clocked into the SAB 82731 at the rising edge of CCLK.
The character data signals consist of

- the character data lines (D0-D15),
- the character width information (W0-W3) and
- the half dot shift signal (HDOT).

Dot Data (D0-D15)

The dot data signals will be clocked into the SAB 82731 via the D 0 -D15 inputs at the rising edge of CCLK. The actually used inputs are defined by the

W0-W3 inputs or the internally latched default width information previously programmed. The dot data will be displayed dependent on the control signals and on the corresponding attribute information. The data are serially shifted out at the video output starting with DO.
If CCLK width is greater than 16, zeros are shifted out for the rest of the dot clocks and displayed according to the attribute signals.

Character Width (W0-W3)

The WD-W3 inputs are clocked into the SAB 82731 at the rising edge of CCLK and determine the width of the currently displayed character (see CCLK).

Figure 6: Action of Clock Width Inputs W0-W3 on CCLK

Half Dot Shift (HDOT)

The half dot shift character data signal is clocked into the SAB 82731 at the rising edge of CCLK. When the half dot shift signal is active (high), the output of the displayed data will be delayed by half a dot line. The first dot of the character dot line is transmitted during one and a half dot clock period while the last dot of this character dot line is displayed for half a dot clock period only. The remaining character dots are transmitted within one dot clock
period and thus the whole character dots are shifted by half a dot.
The HDOT signal is no character attribute signal, because it can change from dot line to dot line of a character. Thus it is reasonable to generate it from the character ROM together with the dot data and the width information.

Note that only the character dot line to which the HDOT signal is attached is effected.

Figure 7: Function of HDOT on VIDEO

Width is assumed to $5 \mathrm{DB}-\mathrm{DD}=05 \mathrm{H}$

1) $11 / 2$ DCLK
2) $1 / 2 \quad \mathrm{DCLK}$

Character Attribute Signals

These signals are clocked into the SAB 82731 at the rising edge of CCLK. Thus they are valid for the next character only.
The character attribute signals consist of:

- character blanking
CBLANK,
- character reverse video CRVV,
- double width DW, WDEF.

Outside the active character field (which is defined by the CSYN signal) all character attribute signals are ignored.

Character Blanking (CBLANK)

The CBLANK input is clocked into the SAB 82731 at the rising edge of CCLK. If aktive (high), the blank attribute will produce the effect of blanking the display of the character. When the CBLANK attribute is active the corresponding dot data information D0-D15 will be as if all zeros where forced at the inputs. The video output can be inverted to all ones by simultaneously activating the CRVV attribute. Independent of these character oriented operations the video output signal is also effected by the RRVV field attribute signal.
Although the CBLANK signal is normally a character attribute, it may change from dot line to dot line of a character. Thus together with the CRVV signal one or more underlines or cursors can be generated controlled by the CRT controller.

Character Reverse Video (CRVV)

The CRVV input is clocked into the SAB 82731 at the rising edge of CCLK. It is an active high signal. In the character field, the CRVV attribute will produce the effect of reversing the polarity of the display during the transmission of the current character. CRVV is also effective together with the CBLANK attribute (see CBLANK description) and the RRVV signal. Outside the character field, the CRVV attribute is ingnored. Although the CRVV signal normally is a character attribute signal it may change from dot line to dot line of a character in order to support underlines or cursors.

Double Width (DW)

The DW input is clocked into the SAB 82731 at the rising edge of CCLK. The dot clock frequency and the CCLK frequency will be halved when the double width attribute is active (high), producing characters that are twice as wide. The period of RCLK is not changed (see figure 8).

Width Defeat (WDEF)

The WDEF attribute signal is clocked into the SAB 82731 at the rising edge of CCLK. When the width defeat attribute is active (high), the width of CCLK will be set to a default width value previously programmed (see figure 9).

Figure 8: Function of DW on DCLK and CCLK

Figure 9: Function of WDEF

Field Attribute Signals

The field attribute signals are clocked into the SAB 82731 with the rising edge of RCLK. Thus the attributes are valid for a specifical part of the screen independent of how many characters are displayed within this part.
The SAB 82731 supports two field attributes:

- field reverse video RRVV and
- clock synchronization CSYN.

Field Reverse Video (RRVV)

The RRVV control signal is clocked into the SAB 82731 at the rising edge of RCLK. It immediately effects the display by the polarity of the video output in both the character field and the border of the display. It is an active high signal.

Clock Synchronization (CSYN)

CSYN is a field attribute signal, because it defines the active character field in addition to its function of synchronizing CCLK and RCLK.

With a low level of CSYN (deactivated) clocked into the SAB 82731 with the rising edge of RCLK, the beginning of the character field area is defined (see figure 10) and the first character will be displayed. At the next rising edge of RCLK after CSYN is activated (i.e. at the end of the character field), the video output is forced to zero or, if the RRVV control signal is active, to a high level. The currently transmitted character will be truncated at this location. At the same time, CCLK will be forced to match RCLK starting with the next rising edge of RCLK (see figure 10). While CSYN is active all character attribute and data signals are ignored and only the field reverse video signal is effecting the video output.
Before the deactivation of CSYN, the data and attribute pipeline has to be filled by the CRT controller with the information of the first character.

Figure 10: Function of CSYN

CCLK is forced to match RCLK
(Last character is truncated)

Tabulator Function

The SAB 82731 supports tabulator functions by providing the $\overline{\mathrm{CHOLD}}$ (character clock inhibit) input.

CCLK Inhibit (CHOLD)

When the CHOLD signal is activated (low) it inhibits the CCLK clock and thus freezes the information pipeline between CRT-controller and SAB 82731 until the next tabulator location is reached. $\overline{\text { CHOLD }}$ has to be activated simultaneously with the display of the TAB-character. If the TAB-character doesn't consist of all zeros, it must be blanked by activațing CBLANK.
The width of the TAB-character can be determined by Wø-W3 or by activating WDEF.
The CHOLD-signal is provided by the CRT-controller and it is assumed to be triggered with the leading edge of CCLK (figure 11). With the same edge of CCLK, the TAB-character will be latched into the SAB 82731. Thereby the attnibutes CBLANK and WDEF must be active if used. Thus the TABcharacter will be displayed completely and the CCLK will be inhibited until reaching the specified tabulator location, which is defined by CHOLD inactive (high) at the rising edge of RCLK. In the timing diagrams it is assumed that CHOLD is deactivated by the trailing edge of RCLK. Figure 11 shows the normal case where the display of the TAB-character is finished before the deactivation of $\overline{\mathrm{CHOLD}}$. The gap between the TAB-location and the
following character is normally blanked. In this scheme the TAB-character will be handled by the SAB 82731 like any other character (attribute processing is done quite normally).

In case of $\overline{\text { CHOLD }}$ active width being less than the TAB-character width the TAB-character will also be displayed completely. However, we have to distinguish three different cases:

1) TAB-character is terminated before reaching TAB-location. The next character will be displayed as described before. In the gap the video output is normally blanked.
2) TAB-character is finished exactly at the TABlocation. The next character will be displayed immediately without delay.
3) TAB-character is not terminated when reaching the TAB-location (see figure 12). The following character will be displayed subsequently after the display of the TAB-character (i.e. the start of the following character is not at the TABlocation).

If the $\overline{C H O L D}$ signal is not deactivated the video output will be continuously blanked. In the gap between the end of the TAB-character and the TAB-location all character attribute signals will have no effect on the video output signal. If the RRVV control signal is active the video output signal is inverted.

Figure 11: Function of $\overline{\mathrm{CHOLD}}$ (normal case)

Figure 12: Function of CHOLD with CHOLD Width Less than Character Width (case 3)

1) TAB character is displayed completely video output is blanked
2) Next character displayed subsequently (not on TAB location)
3) Default width: 11, TAB character width defined by WDEF

Video Output

The video output provides an ECL oriented signal (see figure 13) and is matched to drive a 50 Ohm coax cable (see figure 14). In case of external
attribute processing the external logic can be ECL- or STTL-compatible.

Figure 13: Video Output Stage

Figure 14: Video Output Load Coax Cable

Figure 14: Video Output Load (continued)

Figure 15: Proposed Converter for Video Output to TTL Level Output

Absolute Maximum Ratings ${ }^{1}$)

Temperature under bias
Storage Temperature
All output and supply voltages
All input voltages
Power dissipation

0 to $+70^{\circ} \mathrm{C}$
-65 to $+150^{\circ} \mathrm{C}$
-0.5 V to +6 V
-0.5 V to +5.5 V
1.5 Watts

D.C. Characteristics

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit values		Unit	Test conditions
		Min.	Max.		
VC	Input clamp voltage		-1	V	$I C=-5 \mathrm{~mA}$
IIL	Forward input current		-0.7	mA	$\mathrm{VIL}=0.5 \mathrm{~V}$
IIH	Reverse input current		50	$\mu \mathrm{A}$	$\mathrm{VIH}=\mathrm{VCC}$
VOL	Output low voltage			V	
	CCLK		0.5		$\mathrm{IOL}=8 \mathrm{~mA}$
	RCLK		0.5		$10 \mathrm{~L}=4 \mathrm{~mA}$
	VIDEO	VCC-1.2V	VCC-0.6V	-	$\mathrm{IOL}=0$
VOH	Output high voltage				
	CCLK, RCLK	2.4	-	V	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$
	VIDEO	VCC-0.2V	VCC	-	$\mathrm{IOL}=0$
VIL	Input low voltage	-	0.8	V	-
VIH	Input high voltage	2.0	-		
ICC	Power supply current	-	250	mA	$\left.{ }^{2}\right)$
ZO	Output impedance VIDEO	40	70	Ohms	-
CIN	Input capacitance	-	15	pF	$\mathrm{fc}=1 \mathrm{MHz}$

[^40]
A.C. Characteristics

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit values				Unit	Test conditions
		SAB 82731		SAB 82731-2			
		Min.	Max.	Min.	Max.		
tDHDH	DCLK cycle period	20	125			ns	-
tCHCH	CCLK cycle period	3	18			tDHDH	
tCLCH	CCLK low time	$\begin{aligned} & \text { tDHDH } \\ & -10 \end{aligned}$	$\begin{aligned} & 16 \text { tDHDH } \\ & +20 \end{aligned}$				
tCHCL	CCLK high time	$\begin{aligned} & 2 \text { tDHDH } \\ & -20 \end{aligned}$	-				
tRHRH	RCLK cycle period	6	21			tDHDH	
tRLRH	RCLK low time	$\begin{aligned} & 3 \text { tDHDH } \\ & -10 \end{aligned}$	$\begin{aligned} & 18 \mathrm{tDHDH} \\ & +20 \end{aligned}$				
tRHRL	RCLK high time	$\begin{aligned} & 3 \text { tDHDH } \\ & -20 \end{aligned}$					
tDVCH	Data and attribute input set up time	30		1)			Fig. 16
tCHDX	Data and attribute input hold time	0					
tHLTE	$\overline{\text { CHOLD }}$ active before end of TAB.-char.	30	-			ns	
tHLHH	$\overline{\text { CHOLD }}$ pulse width	20					
tHHRH	$\overline{\text { CHOLD }}$ inactive set up before rising edge of RCLK	30					
tHLRH	$\overline{\text { CHOLD }}$ inactive hold time after rising edge of RCLK	0					

[^41]A.C. Characteristics (continued)

Symbol	Parameter	Limit values				Unit	Test conditions
		SAB 82731		SAB 82731-2			
		Min.	Max.	Min.	Max.		
tCHVV	Video output valid after rising edge of CCLK	-	6	1)		ns	- -
tOLOH	TTL-output rise time						
tOHOL	TTL-output fall time						
tVLVH	Video output rise time		3				Fig. 17
tVHVL	Video output fall time						

${ }^{1}$) A.C. data for the SAB 82731-2 was not available at the time this data book was compiled.
Contact your Siemens representative for complete information.

A.C. Testing Waveforms

Figure 16: TTL-Level Input/Output Testing

Figure 17: ECL-Level Output Testing

A.C.'Testing Load Circuits

RCLK: $\mathrm{RL}=700 \Omega$
CCLK:RL=350 Ω

Figure 19: ECL-Level Load Circuit

A.C. Waveforms

Figure 20: Basic Timing

Figure 21: Timing on CHOLD

Application Examples

Figure 22: Example of Interface to SAB 82730

RAM or ROM may be selected either by addresses or by control signals. For pipeline register use positive edge triggered D-Flipflops (non-transparent latch) like SN 74374.

Figure 23: Example of Interface to SAB 8275

Memory Components
-

SAB 81C5x
 256 x 8-Bit Static CMOS RAM

Preliminary data MOS circuit
The SAB 81C5x is a 2048 bit static random access memory (RAM), organized as 256 words by 8 bits, manufactured using CMOS silicon gate technology. The multiplexed address and data bus allows to interface directly with the CMOS 8-bit organized processors and microcomputers, for example with SAB 8085, SAB 8086, SAB 8088, SAB 8048, SAB 80C48, SAB 8051 and SAB 80C482. Low standby power dissipation ($<1 \mu \mathrm{~A}$) minimizes system power requirements.

Features

- 256×8-bit organization
- Multiplexed address and data bus
- Tristate address / data lines
- Very low power consumption Standby $\quad 1 \mu \mathrm{~A}$ at 6 V Operation $500 \mu \mathrm{~A}$ at $6 \mathrm{~V}, 1 \mathrm{MHz}$
- Wide supply voltage range: 2.5 to 6 V
- Data retention: 1.5 V

Pin configuration

top view

Pin designation

Pin No.	Symbol	Description
$\begin{aligned} & 1-6 \\ & 10,11 \end{aligned}$	AD0-7	Address/data lines
12	$\overline{\mathrm{CS}}, \mathrm{CS}$	Chip select $\overline{\mathrm{CS}}=$ active low; internal pullup; $C S=$ active high internal pulldown
13	ALE	Address latch enable
14	$\overline{W R}$	Write enable
15	$\overline{\mathrm{RD}}$	Read enable
16	$V_{D D}$	Power supply $(2.5-6 V)$
7	$V_{\text {SS }}$	Ground (0 V)
8, 9	NC	Not connected

Logic symbol

Truth table for control and data bus pin status

$\overline{C S}$	CS	$\overline{R D}$	$\overline{W R}$	ADO ...AD7 during data portion of cycle	Function
H	L	X	X	floating	none
L	H	L	H	data from memory	read
L	H	H	L	data to memory	write
L	H	H	H	floating	none

Block diagram

Maximum ratings *)

Ambient temperature under bias
Storage temperature
Supply voltage referred to GND (VSS)
Total power dissipation All input and output voltages

$T_{\text {amb }}$	-25 to 70	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$
V	0 to 7	V
$P_{\text {tot }}$	250	mW
	-0.3 to $V_{D D}$	V

*) Stresses above absolute maximum ratings may cause permanent damage to the device.

DC characteristics

$T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; V_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; V_{S S}=0 \mathrm{~V}$

Standby supply current Operating supply current Operating supply voltage Standby voltage Input current Output leakage current

L input voltage
H input voltage
L output voltage
H output voltage

	Test conditions	Min.	Typ	Max.	Unit
I_{DD}				1	$\mu \mathrm{~A}$
I_{DD}	$f=1 \mathrm{MHz}$			500	$\mu \mathrm{~A}$
V_{DD}		2.5		6	V
V_{DD}	for data retention	1.5		6	V
I_{IL}	$V_{1}=0$ to 6 V			1	$\mu \mathrm{~A}$
I_{OL}	$V_{\mathrm{O}}=0$ to 6 V			1	$\mu \mathrm{~A}$
	high impedance				
V_{IL}		-0.3		0.45	V
V_{IH}		$0.7 \times V_{\mathrm{DD}}$		V_{DD}	V
V_{OL}	$I_{\mathrm{OL}}=1 \mathrm{~mA}$		0.75	V	
V_{OH}	$I_{\mathrm{OH}}=1 \mathrm{~mA}$	$0.75 \times V_{\mathrm{DD}}$			V

AC characteristics:

$T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{DD}}=5 \mathrm{~V} ; V_{\mathrm{SS}}=0 \mathrm{~V}$

ALE pulse width Address set-up before ALE Address hold from ALE $\overline{R D}, \overline{W R}$ pulse width Data set-up before $\overline{W R} \uparrow$ Data hold after $\overline{W R} \uparrow$ Data hold after $\overline{\mathrm{RD}} \uparrow$ $\overline{R D} \downarrow$ to data out Address float to $\overline{\mathrm{RD}} \downarrow$ CS or $\overline{C S}$ before ALE CS or $\overline{\mathrm{CS}}$ after $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$

	Min.	Typ.	Max.	Unit
t_{LL}	120			ns
t_{AL}	60			ns
t_{LA}	45		ns	
t_{CC}	400		ns	
t_{DW}	433		ns	
t_{WD}	33		ns	
t_{DR}	0		ns	
t_{RD}				
t_{AFC}	150			
t_{CS}	100			
t_{SC}	100			
			ns	

Timing waveforms

Read

Write

SAB 81C52P 256×8-Bit Static CMOS RAM NMOS-Compatible

Preliminary data

CMOS circuit
The SAB 81 C $52 P$ is a CMOS silicon gate, static random access memory (RAM), organized as 256 words by 8 bits. The multiplexed address and data bus allows to interface directly to 8-bit NMOS microprocessors/microcomputers without any timing or level problems, e.g. the families SAB 8085, SAB 8088, SAB 8048, SAB 8051, and SAB. 80515.

All inputs and outputs are fully compatible with NMOS circuits, except CS 1. Data retention is given up to $V_{D D} \geqq 1.2 \mathrm{~V} . .^{\circ}$) The SAB 81 C 52 P has three different inputs for two chip select modes which allow to inhibit either the address/data lines ($A D O \ldots A D 7$) and the control lines ($\overline{W R}, \overline{R D}, A L E, C S 2, \overline{C S} 3$), or only the control lines $\overline{R D}, \overline{W R}$.
The power consumption is max. $5.5 \mu \mathrm{~W}$ in standby mode and max. 2.75 mW in operation. In standby mode, the power consumption will not increase if the control inputs are on undefined potential.

Features

- 256×8-bit organization
- standby mode
- compatible with the $\mu \mathrm{C} / \mu \mathrm{P}$ families SAB 8085, SAB 8088, SAB 8048, SAB 8051, the new SAB 80515, etc.
- very low power dissipation
- data retention up to $V_{D D} \geq 1.2 \mathrm{~V}^{*}$)
- three different chip select inputs for two chip select modes
- no increasing power consumption in standby mode if the control inputs are on undefined potential

[^42]Pin configuration
(top view)

Pin designation

Pin No.	Symbol	Function
$1-6$	AD $\varnothing-7$	Address/data lines
10,11	CS 1	Chip select 1 (standby) active low; inhibits all lines including control lines 12
13	ALE	Address latch enable
14	$\overline{W R}$	Write enable
15	$\overline{R D}$	Read enable
16	$V_{D D}$	Power supply
7	$V_{S S}$	GND
8	$C S 2$	Chip select 2; inhibits control inputs $\overline{R D}, \overline{W R}$
9	$\overline{C S 3}$	Counterpart to CS 2

Logic symbol

Truth table

CS 1	CS 2	$\overline{\text { CS } 3}$	ALE	RD	$\overline{W R}$	AD Ø... AD 7	Function
L	*	*	*	*	*	floating (tristate)	standby
H	X	X	H	H	H	addresses to memory	store addresses
H	H	L	L	L	H	data from memory	read
H	H	L	L	H	L	data to memory	write
H	L	X	L	X	X	floating (tristate)	none
H	X	H	L	X	X	floating (tristate)	none

米: Level $=V_{S S} \ldots V_{D D}$
X: Level $=$ LOW or HIGH

Block diagram

Maximum ratings

Maximum ratings are absolute limits. The integrated circuit may be destroyed if only a single value is exceeded.

Supply voltage referred to GND (V_{ss})
All input and output voltages

Total power dissipation
Power dissipation for each output
Junction temperature
Storage temperature
Thermal resistance

$V_{D D}$	-0.3 to 6	V
V_{IM}	$V_{S S}-0.3$	V
	$V_{D D}+0.3$	V
$P_{\text {tot }}$	250	mW
P_{Q}	50	mW
T_{j}	125	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$
$R_{\text {thSA }}$	70	$\mathrm{~K} / \mathrm{W}$

Operating range

In the operating range, the functions shown in the circuit description will be fulfilled. Deviations from the electrical characteristics may be possible.

Supply voltage	V_{S}	4.5 to 5.5	V
Ambient temperature	$T_{\text {amb }}$	-40 to 85°)	${ }^{\circ} \mathrm{C}$

[^43]
Electrical Characteristics

The electrical characteristics include the guaranteed tolerance of the values which the IC stays within for the specified operating range.
The typical characteristics are average values which can be expected from production. Unless otherwise specified, the typical characteristics apply to $T_{\text {amb }}$ and the specified supply voltage.

DC characteristics
$T_{\mathrm{amb}}=-40$ to $\left.+85^{\circ} \mathrm{C}^{\circ}\right) ; V_{D D}=4.5$ to $5.5 \mathrm{~V} ; V_{\mathrm{SS}}=0 \mathrm{~V}$

Standby supply current
Supply current
Standby voltage for data retention
L input current (for each input)
Output leakage current
L input voltage
H input voltage
L output voltage
H output voltage
L input voltage CS1
H input voltage CS1

	Test conditions	min.	max.	
I_{DD}	$f=1 \mathrm{MHz}$		1	$\mu \mathrm{~A}$
I_{DD}	$f=1.2$	500	$\mu \mathrm{~A}$	
V_{DD}			V	
I_{IL}	$V_{1}=0$ to 6 V		1	$\mu \mathrm{~A}$
I_{QUK}	$V_{\mathrm{Q}}=0$ to 6 V		1	$\mu \mathrm{~A}$
	tristate			
V_{IL}	except CS 1	2.2	0.8	V
V_{IH}	excen			
V_{OL}	$I_{\mathrm{OL}}=1 \mathrm{~mA}$		0.4	V
V_{OH}	$I_{\mathrm{OH}}=1 \mathrm{~mA}$	2.6		V
V_{IL}			1	V
V_{IH}		4		V

AC characteristics
$T_{\mathrm{amb}}=-40$ to $\left.85^{\circ} \mathrm{C}^{\circ}\right), V_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$
ALE pulse width
ALE LOW to $\overline{R D}$ LOW
$\overline{\text { RD }}$ HIGH to ALE HIGH
ALE LOW to WR LOW
$\overline{W R}$ HIGH to ALE HIGH
Address setup before ALE
Address hold after ALE
$\overline{W R}$ or $\overline{R D}$ pulse width
Data setup before $\overline{W R}$
Data hold after $\overline{R D}$
Chip select $(2,3)$ before $\overline{R D}, \overline{W R}$
Chip select $(2,3)$ after $\overline{R D}, \overline{W R}$
Chip select 1 before ALE
Chip select 1 after $\overline{R D}, \overline{W R}$
Output delay time
Input capacitance against $V_{\text {ss }}$
(for each input)

	min.	max.	
$t_{\text {LHLL }}$	100		ns
$t_{\text {Llat }}$	50		ns
$t_{\text {RHLH }}$	30		ns
$t_{\text {LLWL }}$	50		ns
$t_{\text {WHLH }}$	30		ns
$t_{\text {AVLL }}$	25		ns
$t_{\text {LIAX }}$	20		ns
$t_{\text {WLWH }}$	250		ns
$t_{\text {aVwh }}$	100		ns
$t_{\text {RHOX }}$		50	ns
$t_{\text {cs }}$	50		ns
$t_{\text {sc }}$	50		ns
$t_{\text {cSLH }}$	20		ns
$t_{\text {CsWH }}$	50		ns
$t_{\text {RLDV }}$		200	ns
C_{1}		10	pF

[^44]Timing diagram

Application circuit

SAB 81C52 P with the μ C SAB 8051

HYB 4164-P1, HYB 4164-P2, HYB 4164-P3
 65,536-Bit Dynamic Random Access Memory (RAM)

- 65,536 X1 bit organization
- Industry standard 16-pin JEDEC configuration
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power dissipation
- 150 mW active (max.)
- 20 mW standby (max.)
- 120 ns access time,

220 ns cycle (HYB 4164-P1)
150 ns access time,
280 ns cycle (HYB 4164-P2)
200 ns access time,
330 ns cycle (HYB 4164-P3)

- All inputs and outputs TTL compatible
- High over- and undershooting capability on all inputs
- Low supply current transients
- $\overline{\text { CAS }}$ controlled output providing latched or unlatched data
- Common I/O capability using "early write" operation
- Read-Modify-Write, $\overline{\text { RAS-only }}$ refresh, hidden refresh
- 256 refresh cycles with 4 ms long refresh period
- Page Mode Read and Write

Pin Configuration	-		Pin Names	
NC $\square 1$	16	. $V_{\text {SS }}$	$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address Inputs
DI \square_{2}	15	$\square \overline{\mathrm{CAS}}$	$\overline{\text { CAS }}$	Column Address Strobe
$\overline{W E} \square^{3}$	14	DO	DI	Data In
RAS $\square 4$	13	A_{6}	NC	No Connection
$A_{0} \square 5$	12	A_{3}	DO	Data Out
$A_{2} \square 6$	11	A_{4}	RAS	Row Address Strobe
$\mathrm{A}_{1} \square 7$	10	A_{5}	$\overline{\text { WE }}$	Write Enable
$V_{C C} \square 8$	9	A_{7}	$V_{\text {cc }}$	Power Supply (+5 V)
			$V_{\text {SS }}$	Ground (0 V)

The HYB 4164 is a 65536 -word by 1 -bit, MOS random access memory circuit fabricated with Siemens new 5-Volt only n-channel silicon gate technology, using double layer polysilicon. To protect the chip against α-radiation a Siemens proprietary chip cover is used. The HYB 4164 uses single transistor dynamic storage cells and dynamic control circuitry to achieve high speed at very low power dissipation.
Multiplexed address inputs permit the HYB 4164 to be packaged in an industry standard 16-pin dual-in-line package.

System oriented features include single power supply with $\pm 10 \%$ tolerance, on-chip address and data latches which eliminate the need for interface registers and fully TTL compatible inputs and outputs, including clocks.
In addition to the usual read, write and read-modify-write cycles, the HYB 4164 is capable of early and delayed write cycles, $\overline{\mathrm{RAS}}$-only refresh and hidden refresh. Common I/O capability is given by using "early write" operation.

Block Diagram

Functional Description

Addressing ($\mathrm{A}_{\odot}-\mathrm{A}_{7}$)

For selecting one of the 65536 memory cells, a total of 16 address bits are required. First 8 row-address bits are set-up on pins A_{6} through A_{7} and latched onto the row address latches by the Row Address Strobe (RAS). Then the 8 columnaddress bits are set-up on pins A_{0} through A_{7} and latched onto the column address latches by the Column Address Strobe ($\overline{\mathrm{CAS}}$). All input addresses must be stable on or shortly after the falling edge of $\overline{R A S}$ and $\overline{\text { CAS }}$ respectively. $\overline{\text { CAS }}$ is internally gated by RAS to permit triggering of column address latches as soon as the Row Address Hold Time ($\left.t_{\text {RaH }}\right)$ specification has been satisfied and the address inputs have been changed from rowaddress to column-address.
It should be noted that $\overline{\mathrm{RAS}}$ is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. CAS is used as a chip-select activating the column decoder and the input and output buffers.

Write Enable ($\overline{\mathrm{WE}}$

The read or write mode is selected with the $\overline{W E}$ input. A logic high $\left(V_{I H}\right)$ on $\overline{W E}$ dictates read mode; logic low ($V_{L L}$) dictates write mode. The data input is disabled when the read mode is selected. When WE goes low prior to $\overline{\mathrm{CAS}}$, data output (DO) will remain in the high-impedance state for the entire cycle permitting common I/O operation.

Data Input (DI)

Data is written during a write or read-modify-write cycle. The falling edge of CAS or WE strobes data into the on-chip data latch. In an early write cycle $\overline{W E}$ is brought low prior to $\overline{\mathrm{CAS}}$ and the data is strobed in by CAS with set-up and hold times referenced to this signal. In a delayed write or read-modify-write cycle, $\overline{\text { CAS }}$ will already be low, thus the data will be strobed in by WE with set-up and hold times referenced to this signal.

Power On

An initial pause of $200 \mu \mathrm{~s}$ is required after power-up followed by a minimum of eight (8) initialization cycles (any combination of cycles containing a $\overline{\text { RAS }}$ clock such as $\overline{\text { RAS }}$-only refresh) prior to normal operation. The current requirement of the HYB 4164 during power on is, however, dependent upon the inut levels $\overline{R A S}, \overline{\mathrm{CAS}}$ and the rise time of $V_{C C}$, as shown in the following diagram.

Data Output (DO)

The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data-out is the same polarity as data-in. The output is in a highimpedance state until $\overline{\mathrm{CAS}}$ is brought low. In a read cycle, or read-write cycle, the output is valid after $t_{\text {RAC }}$ from the transition of $\overline{\text { RAS }}$ when $t_{\text {RCD }}(\mathrm{min})$ is satisfied, or after $t_{C A C}$ from the transition of $\overline{C A S}$ when the transition occurs after t_{RCD} (max.). $\overline{\mathrm{CAS}}$ going high returns the ouput to a high-impedance state. In an early write cycle the output is always in the high-impedance state. In a delayed write or read-modify-write cycle, the output will follow the sequence for the read cycle.

Hidden Refresh

$\overline{\text { RAS }}$ only refresh cycle may take place while maintaining valid output data. This feature is referred to as Hidden Refresh.
Hidden Refresh is performed by holding $\overline{\mathrm{CAS}}$ at V_{IL} from a previous memory read cycle.

Refresh Cycle

A refresh operation must be performed at least every four milli-seconds to retain data. Since the output buffer is in the high-impedance state unless $\overline{\text { CAS }}$ is applied, the $\overline{\text { RAS }}$ only refresh sequence avoids any output signal during refresh. Strobing each of the 256 row addresses (A_{θ} through A_{7}) with $\overline{\text { RAS }}$ causes all bits in each row to be refreshed. $\overline{\mathrm{CAS}}$ can remain high (inactive) for this refresh sequence to conserve power.

Page Mode

Page Mode operations allows a faster data transfer rate. This is achieved by maintaining the row address while strobing successive column addresses onto the chip. The time required to set-up and strobe sequential row addresses for the same page is eliminated.

Current Consumption During Power up

($V_{\text {cc }}$ rise time $10 \mu \mathrm{~s}$)

Absolute Maximum Ratings ${ }^{11}$

Operating Temperature Range

$$
0 \text { to }+70^{\circ} \mathrm{C}
$$

Storage Temperatures Range
Voltages on any Pin relative to $V_{S S}$
-65 to $+150^{\circ} \mathrm{C}$

Power Dissipation
-1 to +7.0 V
Short Circuit Output Current
1.0 W

50 mA

A.C. Test Conditions

Input Pulse Levels
Input Rise and Fall Times Input Timing Reference Levels
Output Timing Reference Levels
Output Load
0.8 to 2.4 V

5 ns between
0.8 and 2.4 V
0.8 and 2.4 V
0.4 and 2.4 V

Equivalent to 2 standard TTL Loads and 100 pF

1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit Values		Units	Test Conditions ${ }^{11}$
		Min.	Max.		
$V_{\text {IH }}$	High level input voltage (all inputs) ${ }^{2 /}$	2.4	6.0	V	-
$V_{\text {IL }}$	Low level input voltage ${ }^{2)}$	-1.0	0.8		
V_{OH}	Output high voltage	2.4	$V_{C C}$		$I_{0}=-5 \mathrm{~mA}$
VoL	Output low voltage	-	0.4		$I_{0}=4.2 \mathrm{~mA}$
$I_{\text {CCl }}$	Average $V_{\text {cc }}$ power supply current ${ }^{3)}$	-	27	mA	-
$I_{\text {CC2 }}$	Standby $V_{\text {Cc }}$ power supply current	-	3.5		$\overline{\overline{R A S}} \text { at } V_{\mathrm{IH}}$
$I_{\text {CC3 }}$	Average $V_{\text {CC }}$ current during refresh ${ }^{3 /}$	-	24		$\overline{\text { RAS }}$ cycling $\overline{C A S}$ at $V_{\text {IH }}$
$I_{\text {CC4 }}$	Page mode current ${ }^{3 /}$	-	20	mA	$\overline{R A S}$ at $V_{\text {IL }}$ CAS cycling
$I_{\text {(LL) }}$	Input leakage current (any input) ${ }^{4}$	-10	10	$\mu \mathrm{A}$	-
$I_{\text {OLL }}$	Output leakage current	-10	10		$\begin{aligned} & \overline{\mathrm{CAS}} \text { at } V_{\mathrm{IH}} \\ & V_{\mathrm{O}}=V_{\mathrm{SS}} \text { to } V_{\mathrm{CC}} \end{aligned}$

Capacitances ${ }^{5 /}$

Symbol	Parameter $^{6)}$	Limit Values		Units	Test Conditions
		Min.	Max.		
C_{11}	Input capacitance $\left(\mathrm{A}_{0}-\mathrm{A}_{7}\right), \mathrm{DI}$	-	5		-
C_{12}	Input capacitance	-	10	pF	-
C_{0}	Output capacitance $\overline{\text { CAS }}, \overline{\text { WRITE }}$				

Notes:

1) An initial pause of $200 \mu \mathrm{~s}$ is required after power-up followed by a minimum of eight initialization cycles prior to normal operation.
2) Over- and undershooting on input levels of 6.5 V or -2 V for a period of 30 ns will not influence function or reliability of the device.
3) $I_{C C}$ depends on frequency of operation, Maximum current is measured at 260 ns cycle rate.
4) All device pins at 0 V and pin under test at +5.5 V .
5) Capacitance measured with a Boonton Meter 72 BD or effective capacitance calculated from the equation
$\mathrm{C}=\frac{\mathrm{I} \cdot \Delta \mathrm{t}}{\triangle \mathrm{V}}$ with $\triangle \mathrm{V}=3 \mathrm{~V}$.
6) This parameter is periodically sampled and not 100\% tested.

A.C. Characteristics ${ }^{1)}$

$T_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit Values						Units
		HYB 4164.P1		HYB 4164-P2		HYB 4164.P3		
		Min.	Max.	Min.	Max.	Min.	max.	
$t_{\text {RC }}$	Random read or write cycle time ${ }^{2 /}$	220	-	280	-	330	-	
$t_{\text {RWC }}$	Read/write cycle time ${ }^{2)}$	220	-	280	-	330	-	
$t_{\text {PC }}$	Page mode cycle time	125	-	170	-	225	-	
$t_{\text {RMWC }}$	Read/modify/write cycle time ${ }^{2 /}$	255	-	280	-	330	-	
$t_{\text {RAC }}$	Access time from $\overline{\mathrm{RAS}}^{3 / 4)}$	-	120	-	150	-	200	
$t_{\text {caC }}$	Access time from $\overline{\mathrm{CAS}}^{3 / 5 / 7)}$	-	80	-	100	-	135	
$t_{\text {OFF }}$	Output buffer turn-off delay ${ }^{66}$	-	35	-	40	-	50	
$t_{\text {RP }}$	$\overline{\mathrm{RA}} \bar{S}$ precharge time	90	-	100	-	120	-	
$t_{\text {RAS }}$	$\overline{\text { RAS }}$ pulse width	120	10^{4}	150	10^{4}	200	10^{4}	
$t_{\text {RSH }}$	$\overline{\text { RAS }}$ hold time	80	-	100	-	135	-	
$t_{\text {CSH }}$	$\overline{\text { CAS }}$ hold time	120	-	150	-	200	-	ns
$t_{\text {CAS }}$	$\overline{\mathrm{CAS}}$ pulse width	80	-	100	-	135	-	
$t_{\text {RCD }}$	$\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time ${ }^{71}$	25	40	30	50	35	65	
$t_{\text {ASR }}$	Row address set-up time	0	-	0	-	0	-	
$t_{\text {RAH }}$	Row address hold time	15	-	20	-	25	-	
$t_{\text {ASC }}$	Column address set-up time	0	-	0	-	0	-	
$t_{\text {CAH }}$	Column address hold time	40	-	45	-	55	-	
$t_{\text {AR }}$	Column address hold time referenced to $\overline{\text { RAS }}$	80	-	95	-	120	-	
$t_{\text {RCS }}$	Read command set-up time (RMW)	0	-	0	-	0	-	
$t_{\text {RCH }}$	Read command hold time	0	-	0	-	0	-	
$t_{\text {WCH }}$	Write command hold time	40	-	45	-	55	-	

Symbol	Parameter	Limit Values						Units
		HYB 4164-P1		HYB 4164-P2		HYB 4164-P3		
		Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {WCR }}$	Write command hold time referenced to $\overline{\mathrm{RAS}}$	95	-	110	-	120	-	
$t_{\text {wCs }}$	Write command set-up time ${ }^{3)}$	-10	-	-10	-	-10	-	
$t_{\text {wp }}$	Write command pulse width	40	-	45	-	55	-	
$t_{\text {RWL }}$	Write command to $\overline{\mathrm{RAS}}$ lead time	40	-	50	-	60	-	
$t_{\text {CWL }}$	Write command to $\overline{\text { CAS }}$ lead time	40	-	50	-	60	-	ns
$t_{\text {DS }}$	Data in set-up time	0	-	0	-	0	-	
$t_{\text {DH }}$	Data in hold time ${ }^{9 /}$	40	-	45	-	55	-	
$t_{\text {DHR }}$	Data in hold time ${ }^{9}$) referenced to $\overline{\text { RAS }}$	95	-	110	-	120	-	
$t_{\text {cP }}$	$\overline{\text { CAS }}$ precharge time (Page mode)	35	-	60	-	80	-	
$t_{\text {CPN }}$	$\overline{\text { CAS }}$ precharge time ${ }^{10)}$	40	-	50	-	60	-	
$t_{\text {RF }}$	Refresh period	-	4.0	-	4.0	-	4.0	ms
$t_{\text {cwo }}$	$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay ${ }^{8)}$	60	-	60	-	80	-	
$t_{\text {RWD }}$	$\overline{\text { RAS }}$ to $\overline{\text { WE }}$ delay ${ }^{8)}$	110	-	120	-	145	-	ns
$t_{\text {T }}$	Transition time (Rise and Fall)	3	35	3	35	3	50	

Notes:

1) $V_{I H}$ and $V_{I L}$ are reference levels for measuring timing of input signals. Also, transition times are measured between $V_{I H}$ and V_{IL}.
2) The specifications for $t_{\mathrm{RC}(\text { min })}$ and $t_{\mathrm{RWC}(\text { min })}$ are used only to indicate cycle time at which proper operation over full temperature range $\left(0^{\circ} \mathrm{C} \leqslant T_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C}\right)$ is assured.
3) Measured with a load equivalent to two standard TTL loads and 100 pF .
4) Assumes that $t_{\mathrm{RCD}} \leqslant t_{\mathrm{RCD}(\text { max })}$. If t_{RCD} is greater than the maximum recommended value shown in this table, $t_{\text {RAC }}$ will increase by the amount that t_{RCD} exceeds the value shown.
5) Assumes that $t_{\mathrm{RCD}} \geqslant t_{\mathrm{RCD}(\max)}$.
6) $t_{\text {OFF(max) }}$ defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
7) Operation within the $t_{R C D(\max)}$ limit ensures that $t_{\mathrm{RAC}(\text { max })}$ can be met. $t_{\mathrm{RCD}(\text { max })}$ is specified as a reference point only; if $t_{\text {RCD }}$ is greater than the specified $t_{\mathrm{RCD}(\text { max })}$ limit, then access time is controlled exclusively by $t_{\text {cAc }}$.
8) $t_{\text {WCS }}, t_{\text {CWD }}$, and $t_{\text {RWD }}$ are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If $t_{\text {WCS }} \geq t_{\text {WCS(min) }}$. the cycle is an early write cycle and the data-out will remain open circuit (high impedance) throughout the entire cycle: If $t_{\mathrm{CWD}} \geq t_{\mathrm{CWD}(\mathrm{min})}$ and $t_{\mathrm{RWD}} \geq t_{\mathrm{RWD}(\mathrm{min})}$ the cycle is a read-write cycle and the data will contain data read from the selected cell. If neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
9) t_{DS} and t_{DH} are referenced to the leading edge of $\overline{\mathrm{CAS}}$ in early write cycles, and to the leading edge of $\overline{W E}$ in delayed write or read-modify-write cycles.
10) Not for page mode.

Waveforms

Read cycle

Write cycle (Early write)

Read-write/Read-modify-write cycle

" $\overline{R A S}$-ONLY" REFRESH CYCLE

Note $\overline{\text { CAS }}=V_{\mathbb{H}} ; \overline{\mathrm{WE}}=$ Don't care

Hidden Refresh

Page Mode Read Cycle

Typical Access Time Curves

$\overline{\text { RAS }}$ Access Time
 vs. Supply Voltage
 $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CAS Access Time

vs. Supply Voltage
$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Typical Current Consumption Curves

I_{CC} (Average) vs. Temperature (typ.)
$V_{\mathrm{CC}}=5.5 \mathrm{~V}, t_{\mathrm{RC}}=280 \mathrm{nsec}$
I_{CC} Write cycle
$I_{C C 3} \overline{\text { RAS Only Refresh Cycle }}$

$I_{C C 3}$ (Average) vs. Cycle Rate
$V_{C C}=5.5 \mathrm{~V}$
RAS Only Refresh Cycle
$T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

$I_{\mathrm{CC} 2}$ Standby current vs. temperature (typ.) $V_{C C}=5.5 \mathrm{~V}$

Topology Description

The evaluation and incoming testing of RAMs normally requires a description of the internal
topology of the device in order to check for "worst case" pattern.

Internal Topology

Address Decoder scrambling

Internal Data Polarity
Data Stored $=\mathrm{DI} \oplus \mathrm{A}_{\ominus}$ (ROW)

Note:
The logic symbol "exclusive nor" is used solely to indicate the logic function.

HYB 41256-12/-15/-20 262,144-Bit Dynamic Random Access Memory (RAM)

- $262,144 \times 1$-bit organization
- Industry standard 16 pins
- Single +5 V supply, $\pm 10 \%$ tolerance
- Low power dissipation: -385 mW active (max.)
- 28 mW standby (max.)
- 120 ns access time

220 ns cycle time (HYB 41256-12)
150 ns access time
260 ns cycle time (HYB 41256-15)
200 ns access time
330 ns cycle time (HYB 41256-20)

- All inputs and outputs TTL compatible
- On-chip substrate bias generator
- Three-state data output
- Read, write, read-modify-write, $\overline{\mathrm{RAS}}$-onlyrefresh, hidden refresh
- Common I/O capability using "early write" operation
- Page mode read and write, read-write
- 256 refresh cycles with 4 ms refresh period
- Redundancy incorporated for increasing yield
- activation via laser links
- roll-call mode as pretest with DI at 10 V provides:
redundancy signature
individual address decoder
scrambling

The HYB 41256 is a 262,144 word by 1 -bit dynamic Random Access Memory. This 5 V -only component is fabricated with Siemens new high performance N -channel silicon gate technology. The use of tantalum polycide provides high speed. A Siemens proprietary chip cover protects the chip against α radiation.
Nine multiplexed address inputs permit the HYB 41256 to be packaged in an industry standard 16-pin dual-in-line package. System-oriented features include single power supply with $\pm 10 \%$ tolerance, on-chip address and data registers which eliminate the need for interface registers, and fully TTL compatible inputs and output, including clocks.

In addition to the usual read, write and read-modify-write cycles, the HYB 41256 is capable of early and late write cycles, $\overline{\mathrm{RAS}}$-only refresh, and hidden refresh. Common I/O capability is given by using early write operation.
The HYB 41256 also features page mode which allows high-speed random access of bits in the same row.
The HYB 41256 has the capability of using laser links to perform redundancy. With the roll-call mode, which is a new test feature, the user can separate repaired devices easily, and additionally gets information on the individual row and column addresses which have been repaired and how they are substituted by redundant lines.

Block Diagram

Functional Description

Device Initialization

Since the HYB 41256 is a dynamic RAM with a single 5 V supply, no power sequencing is required. For power-up, an initial pause of 200 microseconds is necessary for the internal bias generator to establish the proper substrate bias voltage. To initialize the nodes of the dynamic circuitry, a minimum of 8 active cycles of the Row Address Strobe (RAS) has to be performed. This is also necessary after an extended inactive state of greater than 4 milliseconds.

Addressing (A0-A8)

For selecting one of the 262,144 memory cells, a total of 18 address bits are required. First 9 Row Address bits are set up on pins A0 through A8 and latched into the row address latches by the Row Address Strobe ($\overline{\mathrm{RAS}}$). Then the 9 column address bits are set up on pins A0 through A8 and latched into the column address latches by the Column Address Strobe ((CAS). All input addresses must be stable on the falling edges of $\overline{R A S}$ and $\overline{C A S}$. It should be noted that $\overline{R A S}$ is similar to a Chip Enable in that it activates the sense amplifiers as well as the row decoder. $\overline{\mathrm{CAS}}$ is used as a chip select activating the column decoder and the input and output buffers.

Write enable ($\overline{W E}$)

The read or write mode is selected with the $\overline{W E}$ input. A logic high (VIH) on $\overline{W E}$ dictates read mode; logic low (VIL) dictates write mode. The data input is disabled when read mode is selected. When $\overline{W E}$ goes low prior to $\overline{C A S}$, data ouput (DO) will remain in the high-impedance state for the entire cycle permitting common I/O operation.

Data input (DI)

Data is written during a write or read-modify-write cycle. The falling edge of $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{WE}}$ strobes data into the on-chip data latch. In an early write cycle $\overline{W E}$ is brought low prior to $\overline{C A S}$ and the data is strobed in by $\overline{\mathrm{CAS}}$ with setup and hold times referenced to this signal.

Data output (DO)

The output is three-state TTL compatible with a far:-out of two standard TTL loads. Data Out has the same polarity as Data In. The output is in a high impedance state until $\overline{\text { CAS }}$ is brought low. In a read cycle or read-write cycle, the output is valid after tRAC from transition of $\overline{R A S}$ when $\operatorname{RRCD}(\mathrm{min})$ is satisfied, or after tCAC from transition of $\overline{\mathrm{CAS}}$ when the transition occurs after tRCD (max). In an early write cycle, the output is always in the high impedance state. In a delayed write or read-modifywrite cycle, the output will follow the sequence for the read cycle. With $\overline{C A S}$ going high the output returns to the high impedance state within tOFF.

Hidden refresh

$\overline{\text { RAS }}$-only refresh cycle may take place while maintaining valid output data. This feature is referred to as Hidden Refresh. Hidden Refresh is performed by holding $\overline{\mathrm{CAS}}$ at VIL of a previous memory read cycle.

Refresh cycle

A refresh operation must be performed at least every four milliseconds to retain data. Since the output buffer is in the high impedance state unless $\overline{\text { CAS }}$ is applied, the $\overline{\mathrm{RAS}}$-only refresh sequence avoids any signal during refresh. Strobing each of the 256 row addresses (A0 through A7) with $\overline{\text { RAS, }}$ causes all bits in each row to be refreshed. $\overline{\text { CAS }}$ can remain high (inactive) for this refresh sequence to conserve power.

Page mode

Page-mode operation allows effectively faster memory access by maintaining the row address and strobing random column addresses onto the chip. Thus, the time necessary to setup and strobe sequential row addresses for the same page is no longer required. The maximum number of columns that can be addressed in sequence is determined by tRAS, the maximum $\overline{\text { RAS }}$ low pulse width.

Absolute Maximum Ratings*)

Operating Temperature Range
Storage Temperature Range
Voltage on Any Pin Relative to VSS
Voltage on DI Relative to VSS
Power Dissipation
Data Out Current (Short Circuit)

0 to $70^{\circ} \mathrm{C}$ -65 to $150^{\circ} \mathrm{C}$
-1 to 7 V
-1 to 11 V
1W
50 mA

DC Characteristics

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VSS}=\mathrm{OV}, \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
VIH	Input high voltage (all inputs)	2.4	VCC+1	V	112)
VIL	Input low voltage (all inputs)	-1.0	0.8		
VOH	Output high voltage	2.4	-		-
VOL	Output low voltage	-	0.4		
ICC1	Average VCC supply current -12 tRC=220ns $-15 \mathrm{tRC}=260 \mathrm{~ns}$ $-20 \mathrm{tRC}=330 \mathrm{~ns}$		$\begin{aligned} & 85 \\ & 70 \\ & 60 \end{aligned}$	mA	3)
ICC2	Standby VCC supply current		5		4)
ICC3	Average VCC supply current during $\overline{\text { RAS }}$-only refresh cycles $-12 \mathrm{tRC}=220 \mathrm{~ns}$ $-15 \mathrm{tRC}=260 \mathrm{~ns}$ -20 tRC=330ns		$\begin{aligned} & 65 \\ & 55 \\ & 45 \end{aligned}$		3)
ICC4	Average VCC supply current during page mode $\begin{aligned} & -12 \mathrm{tPC}=120 \mathrm{~ns} \\ & -15 \mathrm{tPC}=150 \mathrm{~ns} \\ & -20 \mathrm{tPC}=200 \mathrm{~ns} \end{aligned}$		$\begin{array}{\|l} 65 \\ 55 \\ 45 \end{array}$		
$11(\mathrm{~L})$	Input leakage current (any input)	-	10	$\mu \mathrm{A}$	-
10(L)	Output leakage current ($\overline{C A S}$ at logic 1, $0 \leq$ Vout ≤ 5.5)				
VCC	VCC supply voltage	4.5	5.5	\checkmark	1)
VSS	VSS supply voltage	0	0		

Notes see page 5

Capacitance

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
Cl1	Input capacitance (A0-A8)	-	6	pF	5
$\mathrm{Cl} 2^{2}$	Input capacitance ($\overline{\mathrm{RAS}}, \mathrm{DI}$)		7		
$\underline{\mathrm{Cl} 3}$	Input capacitance ($\overline{\mathrm{CAS}}, \overline{\mathrm{WE}})$		8		
C0	Output capacitance (DO, $\overline{\mathrm{CAS}}=$ VIH to disable output)				

*) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1) All voltages referenced to VSS.
2) Overshooting and undershooting on input levels of 6.5 V or -2 V for a period of 30 ns max. will not influence function and reliability of the device.
3) ICC depends on frequency of operation. Maximum current is measured at the fastest cycle rate.
4) $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are both at VIH.
5) Effective capacitance calculated from the equation
$C=\frac{1 \cdot \Delta t}{\Delta V}$ with $\Delta V=3 V$ or measured with Boonton meter.

AC Test Conditions

Input pulse levels
0 to 3.0 V
Input rise an fall times 5 ns between 0.8 and 2.4 V
Input timing reference levels $\quad 0.8$ to 2.4 V
Output timing reference levels $\quad 0.4$ to 2.4 V
Output load equivalent to 2 standard
TTL loads and 100 pF

AC Characteristics

$T A=0$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$ (unless otherwise specified; see notes $6,7,8$)

Symbol	Parameter	Limit values						Unit
		-12		HYB 41256-15		-20		
		Min.	Max.	Min.	Max.	Min.	Max.	
tRC	Random read or write cycle time ${ }^{9 /}$	220	-	260	-	330	-	ns
tRWC	Read-modify-write cycle time ${ }^{9)}$	265		310		390		
tRAC	Access time from $\overline{\mathrm{RAS}}{ }^{10111)}$	-	120	-	150	-	200	
tCAC	Access time from $\overline{\mathrm{CAS}}^{10111112)}$		60		75		100	
tRAS	$\overline{\mathrm{RAS}}$ pulse width	120	10^{4}	150	10^{4}	200	10^{4}	
tCAS	$\overline{\text { CAS }}$ pulse width	60	-	75	-	100	-	
tREF	Refresh period	-	4	-	4	-	4	ms
tRP	$\overline{\mathrm{RAS}}$ precharge time	90	-	100	-	120	-	ns
tCRP	$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time	10		10		10		
tRCD	$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time ${ }^{131}$	30	60	30	75	35	100	
tRSH	$\overline{\text { RAS }}$ hold time	60	-	75	-	100	-	
tCSH	$\overline{\text { CAS }}$ hold time	120		150		200		
tASH	Row address setup time	0		0		0		
tRAH	Row address hold time	20		20		25		
tASC	Column address setup time	0		0		0		
$t \mathrm{CAH}$	Column address hold time	30		30		35		
tAR	Column address hold time referenced to $\widehat{\operatorname{RAS}}{ }^{14)}$	90		105		135		
tT	Transition time (rise and fall) ${ }^{6 /}$	3	50	3	50	3	50	
tRCS	Read command setup time	0		0		0		
tRCH	Read command hold time referenced to $\overline{\mathrm{CAS}}{ }^{15)}$	0	-	0	-	0		
tRRH	Read command hold time referenced to $\overline{\operatorname{RAS}}{ }^{15)}$	25		25		30		
tOFF	Output buffer turn-off delay ${ }^{16)}$	0	30	0	40	0	50	
tWCS	Write command sețup time ${ }^{171}$		-		-		-	
tWCH	Write command hold time	40		45		55		

[^45]| Symbol | Parameter | Limit values | | | | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | HYB 41256 | | | | | | |
| | | -12 | | -15 | | -20 | | |
| | | Min. | Max. | Min. | Max. | Min. | Max. | |
| tWCR | Write command hold time referenced to $\overline{\text { RAS }}{ }^{14)}$ | 100 | - | 120 | - | 155 | - | ns |
| tWP | Write command pulse width | 40 | | 45 | | 55 | | |
| tRWL | Write command to $\overline{\text { RAS }}$ lead time | | | | | | | |
| tCWL | Write command to $\overline{\mathrm{CAS}}$ lead time | | | | | | | |
| tDS | Data in setup time ${ }^{18)}$ | 0 | | 0 | | 0 | | |
| tDH | Data in hold time ${ }^{18)}$ | 40 | | 45 | | 55 | | |
| tDHR | Data in hold time referenced to $\overline{\operatorname{RAS}}{ }^{14)}$ | 100 | | 120 | | 155 | | |
| tCWD | $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay ${ }^{17)}$ | 60 | | 75 | | 100 | | |
| tRWD | $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay ${ }^{17)}$ | 120 | | 150 | | 200 | | |
| tRRW | RMW cycle $\overline{\mathrm{RAS}}$ pulse width | 165 | | 200 | | 260 | | |
| tCRW | RMW cycle $\overline{C A S}$ pulse width | 105 | | 125 | | 160 | | |
| tPC | Page mode cycle time ${ }^{9 /}$ | 120 | | 150 | | 200 | | |
| tPRWC | Page mode read-write cycle time | 160 | | 195 | | 255 | | |
| $\underline{\mathrm{t}} \mathrm{P}$ | Page mode $\overline{\mathrm{CAS}}$ precharge time | 50 | | 65 | | 90 | | |

Notes:
6) VIH and VIL are reference levels to measure timing of input signals. Also, transition times are measured between VIH and VIL.
7) An initial pause of $200 \mu \mathrm{~s}$ is required after power-up followed by a minimum of eight initialization cycles prior to normal operation.
8) The time parameters specified here are valid for a transition time of $t T=5 n s$ for the input signals.
9) The specification for $t R C(\min)$, tRWC (min), and page-mode cycle time (tPC) are only used to indicate cycle time at which proper operation over full temperature range $\left(0^{\circ} \mathrm{C} \leq T A \leq 70^{\circ} \mathrm{C}\right)$ is assured.
10) Measured with a load equivalent to two TTL loads and 100pF.
11) Assumes that $t R C D \leq t R C D$ (max). If $t R C D$ is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that tRCD exceeds the value shown.
12) Assumes that tRCD $\geq t R C D$ (max).
13) Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC.
14) $t R C D+t C A H \geq t A R \min , t R C D+t D H \geq t D H R \min , t R C D+t W C H \geq t W C R$ min.
15) Either tRRH or tRCH must be satisfied for a read cycle.
16) tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
17) tWCS, tCWD and tRWC are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: IftWCS \geq tWCS (min), the cycle is an early write cycle and the Data Out will remain open circuit (high impedance) throughout the entire cycle; if tCWD $\geq t C W D$ (min) and $t R W D \geq$ tRWD (min) the cycle is a read-write cycle and the Data Out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of the Data Out (at access time) is indeterminate.
18) tDS and tDH are referenced to the leading edge $\overline{\text { of CAS }}$ in early write cycles, and to the leading edge of $\overline{W E}$ in delayed write of read-modify-write cycles.

Waveforms

Read-modify-write or late write cycle

RAS-only refresh cycle
(DI and $\overline{\mathrm{WE}}=$ don't care)

Hidden refresh cycle

Page-mode read cycle

Page-mode write cycle

Page-mode read-write cycle

Address Decoder Scrambling (without redundancy)
The evaluation and incoming testing of RAMs normally requires a description of the internal address scrambling of the device in order to check for 'worst case' pattern.

Internal address scrambling

Redundancy

Redundanc $\boldsymbol{\gamma}$ concept

The HYB 41:526 takes advantage of the redundancy concept for increasing yield. This is done by providing the chip with a total of 8 spare rows and 4 spare column 'pairs. Two spare rows can be selected independently in each of four 64 K cell arrays, and two spare column pairs can be selected independently in each of two 128 K cell blocks. The spare lines can be selected by spare decoders which have to be programmed by laser technique during wafer probe.

Laser technology

For activation of redundant circuitry a laser pulse is used to open polycide links within the spare row and spare column decoders. The laser technique is used because it is mature and has proven reliable in a number of semiconductor applications including the implementation of redundant memory circuitry. Due to the fact, that the laser beam is very fine and can easily and accurately be positioned, and that it incorporates the energy for a controlled blow up of the polycide links, the laser technique is well suited for highly complex memory circuitry. All that results in a more efficient use of chip real estate.

Redundancy testability (roll-call mode)

With the redundancy concept two categories of devices, repaired and non-repaired ones, will be available. These two categories have to be separated easily and reliably by both, the manufacturer and the user (signature). When testing repaired devices, the reconfigurated address scrambling which results from activating spare rows and columns has to be taken into account for efficient device testing (individual bit map recognition).
The HYB 41256 has the capability of performing these two novel functions. It is done with a simple electrical test at the beginning of the final test or incoming inspection of each device (roll-call mode). The roll-call mode for performing both signature and individual bit map recognition can be activiated with DI at VIHR ($10 \mathrm{~V} \pm 10 \%$).

Signature

With DI at VIHR and performing at least one $\overline{\text { RAS }}$ only cycle with a cycle time of tRCR on any address combination, in the case of non-repaired devices the Data Output is in the high-performance state as in normal $\overline{R A S}$-only cycles. For repaired devices the Data Output will go to VOLR or VOHR after the access time tRACR.

Individual bit map recognition

If the test for signature has shown a repaired device, additional tests can be performed to reognize which addresses have been repaired and how they are replaced by spare lines.
Row and column redundancy can be recognized independently.

Row redundancy

Row redundancy can be recognized with DI at VIHR and $\overline{\mathrm{CAS}}$ at high, and $\overline{\mathrm{RAS}}$-only cycles on all 512 row address combinations. The data output is low (VOLR) for non-repaired addresses, and is high (VOHR) for repaired addresses only. Within each 64 K cell array, spare row 1 is always used if only one row is to be replaced. If two rows are to be replaced in an 64 K cell array, spare row 2 is used to replace the defective row with the higher address.

Column redundancy

Column redundancy can be recognized with Dl at VIHR, and early write cycles with $t R C D R \leq t R C D$ (min) on all 512 column address combinations. A8 row must be used to distinguish between the two 128 K cell blocks. The data output is low (VOLR) for non-repaired addresses, and high (VOHR) for repaired addresses. Within each 128 K cell block, spare column pair 1 is always used if only one column is to be replaced. Otherwise, spare column pair 2 is used to replace the defective column with the higher address.

Recommended operating conditions

Roll-call mode
DC operating conditions and characteristics (Full operating voltage and temperature range unless otherwise specified.)

Symbol	Parameter	Limit values			Unit
		Min.	Typ.	Max.	
$\begin{aligned} & \text { VCC } \\ & \text { VSS } \end{aligned}$	Supply voltage HYB 41256-12, -15, -20 ${ }_{\text {1) }}^{\text {1) }}$	$\begin{aligned} & 4.75 \\ & 0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 0 \end{aligned}$	V
VIH	Logic 1 voltage: All inputs (except DI)	2.4	-	VCC+1	
VIHR	Logic 1 voltage: DI ${ }^{1 / 2)}$	9.0	10	11	
VIL	Logic 0 voltage: All inputs ${ }^{1 /}$	-1.0	-	0.8	
VOHR	Output logic 1 voltage lout $=-5 \mathrm{~mA}^{1 /}$	2.0		-	
VOLR	Output logic 0 voltage lout $=-4.2 \mathrm{~mA}^{1 /}$	-		0.4	

1) All voltages referenced to VSS.
2) VIHR at DI must only be used for the roll-call-mode test and not for normal memory tests or applications. To avoid device damage, VIHR is to be applied after the initialization conditions (initial pause of 200μ s and 8 cycles) have been satisfied, and must never exceed 11 V .

AC operating conditions and characteristics

(Full operating voltage and temperature range unless otherwise specified.)

Symbol	Parameter	Limit values						Unit
		HYB 41256						
		-12		-15		-20		
		Min.	Max.	Min.	Max.	Min.	Max.	
tRCR	Roll-call cycle time	330	-	390	-	490	-	ns
tRCDR	Roll-call $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay	-	30	-	30	35	35	
tRACR	Roll-call $\overline{\mathrm{RAS}}$ access time	180	-	225	-	300	-	
tCACR	Roll-call $\overline{\mathrm{CAS}}$ access time	90		115		150		

Column Redundancy

Early $\overline{\text { CAS }}$ - early write cycle
(DI at VIHR, tRCD $=$ tRCD (min), row addresses $A 0$ to $A 7=$ don't care)

Row Redundancy and Signature

$\overline{\text { RAS }}$-only cycle
(DI at VIHR, $\overline{\mathrm{WE}}=$ don't care)

Siemens 256K DRAM Chip Topology

HYB 41257-12/-15/-20 262,144-Bit Dynamic Random Access Memory (RAM)

- $262,144 \times 1$-bit organization
- Industry standard 16 pins
- Single +5 V supply, $\pm 10 \%$ tolerance
- Low power dissipation:
-385 mW active (max.)
- 28 mW standby (max.)
- 120 ns access time

220 ns cycle time (HYB 41257-12)
150 ns access time
260 ns cycle time (HYB 41257-15)
200 ns access time
330 ns cycle time (HYB 41257-20)

- All inputs and outputs TTL compatible
- Common I/O capability using "early write" operation
- Valid data during $\overline{\text { CAS }}$ precharge until start of next nibble cycle provides higher system data rate
- Fast nibble mode on read and write cycles via addresses A8 row and A8 column 30 ns access time
65 ns cycle time (HYB 41257-12)
40 ns access time
80 ns cycle time (HYB 41257-15)
50 ns access time
110 ns cycle time (HYB 41257-20)
- Read, write, read-modify-write,

RAS-only-refresh, hidden refresh

- On-chip substrate bias generator
- Three-state data output
- 256 refresh cycles with 4 ms refresh period
- Redundancy incorporated for increasing yield
- activation via laser links
- roll-call-mode as pretest with DI at 10 V provides: redundancy signature individual address decoder scrambling

Pin configuration

Pin names	
$\mathrm{A} \emptyset-\mathrm{A} 8$	Address Inputs
$\overline{\overline{\mathrm{CAS}}}$	Column Address Strobe
DI	Data In
DO	Data Out
$\overline{\mathrm{RAS}}$	Row Address Strobe
$\overline{\overline{W E}}$	Write Enable
VCC	Power Supply (+5V)
VSS	Ground (0V)

The HYB 41257 is a 262,144 word by 1 -bit dynamic Random Access Memory. This 5V-only component is fabricated with Siemens new high performance N -channel silicon gate technology. The use of tantalum polycide provides high speed. A Siemens proprietary chip cover protects the chip against α radiation.
Nine multiplexed address inputs permit the HYB 41257 to be packaged in an industry standard 16-pin dual-in-line package. System-oriented features include single power supply with $\pm 10 \%$ tolerance, on-chip address and data registers which eliminate the need for interface registers, and fully TTL compatible inputs and output, including clocks. In addition to the usual read, write and read-modify-write cycles, the HYB 41257 is capable of
early and late write cycles, $\overline{\text { RAS }}$-only refresh, and hidden refresh. Common I/O capability is given by using "early write" operation.
Nibble Mode is a new feature of the HYB 41257 allowing the user to perform a serial access of 4 bits at a high data rate by using an on-chip nibble shift register which is controlled by one set of addresses on pin 1 (A8 Row and A8 Column) and the CAS clock only.
The HYB 41257 has the capability of using laser links to perform redundancy. With the roll-call mode, which is a new test feature, the user can separate repaired devices easily, and additionally gets information on the individual row and column addresses which have been repaired and how they are substituted by redundant lines.

Functional Description

Device Initialization

Since the HYB 41257 is a dynamic RAM with a single 5 V supply, no power sequencing is required. For power-up, an initial pause of 200 microseconds is necessary for the internal bias generator to establish the proper substrate bias voltage. To initialize the nodes of the dynamic circuitry, a minimum of 8 active cycles of the Row Address Strobe ($\overline{\mathrm{RAS}}$) has to be performed. This is also necessary after an extended inactive state of greater than 4 milliseconds.

Adressing (A0-A8)

For selecting one of the 262,144 memory cells, a total of 18 address bits are required. First 9 Row Address bits are set up on pins A \emptyset through A8 and latched into the row address latches by the Row Address Strobe ($\overline{\mathrm{RAS}}$). Then the 9 column address bits are set up on pins $A \emptyset$ through $A 8$ and latched into the column address latches by the Column Address Strobe ($\overline{\mathrm{CAS}}$). All input addresses must be stable on the falling edges of $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$. It should be noted that $\overline{R A S}$ is similar to a Chip Enable in that it activates the sense amplifiers as well as the row decoder. $\overline{\mathrm{CAS}}$ is used as a chip select activating the column decoder and the input and output buffers.

Write enable ($\overline{\mathrm{WE}}$)

The read or write mode is selected with the $\overline{W E}$ input. A logic high (VIH) on $\overline{W E}$ dictates read mode; logic low (VIL) dictates write mode. The data input is disabled when read mode is selected. When $\overline{W E}$ goes low prior to $\overline{C A S}$, data output (DO) will remain in the high-impedance state for the entire cycle permitting common I/O operation.

Data Input (DI)

Data is written during a write or read-modify-write cycle. The falling edge of $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{WE}}$ strobes data into the on-chip data latch. In an early write cycle $\overline{W E}$ is brought low prior to $\overline{\mathrm{CAS}}$ and the data is strobed in by $\overline{\text { CAS }}$ with setup and hold times referenced to this signal.

Data output (DO)

The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data Out has the same polarity as Data In. The output is in a high impedance state until $\overline{\text { CAS }}$ is brought low. In a read cycle or read-write cycle, the output is valid after tRAC from transition of $\overline{\operatorname{RAS}}$ when tRCD (min) is satisfied, or after tCAC from transition of CAS when the transition occurs after tRCD (max.). In an early write cycle, the output is always in the impedance state. In a delayed write or read-modifywrite cycle, the output will follow the sequence for the read cycle. With $\overline{\text { CAS }}$ going high and $\overline{\text { RAS }}$ being high, the output returns to the high impedance state within TOFF.
For nibble-mode read cycles, the data output shows a novel function that gives advantages for system application. With $\overline{\text { RAS }}$ low the data output remains valid after and during $\overline{\mathrm{CAS}}$ high. That gives time for a proper strobing of the data despite of system time tolerances, and increases the system data rate because the minimum $\overline{\text { CAS }}$ low time, tCAS and tNAS, can be realized more easily. With $\overline{\text { CAS }}$ going low for the next nibble cycle the data output returns to the high-impedance state within tNOFF. In a read, late write, or read-modify-write mode for a normal cycle or the last nibble cycle, the data output condition depends on whether $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{RAS}}$ is brought high first. With $\overline{\mathrm{CAS}}$ going high and $\overline{\text { RAS }}$ at low, the data output is valid until $\overline{R A S}$ goes high and returns to the high-impedance state within tOFF referenced to $\overline{\mathrm{RAS}}$. With $\overline{\mathrm{CAS}}$ being low at $\overline{R A S}$ high, the data output is valid until CAS goes high and returns to the high-impedance state within tOFF referenced to $\overline{\mathrm{CAS}}$.

Hidden refresh

$\overline{\mathrm{RAS}}$-only refresh cycle may take place while maintaining valid output data. This feature is referred to as Hidden Refresh. Hidden Refresh is performed by holding $\overline{\mathrm{CAS}}$ at VIL of a previous memory read cycle.

Refresh cycle

A refresh operation must be performed at least every four milliseconds to retain data. Since the output buffer is in the high impedance state unless $\overline{\mathrm{CAS}}$ is applied, the $\overline{\mathrm{RAS}}$-only refresh sequence avoids any output signal during refresh. Strobing each of the 256 row addresses ($A \emptyset$ through $A 7$) with $\overline{\mathrm{RAS}}$ causes all bits in each row to be refreshed. $\overline{\mathrm{CAS}}$ can remain high (inactive) for this refresh sequence to conserve power.

Nibble-mode cycle

Nibble-mode operation allows a very fast serial data streaming up to 4 bits by applying only one set of addresses for the first bit to be accessed as normal (tCAC). By holding $\overline{R A S}$ low, only $\overline{\text { CAS }}$ has to be cycled up and then down for reading or writing the next 3 bits at a high data rate with tNAC tCAC. After 4 bits have been accessed, the following bit will be the same as the first bit accessed. Address on pin 1 (row address A8 and column address A8) is used to select 1 of the 4 nibble bits for initial access. Toggling $\overline{C A S}$ causes row A8 and column A8 to be incremented by the internal shift register with $A 8$ row being the least significant address, and allows access to the next nibble bit. In nibble mode, any combination of read, write, and read-modify-write operation is possible (e.g. first bit: read; second bit: write; third bit: read-modify-write, etc.).

Absolute Maximum Ratings *)

Operating Temperature Range
Storage Temperature Range
Voltages on Any Pin Relative to VSS
Voltage on DI Relative to VSS
Power Dissipation
Data Out Current (Short Circuit)

$$
\begin{aligned}
& 0 \text { to }+70^{\circ} \mathrm{C} \\
& -65 \text { to }+150^{\circ} \mathrm{C} \\
& -1 \text { to }+7 \mathrm{~V} \\
& -1 \text { to }+11 \mathrm{~V} \\
& 1 \mathrm{~W} \\
& 50 \mathrm{~mA}
\end{aligned}
$$

D.C. Characteristics

$\mathrm{TA}=0$ to $70^{\circ} \mathrm{C}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Limit Values		Unit	Test condition
		Min.	Max.		
VIH	Input high voltage (all inputs)	2.4	VCC+1	V	1) 2)
VIL	Input low voltage (all inputs)	-1.0	0.8		
VOH	Output high voltage	2.4	-		-
VOL	Output low voltage		0.4		
ICC1	Average VCC supply current $-12 \mathrm{tRC}=220 \mathrm{~ns}$ $-15 \mathrm{tRC}=260 \mathrm{~ns}$ $-20 \mathrm{tRC}=330 \mathrm{~ns}$	-	$\begin{aligned} & 85 \\ & 70 \\ & 60 \end{aligned}$	mA	3)
ICC2	Standy VCC supply current		5		4)
ICC3	Average VCC supply current during $\overline{R A S}-o n l y ~ r e f r e s h ~$ cycles $\begin{aligned} & -12 \mathrm{tRC}=220 \mathrm{~ns} \\ & -15 \mathrm{tRC}=260 \mathrm{~ns} \\ & -20 \mathrm{tRC}=330 \mathrm{~ns} \end{aligned}$		$\begin{aligned} & 65 \\ & 55 \\ & 45 \end{aligned}$		3)
ICC6	Average VCC supply current during nibble mode $-12 \mathrm{tNC}=65 \mathrm{~ns}$ $-15 \mathrm{tNC}=80 \mathrm{~ns}$ $-20 \mathrm{tNC}=110 \mathrm{~ns}$		10 8 7		
$11(\mathrm{~L})$	Input leakage current (any input)	-	10	$\mu \mathrm{A}$	-
10(L)	Output leakage current ($\overline{\mathrm{CAS}}$ at logic 1, $0 \leq$ Vout ≤ 5.5)				
VCC	VCC supply voltage	4.5	5.5	V	1)
VSS	VSS supply voltage	0	0		

Notes see page 5

Capacitance

Symbol	Parameter	Limit values		Unit	Test condition
		Min.	Max.		
Cl 1	Input capacitance (A0-A8)		6	pF	5)
Cl 2	Input capacitance ($\overline{\mathrm{RAS}}, \mathrm{DI}$)		7		
Cl 3	Input capacitance ($\overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$)		8		
CO	Output capacitance (DO, $\overline{\mathrm{CAS}}=$ VIH to disable output)				

*) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1) All voltages referenced to VSS.
2) Overshooting and undershooting on input levels of 6.5 V or -2 V for a period of 30 ns max. will not influence function and reliability of the device.
3) ICC depends on frequency of operation. Maximum current is measured at the fastest cycle rate.
4) $\overline{R A S}$ and $\overline{C A S}$ are both at VIH.
5) Effective capacitance calculated from the equation $C=\frac{1 \cdot \Delta t}{\Delta V}$ with $\Delta V=3 V$ or measured with Boonton meter.

A.C. Test Conditions

input pulse levels Input rise an fall times Input timing reference levels
Output timing reference levels Output load

```
        0 to 3.0V
    0.8 and 2.4V
    0.8 to 2.4V
    0.4 to 2.4V
    equivalent to 2 standard
    TTL loads and 100 pF
```


A.C. Characteristics

$\mathrm{TA}=0$ to $+70^{\circ} \mathrm{C}$; VCC $=+5 \mathrm{~V} \pm 10 \%$ (unless otherwise specified; see notes $6,7,8$)

Symbol	Parameter	Limit values						Unit
		HYB 41257-						
		-12		-15		-20		
		Min.	Max.	Min.	Max.	Min.	Max.	
tRC	Random read or write cycle time 9)	220	-	260	-	330	-	ns
tRWC	Read-modify-write cycle time 9)	265		310		390		
tRAC	Access time from $\overline{\mathrm{RAS}}$ 10) 11)	-	120	-	150	-	200	
tCAC	Access time from $\overline{\mathrm{CAS}} 10$ 11) 12)		60		75		100	
tRAS	$\widehat{\mathrm{RAS}}$ pulse width	120	10^{4}	150	10^{4}	200	10^{4}	
tCAS	$\overline{\text { CAS }}$ pulse width	60	-	75	-	100	-	
tREF	Refresh period	-	4	-	4	-	4	ms
tRP	$\overline{\mathrm{RAS}}$ precharge time	90	-	100	-	120	-	ns
tCRP	CAS to RAS precharge time	10		10		10		
tRCD	$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time 13)	30	60	30	75	35	100	
tRSH	$\overline{\text { RAS }}$ hold time	60	-	75	-	100	-	ns
tCSH	$\overline{\text { CAS }}$ hold time	120		150		200		
tASR	Row address setup time	0		0		0		
tRAH	Row address hold time	20		20		25		
tASC	Column address setup time	0		0		0		
tCAH	Column address hold time	30		30		35	-	
tAR	Column address hold time referenced to $\overline{\text { RAS }}$ 14)	90		105		135	50	
tT	Transition time (rise and fall) 6)	3	50	3	50	3		
tRCS	Read command setup time	0	-	0	-	0		
tRCH	Read command hold time referenced to $\overline{\text { CAS }} 15$)							
tRRH	Read command hold time referenced to $\overline{\operatorname{RAS}} 15$)	25		25		30		

Notes see page 8

Symbol	Parameter	Limit values						Unit
		HYB 41257- -12 -15				-20		
		Min.	Max.	Min.	Max.	Min.	Max.	
tOFF	Output buffer turn-off delay 16)	0	30	0	40	0	50	ns
tWCS	Write command setup time 17)		-		-		-	
tWCH	Write command hold time	40		45		55		
tWCR	Write command hold time referenced to $\overline{R A S} 14)$	100	-	120	-	155	-	
tWP	Write command pulse width	40		45				
tRWL	Write command to $\overline{\text { RAS }}$ lead time					55		
tCWL	Write command to $\overline{\mathrm{CAS}}$ lead time							
tDS	Data in setup time 18)	0		0		0		
tDH	Data in hold time 18)	40		45		55		
tDHR	Data in hold time referenced to $\overline{\mathrm{RAS}}$ 14)	100		120		155		
tCWD	$\overline{\mathrm{CAS}}$ to $\overline{\text { WE }}$ delay 17)	60		75		100		
tRWD	$\overline{\mathrm{RAS}}$ to $\overline{W E}$ delay 17)	120		150		200		
tRRW	RMW cycle $\overline{\mathrm{RAS}}$ pulse width	165		200		260		
tCRW	RMW cycle $\overline{C A S}$ pulse width	105		125		160		
tNC	Nibble-mode cycle time 9)	65		80		110		
tNAC	Nibble-mode access time from $\overline{\text { CAS }} 10$)	-	30	-	40	-	50	
tNAS	Nibble-mode setup time	30		40				
tNP	Nibble-mode precharge time	25		30		50		
tNRSH	Nibble-mode $\overline{\mathrm{RAS}}$ hold time	30		40				
tNCWD	Nibble-mode $\overline{C A S}$ to $\overline{W E}$ delay		-		-		-	
tNCRW	Nibble-mode RMW $\overline{\text { CAS }}$ pulse width	65		85		105		
tNCWL	Nibble-mode $\overline{W E}$ to $\overline{C A S}$ lead time	30		40		50		
tNWRH	Nibble-mode write $\overline{\mathrm{RAS}}$ hold time	45		55		75		
tNOFF	Nibble-mode output buffer turn-off delay 19)	0		0		0		
tNWP	Nibble-mode $\overline{\text { WE }}$ pulse width	30		40		50		
$\underline{\text { tNWCH }}$	Nibble-mode $\overline{\text { WE }}$ command hold time							

[^46]
Notes:

6) VIH and VIL are reference levels to measure timing of input signals. Also, transition times are measured between VIH and VIL.
7) An initial pause of $200 \mu s$ is required after powerup following by a minimum of eight initialization cycles prior to normal operation.
8) The time parameters specified here are valid for a transition time of $\mathrm{tT}=5 \mathrm{~ns}$ for the input signals.
9) The specifications for $t R C(\min), t R W C(\min)$, and nibble cycle time (tNC) are only used to indicate cycle time at which proper operation over full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
10) Measured with a load equivalent to two TTL loads and 100 pF .
11) Assumes that $t R C D \leq t R C D(m a x)$. If $t R C D$ is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that tRCD exceeds the value shown.
12) Assumes that $t R C D \geq t R C D$ (max).
13) Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC.
14) $t R C D+t C A H \geq t A R \min , t R C D+t D H \geq t D H R \min , t R C D+t W C H \geq t W C R \min$.
15) Either tRRH or tRCH must be satisfied for a read cycle.
16) tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels. tOFF is referenced either to the $\overline{\text { CAS }}$ leading edge with $\overline{\mathrm{RAS}}$ being high or to the $\overline{R A S}$ leading edge with $\overline{C A S}$ being high.
17) tWCS, tCWD and tRWC are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If tWCS $\geq \mathrm{tWCS}(\mathrm{min})$, the cycle is an early write cycle and the Data Out will remain open circuit (high impedance) throughout the entire cycle; if $t C W D \geq t C W D$ (min) and $t R W D \geq t R W D(\min)$ the cycle is a read-write cycle and the Data Out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied, the condition of the Data Out (at access time) is indeterminate.
18) tDS and tDH are referenced to the leading edge of $\overline{C A S}$ in early write cycles, and to the leading edge of $\overline{W E}$ in delayed write or read-modify-write cycles.
19) tNOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels. tNOFF is referenced to the $\overline{\text { CAS }}$ falling edge of the next nibble cycle with $\overline{\mathrm{RAS}}$ being low.

Waveforms

Write cycle (early write)

Read-modify-write or write cycle

RAS-only refresh cycle

(DI and $\overline{\mathrm{WE}}=$ don't care)

Hidden refresh cycle

Nibble-mode read cycle

Nibble-mode write cycle (early write)

Nibble-mode read-modify-write

Address Decoder Scrambling (without redundancy)

The evaluation and incoming testing of RAMs normally requires a description of the internal
address scrambling of the device in order to check for 'worst case' pattern.

Internal address scrambling

Address decoder scrambling

Redundancy

Redundancy concept

The HYB 41257 takes advantage of the redundancy concept for increasing yield. This is done by providing the chip with a total of 8 spare rows and 4 spare column pairs. Two spare rows can be selected independently in each of four 64 K cell arrays, and two spare column pairs can be selected independently in each of two 128 K cell blocks. The spare lines can be selected by spare decoders which have to be programmed by laser technique during wafer probe.

Laser technology

For activation of redundant circuitry a laser pulse is used to open polycide links within the spare row and spare column decoders. The laser technique is used because it is mature and has proven reliable in a number of semiconductor applications including the implementation of redundant memory circuitry. Due to the fact, that the laser beam is very fine and can easily and accurately be positioned, and that it incorporates the energy for a controlled blow up of the polycide links, the laser technique is well suited for highly complex memory circuitry. All that results in a more efficient use of chip real estate.

Redundancy testability (roll-call mode)

With the redundancy concept two categories of devices, repaired and non-repaired ones, will be available. These two categories have to be separated easily and reliably by both, the manufacturer and the user (signature). When testing repaired device, the reconfigurated address scrambling which results from activating spare rows and columns has to be taken into account for efficient device testing (individual bit map recognition).
The HYB 41257 has the capability of performing these two novel functions. It is done with a simple electrical test at the beginning of the final test or incoming inspection of each device (roll-call mode). The roll-call mode for performing both signature and individual bit map recognition can be activated with DI at VIHR ($10 \mathrm{~V} \pm 10 \%$).

Signature

With DI at VIHR and performing at least one $\overline{\text { RAS }}-$ only cycle with a cycle time of tRCR on any address combination, in the case of non-repaired devices the Data Output is in the high-impedance state as in normal early write cycles. For repaired devices the Data Output will go to VOLR or VOHR after the access time tRACR.

Individual bit map recognition

If the test for signature has shown a repaired device, additional tests can be performed to recognize which addresses have been repaired and how they are replaced by spare lines. Row and column redundancy can be recognized independently.

Row redundancy

Row redundancy can be recognized with DI at VIHR and $\overline{\text { CAS }}$ at high, and $\overline{\text { RAS }}$-only cycles on all 512 row address combinations. The data output is low (VOLR) for non-repaired addresses, and is high (VOHR) for repaired addresses only. Within each 64 K cell array, spare row 1 is always used if only one row is to be replaced. If two rows are to be replaced in an 64 K cell array, spare row 2 is used to replace the defective row with the higher address.

Column redundancy

Column redundancy can be recognized with DI at VIHR, and early write cycles with $t R C D R \leq t R C D$ (min) on all 512 column address combinations.
A8 row must be used to distinguish between the two 128 K cell blocks. The data output is low (VOLR) for non-repaired addresses, and high (VOHR) for repaired addresses. Within each 128 K cell block, spare column pair 1 is always used if only one column is to be replaced. Otherwise, spare column pair 2 is used to replace the defective column with the higher address.

Recommended operating conditions

Roll-call mode

DC operating conditions and characteristics (Full operating voltage and temperature range unless otherwise specified).

Symbol	Parameter	Limit values			Unit
		Min.	Typ.	Max.	
$\begin{aligned} & \text { VCC } \\ & \text { VSS } \end{aligned}$	Supply voltage HYB 41257-12, -15, -20 1)	$\begin{aligned} & 4.75 \\ & 0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5.25 \\ & 0 \end{aligned}$	V
VIH	Logic 1 voltage: All inputs (except DI)	2.4	-	VCC+1	
VIHR	Logic 1 voltage: DI 1) 2)	9.0	10	11	
VIL	Logic 0 voltage: All inputs 1)	-1.0	-	0.8	
VOHR	Output logic 1 voltage lout $=-5 \mathrm{~mA} \mathrm{1)}$	2.0		-	
VOLR	Output logic 0 voltage lout $=-4.2 \mathrm{~mA} 1$)	-		0.4	

A.C. operating conditions and characteristics

(Full operating voltage and temperature range unless otherwise specified.)

Symbol	Parameter	Limit values						Unit
		HYB 41257- -12 -15				-20		
		Min.	Max.	Min.	Max	Min.	Max.	
tRCR	Roll-call cycle time	330	-	390	-	490	-	ns
tRCDR	Roll-call $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay	-	30	-	30	-	35	
tRACR	Roll-call $\overline{\mathrm{RAS}}$ access time	180	-	225	-	300	-	
tCARC	Roll-call $\overline{C A S}$ access time	90		115		150		

1) All voltages referenced to VSS.
2) VIHR at DI must only be used for the roll-call mode test and not for normal memory tests or applications. To avoid device damage, VIHR is to be applied after the initialization conditions (initial pause of $200 \mu \mathrm{~s}$ and 8 cycles) have been satisfied, and must never exceed 11V.

Column Redundancy

Early CAS - early write cycle

(D at $\mathrm{VIHR}, t \mathrm{RCD}=\mathrm{tRCD}(\mathrm{min})$, row addresses $A 0$ to $A 7=$ don't care)

Row Redundancy and Signature

Siemens 256K DRAM Chip Topology

Telecom Components

PEB 2030 Frame Aligner Module

Preliminary data

Features

- Detection of frame alignment signals for PCM 30 highways in accordance with CCITT recommendation G 732
- Delay compensation and clock alignment between transmission line and exchange
- Compensation of phase jitter up to $60 \mu \mathrm{~s}$
- Detection and initiation of route alarms (AIS, service word)
- Indication of loss of frame alignment
- Slip detection
- Error simulation for test purposes
- Digital interface TTL-compatible

Applications

The PEB 2030 frame aligner module is used for interfacing PCM 30 routes with PCM switching networks. Its main applications are as follows:

- in multiplex units for PCM transmission routes
- in concentrators and subscriber multiplexers at one end of PCM routes
- as an interface between PCM routes and public and private PCM switches (DIU)
- for delay compensation between switching stages (e.g., Swiss Post Office IFS design concept)

Pin configuration, top view

$\left.\begin{array}{l} \mathrm{DB}_{1} \\ \mathrm{DB} \mathrm{~B}_{2} \end{array}\right\}$	Data interfaces
SP	Synchronous pulse
R / \bar{W}	Direction of data transfer
PE	Alarm port enable
RCL	Route clock
SCL	Station clock
BI	Buffer inactive
$\overline{\text { SCT }}$	Station counter trigger pulse
CE	Chip enable
SO	Serial output
FP	Fault pulse
IN	PCM input
B_{1}	
	Parallel outputs
B_{8}	
P	Parity bit
$V_{\text {ss }}$	Ground (0 V)
$V_{\text {SD }}^{\text {S }}$	Supply voltage (+5 V)

General description

The Siemens frame aligner module PEB 2030 is a monolithic NMOS circuit. Its main application is the detection of frame alignment signals of PCM 30 routes according to CCITT recommendation G 732 and the clock adjustment with delay compensation between PCM routes and PCM switches.

An incorporated buffer enables the PEB 2030 to compensate phase jitter up to $60 \mu \mathrm{~s}$. Route alarms can be challenged by a bidirectional data interface.

Block diagram

FA Frame alignment
AP Alarm port
B Buffer
COC Coincidence circuit
FM Frame memory

Description of function

The PEB 2030 module is fabricated using the n-channel depletion technique.
The module, connected to a PCM 30 line, and the associated input clock (route clock RCI), are synchronized with the PCM frame in accordance with CCITT recommendation G 732. In the stable condition the module supplies 488 ns synchronous pulses $(\overline{\mathrm{SP}})$ at a bit rate of $4 \mathrm{kbit} / \mathrm{s}$ which identify the beginning of the PCM frames containing the bunched frame alignment signal (FAS). During the synchronizing phase and in the event of frame alignment being lost, the synchronizing pulses are suppressed and a $2 \mu \mathrm{~s}$ fault pulse FP is delivered every $250 \mu \mathrm{~s}$. When a synchronized stage exists, such a fault pulse appears only if an FAS is not recognized.
On the output side the PCM information can be read out in serial and in parallel form. For this purpose, a reading clock (SCI) and a 488 ns reading synchronizing pulse (SCT) must be applied at $250 \mu \mathrm{~s}$ intervals to fix the beginning of the frame. The module supplies a parity check bit (even parity) to each PCM word via a tri-state output which is activated by a chip enable (CE) in the same way as the tri-state outputs for the parallel information.

An alarm flip-flop (FA Alarm) in the module is set in the event of frame alignment loss, route timing loss or loss of the $\overline{C E}$ or $\overline{S C T}$ signals. The alarm bit is recorded in another flip-flop in the service word (bit 3), whereas a third flip-flop stage is set when logic " 1 " signals are received by the PCM route for the duration of two frames (Alarm Indication Signal AIS). A further flip-flop is set when a slip of the frame occurs. The alarms are polled via a bidirectional data interface. The alarm circuits can be triggered and reset for test purposes via the data interface.

Pin description

Symbol	Function	Description
$\begin{aligned} & \text { 1. Supply } \\ & V_{\text {DD }} \\ & V_{\mathrm{ss}} \\ & \hline \end{aligned}$	$\begin{aligned} & +5 \mathrm{~V} \pm 5 \% \\ & 0 \mathrm{~V} \end{aligned}$	Power consumption 300 mW
2. PCM interfaces		
IN	PCM input	Information bit from one negative RC edge to the next.
RCL	$2.048 \mathrm{MHz} \pm 50 \mathrm{ppm}$	Route clock
$\mathrm{B}_{1} \ldots \mathrm{~B}_{8}$	256 kbit/s	Parallel PCM output information. $\mathrm{B}_{1}=$ most significant inf. bit
P	$256 \mathrm{kbit} / \mathrm{s}$	Parity bit (even parity)
SO	2.048 Mbit	Serial PCM output. Bit sequence with decreasing significance.
SCL	2.048 MHz	Station clock. Information bits from one neg. SCl edge to the next.

3. Control signals

$\overline{\text { SCT }}$	4 kbit/s width 488 ns	From one neg. SCI edge to the next. Frame begins from pos.SCT edge.
$\overline{\mathrm{SP}}$	$4 \mathrm{kbit} / \mathrm{s}$,	From one neg. RCl edge to the next.
	width 488 ns	Frame begins with FAS from pos. $\overline{\mathrm{SP}}$ edge.
BI	Continuous signal	B1 $=1$ or not connected: Buffer inactive.
FP	Width: $4 \times 488 \mathrm{~ns}=1.95 \mu \mathrm{~s}$	Fault pulse delivered for every undetected FAS or every 250μ s in the event of frame alignment loss.
$\overline{C E}$	256 kbit, width 488 ns or continuous level	Chip enable controls outputs B_{1} to B_{8}, P low-impedance. The $\overline{C E}$ must be active during the $\overline{S C T}$, so that the $\overline{S C T}$ supervision by station counter is not impaired.

4. Data interface

Read

Data transfer direction
$R / \bar{W}=1$ read alarm port
$\mathrm{R} / \overline{\mathrm{W}}=0$ write alarm port
Alarm port enable
bidirectional data interface for command acceptance or alarm signalling:

Pulse diagram

Delivery of synchronous pulse $\overline{\mathbf{S P}}$ in synchronized state

Delivery of fault pulse FP in the event of erroneous frame alignment signal

Pulse diagram

Output signals (B_{1} to B_{8}, P) as functions of the station trigger pulse $\overline{\mathrm{SCT}}$ and chip enable $\overline{\mathrm{CE}}$

Loss of frame alignment due to bit falsification on the PCM route
R Frame alignment signal (FAS)
M Service word
S Simulated FAS (Random FAS)
$\bar{R} \quad$ Erroneous FAS
$\bar{M} \quad$ Erroneous service word

Absolute maximum ratings ${ }^{11}$

Operating temperature
Storage temperature
Total power consumption
Input voltage
Supply voltage

	Min	Max	Unit
$T_{\text {amb }}$	0	70	${ }^{\circ} \mathrm{C}$
$T_{\text {sto }}$	-55	125	${ }^{\circ} \mathrm{C}$
$P_{\text {lot }}$		400	mW
V_{1}	-0.3	7	V
$V_{\text {Do }}$	-0.3	7	$\mathrm{~V}^{2}$

Electrical characteristics ($T_{\text {amb }}=25^{\circ} \mathrm{C}$)		Min	Typ.	Max	Unit
Supply voltage	$V_{\text {DD }}$	4.75	5	5.25	V
Supply current	$1{ }_{\text {s }}$		50	70	mA
Input current	1	50		150	$\mu \mathrm{A}$
H input voltage	$V_{\text {H }}$	2.4			V
L input voltage	$V_{\text {IL }}$			0.7	V
L output voltage	$\mathrm{V}_{\text {aL }}$			0.4	V
H output voltage	$\mathrm{V}_{\text {OH }}$	2.7			V
H output current (FP, SQ, SP, $\mathrm{B}_{\mathrm{i}}, \mathrm{P}$)	$\mathrm{l}_{\text {он }}$			-0.02	mA
L output current (FP, SQ, SP, $\mathrm{B}_{\mathrm{i}}, \mathrm{P}$)	$l_{\text {ar }}$			0.46	mA
H output current (DB_{1})	$l_{\text {ан }}$			-0.04	mA
L output current (DB_{i})	$\mathrm{l}_{\text {at }}$			0.9	mA

Timing specification

Input H-L transfer time
Input L-H transfer time
Clock frequency
(pulse-pause ratio 1:1)
$t_{\mathrm{wH}}: t_{\mathrm{w} L}$

			20	ns
I_{HL}		2.048	20	ns
t_{LH}	0.1	MHz		
f_{CL}	0.2			

Set up time
150
ns
Hold time

t_{s}	150	ns
t_{H}	40	ns

Switching times ($V_{D D}=5 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$)

from	to		Test conditions	Min	Typ.	Max	Unit
(input)	(output)						
$\overline{C E}$	$\mathrm{B}_{1} \ldots \mathrm{~B}_{8}, \mathrm{P}$	t_{0}	$50 \mathrm{pF}, 10 \mathrm{k} \Omega$			200	ns
SCL	$\mathrm{DB}_{1}, \mathrm{DB}_{2}$	$t_{\text {do }}$	$50 \mathrm{pF}, 5 \mathrm{k} \Omega$			350	ns
RCL	FP, SP	$t_{\text {do }}$	$15 \mathrm{pF}, 10 \mathrm{k} \Omega$			200	ns
SCL	SQ	$t_{\text {do }}$	$15 \mathrm{pF}, 10 \mathrm{k} \Omega$			200	ns

1) Stresses above those listed under 'Absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicatd in the operational section of this data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

The information describes the type of component and shall not be considered as assured characteristics.

PEB 2040 Memory Time Switch

Preliminary data

MOS circuit

Features

- Time/space switch for 2.048 MHz and 8.192 MHz PCM systems
- Different kinds of operation modes ($2 \mathrm{Mbit} / \mathrm{s}, 8 \mathrm{Mbit} / \mathrm{s}$ or mixed mode)
- 16 input PCM lines and speech memory for all 512 subscriber on chip
- Connection memory for 256 channels of 8 output lines on chip
- Non blocking time switch with 16/16 PCM lines can be built with two devices
- $\mu \mathrm{P}$-interface for writing and reading the connection memory
- Delay between input and output lines selectable
- Tristate for further expansion or hot standby
- Advanced NMOS technology
- Single +5 V power supply

Applications

- All types of switching systems
- Complete switch in PCM PABX for up to 512 subscriber with only two devices
- Concentrator function
- Frequency-transforming interface between 2 MHz and 8 MHz PCM systems
- $16 / 16$ space switch for 8 MHz PCM systems

Pin configuration

General description

The SIEMENS memory time switch PEB 2040 is a monolithic NMOS circuit with speech and connection memory on chip. It connects any of 512 incoming PCM channels to any of 256 outgoing PCM channels. Two chips give a non blocking 512 channel switch. Block diagrams of 2 PCM systems using the PEB 2040 are shown in figure 1. In- and outputs are TTL compatible.

Figure 1
Block diagram of two PCM switch configurations with PEB 2040

Memory time switch $16 / 16$ for a non blocking 512 channel switch.

Memory time switch $32 / 32$ for a non blocking 1022 channel switch using the tristate function.

Functional description of MTS 16/8

The PEB 2040 is a memory time switch module which has the ability to connect any of the 512 PCM channels of 16 incoming PCM lines to any of the 256 PCM channels of 8 output lines.
A block diagram of the main components is shown in figure 2.
The PCM information of a complete frame is stored in the 4 K speech memory SM. That means all of the 512 words with 8 bits are written into a fixed position of the SM. This is controlled by the input counter every $125 \mu \mathrm{~s}$. The words are read with a random access with an address that is stored in a connection memory CM for each of the 256 output channels. The access to the CM is controlled by the output counter.

To realize a connection the SM address and the CM address must be written into the PEB 2040 via a μ P interface. The SM address contains the channel and line number of the incoming PCM words. The CM address consists of the channel and line number of the output words.

Figure 2
Block diagram

Operation modes

The PEB 2040 can be connected to $2.048 \mathrm{Mbit} / \mathrm{s}$ and $8.192 \mathrm{Mbit} / \mathrm{s}$ PCM lines. The operation mode is selected by the mode bits, where MID and MI1 defines the bit rate of the input lines and independently MOめ and MO1 that of the output lines.
The corresponding input and output addresses are given in table 1. The mode MI \varnothing = MI1 = 1 is only for space switch application.

Table 1
Input configuration

PIN Nr.	$\mathrm{MI} \varnothing=\varnothing$ M $11=\varnothing$	$M 1 \varnothing=1, \mathrm{MI} 1=\varnothing$	$M 1 \varnothing=\emptyset, \mathrm{Ml} 1=1$	$\mathrm{MI} \emptyset=1, \mathrm{Ml} 1=1$
	$16 \times 2 \mathrm{Mbit} / \mathrm{s}$	4×8 Mbit/s	$8 \times 2+2 \times 8 \mathrm{Mbit} / \mathrm{s}$	$16 \times 8 \mathrm{Mbit} / \mathrm{s}$
3	IN 1			1
4	IN \varnothing		IN \varnothing	\emptyset
5	IN 5			5
6	IN 4		IN 4	4
7	IN 9			9
8	IN 8		IN 8	8
9	IN 13	IN 1	IN 1	13
$1 \varnothing$	IN 12	IN \emptyset	IN 12	12
11	IN 14	IN 2	IN 14	14
12	IN 15	IN 3	IN 3	15
13	IN 1¢		IN 1ø	$1 \varnothing$
14	IN 11			11
15	IN 6		IN 6	6
16	IN 7			7
17	IN 2		IN 2	2
18	IN 3			3

Output configuration

PIN Nr.	MO $\varnothing=\varnothing$, MO1 $=\varnothing$	MO $\varnothing=1, \mathrm{MO1}=\varnothing$	$\mathrm{MO} \varnothing=\varnothing, \mathrm{MO1}=1$
	$8 \times 2 \mathrm{Mbit} / \mathrm{s}$	$2 \times 8 \mathrm{Mbit} / \mathrm{s}$	$4 \times 2 / 1 \times 8 \mathrm{Mbit} / \mathrm{s}$
32	OUT 7		OUT 7
33	OUT 6		
34	OUT 5		OUT 5
35	OUT 4		OUT 3
36	OUT 3		
37	OUT 2	OUT 1	OUT 1
38	OUT 1	OUT \varnothing	
39	OUT \varnothing	OUT \varnothing	OU

Pin description

Pin-No.	Name	Function
1	$v_{\text {ss }}$	Ground (OV)
2	SP	Synchronous pulse (8 kHz); rising edge for input counter falling edge for output counter; difference between rising and falling edge should be $\lrcorner=(2+N \times 4) t_{\text {cLK }}$ $(N=\varnothing-255)$ rising edge synchronous with the incoming frames; output frame starts 2 clock pulses before the falling edge.
3	IN 1	PCM input port 1
4	IN \emptyset	PCM input port \emptyset
5	IN 5	PCM input port 5
6	IN 4	PCM input port 4
7	IN 9	PCM input port 9
8	IN 8	PCM input port 8
9	IN 13	PCM input port 13
$1 \emptyset$	IN 12	PCM input port 12
11	IN 14	PCM input port 14
12	IN 15	PCM. input port 15
13	IN $1 \varnothing$	PCM input port $1 \varnothing$
14	In 11	PCM input port 11
15	IN 6	PCM input port 6
16	IN 7	PCM input port 7
17	IN 2	PCM input port 2
18	IN 3	PCM input port 3
19	A $\emptyset^{\text {* }}$	Address \emptyset, for separating different modes of the control words
$2 \emptyset$	CS*	Chip select
21	$V_{\text {DD }}$	Supply voltage + $5 \mathrm{~V} \pm 5 \%$
22	RD*	Read pulse
23	WR'	Write pulse
24	DB \square^{*}	DATA Bus \varnothing)
25	DB 1^{*}	DATA Bus 1
26	DB 2*	DATA Bus 2
27	DB 3 ${ }^{\circ}$	DATA Bus 3 , bidirectional
28	DB 4**	DATA Bus 4
29	DB 5**	DATA Bus 5
$3 \emptyset$	DB 6**	DATA Bus 6
31	DB 7*	DATA Bus 7)
32	OUT 7	PCM output port 7
33	OUT 6	PCM output port 6
34	OUT 5	PCM output port 5
35	OUT 4	PCM output port 4
36	OUT 3	PCM output port 3
37	OUT 2	PCM output port 2
38	OUT 1	PCM output port 1
39	OUT \varnothing	PCM output port \emptyset
$4 \varnothing$	CLK	Clock pulse 8.192 MHz, duty cycle 50\%

[^47]
PCM-interface

Control signals:
Clock: CLK $f_{\text {CLK }}=8.192 \mathrm{MHz} 50 \%$ duty cycle, $t_{r}, t_{f} \leqq 10 \mathrm{~ns}$ synchronous pulse: SP $f_{\mathrm{CLK}}=8.000 \mathrm{kHz}$ defines the PCM frame with 1024 clock pulses $t_{\mathrm{r}}, t_{\mathrm{f}} \leqq 10 \mathrm{~ns}$

PCM input: $\operatorname{IN} \emptyset-\mathbb{I N} 15$
for 2 or $8 \mathrm{Mbit} / \mathrm{s}$ organized as 32 words of 8 bits or 128 words of 8 bit within a frame. The frame for all input lines starts with the rising edge of the SP signal.

PCM output: OUT \emptyset - OUT 7
for 2 or $8 \mathrm{Mbit} / \mathrm{s}$. The frame for all output lines is controlled by the falling edge of the SP signal. The difference between the rising and the falling edge of the SP signal should be $\lrcorner=(2+N \times 4) t_{\text {cLK }}, \emptyset \leq N \leq 255$ (fixed at space switch application:
$\left.\lrcorner=(2+70 \times 4) t_{\mathrm{cLK}}=282 t_{\mathrm{cLK}}, N=70\right)$. N defines the delay of the output frame counted in 2 MHz bit steps relative to the input frame, as shown in the timing diagram.
The outputs have tristate capability.

MTS 16/8 Timing diagram

Example with delayed output frame

Space switch application

$f_{\text {CLK }}=8.192 \mathrm{MHz}$
$t_{\text {CLK }}=122 \mathrm{~ns}$
50\% duty cycle

	\min	\max	
t_{SS}	70	170	ns
$t_{\mathrm{S} 2}$	180		ns
$t_{\mathrm{H} 2}$	0		ns
t_{S}	60		ns
$t_{\mathrm{H} 8}$	0		ns
t_{D}		50	ns

$$
C_{\mathrm{L}}=200 \mathrm{pF}
$$

μP Interface DB \emptyset - DB7, RD, WR, CS, A \varnothing
Commands for access to the connection memory, selected by $\mathrm{A} \emptyset=1$.
All commands have a three byte strukture and must be executed completly.
DB7 . DB

X	X	K 1	$\mathrm{~K} \emptyset$	X	X	X	S 8	Key word
$\mathrm{S7}$	S 6	S 5	S 4	S 3	S 2	S 1	$\mathrm{~S} \varnothing$	Speech Memory Address
C 7	C 6	C 5	C 4	C 3	C 2	C 1	$\mathrm{C} \varnothing$	Connection Memory Address

Keyword	
K1	K \emptyset
1	\emptyset
	Write Connection Memory
\emptyset	1
	Write Connection Memory, with checkbytes
	Read Connection Memory

S8	S7	S6	S5	S4	S3	S2	S1

Speech memory address, stored in the connection memory

C7	C6	C5	C4	C3.	C2	C1	C \varnothing

Connection memory address
The speech memory address contains the channel and line number of the incoming PCM words. The connection memory address consists of the channel and line number of the output words with the following coordination.

$2 \mathrm{Mbit} / \mathrm{s}$ input lines	bit $\emptyset-3$ line number bit $4-8$ channel number
$8 \mathrm{Mbit} / \mathrm{s}$ input lines	bit $\emptyset-1$ line number bit $2-8$ channel number
$2 \mathrm{Mbit} / \mathrm{s}$ output lines	bit $\emptyset-2$ line number bit $3-7$ channel number
$8 \mathrm{Mbit} / \mathrm{s}$ output lines	bit \emptyset line number bit $1-7$ channel number

Example

Channel 7 of the coming $2 \mathrm{Mbit} / \mathrm{s}$ line No. 9 shall be switched to channel 126 of the output line No. 1 of an $8 \mathrm{Mbit} / \mathrm{s}$ system without checkbyte:

Byte	\emptyset	20 H	$(\phi \phi 1 \phi \varnothing \varnothing \varnothing \varnothing)$
	1	79 H	$(\phi 1111 \phi \phi 1)$
	2	FD H	$(111111 \phi 1)$

Word write

For space switch application with $\mathrm{MI} \emptyset=1, \mathrm{MI} 1=1 ; \mathrm{MO} \emptyset=1, \mathrm{MO} 1=\emptyset$

$8 \mathrm{Mbit} / \mathrm{s}$ input lines	bit $\emptyset-3$ line number
	bit $4-8$ the lower 5 bits of the channel number
$8 \mathrm{Mbit} / \mathrm{s}$ output lines	bit \emptyset line number bit $1-7$ channel number

The difference between the rising and the falling edge of the SP is fixed:
$N=7 \emptyset,\lrcorner=(2+70 \times 4) t_{\mathrm{CLK}}=282 t_{\mathrm{CLK}}$
The selection of 128 input channels is possible by writing the connection memory (CM) as shown below.
In CM-address $\varnothing \emptyset-3 F \rightarrow$ S8-S4 (SM-adr.) means ch. \emptyset-ch. 31
In CM-address 4 4 - 7F \rightarrow S8-S4 (SM-adr.) means ch. 32-ch. 63
In CM-address $8 \emptyset-B F \rightarrow$ S8-S4 (SM-adr.) means ch. 64-ch. 95
In CM-address C \emptyset-FF \rightarrow S8-S4 (SM-adr.) means ch. 96-ch. 127
3 examples:

	C7 Cø	
$\begin{aligned} & \mathrm{CM} \text {-address }=3 \mathrm{~F} \\ & \mathrm{SM} \text {-address }=1 \mathrm{FA} \end{aligned}$	¢ø111111	output line 1, ch. 31
	$11111191 \varnothing$	input line 1 \emptyset, ch. 31
	S8 S \emptyset	
$\begin{aligned} & C M \text {-address }=7 \mathrm{~F} \\ & \text { SM-address }=1 \mathrm{FA} \end{aligned}$	C7 Cø	
	¢1111111	output line 1, ch. 63
	$111111 \phi 1 \varnothing$.	input line 1 \emptyset, ch. 63
	S8 S	
$\begin{aligned} & C M \text {-address }=C \emptyset \\ & \text { SM-address }=\varnothing \emptyset 8 \end{aligned}$	C7 Cø	
	$11 \varnothing \varnothing \emptyset \emptyset \emptyset \emptyset$	output line \varnothing, ch. 96
	Фффø日1øøø	input line 8, ch. 96
	S8 Sø	

Write connection Memory
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \mathrm{X} & \mathrm{X} & 1 & \varnothing & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{S} 8 \\ \hline \mathrm{~S} 7 & \mathrm{~S} 6 & \mathrm{~S} 5 & \mathrm{~S} 4 & \mathrm{~S} 3 & \mathrm{~S} 2 & \mathrm{~S} 1 & \mathrm{~S} \varnothing \\ \hline \mathrm{C} 7 & \mathrm{C} 6 & \mathrm{C} 5 & \mathrm{C} 4 & \mathrm{C} 3 & \mathrm{C} 2 & \mathrm{C} 1 & \mathrm{C} \varnothing \\ \hline\end{array}\right\} \quad \mathrm{A} \varnothing=1, \mathrm{WR}=\varnothing, \mathrm{CS}=\varnothing$

Stores S8-S \varnothing into the Connection Memory addressed with C7-C
Write Connection Memory with check bytes desired
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \mathrm{X} & \mathrm{X} & \emptyset & 1 & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{S} 8 \\ \hline \mathrm{~S} 7 & \mathrm{~S} 6 & \mathrm{~S} 5 & \mathrm{~S} 4 & \mathrm{~S} 3 & \mathrm{~S} 2 & \mathrm{~S} 1 & \mathrm{~S} \varnothing \\ \hline \mathrm{C} 7 & \mathrm{C} 6 & \mathrm{C} 5 & \mathrm{C} 4 & \mathrm{C} 3 & \mathrm{C} 2 & \mathrm{C} 1 & \mathrm{C} \varnothing \\ \hline\end{array}\right\} \quad \mathrm{A} \varnothing=1, \mathrm{WR}=\varnothing, \mathrm{CS}=\varnothing$

Stores S8 - S \varnothing into the Connection Memory addressed with C7-C
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline X & X & \emptyset & 1 & X & X & X & S 8 \\ \hline S 7 & \mathrm{~S} 6 & \mathrm{~S} 5 & \mathrm{~S} 4 & \mathrm{~S} 3 & \mathrm{~S} 2 & \mathrm{~S} 1 & \mathrm{~S} \varnothing \\ \hline \mathrm{C} 7 & \mathrm{C} 6 & \mathrm{C} 5 & \mathrm{C} 4 & \mathrm{C} 3 & \mathrm{C} 2 & \mathrm{C} 1 & \mathrm{C} \varnothing \\ \hline\end{array}\right\} \quad \mathrm{A} \emptyset=1, \overline{\mathrm{RD}}=\varnothing, \overline{\mathrm{CS}}=\varnothing$

S8 - $\mathrm{S} \varnothing$ have been overwritten by the Connection Memory in the next frame after writing the Connection Memory.

Read Connection Memory
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline x & X & \emptyset & \varnothing & x & x & X & X \\ \hline \mathrm{X} & \mathrm{X} \\ \hline \mathrm{C} 7 & \mathrm{C} 6 & \mathrm{C} 5 & \mathrm{C} 4 & \mathrm{C} 3 & \mathrm{C} 2 & \mathrm{C} 1 & \mathrm{C} \varnothing \\ \hline\end{array}\right\} \quad \mathrm{A} \varnothing=1, \overline{\mathrm{WR}}=\varnothing, \mathrm{CS}=\varnothing$
overwrites S8 - S \varnothing with the Connection Memory address C7-Cめ, and can be read with the following sequence.
$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \mathrm{X} & \mathrm{X} & \emptyset & \emptyset & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{S} 8 \\ \hline \mathrm{~S} 7 & \mathrm{~S} 6 & \mathrm{~S} 5 & \mathrm{~S} 4 & \mathrm{~S} 3 & \mathrm{~S} 2 & \mathrm{~S} 1 & \mathrm{~S} \varnothing \\ \hline \mathrm{C} 7 & \mathrm{C} 6 & \mathrm{C} 5 & \mathrm{C} 4 & \mathrm{C} 3 & \mathrm{C} 2 & \mathrm{C} 1 & \mathrm{C} \varnothing \\ \hline\end{array}\right\} \quad A \emptyset=1, \overline{\mathrm{RD}}=\varnothing, \mathrm{CS}=\varnothing$

Mode/Status selected $A \varnothing=\varnothing$
Status
$A \emptyset=\varnothing, R D=\emptyset,(W R=1), C S=\varnothing$
DB7

B	Z	X	RY	\emptyset	\emptyset	\emptyset	\emptyset

$B=1 \quad$ Chip busy during command execution
$Z=1 \quad$ Incomplete command instruction
RY = $1 \quad$ Mode register blocked (after "Power-on")

Power on tristate

SB is set by "Power-on" or by "Write Moderegister".
SB is reset by "Write Moderegister".
"Write Moderegister" is blocked at most seven frames after "Power-on".
During that time RY in the status register is set to "1" SP and CLK should be applied immediately after
"Power-on"
Mode

$$
A \emptyset=\emptyset, \overline{W R}=\emptyset,(\overline{R D}=1), \overline{C S}=\emptyset
$$

DB7 DB \varnothing

R	TE	\varnothing	SB	MI1	MI	MO1	MOD

$\mathrm{R}=$ Reset	$\mathrm{R}=\emptyset$ Reset
$\mathrm{TE}=$ Tristate enable	$\mathrm{TE}=\emptyset$ Mode without tristate function
	$\mathrm{TE}=1$ Tristate dependent from code
$\mathrm{SB}=$ Standby	$\mathrm{SB}=1$ Tristade independent from code

MI1	MI \varnothing	Input operation mode
\emptyset	\emptyset	$16 \times 2 \mathrm{Mbit} / \mathrm{s}$
\emptyset	1	$4 \times 8 \mathrm{Mbit} / \mathrm{s}$ 1
\emptyset	$2 \times 8+8 \times 2 \mathrm{Mbit} / \mathrm{s}$	

MO1	MO	Output operation mode
\emptyset	\emptyset	$8 \times 2 \mathrm{Mbit} / \mathrm{s}$
\emptyset	1	$2 \times 8 \mathrm{Mbit} / \mathrm{s}$
1	\emptyset	$1 \times 8 / 4 \times 2 \mathrm{Mbit} / \mathrm{s}$

1	1	$16 \times 8 \mathrm{Mbit} / \mathrm{s}$

for space switch application only

Reset

DB7 = R
The PEB 2040 can be initialized by a mode byte with $R=\emptyset$. This causes the complete connection memory to be overwritten with zeros. During this time the busy bit is set.

Tristate

DB6 = TE, DB4 = SB
The PCM outputs of the PEB 2040 have tristate capability.

1. $\mathrm{SB}=1$ is a standby mode. All outputs are tristate. The connection memory works in the normal mode.
The chip can be activated immediately by setting $S B=\varnothing$.
2. $T E=1$, $(S B=\varnothing)$: The output channels are tristate, if the speech memory address stored in the connection memory is $S 8-S \emptyset=\varnothing$. This means that channel \emptyset of line \varnothing is not available for any output.
3. $T E=\emptyset,(S B=\varnothing)$: Channel \emptyset of line \emptyset is available, but tristate is not possible.

Operation Mode (Input/Output bit rate)
$D B \emptyset=\mathrm{MO} \emptyset, D B 1=\mathrm{MO1}, \mathrm{DB2}=\mathrm{MI} \varnothing, \mathrm{DB3}=\mathrm{MI} 1$
The operation mode is selected by the mode bits, where MI \varnothing and MI1 defines the bit rate of the input lines and independently MOØ and MO1 that of the output lines.
The corresponding input and output addresses are given in table 1.

Example

DB7 DB \varnothing

1	1	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset

PCM mode: $16 \times 2 \mathrm{Mbit} / \mathrm{s}$ input
PCM mode: $8 \times 2 \mathrm{Mbit} / \mathrm{s}$ output
with tristate

Timing of $\mu \mathrm{P}$ interface

Read operation

Adr. stable before RD
Adr. hold after RD
$\overline{R D}$ width
$\overline{R D}$ to data valid
Adr. stable to data valid Data float after RD
$\overline{R D}$-cycle time

	Min.	Max.	Unit
t_{AR}	0		ns
t_{RA}	0		ns
t_{RR}	180		ns
t_{RD}		90	ns
t_{AD}		100	ns
t_{DF}	10	100	ns
t_{RCY}	500		ns

Write operation

Adr. stable before WR
Adr. hold time
$\overline{W R}$ width
Data set up time
Data hold time
$\overline{W R}$ cycle time

	Min.	Max.	Unit
$t_{\text {AW }}$	0		ns
$t_{\text {WA }}$	0		ns
$t_{W W}$	190		ns
t_{DW}	130		ns
$t_{W D}$	0		ns
$t_{\text {WCY }}$	500		ns

The "busy time" during which a command or reset instruction is executed has to be programmed with its maximum length or must be controlled via the busy bit of the status register.

Busy time

Reset

Read connection memory
Write connection memory
Write connection memory with check bytes desired

	Average	Max.	Unit
	188	250	$\mu \mathrm{~S}$
	63	125	$\mu \mathrm{~S}$
	63	125	$\mu \mathrm{~S}$
red	188	250	$\mu \mathrm{~S}$

Maximum ratings

Supply voltage
Input voltage
Total power dissipation
Output power dissipation
Operating temperature
Storage temperature

	Min.	Typ	Max.	Unit
$V_{\text {DD }}$	$-0,3$		7	V
V_{1}	$-0,3$		7	V
$P_{\text {tot }}$			1	W
P_{0}			10	mW
$T_{\text {amb }}$	-0		70	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-55		125	${ }^{\mathrm{C}}$

DC and operating characteristics
$T_{\text {amb }}=-0$ to $70^{\circ} \mathrm{C}, V_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%$

Supply current	I_{DD}		60	150	mA
Input leakage current $V_{\mathrm{I}}=0$ to V_{DD}	I_{IL}	-10		10	$\mu \mathrm{~A}$
H input voltage	V_{IH}	2.0		V_{DD}	V
L input voltage	V_{IL}	0		0.8	V
H output voltage $\left(I_{\mathrm{O}}=-0.2 \mathrm{~mA}\right)$	V_{OH}	2.4			V
L output voltage $\left(I_{\mathrm{O}}=2.0 \mathrm{~mA}\right)$	V_{OL}			0.4	V
Tristate output leakage $V_{\mathrm{O}}=0$ to V_{DD}	I_{OL}	-10		10	$\mu \mathrm{~A}$

AC testing input, output waveform

AC testing load circuit

AC testing:

Inputs are driven at 2.4 V for a logic " 1 " and 0.4 V for a logic " \varnothing ".
Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " ϕ ".

PEB 2050 Peripheral Board Controller (PBC)

Preliminary data

MOS circuit

Features

- Board controller for up to 16 subsribers of a digital switching system
- Designed for different PCM systems
- Time slot assignment freely programmable for all connected subscribers
- Control of voice, data, signaling and line board parameters to minimize hardware requirements and to simplify software
- Provides two full duplex PCM highways for the system interface
- System control uses the HDLC protocol with X. 25 level 2 functions performed by the PBC
- Standard $\mu \mathrm{P}$ interface
- Two DMA channels for expansion of internal buffer capability of 16 bytes per direction
- $\mu \mathrm{P}$ access to all internal data streams including time slot-oriented data streams
- Support of subscriber circuits by generating timing signals
- Single 5 V power supply
- Low power consumption

General description

The Peripheral Board Controller PEB 2050 is a device for the control of voice, data, and signaling paths of up to 16 subscribers on peripheral component boards in digital telephone systems. In combination with the highly flexible Siemens Codec Filter (SICOFI PEB 2060) it forms an optimized analog subscriber line board architecture. Its flexibility allows the operation as a general purpose controller for data switching and MUX/De MUX applications.

The PBC controls space and time switching functions between subscriber line devices and time division multiplex highways. Further, it controls the flow of information between the subscriber interface ports and a processor, which can be an optional line card local processor or the central processor directly. Last, it performs all protocol control functions, using the HDLC protocol format for all information passing between the line card and the central processor via a dedicated HDLC line or via interleaved time slots on the PCM lines.
To meet the different requirements the PBC PEB 2050 provides the following interfaces:

- 8 serial, bidirectional I/O ports for the transfer of voice, data, control, and signaling information between the PBC and Codec Filters (e.g. SICOFI PEB 2060), digital interface circuits or signal processors.
- Double constructed PCM interface.
- Fast serial communication link to the central processor.
- Bit-parallel interface for the connection of 8 bit standard microcomputers such as the SAB 8048. The interface is characterized by an interrupt control and two independent DMA channels, one for the transmit and one for the receive direction.

Pin configuration

top view

Pin designation

\begin{tabular}{|c|c|c|c|}
\hline Pin No. \& Symbol \& Name/function \& Functional description \\
\hline \begin{tabular}{l}
1 \\
. \\
. \\
. \\
\hline
\end{tabular} \& SIP
4
\(\vdots\)
\(\cdot\)
\(\cdot\)

SIP
7 \& Subscriber interface port (input/output) \& These interface ports are used for bidirectional, bit-serial transfer of speech, data and control words to and from the Siemens Codec Filter (SICOFI) or standard Codec. Corresponding with the direction signal the PBC PEB 2050 is transmitting during the high level of DIR within the first half of a $125 \mu \mathrm{~s}$ frame.

\hline 5 \& R x HWD 1 \& Receive highway data (input) \& Receive PCM highway 1 interface

\hline 6 \& R \times HWD 0 \& Receive highway data (input) \& | Receive PCM highway 0 interface. |
| :--- |
| The PBC serially receives a PCM word (8 bits) through one of these leads at the programmed time slot. |

\hline 7 \& T \times HWD 1 \& Transmit highway data (output) \& Output of the transmit side onto the send PCM highway 1 (serial bus). The 8-bit PCM word is serially sent out on this pin at the programmed time slot. Tristate output.

\hline 8 \& TSC 1 \& Tristate control (output, active low) \& Normally high, this signal goes low while the PBC is transmitting an 8-bit PCM word on the PCM highway 1.

\hline 9 \& T x HWD 0 \& Transmit highway data (output) \& Output of the transmit side onto the send PCM highway 0.

\hline 10 \& $\overline{\text { TSC } 0}$ \& Tristate control (output, active low) \& Tristate control of highway 0.

\hline 11 \& SYP \& Synchronization \& SYP is a frame synchronization pulse which resets the on-chip time-slot counters.

\hline 12 \& SCLK \& Slave clock (output) \& Clock output for the peripheral devices. The signals between the codec filter and the PBC are latched and transmitted with the rising edge of SCLK.

\hline 13 \& SIGS/DMIR \& Signal strobe (output, active high)/direct \& The SIGS output supplies a programmable strobe signal. In the DMA mode, this pin is used as DMA input request.

\hline
\end{tabular}

Pin designation			
Pin No.	Symbol	Name/function	Functional description
14	DIR/DMOR	Direction (output, active high) direct memory output request (output, active high)	DIR is an 8 kHz symmetric frame signal which controls the direction of the data transfer from and to the peripheral devices. The PBC is able to receive data during the low state of DIR. In the DMA mode this pin is used as DMA output request. DMIR and DMOR are generated by the PBCinternal HDLC receiver or transmitter and are used for handshaking during the DMA transfer.
15	T x SD	Transmit signaling Data (output).	This line transmits the serial data to the dedicated HDLC channel.
16	$\overline{\text { TSC } 2}$	Tristate control to 2 (output, active low)	Normally high, this signal goes low while the PBC is transmitting an HDLC message.
17	$R \times S D$	Receive signaling Data (input)	This line receives the serial data from the HDLC channel.
18	$\overline{\mathrm{CS}}$	Chip select (input, active low)	$\overline{C S}$ is used to address the PBC. A low level at this input enables the PBC to accept commands or data from a $\mu \mathrm{P}$ within a write cycle, or to transmit data during a read cycle.
19	ALE	Address latch enable (input, active high)	A high level at this input indicates that the data on the external bus is an address selecting one of the PBC-iniernal sources or destinations. Latching into the address latch occurs during the high low transition.
20	$\mathrm{V}_{\text {ss }}$		Ground: 0 V
21	CLK	Clock (input)	A standard TTL clock provides the basic timing of the controller. The clock is synchronous to the PCM clock.

Pin designation			
Pin No.	Symbol	Name/function	Functional description
22	$\overline{\mathrm{RD}}$	Read strobe (input, active low)	$\overline{\mathrm{RD}}$ is used together with CS to transfer data from the PBC to a $\mu \mathrm{P}$ or memory.
23	DO		
.	.		
.	.	System data bus	The data bus transfers data and commands between the $\mu \mathrm{P}$ or memory and the PBC.
.	.		
30	D7		
31	$V_{\text {D }}$		Power supply: $V_{\text {DD }}=5.0 \pm 0.25 \mathrm{~V}$
32	$\overline{W R}$	Write strobe (input, active low)	During the low state of $\overline{W R}$ data can be trans ferred from the $\mu \mathrm{P}$ or memory to the PBC .
33 34	$\overline{\text { DACK } 0}$	DMA acknowledge (inputs, active low)	$\overline{\mathrm{DACK} ~} 0$ and $\overline{\text { DACK } 1}$ are used to acknowledge the DMA output and DMA input request, respectively.
35	$\overline{\text { INT/TYP }}$	Interrupt request (output, active low)	This signal is pulled down, when the PBC is requesting an interrupt. In that case the $\mu \mathrm{P}$ should enter into an interrupt routine for reading the status register 1.
36	RESET	Reset (input, active high)	A "high" on this input forces the PBC into reset state. The minimum reset pulse is 16 complete clock cycles.
37	SIP 0		These interface ports are used for bidirectional, bit-serial transfer of speech, data and
$\stackrel{\cdot}{\cdot}$	$\begin{array}{r} \\ \\ \\ \hline\end{array}$	Subscriber interface port (input/output)	control words to and from the Siemens Codec Filter (SICOFI) or standard Codec. Corresponding with the direction signal the PBC PEB 2050 is transmitting during the high level
40	SIP 3		

Block diagram

Block diagram

Description of the functional blocks

The PBC has been designed especially for use in peripheral subscriber boards, but its functional flexibility also permits its application in various parts of a digital exchange telecommunication system.
Used in peripheral subscriber boards it performs two essential functions:

1) Exchange of control data between a central processing unit, an "on board" processing unit and individual subscriber connections. The PBC supports the ISO/CCITT's HDLC communication line protocol. An application specific PBC internal controller controls the distribution of data on the board.
2) The time slot controlled transfer of PCM data (64 Kbaud channels) between the PCM highways and the subscriber connections.
Data transfers between both parts, such as signaling through PCM highways (common channel) or the access of the "on board" $\mu \mathrm{P}$ to 64 Kbaud channels, are considerably simplified by the IC.
The two central functional blocks are reflected in the circuit structure: The PCM synchronous portion constitutes the interfaces to the subscribers and the PCM highways. It comprises the following functional blocks:
O SIU (Serial Interface Unit) with Last Look logic.
O PIU (PCM Interface Unit)
○ CAM (Content Addressable Memory)
© TCU (Timing Control Unit)

- MODE register
- PBC Bus

The asynchronous portion constitutes the interface to the local microprocessor (8-bit parallel) and to the central control (serial HDLC interface) and comprises the following functional blocks:
O HDLC controller

- $\mu \mathrm{P}$ interface

O $\mu \mathrm{P}$ control and status register
O ULCU (User Level Control Unit)
The two portions are interconnected by the following functional blocks:

- X FIFO (Transmit FIFO)
- Bidirectional FIFO

O BICU (Bus Interface Control Unit)
© BIR (Bus Interface Register)

Maximum ratings
Storage temperature

	Min	Max	Unit
$T_{\text {stg }}$	-65	125	${ }^{\circ} \mathrm{C}$

Range of operation

Ambient temperature
Voltage at any pin vs. ground
Total power consumption

$T_{\text {amb }}$	0	70	${ }^{\circ} \mathrm{C}$
V	-0.3	7	V
$P_{\text {tot }}$		600	mW

DC characteristics

$T_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V}$

L input voltage
H input voltage
L output voltage
H output voltage
Input leakage current
Output leakage current
$V_{\text {cC }}$ - supply current

	Conditions	Min	Typ.	Max	Unit
V_{IL}		-0.5		0.8	Volts
V_{IH}		2.0		5.5	Volts
V_{OL}	$I_{\mathrm{OL}}=+1.6 \mathrm{~mA}$			0.45	Volts
V_{OH}	$I_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			Volts
I_{IL}	$V_{\mathrm{IN}}=V_{\mathrm{cc}}$ to 0 V	-10		10	$\mu \mathrm{~A}$
I_{OL}	$V_{\mathrm{OUT}}=V_{\mathrm{CC}}$ to 0 V	-10		10	$\mu \mathrm{~A}$
I_{CC}	$V_{\mathrm{CC}}=5 \mathrm{~V}$		85	120	mA

Capacitance

$T_{\text {amb }}=25^{\circ} \mathrm{C} ; V_{\mathrm{cc}}=\mathrm{GND}=0 \mathrm{~V}$

Input capacitance
Input/output capacitance
Output capacitance

	Conditions	Min	Typ.	Max	Unit
$C_{\text {IN }}$	$f_{\mathrm{C}}=1 \mathrm{MHz}$		5	10	pF
$C_{\text {I/O }}$			10	20	pF
$C_{\text {OUT }}$	unmeasured pins		8	15	pF

AC characteristics
$T_{\text {amb }}=0$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{cc}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V}$
Microprocessor interface
Read cycle

Address hold after ALE
Address to ALE setup
Data delay from $\overline{\mathrm{RD}}$
$\overline{R D}$ pulse width
Output float delay
$\overline{\mathrm{RD}}$ control interval case 1^{*}
$\overline{\mathrm{RD}}$ control interval case $2^{* *}$
ALE pulse width

Write cycle

$\overline{W R}$ pulse width
Data setup to $\overline{W R}$
Data hold after $\overline{W R}$
$\overline{\mathrm{WR}}$ control interval case 1^{*}
$\overline{\mathrm{WR}}$ control interval case $2^{* *}$

	Min	Max	Unit
t_{LA}	20		ns
t_{AL}	30		ns
t_{RD}		150	ns
t_{RR}	150	10^{7}	ns
t_{DF}		25	ns
t_{RI}	$2 \times \mathrm{CP}$		ns
t_{RI}	100		ns
t_{AA}	60		ns

	Min	Max	Unit
t_{WW}	100		ns
t_{DW}	50		ns
t_{WD}	25		ns
t_{WI}	2 x CP		ns
t_{WI}	50		ns

[^48]
DMA Read

DMA read time*
DMOR hold time
Address stable before $\overline{\mathrm{RD}}$
Data delay from $\overline{R D}$
Output floating delay
Address hold after $\overline{R D}$
$\overline{\mathrm{RD}}$ pulse width

DMA Write

DMA Write time*
DMIR hold time
Address stable before $\overline{W R}$
Address hold after $\overline{W R}$
Data setup to $\overline{W R}$
Data hold after $\overline{W R}$
$\overline{W R}$ pulse width

	Min	Max	Unit
t_{DMA}		$7 \times \mathrm{CP}$	ns
t_{DH}		75	ns
t_{AR}	0		ns
t_{RD}		150	ns
t_{DF}	20		ns
t_{RA}	0		ns
t_{RR}	150	10^{4}	ns

	Min	Max	Unit
t_{DMA}		$7 \times \mathrm{CP}$	ns
t_{IH}		80	ns
t_{AW}	0		ns
t_{WA}	0		ns
t_{DW}	30		ns
t_{WD}	25		ns
t_{WW}	100		ns

*)				
PBC clock/MHz	2.048	4.096	1.536	3.072
$2 \times \mathrm{CP} / \mathrm{ns}$	980	490	1300	650
$7 \times \mathrm{CP} / \mu \mathrm{s}$	3.4	1.7	4.56	2.3

Write cycle
$\overline{W R}$

DB

DMA read

DMA write

Clock timing

System clock

System clock frequency
Duty cycle
Synchron pulse period
Synchron pulse width
Pulse delay to CLK
Setup time to CLK
Clock rise/fall time

Slave clock

Clock frequency
Clock delay time

DIR Clock

Delay time to CLK

SIU interface

SIP data delay
Data enable receive
Data disable receive
Data enable transmit
Data hold transmit
Data setup transmit
Signaling strobe delay

	Min	Max	Unit
CLK	1	4.2	MHz
	45	55	$\%$
$t_{\text {SPP }}$	125	$\mathrm{M} \times 125$	$\mu \mathrm{~s}$
t_{SYP}	60	t_{CKL}	ns
t_{dSYP}	10		ns
t_{sSYP}	50		ns
CLK $_{\text {rf }}$		10	ns
SCLK	512	512	kHz
t_{dSCLK}	100	165	ns
$t_{\text {dDIR }}$	120	190	ns

	Min	Max	Unit
$t_{\text {dSIP }}$	160	300	ns
$t_{\text {DER }}$	100	180	ns
t_{DDR}	100	180	ns
t_{DEX}	0		ns
t_{DAX}	0		ns
t_{DSX}	$\mathrm{CP} / 2+200$		ns
t_{DSIG}	110	160	ns

SIP interface timing

Detail B

Serial port timing

PCM interface
 Receive timing

Receive data setup DCR $=1$
Receive data setup DCR $=0$ *
Receive data hold DCR $=1$
Receive data hold $D C R=0$

	Conditions	Min	Max	Unit
t_{DSRF}		20		ns
$t_{\mathrm{DS} \mathrm{RR}}$		40		ns
t_{DURF}		40		ns
t_{DHRR}		10		ns

Receive Timing

${ }^{\text {* }}$ Common channel mode $t_{\text {DSRR }} 60 \mathrm{~ns}$
PCM interface (cont'd)

Transmit timing

Data enable DCX $=0$
Data enable DCX $=1$
Data hold time DCX. $=0$
Data hold time DCX $=1$
Data float on TS EXIT
Time slot x to enable DCX $=0$
Time slot x to enable DCX $=1$
Time slot x to disable

	Conditions	Min	Max	Unit
t_{DZXR}	$C_{\mathrm{L}}=200 \mathrm{pF}$	80	160	ns
t_{DZXF}	$C_{\mathrm{L}}=200 \mathrm{pF}$	40	100	ns
$t_{\mathrm{DH} \text { XR }}$	$C_{\mathrm{L}}=200 \mathrm{pF}$	45	160	ns
t_{DHXF}	$C_{\mathrm{L}}=200 \mathrm{pF}$	40	100	ns
t_{HZX}	$C_{\mathrm{L}}=150 \mathrm{pF}$	35	80	ns
$t_{\text {SONR }}$	$C_{\mathrm{L}}=150 \mathrm{pF}$	70	130	ns
$t_{\text {SONF }}$	$C_{\mathrm{L}}=150 \mathrm{pF}$	40	100	ns
$t_{\text {SOFF }}$	$C_{\mathrm{L}}=150 \mathrm{pF}$	40	100	ns

Transmit Timing

HDLC interface

Receive timing

Receive data setup
Receive data hold
Transmit timing
Transmit data delay
Data float on TS EXIT
Time slot x to enable
Time slot x to disable

	Condition	Min	Max	Unit
t_{DS}		40		ns
t_{DH}		10		ns
t_{TD}	$C_{\mathrm{L}}=200 \mathrm{pF}$	40	100	ns
t_{HZX}	$C_{\mathrm{L}}=200 \mathrm{pF}$	35	80	ns
t_{SoN}	$C_{\mathrm{L}}=150 \mathrm{pF}$	40	95	ns
$t_{\text {soff }}$	$C_{\mathrm{L}}=150 \mathrm{pF}$	35	90	ns

Receive Timing

Transmit Timing

AC testing input, output waveform

AC testing: inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

PEB 2051
 Peripheral Board Controller (PBC)

Preliminary data
MOS circuit

Features

- Board controller for up to 16 subscribers of a digital switching system
- Designed for different PCM systems
- Time slot assignment freely programmable for all connected subscribers
- Control of voice, data, signaling and line board parameters to minimize hardware requirements and to simplify software
- Provides four full duplex PCM highways for the system interface
- System control uses the HDLC protocol with X. 25 level 2 functions performed by the PBC
- Standard $\mu \mathrm{P}$ interface
- Two DMA channels for expansion of internal buffer capability of 16 bytes per direction
- $\mu \mathrm{P}$ access to all internal data streams including time slot-oriented data streams
- Support of subscriber circuits by generating timing signals
- Single 5 V power supply
- Low power consumption

Plastic plug-in package 20 B 40 DIN 41866

Approx. weight 5.9 g

[^49]
General description

The Peripheral Board Controller PEB 2051 is a device for the control of voice, data, and signaling paths of up to 16 subscribers on peripheral component boards in digital telephone systems. In combination with the highly flexible Siemens Codec Filter (SICOFI PEB 2060) it forms an optimized analog subscriber line board architecture. Its flexibility allows the operation as a general purpose controller for data switching and MUX/De MUX applications.
The PBC controls space and time switching functions between subscriber line devices and time division multiplex highways. Further, it controls the flow of information between the subscriber interface ports and a line card local processor. Last, it performs all protocol control functions, using the HDLC protocol format for all information passing between the line card and the central processor via interleaved time slots on the PCM lines.
To meet the different requirements the PBC PEB 2051 provides the following interfaces:

- 8 serial, bidirectional I/O ports for the transfer of voice, data, control, and signaling information between the PBC and Codec Filters (e.g. SICOFI PEB 2060), digital interface circuits or signal processors.
- Four independent PCM interfaces.
- Bit-parallel interface for the connection of 8 bit standard microcomputers such as the SAB 8048. The interface is characterized by an interrupt control and two independent 'DMA channels, one for the transmit and one for the receive direction.

Pin configuration top view

Pin designation

\begin{tabular}{|c|c|c|c|}
\hline Pin No. \& Symbol \& Name/function \& Functional description

\hline 1
.
4 \& SIP 4

SIP
S \& Subscriber Interface Port (input/output) \& These interface ports are used for bidirectional, bitserial transfer of speech-, data- and controlwords to and from the Siemens-Codec-Filter (SICOFI) or standard Codec. Corresponding with the direction signal the PBC PEB 2051 is transmitting the high level of DIR within the first half of a 125μ s frame.

\hline $$
\begin{aligned}
& 5,6 \\
& 16,17
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& R \times H D A \emptyset, 1 \\
& R \times H D B \emptyset, 1
\end{aligned}
$$
\] \& $\} \begin{aligned} & \text { Receive Highways } \\ & \text { Data (input) }\end{aligned}$ \& Interface ports to the PCM highways.

\hline 7, 8
9,10 \& Tx HDA $\varnothing, 1$
TxHDBø,1 \& $\} \begin{aligned} & \text { Transmit Highways } \\ & \text { Data (output) }\end{aligned}$ \& The displacement between receive and transmit direction is programmable up to 8 bits.

\hline 11 \& SYP \& Synchronization \& SYP is a frame synchronization pulse which resets the on chip time slot ccunters.

\hline 12 \& SCLK \& Slave Clock (output) \& Clock output for the peripheral devices. The signals between the Codec-filter and the PBC are latched and transmitted with the rising edge of SCLK.

\hline 13 \& SIGS/DMIR \& Signal Strobe (output, active High)/ Direct Memory Input Request (output, active High) \& The SIGS-output supplies a programmable strobe signal. In the DMAmode this pin is used as DMA-inputrequest.

\hline 14 \& DIR \& Direction (output) \& DIR is a 8 kHz symmetric frame signal which controls the direction of the data transfer from and to the peripheral devices. The PBC is able to receive datas during the low state of DIR.

\hline 15 \& DMOR \& Memory Output Request (output) active High \& DMIR and DMOR are generated by the PBC internal HDLC-receiver or transmitter and are used for handshaking during the data transfer.

\hline 18 \& $\overline{\mathrm{CS}}$ \& Chip select (input, active Low) \& $\overline{\mathrm{CS}}$ is used to address the PBC. A low level at this input enables the PBC to accept com'mands or datas from a $\mu \mathrm{P}$ within a write cycle, or to transmit datas during a read cycle.

\hline
\end{tabular}

Pin No.	Symbol	Name/function	Functional description
19	ALE	Address Latch Enable (input, active High)	A high level at this input indicates that the data on the external bus is an address selecting one of the PBC-internal sources or destinations. Latching into the address latch occurs during the high low transition.
20	$V_{\text {ss }}$		Ground
21	CLK	Clock (input)	A standart TTL-Clock provides the basic timing of the controller. The clock is synchronous to the PCMclock.
22	$\overline{\mathrm{RD}}$	Read Strobe (input, active Low)	$\overline{R D}$ is used together with CS to transfer data from the PBC to a $\mu \mathrm{P}$ or memory
23	Dø	System Data Bus	The data bus transfers data and commands between the $\mu \mathrm{P}$ or memory and the PBC.
30	D7		
31	$V_{D D}$	Supply Voltage	$V_{D D}=5 . \emptyset \pm \emptyset .25 \mathrm{~V}$
32	\bar{W}	Write Strobe (input, active Low)	During the low state of $\overline{W R}$ data can be transfered from the $\mu \mathrm{P}$ or memory to the PBC.
33 34	$\overline{\overline{\text { DACK } \varnothing}} \overline{\text { DACK1 }}$	$\left\{\begin{array}{l}\text { DMA-Acknowledge } \\ \text { (inputs, active Low) }\end{array}\right.$	$\overline{\text { DACK } \varnothing}$ and $\overline{\text { DACK1 }}$ are used to acknowledge the DMA-output and DMA-input request, respectively.
35	$\overline{\text { INT }}$	Interrupt Request (output, active Low)	These signal is pulled down, when the PBC is requesting an interrupt. In that case the $\mu \mathrm{P}$ should enter into an interrupt routine for reading the status register 1.
36	RESET	Reset (input, active High)	A "high" on this input forces the PBC into reset state. The minimum reset puls is 16 complete clock cycles.

Block diagram

Description of the functional blocks

The PBC has been designed especially for use in peripheral subscriber boards, but its functional flexibility also permits its application in various parts of a digital exchange telecommunication system.
Used in peripheral subscriber boards it performs two essential functions:

1) Exchange of control data between a central processing unit, an "on board" processing unit and individual subscriber connections. The PBC supports the ISO/CCITT's HDLC communication line protocol. An application specific PBC internal controller controls the distribution of data on the board.
2) The time slot controlled transfer of PCM data (64 Kbaud channels) between the PCM highways and the subscriber connections.
Data transfers between both parts, such as signaling through PCM highways (common channel) or the access of the "on board" $\mu \mathrm{P}$ to 64 Kbaud channels, are considerably simplified by the IC.
The two central functional blocks are reflected in the circuit structure: The PCM synchronous portion constitutes the interfaces to the subscribers and the PCM highways. It comprises the following functional blocks:

- SIU (Serial Interface Unit) with Last Look logic
- PIU (PCM Interface Unit)
- CAM (Content Addressable Memory)
- TCU (Timing Control Unit)
- MODE register
- PBC Bus

The asynchronous portion constitutes the interface to the local microprocessor (8-bit parallel) and to the central control (serial HDLC interface) and comprises the following functional blocks:

- HDLC controller
- $\mu \mathrm{P}$ interface
- $\mu \mathrm{P}$ control and status register
- ULCU (User Level Control Unit)

The two portions are interconnected by the following functional blocks:

- X FIFO (Transmit FIFO)
- Bidirectional FIFO
- BICU (Bus Interface Control Unit)
- BIR (Bus Interface Register)

Maximum ratings
Storage temperature

	min.	max.	
$T_{\text {stg }}$	-65	125	${ }^{\circ} \mathrm{C}$

Range of operation
Ambient temperature
Voltage at any pin vs. ground
Total power consumption

$T_{\text {amb }}$	0	70	${ }^{\circ} \mathrm{C}$
V	-0.3	7	V
$P_{\text {tot }}$		600	mW

DC characteristics
$T_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{cc}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V}$

		Conditions	min.	typ.	max.	
L input voltage	V_{IL}		-0.5		0.8	V
H input voltage	V_{IH}		2.0		5.5	V
L output voltage	V_{OL}	$I_{\mathrm{OL}}=+1.6 \mathrm{~mA}$			0.45	V
H output voltage	$V_{O H}$	$I_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			V
Input leakage current	I_{IL}	$V_{\mathrm{IN}}=V_{\mathrm{CC}}$ to 0 V	-10		10	$\mu \mathrm{~A}$
Output leakage current	I_{OL}	$V_{\mathrm{OUT}}=V_{\mathrm{CC}}$ to 0 V	-10		10	$\mu \mathrm{~A}$
$V_{\mathrm{CC}}-$ supply current	I_{CC}	$V_{\mathrm{CC}}=5 \mathrm{~V}$			85	120
mA						

Capacitance
$T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; V_{\mathrm{cc}}=\mathrm{GND}=0 \mathrm{~V}$

Input capacitance
Input/output capacitance
Output capacitance

	Conditions	min.	typ.	max.	
$C_{\text {IN }}$	$f_{\mathrm{c}}=1 \mathrm{MHz}$		5	10	pF
$C_{\text {I/O }}$			10	20	pF
$C_{\text {OUT }}$	unmeasured pins		8	15	pF

AC characteristics
$T_{\text {amb }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; V_{\mathrm{cc}}=5 \mathrm{~V} \pm 0.25 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V}$

Microprocessor interface

Read cycle

Address hold after ALE
Address to ALE setup
Data delay from $\overline{R D}$
$\overline{R D}$ pulse width
Output float delay
$\overline{R D}$ control interval case 1^{-}
$\overline{\mathrm{RD}}$ control interval case $2^{* *}$
ALE pulse width

	min.	max.	
t_{LA}	20		ns
t_{AL}	30		ns
t_{RD}		150	ns
t_{RR}	150	10^{7}	ns
t_{DF}		25	ns
t_{RI}	$2 \times \mathrm{CP}$		ns
t_{RI}	100		ns
t_{AA}	60		ns

Write cycle
$\overline{W R}$ pulse width
Data setup to $\overline{W R}$
Data hold after $\overline{W R}$
$\overline{W R}$ control interval case 1^{*}
$\overline{\mathrm{WR}}$ control interval case $2^{* *}$

t_{ww}	100	ns
t_{bW}	50	ns
t_{wD}	25	ns
$t_{\mathrm{w} 1}$	$2 \times \mathrm{CP}$	
$t_{\mathrm{w} 1}$	50	ns

[^50]
DMA Read

DMOR hold time
Address stable before $\overline{R D}$
Data delay from $\overline{R D}$
Output floating delay
Address hold after $\overline{R D}$
$\overline{\mathrm{RD}}$ pulse width
DMA Write
DMIR hold time
Address stable before $\overline{W R}$
Address hold after $\overline{W R}$
Data setup to $\overline{W R}$
Data hold after $\overline{W R}$
$\overline{W R}$ pulse width

	min.	max.	
t_{DH}		75	ns
t_{AR}	0		ns
t_{RD}		150	ns
t_{DF}	20		ns
t_{RA}	0		ns
t_{RR}	150	10^{4}	ns

t_{IH}		80	ns
t_{AW}	0		ns
t_{WA}	0		ns
t_{DW}	30		ns
t_{WD}	25		ns
t_{WW}	100		ns

Read cycle

Write cycle

DMA read

DMA write

Clock timing

System clock
System clock frequency
Duty cycle
Synchron pulse period
Synchron pulse width
Pulse delay to CLK
Setup time to CLK
Clock rise/fall time

Slave clock

Clock frequency
Clock delay time

D!R Clock

Delay time to CLK

SIU interface

SIP data delay
Data enable receive
Data disable receive
Data enable transmit
Data hold transmit
Data setup transmit
Signaling strobe delay

	min.	max.	
CLK	1	4.2	MHz
	45	55	$\%$
$t_{\text {SPP }}$	125	$\mathrm{M} \times 125$	Hs
t_{sYP}	60	t_{CKL}	ns
$t_{\mathrm{d} \text { SYP }}$	10		ns
$t_{\mathrm{s} \text { SYP }}$	50		ns
CLK $_{\text {rf }}$		10	ns
SCLK	512	512	kHz
t_{dSCLK}	100	165	ns
$t_{\mathrm{d} \text { DIR }}$	120	190	ns

t_{dSIP}	160	300	ns
t_{DER}	100	180	ns
$t_{\mathrm{D} \text { DR }}$	100	180	ns
t_{DEX}	0		ns
t_{DAX}	0		ns
$t_{\mathrm{D} \mathrm{SX}}$	$\mathrm{CP} / 2+200$		ns
$t_{\mathrm{D} \mathrm{SIG}}$	110	160	ns

SIP interface timing

Serial port timing

PCM interface

Receive timing

Receive data setup DCR $=1$
Receive data setup DCR $=\varnothing$
Receive data hold DCR $=1$
Receive data hold $D C R=\emptyset$

	Conditions	min.	max.	
$t_{\mathrm{DS} \mathrm{RF}}$		25		ns
$t_{\mathrm{DS} \text { RR }}$		25		ns
t_{DURF}		20		ns
$t_{\mathrm{DH} \text { RR }}$		20		ns

Recerve Timing

\qquad

PCM interface (cont'd)

Transmit timing
Data enable DCX $=\varnothing$
Data enable DCX $=1$
Data hold time DCX $=\varnothing$
Data hold time DCX $=1$

	Conditions	min.	max.	
$t_{\mathrm{DZ} \mathrm{XR}}$	$C_{\mathrm{L}}=200 \mathrm{pF}$	60	140	ns
$t_{\mathrm{DZ} \mathrm{XF}}$	$C_{\mathrm{L}}=200 \mathrm{pF}$	60	140	ns
$t_{\mathrm{DH} \times \mathrm{XR}}$	$C_{\mathrm{L}}=200 \mathrm{pF}$	60	140	ns
$t_{\mathrm{DH} \times \mathrm{XF}}$	$C_{\mathrm{L}}=200 \mathrm{pF}$	60	140	ns

AC testing input, output waveform

AC testing load circuit

AC testing: inputs are driven at 2.4 V for a logic " 1 " and 0.45 V for a logic " 0 ". Timing measurements are made at 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

SICOFI PEB 2060 Signal Processing Codec Filter

Target Specification

1. General Description

1.1 Features

The SICOFI PEB 2060 is a fully integrated PCM Codec (coder-decoder) and transmit/receive filter, fabricated in an advanced CMOS technology for applications in digital exchange telecommunication systems. Based on a digital filter concept, the PEB 2060 provides improved transmission performance and high flexibility. The device is optimized for working in conjunction with the Peripheral Board Controller PEB 2050.

- Single chip Codec and Filter
- A/D-, D/A-conversion and PCM-coding/-decoding in A-law and μ-law
- Band limitation in receive and transmit-direction according to CCITT and AT\&T recommendations
- Programmable
- Impedance matching
- Trans-hybrid balancing
- Level control
- Frequency response correction
- Advanced test capabilities
- Analog loop back (1)
- Digital loop back (2)
- Serial interface to PEB 2050
- No external components
- No trimming or adjustments
- Digital signal processing techniques
- Programmable interface to periphery (e.g. SLIC)
- Signaling Expansion possible
- Prepared for three-party conferencing
- 0.512 MHz clock
- Low Power CMOS design
- $+5 \mathrm{~V},-5 \mathrm{~V}$ power supply
- Package: 22-pin DIP

1.2 Subscriber line board architecture

The technical goals for the next stage of innovation for subscriber line boards analog are to efficiently realize in a high degree of integration intricate switching functions, decentralized intelligence, software control of analog functions and expanded testing capability. Fig. 1 shows the Siemens line board concept containing the PEB 2050 Peripheral Board Controller and, working as it's slave device, the PEB 2060.
The PEB 2050 constitutes the interface between up to 16 SICOFIs, the PCM lines, a remote central control unit and, optionally, an on-board microprocessor. The device permits efficient switching of data streams between all these interfaces and supplies
fully programmable time slot assignment for 16 subscribers as well as processing of voice, data, signaling and control information (see PBC-specification). The PEB 2050 thus opens up attractive technical possibilities such as common channel signaling via PCM-time slots and microprocessor access to PCM data. Hardwired implementation of basic control and interface functions allows real time processing of different complex procedures and simplifies software structure without loss of flexibility.
Datahandling between the PEB 2060 SICOFI and the PEB 2050 PBC in a simple serial Ping Pong interface for the SICOFI results in significant pin-reduction and comprises modular pc-board design.
Besides PCM filtering and PCM coding, the PEB 2060 supports software controlled adjustment of the analog behavior and handles the signals for monitoring and control of a SLIC.

Fig. 1: Line Board Architecture

2. SICOFI-Principles

The SICOFI-approach is highly digital comprising the typical advantages of digital signal processing such as highly predictable performance, flexibility, tolerance to technology fluctuations and temperature variation, low crosstalk sensitivity, high power supply rejection and excellent testability. Moreoiver, the approach potentially enables the control of the device's analog behavior by digital signal processing, including attractive features such as programmable level control, impedance matching and programmable trans-hybrid balancing.

2.1 Signal Processing Flow

Fig. 2 shows the SICOFI's complete signal processing flow.

Fig. 2: Signal Flow

In the transmit path, the analog input signal is converted, filtered and companded. The pre-filter is a 2nd order anti-aliasing Filter (Sallen-Key). The A/D-Converter uses a modified slope-adaptive interpolative delta-sigma modulator and samples the input signal at a rate of 128 kHz . Together with the PCM-lowpass of the bandpass-filter, subsequent decimation filters perform down-sampling to 8 kHz . Bandlimitation is performed by the combination of a high order lowpass and highpass-filter. The use of Wave-DigitalFilters for bandlimitation provides excellent pass- and stopband properties and traceable stability (important in cases of critical system loops).
In receive direction, built with similar filters as in the transmit direction, the PCM-Signal is expanded, band-limited, interpolated to a frequency of 256 kHz and fed to the D/AConverter. The post-filter is a simple 1st order Low-Pass.
The X-and GX-Filters in transmit- and the R-and GR-Filters in receive-direction are userprogrammable filters for gain and frequency response adjust, respectively. The programmable B- and Z-Filters provide trans-hybrid-balancing and complex line termination.
Actually, all the digital filtering is performed by a signal processor with highly optimized architecture. While the band pass in transmit- and the low pass in receive-direction are realized by Wave-Digital-Filters, all other programmable and non-programmable filters are FIR-Filters.
The SCIOFI is capable of both A-law and μ-law companding.

2.2 SICOFI Block Diagram

In a simplified block diagram, the SICOFI sections are shown in Fig. 3.
The Slic-interface provides for voice and signaling I/O and the PBC-interface provides clock, frame synchronisation and bi-directional serial data transfer. All digital in-puts and outputs are TTL-compatible.

The voltage reference is generated on-chip and is calibrated during the manufacturing process. The PLL-circuit supplies the SICOFI's internal master clock of 4.096 MHz , derived from the 512 kHz slave clock.

Fig. 3: Block Diagram

3. Serial Interface

The exchange of data between the Peripheral Board Controller and the SICOFI is based on a bidirectional bitserial interface consisting of 3 PINs: SIP, DIR and SCLK. Data are loaded or read out on the Serial Interface Port SIP under control of a symmetric direction signal DIR with a period of $125 \mu \mathrm{sec}$.
The interface clock frequency supplied via the slave clock pin SCLK is 512 kHz (Fig. 4). During the high level state of DIR, 4 bytes of information are transfered from the PBC to the SICOFI and similarly from the SICOFI to the PBC during the low level state. Bit 7 is the first bit transfered and Bit ϕ is the last one in each byte. The four bytes are:

Channel A
Channel B
Control
Signaling

Fig. 4: Byte sequence and timing at Serial Interface Port SIP
If one SICOFI is connected to a PBC-Port, voice is received on channel A and transmitted on Channel A and B .
For a three-way conference, channel B is the third party voice channel.
If two SICOFI's are connected to one PBC-Port, channel A is assigned to one and channel B to the other SICOFI. (see 4.5, case 6). Conferencing is not possible in this configuration.
Bytes 3 and 4 contain feature-control for the SICOFI and signaling information for periphery (e.g. SLIC).
The SICOFI is transparent to byte 4.

4. Programming

Due to the fact, that the SICOFI needs extended control information, a message oriented byte transfer is used. One control byte per frame and direction is transferred. If no status modification or data exchange is required, this is a NOP-Byte. With the appropriate commands, data can be written into or read back from the SICOFI.
A message to the SICOFI is opened by a SICOFI-write-command, which is followed by up to 8 bytes of data. To a PBC-read-command, the SICOFI responds with the requested information, immediately starting with the next transmission period. The message end is characterized by a NOP-Byte.

4.1 Classes of Control-Bytes

The 8 bit wide control words consist of either commands, status information or data. There are 3 classes of commands:

NOP NORMAL OPERATION no status modification or data exchange

SOP STATUS OPERATION
contains information about the SICOFI status and use of signaling expansion logic

COP COEFFICIENT OPERATION
contains information about data exchange
SOP and COP contain additional address information which is valid if 2 SICOFIS are connected to one PBC-port.
The class of a command is defined by bits 2 and 3 in each control-byte in the following way.

CONTROL-BYTE

BIT 3
$x \quad \phi$ COP
$\phi \quad 1$ SOP
11 NOP

4.2 NOP-Command

If no status modification of the SICOFI or control-data exchange with the PBC is required, a Normal Operation byte NOP is transferred.

NOP-Format BIT

4.3 SOP-Command

If the SICOFI-Status has to be changed, a Status Operation byte SOP is transferred, which contains the following information:

BIT

7	6	5	4	3	2	1	0
$A D$	R / W	$P U$	$T R$	ϕ	1	$L S E L$	

AD Address information which is relevant if 2 SICOFIs are connected to one PBC-Port. A SICOFI is identified, if AD is consistent with the level at SA (see 4.5/6)

R/W Read/Write-information
Enables reading out from the SICOFI or writing information to the SICOFI
(READ $=1$, Write $=\phi$)
PU Power up/Power down
PU = 1 sets the SICOFI to power-up mode (operating),
PU $=\phi$ resets the SICOFI to power-down (standby).
TR Trunk offering (Three party conferencing)
If $T R=1$, the received voice bytes of channel A and B are added.
LSEL . . . Length select
Defines the number of the subsequent data-bytes

4.3.1 SOP-WRITE

If the SICOFI-status has to be defined initially or changed, the SOP-Command looks like

		ϕ	PU	T	TR	0	1		L

and the subsequent configuration-bytes are written into one or both of the two Configuration Registers CR1, CR2 available.
In this case, the meaning of LSEL is

ϕ	ϕ	status setting is completed (no byte following)
1	1	one byte will follow and is stored in CR1
1	ϕ	two bytes will follow and are stored in CR2 and CR1 (see 4.6)
ϕ	1	not used

Corresponding to the configuration-bytes transmitted, the information contained in the configuration-registers is for

CR1:

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline \mathrm{DB} & \mathrm{RZ} & \mathrm{RX} & \mathrm{RR} & \mathrm{RG} & \mathrm{TM} & \mathrm{TM} & \mathrm{TM} \\
\hline
\end{array}
$$

where
DB Disable B-Filter ($\mathrm{DB}=1$), restore B-Filter ($\mathrm{DB}=0$)
$R Z \ldots$. Disable Z-Filter ($R Z=\phi$), restore Z-Filter $(R Z=1)$
RX Disable X-Filter ($\mathrm{RX}=\phi$), restore X-Filter $(R X=1)$
RR Disable R-Filter ($\mathrm{RR}=\phi$), restore R-Filter ($\mathrm{RR}=1$)
$R G \ldots$. Disable $G X, G R(R G=\phi)$, restore $G X, G R(R G=1)$
TM Test-Modes
$\phi \quad \phi \quad \phi \quad$ No Test-Mode
$\phi \quad \phi \quad 1 \quad$ Analog loop-back via Z-Filter $(Z=1,11=\phi)$
$\phi \quad 1 \quad \phi \quad$ Disable High-Pass
$\phi \quad 1 \quad 1 \quad$ Cut off receive-path (HP active)
$1 \quad \phi \quad \phi \quad$ not used
$1 \quad \phi \quad 1 \quad$ not used
$1 \quad 1 \quad \phi \quad$ Digital loop back via B -Filter ($\mathrm{B}=1, \mathrm{D} 3=\phi$, HP Active)
111 Digital loop back via PCM-Register (PCM-in = PCM-out)
and CR2:

where

D	signaling PIN SD is input $(D=1)$ or output $(D=\phi)$
C	SC is input $(C=1)$ or output $(C=\phi)$
B	SB is input $(B=1)$ or output $(B=\phi)$

A
SA is input ($A=1$) or output ($A=\phi$)
EL signaling expansion logic connected $(E L=1)$ or not connected $(E L=\phi)$
AM Address-Mode one SICOFI (AM=1) or two SICOFIs (AM $=\phi$) connected to one PBC-port (If $A M=\phi, S A$ is input automatically) μ-law ($\mu / \mathrm{A}=1$), A-law ($\mu / \mathrm{A}=\boldsymbol{\phi}$)
PCS Programmed B-Filter-coefficients (PCS = ϕ) or fixed coefficients for B-Filter (PCS =1)
Note:

1) The power-on-reset or a hardware-reset via RS-PIN reset all CR1-bits to ϕ (all of the programmable Filters are disabled except the B-Filter, where fixed coefficients are used) and set all CR2-bits to 1 (SA, SB, SC, SD are inputs; singaling expansion recognition; μ-law chosen; one SICOFI per PBC-Port). The Serial Interface Port SIP remains tri-state until the content of CR2 has been defined (transmitted and loaded).
2) If two SICOFIs are connected to one PBC-Port, while initializing, both SICOFIs get the same SOP and CR2- information. The subsequent CR1-byte is assigned to the addressed SICOFI only. If the two SICOFIs need different CR2-information, the SOP-CR2-sequence has to be provided once again (each SICOFI knows it's address now).

4.3.2 SOP-Read

If the SICOFI-Status has to be evaluated, with the SOP-Command

the content of CR1 and CR2 is read back on SIP. The meaning of the SOP-Bits is as described in the SOP-write section.

4.4 COP-Command

With a COP-Command

coefficients for the programmable filters can be written into or read out from the coefficient-RAM.
Where
AD Address (relevant if 2 SICOFls are connected to one PBC-Port)
R/W . . . Read (R/W=1), Write (R/W= $\boldsymbol{\phi}$)
Code
000 B-Filter coefficients part 1 (followed by 8 bytes of data)
001 B-Filter coefficients part 2 (followed by 8 bytes of data)
010 Z-Filter coefficients (followed by 8 bytes of data)
011 B-Filter delay coefficients (followed by 4 bytes of data)
100 X-Filter coefficients (followed by 8 bytes of data)
101 R-Filter coefficients (followed by 8 bytes of data)
110 GX, GR-coefficients (followed by 4 bytes of data)
111 not used

LSEL

ϕ	ϕ	4 Byte
ϕ	1	12 Byte (presently not used)
1	ϕ	ϕ Byte
1	1	8 Byte

Data-Byte Format
7

S	$S C$	$S C$	$S C$
coefficient 1		S	$S C$

$\begin{array}{ll}\text { S: } & \text { Sign } \\ \text { SC: } & \text { Shift-Code }\end{array}$
Note: Subsequent to reading of the Filter coefficients, CR2 and CR1 are transmitted additionally.

4.5 Signaling-Byte

The signaling interface of the SICOFI consists of 10 pins 3 transmit signaling inputs $S I_{n}, 3$ receive signaling outputs SO_{m} and 4 signaling pins $\mathrm{SA}, \mathrm{SB}, \mathrm{SC}, \mathrm{SD}$, which are programmable individually as either transmit input or receive output.
Data present at SI_{n} and possibly at some or all of $\mathrm{SA}, \mathrm{SB}, \mathrm{SC}, \mathrm{SD}$ (if programmed as inputs) are sampled and transferred serially on SIP to the PBC.
Data received serially on SIP are latched and fed to SO_{m} and possibly to some or all of SA, SB, SC, SD (if programmed as outputs).
The signaling field format generally is

where SEL is the signaling expansion bit if $E L=1$ in CR2.
For the different cases possible, the signaling byte format at SIP is for

		Receive Signaling byte							Transmit Signaling byte							
CASE	BIT	7	65	4	3	2	1	ϕ	7	6	5	4	3	2	1	
1		S01	SO2S03	Y	Y	Y	Y	Y	SI1	SI2	SI3	SD	SC	SB	SA	
2		S01	SO2S03	Y	Y	Y	Y	Y	SI1	SI2	SI3	SD	SC	SB	SA	
3		S01	SO2 S03	SD	SC	SB	SA	Y	Sl1	Sl2	Sl3	ϕ	¢	¢	¢	
4		S01	S02 S03	SD	SC	SB	SA	Y	Sl1	SI2	SI3	Z		Z		
5	A-SICOFI	S01	SO2 S03	Y	Y	Y	Y	Y	Sl1	SI2	Sl3	SD	Z	Z	Z	
	B-SICOFI	Y	Y Y	Y	S01	S02	S03	Y	2	Z	2	Z	Sl1	Sl2	SI3	
6	A-SICOFI	S01	SO2 S03	SD	Y	Y	Y	Y	Sl1	SI2	SI3	ϕ	7	Z	Z	
	B-SICOFI	Y	Y Y	Y				SD					Sl1			

Z...High impedance state
Y...Don't care state
X...Either high or low level state, that is not evaluated by the PBC
cases:
1 one SICOFI connected to one PBC-Port; EL = ϕ (no expansion logic); SA, SB, SC, SD programmed as transmit signaling inputs
2 one SICOFI; EL=1 (expansion logic provided); SA, SB, SC, SD programmed as in case 1
3 one SICOFI; EL = $\boldsymbol{\phi}$; SA, SB, SC, SD programmed as receive signaling outputs
4 one SICOFI; EL=1; SA, SB, SC, SD programmed as in case 3
If an expansion logic is provided (cases 2, 4), the signaling bits SA, SB, SC, SD which are programmed as signaling inputs or outputs can be used as additional expansion bits in receive or transmit direction, respectively (As far as the SICOFI is concerned, SIP is in a high impedance or don't care state while these bits are transfered).
5 Two SICOFIs connected to one PBC-Port; SD programmed as transmit signaling input
6 Two SICOFIs, SD programmed as receive signaling output. If two SICOFIs are connected to one PBC-Port, no expansion logic is provided. SA is programmed as input automatically and defines the addressed SICOFI: SA $=\phi$: A-SICOFI
$S A=1: B-S I C O F I$
SB and SC are not usable in this configuration

4.6 Programming Procedure

The following table shows some control byte sequences. If the SICOFI has to be configured completely while initializing, up to 58 bytes are transfered.

where
y...ignored

DBn...Data Bye \#n

5. Operating modes

5.1 Basic setting

Upon intial application of $\mathrm{V}_{D D}$ or $\mathrm{RS}=1$ while operating, the SICOFI enters a basic setting mode.
Additionally, once the $\mathrm{V}_{D D}$ supply is up, if it falls below a voltage, which could lead to the loss of programmed coefficients (spikes on $\mathrm{V}_{D D}$-rail are ignored), the SICOFI is forced to this mode again. Basic setting means, that the configuration registers 1 and 2 are initialized (see 4.3.1), receive signaling registers are cleared, SIP is in a high impedance state, the analog output and the receive signaling outputs are forced to ground.
The serial interface is active to receive commands.

5.2 Standby mode

By reception of an SOP-command to load CR2, from the basic setting the SICOFI enters the standby mode (basic setting replaced by individual (CR2). Being in the operating mode, the SICOFI is reset to standby mode with a power-down command.
The interface is active to receive and transmit new commands and data.

5.3 Operating mode

From the standby mode, the operating mode is entered upon recognition of a powerup command. A received power-up command is recognized only, if $\mathrm{V}_{\text {sS }} \ddagger G N D$ at this instant, otherwise the SCIOFI stays in the standby mode.

6. Transmission Characteristics

The target figures in this specification are based on the subscriber line board requirements. The proper adjustment of the programmable filters (trans-hybrid balancing: B ; line termination: Z; frequency-response-correction: X, R) needs a complete knowledge of the SICOFIs analog environment. In the figures listed below it is assumed therefore, unless otherwise stated, that the programmable filters have the following transfer functions:

$$
Z=B=O ; X=R=1
$$

A $\phi \mathrm{dBm} \phi$ signal is equivalent to $1,6 \mathrm{VRMS}$. A $3 \mathrm{dBm} \phi$ signal is equivalent to 2.26 VRMS which corresponds to the overload point of 3.196 V

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
G	Gain (either value)					
	Deviation from ideal value		± 0.1	± 0.2	dB	800 Hz at $\phi \mathrm{dBm} \phi$
	Deviation from initial value		± 0.1	± 0.2	dB	800 Hz at $\phi \mathrm{dBm} \phi$
G_{1}	Loop gain (digital to dig)			± 0.1	dB	
$D^{\text {XA }}$	Transmit delay, absolute		350		$\mu \mathrm{sec}$	$\mathrm{f}=1.4 \mathrm{kHz}$, Note 1
$\mathrm{D}_{\text {RA }}$	Receive delay, absolute		352		$\mu \mathrm{sec}$	$\mathrm{f}=300 \mathrm{~Hz}$, Note 1
HD	Harmonic distortion			-46	dB	Note 2
IMD	Intermodulation			-42	dB	Note 3, $2 \dagger_{1}-\mathrm{f}_{2}$
				-56	dBM ϕ	Note 4, $2 \mathrm{f}_{1}-\mathrm{f}_{2}$
CT	Crosstalk					
$C T_{\text {XR }}$	Transmit to Receive			-70	dBm ϕ	$\begin{aligned} & \phi \mathrm{dBm} \phi, \mathrm{f}=300 \mathrm{~Hz} \text { to } \\ & 3400 \mathrm{~Hz} \end{aligned}$
$C T_{\text {RX }}$	Receive to Transmit			-70	dBm ϕ	$\begin{aligned} & \phi \mathrm{dBm} \phi, f=300 \mathrm{~Hz} \text { to } \\ & 3400 \mathrm{~Hz} \end{aligned}$
N	Idle channel noise					
$\mathrm{N}_{\text {RP }}$	weighted			-75	$\mathrm{dBm} \phi \mathrm{p}$	
$N_{\text {RS }}$	single frequency			-55	dBm ϕ	$\mathrm{f}=0 \text { to } 100 \mathrm{kHz} \text {, loop }$

Note 1: typical delays for $B=0, Z=0, R=X=1$, including delay through $A / D, D / A$ Specific filter-programming (Z, R, X) may cause additional group delays.
Note 2: single frequency components between 300 Hz and 3400 Hz , produced by a $\phi \mathrm{dBM} \phi$ sine wave in the range 300 Hz to 3400 Hz
Note 3: equal input levels in the range of $-4 \mathrm{dBM} \phi$ to $-21 \mathrm{dBm} \phi$, different frequencies in the range of 300 Hz to 3400 Hz
Note 4: input level $-9 \mathrm{dBm} \phi$, frequency range $300 \mathrm{~Hz}-3400 \mathrm{~Hz}$ and $-23 \mathrm{dBm} \phi, 50 \mathrm{~Hz}$

6.1 A-law/ μ-law Conversion codes

The encoding laws according to CCITT or AT\&T recommendations are digitally selectable.

6.2 Gain Adjustments

The transmit and receive path gain values are digitally programmable.

Convered range	Resolution
$-40 \ldots+10,2 \mathrm{~dB}$	$\leq 0,5 \mathrm{~dB}$
$-40 \ldots+12 \mathrm{~dB}$	$\leq 1,2 \mathrm{~dB}$

All level-dependent characteristics hold true for any gain setting within the above defined range.

6.3 Attenuation distortion

The attenuation-characteristics for transmit and receive-path are shown in the following diagrams.

ATTENUATION DISTORTION in RECEIVE DIRECTION
Reference frequency is 1 kHz
Input signal level is $\phi \mathrm{dBm} \phi$

ATTENUATION DISTORTION in TRANSMIT DIRECTION
Reference frequency is 1 kHz
Input signal level is $\phi \mathrm{dBm} \phi$

6.4 Group delay distortion

For either transmission path, the group delay distortion is within the limits of the following figure. The minimum value of the group delay is taken as reference (see table).

GROUP DELAY DISTORTION
Input signal is $\phi \mathrm{dBm} \phi$

6.5 Out-of-Band Signals at Analog Input

When an out-of-band sine-wave signal with frequency f and level A is applied to the analog input, the level of any frequency component below 4 kHz at the digital output causes by the out-of-band signal is at least $X \mathrm{~dB}$ below the level of a signal at the same output originating from an $800 \mathrm{~Hz} \mathrm{~A} \mathrm{\phi dBm} \phi$ sine-wave signal applied to the analog input.

The minimum requirements fullfilled are listed below.

out-of-band input frequency f	out-of-band input level A	attenuation at digital output
$0 \mathrm{~Hz} \leq \mathrm{f} \leq 60 \mathrm{~Hz}$	$-45 \mathrm{dBm0} \leq \mathrm{A} \leq 0 \mathrm{dBm0}$	25 dB
$60 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{~Hz}$	$-45 \mathrm{dBMO} \leq \mathrm{A} \leq 0 \mathrm{dBm0}$	10 dB
$3400 \mathrm{~Hz} \leq \mathrm{f} \leq 4000 \mathrm{~Hz}$	$-45 \mathrm{dBm0} \leq \mathrm{A} \leq 0 \mathrm{dBm0}$	0 dB
$4000 \mathrm{~Hz} \leq \mathrm{f} \leq 4600 \mathrm{~Hz}$	$-45 \mathrm{dBm0} \leq \mathrm{A} \leq 0 \mathrm{dBm0}$	14 dB
$4600 \mathrm{~Hz} \leq \mathrm{f} \leq 12 \mathrm{kHz}$	$-45 \mathrm{dBm0} \leq \mathrm{A} \leq-15.8 \mathrm{dBm0}$	35 dB
$12 \mathrm{kHz} \leq f \leq 20 \mathrm{kHz}$	$-45 \mathrm{dBm0} \leq \mathrm{A} \leq-23.2 \mathrm{dBm0}$	35 dB
$20 \mathrm{kHz} \leq \mathrm{f}$	$-45 \mathrm{dBm0} \leq \mathrm{A} \leq-25 \mathrm{dBm0}$	35 dB

6.6 Out-of-Band Signals at Analog Output

With code words representing any sine-wave signal with the frequency f at a level of $\phi \mathrm{dBm} \phi$ applied to the digital input, the maximum level of the spurious out-of-band signals is listed in the table below.

digital input frequency range	level	spurious out-of-band signal frequency range f	max. level at analog output
$300 \mathrm{~Hz} \ldots \ldots . \ldots 400 \mathrm{~Hz}$	$0 \mathrm{dBm0}$	$\mathrm{f}<90 \mathrm{kHz}$	-40 dBmO
$300 \mathrm{~Hz} \ldots \ldots 3400 \mathrm{~Hz}$	$0 \mathrm{dBm0}$	$90 \mathrm{kHz} \leq \mathrm{f} \leq 1 \mathrm{MHz}$	$-44 \mathrm{dBm0}$
$3400 \mathrm{~Hz} \ldots .4000 \mathrm{~Hz}$	$0 \mathrm{dBm0}$	$3400 \mathrm{~Hz} \leq \mathrm{f} \leq 4000 \mathrm{~Hz}$	$0 \mathrm{dBm0}$
$3400 \mathrm{~Hz} \ldots . .4000 \mathrm{~Hz}$	0 dBmO	$4000 \mathrm{~Hz} \leq \mathrm{f} \leq 4600 \mathrm{~Hz}$	-14 dBmO

6.7 Gain Tracking

The gain deviations stay within the limits in the figures below for either transmission path.

GAIN TRACKING
Measured with noise signal according to
CCITT-Recommendation
*Reference level is $-1 \phi \mathrm{dBm} \phi$

GAIN TRACKING
Measured with sine wave in the range $700-1100 \mathrm{~Hz}$
*Reference level is $-1 \phi \mathrm{dBm} \phi$

6.8 Total Distortion

The signal-to-total distortion ratio independent of the actual gain adjustment exceeds the limits in the following figures.

SIGNAL-TO-TOTAL DISTORTION
Measured with noise signal

SIGNAL-TO-TOTAL DISTORTION
Measured with sine-wave in the range $700-1100 \mathrm{~Hz}$, excluding submultiples of 8 kHz

7. Electrical characteristics

7.1 Absolute maximum ratings

Storage temperature -60 to $125^{\circ} \mathrm{C}$
Ambient temperature under Bias -10 to $80^{\circ} \mathrm{C}$
$V_{D D}$ with respect to AGND
-0.3 to 5.5 V
$V_{\text {ss }}$ with respect to AGND -5.5 to 0.3 V
AGND to DGND
$\pm 0.3 \mathrm{~V}$
Analog input and output voltage
with respect to $V_{D D}$
-11 to $+0.3 V$
with respect to $V_{S S}$
-0.3 to +11 V
All digital input and output voltages
with respect to DGND
-0.3 to 5.5 V
with respect to $V_{D D}$
-5.5 to 0.3 V
Power dissipation 1W

7.2 Operating range

Ambient temperature 0 to $70^{\circ} \mathrm{C}$
$V_{D D}=5 \mathrm{~V} \pm 5 \% V_{S S}=5 \mathrm{~V} \pm 5 \%$
$D G N D=O V A G N D=O V$

Symbol	Parameter	Min	Typ	Max	Units	Condition
$I_{\text {D }}$	$V_{D D}$ supply current standby operating $\mathrm{V}_{\text {ss }}$ supply current standby operating Power supply rejection	40		6	mA	$\pm 5 \%$ supply
I_{s}				40	mA	$\pm 5 \%$ supply
				6	mA	$\pm 5 \%$ supply
				8	mA	$\pm 5 \%$ supply
PSRR					dB	$0<\mathrm{f}<2 \mathrm{MHz}$
						100mVRMS ripple
Pd ϕ	standby power dissipation			60	mW	$\pm 5 \%$ supply
Pd1	operating power					
	dissipation			240	mW	$\pm 5 \%$ supply

7.3 Digital Interface

Symbol	Parameter	Min	Typ	Max	Units	Condition
I_{IL}	Input leakage current			± 10	$\mu \mathrm{~A}$	$-0.3 \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$
V_{IL}	Input low voltage	-0.3		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input high voltage	2		$\mathrm{~V}_{\mathrm{DD}}$		
				+0.3	V	
$\mathrm{~V}_{\mathrm{OL}}$	Output low voltage			0.45	V	$\mathrm{I}_{\mathrm{Q}}=-2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output high voltage	2.4			V	$\mathrm{I}_{\mathrm{Q}}=400 \mu \mathrm{~A}$
C_{I}	Input capacitance					
C_{L}	Load capacitance					
R_{L}	Load resistance					

7.4 Analog Interface

Symbol	Parameter	Min	Typ	Max	Units	Condition
Z_{1}	Analog input impedance	1			M Ω	
Z_{0}	Analog output impedance			10	Ω	$-3.2 \leq \mathrm{V}_{\text {out }} \leq 3.2 \mathrm{~V}$
$V_{10 S}$	Offset voltage allowed on $\mathrm{V}_{\text {IN }}$		± 10	± 20	mV	
$\mathrm{V}_{\text {oos }}$	Output offset voltage		± 50	± 100	mV	
$V_{\text {IR }}$	Input voltage range			± 3.2	V	
$V_{\text {OR }}$	Output voltage range			± 3.2	V	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{~K}$
I_{0}	Output current					$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{~K}$
C_{1}	Input capacitance					
C_{L}	Load capacitance					
R_{L}	Load resistance					

8. Interface Signals

Name	Pin No.	Description
$V_{\text {D }}$	1	+ 5V Power Supply
$V_{\text {SS }}$	4	- 5V Power Supply
AGND	3	Analog Ground. Not internally connected to DGND. All analog signals are referenced to this pin.
DGND	5	Digital Ground. Not internally connected to AGND. All digital signals are referenced to this pin.
VIN	22	Analog Voice Input to transmit path.
VOUT	2	Analog Voice Output corresponding to received PCM-data.
SCLK	12	512 kHz Slave Clock. Supplied by PEB 2050 Peripheral Board Controller.
DIR	10	8 kHz Direction Signal. When high, SIP becomes input and SICOFI receives data from PBC. When low, SIP becomes output and data are transferred from SICOFI to PBC.
SIP	17	Serial Interface Port. 512 kHz bi-directional serial data port, clocked by SCLK.
TEST	18	Digital Test-Input. When low, SICOFI is in normal operating condition. When high, SICOFI runs in different testmodes, accepting test-signals at SCLK-, RS-, PLL-, SI-Pins and making available test-results at SO-PINS.
PLL	11	4 MHz Phase-Locked-Loop output *). The PLLcircuit supplies the SICOFIs internal 4 MHz -Master-Clock, derived from the 512 kHz SCLKinput.

*) (Available in testmode only; during normal operating condition, the PLL-output is in a high impedance state).

SI1	19	Transmit Signaling Inputs. Data present at SI $_{n}$ are sampled and serially transfered to PBC on SIP during DIR = Low		
SI3	20	21		Receive Signaling Outputs. Data received serially
:---				
SO1				
SO2				
SO3				

PSB 6520 Tone Ringer

Preliminary data

The PSB 6520 bipolar integrated circuit, in conjunction with an electro-acoustic converter, replaces the mechanical bell in the telephone set (fig. 1). The component generates two periodic switchable tone frequencies that can either drive a piezo-ceramic converter directly, or a loudsreaker.

Special features

- Integrated bridge rectifier allows direct input via call signal (AC voltage)
- Low current consumption (several tone ringers can be connected in parallel)
- High noise immunity due to built-in voltage-current hysteresis
- Direct replacement of the mechanical bell requiring 4 additional external components and an acoustic converter
- Two tone frequencies, switched internally
- Tone and switching frequencies adjustable by means of a resistor and a capacitor
- Overvoltage protection in accordance with VDE 0433 ($2 \mathrm{kV}-10 / 700 \mu \mathrm{~s}$)

Fig. 1
Block diagram of a standard electronic telephone set.
(Push button set and speech circuit connected in series).

Functional description

The tone ringer PSB 6520 is designed for use as an electronic bell in a telephone set. Fig. 2 shows the block diagram and fig. 3 the application circuit of the PSB 6520 in the telephone set.

Fig. 2
Block diagram of the PSB 6520 tone ringer.

The IC contains an oscillator which generates a square wave voltage. The frequency of this voltage is periodically switched by a second oscillator back and forth between two basic values having a ratio of $1: 1.38$. The basic frequency $f_{1 T}$ is adjusted by the resistor R_{T} and the switching frequency f_{S} by the capacitor C_{S} (fig. 12 and 13).

Tone frequencies

$$
\begin{aligned}
& f_{1 \mathrm{~T}}[\mathrm{~Hz}]=\frac{2.72 \cdot 10^{4}}{R[\mathrm{k} \Omega]} \pm 10 \% \\
& f_{2 \mathrm{~T}}[\mathrm{~Hz}]=0.725 \cdot f_{1 \mathrm{~T}} \pm 2 \%
\end{aligned}
$$

Switching frequency $f_{\mathrm{s}}[\mathrm{Hz}]=\frac{750}{C(n F)} \quad \pm 15 \%$

Good frequency stability is achieved by means of internal temperature compensation.

An output stage increases the generated tone voltage and transfers it to a piezo-resonator via an internal resistor. An electro-dynamic converter can be similarly driven, but must be matched to the internal resistance of the output stage (fig. 6, 7, 8 and 12) with a transmitter.
An integrated bridge rectifier enables, direct input via the call AC voltage signal (tip (a), ring (b) wires or) via DC voltage (independent of polarity). A DC voltage supply without use of the integrated bridge is possible via the connections 2 and 7 . In conjunction with a Z-diode, the bridge rectifier serves simultaneously as an overvoltage protection.
The application circuit shown in fig. 3 can handle overvoltages occurring due to lightning strikes between terminals a and b according to the VDE 0433 standard, or the occurrence of an AC voltage of $110 \mathrm{~V} / 50 \mathrm{~Hz}$ over a period of 30 s , thus avoiding the possibility of any damage to the IC. The threshold circuit with high threshold voltage and hysteresis is designed to prevent activation (fig. 4) of the IC due to noise pulses.

Fig. 3
PSB 6520 application circuit for telephone sets.

The characteristic curves from fig. 4 to fig. 6 show the relation-ship between current consumption, supply voltage, output current, output power, output restistance and AC calling voltage.

Maximum ratings ${ }^{11}$
Supply voltage
Voltage pin 3 to pin 2
Voltage pin 4 to pin 2
Noise current into the output

Storage temperature
Operating range

Calling voltage	$V_{\text {ab }}$	$\mid f=50 \mathrm{~Hz}$ Test circuit fig. 3 Continous operation 5 s operation/ 10 s pause	0.1-20	90		$V_{\text {rms }}$$V_{\text {ms }}$mA
Supply voltage	I.	DC supply current Validity of the formula $f_{1 T}$		22		
Tone frequency	$f_{1 T}$			1570		Hz
Ambient temperature	$T_{\text {amb }}$					${ }^{\circ} \mathrm{C}$
DC characteristics		Test conditions	Min.	Typ.	Max.	Unit
Supply voltage	$V_{D C}$	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			26	V
Current consumption without load	$I_{\text {DC }}$	$\begin{aligned} & V_{\mathrm{s}}=8.8 \mathrm{~V} \text { to } 26 \mathrm{~V}, \\ & 25^{\circ} \mathrm{C} \end{aligned}$		1.5	1.8	mA
Hysteresis circuit						
Threshold voltage	$V_{\text {th }}$	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	12.2	12.6	13.0	V
Switch-OFF voltage	$V_{\text {OfF }}$	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8.0	8.4	8.8	V
Initial resistance	$R_{\text {INI }}$	$25^{\circ} \mathrm{C}$	6.4	7.4	8.5	K Ω
Voltage ${ }^{2}$) deviation at output pin 5 referenced to pin 2	$V_{\text {Out }}$	$25^{\circ} \mathrm{C}$		$v_{\text {s }}-3$		V
Short circuit current	$I_{\text {OUT }}$	$U_{5}=20 \mathrm{~V}, 25^{\circ} \mathrm{C}$		35		mA
Tone frequency temperature coefficient	TC	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$				

[^51]
Characteristic curves

Fig. 4
Dependence of current consumtion on the supply voltage $V_{D C}$ without output load

Fig. 6
Dependence of output power on the load resistance $R_{\text {OUT }}$ (ohmic)

Fig. 5
Dependence of amplitude of output current on the supply voltage $V_{D C}$ in the case of short-circuit mA

Fig. 6.1
Test circuit to determine output power at different load resistances

Fig. 7
Test circuit to determine output power for variable call voltage $V_{a b}$

Fig. 7.1
Dependence of output power on the call voltage for power matching

Fig. 8
Dependence of effective output resistance on the call voltage $V_{a b}$

Delay times

Fig. 9
Test circuit to determine delay times

Delay times

Fig. 9.1
Dependence of delay times $t_{\text {ON }}, t_{\text {OFF }}$ on $V_{a b}$

Effective value of input signal (call voltage $V_{a b}$)
---------- Effektive value of output signal (output voltage $V_{\text {out }}$)
$t_{1}-t_{0}$ Time duration of applied call voltage $V_{\text {ab }}$

Fig. 10
Dependence of switch-on delay time t_{ON} on $V_{\text {ab }}$ (independent of $R_{O U T}$)

Fig. 12
Dependence of the frequencies $f_{1 \mathrm{~T}}$ and $f_{2 \mathrm{~T}}$ on the resistor R_{T}.

Fig. 11
Dependence of switch-off delay time $t_{\text {OFF }}$ on V_{ab} (independent of R_{V})

Fig. 13
Dependence of switching frequency on the capacitor C_{s}

Recommended circuitry of PSB 6520 with a small loudspeaker
Fig. 14
Matching a 4Ω loudspeaker to the PSB 6520

Transformer
Pot core: Ordering code B65651-K0000-R030 (18 x 11)
Material: $\quad \mathrm{N} 30, A_{\mathrm{L}}=5600 \mathrm{nH} / \mathrm{W}^{2}$
Bobbin: Ordering code B65652-B0000-T001
Windings: $\quad n_{1}=800, d_{1}=0.08 \mathrm{~mm}$ CuL $n_{2}=50, d_{2}=0.4 \mathrm{~mm} \mathrm{CuL}$

PSB 6521 Tone Ringer

Preliminary Data

The PSB 6521 bipolar integrated circuit, in conjunction with an electro-acoustic converter, replaces the mechanical bell in the telephone set (Fig. 1). The component generates two periodic switchable tone frequencies that can either drive a piezo-ceramic converter directly, or a loudspeaker.

Special features

- Integrated bridge rectifier allows direct input via call signal (ac voltage)
- Low current consumption (several tone ringers can be connected in parallel)
- High noise immunity due to built-in voltage-current hysteresis
- Direct replacement of the mechanical bell requiring 4 additional external components and an acoustic converter
- Two tone frequencies, switched internally
- Tone and switching frequencies adjustable by means of a resistor and a capacitor
- Overvoltage protection in accordance with VDE $0433(2 \mathrm{kV}-10 / 700 \mu \mathrm{~s})$

Pin configuration

Pin designation

Pin No.	Name	Function
1	$V_{\text {AC2 }}$	AC voltage input (Fig. 3)
2	GND	Ground
3	C_{S}	Connection for capacitor C_{S}
4	R_{T}	Connection for resistor R_{T}
5	$V_{\text {OUT }}$	Output voltage
6	N.C.	Not connected
7	$V_{D C}$	Connection for smoothing capacitor 10 $\mu \mathrm{F}$ (internal supply
8	$V_{A C 1}$	voltage)
AC voltage input		

Fig. 1
Block diagram of a standard electronic telephone set (Push button set and speech circuit connected in series)

Functional description

The tone ringer PSB 6521 is designed for use as an electronic bell in a telephone set. Fig. 2 shows the block diagram and Fig. 3 the application circuit of the PSB 6521 in the telephone set.

Fig. 2.
Block diagram of the PSB 6521 tone ringer.

The IC contains an oscillator which generates a square wave voltage. The frequency of this voltage is periodically switched by a second oscillator back and forth between two basic values having a ratio of $1: 1.25$. The basci frequency $f_{T T}$ is adjusted by the resistor R_{T} and the switching frequency f_{s} by the capacitor C_{s} (Figs. 12 and 13).

		1,93 - 10^{4}	\pm
Tone frequencies	$\mathrm{f}_{1 T}[\mathrm{~Hz}]=$	$\mathrm{R}[\mathrm{k} \Omega$]	15\%
	$\mathrm{f}_{2 T}[\mathrm{~Hz}]=$	0,8 • $\mathrm{f}_{1 \text { T }}$	$\pm 2 \%$
Switching frequency		750	\pm
	$\mathrm{f}_{\mathrm{s}}[\mathrm{Hz}]=$	C (nF)	15\%

Good frequency stability is achieved by means of internal temperature compensation.
An output stage increases the generated tone voltage and transfers it to a piezo-resonator via an internal resistor. An electro-dynamic converter can be similarly driven, but must be matched to the internal resistance of the output stage (Figs. 6,7,8 and 12) with a transmitter.
An integrated bridge rectifier enables direct input via the call a.c. voltage signal (tip (a), ring (b) wires or via d.c. voltage (independent of polarity)). A d.c. voltage supply without use of the integrated bridge is possible via the connections 2 and 7. In conjunction with a Zener diode, the bridge rectifier serves simultaneously as an overvoltage protection.
The application circuit shown in figure 3 can handle overvoltages occurring due to lightning strikes between terminals a and b according to the VDE 0433 norm, or the ocurrence of an a.c. voltage of $110 \mathrm{~V} / 50 \mathrm{~Hz}$ over a period of 30 s , thus avoiding the possibility of any damage to the IC. The threshold circuit with high threshold voltage and hysteresis is designed to prevent activation (Fig. 4) of the IC due to noise pulses.

Fig. 3 PSB 6521 application circuit for telephone sets.

The characteristic curves from fig. 4 to fig. 6 show the relationship between current consumption, supply voltage, output current, output power, output resistance and a.c. calling voltage.

Maximum ratings ${ }^{1)}$

Supply voltage
Voltage pin 3
to pin 2
Voltage in 4
to pin 2
Noise current
into the output
Storage
temperature

	Test condition	Min.	Max.	Unit
$V_{\text {DC }}$	10 ms		28	V
V_{32}			5.5	V
V_{42}			7	V
$I_{\text {nout }}$	30』s/mark to space ration 1: 100		20	mA
$T_{\text {stg }}$		-40	125	${ }^{\circ} \mathrm{C}$

${ }^{1)}$ Maximum ratings are absolute values and the IC can be damaged by exceeding them. Functioning of the integrated circuit is not assured under conditions other than those stated in the electrical characteristics. Operation for long periods of time under maximum rating conditions can adversely affect the reliability of the integrated circuit.

Operating range					
		Test condition	Min.	Max.	Unit
Calling voltage	$V_{\text {ab }}$	$\mathrm{f}=50 \mathrm{~Hz}$ Test circuit Figure 3			
		Continuous operation		90	$V_{\text {rms }}$
		5 sec operation/ 10 sec pause		110	$V_{\text {rms }}$
Supply voltage	$I=$	DC supply current		22	mA
Tone frequency	$\mathrm{f}_{1 T}$	Validity of the formula $f_{1 T}$	0.1	10	kHz
Ambient temperature	$\mathrm{T}_{\text {amb }}$		-20	70	${ }^{\circ} \mathrm{C}$

D.C. characteristics

.C. characteristics		Test condition	Min.	Typ.	Max.	Unit
Supply	$V_{\text {oc }}$	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			26	V
Current consumption tion without load	$l_{\text {dc }}$	$\begin{aligned} & V_{s}=8.8 \mathrm{~V} \text { to } 26 \mathrm{~V}, \\ & 25^{\circ} \mathrm{C} \end{aligned}$		1.5	1.8	mA
Hysteresis circuit						
Threshold voltage	$V_{\text {thrsn }}$	-20° to $70^{\circ} \mathrm{C}$	12.2	12.6	13.0	V
Switch-off voltage	$V_{\text {ott }}$	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8.0	8.4	8.8	V
Initial						
resistance	$\mathrm{R}_{\text {INI }}$	$25^{\circ} \mathrm{C}$	6.4		8.5	K Ω
Voltage* deviation at output Pin 5 referenced to pin 2	$V_{\text {OUT }}$	$25^{\circ} \mathrm{C}$		$V_{\text {s }}-3$		V
Short circuit current	1 out	$\mathrm{U}_{5}=20 \mathrm{~V}, 25^{\circ} \mathrm{C}$		35		mA
Tone frequency temperature	TC	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$8 \cdot 10^{4}$		K^{-1}
coefficient						

*An internal resistor of 500Ω is connected before the output

Characteristic Curves

Fig. 4
Dependence of current consumption on the supply voltage $V_{D C}$ without output load.

Fig,. 5
Dependence of amplitude of output current on the supply voltage $V_{\text {oc }}$ in the case of short circuit.

Fig. 6
Dependence of output power on the load resistance $\mathrm{R}_{\text {out }}$ (ohmic)

Fig. 6.1
Test circuit to determine output power at different load resistances

Fig. 7
Dependence of output power on the call voltage for power matching

Fig. 7.1
Test circuit to determine output power for variable call voltage $V_{\text {ab }}$

\qquad

Fig. 8
Dependence of effective output resistance on the call voltage $V_{a b}$

Delay times

Fig. 9
Test circuit to determine delay times

Fig. 9.1
Dependence of delay times $t_{\text {on }}, t_{\text {oft }}$ on $V_{\text {ad }}$

Effective value of input signal (Call voltage V_{ab})
— - Effective value of output signal (Output voltage $V_{\text {out }}$)
$t_{1}-t_{0} \quad$ Time duration of applied call voltage $V_{a b}$

Fig. 10
Dependence of switch-on delay time $t_{\text {on }}$ on $V_{\text {ab }}$
(independent of $\mathrm{R}_{\text {out }}$)

Fig. 11
Dependence of switch-off delay time $t_{\text {of }}$ on V_{ab} (independent of R_{v})

Fig. 12
Dependence of the frequencies $f_{1 T}$ and $f_{2 T}$ on the resistor R_{T}.
$\mathrm{f}_{\text {TT }} \mathrm{f}_{2 T}[\mathrm{KHz}]$

Fig. 13
Dependence of switching frequency on the capacitor C_{um}

Recommended circuitry of PSB 6521 with a small loudspeaker

Fig. 14
Matching a 4Ω loudspeaker to the PSB 6521

Transformer

Pot core : Siemens Ordering code: B65651-KOOOO-Ro3O (18×11)
Material : N30, $A_{\llcorner }=5600 \mathrm{nH} / \mathrm{W}^{2}$
Bobbin : Siemens Ordering code B65652-BOOOO-TOO1
Windings : $\mathrm{N}_{1}=800, \mathrm{~d}_{1}=0.08 \mathrm{~mm} \mathrm{C}_{\mathrm{u} 1}$
$N_{2}=50, d_{2}=0.4 \mathrm{~mm} \mathrm{C}_{\mathrm{u}}$

PSB 6620 Ringing Detector

Preliminary data

Features:

- Integrated bridge rectifier allows direct connection to an AC voltage (e.g. a telephone call signal)
- Low current consumption
- High "tapping" (noise) immunity
- Built-in hysteresis for stable operation
- Only three external components necessary
- Regulated 5 V output voltage
- Logical TTL/CMOS output signal (open collector)
- Overvoltage protection in accordance with VDE 0433 ($2 \mathrm{kV}-10 / 700 \mu \mathrm{~s}$)
- Pincompatible with TCM 1520 (Texas Instruments)

Pin configuration

Pin description

Pin No.	Symbol	Description
1	$V_{\text {AC2 }}$	AC voltage input
2	$\mathrm{~L}_{\text {out }}$	Logical TTL output (low active)
3	N.C.	not connected
4	$S_{\text {out }}$	$5 V$ supply-voltage output
5	N.C.	not connected
6	$V_{\text {DC }}$	DC supply voltage input
7	GND	ground
8	$V_{A C 1}$	AC voltage input

General description

The integrated circuit PSB 6620 is designed to detect a telephone call signal (AC voltage).
The supply voltage of the IC is divided from the AC-input-voltage (call signal). During the active state of the device a regulated 5V DC-voltage and a TTL/CMOS-logic level is available at the outputs. The high threshold activation voltage provides a good immunity against noise (e.g. dialing signals, charge indicator) and a built-in voltage hysteresis guarantees the stable operation.
The regulated 5 V voltage (pin 4) of the PSB 6620 allows to supply other devices. The PSB 6620 is not limited to telephone applications. For example the device can be used to build up an inexpensive $A C$-voltage detector.

Block diagram with external components

Electrical characteristics

Maximum ratings ${ }^{1)}$

Supply voltage

 (pin1 to pin8) Voltage pin 6 to pin 7 Output current Input current AC Pulse current ACTotal power consumption Operating ambient temperature Storage ambient temperature

	Test condition	Min.	Max.	Unit
\checkmark			28	V
$V_{\text {dC }}^{\text {AC paak }}$			26	V
$I_{\text {dout }}^{\text {oc }}$			20	mA
$i^{\text {Nout }}$	Pin 1-8		30	mA
i	$\begin{aligned} & \text { pulse }=100 \mu \mathrm{~s} \\ & \text { pause }=30 \mathrm{~s} \end{aligned}$		1	A
$\mathrm{P}_{\text {tot }}$			1	W
$\mathrm{T}_{\text {op }}$		-20	70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sto }}$		-75	150	${ }^{\circ} \mathrm{C}$

Operating characteristics $\left(\mathrm{T}_{\text {amb }}=20^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

	Test conditions	Min.	Typ	Max.	Unit
Supply voltage $V_{\text {oc }}$				26	V
Current consumption $I_{D C}$ without load	$V_{\text {oc }}=25 \mathrm{~V}$	0,4	0,6	0,85	mA
Supply output voltage $V_{\text {sour }}$	$I_{\text {sout }}=4 \mathrm{~mA}, \mathrm{~T}=25^{\circ}$	4,5	5	5,5	V
Supply output current $l_{\text {sour }}$	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	8	10		mA
Logical output voltage $V_{\text {Lout }}$ (pin 2 to pin 7)	$V_{\text {LOUT }}=L, I_{\text {LOUT }}=5 \mathrm{~mA}$		0,25	0,7	V
Max. voltage on the $V_{\text {Loumax }}$ logical output	$V_{\text {Lout }}=\mathrm{H}, I_{\text {Lout }} \leq 1 \mathrm{~mA}$			35	V
Logic output current $I_{\text {Lout }}$	$V_{\text {Lout }}=1 \mathrm{~V}$	10			mA
Temperature coefficient from					
Supply output voltage $\mathrm{TC}_{\text {vs }}$	$\mathrm{I}_{\text {sout }}=-5 \mathrm{~mA}$		+9		mV/K
Logical output Voltage TC VL	$I_{\text {Lout }}=10 \mathrm{~mA}$		+0,3		mV / K

Hysteresis circuit (pin 6 to pin 7)

Threshold voltage Switch-OFF voltage Initial resistance Input impedance (cf. block diagram)

	Test conditions	Min	Typ	Max	Unit
$v_{\text {v }}$		12,2	12,6	13,2	V
$V_{\text {oft }}$		8	8,4	8,8	v
$\mathrm{R}_{\text {(1) }}$			7,4		k Ω
$\mathrm{Z}_{\mathrm{a}, \mathrm{b}}$	$\mathrm{f} \leq 20 \mathrm{kHz}$	100			k Ω
	$V_{A C}=1,3, V_{m s}$				

${ }^{1)}$ Maximum ratings are absolute values and the IC can be damaged by exceeding them. Functioning of the integrated circuit is not assure under conditions other than those stated in the electrical characteristics. Operating for long periods of time under maximum rating conditions can adversely affect the reliability of the integrated circuits.

Application examples:

a) Call Signal Indicator

b) Optical Call Signal Indicator

c) Automatic Telephone Answering System

d) Cordless Telephone

e) Bilingual Telephone Interface for Personal Computer

f) AC • Current Indicator

PSB 8590
 Dual Tone
 Multifrequency Generator

Preliminary data

Features

- CEPT-compatible
- Direct line feeding
- High frequency accuracy (deviation less than 0.4\%)
- Standard low cost clock crystal 4.19 MHz
- Operation with either single contact or 2 - of -8 keypads
- Dual tone as well as single tone capability
- Multi-key lockout and debouncing
- Binary interface mode
- Power dissipation limited by internal thermal overload protection

Pin configuration

General description

The DTMF generator S 359 is a monolithic IC using the $I^{2} L$ technology. It provides all dual tone multi frequency (DTMF) pairs required in tone dialing systems. The eight different audio output frequencies are generated from an on-chip reference oscillator with an external low cost clock crystal 4.19 MHz . The internal temperature compensated voltage reference determines the audio output levels and it also controls the on-chip shunt regulator which provides the adaptation to different feeding conditions. In order to meet the CEPT recommendations an external 2-pole RC filter can easily be connected.
The S 359 can interface directly to a single contact keypad. Furthermore, open collector outputs can control the S 359 either in a BCD-mode or in a 2-of-8 keypad mode.

Block diagram

Connection to line

Connection to keyboard

The keys are debounced and electronically interlocked. If more than one key is pressed simultaneously, the key recognized as pressed first will be evaluated.

The requirements for the quality of contacts are:
Open contact: Resistance $R_{N}>50 \mathrm{k} \Omega$
Closed contact: Contact resistance $R_{\mathrm{E}} \leqq 1 \mathrm{k} \Omega$ for $I=100 \mu \mathrm{~A}$

Functional description

1. Line adaption

The DTMF generator has an internal temperature-compensated voltage reference. This reference voltage controls a shunt regulator which sets the $D C$ voltage $V_{S}=V_{C C}-V_{E E}$ to 5 V . The external filtering capacitor C gives the shunt regulator for frequencies above 300 Hz the behavior of a high impedance current sink. The shunt regulator includes a start-up circuit for the quick charging of the filtering capacitor (Fig. 1) The shunt regulator can sink feeding currents up to 120 mA while the power dissipation is limited by internal thermal overload protection. If the chip temperature exceeds a preset value ($\approx T_{j}=150^{\circ} \mathrm{C}, P_{V} \approx 1 \mathrm{~W}$), the filtering capacitor is discharged, the shunt regulator is switched of and the voltage V_{s} rises to the breakdown voltage of the external overvoltage protection network (Fig. 2).

Figure 1
Tuning diagram"of the quick charging circuit (OC) for the filter capacitor

S closed open

The control circuitry for the quick charging circuit has hysteresis with the following thresholds

QC	V_{S}	V_{C}
on	X	$<0.7 \mathrm{~V}$
on	$>9 \mathrm{~V}$	X
off	$<6.5 \mathrm{~V}$	$>0.7 \mathrm{~V}$

Figure 2
Output waveforms V_{S} during thermal limitation (TL) of the power dissipation

The thermal limitation (TL) overrides the quick charger (QC).

2. Tone generation

The on-chip oscillator generates together with the external clock crystal the master clock frequency $f_{\mathrm{C} 1}=4.194 .304 \mathrm{MHz}$. This master clock $f_{\mathrm{C} 1}$ is scaled by a factor of 16 to $f_{\mathrm{C} 2}=262.144 \mathrm{kHz}$. The programmable dividers for the higher $\left(f_{5}-f_{8}\right)$ and lower $\left(f_{1}-f_{4}\right)$ frequency tone groups are driven by the clock $f_{\mathrm{c} 2}$. The programmable dividers generate the clock for the 6 bit L / R shift register. Each shift register controls one D/A converter and the polarity of its output waveform. The output sinewave is synthesized as a stairstep-function with 11 voltage levels. The output waveform has 22 time segments (Fig. 3). The time segments t_{1} to $t_{6} t_{8}$ to t_{17} and t_{19} to t_{22} are equal. The time segments t_{7} and t_{18} are equal but slightly different from the others in order to meet
the required output frequencies as closely as possible. The output waveforms are symmetrical; therefore, no even harmonics exist. The stairstep function with 11 voltage levels is calculated such that, theoretically, the lowest order harmonics are the $21^{\text {st }}$ and the $23^{\text {rd }}$. Because of the different length of time segments t_{7} and t_{18} and the tolerances of the D/A converter, lower odd harmonics exist.

Figure 3
Synthesized output waveforms

3. Output levels

Each D/A converter generates a five-level stairstep function. The mixer alternately reverses the polarity of the five-level stairstep function which leads to the symmetrical 11 -level stairstep function (Fig. 3). Furthermore, the mixer adds the stairstep function of the lower and of the higher frequency groups.
The nominal amplitudes of the stairstep function at the mixer output are:
Lower frequency group $\quad i_{\mathrm{ML}}=42.5 \mu \mathrm{~A}$
Higher frequency group $\quad i_{\mathrm{MH}}=53.5 \mu \mathrm{~A}$
Figure 4 shows the AC-schematic of the outpuit section of the S 359. The feedback loop of the output amplifier is externally arranged. The resistors R_{1} to R_{3} determine the output level (V_{OL} and V_{OH}) and the output impedance R_{Q}, as shown below.
$R_{0}=\frac{R_{1}\left(r_{2}+r_{3}\right)}{R_{1}+r_{3}\left(1+\frac{R_{3}+R_{1}}{R_{2}+r_{1}}\right)}$
$V_{\mathrm{QL}, \mathrm{H}}=i_{\mathrm{ML}, \mathrm{H}} \cdot \frac{\left(R_{3}+R_{1}\right) R_{\mathrm{L}} \cdot r_{1}}{R_{1}\left(R_{2}+r_{1}\right)} \cdot \frac{R_{\mathrm{Q}}}{R_{\mathrm{Q}}+R_{\mathrm{L}}}$
The ratio of the resistors R_{3} / R_{2} is restricted to the range $R_{3} / R_{2}<1.2$, otherwise the output amplitudes are clipped. Normally, the resistors R_{2} and R_{3} are equal. Fig. 8 shows the sum level P_{S} and the output impedance R_{Q} as a function of R_{1} and R_{2}.

Figure 4
AC schematic of the output stage

An external $R C$ filter network is necessary in order to meet the CEPT recommendation concerning distortion and harmonics. The RC filter is easy to implement, because the pins M_{Q}, B_{1}, B_{Q} of the output amplifier are accessible. The 8590 is shown in Fig. 5 with a one-pole RCfilter for application corresponding to the recommendations of the DBP and in Fig. 6 witha two-pole RC filter for CEPT applications. Fig. 7 shows the output spectrum for the most critical case, the frequency f_{s}.
The nominal output levels $P_{\mathrm{L}, \mathrm{H}}$ are identical for the arrangement in Fig. 5 and Fig. 6, they are
$P_{\mathrm{L}}=20 \log \frac{V_{\mathrm{QL}}}{\sqrt{2} \sqrt{1 \mathrm{~mW} \cdot 600 \Omega}}=-8.12 \mathrm{dBm}$
$P_{\mathrm{H}}=20 \log \frac{V_{\mathrm{QH}}}{\sqrt{2} \sqrt{1 \mathrm{~mW} \cdot 600 \Omega}}=-6.12 \mathrm{dBm}$
The sum output level P_{S} is
$P_{\mathrm{S}}=10 \log \left(10 P_{\mathrm{L}} / 10+10 P_{\mathrm{M}} / 10\right)=-4.0 \mathrm{dBm}$
and the preemphasis P_{D} is
$P_{\mathrm{D}}=P_{\mathrm{H}}-P_{\mathrm{L}}=2 \mathrm{~dB}$

Figure 5
PSB 8590 with a 1-pole $R C$ filter

In order to keep the insertion loss for all the DTMF frequencies less than 0.2 dB the 3 dB cutoff frequency of the filter should be at least 6 kHz .

Figure 6
S 359 with a 2-pole RC filter (Butterworth)

The pole is $f_{\mathrm{P}} \approx 2.7 \mathrm{kHz}$

Figure 7
Output spectrum for frequency f_{8} with a 2-pole Butterworth filter

Figure 8

Sum output level $P_{\mathrm{S}}(-)$ and output impedance $R_{\mathrm{O}}(---)$ versus resistors R_{1}, R_{2}

4. Interface to keypad

There are three different operation modes of the interface:
a) Single contact or 2-of-8 keypad
b) Electronic interface with a 2-of-8 keypad code
c) Electronic interface with a BCD code

Figure 9 shows the schematic of the interface inputs $F_{1}-F_{8}$. The inputs are divided into two groups $F_{1}-F_{4}$ and $F_{5}-F_{8}$. In addition, the pin F_{8} controls the operation modes. The resistors R_{F} are optimized for the single-contact keypad mode.
a) Interface to single contact or 2-of-8 keypads (Fig. 9)

The buttons are debounced and electronically interlocked. If multiple buttons are pushed, the frequencies of the firstly activated button are generated. The requirements for the quality of the contacts are
Contact open: OFF resistance $R_{\text {OFF }}>50 \mathrm{k} \Omega$
Contact closed: ON resistance $\quad R_{0 N} \leqq 1 \mathrm{k} \Omega$
$I=100 \mu \mathrm{~A}$

Figure 9
Schematic of keypad interface

b) Electronic interface with a 2-of-8 keypad code

Figure 10
Electronic control using the key code

The inputs I_{1} to I_{4} control the frequencies of the lower frequency group $f_{1}-f_{4}$ and the inputs I_{5} to I_{8} control the frequencies of the higher frequency group. For the generation of a dual tone, one input of I_{1} to I_{4} of the lower group and one input of I_{5} to I_{8} of the higher group must have an H -level.
If more than one input of the respective group has an H -level, that is recognized as a multiple button push the frequencies of the firstly sensed H -levels are generated.

Truth table

I_{1} 1 2 3 A I_{2} 4 5 6 B I_{3} 7 8 9 C I_{4} $*$ 0 $\#$
Inputs

c) Electronic interface with a binary code

Electronic control using the binary code

Application 11a

This application enables both dual and single frequency output.
The mode control input F_{8} is connected to ground. The dual tone pairs are generated corresponding to the binary code on the inputs G_{1} to G_{4}. The enable inputs G_{5} to G_{7} have the following function: G_{5} enable lower and higher frequency group; G_{6} enable higher frequency group F_{5} to F_{8} : G_{7} enable lower frequency group F_{1} to F_{4}

Application 11b

This application is optimized for dual tone output without single tone capability.
G_{1} to G_{4} inputs for binary code; G_{5} enable lower and higher frequency group.
L-level enables the frequencies, H -level disables the frequencies. If the frequencies are disabled, the internal clock is inhibited.

Table information is present at inputs \mathbf{G}_{1} to $\mathbf{G}_{\mathbf{4}}$ in binary code

Digit		0	1	2	3	4	5	6	7	8	9	X	$\#$	A	B	C	D
	G_{4}	L	H														
	G_{3}	L	L	L	L	H	H	H	H	L	L	L	L	H	H	H	H
	G_{2}	L	L	H	H												
	G_{1}	L	H														

Pin description

Pin No.	Name	Function
1	$V_{\text {EE }}$	Negative line connection
2	Ma_{0}	Mixer output
3	F_{1}	
4 5	F F_{2}	Keyboard interface
6	F_{4}	
7	B_{1}	Input of output amplifier
8	B_{0}	Output of output amplifier
10	X_{1} X_{1}	\}Connections for crystal $f=2^{22} \mathrm{~Hz}$
10 11	X F_{8}	Keyboard interface and mode select
12	F_{7}	
13	F_{6}	Keyboard interface
14	F_{5}	
15 16	C V c	Connection for filtering capacitor for the current sink Positive line connection

Electrical characteristics

Absolute maximum ratings ${ }^{1 /}$
Voltage at any pin
Supply voltage
Storage temperature

	Min	Max	Unit
	$V_{\mathrm{EE}}-0.3 \mathrm{~V}$	$V_{\mathrm{CC}}-V_{\mathrm{EE}}$	
$V_{\mathrm{CC}}-V_{\mathrm{EE}}$	-0.3	14	V
$T_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$

Operating characteristics ($T_{\text {amb }}=-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Supply current
DC output voltage
Internal reference voltage
Input resistors
Input levels:
Logical L
Logical H
Logical L
Logical H
Logical L
$B C D$ mode enable

	Test condition	Min.	Typ.	Max.	Unit
I_{S}		16		120	mA
V_{S}	$16 \mathrm{~mA}<I_{\mathrm{S}}<120 \mathrm{~mA}$	4.5	5	6	V
V_{R}		1.15	1.25	1.35	V
R_{F}		2.5	3.5	4.5	$\mathrm{k} \Omega$
$\mathrm{F}_{1}-\mathrm{F}_{4}$		0.5			V
$\mathrm{~F}_{1}-\mathrm{F}_{4}$				0.7	V
$\mathrm{~F}_{5}-\mathrm{F}_{7}$		1.1			V
$\mathrm{~F}_{5}-\mathrm{F}_{8}$		0.5		0.7	V
$\mathrm{~F}_{8}$					
$\mathrm{~F}_{8}$					

[^52]| Operating characteristics ($T_{\text {amb }}=-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$) | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Test conditions | Min. | Typ. | Max. | Unit |
| Output levels: | | | | | | |
| Low group | $P_{\text {L }}$ | | | -8.12 | | dBm |
| High group | $P_{\text {H }}$ | | | -6.12 | | dBm |
| Sum level | $P_{\text {S }}$ | $I_{\text {S }}=17 \mathrm{~mA}$ to 120 mA | -5.4 | -4 | -2.8 | dBm |
| | | Fig. 12 | | | | |
| Preemphasis | $P_{\text {D }}$ | $I_{\mathrm{S}}=17 \mathrm{~mA}$ to 120 mA | 1.8 | 2.4 | 2.8 | dB |
| Sum level | $P_{\text {so }}$ | | | -80 | | dBm |
| (Frequencies disabled) | | | | | | |
| Output dynamic | $R_{\text {DO }}$ | $I_{\text {S }}=120 \mathrm{~mA}$ | 600 | | 1000 | Ω |
| impedance | | $I_{\text {S }}=20 \mathrm{~mA}$ | 660 | | 1000 | Ω |
| Timing specification: | | | | | | |
| Tone frequency deviation | $\Delta f / f$ | | -2.9 | | +3.9 | \%。 |
| Key debounce time | $t_{\text {d }}$ | | 2 | | 6 | ms |
| Set-up time (Fig. 13) | $t_{\text {s }}$ | $I_{\mathrm{S}}=17 \mathrm{~mA}$ to 20 mA | | | 7 | ms |
| | | $I_{\mathrm{S}}=20 \mathrm{~mA}$ to 120 mA | | | 5 | ms |

Tone frequency deviation (without tolerances of crystal)

	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}	Unit
Required frequency	697	770	852	941	1209	1336	1477	1633	Hz
Generated frequency*)	697.2	771.0	851.1	943	1212.6	1337.5	1472.7	1638.4	Hz
deviation	2.75	1.374	-1.037	2.087	3.829	1.1	-2.898	3.307	$\%$

$\left.{ }^{*}\right)$ The generated frequencies are derived from a clock crystal with $4.194304 \mathrm{MHz}\left(2^{22} \mathrm{~Hz}\right)$.

Figure 12
Measuring circuit for output sum level $P_{\text {sa }}$

Figure 13
Circuit for measuring set-up time t_{s}

PSB 8591
 Dual Tone
 Multifrequency Generator

Preliminary data
 Bipolar circuit

The DTMF generator PSB 8591 is an advanced development of the PSB 8590. The PSB 8591 has an additional mute output, a chip disable function and a current sink disable function.

Features

- CEPT compatible output spectrum and output levels
- Direct line powered
- Mute output
- Chip disable ($\overline{C D}$)
- Current sink disable ($\overline{C S D}$)
- MPU interface with data latch on-chip
- Operation with either single contact or 2-of-8 keypads
- 2 key rollover with contact debounce
- Dual-tone and single-tone operation
- High frequency accuracy (typ. 0.4\%)
- Standard low cost clock crystal 4.19 MHz
- Power dissipation limited by internal thermal overload protection
- I2L technology

Pin configuration

(top view)

Pin designation

Pin No.	Symbol	Description
1	$V_{\text {EE }}$	Negative line connection
2	MO	Mixer output
3	F1	
4	F2	Keyboard interface
5	F3	Keyboard interface
6	F4	
7	$\overline{C D}$	Chip disable
8	CSD	Current sink disable
9	MUTE	Mute output (open collector)
10	BI	Input of output amplifier
11	BO	Output of output amplifier
12	X1	$\}$ Connections for crystal $f=222 \mathrm{~Hz}$
13	X2	\int Connections for crystal $f=222 \mathrm{~Hz}$
14	$V_{\text {R }}$	Voltage reference
15	F8	Keyboard interface and mode select
16	F7	\} Keyboard interface and write enable
17	F6	
18	F5	Keyboard interface and supply current enable
19	C	Connection for filtering capacitor for the current sink
20	$V_{\text {cc }}$	Positive line connection

General description

The DTMF generator PSB 8591 is a monolithic IC using the I2L technology. It provides all dual-tone multi-frequency (DTMF) pairs required in tone dialing systems. The eight different audio output frequencies are generated from an on-chip reference oscillator with an external low cost clock crystal ($2^{22} \mathrm{~Hz}$). The internal temperature compensated voltage reference determines the audio output levels and controls the on-chip shunt regulator which provides the adaptation to different feeding conditions.
In order to meet the CEPT recommendations an external 2-pole RC-filter can easily be connected. Typical telephone application are shown in figure 15. The PSB 8591 can interface directly to a single contact keypad. Furthermore, the device can be controlled either from a MPU (binary mode) or via a 2-of-8 keypad. The PSB 8591 works in parallel to the speech circuit. If no button is pressed, the device consums only a low standby current. When data is input via keyboard or MPU interface, a low-active mute signal is generated.

Block diagram

Connection to the telephone-line

Single contact keypad interface

Two key rollover with contact debounce is provided.

Required contact spezifications:
Open contact: Resistance $R_{\mathrm{N}}>400 \mathrm{k} \Omega$
Closed contact: Resistance $R_{\mathrm{E}} \leq 1 \mathrm{k} \Omega$ for $I=100 \mu \mathrm{~A}$

Functional description

1. Line adaptation

The DTMF generator PSB 8591 has an internal temperature-compensated voltage reference. This reference voltage controls a shunt regulator which sets the DC voltage $V_{\mathrm{S}}=V_{\mathrm{CC}}-V_{\mathrm{EE}}$ to 5 V . The external filtering capacitor C gives the shunt regulator for frequencies above 300 Hz the behavior of a high impedance current sink. The shunt regulator includes a start-up circuit for the quick charging of the filtering capacitor (fig. 1). The shunt regulator can sink line currents up to 120 mA while the power dissipation is limited by internal thermal overload protection. If the chip temperature exceeds a preset value ($\approx T_{\mathrm{j}}=150^{\circ} \mathrm{C}, P_{\mathrm{v}} \approx 1 \mathrm{~W}$), the filtering capacitor is discharged, the shunt regulator is switched off and the voltage V_{s} rises to the breakdown voltage of the external overvoltage protection retwork (fig. 2). If the current sink is disabled (low level at $\overline{C S D}$, pin 8) an external shunt regulator or speech circuit should be used.

Figure 1
Tuning diagram of the quick charging circuit (QC) for the filter capacitor. Additional test conditions: Pin 7 ($\overline{\mathrm{CD}}$) open and button pressed.

The control circuitry for the quick charging circuit has a hysteresis with the following threshoids:

QC	V_{L}	V_{C}
ON	X	0.7 V
ON	9 V	X
OFF	6.5 V	0.7 V

\qquad

Figure 2
Output waveforms V_{s} during thermal limitation (TL) of the power dissipation. Additional test conditions: Pin $7(\overline{C D})$ open and button pressed

The thermal limitation (TL) overrides the quick charger (QC).

2. Tone generation

The on-chip oscillator generates together with the external clock crystal the master clock frequency $f_{\mathrm{cLK}}=4.194304 \mathrm{MHz}$.
Clock $f_{\text {CLK }}$ is scaled by a factor of 16 to $f_{\text {cLK }}=262.144 \mathrm{kHz}$. The programmable dividers for the higher $\left(f_{5}-f_{8}\right)$ and lower $\left(f_{1}-f_{4}\right)$ frequency tone groups are driven by the clock f_{CLK}. The programmable dividers generate the clock for the 6-bit L/R shift register. Each shift register controls one D/A converter and the polarity of its output waveform. The output sinewave is synthesized as a stairstep function with 11 voltage levels. The output waveform has 22 time segments (fig. 3). The time segments t_{1} to t_{8}, t_{8} to t_{17} and t_{19} to t_{22} are equal. The time segments t_{7} and t_{18} are equal but slightly different from the others in order to meet the required output frequencies as closely as possible. The output waveforms are symmetrical; therefore, no even harmonics exist. The stairstep function with 11 voltage levels is calculated such that, theoretically, the lowest order harmonics are the 21 st and 23rd. Because of the different length of time segments t_{7} and t_{18} and the tolerances of the D/A converter, lower odd harmonics exist.

Figure 3
Synthesized output waveforms

3. Output levels

Each D/A converter generates a five-level stairstep function. The mixer alternately reverses the polarity of the five-level stairstep function which leads to the symmetrical 11 -level stairstep function (fig. 3). Furthermore, the mixer adds the stairstep function of the lower and of the higher frequency groups.
The nominal amplitudes of the stairstep function at the mixer output are:

$$
\begin{array}{ll}
\text { Lower frequency group } & i_{M L}=42.5 \mu \mathrm{~A} \\
\text { Higher frequency group } & i_{M H}=53.5 \mu \mathrm{~A}
\end{array}
$$

Figure 4 shows the AC-schematic of the output section of the PSB 8591. The feedback loop of the output amplifier is externally arranged. The resistors R_{1} to R_{3} determine the output level ($V_{O L}$ and $V_{O H}$) and the output impedance R_{0}, as shown below.
$R_{0}=\frac{R_{1}\left(r_{2}+\dot{r}_{3}\right)}{R_{1}+r_{3}\left(1+\frac{R_{3}+R_{1}}{R_{2}+r_{1}}\right)}$
$V_{\mathrm{OL.H}}=i_{\text {ML. H }} \times \frac{\left(R_{3}+R_{1}\right) R_{\mathrm{L}} \times r_{1}}{R_{1}\left(R_{2}+r_{1}\right)} \times \frac{R_{\mathrm{O}}}{R_{\mathrm{O}}+R_{\mathrm{L}}}$
The ratio of the resistors R_{3} / R_{2} is restricted to the range $R_{3} / R_{2}<1$.2, otherwise the output amplitudes are clipped. Normally, the resistors R_{2} and R_{3} are equal. Fig. 8 shows the sum level P_{S} and the output impedance R_{0} as a function of R_{1} and R_{2}.

Figure 4
AC schematic of the output stage

The internal feedback loop is normally closed (r_{2}, r_{3}, positive input of output amplifier). If the current sink is disabled, the positiv input of the output amplifier is supported with a fixed voltage of about 0.3 V . This voltage is derived from the internal reference voltage.

An external RC filter network is necessary in order to meet CEPT recommendation concerning distortion and harmonics. The RC filter is easy to implement, because the pins MO, BI, BO of the output amplifier are accessible. The PSB 8591 is shown in fig. 5 with an one-pole RC filter for application corresponding to the recommendations of the DBP and in fig. 6 with a two-pole RC filter for CEPT applications. Fig. 7 shows the output spectrum for the most critical case, the frequency f_{9}.
The nominal output levels $P_{\text {L, }}$ are identical for the arrangement in fig. 5 and fig. 6, they are
$P_{L}=20 \log \left(\frac{V_{o L}}{\sqrt{2} \sqrt{1 \mathrm{~mW} \times 600 \Omega}}\right)=-8.12 \mathrm{dBm}$
$P_{H}=20 \log \left(\frac{V_{\text {OH }}}{\sqrt{2} \sqrt{1 \mathrm{~mW} \times 600 \Omega}}\right)=-6.12 \mathrm{dBm}$

The sum output level P_{s} is
$P_{\mathrm{S}}=10 \log \left(10 \operatorname{EXP}\left(P_{\mathrm{J}} / 10\right)+10 \operatorname{EXP}\left(P_{\mathrm{H}} / 10\right)\right)=-4 \mathrm{dBm}$
and the preemphasis P_{D} is
$P_{D}=P_{H}-P_{L}=2 d B$

Figure 5
PSB 8591 with a 1 -pole RC filter

In order to keep the insertion loss for all the DTMF frequencies less than 0.2 dB the 3 dB cutoff frequency of the filter should be at least 6 kHz .

Figure 6
PSB 8591 with a 2-pole RC filter (Butterworth)

The pole is $f_{\square} \approx 2.7 \mathrm{kHz}$

Figure 7
Output spectrum for frequency f_{8} with a 2-pole Butterworth filter

Figure 8
Sum output level $P_{\mathrm{S}}(-)$ and output impedance $R_{0}(---)$ versus resistors R_{1}, R_{2}.

Operation modes:

a) Single contact or 2-of-8 keypad interface
b) MPU interface

Figure 9 shows the schematic of the interface inputs F1 to F8. The inputs are divided into two groups F1 to F4 and F5 to F8. In addition, pin F8 controls the operation modes. The resistors R_{F} are optimized for the single-contact keypad mode.
a) Interface to single contact or 2-of-8 keypads (fig. 9)

The buttons are debounced and electronically interlocked. If multiple buttons are pushed, the frequencies of the first activated button are generated. The requirements for the quality of the contacts are
Contact open: OFF resistance $R_{\text {off }}>400 \mathrm{k} \Omega$
Contact closed: ON resistance $R_{\text {ON }} \leq 1 \mathrm{k} \Omega$
$I=100 \mu \mathrm{~A}$

Figure 9
Schematic of keypad interface

$R_{F}=25 \mathrm{k} \Omega \mathrm{NOM}$
$V_{\mathrm{R}}=1.25 \mathrm{~V} \pm 0.1 \mathrm{~V}$

The mode control input F8 is connected to ground；pin $7(\overline{C D})$ ist open．Low level at pin 8 $(\overline{C S D})$ disables the current sink．The dual tone pairs are generated corresponding to the binary code at the inputs G1 to G4，as shown in the following table．
Table information is present at inputs G 1 to G 4 in binary code

Digit	0	1	2	3	4	5	6	7	8	9	⿻丷木	\＃	A	B	C	D
G4	H	L														
G3	H	H	H	H	L	L	L	L	H	H	H	H	L	L	L	L
G2	H	H	L	L												
G1	H	L														

b）Figure 10
MPU interface
I．with open collector AND－Gate
II．with Schottky－diodes

The enable inputs $\mathbf{G 5}$ to $\mathbf{G 7}$ have the following functions:

G5	G6	G7	
L	L	L	data fetch for f_{L} and f_{H}, output inhibited
L	H	L	single-tone, higher frequency group $\left(f_{H}\right)$, data fetch for f_{L}
L	L	H	single-tone, lower frequency group $\left(f_{L}\right)$, data fetch for f_{H}
L	H	H	sending, dual-tone

The application in fig. 10 enables both, dual-and single-tone output.

Timing diagram

Binary data input; single-tone output, F8 connected to ground.

Timing diagram

Binary data input; dual-tone output, F8 connected to ground

$$
t_{w} \geq 10 \mu s
$$

The valid input data is stored in clock-levelcontrolled flipflops

Electrical characteristics
Absolute maximum ratings ${ }^{1}$)
Voltage at any pin
Supply Voltage
Storage temperature

	min.	max.	
V	$V_{\mathrm{EE}}-0.3$	see operating characteristics	V
$V_{\mathrm{CC}}-V_{\mathrm{EE}}$	-0.3	$22(2 \mathrm{~ms})$	V
$T_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$

Operating characteristics $\left(T_{\text {amb }}=-25^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)

Leakage current ${ }^{2}$)
Standby current ${ }^{3}$)
Line current ${ }^{4}$)
Supply current ${ }^{6}$)
Current sink voltage drop4) (average DC value)
Minimal peak line voltage ${ }^{6}$) Maximal peak line voltage ${ }^{6}$) Internal reference voltage5) Input resistors at pin 3-6, 13-16, F1-F8 and CSD

	Test conditions	min.	typ.	max.	
	$V_{\mathrm{L}}=18 \mathrm{~V}$			100	$\mu \mathrm{~A}$
I_{LK}	$V_{\mathrm{L}}=5 \mathrm{~V}$		20		$\mu \mathrm{~A}$
I_{St}	$V_{\mathrm{L}}=18 \mathrm{~V}$			0.6	mA
I_{L}				0.4	
$\mathrm{~L}=5 \mathrm{~V}$					
I_{S}	$V_{\mathrm{L}}=5 \mathrm{~V}$			120	mA
V_{L}	$16 \mathrm{~mA} \leq I_{\mathrm{L}} \leq 120 \mathrm{~mA}$	4.5	5	6	V
$V_{\mathrm{L} \text { min }}$					
V_{Lmax}	(see fig. 11)		3		V
V_{REF}		18		V	
R_{F}		1.15	1.25	1.35	V
		15	25	35	$\mathrm{k} \Omega$

[^53]Operating characteristics ($T_{\text {amb }}=-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)
Input levels

Logical L

Logical $\begin{array}{r}\mathrm{L} \\ \mathrm{H}\end{array}$
Logical L, key code
Binary mode enable
Supply current enable
Logical L
Logical H

	Test conditions	min.	typ.	max.	
$V_{\text {LLF1-F4 }}$		-0.3		0.15	v
$V_{1 H \text { Fl-F4 }}$		0.5		$V_{\text {cc }}$	V
$V_{\text {ILCsb fe-f7 }}$		-0.3		0.7	V
$V_{\text {IHCSt.f5-f8 }}$		1.1		$V_{\text {R }}$	V
$V_{\text {Llf fi, fg }}$		0.5		0.7	V
$V_{\text {Llfe }}$		-0.3		0.1	V
$V_{\text {LL F }}$		-0.3		0.1	V
V ILed	$I_{\text {ILmax }}-10 \mu \mathrm{~A}$	-0.3		0.3	v
$V_{\text {IHCD }}$	Input current $I_{1 H \max }=1 \mathrm{~mA}$	0.7		5	v

Mute output levels
Logical L
Logical H

$V_{\text {OLMUTE }}$	$I_{\text {OLmax }}=1 \mathrm{~mA}$
$V_{\text {OHMOTE }}$	$I_{\text {OHmax }}=1 \mathrm{~mA}$
$I_{\text {IHMUTE }}$	$V_{\text {OHMOTE }}=18 \mathrm{~V}$

0.5	V
$V_{c c}$	V
100	$n A$

Output levels
Low group
High group
Sum level

Preemphasis
Sum level
(Frequencies disabled) Output dynamic impedance

Output dynamic impedance in Standby mode
P_{L}
P_{H}
P_{S}

Tone frequency deviation (without tolerances of crystal)*

	f_{1}	f_{2}	f_{3}	f_{4}	f_{0}	f_{8}	f_{7}	f_{8}	Unit
Required frequency	697	770	852	941	1209	1336	1477	1633	Hz
Generated frequency ${ }^{\circ}$)	697.2	771.0	851.1	943	1212.6	1337.5	1472.7	1638.4	Hz
deviation	2.75	1.374	-1.037	2.087	3.829	1.1	-2.898	3.307	$\%$

Figure 11
Minimal/maximal peak line voltage

[^54]Figure 12
Schematic of inputs $\overline{C D}$ (pin 7) and $\overline{C S D}$ (pin 8):

Equivalent of input $\overline{C D}$

$I_{B}=5 \mu \mathrm{~A}$ typ $R_{\overline{C D}}=5 k \Omega$ NOM.

Equivalent of input $\overline{C S D}$

Figure 13
Measuring circuit for output sum level $P_{\text {sor }}$ power enabled

Figure 14
Circuitry for measuring set-up time t_{s}, buttons pressed or binary mode

Fig. 15 b
Application example
PSB 8591 connected to a integrated speech circuit

Fig. 15 c
Principle blockdiagram of a key telephone using the $\overline{C D}$-function.
In the case of local supply failure the PSB 8591 is activited so that dialing is still possible.

PSB 8592 Dual Tone Multi Frequency Generator

Preliminary data

MOS-circuit

Features

- Advanced CMOS Technology
- Last number redial up to 22 digits
- Flash generation (register call)
- CEPT compatible without external filtering
- Standard low cost TV crystal $3,58 \mathrm{MHz}$
- High frequency accuracy (better than 0,4\%)
- Operation with single contact matrix keyboard, 20 buttons
- Multikey lockout and debouncing
- Binary data input
- Dual tone and single tone output
- Defined audio output time and interdigital pause
- Programmable access pause
- Low operation and standby current
- Mute output
- Chip enable input
- Internal power-on reset
- 20 Pin DIL package

Pin configuration top view

Pin	Funktion
18	$x 1$
17	$x 2$
16	$x 3$
15	$x 4$
19	$y 5$
20	$y 4$
1	$y 3$
2	$y 2$
3	$y 1$
6	Hook-Switch-Chipenable
13	Flash out
10	$V_{\text {Do }}$ dig
12	$V_{\text {ss }}$ dig
7	Pause 3,5,00
9	$V_{\text {DD }}$ ana
11	$V_{\text {ss }}$ ana
8	Freq. out
5	oz 1
4	oz 2

General description

The DTMF Generator PSB 8592 is specifically designed to implement a dual tone telephone dialing system. The device can interface direcily to a standard pushbutton telephone single-contact keyboard type $x-y$ matrix code and operates together with an integrated speech circuit. All necessary dual-tone frequencies are derived from the widely used standard TV crystal (3.58 MHz) providing very high accuracy and stability. The required sinusoidal waveform for the individual tones is digitally synthesized on the chip. The waveform so generated has very low total harmonic distortion. The votage reference is on speech circuit and regulates the signal levels of the dual tones to meet the recommended telephone specifications. The Buffer-Amplifier is also situated in the speech circuit, which provides the Overvoltage-Protection. Other applications of the device include radio and mobile telephones, remote control and process control.

Block diagram

Functional description

Internal Logic Description

After detecting a key closure the oscillator will start. When the oscillation is high enough to operate the first flip-flop the oscillator current will be reduced and the whole logic will be reset. The chip command starts first the logic-comparator to suppress the switch bouncing. After the protection time the valid code will be stored in the RAM. First the RAM will be reset, when the valid Code is a new dialed number. Then the code will be read out of the RAM and will program the two dividers of the sinewave synthesizer. This will be done continuously until the key is released, or as long as the sending timer (80 ms) works. In the meantime further digits can be stored in the RAM. After the sending timer has finished or the key contact opens the command starts the
pausetimer (80 ms), the same counter is used in both cases. At this point the command reads the next digit from the RAM or finishes the function of the device. The command also sets the MUTE output to high, when it is programming the dividers and sets the MUTE output to low before finishing the function of the device and will remain low until new sinewaves are generated. If the detected key closure is the redial function the commmand starts to readout the stored number from the RAM. If the detected key closure is a single tone mode, the command only programs the appropriate divider during key depression. The MUTE output has the same function as in dual-tone-mode without timing.

Mute output:

no key depressed

Tone Generation

When a valid key closure is detected or a digit is still in the RAM marked for access the command programs the high and low group dividers with appropriate divider ratios, so that the output of these dividers cycle at 26 times the desired high group and low group frequencies for a minimum of 80 ms .
The outputs of the programmable dividers drive two 6 stage un and down counters with connected sign bit. The symmetry pulses of the clock inputs to the two counters divided by 2 with the sign bit allows 26 equal time segments to be generated within each output cycle.
The 26 segments are used to synthesize digitally a stair-step waveform to approximate the sinewave function (see Figure) in one D/A converter for the high and low group frequency. To synthesize the two sinewave functions in one D/A-converter it is necessary that the converter works in under 600 ns because he must be multiplexed between the two functions. This is done by connecting a weighted capacitor ladder network between the outputs of the counter via sign bit circuit connected to $V_{\text {ret }}=V_{D D}$ or $V_{S S}$ and virtual ground. The peak-to-peak amplitude of the stairstep function is weighted by a connected sample and hold capacitor with a different value for the high and low frequency-group. After the sample and hold capacitor a low passfilter follows, one for the high and one for the low frequency group. The individual tones generated with different amplitudes and filtered separately are added linearly and drive an output buffer.

Single Tone Mode

A low group tone can be generated by activating the appropriate row inputs with ground. A high group tone can be generated by activating the appropriate column inputs with $V_{D D}$. In this mode no digit frequency combination will be activated and no digit will be stored in the RAM.
The generation time depends on the duration of the input function. A stored dial-number remains in the RAM.

Clock Generation

The device contains an oscillator circuit with the necessary parasitic capacitances on chip so that it is only necessary to connect the standard 3.58 MHz TV crystal across the OSCl and OSCO terminals to implement the oscillator function. The oscillator functions whenever a row or column input is activated until all timing functions are terminated.

Connection to keyboard

Keyboard Interface

The device can be connected directly on a X-Y Matrix Key-Board without protection against multi key function. Internal logic prevents the transmission of illegal tones when more than one key is pressed. Individual tones can be obtained by connecting a column input to $V_{D D}$ or grounding a row input. The inputs are static after key recognition, i.e. there is no noise generation as occurs with scanned or dynamic inputs. The interrupt of more than 4 ms on the key-inputs releases the Key-function in the recognition-circuit.
After this next digit will be detected.

Synthesized output waveforms

Aktiv Input	Output Frequency (Hz) specified		actual

Special Functions
Keyboard configuration (maximal)

The position of the 4 Special-Keys is in the device mask-programmable.

Redial-Function

If the redial-button is depressed after handset pickup, all stored numbers in the RAM including Pause- and Flash-function will be sent out. After termination and during Redial-Function it is possible to dial further digits, which will be sent after termination of the Redial-Function. Before starting the redial-function a superversion circuit checks the usefulness of the RAM contents.

Programming of Pause

If the telephonsystem needs pauses for example for trunksearching or dial-tone connection, the pauses must be stored in the RAM. To store such pauses only depress the Pause-Button, after this further digits can be dialled. The number of pauses is unlimited. The timing of the pause is programmable via the Pause-Programming-Pin.

There are 3 choice: Programming-Pin connected for 3 s ,
connected to ground 5 s ,
open unlimited Pause.

Go-Function

To Go-Button terminates the unlimited pause. Furthermore all timed pause-functions can be terminated earlier. With a transistor connected in parallel to the Go-Button-Switch the pause can be terminated by operating the transistor with a dial-tone recognition-circuit.

Flash-Function

The Flash-Function will be handled like the pause-function, it will be stored in the RAM. The number of Flashes is unlimited. The Flash-Output goes to $V_{D 0}$ for 90 ms and after one Flashfunction is completed the DTMF-Signaling will continue after a pause of 900 ms .

Special-Pulse-Pause-Timing for German-Post-Application in the Redial-Mode

In the Redial-Mode in German-Post-Application the timing must be 80 ms for sending DTMF and 240 ms for pause.
This feature is realized with a lightly modified device. The reason for this is, to keep the sending levels on carrier-wave-systems in the specified ratio.

BCD-Coding

The device has the possibility to operate with a BCD-Interface. The BCD-Inputs are the column pins y1 to $y 5$. To program the device for BCD-Code the row inputs $x 1$ and $x 4$ must be grounded in the same time, when the BCD-Code appears on the column inputs. All digits including pause and flash are stored in the RAM. The minimum timing will be 5 to 8 ms . A quick timing for BCD-Code-Input is possible with Test-Mode-Feature.

Hook-switch/Power-Down

The device is in Power-Down-Mode, when the Hook-Switch-Input is low. In this mode the pull-up resistances are disconnected on the 4 row-inputs and all inputs a passive. In this case the maximum ratings are valid on the inputs. When the Hook-Switch-Input is high $=\mathrm{V}_{D D}$, the row and column-inputs are activated and the device can be started via the inputs.

Option: Different exchanges have interruptions in the power feed of the line during trunk-searching time. Therefore it is difficult to detect the right onhook-switch function; we propose to provide our line-power-fault detection with the following function. After every interruption of line power feed, the device starts a timing of 320 ms , during this time the needed power comes from the buffercapacitor (only DTMF and PAUSE-Function). If the power feed is restored in the meantime, the device will ignore the interruption, after 320 ms , the device will accept the interruption as a exchange release and the stored digits are prepared for Redial. During the interruption the device accept dialing but can no send DTMF.

Electrical Characteristics

Absolute Maximum ratings:

		min	max	unit
DC Supply voltage	$V_{\text {oo }}-V_{\text {Ss }}$	-0.3	+7	V
Input voltage at any pin		-0.3	$V_{\text {Do }}+0.5$	V
Power Dissipation at $25^{\circ} \mathrm{C}$	P		10	mW
Operating Temperature	top	-25	+ 70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$t_{\text {stg }}$	-55	+125	${ }^{\circ} \mathrm{C}$

D.C. Characteristics

	Test conditions	min	typ	max	unit
Supply Voltage $=$ Reference Voltage					
One Key selected					
Operating current	One, Mute output Tonloaded	-	3.5	-	V
undby current	no key selected output unloaded	1	2	-	mA
		-	1	-	$\mu \mathrm{A}$
MUTE output resistance		4	5	7	$\mathrm{~K} \Omega$

A.C. Characteristics

	Test conditions	min	typ	\max	unit
Oscillator frequency		-	3.5795	-	MHz

Key closure recognition with $x-y$ key-board
case 1

case 2

Key 7

case 3

tp $=$ time protection (4ms)

Dual Tone Multi Frequency Generator

PSB 7510 LCD Controller

Advance information
MOS circuit
The PSB 7510 monolithic integrated circuit controls numeric LC displays in quadruple multiplex operation.

Due to "MICROPACK" outline (film carrier), the LC display units are extremely thin and compact.

Features

- CMOS Si-gate technology
- Supply voltage 2.5 V to 6 V
- Display. up to 20 digits, 7 segment
- MUX 4
- On-chip oscillator
- Cursor or blinking selectable
- Selection of one flag per digit available
- 2 different character sets
($0-9$, 3 bars, A, \cup blank or 0-9, 2 bars, A, b, c, d, blank)
- 64 pin MICROPACK

	Type	Ordering code	Quantity per order unit (items)	Minimum shipping quantity (items)	Maximum shipping quantity (items)
Series product film Sample punched out	PSB 7510	Q 67100-Z 155-A 101 7510	Q 67100-Z 155-A 103	5	$1500-2500$

For prototyping, limited quantities of components can be delivered as punched out MICROPACK, or soldered on a DIP 64 intermediate carrier.

Shipment of the series product will be on metal film rolls (CMOS!). These film rolls are the property of Siemens and must be returned when empty.

As the individual rolls do not contain a constant number of components, smaller or lager quantities are possible for partial shipments of large quantities.

Logic symbols

Pin designation

Pin No.	Symbol	Description
1	VDD	Positive supply voltage
2	VLCD	LCD input voltage
3	OUT RO	
\vdots	\vdots	Output row drivers
6	OUT R3	
7	OUT CO	
\vdots	OUT C39	Output column drivers
46	CS	Chip select
47	ADO	
48	AD4	Binary inputs for address and data
\vdots	RES	Reset
52	WR	Write data latch enable (non inverting)
53	ALE	Write data latch enable (inverting)
54	Address latch enable	
55	CRS	Blink and cursor enable
56	Vharacter ROM select	
57	MF	Ground
58	B/C	Selection of multiple flag
59	OSC1	Blink or cursor function select
60	OSC3	Oscillator inputs
61		

Figure 1
Block diagram

Functional description

(fig. 1 and pin description)
The PSB 7510 controls LCDs in a quadruple MUX mode.
The inputs ADO-AD4 accept the display address and display data in binary code. The display address is latched with ALE and used to address an internal RAM. The data is then stored in the internal RAM using WR control signal (fig. 2). The further translation of the display address and data in the RAM is asynchronous to the external control signals and is performed internally using an on-chip oscillator.
In each MUX step the character ROM translates the RAM contents and loads the result into a shift register. At the end of each MUX phase the shift register is latched and used to control the bidirectional switches for the LCD drive signals. The LCD voltages are generated from the input voltage $V_{\text {LCD }}$ by an integrated resistor network. Polarity as well as magnitude of the actual LCD voltage for the output analog drivers is provided by a low-resistive switching network.
The IC additionally features underscoring of selected digits by blinking or cursor.
Input B/C selects blinking or cursor and is enabled with blink or curso: enable BCE.

Logic type

Positive logic is used
$V_{D D}=$ " H " high level $=$ logical $1=$ positive voltage
$V_{S S}=$ "L" low level $=$ logical $0=$ negative voltage

1. Chip select CS

The PSB 7510 responds to external signals only when CS is activated.

2. Reset RES

Reset clears the display and fills the internal RAM with blanks.

3. Address and data input AD0...AD4

The address pending at ADO....AD4 is latched with the falling edge of ALE. After this address assigment, the display data pending at ADO...AD4 is read into the RAM with the trailing edge of WR (fig. 2). The inputs use binary code.

Figure 2

4. Multiple flag MF (internal high-ohmic connection with $V_{D O}$)

When $M F=1$, normal data input can be used to set one flag per digit at any desired position of the display. The character set automatically specified by MF = 1 (set I) comprises the characters $0 \ldots 9,3$ bars A, U and a blank. In this case, the character ROM select CRS input is "don't care".
The selected locations are specified by writing a " 1 " into the unused fifth data bit for this character set (set I).
When a character with a flag is changed, the flag must also be rewritten.

5. Select of character set CRS (internal high-ohmic pullup resistor)

Input CRS is used to select the character set I or II, when MF = 0
Set I: CRS $=0$
Set II: CRS $=1$
6. Blink or cursor function select B / C (internal high-ohmic pullup resistor with $V_{D D}$)

The input selects whether a digit is to be highlighted in the display by blinking or by a cursor.
Blinking: $B / C=1$
Cursor: $B / C=0$
When using the blink option with characters with a flag, the flag blinks as well. The cursor option is not available for characters with a flag.

7. Blink or cursor function enable BCE

$B C E=1$ enables the blinking or the cursor function (fig. 3). The address of the character in the display that is to be highlighted is latched with the falling edge of ALE. ALE must be followed by a WR signal.
Following data information is "don't care".
This function can only be stopped with $\mathrm{BCE}=0$.
Reset RES has no effect.
Characters can only be changed when this function is disabled. After a character change, the blinking or cursor address must be given again. The blink or cursor function is available only for one digit at a time.

Figure 3
Blink/cursor functions switched on

8. Oscillator inputs OSC 1, OSC 2 and OSC 3

The RC circuitry of these inputs determines the frequency of the oscillator. With an oscillator frequency of 25.6 kHz , the refresh rate is 40 Hz . (refer to fig. 4).

Figure 4
RC circuitry of oscillator inputs

Suggested values:

$$
\begin{aligned}
R & \approx 270 \mathrm{k} \Omega \\
c_{1}, c_{2} & \approx 47 \mathrm{pF}
\end{aligned}
$$

9. LCD voltage $V_{L C D}$

This voltage is applied from off-board and is divided by an integrated resistor network into the optimum interim values.

10. Output drivers

They provide the analog voltages for the LC display

Display input data

Data	Display		Address	Address code
	Set 1	Set II		
00000	0	0	0	00000
00001	1	1	1	00001
00010	2	2	2	00010
00011	3	3	3	00011
00100	4	4	4	00100
00101	5	5	5	00101
00110	6	6	6	00110
00111	7	7	7	00111
01000	8	8	8	01000
01001	9	9	9	01001
01010	bar above	bar above	10	01010
01011	bar center	bar center	11	01011
01100	bar below	A	12	01100
01101	A	B	13	01101
01110	U	C	14	01.110
01111	blank	D	- 15	01111
10000		blank	16	10000
			17	10001
			18	10010
			19	10011

Input of an undefined data word causes a blank to be displayed at the respective display location.

Figures 5

Liquid crystal matrix organization

Maximum ratings

Ambient temperature under bias
Storage temperature
Supply voltage referred to GND
All input and output voltages
Total power dissipation

$T_{\text {amb }}$	-25 to 70	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
$V_{D D}$	0 to 7	V
V	-0.3 to $V_{D D}+0.3$	V
$P_{\text {tot }}$	3	mW

DC characteristics

$T_{\text {amb }}=25^{\circ} \mathrm{C}, V_{\mathrm{SS}}=0 \mathrm{~V}, V_{D D}=2.5 \mathrm{~V}$ to 6 V
L input voltage (all inputs, OSC1)
H input voltage
(all inputs, OSC1)
Input leakage current
(all inputs, OSC1)
Operating supply voltage
LCD voltage
Supply current

Resistor network for LCD voltage

AC characteristics
$T_{\text {amb }}=25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, V_{S S}=0 \mathrm{~V}, V_{D D}=2.5 \mathrm{~V}$ to 6 V

ALE pulse width
Address set-up before ALE
Address hold from ALE Address latch cycle time

Control puise width WR, WR Data set-up before WR, WR
Data hold from WR, $\overline{W R}$
Write data cycle time
Oscillator frequency
Clock pulse width
Clock pulse rise time
Clock pulse fall time

$t_{\text {LL }}$		100
$t_{\text {AL }}$		120
$t_{\text {LA }}$	$V_{D D}=6 \mathrm{~V}$	50
$t_{\text {cra }}$		1
$\mathrm{tcc}^{\text {c }}$		100
tow		150
$t_{\text {wo }}$	$V_{D D}=6 \mathrm{~V}$	50
${ }_{\text {torw }}$		1
$f_{\text {osc }}$		
${ }^{\text {twh }}$	External clock	0.1
${ }_{\text {tith }}$	$\mathrm{f}_{\text {osc }} 25 \mathrm{kHz}$	
$t_{\text {THL }}$	$f_{\text {osc }} 25 \mathrm{kHz}$	

120
50
1
100
150
50
1

Waveforms

Delivery package

The MICROPACK PSB 7510 is generally delivered on metal film spools in metal cans. For prototypes, the IC can also be packed individually. MOS handling is necessary.

Substrate connections

For assembly of the MICROPACK, the connection points on the substrate must be coated with solder. This can be achieved by:

- galvanic deposition and melting
- screen printing and melting
- dip or wave tinning

Solder tin composition: $\mathrm{Sn} 60 / \mathrm{Pb} 40$
Thickness of the layer: approx. $15 \mu \mathrm{~m}$ (after melting)

Note: Necking of the connection leads is not required in the case of galvanically deposited $\mathrm{Sn} / \mathrm{Pb}$ and subsequent melting.

Assembly recommendations

All assembly recommendations are valid for the following substrate materials:

- epoxy resin
- hard-paper
- ceramic (thick-thin-film)
- flexible materials, as for example polyimide
- glass

I. Prototypes and small quantities

(e.g. up to approx. 1.0/year)

Recommended processing method:

Manual soldering with mini soldering iron

Principle

Required equipment and accessories

- devices for cutting and punching (only when processing from tape)
- forming tools
- temperature-regulated miniature soldering iron, certified for the soldering of MOS components
- stereo microscope (magnification 6... 40 x)
- suction tube or tweezers
- hair brush
- sodium-free flux according to DIN 8511 (e.g. pure colophonium dissolved in alcohol)
- cleaning agents (if required): e.g. Freon T-P 35 and TF
- bench top suited for the processing of MOS components

Soldering data

- soldering temperature at the soldering iron tip: $230^{\circ} \mathrm{C}$ max.
- soldering time: approx. 1 to 2 s

Procedure

Caution! The general rules for the processing of MOS components must be followed during all operations.
Cut MICROPACK leads free with hand tool (for components delivered on spools only).
Cutting dimensions: $9.2 \pm 0.05 \mathrm{~mm} \times 11.4 \pm 0.05 \mathrm{~mm}$

Caution! Only cut free along the dashed lines! Do not cut the 4 capton spacers.
Form MICROPACK leads with hand tool.
(For the relief of mechanical stress when mounted)

Forming dimensions

Dimensions in mm

Punch MICROPACK out of the film tape with hand tool (for components delivered on spools only)

Lay down the punched MICROPACK onto an electrically conductive surface vacuum pickup. Coat the mounting points on the substrate with flux (with brush by hand).
Position the MICROPACK and adjust by hand under stereo microscope (approx. 5 to $10 x$ magnification).
Solder the individual leads by hand with soldering iron under stereo microscope
Important! First solder two opposite leads. This prevents a shifting of the MICROPACK during the soldering process.

Cleaning (if required)
Move the substrates one after the other for approx. 1 minute in T-P 35 and TF for example (no ultrasonic cleaning).
Place the cleaning substrates on an electrically conductive surface or in appropriate trays.

II. Medium quantities

(e.g. up to approx. 30.0/year)

Recommended, assembling method:

Pulse soldering with manual device

Principle

Required equipment and accessories

As in l., only instead of the soldering iron:

Pulse soldering device

Pulse soldering head (dimensions according to the drawing)

Head holder
Control device (temperature, time)
Substrate holder (with micro-manipulator, if necessary)
Stereo microscope

Soldering data

Soldering temperature at the pulse soldering head: $230^{\circ} \mathrm{C}$ max.
Soldering time: approx. 2 s plus an additional holding time of 1 s until the solder becomes solidified.

Procedure

As described in I. including the positioning of the MICROPACK onto the substrate and the adjustment.

Further steps

Position the substrate with the positioned MICROPACK onto the substrate holder of the pulse soldering device.
Lower, adjust and set down the soldering head onto the MICROPACK leads manually, then trigger the soldering pulse.

After the $\mathrm{Pb} / \mathrm{Sn}$ solder becomes solidified (holding time, observation through stereo microscope) raise the soldering head and place the substrate onto an electrically conductive surface or in an appropriate tray.

Caution! Ceramic and glass substrates must be preheated and the stated temperatures must be maintained during the soldering process.
Ceramic: $150^{\circ} \mathrm{C}$
Glass: $\quad 125^{\circ} \mathrm{C}$
Neither preheating nor cooling may be sudden (danger of breakage).
Cleaning (if required) as in 1.

III. Large quantities

(e.g. approx. 30.0/year)

Recommended assembling method:

Semi-automatic pulse soldering

Principle

Substrate holder

Required equipment and accessories

Semi-automatic pulse soldering device including tools for cutting, forming and punching.
Stereo microscope (magnification 6 to 40x).
Flux according to DIN 8511 (e.g. pure colophonium dissolved in alcohol).
Cleaning agents (if necessary): Freon T-P 35 and TF.

Soldering data

Soldering temperature at the pulse soldering head $230^{\circ} \mathrm{C}$ max.
Soldering time: approx. 2 s plus an additional holding time of 1 s until the solder becomes solidified.

Procedure

Position the supply roll in the pulse soldering device.
Coat the mounting positions on the substrate with flux by hand or machine.
Position the substrate onto the substrate holder.
Caution! Ceramic and glass substrates must be preheated and the stated temperatures must be maintained during the soldering process.
Ceramic: $150^{\circ} \mathrm{C}$
Glass: $\quad 125^{\circ} \mathrm{C}$
Neither preheating nor cooling may be sudden (danger of breakage).
Machine-cut, form, punch and pre-adjust the MICROPACK.
Fine-adjust with micro-manipulator (under the stereo microscope or on a monitor).
Pulse-solder by machine.
Place the substrate onto an electrically conductive surface or in an appropriate tray.
Cleaning (if required): as in I.

IV. Very large quantities

(e.g. approx. 500.0/year)

Recommended assembling method:

Fully autornatic pulse soldering
Processing method as in III. but fully automatic

Final inspection

It is recommended that a final visual inspection of the mounted MICROPACKs be included after soldering or cleaning, respectively (under the stereo microscope, magnification 6 to $40 x$).

Important criteria

The solder transition between the MICROPACK leads and the substrate traces should be concave tapered.
The connections to the semiconductor IC must not be damaged.
The solder on all substrate leads must be visibly melted.
MICROPACK and substrate surface must not show signs of soiling after soldering or cleaning, respectively.

Replacement

Experience shows that MICROPACKs can be replaced as many as five times depending on substrate material and layer construction.

Desolder the MICROPACK with miniature soldering iron or hot air gun and tweezers. The leads are heated to the melting point of the $\mathrm{Pb} / \mathrm{Sn}$ solder and bent up with the tweezers. Plane the mounting spots and recoat with flux.
Solder in a new MICROPACK using one of the methods described.

Manufacturers of assembly equipment for MICROPACKs

The following companies supply equipment for manual, semi-automatic and fully-automatic assembling:

1. Weld-Equip Sales b.v.

Engelseweg 217
5705 AE Helmond
Netherlands
2. Fa. Farco Schweiz

Girardet 29
CH 2400 Le Locle
Phone (0041) 39318954
3. The Jade Cooperation

3063 Philmont Avenue
Huntingdon Vallery, Penna, 19006 USA

Fa. Weld-Equip Deutschland Josef-Retzer-Str. 47
8000 München 60
Phone (089) 883601/02

Jade Corp. USA, represented by Fa. BFI Assar-Gabrielssonstraße 1 B 6057 Dietzenbach-Steinberg Phone (06074) 27051

Data Conversion Components

SDA 5200 N

6-Bit Analog Digital Converter

Preliminary data

The SDA 5200 N is an ultrafast A/D converter with 6 bit resolution and overflow output. After cascading, it enables straightforward construction of 7 bit or 8 bit A/D converters, respectively (refer to application circuit).

Apart from a guaranteed strobe frequency of 100 MHz and excellent linearity, the SDA 5200 N has an outstanding analog bandwidth which - from the analog side - enables application up to the limit of the Nyquist theorem.

The SDA 5200 N is pin-compatible to the ICs SDA 5010, SDA 6020, and SDA 5200 S (differing output code in the overflow').

Main features

- Strobe frequency 100 MHz
- 6 bit resolution (1.6\%)
- Overflow output (7th bit) at simultaneous blocking of the remaining outputs \rightarrow simple cascading for 7 bit or 8 bit A/D converters
- Broad analog bandwidth (140 MHz)
- High slew rate of the input stages (typ. $0.5 \mathrm{~V} / \mathrm{ns}$)
- Processing of analog signals up to the Nyquist limit
- Linearity $\pm 1 / 4$ LSB
- No sample and hold required
- Dynamic driving of reference inputs for analog addition and multiplication
- Power dissipation 550 mW
- ECL compatible
- Logic compatible supply voltage +5 V ; -5.2 V
- DIC 16 package

The following versions ${ }^{1}$) are available upon request:

- IC with a non-linear conversion characteristic of a given characteristic curve
- IC with any output code (e.g. gray code)

Signal chart

Pin configuration (Ceramic 16 pin DIL package) (top view)

Pin	Symbol	Function
1	$\mathrm{O}_{\mathrm{S} 1}$	Digital ground 1
2	$+V_{\text {IR }}$	Positive reference voltage (+2 V)
3	$V_{\text {IA }}$	Analog signal input (max. $+2 \mathrm{~V} ;-3 \mathrm{~V}$)
4	$-V_{\text {IR }}$	Negative reference voltage (-3 V)
5	$V_{\text {IH }}$	Hysteresis control (0 V ... +2.5 V)
6	Strobe	Strobe input (ECL)
7	$+V_{\text {S }}$	Positive supply voltage (+5 V)
8	$-V_{s}$	Negative supply voltage (-5.2 V)
$9 . . .14$	$\mathrm{D}_{1} \ldots \mathrm{D}_{6}$	Data outputs, bits $1 . . .6$ (ECL)
15	D_{0}	Overflow output
16	$\mathrm{O}_{\mathrm{s} 2}$	Digital ground 2

Maximum ratings

Supply voltage
Supply voltage
Input voltages
Strobe
Hysteresis control
Voltage difference
Operating temperature
Storage temperature

Characteristics

Power supply

Pos supply voltage
Neg supply voltage
Current consumption
at $+V_{\mathrm{S}}=+5.0 \mathrm{~V} . V_{\text {IA }} \leqq-V_{\text {IR }}$
at $-V_{S}=-5.2 \mathrm{~V}, V_{I A} \leqq-V_{\text {IA }}$

Analog part

Signal input

Max. input voltage
$V_{\text {IAmax }}=I\left(+V_{\text {IRmax }}\right)-\left(-V_{\text {IRmin }}\right) I$
$V_{\text {IA }}$ for 6 bit resolution
$V_{\text {IA }}$ for $1 / 2$ LSB linearity
$V_{\text {IA }}$ for $1 / 4$ LSB linearity
Input current
at $V_{\text {IA }}=+V_{\text {IR }}$
at $V_{\text {IA }}<-V_{\text {IR }}$
Input capacitance
at $V_{\mathrm{IA}}<-V_{\mathrm{IR}}$

Reference inputs

Pos. reference voltage
Neg. reference voltage
Reference resistance

Digital part

Strobe input
H input voltage
L input voltage
H input current
L input current

	Lower limit B	Upper limit A	Unit
$+V_{\mathrm{S}}$	-0.3	6.0	V
$-V_{\mathrm{S}}$	-6.0	0.3	V
$V_{1 A^{\prime},}+V_{\mathrm{IR},}-V_{\mathrm{IR}}$	-3.5	2.5	V
$V_{\text {strobe }}$	$-V_{\mathrm{S}}$	0	V
V_{IH}	0	3.0	V
$\mathrm{O}_{\mathrm{S} 1}-\mathrm{O}_{\mathrm{S} 2}$	-0.5	0.5	V
$T_{\text {amb }}$	0	70	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$

	Lower limit B	typ.	Upper limit A	Unit
$+V_{\mathrm{S}}$	4.5	5.0	5.5	V
$-V_{\mathrm{S}}$	-5.7	-5.2	-4.7	V
$I_{\mathrm{S}+}$		50	80	mA
$I_{\mathrm{S}-}$		55	80	mA

$V_{\text {IAmax }}$	$-V_{\text {IRmin }}$		$\begin{aligned} & +V_{\text {IRmax }} \\ & 5 \end{aligned}$	V
		0.3		V
	1.2	0.6		V
	2.4	1.2		V
$I_{1 \mathrm{~A}}$		150	500	$\mu \mathrm{A}$
$I_{\text {IA }}$	-500		500	nA
$C_{1 A}$		25		pF

$+V_{\mathrm{IR}}$	-2.5	2	V	
$-V_{\mathrm{IR}}$	-3.0		1.5	V
$R_{\text {Ref }}$	96	128	195	Ω

Data outputs (100 Ω to -2 V)
H output voltage
L output voltage

$V_{I H}$	-1.1	-0.9	-0.6	V
V_{IL}	-2.0	-1.7	-1.6	V
$I_{I \mathrm{H}}$		6	50	$\mu \mathrm{~A}$
I_{IL}		6	50	$\mu \mathrm{~A}$

Characteristics (cont'd) Dynamic parameters		Lower limit B	typ.	Upper limit A	Unit
Aperture time	$t_{\text {d }}$		2		ns
Aperture jitter			25		ps
$t_{\text {strobe }}$			5		ns
Signal transition time	$t_{\text {d Hold }}$		12	17	ns
Signal transition time	$t_{\text {d Set }}$		12	17	ns
Strobe frequency	$f_{\text {strobe }}$	100			MHz
Max. slew rate			0.5		V / ns
Bandwidth (-3 dB)	B		140		MHz

Pulse diagram of strobe input and data outputs

Input current versus input voltage

Test circuit

1) Lines carried out as microstrip

Application circuit

7 bit A/D converter with SDA 5200 S and SDA 5200 N

SDA 5200 S

6-Bit Analog Digital Converter

Preliminary data
The SDA 5200 S is an ultrafast 6 bit A/D converter with overflow output. It has been designed as terminating device for a 7 bit or 8 bit A/D converter comprising several cascaded ICs (refer to application circuit), or exclusively for 6 bit operation.
Apart from a guaranteed strobe frequency of 100 MHz and excellent linearity, the SDA 5200 S has an outstanding analog bandwidth which - from the analog side - enables application up to the limit of the Nyquist theorem.

The SDA 5200 S is pin-compatible to the ICs SDA 5010, SDA 6020, and SDA 5200 N (differing output code in the overflow).

Main features

(3) Strobe frequency 100 MHz

- 6 bit resolution (1.6\%)
- Overflow output (7th bit)
(3) Broad analog bandwidth (140 MHz)
- High slew rate of the input stages (typ. $0.5 \mathrm{~V} / \mathrm{ns}$)
(1) Processing of analog signals up to the Nyquist limit
- Linearity $\pm 1 / 4$ LSB
© - No sample and hold required
- Dynamic driving of reference inputs for analog addition and multiplication
- Power dissipation 550 mW
- ECL compatible
- Logic compatible supply voltage +5 V ; -5.2 V
- DIC 16 package

The following versions ${ }^{1}$) are available upon request:
(1) IC with a non-linear conversion characteristic of a given characteristic curve
© IC with any output code (e.g. gray code)

Signal chart

Pin configuration (Ceramic 16 pin DIL package) (top view)

Pin	Symbol	Function
1	$\mathrm{O}_{\mathrm{S} 1}$	Digital ground 1
2	$+V_{\text {R }}$	Positive reference voltage (+2 V)
3	$V_{\text {IA }}$	Analog signal input (max. +2 V ; -3 V)
4	$-V_{\text {IR }}$	Negative reference voltage (-3 V)
5	$V_{\text {IH }}$	Hysteresis control (0 V ... +2.5 V)
6	Strobe	Strobe input (ECL)
7	$+V_{\text {s }}$	Positive supply voltage (+5 V)
8	$-V_{S}$	Negative supply voltage (-5.2 V)
$9 \ldots 14$	$\mathrm{D}_{1} \ldots \mathrm{D}_{6}$	Data outputs, bits 1 ... 6 (ECL)
15	D_{0}	Overflow output
16	$\mathrm{O}_{\mathrm{S} 2}$	Digital ground 2

Maximum ratings

Supply voltage
Supply voltage
Input voltages
Strobe
Hysteresis control
Voltage difference
Operating temperature
Storage temperature

Characteristics

Power supply

Pos. supply voltage
Neg. supply voltage
Current consumption
at $+V_{\mathrm{S}}=+5.0 \mathrm{~V}, V_{\text {IA }} \leqq-V_{\text {IR }}$
at $-V_{\mathrm{S}}=-5.2 \mathrm{~V}, V_{\mathrm{IA}} \leqq-V_{\mathrm{IR}}$

	Lower limit B	Upper limit A	Unit
$+V_{\mathrm{S}}$	-0.3	6.0	V
$-V_{\mathrm{S}}$	-6.0	0.3	V
$V_{\mathrm{IA},}+V_{\mathrm{IR},}-V_{\mathrm{IR}}$	-3.5	2.5	V
$V_{\text {strobe }}$	$-V_{\mathrm{S}}$	0	V
V_{IH}	0	3.0	V
$\mathrm{O}_{\mathrm{S} 1}-\mathrm{O}_{\mathrm{S} 2}$	-0.5	0.5	V
$T_{\text {amb }}$	0	70	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$

	Lower limit B	typ.	Upper limit A	Unit
$+V_{\mathrm{S}}$	4.5	5.0	5.5	V
$-V_{\mathrm{S}}$	-5.7	-5.2	-4.7	V
$I_{\mathrm{S}+}$		50	80	mA
$I_{\mathrm{S}-}$		55	80	mA

Analog part

Signal input

Max. input voltage
$V_{\text {IA } \max }=I\left(+V_{\text {IR max }}\right)-\left(-V_{\text {IR min }}\right) I$
$V_{1 A}$ for 6 bit resolution
$V_{1 A}$ for $1 / 2$ LSB linearity
$V_{1 A}$ for $1 / 4$ LSB lir, ${ }^{-1}$ arity
Input current
at $V_{\text {IA }}=+V_{\text {IR }}$
at $V_{\text {IA }}<-V_{\text {IR }}$
Input capacitance
at $V_{\text {IA }}<-V_{\text {IR }}$

$V_{\text {IAmax }}$	$-V_{\text {IRmin }}$		$\begin{aligned} & +V_{\mathrm{IR} \max } \end{aligned}$	V
		0.3		V
	1.2	0.6		V
	2.4	1.2		V
$I_{\text {IA }}$		150	500	$\mu \mathrm{A}$
$I_{\text {IA }}$	-500		500	nA
$C_{\text {IA }}$		25		pF

Reference inputs

Pos. reference voltage
Neg. reference voltage
Reference resistance

$+V_{\text {IR }}$	-2.5		2	V
$-V_{\text {RR }}$	-3.0		1.5	V
$R_{\text {ref }}$	96	128	195	Ω

Digital part

Strobe input
Hinput voltage
L input voltage
Hinput current
L input current
Data outputs (100Ω to -2 V)

H output voltage
L output voltage

$V_{I H}$	-1.1	-0.9	-0.6	V
$V_{1 \mathrm{~L}}$	-2.0	-1.7	-1.6	V
I_{IH}		6	50	$\mu \mathrm{~A}$
I_{IL}		6	50	$\mu \mathrm{~A}$

$$
\begin{array}{l|l|l|l|l}
V_{\text {aH }} & -1.1 & -0.9 & -0.7 & \mathrm{~V} \\
V_{\mathrm{aL}} & -2.0 & -1.7 & -1.5 & \mathrm{~V}
\end{array}
$$

Characteristics (cont'd)
Dynamic parameters
Aperture time
Aperture jitter
$t_{\text {strobe }}$
Signal transition time
Signal transition time
Strobe frequency
Max. slew rate
Bandwidth (-3 dB)

	Lower limit B	typ.	Upper limit A	Unit
t_{d}		2		ns
		25		ps
		5		ns
$t_{\mathrm{d} \text { Hold }}$		12	17	ns
$t_{\mathrm{d} \text { Set }}$		12	17	ns
$t_{\text {strobe }}$	100			MHz
		0.5		$\mathrm{~V} / \mathrm{ns}$
B		140		MHz

Pulse diagram of strobe input and data outputs

Input current versus input voltage

Test circuit

${ }^{1}$) Lines carried out as microstrip.

Application circuit

7 bit A/D converter with SDA 5200 S and SDA 5200 N

SDA 6020
 6-Bit Analog Digital Converter

The SDA 6020 is an ultrafast A/D converter with 6 bit resolution. In addition to a strobe frequency of typically 50 MHz and excellent linearity, the SDA 6020 has the following outstanding features:

- 6-bit resolution (1.6\%), simple expansion to 8 bits
- $\pm 1 / 4$ LSB linearity
- No sample and hold required
- Dynamic driving of reference inputs for analog addition and multiplication
- ECL compatible (ECL - TTL matching possible, e.g. with SH 100.255)
- Low power dissipation 450 mW
- Logic compatible supply voltage +5 V; -5.2 V

Maximum ratings

Supply voltage
Supply voltage
Input voltages
Strobe
Hysteresis control
Voltage difference
Operating temperature
Storage temperature

	Lower limit B	Upper limit A	Unit
$+V_{\mathrm{S}}$	-0.3	6.0	V
$-V_{\mathrm{S}}$	-6.0	0.3	V
$V_{\mathrm{IA},}+V_{\mathrm{IR}},-V_{\mathrm{IR}}$	-3.0	3.0	V
V_{Strobe}	$-V_{\mathrm{S}}$	0	V
V_{IH}	0	3.0	V
$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{D}}$	-0.5	0.5	V
$T_{\text {amb }}$	0	70	${ }^{\circ} \mathrm{C}$
T_{s}	-55	125	${ }^{\circ} \mathrm{C}$

Pin configuration

Pin	Symbol	Function
1	O_{A}	Anlog ground
2	$+V_{\mathrm{IR}}$	Positive reference voltage $(<+2.5 \mathrm{~V})$
3	$V_{I A}$	Analog signal input (max. $\pm 2.5 \mathrm{~V})$
4	$-V_{\mathrm{IR}}$	Negative reference voltage $(>-2.5 \mathrm{~V})$
5	$V_{I \mathrm{H}}$	Hysteresis control (O V to $+2.5 \mathrm{~V})$
6	Strobe	Strobe input (ECL)
7	$+V_{\mathrm{S}}$	Positive supply voltage (+6 V)
8	$-V_{\mathrm{S}}$	Negative supply voltage (-5.2 V)
$9-14$	$\mathrm{D}_{1}-\mathrm{D}_{6}$	Data outputs bit 1 to 6 (ECL)
15	D_{O}	Overflow
16	O_{D}	Digital ground

(Ceramic 16 pin DIL package)

Block diagram

Characteristics

Power supply

Pos. supply voltage
Neg. supply voltage
Current consumption
at $+V_{S}=+5.0 \mathrm{~V} ; V_{\mathrm{iA}} \leqq-V_{\mathrm{IR}}$
at $-V_{S}=-5.2 \mathrm{~V} ; V_{\mathrm{IA}} \leqq-V_{\mathrm{IR}}$

	Lower limit B	typ.	Upper limit A	Unit
$+V_{\mathrm{S}}$	4.5	5.0	5.5	V
$-V_{\mathrm{S}}$	-5.7	-5.2	-4.7	V
I_{S}		30	60	mA
I_{S}		55	80	mA

Analog part ($T_{\text {amb }}=25^{\circ} \mathrm{C},+V_{\mathrm{S}}=5 \mathrm{~V},-V_{\mathrm{S}}=-5.2 \mathrm{~V}$)

Signal input

Max. input voltage
$V_{\text {IA max }}=I+V_{\text {IR max }}--V_{\text {IR min }} I$
$V_{\text {IA }}$ for 6 bit resolution
$V_{\text {IA }}$ for $1 / 2$ LSB linearity
$V_{\text {IA }}$ for $1 / 4$ LSB linearity
Input current
at $V_{\text {IA }}=+V_{\text {IR }}$ in sample mode
at $V_{\text {IA }}=<-V_{\text {IR }}$ in sample mode
$-V_{\text {IR }}<V_{\text {IA }}<+V_{\text {IR }}$ in hold mode
Input capacitance
at $V_{\text {IA }}<-V_{\text {IR }}$

		$+V_{\text {IR } \max }$	V	
$V_{\mathrm{IA} \max }$	$-V_{\mathrm{IR} \text { min }}$		5	V
		0.3		V
	1.2	0.6		V
	2.4	1.2		V
I_{IA}				
I_{IA}	-10	200	800	$\mu \mathrm{~A}$
I_{IA}	-10		10	$\mu \mathrm{~A}$
C_{IA}			10	$\mu \mathrm{~A}$
		35		pF

Reference inputs

Pos. reference voltage
Neg. reference voltage
Reference resistance

$+V_{I R}$	-2		2.5	V
$-V_{I R}$	-2.5		2	V
$64 R$	96	128	256	Ω

Digital part

Strobe input

H input voltage
L input voltage
H input current
L input current

V_{IH}	-1.1	-0.9	-0.6	V
V_{IL}	-2.0	-1.7	-1.5	V
I_{IH}	5	30	100	$\mu \mathrm{~A}$
I_{IL}	5	30	100	$\mu \mathrm{~A}$

Data outputs (100Ω to -2 V)
H output voltage
L output voltage

$$
\begin{array}{l|l|l|l|l}
V_{\mathrm{OH}} & -1.1 & -0.9 & -0.7 & \mathrm{~V} \\
V_{\mathrm{OL}} & -2.0 & -1.7 & -1.5 & \mathrm{~V}
\end{array}
$$

Dynamic parameters
Aperture time
Aperture jitter
Strobe
Signal transition time
Signal transition time
Scanning frequency

		2		ns
t_{d}		25		ps
$t_{\text {Strobe }}$	15	8		ns
t_{THLQ}		12	20	ns
t_{TLHQ}		12	20	ns
$t_{\text {Strobe }}$	50			MHz

Pulse diagram of strobe inputs and data output

Test circuit

[^55]
Circuit example for expansion to 7 bit

Circuit example for expansion to $\mathbf{8}$ bit

SDA 8005

8-Bit/7 ns Analog Digital Converter

Preliminary data
Bipolar circuit
The SDA 8005 is a high speed D/A converter with excellent dynamic characteristics, it offers the following features:

- Settling time typ. 7 ns
- Extremely small glitch area
- Digital input register
- Data inputs 10 K and 100 K ECL compatible
- Single power supply: -5.2 V
- Deglitch control input

Functional description

The SDA 8005 is a high speed 8 bit D/A converter with ECL compatible data and strobe inputs.
The data word is received in the input buffer by the low active strobe. An external reference voltage source with a reference resistor is needed. At a reference current of 2.5 mA the full scale output current amounts to 40 mA .

The output glitches can be minimized by adjusting the deglitch input voltage between -2.3 V and -2.9 V . The deglitch input can also be left open.

Block diagram

Pin configuration (Ceramic 16 pin DIL package) top view

Pin designation

Pin No.	Symbol	Function
1	GND	Ground
2	$I_{\text {ref }}$	Reference current input
3	Degl	Deglitch input
4	Str	Strobe
5,6	$+I,-I$	Complementary current outputs $+I:$ zero current if DO to D7 are high
7	C	Stabilization
8	$V_{\text {EE }}$	Supply voltage -5.2 V
$16 \ldots 9$	DO...D7	Data input 0 (LSB) to 7 (MSB)

Maximum ratings

Supply voltage
Input voltages
Strobe input voltage
Deglitch input voltage
Output voltages, $+I,-I$
Juhction temperature
Storage temperature
Ambient temperature
Thermal resistance

	Lower limit B	Upper limit A	
V_{EE}	-6.0	0.3	V
$V_{\mathrm{DO} \ldots \mathrm{D7}}$	-3.0	0	V
V_{Str}	-4.0	0	V
$V_{\text {Degl }}$	-5.2	0	V
$V_{\mathrm{QII},} V_{\mathrm{Q} \text { I- }}$	-1.9	5	V
T_{j}		125	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$
$T_{\text {amb }}$	-25	85	${ }^{\circ} \mathrm{C}$
R_{thJU}		85	$\mathrm{~K} / \mathrm{W}$

Characteristics
 Analog outputs
 Static performance

Ratio full scale output current to reference current
Absolute unadjusted error Integrale nonlinearity
Differential nonlinearity
Full scale temperature coefficient
$-25^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$
$+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Zero code output current
Full scale output current
Output voltage range
Supply voltage sensitivity
Dynamic performance')
Output rise time
Output settling time
Adjusted worst case glitch area
Digital crosstalk
Data
Strobe

	Lower limit B	typ.	Upper limit A	
$I_{\text {aFS }} / I_{\text {ref }}$		16		
ERR	-1		+12)	\%
INL		0.40 ${ }^{1}$	0.552)	LSB
D NL		0.61)	12)	LSB
TC	80		120	ppm/ ${ }^{\circ} \mathrm{C}$
TC	50		80	ppm/ $/{ }^{\circ} \mathrm{C}$
I_{00}		61)	$\left.30^{3}\right)$	$\mu \mathrm{A}$
$I_{\text {Q FS }}$			402)	mA
V_{0}	-1.4		+5	V
$S_{\text {vs }}$		0.031)	0.04²)	\%/\%

t_{ra}		
t_{sa}		
$a_{\text {Data }}$ $a_{\text {Strobe }}$$\|$	1.3 7 80 $\left.15^{4}\right)$ $\left.30^{4}\right)$	ns ns pVs pVs pVs

[^56]Characteristics
Digital inputs DC characteristics
H input voltage
L input voltage
Input capacitance D7
D6
D0 to D5
H input voltage
D6
D0 to D5

Input coding
Switching characteristics
Setup time

Hold time

Strobe time
(see Fig. 1)
Deglitch input
Deglitch input current at $V_{\text {DegI }}=2.3 \mathrm{~V}$
at $V_{\text {Degl }}=2.9 \mathrm{~V}$
Deglitch voltage range
Deglitch voltage (not connected)

Power supply ${ }^{1}$)

Supply voltage
Supply current
Power consumtion

	Lower limit B	typ.	Upper limit A	
$V_{\text {IH }}$	-1.105		-0.810	V
$V_{\text {IL }}$	-1.850		-1.505	V
C_{107}		1.2		pF
C_{106}		0.8		pF
$C_{100 \ldots \mathrm{Ib}}$		0.5		pF
$C_{15 \mathrm{Str}}$		1.5		pF
$I_{\text {IH D7 }}$		25		$\mu \mathrm{A}$
$I_{\text {IH D } 6}$		12		$\mu \mathrm{A}$
$I_{\text {IH DO } \ldots \text {..D5 }}$		6		$\mu \mathrm{A}$
$I_{\text {H Str }}$		75		$\mu \mathrm{A}$
		binary		

Comments

1) Measured at $25^{\circ} \mathrm{C}$
$V_{\mathrm{EE}}=-5.2 \mathrm{~V}$
Full scale output current $I_{\mathrm{Q}}=20 \mathrm{~mA}$
Output loads $=50 \Omega$
2) Quaranteed at $-25^{\circ} \mathrm{C}$ bis $+85^{\circ} \mathrm{C}$
-5.46 V to -4.94 V
Full scale output current $I_{\mathrm{Q}}=1 \mathrm{~mA}$ to 40 mA
3) Measured at $100^{\circ} \mathrm{C}$

Full scale output current $I_{\mathrm{Q}}=20 \mathrm{~mA}$
$V_{\text {Degl }}=-2.3 \mathrm{~V}$
$V_{E E}=-5.2 \mathrm{~V}$
4)
$V_{\mathrm{H}}=-0.95 \mathrm{~V}$
$V_{\mathrm{IL}}=-1.6 \mathrm{~V}$
Input signal rise time $t_{\mathrm{r}}=3 \mathrm{~ns}$
Switching all inputs at the same time in the same direction (worst case)
The crosstalk can be reduced by using other input signals.

Pulse diagram of the inputs

Figure 1

Terminology

Absolute unadjusted error

The full scale output current with the same reference voltage and reference resistance is different for different chips. The variation results from the deviation of technology parameters. The specification is the maximum deviation from an average value.

Integral nonlinearity

The integral nonlinearity is the maximum deviation of the output from a linear regression over the output values of all possible input codes.

Differential nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent input codes. A specified differential nonlinearity of ± 1 LSB max. over the operating temperature range ensures monotonicity.

Supply voltage sensitivity

The supply voltage sensitivity is the dependence of the analog output current on the supply voltage $V_{\text {EE }}$ with all other parameters constant. It is specified in \% per \%.

Output rise time

The output rise time is the time between the 10% value and the 90% value of V_{Q} max. at the leading edge.

Output settling time

The output settling time is the time from the trailing strobe edge (50% point) to the time when the analog output signal is within $\pm 1 / 2$ LSB of the final value.
The specified value is measured by using a comparator to detect the entry time point (see fig. 2).

Adjusted worst case glitch area

Glitches which arise from input code switching can be minimized by varying the deglitch input voltage.
The specified value can be measured under following conditions:

- input code change from 01111111 to 10000000 and viceversa
- input data are received with strobe
- deglitch input voltage is optimized for switching in both directions

Figure 2 shows the test circuit and the timing diagram for the determination of the output settling time.

Figure 2

Application instructions

- Board with at least one ground area in its entirety
- Ground-pin should be connected nearby the large ground area by using contact studs or by direct soldering.
- Voltage supply must be blocked directly at the $V_{E E-}$-pin by using a 100 nF ceramic capacitor (preferably use a chip capacitor).
- The analog outputs should be loaded with 50Ω as near as possible at the package.
- The DC voltages ($V_{E E}, D E G L, V_{\text {ref }}$) have to be checked to ensure low ripple and noise.
- To minimize the crosstalk of Strobe to the output you can place a voltage divider at the Strobe input to build up an RC filter in combination with the input capacitance (see figure 4).
- To connect the D/A-converter output to the 50Ω input of the scope, the line has to be terminated on the D/A-converter side to prevent reflections. The ground-connection between the board and the instrument should have a very low impedance.
The ground-connection between the board and the instrument should have a very low impedance.

Figure 3 shows an application where the output signal is transmitted over a 50Ω line to a receiver with a 50Ω input, such as a high speed oscilloscope.
Iref may be adjusted by varying $V_{\text {ref }}$ between 0 V and 2.5 V , when the reference resistor ($R_{\text {ref }}$) is $1 \mathrm{k} \Omega$.
Alternatively, the $R_{\text {ref }}$ value can be changed with $V_{\text {ref }}$ constant.

Figure 3

Here the strobe input is connected to a voltage divider, which forms an RC filter together with the input capacitance, and in this way reduces the digital crosstalk from strobe to output. The 100Ω output line from $+I$ is terminated on both ends.

The full scale output current in this case also allows an acceptable voltage range.

Figure 4

SDA 8010
 8-Bit Analog Digital Converter

Preliminary information

Bipolar circuit
The SDA 8010 is an ultra-fast A/D converter according to the parallel principle, with a resolution of 8 bits and a guaranteed strobe frequency of 100 MHz . The component is comprised of 11,000 elements and is produced in a highly modern bipolar technology. The SDA 8010 features a wide analog bandwidth, low input capacitance and an input voltage range symmetrical to ground.

Main features

- 100 MHz strobe frequency
- 8 bit resolution
- Excellent large signal bandwidth
- High input stage slew rate
- Symmetrical input voltage range
(2) Compatible with ECL 100 K
. Low power dissipation approx 1.3 W only
(2) Logic compatible supply voltage -4.5 V ; +5 V

Pin configuration (Ceramic 24 pin DIL package) top view

Pin designation

Pin No.	Symbol	Function
1	V_{EE}	Neg. supply voltage, analog part
2	GND	Ground
3	V_{CC}	Pos. supply voltage, analog part
4	Str 1	Strobe signal 1
5	$+V_{\text {ref }}$	Pos. reference voltage
6	$+V_{\text {ref, s }}$	Pos. reference voltage sense
7	A IN	Analog input
8	A IN	Analog input
9	$V_{\text {ref, M }}$	Center tap of voltage divider
10	$-V_{\text {ref }}$	Neg. reference voltage
11	$-V_{\text {ref, s }}$	Neg. reference voltage sense
12	Str 2	Strobe signal 2
13	$V_{\mathrm{EE}, \mathrm{D}}$	Neg. supply voltage, digital part
14	$V_{\mathrm{CC}, \mathrm{D}}$	Pos. supply voltage, digital part
15	GND	Ground
$16-23$	DO...D7	Digital output signal
24	GND 1	Ground connection for output emitter fallower

Functional description

The SDA 8010 is an ultra-fast AD-Converter according to the parallel priciple and consists of a field of 255 comparators, three encoding stages and the output drivers (see block diagram).
The analog signal is routed via input A IN in parallel to all comparators and compared with 255 reference voltages spread linearly over the input voltage range. The result of this comparison, pending in the so-called thermometer code, is converted into the binary representation by way of three encoding stages, and is available as a digital signal with ECL level at outputs D0...D7.

The reference voltages are generated internally by means of a resistance divider. The potentials at its end points are set via the reference voltage inputs $+V_{\text {ref }}$ and $-V_{\text {ref }}$, and determine the input voltage range, which is resolved with a resolution of 8 bit. Additional potential terminals, $+V_{\text {ref, sense }}$ and $-V_{\text {ref, sense, }}$ that enable a precise adjustment of the input voltage, independent of transition resistances, according to the principle of a Kelvin connection are provided at the reference voltage inputs according to this resolution. The assignment of the input signal, referenced to 1 LSB $=I+V_{\text {ref }} I+I-V_{\text {ret }} / 256$, to the digital output code is shown in the signal table. As no overflow function is provided, the output signal will remain at a value of 255 after the input voltage range is exceeded.
The individual comparators consist of a differential amplifier as input, and a register stage, operating in master-slave operation, which are activated alternately by strobe signals Str 1 and Str 2. The sequence of the conversion process is described according to the pulse diagram.
During the L-phase of signal Str 1, the analog signal is compared with the reference voltages. With the rising edge of Str 1 , the result of the comparison is passed into the first register stage and held there until the falling edge of the strobe. Toward the end of this hold period $t_{H 1}$, the signal is accepted into the second flipflop with the L phase of the second strobe Str 2, and stored with the rising edge. After a delay period t_{d} this data is pending at the output.
The validity range $t_{\mathrm{v}, \mathrm{a}}$ of the output data depends on the duty cycle set at Str 2 . In general, data will also be pending outside this interval $t_{\mathrm{v}, \mathrm{Q}}$. As, however, the second comparator latch is transparent in this phase, rise processes of the first stage could reach the output for especially critical settings.
Essential for the analog features is that the input differential amplifier of the comparators is free of current at no time during the strobe process, so that on the one hand, an coupling of the strobe on to the input is prevented, and on the other hand, excellent large signal bandwidths are achieved. The low input capacitance of 30 pF and the input voltage range symmetrical about 0 V , in many cases permit the operation of the converter in 50Ω systems. The dual design of the analog input AIN assures a low inductance lead and also plays a part in achieving a flat frequency response up to 50 MHz .
Connection $V_{\text {ref, }}$ m serves to HF decouple the reference voltage divider. The use of two supply systems $V_{C C}, V_{E E}$ and $V_{C C}, V_{\mathrm{EE}, \mathrm{D}}$ and an additional ground lead GND 1 for the output stages reduces the cross influence of analog and digital signal to a minimum. Additionally, the separate return of the analog signal ground lead, the so-called analog ground is recommended (see test circuit).

Pulse diagram

Transfer characteristic and truth table

Maximum ratings

Pos. supply voltages
Neg. supply voltages
Analog input voltages

Digital input voltages
Junction temperature

Thermal resistance

Junction-air (without dissipator)

Characteristics

Current supply

Pos. supply voltage
Neg. supply voltage
Current consumption
at $V_{\mathrm{cc}}=V_{\mathrm{cc}, \mathrm{D}}=5 \mathrm{~V}$
Current consumption
at $V_{\mathrm{EE}}=V_{\mathrm{EE}, \mathrm{D}}=4.5 \mathrm{~V}$

Analog part

Reference inputs
Pos. reference voltage
Neg. reference voltage
Reference resistance

Signal input

Input voltage range
(peak to peak)
for 8 bit resolution
for 1/2 LSB linearity
Large-signal bandwidth ${ }^{1}$)
Slew rate of input signal
Input capacity
Input current ${ }^{2}$)

	Lower limit B	Upper limit A	
$V_{\text {CC }}, V_{\text {CC, D }}$	-0.3	6.0	V
$V_{\mathrm{EE},} V_{\mathrm{EE}, \mathrm{D}}$	-6.0	0.3	V
$+V_{\text {ref, }}-V_{\text {ref }}$	-2.5	1.5	V
V_{AIN}			
$V_{\mathrm{Str} 1}, V_{\mathrm{Str} 2}$	-3.5	0	V
T_{i}		125	${ }^{\circ} \mathrm{C}$
$R_{\text {thJA }}$		50	$\mathrm{~K} / \mathrm{W}$

	Lower limit B	typ.	Lower limit A	
$V_{\mathrm{CC}}, V_{\mathrm{CC}, \mathrm{D}}$	4.75	5	5.25	V
$V_{\mathrm{EE},}, V_{\mathrm{EE}, \mathrm{D}}$	-4.75	-4.5	-4.25	V
$I_{\mathrm{CC}}+I_{\mathrm{CC}, \mathrm{D}}$		180		mA
$I_{\mathrm{EE}}+I_{\mathrm{EE}, \mathrm{D}}$		90		mA

$+V_{\text {ref }}$	-1		1	V
$-V_{\text {ref }}$	-2		0	V
$256 R$		130		Ω

Characteristics

Digital part Strobe inputs
H input voltage
L input voltage
Max. Strobe frequency ${ }^{3}$)
Strobe time 1
Aperture delay ${ }^{4}$)
Strobe time 2
Setup time
Strobe ${ }^{5}$)
Hold time
Strobe ${ }^{5}$)

Characteristics

Data outputs

H output voltage
L output voltage
Signal transition time
Time of valid output data ${ }^{6}$)

	Lower limit B	typ.	Upper limit A	
$V_{\text {IH }}$	-1.165			V
V_{IL}			-1.475	V
$f_{\text {Str, max }}$	100			MHz
$t_{\text {Str 1 }}$		4		ns
$t_{\mathrm{d}, \mathrm{ap}}$		3		ns
$t_{\text {Str 2 }}$		2		ns
$t_{\text {Setup, Str 2 }}$	0			ns
$t_{\text {Hold, Str 2 }}$	3			

	Lower limit	typ.	Upper limit	
V_{QH}	-1.025			
V_{QL}			V	
$t_{\mathrm{d}, \mathrm{Q}}$	12	-1.620	V	
$t_{\mathrm{V}, \mathrm{a}}$		5	ns	
		5		ns

Comments

1) The large signal bandwidth is measured at a strobe frequency of 100 MHz with a sineshaped input signal and with an amplitude of (peak to peak) 2 V in a 50Ω system. The bandwidth is that input frequency at which either the amplitude value in the output signal has decreased by 1 dB over the low frequency value, or at which significant errors occur in the output code. If the voltage drop caused by the input capacitance being driven with 50Ω is regulated out, or if a lower-ohmic input is used, the input bandwidth increases further.
${ }^{2}$) The input current is linearly dependent on the input voltage. The stated value represents the input current at $V_{\text {AIN }}=+V_{\text {ref }}$.
2) That strobe frequency up to which a sine-shaped input signal with an amplitude of (peak to peak) 2 V and a frequency of 50 MHz is reproduced without significant errors in the output code. The increase in signal-to-noise ratio with increasing analog frequency as a result of jitter of the sampling point and dynamic distortion is not considered.
${ }^{4}$) As the sampling of the analog signal occurs with the edge of signal Str 1, no mention can be made here of an aperture period, but rather only of a delay ($t_{\mathrm{d} \text {, ap }}$) of the sampling point.
${ }^{5}$) This data describes a range for the adjustment of signal Str 2. The most favourable behavior of the output signals is achieved when the L-phase of signal Str 2 is selected as short as possible and placed at the end of the H-phase of signal Str 1.
$\left.{ }^{6}\right)$ At $f_{\text {Str }}=100 \mathrm{MHz}, t_{\text {Str } 2}=2 \mathrm{~ns}$ and $t_{\text {Setup. Str } 2}=0$.

Test circuit

Application example

TDA 4600-2/TDA 4600-2D Control IC for Switched-Mode Power Supplies

Bipolar IC
In addition to their use with TV receivers and video recorders, the ICs TDA 4600-2 and TDA 4600-2 D can be applied in power supplied of hi-fi sets and active speakers due to their wide operational ranges and superior voltage stability during high load changes.

Features

- Direct driving of switching transistor
- Low start-up current
- Reversing linear overload characteristic
- Collector current - proportional to base-current input

Maximum ratings

Supply voltage	V_{9}	20	v
Voltages			
reference output	V_{1}	6	V
identification input	v_{2}	± 0.6	v
controlled amplifier	V_{3}	3	V
collector current simulation	V_{4}	7	V
blocking input	V_{5}	7	V
base current cut-off point	V_{7}	V_{9}	V
base current amplifier output	V_{8}	V_{9}	V
Currents			
feedback, zero passage	I_{12}	-3 to 3	mA
controlled amplifier	I_{13}	-3 to 3	mA
collector current simulation	I_{14}	5	mA
base current cut-off point	$I_{\text {a }} 7$	1.5	mA
base current amplifier output	$I_{\text {q } 8}$	-1.5	mA
Thermal resistances			
junction-air TDA 4600-2	$R_{\text {th JA }}$	70	K/W
junction-case TDA 4600-2	$R_{\text {th Jc }}$	15	K/W
junction-air TDA 4600-2 D1)	$\mathrm{R}_{\text {th JA }}$	60	K/W
junction-air TDA 4600-2 D2)	$\mathrm{R}_{\text {th }} \mathrm{JA} 1$	44	K/W
Junction temperature	T_{1}	125	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$

Operating range

Supply voltage range
Case temperature range TDA 4600-2
Ambient temperature range TDA 4600-2 D3)

V_{9}	7.8 to 18	V
$T_{\text {case }}$	0 to 85	${ }^{\circ} \mathrm{C}$
$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$

[^57]Characteristics
$T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, according to test circuit 1 and diagram min

Start operation

Current consumption (V_{1} not yet switched on)
$V_{9}=2 \mathrm{~V}$
$V_{9}=5 \mathrm{~V}$
$V_{9}=10 \mathrm{~V}$

Switching point for V_{1}

diagram	min	typ	\max	
I_{9}		1.5	0.5	mA
I_{9}		2.4	3.0	mA
I_{9}		11.8	3.2	mA
V_{9}	11		12.3	V

Normal operation $\left(V_{9}=10 \mathrm{~V} ; V_{\text {control }}=-10 \mathrm{~V} ; V_{\text {clock }}= \pm 0.5 \mathrm{~V} ; f=20 \mathrm{kHz}\right.$; duty cycle 1:2) after switch on

Current consumption $V_{\text {control }}=-10 \mathrm{~V}$	I_{9}	110	135	160	mA
$V_{\text {control }}=0 \mathrm{~V}$	I_{9}	55	85	110	mA
Reference voltage $I_{1}<0.1 \mathrm{~mA}$	V_{1}	4.0	4.2	4,5	V
$I_{1}=5 \mathrm{~mA}$	V_{1}	4.0	4.2	4.4	V
Temperature coefficient of reference voltage	$T C_{1}$		10^{-3}		1/K
Feedback voltage	$V_{2}{ }^{*}$)		0.2		V
Control voltage $V_{\text {control }}=0 \mathrm{~V}$	V_{3}	2.3	2.6	2.9	V
Collector current simulation voltage					
$V_{\text {control }}=0 \mathrm{~V}$	$V_{4}{ }^{*}$)	1.8	2.2	2.5	V
$V_{\text {control }}=0 \mathrm{~V} /-10 \mathrm{~V}$	$\Delta V_{4}{ }^{*}$)	0.3	0.4	0.5	V
Blocking input voltage	V_{5}	5.5	6.3	7.0	V
Output voltage $V_{\text {control }}=0 \mathrm{~V}$	$V_{\mathrm{q} 7}{ }^{*}$)	2.7	3.3	4.0	V
$V_{\text {control }}=0 \mathrm{~V}$	$V_{\mathrm{q} 8^{*}}{ }^{*}$	2.7	3.4	4.0	V
$V_{\text {control }}=0 \mathrm{~V} /-10 \mathrm{~V}$	$\Delta V_{\mathrm{q}}{ }^{*}$)	1.4	1.8	2.2	V

Safety operation ($V_{9}=10 \mathrm{~V} ; V_{\text {control }}=-10 \mathrm{~V} ; V_{\text {clock }}= \pm 0.5 \mathrm{~V} ; f=20 \mathrm{kHz}$; duty cycle $1: 2$)
Current consumption ($V_{5}<1.8 \mathrm{~V}$)
Switch-off voltage ($V_{5}<1.8 \mathrm{~V}$)
Ext. blocking input enable voltage disable voltage Supply voltage
for V_{8} blocked $\quad V_{\text {control }}=0 \mathrm{~V}$
Supply voltage for V_{1} off
(while further decreasing V_{9})

I_{9}	14	22
V_{q7}	1.3	1.5
V_{4}	1.8	2.1
V_{5}		2.4
V_{5}	1.8	2.2
V_{9}	6.7	7.4
ΔV_{9}	0.3	0.6

28	mA
1.8	V
2.5	V
2.7	V
	V
7.8	V
1.0	V

Characteristics

$T_{\text {amb }}=25^{\circ} \mathrm{C}$, according to test circuit 2
Switch-on time (secondary voltages)
Voltage change
S3 $=$ closed $\left(\Delta N_{3}=20 \mathrm{~W}\right)$
Sound output power
$\mathrm{S} 2=$ closed $\left(\Delta \mathrm{N}_{2}=15 \mathrm{~W}\right)$
Standby operation
(secondary useful load $=3 \mathrm{~W}$)
S1 = open

$t_{\text {on }}$	350	450	ms	
ΔV_{2}		100	500	mV
ΔV_{2}				
ΔV_{2}	700			mV
f	7000	30	V	
$N_{\text {primary }}$		75	12	kHz
	10	VA		

The cooling area should be optimized according to the limit values ($T_{\mathrm{amb}}, T_{\mathrm{J}}, R_{\mathrm{th} J c}, R_{\mathrm{thjA}}, R_{\mathrm{thjA}}$)

[^58]
Measurement circuit 1

Circuit description

During start-up, normal and overload operations the TDA 4600-2; or -2D regulates, controls and protects the switching transistor installed in the flyback converter power supplies.

I) Start-up operation

The start-up operation is divided into three consecutive phases:

1. An internal reference voltage is built up which supplies the voltage regulator and effects the charging of the coupling electrolytic capacitor and the switching transistor. During these procedures an I_{9} current less than 3.2 mA will be maintained, if the supply voltage V_{9} does not exceed $\approx 12 \mathrm{~V}$.
2. At $V_{9} \approx 12 \mathrm{~V}$ an internal reference voltage $V_{1}=4 \mathrm{~V}$ is suddenly released to provide all IC components with the exception of the control logic with a thermally stable and overload-resistant current.
3. In concurrence with the release of the reference voltage the control logic is activated by an additional stabilization circuit, and the IC is now ready for operation.
Above sequential start-up phases ensure the charging of the switching transistor by the coupling electrolytic capacitor and subsequent precision switching.

II) Normal operation

Zero passages of the feedback coil are registered at pin 2 and forwarded to the control logic.
At pin 3 (input control, overload, and standby recognition) the rectified amplitude variations of the feedback coil are applied. The regulating (control) amplifier operates with an input voltage of about 2 V and a current of about 1.4 mA . According to the internal reference voltage, the operating region of the regulating amplifier will be defined by the collector current simulation pin 4 and the overload recognition. The simulation of the collector current is generated by an external RC network at pin 4 and an internally set voltage level. By increasing the capacitance (10 nF), the collector current of the switching transistor is increased as well and establishes the desired control range. The control range extends between a 2 V clamped dc voltage and an ac voltage rising as a sawtooth wave, which may vary up to a maximum amplitude of 4 V (reference voltage).
By reducing the secondary load to 20 W , the switching frequency increases to about 50 kHz at an almost constant pulse duty factor (on-time to period approx. 1/3). During additional secondary load reduction to about 1 W , the switching frequency will change to approx. 70 kHz , while the pulse duty factor falls to approx. 1/11. At the same time, the collector peak current falls below 1 A .
The output level of the regulating (control) amplifier, the overload recognition, and the collector current simulation are compared in the trigger and the control logic is instructed accordingly. Pin 5 will provide additional blocking alternatives, i.e. the output at pin 8 is blocked at a voltage of equal to or less than 2.2 V at pin 5.
Based on the start-up circuit, the zero crossing identification, and the trigger-activated release, the control logic flipflops are set which control both the base current amplification and shut-down. The base current amplifier forwards the sawtooth voltage V_{4} to pin 8 . Also, a current feedback with an external resistance of $R \approx 0.68 \Omega$ is inserted between pin 8 and pin 7. The resistance value determines the maximum amplitude of the base current for the switching transistor.

III) Safety features

The base current shut-down, released by the control logic, clamps the output of pin 7 at 1.6 V and thus blocks the driving of the switching transistor. This preventive method will go into effect, if the voltage at pin 9 falls below typ. 7.4 V or if voltages of less than typ. 22 V are present at pin 5 . In case of short-circuited secondary windings in the SMPS, the fault condition will be continuously monitored by the IC.
With the load completely removed from the secondary winding in the SMPS, the IC is set at a small pulse duty factor. The total power consumption of the SMPS is kept below $n=6$ to 10 W during both operating conditions. After the output has been blocked at a supply voltage V_{9} of less than or equal to typ. 7.4 V , an additional voltage reduction of $\Delta V_{9}=0.6 \mathrm{~V}$ will switch off the reference voltage (4 V).

Frequency versus output power

Efficiency versus output power

Output voltage V_{2} versus line voltage alterations

Thermal resistance (only applicable to TDA 4600-2 D)
Standardized, ambience-related thermal resistance $R_{\text {th }}{ }_{\text {J }}^{1}$ versus lateral length $/$ of a square copper-clad cooling area ($35 \mu \mathrm{~m}$ copper lamination).

```
\(R_{\text {th JA }}(I=0)=60 \mathrm{~K} / \mathrm{W}\)
\(T_{\text {amb }} \leq 70^{\circ} \mathrm{C}\)
\(P_{V}=1 \mathrm{~W}\)
```

PCB in vertical position
circuit in vertical position
static air

Block diagram

Measurement circuit 2 and application circuit

Measurement diagram for overload operations

(TDA 4600-2: Plastic Power Package - 9 pin SIP package)
Pin configuration (TDA 4600-2D: Plastic 18 pin DIP package)

Pin No.	Function
1	Vref Output
2	Zero passage identification
3	Input regulating amplifier, overload amplifier
4	Collector current simulation
5	Possible connection for additional protective circuit
6	Ground
7	DC voltage output for charging the coupling capacitor
8	Pulse output - driving the switching transistor
9	Current supply input

only applicable to TDA 4600-2D
$\left.\begin{array}{ll}10 & \\ 11 & \\ 12 & \\ 13 & \\ 14 & \\ 15 & \\ 16 & \\ 17 & \\ 18 & \end{array}\right\}$ interconnected (ground)

TDA 4601/TDA 4601D Control IC for Switched-Mode Power Supplies

Bipolar IC

During start-up, normal and overload operations the TDA 4601 or TDA 4601D regulates, controls and protects the switching transistor installed in the flyback converter power supplies. It also protects the complete SMPS by preventing an increase in the secondary voltage in case of errors. In addition to their use with TV receivers and video recorders, these ICs can be applied in power supplies of hi-fi sets and active speakers due to their wide operaticnal ranges and superior voltage stability during high load changes.

Features

- Direct driving of switching transistor
(1) Low start-up current
- Reversing linear overload characteristic

2 Collector current - proportional to base-current input

- Protective circuit for the event of errors

Maximum ratings

Supply voltage

Voltages
reference output
zero-passage identification
control amplifier
collector-current simulation
blocking input
base-current cut-off point
base-current amplifier output

Currents
zero-passage identification
control amplifier
collector-current simulation
blocking input
base-current cut-off point
base-current amplifier output

Thermal resistance

junction-air	TDA 4601
junction-case	TDA 46C1
junction-air	TDA 4601 ${ }^{11}$
junction-air	TDA 4601 D2 2

Junction temperature
Storage temperature

	Lower limit	Upper limit	
V_{9}	0	20	V

V_{1}	0
V_{2}	-0.6
V_{3}	0
V_{4}	0
V_{5}	0
V_{7}	0
V_{8}	0

6
0.6
3
8
8
V_{9}
V_{9}

V
V
V
V
V
V
V
V

I_{12}	-3
I_{13}	-3
I_{14}	0
I_{15}	0
$I_{\mathrm{Q} 7}$	0
$I_{\mathrm{Q} 8}$	-1.5

3	mA
3	mA
.5	mA
5	mA
1.5	mA
0	mA

Operating range

Supply voltage range		V_{9}	7.8 to 18	V^{2}
Case temperature range	TDA 4601	$T_{\text {case }}$	0 to 85	${ }^{\circ} \mathrm{C}$
Ambient temperature range ${ }^{3)}$ TDA 4601	$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$	

[^59]
Characteristics

$T_{\text {amb }}=25^{\circ} \mathrm{C}$
according to test circuit 1 and diagram

Start operation

Current consumption (V_{1} not yet applied)
$V_{9}=2 \mathrm{~V}$
$V_{9}=5 \mathrm{~V}$
$V_{9}=10 \mathrm{~V}$
Switching point for V_{1}

	\min	typ	\max	
I_{9}			0.5	mA
I_{9}		1.5	2.0	mA
I_{9}		2.4	3.2	mA
V_{9}	11.0	11.8	12.3	V

Normal operation

$\left(V_{9}=10 \mathrm{~V} ; V_{\text {control }}=-10 \mathrm{~V} ; V_{\text {clock }}= \pm 0.5 \mathrm{~V} ; f=20 \mathrm{kHz} ;\right.$ duty cycle $\left.1: 2\right)$ after switch-on
Current consumption
$V_{\text {control }}=-10 \mathrm{~V}$
$V_{\text {control }}=0 \mathrm{~V}$
Reference voltage
$I_{1}<0.1 \mathrm{~mA}$
$I_{1}=5 \mathrm{~mA}$
Temperature coefficient
of reference voltage
Control voltage $V_{\text {control }}=0 \mathrm{~V}$
Collector-current simulation voltage
$V_{\text {control }}=0 \mathrm{~V}$
$V_{\text {control }}=0 \mathrm{~V} /-10 \mathrm{~V}$
Blocking voltage
Output voltages
$V_{\text {control }}=0 \mathrm{~V}$
$V_{\text {control }}=0 \mathrm{~V}$
$V_{\text {control }}=0 \mathrm{~V} /-10 \mathrm{~V}$
Feedback voltage

I_{9}	110	135	160	mA
I_{9}	50	75	100	mA
V_{1}	4.0	4.2	4.5	V
V_{1}	4.0	4.2	4.4	V
TC ${ }_{1}$		10-3		1/K
V_{3}	2.3	2.6	2.9	V
$V_{4}{ }^{*}$)	1.8	2.2	2.5	v
ΔV_{4}^{*})	0.3	0.4	0.5	V
V_{5}	6.0	7.0	8.0	V
$V_{\text {q }}{ }^{*}$)	2.7	3.3	4.0	v
$V_{\text {q }}{ }^{*}$)	2.7	3.4	4.0	v
$\Delta V_{\text {g }}{ }^{*}$)	1.6	2.0	2.4	V
V_{2}		0.2		v

[^60]
Characteristics

$T_{\text {amb }}=25^{\circ} \mathrm{C}$

Safety operation

$\left(V_{9}=10 \mathrm{~V} ; V_{\text {control }}=-10 \mathrm{~V} ; V_{\text {clock }}= \pm 0.5 \mathrm{~V} ; f=20 \mathrm{kHz}\right.$; duty cycle 1:2)

Current consumption ($V_{5}<1.9 \mathrm{~V}$) Switch-off voltage ($V_{5}<1.9 \mathrm{~V}$)
Blocking input
Blocking voltage ($V_{\text {control }}=0 \mathrm{~V}$)
Supply voltage for V_{8} blocked ($V_{\text {control }}=0 \mathrm{~V}$)
(with further decrease of V_{9})

I_{9}	14	22
$V_{a 7}$	1.3	1.5
V_{4}	1.8	2.1
V_{5}	$\frac{V_{1}}{2}-0.1$	$\frac{V_{1}}{2}$
V_{9}	6.7	7.4
ΔV_{9}	0.3	0.6

28	mA
1.8	V
2.5	V
	V
7.8	V
1	V

Characteristics

$T_{\text {amb }}=25^{\circ} \mathrm{C}$ acc. to test circuit 2
Turn-on time (secondary voltage) Voltage change with S3 = closed $\left(\Delta N_{3}=20 \mathrm{~W}\right)$
Voltage change with S2 $=$ closed ($\Delta N_{2}=15 \mathrm{~W}$)
Standby operation with S1 = open (secondary useful load $=3 \mathrm{~W}$)

$\begin{aligned} & t_{\text {on }} \\ & \Delta V_{2 \mathrm{~s}} \end{aligned}$	70	350	450	ms
		100	500	mV
$\Delta V_{2 s}$		500	1000	mV
ΔV_{2} s		20	30	V
f		75		kHz
$N_{\text {primary }}$		10	12	VA

The cooling area should be optimized in consideration of the limit values ($T_{\text {case }} ; T_{\mathrm{j}} ; R_{\text {th Jc }} ; R_{\text {th JA }}$).

Circuit description

During start-up, normal, overload, and disturbed operations the TDA 4601/D regulates, controls and protects the switching transistor installed in the flyback converter power supplies. If an error occurs, the driving of the switching transistor is blocked and the voltage on the secondary side is prevented from increasing.

I) Start-up operation

The start-up operation is divided into three consecutive phases:

1. An internal reference voltage is built up which supplies the voltage regulator and effects the charging of the coupling electrolytic capacitor and the switching transistor. During these procedures an I_{9} current less than 3.2 mA will be maintained, if the supply voltage V_{9} does not exceed $\approx 12 \mathrm{~V}$.
2. At $V_{9} \approx 12 \mathrm{~V}$ an internal reference voltage $V_{1}=4 \mathrm{~V}$ is suddenly released to provide all IC components with the exception of the control logic with a thermally stable and overload-resistant current.
3. In concurrence with the release of the reference voltage the control logic is activated by an additional stabilization circuit, and the IC is now ready for operation.
Above sequential start-up phases ensure the charging of the switching transistor by the coupling electrolytic capacitor and subsequent precision switching.

II) Normal operation

Zero passages of the feedback coil are registered at pin 2 and forwarded to the control logic.
At pin 3 (input control, overload, and standby recognition) the rectified amplitude variations of the feedback coil are applied. The regulating (control) amplifier operates with an input voltage of about 2 V and a current of about 1.4 mA . According to the internal reference voltage, the operating region of the regulating amplifier will be defined by the collector current simulation pin 4 and the overload recognition. The simulation of the collector current is generated by an external RC network at pin 4 and an internally set voltage level. By increasing the capacitance (10 nF), the collector current of the switching transistor is increased as well and establishes the desired control range. The control range extends between a 2 V clamped dc voltage and an ac voltage rising as a sawtooth wave, which may vary up to a maximum amplitude of 4 V (reference voltage).
By reducing the secondary load to 20 W , the switching frequency increases to about 50 kHz at an almost constant pulse duty factor (on-time to period approx. 1/3). During additional secondary load reduction to about 1 W , the switching frequency will change to approx. 70 kHz , while the pulse duty factor falls to approx. $1 / 11$. At the same time, the collector peak current falls below 1 A .
The output level of the regulating (control) amplifier, the overload recognition, and the collector current simulation are compared in the trigger and the control logic is instructed accordingly. Pin 5 will provide additional blocking alternatives, i.e. the output at pin 8 is blocked at a voltage of equal to or less than $V_{\text {ref }} / 2-0.1 \mathrm{~V}$ at pin 5 .

Based on the start-up circuit, the zero crossing identification, and the trigger-activated release, the control logic flipflops are set which control both the base current amplification and shut-down. The base current amplifier forwards the sawtooth voltage V_{4} to pin 8. Also, a current feedback with an external resistance of $R \approx 0.68 \Omega$ is inserted between pin 8 and pin 7. The resistance value determines the maximum amplitude of the base current for the switching transistor.

III) Safety features

The base current shut-down, released by the control logic, clamps the output of pin 7 at 1.6 V and thus blocks the driving of the switching transistor. This preventive method will go into effect, if the voltage at pin 9 falls below typ. 6.7 V or if voltages of equal to or less than $V_{\text {ref }} / 2-0.1 \mathrm{~V}$ are present at pin 5 . In case of short-circuited secondary windings in the SMPS, the fault condition will be continuously monitored by the IC.
With the load completely removed from the secondary winding in the SMPS, the IC is set at a small pulse duty factor. The total power consumption of the SMPS is kept below $n=6$ to 10 W during both operating conditions. After the output has been blocked at a supply voltage V_{9} of less than or equal to typ. 6.7 V , an additional voltage reduction of $\Delta V_{9}=0.6 \mathrm{~V}$ will switch of the reference voltage (4 V).

Protective operation for faults with pin 5

For protection against disturbances such as primary undervoltages and/or secondary overvoltages (e.g. as a result of alterations in the parameters of components of the SMPS), it is possible to implement applications of the following kind:

- Protective operation with periodic sampling

In the event of the fault condition, falling below the protective threshold V_{5} of typically $V_{1 / 2}$ causes the output pulses on pin 8 to be inhibited and pin 5 to be clamped internally to ground across typically 300Ω. The current consumption of the IC reduces ($I_{9} \geq 14 \mathrm{~mA}$ for $V_{9}=10 \mathrm{~V}$).
With a suitably high-impedance starting resistor*) the supply voltage V_{9} then falls below the minimal turn-off threshold (5.7 V) for the reference voltage V_{1}. As a result V_{1} is turned off and the blocking of pin 5 is cancelled.
Because of the renewed reduction in the current consumption of the IC ($I_{9} \leq 3.2 \mathrm{~mA}$ for $V_{9} \leq 10 \mathrm{~V}$ the supply voltage can again climb to the turn-on threshold $V_{9} \geq 12.3 \mathrm{~V}$. The protective threshold on pin 5 is released and the switched-mode power supply attempts to turn on.
If the same fault is still present or another $\left(V_{5} \leq V_{1 / 2}-0.1 \mathrm{~V}\right)$, the turn-on will be interrupted by the above, periodic protective operation, i.e. pin 8 is disabled, pin 5 is blocked, V_{9} falls off, etc.

[^61]
- Protective operation with capture circuit

The starting resistor on pin 9 is chosen sufficiently low-impedance so that in the event of a fault V_{9} does not fall below the maximum turn-off threshold (7.5 V) for V_{1}. The blocking of pin 5 is preserved because V_{1} will not have been turned off. A one-time fault is thus captured and turning the SMPS on again is not possible, for example, until the supply voltage has been manually turned off (power switch).
In the designing of the starting resistor it should be considered that in protective operation the current consumption reduces to $I_{9} \leq 28 \mathrm{~mA}$ for $V_{9}=10 \mathrm{~V}$.

IV) Turn-on in wide-range power supply (90 to $\mathbf{2 7 0}$ Vac)

(application circuit 2)
Free-running flyback converters used as wide-range power supplies call for a power supply to the TDA 4601 that is independent of the rectified line voltage, thus the sense of the winding $11 / 13$ corresponds to the secondary side of the flyback-converter transformer. Turning on is hampered by the fact that the TDA 4601 must be supplied by the start-up circuit until the entire load secondary side is charged. This leads to long turn-on times, especially with a low line voltage.
If the special start-up circuit is used (marked by dashed lines) this time can be shortened. The unregulated phase of the feedback control winding 15/9 is used as a turn-on aid. The transistor T1 blocks after turn-on, when the winding 11/13 has taken over the power supply to the TDA 4601, thus eliminating any effects on the control circuit during operation.
(TDA 4601: Plastic Power Package - 9 pin SIP package)
Pin configuration (TDA 4601D: Plastic 18 pin DIP package)

Pin No.	Function
1	$V_{\text {ref }}$ output
2	Zero-passage identification
3	Input regulating amplifier, overload amplifier
4	Collector-current simulation
5	Possible connection for additional protective circuit
6	Ground (rigidly connected to substrate mounting plate)
7	DC voltage output for charging the coupling capacitor
8	Pulse output, driving the switching transistor
9	Power supply
10	N
-	
-	connected to ground
18	1

Block diagram

Test and measurement circuit 1

Test diagram: overload operation

Test and measurement circuit 2

Application circuit 1

[^62]
Additions to test circuit 2

Efficiency versus output power

Additions to test circuit 2

Load characteristic $V_{2 \text { sec }}$ versus output current $I_{2 \text { sec }}$

Output voltage $V_{2 \text { sec }}$ versus line-voltage alterations

Application circuit 2

Wide range 90 Vac to 270 Vac

Thermal resistance (only applies to TDA 4601 D)
Standardized, ambience-related thermal resistance $R_{\text {th JA } 1}$ versus lateral length / of a square copper-clad cooling area ($35 \mu \mathrm{~m}$ copper lamination).
$R_{\text {th JA }}(I=0)=60 \mathrm{~K} / \mathrm{W}$
$T_{\text {amb }} \leq 70^{\circ} \mathrm{C}$
$P_{V}=1 \mathrm{~W}$
PCB in vertical position
circuit in vertical position
static air

TDA 4700/TDA 4700A Control IC for Single-Ended and Push-Pull Switched-Mode Power Supplies

Bipolar IC

This versatile SMPS control IC comprises digital and analog functions which are required to design high-quality flyback, single-ended and push-pull converters in normal, half-bridge and full-bridge configurations. The component can also be used in single-ended voltage multipliers and speed-controlled motors. Malfunctions in electrical operation are recognized by the integrated operational amplifiers and activate protective functions.
In addition to the noticeable reduction in components, our SMPS ICs offer a number of advantages:

Pin desi	nation
Pin No.	Function
1	$\mathrm{O}_{\text {s }}$
2	Reference voltage $V_{\text {ref }}$
3	Supply voltage $V_{\text {S }}$
4	Output Q 2
5	Output Q 1
6	Symmetry Q 2
7	Sync. output
8	Soft start $\mathrm{C}_{\text {soft start }}$
9	$V C O R_{T}$
10	Capacitance $\mathrm{C}_{\text {filler }}$
11	VCO CT
12	Ramp generator $R_{\text {R }}$
13	Ramp generator C_{R}
14	Comparator input
15	Operational amplifier output
16	Operational amplifier input (-)
17	Operational amplifier input (+)
18	Sync. input
19	ON/OFF, undervoltage
20	Overvoltage output
21	Overvoltage input
22	Dynamic current limitation (-)
23	Dynamic current limitation (+)
24	Symmetry Q 1
(TDA 4700 - Ceramic 24 pin DIL package) (TDA 4700A - Plastic 24 pin DIL package)	

Circuit description

Voltage controlled oscillator (VCO)

The VCO generates a sawtooth voltage. The duration of the falling edge is determined by the value of C_{T}. The duration of the rising edge of the waveform and, therefore, approximately the frequency, is determined by the value of R_{T}. By varying the voltage at $C_{\text {filter }}$, the oscillator frequency can be changed by its rated value. During the fall time, the VCO provides a trigger signal for the ramp generator, as well as an L signal for a number of IC parts to be controlled.

Ramp generator

The ramp generator is triggered by the VCO and oscillates at the same frequency. The duration of the falling edge of the ramp generator waveform is to be shorter than the fall time of the VCO. To control the pulse width at the output, the voltage of the rising edge of the ramp generator signal is compared with a dc voltage at comparator K2. The slope of the rising edge of the ramp generator signal is controlled by the current through R_{R}. This offers the possibility of an additional, superimposed control of the output duty cycle. This additional control capability, called "feed-forward control", is utilized to compensate for known interference such as ripple on the input voltage.

Phase comparator

If the component is operated without external synchronization, the sync input must be connected to the sync output for the phase comparator to set the rated voltage at $C_{\text {filter }}$. The VCO then oscillates with rated frequency. In the case of external synchronization, other components can be synchronized with the sync output. The component can be frequencysynchronized, but not phase-synchronized, with the sync input. The duty cycle of the square-wave voltage at the sync input is arbitrary. The best stability as to small phase and frequency interference deviation is achieved with a duty cycle as offered by the sync output.

Push-pull flipflop

The push-pull flipflop is switched by the falling edge of the VCO. This ensures that only one output of the two push-pull outputs is enabled at a time.

Comparator K 2

The two plus inputs of the comparator are switched such that the lower plus level is always compared with the level of the minus input. As soon as the voltage of the rising sawtooth edge exceeds the lower of the two plus levels, both outputs are disabled via the pulse turn-off flipflop. The period during which the respective, active output is low can be infinitely varied. As the frequency remains constant, this process corresponds to a change in duty cycle.

Operational amplifier K1

The K1 op amp is a high-quality amplifier. Fluctuations in the output voltage of the power supply are amplified by K1 and applied to the free + input of comparator K2. Variations in output voltage are, in this way, converted to a corresponding change in output duty cycle. K 1 has a common-mode input voltage range between 0 V and +5 V .

Pulse turn-off flipflop

The pulse turn-off flipflop enables the outputs at the start of each half cycle. If an error signal from comparator K7 or a turn-off signal from K 2 is present, the outputs will immediately be switched off.

Comparator K 3

Comparator K3 limits the voltage at capacitance $C_{\text {soft start }}$ (and also at K 2) to a maximum of +5 V . The voltage at the ramp generator output may, however, rise to 5.5 V . With a corresponding slope of the rising ramp generator edge, the duty cycle can be limited to a desired maximum value.

Comparator K 4

The comparator has its switching threshold at 1.5 V and sets the error flipflop with its output if the voltage at capacitance $C_{\text {soft start }}$ is below 1.5 V . However, the error flipflop accepts the set signal only if no reset pulse (error) is applied. In this way the outputs cannot be turned on again as long as an error signal is present.

Soft start

The lower one of the two voltages at the plus inputs of K 2 is a measure for the duty cycle at the output. At the instant of turning on the component, the voltage at capacitor $\mathrm{C}_{\text {soft start }}$ equals 0 V . As long as no error is present, this capacitor is charged with a current of $6 \mu \mathrm{~A}$ to the maximum value of 5 V . In case of an error, $\mathrm{C}_{\text {soft start }}$ is discharged with a current of $2 \mu \mathrm{~A}$. A set signal is pending at the error flipflop below a charge of 1.5 V and the outputs are enabled if no reset signal is pending simultaneously. As the minimum ramp generator voltage, however, is 1.8 V , the duty cycle at the outputs is actually increased slowly and continuously not before the voltage at $C_{\text {soft start }}$ exceeds 1.8 V .

Error flipflop

Error signals which are led to input \bar{R} of the error flipflop cause an immediate disabling of the outputs, and after the error has been eliminated, the component to switch on again using the soft start.

Comparator K 5, K 6, K 8, $V_{\text {ref }}$ overcurrent load

These are error detectors which cause immediate disabling of the outputs via the error flipflop when an error occurs. After elimination of the error, the component switches on again using the soft start. The output of K5 can be fed back to the input. This causes the IC output stage to remain disabled even after elimination of the overvoltage. However, it requires high-ohmic overvoltage coupling.

Comparator K7

K7 serves to recognize overcurrents. This is the reason why both inputs of the op amp have been brought out. Turning on is resumed after error recovery at the beginning of the next half period but without using the soft start.
The K7 common-mode range covers 0 V to +4 V . The delay time between occurrence of an error and disabling of the outputs is only 250 ns .

Symmetry

In push-pull converters, a saturation of the transformer core must be prevented. The degree of saturation of the transformer can be determined with an external circuit, thus the active periods of the outputs can be decreased unsymmetrically at the symmetry inputs.

Outputs

Both outputs are transistors with open collectors and operate in a push-pull arrangement. They are active low. The time in which only one of the two outputs is conductive can be varied infinitely. The length of the falling edge at VCO is equal to the minimum time during which both outputs are disabled simultaneously. The minimum L voltage is 0.7 V .

Reference voltage

The reference voltage source is a highly constant source with regard to its temperature behavoir. It can be utilized in the external wiring of the op amp, the error comparators, the ramp generator, or other external components.

Maximum ratings

Supply voltage
Voltage at Q1, Q2
Current at Q1, Q2
Symmetry 1, 2
Sync output
Sync input
Input $C_{\text {filter }}$
Input R_{T}
Input C_{T}
Input R_{R}
Input C_{R}
Input comparator
K 2, K 5, K 6, K 7
Output K 5
Input op amp
Output op amp
Reference voltage
Input $C_{\text {soft start }}$
Junction temperature
Storage temperature
Thermal resistance (system-air) TDA 4700 TDA 4700 A

	Notes	Lower limit B	Upper limit A	
V_{S}		-0.3	33	V
V_{Q}	Q1, Q2 high	-0.3	33	V
I_{Q}	Q1, Q2 low		70	mA
$V_{\text {SYM }}$		-0.3	33	V
$V_{\text {SYNCQ }}$	SYNC Q high	-0.3	7	V
$I_{\text {SYNCQ }}$	SYNC Q low	0	10	mA
$V_{\text {SYNCI }}$		-0.3	33	V
$V_{\text {I Cf }}$		-0.3	7	V
$V_{\text {IRT }}$		-0.3	7	V
$V_{\text {ICT }}$		-0.3	7	V
$V_{\text {IRR }}$		-0.3	7	V
$I_{\text {ICR }}$		-10	10	mA
$V_{\text {IK }}$		-0.3	33	V
$V_{\text {QK5 }}$		-0.3	33	V
$V_{\text {Iopamp }}$		-0.3	33	V
$V_{\text {Qopamp }}$		-0.3	$V_{S}-1$ $\max .7$	V
$V_{\text {ret }}$		-0.3	$V_{\text {ref }}$	V
$V_{1 \text { soft start }}$		-0.3	7	V
T_{j}			125	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$		-55	125	${ }^{\circ} \mathrm{C}$
$R_{\text {th SA }}$			65	K/W
$R_{\text {th SA }}$			65	K/W

Operating range

Supply voltage
Ambient temperature

\[\)| TDA 4700 |
| :--- |
| TDA 4700 A |

\]

VCO frequency
Ramp generator frequency

30	V
85	${ }^{\circ} \mathrm{C}$
70	${ }^{\circ} \mathrm{C}$
250000	Hz
250000	Hz

Characteristics

$V_{\mathrm{S}}=11 \mathrm{~V}$ to 30 V ;
$T_{\text {amb }}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply current

	Test conditions	Lower limit B	typ	Upper limit A	
I_{S}	$C_{\mathrm{T}}=1 \mathrm{nF}$, $f_{\mathrm{VCO}}=100 \mathrm{kHz}$	8		20	mA

Reference

Reference voltage
Reference voltage change
Reference voltage change
Reference voltage change
Temperature coefficient
Response threshold of $I_{\text {ref }}$ overcurrent

$V_{\text {ref }}$	$0 \mathrm{~mA}<I_{\text {ref }}<5 \mathrm{~mA}$	2.35	2.5	2.65	V
$\Delta V_{\text {ref }}$	$14 \mathrm{~V} \pm 20 \%$		8		mV
$\Delta V_{\text {ref }}$	$25 \mathrm{~V} \pm 20 \%$		15		mV
$\Delta V_{\text {ref }}$	$0 \mathrm{~mA}<I_{\text {ref }}<5 \mathrm{~mA}$			$15^{1)}$	mV
$T C$			0.25	0.4	mV / K
$I_{\text {ref }}$			10		mA

Oscillator (VCO)

Frequency range
Frequency change
Frequency change
Tolerance
Fall time sawtooth
RC combination
VCO

f_{VCO}		40		100000	Hz
$\Delta f / f_{\mathrm{VCO}}$	$14 \mathrm{~V} \pm 20 \%$		0.5		$\%$
$\Delta f / f_{\mathrm{VCO}}$	$25 \mathrm{~V} \pm 20 \%$	-1		1	$\%$
$\Delta f / f_{\mathrm{VCO}}$	$\Delta R_{\mathrm{T}}=0, \Delta \mathrm{C}_{\mathrm{T}}=0$	-7		7	$\%$
t	$\mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		1		$\mu \mathrm{n}$
t	$\mathrm{C}_{\mathrm{T}}=10 \mathrm{nF}$		10		$\mu \mathrm{~s}$
C_{T}		0.82		47	nF
R_{T}		5		700	$\mathrm{k} \Omega$

Ramp generator
Frequency range
Maximum voltage at C_{R} Minimum voltage at C_{R} Input current through R_{R} Current transformation ratio
f
V_{H}
V_{L}
I_{RR}
$I_{\mathrm{RR}} / I_{\mathrm{CR}}$

40		100000	Hz
	0	1.8	
		V	
V			
		400	$\mu \mathrm{~A}$

Synchronization

Sync output
Sync input
Input current

Comparator K2

Input current
Turn-off delay ${ }^{2)}$
Input voltage

Common-mode input voltage range $V_{\text {IC }}$

$-I_{\text {IK2 }}$	
$t_{\text {d off }}$	for duty cycle
$V_{\text {IK2 }}$	$v=0$ $V_{\text {IC }}$
$v=$ max.	

 0

	2	$\mu \mathrm{~A}$
1.8	500	ns
5		V
	5.5	V

[^63]
Characteristics

$\%=11 \mathrm{~V}$ to 30 V ;
$\because_{a m b}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Soft start K3, K4

Charging current for $\mathrm{C}_{\text {soft start }}$ Discharging current for $C_{\text {soft start }}$ Upper limiting voltage Switching voltage K4

	Test conditions	Lower limit B	typ	Upper limit A	
$I_{\text {ch }}$					
$I_{\text {dch }}$			6		$\mu \mathrm{~A}$
$V_{\text {lim }}$			2		$\mu \mathrm{~A}$
$V_{\text {K4 }}$			5		V
			1.5		V

Operational amplifier

Open-loop voltage gain	$\mathrm{G}_{\mathrm{V} 0}$		60	80		dB
Input offset voltage	$V_{\text {IO }}$		-10		10	mV
Temperature coefficient of $V_{\text {IO }}$	TC		-30		30	$\mu \mathrm{V} / \mathrm{K}$
Input current	$-I_{1}$				2	$\mu \mathrm{A}$
Common-mode input voltage range	$V_{\text {IC }}$		0		5	V
Output current	$I_{\text {Q }}$		-3		1.5	mA
Rise time of output voltage	$\Delta V / \Delta t$			1		$\mathrm{V} / \mu \mathrm{s}$
Transition frequency	f_{T}			3		MHz
Phase at t_{T}	φ_{T}			120		degrees
Output voltage	$V_{Q H / L}$	$-3 \mathrm{~mA}<I<1.5 \mathrm{~mA}$	1.5		5.5	V

Symmetry

Input voltage	$V_{\text {IH }}$	2.0		V
	$V_{\text {IL }}$		0.8	V
Input current	$-I_{\text {I }}$		2	$\mu \mathrm{A}$

Output stages Q1, Q2

ON, OFF, undervoltage K6

Switching voltage
Input current
Turn-off delay time ${ }^{1)}$
Error detection time ${ }^{1)}$
V
$-I_{1}$
$t_{\text {d off }}$
t

$V_{\text {ref }}-30 \mathrm{mV}$		$V_{\text {ref }}+30 \mathrm{mV}$	V
	250	2	
50		ns	
		ns	

[^64]
Characteristics

$V_{\mathrm{S}}=11 \mathrm{~V}$ to $30 \mathrm{~V} ; T_{\mathrm{amb}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Dynamic current limitation K 7

Common-mode input voltage range $V_{\text {IC }}$ Input offset voltage Input current Turn-off delay time ${ }^{1)}$ Error detection time ${ }^{1)}$
$\left.\begin{array}{l|l|l|l|l|l}\text { Test } \\ \text { conditions }\end{array} \right\rvert\, \begin{array}{lllll}\text { Lower } \\ \text { limit B }\end{array} \quad$ typ $\left.\begin{array}{l}\text { Upper } \\ \text { limit } A\end{array}\right]$

Overvoltage K 5

Switching voltage
Input current
Output current
Turn-off delay time ${ }^{2)}$
Error detection time ${ }^{2)}$

$\begin{aligned} & V \\ & -I_{1} \end{aligned}$		$V_{\text {ref }}-30 \mathrm{mV}$		$\begin{aligned} & V_{\text {ref }}+30 \mathrm{mV} \\ & 2 \end{aligned}$	
$-I_{Q}$	$V_{\text {QHmin }}=5 \mathrm{~V}$	0		200	
$t_{d \text { off }}$			250 50		

Supply undervoltage

Turn-on threshold for V_{S} rising
Turn-off threshold for V_{S} falling

V_{S}	$0^{\circ} \mathrm{C}<T_{\text {amb }}<70^{\circ} \mathrm{C}$	8.8
V_{S}	8.5	
	$0^{\circ} \mathrm{C}<T_{\text {amb }}<70^{\circ} \mathrm{C}$	

11	V
10.5	V
10.5	V
10	V

Input $C_{\text {filter }}$
Rated voltage for rated frequency $\quad V_{R}$ Frequency approx. proportional to voltage within the range Voltage at open sync input
V_{R}
V_{R}
$V_{\text {Cfilter }}$

3

4	
1.6	

1) At the input: step function $\Delta V=-100 \mathrm{mV} \rightarrow \Delta V=+100 \mathrm{mV}$
2) At the input: step function $V_{\text {ref }}=-100 \mathrm{mV} \rightarrow V_{\text {ref }}=+100 \mathrm{mV}$

Dimensioning notes for RC network

1. Determination of the minimum time during which both outputs must be disabled
\rightarrow selection of C_{T}; selection of $C_{R} \leq C_{T}$
2. Determination of the VCO frequency $=2 \times$ output frequency
\rightarrow selection of R_{T}.
3. Determination of the rated slope of the rising ramp generator voltage, which the maximum possible turn-on period per half wave depends on
\rightarrow selection of R_{R}.
4. Duration of the soft start process
\rightarrow selection of $C_{\text {soft start }}$.
5. In the case of a free-running VCO: connect sync output with sync input.
6. Wiring of the op amp according to the dynamic requirements and connection of its output with the free input of K2.
7. Capacitance $C_{\text {filter }}$ is not required in the free-running operation (sync input connected with sync output).
In the case of external synchronization, that value depends on the selected operating frequency and the required maximum phase interference deviation.

Rated VCO frequency: $\quad 100 \mathrm{kHz} \quad 50 \mathrm{~Hz}$
$C_{\text {filter }}$ favorable: $10 \mathrm{nF} \quad 1 \mu \mathrm{~F}$

Pulse diagram

VCO temperature response

$V_{S}=12 V ; v=$ max.
$\frac{\Delta f_{\mathrm{VCO}}}{f_{\mathrm{K}} \cdot \mathrm{K}}\left[\frac{1}{\mathrm{~K}}\right]$ with C_{T} as parameter

TDA 4714A/TDA 4714B IC for

 Switched-Mode Power SuppliesBipolar IC
This versatile, 14-pin SMPS IC comprises digital and analog functions which are required to design high-quality flyback, single-ended, and push-pull converters in normal, halfbridge and full-bridge configurations. The component can also be used in single-ended voltage multipliers and speed-controlled motors. Malfunctions in electrical operation are recognized by the integrated op amps and activate protective functions.

Features

- Push-pull outputs (open collector)
- Double pulse suppression
- Dynamic current limitation
- Overvoltage protection
- IC undervoltage protection
- Reference voltage source ($\pm 2 \%$ for TDA 4714 B)
- Reference overload protection
- Soft start
- Feed-forward control

(TDA 4714A/4714B • Plastic 14 pin DIL package)

Circuit description

The following is a description of the individual functional units and their interaction.

Voltage controlled oscillator (VCO)

The VCO generates a sawtooth voltage. The duration of the falling edge is determined by the value of C_{T}. The duration of the rising edge of the waveform and, therefore, approximately the frequency, is determined by the value of R_{T}. During the fall time, the VCO provides a trigger signal for the ramp generator, as well as an L signal for a number of IC parts to be controlled.

Ramp generator

The ramp generator is triggered by the VCO and oscillates at the same frequency. The duration of the falling edge of the ramp generator waveform is to be shorter than the fall time of the VCO. To control the pulse width at the output, the voltage of the rising edge of the ramp generator signal is compared with a dc voltage at comparator K2. The slope of the rising edge of the ramp generator signal is controlled by the current through R_{R}. This offers the possibility of an additional, superimposed control of the output duty cycle. This additional control capability, called „feed-forward control", is utilized to compensate for known interference such as ripple on the input voltage.

Push-pull flipflop

The push-pull flipflop is switched by the falling edge of the VCO. This ensures that only one output of the two push-pull outputs is enabled at a time.

Comparator K2

The two plus inputs of the comparator are switched such that the lower plus level is always compared with the level of the minus input. As soon as the voltage of the rising sawtooth edge exceeds the lower of the two plus levels, both outputs are disabled via the pulse turn-off flipflop. The period during which the respective, active output is low can be infinitely varied. As the frequency remains constant, this process corresponds to a change in duty cycle.

Pulse turn-off flipflop

The pulse turn-off flipflop enables the outputs at the start of each half cycle. If an error signal from comparator K7 or a turn-off signal from K2 is present, the outputs will immediately be switched off.

Comparator K3

Comparator K3 limits the voltage at capacitance $C_{\text {soft start }}$ (and also at K 2 !) to a maximum of 5 V . The voltage at the ramp generator output may, however, rise to 5.5 V . With a corresponding slope of the rising ramp generator edge, the duty cycle can be limited to a desired maximum value.

Comparator K 4

The comparator has its switching threshold at 1.5 V and sets the error flipflop with its output if the voltage at capacitance $C_{\text {soft start }}$ is below 1.5 V . However, the error flipflop accepts the set signal only if no reset pulse (error) is applied. In this way, the outputs cannot be turned on again as long as an error signal is present.

Soft start

The lower one of the two voltages at the plus inputs of K2 is a measure for the duty cycle at the output. At the instant of turning on the component, the voltage at capacitor $\mathrm{C}_{\text {soft }}$ start equals 0 V . As long as no error is present, this capacitor is charged with a current of $6 \mu \mathrm{~A}$ to the maximum value of 5 V . In case of an error, $\mathrm{C}_{\text {soft start }}$ is discharged with a current of $2 \mu \mathrm{~A}$. A set signal is pending at the error flipflop below a charge of 1.5 V and the outputs are enabled if no reset signal is pending simultaneously. As the minimum ramp generator voltage, however, is 1.8 V , the duty cycle at the outputs is actually increased slowly and continuously not before the voltage at $\mathrm{C}_{\text {soft }}$ start exceeds 1.8 V .

Error flipflop

Error signals, which are led to input \bar{R} of the error flipflop cause an immediate disabling of the outputs, and after the error has been eliminated, the component to switch on again using the soft start.

Comparator K 5, K 8, $V_{\text {ref }}$ overcurrent load

These are error detectors which cause immediate disabling of the outputs via the error flipflop when an error occurs. After elimination of the error, the component switches on again using the soft start.

Comparator K7

K7 serves to recognize overcurrents. This is the reason why both inputs of the op amp have been brought out. Turning on is resumed after error recovery at the beginning of the next half period but without using the soft start. K7 has a common-mode input voltage range between 0 V and 4 V . The delay time between occurrence of an error and disabling of the outputs is only 250 ns .

Outputs

Both outputs are transistors with open collectors and operate in a push-pull arrangement. They are actively low. The time in which only one of the two outputs is conductive can be varied infinitely. The length of the falling edge at VCO is equal to the minimum time during which both outputs are disabled simultaneously. The minimum L voltage is 0.7 V .

Reference voltage

The reference voltage source is a highly constant source with regard to its temperature behavior. It can be utilized in the external wiring of the op amp, the error comparators, the ramp generator, or other external components.

Maximum ratings

Supply voltage
Voltage at Q1, Q2
Q $1 / 2$ high
Current at Q1, Q2
Q 1/2 low
Input R_{T}
Input C_{T}
Input $R_{\text {R }}$
Input C_{R}
Input comparator
K2, K5, K7
Output K5
Reference voltage
Input $C_{\text {soft start }}$
Junction temperature
Storage temperature
Thermal resistance (system-air)

Operating range

Supply voltage TDA 4714 A
TDA 4714 B
Ambient temperature TDA 4714 A TDA 4714 B
Frequency range
VCO frequency
Ramp generator frequency

	Lower limit B	Upper limit	
V_{S}	-0.3	33	V
V_{Q}	-0.3	33	V
I_{Q}		70	mA
$V_{\text {I RT }}$	-0.3	7	V
$V_{\text {I CT }}$	-0.3	7	V
$V_{\text {I RR }}$	-0.3	7	V
$I_{\text {I CR }}$	-10	10	mA
$V_{\text {IK 2, 5, 7 }}$	-0.3	33	V
$V_{\text {QK 5 }}$	-0.3	33	V
$V_{\text {Q ref }}$	-0.3	$V_{\text {ref }}$	V
$V_{\text {I soft start }}$	-0.3	7	V
$T_{\text {j }}$		125	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$
$R_{\text {th SA }}$		60	$\mathrm{~K} / \mathrm{W}$

V_{s}	10.5	30	V
V_{s}	11	30	V
$T_{\text {amb }}$	0	70	${ }^{\circ} \mathrm{C}$
$T_{\text {amb }}$	-25	85	${ }^{\circ} \mathrm{C}$
f	40	100000	Hz
$f_{\text {Vco }}$	40	250000	Hz
$f_{\text {RG }}$	40	250000	Hz

Characteristics

Supply voltage Ambient temperature Supply current $C_{T}=1 \mathrm{nF}$ $f_{\mathrm{VCO}}=100 \mathrm{kHz}$

Reference

Oscillator (VCO)

Frequency range	${ }^{f}$	40		100000	40		100000	Hz
Frequency change	$\Delta f / f$		0.5			0.5		\%
$V_{\text {S }}=14 \pm 20 \%$								
Frequency change	$\Delta f / f$	-1		1	-1		1	\%
$V_{S}=25 \mathrm{~V} \pm 20 \%$								
Tolerance	$\Delta f / f$	-7		7	-7		7	\%
$\Delta R_{T}=0 ; \Delta C_{T}=0$								
Fall time sawtooth								
$C_{T}=1 \mathrm{nF}$			1			1		$\mu \mathrm{s}$
$C_{T}=10 \mathrm{nF}$			10			10		$\mu \mathrm{s}$
RC combination	$\mathrm{C}_{\text {T }}$	0.82		47	0.82		47	nF
VCO	R_{T}	5		700	5		700	k Ω

Ramp generator

Frequency range	$f_{R G}$	40		100000	40		100000	Hz
Maximum voltage at C_{R}	V_{H}		5.5				5.5	
Minimum voltage at C_{R}	V_{L}		1.8			1.8		V
Input current through R_{R}	I_{RR}	0			400	0		400
Current transformation ratio	$I_{\mathrm{RR}} / I_{\mathrm{CR}}$		$1 / 4$					

Comparator K2

Input current
Turn-off delay time ${ }^{1)}$
Input voltage
Duty cycle $v=0$
Duty cycle $v=$ max.
Common-mode input voltage $V_{I C}$
TDA 4714 A range

	TDA 4714 A			TDA 4714 B			
	Lower limit B	typ	Upper limit A	Lower limit B	typ	Upper limit A	
$-I_{\text {K2 }}$			2			2	$\mu \mathrm{~A}$
$t_{\text {d off }}$			500			500	ns
$V_{\text {I K2 }}$		1.8					
		5			1.8		V
$V_{\text {IC }}$	0		5.5	0	5	5.5	V

Soft start K 3, K 4

| Charging current for $C_{\text {soft start }}$
 Discharging current | I_{ch} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| for $C_{\text {soft start }}$ | |
| Upper limiting voltage | $I_{\text {dch }}$ |
| Switching voltage K4 | |

Output stages Q1, Q2

Output voltage
$I_{\mathrm{Q}}=20 \mathrm{~mA}$
Output current
$V_{\mathrm{QH}}=30 \mathrm{~V}$

30	V
1.1	V
2	$\mu \mathrm{~A}$

Dynamic current

limitation K 7
Common-mode input
voltage range
Input offset voltage
Input current
Turn-off delay time ${ }^{1)}$
Error detection time ${ }^{1)}$

$V_{\text {IC }}$	0		4	0		4	V
$V_{\text {IO }}$	-10		10	-10		10	mV
$-I_{\mathrm{I}}$			2				
t_{doff}		250		250		nA	
t		50					
ns							

Overvoltage K 5

Switching voltage	V	$\begin{aligned} & V_{\text {ref }} \\ & 30 \end{aligned}$		$\begin{aligned} & V_{\text {reft }}+ \\ & 30 \end{aligned}$	$V_{\text {ref }}$ 30		$V_{\text {ref }}+$ 30	V mV
Input current	$-I_{\text {I }}$			2			2	$\mu \mathrm{A}$
Turn-off delay time ${ }^{2}$)	$t_{\text {d off }}$		250			250		ns
Error detection time ${ }^{2}$	d		50			50		ns

Supply undervoltage

Turn-on threshold for V_{S}, rising Turn-on threshold for V_{S}, falling

V_{s}	8.8	10.5	8.8	11	V
V_{S}	8.5	10	8.5	10.5	V

[^65]
Dimensioning notes for RC network

1. Determination of the minimum time during which both outputs must be disabled
\rightarrow selection of C_{T}; selection of $C_{R} \leq C_{T}$.
2. Determination of the VCO frequency $=2 \times$ output frequency
\rightarrow selection of R_{\top}.
3. Determination of the rated slope of the rising ramp generator voltage, which the maximum possible turn-on period per half wave depends on
\rightarrow selection of R_{R}.
4. Duration of the soft start process
\rightarrow selection of $C_{\text {soft start }}$.

Pulse diagram

VCO frequency versus R_{T} and C_{T}

VCO temperature response

$V_{\mathrm{S}}=12 \mathrm{~V}$; $\boldsymbol{r}=$ max.
$\frac{\Delta f_{\mathrm{VCO}}}{f_{\mathrm{K}} \times K}[1 / \mathrm{K}]$ with C_{T} as parameter

Supply current versus temperature

Output current versus L output voltage

TDA 4716A/TDA 4716B IC for
 Switched-Mode Power Supplies

Bipolar IC
This versatile, 16 -pin SMPS IC comprises digital and analog functions which are required to design high-quality flyback, single-ended, and push-pull converters in normal, halfbridge ard full-bridge configurations. The component can also be used in single-ended voltage miltipliers and speed-controlled motors. Malfunctions in electrical operation are recognized by the integrated op amps, and activate protective functions.

Features

- Push-pull outputs (open collector)
- Double pulse suppression
- Dynamic current limitation
- Overvoltage protection
- IC undervoltage protection
- Reference voltage source ($\pm 2 \%$ for TDA 4716 B)
- Reference overload protection
- Feed-forward control
- Operational amplifier
- Soft start

Pin configuration
top view

Pin designation

Pin. No.	Function
1	Reference voltage $V_{\text {ref }}$
2	Supply voltage V_{S}
3	Output Q2
4	Output Q 1
5	Soft start $C_{\text {soft start }}$
6	VCO R_{T}
7	VCO C_{T}
8	Ramp generator R_{R}
9	Ramp generator C_{R}
10	Operational amplifier output
11	Operational amplifier input (-)
12	Operational amplifier input (+)
13	Input overvoltage
14	Dynamic current !imitation (-)
15	Dynamic current limitation (+)
16	OS $_{S}$

Circuit description

The following is a description of the individual functional units and their interaction.

Voltage controlled oscillator (VCO)

The VCO generates a sawtooth voltage. The duration of the falling edge is determined by the value of C_{T}. The duration of the rising edge of the waveform and, therefore, approximalety the frequency, is determined by the value of R_{T}. During the fall time, the VCO provides a trigger signal for the ramp generator, as well as an L signal for a number of IC parts to be controlled.

Ramp generator

The ramp generator is triggered by the VCO and oscillates at the same frequency. The duration of the falling edge of the ramp generator waveform is to be shorter than the fall time of the VCO. To control the pulse width at the output, the voltage of the rising edge of the ramp generator signal is compared with a dc voltage at comparator K2. The slope of the rising edge of the ramp generator signal is controlled by the current through R_{R}. This offers the possibility of an additional, superimposed control of the output duty cycle. This additional control capability, called »feed-forward control«, is utilized to compensate for known interference such as ripple on the input voltage.

Push-pull flipflop

The push-pull flipflop is switched by the falling edge of the VCO. This ensures that only one output of the two push-pull outputs is enabled at a time.

Comparator K2

The two plus inputs of the comparator are switched such that the lower plus level is always compared with the level of the minus input. As soon as the voltage of the rising sawtooth edge exceeds the lower of the two plus levels, both outputs are disabled via the pulse turn-off flipflop. The period during which the respective, active output is low can be infinitely varied. As the frequency remains constant, this process corresponds to a change in duty cycle.

Operational amplifier K1

The op amp K1 is a high-quality amplifier. Fluctuations in the output voltage of the power supply are amplified by K1 and applied to the free + input of comparator K2. Variations in output voltage are, in this way, converted to a corresponding change in output duty cycle. K 1 has a common-mode input voltage range between 0 V and +5 V .

Pulse turn-off flipflop

The pulse turn-off flipflop enables the outputs at the start of each half cycle. If an error signal from comparator K7 or a turn-off signal from K2 is present, the outputs will immediately be switched off.

Comparator K3

Comparator K3 limits the voltage of capacitance $C_{\text {soft start }}$ (and also at K2!) to a maximum of 5 V . The voltage at the ramp generator output may, however, rise to 5.5 V . With a corresponding slope of the rising ramp generator edge, the duty cycle can be limited to a desired maximum value.

Comparator K 4

The comparator has its switching threshold at 1.5 V and sets the error flipflop with its output if the voltage at capacitance $C_{\text {soft }}$ start is below 1.5 V . However, the error flipflop accepts the set signal only if no reset pulse (error) is applied. In this way the outputs cannot be turned on again as long as an error signal is present.

Soft start

The lower one of the two voltages at the plus inputs of K 2 is a measure for the duty cycle at the output. At the instant of turning on the component, the voltage at capacitor $\mathrm{C}_{\text {soft }}$ start equals 0 V . As long as no error is present, this capacitor is charged with a current of $6 \mu \mathrm{~A}$ at the maximum value of 5 V . In case of an error, $\mathrm{C}_{\text {soft }}$ start is discharged with a current of $2 \mu \mathrm{~A}$. A set signal is pending at the error flipflop below a charge of 1.5 V and the outputs are enabled if no reset signal is pending simultaneously. As the minimum ramp generator voltage, however, is 1.8 V , the duty cycle at the outputs is actually increased slowly and continuously not before the voltage at $C_{\text {soft start }}$ exceeds 1.8 V .

Error flipflop

Error signals, which are led to input \bar{R} of the error flipflop cause an immediate disabling of the outputs, and after the error has been eliminated, the component to switch on again using the soft start.

Comparator K 5, K 8, $V_{\text {ret }}$ overcurrent load

These are error detectors which cause immediate disabling of the outputs via the error flipflop when an error occurs. After elimination of the error, the component switches on again using the soft start.

Comparator K 7

K7 serves to recognize overcurrents. This is the reason why both inputs of the operational amplifier have been brought out. Turning on is resumed after error recovery at the beginning of the next half period but without using the soft start. K7 has a common-mode input voltage range between 0 V and +4 V . The delay time between occurrence of an error and disabling of the outputs is only 250 ns .

Outputs

Both outputs are transistors with open collectors and operate in a push-pull arrangement. They are actively low. The time in which only one of the two outputs is conductive can be varied infinitely. The length of the falling edge at VCO is equal to the minimum time during which both outputs are disabled simultaneously. The minimum L voltage is 0.7 V .

Reference voltage

The reference voltage source is a highly constant source with regard to its temperature behavior. It can be utilized in the external wiring of the op amp, the error comparators, the ramp generator, or other external components.

Maximum ratings

Supply voltage
Voltage at Q1, Q2
Q $1 / 2$ high
Current at Q1, Q2
Q 1/2 low
Input R_{T}
Input C_{T}
Input $R_{\text {R }}$
Input C_{R}
Input comparator K5, K7
Output K5
Input op amp
Output op amp
Reference voltage
Input $C_{\text {soft start }}$
Junction temperature
Storage temperature
Thermal resistance (system-air)

Operating range

Supply voltage TDA 4716 A
TDA 4716 B
Ambient temperature TDA 4716 A
TDA 4716 B
Frequency
VCO frequency
Ramp generator frequency

	Lower limit B	Upper limit A	
V_{S}	-0.3	33	V
V_{Q}	-0.3	33	V
$I_{\text {Q }}$		70	mA
$V_{\text {I RT }}$	-0.3	7	V
$V_{\text {I CT }}$	-0.3	7	V
$V_{\text {I RR }}$	-0.3	7	V
$I_{\text {I CR }}$	-10	10	mA
$V_{\text {IK } 5,7}$	-0.3	33	V
$V_{\text {QK } 5}$	-0.3	33	V
$V_{\text {I opamp }}$	-0.3	33	V
$V_{\text {Qopamp }}$	-0.3	$V_{\text {S }}-1$	V
	but max. 7 V		
$V_{\text {Q ref }}$	-0.3	$V_{\text {ref }}$	V
$V_{\text {I soft start }}$	-0.3	7	V
$T_{\text {j }}$		125	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$
$R_{\text {th SA }}$		60	K/W
$V_{\text {S }}$	10.5	30	V
V_{S}	11	30	V
$T_{\text {amb }}$	0	70	${ }^{\circ} \mathrm{C}$
$T_{\text {amb }}$	-25	85	${ }^{\circ} \mathrm{C}$
f	40	100000	Hz
f_{VCO}	40	250000	Hz
$f_{\text {RG }}$	40	250000	Hz

Characteristics

Supply voltage
Ambient temperature Supply current
$\mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$
$f_{\mathrm{VCO}}=100 \mathrm{kHz}$

	TDA 4716 A			TDA 4716 B			
	Lower limit B	typ	Upper limit A	Lower limit B	typ	Upper limit A	
V_{S}	10.5		30	11		30	V
T_{amb}	0		70	-25		85	${ }^{\circ} \mathrm{C}$
I_{S}	8		16	8		20	mA

Reference

Reference voltage $0 \mathrm{~mA}<I_{\text {ref }}<5 \mathrm{~mA}$ Voltage change $V_{S}=14 \mathrm{~V} \pm 20 \%$ Voltage change $V_{S}=25 \mathrm{~V} \pm 20 \%$ Voltage change $0 \mathrm{~mA}<I_{\text {ref }}<5 \mathrm{~mA}$ Temperature coefficient

$V_{\text {ref }}$	2.35	2.5	2.65
$\Delta V_{\text {ref }}$		8	
$\Delta V_{\text {ref }}$		15	
$\Delta V_{\text {ref }}$			5
$T C$		0.25	0.4
$I_{\text {ref }}$		10	

| 2.45 | 2.5 |
| :--- | :--- | :--- |
| | 8 |
| | 15 |
| | 0.25 |
| | 10 |

2.55	V
	mV
15	mV
0.4	mV
	mV / K
mA	

ref

$\begin{aligned} & f \\ & \Delta f / f \end{aligned}$	40	0.5	100000	40	0.5	100000	Hz $\%$
$\Delta f / f$	-1		1	-1		1	\%
$\Delta f / f$	-7		7	-7		7	\%
		1 10			1 10		$\mu \mathrm{s}$
$C_{\text {T }}$	0.82		47	0.82		47	nF
R_{T}	5		700	5		700	$\mathrm{k} \Omega$

Ramp generator

Frequency range	f_{RG}	40		100000	40		100000	Hz
Maximum voltage at C_{R}	V_{H}		5.5			5.5		V
Minimum voltage at C_{R}	V_{L}		1.8			1.8		V
Input current through R_{R}	I_{RR}	0		400	0		400	$\mu \mathrm{~A}$
Current transformation ratio	$I_{\mathrm{RR}} / I_{\mathrm{CR}}$		$1 / 4$				$1 / 4$	

Comparator K2
Input current
Turn-off delay time ${ }^{1)}$
Input voltage
Duty cycle $v=0$

$$
v=\max
$$

Common-mode input voltage range

Soft start K 3, K4

| Charging current
 for $C_{\text {soft start }}$
 Discharging current
 for $C_{\text {soft start }}$ | I_{ch} | | 6 | | 6 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Upper limiting voltage | $I_{\text {dch }}$ | | | | | |
| Switching voltage K4 | | | | | | |

Operational amplifier

Open-loop voltage gain Input offset voltage	$G_{\text {vo }}$ V_{10}	$\begin{aligned} & 60 \\ & -10 \end{aligned}$	80	10	60 -10	80	10	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{mV} \end{aligned}$
Temperature coefficient of V_{10} Incupt current	TC $-I_{1}$	-30		30 2	-30		30 2	$\underset{\mu \mathrm{A}}{\mu \mathrm{V}} \mathrm{K}$
Common-mode input voltage range								
voltage range	V IC	0		5	0		5	V
Output current Rise time of	I_{Q}	-3		1.5	-3		1.5	mA
output voltage	$\Delta V / \Delta t$		1			1		$\mathrm{V} / \mu \mathrm{s}$
Transition frequency	f_{T}		3			3		MHz
Phase at f_{T}	φ_{T}		120			120		degr
Output voltage	$V_{Q H / L}$	1.5		5.5	1.5		5.5	V
-3 mA $<$ I<1.5 mA								

Output stages Q1, Q2

Output voltage
$I_{Q}=20 \mathrm{~mA}$
Output current
$V_{Q H}=30 \mathrm{~V}$

	TDA 4716 A			TDA 4716 B			
	Lower limit B	typ	Upper limit A	Lower limit B	typ	Upper limit A	
$-I_{\text {K2 }}$ $t_{\text {d off }}$			$\begin{aligned} & 2 \\ & 500 \end{aligned}$			$\begin{aligned} & 2 \\ & 500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~ns} \end{aligned}$
		1.8 5			1.8 5		V
$V_{\text {IC }}$	0		5.5	0		5.5	V

Charging current

 Discharging current for $C_{\text {soft start }}$ Upper limiting voltage Switching voltage K4
Overvoltage K 5

Switching voltage
Input current
Turn-off delay time ${ }^{1)}$
Error detection time ${ }^{1)}$

	TDA 4716 A			TDA 4716 B			
	Lower limit B	typ	Upper limit A	Lower limit B	typ	Upper limit A	
v	$V_{\text {ref }}{ }^{-}$		$V_{\text {ref }}+$	$V_{\text {ref }}{ }^{-}$		$V_{\text {ref }}+$	V
$-I_{1}$	30						$\mu \mathrm{A}$
$t_{\text {d off }}$		250			250		ns
1		50			50		ns

Supply undervoltage

Turn-on threshold for V_{S}, rising Turn-on threshold for V_{S}, falling

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| V_{S} | 8.8 | | | | |
| V_{S} | 8.5 | 10.5 | 8.8 | 11 | V |
| V | | | | | |

Dimensioning notes for RC network

1. Determination of the minimum time during which both outputs must be disabled
\rightarrow selection of C_{T}; selection of $C_{R} \leq C_{T}$.
2. Determination of the VCO frequency $=2 \times$ output frequency
\rightarrow selection of R_{T}.
3. Determination of the rated slope of the rising ramp generator voltage, which the maximum possible turn-on period per half wave depends on
\rightarrow selection of R_{R}.
4. Duration of the soft start process
\rightarrow selection of $C_{\text {soft start }}$
5. Wiring of the operational amplifier according to the dynamic requirements
[^66]
Pulse diagram

VCO temperature response

$V_{S}=12 \mathrm{~V}$; \quad max.
$\frac{\Delta f_{\mathrm{VCO}}}{f_{\mathrm{K}} \times \mathrm{K}}[1 / K]$ with C_{T} as parameter

Supply current versus temperature

TDA 4718/TDA 4718A Control IC for Single-Ended and Push-Pull Switched-Mode Power Supplies

Bipolar IC

This 18-pin SMPS control IC comprises digital and analog functions which are required to design high-quality flyback, single-ended, and push-pull converters in normal and halfbridge configurations. In addition to the control functions, the circuit contains operational amplifiers which detect malfunctions during electrical operation and suitable protective measures. A PLL circuit for synchronization is one of the special advantages offered by this IC in addition to the following features:

- Feed-forward control (line hum suppression)
- Push-pull outputs
- Dynamic current limitation
- Overvoltage protection
- Undervoltage protection
- Soft start
- Double pulse suppression
(TDA 4718-Ceramic 18 pin DIL package)
(TDA 4718A - Plastic 18 pin DIL package)

Pin configuration
top view

Pin designation
Pin No. ${ }^{\text {Function }}$

0_{s}

Ramp generator R_{R}
Ramp generator C_{R}

+ input comparator K 2
Sync input
Input undervoltage, ON/OFF
Input overvoltage
Input dynamic current limitation (-)
Input dynamic current limitation (+)
Reference voltage $V_{\text {ref }}$
Supply voltage V_{S}
Output Q2
Output Q 1
Sync output
Soft start
VCO R_{T}
Capacitance $C_{\text {filter }}$
$\mathrm{VCO} \mathrm{C}_{\mathrm{T}}$

Circuit description

Voltage controlled oscillator (VCO)

The VCO generates a sawtooth voltage. The duration of the falling edge is determined by the value of C_{T}. The duration of the rising edge of the waveform and, therefore, approximately the frequency, is determined by the value of R_{T}. By varying the voltage at $C_{\text {filter }}$, the oscillator frequency can be changed by its rated value. During the fall time, the VCO provides a trigger signal for the ramp generator, as well as an L signal for a number of IC parts to be controlled.

Ramp generator

The ramp generator is triggered by the VCO and oscillates at the same frequency. The duration of the falling edge of the ramp generator waveform is to be shorter than the fall time of the VCO. To control the pulse width at the output, the voltage of the rising edge of the ramp generator signal is compared with a dc voltage comparator K2. The slope of the rising edge of the ramp generator signal is controlled by the current through R_{R}. This offers the possibility of an additional, superimposed control of the output duty cycle. This additional control capability, called "feed-forward controlu, is utilized to compensate for known interference such as ripple on the input voltage.

Phase comparator

If the component is operated without external synchronization, the sync input must be connected to the sync output for the phase comparator to set the rated voltage at $C_{\text {filter }}$. The VCO then oscillates with rated frequency. In the case of external synchronization, other components can be synchronized with the sync output. The component can be frequencysynchronized, but not phase-synchronized, with the sync input. The duty cycle of the square-wave voltage at the sync input is arbitrary. The best stability as to small phase and frequency interference is achieved with a duty cycle as offered by the sync output.

Push-pull flipflop

The push-pull flipflop is switched by the falling edge of the VCO. This ensures that only one output of the two push-pull outputs is enabled at a time.

Comparator K2

The two plus inputs of the comparator are switched such that the lower plus level is always compared with the level of the minus input. As soon as the voltage of the rising sawtooth edge exceeds the lower of the plus levels, both outputs are disabled via the pulse turn-off flipflop. The period during which the respective, active output is low can be infinitely varied. As the frequency remains constant, this process corresponds to a change in duty cycle.

Pulse turn-off flipflop

The pulse turn-off flipflop enables the outputs at the start of each half cycle. If an error signal from comparator K7 or a turn-off signal from K2 is present, the outputs will immediately be switched off.

Comparator K 3

Comparator K 3 limits the voltage at capacitance $\mathrm{C}_{\text {soft start }}$ (and also at K 2 !) to a maximum of +5 V . The voltage at the ramp generator output may, however, rise to 5.5 V . With a corresponding slope of the rising ramp generator edge, the duty cycle can be limited to a desired maximum value.

Comparator K 4

The comparator has its switching threshold at 1.5 V and sets the error flipflop with its output if the voltage at capacitance $C_{\text {soft }}$ start is below 1.5 V . However, the error flipflop accepts the set signal only if no reset pulse (error) is applied. In this way the outputs cannot be turned on again as long as an error signal is present.

Soft start

The lower one of the two voltages at the plus inputs of K 2 is a measure for the duty cycle at the output. At the instant of turning on the component, the voltage at capacitor $C_{\text {soft }}$ start equals 0 V . As long as no error is present, this capacitor is charged with a current of $6 \mu \mathrm{~A}$ to the maximum value of 5 V . In case of an error, $\mathrm{C}_{\text {soft start }}$ is discharged with a current of $2 \mu \mathrm{~A}$. A set signal is pending at the error flipflop below a charge of 1.5 V and the outputs are enabled if no reset signal is pending simultaneously. As the minimum ramp generator voltage, however, is 1.8 V , the duty cycle at the outputs is actually increased slowly and continuously not before the voltage at $C_{\text {soft start }}$ exceeds 1.8 V .

Error flipflop

Error signals, which are led to input \bar{R} of the error flipflop, cause an immediate disabling of the outputs, and after the error has been eliminated, the component to switch on again using the soft start.

Comparator K 5, K 6, K 8, $V_{\text {ref }}$ overcurrent load

These are error detectors which cause immediate disabling of the outputs via the error flipflop when an error occurs. After elimination of the error, the component switches on again using the soft start.

Comparator K7

K7 serves to recognize overcurrents. This is the reason why both inputs of the op amp have been brought out. Turning on is resumed after error recovery at the beginning of the next half period but without using the soft start.

Outputs

Both outputs are transistors with open collectors and operate in a push-pull arrangement. They are actively low. The time in which only one of the two outputs is conductive, can be varied infinitely. The length of the falling edge at VCO is equal to the minimum time during which both outputs are disabled simultaneously.

Reference voltage

The reference voltage source is a highly constant source with regard to its temperature behavior. It can be utilized in the external wiring of the op amp, the error comparators, the ramp generator, or other external components.

Maximum ratings

Supply voltage
Voltage at Q1, Q2
Current at Q1, Q2
Sync output
Sync input
Input $C_{\text {filter }}$
Input R_{T}
Input C_{T}
Input R_{R}
Input C_{R}
Input comparator
K2, K5, K6, K7
Output K5
Reference voltage
Input $C_{\text {soft start }}$
Junction temperature
Storage temperature
Thermal resistance (system-air)
TDA 4718
TDA 4718 A

Operating range

Supply voltage
Ambient temperature
TDA 4718
TDA 4718 A
Max. VCO frequency
Ramp generator frequency
TDA 4718
TDA 4718 A

	Notes	Lower limit B	Upper limit A	
V_{S}		-0.3	33	V
V_{Q}	Q1, Q2 high	-0.3	33	V
I_{Q}	Q1, Q2 low		70	mA
$V_{\text {SYNCQ }}$	SYNC Q high	-0.3	7	V
$I_{\text {SYNCQ }}$	SYNC Q low	0	10	mA
$V_{\text {SYNC }}$		-0.3	33	V
$V_{\text {I Cf }}$		-0.3	7	V
$V_{\text {I RT }}$		-0.3	7	V
$V_{\text {ICT }}$		-0.3	7	V
$V_{\text {I RR }}$		-0.3	7	V
$I_{\text {I CR }}$		-10	10	mA
$V_{\text {I K }}$		-0.3	33	V
$V_{\text {QK5 }}$		-0.3	33	V
$V_{\text {ref }}$		-0.3	$V_{\text {ref }}$	V
$V_{1 \text { soft start }}$		--0.3	7	V
T_{j}			125	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$		-55	125	${ }^{\circ} \mathrm{C}$
$R_{\text {th SA }}$			70	K/W
$R_{\text {th SA }}$			60	K/W

V_{S}	10.5	30	V	
T_{amb}				
T_{amb}	-25	85	${ }^{\circ} \mathrm{C}$	
f	0	70	${ }^{\circ} \mathrm{C}$	
f_{RG}		40	250000	Hz
	40	250000	Hz	

Characteristics

$V_{\mathrm{S}}=11 \mathrm{~V}$ to 30 V ;
$T_{\text {amb }}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply current

	Test conditions	Lower limit B	typ	Upper limit A	
I_{S}	$\mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$ $f_{\mathrm{VCO}}=100 \mathrm{kHz}$	8		20	mA

Reference

Reference voltage
Reference voltage change
Reference voltage change
Reference voltage chenge
Temperature coefficient
Response threshold of $I_{\text {ref }}$ overcurrent

$V_{\text {ref }}$	$0 \mathrm{~mA}<I_{\text {ref }}<5 \mathrm{~mA}$
$\Delta V_{\text {ref }}$	$14 \mathrm{~V} \pm 20 \%$
$\Delta V_{\text {ref }}$	$25 \mathrm{~V} \pm 20 \%$
$\Delta V_{\text {ref }}$	$0 \mathrm{~mA}<I_{\text {ref }}<5 \mathrm{~mA}$
$T C$	
$I_{\text {ref }}$	

2.35

2.5	2.65	V
8		mV
15	mV	
	$15^{1)}$	mV
0.25	0.4	mV / K
10		mA

Oscillator (VCO)

Frequency range
Frequency change
Frequency change
Tolerance
Fall time sawtooth
RC combination
VCO

$f_{\text {vco }}$		40		100000	Hz
$\Delta t / f_{\text {vco }}$	$14 \mathrm{~V} \pm 20 \%$		0.5		\%
$\Delta t / f_{\text {vco }}$	$25 \mathrm{~V} \pm 20 \%$	-1		1	\%
$\Delta f / f \mathrm{fco}$	$\Delta R_{T}=0, \Delta C_{T}=0$	-7		7	\%
t	$\mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}$		1		$\mu \mathrm{s}$
t	$\mathrm{C}_{\mathrm{T}}=10 \mathrm{nF}$		10		$\mu \mathrm{s}$
$\mathrm{C}_{\text {T }}$		0.82		47	nF
R_{T}		5		700	$\mathrm{k} \Omega$

Ramp generator

Frequency range
Maximum voltage at C_{R} Minimum voltage at C_{R} Input current through R_{R} Current transformation ratio

| f |
| :--- | :--- | :--- | :--- | :--- |
| V_{H} |
| V_{L} |
| I_{RR} |
| $I_{\mathrm{RR}} I_{\mathrm{CR}}$ |$|\quad|$| | 40 | 5.5 | 100000 |
| :--- | :--- | :--- | :--- |
| | Hz | | |
| V | | | |
| | 0 | 1.8 | |
| V | | | |
| | | $1 / 4$ | 400 |
| $\mu \mathrm{~A}$ | | | |

Synchronization

Sync output
Sync input
Input current

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| V_{QH} | $I_{\mathrm{QH}}=-200 \mu \mathrm{~A}$ | 4 | | V |
| V_{QL} | $I_{\mathrm{QL}}=1.6 \mathrm{~mA}$ | | | |
| V_{IH} | | 2 | 0.4 | V |
| V_{IL} | | | | |
| $-I_{\mathrm{I}}$ | | | V | |
| V | | | | |

Comparator K2

Input current
Turn-off delay ${ }^{2}$)
Input voltage

Common-mode input voltage range

[^67]
Characteristics
 $V_{S}=11 \mathrm{~V}$ to 30 V ;
 $T_{\mathrm{amb}}=-25{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Soft start K3, K4

Charging current for $\mathrm{C}_{\text {soft start }}$ Discharging current for $C_{\text {soft start }}$ Upper limiting voltage Switching voltage K4
$\begin{array}{l|l|l|l|l|l}\text { Test } \\ \text { conditions }\end{array} \quad \begin{array}{lllll}\text { Lower } \\ \text { limit B }\end{array} \quad$ typ $\left.\begin{array}{l}\text { Upper } \\ \text { limit A }\end{array}\right]$

Output stages Q1, Q2

Output voltage	$V_{\text {QH }}$		30	V
	$V_{\text {QL }}$	$I_{\mathrm{Q}}=20 \mathrm{~mA}$	1.1	V
Output current	I_{Q}	$V_{Q H}=30 \mathrm{~V}$	2	$\mu \mathrm{A}$

ON, OFF, undervoltage K6

Switching voltage
Input current
Turn-off delay time ${ }^{1)}$
Error detection time ${ }^{1)}$
V
$-I_{I}$
$t_{\text {doff }}$
t

$V_{\text {ref }}-30 \mathrm{mV}$		$V_{\text {ref }}+30 \mathrm{mV}$ 2	V AA 50

Dynamic current limitation K7
Common-mode input voltage Input offset voltage Input current
Turn-off delay time ${ }^{2)}$
Error detection time ${ }^{2}$)

V_{lC}		
V_{IO}	0	
$-I_{1}$	-10	
$t_{\mathrm{d} \text { off }}$		
t		

	4
	10
250	2
50	

$|$| V |
| :--- |
| $m V$ |
| μA |
| $n s$ |
| $n s$ |

Overvoltage K5

Switching voltage	V		$V_{\text {ref }}-30 \mathrm{mV}$		$V_{\text {ref }}+30 \mathrm{mV}$
Input current	$-I_{\mathrm{l}}$	V			
Turn-off delay time ${ }^{1)}$	$t_{\text {d off }}$			250	
Error detection time ${ }^{1)}$	t				
ns					
ns					

Supply undervoltage

Turn-on threshold for V_{S} rising	$V_{\text {S }}$	$0^{\circ} \mathrm{C}<T_{\text {amb }}<70^{\circ} \mathrm{C}$	8.8	11 10.5	V
Turn-off threshold for V_{S}	V_{S}		8.5	10.5	V
falling		$0^{\circ} \mathrm{C}<T_{\mathrm{amb}}<70^{\circ} \mathrm{C}$		10	V

Input $C_{\text {filter }}$

[^68]
Dimensioning notes for RC network

1. Determination of the minimum time during which both outputs must be disabled
\rightarrow selection of C_{T}; selection of $C_{R} \leq C_{T}$.
2. Determination of the VCO frequency $=2 \times$ output frequency
\rightarrow selection of R_{T}.
3. Determination of the rated slope of the rising ramp generator voltage, which the maximum possible turn-on period per half wave depends on
\rightarrow selection of R_{R}.
4. Duration of the soft start process
\rightarrow selection of $C_{\text {soft start }}$.
5. In the case of a free-running VCO: connect sync output with sync input.
6. Capacitance $C_{\text {filter }}$ is not required in the free-running operation (sync input connected with sync output).
In the case of external synchronization, that value depends on the selected operating frequency and the required maximum phase interference deviation.

Rated VCO frequency: $\quad 100 \mathrm{kHz} \quad 50 \mathrm{~Hz}$
$C_{\text {filter }}$ favorable: $\quad 10 \mathrm{nF} \quad 1 \mu \mathrm{~F}$

Pulse diagram

VCO temperature response

$V_{S}=12 \mathrm{~V}$; $r=$ max.
$\frac{\Delta f_{\mathrm{VCO}}}{f_{\mathrm{K}} \times \mathrm{K}}[1 / \mathrm{K}]$ with C_{T} as parameter

Current consumption versus temperature

Output current versus output voltage

*See Consumer Data Book or contact your local Siemens Representative.

Table of Contents

General Information

\qquad

Summary of Types
\qquad

Microcontroller and Microprocessor Components
\qquad

Peripheral and Support Components
\qquad

Memory Components
\qquad

Telecom Components
\qquad

Data Conversion Components
\qquad

Switched Mode Power Supply (SMPS) Components

Integrated Circuits for Consumer Applications

The information contained here has been carefully reviewed and is believed to be accurate. However, due to the possibility of unseen inaccuracies, no responsibility is assumed.
This literature does not convey to the purchaser of electronic devices any license under the patent rights of any manufacturer.

Issued by Integrated Circuits Division 186 Wood Avenue South, Iselin, NJ 08830 (201) 321-3400

[^0]: *See Consumer Data Book or contact your local Siemens Representative.

[^1]: Microcontroller and Microprocessor Components

[^2]: *) Interfacing the SAB 8051 to devices with float times up to 75 ns is permissible. This limited bus contention will not caused any damage to Port 0 drivers.

[^3]: *) Interfacing the SAB 8051 to devices with float times up to 92 ns is permissible. This limited bus contention will not caused any damage to Port 0 drivers.

[^4]: *) Interfacing the SAB 8051 to devices with float times up to 92 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

[^5]: *) Interfacing the SAB 8051 to devices with float times up to 112 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

[^6]: ${ }^{*}$) Interfacing the SAB 8051A to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

[^7]: *) Interfacing the SAB 8051A-15 to devices with float times up to 60 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

[^8]: *) $\operatorname{MiO} \dot{U} V \dot{A}, \dot{A} C \bar{C}$ is not a vaiid instruction

[^9]: *) MOV $A, A C C$ is not a valid instruction

[^10]: 1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
[^11]: *) Interfacing the SAB 8051A to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

[^12]: *) Interfacing the SAB 8051A to devices with float times up to $92 n$ is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

[^13]: *Note: MOV A, ACC is not a valid instruction

[^14]: *Note: MOV A, ACC is not a valid instruction

[^15]: 1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
[^16]: *) Interfacing the SAB 8052A to devices with float times up to 75 ns is permissible. This limited bus contention will not cause any damage to Port 0 drivers.

[^17]: *) During this time-slot the signal at Reset-pin can change to $V_{n o}$ without lengthening the Reset execution

[^18]: ${ }^{1}$) Signal at SAB 8284A shown for reference only.
 ${ }^{2}$) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
 ${ }^{3}$) Applies only to T_{2} state. (8 ns into T_{3})

[^19]: ${ }^{1}$) Signal at SAB 8284A or SAB 8288 shown for reference only.
 ${ }^{2}$) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
 ${ }^{3}$) Applies only to T_{3} and wait states.
 ${ }^{4}$) Applies only to T_{2} state (8 n into T_{3}).

[^20]: ${ }^{1}$) Signal at SAB 8284A or SAB 8288 shown for reference only.
 ${ }^{2}$) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
 ${ }^{3}$) Applies only to T_{3} and wait states.
 ${ }^{4}$) Applies only to T_{2} state (8 ns into T_{3}).

[^21]: ${ }^{1}$) Signal at SAB 8284A shown for reference only.
 ${ }^{2}$) Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
 ${ }^{3}$) Applies only to T_{2} state. (8 ns into T_{3})

[^22]: *) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^23]: Shaded areas indicate instructions not available in SAB 8086, 8088 microsystems.

[^24]: ${ }^{1)}$ Missing clock transıtion between bits 4 and 5
 ${ }^{2)}$ Missing clock transition between bits 3 and 4

[^25]: ${ }^{1 /}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
 ${ }^{2)}$ Leakage conditions are for input pins without internal pull-up resistors.
 ${ }^{3)}$ This parameter is periodically sampled and not 100% tested.

[^26]: ${ }^{11} \overline{\mathrm{CS}}$ may be permanently tied LOW if desire.
 ${ }^{31}$ Times double when CLK $=1 \mathrm{MHz}$

[^27]: ${ }^{\text {" }}$ CS may be permanently tied LOW if desired. When writing Data into Sector Track or Data Register User cannot read this Register until at least $4 \mu \mathrm{~s}$ in MFM after the rising edge of WE when writing into the command Register Status is not valid until some $28 \mu \mathrm{~s}$ in FM, $14 \mu \mathrm{~s}$ in MFM later.
 ${ }^{2)} \mathrm{T}$ Service (worst case) ; $\mathrm{FM}=23.5 \mu \mathrm{~s} ; \mathrm{MFM}=11.5 \mu \mathrm{~s}$
 ${ }^{3)}$ Times double when CLK $=1 \mathrm{MHz}$

[^28]: A PPL Data Separator is recommended for $8^{\prime \prime}$ MFM

[^29]: ${ }^{1)}$ From step rate table.
 ${ }^{2)}$ Times double when CLK=1MHz

[^30]: * SAB 2795A/97A may vary - see command summary.

[^31]: ${ }^{1}$) Write bracketed field 26 times.
 ${ }^{2}$) Continue writing until SAB 279XA interrupts out.
 Approx. 247 (598) bytes.
 ${ }^{3}$) Optional 'OD' on SAB 2795A/97A only is allowed.

[^32]: ${ }^{1)}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
 ${ }^{2)}$ ILL 1 applies to normal inputs, IIL 2 to inputs with internal pull-up resistors on pins 1, 17, 19, 22, 36, 37, and 40. Also pin 25 on SAB 2791A/93A.
 ${ }^{3)}$ This parameter is periodically sampled and not 100% tested.

[^33]: 1) See stepping rates on page 13
[^34]: Notes see next page.

[^35]: ${ }^{*}$) These bits can only be set, they are reset at the end of the operation.

[^36]: 1) Stresses above those listed under
 "Absolute Maximum Ratings" may cause permanent damage to the device.
 Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
[^37]: 1) Stresses above those listed under
 "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
[^38]: ${ }^{1)} \mathrm{CL}=150 \mathrm{pF}, \mathrm{IOL}=5 \mathrm{~mA}$. With either the internal oscillator with the recommended crystal and load or with the EFI input meeting specification T2 and T3.
 2) $\mathrm{CL}=150 \mathrm{pF}, \mathrm{IOL}=5 \mathrm{~mA}$
 3) $\mathrm{CL}=75 \mathrm{pF}, 1 \mathrm{OL}=5 \mathrm{~mA}$
 ${ }^{4)}$ This is an asynchronous input. This specification is given for testing purposes only, to assure recognition at a specific clock edge.

[^39]: Notes see next page

[^40]: ${ }^{1}$) Stresses above those listed under "absolute maximum ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
 ${ }^{2}$) All outputs open; VCC $=5 \mathrm{~V}$; TA $=25^{\circ} \mathrm{C}$.

[^41]: ${ }^{1}$) A.C. data for the SAB 82731-2 was not available at the time this data book was compiled.
 Contact your Siemens representative for complete information.

[^42]: *Values for applications up to $+110^{\circ} \mathrm{C}$ upon request.

[^43]: -) Values for applicatıons up to $110^{\circ} \mathrm{C}$ upon request

[^44]: ${ }^{\circ}$) Values for applications up to $110^{\circ} \mathrm{C}$ upon request

[^45]: Notes see page 7

[^46]: Notes see page 8

[^47]: - $\mu \mathrm{P}$-controlled interface

[^48]: - Case 1: Read, write of BI FIFO and X FIFO
 * Case 2: All other registers

[^49]: Dimensions in mm

[^50]: - Case 1: Read, write of BI FIFO and X FIFO
 - Case 2: All other registers

[^51]: 1) Maximum ratings are absolute limits and the IC can be destroyed by exceeding them. Functioning of the integrated circuit is not assured under conditions other than those stated in the electrical characteristics. Operation for long periods of time under maximum rating conditions can adversely affect the reliability of the integrated circuit.
 ${ }^{2}$) An internal resistor of 500Ω is connected before the output.
[^52]: "Stresses above those listed under "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^53]: I) Stresses above those listed under "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
 $\left.{ }^{2}\right) \overline{C D}$ connected to ground, chip disabled
 ${ }^{3}$) $\mathrm{F1}$-F8 open, $\overline{\mathrm{CD}}$ open, chip enabled
 4) Current sink enabled (CSD $=$ high level), button pressed or $\mathbf{F 5}$ and $\mathrm{F8}$ connected to ground
 5) CD open, chip enabled
 b) Current sink disabled ($\overline{C S D}=$ low level), button pressed or F5 and F8 connected to ground

[^54]: ${ }^{-1}$ The low cost crystal has the following deviations (including aging and temperature range): $\Delta f / f \leq 3.5 \times 10^{-3}$.

[^55]: "Lines effected as Microstrip

[^56]: Comments see page 896

[^57]: 1) Package soldered in PCB without cooling area
 2) Package soldered in PCB with copper-clad 35μ layer, cooling area $25 \mathrm{~cm}^{2}$
 3) $R_{\text {th JA } 1}=44 \mathrm{~K} / \mathrm{W}$ and $P_{V}=1 \mathrm{~W}$
[^58]: *) only dc part

[^59]: 1) Package soldered in PCB without cooling area.
 2) Package soldered in PCB with copper-clad $35-\mu \mathrm{m}$ layer, cooling area $25 \mathrm{~cm}^{2}$
 3) $R_{\mathrm{th}} \mathrm{JA}_{1}=44 \mathrm{~K} / \mathrm{W}$ and $P_{\mathrm{V}}=1 \mathrm{~W}$
[^60]: *) only dc part

[^61]: *) $10 \mathrm{k} \Omega / 3 \mathrm{~W}$ in application circuit 1

[^62]: \qquad Protective circuit to prevent increase of secondary voltage when fault occurs

[^63]: 1) At $T_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, this value falls to max. 5 mV .
 2) At the input: step function $\Delta V=-100 \mathrm{mV} \leftrightarrows \Delta V=+100 \mathrm{mV}$
[^64]: 1) At the input: step function $V_{\text {ref }}=-100 \mathrm{mV} _V_{\text {ref }}=+100 \mathrm{mV}$
[^65]: 1) At the input: step function $\Delta V=-100 \mathrm{mV} \rightarrow \Delta V=+100 \mathrm{mV}$
 2) At the input: step function $V_{\text {ref }}=-100 \mathrm{mV} \rightarrow V_{\text {ref }}=+100 \mathrm{mV}$
[^66]: 1) At the input: step function $\left.V_{\text {ref }}=-100 \mathrm{mV}\right\lrcorner V_{\text {ref }}=+100 \mathrm{mV}$
[^67]: 1) At $T_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, this value falls to max. 5 mV
 2) At the input: step function $\Delta V=-100 \mathrm{mV} \leftrightarrows \Delta V=+100 \mathrm{mV}$
[^68]: 1) At the input: step function $V_{\text {ref }}=-100 \mathrm{mV} \rightarrow V_{\text {ref }}=+100 \mathrm{mV}$
 2) At the input: step function $\Delta V=-100 \mathrm{mV} \leftrightarrows \Delta V=+100 \mathrm{mV}$
