Data Book 1980/81

Table of Contents
General Information

ICs for Special TV Applications

ICs for Special Broadcasting Applications

ICs for General Purpose Applications

Packaging Information

List of Sales Offices

SIEMENS

ICs
for Entertainment Electronics Data Book 1980/81

Published by Siemens AG, Bereich Bauelemente, Produkt-Information,

 Balanstraße 73, D-8000 München 80For the circuits, descriptions, and tables indicated no responsibility is assumed as far as patents or other rights of third parties are concerned.

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved.
For questions on technology, delivery and prices please contact the Offices of Siemens Aktiengesellschaft in the Federal Republic of Germany and Berlin (West) or the Siemens Companies and Representatives abroad (see list of Sales Offices).

Table of Contents

General Information

Table of Contents

General information Page

1. New type nomenclature for ICs 11
2. Mounting instructions 12
3. Glossary of terms 14
4. Quality specifications 17
ICs for special TV applications
Video IF/AFC
TBA 1440 G Video IF IC for black/white and color TV sets 23
TBA 1441 Video IF IC for black/white and color TV sets 23
TDA 5500 Video IF IC with VCR connection 29
TDA 5600 Video IF IC with AFC 35

- TDA 5610 Video IF IC with AFC 35
- TDA 5611 Video IF IC with AFC 35
TDA 4260 AFT IC with programmable current deviation 41
Quasi-parallel sound
TDA 2840 Quasi parallel sound IC 44
TDA 2841 Quasi parallel sound IC with AFC 46
TDA 4280 T Quasi parallel sound IC with FM IF 49
TDA 4280 U Quasi parallel sound IC with FM IF 49
TDA 4281 T Quasi parallel sound IC with FM IF with sym. input 54
Sound stage IF amplifiers
TBA 120 FM IF amplifier with demodulator 59
TBA 120 A FM IF amplifier with demodulator 59
TBA 120 S FM IF amplifier with demodulator 66
TBA 120 AS FM IF amplifier with demodulator 66
TBA 120 T FM IF amplifier with demodulator 74
TBA 120 U FM IF amplifier with demodulator 74
TDA 1048 Controlled AM amplifier with demodulator and AF volume control 83
System for color signal handling in TV receivers in acc. with the PAL standard 86
TDA 2522 Synchronous demodulator combination for PAL color TV sets 89
TDA 2530 RGB circuitry for color TV receivers 92
TDA 2560 Luminance and chrominance combination for PAL TV receivers 96

[^0]
Table of Contents

Page
ICs for driving purposes

- TDA 2591 Horizontal combination for TV receivers 101
v TDA 2593 Horizontal combination incl. improved sandcastle pulsefor TV receivers107
- TDA $4600 \quad$ Control IC for switching power supplies 113
v TDA 4610 East-west correction circuit 122
UAA 190 IC for onscreening of the bargraph in the television picture 128
Dividers
v SDA 4040 UHF/VHF divider 1:256 135
V SDA 4041 UHF/VHF divider 1:256 with preamplifier 139
Siemens digital tuning system SDA 100 (frequency synthesis) 144
S $0436 \quad$ High frequency divider 1:64 155
S 0437 Phase locked loop IC 158
TBB 1331 A Operational amplifier with darlington input 165
SM $564 \quad$ Control circuit for frequency synthesis in TV sets 170
v SDA 5650 F $16 \times 14(16)$ bit nonvolatile memory 186
Siemens digital tuning system SDA 200 (frequency synthesis) 193
- SDA 2001 High frequency divider 1:64 incl. preamplifier 201
v SDA 2002 Phase-locked loop IC 206
v SDA 2003 Channel processor for frequency synthesis 212
v SDA 2004 LED display driver 229
- SDA 2014 LED display driver incl. cascade connection 236
v SDA 2105 On-screen IC 244
v SDA 2006 Nonvolatile memory with 32 words of 16 bits each (EAROM) 251
- SDA 2007 IR remote control system - receiver 261
v SDA 2008 IR remote control system - transmitter 272
ICs for special broadcasting applications
Tuner
S 042 P Mixer 293
S 042 E Mixer 293
IF stages
S 041 P FM IF amplifier with demodulator 298
S 041 E FM IF amplifier with demodulator 298
TCA 440 AM receiver circuit 304
TDA 1046 AM receiver IC incl. demodulator 320
TDA 1047 FM/IF amplifier IC incl. demodulator for radio receivers 328
- S 054 T AM shortwave tuner IC for superheterodyne receivers 335
- TDA 4200 FM IF IC for car radios 340

[^1]
Table of Contents

Page
System for the reception of road traffic transmitters (ARI) 344
S 0280 IC for station decoding SK 346
S 0281 IC for message decoding DK 350
S 551 Message decoder for FM road traffic information service 353
S 552 Area decoder for FM road traffic information service 362
Voltage synthesis

- SDA 5690 R VHF tuning voltage control 369
- SDA 5690 C VHF tuning voltage control 382
\checkmark SDA $5650 \mathrm{R} \quad 16 \times 10(12)$ bit nonvolatile memory (EAROM) 394
v TDB 0453 A Comparator 401
Frequency counters
- SDA 5680 A Frequency counter for LMS and VHF 403
- SDA 5680 B Frequency counter for LMS and VHF 403
Stereo decoders
- TCA 4500 A Stereo decoder 409
- TCA 4510 Stereo decoder for low-voltage operation 413
IC for cassette and tape recorders
\checkmark S 0282-2 Level controller for tape recorders 420
v TDA 2000 Stereo equalizing amplifier, signal source switch and AF regulator 426
ICs for general purpose applications
Remote control systems
Infrared remote control system IR 60 435
- SAB $3209 \quad$ Infrared remote control system - receiver (3 analog functions) 436
SAB 4209 Infrared remote control system - receiver (4 analog functions) 446
SAB 3210 Infrared remote control system - transmitter 458
SAB 3211 Display - decoder - driver 467
v SAB 3211 Z Display - decoder - driver 473
SAB 3271 Infrared receiver with parallel outputs 477
- SDA $3205 \quad$ Infrared remote control system - receiver 489
v SDA 3206 Infrared remote control system - transmitter 498
TDA 4050 B Infrared preamplifier 505

[^2]
Table of Contents

Page
Switches
SAS 560 S Switching amplifier for 4-channel touch tuning 510
SAS 570 S Switching amplifier for 4-channel touch tuning 510
SAS $580 \quad$ Switching amplifier for 4-channel touch tuning 514
SAS 590 Switching amplifier for 4-channel touch tuning 514

- SAS 5800 Switching amplifier for 4-channel touch tuning with muting pulse 522
- SAS 5900 Switching amplifier for 4-channel touch tuning with muting pulse 522
SAS 6800 Sequence switch for 5 -channel touch tuning 529
SAS 6810 Sequence switch for 1 -channel touch tuning 533
AF power amplifiers
TDA 1037 AF power amplifier with thermal shutdown 536
TDA 1037 D AF power amplifier with thermal shutdown 536
- TDA 2003 AF power amplifier for car radios 545
- TDA 2030 AF power amplifier for radio and television receivers 548
TDA $3000 \quad 15 \mathrm{~W}$ AF power amplifier with short circuit protection 556
LED array driving
UAA 170 LED driver for light spot displays 559
- UAA 170 L LED driver for light spot displays 559
UAA 180 LED driver for light band displays 567
Tone control IC
TDA 4290 Tone control IC for volume, treble, and bass 573
Packaging information 579
List of Sales Offices 587

[^3]
General Information

1. New type nomenclature for ICs')

The code consists of: Three letters followed by a serial number

First two letters

A. Individual circuits

The first letter identifies the circuit as:
S: Individual digital circuit
T: Analog circuit
U: Mixed analog/digital circuit
The second letter has no special significance, except the letter H which stands for hybrid circuits.
B. Family circuits

These are digital circuits related in their specifications and primarily designed to be mutually connected.
The first two letters identify the family.
The third letter: indicates the operational temperature range or, exceptionally, another significant characteristic.

A - No temperature range specified
B - $\quad 0$ to $70^{\circ} \mathrm{C}$
$\mathrm{C}--55$ to $125^{\circ} \mathrm{C} \quad$ If a circuit is designed for a wider temperature range, $\mathrm{D}--25$ to $70^{\circ} \mathrm{C} \quad$ but does not qualify for a higher classification, the $\mathrm{E}--25$ to $85^{\circ} \mathrm{C}$ F -40 to $85^{\circ} \mathrm{C}$

The serial number may either be a 4-digit number (stated by PRO ELECTRON) or a serial number (combining figures and perhaps numbers) of an existing company number. Company numbers consisting of less than four digits are extended to a fourdigit number by adding zeroes (0) in front.

A version letter may be added to indicate a variation of the basic type. Thus, slight changes of the basic type or the case may be designated. Version letters have no fixed significance, except letter Z: connection as specified by customer ("customized wiring").
The following letters are used for the different package outlines:
C - Cylindrical package
D - Dual in-line ceramic
F - Flat pack
P - Dual in-line plastic
Q - Quadruple in-line
U - Chips, not encased

[^4]
General Information

Former type nomenclature:

First two letters: same as new code.
The third letter: indicates the function
H - Combinatorial circuit
J - Bistable or multistable sequential circuit (static)
K - Monostable sequential circuit
L - Level converter (dynamic)

N - Bi-metastable or multi-metastable sequential circuit
Q - Read-write memory
R - Read-only memory
S - Sense amplifier with digital output
Y - Miscellaneous

The third figure (of the serial number comprising three figures) indicates the operating temperature range.
0 - No temperature range specified
1 - 0 to $70^{\circ} \mathrm{C}$
$2--55$ to $125^{\circ} \mathrm{C}$
4 - $\quad 15$ to $55^{\circ} \mathrm{C}$
$3--10$ to $85^{\circ} \mathrm{C}$
$5--25$ to $70^{\circ} \mathrm{C}$
$6--40$ to $85^{\circ} \mathrm{C}$

2. Mounting instructions

2.1 General

With MOS components, it must be observed that no currents will flow between substrate and solder bath or soldering iron respectively. It is therefore recommended, to ground the connections to be soldered as well as the solder bath and/or the solder iron.

During preparation and assembly on the PCB, the MOS circuits need protection against static overvoltages and electrical spikes. On no account, MOS circuits are allowed to be taken from or inserted into the circuit while the operating voltage is applied.

General Information

2.2 Plastic plug-in packages

Plastic plug-in packages are soldered on the reverse side of the printed circuit board, opposite the package. The package pins are bent down by 90° and fit into holes 2.54 mm apart, with hole diameters of 0.7 to 0.9 mm . Dimension X should be taken from the appropriate dimensional drawing of the package.
The bottom of the package does not touch the printed circuit board surface after its insertion, as the pins widen at a proper distance from the package (see figure).
After inserting the package into the printed circuit board it is advantageous to bend two pins at an angle of approximately 30° towards the board. This way the pakage does not need to be held down during the soldering process.

Fig. 1

2.3 Package 5 H8 DIN 41873 and similar packages with 8, 10, and 12 pins

The case may be mounted in any position. The pins may be bent sideways at a minimum distance of 1.5 mm from the case according to the hole distance (fig. 2). Pins that are too long should be clipped before soldering. Iron or dip soldering may be employed.

Dimensions in mm

Fig. 2

$$
\begin{aligned}
& Q^{\phi}{ }^{\phi} 0.5 \text { to } 0.6 \\
& \theta{ }_{\theta}^{\ominus}{ }^{\ominus}
\end{aligned}
$$

2.4 Hints for soldering

Solder temperature: max. $260^{\circ} \mathrm{C}$
Soldering duration: dip soldering max. 5 sec iron soldering max. 10 sec

General Information

3. Glossary of terms

3.1. Bipolar circuits

Main terms
a Suppression, rejection
a Intermodulation ratio
a Attenuation
AC Alternating current
AF Audio frequency
AM Amplitude modulation
B Bandwidth
C Capacitance
CMRR Common mode rejection ratio
DC Direct current
$f \quad$ Frequency
$\Delta f \quad$ Frequency deviation
FM Frequency modulation
G \quad Giga $\left(10^{9}\right)$
G Gain
$\mathrm{Hz} \quad$ Cycles per second (Hertz)
I Current
IF Intermediate frequency
THD Total harmonic distortion
K Kelvin
k \quad Kilo (10^{3})
$L \quad$ Inductance
$\mathrm{m} \quad \mathrm{Milli}\left(10^{-3}\right)$
M \quad Mega (10^{6})
$m \quad$ Linearity
$m \quad$ Modulation factor
MW Medium wave
NF Noise figure
$P \quad$ Power dissipation
$Q, Q_{B} \quad$ Q-factor
$R \quad$ Resistance
RF Radio frequency
S/N Signal to noise
SVR Supply voltage rejection
T Temperature
t time
$V, \mathrm{~V} \quad$ Voltage
W Watt
$Z \quad$ Impedance
Z Zener

Index terms
AF Audio frequency
AM Amplitude modulated
amb Ambient
B Base
C Capacitance
C Collector
cont Control
c Cross talk
cr Cross talk rejection
D Differential
d Disturbance
E Emitter
fb Feedback
fly flyback
FM Frequency modulated
G Generator
hum Hum
i Input
IF Intermediate frequency
j Junction
lim Limiting
lk Leakage
mod Modulated
n Noise
o Offset
OD Overdrive
osc Oscillator
pot Potentiometer
pp Peak to peak
q Output
RF Radio frequency
rms Route mean square
S Supply
stg Storage
switch Switching
sy System
S/N Signal to noise
thSA Thermal (system-air)
thSC Thermal (system-case)
tot Total
tun Tuning

- Open loop

V, v Voltage

General Information

3.2 MOS circuits

Voltages

V	Voltage, general
V_{S}	Supply voltage
V_{SS}	Substrate supply voltage
V_{DD}	(rain supply voltage
V_{GG}	Gate supply voltage
$V_{i \mathrm{H}}$	High level at a signal input
$V_{i \mathrm{~L}}$	Low level at a signal input
V_{qH}	High level at an output
V_{qL}	Low level at an output
$V_{\Phi \mathrm{H}}$	High level at a clock input
$V_{\Phi \mathrm{L}}$	Low level at a clock input
V_{i}	Voltage at a signal input
V_{R}	Reset voltage

Currents

I_{DD}	Drain supply current I_{GG}
I_{q}	Gate supply current
Output current, general	

Capacitances

C
C_{i}
C_{Φ}
C_{q}
Capacitance
Input capacitance
Input capacitance at a clock input
Output load capacitance

Frequencies

f_{i}	Input frequency
f_{Φ}	Clock frequency

Power

P	Power dissipation (power consumption)
$P_{\text {tot }}$	Total power dissipation

Temperatures

$T_{\text {amb }}$	Ambient temperature
$T_{\text {stg }}$	Storage temperature

Timing
t_{d}
t_{pd}
t_{r}
t_{f}
t_{t}
t_{w}
$t_{\mathrm{t}} \mathrm{HLq}$
$t_{\mathrm{t}}^{\mathrm{LH}} \mathrm{q}$
t_{dHLq}
t_{dLHq}
$t_{\mathrm{w} H \Phi}$
$t_{\mathrm{wL} \Phi}$
$t_{\mathrm{tHL} \Phi}$
$t_{\mathrm{t} \text { LH } \Phi}$
$t_{\mathrm{d} H L \Phi}$
$t_{\text {dLH } \Phi}$
t_{wHi}
t_{wLi}
t_{tHLi}
$t_{\mathrm{t} \text { LHi }}$
$t_{\mathrm{d} \text { LH }}$
t_{wHq}

Miscellaneous

$t_{\text {cy }}$	Cycle time
Φ	Clock input
1	Input
I_{1}	Input 1
I_{2}	Input 2
$\overline{\mathrm{Q}}$	Data output
$\overline{\mathrm{Q}}$	Data output inverted

General Information

4. Quality specifications

The quality of delivery is specified as follows:

4.1. Maximum and minimum values of characteristics

4.2. Random sample agreement, $A Q L$ values (Acceptable Quality Level)

A delivery batch whose defect percentage for a certain value is equal to or less than the specified AQL value will be accepted with high probability (above 90%) during the appropriate random sample inspection with respect to this characteristic value. The average defect percentage of delivered goods generally lies below the AOL value.

4.3. Classification of defects

A defect exists if a characteristic of a component does not comply with the specifications in the data sheet. The defects are divided into major and minor defects with respect to their seriousness, and into mechanical and electrical defects with respect to the type of defect. Unless otherwise specified, the AQL values summarized in section 4 apply to the various groups of defects. The identical random sample plans DIN 40080 (or) ABC-Std 105 are used as a base for attribute inspection.
For each defect group for which an AQL value is specified, only the number of defective units (each with one or more defective characteristics) is evaluated within that defect group.

4.3.1 Division into groups of defects

Depending on the probable effect of the defect on the application circuit, defects are divided into

Group of major defects

If such a defect exists, the usefulness for the intended purpose is probably substantially reduced.

Group of minor defects

If such a defect exists, the usefulness for the intended application is probably only slightly reduced.

4.3.2 Division according to defect type

A distinction is made between:
Defects in mechanical characteristics
(Package and leads)
Defects in electrical characteristics

General Information

Examples:

Major defects, mechanical characteristics

Broken connections or package, missing identification, wrong packages, bad cracks and cavities in the package, major surface defects, leads which cannot be soldered.

Minor defects, mechanical characteristics

Minor damage to the body surface, identification difficult to read, bent pins, incorrect dimensions.

Major defects, electrical characteristics

Malfunction, open circuit, short circuit, deviation from characteristic values by more than 50\%.

Minor defects, electrical characteristics

Minor deviations of voltages and currents, deviations from the dynamic characteristics, provided that they have no major effect on the application.
4.4. AQL table for ICs in entertainment electronics

Defect type and defect group	AQL values for	
	bipolar circuits	MOS circuits
Defects at packages and supply lines		
Major defects	0.4	0.4
Minor defects	0.65	0.65
Sum of major and minor defects	0.65	0.65
Electrical defects		
Major defects	0.4	0.4
Minor defects	$\left.0.65^{1}\right)$	1.0
Sum of major and minor defects	0.65	1.0

Annotation

The higher AQL values for MOS circuits in comparison with bipolar circuits result from the substantially larger functional range.

Incoming inspection

The inspections carried out at the manufacturer's plant are intended to make incoming inspections unnecessary. If the buyer still wishes to carry out incoming inspection, the use of a random sample plan as shown in section 5 is recommended. The testing technology to be used must be agreed upon between the customer and the supplier.
The following details are necessary for assessment of any complaints:
Test circuit, random sample size, number of defective elements found, sample of evidence, number of the packing slip.

[^5]
4.5. Random sampling test plan for normal inspection

in accordance with DIN 40080 or ABC-Std 105 D, test level II

$A=$ Number of acceptances; i.e. the maximum number of defective sample elements up to which the lot is accepted,
$R=$ Number or rejections; i.e. the number of defective sample elements, at least achieved when the lot has been rejected.

Additional requirement

As the combination "Acceptance 0 and Rejection 1 " has a low degree of significance, the next larger sample-size is to be used.

ICs for Special TV Applications

Video IF/AFC
Quasi-parallel sound
Sound-stage IF amplifier
System for color signal handling in TV receivers in acc. with the PAL standard
ICs for driving purposes
Dividers
Siemens digital tuning system SDA 100 (frequency synthesis)
Siemens digital tuning system SDA 200 (frequency synthesis)

Highly amplifying controlled video IF amplifier including controlled demodulator, lowohmic video outputs for positive- and negative-going signal, gated control, and delayed tuner control.

TBA 1440 G for pnp tuners
 TBA 1441 for npn tuners

- High integration
- Large control range
- High input sensitivity
- Few 1.07 MHz disturbances
- Positive- and negative-going signal
- White and black levels separately adjustable
- Excellent tuning behavior

Type	Ordering code	Package outline
TBA 1440 G	Q67000-A1022	$\}$ DIP 16
TBA 1441	Q67000-A1224	$\}$ DI

Maximum ratings

Supply voltage
Voltages

Ohmic resistance between pin 8 and 9
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{S}	15^{1})	V
V_{4}	5	V
V_{5}	20	V
V_{14}	5	V
R_{8-9}	$\leqq 20$	Ω
$R_{\text {th }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation
Supply voltage range
Ambient temperature range

V_{S}	10.5 to 15	V
T_{amb}	-25 to 60	${ }^{\circ} \mathrm{C}$

[^6]Characteristics ($V_{13}=13 \mathrm{~V}$; $f_{\text {ilF }}=38.9 \mathrm{MHz} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; all data measured with respect to ground, unless otherwise stated)

Current consumption
DC voltage at output 11
$\left(V_{13}=15 \mathrm{~V} ; V_{\mathrm{i}}=0\right)$

$$
\begin{aligned}
& R_{14-3}=\infty \\
& R_{14-3}=0
\end{aligned}
$$

DC voltage at output 12
($V_{13}=15 \mathrm{~V} ; V_{\mathrm{i}}=0$)

$$
\begin{aligned}
& R_{14-3}=\infty \\
& R_{14-3}=0
\end{aligned}
$$

White level deviation

Resistance for $\Delta V_{11}=1 \mathrm{~V}$
AGC threshold $V_{10}=$ sync pulse level for $R_{10-11}=0$
Resistance for sync pulse level deviation of 1 V
Sync pulse level with async or without gating pulses
(peak level control)
Video output voltage
Control current for tuner prestage ($V_{5}>2 \mathrm{~V}$)
(TBA 1440 G: 10 dB after AGC
TBA 1441 : 10 dB prior to AGC)
IF control voltage for max gain for min gain

Gating pulse voltage
Residual IF (basic frequency)
Output current to ground to plus
Input impedance at max gain at min gain

Input voltage ${ }^{1}$) for $V_{11}=3 V_{p p}$
Video bandwidth (-3 dB)
AGC range
Intermodulation ratio (1.07 MHz) with
reference to color carrier ${ }^{2}$)
Output impedance

	\min	typ	max	
I_{13}	33	42	61	mA
V_{11}		5.5		V
V_{11}		9.6		V
V_{12}		1.9		V
V_{12}		3.5		V
$\Delta V_{11} / \Delta V_{13}$		100		mV / V
$\Delta V_{12} / \Delta V_{13}$		20		mV / V
R_{14-3}		8.5		k Ω
$V_{10}=V_{11}$		1.9		V
R_{10-11}		2.4		$\mathrm{k} \Omega$
$V{ }_{11}$ sync		0.5		V
$V_{\text {video }}$		3		V
I_{5}	10	15		mA
V_{4}	0		0.5	V
V_{4}	2.5		5	V
$-V_{7}$	2		5	V
$V_{11} ; V_{12}$		10		mV
$I_{11}-I_{12}$			5	mA
$I_{11} ; I_{12}$			-1	mA
z_{1-16}		1.8/2		k Ω /pF
Z_{1-16}		1.9/0		$\mathrm{k} /$ /pF
V_{i}	70	100	200	$\mu \mathrm{V}$
$B_{\text {video }}$	6	7		MHz
ΔG		55		
a		45		dB
$Z_{\text {q 8-9 }}$		2/2.5		k $/$ /pF

[^7]

DC output voltage
versus white level resistance
$V_{\mathrm{S}}=13 \mathrm{~V} ; R_{10-11}=\infty$

Noise figure versus attenuation (measured at video frequency) $V_{\mathrm{S}}=13 \mathrm{~V}, f=36 \mathrm{MHz}, \Delta f=3 \mathrm{MHz}$, $R_{\mathrm{G}}=500 \Omega,-V_{\mathrm{fb}}=3 \mathrm{~V}$

Control voltage versus attenuation
$-V_{\mathrm{fb}}=3 \mathrm{~V}, V_{\mathrm{S}}=13 \mathrm{~V}, f=36 \mathrm{MHz}$, $R_{\mathrm{G}}=500 \Omega$

Tuner control current versus attenuation
$R_{6}=$ parameter

Tuner control current versus attenuation $R_{6}=$ parameter

TBA 1440 G
TBA 1441

The TDA 5500 represents a variant of the TBA 1440 G . It contains - like the TBA 1440 G a highly amplifying video IF amplifier, a controlled demodulator and two low-ohmic video outputs with positive- and negative-going signals as well as the complete, gated control, and delayed tuner control.
Connection of pin 10 is unlike the TBA 1440 G . Whereas pin 10 of the TBA 1440 G is provided for adjusting the sync pulse level, that of the TDA 5500 is used as standard VCR connection.
Switchover from VCR recording to playback is done via pin 4.

- Standard VCR connection
- Internal VCR switchover
- Gated control
- Positive and negative video output

Type	Ordering code	Package outline
TDA 5500	067000-A1377	DIP 16

Maximum ratings

Supply voltage
Voltages
Ohmic resistance between pin 8 and 9
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{13}	$\left.15^{1}\right)$	V
V_{4}	7	V
V_{5}	15	V
R_{8-9}	$\leqq 20$	Ω
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range

$$
\begin{array}{l|l|l}
V_{13} & 10.5 \text { to } 15 & \mathrm{~V} \\
T_{\mathrm{amb}} & -25 \text { to } 60 & { }^{\circ} \mathrm{C}
\end{array}
$$

[^8]Characteristics ($V_{13}=13 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; all data measured with respect to ground, unless otherwise stated)

Current consumption

DC voltage at output $11\left(V_{i}=0\right)$
$R_{14-3}=\infty$
$R_{14-3}=0$
DC voltage at output 12

$$
\begin{aligned}
& R_{14-3}=\infty \\
& R_{14-3}=0
\end{aligned}
$$

DC voltage at output 10

$$
\begin{aligned}
& R_{14-3}=\infty \\
& R_{14-3}=0
\end{aligned}
$$

Video amplification

White level deviation

AGC threshold $=$ sync level
Sync pulse level with async
or without gating pulses (peak level control)
Control current for tuner prestage
($V_{5} \geqq 2 \mathrm{~V}$)
Gating pulse voltage
IF control voltage max. gain
min. gain
Voltage range VCR recording
VCR playback
Output current to ground to plus
Input impedance at max gain
at min gain
Output impedance
Output resistance VCR recording
Input resistance VCR playback
Input voltage ${ }^{1}$) for $V_{11}=3 V_{p p}$ (at $G_{V_{\text {max }}}$)
AGC range
Intermodulation ratio (1.07 MHz) with reference to color carrier ${ }^{2}$)

	min	typ	max	
I_{13}		55		mA
V_{11}		4.5		V
V_{11}		7.5		V
V_{12}		1.5		V
V_{12}		3		V
V_{10}		5.5		V
V_{10}		8		V
$\frac{V_{11}}{V_{10}}=\frac{V_{12}}{V_{1}}$		3		
$\overline{V_{10}}=\frac{V_{12}}{V_{10}}$		3		
$\Delta V_{11} / V_{13}$		100		mV / V
$\Delta V_{12} / V_{13}$		25		mV / V
$V 11$ sync		1.9		V
V_{11} sync		1.5		V
	10	15		mA
$-V_{7}$	2		5	V
V_{4}	0		0.5	V
V_{4}	2		4	V
V_{4}	0		4	V
V_{4}	4		6.5	V
$I_{11} ; I_{12}$			5	mA
I_{11}; I_{12}			-1	mA
$Z_{\text {i 1-16 }}$		1.8/2		k Ω / pF
$Z_{\text {i 1-16 }}$		1.9/0		k Ω / pF
$Z_{\text {q 8 }}{ }^{\text {8 }}$		2/2.5		$\mathrm{k} \Omega / \mathrm{pF}$
$R_{\text {q } 10}$		75		Ω
$R_{\text {i } 10}$		75		Ω
V_{i}		180	250	$\mu \mathrm{V}$
ΔG		55		dB
a		45		dB

[^9]
Test circuit

Noise figure versus attenuation

 (measured at video frequency)$V_{\mathrm{S}}=13 \mathrm{~V}, f=36 \mathrm{MHz}, \Delta f=3 \mathrm{MHz}$, $R_{\mathrm{G}}=500 \Omega,-V_{\mathrm{fb}}=3 \mathrm{~V}$

Control voltage versus attenuation
$-V_{\mathrm{fb}}=3 \mathrm{~V}, V_{\mathrm{S}}=13 \mathrm{~V}, f=36 \mathrm{MHz}$,
$R_{\mathrm{G}}=500 \Omega$

Tuner control current versus attenuation $R_{6}=$ parameter

00GG \forall OL

Application circuit

Highly amplifying controlled video IF amplifier including demodulator, low-ohmic video outputs for positive- and negative-going signal, gated control, AFC output, and delayed tuner control.
Both types - TDA 5600 and TDA 5610 - only differ by the direction of their AFC voltage and are provided for pnp tuners. If npn tuners are used, the TDA 5611 is suitable.
TDA 5600: AFC zero crossing after positive direction
TDA 5610: AFC zero crossing after negative direction
TDA 5611: like TDA 5610; however, for npn tuners

- High integration
- Large control range
- High input sensitivity
- PC board layout TDA $5600 / 5610$ or 5611, respectively, also intended for TBA 1440 G or 1441, respectively.

Type	Ordering code	Package outline
TDA 5600	Q67000-A1519	\}
TDA 5610	Q67000-A1526	DIP 18
TDA 5611	Q67000-A1625	

Maximum ratings

Supply voltage	V_{S}	$\left.15^{1}\right)$	V
Voltages	V_{4}	5	V
	V_{5}	20	V
Ohmic resistance between	V_{16}	5	V
\quad pin 9 and 10			
\quad pin 8 and 11	R_{9-10}	20	Ω
Thermal resistance (system-air)	R_{8-11}	20	Ω
Junction temperature	$R_{\text {th }} \mathrm{SA}$	70	150
Storage temperature range	T_{j}		K / W
	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$			

Range of operation

Supply voltage range	V_{S}	10.5 to 15	V
Ambient temperature range	T_{amb}	-25 to 70	${ }^{\circ} \mathrm{C}$

[^10]Characteristics $\left(V_{\mathrm{S}}=13 \mathrm{~V}, \mathrm{f}_{\mathrm{iIF}}=38.9 \mathrm{MHz}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption
DC voltage at output $13\left(V_{15}=15 \mathrm{~V}, V_{\mathrm{i}}=0\right)$

$$
R_{16-3}=\infty
$$

$$
R_{16-3}=0
$$

DC voltage at output $14\left(V_{15}=15 \mathrm{~V}, V_{\mathrm{i}}=0\right)$

$$
R_{16-3}=\infty
$$

$$
R_{16-3}=0
$$

White level deviation

Resistance for $\Delta V_{13}=1 \mathrm{~V}$
Sync pulse level
Sync pulse level with async
or without gating pulses (peak level control)
Control current for tuner prestage ($V_{5}>2 \mathrm{~V}$)
IF control voltage for max. gain for min. gain

Gating pulse voltage
Residual IF (basic frequency)
Output current to ground
to plus
Input impedance at max. gain at min. gain

Input voltage for $V_{13}=3 \mathrm{~V}_{\mathrm{pp}}{ }^{1}$)
Video bandwidth (-3 dB)
AGC range
Intermodulation ratio (1.07 MHz)
with reference to color carrier ${ }^{2}$)
Output impedance
AFC input impedance
AFC output current

	\min	typ	max	
I_{15}		60		mA
V_{13}		3.5		V
V_{13}		7		V
V_{14}		1.1		V
V_{14}		2.5		V
$\Delta V_{13} / \Delta V_{15}$		100		mV / V
$\Delta V_{14} / \Delta V_{15}$		20		mV / V
R_{16-3}		8.5		k Ω
V_{13}		1.9		V
$V 13$ sync.		0.5		V
	10	15		mA
V_{4}	0		0.9	V
V_{4}	2.8		5	V
$-V_{7}$	2		7	V
V_{13}, V_{14}		10		mV
I_{13}, I_{14}			6	mA
I_{13}, I_{14}			-1	mA
Z_{1-18}		1.8/2		k Ω / pF
Z_{1-18}		1.9/0		$\mathrm{k} \Omega / \mathrm{pF}$
$V_{\text {i 1-18 }}$		160	300	$\mu \mathrm{V}$
B video	6	7		MHz
ΔG		55		dB
a		45		dB
$z_{q 8-11}$		2/2.5		k Ω /pF
$Z_{i} 9-10$		20		k Ω
$\pm I_{12}$		2.5		mA

[^11]

Tuner control current versus attenuation
$R_{6}=$ parameter
TDA 5600
TDA 5610

Control voltage versus attenuation $-V_{\mathrm{fb}}=3 \mathrm{~V}, V_{\mathrm{S}}=13 \mathrm{~V}, f=36 \mathrm{MHz}$, $R_{\mathrm{G}}=500 \Omega$

Tuner control current versus attenuation
$R_{6}=$ parameter

Bipolar circuit

Symmetrical, single-stage limiter amplifier with symmetrical coincidence demodulator and symmetrical AFC amplifier including a push-pull current output. Particularly suitable for automatic tuning in TV sets.

- Good limiting characteristics
- Excellent frequency stability of the converter characteristic
- Few external components
- Programmable current deviation

Type	Ordering code	Package outline
TDA 4260	Q67000-A1300	DIP 8

Maximum ratings

Supply voltage	$v_{\text {S }}$	${ }^{15}{ }^{1}$)	
Thermal resistance (system-air)	$R_{\text {th SA }}$	100	K/W
Junction temperature		150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
Range of operation			
Supply voltage range Ambient temperature range	$\begin{aligned} & V_{\mathrm{S}} \\ & T_{\mathrm{amb}} \end{aligned}$	$\left\lvert\, \begin{aligned} & 10.5 \text { to } 15 \\ & -25 \text { to } 60 \end{aligned}\right.$	$\left.\right\|^{\circ} \mathrm{V}$

Characteristics ($\left.V_{\mathrm{S}}=13 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption
Limiting use
Input resistance
Programming current
Output current (at $I_{4}=1 \mathrm{~mA}$)
Output current: without signal
Output current for AFC off ($I_{4}=0$)

	\min	typ	\max	
I_{6}	13	18	23	mA
$V_{2 / 3 \lim }$		60	80	mV
$R_{\mathrm{rms}} 2 / 3$		10		$\mathrm{k} \Omega$
I_{4}			1	mA
$I_{\mathrm{q} 5}$	± 600	± 750	± 900	$\mu \mathrm{~A}$
$I_{\mathrm{q} 5}$		0	$\pm 10 \% \cdot I_{4}$	$\mu \mathrm{~A}$
$I_{\mathrm{q} 5}$		0	± 10	$\mu \mathrm{~A}$

[^12]

Block diagram

Bipolar circuit

With the TDA 2840 a new concept is offered to eliminate from the sound carrier interference that arises in the video IF amplifier and demodulator. For this purpose the video IF signal is tapped before the sound trap of the compact filter and fed to the TDA 2840. This IC includes the following stages: 3 -stage, controlled IF amplifier with subsequent coincidence demodulator and peak value control. The sound carrier is obtained at the output of the demodulator via a low-pass configuration and an impedance converter.

- Good control characteristics
- Good AM rejection in the demodulator

Type	Ordering code	Package outline
TDA 2840	Q67000-A1268	DIP 14

Maximum ratings

Supply voltage	V_{S}	$\left.15^{\prime}\right)$	V
Voltage	V_{2}	5	V
Thermal resistance (system-air)	$R_{\text {th }}$ SA	90	$\mathrm{~K}^{2} / \mathrm{W}$
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range	$v_{\text {S }}$	10.5 to 15	V
Ambient temperature range	$T_{\text {amb }}$	0 to 60	${ }^{\circ} \mathrm{C}$

Characteristics ($V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) according to application circuit

Current consumption

Input voltage for AGC threshold AGC range
Input impedance
Sound carrier output voltage
($V_{\mathrm{icc}}=1 \mathrm{mV} ; V_{\mathrm{isc}}=100 \mu \mathrm{~V}$)
Input impedance
Output impedance

	\min	typ	\max	
I_{S}	25	36	47	mA
$V_{\mathrm{i} 11 / 12}$	100		300	$\mu \mathrm{~V}$
ΔG	50			dB
$Z_{\mathrm{i} 11 / 12}$	$1.3 / 2$	$1.8 / 3$	$2.3 / 4$	$\mathrm{k} \Omega / \mathrm{pF}$
V_{3}	10			mV
$Z_{i} 7 / 8$	8.5		14	$\mathrm{k} \Omega$
Z_{3}	400	470	600	Ω

[^13]Block diagram for application of the quasi-parallel sound IC

Test and application circuit

Equivalent to the TDA 2840, the TDA 2841 taps the video IF signal before the sound trap of the compact filter. Interference in the sound carrier arising in the video IF amplifier and in the demodulator, are thus eliminated.
Compared to the TDA 2840, the TDA 2841 is additionally equipped with an AFC unit having two push-pull outputs. The control direction of both the outputs is inverse to each other.

- Good limiting qualities
- Good AM rejection in the demodulator
- Programmable current deviation

Type	Ordering code	Package outline
TDA 2841	Q 67000-A1473	DIP 16

Maximum ratings

Supply voltage	V_{S}	15	V
Voltage	V_{2}	5	V
Programming current	I_{10}	500	$\mu \mathrm{~A}$
Thermal resistance (system-air)	$R_{\text {th }} \mathrm{SA}$	90	$\mathrm{~K} / \mathrm{W}$
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range

V_{S}	10.5 to 15 T_{amb}
0 to 70	

Characteristics ($V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Current consumption
Input voltage for AGC threshold
AGC range
Input impedance
Input impedance
Output impedance
Sound carrier output voltage
$\left(V_{\mathrm{icc}}=1 \mathrm{mV} ; V_{\mathrm{isc}}=100 \mu \mathrm{~V}\right)$
Programming current
Push-pull output currents ($I_{10}=300 \mu \mathrm{~A}$)

	\min	typ	\max	
I_{4}	26	37	50	mA
$V_{\mathrm{i} 13 / 14}$	100		300	$\mu \mathrm{~V}$
ΔG	50			dB
$Z_{\mathrm{i} 13 / 14}$	$1.3 / 2$	$1.8 / 3$	$2.3 / 4$	$\mathrm{k} \Omega / \mathrm{pF}$
$Z_{\mathrm{i} 7 / 8}$	8.5		14	$\mathrm{k} \Omega$
$Z_{\mathrm{q} 3}$	400	470	600	Ω
$V_{\mathrm{q} 3}$	10			
I_{10}	0		300	$\mu \mathrm{~A}$
$I_{9}=-I_{11}$	± 300		± 600	$\mu \mathrm{~A}$

Push-pull output currents

Test circuit

TDA 4280 T and TDA 4280 U include the combination of a quasi-parallel sound circuit with subsequent FM IF amplifier.
A controlled AM wideband amplifier with subsequent FM demodulator is used for gaining the intercarrier frequency. The AF signal is obtained after a sound IF limiter amplifier with coincidence demodulator. A standard VCR terminal is available.

TDA 4280 T: Demodulator matched to ceramic resonators
TDA 4280 U: Demodulator matched to LC networks

- Excellent limiting characteristics
- Terminal for video recorder
- Few external components

Type	Ordering code	Package outline
TDA 4280 T	Q 67000-A1439	\}DIP 18
TDA 4280 U	Q 67000-A1378	S

Maximum ratings

Supply voltage

$$
t \leq 1 \mathrm{~min}
$$

Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{S}	15	V
V_{S}	16.5	V
$R_{\text {th } \mathrm{SA}}$	90	K/W
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range		V_{S}	10.5 to 15	V
Frequency range	AM part	f_{AM}	10 to 60	MHz
	FM part	f_{FM}	0.01 to 12	MHz
Control voltage range	AM part	V_{2}	0 to 5	V
Switching current range	FM part	I_{7}	1 to 3	mA
Ambient temperature range	T_{amb}	0 to 60	${ }^{\circ} \mathrm{C}$	

Characteristics $\left(V_{\mathrm{S}}=12 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption

AM part:

AGC range
AGC voltage
Input resistance
Input impedance for max. gain for min. gain
Output resistance

	min	typ	\max	
I_{S}		55	70	mA
ΔG				
V_{2}	0	55		dB
$R_{\mathrm{i} 3-4}$		10	5	V
$Z_{\mathrm{i} 17}$		$1.8 / 2$		$\mathrm{k} \Omega$
$Z_{\mathrm{i} 17}$		$1.9 / 0$		$\mathrm{k} \Omega / \mathrm{pF}$
$R_{\mathrm{q} 6}$		500		$\mathrm{k} \Omega / \mathrm{pF}$

FM part: $\left(f_{\mathrm{i} 8-9}=5.5 \mathrm{MHz} ; f_{\text {mod }}=1 \mathrm{kHz}\right)$
Input impedance
AM suppression
($V_{\mathrm{i} 8-9}=1 \mathrm{mV} ; \Delta f= \pm 12.5 \mathrm{kHz} ; m=30 \%$)
Signal-to-noise ratio ($V_{\mathrm{i}} 8-9=10 \mathrm{mV}$)
Input voltage for limiting use
($\Delta f= \pm 30 \mathrm{kHz}$)
Output resistance for VCR recording
Input resistance for VCR playback
De-emphasis resistance
AF-output voltages

AF amplification in case of VCR playback
Total harmonic distortion ($\Delta f= \pm 30 \mathrm{kHz}$)
Demodulator input resistance

$Z_{\text {i } 8-9}$ $a_{\text {AM }}$		\|l 800		\| $\begin{aligned} & \text { d } \\ & \text { d }\end{aligned}$
$a_{\text {S/N }}$		85		dB
$V_{\mathrm{i} \text { lim. }}$		60		$\mu \mathrm{V}$
$R_{\mathrm{q} 11}$	10		500	Ω $\mathrm{k} \Omega$
$R_{\mathrm{i} 11}$ R_{15}	10			
$R 15$ $V_{\mathrm{q} 11}$		600		$\mathrm{mV}_{\text {rms }}$
$V_{q} 10$		300		mV rms
V_{10}		0.5		
$\overline{V_{11}}$		0.5		
THD		1		\%
$R_{\text {; 13-14 }}$		5.4		k Ω

Test circuit

TDA 4281 T is a controlled AM wideband amplifier including FM demodulator (for obtaining the intercarrier frequency) and subsequent sound IF limiter amplifier with coincidence demodulator as well as standard VCR terminal and separated AF output.

- Excellent limiting characteristics
- Terminal for video recorders
- Few external components

Type	Ordering code	Package outline
TDA 4281 T	Q67000-A1589	DIP 22

Maximum ratings

Supply voltage

$$
t \leq 1 \mathrm{~min}
$$

Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{S}	15	V
V_{S}	16.5	V
$R_{\text {th SA }}$	65	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range		V_{S}	11 to 15	V
Frequency range	AM part	f_{AM}	10 to 60	MHz
	FM part	f_{FM}	0.01 to 12	MHz
Control voltage range	AM part	V_{2}	0 to 5	$\mathrm{~V}^{2}$
Switching current range	FM part	I_{8}	0.3 to 1	mA
Ambient temperature range	T_{amb}	0 to 60	${ }^{\circ} \mathrm{C}$	

Characteristics ($\left.V_{\mathrm{S}}=12 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption

AM part:

AGC range
AGC voltage
Input resistance
Input impedance for max. gain for min. gain
Output resistance

FM part: $\left(f_{1}=5.5 \mathrm{MHz} ; f_{\text {mod }}=1 \mathrm{kHz}\right)$

Input impedance
AM suppression
($V_{\text {i } 9-10}=1 \mathrm{mV} ; \Delta f=12.5 \mathrm{MHz} ; \mathrm{m}=30 \%$)
Signal-to-noise ratio ($V_{\mathrm{i}} 9-10=10 \mathrm{mV}$)
Input voltage for limiting use
($\Delta f=30 \mathrm{kHz}$)
Demodulator output resistance
Output resistance for VCR recording
Input resistance for VCR playback
De-emphasis resistance
AF output voltages
($V_{\mathrm{i}}=10 \mathrm{mV}$; with CDA 5.5 MC 10)
($\Delta f=12.5 \mathrm{kHz}$)
AF amplification in case of VCR playback
Total harmonic distortion
Cross talk ($V_{i}=1 \mathrm{mV}$)
$V_{12}=2 V_{\mathrm{rms}}$
$V_{12}=0.3 \mathrm{~V}_{\mathrm{rms}}$

	\min	typ	\max	
I_{S}		60	80	mA
ΔG		55		
V_{2}	0		dB	
R_{3-4}		10	5	V
Z_{20-21}		$1.8 / 2$		$\mathrm{k} \Omega$
Z_{20-21}		$1.9 / 0$		$\mathrm{k} \Omega / \mathrm{pF}$
$R_{\mathrm{q} 6}$		500		$\mathrm{k} \Omega / \mathrm{pF}$
$R_{\mathrm{q} 7}$		500		Ω

$Z_{\text {i }} 9-10$ $a_{\text {AM }}$		(800		$\left\lvert\, \begin{aligned} & \Omega \\ & \mathrm{dB} \end{aligned}\right.$
${ }^{\text {S }} / \mathrm{N}$		85		dB
$V_{\text {i lim }}$		60		$\mu \mathrm{V}$
$R_{\text {q 15-16 }}$		5.4		k Ω
$R_{\text {q } 12}$			500	Ω
$R_{\text {i } 12}$	10			k Ω
R_{17}		10		k Ω
$V_{\text {q } 12}$		600		mV rms
$V_{q 11}$	260	300		mV rms
V_{12-11}		0.6		
THD 12		1		\%
C_{12-11}	50	52		dB
c_{12-11}	60	65		dB

Circuit description

The TDA 4281 T mainly contains two functional blocks:

1. a controlled $A M$ amplifier including point contact rectifier for control voltage generation. The AM amplifier drives an FM demodulator at the output of which the differential sound carrier ($38.9 \mathrm{MHz}-33.4 \mathrm{MHz}=5.5 \mathrm{MHz}$) is available. The carrier-near double sideband parts are thereby suppressed. This 5.5 MHz carrier is externally filtered and has excellent side-band suppression.
2. an FM limiter amplifier with coincidence demodulator, a standard VCR terminal, and a separated AF output.

Pin designation

Pin No.	Description
1	Ground
2	AM IF control
3	AM amplifier demodulator
4	AM amplifier demodulator
5	Battery voltage (plus)
6	AM amplifier sound carrier output TT $_{1}$
7	AM amplifier sound carrier output TT 2
8	Negative feedback of FM IF amp. for working point
9	Negative feedback of FM IF amp. for working point
10	FM IF amplifier IF input
11	AF output
12	VCR terminal
13	Emitter follower output of the FM IF amplifier
14	Emitter follower output of the FM IF amplifier
15	FM amplifier demodulator
16	FM amplifier demodulator
17	Connection for de-emphasis capacitor
18	N. C.
19	Negative feedback of AM IF amp. for working point
20	AM IF amplifier IF input
21	AM IF amplifier IF input
22	Negative feedback of AM IF amp. for working point

1 L8てt \forall OL

Symmetrical six-stage amplifier with symmetrical coincidence demodulator for the amplification, limiting and demodulation of frequency-modulated signals. Especially suited for radio receivers and sound-IF units in TV sets. These circuits are applicable as limiter amplifiers, as controlled demodulators or modulators or as mixers with excellent suppression of input frequencies.

- Good limiting characteristics
- Wide range of operation (5 to 15 V)
- Very few external components (i.e. for hum suppression)

Type	Ordering code	Package outline
TBA 120	Q67000-A151	DIP 14
TBA 120 A	Q67000-A175	QIP 14

Maximum ratings

Supply voltage	V_{S}	15	V
Thermal resistance (system-air)	$R_{\text {th }}$ SA	90	$\mathrm{~K} / \mathrm{W}$
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range
Frequency range

V_{S}	5 to 15	V
T_{amb}	-15 to 70	${ }^{\circ} \mathrm{C}$
f	0 to 35	MHz

Characteristics ($T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, V_{\mathrm{S}}=12 \mathrm{~V}, Q_{\mathrm{B}}$ approx. $45, f_{\mathrm{mod}}=1 \mathrm{kHz}$)

Current consumption
IF voltage gain
($f_{\mathrm{I}}=5.5 \mathrm{MHz}$)
IF output voltage at limiting each output
AF output voltage
$\left(f_{\mathrm{I}}=5.5 \mathrm{MHz}, \Delta f= \pm 25 \mathrm{kHz}, V_{\mathrm{i}}=10 \mathrm{mV}\right.$)
AF output voltage
$\left(f_{\mathrm{I}}=5.5 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}, V_{\mathrm{i}}=10 \mathrm{mV}\right.$)
Total harmonic distortion
($f_{\mathrm{I}}=5.5 \mathrm{MHz}, \Delta f= \pm 25 \mathrm{kHz}, V_{\mathrm{i}}=10 \mathrm{mV}$)
Input voltage for limiting
($f_{\mathrm{I}}=5.5 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}$)
Input impedance $f_{\mathrm{I}}=5.5 \mathrm{MHz}$
$f_{\mathrm{I}}=10.7 \mathrm{MHz}$
Output resistance
Output resistance
Range of volume control
DC level of output signal ($V_{i}=0$)
AM suppression ($f_{I}=5.5 \mathrm{MHz}$,
$\left.V_{\mathrm{i}}=10 \mathrm{mV}, m=30 \%, \Delta f= \pm 50 \mathrm{kHz}\right)$

	min	typ	max	
$\bar{G}_{\mathrm{v}} I_{\mathrm{S}}$	12.5	$\begin{aligned} & 16.5 \\ & 60 \end{aligned}$	20.5	$\frac{\mathrm{mA}}{\mathrm{~dB}}$
$V_{6 \mathrm{pp}} ; V_{10 \mathrm{pp}}$ $V_{\mathrm{q} 8 \mathrm{rms}}$	0.6	240 0.85		mV
$V_{\text {q } 8 \mathrm{rms}}$	1.2	1.7		V
THD		1.8	3	\%
$V_{\text {i lim }}$		50	100	$\mu \mathrm{V}$
$Z_{\text {i } 5.5}$		15/7.8		$\mathrm{k} \Omega / \mathrm{pF}$
$Z_{\text {i } 10.7}$		7.2/6.2		k $/$ /pF
$R_{\text {q 7-9 }}$		4.8		k Ω
$R_{\text {q } 8}$	1.9	2.6	3.3	$\mathrm{k} \Omega$
$V_{\text {AF max }}$		60		dB
$\begin{aligned} & \overline{V_{\mathrm{AF} \min }} \\ & V_{8} \end{aligned}$	6.1	7.3	8.6	V
$a_{\text {AM }}$		55		dB

Application circuit

Component data for various applications

	Sound IF in TV sets	FM IF in radio sets	
	5.5 MHz	10.7 MHz Mono	10.7 MHz Stereo
C_{1}	47 pF	27 pF	47 pF
C_{2}	22 pF	150 pF	
C_{3}	22 nF	470 pF	
C_{4}	56 pF	30 pF	
C_{5}	56 pF	30 pF	
C_{6}	1.5 nF	27 pF	15
L_{1}	20 turns	27 pF	12 pF
L_{2}	8 turns	20 pF	12 turns
R_{1}	∞	80 turns	$1 \mathrm{k} \Omega$

A capacitive decoupling of supply voltage input 11 is not necessary. The 22 nF capacitor between pins 8 and 11, together with the integrated resistor R_{30}, constitutes the de-emphasis and may be reduced if required.
The distance of the peaks on the S-curve can be adjusted with the Q_{B} of the phase-shifting circuit. Zero crossing corresponds to resonant frequency. The two coupling capacitors of equal size connected between pins $6 / 7$ or $9 / 10$, respectively should be dimensioned to produce approx. 250 mV pp at the tank circuit at resonance.

Input voltage for limiting versus supply voltage
$f_{\mathrm{I}}=5.5 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}$, $f_{\text {mod }}=1 \mathrm{kHz}, Q_{\mathrm{B}}$ approx. 45

Current consumption

 versus supply voltage

Volume control versus potentiometer resistance
$V_{\mathrm{S}}=12 \mathrm{~V}, f_{\mathrm{I}}=5.5 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}$,
$f_{\text {mod }}=1 \mathrm{kHz}, V_{\mathrm{irms}}=10 \mathrm{mV}$,
Q_{B} approx. $45, R_{\mathrm{v}}=470 \Omega$
dB

IF amplification versus IF frequency

AM suppression
versus temperature of case
$V_{\mathrm{S}}=12 \mathrm{~V}, f_{\mathrm{I}}=5.5 \mathrm{MHz}, f_{\mathrm{mod}}=1 \mathrm{kHz}$,
$m=30 \%, V_{\text {i rms }}=10 \mathrm{mV}, Q_{\mathrm{B}}$ approx. 45

Total harmonic distortion
versus Q_{B} factor
$V_{\mathrm{S}}=12 \mathrm{~V}, f_{\mathrm{I}}=5.5 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}$,
$f_{\text {mod }}=1 \mathrm{kHz}, V_{\mathrm{irms}}=10 \mathrm{mV}$
\%

Symmetrical 8-stage amplifier with symmetrical coincidence demodulator for amplification, limiting and demodulation of frequency-modulated signals, especially suited for the sound IF parts in TV sets and FM IF amplifiers in radio sets. The circuit is directly interchangeable with TBA 120 (pin-compatible).

- Outstanding limiting characteristics
- Wide range of operation (6 to 18 V)
- Few external components
- Voltage for AFC

Type	Ordering code	Package outline
TBA 120 S	Q67000-A490	DIP 14
TBA 120 AS	Q67000-A525	QIP 14

Maximum ratings

Supply voltage ${ }^{1}$)	$v_{\text {S }}$	18	V
Z current	I_{12}	15	mA
$t \leqq 1$ min	I_{12}	20	mA
Voltage	v	4	V
Current	I_{3}	5	mA
	I_{4}	2	mA
Thermal resistance (system-air)	$R_{\text {th SA }}$	90	K/W
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	$1^{\circ} \mathrm{C}$
Range of operation			
Supply voltage range	$v_{\text {S }}$	6 to 18	V
Ambient temperature range	$T_{\text {amb }}$	-15 to 70	${ }^{\circ} \mathrm{C}$
Frequency range	f	0 to 12	MHz

[^14]Characteristics ($T_{\text {amb }}=25^{\circ} \mathrm{C}, V_{\mathrm{S}}=12 \mathrm{~V} ; f_{\mathrm{I}}=5.5 \mathrm{MHz}$ or 10.7 MHz , respectively)

Current consumption

	\min	typ	\max	
I_{S}	10	14	18	mA
I_{S}	11	15.2	20	mA
G_{V}		68		dB
V_{qpp}	170	250		mV
$R_{\mathrm{q} 8}$	1.9	2.6	3.3	$\mathrm{k} \Omega$
R_{13-14}			1	$\mathrm{k} \Omega$
$V_{\mathrm{AF} \text { max }}$	70	75		dB
$V_{\mathrm{AF} \text { min }}$	6.2	7.4	8.5	V
V_{8}				
R_{5}		3.7	4.7	$\mathrm{k} \Omega$
R_{5}	1	1.4		$\mathrm{k} \Omega$
V_{5}		2.4		V
V_{5}		1.3		V
$a_{\mathrm{S} / \mathrm{N}}$	75	85		dB
$T H D$		1.3	2.5	$\%$
V_{n}		80	140	$\mu \mathrm{~V}_{\mathrm{s}}$
$R_{\mathrm{q} 7-9}$		5.4		$\mathrm{k} \Omega$

Characteristics for $f_{\mathrm{I}}=5.5 \mathrm{MHz}\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, V_{\mathrm{S}}=12 \mathrm{~V}, f_{\mathrm{I}}=5.5 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}\right.$, $f_{\text {mod }}=1 \mathrm{kHz}, Q_{\mathrm{B}}$ approx. 45)

AF output voltage ($V_{\mathrm{i}}=10 \mathrm{mV}$)
Input voltage for limiting
AM suppression $V_{i}=500 \mu \mathrm{~V}, m=30 \%$

$$
V_{\mathrm{i}}=10 \mathrm{mV}, m=30 \%
$$

Input impedance

$V_{\text {AF rms }}$	0.7	1		V
$V_{i \lim }$		30	60	$\mu \mathrm{~V}$
$a_{\text {AM }}$	45	55		dB
a_{AM}	60	68		dB
Z_{i}		$40 / 4.5$		$\mathrm{k} \Omega / \mathrm{pF}$

Characteristics for $10.7 \mathrm{MHz}\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, V_{\mathrm{S}}=12 \mathrm{~V}, f=10.7 \mathrm{MHz}, \Delta f= \pm 75 \mathrm{kHz}\right.$, $f_{\text {mod }}=1 \mathrm{kHz}, Q_{\mathrm{B}}$ approx. 45)

AF output voltage ($V_{\mathrm{i}}=10 \mathrm{mV}$)
Input voltage for limiting
AM suppression $V_{i}=500 \mu \mathrm{~V}, m=30 \%$
$V_{\mathrm{i}}=10 \mathrm{mV}, m=30 \%$
Input impedance

$V_{\text {AF rms }}$	0.4	0.7		V
$V_{\mathrm{i} \lim }$		50	100	$\mu \mathrm{~V}$
$a_{\text {AM }}$	40	50		dB
$a_{\text {AM }}$	60	68		dB
Z_{i}		$20 / 4$		$\mathrm{k} \Omega / \mathrm{pF}$

Characteristics of the additive circuit

Z voltage ($I_{12}=5 \mathrm{~mA}$)
Z resistance Breakdown voltage Breakdown voltage ($I_{3}=500 \mu \mathrm{~A}$)
Current gain ($V_{\mathrm{CE}}=5 \mathrm{~V}, I_{\mathrm{C}}=1 \mathrm{~mA}$)

	\min	typ	\max	
V_{12}	11.2	12	13.2	V
R_{Z}		30	55	Ω
V_{CBO}	26	40		V
V_{CEO}	13			V
G_{I}	25	80		

Pins 3 and 4 are connected to collector or base of a transistor, respectively, which may be used as an AF preamplifier ($I_{C}<5 \mathrm{~mA}$) or as a bass/treble switch (dc on- or off-switching of an $R C$ circuit).
At pin 12 , a Z diode (12 V) is accessible which can be used to stabilize the supply voltage of this IC or the voltage of other circuit elements in the set ($I_{Z} \leqq 15 \mathrm{~mA}$).

The IC TBA 120 S is supplied in different groups. Parameter is the volume. An attenuation of 30 dB requires a resistor between pin 5 and ground with a resistance value according to the group number tabulated below. The group number is imprinted on the plastic package.

Group	II	III	IV	V
$R_{\text {pot }}$	1.9 to 2.2	2.1 to 2.5	2.4 to 2.9	2.8 to 3.3

Test circuit

Circuit diagram

Application circuit 5.5 MHz ($\mathbf{1 0 . 7} \mathbf{~ M H z)}$

Values in parentheses apply to 10.7 MHz

Application circuit with ceramic filter (Murata)

For a good adjacent channel suppression the ceramic filter should be combined with an LC network

	Sound IF in TV sets	Sound IF in TV sets of American Std.	FM IF in radio mono sets	FM IF in radio stereo sets
C_{1}	1.5 nF	2.2 nF	470 pF	330 pF
C_{2}	22 nF	22 nF	22 nF	470 pF
L_{1}	8 turns, 0.15 CuL	8 turns, 0.15 CuL	8 turns, 0.15 CuL	12 turns, 0.15 CuL
R_{1}	∞	∞	1 kR	
R_{2}	680Ω	$1 \mathrm{k} \Omega$	330	
Filter	SFE 5.5 MA	SFE 4.5 MA	SFE 10.7	SFE 10.7
(Murata)				

TBA 120 S

AF output voltage
versus supply voltage
$f_{\mathrm{I}}=5.5 \mathrm{MHz} ; \Delta f= \pm 50 \mathrm{kHz}$,
$f_{\text {mod }}=1 \mathrm{kHz} ; V_{\mathrm{i}}=10 \mathrm{mV}$

AF output voltage and total harmonic distortion v. frequency deviation
$V_{\mathrm{S}}=12 \mathrm{~V} ; f_{\mathrm{I}}=5.5 \mathrm{MHz} ; f_{\mathrm{mod}}=1 \mathrm{kHz}$ $V_{\mathrm{i}}=10 \mathrm{mV} ; Q_{\mathrm{B}}$ approx. 45

Total harmonic distortion
versus input voltage
$V_{\mathrm{S}}=12 \mathrm{~V} ; f_{\mathrm{I}}=5.5 \mathrm{MHz} ; \Delta f= \pm 50 \mathrm{kHz}$;
$f_{\text {mod }}=1 \mathrm{kHz} ; Q_{\mathrm{B}}$ approx. 45

AF output voltage and total harmonic distortion versus Q_{B} factor
$V_{\mathrm{S}}=12 \mathrm{~V} ; \Delta f= \pm 50 \mathrm{kHz}$;
$f_{\text {mod }}=1 \mathrm{kHz} ; V_{\mathrm{i}}=10 \mathrm{mV}$ V

Volume control versus potentiometer resistance $V_{\mathrm{S}}=12 \mathrm{~V} ; f_{\mathrm{I}}=5.5 \mathrm{MHz} ; \Delta f= \pm 50 \mathrm{kHz}$ $f_{\text {mod }}=1 \mathrm{kHz} ; V_{i}=10 \mathrm{mV}$

Current consumption versus supply voltage

Volume control versus voltage to pin 5
$V_{\mathrm{S}}=12 \mathrm{~V} ; f_{\mathrm{I}}=5.5 \mathrm{MHz} ; \Delta f= \pm 50 \mathrm{kHz}$ $f_{\text {mod }}=1 \mathrm{kHz} ; Q_{\mathrm{B}}$ approx. 45

Symmetrical 8-stage amplifier with symmetrical coincidence demodulator for amplification, limiting, and demodulation of frequency-modulated signals, especially suited for the sound IF units in TV sets. In addition to the controlled AF output, an uncontrolled AF output and an AF input for the connection of video recorders is available.

- Outstanding limiting qualities
- Few external components
- Terminal for video recorder
- AF output voltage independent of supply voltage
- Insensitive to hum
- Very little residual IF

TBA 120 T: Input and demodulator matched to ceramic resonators
TBA 120 U: Input and demodulator matched to $L C$ networks

Type	Ordering code	Package outline
TBA 120 T	Q67000-A919	\}DIP 14
TBA 120 U	Q67000-A920	S

Maximum ratings

Supply voltage
Voltage
Current
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{S}	18	V
V_{5}	6	V
I_{4}	5	mA
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range
Frequency range

V_{S}	10 to 18	V
T_{amb}	-15 to 70	${ }^{\circ} \mathrm{C}$
f	0 to 12	MHz

Characteristics ($V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, Q_{\mathrm{B}}$ approx. $45, f_{\mathrm{IF}}=5,5 \mathrm{MHz}$)

Current consumption
IF voltage gain V_{6} / V_{14}
IF output voltage with limiting at each output
Output resistance
Shunt resistance
Input resistance
Internal resistance
DC level of output signal
($V_{i}=0$)
Stabilized voltage
Residual IF voltage without deemphasis
AF gain (AF not attenuated)

- Attenuation ($R_{4-5}=5 \mathrm{k} \Omega ; R_{5-1}=13 \mathrm{k} \Omega$)

Range of volume control
Resistance
Input voltage for limiting
$\left(\Delta f= \pm 50 \mathrm{kHz} ; f_{\text {mod }}=1 \mathrm{kHz}\right.$)
Hum suppression
Signal-to-noise ratio ($V_{\mathrm{i}}=10 \mathrm{mV}$)
Noise voltage (according to DIN 45405)
$P_{\text {pot }}=0$
Input impedance
TBA 120 T only:
AF output voltage
$\left(\Delta f= \pm 50 \mathrm{kHz} ; f_{\text {mod }}=1 \mathrm{kHz}\right)$
Input impedance
AM suppression
($V_{\mathrm{i}}=500 \mu \mathrm{~V} ; \Delta f= \pm 50 \mathrm{kHz} ; m=30 \%$;
$f_{\text {mod }}=1 \mathrm{kHz}$)
TBA 120 U only:
AF output voltage
($\Delta f= \pm 50 \mathrm{kHz} ; V_{\mathrm{i}}=10 \mathrm{mV}$;
$f_{\text {mod }}=1 \mathrm{kHz} ; T H D=4 \%$)
Input impedance ($f_{\mathrm{I}}=5.5 \mathrm{MHz}$)
AM suppression
($\Delta f= \pm 50 \mathrm{kHz} ; V_{\mathrm{i}}=500 \mu \mathrm{~V}$;
$f_{\text {mod }}=1 \mathrm{kHz} ; m=30 \%$)
Total harmonic distortion
$\left(\Delta f= \pm 25 \mathrm{kHz} ; V_{\mathrm{i}}=10 \mathrm{mV} ; f_{\text {mod }}=1 \mathrm{kHz}\right)$

	min	typ	max	
$I_{\text {S }}$	9.5	13.5	17.5	mA
G_{v}		68		dB
$V_{\text {qpp }}$	175	250	325	mV
$R_{\text {q } 8}$	0.8	1.1	1.4	k Ω
$R_{\text {q } 12}$	0.8	1.1	1.4	k Ω
$R_{\text {13-14 }}$			1	k Ω
$R_{\text {i }} 3$	1.4	2	2.6	k Ω
$R_{\text {i }} 4$		12	16	Ω
V_{8}	3.4	4	4.7	V
V_{12}	4.4	4.9	6.3	V
V_{4}	4.2	4.8	5.3	V
V_{8}		20		mV
V_{12}		30		mV
V_{8} / V_{3}	6	7.5	8.5	
$V_{\text {AF8 }}$	20	30	40	dB
$V_{\text {AF8 max }}$	70	85		dB
$V_{\text {AF } 8 \text { min }}$				
$\left.R_{4-5}\right)$ $V_{\text {i lim }}$	1	30	10 60	$\stackrel{\mathrm{k}}{\mathrm{k}} \mathrm{V}$
V_{8} / V_{11}		35		dB
V_{12} / V_{11}		30		dB
$a_{\mathrm{S} / \mathrm{N}}$	80	85		
V_{n}		50	100	$\mu \mathrm{V}$ os
$R_{\text {q 7-9 }}$		5.4		k Ω
$V_{8} \mathrm{rms}$	650	900		mV
$V_{12} \mathrm{rms}$	400	650		mV
Z_{i}		800/5		Ω / pF
$a_{\text {AM }}$	50	60		dB
$V_{8} \mathrm{rms}$	850	1200		mV
$V_{12} \mathrm{rms}$	600	1000		mV
Z_{i}	15/6	40/4.5		k Ω / pF
$a_{\text {AM }}$	50	60		
THD		1.3	2.5	\%

[^15]
Block diagram

${ }^{11}$ only IBA 120 T
${ }^{2}$)only TBA 120 U

Application circuit TBA 120 U for 5.5 MHz

$\mathrm{L}_{1}: 20$ turns $15 \times 0.05 \mathrm{CuLS} ; Q_{0} \approx 73$
$L_{2}: 9$ turns 0.25 CuLS; $Q_{0} \approx 40$
Coil Assembly Vogt D41-2165 (2438) without gaussion core

Application circuit TBA 120 T for 5.5 MHz

${ }^{1}$) Omitting the electrolytic capacitor $47 \mu \mathrm{~F}$ on pin 11 changes volume-control range.
Z voltage versus supply voltage

Current consumption versus supply voltage

AF output voltage versus supply voltage

AF output voltage and current consumption versus ambient temperature

AF output voltage and disturbance voltage versus input voltage (Input wired with SFE 5.5 MA/Murata)

$0 \mathrm{~dB} \hat{=} 770 \mathrm{mV}$ rms

AF output voltage and disturbance voltage versus input voltage (Input 60Ω impedance broadband)

$0 \mathrm{~dB}=770 \mathrm{mV} \mathrm{V}_{\mathrm{rm}}$

AF output voltage (pin 8), disturbance voltage, and total harmonic distortion versus input voltage

Total harmonic distortion versus volume control

Spread

AF output voltage (pin 8) versus potentiometer resistance and

 versus ratio of resistance

AF output voltage (pin 8) versus voltage fed into pin 5

Circuit for direct connection to video recorders

Socket (1): Switching voltage: at playback: +12 V at recording: free
Socket (4): Simultaneous input and output for AF

Function

When the switching voltage is applied, the emitter follower, BC 238, is blocked on the output and the buffer stage, BC 308, is switched on. It includes a pre-emphasis to balance the de-emphasis at the AF output. The IF amplifier is put out of operation by the diode, BA 127, and the $47 \mathrm{k} \Omega$ resistor. The remotely controllable volume regulator in the TBA 120 T / U is used for recording and playback.

The integrated circuit TDA 1048 contains a gain-controlled push-pull amplifier, a demodulator, and a DC volume control. The AF outputs are referred to ground and stabilized against hum of the supply voltage.

The IC TDA 1048 is particularly suited for the use in the sound section of TV sets of French Standard (amplitude modulation).

- High input sensitivity
- Distortion-low control
- Distortion-low demodulation
- Volume control by means of DC voltage
- Internally stabilized supply voltage

Type	Ordering code	Package outline
TDA 1048	Q67000-A1090	DIP 16

Maximum ratings

Supply voltage
Output current
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{S}	16.5	V
I_{11}	5	mA
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation
Supply voltage range
Ambient temperature range

V_{S}	10 to 15

$T_{\text {amb }}$	0 to 60

Characteristics ($V_{\mathrm{S}}=12 \mathrm{~V} ; f_{\mathrm{i}}=40 \mathrm{MHz} ; f_{\mathrm{mod}}=1 \mathrm{kHz} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Total current consumption Output DC currents of amplifier Input voltage for AGC threshold Control range
AF output voltage ($m=80 \%$)
Total harmonic distortion ($m=80 \%$)
Output resistance
Load resistance

Stabilized voltage
Range of volume control
Gain of the AF part
Input resistance
Potentiometer resistance for
-30 dB attenuation

	\min	typ	max	
$I_{12}+I_{7}+I_{8}$	29	37	45	mA
$I_{7}=I_{8}$		4		mA
V_{i}	100			$\mu \mathrm{~V}$
ΔG	50	60		dB
$V_{\mathrm{q} 10}$	0.9	1.2	1.5	$\mathrm{~V}_{\mathrm{rms}}$
$T H D$		1.3	2.0	$\%$
$R_{\mathrm{q} 3}$		200	300	Ω
$R_{\mathrm{q} 10}$		50	100	Ω
$R_{\mathrm{L} 3}$	3.3			$\mathrm{k} \Omega$
$R_{\mathrm{L} 10}$	3.3			$\mathrm{k} \Omega$
V_{11}	4.4		5.8	V
ΔG_{10-4}	70	80		dB
ΔG	6	7		dB
$R_{\mathrm{i} 4}$	6.5			$\mathrm{k} \Omega$
R_{pot}	3.4		4	$\mathrm{k} \Omega$

Test circuit and block diagram

Application circuit for $f_{\text {i IF }}=39.2 \mathrm{MHz}$

AF output voltage versus potentiometer resistance

$$
V_{\mathrm{S}}=15 \mathrm{~V}
$$

After demodulation of the IF signal in the video IF amplifier (e.g. TBA 1440 G) in color TV sets, the color TV signal is divided into the individual color components red, green, and blue in a color preparation circuit. These color signals drive the individual cathodes of the color picture tube via one video final stage each.

The ICs TDA 2522, TDA 2530, and TDA 2560 are available for color preparation. After separating the video signal in a luminance portion and a chrominance portion, the TDA 2560 serves in this connexion as a combined luminance and chrominance amplifier. Control of contrast, brightness, and color saturation are additionally included in the TDA 2560.
The chrominance signal is separated into a blue and a red portion in an external delay line decoder. The TDA 2522 finally demodulates both the chrominance signals and delivers at the output color difference signals of the three basic colors. Preparation of the reference carrier frequency in the TDA 2522 is based upon twice the color subcarrier frequency. The color subcarrier components necessary for demodulation and offset by 90° can, thus, be provided by means of a $2: 1$ divider without requiring any adjustment.
It is the TDA 2530 where the color signals red, green, and blue, necessary for driving the color tube, are generated in a matrix circuitry by adding the luminance portion to the color difference signals.
Apart from the color ICs TDA 2522 and TDA 2560, use of the horizontal combination TDA 2591 is also recommended. Thus, the sandcastle pulse - important for color decoding - may very easily be made available.

The IC TDA 2522 comprises the following circuit portions

- $8.8-\mathrm{MHz}$ color subcarrier oscillator with divider stage for the production of both $4.4-\mathrm{MHz}$ reference signals.
- Production of the chrominance signal control voltage and a reference voltage
- Production of the color killer and identification signal
- Color killer delay
- Two synchronous demodulators for (B-Y) and (R-Y) signals
- Matrix for (G-Y)-signal
- PAL flipflop and PAL switch
- Blanking in the synchronous demodulators

Type	Ordering code	Package outline
TDA 2522	Q67000-A1230	DIP 16

Maximum ratings

Supply voltage

Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{11}	14	V
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation
Supply voltage range
Ambient temperature range

V_{11}	10.8 to 13.2	V°
$T_{\text {amb }}$	-20 to 60	${ }^{\circ} \mathrm{C}$

Characteristics ($V_{11}=12 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$)

Current consumption
Ratio of demodulated signals
at $V_{F(B-Y)}=V_{F(R-Y)}$
Matrix for (G-Y)-signal
Input resistance of the chrominance signal inputs

Input capacitance of the chrominance signal inputs

Output voltages of color difference

DC voltage at the
color difference signal outputs
Output resistance of the color difference signal outputs
$\mathrm{H} / 2$ ripple voltage at ($\mathrm{R}-\mathrm{Y}$) output Input resistance of the 8.8 MHz oscillator Output resistance of the 8.8 MHz oscillator Total holding range
Key pulses (at pin 15) coming from
horizontal combination TDA 2591
Color sync. signal gating
Blanking
Voltage at pin 14
without color sync signal with color sync signal (peak-to-peak value) of 0.25 V at pins 5 and 6

Reference output voltage
Chrominance signal control voltage
(depending on V_{14})
at $\pm I_{13}<200 \mu \mathrm{~A}$
at $V_{14}<5.5 \mathrm{~V}$
Phase difference between reference signal
and color sync signal at $\pm 400 \mathrm{~Hz}$
frequency deviation

Color killing
Color setting
Color setting delay (by C_{v} at pin 16)
at or at
at or at

Block diagram with application hint

The IC TDA 2530 is intended for driving RGB final stage transistors.
The following stages are integrated:

- Clamping control circuit
- Matricing facility
- Electronic potentiometer for gain adjustment
- Facing-coupled driver amplifier

Type	Ordering code	Package outline
TDA 2530	Q67000-A1295	DIP 16

Maximum ratings

Supply voltage
Voltages

Current

Thermal resistance (system-air)
Junction temperature Storage temperature range

V_{9}	15	V
V_{1}	V_{9}	V
$V_{3} ; V_{5} ; V_{7}$	V_{9}	V
$V_{2} ; V_{4} ; V_{6}$	V_{9}	V
$V_{8} ; V_{6} ; V_{14}$	V_{9}	$V_{11} ; V_{13} ; V_{15}$
$V_{10} ; V_{12} ; V_{14}$	V	
$V_{10} V_{12} ; V_{14}$	$<V_{9}$	
$V_{11}, V_{13} ; V_{15}$	$>0.3 \cdot V_{9} /<V_{9}$	V
$-I_{8}$	1	V
$R_{\text {th SA }}$	90	KA
T_{j}	150	${ }^{\circ} / \mathrm{W}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range

V_{9}	$\begin{array}{l}10.8 \text { to } 13.2 \\ \\ T_{\text {amb }}\end{array}$	$\begin{array}{l}\mathrm{V} \\ \\ \\ \\ \end{array} \mathrm{CO}$ to 60

Characteristics ($V_{9}=12 \mathrm{~V} ; V_{1}=1.5 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) according to application circuit

Luminance signal input

Black level BA signal voltage Input resistance

	\min	typ	\max	
V_{1}		1.5		V
V_{1}	1.0		$\mathrm{~V}_{\mathrm{pp}}$	
$R_{\mathrm{i} 1}$	100			$\mathrm{k} \Omega$

Color difference signal inputs Input voltages

Input currents

V_{2}			
V_{4}	1.4		$\mathrm{~V}_{\mathrm{pp}}$
V_{6}	0.82		
$I_{2} ; I_{4} ; I_{6}$	1.78	4	$\mathrm{~V}_{\mathrm{pp}}$
$\mu \mathrm{A}$			

Feedback inputs

DC voltage level during clamping

Adjustment of ac voltage gain

Adjusting voltage range
Adjusting voltage for nominal gain Nominal gain between color difference signal inputs or Y input, resp., and feedback inputs 11, 13, 15
Adjusting range of this gain at $\Delta V_{3,5,7}= \pm 5 \mathrm{~V}$

Output difference amplifier

Transconductance of the difference amplifier Integr. load resistors ${ }^{2}$)

20	$\mathrm{~mA} / \mathrm{V}$	
680	Ω	
680	Ω	
680		Ω

Clamping pulse input for dc voltage feedback
Input voltage for clamping IN
Input current for clamping IN
$\left.V_{8}{ }^{3}\right)$
V_{8}
I_{8}
$-I_{8}$

6.5 to 12		V
0 to 5.5		V
	1	$\mu \mathrm{~A}$
$\mu \mathrm{~A}$		

[^16]

The integrated circuit TDA 2560 contains:

Luminance amplifier

with adaptation circuit for Y -delay line contrast and brightness control blanking and gating additional video output with positive-going synchronous level

Chrominance amplifier

with controlled chrominance signal amplifier
saturation and contrast control
direct driving of the PAL delay line
common output for chrominance and color sync signal (without influencing the color sync signal amplitude by contrast and saturation control)

Type	Ordering code	Package outline
TDA 2560	Q67000-A1231	DIP 16

Maximum ratings

Supply voltage
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{8}	14	V
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range

$$
\begin{array}{l|l}
V_{8} & 9 \text { to } 14 \\
T_{\mathrm{amb}} & -20 \text { to } 60
\end{array}
$$

$$
\left\lvert\, \begin{aligned}
& \mathrm{V} \\
& { }^{\circ} \mathrm{C}
\end{aligned}\right.
$$

Characteristics ($V_{8}=12 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$) according to application circuit ${ }^{1}$)

Current consumption

Luminance amplifier ${ }^{2}$)

Input current Input resistance Contrast control range Brightness control range (black level)
Brightness control voltage
Black level shifting by contrast control, picture contents and temperature 3 dB bandwidth
BAS output voltage with positively directed sync level
Black level clamping pulse ${ }^{3}$)
Blanking pulses ${ }^{4}$)
for 0 V at output (pin 10)
for 1.5 V at output (pin 10)

Chrominance amplifier

Input voltage
Obtainable output signal ${ }^{5}$)
Control range of the chrominance
signal amplifier
Starting of the chrominance signal control ${ }^{6}$)
Contrast synchronism
(at $10-\mathrm{dB}$ contrast variation)
Saturation control range ${ }^{7}$)
Color sync signal gating ${ }^{3}$)
Signal-to-noise ratio at nominal input voltage
Phase shifting of the color sync signal to the chrominance signal

	\min	typ	\max	
I_{8}		46		mA

I_{14}		0.2		$m A_{p p}$
$R_{\text {i } 14}$		150		
E_{K}	20			dB
V_{10}		1 to 3		V
V_{11}		1 to 3		V
ΔV			± 20	mV
B		5		MHz
V_{15}		3.4		V_{pp}
V_{7}		6		V
V_{9}		2		V
V_{9}		5		V

$\begin{aligned} & V_{2 / 1} \\ & V_{6} \end{aligned}$		4 to 80 2		$\left\lvert\, \begin{aligned} & \mathrm{m} V_{\mathrm{pp}} \\ & \mathrm{~V}_{\mathrm{pp}} \end{aligned}\right.$
$\Delta G_{\text {chro }}$	30			dB
V_{3}		1.1		V
K		± 1		dB
$E_{\text {S }}$		+6 to -50		dB
V_{7}		2		V
$a_{\text {S/N }}$	50			dB
			± 5	degree

[^17]
Remarks to the previous page

${ }^{1}$) Supply voltage range $V_{8}=9$ to 14 V , admissible hum voltage $V_{8 p p}=100 \mathrm{mV}$
${ }^{2}$) The gain of the luminance amplifier can be influenced by the load resistance R_{g} at pin 13. The scattering of the gain is reduced to a minimum, since it only depends on the scattering of the relationship between Y delay line terminating resistance and the resistor $\boldsymbol{R}_{\mathrm{g}}$.
${ }^{3}$) Key pulses (from TDA 2591) for color sync signal keying and for black level clamping are sent to pin 7.
The black level clamping becomes effective at +6 V , the key pulses must be in that time that clamping only becomes effective at the black slope of the black shoulder. The color sync signal gate circuit, which switches the gain of the chrominance signal amplifier during its return to maximum, becomes effective at +1.5 V .
${ }^{4}$) The luminance signal is keyed via pin 9:
when the key pulse reaches +2 V , the luminance signal output (10) is blanked;
at +5 V , a standard level of approx. 1.5 V is keyed which can be used for clamping.
${ }^{5}$) Chrominance signal and color sync signal are both available at pin 6 . The color sync signal is not influenced by contrast and saturation control; it remains stable by means of the control voltage of TDA 2522.
The ratio of the chrominance signal to the color sync signal is at nominal contrast (3 dB below maximum) and at nominal saturation (6 dB below maximum) the same at the output and at the input.
${ }^{6}$) When the voltage becomes more negative, the gain is reduced.
${ }^{7}$) Linear range down to -40 dB .

Block diagram

The integrated circuit TDA 2591 is adapted to the integrated color circuits TDA 2522 and TDA 2560. It includes the following stages:

- Line oscillator according to the threshold switch principle
- Phase comparsion between sync pulse and oscillator (φ_{1})
- Internal gating pulse for phase discriminator φ_{i}
- Phase comparison between line flyback pulse and oscillator $\left(\varphi_{2}\right)$
- Catching range extension by coincidence detector φ_{3} (coincidence between sync and gating pulse)
- Time constant and gate switching (VCR operation)
- Sync pulse separation stage
- Blanking circuit for interference signal
- Vertical sync pulse separation stage and output stage
- Production of gating pulses for color sync signal and for line flyback blanking pulses
- Phase shifter for control pulse
- Switching of control pulse width and switch-off
- Output stage with separate supply voltage for direct triggering of thyristor deflection circuits
- Control pulse switch-off in case of too low supply voltage

Type	Ordering code	Package outline
TDA 2591	$067000-$ A1365	DIP 16

Maximum ratings

Supply voltage	V_{1}	13.2	V
Voltages	V_{2}	18	V
	V_{4}	13.2	V
	V_{9}	$-6 / 7$	V
	V_{10}	$-6 / 7$	V
Currents	V_{11}	13.2	V
	I_{2}	650	mA
	I_{3}	-650	mA
	I_{4}	1	mA
	I_{6}	± 10	mA
Thermal resistance (system-air)	I_{7}	-10	mA
Junction temperature	I_{11}	2	mA
Storage temperature range	$R_{\text {th }}$ SA	90	$\mathrm{~K} / \mathrm{W}$
	T_{j}	150	${ }^{\circ} \mathrm{C}$
	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation
Supply voltage range
Ambient temperature range

V_{1}	9 to 13	V
$T_{\text {amb }}$	-20 to 60	${ }^{\circ} \mathrm{C}$

Characteristics ($V_{\mathrm{S}}=12 \mathrm{~V} ; t_{\text {fly }}=12 \mu \mathrm{~s} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Current consumption

	\min	typ	\max	
I_{1}		30		mA

Control pulses, positive (pin 3)

Output voltage
Output resistance front slope (high)
back slope (low)
Duration of control pulses at thyristor operation ($V_{4}=9.4 \mathrm{~V}$ to V_{1})
Duration of control pulses at
transistor operation ($V_{4}=0$ to 3.5 V)
Control pulse switch-off

V_{3}	10	11		$\mathrm{~V}_{\mathrm{pp}}$
$R_{\mathrm{q} 3}$		2.5		Ω
$R_{\mathrm{q} 3}$		20		Ω
t_{Th}	5.5		8.5	$\mu \mathrm{~s}$
t_{Tr}		$14+t_{\mathrm{d}}$		$\mu \mathrm{s}$
V_{1}				

Switching of control pulse width and switch-off (pin 4)
for $t=6 \mu$ s (thyristor operation)
Input voltage Input current ($V_{4}=V_{1}$)
for $t=14 \mu \mathrm{~s}+t_{\mathrm{d}}$ (transistor operation)
Input voltage
Input current ($V_{4}=0 \mathrm{~V}$)
for $t=0\left(V_{3}=0 \mathrm{~V}\right)$
Input voltage
Input current ($V_{4}=V_{1 / 2}$)

V_{4}	9.4
I_{4}	200
V_{4}	0
I_{4}	
V_{4}	5.4
I_{4}	-10

V_{1}	V
3.5	$\mu \mathrm{~A}$
-200	$\mu \mathrm{~A}$
6.6	$\left.\mathrm{~V}^{1}\right)$
10	$\mu \mathrm{~A}$

Phase comparison φ_{2} and phase shifter (pin 5)

Control voltage range
Control current
Reverse current ($V_{5}=6.5 \mathrm{~V}$)
Output resistance $V_{5}=5.4$ to 7.6 V

$$
V_{5}<5.4 \mathrm{~V} />7.6 \mathrm{~V}
$$

Admissible delay between front slope of control pulse and line flyback pulse Static control error

Total phase position

Phase position between mid sync pulses and line flyback pulses Total phase position and phase position of front slope of control pulses is set automatically by phase comparison φ_{2}. If additional setting is required, current can be supplied via pin 5 . It then applies

Line flyback pulse input (pin 6)

Input switching voltage Input voltage limitation Input current

V_{6} switch		1.4		V
$V_{6} \lim$	-0.7		+1.4	V
I_{6}	0.01		1	mA

[^18]
Characteristics (cont'd)

Line flyback blanking pulses, positive (pin 7)

Output voltage
Output resistance
Output current during back slope
V_{7}
$R_{\text {q } 7}$
I_{7}

70
2

Vertical sync pulses, positive (pin 8)

Output voltage	$V_{\text {q } 8}$	10	11	V_{pp}
Output resistance	$R_{\text {q } 8}$		2	k Ω
Delay between front slopes of input signal and output signal	$t \mathrm{~V}$ an		15	
Delay between back slopes of input signal and output signal	$t{ }^{\text {V ab }}$		$t \mathrm{~V}$ an	

Sync pulse separation stage (pin 9)

Input switching voltage	$V_{\text {i } 9 \mathrm{~S}}$		0.8		V
Input switching current	$I_{19} 9$	5		100	$\mu \mathrm{A}$
Input modulation current	$\mathrm{I}_{\mathrm{i}} 9 \mathrm{~T}$			100	$\mu \mathrm{A}$
Input switch-off current	$I_{\text {i }} 9 \mathrm{~A}$	100	150		$\mu \mathrm{A}$
Input leakage current ($V_{9}=-5 \mathrm{~V}$)	$\mathrm{I}_{\mathrm{i}} 90$			1	$\mu \mathrm{A}$
Input signal (-BAS)	$v i 9$	3		4	$\mathrm{V}_{\mathrm{pp}}{ }^{1}$)

Interference signal blanking circuit (pin 10)

Input switching voltage
Input switching current
Input modulation current
Input leakage current ($V_{10}=-5 \mathrm{~V}$)
Input signal (-BAS)
Admissible superposed interference signal

$V_{\mathrm{i} 10}$		1.4		V
$I_{\mathrm{i} 10 \mathrm{~S}}$	100	150		$\mu \mathrm{~A}$
$I_{\mathrm{i} 10 \mathrm{~T}}$	5		100	$\mu \mathrm{~A}$
I_{100}			1	$\mu \mathrm{~A}$
$V_{\mathrm{i} 10}$	3		4	$\left.\mathrm{~V}_{\mathrm{pp}}{ }^{1}\right)$
V_{10}			7	V^{2}

[^19]
Characteristics (cont'd)

Coincidence detector φ_{3} (pin 11)

Output voltage, no coincidence Output voltage, with coincidence Output current, no coincidence Output current, with coincidence

Switching to VCR operation (pin 11)
Input voltage
Input current ($V_{11}=0 \mathrm{~V}$)
or
Input voltage
Input current ($V_{11}=V_{1}$)

Time constant switch (pin 12)

Output voltage
Output current, limited to output resistance $V_{11}=2.5$ to 7 V
Output resistance $V_{11}<1.5 \mathrm{~V} />9 \mathrm{~V}$
Phase comparison φ_{1} (pin 13)
Control voltage range
Control current
Leakage current at $V_{13}=4$ to 8 V
Output resistance $V_{13}=4$ to 8 V
Output resistance $V_{13}<3.8 \mathrm{~V} />8.2 \mathrm{~V}$
Control sensitivity
Catching and holding range
Scattering of catching and holding range

	\min	typ	\max	
$V_{\mathrm{q} 11}$			0.5	V
$V_{\mathrm{q} 11}$	5			V
$I_{\mathrm{q} 11}$		0.1		mA
$I_{\mathrm{q} 11}$		-0.5		mA

$V_{\mathrm{i} 11}$	0	1.5	V
$I_{\mathrm{i} 11}$	-200		
$V_{\mathrm{i} 11}$	9	$\mu \mathrm{~A}$	
$I_{\mathrm{i} 11}$			
V_{1}	V		
mA			

$V_{\mathrm{q} 12}$	6 1 $\pm I_{12}$ $R_{\mathrm{q} 12}$ $R_{\mathrm{q} 12}$	V 100 60	mA
Ω			
$\mathrm{k} \Omega$			

Oscillator (pins 14 and 15)

Lower threshold voltage
Upper threshold voltage
Reverse current
Oscillator frequency (unsynchronized)
at $C_{\text {osc }}=4.7 \mathrm{nF} ; R_{\text {osc }}=12 \mathrm{k} \Omega$
Scattering of oscillator frequency
Frequency-adjusting level
Adjusting range for the indicated external circuitry
Dependence of oscillator frequency on supply voltage
Frequency modification with supply voltage lowered to $V_{\mathrm{S}}=5 \mathrm{~V}$
Temperature coefficient of oscillator frequency
V_{14} S
V_{14}
$\pm I_{14} \mathrm{~V}$
f_{0}
Δf_{o}
$\Delta f_{0} / \Delta I_{15}$
Δf_{0}
$\frac{\Delta f_{\mathrm{o}} / f_{\mathrm{o}}}{\Delta V_{1} / V_{1}}$
Δf_{0}
$T C_{f}$

[^20]
Phase relations

a)

c)

d) Transistor output pulse ($V_{4}<3.5 \mathrm{~V}$)
e)

e) Thyristor output pulse ($V_{4}>9.4 \mathrm{~V}$)

The IC TDA 2593 is matched to the color ICs TDA 2522 and TDA 2560. It includes an improved sandcastle pulse with a new H flyback blanking threshold as well as the following stages:

- Line oscillator according to the threshold switch principle
- Phase comparsion between sync pulse and oscillator $\left(\varphi_{1}\right)$
- Internal gating pulse for phase discriminator φ_{1}
- Phase comparison between line flyback pulse and oscillator $\left(\varphi_{2}\right)$
- Catching range extension by coincidence detector φ_{3} (coincidence between sync and gating pulse)
- Time constant and gate switching (VCR operation)
- Sync pulse separation stage
- Blanking circuit for interference signal
- Vertical sync pulse separation stage and output stage
- Production of gating pulses for color sync signal and of line flyback blanking pulses
- Phase shifter for control pulse
- Switching of control pulse width and switch-off
- Output stage with separate supply voltage application for direct triggering of thyristor deflection circuits
- Switching off of control pulse in case of too low supply voltage

Type	Ordering code	Package outline
TDA 2593	Q67000-A1524	DIP 16

Maximum ratings

Supply voltage
Voltages

Currents

Thermal resistance (system-air)
Junction temperature
Storage temperature range
Range of operation
Supply voltage range
Ambient temperature range

V_{1}	13.2	V
V_{2}	18	V
V_{4}	13.2	V
V_{9}	$-6 / 7$	V
V_{10}	$-6 / 7$	V
V_{11}	13.2	V
I_{2}	650	mA
I_{3}	-650	mA
I_{4}	1	mA
I_{6}	± 10	mA
I_{7}	-10	mA
I_{11}	2	mA
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

V_{1}	9 to 13	V
T_{amb}	-20 to 60	${ }^{\circ} \mathrm{C}$

Characteristics ($V_{\mathrm{S}}=12 \mathrm{~V} ; t_{\mathrm{fly}}=12 \mu \mathrm{~s} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Current consumption

	\min	typ	\max	
I_{1}		30		mA

Control pulses, positive (pin 3)

$\left.\begin{array}{ll|l|l|l|l}\text { Output voltage } & V_{3} \\ \text { Output resistance front slope (high) } \\ \text { back slope (low) }\end{array}\right)$

Switching of control pulse width and switch-off (pin 4)

for $t=6 \mu \mathrm{~s}$ (thyristor operation) Input voltage Input current ($V_{4}=V_{1}$)
for $t=14 \mu \mathrm{~s}+t_{\mathrm{d}}$ (transistor operation)
Input voltage
Input current ($V_{4}=0 \mathrm{~V}$)
for $t=0\left(V_{3}=0 \mathrm{~V}\right)$
Input voltage
Input current ($V_{4}=V_{1 / 2}$)

V_{4} I_{4}	$\begin{array}{\|l\|l} 9.4 \\ 200 \end{array}$	v_{1}	V
V_{4} I_{4}	0	$\begin{array}{\|l\|} \hline 3.5 \\ -200 \end{array}$	V $\mu \mathrm{A}$
V_{4} I_{4}	5.4 -10	$\begin{array}{\|l} 6.6 \\ 10 \end{array}$	$\left(\begin{array}{l}\text { V } \\ \mu\end{array}\right.$

Phase comparison φ_{2} and phase shifter (pin 5)

Control voltage range
Control current
Leakage current ($V_{5}=6.5 \mathrm{~V}$)
Output resistance $V_{5}=5.4$ to 7.6 V
$V_{5}<5.4 \mathrm{~V} />7.6 \mathrm{~V}$
Admissible delay between front slope of control pulse and line flyback pulse
Static control error
Total phase position
Phase position between mid sync pulse and line flyback pulse
Total phase position and phase position of front slope of control pulses is set automatically by phase comparison φ_{2}.
If additional positioning is required, current can be supplied via pin 5 . It then applies

$$
\begin{aligned}
& V_{5} \\
& \pm I_{5} \\
& I_{5} 0 \\
& R_{q} 5 \\
& R_{q 5}
\end{aligned}
$$

t_{d}
$\Delta t / \Delta t_{\mathrm{d}}$

Line flyback pulse input (pin 6)

Input switching voltage Input voltage limitation Input current

$V_{6 \mathrm{~S}}$		1.4	V $V_{6 \mathrm{~B}}$ I_{6}	-0.7
V				
				1.01
1		mA		

For notes refer to page 110.

Characteristics (cont'd)

Color sync signal gating pulses, positive (pin 7) Output voltage
Output resistance
Output current during back slope
Width of color sync signal
gating pulses at $V_{7}=7 \mathrm{~V}$
Phase position between mid sync pulses at input and front slope of color sync signal gating pulses at $V_{7}=7 \mathrm{~V}$
$V_{q}{ }_{7}$
$R_{\mathrm{q}}{ }_{7}$
I_{7}
t

Line flyback blanking pulses, positive (pin 7)

Output voltage
Output resistance
Output current during back slope

V_{7}	4	5	$V_{p p}$ $R_{\mathrm{q} 7}$	
I_{7}		20	Ω	
mA				

Vertical sync pulses, positive (pin 8)

Output voltage	$V_{\text {q }} 8$	10	11	$V_{\text {pp }}$
Output resistance	$R_{\text {q } 8}$		2	$\mathrm{k} \Omega$
Delay between front slopes of input signal and output signal	$t \vee$ an		15	$\mu \mathrm{s}$
Delay between back slopes of input signal and output signal	$t \mathrm{~V}_{\text {ab }}$		t_{V} an	

Sync pulse separation stage (pin 9)

Input switching voltage	$V_{\mathrm{i} 9 \mathrm{~S}}$		0.8		V
Input switching current	$I_{\mathrm{i} 9 \mathrm{~S}}$	5		100	$\mu \mathrm{~A}$
Input modulation current	$I_{\mathrm{i}} 9 \mathrm{~T}$			100	$\mu \mathrm{~A}$
Input switch-off current	$I_{\mathrm{i}} 9 \mathrm{~A}$	100	150		$\mu \mathrm{~A}$
Input leakage current $\left.V_{9}=-5 \mathrm{~V}\right)$	$I_{\mathrm{i}} 90$			1	$\mu \mathrm{~A}$
Input signal $(-\mathrm{BAS})$	$V_{\mathrm{i} 9}$	3		4	$\left.V_{\mathrm{pp}}{ }^{3}\right)$

Interference signal blanking circuit (pin 10)

Input switching voltage
Input switching current
Input modulation current
Input leakage current ($V_{10}=-5 \mathrm{~V}$)
Input signal (-BAS)
Admissible superposed interference signal

Input modulation current
Input leakage current ($V_{10}=-5 \mathrm{~V}$)
Admissible superposed interference signal
I 10 T
I 100
$V_{\text {i } 10}$
V_{10}

$|$| 1.4 |
| :--- |
| 150 |
| |

	V
100	$\mu \mathrm{~A}$
1	$\mu \mathrm{~A}$
4	$\mu \mathrm{~A}$
7	$\left.\mathrm{~V}_{\mathrm{pp}}{ }^{3}\right)$

Coincidence detector φ_{3} (pin 11)

Output voltage, no coincidence Output voltage, with coincidence Output current, no coincidence Output current, with coincidence

V_{q}	11
$V_{\mathrm{q}} 11$	
I_{q}	11
$I_{\mathrm{q}} 11$	

Characteristics (cont'd)

Switching to VCR operation (pin 11)

Input voltage
Input current ($V_{11}=0 \mathrm{~V}$)
or
Input voltage
Input current ($V_{11}=V_{1}$)

Time constant switching (pin 12)

Output voltage
Output current, limited to
output resistance $V_{11}=2.5$ to 7 V
Output resistance $V_{11}<1.5 \mathrm{~V} />9 \mathrm{~V}$

	\min	typ	\max	
$V_{\mathrm{i} 11}$	0		1.5	V
$I_{\mathrm{i} 11}$	-200			$\mu \mathrm{~A}$
$V_{\mathrm{i} 11}$	9		V_{1}	V
$I_{\mathrm{i} 11}$			2	mA

Phase comparison φ_{1} (pin 13)

Control voltage range
Control current
Leakage current at $V_{13}=4$ to 8 V
Output resistance $V_{13}=4$ to 8 V
Output resistance $V_{13}<3.8 \mathrm{~V} />8.2 \mathrm{~V}$
Control sensitivity
Catching and holding range
Scattering of catching and holding range

Oscillator (pins 14 and 15)

Lower threshold voltage
Upper threshold voltage
Reverse current
Oscillator frequency (unsynchronized)
with $C_{\text {osc }}=4.7 \mathrm{nF} ; R_{\text {osc }}=12 \mathrm{k} \Omega$
Scattering of oscillator frequency
Frequency-adjusting level
Adjusting range for the indicated external circuitry
Dependence of the oscillator frequency on the supply voltage
$V_{14 \mathrm{~S}}$
$V_{14 \mathrm{~S}}$
$\pm I_{14 \mathrm{~V}}$
f_{O}
Δf_{O}
$\Delta f_{\mathrm{O}} / \Delta I_{15}$
Δf_{O}
$\frac{\Delta f_{\mathrm{O} /} f_{\mathrm{O}}}{\Delta V_{1} / V_{1}}$
Δf_{O}
$T C_{\mathrm{f}}$
$\left|\begin{array}{l}4.4 \\ 7.6 \\ 0.47 \\ 15625 \\ \pm 5 \\ 31 \\ \pm 10 \\ \pm 0.05 \\ \pm 10 \\ \pm 10^{-4}\end{array}\right|$
V
V
mA
Hz
$\left.\%{ }^{5}\right)$
$\mathrm{Hz} / \mu \mathrm{A}$
$\%$
$\left.{ }^{5}\right)$

$\left.\%{ }^{5}\right)$
$\left.\mathrm{Hz} / \mathrm{K}^{5}\right)$

[^21]
Phase relations

a)

$<1 \mathrm{~V}$
OV
c) Color sync gating pulse and line flyback blanking pulse
d) Transistor output pulse ($V_{4}<3.5 \mathrm{~V}$)
e) Thyristor output pulse $\left(V_{4}>9.4 \mathrm{~V}\right)$

TDA 4600 has to regulate and control the switching transistor of switching power supplies. Because of its wide operational range and high voltage stability even at high load changes; this IC is used not only in TV receivers and video recorders but also in power supplies of Hifi sets and active speakers.

- Direct control of switch transistor
- Low start-up current
- Reverse-going linear overload characteristic curve
- Collector current - proportional to base-current input

Type	Ordering code	Package outline
TDA 4600	Q67000-A1451	SIP 9

Maximum ratings

Supply voltage	V_{9}	20	v
Voltages			
reference output	V_{1}		V
identification input	V_{2}	± 0.6	V
controlled amplifier	V_{3}	3	V
collector current simulation	V_{4}	3	V
trigger input	V_{5}	3	v
base current cut-off point	V_{7}	6	V
base current amplifier output	V_{8}	6	v
Currents			
feedback, zero passage	$I_{\text {i } 2}$	-3 to 3	mA
controlled amplifier	$I_{\text {i }} 3$	-3	mA
collector current simulation	I_{i}	5	mA
base current cut-off point	$I_{\text {q } 7}$	1.5	A
base current amplifier output	$I_{\text {q }} 8$	-1.5	A
Thermal resistance (junction-case)	$R_{\text {th JC }}$	15	K/W
Thermal resistance (system-air)	$R_{\text {th } \mathrm{SA}}$	70	K/W
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
Range of operation			
Supply voltage range	V_{9}	7.6 to 15	V
Ambient temperature range	$T_{\text {amb }}$	0 to 70	$1{ }^{\circ} \mathrm{C}$

Characteristics ($T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) according to test circuit 1 and diagram

Start operation

Current consumption (V_{1} not yet switched on)

$$
\begin{aligned}
& V_{9}=3 \mathrm{~V} \\
& V_{9}=5 \mathrm{~V} \\
& V_{9}=10 \mathrm{~V}
\end{aligned}
$$

Switching point for V_{1}

	\min	typ	\max	
I_{9}			0.5	mA
I_{9}		1.5	2	mA
I_{9}		2.4	3.2	mA
V_{9}	11.3	11.8	12.3	V

Normal operation ($V_{9}=10 \mathrm{~V} ; V_{\text {cont }}=-10 \mathrm{~V} ; V_{\text {clock }}= \pm 0.5 \mathrm{~V} ; f=20 \mathrm{kHz}$; duty cycle 1:1) after switch on
Current consumption $\begin{aligned} V_{\text {cont }} & =-10 \mathrm{~V} \\ V_{\text {cont }} & =0 \mathrm{~V}\end{aligned}$
Reference voltage $I_{1}<0.1 \mathrm{~mA}$

$$
I_{1}=5 \mathrm{~mA}
$$

Temperature coefficient of reference voltage
Feedback voltage
Control voltage
Collector current simulation voltage

$$
\begin{aligned}
& V_{\text {cont }}=0 \mathrm{~V} \\
& V_{\text {cont }}=0 \mathrm{~V} /-10 \mathrm{~V}
\end{aligned}
$$

Trigger input voltage
Output voltage $V_{\text {cont }}=0 \mathrm{~V}$

$$
\begin{aligned}
& V_{\text {cont }}=0 \mathrm{~V} \\
& V_{\text {cont }}=0 \mathrm{~V} /-10 \mathrm{~V}
\end{aligned}
$$

I_{9}	110	135	160	mA
I_{9}	60	85	110	mA
V_{1}	4	4.2	4.5	V
V_{1}	4	4.2	4.4	V
$T C_{1}$		10^{-3}		$1 / \mathrm{K}$
$V_{2}{ }^{*}$		0.2		V
V_{3}	2.3	2.6	2.9	V
$V_{4}{ }^{*}$	1.8	2.2	2.5	V
$\Delta V_{4}{ }^{*}$	0.3	0.4	0.5	V
V_{5}	5.5	6.3	7	V
$V_{\mathrm{q} 7^{*}}$	2.8	3.3	4	V
$V_{\mathrm{q} 8^{*}}$	2.8	3.4	4	V
$\Delta V_{\mathrm{q} 8^{*}}$	1.4	1.8	2.2	V

Safety operation ($V_{9}=10 \mathrm{~V}$; $V_{\text {cont }}=-10 \mathrm{~V} ; V_{\text {clock }}= \pm 0.5 \mathrm{~V} ; f=20 \mathrm{kHz}$; duty cycle 1:1)

Current consumption ($V_{5}<1.8 \mathrm{~V}$)
Switch-off voltage ($V_{5}<1.8 \mathrm{~V}$)
Ext. trigger input enable voltage disable voltage
Supply voltage for V_{8} blocked

I_{9}	14	20
$V_{q 7}$	1.3	1.5
V_{4}	1.8	2.1
V_{5}		2.4
V_{5}	1.8	2.2
V_{9}	6.5	7

26	mA
1.8	V
2.5	V
2.7	V
7.6	V
7.	V

Characteristics ($T_{\text {amb }}=25^{\circ} \mathrm{C}$) according to test circuit 2
Switching time (secondary voltages)
Voltage change
$S_{3}=\operatorname{closed}\left(\Delta N_{3}=20 \mathrm{~W}\right)$
Sound output power
$S_{2}=\operatorname{closed}\left(\Delta N_{2}=15 \mathrm{~W}\right)$
Standby operation
(secondary useful load $=3 \mathrm{~W}$)
$S_{1}=$ open

$t_{\text {on }}$	350	450	ms	
ΔV_{2}		100	500	mV
ΔV_{2}		500	1000	mV
ΔV_{2}	70	20	30	V
f	75	12	kHz	
$N_{\text {primary } \sim}$	10	VA		

The cooling area has to be optimized according to the limit values ($T_{\mathrm{j}}, R_{\mathrm{th} \mathrm{SA}}, R_{\mathrm{th}} \mathrm{JC}, T_{\mathrm{amb}}$).

[^22]
Test circuit 1

Circuit description

The TDA 4600 regulates, controls, and protects the switching transistor in reverse converter power supplies at starting, normal, and overload operation.

A. Starting behavior

During the start-up three consecutive operation states are passed.

1. An internal reference voltage is built up which supplies the voltage regulator and enables the supply to the coupling electrolytic capacitor and the switching transistor. Up to a supply voltage of $V_{9} \approx 12 \mathrm{~V}$, the current I_{9} is less than 3.2 mA .
2. Release of the internal reference voltage $V_{1}=4 \mathrm{~V}$. This voltage is abruptly available when $V_{9} \approx 12 \mathrm{~V}$ and enables all parts of the IC to be supplied from the control logic with a thermally stable and overload protected current supply.
3. Release of control logic. As soon as the reference voltage is available, the control logic is switched on through an additional stabilization circuit. Thus, the IC is ready for operation.
This start-up sequence is necessary to guarantee the supply through the coupling electrolytic eapacitor to the switching transistor. Correct switching of the transistor is only in this way guaranteed.

B. Normal operation

Zero crossing of the feedback coil is registered at pin 2 and passed to the control logic.
At pin 3 (regulation of input, overload, and standby recognition) the rectified amplitude variations of the feedback coil are applied. The regulating amplifier works with an input voltage of about 2 V and a current of about 1.4 mA . Together with the collector current simulation pin 4, the overload recognition defines the operating region of the regulating amplifier depending on the internal reference voltage. The simulation of the collector current is generated by an external RC network at pin 4 and an internally set voltage level. By increasing the capacitance (10 nF) the max. collector current of the switching transistor rises, thus setting the required operating range. The extent of the regulation lies between a 2 V clamped dc voltage and an ac voltage rising in a sawtooth waveform, which may vary up to a maximum amplitude of 4 V (reference voltage).
A reduction of the secondary load down to 20 watts causes the switching frequency to rise to about 50 kHz at an almost constant pulse duty factor (period to on-time approx. 3). A further reduction of the secondary load down to about 1 watt results in changing the switching frequency to approx 70 kHz , and additionally the pulse duty factor rises to approx. 11. At the same time the collector peak current falls below 1 A .

In the trigger the output level of the regulating amplifier, the overload recognition, and the collector current simulation are compared and instructions are given to the control logic. There is an additional triggering and blocking possibility by means of pin 5 . The output at pin 8 is blocked at a voltage of less than 2.2 V at pin 5 .

Depending on the start-up circuit, the zero crossing identification, and the release with the aid of the trigger, the control logic flip flops are set which control the base current amplifier and the base current shut-down. The base current amplifier moves the sawtooth voltage V_{4} to pin 8 . A current feedback having an external resistance of $R \approx 0.68 \Omega$ is inserted between pin 8 and pin 7 . The resistance value determines the maximum amplitude of the base driving current for the switching transistor.

C. Protective measures

The base current shut-down, released by the control logic, clamps the output of pin 7 at 1.6 V and thus blocks driving of the switching transistor. This protective measure will be released if the voltage at pin 9 reaches a value of less than 7 V or if voltages of less than 2.2 V occur at pin 5 . In the case of a short circuit of the secondary windings of the P.S.U., the IC continuously monitors the fault condition.

With the load completely removed from the secondary winding of the P.S.U., the IC is set to a large pulse duty factor. The total power consumption of the P.S.U. is held below $n=$ 6 to 10 watts in both operating conditions. After having blocked the output, caused at a supply voltage V_{9} of 7 V , a further voltage reduction to 6 V results in switching off the reference voltage (4V).

Test diagram: Normal operation

Frequency versus output power

Efficiency versus output power

Output voltage V_{2} (mains change)

Block diagram

Test circuit 2 and application circuit

Bipolar circuit

The TDA 4610 is used for pin cushion correction in color TV sets. Moreover, the circuit offers the possibility of performing trapezoidal corrections as well as setting the picture width and the degree of the pin cushion correction. By making use of the switching operation, the diode modulation is controlled directly, thus resulting in very low power dissipation.

- Low power dissipation
- Wide regulating range
- Simple tuning
- Few external components

Type	Ordering code	Package outline
TDA 4610	$067000-$ A1523	SIP 9

Maximum ratings

Operating voltage
Voltages
Vertical input
Parabola position
Correction of parabola error
Correction onset
Flyback
Horizontal picture width
Final stage output
Current
Final stage output
Thermal resistance (junction-case)
Thermal resistance (system-air)
Junction temperature
Storage temperature range

	36	V
$V_{\mathrm{S} 1}$		
V_{7}	$V_{\mathrm{S} 1}$	V
V_{6}	$V_{\mathrm{S} 1}$	V
V_{8}	5	V
V_{9}	5	V
V_{4}	42	V
V_{3}	$V_{\mathrm{S} 1}$	V
$V_{\mathrm{K} 2}$	42	V
I_{2}	1.5	A
$R_{\text {th JC }}$	12	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th SA }}$	70	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range

$V_{\mathrm{S} 1}$	12 to 36	V
T_{amb}	0 to 70	${ }^{\circ} \mathrm{C}$

1. Characteristics ($\left.V_{\mathrm{S} 1}=24 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption
input current verticai Input current parabola position No load voltage parabola position Input current No load voltage correction onset Input current correction onset Input current picture width Saturation voltage final stage ($\left.I_{2}=1 \mathrm{~A}\right)$

	\min	typ	\max	
I_{5}		10	12	mA
$-I_{7}$		100		$\mu \mathrm{~A}$
$-I_{6}$		100		$\mu \mathrm{~A}$
V_{8}		0.7		V
$-I_{8}$		0.4		mA
V_{9}	3.6		V	
$-I_{9}$		0.4		mA
I_{3}		0.2		mA
V_{2}		2	2.5	V

2. Characteristics ($V_{\mathrm{K} 2}=40 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$)

Parabola position with R_{6} (diagram 1)
Parabola correction
Onset point with R_{9} (diagram 2)
Permissible deviation referred to
onset point (diagram 2)
Intensity of parabola correction with R_{8}
Increase of the parabola when adjustable to 0
Parabola amplitude with R_{4}
Useful voltage range of the parabola
(parabola amplitude $V_{\mathrm{PA}}=5 V_{\mathrm{pp}}$)

Circuit description

The vertical sawtooth voltage ($2 \mathrm{~V}_{\mathrm{pp}}$ increasing from 0 , flyback time $<0.1 \mathrm{msec}$) is applied to two differential amplifiers.
Antiphase signals are available at the outputs of the differential amplifiers. Differential amplifier 1 controls the multiplexer which converts the sawtooth signal into a symmetrical parabola.
The differential amplifier 2 controls a correction voltage circuit by which the shape of the parabola can be suited to the characteristics of the tube.
The parabola signal is amplified and fed to the pulse width modulator. The modulator controls the final output transistor.

Pin designation

Pin No.	Description
1	Ground
2	Final stage output
3	Horizontal picture width
4	Flyback
5	Supply voltage
6	Parabola position adjustment
7	Vertical input
8	Correction of parabola error
9	Adjustment of onset point

Block diagram and test circuit

Pulse diagram 1 and 2

Parabola position

Parabola correction

Application circuit

Bipolar circuit

The IC UAA 190 generates a bar which corresponds to the tuning frequency and can be displayed in the TV picture during tuning.

- Few external components
- Low power consumption
- Straightforward driving of the RGB stage

Type	Ordering code	Package outline
UAA 190	Q67000-A1282	DIP 8

Maximum ratings

Supply voltage
Output current
Thermal resistance (system-air)
Junction temperature
Storage temperature range

Range of operation

Supply voltage range
Ambient temperature range

V_{6}	18	V
I_{4}	35	mA
$R_{\text {th SA }}$	120	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Characteristics ($\left.V_{6}=15 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}\right)$

Current consumption

$$
V_{5} \leqq 1 \mathrm{~V}
$$

$$
V_{5} \geqq 2.5 \mathrm{~V}
$$

Line input current ($V_{2}=0$)
Line pulse current ($R_{\mathrm{v}}=100 \mathrm{k} \Omega$)

$$
\begin{aligned}
& V_{2}=0 \mathrm{~V} \\
& V_{2}=-55 \mathrm{~V}
\end{aligned}
$$

Line pulse width
Picture input current ($V_{3}=0 \mathrm{~V}$)
Picture pulse current
$\left(V_{3}=-10 \mathrm{~V} ; R_{\mathrm{v}}=22 \mathrm{k} \Omega\right)$
Output voltage ($I_{4}=20 \mathrm{~mA}$)
Output current

$$
\left(V_{4 \mathrm{H}}=V_{6}\right)
$$

Switching threshold search pulse
Input current $\quad V_{5}=8 \mathrm{~V}$

$$
V_{5}=6 V
$$

$$
V_{5}=0 \mathrm{~V}
$$

Input resistance ($V_{5} \leqq 6 \mathrm{~V}$)
Perm. comp. input voltage
Comparator input voltage
(on $R_{\mathrm{v}}=100 \mathrm{k} \Omega$)
Comparator input voltage

$$
\begin{array}{r}
I_{8}=10 \mathrm{~mA} ;-I_{2} \geqq 400 \mu \mathrm{~A} \\
I_{8}=2 \mathrm{~mA} ;-I_{2} \geqq 400 \mu \mathrm{~A} \\
-I_{2} \leqq 50 \mu \mathrm{~A}
\end{array}
$$

Comparator current

$$
\begin{aligned}
& -I_{2} \geqq 400 \mu \mathrm{~A} \\
& -I_{2} \leqq 50 \mu \mathrm{~A} ; V_{8}=0 \mathrm{~V}
\end{aligned}
$$

Internal comparator bias

	min	typ	max	
I_{6}	1		4	mA
I_{6}	8		35	mA
$-I_{2}$	50		400	$\mu \mathrm{A}$
$-I_{2}$		10		$\mu \mathrm{A}$
$-I_{2}$		500		$\mu \mathrm{A}$
T_{2}	4			$\mu \mathrm{A}$
$-I_{3}$	75		250	$\mu \mathrm{A}$
$-I_{3}$	250			$\mu \mathrm{A}$
$V_{4} L^{1}$)		0.4	1.5	V
$\mathrm{V}_{4} \mathrm{H}$			V_{6}	V
$I_{4} \mathrm{~L}^{1}$)		15	20	mA
$I_{4} \mathrm{H}$			10	$\mu \mathrm{A}$
V_{5}	1		2.5	V
I_{5}		1		mA
I_{5}			5	$\mu \mathrm{A}$
$-I_{5}$			0.5	$\mu \mathrm{A}$
$R_{\text {i }} 5$		2		$\mathrm{M} \Omega$
V_{7}	0		$V_{6}-2$	V
V_{7}			0.3	V
V_{8}			1	V
V_{8}			0.2	V
V_{8}	$V_{6}-2$			V
I_{8}			15	mA
I_{8}	115	145	175	$\mu \mathrm{A}$
V_{v}	0.3		0.6	V

[^23]Measuring circuit for static measurements

Measuring circuit for dynamic measurements

1. S off: no onscreening
2. Son: onscreening line 88 to 95
3. S off: onscreening time according to C_{1} and R_{1} (for $4.7 \mu \mathrm{~F}$ and $1 \mathrm{M} \Omega$ approx. 5 sec)

Description of functions and circuit

With the aid of the UAA 190 the tuning voltage can be displayed in form of a bar into the TV picture during channel selection. For that purpose 8 pulses are delivered during each picture sweep whereby the duration of the pulses depends on the tuning voltage. These pulses can be used for bright and dark blanking for control of the color picture cathodes.
It is the transmitter station search signal $V_{5} 2.5 \mathrm{~V}$ which makes the circuit ready for operation since the internal voltage regulator only then provides the supply voltage regulated to 6 V.
Position and width of the bar onscreening is determined by a 7-bit counter, the length, however, by a voltage comparator. The counter is reset by the vertical pulse to the initial position at line 0 . For the first picture sweep after switching on, the counter position is undefined. The output for lines 88 to 95 is enabled by the counter. The output is driven by the comparator as soon as the capacitor voltage V_{8} (see application circuit) is lower than the voltage V_{7}. The indication for $V_{7}=0 \mathrm{~V}$ is made possible by an internal bias which is added to the externally applied voltages. During the line pulse the capacitor is discharged and subsequently loaded with a constant current of typically $145 \mu \mathrm{~A}$ (see Fig. 1).
The length of the bar onscreening is determined by the following magnitudes: tuning voltage, shunt resistor and dividing ratio of the input divider, input current of the tuning voltage input, internal bias, capacitance of the load capacitor and load current.

Pulse diagram

Line pulse at pin 2

Figure 1

Pulse diagram

Figure 2

Application circuit

Bipolar circuit

Fast ECL prescaler with a divider ratio $1: 256$ for input frequencies of 80 MHz up to 1 GHz . Particularly suitable for use in TV sets with frequency synthesis.

- Input frequency up to 1 GHz
- Few external components
- Separate inputs for UHF and VHF

Type	Ordering code	Package outline
SDA 4040	Q67000-A1462	DIP 14

Maximum ratings

Supply voltage	V_{1}, V_{2}	10	V
Input voltages	V_{8}	2.5	$\mathrm{~V}_{\mathrm{pp}}$
	V_{10}	2.5	$\mathrm{~V}_{\mathrm{pp}}$
Switching voltage	V_{14}	-0.5 to 7.2	V
Switching current	I_{14}	-10	mA
Output current	$I_{\mathrm{q} 4}$	-30 to 30	mA
Thermal resistance (system-air)	$R_{\text {th }}$ SA	80	$\mathrm{~K} / \mathrm{W}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range Input frequency range VHF

Ambient temperature range

V_{1}, V_{2}	6.45 to 7.15	V
$f_{i} 8$	80 to 300	MHz
$f_{\mathrm{i}} 10$	80 to 950	MHz
$T_{\text {amb }}$	0 to 65	${ }^{\circ} \mathrm{C}$

Characteristics ($V_{\mathrm{S}}=6.8 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Current consumption ($V_{\mathrm{S}}=7.15 \mathrm{~V}$)
Input voltages VHF (sine) ${ }^{1}$)

$$
\begin{aligned}
& f_{i}=80 \mathrm{MHz} \\
& f_{i}=100 \mathrm{MHz} \\
& f_{i}=300 \mathrm{MHz}
\end{aligned}
$$

Input voltages UHF (sine) ${ }^{1}$)
$f_{\mathrm{i}}=80 \mathrm{MHz}$
$f_{\mathrm{i}}=100 \mathrm{MHz}$
$f_{i}=200 \mathrm{MHz}$
$f_{\mathrm{i}}=450 \mathrm{MHz}$
$f_{\mathrm{i}}=900 \mathrm{MHz}$
L switching voltage
H switching voltage
Switching current ($V_{14}=0.4 \mathrm{~V}$)
L output voltage ($I_{\mathrm{qL}}=5 \mathrm{~mA}$)
H output voltage ($I_{\mathrm{qH}}=-1 \mathrm{~mA}$)

	min	typ	max	
I_{1}, I_{2}		70	95	mA
V_{8}	200		700	mV rms
V_{8}	100		700	mV rms
V_{8}	100		700	mV rms
V_{10}	300		700	mV rms
V_{10}	250		700	mV rms
V_{10}	150		700	mV rms
V_{10}	100		700	mV rms
V_{10}	200		700	$\mathrm{mV}_{\text {rms }}$
V_{14}			0.4	V
$V_{14} \mathrm{H}$	2.4			V
$-I_{14}$			0.8	mA
$V_{\text {q L4 }}$			0.4	V
$V_{\text {q H4 }}$	2.4	3.5		V

Pin configuration (top view)

[^24]Block diagram and application circuit

If needed hysteresis can be achieved at the UHF input by connecting a resistor (e.g. $33 \mathrm{k} \Omega$) between $\mathrm{UHF}_{\text {ref }}$ (pin 12) and ground (pins 6, 7). At the VHF input the hysteresis can be increased in the same way.

Circuit description

The IC SDA 4040 has a VHF and a UHF input. The VHF input is activated by applying a "Low" to the switching input U. The UHF input is activated by applying a "High" to pin U. The VHF input has a hysteresis of approx. 50 mV which improves the switching behavior at sine wave input signals of low frequencies. If necessary a hysteresis can be applied to the UHF input by means of an external resistor matrix.
The connection of the input signal to the VHF or UHF input is done capacitively. The inputs are internally terminated with approx. 400Ω. The pins $V H F_{\text {ref }}$ and $U H F_{\text {ref }}$ have to be grounded via capacitors (see application diagram).

Input sensitivity versus frequency

The SDA 4041 is derived from the SDA 4040. It comprises two input amplifiers independent from each other as well as an 8-stage divider. This IC is particularly suitable for use in TV sets with frequency synthesis.

- Input frequency up to $1 \mathrm{GH} Z$
- Few external components
- Separated inputs for UHF and VHF
- ECL outputs

Type	Ordering code	Package outline
SDA 4041	Q67000-A1463	DIP 18

Maximum ratings

Supply voltage
Input voltages
Switching voltage
Switching current
Thermal resistance (system-air)
(system-case)
Storage temperature range
Junction temperature

V_{S}	6	V
V_{4}	2.5	$\mathrm{~V}_{\mathrm{pp}}$
V_{5}	2.5	$\mathrm{~V}_{\mathrm{pp}}$
V_{2}	-0.5 to 20	m
$-I_{2}$	10	KA
$R_{\text {th } \mathrm{SA}}$	65	W
$R_{\text {th SC }}$	20	$\mathrm{~K} / \mathrm{W}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
T_{j}	125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range	V_{S}	4.7 to 5.5	V
Input frequency range VHF	$f_{\mathrm{i} 4}$	80 to 300	MHz
UHF	$f_{\mathrm{i}} 5$	80 to 950	MHz
Ambient temperature range	$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics ($\left.V_{\mathrm{S}}=5 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption
Input voltages VHF (sine)')
$f_{i}=80 \mathrm{MHz}$
$f_{i}=100 \mathrm{MHz}$
$f_{\mathrm{i}}=300 \mathrm{MHz}$
Input voltages UHF (sine)')
$f_{\mathrm{i}}=80 \mathrm{MHz}$
$f_{\mathrm{i}}=100 \mathrm{MHz}$
$f_{\mathrm{i}}=300 \mathrm{MHz}$
$f_{i}=450 \mathrm{MHz}$
$f_{\mathrm{i}}=900 \mathrm{MHz}$
L switching voltage
H switching voltage
Switching current ($V_{2}=12 \mathrm{~V}$)
Output voltages
Output resistance

	min	typ	max	
I_{7}		95	130	mA
V_{4}	40		500	mV rms
V_{4}	30		500	mV rms
V_{4}	20		500	mV rms
V_{5}	40		500	$\mathrm{m} \mathrm{V}_{\text {rms }}$
V_{5}	30		500	mV rms
V_{5}	20		500	mV rms
V_{5}	20		500	mV rms
V_{5}	40		300	mV rms
$V_{2} \mathrm{~L}$			0.6	v
$V_{2} \mathrm{H}$	3			V
$-\mathrm{I}_{2}$				mA
$V_{\text {q } 8, ~}, V_{\text {q } 9}$	0.75	1		V_{pp}
$R_{\text {q } 8,}, R_{\text {q } 9}$				$\Omega^{\text {p }}$

Pin configuration (top view)

Pins to cooling and ground

[^25]
Block diagram and application circuit

Pins 10 to 18 are internally interconnected by means of a metal web, they are also connected to the chip body. They are intended for cooling and ground connection.

Circuit description

The IC SDA 4041 has a VHF and a UHF input. The VHF input is activated by applying a "Low" to the switching input U. The UHF input is activated by applying a "High" to pin U.

The connection of the input signal to the VHF or UHF input is done capacitively. The connection ref has to be grounded. Preamplifiers at the inputs provide for a high input sensitivity.
The outputs are in phase opposition and deliver ECL level.

Input reflection factor

for determining the input impedance for the VHF as well as UHF input $Z_{0}=75 \Omega$

Decoupling of the VHF and UHF input versus input frequency $\alpha_{i}=f(f)$

Input sensitivity versus input frequency $V_{i}=f(f)$

Design ideas

As a result of technological advance: High speed dividers in ECL technology allow digital handling of the oscillator frequency of TV tuners up to one GHz. Together with a programmable divider and a phase locked loop (PLL) the oscillator can be connected digitally and in a phase locked wav to a quartz stabilized reference frequency, thus providing the prerequisite for a tuning system that is able to store an initially programmed channel unvaried with a precision so far reserved to professional devices, only.
Whereas TV sets, which are voltage tuned, need time and temperature stability of reference voltage, tuning potentiometer and/or D/A converter, varicap diode, oscillator transistor, oscillating inductance and some other components, tuning by frequency synthesis is only determined by the quartz oscillator and a programmed digital divider stage.
It is the inital start-up procedure of the TV set, at which the station buttons are set with the appropriate channels, e.g. channel 10 (first program) assigned to sensor 1 , channel 35 (second program) to sensor 2, channel 56 (third program) to sensor 3, channel 8 (Austria 1) to sensor 4, etc.
Performance of this assignment shall be safe and simple since it is done only once for a period of several years.
It is, therefore, of great interest not only for TV set owners but also for merchants to keep programming of these station buttons unchanged for years. It is the Siemens channel program system, which optimally meets this requirement.
With the aid of two keys or by means of channel selection the channels Nos. 00 to 99 can be set within a few seconds, only. For the CCIR channels 02 to 12 and 21 to 68 , these are identical with the numbers indicated unless converted in a GA system. With the indication 81 to 00 , the cable channels S1 to S20 may be called provided that tuner facilities are available. 13 to 20 are reserved to the Italian channels A to H and the remaining gaps are occupied with some OIR channels as well as other expected to be important in the near future. Selection of station button and desired channel provides in most cases optimal setting of the station and can be stored.
Programming can also be done when no transmission takes place or when reception is not yet possible due to a missing antenna.

Direct channel selection is particularly useful when many transmitters can be received. The correct channel and the nearest transmitter can be identified unambiguously.
In case of inadequate receiving conditions or unfavorable frequency responses, the visual impression can be improved by fine detuning. In foreign countries, such as Belgium, the Netherlands, Luxembourg and Switzerland, some TV cable networks are admitted to have slight deviations from the standardized channel raster in order to avoid interference. Subsequent fine tuning is also necessary, performed in steps of 125 kHz , and stored, too. The remaining deviation of $\pm 62.5 \mathrm{kHz}$ from the theoretically ideal tuning is not noticeable even in case of critical observation and is lower than those tolerances caused by the IF amplifier.

An AFC could be coupled - if required - to the fine tuning unit which would automatically provide at offset channel raster for fine tuning in antenna installations. Visual correction at unfavorable receiving conditions, however, cannot be performed by the AFC. Moreover, it is well-known that an AFC tends to mismatching in case of noisy signals and at certain picture contents. Expensive peripheral circuitry is necessary if trapping of incorrect carrier signals shall to some degree be reliably eliminated. In accordance with the present state of the art, the teletext reception is only to be obtained with tuning systems of high precesion, this is however, scarcely possible by means of AFC.

Description of the system

A digital tuning system essentially consists of 3 blocks.
Frequency synthesis
Controller and display
Station memory

Fig. 1

Frequency synthesis

The desired frequencies are generated according to the PLL principle (Fig. 2). The PLL comprises a VCO (the equivalent tuner oscillator), a prescaler with fixed divider factor P , a divider with digitally selectable divider factor N , a phase detector, and an integrator. The reference frequency for the phase detector can be obtained from a crystal oscillator with following divider (divider factor Q).

Fig. 2

The selection of the parameter is as follows:

1. VCO frequency range $f_{\text {osc. min }}, f_{\text {osc. max }}$
2. Necessary frequency raster Δf
3. Max. permissible tuning time and noise phase shift

In TV applications a frequency raster of $\Delta f=125 \mathrm{kHz}$ is sufficient. Therefore it follows that
$\mathrm{N}_{\text {min }}=\frac{f_{\text {osc. } \text { min }}}{\Delta f}$ and $\mathrm{N}_{\text {max }}=\frac{f_{\text {osc. } \text { max }}}{\Delta f}$.
Hence a 13 bit programmable divider $N=2 \ldots \ldots 8191$ is required. The reference frequency $f_{\text {ref }}$ decisively determines the tuning time and the noise phase shift of the oscillator. It results from the frequency raster Δf and the prescaler factor $\mathrm{P}: f_{\text {ref }}=\frac{\Delta f}{\mathrm{P}}$.
On the other hand, the prescaler factor P determines the max. input frequency for the programmable divider $f_{\mathrm{i} \text { max }}=\frac{f_{\text {osc. } \text { max }}}{\mathrm{P}}$.
The reference frequency $f_{\text {ref }}$ is obtained from oscillator $f_{\text {ref }}=\frac{f_{\mathrm{Q}}}{\mathrm{Q}}$.
Hence, it follows: $f_{\text {osc }}=\frac{\mathrm{PN}}{\mathrm{Q}} . f_{\mathrm{Q}}$
In the given system $P=64, Q=2048$, and $f_{Q}=4.0 \mathrm{MHz}$ have been determined. The reference frequency thus results in: $f_{\text {ref }}=\frac{\Delta f}{\mathrm{P}}=\frac{f_{\mathrm{Q}}}{\mathrm{Q}}=1.953125 \mathrm{kHz}$.

1. The prescaler S 0436 is an ECL divider with a fixed divider factor $P=64$. The max. input frequency is 1 GHz . In order to ensure reliable operation, the sinusiodal input voltage covering the frequency range between 60 and 1000 MHz should be greater than 200 $\mathrm{m} \mathrm{V}_{\mathrm{rms}}$. In order to avoid reactions on the tuning oscillator, a broadband preamplifier of approx. 20 dB voltage amplification becomes necessary. The push-pull outputs result in a good noise immunity against cross talking. The output levels of $1 V_{\mathrm{pp}}$ only cause slight noise radiation.
2. The PLL IC S 0437 includes a 13-bit binary programmable synchronous divider (max. input frequency $f_{\mathrm{imax}}=15 \mathrm{MHz}$), a digital phase detector with push-pull current output, a quartz oscillator ($f_{\text {osc }}=4 \mathrm{MHz}$) with subsequent divider (divider factor $Q=2048$). Input of dividing factor N is done serially by means of a 13-bit shift register. The shift clock is derived from the crystal divider and is available at a collector output. The repetition time of the clock CL is $16 \mu \mathrm{sec}$, the H pulse duration is $4 \mu \mathrm{sec}$. Acceptance of the information takes place at the leading edge of the pulse. Moreover, a synchronous pulse SYC with $512 \mu \mathrm{sec}$ repetition time and $8 \mu \mathrm{sec} \mathrm{H}$ pulse duration is delivered. The enable input PLE is only allowed to be high during the phase of the synchronous pulse. At too high input frequency the push-pull current output acts as current source and supplies current pulses of $100 \mu \mathrm{~A}_{\text {pp }}$, at too low input frequency as current lowering. At correct input frequency the push-pull current output becomes high-ohmic.
In the case of tuning voltages $V_{\text {tun }} \leq 12.5 \mathrm{~V}$, the output can be directly connected to an integrating network. At higher tuning voltages an external operational amplifier is necessary. The sign of the phase pulses can be switched over with the aid of the PD

REF terminal. In the latching state of the PLL, L-level appears at the LOCK indication, in the non-latching case the output pulses.
3. The TBB 1331 integrator is needed for tuning voltages $V_{\text {tun }}>12.5 \mathrm{~V}$. With the aid of an integrating circuit the tuning voltage can be varied between 0.5 V and 30 V . The PD REF terminal supplies the reference voltage for the non-inverted input of the op amp.

Flow of control and display

1. The SM 564 controller

The integrated MOS circuit, part of the frequency synthesis tuning system, is located between the programmable divider of the PLL circuit and the tuning memory which electrically programmably memorize the allocation of the tuning information (fine tuning) and the program number. The controller converts the tuning information into frequency information (divider ratio). The frequency information is a binary number, representing the divider factor for the PLL divider; it is serially transferred into the PLL. Under usual operation, only the station selection buttons of the TV set are actuated.
A fixed program address in the tuning memory is assigned to every station button. This program address is intended to store the actual tuning information. After having actuated a station button, a program change instruction PC is issued from the remote control receiver to the controller. This instruction causes the controller to read the tuning information (fine tuning) out of the tuning memory and to assign it to the corresponding channel; hence the TV set is precisely tuned to the requested frequency by means of the PLL.

Setting of a not yet stored TV transmitter is done by means of the actuating buttons:
"setting of channel units digits" (SKE) and
"setting of channel tens digits" (SKZ).
By means of the button SKE the channel number units digits 0 to 9 without carry and by means of the button SKZ the channel number tens digits can be set. After every button operation, the concerned channel number is incremented by 1 . For every adjustment of the channel number, the controller converts this information into frequency information (the PLL divider factor) and provides serial output to the PLL circuit. The success of every tuning step can be watched on the screen.
In addition to that, the controller is outfitted for station search, which can also be used for setting a TV channel. The station search is started via the setting button: "Search Start" (SST).
Thereupon the controller sequentially issues every frequency information contained in the internal ROM individually to the PLL circuit. This process is automatically stopped as soon as an operating TV broadcast station is found. This is indicated to the controller by a pulse at the input "Search STOP" (SST) which can be derived from line synchronization.

Via the setting buttons "fine tuning plus (SEP) +" and "fine tuning minus (SFM) -" frequency deviations from the rated frequency of the individual channel can be set in steps of 125 kHz up to 3.875 MHz and down to -4 MHz . Frequency tuning, moreover, readjusts automatically every 250 ms , as soon as the proper button is pressed. Within the tuning limits mentioned above, fine tuning runs against a stop (overflow inhibit). After having attained it, the channel number display lights up as long as the setting button is kept pressed.

The tuning information of a once tuned TV broadcast station can be stored in the tuning memory by actuating the store button (L). Upon the Linstruction, the controller serially outputs the tuning data on the output DM. The tuning data comprises the fine tuning information and the channel number information.

From the tuning information read into or set in the MOS IC the channel number is used for addressing the mask-programmable ROM table. Frequency information of 100 TV channels is stored in the ROM table.

There are some frequencies to which several TV channels are allocated (stored in the ROM refer to fig. 3), hence no unambiguous channel designation can be gathered from the frequency. This is the reason why the channel number is used as tuning information, since only in this way unambiguous channel designation and frequency information can be gained, simultaneously.

The frequency information is obtained by adding up the ROM divider factor and the center position of fine tuning. At every process of setting a new channel number, fine tuning is adjusted to center position. The PLL divider factor then complies with the nominal divider factor. The nominal divider factor results in an oscillator frequency lying only by $f=25 \mathrm{kHz}$ below the nominal value. It represents the frequency information of the exact channel frequency, except the deviation of 25 kHz which is needed to attain a 125 kHz raster frequency at a given IF of 38.9 MHz . For every frequency information the band selection information is programmed in the internal ROM and is serially output from the controller. Band selection differentiates between VHF range I/III and UHF. The internal ROM table is made up such that between the CCIR channels - designated with corresponding channel numbers - other channels are allocated. Thus, the Italian TV channels A-H are stored between channel 12 and channel 21 under channel Nos. 13 to 20 (refer to fig. 4).
Data communication between the MOS IC and the tuning memory is done via a data bus that comprises shift clock "PHI", the actual data, and an enable signal (PCM). The data word contains information on channel number and fine tuning. The channel number is output in BCD coded form (4 bit per digit) and fine tuning as 6 bit dual number.

Figure 5 shows how data is output from (I) or input into (II) the memory by means of the controller SM 564.

The sequence of reading data in and out is fine tuning, channel tens, and channel units digits.
2. Display

The channel number is displayed at the outputs A_{1} to $A_{4}, A M_{1}$ and $A M_{2}$. The channel digits ($A M_{1} \ldots \ldots$) are output at A_{1} to A_{4} in BCD coded form in parallel as 4-bit word. The outputs $A M_{1}$ and $A M_{2}$ determine allocation of the data to units or tens digits. The frequency of these multiplex signals amounts to approx. 60 Hz .

The channel No. can either be indicated via the SAB 3211 on a 2-digit LED display or onscreened.

Station memory

The nonvolatile memory SDA 5650 F can be used as station memory. It includes a 224 bit (16×14) or 256 bit (16×16) EAROM. Its memory arrangement permits storing of data which is output from the SM 564 (16 words of 14 bits, each). A circuit proposal with the SDA 5650 F as station memory for the SDA 100 system is shown in figure 6.

Figure 3
Example of a ROM occupation

$\begin{aligned} & \dot{0} \\ & z \\ & 0 \\ & 0 \\ & \vdots \\ & \frac{0}{0} \\ & 0.0 \end{aligned}$									
04	K4	H L H	62.25	101.15	101.125	-25	809	000 I I 00 I 0 I 00 I	000 I I 0000 I 00 I
05	K5	L L H	175.25	214.15	214.125	-25	1713	00 I I 0 I 0 I I 000 I	00 I I 0 I 00 I 000 I
								MSB LSB	MSB LSB

Figure 4
Allocation of channel indication to frequency information contained in the ROM

Channel indication	Designation	Channel indication	Designation
01	Australia	81	channel S 1
02	CCIR channel 2	82	channel S 2
-	C.	83	channel S 4
12	CCIR channel 12	84	channel S 5
13	Ital. channel A	85	channel S 6
14	Ital. channel B	87	channel S 7
15	Ital. channel C	88	channel S 8
16	Ital. channel D	89	channel S 9
17	Ital. channel E	90	channel S 10
18	Ital. channel F	91	channel S 11
19	Ital. channel G	92	channel S 12
20	Ital. channel H	93	channel S 13
21	CCIR channel 21	94	channel S 14
-	CCIR channel 69	95	channel S 15
69	Standby UHF	97	channel S 16
73	S 21	98	channel S 17
74	S 25	channel 2 OIR	99
78	channel 5 OIR	00	channel S 18
79			channel S 19
80			

Figure 5
a) Timing diagram - program change

$$
\begin{aligned}
& t_{2}-t_{0} \leqq 32 \mathrm{~ms} \\
& 0 \leqq t_{1}-t_{0} \leqq 32 \mathrm{~ms} t_{4}-t_{3}=512 \mu \mathrm{~s} \\
& t_{3}-t_{1}=956 \mu \mathrm{~s} t_{6}-t_{1}=8.19 \mathrm{~ms} \\
& t_{5}-t_{1}=7.16 \mathrm{~ms} \\
& t_{7}-t_{1}=8.91 \mathrm{~ms}
\end{aligned}
$$

b) Timing diagram - storage of a tuning information

Figure 6
Possible application of a nonvolatile SDA 5650 F memory as station memory.

001 *OS

Bipolar circuit

Fast ECL divider with constant dividing ratio $1: 64$ covering the frequency range between 80 MHz and 1 GHz . Together with the types S 0437, TBB 1331 A , and a voltage controlled oscillator, a frequency and phase comparison circuit can be designed, intended for channel selection in TV sets.

- Input frequency up to 1 GHz
- Few external components
- Sinusoidal input signal possible
- 2 balanced ECL antiphase outputs

Type	Ordering code	Package outline
S 0436	O67000-A1339	DIP 6

Maximum ratings

Supply voltage
Input voltage
Output current
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{2}	8	V
$V_{6 \mathrm{pp}}$	2.5	V
$-I_{3} ;-I_{4}$	3	mA
$R_{\text {th SA }}$	140	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation
Supply voltage range
Ambient temperature range
Input frequency range

V_{2}	6.45 to 7.15 0 to 70 $T_{\text {amb }}$	V ${ }_{\mathrm{i}} \mathrm{C}$ 80 to 1000
MHz		

Characteristics ($V_{2}=6.8 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$; input signal) according to test circuit

Current consumption
Input voltage range

$$
\begin{aligned}
f_{\mathrm{i}} & =100 \mathrm{MHz} \\
f_{\mathrm{i}} & =300 \mathrm{MHz} \\
f_{\mathrm{i}} & =470 \mathrm{MHz} \\
f_{\mathrm{i}} & =800 \mathrm{MHz} \\
f_{\mathrm{i}} & =900 \mathrm{MHz}
\end{aligned}
$$

Output low level Output high level Output voltage deviation

	\min	typ	\max	
I_{2}		55	75	mA
V_{6}	200		1000	mV
V_{6}	150		1000	mV
V_{6}	100		1000	mV
V_{6}	150		1000	mV
V_{6}	200		1000	mV
$V_{3} ; V_{4}$		5.4	5.6	V
$V_{3} ; V_{4}$	6	6.2		V
$V_{3} ; V_{4}$	600	800	1000	mV

Input voltage ratings are measured according to the test circuit with HP 3406 A at the divider input.

Test circuit

Bipolar circuit

PLL divider with programmable dividing ratio $1: 2$ to $1: 8191$
Together with the types S 0436, TBB 1331 A, and a voltage-controlled oscillator a frequency and phase comparison circuit can be designed, intended for the channel selection in TV sets.
Programming allows quartz-controlled setting of the oscillator frequency for the television bands I/III/IV/V) in 125 kHz raster.

- Few external components
- Internal time base
- High noise immunity

Type	Ordering code	Package outline
S 0437	Q67000-A1347	DIP 16

Maximum ratings

Supply voltage
Input voltage IFO
Input voltage PLE
Input voltage divider $\mathrm{F}, \overline{\mathrm{F}}$
Output voltage clock CL
Sync. output voltage SYC
Thermal resistance (system-air)
Junction temperature
Storage temperature range

Range of operation

Supply voltage range
Input frequency
Ambient temperature range

	6.5	V
V_{9}	13.5	V
V_{3}	16	V
V_{15}	16	V
V_{14}	7.5	V
$V_{7} ; V_{8}$	16	V
V_{12}	16	V
V_{13}	90	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th SA }}$	150	${ }^{\circ} \mathrm{C}$
T_{j}	-40 to 125	${ }^{\circ} \mathrm{C}$

Characteristics ($V_{9}=3.5 \mathrm{~V}$; $T_{\text {amb }}=25^{\circ} \mathrm{C}$) according to test circuit

Current consumption
Input level

$$
\begin{aligned}
& I_{7 / 8 \mathrm{H}}=2.4 \mathrm{~mA} \\
& I_{7 / 8 \mathrm{~L}}=2,2 \mathrm{~mA}
\end{aligned}
$$

Inputs IFO, PLE

$\left(V_{\mathrm{pp}}=15 \mathrm{~V} ; \tau=500 \mu \mathrm{~s} ; \tau / \tau=250\right)$

Set-up time
Hold time

	\min	typ	\max	
I_{9}	100	150	200	mA
I_{3}			1	mA
$V_{7 / 8 \mathrm{H}}$		6.2		V
$U_{7 / 8 \mathrm{~L}}$		5.3		V

Clock output CL

($V_{\mathrm{pp}}=15 \mathrm{~V} ; R_{\mathrm{L}} \geqq 6.8 \mathrm{k} \Omega$)
Switching times
High pulse width
Low pulse width
High-low transition time ($R_{\mathrm{L}}=9.5 \mathrm{k} \Omega$)
Low-high transition time ($\left.C_{\mathrm{L}}=50 \mathrm{pF}\right)$

$V_{14 / 15 \mathrm{H}}$	14	14.5	15	V
$I_{14 / 15 \mathrm{H}}$			1.5	mA
$I_{14 / 15 \mathrm{~L}}$			50	$\mu \mathrm{~A}$
t_{S}		1.5		$\mu \mathrm{~s}$
t_{H}		3.0		$\mu \mathrm{~S}$

$V_{12 \mathrm{H}}$
$V_{12 \mathrm{~L}}$
t_{WH}
t_{WL}
t_{THL}
$t_{\text {TLH }}$

14	14.5
	12

15	V
1.5	V
	$\mu \mathrm{~S}$
0.5	$\mu \mathrm{~s}$
1.5	$\mu \mathrm{~s}$
	$\mu \mathrm{~s}$

Synchronous output SYC

($V_{\mathrm{pp}}=15 \mathrm{~V} ; R_{\mathrm{L}} \geqq 6.8 \mathrm{k} \Omega$)
Switching times
High pulse width
Low pulse width
High-low transition time ($R_{\mathrm{L}}=9.5 \mathrm{k} \Omega$)
Low-high transition time ($\left.C_{\mathrm{L}}=50 \mathrm{pF}\right)$
Delay time

Phase detector output PD

PD reference PD REF
Divider input sensitivity ($f_{\mathrm{i}}=15 \mathrm{MHz}$)
Lock indication output LOCK IND
($R_{\mathrm{L}}=10 \mathrm{k} \Omega$)

$V_{13 \mathrm{H}}$	14	14.5	15	V
$V_{13 \mathrm{~L}}$			1.5	V
t_{WH}		8		$\mu \mathrm{~s}$
t_{WL}		504		$\mu \mathrm{~s}$
t_{THL}		0.5	$\mu \mathrm{~s}$	
t_{TLH}		1.5	$\mu \mathrm{~s}$	
t_{p}				

Functional description

S 0437 includes a 13 bit parallel-programmable synchronous divider (divider factor $\mathrm{N}=2$ to 8191), a 13 bit shift register, a quartz oscillator ($f_{\text {osc }}=4.0 \mathrm{MHz}$) with subsequent divider (divider factor $Q=2048$) and a frequency and phase sensitive digital phase detector. The dividing factor N in 13 digit dual code - is serially input into a 13 bit shift register with parallel output. As first bit the LSB (least significant bit) is pushed in, and the MSB (most significant bit) as last one. Acceptance at the information input (IFO) only takes place when the enable input is at high level (PLE). The shifting clock ($f=62.5 \mathrm{kHz}$) is available at the open collector output (CL). Shifting is done by the low - high transition of the shifting cycle.
Referred to the high - low transition of the enable input, only the last 13 cycles are utilized. Possible preceding dummy bits remain without importance. H level of the enable input is only allowed to exist when the synchronous output (SYC) is at Llevel. The synchronous divider has balanced pushpull clock inputs (F, \bar{F}) for ECL level.
L signal is obtained at the output LOCK IND in case of frequency and phase synchronization.

The phase detector may be operated with a separated voltage supply ($V_{\mathrm{S} 2}$). From the output phase detector (PD), the fine tuning voltage for the VCO (tuner) is gained by means of an active PI network (OP AMP). The output PD REF can be used as reference potential for the operational amplifier.

Block diagram

Application circuit (schematic)

Pulse diagram

Timing diagram

Bipolar circuit

Operational amplifier which is due to its features particularly suited for use as integrator. Together with the S 0436, S 0347, and a voltage controlled oscillator a frequency and phase comparison circuit can be designed, intended for channel selection in TV sets.

- High input resistance
- Large supply voltage range
- Large control range
- Simple frequency compensation

Type	Ordering code	Package outline
TBB 1331 A	O67000-A1348	DIP 6

Maximum ratings

Supply voltage
Output current
Differential input voltage

$$
\begin{aligned}
& V_{\mathrm{S}}=2 \text { to } 13 \mathrm{~V} \\
& V_{\mathrm{S}}=13 \text { to } 17 \mathrm{~V}
\end{aligned}
$$

Thermal resistance (system-air) Junction temperature Storage temperature range

V_{S}	± 17	V
I_{q}	10	mA
V_{Di}	$\pm V_{\mathrm{S}}$	
V_{Di}	± 13	V
$R_{\text {th SA }}$	140	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range

V_{S}	± 2 to ± 17 $T_{\text {amb }}$	V ${ }^{\circ} \mathrm{Co} 70$

Characteristics ($\left.V_{\mathrm{S}}= \pm 15 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

No-load current
Input offset voltage ($R_{\mathrm{G}}=50 \Omega$)
Input offset current
Input current

$$
V_{D i}= \pm 13 V
$$

Output voltage ($R_{\mathrm{L}}=18 \mathrm{k} \Omega$)
Input resistance ($f_{\mathrm{i}}=1 \mathrm{kHz}$)
Open-loop voltage gain
($R_{\mathrm{L}}=18 \mathrm{k} \Omega ; f_{\mathrm{i}}=1 \mathrm{kHz}$)
Input common mode range
($R_{\mathrm{L}}=18 \mathrm{k} \Omega$)
Common mode rejection ratio
($R_{\mathrm{L}}=18 \mathrm{k} \Omega$)
Supply voltage rejection
($G_{\mathrm{v}}=100$)
Temp. coeff. of $V_{\text {ios }}\left(R_{\mathrm{G}}=50 \Omega\right)$
Temp. coeff. of $I_{\text {ios }}$
Rise time of V_{q} for non-inverting operation (see TAA 761, test circuit1)
Rise time of V_{q} for inverting operation (see TAA 761, test circuit 2)
Output saturation voltage
($I_{\mathrm{q}}=2 \mathrm{~mA}$)
Output leakage current

	min	typ	max	
I_{1}		1.5	2.5	mA
V ios	-20		+20	mV
$I_{\text {ios }}$	-25	± 10	$+25$	$n A$
$I_{\text {i }}$		30	50	nA
I_{i}			200	nA
$V_{\text {qpp }}$	+ 14.8		-14.5	V
R_{i}		3		M 2
G_{v}	55	68		dB
$V_{\text {icM }}$	+13		-13	V
CMRR	60	74		dB
$\Delta V_{\text {ios }}$		100	400	$\mu \mathrm{V} / \mathrm{V}$
ΔV_{S}				
$\alpha_{\text {i }}$		12		$\mu \mathrm{V} / \mathrm{K}$
α_{i}		50		pA/K
$\frac{d V_{\mathrm{q}}}{d t_{\mathrm{r}}}$			4.5	$\mathrm{V} / \mu \mathrm{s}$
$\begin{gathered} d t_{\mathrm{r}} \\ d V_{\mathrm{q}} \\ \hline \end{gathered}$		9		V/us
$\frac{d t_{r}}{}$				V/us
$V_{\text {qo }}$			0.5	V
$I_{\text {qlk }}$		1	10	V/us

Characteristics ($V_{\mathrm{S}}= \pm 5 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)
Input offset voltage ($R_{\mathrm{G}}=50 \Omega$)
Input offset current
Input current
Open loop voltage gain
($R_{\mathrm{L}}=18 \mathrm{k} \Omega ; f=1 \mathrm{kHz}$)

$V_{\text {ios }}$	-20		+20	mV
$I_{\text {ios }}$	-25	± 10	+25	nA
I_{i}		30	50	nA
G_{V}	53			dB

Internal circuit

Pin configuration

Connection diagram

$C_{\mathrm{C}}=$ Output frequency compensation
$R_{\mathrm{L}}=$ Load resistance

Input offset voltage versus supply voltage
$T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; R_{\mathrm{L}}=18 \mathrm{k} \Omega$

Saturation voltage versus output current
$T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
V

The integrated MOS IC SM 564 is part of the frequency synthesis tuning system for TV sets. The IC is intended for converting the tuning information in a frequency information. It is located between the programmable divider of the PLL module and the tuning memory which electrically programmably stores the assignment of tuning information and storage number. In an ROM the IC SM 564 includes the exact frequency information (in the 125 kHz raster) mask programmable for 100 channel numbers and takes control of the tuning memory and the programmable divider over.
The programmable divider in the PLL module and the tuning memory receive different information: the programmable divider is informed with a frequency information in form of a dividing factor. On the other hand, the channel number and fine detuning (here called tuning information) are stored in the tuning memory. The IC SM 564 is used to convert the tuning information into a frequency information.
The outputs PHI, A_{1} to $\mathrm{A}_{4}, \mathrm{AM}_{1}, \mathrm{AM}_{2}, \mathrm{PCM}$, and TOR are short-circuit proof against V_{DD} and $V_{\text {Ss }}$.

Type	Ordering code	Package outline
SM 564	Q67100-Z123	DIP 28

Maximum ratings (all voltages referred to $V_{D D}$)

Supply voltage
Input voltage
Power dissipation per output
Total power dissipation
Storage temperature range

	\min	\max	
V_{SS}	-0.3	18	V
V_{i}	0	$V_{\mathrm{SS}}+0.3 \mathrm{~V}$	
P_{q}		100	mW
$P_{\text {tot }}$		500	mW
$T_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$

Range of operation (referred to $V_{D D}$)
Supply voltage range
Ambient temperature range

$$
\begin{array}{l|l}
V_{\mathrm{SS}} & 13.5 \text { to } 16 \\
T_{\mathrm{amb}} & 0 \text { to } 70
\end{array}
$$

$$
\left\lvert\, \begin{aligned}
& \mathrm{V} \\
& { }^{\circ} \mathrm{C}
\end{aligned}\right.
$$

Characteristics (all voltages referred to $V_{D D}$)

Current consumption
$V_{\mathrm{SS}}=16 \mathrm{~V}$
output without load

CL Clock signal from S 0437

H -input voltage
L-input voltage
H-pulse width
Period
H-L transition time
L-H transition time
Input capacitance
Input resistance

	\min		typ	\max		
$I_{\text {SS }}$	3	6	30	mA		

put resistance

V_{iH}	$V_{\mathrm{SS}}-1 \mathrm{~V}$		V_{SS}	V
V_{iL}	0	1.5	$\mu \mathrm{~s}$	
$t_{\mathrm{WH} \mathrm{CL}}$	3.5	4	4.5	$\mu \mathrm{~s}$
t_{CL}		16		
t_{THLCL}	0		1.5	$\mu \mathrm{~s}$
$t_{\mathrm{TLH} \mathrm{CL}}$	0		$\mu \mathrm{~s}$	
C_{i}	0	10	pF	
R_{i}	1		$\mathrm{M} \Omega$	

SYC synchronous signal from S 0437

H -input voltage
L-input voltage
H-pulse width
Overlap angle 1
Overlap angle 2
Input capacitance
Input resistance
L-pulse width

		V_{SS}		
V_{iH}	0	1.5	V	
V_{iL}	8		$\mu \mathrm{~V}$	
$t_{\mathrm{WH} \text { SYC }}$				
$t_{\mathrm{R} 1}$	0		$\mu \mathrm{~V}$	
$t_{\mathrm{R} 2}$	0		$\mu \mathrm{~S}$	
C_{i}	0	10	pF	
R_{i}	1			$\mathrm{M} \Omega$
$t_{\mathrm{WL} \text { SYC }}$		504		$\mu \mathrm{~S}$

Input signals

SKE, SKZ, SFP, SFM, SST, SSP
Schmitt-trigger inputs with incorporated "Pull High" resistors
H -input voltage
L-input voltage
Necessary L-input current

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| V_{iH} | $V_{\mathrm{SS}}-1 \mathrm{~V}$ | | |
| V_{iL} | 0 | V_{SS} | |
| I_{iL} | 0.03 | | 1 |

Characteristics (cont'd)

Input signals: POR, PC
Schmitt-trigger inputs
H-input voltage
L-input voltage
Input capacitance
Input resistance

	\min	typ	\max	
V_{iH}	$V_{\mathrm{SS}}-1 \mathrm{~V}$		V_{SS}	
V_{iL}	0		$V_{\mathrm{SS}}-7 \mathrm{~V}$	
C_{i}	0	10	pF	
R_{i}	1			$\mathrm{M} \Omega$

Input signals: DM, L
H -input voltage
L-input voltage

| V_{iH} |
| :--- | :--- |
| V_{iL} |\(\left|\begin{array}{l}V_{\mathrm{SS}}-1 \mathrm{~V}

0\end{array}\right| \quad\left|$$
\begin{array}{l}V_{\mathrm{SS}} \\
V_{\mathrm{SS}}-7 \mathrm{~V}\end{array}
$$\right|\)

Output signals:

Tuner band selection outputs UHF, VHF, BD3
Open drain stages turning to V_{SS} with internal high-ohmic pull-low resistors for measuring purposes
H -output voltage
($I_{\text {load }}=1 \mathrm{~mA}$)
L-reverse current
($V_{\mathrm{q}}=V_{\mathrm{DD}}$)

Output signals: IFO, PLE
Open-drain stages
(load resistor incorporated in S 0437)
H -output voltage
($I_{\text {load }}=1.5 \mathrm{~mA}$)
L-reverse current
Delay time
($C_{\text {load }}=50 \mathrm{pF}$)
Ext. load current

| |
| :--- | :--- | :--- | :--- |
| v_{qH} |
| I_{qL} |
| $t_{\mathrm{Dq}}+t_{\mathrm{Tq}}$ |
| $I_{\text {load }}$ |$\left|v_{\mathrm{SS}}-1.4 \mathrm{~V}\right|$| |
| :--- |
| v_{SS} |
| 50 |
| 9 |
| 2 |

Characteristics (cont'd)

Output signals: $\mathrm{PHI}, \mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$. $A M_{1}, A M_{2}, P C M, T O R$
Open-drain stage with incorporated load resistor
H-output voltage
(at $I_{\text {load }}=2 \mathrm{~mA}$)
H-output voltage
(at $I_{\text {load }}=100 \mu \mathrm{~A}$)
L-output voltage
(at $I_{\text {load }}=1 \mu \mathrm{~A}$)
Short circuit current against V_{SS}
$\left(V_{\mathrm{q}}=V_{\mathrm{Ss}}=16 \mathrm{~V}\right)$
PHI period
(at $t_{\mathrm{CL}}=16 \mu \mathrm{~s}$)
PHI transition times
(at $C_{\text {load }}=30 \mathrm{pF}$)
Multiplex period
(at $t_{\mathrm{CL}}=16 \mu \mathrm{~s}$)
Delay of BCD outputs $A_{1} \ldots A_{4}$
against digit output $A M_{1}$ or $A M_{2}$, resp.
(at $t_{\mathrm{CL}}=16 \mu \mathrm{~s}$)
Delay of digit outputs against
BCD outputs

	\min	typ	max	
$V_{\text {qH }}$	$V_{\text {Ss }}-6 \mathrm{~V}$		$V_{\text {SS }}$	
$V_{\text {qH }}$	$V_{\mathrm{SS}}-0.5 \mathrm{~V}$	$v_{\text {SS }}$		
$V_{\text {qL }}$	0		0.4	V
$I_{\text {qLKH }}$	50			$\mu \mathrm{A}$
$t_{\text {PHI }}$		512		$\mu \mathrm{s}$
$t_{\text {THL PHI }}$			10	$\mu \mathrm{s}$
T_{M}		16		ms
$t_{\text {Dq }}$	0.5	2		ms

Output signals: DM
Open-drain output H -output voltage
($I_{\text {load }}=2 \mathrm{~mA}$)
H-output voltage
($I_{\text {load }}=100 \mu \mathrm{~A}$)
DM-overlap angle 1
(at $t_{\mathrm{CL}}=16 \mu \mathrm{~s}$)
DM-overlap angle 2
L-reverse current
$\left(V_{\mathrm{qL}}=0 \mathrm{~V}\right)$

| | $v_{\mathrm{SS}}-6 \mathrm{~V}$ | v_{SS} | |
| :--- | :--- | :--- | :--- | :--- |
| v_{qH} | $v_{\mathrm{SS}}-0.5 \mathrm{~V}$ | v_{SS} | |
| v_{qH} | 100 | 256 | $\mu \mathrm{~s}$ |
| $t_{\mathrm{D} 1 \mathrm{DM}}$ | 100 | 256 | $\mu \mathrm{~s}$ |
| $t_{\mathrm{D} 2 \mathrm{DM}}$ | 100 | $\mu \mathrm{~A}$ | |

Pin designation

Pin No.	Description	
1	$V_{\text {SS }}$	supply voltage
2	$V_{\text {DD }}$	supply voltage
3	UHF	band selection
4	VHF	band selection
5	BD3	band selection
6	A $_{1}$	
7	A $_{2}$	BCD display
8	A $_{3}$	
9	A $_{4}$	
10	AM $_{2}$	display, multiplex
11	AM $_{1}$	control
12	CL	clock
13	SYC	synchronization
14	POR	power reset
15	SSP	station search stop
16	SST	station search start
17	SFM	fine tuning -
18	SFP	fine tuning +
19	SKE	control channel units
20	SKZ	control channel tens
21	PC	program change
22	L	load, from memory
23	PHI	clock for memory
24	PCM	program change, memory
25	DM	data memory
26	TOR	
27	IFO	data line PLL
28	PLE	PLL enable

Timing diagram

BCD code

A $_{4}$	A $_{3}$	A $_{2}$	A $_{1}$	Display
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7
H	L	L	L	8

CL clock signal from S 0437
Timing diagram

SYC sync signal from S 0437

Timing diagram

Tuner band selection outputs UHF, VHF BD 3
Operating circuit provided

Output signals IFO, PLE
Timing diagram

Block diagram

a) Timing diagram - program change

b) Timing diagram - storage of a tuning information

Coverage of functional processes (see block diagram)

The most frequent process is a program change indicated by the operating unit via line PC. Switching-on the TV set starts the same process which is caused by a slope at the POR input.
The process runs as follows:
a) Reading-in of the information from the memory

The input/output stage is switched as input and PCM is set on LOW level. After a period $t_{3}-t_{1} \geqq 512 \mu \mathrm{sec}$, the clock PHI moves to H and clocks 14 times at a period of $512 \mu \mathrm{sec}$.
The tuning information appears at input DM emating from the memory. At the LH edges of PHI , the information is evaluated and read into the channel and the fine detuning counters. PCM again moves to HIGH and the output/input stage is switched through, whereas, outwards, it is set to neutral.
b) Shifting the divider factor to PLL.

The ROM resident frequencies of the channels are read out using the channel number (8 bit address), in parallel to that the read-out shift register is loaded.

Now the frequency information is moved to the programmable divider of the PLL circuit: The line PLE is set on high level, and 13 clocks reach the read-out shift register at a period of $16 \mu \mathrm{sec}$. While the first 6 bits are shifted out, an adder adds the contents of the fine tuning counter to the contents of the ROM. After the 13th clock the PLE output returns to low.
The process (b) is repeated every 250 msec thus ensuring that tuning of the TV set is always synchronous to the indication.
During runs (a) and (b), all the inputs for fine detuning, channel setting, program change (PC), and load (L memory signal) are not weighted.
c) Alteration of the tuning information

The channel number can be altered either by calling the inputs: channel, unit digits, (SKE), and channel, tens digits, (SKZ), or by the station search start (SST) which is stopped by an own input.

Via the inputs fine detuning "plus" (SFP) and "minus" (SFM), the tuning information can be varied upwards by $31 \times 125 \mathrm{kHz}$ and downwards by $32 \times 125 \mathrm{kHz}$. With the alteration of the channel number the fine detuning counter is repositioned to its mean position.

Press on button	Alteration	Clock for automatic counting
SFP	Fine detuning increments by 1 SFM	Fine detuning decrements by 1 Tens digit of channel counter increments by 1 Unit digit of channel counter increments by 1 without carry to tens digit Unit digit of channel counter increments by 1 with carry to tens digit until input SPP is acknowledged
SKE	0.25 sec	
SST	0.25 sec	

d) Storage of the tuning information

The IC is provided for the connection of nonvolatile and CMOS memories (information material can be obtained upon request).

Detailed run
Via the L input it is indicated with high level that the tuning information shall be moved to the memory. After a period $\left(t_{8}-t_{7}\right) \geqq 512 \mu \mathrm{sec}$, the clock PHI goes to high and clocks 14 times at a period of $512 \mu \mathrm{sec}$. At every LH slope of the PHI cycle, information changes to the next bit.

After storage has taken place and when the L input is on low level a process will run like that of the program change (see (a) and (b)) in order to control the new memory contents. During the run of (d), inputs PC, SFP, SFM, SKZ, and SKE are blocked.

Display

The display information is output in BCD code for 2 digits in multiplex operation. The channel counter is designed as a decimal counter. The 2 digits are output via a multiplexer. When in case of fine detuning the stop of the internal counter is reached the display unit signals as long as the fine detuning input has been actuated.

Tuner range selection outputs

3 independent outputs - UHF, VHF, BD 3 - are available (see table ROM occupation). The outputs only change with or after the LH slope of PLE during the run according to (b).

								13121110987654321	1312111098
01	AU0	HL H	46.2	85	85.	-25	681	0001010101001	0001010001001
02	K2	H L	48.25	87.15	87.125	-25	697	0001010111001	0001010011001
03	K3	HL	55.25	94.15	94.125	-25	753	0001011110001	0001011010001
04	K4	HL H	62.25	101.15	101.125	-25	809	0001100101001	0001100001001
05	K5	L L H	175.25	214.15	214.125	-25	1713	0011010110001	0011010010001
06	K6	L L H	182.25	221.15	221.125	-25	176	0011011101001	0011011001001
07	K7	L L H	189.25	228.15	228.125	-25	1825	0011100100001	0011100000001
08	K8	L L H	196.25	235.15	235.125	-25	1881	0011101011001	0011100111001
09	K9	L L H	203.25	242.15	242.125	-25	1937	0011110010001	0011101110001
10	K10	L L H	210.25	249.15	249.125	-25	1993	0011111001001	0011110101001
11	K11	L L H	217.25	256.15	256.125	-25	2049	0100000000001	0011111100001
12	K12	L L H	224.25	263.15	263.125	-25	2105	0100000111001	0100000011001
13	A	HL H	53.75	92.65	92.625	-25	741	0001011100101	0001011000101
14	B	HL H	62.25	101.15	101.125	-25	809	0001100101001	0001100001001
15	C	H L H	82.25	121.15	121.125	-25	969	0001111001001	0001110101001
16	D	L L H	175.25	214.15	214.125	-25	1713	0011010110001	0011010010001
17	E	L L H	183.75	222.65	222.625	-25	1781	0011011110101	0011011010101
18	F	L L H	192.25	231.15	231.125	-25	1849	0011100111001	0011100011001
19	G	L L H	201.25	240.15	240.125	-25	1921	0011110000001	0011101100001
20	H	L L H	210.25	249.15	249.125	-25	1993	0011111001001	0011110101001
21	K21	H HL	471.25	510.15	510.125	-25	4081	011111111110001	01111111010001
22	K22	H HL	479.25	518.15	518.125	-25	4145	1000000110001	1000000010001
23	K23	H HL	487.25	526.15	526.125	-25	4209	1000001110001	1000001010001
24	K24	H HL	495.25	534.15	534.125	-25	4273	1000010110001	1000010010001
25	K25	H HL	503.25	542.15	542.125	-25	4337	1000011110001	1000011010001

	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								
								1312111098765432	131211098765432
26	K26	H HL	511.25	550.15	550.125	-25	4401	1000100110001	1000100010001
27	K2	H H L	519.25	558.15	558.125	-25	4465	1000101110001	1000101010001
28	K28	H HL	527.25	566.15	566.125	-25	4529	1000110110001	1000110010001
29	K29	H H L	535.25	574.15	574.125	-25	4593	1000111110001	1000111010001
30	K30	H HL	543.25	582.15	582.125	-25	4657	1001000110001	1001000010001
31	K31	HHL	551.25	590.12	590.125	-25	4721	1001001110001	1001001010001
32	K32	H HL	559.25	598.15	598.125	-25	4785	1001010110001	1001010010001
33	K33	H HL	567.25	606.15	606.125	-25	4849	1001011110001	1001011010001
34	K34	H HL	575.25	614.15	614.125	-25	4913	1001100110001	1001100010001
35	K35	HHL	583.25	622.15	622.125	-25	4977	1001101110001	1001101010001
36	K36	H HL	591.25	630.15	630.125	-25	5041	10011101.10001	1001110010001
37	K37	H HL	599.25	638.15	638.125	-25	5105	10011111110001	10011110010001
38	K38	H HL	607.25	646.15	646.125	-25	5169	1010000110001	1010000010001
39	K39	HHL	615.25	654.15	654.125	-25	5233	1010001110001	1010001010001
40	K40	H HL	623.25	662.15	662.125	-25	5297	1010010110001	1010010010001
41	K41	H HL	631.25	670.15	670.125	-25	5361	1010011110001	1010011010001
42	K42	H HL	639.25	678.15	678.125	-25	5425	1010100110001	1010100010001
43	K43	H HL	647.25	686.15	686.125	-25	5489	1010101110001	1010101010001
44	K44	H HL	655.25	694.15	694.125	-25	5553	1010110110001	1010110010001
45	K45	H HL	663.25	702.15	702.125	-25	5617	1010111110001	1010111010001
46	K46	HHL	671.25	710.15	710.125	-25	5681	1011000110001	1011000010001
47	K47	H HL	679.25	718.15	718.125	-25	5745	1011001110001	1011001010001
48	K48	H HL	687.25	726.15	726.125	-25	5809	1011010110001	1011010010001
49	K49	H HL	695.25	734.15	734.125	-25	5873	10110011110001	1011011010001
50	K50	H HL	703.25	742.15	742.125	-25	5937	1011100110001	1011100010001

								98765	1312111098765432
	K51		711.25					1011101110	101110101000
52	K	H	719.25	758	758.125	-25	6065	10111101100	1011110010001
53	K53	H HL	727.25	766.15	766.125	-25	6129	1011111110001	1011111010001
54	K54	H	735.25	774.15	774.125	-25	6193	1100000110001	1100000010001
55	K55	HHL	734.25	782.15	782.125	-25	62	1100001110001	1100001010001
56	K56	HHL	751.25	790.15	790.125	-25	6321	1100010110001	1100010010001
57	K57	H	759.25	798.15	798.125	-25	6385	1100011110001	1100011010001
58	K58	H HL	767.25	806.15	806.125	-25	6449	1100100110001	1100100010001
59	K59	H	775.25	814.15	814.125	-25	6513	1100101110001	1100101010001
60	K60	HHL	783.25	822.15	822.125	-25	6577	1100110110001	1100110010001
61	K61	HHL	791.25	830.15	830.125	-25	6641	1100111110001	1100111010001
62	K62	H	799.25	838.15	838.125	-25	6705	1101000110001	1101000010001
63	K63	H HL	807.25	846.15	846.125	-25	6769	1101001110001	1101001010001
64	K64	H H	815.25	854.15	854.125	-25	6833	1101010110001	1101010010001
65	K65	HHL	823.25	862.15	862.125	-25	6897	1101011110001	1101011010001
66	K66	HHL	831.25	870.15	870.125	-25	6961	1101100110001	1101100010001
67	K67	HHL	839.25	878.15	878.125	-25	7025	1101101110001	11 C : 101010001
68	K68	HHL	847.25	886.15	886.125	-25	70	1101110110001	1101110010001
69	K69	HHL	885.25	894.15	894.125	-25	7153	1101111110001	1101111010001
70	ex.	H H	863.25	902.15	902.125	-25	7217	1110000110001	1110000010001
71	ex.	H HL	871.25	910.15	910.125	-25	7281	1110001110001	1110001010001
72	ex	HHL	879.25	918.15	918.125	-25	7345	11100010110001	1110010010001
73	ex.	HHL	887.25	926.15	926.125	-25	7409	1110011110001	1110011010001
74	ex.	HL H	69.25	108.15	108.125	-25	865	0001101100001	000110100000
75	ex.	HL H	76.25	115.15	115.125	-25	921	0001110011001	0001101111001

SM 564

$\begin{aligned} & \overline{2} \\ & \end{aligned}$									
								13121110987654321	1312111098765432
76		HL H	83.25		25		977	0001111010001	0001110110001
77	ex.	H L	90.25	129.15	129.125	-25	33	001000000100	0001111101001
78	ex.	H L	97.25	136.15	136.125	25	1089	0010001000001	0010000100001
79	20IR	HL H	59.25	98.15	98.125	-25	785	0001100010001	0001011110001
80	501R	HL H	93.25	132.15	132.125	-25	1057	0010000100001	0010000000001
81	S1	L L H	105.25	144.15	144.125	-25	1153	0010010000001	0010001100001
82	S2	L L H	112.25	151.15	151.125	-25	1209	0010010111001	0010010011001
83	S3	L L H	119.25	158.15	158.125	-25	1265	0010011110001	0010011010001
84	S4	L L H	126.25	165.15	165.125	-25	1321	0010100101001	0010100001001
85	S5	L L H	133.25	172.15	172.125	-25	13	0010101100001	0010101000001
86	S6	L L	140.25	179.15	179.125	-25	1433	0010110011001	0 011010111110001
87	S7	L L H	147.25	186.15	186.125	-25	1489	0010111010001	001001100110001
88	S8	L L H	154.25	193.15	193.125	-25	1545	0011000001001	$00100111110100 \cdot 1$
89	S9	L L H	161.25	200.15	200.125	-25	1601	0011001000001	0011000100001
90	S10	L L H	168.25	207.15	207.125	-25	1657	0011001111001	0011001011001
91	S11	L L H	231.25	270.15	270.125	-25	2161	0100001110001	0100001010001
92	S12	L L H	238.25	277.15	277.125	-25	2217	0100010101001	0100010001001
93	S13	L L H	245.25	284.15	284.125	-25	2273	0100011100001	0100011000001
9	S1	L L H	252.25	291.15	291.125	-25	2329	0100100011001	0100011111001
95	S15	L L H	259.25	298.15	298.125	-25	2385	0100101010001	0100100110001
96	S16	L L H	266.25	305.15	305.125	-25	2441	0100110001001	0100101101001
97	S1	L L H	273.25	312.15	312.125	-25	2497	0100111000001	0100110100001
98	S18	L L H	280.25	319.15	319.125	-25	2553	0100111111001	0100111011001
99	S19	L L H	287.25	326.15	326.125	-25	2609	0101000110001	010100001000
00	S20	L L H	294.25	333.15	333.125	-25	266	0101001101001	0101001001001

General features

- Electrically wordwise reprogrammable, nonvolatile memory in floating-gate technology
- Memory capacity 16 words of 14 or 16 bits each (224 or 256 bit EAROM) pin-programmable
- Data input and output serially via separated inputs and outputs
- Address input in parallel via 4 inputs
- No determination of erase and write duration with external RC networks
- N-channel silicon gate technology
- Nonvolatile data storage for more than 10 years
- Unlimited number of read cycles without refresh, number of reprogrammings $>10^{3}$
- Programming within 1 second
- Typical application: tuning memory

Type	Ordering code	Package outline
SDA 5650 F	O67100-0247 F	DIP 18

Maximum ratings (all voltages referred to V_{SS})
Supply voltage
Supply voltage
Supply voltage

$V_{\text {DD 12-1 }}$	21	V
$V_{\text {PH 7-1 }}$	40	V
$V_{\text {PI 9-1 }}$	21	V
V_{i}	16	V
$P_{\text {tot }}$	400	mW
$R_{\text {th SA }}$	80	$\mathrm{~K} / \mathrm{W}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Total power dissipation
Thermal resistance (system-air)
Storage temperature range
$T_{\text {stg }}$
-40 to 125
${ }^{\circ} \mathrm{C}$
Range of operation (referred to V_{SS})
Supply voltage range
Ambient temperature range

$V_{\text {DD } 12}$	14 to 16	V
$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$

Static characteristics (all voltages referred to $V_{\mathrm{SS}}=0 \mathrm{~V}$)

Supply current
Substrate bias
Substrate current ${ }^{1}$)
Substrate current ${ }^{2}$)
average current
peak pulse current
Programming voltage
Programming current ${ }^{1}$)
(switchable)
Programming current ${ }^{2}$)
average current peak pulse current
Write voltage
($>13 \mathrm{~V}$ by the read process)
Write current ${ }^{1}$)
$\left(V_{\mathrm{PI}}>13 \mathrm{~V}\right.$)
Write current ${ }^{2}$)
average current
peak pulse current
Inputs $A_{1}, A_{2}, A_{3}, A_{4}, D_{E}, \Phi, B, S T, P C M, P R$
(Pins 5, 4, 3, 2, 15, 13, 14, 16, 18, 8)

$$
\begin{array}{ll}
\mathrm{B} \quad(\operatorname{pin} 14) & \left(V_{\mathrm{L}}=0 \mathrm{~V}\right) \\
\mathrm{PR} \quad(\operatorname{pin} 8) & \left(V_{\mathrm{L}}=0 \mathrm{~V}\right) \\
& \left(V_{\mathrm{H}}=V_{\mathrm{DD}}\right)
\end{array}
$$

	min	typ	max	
$I_{\mathrm{DD} 12}$ $-V_{B B i}$ $-I_{\mathrm{BB}} 1$	4	10	$\begin{aligned} & 20 \\ & 5 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \end{aligned}$
$I_{\text {BB } 1 \mathrm{a}}$		0.5	2	mA
$I_{\text {BB } 1 \mathrm{p}}$			10	mA
$V_{\text {PP } 7}$		33	35	\checkmark
$I_{\text {PP } 7}$			300	$\mu \mathrm{A}$
$I_{\text {PP 7a }}$		1	2	mA
$I_{\text {PP 7p }}$		5	10	mA
$V_{\text {Pl } 9}$		15	16	V
$I_{\text {P19 }}$			100	$\mu \mathrm{A}$
$I_{\text {Pl }}{ }^{\text {a }}$		5	20	mA
$I_{\text {Pl } 9 \mathrm{p}}$		15	50	mA
$v_{\text {L }}$	0		0.5	V
V_{H}			$V_{\text {DD }}$	V
I_{H}			10	$\mu \mathrm{A}$
$-I_{\text {L }}$			300	$\mu \mathrm{A}$
$-I_{\text {L }}$			200	$\mu \mathrm{A}$
$+I_{\mathrm{H}}$			200	$\mu \mathrm{A}$
$I_{\text {L }}$			0.5	mA
$I_{\text {H }}$			10	$\mu \mathrm{A}$

[^26]
Dynamic characteristics

Switching times

Clock signal Φ
$\mathrm{D}_{\mathrm{i}} \quad$ (data input)
$\mathrm{D}_{\mathrm{i}} \quad$ (data input)
$\mathrm{D}_{\mathrm{q}} \quad$ (data output)
Total erase - write time ${ }^{1}$)
$\left(V_{\mathrm{PI}}=15 \mathrm{~V} ; V_{\mathrm{PP}}=33 \mathrm{~V}\right)$
Programming frequency

	min	typ	max	
$\mathrm{T}=t_{1}+t_{2}$	100			$\mu \mathrm{s}$
t_{1}, t_{2}	20			$\mu \mathrm{s}$
$t_{\mathrm{r}}, t_{\mathrm{f}}$			10	$\mu \mathrm{s}$
$t_{\text {i }}$	10			$\mu \mathrm{s}$
t_{0}	70			$\mu \mathrm{s}$
$t_{\text {q }}$			70	$\mu \mathrm{s}$
$t_{\text {prog }}$			1	s
$f_{\text {prog }}$			1	Hz

${ }^{1}$) without the part for the data input

Circuit description

Read operation (fig. 1)

The read operation is initialized with the transition of the external signal PCM from high to low at the time $t=t_{0}$. The address information has to be stable for at least 10 seconds prior to and after t_{0}. After $t_{0}+10$ seconds, all address inputs as well as the control input are blocked as long as the PCM signal is low. The data output D_{q} is low-ohmic as long as PCM remains low. At a time $t_{1}>50 \mu \mathrm{sec}$, the first written data bit of the selected 14 (16) bit word is available at the output. The further data bits are clocked each by the falling edge of 14 (16) positive clock pulses.
After having finished the read operation - with the transition of the external signal PCM from low to high - the address lines and control lines are again enabled.

Rewrite operation (fig. 2)

The write operation is initialized with the transition of the external signal ST from high to low (at least for $50 \mu \mathrm{sec}$) at the time $t=t_{0}$. The address information has to be stable for at least 10 seconds prior to and after t_{0}. At the time t_{0} the memory outputs a signal L from low to high as long as the rewrite operation lasts. This signal blocks the address, the PCM, and the control (ST) input.
After a time $t_{1}>50 \mu \mathrm{sec}$ the data information can be written into the data shift register with 14 (16) clock pulses. Data carry takes place at the negative edges of the positive clock pulses.
With the aid of internal control inside the memory, the reprogramming begins, as soon as data transfer after the $14^{\text {th }}\left(16^{\text {th }}\right)$ clock pulse has been finished. The end of write operation is also determined with internal control. It is indicated at the control output L by the transition from high to low.
After programming, the ST input remains blocked, it is only again released by a leading edge at the PCM input (repetitive blocking for programming at too long pressing of the store button).

Reset

The memory remains in the reset condition as long as the input PR is low. During reset also the output POR is low.

Word length

A connection between input B and ground $V_{\text {SS }}$ results in an extended word length from 14 to 16 bits. In the open state the shorter word length is set through an integrated pull-up resistor.

Pin designation

Pin No.	Symbol	Function
1	V_{BB}	Substrate bias
2	$\mathrm{~A}_{4}$	Address 4 (input)
3	$\mathrm{~A}_{3}$	Address 3 (input)
4	$\mathrm{~A}_{2}$	Address 2 (input)
5	$\mathrm{~A}_{1}$	Address 1 (input)
6	POR	Reset output
7	V_{PP}	Programming voltage
8	PR	Reset input
9	V_{PI}	Write current
10	V_{SS}	Ground
11	D_{q}	Data output
12	V_{DD}	Operating voltage
13	Φ	Clock signal (input)
14	B	Switching between 16 and 14 bits
15	D_{i}	Data input
16	ST	Reprogramming signal (input, active low)
17	L	Programming - condition signal (output)
18	PCM	Read signal (input, active low)

Fig. 1 Read operation

Fig. 2 Erase-write operation

Block diagram

Supply voltage for tuning memory in TV sets

Description of the system

A digital tuning system essentially consists of 3 blocks.
Frequency synthesis
Controller and display
Station memory

Fig. 1

Frequency synthesis

The desired frequencies are generated according to the PLL principle (Fig. 2). The PLL comprises a VCO (the equivalent tuner oscillator), a prescaler with fixed divider factor P , a divider with digitally selectable divider factor N, a phase detector, and an integrator. The reference frequency for the phase detector can be obtained from a crystal oscillator with following divider (divider factor Q).

Fig. 2

The selection of the parameter is as follows:

1. VCO frequency range $f_{\text {osc. } \min ,}, f_{\text {osc. max }}$,
2. Necessary frequency raster Δf
3. Max. permissible tuning time and noise phase shift.

In TV applications a frequency raster of $\Delta f=125 \mathrm{kHz}$ is sufficient. Therefore it follows that
$\mathrm{N}_{\text {min }}=\frac{f_{\text {osc. }} \text { min }}{\Delta f}$ and $N_{\text {max }}=\frac{f_{\text {osc. }} \text { max }}{\Delta f}$.
Hence a 13 bit programmable divider $N=2 \ldots \ldots 8191$ is required. The reference frequency $f_{\text {ref }}$ decisively determines the tuning time and the noise phase shift of the oscillator. It results from the frequency raster Δf and the prescaler factor $\mathrm{P}: f_{\text {ref }}=\frac{\Delta f}{\mathrm{P}}$.
On the other hand, the prescaler factor P determines the max. input frequency for the programmable divider $f_{\text {imax }}=\frac{f_{\text {osc. } \max }}{\mathrm{P}}$.
The reference frequency $f_{\text {ref }}$ is obtained from an oscillator $f_{\text {ref }}=\frac{f_{\mathrm{Q}}}{\mathrm{Q}}$.
Hence, it follows: $f_{\mathrm{osc}}=\frac{\mathrm{PN}}{\mathrm{Q}} \cdot f_{\mathrm{Q}}$.
In the given system $P=64, Q=2048$, and $f_{Q}=4 \mathrm{MHz}$ have been determined.
The reference frequency thus results in: $f_{\text {ref }}=\frac{\Delta f}{\mathrm{P}}=\frac{f_{\mathrm{Q}}}{\mathrm{Q}}=1.953125 \mathrm{kHz}$.

1. The prescaler SDA 2001

is an ECL divider with a fixed divider factor $P=64$. The max. input frequency is 1 GHz .
A broadband preamplifier with 20 dB gain and separated switchover inputs for VHF and UHF is integrated in the SDA 2001.
To ensure reliable operation, the sinusoidal input voltage covering a frequency range between 80 and 1000 MHz should be $V_{i}=20 \mathrm{mV}$.
The push-pull outputs result in good noise immunity against cross talking. The output levels of $1 V_{\mathrm{pp}}$ only cause low noise radiation.

2. The PLL IC SDA 2002

The IC contains a 13 bit binary programmable synchronous divider (divider factor $\mathrm{N}=256 \ldots \ldots .8191$), a 16 bit shift register, a quartz oscillator ($f_{\text {osc }}=4 \mathrm{MHz}$) with following divider stage (divider factor $Q=2048$), and a frequency and phase sensitive digital phase detector. Together with the 3-bit information "VHF Bd I", "VHF Bd III" and "UHF" the divider factor N is serially mored in the 16 bit dual code into the 16 bit shift register with parallel output. First the LSB (least significant bit) is put in, at least the MSB (most s.b.) as last bit. The transition at information input (IFO) is done only during the H state of the enable input (PLE).

The infeeding is done with the L-H slope of the clock (CPL). A 16-bit buffer memory follows the 16 -bit shift register. The information transition into the buffer is done with the L-level of the enable input (PLE). Referred to the H-L trailing edge of the enable input only the last 16 clocks are interpreted. Possibly preceding dummy bits will not be interpreted.
A clock with the frequency $f=62.5 \mathrm{kHz}$. Appears at the open collector output C_{L}. The outputs VHF Bd I, VHF Bd III, and UHF are active low current sources (open collector).
The sync divider has symmetrical push-pull inputs (F, \bar{F}) for ECL level.
In the case of frequency and phase synchronization, an L-signal is obtained at the output LOCK IND.

The phase detector can be driven with a separated supply voltage ($V_{\mathrm{S} 2}$). The outputs PD and V_{D} are connected with an RC network. V_{D} delivers the tuning voltage for the VCO (tuner).

3. The SDA 2003 controller

The integrated MOS circuit, part of the frequenc synthesis tuning system, is located between the programmable divider of the PLL circuit and both the tuning memories which electrically memorize the allocation of the tuning information (fine tuning) and the program number. The controller converts the tuning information into frequency information (divider ratio). The frequency information is a binary number, representing the divider factor for the PLL divider; it is serially transferred into the PLL. Under usual operation, only the station selection buttons of the TV set are actuated.

A fixed program address in the tuning memory is assigned to every static on button. This program address is intended to store the actual tuning information as well as the pertinent channel. After actuating a station button, a program change instruction PC is issued from the remote control receiver or from the front-end keyboard to the controller. This instruction causes the controller to read the tuning information (fine tuning) out of the tuning memory and to assign it to the corresponding channel; hence the TV set is precisely tuned to the requested frequency by means of the PLL.
Setting of a not yet stored TV transmitter is done by means of the actuating buttons:
K 1 for setting of channel units digits and
K 10 for setting of channel tens digits.
By means of the button K 1 the channel number units digits 0 to 9 without carry and by means of the button K 10 the channel number tens digits can be set. After every button operation, the concerned channel number is incremented by 1 . For every adjustment of the channel number, the controller converts this information into frequency information (the PLL divider factor) and provides serial output to the PLL circuit. The success of every tuning step can be watched on the screen.
In addition to that, the SDA 2003 is designed for station search, which can also be used for setting a TV channel. The station search is started via the setting button: Search Start SL.
Thereupon the controller sequentially issues every frequency information contained in the internal ROM individually to the PLL circuit. This process is automatically stopped as soon as an operating TV broadcast station is found. This is indicated to the controller by a pulse (active low) at the input "Search STOP", which can be derived from line synchronization and the video signal.

Via the setting buttons "fine tuning plus FT +" and "fine tuning minus FT - " frequency deviations from the rated frequency of the individual channel can be set in steps of 125 kHz up to $3,875 \mathrm{MHz}$ and down to -4 MHz . Frequency tuning, moreover, readjusts automatically every 250 ms , as soon as the proper button is pressed. Within the tuning limits mentioned above, fine tuning runs against a stop (owerflow inhibit). After having attained it, the channel number display lights up as long as the setting button is kept pressed.

The tuning information of a tuned TV broadcast station can be stored in the tuning memory by actuating the store button. The SDA 2003 then serially outputs the tuning data on the output IFO. The tuning data comprises the fine tuning information and the channel number information.

From the tuning information serially read into the MOS memories, it is the channel number which is used for addressing the internal ROM table. Frequency information from 100 TV channels as well as band selection (2 bytes) are stored in the ROM table.

There are some frequencies to which several TV channels are allocated (stored in the ROM), hence no unambiguous channel designition can be gathered from the frequency. This is the reason why the channel number is used as tuning information, since only in this way unambiguous channel designation and frequency information can be gained, simultaneously.

The frequency information is obtained by adding up the ROM divider factor and the center position of fine tuning. At every process of setting a new channel number, fine tuning is adjusted to center position. The PLL divider factor then complies with the nominal divider factor. The nominal divider factor results in an oscillator frequency lying only by $f=25 \mathrm{kHz}$ below the nominal value. It represents the frequency information of the exact channel frequency, except the deviation of 25 kHz which is needed to attain a 125 kHz raster frequency at a given IF of 38.9 MHz . The band selection information is programmed in the internal ROM for every frequency information and is serially output from the controller. Band selection differentiates between VHF range I/III and UHF.
The internal ROM table is made up such that between the CCIR channels - designated with corresponding channel numbers - other channels are allocated. Thus, the Italian TV channels A-H are stored between channel 12 and channel 21 under channel Nos. 13 to 20.
Data communication between the SDA 2003 and the memory is done via a data bus that comprises shift clock $\overline{C N V M}$, actual information (IFO), and an enable signal (EX/ $\overline{\mathrm{REC}}$). The data word contains information on channel number and fine tuning.

4. Display driver SDA 2004

The LED display driver decodes in the remote-controlled tuning system of TV sets the channel and program numbers from a serially offered BCD code and drives in multiplex operation 2 or 4 digits, as required.
The information D (active H) for the four digits is coded in 16 bits and is serially input in two shift registers of 8 bits, each. The input for the digits D_{1} and D_{2} and/or D_{3} and D_{4} is provided by 8 falling edges of the driving clock pulses T_{12} or T_{34}, respectively, if Enable EN is on high level. The contents of both the shift registers is stored in an eight bit broad memory, if EN is on low level. The 16 memory outputs operate on a multiplexer. The multiplexer and the digit selection outputs $\overline{\mathrm{D}}_{1}, \mathrm{DI}_{2}, \overline{\mathrm{DI}}_{3}$ and $\overline{\mathrm{DI}}_{4}$ (digit driver for the LED displays, active low) are serviced by an internal clock generator. The 7 outputs of the de-
coder, series-connected to the multiplexer, are used for driving the segments (active high) in the LEDs.

If input $\overline{\mathrm{DI}}_{4}$ is grounded, the multiplexer only works for the digits 1 and 2. Thereby the duty cycle for the clock pulse of the multiplexer is changed over.

5. On-screen IC SDA 2105

The SDA 2105 IC is intended to display channel and program numbers on the screen of the TV set and is adapted to the SDA 2003 Siemens channel processor.

The on-screen device provides 2 display panels of 2 digits, each, and 1 display panel of 5 digits. The information for the display panels is serially transferred via the DATA line. The display panels are activated via the pertinent ENABLE line.

6. Nonvolatile memory SDA 2006

This IC allows the nonvolatile, wordoriented reprogrammable storage of 32×16 bit words. Thus, up to 32 programs or channels as well as their possible allocations can be stored.
The SDA 2006 is fabricated in the n-channel floating gate technology in order to provide extremely long storage times and as many read-out operations as required refresh.
Addressing and instruction input is done serially and may comprise 8 or 12 bits as required. The entailing erase and write cycles are determined by a complex, chip-internal control.

7. IR remote control receiver SDA 2007

The device is a further development of the types SAB 3209 and SAB 4209. Like those, it utilizes the proven biphase code for IR transmission and, therefore, it can be applied with the SAB 3210 or SDA 2008 as IR instruction generator. It is, in particular, designed for operation in connection with the tuning system SDA 200. The program memory has, therefore, been relocated from the remote control receiver to the channel processor SDA 2003.

Particulars:

2 combined series interfaces with common DATA line for information transfer (leading bit $\mathrm{LB}=\mathrm{H}$ and 6 information bits A, B, C, D, E, and F). Distinction is made by the enable signals DLE and TE (7 pulses, each, i.e. 1 pulse/bit). Modification is possible through the outputs of the TUS $1 / 2$ flip-flops, thus different groups of equipment such as teletext decoder and the VCR device can be addressed precisely. H level at one of the TUS outputs drops the DLE pulses (DLE $=\mathrm{L}$) out and switches the TE output over to single mode operation. For a better adaptation to a microprocessor the output is now executed by means of $4 \mathrm{~T}_{\text {osc }} /$ bit ($64 \mu \mathrm{~s} /$ bit at 62.5 kHz).
During the "standby" status (ON/OFF $=\mathrm{H}$), all outputs of the 4 analog memories VOLU, BRIG, COLO and CONT are kept on Llevel. Corrective instructions (instruction Nos. 8 to 15) will then not be executed, i.e. the last set status of the analog memories is retained.

The connection VPM, included in the volume memory VOLU, is provided for front end controlling, which acts like the instructions "volume +" and "volume - ", respectively.
2 spare outputs, controlled by 2 alternating flip-flops with different quiescent levels open up additional individual applications (e.g. clock time display).

There is, moreover, the possibility to switch over the start bit for IR reception. Thus, two receiver units can be operated in the same room at the same clock frequency independently of each other.

8. Remote control transmitter SDA 2008

The transmitter module SDA 2008 is an advanced product of the SAB 3210 IC within the frame of the IR 60 Siemens infrared remote control system. In detail,the IC includes the following:

1. The keyboard is completely latched against incorrect operation. Even in case of double operation as provided for instruction input within one column with one of the lines 1 to 7 incl. line 8, practically no misinstruction can be generated by pressing two buttons, since for that both the buttons had to be pressed absolutely simultaneously.
2. After outputting the first information instruction, the instruction can only be changed by switching off the transmitter (releasing all buttons). This avoids further incorrect servicing because no unwanted instruction change can be effected by premature releasing the "shift button" (keyboard changeover) or pressing a further button.
3. Instruction expansion to more than 32 instructions can be done as previously by diode wiring, and recently additionally via a "shift button" (connects PPIN to SA). Moreover, the instructions 40 to 47 can be issued by connecting the line inputs to $-V_{\mathrm{S}}$ without requiring any additional component.
4. The start bit in infrared transmission can be changed over from outside (connecting PPIN to SC). Thus, selective addressing of 2 different receivers by one transmitter is possible. A TV transmitter and a broadcasting set with one transmitter can, therefore, be serviced independently of each other in one room.
5. The oscillator was converted to 8 times the frequency in order to permit operation with a ceramic resonator. Hence, also lowcost AM IF resonators (appr. 500 kHz or 455 kHz) can be used instead of the oscillator.
6. In addition to the hitherto existing final instruction, an "initial instruction" is transmitted. The initial instruction exactly complies with the final instruction, except that it is issued by information instructions.

Thus separation between 2 button operations can be recognized even more precisely, and more time is provided for the gain control of the preamplifiers on the receiver side.
7. No external column resistors are required.

Fast ECL divider with constant dividing ratio 1:64 covering the frequency range from 80 MHz to 1 GHz . The SDA 2001 includes a broadband preamplifier with approx. 20 dB voltage gain and two seperate inputs for UHF and VHF, which can be selected by external dc voltage.

- Input frequency up to 1 GHz
- Integrated preamplifier
- Balanced output in phase opposition

Type	Ordering code	Package outline
SDA 2001	067000-A1464	DIP 18

Maximum ratings

Supply voltage
Input voltage
Output current
Junction temperature
Storage temperature range
Thermal resistance (system-air)

Range of operation

Supply voltage range
Ambient temperature range Ambint

V_{S}	10	V
$V_{\mathrm{i} 4}, V_{\mathrm{i} 5}$	10	V
$I_{\mathrm{q}} 8, I_{\mathrm{q} 9}$	-2.1	mA
T_{j}	150	${ }^{\circ} \mathrm{C}$
T_{stg}	-40 to 125	${ }^{\circ} \mathrm{C}$
$R_{\mathrm{th} \text { SA }}$	70	$\mathrm{~K} / \mathrm{W}$

Characteristics $\left(V_{\mathrm{S}}=6.8 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}\right)$

Current consumption Input voltage range

	$f_{\mathrm{i}}=100 \mathrm{MHz}$
	$f_{\mathrm{i}}=200 \mathrm{MHz}$
	$f_{\mathrm{i}}=470 \mathrm{MHz}$
Input frequency	$f_{\mathrm{i}}=900 \mathrm{MHz}$
	Maximum f_{i} max
	Minimum $f_{\mathrm{i} \text { min }}$

Output voltage
L-changeover voltage
H -changeover voltage
Changeover current ($V_{2}=12 \mathrm{~V}$)
Output resistance

	\min	typ	\max	
I_{7}	75	105	140	mA
$V_{\mathrm{i} 4}$	35		500	mV
$V_{\mathrm{i} 4}$	20		500	mV
$V_{\mathrm{i} 5}$	20		300	mV
$V_{\mathrm{i} 5}$	35		100	mV
$f_{\mathrm{i} 5}$	950	1100		MHz
$f_{\mathrm{i} 4}$		60	80	MHz
$V_{\mathrm{q} 8}, V_{\mathrm{q} 9} 9$	600	800	1000	mV pp
$V_{2 \mathrm{~L}}$			0.6	V
$V_{2 \mathrm{H}}$	3			V
$-I_{2}$		1.5		mA
R_{q}		250		Ω

Input voltage ratings are measured with Vector-voltmeter 8405 A at amplifier input.

Test circuit

Block diagram incl. internal pin configuration

Pins for cooling purposes

Input impedance behavior versus frequency

$Z_{0}=75 \Omega$, measured asymmetrically

Decoupling of the VHF and UHF input versus input frequency

Input sensitivity versus input frequency

Bipolar circuit

The PLL IC SDA 2002 is part of the frequency synthesis tuning system SDA 200. Together with the frequency divider SDA 2001 and a voltage-controlled oscillator in the tuner, a frequency and phase comparison circuit can be designed. It is intended for channel selection in TV sets.
Programming allows quartz-controlled setting of the oscillator frequency for the television bands I/III/IV/V in 125 kHz raster. The SDA 2002 includes a 13 bit programmable synchronous divider, a 16 bit shift register, a quartz oscillator with subsequent divider, and a frequency and phase sensitive digital phase detector.

- No external integrator necessary
- Internal buffer memory
- Microprocessor compatible

Type	Ordering code	Package outline
SDA 2002	Q67000-A1465	DIP 18

Maximum ratings

Supply voltage 1	$V_{\text {S } 18}$	7.5	V
Supply voltage 2	$V_{\text {S } 13}$	32	V
Input voltage IFO	$V{ }^{\text {i }}$	5.5	V
PLE	$V_{i 10}$	5.5	V
CPL	$V_{i 7}$	5.5	V
$\overline{\mathrm{F}}, \mathrm{F}$	$V_{\text {i 15, }}, V_{\text {i } 16}$	7.5	V
Output voltage CL	$V_{\text {q } 6}$	16	V
Band selection	$V_{\text {q } 3}, V_{\text {q } 4}, V_{\text {q } 5}$	16	V
Thermal resistance (system-air)	$R_{\text {th SA }}$	70	K/W
Junction temperature	$T_{\text {j }}$	140	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage 1 range	$V_{\mathrm{S}} 18$	6.45 to 7.15	V
Supply voltage 2 range	$V_{\mathrm{S} 13}$	3.5 to 31.5	V
Tuning voltage range	$V_{\mathrm{D} 11} 11$	0.5 to 30	V
Input frequency	$f_{\mathrm{i} 15}, f_{\mathrm{i} 16}$	≤ 15	MHz
Ambient temperature range	T_{amb}	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics ($\left.V_{\mathrm{S} 18}=6.8 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption

Input leve
Sensitivity of divider inputs
($f_{\mathrm{i} 15,16}=15 \mathrm{MHz}$)

Inputs CPL, IFO, PLE

Upper threshold voltage
Lower threshold voltage
Hysteresis
H -input current
($V_{\mathrm{i} 7 / 8 / 10 \mathrm{H}}=5 \mathrm{~V} ; V_{\mathrm{S} 18}=7.15 \mathrm{~V}$)
L-input current
$\left(V_{\mathrm{i} 7 / 8 / 10 \mathrm{~L}}=0.4 \mathrm{~V} ; V_{\mathrm{S} 18}=7.15 \mathrm{~V}\right)$

Inputs IFO, PLE

Set-up time
Hold time

t_{S}

t_{H}
$V_{\mathrm{i}} 7 / 8 / 10 \mathrm{u}$
$V_{\mathrm{i}} 7 / 8 / 10 \mathrm{I}$
$V_{\mathrm{i}} 7 / 8 / 10$
$I_{\mathrm{i}} 7 / 8 / 10 \mathrm{H}$

$I_{\mathrm{i}} 7 / 8 / 10 \mathrm{~L}$

1	1.3
0.5	0.7

1.3	1.6	V
0.7	1	V
0.6	8	$\mu \mathrm{~A}$
		-50

2	1.5				
2	1.5	$	\quad	$	$\mu \mathrm{s}$
:---					
$\mu \mathrm{s}$					

Clock input CPL

H-pulse width
L-pulse width

Clock output CL

($V_{\mathrm{pp}}=15 \mathrm{~V} ; R_{\mathrm{L}} \geq 6.8 \mathrm{k} \Omega$)
H -output voltage
L-output voltage
H-pulse width
L-pulse width
$\mathrm{H}-\mathrm{L}$ transition time ($R_{\mathrm{L}}=9.5 \mathrm{k} \Omega$)
$\mathrm{L}-\mathrm{H}$ transition time ($C_{\mathrm{L}}=50 \mathrm{pF}$)

| t_{CH} | 2 | 1.5 | $\mu \mathrm{~s}$ |
| :--- | :--- | :--- | :--- | :--- |
| t_{CL} | 2 | 1.5 | |

$\mu \mathrm{s}$

$V_{\mathrm{q} 6 \mathrm{H}}$	14	14.5	15	V
$V_{\mathrm{q} 6 \mathrm{~L}}$			1.5	V
t_{TH}		8		$\mu \mathrm{~s}$
t_{TL}		8		$\mu \mathrm{~s}$
t_{THL}	0		0.5	$\mu \mathrm{~s}$
t_{TLLH}	0		1.5	$\mu \mathrm{~s}$

	min	typ	\max	
I_{18}		30	40	mA
I_{13}	1.4	2	mA	
$V_{15 \mathrm{H}}, V_{16 \mathrm{H}}$		6.8		V
$V_{15 \mathrm{~L}}, V_{16 \mathrm{~L}}$		5.8		V
$V_{\mathrm{i} 15}, V_{\mathrm{i} 16}$	600	800	1000	$\mathrm{mV}_{\mathrm{pp}}$

Phasen detector output PD
Load current
Sink current
Voltage in case of synchronization
Band selection output
H-output voltage ($\left.V_{p p}=15 \mathrm{~V}\right)$
L-output voltage $\left(2 \mathrm{~V} \leq V_{\mathrm{pp}} \leq 15 \mathrm{~V}\right)$

I 14 LOAD
I_{14} SINK
V_{14}
$\left\lvert\, \begin{aligned} & +100 \\ & -100 \\ & 2\end{aligned}\right.$ $\left\lvert\, \begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{A} \\ & \mathrm{V}\end{aligned}\right.$

$|$| $\mu \mathrm{A}$ |
| :--- |
| $\mu \mathrm{A}$ |
| V |

		10	$\mu \mathrm{~A}$	
$I_{\mathrm{q} 3,4,5 \mathrm{H}}$	0.5	1.2	1.7	mA

Band selection output

L-output voltage ($2 \mathrm{~V} \leq V_{\mathrm{pp}} \leq 15 \mathrm{~V}$)

Block diagram

Pin designation

Pin No.	Symbol	Description
1	Q_{2}	Quartz
2	Q_{1}	Quartz
3	UHF	
4	VHF	Band selection outputs
5	Bd I/III	
6	CL	Clock output
7	CPL	Clock input
8	IFO	Data input
9	\perp	Ground
10	PLE	Shift register enable input
11	LOCK IND	Tuning voltage
12	$V_{\text {S2 }}$	Lock indication output
13	\bar{F}	Supply voltage phase detector
14	F	Phase detector voltage
15	open	Inverted input
16	$V_{\text {S1 }}$	Input
17		Supply voltage
18		

Application circuit (schematic)

Truth table

or

Input "IFO" Bit				Output		
Meaning						
2^{13}	2^{14}	2^{15}	Bd I/III	VHF	UHF	
H	H	L	H	H	L	"UHF"
H	L	H	H	L	H	"Bd I/VHF"
L	L	H	L	L	H	"Bd III/VHF"
L	H	H	L	H	H	"Bd III/VHF"

In the case of positive logic, the "IFO"-bits $2^{0} \ldots 2^{12}$ are the complement of the dual code from divider ratio N .

Pulse diagram

Pulse diagram

MOS circuit

In the frame of the frequency synthesis tuning system SDA 200, the SDA 20038 -bit microcomputer takes over the control functions necessary for operation. In case of program or channel selection, the microcomputer has the job to route the relevant frequency information to the programmable divider, or to control the tuning memory, respectively. Precise frequency information for 100 channel numbers of standard B or standard G, CCIR specification, as well as for several channels not included in these specifications, is stored in the ROM of the SDA 2003.

- Program and channel indication on LEDs or onscreened
- Operation with program selection or channel selection as required
- Clock generation by means of a quartz or external clock from PLL
- +5 V supply voltage

Type	Ordering code	Package outline
SDA 2003	O67120-C32	DIP 40

Maximum ratings (all voltages referred to $V_{\mathrm{SS}}=0 \mathrm{~V}$)
Voltage at every pin referred to ground
Total power dissipation
Thermal resistance (system-air)
Storage temperature range
Operating temperature

V	-0.5 to 7	V
$P_{\text {tot }}$	1.5	W
$R_{\text {th SA }}$	50	$\mathrm{~K} / \mathrm{W}$
$T_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$

Range of operation (referred to $V_{\mathrm{SS}}=0 \mathrm{~V}$)

Supply voltage range	$V_{\mathrm{CC} 40}$,	4.75 to 5.25	V
Ambient temperature range	$V_{\mathrm{DD} 26}$	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics (referred to $V_{\mathrm{SS}}=0 \mathrm{~V}$)

Current consumption
1-input voltage (except pin 2, 3)
H -input voltage (except pin 2, 3, 4)
H -input voltage (except pin 2, 4)
L-output voltage (except pin 12 to 19)

$$
I_{\mathrm{L}}=2.0 \mathrm{~mA}
$$

L-output voltage (pin 3, 8, 9, 10, 21, 37, 38)

$$
I_{\mathrm{L}}=1.6 \mathrm{~mA}
$$

H -output voltage (pin 12 to 19)

$$
I_{\mathrm{H}}=100 \mu \mathrm{~A}
$$

H-output voltage (pin 3, 8, 9, 10, 21, 37, 38)

$$
I_{\mathrm{H}}=50 \mu \mathrm{~A}
$$

Input leakage current (pin 6, 7, 39) $V_{\mathrm{SS}} \leq V_{\mathrm{IN}} \leq V_{\mathrm{CC}}$
Input leakage current (pin 1)
$V_{\mathrm{CC}} \geq V_{\mathrm{IN}} \geq V_{\mathrm{SS}}+0.45 \mathrm{~V}$
Clock frequency
Input signal duration (pin 27 to 32) $f_{\mathrm{CL}}=4 \mathrm{MHz}$
Input signal duration for $\overline{\text { STOP (35) }}$
$f_{\mathrm{CL}}=4 \mathrm{MHz}$
Delay between $\quad \overline{\text { ONOFF (23) and } \overline{\text { DLE }} \text { (6) }}$ $f_{\mathrm{CL}}=4 \mathrm{MHz}$
Permissible delay of the STOP signal referred to the end of the output to the PLL for correct breaking-off the station search.
Muting at station search
Muting at program changing

	min	typ	max	
IDD		65	135	mA
$V_{i L}$	-0.		$\bigcirc 8$	V
$V_{\text {i }}$	2		$V_{\text {CC }}$	V
$V_{\text {i }}$	3		$V_{\text {CC }}$	V
$V_{\text {q L }}$			0.45	V
$V_{\text {q L }}$			0.45	V
$V_{\text {qH }}$	2.4			V
$V_{\text {qH }}$	2.4			V
$I_{\text {R }}$			± 10	$\mu \mathrm{A}$
$I_{\text {R }}$			-10	$\mu \mathrm{A}$
$f_{\text {CL }}$	3.4	4	4.6	MHz
$t_{\text {BED }}$	40			ms
$t_{\text {STOP }}$	270			ms
$t_{\text {d }}$	-30		$+30$	ms
$t_{\text {STOP SL }}$			180	ms
$t_{\text {MUTE }} 1$		90		ms
$t_{\text {MUTE }} 2$		180		ms
$t_{\text {MUTE }} 1$		90		ms
$t_{\text {MUTE }} 2$		30		ms

Description of functions

1. Servicing functions in case of front-end control for universal programming (ESPEC)

The specification (ESPEC) makes servicing by IR remote control of every function pertinent to TV set operation feasible. This means that in addition to the so far provided instructions for program selection, analog functions, quick tone, normal positioning, and standby, now also direct channel selection, fine tuning, memorizing, and station search start can be remote controlled.

1.1 Front-end control

The input KMODE differentiates between both the modes of operation: "program selection" and "channel selection" in case of externally interfaced program memory.
1.2 Program selection (30 programs 0 to 29)

The input KMODE has to be on high level (open). Provided an $\mathrm{H} \rightarrow$ L edge at the "Prg +" or " Prg -" inputs, the program number is incremented or decremented by 1 , respectively.

1.3 Channel selection

Apply low level to input KMODE, the channel number is then permanently displayed. With the inputs "Prg +" and "Prg -" (which now mean "channel tens" and "channel units") the channel counter can be readjusted in tens or units steps (ring counter in forward direction). This does not include carry from the units to the tens digit.

1.4 Station search

After having applied the low level to the KMODE input, the channel No. is displayed. The station search starts with the input "SLS". On the instruction "station search start" the IC keeps switching the channel No. in an interval of approximately 250 ms ; after the channel No. 99, the SDA 2003 restarts with the No. Øø
The station search is either discontinued by the leading edge of the stop signal, generated by the TV set after a transmitter suitable for reception has been found, or when KMODE of the front-end control has been switched on to program, or when the channel tens or units button has been actuated.
If station search has been stopped by a stop signal it doesn't run any longer even if the stop signal redisappears
Stop $=$ Low
During station search a "High" signal which can be used to block the remote control is provided at the output 19 (SL).

1.5 Fine tuning

As compared to mask-programmed tuning, the tuning range can be changed via the fine tuning buttons "FT +" and "FT -" by +3.875 to -4 MHz . The tuning runs automatically with about 4 steps/sec. into the selected direction up to the stop as long as one of the buttons has been pressed. When the upper or lower "channel limits" are reached the channel indication starts to blink in intervals of 0.5 sec . During tuning, channel indication remains unaffected.

1.6 Storing of a tuning information

A found tuning can be stored on the indicated program number. The store button has to be pressed once, the display remains unaffected.

1.7 Muting circuit

The output "mute" is switched on "high" approximately 100 ms prior to an output of the tuning information up to approximately 20 ms after that.
During station search or when the stop signal is not available, the output "mute" is also switched on "high".

2. Remote control

2.1 Direct channel selection

If the button KAN on the remote control unit is pressed, the device is switched over from program to channei seiection mode. Thereby, the actual chiannel No. is onscreened or indicated on the display, independent of the position of the front-end control mode switch.
If there is no further operation, the SDA 2003 switches back to program selection after 8 sec., whereby channel indication also disappears (front-end control mode switch on program). If program selection is again wanted prior to the course of 8 sec . only an external instruction e.g. analog instruction, quick tone etc., or command "IN" has to be issued.

The same effect is obtained by actuating the front-end control mode switch. In channel mode the first digit instruction is interpreted as tens digit input and indicated on the display. At the units digit the symbol "-" (segment g) lights up, designating a still incomplete input. The input stand-by position available for 8 sec . for the units digit restarts with every instruction; hence the 8 sec . counter only starts after releasing the button. If again the operation is not continued within the 8 sec . time, the device switched back to the standard mode of operation (P-selection, channel indication dependent on the front-end control mode switch). After input of the second digit instruction, an according information is output to the PLL. The changeover P-selection, channel indication is again performed after 8 sec . (henceforth called $8 \mathrm{sec}-\mathrm{mode}$).
With the aid of the store button (remote and front-end control), switching back to P selection is possible. This way, programming via remote control is easily to be done. After switching-on the device is in P -selection mode.

Example

Program setting via remote control

Function	Button
Input program number	$1-, 2-\quad 0 \ldots . .9$
Changeover to channel mode	"channel selection"
Input tens digit	$0 \ldots .9$
Input units digit	$0 \ldots .9$
(possibly channel correction)	
(possibly fine tuning)	"STORE"
Storage	$1-, 2-\quad 0 \ldots 9$
Next program number etc.	

2.2 Fine tuning

Fine tuning via remote control operates as via front-end control. By means of shortly pressing ($\tau<$ appr. 250 msec .) a step is performed into the appropriate direction. In case of continuous actuation, fine-tuning steps are performed in intervals of appr. 250 ms .

Overflow in both directions is signalled in case of on-screened channel indication by blinking. If there was no channel indication prior to the overflow, no blinking takes place during the overflow.

2.3 End-of instruction processing

At every program selection and channel selection instructions, at station search start and fine tuning, the "end instruction" is made up 8 sec . after the last repeat instruction, i.e. the pertinent flag is activated.

All external instructions also activate the end-of-instruction flag.
The end instruction signals unambiguously releasing and repressing of a remote-control button, which has to be reliably recognized for digit instructions, station search, quick tone, etc.

2.4 STORE

By means of the instruction "STORE" (as in case of front-end control), the actual channel number and fine tuning information is filed under the actual program number in the non volatile memory. The program selection initializing goes out, the valid program number is indicated. Channel indication depends on the mode switch of the front-end control; if this one is on program, the previously on-screened channel number is blanked. There is a simultaneous changeover to P -selection mode. During station search, STORE is blocked.

2.5 Program plus/minus

If the device is in P -selection mode, the program number will be incremented or decremented with the aid of the instructions $\mathrm{P}+/ \mathrm{P}-$.

2.6 Channel tens/units plus

If the device is switched over with the instruction KMODE or if the mode switch of the front-end control is on channel, the instructions $P+/ P-$ will act on channel selection. With $Z+(P-)$ the channel number modulo 100 is incremented by 10 (tens digit +1). With $E+(P+)$ the channel number modulo 10 is incremented by 1 (units digit +1) whereby no overflow takes place.

2.7 Station search

Compared to front-end control, station search is also possible if the mode switch of the front-end control is in position "standard". During station search the channel number is indicated (8 sec . mode).

Station search start is edge triggered, i.e. station search stops after a transmitter has been found, even if the station search button is still pressed. Station search can only be restarted when the button was released in the meantime. Station search start by remote control additionally provides a changeover to channel selection mode (8 sec . mode) as well as display of the channel number. Station search can be stopped with all instructions except STORE (and station search). In case of digit instructions, the stop begins with channel selection (8 sec .). External instructions, e.g. volume or ON cause back spacing to P channel mode.

3. Reduced operation (RESPEC)

At front-end control, reduced operation provides the same functions as described under SPEC. In case of remote control the possibilities such as STORE, channel selection (CHAN), fine tuning ($\mathrm{FT} \pm$), and program stepping $\mathrm{P}+/-$ are renounced. The hence no longer needed program parts can be made inoperative by external pin programming (RESPEC pin $22={ }^{\prime} \mathrm{H}^{\prime}$).

Table 1

RESPEC (22)	BOS (36)	Function	Remote control
L	H	Extended spec. operation without program storage	Only channel selection SL, FT $+/-$, KZ, KE
L	L	Extended spec. operation with program storage	Direct channel selection and program selection KMODE, SL, FT $+/-$, Store, P+/-
H	H	Reduced spec. operation without program storage	Channel selection (only digits)
H	L	Reduced spec. operation with progr. storage	Only program selection (1-, 2-, digits)

In the case of $\mathrm{BOS}=\mathrm{H}$, channel selection is dropped.
4. Operation without storage (channel selection, only)

The device is operated without the external non-volatile program memory (BOS, pin $36=$ " H "). The selection of the transmitter is done via direct channel input with digit instructions. If it is switched on with the instruction "ON" PLL will be loaded with the previous channel. In the power-on-reset, standby mode is set. If a digit instruction is used for switching-on, the tens digit and a horizontal bar appear (segment " g ") on the units digit, whereas the PLL is loaded with the previous word (= channel number at which there was the changeover to stand-by). Further operation is again subject to $8 \mathrm{sec}-\mathrm{mode}$.

If the mains switch is used for switching on, channel 01 is read in.

5. Status-dependent functions

5.1 Applying the supply voltage

The device is brought into the standby state by means of applying the supply voltage.
The input ONOFF is ignored up to the end of this procedure, the status "Standby" is assumed.

5.2. Status Standby

The status Standby is controlled through the remote control receiver IC via the ONOFF input.

$$
\begin{aligned}
& \text { Level High }=\text { Standby } \\
& \text { Level Low }=\text { ON }
\end{aligned}
$$

Indication: Retrace blanking is provided for channel indication at the transition into standby mode. Only the right-hand digit of program indication shows a dash (central segment of the 7 segment display). The remote control instructions are only performed if prior to the start the input ONOFF was on low level for at least 30 msec or goes to low within 30 msec after the end of the instruction. The program tens digit instructions 1- or 2- are also accepted during the Standby status. The display then shows 1- or 2 -. If an external instruction arrives or if the program selection is not finished within about 8 sec . whereby the ONOFF input changes to low, the display goes back to Standby and program preparation is erased. The front end operating inputs are blocked during the Standby status.

If the device is operated without received transmitter (Stop, pin $35={ }^{\prime \prime} \mathrm{H}$ ") and no operate instruction is input, Standby is switched automatically after 5 minutes.

6. Organization of output information

The SDA 2003 IC serially outputs the information to the PLL circuit SDA 2002 and the display decoder SDA 2004 for indication of the program. No. and channel No. The data is shifted via the IFO line which is in common to all external devices. Assignment of the information to the connected circuits is done via 3 clock channels (clock channel: CKA, clock-PLL: CPLL; clock program: CPR). Thus, it is possible to distribute the indications to any location without changing the display device SDA 2004 or the on-screen device SDA 2105; see table 2. The channel No. is on-screened on the screen and the program No. on an LED display, or in a VCR dèvice program No. and channel No. on one LED display.
The order of the IFO blocks is arbitrary. Intervals between any bits are permitted. Data transfer should preferably be done with the HL edge of the clock.

Table 2

Display combinations with the SDA 2004 display decoder driver and the SDA 2105 onscreen device.

SDA 2004		SDA 2105	
CHANNEL	PROGRAM	CHANNEL	PROGRAM
X	-	-	X
-	X	x	-
X	X	-	-
-	-	x	x

7. Program AV

Program 0 is indicated as $A V(A U)$ and pin 37 is thereby switched to " H ".

Pin designation

Pin No.	Mnemonic	Function
1	NVM ${ }^{3}$)	Serial data input for the connection of the nonvolatile memory (NVM)
2	OSC IN	Input for external clock generation (4 MHz)
3	OSC OUT	Oscillator output, if the internal oscillator is used
4	RESET	Reset input: active "low"
5	$\overline{\text { SS }}$	Not connected
6	$\overline{\mathrm{DLE}}{ }^{4}$)	Clock input for remote control inquiring
7	EA	Connected to ground
8	$\overline{\mathrm{RD}}$	Not connected
9	$\overline{\text { PSEN }}$	Not connected
10	$\overline{\mathrm{WR}}$	Not connected
11	ALE	Not connected
12	IFO ${ }^{3}$)	Common serial data output for PLL IC, LED display device, onscreen device, and nonvolatile memory
13	EX/ $\overline{R E C}^{2}$)	Control output (inverted) for the nonvolatile memory (SDA 2006)
14	$\overline{\text { CNVM }}^{3}$)	Clock output (inverted) for the nonvolatile memory
15	ENB	Common enable output for PLL, LED display, and onscreen device
16	CPR ${ }^{3}$)	Clock output for program indication (LED display device SDA 2004)
17	CKA ${ }^{3}$)	Clock output for channel indication (onscreen device SDA 2105)
18	CPLL ${ }^{3}$)	Clock output for PLL IC SDA 2002
19	SL	Active "High" status output being active during station search
20	$V_{\text {SS }}$	Operating ground (OV)
21	$\overline{\text { STBY }}$	Active "Low" pulse output An appr. 4 msec long pulse appears if during the ON state the stop input is non active (high) for about 5 minutes and no operation is performed during this period. The signal is used for initializing the transition from ON to Standby.
22	RESPEC	Wiring according to table 2
23	ONOFF ${ }^{4}$)	Active "Low" message input for initializing the transition Standby - ON and ON - Standby
24	$\left.\overline{W C}^{2}\right)$	Message input from the nonvolatile memory (write complete). As long as $\overline{\mathrm{WC}}$ is on " H ", data handling with the memory is blocked.

For notes refer to page 224.

Pin designation (cont'd)

Pin No.	Mnemonic	Function
25	PROG	Not connected
26	$V_{\text {DD }}$	Must be connected to $V_{\text {CC }}$
27	$\overline{\text { SEARCH }}$	A negative pulse at this input starts station search. Every 25 msec (appr.) the channel No. is incremented ($\emptyset \emptyset$ follows after 99) Station search is finished either by a negative pulse at the $\overline{\text { STOP }}$ input, at the $\overline{\mathrm{PROG}+/ \mathrm{K}_{1}}$ input, at the $\overline{\mathrm{PROG}-/ \mathrm{K}_{10}}$ input or by a positive pulse at the KMODE input as well as by a remote control instruction.
28	$\overline{\text { STORE }}$	A negative pulse at this input initializes the storage process. The actual adjustment (channel No. + fine tuning) is filed under the indicated program No. in the nonvolatile memory.
29 30	$\overline{\mathrm{FT}-}$ $\overline{\mathrm{FT}+}$	Via the active "low" inputs, fine tuning is performed. The tuning process runs automatically with about 4 steps/sec (step 125 kHz) in the selected direction up to the stop, as long as one of the selected signals is active. Starting from the pre-programmed value, the tuning can be adjusted throughout the range between +3.875 and -4 MHz .
31	$\overline{\mathrm{PROG}+/ \mathrm{K}_{1}}{ }^{5}$)	Setting inputs sensitive to negative pulses.
32	$\overline{\text { PROG-/K } 10}$	The function depends on the statuts of the inputs $\overline{K M O D E}$ and $\overline{\text { SET CK }}$

	$\overline{\text { PROG }+/ K_{1}}$	$\overline{\text { PROG - / } \mathrm{K}_{10}}$
$\begin{aligned} & \overline{\text { KMODE " }}{ }^{\mathrm{H} "} \\ & \overline{\text { "ET" } \mathrm{HK}} \\ & \text { (Program) } \end{aligned}$	Set program No. is incremented by 1 $(29+1 \rightarrow \emptyset!)$	Set program No. is decremented by 1 $(\emptyset-1 \rightarrow 29!)$
$\begin{aligned} & \overline{\text { KMODE "L" }} \begin{array}{l} \text { SET CK } \\ \text { "H" } \end{array}=\frac{H^{\prime}}{} \end{aligned}$	Set channel No. is incremented by 1 . No carry to the tens digit results. $(39+1 \rightarrow 30)$	Set channel No. is incremented by 10. No influence on the units digit of the channel No. $(96+10 \rightarrow 06)$
	Station search is stopped	
$\begin{aligned} & \text { SETCK } \\ & \text { "L" } \end{aligned}$	no effect	no effect

Pin designation (cont'd)

Pin No.	Mnemonic	Function
33	$\overline{\text { SET CK }}$	Input is active "low". The inputs $\overline{\text { PROG }-/ K_{10}}$ and $\overline{\text { PROG }+/ K_{1}}$ are blocked such that the connected buttons can be used for setting the clock. Channel indication is blanked. Station search is blocked.
34	$\overline{K M O D E ~}^{1}$)	Channel mode input is active "low". The channel indication appears, the function of the inputs $\overline{\mathrm{PROG}-/ \mathrm{K}_{10}}$ and $\overline{\mathrm{PROG}+/ \mathrm{K}_{1}}$ is changed and station search enabled.
35	$\overline{\text { STOP }}$	Active "low" message input to stop the station search and to reset the internal 5-min-timer.
36	BOS	Wiring according to table 1
37	$\overline{\mathrm{AV}}$	Active "low" status output, which is active at the set program $\emptyset \emptyset$. (time constant changeover for VCR)
38	MUTE	Active "high" status output. Appr. 90 msec prior to the output of a tuning information and up to appr. 30 msec thereafter as well as during station search the output is active.
39	DATA $\left.{ }^{4}\right)^{5}$)	Serial data input for remote control of SDA 2007 IR receiver.
40	$V_{\text {CC }}$	+5V power supply

Notes

1) 30 msec debouncing
2) For details refer to description of the nonvolatile memory
3) For data format refer to description of the individual peripherals
4) Remote control instructions are only processed if the input ONOFF was on "low" for at least 30 msec prior to the start or goes to "low" within 30 msec after the end of the instruction.
5) Program $\emptyset \emptyset$ is indicated as $A U$.

Pin configuration, top view

NVM	1	0

Pulse diagrams

ROM occupation

$f_{\text {video carrier }} / \mathrm{MHz}$		Band selection IFO output	$\begin{aligned} & \text { UHF } \\ & \text { VHF } \\ & \text { BD I } \end{aligned}$	Channel designation	Indicated number
		HLH		AU_{0}	01
46.25 Australia 48.25		HL H		K_{2}	02
$\begin{aligned} & 55.25 \\ & 62.25 \end{aligned}$	BD I	HL H		K_{3}	03
		HL H		K_{4}	04
175.25182.25		LL H		K5	05
		LLH		K_{6}	06
182.25 189.25		L L H		K_{7}	07
$\begin{aligned} & 189.25 \\ & 196.25 \end{aligned}$	BD III	LLH		K8	08
		L L H		K9	09
$\begin{aligned} & 203.25 \\ & 210.25 \end{aligned}$		LLH		K_{10}	10
		L L H		K_{11}	11
$\begin{aligned} & 217.25 \\ & 224.25 \end{aligned}$		LLH		K_{12}	12
		HL H		A	13
53.75 62.25		HLH		B	14
		HLH		C	15
$\begin{array}{r} 82.25 \\ 175.25 \end{array}$		LLH		D	16
183.75	Ital. channels	L L H		E	17
192.25		LLH		F	18
201.25		LLH		G	19
210.25		LLH		H	20
		HHL		K_{21}	21
$\begin{aligned} & 471.25 \\ & 479.25 \end{aligned}$		HHL		K_{22}	22
		HHL		K_{23}	23
$\begin{aligned} & 487.25 \\ & 495.25 \end{aligned}$		HHL		K24	24
		HHL		K_{25}	25
$\begin{aligned} & 503.25 \\ & 511.25 \end{aligned}$		HHL		K_{26}	26
		HHL		K27	27
519.25 527.25		HHL		K_{28}	28
		HHL		K29	29
535.25 543.25		HHL		K_{30}	30
		HHL		K31	31
551.25 559.25		HHL		K_{32}	32
567.25		HHL		K ${ }_{3}$	33
575.25		HHL		K ${ }_{34}$	34
583.25		HHL		K ${ }_{35}$	35
591.25	BDIV/V	HHL		K ${ }_{36}$	36
599.25		HHL		K 37	37
607.25		H HL		K 38	38
615.25		HHL		K_{39}	39
623.25		HHL		K_{40}	40
631.25		HHL		K_{41}	41
639.25		HHL		K_{42}	42
647.25		HHL		K43	43
655.25		HHL		K_{44}	44
663.25		HHL		K_{45}	45
671.25		HHL		K_{46}	46
679.25		HHL		K ${ }_{47}$	47
687.25		HHL		K_{48}	48
695.25		HHL		K49	49
703.25		HHL		K_{50}	50

ROM occupation (cont'd)

$f_{\text {video c }}$	arrier $/ \mathrm{MHz}$	Band selection IFO output	$\begin{aligned} & \text { UHF } \\ & \text { VHF } \\ & \text { BD I } \end{aligned}$	Channel designation	Indicated number
711.25		H HL		K_{51}	51
719.25		H H L		K_{52}	52
727.25		H H L		K 53	53
735.25		HHL		K_{54}	54
743.25		H H L		K_{55}	55
751.25		HHL		K 56	56
759.25		H H L		K 57	57
767.25		HHL		K 58	58
775.25		H H L		K 59	59
783.25	BD IV/V	HHL		K_{60}	60
791.25		H H L		K_{61}	61
799.25		H H L		K_{62}	62
807.25		H H L		K_{63}	63
815.25		H HL		K64	64
823.25		H H L		K_{65}	65
831.25		H H L		K66	66
839.25		H H L		K_{67}	67
847.25		HHL		K 68	68
855.25		HHL		K69	69
863.25		HHL		ex	70
871.25		HHL		ex	71
879.25		HHL		ex	72
887.25		H HL		ex	73
69.25		HL H		S_{21}	74
76.25		HL H		S_{22}	75
83.25		HL H		S_{23}	76
90.25		HL H		S_{24}	77
97.25		HL H		S_{25}	78
59.25		HL H		OIR channel 2	79
93.25		HL H		OIR channel 5	80
105.25		HL H		S_{1}	81
112.25		HL H		S_{2}	82
119.25		L L H		S_{3}	83
126.25		L L H		S_{4}	84
133.25	Cable channels	L L H		S_{5}	85
140.25		L L H		S_{6}	86
147.25		L L H		S_{7}	87
154.25		L L H		S_{8}	88
161.25		L L H		S_{9}	89
168.25		L L H		S_{10}	90
231.25		L L H		S_{11}	91
238.25		L L H		S_{12}	92
245.25		L L H		S_{13}	93
252.25		L L H		S_{14}	94
259.25		L L H		S_{15}	95
266.25		L L H		S_{16}	96
273.25		L L H		S 17	97
280.25		L L H		S_{18}	98
287.25		L L H		S_{19}	99
294.25		LL.H		S_{20}	00

In the frequency synthesis system SDA 200, the SDA 2004 provides decoding of the serially offered BCD code and drives in multiplex operation a 4 digit LED 7 -segment display for program and channel number indication.

- Serially read-in BCD code
- Enable input
- 2- or 4-digit operation, as required

Type	Ordering code	Package outline
SDA 2004	Q67000-Y501	DIP 18

Maximum ratings

Supply voltage	$v_{\text {S }}$	8.5	V
Supply current	$I_{\text {S }}$	400	mA
Input voltage (pins 7, 8, 9, 10)	$v i$	5.5	\checkmark
H-output current (pins 11, 12, 13, 15, 16, 17, 18)	$I_{\text {q H }}$	-60	mA
L-output current (pins 2, 3, 4, 5)	$I_{\text {q }}$	380	mA
Thermal resistance (system-air)	$R_{\text {th SA }}$	80	K/W
Junction temperature	$T_{\text {j }}$	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\tau_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
Range of operation			
Supply voltage range Ambient temperature range	V_{S} $T_{\text {amb }}$	$\left\lvert\, \begin{aligned} & 4.5 \text { to } 8.0 \\ & 0 \text { to } 70 \end{aligned}\right.$	$1 \mathrm{~V}^{\circ} \mathrm{C}$

Characteristics ($V_{\mathrm{S}}=6.8 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Internal current consumption (without load)
($V_{\mathrm{S}}=7.15 \mathrm{~V}$)
Load resistance
(LED: $V_{\mathrm{F}}=1.6 \mathrm{~V}$)
Current consumption
($V_{\mathrm{S}}=7.15 \mathrm{~V}$)
Upper threshold voltage
(pins 7, 8, 9, 10)
Lower threshold voltage
(pins 7, 8, 9, 10)
Hysteresis (pins 7, 8, 9, 10)
H-output voltage
(pins 11, 12, 13, 15, 16, 17, 18)
$\left(V_{\mathrm{S}}=7.15 \mathrm{~V}, I_{\mathrm{qH}}=-40 \mathrm{~mA}\right)$
H -output voltage
(pins 11, 12, 13, 15, 16, 17, 18)
($V_{\mathrm{S}}=6.45 \mathrm{~V}, I_{\mathrm{qH}}=-40 \mathrm{~mA}$)
L-output voltage (pins 2, 3, 4, 5)
($V_{\mathrm{S}}=6.45 \mathrm{~V}, I_{\mathrm{qL}}=280 \mathrm{~mA}$)
H -input current (pins 7, 8, 9, 10)
($V_{\mathrm{iH}}=5.0 \mathrm{~V}$)
L-input current (pins 6, 7, 8, 9, 10)
($V_{\mathrm{S}}=7.15 \mathrm{~V}, V_{\mathrm{iL}}=0.4 \mathrm{~V}$)
H -output current
(pins $11,12,13,15,16,17,18$)
($V_{\mathrm{S}}=7.15 \mathrm{~V}$)
H-output current (pins 2, 3, 4, 5)
($V_{\mathrm{S}}=7.15 \mathrm{~V}$)
L-output current (pins 2, 3, 4, 5)
($V_{\mathrm{S}}=7.15 \mathrm{~V}$)

Switching times

H -pulse width (level $=2 \mathrm{~V}$)
L-pulse width (level $=0.6 \mathrm{~V}$)
Set-up time
Hold time
Set-up time
Hold time
H-pulse width (level $=2 \mathrm{~V}$)
L-pulse width (level $=0.6 \mathrm{~V}$)
H-pulse width (pins 2, 3, 4, 5)
4-digit operation
L-pulse width (pins 2, 3, 4, 5)
4-digit operation
Set-up time (pins 2, 3, 4, 5)
H-pulse width
2-digit operation
L-pulse width
2-digit operation
Set-up time

$t_{\mathrm{WH} ~ 8, ~ 10 ~}$		
$t_{\mathrm{WL} \mathrm{8,10}}$	0.5	0.1
$t_{\mathrm{S} 9}$	0	1.5
$t_{\mathrm{H} 9}$	3	-0.4
$t_{\mathrm{S} 7}$	0	1.5
$t_{\mathrm{H} 7}$	3	-0.3
$t_{\mathrm{WH} 7}$	70	50
t_{WL7}	3	1.6
t_{WH}		4.5
t_{WL}		1.5
t_{S}	0	
$t_{\mathrm{WH} 2,3}$		3
$t_{\mathrm{WL} \mathrm{2,3}}$		3
$t_{\mathrm{S} 2,3}$	0	

$\mu \mathrm{s}$
ms
ms
ms
$\mu \mathrm{s}$
ms
ms

[^27]
Truth table

$\begin{aligned} & \text { Data D } \\ & \text { LSB . . . MSB** } \end{aligned}$				Display	Segment driver (active H)						
L	L	L	L	0	H	H	H	H	H	H	L
	L	L	L	1	L	H	H	L	L	L	L
	H	L	L	2	H	H	L	H	H	L	H
	H	L	L	3	H	H	H	H	L	L	H
L	L	H	L	4	L	H	H	L	L	H	H
H	L	H	L	5	H	L	H	H	L	H	H
L	H	H	L	6	H	L	H	H	H	H	H
H	H	H	L	7	H	H	H	L	L	L	L
L	L	L	H	8	H	H	H	H	H	H	H
H	L	L	H	9	H	H	H	H	L	H	H
	H	L	H	dark	L	L	L	L	L	L	L
	H	L	H	dark	L	L	L	L	L	L	L
	L	H	H	U	L	H	H	H	H	H	L
	L	H	H	A	H	H	H	L	H	H	H
	H	H	H	-	L	L	L	L	L	L	H
	H	H	H	dark	L	L	L	L	L	L	L

* $\begin{aligned} \text { LSB } & =\text { least significant bit } \\ \text { MSB } & =\text { most significant bit }\end{aligned}$

Segment designation

Pin designation

Pin No.	Symbol	Description
1	\perp	Ground
2	$\overline{\mathrm{DI}}{ }_{1}$	Output for digit 1
3	$\overline{\mathrm{DI}}$	Output for digit 2
4	$\overline{\mathrm{DI}_{3}}$	Output for digit 3
5	$\overline{\mathrm{DI}} 4$	Output for digit 4
6	4DI	Input for digit switching operation (4- or 2-digit operation, respectively)
7	E	Input for enable
8	T_{12}	Input for clock (digit 1 and 2)
9	D	Input for data
10	T_{34}	Input for clock (digit 3 and 4)
11	g	Output for segment g
12	f	Output for segment f
13	e	Output for segment e
14	$V_{\text {S }}$	Supply voltage
15	d	Output for segment d
16	c	Output for segment c
17	b	Output for segment b
18	a	Output for segment a

Block diagram

Pulse diagram

Memory contents after the trailing edge of E

Remark: The information at first shifted to D is displayed at digit 2; digit 1, digit 4, and digit 3 follow. At every digit, LSB has to be shifted first.

Timing diagram

4 digit operation

Timing diagram: Set-up and hold times

Application circuit 4-digit operation

At 2-digit operation ($\overline{\mathrm{D}}_{1}$ and $\overline{\mathrm{DI}}_{2}$),4 DI is grounded

Bipolar circuit

The SDA 2014 LED display driver that permits cascade connection decodes a serially of fered BCD code and drives in multiplex operation 2 or 4 digits, as required. An output with serial data output permits cascade connection of the display drivers for more than 4 digits ($6,8,10$, etc.).

- Serially read-in BCD code
- Enable input
- Any number of ICs permitted for cascade connection
- 2- or 4-digit operation, as required

Type	Ordering code	Package outline
SDA 2014	$067000-$ Y538	DIP 18

Maximum ratings

Supply voltage
Supply current
Input voltage (pins 7, 8, 9)
Output voltage (pin 10)
H -output current (pins 11, 12, 13, 15, 16, 17, 18)
L-output current (pins 2, 3, 4, 5)
Thermal resistance (system-air)
Junction temperature
Storage temperature range

		V
V_{S}	8.5	mA
I_{s}	400	V
V_{i}	5.5	V
V_{qH}	8.5	mA
$I_{\mathrm{q} H}$	-60	mA
$I_{\mathrm{q}} \mathrm{L}$	380	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th SA }}$	80	${ }^{\circ} \mathrm{C}$
T_{j}	150	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range

V_{S}	4.5 to 8	$\left\lvert\, \begin{array}{l}\mathrm{V} \\ T_{\text {amb }}\end{array}\right.$
0 to 70	${ }^{\circ} \mathrm{C}$	

Characteristics ($V_{\mathrm{S}}=5.0 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Internal current consumption (without load)
($V_{\mathrm{S}}=8 \mathrm{~V}$)
Current consumption ($\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$)
Upper threshold voltage (pins 7, 8, 9)
Lower threshold voltage (pins 7, 8, 9)
Hysteresis (pins 7, 8, 9)
H -output voltage (pins $11,12,13,15,16,17,18$)
$\left(V_{\mathrm{S}}=8 \mathrm{~V}, I_{\mathrm{qH}}=-40 \mathrm{~mA}\right)$
H-output voltage (pins 11, 12, 13, 15, 16, 17, 18)
$\left(V_{\mathrm{S}}=4.5 \mathrm{~V}, I_{\mathrm{q}} \mathrm{H}=-40 \mathrm{~mA}\right)$
L-output voltage (pins 2, 3, 4, 5)
$\left(V_{\mathrm{S}}=4.5 \mathrm{~V}, I_{\mathrm{qL}}=280 \mathrm{~mA}\right)$
H-input current (pins 7, 8, 9)
($V_{\mathrm{i}}=5 \mathrm{~V}$)
L-input current (pins 6, 7, 8, 9)
$\left(V_{\mathrm{S}}=8 \mathrm{~V}, V_{\mathrm{iL}}=0.4 \mathrm{~V}\right)$
H -output current
(pins 11, 12, 13, 15, 16, 17, 18)
($V_{\mathrm{S}}=8 \mathrm{~V}$)
H-output current (pins 2, 3, 4, 5)
($V_{\mathrm{S}}=8 \mathrm{~V}$)
L-output current (pins 2, 3, 4, 5)
($V_{\mathrm{S}}=8 \mathrm{~V}$)
H-output voltage (pin 10)
$\left(-I_{\mathrm{q}} \mathrm{H}=200 \mu \mathrm{~A}\right)$
L-output voltage (pin 10)
$\left(I_{\mathrm{qL}}=3 \mathrm{~mA}, V_{\mathrm{S}}=4.5 \mathrm{~V}\right)$
Short-circuit output current (pin 10)
($V_{\mathrm{S}}=8 \mathrm{~V}$, max. duration: 1 sec)

	\min	typ	max	
IS		20	31	mA
$I_{\text {S }}$			380	mA
$V_{\text {Su }}$		1.3		V
$V_{\text {S }} 1$		0.7		V
		0.6		V
$V_{\text {qH }}$			7.35	V
$V_{\text {qH }}$	3.2			V
$V_{q L}$		0.6	0.8	V
$I_{\text {i H }}$			8	$\mu \mathrm{A}$
$I_{\mathrm{i}} \mathrm{L}$			-50	$\mu \mathrm{A}$
$I_{\text {q H }}$			-48^{*}	mA
$I_{\text {q H }}$			50	$\mu \mathrm{A}$
$I_{\text {q L }}$			336	mA
$V_{\text {qH }}$	$V_{S}-2$	$V_{\mathrm{S}}-1.5$	$V_{S}-1$	V
$V_{q L}$			0.4	V
$I_{\text {q }}$	-20		-50	mA

[^28]
Switching times

H -pulse width (level $=2 \mathrm{~V}$)
L-pulse width (level $=0.6 \mathrm{~V}$)
Hold time
Set-up time
Hold time
Set-up time
Hold time
H -pulse width (level $=2 \mathrm{~V}$)
L-pulse width (level $=0.6 \mathrm{~V}$)
H-pulse width (pins 2, 3, 4, 5)
4-digit operation
L-pulse width (pins 2, 3, 4, 5)
4-digit operation
Set-up time (pins 2, 3, 4, 5)
H-pulse width
2 digit operation
L-pulse width
2 digit operation
Set-up time

	min	typ	max	
$t_{\text {WH }} 8$	0.5	0.1		$\mu \mathrm{s}$
$t_{\text {WL }} 8$	3	1.5		$\mu \mathrm{s}$
$t_{\text {H }} 8$	0.3	0		$\mu \mathrm{s}$
$t_{\text {S }} 9$	0	-0.4		$\mu \mathrm{s}$
$t_{\text {H } 9}$	3	1.5		$\mu \mathrm{s}$
$t_{\text {S }} 7$	0	-0.3		$\mu \mathrm{s}$
$t_{\text {H }} 7$	3			$\mu \mathrm{s}$
$t_{\text {WH }} 7$	70	50		us
$t_{\text {WL } 7}$	3	1.6		$\mu \mathrm{s}$
$t_{\text {WH }}$		4.5		ms
$t_{\text {WL }}$		1. 5		ms
t_{S}	0		2	$\mu \mathrm{s}$
$t_{\text {WH }} 2.3$		3		ms
$t_{\text {WL } 2.3}$		3		ms
$t_{\text {S }} 2.3$	0		2	$\mu \mathrm{S}$

Truth table

$\begin{aligned} & \text { Data D } \\ & \text { LSB . . . MSB* } \end{aligned}$				Display	Segment driver (active H)						
L	L	L	L	0	H	H	H	H	H	H	L
H		L	L	1	L	H	H	L	L	L	L
L	H	L	L	2	H	H	L	H	H	L	H
H	H	L	L	3	H	H	H	H	L	L	H
L	L	H	L	4	L	H	H	L	L	H	H
H	L	H	L	5	H	L	H	H	L	H	H
L	H	H	L	6	H	L	H	H	H	H	H
H	H	H	L	7	H	H	H	L	L	L	L
L	L	L	H	8	H	H	H	H	H	H	H
H	L	L	H	9	H	H	H	H	L	H	H
L	H	L	H	dark	L	L	L	L	L	L	L
H	H	L	H	dark	L	L	L	L	L	L	L
L	L	H	H	dark	L	L	L	L	L	L	L
H	L	H	H	dark	L	L	L	L	L	L	L
L	H	H	H	dark	L	L	L	L	L	L	L
H	H	H	H	dark	L	L	L	L	L	L	L

Segment designation

[^29]
Block diagram

Pulse diagram

Bit No.

D

Memory contents after the rising edge of E:(4-digit operation)

Memory contents and display at 2-digit operation

Remark: The information at first shifted to D is displayed at digit 4; digit 3, digit 2, and digit 1 follow. At every digit, MSB has to be shifted first.

Timing diagram

4 digit operation

Timing diagram: Set-up and hold times

Application circuit: 4-digit operation

At 2-digit operation ($\overline{\mathrm{DI}}_{1}$ and $\overline{\mathrm{D}}_{2}$), 4 DI is grounded

Application circuit

Example: Cascade connection to 6 digits

The SDA 2105 IC is intended to display the channel number and the program number on the screen of TV receivers. The digits can be displayed at the top right, at the bottom right, and at the bottom left; the digits are 21 frame lines in height.

- 4-bit character set
- 3 fixed onscreen locations
- Onscreen locations can be driven and selected separately
- 5-digit onscreen location permits display of time or frequency

Type	Ordering code	Package outline
SDA 2105	Q 67000-Y 645	DIP 18

Maximum ratings (all voltages referred to $V_{\mathrm{SS}}=0 \mathrm{~V}$)

Supply voltage	$V_{\text {DD }}$	-0.3 to 12	V
Input voltages	V_{i}	-0.3 to 12	V
Total power dissipation	$P_{\text {tot }}$	850	mW
Thermal resistance (sytem - air)	$R_{\text {th SA }}$	70	K/W
Storage temperature range	$T_{\text {stg }}$	-25 to 125	${ }^{\circ} \mathrm{C}$
Range of operation (referred to $V_{\text {SS }}=0 \mathrm{~V}$)			
Supply voltage range	$V_{\text {DD }}$	9 to 11	V
Ambient temperature range	$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics (all voltages referred to $V_{\mathrm{SS}}=0 \mathrm{~V}$)

Supply current at $V_{\mathrm{DD}}=11 \mathrm{~V}$
Schmitt Trigger inputs LIM, FIM
H -input voltage
L-input voltage Input capacitance Input resistance
Line frequency
Field frequency
LH/HL transition time

	\min	typ	max	
I_{18}			70	m ${ }^{\text {A }}$
$V_{\text {i H } 14,17}$	5		11	V
$V_{\text {i L 14, } 17}$	0		0.8	V
$C_{\text {i } 14,17}$			10	pF
$R_{\text {i } 14,17}$	1			$\mathrm{M} \Omega$
$f_{\text {LIM }} 17$	15.5	15.625	15.7	kHz
$f_{\text {FIM }} 14$	45	50	52	Hz
t_{\top}			5	$\mu \mathrm{s}$

Inputs DATA, $\mathrm{CL}_{1}, \mathrm{ENA}_{1}, \mathrm{CL}_{2}, \mathrm{ENA}_{2}, \mathrm{CL}_{3}, \mathrm{ENA}_{3}$

H -input voltage
L-input voltage
Input capacitance
Input resistance
Overlap time
Follow-up time
LH/HL transition time
H pulse width
L pulse width

$V_{\mathrm{i} H 4} \ldots 10$	2.4
$V_{\mathrm{i} L 4} \ldots 10$	0
$C_{\mathrm{i}} 4 \ldots 10$	
$R_{\mathrm{i} 4} 410$	1
$t_{\mathrm{D} ~} 1$	2
$t_{\mathrm{D} ~} 2$	2
t_{T}	0
t_{WH}	5
t_{WL}	5

11	V
0.8	V
10	pF
	$\mathrm{M} \Omega$
5	$\mu \mathrm{~s}$
5 s	
	$\mu \mathrm{~s}$
$\mu \mathrm{~s}$	
$\mu \mathrm{~s}$	

Onscreen output EB ${ }_{1}$ (open drain output)
L-output voltage at $I_{\mathrm{L} 13}=3 \mathrm{~mA}$
H-leakage current at $V_{\mathrm{qH}}=11 \mathrm{~V}$
$V_{\text {q L } 13}$
$I_{\mathrm{H}} 13$
10

[^30]
Circuit description

The IC is used to display the channel number, the program number, and the reception frequency on the screen of a TV set. Two display locations of two digits each and one display location of five digits are available (refer to figure "Allocation").
The character set (4 bits/character) comprises the digits 0 to $9, A, V,-,:$, (refer to figure "Outline of the signs").

The information for a display location is transferred via three lines:
DATA (common to all three display locations)
ENA (Enable, a special line for every display location)
CL (Clock = read-in clock, a special line for every display location)
During switching of the supply voltage, the ENA line must be on low lewel in order to ensure a correct reset of the input registers. As long as a display location is not used, the pertinent ENA terminal must directly be connected to the pin $V_{\text {SS }}$.
The sequence of the information input is from LSB of the right sign to MSB of the left sign (refer to figure "Data input"). The information in the read-in register does not alter provided that either the ENA line or the CL line remains on low level.
During the read-in of new data (ENA $=$ high) the previous data is displayed and as soon as ENA moves to low again, the new data is displayed.
The IC includes an internal oscillator for the dot frequency. The oscillator frequency is automatically regulated according to the line frequency conditions such that independent of production deviations a fixed display raster is obtained. A capacitor should be connected to the terminals $I_{\text {OUT }}$ (pin 16) and I_{IN} (pin 15) in order to provide functioning of the regulation.
An N channel open-drain transistor is used as onscreen output EBA. In the case of onscreening, the transistor is switched on and moves the level towards low.

Pin designation

Pin No.	Symbol	Function	Pin No.	Symbol	Function
1	$V_{\text {SS }}$		18	$V_{\text {DD }}$	
2	PRIO	(f. test, not connected)	17	LIM	Line synch. pulse
3	PRS	(f. test, apply to $V_{\text {SS }}$)	16	$I_{\text {OUT }}$	Integrator
4	ENA $_{3}$	Enable bottom left	15	$I_{\text {IN }}$	Integrator
5	CL $_{3}$	Clock bottom left	14	FIM	Field synch pulse
6	DATA	Data	13	EBA	Onscreen output
7	CL $_{1}$	Clock bottom right	12	n.c.	
8	ENA $_{1}$	Enable bottom right	11	n.c.	
9	ENA $_{2}$	Enable top right	10	CL $_{2}$	Clock top right

Input signals $\mathrm{ENA}_{1}, \mathrm{ENA}_{2}, \mathrm{ENA}_{3}, \mathrm{CL}_{1}, \mathrm{CL}_{2}, \mathrm{CL}_{3}$, DATA
Timing diagram

Data transfer with DATA

Data channel proc.				Display
MSB		LSB		
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7
H	L	L	L	8
H	L	L	H	9
H	L	H	L	$:$
H	L	H	H	V
H	H	L	L	V
H	H	L	H	A
H	H	H	L	-
H	H	H	H	blank

$t_{3}=$ approx. $5.7 \mu \mathrm{~s}$
$t_{1}=$ approx. $40 \mu \mathrm{~s}$
$t_{\mathrm{L}}=$ approx. $2.8 \mu \mathrm{~s}$

Block diagram

General features

- Nonvolatile memory of electrical, word-organized reprogrammability, in n channel floating gate technology
- 512-bit storage capacity (32 words of 16 bits, each)
- Serial word address, chip seiect, and instruction input via an 8 -bit or 12-bit control word (switchable by means of external components)
- Erase and write duration determined with the aid of chip-internal control
- Signal outputs with open-drain stages active signal inputs and outputs can be inverted by terminal wiring
- Number of reprogrammings $>10^{4}$
- Unlimited number of read-out procedures without refresh
- Min. 10 years storage time

Type	Ordering code	Package outline
SDA 2006	Q67100-Q264	DIP 18

Maximum ratings

Supply voltage
Supply voltage
Supply voltage
Input voltage
Total power dissipation
Thermal resistance (system - air)
Storage temperatur range

		V
$V_{\text {DD 2-1 }}$	22	V
$V_{\mathrm{Pl} \mathrm{18-1}}$	22	V
$V_{\text {PP 3-1 }}$	41	V
$V_{\mathrm{i}-17}$	16	V
$P_{\text {tot }}$	400	KW
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
$T_{\text {stg }}$	-40 to 125	${ }^{\mathrm{C}}$

Range of operation (referred to $V_{\mathrm{SS}}=0 \mathrm{~V}$)

Supply voltage range	$V_{\mathrm{DD} 2}$	11 to 16	$\mathrm{~V}^{\mathrm{V}}$
Ambient temperature range	T_{amb}	0 to 70	${ }^{\circ} \mathrm{C}$

Static characteristics (all voltages referred to $V_{\mathrm{SS}}=0 \mathrm{~V}$)

Supply current

Substrate bias
Substrate current
Substrate current, average current
Substrate current, peak pulse current
Programming voltage
Programming current, quiescent current
Programming current, average current
Programming current, peak pulse current
Write voltage
Write current, quiescent current
Write current, average current
Write current, peak pulse current

Inputs

D_{i}
Φ / Φ
REC/ $\overline{\text { REC }}$

$$
\left(V_{\mathrm{H}}=V_{\mathrm{DD}}\right)
$$

STWL
(- $I_{\mathrm{L}}=100 \mu \mathrm{~A}$, pull-up resistors)
INV
CS_{3}
$\mathrm{CS}_{1}, \mathrm{CS}_{2}$
(with a control word of 12 bits only;
$\left.V_{\mathrm{H}}=V_{\mathrm{DD}}\right)$
$\left(V_{\mathrm{L}}=0 \mathrm{~V} ; V_{\mathrm{H}}=V_{\mathrm{DD}}\right)$
$\overline{\text { RES }}$

$$
\begin{aligned}
& \left(V_{\mathrm{L}}=0 \mathrm{~V}\right) \\
& \left(V_{\mathrm{H}}=V_{\mathrm{DD}}\right)
\end{aligned}
$$

Outputs

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{q}} / \overline{\mathrm{D}_{\mathrm{A}}}, \mathrm{~L} / \mathrm{L} \\
& \\
& \quad\left(I_{\mathrm{L}}=1 \mathrm{~mA} ; \text { open-drain stages }\right) \\
& \quad\left(V_{\mathrm{H}}=V_{\mathrm{DD}}\right)
\end{aligned}
$$

$$
V_{\mathrm{L} 14,13}
$$

$$
I_{\mathrm{H} 14,13}
$$

$|$| 0.5 | V |
| :--- | :--- |
| $V_{D D}$ | V |
| 10 | $\mu \mathrm{~A}$ |
| | |
| 0.5 | V |
| $V_{D D}$ | V |
| 10 | $\mu \mathrm{~A}$ |
| 10 | $\mu \mathrm{~A}$ |
| | |
| 300 | $\mu \mathrm{~A}$ |
| 0.5 | V |
| $V_{D D}$ | V |
| 200 | $\mu \mathrm{~A}$ |
| 200 | $\mu \mathrm{~A}$ |

$|$| 0.5 | V |
| :--- | :--- |
| 10 | $\mu \mathrm{~A}$ |

[^31]
Dynamic characteristics

Data bus

Φ-Ciock
INV on low
Φ-Clock
INV on high

Signal edge distance
INV on low or high
Programming duration
$\left(V_{\mathrm{PH}}=33 \mathrm{~V}, V_{\mathrm{PI}}=15 \mathrm{~V}\right)$
Programming frequency

	\min	typ	\max	
t_{H}	5			$\mu \mathrm{~s}$
t_{L}	10			$\mu \mathrm{~s}$
t_{H}	10			$\mu \mathrm{~s}$
t_{L}	5			$\mu \mathrm{~s}$
t_{V}	5			
t_{S}	5			$\mu \mathrm{~s}$
t_{R}	5			$\mu \mathrm{~s}$
$t_{\text {prog }}$			1	s
$f_{\text {prog }}$			1	Hz

INV on low

Signal edge distance

Circuit description

Data transfer

Data transfer with the SDA 2006 is performed serially via a 5 -line bus, consisting of:
Data input D_{i}
Data output $\mathrm{D}_{\mathrm{q}} / \overline{\mathrm{D}_{\mathrm{q}}}$
Data input signal REC/ $\overline{\operatorname{REC}}$ (receive data)
Clock input Φ / Φ
Programming output signal \bar{L} / L (load)
The active input or output levels, respectively, may be inverted via the input INV. They are switchable, as a group, in order to facilitate adaptation to different external circuits.

Terminal	Potential		Remark
INV	low $\left(V_{\mathrm{SS}}\right)$	high $\left(V_{\mathrm{DD}}\right)$	
$\mathrm{D}_{\mathrm{i}} / \overline{\mathrm{D}_{\mathrm{q}}}$	$\mathrm{D}_{\mathrm{i}}=\mathrm{D}_{\mathrm{q}}$	$\mathrm{D}_{\mathrm{i}}=\overline{\mathrm{D}_{\mathrm{q}}}$	
$\mathrm{REE} / \overline{\operatorname{REC}}$ $\bar{L} / \overline{\mathrm{L}}$	high	low	During data input
$\overline{\mathrm{L} / \mathrm{L}}$	low	low	Active shift pulse high

Chip control

The control information is input via data input D_{i} in the form of a control word, the length of which may be set via input STWL:

Terminal STWL	low	high (open or $\left.V_{D D}\right)$
Control word length	8 bits	12 bits

The control words contain information on word address, chip address, and instruction, and have the following formats (A_{0} as LSB at first):

8-bit control word	A_{0}	A_{1}	A_{2}	A_{3}	A_{4}	B_{1}	B_{2}	C_{3}			
12-bit control word	A_{0}	A_{1}	A_{2}	A_{3}	B_{0}	B_{1}	B_{2}	B_{3}	A_{4}	C_{1}	C_{2}
C_{3}											

with $A_{0} \ldots \ldots . A_{4} \quad$ Word address bits
$\mathrm{B}_{0} \ldots \ldots \mathrm{~B}_{3} \quad$ Instruction bits
$\mathrm{C}_{1} \ldots \ldots . \mathrm{C}_{3} \quad$ Chip select bits

Instruction coding

B_{0}	12-bit control word			Instruction
	B_{1}	B_{2}	B_{3}	
low low low	high low low	high high low	high high high	Read out, D_{9} as LSB Read out, D_{1} as LSB Programming
	8-bit control word			

Chip select

An instruction is only decoded in a memory, if the information of the chip select bits matches that of the chip select inputs.

CS_{1} and CS_{2} remain unconnected in the case of the 8 -bit control word.

Read-out (figure 1a and 1b)

Prior to the read operation of the memory the 8 -bit or 12 -bit control word must be serially clocked into the data input D. 8 or 12 clock pulses, respectively, at the input Φ / Φ are necessary for the input of the control word. During the input, the REC/ $\overline{\operatorname{REC}}$ input is active (active high for low at INV, active low for high at INV).
The information input is closed by means of the trailing edge of the REC/ $\overline{\operatorname{REC}}$ signal and at chip select the read-out instruction is decoded. In this way, also the data output D_{i} / \bar{D}_{g} becomes low-ohmic.
With the aid of a further clock pulse S, the read-out operation is initialized. The data is shifted with the trailing edge of further clock pulses. The LSB arrives at the data output with the first of these pulses. During the read-out operation via the control word either the first data bit D_{1} or the ninth data bit D_{9} can be chosen as LSB. The read-out operation can be discontinued after any number of shift pulses. Thus,every stored 16 -bit data word can also be read split into two 8 -bit data words.

Reprogramming (figure 2a and 2b)

Prior to programming, the 16-bit data word (D_{1} as LSB, first), then the 8-bit or 12-bit control word at the data input D_{i} must be clocked in by means of the active REC/REC signal. It is the trailing edge of the REC/ $\overline{\operatorname{REC}}$ signal which decodes the programming instruction at chip select. The reprogramming operation, however, only starts with the trailing edge of a further clock pulse and is recorded to the memory controller via the \bar{L} / L signal.

The duration $t_{\text {prog }}$ of reprogramming is determined by chip-internal control. Independent of the external operating voltages V_{PH} and V_{PI} the erase and the write operation are only finished after every memory has reached the desired state. During rewriting, the memory cannot be influenced externally, because the input REC/ $\overline{\operatorname{REC}}, \Phi / \Phi$ and D_{i} remain blocked. Premature termination of the operation can only be caused by zero level at the input $\overline{\mathrm{RES}}$.

Reset function

A low level voltage at the input $\overline{\operatorname{RES}}$ moves the memory into the reset status. A voltage divider is internally connected to the input. It reliably finishes the reset status for $V_{\mathrm{DD}}>11 \mathrm{~V}$.

Voltage supply

The SDA 2006 includes four brought out voltage inputs $V_{\mathrm{PP}}, V_{\mathrm{Pl}}, V_{\mathrm{DD}}, V_{\mathrm{BB}}$ with respect to $V_{\text {SS }}$ (ground). Normally, $V_{\text {DD }}$ and $V_{\text {PI }}$ are externally interconnected. The voltages V_{PH} and V_{PI} are only required during the programming operation. During read out or in the quiescent state, they may also be open or grounded. The values of these voltages are only of influence on the duration, but not on the reliability of the nonvolatile storage operation. Figure 3 shows an appropriate circuit configuration as tuning memory in TV sets.

Inverted level (input INV on high or open)

Figure 1a

Non-inverted level (input INV on low)

Figure 1b

Figures 1a and 1b Read operation (only the pertinent active levels are indicated)

Inverted level (input INV on high or open)

Figure 2a

Non-inverted level (input INV on low)

Figure 2b

Figures 2a and 2b Programming operation (only the pertinent active levels are indicated)

Pin designation

Pin No.	Symbol	Function
1	$V_{\text {BB }}$	Substrate bias
2	$V_{\text {DD }}$	Supply voltage
3	$V_{\text {PP }}$	Programming voltage
4	STWL	Control word length 12 or 8 bits (input) (12 bits for high or open)
5		Remains open
6	$\overline{\text { RES }}$	Reset input
7		Remains open
8	Di	Data input
9	CS_{3}	Chip select input (8-bit or 12-bit control word)
10	CS_{2}	Chip select input (12-bit control word)
11	CS_{1}	Chip select input (12-bit control word)
12	Φ / Φ	Clock input*
13	L/L	Programming signal output (load)*
14	$\mathrm{D}_{\mathrm{q}} / \overline{\mathrm{D}}_{\mathrm{q}}$	Data output*
15	INV	Signal inverting (input)
16	REC/ $\overline{\text { REC }}$	Data input control input (receive)*
17	$V_{\text {SS }}$	Ground
18	$V_{\text {PI }}$	Write voltage

[^32]Figure 3: SDA 2006 as tuning memory in TV sets

MOS circuit

The SDA 2007 IC is a further development of the SAB 3209 and SAB 4209 ICs. Like these it utilizes the proven biphase code for IR transmission. The SDA 2007 can be applied with the SAB 3210 as well as with the SDA 2008 as IR instruction generator. This IC is particularly intended for operation with the tuning system SDA 200. It does not contain a program memory which is now included in the channel processor SDA 2003.

- 2 combined serial interfaces with common data line for information transfer
- Microprocessor suitable serial interface
- Front-end control for volume storage, standby and keyboard changeover
- 2 T F-F spare outputs
- Switchable startbit

Type	Ordering code	Package outline
SDA 2007	Q 67100-Y504	DIP 18

Maximum ratings (all voltages referred to $V_{D D}=0 \mathrm{~V}$)

Supply voltage range	V_{SS}	0 to 18	V
Input voltage	V_{i}	0 to V_{SS}	V
Power dissipation, each output	P_{q}	100	mW
Total power dissipation	$P_{\text {tot }}$	500	mW
Storage temperature range	$T_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$

Range of operation (referred to $V_{D D}=0 \mathrm{~V}$)
Supply voltage range
Ambient temperature range

VSS	11 to 16

$T_{\text {amb }}$	0 to 70

Characteristics (all voltages referred to $V_{\mathrm{DD}}=0 \mathrm{~V}$)

Supply current ($V_{\mathrm{SS} 1}=16 \mathrm{~V}$)

Input CLCK

Clock frequency
Coupling capacitor

Inputs VPM, STBT

H input voltage
L input voltage

Input RSIG

H input voltage
L input voltage
L pulse width
Input resistance

Input ONOFF

H input voltage ($\left|I_{\mathrm{i}}^{\mathrm{H} 7} \mathrm{l}\right|<1 \mathrm{~mA}$)
Outputs TUS $_{1}$, TUS $_{2}$,
ONOFF, RSV ${ }_{1}$, RSV $_{2}$
H output voltage (Test circuit 1)
L output voltage (Test circuit 2)
Outputs TE, DLE, DATA
H output voltage (Test circuit 3)
L output voltage (Test circuit 4)
Outputs CONT, COLO, BRIG, VOLU
H output voltage (Test circuit 3)
L output voltage (Test circuit 2)

$f_{\mathrm{CL} 2}$	20	62.5	70	kHz
C_{C}	10			

$V_{\mathrm{iH} 14,16}$			
$V_{\mathrm{iL} 14,16}$	$\left\|\begin{array}{l}V_{\mathrm{SS}}-1\end{array}\right\|$	$\begin{array}{l}V_{\mathrm{SS}} \\ V_{\mathrm{SS}}-7\end{array}$	V

$V_{\mathrm{iH} 17}$	$V_{\mathrm{SS}}-1$		
$V_{\mathrm{iL} 17}$	0	V_{SS}	V
t_{WL}	2		
$R_{\mathrm{i} 17}$	0.2	$V_{\mathrm{SS}}-3.5$	V
$\mu \mathrm{~S}$			
			$\mathrm{M} \Omega$

$V_{\text {iH } 7}$
$\left|V_{\mathrm{SS}}-1\right| \quad \mid V_{\mathrm{SS}}$ |V

$$
\begin{array}{l|l|l|l}
V_{\mathrm{qH} 5,6,7,8,9} & V_{\mathrm{SS}}-1.5 \\
V_{\mathrm{qL5}, 6,7,8,9} & 0
\end{array}\left|\begin{array}{l}
V_{\mathrm{SS}} \\
0.35
\end{array}\right| \begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
$$

$V_{\mathrm{qH} 3,4,15}$	$V_{\mathrm{SS}}-2$		
$V_{\mathrm{qL} 3,4,15}$	0	V_{SS}	V
V			

| $V_{\mathrm{qH}} 10,11,12,13$ | $V_{\mathrm{SS}}-1.5$ |
| :--- | :--- | :--- | :--- |
| $V_{\mathrm{qL} 10,11,12,13}$ | 0 |\(\left|\begin{array}{l}V_{\mathrm{SS}}

0.35\end{array}\right|\)| V |
| :--- |

Circuit description

The circuit is used as receiver for IR remote control of TV sets. It includes two combined serial interfaces for universal extensions and is especially suitable for use in connection with the tuning system SDA 200.

1. IR receiver

Pin RSIG

It accepts the IR signal and outputs the received instructions at the serial interface.
The IR signal consists of ac pulses at a frequency of approx. 30 kHz and a duration of approx. 0.5 msec . per pulse group. The instructions are transferred as 7 -bit words (1 start bit and 6 information bits) in the biphase code (see timing diagram 1).

Pin STBT

Via the input STBT, the receiver can be changed to a negated start bit (e.g. for separation between TV and broadcasting remote control).
In this context, there is:

$$
\begin{aligned}
& \text { STBT }=\mathrm{H} \rightarrow \text { start bit }=1 \\
& \text { STBT }=\mathrm{L} \rightarrow \text { start bit }=0
\end{aligned}
$$

2. Serial interface (I bus)

Pins DATA, DLE, TE
Both the combined serial interfaces utilize the pin DATA via which the actual information (leading bit LB and 6 information bits) is serially processed. They differ by their different enable signals DLE and TE which may appear at the TUS ${ }_{1}$ or TUS_{2} output depending on their level and instruction (see also timing diagram of the I bus output):

	TUS_{1}	TUS 2	DLE output	TE output
TV level	L	L	all instructions in the repeat mode	all instructions in the repeat mode
Text level	H	L		except the instructions 2
Spare level	L	H	DLE $=\mathrm{L}$	and 62, all instructions in single mode (without end instruction)

The output stages are open-drain stages with included load resistances.

3. Analog value memory

Pins VOLU, BRIG, COLO, CONT

The circuit includes 4 memories for the setting of volume, brightness, color saturation, and contrast.
There are approx. 60 stages of analog output voltage adjustment. The adjustment speed corresponds to the repetition frequency of the repeat instructions (approx. 8 Hz). The voltages are output as square-wave voltage at a frequency of approx. 1 kHz , with the duty cycle corresponding to the analog value. The analog voltage is provided in an external lowpass by forming the mean time value.
It is the instruction "normal position" which moves the analog value memory into a maskprogrammable normal position; here these are: $\nu_{\text {VOLU }}=1 / 3, v_{\text {BRIG }}=v_{\text {COLO }}=v_{\text {CONT }}=$ $1 / 2$ with $v=t_{\text {high }} / T$; the same normal position is achieved when the supply voltage rises starting from zero.

The standby status keeps all analog memory outputs on low level - the last set analog values remain stored.

Quicktone

The volume output is kept on low level as long as the quicktone flipflop is set. The instruction "quicktone" moves the flipflop into the complementary status.
The flipflop is reset

- by the instruction "volume +"
- by the status "standby"
- by the instruction "normal"
- by the instructions 16 to 25 (digits 0 to 9), however not, if TUS $_{1}$ or TUS $_{2}$ is set to high level.
- by the instruction "TUS ${ }_{1}$ " or " TUS_{2} ".

Pin VPM

The input VPM provides front-end operation for the volume storage VOLU. If this pin is applied to high (low) it corresponds to the input of the instruction "volume $+(-)$ ".
The adjustment speed of the memory is the same as for operation via the transmitter (approx. 8 Hz).

4. Standby input/output ONOFF

This pin controls the mains via a transistor. The output can be set into both positions from outside.

Low $\hat{=}$ on, high $\hat{=}$ standby
The preferred position is high. It is set

- when the operating voltage is switched on
- when the instruction 2 " ${ }^{\text {Standby" is given. }}$

With the instructions 5 to 7 and 16 to 25 the status "low/on" is set.

5. Keyboard changeovers
 Pin TUS ${ }_{1}$ and TUS ${ }_{2}$

The outputs are controlled by an alternating flipflop, each. Every pressure on the appropriate button of the transmitter causes a change of the pertinent output into the complementary status. Both outputs can be set from outside into both positions.

The preferred position is low (TV set operation).
It is set

- when the supply voltage is switched on,
- when the standby mode exists

If TUS ${ }_{1}$ or TUS $_{2}$ are on high level, DLE remains on low level. The instructions are then only issued via the serial interface TE/DATA as single instructions ${ }^{1}$). Not every instruction is encoded in the receiver (see instruction set).

The status $\mathrm{TUS}_{2}=\mathrm{H}\left(\mathrm{TUS}_{1}=\mathrm{H}\right)$ resets $\mathrm{TUS}_{1}\left(\mathrm{TUS}_{2}\right)$ to low.

6. Spare functions

Pins RSV ${ }_{1}$ and RSV $_{2}$
The outputs are controlled by a T flipflop, each. With every pressure on the relevant button of the transmitter, the output changes to the complementary status. It can also be set from outside into both states.

The preferred position of RSV_{1} is high, that of RSV_{2} low.
It is set:

- when the operating voltage is switched on
- when the status "Standby" exists
- when the instruction "normal" is output.

[^33]
Oscillator connection

Test circuits

Code table, LB (leading bit) $=\mathrm{H}$

Instruction No.	\|F E D	C B A	Function at $\mathrm{TUS}_{1}=\mathrm{L}, \mathrm{TUS}_{2}=\mathrm{L}$	Function at $\operatorname{TUS}_{1}=\mathrm{H}$, TUS $_{2}=\mathrm{L}$	Function at $\operatorname{TUS}_{1}=\mathrm{L}, \operatorname{TUS}_{2}=\mathrm{H}$
0	L L L	L L L			-
1		L L H	Quicktone	Quicktone	-
2		L H L	Standby	Standby	Standby
3		L H H	Spare 1	-	-
4		HLL		-	
5		H L H	TUS ${ }_{1} / \mathrm{On}$	TUS ${ }_{1}$	TUS ${ }_{1}$
6		H H L	A previous prog.		
7		H H H	$\mathrm{TUS}_{2} / \mathrm{On}$	TUS 2	TUS ${ }_{2}$
8	L L H	L L L	Volume +	Volume +	-
9		L L H	Volume -	Volume -	-
10		L HL	Brightness +	Brightness +	-
11		L H H	Brightness -	Brightness -	-
12		HLL	Color +	Color +	-
13		HL H	Color -	Color -	-
14		H H L	Contrast +	Contrast +	-
15		HHH	Contrast -	Contrast -	-
16	L HL	L L L	On	-	-
17		L L H	On	-	-
18		L H L	On	-	-
19		L H H	On	-	-
20		H L L	On	-	-
21		H L H	On	-	-
22		H H L	On	-	-
23		H H H	On	-	-
24	L H H	L L L	On	-	-
25		L L H	On	-	-
26		L HL	,	-	-
27		L H H	-	-	-
28		HLL	-	-	-
29		HL H	-	-	-
30		H H L	-	-	-
31		HHH	-	-	-
32	H L L	L L L	Spare 2	-	-
33		L L H	-	-	-
34		L HL	-	-	-
35		L H H	-	-	-
36		HLL	-	-	-
37		HL H	-	-	-
38		H H L	-	-	-
39		H H H	-	-	-
40	H L H	L L L	-	-	-
41		L L H	-	-	-
42		L HL	-	-	-
43		L H H	-	-	-
44		HLL	-	-	-
45		HL H	-	-	-
46		H HL	-	-	-
47		HHH	-	-	-

Code table (cont'd), LB (leading bit) $=\mathrm{H}$

Instruction No.	F E D	C B A	Function at $\operatorname{TUS}_{1}=\mathrm{L}, \mathrm{TUS}_{2}=\mathrm{L}$	Function at TUS $_{1}=\mathrm{H}$, TUS $_{2}=\mathrm{L}$	Function at $\operatorname{TUS}_{1}=\mathrm{L}, \mathrm{TUS}_{2}=\mathrm{H}$
48	H H L	L L L	-	-	-
49		L L H	-	-	-
50		L HL	-	-	-
51		LHH	-	-	-
52		HLL	-	-	-
53		HL H	-	-	-
54		H HL	-	-	-
55		HH H	-	-	-
56	H H H	L L L	-	-	
57		LL H	-	-	-
58		L HL	-	-	-
59		L H H	-	-	-
60		HLL	-	-	-
61		HL H	-	-	-
62		H H L	End-instruction	End-instruction	
63		HHH	not permitted	not permitted	not permitted

Timing diagrams

IR biphase coding

I bus output

Pin designation

Pin No.	Symbol	Function
1	VSS	Supply voltage + pole
2	CLCK	osc. input
3	TE	Text enable + clock
4	DLE	TV enable + clock
5	TUS ${ }_{1}$	Keyboard changeover 1
6	TUS $_{2}$	Keyboard changeover 2
7	ONOFF $^{\text {RSV }} 1$	Standby output
8	RSV $_{2}$	Spare 1
9	CONT	Spare 2
10	COLO	Analog memory
11	Analog memory	
12	BRIG	Analog memory
13	VOLU	Analog memory
14	VPM	Front-end control for VOLU
15	DATA	Serial interface
16	STBT	Start bit changeover
17	RSIG	IR input
18	VDD	Supply voltage -pole

Block diagram

Application circuit

The SDA 2008 IC is a further development of the infrared transmitter IC SAB 3210. It includes a disconnectable 8 -stage divider, thus enabling the oscillator to operate up to 500 kHz with a ceramic oscillator instead of an LC circuit.

- Complete security of the keyboard against operating errors
- Instruction expandability up to 60 instructions is possible by using diodes and additionally by means of a shift button (keyboard changeover)
- Programmable start bit by external voltage
- Wide supply voltage range between 5 V and 16 V
- Low current consumption, typically 3 mA . The battery can be switched off by an external transistor
- With the aid of special contacts, ASC II transmission with 64 instructions is possible
- No external column resistors necessary

Type	Ordering code	Package outline
SDA 2008	067100-Y503	DIP 18

Maximum ratings (all voltages referred to $V_{\mathrm{DD}}=0 \mathrm{~V}$)

Supply voltage	V_{SS}	18	V
Input voltage	V_{i}	18	V
Power dissipation per output	P_{q}	100	mW
Total power dissipation	$P_{\text {tot }}$	500	mW
Storage temperature range	T_{stg}	-55 to 125	${ }^{\circ} \mathrm{C}$

Range of operation (referred to $V_{D D}=0 \mathrm{~V}$)

Supply voltage range	$V_{\mathrm{SS} 1}$	5 to 16	V
Supply voltage range ${ }^{1}$)	$V_{\mathrm{SS} 1}$	5.5 to 16	$\mathrm{~V}^{\prime}$
Ambient temperature range	T_{amb}	0 to 70	${ }^{\circ} \mathrm{C}$

[^34]Characteristics (all voltages referred to V_{DD})

Supply current (outputs not connected) Leakage current, total current (outputs $V_{\mathrm{q} 2,3,4,5,7,8}$)

Inputs

Oscillator input CLCK I
Operating frequency with prescaler Operating frequency for external clock with disconnected prescaler

IRA remote control signal output

H-output voltage (refer to test circuit)
$I_{\mathrm{qH}}=4 \mathrm{~mA} ; V_{\mathrm{SS}}=6 \mathrm{~V}$
H-resistor with respect to V_{SS}
ETA switch-on transistor output
H -output current
$V_{\mathrm{q} 7}=V_{\mathrm{SS}}-4 \mathrm{~V}$

	\min	typ	\max	
I_{6}		3	7	mA
$I_{2,3,4,5,7,8}$			1	$\mu \mathrm{~A}$

f_{17}
f_{17}
160
20
| 560
$\left\lvert\, \begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz}\end{aligned}\right.$
$\left|\begin{array}{l}v_{S S}-5 \\ 200\end{array}\right|$

$R_{\text {q }} \mathrm{H} 8$
$V_{\mathrm{q}} \mathrm{H} 8$
$I_{\text {q H7 }}$
100
$|10.000| \mu \mathrm{A}$

Row input 1 to 8 (internal pull-high resistor)

The row inputs are connected to the column outputs when a command shall be sent.
The maximum resistance of the connection is that of a silicon diode junction in forward direction and in series to that a resistance of 100Ω. The minimum resistance is zero.
For command extension 2 rows can be connected with one column output.

ETA input

The ETA input is connected to the battery voltage via the base-emitter diode of the NPN switching transistor.

PPIN program input

The PPIN input is joined with the corresponding column output or with the IRA output in this case, the resistance IRA to $-V_{\mathrm{S}}$ should be between $33 \mathrm{k} \Omega$ and $47 \mathrm{k} \Omega-$ via a diode if a special function is required. Combinations are possible.
In this connection the maximum resistance is that of a silicon diode in forward direction and in series to that a resistance of 100Ω. The minimum resistance is zero.

Description of function

The SDA 2008 IC works as a transmitter for the infrared remote control system IR 60.
The PMOS circuit contains a control output for an NPN transistor which switches off the supply voltage when no button is pressed (i.e no row is in "LOW" state).

Input, keyboard

The transmitter contains an input matrix of 8 rows and 4 columns. In order to input an instruction, a row must be connected to a column. Thus, the transmitter is switched on and the appropriate instruction is sent. Without further measures it is possible to issue up to 32 instructions. The instruction set can be extended up to 60 either with the aid of additional diodes (for this purpose 2 diodes are required for each 4 additional instructions) or up to 62 instructions with a shift button. In both cases the additional connection (diodes to row 8 or shift button) is necessary prior to the emission of the first instruction - after that the originally allocated instruction is sent independent of the additional connection.
As a fifth matrix column, $-V_{\mathrm{S}}$ can be used to input the instructions 40 to 47 (without external diode connection using only one button, each).

Operating error

The circuit includes a security lock against multi-operation (depression of several buttons simultaneously). An exception is the double operation inside a column with one of the rows 1 to 7 and row 8 , since this combination is used in order to extend the instruction set with the aid of diodes. After transmission of the first infrared instruction after the startbit, there is however also security against this double operation.

Start instruction, end instruction

After the switch-on, the instruction No. 62 is issued as start instruction thus indicating to the receiver the start of the instruction transmission.

In case of an operating error, this instruction is given as a consequence of the security lock. If the button or buttons are released then the chosen instruction is maximally sent once more (depending upon the exact instant of release) and then the instruction No. 62 is sent once as stop before the supply voltage is switched off. There is security against changing one instruction to another than the instruction No. 62.

Output

The transmitter encodes the input in bi-phase code (refer to timing diagram). Prior to the 6 information bits, a presignal and a startbit which can be selected via PPIN, are sent. The presignal enables proper control of the preamplifier on the receiver side, whereas the startbit is used for receiver discrimination. Thus it is possible to control a TV set and a radio in one room independently of each other with the same remote control system.
The output signal is carried at $1 / 16$ of the clock frequency ($f_{\mathrm{CLCKI}} / 16$) and a pulse duty factor of 1:4. With the help of corresponding wiring of the program input PPIN, the carrier can be switched off. Thus any other external carrier can be used.

Instruction interval

The interval between two given instructions (except the start instruction) is approximately 12 times the instruction length (incl. presignal) or 35,536 CLCKI clocks, respectively. This interval can be reduced to 30,976 CLCKI clocks in order to obtain diminished instruction intervals at lower clock frequencies.

Operation at low clock frequency

The prescaler (divide by 8) can be switched off. Thus, operation is possible at a clock frequency of approx. 500 kHz or 62.5 kHz , as required. The prescaler can only be switched off if - at low resistance - the IRA output is not forced to LOW (by means of a base-emitter space), e.g. in the case of wiring for front-end control.

Operation without switching transistor

At operation with a fixed supply voltage (ETA = LOW), the columns a to d are periodically interrogated (H -pulse) in the normal sequence (as if an instruction is emitted) in order to permit an external synchronization.
After the supply voltage has risen from 0 V on, the flow of control is brought into a definite state and starts column addressing. After having recognized a row in the "LOW" state, the flow of control is reset - then the flow corresponds until disconnection to that at battery voltage operation. After the end of the transmission the flow of control continues column addressing, however, without any further output to IRA.

Multi-transmitter operation:

Without great increase in external circuitry it is possible to cascade two SDA 2008 ICs such that these can be multiplexed to give out the instructions. For this purpose it is utilized that the flow of control and the instruction register are reset if the columns a and b are simultaneously on high level.

PPIN connections:

Connect with:	Function
Column a	Shift into second instruction group (bit $\mathrm{F}=" 1 "$
Column b	Shortened instruction interval
Column c	Startbit $={ }^{\prime 0} 0$
Column d	No carrier of the IRA signal
IRA	Bridging the prescaler

(In the case of combinations of these functions, decoupling with diodes according to figure PPIN circuitry is necessary).

ETA circuit:
$\mathrm{ETA}=V_{\mathrm{DD}}$

ETA to base of the voltage commutation transistor

Operation at constant supply voltage.
If no row is set to "LOW", IRA is without output, however permanent column addressing.

Normal battery operation including disconnection of the supply voltage after the end instruction at open row combination.

Instruction set

No diodes at Z_{8} unshifted

Instr. No.	Code FED CBA	Key
0	000000	1a
1	000001	1b
2	000010	1c
3	000011	1d
4	000100	2a
5	000101	2b
6	000110	2c
7	000111	2d
8	001000	3a
9	001001	3b
10	001010	3c
11	001011	3d
12	001100	4a
13	001101	4b
14	001110	4 c
15	001111	4d
16	010000	5a
17	010001	5 b
18	010010	5 c
19	010011	5d
20	010100	6a
21	010101	6b
22	010110	6c
23	010111	6d
24	011000	7a
25	011001	7b
26	011010	7c
27	011011	7d
28	011100	8a
29	011101	8b
30	011110	8c
31	011111	8d

shifted

Instr.	$\begin{array}{l}\text { Code } \\ \text { No. }\end{array}$	
FED	CBA	
32	100	000
33	100	001
34	100	010
35	100	011
36	100	100
37	100	101
38	100	110
39	100	111
40	101	000
41	101	001
42	101	010
43	101	011
44	101	100
45	101	101
46	101	110
47	101	111
48	110	000
49	110	001
50	110	010
51	110	011
52	110	100
53	110	101
54	110	110
55	110	111
56	111	000
57	111	001
58	111	010
59	111	011
60	111	100
61	111	101
62	111	110
62	111	110

With diodes at Z_{8}
unshifted and \leftarrow shifted

Instr. No.	$\begin{aligned} & \text { Code } \\ & \text { FED BCA } \end{aligned}$	Key
32	100000	81a
33	100001	81b
34	100010	81c
35	100011	81d
36	100100	82a
37	100101	82b
38	100110	82c
39	100111	82d
40	101000	83a
41	101001	83b
42	101010	83c
43	101011	83d
44	101100	84a
45	101101	84b
46	101110	84c
47	101111	84d
48	110000	85a
49	110001	85b
50	110010	85 c
51	110011	85d
52	110100	86a
53	110101	86b
54	110110	86c
55	110111	86d
56	111000	87a
57	111001	87b
58	111010	87c
59	111011	87d

Special group
unshifted and \leftarrow shifted
$\left.\begin{array}{l|l|l}\hline \begin{array}{l}\text { Instr. } \\ \text { No. }\end{array} & \begin{array}{l}\text { Code } \\ \text { FED }\end{array} & \text { CBA }\end{array}\right)$ Key \quad.

Instruction interval (prescaler switched on)

Interval	Interval in CLCKI clocks	Interval in msec $f_{\text {CICKI }}=500 \mathrm{kHz}$	PPIN connected to column b
Normal	65536	approx. 131	
Reduced	30976	approx. 62	X

Definition of the instruction interval

Hints for special functions

							¢ $\stackrel{\text { ¢ }}{0}$ \% 2	
Start bit changeover	X	X	X	X	X	X	X	
Shift into second group	X	x	x	X		X	X	
Diode matrix	X	X	X	X	X	X	x	
Special instruction group	x	x	x	x	X	x	x	
No carrier		X	X		X			
Bridged prescaler		X						
Shortened instruction interval			X	X				
Cascade connection				x			x	
No debounce delay								X
Special connection			X		X	X		

Pin designation

Pin No.	Description
1	$V_{\text {SS, }}+$ supply voltage
2	Column a
3	Column b
4	Column c
5	Column d
6	$V_{\text {DD, -supply voltage }}$
7	ETA (switch-on transistor output)
8	IRA (infrared output)
9	Row 1
10	Row 2
11	Row 3
12	Row 4
13	Row 5
14	Row 6
15	Row 7
16	Row 8
17	CLCKI (oscillator input)
18	PPIN (programming input)

Oscillator connection

1)

$C_{C} \geq 10 n \mathrm{FF} \quad f_{\mathrm{CLCKI}} \approx \frac{1}{2 \pi \sqrt{L_{0} C_{0}}}$
2)

Leakage current, total current (test current)

IRA remote control signal output (test circuit)

Biphase coding from instruction 011001

Exact pulse train of a burst for 1):
$\rightarrow \|_{\rightarrow T}^{1 / 4} T \quad$ (with $T=\frac{16}{f_{\text {CLCKI }}}$, or $T=\frac{2}{f_{\text {CLCKI }}}$)

Actuating a button (e.g. 1a), $\boldsymbol{f}_{\text {CLCKI }}=\mathbf{5 0 0} \mathbf{k H z}$

Releasing a button (1a), $\boldsymbol{f}_{\text {CLCKI }}=\mathbf{5 0 0} \mathbf{~ k H z}$

Instruction interval, $f_{\text {CLCKI }}=\mathbf{5 0 0} \mathbf{~ k H z}$

PPIN at IRA (bridged prescaler) $\boldsymbol{f}_{\text {CLCKI }}=\mathbf{6 2 . 5} \mathbf{~ k H z}$

PPIN at column b (shortened instruction interval) $\boldsymbol{f}_{\mathrm{CLCKI}}=\mathbf{5 0 0} \mathbf{~ k H z}$

PPIN connection

*) Disconnection only possible, if IRA is not set to $-V_{\mathrm{S}}$ at low impedance.

Extension for 60 instructions with additional diodes

Application circuit for front-end control

[^35]
$-V_{\mathrm{S}}$ as fifth matrix column

Application circuit

[^36]
External connection for cascading of two SDA 2008

Transmitter I (master transmitter)

Transmitter II

from transmitter I
Complete spec. operating voltage range

ICs for Special Broadcasting Applications

Tuners
IF stage
System for the reception of road traffic transmitters (ARI)
Voltage synthesis
Frequency counters
Stereo decoders
ICs for cassette and tape recorders

Symmetrical mixer for frequencies up to 200 MHz . It can be driven from an external source or from the built-in oscillator. The input signals are suppressed at the outputs. In addition to the usual mixer applications in receivers, converters, and demodulators for AM and FM, the S 042 can also be used as an electronic polarity switch, multiplier etc.

- Versatile application
- Wide range of supply voltage
- Few external components
- High conversion transconductance
- Low noise figure

Type	Ordering code	Package outline
S 042 P	Q67000-A335	DIP 14
S 042 E	Q67000-A627	5 J 10 DIN 41873/sim. to TO 100

Maximum ratings

Supply voltage
Storage temperature range
Junction temperature
Thermal resistance (system-air)
S 042 P :
S 042 E :

	$V_{\text {s }}$	15	V
	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
	$T_{\text {j }}$	150	${ }^{\circ} \mathrm{C}$
S 042 P :	$R_{\text {th SA }}$	90	K/W
S 042 E :	$R_{\text {th }} \mathrm{SA}$	190	K/W

Range of operation
Supply voltage range
Ambient temperature range

Characteristics ($\left.V_{\mathrm{S}}=12 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption
Output current
Output current difference
Supply current
Power gain
($f_{\mathrm{i}}=100 \mathrm{MHz}, f_{\text {osc }}=110.7 \mathrm{MHz}$)
Breakdown voltage
$\left(I_{2,3}=10 \mathrm{~mA} ; V_{7,8}=0 \mathrm{~V}\right)$
Output capacitance
Conversion transconductance ($f=455 \mathrm{kHz}$)
Noise figure

	min	typ	max	
$I_{\mathrm{S}}=I_{2}+I_{3}+I_{5}$	1.4	2.15	2.9	mA
$I_{2}=I_{3}$	0.36	0.52	0.68	mA
$I_{3}-I_{2}$	-60		60	mA
I_{5}	0.7	1.1	1.6	mA
G_{p}	14	16.5		dB
V_{2}, V_{3}	25			V
$C_{2-\mathrm{M}, C_{3-\mathrm{M}}}$		6	I	
$S=\frac{I_{2}}{V_{7}-V_{8}}=\frac{I_{3}}{V_{7}-V_{8}}$		5	pF	
$N F$		7	mS	

All connections mentioned in the index are referred to $\mathrm{S} 042 \mathrm{P}\left(\mathrm{e} . \mathrm{g} . I_{2}\right)$

Test circuit

Connections in parentheses apply to S 042 E

Circuit diagram

Connections in parentheses apply to S 042 E

A galvanic connection between pins 7 and 8 and pins 11 and 13 through coupling windings is recommended.

Between pins 10 and 14 (ground) and between pins 12 and 14, one resistance each of at least 200Ω may be connected to increase the currents and thus the conversion transconductance. Pins 10 and 12 may be connected through any impedance. In case of a direct connection between pins 10 and 12, the resistance from this pin to 14 may be at least 100Ω. Depending on the layout, a capacitor (10 to 50 pF) may be required between pins 7 and 8 to prevent oscillations in the VHF band.

Power gain versus

 supply voltage

Application circuits

VHF mixer with inductive tuning

Connections in parentheses apply to S 042 E
Mixer for short wave application
in self-oscillating operation

Mixer for remote control receivers without oscillator

Connections in parentheses apply to S 042 E

For overtone crystals an adequate inductance is recommended between pins 10 and 12 to avoid oscillations to the fundamental tone.

Differential amplifier with internal neutralization, also suited for use as limiter for frequencies up to 50 MHz , at higher currents up to 100 MHz

Bipolar circuit

S 041 is a symmetrical, six-stage amplifier with symmetrical coincidence demodulator for the amplification, limiting and demodulation of frequency-modulated signals. S 041 is particularly suited for sets where low current consumption is of importance, or where major supply voltage fluctuations occur.
The pin configuration corresponds to the well-known TBA 120. Pin 5 of S 041 P, however, is not connected internally. The S 041 is especially suited for applications in narrow-band FM systems (455 kHz) and in usual FM IF systems (10.7 MHz).

- Good limiting properties
- Wide voltage range
- Low current consumption
- Few external components

Type	Ordering code	Package outline
S 041 P	Q67000-A529	DIP 14
S 041 E	Q67000-A694	5 J10 DIN 41873/T 0-100

Maximum ratings

Supply voltage
Storage temperature range
Junction temperature
Thermal resistance (system-air) S 041 P
S 041 E

V_{S}	15
$T_{\text {stg }}$	-40 to 125
T_{j}	150
$R_{\text {th SA }}$	90
$R_{\text {th SA }}$	190

V
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$
K / W
K / W

Range of operation

Supply voltage range
Frequency range
Ambient temperature range

V_{s}	to 15 0	V f_{i} $T_{\text {amb }}$
0 to 35	-25 to 85	${ }^{\circ} \mathrm{C} \mathrm{Cz}$

Characteristics ($V_{\mathrm{S}}=12 \mathrm{~V}, Q$ approx. $35, f_{\mathrm{mod}}=1 \mathrm{kHz}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Current cunsumption
AF output voltage
$\left(f_{\mathrm{i}}=10.7 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}, V_{\mathrm{i}}=10 \mathrm{mV}\right)$
Total harmonic distortion
($f_{\mathrm{i}}=10.7 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}, V_{\mathrm{i}}=10 \mathrm{mV}$)
Deviation of AF output voltage
$\left(V_{\mathrm{S}}=15 \mathrm{~V} \rightarrow 4 \mathrm{~V}, f_{\mathrm{i}}=10.7 \mathrm{MHz}\right.$,
$\Delta f= \pm 50 \mathrm{kHz}$)
Input voltage for limiting
($f_{\mathrm{i}}=10.7 \mathrm{MHz}, \Delta f= \pm 50 \mathrm{kHz}$)
IF voltage gain ($f_{\mathrm{i}}=10.7 \mathrm{MHz}$)
IF output voltage for limiting
(each output)
Input impedance $f_{\mathrm{i}}=10.7 \mathrm{MHz}$

$$
f_{\mathrm{i}}=455 \mathrm{kHz}
$$

Output resistance (pin 8)
Voltage drop at AF ballast resistance
AM suppression
$\left(V_{\mathrm{i}}=10 \mathrm{mV}, \Delta f= \pm 50 \mathrm{kHz}, m=30 \%\right.$)

	min	typ	max	
\underline{I}	4	5.4	6.8	mA
$V_{\text {q rms }}$	100	170		mV
THD		0.55	1	\%
ΔV_{q}		1.5		dB
$V_{\mathrm{i}} \mathrm{lim}$		30	60	$\mu \mathrm{V}$
G_{v}		68		dB
$V_{\text {qpp }}$		130		mV
z_{i}		20/2		k $2 / \mathrm{pF}$
Z_{i}		50/4		k $/$ /pF
$R_{\text {q }}$	3.5	5	8.5	k ,
V_{11-8}		1.5		V
$a_{\text {AM }}$		60		dB

All connections mentioned in the index are referred to S 041 P (e.g. V_{11})

Test circuit

Connections in parentheses apply to S 041 E

Application circuit for 10.7 MHz (FM-IF)

 and 455 kHz (narrow-band-FM)

Data in parentheses for 455 kHz (narrow-band FM)
Connections in parentheses apply to S 041 E

Coils	10.7 MHz	455 kHz
L_{1}	15 turns $/ 0.15$ CuLS	71.5 turns $/ 12 \times 0.04$ CuLS
L_{2}	12 turns $/ 0.25$ CuLS	71.5 turns $/ 12 \times 0.04$ CuLS
Coil set $41-2165$	$\mathrm{D} 41-2393$ of Messrs. Vogt	

AM suppression versus
supply voltage
$f_{i}=10.7 \mathrm{MHz} ; \Delta f= \pm 50 \mathrm{kHz}$;
$V_{\mathrm{i}}=10 \mathrm{mV}, f_{\text {mod }}=1 \mathrm{kHz}, m=30 \%$

AF output voltage and total harmonic distortion versus \mathbf{Q}-factor
$V_{\mathrm{S}}=12 \mathrm{~V}, f_{\mathrm{i}}=10.7 \mathrm{MHz}$,
$\Delta f= \pm 50 \mathrm{kHz}, f_{\text {mod }}=1 \mathrm{kHz}$

AM receiver circuit for LW, MW, and SW in battery and mains operated radio receivers. It includes an RF prestage with AGC, a balanced mixer, separated oscillator and an IF amplifier with AGC. Because of its internal stabilization, all characteristics are nearly independent of the supply voltage. For use in high quality radio sets the TDA 1046 should be preferred to the TCA 440.

- Separately controllable prestage
- Multiplicative push-pull mixer with separate oscillator
- High large signal capability from 4.5 V supply voltage on
- 100 dB feedback control range in 5 stages
- Direct connection for tuning meter
- Minimum external components

Type	Ordering code	Package outline
TCA 440	Q67000-A669	
TCA 440 I	Q67000-A669-S2	\}DIP 16
TCA 440 II	Q67000-A669-S3	

Maximum ratings

Supply voltage
Thermal resistance (system-air)
Storage temperature range
Junction temperature

V_{S}	15	V
$R_{\text {th SA }}$	120	K/W
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
T_{j}	150	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range

V_{S}	4.5 to 15	V
T_{amb}	-15 to 80	${ }^{\circ} \mathrm{C}$

Characteristics $\left(V_{\mathrm{S}}=9 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; f_{\mathrm{iRF}}=600 \mathrm{kHz} ; f_{\mathrm{mod}}=1 \mathrm{kHz}\right)$

Total current consumption at $V_{\mathrm{S}}=4.5 \mathrm{~V}$

$$
\begin{aligned}
& V_{\mathrm{S}}=9 \mathrm{~V} \\
& V_{\mathrm{S}}=15 \mathrm{~V} \\
& \Delta V_{\mathrm{AF}}=6 \mathrm{~dB} \\
& \Delta V_{\mathrm{AF}}=10 \mathrm{~dB}
\end{aligned}
$$

$V_{\text {iRF }}=20 \mu \mathrm{~V}$
$V_{\mathrm{i} R F}=1 \mathrm{mV}$
$V_{\mathrm{i} \text { RF }}=500 \mathrm{mV}$
for $m=30 \%$
I_{S}
I_{S}
I_{S}
ΔG_{RF}
ΔG_{RF}
$V_{\text {AF rms }}$

7
10.5
12
65
80
140
260
350
50
100
130

mV

RF stage

Input frequency range
Output frequency $f_{\mathrm{iF}}=f_{\text {osc }}-f_{\mathrm{i} \text { RF }}$
Control range
Input voltage (for $600 \mathrm{kHz}, m=80 \%$)
for overdrive $\left(T H D_{A F}=10 \%\right)$,
symmetrically measured at: pins 1 and 2
(mean carrier value)
IF suppression between $1-2$ and 15
RF input impedance
a) unsymmetrical coupling
at G_{RF} max
at $G_{\mathrm{RF} \text { min }}$

$f_{\mathrm{i} \text { RF }}$	0 to 50	MHz
$f_{\text {IF }}$	460	kHz
ΔG_{V}	38	dB
V_{i} RF pp	2.6	$\mathrm{~V}_{\mathrm{pp}}$
$V_{\mathrm{i} \text { RF rms }}$	0.5	V
a_{IF}	20	dB
Z_{i}	$2 / 5$	$\mathrm{k} \Omega / \mathrm{pF}$
Z_{i}	$2.2 / 1.5$	$\mathrm{k} \Omega / \mathrm{pF}$
Z_{i}	4.5	$\mathrm{k} \Omega / \mathrm{pF}$
Z_{i}	$4.5 / 1.5$	$\mathrm{k} \Omega / \mathrm{pF}$
Z_{q}	$250 / 4.5$	$\mathrm{k} \Omega / \mathrm{pF}$

IF stage

Input frequency range	$f_{\mathrm{i} \text { IF }}$	0 to 2	MHz
Control range at 460 kHz	ΔG_{V}	62	dB
Input voltage (mean carrier value) at $G_{\text {min }}$ for overdrive (THD $A F=10 \%$), measured at pin 12 (60Ω to ground, $f_{\text {i IF }}=460 \mathrm{kHz}, m=80 \% ; f_{\text {mod }}=1 \mathrm{kHz}$)	$V_{\text {IF rms }}$	200	mV
AF output voltage for $V_{\text {i IF }}$ at 60Ω (pin 12)			
$V_{\text {IF }}=30 \mu \mathrm{~V}, m=80 \% ; f_{\text {mod }}=1 \mathrm{kHz}$	$V_{\text {AF rms }}$	50	mV
$V_{\text {IF }}=3 \mathrm{mV}, m=80 \% ; f_{\text {mod }}=1 \mathrm{kHz}$	$V_{\text {AF rms }}$	200	mV
$V_{\text {IF }}=3 \mathrm{mV}, m=30 \% ; ~ f_{\text {mod }}=1 \mathrm{kHz}$	$V_{\text {AF rms }}$	70	mV
IF input impedance (unsymm. coupling)	z_{i}	3/3	$\mathrm{k} \Omega / \mathrm{pF}$
IF output impedance	$Z_{\text {q } 7}$	200/8	k Ω / pF

Tuning meter

Recommended instruments: $500 \mu \mathrm{~A}\left(R_{\mathrm{i}}=800 \mathrm{k} \Omega\right)$

$$
\text { or } 300 \mu \mathrm{~A}\left(R_{\mathrm{i}}=1.5 \mathrm{k} \Omega\right)
$$

The IC offers a tuning meter voltage of $600 \mathrm{mV}_{\text {EMF }}$ max. with a source impedance of approx. 400Ω.

Selection:

TCA 440 is selected in 2 groups as concerns the output voltage V_{7} :
Parameter: $V_{\mathrm{S}}=8 \mathrm{~V} ; V_{\mathrm{i} \mathrm{IF}}$ approx. $4.5 \mathrm{mV} \mathrm{rms} ; m=30 \% ; f_{\mathrm{IF}}=455 \mathrm{kHz} ; f_{\mathrm{qAF}}=1 \mathrm{kHz}$
TCA $440 \mathrm{I}: \quad V_{7}=40$ to $80 \mathrm{mV}_{\text {rms }}$
TCA 440 II: $V_{7}=55$ to $100 \mathrm{mV}_{\text {rms }}$
TCA 440: $\quad V_{7}=40$ to $100 \mathrm{mV}_{\text {rms }}$
The number of the group is stamped on the IC.

Block diagram

Circuit diagram

Prestage control TCA 440

The input is not power matched and can be driven with a higher resistance. V_{i} is chosen such that a constant V_{15} is obtained (50 mV pp).

IF control

$V_{\text {IF }}\left(469 \mathrm{kHz} ; m=80 \% ; f_{\text {mod }}=1 \mathrm{kHz}\right)$ is chosen such that always a constant $V_{\text {AF }}$ is obtained (200 mV rms).

AF output voltage versus RF input voltage

Example for medium wave applications

AF output voltage versus output frequency Total harmonic distortion versus modulation frequency

Passband characteristic versus input frequency, measured from input to output of the circuit

Total harmonic distortion versus detuning (parameter: modulation frequency)

$V_{\mathrm{S}}=9 \mathrm{~V}$
$f_{\mathrm{i} R F}=1 \mathrm{MHz}$

Total harmonic distortion versus detuning (parameter: RF input voltage)

AF output voltage and noise figure versus RF input voltage switching position (1)

Signal to noise ratio versus RF input voltage switching position (2)

Signal to noise ratio versus RF input voltage (parameter is generator impedance) (switching position 1)

Test figures for application example for MW

Total harmonic distortion and AF output voltage
versus $R F$ input voltage
measured symmetrically at pins 1 and 2
$f_{\mathrm{i}}=1 \mathrm{MHz}, f_{\mathrm{mod}}=1 \mathrm{kHz}, f_{\mathrm{IF}}=455 \mathrm{kHz}, V_{\mathrm{S}}=9 \mathrm{~V}$

Application example for MW using BB 113 varicap diodes

Conversion transconductance versus oscillator voltage

Measured values for application example for MW using BB 113

AF output voltage and total harmonic distortion versus RF input voltage

$f_{\mathrm{i}}=1 \mathrm{MHz} ; f_{\text {mod }}=1 \mathrm{kHz} ; f_{\mathrm{IF}}=455 \mathrm{kHz}$
$V_{\mathrm{S}}=9 \mathrm{~V} ; V_{\mathrm{i} \text { RF }}$ symetrically measured at pins 1 and 2

Tuning meter voltage versus IF control voltage (parameter: impedance of tuning meter)
(200

Bipolar circuit

AM receiver circuit for LW, MW, and SW in car radios and mains operated radio receivers. TDA 1046 includes controlled RF pre- and intermediate stages, a multiplicative push-pull mixer with separate oscillator, controlled IF amplifier, full-wave demodulator, active low pass, as well as an amplifier to directly feed a field-strength indicator instrument. By means of its amplitude-controlled oscillator, the TDA 1046 is particularly suited for applications with varicap diodes. The circuit is balanced.

- Provision of internal AGC voltage
- High large signal capability
- Internal demodulator
- Internal AF filtering
- Direct feed of a logarithmical field strength indicator (range 90 dB)
- High AF output voltage with low distortion factor
- Minimization of external components
- Provisions for additional RF circuitry

Type	Ordering code	Package outline
TDA 1046	O67000-A1092	DIP 16

Maximum ratings

Supply voltage
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{S}	18	V
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Oscillator frequency range Input frequency range RF unit IF unit
Ambient temperature range

V_{S}	8 to 18	V
$f_{\text {Osc }}$	0.5 to 31	MHz
$f_{\mathrm{i} \text { RF }}$	0 to 30	MHz
$f_{\mathrm{i} \text { IF }}$	0.2 to 1	MHz
$T_{\text {amb }}$	-15 to 85	${ }^{\circ} \mathrm{C}$

Characteristics ($\left.V_{7}=10 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, f_{\mathrm{mod}}=1 \mathrm{kHz}, f_{\mathrm{i} R}=1000 \mathrm{kHz}\right)$ see test circuit

Current consumption
AF output voltage and total harmonic distortion factor

$$
\begin{aligned}
& m=80 \% ; V_{\mathrm{iRF}}=1 \mathrm{mV}_{\mathrm{rms}} \\
& m=80 \% ; V_{\mathrm{iRF}}=25 \mathrm{mV}_{\mathrm{rms}} \\
& m=30 \% ; V_{\mathrm{iRF}}=1 \mathrm{mV}_{\mathrm{rms}} \\
& m=30 \% ; V_{\mathrm{iRF}}=45 \mathrm{mV}_{\mathrm{rms}}
\end{aligned}
$$

Total range of AGC
(variation of AF voltage $\Delta V_{6} \leqq 6 \mathrm{~dB}$)
Input voltage for AGC triggering with tuned LC circuit with wide-band circuit
Signal to noise ratio
(measured at $50 \Omega, m=30 \% / 0 \%$)
at $V_{\mathrm{i} \text { RF }}$

$$
\begin{aligned}
& =2.5 \mu \mathrm{~V} \\
& =14 \mu \mathrm{~V} \\
& =1 \mathrm{mV}
\end{aligned}
$$

Instrument current
$\left(V_{\mathrm{S}}=15 \mathrm{~V}\right.$; at $G_{\text {min }} ; V_{11} \leqq V_{7}-3 \mathrm{~V}$) AF output resistance Noise voltage in accordance with DIN 45405

	min	typ	max	
I_{S}	15	20	25	mA
$V_{\text {AF }}$	600	800	1000	mV rms
THD		0.8	1	
$V_{\text {AF }}$	600	800	1000	mV rms
THD		1.5	2	
$V \mathrm{AF}$	200	300	400	mV rms
THD			0.6	\%
$V_{\text {AF }}$	200	300	400	mV rms
THD			0.9	
ΔG	85			dB
$V{ }_{\text {i }} 9-10$		19		$\mu \mathrm{V}$
$V_{\text {i }} 9-10$		28		$\mu \mathrm{V}$
$\frac{S+N}{N}$		6		dB
$\frac{S+N}{N}$		26		dB
$\frac{S+N}{N}$		53		dB
I_{11}	1		1.5	mA
$R_{\text {q6 }}$	2.25	3	3.75	k Ω
V_{n}		500	700	$\mu \mathrm{V}_{\text {os }}$

Test circuit

Additional characteristics RF stage

($V_{\mathrm{S}}=10 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; f_{\mathrm{i} \mathrm{RF}}=1000 \mathrm{kHz}, f_{\mathrm{mod}}=1 \mathrm{kHz}, m=95 \%, f_{\mathrm{IF}}=450 \mathrm{kHz}$)

Oscillator voltage ($f_{\text {osc }}=1.45 \mathrm{MHz}$)
AGC range of RF prestage
Voltage gain
Voltage gain of RF stage Input impedance

	\min	typ	má:	
V_{15}			350	mV rms
ΔG	40			
$G_{\text {V/8-9/10 }}$		40		dB
$G_{V} 13-9 / 10$		20		dB
$Z_{\text {i 9-1 }}=Z_{\text {i }}^{\text {10-1 }}$		2/5		k Ω /pF
$Z_{\text {i }}^{\text {9-10 }}$		4/5		k $/$ /pF
$V_{\text {i 9-10 }}$		2		V_{pp}
V_{16}	3	3.3	3.8	V

Additional characteristics IF stage
$\left(V_{\mathrm{S}}=10 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, f_{\mathrm{IF}}=450 \mathrm{kHz}, f_{\mathrm{mod}}=1 \mathrm{kHz}, m=95 \%\right)$

AGC range at 450 kHz	ΔG	45		dB
Input voltage for overload ($T H D=10 \%$)	V_{3}		120	mV rms
Output impedance	$z_{\text {q }} 8$		100	
Input impedance	$z_{\text {i }}$		3.3/3	k $/$ /pF
AF output voltage $\left(V_{3}\right.$, a	$V_{\text {AF }}$	245		mV rms

Prestage control
$V_{\mathrm{S}}=10 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; f_{\mathrm{i} \mathrm{RF}}=1000 \mathrm{kHz} ; f_{\mathrm{mod}}=1 \mathrm{kHz}$, $m=80 \% ; V_{\mathrm{IF}}=V_{\mathrm{q}}=$ const.

IF stage control

$V_{\mathrm{S}}=10 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; f_{\mathrm{i} \text { IF }}=455 \mathrm{kHz} ; f_{\mathrm{mod}}=1 \mathrm{kHz}$;
$m=80 \% ; V_{\text {AF }}=V_{6}=$ const.

AF output voltage, total harmonic distortion, instrument voltage versus RF input voltage $V_{\mathrm{S}}=15 \mathrm{~V}, f_{\mathrm{i} R \mathrm{RF}}=1000 \mathrm{kHz}, f_{\mathrm{mod}}=1 \mathrm{kHz}$ Coupling with wide-band circuit

Signal-to-noise ratio versus input voltage
$V_{\mathrm{S}}=15 \mathrm{~V} ; m=30 \% ; f_{\mathrm{i} R F}=1000 \mathrm{kHz} ; f_{\mathrm{mod}}=1 \mathrm{kHz}$

Coil data

1. RF prestage
primary
105 turns 15×0.04 CuLS
sec. (pin 9-10) 7 turns 15×0.04 CuLS
wound on Vogt D 21-2375.1
2. RF intermediate circuit
wound on Vogt D 21-2375.1
3. Oscillator circuit
wound on Vogt D 41-2519 with cap
4. IF circuit (pin 8)
primary (LC circuit) $\quad 70$ turns 12×0.04 CuLS
secondary
26 turns 12×0.04 CuLS
wound on Vogt D 41-2519 with cap

Variable capacitor
HOPT triple rotary capacitor set MG 06-05 A

Bipolar circuit

FM-IF amplifier for radio sets with 8-stage amplifier and symmetrical coincidence demodulator. The TDA 1047 additionally offers provisions for the feeding of an amplitude indicator, either positive or negative going mono-stereo voltage, AFT output (push-pull-current output) with automatic switch-off, is squelch adjustable throughout an input signal range of more than 40 dB and depends on detuning.

- Excellent limiting qualities
- Excellent frequency stability of demodulator characteristic
- Large range of operating voltage between 4 and 18 V
- Low current consumption
- Externally adjustable squelch
- Few peripheric components

Type	Ordering code	Package outline
TDA 1047	Q67000-A1091	DIP 18

Maximum ratings

Supply voltage
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{S}	18	V
$R_{\text {th SA }}$	90	K/W
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Frequency range
Ambient temperature range

V_{S}	4 to 18	V
f	0 to 15	MHz
T_{amb}	-25 to 85	${ }^{\circ} \mathrm{C}$

Characteristics $\left(V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; f_{\mathrm{i}}=10.7 \mathrm{MHz} ; f_{\text {mod }}=1 \mathrm{kHz} ; \Delta f= \pm 75 \mathrm{kHz}\right.$; Q_{B} approx. 20) see test circuit

Current consumption ($I_{14}=\bar{U}$)
Voltage for field strength indicator
($R_{14}=3.3 \mathrm{k} \Omega$)

$$
\begin{aligned}
& V_{\mathrm{i}}=160 \mathrm{~m} V_{\mathrm{rms}} \\
& V_{\mathrm{i}}=16 \mu \mathrm{~V}_{\mathrm{rms}}
\end{aligned}
$$

Current
Voltage for squelch adjustment
(approx. log.)

$$
\begin{aligned}
& V_{\mathrm{i}}=8 \mathrm{~m} \mathrm{~V}_{\mathrm{rms}} \\
& V_{\mathrm{i}}=16 \mu \mathrm{~V}_{\mathrm{rms}}
\end{aligned}
$$

Current
AF output DC voltage
AF output voltage
($V_{\mathrm{i}}=10 \mathrm{mV}$; THD $=0.4 \%$)
Internal DC voltage
of output emitter follower
Total harmonic distortion ($\left.V_{i}=10 \mathrm{mV}\right)^{1}$)
Input voltage for limiting ${ }^{2}$)
Input resistance
AF output resistance ${ }^{3}$)
(emitter follower output)
Threshold of detuning-depending squelch
(referred to $f=10.7 \mathrm{MHz}$)
Switching threshold for AFT off
Input resistance
Voltage for AFT off
Current deviation of the AFT output
IF output voltage for limiting
Input resistance for demodulator circuit
Recommended voltage for
demodulator circuit ${ }^{4}$)
Threshold for AF off
$A F$ on
Hysteresis for switching threshold
Internal resistance
for AF switch-off time constant
AM suppression $\quad\left(V_{i}=10 \mathrm{mV} ; m=30 \%\right)$
Signal-to-noise-ratio ($V_{\mathrm{i}}=10 \mathrm{mV}$)
AF suppression at muting circuit
($V_{\mathrm{i}}=10 \mathrm{mV}$)

${ }^{1}$) In the case of using a band filter: $T H D_{\max }=0.3 \%$
${ }^{2}$) Limiting application for $V_{\mathrm{AF}}=-3 \mathrm{~dB}$
${ }^{3}$) The output resistance $R_{\mathrm{q} 7}$ can be reduced by connecting a resistor of at least $2.7 \mathrm{k} \Omega$ between pin 7 and ground.
${ }^{4}$) The recommended voltage at the demodulator circuit V_{9-10} can be adjusted by the capacitors C_{8-9} and C_{10-11}, which are also influencing the voltage V_{14} and V_{15}.

If the slider of potentiometer P is grounded, the field-strength-dependent squelch is switched off.
If pin 13 is grounded, both the field-strength- and the detuning-dependent squelch are switched off.
The noise level between the transmitters becomes more or less audible, when pin 6 is loaded with a resistance to +12 V in case of "squelch on". Noise attenuation increases with the size of the resistance ($R \geqq 10 \mathrm{k} \Omega$).

Pin designation

\(\left.\begin{array}{l|l}Pin No. \& Description

\hline 1 \& Ground

2 \& Sensor input for AFT switch off

3 \& AFT switch off time constant

4 \& Low-pass capacitor for detuning-dependent AF switch off

5 \& AFT output (push-pull output)

6 \& Low-pass capacitor for suppression of switch off clicks in case

\& of detuning and insufficient field strength

7 \& AF output (emitter follower with constant-current source)

8 \& Output of limiter amplifier

9

10 \& Phase shifting circuit

11 \& Output of limiter amplifier

12 \& Positive operating voltage

13 \& Input for amplitude-dependent switch off

14 \& Instrument connection and stereo switching voltage (positive going)

15 \& Squelch and stereo switching voltage (negative going)

16

17\end{array}\right\}\)| 18 | Feedbacks for IF amplifier |
| :--- | :--- |
| | IF input |

AF output voltage, total current consumption versus supply voltage $V_{\text {i IF }}=60 \mathrm{mV}$ rms wide band, pin 13 to ground, $V_{9-10}=500 \mathrm{mV} \mathrm{pp}$

AF output voltage, indicator voltage, squelch voltage versus input voltage $V_{12}=15 \mathrm{~V} ; f=10.7 \mathrm{MHz}, \Delta f= \pm 75 \mathrm{kHz}, f_{\bmod }=1 \mathrm{kHz}$
$V_{9-10}=500 \mathrm{mV}_{\mathrm{pp}}$, wide band measured by $100 \mathrm{nF}, \mathrm{THD}=0.4 \%$

AF output voltage, noise voltage versus input voltage
$f=10.7 \mathrm{MHz}, \Delta f= \pm 75 \mathrm{kHz}, V_{12}=15 \mathrm{~V}$

The S 054 T is an AM short-wave tuner IC comprising an adjustable prestage at 45 dB gain and internal control voltage generation. Moreover, the S 054 T includes a mixer with a separate, amplitude-controlled oscillator. The oscillator drive signal to the counter is available subsequently to an emitter-follower. The input is resistant to large signals and cross modulation. The oscillator is generally designed for varicap tuning and can additionally be used with a crystal. The IC is mainly suitable for use in double and multiple superhet receivers.

- Resistance to large signals and cross modulation
- Linear mixer
- Wide control range
- Designed for varicap tuning

Type	Ordering code	Package outline
S 054 T	Q 67000-A 1472	DIP 14

Maximum ratings

Supply voltage
Junction temperature
Thermal resistance (system-air)
Storage temperature range

Range of operation

Supply voltage range Oscillator frequency range Input frequency range Output frequency range
Ambient temperature range

V_{S}	18	V
T_{j}	150	${ }^{\circ} \mathrm{C}$
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{Stg}	-40 to 125	${ }^{\circ} \mathrm{C}$

V_{S}	4 to 18	V
$f_{\text {osc }}$	0.1 to 32	MHz
f_{i}	0 to 30	MHz
f_{q}	0 to 30	MHz
$T_{\text {amb }}$	-20 to 85	${ }^{\circ} \mathrm{C}$

Characteristics (see test circuit) ($\left.V_{\mathrm{S}}=10 \mathrm{~V} ; f_{\mathrm{i}}=1 \mathrm{MHz} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption
Output voltage
(Q_{B} approx. 20)
Range of AGC
Input voltage causing overdrive
Oscillator voltage
Reference voltage
Counter dc voltage output
at $R_{12-1}=4.7 \mathrm{k} \Omega$
Short circuit output current
($R_{12-1}=0 ; t=10 \mathrm{~s}$)

	\min	typ	\max	
I_{3}		13	15	mA
V_{5}		500		$\mathrm{mV}_{\mathrm{rms}}$
ΔG_{V}	40	45		dB
V_{7}		1.8		$\mathrm{~V}_{\mathrm{pp}}$
V_{12}	150		350	mV
V_{2}		3.6		V
V_{12}		1.4		V
$I_{\mathrm{q} 12}$			20	mA

Test circuit

$V_{\mathrm{S}}=10 \mathrm{~V}, f=1 \mathrm{MHz}$
$f_{\text {osc }}=1.2 \mathrm{MHz}, f_{\mathrm{IF}}=200 \mathrm{kHz}$
$T_{\text {amb }}=25^{\circ} \mathrm{C}$

1) Pot core $N 28 A_{L} 250$
$n_{1}: n_{2}=50: 5$ turns 12×0.04 CuLS
Q_{O} approx. $250, Q_{\mathrm{B}}$ approx. 20

Block diagram

Current consumption on battery voltage
$V_{\text {ref }}\left(10 \mathrm{~V}=V_{\mathrm{S}}\right)=3.7 \mathrm{~V}$

IF output on RF input signal $V_{\mathrm{S}}=10 \mathrm{~V} ; 0 \mathrm{~dB} \xlongequal{\hat{} 225 \mathrm{mV}} \mathrm{rms}$

Control characteristic curve $V_{\mathrm{S}}=10 \mathrm{~V} ; V_{\mathrm{IF}}=225 \mathrm{mV}$ rms

Application circuit 2

Crystal-controlled oscillator (series resonance)

Bipolar circuit

The TDA 4200 is an FM IF IC with demodulator, particularly developed for use in car radios. It includes the facility to set the input amplification for automatic search tuning. Moreover, a search tuning stop pulse can be obtained.

- 8-stage limiter amplifier
- Product demodulator
- AFC output
- Field strength-dependent volume control

Type	Ordering code	Package outline
TDA 4200	Q 67000-A1469	DIP 18

Maximum ratings

Supply voltage
Thermal resistance (system-air) Junction temperature Storage temperature range

Range of operation

Supply voltage range
Frequency range
Ambient temperature range
Range of operation

V_{S}	18	V
$R_{\text {th SA }}$	70	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

V_{S}	7.5 to 15	V
f	0 to 15	MHz
T_{amb}	-25 to 85	${ }^{\circ} \mathrm{C}$

Characteristics $\left(V_{\mathrm{S}}=8.5 \mathrm{~V} ; V_{\mathrm{irms}}=10 \mathrm{mV} ; f_{\mathrm{i}}=10.7 \mathrm{MHz} ; \Delta f= \pm 75 \mathrm{kHz}\right.$;

$$
\left.f_{\mathrm{mod}}=1 \mathrm{kHz} ; Q_{\mathrm{B}} \text { approx. } 25 ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)
$$

Current consumption
Voltage at field strength output

$$
\begin{aligned}
& V_{\mathrm{irms}}=50 \mathrm{mV} \\
& V_{\mathrm{irms}}=0
\end{aligned}
$$

Current out of field strength output
Voltage at the inverse field strength output

$$
\begin{aligned}
& V_{i \mathrm{rms}}=5 \mathrm{mV} \\
& V_{\mathrm{i} \mathrm{rms}}=0
\end{aligned}
$$

Current out of inverse field strength output
AF output dc voltage
AF output voltage
Internal dc current of output emitter follower
Total harmonic distortion at FM IF operation ($V_{13}=\infty$)
Input voltage for limiting action
($V_{\mathrm{q} 5}-3 \mathrm{~dB}$)
Input resistance for demodulator circuit
AM suppression ($m=30 \%$)
Signal-to-noise ratio
Current deviation of the AFC output
Output current
Stabilized voltage
Adjustment range of the limiting
(adjusted by pin 15)
AF mute $\quad V_{2 / 1}=0 ; R_{4 / 1}=\infty$
$V_{2 / 1}=0 ; R_{4 / 1}=0$
Voltage for AF mute OUT
Input resistance
AF output voltage for $V_{i} 3 \mathrm{rms}=200 \mathrm{mV}$

	min	typ	max	
I_{14}	15	20	26	mA
V_{12}	3	3.8		V
V_{12}		0		V
I_{12}			5	mA
V_{11}			0.9	V
V_{11}	3	3.8		V
I_{11}			5	mA
$V_{\text {q } 5}$	2.8	3.8	4.8	V
$V_{\text {q } 5 \mathrm{rms}}$	270	300		mV
I_{5}	0.75	1		mA
THD		0.5	1	\%
$V_{\text {i IF rms }}$		30	60	$\mu \mathrm{V}$
R_{9-10}		30		k Ω
${ }^{\text {a }}$ AM	60			dB
$a_{\text {S/N }}$	70			dB
I_{7}	100	150	250	$\mu \mathrm{A}$
I_{6}			0.5	mA
V_{8}	3.6	4.1	4.6	V
$a_{\text {i }}$		40		dB
$a_{\text {AF }}$	3	7	11	dB
$a_{\text {AF }}$	31	40	47	dB
$V_{2 / 1}$	0.75			V
$R_{\text {i }}$		100		k Ω
$V_{\text {q } 5 \mathrm{rms}}$	200	270	330	mV

Test circuit

Circuit description

This IC includes an 8-stage limiter amplifier with demodulator and an uncontrolled AF output. The limiting action can be varied by 40 dB with the help of external components. The AF output signal can be attenuated continuously by typically 30 dB in the range close to the limiting action. Thus, the noise generation between the broadcasting stations can be avoided.

A field strength output, an inverted field-strength output, an AFC output and an open collector output (at zero crossing of the S curve, this output becomes conductive) are available. If used in combined AM FM units, it is possible to feed the AM AF signal into pin 3 of the TDA 4200 and to switch over to pin 5 by means of the mute stage.

Block diagram and application circuit

In West Germany the so-called car driver broadcasting information (ARI) was introduced about 5 years ago.

This system is intended to provide the car driver with hints on the actual traffic situation. For this purpose a particular identification frequency was assigned to the transmitters which broadcast messages from time to time. In detail, this transmitter signal includes the following three portions:

1. Station decoding SK

Station decoding is used to locate a road traffic transmitter. For this purpose a 57 kHz pilot tone is superimposed on the normal AF signal.

2. Message decoding DK

In order to enable the car driver of becoming aware of a message even during listening to cassette music or when the loudness level has been lowered, a 125 Hz pilot tone is being transmitted during the message transmission. Thus, the message in the loudspeaker of the receiver increases to loud.

3. Area decoding BK

Since road traffic messages are transmitted regionally, the appropriate transmitter of the area referred to can be located by area decoding. For this purpose special frequencies in the range between 25 and 60 Hz are assigned to certain areas.

To decode road traffic broadcasting signals the ICs S 0280, S 0281, S 551, and S 552 are available.

Application of S 0280, S 0281, and S 551 results in a system which recognizes road traffic transmitters and transmits road traffic messages. If the system has been extended to the IC S 552, the regional frequencies of the VRF transmitters can be decoded and, thus, road traffic messages of preselected regions can be received.

Bipolar circuit

The S 0280 IC includes a PLL circuit, an AM demodulator and an electronic AF switch for switching an MPX signal.
The IC delivers the station identification frequency (57 kHz) as square-wave voltage (pin 6) for subsequent operation in the S 551 and S 552 ICs and the station decoding trigger for the S 551. At pin 7 of the S 0280 the message identification frequency (125 Hz) and the area identification frequency (23.75 to 53.98 Hz) are available. After the message has been decoded in the S551, the message AF is switched in the S 0280 to pin 5 by means of a logic control signal.

- Little adjustment
- Minimum DC voltage jump at the AF volume switch

Type	Ordering code	Package outline
S 0280	Q 67000-A1264	DIP 16

Maximum ratings

Supply voltage
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{16}	18	V
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation
Supply voltage range
Ambient temperature range

V_{16}	10 to 16	V $T_{\text {amb }}$
-20 to 85		

Characteristics ($V_{16}=14 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$, referred to test circuit)

Current consumption
Input voltage ($T H D=10 \%$)
Input resistance

Pre-emphasis amplifier

Output resistance
Voltage gain (open loop)
Internal GK resistance

57 kHz amplifier

Voltage gain (open loop)
Internal GK resistance
Input resistance

	\min	typ	\max	
I_{16}		25	35	mA
$V_{\mathrm{i} 15}$			2.5	$\mathrm{~V}_{\mathrm{pp}}$
$R_{\mathrm{i} 15}$	300			$\mathrm{k} \Omega$

$R_{\mathrm{q} 14}$	1.6	2	2.4	$\mathrm{k} \Omega$
G_{vo}	30			dB
R_{13}		5		$\mathrm{k} \Omega$

SK information

SK switching threshold
(switching at pin 9) $V_{11}, f=57 \mathrm{kHz}$
BK-OK output voltage
$V_{11}=50 \mathrm{mV}$ rms $, 57 \mathrm{kHz}+125 \mathrm{~Hz}, m=30 \%$
Load voltage $\quad \mathrm{SK}=\mathrm{H}$
$\left(R_{9 / 10}=10 \mathrm{k} \Omega\right) \quad \mathrm{SK}=\mathrm{L}$
Hysteresis voltage
Output current
Output current/frequency divider

G_{vo}		35	5
R_{12}	20		dB $R_{\mathrm{i} 11}$

Volume switch

Bandwidth
Transmission loss
Rejection loss
Output resistance
Switching threshold
Noise voltage at pin 3 at decrease of 3 dB ($f=100 \mathrm{~Hz}-10 \mathrm{kHz}$, short-circuited input)

Application circuit

Pin designation

Pin No.	Description
1	Ground
2	Reference voltage
3	MPX output signal
4	Control voltage input for MPX signal
5	Oscillator wiring (LC, RC)
6	57 kHz output
7	57 kHz demodulator output
8	SK phase comparator, integration C
9	SK output
10	PLL phase comparator
11	57 kHz amplifier input +
12	57 kHz amplifier input -
13	Pre-emphasis amplifier input -
14	Pre-emphasis amplifier output
15	Impedance converter input
16	Supply voltage $+V_{\mathrm{S}}$

Bipolar circuit

The S 0281 IC is used for preparing message and area decoding of VRF transmitters.
The S 0281 contains two double operational amplifiers which are used as filter and limiter amplifier. Moreover, 3 AF switches are intended for switching the message signal.

- High cross talk rejection
- High rejection loss
- Min. dc voltage change when switching the signals

Type	Ordering code	Package outline
S 0281	Q 67000-A1265	DIP 18

Maximum ratings

Supply voltage

Thermal resistance (system-air)
Junction temperature
Storage temperature range
Range of operation
Supply voltage range Ambient temperature range

V_{17}	18	V
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

V_{17}	10 to 16	V
T_{amb}	-20 to 85	${ }^{\circ} \mathrm{C}$

Characteristics ($\left.V_{17}=14 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption

	\min	typ	\max	
I_{17}		15	30	mA

Band filter amplifier

Voltage gain (open loop) ($f=150 \mathrm{~Hz}$)
Dynam. output resistance at open loop voltage gain

| G_{vo} | 50 | 64 | 1.2 |
| :--- | :--- | :--- | :--- |$|$| dB |
| :--- |
| $R_{\mathrm{9} / 10}$ |

Limiter amplifier

Voltage gain (open loop)
Input voltage
H output leakage current
DK switch, control input D
L-input voltage
L-input current ($V_{2}=0.8 \mathrm{~V}$)
H -input voltage
H -input current $\left(V_{2}=2.8 \mathrm{~V}\right)$
G_{vo}
$V_{6 / 9} ; V_{10 / 13}$
$I_{8 / 11}$
150

4	dB
50	$\mathrm{~V}_{\mathrm{pp}}$
$\mu \mathrm{A}$	

Switches

Forward gain
Rejection loss
Cross talk rejection
from channel to channel

$$
\begin{aligned}
& f=1 \mathrm{kHz} \\
& f=10 \mathrm{kHz}
\end{aligned}
$$

Large signal behavior
of the inputs $\quad T H D=1 \%$ $T H D=10 \%$
Input resistance
Input current
Output resistance
Interference voltage at the output ($f=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, 3 \mathrm{~dB}$ down)
Reference voltage

The MOS circuit S551, built up in depletion-load-technology, constitutes in connection with the two bipolar circuits S 0280 (Station Decoder) and S 0281 (Message Decoder) and the MOS circuit S 552 (Area Decoder) the main portion of a traffic broadcast decoder used for car radios.

The traffic broadcast decoder (VRF decoder) recoognizes a VRF station and the traffic messages (VDS) transmitted by it. An additional unit, the area decoder, ensures to identify the regional identity of a station. The VRF decoder also permits automatic search for a VRF station.

The S 551 is intended to recognize a traffic broadcast message. The technical prerequisites for this are the presence of identification frequencies jointly used by the various broadcasting stations:

VRF frequency: 57 kHz
VDS frequency: 125 Hz

Type	Ordering code	Package outline
S 551	Q 67100-Z109	DIP 18

Maximum ratings (all voltages referred to $V_{D D}=0 \mathrm{~V}$)

Supply voltage
Input voltage
Power dissipation
Power dissipation per output
(one output at a time)
Storage temperature

	\min	\max	
V_{SS}	-0.3	18	V
V_{i}	0	$V_{\mathrm{SS}}+0.3$	V
$P_{\text {tot }}$		360	mW
P_{q}		100	mW
$T_{\text {stg }}$	-40	125	${ }^{\circ} \mathrm{C}$

Range of operation (referred to $V_{\mathrm{DD}}=0 \mathrm{~V}$)
Supply voltage range
Ambient temperature range

$V_{\text {SS }}$	9 to 16	V
$T_{\text {amb }}$	-25 to 85	${ }^{\circ} \mathrm{C}$

Characteristics (all voltages referred to $V_{\mathrm{DD}}=0 \mathrm{~V}$)

Supply current

	\min	typ	\max	
$I_{\text {SS }}$			15	mA

Inputs

Transmission frequency SF (57 kHz)
(Internal pull-high resistor)
Message frequency DF (125 Hz) (Internal pull-high resistor) H -pulse width t_{WH}
(Duty cycle approx. 1:2)
L-pulse width
(Duty cycle approx. 1:2)
H-L-transition time
L-H transition time
Harmless H -input current
L-input source resistance (to $V_{D D}$)
L-input source resistance (to $V_{\mathrm{DD}}+1 \mathrm{~V}$)
Button radio $\overline{\mathrm{TR}}$ (see fig. 1)
Button message TD (see fig. 2)
(Internal pull-high resistor)
Transmission identification SK
(from DK analog circuit)
(Internal pull-high resistor)
Harmless H -input current
L-input source resistance (to V_{DD})
L-input source resistance
(to $V_{\mathrm{DD}}+1 \mathrm{~V}$)

Area identification $\overline{\mathbf{B K}+\mathrm{TS}}$

Warning tone suppression $\overline{\mathrm{H}}$
(see fig. 3)
H -input voltage
L-input voltage
Required input current
Reset input ZR (see fig. 4)
H -input voltage
(Reset)
L-input voltage
(release)
H-pulse width
Required input current

Characteristics (all voltages referred to $V_{\mathrm{DD}}=0 \mathrm{~V}$)

Outputs

Station search SU Loud-circuit La
H-output voltage (at/I! $=0.05 \mathrm{~mA}$)
L-output voltage (at/I/ = $1 \mu \mathrm{~A}$)
Short circuit current

Lamp L

H -output voltage (at/I/ $=0.5 \mathrm{~mA}$)
L-output voltage (at/l/ = $1 \mu \mathrm{~A}$)
Short circuit current

Message $\overline{\mathbf{D}}$

H -output voltage (at/I/ $=0.2 \mathrm{~mA}$)
L-output voltage (at/I/ = $1 \mu \mathrm{~A}$)
Short-circuit current
Tone I (see fig. 5)
H-output voltage (loud)
(see test circuit 1)
L-output voltage
(see test circuit 1)
H-output voltage (medium)
(see test circuit 1)
H-output voltage (soft)
Turn-off damping
(referred to operating level)
Sequence frequency
Tone frequency
Duty cycle
Tone II (see fig. 6)
H -output voltage
(see test circuit 2)
L-output voltage
(see test circuit 2)
H-output voltage (soft)
(see test circuit 2)
Turn-off damping
(referred to operating level)
Sequence frequency
Tone frequency
Duty cycle

	\min	typ	\max	
V_{qH}	$V_{\mathrm{SS}}-5 V$		V_{SS}	
V_{qL}			0.35	V
$\left\|I_{\mathrm{SC} \text { max }}\right\|$			10	mA

V_{qH}	$V_{\mathrm{SS}}-7 \mathrm{~V}$	V_{SS}	
V_{qL}		0.35	V
$\mid I_{\mathrm{SC} \text { max }}$		10	mA
V_{qH}	$V_{\mathrm{SS}}-3 \mathrm{~V}$		V_{SS}
V_{qL}		0.35	V
$\left\|I_{\mathrm{SC} \text { max }}\right\|$		10	mA

V_{qH}	$\frac{1}{2} V_{\mathrm{SS}}$	$\frac{3}{4} V_{\mathrm{SS}}$	V_{SS}	V
V_{qL}		100	mV	
$V_{\mathrm{qH} \mathrm{s}}$		$\frac{1}{4} V_{\mathrm{SS}}$		V
a	60	80	$\mathrm{appr.2}$	
$\frac{1}{\mathrm{~T}}$		appr. 1.7 appr. $1 / 4$		HB
f_{tone}			HHz	

Block diagram

Pin designation

Pin No.	Description	Pin No.	Description
1.	Transmission frequency SF	10	$V_{\text {SS }}$
2	Message frequency DF	11	Warning tone suppression $\overline{\mathrm{H}}$
3	Loud-circuit La	12	Station search SU
4	Message $\overline{\mathrm{D}}$	13	Tone II (undelayed)
5	Lamp L	14	$V_{\text {DD }}$
6	Key radio $\overline{\text { TR }}$	Tone I (delayed)	
7	Key message $\overline{T D}$	15	Y for testing purposes
8	Area identification $\overline{\text { BK+TS }}$	16	17
9	Transmission identification SK	18	Reset ZR
		Test pin PR	

Test circuit 1

tone I

Test circuit 2

tone II

Measuring the turn-off damping

1. The supply voltage is kept constant during the measurement.
2. The measurement is taken with respect to the $V_{D D}$ pin.
3. The measurement is taken selectively for the basic frequency.

For operation with button "reset" of the function, at reapplication of supply voltage

Figure 1

Suggested connection of the \bar{H}-Input

For use in automatic station search second sets

Figure 3

Connection of the $\overline{\mathrm{TD}}$-input

Figure 2

Circuit for automatic reset upon turn-on

Figure 4

Output signals of the tone II output

Figure 6

Functional description of the S 551

The S 551 contains 7 function blocks. The 4 blocks used for the recognition of the 125 Hz VDS tone constitute the largest portion of the circuit. They comprise a PLL-circuit (phase locked loop), an integrator, a memory, and a frequency divider. The PLL-circuit is a 2 -stage synchronous counter, the first portion of which can be switched between 28 and 29 counting steps. The subsequent divider has a 3 -bit and a 4 -bit output. A 57 kHz rectangular signal is used as the clock frequency for the block. The two portions of the counter are interconnected in such a way that a 125 Hz signal appears at the 4 -bit output as mean value. An incoming DF is applied to an Exclusive-OR-gate by means of this signal; the output of this gate causes the switching of the counting steps of the first PLL-divider stage. The frequency at the 4 bit output is thereby displaced in time, until a stable divider ratio is produced at the output of the Exclusive-OR-gate. However, this is only possible when the DF amounts to approximately 125 Hz .

As an indicator whether the PLL has recognized a DF as correct, the output of a second Exclusive OR-gate (Y) is used which has, as its input signals, the DF and also a reference frequency from the PLL divider for comparison, which has been phase-shifted by 90°. The output Y is consistently at an H -potential as long as the DF is proper. Small deviations of the DF with respect to the reference frequency are indicated by "low"-times within a Y-period. In the case of major frequency deviations, the PLL is continuously trying to fit the reference frequency to the DF, which results in a Y -signal appearing to be irregular as a first impression.

For the evaluation of the Y -signal, the integrator is used. It is an 11-bit synchronous updown counter, which is defined in its counting direction by " Y ". As clock frequencies, two clocks derived from the PLL circuit are available ($f_{1}=57 \mathrm{kHz} \mathrm{2}{ }^{-2}$ and $f_{2}=57 \mathrm{kHz} 2^{-3}$). These clock signals are also selected by the Y -signal. The integrator is constructed in such a way, that due to $Y=$ high - for incrementing slowly - and $Y=$ low - for decrementing fast - the two possible counting combinations are achieved. For this reason a fullcounting of the integrator is only possible when the L-portion within a Y-period is smaller than $1 / 3$. An evaluation of the counter contents is done through a hysteresis circuit, with thresholds at the counter contents $1 / 4$ full and $3 / 4$ full. In order to make the DK less sensitive to short-time turn-offs of the VRF-broadcasting frequencies, the integrator is followed by a memory. The memory is a 4-bit synchronous incrementer/decrementer. Its clock frequency is about $57 \mathrm{kHz} 2^{-14}$ and is derived from a central frequency divider. The counting direction of the memory is defined by a hysteresis circuit. When the hysteresis circuit indicates a full integrator, the memory will still be empty, but its output "DK" (internal signal) already indicates a message. From this point on, the counter increments until it is full and remains that way. At this counting position, the memory is able to compensate for a gap in the VDS frequency of approximately $4,6 \mathrm{~s}$. After this time the memory is empty and the DK signal goes high. A 9-bit counter serves as a central frequency divider. It has been constructed for the first 5-bit as a synchronous counter and for the rest as an asynchronous counter. The various input clocks used in the IC are taken from the appropriate divider stages or are decoded. As input clock the reference frequency of 125 Hz from the PLL is used.

An additional block consists of logic circuits which are not directly related to each other. The purpose of this circuit is an improvement in the comfort of handling.

The inputs $\overline{T R}, \overline{T D}, \overline{B K+T S}, \mathrm{SK}$ and $\overline{\mathrm{H}}$ and the internal signal DK determine the output functions L (lamp), La (loud circuit), $\overline{\mathrm{D}}$ (message decoding), SU (station searching).

A low level at input $\overline{T R}$ (key broadcast) indicates that no VRF operation is intended. The input behaves in a bistable way; for switching it requires a low resistance driving. When the supply voltage is turned on again, the input is automatically set to VRF operation.

A low level at input $\overline{T D}$ (key message) indicates that only road traffic information messages are to be reproduced.

A low level at input BK+TS (area identification or key "only broadcast recognition") indicates that either the area identification circuit (BK IC) has recognized the wanted area identification signal or that area distinguishing is not wanted.

A high level from the SK analog IC at input SK (transmission identification) indicates that the station received is a VRF station.

Through a low level at input $\overline{\mathrm{H}}$, the circuit can be reprogrammed for the use in a stationsearching second set. This function acts upon the warning tone.

The lamp output L shows a high level when the wanted kind of operation may be performed. For this purpose the SK (transmission identification) input must receive an H -signal which means that a station with the proper transmission identification is being received. In addition, the $\overline{\mathrm{BK}+\mathrm{TS}}$ (area identification or transmission identification only) input must receive an L-signal which means that a station of the wanted area is being received or that no area identification is wanted.
This is also true in the case that no VRF function is wanted (key "broadcast") pushed: $\overline{\mathrm{TR}}=0$).
$L=S K \overline{B K+T S}$

Output La from the loud-switch controls the loudspeaker amplifier. With a high level it sets the loudness to:
$\mathrm{La}=\mathrm{D}+\mathrm{TR}+\mathrm{L} \cdot \overline{\mathrm{TD}}$

The message-identification output $\overline{\mathrm{D}}$ indicates with a low level that a message is being recognized and the station received is located in the wanted area. With the key "broadcast" this signal is suppressed.
$D=D K \cdot L \cdot \overline{T R}$

Station search output SU controls the automatic VRF station searching motion. (High level: search, low level: stop).

$$
\overline{\mathrm{SU}}=\mathrm{TR}+\mathrm{L}+\text { stop pulse }(\mathrm{SK})
$$

The stop pulse lasts about 0.5 s ; it is produced every time a VRF station has been found (SK = high) to give the BK IC a chance to check whether or not the area identification is correct. (Own 4-bit asynchronous counter with frequency $57 \mathrm{kHz} 2^{-12}$). Station search is started with a delay to avoid response to brief noise signals received.

The output tone 1 produces a warning when no VRF station is received from the wanted area.

Tone $1=\overline{\mathrm{TR}+\mathrm{L}}$

However, the tone is turned-on no sooner than about 30 s after this condition has been established. Through a dynamic stage it is produced at first four times soft then four times medium and finally loud.
(The delay and the dynamic control consist of a 5-bit asynchronous counter with a clock frequency of approx. $57 \mathrm{kHz} 2^{-17}$).

The output tone II is different from tone I by producing a warning tone undelayed and only in two dynamic stages (four times soft and then loud). For this function a resistor to $V_{D D}$ is required.

In connection with station search second sets a warning tone will make no sense if no VRF station can be received at all (poorly covered area). In this case the station search second set is to continue searching to discover a VRF station as soon as possible. Not before a VRF station has been found, which does not belong to the wanted area, however, a warning tone will make sense again indicating the possibility of an improved operation.

Operation:

If no VRF station can be received, the SU signal remains low. As soon as a VRF station has been found during the periodic searches, periodic pulses with $S U=$ high occur. When the $\overline{\mathrm{H}}$-input is low, the warning tone is blocked if SU remains low for a period exceeding 20 s .

Note:

Inputs PR and Y are intended for testing. They must not be externally connected for other purposes.

The MOS circuit S 552, built up in depletion load technology, is an extension of the two bipolar circuits S 0280 (station decoder), S 0281 (message decoder) and the MOS circuit S 551 (message decoder), which together constitute the main portion of a traffic broadcast decoder used in car radios.

The S 552 recognizes the identification frequency of a VRF station of a specific region and switches traffic messages of only this station to the loudspeaker. The S 552 has been designed for 6 different area frequencies, which can be pre-selected at inputs \bar{A} to \bar{F}.

Type	Ordering code	Package outline
S 552	Q 67100-Z110	DIP 16

Maximum ratings (all voltages referred to $V_{\mathrm{DD}}=0 \mathrm{~V}$)

Supply voltage
Input voltage
Total power dissipation
Power dissipation per output
Storage temperature
Range of operation (referred to $V_{D D}=0 \mathrm{~V}$)
Supply voltage range
Ambient temperature range

	min.	\max	
V_{SS}	-0.3	18	V
V_{i}	0	$V_{\mathrm{SS}}+0.3$	V
$P_{\text {tot }}$		400	mW
P_{q}		100	mW
$T_{\text {stg }}$	-40	125	${ }^{\circ} \mathrm{C}$

V_{SS}	9 to 16	V
T_{amb}	-25 bis 85	${ }^{\circ} \mathrm{C}$

Characteristics (all voltages referred to $V_{D D}=0 \mathrm{~V}$)

Supply current

	min.	typ.	max.	
$I_{\text {SS }}$			15	mA

Inputs

Transmission frequency SF
 (57 kHz)
 (internal pull-high resistor)

Area frequency BF
(internal pull-high resistor)
($\mathrm{A}=23.79 \mathrm{~Hz}, \mathrm{~B}=28.32 \mathrm{~Hz}$,
$\mathrm{C}=34.98 \mathrm{~Hz}, \mathrm{D}=39.65 \mathrm{~Hz}$,
$\mathrm{E}=45.75 \mathrm{~Hz}, F=54.04 \mathrm{~Hz})$
H-pulse width
(Duty cycle approx. 1:2)
L-pulse width
(Duty cycle approx. 1:2)
H-L transition time
L-H transition time
Harmless H -input current
L-input source resistance (to $V_{D D}$)
L-input source resistance
(to $V_{D D}+1 \mathrm{~V}$)

Transmission identification SK

(from DK analog circuit) (internal pull-high resistor) Harmless H -input current L-input source restistance (to V_{DD})
L-input source resistance
(to $V_{D D}+1 \mathrm{~V}$)

t_{WH}			
t_{WL}			
t_{THL}	3.5	$\mu \mathrm{~s}$	
t_{TLH}	3.5	$\mu \mathrm{~s}$	
I_{iH}	1	$\mu \mathrm{~A}$	
$R_{\mathrm{i} \mathrm{QL}}$	10	$\mathrm{k} \Omega$	
$R_{\mathrm{i} \mathrm{QL}}$		6	$\mathrm{k} \Omega$

Characteristics (all voltages referred to $V_{D D}=0 \mathrm{~V}$)

Programming inputs $\overline{\mathbf{A}} \ldots \overline{\mathbf{F}}$
(see fig. 1)
(Internal pull-high resistor)
Harmless H -input current
L-input source resistance (to $V_{D D}$)
L-input source resistance (to $V_{D D}+1 \mathrm{~V}$)

Reset input ZR

(see fig. 2)
H -input voltage
(Reset)
L-input voltage
(released)
H-pulse width
Required input current

Area identification $\overline{\mathrm{BK}}$

H -output voltage
(at /I/ $<10 \mu \mathrm{~A}$)
L-output voltage
(at /I/ < $10 \mu \mathrm{~A}$)
Short circuit current
(Continuously short circuit proof)

	min.	typ.	max.	
$I_{\mathrm{iH}} \mathrm{I}$			1	$\mathrm{\mu A}$
$R_{\mathrm{i} \text { QL }}$			5	$\mathrm{k} \Omega$
$R_{\mathrm{i} \mathrm{QL}}$			3	$\mathrm{~K} \Omega$

Connection of programming inputs $\bar{A} \ldots \bar{F}$

Figure 1

Circuit for automatic reset upon turn-on

Figure 2

Block diagram

Pin designation

Pin No.	Description
1	Area frequency BF
2	Transmission identification SK
3	Reset ZR
4	Testing PR
5	Y-input/output
6	Clock blocking TBL
7	Station frequency SF
8	$V_{\text {SS }}$
9	Vor testinc purposes
10	Area selection \bar{F}
11	Area selection $\overline{\mathrm{E}}$
12	Area selection $\overline{\bar{D}}$
13	Area selection \bar{C}
14	Area selection \bar{B}
15	Area selection $\overline{\mathrm{A}}$
16	Area identification $\overline{\mathrm{BK}}$

Functional description of the S 552

The area decoder circuit S 552 is an extension of the VRF decoder system. It is used to recognize the area frequency (identification frequency of the VRF station of a region). The $S 552$ has been designed for 6 different area frequencies (BF), which are preselected by means of an L level at the programming inputs $\bar{A}-\bar{F}$. This can be done with a switch, which briefly opens all inputs when turned, as well as with a switch which bridges several inputs simultaneously when operated.

The circuit contains a PLL portion like the S 551. It consists of three synchronous counters in series. The first of these counters can be switched between the two counting positions 23 and 25 . In addition, for an extension of the locking range, two additional counter combinations are possible: $21 / 27$ and $19 / 29$. The switching of the locking range is done by an integrator following the PLL. The second divider of the PLL circuit can be switched externally through the $\bar{A}-\bar{F}$ inputs. With an L-level at \bar{A} it divides by 25 , at \bar{B} by 21 , at \bar{C} by 17 , at \bar{D} by 15 , at \bar{E} by 13 and at \bar{F} by 11 . In order to convert, through division, a 57 kHz SF-signal into a BF-signal, the PLL contains an additional 2-bit divider. Corresponding to the programming inputs $\bar{A} \ldots \bar{F}$ used, the PLL generates an internal BF signal. An externally applied BF (at the BF input) is applied to an exclusive-OR-gate together with the internal signal. The output of this gate causes switching of the counting steps at the first divider stage (e.g. 23/25). Thereby the internal BF is shifted in phase until a stable switching ratio has been obtained.

As an indication that the PLL has recognized a BF properly, the output of a second exclusive OR (Y-signal) gate is used; the inputs of this gate are the internal reference frequency, shifted by 90°, and the BF.

In case of a stable switching ratio mentioned above, Y has a high level and thereby indicates the recognition of a proper $B F$. If the $B F$ received is wrong, the Y output shows an irregular signal.

Just as in the case with S 551, the S 552 also contains an integrator and a memory. Both blocks receive their clock frequency from an internal frequency divider. This frequency divider essentially consists of a synchronous counter, which generates the integrator clock, and an asynchronous divider operated in series, which supplies the memory clock.

The integrator is an 8-bit synchronous up-down counter. Its clock frequency depends on the PLL output. For $\mathrm{Y}=$ high it amounts to approx. 2370 Hz and at $\mathrm{Y}=$ low 4750 Hz . In addition, the direction of counting of the integrator is determined by the level of the Y signal. At the high clock frequency it counts down (at $Y=$ low) and at the low frequency it counts up ($Y=$ high). The minimum duty cycle of the Y signal for upcounting of the integrator is $<1: 3$ for $Y=$ Low.

An evaluation of the contents of the counter is done by means of a hysteresis circuit with thresholds at counter contents $1 / 4$ full and $3 / 4$ full. In addition, the integrator stages with the highest significance determine a change of the locking range in the first PLL divider stage.

When the integrator is empty (0 to $1 / 4$), the PLL-divider can be switched between 19 and 29 counting steps, when the integrator has been partially filled ($1 / 4$ to $1 / 2$) between 21 and 27 steps and if it is filled more than $1 / 2$ or if $\overline{B K}=$ low between 23 and 25 counting steps.

When the integrator is full or when the memory is not entirely empty, the output $\overline{\mathrm{BK}}=$ low. The memory will bridge a brief disappearance of SK or BF. It consists of a 4-bit synchronous up/down counter and the maximum storage time amounts to approx. 6 s . Its clock frequency is approx. 2.3 Hz . When the hysteresis output shows a full integrator the memory counts up and for an empy integrator down. The hysteresis signal, together with the Q_{1} outputs of the individual memory bits, forms the $\overline{\mathrm{BK}}$-signal through a gate. Therefore the $\overline{\mathrm{BK}}$ output remains low for additional 6 s after the integrator has counted down to zero.

Note:

The inputs TBL, PR and Y are intended for testing purposes. They must not be connected externally.

Digital storing and retrieving of the tuner voltage according to the voltage synthesis concept may be performed by means of the SDA 5690 R IC, designed in MOS depletion technology, in connection with a nonvolatile memory.
The system comprises 3 ICs, a multistage RC low-pass, and several external components. The tuning voltage is digitized into a 10 -bit word, thus obtaining a resolution accuracy of approximately $\pm 10 \mathrm{kHz}$ throughout the entire VHF bandwidth.

- Few external components
- Fine-tuning during storage
- Mute signal during progam change or storage
- Frequency monitoring of a stored station

Type	Ordering code	Package outline
SDA 5690 R	Q67100-Z138-R	DIP 28

Maximum ratings (referred to $V_{D D}=0 \mathrm{~V}$)

Supply voltage	V_{SS}	0 to 17	V
Input voltage	V_{i}	0 to 17	V
Power dissipation per output	P_{q}	10	mW
(unless otherwise specified under characteristic data)			
Total power dissipation	$P_{\text {tot }}$	500	mW
Thermal resistance (system-air)	$R_{\text {th } \mathrm{SA}}$	60	$\mathrm{~K} / \mathrm{W}$
Storage temperature range	$T_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$

Range of operation (referred to $V_{D D}=0 \mathrm{~V}$)
Supply voltage range
Ambient temperature range

V_{SS}	5 to 14	V
T_{amb}	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics (all voltages referred to V_{DD})

Supply current ($\mathrm{V}_{\mathrm{SS}}=12 \mathrm{~V}$)

	\min	typ	\max	
I_{DD}		3	10	mA

Inputs

switch-on reset-POR
forward-backward K
(incl. pull-high resistors)
H -input voltage
(test circuit $1, V_{\mathrm{SS}}=12 \mathrm{~V}$)
L-input voltage
(test circuit $1, V_{\mathrm{SS}}=12 \mathrm{~V}$)
Input short-circuit current ($V_{\mathrm{SS}}=12 \mathrm{~V}$)

Inputs
Store S
Progr. selection $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}, \mathrm{~V}_{6}, \mathrm{~V}_{7}, \mathrm{~V}_{8}, \mathrm{TP}$, TQ (incl. pull-high resistors)
H -input voltage
(test circuit $1, V_{\mathrm{SS}}=12 \mathrm{~V}$)
L-input voltage
(test circuit $1, V_{\mathrm{SS}}=12 \mathrm{~V}$)
Input short-circuit current ($V_{\mathrm{SS}}=12 \mathrm{~V}$)

V_{iH}	11
V_{iL}	0
I_{iLL}	-50

12	V
7.5	V
-5	$\mu \mathrm{~A}$

Inputs DM, L
H -input voltage
(test circuit $1, V_{S S}=12 \mathrm{~V}$)
L-input voltage
(test circuit $1, V_{S S}=12 \mathrm{~V}$)
Input oscillator CL

V_{iH}	11	12	V	
V_{iL}	0	7.5	V	
$f_{\text {osc }}$	\mid	$\mid 455^{*}$	\mid	$\mid \mathrm{kHz}$

Output DM

(open-drain output)
H-output voltage
(test circuit $2, I_{\mathrm{q}} \mathrm{H}=100 \mu \mathrm{~A}, V_{\mathrm{SS}}=12 \mathrm{~V}$)
Leakage current (test circuit 2, $V_{\mathrm{SS}}=12 \mathrm{~V}$)
Power dissipation

V_{qH}	11	12 I_{qlk} P_{q}	
1	$\mu \mathrm{~A}$		
50	mW		

Output Store ST
(open drain output)
H -output voltage
(test circuit 2, $I_{\mathrm{q}} \mathrm{H}=300 \mu \mathrm{~A}, V_{\mathrm{SS}}=12 \mathrm{~V}$)

[^37]
Characteristics (all voltages referred to $V_{D D}$)

Leakage current ($V_{\mathrm{SS}}=12 \mathrm{~V}$)
Power dissipation

	\min	typ	\max	
$I_{\mathrm{q} I \mathrm{k}}$			1	$\mu \mathrm{~A}$
P_{q}			50	mW

Output Mute-M

(open-drain output, short-circuit proof)
(test circuit 2)
H-output current ($\mathrm{V}_{\mathrm{qH}}=2.6 \mathrm{~V}$; $\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V}$)
Leakage current (V SS $=12 \mathrm{~V}$)
Power dissipation

$I_{\mathrm{q} H}$	500	1600	$\mu \mathrm{~A}$
$I_{\mathrm{q} I \mathrm{k}}$		1	$\mu \mathrm{~A}$
P_{q}		50	mW

Output DA

(open drain output)
(test circuit 2)
H -output voltage ($I_{\mathrm{q}} \mathrm{H}=400 \mu \mathrm{~A}$)
Leakage current ($V_{\mathrm{SS}}=12 \mathrm{~V}$)
Power dissipation

V_{qH}	9.4	12	V
I_{qlk}		10	$\mu \mathrm{~A}$
P_{q}		80	mW

Outputs

(Test circuit 2)

Retrieval W

memory location Address A, B, C
H -output voltage ($I_{\mathrm{q}} \mathrm{H}=100 \mu \mathrm{~A}$)
L-output voltage ($\left.I_{\mathrm{q} \mathrm{L}}=-10 \mu \mathrm{~A}\right)$

V_{qH}	11	12	V
V_{qL}	0	1	V

Output

memory shift clock I
(testc circuit 2)
H -output voltage
$\left(V_{\mathrm{SS}}=12 \mathrm{~V} ; I_{\mathrm{qH}}=50 \mu \mathrm{~A}\right)$
L-output voltage
$\left(V_{\mathrm{SS}}=12 \mathrm{~V} ; I_{\mathrm{qL}}=-20 \mu \mathrm{~A}\right)$

V_{qH}	11	12	V
V_{qL}	0	1	V

Output

program change PC*
(test circuit 2)
H -output voltage
($V_{\mathrm{SS}}=12 \mathrm{~V} ; I_{\mathrm{qH}}=100 \mu \mathrm{~A}$)
L-output voltage
$\left(V_{\mathrm{SS}}=12 \mathrm{~V} ; I_{\mathrm{qL}}=-5 \mu \mathrm{~A}\right)$

V_{qH}	11	12	V
V_{qL}	0	1	V

Characteristics (all voltages referred to V_{DD})

H -L transition time ($C_{\text {ext }}=20 \mathrm{pF}$)

Output

turn-on reset PR
(test circuit 2)
H -output voltage
$\left(I_{\mathrm{q}}=20 \mu \mathrm{~A} ; V_{\mathrm{SS}}=12 \mathrm{~V}\right.$)
L-output voltage
$\left(I_{\mathrm{q}}=-2 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{SS}}=3.3 \mathrm{~V}\right)$
Changeover values ($V_{\mathrm{SS}}-V_{\mathrm{DD}}$)
(refer to test diagram)

$$
\begin{array}{l|l|l|l|l}
V_{\mathrm{qH}} & 11 & & 12 & \mathrm{~V} \\
V_{\mathrm{qL}} & 0 & & 1 & \mathrm{~V} \\
3.3 & 3.8 & 4.5 & \mathrm{~V}
\end{array}
$$

Test circuit 1

Test circuit 2

Test diagram

Circuit description

1. Total system - survey

The total system for digital storage and retrieval of the tuning voltage is based on a voltage synthesis concept which comprises three ICs, a multistage RC low-pass, and several discrete peripherals. The tuning voltage is digitized into a 10 bit word, thus resulting in a resolution accuracy of approximately $\pm 10 \mathrm{kHz}$ at 20 MHz bandwidth. An AFC operates in addition. Maximally 8 programs or 16 programs, respectively, can digitally be processed from the SDA 5690 R to the SDA 5650 R memory for storage.
The P-MOS control circuit SDA 5690 R mainly performs a DA conversion in case of program fetch or an AD conversion for program storage. It operates according to a counting method.

The 10 -bit digital value is represented as periodic squarewave signal of constant frequency, with the IFO being of the order of the pulse width. The following low-pass filtering yields in the mean time value thus delivering the analog value. The low pass consists of a switching stage in order to generate the voltage swing of 0 to $V_{\text {stab }}$ and the passage characteristic for adaptation to the capacitance diode characteristic curve as well as of several RC networks, to minimize the ripple of the analog voltage ($<10 \mu \mathrm{~V}$).
The comparator TDB 0453 A is necessary for the AD conversion. In case of scale operation (button $\mathrm{U}_{\text {scale }}$), the comparator output instructs the control unit to vary the digital value such that the low-pass voltage V_{C} aims at equality with the scale potentiometer voltage $V_{\text {pot }}$. The converter velocity was designed such that equality can be achieved during transmitter setting and storage. The digital value of $V_{\text {pot }}$ can then be stored.
With the aid of the tuning knob and the muting circuit, the frequency of a stored transmitter can be retrieved on the scale.

2. Function of the control IC SDA 5690 R

The converter comprises each a 10 -stage cycle counter, a digital comparator, and an IFO register which operates either as incrementer/decrementer or as shift register. The periodically circulating cycle counter is clocked by an oscillator of approximately 455 kHz . The digital value equivalent to the tuning voltage is to be found in the IFO register. The conversion into a corresponding pulse width is done such that an F-F is set at the initial position of the cycle counter, and reset when equalization between cycle and IFO counter is achieved. In accordance with the 2^{10} possible IFO counter positions, there are also 2^{10} different pulse widths. The period of the DA output signal is 4 ms , it is subdivided into 8 individual pulses in order fo facilitate filtering. The program button inputs lead to the input logic which recognizes the button pressure and performs binary encoding. A locking device ensures that simultaneous pressure of two buttons does not lead to the recognition of the binary value of a third button. On principle, the last pressed button becomes active. With the aid of the divider and the control logic all clocks necessary for command recognition and data transfer are generated.

2.1 Program change

- press U_{1} to U_{8}
- load the program storage address A, B, C
- transmit the PC^{*} signal as read instruction for the memory; the data pin DM is switched as input; DE, DA of the memory as output.
- transmit 10Φ clocks; shift the memory IFO in the IFO register.
- convert the IFO into one pulse width
- the filtered diode voltage V_{LP} is fed to the tuner

2.2 Storage

- press the button $U_{\text {scale }}$
- tune with scale potentiometer

The scale potentiometer voltage $V_{\text {pot }}$ is directly fed to the tuner, it is also applied to the analog comparator. The comparator compares the voltage V_{C} which corresponds to the IFO register level, with $V_{\text {pot }}$. In case of inequality the comparator output determines via pin K in which direction the IFO register, switched as a counter, has to run such that equality will be achieved. The comparator itself does not determine "equality", but only "greater" or "less". For this reason, the digital value cannot be more precise than 1 LSB. At first, the IFO register is provided with a clock frequency of approximately 250 Hz .
Owing to this higher clock frequency as well as to possible incrementing/decrementing, the low-pass voltage will follow after a reasonable period of time at a change of the scale potentiometer voltage, i.e. there is no waiting period between the finished tuning process and pressing the store button. Because of the high response time of the low pass - given by the severe requirement as to ripple - the counter removes too far from the exact value (approx. ± 8 steps) when reaching equality of $V_{\mathrm{C}}=V_{\text {pot }}$. Therefore, retuning during storage follows.

- Storage process

At first the store button is pressed and kept down, subsequently the desired program button is actuated. The store button can be released, thereafter. After having actuated the store button retuning takes place by continuously slowing the clock frequency down during 1 second. After the course of this time the digital value reaches an accuracy of 1 LSB. Immediately after that the contents of the IFO register is moved into the memory:

- transmit ST signal
- data pin DM is switched as output; DA is brought into the high-ohmic state by the memory
- transmit 10Φ-clocks; shift IFO from the control device to the memory and memorize.

After the memory has finished the erasing and writing procedures - indicated with the signal L - then the stored station is read out again for control purposes.

2.3. Further particulars

2.3.1. Muting

During program change or storage, the M output is switched to " H ". Thus, the sound can be muted during undefined states of the voltage V_{LP}.

2.3.2. Frequency control of a stored transmitter

At first, the store button is pressed and kept pressing; " H " appears at M ; i.e. the sound becomes quiet. Now the scale potentiometer is turned until the sound is audible again within a narrow range of the scale. This means again that equality between $V_{\text {pot }}$ and V_{c} is given at this spot of the scale; the comparator causes the sound to be switched on with $\mathrm{M}=$ "L".

The frequency can be read from the scale.

2.3.3. Switch-on reset

If supply voltage is applied to the device, the input POR will get a signal change from " L " to " H " from the memory. This signal change automatically causes a program change, when a program button is pressed.

2.3.4. Program extension

The non-volatile memory SDA 5650 R has a capacity of max. 16×10 bit. With an according changeover of the addressing input A4 also up to 16 stations may be stored.

at $T_{\text {osc }}$ approx. 455 kHz applies:
$t_{1}-t_{0}=2.2 \ldots 38 \mathrm{~ms}$
$t_{2}-t_{1}=2.2 \mathrm{~ms}$
$t_{3}-t_{1}=6.7 \mathrm{~ms}$
$t_{4}-t_{3}=0.6 \mathrm{~ms}$
$t_{5}-t_{4}=1.1 \mathrm{~ms}$
$t_{6}-t_{5}=1.1 \mathrm{~ms}$
$t_{7}-t_{4}=21.3 \mathrm{~ms}$
$t_{8}-t_{7}=0.6 \mathrm{~ms}$
$t_{9}-t_{2}=564.5 \mathrm{~ms}$
$t_{0}-t_{\mathrm{s}} \geqq 36 \mathrm{~ms}$
Minimum time between opened store button ($\rightarrow \mathrm{H}$) and pressed program button ($\rightarrow \mathrm{L}$) after which program change is unambiguously identified. At less than 36 msec , storage or program change can follow.

SDA 5690 R

Pin designation

Pin No.	Symbol	Description
1	$V_{\text {SS }}$	Supply voltage
2	POR	Switch-on reset input
3	TQ	Test pin
4	D $_{\text {q }}$	Information output
5	TP	Test pin
6	DM	Serial data input/output
7	U_{1}	Program selection signal input
8	U_{2}	Program selection signal input
9	W	Retrieval signal output
10	CL	Oscillator input/output
11	U_{3}	Program selection signal input
12	U_{4}	Program selection signal input
13	U_{5}	Program selection signal input
14	S	Storage signal input
15	U_{6}	Program selection signal input
16	U	Program selection signal input
17	U_{8}	Program selection signal input
18	C	Memory location address
19	Φ	Memory shift clock
20	B	Memory location address
21	PC*	Program change signal for memory
22	L	Erase and write blocking signal
23	ST	Store signal for memory
24	A	Memory location address
25	$V_{\text {DD }}$	Supply voltage
26	PR	Switch-on reset signal for memory
27	K	Forward/backward signal (from comp.)/input
28	M	Mute output

MOS circuit

Digital storing and retrieving of the tuner voltage according to the voltage synthesis concept may be performed by means of the SDA 5690 IC, designed in MOS depletion technology, in connection with a C-MOS memory.
The system comprises 3 ICs, a multistage RC low-pass, and several external components. The tuning voltage is digitized into a 10 -bit word, thus obtaining a resolution accuracy of approximately $\pm 10 \mathrm{kHz}$ throughout the entire VHF bandwith.

- Few external components
- Fine-tuning during storage
- Mute signal during program change or storage
- Frequency monitoring of a stored station

Type	Ordering code	Package outline
SDA 5690 C	Q 67100-Z137-C	DIP 28

Maximum ratings (all voltages referred to $V_{D D}=0 \mathrm{~V}$)

Supply voltage
Input voltage
Power dissipation per output
(unless otherwise specified under characteristic data)
Total power dissipation
Storage temperature range
Range of operation (referred to $V_{D D}=0 \mathrm{~V}$)
Supply voltage range
Ambient temperature range

V_{SS}	17
V_{i}	V_{SS}
P_{q}	10
$P_{\text {tot }}$	500
$T_{\text {stg }}$	-55 to 125

SS	5 to 6

T_{amb}

Characteristics (all voltages referred to $V_{D D}$, according to test circuit 1)

$$
\text { Supply current ('v'sS }=6 \text { v') }
$$

	\min	typ	\max	
\bar{I}_{DD}		2.5	10	mA

Inputs

switch-on reset-POR

forward-backward K
(incl. pull-high resistors)
H input voltage ($\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V}$)
L input voltage ($V_{\mathrm{SS}}=5 \mathrm{~V}$)
Input short-circuit current ($V_{\mathrm{SS}}=6 \mathrm{~V}$)
Input short-circuit current ($V_{\mathrm{SS}}=5 \mathrm{~V}$)

$V_{i ~ H}$	4	5	V
V_{iL}	0	0.5	V
I_{iL}	-100		$\mu \mathrm{~A}$
I_{iL}		-10	$\mu \mathrm{~A}$

Inputs

Store S

Progr. selection $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$.
$\mathrm{V}_{4}, \mathrm{~V}_{5}, \mathrm{~V}_{6}, \mathrm{~V}_{7}, \mathrm{~V}_{8}, \mathrm{TP}, \mathrm{TQ}$
(incl. pull-high resistors)
H input voltage ($V_{\mathrm{SS}}=5 \mathrm{~V}$)
L input voltage ($V_{\mathrm{SS}}=5 \mathrm{~V}$)
Input short-circuit current ($V_{\mathrm{SS}}=6 \mathrm{~V}$)
Input short-circuit current ($V_{\mathrm{SS}}=5 \mathrm{~V}$)

| $V_{i ~} \mathrm{H}$ | 4 | 5 | V |
| :--- | :--- | :--- | :--- | :--- |
| $V_{\mathrm{i}} \mathrm{L}$ | 0 | 0.5 | V |
| I_{iL} | -50 | | $\mu \mathrm{~A}$ |
| $I_{\mathrm{i} \mathrm{L}}$ | | -5 | $\mu \mathrm{~A}$ |

Input DM

H input voltage ($V_{\mathrm{SS}}=5 \mathrm{~V}$)
L input voltage $\left(V_{S S}=5 \mathrm{~V}\right)$
Input oscillator CL

$V_{\text {i }}$ $V_{\text {i }}$	$\left\lvert\, \begin{aligned} & 4 \\ & 0\end{aligned}\right.$		5 0.5	V V
$f_{\text {osc }}$		455*		kHz

[^38]Characteristics (all voltages referred to V_{DD}, according to test circuit 2)

Outputs

Output DM

(open-drain-output)
H output voltage ($I_{\mathrm{qH}}=100 \mu \mathrm{~A} ; V_{\mathrm{SS}}=5 \mathrm{~V}$)
Leakage current ($V_{\mathrm{SS}}=6 \mathrm{~V}$)
Power dissipation
Output Store - ST
(open-drain-output)
H -output voltage ($I_{\mathrm{qH}}=300 \mu \mathrm{~A} ; V_{\mathrm{SS}}=5 \mathrm{~V}$)
Leakage current ($V_{\mathrm{SS}}=6 \mathrm{~V}$)
Power dissipation

Output Mute - M

(open-drain output, short-circuit proof)
H output current ($V_{\mathrm{qH}}=2.6 \mathrm{~V} ; V_{\mathrm{SS}}=5 \mathrm{~V}$)
Leakage current ($V_{\mathrm{SS}}=6 \mathrm{~V}$)
Power dissipation

Output DA

(open-drain output)

H -output voltage ($I_{\mathrm{qH}}=400 \mu \mathrm{~A} ; V_{\mathrm{SS}}=5 \mathrm{~V}$)
Leakage current ($V_{\mathrm{SS}}=6 \mathrm{~V}$)
Power dissipation

Outputs

Retrieval W

memory location address A, B, C
H -output voltage ($I_{\mathrm{q}} \mathrm{H}=100 \mu \mathrm{~A}$)
L-output voltage ($\left.I_{\mathrm{qL}}=-10 \mu \mathrm{~A}\right)$

Output

Memory shift clock Φ
H output voltage ($V_{\mathrm{SS}}=5 \mathrm{~V} ; I_{\mathrm{qH}}=50 \mu \mathrm{~A}$)
L output voltage ($I_{\mathrm{qL}}=-20 \mu \mathrm{~A}$)

Output

Program change PC*
H output voltage ($V_{\mathrm{SS}}=5 \mathrm{~V} ; I_{\mathrm{qH}}=100 \mu \mathrm{~A}$)
L output voltage ($I_{\mathrm{qL}}=-5 \mu \mathrm{~A}$)
Transition time ($C_{\mathrm{ext}}=20 \mathrm{pF}$)

Output

RC time constant for memory
H output voltage ($V_{\mathrm{SS}}=5 \mathrm{~V} ; I_{\mathrm{qH}}=50 \mu \mathrm{~A}$)
L output voltage ($I_{\mathrm{qL}}=-2.5 \mu \mathrm{~A}$)
Output

Switch-on reset PR

H output voltage
($V_{\mathrm{SS}}=5 \mathrm{~V} ; I_{\mathrm{qH}}=20 \mu \mathrm{~A}$)
L output voltage
$\left(I_{\mathrm{qL}}=-2 \mu \mathrm{~A} ; V_{\mathrm{SS}}=3.3 \mathrm{~V}\right)$
Changeover values ($V_{S S}-V_{D D}$)
(Test diagram)

	\min	typ	\max	
V_{qH}	4		5	V
$I_{\mathrm{q} \text { Ik }}$			1	$\mu \mathrm{~A}$
P_{q}			50	mW

V_{qH}	2.4	5	V
I_{qlk}		10	$\mu \mathrm{~A}$
P_{q}		80	mW

V_{qH}	4	5	V
V_{qL}	0	1	V

V_{qH}	4	5	V
V_{qL}	0	1	V
t_{HL}		10	$\mu \mathrm{~s}$

$V_{q H}$	4.5	5	V
$V_{q L}$	0	0.7	V

V_{qH}
I_{qlk}
P_{q}
$\mid 4$

5	V
1	$\mu \mathrm{~A}$
50	mW

$I_{q H}$	500	1600	$\mu \mathrm{~A}$
I_{qlk}		1	$\mu \mathrm{~A}$
P_{q}		50	mW

V_{qL}
$V_{\text {q }}$
$V_{q L}$
$\left\lvert\, \begin{aligned} & 4 \\ & 0\end{aligned}\right.$

5	V
1	V

V_{qH}	4	5	V	
V_{qL}	0			
	3.3	3.8	4.5	V

Circuit description

1. Total system - survey

The total system for digital storage and retrieval of the tuning voltage is based on a voltage synthesis concept which comprises three ICs, a multistage RC low-pass, and severai discrete peripherals. The tuning voltage is digitized into a 10 bit word, thus resulting in a resolution accuracy of approximately $\pm 10 \mathrm{kHz}$ at 20 MHz bandwidth.
An AFC operates in addition. The reference voltage $V_{\text {stab }}$ is generated e.g. by means of a voltage converter.
The SDA 5690 can digitally process max. 8 programs (8×10 bits) to a memory for storing. If a CMOS memory is used, e.g. the MC 144101, 2 mono cells will provide for retaining the information (IFO) after the supply voltage has been switched off.
The PMOS control circuit SDA 5690 C mainly performs a DA conversion in case of program fetch or an AD conversion for program storage. It operates according to a counting method.
The 10 -bit digital value is represented as periodic squarewave signal of constant frequency, with the IFO being of the order of the pulse width. The following low-pass filtering yields in the mean time value thus delivering the analog value. The low pass consists of a switching stage in order to generate the voltage swing of 0 to $V_{\text {stab }}$ and the passage characteristic for adaptation to the capacitance diode characteristic curve as well as of several RC networks, to minimize the ripple of the analog voltage ($<10 \mu \mathrm{~V}$).
The comparator TDB 0453 A is necessary for the AD conversion. In case of scale operation (button UFM) the comparator output instructs the control unit to vary the digital value such that the low-pass voltage V_{C} aims at equality with the scale potentiometer voltage $V_{\text {pot }}$. The converter velocity is designed such that equality can be achieved during transmitter setting and storage. The digital value of $V_{\text {pot }}$ can then be stored.
With the aid of the tuning knob and the muting circuit, the frequency of a stored transmitter can be retrieved on the scale.

2. Function of the control IC SDA 5690 C

The converter comprises each a 10 -stage cycle counter, a digital comparator and an IFO register which operates either as incrementer/decrementer or as shift register. The periodically circulating cycle counter is clocked by an oscillator of approximately 500 kHz . The digital value equivalent to the tuning voltage is to be found in the IFO register. The conversion into a corresponding pulse width is done such that an F-F is set at the initial position of the cycle counter, and reset when equalization between cycle and incrementer/decrementer is achieved. In accordance with the 2^{10} possible IFO counter positions, there are also 2^{10} different pulse widths. The period of the DA output signal is 4 ms , it is subdivided into 8 individual pulses.
The program button inputs lead to the input logic which recognizes the button pressure and performs binary encoding. A locking device ensures that simultaneous pressure of two buttons does not lead to the recognition of the binary value of a third button. On principle, the last pressed button becomes active. With the aid of the divider and the control logic all clocks necessary for command recognition and data transfer are generated.

2.1. Program change

- press U_{1} to U_{8}
- load the program storage address $\mathrm{A}, \mathrm{B}, \mathrm{C}$
- transmit the PC* signal and the RC auxiliary signal as read instruction for the memory; the data pin DM is switched as input; DM of the memory as output.
- transmit 10Φ-clocks; shift the memory IFO in the IFO register.
- convert the IFO into one pulse with
- the filtered diode voltage $V_{\text {LP }}$ is fed to the tuner

2.2. Storage

- press the button $\mathrm{U}_{\text {scale }}$
- tune with scale potentiometer

The scale potentiometer voltage $V_{\text {pot }}$ is directly fed to the tuner, it is also applied to the analog comparator. The comparator compares the voltage V_{c} which corresponds to the IFO register level, with $V_{\text {pot }}$. In case of inequality the comparator output determines via pin K in which direction the IFO register, switched as a counter, has to run such that equality will be achieved. The comparator itself does not determine "equality", but only "greater" or "less". For this reason, the digital value cannot be more precise than 1 LSB. At first, the IFO register is provided with a clock frequency of approximately 250 Hz .
Owing to this higher clock frequency as well as to possible incrementing/decrementing, the low-pass voltage will follow after a reasonable period of time at a change of the scale potentiometer voltage, i.e. there is no waiting period between the finished tuning process and pressing the store button. Because of the high response time of the low pass - given by the severe requirement as to ripple - the counter removes too far from the exact value (approx. ± 8 steps) when reaching equality of $V_{\mathrm{C}}=V_{\text {pot }}$. Therefore, retuning during storage follows.

- Storage process

At first the store button and subsequently the desired program button are actuated.
After having actuated the store button, retuning takes place by continuously slowing down the clock frequency during 1 second. After the course of this time, the digital value reaches an accuracy of 1 LSB. Immediately after that, the contents of the IFO register is moved into the memory:

- transmit ST signal and auxiliary RC signal for the memory
- data pin DM is switched as output; by the memory, DM is switched as input
- transmit 10Φ clocks; shift IFO from the control IC to the memory amd memorize.

A subsequent program change is performed for control purposes.

2.3. Further particulars

2.3.1. Muting

During program change or storage, the M output is switched to " H ". Thus, the sound can be muted during undefined states of the voltages V_{LP}.

2.3.2. Frequency control of a stored transmitter

Ar first, the store button is pressed and kept pressing; " H " appears at M; i.e. the sound becomes quiet. Now the scale potentiometer is turned until the sound is audible again within a narrow range of the scale. This means again that equality between $V_{\text {pot }}$ and V_{c} is given at this spot of the scale; the comparator causes the sound to be switched on with $M=$ " L ".
The frequency can be read from the scale.

2.3.3. Switch-on reset

If supply voltage is applied to the device, the input POR will get a signal change from " L " to " H " from the memory. This signal change automatically causes a program change, when a program button is pressed.

Test circuits

Test circuit 1

Test circuit 2

Test diagram

at $\mathrm{T}_{\text {osc }}$ approx. 455 kHz ap plies:
$t_{1}-t_{0}=2.2 \ldots 38 \mathrm{~ms}$
$t_{2}-t_{1}=2.2 \mathrm{~ms}$ $t_{3}-t_{1}=6.7 \mathrm{~ms}$ $t_{4}-t_{3}=0.6 \mathrm{~ms}$ $t_{5}-t_{4}=1.1 \mathrm{~ms}$
$t_{6}-t_{5}=1.1 \mathrm{~ms}$
$t_{7}-t_{4}=21.3 \mathrm{~ms}$
$t_{8}-t_{7}=0.6 \mathrm{~ms}$
$t_{9}-t_{2}=564.5 \mathrm{~ms}$
$t_{0}-t_{\mathrm{s}} \geqq 36 \mathrm{~ms}$
Minimum time between opened store button ($\rightarrow \mathrm{H}$) and pressed program button $(\rightarrow \mathrm{L})$ after which program change is unambiguously identified. At less than 36 msec , storage or program change can follow.

At $T_{\text {osc }}$ approx. 455 kHz applies:
$t_{1}-t_{0}$ max. $\widehat{=} 36 \mathrm{~ms}$
$t_{2}-t_{1} \geqq 36 \mathrm{~ms}$
$t_{3}-t_{2}=2.2 \ldots 38 \mathrm{~ms}$
UFM
Scale button

$$
t_{5}-t_{1}=1.1 \ldots 5,7 \mathrm{~s}
$$

$$
t_{4}-t_{3}=2.2 \mathrm{~ms}
$$

$$
t_{5}-t_{3}=6.7 \mathrm{~ms}
$$

$$
t_{6}-t_{5}=0.6 \mathrm{~ms}
$$

$$
t_{7}-t_{6}=1.1 \mathrm{~ms}
$$

$$
t_{8}-t_{7}=1.1 \mathrm{~ms}
$$

$$
t_{9}-t_{6}=21.3 \mathrm{~ms}
$$

$$
t_{10}-t_{9}=0.6 \mathrm{~ms}
$$

$$
t_{11}-t_{10}=13.4 \mathrm{~ms}
$$

$$
t_{12}-t_{2} \geqq 36 \mathrm{~ms}
$$

Dashed curve results from resistance coupling of DM and ST

Pin designation

Pin No.	Symbol	Description
1	$V_{\text {SS }}$	Supply voltage
2	POR	Switch-on reset input
3	TQ	Test pin
4	D_{q}	Information output
5	TP	Test pin
6	DM	Serial data input/output
7	U_{1}	Program selection signal input
8	U_{2}	Program selection signal input
9	$\mathrm{~W}^{2}$	Retrieval signal output
10	CL	Oscillator input/output
11	U_{3}	Program selection signal input
12	U_{4}	Program selection signal input
13	U_{5}	Program selection signal input
14	S	Storage signal input
15	U_{6}	Program selection signal input
16	U_{7}	Program selection signal input
17	U_{8}	Program selection signal input
18	C	Memory location address
19	Φ	Memory shift clock
20	B	Memory location address
21	PC	Program change signal for memory
22	RC	Time constant simulation signal
23	ST	Store signal for memory
24	A	Memory location address
25	$V_{\text {DD }}$	Supply voltage
26	PR	Switch-on reset signal for memory
27	K	Forward/backward signal (from comp.)/input
28	M	Mute output

$16 \times 10(12)$ bit SDA 5650 R memory for radios.

General features

- Electrically wordwise reprogrammable, nonvolatile memory in floating gate technology
- Memory capacity 16 words of 10 or 12 bits each, pin programmable
- Serial data input and output via separate inputs and outputs
- 4 parallel address input lines
- No determination of erase and write cycles with external RC networks
- N-channel silicon gate technology
- Nonvolatile data storage for more than 10 years
- Unlimited number of read cycles without refresh number of rewrite cycles greater than 10^{3} per word
- Programmining within 1 second
- Typical application: tuning memory

Type	Ordering code	Package outline
SDA 5650 R	Q67100-Q247-R	DIP 18

Maximum ratings (all voltages referred to $V_{\mathrm{SS}}=0 \mathrm{~V}$)

Supply voltage	$V_{\mathrm{DD} \mathrm{12-1}}$	21	V
Supply voltage	$V_{\mathrm{PH} 7-1}$	40	V
Supply voltage	$V_{\mathrm{PI} 9-1}$	21	16
Input voltage	V_{i}	V	
Total power dissipation	$P_{\text {tot }}$	400	V
Thermal resistance (system-air)	$R_{\text {th }} \mathrm{SA}$	80	mW
Storage temperature range	$T_{\text {stg }}$	-40 to 125	$\mathrm{~K} / \mathrm{W}$
${ }^{\circ} \mathrm{C}$			

Range of operation (referred to $V_{\mathrm{SS}}=0 \mathrm{~V}$)
Supply voltage range
Ambient temperature range

$V_{\mathrm{DD} \mathrm{12}}$	14 to 16
T_{amb}	0 to 70

Static characteristics (all voltages referred to $V_{\mathrm{SS}}=0 \mathrm{~V}$)

Supply current
Substrate bias
Substrate current ${ }^{1}$)
Substrate current ${ }^{2}$)
average current
peak pulse current
Programming voltage
Programming current ${ }^{1}$) (switchable)
Programming current ${ }^{2}$)
average current
peak pulse current
Write voltage
($>13 \mathrm{~V}$ at the read process)
Write current $\left.{ }^{1}\right)\left(V_{\mathrm{PI}}>13 \mathrm{~V}\right)$
Write current ${ }^{2}$)
average current
peak pulse current

	min	typ	max	
IDD 12		10	20	mA
$-V_{\text {BB } 1}$	4		5	V
$-I_{\text {BB } 1}$			100	$\mu \mathrm{A}$
$I_{\text {BB 1a }}$		0.5	2	mA
$I_{\text {BB 1p }}$			10	mA
$V_{\text {PP }} 7$		33	35	V
IPP 7			300	$\mu \mathrm{A}$
IPP 7a		1	2	mA
IPP 7p		5	10	mA
$V_{\text {PI }} 9$		15	16	V
IPI 9			100	$\mu \mathrm{A}$
$I_{\text {PI } 9 a}$		5	20	mA
$I_{\text {Pl 9p }}$			50	mA

Inputs $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{D}_{\mathrm{E}}, \Phi, \mathrm{B}, \mathrm{St}, \mathrm{PCM}, \mathrm{PR}$ (pin 5, 4, 3, 2, 15, 13, 14, 16, 18, 8)
$\begin{array}{ll}\mathrm{B}(\operatorname{pin} 14) & \left(V_{\mathrm{L}}=0 \mathrm{~V}\right) \\ \mathrm{PR}(\operatorname{pin} 8) & \left(V_{\mathrm{L}}=0 \mathrm{~V}\right) \\ & \left(V_{\mathrm{H}}=V_{\mathrm{DD}}\right)\end{array}$
$V_{\text {L }}$
V_{H}
I_{H}
$-I_{\mathrm{L}}$
$-I_{\mathrm{L}}$
$+I_{\mathrm{H}}$

$|$| 0 |
| :--- |
| 4 |

0.5	V
$V_{D D}$	V
10	$\mu \mathrm{~A}$
300	$\mu \mathrm{~A}$
200	$\mu \mathrm{~A}$
200	$\mu \mathrm{~A}$

Outputs (open drain)
L, POR, $\mathrm{D}_{\mathrm{A}}(\operatorname{pin} 17,6,11)$
$\left(V_{0}=0.5 \mathrm{~V}\right)$
$\left(V_{0}=V_{\mathrm{DD}}\right)$
I_{L}
I_{H}

0.5	mA
10	$\mu \mathrm{~A}$

[^39]
Dynamic characteristics

Switching times

Clock signal Φ
D_{i} (data input)
D_{i} (data input)
D_{q} (data output)
Total erase - write time

$$
\left(V_{\mathrm{PI}}=15 \mathrm{~V} ; V_{\mathrm{PH}}=33 \mathrm{~V}\right)^{*}
$$

Programming frequency

	min	typ	max	
$\mathrm{T}=t_{1}+t_{2}$	100			$\mu \mathrm{s}$
t_{1}, t_{2}	20			$\mu \mathrm{s}$
$t_{\mathrm{r}}, t_{\mathrm{f}}$			10	$\mu \mathrm{s}$
$t_{\text {i }}$	10			$\mu \mathrm{s}$
t_{0}	70			$\mu \mathrm{s}$
t_{q}			70	$\mu \mathrm{s}$
Tprog			1	S
f prog			1	Hz

[^40]
Circuit description

Read operation (fig. 1)

The read operation is initialized with the transition of the external signal PCM from high to low at the time $t=t_{0}$. The address information has to be stable for at least 10 seconds prior to and after t_{0}. After $t_{0}+10$ seconds, all address inputs as well as the control input are blocked as long as the PCM signal is low. The data output D_{q} is low-ohmic as long as PCM remains low. At a time $t_{1}>50 \mu \mathrm{sec}$, the first written data bit of the selected 10 (12) bit word is available at the output. The further data bits are clocked each by the falling edge of 10 (12) positive clock pulses.
After having finished the read operation - with the transition of the external signal PCM from low to high - the address lines and control lines are again enabled.

Rewrite operation (fig. 2)

The write operation is initialized with the transition of the external signal ST from high to low (at least for $50 \mu \mathrm{sec}$) at the time $t=t_{0}$. The address information has to be stable for at least 10 seconds prior to and after t_{0}. At the time t_{0} the memory outputs a signal L from low to high as long as the rewrite operation lasts. This signal blocks the address, the PCM, and the control (ST) input.
After a time $t_{1}=t_{0}+\Delta t$ with $\Delta t>50 \mu \mathrm{sec}$ the data information can be written into the data shift register with 10 (12) clock pulses. Data carry takes place at the negative edges of the positive clock pulses.
With the aid of internal memory control, the write operation begins as soon as the data transfer after the $10^{\text {th }}\left(12^{\text {th }}\right)$ clock pulse and the erasure have been finished. The end of the write operation is also determined by means of internal control. It is indicated at the control output L by the transition from high to low.

After programming, the ST input remains blocked, it is not released again before a leading edge at the PCM input (repetitive blocking for programming at too long pressing the store button).

Reset

The memory remains in the reset condition as long as the input PR is low. During reset also the output POR is low.

Word length

A connection between input B and ground V_{SS} results in an extended word length from 10 to 12 bits. In the open state, the shorter word length is set through an integrated pull-up resistor.

Pin designation

Pin No.	Symbol	Description
1	V_{BB}	Substrate bias
2	$\mathrm{~A}_{4}$	Address 4 (input)
3	$\mathrm{~A}_{3}$	Address 3 (input)
4	$\mathrm{~A}_{2}$	Address 2 (input)
5	$\mathrm{~A}_{1}$	Address 1 (input)
6	POR	Reset output
7	V_{PP}	Programming voltage
8	PR	Reset input
9	V_{PI}	Write current
10	V_{SS}	Ground
11	D	Data output
12	V_{D}	Supply voltage
13	Φ	Clock signal (input)
14	B	Changeover between 10 and 12 bit (input)
15	D_{i}	Data input
16	St	Reprogramming signal (input, active low)
17	L	Programming conditional signal (output)
18	PCM	Read signal (input, active low)

Fig. 1 Read operation

Block diagram

Supply voltage for the tuning memory in radios

Bipolar circuit

The comparator TDB 0453 A is particularly developed for use in the voltage synthesis concept for radios (SDA 5690).
The TDB 0453 A includes a PNP input. The prestages and final stages can be supplied separately. Thus, the advantage results that comparatively low battery voltages are adequate for supplying the final stages and a very low current is needed for supplying the input stages. The supply voltage $V_{\mathrm{S} 1}$ must be slightly higher than the required commonmode range; moreover, current consumption /s1 of the prestage only slightly changes at switching over the final stage. In addition to this advantage as well as high gain, high input impedance, low zero voltage, low temperature and supply voltage dependence, the TDB 0453 A is outstanding for:

- Large supply voltage range
- High output power
- Low current consumption
- Low saturation voltage
- Common mode range up to 0 V

Type	Ordering code	Package outline
TDB 0453 A	Q 67000-A1499	DIP 6

Maximum ratings

Supply voltage	$V_{\mathrm{S} 1}, V_{\mathrm{S} 2}$	32	V
Output current	$I_{\mathrm{q}} 5$	70	mA
Differential input voltage	$\Delta V_{\mathrm{i} 2-3}$	$\pm V_{\mathrm{S}}$	
Thermal resistance (system-air)	$R_{\mathrm{th}} \mathrm{SA}$	140	$\mathrm{~K} / \mathrm{W}$
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	T_{stg}	-55 to 125	
Range of operation			
Supply voltage range	$V_{\mathrm{S} 1}, V_{\mathrm{S} 2}$	3 to 32	
Ambient temperature range	T_{amb}	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics ($V_{\mathrm{S}}=30 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}, R_{\mathrm{L}}=10 \mathrm{k} \Omega$, unless otherwise specified)

Current consumption Pin 1

$$
\left.\begin{array}{l}
V_{\mathrm{S} 1}=30 \mathrm{~V} \\
V_{\mathrm{S} 2}=15 \mathrm{~V}
\end{array}\right\} \operatorname{Pin} 6
$$

Input offset voltage ($R_{\mathrm{G}}=50 \Omega$)
Input offset current
Input current
Output voltage

$$
\begin{aligned}
& R_{\mathrm{L}}=2 \mathrm{k} \Omega \\
& R_{\mathrm{L}}=620 \Omega \\
& R_{\mathrm{L}}=2 \mathrm{k} \Omega \\
& R_{\mathrm{L}}=620 \Omega
\end{aligned}
$$

Output leakage current
Input resistance
Open-loop voltage gain
Output reverse current
Input common mode range
Common mode rejection
Supply voltage rejection
Temperature coefficient of input offset voltage
Temperature coefficient of input offset current Rate of voltage rise

	min	typ	max	
$I_{\text {S } 1}$		0.25	0.30	mA
$I_{\text {S2 }}$		0.7	1	mA
$\Delta V_{\text {ios }}$	-7.5		+ 7.5	mV
$\Delta I_{\text {ios }}$			80	nA
I_{i}		50	150	nA
$V_{\text {q }}$	29.9			V
$V_{\text {q }}$	29.9			V
$V_{\text {q }}$			0.3	V
$V_{\text {q }}$			0.5	V
$R_{\text {i }}$		200		k Ω
$G_{\text {vo }}$	75	83	95	dB
$I_{\text {qR }}$		1	10	$\mu \mathrm{A}$
V_{i} G	-0.2		$V_{\text {S }}-2.0$	V
CMR	65	79		dB
$\Delta V_{\text {ios }}$		25	200	$\mu \mathrm{V} / \mathrm{V}$
ΔV_{S}		25	200	$\mu \mathrm{V}$
$T C_{V}$		6		$\mu \mathrm{V} / \mathrm{K}$
$T C_{I}$		0.3		nA/K
$\Delta V_{\mathrm{q}} / \Delta t_{\mathrm{r}}$	depen and w	$\begin{aligned} & \text { ig on } \\ & \text { ig (ty) } \end{aligned}$	ode of op $\mathrm{V} / \mu \mathrm{s})$	eration

Schematic diagram

SDA 5680 is a single-chip solution of a frequency counter for radio receivers. The display is provided by a 5 digit liquid crystal display in multiplex operation. The SDA 5680 is suitable for use in single as well as in multi-heterodyne receivers. Two versions of the SDA 5680 are available differing by their intermediate frequency.

- Single chip solution
- Direct LCD driving
- For all broadcasting ranges
- Low current consumption

Type	Ordering code	Package outline
SDA 5680 A	Q 67000-Y 505-A	\|SDI 28
SDA 5680 B	Q 67000-Y 505-B	YD

Maximum ratings

Supply voltage
Input voltage

Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{S}	6.5	V
$V_{\mathrm{i} 6}, V_{\mathrm{i} 7}, V_{\mathrm{i} 9}$	V_{S}	V
$V_{\mathrm{i} 2}, V_{\mathrm{i} 4}, V_{\mathrm{i} 5}{ }^{*}$	1.5	$\mathrm{~V}_{\text {rms }}$
$R_{\text {th } \mathrm{SA}}$	60	$\mathrm{~K} / \mathrm{W}$
T_{j}	125	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation
Supply voltage range
Ambient temperature range

V_{S}	4.7 to 6	V
T_{amb}	0 to 70	${ }^{\circ} \mathrm{C}$

[^41]Characteristics ($V_{\mathrm{S}}=5 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$)

Current consumption
Input voltage $590 \mathrm{kHz} \leq f \leq 1 \mathrm{MHz}$

$$
\begin{aligned} 1 \mathrm{MHz} & \leq f \leq 2 \mathrm{MHz} \\ f & >2 \mathrm{MHz}\end{aligned}
$$

Input resistance

H -input voltage

M-input voltage (tristate inputs)

L-input voltage

H-input current
$\left(V_{\mathrm{i} 6 \mathrm{H}}=V_{\mathrm{i} 7 \mathrm{H}}=V_{\mathrm{i} 9 \mathrm{H}} \leq 2.4 \mathrm{~V}\right)$
L-input current

Input frequency

	min	typ	max	
I_{3}		30		mA
$V_{\text {i } 2, ~}, V_{\text {i } 4, ~}, V_{\text {i } 5}$	150			mV rms
	80			mV rms
	40			mV rms
$R_{\text {i }} 2$	250			
$R_{\text {i }} 4$	1			k Ω
$R_{\text {i }}$	1			k Ω
$V_{\text {i } 6 \mathrm{H}}$	2.4			V
$V_{\text {i }} 7 \mathrm{H}$	2.4			V
$V_{\text {i }} 9 \mathrm{H}$	2.4			V
$V_{\text {i } 6 \mathrm{M}}$		1		V
$V_{\text {i } 9 \mathrm{M}}$		1		V
		or free	0.2	
$V_{i 6 L}$ $V_{i} 7 \mathrm{~L}$			0.2 0.2	V
$V_{\text {i } 9 \mathrm{~L}}$			0.2	V
$I_{\text {i } 6 \mathrm{H}}$			100	$\mu \mathrm{A}$
$I_{\mathrm{i}} 7 \mathrm{H}$			100	$\mu \mathrm{A}$
$I_{\text {i }}^{9} \mathrm{H}$			100	$\mu \mathrm{A}$
$I_{\text {i } 6 \mathrm{~L}}$			-300	$\mu \mathrm{A}$
$I_{\text {i }} 7 \mathrm{~L}$			-300	$\mu \mathrm{A}$
$I_{\text {i }}^{\text {9L }}$			-300	$\mu \mathrm{A}$
$f_{\text {i }} 2$	0.59		119	MHz
$f_{i} 4$	0.59		33	MHz
$f_{i} 5$	0.59		33	MHz

Circuit description
 (refer to block diagram)

The heterodyne principle is used in radio receivers in different variants. Types of different center frequencies are applied as IF filter.

In case of single heterodyning the inputs osc ${ }_{1}$ and VHF of the IC are connected; in case of double heterodyning the inputs $\mathrm{osc}_{1}, \mathrm{osc}_{2}$, and VHF. Two inputs are provided for the logic selection of osc ${ }_{1}$, osc 2 , or VHF. One input permits the IF frequencies of MS and VHF to be programmed.
The receiver frequency $f_{\text {rec }}$ can be derived from the equation

$$
f_{\mathrm{rec}}=f_{\mathrm{i} 1} \pm f_{\mathrm{i} 2} \pm f_{\mathrm{lF}}
$$

An incrementer/decrementer and a gate circuit (using a crystal as time base) are used for processing the frequencies $f_{\mathrm{i} 1}$ and $f_{\mathrm{i} 2}$.

The frequency $f_{\mathrm{i} 2}$ can be zero, $f_{\mathrm{i} 1}$ then corresponds to the oscillator frequency of LMS or VHF. The programmed result of the counter takes the frequency $f_{\text {IF }}$ into account when the counting operation starts. The crystal frequency amounts to 4 MHz .

Frequency processing in the IC

$\begin{array}{ll}\mathrm{LMS} / \mathrm{VHF}_{\text {single }}: & f_{\text {rec }}=f_{\mathrm{i} 1}-f_{\mathrm{IF}} \\ \mathrm{SW}_{\text {double }} & : f_{\text {rec }}=f_{\mathrm{i} 1}-f_{\mathrm{i} 2}+f_{\mathrm{IF}}\end{array}$

Band selection

B_{1}	B_{2}	active inputs	Function
L		Osc $_{1}$	
M	L	Osc $_{1}, \mathrm{Osc}_{2}$	$\mathrm{SW}_{\text {single heterodyned }}$
M	H	$\mathrm{SW}_{\text {double }}$ heterodyned	
H		VHF	

Input B_{1} is not connected M
Input B_{2} is not connected H

IF programming:

The SDA 5680 is available in two versions; they differ by their mask programming throughout the intermediate frequency range:

SDA $5680 \mathrm{~A}:$	LMS:
VHF:	$f_{\mathrm{IF}}=460 \mathrm{kHz}$
SDA $5680 \mathrm{~B}:$	LMS:
VHF:	$f_{\mathrm{IF}}=452 \mathrm{kHz}$
$f_{\mathrm{IF}}=10.7 \mathrm{MHz}$	

IF Pin 9	Type A LMS	VHF	Type B LMS	VHF
L	459 kHz	10.675 MHz	451 kHz	10.675 MHz
M	460 kHz	10.7 MHz	452 kHz	10.7 MHz
H	461 kHz	10.725 MHz	453 kHz	10.725 MHz

Display:

Display range:

VHF:	108.00 MHz	(max. of range)
SW:	30.00 MHz	
MF:	1605 kHz	
LF:	285 kHz	

Indicating accuracy: clock accuracy ± 1 digit.
Leading 0 gated.
At the LCD input the voltage can be varied at the outputs D_{12} to D_{28} by means of a resistance to ground and matched to possible specimen deviation of the LCDs.

Pin designation

Pin No.	Symbol	Description
1	LCD	LCD voltage setting
2	VHF	VHF oscillator
3	$+V_{\text {S }}$	Supply voltage
4	Osc. $_{1}$	LMS oscillator, variable
5	Osc.2	SW oscillator, fixed
6	$\mathrm{~B}_{1}$	Area selection
7	$\mathrm{~B}_{2}$	Single/double heterodyning
8	GND	Ground
9	IF	IF programming
10	Qu_{1}	Crystal pin 1
11	Qu_{2}	Crystol pin 2
12	com $_{1}$	LCD connection
13	com $_{2}$	LCD connection
14	com $_{3}$	LCD connection
15	FED_{1}	LCD connection
16	AG_{1}	LCD connection
17	BC_{1}	LCD connection
18	FED_{2}	LCD connection
19	AG_{2}	LCD connection
20	$\mathrm{BC}_{2} \mathrm{P}_{1}$	LCD connection
21	AFE_{3}	LCD connection
22	BGD_{3}	LCD connection
23	$\mathrm{~F}_{4} \mathrm{C}_{3} \mathrm{P}_{2}$	LCD connection
24	AGE_{4}	LCD connection
25	BCD_{4}	LCD connection
26	FED_{5}	LCD connection
27	AGC_{5}	LCD connection
28	$\mathrm{~B}_{5}, \mathrm{kHz}_{2}, \mathrm{MHz}$	LCD connection

The TCA 4500 A is a phase-locked loop stereo decoder which incorporates a variable channel separation control. In this IC, the sensitivity to the third harmonics of both the pilot and subcarrier frequencies has been eliminated thanks to the use of appropriate, digitally generated waveforms in the phase-locked loop and decoder sections.

- Low distortion
- Excellent rejection of ARI subcarrier and pilottone harmonics
- No need for coils

Type	Ordering code	Package outline
TCA 4500 A	Q 67000-A 1471	DIP 16

Maximum ratings

Supply voltage	$v_{\text {S }}$	16	V
Lamp drive voltage (lamp off)	V_{7}	30	V
Lamp current	I_{7}	100	mA
Channel separation control voltage	V_{11}	10	V
Thermal resistance (system-air)	$R_{\text {th SA }}$	90	K/W
Junction temperature	$T_{\text {j }}$	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
Range of operation			
Supply voltage range	$v_{\text {S }}$	8 to 16	V
Ambient temperature range	$T_{\text {amb }}$	-25 to 85	${ }^{\circ} \mathrm{C}$

Characteristics

$\left(V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; V_{\mathrm{i}(\mathrm{MPX})}=2.5 \mathrm{~V}_{\mathrm{SS}} ; f_{\mathrm{mod}}=1 \mathrm{kHz} ; V_{\text {pilot }}=10 \% V_{\mathrm{i}}\right)$

Current consumption ($I_{7}=0$)
Stereo channel separation
unadjusted
optimized on other channel
Monaural voltage gain
THD at $2.5 \mathrm{~V}_{\mathrm{pp}}$
THD at $1.5 \mathrm{~V}_{\mathrm{pp}}$
Signal to noise ratio in acc. with DIN 45405 quasi peak reading RMS $20 \mathrm{~Hz}-15 \mathrm{kHz}$
Frequency rejection 19 kHz
38 kHz
Pilot tone harmonic rejection 57 kHz ARI
Subcarrier harmonic rejection 76 kHz
114 kHz
152 kHz
Input voltage for stereo switching threshold (19 kHz input signal for lamp "on")
Hysteresis for stereo switching threshold
Quiescent output voltage change
with mono/stereo switching
Channel separation control voltage
3 dB separation
30 dB separation
Minimum channel separation ($V_{11}=0 \mathrm{~V}$)
Monaural channel inbalance (pilottone off)
Hum suppression
Input resistance
Output resistance
Channel separation control current
Catching range

	min	typ	max	
I_{16}		35		mA
a	30			dB
$a_{\text {opt }}$	40			dB
G	0.8	1	1.2	
THD			0.3	\%
THD		0.2		\%
$a_{\text {S/N }}$		85		dB
$a_{\text {S/N }}$		90		dB
a		31		dB
a		50		dB
a		60		dB
a		45		dB
a		50		dB
a		50		dB
$V_{i 1}$	12	16	20	mV rms
H		6		dB
$\Delta V_{\mathrm{ql}}, \Delta V_{\mathrm{qr}}$		5	20	mV
V_{11}		0.7		V
V_{11}		1.7		V
a			1	dB
$\Delta V_{\mathrm{ql}, \mathrm{r}}$			0.3	dB
$\mathrm{a}_{\text {hum }}$		55		dB
$R_{\text {i } 1}$		50		k Ω
$R_{\text {q } 4,} R_{\text {q } 5}$		100		Ω
I_{11}			-300	$\mu \mathrm{A}$
$\Delta f / f_{0}$		± 5		\%

Test circuit

Pin designation

Pin No.	Description
1	
2	Input
3	Preamplifier output
4	Left amplifier input
5	Left channel output
6	Right channel output
7	Right amplifier input
8	Stereo indicator lamp
9	Ground
10	Switching threshold
11	Switching threshold
12	19 kHz output/channel separation control
13	Modulator input
14	Loop filter
15	Loop filter
16	Oscillator RC network
	Supply voltage $+V_{S}$

Bipolar circuit

The TCA 4510 decodes the transmitter-side stereo information in both L and R channels. Stereo transmission is shown by means of an indicator lamp. Continuous blending of mono and stereo signals is possible. The switching frequencies are controlled by a phaselocked loop.

- Good channel separation
- No need for coils
- Controllable channel separation
- Good rejection of ARI subcarrier and pilottone harmonics

Type	Ordering code	Package outline
TCA 4510	Q 67000-A 1533	DIP 18

Maximum ratings

Supply voltage	V_{S}	18	V
Lamp voltage	V_{LP}	18	V
Current for stereo indication lamp	I_{LP}	60	
Thermal resistance (system-air)	$R_{\text {th }} \mathrm{SA}$	70	mA
Junction temperature	T_{j}	150	$\mathrm{~K} / \mathrm{W}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
Range of operation			
Supply voltage range			
Ambient temperature range	V_{S}	4.5 to 18	
	$T_{\text {amb }}$	-25 to 85	${ }^{\circ} \mathrm{V}$

Characteristics ($\left.V_{\mathrm{S}}=8 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}\right)$

Total current without I_{LP}
(S_{1} closed)
Total current without I_{LP}
(S_{1} open)
MPX op amp output voltage
Output voltage 1 kHz (stereo)
(for modul. output, $V_{\mathrm{i}}=700 \mathrm{mV}$ pp)
Output voltage 1 kHz (mono)
(L or R modul., $V_{\mathrm{i}}=700 \mathrm{mV}_{\mathrm{pp}}$)
Input resistance
Output resistance
Cross-talk attenuation ($f_{\mathrm{AF}}=1 \mathrm{kHz} ; V_{\mathrm{H}}>0.8 \mathrm{~V}$)
19 kHz reduction $V_{\mathrm{i}}=700 \mathrm{mV}$ pp (test circuit 1)
19 kHz reduction $V_{i}=700 \mathrm{mV}$ pp (test circuit 2)
38 kHz reduction $V_{i}=700 \mathrm{mV}$ pp (test circuit 1)
38 kHz reduction $V_{i}=700 \mathrm{mV}_{\mathrm{pp}}$ (test circuit 2)
57 kHz reduction $V_{i}=700 \mathrm{mV}$ pp (test circuit 1)
57 kHz reduction $V_{\mathrm{i}}=700 \mathrm{mV}$ pp (test circuit 2)
76 kHz reduction $V_{\mathrm{i}}=700 \mathrm{mV}$ pp (test circuit 1)
76 kHz reduction $V_{\mathrm{i}}=700 \mathrm{mV}$ pp (test circuit 2)
Oscillator switch-off (S_{1} open)
Oscillator functions (S_{1} closed)
Oscillator function ($I_{\mathrm{LP}}=10 \mathrm{~mA}$)
Mono $a_{\mathrm{cr}}=6 \mathrm{~dB}\left(f_{\mathrm{AF}}=1 \mathrm{kHz}\right)$
Stereo $a_{\text {cr }}=40 \mathrm{~dB}\left(f_{\mathrm{AF}}=1 \mathrm{kHz}\right)$
Threshold stereo on (S_{1} closed)
Threshold stereo off (S_{1} closed)
Switch-over to mono
Lamp current
Oscillator basic frequency
Catching range
Channel balance (S_{1} open; $V_{\mathrm{H}}=0 \mathrm{~V}$)
Signal-to-noise ratio (RMS $20 \mathrm{~Hz}-15 \mathrm{~Hz}$)

	min	typ	max	
$I_{\text {S }}$		10	15	mA
$I_{\text {S }}$		6	8	mA
V_{14}	700	900		$m V_{p p}$
$V_{\text {q }}$	700	900	1100	$m V_{p p}$
$V_{\text {q }}$	350	450	550	mV pp
$R_{\text {i }}$	90	100		k ת
$R_{\text {q }}$		1.5	2	k Ω
$a_{\text {cr }}$		40		dB
a_{19}		32		dB
a_{19}		30		dB
a_{38}		40		dB
a_{38}		30		dB
a_{57}		45		dB
a_{57}		37		dB
a_{76}		40		dB
a_{76}		20		dB
$V_{\text {LP }}$			0.4	V
$V_{\text {LP }}$	0.9			V
$V_{\text {LP }}$	0.9			V
$V_{\text {H }}$			0.5	V
$V_{\text {H }}$		0.8	0.9	V
$V_{\text {i PT }}$		30		mV pp
$V_{\text {i PT }}$		15		$m V_{p p}$
V_{S}		4.8	5	V
$I_{\text {LP }}$	10	35	50	mA
$f_{\text {osc }}$		19		kHz
$f_{\text {C }}$		± 1		kHz
B			0.5	dB
S / N	60			dB
THD			0.5	\%
THD			0.5	\%

Circuit description

The TCA 4510 is especially intended for battery operation. The IC can be used in time multiplex (switching) or in frequency multiplex (matrix) mode of operation. The necessary signal separation can be achieved by means of de-emphasis, the ($L-R$) signals are de-emphasized prior to their demodulation.
Amplitude and phase of the MPX input signal can be corrected by an operational amplifier. For this purpose an RC circuit is connected at pin 15. In matrix mode of operation, separation of $(L+R)$ and ($L-R$) signals is achieved through an attenuated tuning circuit. In case of switching mode of operation, this separation is not required.
The ($\mathrm{L}-\mathrm{R}$) signal is demodulated and can be attenuated by means of an auiliary voltage V_{H} or by a lower supply voltage ($V_{\mathrm{S}}<5 \mathrm{~V}$).
The matrix generates the output signal by adding the ($L+R$) signal according to the formula $(L+R) \pm(L-R)=2 L$ or $2 R$, respectively. Only in case of switching mode of operation, the necessary de-emphasis is provided by output capacitors. The frequency required for demodulating the ($\mathrm{L}-\mathrm{R}$) signal is obtained by a phase-locked loop (PLL) from the divider. The oscillator is synchronized to the pilottone applied to pin 5 by means of phase comparison. A further phase comparison issues the information mono or stereo. Thus, the indicator lamp is switched and indicates as soon as a signal of adequate strength is available at the input. Moreover, the ($L-R$) attenuation has also been eliminated. If the switch S_{1} is open, the IC switches the oscillator off, thus suppressing the ($L-R$) signal via the stereo switch and the mono/stereo blending. The supply current is thus reduced. If pin 8 is disconnected, the oscillator frequency can be measured

Block diagram

Test circuit 1

Switching mode of operation

Test circuit 2

Matrix mode of operation

Application circuit 1

Switching mode of operation

Application circuit 2

Matrix mode of operation

Bipolar circuit

The S 0282-2 is intended for automatic control and for indication of the reception level in stereo tape recorders and cassette recorders.

- Wide input voltage range
- Good synchronization
- Covering all signal portions

Type	Ordering code	Package outline
S 0282-2	Q67000-A1115-2	DIP 18

Maximum ratings

Supply voltage
Voltages
Control reference point
Control current output
Display output
Instrument driver
Preamplifier output
Feedback input
Preamplifier input
Control element-filtering
Pulse rejection
Switch-on delay
Currents
Output current, $t \leq 1 \mathrm{sec}$
Output current
Input current in operation
Thermal resistance (system-air)
Junction temperature
Storage temperature range

$V_{\mathrm{S} 18}$	36	V
V_{2}	10	V
V_{3}	10	V
V_{4}, V_{15}	10	V
V_{5}, V_{14}	10	V
$V_{\mathrm{q} 6}, V_{\mathrm{q} 13}$	10	V
$V_{\mathrm{i} 7}, V_{\mathrm{i} 12}$	10	V
$V_{\mathrm{i} 8}, V_{\mathrm{i} 11}$	10	V
V_{9}	5	V
V_{10}	10	V
V_{16}	10	V
V_{17}	$V_{\mathrm{S}} 18$	V
I_{5}, I_{14}	15	mA
$-I_{16}$	1	mA
$-I_{17}$	0.2	mA
$R_{\text {th } \mathrm{SA}}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range

$V_{\mathrm{S} 18}$	16 to 32	V
$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics ($\left.V_{\mathrm{S}}=24 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption

$$
\begin{aligned}
& V_{\mathrm{i}}=0 \mathrm{~V} \\
& V_{\mathrm{i}}=1.75 \mathrm{~V}
\end{aligned}
$$

	\min	typ	\max	
I_{18}		27	36	mA
I_{18}		24	32	mA

Preamplifier (Switch $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ closed)

Gain ($V_{\mathrm{i}}=40 \mathrm{mV}$)	$\mathcal{G}_{\mathrm{V} 6}, G_{\mathrm{V} 13}$	39	40	dB
Open-loop gain ($f=1 \mathrm{kHz}$)	G_{06}, G_{013}	60	75	dB
Upper cut-off frequency ($-3 \mathrm{~dB}, V_{i}=40 \mathrm{mV}$)	$f_{\text {u } 6, ~}, f_{\mathrm{u} 13}$	50	70	kHz
Lower cut-off frequency ($-3 \mathrm{~dB}, V_{i}=40 \mathrm{mV}$)	f_{16}, f_{113}	20	30	Hz
Input resistance	$R_{\text {i }}$	350	500	k Ω
Input capacitance	c_{i}		5	pF

Detector amplifier (Switch $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ closed)
Max. current of detector outputs (short-circuit with reference to ground)
Voltage of the instrument drivers

$$
\left(f_{\mathrm{i}}=1 \mathrm{kHz}\right) \quad \begin{aligned}
& V_{\mathrm{i}}=5 \mathrm{mV} \\
& V_{\mathrm{i}}=10 \mathrm{mV} \\
& V_{\mathrm{i}}=20 \mathrm{mV}
\end{aligned}
$$

sed)
I_{4}, I_{15}
V_{5}, V_{14}
V_{5}, V_{14}
V_{5}, V_{14}

3.2	4	4.8	mA
1.1	1.5	1.9	V
2.1	3	3.9	V
4.5	6	7.5	V

Pulse rejection (Switch $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ closed)
Output voltage

$$
\begin{aligned}
& V_{i}=15 \mathrm{mV} \\
& V_{\mathrm{i}}=30 \mathrm{mV}
\end{aligned}
$$

V_{17}		
4.5	5	V
V		

Control amplifier

Control current (S_{2} closed)
($V_{\mathrm{i}}=1.75 \mathrm{~V}$)
Current load of the timing element
$\left(V_{3}=5 \mathrm{~V}, V_{\mathrm{i}}=0 \mathrm{~V}\right.$)
Input voltage for control start
($f=1 \mathrm{kHz}$)
Setting range for control threshold
$\begin{array}{ll}\text { Control voltage } & \begin{array}{l}V_{i}=50 \mathrm{mV} \\ \\ V_{i}=1.75 \mathrm{~V}\end{array}\end{array}$
I_{3}
$-I_{3}$
V_{i}

V_{2}
V_{2}

Dynamic behavior

Control slope $\Delta V_{\mathrm{a}}\left(V_{\mathrm{i}}=40 \mathrm{mV}\right.$ to 1.75 V$)$
$\Delta V_{8}, \Delta V_{11}$
$T H D$
$V_{\mathrm{n} 8} / V_{\mathrm{n} 11}$
a_{cr}
a
$a_{\text {hum }}$

| 200 | 300 | 400 | $\mu \mathrm{~A}$ |
| :--- | :--- | :--- | :--- | :--- |
| 15 | 20 | 25 | mV |
| 8 | | 10 | nA |
| | 3.5
 10 | | mV |
| | | V | |

Total harmonic distortion
($V_{\mathrm{i}}=20 \mathrm{mV}$ to $1.75 \mathrm{~V}, f_{\mathrm{i}}=40 \mathrm{~Hz}$ to 15 kHz)
Noise voltage ($V_{i}=0, V_{3}=0$ to 10 V)
Cross talk rejection
$R \longleftrightarrow L$
($V_{\mathrm{i}}=2 \mathrm{~V}, f_{\mathrm{i}}=500 \mathrm{~Hz}$)
Channel synchronization $R \longleftrightarrow L$
30

0.5	1.5	dB
0.4	1	$\%$
3	10	$\mu \mathrm{~V}$
38		dB
0.2	1	dB
80		dB

Hum suppression
$a_{\text {hum }}$
($V_{\text {hum }} \leq 1 \mathrm{~V}, f_{\text {hum }}=100 \mathrm{~Hz}$)

Circuit description

The AF input signals V_{i} of both channels are moved each to an input of the IC via a defined generator resistance R_{G}. With the aid of the control element R_{S} the input resistance is controlled such that the output signal V_{q}, adjusted to the desired level, can be obtained.
Inside the IC the signal is at first amplified with the aid of the preamplifiers V_{1} and V_{2}. The adjusted output voltage V_{q} is determined by the amplification, set by the resistors R_{1} and R_{2}, of the preamplifiers. After the amplification both signal half waves are rectified.
The rectified signals of each channel then arrive at the detector amplifier AV. The desired indicating characteristic is set by means of an RC circuit. The series-connected instrument drivers IT supply the current for the indicating instruments. The rectified signals of both channels are summed up and thus processed for the control and pulse gating. The control amplifier RV drives the control element amplifier SV via the control driver RT. The desired time response is determined by $R_{\mathrm{T}}, C_{\mathrm{t}}$.
The pulse amplifier IV supplies pulses at its output as soon as one of the half waves exceeds the control threshold.

The internal supply voltage has been stabilized at approximately 14 V . After applying the supply voltage, control and instrument indication can be delayed by means ot the timing elements $R_{\mathrm{E}}, C_{\mathrm{E}}$.

Block diagram

Test circuit

The TDA 2000 is a signal processing IC for use in stereo cassette radio sets and is particulary suitable for use in car radios.
For each channel the TDA 2000 includes a preamplifier for playback equalization, a changeover switch for cassette to radio, and an audio control for adjustment of volume.

- Few external components
- Insensitive to hum
- Volume control by DC voltage

Type	Ordering code	Package outline
TDA 2000	Q 67000-A 1509	DIP 18

Maximum ratings

Supply voltage	$V_{\text {S } 18}$	18	V
Voltages			
Amplifier input	$V_{\text {i } 2, ~}, V_{\text {i } 17}$	5	V
Feedback input	$V_{\text {i }}, V_{\text {i } 16}$	5	V
Amplifier output	$V_{\text {q } 4, ~}, V_{\text {q } 15}$	5	V
Radio input	$V_{\text {i } 5, ~}, V_{\text {i } 13}$	5	V
AF output	$V_{\mathrm{q} 6}, V_{\mathrm{q} 7}, V_{\mathrm{q} 11}, V_{\mathrm{q} 12}$	5	v
Reference output	$V_{\text {q }} 9$	3	V
Control voltage input	$V_{\text {i } 10}$	5	v
Switch-on delay	V_{8}	5	V
Signal changeover	$V 14$	6	V
Thermal resistance (system-air)	$R_{\text {th SA }}$	70	K/W
Junction temperature	$T_{\text {j }}$	+150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range	$V_{\mathrm{S}} 18$	7 to 16 -25 to 85	V ${ }^{\circ} \mathrm{C}$
Ambient temperature range	T_{amb}		

Characteristics ($V_{\mathrm{S}}=9 \mathrm{~V} ; T_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$ according to test circuit 1 , unless otherwise specified)

Current consumption
Reference voltage ($R \geq 10 \mathrm{k} \Omega$)
Hum suppression
($f=100 \mathrm{~Hz}, V_{\text {hum }} \leq 1 \mathrm{~V}$)
Cross-talk between channels ${ }^{1}$)
$\left(f=1 \mathrm{kHz}, V_{\mathrm{q}} \leq 1 \mathrm{~V}, C_{\text {filter }}=220 \mu \mathrm{~F}\right)$

Equalizing amplifier

Voltage gain
$\left(f=1 \mathrm{kHz}, V_{\mathrm{i} \mathrm{K}}=1 \mathrm{mV}\right)$
Open loop voltage gain (switch S closed)
Max. output voltage
($f=1 \mathrm{kHz}$, THD $\leq 1 \%$)
Signal-to-noise ratio
(in acc. with DIN $45405, f=330 \mathrm{~Hz}, V_{\mathrm{i} \text { K }}=$ $250 \mu \mathrm{~V}$)

Changeover switch

Switch-over threshold
Switching voltage cassette
Switching voltage radio
Input current switching input $V_{\text {switch }}=0 \mathrm{~V}$)
Blocking attenuation ($V_{\mathrm{q}}=1 \mathrm{~V}, f=1 \mathrm{kHz}$)
Max. input voltage radio
($f=1 \mathrm{kHz}, T H D<1.2 \%$, attenution 20 dB)

	\min	typ	\max	
I_{S}		24	35	mA
$V_{\text {ref }}$	4	4.4	4.8	V
$a_{\text {hum }}$	55			dB
$a_{\text {cr }}$	-45			dB

G_{V}	59	60	61	dB
G_{vo}	82	90		dB
$V_{\mathrm{q} \max }$	1.4	1.7		V
$a_{S / N}$	57	60	dB	

	2.5	3	3.5	V
$V_{\text {switch }}$	2.5	3.2	3.5	V
$V_{\text {switch }}$			V	
$V_{\text {switch }}$	2.5	2.8		150
$V_{\text {switch }}$		100	$\mu \mathrm{~A}$	
$a_{\text {block }}$	65	70		dB
$V_{\text {i max }}$	800	900		mV

Volume controller

Volume gain
Total harmonic distortion including attenution
$\left(f=1 \mathrm{kHz}, V_{\mathrm{i}}=400 \mathrm{mV}\right)$
Max. output voltage
(THD $\leq 1 \%, V_{\mathrm{iR}} \leq 400 \mathrm{mV}$)
Noise voltage at the output (max. attenution)

G_{V}	6	8	10	dB
$T H D$		0.5	1	$\%$
V_{q}	0.5	1		
V_{n}		5	10	$\mu \mathrm{~V}$

Control

Range of $\operatorname{AGC}\left(f=1 \mathrm{kHz}, V_{\mathrm{i}} \mathrm{R} \leq 100 \mathrm{mV}\right)$
Control difference of output $V_{\mathrm{q} 1}=-20 \mathrm{~dB}$ $V_{\mathrm{q} 1}=-40 \mathrm{~dB}$ $V_{\mathrm{q} 1}=-60 \mathrm{~dB}$
Control difference of the channels
($V_{\mathrm{q}}=0 \mathrm{~dB}$ to -40 dB)

$V_{\mathrm{q} \max }$	75	85	
$V_{\mathrm{q} \min }$		dB	
$V_{\mathrm{q} 1} / V_{\mathrm{q} 2}$		-12	
$V_{\mathrm{q} 1} / V_{\mathrm{q} 2}$		-23	dB
$V_{\mathrm{q} 1} / V_{\mathrm{q} 2}$		-33	dB
$V_{\mathrm{q} 1} / V_{\mathrm{q} 2}$		0	dB

[^42]
Circuit description

With the two-stage equalizing amplifier low noise is achieved by matching to the reply head. The amplified signal or a radio input signal respectively, is fed to a changeover switch. The changeover results from applying a DC voltage in common to both channels.
The changeover circuit supplies the AF control unit, consisting of two parallel control stages with differing attenuation characteristic. The application of an RC network permits physiologic sound amplification.
During start-up operation, an additional circuit mutes the volume.

Block diagram

Test circuit 1

Test circuit 2

Application circuit

ICs for general-purpose applications

Remote control systems
Switches
AF power amplifiers
LED array driving
Tone control IC

Infrared Remote Control System IR 60

The MOS circuits SAB 3209, SAB 4209, SAB 3271, or SDA 2007 as receiver and SAB 3210 or SDA 2008 as transmitter permit the construction of a noise-immune IR-remote control system for up to 60 different instructions.

Because of its great variety of possible functions, this remote control system will find applications not only in the entertainment field but in the industrial area, as weil.

The system concept contains an essential element of the microprocessor - the serial data bus. Because of this feature the remote control can be universally extended to include all future TV-additions conceivable today, such as digital tuning, teletext, timer, and TVgames.
Whereas three analog functions are processed by the SAB 3209, the SAB 4209 makes handling of four analog functions possible.
The SAB 3271 module exclusively is a receiver without analog functions. It mainly includes one series output and 6 parallel outputs. The display-decoder-driver SAB 3211 has optimally been matched to the receiver ICs SAB 3209 and SAB 4209 and is particularly suitable for driving LED displays.
The SDA 2007 receiver IC and the SDA 2008 transmitter IC are dealt with in the SDA 200 tuning system.

The IR 60 remote control system was completed by the IR preamplifier TDA 4050 the regulation range and regulating speed of which ensure a constant input signal at the receiver IC independent of the distance of the transmitter.

The MOS ICs SDA 3205 (receiver) and the SDA 3206 (transmitter) are available for applications with fewer instructions (up to 5).

The receiver circuit SAB 3209, developed in MOS depletion technology, evaluates the IR signals coming from the transmitter circuit SAB 3210. Through a serial interface, which is externally accessible, the instructions get to the program memory and the analog memory. The SAB 3209 permits control of 16 programs and three analog functions. The circuit additionally contains two spare outputs and one input or output for the on/off function.

Special features:

- At the serial interface (I-bus) 30 instructions can be applied in addition to those intended for the SAB 3209, i.e. for teletext
- Through the serial interface, instructions can be transferred into the SAB 3209 directly, whereby these instructions have an absolute priority over IR-signals coming from the transmitter.
- The program outputs are short-circuit proof and can be set externally.
- The SAB 3209 can be operated with the built-in oscillator as well as with an external clock.

Type	Ordering code	Package outline
SAB 3209	Q 67100-Y 395	DIP 18

Maximum ratings (referred to $V_{D D}=0 \mathrm{~V}$)

Supply voltage
Input voltage
Total power dissipation
Power dissipation per output
Storage temperature range

	\min	\max	
V_{SS}	-0.3	18	V
V_{i}	-18	0.3	V
$P_{\text {tot }}$		500	mW
P_{q}		100	mW
$T_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$

Range of operation (referred to $V_{\mathrm{DD}}=0 \mathrm{~V}$)
Supply voltage range
Ambient temperature range

| V_{SS} | 11 to 16
 $T_{\text {amb }}$ | 0 to 70 |
| :--- | :--- | :--- |$|$| V |
| :--- |
| ${ }^{\circ} \mathrm{C}$ |

Characteristics (referred to $V_{D D}=0 \mathrm{~V}$)

Current consumption (outputs not connected)

Inputs

Clock input CLCKI
L-input voltage
H -input voltage
Input current
Transition times
Frequency

	\min	typ	\max	
I_{DD}		5	10	mA

Remote control signal input RSIG
Input alternating voltage
Input resistance

V_{iH}	$V_{\mathrm{SS}}-1$	V_{SS}	V
V_{i}	0	$V_{\mathrm{SS}}-3.5$	V
R_{i}	0.2	$\mathrm{M} \Omega$	

Seriel interface inputs
 DLEN and DATA

L-input voltage
H -input voltage
H -input current ($V_{\mathrm{i}}=V_{\mathrm{SS}}$)
(internal pull-low resistor)
Delay time + transition time

V_{i}	0	$V_{\mathrm{SS}}-7$	V
$V_{\mathrm{i} H}$	$V_{\mathrm{SS}}-1$	2	V
$I_{\mathrm{i} H}$		mA	
$\left(t_{\mathrm{D}}+t_{\mathrm{T}}\right)_{\mathrm{HL}}$		1	$\mu \mathrm{~S}$
$\left(t_{\mathrm{D}}+t_{\mathrm{T}}\right)_{\mathrm{LH}}$		1	$\mu \mathrm{~S}$

Program stepping input PC

H-input voltage
L-input voltage
H-input current ($V_{\mathrm{i}}=V_{\mathrm{SS}}$) (internal pull-low-resistor)

V_{iH}	$V_{\mathrm{SS}}-1.5$	V_{SS}	V
V_{iL}			
I_{iH}			$V_{\mathrm{SS}}-7$
		10	$\mu \mathrm{~A}$

Characteristics (referred to $V_{D D}=0 \mathrm{~V}$)

Outputs
 Serial interface outputs

H-output voltage ($I_{\text {load }} \leqq 200 \mathrm{~mA}$)
L-output voltage ($I_{\mathrm{q}}=10 \mu \mathrm{~A}$)
Delay and transition time $\quad t_{\mathrm{DH}}+t_{\mathrm{THL}}$ and $t_{\mathrm{DL}}+t_{\mathrm{TLH}}$
($C_{\mathrm{L}}=50 \mathrm{pF}$ referred to CLCKO, $V_{\mathrm{i}} \mathrm{LA}$)

	\min	typ	\max	
V_{qH}	$V_{\mathrm{SS}}-1.5$		V_{SS}	V
V_{qL}				
and $t_{\mathrm{DL}}+t_{\mathrm{TLH}}$	0		0.35	V
			5	$\mu \mathrm{~S}$

Program memory outputs

PRGA, PRGB, PRGC, PRGD

H -output voltage ($I_{\mathrm{q}}=0.1 \mathrm{~mA}$)
L-output voltage ($I_{\mathrm{q}}=10 \mu \mathrm{~A}$)
$V_{\text {q }}$
$V_{q L}$

V_{SS}	V
1.0	V

Program stepping output PC
H -output voltage ($I_{\mathrm{q}}=0.3 \mathrm{~mA}$)
L-output voltage (no load)

V_{qH}	$V_{\mathrm{SS}}-1.5$	V_{SS}	V
V_{qL}	0	2	

Analog function outputs

COLO, BRIG, VOLU

H -output voltage ($I_{\mathrm{q}}=1 \mathrm{~mA}$)
L-output voltage ($\left.I_{\mathrm{q}}=1 \mu \mathrm{~A}\right)$
$V_{\text {q }}$

| $V_{\mathrm{SS}}-1.5$ |
| :--- | :--- | :--- |
| 0 |\(\left|\begin{array}{l}V_{\mathrm{SS}}

0.35\end{array}\right| \mathrm{V}\)
Standby and spare outputs
ONOFF, RSV ${ }_{1}$, RSV $_{2}$
H -output voltage ($I_{\mathrm{q}}=0.3 \mathrm{~mA}$)
L-output voltage ($I_{\mathrm{q}}=1 \mu \mathrm{~A}$)
$V_{\text {q }}$
$V_{q L}$

V_{SS}	V
0.35	V

Clock output CLCKO

H-output voltage (no load)
L-output voltage (no load)

V_{qH}	$V_{\mathrm{SS}}-1$	V_{SS}	V
V_{qL}	0	1	

Pin designation

Pin No.	Description
1	VSS + supply voltage
2	CLCKO, clock output
3	CLCKI, clock input
4	PRGD, program control output
5	PRGC, program control output
6	PRGB, program control output
7	PRGA, program control output
8	PC, program change strobe input/output
9	RSV 2 , spare output
10	RSV, spare output
11	VOLU, volume control output
12	ONOFF, standby output
13	BRIG, brightness output
14	COLO, color contrast output
15	RSIG, signal input, remote control
16	DLEN, I-bus input/output
17	VDD, -supply voltage
18	DATA, I-bus input/output

Description of functions

1. Infrared receiver

(pin RSIG)
The infrared receiving portion accepts the IR-signal, processes it and transfers the instructions received to the serial interface. The IR-signal consists of alternating current pulses with a frequency of approx. 30 kHz and a duration of approx. 0.5 ms per cycle. The instructions are transferred as 7 -bit words(1 start bit, 6 information bits) in the biphase code. See timing diagram.

Through a change in one mask, the circuit can be converted to operate with an inverted start bit (e.g. for separation of television and radio remote control). Coding of the other 6 bits is done according to the code of table 1.
The infrared signals are repeated approx. every 120 ms . All instructions are issued by the receiving portion as repeat-instructions, with a sequence-frequency equal to that of the incoming IR-signals.

2. Serial interface (I-BUS) as an output and input (pins DLEN, DATA)

Output at the serial interface (1-BUS) is done according to the timing diagram 2.
The outputs are open-drain stages with built-in load resistors, which may also be used as inputs. All instructions may also be put in through the serial interface, (the infrared instructions will not be processed in the circuit before they have passed the serial interface).
The input is tested to protect the transfer of the instructions against capacitive and inductive noise pulses. Therefore, the leads at the serial interface must be kept close together.

Input through the serial interface has an absolute priority over an infrared input.
It is possible to read-out instructions through the serial interface but at the same time to change them through an external circuit in such a way that they cannot be interpreted any more by the following receiver portions. For example, the pin DLE of the instructions for direct program selection can be kept on high level for two clock pulse periods beyond the output time, whereby the program memory is no longer addressed and the program instructions can be used as digit-instructions for other purposes (e.g. teletext page-selection).

3. Analog-value memory
 (outputs VOLU, BRIG, COLO)

The SAB 3209 contains 3 analog-value memories for the setting of volume, brightness and color saturation.
The analog values can be altered in approx. 64 steps. The speed of alteration corresponds to the sequence-frequency of the repeat instructions (approx. 8 Hz). The analog values are put out as square pulses with a frequency of approx. 1 kHz , whereby the duty cycle corresponds to the analog value. The analog voltage value originates in an external low-frequency passing filter through formation of the mean values of timing.

By means of the instruction "normal position", the analog memories are set to a maskprogrammed basic position ($\nu_{\text {VOLU }}=1 / 3, \nu_{\text {BRIG }}=\nu_{\text {COLO }}=1 / 2$, whereby $v=t_{\text {High }} / \mathrm{T}$). When the supply voltage rises starting at 0 , the analog values are also set to the normal position.

Volume control output VOLU:
The volume output is internally kept on a low level

- when the quicktone-flipflop is set,
- when the circuit is in a "standby" mode,
- when pin PC is on a high level

Quicktone:
An appropriate instruction sets a flipflop.
The flipflop is reset:

- by instruction "Vol+",
- by condition "standby",
- by an instruction from the program memory,
- by the instruction "normal position".

As long as the qickton flipflop is set, the volume output is kept "low".
As long as the circuit remains in the "standby" condition, the alteration-instructions for the analog memory are ineffective.

4. Program memory

(outputs and inputs PRGA, PRGB, PRGC, PRGD)
The program memory consists of a 4-bit ring counter which permits the addressing of 16 programs.
The 16 programs may be addressed through remote control by selecting $1 \ldots 16$ or through up-and downcounting of the ring counter.
When the supply voltages rises starting at zero, the program outputs are set to LLLH. By changing one mask it is possible to set a different program instead. The outputs of the program memory are also effective as inputs, as they may be set or reset externally through a low-resistance control.
Strobe output, stepping sequence input:
(pin PC)
When the program counter receives an instruction via remote control, or the supply voltage rises starting at zero, a positive pulse in produced at output PC. For the duration of a positive potential the volume output is kept "low" (muting).
The output may be connected to a capacitor to extend the muting (up to approx. 0.5 s).
The same capacitor will have the effect that a change at the program memory outputs has been completed when the strobe signal occurs.

Pin connection PC may also be used as an input. If a positive potential is applied externally, the program counter proceeds by one step. Thereby, the external capacitor will have a debouncing effect. During "standby" condition the output "PC" is on a static positive level.

5. Additional control functions

Standby output/input:
(pin ONOFF)
Through a transistor it controls the power supply. When a program is called for - and also in connection with some other instructions specified in table 1 - the set is turned on through this output.
In = low, standby $=$ high
Through the instruction "standby" the set is put into a "standby" mode. When the supply voltage rises starting at zero, the set is also switched to "standby".
Pin connection ONOFF also acts as an input when controlled from a low resistance source, e.g. with a wiping contact at the mains-switch.

Spare outputs

Pin RSV ${ }_{1}$
The output is controlled by a toggle-flipflop. With each depression of the corresponding button of the transmitter the output changes to the opposite condition.
The preference position is high.
The position is set:

- when the supply voltage is turned on,
- when condition "standby" exists,
- when the instruction "normal position" is issued.

Pin RSV $_{2}$

The output is controlled by a toggle-flipflop. With each depression of the corresponding button of the transmitter the output changes to the opposite condition.
The preference position is low
The position is set:

- when the supply voltage is turned on,
- when condition "standby" exists,
- when the instruction "normal position" is issued.

Table 1
Coding of instructions on the I BUS and for IR transmission

No.	Code						Instruction
	F	E	D	C	B	A	
0	0	0	0	0	0	0	Normal position/switch on
1				0	0	1	Quicktone (muting)
2				0	1	0	Standby
3				0	1	1	Spare 1
4				1	0	0	Program step +/switch on
5				1	0	1	Program step -/switch on
6				1	1	0	Switch on
7				1	1	1	Spare 2/switch on
40	1	0	1	0	0	0	Volume +
41				0	0	1	Volume -
42				0	1	0	Brightness +
43				0	1	1	Brightness -
44				1	0	0	Color +
45				1	0	1	Color -
46			1	1	0	reserved for the	
47				1	1	1	4th analog function

Table 1, continued
Coding of instructions on the I BUS and for IR transmission

Instructions 8 to 15,32 to 39 , and 48 to 61 are not evaluated by the circuit, but only edited through the serial interface.
Instruction 63 ($=111$ 111) must be kept free (see timing diagram).
Instruction 62 ($=111110$) is the end-instruction. (see data sheet of SAB 3210)

Timing diagram
Serial interface (I BUS) for the input and output of instructions

External connections

The receiver circuit SAB 4209, developed in MOS depletion technology, evaluates the IR signals coming from the transmitter circuit SAB 3210. Through a serial interface, which is externally accessible, the instructions get to the program memory and the analog memory. The SAB 4209 permits the control of 16 programs and four analog functions. In addition, the circuit is provided for a keyboard changeover and one input or output for the on/ off function.

Special features

- At the serial interface (I-bus) 30 instructions can be applied in addition to those intended for the SAB 4209, i.e. for teletext.
- Through the serial interface, instructions can be transferred into the SAB 4209 directly. whereby these instructions have an absolute priority over IR signals coming from the transmitter.
- The program outputs are short-circuit proof and can be set externally.
- The SAB 4209 can be operated with the built-in oscillator as well as with an external clock.

Type	Ordering code	Package outline
SAB 4209	Q 67100-Y460	DIP 18

Maximum ratings (referred to $V_{D D}=0 \mathrm{~V}$)
Supply voltage range
Input voltage range
Total power dissipation
Power dissipation per output
Storage temperature range

V_{SS}	-0.3 to 18	V
V_{i}	$V_{\mathrm{SS}}-18$ to $V_{\mathrm{SS}}+0.3$	V
$P_{\text {tot }}$	500	mW
P_{q}	100	mW
T_{stg}	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation (referred to $V_{D D}=0 \mathrm{~V}$)
Supply voltage range
Ambient temperature range

$$
\begin{array}{l|l|l}
V_{\mathrm{SS}} & 11 \text { to } 16 & \mathrm{~V} \\
T_{\mathrm{amb}} & 0 \text { to } 70 & { }^{\circ} \mathrm{C}
\end{array}
$$

Characteristics (referred to $V_{\mathrm{DD}}=0 \mathrm{~V}, T_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$)

Current consumption (outputs not connected)

	\min		typ	\max
		5	10	mA
I_{DD}				
V_{iL}	0			
V_{iH}	$V_{\mathrm{SS}}-1$		$V_{\mathrm{SS}}-7$	V
I_{i}			V	
$t_{\mathrm{THL}}, t_{\mathrm{TLH}}$				$V_{\mathrm{SS}} 15$
f	20	60	70	$\mu \mathrm{~A}$
				kHz

Remote control signal input RSIG

Input alternating voltage
Input resistance

V_{iH}	$V_{\mathrm{SS}}-1$	V_{SS}	V
V_{iL}	0	$V_{\mathrm{SS}}-3.5$	V
R_{i}	0.2	$\mathrm{M} \Omega$	

Serial interface inputs

DLEN and DATA

L-input voltage	$V_{\text {i }}$	0	$v_{\text {SS }}-7$	V
H -input voltage	$V_{\text {i }}$	$V_{S S}-1$	$V_{\text {SS }}$	V
H-input current ($V_{\mathrm{i}}=V_{\mathrm{SS}}$) (internal pull-low resistor)	$I_{\mathrm{i}}^{\mathrm{H}}$		2	mA
Delay time + transition time	$\begin{aligned} & \left(t_{\mathrm{D}}+t_{\mathrm{T}}\right)_{\mathrm{HL}} \\ & \left(t_{\mathrm{D}}+t_{\mathrm{T}}\right)_{\mathrm{LH}} \end{aligned}$) 1	$\mu \mathrm{s}$

Program stepping input PC

H-input voltage
L-input voltage
H -input current ($\mathrm{V}_{\mathrm{i}}=V_{\mathrm{SS}}$)
(internal pull-low-resistor)
V_{iH}
$V_{i L}$
I_{iH}

Outputs

Standby output ONOFF
H -input voltage ($\mathrm{I}_{\mathrm{i}} \mathrm{H}<1 \mathrm{~mA}$)
V_{iH}
$\mid v_{\mathrm{SS}}-1 \mathrm{~V}$
$\mid v_{\mathrm{ss}}$
|V

Characteristics (referred to $V_{\mathrm{DD}}=0 \mathrm{~V}, T_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$)

Outputs
 Serial interface outputs

H-output voltage ($I_{\text {load }} \leqq 200 \mu \mathrm{~A}$)
L-output voltage ($I_{\mathrm{q}}=10 \mu \mathrm{~A}$)
Delay- and transition time
(CL $=50 \mathrm{pF}$ referred to CLCKI)

	\min		typ	\max
V_{qH}	$V_{\mathrm{SS}}-1.5$		V_{SS}	V
V_{qL}	0		0.35	V
$t_{\mathrm{DH}}+t_{\mathrm{THL}}$			5	$\mu \mathrm{~s}$
$t_{\mathrm{DL}}+t_{\mathrm{THL}}$				$\mu \mathrm{s}$

Program memory outputs PRGA, PRGB, PRGC, PRGD

H -output voltage ($I_{\mathrm{q}}=0.1 \mathrm{~mA}$)
L-output voltage ($I_{\mathrm{q}}=10 \mu \mathrm{~A}$)

Program stepping output PC

H -output voltage ($\mathrm{I}_{\mathrm{q}}=0.3 \mathrm{~mA}$)
L-output voltage (no load)

Analog function outputs

COLO, BRIG, VOLU, CONT

H -output voltage ($I_{\mathrm{q}}=1 \mathrm{~mA}$)
L-output voltage ($I_{\mathrm{q}}=1 \mu \mathrm{~A}$)

| V_{qH} | | |
| :--- | :--- | :--- | :--- |
| V_{qL} | $V_{\mathrm{SS}}-1.5$
 0$\|\quad\|$$V_{\mathrm{SS}}$
 0.35 | V |
| V | | |

Standby and spare outputs

 ONOFF, TUSH -output voltage ($I_{\mathrm{q}}=0.3 \mathrm{~mA}$)
L-output voltage ($I_{\mathrm{q}}=1 \mu \mathrm{~A}$)

Clock output CLCKO

H-output voltage (no load)
L-output voltage (no load)
$V_{\text {qH }}$
$V_{\mathrm{q}} \mathrm{L}$

$|$| V_{ss} | V |
| :--- | :--- |
| 2 | V |

$V_{\text {qH }}$
V_{qL}
$\left.\right|_{0} V_{S S}-0.5$

$|$| V_{SS} | V |
| :--- | :--- |
| 1 | V |

V
V

Serial interface input / output

Pin designation

Pin No.	Description
1	VSS, supply voltage
2	CLCKO, clock output
3	CLCKI, clock input
4	PRGD, program control output
5	PRGC, program control output
6	PRGB, program control output
7	PRGA, program control output
8	PC, program change, strobe input/output
9	TUS, keyboard changeover
10	VOLU, volume control output
11	ONOFF, standby output
12	CONT, contrast output
13	BRIG, brightness output
14	COLO, color contrast output
15	RSIG, IR input
16	DLE, I-bus input/output
17	VDD, supply voltage
18	DATA, I-bus input/output

Description of functions

1. Infrared receiver

(pin RSIG)
The infrared receiving portion accepts the IR signal, processes it and transfers the instructions received to the serial interface. The IR-signal consists of alternating current pulses with a frequency of approx. 30 kHz and a duration of approx. 0.5 ms per cycle. The instructions are transferred as 7-bit words (1 start bit, 6 information bits) in the biphase code. See timing diagram 1.
Through a change in one mask, the circuit can be converted to operate with an inverted start bit (e.g. for separation of television and radio remote control). Coding of the other 6 bits is done according to the code of table 1.
The infrared signals are repeated approx. every 120 ms . All instructions are issued by the receiving portion as repeat-instructions, with a sequence-frequency equal to that of the incoming IR-signals.
2. Serial interface (I-BUS) as an output and input (pins DLEN, DATA)
Output at the serial interface (I-BUS) is done according to the timing diagram 2.
The outputs are open-drain stages with built-in load resistors, which may also be used as inputs. All instructions may also be put in through the serial interface, timing diagram 3 (the infrared instructions will not be processed in the circuit before they have passed the serial interface).
The input is tested to protect the transfer of the instructions against capacitive and inductive noise pulses. Therefore, the leads at the serial interface must be kept close together. Input through the serial interface has absolute priority over an infrared input. It is possible to read-out instructions through the serial interface but at the same time to change them through an external circuit in such a way that they cannot be interpreted any more by the following receiver portions. For example, pin DLE of the instructions for direct program selection can be kept on high level for two clock pulse periods beyond the output time, whereby the program memory is no longer addressed and the program instructions can be used as digit-instructions for other purposes (e.g. teletext page-selection).

3. Analog-value memory

(outputs VOLU, BRIG, COLO, CONT)
The SAB 4209 contains 4 analog-value memories for the setting of volume, brightness, color saturation, and contrast.
The analog values can be altered in approx. 60 steps. The speed of alteration corresponds to the sequence-frequency of the repeat instructions (approx. 8 Hz). The analog values are put out as square pulses with a frequency of approx. 1 kHz , whereby the duty cycle corresponds to the analog value. The analog voltage value originates in an external low-frequency passing filter through formation of the mean values of timing.
By means of the command "normal position", the analog memories are set to a maskprogrammed basic position $\left(v_{\text {VOLU }}=1 / 3, v_{\text {CONT }}=v_{\text {BRIG }}=v_{\text {COLO }}=1 / 2\right.$, whereby $v=$
$\left.t_{\text {High }} / T\right)$. When the supply voltage rises starting at 0 , the analog values are also set to the normal position.

Volume control output VOLU:
The volume output is internally kept on a lov level

- approx. 128 msec prior to appearing of the H pulse at the output after a program change instruction
- when the quicktone-flipflop is set,
- when the circuit is in a "standby" mode,
- when pin PC is on a high level

Quicktone:
An appropriate command sets a flipflop in the actually complementary state.
The flipflop is reset

- by instruction "Volt + ",
- by condition "standby",
- by an instruction to the program memory,
- by the instruction "normal position".

As long as the quicktone flipflop is set, the volume output is kept "low".
As long as the circuit remains in the "standby" condition, the alteration instructions for the analog memory are ineffective.
When switching-on again after the "standby" condition, the analog outputs move into the basic position.

4. Program memory

(outputs and inputs PRGA, PRGB, PRGC, PRGD)
The program memory consists of a 4-bit ring counter which permits the addressing of 16 programs.
The 16 programs may be addressed through remote control by selecting $1 \ldots 16$ or, through up-and downcounting of the ring counter.

When the supply voltage rises starting at zero, the program outputs are set to LLLH. By changing one mask it is possible to set a different program instead. The outputs of the program memory are also effective as inputs, as they may be set or reset externally through a low-resistance control.

Strobe output, stepping sequence input:
(pin PC)
When the program counter receives an instruction via remote control, a potitive pulse is produced at output PC after a certain time delay. At the start of the delay time the volume output VOLU is muted. Muting can be reverted with the aid of the trailing edge of the PC pulse (see timing diagram 4). The output PC may additionally be connected to a capacitor to extend the muting (up to approx. 0.5 s).
The same muting hehavior results when the supply voltage rises starting at zero, and pin ONOFF is simultaneously kept on low (see timing diagram 5).

Pin connection PC may also be used as an input. If a positive potential is applied externally, the program counter proceeds by one step. Thereby the external capacitor will have a debouncing effect (see timing diagram 6). During "standby" condition the output "PC" is on a static positive level. The PC pulse occurs only once per pressure on the according transmitter button.

5. Standby-output/input:

(pin ONOFF)
Through a transistor it controls the power supply. When a program is called for - and also in connection with some other instructions specified in table 1 - the set is turned on through this output.
In = low, standby $=$ high
Through the instruction "standby" the set is put into a "standby" mode. When the supply voltage rises starting at zero, the set is also switched to "standby".
Pin ONOFF also acts as an input when controlled from a low resistance source, e.g. with a wiping contact at the mains-switch.

6. Keyboard changeover

(pin TUS)
The output is controlled by a toggle-flipflop. With each depression of the corresponding button of the transmitter the output changes to the opposite condition.
The preference position is low.
The position is set

- when the supply voltage is turned on,
- when condition "standby" exists,
- when the instruction "normal position" is issued.

The output can be set and reset from outside by low-ohmic connections.
When the output is in the high condition, the incoming instructions are no longer evaluated in the receiver module, but only output at the serial interface. Exception: The instruction "Keyboard changeover" (No.7) and "Standby" (No. 2) are evaluated in any case.

Table 1

Coding of instructions on the I BUS and for IR transmission

No.	Code								Instruction	After instruction TUS
	F	E	D	D	C	B		A		
0	0	0	0	O	0	0		0	Normal position	Previous condition is maintained
1					0	0		1	Quicktone (muting)	
2					0	1		0	Standby	Standby + TR (keyboard switching)
3					0	1		1		Previous condition is maintained
4					1	0		0	Program step +/on	"
5					1	0		1	Program step - /on	"
6					1	1		0	On	"
7					1	1		1	TUS/on	TR (keyboard reset)
8	0	0	1		0	0		0	Volume +	Previous condition
9					0	0		1	Volume -	is maintained
10					0	1		0	Brightness +	"
11					0	1		1	Brightness -	"
12					1	0		0	Color +	"
13					1	0		1	Color -	"
14					1	1		0	Contrast +	"
15					1	1		1	Contrast -	"

Table 1 continued
Coding of instructions on the I-BUS and for IR-transmission

Instructions 32 to 61 are not processed by the circuit but only edited through the serial interface.

Instruction 63 ($=111111$) must be kept free (see timing diagram 1).
Instruction 62 ($=111110$) is the end-instruction. (See data sheet of SAB 3210)

Timing diagram 1
(biphase coding)

Timing diagram 2
Serial interface (I bus) for the output of instructions

Timing diagram 3

Serial interface (I bus) for the input of instructions

Timing diagram 4

Timing diagram 5

Example a) Switching on by means of an IR instruction
 $\mathrm{T}=\frac{1}{f_{\text {osc }}}$

Example b) ONOFF is connected to $V_{D D}$ during the supply voltage rise via wiping contact

$\mathrm{T}=\frac{1}{f_{\text {osc }}}$

Timing diagram 6
PC
(L-H transition releases sequence)

PRG outputs

Muting VOLU

Level H recognized

Level L recognized

PC is kept on high level from outside

Continuation after external RC connection of the PC pin

The transmitter circuit SAB 3210, developed in P-MOS depletion technology converts the instructions obtained from a matrix to a 6-bit biphase code. By means of this code up to a maximum of 60 instructions can be transferred via an infrared transmitting stage, to a receiver equipped with the IC SAB 3209.

Special features:

- 32 instructions are possible without special means - an extension to 60 is possible connecting additional diodes.
- Low power consumption of typically 3 mA (5 mA max.)

An external npn transistor, driven by the transmitter circuit, disconnects the battery during quiescent periods, thereby extending its life period considerably

- Large supply voltage range from 5 V to 16 V
- A mask-programmed starting bit preceding each instruction makes an additional discrimination possible for the receiver. This feature permits using two independent remote control systems in the same room (e.g.for TV and radio sets)

Type	Ordering code	Package outline
SAB 3210	O 67100-Y 396	DIP 18

Maximum ratings (referred to $V_{\mathrm{DD}}=0 \mathrm{~V}$)

Supply voltage
Input voltage
Total power dissipation
Power dissipation per output
Storage temperature range
Range of operation (referred to $V_{\mathrm{DD}}=0 \mathrm{~V}$)
Supply voltage range
Ambient temperature range

V_{SS}	0.3 to 18	V
V_{i}	$V_{\mathrm{SS}}-18$ to $V_{\mathrm{SS}}+0.3$	V
$P_{\text {tot }}$	500	mW
P_{q}	100	mW
T_{stg}	-55 to 125	${ }^{\circ} \mathrm{C}$

V_{SS}	5 to 16	V
T_{amb}	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics (referred to $V_{D D}=0 \mathrm{~V}$)

Current consumption (outputs not connected)

	\min	typ		\max
I_{DD}		3	5	mA

Oscillator: Clock input CLCKI

H -input voltage
L-input voltage

| V_{iH} | |
| :--- | :--- | :--- | :--- |
| V_{iL} | $\left\|\begin{array}{l}v_{S S}-1 \\ V_{S S} \\ V_{S S}-4\end{array}\right\| V$ |

Clock output CLCKO

H-output voltage
L-output voltage
Leakage current, total current
of column outputs $\mathrm{S}_{\mathrm{a}}, \mathrm{S}_{\mathrm{b}}, \mathrm{S}_{\mathrm{c}}, \mathrm{S}_{\mathrm{d}}$, ETA, IRA $\left(V_{\mathrm{q}}=-10 \mathrm{~V} ; V_{\mathrm{DD}}=0 \mathrm{~V}\right)$

Column resistors
$R_{\mathrm{a}}, R_{\mathrm{b}}, R_{\mathrm{c}}, R_{\mathrm{d}}$, towards $-V_{\mathrm{S}}$
Remote control signal - output IRA
($I_{\mathrm{qH}}=4 \mathrm{~mA}$; $V_{\mathrm{DD}} \leqq-6 \mathrm{~V}$) H-output voltage
Switch-on transistor - output ETA
H-output current ($V_{\mathrm{q}}=V_{\mathrm{SS}}-4 \mathrm{~V}$)

V_{qH}	
V_{qL}	
R_{C}	$V_{\mathrm{SS}}-1$ 0 V_{qH} I_{qH}
	33 $V_{\mathrm{SS}}-5$ 0.1$\|.$

$|$| V_{SS} | V |
| :--- | :--- |
| $V_{\mathrm{SS}}+1$ | V |
| | |
| | |
| | |
| | |
| V_{SS} | $\mathrm{k} \Omega$ |
| 0.5 | mA |

Block diagram

Pin designation

Pin No.	Description
1	$V_{\text {SS }}$
2	Column a
3	Column b
4	Column c
5	Column d
6	$V_{\text {DD }}$
7	ETA (switch-on trans. output)
8	IRA (Infrared output)
9	Row 1
10	Row 2
11	Row 3
12	Row 4
13	Row 5
14	Row 6
15	Row 7
16	Row 8
17	CLCKI (oscillator input)
18	CLCKO (oscillator output)

Description of functions

The SAB 3210 operates in a wide range of supply voltages and with a very low current consumption. It is therefore suited for battery operation and for operation in a television set as a keyboard scanner from a 12 V supply. The circuit contains a control output for an npn transistor which separates the circuit from the battery as long as no button has been pushed.

Input keyboard:

The transmitter contains an input matrix consisting of 4 columns and 8 rows. In order to input an instruction a column output must be connected with a row input. Thereby the transmitter is turned on and a corresponding instruction is issued. Without further steps it is possible to input 32 instructions with simple switching contacts.
With additional diodes, the instruction set can be expanded to 60 . For this purpose 2 diodes are required for every additional 4 instructions. As a protection against an unintended double-actuation (pushing 2 buttons simultaneously) the SAB 3210 contains a column interlock. E.g. 1a +1 c are recognized as an erroneous operation. Instead of a wrong instruction only the end-command is transmitted. The circuit is not inerlocked against a multiple-button operation within one column (e.g. $8 a+5 a=85 a$) as this combination is used for the extension of input capabilities from 4×8 instructions to $4 \times(8+7)$ instructions.

End instruction:
After release of a key, the instruction selected is repeated no more than once, depending on the exact timing of the release. After the last transmission of the instruction selected, an end instruction is transmitted which signalizes to the receiver that the button has been released.

Output:
The transmitter converts the instruction received to a biphase code (timing diagram 1). Ahead of the 6 information bits, a startbit is transmitted. This startbit permits an additional discrimination to the receiver.
Through mask-programming the startbit can be changed from 1 to 0 which makes it possible to remote-control, with the same remote control system, a television set and a radio set in the same room independent from each other.
The output signal is keyed with half the clock frequency ($f_{\mathrm{CLCK}} / 2 \approx 30 \mathrm{kHz}$); with this signal an infrared transmitter stage can be controlled. At rest, the output is on a high-resistance low-level.

Ahead of the output of an IR instruction a pre-signal is output which facilitates gain control on the receiver side.

Timing:

In normal operation the clock frequency is approx. 60 kHz . The instructions are issued in a time interval of approx. 120 ms , the duration of an instruction being approx. 7 ms (see timing diagram 1). Before scanning the matrix there is a debounce-delay of approx. 20 ms .

Instruction set with assignment of the instructions to the buttons

Basic instructions			Extension instructions		
Instr. No.	Code FED CBA	Button	Instr. No.	Code FED CBA	Button
0	000000	1a	32	100000	81a
1	000001	1 b	33	100001	81b
2	000010	1c	34	100010	81c
3	000011	1d	35	100011	81d
4	000100	2a	36	100100	82a
5	000101	2b	37	100101	82b
6	000110	2c	38	100110	82c
7	000111	2d	39	100111	82d
8	001000	3a	40	101000	83a
9	001001	3b	41	101001	83b
10	001010	3c	42	101010	83 c
11	001011	3d	43	101011	83d
12	001100	4a	44	101100	84a
13	001101	4b	45	101101	84b
14	001110	4c	46	101110	84c
15	001111	4d	47	101111	84d
16	010000	5a	48	110000	85a
17	010001	5b	49	110001	85b
18	010010	5c	50	110010	85c
19	010011	5d	51	110011	85d
20	010100	6a	52	110100	86a
21	010101	6b	53	110101	86b
22	010110	6c	54	110110	86c
23	010111	6d	55	110111	86d
24	011000	7a	56	111000	87a
25	011001	7b	57	111001	87b
26	011010	7c	58	111010	87c
27	011011	7d	59	111011	87d
28	011100	8 a	60	111100	
29	011101	8b	61	111101	$\}$ not used
30	011110	8c	62	111110	
31	011111	8d	63	111111	instruction not permitted ${ }^{1}$

[^43]Timing diagram 1 (biphase coding, plotted without presignal)

Instruction 111111 with start bit 1 may not be programmed in order to avoid mixup with the already programmed instruction 000000 with start bit 0

Timing diagram 2 (pushing a button)

Timing diagram 3 (releasing a button)

External connection of the SAB 3210 (example)

Another example of external connection of the SAB 3210 (simplified final stage and changed oscillator circuitry)

Expanded external connection of the SAB $\mathbf{3 2 1 0}$ for $\mathbf{6 0}$ instructions (example)

Quiescent level
high

Display - Decoder - Driver

MOS circuit

The SAB 3211, developed in MOS depletion technology, is especially matched to the SAB 3209.
It is particularly suited to indicate channels 1 to 16 and 1 to 8 at TV sets by means of LED displays.
Reprogramming makes indication from 0 to 15 and in case of multiplexing from 00 to 99 possible.

- Automatic reset
- Reprogrammable 0 to 15 and 1 to 16
- Strict binary decoding
- Input memory (LATCH)

Type	Ordering code	Package outline
SAB 3211	Q 67100-Y440	DIP 16

Maximum ratings (all voltages referred to $V_{D D}$)

Supply voltage	V_{SS}	-0.3 to 18	V
Input voltage	V_{i}	$V_{\mathrm{SS}}-18$ to $V_{\mathrm{SS}}+0.3$	V
Power dissipation per output	P_{q}	100	mW
Total power dissipation	$P_{\text {tot }}$	500	mW
Output voltage	V_{q}	$V_{\mathrm{SS}}-18$ to $V_{\mathrm{SS}}+0.3$	V
Storage temperature range	T_{stg}	-55 to 125	${ }^{\circ} \mathrm{C}$

Range of operation (referred to $V_{D D}$)

Supply voltage range (final stage not connected)	V_{SS}	11 to 16	$\begin{array}{l}\mathrm{V} \\ \text { Ambient temperature range }\end{array}$
	T_{amb}	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics (all voltages referred to V_{DD})

Current input (Final stages not connected)
Input voltage for
inputs A, B, C, D, Latch, Enable, LEN
Output voltage for
outputs a, b, c, d, e, f, g
($I_{\text {Load }}=10 \mathrm{~mA}$)
outputs (h+i)
($I_{\text {Load }}=20 \mathrm{~mA}^{1}$)
Leakage current - outputs a... $(\mathrm{h}+\mathrm{i})$
($V_{\mathrm{q}}=V_{\mathrm{DD}}$)
Programming input
(Input current required $I_{\mathrm{i}} \mathrm{H} \leqq 200 \mu \mathrm{~A}$)
as output for
decoding channel 16 or 8
($I_{\text {Load }} \leqq 100 \mu \mathrm{~A}$)
$\left(I_{\text {Load }} \leqq 1 \mu \mathrm{~A}\right)$

	\min	typ	max	
I_{DD}		0.3	5	mA
V_{iH}	$V_{\mathrm{SS}}-3$		V_{SS}	V
V_{iL}	0		$V_{\mathrm{SS}}-8$	V
V_{qH}	$V_{\mathrm{SS}}-3$	$V_{\mathrm{SS}}-1.2$	V_{SS}	V
V_{qH}	$V_{\mathrm{SS}}-3$		V_{SS}	V
I_{qL}		0.05	50	$\mu \mathrm{~A}$
V_{iH}	$V_{\mathrm{SS}}-1$		V_{SS}	V
V_{iL}	0		$V_{\mathrm{SS}}-10$	V
V_{qH}	$V_{\mathrm{SS}}-1$	$V_{\mathrm{SS}}-0.25$	V_{SS}	V
V_{qL}	0		0.4	V

${ }^{1}$) IC with $I_{\text {Load }}=15 \mathrm{~mA}$ or 30 mA , resp., available upon request

Pin designation

Pin No.	Description
1	Vss positive supply voltage
2	Output to display segment g
3	Output to display segments $\mathrm{h}+\mathrm{i}$
4	Channel 16 display/programming input
5	Latch enable LEN
6	Binary input D
7	Binary input C
8	Binary input B
9	Binary input A
10	Vod negative supply voltage
11	Output to display segment a
12	Output to display segment b
13	Output to display segment c
14	Output to display segment d
15	Output to display segment e
16	Output to display segment f

Pin configuration (top view)

Pin arrangement 9 segment display

Block diagram

Description of functions

The circuit is intended, e.g. to control a 9 segment program display at a TV set whereby the channel Nos. 1 to 16 are displayed. At channel No. 16 an additional signal is output which can be used for AV changeover of the TV set (fig. 1). Decoding is based on the straightforward binary code, indicating " 16 " instead of zero.

By changing the external wiring, the device can also be used for TV sets with 8 channels (fig. 2). In this case " 8 " is displayed instead of zero and the AV changeover signal appears with the display of channel 8 .
It is possible to reprogram the circuit for general applications via the connection that would issue the AV changeover signal. If this connection is wired to the positive pole of the supply voltage, a " 0 " is indicated at the binary zero. The character set then comprises 0 to 15 in accordance with the simple 4 bit binary code. The BCD code is only to be understood as a subset of this code; the circuit is thus made suitable for application in usual numerical displays (fig. 3 and 4).

As another particularity, the circuit includes input latches which can be made responsive at high level with the aid of an enable input. At low level they keep the information retained.

The inputs are high-ohmic MOS inputs. Supply voltage may vary between 11 and 16 Volts taking into consideration that the inputs are not allowed to become positive against the $V_{\text {SS }}$ connection since otherwise safety resistors would become necessary at the inputs.
The brightness of the display can be adjusted via the external current limiting resistors.
For the purpose of darkening the display, it is recommended to disconnect the cathode line of the display or the negative pole of the supply voltage (V_{DD}).

Truth table

Display	LEN	Inputs				Outputs									
		D	C	B	A	a	b	c	d	e	f	g	$h+i$	*	**
0	H	L	L	L	L	H	H	H	H	H	H	L	L		H^{1})
1	H	L	L	L	H	L	H	H	L	L	L	L	L	H	
2	H	L	L	H	L	H	H	L	H	H	L	H	L	H	
3	H	L	L	H	H	H	H	H	H	L	L	H	L	H	
4	H	L	H	L	L	L	H	H	L	L	H	H	L	H	
5	H	L	H	L	H	H	L	H	H	L	H	H	L	H	
6	H	L	H	H	L	H	L	H	H	H	H	H	L	H	
7	H	L	H	H	H	H	H	H	L	L	L	L	L	H	
8	H	H	L	L	L	H	H	H	H	H	H	H	L	H	
9	H	H	L	L	H	H	H	H	H	L	H	H	L	H	
10	H	H	L	H	L	H	H	H	H	H	H	L	H	H	
11	H	H	L	H	H	L	H	H	L	L	L	L	H	H	
12	H	H	H	L	L	H	H	L	H	H	L	H	H	H	
13	H	H	H	L	H	H	H	H	H	L	L	H	H	H	
14	H	H	H	H	L	L	H	H	L	L	H	H	H	H	
15	H	H	H	H	H	H	L	H	H	L	H	H	H	H	
16	H	L	L	L	L	H	L	H	H	H	H	H	H	L	
	L	X	X	X	x			y ac put ahe ope	cor stat ad at L	$\begin{aligned} & \text { fth } \\ & \text { EN } \end{aligned}$					
	X : as required														

[^44]Fig. 1
Program display 16 channels

D	C	B	A	Display	AV
L	L	L	L	16	L
L	L	L	H	1	H
L	L	H	L	2	H
L	L	H	H	3	H
L	H	L	L	4	H
L	H	L	H	5	H
L	H	H	L	6	H
L	H	H	H	7	H
H	L	L	L	8	H
H	L	L	H	9	H
H	L	H	L	10	H
H	L	H	H	11	H
H	H	L	L	12	H
H	H	L	H	13	H
H	H	H	L	14	H
H	15	H			

Fig. 2
Program display 8 channels

D	C	B	A	Display	AV
L	L	L	L	8	L
L	L	L	H	1	H
L	L	H	L	2	H
L	L	H	H	3	H
L	H	L	L	4	H
L	H	L	H	5	H
L	H	H	L	6	H
L	H	H	H	7	H
L	L	L	L	8	L
L	L	L	H	1	H
L	L	H	L	2	H
L	L	H	H	3	H
L	H	L	L	4	H
L	H	L	H	5	H
L	H	H	L	6	H
L	H	H	H	7	H

All resistors approx. $1.2 \mathrm{k} \Omega$

Fig. 3
Binary display 0 to 15 (thus also BCD 0 to 9)

All resistors approx. $1.2 \mathrm{k} \Omega$

Fig. 4
Multiplexer display BCD 00 to 99

All resistors approx. $1.2 \mathrm{k} \Omega$

D	C	B	A	Display
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7
H	L	L	8	
H		H	9	
H	L	H	L	10
H	L	H	H	11
H	H	L	L	12
H	H	L	H	13
H	H	H	L	14
H	H	H	H	15

The SAB 3211 Z, developed in MOS depletion technology, represents an addition to the SAB 3211.
It is particularly suitable for direct coding binary +1 .

- Input memory
- Decoding binary +1
- Additional decoding channel 16

Type	Ordering code	Package outline
SAB 3211 Z	Q 67100-Y 466	DIP 16

Maximum ratings (all voltages referred to V_{DD})

Supply voltage range	V_{SS}	-0.3 to 18	V
Input voltage	V_{i}	$V_{\mathrm{SS}}-18$ to $V_{\mathrm{SS}}+0.3$	V
Power dissipation per output	P_{q}	100	
Total power dissipation	$P_{\text {tot }}$	500	mW
Output voltage	V_{q}	$V_{\mathrm{SS}}-18$ to $V_{\mathrm{SS}}+0.3$	mW
Storage temperature range	T_{stg}	-55 to 125	${ }^{\circ} \mathrm{C}$

Range of operation (referred to $V_{D D}$)
Supply voltage range (final stages unconnected)
Ambient temperature range

V_{SS}	11 to 16
T_{amb}	0 to 70

[^45]
Characteristics (all voltages referred to $V_{D D}$)

Current consumption Input voltage for inputs

Enable, LEN
Output voltage for outputs a, b, c, d, e, f, g ($I_{\text {load }}=15 \mathrm{~mA}$)
Output voltage for outputs h, i
($I_{\text {load }}=30 \mathrm{~mA}$)
Leakage current outputs a ... $(\mathrm{h}+\mathrm{i})$ ($V_{\mathrm{q}}=V_{\mathrm{DD}}$)
Output for decoding channel 16
($I_{\text {load }}<100 \mu \mathrm{~A}$)
($I_{\text {load }}<1 \mu \mathrm{~A}$)

	\min	typ	\max	
I_{DD}			1.5	mA
V_{iH}	$V_{\mathrm{SS}}-3$		V_{SS}	V
V_{iL}	0		$V_{\mathrm{SS}}-8$	V
V_{qH}	$V_{\mathrm{SS}}-3.5$		V_{SS}	V
V_{qH}	$V_{\mathrm{SS}}-3.5$		V_{SS}	V
I_{qL}		0.05	20	$\mu \mathrm{~A}$
V_{qH}	$V_{\mathrm{SS}}-1$		V_{SS}	V
V_{qL}	0		0.4	V

Circuit description

LED display latch decoder driver for 7- or 9-segment display with common cathode

The circuit is intended, e.g., to control a 9 -segment program display at a TV set whereby the channel Nos. 1 to 16 are displayed. At channel No. 16 an additional signal is output which can be used for AV changeover of the TV set (fig. 1).

Decoding is done by indicating the number of the direct binary code incremented by 1 , each (refer to truth table).

As particularity the circuit includes input latches which can be made responsive at high level with the aid of an enable input (LEN). At low level they keep the information retained.

The inputs are high-ohmic MOS inputs. Supply voltage may vary between 11 and 16 Volts taking into consideration that the inputs are not allowed to become positive against the $V_{\text {SS }}$ connection since otherwise safety resistors ($\min 500 \mathrm{k} \Omega$) would become necessary at the inputs.
The brightness of the display can be adjusted via the external current limiting resistors. For the purpose of darkening the display, it is recommended to disconnect the cathode line of the display or the negative pole of the supply voltage ($V_{D D}$).

Truth table

Pin configuration (top view)

Pin arrangement in 9 segment display

Block diagram

Program display 16 channels

				Display	PRG 16 (AV)
H	C	B	A	H	H
L	L	L	L	16	L
L	L	L	H	2	H
L	L	H	L	3	H
L	L	H	H	4	H
L	H	L	L	5	H
L	H	L	H	6	H
L	H	H	L	7	H
L	H	H	H	8	H
H	L	L	L	9	H
H	L	L	H	10	H
H	L	H	L	11	H
H	L	H	H	12	H
H	H	L	L	13	H
H	H	L	H	14	H
H	H	H	L	15	H

The IC SAB 3271 is a straightforward infrared receiver for the Siemens IR remote control system. It includes the receiver part, the output shift register with one series output and 6 parallel outputs, 1 start bit output/input, 1 T flip-flop output, 1 RS flip-flop output, a circuit for single and repeat enable signals and a changeover for the parallel outputs (see block diagram).
At first the incoming infrared instruction is checked, then read into the shift register, switched to the parallel outputs and then serially output as I bus.

Type	Ordering code	Package outline
SAB 3271	O67100-Y461	DIP 16

Maximum ratings (all voltages referred to $V_{D D}$)

Supply voltage range	V_{SS}	-0.3 to 18	V
Input voltage	V_{i}	$V_{\mathrm{SS}}-18$ to $V_{\mathrm{SS}}+0.3$	V
Power dissipation per output	P_{q}	100	mW
Total power dissipation	$P_{\text {tot }}$	500	mW
Storage temperature range	$T_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$

Range of operation (referred to $V_{D D}$)

Supply voltage range	V_{SS}	$\begin{array}{l}11 \text { to } 16 \\ 0\end{array}$	T_{amb}

Characteristics (all voltages referred to $V_{\mathrm{DD}} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Supply current
($V_{\mathrm{SS}}=16 \mathrm{~V}$, outputs not connected)
Oscillator frequency range

	\min	typ	\max	
I_{DD}		5	10	mA
$f_{\text {OSC }}$	20	62.5	70	kHz

Infrared signal input

H -input voltage (quiescent level)
L-input voltage
L-pulse width
Input resistance

V_{iH}	$V_{\mathrm{SS}}-1 \mathrm{~V}$		
V_{iL}	0	V_{SS}	
t_{wL}	2	$V_{\mathrm{SS}}-3.5$	V
R_{i}	0.2		

Parallel outputs

$\mathbf{a}_{A}, \mathbf{Q}_{B}, \mathbf{Q}_{C}, \mathbf{Q}_{\mathrm{D}}, \mathbf{Q}_{\mathrm{E}}, \mathrm{Q}_{\mathrm{F}}$;
T F-F output $\mathbf{Q}_{1} \mathbf{S U}, \mathbf{Q}_{3}$;
RS F-F outputs O_{2};
I bus outputs DATA, DLER, DLES
H -output voltage
($I_{\mathrm{D}}=+1 \mu \mathrm{~A}$)
L-output voltage
($I_{\mathrm{D}}=-1 \mu \mathrm{~A}$)
H -output voltage
$\left(I_{\mathrm{D}}=+300 \mu \mathrm{~A}\right)$
L-output voltage
$\left(I_{\mathrm{D}}=-5 \mu \mathrm{~A}\right)$

V_{qH}	$V_{\mathrm{SS}}-0.4 \mathrm{~V}$		
V_{qL}	0	v_{SS}	
V_{qH}	$v_{\mathrm{SS}}-1 \mathrm{~V}$		
V_{qL}	0	0.4	V
	v_{SS}		
	3	V	

RSIG infrared signal input

Timing diagram
Input signals

CL oscillator connection

Circuitry:

Coupling capacitor	$C_{\mathrm{C}} \geq 10 \mathrm{nF}$
Coil	$L=10 \mathrm{mH}$
Capacitance	$C=680 \mathrm{pF}$

$\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{D}}, \mathrm{Q}_{\mathrm{E}}, \mathrm{Q}_{\mathrm{F}}$ parallel outputs
$\mathrm{Q}_{1} \mathrm{SU}, \mathrm{Q}_{2}$ RS flip-flop outputs; $\mathrm{Q}_{3} \mathrm{~T}$ flip-flop-output

Pin designation

Pin No.	Description
1	$v_{\text {Ss }}$
2	CL oscillator
3	$\mathrm{O}_{1} \mathrm{SU}$ start bit changeover
4	$\mathrm{O}_{2} \mathrm{RS}$ flip-flop output
5	$\mathrm{Q}_{3} \mathrm{~T}$ flip-flop output
6	RSIG infrared input
7	DATA series output
8	Q_{A}
9	Q_{B}
10	Q_{C} parallel outputs
11	Q_{D} $\}$ parallel outputs
12	Q_{E}
13	Q_{F}
14	$V_{\text {DD }}$
15	DLER repeat $\}$ valid signal
16	DLES single $\}$ valid signal

Block diagram

Biphase coding, timing diagram

I Bus timing diagram

Infrared signal and output signals

Instruction table

Inst No.	$\begin{aligned} & \text { Code } \\ & \text { F E D } \end{aligned}$	C B A	Instr. No.	$\begin{aligned} & \text { Code } \\ & \text { F E D } \end{aligned}$	C B A	$\begin{aligned} & \text { Instr. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Code } \\ & \text { F E D } \end{aligned}$	С B A	Instr. No.	$\begin{aligned} & \text { Code } \\ & \text { F E D } \end{aligned}$	$\text { С } \quad \text { B A }$
0	L L L	L L L')	16	L HL	LL ${ }^{2}$)	32	HL L	LLL ${ }^{2}$	48		
1		L L H^{2})	17		LLH	33		L L $\mathrm{HO}_{1} \mathrm{SU}^{3}$)	49	HHL	$\begin{aligned} & \text { LLL } \\ & \text { LLH } \end{aligned}$
2		L HL ${ }^{2}$) $\mathrm{O}_{2} \mathrm{~L}$	18		L HL	34		L HLO ${ }_{2} \mathrm{H}^{3}$)	50		LHL
3		LHH	19		LHH	35		$\mathrm{LHHQ}{ }^{3}$)	51		LHH
4		HL L ${ }^{2}$)	20		HLL	36		HLL	52		
5		HLH	21		HLH	37		HLH	53		HLH
6		HHL	22		HHL	38		HHL	54		
7		HHH	23		HHH	39		HHH	55		HHH
8	LL H	L L L ${ }^{2}$)	24	LHH	L L L	40	HL H	L L L	56	HHH	L L L
9		LLH	25		LLH	41		LLH	57		L L H
10		L HL	26		L HL	42		LHL	58		L HL
11		LHH	27		LHH	43		LHH	59		LHH
12		HLL	28		HLL	44		HLL	60		HLL
13		HLH	29		HLH	45		HLH	61		HL H
14		HHL	30		H HL	46		H HL	62	HHH	H HL end
15	HHH		31	HHH		47	HHH		63		in-
			struc-								
			tion								
			not								
			allowed								

${ }^{1}$) is simultaneously quiescent position at the parallel outputs, i.e. this instruction can only be used at the parallel outputs in connection with DLER or DLES, respectively, whereby this coding also applies to the instructions $33,34,35$ (see 3).
${ }^{2}$) In case of these instructions, only 1 bit is on high level, see section "Operation as Remote Control Receiver".
${ }^{3}$) These instructions are blocked for the parallel output in order to have 9 channels available for remote control without decoder. The parallel outputs remain in quiescent position, whereas the serial interface outputs also these instructions without peculiarities.

Application circuit as receiver for 8 channels

${ }^{1}$)Plotted version: Operation with start bit $=1$
For operation with start bit $=0$, the terminal $\mathrm{Q}_{1} \mathrm{SU}$ must be wired to $V_{\mathrm{DD}}(=0 \mathrm{~V})$.

Example for a decoder circuit

With this circuit all instructions of the instruction table but the end instruction (instr. No.62) and the not allowed instruction (instr. No. 63) can be obtained in decoded form, whereby instructions 33,34 , and 35 are already decoded in the circuit (outputs $\mathrm{Q}_{1} \mathrm{SU}, \mathrm{Q}_{2}$, Q_{3}). If DLES is used, single instructions or the normal function will be generated.

Description of functions

Receiver (RSIG, $\mathbf{Q}_{1} \mathbf{S U}$)

The receiver checks the infrared signal (1 prepulse +1 start bit +6 information bits, refer to fig.) transmitted in biphase code. The receiver can be changed over to both kinds of start bits: in case of an infrared signal with the start bit $=0$, the start bit terminal $\mathrm{O}_{1} \mathrm{SU}$ must be connected to low level, with the start bit $=1$ to high level. Between the prepulse and the start bit a muting test is performed. Then, reading-in and checking of the code word follow. After a second muting test, the output begins. During this period of time the infrared input is blocked, thus no interfering pulse may interrupt the output procedure.

If an interference is recognized in the infrared signal, only this interfered instruction (within several repeat instructions) will not be interpreted (same behavior as in the case of a missing instruction).

Parallel outputs ($\mathrm{Q}_{\mathrm{A}} \ldots \mathrm{Q}_{\mathrm{F}}$)
At the first repeat instruction the code word is switched to the parallel outputs Q_{A} to Q_{F} with $1=$ high and $0=$ low. The parallel outputs then remain in this state as long as the transmitting button is pressed. Only after receipt of the end instruction (when releasing the button), they are again reset to low (refer to fig. "Infrared signal and output signals"). Also refer to the section "Operation as remote control receiver without external decoder". The end instruction (No.62) and the instructions 33, 34, 35 are suppressed for the parallel outputs.

RS flip-flop output (Q_{2})

The RS flip-flop output Q_{2} is set with the instruction 34 and reset with the instruction 2, which also acts upon the parallel output Q_{2}. The output can also be directly set and reset at the terminal with a low-ohmic connection.
If the output is low-ohmically applied to low level, e.g. via the base-emitter path of an NPN transistor, it issues at transmitting the instruction No. 34 base current pulses of approximately 1.3 msec duration in the interval of the repeat instructions transmitted. If a PNP transistor is applied towards high level, base current pulses can also be obtained during transmitting the instruction No. 2, thus however, also influencing the output Q_{B}.

T flip-flop output (O_{3})

The T flip-flop output $\left(\mathrm{Q}_{3}\right)$ changes its state at every pressure on the corresponding transmitting button (see instruction table) and keeps the new position until the button is pressed anew. This output can also be set and reset directly in the same way as the output Q_{2}. At the next appropriate instruction of the remote control, the output again changes its state.

When the output is low-ohmically connected, e.g. via the base-emitter path of a transistor to high (PNP transistor) or to low (NPN transistor), current pulses of about 1.3 ms duration are output during pressure of the appropriate transmitting button at an interval of the transmitted repeat instructions (pulse function, refer to fig.).

Pulse output $\mathbf{Q}_{1} \mathbf{S U}$

The output $\mathrm{Q}_{1} \mathrm{SU}$ is on the one hand the input for the start bit changeover; on the other hand also current pulses may be coupled at this output via a transistor as also described for the output Q_{3}. Refer to figure "Pulse function".

Serial interface (DATA, DLER, DLES)

After the received instruction word has been switched to the parallel outputs Q_{A} to Q_{F} and the 3 special outputs $\mathrm{Q}_{1} \mathrm{SU}, \mathrm{Q}_{2}$ and Q_{3}, output at the serial interface takes place via the outputs DATA (information) and DLER (enable and clock for repeat instructions). The end instruction (No. 62) and the instructions 33, 34, and 35 are also output at the serial interface. The output DLS (enable for single instructions) only moves to high during the output of one instruction (No.62). Refer to figure "I bus timing diagram" and "Infrared signal and output signals".

Operation as remote control receiver without external decoder

The instruction table includes 6 instructions, only one bit of which equals high and the remaining 5 bits equal low. They actually effect only one of the 6 parallel outputs. Together with the RS flip-flop output and the T flip-flop start-bit terminal a remote control, comprising nine independent channels is thus possible. The parallel outputs can thereby be operated in 2 different modes of operation:
a) When the DATA output is subject to high-ohmic load, only (normal case), each of the 6 parallel outputs alone moves to high as long as the according button is being pressed.
b) The parallel outputs may also be operated as T flip-flops. For that purpose, the DATA terminal must be put to high level (that can also be done via the base-emitter path of a PNP transistor, if the I bus information shall not be lost - refer to fig.). The outputs then work like the described T flip-flops, i.e. they can be individually set and reset from outside or individually changed over to the pulse function by a low-ohmic load.

Switching-on

When the supply voltage rises, the parallel output, the start-bit output $\mathrm{Q}_{1} \mathrm{SU}$, the RS flipflop output Q_{2}, and the T flip-flop output Q_{3} are put to low level.

Pulse function, with channel $\mathbf{Q}_{1} \mathbf{S U}$ taken as an example

The circuit configured to a) can also be applied without restriction at the RS flip-flop output Q_{2}, the T flip-flop output Q_{3} and the parallel outputs Q_{A} to Q_{F} in order to change the outputs individually to the pulse function.
The circuit configured according to b) can also be used at the RS flip-flop output Q_{2}, the T flip-flop output Q_{3} and, if DATA is connected to high at the parallel outputs Q_{A} to Q_{F}. Also the DATA output can be moved to high level with this circuit in order not to loose the I bus information at this mode of operation.

The SDA 3205 receiver IC, developed in P-MOS depletion technology, interprets the IR signals of the transmitter IC SDA 3206.
With the SDA 3205, 16 programs and 1 analog function can be selected. Moreover, the IC contains an on/off input or output, respectively.

- The program outputs are short-circuit proof and can be externally set.
- The SDA 3205 can be operated with the on-chip oscillator or with an external clock.

Type	Ordering code	Package outline
SDA 3205	Q 67100-Y578	DIP 18

Maximum ratings (all voltages referred to $V_{\mathrm{DD}}=0 \mathrm{~V}$)

Supply voltage range
Input voltage
Total power dissipation
Power dissipation per output
Thermal resistance (system-air)
Storage temperature range
Range of operation (referred to $V_{D D}=0 \mathrm{~V}$)

[^46]| V_{SS} | -0.3 to 18 | V |
| :--- | :--- | :--- |
| V_{i} | $V_{\mathrm{SS}}-18$ to $V_{\mathrm{SS}}+0.3$ | V |
| $P_{\text {tot }}$ | 500 | mW |
| P_{q} | 100 | mW |
| $R_{\text {th SA }}$ | 90 | $\mathrm{~K} / \mathrm{W}$ |
| $T_{\text {stg }}$ | -40 to 125 | ${ }^{\circ} \mathrm{C}$ |

| $V_{\text {SS }}$ | $\begin{array}{l}-16 \text { to }-11 \\ T_{\text {amb }}\end{array}$ | 0 to 70 |
| :--- | :--- | :--- |$| \begin{aligned} & { }^{\circ} \mathrm{C}\end{aligned}$

Characteristics (referred to $V_{\mathrm{DD}}=0 \mathrm{~V}, T_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$)

Current consumption (outputs open)

	\min	typ	\max	
I_{DD}		5	10	mA

Inputs Clock input CLCKI

L-input voltage
H -input voltage Input current Transition times
Frequency

V_{iL}	0		$V_{\mathrm{SS}}-7$	V
V_{iH}	$V_{\mathrm{SS}}-1$		V_{SS}	V
I_{i}		15	$\mu \mathrm{~A}$	
$t_{\mathrm{THL}}, t_{\text {TLH }}$			4	$\mu \mathrm{~S}$
f				

Remote control signal input RSIG
Input alternating voltage
Input resistance

V_{iH}	$V_{\mathrm{SS}}-1$	V_{SS}	V
V_{iL}	0	$V_{\mathrm{SS}}-3.5$	V
R_{i}	0.2	$\mathrm{M} \Omega$	

Inputs
Program stepping input PC

H -input voltage
L-input voltage
H-input current ($V_{\mathrm{i}}=V_{\mathrm{SS}}$)
(internal pull low resistor)

V_{iH}	$V_{\mathrm{SS}}-1.5$	V_{SS}	V
V_{iL}	0	$V_{\mathrm{SS}}-7$	V
I_{iH}		10	$\mu \mathrm{~A}$

Standby output ONOFF
H -input voltage ($I_{\mathrm{i}} \mathrm{H}<1 \mathrm{~mA}$)
Outputs
Program memory outputs
PRGA, PRGB, PRGC, PRGD
H -output voltage ($I_{\mathrm{q}}=0.1 \mathrm{~mA}$)
L-output voltage ($I_{\mathrm{q}}=10 \mu \mathrm{~A}$)
$V_{\text {qH }}$
V_{qL}

$\left\lvert\, \begin{aligned} & V_{\mathrm{SS}} \\ & 1\end{aligned}\right.$

Program stepping output PC
H -output voltage ($I_{\mathrm{a}}=0.3 \mathrm{~mA}$)
L-output voltage (no load)

Analog functions output VOLU

H -output voltage ($I_{\mathrm{q}}=1 \mathrm{~mA}$)
L-output voltage ($I_{\mathrm{q}}=1 \mu \mathrm{~A}$)
$V_{\text {qH }}$

$V_{\text {SS }}$
0.35

Standby output ONOFF
H -output voltage ($I_{\mathrm{q}}=0.3 \mathrm{~mA}$)
L-output voltage ($I_{\mathrm{q}}=1 \mu \mathrm{~A}$)

Clock output CLCKO

H-output voltage (no load)
L-output voltage (no load)

V_{qH}	$V_{\mathrm{SS}}-1$	V_{SS}	V
V_{qL}	0	1	

Pin designation

Pin No.	Description
1	$V_{\text {SS, supply voltage }}$
2	CLCKO, clock output
3	CLCKI, clock input
4	PRGD, program control output
5	PRGC, program control output
6	PRGB, program control output
7	PRGA, program control output
8	PC, program change strobe output
9	VOLU, volume control output
10	ONOFF, standby output
11	
12	
13	
14	
15	
16	
17	
18	

Pins 9, 12, 13, 14, 16, and 18 are not allowed to be connected.

Circuit description

1. IR receiver (pin RSIG)

The IR receiver takes the IR signal, decodes it and moves it to the control logic. The IR signal consists of ac pulses with a frequency of approx. 30 kHz and a duration of 0.5 ms per cycle. The instructions are transmitted as 7 bit words (1 start bit, 6 information bits). The IR signals are repeated approximately every 120 ms .

2. Analog value memory (output VOLU)

The analog value can be varied in approx. 60 steps. The variation speed is according to the repetition frequency of the repeat instruction (approx. 8 Hz). The analog value is output as square-wave voltage with a frequency of approx. 1 kHz , whereby the duty cycle corresponds to the analog value. The analog voltage is generated in an external low pass filter.

If the supply voltage rises from 0 the analog value is set to the start position
(v volu $=1 / 3$, with $v=\mathrm{t}_{\text {high }} / \mathrm{T}$).
The output is internally kept to low

- if the IC is in standby,
- for approx. 128 ms if a program + or program - instruction has been received, before the high pulse of the PC output will be issued.

As long as the IC is in standby, instructions to the analog memory remain undecoded. After switch-on from standby, the analog output is set to the start position.

3. Program memory (outputs and inputs PRGA, PRGB, PRGC, PRGD)

The programm memory consists of a 4 bit ring counter to call 16 programs. The 16 programs can be called via remote control by incrementing or decrementing with the ring counter.

If the supply voltage rises from 0 , the program outputs are set to LLLH. The outputs can be used as inputs. They can be set and reset by low-ohmic external control.

Strobe output, program continuation input PC

When the program memory has received an instruction via remote control, a positive pulse appears at the output PC after a certain delay time. The volume output VOLU is muted as soon as the delay time starts. Muting is reverted with the trailing edge of the PC pulse (refer to timing diagram 1). A capacitor can be additionally connected to the output PC in order to prolong muting (up to approx. 0.5 sec .).
The same muting behavior appears when the supply voltage rises from zero and simultaneously the pin ONOFF is kept on low level (refer to timing diagram 2).
The pin PC can also be used as input. If positive potential is applied from outside, the program counter will increment by 1 step. The external capacitor thereby acts as debouncing (refer to timing diagram 3). In the state "Standby", the output is statically positive. The PC pulse only once appears per pressure on the according transmitter button.

4. Other control functions

Standby output/input:
(pin ONOFF)
The output is controlled by an RS flip-flop. The high level (standby) appears

- when the supply voltage is switched on
- when the instruction "standby" is received

The low level (on) appears, when the instruction program + or program - is received.
At low-ohmic control the pin ONOFF also acts as input.

Table

Instruction set for IR transmission

Instruction No.	Description
a	Standby
b	Program + / on
c	Program - / on
d	Vol +
e	Vol -
f	End instruction

Attention: time scale
varied
$\mathrm{T}=\frac{1}{f_{\text {osc }}}$

Timing diagram 2

Example a) Switching on by means of an IR instruction

$\mathrm{T}=\frac{1}{f_{\text {osc }}}$
Example b) ONOFF is connected to $V_{D D}$ during the supply voltage rise via wiping contact
End of automatic Reset
Operating voltage
$V_{S S}$
PRG outputs
A - B, C, D ---
VOLU

PC signal

Attention:
Time scale varies

$\mathrm{T}=\frac{1}{f_{\text {osc }}}$

Timing diagram 3

Layout

The SDA 3206 transmitter IC, developed in P-MOS depletion technology, converts the input instructions into a 6 -bit biphase code. The instructions are transmitted via an infrared transmitter stage onto an IR receiver stage of the SDA 3205.

- Low current consumption of typically 3 mA (max. 5 mA). An external NPN transistor, controlled by the transmitter IC, disconnects the battery from the IC, thus substantially increasing the battery life time.
- 5 V to 10 V supply voltage

Type	Ordering code	Package outline
SDA 3206	Q67100-Y577	DIP 18

Maximum ratings (all voltages referred to $V_{\mathrm{DD}}=0 \mathrm{~V}$)

Supply voltage.	$v_{\text {SS }}$	-0.3 to 18	V
Input voltage	V_{i}	$v_{\mathrm{SS}}-18$ to $V_{\mathrm{SS}}+0.3$	V
Total power dissipation	$P_{\text {tot }}$		mW
Power dissipation per output	P_{q}	100	mW
Storage temperature range	$T_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$
Thermal resistance (system-air)	$R_{\text {th SA }}$	90	K/W
Range of operation (referred to $V_{\text {DD }}=0 \mathrm{~V}$)			
Supply voltage range	$V_{\text {ss }}$	5 to 10	V
Ambient temperature range	$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics (all voltages referred to $V_{D D}=0 \mathrm{~V}$)

Current consumption without load

	\min	typ	\max	
I_{DD}		3	5	mA

Oscillator:
Clock input CLCKI
H -input voltage
L-input voltage

V_{iH}	$V_{\mathrm{SS}}-1$		
V_{iL}	0	V_{SS}	V
$V_{\mathrm{SS}}-4$	V		

Clock output CLCKO

H -output voltage
L-output voltage

V_{qH}	$V_{\mathrm{SS}}-1$		
V_{qL}	0	V_{SS}	V
+1	V		

Leakage current, total current

of column output $\mathrm{S}_{\mathrm{a}}, \mathrm{S}_{\mathrm{b}}, \mathrm{S}_{\mathrm{c}}$, ETA, IRA
$\left(V_{\mathrm{q}}=-10 \mathrm{~V} ; V_{\mathrm{SS}}=0 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$
$|1| 1 \quad \mid \mu \mathrm{A}$

Column resistors
$\mathrm{R}_{\mathrm{a}}, \mathrm{R}_{\mathrm{b}}, \mathrm{R}_{\mathrm{c}}$ towards $-V_{\mathrm{S}}$
$R_{\mathrm{C}} \quad \mid 33$
$\mid 47 \quad \mathrm{k} \Omega$
Remote control signal - output IRA
H-output voltage
$\left(I_{\mathrm{qH}}=4 \mathrm{~mA} ; V_{\mathrm{SS}}>6 \mathrm{~V}\right)$

V_{qH}	$V_{\mathrm{SS}}-5 \mid$	V_{SS}	V

Switch-on transistor - output ETA
H-output current
$\left(V_{\mathrm{q}}=V_{\mathrm{SS}}-4 \mathrm{~V}\right)$
$I_{\text {q H }}$
0.1
$10.5 \quad \mathrm{~mA}$

Block diagram

Pin designation

Pin. No.	Description
1	$V_{\text {SS }}$
2	Column a
3	Column b
4	Column c
5	
6	
7	
8	VTA (switch-on transistor output)
9	RA (infrared output)
10	Row 2
11	
12	Row 3
13	
14	
15	CLCKI (oscillator input)
16	

Pins 5, 12, 13, 14, 15, 16 are not allowed to be connected.

Description of functions

The SDA 3206 works throughout a wide supply voltage range at low current consumption, it is, therefore, suitable for battery supply. The IC contains a control output for an NPN transistor, which disconnects the IC from the battery if no button is pressed.

Input keyboard:
The transmitter includes an input matrix containing 3 columns and 3 rows. A column output has to be connected to a row input in order to input an instruction. Thus, the transmitter is switched on and a corresponding instruction is transmitted.

End instruction:

After having actuated a button, the selected instruction is transmitted maximally once again, depending on the exact instant of the release. After the last transmission of the desired instruction the end instruction is transmitted which informs the receiver that the button was released.

Output:
The transmitter converts the incoming instruction into a biphase code (timing diagram 1). Prior to the 6 information bits, a start bit is transmitted.

The output signal is keyed with the clock frequency divided by $2\left(f_{\mathrm{CLCK}} / 2 \approx 30 \mathrm{kHz}\right)$; the signal controls an infrared transmitter stage. The idling output is high-ohmic. Prior to an IR instruction, a presignal is released which relieves the amplifier at the receiver side.

Timing:

The clock frequency is set to 60 kHz . The instructions are transmitted at an interval of approx. 120 msec , an instruction lasts approx. 7 msec (timing diagram 1). The instructions cannot be recognized before a debounce time of 20 msec .

Instruction set with assignment of the instructions to the buttons

Instr. No.	$\begin{aligned} & \text { Code } \\ & \text { F E D } \end{aligned}$	C B A	Logic operation
a	000	010	1c
b	000	100	2a
c	000	101	2b
d	001	000	3 a
e	001	001	3b
f	111	110	End instruction

Timing diagram 1

(biphase coding without presignal)

Exact pulse
train of a IRA burst

Timing diagram 2
(pressing a button)

Timing diagram 3
(releasing a button)

External connection
 (example)

Bipolar circuit

The IC TDA 4050 B is suitable for use as infrared preamplifier in remote control facilities for radio and TV sets.

The IC includes a controlled driver stage with subsequent amplifier stage as well as an amplifier of the threshold value. The circuit is largely balanced.

- Provision of internal AGC voltage
- High capability for large signals
- Short-circuit proof signal output
- Simple connection for an active band filter
- Few external components

Type	Ordering code	Package outline
TDA 4050 B	Q 67000-A 1373	DIP 8

Maximum ratings

Supply voltage
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{S}	$16^{1} \mathrm{~J}$	V
$R_{\text {th SA }}$	140	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range Input frequency range

V_{S}	9 to 16	V
T_{amb}	-15 to 80	${ }^{\circ} \mathrm{C}$
f_{i}	0 to 100	kHz

[^47]Characteristics (with reference to test circuit, $V_{S}=12 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; f_{\mathrm{IR}}=31.25 \mathrm{kHz}$)

Current consumption ($R_{\mathrm{L}} \geqq 10 \mathrm{k} \Omega$)
Input voltage for starting control
Gain
Gain
Total control range
Output current ($R_{\mathrm{L}}=0 \Omega$)
Output DC voltage for L level
$\left(I_{\mathrm{q} 3 \mathrm{~L}}=2 \mathrm{~mA}\right)$
Output DC voltage for H level
$\left(I_{\mathrm{q} 3 \mathrm{~L}}=0 \mathrm{~mA}\right)$
Input resistance
Output resistance
Rated impedance of the double-T network at pin 4
(unbalanced to ground)

	\min	typ	\max	
I_{6}		9	13	mA
$V_{\mathrm{i} 8}$		50		$\mu \mathrm{~V}_{\mathrm{rms}}$
$G_{4 / 8}$	74	77	85	dB
$G_{3 / 4}$		21		dB
ΔG	74	77	85	dB
$I_{\mathrm{q} 3}$		20		mA
$V_{\mathrm{q} 3 \mathrm{~L}}$		150	500	mV
$V_{\mathrm{q} 3 \mathrm{H}}$	$V_{\mathrm{S}}-0.4$	V_{S}		V
$R_{\mathrm{i} 8}$		1.8		$\mathrm{k} \Omega$
$R_{\mathrm{q} 3}$		10		$\mathrm{k} \Omega$
R_{4}	2			$\mathrm{k} \Omega$

Pin designation

Pin No.	Description
1	Ground
2	Connection for capacitance for prestage control
3	Output threshold amplifier
4	Output active filter
5	Input active filter
6	Supply voltage, positive
7	Unlocking of operation point control
8	Signal input

Test circuit and block diagram

TDA 4050 B

Application circuit II

without coil

Notes

Circuit 1 uses and LC resonant circuit and features higher quality because of its high selectivity (approx. 3 kHz bandwidth at -3 dB).

Circuit 2 offers the lower cost solution without coil incl. wideband input selection. Higher requirements as to steady radiation and large signal capability can be met by means of re-sistor-diode-resistor connection (RDR).

Channel memory for use in radio and TV sets. The four stages can be switched over by touching the sensor areas with the finger. Each stage is provided with a read-out output and a tuning output.
The high input sensitivity allows application in devices without mains separation. Almost any number of ICs can be interconnected.

SAS 560S: after applying V_{7} stage 1 switches on.
SAS 570S: after applying V_{7} no stage switches on.

- High input sensitivity
- Low saturation voltage of driver outputs
- Low temperature drift of tuning outputs
- Driver outputs for filament lamps and LEDs

Type	Ordering code	Package outline
SAS 560 S	Q 67000-S30	\}DIP 16
SAS 570 S	Q 67000-S31	Y

Maximum ratings

Supply voltage 1
Supply voltage 2
Voltage
Driver current
Max. driver current, $t_{\text {max }} \leqq 2$ sec
Tuning current
Max. tuning current, $t_{\max } \leqq 2$ sec
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{7}	36	V
V_{8}	26.5	V
$V_{2}, I_{11}, I_{13}, I_{15}$	6	V
I_{9}, I_{11}	mA	
$I_{9}, I_{11}, I_{13}, I_{15}$ max	100	mA
$I_{3}, I_{4}, I_{5}, I_{6}$	1.5	mA
$I_{3}, I_{4}, I_{5}, I_{6 \text { max }}$	10	mA
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage 1 range
Supply voltage 2 range Ambient temperature range
V_{7}
V_{8}
$T_{\text {amb }}$

11 to 35	V
5 to 25	V
0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics (with reference to test circuit, $V_{7}=33 \mathrm{~V}, V_{8}=12 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Voltage at pin $2\left(R_{K}=15 \mathrm{k} \Omega\right.$
during touching
after touching
Saturation voltage of driver outputs
Saturation voltage of tuning voltage outputs
Temperature drift of saturation
voltage of tuning outputs
($T_{\mathrm{amb}}=25$ to $55^{\circ} \mathrm{C}$)
Current consumption
during touching
after touching
Current consumption (without load) Input current
Reverse current of driver outputs
Reverse current of tuning voltage outputs

	\min	typ	\max	
V_{2-1}^{\prime}	4.2	4.7	5.5	V
V_{2-1}, V_{13-8}	2.6	3.2	3.7	V
V_{15-8}, V_{9-8}		0.9	1.5	V
$V_{11-8}, V_{4-7}, V_{5-7}, V_{6-7}$		0.9	1.5	V
V_{3-7}, V_{4-1}		0.15	0.5	V
$V_{3-7}, V_{4-7}, V_{5-7}, V_{6-7}$		0.3	1	$\mathrm{mV} /$
				deg
I_{7}	3.15	4.3	5.35	mA
I_{7}	3.4	4.7	5.75	mA
I_{7}	0.5	1.4	2.1	mA
$I_{10}, I_{12}, I_{14}, I_{16}$		100	300	nA
$I_{9}, I_{11}, I_{13}, I_{15}$			10	$\mu \mathrm{~A}$
$I_{3}, I_{4}, I_{5}, I_{6}$			1	$\mu \mathrm{~A}$

After simultaneous selection of more than one channel, only one channel will be selected. This also applies when several ICs are interconnected. After switching of V_{8}, the last selected channel is stored as long as V_{7} supply is maintained.

Test circuit

Block diagram

Saturation voltage of driver outputs versus current of these outputs

Saturation voltage of tuning voltage outputs versus current of these outputs

Channel memory for use in radio and TV sets. The four stages can be selected by touching the sensor area with the finger. Each stage is provided with a read-out output. The tuning voltage is switched through to a common output. SAS 580 is the basic component for the first 4 channels. By adding almost any number of SAS 590, the number of channels can be extended by 4 channels, each.

- High input sensitivity
- Low saturation voltage of the driver outputs
- Low temperature drift of the tuning switches
- Driver outputs to control filament lamps, LEDs, neon lamps or nixie tubes
- Standby operation possible
- Ring counter up to 10 kHz
- No external diode matrix
- Single power supply

Type	Ordering code	Package outline
SAS 580	Q 67000-S28	\} DIP 18
SAS 590	Q 67000-S29	

Maximum ratings

Supply voltage (without series resistor)
Current consumption
(for operation with higher voltage, a series resistor is required)
Driver current
Max. driver current, $t_{\text {max }} \leq 2$ sec
Junction temperature
Thermal resistance (system-air)
Storage temperature range

V_{16}	36	V
I_{16}	15	mA
$I_{3}, I_{5}, I_{7}, I_{9}$	55	mA
$I_{3}, I_{5}, I_{7}, I_{9} \max$	100	mA
T_{j}	150	${ }^{\circ} \mathrm{C}$
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range
V_{16}
T amb

10 to 36
0 to 70

Characteristics (with reference to test circuit, $V_{16}=30 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}$)

Internal current consumption channel switched channel not switched
Voltage at pin 18
during touching
after touching
Saturation voltage of driver outputs

$$
R_{\mathrm{L}}=1 \mathrm{k} \Omega
$$

$$
R_{\mathrm{L}}=30 \mathrm{k} \Omega
$$

Reverse voltage of driver outputs

$$
I_{\mathrm{rev}}=100 \mu \mathrm{~A}
$$

$$
I_{\mathrm{rev}}=5 \mu \mathrm{~A}
$$

Tuning voltage
Input current of tuning voltage inputs
Offset voltage of tuning switches ${ }^{1}$)
Temperature drift of tuning voltage switches ($T_{\mathrm{amb}}=20$ to $\left.50^{\circ} \mathrm{C}\right)^{1}$)
Resistance of tuning output
$\left(I_{11}< \pm 30 \mu \mathrm{~A}\right)$
Trigger current
for channel switching
Input threshold voltage of switch
amplifiers $\left(I_{2}, I_{4}, I_{6}, I_{8}=80 \mathrm{nA}\right)$
Switch frequency of ring counter
Reset to channel 1
Switching pulse level
Switching pulse duration
Switching pulse rise time

Switching to the next stage
Switching pulse level
Switching pulse duration
Switching pulse rise time

I_{16}	4.5	1	9.5	mA
I_{16}	2.9	5	8.5	mA
$V_{18 \mathrm{~s}}$	3.25	3.7	4.2	V
$V_{18} \mathrm{~h}$	2.6	2.9	3.2	V
$v_{3}, v_{5}, v_{7}, v_{9}$		0.8	1.5	V
$V_{3}, V_{5}, V_{7}, V_{9}$		30	60	mV
$V_{3}, V_{5}, V_{7}, V_{9}$	60			V
$V_{3}, V_{5}, V_{7}, V_{9}$	50			V
$V_{12}, V_{13}, V_{14}, V_{15}$	0.3		$V_{16}-2$	V
$I_{12}, I_{13}, I_{14}, I_{15}$		150	300	nA
V_{12-11}, V_{13-11}			± 100	mV
V_{14-11}, V_{15-11}			± 100	mV
V_{T}			5	mV
$R_{\text {q } 11}$		3		k ת
$I_{2}, I_{4}, I_{6}, I_{8}$	20	80	200	$n \mathrm{~A}$
$V_{2}, V_{4}, V_{6}, V_{8}$		5.5		V
$f_{\text {rc }}$		10		kHz
$V_{\text {SI }} 18$		15		V
$T_{\text {SI } 18}$	70			$\mu \mathrm{s}$
$t_{\text {SI LH }} 18$			1	$\mu \mathrm{s}$
$V_{\text {SI } 18}$		15		V
$T_{\text {SI } 18}$		2.5		$\mu \mathrm{s}$
$t_{\text {SI LH }} 18$			1	$\mu \mathrm{s}$
V_{Z}	34		39	V

[^48]
Test circuit

SAS 580 is absolutely necessary for testing SAS 590;
otherwise no function
SAS 580 can be tested individually.

At a channel change, the capacitor which operates as a load on pin 11 is reversely charged with a current of approx. $\pm 50 \mu \mathrm{~A}$.

SAS 580 only: After applying supply voltage V_{16}, channel 1 is selected, i.e. the tuning voltage is switched from pin 15 to pin 11 and the lamp at pin 3 is switched on.
$V_{17}<0.5 \mathrm{~V}$ means standby operation, i.e. even when selecting another channel, the channel previously selected remains stored. Selection of a new channel is not possible. A stored channel must come on again after closing S_{1}.

Block diagram SAS 580

Figure 1

Circuit diagram: one channel

Figure 2
Figure 3

Figure 4

The ICs SAS 5800/SAS 5900 are provided for channel selection in radio and TV sets. By means of sensitive contact inputs (sensors) four different, previously set tuning voltages may be switched for every module at a programmed delay to the tuner. A positive pulse without delay, released by switching, of longer duration than the switching process, causes a completely noiseless changeover with the aid of driving a muting circuit. When the supply voltage has been applied, the first step in the SAS 5800 is automatically set.

- Adjustable muting
- Standby operation possible
- Direct driving of LED's or lamps

Type	Ordering code	Package outline
SAS 5800	Q67000-S62	DIP 22
SAS 5900	Q67000-S63	DIP 18

Maximum ratings

Supply voltage
Input voltage
Input current
Output current

$$
t \leqq 2 \mathrm{~s}
$$

Reference voltage
Current consumption
(for operation at higher voltage, a series resistor is required)
Muting output current
Junction temperature
Storage temperature range
Thermal resistance (system-air)

	SAS 5800	
V_{13}	36	V
V_{21}	30	V
$V_{17 / 18 / 19 / 20}$	$V_{21}+5$	V
$I_{17 / 18 / 19 / 20}$	0.5	mA
$-I_{3 / 5 / 7 / 9}$	35	mA
$-I_{3 / 5 / 7 / 9 \max }$	100	VA
$V_{2 / 4 / 6 / 8}$	V_{13}	mA
I_{13}	25	
		mA
$-I_{10}$	10	${ }^{\circ} \mathrm{C}$
T_{j}	150	$\mathrm{~K} / \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	
$R_{\text {th SA }}$	70	

Range of operation

Supply voltage range
Ambient temperature range

V_{13}	12 to 36	V
V_{21}	8 to 24	V
$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$

Maximum ratings (cont'd)

Supply voltage
Input voitage
Input current
Output current

$$
t \leqq 2 \mathrm{~s}
$$

Reference voltage
Current consumption
(for operation at higher voltage a series resistor is required)
Junction temperature
Storage temperature range
Thermal resistance (system-air)

	SAS 590U	
V_{10}	36	V
V_{17}	30	V
$V_{13 / 14 / 15 / 16}$	$V_{17}+5$	V
$I_{13 / 14 / 15 / 16}$	0.5	mA
$-I_{3 / 5 / 7 / 9}$	35	mA
$-I_{3 / 5 / 7 / 9 \max }$	100	VA
$V_{2 / 4 / 6 / 8}$	V_{10}	mA
I_{10}	20	
		${ }^{\circ} \mathrm{C}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th SA }}$	90	

Range of operation

Supply voltage range
Ambient temperature range

V_{10}	12 to 36	V
V_{17}	8 to 24	V
$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics (with reference to test circuit, $V_{13}=30 \mathrm{~V} ; V_{21}=20 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

SAS 5800

Current consumption (without load at pin 10)

Channel not switched
Channel switched
Switched state
Current consumption
Switching voltage at
touching the buttons Ta_{1} to Ta_{8}
(dynamically measured)
Hold voltage after touching
the buttons Ta_{1} to Ta_{8}
Saturation voltage of driver outputs

$$
\begin{aligned}
& R_{\mathrm{L}}=510 \Omega \\
& R_{\mathrm{L}}=30 \mathrm{k} \Omega
\end{aligned}
$$

Reverse voltage of driver outputs
($I_{\text {rev }}=5 \mu \mathrm{~A}$)
Tuning voltage
Offset voltage of tuning switches
Temperature drift of tuning voltage
switches ${ }^{1}$) ($T_{\text {amb }}=20$ to $50^{\circ} \mathrm{C}$)
Tuning charge current with ref. to cap. load at $\quad-I_{22}$ lower voltage
Tuning discharge current with ref. to cap. load at higher voltage

	min	typ	max	
I_{13}	5	9	13.5	mA
$I_{13} \mathrm{H}$	7	11.5	16	mA
$I_{13} \mathrm{~S}$	12	18	25	mA
I_{21}			100	$\mu \mathrm{A}$
V_{14} S		3		V
$V_{14} \mathrm{H}$		2.5		V
$V_{3 / 5 / 7 / 9}$		1	2	V
$V_{3 / 5 / 7 / 9}$		20	60	mV
$V_{3 / 5 / 7 / 9}$	30			V
$V_{2 / 4 / 6 / 8}$	0.5		$V_{13}-2$	V
$V_{2-22, ~} V_{4-22}$	-100		100	mV
$V_{6-22,}, V_{8-22}$	-100		100	mV
$V_{\text {T }}$			5	mV
$-I_{22}$	0.7	1		mA
I_{22}	2	4		mA

[^49]Characteristics (with reference to test circuit, $V_{13}=30 \mathrm{~V} ; V_{21}=20 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) SAS 5800, cont'd

Internal resistances of the tuning voltage outputs ($-I_{22} \geqq 300 \mu \mathrm{~A}$)
Input current of tuning voltage inputs
Trigger current for channel switching Saturation voltage muting output
Switching threshold S_{1} for switching the tuning voltage ${ }^{2}$)
Switching threshold S_{3} for muting pulse end ${ }^{2}$)

	\min	typ	\max	
R_{22}		60	90	Ω
$-I_{2 / 4 / 6 / 8}$		100	200	nA
$-I_{17 / 18 / 19 / 20}$	40	200	400	nA
V_{10-13}	1.2	1.5	2.5	V
V_{16}	1.5	1.75	V	
V_{16}		3.3		V

Characteristics (with reference to test circuit, $V_{10}=30 \mathrm{~V} ; V_{17}=20 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$) SAS 5900

Current consumption Channel not switched Channel switched Switched state
Current consumption
Switching voltage at
touching the buttons Ta_{1} to Ta_{8}
(dynamically measured)
Hold voltage after actuating
the buttons Ta_{1} to Ta_{8}
Saturation voltage of driver outputs

$$
\begin{aligned}
& R_{\mathrm{L}}=510 \Omega \\
& R_{\mathrm{L}}=30 \mathrm{k} \Omega
\end{aligned}
$$

Reverse voltage of driver outputs
($I_{\text {rev }}=5 \mu \mathrm{~A}$)
Tuning voltage
Offset voltage of tuning switches
Temperature drift of tuning voltage
switches ${ }^{1}$) ($T_{\text {amb }}=20$ to $50^{\circ} \mathrm{C}$)
Tuning discharge current with ref. to cap.
load at higher voltage
Input current of tuning voltage inputs
Trigger current for channel switching Switching threshold S_{1} for switching the tuning voltage ${ }^{2}$)

I_{10}	5	8	12	mA
$I_{10 \mathrm{H}}$	7	10	14	mA
$I_{10 \mathrm{~S}}$	9	13	17	mA
I_{17}		3	100	uA
$V_{11 \mathrm{~S}}$				V
$V_{11 \mathrm{H}}$		2.5		V
$V_{3 / 5 / 7 / 9}$		1	2	V
$V_{3 / 5 / 7 / 9}$		20	60	mV
$V_{3 / 5 / 7 / 9}$	30			V
$V_{2 / 4 / 6 / 8}$	0.5		V_{10-2}	V
$V_{2-18,} V_{4-18}$	-100		100	mV
$V_{6-18,} V_{8-18}$	-100		100	mV
V_{T}			5	mV
I_{18}	2	4		mA
		100	200	nA
$-I_{2 / 4 / 6 / 8}$		200	400	nA
$-I_{13 / 14 / 15 / 16}$	40	1.2	1.5	1.75
V_{12}		V		

Functional data (applies to SAB 5800 and SAB 5900)

1. After applying the supply voltage $V_{\mathrm{S} 1}$, stage 1 of the SAS 5800 ist automatically set.
2. All inputs Ta_{1} to Ta_{8} are blocked, if the supply voltage $V_{\mathrm{S} 2}$ is less than 2 V .
3. The supply voltage $V_{\mathrm{S} 2}$ has no influence on which stage has been switched on. After $V_{\mathrm{S} 2}$ has been switched off and switched on again (standby operation), the indicator lamp of the previously keyed stage is switched on again. The tuning voltage remains switched on even in standby operation.

[^50]

SAS 5800 is absolutely necessary for testing SAS 5900;
otherwise no function
SAS 5800 can be tested individually.

A Stabilizing of the internal supply voltage $V_{\text {sint }}$
B Delayed sawtooth from SAS 5800. $\mathrm{S}=$ End of muting pulse from SAS 5800
C Recognition whether finger still presses button

006 S S \forall S
Not for new design

The IC SAS 6800 includes five independent switching stages which can be selected by touch tuning. After every actuation they can change their output state. They are intended for use in radio sets to switch on and off noise filters, AFC, sound control etc. independently from each other.

- High input sensitivity
- Storage of the switching state at standby operation
- Outputs can be loaded with 35 mA

Type	Ordering code	Package outline
SAS 6800	Q 67000-S60	DIP 18

Maximum ratings

Supply voltage
Input voltage
Input current
Output current
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{7}	20	V
V_{8}	33	V
$V_{2,3,4,5,6}$	$V_{8}+5$	V
$I_{2,3,4,5,6}$	0.5	mA
$-I_{\mathrm{q}}$	35	mA
$R_{\text {th } \mathrm{SA}}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range

V_{7}	5 to 18	V
V_{8}	10 to 30	V
$T_{\text {amb }}$	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics with reference to test circuit, ($\left.V_{7}=12 \mathrm{~V} ; V_{8}=30 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}\right)$

Current consumption

Current consumption without load current
Saturation voltage of outputs (referred to V_{8})
Reverse current of outputs Input current of tuning voltage inputs

	\min	typ	\max	
I_{7}		13	18	mA
I_{8}			6	mA
V_{q}		1.8	2.4	V
$-I_{\mathrm{q}}$		1	50	$\mu \mathrm{~A}$
$-I_{2,3}$		200	400	nA

Test circuit

Description of functions (see block diagram)

After having applied the supply voltage $V_{\mathrm{S} 1}$, the Q driver outputs are activated. All inputs are blocked as soon as the supply voltage $V_{\mathrm{S} 2}$ is lower than 2 V . The supply voltage $V_{\mathrm{S} 2}$ has no influence on the position of the outputs. After the supply voltage $V_{\mathrm{S} 2}$ has been switched off and on again (standby operation) the previously selected position is set again.

Description of the circuit

The sensor amplifier of each of the five sequence switches is followed by a Schmitt trigger in order to achieve debouncing. The Schmitt trigger sets a bistable multivibrator. The outputs Q and $\overline{\mathrm{Q}}$ of the multivibrators each control two output switching amplifiers which are able to directly drive the LED displays. After having activated the sensor inputs either output Q or $\overline{\mathrm{Q}}$ is subsequently activated. An auxiliary circuit provides for a defined output position after applying the supply voltage. Thus, the user can freely select the desired switching sequence by means of external facilities.

The internal supply voltage is stabilized by a control circuit.

Block diagram

Application circuit

The IC SAS 6810 is referred to the SAS 6800. It includes only one switching stage, which is selected by a sensor key and changes its output state after every actuation. Thus, the SAS 6810 is suited for use in radio sets to switch on or off functions such as AFC or noise filter.

- High input sensitivity
- Storage of the switching state at standby operation
- Direct LED driving
- Output load permitted: 35 mA

Type	Ordering code	Package outline
SAS 6810	Q67000-S61	DIP 6

Maximum ratings

Supply voltage	V_{4}	20	V
	V_{5}	33	V^{2}
Input voltage	V_{3}	$V_{\mathrm{S} 2}+5$	V
Input current	I_{3}	0.5	mA
Output current	$-I_{\mathrm{q}}$	35	mA
Thermal resistance (system-air)	$R_{\text {th }} \mathrm{SA}$	120	150
Junction temperature	T_{j}	K / W	
Storage temperature	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$			

Range of operation

Supply voltage range
Ambient temperature range

$V_{\mathrm{S} 1}$	5 to 18	V
$V_{\mathrm{S} 2}$	10 to 30	V
T_{amb}	0 to 70	${ }^{\circ} \mathrm{C}$

Characteristics (with reference to test circuit, $V_{4}=12 \mathrm{~V} ; V_{5}=30 \mathrm{~V} ; T_{\text {amb }}=25{ }^{\circ} \mathrm{C}$)

Current consumption
Current consumption without load current Saturation voltage of outputs (referred to V_{5})
Reverse current of outputs Trigger current for channel switching

	\min	typ	\max	
I_{4}		3.5	5	mA
I_{5}		1.8	2.4	VA
V_{q}		1	50	$\mu \mathrm{~A}$
$-I_{\mathrm{q}}$		1		
$-I_{3}$		200	400	nA

Test circuit

Description of functions (see block diagram)

After having applied the supply voltage $V_{S 1}$, the Q driver output 1 is activated. The input is blocked as soon as the supply voltage $V_{\mathrm{S} 2}$ is lower than 2 V . The supply voltage $V_{\mathrm{S} 2}$ has no influence on the position of the outputs. After the supply voltage $V_{\mathrm{S} 2}$ has been switched off and on again (standby operation) the previously selected position is set again.

Description of the circuit

The sensor amplifier is followed by a Schmitt trigger in order to achieve debouncing. The Schmitt trigger sets a bistable multivibrator, the outputs Q und $\overline{\mathrm{Q}}$ of which each control two output switching amplifiers which are able to directly drive the LED displays. After having activated the sensor inputs, either output Q oder $\overline{\mathrm{Q}}$ are subsequently activated.
An auxiliary circuit provides for a defined output position after applying the supply voltage. Thus, the user can freely select the desired switching sequence by means of external facilities.
The internal supply voltage is stabilized by a control circuit.

Block diagram

Application circuit

AF power amplifier for use in equipment of entertainment electronics. Its wide supply voltage range permits versatile use. The amplifier operates in the push-pull B mode and is available in the SIP 9 package as well as in the DIP 18 package. The integrated shutdown protects the IC from overheating.

- Wide supply voltage range: 4 V to 28 V
- High output power up to 8 W
- Large output current up to 2.5 A
- Simple mounting

Type	Ordering code	Package outline
TDA 1037	Q 67000-A1229	SIP 9
TDA 1037 D	Q 67000-A1387	DIP 18

Maximum ratings

Supply voltage	$R_{\mathrm{L}} \geqq 16 \Omega$
	$R_{\mathrm{L}} \geqq 8 \Omega$
	$R_{\mathrm{L}} \geqq 4 \Omega$

Output peak current (not repetitive)
Output current (repetitive)
Junction temperature ${ }^{1}$)
Storage temperature range
SIP 9 package
Thermal resistance (junction-case)
Thermal resistance (system-air)
DIP 18 package
Thermal resistance (junction-case)
Thermal resistance (system-air)

V_{S}	30	V
V_{S}	24	V
V_{S}	20	V
I_{q}	3.5	A
I_{q}	2.5	A
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
$R_{\text {th JC }}$	12	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th SA }}$	70	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th JC }}$	35	$\mathrm{~K} / \mathrm{W}$
$R_{\text {th SA }}$	70	$\mathrm{~K} / \mathrm{W}$

Range of operation

Supply voltage range
Ambient temperature range

V_{S}	4 to 28	V
T_{amb}	-25 to 85	${ }^{\circ} \mathrm{C}$

*) May not be exceeded even as instantaneous value.

Characteristics

with reference to test circuit

1. $V_{\mathrm{S}}=12 \mathrm{~V} ; R_{\mathrm{L}}=4 \Omega ; C_{1}=1000 \mu \mathrm{~F} ; f_{\mathrm{i}}=1 \mathrm{kHz} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Quiescent output voltage
Quiescent drain current
Input DC current
Output power $\quad T H D=1 \%$

$$
T H D=10 \%
$$

Voltage gain (closed loop)
Voltage gain (open loop)
Total harmonic distortion $P_{\mathrm{q}}=0.05$ to 2.5 W)
Noise voltage with reference to input
($f_{\mathrm{i}}=3 \mathrm{~Hz}$ to 20 kHz)
Disturbance voltage in acc. with
DIN 45405 referred to input
Hum suppression ($f_{\text {hum }}=100 \mathrm{~Hz}$)
Frequency range (-3 dB)

$$
\begin{aligned}
& C_{4}=560 \mathrm{pF} \\
& C_{4}=1000 \mathrm{pF}
\end{aligned}
$$

Input resistance

	\min	typ	\max	
$V_{2 \mathrm{q}}$	5.4	6.0	6.6	V
$I_{3}+I_{4}$		12	20	mA
$I_{8 \mathrm{i}}$		0.4	4	$\mu \mathrm{~A}$
P_{q}	2.5	3.5		W
P_{q}	3.5	4.5		W
G_{V}	37	40	43	dB
$G_{\mathrm{V} 0}$		80		dB
$T H D$		0.2		$\%$
V_{n}		3.8	10	$\mu \mathrm{~V}_{\mathrm{S}}$

2. $V_{\mathrm{S}}=24 \mathrm{~V} ; R_{\mathrm{L}}=16 \Omega ; C_{1}=220 \mu \mathrm{~F} ; f_{\mathrm{i}}=1 \mathrm{kHz} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Quiescent output voltage
Quiescent drain current
Input DC current
Output power

$$
\begin{aligned}
& T H D=1 \% \\
& T H D=10 \%
\end{aligned}
$$

Voltage gain (closed loop)
Voltage gain (open loop)
Total harmonic distortion ($P_{\mathrm{q}}=0.05$ to 3 W)
Noise voltage with reference to input
($f_{\mathrm{i}}=3 \mathrm{~Hz}$ to 20 kHz)
Disturbance voltage in acc. with
DIN 45405 referred to input
Hum suppression ($f_{\text {hum }}=100 \mathrm{~Hz}$)
Frequency range (-3 dB)

$$
\begin{aligned}
& C_{4}=560 \mathrm{pF} \\
& C_{4}=1000 \mathrm{pF}
\end{aligned}
$$

Input resistance

$V_{2 \mathrm{q}}$	11
$I_{3}+I_{4}$	
$I_{8 \mathrm{i}}$	
P_{q}	
P_{q}	4.5
G_{V}	37
$G_{\mathrm{V} 0}$	
$T H D$	
V_{n}	
V_{d}	
$a_{\text {hum }}$	
f_{i}	40
f_{i}	40
$R_{8 \mathrm{i}}$	1

0	${ }_{0}^{+}{ }_{0}^{\omega}$	ज○

-

$$
0
$$

$R_{8 i}$
V_{d}
$a_{\text {hum }}$
f_{i}
f_{i}
R_{8} i
$R_{\text {hum }}$
40
40
1
2.5
48
5

Circuit diagram

Test circuit

S switched on for noise measurement

Application circuit

V_{S}	12 V	18 V	24 V
R_{L}	4Ω	8Ω	16Ω
C_{1}	$1000 \mu \mathrm{~F}$	$470 \mu \mathrm{~F}$	$220 \mu \mathrm{~F}$

$f_{\max }$	10 kHz	20 kHz
C_{4}	1000 pF	560 pF

Output power versus supply voltage $T H D=10 \% ; R_{\mathrm{L}}=4,8,16 \Omega ; f=1 \mathrm{kHz}$

Total power dissipation and efficiency versus output power
$T H D=10 \% ; f=1 \mathrm{kHz}$

Max. power dissipation versus supply voltage at sine-shaped driving
$f=1 \mathrm{kHz} ; R_{\mathrm{L}}=4,8,16 \Omega$

Quiescent drain current,
quiescent current of output transistors, quiescent output voltage
versus supply voltage

Hum suppression versus feedback resistance
$f_{\text {hum }}=100 \mathrm{~Hz} ; C_{5}=100 \mu \mathrm{~F}$
a: input short-circuited
b: input open

Max. total power dissipation versus ambient temperature

Total harmonic distortion versus frequency

Bandwidth C_{3} versus feedback resistance
$V_{\mathrm{S}}=12 \mathrm{~V} ; R_{\mathrm{L}}=4 \Omega, G_{\mathrm{V}}=40 \mathrm{~dB}$ $C_{1}=5 \cdot C_{4}$

Output power and voltage gain versus feedback resistance and input voltage $V_{\mathrm{S}}=12 \mathrm{~V} ; R_{\mathrm{L}}=4 \Omega ; f=1 \mathrm{kHz}$

Output power versus feedback resistance and input voltage $V_{\mathrm{S}}=24 \mathrm{~V} ; R_{\mathrm{L}}=16 \Omega ; f=1 \mathrm{kHz}$

The TDA 2003 is an audio power amplifier in a TO 220 Pentawatt case. This IC is particularly intended for use in car radios, it also meets the requirements of AF amplifiers for supply voltages between 8 and 18 V . At low harmonic distortion, the TDA 2003 produces an output power of 6 W at 4Ω and $\mathrm{V}_{\mathrm{S}}=14.4 \mathrm{~V}$. Operation at 2Ω enhances the output power to 10 W .
Included thermal shutdown protects the IC against damage from short circuits and thermal overload.

- High output peak current up to 3.5 A
- Low distortion and low THD
- Electrical and thermal overload protection
- Few external components
- Easy mounting thanks to TO 220/5 case

Type	Ordering code	Package outline
TDA 2003	Q 67000-A 1606	Plastic power case TO 220/5, or TO 220/5-H

Maximum ratings

Supply voltage
Peak supply voltage ($t \leqq 50 \mathrm{~ms}$)
Output current (repetitive)
Output peak current (non-repetitive)
Thermal resistance (junction-case)
Junction temperature
Storage temperature range

V_{S}	28	V
V_{S}	40	V
$I_{\mathrm{q} 4}$	3,5	A
$I_{\mathrm{q} 5}$	4,5	A
$R_{\text {th JC }}$	5	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation
Supply voltage range
Ambient temperature range

$\left.$| V_{S} | 8 to 18
 $T_{\text {amb }}$ | -20 to 85 |
| :--- | :--- | :--- |$\quad \right\rvert\,$| V |
| :--- |
| ${ }^{\circ} \mathrm{C}$ |

Characteristics (with reference to test circuit, $V_{\mathrm{S}}=14.4 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$)

Quiescent output voltage
Quiescent drain voltage
Output power ($T H D=10 \%, f=1 \mathrm{kHz}$)

$$
\begin{aligned}
& R_{\mathrm{L}}=4 \Omega \\
& R_{\mathrm{L}}=2 \Omega \\
& R_{\mathrm{L}}=3.2 \Omega \\
& R_{\mathrm{L}}=1.6 \Omega
\end{aligned}
$$

Input voltage
Hum suppression
$\left(R_{\mathrm{L}}=4 \Omega, f_{\text {hum }}=100 \mathrm{~Hz} ; V_{\text {hum }}=0.5 \mathrm{~V}\right)$
Input resistance
Input voltage ($G_{\mathrm{v}}=40 \mathrm{~dB}$)

$$
\begin{aligned}
& P_{\mathrm{q}}=0.5 \mathrm{~W}, R_{\mathrm{L}}=4 \Omega \\
& P_{\mathrm{q}}=0.5 \mathrm{~W}, \\
& P_{\mathrm{L}}=2 \Omega \\
& P_{\mathrm{q}}=6 \mathrm{~W}, \\
& R_{\mathrm{L}}=4 \Omega \\
& \mathrm{C},
\end{aligned} R_{\mathrm{L}}=2 \Omega \mathrm{l}
$$

Frequency range (-3 dB)

$$
\left(C_{1}=39 n F, R_{3}=39 \Omega\right)
$$

Total harmonic distortion ($f_{\mathrm{i}}=1 \mathrm{kHz}$)

$$
\begin{aligned}
& P_{\mathrm{q}}=0.05 \text { to } 3.5 \mathrm{~W}, R_{\mathrm{L}}=4 \Omega \\
& P_{\mathrm{q}}=0.05 \text { to } 5 \mathrm{~W}, R_{\mathrm{L}}=2 \Omega
\end{aligned}
$$

Voltage gain

$$
R_{\mathrm{L}}=4 \Omega \text { open loop }
$$ closed loop

Disturbance voltage (DIN 45405)
Noise voltage (DIN 45405)
Input noise current

$$
B(-3 \mathrm{~dB}) 40 \text { to } 50000 \mathrm{~Hz}
$$

Thermal resistance (junction-case)

	\min	typ	max	
$\begin{aligned} & V_{\mathrm{q} 4} \\ & I_{5} \end{aligned}$	6.3	$\begin{aligned} & 6.9 \\ & 45 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$
$P_{\text {q } 4}$	5.5	6		W
$P_{q} 4$	8	10		W
$P_{\text {q } 4}$		7.5		W
$P_{\text {q } 4}$		12		W
V_{i}		300		mV
$a_{\text {hum }}$	34	40		dB
R_{i}	100	150		$\mathrm{k} \Omega$
V_{i}		15		mV
V_{i}		11		mV
$V_{\text {i }}$		60		mV
$V_{\text {i }}$		50		mV
	40 t	0000		Hz
THD		0.2		\%
THD		0.2		\%
$G_{\text {vo }}$		80		dB
G_{vc}	39.5	40	40.5	dB
$V_{\text {d }}$		2	5	$\mu \mathrm{V}$
$V_{\text {n }}$		3	8	$\mu \mathrm{V}$
$I_{\text {in }}$		50		pA
$\left.\Delta R_{\text {th JC }}{ }^{1}\right)$			1	K/W

$\left.{ }^{1}\right) \Delta R_{\mathrm{th}} \mathrm{JC}$ is the variation of $R_{\mathrm{th} \mathrm{JC}}$ throughout a period of time at a given power $P_{\Delta}=\frac{P_{\max }}{3}$

Test and application circuit

Switch S in position 2 for noise measurement

Bipolar circuit

The TDA 2030 is an audio power amplifier in a TO 220 Pentawatt case, designed as a B class amplifier. At low harmonic distortion and high output currents, the TDA 2030 produces an output power of 14 W at 4Ω and $V_{\mathrm{S}}= \pm 14 \mathrm{~V}$. Included thermal shutdown protects the IC against damage from short circuits and thermal overload.

- High output peak current up to 3.5 V
- High supply voltage up to 36 V
- Low distortion and low THD
- Electrical and thermal overload protection
- Few external components

Type	Ordering code	Package outline
TDA 2030	Q 67000-A 1607	Plastic power case TO 220/5, or TO 220/5-H

Maximum ratings

Supply voltage
Input voltage
Differential input voltage
Output peak current
Thermal resistance (system-case)
Junction temperature
Storage temperature range

$\pm V_{\mathrm{S}}$	18	V
$\pm V_{\mathrm{S} 1}, V_{\mathrm{i} 2}$	$\pm V_{\mathrm{S}}$	V
$V_{\mathrm{i} \mathrm{D} 1-2}$	± 30	V
$I_{\mathrm{q} 4}$	3.5	A
$R_{\text {th } \mathrm{JC}}$	4	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\mathrm{C}}$
T_{stg}	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Ambient temperature range

$\pm V_{\mathrm{S}}$	$\begin{array}{l}6 \text { to } 18 \\ T_{\mathrm{amb}}\end{array}$
0 to 70	

$\left\lvert\, \begin{aligned} & \mathrm{V} \\ & { }^{\circ} \mathrm{C}\end{aligned}\right.$

Characteristics ($\pm V_{\mathrm{S}}=14 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; $f=1 \mathrm{kHz}$; test circuit 1) unless otherwise specified

Quiescent drain current

$$
\pm V_{\mathrm{S}}=18 \mathrm{~V}, R_{\mathrm{L}}=4 \Omega
$$

Total current consumption

$$
\begin{aligned}
& P_{\mathrm{q}}=15 \mathrm{~W}, R_{\mathrm{L}}=4 \Omega \\
& P_{\mathrm{q}}=9 \mathrm{~W}, R_{\mathrm{L}}=8 \Omega
\end{aligned}
$$

Input voltage

$$
\begin{aligned}
& P_{\mathrm{q}}=12 \mathrm{~W}, R_{\mathrm{L}}=4 \Omega \\
& P_{\mathrm{q}}=8 \mathrm{~W}, R_{\mathrm{L}}=8 \Omega
\end{aligned}
$$

Input resistance
Frequency range (-3 dB)

$$
\pm V_{\mathrm{S}}=18 \mathrm{~V}, R_{\mathrm{L}}=4 \Omega
$$

Total harmonic distortion

$$
P_{\mathrm{q}}=0.1 \text { to } 12 \mathrm{~W}, R_{\mathrm{L}}=4 \Omega
$$

$$
P_{\mathrm{q}}=0.1 \text { to } 8 \mathrm{~W}, R_{\mathrm{L}}=8 \Omega
$$

Voltage gain
open loop
closed loop
Disturbance voltage
(in acc. with DIN 45405 referred to input)
Noise voltage
(in acc. with DIN 45405 referred to input)
Thermal shutdown $P_{\text {tot }}=12 \mathrm{~W}$
Hum suppression

$$
\begin{aligned}
& R_{\mathrm{L}}=4 \Omega, V_{\text {hum }}=0.5 \mathrm{~V} \\
& f_{\text {hum }}=100 \mathrm{~Hz}, R_{\mathrm{G}}=22 \mathrm{k} \Omega
\end{aligned}
$$

Input offset voltage $\pm V_{\mathrm{S}}=18 \mathrm{~V}$
Input offset current $\quad \pm V_{\mathrm{S}}=18 \mathrm{~V}$
Input current $\quad \pm V_{\mathrm{S}}=18 \mathrm{~V}$
Output offset voltage $\pm V_{S}=18 \mathrm{~V}$
Output power

$$
\begin{aligned}
& \text { THD }=0.5 \%, R_{\mathrm{L}}=4 \Omega \\
& T H D=0.5 \%, R_{\mathrm{L}}=8 \Omega \\
& \text { THD }=10 \%, R_{\mathrm{L}}=4 \Omega \\
& \text { THD }=10 \%, R_{\mathrm{L}}=8 \Omega
\end{aligned}
$$

	min	typ	max	
I_{5}		40	60	mA
$I_{\text {tot } 5}$		925		mA
$I_{\text {tot } 5}$		515		mA
V_{i}		215		mV
V_{i}		250		mV
$R_{\text {i }}$	0.5	5		$\mathrm{m} \Omega$
		10 to 1		Hz
THD		0.2	0.5	\%
THD		0.1	0.5	\%
$G_{\text {vo }}$		90		dB
$G_{\text {vc }}$		30		dB
$V_{\text {d }}$		3		$\mu \mathrm{V}$
V_{n}		4.5	15	$\mu \mathrm{V}$ S
$T_{\text {case }}$	110			${ }^{\circ} \mathrm{C}$
$a_{\text {hum }}$	40	50		dB
$V_{\text {i 1-2 }}$		± 2	± 20	mV
$I_{\text {i 1-2 }}$		± 20	± 200	nA
$I_{\text {i } 1,2}$		0.2		$\mu \mathrm{A}$
$V_{\text {q } 4}$		$\pm 2,5$	± 22	mV
P_{q}	12	14		W
$P_{\text {q }}$	8	9		W
P_{q}		18		W
$P_{\text {q }}$		11		W

Open loop voltage gain versus frequency

Total power dissipation or efficiency, resp., versus power output

Total harmonic distortion THD versus frequency
\%

Total power dissipation versus supply voltage

Circuit diagram

Test and application circuit 1
AF amplifier with split power supply

Application circuit 2

AF amplifier with single power supply

Application circuit 3

Bridge amplifier with split power supply

Bipolar circuit

AF power amplifier intended for appliances of entertainment electronics. The amplifier operates in push-pull B mode and is available in a TO 220 case with 7 pins. Included thermal shutdown protects the IC against damage from short circuits and thermal overload.

- High output power up to 15 W
- High output current up to 3.5 A
- Easy mounting thanks to TO 220/7 case

Type	Ordering code	Package outline
TDA 3000	Q67000-A1332	Plastic power case TO 220/7

Maximum ratings (restricted data $V_{\mathrm{S}} \leqq 26 \mathrm{~V}$)

Supply voltage $\quad R_{\mathrm{L}}=8 \Omega$	V_{6}	32	V
$R_{\mathrm{L}}=4 \Omega$	V_{6}	26	V
Boost voltage	V_{7}	32	V
Input voltage	V_{2}	5	V
Output current (repetitive)	$I_{\text {q } 5}$	3.5	A
Output peak current (non-repetitive)	$I_{\text {q } 5}$	5	A
Thermal resistance (junction-case)	$R_{\text {th JC }}$	4	K/W
Junction temperature	$T_{\text {j }}$	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Operating voltage range
Ambient temperature range

V_{6}	9 to 32 $T_{\text {amb }}$
0 to 70	

$|$| V |
| :--- |
| ${ }^{\circ} \mathrm{C}$ |

In order to ensure that the maximum permissible voltage of 26 V at pin 7 will in no case be exceeded, a resistance of 100Ω must be connected in series with the boost capacitor between pin 5 and pin 7 for current and voltage limitation in case of supply voltages of $16 \mathrm{~V}<V_{\mathrm{S}}<26 \mathrm{~V}$.

Characteristics (with reference to the test circuit $V_{6}=24 \mathrm{~V}, T_{\text {amb }}=25^{\circ} \mathrm{C}, R_{\mathrm{L}}=4 \Omega$)

Quiescent drain current

Quiescent output voltage
Output power

$$
\begin{aligned}
& (T H D=10 \%, f=1 \mathrm{kHz}) \\
& (T H D=1 \%, f=1 \mathrm{kHz})
\end{aligned}
$$

Voltage gain (closed loop)
Input sensitivity ($P_{\mathrm{q}}=1 \mathrm{~W}$)
Total harmonic distortion
($P=0.05$ to $8 \mathrm{~W}, f=0.1 ; 1 ; 10 \mathrm{kHz}$)
Frequency range (-3 dB)
Input saturation voltage ($T H D \leqq 1 \%$)
Input resistance
Voltage gain (open loop)
Hum suppression
($f_{\text {hum }}=100 \mathrm{~Hz}, V_{\text {hum }}<2 \mathrm{~V}_{\mathrm{pp}}$)
Disturbance voltage
(in acc. with DIN 45405 referred to input)
Noise voltage
(in acc. with DIN 45405 referred to input)

	\min	typ	\max	
I_{6}		40	60	mA
V_{5}^{\prime}	11.3	12	12.7	V
				W
$P_{\mathrm{q} 5}$	12	15		W
$P_{\mathrm{q} 5}$	10	12		dB
G_{V}	39	40	41	mV
V_{i}		20		$\%$
$T H D$		0.2	0.5	$\%$
f_{i}	0.05		20	kHz
$V_{\mathrm{i} \max }$	1			$\mathrm{~V}_{\mathrm{rms}}$
$R_{\mathrm{i} 2}$	70	120		$\mathrm{k} \Omega$
G_{vo}		80		dB
$a_{\text {hum }}$		45		dB
V_{d}		3		
V_{n}		8 VV		
		8	15	$\mu \mathrm{~V} \mathrm{~S}$

Test circuit

Switch S in position 2 for noise measurement.

Application circuit 1

This circuit is recommended for supply voltages $\leqq 20 \mathrm{~V}$, since a boost voltage is supplied to pin 7 in order to increase the power at pin 6 . The push-pull resistance of $1.2 \mathrm{k} \Omega$ reduces the leakage range of the voltage gain to limits as given in our data sheets.

Application circuit 2

with minimized external components

IC for driving 16 light emitting diodes. Depending on the input voltage, the individual LEDs are driven within one row in form of a light spot. Whereas the UAA 170 provides a linear relation between control voltage and the driven LED, the UAA 170 L has a nearly logarithmical characteristic. With the aid of suitable circuitry, the brightness of the LEDs can be varied and the crossing over of the light spot can be set between "smooth" and "abrupt". By connecting two ICs in parailel, up to 30 LEDs can be driven.

Type	Ordering code	Package outline
UAA 170	Q 67000-A 940	\} DIP 16
UAA 170 L	Q 67000-A 1362	\}

Maximum ratings

Supply voltage
Input voltages
Load current
Junction temperature
Thermal resistance (system-air)
Storage temperature range

V_{S}	18	V
V_{11}, V_{12}, V_{13}	6	V
I_{14}	5	mA
T_{j}	150	${ }^{\circ} \mathrm{C}$
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation
Supply voltage (LED red) ${ }^{1}$)
Ambient temperature range

V_{S}	11 to 18 $T_{\text {amb }}$	V -25 to 85

[^51]Characteristics ($V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Current consumption ($I_{14}=0 ; I_{16}=0$)
Control input current
Reference input current
Voltage difference
Voltage difference for
gliding light transition UAA 170, only
Voltage difference for
jumping light transition UAA 170, only
Voltage difference
Stabilized voltage $I_{14}=300 \mu \mathrm{~A}$

$$
I_{14}=5 \mathrm{~mA}
$$

Reference input voltage
Tolerance of forward voltages of LEDs, mutually
Output current for LEDs

	\min	typ	max	
I_{S}	2	4	10	mA
I_{11}	-2			$\mu \mathrm{~A}$
I_{12}, I_{13}	-2			$\mu \mathrm{~A}$
$\Delta V_{12 / 13}$	1.4		6	V
$\Delta V_{12 / 13}$	1.4			V
$\Delta V_{12 / 13}$	4			
$\Delta V_{12 / 13}$	4		V	
V_{14}		5	V	
V_{14}	4.5		6	V
$V_{\text {ref max }}$	1.4		6	V
$U_{\text {ref } \min }$	0		4.6	V
ΔV_{D}			0.5	V
ΣI_{D}		25		mA

Test circuit

Scale display with light emitting diodes

Scale displays by means of a wandering light point are particularly suitable for indicating approximate values. Applications of this kind are level sensors, VU-meters, tachometers, radio scales etc. When applying the displays in measuring equipment, multicolored light emitting diodes can be used as range limitation. Ring scales are obtained by a circular arrangement of the diodes. The IC UAA 170 has especially been developed for driving a scale of 16 LEDs.

The input voltages at pins 11,12 and 13 are freely selectable in the range between 0 and 6 V . Any kind of adjustment, is enabled by suitable voltage dividers. The DC value $V_{\text {cont }}$ is always assigned to a certain spot of the diode chain.
The voltage difference between pins 12 and 13 thereby corresponds to the possible indication range. $\Delta V_{12 / 13}$ defines at the same time the light transition between two diodes. With $\Delta V_{12 / 13}$ approx. 1.4 V , the light point glides smoothly along the scale. With increasing voltage difference, the passage becomes more abrupt. With $\Delta V_{12 / 13}$ approx. 4 V , the light point jumps from diode to diode.
Input voltages beyond the selected indication range cause the diodes D_{1} or D_{16} respectively, to light up, thereby exceeding of the range can only be recognized.

Block diagram

Indication for gliding transition UAA 170

Indication for jumping transition UAA 170

Indication for gliding transition UAA 170 L

Indication for jumping transition UAA 170 L

Brightness control

Pins 14, 15, and 16 serve to determine the diode current. Corresponding to the desired light intensity, the forward current of the diodes is linearly variable in the range I_{f} approx. 0 to 50 mA . The resistance at pin 15 defines the adjusting range. The resistances between pin 14 and 16 determine the current.
With the aid of a phototransistor, such as BP 101, the light intensity of the LEDs can be matched to a varying brightness of the environment.

Diode current versus base emitter resistor

$$
V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; V_{14}=5.4 \mathrm{~V} ; \text { red LEDs }
$$

Operation of less than 16 LEDs

Control of 9 LEDs

Control of 11 LEDs

Application circuit for the control of 30 LEDs with $2 \times$ UAA 170

Range of control voltage $V_{\text {cont }}=0$ to 5 V
Voltage difference $V_{12 / 13}=2 \times 1.2 \mathrm{~V}=2.4 \mathrm{~V}$.
Since the diodes D_{16} or D_{17} are permanently lighting up when the maximum or minimum voltages V_{13} or V_{12} adjusted by R_{3}, R_{4}, R_{5}, are exceeded or fallen below, the diodes should be covered, if necessary.

The figure shows an extension of the circuit to 30 diodes with 2 UAA 170. The diodes D_{16} or D_{17} light permanently, when the reciprocal absolute ratings are axceeded. They should be covered. The reference voltage $\Delta V_{12 / 13}=2 \times 1.2=2.4 \mathrm{~V}$ is derived from a stabilized dc voltage of typ. 5 V available at pin 14 . A resistance of $6.2 \mathrm{k} \Omega$ provides an overlapping of the ranges in order to ensure a smooth transition from D_{15} to D_{18}. The control voltage $V_{\text {cont }}$ is fed to pins 11 parallel via a divider $R_{1}: R_{2}$. The voltage divider is to be dimensioned according to the desired input voltage. With a divider current of $I=100 \mu \mathrm{~A}$ and a control voltage of $V_{\text {cont }}=10 \mathrm{~V}$, the following are valid:
$R_{2}=\frac{\Delta V_{12 / 13}}{I}=\frac{2.4}{0.1}=24 \mathrm{k} \Omega$ and
$R_{1}=\frac{V_{\text {cont }}-\Delta V_{12 / 13}}{I}=\frac{7.6}{0.1}=76 \mathrm{k} \Omega$
The nearest standard value is $R_{1}=75 \mathrm{k} \Omega$. The voltage difference for switching one step is then $\Delta V_{\text {cont }}=\frac{10 \mathrm{~V}}{30}=0.16 \mathrm{~V}$.

Integrated circuit for driving 12 light emitting diodes. Corresponding to the input voltage the LEDs forming a light band are controlled similar to a thermometer scale.
By appropriate circuitry the brightness of the LEDs can be varied and the light passage between two adjacent LEDs can be arranged between "smooth" and "jumping".

Type	Ordering code	Package outline
UAA 180	O67000-A1104	DIP 18

Maximum ratings

Supply voltage	V_{S}	18	V
Input voltage	V_{3}	6	V
	V_{16}	6	V
	V_{17}	6	V
Thermal resistance (system air)	$R_{\text {th }} \mathrm{SA}$	120	$\mathrm{~K} / \mathrm{W}$
Storage temperature range	$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$

Range of operation

$$
\begin{array}{l|l|l}
V_{\mathrm{S}} & 10 \text { to } 18 & \mathrm{~V}^{\circ} \mathrm{C} \\
T_{\text {amb }} & -25 \text { to } 85 & { }^{\circ} \mathrm{C}
\end{array}
$$

Characteristics ($\left.V_{\mathrm{S}}=12 \mathrm{~V}, T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption ($I_{2}=0$)
(without LED current)
Input currents
$\left(V_{3}-V_{16}<2 \mathrm{~V}\right)$
Voltage difference for smooth light transition
Voltage difference for jumping light transition
Diode current per diode
Tolerance of LED forward voltages

	\min	typ	\max	
I_{18}		5.5	8.2	mA
I_{3}		0.3	1	$\mu \mathrm{~A}$
I_{16}		0.3	1	$\mu \mathrm{~A}$
I_{17}		0.3	1	$\mu \mathrm{~A}$
$V_{16 / 3}$	1			V
$V_{16 / 3}$	4	10		V
I_{D}		10	mA	
ΔV_{D}			1	V

Test circuit

P_{1} light band test
P_{2} brightness test

Scale display with light emitting diodes

Scale displays by means of a growing light band are particularly suitable for the measuring of approximate values. Applications of this kind are level sensors, VU meters, tachometers, field strength indicators etc. When applying the displays in measuring equipment, multicolored LEDs cian be used as range limitation.

The voltage difference between pins 16 and 3 thereby corresponds to the possible indication range. $\Delta V_{16 / 3}$ defines at the same time the light passage between two diodes. With $\Delta V_{16 / 3} \geqq 1 \mathrm{~V}$, the light band glides smoothly along the scale. With increasing voltage difference, the passage becomes more abrupt. With $\Delta V_{16 / 3}$ approx. 4 V , the light band jumps from diode to diode.

Each quartet must consist of homogeneous diodes in order to ensure the function. Therefore, it is possible to provide the first and third quartet lighting red and the second quartet green in order to mark a working range.
Pin 2 serves to determine the diode current. Corresponding to the desired light intensity, the forward current of the diodes is variably linear in the range I_{f} approx. 0 to 10 mA .
Application circuit 1 shows the possibility of designing this resistance, adjustable by means of a phototransistor BP 101, in order to adapt the light intensity to changing ambient brightness. The adjusting range of the diode current lies between I_{f} approx. 5 mA (BP 101 not lighted) and I_{f} approx. 10 mA (BP 101 fully lighted). If pin 2 is open the diode current is 10 mA .

Block diagram

Application circuit 1

If a quartet does not need the full number of display diodes and if the first wired diodes shall be left luminous at full driving, bridges have to be inserted replacing the missing LEDs. Otherwise the first diodes of the quartet switch off with exceeding their display range.

Applicationcircuit 2
for cascading several UAA 180 ICs (up to 7)

Application circuit 3

for field strength indication

The tone control unit is provided for the DC voltage control of volume, treble, and bass. The volume characteristic can be switched over from linear to physiological.
For stereo applications, the TDA 4290 is also available in groups, selected according to synchronization.

- Few external components
- High signal-to-noise ratio
- Low total harmonic distortion

Type	Ordering code	Package outline
TDA 4290	Q 67000-A 1359	DIP 14

Maximum ratings

Supply voltage
Load current
Thermal resistance (system-air)
Junction temperature
Storage temperature range

V_{S}	18	V
I_{2}	10	mA
$R_{\text {th SA }}$	90	$\mathrm{~K} / \mathrm{W}$
T_{j}	150	${ }^{\circ} \mathrm{C}$
$T_{\text {stg }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

Range of operation

Supply voltage range
Frequency range (-1 dB)
Ambient temperature range

V_{S}	10.5 to 18 f_{i}	20 to 20.000
T_{amb}	0 to 70	Hz
	${ }^{\circ} \mathrm{C}$	

Characteristics ($\left.V_{\mathrm{S}}=14 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Current consumption
Reference voltage
Input resistance
Output resistance
Changeover current
Input current for set inputs
$\left(V_{5 / 8 / 14}=0.5 \cdot V_{2}\right)$
Gain
$\left(f_{\mathrm{i}}=1 \mathrm{kHz} ; V_{\mathrm{i}}=300 \mathrm{mV} \mathrm{rms}\right)$
$\mathrm{S}_{1} \operatorname{lin} ; V_{5}=0 \mathrm{~V}$
S_{1} lin; $V_{5}=1.0 \mathrm{~V}$
S_{1} lin; $V_{5}=0.5 \cdot V_{2}$
S_{1} phys; $V_{5}=1.0 \mathrm{~V}$
Gain change ($f_{\mathrm{i}}=1 \mathrm{kHz}$)
max. bass/treble emphasis
max. bass/treble deemphasis
Treble emphasis
($f_{\mathrm{i}}=15 \mathrm{kHz} ; V_{14}=V_{2}$)
Treble deemphasis
($f_{\mathrm{i}}=15 \mathrm{kHz} ; V_{14}=0 \mathrm{~V}$)
Bass emphasis
($f_{\mathrm{i}}=40 \mathrm{~Hz} ; V_{8}=V_{2}$)
Bass deemphasis
($f_{\mathrm{i}}=40 \mathrm{~Hz} ; V_{8}=0 \mathrm{~V}$)
Frequency range (-1 dB)
(all control units in linear position)
Total harmonic distortion
($V_{\mathrm{i}}=300 \mathrm{mV} \mathrm{rms} ; f_{\mathrm{i}}=1 \mathrm{kHz}$;
control unit in 0 dB position)
Disturbance voltage
($f_{\mathrm{i}}=20$ to $20,000 \mathrm{~Hz}$;
tone control unit in 0 dB position, volume -20 dB)

	min	typ	max	
IS		35	50	mA
V_{2}	4.5	4.85	5.2	V
$R_{\text {i }} 9$	2.9	3.9		k Ω
$R_{\text {q } 3 / 6}$		200		Ω
I_{4}	6	3.5		mA
$-I_{5 / 8 / 14}$		4	20	$\mu \mathrm{A}$
$V_{3.6} / V_{9}$		-80		dB
$V_{3.6} / V_{9}$		-60		dB
$V_{3.6} / V_{9}$		0		dB
V_{3} / V_{9}		-30		dB
V_{6} / V_{9}		un	nged	
V_{q} / V_{9}		+2		dB
V_{q} / V_{9}		-2		dB
V_{q} / V_{9}	+15	+17		dB
V_{q} / V_{9}		-17	-15	dB
V_{q} / V_{9}	+15	+ 17		dB
V_{q} / V_{9}		-17	-15	dB
f_{i}	20		20000	Hz
THD		0.2	0.7	\%
$V_{\text {d }}$		30	50	$\mu \mathrm{V}_{\text {rms }}$

Physiological volume characteristic

(treble and bass control in linear position)
$V_{\mathrm{i}}=300 \mathrm{mV}, f_{\mathrm{i}}=1.6 \mathrm{kHz}$

Treble control

S_{1} open; $V_{\mathrm{i}}=300 \mathrm{mV} \mathrm{rms}$; volume $=0 \mathrm{~dB}$ $V_{\mathrm{i}}=300 \mathrm{mV}, f_{\mathrm{i}}=20 \mathrm{~Hz}$

Bass control

S_{1} open; $V_{\mathrm{i}}=300 \mathrm{mV}$ rms; volume $=0 \mathrm{~dB}$ $V_{\mathrm{i}}=300 \mathrm{mV}, f_{\mathrm{i}}=20 \mathrm{kHz}$

Bass and treble control

$$
V_{\mathrm{i}}=300 \mathrm{mV} \xlongequal[=]{ } 0 \mathrm{~dB} ; \mathrm{S}_{1} \text { open }
$$

Bass and treble control

$V_{i}=300 \mathrm{mV} \hat{=} 0 \mathrm{~dB} ; \mathrm{S}_{1}$ open

Physiological volume versus input frequency
S_{1} closed; $V_{\mathrm{i}}=300 \mathrm{mV} \mathrm{rms}^{\hat{=} 0 \mathrm{~dB}}$

Disturbance voltage spacing
Bandwidth 30 Hz to $20 \mathrm{kHz} ; V_{\mathrm{i}}=300 \mathrm{mV} \mathrm{rms}^{\hat{=}} 0 \mathrm{~dB} ; f_{\mathrm{i}}=1 \mathrm{kHz}$ S_{1} open; treble and bass control in linear position

Packaging Information

Plastic plug-in package 20 A 6 DIN 41866 , 6 pins, DIP

Approx. weight 0.7 g

Plastic plug-in package 20 A 14 DIN 41866 , 14 pins, DIP

Approx. weight 1.1 g

Plastic plug-in package 20 A 8 DIN 41866 , 8 pins, DIP

Approx. weight 0.7 g

Plastic plug-in package similar to 20 A 14 DIN 41866 , 14 pins, QIP

Approx. weight 1.1 g

Dimensions in mm

Packaging Information

Plastic plug-in package 20 A 16 DIN 41866 , 16 pins, DIP

Approx. weight 1.2 g

Plastic plug-in package 20 A 18 DIN 41866 , 18 pins, DIP

Approx. weight 1.3 g

Plastic plug-in package 20 D 22 DIN 41866 , 22 pins, DIP

Approx. weight 2.1 g

Dimensions in mm

Packaging Information

Plastic plug-in package 20 A 28 DIN 41866 ,
28 pins, DIP

Approx. weight 3 g

Plastic plug-in package 20 A 40 DIN 41866 ,
40 pins, DIP

Dimensions in mm

Packaging Information

Plastic power package, SIP 9, with cooling fin and 9 pins

Approx. weight 1.9 g

Metal case 5 J 10 DIN 41873 (similar to TO-100)

Approx. weight 1.1 g

Dimensions in mm

Packaging Information

Plastic power package
TO-220/5 with cooling strip and 5 pins

Approx. weight 2.1 g

Plastic power package
TO-220/7 with cooling strip and 7 pins

Approx. weight 2.1 g

Plastic power package
TO-220/5-H with cooling strip and 5 pins

Approx. weight 2.1 g

Dimensions in mm

Offices

Federal Republic of Germany and Berlin（West）

Siemens AG
Salzufer 6－8
Postfach 110560
1000 Berlin 11
－（030）3939－1，四 1810－278
FAX（030）3939－2630
Siemens AG
Contrescarpe 72
Postfach 107827
2800 Bremen 1
－（0421）364－1，四 245451
FAX（0421）364－687
Siemens AG
Lahnweg 10
Postfach 1115
4000 Düsseldorf 1
－（0211）3030－1，四 8581301
FAX（0211）3030－506
Siemens AG
Rödelheimer Landstraße 5－9
Postfach 4183
6000 Frankfurt 90
－（0611）797－0，四 414131－0
FAX（0611）797－2253

Siemens AG
Lindenplatz 2
Postfach 105609
2000 Hamburg 1
－（040）282－1，四 2162721
FAX（040）282－2210
Siemens AG
Am Maschpark 1
Postfach 5329
3000 Hannover 1
－（0511）199－1，四 922333
FAX（0511）199－2799
Siemens AG
N 7， 18 （Siemenshaus）
Postfach 2024
6800 Mannheim 1
－（0621）296－1，四 462261
FAX（0621）296－222
Siemens AG
Richard－Strauss－Straße 76
Postfach 202109
8000 München 2
－（089）9221－1，龱 59421－25
FAX（089）9221－4499

Siemens AG
Von－der－Tann－Straße 30
Postfach 4844
8500 Nürnberg 1
－（0911）654－1，四 622251
FAX（0911）654－3436，
34614， 3716
Siemens AG
Geschwister－Scholl－Straße 24
Postfach 120
7000 Stuttgart 1
－（0711）2076－1，龱 723941
FAX（0711）2076－706
Siemens Bauteile Service
Lieferzentrum Fürth
Postfach 146
8510 Fürth－Bislohe
－（0911）3001－1，龱623818

Europe

Austria

Siemens Aktiengesellschaft
Osterreich
Apostelgasse 12
Postfach 326
A－1031 Wien
－（0222）7293－0，这 131866

Belgium

Siemens S．A．
chaussée de Charleroi 116
B－1060 Bruxelles
－（02） 5373100 ，龱 21347

Bulgaria

RUEN，
Büro für Firmenvertretungen und
Handelsvermittlungen bei der
Vereinigung „Interpred＂
San Stefano 14／16
BG－1504 Sofia 4
－457082，龱 22763

Czechoslovakia

EFEKTIM，
Technisches Beratungsbüro
Siemens AG
Anglická ulice 22，3．Stock
P．O．B． 1087
CS－12000 Praha 2
อ 258417，国 122389

Denmark

Siemens A／S
Borupvang 3
DK－2750 Ballerup
－（02） 656565 ，国 35313

Finland

Siemens Osakeyhtiö
Mikonkatu 8
Fach 8
SF－00101 Helsinki 10
©（90），1626－1，龱 124465

France

Siemens S．A．
39－47，boulevard Ornano
F－93200 Saint－Denis
（B．P．109，F－93203 Saint Denis CEDEX 1）
（für Personalpost：B．P．122，
F－93204 Saint－Denis CEDEX 1）
－（16－1） 8206120 ，龱 620853

Great Britain

Siemens Limited
Siemens House
Windmill Road
Sunburry－on－Thames
Middlesex TW 16 7HS
－（09327）85691，匹凶 8951091

Greece

Siemens Hellas E．A．E．
Voulis 7
P．O．B． 601
Athen 125
－（01）3293－1，四 216291

Hungary

Intercooperation AG，
Siemens Kooperationsbüro
Böszörményi út 9－11
P．O．B． 1525
H－1126 Budapest
－（01）154970，国224133

Iceland

Smith \＆Norland H／F
Nóatún 4
P．O．B． 519
Reykjavik
－28322，龱 2055

Ireland

Siemens Limited
8，Raglan Road Dublin 4
－（01）684727，龱5341

Italy

Siemens Elettra S．p．A．
Via Fabio Filzi，K $25 /$ A
Casella Postale 4183
I－20124 Milano
－（02）6248， 330261

Luxemburg

Siemens Société Anonyme
17，rue Glesener
B．P． 1701
Luxembourg
ธ49711－1，国3430

Netherlands

Siemens Nederland N．V．
Wilhelmina van Pruisenweg 26
NL－2595 AN Den Haag
（Postb．16068，
NL－2500 BB Den Haag）
－（070）782782，㓙 31373

Norway

Siemens A／S
\emptyset stre Aker vei 90
Postboks 10，Veitvet
N－Oslo 5
－（02）153090，龱 18477

Poland

PHZ Transactor S．A．
ul．Stawki 2
P．O．B． 276
PL－00－950 Warszawa
－398910，龱 815554

Portugal

Siemens S．A．R．L．
Avenida Almirante Reis， 65
Apartado 1380
P－1100 Lisboa－1
－（019）538805，龱 12563

Rumania

Siemens birou
de consultații tehnice
Strada Edgar Quinet Nr． 1
R－70106 București 1
－151825，龱 11473

Spain

Siemens S．A．
Orense， 2
Apartado 155
Madrid 20
－（91） 4552500 ，朾 27769

Sweden

Siemens Aktiebolag
Norra Stationsgatan 69
Box 23141
S－10435 Stockholm 23
－（08） 241700 ，㓙 11672

Switzerland

Siemens－Albis AG
Freilagerstraße 28
Postfach
CH－8047 Zürich
อ（01） 2473111 ，欧 52131

Turkey

ETMAŞ Elektrik Tesisati ve
Mühendislik A．Ş．
Meclisi Mebusan Caddesi 55／35
Findikli
P．K． 213 Findikli
Istanbul
－009011／45 2090，四 24233

U．S．S．R．

Ständige Vertretung der
Siemens AG in Moskau
Internationales Postamt
Postfach 77
SU－Moskau G 34
○ 2027711 ，龱 7413

Yugoslavia

Generalexport
Masarikova 5／XIV
Poštanski fah 223
YU－11001 Beograd
○（011）684866，㓙 11287

Africa

Algeria

Siemens Algèrie S．A．R．L．
3，Viaduc Youghourta
B．P．224，Alger－Gare
Alger
○615966／67，㘝52817

Eqypt

Siemens Resident Engineers
33，Dokki Street
P．O．B． 775
Dokki／Cairo
Arab Republik Egypt
－982671，四 321

Ethiopia

Siemens Ethiopia Ltd．
P．O．B． 5505
Addis Ababa
－151599，龱21052

Libya

Siemens Resident Engineers
Socialist People＇s Libyan Arab Jamahiriya
P．O．B． 46
Tripoli
－41534，龱 20029

Morocco

SETEL
Société Electrotechnique
et de Télécommunications S．A．
Immeuble Siemens
km 1，Route de Rabat
Casablanca－Ain Sebâa
－ 351025 ，四 25914

Nigeria

Siemens Nigeria Ltd． Siemens House Industrial estate 3 f ， Block A
P．O．B．304，Apapa
Oshodi（Lagos）
－842502，匹㐅 21357

South African Republic

Siemens Limited
Siemens House，
Corner Wolmarans and
Biccard Streets，Braamfontein 2001
P．O．B． 4583
Johannesburg 2000
－（011）7159111，龱 58－7721

Sudan

National Electrical
\＆Commercial Company（NECC）
P．O．B． 1202
Khartoum
Republic of Sudan
© 80818，龱 642

Tunisia

Sitelec S．A．，
Immeuble Saâdi－Tour C
Route de l＇Ariana
Tunis－EI Menzah TN
－231526，龱 12326

Zaire

Siemens Zaire S．P．R．L．
B．P． 9897
5 e und 6 e Straße（Limité）
Kinshasa 1
－77206，龱21377

America
 Argentina

Siemens Sociedad Anónima
Avenida Pte．Julio A．Roca 516
Casilla Correo Central 1232
RA－1067 Buenos Aires
○ 00541／300411，四 121812

Bolivia

Sociedad Comercial é Industrial
Hansa Limitada
Calle Mercado esquina Yanacocha
Cajón Postal 1402
La Paz
๑ 355317 ，龱 5261

Brazil

Icotron S．A．
Indústria de
Componentes Eletrônicos
Avenida Mutinga， 3650
Pirituba
BR－05110 São Paulo－SP
（Caixa Postal 1375，
BR－01000 São Paulo）
－（011） 2610211
匹『 005511－23633，11－23641

Canada

Siemens Electric Limited
7300 Trans－Canada Highway
Pointe Claire，Québec H9R 1C7
（P．O．B．7300，Pointe Claire，
Québec H9R 4R6）
－（514） 6957300 ，
困 5－822778

Chile

Gildemeister S．A．C．，
Area Siemens
Casilla 99－D
Santiago de Chile
－82523，
T伹 TRA SGO 392，TDE 40588
FAX 82523

Colombia

Siemens S．A．
Carrera 65，No．11－83
Apartado Aéreo 80150
Bogotá 6
－2628811，龱44750

Ecuador

Siemens S．A．
Avenida América y
Hernández Girón s／n．，
Casilla de Correos 3580
Quito
－454000，国 22190

Mexico

Siemens S．A．
Poniente 116，No． 590
Col．Ind．Vallejo
Apartado Postal 15064
México 15，D．F．
○ 5670722 ，龱 1772700

Uruguay

Conatel S．A．
Ejido 1690
Casilla de Correo 1371
Montevideo
－917331，龱 934

U．S．A．

Siemens Corporation
186 Wood Avenue South
Iselin，New Jersey 08830
－（201）494－1000
四 WU 844491
TWX WU 7109980588
Venezuela
Siemens S．A．
Apartado 3616
Caracas 101
－（02） 2392133 ，龱 25131

Asia

Afghanistan

Afghan Electrical Engineering and Equipment Limited
Alaudin，Karte 3
P．O．B． 7
Kabul 1
－40446，龱 35

Bangla Desh

Siemens Bangladesh Ltd．
74，Diskusha Commercial Area
P．O．B． 33
Dacca 2
－244381，龱5524

Hong Kong

Jebsen \＆Co．，Ltd
Siemens Division
Prince＇s Building，24th floor
P．O．B． 97
Hong Kong
－5225111，龱73221

India

Siemens India Ltd．
Head Office
134－A，Dr．Annie Besant Road，Worli P．O．B． 6597
Bombay 400018
－379906，匹 112373

Indonesia

Panatraco Ltd．
JI．Kebon Sirih 4
P．O．B． 332
Jakarta Pusat
○ 366464 ，四 44258

Iran

Siemens Sherkate Sahami Khass
Ave．Ayatolla Talegnani 32，
Siemenshaus
Teheran 15
－（021）614－1，龱 212351

Iraq

Siemens Iraq Consulting Office
P．O．B． 3120
Baghdad
－98198，龱 2393

Japan

Fuji Electronic Components Ltd．
New Yurakucho Bldg．，8F
12－1，Yurakucho 1 －chome，
Chiyoda－ku
Tokyo 100
อ 201－2451，四 j22130
Korea（Republic）
Siemens Electrical
Engineering Co．，Ltd．
C．P．O．B． 3001

Seoul

－7783431，龱23229

Kuwait

Abdul Aziz M．T．Alghanim Co．
\＆Partners
Abdulla Fahad AI－Mishan Building
Al－Sour Street
P．O．B． 3204
Kuwait，Arabia
－423336，四 2131

Lebanon

Ets．F．A．Kettaneh S．A．
（Kettaneh Frères）
Medawar
P．B． 110242
Beyrouth
－251040，四 20614

Malaysia

Electcoms Bumi Engineering
Sdn．Bhd．
18，Jalan 225
P．O．B． 310
Petaling Jaya／Selangor
－762520，込 37418

Pakistan

Siemens Pakistan Engineering
Co．Ltd．
llaco House，Abdullah Haroon Road P．O．B． 7158
Karachi 3
－516061，龱2820

Philippines

Maschinen＋Technik Inc．（MATEC） Greenbelt Mansion，Ground Floor，
Perea Street，Legaspi Village
Makati
P．O．B． 1872 MCC
Manila
－ 8181111 ，
7 756－3972 MTI PN

Saudi Arabia

Arabia Electric Ltd．
Head Office
P．O．B． 4621
Jeddah
－0096621／605089，四 401864
FAX 605089

Singapore

Siemens Components Pte．Ltd． 10－15E，Block 7
51 Ayer Rajah Industrial Estate
Singapore 0513
－7760283，四 RS 21000

Syria

Syrian Import
Export \＆Distribution
Co．，S．A．S．SIEDCO
Port Said Street
P．O．B． 363
Damas
－1343133，国 11267

Taiwan

Tai Engineering Co．Ltd．
6th Floor Central Building
No． 108 Chung Shan N．Rd．Sec． 2
P．O．Box 68－1882
Taipei
－5 563171 ，図 27860 tai engco

Thailand

B．Grimm \＆Co．，R．O．P．
1643／4，Phetburi Road
（Extension）
G．P．O．B． 66
Bangkok 10
－2524081，龱2614

Yemen（Arab．Republic）
Tihama Tractors
\＆Engineering Co．Ltd．
P．O．B． 49

Sanaa

Yemen Arab Republic
－2462， 2217

Australasia Australia

Siemens Industries Limited 544 Church Street，Richmond Melbourne，Vic． 3121
－（03） 4297111 ，込 30425

Table of Contents
General Information

ICs for Special TV Applications

ICs for Special Broadcasting Applications

ICs for General Purpose Applications

Packaging Information

List of Sales Offices

SIEMENS

ntegrated circuits Integrated circu

 ircuits Integrated circuits • Integra ated circuits Integrated circuits In its Integrated circuits • Integrate nlegrated circuits • Integrated circu ircuits Integrated circuits Integra ated circuits integrated circuits in uits - Integrated circuits - Integrate niegrated clrcults nitegrated circu ircuits " integrated circuits • Integra
KG 098012.

[^0]: V New type

[^1]: V New type

[^2]: V New type

 - Not for new design

[^3]: v New type

 - Not for new design

[^4]: 1) Applied since 1973.
[^5]: 1) 2.5 applies to the noise voltage in accordance with DIN 45405.
[^6]: ${ }^{1}$) intermittently 16.5 V

[^7]: ${ }^{1}$) According to test circuit: $V_{\mathrm{i}}=\mathrm{rms}$ sync pulse level at 60Ω
 ${ }^{2}$) Test level $a_{c c}=-3 \mathrm{~dB}$ $a_{\mathrm{sc}}=-20 \mathrm{~dB}$ referred to picture carrier

[^8]: ${ }^{1}$) intermittently 16.5 V

[^9]: ${ }^{1}$) According to test circuit: $V_{1}=$ rms sync pulse level at 60Ω
 ${ }^{2}$) Test level $a_{\mathrm{cc}}=-3 \mathrm{~dB}$
 $a_{\mathrm{sc}}=-20 \mathrm{~dB}$ referred to picture carrier

[^10]: 1) maximal 16.5 V for 1 minute
[^11]: ${ }^{1}$) According to test circuit: $V_{\mathcal{q}}=$ rms sync pulse level at 60Ω
 ${ }^{2}$) Test level $a_{\mathbf{c c}}=-3 \mathrm{~dB}$, referred to picture carrier
 $a_{\mathrm{sc}}=-20 \mathrm{~dB}$, referred to picture carrier

[^12]: 1) intermittently 16.5 V
[^13]: ${ }^{1}$) intermittently 16.5 V

[^14]: 1) The IC must not be plugged in or out when supply voltage is switched on.
[^15]: 1) If DC volume control is not used, pin 4 has to be connected directly to pin 5.
[^16]: ${ }^{1}$) If inputs $11,13,15$ are not connected, nominal gain will appear.
 ${ }^{2}$) The integrated load resistors are each in series with one diode, which causes the resistors to become ineffective at $V_{10}, V_{12}, V_{14}>V_{9}$.
 The external load resistors, needed in this case, have to be designed for a current of 4.4 mA nom.
 ${ }^{3}$) The changeover clamping IN to clamping OUT is performed at V_{8} approx. 6 V .

[^17]: For remarks see next page

[^18]: ${ }^{1}$) or input 4 open
 ${ }^{2}$) Current source circuit configuration

[^19]: ${ }^{1}$) Admissible range: 1 to 7 V

[^20]: ${ }^{1}$) or input 4 open
 ${ }^{2}$) Current source switching
 ${ }^{3}$) Admissible range 1 to 7 V
 ${ }^{4}$) Emitter follower
 ${ }^{5}$) Scattering of external components is not considered.

[^21]: ${ }^{1}$) Or input 4 open
 ${ }^{2}$) Current source switching
 ${ }^{3}$) Admissible range 1 to 7 V
 ${ }^{4}$) Emitter follower
 ${ }^{5}$) Scattering of external components is not considered.

[^22]: * only dc part

[^23]: ${ }^{1}$) $V_{4 \mathrm{~L}}$ and $I_{4 \mathrm{~L}}$ may only be measured during lines 88 to 95 Index L = Low
 Index $\mathrm{H}=\mathrm{High}$

[^24]: 1) For deviating ambient temperatures the input sensitivity may decrease down to 20%.
[^25]: 1) For deviating ambient temperatures the input sensitivity may decrease down to 20%.
[^26]: ${ }^{1}$) Quiescent condition, read process
 ${ }^{2}$) During a reprogramming operation

[^27]: *) $48 \mathrm{~mA} \xlongequal{=} 12 \mathrm{~mA}$ integral value at 4 digit operation or 24 mA at 2 digit operation, respectively

[^28]: * 48 mA 人 12 mA integral value at 4 digit operation or 24 mA at 2 digit operation, respectively

[^29]: * LSB = least significant bit MSB = most significant bit

[^30]: | 3 | V |
 | :--- | :--- |
 | 10 | $\mu \mathrm{~A}$ |

[^31]: * only necessary during programming

[^32]: *) First polarity for INV on low; second polarity for INV on high.

[^33]: 1) The instruction $2 /$ " $S_{t a n d b y " ~ r e s u l t s ~ i n ~ O N O F F ~}=\mathrm{H}$; thus, also TUS_{1} and TUS_{2} are reset to low and single mode is abolished. If TUS ${ }_{1}$ or TUS $_{2}$ is on high, the first instruction No. 62 "end instruction" is suppressed. All other end instructions following immediately, are, however, output. (In single mode, the further output of an instruction at pin TE is blocked until an end instruction releases the blocking. Further immediately following end instructions are, therefore, again issued).
[^34]: ${ }^{1}$) Instruction extension with diodes

[^35]: alternative to ceramic oscillator S

[^36]: 1) Shift button
 2) Connection for shortened instruction interval
 3) Start bit changeover
[^37]: * Murata Resonator CSB 455

[^38]: * Murata Resonator CSB 455

[^39]: ${ }^{1}$) Quiescent state, read process
 ${ }^{2}$) During a reprogramming operation

[^40]: ${ }^{1}$) without the portion for data input

[^41]: * no ext. dc voltage

[^42]: ${ }^{1}$) according to test circuit 2

[^43]: ${ }^{1}$ because of ambiguity of the biphase-code

[^44]: ${ }^{1}$) forced on H from outside

 * PRG 16/8 (as output high-ohmically loaded)
 ** PRG 16/8 (as input)

[^45]: $\left\lvert\, \begin{aligned} & \mathrm{V} \\ & { }^{\circ} \mathrm{C}\end{aligned}\right.$

[^46]: Supply voltage range
 Ambient temperature range

[^47]: ${ }^{1}$) intermittently 17.5 V

[^48]: * measured between switched input and pin 11.

[^49]: ${ }^{1}$) measured between switched input and pin 22

[^50]: ${ }^{1}$) measured between switched input and pin 18
 ${ }^{2}$) see pulse diagram

[^51]: ${ }^{1}$) The lower limit is only valid for a forward voltage of the LED's of approx. 1.5 V (red LED's); the lower limit increases according to higher forward voltage.

