SHARP

Memory Data Book

1991/1992

GENERAL INFORMATION - 1

DYNAMIC RAMs - 2

PSEUDO STATIC RAMs - 3

STATIC RAMs - 4

EPROMs/OTPROMs - 5

MASK PROGRAMMABLE ROMs - 6

FIFO MEMORIES - 7

FIELD MEMORIES - 8

APPLICATION AND TECHNICAL INFORMATION - 9

PACKAGING - 10

NOTICE

The specifications contained within this Sharp Memory Data Book are current as of the October, 1991 publication date.

The product data provided is classified and labeled as follows:

CLASSIFICATION *	DESCRIPTION
Product Preview	Contains information about a device that is in the planning stage or the soon to be in-development stage.
Advance Information	Contains information about a device that is in development. Includes design specifications for device development.
Preliminary	Contains information for device soon to be, or recently, released to production.
No label is used for this classification.	Contains information about a device that is in full production.

* Note: occasionally certain product data information may be classified and labeled differently than the main classification label. For example, a main label may be 'Preliminary', but the 15 ns version of that part may be labeled 'Advance Information.'

The Sharp Memory Data Book is the proprietary product of Sharp and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of Sharp. Express written permission is also required before any use of this publication may be made by a third party.

Sharp reserves the right to make changes in the circuitry or specifications described herein at any time without notice in order to improve design or reliability. The information in this Memory Data Book has been carefully checked to be accurate, however, Sharp makes no warranty for any errors which may appear in this document. Contact Sharp to obtain the latest version of device specifications before placing your order.

Sharp makes no representations that circuitry described herein is free from infringement of patent or other rights of third parties which may result from its use. No license is granted by implication under any patent rights or other rights of Sharp Corporation.

This is a newly revised 1991/92 Memory Data Book which can be used in place of the former edition (1989/1990).
© SHARP Corporation, October 1991. Printed and bound in the U.S.A.

PREFACE

As we become more and more an information-oriented society, memory products have come to play a major role in both home and office equipment. On the one hand, com-puter-related services are growing ever more sophisticated and diverse; on the other, they are becoming much more accessible to each of us in our daily lives. Along with this increase in the importance of the information processing in our lives, we are faced with a growing demand for memory products using the most advanced technology.

To keep pace with this rapid progress, we at Sharp will continue to direct our efforts at understanding the crucial trends of the moment in this area and supply our customers with products that truly meet their needs. In short, to contribute to a better life for all of us in this age of expanding technology.

Sharp has developed a wide range of memory units including SRAMs, DRAMs, EPROMs, OTPROMs, Mask Programmable ROMs, and FIFO Memories for use in numerous areas of application. Sharp memory units are used extensively in personal computers, advanced office automation and measuring control equipment, video games, as well as in character processing and dictionary ROMs.

This data book has been especially compiled for the use of our customers. Listed here is the entire range of memory products developed and manufactured by Sharp, with detailed explanations of their many functions and outstanding features. We hope that you find this book useful in determining which Sharp products are best suited to your needs. Please contact us directly if you have any further questions.

SHARP'S INTEGRATED CIRCUIT DOCUMENTATION

MICRO-	4-Bit Single-Chip Microcomputers
COMPUTER	•8-Bit Single-Chip Microcomputers
	•8-Bit Microprocessors/Peripherals
	$\cdot 16$-Bit Microprocessors/Peripherals
	- Development Support Tools

- Gate Arrays/Standard Cells
- Display Drivers, Telecommunications
- MODEMs, CCDs/CCD Peripherals
- ICs for Audio/Visual Equipment
- Voice/Melody Generators, ICs for Clock, etc.

24-Bit Real Time Digital Signal Processing

- Data Sheets
- User's Guides
- Simulator Guides
- Application Notes
- Evaluation Modules/Boards

- Dynamic RAMs, Field Memories
- Static RAMs, Pseudo Static RAMSs
- EPROMs/OTPROMs
- Mask Programmable ROMs
- FIFO Memories

- Quality and Reliability Assurance System
- How Sharp Views Semiconductor Device Reliability and Reliability Prediction
- Reliability Testing
- Failure Analysis
- Proper Handling of Semiconductor Devices
- Operational Amplifiers/Comparators - Transistor Arrays, Voltage Regulators - A/D, D/A Converters, Bus Interfaces
- ICs for Audio/Visual Equipment
- CCD Peripherals, ICs for Telephone, etc.

TABLE OF CONTENTS

SECTION PAGE
1 GENERAL INFORMATION 1-1
Alphanumeric Index 1-1
Product Lineup 1-2
Quality Assurance 1-15
Timing Diagram Conventions 1-29
2 DYNAMIC RAMs 2-1
3 PSEUDO STATIC RAMs 3-1
4 STATIC RAMs 4-1
5 EPROMs/OTPROMs 5-1
6 MASK PROGRAMMABLE ROMs 6-1
7 FIFO MEMORIES 7-1
8 FIELD MEMORIES 8-1
9 APPLICATION NOTES AND TECHNICAL INFORMATION 9-1
10 PACKAGING 10-1

GENERAL INFORMATION - 1

DYNAMIC RAMs - 2

PSEUDO STATIC RAMs - 3

STATIC RAMs - 4

EPROMs/OTPROMs - 5

MASK PROGRAMMABLE ROMS - 6

FIFO MEMORIES - 7

FIELD MEMORIES - 8

APPLICATION AND TECHNICAL INFORMATION - 9

DYNAMIC RAMs

	Density	Organization
LH21256/7/8	256 K	$256 \mathrm{~K} \times 1$
LH2464	256 K	$64 \mathrm{~K} \times 4$
LH2465	256 K	$64 \mathrm{~K} \times 4$
LH604256	1 M	$256 \mathrm{~K} \times 4$
LH64258	1 M	$256 \mathrm{~K} \times 4$
LH64400	4 M	$1 \mathrm{M} \times 4$

PSEUDO STATIC RAMs

LH5P832	256 K	$32 \mathrm{~K} \times 8$
LH5P8128	1 M	$128 \mathrm{~K} \times 8$

STATIC RAMs

LH5116	$16 K$	$2 K \times 8$	$4-1$
LH5116S	$16 K$	$2 K \times 8$	$4-9$
LH5117	$16 K$	$2 K \times 8$	$4-16$
LH5118	$16 K$	$2 K \times 8$	$4-23$
LH5168	$64 K$	$8 K \times 8$	$4-31$
LH5168SH	$64 K$	$8 K \times 8$	$4-39$
LH51256	$256 K$	$32 K \times 8$	$4-47$
LH51256L	$256 K$	$32 K \times 8$	$4-54$
LH511000	$1 M$	$128 K \times 8$	$4-61$
LH5267A	$64 K$	$16 K \times 4$	$4-69$
LH52250A	$256 K$	$32 K \times 8$	$4-76$
LH52250AL	$256 K$	$32 K \times 8$	$4-76$
LH52251A	$256 K$	$256 K \times 1$	$4-84$
LH52252A	$256 K$	$64 K \times 4$	$4-92$
LH52252B	$256 K$	$64 K \times 4$	$4-99$
LH52253	$256 K$	$64 K \times 4$	$4-106$
LH52256	$256 K$	$32 K \times 8$	$4-113$
LH52256L	$256 K$	$32 K \times 8$	$4-113$
LH52256LL	$256 K$	$32 K \times 8$	$4-120$
LH52258	$256 K$	$32 K \times 8$	$4-127$
LH52258A	$256 K$	$32 K \times 8$	$4-135$
LH521002	$1 M$	$256 K \times 4$	$4-143$
LH521007	$1 M$	$128 K \times 8$	$4-151$
LH521008	$1 M$	$128 K \times 8$	$4-159$
LH521028	$1 M$	$64 K \times 18$	$4-167$
LH521032	$1 M$	$256 K \times 4$	$4-182$

EPROMs/OTPROMs

LH5749/J	64 K	$8 \mathrm{~K} \times 8$	$5-1$
LH5762/J	64 K	$8 \mathrm{~K} \times 8$	$5-8$
LH5763/J	64 K	$8 \mathrm{~K} \times 8$	$5-15$
LH5764/J	64 K	$8 \mathrm{~K} \times 8$	$5-22$
LH57126/J	128 K	$16 \mathrm{~K} \times 8$	$5-29$
LH57127/J	128 K	$16 \mathrm{~K} \times 8$	$5-36$
LH57128/J	128 K	$16 \mathrm{~K} \times 8$	$5-43$
LH57254/J	256 K	$32 \mathrm{~K} \times 8$	$5-50$
LH57256/J	256 K	$32 \mathrm{~K} \times 8$	$5-57$
LH57512/J	512 K	$64 \mathrm{~K} \times 8$	$5-64$
LH571000/J	1 M	$128 \mathrm{~K} \times 8$	$5-72$
LH571001/J	1 M	$128 \mathrm{~K} \times 8$	$5-81$

MASK ROMs
Density Organization

LH23126	128K	$16 \mathrm{~K} \times 8$	6-6
LH23255	256K	$32 \mathrm{~K} \times 8$	6-10
LH23512	512K	$64 \mathrm{~K} \times 8$	6-14
LH231000B	1M	$128 \mathrm{~K} \times 8$	6-18
LH231100B	1M	$128 \mathrm{~K} \times 8$	6-22
LH53259	256K	$32 \mathrm{~K} \times 8$	6-26
LH53515	512K	$64 \mathrm{~K} \times 8$	6-32
LH53H1000	1M	$64 \mathrm{~K} \times 16$	6-38
LH53H1100	1M	$128 \mathrm{~K} \times 8$	6-43
LH530800A	1M	$128 \mathrm{~K} \times 8$	6-48
LH530900A	1M	$128 \mathrm{~K} \times 8$	6-54
LH531000B	1M	$128 \mathrm{~K} \times 8$	6-59
LH532000B	2M	$256 \mathrm{~K} \times 8 / 128 \mathrm{~K} \times 16$	6-65
LH532100B	2M	$256 \mathrm{~K} \times 8$	6-70
LH532200B	2M	$256 \mathrm{~K} \times 8$	6-74
LH534000B	4M	$512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16$	6-79
LH534100B	4M	$512 \mathrm{~K} \times 8$	6-84
LH534200B	4M	$512 \mathrm{~K} \times 8$	6-89
LH534300A	4M	$512 \mathrm{~K} \times 8$	6-93
LH534400A	4M	$512 \mathrm{~K} \times 8$	6-98
LH534500A	4M	$512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16$	6-103
LH534600	4M	$512 \mathrm{~K} \times 8 / 256 \mathrm{~K} \times 16$	6-109
LH538000	8M	$1 \mathrm{M} \times 8 / 512 \mathrm{~K} \times 16$	6-114
LH538100	8M	$1 \mathrm{M} \times 8$	6-120
LH538200	8M	$1 \mathrm{M} \times 8$	6-125
LH538500A	8M	$1 \mathrm{M} \times 8 / 512 \mathrm{~K} \times 16$	6-130
LH5316000	16M	$2 \mathrm{M} \times 8 / 1 \mathrm{M} \times 16$	6-137
LH5332000	32M	$4 \mathrm{M} \times 8 / 2 \mathrm{M} \times 16$	6-143

FIFO MEMORIES

LH5481/91	$64 \times 8 / 64 \times 9$	$7-1$
LH5485/95	$256 \times 8 / 256 \times 9$	$7-16$
LH5496	512×9	$7-31$
LH5497	$1 \mathrm{~K} \times 9$	$7-47$
LH5498	$2 \mathrm{~K} \times 9$	$7-63$
LH5499	$4 \mathrm{~K} \times 9$	$7-79$
LH5492	$4 \mathrm{~K} \times 9$	$7-92$
LH5493	$4 \mathrm{~K} \times 9$	$7-114$
LH5494	$4 \mathrm{~K} \times 9$	$7-131$
LH5420	$256 \times 36 \times 2$	$7-147$
LH540201/2/3	$512 \times 9 / 1 \mathrm{~K} \times 9 / 2 \mathrm{~K} \times 9$	$7-188$
LH540204	$4 \mathrm{~K} \times 9$	$7-190$
LH540205	$8 \mathrm{~K} \times 9$	$7-192$
LH540206	$16 \mathrm{~K} \times 9$	$7-194$
LH540215/15	$512 \times 18 / 1 \mathrm{~K} \times 18$	$7-196$
LH543620	$1 \mathrm{~K} \times 36$	$7-213$

FIELD MEMORIES

LH64270	1 M	$270 \mathrm{~K} \times 4$	$8-1$
LH66180	1 M	$180 \mathrm{~K} \times 6$	$8-7$

APPLICATION AND TECHNICAL INFORMATION
LH5420 Application Note
9-1
LH5420 Conference Paper 9-7

DYNAMIC RAMs

NOTES:
\square (Empty box) $=$ Contact Sharp representative for availability.$=$ Operating frequency or access/cycle time parts that are available at the publication time of this data book.

DYNAMIC RAMs

CAPACITY	CONFIGURATION (WORDS \times BITS)	MODEL NO.	ACCESS TIME (ns) MAX.	$\begin{aligned} & \text { CYCLE } \\ & \text { TIME (ns) } \\ & \text { MIN. } \end{aligned}$	POWER CONSUPTION OPERATING/ STANDBY (mW) MAX.	OPERATING MODE	PACKAGE
256K	262,144 $\times 1$	LH21256	100	200	440/28	Page mode	16DIP/16ZIP
			120	230	440/28		
			150	260	385/28		
		LH21257	100	200	440/28	Nibble mode	16DIP/16ZIP
			120	230	440/28		
			150	260	385/28		
		LH21258	100	200	440/28	Byte Mode	16DIP/16ZIP
			120	230	440/28		
			150	260	385/28		
	$65,536 \times 4$	LH2464	100	200	523/28	Page mode	18DIP
			120	220	457/28		
			150	260	413/28		
		LH2465	120	220	457/28	Nibble mode	18DIP
			150	260	413/28		
1M	$262,144 \times 4$	LH604256	80	$160(50)^{2}$	413/11	High speed page mode	20DIP/20ZIP/26SOJ
			100	$190(55)^{2}$	358/11		
		LH64258	$100(50)^{1}$	$160(55)^{1}$	374/11	Static column mode	20DIP/20ZIP/26SOJ
			$120(60)^{1}$	$190(65)^{1}$	340/11		
4M	1,048,576 $\times 4$	LH64400 ${ }^{1}$	$80(40)^{2}$	$140(50)^{2}$	523/5.5	High speed page mode	$\begin{gathered} \text { 20DIP/20ZIP/26SOS } \\ 26 \mathrm{TSOP}(\mathrm{II})^{3} \end{gathered}$
			$100(50)^{2}$	$160(55)^{2}$	468/5.5		

NOTES:

1. Static column mode
2. High speed page mode
3. S: Type II: Forward bend SR: Type II: Reverse bend

MASK PROGRAMMABLE ROMs

MASK PROGRAMMABLE ROMs

PROCESS	CAPACITY	CONFIGURATION (WORDS \times BITS)	MODEL NO.	USERS NO.	ACCESS TIME (ns) MAX. cYCLE TIME (ns) MIN.	POWER CONSUMPTION (mW) MAX.	PACKAGE
NMOS	64K	$8,192 \times 8$	LH2369	LH2363XX	200	330	28DIP
	128K	$16,384 \times 8$	LH23126	LH2326XX	200	440	28DIP
	256K	$32,768 \times 8$	LH23255	LH2355XX	200	440	28DIP
	512K	65,536 $\times 8$	LH23512	LH2312XX	200	550	28DIP
	1M	131,072 $\times 8$	LH231000B	LH231GXX	200	550	28 DIP
			LH231100B	LH231JXX	200	550	32DIP
CMOS	256K	$32,768 \times 8$	LH53259	LH5359XX	150	110	28DIP/28SOP/44QFP/32PLCC
	512K	$65,536 \times 8$	LH53515	LH5315XX	150	195	28DIP/28SOP/44QFP/32PLCC/32SOP
	1M	$131,072 \times 8$	LH53H1100	LH5H11XX	35	660	32DIP/32SOP
			LH530800A	LH531HXX	150	195	32DIP/32SOP/44QFP/32PLCC
			LH530900A	LH531JXX	150	195	32DIP
			LH531000B	LH531GXX	150	195	28DIP/28SOP/44QFP ${ }^{1}$
		$65,536 \times 16$	LH53H1000	LH5H10XX	55	660	40DIP/40SOP
	2M	$262,144 \times 8$	LH532100B	LH532HXX	120150	275	32DIP/32SOP/32PLCC
			LH532200B	LH532JXX	150	275	32DIP
		$\begin{gathered} 262,144 \times 8 \\ 131,072 \times 16 \\ \hline \end{gathered}$	LH532000B	LH532GXX	120/50	275	40DIP/40SOP/44QFP ${ }^{1 / 44 Q F P}$
	4M	$524,288 \times 8$	LH534300A	LH534DXX	150	330	32DIP/32SOP/32PLCC
			LH534100B	LH534HXX	200	275	32DIP/32SOP/32PLCC
			LH534400A	LH534EXX	150	275	32DIP
			LH534200B	LH534JXX	200	275	32DIP
		$\begin{gathered} 524,288 \times 8 \\ 262,144 \times 16 \end{gathered}$	LH534600	LH5346XX	100	550	40DIP/40SOP/44QFP ${ }^{1}$
			LH534500A	LH534FXX	150	275	40DIP/40SOP/44QFP ${ }^{1}$
			LH534000B	LH534GXX	200	275	40DIP/40SOP/440FP ${ }^{1 / 440 F P}$
	8M	1,048,576 $\times 8$	LH538100	LH5381XX	200	275	32DIP/32SOP
			LH538200	LH5382XX	200	275	32DIP
		$\begin{aligned} & 1,048,576 \times 8 \\ & 524,288 \times 16 \end{aligned}$	LH538000	LH5380XX	200	275	42DIP/44SOP/48TSOP(I)/64QFP
			LH538500A	LH538FXX	150	275	42DIP/44SOP/48TSOP/44QFP ${ }^{1 / 64 Q F P}$
	16M	$\begin{array}{r} 2,097,152 \times 8 \\ 1,048,576 \times 16 \\ \hline \end{array}$	LH5316000	LH5316XX	200	275	64SDIP/64QFP
	32M	$\begin{array}{r} 4,194,304 \times 8 \\ 2,097,152 \times 16 \end{array}$	LH5332000	LH5332XX	200	275	44SOP/64QFP

NOTES:

1. $14 \times 14 \mathrm{~mm}^{2}$ package

EPROMs/OTPROMs

EPROMs/OTPROMs

PRODUCT	CAPACITY	CONFIGURATION (WORDS \times BITS)	MODEL NO.	STANDBY MODE	ACCESS TIME (ns) MAX.	POWER CONSUMPTION (mW) MAX.	PROGRAM VOLTAGE (V)	PACKAGE
EPROM	64K	$8,192 \times 8$	LH5749/J		55	394	13	24CERDIP ${ }^{1}$
					70			
			LH5762J		55	394	12.5	28CERDIP
					70			
			LH5763J	\bullet	70	315	12.5	28CERDIP
				\bullet	90			
			LH5764J	\bullet	200	165	12.75	28 CERDIP
				\bullet	250			
	128K	$16,384 \times 8$	LH57126J		70	394	12.5	28CERDIP
					90			
			LH57127J	\bullet	100	315	12.5	28CERDIP
			LH57128	\bullet	250	165	12.75	28CERDIP
	256 K	$32,768 \times 8$	Lᄂ57254J		70	420	12.5	28CERDIP
					90			
			LH57256J	-	120	165	12.75	28CERDIP
				\bullet	150			
	512 K	65,536 $\times 8$	LH57512	\bullet	120	165	12.75	28CERDIP
				\bullet	150			
	1M	131,072 $\times 8$	LH571000	\bullet	120	220	12.75	$32 \mathrm{CERDIP}{ }^{2}$
				\bullet	150			
			LH571001J	\bullet	120	220	12.75	$32 \text { CERDIP }{ }^{3}$
				\bullet	150			
OTPROM	64 K	$8,192 \times 8$	LH5749		70	394	13	$\begin{aligned} & \text { 24DIP/24SK-DIP/ } \\ & \text { 24SDIP } \end{aligned}$
			LH5762		70	394	12.5	28DIP
			LH5763	\bullet	90	315	12.5	28DIP
			LH5764	\bullet	200	165	12.75	28DIP/28SOP
				-	250			
	128K	$16,384 \times 8$	LH57126		90	394	12.5	28DIP
			LH57127	\bullet	120	315	12.5	28DIP
			LH57128	\bullet	250	165	12.75	28DIP/2850P
	256K	$32,768 \times 8$	LH57254		90	420	12.5	28DIP
			LH57256	\bullet	150	165	12.75	$\begin{gathered} \text { 28DIP/28SK-DIP/ } \\ \text { 28SOP } \end{gathered}$
	512K	65,536 $\times 8$	LH57512	-	150	165	12.75	28DIP/28SOP
	1M	131,072 $\times 8$	LH571000	\bullet	150	220	12.75	$32 \mathrm{DIP}{ }^{2}$
			LH571001	\bullet	150	220	12.75	$32 \mathrm{DIP}{ }^{3}$

NOTES:

The model numbers of OTPROMs in this catalog are different from those programmed according to customers request.

1. Bipolar PROM pinout
2. JEDEC standard mask ROM pinout
3. JEDEC standard EPROM pinout

STATIC RAMs

STATIC RAMs

PROCESS	CAPACITY	CONFIGURATION (WORDS \times BITS)	MODEL NO.	ACCESS TIME (ns) MAX.	CYCLE TIME (ns) MIN.	POWER CON SUMPTION OPERATING/ STANDBY ($\mathrm{mW} / \mu \mathrm{W}$) MAX.	PACKAGE
FULL CMOS	16K	$2,048 \times 8$	LH5116	100	100	220/5.5	24DIP/24SOP/24SK-DIP
			LH5116 ${ }^{\text { }}$	100	100	220/5.5	
			LH5116S ${ }^{4}$	1000	1000	33/3.3	24SOP
			LH5117	100	100	$220 / 5.5$	24DIP/24SOP/24SK-DIP
			LH5117H ${ }^{1}$	100	100	$220 / 5.5$	
			LH5118	100	100	220/5.5	24DIP/24SOP/24SK-DIP
			LH5118H ${ }^{1}$	100	100	22015.5	
	64 K	$8,192 \times 8$	LH5168	100	100	248/5.5	28DIP/28SOP/28SK-DIP
			LH5168H ${ }^{1}$	100	100	275/6.5	
			LH5168SH ${ }^{1,4}$	500	500	$150 / 9$ (3V)	28SOP
	256K	$32,768 \times 8$	LH51256 ${ }^{1}$ (L)	100	100	248/6.5(5.5)	28DIP/28SOP
				120	120		
	1M	$131,072 \times 8$	LH511000 ${ }^{\text { }}$ (L)	100	100	330/55(5.5)	32DIP/32SOP/32TSOP $(1)^{2}$
				120	120		
CMOS PERIPHERY	64 K	16,384 $\times 4$	LH5267A ${ }^{\text {2 }}$	25	25	660/5500	24SK-DIP
				35	35	660/5500	
				45	45	660/5500	
	256K	262,144 $\times 1$	LH52251A	25	25	825/5500	24SK-DIP/24SOJ
				35	35	660/5500	
				45	45	550/5500	
		$65,536 \times 4$	LH52252A	25	25	825/5500	24SK-DIP/24SOJ
				35	35	660/5500	
				45	45	550/5500	
			LH52252B	15	15	910/5500	24SK-DIP/24SOJ
				20	20	800/5500	
				25	25	745/5500	
			LH52253	15	15	910/5500	28SK-DIP/28SOJ
				20	20	800/5500	
				25	25	745/5500	
				35	35	745/5500	
		$32,768 \times 8$	LH52250A(L)	70	70	440/5500 (550)	28DIP/28SOP/28SK-DIP
				90	90	385/5500 (550)	
				100	100	385/5500 (550)	
			LH52256/	70	70	440/550	28DIP/28SOP
				90	90	385/550	
				120	120	385/550	
			LH52256LL	90	90	385/220	28DIP/28SOP
			LH52258	30	30	1020/5500	28SK-DIP/28SOJ
				35	35	715/5500	
				45	45	605/5500	
				55	55	855/5500	
			LH52258A	15	15	910/5500	28SK-DIP/28SOJ
				20	20	825/5500	
				25	25	745/5500	

NOTES:

1. TOPR $=-40$ to $+85^{\circ} \mathrm{C}$
2. T TSOP (Type I) Forward bend

TR TSOP (Type I) Reverse bend
3. Supply Voltage (V) $=3 \pm 10 \%$
4. Supply Voltage $(\mathrm{V})=2.5$ to 5.5

STATIC RAMs (cont'd)

PROCESS	CAPACITY	CONFIGURATION $\text { (WORDS } \times \text { BITS) }$	MODEL NO.	ACCESS TIME (ns) MAX.	CYCLE TIME (ns) MIN.	$\begin{aligned} & \text { POWER CON- } \\ & \text { SUMPTION } \\ & \text { OPERATING/ } \\ & \text { STANDBY } \\ & (\mathrm{mW} / \mu \mathrm{W}) \text { MAX. } \end{aligned}$	PACKAGE
CMOS PERIPHERY	1 M	$262,144 \times 4$	LH521002	20	20	715/11000	28SOJ
				25	25	660/11000	
				35	35	550/11000	
			LH521032	20	20	TBD	32SOJ
				25	25	TBD	
				35	35	TBD	
		$131,072 \times 8$	LH521008	20	20	825/11000	32SOJ
				25	25	770/11000	
				35	35	660/11000	
			LH521007	20	20	TBD	32SOJ
				25	25	TBD	
				35	35	TBD	
	1.125M	$65,536 \times 18$	LH521028	20	20	TBD	52PLCC
				25	25	TBD	
				30	30	TBD	
				35	35	TBD	

FIFO MEMORIES

FIFO MEMORIES

CAPACITY	CONFIGURATION (WORDS \times BITS)	MODEL NO.	OPERATING FREQUENCY (MHz)	ACCESS TIME (ns) MAX.	$\underset{\text { TIME }}{\text { CYCLE }}$ (ns) MIN.	POWER CONSUMPTION (mW) MAX. ACTIVE STANDBY	PACKAGE
0.5K	64×8	LH5481	15	-	-	248/-	28SK-DIP/28PLCC
			25				
			35				
	64×9	LH5491	15	-	-	248/-	28SK-DIP/28PLCC
			25				
			35				
2K	256×8	LH5485	15	-	-	385/-	28SK-DIP/28PLCC
			25				
			35				
	256×9	LH5495	15	-	-	385/-	28SK-DIP/28PLCC
			25				
			35				
4.5K	512×9	LH5496	-	15	-	$550 / 28$	28DIP/28SK-DIP/32PLCC
				20			
				25			
				35			
				50			
				65			
				80			
		LH540201	-	12	-	$550 / 28$	28SK-DIP/32PLCC
				15			
				20			
				25			
				35			
9K	$1,024 \times 9$	LH5497	-	15	-	550/28	28DIP/28SK-DIP/32PLCC
				20			
				25			
				35			
				50			
				65			
				80			
		LH540202	-	12	-	550/28	28SK-DIP/32PLCC
				15			
				20			
				25			
				35			
	512×18	LH540215	-	-	15	550/28	68PLCC
					20		
					25		
					35		
16K	$256 \times 36 \times 2$	LH5420	-	-	25	1540/-	120PGA/132PQFP
					30		
					35		

FIFO MEMORIES (cont'd)

CAPACITY	CONFIGURATION (WORDS \times BITS)	MODEL NO.	$\begin{aligned} & \text { ACCESS } \\ & \text { TIME } \\ & (\mathrm{ns}) \text { MAX. } \end{aligned}$	$\begin{aligned} & \text { CYCLE } \\ & \text { TIME } \\ & \text { (ns) MIN. } \end{aligned}$	POWER CONSUMPTION (mW) MAX. ACTIVE STANDBY	PACKAGE
18K	2,048 $\times 9$	LH5498	15	-	550/28	28DIP/28SK-DIP/32PLCC
			20			
			25			
			35			
			50			
			65			
			80			
		LH540203	12	-	550/28	28SK-DIP/32PLCC
			15			
			20			
			25			
			35			
	$1,024 \times 18$	LH540225	-	15	550/28	68PLCC
				20		
				25		
				35		
36 K	$4,096 \times 9$	LH5499	20	-	550/44	28DIP/32PLCC
			25			
			35			
			50			
			65			
			80			
		LH540204	15	-	550/28	28SK-DIP/32PLCC
			20			
			25			
			35			
		LH5492	-	25	825/38	32PLCC
				35		
				50		
		LH5493	-	25	825/38	32PLCC
				35		
				50		
		LH5494	-	25	825/38	32PLCC
				35		
				50		
72K	$8 \mathrm{~K} \times 9$	LH540205	15	-	550/44	28SK-DIP/32PLCC
			20			
			25			
			35			
144K	$16 \mathrm{~K} \times 9$	LH540206	15	-	550/44	28SK-DIP/32PLCC
			20			
			25			
			35			

PSEUDO STATIC RAMs

FIELD MEMORIES

QUALITY ASSURANCE

Quality Assurance System

Sharp develops and produces a wide range of consumer and industrial-use semiconductor products.

In recent years, the applications of ICs have expanded significantly, into fields where extremely high levels of quality are critical.

In response, Sharp has implemented a total quality assurance system that encompasses the entire production process from planning to after-sales service. This system ensures that quality is a priority in the planning development and production and guarantees product reliability through rigorous reliability testing. We compiled the "Sharp Semiconductor Reliability Handbook, IC Edition" to introduce you to the results of some of our research and to our quality and reliability philosophy and programs. We hope that it is informative and that it will help Sharp customers develop and refine their quality and reliability assurance and control activities. We will introduce a part of this system here.

Sharp's quality and reliability assurance activities are based on the following guidelines:

- All personnel should participate in quality assurance by continually cultivating a higher level of quality awareness.
- In the design and development stages of new products, create reliable designs that consider reliability in every respect.
- Quality control in all production processes, all working environments, materials, equipment, and measuring devices should be carefully monitored to ensure quality and reliability from the very beginning of the production process.
- Confirm long-term reliability and obtain a thorough understanding of practical limits through reliability testing.
- Continually work to improve quality through application of data from process inspections, reliability testing, and market surveys.

Quality Assurance During New Product Development

New product development (Figure 1) begins with an accurate grasp of the purpose, environment, and manners in which customers will use the product as well as the required reliability. A development plan is then drafted, clarifying the price, quantity, sales period and target reliability of the product to be manufactured.

Quality and reliability are built into the product from the beginning of the product cycle by introducing design review (DR) and reliability planning in the development and design stage. The first tasks undertaken in this stage are process development and circuitry design, by which a prototype, or technical sample (TS), is made. An evaluation of the technical sample is conducted, centering on the function and performance of the sample under conditions in which the final product will be used (TS evaluation).

Next, an engineering sample (ES) is made, based on the results of the TS evaluation, and it is subjected to ES evaluation. The ES evaluation consists of determining, under mass production conditions, whether the product functions and performs as intended during development and design. Reliability testing is also used to decide whether the engineering sample has the required degree of reliability.

In the final stage, the transfer of the product to mass production is discussed - based on the results of the TS and ES evaluations. Once TS and ES are accepted, preproduction begins. At this time, it is determined whether the quality and reliability obtained during development and design can be maintained, whether there are any discrepancies in the production process and what yields will be. The manufacturability of the product is determined, based on these results.

DR (Design Review) is performed to prevent faulty operation and to enhance the functions, usability, quality and reliability, upon completion of structural design, logic design, software design, circuit design, TS/ES evaluation and reliability tests.

Figure 1. New Product Development Steps

Figure 2. Example of the Quality Control Process

Raw Materials Control

The level of product quality and reliability is largely governed by the quality of the materials originally making up the production process and environment.

It is the responsibility of the vendor to execute the quality assurance of basic materials purchased by Sharp. Raw material quality assurance is conducted according to the following system:

- Initial selections of a raw material manufacturer.
- Quality qualification for each new material put into use (quality and reliability assessments of devices in which such new materials are used).
- Periodic quality consultations based on quality information obtained during mass production.

Acceptance inspections are carried out as necessary based on acceptance criteria derived from product specifications and approved drawings.

Control of the Manufacturing Environment

Integrated circuit devices are manufactured in a clean room where there is minimal air-born particulates. The use of ultrapure water also aids cleanliness. Such conditions are necessary due to the adhesion of even small bits of foreign particles ($0.1 \mu \mathrm{~m}$ or less), no more than $1 / 5-1 / 10$ the size of the smallest IC pattern, can result in defects later in the process.

Particulates not only affects chip. yields, but can also have a lethal affect on the quality and reliablity of a device. Therefore, the cleanliness of every piece of equipment and facility in the plant as well as that of work clothes and work articles are controlled. Degree of cleanliness is usually expressed numerically as the number of particles over $0.5 \mu \mathrm{~m}$ per cubic foot of air.

The degree of cleanliness maintained in Sharp clean rooms, where wafers come in direct contact with air, is Class 1. Temperature and humidity are maintained at
constant levels by continuous computer-controlled monitoring (Table 1).

The ultrapure de-ionized (DI) water used in the wafer process is manufactured with an ultrapurification equipment, employing ion-exchange treatment, ultraviolet irradiation and ultrafiltration systems.

Table 1.
Clean Room Temperature \& Humidity Standards

Temperature	$24 \pm 0.5^{\circ} \mathrm{C}$
Humidity	$45 \pm 5 \% \mathrm{RH}$

Control of Facilities and Instrumentation

Intregrated circuit device technology is experiencing rapid revolutionary change, and advances in IC production facilities and equipment are equally impressive.

Process automation is promoted by using the latest CIM (Computer Intregrated Manufacturing) system to create devices having stable quality and to reduce variance of characteristics. In addition, production facilities maintenance control, and precision control for various instrumentation devices are implemented by both daily and periodic spot inspections.

Facilities' control is conceptually based on Total Productive Maintenance (TPM), in which all concerned employees systematically participate in facilities maintenance activities. Sharp's goal is to create a highly skilled human resource through activities such as:

- operator-initiated maintenance;
- scheduled maintenance;
- corrective maintenance.

Control of instrumentation devices is in accordance with Japanese national standards. Regular calibration by overseeing public agencies also helps maintain a high level of accuracy in these devices.

Figure 3. Product Inspection System

Quality Control During the Production Process

Designed-in quality and reliability must be faithfully built into a device during production to manufacture consistently high-quality and high-reliability products.

Production Operations are therefore based on specific, established operational standards. Checks are performed at each process step to decide whether specific characteristics have been obtained and quality has been built in. Each process is monitored to ensure that defectives are not sent to the next process. This is done by rigorously carrying out various standardized controls, appropriate to each process, such as monitoring, visual inspections and sampling inspections.

Sharp strongly promotes the automation of production facilities and equipment. Sharp works to prevent quality problems before they occur and to stabilize quality. Operations that required human skills in the
past are now automated. Computer Integrated Manufacturing (CIM) is being introduced into the wafer process. CIM is used to implement comprehensive production control, including conveyance within a process, equipment monitoring and progress control. CIM enables several types of process data to be processed together. Control charts and process capacity index (Cpk) are computed in real time for individual pieces of equipment. Even minute fluctuations in characteristics are fed back to improve control.

Reliability is also being assessed by periodic sampling. This test is a long-term reliability assessment, and the results are fed back to the related divisions.

While quality assurance tests and inspections are conducted for improving and maintaining quality, they also are used to predict the probable reliability a product will have in the marketplace. They provide a multi-faceted approach to ensuring product quality.

Table 2.
Reliability Test Items

CLASSIFICATION	TEST	PURPOSE \&CONDITIONS	REFERENCE STANDARDS
Thermal Environment Tests	Soldering Heat	To determine soldering heat resistance. Standard test conditions: Solder bath temperature: $260 \pm 5^{\circ} \mathrm{C}$ Time: 10 ± 1 sec. Solder composition: $\mathrm{Pb}: \mathrm{Sn}=4: 6$	JIS C 7022: A-1 MIL-STD-750 C 2031 IEC Pub. 68 Test Tb
	Temperature Cycling	To determine resistance to high and low temperatures and to temperature changes between these extremes. Standard test conditions: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\text {stg }}$ MIN $\sim \mathrm{T}_{\text {stg }}$ MAX [gas environment]	JIS C 7022: A-4 MIL-STD-883 C 1010 IEC Pub. 68 Test Na, Nb
	Thermal Shock	To determine resistance to sudden changes in temperature. Standard test conditions: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\text {stg }}$ MIN $\sim \mathrm{T}_{\text {stg }} \operatorname{MAX}$ [liquid environment]	JIS C 7022: A-3 MIL-STD-883 C 1011 IEC Pub. 68 Test Nc
	Temperature \& Humidity Cycling	To determine resistance to conditions of high temperature and high humidity. Standard test conditions: $-10 \sim 65^{\circ} \mathrm{C}, 90 \sim 95 \%$ RH, one (1) cycle every 24 hours	JIS C 7022: A-5 MIL-STD-883 C 1004 IEC Pub. 68 Test Z/AD
Mechanical Environment Tests	Variable Frequency Vibration	To determine resistance to vibration during transportation and use. Standard test conditions: Cycle: $100 \sim 2000 \mathrm{~Hz}_{\mathrm{z}}$ in 4 min . Peak acceleration: 20 G Orientation: four (4) times in each of the orientations of $\pm X, \pm Y$ and $\pm Z$	JIS C 7022: A-10 MIL-STD-883 C 2007 IEC Pub. 68 Test Fc
	Mechanical Shock	To determine resistance to shocks during transportation \& use. Standard test conditions: Peak acceleration: 1500 G Pulse duration: 0.5 ms Orientation: three (3) pulses in each of the orientations $\pm X, \pm Y$ and $\pm Z$	JIS C 7022: A-7 MIL-STD-883 C 2002 IEC Pub. 68 Test Ea
	Constant Acceleration	To determine resistance to constant acceleration. Standard test conditions: Stress level: 20,000 G, Orientation: applied for one (1) min. in each of the orientations $\pm X, \pm Y$ and $\pm Z$	JIS C 7022: A-9 MIL-STD-883 C 2001 IEC Pub. 68 Test Ga
	Lead Integrity	To determine resistance to installation and handling such as wiring. (1) Tensile strength. Standard test conditions: A specified load is applied in a direction parallel to the lead axis for 10 ± 1 sec. (2) Bending strength. Standard test conditions: A specified load is applied to the tip of each lead and the lead is bent once each through a + and - 90° arc and back. (The specified load is determined by nominal cross section or nominal section modulus.) *TCP (tape carrier package): N/A	JIS C 7002: A-11 IEC Pub. 68 Test U

Table 2. (cont'd)
Reliablility Test Items

CLASSIFICATION	TEST	PURPOSE \&CONDITIONS	REFERENCE STANDARDS
Mechanical Environment Tests	Solderability	To determine the solderability of leads which are connected by soldering. Standard test conditions: Solder bath temperature: $230 \pm 5^{\circ} \mathrm{C}$, Dip time: 5 ± 0.5 sec. Solder composition: $\mathrm{Pb}: \mathrm{Sn}=4: 6$, used with rosin flux.	JIS C 7022: A-2 MIL-STD-883 C 2003
	Seal (Hermeticity)	To determine the effectiveness of the seal of hermetically sealed devices. (1) Fine leak detection (helium): measured with a helium detector after storage in an He atmosphere at a prescribed pressure for a designated time period. (2) Gross leak observation (bubbles): observation of bubbles formed by a fluorocarbon or silicone oil.	JIS C 7022: A-6 MIL-STD-883 C 1014 IEC Pub. 68 Test Q
	Salt Atmosphere (Corrosion)	To determine resistance to corrosion in a salt fog. Standard test conditions: Exposure to salt spraying conditions of salt concentration, $5 \pm 1 \%$. Spray rate: $0.5 \sim 3 \mathrm{ml} / 80 \mathrm{~cm}^{3} / \mathrm{h}$ Salt fog temperature: $35 \pm 2^{\circ} \mathrm{C}$ for a designated period of time.	JIS C 7022: A-12 MIL-STD-883 C 1009 IEC Pub. 68 Test Ka
Life Tests	High Temperature Operation	```To determine resistance to prolonged operating stress, electrical and thermal. Standard test conditions: \(\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\text {op MAX }}\) Operating source voltage \(=\) Max. operating voltage```	JIS C 7022: B-1 MIL-STD-883 C 1005
	High Temperature Storage	To determine resistance to prolonged high temperature storage. Standard test conditions: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\text {stg }}$ MAX	$\begin{array}{\|l} \text { JIS C 7022: B-3 } \\ \text { MIL-STD-883 C } 1008 \end{array}$
	Low Temperature Storage	To determine resistance to prolonged low temperature storage. Standard test conditions: $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{stg}} \mathrm{MIN}$	JIS C 7022: B-4 IEC Pub. 68 Test A
	High Temperature/ High Humidity Bias	To determine resistance to prolonged temperature, humidity and electrical stress. Standard test conditions: $85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$ Applied voltage $=\mathrm{V}_{\text {TYPICAL }}$	JIS C 7022: B-5 IEC Pub. 68 Test C
	High Temperature/ High Humidity Storage	To determine resistance to prolonged storage at high temperature and humidity. Standard test conditions: (1) $60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ (2) $85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$	JIS C 7022: B-5 IEC Pub. 68 Test C

Table 2. (cont'd)
Reliability Test Items

CLASSIFICATION	TEST	PURPOSE \&CONDITIONS	REFERENCE STANDARDS
Miscellaneous	Pressure Cooker (PCT)	To evaluate moisture resistance in a short period of time. Standard test conditions: $121^{\circ} \mathrm{C}$, 2atm, no electrical load. 100% RH	EIAN IC-121: 18
	Composite Test	Several tests (selected from those listed above) performed in series to effectively evaluate product. Example; for a surface mount device: High-Temperature/High-Humidity Storage \rightarrow Soldering Heat Resistance \rightarrow Pressure cooker (PCT)	
	Electrostatic Discharge Strength	To determine resistance to electrostatic stress. Standard test conditions: (1) Human body model: Earth capacity $\mathrm{C}=100 \mathrm{pF}$, equivalent Resistance $\mathrm{R}=1.5 \mathrm{k} \Omega$ (2) Machine model: Earth capacity $\mathrm{C}=200 \mathrm{pF}$, equivalent Resistance $\mathrm{R}=0 \Omega$	MIL-STD-883 C 3015 EIAN IC-121:20
	Latch-Up Strength	To determine resistance to latch-up. Standard test conditions: (1) Condenser charge (2) Current application (3) Vcc overvoltage application	

Figure 4a. Quality Assurance System

Figure 4b. Quality Assurance System

Reliability Tests

Reliability Test Methods

Reliability tests should always have good reproducibility. Thus, reliability tests for IC devices are based on standardized test methods. Such uniform testing standards include those established by JIS (Japanese Industrial Standard), MIL (U.S. MILitary Standard), EIAJ (Electronic Industries Association of Japan) and IEC (International Electrotechnical Commission). As indicated in Table 2, however, Sharp has established its own testing method based on these standards.

Advances in semiconductor device technology are astonishing, and they call for higher quality and reliability standards. Improved failure analysis techniques are therefore necessary to ensure semiconductor device reliablity.

The causes of semiconductor device failure are becoming increasingly diverse. This diversity is the result of element and interconnect miniaturization required for higher integration. It is also due to an increasingly complex manufacturing process with an increased num-
ber of steps from the wafer fabrication process to the assembly process.

Failure analysis is the use of human, physical and electrical analytical procedures to clarify the failure mechanisms of defective parts. It is used to evaluate defective items appearing throughout the life of parts: during the semiconductor manufacturing process, outgoing inspections and reliability testing; during the user's incoming inspections, processing and reliability testing; and during operation in the field.

The ultimate goal of failure analysis is to prevent the recurrence of failure. It is necessary to establish various measures based on the results of failure analysis and to feed those measures back to the manufacturing process and product users.

Sharp has an on-going program of supplying users with our own quality data, reliability test data, etc., upon request. It is just one of Sharp's efforts to maintain a high degree of user service. Figure 5 illustrates Sharp's Quality Information Routes.

MD-12
Figure 5. Routes through which malfunctions outside the company are handled.

Handling Precautions

All the semiconductor products listed in this data book are manufactured based on exacting designs and under comprehensive quality control. However, to take full advantage of the features offered and to assure each products' long-life service, please refer to the following items.

Maximum Ratings

It is generally known that the failure rate of semiconductor products increases as the temperature increases. It is therefore necessary that the ambient temperature be within the maximum rated temperature. Further, it is desirable from the stand-point of reliability that the ambient temperature be lowered as much as possible. The voltage, current, and electric power used are also factors that significantly influence the life of semiconductor products. Voltage or current that exceeds the rated level may damage the semiconductor product; even if applied only momentarily and the unit continues to operate properly, excessive voltage or current will likely increase the failure rate.

Therefore, in actual circuit design, it is important that the semiconductor products have an allowance with respect to the voltage, current and temperature conditions under which they will be used. The greater this allowance, the fewer the failures that will occur.

To keep failures to a minimum, the circuit should be designed so that under all conditions to absolute maximum, the ratings are not exceeded even momentarily and so that the maximum values for any two or more items are not achieved simultaneously. In addition, remember that the circuit functions of semiconductor products are guaranteed within the operating temperature range (Topr) or the absolute maximum ratings, but that storage temperature (Tstg) is the range in a nonoperating condition.

Storage Precautions

General Storage Precautions

a. Storing product in the packing in which it is shipped is recommended. If transferred to a different container, use one that will not readily carry an electrostatic charge.
b. Store at conditions of normal temperature $\left(5-35^{\circ} \mathrm{C}\right)$ and normal humidity ($45-75 \% \mathrm{RH}$).
c. Avoid storing product in the presence of corrosive gases or dusty areas.
d. Avoid storing product in areas of direct sunlight or where sudden temperature changes will occur.
e. Avoid stacking product or otherwise applying heavy loads.
f. In the case of extended storage, take particular care against corrosion and deterioration in lead solderability. Inspecting such product before use is recommended.

Basic Electrostatic Discharge Countermeasures

Semiconductor device mounting requires exacting precautions to avoid applying excessive static electricity to the semiconductor. Item (a) - (c) below are basic electrostatic discharge countermeasures.
a. Use humidifiers and the like to ensure against excessively low relative humidity in the work environment. (Maintaining relative humidity consistently above 50% is ideal).
b. To prevent sudden electrostatic discharge, spread high-resistance electroconductive mats (about $10^{6} \Omega$) over workbenches and have workers wear wrist (ground) straps.

Have workers wear clothing made of charge-resistant cotton, noncharging materials $\left(10^{9}-10^{14} \Omega\right)$ or static electricity dissipating materials $\left(10^{5}-10^{9} \Omega\right)$. Anti-static foot apparel is also effective.
c. Ionizers (ionized air blowers) are effective when it is difficult to discharge static electricity from mounting equipment, contacting dielectrics and semiconductors.

Sharp recommends using static electricity measuring devices to quantify electrostatic charges and develop effective countermeasures.

When forming the lead wires of semiconductor products to be mounted, forceps or a similar tool that will prevent stress from being applied to the base of the wires should be used.

To prevent the input terminals of semiconductor products on completed printed circuit boards from becoming open during storage or transport, the terminals of the circuit board should be shortcircuited or the entire circuit board itself should be wrapped in aluminium foil.

Figure 6. Failure Analysis Procedure

Soldering and Cleaning

When a semiconductor product is solder-bonded, specify the best conditions according to Table 4. If using a soldering iron, use one that doesn't leak from the soldering tip. An 'A Class' soldering iron with an insulation resistance of less than $10 \mathrm{M} \Omega$ is recommended. When using a solder bath, it should be grounded to prevent an unstable electric potential.

Using a strongly acidic or alkaline flux for soldering can cause corrosion of the lead wires. A rosin flux is ideal for this type of soldering.

To assure the reliability of a system, removal of the solder flux is generally required.

To prevent stress of semiconductor products and circuit boards when using ultrasonic cleaning, a cleaning method must be used that will shadow the main unit from the vibrator and specify the best conditions according to the following:

Table 3.
Recommended Conditions for PC Board Cleaning

Ultrasonic Power	less than $25 \mathrm{~W} / \mathrm{I}$
Cleaning Conditions	less than one minute total
Cleaning Solution Temperature	15 to $40^{\circ} \mathrm{C}$

Adjustment and Tests

When the set is to be adjusted and tested upon completion of the printed circuit board, the printed circuit board must be checked to ensure that there are no solder bridges or cracks before the power is turned on. Also, if the market-rated voltage and current are to be used, it is wise to use a current limiter.

Whenever a printed circuit board is to be removed or mounted, or mounted on a socket, the power must be turned off.

When testing with a probe, care must be taken to assure that the probe does not come in contact with other signals or the power supply. If the test location has been decided beforehand, it is wise to set up a specially designed test-pin for testing.

When testing in high and low temperatures, the con-stant-temperature bath must be grounded and measures taken to protect the set inside the bath from static electricity.

Table 4 outlines the semiconductor bonding and testing methods.

Table 4.
Semiconductor Bonding and Testing Methods

BONDING METHOD	TEMPERATURE AND TIME	TEST POSITION
Infrared reflow	Peak temp. $240^{\circ} \mathrm{C}$ or less $230^{\circ} \mathrm{C}$ or more within 15 sec. Heating speed: 1 to $4^{\circ} \mathrm{C} / \mathrm{sec}$.	Surface IC package
Flow dipping	$245^{\circ} \mathrm{C}$ or less Within 3 sec./cycle Within 5 sec. in total	Solder bath
VPS	$215^{\circ} \mathrm{C}$ or less $250^{\circ} \mathrm{C}$ or less, within 40 sec.	Steam
Hand soldering	$260^{\circ} \mathrm{C}$ or less, within 10 sec.	IC outer lead

TIMING DIAGRAM CONVENTIONS

TIMING DIAGRAM
\qquad

川

HIGH or LOW

HIGH-to-LOW transitions allowed

LOW-to-HIGH transitions allowed

Don't care
INPUT FUNCTIONS
(Does not apply)

OUTPUT FUNCTIONS

HIGH or LOW

HIGH-to-LOW transitions during designated interval

LOW-to-HIGH transitions during designated interval

State unknown or changing

Centerline is high-impedance

GENERAL INFORMATION - 1

DYNAMIC RAMs - 2

PSEUDO STATIC RAMs - 3

STATIC RAMs - 4

EPROMs/OTPROMs - 5

MASK PROGRAMMABLE ROMS - 6

FIFO MEMORIES - 7

FIELD MEMORIES - 8

APPLICATION AND TECHNICAL INFORMATION - 9

PACKAGING - 10

FEATURES

- $262,144 \times 1$ bit organization
- Access times: $100 / 120 / 150 \mathrm{~ns}$ (MAX.)
- Cycle times: 200/230/260 ns (MIN.)
- Page mode operation (LH21256) Nibble mode operation (LH21257) Byte mode operation (LH21258)
- Power supply: $+5 \mathrm{~V} \pm 10 \%$
- Power consumption:

Operating: 440/440/385 mW (MAX.)
Standby: 27.5 mW (MAX.)

- TTL compatible I/O
- Built-in gated $\overline{\mathrm{CAS}}$ function
- Separate I/O allows Early-Write action
- Available for read modify write $\overline{\text { RAS }}$ only refresh, hidden refresh, $\overline{\mathrm{CAS}}$ before RAS refresh
- 256 refresh cycle (refreshing time 4 ms)
- Built-in high output bias generator circuit
- Packages:

16-pin, 300 -mil DIP
16 -pin, 325 -mil ZIP

DESCRIPTION

The LH21256/7/8 is a 262,144 word $\times 1$ bit dynamic RAM fabricated using N -channel 2-layer polysilicon gate process technology. With mulitiplexed address inputs and standard 16-pin DIP/ZIP packages, it is easy to comprise memory systems with high speed, low power consumption and large memory capacity. The LH21256/7/8 operates on a single +5 V power supply. The built-in high output substrate bias generator circuit eliminates sensitivity to undershoot on the input signals.

PIN CONNECTIONS

Fig. 1. Pin Connections for DIP \& ZIP Packages

Figure 2. LH21256/7/8 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{\mathbf{8}}$	Address input
$\overline{\mathrm{RAS}}$	Row address strobe
$\overline{\mathrm{CAS}}$	Column address strobe
$\overline{\mathrm{WE}}$	Write enable

SIGNAL	PIN NAME
DIN	Data input
Dout	Data output
V_{CC}	Power supply $(+5 \mathrm{~V})$
$\mathrm{V}_{\text {SS }}$	Power supply $(0 \mathrm{~V})$

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{T}	-1.0 to 7.0	V	1
Output short-circuit current	lo	50	mA	
Power consumption	PD	1.0	W	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. Referenced to V_{ss}

RECOMMENDED OPERATING CONDITIONS (TA = 0 to $+\mathbf{7 0}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	V_{CC}	4.5	5.0	5.5	V	1
	$\mathrm{~V}_{\mathrm{SS}}$	0	0	0		
Input voltage	V_{IH}	2.4		6.5	V	1
	$\mathrm{~V}_{\mathrm{IL}}$	-1.0		0.8		

NOTE:

1. Referenced to Vss

CAPACITANCE (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER		SYMBOL	MIN.	TYPICAL	MAX.	UNIT
Input capacitance	$A_{0}-A_{8}$, Din, WE	$\mathrm{Cl}_{1 \times 1}$			5	pF
	$\overline{\text { RAS, }}$ CAS	$\mathrm{C}_{1 \times 2}$			7	pF
Output capacitance	Dout	Cout			7	pF

DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER		SYMBOL	MIN.	MAX.	UNIT	NOTE
Average supply current in normal operation	LH21256/7/8-10	lcc1	-	80	mA	1,2
	LH21256/7/8-12		-	80		
	LH21256/7/8-15		-	70		
Average supply current in standby mode		lcc2	-	5.0	mA	1
Average supply current in RAS only refresh time	LH21256/7/8-10	Icc3	-	60	mA	1,2
	LH21256/7/8-12		-	60		
	LH21256/7/8-15		-	55		
Average supply current in page mode	LH21256-10	Icc4	-	50	mA	1,2
	LH21256-12		-	45		
	LH21256-15		-	40		
Average supply current in nibble mode	LH21257-15	Icc4	-	65	mA	1,2
	LH21257-10		-	49		
	LH21257-12		-	49		
Average supply current in byte mode	LH21258-10	Icc4	-	60	mA	1,2
	LH21258-12		-	55		
	LH21258-15		-	50		
$\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ average supply current in refresh cycle	LH21256/7/8-10	Icc5	-	65	mA	1,2
	LH21256/7/8-12		-	60		
	LH21256/7/8-15		-	55		
Input leakage current	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 6.5 \mathrm{~V} \\ & 0 \mathrm{~V} \text { on all other pins } \end{aligned}$	$11(L)$	-10	10	$\mu \mathrm{A}$	
Output leakage current	$0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 6.5 \mathrm{~V}$ Output in highimpedance state	lo(L)	-10	10	$\mu \mathrm{A}$	
Output "High" voltage	lout $=-5 \mathrm{~mA}$	VOH	2.4	-	V	
Output "Low" voltage	lout $=4.2 \mathrm{~mA}$	V OL	-	0.4	V	

NOTES:

1. The output pins are in high-impedance state.
2. Icc1, IcC3, ICC4 and Icc5 depend on the cycle time.

AC CHARACTERISTICS ${ }^{1,2,3}$（VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ ）

PARAMETER	SYMBOL	LH21256／7／8－10		LH21256／7／8－12		LH21256／7／8－15		UNIT	NOTE
		MIN．	MAX．	MIN．	MAX．	MIN．	MAX．		
Random read／write cycle time	$\mathrm{t}_{\text {R }}$	200	－	230	－	260	－	ns	
Read write cycle time	$\mathrm{t}_{\text {RWC }}$	240	－	275	－	310	－	ns	
Access time from $\overline{\text { RAS }}$	$\mathrm{t}_{\text {RAC }}$	－	100	－	120	－	150	ns	4，6
Access time from $\overline{\text { CAS }}$	tcac	－	50	－	60	－	75	ns	5，6
Output turn－off delay time	toff	0	30	0	35	0	40	ns	
Rise and fall time	t T	3	35	3	35	3	35	ns	3
$\overline{\text { RAS }}$ precharge time	trp	85	－	100	－	100	－	ns	
$\overline{\text { RAS }}$ pulse width	tras	100	10，000	120	10，000	150	10，000	ns	
$\overline{\text { RAS }}$ hold time	trsh	50	－	60	－	75	－	ns	
$\overline{\text { CAS }}$ precharge time	tcPN	25	－	30	二	35	－	ns	
$\overline{\text { CAS }}$ pulse width	tcas	50	10，000	60	10，000	75	10，000	ns	
$\overline{\text { CAS }}$ hold time	tcsh	100	－	120	－	150	－	ns	
$\overline{\mathrm{CAS}}$ hold time（ $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ ）	$\mathrm{t}_{\mathrm{FCH}}$	100	－	120	－	150	－	ns	
$\overline{\mathrm{CAS}}$ set up time（ $\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$ ）	tFCS	10	－	10	－	30	－	ns	
$\overline{\mathrm{RAS}} / \overline{\mathrm{CAS}}$ delay time	tricd	20	50	25	60	30	75	ns	7，8
$\overline{\text { CAS／RAS }}$ precharge time	tcrp	10	－	10	－	30	－	ns	
Row address setup time	tasr	0	－	0	－	0	－	ns	
Row address hold time	$\mathrm{trah}^{\text {a }}$	10	一	15	－	20	－	ns	
Column address setup time	tasc	0	－	0	－	0	－	ns	
Column address hold time	$\mathrm{t}_{\text {cah }}$	25	－	25	－	45	－	ns	
Column address hold time from $\overline{\text { RAS }}$	$t_{\text {AR }}$	75	－	90	－	120	－	ns	
Read command setup time	trics	0	－	0	－	0	－	ns	
Read command hold time	$t_{\text {RCH }}$	0	－	0	－	0	－	ns	11
Read command hold time from $\overline{\text { RAS }}$	trRH	10	－	10	－	20	－	ns	11
Write command setup time	twas	0	－	0	－	0	－	ns	10
Write command hold time	twCH	35	－	40	－	45	－	ns	
Write command hold time from $\overline{\text { RAS }}$	twCR	85	－	100	－	120	－	ns	
Write command pulse width	twp	35	－	40	－	45	－	ns	
Write command $\overline{\text { RAS }}$ read time	trwi	35	－	40	一	45	－	ns	
Write command $\overline{\text { CAS }}$ read time	tcw	35	－	40	－	45	－	ns	
$\overline{\text { RAS }}$ write command delay time	trwo	95	－	120	－	150	－	ns	
$\overline{\text { CAS }}$ write command delay time	tcwo	45	－	60	－	75	－	ns	
Data input setup time	tos	0	－	0	一	0	－	ns	9
Data input hold time	t_{DH}	30	－	30	－	35	－	ns	9
Data input hold time from $\overline{\text { RAS }}$	tohR	80	－	90	一	110	－	ns	
Refresh time	$\mathrm{t}_{\text {Ref }}$	－	4	－	4	－	4	ms	
$\overline{\text { RAS }}$ precharge $\overline{\text { CAS }}$ hold time	$t_{\text {RPC }}$	0	－	0	－	0	－	ns	

NOTES：

1．For proper operation，at least 500μ s of pause time after power－on followed by several initialization cycles（usually 8 ordinary refresh cycles）should be given．
2．$A C$ characteristics assume $t=5 \mathrm{~ns}$ ．（t t refers to the transition time between V_{H} and V_{IL} ．）
3．Timing measurements are referenced to V_{H}（MIN．）and V_{IL} （MAX．）．
4．Only when $t_{R C D} \leq t_{R C D}$（MAX．）．If $t_{R C D}>t_{R C D}$（MAX．），$t_{R A C}$ will increase by（trcD－tracd（MAX．））
5．When $t_{R C D} \geq t_{\text {RCD }}$（MAX．）．
6．Load condition for $2 T T L+100 \mathrm{pF}$ ．
7．$t_{R C D}(M A X$.$) is the maximum point for t_{R C D}$ where $t_{R A C}$（MAX．）is ensured，and does not represent a limit of operation．If $t_{R C D}$ （MAX．）$\leq \mathrm{t}_{\mathrm{RCD}}$ ，the access time is controlled by $\mathrm{t}_{\mathrm{CAC}}$ ．

8．$t_{\text {RCD }}(M I N)=.t_{\text {RAH }}(M I N)+.2 t_{T}+t_{\text {ASC }}($ MIN．$)$ ．
9．tos and tDH are given with respect to the fall of $\overline{C A S}$ in the Early－Write cycle and fall of WE in the read／write cycle and the Read－Modify－Write cycle．
10．twes，towo and trwo are the specified points of the operating mode，and do not represent a limit of operation．When twcs \geq twcs（MIN．），it comes into early write cycle with Dout pin coming into high－impedance state．When tcwo \geq tcwo（MIN．）and trwo \geq trwo（MIN．），it comes into the read／write cycle with the output data becoming the information for the selection cell．Timing other than the above－mentions will give undefined value of output．
11．The operation is ensured when either $t_{R C H}$ or $\operatorname{trRH}^{\prime}$ is satisfied．

Figure 3. Read Cycle

Figure 4. Write Cycle (Early Write)

21256-5
Figure 5. Read-Write/Read-Modify-Write Cycle

NOTE: $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{H}}$
Figure 6. $\overline{\text { RAS }}$ Only Refresh Cycle

Figure 7. Hidden Refresh Cycle

Figure 8. $\overline{\text { CAS }}$ Before $\overline{\mathrm{RAS}}$ Refresh Cycle

PAGE MODE CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL		LH21256-10		LH21256-12		LH21256-15		UNIT
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Page mode cycle time	tPC	100	-	120	-	145	-	ns	
CAS precharge time	tcP	40	-	50	-	60	-	ns	

Figure 9. Page Mode Read Cycle

Figure 10. Page Mode Write Cycle

NIBBLE MODE CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm 10 \%$, $\mathrm{TA}_{\mathrm{A}}=0$ to $\boldsymbol{+ 7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	LH21257-10		LH21257-12		LH21257-15		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Nibble mode access time	tNAC	-	25	-	30	-	35	ns	
Nibble mode $\overline{\mathrm{RAS}}$ cycle time	tnRC	400	-	460	-	520	-	ns	
Nibble mode $\overline{\text { RAS }}$ pulse width	tNRA	300	-	350	-	410	-	ns	
Nibble mode cycle time	tnc	60	-	65	-	80	-	ns	
Nibble mode $\overline{\text { CAS }}$ precharge time	$t_{\text {NCP }}$	25	-	25	-	35	-	ns	
Nibble mode $\overline{\text { CAS }}$ pulse width	tnca	25	-	30	-	35	-	ns	
Nibble mode $\overline{\text { RAS }}$ hold time	tNRSH	45	-	50	-	55	-	ns	
Nibble mode $\overline{\mathrm{CAS}} / \overline{\mathrm{WE}}$ delay	tncwd	15	-	20	-	25	-	ns	
Nibble mode write command CAS lead time	tNCWL	20	-	25	-	25	-	ns	
Nibble mode write command RAS lead time	tNRWL	40	-	45	-	55	-	ns	
Nibble mode write command pulse width	tnWP	20	-	25	-	35	-	ns	

Figure 11. Nibble Mode Read Cycle

NOTES:

1. Row address
2. Column address

Figure 12. Nibble Mode Write Cycle

Figure 13. Nibble Mode Read-Modify-Write Cycle

BYTE MODE CHARACTERISTICS (Vcc = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH21258-10		LH21258-12		LH21258-15		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Byte mode access time	tBAC	-	25	-	30	-	35	ns	
Byte mode $\overline{\mathrm{RAS}}$ cycle time	tBRC	640	-	740	-	840	-	ns	
Byte mode $\overline{\mathrm{RAS}}$ pulse width	tBRA	540	-	630	-	730	-	ns	
Byte mode cycle time	$t_{B C}$	60	-	70	-	80	-	ns	
Byte mode $\overline{\text { CAS }}$ precharge time	tBCP	25	-	30	-	35	-	ns	
Byte mode CAS pulse width	tBCA	25	-	30	-	35	-	ns	
Byte mode RAS hold time	tBRSH	45	-	50	-	55	-	ns	
Byte mode $\overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ delay	tBCWD	15	-	20	-	25	-	ns	
Byte mode write command CAS lead time	tBCWL	20	-	25	-	25	-	ns	
Byte mode write command $\overline{\text { RAS }}$ lead time	tBrwL	40	-	45	-	55	-	ns	
Byte mode write command pulse width	tBWP	20	-	25	-	35	-	ns	

NOTES:

1. Row address
2. Column address
(1), (2) \ldots. (7), (8): Valid data-out number

21256-14
Figure 14. Byte Mode Read Cycle

NOTES:

1. Row address
2. Column address

Figure 15. Byte Mode Write Cycle

NOTES:

1. Row address
2. Column address
(1), (2) \ldots. (7), (8): Valid data-out number

Figure 16. Byte Mode Read-Modify-Write Cycle

ORDERING INFORMATION

Example: LH21256-10 (NMOS 256K (256K x 1) Dynamic RAM, 100 ns , 16-pin, 300-mil DIP, Page Mode)

LH2464

FEATURES

- $65,536 \times 4$ bit organization
- Access times: 100/120/150 ns (MAX.)
- Cycle times: 200/220/260 ns (MIN.)
- Page mode, Read-Modify-Write operation
- Power supply: +5 V $\pm 10 \%$
- Power consumption (MAX.):

Operating: 523/457/413 mW (MAX.)
Standby: 27.5 mW

- TTL compatible I/O
- Built-in gated $\overline{\mathrm{CAS}}$ function
- Early-write or $\overline{\mathrm{OE}}$ control allows bus management of the data-out buffer
- $\overline{R A S}$ only refresh, Hidden refresh, $\overline{\mathrm{CAS}}$ before $\overline{R A S}$ refresh capability
- 256 refresh cycle (refreshing time 4 ms)
- Built-in high output substrate bias generator circuit
- Package:

18-pin, 300-mil DIP

DESCRIPTION

The LH2464 is a $65,536 \times 4$ bit dynamic RAM fabricated using N -channel 2-layer polysilicon gate process technology. With multiplexed address inputs and a standard 18-pin DIP package, it is easy to comprise memory systems with high speed, low power consumption and large memory capacity. The LH2464 operates on a single +5 V power supply. The built-in high output substrate bias generator circuit eliminates sensitivity to undershoot on the input signals.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. LH2464 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$A_{0}-A_{7}$	Address input
$\overline{\text { RAS }}$	Row address strobe
$\overline{\text { CAS }}$	Column address strobe
$\overline{\text { WE }}$	Write enable

SIGNAL	PIN NAME
$\overline{\mathrm{OE}}$	Output enable
$\mathrm{V} / \mathrm{O}_{1}-\mathrm{l} / \mathrm{O}_{4}$	Data input/output
VCC	Power supply (+5 V)
VSS	Power supply (0 V)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{T}	-1.0 to +7.0	V	1
Output short-circuit current	lo	50	mA	
Power consumption	PD	1.0	W	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. Referenced to Vss

RECOMMENDED OPERATING CONDITIONS ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	V_{CC}	4.5	5.0	5.5	V	1
	$\mathrm{~V}_{\mathrm{SS}}$	0	0	0		
Input voltage	V_{IH}	2.4		6.5	V	1
	$\mathrm{~V}_{\mathrm{IL}}$	-1.0		0.8		

NOTE:

1. Referenced to V_{ss}

CAPACITANCE (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$\mathrm{C}_{\mathrm{IN} 1}$			5	pF
	$\overline{\mathrm{OE}, \overline{\mathrm{WE}}}$	$\mathrm{C}_{\mathrm{IN} 2}$			7	
	$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$	$\mathrm{C}_{\mathrm{IN} 2}$			10	
Input/Output capacitance	$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$	C_{IO}			8	pF

DC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER		SYMBOL	MIN.	MAX.	UNIT	NOTE
Average supply current in normal operation	LH2464-10	Icce	-	95	mA	1,2
	LH2464-12		-	83		
	LH2464-15		-	75		
Average supply current in the standby mode		ICC2	-	5.0	mA	1
Average supply current in RAS only refresh time	LH2464-10	Icc3	-	85	mA	1,2
	LH2464-12		-	63		
	LH2464-15		-	65		
Average supply current in page mode	LH2464-10	Icc4	-	70	mA	1
	LH2464-12		-	60		
	LH2464-15		-	50		
$\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ average supply current in refresh cycle	LH2464-10	Icc5	-	85	mA	1,2
	LH2464-12		-	70		
	LH2464-15		-	65		
Input leakage current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq 6.5 \mathrm{~V}$ 0 V on all other pins	LL1	-10	10	$\mu \mathrm{A}$	
Output leakage current	$0 \mathrm{~V} \leq \mathrm{VOUT}^{\leq} \leq 6.5 \mathrm{~V}$ Output in high-impedance state	lo	-10	10	$\mu \mathrm{A}$	
Output "High" voltage	lout $=-2 \mathrm{~mA}$	VOH	2.4	-	V	
Output "Low" voltage	lout $=4.2 \mathrm{~mA}$	Vol	-	0.4	V	

NOTES:

1. The output pins are in high-impedance state.
2. Icc1, Icc3, lec4, and Icc5 depend on the cycle time.

AC CHARACTERISTICS ${ }^{1,2,3}$ (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH2464-10		LH2464-12		LH2464-15		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Random read/write cycle time	$\mathrm{t}_{\text {RC }}$	200	-	220	-	260	-	ns	
Read write cycle time	$\mathrm{t}_{\text {RWC }}$	280	-	305	-	360	-	ns	
Page mode cycle time	tpe	100	-	120	-	145	-	ns	
Access time from $\overline{\text { RAS }}$	trac	-	100	-	120	-	150	ns	4,6
Access time from $\overline{\mathrm{CAS}}$	tcac	-	50	-	60	-	75	ns	5,6
Output turn off delay time	toff	0	30	0	30	0	40	ns	
Rise and fall time	tT	3	35	3	35	3	35	ns	3
$\overline{\text { RAS }}$ precharge time	trp	90	-	90	-	100	-	ns	
$\overline{\text { RAS }}$ pulse width	tras	100	10,000	120	10,000	150	10,000	ns	
$\overline{\text { RAS }}$ hold time	tash	50	-	60	-	75	-	ns	
Refresh counter test cycle time	tric	385		445		520		ns	12
Refresh counter test $\overline{\text { RAS }}$ pulse width	ttras	285		335		410		ns	12
$\overline{\text { CAS }}$ precharge time	tcp	40	-	50	-	60	-	ns	
$\overline{\text { CAS }}$ pulse width	tcas	50	10,000	60	10,000	75	10,000	ns	
$\overline{\text { CAS }}$ hold time	tcsi	100	-	120	-	150	-	ns	
$\overline{\mathrm{CAS}}$ hold time ($\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$)	$\mathrm{tFCH}^{\text {che }}$	100	-	120	-	150	-	ns	
$\overline{\text { CAS }}$ setup time ($\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$)	tras	10	-	10	-	30	-	ns	
RAS/CAS delay time	tricd	20	50	25	60	30	75	ns	7,8
CAS//̄AS precharge time	tcra	10	-	10	-	30	-	ns	
Row address setup time	tasp	0	-	0	-	0	-	ns	
Row address hold time	$\mathrm{t}_{\text {fah }}$	10	-	15	-	20	-	ns	
Column address setup time	tasc	0	-	0	-	0	-	ns	
Column address hold time	tcah	20	-	20	-	45	-	ns	
Column address hold time from $\overline{\text { RAS }}$	tar	75	-	80	-	120	-	ns	
Read command setup time	tras	0	-	0	-	0	-	ns	
Read command hold time	$\mathrm{t}_{\text {RCH }}$	0	-	0	-	0	-	ns	10
Read command hold time from $\overline{\text { RAS }}$	trRh	10	-	10	-	20	-	ns	10
Write command setup time	twas	0	-	0	-	0	-	ns	9
Write command hold time	twCH	35	-	40	-	45	-	ns	
Write command hold time from $\overline{\text { RAS }}$	twCR	85	-	100	-	120	-	ns	
Write command pulse width	twp	35	-	40	-	45	-	ns	
Write command $\overline{\text { RAS }}$ lead time	trwL	35	-	40	-	45	-	ns	
Write command CAS lead time	tcw	35	-	40	-	45	-	ns	
$\overline{\mathrm{RAS}}$ write command delay time	thwo	140	-	160	-	200	-	ns	
$\overline{\text { CAS }}$ write command delay time	tcwo	90	-	100	-	125	-	ns	
Data input setup time	tos	0	-	0	-	0	-	ns	
Data input hold time from $\overline{\text { CAS }}$	tohe	35	-	40	-	45	-	ns	
Data input hold time from $\overline{\mathrm{RAS}}$	tDHR	85	-	100	-	120	-	ns	
Refresh interval	tref	-	4	-	4	-	4	ns	
$\overline{\text { RAS }}$ precharge $\overline{\text { CAS }}$ hold time	trpe	0	-	0	-	0	-	ns	
$\overline{\mathrm{OE}}$ command hold time	Loem	25	-	25	-	40	-	ns	11
$\overline{\mathrm{OE}}$ access time	toea	-	25	-	30	-	40	ns	
$\overline{\mathrm{OE}}$ to data delay	toed	30	-	30	-	40	-	ns	
Output buffer turn-off delay time from $\overline{\mathrm{OE}}$	Loez	0	30	0	30	0	40	ns	
Data input hold time from $\overline{W E}$	tDHW	35	-	40	-	45	-	ns	

NOTES:

1. For proper operation, at least 500μ s of pause time after power-on followed by several initialization cycles (usually 8 ordinary refresh cycles) should be given.
2. AC characteristic assume $\mathrm{tT}=5 \mathrm{~ns}$. (t t refers to the transition time between $V_{I H}$ and $V_{I L}$.)
3. Timing measurements are referenced to V_{IH} (MIN.) and V_{IL} (MAX.).
4. Only when $t_{R C D} \leq t_{R C D}(M A X$.$) . If t_{R C D}>t_{R C D}$ (MAX.), $t_{R A C}$ will increase by ($\mathrm{t}_{\text {RCD }}-\mathrm{t}_{\text {RCD }}$ (MAX.)).
5. When $t_{R C D} \geq t_{R C D}$ (MAX.).
6. Load condition for $2 T T L+100 \mathrm{pF}$.
7. trCD (MAX.) is the max. point foi tred where trAC (MAX.) is ensured, and doesn't represent a limit of operation. If trCD (MAX.) $\leq t_{R C D}$, the access time will come under the control of tcac.
8. $t_{\text {RCD }}($ MIN. $)=t_{\text {RAH }}(M I N)+.2 t T+t_{\text {ASC }}(M I N).$.
9. When twcs \geq twcs (MIN.), it comes into early write cycle.
10. The operation is ensured when either $t_{R C H}$ or $t_{R R H}$ is satisfied.
11. Only when twcs < twcs (MIN.), it must be satisfied.
12. Only when in $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ refresh counter test cycle.

Figure 3. Read Cycle

2464-4
Figure 4. Write Cycle (Early Write)

Figure 5. Write Cycle ($\overline{\mathrm{OE}}$ Controlled Write)

Figure 6. Read-Write/Read-Modify-Write Cycle

Figure 7. Page Mode Read Cycle

Figure 8. Page Mode Write Cycle

Figure 9. $\overline{\mathrm{RAS}}$ Only Refresh Cycle

Figure 10. $\overline{\text { CAS }}$ Before $\overline{\mathrm{RAS}}$ Refresh Cycle

Figure 11. Hidden Refresh Cycle

Figure 12. $\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refresh Counter Test Cycle

CAS-before-준 Refresh Counter Test Cycle

The $\overline{C A S}$-before-즁 refresh counter test cycle is used to verify the operation of the internal refresh counter. The verification can be done by following the steps as described below.

1. Write "0" into 256 row addresses on a particular column address, which are selected by the internal refresh counter, by the write operation of the CAS-before- $\overline{R A S}$ refresh counter test cycle mode with any given column address.
2. Read and verify " 0 " of the 256 row addresses on the same column in regular read mode by externally supplying address signals.

Then, write " 1 " into the above 256 row addresses in regular write mode.
3. Read and verify "1" of the 256 row addresses in the $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ refresh counter test cycle mode. Refer to timing chart (12) of the $\overline{\text { CAS-before-RAS }}$ refresh counter test cycle.

ORDERING INFORMATION

LH2464	X	- \#\#	
Device Type	Package	Speed	
		L	$\left\{\begin{array}{ll}10 & 100 \\ 12 & 120 \\ 15 & 150\end{array}\right.$ Access Time (ns)
			Blank 18-pin, 300-mil DIP (DIP18-P-300)

Example: LH2464-10 (NMOS 256K ($64 \mathrm{~K} \times 4$) Dynamic RAM, $100 \mathrm{~ns}, 18$-pin, 300 -mil DIP)

LH2465

NMOS 256K (64K $\times 4$) Dynamic RAM

FEATURES

- $65,536 \times 4$ bit organization
- Access times: 120/150 ns (MAX.)
- Cycle times: 220/260 ns (MIN.)
- Nibble-Mode, Read-Modify-Write operation
- Power supply: $+5 \mathrm{~V} \pm 10 \%$
- Power consumption:

Operating: $457 / 413 \mathrm{~mW}$ (MAX.)
Standby: 27.5 mW (MAX.)

- TTL compatible I/O
- Built-in gated $\overline{\mathrm{CAS}}$ function
- Early-write or $\overline{\mathrm{OE}}$ control allows bus management of the data-out buffer
- $\overline{\text { RAS }}$ only refresh, Hidden refresh, $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh capability
- 256 refresh cycle (refreshing time 4 ms)
- Built-in high output substrate bias generator circuit
- Package:

18-pin, 300-mil DIP

DESCRIPTION

The LH2465 is a $65,536 \times 4$ bit dynamic RAM fabricated using N -channel 2 -layer polysilicon gate process technology. With multiplexed address inputs and a standard 18 -pin DIP package, it is easy to comprise memory systems with high speed, low power consumption and large memory capacity. The LH2465 operates on a single +5 V power supply. The built-in high output substrate bias generator circuit eliminates sensitivity to undershoot on the input signals.

PIN CONNECTIONS

18-PIN DIP
TOP VIEW

Figure 1. Pin Connections for DIP Package

Figure 2. LH2465 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Address input
$\overline{\text { RAS }}$	Row address strobe
$\overline{\mathrm{CAS}}$	Column address strobe
$\overline{\text { WE }}$	Write enable

SIGNAL	PIN NAME
$\overline{\mathrm{OE}}$	Output enable
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$	Data input/output
V CC	Power supply (+5 V)
V SS	Power supply ($\mathbf{0} \mathrm{V}$)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{T}	-1.0 to +7.0	V	1
Output short-circuit current	lo	50	mA	
Power consumption	PD	1.0	W	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. Referenced to Vss

RECOMMENDED OPERATING CONDITIONS ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	VCC^{2}	4.5	5.0	5.5	V	1
	$\mathrm{~V}_{\mathrm{SS}}$	0	0	0		
Input voltage	V_{IH}	2.4		6.5	V	1
	$\mathrm{~V}_{\mathrm{IL}}$	-1.0		0.8		

NOTE:

1. Referenced to Vss

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%$, $\mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$A_{0}-A_{7}$	$\mathrm{Cl}_{\mathrm{N} 1}$			5	pF
	$\overline{O E}, \overline{W E}$	CIN 2			7	
	$\overline{\text { RAS, }}$ CAS	CIN3			10	
Input/Output capacitance	$l / O_{1}-I / O_{4}$	ClO_{0}			8	pF

DC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER		SYMBOL	MIN.	MAX.	UNIT	NOTE
Average supply current in normal operation	LH2465-12	$\mathrm{lcC1}$	-	83	mA	1,2
	LH2465-15		-	75		
Average supply current in standby mode		ICC2	-	5.0	mA	1
Average supply current in RAS only refresh time	LH2465-12	Icc3	-	63	mA	1,2
	LH2465-15		-	65	mA	
Average supply current in nibble mode	LH2465-12	IcC4	-	60	mA	1
	LH2465-15		-	55	mA	
$\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ average supply current in refresh cycle	LH2465-12	lccs	-	70	mA	1,2
	LH2465-15		-	65	mA	
Input leakage current	$\begin{gathered} 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{N}} \leq 6.5 \mathrm{~V} \\ 0 \mathrm{~V} \text { on all other pins } \end{gathered}$	IIL)	-10	10	$\mu \mathrm{A}$	
Output leakage current	$0 \mathrm{~V} \leq \mathrm{Vout}^{\leq 6.5} \mathrm{~V}$ Output in high-impedance state	lo(L)	-10	10	$\mu \mathrm{A}$	
Output "High" voltage	lout $=-2 \mathrm{~mA}$	VOH	2.4	-	V	
Output "Low" voltage	lout $=4.2 \mathrm{~mA}$	VOL	-	0.4	V	

NOTES:

1. The output pins are in high-impedance state.
2. ICC1, ICC3, IcC4, and lcC5 depend on the cycle time.

AC CHARACTERISTICS ${ }^{1,2,3}$ (VCC =5 V $\pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH2465-12		LH2465-15		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
Random read/write cycle time	tric	220	-	260	-	ns	
Read write cycle time	trwc	305	-	360	-	ns	
Access time from $\overline{\text { RAS }}$	$\mathrm{t}_{\text {PAC }}$	-	120	-	150	ns	4,6
Access time from $\overline{\mathrm{CAS}}$	tcac	-	60	-	75	ns	5,6
Output turn off delay time	toff	0	30	0	40	ns	
Rise and fall time	t ${ }^{\text {t }}$	3	35	3	35	ns	3
$\overline{\text { RAS }}$ precharge time	trp	90	-	100	-	ns	
$\overline{\text { RAS }}$ pulse width	tras	120	10,000	150	10,000	ns	
$\overline{\text { RAS }}$ hold time	tesh	60	-	75	-	ns	
$\overline{\text { CAS }}$ precharge time	t_{CP}	50	-	60	-	ns	
$\overline{\text { CAS }}$ pulse width	tcas	60	10,000	75	10,000	ns	
$\overline{\text { CAS }}$ hold time	tcsi	120	-	150	-	ns	
$\overline{\text { CAS }}$ hoid time ($\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$)	$\mathrm{trCH}^{\text {ches }}$	120	-	150	-	ns	
$\overline{\text { CAS }}$ setup time ($\overline{\text { CAS }}$ before $\overline{\mathrm{RAS}})$	trcs	10	-	30	-	ns	
$\overline{\text { RAS/CAS }}$ delay time	$t_{\text {ficd }}$	25	60	30	75	ns	7,8
$\overline{\text { CAS/RAS precharge time }}$	tcRP	10	-	30	-	ns	
Row address setup time	tash	0	-	0	-	ns	
Row address hold time	$\mathrm{t}_{\text {Pah }}$	15	-	20	-	ns	
Column address setup time	tasc	0	-	0	-	ns	
Column address hold time	$\mathrm{t}_{\text {cah }}$	20	-	45	-	ns	
Column address hold time from $\overline{\text { RAS }}$	tar	80	-	120	-	ns	
Read command setup time	trics	0	-	0	-	ns	
Read command hold time	trich	0	二	0	一	ns	10
Read command hold time from RAS	trRH	10	-	20	-	ns	10
Write command setup time	twcs	0	-	0	-	ns	9
Write command hold time	twCH	40	-	45	-	ns	
Write command hold time from $\overline{\text { RAS }}$	twCR	100	-	120	-	ns	
Write command pulse width	twp	40	-	45	-	ns	
Write command $\overline{\text { RAS }}$ lead time	trwL	40	-	45	-	ns	
Write command $\overline{\text { CAS }}$ lead time	tcw	40	-	45	-	ns	
$\overline{\text { RAS }}$ write command delay time	trwo	160	-	200	-	ns	
$\overline{\text { CAS }}$ write command delay time	tewo	100	-	125	-	ns	
Data input setup time	tos	0	-	0	-	ns	
Data input hold time from $\overline{\text { CAS }}$	to ${ }_{\text {che }}$	40	-	45	-	ns	
Data input hold time from $\overline{\text { RAS }}$	tDHR	100	-	120	-	ns	
Refresh interval	tref	-	4	-	4	ms	
$\overline{\text { RAS }}$ precharge $\overline{\text { CAS }}$ hold time	trpc	0	-	0	-	ns	
$\overline{\mathrm{OE}}$ command hold time	toen	25	-	40	-	ns	11
$\overline{\mathrm{OE}}$ access time	toea	-	30	-	40	ns	
$\overline{O E}$ to data delay	toed	30	-	40	-	ns	
Output buffer turn-off delay time from $\overline{\mathrm{OE}}$	toez	0	30	0	40	ns	
Data input hold time from $\overline{\text { WE }}$	tohw	40	-	45	-	ns	
Refresh counter test cycle time	tric	445		520		ns	12
Refresh counter test $\overline{\text { RAS }}$ pulse width	ttras	335		410		ns	12

NOTES

1. For proper operation, at least 500μ s of pause time after power-on followed by several initialization cycles (usually 8 ordinary refresh cycles) should be given.
2. AC characteristic assume $t \mathrm{t}=5 \mathrm{~ns}$. (tt refers to the transition time between $V_{I H}$ and $V_{I L}$.)
3. Timing measurements are referenced to $V_{\mathbb{H}}$ (MIN.) and $V_{I L}$ (MAX.).
4. Only when $t_{R C D} \leq t_{R C D}(M A X$.$) . If t_{R C D}>t_{R C D}(M A X$.$) , t_{R A C}$ will increase by (trCD - tRCD (MAX.)).
5. When tRCD \geq tred (MAX.).
6. Load condition for $2 T T L+100 \mathrm{pF}$.
7. $t_{R C D}$ (MAX.) is the maximum point for tRCD where tRAC (MAX.) is ensured, and does not represent a limit of operation. If $t_{R C D}(M A X.) \leq t_{R C D}$, the access time will come under the control of tcac.
8. $t_{\text {RCD }}(M I N)=.t_{\text {RAH }}(M I N)+.2 t_{t}+t_{\text {ASC }}(M I N$.$) .$
9. When twcs \geq twcs (MIN.), it comes into early write cycle.
10. The operation is ensured when either tRCH or trRH is satisfied.
11. Only when twcs < twcs (MIN.), it must be satisfied.
12. Only when in $\overline{\mathrm{CAS}}$-before- $\overline{\mathrm{RAS}}$ refresh counter test cycle.

NIBBLE MODE CHARACTERISTICS (TA = 0 to $+\mathbf{7 0} 0^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	LH2465-12		LH2465-15		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
Nibble mode access time	tnac	-	30	-	35	ns	
Nibble mode RAS cycle time	tNRC	460	-	520	-	ns	
Nibble mode $\overline{\text { RAS }}$ pulse width	tNRA	350	-	410	-	ns	
Nibble mode cycle time	tnc	70	-	80	-	ns	
Nibble mode CAS precharge time	tncP	30	-	35	-	ns	
Nibble mode $\overline{\text { CAS }}$ pulse width	tnca	30	-	35	-	ns	
Nibble mode $\overline{\mathrm{RAS}}$ hold time	tNRSH	50	-	55	-	ns	
Nibble mode $\overline{\text { CAS }} / \overline{W E}$ delay	tncwo	70	-	85	-	ns	
Nibble mode write command $\overline{\text { CAS }}$ lead time	tNCWL	30	-	35	-	ns	
Nibble mode write command hold time	tnwCH	30	-	35	-	ns	
Nibble mode write command pulse width	tNWP	30	-	35	-	ns	

Figure 3. Read Cycle

Figure 4. Write Cycle (Early Write)

Figure 5. Write Cycle ($\overline{O E}$ Controlled Write)

Figure 6. Read-Write/Read-Modify-Write Cycle

Figure 7. Nibble Mode Write Cycle

Figure 8. Nibble Mode Read Cycle

NOTE: $\overline{C A S} \geq \mathrm{V}_{\mathbb{N}}$ (MIN)
Figure 9. $\overline{\text { RAS }}$ Only Refresh Cycle

CAS-Before-쥰 Refresh Counter Test Cycle

The $\overline{\text { CAS }}$-before- $\overline{\mathrm{RAS}}$ refresh counter test cycle is used to verify the operation of the internal refresh counter. The verification can be done by following the steps as described below.
(1) Write " 0 " into 256 row addresses on a particular column address, which are selected by the internal refresh counter, by the write operation of the $\overline{C A S}-b e-$ fore- $\overline{R A S}$ refresh counter test cycle mode with any given column address.
(2) Read and verify " 0 " of the 256 row addresses on the same column in regular read mode by externally supplying address signals.

Then, write " 1 " into the above 256 row addresses in regular write mode.
(3) Read and verify "1" of the 256 row addresses in the CAS-before-ㅈRAS refresh counter test cycle mode.

Refer to timing chart (Figure 12) of the $\overline{C A S}$-before$\overline{\text { RAS }}$ refresh counter test cycle.

Figure 10. $\overline{\mathbf{C A S}}$ Before $\overline{\mathrm{RAS}}$ Refresh Cycle

NOTE: ($\overline{W E} \geq V_{I H}$ (MIN.), $\overline{O E} \leq V_{I L}$ (MAX.)
Figure 11. Hidden Refresh Cycle

Figure 12. $\overline{\text { CAS }}$ Before $\overline{\text { RAS }}$ Refresh Counter Test Cycle

ORDERING INFORMATION

Example: LH2465-12 (NMOS 256K ($64 \mathrm{~K} \times 4$) Dynamic RAM, $120 \mathrm{~ns}, 18$-pin, 300-mil DIP)

FUNCTION

- 262,144 Words $\times 4$-Bit Dynamic RAM
- Access times: 80/100 ns (MAX.)
- Power supply: $+5 \mathrm{~V} \pm 10 \%$
- Power consumption (MAX.):

Operating: $374 / 340 \mathrm{~mW}$
Standby: 374/340 mW

- TTL compatible I/O
- Early-write or $\overline{\mathrm{OE}}$ control allows bus management of the data-out buffer
- $\overline{\text { RAS }}$ only refresh, Hidden refresh and $\overline{\text { CAS }}$ before $\overline{\text { RAS }}$ refresh capability
- 512 refresh cycle
(refresh period (MAX.) $=8 \mathrm{~ms}$)
- Packages:

20-pin, 300 -mil DIP
26-pin, $300-\mathrm{mil}$ SOJ
20-pin, 400-mil ZIP

DESCRIPTION

The LH604256 is a 262,144 word $\times 4$ bit dynamic RAM which provides a high-speed page mode operation.

The LH604256 is fabricated using advanced CMOS process technology. With multiplexed address inputs and standard 20 -pin DIP/ZIP or 26 -pin SOJ packages, it is easy to comprise memory systems with high speed, lower power consumption and large memory capacity. The LH604256 operates on a single 15 V power supply.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SOJ, and ZIP Packages

Figure 2. LH604256 Block Dlagram

PIN DESCRIPTION

PIN NAME	FUNCTION
$\mathrm{A}_{0}-\mathrm{A}_{\mathbf{B}}$	Address input
$\overline{\text { RAS }}$	Row address strobe
$\overline{\mathrm{CAS}}$	Column address strobe
$\mathrm{DQ}_{1}-\mathrm{DQ}_{4}$	Data input/output
$\overline{\mathrm{OE}}$	Output enable

PIN NAME	FUNCTION
$\overline{\mathrm{WE}}$	Write enable
V_{CC}	Power supply (+5 V)
$\mathrm{V}_{\text {SS }}$	Ground (0 V)
NC	No connection

ABSOLUTE MAXIMUM RATINGS

RATING	SYMBOL	CONDITIONS	VALUE	UNIT
Voltatge on any pin relative to $\mathrm{V}_{\text {SS }}$	V_{T}	$\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}$	-1 to +7.0	V
Short circuit output current	los	$\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}$	50	mA
Power dissipation	PD	$\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}$	1	W
Operating temperature	Topr		0 to +70	${ }^{\circ} \mathrm{C}$
Strorage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS (TA = 0 to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC		4.5	5	5.5	V
	$\mathrm{~V}_{\text {SS }}$		0	0	0	V
Input high voltage	$\mathrm{V}_{\text {IH }}$		2.4		6.5	V
Input low voltage	V_{IL}		-1		0.8	V

DC CHARACTERISTICS (VCC =5 V $\pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS		LH604256-80A		LH604256-10A		UNIT	NOTE
				MIN.	MAX.	MIN.	MAX.		
Output high voltage	VOH	$\mathrm{lOH}=-5 \mathrm{~mA}$		2.4	Vcc	2.4	Vcc	V	
Output low voltage	Vol	$\mathrm{lOL}=4.2 \mathrm{~mA}$		0	0.4	0	0.4	V	
Input leakage current	lıI	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 6.5 \mathrm{~V}$ all other pins not under test $=0 \mathrm{~V}$		-10	10	-10	10	$\mu \mathrm{A}$	
Output leakage current	ILO	Dout disable $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$		-10	10	-10	10	$\mu \mathrm{A}$	
Average power supply current (operating)	lcc1	RAS, $\overline{\text { CAS cycling }}$ $t_{\text {RC }}=\min$.			75		65	mA	1
Power supply current (standby)	IcC2	$\begin{aligned} & \overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IH}} \\ & \overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { DouT }=\mathrm{Hz} \end{aligned}$	TTL		2		2	mA	1
			MOS		1		1	mA	
Average power supply current (RAS only refresh)	Icc3	$\begin{aligned} & \overline{\text { RAS } \text { cycling }} \\ & \overline{\text { CAS }}=V_{I H} \\ & \text { tRC }=\text { min. } \end{aligned}$			75		65	mA	1
Average power supply current (CAS before $\overline{\text { RAS refresh) }}$	Iccs	$\overline{\text { RAS }}$ cycling $\overline{\text { CAS before } \overline{\text { RAS }}}$			75		65	mA	1
Average power supply current (Fast page mode)	Icc7	$\overline{\text { RAS }}-V_{\text {IL }}$ CAS cycling tpc - min.			65		60	mA	1

NOTE:

1. Icc is dependent on output loading and cycle rates. Specified values are obtained with the outputs open.

CAPACITANCE (VCC =5 $\mathbf{V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=0$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER		SYMBOL	CONDITIONS	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{A}_{0}-\mathrm{A}_{\mathbf{8}}$	$\mathrm{C}_{\mathrm{IN} 1}$	-	-	6	pF
	$\overline{\mathrm{RAS}, \overline{\mathrm{CAS}}, \overline{\mathrm{OE}, \overline{\mathrm{WE}}}} \overline{\mathrm{C}_{\mathrm{N} 2}}$	-	-	7	pF	
Input/Output capacitance	$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$	$\mathrm{C}_{/ / \mathrm{O}}$		-	7	pF

AC CHARACTERISTICS ${ }^{1,2,3}$ ($\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to +70 C)

PARAMETER	SYMBOL	LH604256-80A		LH604256-10A		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
Refresh period	$t_{\text {feF }}$	-	8	-	8	ms	
Random read or write cycle time	tac	160	-	-	-	ns	
Read/write cycle time	trwc	215	-	-	-	ns	
Fast page mode cycle time	tpc	50	-	-	-	ns	
Fast page mode read/write cycle time	tpanw	105	-	-	-	ns	
Access time from $\overline{\mathrm{RAS}}$	trac	-	80	-	100	ns	4, 5, 6
Access time from CAS	tcac	-	20	-	25	ns	4,5
Access time from column address	$t_{\text {AA }}$	-	40	-	50	ns	4,6
Access time from CAS precharge	tcPA	-	45	-	50	ns	4
Output low impedance time from C̄AS	tclz	0	-	0	-	ns	4
Output buffer turn-off delay	toff	0	20	0	20	ns	
Transition time	tT	3	50	3	50	ns	3
RAS precharge time	trp $^{\text {P }}$	70	-	80	-	ns	
$\overline{\text { RAS }}$ pulse width	tras	80	10,000	100	10,000	ns	
RAS pulse width (Fast page mode cycle only)	trasp	80	100,000	100	100,000	ns	
$\overline{\text { RAS }}$ hold time	trsh	20	-	25	-	ns	
$\overline{\text { CAS }}$ precharge time (Fast page mode cycle only)	tcp	10	-	10	-	ns	
$\overline{\text { CAS }}$ pulse width	tcas	20	10,000	25	10,000	ns	
$\overline{\text { CAS }}$ hold time	tcsh	80	-	100	-	ns	
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time	tricD	22	60	25	75	ns	5
$\overline{\text { RAS }}$ to column address delay time	$\mathrm{t}_{\text {fad }}$	17	40	20	50	ns	6
$\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time	tcrp	10	-	10	-	ns	
Row address set-up time	tasr	0	-	0	-	ns	
Row address hold time	trah	12	-	15	-	ns	
Column address set-up time	tasc	0	-	0	-	ns	
Column address hold time	tcah	15	-	20	-	ns	
Column address hold time from $\overline{\text { RAS }}$	tar	60	-	75	-	ns	
Column address to $\overline{\mathrm{RAS}}$ lead time	$\mathrm{t}_{\text {fal }}$	40	-	50	-	ns	
Read command set-up time	thes	0	-	0	-	ns	
Read command hold time	$\mathrm{tach}^{\text {chen }}$	0	-	0	-	ns	8
Write command hold time from $\overline{\text { RAS }}$	IWCR	60	-	75	-	ns	
Write command set-up time	twcs	0	-	0	-	ns	7
Write command hold time	IWCH	15	-	20	-	ns	
Write command pulse time	twp	15	-	20	-	ns	
Write command to $\overline{\text { RAS }}$ lead time	$t_{\text {fWL }}$	20	-	25	-	ns	
Write command to $\overline{\text { CAS }}$ lead time	tcw	20	-	25	-	ns	
Data-in set-up time	tos	0	-	0	-	ns	
Data-in hold time	IDH	15	-	20	-	ns	
Data-in hold time from $\overline{\text { RAS }}$	tDHR	60	-	75	-	ns	
$\overline{\text { CAS }}$ to $\overline{\text { WE }}$ delay	tcwo	50	-	60	-	ns	7
$\overline{\text { RAS }}$ to $\overline{\text { WE }}$ delay	trwo	110	-	135	-	ns	7
Column address to WE delay time	tawo	70	-	85	-	ns	7
Read command hold time referenced to $\overline{\mathrm{RAS}}$	trRH	10	-	10	-	ns	8
$\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ set-up time ($\overline{\mathrm{CAS}}$ before $\overline{\mathrm{RAS}}$)	tcsR	10	-	10	-	ns	
$\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ hold time ($\overline{\text { CAS }}$ before $\overline{\mathrm{RAS}})$	tchr	30	-	30	-	ns	
$\overline{\text { CAS }}$ active delay from $\overline{\mathrm{RAS}}$ precharge	tapc	10	-	10	-	ns	
$\overline{\text { CAS }}$ precharge time(Refresh counter test)	tcPT	40	-	50	-	ns	
$\overline{\text { CAS }}$ precharge time	tcpn	10	-	15	-	ns	
$\overline{\text { RAS }}$ hold time referenced to $\overline{\mathrm{OE}}$	Ifor	20	-	20	-	ns	
Access time from $\overline{\mathrm{OE}}$	LoEA	-	20	-	25	ns	
$\overline{\mathrm{OE}}$ delay time	Coed	20	-	25	-	ns	
$\overline{\mathrm{OE}}$ to data output buffer turn-off delay	toez	0	20	0	25	ns	
$\overline{\mathrm{OE}}$ command hold time	toen	20	-	25	-	ns	

See next page for notes.

NOTES:

1. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any 8 RAS cycles. (Examples: RAS only Refresh cycle) before proper device operation is achieved.
2. The $A C$ characteristics assume at $t=5 \mathrm{~ns}$.
3. V_{IH} (MIN.) and V_{IL} (MAX.) are reference levels for measuring of input signals. Also, transition times are measured between V_{IH} and $V_{1 L}$.
4. Measured with a load circuit equivalent to $2 T T L+100 \mathrm{pF}$.
5. Operation within the trcd (MAX.) limit insures that trac (MAX.) can be met. trACD (MAX.) is specified as a reference point only; if trCD is greater than the specified tRCD (MAX.) limit, then access time is controlled exclusively by tcac.
6. Operation within the trad (MAX.) limit insures that trac (MAX.) can be met. trAD (MAX.) is specified as a reference point only; if trad is greater than the specified traD (MAX.) limit, then access time is controlled exclusiviely by tas.
7. twcs, tcwl, trwo, and tawd are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if twcs \geq twcs (MIN.), the cycle in an early write cycle and the data out pin will remain open circuit (high-impedance) throughout the entire cycle; if tcwD \geq tcwD (MIN.), trwD \geq $t_{\text {RWD }}$ (MIN.) and tawD \geq tawD (min.), the cycle is read/write cycle and the data out will contain data read from data out (at access time) is indeterminate.
8. Either $t_{\text {RRH }}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.

604256-3
Figure 3. Read Cycle

604256-4
Figure 4. Write Cycle (Early Write)

Figure 5. Write Cycle ($\overline{\mathrm{OE}}$ Control)

Figure 6. Read/Write, Read-Modify-Write Cycle

Figure 7. High Speed Page Mode Read Cycle

Figure 8. High Speed Page Mode Write Cycle (Early Write)

604256-9
Figure 9. High Speed Page Mode Write Cycle (OE Control)

Figure 10. High Speed Page Mode Read/Write Cycle

Figure 11. $\overline{\text { RAS }}$ Only Refresh Cycle

NOTE: $\overline{\mathrm{WE}}, \overline{O E}, \mathrm{~A}_{0}-A_{B}=$ Don't care
Figure 12. $\overline{\text { CAS }}$ Before $\overline{\mathrm{RAS}}$ Refresh Cycle

Figure 13. Hidden Refresh Read Cycle

604256-14
Figure 14. Hidden Refresh Write Cycle

Figure 15. $\overline{\text { CAS }}$ Before $\overline{\mathrm{RAS}}$ Refresh Counter Test Cycle

ORDERING INFORMATION

$\frac{\text { LH604256 }}{\text { Device Type }}$	$\frac{X}{\text { Package }}$	$\frac{-\# \#}{\text { Speed }}$
	$80 A$ 80 $10 A$ 100 Access Time (ns)	
	$\begin{cases}D & 20-\mathrm{pin}, 300-\mathrm{mil} \text { DIP (DIP20-P-300A) } \\ K & 20-\mathrm{pin}, 300-\mathrm{pin} \text { SOJ (SOJ20-P-300) } \\ Z & 20-\mathrm{pin}, 400-\mathrm{mil} \text { ZIP (ZIP20-P-400) }\end{cases}$	

CMOS 1M (256K x 4) Dynamic RAM

Example: LH604256D-80A (CMOS 1M (256K x 4) Dynamic RAM, $80 \mathrm{~ns}, 20$-pin, 300-mil DIP)

FEATURES

- $262,144 \times 4$ bit organization
- Access times: 100/120 ns (MAX.)
- Cycle times: 160/190 ns (MIN.)
- Cycle time in static column mode: 55/65 ns (MIN.)
- Power supply: +5 V $\pm 10 \%$
- Power consumption (MAX.):

Operating: $374 / 340 \mathrm{~mW}$
Standby: 11 mW

- TTL compatible I/O
- Early-write or $\overline{O E}$ control allows bus management of the data-out buffer
- $\overline{R A S}$ only refresh, Hidden refresh and $\overline{\mathrm{CS}}$ before $\overline{\mathrm{RAS}}$ refresh capability
- 512 refresh cycle (refresh period (MAX.) $=8 \mathrm{~ms}$)
- Packages:

20-pin, 300-mil DIP
26-pin, $300-\mathrm{mil}$ SOJ
20-pin, 400-mil ZIP

DESCRIPTION

The LH64258 is a 262,144 word $\times 4$ bit dynamic RAM which provides a static column mode operation.

The LH64258 is fabricated using advanced CMOS process technology. With multiplexed address inputs and standard 20-pin DIP/ZIP or 26-pin SOJ packages, it is easy to comprise memory systems with high speed, low power consumption and large memory capacity. The LH64258 operates on a single +5 V power supply. The built-in high output substrate bias generator circuit eliminates sensitivity to undershoot on the input signals.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SOJ, and ZIP Packages

NOTE: The pin numbers apply to 20 -pin DIP.
64258-2
Figure 2. LH64258 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$A_{0}-A_{\mathbf{8}}$	Address input
$\overline{\text { RAS }}$	Row address strobe
$\overline{\mathrm{CS}}$	Chip Select
$\overline{\text { WE }}$	Write enable

SIGNAL	PIN NAME
$\overline{\mathrm{OE}}$	Output enable
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$	Data input/output
VCC	Power supply (+5 V)
$\mathrm{V}_{\text {SS }}$	Power supply (0 V)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{T}	-1.0 to +7.0	V	1
Output short-circuit current	l	50	mA	
Power consumption	PD	1.0	W	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. Referenced to Vss

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{0}$ to $\boldsymbol{+ 7 0}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	VCC^{2}	4.5	5.0	5.5	V	1
	$\mathrm{~V}_{\mathrm{SS}}$	0	0	0		
Input voltage	V_{IH}	2.4		6.5	V	1
	$\mathrm{~V}_{\mathrm{IL}}$	-1.0		0.8		1

NOTE:

1. Referenced to Vss

DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER		SYMBOL	MIN.	MAX.	UNIT	NOTE
Average supply current in normal operation	LH64258-10	lcc1	-	68(80)	mA	1,2,3
	LH64258-12		-	62(68)		
Average supply current in standby mode		Icc2	-	2.0	mA	1
Average supply current in the static column mode	LH64258-10	lcc3	-	60	mA	1,2
	LH64258-12		-	55		
Average supply current in CS before RAS refresh cycle	LH64258-10	Icc4	-	68(80)	mA	1,2,3
	LH64258-12		-	62(68)		
Average supply current in RAS only refresh cycle	LH64258-10	Icc5	-	68(80)	mA	1,2,3
	LH64258-12		-	62(68)		
Input leakage current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq 6.5 \mathrm{~V}$ 0 V on all other pins	LL1	-10	10	$\mu \mathrm{A}$	
Output leakage current	$0 \mathrm{~V} \leq \mathrm{VOUT}^{5} \leq 6.5 \mathrm{~V}$ Output in high-impedance state	ILO	-10	10	$\mu \mathrm{A}$	
Output "High" voltage	lout $=-5 \mathrm{~mA}$	VOH	2.4	-	V	
Output "Low" voltage	lout $=4.2 \mathrm{~mA}$	VOL	-	0.4	V	

NOTES:

1. The output pins are in high-impedance state.
2. Icc1, IcC3, IcC4 and Icc5 depend on the cycle time.
3. Cycle time: 190 ns (LH64258-10), 220 ns (LH64258-12).

Figures in parenthesis indicate current under minimum cycle time operation.
Address transition is occurs when $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IH}}$ and $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IL}}$.
CAPACITANCE (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$A_{1}-A_{7}$	$\mathrm{ClN1}^{1}$	-		5	pF
	$\mathrm{A}_{0}, \mathrm{~A}_{8}$	CIN2	-		8	pF
	$\overline{\mathrm{OE}}, \overline{\mathrm{CS}}$	CIN3	-		8	pF
	RAS,WE	CIN4	-		5	pF
Input/Output capacitance	$l / O_{1}-I / O_{4}$	Cout1	-		10	pF

AC ELECTRICAL CHARACTERISTICS ${ }^{1,2,3,4}$ (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH64258-10		LH64258-12		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
(1) READ CYCLE							
Random read or write cycle time	trc	160		190		ns	
Access time from $\overline{\mathrm{RAS}}$	trac		100		120	ns	7
Access time from $\overline{\mathbf{C S}}$	tacs		25		30	ns	7
Access time from column address	tan		50		60	ns	7
Access time from $\overline{\mathrm{OE}}$	toea		25		30	ns	7
Row address set-up time	tasr	0		0		ns	
Row address hold time	tran	15		15		ns	
Column address delay time ($\overline{\mathrm{RAS}}$)	trad	20	50	20	60	ns	5
Column address lead time ($\overline{\mathrm{RAS}}$)	$t_{\text {RaL }}$	50		60		ns	
Column address hold time ($\overline{\mathrm{RAS}}$)	tahr	15		15		ns	
$\overline{\text { RAS }}$ pulse width	tras	100	10,000	120	10,000	ns	
$\overline{\text { RAS }}$ precharge time	trp	50		60		ns	
$\overline{\mathrm{CS}}$ precharge time ($\overline{\mathrm{RAS}}$ fall)	tcra	0		0		ns	
$\overline{\mathrm{CS}}$ delay time ($\overline{\mathrm{RAS}}$)	thco	25	75	35	90	ns	6
$\overline{\mathbf{C S}}$ lead time ($\overline{\mathrm{RAS}}$)	trsi	25		30		ns	
$\overline{\text { OE command } \overline{\mathrm{RAS}} \text { lead time }}$	thol	0		0		ns	
Output data disable time ($\overline{\mathbf{C S}}$)	toff		25		30	ns	
Output data disable time ($\overline{\mathrm{OE}}$)	toez		25		30	ns	
Output data hold time (address)	$\mathrm{taOH}^{\text {H }}$	5		5		ns	
Output data hold time ($\overline{\mathbf{C S}}$)	tsor	0		0		ns	
Output data hold time ($\overline{\mathrm{OE}}$)	toor	0		0		ns	
Read command set-up time ($\overline{\mathrm{CS}})$	trics	0		0		ns	
Read command hold time ($\overline{\mathbf{C S}}$)	$t_{\text {PCH }}$	10		10		ns	8
Read command hold time ($\overline{\mathrm{RAS}}$ fall)	trahn	110		130		ns	8
Read command hold time ($\overline{\mathrm{RAS}}$ rise)	trahp	10		10		ns	8
Transition time (rise and fall)	t_{T}	3	35	3	35	ns	
Refresh time interval	tref		8		8	ms	
(2) STATIC COLUMN MODE READ CYCLE							
Static column mode cycle time	tsc	55		65		ns	
Column address hold time ($\overline{\mathrm{RAS}}$)	tar	100		120		ns	
(3) WRITE CYCLE (EARLY WRITE)							
Column address set-up time ($\overline{\mathrm{CS}}$)	tasc	0		0		ns	
Column address hold time ($\overline{\mathrm{CS}}$)	tcah	20		20		ns	
Write command set-up time ($\overline{\mathrm{CS}}$)	twcs	0		0		ns	9
Write command hold time ($\overline{\mathbf{C S}})$	IWCH	15		20		ns	
Data input set-up time	tos	0		0		ns	
Data input hold time	tor	20		20		ns	
Write pulse width ($\overline{\mathrm{CS}}$)	twp	15		20		ns	
($\overline{O E}$ CONTROL WRITE)							
$\overline{\text { CS }}$ set-up time ($\overline{\mathrm{WE}}$)	tcws	0		0		ns	9
$\overline{\mathrm{CS}}$ hold time ($\overline{\mathrm{WE}}$)	tcwh	15		20		ns	
Write command lead time ($\overline{\mathrm{RAS}}$)	trwi	30		40		ns	
Write pulse width ($\overline{W E}$)	twp	15		20		ns	
$\overline{\mathrm{OE}}$ hold time ($\overline{\mathrm{WE}}$)	toen	20		20		ns	10
Column address set-up time ($\overline{\mathrm{WE}}$)	tasw	0		0		ns	
Column address hold time ($\overline{\mathrm{WE}}$)	IWAH	20		20		ns	

See next page for notes.

PARAMETER	SYMBOL	LH64258-10		LH64258-12		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
(4) READ-WRITE CYCLE							
Read-write cycle time	trwc	225		270		ns	
$\overline{\text { WE }}$ delay time ($\overline{\mathrm{RAS}}$)	$t_{\text {fwo }}$	135		160		ns	
Column address delay time ($\overline{W E}$)	tawd	85		100		ns	
	tcwo	60		70		ns	
$\overline{\mathrm{OE}}$ delay time	toed	25		30		ns	
(5) STATIC COLUMN MODE WRITE CYCLE							
$\overline{\text { WE }}$ inactive time	IW1	10		15		ns	
$\overline{\mathrm{CS}}$ inactive time	$\mathrm{tal}^{\text {l }}$	10		15		ns	
$\overline{\text { CS }}$ set-up time ($\overline{\mathrm{WE}}$)	tows	15		20		ns	11
Write command delay time ($\overline{\mathrm{RAS}}$)	trwor	100		120		ns	
(6) $\overline{\mathrm{CS}}$-BEFORE- $\overline{\text { RAS }}$ REFRESH CYCLE/HIDDEN REFRESH CYCLE							
$\overline{\mathrm{CS}}$ set-up time ($\overline{\mathrm{RAS}}$)	tcsR	0		0		ns	
$\overline{\mathrm{CS}}$ hold time ($\overline{\mathrm{RAS}}$)	tchr	20		25		ns	
$\overline{\text { CS }}$ precharge time ($\overline{\mathrm{RAS}}$ rise)	trpcp	10		10		ns	
$\overline{\text { WE }}$ precharge time ($\overline{\mathrm{RAS}}$)	twhp	0		0		ns	
$\overline{\mathrm{CS}}$ precharge time ($\overline{\mathrm{RAS}}$ fall)	trcpe	100		120		ns	

NOTES:

1. For proper operation, at least 500μ s of pause time after power-on followed by several initialization cycles (usually 8 ordinary refresh cycles) should be given.
2. $A C$ characteristics assume $t=5 \mathrm{~ns}$. (t T refers to the transition time between V_{IH} and $\mathrm{VIL}^{\text {. }}$)
3. Timing measurements are referenced to V_{IH} (MIN.) and V_{IL} (MAX.).
4. Icc when power on depends on $\overline{\mathrm{RAS}}$ input level. If $\overline{\text { RAS }}=V_{I L}$ when power on, LSI goes into an active cycle and may have a large current Icc. It is recommended to rise RAS with $V_{c c}$ or fix at $V_{\mathbb{H}}$, when power on.
5. $t_{\text {RAD }}$ (MAX.), is the maximum point for trad where taA (MAX.) is ensured, and does not represent a limit of operation.
If trad $\geq \operatorname{trad}^{(M A X}$.), the access time comes under the control of $t_{A A}$.
6. $t_{R C D}$ (MAX.) is the maximum point for $t_{R C D}$ where tacs (MAX.) is ensured, and does not represent a limit of operation.
If $t_{R C D} \geq t_{R C D}$ (MAX.), the access time comes under the control of tacs.
7. $2 T T L+100 \mathrm{pF}$ load
8. The operation is ensured when either $t_{\text {RCH }}$ or $t_{\text {RRH }}$ is satisfied.
9. twcs, tcws are not restrictive operating parameters. If twcs \geq twcs (MIN.), the cycle is an early write cycle and the data out buffers remain inactive throughout entire cycle.
10. toen is required to keep I/O pin floating.

When $\overline{O E}$ goes "Low" with $\overline{C S}=$ "Low" and $\overline{W E}=$ "High", $/ / O$ pin is used to output data as written.
11. tcws is not restrictive operating parameter. When tows \leq tcws (MIN.), it may come into early write cycle.

Figure 3. Read Cycle

NOTE: $\overline{O E}=$ Don't care
Figure 4. Write Cycle (Early Write)

Figure 5. Write cycle ($\overline{\mathrm{OE}}$ Controlled Write)

Figure 6. Read/Write Cycle

Figure 7. Static Column Mode Read Cycle

Figure 8. Static Column Mode Write Cycle (Early Write)

Figure 9. Static Column Mode Write Cycle (OE Control Write)

Figure 10. Static Column Mode Read/Write Cycle

Figure 11. Hidden Refresh Cycle

NOTE: $\overline{C S}=" H " \quad \overline{W E}, \overline{O E}=$ Don't care
Figure 12. $\overline{\mathrm{RAS}}$ Only Refresh Cycle

NOTE: $\overline{\mathrm{WE}}, \overline{\mathrm{OE}}, \mathrm{A}_{0}-\mathrm{A}_{8}=$ Don't care
64258-13
Figure 13. $\overline{\mathbf{C S}}$ Before $\overline{\mathrm{RAS}}$ Refresh Cycle

ORDERING INFORMATION

LH64258	X	- \#\#	
Device Type	Package	Speed	
			$\left\{\begin{array}{ll}10 & 100 \\ 12 & 120\end{array}\right.$ Access Time (ns)
			$\begin{cases}\mathrm{D} & 20-\mathrm{Pin}, 300 \text {-mil DIP (DIP20-P-300A) } \\ \mathrm{K} & 26-\mathrm{Pin}, 300 \text {-mil SOJ (SOJ26-P-300) } \\ \text { Z } & 20-\mathrm{Pin}, 400-\mathrm{mil} \text { ZIP (ZIP20-P-400) }\end{cases}$

Example: LH64258D-10 (CMOS 1M (256K x 4) Dynamic RAM, $100 \mathrm{~ns}, 20-\mathrm{Pin}, 300$-mil DIP)

FEATURES

- $1,048,576 \times 4$ bit organization
- Access times: 80/100 ns (MAX.)
- Cycle times: $140 / 160 \mathrm{~ns}$ (MIN.)
- Cycle time in high speed page mode:

50/55 ns (MIN.)

- Power supply: $+5 \mathrm{~V} \pm 10 \%$
- Power consumption (MAX.):

Operating: 523/468 mW (MAX.)
Standby: 5.5 mW (MAX.)

- TTL compatible I/O
- Early-write or $\overline{\mathrm{OE}}$ control allows bus management of the data-out buffer
- $\overline{\text { RAS }}$ only refresh, Hidden refresh and $\overline{\text { CAS-before-RAS }}$ refresh capability
- 8-bit parallel test mode (contact SHARP for details)
- 1,024 refresh cycle (refresh period (MAX.) = 16 ms)
- Packages:

20-pin, 300 -mil DIP
26-pin, 300-mil SOJ
20-pin, 400-mil ZIP
26-pin, 300-mil TSOP
(normal/reverse bend pins)

DESCRIPTION

The LH64400 is a $1,048,576 \times 4$ bit dynamic RAM which provides a high speed page mode operation.

The LH64400 is fabricated using advanced CMOS process technology. With multiplexed address inputs and standard 20 -pin DIP/ZIP or 26 -pin SOJ/TSOP packages, it is easy to comprise memory systems with high speed, low power consumption and large memory capacity. The LH64400 operates on a single +5 V power supply. The built-in high output substrate bias generator circuit eliminates sensitivity to undershoot on the input signals.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SOJ, ZIP, and TSOP Packages

Figure 2. LH64400 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{\boldsymbol{0}}-\mathrm{A}_{9}$	Address input
$\overline{\text { RAS }}$	Row address strobe
$\overline{\mathrm{CAS}}$	Column address strobe
$\overline{\text { WE }}$	Write enable

SIGNAL	PIN NAME
$\overline{\mathrm{OE}}$	Output enable
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{4}$	Data input/output
VCC	Power supply (+5 V)
$\mathrm{V}_{\text {SS }}$	Power supply (0 V)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{T}	-1.0 to +7.0	V	1
Output short circuit current	los	50	mA	
Power consumption	PD	1.0	W	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. Referenced to Vss

RECOMMENDED OPERATING CONDITIONS (TA $=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	$\mathrm{V}_{\text {CC }}$	4.5	5.0	5.5	V	1
	$\mathrm{~V}_{\text {SS }}$	0	0	0	V	
Input voltage	V_{IH}	2.4		6.5	V	1
	$\mathrm{~V}_{\mathrm{IL}}$	-1.0		0.8	V	1

NOTE:

1. Referenced to Vss

DC CHARACTERISTICS ($\mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$)

PARAMETER		SYMBOL	MIN.	MAX.	UNIT	NOTE
Average supply current in normal operation	LH64400-80	lcC 1	-	95	mA	1, 2, 3
	LH64400-10		-	85		
Supply current in standby mode		lcc2	-	1.0	mA	1
Average supply current in high speed page mode	LH64400-80	lcc3	-	70	mA	1,2
	LH64400-10		-	60		
Average supply current in CAS before $\overline{R A S}$ refresh cycle	LH64400-80	Icc6	-	95	mA	1,2,3
	LH64400-10		-	85		
Average supply current in RAS only refresh cycle	LH64400-80	lcc7	-	95	mA	1, 2, 3
	LH64400-10		-	85		
Input leakage current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq 6.5 \mathrm{~V}$ 0 V on all other pins	ILI	-10	10	$\mu \mathrm{A}$	
Output leakage current	$0 \mathrm{~V} \leq \mathrm{VOUT} \leq 6.5 \mathrm{~V}$ Output in high-impedance state	ILO	-10	10	$\mu \mathrm{A}$	
Output "High" voltage	lour $=-5 \mathrm{~mA}$	V OH	2.4	-	V	
Output "Low" voltage	lout $=4.2 \mathrm{~mA}$	Vol	-	0.4	V	

NOTES:

1. The output pins are in high-impedance state.
2. Iect, lecs, lecs and lect depend on the cycle time.
3. Address transition occurs when $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{H}}$ and $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IL}}$

CAPACITANCE ($\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER		SYMBOL	MIN.	MAX.	UNIT
Input capacitance	$\mathrm{A}_{0}-\mathrm{A}_{9}$	$\mathrm{C}_{\mathrm{IN} 1}$	-	5	pF
	$\overline{\mathrm{RAS},} \overline{\mathrm{CAS}}$	$\mathrm{C}_{\mathrm{IN} 2}$	-	5	pF
	$\overline{\mathrm{WE}}, \overline{\mathrm{OE}}$	$\mathrm{C}_{\mathrm{IN} 3}$	-	5	pF
Input/output capacitance	$1 / \mathrm{O}_{1}-1 / \mathrm{O}_{4}$	$\mathrm{C}_{\mathrm{OUT} 1}$	-	7	pF

AC CHARACTERISTICS ${ }^{1,2,3,4}$ ($\mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	LH64400-80		L-H64400-10		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
(1) READ CYCLE							
Random read/write cycle time	$\mathrm{t}_{\text {PC }}$	140		160		ns	
Access time from $\overline{\text { RAS }}$	trac		80		100	ns	7
Access time from $\overline{\text { CAS }}$	tcac		25		30	ns	7
Access time from column address	$t_{\text {AA }}$		40		50	ns	7
Access time from $\overline{\mathrm{OE}}$	toea		20		25	ns	7
Row address setup time	task	0		0		ns	
Row address hold time	$\mathrm{t}_{\text {faih }}$	10		15		ns	
Column address setup time	tasc	0		0		ns	
Column address delay time (RAS)	trad	15	40	20	50	ns	5
Column address lead time ('RAS)	$\mathrm{t}_{\text {RaL }}$	40		50		ns	
Column address hold time ($\overline{\mathrm{RAS}}$)	tcah	15		20		ns	
$\overline{\text { RAS }}$ pulse width	tras	80	10,000	100	10,000	ns	
$\overline{\text { RAS }}$ precharge time	tre	50		50		ns	
$\overline{\overline{C A S}}$ precharge time ($\overline{\mathrm{RAS}}$ fall)	tCRP	0		0		ns	
$\overline{\text { CAS }}$ delay time ($\overline{\mathrm{RAS}}$)	$t_{\text {RCD }}$	20	55	25	70	ns	6
$\overline{\text { CAS }}$ lead time (RAS)	trsi	25		30		ns	
$\overline{\text { OE }}$ command $\overline{\text { RAS }}$ lead time	trol	0		0		ns	
Output data disable time ($\overline{\mathrm{CAS}}$)	toff		20		25	ns	
Output data disable time ($\overline{\mathrm{OE}}$)	toez		20		25	ns	
CAS pulse width	tcas	25	10,000	30	10,000	ns	
$\overline{\text { CAS }}$ hold time	tcsi	80		100		ns	
Output data hold time ($\overline{\mathbf{C A S}})$	tsor	0		0		ns	
Output data hold time ($\overline{\mathrm{OE}}$)	toor	0		0		ns	
Read command setup time	trics	0		0		ns	
Read command hold time (CAS)	$\mathrm{t}_{\text {RCH }}$	10		10		ns	8
Read command hold time ($\overline{\mathrm{RAS}}$ rise)	trah	10		10		ns	8
Transition time (rise and fall)	${ }_{T}$	3	50	3	50	ns	
Refresh time interval	$t_{\text {Ref }}$		16		16	ms	
(2) HIGH SPEED PAGE MODE READ CYCLE							
High speed page mode cycle time	tpc	50		55		ns	
$\overline{\text { CAS }}$ precharge time	tcp	10		10		ns	
CAS precharge access time (CAS rise)	tcacp	45		50		ns	7,10
$\overline{\text { RAS }}$ pulse width	trasp	80	10,000	100	10,000	ns	
High speed page mode read write cycle time	tprwc	105		115		ns	11

(3) WRITE CYCLE EARLY WRITE)

Data input setup time	ios	0	0	ns	
Data input hold time	tor	15	15	ns	
Write command set-up time	twas	0	0	ns	9
Write command hold time	twCH	10	15	ns	
($\overline{O E}$ CONTROL)					
$\overline{\text { CAS }}$ set-up time ($\overline{\mathrm{WE}}$)	tows	0	0	ns	9
Write command lead time ($\overline{\mathrm{RAS}})$	tfwL	20	25	ns	
Write command lead time ($\overline{\mathrm{CAS}})$	tcWL	20	25	ns	
Write pulse width (WE)	twp	15	15	ns	
OE hold time ($\overline{\mathrm{WE}}$)	toen	20	20	ns	

(4) READ-WRITE CYCLE

Read-write cycle time	trwc	195	225	ns	11
$\overline{\text { WE }}$ delay time ($\overline{\mathrm{RAS}}$)	tawd	110	135	ns	11
Column address delay time ($\overline{\mathrm{WE}}$)	tawd	70	85	ns	11
$\overline{\text { WE }}$ delay time (CAS)	tcwo	55	65	ns	11
$\overline{\mathrm{OE}}$ delay time	toed	20	25	ns	

(5) $\overline{C A S}$ BEFORE $\overline{\text { RAS }}$ REFRESH CYCLE/HIDDEN REFRESH CYCLE

$\overline{\text { CAS set-up time (RAS) }}$	tcsR	0	0	ns	
$\overline{\text { CAS }}$ hold time ($\overline{\mathrm{RAS}}$)	tchr	20	20	ns	
$\overline{\text { RAS } / \overline{C A S}}$ precharge time ($\overline{\mathrm{RAS}}$ rise)	trpC	10	10	ns	
$\overline{\text { WE precharge time (} \overline{\mathrm{RAS}} \text {) }}$	twrp	0	0	ns	
$\overline{\text { WE/RAS }}$ hold time	IWRH	10	10	ns	
$\overline{\overline{C A S}}$ precharge time ($\overline{\mathrm{RAS}}$ fall)	tcPN	10	10	ns	

* See next page for notes.

NOTES:

1. For proper operation, at least 200μ s of pause time after power-on followed by several initialization cycles (usually 8 ordinary refresh cycles) should be given.
2. $A C$ characteristic assume $t=5 \mathrm{~ns}$. (t refers to the transition time between V_{IH} and V_{IL}.)
3. Timing measurements are referenced to V_{IH} (MIN.) and V_{IL} (MAX.).
4. Icc when power on depends on $\overline{\mathrm{RAS}}$ input level. If $\overline{\text { RAS }}=$ VIL $^{\text {when }}$ wower on, LSI goes into an active cycle and may have a large current lcc. It is recommended to rise RAS with V_{cc} or fix at $\mathrm{V}_{\mathbb{H}}$ when power on.
5. $t_{R C D}$ (MAX.), is the maximum point for $t_{R A D}$ where $t_{A A}$ (Max.) is ensured, and does not represent a limit of operation.
If $\mathrm{t}_{\mathrm{RAD}} \geq \mathrm{t}_{\mathrm{RAD}}$ (MAX.), the access time comes under the control of taA.
6. $t_{R C D}$ (MAX.), is the maximum point for trAD where tCAC (MAX.) is ensured, and does not represent a limit of operation.
If $\operatorname{trCD} \geq \operatorname{tRCD}$ (MAX.), the access time will come under the control of tcac.
7. $2 T T L+100 \mathrm{pF}$ load.
8. The operation is ensured when either trCH or trRH is satisfied.
9. twcs is not a restrictive operating parameter. It comes into early write cycle with the WE = "Low" at the falling edge of CAS. Then, $\frac{1 / O}{W}$ pins remain inactive until the $\overline{C A S}=$ "High" irrespective of WE.
10. If tcacp \geq tcp + tcac $+\boldsymbol{t}$, the access time depends upon tcacp.
11. trwc, trew , tawd, tewd and tpawc are not restrictive operating parameters.

64400-3
Figure 3. Read Cycle

NOTE: OE = Don't care
Figure 4. Write Cycle (Early Write)

Figure 5. Write Cycle ($\overline{O E}$ Control)

Figure 6. Read/Write Cycle

64400-7
Figure 7. High Speed Page Mode Read Cycle

Figure 8. High Speed Page Mode Write Cycle

64400-9
Figure 9. High Speed Page Mode Write Cycle

Figure 10. Hidden Refresh Cycle

NOTE: $\overline{\mathrm{CAS}}=$ "High"; $\overline{\mathrm{WE}}, \overline{\mathrm{OE}}=$ Dont care
64400-11
Figure 11. $\overline{R A S}$ Only Refresh Cycle

Figure 12. $\overline{\text { CAS }}$ Before $\overline{\mathrm{RAS}}$ Refresh Cycle

ORDERING INFORMATION

LH64400	X	- \#\#	
Device Type	Package	Speed	
			$\left\{\begin{array}{ll}80 & 80 \\ 10 & 100\end{array}\right.$ Access Time (ns)
			$\left\{\begin{array}{l} \text { Blank } \quad 20 \text {-pin, 300-mil DIP (DIP 20-P-300A) } \\ \text { K } 26 \text {-pin, 300-mil SOJ (SOJ26-P-300) } \\ \text { Z } 20 \text {-pin, 400-mil ZIP (ZIP 20-P-400) } \\ \text { S } 26 \text {-pin TSOP (TSOP26-P-300 type II) Normal bend } \\ \text { SR } 26 \text {-pin TSOP (TSOP26-P-300 type III) Reverse bend } \end{array}\right.$
			CMOS 4M (1M x 4) Dynamic RAM

Example: LH64400K-80 (CMOS 4M (1M x 4) Dynamic RAM, $80 \mathrm{~ns}, 26$-pin, 300-mil SOJ)
\square
STATIC RAMs - 4

EPROMs/OTPROMs - 5

MASK PROGRAMMABLE ROMS - 6

FIFO MEMORIES - 7

APPLICATION AND TECHNICAL INFORMATION - 9

FEATURES

- $32,768 \times 8$ bit organization
- Access time:

120 ns (MAX.)

- Cycle time:

190 ns (MIN.)

- Power consumption:

Operating: 303 mW
Standby: 16.5 mW

- TTL compatible I/O
- 256 refresh cycle/4 ms
- Auto refresh is executed by internal counter (controlled by $\overline{\mathrm{OE}} / \overline{\mathrm{RFSH}} \mathrm{pin}$)
- Self refresh is executed by internal timer
- Single +5 V power supply
- Package:

28-pin, 600-mil DIP
28-pin, 300-mil SK-DIP
28-pin, 450-mil SOP

DESCRIPTION

The LH5P832 is a 256 K bit Pseudo Static RAM organized as $32,768 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

The LH5P832 uses convenient on-chip refresh circuitry with a DRAM memory cell for pseudo static operation. This simplifies external clock inputs, while providing the same simple, non-multiplexed pinout as industry standard SRAMs. Moreover, due to the functional similarities between PSRAMs and SRAMs, many $32 \mathrm{~K} \times 8$ SRAM sockets can be filled with the LH5P832 with little or no changes. The advantage is the cost savings realized with the lower cost PSRAM.

The LH5P832 PSRAM has the ability to fill the gap between DRAM and SRAM by offering low cost, low standby power, and a simple interface.

Three methods of refresh control are provided for maximum versatility. A 'CE-Only' refresh cycle refreshes the addressed row of memory cells transparently. All 256 rows must be refreshed or accessed every four milliseconds. 'Auto Refresh' automatically cycles through a different row on every OE/RFSH clock pulse, accomplishing the row refreshes without the need to supply row addresses externally. 'Self Refresh' further simplifies the refresh requirements by eliminating the need for address inputs and clock pulses entirely. An automatic timer senses time periods when memory accesses have ceased, and provides full refresh of all rows of memory without any external assistance.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SK-DIP, and SOP Packages

Figure 2. LH5P832 Block Dlagram
PIN DESCRIPTION

SIGNAL	PIN NAME
R \bar{W}	Read/Write input
$\overline{\mathrm{OE}} / \overline{\mathrm{RFSH}}$	Output Enable/Refresh input
$\mathrm{I}_{1}-\mathrm{I} / \mathrm{O}_{8}$	Data inputs and outputs
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Row address inputs

SIGNAL	PIN NAME
$\mathrm{A}_{\mathbf{8}}-\mathrm{A}_{14}$	Column Address inputs
$\overline{\mathrm{CE}}$	Chip Enable input
VCC	Power supply
GND	Ground

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	$\overline{\text { OEF }} \overline{\text { RFSH }}$	MODE	$101-1 / O_{8}$	Icc	NOTE
L	L	X	Write	Data in	Operating (Icc)	1
L	H	L	Read	Data out	Operating (lcc)	
L	H	H	$\overline{\text { CE-Only Refresh }}$	High-Z	Operating (lcc)	
H	X	L	Auto Refresh	High-Z	Operating	1,2
H	X	L	Self Refresh	High-Z	Standby	1,3

NOTES:

1. $\mathrm{X}=\mathrm{H}$ or L \quad 2. $\overline{\mathrm{OE}}$ Pulsewidth $<8 \mu \mathrm{~s} \quad$ 3. $\overline{\mathrm{OE}}$ Pulsewidth $\geq 8 \mu \mathrm{~s}$

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Applied voltage on any pin	V_{T}	-1.0 to +7.0	V	1
Output short circuit current	lo	50	mA	
Power consumption	PD	600	mW	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. Referenced to GND

RECOMMENDED OPERATING CONDITIONS (TA = 0 to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-1.0		+0.8	V

CAPACITANCE (Vcc $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER		SYMBOL	MIN.	MAX.	UNIT
Input capacitance	$\mathrm{A}_{0}-\mathrm{A}_{14}, \mathrm{R} \overline{\bar{W}}$	$\mathrm{C}_{\text {IN } 1}$		8	pF
	$\overline{\mathrm{CE}}, \overline{\mathrm{OE} / \overline{\mathrm{RFSH}}}$	$\mathrm{C}_{\text {IN } 2}$		5	pF
Input/output capacitance	$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$	$\mathrm{C}_{\text {out1 }}$		12	pF

DC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE
Operating current	ICC1	$\mathrm{t}_{\text {RC }}=190 \mathrm{~ns}$		55	mA	1
Standby current	IcC2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{OE}} / \overline{\mathrm{RFSH}}=\mathrm{V}_{\mathrm{IH}}$		3	mA	1
Self refresh average current	Icc3	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{OE}} / \overline{\mathrm{RFSH}}=\mathrm{V}_{\mathrm{IL}}$		3	mA	
Input leakage current	ILI	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 6.5 \mathrm{~V}$	-10	10	$\mu \mathrm{A}$	
Output leakage current	lLO	$0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {cc }}+0.3 \mathrm{~V}$	-10	10	$\mu \mathrm{A}$	1
Output High voltage	VOH	IOUT $=-1 \mathrm{~mA}$	2.4		V	
- Output Low voltage	VoL	lout $=4 \mathrm{~mA}$		0.4	V	

NOTES:

1. The output pins are in high-impedance state.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.6 to 2.4 V
Input rise/fall time	5 ns
Timing reference level	1.5 V
Output load conditions	1 TTL gate, $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (Includes scope and jig capacitance)

ÁC CHARACTERISTICS

READ AND WRITE CYCLES ${ }^{1,2}$ (VCC $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Random read, write cycle time	trc	190		ns	
Read modify write cycle time	trmw	280		ns	
$\overline{\mathrm{CE}}$ pulse width	tce	120	10,000	ns	
$\overline{\text { CE }}$ precharge time	tp	60		ns	
Address setup time	tAS	0		ns	
Address hold time	$t_{\text {AH }}$	30		ns	
Read command hold time	$t_{\text {tren }}$	0		ns	
Read command setup time	trics	0		ns	
$\overline{\mathrm{CE}}$ access time	tcea		120	ns	
$\overline{\mathrm{OE}}$ access time	toea		50	ns	
$\overline{\mathrm{CE}}$ to output in Low-Z	tclz	10		ns	
$\overline{\mathrm{OE}}$ to output in Low-Z	tolz	0		ns	
Output enable from end of write	twLZ	0		ns	
Chip disable to output in High-Z	tchz	0	35	ns	2
Output disable to output in High-Z	tohz	0	35	ns	2
Write enable to output in High-Z	twhz	0	35	ns	2
$\overline{\mathrm{OE}}$ setup time	toes	10		ns	
$\overline{O E}$ hold time	toen	0		ns	
$\overline{\text { OE lead time }}$	toel	10		ns	
Write command pulse width	twCP	85		ns	
Write command setup time	twes	85		ns	
Write command hold time	twch	85		ns	
Data setup time from write	tosw	50		ns	
Data setup time from $\overline{\mathrm{CE}}$	tosc	50		ns	
Data hold time from write	tDHW	0		ns	
Data hold time from $\overline{\mathrm{CE}}$	tDHC	0		ns	
Transition time (rise and fall)	t	3	35	ns	
Refresh time interval	treF		4	ms	

REFRESH CYCLE

Auto refresh cycle time	tFC	190		ns	
Refresh delay time from $\overline{C E}$	trFD	60		ns	
Refresh pulse width (Auto refresh)	tFAP	80	8,000	ns	
Refresh precharge time (Auto refresh)	tfP	30		ns	
$\overline{\mathrm{CE}}$ delay time from refresh active (Auto refresh)	tfce	225		ns	
Refresh pulse width (Self refresh)	tFAS	8,000		ns	
$\overline{\mathrm{CE}}$ delay time from refresh precharge (Self refresh)	tFRS	225		ns	

NOTES:

1. At least 1 ms of pause time after power on should be given for proper device operation.
$\overline{C E}$ and $\overline{O E} / \overline{R F S H}$ must be fixed at $V_{I H}$ for 1 ms from the $V_{D D}$ reached to the specified voltage level.
2. Active output to high- Z and high- Z to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

5P832-3
Figure 3. Read Cycle

Figure 4. Write Cycle

5P832-5
Figure 5. Read/Write Cycle

NOTE: $A_{8}-A_{14}=$ Don't care
Figure 6. $\overline{\mathrm{CE}}$ Only Refresh Cycle

NOTE: $A_{0}-A_{14}, R \bar{W}=$ Don't care

Figure 7. Auto Refresh Cycle

NOTE: $A_{0}-A_{14}, R \bar{W}=$ Don't care
Figure 8. Self Refresh Cycle

ORDERING INFORMATION

Example: LH5P832N-12 (CMOS 256K (32K x 8) Pseudo Static RAM, $120 \mathrm{~ns}, 28$-pin, 450 -mil SOP)

FEATURES

- $131,072 \times 8$ bit organization
- Access times (MAX.): 60/80/100 ns
- Cycle times (MIN.): 100/130/160 ns
- Power consumption:

Operating: 572/440/358 mW (MAX.) Standby: $275 \mu \mathrm{~W}$ (MAX.) in self-refresh mode

- TTL compatible I/O
- Available for auto-refresh and self-refresh modes
- 512 refresh cycles/8 ms
- Compatible with JEDEC standard 1M SRAM pinout
- Packages:

32-pin, 600 -mil DIP
32-pin, 525 -mil SOP
32 -pin, $8 \times 20 \mathrm{~mm}^{2}$ TSOP (Type I)
(normal and reverse bend pins)

DESCRIPTION

The LH5P8128 is a 1M bit Pseudo Static RAM organized as $131,072 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

A PSRAM uses on-chip refresh circuitry with a DRAM memory cell for pseudo static operation which eliminates external clock inputs, while having the same pinout as industry standard SRAMs. Moreover, due to the functional similarities between PSRAMs and SRAMs, existing $128 \mathrm{~K} \times 8$ SRAM sockets can be filled with the LH5P8128 with little or no changes. The advantage is the cost savings realized with the lower cost PSRAM.

The LH5P8128 PSRAM has the ability to fill the gap between DRAM and SRAM by offering low cost, low power standby and a simple interface.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

Figure 2. Pin Connections for TSOP Packages

Figure 3. LH5P8128 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$A_{0}-A_{16}$	Address input
R/W	Read/Write input
$\overline{\text { OE }}$	Output Enable Input

SIGNAL	PIN NAME
$\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$	Chip Enable input
$\overline{\mathrm{RFSH}}$	Refresh input
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Data input/output

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Applied voltage on any pins	V_{T}	-1.0 to +7.0	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Output short circuit current	lo	50	mA	
Power consumption	PD_{D}	600	mW	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA $=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
	GND	0	0	0	V
Input voltage	$\mathrm{V}_{\text {IH }}$	2.4		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-1.0		0.8	V

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%$)

PARAMETER		SYMBOL	MIN.	max.	UNIT
Input capacitance	$\mathrm{A}_{0}-\mathrm{A}_{16}$	$\mathrm{Cl}_{\text {IN1 }}$		8	pF
	RW, $\overline{O E}$	$\mathrm{Cl}_{\text {IN2 }}$		5	pF
	$\overline{C E}_{1}, \mathrm{CE}_{2}$	$\mathrm{Cl}_{\text {IN3 }}$		5	pF
	$\overline{\mathrm{RFSH}}$	$\mathrm{Cl}_{1 \times 4}$		5	pF
Input/output capacitance	$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	Cout1		10	pF

DC CHARACTERISTICS ($\mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$)

PARAMETER		SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE
Operating current	LH5P8128-60	lcc1	$\operatorname{trC}^{\text {a }}$ tre (MIN)		104	mA	1,2
	LH5P8128-80				80		
	LH5P8128-10				65		
Standby current	TTL Input	IcC2			1	mA	1, 3
	CMOS Input				0.05		1,4
Self-refresh average current	TTL Input	Icc3			1	mA	1,5
	CMOS Input				0.05		1, 6
CPU internal cycle average current	LH5P8128-60	IcC4	$\left(\mathrm{R} W \mathrm{~W}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}\right)$		104	mA	1,2
	LH5P8128-80				80		
	LH5P8128-10				65		
Input leakage current		ILI	$0 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq 6.5 \mathrm{~V}$ 0 V on all other test pins	-10	10	$\mu \mathrm{A}$	
I/O leakage current		lıO	$\begin{gathered} 0 \mathrm{~V} \leq \text { Vour } \leq \mathrm{VCC}+0.3 \mathrm{~V} \\ \text { Output in high- } \\ \text { impedance state } \end{gathered}$	-10	10	$\mu \mathrm{A}$	
Output HIGH voltage		VOH	lout $=1 \mathrm{~mA}$	2.4		V	
Output LOW voltage		VoL	lout $=4 \mathrm{~mA}$		0.4	V	

NOTES:

1. The output pins are in high-impedance state
2. Icc1 and lcc4 depend on the cycle time
3. $\overline{\mathrm{CE}}_{1}=\mathrm{V}_{I H}, \overline{\mathrm{RFSH}}=\mathrm{V}_{\mathrm{IH}}$
4. $\overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V}, \overline{\mathrm{RFSH}}=\mathrm{V}_{c c}-0.2 \mathrm{~V}$
5. $\overline{C E}_{1}=V_{\mathrm{IH}}, \overline{\mathrm{RFSH}}=\mathrm{V}_{\mathrm{IL}}$
6. $\overline{\mathrm{CE}}_{1}=\mathrm{VCc}-0.2 \mathrm{~V}, \overline{\mathrm{RFSH}}=0.2 \mathrm{~V}$

AC ELECTRICAL CHARACTERISTICS ${ }^{1,2,3}$ (TA $=0$ to $+70^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	LH5P8128-60		LH5P8128-80		LH5P8128-10		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Random read, write cycle time	tRC	100		130		160		ns	
Read modify write cycle time	trmw	155		195		235		ns	
$\overline{\mathrm{CE}}$ pulse width	tce	60	10,000	80	10,000	100	10,000	ns	
$\overline{\text { CE }}$ precharge time	tp	30		40		50		ns	
Address setup time	$t_{\text {AS }}$	0		0		0		ns	4
Address hold time	tah	15		20		25		ns	4
Read command setup time	tres	0		0		0		ns	
Read command hold time	trch	0		0		0		ns	
$\overline{\mathrm{CE}}$ access time	tCEA		60		80		100	ns	5
$\overline{\mathrm{OE}}$ access time	toea		25		30		35	ns	5
$\overline{\overline{C E}}$ to output in Low-Z	tclz	20		20		20		ns	
$\overline{\mathrm{OE}}$ to output in Low-Z	tolz	0		0		0		ns	
Output enable from end of write	twLz	0		0		0		ns	
Chip disable to output in High-Z	tchz		20		25		30	ns	
Output disable to output in High-Z	tohz		20		25		30	ns	
Write enable to output in High-Z	twhz		20		25		30	ns	
$\overline{\mathrm{OE}}$ setup time	toes	0		0		0		ns	
$\overline{\text { OE }}$ hold time	toen	10		10		10		ns	
Write command pulse width	twp	30		30		30		ns	
Write command setup time	twcs	30		30		30		ns	
Write command hold time	twCH	40		50		60		ns	
Data setup time from write	tDSW	25		30		35		ns	6
Data setup time from $\overline{\mathrm{CE}}$	tosc	25		30		35		ns	6
Data hold time from write	tDHW	0		0		0		ns	6
Data hold time from $\overline{\mathrm{CE}}$	tDHC	0		0		0		ns	6
Transition time (rise and fall)	tT	3	35	3	35	3	35	ns	
Refresh time interval	treF		8		8		8	ms	
Refresh command hold time	trHC	15		15		15		ns	
Auto refresh cycle time	tFC	100		130		160		ns	
Refresh delay time from $\overline{\mathrm{CE}}$	trfi	30		40		50		ns	
Refresh pulse width (Auto refresh)	tFAP	30	8,000	30	8,000	30	8,000	ns	
Refresh precharge time (Auto refresh)	tfp	30		30		30		ns	
Refresh pulse width (Self refresh)	tFAS	8,000		8,000		8,000		ns	
$\overline{\mathrm{CE}}$ delay time from refresh precharge (Self refresh)	tFRS	140		160		190		ns	

NOTES:

1. In order to initialize the circuit, $\overline{\mathrm{CE}}_{1}$ should be kept at $\mathrm{V}_{\mathbb{H}}$ or $C E_{2}$ should be kept at $V_{\text {IL }}$ for 100μ s after power-up.
2. $A C$ characteristics are measured at $t T=5 \mathrm{~ns}$.
3. AC characteristics are measured at the following condition (see figure at right).
4. Address is latched at the negative edge of $\overline{\mathrm{CE}}_{1}$ or at the positive edge of CE_{2}.
5. Measured with a load equivalent to $2 T T L+100 \mathrm{pF}$.
6. Data is latched at the positive edge of W/R or at the positive edge of $\overline{C E}_{1}$ or at the negative edge of $C E_{2}$.

Figure 4. Read Cycle

Figure 5. Write Cycle 1 ($\overline{\mathrm{OE}}=\mathrm{HIGH}$)

Figure 6. Write Cycle 2 ($\overline{\mathrm{OE}}$ Clock)

NOTE: $\overline{C E}_{1}=$ LOW, $\mathrm{CE}_{2}=\mathrm{HIGH}$.
Figure 7. Write Cycle 3 ($\overline{\mathrm{OE}}=\mathrm{LOW}$)

NOTE: $\overline{C E}_{1}=$ LOW, $\mathrm{CE}_{2}=\mathrm{HIGH}$.
5P8128-8
Figure 8. Read-Modify-Write Cycle

Figure 9. $\overline{\mathrm{CE}}$ Only Refresh

Figure 10. Auto Refresh Cycle

Figure 11. Self Refresh Cycle

ORDERING INFORMATION

LH5P8128	X	- \#\#	
Device Type	Package	Speed	
			$\left\{\begin{array}{ll} 60 \mathrm{~L} & 60 \\ 80 \mathrm{~L} & 80 \\ 10 \mathrm{~L} & 100 \end{array}\right. \text { Access Time (ns) }$
			$\left\{\begin{array}{l} \text { Blank } 32-\mathrm{pin}, 600-\mathrm{mil} \text { DIP (DIP32-P-600) } \\ \mathrm{N} \text { 32-pin, } 525-\mathrm{mil} \text { SOP (SOP32-P-525) } \\ \mathrm{T} \\ \text { 32-pin, } 8 \times 20 \mathrm{~mm}^{2} \text { TSOP(I) (TSOP32-P-0820) } \\ \text { TR } 32-\mathrm{pin}, 8 \times 20 \mathrm{~mm}^{2} \text { TSOP(I) Reverse bend (TSOP32-P-0820) } \end{array}\right.$
			CMOS 1M (128K x 8) Pseudo-Static RAM

Example: LH5P8128N-60L (CMOS 1M (128K x 8) Pseudo-Static RAM, $60 \mathrm{~ns}, 32$-pin, $525-\mathrm{mil}$ SOP)

STATIC RAMs - 4

 EPROMs/OTPROMs - 5MASK PROGRAMMABLE ROMS - 6

FIFO MEMORIES - 7

FIELD MEMORIES - 8

APPLICATION AND TECHNICAL INFORMATION - 9

PACKAGING - 10

FEATURES

- $2,048 \times 8$ bit organization
- Access time:

100 ns (MAX.)

- Power consumption:

Operating: 220 mW (MAX.)
Standby: $5.5 \mu \mathrm{~W}$ (MAX.)

- Single +5 V power supply
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Wide temperature range available LH5116H: -40 to $+85^{\circ} \mathrm{C}$
- Packages:

24-pin, 600-mil DIP
24-pin, 300-mil SK-DIP 24-pin, 450-mil, SOP

- Compatible with 16 K EPROM and mask ROM pinout

DESCRIPTION

The LH5116 is a static RAM organized as $2,048 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology. It features high speed access in read mode using output enable (toe).

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SK-DIP, and SOP Packages

Figure 2. LH5116 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$A_{0}-A_{10}$	Address input
$\overline{\mathrm{CE}}$	Chip Enable input
$\overline{\mathrm{OE}}$	Output Enable input
$\overline{\mathrm{WE}}$	Write Enable input

SIGNAL	PIN NAME
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$	Data input/output
V_{CC}	Power supply
GND	Ground

TRUTH TABLE

$\overline{C E}$	$\overline{\mathbf{O E}}$	WE	MODE		SUPPLY CURRENT	NOTE
L	X	L	Write	DiN	Operating (lcc)	1
L	L	H	Read	Dout	Operating (lcc)	
H	X	X	Deselect	High-Z	Standby (lsB)	1
L	H	X	Outputs disable	High-Z	Operating (ICC)	1

NOTE:

1. $\mathrm{X}=\mathrm{H}$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	VIN	-0.3 to $\mathrm{VCC}+0.3$	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	2
		-40 to +85		3
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.
2. Applied to the LH5116/D/NA
3. Applied to the LH5116H/HD/HN

RECOMMENDED OPERATING CONDITIONS ${ }^{1}$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage	V_{IH}	2.2		$\mathrm{VCC}_{\mathrm{C}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-0.3		0.8	V

NOTE:

1. $T_{A}=0$ to $70^{\circ} \mathrm{C}(\mathrm{LH} 5116 / \mathrm{D} / \mathrm{NA}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5116 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$

DC CHARACTERISTICS ${ }^{1}$ (VCC = 5 V $\pm 10 \%$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Output "LOW" voltage	VOL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.4	V		
Output "HIGH" voltage	VOH	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to Vcc			1.0	$\mu \mathrm{A}$	
Output leakage current	\| LLO		$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IO}}=0 \mathrm{~V}$ to Vcc			1.0	$\mu \mathrm{A}$	
Operating current	IcC1	Outputs open ($\overline{\mathrm{OE}}=\mathrm{Vcc}$)		25	30	mA	2	
	ICC2	Outputs open ($\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$)		30	40	mA	3	
Standby current	ISB	$\overline{C E} \geq V_{c c}-0.2 \mathrm{~V}$All other input pins $=0 \mathrm{~V}$ to Vcc			1.0	$\mu \mathrm{A}$		
					0.2		4	

NOTES:

1. $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ (LH5116/D/NA), $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (LH5116H/HD/HN)
2. $\overline{\mathrm{CE}}=0 \mathrm{~V}$; all other input pins $=0 \mathrm{~V}$ to Vcc
3. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{L}}$; all other input pins $=\mathrm{V}_{\mathrm{IL}}$ to V_{H}
4. $T_{A}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS ${ }^{1}$

(1) READ CYCLE (Vcc = $5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	trc $^{\text {che }}$	100			ns	
Address access time	$t_{\text {A }}$			100	ns	
Chip enable access time	tace			100	ns	
$\overline{\mathrm{CE}}$ Low to output in Low-Z	tclz	10			ns	1
Output enable access time	toe			40	ns	
Output enable Low to output in Low-Z	tolz	10			ns	1
Chip disable to output in High-Z	tchz	0		40	ns	1
Output disable to output in High-Z	tohz	0		40	ns	1
Output hold time	toh	10			ns	

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

(2) WRITE CYCLE ${ }^{1}$ (VCC = $5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Write cycle time	twC	100			ns	
Chip enable to end of write	tcW	80			ns	
Address valid time	taW	80			ns	
Address setup time	tAS	0			ns	
Write pulse width	twP	60			ns	
Write recovery time	twr	10			ns	
Output active from end of write	tow	10			ns	2
WE Low to output in High-Z	twHz			30	ns	2
Data valid to end of write	tDW	30			ns	
Data hold time	tDH	10			ns	
Output enable to output in High-Z	tohz			40	ns	2
Output active from end of write	tow	10			ns	2

NOTE:

1. $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ (LH5116/D/NA), $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5116 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$
2. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.8 V to 2.2 V
Input rise/fall time	10 ns
Timing reference level	1.5 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

DATA RETENTION CHARACTERISTICS ${ }^{1}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Data retention voltage	VCCDR	$\overline{\mathrm{CE}} \geq \mathrm{V}$ CCRC -0.2 V	2.0			V	
Data retention current	ICCDR	$\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{VCCDR}-0.2 \mathrm{~V}, \\ \mathrm{VCCDR}=3.0 \mathrm{~V} \end{gathered}$			1.0	$\mu \mathrm{A}$	
					0.2		2
Chip disable to data retention	tcDR		0			ns	
Recovery time	t_{R}		trc			ns	3

NOTES:

1. $T_{A}=0$ to $+70^{\circ} \mathrm{C}$ (LH5116/D/NA), $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5116 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$
2. $T_{A}=25^{\circ} \mathrm{C}$
3. $\mathrm{t}_{\mathrm{RC}}=$ Read cycle time

CAPACITANCE ${ }^{\mathbf{1}}\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{N}}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			7	pF
Input/output capacitance	$\mathrm{C}_{\text {IOO }}$	$\mathrm{V}_{\text {IO }}=0 \mathrm{~V}$			10	pF

NOTE:

1. This parameter is sampled and not production tested.

Figure 3. Low Voltage Data Retention

NOTE: WE = "HIGH"
Figure 4. Read Cycle

Figure 5. Write Cycle 1

Figure 6. Write Cycle 2 (Note 1)

INPUT VOLTAGE VS. SUPPLY VOLTAGE

Figure 7. Electrical Characteristic Curves
(Vcc $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

ORDERING INFORMATION ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

LH5116	X	- \#\#	
Device Type	$\overline{\text { Package }}$	$\overline{\text { Speed }}$	
			10100 Access Time (ns)
			$\left\{\begin{array}{l} \text { Blank 24-pin, 600-mil DIP (DIP24-P-600) } \\ \text { D 24-pin, 300-mil SK-DIP (DIP24-P-300) } \\ \text { NA 24-pin, 450-mil SOP (SOP24-P-450) } \end{array}\right.$

CMOS $16 \mathrm{~K}(2 \mathrm{~K} \times 8$) Static RAM

Example: LH5116NA-10 (CMOS 16K (2K x 8) Static RAM, $100 \mathrm{~ns}, 24$-pin, 450-mil SOP)

ORDERING INFORMATION ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0 ^ { \circ }} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Example: LH5116HN-10 (CMOS 16K (2K x 8) Static RAM, $100 \mathrm{~ns}, 24$-pin, 450 -mil SOP)

FEATURES

- $2,048 \times 8$ bit organization
- Access time:

1000 ns (MAX.)

- Low power consumption:

Operating: 33 mW (MAX.)
Standby: $3.3 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- Three-state outputs
- Single +3V power supply
- Package:

24-pin, 450-mil SOP

DESCRIPTION

The LH5116S is a static RAM organized as $2,048 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology. It operates at a low supply voltage of $3 \mathrm{~V} \pm 10 \%$.

PIN CONNECTIONS

Figure 1. Pin Connections for SOP Package

Figure 2. LH5116S Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{10}$	Address input
$\overline{\mathrm{CE}}$	Chip Enable input
$\overline{\mathrm{OE}}$	Output Enable input
$\overline{\mathrm{WE}}$	Write Enable input

SIGNAL	PIN NAME
$/ \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$	Data input/output
V_{CC}	Power supply
GND	Ground

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\text { OE }}$	$\overline{\text { We }}$	MODE	//O1-1/O8	SUPPLY CURRENT	NOTE
L	X	L	Write	Din	Operating (lcc)	1
L	L	H	Read	Dout	Operating (lcc)	
H	X	X	Deselected	High-Z	Standby (lsB)	1
L	H	X	Output disable	High-Z	Operating (ICC)	1

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{CC}	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\mathbb{N}}$	-0.3 to $\mathrm{VCC}+0.3$	V	1
Operating temperature	Topr	0 to +50	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($\mathrm{TA}_{\mathrm{A}}=0$ to $+50^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	$\mathrm{VCC}_{\mathrm{CC}}$	2.7	3.0	3.3	V
Input voltage	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-0.3		0.8	V

DC CHARACTERISTICS ($\mathrm{Vcc}=3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+50^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Output "LOW" voltage	Vol	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.5	V		
Output "HIGH" voltage	VOH	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$	Vcc-0.5			V		
Input leakage current	\| lis		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			1.0	$\mu \mathrm{A}$	
Output leakage current	\| lio		$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{VO}}=0 \mathrm{~V}$ to Vcc			1.0	$\mu \mathrm{A}$	
Operating current	Icc1	Outputs open ($\overline{\mathrm{OE}}=\mathrm{V} c \mathrm{c}$)		8	10	mA	1	
	Icc2	Outputs open ($\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$)		8	10	mA	2	
Standby current	ICCL	$\overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$ All other input pins $=0 \mathrm{~V}$ to V_{cc}			1.0	$\mu \mathrm{A}$		

NOTES:

1. $\overline{\mathrm{CE}}=0 \mathrm{~V}$; all other input pins $=0 \mathrm{~V}$ to Vcc
2. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$; all other input pins $=\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$

AC CHARACTERISTICS ($\mathrm{Vcc}=3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+50^{\circ} \mathrm{C}$)

(1) READ CYCLE

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	trc	1000			ns	
Address access time	$t_{\text {AA }}$			1000	ns	
Chip enable access time	$t_{\text {ACE }}$			1000	ns	
$\overline{\mathrm{CE}}$ Low to output in Low-Z	tCLZ	10			ns	1
Output enable access time	toe			100	ns	
Output enable Low to output in Low-Z	tolz	10			ns	1
Chip disable to output in High-Z	tchz	0		40	ns	1
Output enable to output in High-Z	tohz	0		40	ns	1
Output hold time	toh	10			ns	

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. ClOAD $=5 \mathrm{pF}$.
(2) WRITE CYCLE (Vcc = $3 \mathrm{~V} \pm 10 \%$, $\mathrm{TA}_{\mathrm{A}}=0$ to $+50^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Write cycle time	twC	1000			ns	
Chip enable to end of write	tcw	100			ns	
Address valid time	tAW	100			ns	
Address setup time	tas	0			ns	
Write pulse width	twP	100			ns	
Write recovery time	twR	20			ns	
WE Low to output in High-Z	twHZ			30	ns	1
Data valid to end of write	tDW	50			ns	
Data hold time	tDH	20			ns	
Output active from end of write	tow	10			ns	1
Output enable to output in High-Z	toHZ			40	ns	1

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0 to VCC
Input rise/fall time	10 ns
Timing reference level	1.5 V
Output load conditions	$1 \mathrm{TTL}+100 \mathrm{pF}$

DATA RETENTION CHARACTERISTICS (TA = 0 to $\boldsymbol{+ 5 0}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Data retention voltage	VCCDR	$\overline{\mathrm{CE}} \geq \mathrm{V}_{\text {cCDR }}-0.2 \mathrm{~V}$	2.0			V	
Data retention current	lCCDR	$\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{\text {CCDR }}-0.2 \mathrm{~V}, \\ \mathrm{VCCDR}=2.0 \mathrm{~V} \end{gathered}$			1.0	$\mu \mathrm{A}$	
					0.2		1
Chip disable to data retention	tcDR		0			ns	
Recovery time	t_{R}		trc			ns	2

NOTES:

1. $T_{A}=25^{\circ} \mathrm{C}$
2. $\mathrm{t}_{\mathrm{RC}}=$ Read cycle time

CAPACITANCE ${ }^{1}$ ($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			7	PF
Input/output capacitance	$\mathrm{C}_{/ / O}$	$\mathrm{~V}_{/ / O}=0 \mathrm{~V}$			10	pF

NOTE:

1. This parameter is sampled and not production tested.

5116SN-6
Figure 3. Low Voltage Data Retention

NOTE: $\overline{W E}=$ "HIGH"
Figure 4. Read Cycle

NOTES:

1. WE must be HIGH when there is a change in $A_{0}-A_{10}$.
2. When $\overline{C E}$ and $\overline{W E}$ are both LOW at the same time, write occurs during the period twp.
3. $t_{W R}$ is the time from the rise of CE or WE, whichever is first, to the end of the write cycle.
4. If CE LOW transition occurs at the same time or before WE LOW transition, the output will remain high-impedance.
5. Dout outputs data with the same logic level as the input data of this write cycle.
6. If CE is LOW during this period, the input/output pins are in the output state. During this state, input signals of opposite logic level must not be applied.

Figure 5. Write Cycle 1

Figure 6. Write Cycle 2

ORDERING INFORMATION

FEATURES

- $2,048 \times 8$ bit organization
- Access time:

100 ns (MAX.)

- Power consumption:

Operating: 220 mW (MAX.)
Standby: $5.5 \mu \mathrm{~W}$ (MAX.)

- Single +5 V power supply
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Wide temperature range available LH5117H: -40 to $+85^{\circ} \mathrm{C}$
- Packages:

24-pin, 600-mil DIP
24-pin, 300-mil SK-DIP
24-pin, 450-mil SOP

DESCRIPTION

The LH5117 is a static RAM organized as $2,048 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

The chip select input provides high speed access in read mode.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SK-DIP, and SOP Packages

Figure 2. LH5117 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{10}$	Address input
$\overline{\mathrm{CE}}$	Chip Enable input
$\overline{\mathrm{CS}}$	Chip Select input
$\overline{\mathrm{WE}}$	Write Enable input

SIGNAL	PIN NAME
$\mathrm{I} / \mathrm{O}_{\mathbf{1}}-\mathrm{I} / \mathrm{O}_{\mathbf{8}}$	Data Input/Output
VCC	Power supply
GND	Ground

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	MODE	I/O $\mathbf{1}-/ / \mathbf{O}_{\mathbf{8}}$	SUPPLY CURRENT	NOTE
L	L	L	Write	DIN	Operating (ICC)	
L	L	H	Read	DouT	Operating (ICC)	
L	H	X	Deselect	High-Z	Operating (ICC)	$\mathbf{1}$
H	X	X	Deselect	High-Z	Standby (ISB)	$\mathbf{1}$

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	V IN	-0.3 to $\mathrm{VCC}+0.3$	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	2
		-40 to +85		3
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.
2. Applied to the LH5117/D/N
3. Applied to the LH5117H/HD/HN

RECOMMENDED OPERATING CONDITIONS ${ }^{1}$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-0.3		0.8	V

NOTE:

1. $T_{A}=0$ to $70^{\circ} \mathrm{C}(\mathrm{LH} 5117 / \mathrm{D} / \mathrm{NA}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5117 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$

DC CHARACTERISTICS ${ }^{1}$ ($\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Output "LOW" voltage	Vol	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.4	V		
Output "HIGH" voltage	V OH	$\mathrm{l} \mathrm{OH}=-1.0 \mathrm{~mA}$	2.4			V		
Input leakage current	\| lis		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			1.0	$\mu \mathrm{A}$	
Output leakage current	\| liol	$\begin{gathered} \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{IO}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$			1.0	$\mu \mathrm{A}$		
Operating current	Icc1			25	30	mA	2	
	lcc2			30	40	mA	3	
Standby current	IsB	$\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}, \\ \overline{\mathrm{CS}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \text { or } \\ \overline{\mathrm{CS}} \leq 0.2 \mathrm{~V} \\ \text { All other input pins }=0 \mathrm{~V} \text { to } \mathrm{Vcc} \end{gathered}$			1.0	$\mu \mathrm{A}$		
					0.2		4	

NOTES:

1. $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}(\mathrm{LH} 5117 / \mathrm{D} / \mathrm{N}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5117 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$
2. $\overline{\mathrm{CE}}=0 \mathrm{~V}$; all other input pins $=0 \mathrm{~V}$ to Vcc , outputs open
3. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$; all other input pins $=\mathrm{V}_{\mathrm{IL}}$ to V_{IH}, outputs open
4. $T_{A}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS ${ }^{1}$

(1) READ CYCLE (Vcc = $5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	trc	100			ns	
Address access time	tAA			100	ns	
Chip enable access time	tace			100	ns	
Chip enable Low to output in Low-Z	tclz	10			ns	2
Chip select access time	tacs			40	ns	
Chip select Low to output in Low-Z	tsLz	10			ns	2
Chip enable to output in High-Z	tchz	0		40	ns	2
Chip select to output in High-Z	tshz	0		40	ns	2
Output hold time	toh	10			ns	

(2) WRITE CYCLE ${ }^{1}$ (VCC $=5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Write cycle time	twc	100			ns	
Chip enable to end of write	tcw	80			ns	
Address valid time	taW	80			ns	
Address setup time	tas	0			ns	
Write pulse width	twP	60			ns	
Write recovery time	twR	10			ns	
Write enable Low to output in High-Z	twHZ			30	ns	2
Data valid to end of write	tDW	30			ns	
Data hold time	tDH	10			ns	
Output active from end of write	tow	10			ns	2

NOTE:

1. $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}(\mathrm{LH} 5117 / \mathrm{D} / \mathrm{N}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5117 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$
2. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.8 V to 2.2 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	$1 \mathrm{TTL}+100 \mathrm{pF}$

DATA RETENTION CHARACTERISTICS ${ }^{1}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Data retention voltage	VCCDR	$\overline{C E} \geq$ VCCRC - 0.2V	2.0			V	
Data retention current	lCCDR	$\begin{gathered} \overline{\mathrm{CE}} \geq \text { VCCDR }-0.2, \\ \overline{\mathrm{CS}} \geq \text { VCCDR }-0.2 \text { or } \\ \mathrm{CS} \leq 0.2 \mathrm{~V}, \mathrm{VCCDR}=3.0 \mathrm{~V} \end{gathered}$			1.0	$\mu \mathrm{A}$	
					0.2		2
Chip disable to data retention	tcDR		0			ns	
Recovery time	t_{R}		trc			ns	3

NOTES:

1. $T_{A}=0$ to $+70^{\circ} \mathrm{C}(\mathrm{LH} 5117 / \mathrm{D} / \mathrm{N}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5117 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$
2. $T_{A}=25^{\circ} \mathrm{C}$
3. tric = Read cycle time

CAPACITANCE ${ }^{\mathbf{1}}\left(\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Input capacitance	$\mathrm{C}_{\mathbb{I N}}$	$\mathrm{V}_{I N}=0 \mathrm{~V}$			7	pF	
Input/output capacitance	$\mathrm{C}_{/ / \mathrm{O}}$	$\mathrm{V}_{\\| O}=0 \mathrm{~V}$			10	pF	

NOTE:

1. This parameter is sampled and not production tested.

NOTE: $\overline{\mathrm{WE}}=$ "HIGH"

Figure 3. Read Cycle

NOTES:

1. $\overline{W E}$ must be HIGH when there is a change in $A_{0}-A_{10}$.
2. When $\overline{C E}, \overline{C S}$ and $\overline{W E}$ are all LOW at the same time, write occurs during the period $t_{W P}$.
3. $t_{\text {WR }}$ is the time from the rise of CE, CS or WE, whichever is first, to the end of the write cycle.
4. If $\overline{C E}$ or $\overline{C S}$ LOW transition occurs at the same time or before $\overline{W E}$ LOW transition, the outputs will remain high-impedance.
5. Dout outputs data with the same logic level as the input data of this write cycle.
6. If both $\overline{C E}$ and $\overline{C S}$ are LOW during this period, the input/output pins are in the output state. During this state, input signals of opposite logic level must not be applied.

Figure 4. Write Cycle

Figure 5. Electrical Characteristic Curves
(Vcc =5 V, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified)

Figure 6. Low Voltage Data Retention

ORDERING INFORMATION ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

LH5117	X	-\#\#	
Device Type	Package	Speed	
			10100 Access Time (ns)
			$\left\{\begin{array}{l} \text { Blank } 24 \text {-pin, 600-mil DIP (DIP24-P-600) } \\ \mathrm{D} \\ \mathrm{~N} \\ \text { 24-pin, 300-mil SK-DIP (DIP24-P-300) } \\ \text { 250-mil SOP (SOP24-P-450) } \end{array}\right.$
			CMOS 16K (2K x 8) Static RAM

Example: LH5117N-10 (CMOS 16K (2K x 8) Static RAM, $100 \mathrm{~ns}, 24$-pin, 450 -mil SOP)

ORDERING INFORMATION (TA $=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Example: LH5117HN-10 (CMOS 16K (2K x 8) Static RAM, $100 \mathrm{~ns}, 24$-pin, 450 -mil SOP)

FEATURES

- $2,048 \times 8$ bit organization
- Access time:

100 ns (MAX.)

- Power consumption:

Operating: 220 mW (MAX.)
Standby: $5.5 \mu \mathrm{~W}$ (MAX.)

- Single +5 V power supply
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Wide temperature range available LH5118H: -40 to $+85^{\circ} \mathrm{C}$
- Packages:

24-pin, 600-mil DIP
24-pin, 300-mil SK-DIP
24-pin, 450-mil SOP

DESCRIPTION

The LH5118 is a static RAM organized as $2,048 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

The LH5118 accepts two chip-enables. These allow data to be held with battery back-up for memory expansion (used in systems with multiple memory devices).

Low power mode (ISB) is available with $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ deactivated.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SK-DIP, and SOP Packages

Figure 2. LH5118 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{10}$	Address input
$\overline{\mathrm{CE}}_{2}$	Chip Enable input no. 2
$\overline{\mathrm{CE}}_{1}$	Chip Enable input no. 1
$\overline{\mathrm{WE}}$	Write Enable input

SIGNAL	PIN NAME
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$	Data Input/Output
V_{cc}	Power supply
GND	Ground

TRUTH TABLE

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{C E}}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	MODE	$\mathbf{V O}_{\mathbf{1}}-\mathbf{/ O}_{\mathbf{8}}$	SUPPLY CURRENT	NOTE
X	H	X	Deselect	High-Z	Standby (ISB)	1
H	X	X	Deselect	High-Z	Standby (ISB)	1
L	L	L	Write	DIN	Operating (Icc)	
L	L	H	Read	Dout	Operating (Icc)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	2
		-40 to +85		3
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.
2. Applied to the LH5118/D/N
3. Applied to the LH5118H/HD/HN

RECOMMENDED OPERATING CONDITIONS ${ }^{1}$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	$\mathrm{VCC}_{\mathrm{CC}}$	4.5	5.0	5.5	V
Input voltage	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-0.3		0.8	V

NOTE:

1. $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ (LH5118/D/NA), $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (LH5118H/HD/HN)

DC CHARACTERISTICS ${ }^{1}$ (VCC = $5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Output "LOW" voltage	VoL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.4	V		
Output "HIGH" voltage	VOH	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V cc			1.0	$\mu \mathrm{A}$	
Output leakage current	\| liol	$\begin{aligned} \overline{\mathrm{CE}}_{2}= & \mathrm{V}_{\mathrm{IH}} \text { or } \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IO}} \\ & =0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$			1.0	$\mu \mathrm{A}$		
Operating current	IcC1	Outputs open ($\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{cc}}$)		25	30	mA	2	
	IcC2	Outputs open ($\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$)		30	40	mA	3	
Standby current	ISB	$\begin{gathered} \text { (1) } \overline{\mathrm{CE}}_{2} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \text {, and } \\ \left(\overline{C E}_{1} \geq \mathrm{Vcc}-0.2 \mathrm{~V}\right. \text { or } \\ \left.\overline{\mathrm{CE}}_{1} \leq 0.2 \mathrm{~V}\right) \text { or } \end{gathered}$			1.0	$\mu \mathrm{A}$		
		(2) $\overline{C E}_{1} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$, and $\left(\mathrm{CE}_{2} \geq \mathrm{Vcc}-0.2 \mathrm{~V}\right.$ or $\left.\overline{C E}_{2} \leq 0.2 \mathrm{~V}\right)$ All other inputs $=0 \mathrm{~V}$ to Vcc			0.2	$\mu \mathrm{A}$	4	

NOTES:

1. $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}(\mathrm{LH} 5118 / \mathrm{D} / \mathrm{N}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5118 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$
2. $\overline{\mathrm{CE}}_{2}=\overline{\mathrm{CE}}_{1}=0 \mathrm{~V}$; all other input pins $=0 \mathrm{~V}$ to Vcc
3. $\overline{\mathrm{CE}}_{2}=\overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}}$; all other input pins $=\mathrm{V}_{\mathrm{IL}}$ to V_{IH}
4. $T_{A}=25^{\circ} \mathrm{C}$

AC CHARACTERISTICS ${ }^{1}$

(1) READ CYCLE (Vcc $=5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	trc	100			ns	
Address access time	$t_{\text {A }}$			100	ns	
$\overline{\mathrm{CE}}_{1}$ access time	tace1			100	ns	
$\overline{C E}_{2}$ access time	tace2			100	ns	
$\overline{\mathrm{CE}}_{1}$ Low to output in Low-Z	tclz1	10			ns	2
$\overline{\mathrm{CE}}_{2}$ Low to output in Low-Z	tclz2	10			ns	2
$\overline{\mathrm{CE}}_{1}$ to output in High-Z	tCHZ1	0		40	ns	2
$\overline{\mathrm{CE}}_{2}$ to output in High-Z	tchZ2	0		40	ns	2
Data hold time	toh	10			ns	

(2) WRITE CYCLE (Vcc = $5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Write cycle time	twC	100			ns	
Chip enable to end of write	tcw	80			ns	
Address valid time	tAW	80			ns	
Address setup time	tAS	0			ns	
Write pulse width	twP	60			ns	
Write recovery time	twR	10			ns	
WE Low to output in High-Z	twHZ			30	ns	2
Data valid to end of write	tDW	30			ns	
Data hold time	tDH	10			ns	
Output active from end of write	tow	10			ns	2

NOTE:

1. $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}(\mathrm{LH} 5118 / \mathrm{D} / \mathrm{N}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5118 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$
2. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.8 V to 2.2 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

DATA RETENTION CHARACTERISTICS ${ }^{1}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Data retention voltage	VCCDR	$\begin{gathered} \hline \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\text {CCDR }}-0.2 \mathrm{~V} \text { or } \\ \overline{\mathrm{CE}}_{2} \geq \mathrm{V} \text { CCDR }-0.2 \mathrm{~V} \end{gathered}$	2.0			V	
Data retention current	ICCDR	$\overline{\mathrm{CE}}_{1} \geq \mathrm{VCCDR}-0.2 \mathrm{~V}$, and ($\overline{C E}_{2} \geq$ VccDR -0.2 V or $\overline{C E}_{2} \leq 0.2 \mathrm{~V}$) or			1.0	$\mu \mathrm{A}$	
		$\begin{gathered} \overline{C E}_{2} \geq \mathrm{VCCDR}-0.2 \mathrm{~V}, \text { and } \\ \left(\mathrm{CE}_{1} \geq \mathrm{VCCDR}-0.2 \mathrm{~V}\right. \text { or } \\ \left.\overline{\mathrm{CE}}_{1} \leq 0.2 \mathrm{~V}\right) \\ \mathrm{CCCDR}=3.0 \mathrm{~V} \end{gathered}$			0.2		2
Chip disable to data retention	tCDR		0			ns	
Recovery time	t_{R}		trc			ns	3

NOTES:

1. $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}(\mathrm{LH} 5118 / \mathrm{D} / \mathrm{N}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5118 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$
2. $T_{A}=25^{\circ} \mathrm{C}$
3. $t_{\mathrm{RC}}=$ Read cycle time

CAPACITANCE ${ }^{1}\left(f=1 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	C_{IN}	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			7	pF
Input/output capacitance	C_{VO}	$\mathrm{V}_{\text {VO }}=0 \mathrm{~V}$			10	pF

NOTE:

1. This parameter is sampled and not production tested.

Figure 3. Low Voltage Data Retention

Figure 4. Read Cycle

Figure 5. Write Cycle (Note 1)

Figure 6. Electrical Characteristic Curves
(Vcc = $5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified)

ORDERING INFORMATION ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}$ to $+70^{\circ} \mathrm{C}$)

LH5118	X	- \#\#	
Device Type	$\overline{\text { Package }}$	$\overline{\text { Speed }}$	
			10100 Access Time (ns)
			$\left\{\begin{array}{l} \text { Blank 24-pin, 600-mil DIP (DIP24-P-600) } \\ \text { D } 24-\mathrm{pin}, 300-\mathrm{mil} \text { SK-DIP (DIP24-P-300) } \\ \mathrm{N} \\ \text { 24-pin, 450-mil SOP (SOP24-P-450) } \end{array}\right.$

CMOS 16K (2K x 8) Static RAM

Example: LH5118N-10 (CMOS 16K ($2 \mathrm{~K} \times 8$) Static RAM, $100 \mathrm{~ns}, 24$-pin, 450 -mil SOP)

ORDERING INFORMATION ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

LH5118H	X	-\#\#	
Device Type	$\overline{\text { Package }}$	$\overline{\text { Speed }}$	
			10100 Access Time (ns)
			$\left\{\begin{array}{l} \text { Blank } 24-\text { pin, 600-mil DIP (DIP24-P-600) } \\ \text { D } 24-\text { pin, } 300 \text {-mil SK-DIP (DIP24-P-300) } \\ \mathrm{N} \end{array} 24\right. \text {-pin, 450-mil SOP (SOP24-P-450) }$

Example: LH5118HN-10 (CMOS $16 \mathrm{~K}(2 \mathrm{~K} \times 8$) Static RAM, $100 \mathrm{~ns}, 24$-pin, 450 -mil SOP)

FEATURES

- $8,192 \times 8$ bit organization
- High speed access time: 100 ns (MAX.)
- Low power consumption:

Operating:
248 mW (MAX.) LH5168/D/N
275 mW (MAX.) LH5168H/HD/HN
Standby:
$5.5 \mu \mathrm{~W}$ (MAX.) LH5168/D/N
$16.5 \mu \mathrm{~W}$ (MAX.) LH5168H/HD/HN

- Fully static operation
- Three-state outputs
- Single +5 V power supply
- TTL compatible I/O
- Pin compatible to 64 K bit EPROM
- Wide temp. range available

LH5168H: -40 to $+85^{\circ} \mathrm{C}$

- Packages:

28-pin, 600-mil DIP
28-pin, 300-mil SK-DIP
28-pin, 450-mil SOP

DESCRIPTION

The LH5168 is a static RAM organized as $8,192 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

The LH 5168 H is designed for wide temperature range from -40 to $+85^{\circ} \mathrm{C}$.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SK-DIP, and SOP Packages

Figure 2. LH5168 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{12}$	Address inputs
$\overline{\mathrm{CE}}_{1}-\mathrm{CE}_{2}$	Chip Enable input
$\overline{\mathrm{WE}}$	Write Enable input
$\overline{\mathrm{OE}}$	Output Enable input

SIGNAL	PIN NAME
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$	Data inputs and outputs
VCC	Power supply
GND	Ground
NC	Non-connection

TRUTH TABLE

$\overline{\mathbf{C}} \mathrm{E}_{1}$	CE_{2}	$\overline{\overline{W E}}$	$\overline{\text { OE }}$	MODE	$1 \mathrm{VO}_{1}-1 / \mathrm{O}_{8}$	SUPPLY CURRENT	NOTE
H	X	X	X	Deselect	High-Z	Standby (IsB)	1
X	L	X	X	Deselect	High-Z	Standby (ISB)	1
L	H	L	X	Write	Din	Operating (lcc)	
L	H	H	L	Read	Dout	Operating (Icc)	
L	H	H	H	Output disable	High-Z	Operating (lcc)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	1
Operating temperature	Topr	-10 to +70	${ }^{\circ} \mathrm{C}$	2
		-40 to +85	${ }^{\circ} \mathrm{C}$	3
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.
2. LH5168/D/N
3. $\mathrm{LH} 5168 \mathrm{H} / \mathrm{HD} / \mathrm{HN}$

RECOMMENDED OPERATING CONDITIONS (Note 1)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-0.3		0.8	V

NOTE:

1. $T_{A}=-10$ to $+70^{\circ} \mathrm{C}(\mathrm{LH} 5168 / \mathrm{D} / \mathrm{N}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5168 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$.

DC CHARACTERISTICS ${ }^{1}$ (VCC $=5 \mathrm{~V} \pm 10 \%$)

PARAMETER	SYMBOL	CONDITIONS		MIN.	MAX.	UNIT	NOTE
Input leakage current	lıI	$\mathrm{V}_{\text {IN }}=0$ to VCC			1.0	$\mu \mathrm{A}$	
Output leakage current	lo	$\overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IL}}$ or $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ or $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IL}}$ $\mathrm{V}_{\mathrm{VO}}=0$ to V_{cc}			1.0	$\mu \mathrm{A}$	
Operating current	Icc	$\overline{C E}_{1}=\mathrm{V}_{\text {IL }}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ to $\mathrm{V}_{\text {IH }}$	tcycle $=$		45	mA	2
		$C E_{2}=V_{1 H}$, Outputs open	100 ns		50		3
		$\begin{aligned} & \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IN}}=0.2 \mathrm{~V} \text { to } \\ & \mathrm{VCC}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & C E_{2}=\mathrm{V}_{\mathrm{IH}}, \text { Outputs open } \end{aligned}$	$\begin{aligned} & \text { tcycle }= \\ & 1.0 \mu \mathrm{~s} \end{aligned}$		10		
Standby current	ISB1	$\overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{CE}_{2}=\mathrm{V}_{\text {IL }}$			10	mA	
	ISB	$\begin{gathered} \mathrm{CE}_{2} \leq 0.2 \mathrm{~V} \text { or } \\ \overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \end{gathered}$	$\mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$		1.0	$\mu \mathrm{A}$	2
			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		3.0	$\mu \mathrm{A}$	3
Output voltage	VOL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.4	V	
	VOH	$\mathrm{l} \mathrm{OH}=-1 \mathrm{~mA}$		2.4		V	

NOTES:

1. $T_{A}=-10$ to $70^{\circ} \mathrm{C}(\mathrm{LH} 5168 / \mathrm{D} / \mathrm{N}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5168 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$
2. LH5168/D/N
3. $\mathrm{LH} 5168 \mathrm{H} / \mathrm{HD} / \mathrm{HN}$

AC CHARACTERISTICS ${ }^{1}$

(1) READ CYCLE (Vcc = $5 \mathrm{~V} \pm 10 \%$)

PARAMETER		SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle		trc	100		ns	
Address access time		$t_{\text {AA }}$		100	ns	
Chip enable access time	($\overline{C E}_{1}$)	$t_{\text {ACE1 }}$		100	ns	
	(CEE)	tace2		100	ns	
Output enable access time		toe		40	ns	
Output hold time		toh	10		ns	
Chip enable to output in Low-Z	($\overline{\mathrm{CE}}_{1}$)	tLZ1	10		ns	2
	(CE2)	tıZ2	10		ns	2
Output enable to input in Low-Z		tolz	5		ns	2
Chip enable to output in High-Z	($\overline{\mathrm{CE}}_{1}$)	thZ1	0	30	ns	2
	(CEE)	tHZ2	0	30	ns	2
Output disable to output in High-Z		tohz	0	20	ns	2

NOTE:

1. $\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}(\mathrm{LH} 5168 / \mathrm{D} / \mathrm{N}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5168 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$
2. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

(2) WRITE CYCLE (VCC = 5 V $\pm 10 \%$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Write cycle time	twC	100		ns	
Chip enable to end of write	tCW	80		ns	
Address valid to end of write	taw	80		ns	
Address setup time	tas	0		ns	
Write pulse width	twP	60		ns	
Write recovery time	twr	0		ns	
Data valid to end of write	tDW	40		ns	
Data hold time	tDH	0		ns	
Output active from end of write	tow	10		ns	1
$\overline{\text { WE to output in High-Z }}$	twZ	0	30	ns	1
$\overline{O E}$ to output in High-Z	tohz	0	20	ns	1

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for $\mathbf{a} \pm 500 \mathrm{mV}$ transition from steady state levels into the test load. Cload $=5 \mathrm{pF}$.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.6 to 2.4 V
Input rise/fall time	10 ns
Timing reference level	1.5 V
Output load conditions	$\left(1 \mathrm{TLL}+\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)$

CAPACITANCE ${ }^{1}$ ($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{I N}$	$\mathrm{~V}_{I N}=0 \mathrm{~V}$			7	PF
Input/output capacitance	$\mathrm{C}_{V O}$	$\mathrm{~V}_{V O}=0 \mathrm{~V}$			10	pF

NOTE:

1. This parameter is sampled and not production tested.

DATA RETENTION CHARACTERISTICS ${ }^{1}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE
Data retention voltage	VcCDR	$\begin{gathered} C E_{2} \leq 0.2 \mathrm{~V} \text { or } \\ \mathrm{CE}_{1}, C E_{2} \geq \mathrm{VCC}-0.2 \mathrm{~V} \end{gathered}$	2.0		V	
Data retention current	ICCDR	$\begin{gathered} \mathrm{VCCDR}=3 \mathrm{~V}, \\ C E_{2} \leq 0.2 \mathrm{~V} \text { or } \overline{\mathrm{CE}}_{1}, \\ C E_{2} \geq \mathrm{VCCDR}-0.2 \mathrm{~V} \end{gathered}$		0.6	$\mu \mathrm{A}$	2
				1.5	$\mu \mathrm{A}$	3
Chip disable to data retention	tCDR		0		ns	
Recovery time	tRDR		trc		ns	4

NOTES:

1. $T_{A}=-10$ to $+70^{\circ} \mathrm{C}(\mathrm{LH} 5168 / \mathrm{D} / \mathrm{N}), \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}(\mathrm{LH} 5168 \mathrm{H} / \mathrm{HD} / \mathrm{HN})$
2. $L H 5168 / D / N$ at $T_{A} \leq 70^{\circ} \mathrm{C}$
3. $L H 5168 \mathrm{H} / \mathrm{HD} / \mathrm{HN}$ at $\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
4. $\mathrm{t}_{\mathrm{RC}}=$ Read cycle time
$\overline{\mathrm{CE}}_{1}$ CONTROL (NOTE)

CE_{2} CONTROL

NOTE: To control data hold at $\overline{C E}_{1}$, fix the input level of CE_{2} between $\mathrm{V}_{\mathrm{CCDR}}$ to $\mathrm{V}_{\text {CCDR }}-0.2 \mathrm{~V}$ or 0 V to 0.2 V during the data retention mode.

Figure 3. Low Voltage Data Retention

Figure 4. Read Cycle

NOTES:

1. The writing occurs during the overlap ($t_{\text {WP }}$) of $\overline{C E}_{1}=" L O W ", E_{2}={ }^{* H I G H "}$, and $\overline{W E}={ }^{\text {LLOW" }}$.
2. t_{CW} is defined as the time from the last occuring transition, either $\overline{\mathrm{CE}}_{1}$ LOW transition or CE_{2} HIGH transition, to the time when the writing is finished.
3. t_{AS} is defined as the time from address change to writing start.
4. t_{WR} is defined as the time from writing finish to address change.
5. If CE_{1} LOW transition or CE_{2} HIGH transition occurs at the same time or after $\overline{\mathrm{WE}}$ LOW transition, the output will remain high-impedance.
6. While the I/O pins are in the output state, input signals with the opposite logic level must not be applied.

Figure 5. Write Cycle 1

$$
\overline{O E}=\text { "Low" }
$$

NOTES:

1. The writing occurs during the overlap (t_{WP}) of $\overline{C E}_{1}=" \mathrm{LOW} ", \mathrm{CE}_{2}=$ "HIGH", and $\overline{\mathrm{WE}}=$ "LOW".
2. t_{CW} is defined as the time from the last occuring transition, either $\overline{\mathrm{CE}}_{1}$ LOW transition or $\mathrm{CE}_{2} \mathrm{HIGH}$ transition, to the time when the writing is finished.
3. $t_{A S}$ is defined as the time from address change to writing start.
4. $\mathrm{t}_{\text {WR }}$ is defined as the time from writing finish to address change.
5. If $\overline{C E}_{1}$ LOW transition or $C E_{2}$ HIGH transition occurs at the same time or after $\overline{W E}$ LOW transition, the output will remain high-impedance.
6. If $\overline{C E}_{1}$ HIGH transition or CE_{2} LOW transition occurs at the same time or before $\overline{\mathrm{WE}}$ HIGH transition, the output will remain high-impedance.
7. While the I/O pins are in the output state, input signals with the opposite logic level must not be applied.

Figure 6. Write Cycle 2

ORDERING INFORMATION

FEATURES

- $8,192 \times 8$ bit organization
- Access time:

500 ns (MAX.)

- Low current consumption:

Operating: 50 mA (MAX.)
Standby: $3 \mu \mathrm{~A}$ (MAX.)

- Fully static operation
- Three-state outputs
- Single 2.5 to 5.5 V power supply
- TTL compatible I/O
- Wide temp. range
tOPR: -40 to $+85^{\circ} \mathrm{C}$
- Package:

28-pin, 450-mil SOP

DESCRIPTION

The LH5168SH is a static RAM organized as $8,192 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

It is designed for 2.5 to 5.5 V low voltage operation and wide temperature range from -40 to $+85^{\circ} \mathrm{C}$.

PIN CONNECTIONS

Figure 1. Pin Connections for SOP Package

Figure 2. LH5168SH Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{12}$	Address inputs
$\overline{\mathrm{CE}}_{1}-\mathrm{CE}_{2}$	Chip Enable input
$\overline{\mathrm{WE}}$	Write Enable input
$\overline{\mathrm{OE}}$	Output Enable input

SIGNAL	PIN NAME
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$	Data inputs and outputs
VCC	Power supply
GND	Ground
NC	Non connection

TRUTH TABLE

$\overline{C E}_{1}$	CE_{2}	WE	$\overline{O E}$	MODE	$1 / O_{1}-1 / O_{3}$	SUPPLY CURRENT	NOTE
H	X	X	X	Deselect	High-Z	Standby (lsB)	1
X	L	X	X	Deselect	High-Z	Standby (lsB)	1
L	H	L	X	Write	Din	Operating (ICC)	
L	H	H	L	Read	Dout	Operating (lcc)	
L	H	H	H	Output disable	High-Z	Operating (lcc)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	V_{IN}	-0.3 to $\mathrm{VCC}+0.3$	V	1
Operating temperature	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = -40 to +85 ${ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	2.5	3.0	5.5	V
Input voltage	V_{IH}	$\mathrm{VCC}_{\mathrm{CC}}-0.2$		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-0.3		0.2	V

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}^{\circ} \mathrm{C}, \mathrm{VCC}=\mathbf{2 . 5}$ to 5.5 V)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE	
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$		1.0	$\mu \mathrm{A}$	
Output leakage current	\| LLO		$\overline{\mathrm{C}}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IL}}$ or $\overline{O E}=V_{\text {IH }}$ or $\overline{W E}=V_{\text {IL }}$ $V_{V O}=0$ to $V_{c c}$		1.0	$\mu \mathrm{A}$	
Operating current	Icc	$\begin{aligned} \overline{\mathrm{CE}}_{1} & =\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { to } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{CE}_{2} & =\mathrm{V}_{\mathrm{IH}}, \text { Outputs open } \end{aligned}$		50	mA		
Standby current	IsB1	$\overline{C E}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{CE}_{2}=\mathrm{V}_{\text {IL }}$		10	mA		
	ISB	$\begin{gathered} C E_{2} \leq 0.2 \mathrm{~V} \text { or } \\ \overline{C E}_{1}, C E_{2} \geq \mathrm{VCC}-0.2 \mathrm{~V} \end{gathered}$		1.0	$\mu \mathrm{A}$	1	
				3.0	$\mu \mathrm{A}$	2	
Output Low voltage	VoL	$\mathrm{lOL}=400 \mu \mathrm{~A}$		0.5	V		
Output High voltage	VOH	$1 \mathrm{OH}=-400 \mu \mathrm{~A}$	Vcc - 0.5		V		

NOTE:

1. $\mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
2. $\mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$

AC CHARACTERISTICS

(1) READ CYCLE ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=2.5$ to 5.5 V)

PARAMETER		SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle		$t_{\text {RC }}$	500		ns	
Address access time		$t_{\text {AA }}$		500	ns	
Chip enable access time	($\overline{C E}_{1}$)	tace1		500	ns	
	(CE2)	tace2		500	ns	
Output enable access time		toe		100	ns	
Output hold time		tor	20		ns	
Chip enable to output in Low-Z	$\left(\overline{C E}_{1}\right)$	tLZ1	20		ns	1
	(CE2)	tLZ2	20		ns	1
Output enable to input in Low-Z		tolz	10		ns	1
Chip enable to output in High-Z	($\overline{\mathrm{CE}}_{1}$)	th21	0	60	ns	1
	(CE2)	thz2	0	60	ns	1
Output disable to output in High-Z		tohz	0	40	ns	1

(2) WRITE CYCLE ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=2.5$ to 5.5 V)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Write cycle time	twC	500		ns	
Chip enable to end of write	tcw	250		ns	
Address valid to end of write	taW	250		ns	
Address setup time	tAS	100		ns	
Write pulse width	twP	150		ns	
Write recovery time	twR	50		ns	
Data valid to end of write	tDW	100		ns	
Data hold time	tDH	0		ns	
Output active from end of write	tow	20		ns	
$\overline{\text { WE to output in High-Z }}$	twZ	0	60	ns	1
$\overline{\text { OE to output in High-Z }}$	toHz	0	40	ns	1

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for $a \pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0 to VCC
Input rise/fall time	10 ns
Timing reference level	1.5 V
Output load conditions	No load

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{I N}}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			7	pF
Input/output capacitance	$\mathrm{C}_{/ / O}$	$\mathrm{~V}_{/ / \mathrm{O}}=0 \mathrm{~V}$			10	pF

NOTE:

This parameter is sampled and not production tested.

DATA RETENTION CHARACTERISTICS (TA = $\mathbf{- 4 0}$ to $\mathbf{+ 8 5}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE
Data retention voltage	VCCDR	$\mathrm{CE}_{2} \leq 0.2 \mathrm{~V}$ or $\overline{C E}_{1}$, $\mathrm{CE}_{2} \geq \mathrm{VCCDR}-0.2 \mathrm{~V}$	2.0		V	
Data retention current	ICCDR	$V_{C C D R}=3.0 \mathrm{~V}$, $C E_{2} \leq 0.2 \mathrm{~V}$ or $\overline{C E}_{1}$, $\mathrm{CE}_{2} \geq \mathrm{VCCDR}-0.2 \mathrm{~V}$		1.5	$\mu \mathrm{~A}$	
Chip disable to data retention	tCDR		0		ns	
Recovery time	tRDR		tRC		ns	1

NOTE:

1. $\mathrm{t}_{\mathrm{RC}}=$ Read cycle time
$\mathbf{C E}_{1}$ CONTROL (NOTE)

CE 2 CONTROL

NOTE: To control data hold at $\overline{C E}_{1}$, fix the input level of C_{2} between $V_{C C D R}$ to $V_{C C D R}-0.2 \mathrm{~V}$ or 0 V to 0.2 V during the data retention.

Figure 3. Low Voltage Data Retention

Figure 4. Read Cycle

NOTES:

1. The writing occurs during the overlap (${ }^{2}$ WP) of $\overline{C E}_{1}=" L O W ", \mathrm{CE}_{2}=$ "HIGH", and $\overline{\mathrm{WE}}=$ "LOW".
2. t_{Cw} is defined as the time from the last occuring transition, either $\overline{\mathrm{CE}}_{1}$ LOW transition or CE_{2} HIGH transition, to the time when the writing is finished.
3. $t_{A S}$ is defined as the time from address change to writing start.
4. ${ }^{W}{ }_{W P}$ is defined as the time from writing finish to address change.
5. If CE_{1} LOW transition or CE_{2} HIGH transition occurs at the same time or after $\overline{\mathrm{WE}}$ LOW transition, the output will remain high-impedance.
6. While the I / O pins are in the output state, input signals with the opposite logic level must not be applied.

Figure 5. Write Cycle 1

$$
\overline{O E}=\text { "LOW" }
$$

NOTES:

1. The writing occurs during the overlap (t_{WP}) of $\overline{\mathrm{CE}}_{1}={ }^{\prime 2} \mathrm{LOW}$ ", $\mathrm{CE}_{2}=$ "HIGH", and $\overline{\mathrm{WE}}=$ "LOW".
2. t_{cw} is defined as the time from the last occuring transition, either $\overline{\mathrm{CE}}_{1}$ LOW transition or CE_{2} HIGH transition, to the time when the writing is finished.
3. t_{AS} is defined as the time from address change to writing start.
4. $t_{W B}$ is defined as the time from writing finish to address change.
5. If CE_{1} LOW transition or CE_{2} HIGH transition occurs at the same time or after $\overline{W E}$ LOW transition, the output will remain high-impedance.
6. If $\overline{\mathrm{CE}}$, HIGH transition or CE_{2} LOW transition occurs at the same time or before $\overline{\mathrm{WE}}$ HIGH transition, the output will remain high-impedance.
7. While the I/O pins are in the output state, input signals with the opposite logic level must not be applied.

Figure 6. Write Cycle 2

ORDERING INFORMATION

LH5168	N	- \#\#	
Device Type	$\overline{\text { Package }}$	$\overline{\text { Speed }}$	
			50500 Access Time (ns)
			28-pin, 450-mil SOP (SOP28-P-450)

Example: LH5168SHN-50 (CMOS 64K (8K x 8) Static RAM, $500 \mathrm{~ns}, 28$-pin, 450-mil SOP)

LH51256

FEATURES

- $32,768 \times 8$ bit organization
- Access times:

100/120 ns (MAX.)

- Power consumption:

Operating: 248 mW (MAX.)
($\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, minimum cycle)
Standby: $16.5 \mu \mathrm{~W}$ (MAX.)
($\mathrm{T}_{\mathrm{A}}=0$ to $60^{\circ} \mathrm{C}$)

- Fully static operation
- TTL compatible I/O
- Three state outputs
- Single +5 V power supply
- Packages:

28-pin, 600-mil DIP
28-pin, 450-mil SOP

DESCRIPTION

The LH51256 is a 256 K bit static RAM organized as $32,768 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

Figure 2. LH51256 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Address input
$\overline{\mathrm{CE}}$	Chip Enable input
$\overline{\mathrm{WE}}$	Write Enable input
$\overline{\mathrm{OE}}$	Output Enable input

SIGNAL	PIN NAME
$/ \mathrm{O}_{1}-/ / \mathrm{O}_{8}$	Data I/O
V_{CC}	Power supply
GND	Ground

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	$\overline{\text { OE }}$	MODE	/ $/ \mathrm{O}_{1} \cdot 1 / \mathrm{O}_{8}$	Icc	NOTE
H	X	X	Non selected	High-Z.	Standby (ISB)	1
L	L	X	Write	Data in	Operating (ICC)	1
L	H	L	Read	Data out	Operating (lcc)	
L	H	H	Output disable	High-Z	Operating (lcc)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	V IN	-0.3 to +7.0	V	1
Operating temperature	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage	V_{IH}	2.2		$\mathrm{VCC}_{\mathrm{I}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-0.3		0.8	V

DC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Input leakage current	\| إıI		$\begin{gathered} \hline V_{c c}=5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { to } \mathrm{VCC} \end{gathered}$			1	$\mu \mathrm{A}$
Output leakage current	\mid llo ${ }^{\text {l }}$	$\begin{aligned} & \overline{\mathrm{CE}} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IO}}=0 \text { to } \mathrm{VCC} \end{aligned}$			1	$\mu \mathrm{A}$	
Operating current	Icc	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}},$ Outputs open			45	mA	
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			10	mA	
	ISB	$\begin{aligned} \overline{C E} & \geq V_{C C}-0.2 \mathrm{~V} \\ T_{A} & =0 \text { to }+60^{\circ} \mathrm{C} \end{aligned}$			3	$\mu \mathrm{A}$	
		$\begin{aligned} & \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			10	$\mu \mathrm{A}$	
Output voltage	VoL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.4	V	
	V OH	$\mathrm{lOH}=-1.0 \mathrm{~mA}$	2.4			V	

AC CHARACTERISTICS

(1) READ CYCLE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH51256/N-10		LH51256/N-12		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
Read cycle time	trc	100		120		ns	
Address access time	$t_{A A}$		100		120	ns	
$\overline{\mathrm{CE}}$ access time	tace		100		120	ns	
Output enable time	toe		50		60	ns	
Output hold time	toh	5		5		ns	
$\overline{\text { CE }}$ Low to output in Low-Z	tLz	5		5		ns	1
$\overline{\text { OE }}$ Low to output in Low-Z	tolz	5		5		ns	1
$\overline{\text { CE }}$ High to output in High-Z	thz	0	30	0	30	ns	1
$\overline{\text { OE High to output in High-Z }}$	tohz	0	30	0	30	ns	1

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. $C_{\text {LOAD }}=5 \mathrm{pF}$.
2) WRITE CYCLE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH51256/N-10		LH51256/N-12		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	100		120		ns	
$\overline{\mathrm{CE}}$ Low to end of write	tcw	90		100		ns	
Address valid to end of write	taw	90		100		ns	
Address setup time	$t_{\text {AS }}$	5		5		ns	
Write recovery time	twr	15		15		ns	
Write pulse width	twp	50		50		ns	
Input data setup time	tow	30		30		ns	
Input data hold time	tDH	10		10		ns	
WE High to output active	tow	0		0		ns	1
$\overline{\text { WE Low to output in High-Z }}$	twz	0	30	0	30	ns	1
$\overline{\text { OE High to output in High-Z }}$	tohz	0	30	0	30	ns	1

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Timing reference level	1.5 V
Output load conditions	$1 \mathrm{TTL}+\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$ (Includes scope and jig capacitance)

CAPACITANCE ${ }^{1}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right.$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{I N}}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			7	pF
Input/output capacitance	$\mathrm{C}_{/ / O}$	$\mathrm{~V}_{/ / \mathrm{O}}=0 \mathrm{~V}$			10	pF

NOTE:

1. This parameter is sampled and not production tested.

DATA RETENTION CHARACTERISTICS (TA $=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$ except as noted)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Data retention voltage	VCCDR	$\overline{\mathrm{CE}} \geq \mathrm{V}_{\text {cCDR }}-0.2 \mathrm{~V}$	2.0			V	
Data retention current	ICCDR				1	$\mu \mathrm{A}$	
		$\begin{aligned} & \text { VCCDR }=3 \mathrm{~V} \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CCDR}}-0.2 \mathrm{~V}, \\ & \mathrm{~T}_{A}=-40 \text { to }+85^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { to } V_{\text {CCDR }} \end{aligned}$			6	$\mu \mathrm{A}$	
$\overline{\text { CE }}$ setup time	tCDR		0			ns	
$\overline{\mathrm{CE}}$ hold time	tR		trC			ns	1

NOTE:

1. $\mathrm{t}_{\mathrm{RC}}=$ Read cycle time

Figure 3. Low Voltage Data Retention

NOTE: $\overline{\mathrm{WE}}=$ "HIGH"

Figure 4. Read Cycle

NOTES:

1. The write pulse occurs during the overlap (I_{Wp}) of $\overline{C E}=$ LOW and $\overline{\mathrm{WE}}=$ LOW.
2. I_{cw} is defined as the time from the CE low transition to the end of write.
3. t_{As} is defined as the time from address change to the start of writing.
4. I_{WR} is defined as the time from the end of writing to the address change.
5. When the I/O pins are in the output state, input signals with the opposite logic level must not be applied.

Figure 5. Write Cycle 1 ($\overline{\mathrm{OE}}$ Clock)

NOTES:

1. The write pulse occurs during the overlap (twp) of $\overline{C E}=$ LOW and $\overline{W E}=$ LOW.
2. t_{Cw} is defined as the time from the CE low transition to the end of write.
3. $t_{A S}$ is defined as the time from address change to the start of writing.
4. $t_{W R}$ is defined as the time from the end of writing to the address change.
5. When the I/O pins are in the output state, input signals with the opposite logic level must not be applied.
6. If CE LOW transition occurs at the same time or after WE LOW transition, the output will remain high-impedance.
7. If $\overline{C E}$ HIGH transition occurs at the same time or prior to the $\overline{W E}$ HIGH transition, the output will remain high-impedance.

Figure 6. Write Cycle 2 ($\overline{\mathrm{OE}}$ Low)

ORDERING INFORMATION

FEATURES

- $32,768 \times 8$ bit organization
- Access times:

100/120 ns (MAX.)

- Power consumption:

Operating: 248 mW (MAX.)
($T_{A}=-40$ to $85^{\circ} \mathrm{C}$, minimum cycle)
Standby: $5.5 \mu \mathrm{~W}$ (MAX.)
($\mathrm{T}_{\mathrm{A}}=0$ to $60^{\circ} \mathrm{C}$)

- Fully static operation
- TTL compatible I/O
- Three state outputs
- Single +5 V power supply
- Packages:

28-pin, 600-mil DIP
28-pin, 450-mil SOP

DESCRIPTION

The LH51256L is a 256K bit static RAM organized as $32,768 \times 8$ bits which provides low-power standby mode. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

Figure 2. LH51256L Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Address input
$\overline{\mathrm{CE}}$	Chip Enable input
$\overline{\mathrm{WE}}$	Write Enable input
$\overline{\mathrm{OE}}$	Output Enable input

SIGNAL	PIN NAME
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$	Data Input/Output
V_{cc}	Power supply
GND	Ground

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	$\overline{O E}$	MODE	I/ $\mathrm{O}_{1}-1 / \mathrm{O}_{8}$	SUPPLY CURRENT	NOTE
H	X	X	Non selected	High-Z	Standby (IsB)	1
L	L	X	Write	DIN	Operating (lcc)	1
L	H	L	Read	Dout	Operating (lcc)	
L	H	H	Output disable	High-Z	Operating (lcc)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	VIN	-0.3 to +7.0	V	1
Operating temperature	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = -40 to $\mathbf{+ 8 5}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-0.3		0.8	V

DC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Input leakage current	\| 1 LI		$\begin{gathered} V_{c c}=5.5 \mathrm{~V} \\ \mathrm{VIN}^{2}=0 \text { to } \mathrm{VCC} \end{gathered}$			1	$\mu \mathrm{A}$
Output leakage current	\mid lool	$\begin{aligned} & \overline{\mathrm{CE}} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{I H}, \\ & \mathrm{~V}_{I O O}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$			1	$\mu \mathrm{A}$	
Operating current	Icc	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}},$ Outputs open			45	mA	
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			10	mA	
	ISB	$\begin{aligned} \overline{\mathrm{CE}} & \geq \mathrm{V} \mathrm{Cc}-0.2 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =0 \text { to }+60^{\circ} \mathrm{C} \end{aligned}$			1	$\mu \mathrm{A}$	
		$\begin{aligned} & \overline{C E} \geq V_{c c}-0.2 \mathrm{~V} \\ & T_{A}=-40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$			5	$\mu \mathrm{A}$	
Output voltage	VOL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.4	V	
	VOH	$\mathrm{lOH}=-1.0 \mathrm{~mA}$	2.4			V	

AC CHARACTERISTICS

(1) READ CYCLE (VCC $=5 \mathrm{~V} \pm 10 \%$, $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH51256/N-10L		LH51256/N-12L		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
Read cycle time	tRC	100		120		ns	
Address access time	$t_{A A}$		100		120	ns	
Chip enable access time	tace		100		120	ns	
Output enable access time	toe		50		60	ns	
Output hold time	toh	5		5		ns	
$\overline{\mathrm{CE}}$ Low to output in Low-Z	tLz	5		5		ns	1
$\overline{\text { OE Low to output in Low-Z }}$	tolz	5		5		ns	1
$\overline{\text { CE }}$ High to output in High-Z	thz	0	30	0	30	ns	1
$\overline{\text { OE }}$ High to output in High-Z	tohz	0	30	0	30	ns	1

(2) WRITE CYCLE (Vcc = $5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH51256/N-10L		LH51256/N-12L		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	100		120		ns	
$\overline{\mathrm{CE}}$ Low to end of write	tcw	90		100		ns	
Address valid to end of write	taw	90		100		ns	
Address setup time	tas	5		5		ns	
Write recovery time	twr	15		15		ns	
Write pulse width	twp	50		50		ns	
Input data setup time	tow	30		30		ns	
Input data hold time	tDH	10		10		ns	
$\overline{\text { WE }}$ High to output in High-Z	tow	0		0		ns	1
$\overline{\text { WE }}$ Low to output in High-Z	twz	0	30	0	30	ns	1
$\overline{\text { OE }}$ High to output in High-Z	tohz	0	30	0	30	ns	1

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Timing reference level	1.5 V
Output load conditions	$1 \mathrm{TTL}+\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$ (Includes scope and jig capacitance)

CAPACITANCE ${ }^{1}$ ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{N}}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$			7	pF
Input/output capacitance	$\mathrm{C}_{V O}$	$\mathrm{~V}_{/ O}=0 \mathrm{~V}$			10	pF

NOTE:

1. This parameter is sampled and not production tested.

DATA RETENTION CHARACTERISTICS (TA = $\mathbf{- 4 0}$ TO +85 ${ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Data retention voltage	VCCDR	$\overline{\mathrm{CE}} \geq \mathrm{V}_{\text {cCDR }}-0.2 \mathrm{~V}$	2.0			V	
Data retention current	ICCDR	$\begin{gathered} \mathrm{V} C C D R=3.0 \mathrm{~V}, \\ \mathrm{CE} \geq \mathrm{VCCDR}-0.2 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}}=0 \text { to }+60^{\circ} \mathrm{C}, \\ \mathrm{VIN}_{\mathrm{N}}=0 \text { to } \mathrm{V}_{\mathrm{CCDR}} \end{gathered}$			0.6	$\mu \mathrm{A}$	
		$\begin{gathered} \mathrm{V}_{\mathrm{CCDR}}=3.0 \mathrm{~V} \\ \mathrm{CE} \geq \mathrm{VCCDR}-0.2 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { to } \mathrm{V}_{\mathrm{CCDR}} \end{gathered}$			3.0	$\mu \mathrm{A}$	
$\overline{\mathrm{CE}}$ setup time	tCDR		0			ns	
$\overline{\mathrm{CE}}$ hold time	trDR		trc			ns	1

NOTE:

1. tre $=$ Read cycle time

51256L-6
Figure 3. Data Retention Characteristics

Figure 4. Read Cycle

NOTES:

1. The write pulse occurs during the overlap ($t_{\text {wP }}$) of $\overline{C E}=L O W$ and $\overline{W E}=L O W$.
2. t_{CW} is defined as the time from CE LOW transition to the end of writing.
3. $t_{A S}$ is defined as the time from address change to the start of writing.
4. I_{WR} is defined as the time from the end of writing to the address change.
5. When the I/O pins are in the output state, input signals with the opposite logic level must not be applied.

Figure 5. Write Cycle 1 ($\overline{\mathrm{OE}}$ Clock)

NOTES:

1. The write pulse occurs during the overlap ($t_{\text {WP }}$) of $\overline{C E}=$ LOW and $\overline{W E}=$ LOW.
2. t_{CW} is defined as the time from CE LOW transition to the end of writing.
3. $t_{A S}$ is defined as the time from address change to the start of writing.
4. $t_{W R}$ is defined as the time from the end of writing to the address change.
5. When the I/O pins are in the output state, input signals with the opposite logic level must not be applied.
6. If CE LOW transition occurs at the same time or after WE LOW transition, the output will remain high-impedance.
7. If $\overline{C E}$ HIGH transition occurs at the same time or prior to the $\bar{W} E$ HIGH transition, the output will remain high-impedance.

Figure 6. Write Cycle 2 ($\overline{\mathrm{OE}}$ Low)

ORDERING INFORMATION

FEATURES

- $131,072 \times 8$ bit organization
- Access times:
100/120 ns (MAX.)
- Power consumption:

Operating: 330 mW (MAX.)
Standby at $T_{A}=0$ to $70^{\circ} \mathrm{C}$
$220 \mu \mathrm{~W}$ (MAX.) ("L" version)
$110 \mu \mathrm{~W}$ (MAX.) ("LL" version)
$22 \mu \mathrm{~W}$ (MAX.) ("UL" version)

- Wide temperature range -40 to $+85^{\circ} \mathrm{C}$
- Fully static operation
- TTL compatible I/O
- Three state outputs
- Single +5 V power supply
- Packages:

32-pin, 600-mil DIP
32-pin, 525 -mil SOP
32 -pin, $8 \times 20 \mathrm{~mm}^{2}$ TSOP (Type I)
(normal and reverse bend pins)

DESCRIPTION

The LH511000 is a 1 M bit static RAM organized as $131,072 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

32-PIN TSOP (I) (NORMAL BEND)

32-PIN TSOP (I) (REVERSE BEND)

Figure 2. Pin Connections for TSOP Packages

Figure 3. LH511000 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{16}$	Address input
$\overline{\mathrm{CE}}_{1}-\mathrm{CE}_{2}$	Chip Enable input
$\overline{\mathrm{WE}}$	Write Enable input
$\overline{\mathrm{OE}}$	Output Enable input

SIGNAL	PIN NAME
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{\mathbf{8}}$	Data Input/Output
$\mathrm{V}_{\text {cC }}$	Power supply
GND	Ground

TRUTH TABLE

$\overline{\mathbf{C E}}_{1}$	CE_{2}	WE	$\overline{O E}$	MODE	//O $\mathbf{O}_{1} / \mathbf{/} \mathbf{O}_{\mathbf{8}}$	STANDBY CURRENT	NOTE
H	X	X	X	Non selected	High-Z	Standby (lSB1)	1
X	L	X	X	Non selected	High-Z	Standby (lsB1)	1
L	H	L	X	Write	DiN	Operating (lcc)	1
L	H	H	L	Read	Dout	Operating (lcc)	
L	H	H	H	Output disable	High-Z	Operating (lcc)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	VIN	-0.3 to +7.0	V	1
Operating temperature	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{- 4 0}$ to $\mathbf{+ 8 5}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	$\mathrm{VCC}_{\mathrm{CC}}$	4.5	5.0	5.5	V
Input voltage	V_{IH}	2.2		$\mathrm{VCC}_{\mathrm{C}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-0.3		0.8	V

DC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{TA}=\mathbf{- 4 0}$ to $\mathbf{+ 8 0}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	LH511000L			LH511000LL			LH511000UL			UNT	NOTE
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Output LOW voltage	Vol	$\mathrm{OL}=2.0 \mathrm{~mA}$			0.4			0.4			0.4	V	
$\begin{aligned} & \hline \text { Output } \\ & \text { HIGH } \\ & \text { voltage } \end{aligned}$	VOH	$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4			2.4			2.4			V	
Input leakage current	\| $\mathrm{lu} \mid$	$\mathrm{V}_{\mathbf{N}}=0$ to Vcc			1			1			1	$\mu \mathrm{A}$	
Output leakage current	\mid llo ${ }^{\text {\| }}$	$\begin{aligned} \overline{\mathrm{CE}}_{1} & =\mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{CE}_{2} & =\mathrm{V}_{\mathrm{IL}}, \\ \text { or } \overline{\mathrm{OE}} & =V_{\mathrm{IH}} \text { or } \\ \overline{W E} & =V_{\mathrm{IL}}, \\ \mathrm{~V}_{\mathrm{VO}} & =0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$			1			1			1	$\mu \mathrm{A}$	
Operating current	Icce	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}}, \\ \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {III }} \text { to } \mathrm{V}_{\mathrm{IH}} \\ C \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{H}}, \\ \text { Cycle }=\mathrm{MIN}^{2} . \\ \text { Outputs open } \end{gathered}$			60			60			60	mA	
	Icce	$\begin{gathered} \overline{\mathrm{CE}}_{1} \leq 0.2 \mathrm{~V} \text { or } \\ \mathrm{Vcc}-0.2 \mathrm{~V} \\ \mathrm{VIN} \leq 0.2 \mathrm{~V} \text { or } \\ \mathrm{Vcc}-0.2 \mathrm{~V} . \\ \mathrm{Cycle}=1 \mathrm{MHz} \text {, } \\ \text { Outputs open } \end{gathered}$		1	6		1	6		1	6	mA	1
				5	15		5	15		5	15		2
Standby current	ISB1	$\begin{gathered} \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IH}} \text { or } \\ C E_{2}=\mathrm{V}_{\mathrm{IL}} \end{gathered}$			3			3			3	mA	
	ISB	$\begin{gathered} C E_{2} \leq 0.2 \mathrm{~V} \text { or } \\ \mathrm{CE}_{1}, C E_{2} \geq \\ \mathrm{VCC}-0.2 \mathrm{~V} \end{gathered}$			40			20			4	$\mu \mathrm{A}$	3
					120			60			12		4

NOTES:

1. Read cycle
2. Write cycle
3. $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$
4. $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$

AC CHARACTERISTICS

(1) READ CYCLE (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	100 ns		120 ns		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
Read cycle time	trc	100		120		ns	
Address access time	$t_{A A}$		100		120	ns	
Chip enable access time	taCE1		100		120	ns	
	$\mathrm{t}_{\text {ACE }}$		100		120	ns	
Output enable time	toe		50		60	ns	
Output hold time	tor	10		10		ns	
$\overline{\mathrm{CE}}$ Low to output in Low-Z	tıZ1	5		5		ns	1
	tıZ2	5		5		ns	1
$\overline{\mathrm{OE}}$ Low to output in Low-Z	tolz	5		5		ns	1
$\overline{\text { CE }}$ High to output in High-Z	tHZ1	0	35	0	45	ns	1
	tHz2	0	35	0	45	ns	1
$\overline{\text { OE }}$ High to output in High-Z	tohz	0	35	0	45	ns	1

(2) WRITE CYCLE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH511000/N-10,-10L		LH511000/N-12,-12L		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	100		120		ns	
$\overline{\mathrm{CE}}$ Low to end of write	tcw	80		100		ns	
Address valid to end of write	taw	80		100		ns	
Address setup time	tas	0		0		ns	
Write recovery time	twr	0		0		ns	
Write pulse width	twp	75		85		ns	
Input data setup time	tow	40		50		ns	
Input data hold time	tDH	0		0		ns	
$\overline{\text { WE High to output in High-Z }}$	tow	0		0		ns	1
$\overline{\text { WE Low to output in High-Z }}$	twz	5		5		ns	1
$\overline{\text { OE High to output in High-Z }}$	tohz	0	35	0	45	ns	1

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.8 to 2.2 V
Input rise/fall time	5 ns
Timing reference level	1.5 V
Output load conditions	$1 \mathrm{TTL}+100 \mathrm{pF}$ (Includes scope and jig capacitance)

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1} \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input capacitance	$\mathrm{C}_{\mathbb{N}}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$			8	pF	1
Input/output capacitance	$\mathrm{C}_{/ / O}$	$\mathrm{~V}_{\text {IOO }}=0 \mathrm{~V}$			10	pF	1

NOTE:

1. This parameter is sampled and not production tested.

DATA RETENTION CHARACTERISTICS (TA = $\mathbf{- 4 0}$ to $\mathbf{+ 8 5}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT	NOTE
Data retention voltage	VCCDR	$\begin{gathered} C E_{2} \leq 0.2 \mathrm{~V} \text { or } \\ \mathrm{CE}_{1}, C E_{2} \geq \mathrm{V} \text { cc }-0.2 \mathrm{~V} \end{gathered}$		2.0			V	
Data retention current	ICCDR	$\begin{aligned} \mathrm{CE}_{2} & \leq 0.2 \mathrm{~V}, \\ \mathrm{VCC} & =2 \mathrm{~V} \text { or } \\ \mathrm{CE}_{1}, \mathrm{CE}_{2} & \geq \mathrm{VCc}-0.2 \mathrm{~V} \\ \mathrm{~V} c \mathrm{Cc} & =3 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$	1
						0.5		2
						0.1		3
			0 to $70^{\circ} \mathrm{C}$			20	$\mu \mathrm{A}$	1
						10		2
						2		3
			-40 to $85^{\circ} \mathrm{C}$			60	$\mu \mathrm{A}$	1
						30		2
						6		3
$\overline{\mathrm{CE}}$ setup time	tCDR			0			ns	
$\overline{\mathrm{CE}}$ hold time	t_{R}			trc			ns	4

NOTE:

1. LH511000L
2. LH511000LL
3. LH511000UL
4. $\mathrm{tRC}_{\mathrm{RC}}=$ Read cycle time

Figure 4. Read Cycle

NOTES:

1. The writing occurs during the overlap (t_{Wp}) of $\overline{\mathrm{CE}}_{1}={ }^{\prime 2} \mathrm{LOW} ", \mathrm{CE}_{2}=$ "HIGH", and $\overline{\mathrm{WE}}=$ "LOW".
2. $t_{C W}$ is defined as the time from the last occuring transition, either $\overline{C E}_{1}$ LOW transition or $C E_{2}$ HIGH transition, to the time when the writing is finished.
3. $t_{A S}$ is defined as the time from address change to writing start.
4. $t_{\text {WR }}$ is defined as the time from writing finish to address change.
5. If $\overline{C E}_{1} \mathrm{HIGH}$ transition or CE_{2} LOW transition occurs at the same time or before $\overline{W E}$ HIGH transition, the output will remain high-impedance.
6. While the I/O pins are in the output state, input signals with the opposite logic level must not be applied.

Figure 5. Write Cycle 1

$\overline{\mathrm{OE}}=$ "LOW"

NOTES:

1. The writing occurs during the overlap (${ }^{W}$ PP) of $\overline{C E}_{1}=" L O W ", E_{2}=$ "HIGH", and $\overline{W E}=$ "LOW".
2. t_{CW} is defined as the time from the last occuring transition, either $\overline{\mathrm{CE}}_{1}$ LOW transition or CE_{2} HIGH transition, to the time when the writing is finished.
3. t_{AS} is defined as the time from address change to writing start.
4. $t_{W R}$ is defined as the time from writing finish to address change.
5. If CE_{1} LOW transition or CE_{2} HIGH transition occurs at the same time or after WE LOW transition, the output will remain high-impedance.
6. If CE_{1} HIGH transition or CE_{2} LOW transition occurs at the same time or before $\overline{\text { WE }}$ HIGH transition, the output will remain high-impedance.
7. While the I / O pins are in the output state, input signals with the opposite logic level must not be applied.

Figure 6. Write Cycle 2

ORDERING INFORMATION

$\frac{\text { LH511000 }}{\text { Device Type }}$	$\frac{X}{\text { Package }}$	$\frac{-\# \#}{\text { Speed }}$ Speed		$\begin{aligned} & \left\{\begin{array}{lll} \mathrm{L} & 40 \mu \mathrm{~A} \text { MAX. } \\ \mathrm{LL} & 20 \mu \mathrm{~A} \text { MAX. } & \text { Standby current } \\ \mathrm{UL} & 4 \mu \mathrm{~A} \text { MAX. } & \left(\mathrm{T}_{\mathrm{A}}=0 \text { to } 70^{\circ} \mathrm{C}\right) \end{array}\right. \\ & \begin{cases}10 & 100 \quad \text { Access Time (ns) } \\ 12 & 120\end{cases} \\ & \begin{cases}\text { Blank } & 32-\mathrm{pin}, 600-\mathrm{mil} \text { DIP (DIP32-P-600) } \\ \mathrm{N} & 32-\mathrm{pin}, 525-\mathrm{mil} \text { SOP (SOP32-P-525) } \\ \mathrm{T} & 32-\mathrm{pin}, 8 \times 20 \mathrm{~mm}^{2} \text { TSOP (TSOP32-P-0820) } \\ \text { TR } & 32-\mathrm{pin}, 8 \times 20 \mathrm{~mm}^{2} \text { TSOP }\end{cases} \\ & \text { (TSOP32-P-0820) Reverse bend pin } \end{aligned}$
Example: LH511000N-10LL (CMOS $1 \mathrm{M}(128 \mathrm{~K} \times 8$) Static RAM, $100 \mathrm{~ns}, 20 \mu \mathrm{~A}$ standby, 32-pin, 525-mil SOP)				

FEATURES

- Fast Access Times: 25/35/45 ns
- Output Enable Control
- JEDEC Standard 24-Pin, 300-mil DIP
- Low Power Standby When Deselected
- TTLCompatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation
- Common I/O for Low Pin Count

FUNCTIONAL DESCRIPTION

The LH5267A is a high-speed 65,536 bit static RAM organized as $16 K \times 4$. Fast, efficient designs are obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells.

This RAM is fully static in operation. The Chip Enable (\bar{E}) reduces power when \bar{E} is inactive (HIGH). Standby power drops to its lowest level (ISB1) when \bar{E} is raised to within 0.2 V of Vcc .

Write cycles occur when both \bar{E} and Write Enable ($\overline{\mathrm{W}}$) are LOW. Data is transferred from the DQ pins to the memory location specified by the 14 address lines. Bus contention during Write cycles may be easily avoided by using the output enable ($\overline{\mathrm{G}}$) control.

When \bar{E} is LOW and \bar{W} is HIGH, a static read of the memory location specified by the address lines will occur. Since the device is fully static in operation, new read cycles can be performed by simply changing the address. The LH5267A offers an Output Enable ($\overline{\mathrm{G}}$) control.

High-frequency design techniques should be employed to obtain the best performance from these devices. Solid, low-impedance power and ground planes, with high-frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

24-PIN DIP				TOP VIEW
	$A_{0}{ }^{\circ}$		$\square v_{c c}$	
	$A_{1} \square_{2}$	23	$\square A_{13}$	
	$\mathrm{A}_{2}{ }^{\text {a }}$	22	A_{12}	
	$A_{3} \square_{4}$	21	$\square A_{11}$	
	$\mathrm{A}_{4} \mathrm{C}_{5}$	20	A_{10}	
	A_{5} O 6	19	口 A_{9}	
	$\mathrm{A}_{6} \square^{7}$	18	$\square \mathrm{nc}$	
	$\mathrm{A}_{7} \mathrm{C}_{8}$	17	$\square \mathrm{DQ}_{3}$	
	$\mathrm{A}_{8}{ }^{\text {a }}$	16	$\square \mathrm{DQ}_{2}$	
	E \square^{10}	15	$\square \mathrm{DQ}_{1}$	
	$\overline{\mathrm{G}} \mathrm{C}_{11}$	14	$\square \mathrm{DQ}_{0}$	
	$v_{\text {ss }} 12$		口 \bar{W}	

Figure 1. Pin Connections for DIP Package

Figure 2. LH5267A Block Dlagram

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{W}}$	$\overline{\mathbf{G}}$	MODE	DQ	lcc
H	X	X	Not Selected	High-Z	Standby
L	H	L	Read	Data Out	Active
L	H	H	Read	High-Z	Active
L	L	X	Write	Data In	Active

NOTE:

X = Don't Care, L= LOW, H = HIGH

PIN DESCRIPTIONS

PIN	DESCRIPTION
$\mathrm{A}_{0}-\mathrm{A}_{13}$	Address Inputs
$\mathrm{DQ}_{0}-\mathrm{DQ}_{3}$	Data Inputs/Outputs
$\overline{\mathrm{E}}$	Chip Enable Input
$\overline{\mathrm{W}}$	Write Enable Input
\bar{G}	Output Enable Input
VCC	Positive Power Supply
VSS	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to VSS Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than $\mathbf{3 0}$ seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5		5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0		0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Input Voltage 1	-0.5		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage 2	2.2		$\mathrm{Vcc}+0.5$	V

NOTE:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Icc1	Operating Current ${ }^{1}$	$\begin{aligned} & \text { lout }=0 \mathrm{~mA}, \text { tcYcLE }=\text { tRC or twc } \\ & \bar{E} \leq V_{I L}, \bar{G} \geq V_{I H} \end{aligned}$			120	mA
ISB1	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$		0.1	1	mA
ISB2	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{IH}} \mathrm{min}$			5	mA
lıI	Input Leakage Current	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~V}$ IN $=0 \mathrm{~V}$ to Vcc	-2		2	$\mu \mathrm{A}$
ILO	I/O Leakage Current	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}$ to Vcc	-2		2	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{lOH}=-4.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V

NOTE:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open, operating at specified cycle times.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	VSS to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
$\mathrm{C}_{\text {IN }}$ (Input Capacitance)	6 pF
$\mathrm{C}_{\text {DQ }}$ (Input/Output Capacitance)	8 pF

NOTES:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $\mathrm{V}_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{Vcc}=5.0 \mathrm{~V}$.
2. Sample tested only.

Figure 3. Output Load Circuit

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-25		-35		-45		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
READ CYCLE								
tre	Read Cycle Timing	25		35		45		ns
$\mathrm{t}_{\mathrm{A} A}$	Address Access Time		25		35		45	ns
toh	Output Hold from Address Change	3		3		3		ns
tEA	$\overline{\text { E Low to Valid Data }}$		25		35		45	ns
telz	\bar{E} Low to Output Active ${ }^{2,3}$	5		5		5		ns
tEHZ	$\overline{\mathrm{E}}$ High to Output High-Z ${ }^{2,3}$		10		15		15	ns
tGA	$\overline{\mathrm{G}}$ Low to Valid Data		10		15		20	ns
tGLZ	$\overline{\mathbf{G}}$ Low to Output Active ${ }^{2,3}$	3		3		3		ns
tGHZ	$\overline{\mathbf{G}}$ High to Output High-Z ${ }^{2,3}$		10		15		15	ns
tPU	$\overline{\text { E Low }}$ to Power Up Time ${ }^{3}$	0		0		0		ns
tPD	$\overline{\mathrm{E}}$ High to Power Down Time ${ }^{3}$		25		35		45	ns
WRITE CYCLE								
twe	Write Cycle Time	25		30		40		ns
tew	\bar{E} Low to End of Write	20		25		35		ns
taw	Address Valid to End of Write	20		25		35		ns
tas	Address Setup	0		0		0		ns
$\mathrm{taH}^{\text {A }}$	Address Hold from \bar{W} High	0		0		0		ns
twp	\bar{W} Pulse Width	20		25		30		ns
tDW	Input Data Setup Time	13		15		20		ns
toh	Input Data Hold Time	0		0		0		ns
tWLZ	\bar{W} High to Output Active ${ }^{2,3}$	3		3		3		ns
tWHZ	$\overline{\text { W }}$ Low to Output High-Z ${ }^{2,3}$	0	7	0	10	0	15	ns

NOTES:

1. AC Electrical Characteristics specified at "AC Test Conditions" levels.
2. Active output to High- Z and High-Z to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. The test load has 5 pF capacitances.
3. Sample tested only.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: \bar{W} is HIGH, \bar{E} and \bar{G} are LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition.

Read Cycle No. 2

Chip is in the Read Mode: $\overline{\text { Wis HIGH. Timing illustrated }}$ for the case when addresses are valid when Egoes LOW. Data-out becomes valid at tEA and may become active as soon as tELZ. Data-out is valid when both tEA and tGA are met.

Figure 4. Read Cycle No. 1

Figure 5. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write cycles. \bar{E} or \bar{W} must be HIGH during address transitions. The outputs will remain in the High-Z state if \bar{W} is LOW when \bar{E} goes LOW. Care should be taken so that the output drivers are disabled prior to placing the Input Data on the DQ lines. This will prevent bus contention, reducing system noise. Although these timing diagrams assume $\overline{\mathrm{G}}$ is LOW, it is recommended that \bar{G} be kept high during Write cycles to insure that the output drivers are disabled.

Write Cycle No. 1 (W Controlled)

Chip is selected: \bar{E} and \bar{G} are LOW. Using only $\overline{\mathbf{W}}$ to control Write cycles may not offer the best device performance, since both twhz and tow timing specifications must be met.

Write Cycle No. 2 (\bar{E} Controlled)

DQ lines may transition to Low-Z if the falling edge of \bar{W} occurs after the falling edge of \bar{E}.

Figure 6. Write Cycle No. 1

Figure 7. Write Cycle No. 2

ORDERING INFORMATION

Example: LH5267AD-25 (CMOS 16K x 4 Static RAM, 25 ns, 24 -pin, 300-mil DIP)

ADVANCE INFORMATION

CMOS $32 \mathrm{~K} \times 8$ Static RAM

FEATURES

- Access Times: 70/90/100 ns
- Space Saving 28-Pin, 300-mil DIP
- Standard 28-Pin, 600-mil DIP
- Standard 28-Pin, 450-mil SOP Package
- Automatic Power Down During Long Read Cycles
- Low Power Standby When Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation
- 2 V Data Retention

FUNCTIONAL DESCRIPTION

The LH52250A is a high-density 262,144 bit static RAM organized as $32 \mathrm{~K} \times 8$. An efficient design is obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells.

This RAM is fully static in operation. The Chip Enable (E) control permits Read and Write operations when active (LOW) or places the RAM in a low-power standby mode when inactive (HIGH). Standby power (IsB1) drops to its lowest level if \bar{E} is raised to within 0.2 V of Vcc .

Write cycles occur when both Chip Enable ($\overline{\mathrm{E}}$) and Write Enable ($\overline{\mathrm{W}}$) are LOW. Data is transferred from the DQ pins to the memory location specified by the 15 address lines. The proper use of the Output Enable control ($\overline{\mathrm{G}}$) can prevent bus contention.

When \bar{E} is LOW and \bar{W} is HIGH, a static Read will occur at the memory location specified by the address lines. \bar{G} must be brought LOW to enable the outputs. Since the device is fully static in operation, new Read cycles can be performed by simply changing the address. An Automatic Power Down feature decreases current consumption when Read cycles extend beyond their minimum cycle time.

High-frequency design techniques should be employed to obtain the best performance from this device. Solid, low-impedance power and ground planes, with high-frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

52250A-9
Figure 2. LH52250A/LH52250AL Block Diagram

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{W}}$	MODE	DQ	Icc
H	X	X	Standby	High-Z	Standby
L	H	H	Read	High-Z	Active
L	L	H	Read	Data Out	Active
L	X	L	Write	Data In	Active

NOTE:
X = Don't Care, L = LOW, H = HIGH

PIN DESCRIPTIONS

PIN	DESCRIPTION
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Address Inputs
$\mathrm{DQ}_{0}-\mathrm{DQ}_{7}$	Data Inputs/Outputs
$\overline{\mathrm{E}}$	Chip Enable input
$\overline{\mathrm{G}}$	Output Enable input
$\overline{\mathrm{W}}$	Write Enable input
V $_{\mathrm{CC}}$	Positive Power Supply
V $_{\text {SS }}$	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to VSS Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Input Voltage 1	-0.5		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage 2	2.2		$\mathrm{Vcc}^{2}+0.5$	V

NOTE:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IcC1	Operating Current ${ }^{1}$	$\mathrm{tRC}^{\text {a }}$ (70 ns			80	mA
Icc1	Operating Current ${ }^{1}$	$\mathrm{tRC}^{\text {c }}$ 90 ns			70	mA
Icc1	Operating Current ${ }^{1}$	$\mathrm{tRC}=100 \mathrm{~ns}$			70	mA
ISB1	Standby Current: LH52250A	$\overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$			1	mA
	Standby Current: LH52250AL				0.1	mA
ISB2	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{IH}}$			3	mA
ILI	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to VCC	-2		2	$\mu \mathrm{A}$
ILO	I/O Leakage Current	$\mathrm{VIN}=0 \mathrm{~V}$ to Vcc	-10		10	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V
VDR	Data Retention Voltage	$\overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$	2		5.5	V
IDR	Data Retention Current: LH52250A	$\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{E} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$			200	$\mu \mathrm{A}$
	Data Retention Current: LH52250AL				50	$\mu \mathrm{A}$

NOTE:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open, operating at specified cycle times.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	0.6 to 2.4 V
Input Rise and Fall Times	10 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
CIN (Input Capacitance)	6 pF
CDQ (I/O Capacitance)	8 pF

NOTE:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $V_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{Vcc}_{\mathrm{c}}=5.0 \mathrm{~V}$.
2. Sample tested only.

DATA RETENTION TIMING

$\overline{\mathrm{E}}$ must be held above the lesser of V_{IH} or $\mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V}$ to assure proper operation when Vcc < 4.5 V. E. must be $\mathrm{Vcc}-0.2 \mathrm{~V}$ or greater to meet IDR specification. All other inputs are "Don't Care."

Figure 3. Output Load Circuit

Figure 4. Data Retention Timing

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-70		-90		-10		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
READ CYCLE								
trc	Read Cycle Time	70		90		100		ns
taA	Address Access Time		70		90		100	ns
tor	Output Hold from Address Change	10		10		10		ns
tea	\bar{E} Low to Valid Data		70		90		100	ns
telz	E Low to Output Active ${ }^{2,3}$	5		5		5		ns
tehz	$\overline{\text { E }}$ High to Output High-Z ${ }^{\text {2,3 }}$		35		40		45	ns
tGA	$\overline{\mathrm{G}}$ Low to Valid Data		40		50		60	ns
tglz	$\overline{\mathrm{G}}$ Low to Output Active ${ }^{2,3}$	5		5		5		ns
tghz	$\overline{\mathrm{G}}$ High to Output High-Z ${ }^{2,3}$		35		40		45	ns
tpu	$\overline{\text { E Low to Power Up Time }}{ }^{3}$	0		0		0		ns
tPD	$\overline{\text { E High to Power Down Time }}{ }^{3}$		70		90		100	ns
WRITE CYCLE								
twc	Write Cycle Time	70		90		100		ns
tew	E Low to End of Write	45		55		65		ns
taw	Address Valid to End of Write	65		80		90		ns
tAS	Address Setup	0		0		0		ns
taH	Address Hold from \bar{W} High	0		0		0		ns
twp	$\overline{\text { W Pulse Width }}$	45		55		65		ns
tDw	Input Data Setup Time	30		30		35		ns
tDH	Input Data Hold Time	0		0		0		ns
twhz	$\overline{\text { W }}$ Low to Output High-Z ${ }^{\text {2,3 }}$		40		40		45	ns
twlz	$\overline{\text { W }}$ High to Output Active ${ }^{2,3}$	5		5		5		ns

NOTES:

1. AC Electrical Characteristics specified at "AC Test Conditions" levels.
2. Active output to High-Z and High-Z to output active tests specified for a $\pm 200 \mathrm{mV}$ transition from steady state levels into the test load.
3. Sample tested only.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: \bar{W} is HIGH, \bar{E} is LOW and \bar{G} is LOW. Read Cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of Data Out implies that data lines are in the Low-Z state but the data is not guaranteed to be valid until tAA.

Read Cycle No. 2

Chip is in Read Mode: $\overline{\text { W }}$ is HIGH. Timing illustrated for the case when addresses are valid before \bar{E} goes LOW. Data Out is not specified to be valid until tEA or tgA, but may become valid as soon as telz or tglz. Outputs will transition directly from High-Z to Valid Data Out. Valid Data will be present following $\mathrm{tgA}_{\mathrm{A}}$ only if t_{EA} timing is met.

Figure 5. Read Cycle No. 1

Figure 6. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write Cycles. The outputs will remain in the High-Z state if \bar{W} is LOW when $\overline{\mathrm{E}}$ goes LOW. If $\overline{\mathrm{G}}$ is HIGH, the outputs will remain in the High-Z state. Although these examples illustrate timing with $\overline{\mathbf{G}}$ active, it is recommended that $\overline{\mathrm{G}}$ be held HIGH for all Write cycles. This will prevent the LH52250A LH52250AL's outputs from becoming active, preventing bus contention, thereby reducing system noise.

Write Cycle No. 1 (\bar{W} Controlled)
Chip is selected: \bar{E} is LOW, \bar{G} is LOW. Using only \bar{W} to control Write Cycles may not offer the best performance since both twHZ and tDW timing specifications must be met.

Write Cycle No. 2 (E Controlled)

$\overline{\mathrm{G}}$ is LOW. DQ lines may transition to Low-Z if the falling edge of \bar{W} occurs after the falling edge of \bar{E}.

Figure 7. Write Cycle No. 1

Figure 8. Write Cycle No. 2

ORDERING INFORMATION

Example: LH52250AD-70L (CMOS 32K x 8 Static RAM, Low-power standby, $70 \mathrm{~ns}, 28-\mathrm{pin}, 300-\mathrm{mil}$ DIP)

LH52251A

FEATURES

- Fast Access Times: $25 / 35 / 45$ ns
- Standard 24-Pin, 300-mil DIP
- Space Saving 24-Pin, 300-mil SOJ
- JEDEC Standard Pinout
- Separate Data Input and Output
- Low Power Standby When Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation
- 2 V Data Retention

FUNCTIONAL DESCRIPTION

The LH52251A is a high-speed 262,144 bit static RAM organized as $256 \mathrm{~K} \times 1$. Afast, efficient design is obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells.

This RAM is fully static in operation. The Chip Enable (\bar{E}) reduces power to the chip when \bar{E} is HIGH. Standby power drops to its lowest level (ISB1) if \bar{E} is raised to within 0.2 V of Vcc .

Write cycles occur when both \bar{E} and Write Enable ($\overline{\mathrm{W}}$) are LOW. Data is transferred from the D pin to the memory location specified by the 18 address lines. The Q pin goes into a High-Impedance state during Write cycles, allowing the user to connect D and Q together if desired.

When \bar{E} is LOW and \bar{W} is HIGH, a static Read of the memory location specified by the address lines will occur. Since the device is fully static in operation, new Read cycles can be performed by simply changing the address.

High-frequency design techniques should be employed to obtain the best performance from this device. Solid, low-impedance power and ground planes, with high-frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOJ Packages

Figure 2. LH52251A Block Diagram

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{w}}$	MODE	\mathbf{D}	\mathbf{Q}	Icc
H	X	Not Selected	X	High-Z	Standby
L	H	Read	X	Data Out	Active
L	L	Write	Data In	High-Z	Active

NOTE:

$X=$ Don't Care, $L=$ LOW, H = HIGH

PIN DESCRIPTIONS

PIN	DESCRIPTION
A $_{0}-$ A $_{17}$	Address Inputs
D	Data Input
Q	Data Output
\bar{E}	Chip Enable input
\bar{W}	Write Enable input
$V_{c C}$	Positive Power Supply
Vss	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to VSS Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W
Operating Temperature	0 to $70^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Output should not be shorted for more than 30 seconds.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
$\mathrm{VCC}_{\mathrm{CC}}$	Supply Voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0		0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Input Voltage 1	-0.5		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage	2.2		$\mathrm{Vcc}+0.5$	V

NOTE:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
$\mathrm{lcC1}$	Operating Current ${ }^{1}$	Output open, tcYCLE $=25 \mathrm{~ns}$ $\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{W}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}			150	mA	
Icc1	Operating Current ${ }^{1}$	Output open, tcYcLE $=35 \mathrm{~ns}$ $\bar{E}=V_{I L}, \bar{W}=V_{I H}$ or $V_{I L}$			120	mA	
Icc1	Operating Current ${ }^{1}$	Output open, tcYCLE $=45 \mathrm{~ns}$ $\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{W}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}			100	mA	
ISB1	Standby Current	$\bar{E} \geq V_{C C}-0.2 \mathrm{~V}$		0.1	1	mA	
ISB2	Standby Current	$\bar{E} \geq \mathrm{V}_{\mathrm{IH}}$ min			5	mA	
\|lu		Input Leakage Current	$\mathrm{VIN}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{Vcc}, \mathrm{V}_{\text {cc }}=5.5 \mathrm{~V}$	-2		2	$\mu \mathrm{A}$
\| ILO		Output Leakage Current	$\begin{aligned} & V_{I N}=0 \mathrm{~V} \text { to } \mathrm{Vcc}, \mathrm{Vcc}=5.5 \mathrm{~V}, \\ & \mathrm{E}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	-2		2	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{lOH}=-4.0 \mathrm{~mA}$	2.4			V	
VoL	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V	
V ${ }_{\text {DR }}$	Data Retention Voltage	$\overline{\mathrm{E}} \geq \mathrm{Vcc}^{\text {c }}-0.2 \mathrm{~V}$	2		5.5	V	
IDR	Data Retention Current	$\mathrm{Vcc}=3 \mathrm{~V}, \overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$			250	$\mu \mathrm{A}$	

NOTE:

1. Icc is dependent upon output loading and cycle rates. Specified values are with output open, operating at specified cycle times.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	0 to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Reference Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{1,2}$

PARAMETER	RATING
C_{D} (Input Capacitance)	5 pF
C_{Q} (Output Capacitance)	7 pF

NOTES:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $\mathrm{V}_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$.
2. Guaranteed but not tested.

DATA RETENTION TIMING

$\overline{\mathrm{E}}$ must be held above the lesser of V_{H} or $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ to assure proper operation when $\mathrm{Vcc}<4.5 \mathrm{~V}$. E must be $\mathrm{Vcc}-0.2 \mathrm{~V}$ or greater to meet IDR specification. All other inputs are "Don't Care."

Figure 4. Data Retention Timing

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-25		-35		-45		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
READ CYCLE								
trc	Read Cycle Timing	25		35		45		ns
taA	Address Access Time		25		35		45	ns
toh	Output Hold from Address Change	3		3		3		ns
teA	E Low to Valid Data		25		35		45	ns
tELZ	$\overline{\mathrm{E}}$ Low to Output Active ${ }^{2,3}$	3		3		3		ns
tehz	\bar{E} High to Output High-Z ${ }^{\text {2,3 }}$		12		15		20	ns
tPU	$\overline{\text { E Low to Power Up Time }}{ }^{3}$	0		0		0		ns
tPD	\bar{E} High to Power Down Time ${ }^{3}$		25		35		45	ns
WRITE CYCLE								
twc	Write Cycle Time	25		35		45		ns
tew	E Low to End of Write	20		30		40		ns
taw	Address Valid to End of Write	20		30		40		ns
tAS	Address Setup	0		0		0		ns
$\mathrm{taH}_{\text {A }}$	Address Hold	0		0		0		ns
twP	$\overline{\text { W Pulse Width }}$	20		30		40		ns
tow	Input Data Setup Time	13		15		20		ns
tDH	Input Data Hold Time	0		0		0		ns
tWHZ	$\overline{\text { W }}$ Low to Output High-Z ${ }^{2,3}$		10		10		15	ns
tWLZ	$\overline{\text { W }}$ High to Output Active ${ }^{2,3}$	0		0		0		ns

NOTES:

1. AC Electrical Characteristics measurements specified at "AC Test Conditions" levels.
2. Active output to High-Z and High-Z to active output tests specified for a $\pm 200 \mathrm{mV}$ transition from steady state levels into the test load.
3. Guaranteed but not tested.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: $\overline{\text { W }}$ is HIGH, and \bar{E} is LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of Q implies that Data Out is in the Low-Z state and the data may not be valid.

Read Cycle No. 2

Chip is in Read Mode: $\overline{\text { W }}$ is HIGH. Timing illustrated for the case when addresses are valid before \bar{E} goes LOW. Data Out is not specified to be valid until tea, but may become valid as soon as telz.

NOTE: $\overline{\mathrm{E}}=$ "LOW", $\overline{\mathrm{W}}=$ "HIGH"
Figure 5. Read Cycle No. 1

Figure 6. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write Cycles. The output will remain in the High-Z state if \bar{W} is LOW when Egoes LOW.

Write Cycle No. 2 (E Controlled)

Data-out may transition to Low-Z if the falling edge of \bar{W} occurs after the falling edge of $\overline{\mathrm{E}}$.

Write Cycle No. 1 (W Controlled)

Chip is selected: \bar{E} is LOW.

NOTE: $\overline{\mathrm{E}}=$ "LOW"
52251A-6
Figure 7. Write Cycle No. 1

Figure 8. Write Cycle No. 2

ORDERING INFORMATION

FEATURES

- Fast Access Times: $25 / 35 / 45 \mathrm{~ns}$
- Standard 24-Pin, 300-mil DIP
- Space Saving 24-Pin, 300-mil SOJ
- JEDEC Standard Pinouts
- Low Power Standby When Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation
- Common I/O for Low Pin Count

FUNCTIONAL DESCRIPTION

The LH52252A is a high-speed 262,144 bit static RAM organized as $64 \mathrm{~K} \times 4$. A fast, efficient design is obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells.

This RAM is fully static in operation. The Chip Enable (\bar{E}) reduces power to the chip when $\overline{\mathrm{E}}$ is HIGH. Standby power (ISB1) drops to its lowest level when $\overline{\mathrm{E}}$ is raised to within 0.2 V of Vcc .

Write cycles occur when both \bar{E} and Write Enable (\bar{W}) are LOW. Data is transferred from the DQ pins to the memory location specified by the 16 address lines.

Read cycles occur when \bar{E} is LOW and \bar{W} is HIGH. A Read cycle will begin upon an address transition, on a falling edge of \bar{E}, or on a rising edge of \bar{W}.

High-frequency design techniques should be employed to obtain the best performance from this device. Solid, low-impedance power and ground planes, with high-frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOJ Packages

52252A-3
Figure 2. LH52252A Block Diagram

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{W}}$	MODE	DQ	Icc
H	X	Not Selected	High-Z	Standby
L	H	Read	Data Out	Active
L	L	Write	Data In	Active

NOTE:

X = Don't, Care, L= LOW, H = HIGH

PIN DESCRIPTIONS

PIN	DESCRIPTION
$A_{0}-A_{15}$	Address Inputs
$\mathrm{DQ}_{0}-\mathrm{DQ}_{3}$	Data Inputs/Outputs
$\overline{\mathrm{E}}$	Chip Enable input
\bar{W}	Write Enable input
Vcc	Positive Power Supply
VSS	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to VSs Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
VCC	Supply Voltage	4.5		5.5	V
VSS	Supply Voltage	0		0	V
VIL $^{\text {V }}$	Logic "0" Input Voltage				
VIH	Logic "1" Input Voltage	-0.5		0.8	V

NOTE:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IcC1	Operating Current ${ }^{1}$	Outputs open, tRC $=25 \mathrm{~ns}$			150	mA
$\mathrm{lcC1}$	Operating Current ${ }^{1}$	Outputs open, tRC $=35 \mathrm{~ns}$			120	mA
ICC1	Operating Current ${ }^{1}$	Outputs open, tRC $=45 \mathrm{~ns}$			100	mA
ISB1	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$		0.1	1	mA
ISB2	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{IH}}$			5	mA
ILI	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to VCC	-2		2	$\mu \mathrm{A}$
ILO	I/O Leakage Current	$\mathrm{VIN}_{\text {IN }}=0 \mathrm{~V}$ to VCC	-2		2	$\mu \mathrm{A}$
Voh	Output High Voltage	$1 \mathrm{OH}=-4.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	$\mathrm{loL}=8.0 \mathrm{~mA}$			0.4	V

NOTE:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open, operating at specified cycle times.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	VSS to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
$C_{\text {IN }}$ (Input Capacitance)	6 pF
C_{DQ} (//O Capacitance)	8 pF

NOTES:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $\mathrm{V}_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.
2. Sample tested only.

Figure 3. Output Load Clircuit

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-25		-35		-45		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
READ CYCLE								
tre	Read Cycle Timing	25		35		45		ns
taA	Address Access Time		25		35		45	ns
toh	Output Hold from Address Change	3		3		3		ns
tea	$\overline{\mathrm{E}}$ Low to Valid Data		25		35		45	ns
telz	\bar{E} Low to Output Active ${ }^{3}$	5		5		5		ns
tehz	$\overline{\text { E High to Output High-Z }}$ 2,3		12		15		20	ns
tpu	$\overline{\mathrm{E}}$ Low to Power Up Time ${ }^{4}$	0		0		0		ns
tPD	$\overline{\mathrm{E}}$ High to Power Down Time ${ }^{4}$		30		35		40	ns
WRITE CYCLE								
twc	Write Cycle Time	25		35		45		ns
tew	$\overline{\mathrm{E}}$ Low to End of Write	20		30		35		ns
taw	Address Valid to End of Write	20		30		35		ns
tas	Address Setup	0		0		0		ns
taH	Address Hold from \bar{W} High	0		0		0		ns
twP	\bar{W} Pulse Width	20		25		35		ns
tDW	Input Data Setup Time	12		15		20		ns
tDH	Input Data Hold Time	0		0		0		ns
tWHZ	$\overline{\text { W Low to Output High-Z }}{ }^{2,3}$		8		10		15	ns
tWLZ	\bar{W} High to Output Active ${ }^{3}$	0		0		0		ns

NOTES:

1. AC Electrical Characteristics specified at "AC Test Conditions" levels.
2. Active output to High-Z and High-Z to output active tests specified for $a \pm 200 \mathrm{mV}$ transition from steady state levels into the test load.
3. Sample tested only.
4. Guaranteed but not tested.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: $\overline{\text { W }}$ is HIGH, and \bar{E} is LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of DQ implies that data lines are in the Low-Z state and the data may not be valid.

Read Cycle No. 2
Chip is in Read Mode: $\overline{\text { W }}$ is HIGH. Timing illustrated for the case when addresses are valid while Egoes LOW. Data Out is not specified to be valid until teA, but may become valid as soon as teLz. Outputs will transition from High-Z to Valid Data Out.

Figure 4. Read Cycle No. 1

Figure 5. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write cycles. \bar{E} or \bar{W} must be high during address transitions. The outputs will remain in the High-Z state if \bar{W} is LOW when E goes LOW. Care should be taken so that the output drivers are disabled prior to placing the Input Data on the DQ lines. This will prevent bus contention, reducing system noise.

Write Cycle No. 1 (\bar{W} Controlled)

Chip is selected: $\overline{\mathrm{E}}$ is LOW. Using only $\overline{\mathrm{W}}$ to control Write cycles may not offer the best device performance, since both twhz and tDw timing specifications must be met.

Write Cycle No. 2 (E Controlled)

DQ lines may transition to Low-Z if the falling edge of \bar{W} occurs after the falling edge of $\overline{\mathrm{E}}$.

Figure 6. Write Cycle No. 1

Figure 7. Write Cycle No. 2

ORDERING INFORMATION

LH52252A	X	-\#\#		
Device Type	Package	Speed		
			$\left\{\begin{array}{l}25 \\ 35 \\ 45\end{array}\right.$	Access Time (ns)
				24-pin, 300-mil DIP (DIP24-P-300) 24-pin, 300-mil SOJ (SOJ24-P-300)

Example: LH52252AD-35 (CMOS 64K x 4 Static RAM, $35 \mathrm{~ns}, 24$-pin, 300 -mil DIP)

LH52252B

FEATURES

- Fast Access Times: 15/20/25 ns
- Standard 24-Pin, 300-mil DIP
- Space Saving 24-Pin, 300-mil SOJ
- JEDEC Standard Pinouts
- Low Power Standby When Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation
- Common I/O for Low Pin Count

FUNCTIONAL DESCRIPTION

The LH52252B is a high-speed 262,144 bit static RAM organized as $64 \mathrm{~K} \times 4$. A fast, efficient design is obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells.

This RAM is fully static in operation. The Chip Enable (\bar{E}) reduces power to the chip when \bar{E} is HIGH. Standby power (ISB1) drops to its lowest level when \bar{E} is raised to within 0.2 V of Vcc .

Write cycles occur when both \bar{E} and Write Enable ($\overline{\mathrm{W}}$) are LOW. Data is transferred from the DQ pins to the memory location specified by the 16 address lines.

Read cycles occur when \bar{E} is LOW and \bar{W} is HIGH. A Read cycle will begin upon an address transition, on a falling edge of \bar{E}, or on a rising edge of \bar{W}.

High-frequency design techniques should be employed to obtain the best performance from this device. Solid, low-impedance power and ground planes, with high-frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOJ Packages

Figure 2. LH52252B Block Diagram

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{W}}$	MODE	DQ	Icc
H	X	Not Selected	High-Z	Standby
L	H	Read	Data Out	Active
L	L	Write	Data In	Active

NOTE:
X = Don't Care, L = LOW, H = HIGH

PIN DESCRIPTIONS

PIN	DESCRIPTION
$A_{0}-A_{15}$	Address Inputs
$\mathrm{DQ}_{0}-\mathrm{DQ}_{3}$	Data Inputs/Outputs
$\overline{\mathrm{E}}$	Chip Enable input
\bar{W}	Write Enable input
V_{CC}	Positive Power Supply
$\mathrm{V}_{\text {SS }}$	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to Vss Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5		5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0		0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Input Voltage 1	-0.5		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage 2	2.2		$\mathrm{VCC}+0.5$	V

NOTE:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IcC1	Operating Current ${ }^{1}$	Outputs open, tcYcle = 15 ns			165	mA
lcc1	Operating Current ${ }^{1}$	Outputs open, tcYCLE $=20 \mathrm{~ns}$			145	mA
IcC1	Operating Current ${ }^{1}$	Outputs open, tcYCLE $=25 \mathrm{~ns}$			135	mA
ISB1	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$		0.1	1	mA
ISB2	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{IH}}$			10	mA
ILI	Input Leakage Current	$\mathrm{VIN}=0 \mathrm{~V}$ to Vcc	-2		2	$\mu \mathrm{A}$
ILO	I/O Leakage Current	VIN $=0 \mathrm{~V}$ to V_{Cc}	-2		2	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{lOH}=-4.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V

NOTES:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open, operating at specified cycle times.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{1,2}$

PARAMETER	RATING
CIN (Input Capacitance)	8 pF
CDO $^{\text {(/IO Capacitance) }}$	8 pF

NOTES:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz

Figure 3. Output Load Circuit with $\mathrm{V}_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$.
2. Guaranteed but not tested.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-15		-20		-25		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
READ CYCLE								
trc	Read Cycle Timing	15		20		25		ns
tAA	Address Access Time		15		20		25	ns
toh	Output Hold from Address Change	3		3		3		ns
tea	E Low to Valid Data		15		20		25	ns
telz	$\overline{\text { E Low to Output Active }}{ }^{3}$	4		4		4		ns
tehz	$\overline{\text { E High to Output High-Z }}$, ${ }^{\text {a }}$		8		10		12	ns
tpu	$\overline{\text { E Low to Power Up Time }}{ }^{3}$	0		0		0		ns
tPD	$\overline{\mathrm{E}}$ High to Power Down Time ${ }^{3}$		20		25		30	ns
WRITE CYCLE								
twc	Write Cycle Time	15		20		25		ns
tew	\bar{E} Low to End of Write	12		15		20		ns
taw	Address Valid to End of Write	12		15		20		ns
tAS	Address Setup	0		0		0		ns
$\mathrm{taH}^{\text {A }}$	Address Hold from \bar{W} High	0		0		0		ns
twp	$\overline{\text { W Pulse Width }}$	10		12		15		ns
tow	Input Data Setup Time	8		10		10		ns
tDH	Input Data Hold Time	0		0		0		ns
twhz	$\overline{\text { W }}$ Low to Output High-Z ${ }^{\text {2,3 }}$		6		7		8	ns
twLz	\bar{W} High to Output Active ${ }^{3}$	4		4		4		ns

NOTES:

1. AC Electrical Characteristics specified at "AC Test Conditions" levels.
2. Active output to High- Z and High- Z to output active tests specified for $a \pm 500 \mathrm{mV}$ transition from steady state levels into the test load. $C_{\text {LOAD }}=5 \mathrm{pF}$.
3. Guaranteed but not tested.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: \bar{W} is HIGH, and $\overline{\mathrm{E}}$ is LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of DQ implies that data lines are in the Low-Z state and the data may not be valid.

Read Cycle No. 2

Chip is in Read Mode: $\overline{\text { W }}$ is HIGH. Timing illustrated for the case when addresses are valid while Egoes LOW. Data Out is not specified to be valid until tEA, but may become valid as soon as telz.

Figure 4. Read Cycle No. 1

Figure 5. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write cycles. $\overline{\mathrm{E}}$ or $\overline{\mathrm{W}}$ must be high during address transitions. The outputs will remain in the High-Z state if \bar{W} is LOW when \bar{E} goes LOW. Care should be taken so that the output drivers are disabled prior to placing the Input Data on the DQ lines. This will prevent bus contention, reducing system noise.

Write Cycle No. 1 (W Controlled)

Chip is selected: $\overline{\mathrm{E}}$ is LOW. Using only $\overline{\mathrm{W}}$ to control Write cycles may not offer the best device performance, since both twHz and tDw timing specifications must be met.

Write Cycle No. 2 (\bar{E} Controlled)

DQ lines may transition to Low-Z if the falling edge of \bar{W} occurs after the falling edge of \bar{E}.

Figure 6. Write Cycle No. 1

Figure 7. Write Cycle No. 2

ORDERING INFORMATION

Example: LH52252BD-25 (CMOS 64K x 4 Static RAM, $25 \mathrm{~ns}, 24$-pin, 300 -mil DIP)

FEATURES

- Fast Access Times: 15 */20/25/35 ns
- Standard 28-Pin, 300-mil DIP
- Space Saving 28 -Pin, 300-mil SOJ
- JEDEC Standard Pinouts
- Low Power Standby when Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation
- Common I/O for Low Pin Count

FUNCTIONAL DESCRIPTION

The LH52253 is a very high-speed 256K-bit static RAM organized as $64 \mathrm{~K} \times 4$. This RAM is fully static in operation. The Chip Enable ($\overline{\mathrm{E}}$) reduces power to the chip when $\overline{\mathrm{E}}$ is inactive (HIGH). The combination of \bar{E} and \bar{W} control the mode of operation of the LH52253.

Write cycles occur when both \bar{E} and Write Enable (\bar{W}) are LOW. Data is transferred from the DQ pins to the memory location specified by the 16 address lines.

When \bar{E} is LOW and \bar{W} is HIGH, a static read of the memory location specified by the address lines will occur. Since the device is fully static in operation, new read cycles can be performed by simply changing the address. An Automatic Power Down feature reduces the current consumption when Read and Write cycles extend beyond their minimum cycle times.

The LH52253 offers an Output Enable ($\overline{\mathrm{G}}$) for use in managing the Data Bus. Bus contention during Write cycles may be easily avoided by using the \bar{G} input in the LH52253.

High-frequency design techniques should be employed to obtain the best performance from these devices. Solid, low-impedance power and ground planes, with high-frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOJ

[^0]

Figure 2. LH52253 Block Diagram

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{W}}$	$\overline{\mathbf{G}}$	MODE	DQ	Icc
H	X	X	Not Selected	High-Z	Standby
L	H	L	Read	Data Out	Active
L	H	H	Read	High-Z	Active
L	L	X	Write	Data In	Active

NOTE:
X = Don't Care, L = LOW, H = HIGH

PIN DESCRIPTIONS

PIN	DESCRIPTION
$A_{0}-A_{15}$	Address Inputs
DQ $_{0}$ - DQ 33	Data Inputs/Outputs
$\overline{\mathrm{E}}$	Chip Enable input
\bar{W}	Write Enable input
$\overline{\mathrm{G}}$	Output Enable input
Vcc	Positive Power Supply
Vss	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to Vss Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{VCc}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Function operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5		5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0		0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Input Voltage ${ }^{1}$	-0.5		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage	2.2		$\mathrm{VCc}+0.5$	V

NOTE:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
lcc1	Operating Current ${ }^{1}$	$\begin{aligned} & \text { Outputs open, tcYCLE }=15 \mathrm{~ns}^{2} \\ & \overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \end{aligned}$			165	mA
lcce	Operating Current ${ }^{1}$	Outputs open, tcYCLE $=20 \mathrm{~ns}$ $\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}			145	mA
Icc1	Operating Current ${ }^{1}$	Outputs open, tcYCLE $=25$ ns $\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{~W} E}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$			135	mA
Icc1	Operating Current ${ }^{1}$	Outputs open, trc $=35 \mathrm{~ns}$ $\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$			135	mA
ISB1	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$			1	mA
ISB2	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{IH}}$ min			10	mA
ILI	Input Leakage Current	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~V}$ IN $=0 \mathrm{~V}$ to Vcc	-2		2	$\mu \mathrm{A}$
ILO	I/O Leakage Current	V cc $=5.5 \mathrm{~V}, \mathrm{~V}$ IN $=0 \mathrm{~V}$ to Vcc	-2		2	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{lOH}=-4.0 \mathrm{~mA}$	2.4			V
VOL	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V

NOTES:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open, operating at specified cycle times.
2. Note: only the $\mathbf{1 5} \mathbf{n s}$ access time part is Advance Information.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	$V_{\text {SS }}$ to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
CIN (Input Capacitance) $_{8 \mathrm{pF}} \mathrm{C}$ (InQ (Input/Output Capacitance)	8 pF

NOTES:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $V_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{Vcc}=5.0 \mathrm{~V}$.
2. Guaranteed but not tested.

Figure 3. Output Load Circult

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-15 ${ }^{4}$		-20		-25		-35		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
READ CYCLE										
tre	Read Cycle Timing	15		20		25		35		ns
t_{AA}	Address Access Time		15		20		25		35	ns
toh	Output Hold from Address Change	3		3		3		3		ns
tea	\bar{E} Low to Valid Data		15		20		25		35	ns
telz	$\overline{\mathrm{E}}$ Low to Output Active ${ }^{2,3}$	4		4		4		4		ns
tehz	$\overline{\text { E High to Output High-Z }}$, ${ }^{\text {,3}}$		8		10		10		12	ns
tGA	$\overline{\mathrm{G}}$ Low to Valid Data		8		10		12		15	ns
tGLZ	$\overline{\mathbf{G}}$ Low to Output Active ${ }^{2,3}$	0		0		0		0		ns
tGHZ	$\overline{\mathbf{G}}$ High to Output High-Z ${ }^{2,3}$	0	7	0	9	0	10	0	12	ns
tPu	$\overline{\text { E Low }}$ to Power Up Time ${ }^{3}$	0		0		0		0		ns
tPD	$\overline{\mathrm{E}}$ High to Power Down Time ${ }^{3}$		20		25		30		35	ns
WRITE CYCLE										
twc	Write Cycle Time	15		20		25		35		ns
tew	\bar{E} Low to End of Write	12		15		20		25		ns
taw	Address Valid to End of Write	12		15		20		25		ns
tas	Address Setup	0		0		0		0		ns
$\mathrm{taH}^{\text {A }}$	Address Hold from \bar{W} High	0		0		0		0		ns
twp	$\overline{\text { W Pulse Width }}$	10		12		15		20		ns
tDW	Input Data Setup Time	8		10		10		12		ns
tDH	Input Data Hold Time	0		0		0		0		ns
tWLZ	$\overline{\text { W }}$ High to Output Active ${ }^{2,3}$	4		4		4		4		ns
tWHZ	$\overline{\text { W }}$ Low to Output High-Z ${ }^{2,3}$		6		7		8		10	ns

1. AC Electrical Characteristics specified at "AC Test Conditions" levels.
2. Active output to High- Z and High- Z to output active tests specified for $a \pm 500 \mathrm{mV}$ transition from steady state levels into the test load. $C_{\text {LOAD }}=5 \mathrm{pF}$.
3. Guaranteed but not tested.
4. Note: only the 15 ns access time part is Advance Information.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: \bar{W} is HIGH, \bar{E} and \bar{G} are LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of DQ implies that data lines are in the Low-Z state and the data may not be valid.

Read Cycle No. 2

Chip is in the Read Mode: $\overline{\text { W }}$ is HIGH. Timing illustrated for the case when addresses are valid when Egoes LOW. Data Out is not specified to be valid until teA, but may become valid as soon as telz. Valid Data will be present following tga only if tea timing has been met.

Figure 4. Read Cycle No. 1

Figure 5. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write cycles. $\overline{\text { E }}$ or \bar{W} must be HIGH during address transitions. The outputs will remain in the High-Z state if \bar{W} is LOW when Egoes LOW. Care should be taken so that the output drivers are disabled prior to placing the Input Data on the DQ lines. This will prevent bus contention, reducing system noise. These timing diagrams assume $\overline{\mathrm{G}}$ is LOW, but it should be kept HIGH during Write cycles to insure that the output drivers are disabled.

Write Cycle No. 1 (W Controlled)

Chip is selected: \bar{E} and \bar{G} are LOW. Using only \bar{W} to control Write cycles may not offer the best device performance, since both twhz and tdw timing specifications must be met.

Write Cycle No. 2 (E Controlled)
DQ lines may transition to Low-Z if the falling edge of \bar{W} occurs after the falling edge of \bar{E}.

Figure 6. Write Cycle No. 1

Figure 7. Write Cycle No. 2

ORDERING INFORMATION

* Only the 15 ns access time part is Advance Information.

Example: LH52253K-25 (CMOS 64K x 4 Static RAM, 25 ns, 28-pin, 300-mil SOJ)

LH52256 LH52256L

FEATURES

- $32,768 \times 8$ bit organization
- Access times:

70/90/120 ns (MAX.)

- Low power consumption:

Operating: 440/385/385 mW (MAX.) Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

28-pin, 600-mil DIP
28-pin, 450-mil SOP

DESCRIPTION

The LH52256 is a low-power CMOS-periphery static RAM organized as $32,768 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

Figure 2. LH52256/LH52256L Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Address inputs
$\overline{\mathrm{CE}}$	Chip Enable input
$\overline{\mathrm{WE}}$	Write Enable input
$\overline{\mathrm{OE}}$	Output Enable input

SIGNAL	PIN NAME
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$	Data inputs and outputs
V cc	Power supply
GND	Ground

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	$\overline{\mathrm{OE}}$	MODE	//01-1/08	SUPPLY CURRENT	NOTE
H	X	X	Deselect	High-Z	Standby (ISB)	1
L	H	L	Read	Dout	Operating (lcc)	
L	H	H	Output disable	High-Z	Operating (lcc)	
L	L	X	Write	Din	Operating (lcc)	1

NOTE:
$X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	0.3 to +7.0	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = 0 to $\mathbf{+ 7 0}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage	V_{IH}	2.2	3.5	$\mathrm{~V}_{\mathrm{Cc}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-0.3		+0.8	V

DC CHARACTERISTICS (Vcc = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	$\begin{aligned} & \text { LH52256L-70 } \\ & \text { LH52256N-70L } \end{aligned}$			$\begin{aligned} & \text { LH52256L-90,-12 } \\ & \text { LH52256N-90L,-12L } \end{aligned}$			UNIT	
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Input leakage current	\| LLI ${ }^{\text {l }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.5 \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { to } \mathrm{VCC} \end{gathered}$			1			1	$\mu \mathrm{A}$	
Output leakage current	\| lıo		$\begin{gathered} \overline{\mathrm{CE}}=\mathrm{V}_{I H} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{I H}, \\ \mathrm{~V}_{I O}=0 \text { to } V_{C C} \end{gathered}$			1			1	$\mu \mathrm{A}$
Operating current	Icc	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}},$ Outputs open			80			70	mA	
	lcc 1	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=3.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.6 \mathrm{~V} \\ & \text { Outputs open } \end{aligned}$			70			65	mA	
	Icc2	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \text { Outputs open } \end{aligned}$			80			70	mA	
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			3			3	mA	
	ISB	$\overline{\mathrm{CE}} \geq \mathrm{V}_{\text {cc }}-0.2$			0.1			0.1	mA	
Output voltage	VOL	$\mathrm{lOL}=2 \mathrm{~mA}$			0.4			0.4	V	
	VOH	$\mathrm{lOH}=-1.0 \mathrm{~mA}$	2.4			2.4			V	

AC CHARACTERISTICS

(1) READ CYCLE (Vcc = $5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	$\begin{aligned} & \text { LH52256L-70 } \\ & \text { LH52256N-70L } \end{aligned}$		$\begin{aligned} & \text { LH52256L-90 } \\ & \text { LH52256N-90L } \end{aligned}$		$\begin{gathered} \text { LH52256L-12 } \\ \text { LH5256N-12L } \end{gathered}$		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	trc	70		90		120		ns	
Address access time	$t_{A A}$		70		90		120	ns	
Chip enable access time	tace		70		90		120	ns	
Output enable access time	toe		40		50		60	ns	
Output hold from address change	toh	10		10		10		ns	1
Chip enable Low to output in Low-Z	tLz	5		5		5		ns	1
Output enable Low to output in Low-Z	tolz	5		5		5		ns	1
Chip disable to output in High-Z	thz	0	35	0	40	0	45	ns	1
Output enable High to output in High-Z	tohz	0	35	0	40	0	45	ns	1

(2) WRITE CYCLE (Vcc = $5 \mathrm{~V} \pm 10 \%$, $\mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	$\begin{aligned} & \text { LH52256L-70 } \\ & \text { LH52256N-70L } \end{aligned}$		$\begin{aligned} & \text { LH52256L-90 } \\ & \text { LH52256N-90L } \end{aligned}$		$\begin{aligned} & \text { LᄂH52256L-12 } \\ & \text { LH52256N-12L } \end{aligned}$		UNIT	NOTE
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	70		90		120		ns	
Chip enable to end of write	tcw	45		55		65		ns	
Address valid to end of write	taw	65		80		90		ns	
Address setup time	tas	0		0		10		ns	
Write pulse width	twp	45		55		65		ns	
Write recovery time	twr	5		5		10		ns	
Data valid to end of write	tbw	30		30		35		ns	
Data hold time	tDH	0		0		10		ns	
Output active from end of write	tow	5		5		5		ns	1
Write Low to output in High-Z	twz	0	40	0	40	0	45	ns	1
Output enable High to output in High-Z	tohz	0	35	0	40	0	45	ns	1

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. C LOAD $=5 \mathrm{pF}$.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.6 to 2.4 V
Input rise/fall time	10 ns
Timing reference level	1.5 V
Output load conditions	1TTL gate, $\mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}$ (Includes scope and jig capacitance)

DATA RETENTION CHARACTERISTICS (TA = $\mathbf{0}$ to $+70^{\circ} \mathrm{C}$)

* $\mathrm{t}_{\mathrm{RC}}=$ Read cycle time

CAPACITANCE ${ }^{1}\left(\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right.$)

PARAMETER	SYMBOL	CONDITIONS	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{N}}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$	8	pF
Input/output capacitance	C_{VO}	$\mathrm{V}_{\text {VO }}=0 \mathrm{~V}$	10	pF

NOTE:

1. This parameter is sampled and not production tested.

52256-6
Figure 3. Low Voltage Data Retention

NOTE: $\overline{\mathrm{WE}}=$ "HIGH"
Figure 4. Read Cycle
($\overline{\mathrm{OE}}$ Clock)

NOTES:

1. The Write pulse occurs during the overlap ($t_{\text {WP }}$) of CE $=$ "LOW" and WE $=$ LOW.
2. $t_{A S}$ is defined as the time from address change to start of write.
3. IWR is defined as the time from end of write to address change.
4. When I/O pins are in the output state, input signals of opposite logic level must not be applied.
5. If $\overline{\mathrm{CE}}$ LOW transition occurs at the same time or prior to WE LOW transition, the output will remain high-impedance.

Figure 5. Write Cycle 1

Figure 6. Write Cycle 2

ORDERING INFORMATION

Example: LH52256L-70 (CMOS 256K (32K x 8) Static RAM, Low-power standby, $70 \mathrm{~ns}, 28$-pin, 600-mil DIP)

FEATURES

- $32,768 \times 8$ bit organization
- Access time:

90 ns (MAX.)

- Low power consumption:

Operating: 385 mW (MAX.)
Standby: $220 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- TTL compatible I/O
- Three state outputs
- Single +5 V power supply
- Package:

28-pin, 600-mil DIP
28-pin, 450-mil SOP

DESCRIPTION

The LH52256LL is an ultra-low power CMOS-periphery static RAM organized as $32,768 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

| 28-PIN DIP |
| :---: | :---: | :---: |
| 28-PIN SOP |

$52256 \mathrm{LL}-1$
Figure 1. Pin Connections for DIP and SOP Packages

Figure 2. LH52256LL Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Address inputs
$\overline{\mathrm{CE}}$	Chip Enable input
$\overline{\mathrm{WE}}$	Write Enable input
$\overline{\mathrm{OE}}$	Output Enable input

SIGNAL	PIN NAME
$\mathrm{I} / \mathrm{O}_{1}-\mathrm{I} / \mathrm{O}_{8}$	Data inputs and outputs
V_{CC}	Power supply
GND	Ground

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathrm{WE}}$	$\overline{\mathbf{O E}}$	MODE	$\mathbf{I / \mathbf { O } _ { \mathbf { 1 } } - \boldsymbol { I } / \mathbf { O } _ { \mathbf { 8 } }}$	SUPPLY CURRENT	NOTE
H	X	X	Deselect	High-Z	Standby (ISB)	1
L	H	L	Read	DouT	Operating (Icc)	
L	H	H	Output disable	High-Z	Operating (Icc)	
L	L	X	Write	DiN	Operating (Icc)	1

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	VIN	0.3 to +7.0	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input voltage	V_{IH}	2.2	3.5	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
	$\mathrm{~V}_{\mathrm{IL}}$	-0.3		+0.8	V

DC CHARACTERISTICS ($\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	\| lıI ${ }^{\text {l }}$	$\begin{gathered} \mathrm{VCC}_{\mathrm{CC}}=5.5 \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { to } \mathrm{VCC} \end{gathered}$			1	$\mu \mathrm{A}$
Output leakage current	\mid llo ${ }^{\text {\| }}$	$\begin{gathered} \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}, \\ \mathrm{~V}_{\mathrm{IO}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$			1	$\mu \mathrm{A}$
Operating current	Icc	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, Outputs open			70	mA
	lcc1	$\begin{gathered} \mathrm{V}_{\mathrm{IH}}=3.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.6 \mathrm{~V} \\ \text { Outputs open } \end{gathered}$			65	mA
	lcc2	$\begin{gathered} \mathrm{V}_{\mathrm{IH}}=2.2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ \text { Outputs open } \end{gathered}$			70	mA
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			3	mA
	ISB	$\overline{\mathrm{CE}} \geq \mathrm{V}_{\text {cc }}-0.2 \mathrm{~V}$		2	40	$\mu \mathrm{A}$
Output voltage	VOL	$\mathrm{loL}=2 \mathrm{~mA}$			0.4	V
	VOH	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$	2.4			V

AC CHARACTERISTICS

(1) READ CYCLE (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	tre	90		ns	
Address access time	$t_{\text {A }}$		90	ns	
Chip enable access time	tace		90	ns	
Output enable access time	toe		50	ns	
Output hold from address change	toh	10		ns	
Chip enable Low to output in Low-Z	tLz	5		ns	1
Output enable Low to output in Low-Z	tolz	5		ns	1
Chip disable to output in High-Z	thz	0	40	ns	1
Output enable High to output in High-Z	tohz	0	40	ns	1

(2) WRITE CYCLE (Vcc = $5 \mathrm{~V} \pm 10 \%$, $\mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Write cycle time	twC	90		ns	
Chip enable to end of write	tcw	55		ns	
Address valid to end of write	taw 2	80		ns	
Address setup time	tas	0		ns	
Write pulse width	twP	55		ns	
Write recovery time	twR	5		ns	
Data valid to end of write	tDW	30		ns	
Data hold time	tDH	0		ns	
Output active from end of write	tow	5		ns	1
Write Low to output in High-Z	twZ	0	40	ns	1
Output enable High to output in High-Z	toHZ	0	40	ns	1

NOTE:

1. Active output to high-impedance and high-impedance to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. CLOAD $=5 \mathrm{pF}$.

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.6 to 2.4 V
Input rise/fall time	1.0 ns
Timing reference level	1.5 V
Output load conditions	1 TTL gate, $\mathrm{CL}=100 \mathrm{pF}$ (Includes scope and jig capacitance)

DATA RETENTION CHARACTERISTICS (TA $=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT
Data retention voltage	VCCDR	$\overline{\mathrm{CE}} \geq \mathrm{V}_{\text {cCDR }}-0.2 \mathrm{~V}$		2.0			V
Data retention current	ICCDR	$\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{VCCDR}-0.2 \mathrm{~V}, \\ \mathrm{VCCDR}=3.0 \mathrm{~V} \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=0$ to $40^{\circ} \mathrm{C}$			3	
			$\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$			20	
Chip disable to data retention	tCDR			0			ns
Recovery time	t_{R}			trC^{*}			ns

* trC $=$ Read cycle time

CAPACITANCE ${ }^{1}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right.$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		8	pF
Input/output capacitance	$\mathrm{C}_{\text {IVO }}$	$\mathrm{V}_{\text {IOO }}=0 \mathrm{~V}$		10	pF

NOTE:

1. This parameter is sampled and not production tested.

Figure 3. Low Voltage Data Retention

NOTE: $\overline{\mathrm{WE}}=$ "HIGH"
Figure 4. Read Cycle
($\overline{\mathrm{EE}}$ Clocked)

NOTES:

1. The Write pulse occurs during the overlap ($t_{\text {WP }}$) with $\overline{C E}=L O W$ and $\overline{W E}=$ LOW.
2. $t_{A S}$ is defined as the time from address to change to of write.
3. $t_{W R}$ is defined as the time from end of write to address change.
4. When I/O pins are in output state, input signals of opposite logic level must not be applied.
5. If $\overline{C E}$ LOW transition occurs at the same time or prior to \bar{W} LOW transition, the output will remain high-impedance.

Figure 5. Write Cycle 1

Figure 6. Write Cycle 2

ORDERING INFORMATION

Example: LH52256N-90LL (CMOS 256K (32K x 8) Static RAM, 90 ns , 28-pin, 450-mil SOP)

FEATURES

- Fast Access Times: 30/35/45/55 ns
- Space Saving 28 -Pin, $300-\mathrm{mil}$ DIP
- High Density $28-\mathrm{Pin}, 300-\mathrm{mil}$ SOJ
- Low Power Standby When Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation
- 2 V Data Retention

FUNCTIONAL DESCRIPTION

The LH52258 is a high-speed 262,144 bit static RAM organized as $32 \mathrm{~K} \times 8$. A fast, efficient design is obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells.

This RAM is fully static in operation. The Chip Enable ($\overline{\mathrm{E}}$) control permits Read and Write operations when active (LOW) or places the RAM in a low-power standby mode when inactive (HIGH). Standby power (ISB1) drops to its lowest level if $\overline{\mathrm{E}}$ is raised to within 0.2 V of Vcc.

Write cycles occur when both Chip Enable ($\overline{\mathrm{E}}$) and Write Enable (\bar{W}) are LOW. Data is transferred from the DQ pins to the memory location specified by the 15 address lines. Proper use of the Output Enable control (\bar{G}) can prevent bus contention.

When \bar{E} is LOW and \bar{W} is HIGH, a static Read will occur at the memory location specified by the address lines. $\overline{\mathrm{G}}$ must be brought LOW to enable the outputs. Since the device is fully static in operation, new Read cycles can be performed by simply changing the address.

High-frequency design techniques should be employed to obtain the best performance from this device. Solid, low-impedance power and ground planes, with high-frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOJ Packages

Figure 2. LH52258 Block Diagram

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{w}}$	MODE	DQ	Icc
H	X	X	Not Selected	High-Z	Standby
L	H	H	Selected	High-Z	Active
L	L	H	Read	Data Out	Active
L	X	L	Write	Data In	Active

NOTE:
$\mathrm{X}=$ Don't Care, $\mathrm{L}=$ LOW, $\mathrm{H}=\mathrm{HIGH}$

PIN DESCRIPTIONS

PIN	DESCRIPTION
$A_{0}-A_{14}$	Address Inputs
DQ $_{0}-$ DQ $_{7}$	Data Inputs/Outputs
\bar{E}	Chip Enable input
\bar{G}	Output Enable input
\bar{W}	Write Enable input
$V_{C C}$	Positive Power Supply
$V_{S S}$	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to Vss Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
TA $_{\text {A }}$	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
VCC	Supply Voltage	4.5	5.0	5.5	V
V $_{\text {SS }}$	Supply Voltage	0	0	0	V
VIL $^{\text {Logic "0" Input Voltage }}{ }^{1}$	-0.5		0.8	V	
VIH	Logic "1" Input Voltage	2.2		$\mathrm{VCC}_{\mathrm{CC}}+0.5$	V

NOTE:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
lcce	Operating Current ${ }^{1}$	$\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \text { lout }=0 \mathrm{~mA}$ All other Inputs $=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} minimum cycle time $=30 \mathrm{~ns}$			185	mA
IcC1	Operating Current ${ }^{1}$	$\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \text { lout }=0 \mathrm{~mA}$ All other Inputs $=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} minimum cycle time $=35 \mathrm{~ns}$			170	mA
lcc1	Operating Current ${ }^{1}$	$\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \text { lout }=0 \mathrm{~mA}$ All other Inputs $=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ minimum cycle time $=45 \mathrm{~ns}$			155	mA
Icc1	Operating Current ${ }^{1}$	$\overline{\mathrm{G}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \text { IOUT }=0 \mathrm{~mA}$ All other Inputs $=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} minimum cycle time $=55 \mathrm{~ns}$			155	mA
ISB1	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$		0.1	1	mA
IsB2	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{IH}}$			5	mA
ILI	Input Leakage Current	V IN $=0 \mathrm{~V}$ to VCC	-2		2	$\mu \mathrm{A}$
ILO	I/O Leakage Current	$\mathrm{VIN}=0 \mathrm{~V}$ to VCc	-2		2	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{lOH}=-4.0 \mathrm{~mA}$	2.4			V
VOL	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V
VDR	Data Retention Voltage	$\overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$	2		5.5	V
IDR	Data Retention Current	$\mathrm{Vcc}=3 \mathrm{~V}, \overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$			200	$\mu \mathrm{A}$

NOTE:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open, operating at specified cycle times.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
CIN (Input Capacitance)	6 pF
CDQ (I/O Capacitance)	8 pF

NOTES:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $\mathrm{V}_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{Vcc}=5.0 \mathrm{~V}$.
2. Guaranteed but not tested.

DATA RETENTION TIMING

\bar{E} must be held above the lesser of V_{1} or $\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ to assure proper operation when $\mathrm{Vcc}<4.5 \mathrm{~V}$. $\overline{\mathrm{E}}$ must be $\mathrm{Vcc}-0.2 \mathrm{~V}$ or greater to meet IDR specification. All other inputs are "Don't Care."

Figure 3. Output Load Circuit

Figure 4. Data Retention Timing

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	description	-30		-35		-45		-55		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MaX	
READ CYCLE										
trc	Read Cycle Time	30		35		45		55		ns
tAA	Address Access Time		30		35		45		55	ns
tor	Output Hold from Address Change	5		5		5		5		ns
tea	\bar{E} Low to Valid Data		30		35		45		55	ns
telz	$\overline{\text { E Low to Output Active }}$ 2,3	3		3		3		3		ns
tehz	$\overline{\text { E High to Output High-Z }}$, ${ }^{\text {a }}$		10		15		20		25	ns
tGA	$\overline{\mathrm{G}}$ Low to Valid Data		10		15		20		25	ns
talz	$\overline{\mathrm{G}}$ Low to Output Active ${ }^{2,3}$	3		3		3		3		ns
tghz	$\overline{\mathrm{G}}$ High to Output High-Z ${ }^{\text {2,3 }}$		10		15		20		25	ns
tPu	$\overline{\text { E Low to Power Up Time }}{ }^{3}$	0		0		0		0		ns
tPD	E High to Power Down Time ${ }^{3}$		30		35		45		55	ns
WRITE CYCLE										
twc	Write Cycle Time	30		35		45		55		ns
tew	\bar{E} Low to End of Write	25		30		40		50		ns
taw	Address Valid to End of Write	25		30		40		50		ns
tAS	Address Setup	0		0		0		0		ns
taH	Address Hold from \bar{W} High	0		0		0		0		ns
twp	$\overline{\text { W }}$ Pulse Width	20		20		25		25		ns
tow	Input Data Setup Time	13		15		20		25		ns
tDH	Input Data Hold Time	0		0		0		0		ns
twhz	$\overline{\text { W Low to Output High-Z }}$ 2,3		13		15		15		15	ns
twLz	$\overline{\text { W }}$ High to Output Active ${ }^{2,3}$	0		0		0		0		ns

NOTES:

1. AC Electrical Characteristics specified at "AC Test Conditions" levels.
2. Active output to High- Z and High- Z to output active tests specified for $a \pm 200 \mathrm{mV}$ transition from steady state levels into the test load.
3. Guaranteed but not tested.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: \bar{W} is HIGH, \bar{E} is LOW and \bar{G} is LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of Data Out implies that data lines are in the Low-Z state but the data is not guaranteed to be valid until tAA.

Read Cycle No. 2

Chip is in Read Mode: \bar{W} is HIGH. Timing illustrated for the case when addresses are valid before \bar{E} goes LOW. Data Out is not specified to be valid until teA or tga, but may become valid as soon as tELZ or tglz. Outputs will transition directly from High-Z to Valid Data Out. Valid data will be present following tGA only if teA timing is met.

Figure 5. Read Cycle No. 1

Figure 6. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write cycles. The outputs will remain in the High-Z state if \bar{W} is LOW when \bar{E} goes LOW. If $\overline{\mathrm{G}}$ is HIGH, the outputs will remain in the High-Z state. Although these examples illustrate timing with $\overline{\mathrm{G}}$ active, it is recommended that $\overline{\mathrm{G}}$ be held HIGH for all Write cycles. This will prevent the LH52258's outputs from becoming active, preventing bus contention, thereby reducing system noise.

Write Cycle No. 1 (W Controlled)

Chip is selected: $\overline{\mathrm{E}}$ is LOW, $\overline{\mathrm{G}}$ is LOW. Using only $\overline{\mathrm{W}}$ to control Write cycles may not offer the best performance since both twhz and tDw timing specifications must be met.

Write Cycle No. 2 (E Controlled)
\bar{G} is LOW. DQ lines may transition to Low-Zif the falling edge of \bar{W} occurs after the falling edge of $\overline{\mathrm{E}}$.

Figure 7. Write Cycle No. 1

Figure 8. Write Cycle No. 2

ORDERING INFORMATION

Example: LH52258K-35 (CMOS 32K x 8 Static RAM, $35 \mathrm{~ns}, 28$-pin, 300 -mil SOJ)

FEATURES

- Fast Access Times: $15 * / 20 / 25 / 30 \mathrm{~ns}$
- JEDEC Standard Pinout
- Space Saving 28 -Pin, 300-mil DIP
- High Density 28-Pin, 300-mil SOJ
- Low Power Standby when Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation

FUNCTIONAL DESCRIPTION

The LH52258A is a high-speed 262,144 bit static RAM organized as $32 \mathrm{~K} \times 8$. A fast, efficient design is obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells.

This RAM is fully static in operation. The Chip Enable $(\overline{\mathrm{E}})$ control permits Read and Write operations when active (LOW) or places the RAM in a low-power standby mode when inactive (HIGH). Standby power (IsB1) drops to its lowest level if \bar{E} is raised to within 0.2 V of $\mathrm{V} c \mathrm{c}$.

Write cycles occur when both Chip Enable (\bar{E}) and Write Enable (\bar{W}) are LOW. Data is transferred from the DQ pins to the memory location specified by the 15 address lines. The proper use of the Output Enable control $(\overline{\mathrm{G}})$ can prevent bus contention.

When \bar{E} is LOW and \bar{W} is HIGH, a static Read will occur at the memory location specified by the address lines. $\overline{\mathrm{G}}$ must be brought LOW to enable the outputs. Since the device is fully static in operation, new Read cycles can be performed by simply changing the address.

High-frequency design techniques should be employed to obtain the best performance from this device. Solid, low-impedance power and ground planes, with high-frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

28-PIN DIP		
28-PIN SOJ		
	$A_{14} \square 1$	28
	$A_{12} \square V_{C C}$	
	$A_{7} \square 3$	27

Figure 1. Pin Connections for DIP and SOJ Packages

[^1]

52258A-2
Figure 2. LH52258A Block Diagram

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{W}}$	MODE	DQ	Icc
H	X	X	Not Selected	High-Z	Standby
L	H	H	Selected	High-Z	Active
L	L	H	Read	Data Out	Active
L	X	L	Write	Data In	Active

PIN	DESCRIPTION
$A_{0}-A_{14}$	Address Inputs
DQo - DQ7 $_{3}$	Data Inputs/Outputs
\bar{E}	Chip Enable
\bar{G}	Output Enable
\bar{W}	Write Enable
$V_{c c}$	Positive Power Supply
$V_{s s}$	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to VSs Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	-65° to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Input Voltage ${ }^{1}$	-0.5		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V

NOTE:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Icc1	Operating Current ${ }^{1}$	$\begin{aligned} & \hline \mathrm{tRC}=15 \mathrm{~ns}^{2} \\ & \bar{G} \geq V_{I H}, \bar{E} \leq V_{I L}, \text { lout }=0 \mathrm{~mA}, \\ & \mathrm{t} C Y C L E=15 \mathrm{~ns} \end{aligned}$			165	mA
IcC1	Operating Current ${ }^{1}$	$\begin{aligned} & \mathrm{tRC}=20 \mathrm{~ns} \\ & \frac{\mathrm{G}}{\mathrm{G}} \geq \mathrm{V}_{\mathrm{IH},} \overline{\mathrm{E}} \leq \mathrm{V}_{\mathrm{IL}}, \text { lout }=0 \mathrm{~mA}, \\ & \mathrm{t} \subset \mathrm{YCLE}=20 \mathrm{~ns} \end{aligned}$			150	mA
ICC1	Operating Current ${ }^{1}$	$\begin{aligned} & \mathrm{tRC}=25 \mathrm{~ns} \\ & \overline{\mathrm{G}} \geq \mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{E}} \leq \mathrm{V}_{\mathrm{IL}}, \text { lout }=0 \mathrm{~mA}, \\ & \mathrm{t} C Y C L E=25 \mathrm{~ns} \end{aligned}$			140	mA
Icc1	Operating Current ${ }^{1}$	$\begin{aligned} & \mathrm{tRC}=30 \mathrm{~ns} \\ & \bar{G} \geq V_{\mathrm{IH}}, \overline{\mathrm{E}} \leq \mathrm{V}_{\mathrm{VL}}, \text { lout }=0 \mathrm{~mA}, \\ & \mathrm{t} C Y C L E=30 \mathrm{~ns} \end{aligned}$			130	mA
ISB1	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$		0.1	1	mA
ISB2	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{H}}$			15	mA
lıI	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to VCC	-2		2	$\mu \mathrm{A}$
ILO	I/O Leakage Current	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}$ to Vcc	-2		2	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{lOH}=-4.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	$\mathrm{loL}=8.0 \mathrm{~m} \mathrm{~A}$			0.4	V
V ${ }_{\text {DR }}$	Data Retention Voltage	$\bar{E} \geq V_{c c}-0.2 \mathrm{~V}$	2		5.5	V
IDR	Data Retention Current	$\mathrm{Vcc}=3 \mathrm{~V}, \overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$			200	$\mu \mathrm{A}$

NOTES:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open, operating at specified cycle times.
2. Note: only the 15 ns access time part is Advance Information.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times	3 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{1,2}$

PARAMETER	RATING
CIN (Input Capacitance)	6 pF
CDQ (I/O Capacitance)	8 pF

NOTES:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $V_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$.
2. Guaranteed but not tested.

DATA RETENTION TIMING

$\overline{\mathrm{E}}$ must be held above the lesser of V_{IH} or $\mathrm{Vcc}-0.2 \mathrm{~V}$ to prevent improper operation when Vcc $<4.5 \mathrm{~V}$. $\overline{\mathrm{E}}$ must be $\mathrm{Vcc}-0.2 \mathrm{~V}$ or greater to meet IDR specification. All other inputs are "Don't Care."

Figure 3. Output Load Circuit

Figure 4. Data Retention Timing

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-15^{4}		-20		-25		-30		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
READ CYCLE										
trc	Read Cycle Time	15		20		25		30		ns
tAA	Address Access Time		15		20		25		30	ns
tor	Output Hold from Address Change	4		4		4		5		ns
tea	\bar{E} Low to Valid Data		15		20		25		30	ns
telz	$\overline{\text { E Low to Output Active }}$ 2,3	4		4		4		3		ns
tehz	$\overline{\text { E High to Output High-Z }}$ 2,3	0	8	0	10	0	12		12	ns
tGA	$\overline{\mathrm{G}}$ Low to Valid Data		8		10		12		12	ns
tglz	$\overline{\mathrm{G}}$ Low to Output Active ${ }^{2,3}$	0		0		0		3		ns
taHz	$\overline{\mathbf{G}}$ High to Output High-Z ${ }^{\text {2,3 }}$	0	7	0	9	0	10		10	ns
tPu	E Low to Power Up Time ${ }^{3}$	0		0		0		0		ns
tPD	\bar{E} High to Power Down Time		20		25		30		30	ns
WRITE CYCLE										
twc	Write Cycle Time	15		20		25		30		ns
tew	E Low to End of Write	12		15		20		25		ns
taw	Address Valid to End of Write	12		15		20		25		ns
tas	Address Setup	0		0		0		0		ns
$t_{\text {AH }}$	Address Hold from \bar{W} High	0		0		0		0		ns
twp	$\overline{\text { W Pulse Width }}$	10		12		15		20		ns
tDw	Input Data Setup Time	8		10		12		13		ns
tDH	Input Data Hold Time	0		0		0		0		ns
twhz	$\overline{\text { W }}$ Low to Output High-Z ${ }^{\text {2,3 }}$		6		8		10		13	ns
twLz	\bar{W} High to Output Active ${ }^{2,3}$	0		0		0		0		ns

NOTES:

1. AC Electrical Characteristics specified at "AC Test Conditions" levels.
2. Active output to High-Z and High-Z to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. The test load has 5 pF capacitances.
3. Guaranteed by design but not tested.
4. Note: only the 15 ns access time part is Advance Information.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: \bar{W} is HIGH, \bar{E} is LOW and \bar{G} is LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of Data Out implies that data lines are in the Low-Z state but the data is not guaranteed to be valid until tAA.

Read Cycle No. 2

Chip is in Read Mode: $\overline{\text { W }}$ is HIGH. Timing illustrated for the case when addresses are valid before \bar{E} goes LOW. Data Out is not specified to be valid until tEA or tga, but may become valid as soon as telz or tglz. Outputs will fransition from High-Z to Valid Data Out. Valid data will be present following tGA only if tEA timing is met.

Figure 5. Read Cycle No. 1

Figure 6. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write cycles. The outputs will remain in the High-Z state if \bar{W} is LOW when \bar{E} goes LOW. If \bar{G} is HIGH, the outputs will remain in the High-Z state. Although these examples illustrate timing with \bar{G} active, it is recommended that \bar{G} be held HIGH for all Write cycles. This will prevent the LH52258A's outputs frombecoming active, preventing bus contention, thereby reducing system noise.

Write Cycle No. 1 (\bar{W} Controlled)

Chip is selected: $\overline{\mathrm{E}}$ is LOW, $\overline{\mathrm{G}}$ is LOW. Using only $\overline{\mathrm{W}}$ to control Write cycles may not offer the best performance since both twhz and tow timing specifications must be met.

Write Cycle No. 2 (E Controlled)

\bar{G} is LOW. DQ lines may transitionto Low-Z if the falling edge of \bar{W} occurs after the falling edge of \bar{E}.

Figure 7. Write Cycle No. 1

Figure 8. Write Cycle No. 2

ORDERING INFORMATION

FEATURES

- Fast Access Times: 20 */25/35 ns
- High Density 28-Pin, 400-mil SOJ
- JEDEC Standard Pinouts
- Low Power Standby when Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation
- Common I/O for Low Pin Count
- 2 V Data Retention

FUNCTIONAL DESCRIPTION

The LH521002 is a high speed $1,048,576$-bit static RAM organized as $256 \mathrm{~K} \times 4$. A fast, efficient design is obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells.

This RAM is fully static in operation. The Chip Enable ($\overline{\mathrm{E}})$ reduces power to the chip when $\overline{\mathrm{E}}$ is HIGH. Standby power drops to its lowest level (ISB1) when $\overline{\mathrm{E}}$ is raised to within 0.2 V of Vcc .

Write cycles occur when both ($\overline{\mathrm{E}}$) and Write Enable ($\overline{\mathrm{W}}$) are LOW. Data is transferred from the DQ pins to the memory location specified by the 18 address lines.

Read cycles occur when $\overline{\mathrm{E}}$ is LOW and $\overline{\mathrm{W}}$ is HIGH. A Read cycle will begin upon an address transition, on a falling edge of \bar{E}, or on a rising edge of \bar{W}.

High frequency design techniques should be employed to obtain the best performance from this device. Solid, low-impedance power and ground planes, with high frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

28-PIN SOJ				TOP VIEW
	$A_{0} \square^{10}$	28	$\square v_{c c}$	
	$\mathrm{A}_{1} \square_{2}$	27	- A_{17}	
	$A_{2} \square^{3}$	26	$\square A_{16}$	
	$\mathrm{A}_{3} \square_{4}$	25	$\square A_{15}$	
	$\mathrm{A}_{4} \square_{5}$	24	$\square A_{14}$	
	$A_{5} \square_{6}$	23	$\square A_{13}$	
	$A_{6} \square_{7}$	22	$\square A_{12}$	
	$\mathrm{A}_{7} \mathrm{C}_{8}$	21	$\square A_{11}$	
	$\mathrm{A}_{8}-9$	20	$\square \mathrm{NC}$	
	$\mathrm{A}_{9} \mathrm{C}_{10}$	19	$\square \mathrm{DQ}_{3}$	
	$\mathrm{A}_{10}-11$	18	$\square \mathrm{DQ}_{2}$	
	$\overline{\mathrm{E}}$-12	17	$\square D Q_{1}$	
	G \square_{13}	16	$\square \mathrm{DQ}_{0}$	
	$v_{\text {ss }} L_{14}$	15	$\square \bar{W}$	

Figure 1. Pin Connections for SOJ Package

[^2]

Figure 2. LH521002 Block Diagram

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{w}}$	MODE	DQ	Icc
H	X	X	Standby	High-Z	Standby
L	H	H	Selected	High-Z	Active
L	L	H	Read	Data Out	Active
L	X	L	Write	Data In	Active

NOTE:
$\mathrm{X}=$ Don't Care, L L LOW, $\mathrm{H}=\mathrm{HIGH}$

PIN DESCRIPTIONS

PIN	DESCRIPTION
$\mathrm{A}_{0}-\mathrm{A}_{17}$	Address Inputs
$\mathrm{DQ}_{0}-\mathrm{DQ}_{3}$	Data Inputs/Outputs
$\overline{\mathrm{E}}$	Chip Enable input
$\overline{\mathrm{W}}$	Write Enable input
$\overline{\mathrm{G}}$	Output Enable input
VCC	Positive Power Supply
$\mathrm{V}_{\text {SS }}$	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to VSS Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to VCC +0.5 V
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5		5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0		0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Input Voltage 1,2	-0.5		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage 2	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V

NOTES:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.
2. See Applications Note "Input/Output Level Testing" for test considerations.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
lcc1	Operating Current ${ }^{1}$	$\begin{aligned} & \text { tCYCLE }=20 \text { ns }^{2} \\ & \bar{E}=V_{I L}, \bar{W}=V_{I L} \text { or } V_{I H} \end{aligned}$			180	mA
Icc1	Operating Current ${ }^{1}$	$\begin{aligned} & \mathrm{t} \text { CYCLE }=25 \mathrm{~ns} \\ & \bar{E}=V_{I L}, \bar{W}=V_{I L} \text { or } V_{I H} \end{aligned}$			180	mA
IcC1	Operating Current ${ }^{1}$	$\begin{aligned} & \text { tCYCLE }=35 \mathrm{~ns} \\ & \overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IL}}, \bar{W}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \end{aligned}$			150	mA
ISB1	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$		0.4	2	mA
ISB2	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{IH}}$			20	mA
lıI	Input Leakage Current	$\mathrm{VIN}=0 \mathrm{~V}$ to Vcc	-2		2	$\mu \mathrm{A}$
ILO	I/O Leakage Current	$\mathrm{VIN}=0 \mathrm{~V}$ to V_{Cc}	-2		2	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}$	2.4			V
VOL	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V
VDR	Data Retention Voltage	$\bar{E} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$	2		5.5	V
IDR	Data Retention Current	$\mathrm{Vcc}=3 \mathrm{~V}, \overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$			500	$\mu \mathrm{A}$

NOTE:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open.
2. Note: only the 20 ns access time part is Advance Information.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	VSs to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{1,2}$

PARAMETER	RATING
CIN (Input Capacitance) $^{6} \mathbf{6 \mathrm { pF }}$	
C_{DQ} (I/O Capacitance)	8 pF

NOTES:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $\mathrm{V}_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$.
2. This parameter is sampled and not production tested.

DATA RETENTION TIMING

$\overline{\mathrm{E}}$ must be held above the lesser of V_{H} or $\mathrm{VCC}-0.2 \mathrm{~V}$ to assure proper operation when $\mathrm{Vcc}<4.5 \mathrm{~V}$. E must be V Cc -0.2 V or greater to meet IDR specification. All other inputs are "Don't Care."

Figure 4. Data Retention Timing

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-20		-25		-35		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
READ CYCLE								
trc	Read Cycle Timing	20		25		35		ns
tAA	Address Access Time		20		25		35	ns
toh	Output Hold from Address Change	3		3		3		ns
tea	\bar{E} Low to Valid Data		20		25		35	ns
telz	E Low to Output Active ${ }^{2,3}$	3		3		3		ns
tehz	$\overline{\text { E High to Output High-Z }}$ 2,3		10		12		20	ns
tga	$\overline{\mathrm{G}}$ Low to Valid Data		8		10		20	ns
tGLz	$\overline{\mathrm{G}}$ Low to Output Active ${ }^{2,3}$	0		0		0		ns
tahz	$\overline{\mathrm{G}}$ High to Output High-Z ${ }^{\text {2,3 }}$		8		10		20	ns
tPu	$\overline{\text { E Low to Power Up Time }}{ }^{3}$	0		0		0		ns
tPD			20		25		35	ns
WRITE CYCLE								
twc	Write Cycle Time	20		25		35		ns
tew	E Low to End of Write	15		20		30		ns
taw	Address Valid to End of Write	15		20		30		ns
tAS	Address Setup	0		0		0		ns
$\mathrm{taH}^{\text {A }}$	Address Hold from \bar{W} High	0		0		0		ns
twp	\bar{W} Pulse Width	15		20		25		ns
tow	Input Data Setup Time	12		15		15		ns
tDH	Input Data Hold Time	0		0		0		
twhz	W Low to Output High-Z ${ }^{\text {2,3 }}$		8		10		15	ns
twLz	$\overline{\mathrm{W}}$ High to Output Active ${ }^{2,3}$	3		3		3		ns

NOTES:

1. $A C$ Electrical Characteristics specified at "AC Test Conditions" levels.
2. Active output to High-Z and High-Z to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. $C_{\text {Load }}=5 \mathrm{pF}$.
3. Guaranteed but not tested.
4. Note: only the 20 ns access time part is Advance Information.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: \bar{W} is HIGH, \bar{E} and \bar{G} are LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Following an Address transition, Data Out is guaranteed valid at taA.

Read Cycle No. 2

Chip is in Read Mode: \bar{W} is HIGH. Timing illustrated for the case when addresses are valid while E goes LOW. Data Out is not specified to be valid until tEA, but may become valid as soon as telz. Outputs will transition from High-Z to Valid Data Out. Data Out is valid after both tea and tga are met.

Figure 5. Read Cycle No. 1

Figure 6. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write cycles. \bar{E} or \bar{W} must be HIGH during address transitions. The outputs will remain in the High-Z state if \bar{W} is LOW when E goes LOW. Care should be taken so that the output drivers are disabled prior to placing the Input Data on the DQ lines. This will prevent bus contention, reducing system noise.

Write Cycle No. 1 (W Controlled)

Chip is selected: \bar{E} and \bar{G} are LOW. Using only \bar{W} to control Write cycles may not offer the best device performance, since both twhz and tDw timing specifications must be met.

Write Cycle No. 2 (E Controlled)

\bar{G} is LOW. DQ lines may transition to Low-Z if the falling edge of \bar{W} occurs after the falling edge of \bar{E}.

521002-7
Figure 7. Write Cycle No. 1

Figure 8. Write Cycle No. 2

ORDERING INFORMATION

FEATURES

- Fast Access Times: $20 * / 25 / 35 \mathrm{~ns}$
- Two Chip Enable Controls
- High Density 32-Pin, 400-mil SOJ
- Low Power Standby When Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation
- 2 V Data Retention

FUNCTIONAL DESCRIPTION

The LH521007 is a high speed $1,048,576$-bit static RAM organized as $128 \mathrm{~K} \times 8$. A fast, efficient design is obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells.

This RAM is fully static in operation. The Chip Enables ($\bar{E}_{1}, \mathrm{E}_{2}$) permit Read and Write operations when active ($\bar{E}_{1}=$ LOW and $E_{2}=H I G H$) or place the RAM in a low-power standby mode when inactive ($\bar{E}_{1}=$ HIGH or $\mathrm{E}_{2}=\mathrm{LOW}$). Standby power drops to its lowest level (ISB1) if \bar{E}_{1} is raised to within 0.2 V of Vcc and E_{2} is lowered to less than 0.2 V .

Write cycles occur when both Chip Enables and Write Enable are active. Data is transferred from the DQ pins to the memory location specified by the 17 address lines. The proper use of the Output Enable control ($\overline{\mathrm{G}}$) can prevent bus contention.

When both Chip Enables are active and \bar{W} is inactive, a static Read will occur at the memory location specified by the address lines. \bar{G} must be brought LOW to enable the outputs. Since the device is fully static in operation, new Read cycles can be performed by simply changing the address.

High frequency design techniques should be employed to obtain the best performance from this device. Solid, low-impedance power and ground planes, with high frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

Figure 1. Pin Connections for SOJ Package

[^3]

521007-2
Figure 2. LH521007 Block Diagram

TRUTH TABLE

$\overline{\mathbf{E}}_{1}$	\mathbf{E}_{2}	$\overline{\mathbf{G}}$	$\overline{\mathbf{w}}$	MODE	DQ	Icc
H	X	X	X	Standby	High-Z	Standby
X	L	X	X	Standby	High-Z	Standby
L	H	H	H	Read	High-Z	Active
L	H	L	H	Read	Data Out	Active
L	H	X	L	Write	Data In	Active

NOTE:
X = Don't Care, L = LOW, H = HIGH

PIN DESCRIPTIONS

PIN	DESCRIPTION
$A_{0}-A_{16}$	Address Inputs
DQ $_{0}-$ DQ7 $_{7}$	Data Inputs/Outputs
$\overline{\mathrm{E}}_{1}, \mathrm{E}_{2}$	Chip Enable input
$\overline{\mathrm{G}}$	Output Enable input
$\overline{\mathrm{W}}$	Write Enable input
VCC	Positive Power Supply
VSS	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to Vss Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\text {SS }}$	Supply Voltage	0	0	0	V
$\mathrm{~V}_{\text {IL }}$	Logic "0" Input Voltage 1	-0.5		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage 2	2.2		$\mathrm{VCC}+0.5$	V

NOTE:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
lcc1	Operating Current ${ }^{1}$	tCYCLE $=20 \mathrm{~ns}^{2}$				mA
Icc1	Operating Current ${ }^{1}$	tCYCLE $=25 \mathrm{~ns}$				mA
Icc1	Operating Current ${ }^{1}$	tCYCLE $=35 \mathrm{~ns}$				mA
ISB1	Standby Current	$\begin{aligned} & \bar{E}_{1} \geq V_{c c}-0.2 \mathrm{~V}^{2}, \mathrm{E}_{2} \leq 0.2 \mathrm{~V}, \\ & \mathrm{Vcc}-0.2 \mathrm{~V} \leq \text { All other inputs } \leq 0.2 \mathrm{~V} \end{aligned}$				mA
ISB2	Standby Current	$\bar{E}_{1} \geq V_{\text {IH }}{ }^{2}$ or $\mathrm{E}_{2} \leq \mathrm{V}_{\mathrm{IL}}$				mA
ILI	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	-2		2	$\mu \mathrm{A}$
ILO	I/O Leakage Current	V IN $=0 \mathrm{~V}$ to VCC	-2		2	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{lOH}=-4.0 \mathrm{~mA}$	2.4			V
VOL	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V
VDR	Data Retention Voltage	$\bar{E}_{1} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$ and $\mathrm{E}_{2} \leq 0.2 \mathrm{~V}$	2		5.5	V
IDR	Data Retention Current	$\mathrm{Vcc}=3 \mathrm{~V}, \bar{E}_{1} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$ and $\mathrm{E}_{2} \leq 0.2 \mathrm{~V}$			500	$\mu \mathrm{A}$

NOTES:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open.
2. Note: only the 20 ns access time part is Advance Information.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	VSs to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
$C_{\text {IN }}$ (Input Capacitance)	6 pF
C_{DQ} (//O Capacitance)	8 pF

NOTES:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $\mathrm{V}_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{VcC}=5.0 \mathrm{~V}$.
2. Sample tested only.

DATA RETENTION TIMING

\bar{E}_{1} must be held above the lesser of V_{IH} or $\mathrm{VCc}_{\mathrm{C}}-0.2 \mathrm{~V}$ to assure proper operation when $\mathrm{Vcc}<4.5 \mathrm{~V}$. \bar{E}_{1} must be V cc -0.2 V or greater and E_{2} must be $\leq 0.2 \mathrm{~V}$ to meet IDR specification. All other inputs are "Don't Care."

Figure 3. Output Load Circuit

AC ELECTRICAL CHARACTERISTICS ${ }^{\mathbf{1}}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-20^{5}		-25		-35		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
READ CYCLE								
trc	Read Cycle Timing	20		25		35		ns
$t_{\text {AA }}$	Address Access Time		20		25		35	ns
toh	Output Hold from Address Change	3		3		3		ns
tea	\bar{E} Low to Valid Data		20		25		35	ns
tELZ	$\overline{\mathrm{E}}$ Low to Output Active ${ }^{2,3}$	3		3		3		ns
tehz	$\overline{\text { E }}$ High to Output High-Z ${ }^{2,3}$		10		12		20	ns
tga	$\overline{\mathrm{G}}$ Low to Valid Data		8		10		20	ns
tGLZ	$\overline{\mathrm{G}}$ Low to Output Active ${ }^{2,3}$	0		0		0		ns
tGHZ	$\overline{\mathbf{G}}$ High to Output High-Z ${ }^{2,3}$		8		10		20	ns
tpu		0		0		0		ns
tPD	$\overline{\mathrm{E}}$ High to Power Down Time ${ }^{4}$		20		25		35	ns
WRITE CYCLE								
twc	Write Cycle Time	20		25		35		ns
tew	\bar{E} Low to End of Write	15		20		30		ns
taw	Address Valid to End of Write	15		20		30		ns
tAS	Address Setup	0		0		0		ns
$\mathrm{taH}^{\text {A }}$	Address Hold from \bar{W} High	0		0		0		ns
twP	\bar{W} Pulse Width	15		20		25		ns
tDW	Input Data Setup Time	10		12		15		ns
tDH	Input Data Hold Time	0		0		0		ns
tWHZ	\bar{W} Low to Output High-Z ${ }^{2,3}$		8		10		15	ns
tWLZ	$\overline{\text { W }}$ High to Output Active ${ }^{2,3}$	3		3		3		ns

NOTES:

1. AC Electrical Characteristics specified at "AC Test Conditions" levels.
2. Active output to High- Z and High- Z to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. $\mathrm{C}_{\text {Load }}=5 \mathrm{pF}$.
3. Sample tested only.
4. Guaranteed but not tested.
5. Note: only the 20 ns access time part is Advance Information.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: \bar{W} and E_{2} are HIGH, \bar{E}_{1} and \bar{G} are LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of Data Out implies that data lines are in the Low-Z state but the data is not guaranteed to be valid until tAA.

Read Cycle No. 2

Chip is in Read Mode: $\overline{\text { W }}$ is HIGH. Timing illustrated for the case when addresses are valid before \bar{E}_{1} and E_{2} are both active. Data Out is not specified to be valid until teA or tga, but may become valid as soon as telz or tglz. Outputs will transition directly from High-Z to Valid Data Out. Valid data will be present following tgA only if tEA timing is met.

Figure 5. Read Cycle No. 1

Figure 6. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write cycles. The outputs will remain in the High-Z state if $\overline{\mathrm{W}}$ is LOW when both \bar{E}_{1} and E_{2} are active. If \bar{G} is HIGH, the outputs will remain in the High-Z state. Although these examples illustrate timing with $\overline{\mathrm{G}}$ active, it is recommended that $\overline{\mathbf{G}}$ be held HIGH for all Write cycles. This will prevent outputs frombecoming active, preventing bus contention, thereby reducing system noise.

Write Cycle No. 1 (W Controlled)
Chip is selected: \bar{E}_{1} and \bar{G} are LOW, E_{2} is HIGH. Using only \bar{W} to control Write cycles may not offer the best performance since both twHz and tDw timing specifications must be met.

Write Cycle No. 2 (E Controlled)

\bar{G} is LOW. DQ lines may transition to Low-Z if the falling edge of \bar{W} occurs after the falling edge of \bar{E}.

Figure 7. Write Cycle No. 1

Figure 8. Write Cycle No. 2

ORDERING INFORMATION

LH521007	K	-\#\#	
Device Type	Package	$\overline{\text { Speed }}$ L	
			$\left\{\begin{array}{l}20^{*} \\ 25 \\ 35\end{array}\right.$ Access Time (ns)
			32-pin, 400-mil SOJ (SOJ32-P-400)
			- CMOS 128K $\times 8$ Static RAM
20 ns access ti	rt is Advan	ormation	
H521007K-25	S 128K x	c RAM,	ns, 32-pin, 400-mil SOJ)

FEATURES

- Fast Access Times: 20/25/35 ns
- JEDEC Standard Pinout
- High Density 32-Pin, 400-mil SOJ Package
- Low Power Standby when Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation
- 2 V Data Retention

FUNCTIONAL DESCRIPTION

The LH521008 is a high speed $1,048,576$-bit static RAM organized as $128 \mathrm{~K} \times 8$. A fast, efficient design is obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells.

This RAM is fully static in operation. The Chip Enable (\bar{E}) control permits Read and Write operations when active (LOW) or places the RAM in a low-power standby mode when inactive (HIGH). Standby power drops to its lowest level (ISB1) if \bar{E} is raised to within 0.2 V of Vcc .

Write cycles occur when both Chip Enable ($\overline{\mathrm{E}}$) and Write Enable ($\overline{\mathrm{W}}$) are LOW. Data is transferred from the DQ pins to the memory location specified by the 17 address lines. The proper use of the Output Enable control (\bar{G}) can prevent bus contention.

When \bar{E} is LOW and \bar{W} is HIGH, a static Read will occur at the memory location specified by the address lines. $\overline{\mathrm{G}}$ must be brought LOW to enable the outputs. Since the device is fully static in operation, new Read cycles can be performed by simply changing the address.

High frequency design techniques should be employed to obtain the best performance from this device. Solid, low-impedance power and ground planes, with high frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

32-PIN SOJ				TOP VIEW
	NC \square°	32	$\mathrm{v}_{\text {cc }}$	
	$\mathrm{A}_{0} \mathrm{C}_{2}$	31	A_{16}	
	$A_{1} \square^{3}$	30	$\square \mathrm{NC}$	
	$\mathrm{A}_{2} \mathrm{C}_{4}$	29	$\overline{\text { w }}$	
	$\mathrm{A}_{3} \square_{5}$	28	A_{15}	
	$\mathrm{A}_{4} \square_{6}$	27	A_{14}	
	$A_{5} \square_{7}$	26	A_{13}	
	$\mathrm{A}_{6} \square_{8}$	25	A_{12}	
	$\mathrm{A}_{7} \mathrm{C}^{9}$	24	$\square^{\bar{G}}$	
	$\mathrm{A}_{8}-10$	23	A_{11}	
	$\mathrm{A}_{9}-11$	22	曰 $\overline{\mathrm{E}}$	
	$\mathrm{A}_{10}-12$	21	$\mathrm{D}^{\text {D }}$	
	$\mathrm{DQ}_{0} \mathrm{C}_{1}^{13}$	20	DO_{6}	
	$\mathrm{DQ}_{1}-14$	19	$\square^{\square} Q_{5}$	
	$\mathrm{DQ}_{2} \square_{15}$	18	$\square \mathrm{DQ}_{4}$	
	$\mathrm{v}_{\text {ss }} \square_{16}$	17	$\square \mathrm{DQ}_{3}$	

Figure 1. Pin Connections for SOJ Package

Figure 2. LH521008 Block Diagram

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{W}}$	MODE	DQ	Icc
H	X	X	Standby	High-Z	Standby
L	H	H	Read	High-Z	Active
L	L	H	Read	Data Out	Active
L	X	L	Write	Data In	Active

NOTE:

X = Don't Care, L= LOW, H = HIGH

PIN DESCRIPTIONS

PIN	DESCRIPTION
$A_{0}-A_{16}$	Address Inputs
DQ $_{0}-\mathrm{DQ}_{7}$	Data Inputs/Outputs
$\overline{\mathrm{E}}$	Chip Enable input
$\overline{\mathrm{G}}$	Output Enable input
$\overline{\mathrm{W}}$	Write Enable input
V_{C}	Positive Power Supply
Vss	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to VSS Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\text {SS }}$	Supply Voltage	0	0	0	V
$\mathrm{~V}_{\text {IL }}$	Logic "0" Input Voltage 1,2	-0.5		0.8	V
$\mathrm{~V}_{\text {IH }}$	Logic "1" Input Voltage 2	2.2		$\mathrm{VCC}_{\mathrm{C}}+0.5$	V

NOTES:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.
2. See Applications Note "Input/Output Level Testing" for test considerations.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IcC1	Operating Current ${ }^{1}$	$\begin{aligned} & \text { tCYCLE }=20 \mathrm{~ns} \\ & \bar{E}=V_{I L}, \bar{W}=V_{I L} \text { or } V_{I H} \end{aligned}$			180	mA
Icci	Operating Current ${ }^{1}$	$\begin{aligned} & \text { tCYCLE }=25 \mathrm{~ns} \\ & \bar{E}=V_{I L}, \bar{W}=V_{I L} \text { or } V_{I H} \end{aligned}$			180	mA
ICC1	Operating Current ${ }^{1}$	$\begin{aligned} & \text { tCYCLE }=35 \mathrm{~ns} \\ & \bar{E}=V_{I L}, \bar{W}=V_{I L} \text { or } V_{I H} \end{aligned}$			150	mA
ISB1	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$		0.4	2	mA
ISB2	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{IH}}$			20	mA
lıI	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to VCC	-2		2	$\mu \mathrm{A}$
ILO	I/O Leakage Current	$\mathrm{VIN}=0 \mathrm{~V}$ to VCC	-2		2	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V
VDR	Data Retention Voltage	$\bar{E} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$	2		5.5	V
IDR	Data Retention Current	$\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{E} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$			500	$\mu \mathrm{A}$

NOTE:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
C_{IN} (Input Capacitance)	6 pF
C_{DQ} (I/O Capacitance)	8 pF

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $V_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{Vcc}_{\mathrm{c}}=5.0 \mathrm{~V}$.
2. Guaranteed but not tested.

DATA RETENTION TIMING

E must be held above the lesser of $\mathrm{VIH}_{\mathrm{H}}$ or $\mathrm{VCc}-0.2 \mathrm{~V}$ to assure proper operation when $\mathrm{Vcc}<4.5 \mathrm{~V}$. E must be $\mathrm{Vcc}-0.2 \mathrm{~V}$ or greater to meet IDR specification. All other inputs are "Don't Care."

Figure 3. Output Load Circult

Figure 4. Data Retention Timing

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-20		-25		-35		UNITS
		MIN	MAX	MIN	max	MIN	MAX	
READ CYCLE								
trc	Read Cycle Timing	20		25		35		ns
taA	Address Access Time		20		25		35	ns
toh	Output Hold from Address Change	3		3		3		ns
tea	\bar{E} Low to Valid Data		20		25		35	ns
telz	$\overline{\text { E L Low to Output Active }}{ }^{2,3}$	3		3		3		ns
tehz	\bar{E} High to Output High-Z ${ }^{\text {2,3 }}$		10		12		20	ns
tGA	$\overline{\mathrm{G}}$ Low to Valid Data		8		10		20	ns
tglz	$\overline{\mathrm{G}}$ Low to Output Active ${ }^{2,3}$	0		0		0		ns
tGHz	$\overline{\mathrm{G}}$ High to Output High-Z ${ }^{\text {2,3 }}$		8		10		20	ns
tPu	\bar{E} Low to Power Up Time ${ }^{3}$	0		0		0		ns
tPD	$\overline{\text { E High to Power Down Time }}{ }^{3}$		20		25		35	ns
WRITE CYCLE								
twc	Write Cycle Time	20		25		35		ns
tew	E Low to End of Write	15		20		30		ns
taw	Address Valid to End of Write	15		20		30		ns
tas	Address Setup	0		0		0		ns
$\mathrm{taH}^{\text {at }}$	Address Hold from \bar{W} High	0		0		0		ns
twp	$\overline{\text { W Pulse Width }}$	15		20		25		ns
tDw	Input Data Setup Time	12		15		15		ns
tDH	Input Data Hold Time	0		0		0		ns
twhz	\bar{W} Low to Output High-Z ${ }^{\text {2,3 }}$		8		10		15	ns
twLz	$\overline{\mathbf{W}}$ High to Output Active ${ }^{2,3}$	3		3		3		ns

NOTES:

1. AC Electrical Characteristics specified at "AC Test Conditions" levels.
2. Active output to High-Z and High-Z to output active tests specified for a $\pm 500 \mathrm{mV}$ transition from steady state levels into the test load. $C_{\text {Load }}=5 \mathrm{pF}$.
3. Guaranteed but not tested.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: \bar{W} is HIGH, \bar{E} is LOW and \bar{G} is LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of Data Out implies that data lines are in the Low-Z state but the data is not guaranteed to be valid until t tAA.

Read Cycle No. 2

Chip is in Read Mode: \bar{W} is HIGH. Timing illustrated for the case when addresses are valid before \bar{E} goes LOW. Data Out is not specified to be valid until teA or tga, but may become valid as soon as telz or tglz. Outputs will transition directly from High-Z to Valid Data Out. Valid data will be present when both tGA and tEA timing are met.

Figure 5. Read Cycle No. 1

Figure 6. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write cycles. The outputs will remain in the High-Z state if \bar{W} is LOW when $\overline{\mathrm{E}}$ goes LOW. If $\overline{\mathrm{G}}$ is HIGH, the outputs will remain in the High-Z state. Although these examples illustrate timing with \bar{G} active, it is recommended that \bar{G} be held HIGH for all Write cycles. This will prevent the outputs from becoming active, preventing bus contention, thereby reducing system noise.

Write Cycle No. 1 (\bar{W} Controlled)
Chip is selected: $\overline{\mathrm{E}}$ is LOW, $\overline{\mathrm{G}}$ is LOW. Using only $\overline{\mathrm{W}}$ to control Write cycles may not offer the best performance since both twhz and tdw timing specifications must be met.

Write Cycle No. 2 (E Controlled)

$\overline{\mathrm{G}}$ is LOW. DQ lines may transition to Low-Zif the falling edge of \bar{W} occurs after the falling edge of \bar{E}.

Figure 7. Write Cycle No. 1

Figure 8. Write Cycle No. 2

ORDERING INFORMATION

Example: LH521008K-25 (CMOS 128K x 8 Static RAM, $25 \mathrm{~ns}, 32$-pin, 400 -mil SOJ)

FEATURES

- Fast Access Times: 20/25/30/35 ns
- Space Saving 52-Pin PLCC
- JEDEC Standard Pinout
- Wide Word (18-Bits) for:
- Improved Performance
- Reduced Component Count
- Nine-bit Byte for Parity
- Transparent Address Latch
- Reduced Loading on Address Bus
- Low Power Stand-by Mode when Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- 2 V Data Retention

FUNCTIONAL DESCRIPTION

The LH521028 is a high speed $1,179,648$-bit CMOS SRAM organized as $64 \mathrm{~K} \times 18$. A fast, efficient design is obtained with a CMOS periphery and a matrix constructed with polysilicon load memory cells. The LH521028 is available in a compact 52-Pin PLCC, which along with the six pairs of supply terminals, provide for reliable operation.

The control signals include Write Enable ($\overline{\mathrm{W}}$), Chip Enable ($\overline{\mathrm{E}}$), High and Low Byte Select ($\overline{\mathrm{S}}$ L and $\overline{\mathrm{S}}_{\mathrm{H}}$), Output Enable ($\overline{\mathrm{G}}$) and Address Latch Enable (ALE). The wide word provides for reduced component count, improved density, reduced Address bus loading and improved performance. The wide word also allows for byte-parity with no additional RAM required.

This RAM is fully static in operation. The Chip Enable ($\overline{\mathrm{E}}$) control permits Read and Write operations when active (LOW) or places the RAM in a low-power standby mode when inactive (HIGH). The Byte-select controls, \bar{S}_{H} and $\overline{\mathrm{S}}_{\mathrm{L}}$, are also used to enable or disable Read and Write operations on the high and the low bytes. The Address Latches are transparent when ALE is HIGH (for applications not requiring a latch), and are latched when ALE is LOW. The Address Latches and the wide word help to eliminate the need for external Address bus buffers and/or latches.

Write cycles occur when Chip Enable ($\overline{\mathrm{E}}$), $\overline{\mathrm{S}}_{\mathrm{H}}$ and/or \bar{S}_{L}, and Write Enable ($\overline{\mathrm{W}}$) are LOW. The Byte-select signals can be used for Byte-write operations by disabling the other byte during the Write operation. Data is transferred from the DQ pins to the memory location specified by the 16 address lines. The proper use of the Output Enable control ($\overline{\mathrm{G}}$) can prevent bus contention.

When $\overline{\mathrm{E}}$ and either $\bar{S}_{\text {H }}$ or $\overline{\text { S }}$ are LOW and \bar{W} is HIGH, a static Read will occur at the memory location specified by the address lines. \bar{G} must be brought LOW to enable the outputs. Since the device is fully static in operation, new Read cycles can be performed by simply changing the address with ALE HIGH.

PIN CONNECTIONS

Figure 1. Pin Connections for PLCC Package

Figure 2. LH521028 Block Diagram

TRUTH TABLE

ADDRESS	$\overline{\text { E }}$	$\overline{\mathbf{S}}_{\mathrm{H}}$	$\overline{\mathbf{S}}_{\mathbf{L}}$	ALE	$\overline{\mathbf{G}}$	$\overline{\mathbf{w}}$	$\mathrm{DQ}_{\boldsymbol{\sigma}}$ - DQ_{8}	DQ9-DQ ${ }_{17}$	MODE	Icc
Don't Care	H	X	X	H	X	X	High-Z	High-Z	Standby	IsB
Valid	L	L	H	H	L	H	Active	High-Z	Read	$\mathrm{IcC1}$
Valid	L	H	L	H	L	H	High-Z	Active	Read	Icc1
Valid	L	L	L	H	L	H	Active	Active	Read	$\mathrm{IcC1}$
Valid	L	L	L	H	H	H	High-Z	High-Z	Read	Icc1
Don't Care	L	L	L	L	L	H	Data Out	Data Out	Read	Icc1
Valid	L	L	H	H	X	L	Data In	Don't Care	Write, low byte	$\mathrm{IcC1}$
Valid	L	H	L	H	X	L	Don't Care	Data in	Write, high byte	$\mathrm{lcC1}$
Valid	L	L	L	H	X	L	Data In	Data In	Write, both bytes	IcCl
Valid	L	H	H	H	X	L	Don't Care	Don't Care	Write, inhibited	$\mathrm{lcC1}$
Don't Care	L	L	L	L	X	L	Data in	Data In	Write, both bytes	$\mathrm{lcC1}$

NOTE:
$X=$ Don't Care, $L=$ LOW, H = HIGH

PIN DESCRIPTIONS

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	VSS	14	DQ_{13}	27	Vss	40	DQ_{4}
2	Vcc	15	DQ_{14}	28	Vcc	41	DQ_{5}
3	$\overline{\mathrm{S}} \mathrm{L}$	16	Vss	29	A_{8}	42	Vss
4	\bar{S}_{H}	17	Vcc	30	A9	43	Vcc
5	\bar{E}	18	DQ15	31	A_{10}	44	DQ_{6}
6	A_{0}	19	DQ_{16}	32	A_{11}	45	DQ7
7	A_{1}	20	DQ17	33	A_{12}	46	DQ_{8}
8	DQ9	21	A_{2}	34	DQo	47	A_{13}
9	DQ_{10}	22	A_{3}	35	DQ_{1}	48	A_{14}
10	Vcc	23	A_{4}	36	Vcc	49	A_{15}
11	Vss	24	A_{5}	37	Vss	50	$\overline{\mathrm{G}}$
12	DQ_{11}	25	A_{6}	38	DQ_{2}	51	ALE
13	DQ_{12}	26	A_{7}	39	DQ_{3}	52	\bar{W}

PIN DEFINITION

Vcc	Positive Supply Voltage Terminals
Vss	Reference Terminals
A $_{0}$ - A15	Address Bus

The Address bus is decoded to select one 18 -bit word out of the total 64 K words for Read and Write operations.

$\overline{\mathbf{E}} \quad$ Chip Enable Active LOW Input

Chip Enable is used to enable the device for Read and Write operations. When HIGH, both Read and Write operations are disabled and the device is in a reduced power state. When LOW, a Read or Write operation is enabled.

$\overline{\mathbf{W}} \quad$ Write Enable Active LOW Input

Write Enable is used to select either Read or Write operations when the device is enabled. When Write Enable is HIGH and the device is Enabled, a Read operation is selected. When Write Enable is LOW and the device is enabled, a Write operation is selected. A Bytewrite operation is available by using the Byte-select controls.
$\overline{\mathbf{S}}_{\mathrm{H}}, \overline{\mathbf{S}}_{\mathrm{L}} \quad \begin{gathered}\text { Select High } \\ \text { Select Low }\end{gathered} \quad$ Active LOW Inputs
The Select High and Select Low signals, in conjunction with the Chip Enable and Write Enable signals, allow the selection of the individual bytes for Read and Write operations. When High, the Select signal will deselect its byte
and prevent Read or Write operations. When the Select signal is LOW and Chip Enable is LOW, a Read or Write operation is performed at the location determined by the contents of the Address bus. When Chip Enable is HIGH, the Select signals are Don't Care. Select Low ($\overline{\mathrm{S}} \mathrm{L}$) is assigned to $\mathrm{DQ}_{0}-\mathrm{DQ}_{8}$ and Select High ($\overline{\mathrm{S}}_{\mathrm{H}}$) is assigned to DQ_{9} - DQ 17 .

ALE Address Latch Active High Input Enable

The Address Latch Enable signal is used to control the Transparent latches on the Address bus. The Latches are transparent when HIGH and are latched when LOW. If not required, Address Latch Enable may be tied HIGH, leaving the Address bus in a transparent condition.

DQ $\mathbf{0}_{0}$ DQ $\mathbf{1 7}_{17}$ Data Bus Input/Output
$D Q_{0}$ - DQ8 comprise the Low byte, selected by $\overline{\mathrm{S}} \mathrm{L}$, and $D Q_{9}-D Q_{17}$ comprise the High Data byte, selected by $\overline{\mathrm{S}}_{\mathrm{H}}$. The Data Bus is in a high impedance input mode during Write operations and standby. The Data bus is in a low-impedance output mode during Read operations.

$\overline{\mathbf{G}} \quad$ Output Enable Active LOW Input

The Output Enable signal is used to control the output buffers on the Data Input/Output bus. When $\overline{\mathrm{G}}$ is HIGH, all output buffers are forced to a high impedance condition. When $\overline{\mathrm{G}}$ is LOW, the output buffers will become active only during a Read operation (\bar{E} and $\overline{\mathrm{S}}_{\mathrm{H}} / \overline{\mathrm{S}}_{\mathrm{L}}$ are LOW, $\overline{\mathrm{W}}$ is HIGH).

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATNG
VCC to VSS Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	2 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5	5.0	5.5	V
VSS $^{\text {V }}$	Supply Voltage	0	0	0	V
$\mathrm{~V}_{\text {IL }}$	Logic "0" Input Voltage 1	-0.5		0.8	V
$\mathrm{~V}_{\text {IH }}$	Logic "1" Input Voltage	2.2		$\mathrm{~V}_{\mathrm{Cc}}+0.5$	V

NOTE:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	Max	UNIT
$\mathrm{lcC1}$	Operating Current ${ }^{1}$	tCYCLE $=$ minimum			300	mA
ISB1	Standby Current	All Inputs $\geq \mathrm{Vcc}-0.2 \mathrm{~V}, \overline{\mathrm{E}} \geq \mathrm{V}_{\mathrm{IH}}$ $(\mathrm{Vcc}-0.2 \mathrm{~V}) \leq$ All Other Inputs $\leq 0.2 \mathrm{~V}$			4	mA
ISB2	Standby Current	$\overline{\mathrm{E}}=\mathrm{V}_{\mathrm{IH}}$			40	mA
lL	Input Leakage Current	$\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to Vcc	-2		2	$\mu \mathrm{A}$
LLO	I/O Leakage Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to V cc	-2		2	$\mu \mathrm{A}$
V OH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}$	2.4			V
VoL	Output Low Voltage	$\mathrm{loL}=8.0 \mathrm{~mA}$			0.4	V
VDR	Data Retention Voltage	$\overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$ All other inputs $(\mathrm{Vcc}-0.2 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{IN}} \leq(0.2 \mathrm{~V})$	2		5.5	V
IDR	Data Retention Current	$\mathrm{Vcc}=3 \mathrm{~V}, \overline{\mathrm{E}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$ All other inputs $\left(\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{IN}} \leq(0.2 \mathrm{~V})$			500	$\mu \mathrm{A}$

NOTE:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{1,2}$

PARAMETER	RATING
CIN (Input Capacitance) $_{5 \mathrm{pF}} \mathrm{C}$CDQ (I/O Capacitance)	7 pF

NOTES:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $V_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{Vcc}=5.0 \mathrm{~V}$.
2. Guaranteed but not tested.

DATA RETENTION TIMING

\bar{E} must be held above the lesser of V_{H} or $\mathrm{Vcc}-0.2 \mathrm{~V}$ to prevent improper operation when $\mathrm{V}_{\mathrm{cc}}<4.5 \mathrm{~V}$. $\overline{\mathrm{E}}$ must be V cc -0.2 V or greater to meet IDR specification. All other inputs must be held at CMOS input levels (Vcc $0.2 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{IN}} \leq(0.2 \mathrm{~V})$.

Figure 4. Data Retention Timing

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-20		-25		-30		-35		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
READ CYCLE										
trc	Read Cycle Timing	20		25		30		35		ns
t_{AA}	Address Access Time		20		25		30		35	ns
tasL	Address Setup to Latch Enable	1		1		2		2		ns
$\mathrm{t}_{\text {AHL }}$	Address Hold from Latch Enable	4		4		5		5		ns
tlea	Latch Enable to Data Valid		22		27		32		37	ns
tLHM	Latch Enable High Pulse Width	5		6		6		6		ns
toh	Output Hold from Address Change	3		3		3		3		ns
tel	Output Hold from Latch High	3		3		3		3		ns
tea	\bar{E} Low to Valid Data		20		25		30		35	ns
telz	$\overline{\mathrm{E}}$ Low to Output Active ${ }^{2,3}$	3		3		3		3		ns
tEHZ	$\overline{\mathrm{E}}$ High to Output High-Z ${ }^{\text {2,3 }}$		10		12		15		20	ns
tSA	$\overline{\mathrm{S}}$ Low to Valid Data		10		12		15		20	ns
tSLZ	$\overline{\mathrm{S}}$ Low to Output Active ${ }^{2,3}$	2		3		3		3		ns
tSHZ	$\overline{\mathrm{S}}$ High to Output High-Z ${ }^{\text {2,3 }}$		10		12		15		20	ns
tga	$\overline{\mathrm{G}}$ Low to Valid Data		8		10		15		20	ns
tglz	$\overline{\mathrm{G}}$ Low to Output Active ${ }^{2,3}$	0		0		0		0		ns
tGHz	$\overline{\mathrm{G}}$ High to Output High-Z ${ }^{\text {2,3 }}$		8		10		15		20	ns
trcs	Read Setup from \bar{W} High	0		0		0		0		ns
$\mathrm{t}_{\mathrm{RCH}}$	Read Hold from \bar{W} Low	0		0		0		0		ns
tpu	$\overline{\mathrm{E}}$ LOW to Power Up Time ${ }^{3}$	0		0		0		0		ns
tPD	$\overline{\mathrm{E}}$ HIGH to Power Down Time ${ }^{3}$		20		25		30		35	ns
WRITE CYCLE										
twc	Write Cycle Time	20		25		30		35		ns
tew	$\overline{\mathrm{E}}$ Low to End of Write	15		20		25		30		ns
tsw	$\overline{\text { S }}$ LOW to End of Write	15		20		25		30		ns
taw	Address Valid to End of Write	15		20		25		30		ns
$t_{\text {AS }}$	Address Setup to Start of Write	0		0		0		0		ns
$\mathrm{taH}_{\text {A }}$	Address Hold from \bar{W} High	0		0		0		0		ns
tasL	Address Setup to Latch Enable	1		1		2		2		ns
$\mathrm{taHL}^{\text {a }}$	Address Hold from Latch Enable	4		4		5		5		ns
tLHW	Latch Hold from \bar{W} High	0		0		0		0		ns
tLHM	Latch Enable HIGH Pulse Width	5		6		6		6		ns
twp	\bar{W} Pulse Width	15		20		25		30		ns
tDW	Input Data Setup Time	9		10		12		15		ns
tDH	Input Data Hold Time	0		0		0		0		ns
twhz	\bar{W} Low to Output High-Z ${ }^{\text {2,3 }}$		8		10		12		14	ns
twiz	\bar{W} High to Output Active ${ }^{\text {2,3 }}$	3		3		3		3		ns

NOTES:

1. AC Electrical Characteristics specified at " $A C$ Test Conditions" levels.
2. Active output to High-Z and High-Z to output active tests specified for $a \pm 500 \mathrm{mV}$ transition from steady state levels into the test load. $C_{\text {Load }}=5 \mathrm{pF}$.
3. Guaranteed but not tested.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1: (Unlatched Address Controlled Read)

Chip is in Read Mode: ALE is HIGH (transparent mode), \bar{E} and $\overline{\mathrm{G}}$ are LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of Data Out implies that data lines are in the Low-Z state but the data is not guaranteed to be valid until taA.

Read Cycle No. 2: (Unlatched Chip Enable Controlled Read)

Chip is in Read Mode: ALE is HIGH (transparent mode). Read cycle timing is referenced from when \bar{E}, \bar{S}, and $\overline{\mathrm{G}}$ are stable until the first address transition. Crosshatched portion of Data Out implies that data lines are in the Low-Z state but the data is not guaranteed to be valid.

521028-2
Figure 5. Read Cycle No. 1

Figure 6. Read Cycle No. 2

TIMING DIAGRAMS - READ CYCLE (cont'd)

Read Cycle No. 3 (Latched Address Controlled Read)

Chip is in Read Mode: \bar{W} is HIGH, $\bar{E}, \bar{S}_{H}, \bar{S}$ L and \bar{G} are LOW. Both tAA and ILEA must be met before valid data is available. If the address is valid prior to the rising edge of

ALE, then the access time is tLEA. If the address is valid after ALE is HIGH (or if ALE is tied HIGH) then the access time is tAA. Crosshatched portion of Data Out implies that data lines are in the Low-Z state but the data is not guaranteed to be valid until tAA.

Figure 7. Read Cycle No. 3

TIMING DIAGRAMS - READ CYCLE (cont'd)

Read Cycle No. 4

Chip is in Read Mode: Timing illustrated for the case when addresses are valid before E goes LOW. Data Out
is not specified to be valid until tEA, tsA and tGA, but may become active as early as telz, tsLz or tglz.

Figure 8. Read Cycle No. 4

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during unlatched Write cycles. The outputs will remain in the High-Z state if \bar{W} is LOW when \bar{E} and $\bar{S}_{H} / \bar{S} L$ go LOW. If \bar{G} is HIGH, the outputs will remain in the High-Z state. Although these examples illustrate timing with \bar{G} active, it is recommended that $\overline{\mathrm{G}}$ be held HIGH for all Write cycles. This will prevent the LH521028's outputs from becoming active, preventing bus contention, thereby reducing system noise.

Write Cycle No. 1 (Unlatched \bar{W} Controlled Write)
Chip is selected: \bar{E}, \bar{G}, and $\bar{S}_{H} / \bar{S}_{L}$ are LOW, ALE is High. Using only \bar{W} to control Write cycles may not offer the best performance since both twhz and tow timing specifications must be met.

Write Cycle No. 2 ($\bar{E}, \bar{S}_{L}, \bar{S}_{H}$ Controlied Write)

\bar{G} is LOW. DQ lines may transition to Low-Z if the falling edge of \bar{W} occurs after the falling edge of $\bar{E}, \bar{S}_{W} / \bar{S}_{L}$ if \bar{G} is LOW.

$521028-6$
Figure 9. Write Cycle No. 1

Figure 10. Write Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE (cont'd)

Write Cycle No. 3 (Latched \bar{W} Controlled Write)

Chip is selected: $\overline{\mathrm{E}}, \overline{\mathrm{G}}$, and $\overline{\mathrm{S}}_{\mathrm{H}} / \overline{\mathrm{S}}_{\mathrm{L}}$ are LOW.

Write Cycle No. 4 (E Controlled)

\bar{G} is LOW. DQ lines may transition to Low-Z if the falling edge of \bar{W} occurs after the falling edges of \bar{E} and $\overline{\mathrm{S}} \mathrm{H} / \overline{\mathrm{S}}$.

Figure 11. Write Cycle No. 3

Figure 12. Write Cycle No. 4

BYTE OPERATIONS

Figure 13. Byte Read: (\bar{E} is LOW and \bar{W} is HIGH)

Byte Read Description (Figure 13)

To read individual bytes, the device must be enabled (\bar{E} is LOW), \bar{W} must be HIGH, the outputs must be enabled ($\overline{\mathrm{G}}$ is LOW) and the addresses must be either stable or latched with ALE. The above diagram is one example of the byte read capabilities of this device. The example shows two read operations. The first is a read of the high byte of the current memory location and the second is a read of the low byte of the memory location.
(1) At the beginning of the cycle both $\overline{\mathrm{S}}_{\mathrm{L}}$ and $\overline{\mathrm{S}}_{\mathrm{H}}$ are HIGH.
(2) \bar{S}_{H} goes LOW initiating a Read on the upper byte DQH(9-17). \bar{S}_{L} remains HIGH keeping the lower byte DQL(0-8) disabled and in a high-impedance mode.
(3) $\bar{S}_{\text {L goes }}$ LOW activating DQL(0-8). Valid data is available in tsA following $\overline{\mathrm{S}} \mathrm{g}$ going LOW.
(4) When \bar{S}_{H} goes $\mathrm{HIGH}_{,} \mathrm{DQH}_{\mathrm{H}(9-17)}$ remains valid for tshz before returning to a high-impedance condition.
(5) Finally, the Read for the lower byte is terminated by deasserting $\bar{S}_{L}(H / G H)$. DQL(0-8) remains active for tsHz following $\overline{\text { S }}$ going HIGH.

BYTE OPERATIONS (cont'd)

Figure 14. Byte Write: ($\overline{\mathbf{E}}$ is LOW)

Byte Write Description (Figure 14)

To do individual byte-write operations, the device must be enabled (\bar{E} is LOW, \bar{G} is don't care) and addresses must be either stable or latched. The above diagram is one example of the byte-write capabilities of this device. The diagram shows two write operations with unlatched addresses. The first is a write to the low byte of memory location N and the second is a write to the high byte of memory location M .
(1) \bar{W} goes LOW while \bar{S}_{L} and \bar{S}_{H} remain HIGH.
(2) \bar{S}_{L} goes LOW initiating a Write into the bwer byte DQL(0-8) of memory location N. \bar{S}_{H} remains HIGH preventing a Write into the upper byte $\mathrm{DQ}_{\mathrm{L}(9-17)}$ of memory location N .
(3) \bar{S}_{L} now goes HIGH terminating the Write operation on the lower byte of memory location N .
(4) Address N is changed to M.
(5) The Write operation is now initiated on the upper byte $\mathrm{DQH}_{(9-17)}$ by bringing \bar{S}_{H} LOW. \bar{S}_{L} remains HIGH preventing a Write operation from occurring in the lower byte $\mathrm{DQ}_{L(0-8)}$ of memory location $\mathrm{N}+1$.
(6) \bar{S}_{H} now goes HIGH terminating the Write operation on the upper byte of address M .
(7) \bar{W} goes HIGH, ending the Write operation.

ORDERING INFORMATION

FEATURES

- Separate Data In and Data Out
- Reduces Chip Count and Increases Performance
- Fast Access Times: 20/25/35 ns
- Space Saving 32-Pin, 400-mil SOJ
- Low Power Standby When Deselected
- TTL Compatible I/O
- $5 \mathrm{~V} \pm 10 \%$ Supply
- Fully Static Operation

FUNCTIONAL DESCRIPTION

The LH521032 is a high-speed $1,048,576$-bit static RAM organized as $256 \mathrm{~K} \times 4$ with separate Data Input and Output buses.

This RAM is fully static in operation. The Chip Enable (\bar{E}) gates power to the chip when \bar{E} is HIGH. Standby power (ISB1) drops to its lowest level when \bar{E} is raised to within 0.2 V of Vcc.

Write cycles occur when both \bar{E} and Write Enable (\bar{W}) are LOW. Data is transferred from the Data In pins to the memory location specified by the 18 address lines.

Read cycles occur when \bar{E} is LOW and \bar{W} is HIGH. A Read cycle will begin upon an address transition, on a falling edge of $\overline{\mathrm{E}}$, or on a rising edge of $\overline{\mathrm{W}}$. Data will be output on the Data Out pins. The Data Out pins become high-impedance during Write operations, with the contents of the Data In bus flowing-through to the Data Out bus.

High-frequency design techniques should be employed to obtain the best performance from this device. Solid, low-impedance power and ground planes, with high-frequency decoupling capacitors, are recommended. Series termination of the inputs should be considered when transmission line effects occur.

PIN CONNECTIONS

Figure 1. Pin Connections for SOJ Package

521032-2
Figure 2. LH521032 Block Diagram

TRUTH TABLE

$\overline{\mathbf{E}}$	$\overline{\mathbf{W}}$	MODE	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{3}}$	$\boldsymbol{Q}_{\mathbf{0}}-\mathbf{Q}_{\mathbf{3}}$	Icc
H	X	Not Selected	Don't Care	High-Z	Standby
L	H	Read	Don't Care	Data Out	Active
L	L	Write	Data In	High-Z	Active

PIN DESCRIPTIONS

PIN	DESCRIPTION
$A_{0}-A_{17}$	Address Inputs
$D_{0}-D_{3}$	Data Inputs
$Q_{0}-Q_{3}$	Data Outputs
\bar{E}	Chip Enable input

PIN	DESCRIPTION
\bar{W}	Write Enable input
VCC	Positive Power Supply
VSS	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Vcc to Vss Potential	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.

OPERATING RANGES

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
T_{A}	Temperature, Ambient	0		70	${ }^{\circ} \mathrm{C}$
VCC	Supply Voltage	4.5		5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0		0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Input Voltage ${ }^{1}$	-0.5		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.5$	V

NOTE:

1. Negative undershoot of up to 3.0 V is permitted once per cycle.

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ICC1	Operating Current ${ }^{1}$	Outputs open, tRC $=\min$				mA
ISB1	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{VCC}-0.2 \mathrm{~V}$				mA
ISB2	Standby Current	$\overline{\mathrm{E}} \geq \mathrm{VIH}$				mA
ILI	Input Leakage Current	$\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}$ to VCC	-2		2	$\mu \mathrm{~A}$
ILO	I/O Leakage Current	$\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}$ to VCC	-2		2	$\mu \mathrm{~A}$
VOH	Output High Voltage	$\mathrm{lOH}=-4.0 \mathrm{~mA}$	2.4			V
VOL	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V

NOTE:

1. Icc is dependent upon output loading and cycle rates. Specified values are with outputs open, operating at specified cycle times.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times	5 ns
Input and Output Timing Ref. Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
CIN (Input Capacitance)	
CDO (I/O Capacitance)	

NOTES:

1. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $V_{\text {Bias }}=0 \mathrm{~V}$ and $\mathrm{Vcc}=5.0 \mathrm{~V}$.
2. Guaranteed but not tested.

Figure 3. Output Load Circuit

AC ELECTRICAL CHARACTERISTICS ${ }^{\mathbf{1}}$ (Over Operating Range)

SYMBOL	DESCRIPTION	-20		-25		-35		UNITS
		MIN	MAX	MIN	max	MIN	max	
READ CYCLE								
tre	Read Cycle Timing	20		25		35		ns
tAA	Address Access Time		20		25		35	ns
tor	Output Hold from Address Change	5		5		5		ns
tea	\bar{E} Low to Valid Data		20		25		35	ns
telz	$\overline{\text { E L Low to Output Active }}{ }^{2,3}$	5		5		5		ns
tehz	$\overline{\text { E High to Output High-Z }}{ }^{2,3}$		10		15		20	ns
tPu	E Low to Power Up Time ${ }^{3}$	0		0		0		ns
tPD	$\overline{\text { E High to Power Down Time }}{ }^{3}$		20		25		35	ns
WRITE CYCLE								
twc	Write Cycle Time	20		25		35		ns
tew	E Low to End of Write	15		20		30		ns
taw	Address Valid to End of Write	15		20		30		ns
$\mathrm{t}_{\text {AS }}$	Address Setup	0		0		0		ns
$\mathrm{taH}^{\text {A }}$	Address Hold from End of Write	0		0		0		ns
twp	$\overline{\text { W }}$ Pulse Width	15		20		30		ns
tDw	Input Data Setup Time	10		12		15		ns
tDH	Input Data Hold Time	0		0		0		ns
twhz	$\overline{\text { W }}$ Low to Output High-Z ${ }^{\text {2,3 }}$		10		15		20	ns
twLz	\bar{W} High to Output Active ${ }^{2,3}$	0		0		0		ns

NOTES:

1. AC Electrical Characteristics specified at "AC Test Conditions" levels.
2. Active output to High- Z and High- Z to output active tests specified for $a \pm 200 \mathrm{mV}$ transition from steady state levels into the test load.
3. Guaranteed but not tested.

TIMING DIAGRAMS - READ CYCLE

Read Cycle No. 1

Chip is in Read Mode: \bar{W} is HIGH, and $\overline{\mathrm{E}}$ is LOW. Read cycle timing is referenced from when all addresses are stable until the first address transition. Crosshatched portion of $D_{0}-D_{3}$ implies that data lines are in the Low-Z state and the data may not be valid.

Read Cycle No. 2

Chip is in Read Mode: \bar{W} is HIGH. Timing illustrated for the case when addresses are valid while E goes LOW. Data Out is not specified to be valid until tEA, but may become valid as soon as telz.

Figure 4. Read Cycle No. 1

Figure 5. Read Cycle No. 2

TIMING DIAGRAMS - WRITE CYCLE

Addresses must be stable during Write cycles. \bar{E} or \bar{W} must be high during address transitions. The outputs will remain in the High-Z state if \bar{W} is LOW when \bar{E} goes LOW.

Write Cycle No. 1 (\bar{W} Controlled)
Chip is selected: \bar{E} is LOW.

Write Cycle No. 2 (E Controlled)

DQ lines may transition to Low-Z if the falling edge of \bar{W} occurs after the falling edge of \bar{E}.

521032-6
Figure 6. Write Cycle No. 1

Figure 7. Write Cycle No. 2

ORDERING INFORMATION

Example: LH521032K-25 ($256 \mathrm{~K} \times 4$ Separate I/O Static RAM, $25 \mathrm{~ns}, 32$-pin, 400 -mil SOJ)

FEATURES

- $8,192 \times 8$ bit organization
- Access times:

LH5749J: 55/70 ns (MAX.)
LH5749: 70 ns (MAX.)

- Low power consumption:

394 mW/(MAX.)

- Single +5 V power supply
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- High speed programming:

SHARP original programming algorithm (32 second programming)

- Pin compatible with Bipolar PROM
- Packages:

EPROM
24-pin, 600-mil CERDIP
OTPROM
24-pin, 600-mil DIP
24-pin, 300-mil SK-DIP
24-pin, 300-mil SDIP

- JEDEC standard pinout (CERDIP/DIP)

DESCRIPTION

The LH5749J is a high-performance 64K, UV erasable, electrically programmable read-only-memory, organized as $8,192 \times 8$ bits. It is manufactured in an advanced CMOS technology which allows it to operate at Bipolar speeds while consuming only 75 mA .

The LH5749J is packaged in 24-pin CERDIP which is pin-compatible to bipolar PROM.

The LH5749 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP, DIP, SK-DIP and SDIP Packages

5749-2
Figure 2. LH5749/J Block Dlagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{12}$	Address input	
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data output (input)	1
$\overline{\mathrm{CS}} N_{\text {PP }}$	Chip Select/Program input	

SIGNAL	PIN NAME	NOTE
Vcc	Power supply	
GND	Ground	

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathbf{O}_{0}-\mathrm{O}_{7}$	CS/Vpp	Vcc	NOTE
Read	Read	Data out	L	+5 V	1
	Output disable	High-Z	H	+5 V	
Program	Program	Data in	+13 V	+6 V	
	Program inhibit	High-Z	H	+6 V	1
	Program verify	Data out	L	+6 V	

NOTE:

1. $H=V_{\mathbb{I H}}, L=V_{\mathbb{I L}}$

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V CC	-0.6 to +7.0	V	1
	$\overline{\mathrm{CS}} \mathrm{V}_{\mathrm{PP}}$	-0.6 to +14.0		
	$\mathrm{~V}_{\mathrm{IN}}, \mathrm{V}$ OUT	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	2
		-55 to +150		3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) ($\mathrm{T}_{\mathrm{A}}=0$ to $\mathbf{+ 7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.75	5.0	5.25	V
Input "Low" voltage	V_{IL}	-0.1		0.8	
Input "High" voltage	V_{IH}	2.0		$\mathrm{~V}_{\mathrm{CC}}+0.3$	

DC CHARACTERISTICS (Read Mode) ($\mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input leakage current	ILI	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or V_{Cc}	-10		10	$\mu \mathrm{A}$	
Output leakage current	LLO	$V_{\text {OUT }}=$ GND or VCC	-10		10	$\mu \mathrm{A}$	
Vcc operating current	Icc1	CMOS input			75	mA	1,2
	ICC2	TTL input			75	mA	1, 3
Input "Low" voltage	VIL		-0.1		0.8	V	
Input "High" voltage	V_{IH}		2.0		$\mathrm{Vcc}+0.3$	V	
Output "Low" voltage	VOL	$\mathrm{lOL}=16 \mathrm{~mA}$			0.45	V	
Output "High" voltage	VOH	$\mathrm{loH}=-4 \mathrm{~mA}$	2.4			V	

NOTES:

1. Minimum cycle time, lout $=0 \mathrm{~mA}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$
3. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{H}

AC CHARACTERISTICS (Read Mode) (Vcc =5V $\pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH5749J-55		$\begin{aligned} & \text { LH5749J-70 } \\ & \text { LH5749/DT-70 } \end{aligned}$		UNIT
		MIN.	MAX.	MIN.	MAX.	
Address valid to output valid	tacc		55		70	ns
Chip select to output valid	tcs		25		25	ns
Chip disable to output in High Z	tDF	0	20	0	25	ns
Output hold from address	toh	10		10		ns

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0 V to 3 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$1 \mathrm{~V}, 2 \mathrm{~V}$
Output reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

* INCLUDES JIG AND SCOPE CAPACITANCES

Figure 3. Output Load Circult

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathbf{f}=\mathbf{1 M H z}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{I N}}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		4	6	PF
Output capacitance	COUT	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		8	12	pF

Figure 4. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) (TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	$\mathrm{VCC}_{\mathrm{CC}}$	5.75	6.0	6.25	V
Program voltage	$\overline{\mathrm{CS} N \mathrm{PP}}$	12.7	13.0	13.3	V
Input "LoW" voltage	V_{IL}	-0.1		0.45	V
Input "High" voltage	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V

DC CHARACTERISTICS (Program Mode)

(VCC $=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \overline{\mathrm{CS}} / \mathrm{VPP}=13.0 \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	ILI	VIN $=$ VCC or 0.45 V	-10		10	$\mu \mathrm{A}$
$\overline{\text { CS }}$ / ${ }^{\text {PPP current }}$	IPP	Programming			75	mA
Vcc supply current	Icc				75	mA
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.1		0.45	V
Input "High" voltage	$\mathrm{V}_{\text {IH }}$		2.4		Vcc +0.3	V
Output "Low" voltage	VOL	$\mathrm{loL}=16 \mathrm{~mA}$			0.45	V
Output "High" voltage	VOH	$\mathrm{lOH}=-4 \mathrm{~mA}$	2.4			V

NOTES:

1. The program pulse $\overline{\mathrm{CS}} / \mathrm{N}_{\mathrm{PP}}$ must be applied after V_{cc} is stable and inhibited before V_{cc} is turned off.
2. $\overline{\mathrm{CS}} / \mathrm{V}_{\mathrm{PP}}$ must not be greater than 14 volts including overshoot.

AC CHARACTERISTICS (Program mode)

($\mathrm{VCC}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \overline{\mathrm{CS}} / \mathrm{VPP}=13.0 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Address setup time	tas	2			$\mu \mathrm{S}$
$\overline{\mathrm{CS}} / \mathrm{V}_{\text {PP }}$ rise time	tR	1		100	$\mu \mathrm{s}$
$\overline{\mathrm{CS}}$ / $\mathrm{VPP}^{\text {fall time }}$	${ }_{\text {t }}$	1		100	$\mu \mathrm{s}$
Data setup time	tDS	2			$\mu \mathrm{s}$
Chip select delay time	tcs			30	ns
Address hold time	tah	0			$\mu \mathrm{s}$
Data hold time	tDH	2			$\mu \mathrm{s}$
Output disable time	tDF			30	ns
Vcc setup time	tvcs	2			$\mu \mathrm{s}$
$\overline{\overline{C S}} / V_{\text {PP }}$ pulse width	tpw	0.95	1.0	1.05	ms
Add $\overline{\mathrm{CS}} / \mathrm{V}_{\text {PP }}$ pulse width *	topw	2.85		78.75	ms
Program pulse count	N	1		25	TIMES

*This width is defined by the Program Flowchart (Figure 6).

5749-5
Figure 5. Timing Diagram (Program Mode)

PROGRAMMING

Upon delivery from SHARP or after each erasure (see Erasure section), the LH5749 and LH5749J have all 8192×8 bits in the "1", or high state. "0's" are loaded into the LH5749 and LH5749J through the procedure of programming.

The programming mode is entered when +13.0 V is applied to the $\overline{\mathrm{CS}} / \mathrm{VPP}^{2}$ pin. A $0.1 \mu \mathrm{~F}$ capacitor between $\overline{C S}$ /PPP and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8 bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH5749J to an ultraviolet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH5749J. This dosage can be obtained by exposure to an ultra-violet lamp (wave-length of 2,537 Angstroms (\AA))) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH5749J
should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH5749J and similar devices, will erase with light sources having wavelength shorter than $4,000 \AA \AA$. Although erasure times will be much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH5749J and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will gradually erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

Figure 6. Programming Flowchart

ORDERING INFORMATION

FEATURES

- $8,192 \times 8$ bit organization
- Access times:

LH5762J: 55/70 ns (MAX.)
LH5762: 70 ns (MAX.)

- Single +5 V power supply
- Low power consumption:

Operating: 394 mW (MAX.)
Standby: 78.75 mW (MAX.)

- Fully static operation
- Three-state outputs
- TTL compatible I/O
- High speed programming: Compatible to INTEL intelligent programming ${ }^{\text {TM }}$ algorithm (32 second programming)
- Pin compatible with the i2764
- Packages:

EPROM

28-pin, 600-mil CERDIP
OTPROM
28-pin, 600-mil DIP

- JEDEC standard pinout

DESCRIPTION

The LH5762J is a high-performance 64K, UV erasable, electrically programmable read-only-memory, organized as $8,192 \times 8$ bits. It is manufactured in an advanced CMOS technology, which allows it to operate at Bipolar speeds while consuming only 75 mA .

The LH5762J has very high output drive capability. It can source 4 mA and sink 16 mA per output.

The LH5762J is configured in the standard EPROM pinout which provides an easy upgrade path for systems that are currently using standard EPROMs.

The LH5762 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP and DIP Packages

5762-2
Figure 2. LH5762/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{12}$	Address input	
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data output (input)	1
$\overline{\mathrm{CE}}$	Chip Enable input	
$\overline{\mathrm{OE}}$	Output Enable input	
$\overline{\text { PGM }}$	Program input	

SIGNAL	PIN NAME	NOTE
VPP	Program power	
VCC	Power supply	
GND	Ground	
NC	Non connection	

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathbf{O}_{\mathbf{0}}-\mathbf{O}_{7}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	$\overline{\text { PGM }}$	Vcc	$\mathrm{V}_{\text {PP }}$
Read	Read	Data out	L	L	H	+5 V	+5 V
	Output disable	High-Z	L	H	H	+5 V	+5 V
	Standby	High-Z	H	X	X	+5 V	+5 V
Program	Program	Data in	L	H	L	+6 V	+12.5 V
	Program verify	Data out	L	L	H	+6 V	+12.5 V
	Program inhibit	High-Z	H	X	X	+6 V	+12.5 V

NOTE:

$X=H$ or $L, H=V_{I H}, L=V_{I L}$

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	Vcc	-0.6 to +7.0	V	1
	VPP	-0.6 to +13.5		
	VIN, Vout	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	2
		-55 to +150		3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) (TA = 0 to $\mathbf{+ 7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.75	5.0	5.25	V
	$\mathrm{~V}_{\mathrm{PP}}$	4.75	5.0	5.25	
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.0		$\mathrm{~V}_{\mathrm{Cc}}+0.3$	V

DC CHARACTERISTICS (Read Mode) (Vcc = $5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}=\mathrm{Vcc}, \mathrm{TA}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input leakage current	lıI	$\mathrm{V}_{\text {IN }}=$ GND or $\mathrm{V}_{\text {cc }}$	-10		10	$\mu \mathrm{A}$	
Output leakage current	llo	Vout $=$ GND or Vcc	-10		10	$\mu \mathrm{A}$	
VPP supply current	IPP	$\mathrm{V}_{\text {PP }}=\mathrm{V}_{\text {cc }}$			100	$\mu \mathrm{A}$	
VPP pin voltage	VPP		Vcc-0.4		Vcc	V	
Vcc standby current	IsB1	$\begin{gathered} \overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}, \\ \mathrm{CMOS} \text { input } \\ \hline \end{gathered}$			15	mA	
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{TTL}$ input			20	mA	
Vcc operating current	lcc1	$\overline{\mathrm{CE}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$			75	mA	1,2
	ICC2	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$			75	mA	1,3
Input "Low" voltage	V_{IL}		-0.1		0.8	V	
Input "High" voltage	V_{IH}		2.0		Vcc +0.3	V	
Output "Low" voltage	VoL	$1 \mathrm{OL}=16 \mathrm{~mA}$			0.45	V	
Output "High" voltage	VOH	$\mathrm{loH}=-4 \mathrm{~mA}$	2.4			V	

NOTES:

1. Minimum cycle time, lout $=0 \mathrm{~mA}$
2. $C M O S$ input: $V_{\mathbb{N}}=G N D \pm 0.3 \mathrm{~V}$, or $\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$
3. $T T L$ input: $V_{\mathbb{N}}=V_{I L}$ or $V_{\mathbb{H}}$

AC CHARACTERISTICS (Read Mode) (Vcc $=\mathrm{VPP}=5 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $\left.+70^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	LH5762J-55		$\begin{aligned} & \text { 내5762J-70 } \\ & \text { LH5762-70 } \end{aligned}$		UNIT
		MIN.	MAX.	MIN.	MAX.	
Address to output delay	$t_{\text {Acc }}$		55		70	ns
$\overline{\mathrm{CE}}$ to output delay	tce		55		70	ns
$\overline{\mathrm{OE}}$ to output delay	toe		25		25	ns
Output enable high to output float	tDF	0	20	0	25	ns
Address to output hold	toh	10		10		ns

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0 V to 3 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$1 \mathrm{~V}, 2 \mathrm{~V}$
Output reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

Figure 3. Output Load Circuit
CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1} \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$	VIN $=0 \mathrm{~V}$		4	6	PF
Output capacitance	COUT	VOUT $=0 \mathrm{~V}$		8	12	PF

Figure 4. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) (TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	5.75	6.0	6.25	V
	$\mathrm{~V}_{\mathrm{PP}}$	12.2	12.5	12.8	
Input voltage	V_{IL}	-0.1		0.45	V
	$\mathrm{~V}_{\mathrm{IH}}$	2.4		$\mathrm{VCC}_{\mathrm{C}}+0.3$	

DC CHARACTERISTICS (Program Mode)

$\left(\mathrm{VCC}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	lıI	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$ or 0.45 V	-10		10	$\mu \mathrm{A}$
Vcc supply current	Icc				75	mA
Vpp supply current	IPP	$\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\text {IL }}$			50	mA
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.1		0.45	V
Input "High" voltage	V_{H}		2.4		Vcc + 0.3	V
Output "Low" voltage	VOL	$\mathrm{lOL}=16 \mathrm{~mA}$			0.45	V
Output "High" voltage	V OH	$\mathrm{l} \mathrm{OH}=-4 \mathrm{~mA}$	2.4			V

AC CHARACTERISTICS (Program Mode)

(VCC = 6.0 V $\pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Address setup time	tAS	2			$\mu \mathrm{~s}$	
Chip enable setup time	tCES	2			$\mu \mathrm{~s}$	
Output enable setup time	toES	2			$\mu \mathrm{~s}$	
Data setup time	tDS	2			$\mu \mathrm{~s}$	
Address hold time	t $_{\text {AH }}$	0			$\mu \mathrm{~s}$	
Data hold time	tDH	2			$\mu \mathrm{~s}$	
Chip enable to output float delay	tDF	0		150	ns	
Data valid from output enable	toE			150	ns	
VPP setup time	tVPS	2			$\mu \mathrm{~s}$	
VCC setup time	tvcs	2			$\mu \mathrm{~s}$	
$\overline{\text { PGM pulse width }}$	tPW	0.95	1.0	1.05	ms	
Add $\overline{\text { PGM pulse width }}$	tOPW	2.85		78.75	ms	1
Program pulse count	N	1		25	TIMES	

NOTE:

1. This width is defined by the Program Flowchart (Figure 6).

Figure 5. Timing Dlagram (Program Mode)

PROGRAMMING

Upon delivery from SHARP or after each erasure (see erasure section), the LH5762 and LH5762J have all $8,192 \times 8$ bits in the "1", or high state. "0's" are loaded into the LH5762 and LH5762J through the procedure of programming.

The programming mode is entered when +12.5 V is applied to the VPP pin and $\overline{C E}$ is at VIL. A $0.1 \mu \mathrm{~F}$ capacitor between VPP and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH5762J to an ultra-violet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH5762J. This dosage can be obtained by exposure to an ultra-violet lamp (wave-length of 2,537 Angstroms (\AA)) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH5762J should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH5762J and similar devices, will erase with light sources having wavelength shorter than $4,000 \AA$.

Although erasure times will be much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH5762J. Exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

1. Vcc must be applied either coincidently or before VPP and removed either coincidently or after Vpp.
2. VPP must not be greater than 13.5 volts including overshoot.
3. During $\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{PP}}$ must not be switched from 5 volts to 12.5 volts or vice-versa.
4. Removing or inserting the device while 12.5 volts is supplied may harm the reliability of the device.

Figure 6. Programming Flowchart

ORDERING INFORMATION

FEATURES

- $8,192 \times 8$ bit organization
- Access times:

LH5763J: 70/90 ns (MAX.)
LH5763: 90 ns (MAX.)

- Single +5 V power supply
- Low power consumption:

Operating: 315 mW (MAX.)
Standby: 1.05 mW (MAX.)

- Fully static operation
- Three-state outputs
- TTL compatible I/O
- High speed programming:

Compatible to INTEL intelligent programming ${ }^{\text {TM }}$ algorithm
(32 second programming)

- Pin compatible with the i2764
- Packages:

EPROM
28-pin, 600-mil CERDIP
OTPROM
28-pin, 600-mil DIP

- JEDEC standard pinout

DESCRIPTION

The LH5763J is a CMOS UV erasable and electrically programmable read-only-memory, organized as $8,192 \times 8$ bits. It is pin compatible with the Intel i2764 and the SHARP LH5764J, and designed to have fast access time.

The LH5763 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP and DIP Packages

Figure 2. LH5763/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{12}$	Address input	
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data output (input)	1
$\overline{\mathrm{CE}}$	Chip Enable input	
$\overline{\mathrm{OE}}$	Output Enable input	
$\overline{\mathrm{PGM}}$	Program input	

SIGNAL	PIN NAME	NOTE
VPP	Program power	
VCC	Power supply	
GND	Ground	
NC	Non connection	

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathrm{O}_{0}-\mathrm{O}_{7}$	$\overline{C E}$	$\overline{\mathbf{O E}}$	$\overline{\text { PGM }}$	Vcc	$V_{\text {Pp }}$
Read	Read	Data out	L	L	H	+5 V	+5 V
	Output disable	High-Z	L	H	H	+5V	+5 V
	Standby	High-Z	H	X	X	+5V	+5 V
Program	Program	Data in	L	H	L	+6V	+12.5 V
	Program verify	Data out	L	L	H	+6 V	+12.5 V
	Program inhibit	High-Z	H	X	X	+6V	+12.5 V

NOTE:

$X=H$ or $L, H=V_{I H}, L=V_{I L}$

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	Vcc	-0.6 to +7.0	V	1
	VPP	-0.6 to +13.5		
	VIN, Vout	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	2
		-55 to +150		3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) (TA = 0 to $\mathbf{+ 7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.75	5.0	5.35	V
	$\mathrm{~V}_{\mathrm{PP}}$	4.75	5.0	5.25	
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.0		$\mathrm{~V}_{\mathrm{cc}}+0.3$	V

DC CHARACTERISTICS (Read Mode) (Vcc $=5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}_{\mathrm{VP}}=\mathrm{Vcc}, \mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	V_{IL}		-0.1		0.8	V	
Input "High" voltage	V_{H}		2.0		Vcc +0.3	V	
Output "Low" voltage	VoL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V	
Output "High" voltage	VOH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V	
Input leakage current	lıI	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {cc }}$	-10		10	$\mu \mathrm{A}$	
Output leakage current	lıO	Vout = GND or Vcc	-10		10	$\mu \mathrm{A}$	
Vcc operating current	lcc1	$\overline{\mathrm{CE}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$			60	mA	1, 2
	lcc2	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$			60	mA	1, 3
VPP supply current	lpp	$\mathrm{VPP}=\mathrm{V}_{\mathrm{cc}}$			100	$\mu \mathrm{A}$	
VPP pin voltage	VPP		Vcc - 0.4		Vcc	V	
Vcc standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {cc }} \pm 0.3 \mathrm{~V}$			200	$\mu \mathrm{A}$	2
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			10	mA	3

NOTES:

1. Minimum cycle time, lout $=0 \mathrm{~mA}$
2. $C M O S$ input: $V I N=G N D \pm 0.3 \mathrm{~V}$ or $\mathrm{Vcc} \pm 0.3 \mathrm{~V}$
3. $T T L$ input: $V_{\mathbb{I N}}=V_{\mathbb{I L}}$ or $V_{\mathbb{H}}$

AC CHARACTERISTICS (Read Mode) (Vcc $=\mathrm{VPP}_{\mathrm{VP}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH5763J-70		$\begin{gathered} \text { LH5763J-90 } \\ \text { LH5763-90 } \end{gathered}$		UNIT
		MIN.	MAX.	MIN.	MAX.	
Address to output delay	$t_{\text {acc }}$		70		90	ns
$\overline{\mathrm{CE}}$ to output delay	tce		70		90	ns
$\overline{\text { OE to output delay }}$	toe		25		30	ns
Output enable high to output float	tDF	0	25	0	30	ns
Address to output hold	tor	0		0		ns

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0 V to 3 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$2.0 \mathrm{~V}, 1.0 \mathrm{~V}$
Output reference level	$2.0 \mathrm{~V}, 0.8 \mathrm{~V}$

Figure 3. Output Load Circult

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}, \mathrm{f}=\mathbf{1 M H z}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	C_{IN}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		4	6	PF
Output capacitance	$\mathrm{C}_{\text {OUT }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		8	12	pF

Figure 4. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) (TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	5.75	6.0	6.25	V
	$\mathrm{~V}_{\mathrm{PP}}$	12.2	12.5	12.8	
Input "Low" voltage	V_{IL}	-0.1		0.45	V
Input "High" voltage	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{Cc}}+0.3$	

DC CHARACTERISTICS (Program Mode)

($\mathrm{VCC}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	ll	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$ or 0.45 V	-10		10	$\mu \mathrm{A}$
Vcc supply current	Icc				60	mA
Vpp supply current	Ipp	$\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\text {IL }}$			50	mA
Input "Low" voltage	VIL		-0.1		0.45	V
Input "High" voltage	V_{H}		2.4		$\mathrm{V}_{\text {cc }}+0.3$	V
Output "Low" voltage	VoL	$1 \mathrm{OL}=2.1 \mathrm{~mA}$			0.45	V
Output "High" voltage	VOH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V

AC CHARACTERISTICS (Program Mode)

$\left(\mathrm{VCC}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Address setup time	tas	PGM - Address	2			$\mu \mathrm{s}$
Chip enable setup time	tces	PGM - $\overline{\mathrm{CE}}$	2			$\mu \mathrm{s}$
Output enable setup time	toes	Data- $\overline{\mathrm{CE}}$	2			$\mu \mathrm{s}$
Data setup time	tDS	$\overline{\text { PGM - Data }}$	2			$\mu \mathrm{s}$
Address hold time	$\mathrm{t}_{\text {AH }}$	$\overline{\mathrm{OE}}$ - Address	0			$\mu \mathrm{s}$
Data hold time	tDH	$\overline{\text { PGM - Data }}$	2			$\mu \mathrm{s}$
Chip enable to output float delay	tDF				150	ns
Data valid from output enable	toe				150	ns
Vpp setup time	tvps		2			$\mu \mathrm{s}$
Vcc setup time	tves		2			$\mu \mathrm{s}$
Program pulse width	tpw		0.95	1	1.05	ms
Add $\overline{\text { PGM }}$ pulse width *	topw		2.85		78.75	ms
Program pulse count	N		1		25	TIMES

[^4]

Figure 5. Timing Diagram (Program Mode)

PROGRAMMING

Upon delivery from SHARP or after each erasure (see erasure section), the LH5763 and LH5763J have all $8,192 \times 8$ bits in the "1", or high state. " 0 's" are loaded into the LH5763 and LH5763J through the procedure of programming.

The programming mode is entered when +12.5 V is applied to the VPP pin and $\overline{C E}$ is at VIL. A $0.1 \mu \mathrm{~F}$ capacitor between VPP and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH5763J to an ultra-violet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH5763J. This dosage can be obtained by exposure to an ultra-violet lamp (wave-length of 2,537 Angstroms (\AA)) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH5763J should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH5763J and similar devices will erase with light sources having wave-length shorter than $4,000 \AA$.

Although erasure times will be much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH5763J and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

1. Vcc must be applied either coincidently or before VPP and removed either coincidently or after VPP.
2. VPP must not be greater than 13.5 volts including overshoot.
3. During $\overline{C E}=\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{PP}}$ must not be switched from 5 volts to 12.5 volts or vice-versa.
4. Removing or inserting the device while 12.5 volts is supplied may harm the reliability of the device.

Figure 6. Programming Flowchart

ORDERING INFORMATION

FEATURES

- $8,192 \times 8$ bit organization
- Access times:

LH5764J: 200/250 ns (MAX.)
LH5764: 200/250 ns (MAX.)

- Single +5 V power supply
- Low power consumption:

Operating: 165 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- High speed programming:
$\mathrm{tPW}=0.1 \mathrm{~ms}(\mathrm{VPP}=12.75 \mathrm{~V})$ or
$\mathrm{tPW}=1 \mathrm{~ms}(\mathrm{VPP}=12.5 \mathrm{~V})$
Compatible to INTEL quick pulse programming ${ }^{\text {TM }}$ algorithm
(1 second programming)
- Fully static operation
- Three-state outputs
- TTL compatible I/O
- Pin compatible with the i2764
- Packages:

EPROM
28-pin, 600-mil CERDIP OTPROM
28-pin, 600-mil DIP
28-pin, 450-mil SOP

- JEDEC standard pinout (CERDIP/DIP)

DESCRIPTION

The LH5764J is a CMOS UV erasable and electrically programmable read-only-memory, organized as 8,192 $\times 8$ bits. It provides low power consumption in standby mode.

The LH5764 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP, DIP, and SOP Packages

Figure 2. LH5764/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{12}$	Address input	
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data output (input)	1
$\overline{\mathrm{CE}}$	Chip Enable input	
$\overline{\mathrm{OE}}$	Output Enable input	
$\overline{\mathrm{PGM}}$	Program input	

SIGNAL	PIN NAME	NOTE
VPP	Program power	
VCC	Power supply	
GND	Ground	
NC	Non connection	

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathrm{O}_{0}-\mathrm{O}_{7}$	$\overline{C E}$	$\overline{O E}$	PGM	Vcc	VPP
Read	Read	Data out	L	L	H	+5 V	+5V
	Output disable	High-Z	L	H	H	+5V	+5V
	Standby	High-Z	H	X	X	+5 V	+5 V
Program	Program	Data in	L	H	L	+6.25 V	+12.75 V
	Program verify	Data out	L	L	H	+6.25 V	+12.75 V
	Program inhibit	High-Z	H	X	X	+6.25 V	+12.75 V

NOTE:

$\mathrm{X}=\mathrm{H}$ or $\mathrm{L}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}, \mathrm{L}}=\mathrm{V}_{\mathrm{IL}}$

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.6 to +7.0	V	1
	VPP	-0.6 to +13.5		
	VIN	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	C	2
		-55 to +150		3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) (TA = $\mathbf{0}$ to $\boldsymbol{+ 7 0 ^ { \circ }}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC 2	4.5	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{PP}}$	4.5	5.0	5.5	V
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.0		$\mathrm{VcC}^{2}+0.3$	V

DC CHARACTERISTICS (Read Mode) (Vcc = $5 \mathrm{~V} \pm 10 \%, \mathrm{VPP}_{\mathrm{V}}=\mathrm{Vcc}, \mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.1		0.8	V	
Input "High" voltage	V_{IH}		2.0		Vcc +0.3	V	
Output "Low" voltage	VoL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V	
Output "High" voltage	V OH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V	
Input leakage current	lıl	$\mathrm{V}_{\text {IN }}=$ GND or $\mathrm{V}_{\text {cc }}$	-10		10	$\mu \mathrm{A}$	
Output leakage current	LLO	Vout $=$ GND or Vcc	-10		10	$\mu \mathrm{A}$	
Vcc operating current	lcc1	$\overline{\mathrm{CE}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$			25	mA	1,2
	IcC2	$\overline{C E}=\mathrm{V}_{\text {IL }}$			30	mA	1,3
VPP supply current	Ipp	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\text {cc }}$			100	$\mu \mathrm{A}$	
VPP pin voltage	VPP		Vcc-0.4		Vcc	V	
Vcc standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {cc }} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$	
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1	mA	

NOTES:

1. Minimum cycle time, lout $=0 \mathrm{~mA}$
2. $C M O S$ input: $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{Cc}} \pm 0.3 \mathrm{~V}$
3. $T T L$ input: $V_{\mathbb{N}}=V_{\mathbb{L}}$ or $V_{\mathbb{H}}$

AC CHARACTERISTICS (Read Mode) (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{VPP}_{\mathrm{P}}=\mathrm{Vcc}, \mathrm{T}_{\mathrm{A}}=\mathbf{0}$ to $+\mathbf{7 0 ^ { \circ }}{ }^{\circ}$)

PARAMETER	SYMBOL	LH5764J-20		LH5764J-25 LH5764/N-25		UNIT
		MIN.	MAX.	MIN.	max.	
Address to output delay	tacc		200		250	ns
$\overline{\mathrm{CE}}$ to output delay	tce		200		250	ns
$\overline{\mathrm{OE}}$ to output delay	toe		55		65	ns
Output enable high to output float	tDF	0	55	0	65	ns
Address to output hold	tor	0		0		ns

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.8 V to 2.2 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$1 \mathrm{~V}, 2 \mathrm{~V}$
Output reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

Figure 3. Output Load Circult
CAPACITANCE ($\mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1 M H z}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{I N}}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		4	6	pF
Output capacitance	COUT	VOUT $=0 \mathrm{~V}$		8	12	pF

Figure 4. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) ($\mathrm{TA}_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	5.75	6.25	6.5	V
	$\mathrm{~V}_{\mathrm{PP}}$	12.2	12.75	13.0	
Inpút "Low" voltage	V_{IL}	-0.1		0.45	V
Input "High" voltage	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{CC}}+0.3$	

DC CHARACTERISTICS (Program Mode)

($\mathrm{VCC}=5.75 \mathrm{~V}$ to $6.5 \mathrm{~V}, \mathrm{~V} P=12.2 \mathrm{~V}$ to $13.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	lıl	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$ or 0.45 V	-10		10	$\mu \mathrm{A}$
VCC supply current	IcC				30	mA
VPP supply current	Ipp	$\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IL}}$			30	mA
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.1		0.45	V
Input "High" voltage	V_{IH}		2.4		Vcc +0.3	V
Output "Low" voltage	VOL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
Output "High" voltage	VOH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V

AC CHARACTERISTICS (Program Mode)

$\left(\mathrm{VCC}=6.25 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}_{\mathrm{P}}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$) (Note 1)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Address setup time	tAS	2			$\mu \mathrm{~s}$
Chip enable setup time	tces	2			$\mu \mathrm{~s}$
Output enable setup time	toES	2			$\mu \mathrm{~s}$
Data setup time	tDS	2			$\mu \mathrm{~s}$
Address hold time	taH	0			$\mu \mathrm{~s}$
Data hold time	tDH	2			$\mu \mathrm{~s}$
Chip enable to output float delay	tDF	0		150	ns
Data valid from output enable	toE			150	ns
VPP setup time	tVPs	2			$\mu \mathrm{~s}$
Vcc setup time	tvcs	2			$\mu \mathrm{~s}$
Program pulse width ${ }^{* 1,{ }^{*} 2}$	tPW	95	100	105	$\mu \mathrm{~s}$
Program pulse count	N	1		25	TIMES

NOTES:

1. This width is defined by the Program Flowchart (Figure 6).
2. Programmable under conditions $\mathrm{V} C \mathrm{C}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$, $\mathrm{tpw}=1 \mathrm{~ms} \pm 0.05 \mathrm{~ms}$

Figure 5. Timing Diagram (Program Mode)

PROGRAMMING

Upon delivery from SHARP or after each erasure (see erasure section), the LH5764 and LH5764J have all $8,192 \times 8$ bits in the " 1 ", or high state. " 0 's" are loaded into the LH5764 and LH5764J through the procedure of programming.

The programming mode is entered when +12.75 V is applied to the VPP pin and $\overline{\mathrm{CE}}$ is at VIL. A $0.1 \mu \mathrm{~F}$ capacitor between VPP and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH5764J to an ultra-violet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH5764J. This dosage can be obtained by exposure to an ultra-violet lamp (wave-length of 2,537 Angstroms (\AA)) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH5764J should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH5764J and similar devices will erase with light sources having wave-length shorter than $4,000 \AA$ A.

Although erasure times will be much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH5764J and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will erase the EROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

1. Vcc must be applied either coincidently or before VPP and removed either coincidently or after VPP.
2. VPP must not be greater than 13.5 volts including overshoot.
3. During $\overline{C E}=\overline{P G M}=V_{I L}, V_{P P}$ must not be switched from Vcc to 12.75 volts or vice-versa.
4. Removing or inserting the device while 12.75 volts is supplied may harm the reliability of the device.

Figure 6. Programming Flowchart

ORDERING INFORMATION

LH5764	X	- \#\#	
Device Type	$\overline{\text { Package }}$	Speed	
			$\left\{\begin{array}{ll}20 & 200 \\ 25 & 250\end{array}\right.$ Access Time (ns)
			$\left\{\begin{array}{l}\text { OTPROM } \\ \text { Blank } 28 \text {-pin, } 600-\text { mil DIP (DIP28-P-600) } \\ \text { N 28-pin, 450-mil SOP (SOP28-P-450) } \\ \text { EPROM, } \\ \text { J 28-pin, 600-mil CERDIP (WDIP28-G-600) }\end{array}\right.$

Example: LH5764J-20 (CMOS 64K (8K x 8) EPROM, 200 ns , 28 -pin, 600 -mil CERDIP)

LH57126/J

FEATURES

- $16,384 \times 8$ bit organization
- Access times:

LH57126J: 70/90 ns
LH57126: 90 ns

- Single +5 V power supply
- Low power consumption:

Operating: 394 mW (MAX.)
Standby: 78.75 mW (MAX.)

- Fully static operation
- Three-state outputs
- TTL compatible I/O
- High speed programming

Compatible to INTEL intelligent programming ${ }^{T M}$ algorithm
(64 second programming)

- Pin compatible with the $\mathbf{i} 27128$
- Packages:

EPROM
28-pin, 600-mil CERDIP
OTPROM
28-pin, 600-mil DIP

- JEDEC standard pinout

DESCRIPTION

The LH57126J is a high-performance 128K, UV erasable, electrically programmable read-only-memory. It is manufactured in an advanced CMOS technology which allows it to operate at Bipolar speeds while consuming only 75 mA .

The LH57126J is pin compatible with the Intel i27128 and the SHARP LH57128J, and designed to have fast access time.

The LH57126 is configured in the standard EPROM pinout which provides an easy upgrade path for systems which are currently using standard EPROMs.

The LH57126 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP and DIP Packages

Figure 2. LH57126/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{13}$	Address input	
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data output (input)	1
$\overline{\mathrm{CE}}$	Chip Enable input	
$\overline{\mathrm{OE}}$	Output Enable input	

SIGNAL	PIN NAME	NOTE
$\overline{\text { PGM }}$	Program input	
VPP	Program power	
VCC	Power supply	
GND	Ground	

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathrm{O}_{0}-\mathrm{O}_{7}$	$\overline{C E}$	$\overline{O E}$	PGM	Vcc	Vpp
Read	Read	Data out	L	L	H	+5V	+5V
	Output disable	High-Z	L	H	H	+5V	+5 V
	Standby	High-Z	H	X	X	+5V	+5 V
Program	Program	Data in	L	H	L	+6V	+12.5 V
	Program verify	Data out	L	L	H	+6V	+12.5 V
	Program inhibit	High-Z	H	X	X	+6V	+12.5 V

NOTE:

$X=H$ or $L, H=V_{I H}, L=V_{I L}$

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Pin voltage	Vcc	-0.6 to +7.0	V	1
	VPP	-0.6 to +13.5		
	VIN, Vout	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	2
		-55 to +150		3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) (TA $=0$ to $\mathbf{+ 7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.75	5.0	5.25	V
	$\mathrm{~V}_{\mathrm{PP}}$	4.75	5.0	5.25	
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.0		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V

DC CHARACTERISTICS (Read Mode) (VCc $=5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}_{\mathrm{PP}}=\mathrm{Vcc}, \mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.1		0.8	V	
Input "High" voltage	V_{IH}		2.0		Vcc +0.3	V	
Output "Low" voltage	VoL	$\mathrm{lOL}=16 \mathrm{~mA}$			0.45	V	
Output "High" voltage	VOH	$1 \mathrm{OH}=-4 \mathrm{~mA}$	2.4			V	
Input leakage current	lıI	$\mathrm{V}_{\text {IN }}=$ GND or VCC	-10		10	$\mu \mathrm{A}$	
Output leakage current	Lo	Vout = GND or Vcc	-10		10	$\mu \mathrm{A}$	
Vcc operating current	IcC1	$\overline{\mathrm{CE}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$			75	mA	1,2
	Icc2	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$			75	mA	1,3
VPP supply current	lpp	$\mathrm{VPP}=\mathrm{V}_{\mathrm{Cc}}$			100	$\mu \mathrm{A}$	
Vpp pin voltage	VPP		Vcc-0.4		Vcc	V	
Vcc standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$			15	mA	4
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			20	mA	5

NOTES:

1. Minimum cycle time, lout $=0 \mathrm{~mA}$
2. $C M O S$ level: $V_{\mathbb{I N}}=G N D \pm 0.3 \mathrm{~V}$ or $\mathrm{Vcc}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$
3. TTL input: $V_{\mathbb{N}}=V_{\mathbb{I L}}$ or $V_{\mathbb{H}}$
4. All inputs are fixed at CMOS level.
5. All inputs are fixed at $T \mathrm{~L}$ level.

AC CHARACTERISTICS (Read Mode) (Vcc =5V+5\%, VPP = Vcc, $\mathrm{T}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH57126J-70		LH57126J-90 LH57126-90		UNIT
			MIN.	MAX.	MIN.	
Address to output delay	tACC		70		90	ns
$\overline{C E}$ to output delay	tCE		70		90	ns
$\overline{\text { OE }}$ to output delay	tOE		25		30	ns
Output enable high to output float	tDF	0	25	0	30	ns
Address to output hold	tOH	10		10		ns

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0 V to 3 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$1 \mathrm{~V}, 2 \mathrm{~V}$
Output reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

Figure 4. Output Load Circult

CAPACITANCE ($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		4	6	pF
Output capacitance	COUT	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		8	12	pF

57126-4
Figure 3. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) ($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC 2	5.75	6.0	6.25	V
	$\mathrm{~V}_{\mathrm{PP}}$	12.2	12.5	12.8	
Input "Low" voltage	V_{IL}	-0.1		0.45	V
Input "High" voltage	V_{IH}	2.4		$\mathrm{VCC}_{\mathrm{C}}+0.3$	V

DC CHARACTERISTICS (Program Mode)

($\mathrm{Vcc}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	ILI	$\mathrm{V}_{\mathrm{IN}}=\mathrm{VCC}$ or 0.45 V	-10		10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {CC }}$ supply current	ICC				50	mA
$\mathrm{~V}_{\text {PP }}$ supply current	IPP	$\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IL}}$			75	mA
Input "Low" voltage	V_{IL}		-0.1		0.45	V
Input "High" voltage	V_{IH}		2.4		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Output "Low" voltage	VOL^{2}	$\mathrm{lOL}=16 \mathrm{~mA}$			0.45	V
Output "High" voltage	V_{OH}	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4			V

AC CHARACTERISTICS (Program Mode)

(Vcc = 6.0 V $\pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Address setup time	tas	2			$\mu \mathrm{~s}$
Chip enable setup time	tCES	2			$\mu \mathrm{~s}$
Output enable setup time	tOES	2			$\mu \mathrm{~s}$
Data setup time	tDS	2			$\mu \mathrm{~s}$
Address hold time	taH	0			$\mu \mathrm{~s}$
Data hold time	tDH	2			$\mu \mathrm{~s}$
Chip enable to output float delay	tDF	0		150	ns
Data valid from output enable	toE			150	ns
VPP setup time	tvPS	2			$\mu \mathrm{~s}$
Vcc setup time	tvcs	2			$\mu \mathrm{~s}$
$\overline{\text { PGM pulse width }}$	tPW	0.95	1.0	1.05	ms
Add $\overline{\text { PGM pulse width* }}$	toPW	2.85		78.75	ms
Program pulse count	N	1		25	TIMES

* This width is defined by the Program Flowchart (Figure 6).

PROGRAMMING

Upon delivery from SHARP or after each erasure (see Erasure section), the LH57126 and LH57126J have all $16,384 \times 8$ bits in the " 1 ", or high state. " 0 's" are loaded into the LH57126 and LH57126J through the procedure of programming.

The programming mode is entered when +12.5 V is applied to the VPP pin and $\overline{C E}$ is at VIL. A $0.1 \mu \mathrm{~F}$ capacitor between VPP and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH57126J to an ultra-violet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH57126J. This dosage can be obtained by exposure to an ultra-violet lamp (wave-length of 2,537 Angstroms (\AA)) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH57126J should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH57126J and similar devices will erase with light sources having wave-length shorter than $4,000 \AA$.

Although erasure times will be much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH57126J and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

1. Vcc must be applied either coincidently or before VPP and removed either coincidently or after Vpp.
2. VPP must not be greater than 13.5 volts including overshoot.
3. During $\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{VIL}, \mathrm{V}_{\mathrm{PP}}$ must not be switched from 5 volts to 12.5 volts or vice-versa.
4. Removing or inserting the device while 12.5 volts is supplied may harm the reliability of the device.

Figure 5. Timing Dlagram (Program Mode)

Figure 6. Programming Flowchart

ORDERING INFORMATION

* EPROM Only

Example: LH57126J-70 (CMOS 128K (16K x 8) EPROM, 70 ns, 28 -pin, 600 -mil CERDIP)

FEATURES

- $16,384 \times 8$ bit organization
- Access times:

LH57127J: 100 ns (MAX.)
LH57127: 120 ns (MAX.)

- Single +5 V power supply
- Low power consumption:

Operating: 315 mW (MAX.)
Standby: 1.05 mW (MAX.)

- Fully static operation
- Three-state outputs
- TTL compatible I/O
- High speed programming:

Compatible to INTEL intelligent programming ${ }^{\text {TM }}$ algorithm (64 second programming)

- Pin compatible with $\mathbf{i} 27128$
- Packages:

EPROM
28-pin, 600-mil CERDIP
OTPROM
28-pin, 600-mil DIP

- JEDEC standard pinout

DESCRIPTION

The LH57127J is a CMOS UV erasable and electrically programmable read-only-memory, organized as $16,384 \times 8$ bits. It is pin compatible with the Intel i27128 and the SHARP LH57128J, and designed to have fast access time.

The LH57127 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP and DIP Packages

Figure 2. LH57127/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{13}$	Address input	
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data output (input)	1
$\overline{\mathrm{CE}}$	Chip Enable input	
$\overline{\mathrm{OE}}$	Output Enable input	

SIGNAL	PIN NAME	NOTE
$\overline{\text { PGM }}$	Program input	
VPP	Program power	
VCC	Power supply	
GND	Ground	

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathbf{O}_{0}-\mathbf{O}_{7}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{P G M}}$	VCc	$\mathrm{V}_{\mathbf{P P}}$
Read	Read	Data out	L	L	H	+5 V	+5 V
	Output disable	High-Z	L	H	H	+5 V	+5 V
	Standby	High-Z	H	X	X	+5 V	+5 V
Program	Program	Data in	L	H	L	+6 V	+12.5 V
	Program verify	Data out	L	L	H	+6 V	+12.5 V
	Program inhibit	High-Z	H	X	X	+6 V	+12.5 V

NOTE:

$X=H$ or $L, H=V_{I H}, L=V_{\mathbb{I L}}$

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	Vcc	-0.6 to +7.0	V	1
	VPP	-0.6 to +13.5		
	Vin, Vout	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	2
		-55 to +150		3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) (TA $=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	VCC	4.75	5.0	5.25	V
	$\mathrm{~V}_{\mathrm{PP}}$	4.75	5.0	5.25	V
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.0		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V

DC CHARACTERISTICS (Read Mode) (Vcc = $5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}=\mathrm{Vcc}, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	VIL		-0.1		0.8	V	
Input "High" voltage	V_{IH}		2.0		Vcc +0.3	V	
Output "Low" voltage	VoL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V	
Output "High" voltage	VOH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V	
Input leakage current	lı	$\mathrm{V}_{\text {IN }}=$ GND or $\mathrm{V}_{\text {cc }}$	-10		10	$\mu \mathrm{A}$	
Output leakage current	lıO	Vout $=$ GND or Vcc	-10		10	$\mu \mathrm{A}$	
Vcc operating current	IcC1	$\overline{\mathrm{CE}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$			60	mA	1,2
	lcc2	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$			60	mA	1,3
VPP supply current	Ipp	$\mathrm{VPP}=\mathrm{Vcc}$			100	$\mu \mathrm{A}$	
VPP pin voltage	VPP		Vcc - 0.4		Vcc	V	
Vcc Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$			200	$\mu \mathrm{A}$	
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			10	mA	

NOTES:

1. Minimum cycle time, lout $=0 \mathrm{~mA}$
2. $C M O S$ level: $V_{\mathbb{N}}=G N D \pm 0.3 \mathrm{~V}$ or $\mathrm{Vcc} \pm 0.3 \mathrm{~V}$
3. $T T L$ input: $V_{\mathbb{N}}=V_{\mathbb{I L}}$ or $V_{\mathbb{H}}$

AC CHARACTERISTICS (Read Mode) (Vcc =5 V $\pm \mathbf{5 \%}$, $\mathrm{Vpp}=\mathrm{Vcc}, \mathrm{TA}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER		SYMBOL	LH57127J-10		LH57127-12		
				MIN.	MAX.	MIN.	MAX.
Address to output delay	taCC 2		100		120	ns	
$\overline{\text { CE }}$ to output delay	tCE		100		120	ns	
$\overline{\text { OE }}$ to output delay	tOE		30		30	ns	
Output enable high to output float	tDF	0	30	0	30	ns	
Address to output hold	toH	0		0		ns	

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0 V to 3 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$1 \mathrm{~V}, 2 \mathrm{~V}$
Output reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

Figure 3. Output Load Circuit
CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{N}}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		4	6	pF
Output capacitance	COUT	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		8	12	pF

Figure 4. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) ($\mathrm{TA}_{\mathrm{A}}=\mathbf{2 5} 5^{\circ} \mathrm{C} \pm \mathbf{5}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC 2	5.75	6.0	6.25	V
	$\mathrm{~V}_{\mathrm{PP}}$	12.2	12.5	12.8	
Input "Low" voltage	V_{IL}	-0.1		0.45	V
Input "High" voltage	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{Cc}}+0.3$	V

DC CHARACTERISTICS (Program Mode)

(VCC = 6.0 V $\pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	ILI	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or 0.45 V	-10		10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{CC}}$ supply current	ICC	$\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IL}}$			60	mA
VPP supply current $^{\text {Input "Low" voltage }}$	IPP	V			50	mA
Input "High" voltage	V_{IL}		-0.1		0.45	V
Output "Low" voltage	V_{IH}		2.4		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Output "High" voltage	V_{OL}	$\mathrm{loL}=2.1 \mathrm{~mA}$			0.45	V

AC CHARACTERISTICS (Program Mode)

$\left(\mathrm{VCC}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Address setup time	$t_{\text {AS }}$	2			$\mu \mathrm{s}$
Chip enable setup time	tces	2			$\mu \mathrm{s}$
Output enable setup time	toes	2			$\mu \mathrm{s}$
Data setup time	tDS	2			$\mu \mathrm{s}$
Address hold time	$\mathrm{t}_{\text {AH }}$	0			$\mu \mathrm{s}$
Data hold time	tDH	2			$\mu \mathrm{s}$
Chip enable to output float delay	tDF	0		150	ns
Data valid from output enable	toe			150	ns
Vpp setup time	tvps	2			$\mu \mathrm{s}$
Vcc setup time	tvcs	2			$\mu \mathrm{s}$
Program pulse width	tpw	0.95	1	1.05	ms
Add $\overline{\text { PGM pulse width* }}$	topw	2.85		78.75	ms
Program pulse count	N	1		25	TIMES

*This width is defined by the Program Flowchart (Figure 6).

PROGRAMMING

Upon delivery from SHARP or after each erasure (see erasure section), the LH57127 and LH57127J have all $16,384 \times 8$ bits in the " 1 ", or high state. " 0 's" are loaded into the LH57127 and LH57127J through the procedure of programming.

The programming mode is entered when +12.5 V is applied to the VPP pin and CE is at VIL. A $0.1 \mu \mathrm{~F}$ capacitor between VPP and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8 -bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH57127J to an ultra-violet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH57127J. This dosage can be obtained by exposure to an ultra-violet lamp (wave-length of 2,537 Angstroms (\AA)) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH57127J should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH57127J and similar devices will erase with light sources having wave-length shorter than $4,000 \AA$.

Although erasure times will be much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH57127J and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

1. Vcc must be applied either coincidently or before $V_{P P}$ and removed either coincidently or after VPP.
2. VPP must not be greater than 13.5 volts including overshoot.
3. During $\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}$ IL, VPP must not be switched from 5 volts to 12.5 volts or vice-versa.
4. Removing or inserting the device while 12.5 volts is supplied may harm the reliability of the device.

57127-5
Figure 5. Timing Diagram (Program Mode)

Figure 6. Programming Flowchart

ORDERING INFORMATION

LH57127	X	- \#\#	
Device Type	$\overline{\text { Package }}$	$\overline{\text { Speed }}$	
			$\left\{\begin{array}{ll} 10 & 100 * \\ 12 & 120 \end{array}\right. \text { Access Time (ns) }$
			$\left\{\begin{array}{l}\text { OTPROM } \\ \text { Blank } 28 \text {-pin, } 600-\text { mil DIP (DIP28-P-600) } \\ \text { EPROM } \\ \text { J 28-pin, 600-mil CERDIP (WDIP28-G-600) }\end{array}\right.$
			CMOS 128K (16K x 8) OTPROM/EPROM

* EPROM Only

Example: LH57127J-10 (CMOS 128K (16K x 8) EPROM, 100 ns , 28-pin, 600-mil CERDIP)

FEATURES

- $16,384 \times 8$ bit organization
- Access times:

LH57128J: 250 ns
LH57128: 250 ns

- Single +5 V power supply
- High speed programming:
tPW $=0.1 \mathrm{~ms}(\mathrm{VPP}=12.75 \mathrm{~V})$ or
$\mathrm{tPW}=1 \mathrm{~ms}(\mathrm{VPP}=12.5 \mathrm{~V})$
Compatible to INTEL quick pulse
programming ${ }^{\text {TM }}$ algorithm
(2 second programming)
- Low power consumption:

Operating: 165 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- Three-state outputs
- TTL compatible I/O
- Pin compatible with $\mathbf{i} 27128$
- Packages:

EPROM

28-pin, 600-mil CERDIP

OTPROM

28-pin, 600-mil DIP
28-pin, 450-mil SOP

- JEDEC standard pinout

DESCRIPTION

The LH57128J is a CMOS UV erasable and electrically programmable read-only-memory organized as $16,384 \times 8$ bits. It is pin compatible with the Intel $i 27128$.

The LH57128 is a one-time PROM packaged in plastic DIP or SOP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP, DIP, and SOP Packages

Figure 2. LH57128/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE				
$A_{0}-A_{13}$	Address input					
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data output (input)	1				
$\overline{\mathrm{CE}}$	Chip Enable input					
$\overline{\mathrm{OE}}$	Output Enable input		\quad	SIGNAL	PIN NAME	NOTE
:---:	:---	:---:				
	$\overline{\text { PGM }}$	Program input				
VPP	Program power					
VCC	Power supply					
GND	Ground					

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathbf{O}_{0}-\mathbf{O 7}_{7}$	$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	$\overline{\text { PGM }}$	Vcc	VPP
Read	Read	Data out	L	L	H	+5 V	+5 V
	Output disable	High-Z	L	H	H	+5 V	+5 V
	Standby	High-Z	H	X	X	+5 V	+5 V
Program	Program	Data in	L	H	L	+6.25 V	+12.75 V
	Program verify	Data out	L	L	H	+6.25 V	+12.75 V
	Program inhibit	High-Z	H	X	X	+6.25 V	+12.75 V

NOTE:

$X=H$ or $L, H=V_{I H}, L=V_{I L}$

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.6 to +7.0	V	1
	VPP	-0.6 to +13.5		
	VIN, VouT	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	2
		-55 to +150	${ }^{\circ} \mathrm{C}$	3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}$ to $+\mathbf{7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{PP}}$	4.5	5.0	5.5	V
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.0		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V

DC CHARACTERISTICS (Read Mode) (Vcc = $5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{VPP}=\mathrm{Vcc}, \mathrm{T}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.1		0.8	V	
Input "High" voltage	V_{IH}		2.0		$\mathrm{Vcc}+0.3$	V	
Output "Low" voltage	Vol	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V	
Output "High" voltage	VOH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V	
Input leakage current	ILI	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{Cc}	-10		10	$\mu \mathrm{A}$	
Output leakage current	lo	Vout = GND or Vcc	-10		10	$\mu \mathrm{A}$	
Vcc operating current	ICC1	$\overline{\mathrm{CE}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$			25	mA	1,2
	IcC2	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$			30	mA	1,3
VPP supply current	IPP	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{Cc}}$			100	$\mu \mathrm{A}$	
VPP pin voltage	VPP		Vcc-0.4		Vcc	V	
VCc standby current	$\mathrm{I}_{\text {SB1 }}$	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$	
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			1	mA	

NOTES:

1. Minimum cycle time, lout $=0 \mathrm{~mA}$
2. $C M O S$ level: $V_{I N}=G N D \pm 0.3 \mathrm{~V}$ or $\mathrm{Vcc} \pm 0.3 \mathrm{~V}$
3. TTL input: $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathbb{H}}$

AC CHARACTERISTICS (Read Mode) (Vcc = $\mathrm{V}_{\mathrm{PP}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH57128J-25 LH57128-25		UNIT
		MIN.	MAX.	
Address to output delay	taCC		250	ns
$\overline{\mathrm{CE}}$ to output delay	tCE		250	ns
$\overline{\text { OE to output delay }}$	toE		75	ns
Output enable high to output float	tDF	0	65	ns
Address to output hold	toH	0		ns

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.8 V to 2.2 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$1 \mathrm{~V}, 2 \mathrm{~V}$
Output reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

Figure 3. Output Load Circuit
CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	C_{IN}	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		4	6	pF
Output capacitance	Cout	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		8	12	pF

Figure 4. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC 2	5.75	6.25	6.5	V
Program supply voltage	VPP	12.2	12.75	13.0	V
Input "Low" voltage	V_{IL}	-0.1		0.45	V
Input "High" voltage	V_{IH}	2.4		VCC +0.3	V

DC CHARACTERISTICS (Program Mode)

$$
\left(\mathrm{VCC}=5.75 \mathrm{~V} \text { to } 6.5 \mathrm{~V}, \mathrm{VPP}=12.2 \mathrm{~V} \text { to } 13.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)
$$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	lıI	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$ or 0.45 V	-10		10	$\mu \mathrm{A}$
Vcc supply current	Icc				30	mA
VPP supply current	Ipp	$\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\text {IL }}$			30	mA
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.1		0.45	V
Input "High" voltage	V_{IH}		2.4		$\mathrm{V} \mathrm{Cc}+0.3$	V
Output "Low" voltage	VOL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
Output "High" voltage	V OH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V

AC CHARACTERISTICS (Program Mode)

(VCC = 6.25 V $\pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.75 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Address setup time	tAS	2			$\mu \mathrm{~s}$	
Chip enable setup time	tCES	2			$\mu \mathrm{~s}$	
Output enable setup time	toES	2			$\mu \mathrm{~s}$	
Data setup time	tDS	2			$\mu \mathrm{~s}$	
Address hold time	taH	0			$\mu \mathrm{~s}$	
Data hold time	tDH	2			$\mu \mathrm{~s}$	
Chip enable to output float delay	tDF	0		150	ns	
Data valid from output enable	toE			150	ns	
VPP setup time	tVPS	2			$\mu \mathrm{~s}$	
VCC setup time	tvcs	2			$\mu \mathrm{~s}$	
Program pulse width	tpW	95	100	105	$\mu \mathrm{~s}$	1,2
Program pulse count	N	1		25	TIMES	

NOTES:

1. This width is defined by the Program Flowchart (Figure 6).
2. Programmable under conditions of add. program pulse count $3-\mathrm{N}, \mathrm{Vcc}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{tPW}=1 \mathrm{~ms} \pm 0.05 \mathrm{~ms}$

PROGRAMMING

Upon delivery from SHARP or after each erasure (see erasure section), the LH57128 and LH57128J have all $16,384 \times 8$ bits in the " 1 ", or high state. " 0 's" are loaded into the LH57128 and LH57128J through the procedure of programming.

The programming mode is entered when +12.75 V is applied to the VPP pin and $\overline{C E}$ is at VIL. A $0.1 \mu \mathrm{~F}$ capacitor between VPP and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data output pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH57128J to an ultra-violet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH57128J. This dosage can be obtained by exposure to an ultra-violet lamp (wave-length of 2,537 Angstroms (\AA)) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH57128J should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH57128J and similar devices will erase with light sources having wave-length shorter than 4,000 \AA.

Although erasure times will be much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH57128J and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

1. Vcc must be applied either coincidently or before VPP and removed either coincidently or after Vpp.
2. VPP must not be greater than 13.5 volts including overshoot.
3. During $\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IL}}$, VPP must not be switched from 5 volts to 12.75 volts or vice-versa.
4. Removing or inserting the device while 12.75 volts is supplied may harm the reliability of the device.

57128-5
Figure 5. Timing Diagram (Program Mode)

Figure 6. Programming Flowchart
($\mathrm{VCC}=\mathbf{6 . 2 5} \mathrm{V}, \mathrm{VPP}_{\mathrm{P}}=12.75 \mathrm{~V}, \mathrm{tPW}=0.1 \mathrm{~ms}$)

ORDERING INFORMATION

LH57128	X	- \#\#	
Device Type	$\overline{\text { Package }}$	$\overline{\text { Speed }}$	
			25250 Access Time (ns)
			$\left\{\begin{array}{l} \text { OTPROM } \\ \text { Blank 28-pin, 600-mil DIP (DIP28-P-600) } \\ \text { N 28-pin, 450-mil SOP (SOP28-P-450) } \\ \text { EPROM } \\ \text { J 28-pin, 600-mil CERDIP (WDIP28-G-600) } \end{array}\right.$

Example: LH57128J-25 (CMOS 128K (16K x 8) EPROM, $250 \mathrm{~ns}, 28$-pin, 600-mil CERDIP)

LH57254/J

FEATURES

- $32,768 \times 8$ bit organization
- Access times:

LH57254J: 70/90 ns
LH57254: 90 ns

- Single +5 V power supply
- High speed programming:

Compatible to INTEL intelligent programming ${ }^{\text {TM }}$ algorithm (128 second programming)

- Low power consumption:

Operating: 420 mW (MAX.)
Standby: 78.8 mW (MAX.)

- Fully static operation
- Three-state outputs
- TTL compatible I/O
- Pin compatible with i27256
- Packages:

EPROM
28-pin, 600-mil CERDIP
OTPROM
28-pin, 600-mil DIP

- JEDEC standard pinout

DESCRIPTION

ThE LH57254J is a CMOS UV erasable and electrically programmable read-only-memory organized as $32,768 \times 8$ bits. It is pin compatible with the Intel i27256, and designed to have fast access time.

The LH57254 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP and DIP Packages

Figure 2. LH57254/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{14}$	Address input	
$O_{0}-O_{7}$	Data output (input)	1
$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$	Chip Enable/Program input	
$\overline{\mathrm{OE}}$	Output Enable	

SIGNAL	PIN NAME	NOTE
VPP	Program power	
VCC	Power supply	
GND	Ground	

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathbf{O}_{0}-\mathrm{O}_{7}$	$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$	$\overline{\mathrm{OE}}$	$\mathrm{V} \mathbf{c c}$	V_{PP}
Read	Read	Data out	L	L	+5 V	+5 V
	Output disable	High-Z	L	H	+5 V	+5 V
	Standby	High-Z	H	X	+5 V	+5 V
Program	Program	Data in	L	H	+6 V	+12.5 V
	Program verify	Data out	H	L	+6 V	+12.5 V
	Program inhibit	High-Z	H	H	+6 V	+12.5 V

NOTE:

$X=H$ or $L, H=V_{I H}, L=V_{I L}$

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.6 to +7.0	V	1
	VPP	-0.6 to +13.5		
	VIN, VoUT	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	2
		-55 to +150		3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) (TA = $\mathbf{0}$ to +70 ${ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	VCC 2	4.75	5.0	5.25	V
	$\mathrm{~V}_{\text {PP }}$	4.75	5.0	5.25	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$	-0.1		0.8	V
Input "High" voltage	$\mathrm{V}_{\text {IH }}$	2.2		$\mathrm{VCC}_{\mathrm{C}}+0.3$	V

DC CHARACTERISTICS (Read Mode) (Vcc $=5 \mathrm{~V} \pm 5 \%, \mathrm{VPP}=\mathrm{Vcc}, \mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.1		0.8	V	
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V	
Output "Low" voltage	VOL	$\mathrm{loL}=16 \mathrm{~mA}$			0.45	V	
Output "High" voltage	VOH	$\mathrm{l} \mathrm{OH}=-4 \mathrm{~mA}$	2.4			V	
Input leakage current	lı	$\mathrm{V}_{\text {IN }}=$ GND or VCC	-10		10	$\mu \mathrm{A}$	
Output leakage current	loo	Vout = GND or Vcc	-10		10	$\mu \mathrm{A}$	
Vcc operating current	ICC1	$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$			80	mA	1,2
	ICC2	$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}=\mathrm{V}_{\text {IL }}$			80	mA	1, 3
VPP supply current	IPP	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{Cc}}$			100	$\mu \mathrm{A}$	
VPP pin voltage	VPP		Vcc - 0.4		Vcc	V	
Vcc standby current	ISB1	$\overline{C E} / \overline{\text { PGM }}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$			15	mA	4
	IsB2	$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IH}}$			30	mA	5

NOTES:

1. Minimum cycle time, lout $=0 \mathrm{~mA}$
2. $C M O S$ level: $V \operatorname{IN}=G N D \pm 0.3 \mathrm{~V}$ or $\mathrm{VCC} \pm 0.3 \mathrm{~V}$
3. TTL level: $V_{I L}$ or V_{H}
4. All inputs are fixed at CMOS level.
5. All inputs inputs are fixed at TTL level.

AC CHARACTERISTICS (Read Mode) (VCC $=\mathrm{VPP}_{\mathrm{PP}}=5 \mathrm{~V} \pm 5 \% . \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH57254J-70		$\begin{gathered} \text { LH57254J-90 } \\ \text { LH57254-90 } \end{gathered}$		UNIT
		MIN.	MAX.	MIN.	MAX.	
Address to output delay $\left(\overline{C E} / \mathrm{PGM}=\mathrm{V}_{\mathrm{IL}}\right)$	$t_{\text {ACC }}$		70		90	ns
$\overline{\mathrm{CE}}$ to output delay $\left(\overline{O E}=V_{I L}\right)$	tce		70		90	ns
$\overline{\mathrm{OE}}$ to output delay ($\overline{C E} / \overline{P G M}=V_{I L}$)	toe		25		30	ns
Output enable high to output float	tDF	0	25	0	30	ns
Address to output hold	toh	10		10		ns

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0 V to 3 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$1 \mathrm{~V}, 2 \mathrm{~V}$
Output reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

Figure 4. Output Load Circuit

CAPACITANCE ($\mathrm{TA}_{\mathrm{A}} \mathbf{= 2 5 ^ { \circ }} \mathbf{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		4	6	pF
Output capacitance	CouT	VOUT $=0 \mathrm{~V}$		8	12	pF

57254-4
Figure 3. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C} \pm \mathbf{5}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	5.75	6.0	6.25	V
	VPP^{2}	12.2	12.5	12.8	
Input "Low" voltage	V_{IL}	-0.1		0.45	V
Input "High" voltage	V_{IH}	2.4		$\mathrm{VCC}+0.3$	V

DC CHARACTERISTICS (Program Mode)

($\mathrm{Vcc}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	LI	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or 0.45 V	-10		10	$\mu \mathrm{A}$
Vcc supply current	lcc				80	mA
Vpp supply current	Ipp	$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}=\mathrm{V}_{\text {IL }}$			50	mA
Input "Low" voltage	V_{IL}		-0.1		0.45	V
Input "High" voltage	V_{IH}		2.4		$\mathrm{Vcc}+0.3$	V
Output "Low" voltage	VoL	$\mathrm{loL}=16 \mathrm{~mA}$			0.45	V
Output "High" voltage	VOH	$\mathrm{l} \mathrm{OH}=-4 \mathrm{~mA}$	2.4			V

AC CHARACTERISTICS (Program Mode)

($\mathrm{VCC}=6.0 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm \mathbf{5}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Address setup time	tas	2			$\mu \mathrm{s}$
Data setup time	tDs	2			$\mu \mathrm{s}$
Output enable setup time	toes	2			$\mu \mathrm{s}$
Address hold time	$\mathrm{t}_{\text {AH }}$	0			$\mu \mathrm{s}$
Data hold time	tDH	2			$\mu \mathrm{s}$
Output enable time	toe			150	ns
Output disable time	tDF	0		150	ns
VPP setup time	tvPs	2			$\mu \mathrm{s}$
Vcc setup time	tvcs	2			$\mu \mathrm{s}$
Program pulse width	tpw	0.95	1.0	1.05	$\mu \mathrm{s}$
Add $\overline{\text { PGM }}$ pulse width *	topw	2.85		78.75	ms
Program pulse count	N	1		25	TIMES

*This width is defined by the Program Flowchart (Figure 6).

PROGRAMMING

Upon delivery from SHARP or after each erasure (see erasure section), the LH57254 and LH57254J have all $32,768 \times 8$ bits in the "1", or high state. " 0 's" are loaded into the LH57254 and LH57254J through the procedure of programming.

The programming mode is entered when +12.5 V is applied to the VPP pin and $\overline{C E} / \overline{P G M}$ is at V_{IL}. A $0.1 \mu \mathrm{~F}$ capacitor between VPP and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH57254J to an ultra-violet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH57254J. This dosage can be obtained by exposure to an ultra-violet lamp (wave-length of 2,537 Angstroms (\AA)) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH57254J should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH57254J and similar devices will erase with light sources having wave-length shorter than $4,000 \AA$ A.

Although erasure times will be much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH57254J and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

1. Vcc must be applied either coincidently or before VPP and removed either coincidently or after VPP.
2. VPP must not be greater than 13.5 volts including overshoot.
3. During $\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}$ PP must not be switched from Vcc to 12.5 volts or vice-versa.
4. Removing or inserting the device while 12.5 volts is supplied may harm the reliability of the device.

57254-5
Figure 5. Timing Diagram (Program Mode)

Figure 6. Programming Flowchart

ORDERING INFORMATION

* EPROM Only

Example: LH57254J-70 (CMOS 256K (32K x 8) EPROM, 70 ns, 28 -pin, 600-mil CERDIP)

FEATURES

- $32,768 \times 8$ bit organization
- Access times:

LH57256J: 120/150 ns
LH57256: 150 ns

- Single +5 V power supply
- High speed programming:
$\mathrm{t}_{\mathrm{pw}}=0.1 \mathrm{~ms}(\mathrm{VPP}=12.75 \mathrm{~V})$ or
$\mathrm{t}_{\mathrm{pw}}=1 \mathrm{~ms}(\mathrm{VPP}=12.5 \mathrm{~V})$
Compatible to INTEL quick pulse programming ${ }^{\text {TM }}$ algorithm
(4 second programming)
- Low power consumption :

Operating: 165 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- Three-state outputs
- TTL compatible I/O
- Pin compatible with i27256
- Packages:

EPROM
28-pin, 600-mil CERDIP
OTPROM
28-pin, 600-mil DIP
28-pin, 300-mil SK-DIP
28-pin, 450-mil SOP

- JEDEC standard pinout (CERDIP/DIP)

DESCRIPTION

The LH57256J is a CMOS UV erasable and electrically programmable read-only-memory organized as $32,768 \times 8$ bits. It is pin compatible with the Intel i27256, and designed to have fast access time.

The LH57256 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP, DIP, SK-DIP, and SOP Packages

Figure 2. LH57256/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{14}$	Address input	
$O_{0}-O_{7}$	Data output (input)	1
$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}$	Chip Enable/Program input	
$\overline{\mathrm{OE}}$	Output Enable input	

SIGNAL	PIN NAME	NOTE
VPP	Program power	
VCC	Power supply	
GND	Ground	

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathrm{O}_{0}-\mathrm{O}_{7}$	CE/PGM	$\overline{O E}$	Vcc	Vpp
Read	Read	Data out	L	L	+5 V	+5 V
	Output disable	High-Z	L	H	+5 V	$+5 \mathrm{~V}$
	Standby	High-Z	H	X	+5V	+5V
Program	Program	Data in	L	H	+6.25 V	+12.75 V
	Program verify	Data out	H	L	+6.25 V	+12.75 V
	Program inhibit	High-Z	H	H	+6.25 V	+12.75 V

NOTE:

$X=H$ or $L, H=V_{I H}, L=V_{I L}$

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	Vcc	-0.6 to +7.0	V	1
	Vpp	-0.6 to +13.5		
	VIN, Vout	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	2
		-55 to +150		3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) (TA = 0 to $\mathbf{+ 7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{PP}}$	4.5	5.0	5.5	
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V

DC CHARACTERISTICS (Read Mode) (Vcc = $5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{VpP}=\mathrm{Vcc}, \mathrm{T}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	$V_{\text {IL }}$		-0.1		0.8	V	
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V	
Output "Low" voltage	VOL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V	
Output "High" voltage	VOH	$\mathrm{l} \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4			V	
Input leakage current	lıI	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {cc }}$	-10		10	$\mu \mathrm{A}$	
Output leakage current	llo	Vout $=$ GND or VCC	-10		10	$\mu \mathrm{A}$	
Vcc operating current	IcC1	$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$			30	mA	1,2
	ICC2	$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}=\mathrm{V}_{\text {IL }}$			30	mA	1,3
VPP supply current	lpp	$\mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$			100	$\mu \mathrm{A}$	
VPP pin voltage	VPP		Vcc - 0.4		Vcc	V	
Vcc standby current	ISB1	$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$	
	ISB2	$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IH}}$			2	mA	

NOTES:

1. Minimum cycle time, lout $=0 \mathrm{~mA}$
2. CMOS level: $\mathrm{VIN}=\mathrm{GND} \pm 0.3 \mathrm{~V}$ or $\mathrm{Vcc} \pm 0.3 \mathrm{~V}$
3. TTL level: $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathbb{H}}$

AC CHARACTERISTICS (Read Mode) (Vcc = VPP = $5 \mathrm{~V} \pm 10 \% . \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER		SYMBOL	LH57256J-12		LH57256J-15 LH57256-15		
				MIN.	MAX.	MIN.	MAX.
Address to output delay	tACC		120		150	ns	
$\overline{\mathrm{CE}}$ to output delay	tCE		120		150	ns	
$\overline{\text { OE }}$ to output delay	toE		25		30	ns	
Output enable high to output float	tDF	0	25	0	30	ns	
Address to output hold	tOH	0		0		ns	

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.45 V to 2.4 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$1 \mathrm{~V}, 2 \mathrm{~V}$
Output reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

* INCLUDES JIG AND SCOPE CAPACITANCES

Figure 4. Output Load Circuit
CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	C_{IN}	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		4	6	pF
Output capacitance	COUT 2	$\mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		8	12	pF

Figure 3. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) ($\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	5.75	6.25	6.5	V
	$\mathrm{VPP}_{\mathrm{P}}$	12.2	12.75	13.0	
Input "Low" voltage	V_{IL}	-0.1		0.45	V
Input "High" voltage	V_{IH}	2.4		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V

DC CHARACTERISTICS (Program Mode)

$\left(\mathrm{VCC}=5.75 \mathrm{~V}\right.$ to $6.5 \mathrm{~V}, \mathrm{VPP}=12.2 \mathrm{~V}$ to $13 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	ILI	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {cc }}$ or 0.45 V	-10		10	$\mu \mathrm{A}$
Vcc supply current	Icc				30	mA
Vpp supply current	Ipp	$\overline{\mathrm{CE}} / \overline{\mathrm{PGM}}=\mathrm{V}_{\text {IL }}$			30	mA
Input "Low" voltage	V_{IL}		-0.1		0.45	V
Input "High" voltage	V_{IH}		2.4		Vcc +0.3	V
Output "Low" voltage	VOL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
Output "High" voltage	V OH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V

AC CHARACTERISTICS (Program mode)

$\left(\mathrm{VCC}=6.25 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Address setup time	tas	2			$\mu \mathrm{s}$	
Data setup time	tDS	2			$\mu \mathrm{s}$	
Output enable setup time	toes	2			$\mu \mathrm{s}$	
Address hold time	$\mathrm{t}_{\text {AH }}$	0			$\mu \mathrm{s}$	
Data hold time	tDH	2			$\mu \mathrm{s}$	
Output enable time	toe			150	ns	
Output disable time	tDF	0		150	ns	
VPP setup time	tvPs	2			$\mu \mathrm{s}$	
$V_{\text {cC }}$ setup time	tvcs	2			$\mu \mathrm{s}$	
Program pulse width	tpw	95	100	105	$\mu \mathrm{s}$	1,2
Program pulse count	N	1		25	TIMES	

NOTES:

1. Programmable under conditions of add. program pulse count $3-\mathrm{N}, \mathrm{Vcc}=6 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{t}_{\mathrm{pw}}=1 \mathrm{~ms} \pm 0.05 \mathrm{~ms}$
2. This width is defined by the Program Flowchart (Figure 6).

Figure 5. Timing Diagram (Program Mode)

PROGRAMMING

Upon delivery from SHARP or after each erasure (see erasure section), the LH57256 and LH57256J have all $32,768 \times 8$ bits in the " 1 ", or high state. " 0 's" are loaded into the LH57256 and LH57256J through the procedure of programming.

The programming mode is entered when +12.75 V is applied to the VPP pin and CE/PGM is at VIL. A 0.1 $\mu \mathrm{F}$ capacitor between VPP and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8 -bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH57256J to an ultra-violet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH57256J. This dosage can be obtained by exposure to an ultra-violet lamp (wave-length of 2,537 Angstroms (\AA)) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH57256J should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH57256J and similar devices will erase with light sources having wave-length
shorter than $4,000 \AA$. Although erasure times will be much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH57256J and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

1. Vcc must be applied either coincidently or before Vpp and removed either coincidently or after Vpp.
2. VPP must not be greater than 13.5 volts including overshoot.
3. During $\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}$ IL, V PP must not be switched from Vcc to 12.75 volts or vice-versa.
4. Removing or inserting the device while 12.75 volts is supplied may harm the reliability of the device.

Figure 6. Programming Flowchart
($\mathrm{Vcc}=6.25 \mathrm{~V}, \mathrm{VPP}=12.75 \mathrm{~V}, \mathrm{tpW}=0.1 \mathrm{~ms}$)

ORDERING INFORMATION

FEATURES

- $65,536 \times 8$ bit organization
- Access times:

LH57512J: 120/150 ns
LH57512: 150 ns

- Single +5 V power supply
- High speed programming:

SHARP original programming algorithm (13 second programming)

- Low power consumption

Operating: 165 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- Three-state outputs
- TTL compatible I/O
- Pin compatible with $\mathbf{i} 27512$
- Packages:

EPROM
28-pin, 600-mil CERDIP
OTPROM
28-pin, 600-mil DIP
28 -pin, 450 -mil SOP

- JEDEC standard pinout (CERDIP/DIP)

DESCRIPTION

The LH57512J is a CMOS UV erasable and electrically programmable read-only-memory organized as $65,536 \times 8$ bits. It is pin compatible with the Intel i27512, and designed to have fast access time.

The LH57512 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP, DIP, and SOP Packages

Figure 2. LH57512/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{15}$	Address input	
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data output (input)	1
$\overline{\mathrm{CE}}$	Chip Enable input	

SIGNAL	PIN NAME	NOTE
$\overline{\mathrm{OE}} N_{\text {PP }}$	Output Enable/ Program power	
VCC	Power supply	
GND	Ground	

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathbf{O}_{0}-\mathbf{O}_{7}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}} \mathrm{~V}_{\mathbf{p p}}$	$\mathbf{V} \mathbf{c c}$
Read	Read	Data out	L	L	+5 V
	Output disable	High-Z	X	H	+5 V
	Standby	High-Z	H	X	+5 V
Program	Program	Data in	L	+12.75	+6.5 V
	Program verify	Data out	L	L	+6.5 V
	Program inhibit	High-Z	H	+12.75	+6.5 V

NOTE:

$X=H$ or $L, H=V_{I H}, L=V_{I L}$.

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	Vcc	-0.6 to +7.0	V	1
	$\overline{\mathrm{OE}} N_{\text {pp }}$	-0.6 to +13.5		
	Vin, Vout	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	2
		-55 to +150		3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) (TA $=0$ to $\mathbf{+ 7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V

DC CHARACTERISTICS (Read Mode) (Vcc =5V $\pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	VIL		-0.1		0.8	V	
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V	
Output "Low" voltage	Vol	$\mathrm{OL}=2.1 \mathrm{~mA}$			0.45	V	
Output "High" voltage	VOH	$\mathrm{loH}=-400 \mu \mathrm{~A}$	2.4			V	
Input leakage current	ILI	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\mathrm{V}_{\text {cc }}$	-10		10	$\mu \mathrm{A}$	
Output leakage current	lıO	$\mathrm{V}_{\text {OUT }}=$ GND or VCC	-10		10	$\mu \mathrm{A}$	
Vcc operating current	lcc1	$\overline{\mathrm{CE}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$			30	mA	1,2
	ICC2	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$			30	mA	1,3
Vcc standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {cc }} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$	
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			2	mA	

NOTES:

1. $f=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$
2. CMOS level: $\mathrm{VIN}=\mathrm{GND} \pm 0.3 \mathrm{~V}$ or $\mathrm{Vcc} \pm 0.3 \mathrm{~V}$
3. TTL level: $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{I}}$ or $\mathrm{V}_{\mathbb{H}}$

AC CHARACTERISTICS (Read Mode) (Vcc $=\mathrm{VpP}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $\mathbf{+ 7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	LH57512J-12		LH57512J-15 LH57512-15		UNIT
		MIN.	MAX.	MIN.	MAX.	
Address to output delay	tACC		120		150	ns
$\overline{\mathrm{CE}}$ to output delay	tCE		120		150	ns
$\overline{\text { OE } \text { to output delay }}$	tOE		40		50	ns
Output enable high to output float	tDF	0	40	0	50	ns
Address to output hold	tOH	0		0		ns

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.45 V to 2.4 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$1 \mathrm{~V}, 2 \mathrm{~V}$
Output reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

Figure 4. Output Load Circult

CAPACITANCE ($\mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1} \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{I N}}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		4	6	PF
Output capacitance	COUT	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		8	12	pF

Figure 3. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) ($\mathrm{TA}_{A}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.75		6.75	V
Program supply voltage	VPP	12.5		13.0	
Input "Low" voltage	V_{IL}	-0.1		0.45	V
Input "High" voltage	V_{IH}	2.4		VCC +0.3	V

DC CHARACTERISTICS (Program Mode)

(Vcc = 4.75 V to 6.75 V, VPP $=12.75 \mathrm{~V} \pm 0.25 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	lıI	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$ or 0.45 V	-10		10	$\mu \mathrm{A}$
Vcc supply current	Icc				30	mA
Vpp supply current	IPP	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$			50	mA
Input "Low" voltage	VIL		-0.1		0.45	V
Input "High" voltage	V_{IH}		2.4		Vcc +0.3	V
Output "Low" voltage	VoL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
Output "High" voltage	VOH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V

AC CHARACTERISTICS (Program Mode)

(Vcc = 4.75 V to 6.75 V, VPP =12.75 V $\pm 0.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Address setup time	tas	2			$\mu \mathrm{s}$
Data setup time	tDS	2			$\mu \mathrm{s}$
Output enable hold time	toen	2			$\mu \mathrm{s}$
Address hold time	$\mathrm{t}_{\text {AH }}$	0			$\mu \mathrm{s}$
Data hold time	tDH	2			$\mu \mathrm{s}$
$\overline{\mathrm{CE}}$ to output delay	tov	0		1	$\mu \mathrm{s}$
Output disable time	tDF	0		150	ns
Vpp setup time	tvps	2			$\mu \mathrm{s}$
Vpp recovery time	tva	2			$\mu \mathrm{s}$
Vcc setup time	tvcs	2			$\mu \mathrm{s}$
Program pulse width	tpw	95	100	105	$\mu \mathrm{s}$
Program pulse count	N	1		20	TIMES

57512-5
Figure 5. Timing Diagram (Program Mode)

PROGRAMMING

Upon delivery from SHARP, the LH57512 and LH57512J have all $65,536 \times 8$ bits in the " 1 ", or high state. "0's" are loaded into the LH57512 and LH57512J through the procedure of programming.

The programming mode is entered when appropriate pulses shown in the AC characteristics and timing diagram are applied to the $\overline{\mathrm{OE}} / \mathrm{VPP}$ pin and $\overline{\mathrm{CE}}$ pin. A 0.1 $\mu \mathrm{F}$ capacitor between $\overline{\mathrm{OE}} / \mathrm{VPP}$ and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH57512J to an ultra-violet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH57512J. This dosage can be obtained by exposure to an ultra-violet lamp (wave-length of 2,537 Angstroms (\AA)) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH57512J should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH57512J and similar devices will erase with light sources having wave-length shorter than $4,000 \AA$. Although erasure times will be much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH57512J and exposure to them should be prevented to realize maximum system reliability. If used
in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

1. Vcc must be applied either coincidently or before VPP and removed either coincidently or after VPP.
2. VPP must not be greater than 13.5 volts including overshoot.
3. During $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}} / \mathrm{V}_{\text {PP }}$ must not be switched from VCc to 12.75 volts or vice-versa.
4. Removing or inserting the device while 12.75 volts is supplied may harm the reliability of the device.

PRODUCT IDENTIFICATION MODE

LH57512/J enters a product identification mode by applying 12 V (Note 1) on A9 pin during a Read mode. Maker code is output on data output pins when all other address pins and control pins are set at VIL level (Note 2) during the product identification mode. Device code is output when A_{0} pin is set at $V_{I H}$ level. The programing condition or PROM writer can be set automatically by using this function.

Table 1. Product Identification Mode

SIGNAL	A_{0}	0_{7}	0_{6}	0_{5}	0_{4}	0_{3}	0_{2}	0_{1}	0_{0}	HEX
PIN	(10)	(19)	(18)	(17)	(16)	(15)	(13)	(12)	(11)	DATA
MAKER CODE	V_{IL}	1	0	1	1	0	0	0	0	B0
DEVICE CODE	V_{IH}	1	1	0	0	0	0	1	0	C2

NOTES:

1. $\mathrm{Ag}_{9}=12 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $A_{1}-A_{8}, A_{10}-A_{15}, \overline{C E}, \overline{O E} N_{P P}=V_{L L}$

Figure 6. Programming Flowchart

ORDERING INFORMATION

FEATURES

- $131,072 \times 8$ bit organization
- Access times:

LH571000J: 120/150 ns (MAX.) LH571000: 150 ns (MAX.)

- Single +5 V power supply
- High speed programming:

SHARP original programming algorithm (26 second programming)

- Low power consumption:

Operating: 220 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- Three-state outputs
- TTL compatible I/O
- Packages:

EPROM
32-pin, 600-mil CERDIP
OTPROM
32-pin, 600-mil DIP

- JEDEC standard 28-pin 1M mask ROM pinout

DESCRIPTION

The LH571000J is a CMOS UV erasable and electrically programmable read-only-memory organized as $131,072 \times 8$ bits.

The LH571000 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP and DIP Packages

571000-2
Figure 2. LH571000/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{16}$	Address input	
$O_{0}-O_{7}$	Data output (input)	1
$\overline{\mathrm{CE}}$	Chip Enable input	
$\overline{\mathrm{OE}}$	Output Enable input	
$\overline{\text { PGM }}$	Program input	

SIGNAL	PIN NAME	NOTE
VPP	Program power	
VCC	Power supply	
GND	Ground	
NC	Non connection	

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathrm{O}_{0}-\mathrm{O}_{7}$	$\overline{C E}$	$\overline{\mathbf{O E}}$	$\overline{\text { PGM }}$	Vcc	VPP
Read	Read	Data out	L	L	X	+5 V	+5 V
	Output disable	High-Z	L	H	X	+5 V	+5 V
	Standby	High-Z	H	X	X	+5V	+5 V
Program	Program	Data in	L	H	L	$+6.5 \mathrm{~V}$	+12.75 V
	Program verify	Data out	L	L	H	+6.5 V	+12.75 V
	Program inhibit	High-Z	H	X	X	+6.5 V	+12.75 V

NOTE:

$X=H$ or $L, H=V_{I H}, L=V_{I L}$

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.6 to +7.0	V	1
	V VP	-0.6 to +13.5		
	$\mathrm{~V}_{\mathrm{IN}}, \mathrm{V}_{\text {OU }}$	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	2
		-55 to +150		3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{PP}}$	-0.1		5.5	
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V

DC CHARACTERISTICS (Read Mode) (Vcc = $5 \mathrm{~V} \pm 10 \%, \mathrm{VPP}^{\mathrm{C}} \leq \mathrm{Vcc}, \mathrm{T}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	Unit	NOTE
Input "Low" voltage	VIL		-0.1		0.8	V	
Input "High" voltage	V_{IH}		2.2		$\begin{aligned} & V_{c c} \\ & +0.3 \end{aligned}$	V	
Output "Low" voltage	VOL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V	
Output "High" voltage	VOH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V	
Input load current	lı	$\mathrm{V}_{\text {IN }}=$ GND or Vcc	-10		10	$\mu \mathrm{A}$	
Output leakage current	llo	Vout $=$ GND or Vcc	-10		10	$\mu \mathrm{A}$	
Vcc operating current	Icc1	$\overline{\mathrm{CE}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$			40	mA	1,2
	Icc2	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$			40	mA	1,3
VPP supply current	IPP	$\mathrm{V}_{\mathrm{PP}} \leq \mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Vpp pin voltage	VPP		0.1		Vcc	V	
Vcc standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{Vcc} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$	2
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			2	mA	3

NOTES:

1. $f=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$
2. CMOS level: $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$ or $\mathrm{VCC} \pm 0.3 \mathrm{~V}$
3. TTL input: $V_{\mathbb{N}}=V_{\mathbb{I L}}$ or $V_{\mathbb{H}}$

AC CHARACTERISTICS (Read Mode) (VCC = $5 \mathrm{~V} \pm 10 \%$, $\mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH571000J-12		$\begin{aligned} & \text { LH571000J-15 } \\ & \text { LH571000-15 } \end{aligned}$		UNIT
		MIN.	MAX.	MIN.	MAX.	
Address to output delay	$t_{\text {Acc }}$		120		150	ns
$\overline{\mathrm{CE}}$ to output delay	tce		120		150	ns
$\overline{\mathrm{OE}}$ to output delay	toe		40		50	ns
Output disable high to output float	tDF	0	40	0	50	ns
Address to output hold	tor	0		0		ns

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.45 V to 2.4 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$1 \mathrm{~V}, 2 \mathrm{~V}$
Output reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

Figure 3. Output Load Circuit
CAPACITANCE ($\mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	C_{IN}	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		4	6	pF
Output capacitance	COUT	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		8	12	pF

Figure 4. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C} \pm \mathbf{5}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC 2	4.75		6.75	V
	VPP 2	12.5	12.75	13.0	
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.4		$\mathrm{VCC}_{\mathrm{C}}+0.3$	V

DC CHARACTERISTICS (Program Mode)

(Vcc = 4.75 V to 6.75 V, VPP = 12.75 V $\pm 0.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	ILI	$\mathrm{VIN}=\mathrm{VCC}$ or 0.45 V	-10		10	$\mu \mathrm{~A}$
VCc supply current	ICC				40	mA
VPP supply current	IPP	$\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IL}}$			50	mA
Input "Low" voltage	V_{IL}		-0.1		0.45	V
Input "High" voltage	V_{IH}		2.4		$\mathrm{VCC}_{\mathrm{C}}+0.3$	V
Output "Low" voltage	VOL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V
Output "High" voltage	V_{OH}	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V

AC CHARACTERISTICS (Program Mode)

(Vcc = 4.75 to 6.75 V, VPP = $12.75 \pm 0.25 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Address setup time	$t_{\text {AS }}$	2			$\mu \mathrm{s}$
Data setup time	tos	2			$\mu \mathrm{s}$
Output enable setup time	toes	2			$\mu \mathrm{s}$
Address hold time	$\mathrm{taH}_{\text {A }}$	0			$\mu \mathrm{s}$
Data hold time	toh	2			$\mu \mathrm{s}$
Data valid from output enable	toe			150	ns
Chip enable to output float delay	tbF	0		150	ns
Vpp setup time	tvPs	2			$\mu \mathrm{s}$
Vcc setup time	tves	2			$\mu \mathrm{s}$
Program pulse width *	tpw	95	100	105	$\mu \mathrm{s}$
Chip enable setup time	tces	2			$\mu \mathrm{s}$

[^5]

Figure 5. Timing Diagram (Program Mode)

PROGRAMMING

Upon delivery from SHARP or after each erasure (see Erasure section), the LH571000 and LH571000J have all $131,072 \times 8$ bits in the " 1 ", or high state. " 0 's" are loaded into the LH571000 and LH571000J through the procedure of programming.

The programming mode is entered when +12.75 V is applied to the VPP pin and $\overline{\text { CE }}$ is at VIL. A $0.1 \mu \mathrm{~F}$ capacitor between VPP and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH571000J to an ultra-violet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH571000J. This dosage can be obtained by exposure to an ultraviolet lamp (wave-length of 2,537 Angstroms (\AA)) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH571000J should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH571000J and similar devices will erase with light sources having wave-length shorter than $4,000 \AA$ A. Although erasure times will be
much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH571000J and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

1. Vcc must be applied either coincidently or before VPP and removed either coincidently or after VPP.
2. VPP must not be greater than 13.5 volts including overshoot.
3. During $\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{PP}}$ must not be switched from 5 volts to 12.75 volts or vice-versa.
4. Removing or inserting the device while 12.75 volts is supplied may harm the reliability of the device.

Figure 6. Programming Flowchart

ORDERING INFORMATION

LH571001/J

FEATURES

- $131,072 \times 8$ bit organization
- Access times:

LH571001J: 120/150 ns (MAX.)
LH571001: 150 ns (MAX.)

- Single +5 V power supply
- High speed programming:

SHARP original programming algorithm (26 second programming)

- Low power consumption:

Operating: 220 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- Three-state outputs
- TTL compatible I/O
- Packages:

EPROM
32-pin, 600-mil CERDIP
OTPROM
32-pin, 600-mil DIP

- JEDEC standard 28-pin 512K EPROM pinout

DESCRIPTION

The LH571001J is a CMOS UV erasable and electrically programmable read-only-memory organized as $131,072 \times 8$ bits.

The LH571001 is a one-time PROM packaged in plastic DIP.

PIN CONNECTIONS

Figure 1. Pin Connections for CERDIP and DIP Packages

Figure 2. LH571001/J Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{16}$	Address input	
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Data output (input)	1
$\overline{\mathrm{CE}}$	Chip Enable input	
$\overline{\mathrm{OE}}$	Output Enable input	
$\overline{\text { PGM }}$	Program input	

SIGNAL	PIN NAME	NOTE
VPP	Program power	
VCC	Power supply	
GND	Ground	
NC	Non connection	

NOTE:

1. $\mathrm{O}_{0}-\mathrm{O}_{7}$ pins are also used to input data to the column output controller through input buffers in programming mode.

TRUTH TABLE

MODE		$\mathbf{O}_{0}-\mathbf{O}_{7}$	$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\overline{\text { PGM }}$	VCc	$\mathrm{V}_{\text {pp }}$
Read	Read	Data out	L	L	X	+5 V	+5 V
	Output disable	High-Z	L	H	X	+5 V	+5 V
	Standby	High-Z	H	X	X	+5 V	+5 V
Program	Program	Data in	L	H	L	+6.5 V	+12.75 V
	Program verify	Data out	L	L	H	+6.5 V	+12.75 V
	Program inhibit	High-Z	H	X	X	+6.5 V	+12.75 V

NOTE:

$X=H$ or $L, H=V_{I H}, L=V_{I L}$

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{CC}	-0.6 to +7.0	V	1
	$\mathrm{~V}_{\mathrm{PP}}$	-0.6 to +13.5		
	$\mathrm{~V}_{\mathrm{IN}}$	-0.6 to +7.0		
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$	2
		-55 to +150		3

NOTES:

1. The maximum applicable voltage on any pin with respect to GND.

Maximum ratings are those values beyond which damage to the device may occur.
2. Applied to ceramic package.
3. Applied to plastic package.

RECOMMENDED OPERATING CONDITIONS (Read Mode) ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{PP}}$	-0.1		5.5	
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V

DC CHARACTERISTICS (Read Mode) (Vcc = $5 \mathrm{~V} \pm 10 \%, \mathrm{VPP}_{\mathrm{P}} \leq \mathrm{Vcc}, \mathrm{T}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	VIL		-0.1		0.8	V	
Input "High" voltage	V_{H}		2.2		Vcc +0.3	V	
Output "Low" voltage	VOL	$\mathrm{lOL}=2.1 \mathrm{~mA}$			0.45	V	
Output "High" voltage	VOH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V	
Input leakage current	lıI	$\mathrm{V}_{\mathrm{IN}}=$ GND or $\mathrm{V}_{\text {cc }}$	-10		10	$\mu \mathrm{A}$	
Output leakage current	lo	Vout = GND or Vcc	-10		10	$\mu \mathrm{A}$	
Vcc operating current	lcc1	$\overline{\mathrm{CE}}=\mathrm{GND} \pm 0.3 \mathrm{~V}$			40	mA	1,2
	lcc2	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$			40	mA	1, 3
VPP supply current	IPP	$\mathrm{V}_{\mathrm{PP}} \leq \mathrm{V}_{\mathrm{CC}}$			10	$\mu \mathrm{A}$	
VPP pin voltage	VPP		0.1		Vcc	V	
Vcc standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {cc }} \pm 0.3 \mathrm{~V}$			100	$\mu \mathrm{A}$	2
	ISB2	$\overline{C E}=\mathrm{V}_{\mathrm{IH}}$			2	mA	3

NOTES:

1. $f=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$
2. $C M O S$ input: $V_{I N}=G N D \pm 0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}} \pm 0.3 \mathrm{~V}$
3. $T T L$ input: $V_{\mathbb{I N}}=V_{\mathbb{I L}}$ or $\mathrm{V}_{\mathbb{H}}$

AC CHARACTERISTICS (Read Mode) (Vcc =5 V $\pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathbf{0}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH571001J-12		$\begin{aligned} & \text { LH571001J-15 } \\ & \text { LH571001-15 } \end{aligned}$		UNIT
		MIN.	MAX.	MIN.	MAX.	
Address to output delay	$t_{\text {Acc }}$		120		150	ns
$\overline{\mathrm{CE}}$ to output delay	tce		120		150	ns
$\overline{\mathrm{OE}}$ to output delay	toe		40		50	ns
Output disable high to output float	tDF	0	40	0	50	ns
Address to output hold	tor	0		0		ns

AC TEST CONDITIONS

PARAMETER	MODE
Input voltage amplitude	0.45 V to 2.4 V
Input rise/fall time	$\leq 10 \mathrm{~ns}$
Input reference level	$1 \mathrm{~V}, 2 \mathrm{~V}$
Output reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

* INCLUDES JIG AND SCOPE CAPACITANCES

Figure 3. Output Load Circult
CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	C_{IN}	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		4	6	pF
Output capacitance	COUT 2	$\mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		8	12	pF

Figure 4. Timing Diagram (Read Mode)

RECOMMENDED OPERATING CONDITIONS (Program Mode) (TA = $\mathbf{2 5}^{\circ} \mathrm{C} \pm \mathbf{5}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CL}	4.75		6.75	V
	$\mathrm{~V}_{\mathrm{PP}}$	12.5	12.75	13.0	
Input "Low" voltage	V_{IL}	-0.1		0.8	V
Input "High" voltage	V_{IH}	2.4		$\mathrm{VCC}_{\mathrm{I}}+0.3$	V

DC CHARACTERISTICS (Program Mode)

(VCC = 4.75 V to 6.75 V, VPP = 12.75 V $\pm 0.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input leakage current	lıI	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$ or 0.45 V	-10		10	$\mu \mathrm{A}$
VCC supply current	Icc				40	mA
VPP supply current	IpP	$\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\text {IL }}$			50	$\mu \mathrm{A}$
Input "Low" voltage	VIL		-0.1		0.45	V
Input "High" voltage	V_{IH}		2.4		VCC +0.3	V
Output "Low" voltage	VOL	$\mathrm{OL}=2.1 \mathrm{~mA}$			0.45	V
Output "High" voltage	VOH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V

AC CHARACTERISTICS (Program Mode)

(Vcc = 4.75 to $6.75 \mathrm{~V}, \mathrm{VPP}=12.75 \pm 0.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm \mathbf{5}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Address setup time	tAS	2			$\mu \mathrm{s}$
Data setup time	tbs	2			$\mu \mathrm{s}$
Output enable setup time	toes	2			$\mu \mathrm{s}$
Address hold time	$\mathrm{taH}^{\text {a }}$	0			$\mu \mathrm{s}$
Data hold time	tDH	2			$\mu \mathrm{s}$
Data valid from output enable	toe			150	ns
Chip enable to output float delay	tDF	0		150	ns
VPP setup time	tvPS	2			$\mu \mathrm{s}$
Vcc setup time	tves	2			$\mu \mathrm{s}$
Program pulse width*	tpw	95	100	105	$\mu \mathrm{s}$
Chip enable setup time	tces	2			$\mu \mathrm{s}$

*The pulse width is defined by the Program Flowchart (Figure 6).

Figure 5. Timing Diagram (Program Mode)

PROGRAMMING

Upon delivery from SHARP or after each erasure (see Erasure section), the LH571001 and LH571001J have all $131,072 \times 8$ bits in the "1", or high state. "0's" are loaded into the LH571001 and LH571001J through the procedure of programming.

The programming mode is entered when +12.75 V is applied to the VPP pin and CE is at VIL. A $0.1 \mu \mathrm{~F}$ capacitor between VPP and GND is needed to prevent excessive voltage transients, which could damage the device. The address to be programmed is applied to the proper address pins. 8-bit patterns are placed on the respective data pins. The voltage levels should be standard TTL levels.

ERASURE

In order to clear all locations of their programmed contents, it is necessary to expose the LH571001J to an ultra-violet light source. A dosage of 15 W -second $/ \mathrm{cm}^{2}$ is required to completely erase an LH571001J. This dosage can be obtained by exposure to an ultraviolet lamp (wave-length of 2,537 Angstroms ($(\hat{\AA})$) with intensity of $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 20 to 30 minutes. The LH571001J should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the LH571001J and similar devices will erase with light sources having wave-length shorter than $4,000 \AA$. Although erasure times will be
much longer than with UV sources at $2,537 \AA$, the exposure to fluorescent light and sunlight will eventually erase the LH571001J and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

CAUTION

Fluorescent light and sunlight contain UV rays which will erase the EPROM. To prevent deterioration of EPROM data due to UV rays, it is recommended that EPROMs should not be left under direct sunlight or fluorescent light, or the package window should be covered with an opaque material.

Care must be taken to avoid friction between package window and plastics or the like, as the resulting static-electric build-up may cause faulty operation.

1. Vcc must be applied either coincidently or before VPP and removed either coincidently or after VPP.
2. VPP must not be greater than 13.5 volts including overshoot.
3. During $\overline{\mathrm{CE}}=\overline{\mathrm{PGM}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{VPP}$ must not be switched from 5 volts to 12.75 volts or vice-versa.
4. Removing or inserting the device while 12.75 volts is supplied may harm the reliability of the device.

Figure 6. Programming Flowchart

ORDERING INFORMATION

GENERAL INFORMATION - 1

DYNAMIC RAMs - 2

PSEUDO STATIC RAMs - 3

STATIC RAMs - 4

MASK PROGRAMMABLE ROMS - 6

FIFO MEMORIES - 7

FIELD MEMORIES - 8

APPLICATION AND TECHNICAL INFORMATION - 9

PACKAGING - 10

LH2369

FEATURES

- $8,192 \times 8$ bit organization
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 330 mW (MAX.)
Standby: 220 mW (MAX.)

- Programmable $\mathrm{S}_{1} / \bar{S}_{1} / D C$ and $\mathrm{S}_{2} / \bar{S}_{2} / D C$ (Selectable CE or OE type)
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Package:

28-pin, 600-mil DIP

- JEDEC standard EPROM pinout

DESCRIPTION

The LH2369 is a mask programmable ROM organized as $8,192 \times 8$ bits. It is fabricated using silicon-gate NMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. LH2369 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{12}$	Address input	
$D_{0}-D_{7}$	Data output	
$S_{1} / \bar{S}_{1} / D C$	Function select/Don't care	1,2
$S_{2} / S_{2} / D C$	Output enable input	
$\overline{\mathrm{OE}}$		

SIGNAL	PIN NAME	NOTE
$\overline{\mathrm{CE}}$	Chip enable input	
VCC	Power supply (+5 V)	
GND	Ground	

NOTES:

1. Pin 26 and pin 27 are used to select either CE or OE by mask program.

The active level of these pins are also mask programmable. Selecting DC allows the chip to be active for both high and low levels applied to these pins. However, it is recommended to apply either a "High" or "Low" to the DC pin.
2.

	CE TYPE	OE TYPE
$\mathrm{S}_{1} / \overline{\bar{S}_{1}} / \mathrm{DC}$	$\mathrm{CE}_{1} / \overline{\mathrm{CE}} / 1 \mathrm{DC}$	$\mathrm{OE}_{1} / \overline{\mathrm{OE}} 1 / \mathrm{DC}$
$\mathrm{S}_{2} / \overline{\mathrm{S}}_{2} / \mathrm{DC}$	$\mathrm{CE}_{2} / \overline{\mathrm{CE}_{2}} / \mathrm{DC}$	$\mathrm{OE}_{2} / \overline{\mathrm{OE}}_{2} / \mathrm{DC}$

TRUTH TABLE

(1) TYPE 1 (CE TYPE OF S_{1} AND S_{2})

$\overline{\mathbf{C E}}$	$\mathrm{CE}_{1} / \overline{\mathrm{CE}}_{1}$	$\mathrm{CE}_{2} / \mathrm{CE}_{2}$	$\overline{\mathbf{O E}}$	MODE	$\mathrm{D}_{0}-\mathrm{D}_{7}$	SUPPLY CURRENT	NOTE
H	X	X	X	Non selected	High-Z	Standby (lsB)	1
X	L/H	X	X	Non selected	High-Z	Standby (ISB)	
X	X	L/H	X	Non selected	High-Z	Standby (lsB)	
L	H/L	H/L	H	Non selected	High-Z	Operating (lcc)	
L	H/L	H/L	L	Selected	Dout	Operating (lcc)	

(2) TYPE 2 (OE TYPE OF S_{1} AND S_{2})

$\overline{\mathbf{C E}}$	$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{OE}_{2} / \overline{\mathrm{OE}}_{\mathbf{2}}$	$\overline{\mathrm{OE}}$	MODE	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{\mathbf{7}}$	SUPPLY CURRENT	NOTE
H	X	X	X	Non selected	High-Z	Standby (ISB)	
L	L / H	X	X	Non selected	High-Z	Operating (Icc)	1
L	X	L / H	X	Non selected	High-Z	Operating (Icc)	
L	X	X	H	Non selected	High-Z	Operating (Icc)	
L	H / L	H / L	L	Selected	DouT	Operating (Icc)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	V_{IN}	-0.3 to +7.0	V	1
Output voltage	VouT	-0.3 to +7.0	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{0}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.0		Vcc +0.3	V		
Output "Low" voltage	VOL	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	V OH	$\mathrm{IOH}=-200 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	$\|\mathrm{loO}\|$	$\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	1	
Operating current	Icc	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns},$ outputs open		30	60	mA	2	
Standby current	ISB			20	40	mA	3	

NOTES:

1. $\overline{\mathrm{CE}} / \overline{\mathrm{OE}} / \overline{\mathrm{S}}_{1} / \overline{\mathrm{S}}_{2}=\mathrm{V}_{\mathrm{H}}$ or $\mathrm{S}_{1} / \mathrm{S}_{2}=\mathrm{V}_{\mathrm{IL}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE}_{1} / \overline{C E}_{1}=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}, \mathrm{CE}_{2} / \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}$ (CE type)
3. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathbb{H}}, \mathrm{CE}_{1} / \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathbb{I}} N_{\mathbb{H}}$ or $\mathrm{CE}_{2} / \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{I}} N_{\mathbb{H}}$ (CE type)

AC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	trc	200			ns	
Address access time	tAA			200	ns	
$\overline{C E}$ output delay time	tace			200	ns	
$\overline{O E}$ output delay time	toe			100	ns	
Chip enable to output in High-Z	tchz			60	ns	1
Output enable to output in High-Z	tohz.			60	ns	
Output hold time	toh	0			ns	

NOTE:

1. This is the time required for the output to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.2 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.0 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{I N}}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$			8	pF
Output capacitance	COUT	VOUT $=0 \mathrm{~V}$			12	pF

NOTE: Data becomes valid after $t_{A A}, t_{A C E}$ and $t_{O E}$ from address input, chip enable input and output enable input respectively have been met.

Figure 3. Type 1
(CE Type of $\mathrm{S}_{\mathbf{1}}$ and $\mathrm{S}_{\mathbf{2}}$)

NOTE: Data becomes valid after the $t_{A A}, t_{A C E}$ and $t_{O E}$ from address input, chip enable input and output enable input respectively have been met.

Figure 4. Type 2
(OE Type of S_{1} and S_{2})

ORDERING INFORMATION

FEATURES

- $16,384 \times 8$ bit organization
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 440 mW (MAX.)

- Mask-programmable chip enable $\mathrm{CE}_{0} / \overline{\mathrm{CE}} / \mathbf{/ N C}, \mathrm{CE}_{1} / \mathrm{CE}_{1} / \mathrm{NC}$
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Package:

28-pin, 600-mil DIP

- JEDEC standard EPROM pinout

DESCRIPTION

The LH23126 is a mask programmable ROM organized as $16,384 \times 8$ bits. It is fabricated using silicon-gate NMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. LH23126 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{13}$	Address input	
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data output	
$\mathrm{CE}_{0} / \overline{\mathrm{CE}}_{0} / \mathrm{NC}$	Chip enable input/non- connection	1
$\mathrm{CE}_{1} / \overline{\mathrm{CE}}_{1} / \mathrm{NC}$	Chip enable input/non- connection	1

SIGNAL	PIN NAME	NOTE
OE/OE	Output enable input	1
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. The active level and non-connection of $\mathrm{CE}_{0} / \overline{\mathrm{CE}} / \mathrm{NC}, \mathrm{CE}_{1} / \overline{\mathrm{CE}}_{1} / \mathrm{NC}, \mathrm{OE} / \overline{\mathrm{OE}}$ are mask programmable.

TRUTH TABLE

CE $0 / \overline{C E}_{0}$	$\mathrm{CE}_{1} / \overline{\mathrm{CE}}_{1}$	OE/ $\overline{O E}$	MODE	$\mathrm{D}_{0}-\mathrm{D}_{7}$	SUPPLY CURRENT	NOTE
L/H	X	X	Non selected	High-Z	Standby (lsB)	1
X	L/H	X				
H/L	H/L	L/H			Operating (lcc)	
H/L	H/L	H/L	Selected	Dout		

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	VIN	-0.3 to +7.0	V	1
Output voltage	VouT	-0.3 to +7.0	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = 0 to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5	5.5	V

DC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER		SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage		$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage		V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage		Vol	$\mathrm{lOL}=3.2 \mathrm{~mA}$			0.4	V		
Output "High" voltage		V OH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current		\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current		\| LLO		$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	1
Current consumption	Operating	Icc	$\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\mathrm{RC}}$ (MIN.)			80	mA	2	
	Standby	ISB				40	mA	3	

NOTES:

1. $\overline{\mathrm{CE}}_{0} / \overline{\mathrm{CE}_{1}} / \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{CE}_{0} / \mathrm{CE}_{1} / \mathrm{OE}=\mathrm{V}_{\mathrm{IL}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathbb{H}} / V_{\mathrm{IL}}, C E_{0} / \overline{C E}_{0}=\mathrm{V}_{\mathbb{H}} / V_{\mathrm{IL}}, \mathrm{CE}_{1} / \overline{C E}_{1}=\mathrm{V}_{\mathbb{H}} / V_{\mathrm{IL}}$, outputs open.
3. $\mathrm{CE} / 2 / \overline{\mathrm{CE}}_{0}=\mathrm{V}_{\mathrm{IL}} N_{\mathrm{IH}}$ or $\mathrm{CE}_{1} / \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}} N_{\mathrm{IH}}$

AC CHARACTERISTICS (VCC =5V $\pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	$t_{\text {RC }}$	200			ns	
Address access time	$t_{\text {AA }}$			200	ns	
Chip enable time	tace			200	ns	
Output enable time	toe			100	ns	
CE to output in High-Z	tchz			70	ns	1
OE to output in High-Z	tohz.			70	ns	
Output hold time	tor	10			ns	

NOTE:

1. This is the time required for the output to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.2 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.0 V
Output load condition	$1 \mathrm{TL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			8	pF
Output capacitance	Cout			10	pF

NOTE: Data becomes valid after $t_{A A}, t_{A C E}$ and $t_{O E}$ from address inputs, chip enable and output enable respectively have been met.

Figure 3. Timing Diagram

ORDERING INFORMATION

Example: LH23126D-20 (NMOS 128K (16K x 8) Mask Programmable ROM, 200 ns, 28-pin, 600-mil DIP)

FEATURES

- $32,768 \times 8$ bit organization
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 440 mW (MAX.)
Standby: 248 mW (MAX.)

- Programmable CE/ $\overline{\mathrm{CE}}$ and $\mathrm{OE} / \overline{\mathrm{OE}}$
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Package:

28-pin, 600-mil DIP

- JEDEC standard EPROM pinout

DESCRIPTION

The LH23255 is a mask programmable ROM organized as $32,768 \times 8$ bits. It is fabricated using silicon-gate NMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. LH23255 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Address input	
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data output	
$\mathrm{CE} / \overline{\mathrm{CE}}$	Chip enable input	1
OE/ $\overline{\mathrm{OE}}$	Output enable input	1

SIGNAL	PIN NAME	NOTE
VCC	Power supply (+5 V)	
GND	Ground	
NC	Non connection	

NOTE:

1. The active level of $C E / \overline{C E}$ and $O E / \overline{O E}$ are mask programmable.

TRUTH TABLE

CE/CE	OE/ $\overline{O E}$	MODE	$\mathrm{D}_{0}-\mathrm{D}_{7}$	SUPPLY CURRENT	NOTE
L/H	X	Non selected	High-Z	Standby (lsB)	1
H/L	L/H			Operating (Icc)	
	H/L	Selected	Dout		

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	VIN^{2}	-0.3 to +7.0	V	
Output voltage	VouT	-0.3 to +7.0	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{0}$ to $\boldsymbol{+ 7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5	5.5	V

DC CHARACTERISTICS (Vcc =5 V $\pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER		SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage		$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage		V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage		Vol	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V		
Output "High" voltage		VOH	$\mathrm{l} \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current		\| lis		$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current		\| LLO ${ }^{\text {l }}$	Vout $=0$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	1	
Current consumption	Operating	Icc	$\mathrm{t}_{\text {RC }}=\mathrm{t}_{\text {RC }}(\mathrm{MIN}$.			80	mA	2	
	Standby	ISB	$\mathrm{CE}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			45	mA		

NOTES:

1. $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$ or $\mathrm{CE} / \mathrm{OE}=\mathrm{V}_{\mathrm{IL}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, C E=\mathrm{V}_{\mathrm{IH}}$, outputs open

AC CHARACTERISTICS (VCC =5 V $\pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	tre	200			ns	
Access time	$t_{\text {AA }}$			200	ns	
Chip enable time	tace			200	ns	
Output enable time	toe			80	ns	
CE to output in High-Z	tchz			80	ns	1
OE to output in High-Z	tohz.			80	ns	
Output hold time	toh	10			ns	

NOTE:

1. This is the time required for the output to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIIN			8	pF
Output capacitance	Cour			10	pF

NOTE: Data becomes valid after $t_{A A}, t_{A C E}$, and $t_{D E}$ from address inputs, chip enable and output enable, respectively have been met.

Figure 3. Timing Diagram

ORDERING INFORMATION

Example: LH23255D-20 (NMOS 256K (32K x 8) Mask Programmable ROM, $200 \mathrm{~ns}, 28-\mathrm{pin}, 600-\mathrm{mil}$ DIP)

FEATURES

- $65,536 \times 8$ bit organization
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 550 mW (MAX.)
Standby: 110 mW (MAX.)

- Programmable CE/ $\overline{\mathrm{CE}}$ and $\mathrm{OE} / \overline{\mathrm{OE}}$
- Fully static operation (No clock required)
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Package:

28-pin, 600-mil DIP

- JEDEC standard EPROM pinout

DESCRIPTION

The LH23512 is a mask programmable ROM organized as $65,536 \times 8$ bits. It is fabricated using silicon-gate NMOS process technology.

PIN CONNECTIONS

28-PIN DIP TOP VIEW

Figure 1. Pin Connections for DIP Package

Figure 2. LH23512 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{15}$	Address input	
$D_{0}-D_{7}$	Data output	
CE/CE	Chip enable input	1

SIGNAL	PIN NAME	NOTE
OE/ $\overline{O E}$	Output enable input	1
Vcc	Power supply (+5 V)	
GND	Ground	

NOTE:

1. The active level of $C E / \overline{C E}$ and $O E / \overline{O E}$ are mask programmable.

TRUTH TABLE

CE/CE	$\overline{O E / \overline{O E}}$	MODE	D $_{\mathbf{0}}-\mathrm{D}_{\mathbf{7}}$	SUPPLY CURRENT	NOTE
L / H	X	Non selected	High-Z	Standby (ISB)	1
H / L	L / H	Non selected	High-Z	Operating (ICC)	
H / L	H / L	Selected	Dout	Operating (ICc)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	VIN	-0.3 to +7.0	V	1
Output voltage	Vout	-0.3 to +7.0	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{0}$ to $+\mathbf{7 0}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5	5.5	V

DC CHARACTERISTICS (VCC =5V $\pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER		SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage		$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage		V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage		Vol	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage		V OH	$\mathrm{l} \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current		\| ILII	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$		
Output leakage current		\| LLO		$\mathrm{V}_{\text {Out }}=0$ to V cc			10	$\mu \mathrm{A}$	1
Current consumption	Operating	Icc	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$			100	mA	2	
	Standby	ISB	CE $\leq \mathrm{V}_{\text {IL }}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\text {IH }}$			20	mA		

NOTES:

1. $\overline{C E} / \overline{O E}=V_{I H}$ or $C E / O E=V_{I L}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} / V_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, C E=\mathrm{V}_{\mathrm{IH}}$, outputs open

AC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	$t_{\text {RC }}$	200			ns	
Address access time	$t_{\text {AA }}$			200	ns	
Chip enable time	tace			200	ns	
Output enable time	toe			80	ns	
Output floating time	tchz			80	ns	1
	tohz			80	ns	
Output hold time	tor	10			ns	

NOTE:

1. This is the time required for the output to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			8	pF
Output capacitance	COUT			10	pF

NOTE: Data becomes valid after $t_{A A}, t_{A C E}$, and $t_{O E}$ from address inputs, chip enable and output enable respectively have been met.

Figure 3. Timing Diagram

ORDERING INFORMATION

Example: LH23512D-20 (NMOS 512K (64K x 8) Mask Programmable ROM, $200 \mathrm{~ns}, 28$-pin, 600-mil DIP)

FEATURES

- $131,072 \times 8$ bit organization
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 550 mW (MAX.)

- Programmable $O E / \overline{O E}$
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Package:

28-pin, 600-mil DIP

- Mask ROM specific pinout

DESCRIPTION

The LH231000B is a mask programmable ROM organized as $131,072 \times 8$ bits. It is fabricated using silicon-gate NMOS process technology.

PIN CONNECTIONS

28-PIN DIP
TOP VIEW

231000B-1
Figure 1. Pin Connections for DIP Package

231000B-2
Figure 2. LH231000B Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{16}$	Address input	
$D_{0}-D_{7}$	Data output	
$\overline{C E} / O E / \overline{O E}$	Chip enable or Output enable input	1

SIGNAL	PIN NAME	NOTE
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. The $\overline{C E} / O E / \overline{O E}$ function is mask programmable.

TRUTH TABLE

$\mathbf{O E} / \overline{\mathbf{O E}}$	MODE	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{7}}$	SUPPLY CURRENT
\mathbf{L} / H	Non selected	High-Z	Operating (Icc)
H / L	Selected	Dout	Operating (lcc)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	V IN	-0.3 to +7.0	V	
Output voltage	VouT	-0.3 to +7.0	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA $=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5	5.5	V

DC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER		SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage		$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage		V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage		VoL	$\mathrm{lOL}=1.6 \mathrm{~mA}$			0.4	V		
Output "High" voltage		VOH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current		\| lil		$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current		\| LLO		Vout $=0$ to Vcc			10	$\mu \mathrm{A}$	1
Current consumption	Operating	Icc	$\mathrm{tRC}^{\text {a }}$ tRC (MIN.)			100	mA	2	

NOTES:

1. $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{OE}=\mathrm{V}_{\mathrm{IL}}$
2. $V_{\mathbb{I N}}=V_{\mathbb{H}} V_{\mathbb{I L}}$, outputs open

AC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	tRC	200			ns	
Access time	tAA			200	ns	
Output enable time	toE			80	ns	
Output floating time	toHz			80	ns	1
Ouput hold time	toH	10			ns	

NOTE:

1. This is the time required for the output to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TLL}+100 \mathrm{pF}$

CAPACITANCE (Vcc = $5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIN $^{\prime}$			8	pF
Output capacitance	COUT			12	pF

NOTE: Data becomes valid after $t_{A A}$ and $t_{O E}$ from address inputs, chip enable and output enable, respectively have been met.

Figure 3. Timing Diagram

ORDERING INFORMATION

Example: LH231000BD-20 (NMOS 1M (128K x 8) Mask Programmable ROM, 200 ns, 28 -pin, 600 -mil DIP)

FEATURES

- $131,072 \times 8$ bit organization
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 550 mW (MAX.)

- Mask-programmable $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$ and $\mathrm{OE}_{2} / \overline{\mathrm{OE}}_{2} / \mathrm{DC}$
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Package:

32-pin, 600-mil DIP
(32-pin compatible to 28 -pin 1M mask ROM specific pinout)

DESCRIPTION

The LH231100B is a mask programmable ROM organized as $131,072 \times 8$ bits. It is fabricated using silicon-gate NMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. LH231100B Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{16}$	Address input	
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data output	
$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$	$\begin{array}{l}\text { Output enable input or } \\ \mathrm{OE} \\ \hline\end{array} \mathrm{OE}_{2} / \mathrm{DC}$	1
Don't Care connection		

SIGNAL	PIN NAME	NOTE
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. Active level of output enable is mask programmable. When DC is selected, it is fixed to an active level. (However, it is recommended to apply either "High" or "Low" to the DC pin).

TRUTH TABLE

$\overline{O E}$	$\mathrm{OE}_{1} / \overline{O E}_{1}$	$\mathrm{OE}_{2} / \overline{\mathrm{OE}}_{2}$	MODE	$\mathrm{D}_{0}-\mathrm{D}_{7}$	SUPPLY CURRENT	NOTE
H	X	X	Non selected	High-Z	Operating (lcc)	1
X	L/H	X				
X	X	L/H				
L	H/L	H/L	Selected	Dout		

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	VIN	-0.3 to +7.0	V	
Output voltage	VouT	-0.3 to +7.0	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{0}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (Vcc =5 V $\pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$V_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	VoL	$\mathrm{lOL}=1.6 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	\| loo		$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to V CC			10	$\mu \mathrm{A}$	1
Operating current	Icc	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$			100	mA	2	

NOTES:

1. $\overline{\mathrm{OE}} / \overline{\mathrm{OE}}_{1} / \overline{\mathrm{OE}}_{2}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{OE}_{1} / \mathrm{OE}_{2}=\mathrm{V}_{\mathrm{IL}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}} / V_{\mathrm{IL}}$, outputs open

AC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	tRC	200			ns	
Address access time	tAA			200	ns	
Output enable access time	toE			80	ns	
Output hold time	toH	10			ns	
OE to output in High-Z	tohz			80	ns	1

NOTE:

1. This is the time required for the output to become high impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TLL}+100 \mathrm{pF}$

CAPACITANCE (Vcc =5 V $\pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			8	pF
Output capacitance	CouT			12	pF

NOTE: Data becomes valid after $t_{A A}, t_{A C E}$, and $t_{O E}$ from address inputs, chip enable and output enable, respectively have been met.

Figure 3. Timing Diagram

ORDERING INFORMATION

Example: LH231100BD-20 (NMOS 1M (128K x 8) Mask Programmable ROM, $200 \mathrm{~ns}, 32$-pin, 600 -mil DIP)

LH53259

CMOS 256K (32K $\times 8$) Mask Programmable ROM

FEATURES

- $32,768 \times 8$ bit organization
- Access time: 150 ns (MAX.)
- Low power consumption:

Operating: 110 mW (MAX.)
Standby: $82.5 \mu \mathrm{~W}$ (MAX.)

- Programmable output enable
- Static operation (Internal sync. system)
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

28-pin, 600-mil DIP
28-pin, 450-mil SOP
44 -pin, $10 \times 10 \mathrm{~mm}^{2}$ QFP

- JEDEC standard EPROM pinout (DIP)

DESCRIPTION

The LH53259 is a mask programmable ROM organized as $32,768 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SOP, and QFP Packages

NOTE: Pin numbers apply to the 28 -pin DIP or 28 -pin SOP.
53259-2
Figure 2. LH53259 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{14}$	Address input	
$D_{0}-D_{7}$	Data output	
$\overline{\mathrm{CE}}$	Chip enable input	
OE/̄E	Output enable input	1

SIGNAL	PIN NAME	NOTE
VCC	Power supply (+5 V)	
GND	Ground	
NC	Non connection	

NOTE:

1. The active level of $\mathrm{OE} / \overline{\mathrm{OE}}$ is mask programmable.

TRUTH TABLE

$\overline{\mathbf{C E}}$	OE/ $\overline{O E}$	MODE	D_{0} - D_{7}	SUPPLY CURRENT	NOTE
H	X	Non selected	High-Z	Standby	1
L	L/H			Operating	
	H/L	Selected	Dout		

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{CC}	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}_{\mathrm{Cl}}+0.3$	V	
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = 0 to $\mathbf{+ 7 0}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (Vcc =5 V $\pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V	
Input "High" voltage	$\mathrm{V}_{\text {IH }}$		2.2		VCC +0.3	V	
Output "Low" voltage	VOL	$\mathrm{lOL}=1.6 \mathrm{~mA}$			0.4	V	
Output "High" voltage	VOH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V	
Input leakage current	\| lut	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	$\mid \mathrm{log}$ \|	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	1
Operating current	Icc1	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			20	mA	2
	Icc2	$\mathrm{t}_{\text {RC }}=1 \mu \mathrm{~s}$			15		
	lcc3	$\mathrm{t}_{\text {RC }}=150 \mathrm{~ns}$			15	mA	3
	Icc4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			10		
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\text {IH }}$			2	mA	
	ISB2	$\overline{\mathrm{CE}}=\mathrm{VCC}-0.2 \mathrm{~V}$			15	$\mu \mathrm{A}$	

NOTES:

1. $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}=\mathrm{V}_{\mathbb{H}}$ or $\mathrm{OE}=\mathrm{VIL}$
2. $V_{I N}=V_{I H} V_{\text {IL }}, \overline{C E}=V_{\text {IL }}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{V} c \mathrm{C}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

AC CHARACTERISTICS (Vcc = $5 \mathrm{~V} \pm 10 \%$, $\mathrm{TA}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	$t_{\text {RC }}$	150			ns	
Address access time	$t_{\text {AA }}$			150	ns	
Chip enable access time	$t_{\text {ace }}$			150	ns	
Output enable time	toe	10		80	ns	
Output hold time	toh	5			ns	
$\overline{\text { CE }}$ to output in High-Z	tchz			70	ns	
OE to output in High-Z	tohz.			70	ns	

NOTE:

1. This is the time required for the output to become high impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TLL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIN $^{\prime}$			10	pF
Output capacitance	COUT			10	pF

NOTE: Data becomes valid after the intervals $t_{A A}, t_{A C E}$, and $t_{O E}$ from address inputs, chip enable and output enable, respectively have been met.

Figure 3. Timing Diagram

OPERATION IMMEDIATELY AFTER POWER UP

To ensure valid data immediately after power up and once the supply is stable, perform one of the following operations:

1. If the Chip Enable ($\overline{\mathrm{CE}}$) was high during power up, switch the $\overline{\mathrm{CE}}$ input from HIGH to LOW. (tace) or
2. Change one or more addresses if the $\overline{\mathrm{CE}}$ input was LOW at power up. (t_{AA})

The valid data will be output at tace or taA following a transition from the above operations (1) or (2).

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and the GND pin.

NOTE: t_{1} and $t_{2}=70 \mathrm{~ns}$ (MIN.)
Figure 4. Power On With $\overline{\mathrm{CE}}$ Inactive

Figure 5. Power On With CE Active

ORDERING INFORMATION

LH53259	X	- \#\#	
Device Type	$\overline{\text { Package }}$	$\overline{\text { Speed }}$	
			15150 Access Time (ns)
			$\begin{cases}\text { D } & \text { 28-pin, } 600-\mathrm{mil} \text { DIP (DIP28-P-600) } \\ \text { N } & 28-\mathrm{pin}, 450-\mathrm{mil} \mathrm{SOP} \mathrm{(SOP28-P-450)} \\ \text { M } & 44-\mathrm{pin}, 10 \times 10 \mathrm{~mm}^{2} \text { QFP (QFP44-P-1010) }\end{cases}$

Example: LH53259D-15 (CMOS 256K (32K x 8) Mask Programmable ROM, 150 ns, 28 -pin, 600 -mil DIP)

FEATURES

- $65,536 \times 8$ bit organization
- Access time: 150 ns (MAX.)
- Low power consumption:

Operating: 195 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Programmable output enable
- Static operation (Internal sync. system)
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

28-pin, 600-mil DIP
28-pin, 450-mil SOP
32-pin, 525 -mil SOP
44 -pin, $10 \times 10 \mathrm{~mm}^{2}$ QFP

- JEDEC standard EPROM pinout (DIP)

PIN CONNECTIONS

Figure 1. Pin Connections for SOP Package

DESCRIPTION

The LH53515 is a mask programmable ROM organized as $65,536 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

Figure 2. Pin Connections for DIP, SOP, and QFP Packages

Figure 3. LH53515 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{15}$	Address input	
$D_{0}-D_{7}$	Data output	
$\overline{C E}$	Chip enable input	

SIGNAL	PIN NAME	NOTE
OE/OE	Output enable input	1
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. Active level of $O E / \overline{O E}$ is mask programmable.

TRUTH TABLE

$\overline{\mathbf{C E}}$	OE/OE	MODE	D $_{0}-\mathrm{D}_{7}$	CURRENT CONSUMPTION	NOTE
H	X	Non selected	High-Z	Standby(lsB)	1
L	$\mathrm{~L} / \mathrm{H}$				
	H / L	Selected	DouT		

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V $_{\text {CC }}$	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}_{\mathrm{CC}}+0.3$	V	1
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	VIL		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	VOL	$\mathrm{lOL}=1.6 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{loh}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	$\mid \mathrm{log}$ \|	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to VCC			10	$\mu \mathrm{A}$	1	
Operating current	Icci	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			35	mA	2	
	lcc2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			25			
	Icc3	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			30	mA	3	
	IcC4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			20			
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			2	mA		
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$			100	$\mu \mathrm{A}$		

NOTES:

1. $\mathrm{OE}=\mathrm{V}_{\mathrm{IL}}$ or $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
2. $V_{I N}=V_{\mathbb{H}} / V_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{N}}=(\mathrm{Vcc}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

AC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	$t_{\text {R }}$		150			ns	
Address access time	$t_{A A}$				150	ns	
Chip enable access time	tace				150	ns	
Output enable time	toe		10		80	ns	
Output hold time	tor		5			ns	
$\overline{\mathrm{CE}}$ to output in High-Z	tchz				70	ns	1
OE to output in High-Z	tohz				70	ns	1

NOTE:

1. This is the time required for the output to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TLL}+100 \mathrm{pF}$

CAPACITANCE (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIIN^{2}			10	pF
Output capacitance	Cout			10	pF

NOTE: Data becomes valid after the intervals $t_{A A}, t_{A C E}$, and t_{OE} from address
input, chip enable and output enable, respectively have been met. input, chip enable and output enable, respectively have been met.

Figure 4. Timing Diagram

OPERATION IMMEDIATELY AFTER POWER UP

To ensure valid data immediately after power up and once the supply is stable, perform one of the following operations:

1. If the Chip Enable ($\overline{\mathrm{CE}}$) was high during power up, switch the $\overline{\mathrm{CE}}$ input from HIGH to LOW. (tACE) or
2. Change one or more addresses $A_{2}-A_{15}$ if the $\overline{\mathrm{CE}}$ input was LOW at power up. (t_{AA})

The valid data will be output at tace or taA following a transition from the above operations (1) or (2).

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and GND.

Figure 5. Power On With $\overline{C E}$ Inactive

Figure 6. Power On With CE Active

ORDERING INFORMATION

Example: LH53515D-15 (CMOS 512K ($64 \mathrm{~K} \times 8$) Mask Programmable ROM, $150 \mathrm{~ns}, 28$-pin, 600 -mil DIP)

FEATURES

- $65,536 \times 16$ bit organization
- Access time: 55 ns (MAX.)
- Power consumption:

Operating: 660 mW (MAX.)
Standby: 440 mW (MAX.)

- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

40-pin, 600-mil DIP
40-pin, 525-mil SOP

- JEDEC standard EPROM pinout (DIP)

DESCRIPTION

The LH53H1000 is a high speed mask programmable ROM organized as $65,536 \times 16$ bits ($1,048,576$ bits). It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

40-PIN DIP 40-PIN SOP				TOP VIEW
	NC \square	40	$\square V_{c c}$	
	$\overline{C E} \square 2$	39	$\square \mathrm{NC}$	
	$\mathrm{D}_{15} \square 3$	48	$\square \mathrm{NC}$	
	$D_{14} \square 4$	37	$\square A_{15}$	
	$D_{13} \square 5$	36	$\square A_{14}$	
	$\mathrm{D}_{12} \square 6$	35] A_{13}	
	$\mathrm{D}_{11} \square 7$	34	$\square A_{12}$	
	$\mathrm{D}_{10} \square 8$	33	$\square A_{11}$	
	$\mathrm{D}_{9} \square 9$	32	$\square A_{10}$	
	$\mathrm{D}_{8} \square 10$	31	$\square A_{9}$	
	GND -11	30	$\square \mathrm{GND}$	
	$\mathrm{D}_{7} \square_{12}$	29	$\square A_{8}$	
	$\mathrm{D}_{6} \square 13$	28	$\square A_{7}$	
	$\mathrm{D}_{5} \square 14$	27	$\square A_{6}$	
	$\mathrm{D}_{4} \square 15$	26	$\square A_{5}$	
	$D_{3} \square 16$	25	$\square A_{4}$	
	$\mathrm{D}_{2}-17$	24	$\square A_{3}$	
	$\mathrm{D}_{1} \square_{18}$	23	$\square A_{2}$	
	$\mathrm{D}_{0} \square_{19}$	22	$\square A_{1}$	
	OE■ 20		$\square A_{0}$	

Figure 1. Pin Connections for DIP and SOP Packages

Figure 2. LH53H1000 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$A_{0}-A_{15}$	Address input
$D_{0}-D_{15}$	Data output
$\overline{C E}$	Chip Enable input

SIGNAL	PIN NAME
$\overline{\text { OE }}$	Output Enable input
Vcc	Power supply (+5 V)
GND	Ground

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	MODE	$\mathbf{D}_{\mathbf{0}}-\mathrm{D}_{\mathbf{1}}$	SUPPLY CURRENT	NOTE
\mathbf{H}	\mathbf{X}	Non selected	High-Z	Standby (ISB)	1
L	H	Non selected	High-Z	Operating (ICC)	
L	L	Selected	Dout	Operating (ICc)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	VIN	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	VouT	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{0}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC =5 V $\pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	VIL		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	Vol	$\mathrm{lOL}=3.2 \mathrm{~mA}$			0.4	V		
Output "High" voltage	V OH	$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	\| llo		Vout $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	1
Operating current	Icc1	$\mathrm{t}_{\mathrm{RC}}=55 \mathrm{~ns}$			120	mA	2	
	ICC2	$\mathrm{t}_{\mathrm{RC}}=55 \mathrm{~ns}$			110		3	
Standby current	ISB	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			2	mA		

NOTES:

1. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{V} c \mathrm{C}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

AC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	$t_{\text {R }}$	55			ns	
Address access time	$t_{\text {AA }}$			55	ns	
Chip enable time	tace			55	ns	
Output enable delay time	toe			25	ns	
Output hold time	toh	0			ns	
CE to output in High-Z	tchz			25	ns	
OE to output in High-Z	tohz.			25	ns	

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0 V to 3.0 V
Input rise/fall time	5 ns
Input reference level	1.5 V
Output load condition	$1 \mathrm{TTL}+30 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			10	pF
Output capacitance	COUT			10	pF

NOTE: Data becomes valid after the intervals $t_{A A}, t_{A C E}$, and $t_{O E}$ from address input and output enable input, respectively have been met.

Figure 3. Timing Diagram

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and GND.

ORDERING INFORMATION

Example: LH53H1000D-55 (CMOS 1M (64K x 16) Mask Programmable ROM, $55 \mathrm{~ns}, 40$-pin, 600 -mil DIP)

FEATURES

- $131,072 \times 8$ bit organization
- Access time: 35 ns (MAX.)
- Power consumption:

Operating: 660 mW (MAX.)
Standby: 440 mW (MAX.)

- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

32-pin, 600-mil DIP
32-pin, 525-mil SOP

- JEDEC standard EPROM pinout (DIP)

DESCRIPTION

The LH53H1100 is a high speed mask programmable ROM organized as $131,072 \times 8$ bits ($1,048,576$ bits). It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

| 32-PIN DIP |
| :---: | :---: | :---: |
| 32-PIN SOP |\quad TOP VIEW

Figure 1. Pin Connections for DIP and SOP Packages

$53 \mathrm{H} 1100-2$
Figure 2. LH53H1100 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$A_{0}-A_{16}$	Address input
$D_{0}-D_{7}$	Data output
$\overline{\mathrm{CE}}$	Chip Enable input

SIGNAL	PIN NAME
$\overline{\mathrm{OE}}$	Output Enable input
VCC	Power supply (+5 V)
GND	Ground

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	MODE	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{7}}$	SUPPLY CURRENT	NOTE
H	\mathbf{X}	Non selected	High-Z	Standby (ISB)	$\mathbf{1}$
L	H	Non selected	High-Z	Operating (ICC)	
L	L	Selected	Dout	Operating (ICC)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{CC}	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	$\mathrm{VOUT}_{\mathrm{CO}}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = 0 to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to +70 ${ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	VOL	$\mathrm{lOL}=3.2 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{IOH}=-1.0 \mathrm{~mA}$	2.4			V		
Input leakage current	\| lıi		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	\| lio		Vout $=0 \mathrm{~V}$ or Vcc			10	$\mu \mathrm{A}$	1
Operating current	IcC1	$\mathrm{t}_{\mathrm{RC}}=35 \mathrm{~ns}$			120	mA	2	
	ICC2	$\mathrm{t}_{\mathrm{RC}}=35 \mathrm{~ns}$			110		3	
Standby current	ISB	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			80	mA		

NOTES:

1. $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{Vcc}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

AC CHARACTERISTICS (VCC =5 V $\pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	trc	35			ns	
Address access time	$t_{A A}$			35	ns	
Chip enable time	tace			35	ns	
Output enable time	toe			15	ns	
Output hold time	toh	0			ns	
CE to output in High-Z	tchz			15	ns	1
OE to output in High-Z	tohz.			15	ns	

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0 V to 3.0 V
Input rise/fall time	5 ns
Input reference level	1.5 V
Output load condition	$1 \mathrm{TTL}+30 \mathrm{pF}$

CAPACITANCE (Vcc = $5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			10	pF
Output capacitance	Cout			10	pF

NOTE: Data becomes valid after the intervals $t_{A A}, t_{A C E}$, and $t_{O E}$ from address input and output enable input, respectively have been met.

Figure 3. Timing Diagram

CAUTION

To stablize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and the GND pin.

ORDERING INFORMATION

Example: LH53H1100D-35 (CMOS 1M (128K x 8) Mask Programmable ROM, 35 ns, 32 -pin, 600-mil DIP)

FEATURES

- $131,072 \times 8$ bit organization
- Access time: 150 ns (MAX.)
- Power consumption:

Operating: 193 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

32-pin, 600-mil DIP
32-pin, $525-\mathrm{mil}$ SOP
44 -pin, $10 \times 10 \mathrm{~mm}^{2}$ QFP

- JEDEC standard EPROM pinout (DIP)

DESCRIPTION

The LH530800A is a mask programmable ROM organized as $131,072 \times 8$ bits ($1,048,576$ bits). It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SOP, and QFP Packages

Figure 2. LH530800A Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{16}$	Address input	
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Output	
$\mathrm{CE} / \overline{\mathrm{CE}}$	Chip enable input	1

SIGNAL	PIN NAME	NOTE
OE/̄̄$\overline{\mathrm{O}}$	Output enable input	1
Vcc	Power supply (+5 V)	
GND	Ground	

NOTE:

1. Active levels of $C E / \overline{C E}$ and $O E / \overline{O E}$ are mask programmable.

TRUTH TABLE

$\mathbf{C E} / \overline{\mathrm{CE}}$	OE/ $\overline{\mathrm{OE}}$	MODE	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{\mathbf{7}}$	SUPPLY CURRENT	NOTE
L / H	X	Non selected	High-Z	Standby (ISB)	1
H / L	L / H	Non selected	High-Z	Operating (ICC)	
H / L	H / L	Selected	Dout	Operating (ICc)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{CC}	-0.3 to +7.0	V	1
Input voltage	V_{IN}	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	$\mathrm{Vour}_{\mathrm{CO}}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA $=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		$\mathrm{Vcc}+0.3$	V		
Output "Low" voltage	VOL	$\mathrm{lOL}=1.6 \mathrm{~mA}$			0.4	V		
Output "High" voltage	V OH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	$\mid \mathrm{log}$ \|	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	1	
Operating current	Icc1	$\mathrm{t}_{\text {RC }}=150 \mathrm{~ns}$			35	mA	2	
	IcC2	$\mathrm{t}_{\text {RC }}=1 \mu \mathrm{~s}$			25			
	Icc3	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			30	mA	3	
	Icc4	$\mathrm{t}_{\text {RC }}=1 \mu \mathrm{~s}$			20			
Standby current	ISB1	$C E=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			2	mA		
	ISB2	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{VCc}-0.2 \mathrm{~V}, \\ & \mathrm{CE}=0.2 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$		

NOTES:

1. $\overline{C E} / \overline{O E}=V_{I H}$ or $C E / O E=V_{I L}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, C E=\mathrm{V}_{\mathrm{IH}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{V} c \mathrm{C}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}, \mathrm{CE}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$, outputs open

AC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	t_{RC}	150			ns	
Address access time	$t_{\text {AA }}$			150	ns	
Chip enable time	$t_{\text {ace }}$			150	ns	
Output enable time	toe	10		80	ns	
Output hold time	to	5			ns	
CE to output in High-Z	tchz			70	ns	1
OE to output in High-Z	tohz.			70	ns	

NOTE:

1. This is the time required for the output to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	GIN			10	pF
Output capacitance	COUT			10	pF

NOTE: Data becomes valid after $t_{A A}, t_{A C E}$, and $t_{O E}$ from address input, chip enable and output enable, respectively have been met.

Figure 3. Timing Diagram

OPERATION IMMEDIATELY AFTER POWER UP

To ensure valid data immediately after power up and once the supply is stable, perform one of the following operations:

1. If the Chip Enable ($\overline{\mathrm{CE}}$) was high during power up, switch the $\overline{C E}$ input from HIGH to LOW. (tace) or
2. Change one or more addresses if the $\overline{\mathrm{CE}}$ input was LOW at power up. (tAA)

The valid data will be output at tace or taA following a transition from the above operations (1) or (2).

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and the GND pin.

NOTE: t_{1} and $\mathrm{t}_{2}=70 \mathrm{~ns}$ (MIN.)
Figure 4. Power On With $\overline{C E}$ Inactive

Figure 5. Power On With CE Active

ORDERING INFORMATION

LH530800A	X	-\#\#	
Device Type	Package	Speed	
			15150 Access Time (ns)
			$\begin{cases}D & \text { 32-pin, } 600 \text {-mil DIP (DIP32-P-600) } \\ \mathrm{M} & 44 \text {-pin, } 10 \times 10 \mathrm{~mm}^{2} \text { QFP (QFP44-P-1010) } \\ \mathrm{N} & 32 \text {-pin, } 525-\mathrm{mil} \text { SOP (SOP32-P-525) }\end{cases}$
			CMOS 1M (128K x 8) Mask Programmable ROM

Example: LH530800AD-15 (CMOS 1M (128K x 8) Mask Programmable ROM, $150 \mathrm{~ns}, 32$-pin, 600 -mil DIP)

LH530900A

FEATURES

- $131,072 \times 8$ bit organization
- Access time: 150 ns (MAX.)
- Power consumption:

Operating: 193 mW (MAX.)

- Programmable $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$ and $\mathrm{OE}_{2} / \overline{\mathrm{OE}}_{2} / \mathrm{DC}$
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- 32-pin, 600-mil DIP
(32-pin compatible to 28 -pin 1M mask ROM-specific pinout)

DESCRIPTION

The LH530900A is a mask programmable ROM organized as $131,072 \times 8$ bits ($1,048,576$ bits). It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. LH530900A Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{16}$	Address input	
$D_{0}-D_{7}$	Data output	
$\overline{\mathrm{OE}}$	Output Enable input	
$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$	Output Enable input/Don't Care	1

SIGNAL	PIN NAME	NOTE
$\mathrm{OE}_{2} / \overline{\mathrm{OE}}_{2} / \mathrm{DC}$	Output Enable input/Don't Care	1
$\mathrm{~V}_{\mathrm{cc}}$	Power supply (+5 V)	
GND	Ground	

NOTE:

1. Active level of output enable is mask programmable.

Selecting DC allows the outputs to be active for both high and low levels applied to this pin. It is recommended to apply either a HIGH or a LOW to the DC pin.

TRUTH TABLE

$\overline{\mathrm{OE}}$	$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1}$	$\mathrm{OE}_{2} / \overline{\mathrm{OE}}_{2}$	MODE	$\mathrm{D}_{0}-\mathrm{D}_{7}$	SUPPLY CURRENT	NOTE
H	X	X	Non selected	High-Z	Operating (Icc)	1
X	L / H	X	Non selected	High-Z	Operating (Icc)	
X	X	L / H	Non selected	High-Z	Operating (Icc)	
L	H / L	H / L	Selected	DouT	Operating (Icc)	

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	Vcc	-0.3 to +7.0	V	1
Input voltage	VIN	-0.3 to Vcc +0.3	V	1
Output voltage	Vout	-0.3 to Vcc +0.3	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	VIL		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	Vol	$\mathrm{lOL}=1.6 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lis		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	$\mid \mathrm{log}$ \|	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	1	
Operating current	Icc1	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			35	mA	2	
	Icc2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			25			
	lcc3	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			30	mA	3	
	IcC4	tRC $=1 \mu \mathrm{~s}$			20			

NOTES:

1. $\overline{\mathrm{OE}} / \overline{\mathrm{OE}}_{1} / \overline{\mathrm{OE}}_{2}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{OE}_{1} \mathrm{OE}_{2}=\mathrm{V}_{\mathrm{IL}}$
2. $V_{\mathbb{I N}}=V_{\mathbb{H}} V_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{V} \mathbf{C c}-0.2 \mathrm{~V})$ or 0.2 V , outputs open

AC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	t_{RC}	150			ns	
Address access time	$t_{\text {A }}$			150	ns	
Output enable time	toe	10		80	ns	
Output hold time	toh	5			ns	
OE to output in High-Z	torz.			70	ns	1

NOTE:

1. This is the time required for the output to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIN 2			10	pF
Output capacitance	CouT			10	pF

NOTE: Data becomes valid after $t_{A A}$ and $t_{O E}$ from address input or output enable input, respectively have been met.

Figure 3. Timing Diagram

OPERATION IMMEDIATELY AFTER POWER UP

To ensure valid data immediately after power up and once the supply is stable, change one or more addresses after power up.

The valid data will be output at $t_{A A}$ following a transition from the above operation.

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and the GND pin.

Figure 4. Power On Initialization

ORDERING INFORMATION

Example: LH530900AD-15 (CMOS 1M (128K x 8) Mask Programmable ROM, $150 \mathrm{~ns}, 32$-pin, 600 -mil DIP)

LH531000B

FEATURES

- $131,072 \times 8$ bit organization
- Access time: 150 ns (MAX.)
- Low power consumption:

Operating: 192.5 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Programmable CE/ $\overline{C E}$ or $\mathrm{OE} / \overline{\mathrm{OE}}$
- Static operation (Internal sync. system)
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

28-pin, 600-mil DIP
28-pin, 450-mil SOP
44 -pin, $14 \times 14 \mathrm{~mm}^{2}$ QFP

- Mask ROM specific pinout

DESCRIPTION

The LH531000B is a mask programmable ROM organized as $131,072 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SOP, and QFP Packages

Figure 2. LH531000B Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{16}$	Address input	
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data output	
CE/CE/OE/OE	Chip Enable input or Output Enable input	1

SIGNAL	PIN NAME	NOTE
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. Active level of $C E / \overline{C E}$ or $O E / \overline{O E}$ is mask programmable.

TRUTH TABLE

PIN 20 (DIP/SOP) or PIN 34 (QFP)	CE/CE	OE/ $\overline{\text { OE }}$	MODE	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{7}}$	SUPPLY CURRENT
CE type	H / L	-	Selected	DouT	Operating (Icc)
	L / H	-	Non selected	High-Z	Standby (ISB)
OE type	-	H / L	Selected	DouT	Operating (Icc)
	-	L / H	Non selected	High-Z	

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{CC}	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	$\mathrm{VoUT}_{\mathrm{Con}}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{0}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC =5 V $\pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	VIL		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	Vol	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{l} \mathrm{OH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lul	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$		
Output leakage current	\| lıo		Vout $=0 \mathrm{~V}$ to Vcc			10	$\mu \mathrm{A}$	1
Operating current	Icc1	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			35	mA	2	
	ICC2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			25			
	Icc3	$\mathrm{t}_{\text {RC }}=150 \mathrm{~ns}$			30	mA	3	
	IcC4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			20			
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, C E=\mathrm{V}_{\mathrm{IL}}$			2	mA	4	
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}, \mathrm{CE}=0.2 \mathrm{~V}$			100	$\mu \mathrm{A}$		

NOTES:

1. $C E / O E=V_{\mathrm{L}}, \overline{C E} / \overline{O E}=\mathrm{V}_{\mathrm{H}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathbb{H}} / \mathrm{V}_{\mathrm{IL}}, \mathrm{CE}=\mathrm{V}_{\mathrm{H}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ (CE type), outputs open
3. $\mathrm{V} \mathrm{IN}_{\mathrm{N}}=(\mathrm{V} c \mathrm{C}-0.2 \mathrm{~V})$ or 0.2 V . $\mathrm{CE}=\mathrm{V} c \mathrm{C}-0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$ (CE type), outputs open
4. CE type only

AC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	trc		150			ns	
Address access time	$t_{\text {A }}$				150	ns	
Chip enable access time	tace	CE type			150	ns	
Output enable time	toe	OE type	10		80	ns	
Output hold time	toh		5			ns	
CE to output in High-Z	tchz	CE type			70	ns	
OE to output in High-Z	tohz	OE type			70	ns	1

NOTE:

1. This is the time required for the output to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

CAPACITANCE (VCC =5 $\mathbf{V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			10	pF
Output capacitance	COUT			10	pF

NOTE: Data becomes valid after $t_{A A}, t_{A C E}$, and $t_{O E}$ from address input, chip enable, and output enable, respectively have been met.

Figure 3. Timing Diagram

OPERATION IMMEDIATELY AFTER POWER UP

To ensure valid data immediately after power up and once the supply is stable, perform one of the following operations:

$\overline{C E}$ or CE Type

1. If the Chip Enable ($\overline{\mathrm{CE}}$) was high during power up, switch the $\overline{\mathrm{CE}}$ input from HIGH to LOW. (tACE) or
2. Change one or more addresses if the $\overline{\mathrm{CE}}$ input was LOW at power up. (tAA)

$\overline{O E}$ or OE Type

1. Change one or more addresses at power up.

The valid data will be output at tACE or taA following a transition from the above operations (1) or (2).

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and GND.

NOTE: t_{1} and $\mathrm{t}_{2}=70 \mathrm{~ns}$ (MIN)
Figure 4. Power On With CE/CE Inactive (CE or CE Type in Operation)

NOTE: t_{3} and $\mathrm{t}_{4}=70 \mathrm{~ns}$ (MIN)
Figure 5. Power On With CE/CE Active
(CE or CE Type in Operation)

NOTE: t_{1} and $t_{2}=70 \mathrm{~ns}(\mathrm{MIN})$
Figure 6. Power On Initialization (OE or OE Type in Operation)

ORDERING INFORMATION

LH531000B	X	- \#\#	
Device Type	Package	$\overline{\text { Speed }}$	
			15150 Access Time (ns)
			$\begin{cases}\text { D } & 28 \text {-pin, 600-mil DIP (DIP28-P-600) } \\ \text { N } & 28 \text {-pin, } 450 \text {-mil SOP (SOP28-P-450) } \\ \text { M } & 44 \text {-pin, } 14 \times 14 \mathrm{~mm}^{2} \text { QFP (QFP44-P-1414) }\end{cases}$

Example: LH531000BD-15 (CMOS 1M (128K x 8) Mask Programmable ROM, $150 \mathrm{~ns}, 28$-pin, 600 -mil DIP)
531000A-7

FEATURES

- Selectable memory organization: $262,144 \times 8$ bit (byte mode) 131,072 $\times 16$ bit (word mode)
- $\overline{\text { BYTE }}$ input pin selects bit configuration
- Access time: $120 / 150 \mathrm{~ns}$ (MAX.)
- Low power consumption:

Operating: 275 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Programmable $O E / \overline{O E}$ and $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$
- Static operation (Internal sync. system)
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

40-pin, 600-mil DIP
40 -pin, 525 -mil SOP
44 -pin, $14 \times 14 \mathrm{~mm}^{2}$ QFP
44 -pin, $10 \times 10 \mathrm{~mm}^{2}$ QFP

- X16 word-wide pinout

DESCRIPTION

The LH532000B is a 2 M bit mask programmable ROM with two programmable memory organizations, byte and word modes. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SOP, and QFP Packages

Figure 2. LH532000B Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
A_{-1}	Address input (BYTE mode)	1
$\mathrm{~A}_{0}-\mathrm{A}_{16}$	Address input	
$\mathrm{D}_{0}-\mathrm{D}_{15}$	Data output	
$\overline{\mathrm{CE}}$	Chip enable input	
OE/OE	Output enable input	2

SIGNAL	PIN NAME	NOTE
$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$	Output enable input or Don't care	2
$\overline{\mathrm{BYTE}}$	$\overline{\mathrm{BYTE}}$ WORD switch	
VCC	Power supply (+5 V)	
GND	Ground	

NOTES:

1. $\mathrm{D}_{15} / \mathrm{A}_{-1}$ pin becomes LSB address input (A_{-1}) when the bit configuration is set in byte mode, and data output (D_{15}) when in word mode. BYTE input pin selects bit configuration.
2. The active levels of $O E / \overline{O E}$ and $O E_{1} / \overline{O E}_{1} / D C$ are mask programmable.

Selecting DC allows the outputs to be active for both high and low levels applied to this pin. It is recommended to apply either a HIGH or a LOW to the DC pin.

TRUTH TABLE

$\overline{C E}$	OE/ $\overline{O E}$	OE ${ }_{1} / \overline{O E}_{1}$	BYTE	A. 1	MODE	$\mathrm{D}_{0}-\mathrm{D}_{7}$	$\mathrm{D}_{8}-\mathrm{D}_{15}$	SUPPLY CURRENT
H	X	X	X	X	Non selected	High-Z		Standby (ISB)
L	L/H	X	X	X	Non selected	High-Z		Operating (lcc)
L	X	L/H	X	X	Non selected	High-Z		Operating (lcc)
L	H/L	H/L	H	Inhibit	Word	$\mathrm{D}_{0}-\mathrm{D}_{7}$	$\mathrm{D}_{8}-\mathrm{D}_{15}$	Operating (lcc)
L	H/L	H/L	L	L	Byte	$\mathrm{D}_{0}-\mathrm{D}_{7}$	High-Z	Operating (lcc)
L	H/L	H/L	L	H	Byte	$\mathrm{D}_{8}-\mathrm{D}_{15}$	High-Z	Operating (Icc)

NOTE:

1. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	Vcc	-0.3 to +7.0	V	1
Input voltage	VIN	-0.3 to Vcc +0.3	V	
Output voltage	Vout	-0.3 to $\mathrm{Vcc}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	VOL	$1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	\mid loo \mid	$\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$ to V cc			10	$\mu \mathrm{A}$	1	
Operating current	lcc1	$\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\text {RC }}(\mathrm{MIN}$.			50	mA	2	
	Icce	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			45			
	Icc3	$\mathrm{t}_{\mathrm{RC}}=\mathrm{t}_{\text {RC }}$ (MIN.)			45	mA	3	
	IcC4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			40			
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			3	mA		
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{C C}-0.2 \mathrm{~V}$			100	$\mu \mathrm{A}$		

NOTES:

1. $\mathrm{OE} / \mathrm{OE}_{1}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}} / \overline{\mathrm{OE}} / \overline{\mathrm{OE}}_{1}=\mathrm{V}_{\mathrm{IH}}$
2. $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=\left(\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}\right)$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the V_{cc} pin and GND.

AC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	UNIT	NOTE
Read cycle time	tre	120		150		ns	
Address access time	$t_{\text {AA }}$		120		150	ns	
Chip enable access time	$t_{\text {ACE }}$		120		150	ns	
Output enable delay time	toe		55	10	70	ns	
Output hold time	toh	5		10		ns	
CE to output in High-Z	tchz		55		70	ns	1
OE to output in High-Z	torz.		55		70	ns	

NOTE:

1. This is the time required for the output to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TL}+100 \mathrm{pF}$

CAPACITANCE (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{TA}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbf{N}}$			10	pF
Output capacitance	COUT			10	pF

NOTES:

1. Data becomes valid after $t_{A A}, t_{A C E}$, and $t_{O E}$ from address
input, chip enable or output enable, respectively have been met.
2. Applied to byte mode. Signals in parentheses apply to word mode.

Figure 3. Timing Diagram

ORDERING INFORMATION

LH532100B

FEATURES

- $262,144 \times 8$ bit organization
- Access time: $120 / 150 \mathrm{~ns}$ (MAX.)
- Low power consumption:

Operating: 275 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Static operation (Internal sync. system)
- Mask-programmable OE/ $\overline{\mathrm{OE}}$ and $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1}$
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

32-pin, 600-mil DIP
32-pin, 525 -mil SOP

- JEDEC standard EPROM pinout (DIP)

DESCRIPTION

The LH532100B is a mask programmable ROM organized as $262,144 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

Figure 2. LH532100B Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{17}$	Address input	
$D_{0}-D_{7}$	Data output	
$\overline{\mathrm{CE}}$	Chip Enable input	
OE/何	Output Enable input	1

SIGNAL	PIN NAME	NOTE
$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$	Output Enable input/ Don't Care connection	1
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. Active levels of $O E / \overline{O E}$ and $O E_{1} / \overline{O E_{1}} / D C$ are mask programmable.

Selecting DC allows the outputs to be active for both high and low levels applied to this pin. It is recommended to apply either a HIGH or a LOW to the DC pin.

TRUTH TABLE

$\overline{\mathrm{CE}}$	$\mathrm{OE} / \overline{\mathrm{OE}}$	$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{\mathbf{1}}$	MODE	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{\mathbf{7}}$	SUPPLY CURRENT
H	X	X	Non selected	High-Z	Standby (ISB)
L	L / H	X	Non selected	High-Z	Operating (Icc)
L	X	L / H	Non selected	High-Z	Operating (Icc)
L	H / L	H / L	Selected	Dout	Operating (Icc)

NOTE:
$X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{CC}	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	$\mathrm{VoUT}_{\mathrm{CO}}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{H}		2.2		Vcc +0.3	V		
Output "Low" voltage	VOL	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	$\mid \mathrm{log}$ \|	Vout $=0 \mathrm{~V}$ to V cc			10	$\mu \mathrm{A}$	1	
Operating current	Icc1	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			50	mA	2	
	IcC2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			45			
	Icc3	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			45	mA	3	
	ICC4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			40			
Standby current	ISB1	$\mathrm{CE}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			3	mA		
	ISB2	$\begin{aligned} \mathrm{CE} & =0.2 \mathrm{~V} \\ \mathrm{CE} & =\mathrm{VCC}-0.2 \mathrm{~V} \end{aligned}$			100	$\mu \mathrm{A}$		

NOTES:

1. $\overline{\mathrm{CE}} / \overline{\mathrm{OE}} / \overline{\mathrm{OE}}_{1}=\mathrm{V}_{\mathrm{H}}$ or $\mathrm{OE} / \mathrm{OE}_{1}=\mathrm{V}_{\mathrm{IL}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} V_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{V} C \mathrm{C}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

AC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	UNIT	NOTE
Read cycle time	t_{RC}	120		150		ns	
Address access time	$t_{\text {AA }}$		120		150	ns	
Chip enable access time	$t_{\text {ACE }}$		120		150	ns	
Output enable delay time	toe		50	10	70	ns	
Output hold time	toh	5		10		ns	
CE to output in High-Z	tchz		50		70	ns	
OE to output in High-Z	tohz.		50		70	ns	

NOTE:

1. This is the time required for the outputs to become high-impedance.

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and the GND pin.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TLL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIN			10	pF
Output capacitance	COUT			10	pF

NOTE: Data becomes valid after the intervals $t_{A A}, t_{A C E}$, and $t_{O E}$ from address input, chip enable and output enable, respectively have been met.

Figure 3. Timing Diagram

ORDERING INFORMATION

Example: LH532100BD-15 (CMOS 2 M ($256 \mathrm{~K} \times 8$) Mask Programmable ROM, $150 \mathrm{~ns}, 32$-pin, 600 -mil DIP)

FEATURES

- $262,144 \times 8$ bit organization
- Access time: 150 ns (MAX.)
- Low power consumption:

Operating: 275 mW (MAX.)

- Static operation (No clock required)
- Mask-programmable $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$ and $\mathrm{OE}_{2} / \overline{\mathrm{OE}}_{2} / \mathrm{DC}$
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- 32-pin, 600-mil DIP

Compatible to 28-pin 1M-bit mask
ROM specific pinout

DESCRIPTION

The LH532200B is a mask programmable ROM organized as $262,144 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

32-PIN DIP	TOP VIEW
$\mathrm{OE}_{1} / \overline{O E}_{1} / \mathrm{DCL} 2$	$31 \square \mathrm{OE}_{2} / \overline{\mathrm{OE}}_{2} / \mathrm{DC}$
A_{15} - 3	30 صDC
$A_{12} \square^{4}$	29 - A_{14}
$\mathrm{A}_{7} \mathrm{C}_{5}$	$28 \square A_{13}$
A_{6} - 6	$27 口 A_{8}$
$\mathrm{A}_{5} \mathrm{~A}_{6}$	${ }_{26}$ ص A_{9}
$\mathrm{A}_{4} \mathrm{C} 8$	$25 \square A_{11}$
$\mathrm{A}_{3} \mathrm{C}^{9}$	$24 \square A_{16}$
$A_{2} \square_{10}$	$23 \square \mathrm{~A}_{10}$
A_{1} C11	22 ص $\overline{O E}$
$\mathrm{A}_{0} \mathrm{C}_{12}$	$21 \square \mathrm{D}_{7}$
$\mathrm{D}_{0} 13$	$20 \mathrm{D}_{6}$
D_{1} C14	$19 \square \mathrm{D}_{5}$
$\mathrm{D}_{2} \mathrm{C}_{15}$	$18 \square \mathrm{D}_{4}$
GND-16	17 D D_{3}
	5322008-1

Figure 1. Pin Connections for DIP Package

Figure 2. LH532200B Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{17}$	Address input	
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data output	
$\overline{\mathrm{OE}}$	Output Enable input	
$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$	Output Enable input/ Don't Care	1

SIGNAL	PIN NAME	NOTE
$\mathrm{OE}_{2} / \mathrm{OE}_{2} / \mathrm{DC}$	Output Enable input/ Don't Care	1
$\mathrm{~V}_{\mathrm{CC}}$	Power supply (+5 V)	
GND	Ground	

NOTE:

1. Active levels of $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$ and $\mathrm{OE}_{2} / \overline{\mathrm{OE}}_{2} / \mathrm{DC}$ are mask programmable.

Selecting DC allows the outputs to be active for both high and low levels applied to this pin.
It is recommended to apply either a HIGH or a LOW to the DC pin.

TRUTH TABLE

$\overline{\mathrm{OE}}$	$\mathrm{OE}_{\mathbf{1}} / \overline{\mathrm{EE}}_{\mathbf{1}}$	$\mathrm{OE}_{\mathbf{2}} / \overline{\mathrm{OE} 2}$	MODE	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{\mathbf{7}}$	SUPPLY CURRENT
H	X	X	Non selected	High-Z	Operating (Icc)
X	L / H	X	Non selected	High-Z	Operating (Icc)
X	X	L / H	Non selected	High-Z	Operating (Icc)
L	H / L	H / L	Selected	Dout	Operating (Icc)

NOTE:
$X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{CC}	-0.3 to +7.0	V	1
Input voltage	V_{IN}	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	V_{CO}	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{0}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.0	V

DC CHARACTERISTICS (Vcc = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	VOL	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	V OH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lisi	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$		
Output leakage current	\| LLO		$V_{\text {OUT }}=0 \mathrm{~V}$ to V cc			10	$\mu \mathrm{A}$	1
Operating current	Icc1	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			50	mA	2	
	lcc2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			45			
	Icc3	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			45	mA	3	
	IcC4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			40			

NOTES:

1. $\overline{\mathrm{OE}} / \overline{O E}_{1} / \overline{\mathrm{OE}}_{2}=\mathrm{V}_{\mathrm{H}}$ or $\mathrm{OE}_{1} / \mathrm{OE}_{2}=\mathrm{V}_{\mathrm{IL}}$
2. $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{H}} / \mathrm{V}_{\mathrm{H}}$, outputs open
3. $\mathrm{V} / \mathrm{N}=(\mathrm{Vcc}-0.2 \mathrm{~V})$ or 0.2 V , outputs open

AC CHARACTERISTICS ($\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	trc	150			ns	
Address access time	$t_{\text {AA }}$			150	ns	
Output enable delay time	toe	10		70	ns	
Output hold time	toh	10			ns	
OE to output in High-Z	tohz.			70	ns	1

NOTE:

1. This is the time required for the output to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			10	pF
Output capacitance	CouT			10	pF

NOTE: Data becomes valid after the intervals $t_{A A}$ and $t_{O E}$ from address input or output enable input, respectively have been met.

Figure 3. Timing Diagram

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and the GND pin.

ORDERING INFORMATION

LH532200B	D	- \#\#	
Device Type	$\overline{\text { Package }}$	$\overline{\text { Speed }}$	
			15150 Access Time (ns)
			32-pin, 600-mil DIP (DIP32-P-600)

Example: LH532200BD-15 (CMOS 2M (256K x 8) Mask Programmable ROM, $150 \mathrm{~ns}, 32$-pin, 600 -mil DIP)

FEATURES

- Memory organization selection:
$524,288 \times 8$ bit (byte mode)
$262,144 \times 16$ bit (word mode)
- $\overline{\text { BYTE }}$ input pin selects bit configuration
- Access time: 200 ns (MAX.)
- Low power consumption:

Operating: 275 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Static operation (Internal sync. system)
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

40-pin, 600-mil DIP
40 -pin, 525 -mil SOP
44 -pin, $14 \times 14 \mathrm{~mm}^{2}$ QFP
44 -pin, $10 \times 10 \mathrm{~mm}^{2}$ QFP

- X16 word-wide pinout

DESCRIPTION

The LH534000B is a 4 M bit mask programmable ROM with two programmable memory organizations of byte and word modes. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

534000B-1
Figure 1. Pin Connections for DIP, SOP, and QFP Packages

Figure 2. LH534000B Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
A_{-1}	Address input (BYTE mode)	1
$A_{0}-A_{17}$	Address input	
$D_{0}-D_{15}$	Data output	
$\overline{\mathrm{CE}}$	Chip enable input	

SIGNAL	PIN NAME	NOTE
$\overline{\text { OE }}$	Chip enable input	
$\overline{\text { BYTE }}$	Byte/word mode switch	
Vcc	Power supply (+5 V)	
GND	Ground	

NOTE:

1. D_{15} / A_{-1} pin becomes LSB address input (A_{-1}) when the bit configuration is set in byte mode,
and data output (D_{15}) when in word mode. BYTE input pin selects bit configuration.

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{B Y T E}}$	$\mathbf{A}_{\mathbf{1}}$	MODE	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{7}$	$\mathrm{D}_{\mathbf{8}}-\mathrm{D}_{15}$	SUPPLY CURRENT
H	X	X	X	Non selected	High-Z	Standby (IsB)	
L	H	X	X	Non selected	High-Z	Operating (Icc)	
L	L	H	Inhibit	Word	$\mathrm{D}_{0}-\mathrm{D}_{7}$	$\mathrm{D}_{8}-\mathrm{D}_{15}$	Operating (Icc)
L	L	L	L	Byte	$\mathrm{D}_{0}-\mathrm{D}_{7}$	High-Z	Operating (Icc)
L	L	L	H	Byte	$\mathrm{D}_{8}-\mathrm{D}_{15}$	High-Z	Operating (Icc)

NOTES:

1. $X=H$ or L
2. The input state of $\overline{\mathrm{BYTE}}$ must not be changed during operation. The $\overline{\mathrm{BYTE}}$ pin must be set to either HIGH or LOW.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{CC}	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	$\mathrm{V}_{\mathrm{CUT}}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($T_{A}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	VIL		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	Vol	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	V OH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lis		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	$\mid \mathrm{LLO}$ \|	$\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ to V cc			10	$\mu \mathrm{A}$	1	
Operating current	IcC1	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$			50	mA	2	
	lcc2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			45			
	lcc3	$\mathrm{t}_{\text {RC }}=200 \mathrm{~ns}$			45	mA	3	
	IcC4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			40			
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			3	mA		
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{c c}-0.2 \mathrm{~V}$			100	$\mu \mathrm{A}$		

NOTES:

1. $O E=V_{I L}, \overline{C E}=V_{I H}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{V} \mathrm{VC}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and GND.

AC CHARACTERISTICS (VCC =5 V $\pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	tre	200			ns	
Address access time	$t_{\text {AA }}$			200	ns	
Chip enable access time	tace			200	ns	
Output enable delay time	toe			80	ns	
Output hold time	toh	10			ns	
CE to output in High-Z	tchz			80	ns	1
OE to output in High-Z	tohz			80	ns	1

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TLL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			10	pF
Output capacitance	COUT			10	pF

NOTES:

1. Data becomes valid after the intervals $t_{A A}, t_{A C E}$ and $t_{O E}$ from address input, chip enable, and output enable, respectively have been met.
2. Applies to byte mode. Signals in parentheses apply to word mode.

Figure 3. Timing Diagram

ORDERING INFORMATION

FEATURES

- $524,288 \times 8$ bit organization
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 275 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Mask programmable OE/ $\overline{O E}$ and $O E_{1} / \overline{O E}_{1} / D C$
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

32-pin, 600-mil DIP
32-pin, 525-mil SOP

- JEDEC standard EPROM pinout (DIP)

DESCRIPTION

The LH534100B is a 4 M -bit mask programmable ROM organized as $524,288 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

Figure 2. LH534100B Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$\mathrm{A}_{0}-\mathrm{A}_{18}$	Address input	
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data output	
$\overline{\mathrm{CE}}$	Chip Enable input	
$\mathrm{OE} / \overline{\mathrm{OE}}$	Output Enable input	1

SIGNAL	PIN NAME	NOTE
$\mathrm{OE}_{1} / \mathrm{OE}_{1} / \mathrm{DC}$	Output Enable input/ Don't Care	1
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. Active levels of $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$ and $\mathrm{OE} / \overline{\mathrm{OE}}$ are mask programmable.

Selecting DC allows the outputs to be active for both high and low levels applied to this pin.
It is recommended to apply either a HIGH or a LOW to the DC pin.

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\mathbf{O E} / \overline{\mathrm{OE}}$	$\mathrm{OE}_{\mathbf{1}} / \overline{\mathrm{OE}}_{\mathbf{1}}$	MODE	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{\mathbf{7}}$	SUPPLY CURRENT
H	X	X	Non selected	High-Z	Standby (ISB)
L	X	L / H	Non selected	High-Z	Operating (Icc)
L	L / H	X	Non selected	High-Z	Operating (Icc)
L	H / L	H / L	Selected	Dout	Operating (Icc)

NOTE:
$X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	VouT	-0.3 to $\mathrm{Vcc}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = 0 to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	VIL		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	VOL	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	V OH	l OH $=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	\| LLO		Vout $=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	1
Operating current	IcC1	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$			50	mA	2	
	Icce	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			45			
	Icc3	$\mathrm{t}_{\text {RC }}=200 \mathrm{~ns}$			45	mA	3	
	Icc4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			40			
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			3	mA		
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$			100	$\mu \mathrm{A}$		

NOTES:

1. $\overline{\mathrm{CE}} / \overline{\mathrm{OE}} / \overline{O E}_{1}=\mathrm{V}_{\mathbb{H}}$ or $O E / O E_{1}=\mathrm{V}_{\mathrm{IL}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathcal{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{Vcc}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the $V_{c c}$ pin and the GND pin.

AC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	t $_{\text {RC }}$	200		ns	
Address access time	t AA		200	ns	
Chip enable time	taCE		200	ns	
Output enable time	toE		80	ns	
Output hold time	toH	10		ns	
CE to output in High-Z	tchz		80	ns	1
OE to output in High-Z	toHz		80	ns	

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			10	pF
Output capacitance	COUT			10	pF

NOTE: Data becomes valid after the intervals $t_{A A}, t_{A C E}$, and $t_{O E}$ from address input, chip enable or output enable, respectively have been met.

Figure 3. Timing Diagram

ORDERING INFORMATION

LH534100B	X	- \#\#	
Device Type	Package	Speed	
			20200 Access Time (ns)
			$\begin{cases}\text { D } & \text { 32-pin, } 600 \text {-mil DIP (DIP32-P-600) } \\ \text { N } & \text { 32-pin, } 525 \text {-mil SOP (SOP32-P-525) }\end{cases}$

Example: LH534100BD-20 (CMOS 4M (512K x 8) Mask Programmable ROM, $200 \mathrm{~ns}, 32$-pin, 600 -mil DIP)

LH534200B

FEATURES

- $524,288 \times 8$ bit organization
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 275 mW (MAX.)

- Mask-programmable $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

32-pin, 600-mil DIP
Compatible with 28-pin 1M mask ROM-specific pinout

DESCRIPTION

The LH534200B is a mask programmable ROM organized as $524,288 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. LH534200B Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{18}$	Address input	
$D_{0}-D_{7}$	Data output	
$\overline{O E}$	Output Enable input	

SIGNAL	PIN NAME	NOTE
$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$	Output Enable input/ Don't Care	1
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. The active level of $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$ is mask programmable.

Selecting DC allows the outputs to be active for both high and low levels that are applied to this pin.
It is recommended to apply either a HIGH or a LOW to the DC pin.

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and the GND pin.

TRUTH TABLE

$\overline{\mathrm{OE}}$	$\mathbf{O E}_{\mathbf{1}} / \overline{\mathrm{OE}}_{\mathbf{1}}$	MODE	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{7}}$	SUPPLY CURRENT
H	X	Non selected	High-Z	Operating (ICC)
X	L / H	Non selected	High-Z	Operating (ICC)
L	H/L	Selected	Dout	Operating (Icc)

NOTE:
$X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC 2	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	$\mathrm{V}_{\text {OUT }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{0}$ to $\mathbf{+ 7 0}^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC =5 V $\pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	VoL	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lis		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	\| Llo		$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	1
Operating current	lcc1	$\mathrm{t}_{\text {RC }}=200 \mathrm{~ns}$			50	mA	2	
	Icc2	$\mathrm{t}_{\text {RC }}=1 \mu \mathrm{~s}$			45			
	Icc3	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$			45	mA	3	
	IcC4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			40			

NOTES:

1. $\overline{\mathrm{OE}} / \overline{O E}_{1}=\mathrm{V}_{\mathrm{HH}}$ or $O E_{1}=\mathrm{V}_{\mathrm{IL}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{V} \mathbf{V C}-0.2 \mathrm{~V})$ or 0.2 V , outputs open

AC CHARACTERISTICS (Vcc = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	$t_{\text {RC }}$	200		ns	
Address access time	$\mathrm{t}_{\text {AA }}$		200	ns	
Output enable time	tOE		80	ns	
Output hold time	tOH^{2}	10		ns	
OE to output in High-Z	toHz		80	ns	1

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TL}+100 \mathrm{pF}$

CAPACITANCE (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIN $^{\prime}$			10	pF
Output capacitance	CouT			10	pF

NOTE: Data becomes valid after the intervals $t_{A A}$ and $t_{O E}$ from address input and output enable input, respectively have been met.

Figure 3. Timing Diagram

ORDERING INFORMATION

LH534200B	D	- \#\#	
Device Type	Package	$\overline{\text { Speed }}$	
			20200 Access Time (ns)
			32-pin, 600-mil DIP (DIP32-P-600)

Example: LH534200BD-20 (CMOS 4M (512K x 8) Mask Programmable ROM, $200 \mathrm{~ns}, 32$-pin, 600 -mil DIP)

LH534300A

FEATURES

- $524,288 \times 8$ bit organization
- Access time: 150 ns (MAX.)
- Power consumption:

Operating: 275 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Mask programmable OE/OE and $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

32-pin, 600-mil DIP
32-pin, 525-mil SOP

- JEDEC standard EPROM pinout (DIP)

DESCRIPTION

The LH534300A is a 4M-bit mask programmable ROM organized as $524,288 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

Figure 2. LH534300A Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{18}$	Address input	
$D_{0}-D_{7}$	Data output	
$\overline{\mathrm{CE}}$	Chip Enable input	
OE/ $\overline{\mathrm{OE}}$	Output Enable input	1

SIGNAL	PIN NAME	NOTE
$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$	Output Enable input/ Don't Care	1
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. Active levels of $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$ and $\mathrm{OE} / \overline{\mathrm{OE}}$ are mask programmable.

Selecting DC allows the outputs to be active for both high and low levels applied to this pin. It is recommended to apply either a HIGH or a LOW to the DC pin.

TRUTH TABLE

$\overline{\mathrm{CE}}$	$\mathbf{O E / \overline { O E }}$	$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{\mathbf{1}}$	MODE	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{7}$	SUPPLY CURRENT
H	X	X	Non selected	High-Z	Standby (ISB)
L	X	L / H	Non selected	High-Z	Operating (Icc)
L	L / H	X	Non selected	High-Z	Operating (Icc)
L	H / L	H / L	Selected	Dout	Operating (Icc)

NOTE:
$X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	$\mathrm{V}_{\text {OUT }}$	-0.3 to $\mathrm{VCC}^{2}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		$V_{c c}+0.3$	V		
Output "Low" voltage	VoL	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{lOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	\mid lio ${ }^{\text {\| }}$	$\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	1	
Operating current	Icc1	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			50	mA	2	
	IcC2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			45			
	Icc3	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			45	mA	3	
	IcC4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			40			
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			3	mA		
	ISB2	$\overline{\mathrm{CE}}=\mathrm{Vcc}-0.2 \mathrm{~V}$			100	$\mu \mathrm{A}$		

NOTES:

1. $\overline{\mathrm{CE}} / \overline{\mathrm{OE}} / \overline{\mathrm{OE}}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{OE} / \mathrm{OE}_{1}=\mathrm{V}_{\mathrm{IL}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathbb{H}} / V_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{LL}}$, outputs open
3. $\mathrm{V}_{\mathrm{I}}=(\mathrm{Vcc}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the V_{cc} pin and the GND pin.

AC CHARACTERISTICS (Vcc =5 V $\pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	trc	150		ns	
Address access time	$t_{\text {AA }}$		150	ns	
Chip enable time	tace		150	ns	
Output enable time	toe		70	ns	
Output hold time	tor	5		ns	
CE to output in High-Z	tchz		70	ns	
OE to output in High-Z	tohz.		70	ns	

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TL}+100 \mathrm{pF}$

CAPACITANCE (Vcc = $5 \mathrm{~V} \pm \mathbf{1 0 \%}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	C IN 2			10	pF
Output capacitance	CouT			10	pF

NOTE: Data becomes valid after the intervals $\mathrm{t}_{\mathrm{AA}}, \mathrm{t}_{\mathrm{ACE}}$, and t_{OE} from address input, chip enable or output enable, respectively have been met.

Figure 3. Timing Diagram

ORDERING INFORMATION

Example: LH534300AD-15 (CMOS 4M (512K x 8) Mask Programmable ROM, $150 \mathrm{~ns}, 32$-pin, 600 -mil DIP

FEATURES

- $524,288 \times 8$ bit organization
- Access time: 150 ns (MAX.)
- Power consumption:

Operating: 275 mW (MAX.)

- Programmable $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$ and $\mathrm{OE} / \overline{\mathrm{OE}}$
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

32-pin, 600-mil DIP
Compatible with 28-pin 1M mask ROM-specific pinout

DESCRIPTION

The LH534400A is a mask programmable ROM organized as $524,288 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. LH534400A Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{18}$	Address input	
$D_{0}-D_{7}$	Data output	
$\mathrm{OE} / \overline{\mathrm{OE}}$	Output Enable input	1

SIGNAL	PIN NAME	NOTE
$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$	Output Enable input/ Don't Care	1
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. The active levels of $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$ and $\mathrm{OE} / \overline{\mathrm{OE}}$ are mask programmable.

Selecting DC allows the outputs to be active for both high and low levels applied to this pin.
It is recommended to apply either a HIGH or a LOW to the DC pin.

TRUTH TABLE

$\mathrm{OE} / \overline{\mathrm{OE}}$	$\mathrm{OE}_{\mathbf{1}} / \overline{\mathrm{OE}}_{\mathbf{1}}$	MODE	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{\mathbf{7}}$	SUPPLY CURRENT
L / H	X	Non selected	High-Z	Operating (Icc)
X	L / H	Non selected	High-Z	Operating (lcc)
H / L	H / L	Selected	Dout	Operating (Icc)

NOTE:
$X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	VouT	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	NiN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	VIL		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	VoL	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	V OH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V cc			10	$\mu \mathrm{A}$	
Output leakage current	\| LLO ${ }^{\text {l }}$	$\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$ to Vcc			10	$\mu \mathrm{A}$	1	
Operating current	lcc1	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			50	mA	2	
	lcc2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			45			
	Icc3	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			45	mA	3	
	Icc4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			40			

NOTES:

1. $\overline{\mathrm{OE}} / \overline{\mathrm{OE}}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $O E / O E_{1}=\mathrm{V}_{\mathrm{IL}}$
2. $\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathbb{H}} \mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathbb{N}}=(\mathrm{Vcc}-0.2 \mathrm{~V})$ or 0.2 V , outputs open

AC CHARACTERISTICS (VCC =5 V $\pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	trC	150		ns	
Address access time	taA		150	ns	
Output enable time	toE		70	ns	
Output hold time	toH	5		ns	
OE to output in High-Z	toHz		70	ns	1

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

CAPACITANCE (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			10	pF
Output capacitance	Cout			10	pF

NOTE: Data becomes valid after the intervals $t_{A A}$ and $t_{O E}$, from address input and output enable input, respectively have been met.

Figure 3. Timing Diagram

OPERATION IMMEDIATELY AFTER POWER UP

To ensure valid data immediately after power up, it is necessary to change one or more addresses once the supply is stable. Valid data will be output at $t_{A A}$ following the address transition.

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and the GND pin.

Figure 4. Power Up Initialization

ORDERING INFORMATION

LH534400A	D	-\#\#	
Device Type	Package	$\overline{\text { Speed }}$	
			15150 Access Time (ns)
			32-pin, 600-mil DIP (DIP32-P-600)

Example: LH534400AD-15 (CMOS 4M (512K x 8) Mask Programmable ROM, $150 \mathrm{~ns}, 32$-pin, 600 -mil DIP)

FEATURES

- Memory organization selection:
$524,288 \times 8$ bit (byte mode) $262,144 \times 16$ bit (word mode)
- $\overline{\text { BYTE }}$ input pin selects bit configuration
- Access time: 150 ns (MAX.)
- Low power consumption:

Operating: 275 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Static operation (Internal sync. system)
- Automatic power down mode
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

40-pin, 600 -mil DIP 40-pin, 525 -mil SOP 44 -pin, $14 \times 14 \mathrm{~mm}^{2}$ QFP

- X16 word-wide pinout

DESCRIPTION

The LH534500A is a 4 M bit mask programmable ROM with two programmable memory organizations of byte and word modes. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SOP, and QFP Packages

Figure 2. LH534500A Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE				
A_{-1}	Address input	1				
$\mathrm{~A}_{0}-\mathrm{A}_{17}$	Address input					
$\mathrm{D}_{0}-\mathrm{D}_{15}$	Data output					
$\overline{\mathrm{CE}}$	Chip Enable input		\quad	SIGNAL	PIN NAME	NOTE
:---:	:---	:---:				
OE/OE	Chip Enable input	2				
$\overline{\mathrm{BYTE}}$	Byte/word mode switch					
VCC	Power supply (+5 V)					
GND	Ground					

NOTES:

1. $\mathrm{D}_{15} / \mathrm{A}_{-1}$ pin becomes LSB address input (A_{-1}) when the bit configuration is set in byte mode,
and data output $\left(\mathrm{D}_{15}\right)$ when in word mode. BYTE input pin selects bit configuration.
2. Active level of $O E / \overline{O E}$ is mask programmable.

TRUTH TABLE

$\overline{C E}$	OEIOE	BYTE	A-1	MODE	D_{0} - D_{7}	D $\mathrm{D}^{-\mathrm{D}_{15}}$	SUPPLY CURRENT
H	X	X	X	Non selected	High-Z		Standby (lsB)
L	L/H	X	X	Non selected	High-Z		Operating (lcc)
L	H/L	H	Inhibit	Word	$\mathrm{D}_{0}-\mathrm{D}_{7}$	$\mathrm{D}_{8}-\mathrm{D}_{15}$	Operating (lcc)
L	H/L	L	L	Byte	$\mathrm{D}_{0}-\mathrm{D}_{7}$	High-Z	Operating (lcc)
L	H/L	L	H	Byte	$\mathrm{D}_{8}-\mathrm{D}_{15}$	High-Z	Operating (lcc)

NOTE:
X $=$ High or Low
The input state of $\overline{\mathrm{BYTE}}$ must not be changed during operation. The $\overline{\mathrm{BYTE}}$ pin must be set to either High or Low.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	$\mathrm{VCC}_{\mathrm{CL}}$	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	Vour	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND

RECOMMENDED OPERATING CONDITIONS ($\mathrm{TA}_{\mathrm{A}}=\mathbf{0}$ to $\boldsymbol{+ 7 0 ^ { \circ }} \mathbf{}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	VOL	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	V OH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	$\mid \mathrm{llo}$ \|	Vout $=0 \mathrm{~V}$ to Vcc			10	$\mu \mathrm{A}$	1	
Operating current	lcc1	$\mathrm{t}_{\text {RC }}=150 \mathrm{~ns}$			50	mA	2	
	lcc2	$\mathrm{t}_{\text {RC }}=1 \mu \mathrm{~s}$			45			
	lcc3	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$			45	mA	3	
	IcC4	$\mathrm{t}_{\text {RC }}=1 \mu \mathrm{~s}$			40			
Standby current	ISB1	$\overline{C E}=V_{\text {IH }}$			5	mA		
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V}$			100	$\mu \mathrm{A}$		

NOTES:

1. $\mathrm{OE}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}} / \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V} \mathbb{N}=(\mathrm{Vcc}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

AC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	tre	150			ns	
Address access time	$t_{\text {AA }}$			150	ns	
Chip enable access time	tace			150	ns	
Output enable delay time	toe			70	ns	
Output hold time	toh	5			ns	
CE to output in High-Z	tchz			70	ns	1
OE to output in High-Z	tohz.			70	ns	

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIN 2			10	pF
Output capacitance	COUT			10	pF

NOTES:

1. Data becomes valid after the intervals $\mathrm{t}_{\mathrm{AA}}, \mathrm{t}_{\mathrm{ACE}}$ and t_{OE} from address input, chip enable, and output enable, respectively have been met.
2. Applies to byte mode. Signals in parentheses apply to word mode.

Figure 3. Timing Diagram

OPERATION IMMEDIATELY AFTER POWER UP

To ensure valid data immediately after power up and once the supply is stable, perform one of the following operations:

1. If the Chip Enable ($\overline{\mathrm{CE}}$) was high during power up, switch the CE input from HIGH to LOW. (tace) or
2. Change one or more addresses if the $\overline{C E}$ input was LOW at power up. (tAA)
The valid data will be output at tace or taA following a transition from the above operations (1) or (2).

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and GND.

Figure 4. Timing Diagram (Power On With $\overline{C E}$ Inactive)

Figure 5. TIming Diagram (Power On With CE Active)

ORDERING INFORMATION

FEATURES

- $524,288 \times 8$ bit organization (Byte mode) $262,144 \times 16$ bit organization (Word mode)
- $\overline{B Y T E}$ input pin selects bit configuration
- Access time: 100 ns (MAX.)
- Low power consumption:

Operating: 550 mW (MAX.)
Standby: 1.65 mW (MAX.)

- Static operation (Internal sync. system)
- Automatic power down mode
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

40-pin, 600-mil DIP
40-pin, 525 -mil SOP
44 -pin, $14 \times 14 \mathrm{~mm}^{2}$ QFP

- X16 word-wide pinout

DESCRIPTION

The LH534600 is a 4 M bit mask programmable ROM with two programmable memory organizations of byte and word modes. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SOP, and QFP Packages

Figure 2. LH534600 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
A_{-1}	Address input $(\overline{B Y T E}$ MODE $)$	1
$A_{0}-A_{17}$	Address input	
$D_{0}-D_{15}$	Data output	
$\overline{\mathrm{CE}}$	Chip Enable input	

SIGNAL	PIN NAME	NOTE
OE/OE	Output Enable input	2
$\overline{\text { BYTE }}$	Byte/word switch	
Vcc	Power supply (+5 V)	
GND	Ground	

NOTES:

1. $\mathrm{D}_{15} / \mathrm{A}-1$ pin becomes LSB address input ($\mathrm{A}-1$) when the bit configuration is set in byte mode,
and data output (D_{15}) when in word mode. BYTE input pin selects bit configuration.
2. Active level of $O E / \overline{O E}$ is mask programmable.

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{BYTE}}$	$\mathrm{A}_{\mathbf{1}}$	MODE	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{7}$	$\mathrm{D}_{\mathbf{8}}-\mathrm{D}_{\mathbf{1}}$	SUPPLY CURRENT	NOTE
H	X	X	X	Non selected	High-Z		Standby (ISB)	$\mathbf{1}$
L	H	X	X	Non selected	High-Z		Operating (IcC)	
L	L	H	Input inhibit	Word	$\mathrm{D}_{0}-\mathrm{D}_{7}$	$\mathrm{D}_{8}-\mathrm{D}_{15}$	Operating (Icc)	
L	L	L	L	Byte	$\mathrm{D}_{0}-\mathrm{D}_{7}$	High-Z	Operating (Icc)	
L	L	L	H	Byte	$\mathrm{D}_{8}-\mathrm{D}_{15}$	High-Z	Operating (Icc)	

NOTE:

1. The input state of $\overline{\mathrm{BYTE}}$ pin must not be changed during operation. The $\overline{\mathrm{BYTE}}$ pin must be set to either High or Low. $X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	$\mathrm{V}_{\text {OUT }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($\mathrm{T}_{\mathrm{A}}=0$ to $\mathbf{+ 7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	VIL		-0.3		0.8	V		
Input "High" voltage	V_{H}		2.2		Vcc +0.3	V		
Output "Low" voltage	VOL	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lis		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	$\|\mathrm{loO}\|$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to Vcc			10	$\mu \mathrm{A}$	1	
Operating current	Icc1	$\mathrm{t}_{\mathrm{RC}}=100 \mathrm{~ns}$			100	mA	2	
	Icc2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			70			
	Icc3	$\mathrm{t}_{\mathrm{RC}}=100 \mathrm{~ns}$			100	mA	3	
	IcC4	$\mathrm{t}_{\text {RC }}=1 \mu \mathrm{~s}$			70			
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			3	mA		
	ISB2	$\overline{\mathrm{CE}}=\mathrm{Vcc}-0.2 \mathrm{~V}$			300	$\mu \mathrm{A}$		

NOTES:

1. $\mathrm{OE}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}} / \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathbb{H}} \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{Vcc}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

AC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	LH534600			UNIT	NOTE
		MIN.	TYP.	MAX.		
Read cycle time	trc	100			ns	
Address access time	$t_{\text {AA }}$			100	ns	
Chip enable access time	tace			100	ns	
Output enable delay time	toe			40	ns	
Output hold time	tor	5			ns	
CE to output in High-Z	tchz			40	ns	1
OE to ouput in High-Z	tohz.			40	ns	

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	1.5 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

CAPACITANCE (Vcc =5 $\mathbf{V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	CIN $_{\text {IN }}$			10	pF
Output capacitance	CouT			10	pF

CAUTION

To stabillize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and GND.

NOTES:

1. Data becomes valid after the intervals $t_{A A}, t_{A C E}$ and $t_{O E}$ from address input and output enable input, respectively have been met.
2. Apply to byte mode. Signals in parentheses apply to word mode.

Figure 3. Timing Diagram

ORDERING INFORMATION

FEATURES

- $1,048,576 \times 8$ bit organization (Byte mode)
$524,288 \times 16$ bit organization (Word mode)
- $\overline{\text { BYTE }}$ input pin selects bit configuration
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 275 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

42-pin, 600-mil DIP
44-pin, 600-mil SOP
48 -pin, $12 \times 18 \mathrm{~mm}^{2}$ TSOP (Type I)
$64-$ pin, $14 \times 20 \mathrm{~mm}^{2}$ QFP

- X16 word-wide pinout

DESCRIPTION

The LH538000 is a mask programmable ROM organized as $1,048,576 \times 8$ bits (Byte mode) or 524,288 $\times 16$ bits (Word mode) that can be selected by BYTE input pin. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 3．Pin Connections for SOP Package

48－PIN TSOP（TYPE I）	TOP VIEW
$\overline{\text { BYTE }} \sqrt{1 \bullet}$	48 万GND
$\mathrm{A}_{18}{ }^{2}$	47 صGND
$\mathrm{A}_{15}{ }^{\text {a }}$	$46 \mathrm{D}_{15}$
$\mathrm{A}_{14} \mathrm{C} 4$	$450 \mathrm{D}_{7}$
$\mathrm{A}_{13} \mathrm{~A}_{1}$	$44 \mathrm{D}_{14}$
$\mathrm{A}_{12}-6$	43 － D_{6}
$\mathrm{A}_{11} \mathrm{C}^{\text {¢ }} 7$	$42 \mathrm{D}_{13}$
$\mathrm{A}_{10} \mathrm{C}_{8}$	41 DD
$\mathrm{A}_{9} \mathrm{C}^{9}$	$40 \mathrm{D}_{12}$
$\mathrm{A}_{8} \mathrm{Cl}_{10}$	$39 \square \mathrm{D}_{4}$
NC－11	$38 \square \mathrm{v}_{\mathrm{cc}}$
GND 12	${ }_{37} \mathrm{v}_{\text {cc }}$
NC［ ${ }^{13}$	36 日GND
$\mathrm{A}_{18} \mathrm{Cl}^{14}$	$35-\mathrm{D}_{11}$
$\mathrm{A}_{17} \mathrm{Cl}^{15}$	$34 \mathrm{D} \mathrm{D}_{3}$
$\mathrm{A}_{7} \mathrm{Cl}_{16}$	33 － D_{10}
$\mathrm{A}_{6} \mathrm{C} 17$	$32 \square \mathrm{D}_{2}$
$\mathrm{A}_{5} \mathrm{Cl}^{18}$	31 DD9
$\mathrm{A}_{4} \mathrm{Cl}_{19}$	30 صD ${ }_{1}$
$\mathrm{A}_{3} \square^{20}$	29 D ${ }_{8}$
$\mathrm{A}_{2}{ }^{2}$	28 日D
$\mathrm{A}_{1} \square^{22}$	27 П $\overline{O E}$
$\mathrm{A}_{0} \mathrm{~S}^{23}$	26 صGND
$\overline{C E} \square^{24}$	25 صGND

Figure 4．Pin Connections for TSOP Package

Figure 2．Pin Connections for QFP Package

Figure 5. LH538000 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
A_{-1}	Address input (Byte Mode)	1
$\mathrm{~A}_{0}-\mathrm{A}_{18}$	Address input	
$\mathrm{D}_{0}-\mathrm{D}_{15}$	Data output	
$\overline{\mathrm{CE}}$	Chip Enable input	

SIGNAL	PIN NAME	NOTE
$\overline{\text { OE }}$	Output Enable input	
$\overline{\text { BYTE }}$	Byte/word switch	
Vcc	Power supply (+5 V)	
GND	Ground	

NOTE:

1. D_{15} / A_{-1} pin becomes LSB address input (A_{-1}) when the bit configuration is set in byte mode,
and data output (D_{15}) when in word mode. BYTE input pin selects bit configuration.

TRUTH TABLE

$\overline{\text { CE }}$	$\overline{\text { OE }}$	$\overline{\text { BYTE }}$	A-1	MODE	$\mathrm{D}_{0}-\mathrm{D}_{7}$	D_{8} - D_{15}	SUPPLY CURRENT
H	X	X	X	Non selected	High-Z		Standby (ISB)
L	H	X	X	Non selected	High-Z		Operating (lcc)
L	L	H	Inhibit	Word	$\mathrm{D}_{0}-\mathrm{D}_{7}$	D_{8} - D_{15}	
L	L	L	L	Byte	$\mathrm{D}_{0}-\mathrm{D}_{7}$	High-Z	
L	L	L	H	Byte	$\mathrm{D}_{8}-\mathrm{D}_{15}$	High-Z	

NOTE:
$\mathrm{X}=\mathrm{H}$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	$\mathrm{V}_{\text {CC }}$	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	Vout	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3	0.8	V	
Input "High" voltage	$\mathrm{V}_{\text {IH }}$		2.2	Vcc +0.3	V	
Output "Low" voltage	Vol	$\mathrm{lOL}=2.0 \mathrm{~mA}$		0.4	V	
Output "High" voltage	VOH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4		V	
Input leakage current	\| lui	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$		10	$\mu \mathrm{A}$	
Output leakage current	\| Lool	Vout $=0 \mathrm{~V}$ to Vcc		10	$\mu \mathrm{A}$	1
Operating current	IcC1	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$		50	mA	2
	Icc2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$		40		
	Icc3	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$		45	mA	3
	IcC4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$		35		
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$		3	mA	
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$		100	$\mu \mathrm{A}$	

NOTES:

1. $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=\left(\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}\right)$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

AC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	tRC	200		ns	
Address access time	taA		200	ns	
Chip enable time	taCE		200	ns	
Output enable time	toE		80	ns	
Output hold time	toH	5		ns	
CE to output in High-Z	tCHZ		70	ns	1
OE to output in High-Z	toHz		70	ns	

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{N}}$			10	pF
Output capacitance	Cout			10	pF

NOTES:

1. Data becomes valid after the intervals $t_{A A}, t_{A C E}$, and $t_{O E}$ from address input, chip enable and output enable, respectively have been met.
2. (*) Applied to byte mode. Signals in parentheses apply to word mode.

Figure 6. Timing Diagram

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the V_{cc} pin and GND.

ORDERING INFORMATION

LH538000	X	- \#\#	
Device Type	$\overline{\text { Package }}$	$\overline{\text { Speed }}$	
1			20200 Access Time (ns)
			$\begin{cases}\text { D } & 42-\mathrm{pin}, 600-\mathrm{mil} \text { DIP (DIP32-P-600) } \\ \text { N } & 44-\mathrm{pin}, 600-\mathrm{mil} \text { SOP (SOP44-P-600) } \\ \text { T } & 48-\text { pin, } 12 \times 18 \mathrm{~mm}^{2} \text { TSOP (TSOP48-P-1218: Type I) } \\ \mathrm{M} & 64-\mathrm{pin}, 14 \times 20 \mathrm{~mm}^{2} \text { QFP (QFP64-P-1420) }\end{cases}$
			CMOS 8M (1M $\times 8$ or 512K $\times 16$) Mask Programmable ROM

Example: LH538000D-20 (CMOS 8M (1M x 8) Mask Programmable ROM, $200 \mathrm{~ns}, 42-\mathrm{pin}, 600-\mathrm{mil}$ DIP)

FEATURES

- $1,048,576 \times 8$ bit organization
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 275 mW (MAX.)
Standby: $500 \mu \mathrm{~W}$ (MAX.)

- Programmable output enable
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

32-pin, 600-mil DIP
32-pin, 525 -mil SOP

- JEDEC standard EPROM pinout (DIP)

DESCRIPTION

The LH538100 is a mask programmable ROM organized as $1,048,576 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP and SOP Packages

Figure 2. LH538100 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{19}$	Address input	
$D_{0}-D_{7}$	Data output	
$\overline{C E}$	Chip Enable input	

SIGNAL	PIN NAME	NOTE
OE/̄E	Output Enable input	1
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. The active level of $O E / \overline{O E}$ is mask programmable.

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\mathbf{O E} / \overline{\mathbf{O E}}$	MODE	$\mathbf{D}_{0}-\mathrm{D}_{7}$	SUPPLY CURRENT
H	X	Non selected	High-Z	Standby (ISB)
L	L / H	Non selected	High-Z	Operating (Icc)
L	H / L	Selected	Dout	Operating (Icc)

NOTE:
$X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	VouT	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = 0 to $\mathbf{+ 7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	VOL	$\mathrm{loL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{loH}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lis		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	\| LLO		VOUT $=0 \mathrm{~V}$ to V cc			10	$\mu \mathrm{A}$	1
Operating current	lcc1	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$			50	mA	2	
	ICC2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			40			
	Icc3	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$			45	mA	3	
	IcC4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			35			
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$			3	mA		
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$			100	$\mu \mathrm{A}$		

NOTES:

1. $\overline{C E}=V_{\mathbb{H}}$ or $O E / \overline{O E}=V_{I /} / V_{\mathbb{H}}$
2. $\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathbb{H}} / V_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{V} C \mathrm{C}-0.2 \mathrm{~V})$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open

AC CHARACTERISTICS (VCC =5 V $\pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	tre	200			ns	
Address access time	$t_{\text {A }}$			200	ns	
Chip enable time	$t_{\text {ACE }}$			200	ns	
Output enable time	toe	10		80	ns	
Output hold time	toh	5			ns	
CE to output in High-Z	tchz			70	ns	1
OE to output in High-Z	tohz.			70	ns	1

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{I}}$			10	pF
Output capacitance	Cout			10	pF

NOTE: Data becomes valid after the intervals $t_{A A}, t_{A C E}$, and $t_{O E}$ from address input, chip enable or output enable, respectively have been met.

Figure 3. Timing Diagram

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and the GND pin.

ORDERING INFORMATION

Example: LH538100D-20 (CMOS 8M (1M x 8) Mask Programmable ROM, $200 \mathrm{~ns}, 32$-pin, 600 -mil DIP)

LH538200

FEATURES

- 1,048,576 $\times 8$ bit organization
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 275 mW (MAX.)

- Programmable $\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$
- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Package:

32-pin, 600-mil DIP
Compatible with 28-pin 1M-bit mask programmable ROM-specific pinout

DESCRIPTION

The LH538200 is a mask programmable ROM organized as $1,048,576 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. LH538200 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
$A_{0}-A_{19}$	Address input	
$D_{0}-D_{7}$	Data output	
$\overline{\text { OE }}$	Output Enable input	

SIGNAL	PIN NAME	NOTE
$\mathrm{OE}_{1} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$	Output Enable input/ Don't Care	1
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. The active level of $\mathrm{OE}_{1} / \overline{O E}_{1} / \mathrm{DC}$ is mask programmable.

Selecting DC allows the outputs to be active for both high and low levels that are applied to this pin. It is recommended to apply either a HIGH or a LOW to the DC pin.

TRUTH TABLE

$\overline{\mathbf{O E}}$	$\mathbf{O E _ { 1 }} / \overline{\mathrm{OE}}_{1} / \mathrm{DC}$	MODE	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{7}$	SUPPLY CURRENT
H	X	Non selected	High-Z	Operating (Icc)
X	L / H	Non selected	High-Z	Operating (Icc)
L	H / L	Selected	Dout	Operating (Icc)

NOTE:
$X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	VIN	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	VouT	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{0}$ to $\boldsymbol{+ 7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3		0.8	V		
Input "High" voltage	V_{IH}		2.2		Vcc +0.3	V		
Output "Low" voltage	VOL	$\mathrm{lOL}=2.0 \mathrm{~mA}$			0.4	V		
Output "High" voltage	VOH	$\mathrm{loh}=-400 \mu \mathrm{~A}$	2.4			V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$			10	$\mu \mathrm{A}$	
Output leakage current	\| Llo		Vout $=0 \mathrm{~V}$ to Vcc			10	$\mu \mathrm{A}$	1
Operating current	Icc1	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$			50	mA	2	
	ICC2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			40			
	lcc3	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$			45	mA	3	
	Icc4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$			35			

NOTES:

1. $\overline{\mathrm{OE}} / \overline{\mathrm{OE}}_{1}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{OE}_{1}=\mathrm{V}_{\mathrm{IL}}$.
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}$, outputs open.
3. $\mathrm{V}_{\mathrm{IN}}=(\mathrm{VCc}-0.2 \mathrm{~V})$ or 0.2 V , outputs open.

AC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Read cycle time	tRC	200			ns	
Address access time	taA			200	ns	
Output enable delay time	toE	10		80	ns	
Output hold time	toh	5			ns	
OE to output in High-Z	toHz			70	ns	1

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

CAPACITANCE (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			10	pF
Output capacitance	CouT			10	pF

NOTE: Data becomes valid after the intervals $t_{A A}$ and $t_{O E}$ from address input or output enable input, respectively have been met.

Figure 3. Timing Diagram

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the $V_{c c}$ pin and the GND pin.

ORDERING INFORMATION

LH538200	D	- \#\#	
Device Type	Package	Speed	
\|			20200 Access Time (ns)
			32-pin, 600-mil DIP (DIP32-P-600)

Example: LH538200D-20 (CMOS 8M (1M x 8) Mask Programmable ROM, $200 \mathrm{~ns}, 32$-pin, 600-mil DIP)

FEATURES

- $1,048,576 \times 8$ bit organization
(Byte mode)
$524,288 \times 16$ bit organization (Word mode)
- $\overline{\text { BYTE }}$ input pin selects bit configuration
- Access time: 150 ns (MAX.)
- Power consumption:

Operating: 275 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

42-pin, 600-mil DIP
44-pin, 600-mil SOP
44 -pin, $14 \times 14 \mathrm{~mm}^{2}$ QFP
64 -pin, $14 \times 20 \mathrm{~mm}^{2}$ QFP
48 -pin, $12 \times 18 \mathrm{~mm}^{2}$ TSOP I

- X16 word-wide pinout

DESCRIPTION

The LH538500A is a mask programmable ROM organized as $1,048,576 \times 8$ bits (Byte mode) or 524,288 $\times 16$ bits (Word mode) that can be selected by BYTE input pin. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

44-PIN SOP				TOP VIEW
	$n c \overparen{10}$	44	$\square \mathrm{NC}$	
	$\mathrm{A}_{18} \square 2$	43	NC	
	$\mathrm{A}_{17} \mathrm{C}^{1}$	42	A_{8}	
	$A_{7} \square_{4}$	41	A_{9}	
	A_{6} - 5	40	A_{10}	
	A_{5} - 6	39	A_{11}	
	$\mathrm{A}_{4} \mathrm{C}^{7}$	38	A_{12}	
	$\mathrm{A}_{3} \mathrm{C}_{8}$	37	A_{13}	
	$\mathrm{A}_{2} \mathrm{C}_{1}$	36	A_{14}	
	$\mathrm{A}_{1} \mathrm{C}_{10}$	35	A_{15}	
	$A_{0} \square_{11}$	34	A_{16}	
	$\overline{\text { CE }} 12$	33	$\square \overline{\text { BYTE }}$	
	GND 13	32	$\square \mathrm{GND}$	
	$\overline{O E} 14$	31	D_{15} / A_{1}	
	$\mathrm{D}_{0} 15$	30	D_{7}	
	$\mathrm{D}_{8} \mathrm{C}_{16}$	29	D_{14}	
	$\mathrm{D}_{1} \mathrm{Cl}^{17}$		D_{6}	
	D_{9}-18		D_{13}	
	$\mathrm{D}_{2} 19$		D_{5}	
	$\mathrm{D}_{10} \mathrm{D}_{20}$		D_{12}	
	$\mathrm{D}_{3} \mathrm{C}_{21}$		D_{4}	
	$\mathrm{D}_{11} \mathrm{C}_{22}$		V_{cc}	

Figure 3. Pin Connections for 44-Pin QFP

Figure 2. Pin Connections for SOP Package

Figure 4. Pin Connections for 64-Pin QFP Package

Figure 5. Pin Connections for TSOP Package

Figure 6. LH538500A Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
A_{-1}	Address input (Byte mode)	1
$A_{0}-A_{18}$	Address input	
$D_{0}-D_{15}$	Data output	
$\overline{\mathrm{CE}}$	Chip Enable input	
$\overline{\mathrm{OE}}$	Output Enable input	

SIGNAL	PIN NAME	NOTE
$\overline{\text { BYTE }}$	Byte/word switch	
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. $\mathrm{D}_{15} / \mathrm{A}_{-1}$ pin becomes LSB address input (A_{-1}) when the bit configuration is set to byte mode, and data output (D_{15}) when in word mode. BYTE input pin selects bit configuration.

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	BYTE *	A.1	MODE	D_{0} - D_{7}	D_{8} - D_{15}	SUPPLY CURRENT	NOTE
H	X	X	X	Non selected	High-Z		Standby (IsB)	1
L	H	X	X	Non selected	High-Z		Operating (lcc)	
L	L	H	Input inhibit	Word	$\mathrm{D}_{0}-\mathrm{D}_{7}$	$\mathrm{D}_{8}-\mathrm{D}_{15}$	Operating (lcc)	
L	L	L	L	Byte	$\mathrm{D}_{0}-\mathrm{D}_{7}$	High-Z	Operating (lcc)	
L	L	L	H	Byte	$\mathrm{D}_{8}-\mathrm{D}_{15}$	High-Z	Operating (lcc)	

NOTE:

1. $X=H$ or L

* BYTE input state must be set to H or L and must not be changed during operation.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	Vout	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = $\mathbf{0}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCC = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3	0.8	V	
Input "High" voltage	V_{IH}		2.2	Vcc +0.3	V	
Output "Low" voltage	VOL	$\mathrm{lOL}=2.0 \mathrm{~mA}$		0.4	V	
Output "High" voltage	V OH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4		V	
Input leakage current	\| ILII	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$		10	$\mu \mathrm{A}$	
Output leakage current	$\|\mathrm{loO}\|$	Vout $=0 \mathrm{~V}$ or VCC		10	$\mu \mathrm{A}$	1
Operating current	lcc1	$\mathrm{t}_{\mathrm{RC}}=150 \mathrm{~ns}$		50	mA	2
	ICC2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$		40		
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$		3	mA	
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$		100	$\mu \mathrm{A}$	

NOTES:

1. $\overline{C E} / \overline{O E}=V_{I H}$
2. $V_{I N}=V_{I H} V_{I L}, \overline{C E}=V_{I L}$, outputs open

AC CHARACTERISTICS (Vcc = $5 \mathrm{~V} \pm 10 \%$, $\mathrm{TA}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	trc	150		ns	
Address access time	$t_{\text {AA }}$		150	ns	
Chip enable time	tace		150	ns	
Output enable time	toe		70	ns	
Output hold time	toh	5		ns	
CE to output in High-Z	tchz		70	ns	1
OE to output in High-Z	tohz		70	ns	

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\mathbb{N}}$			10	pF
Output capacitance	Cour			10	pF

NOTES:

1. Data becomes valid after the intervals $\mathrm{t}_{\mathrm{AA}}, \mathrm{t}_{\mathrm{ACE}}$, and t_{OE} from address input and output enable input, respectively have been met.
2. Applied to byte mode. Signals in parentheses applied in word mode.

Figure 7. Timing Diagram

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and GND.

ORDERING INFORMATION

FEATURES

- 2,097,152 $\times 8$ bit organization (Byte mode)
1,048,576 $\times 16$ bit organization (Word mode)
- $\overline{\text { BYTE }}$ input pin selects bit configuration
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 275 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

64-pin, 750-mil SDIP
64-pin, $14 \times 20 \mathrm{~mm}^{2}$ QFP

- X16 word-wide pinout

DESCRIPTION

The LH5316000 is a mask programmable ROM organized as $2,097,152 \times 8$ bits (Byte mode) or $1,048,576 \times 16$ bits (Word mode) that can be selected by an input pin. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

64-PIN SDIP				TOP VIEW
	$N C \sqrt{1 \bullet}$		$\square \mathrm{NC}$	
	NCS 2	63	$\square A_{19}$	
	$\mathrm{A}_{18} \square 3$	62	$\square A_{8}$	
	$A_{17} \square_{4}$	61	$\square A_{9}$	
	$\mathrm{A}_{7} \mathrm{C}_{5}$	60	A_{10}	
	A_{6} - 6	59	A_{11}	
	$\mathrm{A}_{5} \mathrm{~A}^{7}$	58	A_{12}	
	A_{4} - 8	57	A_{13}	
	NC. 9	56	$\square \mathrm{NC}$	
	NC \square^{10}	55	$\square \mathrm{NC}$	
	NC ${ }^{11}$	54	$\square \mathrm{NC}$	
	$\mathrm{A}_{3} \mathrm{C}_{12}$	53	صNC	
	$\mathrm{A}_{2} \mathrm{~S}_{1}^{13}$	52	A_{14}	
	$\mathrm{A}_{1} \mathrm{C}_{14}$	51	$\square A_{15}$	
	$\mathrm{A}_{0} \mathrm{C}^{15}$	50	A_{16}	
	CE 16	49	П $\overline{\text { BYTE }}$	
	GND 17	48	$\square \mathrm{NC}$	
	OEC 18	47	$\square \mathrm{GND}$	
	$\mathrm{D}_{0} \square_{19}$	46	$\square \mathrm{D}_{15} / \mathrm{A}_{-1}$	
	$\mathrm{D}_{8} \square_{20}$	45	D_{7}	
	$\mathrm{D}_{1} \mathrm{C}^{21}$	44	$\square \mathrm{D}_{14}$	
	NCS ${ }^{22}$	43	$\square \mathrm{nc}$	
	NC C^{23}	42	$\square \mathrm{NC}$	
	$\mathrm{D}_{9} \mathrm{C}_{24}$	41	D_{6}	
	$\mathrm{D}_{2}{ }^{25}$	40	D_{13}	
	D_{10}-26	39	D_{5}	
	$\mathrm{D}_{3} \square^{27}$	38	D_{12}	
	$\mathrm{D}_{11} \mathrm{C}^{28}$	37	D_{4}	
	NC C_{29}	36	$\square \mathrm{NC}$	
	NC \square^{30}	35	日NC	
	NC [31	34	DNC	
	GND 32		$\square \mathrm{Vcc}$	

Figure 1. Pin Connections for SDIP Package

Figure 2. Pin Connections for QFP Package

Figure 3. LH5316000 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
A_{-1}	Address input (Byte Mode)	1
$A_{0}-A_{19}$	Address input	
$D_{0}-D_{15}$	Data output	
$\overline{C E}$	Chip Enable input	

SIGNAL	PIN NAME	NOTE
$\overline{\mathrm{OE}}$	Output Enable input	
$\overline{\mathrm{BYTE}}$	Byte/word switch	
VCC	Power supply (+5 V)	
GND	Ground	

NOTE:

1. $\mathrm{D}_{15} / \mathrm{A}-1$ pin becomes LSB address input $(\mathrm{A}-1)$ when the bit configuration is set in byte mode, and data output $\left(\mathrm{D}_{15}\right)$ when in word mode. BYTE input pin selects bit configuration.

TRUTH TABLE

$\overline{\mathrm{CE}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{BYTE}}$	$\mathrm{A}_{\mathbf{- 1}}$	MODE	$\mathrm{D}_{\mathbf{0}}-\mathrm{D}_{7}$	$\mathrm{D}_{8}-\mathrm{D}_{15}$	SUPPLY CURRENT
H	X	X	X	Non selected	High-Z	Standby (ISB)	
L	H	X	X	Non selected	High-Z	Operating (Icc)	
L	L	H	Inhibit	Word	$\mathrm{D}_{0}-\mathrm{D}_{7}$	$\mathrm{D}_{8}-\mathrm{D}_{15}$	Operating (Icc)
L	L	L	L	Byte	$\mathrm{D}_{0}-\mathrm{D}_{7}$	High-Z	Operating (Icc)
L	L	L	H	Byte	$\mathrm{D}_{8}-\mathrm{D}_{15}$	High-Z	Operating (Icc)

NOTE:
$X=H$ or L

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	VCC	-0.3 to +7.0	V	1
Input voltage	V IN	-0.3 to $\mathrm{VCC}+0.3$	V	
Output voltage	VouT	-0.3 to $\mathrm{VCC}+0.3$	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS (TA = 0 to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (VCc = $5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3	0.8	V		
Input "High" voltage	V_{IH}		2.2	Vcc +0.3	V		
Output "Low" voltage	VoL	$\mathrm{lOL}=2.0 \mathrm{~mA}$		0.4	V		
Output "High" voltage	VOH	$\mathrm{IOH}^{\prime}=-400 \mu \mathrm{~A}$	2.4		V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to Vcc		10	$\mu \mathrm{A}$	
Output leakage current	\| LLO		$\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$		10	$\mu \mathrm{A}$	1
Operating current	Icc1	$\mathrm{t}_{\text {RC }}=200 \mathrm{~ns}$		50	mA	2	
	ICC2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$		40			
	Icc3	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$		45	mA	3	
	ICC4	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$		35			
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$		3	mA		
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$		100	$\mu \mathrm{A}$		

NOTES:

1. $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$.
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} / V_{\mathrm{IL}}, \overline{C E}=\mathrm{V}_{\mathrm{IL}}$, outputs open.
3. $\mathrm{V}_{\mathrm{IN}}=\left(\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}\right)$ or $0.2 \mathrm{~V}, \overline{\mathrm{CE}}=0.2 \mathrm{~V}$, outputs open.

AC CHARACTERISTICS (VCC =5 V $\pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+\mathbf{7 0 ^ { \circ }} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	tRC	200		ns	
Address access time	taA		200	ns	
Chip enable time	taCE		200	ns	
Output enable time	tOE		80	ns	
Output hold time	toH	5		ns	
CE to output in High-Z	tchz		70	ns	1
OE to output in High-Z	toHz		70	ns	

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TTL}+100 \mathrm{pF}$

CAPACITANCE (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			10	pF
Output capacitance	COUT^{\prime}			10	pF

notes:

1. Data becomes valid after the intervals $t_{A A}, t_{A C E}$, and $t_{O E}$ from address
input, chip enable and output enable, respectively have been met.
2. Applies to byte mode. Signals in parentheses apply to word mode.

Figure 4. Timing Diagram

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and GND.

ORDERING INFORMATION

LH5316000	X	- \#\#	
Device Type	$\overline{\text { Package }}$	$\overline{\text { Speed }}$	
			20200 Access Time (ns)
			$\begin{cases}\text { D } & 64-\mathrm{pin}, 750 \text {-mil SDIP (SDIP64-P-750) } \\ \text { M } & 64-\mathrm{pin}, 14 \times 20 \mathrm{~mm}^{2} \text { QFP (QFP64-P-1420) }\end{cases}$

Example: LH5316000D-20 (CMOS 16M (2M x 8) Mask Programmable ROM, $200 \mathrm{~ns}, 32$-pin, 750-mil SDIP)

FEATURES

- $4,194,304 \times 8$ bit organization (Byte mode) 2,097,152 $\times 16$ bit organization (Word mode)
- $\overline{\text { BYTE }}$ input pin selects bit configuration
- Access time: 200 ns (MAX.)
- Power consumption:

Operating: 275 mW (MAX.)
Standby: $550 \mu \mathrm{~W}$ (MAX.)

- Fully static operation
- TTL compatible I/O
- Three-state outputs
- Single +5 V power supply
- Packages:

44-pin, 600-mil SOP
64 -pin, $14 \times 20 \mathrm{~mm}^{2}$ QFP

- X16 word-wide pinout

DESCRIPTION

The LH5332000 is a mask programmable ROM organized as 4,194,304 $\times 8$ bits (Byte mode) or $2,097,152 \times 16$ bits (Word mode) that can be selected by input pin. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

Figure 1. Pin Connections for SOP Package

Figure 3. LH5332000 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
A_{-1}	Address input (Byte mode)	1
$\mathrm{~A}_{0}-\mathrm{A}_{20}$	Address input	
$\mathrm{D}_{0}-\mathrm{D}_{15}$	Data output	
$\overline{\mathrm{CE}}$	Chip Enable input	

SIGNAL	PIN NAME	NOTE
$\overline{\mathrm{OE}}$	Output Enable input	
$\overline{\mathrm{BYTE}}$	Byte/word switch	
Vcc	Power supply (+5 V)	
GND	Ground	

NOTE:

1. $\mathrm{D}_{15} / \mathrm{A}_{-1}$ pin becomes LSB address input ($\mathrm{A}-1$) when the bit configuration is set to byte mode, and data output (D_{15}) when in word mode. BYTE input pin selects bit configuration.

TRUTH TABLE

$\overline{\mathbf{C E}}$	$\overline{\mathrm{OE}}$	BYTE *	A-1	MODE	D_{0} - D_{7}	D_{8} - D_{15}	SUPPLY CURRENT	NOTE
H	X	X	X	Non selected	High-Z		Standby (ISB)	1
L	H	X	X	Non selected			Operating (lcc)	
L	L	H	Input inhibit	Word	$\mathrm{D}_{0}-\mathrm{D}_{7}$	D8- D_{15}		
L	L	L	L	Byte	$\mathrm{D}_{0}-\mathrm{D}_{7}$	High-Z		
L	L	L	H	Byte	$\mathrm{D}_{8}-\mathrm{D}_{15}$	High-Z		

NOTE:

1. $X=H$ or L

* $\overline{\text { BYTE }}$ input state must be set to H or L which must not be changed during operation.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	Vcc	-0.3 to +7.0	V	1
Input voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to Vcc +0.3	V	
Output voltage	Vout	-0.3 to Vcc +0.3	V	
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE:

1. The maximum applicable voltage on any pin with respect to GND.

RECOMMENDED OPERATING CONDITIONS ($\mathrm{T}_{\mathrm{A}}=0$ to $\mathbf{+ 7 0 ^ { \circ }} \mathbf{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	VCC	4.5	5.0	5.5	V

DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE	
Input "Low" voltage	$\mathrm{V}_{\text {IL }}$		-0.3	0.8	V		
Input "High" voltage	V_{IH}		2.2	VCC +0.3	V		
Output "Low" voltage	V OL	$\mathrm{lOL}=2.0 \mathrm{~mA}$		0.4	V		
Output "High" voltage	V OH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4		V		
Input leakage current	\| lıI		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$		10	$\mu \mathrm{A}$	
Output leakage current	$\mid \mathrm{LLO}$ \|	Vout $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$		10	$\mu \mathrm{A}$	1	
Operating current	Icc1	$\mathrm{t}_{\mathrm{RC}}=200 \mathrm{~ns}$		50	mA	2	
	ICC2	$\mathrm{t}_{\mathrm{RC}}=1 \mu \mathrm{~s}$		40			
Standby current	ISB1	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$		2	mA		
	ISB2	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$		100	$\mu \mathrm{A}$		

NOTES:

1. $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}=\mathrm{V}_{\mathbb{H}}$
2. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}} / \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$, outputs open

AC CHARACTERISTICS (VCC =5 V $\pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	$t_{\text {R }}$	200		ns	
Address access time	$t_{\text {AA }}$		200	ns	
Chip enable time	tace		200	ns	
Output enable time	toe		80	ns	
Output hold time	toh	5		ns	
CE to output in High-Z	tchz		70	ns	1
OE to output in High-Z	tohz.		70	ns	

NOTE:

1. This is the time required for the outputs to become high-impedance.

AC TEST CONDITIONS

PARAMETER	RATING
Input voltage amplitude	0.6 V to 2.4 V
Input rise/fall time	10 ns
Input reference level	1.5 V
Output reference level	0.8 V and 2.2 V
Output load condition	$1 \mathrm{TLL}+100 \mathrm{pF}$

CAPACITANCE (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\text {IN }}$			10	pF
Output capacitance	COUT			10	pF

NOTES:

1. Data becomes valid after the intervals $t_{A A}, t_{A C E}$, and $t_{O E}$ from address
input and output enable input, respectively have been met.
2. Applied to byte mode. Signals in parentheses applied in word mode.

Figure 4. Timing Diagram

CAUTION

To stabilize the power supply, it is recommended that a high-frequency bypass capacitor be connected between the Vcc pin and GND.

ORDERING INFORMATION

GENERAL INFORMATION - 1

DYNAMIC RAMs - 2

PSEUDO STATIC RAMs - 3

STATIC RAMs - 4

EPROMs/OTPROMs - 5

MASK PROGRAMMABLE ROMS - 6

FIFO MEMORIES - 7

FIELD MEMORIES - 8

APPLICATION AND TECHNICAL INFORMATION - 9

LH5481 LH5491

FEATURES

- Fastest $64 \times 8 / 9$ Cascadeable FIFO $35 / 25 / 15 \mathrm{MHz}$
- Expandable in Word Width \& FIFO Depth
- Almost-Full/Almost-Empty \& Half-Full Flags
- Fully Independent Asynchronous Inputs \& Outputs
- LH5481 Output Enable forces Data Outputs to High-Impedance State
- Pin Compatible \& Cascadeable with LH5485/5495 $256 \times 8 / 9$ FIFOs
- Industry Standard Pinout
- 28-Pin, 300-mil DIP \&

28-Pin PLCC Packaging

FUNCTIONAL DESCRIPTION

The LH5481 and LH5491 are high-performance, asynchronous First-In, First-Out (FIFO) memories organized 64 words deep by 8 or 9 -bits wide. The 8 -bit LH5481 has an Output Enable ($\overline{\mathrm{OE}}$) function, which can be used to force the eight data outputs (DO) to a high-impedance state. The LH5491 has nine data outputs.

These FIFOs accept 8 or 9-bit data at the Data Inputs (DI). A Shift $\operatorname{In}(\mathrm{SI})$ signal writes the DI data into the FIFO. A Shift Out (SO) signal shifts stored data to the Data Outputs (DO). The Output Ready (OR) signal indicates when valid data is present on the DO outputs.

If the FIFO is full and unable to accept more DI data Input Ready (IR) will not return high and SI pulses will be ignored. If the FIFO is empty and unable to shift data to the DO outputs, OR will not return high and SO pulses will be ignored. The Almost-Full/Almost-Empty (AFE) flag is asserted (HIGH) whenthe FIFO is almost-full (56 words or more) or almost- empty (8 words or less). The Half-Full (HF) flag is asserted (HIGH) when the FIFO contains 32 words or more.

Reading and writing operations may be asynchronous, allowing these FIFOs to be used as buffers between digital machines of different operating frequencies. The
high speed makes these FIFOs ideal for high performance communication and controller applications.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. Pin Connections for PLCC Package

Figure 3. LH5481/91 Block Diagram

PIN DESCRIPTIONS

PIN	DESCRIPTION
$\mathrm{Dl}_{0}-\mathrm{Dl}_{8}$	Data Inputs
$\mathrm{DO}_{0}-\mathrm{DO}_{8}$	Data Outputs
SI	Shift In
SO	Shift Out
IR	Input Ready
OR	Output Ready

PIN	DESCRIPTION
HF	Half-Full Flag
AFE	Almost-Full / Almost-Empty
$\overline{M R}$	Master Reset
$\overline{\text { OE }}$	Output Enable (LH5481 only)
VCC	Positive Power Supply
VSS	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
Vcc Range	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$ (not to exceed 7 V)
DC Output Current ${ }^{3}$	$\pm 40 \mathrm{~mA}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
DC Voltage Applied To Outputs In High-Z state	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$ (not to exceed 7 V)
Static Discharge Voltage ${ }^{4}$	$>2000 \mathrm{~V}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. All voltages are measured with respect to Vss.
2. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
3. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.
4. Sample tested only.

OPERATING RANGE ${ }^{1}$

PARAMETER	DESCRIPTION	MIN	MAX	UNIT
T_{A}	Temperature, Ambient	0.0	70	${ }^{\circ} \mathrm{C}$
VCC	Supply Voltage	4.5	5.5	V
VSS	Ground	0.0	0.0	V
$\mathrm{~V}_{\text {IL }}$	Input Low Voltage (Logic "0") ${ }^{2}$	-0.5	0.8	V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage (Logic "1")	2.0	$\mathrm{Vcc}+0.5$	V

NOTES:

1. All voltages are measured with respect to Vss.
2. FIFO inputs are able to withstand $\mathrm{a}-1.5 \mathrm{~V}$ undershoot for less than 10 ns per cycle.

DC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range Unless Otherwise Noted)

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	MAX	UNIT
ILI	Input Leakage Current	$\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{~V}$ IN $=0 \mathrm{~V}$ to VCc	-10	10	$\mu \mathrm{A}$
ILO	Output Leakage Current (High-Z)	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{Vout}=0 \mathrm{~V}$ to Vcc	-10	10	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{lOH}=-4 \mathrm{~mA}$	2.4		V
VOL	Output Low Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{lOL}=8.0 \mathrm{~mA}$		0.4	V
Icca	Power Supply Quiescent Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \text { lout }=0 \mathrm{~mA} \\ & \mathrm{VIN}^{2} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{VIN}^{2} \geq \mathrm{V}_{\text {IH }} \end{aligned}$		25	mA
ICC	Power Supply Current ${ }^{2}$	$\mathrm{fsi}=35 \mathrm{MHz}$, fso $=35 \mathrm{MHz}$		45	mA

NOTES:

1. All voltages are measured with respect to Vss.
2. Icc is dependent upon actual output loading and cycle rates. Specified values are with outputs open.

AC TEST CONDITIONS ${ }^{1}$

PARAMETER	RATING
Input Pulse Levels	0 to 3 V
Input Pise and Fall Times (10\%/90\%)	Figure 4a
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load for AC Timing Tests	Figure 4b

NOTE:

1. All voltages are measured with respect to Vss.

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	DESCRIPTION	TEST CONDITIONS	RATING
$\mathrm{CIN}_{\mathrm{N}}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{VCC}=4.5 \mathrm{~V}$	5 pF
COUT	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{Vcc}=4.5 \mathrm{~V}$	7 pF

NOTES:

1. All voltages are measured with respect to Vss.
2. Sample tested only.

Figure 4a. Input Rise and Fall Times

Figure 4b. Output Load Circuit

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	PARAMETER	15MHz		25MHz		35MHz		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
fo	Operating Frequency ${ }^{2}$		15		25		35	MHz
tPHSI	SI HIGH Time ${ }^{3,8}$	15		11		9		ns
tPLSI	SI LOW Time ${ }^{3,8}$	20		15		13		ns
tssi	Data Setup to SI^{4}	-1		-1		-1		ns
thSI	Data Hold from SI^{4}	14		12		10		ns
tDLIR	Delay, SI HIGH to IR LOW		20		18		16	ns
tDHIR	Delay, SI LOW to IR HIGH		24		20		18	ns
tPHSO	SO HIGH Time ${ }^{3}$	15		11		9		ns
tPLSO	SO LOW Time ${ }^{3}$	20		15		13		ns
tDLOR	Delay, SO HIGH to OR LOW		20		18		16	ns
tDHOR	Delay, SO LOW to OR HIGH		24		20		18	ns
tSOR	Data Setup to OR HIGH	-1		-1		-1		ns
thSo	Data Hold from SO LOW	0		0		0		ns
trT	Fallthrough Time		36		34		30	ns
tBT	Bubblethrough Time		28		26		25	ns
tsir	Data Setup to IR^{5}	5		5		5		ns
thir	Data Hold from IR^{5}	5		5		5		ns
tPIR	Input Ready Pulse HIGH ${ }^{8}$	7		7		7		ns
tPOR	Output Ready Pulse HIGH ${ }^{8}$	7		7		7		ns
tDLZOE	OE LOW to LOW Z (LH5481) ${ }^{6,9}$		35		30		25	ns
tDHZOE	OE HIGH to HIGH Z (LH5481) ${ }^{6,9}$		35		30		25	ns
tDHHF	SI LOW to HF HIGH		40		40		36	ns
tDLHF	SO LOW to HF LOW		40		40		36	ns
tDLafe	SO or SI LOW to AFE LOW		40		40		36	ns
tDhafe	SO or SI LOW to AFE HIGH		40		40		36	ns
tPMR	$\overline{\mathrm{MR}}$ Pulse Width	35		35		35		ns
tDSI	$\overline{\mathrm{MR}}$ HIGH to SI HIGH		25		25		22	ns
tDOR	$\overline{\mathrm{MR}}$ LOW to OR LOW ${ }^{7}$		25		25		20	ns
tIIR	$\overline{\text { MR LOW to IR HIGH }}{ }^{7}$		25		25		20	ns
tLXMR	$\overline{\text { MR }}$ LOW to Output LOW ${ }^{7}$		25		25		20	ns
$\mathrm{t}_{\text {AFE }}$	$\overline{\text { MR LOW to AFE HIGH }}$		30		30		30	ns
thf	$\overline{\text { MR LOW to HF LOW }}$		30		30		30	ns

NOTES:

1. All time measurements performed at " AC Test Conditions".
2. $\mathrm{fo}_{\mathrm{f}}=\mathrm{f}_{\mathrm{SI}}=\mathrm{fsO}$.
3. tPHSI + tPLSI $=$ tPHSO + tPLSO $=1 / \mathrm{fo}$.

4 tssi and thsi apply when memory is not full.
5. tsir and tHIR apply when memory is full and SI is HIGH.
6. High-Z transitions are referenced to the steady-state $\mathrm{VOH}_{\mathrm{OH}}-500 \mathrm{mV}$ and $\mathrm{VoL}+500 \mathrm{mV}$ levels on the output.
7. After reset goes LOW, all Data outputs will be at LOW level, IR goes HIGH and OR goes LOW.
8. Common dash number devices are guaranteed by design to function properly in a cascaded configuration.
9. Sample tested only.

OPERATIONAL DESCRIPTION

Unlike earlier versions of FIFOs, the LH5481 and LH5491 use dual-port Random-Access-Memory, write and read pointers, and special control logic. The write pointer is incremented by the falling edge of the Shift In (SI) signal, while the read pointer is incremented by the falling edge of the Shift Out (SO) signal. The Input Ready (IR) signal enables data writing to the FIFO. Output Ready (OR) indicates valid read information is available on the Data Output (DO) pins.

Resetting The FIFO

The FIFO Must Be Reset, upon Power-Up, using the Master Reset ($\overline{\mathrm{MR}}$) signal. This causes the FIFO to enter an empty state, indicated by the Output Ready (OR) being LOW and Input Ready (IR) being HIGH. All Data Output (DO) pins will be LOW in this state. The AFE flag will be HIGH and the HF flag will be LOW.

If Shift $\ln (\mathrm{SI})$ is HIGH, when the Master Reset ($\overline{\mathrm{MR}})$ signal is ended, then the data on the Data Input (DI) pins will be written into the FIFO and Input Ready (IR) will return LOW until Shift $\operatorname{In}(\mathrm{SI})$ is brought LOW.

If Shift $\ln (\mathrm{SI})$ is LOW when the Master Reset ($\overline{\mathrm{MR}})$ is ended, then Input Ready (IR) will go HIGH, but the data on the Data Input (DI) pins will not enter the FIFO until Shift In (SI) goes HIGH.

Shifting Data In

Data Input (DI) is shifted into the FIFO on the rising edge of Shift In (SI). This loads input data into the FIFO and causes Input Ready (IR) to go LOW. When a falling edge of Shift $\operatorname{In}(\mathrm{SI})$ occurs, the write pointer increments to the next word position and Input Ready (IR) goes HIGH, indicating that the FIFO is ready to accept new data. When the FIFO is full, Input Ready (IR) remains LOW after the negative edge of Shift In (SI) signal; Shift Out (SO) action is required to unload a word of data and bring Input Ready (IR) HIGH - see Bubblethrough description.

Shifting Data Out

Data is shifted out of the FIFO on the falling edge of Shift Out (SO). The read pointer increments to the next
word location and FIFO data, if present, will appear on the Data Output (DO) pins and the Output Ready (OR) signal will go HIGH. If FIFO data is not present, Output Ready (OR) will stay LOW, indicating the FIFO is empty; in this case, the last valid data read from the FIFO will remain on the Data Output (DO) pins. When the FIFO is not empty, Output Ready (OR) will go LOW after the rising edge of Shift Out (SO). The previous data remains on the Data Output (DO) pins until a falling edge of Shift Out (SO).

Fallthrough Condition

When the FIFO is empty, a data word entering through the Shift $\ln (\mathrm{SI})$ action will follow one of two sequences.

If Shift Out (SO) is LOW, the data will propagate to the Data Output (DO) pins and Output Ready (OR) will go HIGH and stay HIGH until the next rising edge of Shift Out (SO).

If Shift Out (SO) is held HIGH while data is shifted into an empty FIFO (as occurs in depth cascading of FIFOs), data will propagate to the Data Output (DO) pins and Output Ready (OR) will pulse HIGH for a minimum time duration specified by TPOR and then go back LOW again. The stored word will remain on the Data Output (DO) pins. If more words are written into the FIFO, they will line up behind the first word and not appear on the Data Output (DO) pins until Shift Out (SO) has returned LOW.

Bubblethrough Condition

When the FIFO is full, Shift Out (SO) action will initiate one of the following two sequences:

If Shift In (SI) is LOW, Input Ready (IR) will go HIGH and stay HIGH until the next rising edge of Shift In (SI).

If Shift In (SI) is held HIGH while data is shifted out of a full FIFO (as occurs in depth cascading of FIFOs), Input Ready (IR) will pulse HIGH for a minimum time duration specified by tPIR and then go back LOW again. Special Data Input (DI) setup and hold times (tSIR and thir, respectively) are defined for this condition.

TIMING DIAGRAMS

Figure 5. Data In Timing

Figure 6. Data Out Timing

TIMING DIAGRAMS (cont'd)

*** NOTE: FIFO Contains 31 Words

Figure 7. Data In Timing

Figure 8. Data Out Timing

TIMING DIAGRAMS (cont'd)

Figure 9. Data in Timing

Figure 10. Data Out Timing

TIMING DIAGRAMS (cont'd)

Figure 11. Bubblethrough Timing (Reading a Full FIFO)

Figure 12. Fallthrough Timing (Writing an Empty FIFO)

TIMING DIAGRAMS (cont'd)

Figure 13. Master Reset Timing

TIMING DIAGRAMS (cont'd)

Figure 14. Shifting Words in

Figure 15. Shifting Words Out

FIFO EXPANSION

Figure 16. $320 \times 24 / 27$ Configuration
Using $64 \times 8 / 9$ (LH5481/91) \& $256 \times 8 / 9$ (LH5485/95) FIFOs

FIFO EXPANSION (cont'd)

Figure 17. $128 \times 8 / 9$ Configuration

FIFOs are expandable in depth and width. However, in forming wider words, external logic is required to generate composite Input and Output Ready flags. This is due to the variation of delays of the FIFOs. The example circuit (Figure 16) uses simple AND gates as the external IR and OR generators. More complex logic may be required if fallthrough and bubblethrough pulses are needed by the external system.

FIFOs can be easily cascaded to any desired depth as illustrated in Figure 17. The handshaking and associated timing between the FIFOs are handled by the inherent timing of the devices.

NOTES:

1. When the memory is empty the last word read will remain on the outputs until the master reset is strobed or a new data word bubbles through to the output. However, OR will remain LOW, indicating data at the output is not valid.
2. When the output data changes as a result of a pulse on SO , the OR signal always goes LOW before there is any change in output data and stays LOW until the new data has appeared on the outputs. Anytime OR is HIGH, there is valid stable data on the outputs.
3. All SHARP FIFOs will cascade with other SHARP FIFOs of the same architecture (i.e., $64 \times 8 / 9$ with $64 \times 8 / 9$ or $64 \times 8 / 9$ with $256 \times 8 / 9$). However, they may not cascade with FIFOs from other manufacturers.

ORDERING INFORMATION

FEATURES

- Fastest $256 \times 8 / 9$ Cascadeable FIFO $35 / 25 / 15 \mathrm{MHz}$
- Expandable in Word Width \& FIFO Depth
- Almost-Full / Empty \& Half-Full Flags
- Fully Independent Asynchronous Inputs \& Outputs
- LH5485 Output Enable forces Data Outputs to High-Impedance State
- Pin Compatible \& Cascadeable with LH5481/5491 $64 \times 8 / 9$ FIFOs
- Industry Standard Pinout
- 28-Pin, 300-mil DIP \&

28-Pin PLCC Packaging

FUNCTIONAL DESCRIPTION

The LH5485 and LH5495 are high performance, asynchronous First-In-First-Out (FIFO) memories organized 256 words deep by 8 or 9 bits wide. The 8 -bit LH5485 has an Output Enable ($\overline{\mathrm{OE}}$) function, which can be used to force the 8 data outputs (DO) to a high-impedance state. The LH5495 has 9 data outputs.

These FIFOs accept 8 or 9-bit data at the DI data inputs. A Shift In (SI) signal writes the DI data into the FIFO. A Shift Out (SO) signal shifts stored data to the DO outputs. The Output Ready (OR) signal indicates when valid data is present on the DO outputs.

If the FIFO is full and unable to accept more DI data IR will not return high and SI pulses will be ignored. If the FIFO is empty and unable to shift data to the DO outputs, OR will not return high and SO pulses will be ignored. The Almost-Full and Almost-Empty (AFE) flag is asserted (HIGH) when the FIFO is almost-full (248 words or more) or almost-empty (8 words or less). The Half-Full (HF) flag is asserted (HIGH) when the FIFO contains 128 words or more.

Reading and writing operations may be asynchronous, allowing these FIFOs to be used as buffers between digital machines of widely different operating frequencies. The high speed makes these FIFOs ideal for high performance communication and controller applications.

PIN CONNECTIONS

28-PIN DIP				TOP VIEW
	AFE 10	28	$\square \mathrm{Vc}$	
	$\mathrm{HF} \square 2$	27	$\square \overline{\mathrm{MR}}$	
	IR 3	26	\square so	
	SI 4	25	$\square \mathrm{OR}$	
	$D \mathrm{I}_{0} \square 5$	24	$\square \mathrm{DO}_{0}$	
	$\mathrm{DI}_{1} \square 6$	23	$\square \mathrm{DO}_{1}$	
	$\mathrm{V}_{\text {SS }} \square 7$	22	$\square \mathrm{V}_{\text {SS }}$	
	$\mathrm{DI}_{2} \square 8$	21	$\square \mathrm{DO}_{2}$	
	$\mathrm{DI}_{3} \square 9$	20	$\square \mathrm{DO}_{3}$	
	$\mathrm{DI}_{4} \square 10$	19	$\square \mathrm{DO}_{4}$	
	$\mathrm{DI}_{5} \square 11$	18	$\square \mathrm{DO}_{5}$	
	$\mathrm{DI}_{6} \square_{12}$	17	$\square \mathrm{DO}_{6}$	
	$\mathrm{DI}_{7} \square 13$	16	$\square \mathrm{DO}_{7}$	
	NC/DI \square_{14}	15	$\square \overline{\mathrm{OE}} / \mathrm{DO}_{8}$	

Figure 1. Pin Connections for DIP Package

Figure 2. Pin Connections for PLCC Package

Figure 3. LH5485/95 Block Diagram

PIN DESCRIPTIONS

PIN	DESCRIPTION
$\mathrm{Dl}_{0}-\mathrm{Dl}_{8}$	Data Inputs
$\mathrm{DO}_{0}-\mathrm{DO}_{8}$	Data Outputs
SI	Shift In
SO	Shift Out
IR	Input Ready
OR	Output Ready

PIN	DESCRIPTION
HF	Half-Full Flag
AFE	Almost-Full / Almost-Empty
$\overline{\text { MR }}$	Master Reset
$\overline{\mathrm{OE}}$	Output Enable (LH5485 only)
VCC	Positive Power Supply
VSS	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

PARAMETER	RATING
Vcc Range	-0.5 V to 7 V
Input Voltage Range	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$ (not to exceed 7 V)
DC Output Current ${ }^{3}$	$\pm 40 \mathrm{~mA}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
DC Voltage Applied To Outputs In High-Z state	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$ (not to exceed 7 V)
Static Discharge Voltage ${ }^{4}$	$>2000 \mathrm{~V}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. All voltages are measured with respect to Vss.
2. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
3. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.
4. Sample tested only.

OPERATING RANGE ${ }^{1}$

PARAMETER	DESCRIPTION	MIN	MAX	UNIT
TA 2	Temperature, Ambient	0.0	70	${ }^{\circ} \mathrm{C}$
V_{Cc}	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Ground	0.0	0.0	V
$\mathrm{~V}_{\text {IL }}$	Input Low Voltage (Logic "0") ${ }^{2}$	-0.5	0.8	V
$\mathrm{~V}_{\text {IH }}$	Input High Voltage (Logic "1")	2.0	$\mathrm{Vcc}+0.5$	V

NOTES:

1. All voltages are measured with respect to Vss.
2. FIFO inputs are able to withstand a-1.5 V undershoot for less than 10 ns per cycle.
dC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range, Unless Otherwise Noted)

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	MAX	UNIT
ILI	Input Leakage Current	V cc $=5.5 \mathrm{~V}, \mathrm{~V}$ IN $=0 \mathrm{~V}$ to Vcc	-10	10	$\mu \mathrm{A}$
ILO	Output Leakage Current (High-Z)	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{VOUT}=0 \mathrm{~V}$ to Vcc	-10	10	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{lOH}=-4 \mathrm{~mA}$	2.4		V
VOL	Output Low Voltage	$\mathrm{VCC}=4.5 \mathrm{~V}, \mathrm{loL}=8.0 \mathrm{~mA}$		0.4	V
Icca	Power Supply Quienscent Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \text { lout }=0 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}, \mathrm{VIN}^{2} \geq \mathrm{V}_{\text {IH }} \end{aligned}$		25	mA
Icc	Power Supply Current ${ }^{2}$	$\mathrm{fsi}=35 \mathrm{MHz}, \mathrm{fsO}=35 \mathrm{MHz}$		70	mA

NOTES:

1. All voltages are measured with respect to Vss.
2. Icc is dependent upon actual output loading and cycle rates. Specified values are with outputs open.

AC TEST CONDITIONS ${ }^{1}$

PARAMETER	RATING
Input Pulse Levels	0 to 3 V
Input Rise and Fall Times (10\% / 90\%)	Figure 4a
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
Output Load for AC Timing Tests	Figure 4b

NOTE:

1. All voltages are measured with respect to Vss.

CAPACITANCE ${ }^{1,2}$

PARAMETER	DESCRIPTION	TEST CONDITIONS	RATING
CIN	Input Capacitance	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{Vcc}=4.5 \mathrm{~V}$	5 pF
COUT	Output Capacitance	$\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{Vcc}=4.5 \mathrm{~V}$	7 pF

NOTES:

1. All voltages are measured with respect to Vss.
2. Sample tested only.

Figure 4a. Input Rise and Fall Times

Figure 4b. Output Load Circuit

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	PARAMETER	15MHz		25MHz		35MHz		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
fo	Operating Frequency ${ }^{2}$		15		25		35	MHz
tPHSI	SI HIGH Time ${ }^{3,8}$	15		11		9		ns
tPLSI	SI LOW Time ${ }^{3,8}$	20		15		13		ns
tssi	Data Setup to SI^{4}	-1		-1		-1		ns
thSI	Data Hold from SI^{4}	14		12		10		ns
tDLIR	Delay, SI HIGH to IR LOW		20		18		16	ns
tDHIR	Delay, SI LOW to IR HIGH		24		20		18	ns
tPHSO	SO HIGH Time ${ }^{3}$	15		11		9		ns
tPLSO	SO LOW Time ${ }^{3}$	20		15		13		ns
tDLOR	Delay, SO HIGH to OR LOW		20		18		16	ns
tDHOR	Delay, SO LOW to OR HIGH		24		20		18	ns
tSOR	Data Setup to OR HIGH	-1		-1		-1		ns
thSO	Data Hold from SO LOW	0		0		0		ns
tFT	Fallthrough Time		40		34		30	ns
tBT	Bubblethrough Time		28		26		25	ns
tSIR	Data Setup to IR^{5}	5		5		5		ns
tHIR	Data Hold from R^{5}	5		5		5		ns
tPIR	Input Ready Pulse HIGH^{8}	7		7		7		ns
tPOR	Output Ready Pulse HIGH^{8}	7		7		7		ns
tDIZOE	OE LOW to LOW Z (LH5485) ${ }^{6,9}$		35		30		25	ns
tDHZOE	OE HIGH to HIGH Z (LH5485) ${ }^{6,9}$		35		30		25	ns
tDHHF	SI LOW to HF HIGH		45		45		40	ns
tDLHF	SO LOW to HF LOW		45		45		40	ns
tDLAFE	SO or SI LOW to AFE LOW		45		45		40	ns
tDHAFE	SO or SI LOW to AFE HIGH		45		45		40	ns
tPMR	$\overline{\mathrm{MR}}$ Pulse Width	35		35		35		ns
tDSI	$\overline{\mathrm{MR}} \mathrm{HIGH}$ to SI HIGH		25		25		22	ns
tDOR	$\overline{\text { MR LOW to OR LOW }}{ }^{7}$		25		25		20	ns
tDIR	$\overline{\mathrm{MR}}$ LOW to IR HIGH ${ }^{7}$		25		25		20	ns
tLXMR	$\overline{\mathrm{MR}}$ LOW to Output LOW ${ }^{7}$		25		25		20	ns
tafe	$\overline{\text { MR LOW to AFE HIGH }}$		30		30		30	ns
thF	$\overline{\text { MR LOW to HF LOW }}$		30		30		30	ns

NOTES:

1. All time measurements performed at "AC Test Conditions".
2. $\mathrm{fo}_{\mathrm{o}}=\mathrm{f} \mathrm{S} \mathrm{f}=\mathrm{fs}$.
3. $\mathrm{tPHSI}+\mathrm{tPLSI}=\mathrm{tPHSO}+\mathrm{tPLSO}=1 / \mathrm{fo}$.
4. tssi and thsi apply when memory is not full.
5. tSIR and tHIR apply when memory is full and SI is HIGH.
6. High-Z transitions are referenced to the steady-state $\mathrm{VOH}_{\mathrm{O}}-500 \mathrm{mV}$ and $\mathrm{Vol}+500 \mathrm{mV}$ levels on the output.
7. After reset goes LOW, all Data outputs will be at LOW level, IR goes HIGH and OR goes LOW.
8. Common dash number devices are quaranteed by design to function properly in a cascaded configuration.
9. Sample tested only.

OPERATIONAL DESCRIPTION

Unlike earlier versions of FIFOs, the LH5485 and LH5495 use dual-port Random-Access-Memory, write and read pointers, and special control logic. The write pointer is incremented by the falling edge of the Shift In (SI) signal, while the read pointer is incremented by the falling edge of the Shift Out (SO) signal. The Input Ready (IR) signal enables data writing to the FIFO, while Output Ready (OR) indicates valid read information is available on the Data Output (DO) pins.

Resetting the FIFO

The FIFO must be reset, upon Power-Up, using the Master Reset (MR) signal. This causes the FIFO to enter an empty state, indicated by the Output Ready (OR) being LOW and Input Ready (IR) being HIGH. All Data Output (DO) pins will be LOW in this state. The AFE flag will be HIGH and the HF flag will be LOW.

If Shift In (SI) is HIGH, when the Master Reset ($\overline{\mathrm{MR})}$ signal is ended, then the data on the Data Input (DI) pins will be written into the FIFO and Input Ready (IR) will return LOW until Shift In (SI) is brought LOW.

If Shift In (SI) is LOW when the Master Reset ($\overline{\mathrm{MR}})$ is ended, then Input Ready (IR) will go HIGH, but the data on the Data Input (DI) pins will not enter the FIFO until Shift in (SI) goes HIGH.

Shifting Data In

Data Input (DI) is shifted into the FIFO on the rising edge of Shift \ln (SI). This loads input data into the FIFO and causes Input Ready (IR) to go LOW. When a falling edge of Shift In (SI) occurs, the write pointer increments to the next word position and Input Ready (IR) goes HIGH, indicating that the FIFO is ready to accept new data. When the FIFO is full, Input Ready (IR) remains LOW after the negative edge of Shift In (SI) signal; Shift Out (SO) action is required to unload a word of data and bring Input Ready (IR) HIGH - see Bubblethrough description.

Shifting Data Out

Data is shifted out of the FIFO on the falling edge of Shift Out (SO). The read pointer increments to the next
word location and FIFO data, if present, will appear on the Data Output (DO) pins and the Output Ready (OR) signal will go HIGH. If FIFO data is not present, Output Ready (OR) will stay LOW, indicating the FIFO is empty; in this case, the last valid data read from the FIFO will remain on the Data Output (DO) pins. When the FIFO is not empty, Output Ready (OR) will go LOW after the rising edge of Shift Out (SO). The previous data remains on the Data Output (DO) pins until a falling edge of Shift Out (SO).

Fallthrough Condition

When the FIFO is empty, a data word entering through the Shift $\ln (\mathrm{SI})$ action will follow one of two sequences.

If Shift Out (SO) is LOW, the data will propagate to the Data Output (DO) pins and Output Ready (OR) will go HIGH and stay HIGH until the next rising edge of Shift Out (SO).

If Shift Out (SO) is held HIGH while data is shifted into an empty FIFO (as occurs in depth cascading of FIFOs), data will propagate to the Data Output (DO) pins and Output Ready (OR) will pulse HIGH for a minimum time duration specified by tPOR and then go back LOW again. The stored word will remain on the Data Output (DO) pins. If more words are written into the FIFO, they will line up behind the first word and not appear on the Data Output (DO) pins until Shift Out (SO) has returned LOW.

Bubblethrough Condition

When the FIFO is full, Shift Out (SO) action will initiate one of the following two sequences.

If Shift In (SI) is LOW, Input Ready (IR) will go HIGH and stay HIGH until the next rising edge of Shift In (SI).

If Shift In (SI) is held HIGH while data is shifted out of a full FIFO (as occurs in depth cascading of FIFOs), Input Ready (IR) will pulse HIGH for a minimum time duration specified by tPIR and then go back LOW again. Special Data Input (DI) setup and hold times (tSIR and thir, respectively) are defined for this condition.

TIMING DIAGRAMS

Figure 5. Data In Timing

Figure 6. Data Out Timing

TIMING DIAGRAMS (cont'd)

Figure 7. Data In Timing

Figure 8. Data Out Timing

TIMING DIAGRAMS (cont'd)

Figure 9. Data In Timing

Figure 10. Data Out Timing

TIMING DIAGRAMS (cont'd)

Figure 11. Bubblethrough Timing (Reading a Full FIFO)

Figure 12. Fallthrough Timing (Writing an Empty FIFO)

TIMING DIAGRAMS (cont'd)

Figure 13. Master Reset Timing

TIMING DIAGRAMS (cont'd)

Figure 14. Shifting Words in

Figure 15. Shifting Words Out

FIFO EXPANSION

Figure 16. $512 \times 24 / 27$ Configuration Using $256 \times 8 / 9$ (LH5485/95) FIFOs.

FIFO EXPANSION (cont'd)

Figure 17. $512 \times 8 / 9$ Configuration

FIFOs are expandable in depth and witth. However, in forming wider words, external logic is required to generate composite Input and Output Ready flags. This is due to the variation of delays of the FIFOs. The example circuit in Figure 16 uses simple AND gates as the external IR and OR generators. More complex logic may be required if fallthrough and bubblethrough pulses are needed by the external system.

FIFOs can easily cascaded to any desired depth as illustrated in Figure 17. The handshaking and associated timing between the FIFOs are handled by the inherent timing of the devices.

NOTES:

1. When the memory is empty the last word read will remain on the outputs until the master reset is strobed or a new data word bubbles through to the output. However, OR will remain LOW, indicating data at the output is not valid.
2. When the output data changes as a result of a pulse on SO, the OR signal always goes LOW before there is any change in output data and stays LOW until the new data has appeared on the outputs. Anytime OR is HIGH, there is valid stable data on the outputs.
3. All SHARP FIFOs will cascade with other SHARP FIFOs of the same architecture (i.e., $64 \times 8 / 9$ with $64 \times 8 / 9$ or $64 \times 8 / 9$ with $256 \times 8 / 9$). However, they may not cascade with FIFOs from other manufacturers.

ORDERING INFORMATION

FEATURES

- Fast Access Times: 15/20/25/35/50/65/80 ns
- Full CMOS Dual Port Memory Array
- Fully Asynchronous Read and Write
- Expandable-in Width and Depth
- Full, Half-Full, and Empty Status Flags
- Read Retransmit Capability
- TTL Compatible I/O
- Packages:

28-Pin, 300 -mil PDIP, 28-Pin, 600-mil PDIP or 32-Pin PLCC

- Pin and Functionally Compatible with IDT7201

FUNCTIONAL DESCRIPTION

The LH5496 is a dual port memory with internal addressing to implement a First-In, First-Out algorithm. Through an advanced dual port architecture, it provides fully asynchronous read/write operation. Empty, Full, and Half-Full status flags are provided to prevent data overflow and underflow. In addition, internal logic provides for unlimited expansion in both word size and depth.

Read and write operations automatically access sequential locations in memory in that data is read out in the same order that it was written, that is on a First-In, First-Out basis. Since the address sequence is internally predefined, no external address information is required for the operation of this device. A ninth data bit is provided for parity or control information often needed in communication applications.

Empty, Full, and Half-Full status flags monitor the extent to which data has been written into the FIFO, and prevent improper operations (i.e., Read if the FIFO is empty, or Write if the FIFO is full). A retransmit feature resets the Read address pointer to its initial position, thereby allowing repetitive readout of the same data. Expansion In and Expansion Out pins implement an expansion scheme that allows individual FIFOs to be cascaded to greater depth without incurring additional latency (bubblethrough) delays.

PIN CONNECTIONS

28-PIN PDIP				TOP VIEW
	$\bar{W} \square 1$	28	$\square V_{C c}$	
	$D_{8} \square 2$	27	$\square D_{4}$	
	$D_{3} \square 3$	26	$\square D_{5}$	
	$D_{2} \square 4$	25	$\square D_{6}$	
	$\mathrm{D}_{1} \square 5$	24	$\square D_{7}$	
	$D_{0} \square 6$	23	$\square \overline{\mathrm{FL}} / \overline{\mathrm{RT}}$	
	$\overline{\mathrm{XI}} \square 7$	22	$\square \overline{\mathrm{RS}}$	
	$\overline{F F} \square 8$	21	$\square \overline{\mathrm{EF}}$	
	$Q_{0} \square 9$	20	$\square \overline{\mathrm{XO}} / \overline{\mathrm{HF}}$	
	$Q_{1} \square 10$	19	$\square Q_{7}$	
	$Q_{2} \square_{11}$	18	$\square Q_{6}$	
	$Q_{3} \square_{12}$	17	$\square Q_{5}$	
	$Q_{8} \square_{13}$	16	$\square Q_{4}$	
	$v_{\text {SS }} \square_{14}$	15	$\square \overline{\mathrm{R}}$	

Figure 1. Pin Connections for PDIP Package

Figure 2. Pin Connections for PLCC Package

5496-3
Figure 3. LH5496 Block Dlagram

PIN DESCRIPTIONS

PIN	DESCRIPTION
$D_{0}-D_{8}$	Data Inputs
$Q_{0}-Q_{8}$	Data Outputs
\bar{W}	Write Control
\bar{R}	Read Control
$\overline{\mathrm{EF}}$	Empty Flag
$\overline{F F}$	Full Flag

PIN	DESCRIPTION
$\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$	Expansion Out, Half-Full Flag
$\overline{\mathrm{XI}}$	Expansion In
$\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$	First Load, Retransmit
$\overline{\mathrm{RS}}$	Reset
VcC	Positive Power Supply
VSS	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Supply Voltage to Vss Potential	-0.5 V to 7 V
Signal Pin Voltage to Vss Potential ${ }^{3}$	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$ (not to exceed 7 V)
DC Output Current ${ }^{2}$	$\pm 50 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W
DC Voltage Applied To Outputs In High-Z State	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$ (not to exceed 7 V)

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a device stress rating for transient conditions only. Functional operation at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.
3. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns once per cycle.

OPERATING RANGE

SYMBOL	PARAMETER	MIN	MAX	UNIT
T_{A}	Temperature, Ambient	0	70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	V
$\mathrm{~V}_{\text {IL }}$	Logic "0" Input Voltage 1	-0.5	0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage 2	2.0	$\mathrm{VCC}+0.5$	V

NOTE:

1. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
lıI	Input Leakage Current	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}$ to Vcc	-10	10	$\mu \mathrm{A}$
VLO	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, 0 \mathrm{~V} \leq \mathrm{VOUT} \leq \mathrm{V}_{\mathrm{CC}}$	-10	10	$\mu \mathrm{A}$
VOH	Output High Voltage	$1 \mathrm{OH}=-2.0 \mathrm{~mA}$	2.4		V
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$		0.4	V
Icc	Average Supply Current ${ }^{1}$	Measured at $\mathrm{f}=40 \mathrm{MHz}$		100	mA
ICC2	Average Standby Current ${ }^{1}$	All Inputs $=\mathrm{V}_{\mathrm{IH}}$		15	mA
Icc3	Power Down Current ${ }^{1}$	All Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$		5	mA

NOTE:

1. Icc, lcce, and lıc3 are dependent upon actual output loading and cycle rates. Specified values are with outputs open.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	VSS to 3 V
Input Rise and Fall Times (10\% to 90\%)	5 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load, Timing Tests	Figure 4

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
CIN MAX (Input Capacitance)	5 pF
Co MAX (Output Capacitance)	7 pF

NOTES:

1. Sample tested only.
2. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $\mathrm{V} \mathbb{N}=0 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	PARAMETER	$t_{A}=15 \mathrm{~ns}$		$\mathrm{t}_{\mathrm{A}}=20 \mathrm{~ns}$		$\mathbf{t}_{A}=25 \mathrm{~ns}$		$\mathrm{t}_{A}=\mathbf{3 5} \mathbf{n s}$		$\mathrm{t}_{\mathrm{A}}=50 \mathrm{~ns}$		$\mathrm{t}_{\mathrm{A}}=65 \mathrm{~ns}$		$\mathrm{t}_{\mathrm{A}}=\mathbf{8 0} \mathrm{ns}$		UNIT
		MIN	MAX	MIN	\|MAX	MIN	MAX									
READ CYCLE TIMING																
tre	Read Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
t_{A}	Access Time	-	15	-	20	-	25	-	35	-	50	-	65	-	80	ns
trR	Read Recover Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
trpw	Read Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
trLz	Data Bus Active from Read Low ${ }^{3}$	5	-	5	-	5	-	5	-	5	-	5	-	10	-	ns
twiz	Data Bus Active from Write High ${ }^{3,4}$	10	-	10	-	10	-	10	-	10	-	10	-	20	-	ns
tDV	Data Valid from Read Pulse High	5	-	5	-	5	-	5	-	5	-	5	-	5	-	ns
triz	Data Bus High-Z from Read High ${ }^{3}$	-	15	-	15	-	15	-	15	-	20	-	30	-	30	ns
WRITE CYCLE TIMING																
twe	Write Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
twPW	Write Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
twr	Write Recovery Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
tos	Data Setup Time	10	-	10	-	10	-	15	-	20	-	20	-	20	-	ns
tDH	Data Hold Time	0	-	0	-	0	-	0	-	0	-	5	-	5	-	ns
RESET TIMING																
trsc	Reset Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
trs	Reset Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
trsR	Reset Recovery Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
RETRANSMIT TIMING																
tric	Retransmit Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
trt	Retransmit Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
tRTR	Retransmit Recovery Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
tRRSS	Read High to $\overline{\mathrm{RS}}$ High	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
twRSS	Write High to $\overline{\mathrm{RS}}$ High	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
FLAG TIMING																
tefl	Reset to Empty Flag Low	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
thFH,FFH	Reset to Half \& Full Flag High	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
tref	Read Low to Empty Flag Low	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
trfF	Read High to Full Flag High	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
tWEF	Write High to Empty Flag High	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
tWFF	Write Low to Full Flag Low	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
tWHF	Write Low to Half-Full Flag Low	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
trHF	Read High to Half-Full Flag High	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
EXPANSION TIMING																
txol	Expansion Out Low	-	18	-	20	-	25	-	35	-	50	-	65	-	80	ns
tXOH	Expansion Out High	-	18	-	20	-	25	-	35	-	50	-	65	-	80	ns
txi	Expansion In Pulse Width	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
tXIR	Expansion In Recovery Time	10	-	10	-	10	-	10	-	10	-	10	-	10	-	ns
txis	Expansion in Setup Time	7	-	10	-	10	-	15	-	15	-	15	-	15	-	ns

NOTES:

1. All timing measurements performed at "AC Test Condition" levels.
2. Pulse widths less than minimum value are not allowed.
3. Values guaranteed by design not currently tested.
4. Only applies to read data flow-through mode.

OPERATIONAL DESCRIPTION

Reset

The Device is reset whenever the RESET pin ($\overline{\mathrm{RS}})$ is taken to a low state. The reset operation initializes both the read and write address pointers to the first memory location. The $\overline{X I}$ and $\overline{\text { FL }}$ pins are also sampled at this time to determine whether the device is in SINGLE mode or DEPTH EXPANSION mode. A reset pulse is required when the device is first powered up. The READ ($\overline{\mathrm{R}}$) and WRITE (\bar{W}) pins may be in any state when reset is initiated, but must be brought to a high state trPW and twPW before the rising edge of RS.

Write

A write cycle is initiated on the falling edge of the WRITE (\bar{W}) pin. Data setup and hold times must be observed on the data in ($\mathrm{D}_{0}-\mathrm{D}_{8}$) pins. A write operation is only possible if the FIFO is not full, (i.e. the FULL flag pin is HIGH). Writes may occur independently of any ongoing read opertations.

At the falling edge of the first write after the memory is half filled, the HALF flag will be asserted ($\overline{\mathrm{HF}}=\mathrm{LOW}$) and will remain asserted until the difference between the write pointer and read pointer indicates that the remaining data in the device is less than or equal to one half the total capacity of the FIFO. The HALF flag is deasserted ($\overline{\mathrm{HF}}=\mathrm{HIGH}$) by the appropriate rising edge of $\overline{\mathrm{R}}$.

The FULL flag is asserted ($\overline{\mathrm{FF}}=\mathrm{LOW}$) at the falling edge of the write operation which fills the last available location in the FIFO memory array. The FULL flag will inhibit further writes until cleared by a valid read. The FULL flag is deasserted ($\overline{\mathrm{FF}}=\mathrm{HIGH}$) after the next rising edge of $\overline{\mathrm{R}}$ releases another memory location.

Read

A read cycle is initiated on the falling edge of the READ $(\overline{\mathrm{R}})$ pin. Read data becomes valid on the data out ($\mathrm{Q}_{0}-\mathrm{Q}_{8}$) pins after a time ta from the falling edge of \bar{R}. After \bar{R} goes high, the data out pins return to a high-impedance state. Reads may occur independent of any ongoing write operations. A read is only possible if the FIFO is not empty ($\mathrm{EF}=\mathrm{HIGH}$).

The internal read and write address pointers are maintained by the device such that consecutive read operations will access data in the same order as it was written. The EMPTY flag is asserted ($\overline{E F}=$ LOW) atter the falling edge of $\overline{\mathrm{R}}$ which accesses the last available data in the FIFO memory. $\overline{\mathrm{EF}}$ is deasserted ($\overline{\mathrm{EF}}=\mathrm{HIGH}$) after the next rising edge of \bar{W} loads another word of valid data.

Data Flow-Through

Read flow-through mode occurs when the READ ($\overline{\mathrm{R}})$ pin is brought low while the FIFO is empty, and held LOW in anticipation of a write cycle. At the end of the next write cycle, the EMPTY flag will be momentarily deasserted, and the data just written will become available on the data out pins after a maximum time of twEF $+\mathrm{t}_{\mathrm{A}}$. Additional writes may occur while the $\overline{\mathrm{R}}$ pin remains low, but only data from the first write flows through to the outputs. Additional data, if any, can only be accessed by toggling $\overline{\mathrm{R}}$.

Write flow-through mode occurs when the WRITE ($\overline{\mathrm{W}}$) pin is brought low while the FIFO is full, and held low in anticipation of a read cycle. At the end of the read cycle, the FULL flag will be momentarily deasserted, but then immediately reasserted in response to \bar{W} held low. Data is written into the FIFO on the rising edge of \bar{W} which may occur traf + twpw after the read.

Retransmit

The FIFO can be made to reread previously read data through the retransmit function. Retransmit is initiated by pulsing $\overline{\mathrm{RT}}$ low. This resets the internal read address pointer to the first physical location in the memory while leaving the internal write address pointer unchanged. Data between the read and write pointers may be reaccessed by subsequent reads. Both $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ must be inactive (HIGH) during the retransmit pulse. Retransmit is useful if no more than 512 writes are performed between resets. Retransmit may affect the status of $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ flags, depending on the relocation of the read pointer. This function is not available in depth expansion mode.

TIMING DIAGRAMS

Figure 5. Asynchronous Write and Read Operation

Figure 6. Full Flag from Last Write to First Read

TIMING DIAGRAMS (cont'd)

Figure 7. Empty Flag from Last Read to First Write

Figure 8. Read Data Flow-Through

TIMING DIAGRAMS (cont'd)

Figure 9. Write Data Flow-Through

Figure 10. Empty Flag Timing

TIMING DIAGRAMS (cont'd)

Figure 11. Full Flag Timing

Figure 12. Half-Full Flag Timing

Figure 13. Retransmit Timing

TIMING DIAGRAMS (cont'd)

NOTES:

1. $t_{\text {RSC }}=t_{\text {RS }}+t_{\text {RSR }}$.
2. \bar{W} and $\bar{R} \geq V_{I H}$ around the rising edge of $\overline{R S}$.

Figure 14. Reset Timing

Figure 15. Expansion Out Timing

TIMING DIAGRAMS (cont'd)

Figure 16. Expansion In Timing

OPERATIONAL MODES

Single Device Configuration

When depth expansion is not required for the given application, the device is placed in SINGLE mode by tying the EXPANSION IN pin ($\overline{\mathrm{X}}$) to ground. This pin is internally sampled during reset.

Width Expansion

Word width expansion is implemented by placing multiple devices in parallel. Each device should be configured for SINGLE mode. In this arrangement, the behavior of the status flags will be identical for all devices, so these flags may be derived from any one device.

Figure 17. Single FIFO (512×9)

Figure 18. FIFO Width Expansion (512×18)

OPERATIONAL MODES (cont'd)

Depth Expansion

Depth expansion is implemented by configuring the required number of FIFOs in EXPANSION mode. In this arrangement, the FIFOs are connected in a circular fashion with the EXPANSION OUT pin ($\overline{\mathrm{XO}}$) of each device tied to the EXPANSION IN pin ($\overline{\mathrm{XI})}$ of the next device. One FIFO in this group must be designated as the first load device. This is accomplished by tying the FIRST LOAD pin ($\overline{\mathrm{FL}})$ of this device to ground. All other devices must have their $\overline{F L}$ pin tied to a high level. In this mode,
\bar{W} and \bar{R} signals are shared by all devices, while internal logic controls the steering of data. Only one FIFO will be enabled for any given read cycle, so the common Data Out pins of all devices are wire-ORed together. Likewise, the common Data In pins of all devices are tied together.

In EXPANSION mode, external logic is required to generate a composite Full or Empty flag. This is achieved by ORing the $\overline{F F}$ pins of all devices and ORing the EF pins of all devices respectively. The HALF flag and RETRANSMIT functions are not available in DEPTH EXPANSION mode.

Figure 19. FIFO Depth Expansion (1536×9)

OPERATIONAL MODES (cont'd)

Compound Expansion

A combination of width and depth expansion can be easily implemented by operating groups of depth expanded FIFOs in parallel.

Bidirectional Operation

Applications which require bidirectional data buffering between two systems can be realized by operating

LH5496 devices in parallel but opposite directions. The Data In pins of a device may be tied to the corresponding Data Out pins of another device operating in the opposite direction to form a single bidirectional bus interface. Care must be taken to assure that the appropriate read, write and flag signals are routed to each system. Both depth and width expansion may be used in this configuration.

Figure 20. Compound FIFO Expansion

Figure 21. Bidirectional FIFO Buffer

ORDERING INFORMATION

Example: LH5496U-25 (CMOS 512×9 FIFO, 32-pin PLCC, 25 ns)

FEATURES

- Fast Access Times: 15/20/25/35/50/65/80 ns
- Full CMOS Dual Port Memory Array
- Fully Asynchronous Read and Write
- Expandable in Width and Depth
- Full, Half-Full, and Empty Status Flags
- Read Retransmit Capability
- TTL Compatible I/O
- Packages:

28-Pin, 300-mil DIP, 28-Pin, 600-mil DIP or 32-Pin PLCC

- Pin and Functionally Compatible with IDT7202

FUNCTIONAL DESCRIPTION

The LH5497 is a dual port memory with internal addressing to implement a First-In, First-Out algorithm. Through an advanced dual port architecture, it provides fully asynchronous read/write operation. Empty, Full, and Half-Full status flags are provided to prevent data overflow and underflow. In addition, internal logic is provided for unlimited expansion in both word size and depth.

Read and Write operations automatically access sequential locations in memory in such a way that data is read out in the same order that it was written, that is on a First-In, First-Out basis. Since the address sequence is internally predefined, no external address information is required for the operation of this device. A ninth data bit is provided for parity or control information often needed in communication applications.

Empty, Full, and Half-Full status flags monitor the extent to which data has been written into the FIFO, and prevent improper operations (i.e. Read if the FIFO is empty, or Write if the FIFO is full). A retransmit feature resets the Read address pointer to its initial position, thereby allowing repetitive readout of the same data. Expansion In and Expansion Out pins implement an expansion scheme that allows individual FIFOs to be cascaded to greater depth without incurring additional latency (bubblethrough) delays.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. Pin Connections for PLCC Package

Figure 3. LH5497 Block Diagram
PIN DESCRIPTIONS

PIN	DESCRIPTION
$D_{0}-D_{8}$	Data Inputs
$Q_{0}-Q_{8}$	Data Outputs
\bar{W}	Write Control
\bar{R}	Read Control
$\overline{\mathrm{EF}}$	Empty Flag

PIN	DESCRIPTION
$\overline{\mathrm{FF}}$	Full Flag
$\overline{\mathrm{XO} / \mathrm{HF}}$	Expansion Out, Half-Full Flag
$\overline{\mathrm{XI}}$	Expansion In
$\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$	First Load, Retransmit
$\overline{\mathrm{RS}}$	Reset

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	\quad RATING
Supply Voltage to VSS Potential $^{\prime}-0.5 \mathrm{~V}$ to 7 V	
Signal Pin Voltage to Vss Potential ${ }^{3}$	-0.5 V to $\mathrm{VcC}+0.5 \mathrm{~V}$ (not to exceed 7 V)
DC Output Current ${ }^{2}$	$\pm 50 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W
DC Voltage Applied to Outputs in High-Z State	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$ (not to exceed 7 V)

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.
3. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns once per cycle.

OPERATING RANGE

SYMBOL	PARAMETER	MIN	MAX	UNIT
T_{A}	Temperature, Ambient	0	70	${ }^{\circ} \mathrm{C}$
V_{cc}	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Input Voltage 1	-0.5	0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage 2	2.0	$\mathrm{Vcc}+0.5$	V

NOTE:

1. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
lLI	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to Vcc	-10	10	$\mu \mathrm{A}$
LLO	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\text {IH }}, 0 \mathrm{~V} \leq \mathrm{VOUT} \leq \mathrm{VcC}$	-10	10	$\mu \mathrm{A}$
VOH	Output High Voltage	$\mathrm{lOH}=-2.0 \mathrm{~mA}$	2.4	-	V
Vol	Output Low Voltage	$1 \mathrm{lL}=8.0 \mathrm{~mA}$	-	0.4	V
Icc	Average Supply Current ${ }^{1}$	Measured at $\mathrm{f}=40 \mathrm{MHz}$	-	100	mA
Icc2	Average Standby Current ${ }^{1}$	All Inputs $=\mathrm{V}_{1 /}$	-	15	mA
IcC3	Power Down Current ${ }^{1}$	All inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$	-	5	mA

NOTE:

1. lcc, lcce, and lccs are dependent upon actual output loading and cycle rates. Specified values are with outputs open.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times (10\% to 90%)	5 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load, Timing Tests	Figure 4

CAPACITANCE ${ }^{1,2}$

PARAMETER	RATING
CIN MAX (Input Capacitance)	5 pF
MAX (Output Capacitance)	7 pF

NOTES:

1. Sample tested only.
2. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	PARAMETER	$\mathrm{t}_{A}=15 \mathrm{~ns}$		$\mathrm{t}_{\mathrm{A}}=\mathbf{2 0} \mathbf{n s}$		$\mathrm{t}_{\mathrm{A}}=25 \mathrm{~ns}$		$t_{A}=35 \mathrm{~ns}$		$\mathrm{t}_{A}=\mathbf{5 0} \mathrm{ns}$		$\mathrm{t}_{\mathrm{A}}=65 \mathrm{~ns}$		$\mathrm{t}_{\mathrm{A}}=\mathbf{8 0} \mathrm{ns}$		UNITS
		MIN	MAX													
READ CYCLE TIMING																
$\mathrm{t}_{\mathrm{R}} \mathrm{C}$	Read Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
t_{A}	Access Time	-	15	-	20	-	25	-	35	-	50	-	65	-	80	ns
trR	Read Recover Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
trPW	Read Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
triz	Data Bus Active from Read Low ${ }^{3}$	5	-	5	-	5	-	5	-	5	-	5	-	10	-	ns
twlz	Data Bus Active from Write High ${ }^{\text {3,4 }}$	10	-	10	-	10	-	10	-	10	-	10	-	20	-	ns
tov	Data Valid from Read Pulse High	5	-	5	-	5	-	5	-	5	-	5	-	5	-	ns
trHZ	Data Bus High-Z from Read High ${ }^{3}$	-	15	-	15	-	15	-	15	-	20	-	30	-	30	ns
WRITE CYCLE TIMING																
twc	Write Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
twPW	Write Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
twr	Write Recovery Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
tos	Data Setup Time	10	-	10	-	10	-	15	-	20	-	20	-	20	-	ns
tDH	Data Hold Time	0	-	0	-	0	-	0	-	0	-	5	-	5	-	ns
RESET TIMING																
trsc	Reset Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
trs	Reset Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
trsR	Reset Recovery Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
RETRANSMIT TIMING																
trTC	Retransmit Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
trT	Retransmit Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
tRTR	Retransmit Recovery Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
FLAG TIMING																
tefl	Reset to Empty Flag Low	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
thFH,FFH	Reset to Half \& Full Flag High	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
$t_{\text {REF }}$	Read Low to Empty Flag Low	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
trfF	Read High to Full Flag High	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
tWEF	Write High to Empty Flag High	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
tWFF	Write Low to Full Flag Low	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
twhF	Write Low to Half-Full Flag Low	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
trHF	Read High to Half-Full Flag High	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
EXPANSION TIMING																
txol	Expansion Out Low	-	18	-	20	-	25	-	35	-	50	-	65	-	80	ns
txor	Expansion Out High	-	18	-	20	-	25	-	35	-	50	-	65	-	80	ns
txi	Expansion In Pulse Width	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
txiR	Expansion In Recovery Time	10	-	10	-	10	-	10	-	10	-	10	-	10	-	ns
txis	Expansion in Setup Time	7	-	10	-	10	-	15	-	15	-	15	-	15	-	ns

NOTES:

1. All timing measurements performed at " $A C$ Test Condition" levels.
2. Pulse widths less than minimum value are not allowed.
3. Values guaranteed by design not currently tested.
4. Only applies to read data flow-through mode.

OPERATIONAL DESCRIPTION

Reset

The Device is reset whenever the RESET pin ($\overline{\mathrm{RS}})$ is taken to a low state. The reset operation initializes both the read and write address pointers to the first memory location. The $\overline{\mathrm{XI}}$ and $\overline{\mathrm{FL}}$ pins are also sampled at this time to determine whether the device is in SINGLE mode or DEPTH EXPANSION mode. A reset pulse is required when the device is first powered up. The READ ($\overline{\mathrm{R}}$) and WRITE (\bar{W}) pins may be in any state when reset is initiated, but must be brought to a high state trPW and twPW before the rising edge of $\overline{\text { RS. }}$

Write

A write cycle is initiated on the falling edge of the WRITE (\bar{W}) pin. Data setup and hold times must be observed on the data in ($\mathrm{D}_{0}-\mathrm{D}_{8}$) pins. A write operation is only possible if the FIFO is not full, (i.e. the FULL flag pin is HIGH). Writes may occur independently of any ongoing read operations.

At the falling edge of the first write after the memory is half filled, the HALF flag will be asserted ($\overline{\mathrm{HF}}=\mathrm{LOW}$) and will remain asserted until the difference between the write pointer and read pointer indicates that the remaining data in the device is less than or equal to one half the total capacity of the FIFO. The HALF flag is deasserted ($\overline{\mathrm{HF}}=\mathrm{HIGH}$) by the appropriate rising edge of $\overline{\mathrm{R}}$.

The FULL flag is asserted ($\overline{\mathrm{FF}}=\mathrm{LOW}$) at the falling edge of the write operation which fills the last available location in the FIFO memory array. The FULL flag will inhibit further writes until cleared by a valid read. The FULL flag is deasserted ($\overline{\mathrm{FF}}=\mathrm{HIGH}$) after the next rising edge of $\overline{\mathrm{R}}$ releases another memory location.

Read

A read cycle is initiated on the falling edge of the READ $(\overline{\mathrm{R}})$ pin. Read databecomes valid on the data out ($\mathrm{Q}_{0}-\mathrm{Q}_{8}$) pins after a time t_{A} from the falling edge of \bar{R}. After $\overline{\mathrm{R}}$ goes HIGH, the data out pins return to a high-impedance state. Reads may occur independent of any ongoing write operations. A read is only possible if the FIFO is not empty ($\overline{\mathrm{EF}}=\mathrm{HIGH}$).

The internal read and write address pointers are maintained by the device such that consecutive read operations will access data in the same order as it was written. The EMPTY flag is asserted ($\overline{E F}=\mathrm{LOW}$) after the falling edge of $\overline{\mathrm{R}}$ which accesses the last available data in the FIFO memory. $\overline{\mathrm{EF}}$ is deasserted ($\overline{\mathrm{EF}}=\mathrm{HIGH}$) after the next rising edge of \bar{W} bads another word of valid data.

Data Flow-Through

Read flow-through mode occurs when the READ ($\overline{\mathrm{R}}$) pin is brought LOW while the FIFO is empty, and held LOW in anticipation of a write cycle. At the end of the next write cycle, the EMPTY flag will be momentarily deasserted, and the data just written will become available on the data out pins after a maximum time of twEF + tA. Additional writes may occur while the $\overline{\mathrm{R}}$ pin remains low, but only data from the first write flows through to the outputs. Additional data, if any, can only be accessed by toggling \bar{R}.

Write flow-through mode occurs when the WRITE ($\overline{\mathrm{W}}$) pin is brought LOW while the FIFO is full, and held LOW in anticipation of a read cycle. At the end of the read cycle, the FULL flag will be momentarily deasserted, but then immediately reasserted in response to $\overline{\mathrm{W}}$ held LOW. Data is written into the FIFO on the rising edge of \bar{W} which may occur traf + twpw after the read.

Retransmit

The FIFO can be made to reread previously read data through the retransmit function. Retransmit is initiated by pulsing RT low. This resets the internal read address pointer to the first physical location in the memory while leaving the internal write address pointer unchanged. Data between the read and write pointers may be reaccessed by subsequent reads. Both $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ must be inactive (HIGH) during the retransmit pulse. Retransmit is useful if no more than 1024 writes are performed between resets. Retransmit may affect the status of $\overline{\mathrm{EF}}$, $\overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ flags, depending on the relocation of the read pointer. This function is not available in depth expansion mode.

TIMING DIAGRAMS

Figure 5. Asynchronous Write and Read Operation

Figure 6. Full Flag from Last Write to First Read

TIMING DIAGRAMS (cont'd)

Figure 7. Empty Flag from Last Read to First Write

Figure 8. Read Data Flow-Through

TIMING DIAGRAMS (cont'd)

Figure 9. Write Data Flow-Through

Figure 10. Empty Flag Timing

TIMING DIAGRAMS (cont'd)

Figure 11. Full Flag Timing

Figure 12. Half-Full Flag Timing

NOTES:

1. $\mathrm{t}_{\mathrm{RTC}}=\mathrm{t}_{\mathrm{RT}}+\mathrm{t}_{\mathrm{RTR}}$
2. $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ may change state during retransmit, but flags will be valid at t_{RTC}

Figure 13. Retransmit Timing

TIMING DIAGRAMS (cont'd)

NOTE: \bar{W} and $\bar{R} \geq V_{\mathbb{H}}$ around the rising edge of $\overline{\mathrm{RS}}$

Figure 14. Reset Timing

Figure 15. Expansion Out Timing

TIMING DIAGRAMS (cont'd)

Figure 16. Expansion In Timing

OPERATIONAL MODES

Single Device Configuration

When depth expansion is not required for the given application, the device is placed in SINGLE mode by tying the EXPANSION IN pin ($\overline{\mathrm{X}}$) to ground. This pin is internally sampled during reset.

Width Expansion

Word width expansion is implemented by placing multiple devices in parallel. Each device should be configured for SINGLE mode. In this arrangement, the behavior of the status flags will be identical for all devices, so these flags may be derived from any one device.

5497-17
Figure 17. Single FIFO $(1 K \times 9)$

Figure 18. FIFO Width Expansion ($1 \mathrm{~K} \times 18$)

OPERATIONAL MODES (cont'd)

Depth Expansion

Depth expansion is implemented by configuring the required number of FIFOs in EXPANSION mode. In this arrangement, the FIFOs are connected in a circular fashion with the EXPANSION OUT pin ($\overline{\mathrm{XO}}$) of each device tied to the EXPANSION IN pin ($\overline{\mathrm{XI}})$ of the next device. One FIFO in this group must be designated as the first load device. This is accomplished by tying the FIRST LOAD pin ($\overline{\mathrm{FL}}$) of this device to ground. All other devices must have their $\overline{F L}$ pin tied to a high level. In this mode, \bar{W} and
$\overline{\mathrm{R}}$ signals are shared by all devices, while internal logic controls the steering of data. Only one FIFO will be enabled for any given read cycle, so the common Data Out pins of all devices are wire-ORed together. Likewise, the common Data In pins of all devices are tied together.

In EXPANSION mode, external logic is required to generate a composite Full or Empty flag. This is achieved by ORing the $\overline{F F}$ pins of all devices and ORing the $\overline{E F}$ pins of all devices respectively. The HALF flag and RETRANSMIT functions are not available in DEPTH EXPANSION mode.

Figure 19. FIFO Depth Expansion (3072×9)

OPERATIONAL MODES (cont'd)

Compound Expansion

A combination of width and depth expansion can be easily implemented by operating groups of depth expanded FIFOs in parallel.

Bidirectional Operation

Applications which require bidirectional data buffering between two systems can be realized by operating

LH5497 devices in parallel but opposite directions. The Data In pins of a device may be tied to the corresponding Data Out pins of another device operating in the opposite direction to form a single bidirectional bus interface. Care must be taken to assure that the appropriate read, write and flag signals are routed to each system. Both depth and width expansion may be used in this configuration.

Figure 20. Compound FIFO

5497-21
Figure 21. Bidirectional FIFO

ORDERING INFORMATION

Example: LH5497U-25 (CMOS 1K x 9 FIFO, 32-pin PLCC, 25 ns)

FEATURES

- Fast Access Times: 15/20/25/35/50/ 65/80 ns
- Full CMOS Dual Port Memory Array
- Fully Asynchronous Read and Write
- Expandable in Width and Depth
- Full, Half-Full, and Empty Status Flags
- Read Retransmit Capability
- TTL Compatible I/O
- Packages:
28-Pin, 300-mil DIP, 28 -Pin, 600 -mil DIP or 32-Pin PLCC
- Pin and Functionally Compatible with IDT7203

FUNCTIONAL DESCRIPTION

The LH5498 is a dual port memory with internal addressing to implement a First-In, First-Out algorithm. Through an advanced dual port architecture, it provides fully asynchronous read/write operation. Empty, Full, and Half-Full status flags are provided to prevent data overflow and underflow. In addition, internal logic is provided for unlimited expansion in both word size and depth.

Read and Write operations automatically access sequential locations in memory in such a way that data is read out in the same order that it was written, that is on a First-In, First-Out basis. Since the address sequence is internally predefined, no external address information is required for the operation of this device. A ninth data bit is provided for parity or control information often needed in communication applications.

Empty, Full, and Half-Full status flags monitor the extent to which data has been written into the FIFO, and prevent improper operations (i.e. Read if the FIFO is empty, or Write if the FIFO is full). A retransmit feature resets the Read address pointer to its initial position, thereby allowing repetitive readout of the same data. Expansion In and Expansion Out pins implement an expansion scheme that allows individual FIFOs to be cascaded to greater depth without incurring additional latency (bubblethrough) delays.

PIN CONNECTIONS

32-PIN PDIP				TOP VIEW
	$\overline{\mathbf{w}} 1$		v_{cc}	
	$\mathrm{D}_{8} \mathrm{C}_{2}$	27	\square_{4}	
	$\mathrm{D}_{3}{ }^{3}$	26	D_{5}	
	$\mathrm{D}_{2} 4_{4}$	25	D_{8}	
	$\mathrm{D}_{1}{ }^{5}$	24	D_{7}	
	$\mathrm{D}_{0} \square^{6}$	23	$\square \overline{\mathrm{FL}} \overline{\mathrm{RT}}$	
	和近	22	$\overline{\text { RS }}$	
	FF 8	21	$\square \overline{\mathrm{EF}}$	
	$Q_{0} \square^{-1}$	20	$\overline{\text { XO/ } / \overline{\mathrm{HF}} \text { }}$	
	$Q_{1} \square_{10}$	19	Q_{7}	
	$\mathrm{Q}_{2} \mathrm{C}_{11}$	18	Q_{6}	
	$\mathrm{Q}_{3} \mathrm{~L}_{12}$	17	$\square a_{5}$	
	$\mathrm{Q}_{8}-13$	16	Q_{4}	
	$v_{\text {ss }} \square_{14}$		ص®	

Figure 1. Pin Connections for DIP Package

Figure 2. Pin Connections for PLCC Package

Figure 3. LH5498 Block Diagram

PIN DESCRIPTIONS

PIN	DESCRIPTION
$D_{0}-D_{8}$	Data Inputs
$Q_{0}-Q_{8}$	Data Outputs
\bar{W}	Write Control
$\overline{\mathrm{R}}$	Read Control
$\overline{\mathrm{EF}}$	Empty Flag
$\overline{\mathrm{FF}}$	Full Flag

PIN	DESCRIPTION
$\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$	Expansion Out, Half-Full Flag
$\overline{\mathrm{XI}}$	Expansion In
$\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$	First Load, Retransmit
$\overline{\mathrm{RS}}$	Reset
Vcc	Positive Power Supply
VSS	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	\quad RATING
Supply Voltage to VSS Potential	-0.5 V to 7 V
Signal Pin Voltage to Vss^{2} Potential ${ }^{3}$	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$ (not to exceed 7 V)
DC Output Current ${ }^{2}$	$\pm 50 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W
DC Voltage Applied to Outputs In High-Z State	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$ (not to exceed 7 V)

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any conditions other than those indicated in the "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.
3. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns once per cycle.

OPERATING RANGE

SYMBOL	PARAMETER	MIN	MAX	UNIT
T_{A}	Temperature, Ambient	0	70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\text {SS }}$	Supply Voltage	0	0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic "0" Input Voltage"	-0.5	0.8	V
$\mathrm{~V}_{\text {IH }}$	Logic " 1 " Input Voltage	2.0	$\mathrm{VCC}+0.5$	V

NOTE:

1. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS (OVER OPERATING RANGE)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
lı	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ to VCC	-10	10	$\mu \mathrm{A}$
LLO	Output Leakage Current	$\bar{R} \geq \mathrm{V}_{\mathrm{IH}}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {cC }}$	-10	10	$\mu \mathrm{A}$
V OH	Output High Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4		V
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$		0.4	V
Icc	Average Supply Current ${ }^{1}$	Measured at $\mathrm{f}=40 \mathrm{MHz}$		100	mA
Icc2	Average Standby Current ${ }^{1}$	All Inputs $=\mathrm{V}_{\mathrm{IH}}$		15	mA
Icc3	Power Down Current ${ }^{1}$	All Inputs $=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$		5	mA

NOTE:

1. Icc, ICC2, and lcc3 are dependent upon actual output loading and cycle rates. Specified values are with outputs open.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times (10\% to 90\%)	5 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load, Timing Tests	Figure 4

CAPACITANCE ${ }^{1,2}$

PARAMETER	RATING
CIN MAX (Input Capacitance)	5 pF
Co MAX (Output Capacitance)	7 pF

NOTES:

1. Sample tested only.
2. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$.

aC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	PARAMETER	$\mathbf{t a x}^{\prime}=15 \mathrm{~ns}$		$\mathrm{t}_{\mathrm{A}}=20 \mathrm{~ns}$		$\mathbf{t}_{A}=25 \mathrm{~ns}$		$\mathbf{t a x}_{\mathbf{A}} \mathbf{3 5} \mathbf{n s}$		$\mathbf{t a x}^{\prime}=50 \mathrm{~ns}$		$t_{\text {A }}=65 \mathrm{~ns}$		$\mathrm{ta}_{\mathrm{A}}=\mathbf{8 0} \mathrm{ns}$		UNITS
		MIN	MAX													
READ CYCLE TIMING																
tre	Read Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
t_{A}	Access Time	-	15	-	20	-	25	-	35	-	50	-	65	-	80	ns
trR	Read Recover Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
tRPW	Read Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
triz	Data Bus Active from Read Low ${ }^{3}$	5	-	5	-	5	-	5	-	5	-	5	-	10	-	ns
twLz	Data Bus Active from Write High ${ }^{3,4}$	10	-	10	-	10	-	10	-	10	-	10	-	20	-	ns
tov	Data Valid from Read Pulse High	5	-	5	-	5	-	5	-	5	-	5	-	5	-	ns
trHz	Data Bus High-Z from Read High ${ }^{3}$	-	15	-	15	-	15	-	15	-	20	-	30	-	30	ns
WRITE CYCLE TIMING																
twc	Write Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
tWPW	Write Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
twR	Write Recovery Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
tDS	Data Setup Time	10	-	10	-	10	-	15	-	20	-	20	-	20	-	ns
tDH	Data Hold Time	0	-	0	-	0	-	0	-	0	-	5	-	5	-	ns
RESET TIMING																
trsc	Reset Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
trs	Reset Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
trsR	Reset Recovery Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
trRSS	Read High to $\overline{\text { RS }}$ High	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
twRss	Write High to $\overline{\mathrm{RS}}$ High	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
RETRANSMIT TIMING																
$t_{\text {RTC }}$	Retransmit Cycle Time	25	-	30	-	35	-	45	-	65	-	80	-	100	-	ns
trT	Retransmit Pulse Width ${ }^{2}$	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
tRTR	Retransmit Recovery Time	10	-	10	-	10	-	10	-	15	-	15	-	15	-	ns
FLAG TIMING																
tEFL	Reset to Empty Flag Low	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
thFH,FFH	Reset to Half \& Full Flag High	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
tref	Read Low to Empty Flag Low	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
trfF	Read High to Full Flag High	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
tWEF	Write High to Empty Flag High	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
tWFF	Write Low to Full Flag Low	-	20	-	25	-	25	-	35	-	45	-	60	-	60	ns
tWHF	Write Low to Half-Full Flag Low	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
$t_{\text {RHF }}$	Read High to Half-Full Flag High	-	25	-	30	-	35	-	45	-	65	-	80	-	100	ns
EXPANSION TIMING																
txol	Expansion Out Low	-	18	-	20	-	25	-	35	-	50	-	65	-	80	ns
tXOH	Expansion Out High	-	18	-	20	-	25	-	35	-	50	-	65	-	80	ns
txi	Expansion In Pulse Width	15	-	20	-	25	-	35	-	50	-	65	-	80	-	ns
tXIR	Expansion In Recovery Time	10	-	10	-	10	-	10	-	10	-	10	-	10	-	ns
txis	Expansion In Setup Time	7	-	10	-	10	-	15	-	15	-	15	-	15	-	ns

NOTES:

1. All timing measurements performed at "AC Test Condition" levels.
2. Pulse widths less than minimum value are not allowed.
3. Values guaranteed by design not currently tested.
4. Only applies to read data flow-through mode.

OPERATIONAL DESCRIPTION

Reset

The Device is reset whenever the RESET pin ($\overline{\mathrm{RS}})$ is taken to a low state. The reset operation initializes both the read and write address pointers to the first memory location. The $\overline{\mathrm{XI}}$ and $\overline{\mathrm{FL}}$ pins are also sampled at this time to determine whether the device is in SINGLE mode or DEPTH EXPANSION mode. A reset pulse is required when the device is first powered up. The READ ($\overline{\mathrm{R}}$) and WRITE (\bar{W}) pins may be in any state when reset is initiated, but must be brought to a high state trRss and twrss before the rising edge of $\overline{\mathrm{RS}}$.

Write

A write cycle is initiated on the falling edge of the WRITE ($\overline{\mathrm{W}}$) pin. Data setup and hold times must be observed on the data-in ($\mathrm{D}_{0}-\mathrm{D}_{8}$) pins. A write operation is only possible if the FIFO is not full, (i.e. the FULL flag pin is HIGH). Writes may occur independently of any ongoing read operations.

At the falling edge of the first write after the memory is half filled, the HALF flag will be asserted ($\overline{\mathrm{HF}}=\mathrm{LOW}$) and will remain asserted until the difference between the write pointer and read pointer indicates that the remaining data in the device is less than or equal to one-half the total capacity of the FIFO. The HALF flag is deasserted ($\overline{\mathrm{FF}}=\mathrm{HIGH}$) by the appropriate rising edge of $\overline{\mathrm{R}}$.

The FULL flag is asserted ($\overline{\mathrm{FF}}=\mathrm{LOW}$) at the falling edge of the write operation which fills the last available location in the FIFO memory array. The FULL flag will inhibit further writes until cleared by a valid read. The FULL flag is deasserted ($\overline{\mathrm{FF}}=$ HIGH) after the next rising edge of \bar{R} releases another memory location.

Read

A read cycle is initiated on the falling edge of the READ $(\overline{\mathrm{R}})$ pin. Read data becomes valid on the data out ($\mathrm{Q}_{0}-\mathrm{Q}_{8}$) pins after a time t_{A} from the falling edge of $\overline{\mathrm{R}}$. After $\overline{\mathrm{R}}$ goes HIGH, the data out pins return to a high-impedance state. Reads may occur independent of any ongoing write operations. A read is only possible if the FIFO is not empty ($\overline{\mathrm{EF}}=\mathrm{HIGH}$).

The internal read and write address pointers are maintained by the device such that consecutive read operations will access data in the same order as it was written. The EMPTY flag is asserted ($\overline{E F}=$ LOW) after the falling edge of $\overline{\mathrm{R}}$ which accesses the last available data in the FIFO memory. $\overline{E F}$ is deasserted ($\overline{\mathrm{EF}}=\mathrm{HIGH}$) after the next rising edge of \bar{W} loads another word of valid data.

Data Flow-Through

Read flow-through mode occurs when the READ ($\overline{\mathrm{R}})$ pin is brought low while the FIFO is empty, and held LOW in anticipation of a write cycle. At the end of the next write cycle, the EMPTY flag will be momentarily deasserted, and the data just written will become available on the data out pins after a maximum time of twer $+\mathrm{t}_{\mathrm{A}}$. Additional writes may occur while the $\overline{\mathrm{R}}$ pin remains low, but only data from the first write flows through to the outputs. Additional data, if any, can only be accessed by toggling $\overline{\mathrm{R}}$.

Write flow-through mode occurs when the WRITE (\bar{W}) pin is brought low while the FIFO is full, and held low in anticipation of a read cycle. At the end of the read cycle, the FULL flag will be momentarily deasserted, but then immediately reasserted in response to \bar{W} held LOW. Data is written into the FIFO on the rising edge of \bar{W} which may occur tref + twpw after the read.

Retransmit

The FIFO can be made to reread previously read data through the retransmit function. Retransmit is initiated by pulsing RT LOW. This resets the internal read address pointer to the first physical location in the memory while leaving the internal write address pointer unchanged. Data between the read and write pointers may be reaccessed by subsequent reads. Both $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ must be inactive (HIGH) during the retransmit pulse. Retransmit is useful if no more than 2048 writes are performed between resets. Retransmit may affect the status of $\overline{E F}$, $\overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ flags, depending on the relocation of the read pointer. This function is not available in depth expansion mode.

TIMING DIAGRAMS

Figure 5. Asynchronous Write and Read Operation

Figure 6. Full Flag from Last Write to First Read

TIMING DIAGRAMS (cont'd)

Figure 7. Empty Flag from Last Read to First Write

Figure 8. Read Data Flow-Through

TIMING DIAGRAMS (cont'd)

Figure 9. Write Data Flow-Through

Figure 10. Empty Flag Timing

TIMING DIAGRAMS (cont'd)

Figure 11. Full Flag Timing

Figure 12. Half-Full Flag Timing

Figure 13. Retransmit Timing

TIMING DIAGRAMS (cont'd)

NOTE: $\overline{\mathrm{W}}$ and $\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}$ around the rising edge of $\overline{\mathrm{RS}}$.
Figure 14. Reset Timing

5498-15
Figure 15. Expansion Out Timing

TIMING DIAGRAMS (cont'd)

Figure 16. Expansion In Timing

OPERATIONAL MODES

Single Device Configuration

When depth expansion is not required for the given application, the device is placed in SINGLE mode by tying the EXPANSION IN pin ($\overline{\mathrm{XI})}$) to ground. This pin is internally sampled during reset.

Width Expansion

Word width expansion is implemented by placing multiple devices in parallel. Each device should be configured for SINGLE mode. In this arrangement, the behavior of the status flags will be identical for all devices, so these flags may be derived from any one device.

Figure 17. Single FIFO $(2 K \times 9)$

Figure 18. FIFO Width Expansion ($\mathbf{2 K} \times 18$)

OPERATIONAL MODES (cont'd)

Depth Expansion

Depth expansion is implemented by configuring the required number of FIFOs in EXPANSION mode. In this arrangement, the FIFOs are connected in a circular fashion with the EXPANSION OUT pin ($\overline{\mathrm{XO}})$ of each device tied to the EXPANSION IN pin ($\overline{\mathrm{XI}})$ of the next device. One FIFO in this group must be designated as the first load device. This is accomplished by tying the FIRST LOAD pin ($\overline{\mathrm{FL}})$ of this device to ground. All other devices must have their $\overline{F L}$ pin tied to a high level. In this mode, \bar{W} and \bar{R} signals are shared by all devices, while internal
logic controls the steering of data. Only one FIFO will be enabled for any given read cycle, so the common Data Out pins of all devices are wire-ORed together. Likewise, the common Data In pins of all devices are tied together.

In EXPANSION mode, external logic is required to generate a composite Full or Empty flag. This is achieved by ORing the $\overline{F F}$ pins of all devices and ORing the $\overline{E F}$ pins of all devices respectively. The HALF flag and RETRANSMIT functions are not available in DEPTH EXPANSION mode.

Figure 19. FIFO Depth Expansion (6144×9)

OPERATIONAL MODES (cont'd)

Compound Expansion

A combination of width and depth expansion can be easily implemented by operating groups of depth expanded FIFOs in parallel.

Bidirectional Operation

Applications which require bidirectional data buffering between two systems can be realized by operating

LH5498 devices in parallel but opposite directions. The Data In pins of a device may be tied to the corresponding Data Out pins of another device operating in the opposite direction to form a single bidirectional bus interface. Care must be taken to assure that the appropriate read, write and flag signals are routed to each system. Both depth and width expansion may be used in this configuration.

Figure 20. Compound FIFO

Figure 21. Bidirectional FIFO

ORDERING INFORMATION

Example: LH5498U-25 (CMOS 2K x 9 FIFO, 32-pin PLCC, 25 ns)

FEATURES

- Fast Access Times: 20/25/35/50/65/80 ns
- Full CMOS Dual Port Memory Array
- Fully Asynchronous Read and Write
- Expandable in Width and Depth
- Full, Half-Full, and Empty Status Flags
- Read Retransmit Capability
- TTL Compatible I/O
- Packages:

28-Pin, $600-\mathrm{mil}$ PDIP \&
32-Pin, PLCC

- Pin and Functionally Compatible with IDT7204

FUNCTIONAL DESCRIPTION

The LH5499 is a dual port memory with internal addressing to implement First-In, First-Out algorithm. Through an advanced dual port architecture, it provides fully asynchronous read/write operation. Empty, Full, and Half-Full status flags are provided to prevent data overflow and underflow. Internal logic is provided for unlimited expansion in both word size and depth.

Read and Write operations automatically access sequential locations in memory in such a way that data is read out in the same order that it was written, that is on a First-In, First-Out basis. Since the address sequence is internally predefined, no external address information is required for the operation of this device. A ninth data bit is provided for parity or control information often needed in communication applications.

Empty, Full, and Half-Full status flags monitor the extent to which data has been written into the FIFO, and prevent improper operations (i.e., Read if the FIFO is empty, or Write if the FIFO is full). A retransmit feature resets the Read address pointer to its initial position, thereby allowing repetitive readout of the same data. Expansion in and Expansion out pins implement an expansion scheme that allows individual FIFOs to be cascaded to greater depth without incurring additional latency (bubblethrough) delays.

PIN CONNECTIONS

28-PIN PDIP		28 27 26 25 24 23 22 21 20 19 18 17		TOP VIEW
				5499-1D

Figure 1. Pin Connections for PDIP Package

Figure 2. Pin Connections for PLCC Package

Figure 3. LH5499 Block Diagram

PIN DESCRIPTIONS

PIN	DESCRIPTION
$D_{0}-D_{8}$	Data Inputs
$Q_{0}-Q_{8}$	Data Outputs
\bar{W}	Write Control
$\overline{\mathrm{R}}$	Read Control
$\overline{\text { EF }}$	Empty Flag
$\overline{\mathrm{FF}}$	Full Flag

PIN	DESCRIPTION
$\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$	Expansion Out, Half-Full Flag
$\overline{\mathrm{XI}}$	Expansion In
$\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$	First Load, Retransmit
$\overline{\mathrm{RS}}$	Reset
V $_{\mathrm{CC}}$	Positive Power Supply
V $_{\text {SS }}$	Ground

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	\quad RATING
Supply Voltage to Vss Potential	-0.5 V to 7 V
Signal Pin Voltage to Vss Potential 3	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$ (not to exceed 7 V)
DC Output Current ${ }^{2}$	$\pm 50 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W
DC Voltage Applied to Outputs In High-Z State	-0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$ (not to exceed 7 V)

NOTES:

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions above those indicated in thc "Operating Range" of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.
3. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns once per cycle.

OPERATING RANGE

SYMBOL	PARAMETER	MIN	MAX	UNIT
T_{A}	Temperature, Ambient	0	70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\text {SS }}$	Supply Voltage	0	0	V
$\mathrm{~V}_{\text {IL }}$	Logic "0" Input Voltage 1	-0.5	0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic "1" Input Voltage	2.0	$\mathrm{~V} C \mathrm{C}+0.5$	V

NOTE:

1. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
ILI	Input Leakage Current	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}$ to Vcc	-10	10	$\mu \mathrm{A}$
ILO	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {cc }}$	-10	10	$\mu \mathrm{A}$
V OH	Output High Voltage	$1 \mathrm{OH}=-2.0 \mathrm{~mA}$	2.4		V
VoL	Output Low Voltage	$\mathrm{loL}=8.0 \mathrm{~mA}$		0.4	V
Icc	Average Supply Current ${ }^{1}$	Measured at $\mathrm{f}=33 \mathrm{MHz}$		100	mA
Icc2	Average Standby Current ${ }^{1}$	All Inputs $=\mathrm{V}_{\mathrm{IH}}$		15	mA
Icc3	Power Down Current ${ }^{1}$	All Inputs $=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$		8	mA

NOTE:

1. Icc, lcce_{2} and loccs_{3} are dependent upon actual output loading and cycle rates. Specified values are with outputs open.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times (10\% to 90\%)	5 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load, Timing Tests	Figure 4

CAPACITANCE ${ }^{1,2}$

PARAMETER	RATING
CIN MAX (Input Capacitance)	5 pF
Co MAX (Output Capacitance)	7 pF

Figure 4. Output Load Caption

NOTES:

1. Sample tested only.
2. Capacitances are maximum values at $25^{\circ} \mathrm{C}$ measured at 1.0 MHz with $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ (Over Operating Range)

SYMBOL	PARAMETER	$\mathrm{t}_{\mathrm{A}}=20 \mathrm{~ns}$		$\mathrm{t}_{\mathrm{A}}=\mathbf{2 5 ~ n s}$		$\mathrm{t}_{\mathrm{A}}=\mathbf{3 5} \mathbf{n s}$		$\mathbf{t a x}_{A} \mathbf{5 0} \mathrm{~ns}$		$\mathrm{t}_{\mathrm{A}}=65 \mathrm{~ns}$		$\mathrm{ta}_{A}=\mathbf{8 0} \mathrm{ns}$		UNITS
		MIN	MAX											
READ CYCLE TIMING														
trc	Read Cycle Time	30	-	35	-	45	-	65	-	80	-	100	-	ns
t_{A}	Access Time	-	20	-	25	-	35	-	50	-	65	-	80	ns
tRR	Read Recover Time	10	-	10	-	10	-	15	-	15	-	15	-	ns
tRPW	Read Pulse Width ${ }^{2}$	20	-	25	-	35	-	50	-	65	-	80	-	ns
triz	Data Bus Active from Read Low ${ }^{3}$	5	-	5	-	5	-	5	-	5	-	10	-	ns
twLz	Data Bus Active from Write High ${ }^{3,4}$	10	-	10	-	10	-	10	-	10	-	20	-	ns
tov	Data Valid from Read Pulse High	5	-	5	-	5	-	5	-	5	-	5	-	ns
trhz	Data Bus High-Z from Read High ${ }^{3}$	-	15	-	15	-	15	-	20	-	30	-	30	ns

WRITE CYCLE TIMING

twc	Write Cycle Time	30	-	35	-	45	-	65	-	80	-	100	-	ns
twPW	Write Pulse Width ${ }^{2}$	20	-	25	-	35	-	50	-	65	-	80	-	ns
twR	Write Recovery Time	10	-	10	-	10	-	15	-	15	-	15	-	ns
tDS	Data Setup Time	10	-	10	-	15	-	20	-	20	-	20	-	ns
tDH	Data Hold Time	0	-	0	-	0	-	0	-	5	-	5	-	ns

RESET TIMING

trSC	Reset Cycle Time	30	-	35	-	45	-	65	-	80	-	100	-	ns
trS $^{\text {Reset Pulse Width }}{ }^{2}$	20	-	25	-	35	-	50	-	65	-	80	-	ns	
trSR	Reset Recovery Time	10	-	10	-	10	-	15	-	15	-	15	-	ns

RETRANSMIT TIMING

trTC	Retransmit Cycle Time	30	-	35	-	45	-	65	-	80	-	100	-	ns
tRT	Retransmit Pulse Width ${ }^{2}$	20	-	25	-	35	-	50	-	65	-	80	-	ns
triR	Retransmit Recovery Time	10	-	10	-	10	-	15	-	15	-	15	-	ns

FLAG TIMING

tefl	Reset to Empty Flag Low	-	30	-	35	-	45	-	65	-	80	-	100	ns
thFH,FFH	Reset to Half \& Full Flag High	-	30	-	35	-	45	-	65	-	80	-	100	ns
treF	Read Low to Empty Flag Low	-	25	-	25	-	35	-	45	-	60	-	60	ns
traf	Read High to Full Flag High	-	25	-	25	-	35	-	45	-	60	-	60	ns
tWEF	Write High to Empty Flag High	-	25	-	25	-	35	-	45	-	60	-	60	ns
tWFF	Write Low to Full Flag Low	-	25	-	25	-	35	-	45	-	60	-	60	ns
twhF	Write Low to Half-Full Flag Low	-	30	-	35	-	45	-	65	-	80	-	100	ns
trhF	Read High to Half-Full Flag High	-	30	-	35	-	45	-	65	-	80	-	100	ns
EXPANSION TIMING														
txol	Expansion Out Low	-	20	-	25	-	35	-	50	-	65	-	80	ns
txor	Expansion Out High	-	20	-	25	-	35	-	50	-	65	-	80	ns
txI	Expansion In Pulse Width	20	-	25	-	35	-	50	-	65	-	80	-	ns
tXIR	Expansion In Recovery Time	10	-	10	-	10	-	10	-	10	-	10	-	ns
txis	Expansion in Setup Time	10	-	10	-	15	-	15	-	15	-	15	-	ns

NOTES:

1. All timing measurements performed at "AC Test Condition" levels.
2. Pulse widths less than minimum value are not allowed.
3. Values guaranteed by design not currently tested.
4. Only applies to read data flow-through mode.

OPERATIONAL DESCRIPTION

Reset

The Device is reset whenever the RESET pin ($\overline{\mathrm{RS}}$) is taken to a low state. The reset operation initializes both the read and write address pointers to the first memory location. The $\overline{\mathrm{XI}}$ and $\overline{\mathrm{FL}}$ pins are also sampled at this time to determine whether the device is in SINGLE mode or DEPTH EXPANSION mode. A reset pulse is required when the device is first powered up. The READ ($\overline{\mathrm{R}}$) and WRITE (\bar{W}) pins may be in any state when reset is initiated, but must be brought to a high state tRPW and twPw before the rising edge of $\overline{\text { RS. }}$

Write

A write cycle is initiated on the falling edge of the WRITE ($\overline{\mathrm{W}}$) pin. Data setup and hold times must be observed on the data in ($\mathrm{D}_{0}-\mathrm{D}_{8}$) pins. A write operation is only possible if the FIFO is not full, (i.e. the FULL flag pin is HIGH). Writes may occur independently of any ongoing read operations.

At the falling edge of the first write after the memory is half filled, the HALF flag will be asserted ($\overline{\mathrm{HF}}=\mathrm{LOW}$) and will remain asserted until the difference between the write pointer and read pointer indicates that the remaining data in the device is less than or equal to one half the total capacity of the FIFO. The HALF flag is deasserted ($\overline{\mathrm{HF}}=\mathrm{HIGH}$) by the appropriate rising edge of $\overline{\mathrm{R}}$.

The FULL flag is asserted ($\overline{\mathrm{FF}}=\mathrm{LOW}$) at the falling edge of the write operation which fills the last available location in the FIFO memory array. The FULL flag will inhibit further writes until cleared by a valid read. The FULL flag is deasserted ($\overline{\mathrm{FF}}=\mathrm{HIGH}$) after the next rising edge of \bar{R} releases another memory location.

Read

A read cycle is initiated on the falling edge of the READ $(\overline{\mathrm{R}})$ pin. Read data becomes valid on the data out ($\mathrm{Q}_{0}-\mathrm{Q}_{8}$) pins after a time ta from the falling edge of $\overline{\mathrm{R}}$. After $\overline{\mathrm{R}}$ goes high, the data out pins return to a high-impedance state. Reads may occur independent of any ongoing write operations. A read is only possible if the FIFO is not empty ($\mathrm{EF}=\mathrm{HIGH}$).

The internal read and write address pointers are maintained by the device such that consecutive read operations will access data in the same order as it was written. The EMPTY flag is asserted ($\overline{E F}=$ LOW) after the falling edge of \bar{R} which accesses the last available data in the FIFO memory. $\overline{E F}$ is deasserted ($\overline{E F}=$ HIGH) after the next rising edge of \bar{W} loads another word of valid data.

Data Flow-Through

Read flow-through mode occurs when the READ ($\overline{\mathrm{R}})$ pin is brought low while the FIFO is empty, and held LOW in anticipation of a write cycle. At the end of the next write cycle, the EMPTY flag will be momentarily de-asserted, and the data just written will become available on the data out pins after a maximum time of twEF $+\mathrm{t}_{\mathrm{A}}$. Additional writes may occur while the $\overline{\mathrm{R}}$ pin remains low, but only data from the first write flows through to the outputs. Additional data, if any, can only be accessed by toggling $\overline{\mathrm{R}}$.

Write flow-through mode occurs when the WRITE ($\overline{\mathrm{W}}$) pin is brought low while the FIFO is full, and held low in anticipation of a read cycle. At the end of the read cycle, the FULL flag will be momentarily deasserted, but then immediately reasserted in response to $\overline{\mathrm{W}}$ held low. Data is written into the FIFO on the rising edge of \bar{W} which may occur trff + twpw after the read.

Retransmit

The FIFO can be made to reread previously read data through the retransmit function. Retransmit is initiated by pulsing $\overline{\operatorname{RT}}$ low. This resets the internal read address pointer to the first physical location in the memory while leaving the internal write address pointer unchanged. Data between the read and write pointers may be reaccessed by subsequent reads. Both $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ must be inactive (HIGH) during the retransmit pulse. Retransmit is useful if no more than 4096 writes are performed between resets. Retransmit may affect the status of $\overline{\mathrm{EF}}$, $\overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ flags, depending on the relocation of the read pointer. This function is not available in depth expansion mode.

TIMING DIAGRAMS

Figure 5. Asynchronous Write and Read Operation

Figure 6. Full Flag from Last Write to First Read

TIMING DIAGRAMS (cont'd)

Figure 7. Empty Flag from Last Read to First Write

Figure 8. Read Data Flow-Through

TIMING DIAGRAMS (cont'd)

Figure 9. Write Data Flow-Through

Figure 10. Empty Flag Timing

TIMING DIAGRAMS (cont'd)

Figure 11. Full Flag Timing

Figure 12. Half-Full Flag Timing

Figure 13. Retransmit Timing

TIMING DIAGRAMS (cont'd)

Figure 14. Reset Timing

Figure 15. Expansion Out Timing

TIMING DIAGRAMS (cont'd)

Figure 16. Expansion In Timing

OPERATIONAL MODES

Single Device Configuration

When depth expansion is not required for the given application, the device is placed in SINGLE mode by tying the EXPANSION IN pin ($\overline{\mathrm{X}}$) to ground. This pin is internally sampled during reset.

Width Expansion

Word width expansion is implemented by placing multiple devices in parallel. Each device should be configured for SINGLE mode. In this arrangement, the behavior of the status flags will be identical for all devices, so these flags may be derived from any one device.

5499-17
Figure 17. Single FIFO $(4 K \times 9)$

Figure 18. FIFO Width Expansion ($\mathbf{4 K} \times 18$)

OPERATIONAL MODES (cont'd)

Depth Expansion

Depth expansion is implemented by configuring the required number of FIFOs in EXPANSION mode. In this arrangement, the FIFOs are connected in a circular fashion with the EXPANSION OUT pin ($\overline{\mathrm{XO}}$) of each device tied to the EXPANSION IN pin ($\overline{\mathrm{XI}})$ of the next device. One FIFO in this group must be designated as the first load device. This is accomplished by tying the FIRST LOAD pin ($\overline{\mathrm{FL}}$) of this device to ground. All other devices must have their $\overline{F L}$ pin tied to a high level. In this mode,
$\overline{\mathrm{W}}$ and $\overline{\mathrm{R}}$ signals are shared by all devices, while internal logic controls the steering of data. Only one FIFO will be enabled for any given read cycle, so the common Data Out pins of all devices are wire-ORed together. Likewise, the common Data In pins of all devices are tied together.

In EXPANSION mode, external logic is required to generate a composite Full or Empty flag. This is achieved by ORing the FF pins of all devices and ORing the EF pins of all devices respectively. The HALF flag and RETRANSMIT functions are not available in DEPTH EXPANSION mode.

5499-19
Figure 19. FIFO Depth Expansion (12288×9)

OPERATIONAL MODES (cont'd)

Compound Expansion

A combination of width and depth expansion can be easily implemented by operating groups of depth expanded FIFOs in parallel.

Bidirectional Operation

Applications which require bidirectional data buffering between two systems can be realized by operating

LH5499 devices in parallel but opposite directions. The Data In pins of a device may be tied to the corresponding Data Out pins of another device operating in the opposite direction to form a single bidirectional bus interface. Care must be taken to assure that the appropriate read, write and flag signals are routed to each system. Both depth and width expansion may be used in this configuration.

Figure 20. Compound FIFO

Figure 21. Bidirectional FIFO

ORDERING INFORMATION

Example: LH5499U-25 (CMOS 4K x 9 FIFO, 32-pin PLCC, 25 ns)

FEATURES

- Fast Cycle Times: 25/35/50 ns Frequency: $40 / 28.5 / 20 \mathrm{MHz}$
- Parallel Data In; Parallel Data Out
- Two Read Enable Inputs and Two Write Enable Inputs, Sampled on Rising Edge of the Appropriate Clock
- Fast Fall-Through Time Internal Architecture Based on CMOS Dual-Port SRAM Technology, 4096×9
- Independently-Synchronized Operation of Input Port and Output Port
- Full, Half-Full, Almost-Empty/Full, and Empty Flags
- Three-State Outputs with Output Enable
- May be Used for Bidirectional Bus Interfaces
- May be Used to Interface between Buses of Different Word Widths
- Reset/Reread Capability
- TTL and CMOS Compatible I/O
- 32-Pin PLCC Package

FUNCTIONAL DESCRIPTION

The LH5492 is a FIFO (First-In, First-Out) memory device, based on fully-static CMOS dual-port RAM technology, capable of containing up to 40969 -bit words. A single LH5492 FIFO can input and output 9-bit bytes; it has one 9-bit parallel input (write) port, and one 9-bit parallel output (read) port. Multiple write enables and read enables support paralleling LH5492s for greater-wordwidth operation, in order to achieve a wider 'effective FIFO.' The paralleled LH5492 combination remains capable of performing all of the operations which a standalone LH5492 can perform. Thus, if two LH5492s are paralleled, the combination can input and output 18 -bit halfwords. This paralleling scheme extends to an arbitrary number of paralleled LH5492s, although some external logic is required for more than two.

The LH5492 architecture supports synchronous operation, tied to two independent free-running clocks at the input and output ports respectively. However, these 'clocks' also may be aperiodic, asynchronous 'demand' signals; they do not need to be synchronized with each other in any way. Almost all control input signals and status output signals are synchronized to these clocks, to
simplify system design. The input and output ports operate altogether independently of each other, except when the FIFO becomes either absolutely full or else absolutely empty.

Two edge-sampled enable control inputs, WEN 1 and WEN ${ }_{2}$, are provided for the input port; and two more such control inputs, REN 1 and REN2, are provided for the output port. These synchronous control inputs may be used as write demands and read demands respectively, when an LH5492 is interfaced to continuously-clocked synchronous systems. Data flow is initiated at a port by the rising edge of the clock signal corresponding to that port, and is gated only by the appropriate edge-sampled enable control input signal(s).

The following FIFO status flags monitor the extent to which the internal memory has been filled: Full, Half-Full, Almost-Empty/Full, and Empty. The Almost-Empty/Full flag is asserted whenever the internal memory is either within eight locations of 'empty,' or else within eight locations of 'full.' The Half-Full flag serves to distinguish the 'almost-empty' condition from the 'almost-full' condition. Also, during fully-synchronous operation, the Full flag may be tied directly to WEN 1 or to WEN 2 , and the Empty flag likewise may be tied directly to REN 1 or REN 2 , in order to prevent overrunning or underrunning the internal FIFO boundaries. (See Figure 10.)

PIN CONNECTIONS

Figure 1. Pin Connections for PLCC Package

FUNCTIONAL DESCRIPTION (cont'd)

Alternatively, the enabling of write or read operations may be controlled entirely by external system logic, while
the flags serve strictly as system interrupts. This design approach works well when the input port clock and the output port clock are not synchronized to each other.

5492-2
Figure 2. LH5492 Block Diagram

SIGNAL/PIN DESCRIPTIONS

PIN	SIGNAL NAMEJDESCRIPTION
$\overline{\mathrm{RS}}$	Reset. An assertive-LOW input which initializes the internal address pointers and flags.
WCK	Write Clock. A free-running clock input for write operations.
RCK	Read Clock. A free-running clock input for read operations.
D0-D8	Data inputs. $\mathrm{D}_{0}-\mathrm{D}_{8}$ are sampled on the rising edge of WCK, whenever both WEN_{1} and WEN_{2} are being asserted.
Q0-Q8	Data Outputs. $Q_{0}-Q_{8}$ are updated following the rising edge of RCK, whenever both REN 1 and REN 2 are being asserted.
WEN 1	Write Enable 1. An assertive-HIGH input signal which is sampled on the rising edge of WCK to control the flow of data into the FIFO. Both WEN 1 and WEN 2 must be asserted in order to enable a write operation.
WEN2	Write Enable 2. An assertive-HIGH input signal which is sampled on the rising edge of WCK to control the flow of data into the FIFO. Both WEN ${ }_{1}$ and WEN $_{2}$ must be asserted in order to enable a write operation.
REN ${ }_{1}$	Read Enable 1. An assertive-HIGH input signal which is sampled on the rising edge of RCK to control the flow of data out of the FIFO. Both REN 1 and REN ${ }_{2}$ must be asserted in order to enable a read operation.
REN ${ }_{2}$	Read Enable 2. An assertive-HIGH input signal which is sampled on the rising edge of RCK to control the flow of data out of the FIFO. Both REN 1 and REN 2 must be asserted in order to enable a read operation.
$\overline{\mathrm{FF}}$	Full Flag. An assertive-LOW output indicating when the FIFO is full.
$\overline{\mathrm{HF}}$	Half Flag. An assertive-LOW output indicating when the FIFO is more than half full.
$\overline{\text { AEF }}$	Almost-Empty/Full. An assertive-LOW output indicating when the FIFO either is within eight locations of full, or else is within eight locations of empty.
$\overline{\mathrm{EF}}$	Empty Flag. An assertive-LOW output indicating when the FIFO is empty.
$\overline{\mathrm{OE}}$	Output Enable. An assertive-LOW signal which places the data outputs $Q_{0}-Q_{8}$ in a low- impedance state.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Supply Voltage to VSS Potential	-0.5 V to 7 V
Signal Pin Voltage to VSS Potential ${ }^{3}$	-0.5 V to VCC + 0.5 V
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions outside those indicated in the 'Operating Range' of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.
3. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns , once per cycle.

OPERATING RANGE

SYMBOL	PARAMETER	MIN	MAX	UNIT
TA_{A}	Temperature, Ambient	0	70	${ }^{\circ} \mathrm{C}$
VCC	Supply Voltage	4.5	5.5	V
VSS	Supply Voltage	0	0	V
VIL $^{\text {Logic LOW Input Voltage }}{ }^{1}$	-0.5	0.8	V	
VIH $^{\text {Logic }}$ HIGH Input Voltage	2.2	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V	

NOTE:

1. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
ILI	Input Leakage Current	$\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{~V}$ IN $=0 \mathrm{~V}$ to VCC	-10	10	$\mu \mathrm{~A}$
ILO	Output Leakage Current	$\overline{\mathrm{OE}} \geq \mathrm{V} \mathrm{IH}, 0 \mathrm{~V} \leq \mathrm{VOUT} \leq \mathrm{VCC}$	-10	10	$\mu \mathrm{~A}$
VOL	Output LOW Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$		0.4	V
VOH	Output HIGH Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4		V
ICC	Average Supply Current 1	Measured at $\mathrm{fC}=\max$		150	mA
ICC2	Average Standby Current 1	All Inputs $=\mathrm{V}_{\mathrm{IH}}$		25	mA

NOTE:

1. ICC and ICC2 are dependent upon actual output loading and cycle rates. Specified values are with outputs open; and, for lcc, operating at minimum cycle times.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	Vss to 3 V
Input Rise and Fall Times (10\% to 90\%)	5 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
$\mathrm{C}_{\text {IN }}$ (Input Capacitance)	7 pF
$\mathrm{Co}^{\text {(Output Capacitance) }}$	7 pF

NOTES:

1. Sample tested only.
2. Capacitances are maximum values at $25^{\circ} \mathrm{C}$, measured at 1.0 MHz with $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}\left(\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)

SYMBOL	DESCRIPTION	-25		-35		-50		UNIT
		MIN	MAX	MIN	MAX	MIN	Max	
fc	Cycle Frequency	-	40	-	28.5	-	20	MHz
twc	Write Clock Cycle Time	25	-	35	-	50	-	ns
twh	Write Clock High Time	10	-	14	-	20	-	ns
twL	Write Clock Low Time	10	-	14	-	20	-	ns
trc	Read Clock Cycle Time	25	-	35	-	50	-	ns
tri	Read Clock High Time	10	-	14	-	20	-	ns
trL	Read Clock Low Time	10	-	14	-	20	-	ns
tDS	Data Setup Time to Rising Clock	10	-	10	-	15	-	ns
tDH	Data Hold Time from Rising Clock	0	-	0	-	2	-	ns
tes	Enable Setup Time to Rising Clock	10	-	10	-	15	-	ns
ten	Enable Hold Time from Rising Clock	0	-	0	-	2	-	ns
$\mathrm{ta}_{\text {A }}$	Data Output Access Time	-	20	-	25	-	35	ns
toh	Output Hold Time (from rising RCK)	5	-	5	-	5	-	ns
tal	$\overline{\mathrm{OE}}$ to Data Outputs Low-Z ${ }^{2}$	1	-	1	-	1	-	ns
toz	$\overline{\mathrm{OE}}$ to Data Outputs High-Z ${ }^{2}$	-	10	-	12	-	15	ns
toe	Output Enable to Data Valid	-	10	-	12	-	15	ns
tef	Clock to Empty Flag Valid	-	20	-	25	-	35	ns
tFF	Clock to Full Flag Valid	-	20	-	25	-	35	ns
thF	Clock to Half Flag Valid	-	35	-	40	-	45	ns
taEF	Clock to AEF Flag Valid	-	35	-	40	-	45	ns
trs	Reset Pulse Width	25	-	35	-	50	-	ns
trss	Reset Setup Time	10	-	15	-	25	-	ns
trF	Reset Low to Flag Valid	-	30	-	35	-	40	ns
tra	Reset to Data Outputs Low	-	20	-	25	-	30	ns
tFRL	First Read Latency	18	-	20	-	20	-	ns
tFWL	First Write Latency	18	-	20	-	20	-	ns

NOTES:

1. All timing measurements performed at ' $A C$ Test Condition' levels.
2. Value guaranteed by design; not currently production tested.
3. trss need not be met unless either a rising edge of WCK occurs while WEN ${ }_{1}$ and WEN $_{2}$ are both being asserted, or else a rising edge of RCK occurs while REN 1 and REN 2 are both being asserted.
4. tFRL is the minimum first-write-to-first-read delay, following an empty condition, which is required to assure valid read data.
5. tFwL is the minimum first-read-to-first-write delay, following a full condition, which is required to assure successful writing of data.

OPERATIONAL DESCRIPTION

Reset

The device is reset whenever the asynchronous reset input ($\overline{\mathrm{RS}}$) is asserted, i.e., taken to a LOW state. A reset operation is required after power up, before the first write operation occurs. The reset operation initializes both the read and write address pointers to the first physical memory location. After the falling edge of $\overline{\mathrm{RS}}$, the status flags ($\overline{\mathrm{FF}}, \overline{\mathrm{HF}}, \overline{\mathrm{AEF}}$, and $\overline{\mathrm{EF}}$) are updated to indicate a valid empty condition.

Write and/or read operations need not be deactivated during a reset operation, but failure to do so requires observance of the Reset Setup Time (tRSS) to assure that the first write and/or first read following reset will occur predictably.

If no read operations have been performed following a reset operation, then the previous data word being held in the output register consists of all zeroes. This data word will be seen on the output bus ($Q_{0}-Q_{8}$) whenever the output enable ($\overline{\mathrm{OE}}$) is being held LOW.

Write

A write operation consists of storing parallel data from the data inputs to the FIFO memory array. A write operation is initiated on the rising edge of the Write Clock input (WCK), whenever both of the edge-sampled Write Enable inputs (WEN ${ }_{1}$ and WEN 2) are held HIGH for the prescribed setup times and hold times. Setup times and hold times must also be observed for the Data In pins ($\mathrm{D}_{0}-\mathrm{D}_{8}$).

When a full condition is reached, write operations should be ceased in order to prevent overwriting unread data. The state of the four status flags has no direct effect on write operations; that is, the execution of write operations is gated only by WEN 1 and WEN 2 , and the internal logic of the LH5492 itself has no interlock to prevent overrunning valid data after the internal write pointer 'wraps around' and catches up to the read pointer - and passes it, if writing is continued. Figure 10 illustrates how such an interlock may be implemented by means of external connections.

Following the first read operation from a full FIFO, another memory location becomes freed up, and the Full Flag is deasserted ($\overline{\mathrm{FF}}=\mathrm{HIGH}$). The next write operation should begin no earlier than a First Write Latency time (tFwL) after the first read operation from a full FIFO, in order to assure that a correct data word is written into the FIFO memory.

Read

A read operation consists of loading parallel data from the FIFO memory array to the output register. A read operation is initiated on the rising edge of the Read Clock input (RCK), whenever both of the edge-sampled Read Enable inputs (REN 1 and REN 2) are held HIGH for the prescribed setup times and hold times. Read data be-
comes valid on the Data Out pins ($\mathrm{Q}_{0}-\mathrm{Q}_{8}$) by a time t_{A} after the rising edge of RCK, provided that the Output Enable ($\overline{O E}$) is being held LOW. $\overline{O E}$ is an assertive-LOW asynchronous input. When $\overline{O E}$ is taken LOW, the $Q_{0}-Q_{8}$ outputs are driven (i.e., are in a low-Z state) within a minimum time taL. When $\overline{O E}$ is taken HIGH , the $\mathrm{Q}_{0}-\mathrm{Q}_{8}$ outputs are in a high-Z state within a maximum time toz.

When an empty condition is reached, read operations should be ceased until a valid write operation(s) has loaded additional data into the FIFO. The state of the four status flags has no direct effect on read operations; that is, the execution of read operations is gated only by REN 1 and REN 2 , and the internal logic of the LH5492 itself has no interlock to prevent underrunning valid data after the internal read pointer 'wraps around' and catches up to the write pointer - and passes it, if reading is continued. Figure 10 illustrates how such an interlock may be implemented by means of external connections.

Following the first write to an empty FIFO, the Empty Flag ($\overline{E F}$) is deasserted ($\overline{E F}=$ HIGH). The next read operation should begin no earlier than a First Read Latency time (tFRL) from the first write operation into an empty FIFO, in order to ensure that correct read data is retrieved.

Status Flags

Status Flags are included for Full ($\overline{\mathrm{FF}}$), Hali-Full ($\overline{\mathrm{HF}) \text {, }}$ Almost-Empty/Full ($\overline{\mathrm{AEF}}$), and Empty ($\overline{\mathrm{EF}}$). These flags are updated at the boundary conditions given in Table 1. Flag transitions follow the appropriate rising clock edge during an enabled read or write operation. The AEF flag is asserted whenever the FIFO either is less than eight locations away from an empty boundary, or else is less than eight locations away from a full boundary.

A separate indicator for Almost-Empty may be generated by a logical NOR of $\overline{A E F}$ with the inversion of $\overline{\text { FF. An }}$ indicator for Almost-Full may be generated by a NOR of $\overline{\text { AEF }}$ with $\overline{\mathrm{HF}}$. From an assertive-HIGH perspective, the NOR gate effectively is performing an AND operation in both of these cases.

Reset, Reread

The FIFO can be made to reread previously read data through a reset operation, which initializes the internal read-address and write-address pointers to the first physical location in the FIFO memory (location zero). The status flags are updated to indicate an empty condition; but up to 4096 data words which previously had been written into and/or read from the FIFO still then remain in the FIFO memory array. The status flags may be ignored, and data may be reaccessed by subsequent read operations. The First Read Latency (tFRL) specification does not apply to reset/reread operations, since no new data words are being written to the FIFO following the reset operation.

TIMING DIAGRAMS

Figure 4. Write and Read Operation in a Near-Empty Condition

TIMING DIAGRAMS (cont'd)

Figure 5. Read and Write Operation in a Near-Full Condition

TIMING DIAGRAMS (cont'd)

Figure 6. Reset Timing

TIMING DIAGRAMS (cont'd)

Figure 7. Almost-Empty Flag Timing

Table 1. Flag Definitions

FLAG STATUs				VALID WRITE CYCLES REMAINING		VALID READ CYCLES REMAINING	
$\overline{\mathrm{EF}}$	AEF	$\overline{\mathrm{HF}}$	$\overline{\mathrm{FF}}$	\min	\max	\min	\max
0	0	1	1	4096	4096	0	0
1	0	1	1	4089	4095	1	7
1	1	1	1	2048	4088	8	2047
1	1	0	1	8	2047	2048	4088
1	0	0	1	1	7	4089	4095
1	0	0	0	0	0	4096	4096

TIMING DIAGRAMS (cont'd)

Figure 8. Half-Full Flag Timing

TIMING DIAGRAMS (cont'd)

Figure 9. Almost-Full Flag Timing

OPERATIONAL MODES

Synchronous Read and Write Operations

Read and Write operations may be performed in synchronism with each other by deriving WCK and RCK from a common system clock. In this case, the Write Enable (WEN_{1} and WEN_{2}) and Read Enable (REN_{1} and REN ${ }_{2}$) inputs all get sampled at the same clock rising edge.

This type of synchronous read/write operation ensures that flag outputs always satisfy the required setup and hold times for the WEN 1, WEN $_{2}$, REN $_{1}$, and REN 2 inputs. Thus, the Full Flag output (FF) may be tied directly to either WEN_{1} or WEN , to prevent 'overrun' write operations when the full condition is reached, while the other Write Enable input remains available for system control. Likewise, the Empty Flag output (EF) may be tied directly to either REN 1 or REN 2 , to prevent 'underrun' read operations when the empty condition is reached, while the other Read Enable input remains available for system control.

Asynchronous Read and Write Operations

Write operations and read operations also may be performed completely asynchronously, relative to each other, when the WCK input and the RCK input are derived
from the clock signals of different systems. Under these conditions, the status-flag transitions occur relative to two unpredictably-related clock edges; and so, these flags should not be used to directly drive Write Enable or Read Enable inputs, since they do not always satisfy valid setup times and hold times.

Instead, it is recommended that these enable signals be controlled by the user, in order to ensure that adequate setup times and hold times are maintained. If the FIFO becomes either completely full or completely empty, then some synchronization between read and write operations at the full or empty boundaries becomes necessary to prevent timing violations.

When the FIFO is operating in this manner, the AlmostEmpty/Full flag and the Half-Full flag should be used to provide some advance warning, to avoid overrunning or underruning a FIFO internal boundary. Typically, these flags are used as system interrupts. When an interupt is received by the faster of the two systems, a predefined block of data then may be transferred at the maximum data rate, as long as there is known to be sufficient room for it. In this way the full and empty boundaries are never reached, and yet maximum data throughput is maintained.

Figure 10. Synchronous Operation

OPERATIONAL MODES (cont'd)

Figure 11. Asynchronous Operation

OPERATIONAL MODES (cont’d)

Depth Expansion

Increased FIFO depth may be realized by using multiple LH5492 devices. The availability of two enable control inputs for each port assists in this expansion. For either the input port or the output port, one enable input may be used for system control, while the other is driven
by decode logic to direct the flow of data. Typically, this decode logic alternates accesses sequentially from one device to the next. Status flags are then derived from the last device in the sequence. The simplest form of this decode logic consists of a single toggle flipflop, which alternates access between two devices for every enabled clock cycle as shown in Figure 13.

Figure 12. FIFO Depth Expansion (8192×9)

Figure 13. Simple Decode Logic

OPERATIONAL MODES (cont'd)

Interface Between Different Bus Widths

Applications which require interface between system buses of different word widths also may be implemented with multiple LH5492 devices. Essentially, one port may
be configured for greater FIFO depth, while the other port is configured for greater word width. Referring to Figures 14 and 15, the wide-word port accesses data simultaneously from multiple devices, while the narrow-word port uses decode logic to direct the flow of data between two or more devices.

Figure 14. $8 \mathrm{~K} \times 9$-Bit to $\mathbf{4 K} \times 18$-Bit Bus

OPERATIONAL MODES (cont'd)

Figure $15.4 \mathrm{~K} \times 18$-Bit to $8 \mathrm{~K} \times 9$-Bit Bus

OPERATIONAL MODES (cont’d)

Bidirectional Operation

Applications which require bidirectional data buffering between two systems may be realized by operating LH5492 devices in parallel, but in opposite directions. The Data In pins of one device may be tied to the corresponding Data Out pins of another device operating in the opposite direction, to form a single bidirectional bus interface. Care must be taken to assure that the appropriate clock, enable, and flag signals are routed to each system.

The extra enable control signals may be used to extend FIFO depth, or to interface bidirectional buses of different word widths.

Width Expansion

Any of the previously described applications can be extended in word width by operating groups of these device configurations in parallel. The enable setup and hold times should be satisfied for all devices, in order to ensure that all width-expanded devices respond identically to the same sequence of events.

Figure 16. Bidirectional Operation

ORDERING INFORMATION

LH5492	U	- \#\#	
Device Type	Package	Speed	
			$\left\{\begin{array}{l} 25 \\ 35 \\ 50 \end{array}\right. \text { Cycle Time (ns) }$
			32-pin Plastic Leaded Chip Carrier (PLCC32-P-S450)

Example: LH5492U-25 (4K x 9 Clocked FIFO, 32-pin PLCC, 25 ns)

FEATURES

- Fast Cycle Times: $25 / 35 / 50$ ns

Frequency: $40 / 28.5 / 20 \mathrm{MHz}$

- Parallel Data In; Serial Data and/or Parallel Data Out
- Serial Input and Serial Shift Capability in Output Register, for Long-Word-Length Parallel-to-Serial Operations
- Read Enable Input and Two Write Enable Inputs, Sampled on Rising Edge of the Appropriate Clock
- Fast Fall-Through Time Internal Architecture Based on CMOS Dual-Port SRAM Technology, 4096×9
- Fully Asynchronous Read and Write Operations
- Full, Half-Full, Almost-Empty/Full, and

Empty Flags

- Reset/Reread Capability
- TTLCMOS-Compatible I/O
- 32-Pin PLCC Package

FUNCTIONAL DESCRIPTION

The LH5493 is a FIFO (First-In, First-Out) memory device, based on fully-static CMOS RAM technology, capable of containing up to 40969 -bit words. One LH5493 FIFO can input 9 -bit bytes; and it can either output 9 -bit bytes in parallel, or else output a serial bitstream. Thus, a single LH5493 is capable of 9-bit-to-1bit PISO (Parallel-In, Serial-Out) operation.

An LH5493 has one 9-bit parallel input (write) port, and one 9-bit parallel output (read) port. And there is one 1-bit serial input, which supports paralleling LH5493s for longer-word-width PISO operation. This serial input also allows additional control bits to be inserted at will into the serial output bitstream. There is no serial output port as such; any individual bit position in the parallel output register may be chosen as the serial-output data path, according to the desired time phase of the output bitstream.

The LH5493 architecture supports a very convenient method of paralleling multiple FIFOs for PISO operation, without any additional logic being needed, in order to achieve a wider 'effective FIFO.' The paralleled LH5493 combination remains capable of performing all of the operations which a standalone LH5493 can perform.

Thus, if two LH5493s are paralleled, the combination can input 18-bit halfwords; and it can either output 18-bit halfwords, or else output a serial bitstream for 18-bit-to-1-bit PISO operation. This paralleling scheme extends without change to an arbitrary number of LH5493s.

The LH5493 architecture supports synchronous operation, tied to two independent free-running clocks at the input and output ports respectively. However, these 'clocks' also may be aperiodic, asynchronous 'demand' signals; they do not need to be synchronized with each other in any way. Almost all control input signals and status output signals are synchronized to these clocks, to simplify system design. The input and output ports operate altogether independently of each other, except when the FIFO becomes either absolutely full or else absolutely empty.

Two edge-sampled enable control inputs, WEN $_{1}$ and WEN $_{2}$, are provided for the input port; and one such control input, REN, is provided for the output port. These synchronous control inputs may be used as write demands and read demands respectively, when an LH5493 is interfaced to continuously-clocked synchronous systems. Data flow is initiated at a port by the rising edge of the clock signal corresponding to that port, and is gated only by the appropriate edge-sampled enable control input signal(s).

PIN CONNECTIONS

Figure 1. Pin Connections for PLCC Package

FUNCTIONAL DESCRIPTION (cont'd)

The following FIFO status flags monitor the extent to which the internal memory has been filled: Full, Half-Full, Almost-Empty/Full, and Empty. The Almost-Empty/Full flag is asserted whenever the internal memory is either within eight locations of 'empty,' or else within eight locations of 'full.' The Half-Full flag serves to distinguish the 'almost-empty' condition from the 'almost-full' condition. Also, during fully-synchronous operation, the Full flag
may be tied directly to WEN_{1} or to WEN_{2}, and the Empty flag likewise may be tied directly to REN, in order to prevent overrunning or underrunning the internal FIFO boundaries. (See Figure 11.)

Alternatively, the enabling of write or read operations may be controlled entirely by external system logic, while the flags serve strictly as system interrupts. This design approach works well when the input port clock and the output port clock are not synchronized to each other.

Figure 2. LH5493 Block Diagram

SIGNAL PIN |DESCRIPTIONS

IN	SIGNAL NAMEJDESCRIPTION
$\overline{\mathrm{RS}}$	Reset. An assertive-LOW input which initializes the internal address pointers and flags.
WCK	Write Clock. A free-running clock input for write operations.
RCK	Read Clock. A free-running clock input for read operations.
SI	Serial Input. A serial data input to allow paralleled PIS0 operation of multiple devices.
D0-D8	Data Inputs. D_{0} - D_{8} are sampled on the rising edge of WCK, whenever both WEN_{1} and WEN_{2} are being asserted..
$Q_{0}-Q_{8}$	Data Outputs. $Q_{0}-Q_{8}$ are updated following the rising edge of RCK, whenever REN is being asserted.
WEN 1	Write Enable 1. An assertive-HIGH input signal which is sampled on the rising edge of WCK to control the flow of data into the FIFO. Both WEN 1 and WEN 2 must be asserted in order to enable a write operation.
WEN2	Write Enable 2. An assertive-HIGH input signal which is sampled on the rising edge of WCK to control the flow of data into the FIFO. Both WEN 1 and WEN 2 must be asserted in order to enable a write operation.
REN	Read Enable. An assertive-HIGH input signal which is sampled on the rising edge of RCK to control the flow of data out of the FIFO.
LD/ $\overline{S H}$	Read Load/Shift. An input signal which is sampled on the rising edge of RCK to control the loading or shifting of data in the output register.
$\overline{\text { FF }}$	Full Flag. An assertive-LOW output indicating when the FIFO is full.
$\overline{\mathrm{HF}}$	Half-Full Flag. An assertive-LOW output indicating when the FIFO is more than half full.
$\overline{\text { AEF }}$	Almost-Empty/Full. An assertive-LOW output indicating when the FIFO either is within eight locations of full, or else is within eight locations of empty.
EF	Empty Flag. An assertive-LOW output indicating when the FIFO is empty.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Supply Voltage to Vss Potential	-0.5 V to 7 V
${\text { Signal Pin Voltage to } \mathrm{VSS}^{2} \text { Potential }}^{3}$	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions outside those indicated in the 'Operating Range' of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.
3. Negative undershoot of 1.5 V in amplitude is permitted for up to 10 ns , once per cycle.

OPERATING RANGE

SYMBOL	PARAMETER	MIN	MAX	UNIT
T_{A}	Temperature, Ambient	0	70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\text {SS }}$	Supply Voltage	0	0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic $^{\text {LOW Input Voltage }}{ }^{1}$	-0.5	0.8	V
$\mathrm{~V}_{\text {IH }}$	Logic HIGH Input Voltage	2.2	$\mathrm{VCC}+0.5$	V

NOTE:

1. Negative undershoot of 1.5 V in amplitude is permitted for up to 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
ILI	Input Leakage Current	VCC $=5.5 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}$ to VCC	-10	10	$\mu \mathrm{~A}$
VOL	Output LOW VoItage	$\mathrm{IOL}=8.0 \mathrm{~mA}$		0.4	V
VOH	Output HIGH Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4		V
ICC	Average Supply Current ${ }^{1}$	Measured at $\mathrm{fC}=$ max		150	mA
ICC2	Average Standby Current ${ }^{1}$	All Inputs $=\mathrm{V}$ IH		25	mA

NOTE:

1. Icc and Icce are dependent upon actual output loading and cycle rates. Specified values are with outputs open; and, for lcc, operating at minimum cycle times.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	VSS to 3 V
Input Rise and Fall Times (10\% to 90\%)	5 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load, Timing Tests	Figure 3

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
$\mathrm{C}_{\text {IN }}$ (Input Capacitance)	7 pF
CO_{o} (Output Capacitance)	7 pF

NOTES:

1. Sample tested only.
2. Capacitances are maximum values at $25^{\circ} \mathrm{C}$, measured at 1.0 MHz with $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}\left(\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)

SYMBOL	DESCRIPTION	-25		-35		-50		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
fc	Cycle Frequency	-	40	-	28.5	-	20	MHz
twc	Write Clock Cycle Time	25	-	35	-	50	-	ns
twh	Write Clock HIGH Time	10	-	14	-	20	-	ns
twL	Write Clock LOW Time	10	-	14	-	20	-	ns
trc	Read Clock Cycle Time	25	-	35	-	50	-	ns
tRH	Read Clock HIGH Time	10	-	14	-	20	-	ns
tRL	Read Clock LOW Time	10	-	14	-	20	-	ns
tDS	Data Setup Time to Rising Clock	10	-	10	-	15	-	ns
tDH	Data Hold Time from Rising Clock	0	-	0	-	2	-	ns
tes	Enable Setup Time to Rising Clock	10	-	10	-	15	-	ns
ten	Enable Hold Time from Rising Clock	0	-	0	-	2	-	ns
ta_{A}	Data Output Access Time	-	20	-	25	-	35	ns
toh	Output Hold Time	5	-	5	-	5	-	ns
tef	Clock to Empty Flag Valid	-	20	-	25	-	35	ns
tFF	Clock to Full Flag Valid	-	20	-	25	-	35	ns
thF	Clock to Hall-Full Flag Valid	-	35	-	40	-	45	ns
tAEF	Clock to AEF Flag Valid	-	35	-	40	-	45	ns
tRS	Reset Pulse Width	25	-	35	-	50	-	ns
tRSS	Reset Setup Time ${ }^{3}$	10	-	15	-	25	-	ns
trf	Reset Low to Flag Valid	-	30	-	35	-	40	ns
trQ	Reset to Data Outputs LOW	-	20	-	25	-	30	ns
tFRL	First Read Latency ${ }^{4}$	18	-	20	-	20	-	ns
tFWL	First Write Latency ${ }^{5}$	18	-	20	-	20	-	ns

NOTES:

1. All timing measurements performed at ' AC Test Condition' levels.
2. Value guaranteed by design; not currently production tested.
3. trss need not be met unless either a rising edge of WCK occurs while WEN ${ }_{1}$ and WEN ${ }_{2}$ both are being asserted, or else a rising edge of RCK occurs while REN is being asserted.
4. tFRL is the minimum first-write-to-first-read delay, following an empty condition, which is required to assure valid read data.
5. trwL is the minimum first-read-to-first-write delay, following a full condtion, which is required to assure successful writing of data.

OPERATIONAL DESCRIPTION

Reset

The device is reset whenever the asynchronous reset input ($\overline{\mathrm{RS}}$) is asserted, i.e., taken to a LOW state. A reset operation is required after power up, before the first write operation occurs. The reset operation initializes both the read and write address pointers to the first physical memory location. After the falling edge of $\overline{\mathrm{RS}}$, the status flags ($\overline{\mathrm{FF}}, \overline{\mathrm{HF}}, \overline{\mathrm{AEF}}$, and $\overline{\mathrm{EF}}$) are updated to indicate a valid empty condition.

Read, shift, and/or write operations need not be deactivated during a reset operation. However, failure to do so requires observance of the Reset Setup Time (trss), to assure that the first write and/or first read following a reset operation will occur predictably.

If no read operations have been performed following a reset operation, then the 'previous data' being held in the output register and seen on the output bus ($Q_{0}-Q_{8}$) consists of all zeroes.

Write

A write operation consists of storing parallel data from the data inputs to the FIFO memory array. A write operation is initiated on the rising edge of the Write Clock input (WCK), whenever both of the edge-sampled Write Enable inputs (WEN 1 and WEN ${ }_{2}$) are held HIGH for the prescribed setup times and hold times. Setup times and hold times must also be observed for the Data In inputs ($\mathrm{D}_{0}-\mathrm{D}_{8}$).

When a full condition is reached, write operations should be ceased in order to prevent overwriting unread data. The state of the status flags has no direct effect on write operations; that is, the execution of write operations is gated only by WEN N_{1} and $\mathrm{WE} \mathrm{N}_{2}$, and the internal logic of the LH5493 itself has no interlock to prevent overrunning valid data after the internal write pointer wraps around' and catches up to the read pointer - and passes it, if writing is continued. Figure 11 illustrates how such an interlock may be implemented by means of external connections.

Following the first read operation from a full FIFO, another memory location is freed up, and the Full Flag is deasserted ($\overline{\mathrm{FF}}=\mathrm{HIGH}$). The first write operation should begin no earlier than a First Write Latency (trwL) after the first read operation from a full FIFO, in order to ensure that correct read data is retrieved.

Read

A read operation consists of loading parallel data from the FIFO memory array to the output register. A read operation is initiated on the rising edge of the Read Clock input (RCK), whenever both the edge-sampled Read Enable input (REN) and the Load/Shift input (LD/SH) are held HIGH for the prescribed setup times and hold times. Read data becomes valid at the Data Out outputs
$\left(Q_{0}-Q_{8}\right)$ by a time t_{A} after the rising edge of $R C K$. A shift of data in the output register is performed whenever REN is held HIGH and LD/SH is held LOW on the rising edge of RCK. Data is shifted in the MSB-to-LSB direction, with data on the Serial Input (SI) replacing the contents of bit position Q8.

When an empty condition is reached, read operations should be ceased in order to prevent underruning the actual meaningful data. The state of the four status flags has no direct effect on read or shift operations; that is, the execution of read or shift operations is gated only by REN and LD/ $/ \overline{S H}$, and the internal logic of the LH5493 itself has no interlock to prevent underrunning valid data after the internal read pointer catches up to the write pointer - and passes it, if reading is continued. Figure 11 illustrates how such an interlock may be implemented by means of external connections.

When an empty condition is reached, shift operations may continue; but read operations should be ceased until a valid write operation(s) has loaded additional data into the FIFO. Following the first write to an empty FIFO, the Empty Flag will be deasserted ($\overline{\mathrm{EF}}=\mathrm{HIGH}$). The first read operation should begin no earlier than a First Read Latency time (tFRL) from the first write to an empty FIFO, in order to ensure that correct read data is retrieved.

Status Flags

The following four status flags are included: Full ($\overline{\mathrm{FF}}$), Half-Full ($\overline{\mathrm{FF}}$), Almost-Empty/Full ($\overline{\mathrm{AEF}}$), and Empty ($\overline{\mathrm{EF}}$). These flags are updated on the appropriate boundary conditions as illustrated in Figure 8. Flag transitions follow the appropriate rising clock edge during an enabled read or write operation. The $\overline{\text { AEF }}$ flag is asserted whenever the FIFO either is less than eight locations away from an empty boundary, or else is less than eight locations away from a full boundary.

A separate indicator for Almost-Empty may be generated by a logical NOR of $\overline{A E F}$ with the inversion of $\overline{\mathrm{HF}}$. An indicator for Almost-Full may be generated by a NOR of $\overline{A E F}$ with $\overline{H F}$. From an assertive-HIGH perspective, the NOR gate effectively is performing an AND operation in both of these cases.

Reset, Reread

The FIFO may be made to reread previously-read data by means of a reset operation, which initializes the internal read and write address pointers to the first physical location in the FIFO memory (location zero). The status flags are updated to indicate an empty condition; but up to 4096 words of old data, which previously had been written into and/or read from the FIFO, still remains in the memory array. The status flags may be ignored, and data may be reaccessed by subsequent read operations. The First Read Latency (trrL) specification does not apply to reset/reread operations, since no new data words are being written to the FIFO following the reset operation.

TIMING DIAGRAMS

Figure 4. Write and Read Operation in a Near-Empty Condition

TIMING DIAGRAMS (cont'd)

Figure 5. Write and Read Operation in a Near-Full Condition

TIMING DIAGRAMS (cont'd)

Figure 6. Serial Shift/Read Timing

TIMING DIAGRAMS (cont'd)

Figure 7. Reset Timing

TIMING DIAGRAMS (cont’d)

NOTES:

1. $\overline{\mathrm{HF}}$ is HIGH whenever the FIFO is almost-empty, since then it also is less than half-full.
2. An Almost-Empty flag $A E$ may be implemented, using external logic according to $A E=A E F \cdot \overline{H F}=\overline{\overline{A E F}}+\mathrm{HF}$.

Figure 8. Almost-Empty Flag Timing

Table 1. Flag Definitions

FLAG STATUS				VALID WRITE CYCLES REMAINING		VALID READ CYCLES REMAINING	
$\overline{\mathrm{EF}}$	$\overline{\mathrm{AEF}}$	$\overline{\mathrm{HF}}$	$\overline{\mathrm{FF}}$	\min	\max	\min	\max
0	0	1	1	4096	4096	0	0
1	0	1	1	4089	4095	1	7
1	1	1	1	2048	4088	8	2048
1	1	0	1	8	2047	2049	4088
1	0	0	1	1	7	4089	4095
1	0	0	0	0	0	4096	4096

TIMING DIAGRAMS (cont'd)

Figure 9. Half-Full Flag Timing

TIMING DIAGRAMS

Figure 10. Almost-Full Flag Timing

OPERATIONAL MODES

Synchronous Write and Read Operations

Read and write operations may be performed in synchronism with each other by deriving WCK and RCK from a common system clock. In this case, the Write Enable (WEN 1 and WEN 2), Read Enable (REN), and Load/Shift (LD/ $\overline{\mathrm{SH}}$) inputs all get sampled at the same clock rising edge.

This type of synchronous read/write operation ensures that flag outputs always satisfy the required setup and hold times for the WEN 1 , WEN 2 , and REN inputs. Thus, the Full Flag output ($\overline{\mathrm{FF}}$) may be tied directly to WEN ${ }_{1}$ or WEN 2 , to prevent 'overrun' write operations after the full condition is reached, while the other Write Enable input remains available for system control. Likewise, the Empty Flag output (EF) may be tied directly to REN, to prevent 'undernun' read operations after the empty condition is reached.

Figure 11. Synchronous Operation

OPERATIONAL MODES (cont'd)

Asynchronous Write and Read Operations

Write operations and read operations may be performed completely asynchronously with respect to each other, when the WCK input and the RCK input are derived from the clock signals of different systems. Under these conditions, status-flag transitions occur relative to two unpredictably-related clock edges. Therefore, these flags should not be used to directly drive Write Enable or Read Enable inputs, since they do not always satisfy valid setup times and hold times.

Instead, it is recommended that these enable signals be controlled by the user to ensure that adequate setup times and hold times are maintained. If the FIFO becomes
either completely full or completely empty, then some synchronization between read and write operations at the full or empty boundaries becomes necessary to prevent timing violations.

When the FIFO is operating in this manner, the AlmostEmpty/Full flag and the Half-Full flag should be used to provide some advance warning, to avoid overrunning or underrunning a FIFO internal boundary. Typically, these flags are used as system interrupts. When an interrupt is received by the faster of the two systems, a predefined block of data then may be transferred at the maximum data rate, as long as there is known to be sufficient room for it. In this way the full and empty boundaries are never reached, and yet maximum data throughput is maintained.

Figure 12. Asychronous Operation

OPERATIONAL MODES (cont’d)

Paralleled Operation

In paralleled operation, two or more LH5493 FIFOs are chained together into a wider 'effective FIFO.' The Serial Input (SI) of the first device in the chain serves as the 'effective-FIFO' serial input. This 'effective-FIFO' serial input may be used to insert additional control bits into the serial data stream, or may be tied to a permanent logic LOW or HIGH signal if unused. The SI input of each subsequent device is connected to one of the Data Out outputs $\left(Q_{8}-Q_{0}\right)$ of the preceding device in the chain. The final 'effective-FIFO' serial output bitstream is taken from one of the Data Out outputs of the last device in the chain. By choosing different Data Out pins, an additional one to nine bits of width can be added per device.

In 'paralleled' operation, the write enable inputs WEN ${ }_{1}$ and WEN $_{2}$, and the read enable input REN, may be made common for all devices. Since there are multiple write
enable inputs, one of them on each FIFO device may be crosscoupled to the Full Flag on another FIFO device, or to the logic AND of several such Full Flags, in order to prevent any individual FIFO device from getting out of synchronization with the overall 'effective FIFO.' The approach is analogous to the method shown in Figure 11 for preventing an LH5493 from overrunning its internal FIFO boundaries. Implementing the equivalent measures during reading always requires some external logic, since each LH5493 has just one read enable input.

Word widths do not have to be a multiple of nine. For instance, making the following changes to the circuit of Figure 13 adapts it to handle 16 -bit parallel data in. The Do input and the Qo output need not be used for either LH5493. The Q_{1} output of the LH5493 on the left is connected to the SI input of the LH5493 on the right; and the Q_{1} output of the LH5493 on the right becomes the main 'Serial Data Out' output.

Figure 13. Paralleled Serial Operation (4096×18 Bit)

ORDERING INFORMATION

Example: LH5493U-25 (4K x 9 Parallel-to-Serial FIFO, 32-pin PLCC, 25 ns)

FEATURES

- Fast Cycle Times: $25 / 35 / 50 \mathrm{~ns}$ Frequency: $40 / 28.5 / 20 \mathrm{MHz}$
- Serial Data In; Parallel Data Out
- Serial Output for Cascading Input Register
- Two Read Enable Inputs and One Write Enable Input, Sampled on Rising Edge of the Appropriate Clock
- Fast Fall-Through Time Internal Architecture Based on CMOS Dual-Port RAM Technology, 4096×9
- Fully Asynchronous Read and Write Operations
- Full, Hall-Full, Almost-Empty/Full, and Empty Flags
- Three-State Outputs with Output Enable
- Reset/Reread Capability
- TTL and CMOS Compatible I/O
- 32-Pin PLCC Package

FUNCTIONAL DESCRIPTION

The LH5494 is a FIFO (First-In, First-Out) memory device, based on fully-static CMOS RAM technology, capable of containing up to 40969 -bit words. One LH5494 FIFO can input a serial bitstream, and output 9-bit bytes in parallel. Thus, a single LH5494 is capable of 9-bit-to-1-bit SIPO (Serial-In, Parallel-Out) operation.

An LH5494 has one 1-bit serial input, and one 9-bit parallel output (read) port. And there is one 1 -bit serial output, which supports paralleling LH5494s for longer-word-width SIPO operation. This serial output also allows additional control bits to be inserted at will into the serial output bitstream.

The LH5494 architecture supports a very convenient method of paralleling multiple FIFOs for SIPO operation, without any additional logic being needed, in order to achieve a wider 'effective FIFO.' The paralleled LH5494 combination remains capable of performing all of the operations which a standalone LH5494 can perform. Thus, if two LH5494s are paralleled, the combination can input a serial bitstream and output 18 -bit halfwords for 1-bit-to-18-bit SIPO operation. This paralleling scheme extends without change to an arbitrary number of LH5494s.

The LH5494 architecture supports synchronous operation, tied to two independent free-running clocks at the
input and output ports respectively. However, these 'clocks' also may be aperiodic, asynchronous 'demand' signals; they do not need to be synchronized with each other in any way. Almost all control input signals and status output signals are synchronized to these clocks, to simplify system design. The input and output ports operate altogether independently of each other, except when the FIFO becomes either absolutely full or else absolutely empty.

One edge-sampled enable control input, WEN, is provided for the input port; and two such control inputs, REN ${ }_{1}$ and REN 2 , are provided for the output port. These synchronous control inputs may be used as write demands and read demands respectively, when an LH5494 is interfaced to continuously-clocked synchronous systems. Data flow is initiated at a port by the rising edge of the clock signal corresponding to that port, and is gated only by the appropriate edge-sampled enable control input signal(s).

The following FIFO status flags monitor the extent to which the internal memory has been filled: Full, Half-Full, Almost-Empty/Full, and Empty. The Almost-Empty/Full flag is asserted whenever the internal memory is either within eight locations of 'empty, or else within eight locations of 'full.' The Half-Full flag serves to distinguish the 'almost-empty' condition from the 'almost-full' condition. Also, during fully-synchronous operation, the Full flag may be tied directly to WEN, and the Empty flag likewise

PIN CONNECTIONS

Figure 1. Pin Connections for PLCC Package

FUNCTIONAL DESCRIPTION (cont'd)

may be tied directly to REN $_{1}$ or to REN $_{2}$, in order to prevent overrunning or underrunning the internal FIFO boundaries. (See Figure 11.)

Alternatively, the enabling of write or read operations may be controlled entirely by external system logic, while the flags serve strictly as system interrupts. This design approach works well when the input port clock and the output port clock are not synchronized to each other.

Figure 2. LH5494 Block Diagram

SIGNAL PIN DESCRIPTIONS

PIN	SIGNAL NAMEIDESCRIPTION
$\overline{\mathrm{RS}}$	Reset. An assertive-LOW input which initializes the internal address pointers and flags.
WCK	Write Clock. A free-running clock input for Write operations.
RCK	Read Clock. A free-running clock input for Read operations.
SI	Serial Input. SI is sampled on the rising edge of WCK, whenever WEN is being asserted.
SO	Serial Output. A serial data output signal, to allow paralleled SIPO operation of multiple devices.
Q0- Q8	Data Outputs. $Q_{0}-Q_{8}$ are updated following the rising edge of $R C K$, whenever REN 1 and $R E N_{2}$ are both being asserted.
WEN	Write Enable. An assertive-HIGH input signal which is sampled on the rising edge of WCK to control the flow of data into the FIFO.
LD/ $\overline{S H}$	Load/Shift. An input signal which is sampled on the rising edge of WCK to control the load of parallel data from Input Shitt Register into the FIFO.
REN ${ }_{1}$	Read Enable 1. An assertive-HIGH input signal which is sampled on the rising edge of RCK to control the flow of data out of the FIFO. Both REN R and REN $_{2}$ must be asserted in order to enable a read operation.
REN 2	Read Enable 2. An assertive-HIGH input signal which is sampled on the rising edge of RCK to control the flow of data out of the FIFO. Both REN 1 and REN 2 must be asserted in order to enable a read operation.
FF	Full Flag. An assertive-LOW output indicating when the FIFO is full.
$\overline{\mathrm{HF}}$	Half-Full Flag. An assertive-LOW output indicating when the FIFO is more than half full.
$\overline{\text { AEF }}$	Almost-Empty/Full. An assertive-LOW output indicating when the FIFO either is within eight locations of full, or else is within eight locations of empty.
$\overline{\mathrm{EF}}$	Empty Flag. An assertive-LOW output indicating when the FIFO is empty.
$\overline{O E}$	Output Enable. An assertive-LOW signal which places the data outputs $Q_{0}-Q_{8}$ in a low-impedance state.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Supply Voltage to VSS Potential	-0.5 V to 7 V
Signal Pin Voltage to VSS Potential 3	-0.5 V to VCC +0.5 V
DC Output Current 2	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	1.0 W

NOTES:

1. Stresses greater than those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions outside those indicated in the 'Operating Range' of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.
3. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns , once per cycle.

OPERATING RANGE

SYMBOL	PARAMETER	MIN	MAX	UNIT
T_{A}	Temperature, Ambient	0	70	${ }^{\circ} \mathrm{C}$
VCC	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	V
$\mathrm{~V}_{\text {IL }}$	Logic LOW Input Voltage			
$\mathrm{V}_{\text {IH }}$	-0.5	0.8	V	

NOTE:

1. Negative undershoots of 1.5 V in amplitude are permitted for up to 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
ILI	Input Leakage Current	$\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=0 \mathrm{~V}$ to Vcc	-10	10	$\mu \mathrm{A}$
ILO	Output Leakage Current	$\overline{\mathrm{OE}} \geq \mathrm{V}_{\text {IH }}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {cC }}$	-10	10	$\mu \mathrm{A}$
Vol	Output LOW Voltage	$\mathrm{loL}=8.0 \mathrm{~mA}$		0.4	V
VOH	Output HIGH Voltage	$1 \mathrm{OH}=-2.0 \mathrm{~mA}$	2.4		V
ICC	Average Supply Current ${ }^{1}$	Measured at $\mathrm{fc}=$ max		150	mA
IcC2	Average Standby Current ${ }^{1}$	All Inputs $=\mathrm{V}_{\mathrm{IH}}$		25	mA

NOTE:

1. Icc and lcce are dependent upon actual output loading and cycle rates. Specified values are with outputs open; and, for lcc, operating at minimum cycle times.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	VSs to 3 V
Input Rise and Fall Times (10\% to 90\%)	5 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load, Timing Tests	Figure 3

* INCLUDES JIG AND SCOPE CAPACITANCES

Figure 3. Output Load Circuit

CAPACITANCE ${ }^{\mathbf{1 , 2}}$

PARAMETER	RATING
CIN (Input Capacitance	7 pF
Co (Output Capacitance)	7 pF

NOTES:

1. Sample tested only.
2. Capacitances are maximum values at $25^{\circ} \mathrm{C}$, measured at 1.0 MHz with $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}\left(\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)

SYMBOL	DESCRIPTION	-25		-35		-50		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
fc	Cycle Frequency	-	40	-	28.5	-	20	MHz
twc	Write Clock Cycle Time	25	-	35	-	50	-	ns
tWH	Write Clock High Time	10	-	14	-	20	-	ns
tWL	Write Clock Low Time	10	-	14	-	20	-	ns
tre	Read Clock Cycle Time	25	-	35	-	50	-	ns
tri	Read Clock High Time	10	-	14	-	20	-	ns
tRL	Read Clock Low Time	10	-	14	-	20	-	ns
tDs	Data Setup Time to Rising Clock	10	-	10	-	15	-	ns
tDH	Data Hold Time from Rising Clock	0	-	0	-	2	-	ns
tes	Enable Setup TIme to Rising Clock	10	-	10	-	15	-	ns
teh	Enable Hold Time from Rising Clock	0	-	0	-	2	-	ns
t_{A}	Data Output Access Time	-	20	-	25	-	35	ns
tsA	Serial Output Access Time	-	20	-	25	-	35	ns
toh	Output Hold Time	5	-	5	-	5	-	ns
tQL	$\overline{\mathrm{OE}}$ to Data Outputs Low-Z ${ }^{2}$	1	-	1	-	1	-	ns
toz	$\overline{\mathrm{OE}}$ to Data Outputs High-Z ${ }^{2}$	-	10	-	12	-	15	ns
toe	Output Enable to Data Valid	-	10	-	12	-	15	ns
tef	Clock to Empty Flag Valid	-	20	-	25	-	35	ns
tFF	Clock to Full Flag Valid	-	20	-	25	-	35	ns
thF	Clock to Half Flag Valid	-	35	-	40	-	45	ns
taEF	Clock to AEF Flag Valid	-	35	-	40	-	45	ns
tRS	Reset Pulse Width	25	-	35	-	50	-	ns
tRSS	Reset Setup Time ${ }^{3}$	10	-	15	-	25	-	ns
tRF	Reset Low to Flag Valid	-	30	-	35	-	40	ns
tra	Reset to Data Outputs Low	-	20	-	25	-	30	ns
tFRL	First Read Latency ${ }^{4}$	18	-	20	-	20	-	ns
tFWL	First Write Latency ${ }^{5}$	18	-	20	-	20	-	ns

NOTES:

1. All timing measurements performed at 'AC Test Condition' levels.
2. Value guaranteed by design; not currently production tested.
3. trss need not be met unless either a rising edge of WCK occurs while WEN is being asserted, or else a rising edge of RCK occurs while REN and REN $_{2}$ are both being asserted.
4. trRL is the minimum first-write-to-first-read delay, following an empty condition, which is required to assure valid read data.
5. trwL is the minimum first-read-to-first-write delay, following a full condition, which is required to assure successful writing of data.

OPERATIONAL DESCRIPTION

Reset

The Device is reset whenever the asynchronous RESET input ($\overline{\mathrm{RS}}$) is asserted, i.e., taken to a LOW state. A reset operation is required after power up, before the first write operation occurs. The reset operation initializes both the read and write address pointers to the first physical memory location. After the falling edge of $\overline{\mathrm{RS}}$, the status flags ($\overline{\mathrm{FF}}, \overline{\mathrm{HF}}, \overline{\mathrm{AEF}}$, and $\overline{\mathrm{EF}}$) are updated to indicate a valid empty condition.

Read, shift, and/or write operations need not be deactivated during a reset operation, but failure to do so requires observance of the Reset Setup Time (tRss), to assure that the first write and/or first read following a reset operation will occur predictably.

If no read operations have been performed following a reset operation, then the previous data word being held in the output register consists of all zeroes. This data word will be seen on the output bus $\left(\mathrm{Q}_{0}-\mathrm{Q}_{8}\right)$ whenever the output enable ($\overline{\mathrm{OE}}$) is held LOW. Likewise, data in the input shift register will be initialized to all zeroes after a reset operation.

Write

A shift operation is initiated on the rising edge of WCK, whenever WEN is HIGH and LD/ $\overline{S H}$ is LOW. Data bits are shifted from MSB to LSB, with the databit on the Serial Input (SI) replacing the contents of bit position D_{7} in the input shift register, and the Serial Output (SO) copying the contents of bit position Do.

A write operation consists of a parallel loading of data from the input shift register (bits $\mathrm{D}_{7}-\mathrm{D}_{0}$), and the SI pin (bit D_{8}) to the FIFO memory array. A write operation is initiated on the rising edge of the Write Clock input (WCK), whenever both the edge-sampled Write Enable input (WEN) and the Load/Shift input (LD/SH) are held HIGH.

When a full condition is reached, shift operations may continue, but write operations should be ceased in order to prevent overwriting unread data. The state of the status flags has no direct effect on shift or write operations, that is, the execution of write operations is gated only by WEN, and the internal logic of the LH5494 itself has no interlock to prevent overrunning valid data after the internal write pointer 'wraps around' and catches up to the read pointer - and passes it, if writing is continued. Figure 11 illustrates how such an interlock may be implemented by means of external connections.

Following the first read operation from a full FIFO, another memory location is freed up, and the Full Flag is deasserted ($\overline{\mathrm{FF}}=\mathrm{HIGH}$). The first write operation should begin no earlier than a First Write Latency time (tFWL) after the first read operation from a full FIFO, in order to assure that a correct data word is written into the FIFO memory.

Read

A read operation consists of loading parallel data from the FIFO memory array to the output register. A read operation is initiated on the rising edge of the Read Clock input (RCK) whenever both of the edge-sampled Read Enable inputs (REN $_{1}$ and REN 2) are held HIGH for the prescribed setup and hold times. Read data becomes valid on the Data Out pins $\left(Q_{0}-Q_{8}\right)$ by a time t_{A} after the rising edge of RCK, provided that the Output Enable ($\overline{\mathrm{OE}}$) is being held LOW. $\overline{O E}$ is an assertive-LOW asynchronous input. When OE is taken LOW, the $\mathrm{Q}_{0}-\mathrm{Q}_{8}$ outputs are driven (i.e., are in a low-Z state) within a minimum time taL. When $\overline{O E}$ is taken HIGH, the $Q_{0}-Q_{8}$ outputs are in a high-Z state within a maximum time toz. The state of the four status flags has no direct effect on read operations; that is, the execution of read or shift operations is gated only by REN 1 and REN 2 and LD/SH, and the internal logic of the LH5494 itself has no interlock to prevent underrunning valid data after the internal read pointer catches up to the write pointer - and passes it, if reading is continued. Figure 11 illustrates how such an interlock may be implemented by means of external connections.

When an empty condition is reached, read operations should be ceased until a valid write operation(s) has loaded additional data into the FIFO. Following the first write to an empty FIFO, the Empty Flag ($\overline{\mathrm{EF}}$) is deasserted ($\overline{\mathrm{EF}}=\mathrm{HIGH}$). The next read operation should begin no earlier than a First Read Latency time (trRL) from the first write operation into an empty FIFO, in order to ensure that correct read data is retrieved.

Status Flags

Status Flags are included for Full ($\overline{\mathrm{FF}}$), Hall-Full ($\overline{\mathrm{HF}}$), Almost-Empty/Full ($\overline{\mathrm{AEFF}}$), and Empty ($\overline{\mathrm{EF}}$). These flags are updated at the boundary conditions given in Table 1. Flag transitions follow the appropriate rising clock edge during an enabled read or write operation. The $\overline{\text { AEF flag }}$ is asserted whenever the FIFO either is less than eight locations away from an empty boundary, or else is less than eight locations away from a full boundary.

A separate indicator for Almost-Empty may be generated by a logical NOR of $\overline{\mathrm{AEF}}$ with the inversion of $\overline{\mathrm{HF}}$. An indicator for Almost-Full may be generated by a NOR of $\overline{\mathrm{AEF}}$ with $\overline{\mathrm{HF}}$. From an assertive-HIGH perspective, the NOR gate effectively is performing an AND operation in both of these cases.

Reset, Reread

The FIFO can be made to reread previously read data through a reset operation, which initializes the internal read and write address pointers to the first physical location in the FIFO memory (location zero). The status flags are updated to indicate an empty condition; but up to 4096 words of old data, which previously had been written into and/or read from the FIFO, still then remains

OPERATIONAL DESCRIPTION (cont'd)

in the memory array. The status flags may be ignored, and data may be reaccessed by subsequent read oper-
ations. The First Read Latency (tFRL) specification does not apply to reset/reread operations, since no new data are being written to the FIFO following the Reset.

TIMING DIAGRAMS

Figure 4. Write and Read Operations in a Near-Empty Condition

TIMING DIAGRAMS (cont'd)

Figure 5. Read and Write Operation in a Near-Full Condition

TIMING DIAGRAMS (cont'd)

Figure 6. Serial Shift, Write Timing

TIMING DIAGRAMS (cont’d)

Figure 7. Reset Timing

TIMING DIAGRAMS (cont'd)

Figure 8. Almost-Empty Flag Timing

Table 1. Flag Definitions

FLAG STATUs				VALID WRITE CYCLES REMAINING		VALID READ CYCLES REMAINING	
$\overline{\mathrm{EF}}$	$\overline{\mathrm{AEF}}$	$\overline{\mathrm{HF}}$	$\overline{\mathrm{FF}}$	\min	\max	\min	\max
0	0	1	1	4096	4096	0	0
1	0	1	1	4089	4095	1	7
1	1	1	1	2048	4088	8	2048
1	1	0	1	8	2047	2049	4088
1	0	0	1	1	7	4089	4095
1	0	0	0	0	0	4096	4096

TIMING DIAGRAMS (cont'd)

Figure 9. Half-Full Flag Timing

TIMING DIAGRAMS (cont'd)

Figure 10. Almost-Full Flag Timing

OPERATIONAL MODES

Synchronous Read and Write Operations

Read and write operations may be performed in synchronism with each other by deriving WCK and RCK from a common system clock. As such, the Read Enable (REN 1 and REN 2), Write Enable (WEN), and Load/Shift (LD/어) inputs all get sampled at the same clock rising edge.

This type of synchronous read/write operation ensures that flag outputs always satisfy the required setup and hold times for the REN 1 , REN 2 , and WEN inputs. Thus, the Full Flag output (FF) may be tied directly to WEN, in order to prevent 'overrun' write operations when the full condition is reached. Likewise, the Empty Flag output (EF) may be tied directly to REN ${ }_{1}$ or REN 2 , in order to prevent 'underrun' read operations when the empty condition is reached, while the other Read Enable input remains available for system control.

Figure 11. Synchronous Operation

OPERATIONAL MODES (cont'd)

Asynchronous Read and Write Operations

Write operations and read operations may be performed completely asynchronously relative to each other, when the RCK input and the WCK input are derived from clock signals of different systems. Under these conditions, the transition of status flags is performed relative to two unpredictably-related clock edges; and so, these flags should not be used to directly drive Read Enable or Write Enable inputs, since they do not always satisfy valid setup times and hold times.

Instead, it is recommended that these enable signals be controlled by the user, in order to ensure that adequate setup times and hold times are maintained. If the FIFO
becomes either completely full or completely empty, then some synchronization between read and write operations at the full or empty boundaries becomes necessary to prevent timing violations.

When the FIFO is operating in this manner, the Almost-Empty/Full flag and Half-Full flag should be used to provide some advance warning, to avoid overrunning or underrunning a FIFO internal boundary. Typically, these flags are used as system interrupts. When an interrupt is received by the faster of the two systems, a predefined block of data then may be transferred at the maximum data rate, as long as there is known to be sufficient room for it. In this way the full and empty boundaries are never reached, and yet maximum data throughput is maintained.

5494-11
Figure 12. Asychronous Operation

OPERATIONAL MODES (cont’d)

Cascaded Operation

Cascaded operation allows LH5494 input shift registers to be extended in wordwidth, by interconnecting multiple LH5494 devices in a serial chain. The Serial Input (SI) of the first device in the chain serves as the 'effectiveFIFO' serial input. The SI pin of any subsequent device is connected to the Serial Out (SO) pin of the preceding device in the chain. The final 'effective FIFO' serial output data (if needed) is taken from the SO pin of the last device in the chain.

In cascaded operation, the output port may be configured either for an increase in FIFO depth, or for an increase in FIFO wordwidth. When the output port is expanded in width, the Read Enable inputs (REN 1 and REN2) and Output Enable ($\overline{\mathrm{OE}}$) are common for all devices.

When the output port is expanded in depth, the common Data Out pins of multiple devices may be tied together. One Read Enable may then be used for system control, while the other Read Enable and OE are driven by decode logic to direct the flow of data. This decode logic should alternate read accesses from one device to the next in a sequential manner.

Figure 13. Cascaded Serial Operation (4096×18 Bit)

ORDERING INFORMATION

LH5494	U	- \#\#	
Device Type	Package	$\overline{\text { Speed }}$	
		L	$\left\{\begin{array}{l}25 \\ 35 \\ 50\end{array}\right.$ Cycle Time (ns)
			32-pin Plastic Leaded Chip Carrier (PLCC32-P-S450)

Example: LH5494U-25 (4K x 9 Serial-to-Parallel FIFO, 32-pin PLCC, 25 ns)

FEATURES

- Fast Cycle Times: 25/30/35 ns
- Two 256×36-bit FIFO Buffers
- Full 36-bit Word Width
- Selectable 36/18/9-bit Word Width on Port B
- Fully Asynchronous Port-to-Port Communications
- 'Synchronous' Enable-Plus-Clock Control at Both Ports
- $\mathrm{R} \overline{\mathrm{W}}$, Enable, Request, and Address Control Inputs Sampled on the Rising Clock Edge
- Synchronous Request/Acknowledge 'Handshake' Capability; Use is Optional
- Device Comes Up Into Known Default State at Reset; Programming is Allowed, but is not Required
- Asynchronous Output Enables
- 5 Status Flags per Port: Full, Almost-Full, Half-Full, Almost-Empty, and Empty
- Almost-Full Flag and Almost-Empty Flag are Programmable
- Mailbox Registers with Synchronized Flags
- Data Bypass Function
- Data Retransmit Function
- Automatic Byte Parity Checking
- TTLCMOS-Compatible I/O
- Space-Saving PQFP * and PGA Packages
- Mosel MS76542-SSFC and National Semiconductor NMF256X36X2 are Pin-Compatible and Functionally Equivalent

FUNCTIONAL DESCRIPTION

The LH5420 contains two FIFO buffers, FIFO \#1 and FIFO \#2. These operate in parallel, but in opposite directions, for bidirectional data buffering. FIFO \#1 and FIFO \#2 each are organized as 256 words by 36 bits. The LH5420 is ideal either for wide unidirectional applications or for bidirectional data applications; component count and board area are reduced.

The LH5420 has two 36-bit ports, Port A and Port B. Each port has its own port-synchronous clock, but the two ports may operate asynchronously relative to each other. Data flow is initiated on a port by the rising edge of the appropriate clock; it is gated by the corresponding edgesampled enable, request, and read/write control signals. At the maximum operating frequency, the clock duty cycle may vary from 40% to 60%. At lower frequencies, the clock waveform may be quite asymmetric, as long as the minimum pulse-width conditions for clock-HIGH and clock-LOW remain satisfied; the LH5420 is a fully-static part.

Conceptually, the port clocks CKA $_{A}$ and CKB $_{B}$ are freerunning, periodic 'clock' waveforms, used to control other signals which are edge-sensitive. However, there actually is not any absolute requirement that these 'clock' waveforms must be periodic. An 'asynchronous' mode of operation is possible, in one or both directions, independently, if the appropriate enable and request inputs are continuously asserted, and aperiodic 'clock' pulses of suitable duration are generated by external logic.

A synchronous request/acknowledge handshake facility is provided at each port for FIFO data access. This request/ acknowledge handshake resolves FIFO full and empty boundary conditions, when the two ports are operated asynchronously relative to each other.

FIFO status flags monitor the extent to which each FIFO buffer has been filled. Full, Almost-Full, Half-Full, Almost-Empty, and Empty flags are included for each FIFO. The Almost-Full and Almost-Empty flags are programmable over the entire FIFO depth, but are automatically initialized to eight locations from the respective FIFO boundaries at reset. A data block of 256 or fewer words may be retransmitted any desired number of times.

Two mailbox registers provide a separate path for passing control words or status words between ports. Each mailbox has a New-Mail-Alert Flag, which is synchronized to the reading port's clock. This mailbox function facilitates the synchronization of data transfers between asynchronous systems.

[^6]
FUNCTIONAL DESCRIPTION (cont'd)

Data bypass mode allows Port A to directly transfer data to or from Port B at reset. In this mode, the device acts as a registered transceiver under the control of Port A. For instance, a master processor on Port A can use the data bypass feature to send or receive initialization or configuration information directly, to or from a peripheral device on Port B, during system startup.

A word-width-select option is provided on Port B for 36, 18, or 9-bit data access. This feature allows word-width matching between Port A and Port B, with no additional logic needed. It also ensures maximum utilization of bus bandwidths.

A Byte Parity Check Flag at each port monitors data integrity. These flags are initialized for odd data parity at reset, but may be reprogrammed for even parity.

PIN CONNECTIONS

Figure 1. Pin Connections for 132-Pin Quad Flat Package
NOTE: NC = NO CONNECTION

Figure 2. Pin Connections for 120-Pin PGA Package (BOTTOM VIEW)

Figure 3. Pin Connections for 120-Pin PGA Package (TOP VIEW)

PIN LIST

$\begin{aligned} & \text { SIGNAL } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PQRP } \\ & \text { PIN NO. } \end{aligned}$	$\begin{gathered} \text { PGA } \\ \text { PIN NO. } \end{gathered}$
AoA	1	A7
$\mathrm{A}_{1} \mathrm{~A}^{\text {a }}$	2	B7
A2A	3	A6
$\overline{\mathrm{OE}} \mathrm{A}^{\prime}$	4	A5
$\overline{\mathrm{FF}}_{1}$	6	A4
$\overline{A F}_{1}$	7	B6
HF_{1}	8	A3
$\overline{\mathrm{PF}}_{\mathrm{A}}$	9	B5
D17A	10	B4
D16A	11	C5
D15A	12	A2
$\mathrm{D}_{14 \mathrm{~A}}$	14	B3
D13A	15	C4
D12A	16	A1
$\mathrm{D}_{11} \mathrm{~A}$	17	C3
D10A	19	B2
D9A	20	D2
D8A	21	C2
D7A	23	B1
D6A	24	E2
D5A	25	C1
D_{4}	27	D1
$\mathrm{D}_{3} \mathrm{~A}$	28	F3
$\mathrm{D}_{2} \mathrm{~A}$	29	E1
D_{14}	31	F2
DoA	32	F1
$\overline{\mathrm{RS}}$	33	G3
$\overline{\mathrm{RT}}_{1}$	34	G1
Dob	35	G2
D_{18}	36	H1
D_{28}	37	H2
$\mathrm{D}_{3 \mathrm{~B}}$	39	J1
D4B	40	H3
D5B	41	K1
D_{68}	43	L1
D78	44	J2
$\mathrm{D}_{8 \mathrm{~B}}$	45	M1
D9B	47	L2
$\mathrm{D}_{10 \mathrm{~B}}$	48	K2
D_{118}	49	M2
$\mathrm{D}_{12 \mathrm{~B}}$	51	L3
$\mathrm{D}_{13 \mathrm{~B}}$	52	N1
$\mathrm{D}_{14 \mathrm{~B}}$	53	L4
D_{158}	54	N2

$\begin{aligned} & \hline \text { SIGNAL } \\ & \text { NAME } \end{aligned}$	$\begin{aligned} & \text { PQFP } \\ & \text { PIN NO. } \end{aligned}$	$\begin{gathered} \text { PGA } \\ \text { PIN NO. } \\ \hline \end{gathered}$
$\mathrm{D}_{16 \mathrm{~B}}$	56	M3
D_{178}	57	L5
$\overline{M B F}_{1}$	58	N3
$\overline{A E}_{1}$	59	M5
$\overline{E F}_{1}$	60	M4
ACK $^{\text {B }}$	61	N4
REQb	63	N5
ENB	64	M6
$\mathrm{R} \bar{W}_{B}$	65	N6
CKB	66	L7
A_{0}	67	N7
WSo	68	M7
WS ${ }_{1}$	69	N8
$\overline{\mathrm{O}}_{\mathrm{B}}$	70	N9
$\overline{\mathrm{FF}}_{2}$	72	N10
$\overline{A F}_{2}$	73	M8
HF_{2}	74	N11
$\overline{\mathrm{PF}}_{\mathrm{B}}$	75	M9
$\mathrm{D}_{18 \mathrm{~B}}$	76	N12
$\mathrm{D}_{19 \mathrm{~B}}$	77	L9
$\mathrm{D}_{20 \mathrm{~B}}$	78	M11
D21B	80	N13
D_{228}	81	M10
$\mathrm{D}_{23 \mathrm{~B}}$	82	M12
D24B	83	L10
D25B	85	L11
$\mathrm{D}_{26 \mathrm{~B}}$	86	K12
D_{278}	87	L12
D_{288}	89	M13
D_{298}	90	J12
$\mathrm{D}_{30 \mathrm{~B}}$	91	L13
$\mathrm{D}_{31 \mathrm{~B}}$	93	K13
$\mathrm{D}_{32 \mathrm{~B}}$	94	H11
D ${ }^{\text {3 }}$ B	95	J13
$\mathrm{D}_{34 \mathrm{~B}}$	97	H12
D35B	98	H13
$\overline{R T}_{2}$	100	G12
D35A	101	F11
D34A	102	G13
D33A	103	F13
D32A	105	F12
$\mathrm{D}_{31 \mathrm{~A}}$	106	E12
D 30 A	107	E13
D29A	109	D13

SIGNAL NAME	$\begin{aligned} & \text { PQFP } \\ & \text { PIN NO. } \end{aligned}$	$\begin{gathered} \text { PGA } \\ \text { PIN NO. } \\ \hline \end{gathered}$
D28A	110	D12
D27A	111	C13
$\mathrm{D}_{26} \mathrm{~A}$	113	C12
D25A	114	B12
$\mathrm{D}_{24 \mathrm{~A}}$	115	B13
D23A	117	C11
$\mathrm{D}_{22 \mathrm{~A}}$	118	A13
D21A	119	C10
D20A	120	A12
D19A	122	B11
D18A	123	C9
$\overline{\mathrm{MBF}}_{2}$	124	A11
$\overline{\mathrm{AE}}_{2}$	125	B9
$\overline{E F}_{2}$	126	B10
ACK_{A}	127	A10
$\mathrm{REQ}_{\mathrm{A}}$	129	A9
ENA	130	B8
$\mathrm{R} \bar{W}_{A}$	131	A8
CKA	132	C7
Vcc	5	C6
$V_{\text {SSA }}$	13	E3
VCCA	18	D3
$V_{\text {SSA }}$	22	E3
VCCA	26	D3
VSSA	30	E3
$V_{\text {SSB }}$	38	J3
Vcci	42	K3
$V_{\text {SSB }}$	46	J3
VCCB	50	K3
VSSB	55	J3
$V_{S S}$	62	L6
VCC	71	L8
VSSB	79	J11
Vccb	84	K11
VSSB	88	J11
VсCB	92	K11
$V_{\text {SSB }}$	96	J11
$V_{S S}$	99	G11
VSSA	104	E11
VCCA	108	D11
VSSA	112	E11
VCCA	116	D11
$V_{S S A}$	121	E11
$V_{S S}$	128	C8

Figure 4a. Simplified LH5420 Block Diagram

Figure 4b. Detailed LH5420 Block Diagram

PIN DESCRIPTIONS

PIN	PIN TYPE*	DESCRIPTION
GENERAL		
$\mathrm{Vcc}, \mathrm{V}_{\text {SS }}$	V	Power, Ground
$\overline{\mathrm{RS}}$	1	Reset
PORT A		
CKA	1	Port A Free-Running Clock
R / \bar{W}_{A}	1	Port A Edge-Sampled Read/Write Control
ENA	1	Port A Edge-Sampled Enable
$A_{0 A}, A_{1 A}, A_{2 A}$	1	Port A Edge-Sampled Address Pins
D ${ }_{\text {A }}$ - D ${ }_{35}$	I/O/Z	Port A Bidirectional Data Bus
$\overline{O E}_{A}$	1	Port A Level-Sensitive Output Enable
$\overline{\mathrm{FF}}_{1}$	0	FIFO \#1 Full Flag (Write Boundary)
$\overline{\mathrm{AF}}_{1}$	0	FIFO \#1 Programmable Almost-Full Flag (Write Boundary)
$\overline{H F}_{1}$	0	FIFO \#1 Half-Full Flag
$\overline{\text { AE }}_{2}$	0	FIFO \#2 Programmable Almost-Empty Flag (Read Boundary)
$\overline{\mathrm{EF}} 2$	0	FIFO \#2 Empty Flag (Read Boundary)
$\overline{M B F}_{A}$	0	Port A Mailbox New-Mail-Alert Flag for Mailbox \#2
$\overline{\text { PF }}_{\text {A }}$	0	Port A Parity Flag
$\mathrm{REQ}_{\mathbf{A}}$	1	Port A Request/Enable
$\mathrm{ACK}_{\mathbf{A}}$	0	Port A Acknowledge
$\overline{R T}_{2}$	1	FIFO \#2 Retransmit
PORT B		
CK ${ }_{\text {B }}$	1	Port B Free-Running Clock
$\mathrm{R} \bar{W}_{\mathrm{W}}$	1	Port B Edge-Sampled Read/Write Control
ENB	1	Port B Edge-Sampled Enable
A0B	1	Port B Edge-Sampled Address Pin
D ${ }_{\text {OB }}$ - $\mathrm{D}_{35 \mathrm{~B}}$	I/O/Z	Port B Bidirectional Data Bus
$\overline{\mathrm{OE}}_{\mathrm{B}}$	1	Port B Level-Sensitive Output Enable
$\overline{\mathrm{FF}}_{2}$	0	FIFO \#2 Full Flag (Write Boundary)
$\overline{\mathrm{AF}}_{2}$	0	FIFO \#2 Programmable Almost-Full Flag (Write Boundary)
$\overline{H F}_{2}$	0	FIFO \#2 Hall-Full Flag
$\overline{\mathrm{AE}}_{1}$	0	FIFO \#1 Programmable Almost-Empty Flag (Read Boundary)
$\overline{\mathrm{EF}} 1$	0	FIFO \#1 Empty Flag (Read Boundary)
$\overline{\mathrm{MBF}}_{\mathrm{B}}$	0	Port B Mailbox New-Mail-Alert Flag for Mailbox \#1
$\overline{\mathrm{PF}}_{\mathrm{B}}$	0	Port B Parity Flag
WSo, WS ${ }_{1}$	1	Port B Word-Width Select
REQb	1	Port B Request/Enable
$\mathrm{ACK}_{\mathrm{B}}$	0	Port B Acknowledge
$\overline{\mathrm{RT}_{1}}$	1	FIFO \#1 Retransmit

* $I=$ Input, $O=$ Output, Z = High-Impedance, $V=$ Power Voltage Level

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING
Supply Voltage to Vss Potential	-0.5 V to 7 V
Signal Pin Voltage to Vss Potential ${ }^{3}$	-0.5 V to $\mathrm{VcC}+0.5 \mathrm{~V}$
DC Output Current ${ }^{2}$	$\pm 40 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	2 Watts (Quad Flat Pack)

NOTES:

1. Stresses greater than those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating for transient conditions only. Functional operation of the device at these or any other conditions outside those indicated in the 'Operating Range' of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Outputs should not be shorted for more than 30 seconds. No more than one output should be shorted at any time.
3. Negative undershoot of 1.5 V in amplitude is permitted for up to 10 ns , once per cycle.

OPERATING RANGE

SYMBOL	PARAMETER	MIN	MAX	UNIT
T_{A}	Temperature, Ambient	0	70	${ }^{\circ} \mathrm{C}$
V_{CC}	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage	0	0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic LOW Input Voltage 1	-0.5	0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	Logic $^{1} \mathrm{HIGH}$ Input Voltage	2.2	$\mathrm{Vcc}+0.5$	V

3. Negative undershoot of 1.5 V in amplitude is permitted for up to 10 ns , once per cycle.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
ILI	Input Leakage Current	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ To VCC	-10	10	$\mu \mathrm{A}$
lo	I/O Leakage Current	$\overline{\mathrm{OE}} \geq \mathrm{V}_{\text {IH, }}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{VCC}$	-10	10	$\mu \mathrm{A}$
VoL	Logic LOW Output Voltage	$\mathrm{loL}=8.0 \mathrm{~mA}$		0.4	V
Voh	Logic HIGH Output Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4		V
IcC	Average Supply Current ${ }^{1}$	Measured at $\mathrm{fc}=$ max		280	mA
lcc2	Average Standby Supply Current ${ }^{1}$	All Inputs = VIHMIN (Clock idle)			mA
Icc3	Power-Down Supply Current ${ }^{1}$	All Inputs = Vcc -0.2 V (Clock idle)			mA

4. Icc, lcce, and lccs are dependent upon actual output loading, and Icc is also dependent on cycle rates. Specified values are with outputs open; and, for lcc, operating at minimum cycle times.

AC TEST CONDITIONS

PARAMETER	RATING
Input Pulse Levels	VSS to 3 V
Input Rise and Fall Times (10\% to 90%)	5 ns
Output Reference Levels	1.5 V
Input Timing Reference Levels	1.5 V
Output Load, Timing Tests	Figure 5

CAPACITANCE ${ }^{1,2}$

PARAMETER	RATING
C_{IN} (Input Capacitance)	8 pF
Co (Output Capacitance)	8 pF

* INCLUDES JIG AND SCOPE CAPACITANCES 5420-7

Figure 5. Output Load Circuit

1. Sample tested only.
2. Capacitances are maximum values at $25^{\circ} \mathrm{C}$, measured at 1.0 MHz with $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}\left(\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)

SYMBOL	DECRIPTION	-25		-30		-35		UNITS
		MIN	MAX	MIN	MAX	MIN	MAX	
fcc	Clock Cycle Frequency	-	40	-	33	-	28.5	MHz
tcc	Clock Cycle Time	25	-	30	-	35	-	ns
tch	Clock High Time	10	-	12	-	15	-	ns
tcl	Clock Low Time	10	-	12	-	15	-	ns
tbs	Data Setup Time	11	-	13	-	15	-	ns
$t \mathrm{th}$	Data Hold Time	0	-	0	-	0	-	ns
tes	Enable Setup Time ${ }^{6}$	11	-	13	-	15	-	ns
tEH	Enable Hold Time ${ }^{6}$	0	-	0	-	0	-	ns
trws	Read/Write Setup Time	13	-	15	-	18	-	ns
trwh	Read/Write Hold Time	0	-	0	-	0	-	ns
tras	Request Setup Time ${ }^{6}$	15	-	18	-	21	-	ns
traH	Request Hold Time ${ }^{6}$	0	-	0	-	0	-	ns
tas	Address Setup Time ${ }^{6}$	15	-	18	-	21	-	ns
$t_{\text {AH }}$	Address Hold Time ${ }^{6}$	0	-	0	-	0	-	ns
t_{A}	Data Output Access Time	-	15	-	20	-	25	ns
tack	Acknowledge Access Time	-	17	-	20	-	25	ns
tor	Output Hold Time	5	-	5	-	5	-	ns
tZX	Output Enable Time, $\overline{\mathrm{OE}}$ LOW to $\mathrm{D}_{0}-\mathrm{D}_{35}$ Low-Z ${ }^{3}$	5	-	5	-	5	-	ns
txz	Output Disable Time, $\overline{\mathrm{OE}}$ HIGH to $\mathrm{D}_{0}-\mathrm{D}_{35}$ High-Z ${ }^{3}$	-	15	-	20	-	25	ns
tEF	Clock to $\overline{\text { EF }}$ Flag Valid (Empty Flag)	-	20	-	25	-	30	ns
tFF	Clock to $\overline{\text { FF }}$ Flag Valid (Full Flag)	-	20	-	25	-	30	ns
$\mathrm{thF}^{\text {H }}$	Clock to $\overline{\text { FF }}$ Flag Valid (Half-Full)	-	20	-	25	-	30	ns
$t_{\text {AE }}$	Clock to $\overline{\mathrm{AE}}$ Flag Valid (Almost-Empty)	-	20	-	25	-	30	ns
$t_{\text {AF }}$	Clock to $\overline{\text { AF }}$ Flag Valid (Almost-Full)	-	20	-	25	-	30	ns
tMBF	Clock to $\overline{\text { MBF Flag Valid (Mailbox Flag) }}$	-	15	-	20	-	25	ns
tPF	Data to Parity Flag Valid	-	17	-	20	-	25	ns
$t_{\text {RS }}$	Reset/Retransmit Pulse Width ${ }^{7}$	40/25	-	52/30	-	65/35	-	ns
tRSS	Reset/Retransmit Setup Time ${ }^{3}$	20	-	25	-	30	-	ns
$t_{\text {RSH }}$	Reset/Retransmit Hold Time ${ }^{3}$	10	-	15	-	20	-	ns
tRF	Reset Low to Flag Valid	-	35	-	40	-	45	ns
tFRL	First Read Latency ${ }^{4}$	25	-	30	-	35	-	ns
trw	First Write Latency ${ }^{5}$	25	-	30	-	35	-	ns
tBS	Bypass Data Setup	15	-	18	-	21	-	ns
$t_{\text {BH }}$	Bypass Data Hold	5	-	5	-	5	-	ns
tBA	Bypass Data Access	-	20	-	25	-	30	ns

NOTES:

1. Timing measurements performed at 'AC Test Condition' levels.
2. Values are guaranteed by design; not currently production tested.
3. trss and/or trsh need not be met unless a rising edge of CK_{A} occurs while EN_{A} is being asserted, or else a rising edge of $C K_{B}$ occurs while ENB is being asserted.
4. trRL is the minimum first-write-to-first-read delay, following an empty condition, which is required to assure valid read data.
5. tfwL is the minimum first-read-to-first-write delay, following a full condtion, which is required to assure successful writing of data.
6. tAs, $t_{A H}$ address setup times and hold times need only be satisfied at clock edges which occur while the corresponding enables are being asserted.
7. First number used only when CK_{A} or $\mathrm{CKB}_{\mathrm{B}}$ is enabled; $\mathrm{t}_{\mathrm{RS}}=\mathrm{t}_{\mathrm{RSS}}+\mathrm{t}_{\mathrm{CH}}+\mathrm{t}_{\mathrm{RSH}}$.

OPERATIONAL DESCRIPTION

Reset

The device is reset whenever the asynchronous Reset $(\overline{\mathrm{RS}})$ input is taken to a LOW state. A reset is required after power-up, before the first write operation may occur. The LH5420 is fully ready for operation after reset. No device programming is required if the default states described below are acceptable.

A reset operation initializes the read-address and write-address pointers for FIFO \#1 and FIFO \#2 to those FIFO's first physical memory locations. FIFO and mailbox status flags are updated to indicate an empty condition. In addition, the programmable-status-flag offset values are initialized to eight. Thus, the $\overline{\mathrm{AE}}_{1} / \overline{\mathrm{AE}}_{2}$ flag gets asserted within eight locations of an empty condition, and the $\overline{\mathrm{AF}}_{1} / \overline{\mathrm{AF}}_{2}$ flag likewise gets asserted within eight locations of a full condition, for FIFO \#1/FIFO \#2 respectively.

Bypass Operation

During reset (whenever $\overline{\mathrm{RS}}$ is LOW) the device acts as a registered transceiver, bypassing the internal FIFO memories. Port A acts as the master port. A write or read operation on Port A during reset transfers data directly to or from Port B. Port B is considered to be the slave, and does not permit write or read operations during reset. The direction of the bypass data transmission is determined by th $\mathrm{R} \bar{W}_{A}$ control input, which does not get overridden by the $\overline{\mathrm{RS}}$ input. The bypass capability may be used to pass initialization or configuration data directly between a master processor and a peripheral device at reset.

Address Modes

Address pins select the device resource to be accessed by each port. Port A has three resource-regis-ter-select inputs, $A_{0 A}, A_{1 A}$, and $A_{2 A}$, which select between FIFO access, mailbox-register access, and flag-offset-value-programming operating mode. Port B has a single address input, AоB, to select between FIFO access or mailbox-register access. The status of the resource-register-select inputs is sampled at the rising edge of an enabled clock (CKA or CKB). Select-input definitions are summarized in Table 1.

FIFO Write

Port A writes to FIFO \#1, and Port B writes to FIFO \#2. A write operation is initiated on the rising edge of a clock (CK_{A} or CK_{B}) whenever: the appropriate enable ($E N_{A}$ or $E N_{B}$) is held HIGH; the Read/Write control ($R \bar{W}_{A}$ or $\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{B}}$) is held LOW; the FIFO address is selected; and the prescribed setup and hold times are observed for all of these signals. Setup and hold times must also be observed on the data-bus pins ($\mathrm{DOA}_{01}-\mathrm{D}_{35 \mathrm{~A}}$ or $\mathrm{DOB}_{08}-\mathrm{D}_{35 B}$).

When a FIFO full condition is reached, write operations are locked out. Following the first read operation from a
full FIFO, another memory location is freed up, and the corresponding Full Flag is deasserted ($\overline{\mathrm{FF}}=\mathrm{HIGH}$). The first write operation should begin no earlier than a First Write Latency (tFWL) after the first read operation from a full FIFO, to ensure that correct read data is retrieved.

FIFO Read

Port A reads from FIFO \#2, and Port B reads from FIFO \#1. A read operation is initiated on the rising edge of a clock (CKA or CK_{B}) whenever: the appropriate enable ($E N_{A}$ or $E N_{B}$) is held HIGH; the ReadWrite control (R / \bar{W}_{A} or $\mathrm{R} \bar{W}_{\mathrm{B}}$) is held HIGH ; and the FIFO address is selected; and the prescribed setup and hold times are observed for all of these signals. Read data becomes valid on the data-bus pins ($D_{0 A}-D_{35 A}$ or $D_{0 B}-D_{35 B}$) by a time t_{A} after the rising clock (CKA or CKB $_{B}$) edge, provided that the data outputs are enabled.
$\overline{\mathrm{OE}}_{\mathrm{A}}$ and $\overline{\mathrm{O}}_{\mathrm{B}}$ are assertive-LOW, asynchronous output enables. Their effect is only to enable or disable the output drivers of the respective Port. Disabling the outputs does not disable a read operation; data transmitted to the corresponding output register will remain available later, when the outputs are again enabled, unless subsequently overwritten.

When an empty condition is reached, read operations are locked out until a valid write operation(s) has loaded additional data into the FIFO. Following the first write to an empty FIFO, the corresponding empty flag ($\overline{\mathrm{EF}}$) will be deasserted (HIGH). The first read operation should begin no earlier than a First Read Latency (tFRL) after the first write to an empty FIFO, to ensure that correct read data is retrieved.

Table 1. Resource Register Addresses

$\mathrm{A}_{2 \mathrm{~A}}$	$A_{1 A}$	$A_{0 A}$	RESOURCE
PORTA			
H	H	H	FIFO
H	H	L	Mailbox
H	L	H	$\overline{\mathrm{AF}}_{2}, \overline{\mathrm{AE}}_{2}, \overline{\mathrm{AF}}_{1}, \overline{\mathrm{AE}}_{1}$ Flag Offset Registers
H	L	L	Parity Mode Bit
L	H	H	$\overline{A E}_{1}$ Flag Offset Register
L	H	L	$\overline{\mathrm{AF}}_{1}$ Flag Offset Register
L	L	H	$\overline{\mathrm{AE}}_{2}$ Flag Offset Register
L	L	L	$\overline{\mathrm{AF}}_{2}$ Flag Offset Register
A $^{\text {O }}$			RESOURCE
PORT B			
H			FIFO
L			Mailbox

OPERATIONAL DESCRIPTION (cont'd)

Dedicated FIFO Status Flags

Six dedicated FIFO status flags are included for full ($\overline{\mathrm{FF}}_{1}$ and $\overline{\mathrm{FF}}_{2}$), half-full (HF_{1} and HF_{2}), and empty ($\overline{\mathrm{EF}}_{1}$ and $\overline{E F}_{2}$). $\overline{\mathrm{FF}}_{1}, \overline{\mathrm{HF}_{1}}$, and $\overline{\mathrm{EF}}_{1}$ indicate the status of FIFO \#1; and $\overline{\mathrm{FF}}_{2}, \mathrm{HF}_{2}$, and EF_{2} indicate the status of FIFO \#2.

A full flag is asserted following the rising clock edge for a write operation that fills the FIFO. Afull flag is deasserted following the falling clock edge for a read operation to a full FIFO. A hali-full flag is updated following the rising clock edge of a read or write operation to a FIFO. An empty flag is asserted following the rising clock edge for a read operation that empties the FIFO. An empty flag is deasserted following the falling clock edge for a write operation to an empty FIFO.

Programmable Status Flags

Four programmable FIFO status flags are provided, two for almost-full ($\overline{\mathrm{AF}}_{1}$ and $\overline{\mathrm{AF}}_{2}$) and two for almostempty ($\overline{\mathrm{AE}}_{1}$ and $\overline{\mathrm{AE}}_{2}$). Thus, each port has two programmable flags to monitor the status of the two internal FIFO buffer memories. The offset values for these flags are initialized to eight locations from the respective FIFO boundaries during reset, but can be reprogrammed over the entire FIFO depth.

Flag offsets may be written or read through the Port A data bus. All four programmable FIFO status flag offsets can be set simultaneously through a single 36 -bit status word; or, each programmable flag offset can be set individually, through one of four 8 -bit status words. Table 3 illustrates the data format for flag-programming words.

Mailbox Operation

Two mailbox registers are provided for passing control/status words between ports. Each port can read its own mailbox and write to the other port's mailbox. Mailbox access is performed on the rising edge of the controlling FIFO's clock, with the mailbox address selected and the enable ($E N_{A}$ or $E N_{B}$) HIGH. That is, writing to Mailbox Register \#1, or reading from Mailbox Register \#2, is synchronized to CKA; and writing to Mailbox Register \#2, or reading from Mailbox Register \#1, is synchronized to CKB.

The $\mathrm{R} \overline{\mathrm{W}}_{\mathrm{AB}}$ and $\overline{\mathrm{OE}}_{\text {AB }}$ pins control the direction and availability of mailbox-register access. Each mailbox register has its own New-Mail-Alert Flag, which is synchronized to the reading port's clock. These New-Mail-Alert Flags are status indicators only, and cannot inhibit mail-box-register read or write operations.

Request Acknowledge Handshake

An optional, synchronous, request-acknowledge handshake feature is provided for each port, to perform boundary synchronization between asynchronously-operated ports. The Request input (REQAB) is sampled at a rising clock edge. With REQ ${ }_{\text {AB }}$ HIGH, R/ $\bar{W}_{A B}$ deter-
mines whether a FIFO read or FIFO write operation is being requested. The Acknowledge output (ACKAB) is updated during the following clock cycle(s). ACKAB meets the setup and hold time requirements of the Enable input (ENA or ENB). Therefore, ACKAB may be tied back to the enable input to directly gate FIFO accesses, at a slight decrease in maximum operating frequency.

The assertion of ACKAB signifies that REQAB was asserted. However, ACKAB does not depend logically on EN ${ }_{\text {AB }}$; and thus the assertion of ACKAB does not prove that a FIFO write access or read access actually did occur. While REQAB and ENAB are being held HIGH, ACKAB may be considered as a synchronous, predictive boundary flag. That is, ACKAB acts as a synchronized predictor of the full flag for write operations, or as a synchronized predictor of the empty flag for read operations. Outside the 'almost-full' region and the 'almost-empty' region, ACK $_{A B}$ remains continuously HIGH whenever REQ RBB is held continuously HIGH. Within the 'almost-full' region or the 'almost-empty' region, ACK A/B occurs only on every third cycle, to prevent an overrun of the FIFO's actual full or empty boundaries and to ensure that the tFWL (first write latency) and tFRL (first read latency) specifications are satisfied before $A C K A B$ is received. The 'almost-full region' is defined as 'that region, where the almost-fullflag is being asserted,' and the 'almost-empty region' as 'that region, where the almost-empty flag is being asserted.' Thus, the extent of these 'almost' regions depends on how the system has programmed the offset values for the Almost-Full Flags and the Almost-Empty Flags. If the system has not programmed them, these offset values remain at their default values, eight in each case.

If a write attempt is unsuccessful because the corresponding FIFO is full, or if a read attempt is unsuccessful because the corresponding FIFO is empty, ACK $A B$ is not asserted in response to REQA/B.

If the REQ/ACK handshake is not used, then the REQAB input may be used as a second enable input, at a possible minor loss in maximum operating speed. In this case, the ACK $A B$ output may be ignored.
WARNING: Whether or not the REQ/ACK handshake is being used, the REQAB input for a port must be asserted for the corresponding FIFO to operate.

Data Retransmit

A retransmit operation resets the read-address pointer of the corresponding FIFO (\#1 or \#2) back to the first FIFO physical location, so that data may be reread. The write pointer is not affected. The status flags are updated; and a block of up to 256 data words, which previously had been written and read from a FIFO, can be retrieved. The block to be retransmitted is bounded by the first FIFO location and the FIFO location addressed by the write pointer. FIFO \#1 retransmit is initiated by strobing the $\overline{\mathrm{RT}}_{1}$ pin LOW. FIFO \#2 retransmit is initiated by strobing the RT_{2} pin LOW. Read and write operations to a FIFO should

OPERATIONAL DESCRIPTION (cont'd)

be stopped while the corresponding Retransmit signal is being asserted.

Parity Check

The Parity Check Flags, $\overline{\mathrm{PF}}_{\mathrm{A}}$ and $\overline{\mathrm{PF}}_{\mathrm{B}}$, reflect the parity status of the data present on the corresponding port's data bus. The four bytes of a 36 -bit word are grouped as $D_{0}-D_{8}, D_{9}-D_{17}, D_{18}-D_{25}$, and D_{26} - D_{35}; the parity of each 9 -bit byte is individually checked, and the four single bit parity indications are logically ORed to produce the Parity-Flag output. Parity checking is initialized for odd parity at reset, but can be reprogrammed for even or odd parity during operation.

Word-Width Selection on Port B

The word width of data access on Port B is selected by the WS_{1} and WS_{0} control inputs. WS_{1} is tied HIGH for 36 -bit access. WS 1 and WSO are both tied LOW for single-byte access. For double-byte access, WS_{1} is tied LOW and WS_{0} is tied HIGH.

In the single-byte or double-byte access mode, FIFO write operations on Port B pack the data to form 36-bit words when viewed from Port A. Similarly, single-byte or double-byte FIFO read operations on Port B essentially unpack 36 -bit words through a series of shift operations. FIFO status flags are updated following the last access which forms a complete 36 -bit transfer.

Note that the word-width programming feature is only supported for FIFO accesses. Mailbox and Data Bypass operations do not support word-width matching between Port A and Port B. Table 2, Figure 3 and Figure 4 summarize word-width selection for Port B.

Table 2. Port B Word-Width Selection

WS $_{\mathbf{1}}$	WS $_{\mathbf{0}}$	PORT B DATA WIDTH
H	H	36-Bit
H	L	36 -Bit
L	H	18-Bit
L	L	9-Bit

Table 3. Flag Programming Words

36-BIT MODE ($\left.A_{2 A}, A_{1 A}, A_{0 A}\right)=1,0,1$							
$\mathrm{D}_{34} \ldots \ldots \mathrm{D}_{27 \mathrm{~A}}$			$\mathrm{D}_{254} \ldots . . \mathrm{D}_{18 \mathrm{~A}}$		$\mathrm{D}_{164} \ldots \mathrm{D}_{9 \text { A }}$		$D_{7 A} \ldots . . D_{0 A}$
X	$\overline{\mathrm{AF}}_{2}$ Offset ${ }^{1}$	X	$\overline{\mathrm{AE}}_{2}$ Offset ${ }^{1}$	X	$\overline{\mathrm{AF}}_{1}$ Offset ${ }^{1}$	X	$\overline{\mathrm{AE}}_{1}$ Offset ${ }^{1}$
8-BIT $\overline{\operatorname{AE}}_{1} \mathrm{FLAG}\left(\mathrm{A}_{2}, \mathrm{~A}_{14}, A_{0 A}\right)=0,1,1$							
							D7A... $\mathrm{D}_{0 \text { A }}$
X...						X	$\overline{\mathrm{AE}}_{1}$ Offset ${ }^{1}$
8-BIT $\overline{\text { AF }}_{1} \mathrm{FLAG}\left(\mathrm{A}_{2}, A_{1} A^{\prime} A_{0 A}\right)=0,1,0$							
							D7A... D_{04}
X...						X	$\overline{\mathrm{AF}}_{1}$ Offset ${ }^{1}$
8-BIT $\overline{\mathrm{AE}}_{2}$ FLAG $\left(A_{2 A}, A_{1 A}, A_{0 A}\right)=0,0,1$							
							D7A... $\mathrm{D}_{0 \text { A }}$
X...						X	$\overline{\mathrm{AE}}_{2}$ Offset ${ }^{1}$
8-BIT $\overline{\text { FF }}_{2} \mathrm{FLAG}\left(\mathrm{A}_{2 \mathrm{~A}}, \mathrm{~A}_{1} \mathrm{~A}^{\prime}, \mathrm{A}_{0} \mathrm{~A}\right)=0,0,0$							
							D7A... $\mathrm{D}_{0 \text { A }}$
X...						X	$\overline{\mathrm{AF}}_{2}$ Offset ${ }^{1}$
PARITY MODE ($\left.A_{2}, A_{1}, A_{0}\right)=1,0,0$ (WRITE ONLY)							
							DoA
X...						X	Parity Mode ${ }^{2}$

NOTES:

1. All four programmable-flag-offset values are initialized to eight (8) during a reset operation.
2. Odd parity = HIGH; even parity = LOW. The parity mode is initialized to odd during a reset operation.

Table 4. Flag Definition Table

FLAG	VALID READ CYCLES REMAINING			VALID WRITE CYCLES REMAINING				
	FLAG $=$ LOW		FLAG $=$ HIGH		FLAG $=$ LOW		FLAG = HIGH	
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
$\overline{\mathrm{FF}}$	256	256	0	255	0	0	1	256
$\overline{\mathrm{AF}}$	$256-$ offset	256	0	$255-$ offset	0	offset	offset +1	256
$\overline{\mathrm{HF}}$	129	256	0	128	0	127	128	256
$\overline{\mathrm{AE}}$	0	offset	offset +1	256	$256-$ offset	256	0	$255-$ offset
$\overline{\mathrm{EF}}$	0	0	1	256	256	256	0	255

PORT B WORD-WIDTH SELECTION

Figure 6a. 36-to-18 Funneling Through FIFO \#1

Figure 6b. 36-to-9 Funneling Through FIFO \#1

NOTES:

1. The heavy black borders on register segments indicate the main data path, suitable for most applications. Alternate paths feature a different ordering of bytes within a word, at Port B.
2. The funneling process does not change the ordering of bits within a byte. Halfwords (Figure 6a) or bytes (Figure 6b) are transferred in parallel form from Port A to Port B.
3. The word-width setting may be changed during system operation; however, wo clock intervals should be allowed for these signals to settle, before again attempting to read $\mathrm{D}_{0 B}-\mathrm{D}_{358}$. Also, incomplete data words may occur when the word width is changed from shorter to longer, at an inappropriate point in the data block passing through the FIFO.

PORT B WORD-WIDTH SELECTION

Figure 7a. 18-to-36 Defunneling Through FIFO \#2

Figure 7b. 9-to-36 Defunneling Through FIFO \#2

NOTES:

1. The heavy black borders on register segments indicate the only data paths used. The other byte segments of Port B do not participate in the data path during defunneling.
2. The defunneling process does not change the ordering of bits within a byte. Halfwords (Figure 7a) or bytes (Figure 7b) are transferred in parallel form from Port B to Port A.
3. The word-width setting may be changed during system operation; however, two clock intervals should be allowed for these signals to sette, before again attempting to send data. Also, incomplete data words may occur when the word width is changed from shorter to longer, at an inappropriate point in the data block passing through the FIFO.

TIMING DIAGRAMS

NOTES:

1. RS overrides all other input signals, and operates asynchronously.

RS operates whether or not EN_{A} and/or EN_{B} are asserted.
2. $\mathrm{t}_{\text {RSs }}, \mathrm{t}_{\text {RSH }}$ need not be met unless the rising edge of CK_{A} and/or CK_{B} occurs while that clock is enabled.
3. The parity check is initialized to odd byte parity at reset.
4. The $\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$ flag offsets are initialized to eight locations from the boundary at reset.

Figure 8. Reset Timing

TIMING DIAGRAMS (cont'd)

NOTES:

1. trss, thsH need not be met unless the rising edge of CK_{A} or CK_{B} occurs while that clock is enabled.
2. Port A is considered the master port for bypass operation. Thus, $C K_{A}, R \bar{W}_{A}$, and $E N_{A}$ control the transmission of data between ports at reset.

Figure 9. Data Bypass Timing

TIMING DIAGRAMS (cont'd)

NOTES:

1. The Port A Parity Error Flag $\left(\overline{\mathrm{PF}}_{\mathrm{A}}\right)$ reflects the parity status of data present on the data bus.
2. The status of $\overline{O E_{A}}$ does not gate read or write operations.
3. If $\overline{\mathrm{OE}}_{\mathrm{A}}$ is left LOW during a write operation, then the previous data held in the output latch is written back into FIFO \#1.

Figure 10. Port A FIFO Read/Write

TIMING DIAGRAMS (cont'd)

NOTES:

1. The Port B Parity Error Flag $\left(\overline{\mathrm{PF}}_{\mathrm{B}}\right)$ reflects the parity status of data present on the data bus.
2. The status of OE_{B} does not gate read or write operations.
3. If $\overline{O E}_{B}$ is left LOW during a write operation, then the previous data held in the output latch is written back into FIFO \#2.

Figure 11. Port B FIFO Read/Write

TIMING DIAGRAMS (cont'd)

Figure 12. Port A Mailbox Access

TIMING DIAGRAMS (cont'd)

Figure 13. Port B Mailbox Access

TIMING DIAGRAMS (cont'd)

NOTES:

1. For valid flag address codes and data formats, see Table 3.
2. If flag status is altered by flag programming, the updated flags will be valid within a time $t_{\text {rfF }}$.

5420-18
Figure 14. Flag Programming

TIMING DIAGRAMS (cont'd)

Figure 15. Empty Flag Timing

TIMING DIAGRAMS (cont'd)

Figure 16. Almost-Empty Flag Timing

TIMING DIAGRAMS (cont'd)

Figure 17. Full Flag Timing

TIMING DIAGRAMS (cont'd)

NOTE: $A_{2 A}, A_{1 A}, A_{O A}$, and $A_{O B}$ are all HIGH for FIFO access.
Figure 18. Almost-Full Flag Timing

TIMING DIAGRAMS (cont'd)

Figure 19. Half-Full Flag Timing

TIMING DIAGRAMS (cont'd)

Figure 20. FIFO \#2 Retransmit

TIMING DIAGRAMS (cont'd)

NOTES:

1. $t_{\text {fss }}$ and $t_{\text {RSH }}$ need not be met unless a rising edge of CK_{A} or CK_{B} occurs while that clock is enabled.
2. $\mathrm{t}_{\text {RSS }}$ is the time needed to deassert $\overline{\mathrm{RT}}$, before returning to a normal FIFO cycle.
3. $\mathrm{t}_{\text {RSH }}$ is the time needed before asserting $\overline{\mathrm{RT}}_{1}$ after a normal FIFO cycle.

Figure 21. FIFO \#1 Retransmit

TIMING DIAGRAMS (cont'd)

NOTES:

1. $A_{2 A}, A_{1 A}, A_{O A}$, and $A_{0 B}$ are all held HIGH for FIFO access.
2. OE_{A} is held HIGH.
3. $\overline{\mathrm{OE}}_{\mathrm{B}}$ is held LOW.
4. $\mathrm{t}_{\text {FRL }}$ (First Read Latency) - The first read following an empty condition may begin no earlier than $\mathrm{t}_{\text {fRL }}$ after the first write to an empty FIFO, to ensure that valid read data is retrieved.

Figure 22. FIFO \#1 Write and Read Operation in Near-Empty Region

TIMING DIAGRAMS (cont'd)

NOTES:

1. $A_{2 A}, A_{1 A}, A_{O A}$, and $A_{O B}$ are all held HIGH for FIFO access.
2. OE_{A} is held HIGH.
3. $\overline{O E}_{\mathrm{B}}$ is held LOW.
4. frRL $^{\text {(First Read Latency) - The first read following an empty condition }}$ may begin no earlier than $\mathrm{t}_{\text {FRL }}$ after the first write to an empty FIFO,
to ensure that valid read data is retrieved.

Figure 23. FIFO \#2 Write and Read Operation in Near-Empty Region

TIMING DIAGRAMS (cont'd)

NOTES:

1. $A_{2 A}, A_{1 A}, A_{0 A}$, and $A_{0 B}$ are all held HIGH for FIFO access.
2. $\overline{O E}_{A}$ is held HIGH.
3. $\overline{O E}_{B}$ is held LOW.
4. $\mathrm{I}_{\text {fw }}$ (First Write Latency) - The first write following a full condition may begin no earlier than t_{Fw} after the first read from a full FIFO, to ensure that valid write data is written.

Figure 24. FIFO \#1 Read and Write Operation in Near-Full Region

TIMING DIAGRAMS (cont'd)

NOTES:

1. $A_{2 A}, A_{1 A}, A_{O A}$, and $A_{O B}$ are all held HIGH for FIFO access.
2. $\overline{O E}_{A}$ is held LOW.
3. $\overline{\mathrm{OE}}_{\mathrm{B}}$ is held HIGH.
4. trwL (First Write Latency) - The first write following a full condition may begin no earlier than $t_{\text {fwL }}$ after the first read from a full FIFO, to ensure that valid write data is written.

Figure 25. FIFO \#2 Read and Write Operation in Near-Full Region

TIMING DIAGRAMS (cont'd)

NOTES:

1. A08 is held HIGH for FIFO access.
2. $O E_{B}$ is held LOW.
3. WS_{0} is held HIGH and WS_{1} is held LOW for double-byte access.

Figure 26. Port B Double-Byte FIFO \#1 Read Access for 36-to-18 Funneling

TIMING DIAGRAMS (cont'd)

NOTES:

1. $A_{0 B}$ is held HIGH for FIFO access.
2. $\overline{O E}_{B}$ is held HIGH.
3. WS_{0} is held HIGH and WS_{1} is held LOW for double-byte access.

Figure 27. Port B Double-Byte FIFO \#2 Write Access for 18-to-36 Defunneling

TIMING DIAGRAMS (cont'd)

NOTES:

1. $A_{0 B}$ is held HIGH for FIFO access.
2. $\overline{O E}_{B}$ is held LOW.
3. WS_{0} and WS_{1} both are held LOW for single-byte access.

Figure 28. Port B Single-Byte FIFO \#1 Read Access for 36-to-9 Funneling

TIMING DIAGRAMS (cont'd)

NOTES:

1. $\mathrm{A}_{0 \mathrm{~B}}$ is held HIGH for FIFO access.
2. OE_{B} is held HIGH.
3. WS_{0} and WS_{1} both are held LOW for single-byte access.

Figure 29. Port B Single-Byte FIFO \#2 Write Access for 9-to-36 Defunneling

TIMING DIAGRAMS (cont'd)

Figure 30. Write Request/Acknowledge Handshake

TIMING DIAGRAMS (cont'd)

Figure 31. Read Request/Acknowledge Handshake

ORDERING INFORMATION

FEATURES

- Fast Access Times: 12/15/20/25/35 ns
- Fast Fall-Through Time Internal Architecture Based on CMOS Dual-Port SRAM technology
- Independently-Synchronized Operation of Input Port and Output Port
- Expandable in Width and Depth
- Full, Half-Full, and Empty Status Flags
- Retransmission Capability
- TTL-Compatible I/O
- 28-Pin PDIP and

32-Pin PLCC Packages

- Pin and Functionally Compatible with Sharp LH5496/97/98 and with Am/IDT/MS7201/02/03
- Control Signals Assertive-LOW for Noise Immunity

PIN CONNECTIONS

28-PIN PDIP				TOP VIEW
	$\bar{W} \square 1$	28	$\square V_{C C}$	
	$\mathrm{D}_{8} \square 2$	27	$\square D_{4}$	
	$D_{3} \square 3$	26	$\square D_{5}$	
	$D_{2} \square 4$	25	$\square D_{6}$	
	$\mathrm{D}_{1} \square 5$	24	$\square D_{7}$	
	$\mathrm{D}_{0} \square 6$	23	$\square \overline{\mathrm{FL}} / \overline{\mathrm{RT}}$	
	$\overline{\mathrm{XI}} \square 7$	22	$\square \overline{\mathrm{RS}}$	
	$\overline{\mathrm{FF}} \square 8$	21	$\square \overline{\mathrm{EF}}$	
	$Q_{0} \square 9$	20	$\square \overline{\mathrm{XO}} / \overline{\mathrm{HF}}$	
	$Q_{1} \square 10$	19	$\square Q_{7}$	
	$Q_{2} \square_{11}$	18	$\square Q_{6}$	
	$Q_{3} \square 12$	17	$\square Q_{5}$	
	$\mathrm{Q}_{8} \square_{13}$	16	$\square Q_{4}$	
	$V_{\text {SS }} \square_{14}$	15	$\square \bar{R}$	
				540201-2D

Figure 1. 28 -Pin PDIP (Top View)

FUNCTIONAL DESCRIPTION

The LH540201/02/03 are FIFO (First-In, First-Out) memory devices, based on fully-static CMOS dual-port SRAM technology, capable of containing up to 512,1024, and 20489 -bit words respectively. They follow the indus-try-standard architecture and package pinouts for 9-bit asynchronous FIFOs. Each 9-bit FIFO word may consist of a standard 8 -bit byte, together with a parity bit or a block-marking/framing bit.

The input and output ports operate altogether independently of each other, unless the FIFO becomes either absolutely full or else absolutely empty. Data flow at a port is initiated by asserting either of two asynchronous, as-sertive-LOW control inputs: Write $(\overline{\mathrm{W}})$ for data entry at the input port, or Read $(\overline{\mathrm{R}})$ for data retrieval at the output port.

Full, Half-Full, and Empty status flags monitor the extent to which the internal memory has been filled. The system may make use of these status outputs to avoid the risk of data loss, which otherwise might occur either by attempting to overfill an already-full FIFO, or by attempting to read additional words from an already-empty FIFO. However, the Half-Full Flag is not available when a FIFO is operating in a depth-expanded configuration.

Data words emerge from the FIFO's output port in precisely the same order that they entered at its input port; that is, according to a First-In, First Out (FIFO) queue discipline. Since the addressing sequence for a FIFO device's memory is internally predefined, no external

Figure 2. 32-Pin PLCC (Top View)

FUNCTIONAL DESCRIPTION (cont'd)

addressing information is required for the operation of the device. Also, drop-in-replacement compatibility is maintained with both larger sizes and smaller sizes of standard 9-bit asynchronous FIFOs; the only change is in the number of words implied by states of the Full and Half-Full status flags.

The Retransmit ($\overline{\mathrm{RT}}$) control signal causes the internal FIFO read-address pointer to be set back to zero, without affecting the internal FIFO write-address pointer. Thus, the Retransmit control signal also provides a mechanism whereby a block of data delimited by the zero physical address and the current write-address-pointer value address may be read out repeatedly, an abitrary number of times. The only restrictions are that neither the readaddress pointer nor the write-address pointer may wrap around'during this entire process, and that the retransmit
facility is not available when a FIFO is operating in a depth-expanded configuration.

Acascading (depth-expansion) scheme may be implemented by use of the Expansion In ($\overline{\mathrm{XI}})$ input signal and the Expansion Out ($\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$) output signal. This scheme allows a deeper 'effective FIFO' to be implemented by using two or more individual FIFO devices, without incurring additional latency ('fallthrough' or 'bubblethrough') delays, and without the necessity of storing and retrieving any given data word more than once. In this cascaded operating mode, one FIFO device must be designated as the 4irst-load' or 'master' device, by grounding its FirstLoad ($\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$) control input; the remaining FIFO devices are designated as 'slaves,' by tying their $\overline{F L} / \overline{R T}$ inputs HIGH. Because of the need to share control signals on pins, the Half-Full flag and the retransmission capability are not available for either 'master' or 'slave' FIFO devices operating in cascaded mode.

Figure 3. LH540201/02/03 Block Diagram

PIN DESCRIPTIONS

PIN	DESCRIPTION
$D_{0}-D_{8}$	Data Inputs
$Q_{0}-Q_{8}$	Data Outputs
\bar{W}	Write Request Input
\bar{R}	Read Request Input
$\overline{\mathrm{EF}}$	Empty Flag
$\overline{\mathrm{FF}}$	Full Flag

PIN	DESCRIPTION
$\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$	Expansion Out/Half-Full Flag
$\overline{\mathrm{XI}}$	Expansion In
$\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$	First Load/Retransmit
$\overline{\mathrm{RS}}$	Reset
V_{CC}	Positive Power Supply
$\mathrm{V}_{\text {SS }}$	Ground

FEATURES

- Fast Access Times: $15 / 20 / 25 / 35 \mathrm{~ns}$
- Fast Fall-Through Time Internal Architecture Based on CMOS Dual-Port SRAM technology
- Independently-Synchronized Operation of Input Port and Output Port
- Expandable in Width and Depth
- Full, Half-Full, and Empty Status Flags
- Retransmission Capability
- TTL-Compatible I/O
- 28-Pin PDIP and 32-Pin PLCC Packages
- Pin and Functionally Compatible with Sharp LH5499 and with Am/IDT/MS7204
- Control Signals Assertive-LOW for Noise Immunity

PIN CONNECTIONS

28-PIN PDIP				TOP VIEW
	$\bar{W} \square 1{ }^{\circ}$	28	$\square V_{c c}$	
	$\mathrm{D}_{8} \square 2$	27	$\square \mathrm{D}_{4}$	
	$\mathrm{D}_{3} \square 3$	26	$\square \mathrm{D}_{5}$	
	$\mathrm{D}_{2} \square 4$	25	$\square D_{6}$	
	$\mathrm{D}_{1} \square 5$	24	$\square D_{7}$	
	$D_{0} \square 6$	23	$\square \overline{\mathrm{FL}} / \overline{\mathrm{RT}}$	
	$\overline{X 1} \square$	22	$\square \overline{\mathrm{RS}}$	
	$\overline{\mathrm{FF}} \square 8$	21	$\square \overline{\mathrm{EF}}$	
	$Q_{0} \square 9$	20	$\square \overline{\mathrm{XO}} / \overline{\mathrm{HF}}$	
	$Q_{1} \square 10$	19	$\square \mathrm{Q}_{7}$	
	$Q_{2} \square_{11}$	18	$\square Q_{6}$	
	$Q_{3} \square_{12}$	17	$\square Q_{5}$	
	$Q_{8} \square_{13}$	16	$\square Q_{4}$	
	$\mathrm{v}_{\text {SS }} \square_{14}$	15	$\square \bar{R}$	

Figure 1. 28-Pin PDIP (Top View)

FUNCTIONAL DESCRIPTION

The LH540204 is a FIFO (First-In, First-Out) memory device, based on fully-static CMOS dual-port SRAM technology, capable of containing up to 40969 -bit words. It follows the industry-standard architecture and package pinouts for 9-bit asynchronous FIFOs. Each 9-bit FIFO word may consist of a standard 8-bit byte, together with a parity bit or a block-marking/framing bit.

The input and output ports operate altogether independently of each other, unless the FIFO becomes either absolutely full or else absolutely empty. Data flow at a port is initiated by asserting either of two asynchronous, as-sertive-LOW control inputs: Write ($\overline{\mathrm{W}}$) for data entry at the input port, or Read ($\overline{\mathrm{R}}$) for data retrieval at the output port.

Full, Half-Full, and Empty status flags monitor the extent to which the internal memory has been filled. The system may make use of these status outputs to avoid the risk of data loss, which otherwise might occur either by attempting to overfill an already-full FIFO, or by attempting to read additional words from an already-empty FIFO. However, the Half-Full Flag is not available when a FIFO is operating in a depth-expanded configuration.

Data words emerge from the FIFO's output port in precisely the same order that they entered at its input port; that is, according to a First-In, First Out (FIFO) queue discipline. Since the addressing sequence for a FIFO device's memory is internally predefined, no external addressing information is required for the operation of the

Figure 2. 32-Pin PLCC (Top View)

FUNCTIONAL DESCRIPTION (cont'd)

device. Also, drop-in-replacement compatibility is maintained with both larger sizes and smaller sizes of standard 9 -bit asynchronous FIFOs; the only change is in the number of words implied by states of the Full and Half-Full status flags.

The Retransmit ($\overline{\mathrm{RT}}$) control signal causes the internal FIFO read-address pointer to be set back to zero, without affecting the internal FIFO write-address pointer. Thus, the Retransmit control signal also provides a mechanism whereby a block of data delimited by the zero physical address and the current write-address-pointer value address may be read out repeatedly, an arbitrary number of times. The only restrictions are that neither the readaddress pointer nor the write-address pointer may 'wrap around' during this entire process, and that the retransmit facility is not available when a FIFO is operating in a depth-expanded configuration.

Acascading (depth-expansion) scheme may be implemented by use of the Expansion In (XI) input signal and the Expansion Out ($\overline{\mathrm{XO} / \mathrm{HF}) \text {) output signal. This scheme }}$ allows a deeper 'effective FIFO' to be implemented by using two or more individual FIFO devices, without incurring additional latency ('fallthrough' or 'bubblethrough') delays, and without the necessity of storing and retrieving any given data word more than once. In this cascaded operating mode, one FIFO device must be designated as the first-load' or 'master' device, by grounding its FirstLoad (ㄷ/RT) control input; the remaining FIFO devices are designated as 'slaves,' by tying their $\overline{F L} / \overline{R T}$ inputs HIGH. Because of the need to share control signals on pins, the Half-Full flag and the retransmission capability are not available for either 'master' or 'slave' FIFO devices operating in cascaded mode.

540204-1
Figure 3. LH540204 Block Diagram

PIN DESCRIPTIONS

PIN	DESCRIPTION
$D_{0}-D_{8}$	Data Inputs
$Q_{0}-Q_{8}$	Data Outputs
\bar{W}	Write Request Input
\bar{R}	Read Request Input
$\overline{\mathrm{EF}}$	Empty Flag
$\overline{\mathrm{FF}}$	Full Flag

PIN	DESCRIPTION
$\overline{\mathrm{XO} / / \overline{\mathrm{F}}}$	Expansion Out/Half-Full Flag
$\overline{\mathrm{XI}}$	Expansion In
$\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$	First Load/Retransmit
$\overline{\mathrm{RS}}$	Reset
VCC	Positive Power Supply
V	Ground

FEATURES

- Fast Access Times: 15/20/25/35 ns
- Fast Fall-Through Time Internal Architecture Based on CMOS Dual-Port SRAM technology
- Independently-Synchronized Operation of Input Port and Output Port
- Expandable in Width and Depth
- Full, Half-Full, and Empty Status Flags
- Retransmission Capability
- TTL-Compatible I/O
- 28-Pin PDIP and 32-Pin PLCC Packages
- Pin and Functionally Compatible with Am/IDT7205
- Control Signals Assertive-LOW for Noise Immunity

PIN CONNECTIONS

28-PIN PDIP		\square		TOP VIEW
	$\bar{W} \square 1$	28	$\square V_{C C}$	
	$\mathrm{D}_{8} \square 2$	27	$\square D_{4}$	
	$\mathrm{D}_{3} \square 3$	26	$\square D_{5}$	
	$\mathrm{D}_{2} \square 4$	25	$\square D_{6}$	
	$D_{1} \square 5$	24	$\square D_{7}$	
	$D_{0} \square 6$	23	$\square \overline{\mathrm{FL}} \overline{\mathrm{RT}}$	
	$\overline{\mathrm{XI}} \square 7$	22	$\square \overline{\mathrm{RS}}$	
	$\overline{F F} \square 8$	21	$\square \overline{\mathrm{EF}}$	
	$Q_{0} \square 9$	20	$\square \overline{\mathrm{XO}} / \overline{\mathrm{HF}}$	
	$Q_{1} \square_{10}$	19	$\square Q_{7}$	
	$Q_{2} \square_{11}$	18	$\square Q_{6}$	
	$Q_{3} \square_{12}$	17	$\square Q_{5}$	
	$Q_{8} \square 13$	16	$\square Q_{4}$	
	$v_{\text {SS }} \square_{14}$	15	$\square \bar{R}$	
				540205-2D

Figure 1. 28-Pin PDIP (Top View)

FUNCTIONAL DESCRIPTION

The LH540205 is a FIFO (First-In, First-Out) memory device, based on fully-static CMOS dual-port SRAM technology, capable of containing up to 81929 -bit words. It follows the industry-standard architecture and package pinouts for 9-bit asynchronous FIFOs. Each 9-bit FIFO word may consist of a standard 8-bit byte, together with a parity bit or a block-marking/framing bit.

The input and output ports operate altogether independently of each other, unless the FIFO becomes either absolutely full or else absolutely empty. Data flow at a port is initiated by asserting either of two asynchronous, as-sertive-LOW control inputs: Write ($\overline{\mathrm{W}}$) for data entry at the input port, or Read ($\overline{\mathrm{R}}$) for data retrieval at the output port.

Full, Half-Full, and Empty status flags monitor the extent to which the internal memory has been filled. The system may make use of these status outputs to avoid the risk of data loss, which otherwise might occur either by attempting to overfill an already-full FIFO, or by attempting to read additional words from an already-empty FIFO. However, the Half-Full Flag is not available when a FIFO is operating in a depth-expanded configuration.

Data words emerge from the FIFO's output port in precisely the same order that they entered at its input port; that is, according to a First-In, First Out (FIFO) queue discipline. Since the addressing sequence for a FIFO device's memory is internally predefined, no external addressing information is required for the operation of the

Figure 2. 32-Pin PLCC (Top View)

FUNCTIONAL DESCRIPTION (cont'd)

device. Also, drop-in-replacement compatibility is maintained with both larger sizes and smaller sizes of standard 9 -bit asynchronous FIFOs; the only change is in the number of words implied by states of the Full and Half-Full status flags.

The Retransmit ($\overline{\mathrm{RT}}$) control signal causes the internal FIFO read-address pointer to be set back to zero, without affecting the internal FIFO write-address pointer. Thus, the Retransmit control signal also provides a mechanism whereby a block of data delimited by the zero physical address and the current write-address-pointer value address may be read out repeatedly, an arbitrary number of times. The only restrictions are that neither the readaddress pointer nor the write-address pointer may 'wrap around' during this entire process, and that the retransmit facility is not available when a FIFO is operating in a depth-expanded configuration.

Acascading (depth-expansion) scheme may be implemented by use of the Expansion In (XI) input signal and the Expansion Out ($\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$) output signal. This scheme allows a deeper 'effective FIFO' to be implemented by using two or more individual FIFO devices, without incurring additional latency ('fallthrough' or 'bubblethrough') delays, and without the necessity of storing and retrieving any given data word more than once. In this cascaded operating mode, one FIFO device must be designated as the first-load' or 'master' device, by grounding its FirstLoad (FL/RT) control input; the remaining FIFO devices are designated as 'slaves,' by tying their FL/RT inputs HIGH. Because of the need to share control signals on pins, the Half-Full flag and the retransmission capability are not available for either 'master' or 'slave' FIFO devices operating in cascaded mode.

Figure 3. LH540205 Block Diagram

PIN DESCRIPTIONS

PIN	DESCRIPTION
$D_{0}-D_{8}$	Data Inputs
$Q_{0}-Q_{8}$	Data Outputs
\bar{W}	Write Request Input
\bar{R}	Read Request Input
$\overline{\mathrm{EF}}$	Empty Flag
$\overline{F F}$	Full Flag

PIN	DESCRIPTION
$\overline{\mathrm{XO} / \overline{\mathrm{HF}}}$	Expansion Out/Half-Full Flag
$\overline{\mathrm{XI}}$	Expansion In
$\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$	First Load/Retransmit
$\overline{\mathrm{RS}}$	Reset
VCC	Positive Power Supply
VSS	Ground

FEATURES

- Fast Access Times: $15 / 20 / 25 / 35 \mathrm{~ns}$
- Fast Fall-Through Time Internal Architecture Based on CMOS Dual-Port SRAM technology
- Independently-Synchronized Operation of Input Port and Output Port
- Expandable in Width and Depth
- Full, Half-Full, and Empty Status Flags
- Retransmission Capability
- TTL-Compatible I/O
- 28-Pin PDIP and 32-Pin PLCC Packages
- Pin and Functionally Compatible with IDT7206
- Control Signals Assertive-LOW for Noise Immunity

PIN CONNECTIONS

28-PIN PDIP				TOP VIEW
	$\bar{W} \square 1{ }^{\circ}$	28	$\square V_{c c}$	
	$\mathrm{D}_{8} \square 2$	27	$\square D_{4}$	
	$\mathrm{D}_{3} \square 3$	26	$\square D_{5}$	
	$\mathrm{D}_{2} \square 4$	25	$\square D_{6}$	
	$\mathrm{D}_{1} \square 5$	24	$\square D_{7}$	
	$D_{0} \square 6$	23	$\square \overline{\mathrm{FL}} / \overline{\mathrm{RT}}$	
	$\overline{\mathrm{XI}} \square 7$	22	$\square \overline{\mathrm{RS}}$	
	$\overline{\mathrm{FF}} \square 8$	21	$\square \overline{\mathrm{EF}}$	
	$Q_{0} \square 9$	20	$\square \overline{\mathrm{XO}} / \overline{\mathrm{HF}}$	
	$Q_{1} \square_{10}$	19	$\square Q_{7}$	
	$Q_{2} \square_{11}$	18	$\square a_{6}$	
	$Q_{3} \square 12$	17	$\square Q_{5}$	
	$Q_{8} \square 13$	16	$\square Q_{4}$	
	$v_{\text {SS }} \square_{14}$	15	$\square \bar{R}$	

Figure 1. 28-Pin PDIP (Top View)

FUNCTIONAL DESCRIPTION

The LH540206 is a FIFO (First-In, First-Out) memory device, based on fully-static CMOS dual-port SRAM technology, capable of containing up to 163849 -bit words. It follows the industry-standard architecture and package pinouts for 9 -bit asynchronous FIFOs. Each 9-bit FIFO word may consist of a standard 8 -bit byte, together with a parity bit or a block-marking/framing bit.

The input and output ports operate altogether independently of each other, unless the FIFO becomes either absolutely full or else absolutely empty. Data flow at a port is initiated by asserting either of two asynchronous, as-sertive-LOW control inputs: Write ($\overline{\mathrm{W}}$) for data entry at the input port, or Read ($\overline{\mathrm{R}}$) for data retrieval at the output port.

Full, Half-Full, and Empty status flags monitor the extent to which the internal memory has been filled. The system may make use of these status outputs to avoid the risk of data loss, which otherwise might occur either by attempting to overfill an already-full FIFO, or by attempting to read additional words from an already-empty FIFO. However, the Half-Full Flag is not available when a FIFO is operating in a depth-expanded configuration.

Data words emerge from the FIFO's output port in precisely the same order that they entered at its input port; that is, according to a First-In, First Out (FIFO) queue discipline. Since the addressing sequence for a FIFO device's memory is internally predefined, no external addressing information is required for the operation of the

Figure 2. 32-Pin PLCC (Top View)

FUNCTIONAL DESCRIPTION (cont'd)

device. Also, drop-in-replacement compatibility is maintained with both larger sizes and smaller sizes of standard 9 -bit asynchronous FIFOs; the only change is in the number of words implied by states of the Full and Half-Full status flags.

The Retransmit ($\overline{\mathrm{RT}}$) control signal causes the internal FIFO read-address pointer to be set back to zero, without affecting the internal FIFO write-address pointer. Thus, the Retransmit control signal also provides a mechanism whereby a block of data delimited by the zero physical address and the current write-address-pointer value address may be read out repeatedly, an arbitrary number of times. The only restrictions are that neither the readaddress pointer nor the write-address pointer may wrap around' during this entire process, and that the retransmit facility is not available when a FIFO is operating in a depth-expanded configuration.

Acascading (depth-expansion) scheme may be implemented by use of the Expansion In ($\overline{\mathrm{XI}}$) input signal and the Expansion Out ($\overline{\mathrm{XO}} / \mathrm{HF}$) output signal. This scheme allows a deeper 'effective FIFO' to be implemented by using two or more individual FIFO devices, without incurring additional latency ('fallthrough' or 'bubblethrough') delays, and without the necessity of storing and retrieving any given data word more than once. In this cascaded operating mode, one FIFO device must be designated as the "irst-load' or 'master' device, by grounding its FirstLoad (FL/RT) control input; the remaining FIFO devices are designated as 'slaves,' by tying their FI/RT inputs HIGH. Because of the need to share control signals on pins, the Half-Full flag and the retransmission capability are not available for either 'master' or 'slave' FIFO devices operating in cascaded mode.

Figure 3. LH540206 Block Diagram

PIN DESCRIPTIONS

PIN	DESCRIPTION
$D_{0}-D_{8}$	Data Inputs
$\mathrm{Q}_{0}-\mathrm{Q}_{8}$	Data Outputs
\bar{W}	Write Request Input
$\overline{\mathrm{R}}$	Read Request Input
$\overline{\mathrm{EF}}$	Empty Flag
$\overline{\mathrm{FF}}$	Full Flag

PIN	DESCRIPTION
$\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$	Expansion Out/Half-Full Flag
$\overline{\mathrm{XI}}$	Expansion In
$\overline{\mathrm{FL}} \overline{\mathrm{RT}}$	First Load/Retransmit
$\overline{\mathrm{RS}}$	Reset
VCC	Positive Power Supply
VSS	Ground

FEATURES

- Fast Cycle Times: 15/20/25/35 ns
- Pin-Compatible Drop-In Replacements for IDT72215A/25A FIFOs; Default Operating Mode is Functionally IDT-Compatible
- Device Comes Up into Known Default State at Reset; Programming is Allowed, but is not Required
- Fast Fall-Through Time Internal Memory Array Architecture Based on CMOS Dual-Port SRAM Technology, 512×18 or 1024×18
- 'Synchronous' Enable-Plus-Clock Control at Both Input Port and Output Port
- Independently-Synchronized Operation of Input Port and Output Port
- Control Inputs Sampled on Rising Clock Edge
- All Control Signals Assertive-LOW for Noise Immunity
- May be Cascaded for Increased Depth or Paralleled for Increased Width
- 16-mA-lol Three-State Outputs
- Five Status Flags: Full, Almost-Full, Half-Full, Almost-Empty, and Empty; 'Almost' Flags are Programmable
- Almost-Full, Hall-Full, and Almost-Empty Flags may be Made Completely Synchronous, in Optional Enhanced Operating Mode
- Duplicate Enables for Interlocked Paralleled FIFO Operation, for 36-Bit Data Width, when Appropriately Connected, in Optional Enhanced Operating Mode
- Disabling Three-State Outputs Suppresses Reading, in Optional Enhanced Operating Mode
- Data Retransmit Function
- TTLCMOS-Compatible I/O
- Space-Saving 68-Pin PLCC Package

FUNCTIONAL DESCRIPTION

The LH540215/25 are FIFO (First-In, First-Out) memory devices, based on fully-static CMOS dual-port SRAM technology, capable of containing up to 512 or 1024 18-bit words respectively. They can replace two or more bytewide FIFOs in many applications, for microprocessor-tomicroprocessor or microprocessor-to-bus communication. Their architecture supports synchronous operation, tied to two independent free-running clocks at the input and output ports respectively. However, these 'clocks' also may be aperiodic, asynchronous 'demand' signals. Almost all control input signals and status output signals are synchronized to these clocks, to simplify system design.

The input and output ports operate altogether independently of each other, unless the FIFO becomes either absolutely full or else absolutely empty. Data flow is initiated at a port by the rising edge of its corresponding clock, and is gated by the appropriate edge-sampled enable signals.

The following FIFO status flags monitor the extent to which the internal memory has been filled: Full, AlmostFull, Half-Full, Almost-Empty, and Empty. The Almost-Full and Almost-Empty flag offsets are programmable over the entire FIFO depth; but, during a reset operation, each of these is initialized to a default offset of about $1 / 8$ of the depth of one single FIFO, from the respective FIFO boundary. If this default offset is satisfactory, no further programming is required.

After a reset operation, these FIFOs operate in the Default Operating Mode. In this mode, each part is pincompatible and functionally-compatible with the IDT72215A/25A part of similar depth and speed grade. However, the system may program the Command Register to activate any or all of the features available in the optional Enhanced Operating Mode, including selectable-clock-edge flag synchronization, and read inhibition when the data outputs are disabled. Interlocked-operation paralleling is also available, by appropriate interconnection of the FIFO's expansion inputs. Also, assertion of the EMODE control input leaves Command Register bits $06-11$ set, which causes the FIFO to operate in the Enhanced Operating Mode.

The Retransmit control signal causes the internal FIFO read-address pointer to be set back to zero, without affecting the internal FIFO write-address pointer. Thus, the Retransmit control signal also provides a mechanism whereby a block of data delimited by the zero physical address and the current write-address pointer address may be read out repeatedly, an arbitrary number of times.

FUNCTIONAL DESCRIPTION (cont'd)

The only restrictions are that neither the read-address pointer nor the write-address pointer may 'wrap around' during this entire process, and that the retransmit facility is not available when a FIFO is operating in IDT-compatible depth-cascaded mode.

Programming the programmable-flag offsets, the number of FIFOs to be cascaded in depth, the timing synchronization of the various status flags, and the optional read-suppression functionality of $\overline{O E}$ may be individually controlled by asserting the signal $\overline{L D}$, without any reset operation. When $\overline{L D}$ is asserted, while writing is enabled by asserting WEN, some or all of the input bus word $\mathrm{D}_{0}-\mathrm{D}_{17}$ is used at the next rising edge of WCLK to program one or more of the resource registers on successive write clocks. Likewise, the values programmed into
these resource registers may be read out for verification by asserting $\overline{R E N}$, with the outputs $Q_{0}-Q_{17}$ enabled. Reading out these resource registers should not be initiated while they are being written into.

Coordinated operation of two 18-bit FIFOs as one 36-bit FIFO may be ensured by 'interlocked' crosscoupling of status-flag outputs from each port to expansion inputs of the other one; that is, $\overline{E F}$ to $\overline{W X I} / W E N_{2}$, and $\overline{F F}$ to $\overline{\mathrm{RXI}} / \mathrm{REN}_{2}$, in both directions between two paralleled FIFOs. This 'interlocked' operation takes effect automatically, if two paralleled FIFOs are crossconnected in this manner. (See Table 2.) IDT-compatible depth cascading is no longer available when operating in this mode; however, pipelined depth cascading remains possible.

Figure 1. Pin Connections for PLCC Package

PIN DESCRIPTIONS

PIN	NAME	$\begin{gathered} \text { PIN } \\ \text { TYPE* } \end{gathered}$	DESCRIPTION
Do-D ${ }_{17}$	Data Inputs	1	Data inputs from an 18-bit bus.
$\overline{\mathrm{RS}}$	Reset	1	When $\overline{\mathrm{RS}}$ is taken LOW, the FIFO's internal read and write pointers are set to address the first physical location of the RAM array; FF and PAF go HIGH; and PAE and EF go LOW. The offset registers and the Command Register are set to their default values. A reset is required before an initial write after power-up.
EMODE	Enhanced Operating Mode	1	When EMODE is held LOW, Command Register bits $06-10$ are forced HIGH rather than LOW, thus enabling all Enhanced Operating Mode features. (See Table 5.) If this behavior is always desired, EMODE may be grounded. Alternatively, EMODE may be tied to Vcc , so that the FIFO is functionally IDT-compatible.
WCLK	Write Clock	1	Data is written into the FIFO on a LOW-to-HIGH transition of WCLK, whenever $\overline{W E N}$ (Write Enable) is being asserted (LOW), and $\overline{\mathrm{LD}}$ is HIGH. If $\overline{\mathrm{LD}}$ is LOW, a resource register rather than the internal FIFO memory is written into.
WEN	Write Enable	1	When WEN is LOW and $\overline{\mathrm{LD}}$ is HIGH, an 18 -bit data word is written into the FIFO on every LOW-to-HIGH transition of WCLK. When WEN is HIGH, the FIFO internal memory continues to hold the previous data. (See Table 3.) Data will not be written into the FIFO if FF is LOW. In the optional Enhanced Operating Mode, WEN 2 may be combined with WEN to produce an effective internal write-enable signal.
RCLK	Read Clock	1	Data is read from the FIFO on a LOW-to-HIGH transition of RCLK when- is LOW, a resource register rather than the internal FIFO memory is read from.
$\overline{\mathrm{REN}}$	Read Enable	1	When $\overline{\operatorname{REN}}$ is LOW and $\overline{\mathrm{LD}}$ is HIGH, an 18 -bit data word is read from the FIFO on every LOW-to-HIGH transition of RCLK. When REN is HIGH, the FIFO's output register continues to hold the previous data word, whether or not $Q_{0}-Q_{17}$ (the data outputs) are enabled. (See Table 3.) In the optional Enhanced Operating Mode, REN2 may be combined with $\overline{\operatorname{REN}}$ to produce an effective internal read-enable signal.
$\overline{O E}$	Output Enable	1	When $\overline{O E}$ is LOW, the FIFO's data outputs drive the bus to which they are connected. If $\overline{\mathrm{OE}}$ is HIGH, the FIFO's outputs are in high-Z (highimpedance) state. In the optional Enhanced Operating Mode, $\overline{\mathrm{OE}}$ not only continues to control the outputs in this same manner, but also may be configured to function as an additional input to the combined effective read-enable signal, along with $\overline{\text { REN }}$ and perhaps also with REN 2 . (See Table 5.)
$\overline{\text { LD }}$	Load	1	When $\overline{L D}$ is LOW, the data word on $D_{0}-D_{17}$ (the data inputs) is written to the offset and command registers on the LOW-to-HIGH transition of WCLK, whenever WEN is LOW. (See Table 3.) Also, when $\overline{\text { LD }}$ is LOW, a word is read to $Q_{0}-Q_{17}$ (the data outputs) from the offset and/or command registers on the LOW-to-HIGH transition of RCLK, whenever REN is LOW. (See again Table 3.) When $\overline{\mathrm{LD}}$ is HIGH, normal FIFO write and read operations are enabled.

[^7]PIN DESCRIPTIONS (cont'd)

PIN	NAME	$\begin{gathered} \hline \text { PIN } \\ \text { TYPE* } \end{gathered}$	DESCRIPTION
FIRT	First Load/ Retransmit	1	In the standalone or paralleled configuration, $\overline{\mathrm{FL}}$ may be grounded. However, in the standalone or paralleled configuration, if $\overline{F L}$ is taken HIGH, it functions instead as RT (Retransmit), and resets the FIFO's internal read pointer to the first physical location of the RAM array. In the cascaded configuration, $\overline{F L}$ has an entirely different function; it is grounded for the first FIFO device (the 'master' device or 'first-load' device), and is set to HIGH for all other FIFO devices in the daisy chain.
WXI/WEN 2	Write Expansion Input/ Write Enable 2	1	This signal is dual-purpose; its functionality is determined during a reset operation, according to its own state, and also according to the states of the two other control inputs $\overline{\mathrm{RXI} / R E N} \mathrm{~N}_{2}$ and $\overline{\mathrm{FI} / R T \text {. (See Tables } 2 \text { and 6.) }}$ In the standalone or paralleled configuration, $\overline{\mathrm{WXI}} \mathrm{WEN}_{2}$ is grounded. In the cascaded configuration, WXI/WEN2 is connected to WXO (Write Expansion Output) of the previous device, and functions as $\overline{\mathrm{WXI}}$. In the optional Enhanced Operating Mode, WXI/WEN 2 functions as a second write-enable signal, WEN 2 , which is combined with WEN to produce an effective internal write-enable signal.
$\overline{\mathrm{RXI}} / \mathrm{REN}_{2}$	Read Expansion Input/ Read Enable 2	1	This signal is dual-purpose; its functionality is determined during a reset operation, according to its own state, and also according to the states of the two other control inputs $\overline{\mathrm{WXI}} / \mathrm{WEN} 2$ and $\overline{\mathrm{FL}} / \mathrm{RT}$. (See Tables 2 and 6.) In the standalone or paralleled configuration, $\overline{\mathrm{RXI} / R E N} 2$ is grounded. In the cascaded configuration, $\overline{\mathrm{RXI} / R E N} \mathrm{~N}_{2}$ is connected to $\overline{\mathrm{RXO}}$ (Read Expansion Output) of the previous device, and functions as $\overline{\mathrm{RXI}}$. In the optional Enhanced Operating Mode, $\overline{\mathrm{RXI} / R E N} 2$ functions as a second read-enable signal, REN 2 , which is combined with $\overline{\operatorname{REN}}$ - and perhaps also with $\overline{\mathrm{OE}}$, if Command-Register bit 10 is set - to produce an effective internal read-enable signal.
$\overline{\mathrm{FF}}$	Full Flag	0	When $\overline{\text { FF }}$ is LOW, the FIFO is full; further advancement of its internal write-address pointer, and further data writes into its inputs, are inhibited. When FF is HIGH, the FIFO is not full. $\overline{\text { FF }}$ is synchronized to WCLK.
$\overline{\text { PAF }}$	Programmable Almost-Full Flag	0	When $\overline{\text { PAF }}$ is LOW, the FIFO is 'almost full,' based on the almost-full offset programmed into the FIFO. The default value of this offset at reset is about $1 / 8$ of the FIFO capacity, measured from full.' (See Table 4.) In Default Mode, $\overline{\text { PAF }}$ is asynchronous; in the optional Enhanced Operating Mode, $\overline{\text { PAF }}$ is synchronized to WCLK. (See Table 5.)
$\overline{\mathrm{WXO}} / \overline{\mathrm{HF}}$	Write Expansion Output/ Half-Full Flag	0	This signal is dual-purpose; its functionality is determined during a reset operation according to the states of the two control inputs WXI/WEN $_{2}$ and $\overline{\mathrm{RXI} / R E N} \mathrm{~N}_{2}$. (See Tables 2 and 6.) In the standalone or paralleled configuration, whenever $\overline{\mathrm{HF}}$ is LOW the device is more than half full. In Default Mode, $\overline{\mathrm{HF}}$ is asynchronous; in the optional Enhanced Operating Mode, $\overline{\mathrm{HF}}$ may be synchronized either to WCLK or to RCLK. (See Table 5.) In the cascaded configuration, a pulse is sent from WXO to $\overline{\mathrm{WXI}}$ of the next device whenever the last location in the FIFO is written.
$\overline{\text { PAE }}$	Programmable Almost-Empty Flag	0	When $\overline{\text { PAE }}$ is LOW, the FIFO is 'almost empty,' based on the almostempty offset programmed into the FIFO. The default value of this offset at reset is about $1 / 8$ of the FIFO capacity, measured from 'empty.' (See Table 4.) In Default Mode, PAE is asynchronous; in the optional Enhanced Operating Mode, PAE is synchronized to RCLK. (See Table 5.)

[^8]PIN DESCRIPTIONS (cont'd)

PIN	NAME	$\begin{gathered} \text { PIN } \\ \text { TYPE* } \\ \hline \end{gathered}$	DESCRIPTION
$\overline{E F}$	Empty Flag	0	When $\overline{\mathrm{EF}}$ is LOW, the FIFO is empty; further advancement of its internal read-address pointer, and further changes in the data word present at its outputs, are inhibited. When EF is HIGH, the FIFO is not empty. EF is synchronized to RCLK.
$\overline{\mathrm{RXO}}$	Read Expansion Output	0	In the IDT-compatible cascaded configuration, a pulse is sent from $\overline{\mathrm{RXO}}$ to $\overline{\mathrm{RXI}}$ of the next FIFO whenever the last location in the FIFO is read.
$Q_{0}-Q_{17}$	Data Outputs	O/Z	Data outputs to drive an 18-bit bus.
Vcc	Power	V	Seven +5 V power-supply pins.
VSs	Ground	V	Eight 0 V ground pins.

* $I=$ Input, $O=$ Output, $Z=$ High-Impedance, $V=$ Power Voltage Level

Table 1. Depth-Code Programming

DEPTH CODE d	TOTAL DEPTH	
	WITH LH540215s	WITH LH540225s
0	512	1024
1	512	1024
2	1024	2048
3	1536	3072
\ldots	\ldots	\ldots
d	$512 d$	$1024 d$
\ldots	\ldots	\ldots
31	15872	31744
32	16384	32768

Table 2. Grouping-Mode Determination During a Reset Operation

EMODE	WXIWEN ${ }_{2}$	$\overline{\mathrm{RXI} / \mathrm{REN}}$	FLRT	MODE	$\overline{\mathrm{WXO}} / \overline{\mathrm{HF}}$ USAGE	$\overline{\text { WXITWEN }} 2$ USAGE	$\overline{\text { RXI/REN }} 2$ USAGE	$\begin{aligned} & \hline \overline{\text { FURT }} \\ & \text { USAGE } \end{aligned}$
H	H	H	H	Cascaded Slave ${ }^{1}$	$\overline{\text { WXO }}$	$\overline{\text { WXI }}$	RXI	$\overline{F L}$
H	H	H	L	Cascaded Master ${ }^{1}$	WXO	WXI	RXI	$\overline{\mathrm{FL}}$
H	H	L	X	(Reserved)	($\overline{\mathrm{HF}}$)	($\overline{\mathrm{WXI}}$)	($\overline{\mathrm{RXI}}$)	(RT)
H	L	H	X	(Reserved)	($\overline{\mathrm{WXO}}$)	(WXI)	($\overline{\mathrm{RXI}})$	($\overline{\mathrm{FL}}$)
H	L	L	H	Retransmit ${ }^{2}$	$\overline{\mathrm{HF}}$	(none)	(none)	RT
H	L	L	L	Standalone	$\overline{\mathrm{HF}}$	(none)	(none)	RT
L	X	X	X	Interlocked Paralleled	$\overline{\mathrm{HF}}$	WEN 2	REN2	RT

NOTES:

1. The terms 'master' and 'slave' refer to IDT-compatible cascading. In pipelined cascading, there is no such distinction.
2. Momentary only; basically standalone grouping mode.
3. $H=$ HIGH; L = LOW; $X=$ Don't Care.

Figure 2. LH540215/25 Block Dlagram

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING
Supply Voltage to VSS Potential	-0.5 V to 7 V
Signal Pin Voltage to VSS Potential	-0.5 V to VCC + 0.5 V
DC Output Current ${ }^{1}$	$\pm 75 \mathrm{~mA}$
Temperature Range with Power Applied 2	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Power Dissipation (Package Limit)	2 W (PLCC)

NOTES:

1. Only one output may be shorted at a time, for a period not exceeding 30 seconds.
2. Measured with clocks idle.

OPERATING RANGE

SYMBOL	PARAMETER	MIN	MAX	UNIT
T_{A}	Temperature, Ambient	0	70	C
Vcc	Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\text {SS }}$	Supply Voltage	0	0	V
$\mathrm{~V}_{\text {IL }}$	Logic LOW Input Voltage	-0.5	0.8	V
$\mathrm{~V}_{\text {IH }}$	Logic HIGH Input Voltage	2.0	$\mathrm{VCC}+0.5$	V

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
ILI	Input Leakage	VCC $=5.5 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}$ to VCC	-1	1	$\mu \mathrm{~A}$
ILO	I/O Leakage	$\mathrm{OE} \geq \mathrm{VIH}, 0 \mathrm{~V} \leq \mathrm{VOUT} \leq \mathrm{VCC}$	-2	2	$\mu \mathrm{~A}$
VOH	Output HIGH Voltage	$\mathrm{lOH}=-8.0 \mathrm{~mA}$	2.4		V
VOL	Output LOW Voltage	$\mathrm{lOL}=16.0 \mathrm{~mA}$		0.4	V
ICC	Average Operating Supply Current	Measured at fc $=\max$		250	mA
ICC2	Average Standby Supply Current	All inputs $=\mathrm{VIHMIN} \mathrm{(clock} \mathrm{idle)}$		60	mA
ICC3	Power-Down Supply Current	All inputs $=\mathrm{VCC}-0.2 \mathrm{~V}$ (clock idle)		1	mA

AC TEST CONDITIONS

PARAMETER		RATING
Input Pulse Levels		V ss to 3 V
Input Rise and Fall Times (10\% to 90\%)		3 ns
Output Reference Levels		1.5 V
Input Timing Reference Levels		1.5 V
Output Load, Timing Tests	R_{1} (Top Resistor)	1.1 k Ohms
	R_{2} (Bottom Resistor)	680 Ohms
	CL (Load Capacitance)	30 pF

CAPACITANCE

PARAMETER	RATING
C_{IN} (Input Capacitance) $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	7 pF
CO_{O} (Output Capacitance) $\mathrm{VOUT}_{\mathrm{O}}=0 \mathrm{~V}$	7 pF

* INCLUDES JIG AND SCOPE CAPACITANCES 540215-3

Figure 3. Output Load Circuit

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	-15		-20		-25		-50	
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.
fs	Clock Cycle Frequency		67		50		40		20
tA	Data Access Time	2	11	2	14	3	15	3	25
tclk	Clock Cycle Time	15		20		25		50	
tCLKH	Clock HIGH Time	6		8		10		20	
tCLKL	Clock LOW Time	7		9		10		20	
tDs	Data Setup Time	4		5		6		10	
tDH	Data Hold Time	1		1		1		2	
tens	Enable Setup Time	4		5		6		10	
tenh	Enable Hold Time	1		1		1		2	
trs	Reset Pulse Width ${ }^{1}$	15		20		25		50	
tRSS	Reset Setup Time ${ }^{2}$	9		12		15		30	
tRSF	Reset to Flag and Output Time		15		20		25		50
tolz	Output Enable to Output in Low-Z ${ }^{2}$	0		0		0		0	
toe	Output Enable to Output Valid		7		9		12		20
tohz	Output Enable to Output in High-Z ${ }^{2}$	1	7	1	9	1	12	1	20
tWFF	Write Clock to Full Flag		11		14		16		30
treF	Read Clock to Empty Flag		11		12		15		30
tPAF	Clock to Programmable Almost-Full Flag (Default Mode)		15		20		22		35
tPAE	Clock to Programmable Almost-Empty Flag (Default Mode)		15		20		22		35
thF	Clock to Half-Full Flag (Default Mode)		15		20		22		35
tPAFS	Clock to Programmable Almost-Full Flag (Enhanced Mode)		11		12		15		30
tPAES	Clock to Programmable Almost-Empty Flag (Enhanced Mode)		11		12		15		30
thFS	Clock to Half-Full Flag (Enhanced Mode)		11		12		15		30
txo	Clock to Expansion-Out		9		12		15		30
txI	Expansion-In Pulse Width	6		8		10		20	
txis	Expansion-In Setup Time	6		8		10		20	
tSKEW1	Skew Time Between Read Clock and Write Clock for Full Flag	11		14		16		20	
tSKEW2	Skew Time Between Read Clock and Write Clock for Empty Flag	11		14		16		20	

NOTES:

1. Pulse widths less than the stated minimum values may cause incorrect operation.
2. Values are guaranteed by design; not currently tested.

Table 3. Selection of Read and Write Operations

$\overline{\text { LD }}$	$\overline{\text { WEN }}$	$\overline{\text { REN }}$	wCLK	RCLK	ACTION
L	X	X	-	-	No operation.
L	L	H	\wedge	-	Write to a resource register. ${ }^{1}$
L	H	H	\wedge	-	Increment resource-register write counter, but do not write. ${ }^{2}$
L	H	L	-	\wedge	Read from a resource register. ${ }^{1}$
L	H	H	-	\wedge	Increment resource-register read counter, but do not read. ${ }^{2}$
L	X	X	\wedge	\wedge	Illegal combination, which will cause errors.
H	L	X	\wedge	X	Normal FIFO write operation.
H	X	L	X	\wedge	Normal FIFO read operation.
H	L	X	-	X	No write operation.
H	H	X	X	X	No write operation.
H	X	L	X	-	No read operation.
H	X	H	X	X	No read operation.
H	L	L	-	-	No operation.
H	H	H	X	X	No operation.

KEY:
H = Logic 'HIGH'; L = Logic 'LOW'; X = 'Don't-care' (logic 'HIGH,' logic 'LOW,' or any transition);
^ = A 'LOW'-to-'HIGH' transition; - = Any condition EXCEPT a 'LOW'-to-'HIGH' transition.
NOTES:

1. The selection of a resource register to be written or read is controlled by two simple state machines. One state machine controls the selection for writing; the other state machine controls the selection for reading. These two state machines operate independently of each other. Both state machines are reset to point to Word 0 by a reset operation.
2. The order of the three resource registers, as selected by either state machine, is always:

Word 0: Almost-Empty Offset Register
Word 1: Almost-Full Offset Register
Word 2: Command Register
Word 0: Almost-Empty Offset Register
(repeats indefinitely)

Table 4. Status Flags

NUMBER OF DATA WORDS PRESENT WITHIN FIFO ${ }^{1,2}$		$\overline{\mathrm{FF}}$	$\overline{\text { PAF }}$	$\overline{H F}$	$\overline{\text { PAE }}$	EF
512×18 FIFO	1024×18 FIFO					
0	0	H	H	H	L	L
1 to n	1 to n	H	H	H	L	H
$(\mathrm{n}+1)$ to 256	$(\mathrm{n}+1)$ to 512	H	H	H	H	H
257 to (512-(m+1))	513 to (1024-(m+1))	H	H	L	H	H
$(512-m)$ to 511	$(1024-m)$ to 1023	H	L	L	H	H
512	1024	L	L	L	H	H

NOTES:

1. $n=$ Programmable-Almost-Empty Offset. (Default values: $512 \times 18, n=63 ; 1024 \times 18, n=127$.)
2. $m=$ Programmable-Almost-Full Offset. (Default values: $512 \times 18, m=63$; $1024 \times 18, m=127$.)

DESCRIPTION OF SIGNALS AND OPERATING SEQUENCES

Data Inputs

DATA IN (D_{0} - D_{17})

Data, programmable-flag-offset values, and Com-mand-Register codes are input to the FIFO as 18 -bit words on $\mathrm{D}_{0}-\mathrm{D}_{17}$. Unused bit positions in offset and Command-Register words should be zero-filled.

Control Inputs

RESET ($\overline{\mathrm{RS}}$)
The FIFO is reset whenever the asynchronous Reset $(\overline{\mathrm{RS}})$ input is taken to a LOW state. A reset operation is required after power-up, before the first write operation may occur. The state of the FIFO is fully defined after a reset operation. If the default values which are entered into the Programmable-Flag-Offset-Value Registers and the Command Register by a reset operation are acceptable, then no device programming is required. A reset operation initializes the FIFO's internal read-address and write-address pointers to the FIFO's first physical memory location. The five status flags, $\overline{F F}, \overline{P A F}, \overline{H F}, \overline{P A E}$, and $\overline{E F}$, are updated to indicate that the FIFO is completely empty; thus, the first three of these are reset to HIGH, and the last two are reset to LOW. The flag-offset values for PAF and PAE each are initialized to about $1 / 8$ of the depth of a single FIFO; 63 for a 512-word FIFO, and 127 for a 1024-word FIFO. The Command Register is initialized to configure the FIFO to operate in the 100% IDT72215A/25A-compatible Default Operating Mode. The Depth Code is initialized to LLLLLLH (01 10).

ENHANCED OPERATING MODE (EMODE)

Whenever EMODE is being asserted, Command Register bits 06-11 remain HIGH rather than LOW after the completion of the reset operation. Thus, EMODE has the effect of activating optional Enhanced Operating Mode features, without the need to configure the Command Register by the normal programming method. The behavior of these optional features is described in Table 5. For permanent Enhanced Operating Mode operation, $\overline{E M O D E}$ must be grounded.

WRITE CLOCK (WCLK)

A rising edge (LOW-to-HIGH transition) of WCLK initiates a FIFO write cycle if $\overline{\text { LD }}$ is HIGH, or a resource-register write cycle if $\overline{L D}$ is LOW. The 18 data inputs, and all input-side synchronous control inputs, must meet setup and hold times with respect to the rising edge of WCLK. The input-side status flags are meaningful after specified time intervals, following a rising edge of WCLK.

Conceptually, WCLK receives a free-running, periodic 'clock' waveform, used to control other signals which are edge-sensitive. However, there actually is not any abso-
lute requirement that the WCLK waveform must be periodic. An 'asynchronous' mode of operation is in fact possible, if WEN is continuously asserted (that is, is continuously held LOW), and WCLK receives aperiodic 'clock' pulses of suitable duration. There likewise is no requirement that WCLK must have any particular relation to the read clock RCLK. These two clock inputs may in fact receive the same 'clock' signal; or they may receive totally-different signals, which are not synchronized to each other in any way.

WRITE ENABLE (WEN)

Whenever $\overline{\text { WEN }}$ is being asserted (is LOW) and $\overline{\mathrm{LD}}$ is HIGH, and the FIFO is not full, an 18-bit data word is loaded into the input register for the memory array at every WCLK rising edge (LOW-to-HIGH transition). Data words are stored into the two-port memory array sequentially, regardless of any ongoing read operation. Whenever WEN is not being asserted (is HIGH), the input register retains whatever data word it contained previously, and no new data word gets baded into the memory array.

To prevent overrunning the internal FIFO boundaries, further write operations are inhibited whenever the Full Flag ($\overline{\mathrm{FF}}$) is being asserted (is LOW). If a valid read operation then occurs, upon the completion of that read cycle FF again goes HIGH after a time twfF, and another write operation is allowed to begin whenever WCLK makes another LOW-to-HIGH transition. Effectively, $\overline{\mathrm{WEN}}$ is overridden by $\overline{\mathrm{FF}}$; thus, WEN has no effect when the FIFO is full.

In the optional Enhanced Operating Mode, if EMODE is being asserted (is LOW), $\overline{\mathrm{WXI}} / \mathrm{WEN} 2$ functions as WEN_{2}, an additional duplicate (albeit assertive-HIGH) write-enable input, in order to provide an 'interlocking' mechanism for reliable synchronization of two paralleled FIFOs. To control writing, WEN 2 is combined with WEN; the logic-AND function of $\overline{\text { WEN }}$ and WEN $_{2}$ then behaves like $\overline{\mathrm{WEN}}$ in the foregoing description.

READ CLOCK (RCLK)

A rising edge (LOW-to-HIGH transition) of RCLK initiates a FIFO read cycle if $\overline{\mathrm{LD}}$ is HIGH, or a resource-register read cycle if $\overline{L D}$ is LOW. All output-side synchronous control inputs must meet setup and hold times with respect to the rising edge of RCLK. The 18 data outputs, and the output-side status flags, are meaningful after specified time intervals, following a rising edge of RCLK.

Conceptually, RCLK receives a free-running, periodic 'clock' waveform, used to control other signals which are edge-sensitive. However, there actually is not any absolute requirement that the RCLK waveform must be periodic. An 'asynchronous' mode of operation is in fact possible, if REN is continuously asserted (that is, is continuously held LOW), and RCLK receives aperiodic 'clock' pulses of suitable duration. There likewise is no

DESCRIPTION OF SIGNALS AND OPERATING SEQUENCES (cont'd)

requirement that RCLK must have any particular relation to the write clock WCLK. These two clock inputs may in fact receive the same 'clock' signal; or they may receive totally-different signals, which are not synchronized to each other in any way.

READ ENABLE ($\overline{\text { REN }}$)

Whenever $\overline{\mathrm{REN}}$ is being asserted (is LOW), and the FIFO is not full, an 18 -bit data word is loaded into the output register from the memory array at every RCLK rising edge (LOW-to-HIGH transition). Data words are read from the two-port memory array sequentially, regardless of any ongoing write operation. Whenever REN is not being asserted (is HIGH), the output register retains whatever data word it contained previously, and no new data word gets loaded into it from the memory array.

To prevent underrunning the internal FIFO boundaries, further read operations are inhibited whenever the Empty Flag ($\overline{\mathrm{EF}}$) is being asserted (is LOW). If a valid write operation then occurs, upon the completion of that write cycle EF again goes HIGH after a time tref, and another read operation is allowed to begin whenever RCLK makes another LOW-to-HIGH transition. Effectively, REN is overridden by $\overline{\mathrm{EF}}$; thus, $\overline{\mathrm{REN}}$ has no effect when the FIFO is empty.

In the optional Enhanced Operating Mode, one or two additional read enable inputs may be combined with REN to control reading; the logic-AND function of these two or three inputs then behaves like REN in the foregoing description. If EMODE is being asserted (is LOW), $\overline{\mathrm{RXI} / R E N} \mathrm{R}_{2}$ functions as REN 2 , an additional duplicate (albeit assertive-HIGH) $\overline{\text { REN input, in order to provide an }}$ 'interlocking' mechanism for reliable synchronization of two paralleled FIFOs.

Also, if Command Register bit 10 has been set, $\overline{\mathrm{OE}}$ takes on the extra role of serving as yet another duplicate REN input, in addition to its usual function of controlling the FIFO's data outputs, in order to inhibit further read operations whenever the FIFO's data outputs are disabled.

OUTPUT ENABLE ($\overline{O E})$

$\overline{O E}$ is an assertive-LOW, asynchronous, output enable. In the Default Operating Mode, $\overline{\mathrm{OE}}$ has only the effect of enabling or disabling the data outputs $Q_{0}-Q_{17}$. That is, disabling $Q_{0}-Q_{17}$ does not inhibit a read operation, for data being transmitted to the output register; the data will remain available later, when the outputs are again enabled, unless subsequently overwritten. When $Q_{0}-Q_{17}$ are enabled, each of these 18 data outputs is in
a normal HIGH or LOW state, according to the bit pattern of the data word in the output register. When $Q_{0}-Q_{17}$ are disabled, each of these outputs is in the high-Z (high-impedance) state.

In the optional Enhanced Operating Mode, if Command Register bit 10 has been set, $\overline{O E}$ behaves as an additional read enable, as well as enabling and disabling the data outputs $\mathrm{Q}_{0}-\mathrm{Q}_{17}$. Under these circumstances, incrementing the read-address pointer is inhibited whenever $\mathrm{Q}_{0}-\mathrm{Q}_{17}$ are in the high-Z state. Thus, 'reading' successive words which fail to reach the outputs is prevented, as a safeguard against data loss.

LOAD (디)

The Shap LH540215/25 FIFOs contain three 18 -bit resource registers. The contents of these three registers may be loaded with data from the data inputs $\mathrm{D}_{0}-\mathrm{D}_{17}$, or read out on the data outputs $Q_{0}-Q_{17}$. The first two registers are the Programmable-Flag-Offset-Value Registers, for the Programmable Almost-Empty Flag ($\overline{\mathrm{PAE}}$) and the Programmable Almost-Full Flag (PAF) respectively. The third register is the Command Register, which includes the 6 -bit IDT72215A/25A 'Depth Code' field, along with several configuration-control bits for Sharp's optional Enhanced-Operating-Mode features.

None of these three registers makes use of all of its available 18 bits. Figure 4 shows which bit positions of each register are operational. The two Programmable-Flag-Offset-Value Registers each contain the offset value in bits 0-15; bits 16-17 are unused. The Command Register configuration is shown in Table 5. For the Command Register, the default value for any operational bit which has not been programmed is zero (LOW); except, that the default value of the Depth Code is LLLLLH (0110), in conformity with IDT's usage. The default values for both offsets are about $1 / 8$ of the total number of words in the FIFO: 63 for a 512×18 FIFO, and 127 for a 1024×18 FIFO.

Whenever $\overline{\mathrm{LD}}$ and $\overline{\mathrm{WEN}}$ are simultaneously being asserted (are both LOW) the 18 -bit data word from the data inputs $D_{0}-D_{17}$ is written into the Programmable-Empty-Flag-Offset-Value Register at the first rising edge (LOW-to-HIGH transition) of the write clock (WCLK). (See Table 3.) If $\overline{\mathrm{LD}}$ and $\overline{\mathrm{WEN}}$ continue to be simultaneously asserted, another 18 -bit data word from the data inputs $\mathrm{D}_{0}-\mathrm{D}_{17}$ is written into the Programmable-Full-Flag-Off-set-Value Register at the second rising edge of WCLK, and still another 18 -bit data word from the data inputs $\mathrm{D}_{0}-\mathrm{D}_{17}$ is written into the Command Register at the third rising edge of WCLK. At the fourth rising edge of WCLK, writing again occurs to the Programmable-Empty-Flag-Offset-Value Register; and the writing sequence gets repeated on subsequent WCLK rising edges.

DESCRIPTION OF SIGNALS AND OPERATING SEQUENCES (cont'd)

The lower 9 bits of these data words are made use of by the 512 -word LH540215, and the lower 10 bits by the 1024-word LH540225. 10 bits are used for the Command Register, by both the LH540215 and the LH540225. There is no restriction on the values which may occur in these data fields; however, unused bit positions should be encoded LOW in order to maintain forward compatibility.

Writing contents to these three resource registers does not have to occur all at one time, or to be effected by one single sequence of steps. Whenever $\overline{\mathrm{LD}}$ is being asserted (is LOW) but WEN is not being asserted (is HIGH), the FIFO's internal resource-register-write-address pointer advances without any writing actually taking place. Thus, for instance, one or two resource registers may be written, after which the FIFO may be returned to normal FIFO-array-read/write operation by deasserting $\overline{\mathrm{LD}}$ (to HIGH).

Likewise, whenever $\overline{\mathrm{LD}}$ and $\overline{\mathrm{REN}}$ are simultaneously being asserted (are both LOW) the 18-bit data word from the Programmable-Empty-Flag-Offset-Value Register is
read to the data outputs $Q_{0}-Q_{17}$ at the first rising edge (LOW-to-HIGH transition) of the read clock (RCLK). (See Table 3.) If $\overline{\mathrm{LD}}$ and $\overline{\mathrm{REN}}$ continue to be simultaneously asserted, another 18-bit data word from the Programma-ble-Full-Flag-Offset-Value Register is read to the data outputs $\mathrm{Q}_{0}-\mathrm{Q}_{17}$ at the second rising edge of RCLK, and still another 18-bit data word from the Command Register is read to the data outputs $Q_{0}-Q_{17}$ at the third rising edge of RCLK. At the fourth rising edge of RCLK, reading again occurs from the Programmable-Empty-Flag-Offset-Value Register; and the reading sequence gets repeated on subsequent RCLK rising edges.

Reading contents from these three resource registers does not have to occur all at one time, or to be effected by one single sequence of steps. Whenever $\overline{\mathrm{LD}}$ is being asserted (is LOW) but REN is not being asserted (is HIGH), the FIFO's internal resource-register-read-address pointer advances without any reading actually taking place. Thus, for instance, one or two resource registers may be read, after which the FIFO may be returned to normal FIFO-array-read/write operation by deasserting $\overline{\mathrm{LD}}$ (to HIGH).

Figure 4. Resource Registers

DESCRIPTION OF SIGNALS AND OPERATING SEQUENCES (cont'd)

To ensure correct operation, rising edges of WCLK and RCLK should not both be occuring at the same time while $\overline{\mathrm{LD}}$ is being asserted.

FIRST LOAD/RETRANSMIT ($\overline{\mathrm{FLL} / R T) ~}$

FLRT is a dual-purpose signal. It is one of three input signals which select the grouping mode in which the FIFO operates after being reset; the other two of these input signals are $\overline{\mathrm{WXI}} / \mathrm{WEN}_{2}$ and $\overline{\mathrm{RXI} / R E N} \mathrm{~N}_{2}$. There are four possible grouping modes: standalone, interlocked paralleled, cascaded 'master' or 'iirst-load,' and cascaded 'slave.' The designations 'master' and 'slave' pertain to IDT-compatible depth cascading. Tables 2 and 6 show the signal encodings which select each grouping mode.

In standalone or paralleled operation, the FIRT pin should be grounded for strict IDT72215A/25A-compatible operation. However, if it is takenHIGH, the FIFO's internal read-address pointer is reset to address the FIFO'S first physical memory location, without any other reset actions being taken; in particular, the FIFO's internal writeaddress pointer is unaffected. Subsequent read operations may then again read out the same block of data, delimited by the FIFO's first physical memory location and the current value of the write pointer, as was read out previously. There is no limit on the number of times that ablock of data may be retransmitted. The only restrictions are that neither the read-address pointer nor the write-address pointer may 'wrap around' and address the FIFO's first physical memory location a second time during the retransmission process, and that the retransmit facility is unavailable during IDT-compatible cascaded operation.

In IDT-compatible cascaded operation, $\overline{\mathrm{FL}} / \mathrm{RT}$ is grounded to distinguish the 'master' or 'first-load' FIFO from the other 'slave' FIFOs in the cascade, which must all have their $\overline{\mathrm{F}} / \mathrm{RT}$ inputs HIGH during a reset operation. (See again Tables 2 and 6.) The cascade will not operate correctly either without any 'master' FIFO, or with more than one 'master' FIFO.

WRITE EXPANSION INPUT/WRITE ENABLE 2 (WXI/WEN 2)

$\overline{\mathrm{WXI}} \mathrm{WEN}_{2}$ is a dual-purpose signal. It is one of three input signals which select the grouping mode in which the FIFO operates after being reset; the other two of these input signals are $\overline{\mathrm{FL}} / \mathrm{RT}$ and $\overline{\mathrm{RXI}}$. There are four possible grouping modes: standalone, interlocked paralleled, cascaded 'master' or 'tirst-load,' and cascaded 'slave.' The designations 'master' and 'slave' pertain to IDT-compatible depth cascading. Tables 2 and 6 show the signal encodings which select each grouping mode.

In standalone operation, $\overline{\mathrm{WXI}} / \mathrm{WEN}_{2}$ and $\overline{\mathrm{RXI} / R E N_{2}}$ both must be grounded so that the FIFO comes up in the
standalone grouping mode after a reset operation. In interlocked paralleled operation, $\overline{\mathrm{WXI}} / \mathrm{WEN}_{2}$ is tied to FF of the other paralleled FIFO, and RXI/REN 2 is tied to EF of that same other FIFO. This interconnection ensures that both FIFOs will operate together, and remain coordinated, regardless of timing skews.

In cascaded operation, $\overline{\mathrm{WXI}} / \mathrm{WEN} \mathrm{N}_{2}$ is connected to the
 of the previous FIFO in the cascade. $\overline{\mathrm{RXI} / R E N_{2}}$ is likewise connected to the RXO (Read Expansion Output) output of that previous FIFO. A reset operation forces WXO/HF and RXO HIGH for each FIFO; consequently, all FIFOs with their $\bar{W} \mathrm{XI} / \mathrm{WEN}_{2}$ and $\overline{\mathrm{RXI}} / \mathrm{REN}_{2}$ inputs thus connected come up in one of the two cascaded grouping modes, according to whether their FL/RT inputs are grounded or tied HIGH. (See again Tables 2 and 6.)

READ EXPANSION INPUT/READ ENABLE 2 (RXI/REN 2)

$\overline{\mathrm{RXI}} / \mathrm{REN}_{2}$ is a dual-purpose signal. It is one of three input signals which select the grouping mode in which the FIFO operates after being reset; the other two of these input signals are $\overline{\mathrm{FL}} / \mathrm{RT}$ and WXI. There are four possible grouping modes: standalone, interlocked paralleled, cascaded 'master' or 4irst-load,' and cascaded 'slave.' The designations 'master' and 'slave' pertain to IDT-compatible depth cascading. Tables 2 and 6 show the signal encodings which select each grouping mode.

In standalone operation, $\overline{\mathrm{WXI}} / \mathrm{WEN}_{2}$ and $\overline{\mathrm{RXI} / R E N_{2}}$ both must be grounded so that the FIFO comes up in the standalone grouping mode after a reset operation. In interlocked paralleled operation, $\overline{\mathrm{WXI}} / \mathrm{WEN}_{2}$ is tied to $\overline{\mathrm{FF}}$ of the other paralleled FIFO, and $\overline{\mathrm{RXI}} / \mathrm{REN}_{2}$ is tied to $\overline{\mathrm{EF}}$ of that same other FIFO. This interconnection ensures that both FIFOs will operate together, and remain coordinated, regardless of timing skews.

In cascaded operation, $\overline{\mathrm{RXI} / R E N} 2$ is connected to the $\overline{\mathrm{RXO}}$ (Read Expansion Output) of the previous FIFO in the cascade. WXIMEN 2 is likewise connected to the WXO (Write Expansion Output; actually WXO/HF) output of that previous FIFO. A reset operation forces RXO and WXO/HF HIGH for each FIFO; consequently, all FIFOs with their $\overline{\mathrm{RXI}} / \mathrm{REN}_{2}$ and $\overline{\mathrm{WXI}} / \mathrm{WEN}_{2}$ inputs thus connected come up in one of the two IDT-compatible cascaded grouping modes, according to whether their FL/RT inputs are grounded or tied HIGH. (See again Tables 2 and 6 .)

Data Outputs

DATA OUT ($\left.\mathbf{Q}_{0}-\mathbf{Q}_{17}\right)$
Data, programmable-flag-offset values, and Com-mand-Register codes are output from the FIFO as 18 -bit words on $Q_{0}-Q_{17}$. Unused bit positions in offset and Command-Register words are zero-filled.

DESCRIPTION OF SIGNALS AND OPERATING SEQUENCES (cont'd)

Table 5. Command-Register Format

COMMAND REGISTER BITS	CODE	VALUE AFTER RESET	FLAG AFFECTED, IF ANY	DESCRIPTION	NOTES
00-05	XXXXXX	LLLLLH	-	Depth code, from 00_{10} to 3210.	Same functionality as in IDT72215A/25A.
06	L	$L H^{2}$	$\overline{\text { PAE }}$	Set by \uparrow RCLK, reset by \uparrow WCLK.	Asynchronous flag clocking.
	H			Set and reset by \uparrow RCLK.	Synchronous flag clocking.
07-08	LL	LL/HH ${ }^{2}$	$\overline{H F}$	Set by $\uparrow W C L K$, reset by \uparrow RCLK.	Asynchronous flag clocking.
	LH			Set and reset by \uparrow RCLK.	Synchronous flag clocking at output port.
	HL			Set and reset by \uparrow WCLK.	Synchronous flag clocking at
	HH				input port.
09	L	L / H^{2}	$\overline{\text { PAF }}$	Set by \uparrow WCLK, reset by \uparrow RCLK.	Asynchronous flag clocking.
	H			Set and reset by \uparrow WCLK.	Synchronous flag clocking.
10	L	L / H^{2}	-	$\overline{\mathrm{OE}}$ has no effect on a read operation.	Allows the read-address pointer to advance even when $Q_{0}-Q_{17}$ are not driving the output bus.
	H			$\overline{\mathrm{OE}}$ inhibits a read operation whenever the data outputs $Q_{0}-Q_{17}$ are in the high- Z state.	Inhibits the read-address pointer from advancing when $\mathrm{Q}_{0}-\mathrm{Q}_{17}$ are not driving the output bus; thus, guards against data loss.
11	L	L	-	Normal operating mode.	For all in-system applications.
	H			Special test mode.	Reserved for testing purposes.

NOTES:

1. When Command Register bits 06-11 are LOW, the FIFO behaves in a manner functionally equivalent to the IDT72215A25A FIFO of similar depth and speed grade.
2. If $\overline{E M O D E}$ is not asserted (is HIGH), Command Register bits 06-10 remain LOW. However, if EMODE is asserted (is LOW), Command Register bits 06-10 are forced HIGH, and remain HIGH until changed. Command Register bits 00-05 and 11 are unaffected by EMODE.

Table 6. Expansion-Pin Usage According to Grouping Mode

I/O	PIN	STANDALONE	INTERLOCKED PARALLELED	MASTER	SLAVE
1	WXIMEN 2	Grounded	From $\overline{\mathrm{FF}}$ (other FIFO)	From $\overline{W X O}$ (n-1st FIFO)	From $\overline{W X O}$ (n-1st FIFO)
0	$\overline{\mathrm{WXO}} / \overline{\mathrm{HF}}$	Becomes $\overline{\mathrm{HF}}$	Becomes $\overline{\mathrm{HF}}$	To $\overline{\mathrm{WXI}}$ ($\mathrm{n}+1$ st FIFO)	To $\overline{\mathrm{WXI}}$ ($\mathrm{n}+1$ st FIFO)
1	$\overline{\mathrm{RXI}} / \mathrm{REN}_{2}$	Grounded	From $\overline{\mathrm{EF}}$ (other FIFO)	From $\overline{\mathrm{RXO}}$ ($\mathrm{n}-1$ st FIFO)	From $\overline{\mathrm{RXO}}$ (n -1st FIFO)
0	$\overline{\mathrm{RXO}}$	Unused	Unused	To $\overline{\mathrm{RXI}}$ ($\mathrm{n}+1$ st FIFO)	To $\overline{\mathrm{RXI}}$ ($\mathrm{n}+1$ st FIFO)
1	$\overline{\text { FL/RT }}$	Becomes RT	Becomes RT	Grounded (Logic LOW)	Logic HIGH

DESCRIPTION OF SIGNALS AND OPERATING SEQUENCES (cont'd)

Control/Status Outputs

FULL FLAG ($\overline{F F}$)

$\overline{\text { FF }}$ goes LOW whenever the FIFO is completely full; that is, whenever the FIFO's internal write pointer has completely caught up with its internal read pointer, so that if another word were to be written it would have to overwrite the unread word now in position for reading out by the next requested read operation. Under these conditions, the FIFO is filled to its nominal capacity, which is 512 18-bit words for the LH540215 or 102418 -bit words for the LH540225 respectively. Write operations are inhibited whenever FF is LOW, regardless of the assertion or deassertion of Write Enable (WEN).

If the FIFO has been reset by asserting $\overline{\mathrm{RS}}$ (LOW), $\overline{\mathrm{FF}}$ initially is HIGH. But, whenever no read operations have been performed since the completion of the reset operation, FF goes LOW after 512 write operations for the LH540215, or after 1024 write operations for the LH540225. (See Table 4.)

FF gets updated after a LOW-to-HIGH transition of the Write Clock (WCLK).

PROGRAMMABLE ALMOST-FULL FLAG ($\overline{\text { PAF }}$)

$\overline{\mathrm{PAF}}$ goes LOW whenever the FIFO is 'almost' full; that is, whenever subtracting the value of the FIFO's internal read pointer from the value of its internal write pointer yields a difference which is less than the value of the Programmable-Almost-Full-Flag Offset ' m.' The subtraction is performed using modular arithmetic, modulo the total nominal number of 18 -bit words in the FIFO's physical memory, which is 512 for the LH540215 or 1024 for the LH540225 respectively.

The default value of ' m ' after the completion of a reset operation is about $1 / 8$ of this total nominal number of words: 63 for the LH540215 or 127 for the LH540225 respectively. However, ' m ' may be set to any value which does not exceed this total nominal number of words, as explained in the description of Load ($\overline{\mathrm{LD}}$).

If the FIFO has been reset by asserting $\overline{R S}$ (LOW), and no read operations have been performed since the completion of the reset operation, $\overline{\text { PAF }}$ goes LOW after (512-m) write operations for the LH540215, or after (1024 -m) write operations for the LH540225. (See Table 4.)

If m is still at its default value, $\overline{\text { PAF }}$ is LOW whenever the FIFO is from $7 / 8$ full to completely full.

In the IDT-compatible Default Operating Mode, $\overline{\text { PAF }}$ changes from HIGH to LOW only after a LOW-to-HIGH transition of the Write Clock WCLK, and from LOW to HIGH only after a LOW-to-HIGH transition of the Read Clock RCLK. Thus, in this operating mode, PAF behaves as an 'asynchronous flag.'

Inthe optional Enhanced Operating Mode, on the other hand, PAF gets updated only after a LOW-to-HIGH transition of the Write Clock WCLK, and thus behaves as a 'synchronous flag.' (See Table 5.) This behavior may be selected by setting Command Register bit 09.

WRITE EXPANSION OUT/HALF-FULL FLAG (WXO/HF)

$\overline{\mathrm{WXO}} / \mathrm{HF}$ is a dual-purpose signal. In 'standalone' operation, it behaves as a Half-Full Flag ($\overline{\mathrm{HF}}$), in accordance with Table 4. In IDT-compatible 'cascaded' operation, it behaves as a Write Expansion Output (WXO) signal to coordinate writing operations with the next FIFO in the cascade. Under these same conditions, also, the dualpurpose $\overline{\mathrm{WXI}} / \mathrm{WEN}_{2}$ and $\overline{\mathrm{RXI} / R E N} 2$ inputs behave as Write Expansion Input ($\overline{\mathrm{WXI}}$) and Read Expansion Input ($\overline{\mathrm{RXI})}$ signals respectively.

When two or more LH540215 or LH540225 FIFOs are 'cascaded' to operate as a larger 'effective FIFO,' in a 'daisy-chain' ring configuration, the Write Expansion Input (WXI) of each FIFO is connected to $\overline{\mathrm{WXO}}$ of the previous FIFO in the ring, with $\overline{\mathrm{WXI}}$ of the '4irst-load' or 'master' FIFO being connected to $\overline{\mathrm{WXO}}$ of the last FIFO so as to complete the ring. Similar connections are made for each FIFO in the ring, parallel to these $\overline{\mathrm{WXO}}-\mathrm{to}-\overline{\mathrm{WXI}}$ connections, for Read Expansion Input ($\overline{\mathrm{RXI}})$ and Read Expansion Output ($\overline{\mathrm{RXO}}$).

When the last physical location has been written in a FIFO operating in cascaded mode, a LOW-going pulse is emitted by that FIFO on its WXO output; otherwise, WXO remains constantly HIGH whenever the FIFO is operating in cascaded mode. This LOW-going WXO pulse serves as a 'token' in the 'token-passing' FIFO-cascading scheme; it is passed on to the next FIFO in the ring via its WXI input. When this next FIFO receives the token, it is activated for writing.

The foregoing description applies both to the 'first-load' or 'master' FIFO in the ring, and to any and all 'slave' FIFOs in the ring. However, WXO has no necessary function for FIFOs operating in the 'standalone' mode. Consequently, in that mode, the same output pin is used for $\overline{\mathrm{HF}}$; it follows that $\overline{\mathrm{HF}}$ is not available as an output from any FIFO which is operating in the IDT-compatible cascaded mode. A FIFO is initialized into 'cascaded master' mode, into 'cascaded slave' mode, into interlocked paralleled mode, or into standalone mode according to the

DESCRIPTION OF SIGNALS AND OPERATING SEQUENCES (cont'd)

state of its $\overline{\mathrm{WXI}} / \mathrm{WEN}_{2}, \overline{\mathrm{RXI}} / \mathrm{REN}_{2}$, and $\overline{\mathrm{FL}} / \mathrm{RT}$ control inputs during a reset operation, and of Command Register bit 11. (See Table 2, Table 5, and Table 6.)

In standalone or interlocked paralleled operation, $\overline{\mathrm{HF}}$ goes LOW whenever the FIFO is more than half full; that is, whenever subtracting the value of the FIFO's internal read pointer from the value of its internal write pointer yields a difference which is less than half of the total nominal number of 18 -bit words in the FIFO's physical memory, which is 256 for the LH540215 or 512 for the LH540225 respectively. (See Table 4.) The subtraction is performed using modular arithmetic, modulo this total nominal number of words, which is 512 for the LH540215 or 1024 for the LH540225 respectively.

If the FIFO has been reset by asserting $\overline{\mathrm{RS}}$ (LOW), and it is operating in standalone or interlocked paralleled mode, and no read operations have been performed since the completion of the reset operation, $\overline{\mathrm{HF}}$ goes LOW after 257 write operations for the LH540215, or after 513 write operations for the LH540225. (See again Table 4.)

In the IDT-compatible Default Operating Mode, $\overline{\mathrm{HF}}$ changes from HIGH to LOW only after a LOW-to-HIGH transition of the Write Clock WCLK, and from LOW to HIGH only after a LOW-to-HIGH transition of the Read Clock RCLK. Thus, in this operating mode, $\overline{\mathrm{FF}}$ behaves as an 'asynchronous flag.'

Inthe optional Enhanced Operating Mode, on the other hand, $\overline{\mathrm{HF}}$ gets updated only after a LOW-to-HIGH transition of the Read Clock RCLK, or else after a LOW-toHIGH transition of the Write Clock WCLK, according to the setting of bits 07 and 08 of the Command Register. (See Table 5.) Thus, in this mode $\overline{\mathrm{HF}}$ behaves as a 'synchronous flag,' and may be synchronized either to the input side or to the output side of the FIFO.

PROGRAMMABLE ALMOST-EMPTY FLAG (PAE)

$\overline{\text { PAE }}$ goes LOW whenever the FIFO is 'almost empty'; that is, whenever subtracting the value of the FIFO's internal write pointer from the value of its internal read pointer yields a difference which is less than $n+1$, where ' n ' is the value of the Programmable-Almost-Empty-Flag Offset. The subtraction is performed using modular arithmetic, modulo the total nominal number of 18 -bit words in the FIFO's physical memory, which is 512 for the LH540215 or 1024 for the LH540225 respectively.

The default value of n after the completion of a reset operation is about $1 / 8$ of this total nominal number of words, 63 for the LH540215 or 127 for the LH540225 respectively. However, n may be set to any value which
does not exceed this total nominal number of words, as explained in the description of Load ($\overline{\mathrm{LD}}$).

If the FIFO has been reset by asserting $\overline{\mathrm{RS}}$ (LOW), and no write operations have been performed since the completion of the reset operation, then PAE is LOW. (See Table 4.)

If n is still at its default value, $\overline{P A E}$ is LOW whenever the FIFO is from $1 / 8$ full to completely empty.

In the IDT-compatible Default Operating Mode, $\overline{\text { PAE }}$ changes from HIGH to LOW only after a LOW-to-HIGH transition of the Read Clock RCLK, and from LOW to HIGH only after a LOW-to-HIGH transition of the Write Clock WCLK. Thus, in this operating mode, $\overline{\text { PAE }}$ behaves as an 'asynchronous flag.'

Inthe optional Enhanced Operating Mode, on the other hand, $\overline{\text { PAE }}$ gets updated only after a LOW-to-HIGH transition of the Read Clock RCLK, and thus behaves as a 'synchronous flag.' (See Table 5.) This behavior may be selected by setting Command Register bit 06.

EMPTY FLAG (EF)

$\overline{\mathrm{EF}}$ goes LOW whenever the FIFO is completely empty; that is, whenever the FIFO's internal read pointer has completely caught up with its internal write pointer, so that if another word were to be read out it would have to come from the physical memory location now in position to be written into by the next requested write operation. Read operations are inhibited whenever $\overline{E F}$ is LOW, regardless of the assertion or deassertion of $\overline{R E N}$.

If the FIFO has been reset by asserting $\overline{\mathrm{RS}}$ (LOW), and no write operations have been performed since the completion of the reset operation, then EF is LOW. (See Table 4.)

EF gets updated after a LOW-to-HIGH transition of the Read Clock RCLK.

READ EXPANSION OUT ($\overline{\mathrm{RXO}}$)

When two or more LH540215 or LH540225 FIFOs are operating in IDT-compatible 'cascaded' mode as a larger 'effective FIFO,' the dual-purpose $\overline{\mathrm{RXI}} / \mathrm{REN}_{2}$ and WXI/WEN 2 inputs behave as Read Expansion Input ($\overline{\mathrm{RXI}}$) and Write Expansion Input ($\overline{\mathrm{WXI}}$) signals respectively. The cascade of FIFO devices has a 'daisy-chain' ring configuration; the Read Expansion Input ($\overline{\mathrm{RXI}})$ of each FIFO is connected to RXO of the previous FIFO in the ring, with $\overline{\mathrm{RXI}}$ of the 'first-load' or 'master' FIFO being connected to $\overline{\mathrm{RXO}}$ of the last FIFO so as to complete the ring. Similar connections are made for each FIFO in the ring, parallel to these $\overline{\mathrm{RXO}}-\mathrm{to}-\overline{\mathrm{RXI}}$ connections, for Write Expansion Input ($\overline{\mathrm{WXI})}$ and Write Expansion Output (WXO).

DESCRIPTION OF SIGNALS AND OPERATING SEQUENCES (cont'd)

When the last physical location has been read in a FIFO operating in cascaded mode, a LOW-going pulse is emitted by that FIFO on its $\overline{\mathrm{RXO}}$ output; otherwise, $\overline{\mathrm{RXO}}$ remains constantly HIGH. This LOW-going RXO pulse serves as a token' in the token-passing FIFO-cascading scheme; it is passed on to the next FIFO in the ring via its $\overline{\mathrm{RXI}}$ input. When this next FIFO receives the token, it is activated for reading.

After a FIFO emits an RXO pulse, its data outputs go into high-Z state, regardless of the assertion or deassertion of its Output Enable ($\overline{\mathrm{OE}}$) control input, until it again receives the token.

The foregoing description applies both to the 'first-load' or 'master' FIFO in the ring, and to any and all 'slave' FIFOs in the ring. However, $\overline{\mathrm{RXO}}$ has no necessary function for a FIFO which is operating in 'standalone' mode. Consequently, in that mode, $\overline{\mathrm{RXO}}$ is never asserted, and remains constantly HIGH. A FIFO is initialized into 'standalone' mode, into 'cascaded master' mode, or into 'cascaded slave' mode according to the state of its $\overline{W X I} /$ WEN $_{2}, \overline{\mathrm{RXI} / R E N} 2$, and $\overline{\mathrm{FL}} / \mathrm{RT}$ control inputs during a reset operation. It also may be forced into interlocked paralleled mode by EMODE. (See Table 2, Table 5, and Table 6.)

FEATURES

- Fast Cycle Times: $15 / 20 / 25 / 30 \mathrm{~ns}$
- Selectable 36/18/9-Bit Word Width on Both Input Port and Output Port
- 'Synchronous' Enable-Plus-Clock Control at Both Ports
- Independently-Synchronized Operation of Input Port and Output Port
- Pinout Similar to LH5420 $256 \times 36 \times 2$ Bidirectional FIFO
- Control Inputs Sampled on Rising Clock Edge (Except $\overline{\mathrm{RS}}$ and $\overline{\mathrm{AOE}})$
- Most Control Signals Assertive-LOW for Noise Immunity
- High-Drive Three-State Outputs
- Device Comes Up Into Known Default State at Reset; Programming is Allowed, but is not Required
- Five Status Flags: Full, Almost-Full, Half-Full, Almost-Empty, and Empty; 'Almost' Flags are Programmable
- All Five Status Flags are Completely Synchronous
- Duplicate Enables for Interlocked Paralleled FIFO Operation, for 72-Bit Data Width
- Both Edge-Sampled ($\overline{\mathrm{OE}}$) and Asynchronous ($\overline{\mathrm{AOE}})$ Output Enables
- Automatic Byte Parity Checking; Optional Byte Parity Generation
- TTUCMOS-Compatible I/O
- IEEE1149.1-Compliant (JTAG) Boundary-Scan Test Logic
- Space-Saving PQFP and PGA Packages

FUNCTIONAL DESCRIPTION

The LH543620 is a FIFO (First-In, First-Out) memory device, based on fully-static CMOS RAM technology, capable of containing up to 102436 -bit words. It can replace four or more byte-wide FIFOs in many applications, for microprocessor-to-microprocessor or micropro-cessor-to-bus communication. Its architecture supports synchronous operation, tied to two independent free-running clocks at the input and output ports respectively.

However, these 'clocks' also may be aperiodic, asynchronous 'demand' signals. Almost all control input signals and status output signals are synchronized to these clocks, to simplify system design.

The input and output ports operate altogether independently of each other, unless the FIFO becomes either absolutely full or else absolutely empty. Data flow is initiated at a port by the rising edge of its corresponding clock, and is gated by the appropriate edge-sampled enable signals.

The following FIFO status flags monitor the extent to which the internal memory has been filled: Full, AlmostFull, Half-Full, Almost-Empty, and Empty. The Almost-Full and Almost-Empty flags are programmable over the entire FIFO depth; but they are each initialized to a default offset of eight locations from the respective boundaries during a reset operation. If this default offset is satisfactory, no further programming is required.

Both the input port and the output port may be set, independently, to operate at three data-word widths: 36 bits, 18 bits, and 9 bits. This setting may be changed during system operation; however, the word-width-control signals must meet the usual setup-time and hold-time conditions for control inputs.

9-bit bytes passing through the FIFO are assumed to be making use of a parity bit, and parity is automatically passively checked. A flag indicates the results of this parity checking; if parity checking is not desired, the value of this flag may be ignored. When the FIFO is reset, the parity-checking logic is initialized to use odd data parity; but the FIFO may be programmed to use either even parity or odd parity during subsequent operations. Also, the FIFO may be programmed to actively generate, and record, a parity bit into the most-significant bit of each 9 -bit byte of data passing through the internal memory array, overwriting the previous contents of those bits.

Coordinated operation of two paralleled LH543620 FIFOs, as one $1 \mathrm{~K} \times 72$ FIFO, may be ensured by 'interlocked' crosscoupling of the $\overline{F F}$ and $\overline{E F}$ outputs from each FIFO to the assertive-HIGH enable inputs of the other one; $\overline{\mathrm{FF}}$ to ENI_{2}, and $\overline{\mathrm{EF}}$ to ENO_{2}, in both directions between two paralleled FIFOs.

Two separate input control signals are provided for enabling/disabling the 3 -state outputs: $\overline{O E}$, which is synchronized to CKO, and is held in a flipflop within the LH543620 during use; and $\overline{\text { AOE, which is entirely asyn- }}$ chronous. In any given application, whichever one of these signals is not in use normally must be grounded, both must be asserted to enable the 3 -state outputs.

GENERAL INFORMATION - 1

DYNAMIC RAMs - 2

PSEUDO STATIC RAMs - 3

STATIC RAMs - 4

EPROMs/OTPROMs - 5

MASK PROGRAMMABLE ROMS - 6

FIFO MEMORIES - 7

FIELD MEMORIES - 8

APPLICATION AND TECHNICAL INFORMATION - 9

PACKAGING - 10

FEATURES

- $276,480 \times 4$ bit configuration (270 lines $\times 1,024$ bits)
- Applicable to 4 fsc sampling field size (263 lines $\times 910$ bits) for NTSC signal
- Selectable field size:

Line count: 262, 262.5, 263, or 270
Line length: 910 or 1,024

- $\overline{\mathrm{RCLR}}$ and $\overline{\mathrm{WCLR}}$ pins allow the memory to be used as a delay line of desired bit length (1 to 276,480 bits)
- Access time: 50 ns (MAX.)
- Cycle time: 60 ns (MIN.)
- Power supply: $5 \mathrm{~V} \pm 10 \%$
- Power consumption:

Operating: 550 mW (MAX.)
Standby: 110 mW (MAX.)

- TTL compatible I/O
(Three state for $\mathrm{DO}_{0}-\mathrm{DO}_{3}$)
- Package:

28-pin, 400-mil SDIP

DESCRIPTION

The LH64270 is a field memory LSI organized as 276,480 words $\times 4$ bits of dynamic RAM.

It performs consecutive read and write operation of NTSC signals at a 4 fsc sampling rate to obtain one field of delayed data (as a result).

It is designed for use in personal computers as well as in IDTV systems.

PIN CONNECTIONS

Figure 1. Pin Connections for SDIP Package

Figure 2. LH64270 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME	NOTE
WCK,RCK	Write/read clock input	
\bar{W}	Write control input	
$\overline{\mathrm{OE}}$	Output enable input	
EXT/ $\overline{\mathrm{NT}}$	External/internal sync. select input	
$\overline{\text { WCLR }, \overline{R C L R}}$	Write/read address clear input	
$\mathrm{DI}_{0}-\mathrm{Dl}_{3}$	Write data input	

SIGNAL	PIN NAME	NOTE
$\mathrm{DO}_{0}-\mathrm{DO}_{3}$	Read data output	
$\mathrm{LS}_{0}, \mathrm{LS}_{1}$	Line count select input	
BS	Bit count select input	
$\mathrm{Vcc}_{\mathrm{c}}, \mathrm{Vcc}_{1}$, VCC_{2}	+5 V power supply	1
GND, $\mathrm{GND}_{1}-\mathrm{GND}$ 4		

NOTES:

1. Pins 21,26 and 27 are not interconnected. These pins should all be connected to +5 V power.
2. Pins $8,22,23,24$ and 25 are not interconnected. These pins should all be connected to 0 V .

PIN FUNCTION

SIGNAL	PIN NAME	/0	FUNCTION
$\mathrm{DI}_{0}-\mathrm{Dl}_{3}$	Data input	1	Write data input
$\mathrm{DO}_{0}-\mathrm{DO}_{3}$	Data output	0	Read data output (Three state)
$\overline{\text { WCLR }}$	Write address pointer clear	1	Set the address of the next write cycle, after setting the WCLR signal at "LOW", to the beginning-of-field address (Address 0). The WCLR signal is detected only for one write cycle period after its falling edge.
$\overline{\mathrm{RCLR}}$	Read address pointer clear	1	Set the address of the next read cycle, after setting the $\overline{\text { RCLR }}$ signal at "LOW", to the beginning-of-field address (Address 0). The RCLR signal is detected only for one read cycle period after its falling edge.
$\overline{\text { w }}$	Write control	1	The $\overline{\mathrm{W}}$ signal controls data write operation. It also enables write operation of one field ($\bar{W}=$ "Low") or disables write operation of one field ($\bar{W}=$ "High") by synchronizing with the WCLR signal.
$\overline{O E}$	Output enable	1	The $\overline{\mathrm{OE}}$ signal controls data read from data output pins. Its "Low" level enables data read on the data output pins, and its "High" level prohibits data read with setting the data output pins to high-impedance. Regardless of the $\overline{\text { OE signal's input level, the read address pointer continues to step up in }}$ response to the read clock (RCK).
WCK	Write clock	1	The WCK clock is a system clock input for data write. Write data is sampled by a rising edge of the WCK clock and transferred to an internal write data register. The write address pointer is stepped up by one address in each write clock cycle.
RCK	Read clock	1	The RCK clock is a system clock input for data read. Read data is output after the access time from the rising edge of the clock. The read address pointer is stepped up by one address in each read clock cycle. The RCK clock is required to be identical to the WCK clock.
$\mathrm{LS}_{0}, \mathrm{LS}_{1}$	Line selection	1	LSo and LS_{1} signals determine the line number of one field. According to the combination of these signal input levels, one field can be 262 lines, 262.5 lines, 263 lines, or 270 lines. The line number can be determined for each field. [$\left(L_{0}, L S_{1}\right) ;(L, L)=262$ lines, $(H, L)=262.5$ lines, $(L, H)=263$ lines, $(H, H)=270$ lines]
BS	Bit selection	1	The BS signal sets the line bit length to either 910 bits (BS = "Low") or 1024 bits (BS = "High"), which is selectable for each field.
EXT//NT	Ext./Int. sync. selection	1	INT sync. mode: Setting this pin "LOW" invokes internal sync. mode. In this mode, the write address and read address are always coincident. Following a data write or a data read of the last bit of the last line of a field, the first clock input (WCK, RCK) starts a new access from the first bit of the first line of the next field. (Data input and output for one field is consecutively performed). The clear signals (WCLR, $\overline{R C L R}$) must be kept at "HIGH" level in this mode. EXT sync. mode: Setting this pin "HIGH" invokes external sync. mode. In this mode, the write address and the read address can be independently controlled. The write address and the read address can be reset by the WCLR signal and the RCLR signal, respectively.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Pin voltage	V_{T}	-1.0 to +7.0	V
Supply voltage	VCC^{2}	-1.0 to +7.0	V
Output current	lo	50	mA
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS (TA = 0 to $70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
Input "High" voltage	V_{IH}	2.4		5.5	V
Input "Low" voltage	V_{IL}	-1.0		0.8	V

DC CHARACTERISTICS ($\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT
Supply current	lcc1	twcs, trcs $=60 \mathrm{~ns}$		100	mA
Standby current	Icce	$\overline{\mathrm{W}}, \overline{\mathrm{RCLR}}, \overline{\mathrm{WCLR}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ BS, RCK, WCK, LS ${ }_{0}, L_{S}=V_{I L}$ Dlo- $\mathrm{Dl}_{3}, \mathrm{EXT} / \mathrm{INT}=$ Don't care $\mathrm{DO}_{0}-\mathrm{DO}_{3}=$ Open		20	mA
Input leakage current	11	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$ 0 V on all inputs except the pin under test	-10	10	$\mu \mathrm{A}$
Output leakage current	lo	$0 \mathrm{~V} \leq$ Vout $\leq 5.5 \mathrm{~V}$ $\mathrm{DO}_{0}-\mathrm{DO}_{3}=$ High-impedance	-10	10	$\mu \mathrm{A}$
Output "High" voltage	VOH	lout $=-2 \mathrm{~mA}$	2.4	-	V
Output "Low" voltage	VOL	lout $=4.0 \mathrm{~mA}$	-	0.4	V

AC CHARACTERISTICS ($\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
RCK cycle time	tracs	60	160	ns
WCK cycle time	twes	60	160	ns
RCK "High" pulse width	trew	20		ns
WCK "High" pulse width	twcw	20		ns
RCK "Low" pulse width	tracP	20		ns
WCK "Low" pulse width	twCP	20		ns
Input data setup to WCK	IIDS	5		ns
Input data hold to WCK	tIDH	5		ns
Access time from RCK	trac		50	ns
Output data hold to RCK	troh	5		ns
$\overline{\mathrm{OE}}$ access time	toea		30	ns
Output data hold time from $\overline{O E}$	toen	0		ns
Output disable time from $\overline{\mathrm{OE}}$	toez		40	ns
\bar{W} setup time from WCK	twws	5		ns
\bar{W} hold time from WCK	twWH	0		ns
BS setup time from RCK, WCK	tBSS	0		ns
BS hold time from RCK, WCK	tBSH	15		ns
LS ${ }_{0}-L^{1}$ s setup time from RCK, WCK	tLSs	0		ns
LS ${ }_{0}$ - LS ${ }_{1}$ hold time from RCK, WCK	tLSH	15		ns
RCLR, $\overline{\text { WCLR }}$ pulse width	tCLP	30		ns
$\overline{\text { RCLR, }}$ WCLR setup time from RCK, WCK	tcLs	5		ns
/	tCLH	5		ns
Input transition time (rise/fall)	t	3	35	ns

NOTE: At least $500 \mu \mathrm{~s}$ of pause time after power-on should be given, and then clocks (WCK and RCK) must be input more than 8,192 times to initialize dynamic circuits.

AC TEST CONDITIONS

PARAMETER	RATING
Input pulse level	0 to 3 V
Input rise/fall time	5 ns
Input timing reference level	1.5 V
Output timing reference level	$0.8 \mathrm{~V}, 2 \mathrm{~V}$

CAPACITANCE

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT
Input capacitance	$\mathrm{C}_{\boldsymbol{I}}$	All input pins		10	pF
Output capacitance	C_{o}	All output pins		10	pF

Figure 3. Internal Sync. Mode (EXT/INT - Low)

Figure 4. External Sync. Mode (EXT/INT - High)

ORDERING INFORMATION

Example: LH64270-50 (CMOS 1M (270K x 4) Field Memory, 50 ns , 28-Pin, 400-mil SDIP)

LH66180

FEATURES

- Dynamic "FIFO" memory organized as 263 rows $\times 720$ columns $\times 6$ bits (compatible with NTSC composite signal processing)
- First FIFO operation:

Serial access time: 65 ns (MAX.)
Serial cycle time: 88 ns (MIN.)

- Power consumption:

Operating: 413 mW (MAX.)
Standby: 83 mW (MIN.)

- 6-bit parallel I/O pin
- Uninterrupted, simultaneous read/write capability
- Built-in top address data register for memory address reset data
- Built-in resettable sequential address generator
- Self-refresh function
- Memory address reset capability for one field
- Single +5 V power supply
- TTL compatible I/O
- CMOS double-metal process
- Package:

22-pin, 400-mil DIP

DESCRIPTION

The LH66180 is a $189,360 \times 6$ bit dynamic FIFO memory which provides fast image data processing at a 6 bit rate. Since it is compatible with 3 fsc sampling and one field of 6 -bit quantized data, the LH66180 is applicable to a field memory for use in VCRs and video disc recorders.

The LH66180's memory block is divided into two sections so that fast image data of large capacity can be efficiently processed. Those two sections of memory block are alternately accessed to read and write data simultaneously and continuously.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP Package

Figure 2. LH66180 Block Diagram

PIN DESCRIPTION

SIGNAL	IO	PIN NAME
Dl_{0} - Dl_{5}	1	Serial input for 6-bit data to be received from A/D converter.
$\mathrm{DO}_{0}-\mathrm{DO}_{5}$	0	Serial output for 6-bit data to be transferred to D/A converter.
SCK	1	Serial clock input. Applying a HIGH level signal to the SCK pin places the device in self-refresh mode.
$\overline{\text { RST }}$	1	Reset input for an accessed memory address. The memory address is reset in response to the fall of the RST signal, and restarts memory cycling from the top address of memory.
$\overline{\text { WE }}$	1	Write control input for one field of serial input data. Applying a LOW level signal to WE pin allows read/write operation. A HIGH level signal allows read operation
$\mathrm{V}_{\text {cc }}$	1	+5 V power supply *
GND	1	0 V power supply *

NOTE: The device has multiple Vcc and GND for reduced noise. All Vcc and GND pins must be connected.

READ OPERATION

The Field Memory consists of a DRAM cell array which is divided into two blocks, and a top address register which is accessed immediately after a reset. Data is output from $\mathrm{DO}_{0}-\mathrm{DO}_{5}$ synchronously with SCK. The first 12 bits of data are accessed from the top address register in response to the fall of the RST signal. During this period, data in all the memory cells linked to row address No. 1 of the first memory block are transferred to the first R register. This data is subsequently output in succession from the first R register by the SCK clock. Before all the data is output from the first R register, the second memory block becomes active, and data in all the memory cells linked to row address No. 1 of the second memory block are transferred to the second R register. These are output by the SCK clock following the last data of the first R register. In this manner, the memory blocks are alternately accessed, so that data can be continuously output from the alternate R registers by the SCK clock. Whenever the memory address is reset with the RST signal, data is re-read starting with the top address register. Thus, uninterrupted reading of data is made possible.

WRITE OPERATION

Data is input through Dlo-Dl5 whenever $\overline{\mathrm{WE}}=$ "Low". The first 12 bits are input to the top address register in response to the fall of the $\overline{\operatorname{RST}}$ signal. Thereafter, data is input to the first W register, synchronously with the SCK clock. Once the first W register becomes filled with input data, subsequent input data is directed to the second W register. Meanwhile, the contents of the first W register are transferred into row address No. 1 of the first memory block. Once the second W register becomes filled, its contents are transferred into row address No. 1 of the second memory block, while the first W register receives new input data. In this manner, the data is alternately input to the W registers, then transferred to the memory cells one row at a time. This operation is alternately repeated until the memory address is reset by the RST signal, causing data to be input to the top address register while the row address is reset. Thus, uninterrupted writing of data is made possible.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V_{T}	-1.0 to +7.0	V	1
Operating temperature	Topr	0 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	

NOTE: 1. The maximum applicable voltage on any pin with respect to GND.
RECOMMENDED OPERATING CONDITIONS (TA = 0 to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	V_{CC}	4.5	5.0	5.5	V
	GND	0	0	0	V
Input voltage	V_{IH}	2.4		6.5	V
	$\mathrm{~V}_{\mathrm{IL}}$	-1.0		0.8	V

NOTE: Referenced to GND.
DC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT
Input voltage	$\mathrm{V}_{\text {IH }}$		2.4	6.5	V
	$\mathrm{V}_{\text {IL }}$		-1.0	0.8	V
Output voltage	V OH	lout $=-2 \mathrm{~mA}$	2.4		V
	VOL	lout $=4.2 \mathrm{~mA}$		0.4	V
Operating current	Icc	During normal operation $\mathrm{t}_{\mathrm{scc}}=$ MIN., outputs open		75	mA
Standby current	ISB	SCK $=\mathrm{V}_{\text {IH }}$ (MIN.)		20	mA
	ISB1	SCK $=$ VCC -0.2 V		15	mA
Input leakage current	ll	$0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 6.5 \mathrm{~V}$, outputs open 0 V on all other pins	-10	10	$\mu \mathrm{A}$

AC CHARACTERISTICS (VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Serial clock "H" pulse width	tsCH	30	40		ns
Serial clock "L" pulse width	tsCL	30	40		ns
Serial clock cycle time	tsCC	88	93	140	ns
$\overline{\text { RST setup time }}$	tRSS	5			ns
$\overline{\text { RST hold time }}$	tRSH	15			ns
Access time from SCK	tsCA			65	ns
Hold time for SCK	tsDH	10			
$\overline{\text { WE setup time }}$	twCs	5			ns
$\overline{\text { WE }}$ hold time	twCH	0			ns
Setup time for data input	tDS	5			ns
Hold time for data input	tDH	25			ns
Self-refresh start time	tREFST	100			$\mu \mathrm{~s}$

CAUTION:

At power on, for proper operation, at least 500μ s of pause time followed by 1,440 initialization cycles should be given.

Figure 3. Serial Clock Timing

Figure 4. Field Synchronous Mode (Read/Write Cycle)

NOTE: Appling a HIGH level signal to $\overline{W E}$ places the device in read-out mode, and still pictures can be obtained.

To enter self-refresh mode, it is necessary to return to the top of a memory address with an RST input, while the WE signal is kept HIGH in order to inhibit write operation. Then, at least 12 initialization cycles up to 360 cycles should be given. When the SCK goes HIGH for more than $100 \mu \mathrm{~s}$, the device is placed in self-refresh mode. To resume access after self-refresh, it is necessary to return to the top of a memory address with an RST input. Read out the one field after self-refresh by applying a HIGH level signal to WE.

Figure 5. Self-refresh Mode (Note 2)

ORDERING INFORMATION

$\frac{\mathrm{X}}{\text { Package }} \quad \frac{-\# \#}{\text { Speed }}$

GENERAL INFORMATION - 1

DYNAMIC RAMs - 2

PSEUDO STATIC RAMs - 3

STATIC RAMs - 4

EPROMs/OTPROMs - 5

MASK PROGRAMMABLE ROMS - 6

FIFO MEMORIES - 7

FIELD MEMORIES - 8

APPLICATION NOTES AND CONFERENCE PAPERS - 9

DATABUS FUNNELING MADE EASY

INTRODUCTION

The Sharp LH5420 $256 \times 36 \times 2$ CMOS Bidirectional FIFO is an innovative device which turns the difficult task of funneling and defunneling different-size databusses into an easy one-component solution. Funneling refers to a situation where data from a larger databus (eg. 32-bits wide, 36 -bits with parity) must be segmented (usually in increments of 8 -bits, 9 -bits with parity) and transferred to a smaller databus (eg. 8 -bits wide, 9 -bits with parity). The funneling options available on the LH5420 are " 36 -bits to 9 -bits" and " 36 -bits to 18 -bits". Defunneling refers to just the opposite of funneling. To defunnel, data from a smaller databus (eg. 8 -bits wide, 9 -bits with parity) is combined together sequentially with other data from that databus, and transferred in parallel to a larger databus (eg. 32-bit wide, 36 -bit with parity). The defunneling options avail-
able are " 9 -bits to 36 -bits" and " 18 -bits to 36 -bits". For wide word applications on both ports, " 36 -bit to 36 -bit" buffering is also available.

A very important feature of the LH5420 is the ability to operate bidirectionally. The term Bidirectional refers to the LH5420s ability to funnel and defunnel between different sized databusses, allowing data to travel in both directions. Bidirectional operation is also available when the full width of both ports are used (eg. 36-bit to 36 -bit buffering).

The advantages of the LH5420 bidirectional FIFO to the system designer are: elimination of several conventional FIFOs and glue logic; significant reduction of board space; elimination of the complexities of handling bus contention; and improved system performance. But, most importantly, it makes databus funneling easy.

Figure 1. LH5420 Block Diagram

CONVENTIONAL DATABUS FUNNELING SOLUTIONS CAN BE AWKWARD

The rapid transfer of information between a databus of one size to a databus of a different size (funneling or defunneling) seems like a simple enough operation, when viewed on paper in block diagram form; but the block diagram must be transformed into a high-speed circuit design. Conventional solutions require many components, and considerable board area. Further, the timing required for reading, writing, and flag detection for multiple parts in parallel, places a heavy burden on reliable high speed operation.

CONVENTIONAL FUNNELING CIRCUIT DESIGN

Figure 2 shows a bus-funneling circuit designed using conventional components. Figure 2 a is an example of the timing required to use the circuit in Figure 2. Figure 3 shows the circuit which must accompany Figure 2 if the circuit were expected to operate bidirectionally (funnel and defunnel). Figure $3 a$ is an example of the timing required to use the circuit in Figure 3. An obvious disadvantage of this conventional funneling circuit is the number of components required. One "Programmable

Logic Device" (PLD) and four standard 256×9 FIFOs are required for one-way funneling. If bidirectional operation (funneling and defunneling) is important, two PLD's and eight 256×9 FIFOs are required. The combination of all these components results in very restrictive data setup (tDS) and hold (tDH) timings during a Write cycle, and restrictive access timings (t A) due to the risk of databus contention during a Read cycle. In many cases, high speed operation would be out of the question. Tight controls on signal noise and signal skew might also be required to keep the four FIFOs synchronized. After all this, the circuit designer would do just about anything for a single-chip solution. Setup and Hold times for a single asynchronous 256×9 FIFO are typically 10 ns and 0 ns respectively for access times of 20 ns . Because this defunneling circuit is a combination of separate components (see Figure 3), setup and hold times would have to be increased significantly to ensure correct synchronization due to signal propagation delays of the control signals and data. In a conventional defunneling circuit, there could be as many as four 9 -bit words waiting to be written sequentially into four different FIFOs. Each of the four 9 -bit words requires its own setup (tDs) and hold (tDH) time (see Figure 3a). These restrictions will limit the maximum defunneling frequency of this circuit.

Figure 2. 36-Bit to 9-Bit Conventional Funneling FIFO Circuit

Databus contention is a common problem experienced when combining two or more output pins from different devices in parallel, on the same databus (see Figure 2). If during a Read cycle, at least two of the output pins happen to be momentarily on at the same time, the two output drivers potentially could fight against each other driving the data bus to opposite logic states (one driver pulling the bus to 0 V , while the other driver is simultaneously pulling the bus to 5 V). Databus contention degrades system performance and increases the system operating current.
Another significant disadvantage with using the conventional component solution is handling the flags. Each 256×9 FIFO has 3 types of flags which can be used in the application to indicate the current FIFO status (Empty, Full, or Half Full). Most designers use a flag from only one of the four FIFOs. This flag-handling technique has a significant disadvantage. When a flag from only one of the four 9 -bit wide FIFOs is used to represent the entire 36 -bit word, there is no way to insure that the other three FIFO flags are synchronized (empty, full, or half full at the same time) with the first. There is the possibility that one, two, or all three of the other FIFOs may have become unsynchronized (due to
signal noise, excessive signal skew, etc.) and are now contributing incorrect data to the 36 -bit word.

SHARP's Single Chip Solution to the Complexities of Funneling

The LH5420 CMOS Bidirectional FIFO was designed specifically to simplify the handling of wide-word (up to 36 -bits) data buffering. The notable features of this device relating to data bus funneling are:

- Selectable 36/18/9-bit Word Width on Port B
- Two 256×36-bit FIFO Buffers for Bidirectional Operation
- Synchronous operation on both Ports A and B
- Fully Asynchronous Communications between Port A and Port B
- Only One Set of Flags for the Entire 36-bit Wide Word
- Capable of $40-\mathrm{MHz}$ operation

NOTE: $\bar{r}_{0}, \bar{r}_{1}, \bar{r}_{2}, \bar{r}_{3}=$ PLD generated READ signals.
Figure 2a. 36-Bit to 9 -Bit Conventional Funneling Write and Read Timing Diagram

The LH5420 provides an easy one chip solution to the problems associated with funneling one size databus to a different size databus (see Figure 3). The LH5420 also provides a simple method of buffering wide word databusses up to 36 bits wide on each port. There are two ports on the LH5420, Port A and Port B. A Port is defined as an interface between the outside databus and the internal FIFO memory. Each port can be used as an input or an output depending on which direction the data will travel. The LH5420 allows Port B to be selectable in word widths from 36, 18 or 9 bits wide, while Port A is fixed at 36 -bits wide.
Two separate 256×36-bit FIFO buffers work side-byside to move data in opposite directions. This is what enables the LH5420 to operate bidirectionally. As an example, a 36 -bit databus and a 9 -bit databus can send and receive data back and forth, giving unrestricted communication privileges between an 8 -bit microcontroller and a 32-bit microprocessor. Clock-frequency differences between the two busses are not an issue. Even though the individual ports are synchronous in
nature, each port is controlled from separate system clocks (CKA and CKB). Each port operates independently from the other, so that port-to-port communication occurs asynchronously.
The LH5420 has five different types of flags available: Full Flag (FF), Empty Flag (EF), Half Full Flag (HF), Almost Full Flag (AF), and Almost Empty Flag (AE). The Almost Empty and Almost Full Flags are programmable. One set of these flags are available for each 256×36 FIFO buffer, to cover the status of data going in either direction. The low skew inherent in a single monolithic solution eliminates the risk that desynchronization will occur within the 36 -bit wide word in the FIFO. Further protection is afforded because the flags cover the full 36 -bit word width and not just the 9 bits that were used in the conventional funneling design mentioned above. The problems of designing a system around restrictive read and write timing constraints are no longer an issue, because the complexities of funneling timing synchronization are handled automatically within the LH5420 bidirectional FIFO.

APP1-1
Figure 3. 9-Bit to $\mathbf{3 6 - B i t}$ Conventional Funneling FIFO Circuit

Figure 3a. 9-Bit to 36-Bit Conventional Defunneling Read and Write Timing Diagram

Figure 4. LH5420, the Single Chip Solution for Databus Funneling

Figure 4a. LH5420 9-Bit to 36-Bit Funneling Write and Read Timing Diagram

SUMMARY

The SHARP LH5420 bidirectional FIFO provides many benefits to a system designer working on applications which use wide word databusses (36 bits wide), or applications which require funneing and defunneling between databusses of different widths (eg. 8-bit to

32-bit, 18-bit to 36 -bit, etc.). In comparison with conventional databus funneling methods, the LH5420 simplifies your circuit design, allows faster operating speeds, uses less board space, reduces component count, and provides bidirectional funneling with no additional circuitry. But best of all, it is easy to use.

A ONE-CHIP TWO-WAY STREET FOR MICROPROCESSOR COMMUNICATIONS: THE SHARP LH5420 36-BIT BIDIRECTIONAL FIFO *

Chuck Hastings
Marketing/Applications Manager, FIFO and Specialty Memories
Sharp Microelectronics Technology, Inc. 5700 N. W. Pacific Rim Boulevard

Camas, WA 98607
206/834-8615

INTRODUCTION

New integrated circuits often evolve as singlechip embodiments of groups of lower-complexity parts. When the same multiple-device configuration starts turning up in many new designs, a semiconductor manufacturer may get inspired to develop a one-chip-does-all replacement just by listening to its customers. Bidirectional FIFOs, wide enough to hold an entire word of data, are one such frequently-occurring combination. Perhaps one out of every five system applications for FIFOs fits this description. Usually, the role of a bidirectional FIFO is to provide convenient two-way communication between two processors or microprocessors.

In the past, an effective bidirectional FIFO for communication back and forth between two 32-bit-processors has needed to consist of at least eight industry-standard byte-wide unidirectional FIFO devices, arranged into two 'back-to-back' ranks of four paralleled FIFOs each. When parity checking is implemented, the data path between processors becomes 36 -bit. Sometimes only one of the two processors is 32 -bit, and the other one is 16 -bit or 8 -bit. In this event, even more devices must be added, to implement multiplexing, demultiplexing, and control functions at the narrower end of the bidirectional data path.

The LH5420 $256 \times 36 \times 2$ bidirectional FIFO, now available from Sharp, is a one-chip-doesall' solution to such system requirements for two-way interprocessor communication. One

LH5420 can provide either a convenient fullyparallel two-way connection from one 36 -bit bus to another such bus, or it can provide a two-way 'funneling/defunneling' connection from a 36-bit bus to an 18 -bit bus, or to a 9 -bit bus. Thus, the LH5420 supports all of the usual microprocessor word widths, and accommodates the extra bit per byte for parity or marker-bit usage. It operates at up to 40 MHz , and is available either in a 120-pin PGA package or in a 132 -pin PQFP package.

LH5420 ARCHITECTURE AND OPERATION

The LH5420 includes several enhancements, aimed at making a system designer's life easier. The LH5420 itself can check the parity of all bytes passing through it in either direction. And it features programmable almost-full and al-most-empty flags, retransmission capability in either direction, 'mailbox' capability in either direction, a limited form of transceiver-mode oper-ation, and a synchronous request/acknowledge capability which is useful in burstmode communications.

Conceptually, an LH5420 is organized as two 36-bit-wide bidirectional ports, Port A and Port B. Two full-width 256 -word FIFOs, FIFO \# 1 and FIFO \# 2, are connected between the two ports, one transmitting in each direction. (See Figure 1.) There are also two full-width one-word mailboxes between the two ports, one likewise transmitting in each direction. And there is a full-width bidirectional data bypass path, which functions during a reset operation. Two asyn-

[^9]chronous control inputs set the data width of Port B at 36 bits, at 18 bits, or at 9 bits.

Each port has its own clock input. In typical applications, a port's clock input is connected to a periodic free-running clock signal, which
may or may not be derived from the same frequency source as the other port's clock input. Each port also has three control inputs which are sampled at the rising edge (LOW-to-HIGH transition) of its clock: read/write, enable, and request. Each port also has an 'Acknowledge'

Figure 1. LH5420 Block Diagram
output which is synchronized to its clock, a parity flag output, and asynchronous control inputs for initiating data re-transmission and for enabling/disabling its data outputs.

FIFO \# 1 and FIFO \# 2 each have five status flags to indicate relative fullness: Full, AlmostFull, Half-Full, Almost-Empty, and Empty. The Full, Half-Full, and Empty flags are hard-wired to signal exactly what their names indicate. But there are programmable 'offsets' controlling the operation of the Almost-Full and Almost-Empty flags, to numerically define the boundaries of the 'Almost-Full' region and the 'Almost-Empty' region. These offset values are both initialized to eight during a reset operation; but either one may be changed under system control, independently of the other one, to any value from zero to 255.

While a data transfer is actually taking place, the port's Acknowledge output repeats the same information as either the Almost-Full flag or the Almost-Empty flag, depending on the current direction of data transfer - Almost-Full when writing, and Almost-Empty when reading.

The five relative-fullness status flags may change state either in response to a write event clocked at one port, or else in response to a read event clocked at the other port. The port's Acknowledge output signal, however, is totally synchronous with the clock input signal at that port; except, that it gets deasserted immediately if at any time the Request input signal is deasserted.

Both the Request control input and the Enable control input of a port must be asserted, in order for that port to carry out a read operation or a write operation. The Read/Write control input determines which type of operation gets performed.

The action of the Request and Enable signals within the LH5420 are generally similar; but their detailed timing is different. The Enable signal is presumed to be originating as a synchronous signal referenced to the same clock signal used by the port. On the other hand, the Request signal may arise asynchronously,
elsewhere in the system; the LH5420 contains resynchronizing circuits, which reference the Request signal to the port clock internally within the LH5420.

Either port may place a full 36 -bit word in the other port's mailbox register. Doing so sets a mailbox flag, which is synchronized to the receiving port's clock. This flag is reset whenever the receiving port has read the word in the mailbox register. Both ports have the ability to select either their outgoing FIFO or their outgoing mailbox for writing, or either their incoming FIFO or their incoming mailbox for reading.

Although Port A and Port B both have the capability to send and receive 36-bit data words, each port has one major function unique to it. Port A is the master port for purposes of re-source-allocation and control functions, such as changing the value of the offsets for the AlmostFull and Almost-Empty flags, or changing the byte parity scheme from odd parity to even parity. Port B, on the other hand, is the port which is capable of setting its effective data width at 36 bits, 18 bits, or 9 bits.

Two asynchronous inputs control the data width of Port B. Changing this data width does not require any reset operation. However, sufficient time must be allowed for the LH5420's internal byte-shifting and demultiplexing circuits to settle; waiting for two full Port B clock cycles is recommended.

'SYNCHRONOUS’ FIFOs AND 'ASYNCHRONOUS' FIFOS

The antonyms 'synchronous' and 'asynchronous' each have taken on two very different meanings in FIFO applications literature. The first meaning has to do with the timing of the FIFO's data and control inputs, and of its data and status outputs. The second meaning has to do with the capability of the FIFO to adjust itself to different and unrelated timing requirements at each of its two ends.

According to the first meaning of these terms, a 'synchronous' FIFO operates with a free-running clock input, but performs operations such
as writing or reading only when these operations are 'enabled.' Data inputs, and control inputs such as enable signals and mode-control signals, must all meet setup time and hold time requirements with respect to the free-running clock. Data outputs and status outputs are presumed valid after some specified delay time has elapsed, following a transition of the free-running clock.

FIFOs which are 'asynchronous,' according to this meaning of 'asynchronous,' do not use any such free-running clock. Some older-architecture 'asynchronous' FIFOs even use edge-sensitive, rather than level-sensitive, control inputs. 'Synchronous' FIFOs sometimes may be made to behave as 'asynchronous' FIFOs, if desired, by connecting their 'enable' inputs to be permanently asserted, and using their free-running clock inputs as asynchronous edge-sensitive 'demand' control input signals.

According to the second meaning of the terms 'synchronous' and 'asynchronous,' however, a 'synchronous' FIFO would be a FIFO having both its input port and its output port always synchronized to the same 'clock' signal; in other words, a glorified shift register. An 'asynchronous' FIFO, on the other hand, can operate with its input port synchronized to one timing signal, and its output port synchronized to a second timing signal having no necessary relation to the first one; and neither timing signal needs to be regular or periodic.

The LH5420 has a free-running-clock-plus-enable control structure; and so its two internal FIFOs are 'synchronous' FIFOs in the first sense of this term, except that the behavior of the five relative-fullness flags is not entirely 'synchronous.' However, they are completely 'asynchronous' FIFOs in the second sense; there is no necessary synchronization relation between the Port A clock and the Port B clock, nor is either of these clocks required to be strictly periodic. This type of behavior is usually considered to be useful, system-friendly, and what FIFOs are all about.

DESIGNING WITH THE LH5420

In some applications, data bursts get pushed through a FIFO at or close to the FIFO's maximum word rate; but the system must take some immediate action if the FIFO ever becomes completely full or completely empty. The LH5420's Request/Acknowledge feature supports such a mode of operation. The Acknowledge output signal meets the setup time and hold time requirements for the Enable input, and may simply be tied back to it, in order to prevent complete filling or complete emptying of the active FIFO. This mode of operation slightly decreases the maximum data rate.

In essence, the Acknowledge signal is a synchronous 'proxy' or 'predictor' for whichever 'Almost' flag is pertinent to the current datatransfer operation. Because synchronous predictive logic is used to determine the state of this signal, it is actually faster than the corresponding flag.

Assume now that a port's Request input is being continuously asserted, say for writing into the outbound FIFO forthat port. As long as the FIFO does not get into the 'Almost-Full' region, that is, the number of vacant FIFO physical words never falls below the 'Almost-Full' offset value, then the Acknowledge output is continuously asserted by the LH5420 control logic, and a word gets written into the FIFO as a result of every write-clock pulse. However, if the FIFO does become 'Almost Full,' then the Acknowledge output gets asserted only on every third write-clock pulse, rather than continuously. Thus, if the Acknowledge output has been tied back to the Enable input, the wide-open data rate then gets slowed down immediately, so that the writing of each word can be handled on a full-handshake basis. This operational technique allows achieving the maximum data rate much of the time, and yet protects the system against data loss caused by overrunning the FIFO boundaries.

When the system is operating an LH5420 in block-transfer mode, where a full block gets loaded at one port and then gets unloaded at the other port, the Acknowledge signals may be used to locate the end of a block, in lieu of having to implement an external block-length counter. As a simple example, say that the system block length is 193 words. The sending port loads in one complete block, and 55 words from the next block, in burst mode. At this point, its Acknowledge signal gets deasserted, indicating that the FIFO is 'Almost Full.' The Acknowledge signal does behave exactly in this manner, provided that the corresponding 'Al-most-Full' flag offset still remains at its default value of eight. The receiving port then unloads the block. If its 'Almost-Empty' offset value has been set to 55, its Acknowledge signal will get deasserted exactly at the end of the block. Since this indication occurs within a clock period, it is fast enough to be accurate without any uncertainty.

The LH5420's parity-checking facilities treat all nine bits alike, of each byte passing through one of the two FIFOs; the 'parity bit' may be in any position within a byte. A ten-input parity gate scans each group of nine bits in the output register of each port; the tenth input of each parity gate is from the even/odd-parity control flipflop, which may be programmed from Port A. This flipflop is set for odd parity when the LH5420 is reset; but it may be reprogrammed
to even, or back to odd, at any time subsequently. If any of the four parity gates at a port ever detects an odd number of 'ones' in a byte, including the control flipflop in the 'ones' count, then the port's parity flag is asserted as long as the word containing the erroneous byte remains in the output register.

SUMMARY

The LH5420 36-bit bidirectional synchronous FIFO, available now from Sharp, is a systemoriented 'one-chip-does-all' part, intended to simplify back-and- forth communications between two microprocessors, microcontrollers, or similar devices.

The LH5420 offers several sophisticated features: on-the-fly parity checking, word-width matching of a 36 -bit bus to an 18-bit bus or to a 9 -bit bus, two-way mailbox communications, and synchronous Acknowledge signals which can be used to give a quick and accurate end-of-block indication or an advance warning of FIFO fullness or emptiness.

In most bidirectional-FIFO applications, one LH5420 replaces many lower-level and discrete parts, and simplifies system design. It offers high performance for burst operations; it can transfer a 36-bit word in each direction every 25 nanoseconds.

[^10]DYNAMIC RAMs - 2

PSEUDO STATIC RAMs - 3

STATIC RAMs - 4

EPROMs/OTPROMs - 5

MASK PROGRAMMABLE ROMS - 6

FIFO MEMORIES - 7

FIELD MEMORIES - 8

APPLICATION AND TECHNICAL INFORMATION - 9

PACKAGING - 10

18DIP (DIP18-P-300)
DETAIL

DIMENSIONS IN MM [INCHES]
MAXIMUM LIMIT
MINIMUM LIMIT

22DIP (DIP22-P-400)

24DIP (DIP24-P-300)
DETAIL

DIMENSIONS IN MM [INCHES]
MAXIMUM LIMIT MINIMUM LIMIT

24DIP (DIP24-P-600)
DETAIL

DIMENSIONS IN MM [INCHES]

MINIMUM LIMIT

24CERDIP (WDIP24-G-600)

DETAIL

DIMENSIONS IN MM [INCHES]
MAXIMUM LIMIT
MINIMUM LIMIT

16ZIP (ZIP16-P-325)

19.95 [0.785]

DIMENSIONS IN MM [INCHES]
MAXIMUM LIMIT MINIMUM LIMIT

28SOJ (SOJ28-P-400)

32SOJ (SOJ32-P-400)

24SOP (SOP24-P-450)

28SOP (SOP28-P-450)

DIMENSIONS IN MM [INCHES]
MAXIMUM LIMIT MINIMUM LIMIT

32SOP (SOP32-P-525)

40SOP (SOP40-P-525)

44SOP (SOP44-P-600)

26TSOP (TSOP26-P-300)

DIMENSIONS IN MM [INCHES] MAXIMUM LIMIT MINIMUM LIMIT

32TSOP (TSOP32-P-0820)

48TSOP (TSOP48-P-1218)

44QFP (QFP-44-P-1010)

44QFP (QFP-44-P-1414)

44QFP-2

64QFP (QFP64-P-1420)

32PLCC (PLCC32-P-R450)

DIMENSIONS IN MM (INCHES
MAXIMUM LIMIT
MINIMUM LIMIT

52PLCC (PLCC52-P-750)

DIMENSIONS IN MM (INCHES)

JAPAN

SHARP Corporation

IC Sales Department
International Sales \& Marketing Group
IC / Electronic Components
2633-1 Ichinomoto-Cho
Tenrí-City Nara 632, Japan
Phone: (07436) 5-1321
Telex: A ABOMETA-B J63428
Facsimile: (07436) 5-1532

co as

EUROPE

SHARP Electronics (Europe) GmbH

Microelectroñics Division
Sonninstraße 3, 2000
Hamburg 1, FR. Germany
Phone: (40) 2 2 苞-775-216
Telex: 216186% (HEEG D)
Facsimile: (40) 23 $7775-232$

SINGAPORE

SHARP-ROXY Sales (Singapore) PTE. Ltd.

 100G Pasiresanjang Road, Singapore 0511* Phone: 4731911Telex: 55504 (SRSSIN RS)
Facsimile: 4794105

NORTH AMERICA

SHARP Electronics Corporation

Microelectronics Group
5700 Northwest Pacific Rim Blvd., M/S 20
Camas, Washington 98607, U.S.A.
Phone: (206) 834-2500
Teléx: 49608472 (SHARPCAM)
Facsimile: (206) 834-8903

HONG KONG

SHARP-ROXY (Hong Kong) Ltd.

3rd Business Division
Room 1701-1710, Admiralty Centre, Tower 1
18 Harcourt Road, Hong Kong
Phơne: 8229311//8229348
Telex: 74258 SRHL HX
Facsimile: 5297561/8660779

KOREA

SHARP Electronics Industrial Corporation 4民, Dae San Bldg, 14-27. Yeoyido-dong.
Young Deung Po-ku, Seoul, Korea
Phone: $782+8637 \sim 40$
Telex: -SHARPEI K26754

[^0]: * Note: only the 15 ns access time part is Advance Information.

[^1]: * Note: only the 15 ns access time part is Advance Information.

[^2]: * Note: only the $\mathbf{2 0} \mathbf{n s}$ access time part is Advance Information.

[^3]: * Note: only the 20 ns access time part is Advance Information.

[^4]: *This width is defined by the Program Flowchart (Figure 6).

[^5]: * The pulse width is defined by the Program Flowchart (Figure 6).

[^6]: * This is a final data sheet; except, that all references to the PQFP package still have preliminary status.

[^7]: * 1 = Input, $\mathrm{O}=$ Output, $\mathbf{Z}=$ High-Impedance, $\mathrm{V}=$ Power Voltage Level

[^8]: *I = Input, O = Output, Z = High-Impedance, V = Power Voltage Level

[^9]: *See copyright information on page 11.

[^10]: *COPYRIGHTINFORMATION: This paper is a slightly modified version of the paper with the same title which appeared in the Northcon/91 Conference Record, paper D6/1; 1-3 October 1991. Also, in the Wescon/91 Conference Record, paper 7/4; 19-21 November 1991.

