

ANALOG CELLS AND ARRAYS

DATABOOK

$1^{\text {st }}$ EDITION

FEBRUARY 1991

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED

SGS-THOMSON PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF SGS-THOMSON Microelectronics. As used herein:

1. Life support devices or systems are those which (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided with the product, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can reasonably be expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

TABLE OF CONTENTS

INTRODUCTION Page 4
ALPHANUMERICAL INDEX 6
MIXED ANALOG-DIGITAL STANDARD CELLS
STKM2000 SERIES 9
TSGSM SERIES 19
MIXED ANALOG-DIGITAL BIPOLAR ARRAY
TSFJ SERIES 35
ANALOG BIPOLAR ARRAY
TSFK09 SERIES 47
ANALOG SWITCHED CAPACITOR FILTER ARRAYS
TSGF SERIES 51
MASK PROGRAMMABLE FILTERS 89
APPLICATION NOTES 165

SGS-THOMSON Microelectronics Semicustom Product Portfolio - 1991

Family	Product	Process	Complexity/ Density	Features
Sea Of Gates Sea Of Gates Sea Of Gates	ISB9000 ISB12000 ISB18000	CMOS $1.5 \mu \mathrm{~m}$, DLM CMOS $1.2 \mu \mathrm{~m}$, DLM CMOS $0.8 \mu \mathrm{~m}$, DLM	300 to 14,000 Gates 2,000 to 50,000 Gates 2.000 to 21,000 Gates	Cost Effective Performance and Density Bus Optimized Array
Standard Cells Standard Cells	$\begin{aligned} & \text { CB200 } \\ & \text { CB12000 } \\ & \hline \end{aligned}$	CMOS $1.5 \mu \mathrm{~m}$, DLM CMOS $1.2 \mu \mathrm{~m}$, DLM	250 Gates $/ \mathrm{mm}^{2}$, 500 Gates/mm ${ }^{2}$	Compilers
Analog Arrays Mixed A/D Arrays Filter Arrays	Polyuse K Polyuse J TSGF	Bipolar 3 $\mu \mathrm{m}$, SLM Bipolar $3 \mu \mathrm{~m}$, DLM CMOS 3 $\mu \mathrm{m}$, SLM	906 Components 400-23000 Components 4 to 12th Order	3GHz NPN $3 G H z$ NPN DC-30KHz
Mixed A/D Standard Cells Mixed A/D Standard Cells	TSGSM STKM2000	CMOS $3.5 \mu \mathrm{~m}$, SLM BiCMOS $2 \mu \mathrm{~m}$, DP, DLM	1Kgates + Analog, 10Kgates + Analog	6 GHz NPN

THE COMPANY

SGS-THOMSON Microelectronics is a broad-range supplier of advanced semiconductor products. With extensive manufacturing capability in Europe, North-America and the Far-East, the company is dedicated to meeting customer needs with cost effective, world-class technologies and products.
The company is ranked 12th worldwide in semiconductor suppliers on a global basis with total 1990 revenues of 1.5 billion dollars* and over 18000 employees world-wide.
With 17 production locations, 24 design centers and 8 advanced research and development sites, the company continues to demonstrate its commitment to excellence in technology and products. Additionally, with 50 direct sales offices, and over 600 distributors and sales representatives, customers are never far from the service and support needed to be successful in utilizing these products.
With Research and Development expenditure as well as capital investment well above the industry average, SGS-THOMSON Microelectronics is dedicated to bring an increasing portfolio of innovative and advanced new products with the service level needed to succeed in today's and tomorrow's electronics.
The Analog Cells and Arrays Business Unit offers several families of linear and mixed analog digital arrays and standard-cells including the industry's most advanced offering in BiCMOS analog/digital standard-cells. The complete semicustom product portfolio also includes digital standard-cell continuous arrays and channelless arrays.

THE PRODUCTS

Linear and Mixed Arrays

The arrays are either purely linear (K09 array) or mixed analog-digital tile arrays (Polyuse J series).
Aimed at cost-sensitive industrial, automotive and computer peripherals application requiring a combination of analog and digital functions, the Polyuse J series is based on a high frequency bipolar process (3 GHz NPN)
The family includes 5 arrays ranging from 400 to 2300 components, each array containing functional tiles such as linear tile (op-amp or comparator functions) ECL tile (level shifter, frequency divider), $I^{2} L$ tile (logic functions), PWR tile (high-current driver) and other functions such as voltage reference and resistor networks.

Filter Arrays

The TSGF family is a range of mask programmable switched capacitor filters. Filter parameters (gain, bandwidth gauge) are fully programmable and personalized by one mask layer. Three prediffused arrays allow the implementation of filters from 2nd up to 12 th order. Powerful and easy to use CAD software allows any filter configuration to be implemented with very fast turn-around time.

[^0]
CMOS Analog/Digital Standard Cells

The TSGSM series of analog/digital standard-cells is based on a silicon gate, P-well, dual polysilicon layer process allowing high performance analog functions to be mixed with 10 MHz digital circuitry.
The analog capability allows the integration of switched-capacitor filters. The cell library includes 94 digital cells and more than 60 analog cells. The large variety of predefined and characterized functions ranges from basic building blocks such as gates and op-amps to complex functions such as A/D and D/A converters.

BiCMOS Analog/Digital Standard Cells

The STKM2000, the world's first true mixed signal BiCMOS standard cell family was introduced by SGS-THOMSON in 1989. Key features of this family include true mixed Bipolar-CMOS process operating at voltages from 3 to 10V, a comprehensive library of high-performance, high-accuracy analog and high-speed digital functions and state-of-the-art CAD support that offers the first practical implementation of analog compilers.
The family is based on a 2 micron, double metal, double poly process. The CMOS part allows the implementation of high-speed like digital functions as well as analog functions operating between 3 and 10V. The available Bipolar devices include 6 GHz NPN transistors, 50 MHz lateral PNP transistors and 2.5 GHz vertical PNP transistors.

The library offers more than 60 CMOS digital cells and more than 100 analog cells which can be either CMOS, Bipolar or BiCMOS. All cells have power down capability. In addition to the standard Op-Amps, Comparators, Voltage Reference functions, the library includes advanced functions such as compiled filters, A/D converters (up to 12 bits) and D/A converters. Compilers for RAM, ROM and PLA are also available in the digital library.
This family is supported on the most popular CAD workstations to allow the widest range of designers to have access to this exciting new technology.

SUPPORT

With an extensive network of Design Centers, customers from all the major countries can obtain support for feasibility studies, architecture analysis and design.
These design centers are fully equipped with Design capability and their computers are interconnected with the center to allow efficient design transfer and fast response time.

ALPHANUMERICAL INDEX

Type Number	Description	Page Number
STKM2000	$2 \mu \mathrm{~m} / 2$ Poly / 2 Metal BiCMOS Mixed Analog Digital Standard Cells	9
TSFJ Series	Mixed Analog - Digital Bipolar Arrays,	35
TSGF Series	Analog Switched Capacitor Filter Arrays,	51
TSGF04	$2^{\text {nd }}$ to $4^{\text {th }}$ Order Analog Filter Array,	75
TSGF08	$4^{\text {th }}$ to $8^{\text {th }}$ Order Analog Filter,	81
TSGF12	$8^{\text {th }}$ to $12^{\text {th }}$ Order Analog Filter,	83
TSGSM Series	3.5μ / 2 Poly / 1 Metal HCMOS Mixed Analog-Digital Standard Cells	19
TSFKK09 Series	High Frequency Analog Bipolar Arrays,	47
TSG8510	Cauer Type Lowpass Elliptic Filter - $5^{\text {th }}$ Order,	91
TSG8511	Cauer Type Lowpass Elliptic Filter $-7{ }^{\text {th }}$ Order (55 dB)	97
TSG8512	Cauer Type Lowpass Elliptic Filter $-7{ }^{\text {th }}$ Order (85 dB)	103
TSG8513	Chebychev Type Lowpass Polynomal Filter - $8^{\text {th }}$ Order	109
TSG8514	Butterwrith Type Lowpass Polynomal Filter - $8^{\text {th }}$ Order	115
TSG8530	Cauer Type Highpass Elliptic Filter - $3^{\text {rd }}$ Order	121
TSG8531	Cauer Type Highpass Elliptic Filter - $6^{\text {th }}$ Order	127
TSG8532	Chebychev Type Highpass Elliptic Filter - $6^{\text {th }}$ Order	133
TSG8550	Band Pass Filter - $6^{\text {th }}$ Order	139
TSG8551	High Selectivity Band Pass Filter - $8^{\text {th }}$ Order	147
TSG8751	High Selectivity Band Pass Filter - $4^{\text {th }}$ Order	153

APPLICATION NOTE

Type Number	Description	Page Number	
AN052	How to Choose a Filter in a Specific Application AN061	Implementation and Applications Around Standard Mask-Programmable Filters	167
AN069	A Supplement to the Utilization of Switched Capacitor Filters	185	
AN070	Band-Pass and Band-Stop filters	227	
AN075	Switched Capacitor Filters Signal Detection \& Sinewave Generation	245	

MIXED ANALOG-DIGITAL STANDARD CELLS

$2 \mu \mathrm{~m} / 2$ POLY/2 METAL BiCMOS MIXED ANALOG-DIGITAL STANDARD CELLS

FEATURES

- ADVANCED BICMOS $2 \mu \mathrm{~m} / 2$ POLY/ 2 METAL PROCESS
- TWIN TUB PROCESS
- HIGH LATCH-UP IMMUNITY
- POWER SUPPLY:
- Maximum Rating: - 0.5 V to 12 V
- Operating Conditions : 3V to 10V (typ.)
- MIXED ANALOG - DIGITAL LIBRARY :
- Analog Bipolar Library
- Analog CMOS Library
- Analog BiCMOS Library
- Digital CMOS Library
- HIGH PROCESS PERFORMANCES:
- Transition Frequency, NPN $=6$ GHz
- Vertical PNP $=2.5 \mathrm{GHz}$
- Digital CMOS Operating Frequency Up to 30 MHz
- CAD SOFTWARE SUPPORT:
- Fully Integrated A.D.S. (Analog Design System) with Analog Block Generators, Switched Capacitor Filter Compiler; Digital Functions Generator, Ram, Rom, Pla Generators
- AVAILABILITY OF EEPROM DEVICES, ZENER DIODE.
- OPERATING TEMPERATURE RANGE:
- Commercial: 0 to $70^{\circ} \mathrm{C}$
- Industrial: -40 to $85^{\circ} \mathrm{C}$
- Military: -55 to $125^{\circ} \mathrm{C}$
- PACKAGE OPTIONS:
- DIL: Plastic or Ceramic
- SMD: SO, PLCC, QFP
- Wafer or Die

ASIC PRODUCT DESCRIPTION

With the STKM2000 series, SGS-THOMSON Microelectronics introduces the "state of the art" product for analog signal processing, from sensor to actuator.

The introduction of new concepts (cells library and CAD) opens the design of analog functions and mixed analog and digital circuits with a safe and powerful approach. This new ASIC approach is the combination of innovative :

- BiCMOS process
- Mixed libraries (ANALOG + DIGITAL)
- Generators and compilers
- "User friendly" CAD system
- Customer interface

Figure 1 : The STKM2000 Series, a complete system solution

STKM2000 ARCHITECTURE

Technology

The STKM2000 Series developed by SGS-THOMSON Microelectronics uses an advanced BICMOS silicon gate process with dual polysilicon layers and dual metal layers. This process is optimized to achieve high performance in digital CMOS applications. Depending on the operating supply voltage (10 V , or 5 V), the CMOS process behaves as an N-WELL technology (respectively with 3μ gate length or 1.8μ gate length) with operating speeds up to 30 MHz . Thanks to the two metal layers, the digital part of the circuit can reach high gate density with low parasitic capacitances.

For analog functions, the STKM2000 series takes advantage of the bipolar structure:

- very high speed NPN transistor : $\mathrm{f}_{\mathrm{T}}=6 \mathrm{GHz}$
- very high speed vertical PNP: $\mathrm{f}_{\mathrm{T}}=2.5 \mathrm{GHz}$

This allows high gain - bandwith operational amplifier (80 MHz), low noise input amplifier, short propagation delay comparator, ...
With the same BICMOS process, the analog CMOS performance come from the high density CMOS structure with a double poly layer for accurate capacitors, low consumption CMOS amplifier ($30 \mu \mathrm{~A}$), CMOS switches, high accuracy switched capacitor filters (up to 100 kHz for center frequency).

STKM2000 Cell Concepts

SGS-THOMSON Microelectronics has predesigned and precharacterized cells which are selected, placed and interconnected on the chip to implement digital and analog cells having different height and supply voltages. In addition some macrocells are designed as fixed blocks, so called "hard blocks" : filters, A/D and D/A converters; some hard blocks are automatically generated and parametrized from a compiler: S.C. filters, PLA, RAM, ROM...

STKM2000 Chip Topology

The chip is optimized versus the cell complexity, in a row based structure with different heights.

Peripheral cells surround the internal active chip area to interface with its external environment.

Despite the row based architecture, "hard blocks" can be implemented with efficient floor planning organization.

STKM2000 Cell Libraries

SGS-THOMSON Microelectronics introduces the "programmable" library; instead of working with a finite number of cells of the library, the designer has now access to an infinite number of functions.

Defining only some properties, the designer is able to create himself the cells needed for his application. For example, the following electrical parameters are accessible and adjustable:

- gain-bandwith product
- phase margins, frequency compensation
- output buffer current
- biasing currents
- resistor, capacitor fields
- current, source or sink
- adjustable Ron switch resistor
- supply voltage assignment

The analog library is operating in a large voltage range: 3 V to 10 V (typ).

The basic analog library contains:

- 60 analog CMOS functions
- 25 analog BIPOLAR functions

From single transistor to 12 bits A to D converter each setup becomes possible.

The digital CMOS library uses the same flexibility with a complete set of basic digital functions (NAND, NOR, Flip-Flop, ...) and some cell generators:

- register, counter, logic comparator, ...

More than 60 digital cells are available.

Figure 2: The STKM2000 Series, a complete system solution

ANALOG LIBRARY

- NPN transistor
- Lateral PNP
- Substrate PNP
- Isolated PNP
- MOS or bipolar
input comparators
- N-MOS transistor
- P-MOS transistor
- NPN high-speed amplifier
- MOS or bipolar input, internal or external Op-Amp
- Crystal oscillator
- RC oscillator
- Transconductance amplifier
- Power-on reset
(with adjustable threshold and hysteresis)
- Analog multiplexer
- Voltage to current converter
- Voltage references
- 8 bit A / D and D / A converters
- 12 bit A / D converters

DIGITAL LIBRARY

- AND, NAND, OR, NOR, inverter
- Exclusive OR, NOR
- D latch, D flip-flop
- Input buffer (TTL/CMOS)
- Output buffer (TTL/CMOS)
- Shift register
- Binary counter
- Decimal counter
- Magnitude comparator
- RAM, ROM, PLA, EEPROM*
* EEPROM under qualification (available Q2/91)

CAD SUPPORT: A.D.S. (Analog Design System) SGS-THOMSON Microelectronics has introduced a sophisticated CAD approach to reduce the development leadtime and to increase design flexibility and safety.

Programmable cells in the library are defined as:

- alternative cell
- adjustable cell
- telescopic cell
- parametrisable cell

Some specific parts of the design are automatically handled by an analog design manager, in order to:

- reduce capture errors
- make the unexperienced designer's task easier
- improve schematics legibility
- check electrical design rules (Analog or Digital)

The Analog Design manager takes into account:

- transconductance block generation
- automatic cell biasing
- unconnected pins and power down processing
- multipower supplies processing

A major step has been made with the introduction of function generator and compiler approaches to improve design automation and design efficiency.

Operational Amplifier Generator

From a generic symbol and some properties, several parameters of the amplifier will be adjusted:

- Biasing current which controls major parameters of amplifier (gain-bandwidth, slew rate, power consumption).
- Frequency compensation which allows to adjust and optimize the dynamic parameters versus the capacitive and resistive load.
- Power down capabilities.
- Supply voltage of the cell.

A specific software program manages all these properties and automatically updates all libraries included in the design flow: macro models and transistor level models, footprint, GDS2 layout, LVS netlist.

Figure 3: Analog Design System (A.D.S.) flow

Filter Compiler

From the template defined at the beginning up to the complete layout, the software automatically handles the filter synthesis and the layout compilation:

- evaluation/mathematical analysis
- switched capacitor synthesis
- simulation
- Monte-Carlo analysis
- layout generation

Any kind of filters is available from 2nd up to 12th order.

Digital Cell Generator

For a set of basic digital cells, the user has access to generators which handle the netlists and interface with the layout tools.

The schematic capture uses a block which is programmable according to the required complexity.

The generator creates a " so-called" soft macrocell taking into account the complete netlist:

- counters
- shift registers
- magnitude comparators, ...

Apart from the software automation, the A.D.S. CAD tool works around standard software.

The reference CAD approach is based on industry-standard software.

Figure 4: CAD Support Availability

	Sun	Mentor HP / Apollo	Viewlogic Sun/Vaxstation
Schematic capture	EDGE	NETED	VIEWDRAW
 design manager	CORAIL	CORAIL	CORAIL
Digital simulation	MOZART	QUICKSIM	VIEWSIM
Analog simulation	ST-SPICE	ST-SPICE	PSPICE
Mixed mode simulation	MOZART/ELDO	-	VIEWSIM-AD
Place \& Route	SABER	-	-
DRC - LVS	EDNCELL	-	-

Note: Please contact your local SGS-THOMSON sales representative for latest software / hardware availability.

Trademarks

EDGE \& TANCELL are trademarks of Cadence Design Systems Inc.
SABER is a trademark of Analogy.
PSPICE is a trademark of Microsim
VIEWDRAW, VIEWSIM \& VIEWSIM-AD are trademarks of Viewlogic Systems Inc.
NETED \& QUICKSIM are trademarks of Mentor Graphics Corp.
ELDO is a trademark of ANACAD Computer Systems.

Customer Design Interface

SGS-THOMSON Micorelectronics has developed several interfaces for customers giving them easy and flexible design approaches for STKM2000.

Users can access the Analog Design System (A.D.S.):

- via SGS-THOMSON design centers
- via SGS-THOMSON associated design centers
- via CAE workstations

CAE workstation currently supported are Viewlogic and Mentor Graphics. Others will be added to meet market demands.

Contact your local representative on a regular basis to keep updated on SGS-THOMSON CAE support

In each case,direct interfaces will be offered in order to make design implementation with A.D.S. (layout and test generations).

According to these design possibilities, SGS-THOMSON defines 3 main interfaces.

Figure 5 outlines these interfaces. Each interface details the responsibilities of customer and SGS-THOMSON during circuit development flow.

Figure 5: SGS-THOMSON - CUSTOMER Interfaces

	Interface 2	Interface 3	Interface 4
Responsibility level	Breadboard schematics	Simulated schematics	Layout tape
Circuit definition	Customer	Customer	Customer
Schematics	SGS-THOMSON		
Simulations		SGS-THOMSON	
Layout	SGS-THOMSON + CUSTOMER		
Final control	SGS-THOMSON		
Prototyping phase			

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Unit
V_{DD}	Supply voltage	-0.5	12.0	V
$\mathrm{~V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}$	I/O voltage	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\mathrm{l}}, \mathrm{l} \mathrm{O}$	$1 / O$ current	-40	+40	nA

Stresses above those under "maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation for the device at these or any other conditions above indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS
Voltage referred to VSS

Symbol	Parameter	Min	Max	Unit
V_{DD}	Operating supply voltage	2.7	11	V
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature:		-55	
	Military	+125 Industrial Commercial	-40	${ }^{\circ} \mathrm{C}$
	0	${ }^{\circ} \mathrm{C}$		
	+75	${ }^{\circ} \mathrm{C}$		

DIGITAL LIBRARY AC ELECTRICAL CHARACTERISTICS ABSTRACT
Standard condition $=2$ loads +1 mm of metal interconnect

Cell Code	Description	$V_{D D}=10 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Unit
		$\mathrm{T}_{\text {PHL }}$	$\mathrm{T}_{\text {PLH }}$	Other	
IV1	Standard inverter	2.26	2.01		ns
ND2	2 - input NAND	1.74	2.44		ns
NR2	2 - input NOR	2.55	2.02		ns
FD1	D Flip - Flop From C to QN Tsu ThL TwH Tw	6.44	8.26	$\begin{aligned} & 5.00 \\ & 1.75 \\ & 8.25 \\ & 5.00 \\ & \hline \end{aligned}$	ns
OB11	CMOS inverting output buffer capacitance load $=100 \mathrm{pF}$	12.4	12.3		ns

SGS-THOMSON

DC GENERAL ELECTRICAL CHARACTERISTICS
$V_{D D}=5 \mathrm{~V} \pm 10 \%$ or $V_{D D}=10 \mathrm{~V} \pm 10 \%$ (unless otherwise specified)

Symbol	Parameter	Condition	Min	Typ	Max	Unit	Notes
TTL INTERFACE							
V_{IL}	Low Level Input Voltage				0.8	V	1, 2, 3, 4
V_{IH}	High Level Input Voltage		2.0			V	1,4
			2.25			V	2, 4
			2.25			V	3, 4
V OL	Low Level Output Voltage	loL= Rated buffer current			0.4	V	1,2,3,4,5
V OH	High Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=$ Rated buffer current	2.4			V	1, 2, 3, 4, 5
CMOS INTERFACE							
VIL	Low Level Input Voltage				$\begin{aligned} & 30 \% \\ & V_{D D} \end{aligned}$	V	1,2,3
V_{H}	High Level Input Voltage		$\begin{aligned} & 70 \% \\ & V_{D D} \end{aligned}$			V	1,2,3
VoL	Low Level Output Voltage	$\mathrm{l}=\leq \pm 1 \mu \mathrm{~A}$			0.05	V	1,2,3
$\mathrm{VOH}_{\mathrm{O}}$	High level output voltage	$1 \mathrm{O}=\leq \pm 1 \mu \mathrm{~A}$	$\begin{gathered} V_{D D} \\ -0.05 \end{gathered}$			V	1,2,3

GENERAL

ILL	Low Level Input Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$	$\begin{aligned} & -1 \\ & -3 \\ & -5 \end{aligned}$		$\begin{aligned} & 1 \\ & 3 \\ & 5 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \mu \end{gathered}$	1 2 3
І ${ }_{\text {H }}$	High Level Input Current	$V_{1}=V_{D D}$	$\begin{aligned} & -1 \\ & -3 \\ & -5 \end{aligned}$		$\begin{aligned} & 1 \\ & 3 \\ & 5 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \mu \end{gathered}$	1 2 3
loz	Tri-state Output Leakage	$V_{0}=0 \mathrm{~V}$ or V_{DD}	$\begin{gathered} -2.5 \\ -5 \\ -10 \end{gathered}$	<1	$\begin{array}{r} 2.5 \\ +5 \\ +10 \end{array}$	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \mu \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$
C_{IN}	Input Capacitance	Freq $=1 \mathrm{MHz}$ @ 0 V		3		pF	6
Co_{0}	Output Capacitance	Freq $=1 \mathrm{MHz}$ @ 0 V		4		pF	5,6
$\mathrm{Cl}_{1 /}$	Bidi. I/O Capacitance	Freq $=1 \mathrm{MHz} @ 0 \mathrm{~V}$		5		pF	5,6
IkLU	I/O Latch-up Current	$\mathrm{V}\left\langle\mathrm{V}_{\mathrm{SS}}, \mathrm{V}\right\rangle \mathrm{V}_{\mathrm{DD}}$		200		mA	
VESD	Electrostatic Protection	$\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{~K}$		2000		V	
PD_{G}	Power Dissipation per Gate			17.5		$\mu \mathrm{W} / \mathrm{Gate} / \mathrm{MHz}$	
PDo	Power Dissipation per Output	$\mathrm{C}=50 \mathrm{pF}$		1.5		$\begin{gathered} \text { mW/Output/ } \\ \mathrm{MHz} \end{gathered}$	

Notes: 1. Commercial 0 to $70^{\circ} \mathrm{C}$
2. Industrial -40 to $85^{\circ} \mathrm{C}$
3. Military $\quad-55$ to $125^{\circ} \mathrm{C}$
4. $V_{D D}=5 \mathrm{~V} \pm 10 \%$
5. Buffers with default programmation attribute
6. Excluding package

ANALOG LIBRARY AC ELECTRICAL CHARACTERISTICS ABSTRACT

Cell Code	Description	Parameters Test Conditions	Min	Typ	Max	Unit
CMP11	Static CMOS comparator	Propagation delay (overdrive $=5 \mathrm{mV}$) Offset		$\begin{gathered} 1 \\ \pm 3 \end{gathered}$	$\begin{array}{r} 1.4 \\ \pm 10 \\ \hline \end{array}$	ms mV
CMP31	Static BICMOS comparator	Propagation delay (overdrive $=5 \mathrm{mV}$) Offset		$\begin{array}{r} 90 \\ \pm 2 \\ \hline \end{array}$	$\begin{array}{r} 110 \\ \pm 7 \end{array}$	ns mV
CPX11	Capacitor fields	Unit capacitance Capacitor value range Absolute accuracy Matching (capacitor ratio)	0.1	0.1 0.5	$\begin{gathered} 50 \\ \pm 15 \\ 1.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \% \\ & \% \\ & \hline \end{aligned}$
CPP11	Monolithic Capacitor	Capacitor range Absolute accuracy	1		$\begin{array}{r} 100 \\ \pm 15 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{pF} \\ & \% \\ & \hline \end{aligned}$
RPM/PPM	Resistor/Potentiometer P-Base	Resistor value range Absolute accuracy Matching Temperature coefficient Voltage coefficient	5.6		$\begin{gathered} 3000 \\ \pm 20 \\ \pm 3 \\ 0.2 \\ 0.25 \end{gathered}$	$\begin{gathered} \mathrm{K} \Omega \\ \% \\ \% \\ \%{ }^{\circ} \mathrm{C} \\ \% / \mathrm{V} \\ \hline \end{gathered}$
SWIT	Analog switch	Elementary switch RON value Number of switches in parallel	1	5	$\begin{gathered} 25 \\ 3 \end{gathered}$	K Ω
MN11	Telescopic NMOS transistor	RON value		100		Ω
OPA31	General purpose MOS Operational amplifier	Unity gain bandwidth Current consumption Phase margin $(\mathrm{C} 1=100 \mathrm{pF}, \mathrm{R} 2=10 \mathrm{k} \Omega)$ Offset		$\begin{gathered} 3.3 \\ 700 \\ \\ 60 \\ \pm 3 \end{gathered}$	4.6 ± 10	$\begin{gathered} \hline \mathrm{MHz} \\ \mu \mathrm{~A} \\ \\ \text { Degrees } \\ \mathrm{mV} \\ \hline \end{gathered}$
OPA41	Internal bipolar Operational Amplifier	Unity gann-bandwidth current consumption Phase margin $(C L=15 \mathrm{pF}, \mathrm{RL}=100 \mathrm{k} \Omega)$ Offset		$\begin{gathered} 9 \\ 240 \\ 62 \\ \\ \pm 1 \\ \hline \end{gathered}$	30 ± 5	MHz $\mu \mathrm{A}$ Degrees mV
OPA71	Rail to rail external MOS operational Amplifier	Unity gain bandwidth current consumption Phase margin $(C L=100 \mathrm{pF}, \mathrm{RL}=100 \mathrm{~K} \Omega)$ Offset		$\begin{array}{r} 2.3 \\ 360 \\ 80 \\ \\ \pm 3 \\ \hline \end{array}$	± 10	MHz uA Degrees mV
OTA11	MOS transconductance amplifier	Unity gain - bandwidth $(C L=2 p F)$		24		MHz
POR11	Programmable Power on Reset	Active Level Accuracy Hysteresis Accuracy			$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
VRF11	Voltage bandgap reference	Output voltage accuracy Temperature coefficient Current consumption		15	$\begin{aligned} & \pm 2 \\ & 100 \end{aligned}$	$\begin{gathered} \% \\ \mathrm{ppm} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$

STKM2000 SERIES

ANALOG LIBRARY AC ELECTRICAL CHARACTERISTICS ABSTRACT

Cell Code	Description	Parameters Test Conditions	Min	Typ	Max	Unit
OSC11	Programmable crystal oscillator	Frequency	0.1		20	MHz
OSC41P	RC oscillator	Frequency Stability versus temperature Stability versus voltage	1	$\begin{gathered} 100 \\ 0.01 \\ 0.5 \\ \hline \end{gathered}$	800	$\begin{gathered} \mathrm{KHz} \\ \% /{ }^{\circ} \mathrm{C} \\ \% / \mathrm{V} \\ \hline \end{gathered}$
OSC31P	One pad I.C oscillator	Frequency Stability versus temperature Stability versus voltage	2	$\begin{array}{r} 0.01 \\ 0.5 \\ \hline \end{array}$	200	$\begin{gathered} \mathrm{KHz} \\ \% /{ }^{\circ} \mathrm{C} \\ \% / \mathrm{V} \\ \hline \end{gathered}$
	Filters	Order Center frequency	2		$\begin{gathered} 12 \\ 100 \\ \hline \end{gathered}$	KHz
AD8A	8 bit analog to digital converter	Conversion time Integral non linearity Differential non linearity			$\begin{gathered} 10 \\ \pm 0.5 \\ \pm 0.5 \\ \hline \end{gathered}$	$\begin{gathered} \mu \mathrm{s} \\ \text { LSB } \\ \text { LSB } \\ \hline \end{gathered}$
DA8A	8 bit analog to digital converter	Conversion time $\left(C_{L}=2 \mathrm{pF}\right)$ Integral non linearity			$\begin{gathered} 1 \\ \pm 0.5 \\ \hline \end{gathered}$	$\mu \mathrm{s}$ LSB

$3.5 \mu / 2$ POLY / 1 METAL HCMOS MIXED ANALOG-DIGITAL STANDARD CELLS

FEATURES

- ADVANCED HCMOS TECHNOLOGY :
- 3.5μ Drawn Channel Length
- 2 Polysilicon Layers
- 1 Metal Layer
- P Well Silicon Gate CMOS Process
- HIGH LATCH-UP IMMUNITY
- FULL ESD PROTECTION
- POWER SUPPLY

Maximum Ratings : -0.5 V to +12 V
Operating Conditions: 3 to 10 V

- EXTENSIVE MACROCELL LIBRARY
- 119 Logic Cells
- 117 Analog Cells
with programmable cells : soft macro cells, abuttable cells
- INPUT/OUTPUT CELLS

Compatibility : TTL or CMOS Levels
Configurability : Input/Output/Bidirectional I/O/Analog I/O ...

- CAD SOFTWARE SUPPORT
- ADS (Analog Design System)
- Fully Integrated (+ FILCAD ${ }^{\text {TM }}$ for filter design)
- Flexible Design Interfaces
- OPERATING TEMPERATURE RANGE
- Commercial : 0 to $+70^{\circ} \mathrm{C}$
- Industrial : - 40 to $+85^{\circ} \mathrm{C}$
- Military : -55 to $+125^{\circ} \mathrm{C}$
- PACKAGE OPTIONS
- DIL : Plastic or Ceramic
- SMD : SO, PLCC, LCCC, QFP

DESCRIPTION

The TSGSM Series, mixed analog-digital Standard Cell products from SGS-THOMSON Microelectronics, represents a major step allowing the system designer dealing with both digital and high level analog functions to benefit of the state of the art semi-custom circuit integration capabilities.

Figure 1 : Example of TSGSM Chip Layout.

The large variety of predefined and precharacterized functions ranging :

- in digital from simple gates to counters, registers...
- in analog from single operational amplifier to A/D or D/A converters, switched capacitors filters ..
has been proven extremely efficient in the design of many mixed HCMOS Analog-Digital ASIC's circuits in such various applications as consumer, computer, industrial, military, telecommunications and automotive fields.

TSGSM ARCHITECTURE

TECHNOLOGY

TSGSM Series developed by SGS-THOMSON is using an advanced silicon gate P well, dual poly-silicon layer, single metal layer HCMOS technology.
The process is very well suited for the design and integration of high performance analog functions combined with digital. It achieves operating speeds up to 15 MHz for the digital part of the TSGSM circuit.
Thanks to the 2 polysilicon layers, TSGSM Series can integrate high accuracy switched capacitors filters based on the same concept of TSGF Series, switched capacitor Filter Arrays (Refer to TSGF04/08/12 Data Sheet). True capacitors are realized with Poly 1 and Poly 2 layers.

CELLS

Predesigned and precharacterized Macrocells are selected, placed and interconnected on the chip to implement the mixed analog-digital function.
Digital and Analog Macrocells have different height, as shown on the chip layout of fig. 1. In addition some cells like A/D or D/A converters are designed as fixed blocks.

CHIP TOPOLOGY

The inputs and outputs of cells are interconnected by using 2 conductive layers : polysilicon and metal.
The chip layout is composed of cell rows, whose number is determined to optimize the die size, and of horizontal routing channels.
Peripheral cells surround the internal active chip area in order to interface it with its external environment.
Despite the row base architecture complex block functions can be placed and routed on the chip.
Generally for design optimization purpose, power busses of the analog and the digital parts of the chip are routed separately.

CELL LIBRARY

The TSGSM Macrocell library features around 160 different macros:

- 119 digital cells.
- 117 analog cells.

The main characteristics of TSGSM library is to offer users a high flexibility for cell definition and generation:

- The DIGITAL LIBRARY provides in addition of existing hard macros the capability to generate soft macros like counters, shift registers, dividers...
These modulo N parameterized cells are generated at the layout level by lateral abutment of hard macros.
- The ANALOG LIBRARY presents particular features such as :
- Biasing strategy with a current bias generator, programmable current mirrors, and current biased cells and voltage biased cells.
- Use of programmable cells for capacitor fields (0.1 to 30 pF typically), resistor fields (150 to $1.8 \mathrm{M} \Omega$), bipolar transistors, MOS transistors, current mirrors.
- Grounded shield for power supply rejection improvement.
The complete TSGSM library is fully described within the TSGSM User's Manual of the SGS-THOMSON library.
Fig. 4 and Fig. 5 give an abstract of all available digital and analog cells within TSGSM' library.
For more details, users have to refer to the TSGSM User's Manual they can require to their nearest SGS-THOMSON sales office or representative.
Note : SGS-THOMSON can develop on request a special cell for a specific customer circuit : new cell or existing cell with different electrical characteristics.

Figure 2 : Example of Interconnection between Analog and Digital Cells.

Figure 3 : Example of a Mixed Analog-Digital Function.

CORE CELLS

Figure 4: TSGSM Series Digital Library Abstract.

Cell Type	Description	Number of Different Options (1)
AA	AND Gates	3
AN.	AND into NOR Gates	4
DF	D Flip-flops	4
DL	D Latches	5
EN	Exclusive NOR	1
EO	Exclusive OR	2
FF.	D Flip-flops (2 clocks)	4
11	Dual Buffers	2
IN	Inverters	5
IT	Trı-state Internal Buffers	3
MU	Multiplexers	3
NA	NAND Gates	4
NO.	NOR Gates	4
ON	OR into NAND Gates	2
OR	OR Gates	3
TF	Toggle Flip-flops	3
TG	Schmitt Triggers	3
T.	Level Shifters	3
ZZ..	Supply Cells	2
CCG	Clock Generators	3
FPCG	Non-overlappıng 4-phase Clock Generator	1
TPCG	Non-overlapping 2-phase Clock Generator	1
INVL	Delay Inverter	1

[^1]Figure 4 (continued).

I/O CELLS

Cell Type	Description	Number of Different Options (1)
OB..	Output Buffers	4
PP..	Power Pads	3
OB..	Tri-state Output Buffers	4
IB..	Input Buffers	8
IO..	Bidirectional Buffers	5
OB..	Open-drain Output Buffers	4

(1) For each type of cell, the TSGSM library provides extensive number of options as for example :

- NAND type cells : 2, 3, 4 or 6 input NAND's
- D flip-flop cells : with low set, with low reset...
- input buffers : TTL, CMOS, with pull-up...

CORE CELLS

Figure 5: TSGSM Series Analog Library Abstract.

Cell Type	Description	Number of Different Options	Metal Mask Programmable
COMP...	Comparators	6	
MN...	N MOS Transistors	4	x
MP...	P MOS Transistors	4	x
OSC..	Oscillators (crystal RC)	4	
POR.	Power on Reset	2	
SW..	Switches	3	
TRIG	Schmitt Trigger	1	
CP..	Capacitor Fields	1	x
BOPA/BOTA	Bias for Op amps and Transconductance Amplifiers	3	
BIP	Bipolar Transistors	1	x
OP	Operational Amplifiers	5	
00	Output Stage for Op Amp	1	
OT	Transconductance Amplifiers	2	
R..	Resistance Fields	3	x
P..	Potentiometer Fields	3	x
VREF	Voltage Reference Bandgap	1	
ZEN..	Zener Diodes	3	
IPNV	Current Mirror Source-sink	1	x
IPOL..	Bias Current Generator	2	x
ISN/ISP	Current Mirror Source/sink	4	x
HF/LF	Internal $\mathrm{V}^{+} \sim^{-}$Analog Cell	2	

BLOCKS AND SOFT MACROS

Cell Type	Description	Number of Different Options	Metal Mask Programmable
ADC8	8 Bit Analog to Digital Converters	2	
DAC8	8 Bit Digital to Analog Converter	1	
DBP/DS1	LCD Drivers	3	1
SCF	Biquadratic 2nd Order Filter	1	\times
VRLCD	LCD Voltage Reference	1	

ADS ANALOG DESIGN SYSTEM

The SGS-THOMSON TSGSM Series is fully supported by a complete Computer Aided Design (CAD) system. The SGS-THOMSON CAD system, ADS, is complete in that once a design is entered all the tools necessary to complete that design are available to the user in this one system.
These tools include schematic capture, logic and analog simulations, fault simulation, automatic place and route, parasitic delay extraction and test pattern generation.
ADS ANALOG DESIGN SYSTEM is available on SUN ${ }^{\top M}$ computer systems.
In addition, the TSGSM library is implemented on CAE workstations :

- Mentor ${ }^{\text {TM }}$.

SGS-THOMSON developed direct interfaces between these CAE workstations and its ADS system.
The ADS package allows the development of ana\log and digital standard cell circuits so easily that each system designer can handle it.
The development of mixed analog and digital circuit is done with advanced concepts such as:

- parameterized cells (resistors, capacitors, current generators ...)
- metal mask programmable cells (switched capacitor filters ...)
- compiled cells (bit slice concept for digital functions like counters, dividers ...).
The main CAD tools available within ADS are :

- SCHEMATIC GRAPHIC CAPTURE

EDGE/CADENCE ${ }^{\text {MM }}$ provides graphic capture of schematic circuit diagram. Designer can create blocks by using the 100% hierarchy of EDGE/CADENCE ${ }^{\text {th }}$ and also can specify values of parameterized cells.
After the net list generation, the modules generated under EDGE ${ }^{\text {TM }}$ are oriented automatically thru logic or analog simulation.

- LOGIC SIMULATION

MOZARTTM, SGS-THOMSON's, hierarchical logic simulator, allows design verification and timing analysis of the circuit. A pre-layout timing analysis is run with calculated delays based on fanout, VDD, temperature and best, typical or worst case process conditions.

The 2 input files to MOZART ${ }^{T M}$ are the net list generated from graphic capture and the input test pattern description.
MOZART ${ }^{T M}$ simulator allows mixed analog and digital simulation for analog cells having an equivalent model described under MOZART $T^{T M}$.

- ANALOG SIMULATION

STSPICE electrical simulator allows pre-layout or post-layout timing analysis of the analog blocks of the circuit.
STSPICE input files are the net list and the input test pattern descriptions.
With the improvements brought by SGS-THOMSON to STSPICE, the analog simulator becomes a powerful CAD tool :

- special level modelling for speed improvement on digital sub-circuits,
- fast execution on full analog part of TSGSM circuit, thanks to macro modelling, allows simulation of large analog blocks.
- ELDO ${ }^{\text {TM }}$ simulator can be used for large analog simulations

- PLACEMENT AND ROUTING

TANCELL ${ }^{\text {TM }}$ software is an efficient standard cell automatic place and route whose main features are

- use of different heights of cells on the chip
- interactive pre-placement of blocks, cells and I/O's for die size optimization
- capability to force priorities on nets for critical path routing
- capability to generate soft macros, blocks by cell abutment.
- multi supply routing
- routing with compaction

A check program performs at the end of the layout, design rule checking and verifies conformity of the graphic data base versus the schematics data base.

- PARASITIC DELAY EXTRACTION

ADS is computing the exact parasitic delays brought by the placement and routing. Delays are based both on resistance and capacitance of each interconnect.
As soon as the parasitic RC delays are extracted, user can run a post layout simulation for accurate timing new analysis.

ADS software converts automatically the post layout simulation (with parasitic delays) file into test patterns directly compatible with SGS-THOMSON test equipments.
At same time static and dynamic parameters are added to the functional test pattern file : all input/output levels are tested during the functional test sequence.
Fig. 6 outlines the SGS-THOMSON approach for the design of analog or mixed analog/digital circuits.
One of the particularities of TSGSM series is to provide switched capacitor filter integration capabilities. The filter cells available within TSGSM library are identical to those used on the SGS-THOMSON

Analog Filter Arrays, TSGF Series, which are mask programmable switched capacitor filters.
For filter synthesis, simulation and layout, designers are given an efficient Filter CAD design tool : FILCAD ${ }^{T M}$.

For more informations about SGS-THOMSON switched capacitor filter design solutions and CAD tools, please refer to TSGF04/08/12, 4th to 12th order switched capacitor filter arrays data sheet.
Fig. 7 shows the development phases of a TSGSM Series standard cell. The design translation phase up to the prelayout simulation can be done on CAE workstations like Mentor Graphics ${ }^{T M}$, with ADS Analog Design System.

Figure 6 : SGS-THOMSON CAD Tools and Product for Analog and Mixed Analog-Digital Circuits.

Figure 7 : TSGSM Series Development Flow.

CUSTOMER DESIGN INTERFACE

SGS-THOMSON has developed several interfaces for customers giving them easy and flexible design approaches for TSGSM $3.5 \mu / 2$ poly/1 metal HCMOS mixed Analog Digital Standard Cells series.
User can access ADS Analog Design System.

- via the SGS-THOMSON Design Centers,
- via connection to SGS-THOMSON CAD Center,
- viatheSGS-THOMSON associated Design Centers.
CAE workstations capabilities are :
- CADENCE ${ }^{T M}$,
- Mentor Graphics ${ }^{\text {TM }}$.

In that case direct interfaces will be offered to user in order to make design implementation and test generation with ADS.
According to all of these design possibilities, SGSTHOMSON defined 3 main customer design interfaces.
Figure 8 outlines these interfaces. Each interface delineates the responsibilities of customer and SGS-THOMSON during circuit development flow shown in fig. 7.

Figure 8: Design Interface.

	Interface 2	Interface 3	Interface 4
Definition of Circuit Specification	Customer	Customer	Customer
Logic and Electrical Description	Customer	Customer	Customer
Test Pattern Definition	Customer	Customer	Customer
Graphic Capture + Input Signal Entry	SGS-THOMSON	Customer	Customer
Design Verification	SGS-THOMSON	Customer	Customer
Pre-layout Simulation	SGS-THOMSON	Customer	Customer
Approval	Customer	Customer/SGS-THOMSON	
Auto Place and Route	SGS-THOMSON	SGS-THOMSON	Customer
Post-layout Simulation	SGS-THOMSON	SGS-THOMSON	Customer
Design Release	Customer	Customer/SGS-THOMSON	Customer/SGS-THOMSON
Test Program Generation - Test Tooling	SGS-THOMSON	SGS-THOMSON	SGS-THOMSON
Mask Tooling	SGS-THOMSON	SGS-THOMSON	SGS-THOMSON
Prototype Manufacturing and Testing	SGS-THOMSON	SGS-THOMSON	SGS-THOMSON
Prototype Delivery	SGS-THOMSON	SGS-THOMSON	SGS-THOMSON

With interface 3, design can be done either at SGS-THOMSON Microelectronics Design Center facilties or at customer location.

ABSOLUTE MAXIMUM RATINGS ($T_{\text {amb. }}=25^{\circ} \mathrm{C}$, Voltage referenced to $\mathrm{V}_{\text {Ss }}$.)

Symbol	Parameter	Min. ,	Max.	Unit
	Supply Voltage	-0.5	12.0	V
$\mathrm{~V}_{\mathrm{I},} \mathrm{V}_{\mathrm{O}}$	I/O Voltage	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{1}, \mathrm{I}_{\mathrm{O}}$	I / O Current	-40	+40	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature (ceramic)	-65	+150	${ }^{\circ} \mathrm{C}$
	Storage Temperature (plastic)	-40	+125	${ }^{\circ} \mathrm{C}$

Stresses above those listed order "maximum ratıng" may cause permanent damage to the device. This is a stress ratıng only and functional operation to the device at these or any other conditions above those indicated in the operatıonal sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS (Voltage referred to Vss)

Symbol	Parameter	Min.	Typ.	Max.	Unit
VDD	Operating Supply Voltage	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{D D}$	Extended Supply Voltage	3		12.0	V
Tamb	Operating Ambient Temperature Military Industrial Commercial	$\begin{gathered} -55 \\ -40 \\ 0 \end{gathered}$		$\begin{aligned} & +125 \\ & +85 \\ & +70 \end{aligned}$	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$

Note : 2. For extended supply voltage please consult SGS-THOMSON Microelectronics.

DC GENERAL ELECTRICAL CHARACTERISTICS (VDD $=5 \mathrm{~V} \pm 10 \%$ or $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \pm 10 \%$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\overline{\mathrm{V}_{\mathrm{IH}}}$ V_{IL}	High Level TTL Input Voltage Low Level TTL Input Voltage	$\begin{aligned} & \mathrm{V} \mathrm{DD}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{~T}^{\circ}=0^{\circ} \mathrm{C}=70^{\circ} \mathrm{C} \\ & \mathrm{~T}^{\circ}=-40^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C} \\ & \mathrm{~T}^{\circ}=-55^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \% \\ & \text { All Temp. Ranges } \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.25 \\ & 2.25 \end{aligned}$		0.8	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	High Level CMOS Input Voltage Low Level CMOS Input Voltage		$70 \% \mathrm{~V}_{\mathrm{DD}}$		$30 \% \mathrm{~V}_{\text {D }}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
lozH lozl	Tristate Output Leakage Current	$\begin{aligned} & \mathrm{VO}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~T}^{\circ}=0^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C} \\ & \mathrm{~T}^{\circ}=-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C} \\ & \mathrm{~T}^{\circ}=-55^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{0}=\mathrm{VSS}_{\mathrm{SS}} \\ & \mathrm{~T}^{\circ}=0^{\circ} \mathrm{C} /+70^{\circ} \\ & \mathrm{T}^{\circ}=-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C} \\ & \mathrm{~T}^{\circ}=-55^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -2.5 \\ & -5.0 \\ & -10.0 \end{aligned}$		$\begin{gathered} 2.5 \\ 5 \\ 10 \end{gathered}$	μA μA μA μA μA μA
1_{1+}	High Level Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~T}^{\circ}=0^{\circ} \mathrm{C} /+70^{\circ} \\ & \mathrm{T}^{\circ}=-40^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C} \\ & \mathrm{~T}^{\circ}=-55^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & 1.0 \\ & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
ILI	Low Level Input Leakage Current	$\begin{aligned} & V_{V_{~}}=V_{\text {Ss }} \\ & \mathrm{T}^{\circ}=0^{\circ} \mathrm{C} /+70^{\circ} \\ & \mathrm{T}^{\circ}=-40^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C} \\ & \mathrm{~T}^{\circ}=55^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -1.0 \\ & -3.0 \\ & -5.0 \end{aligned}$			$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
Icc	Max Admissable Current per Pin: Analog Digital				$\begin{aligned} & \pm 20 \\ & \pm 40 \end{aligned}$	$\underset{\mathrm{mA}}{\mathrm{~mA}}$

DIGITAL LIBRARY AC ELECTRICAL CHARACTERISTICS ABSTRACT (VDD $=10 \mathrm{~V} \pm 10 \%$, Tamb. $=25^{\circ} \mathrm{C}$, Typical Process Standard Condition $=2$ Loads +1 mm of Metal Interconnect)

Cell Code	Description	$V D D=10 \mathrm{~V} \pm 10 \%$			Unit
		TPHL	TPLH	Other	
IN01	Standard Inverter	5.7	4.7		ns
NA02	2-input NAND	6.2	5.8		ns
NO02	2 -input NOR	6.4	5.1		ns
DF08	Positive Edge D Flip-Flop from CKL to Q: Tsh TH Twh TwL	10.6	6.1	$\begin{array}{r} 14.0 \\ 5.0 \\ 20.0 \\ 16.0 \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
OB2	TTL Inverting Output Buffer $\begin{aligned} \text { Capacitance Load } & =50 \mathrm{pF} \\ & =25 \mathrm{pF} \\ & =15 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.6 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
T02	Tri-state TTL Output Buffer $\begin{aligned} \text { Capacitance Load } & =50 \mathrm{pF} \\ & =25 \mathrm{pF} \\ & =15 \mathrm{pF}\end{aligned}$ $=15 \mathrm{pF}$	$\begin{aligned} & 4.1 \\ & 3.6 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \\ & 4.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
IB021	CMOS Inverting Input Buffer	7.4	8.7		ns

[^2]ANALOG LIBRARY AC ELECTRICAL CHARACTERISTICS ABSTRACT (VDD $=10 \mathrm{~V} \pm 10 \%$, unless otherwise specified $\mathrm{T}_{\text {amb. }}=25^{\circ} \mathrm{C}$, typical process.)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Cell Code \& Description \& Parameter/Conditions \& Min. \& Typ. \& Max. \& Unit \\
\hline COMP \& Static Comparator \& Propagation Delay (overdrive \(=10 \mathrm{mV}\)) Offset \& \& \[
\begin{gathered}
1 \\
\pm 5
\end{gathered}
\] \& \[
\begin{gathered}
2 \\
\pm 15
\end{gathered}
\] \& \[
\begin{aligned}
\& \mu \mathrm{s} \\
\& \mathrm{mV}
\end{aligned}
\] \\
\hline CP1X \& Capacitor Fields \& Unit Capacitance Capacitor Value Range Absolute Accuracy Matching (capacitor ratio) \& \[
\begin{aligned}
\& 0.08 \\
\& 0.1
\end{aligned}
\] \& \[
0.1
\]
\[
0.5
\] \& \[
\begin{gathered}
0.12 \\
50 \\
\pm 15 \\
1.0
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{pF} \\
\& \mathrm{pF} \\
\& \% \\
\& \%
\end{aligned}
\] \\
\hline \begin{tabular}{l}
RPX/PPX \\
RDX/PDX \\
RWX/PWX
\end{tabular} \& \begin{tabular}{l}
Resistors . Polysilicon \\
. \(\mathrm{P}^{+}\)Diffusion \\
. \(\mathrm{P}^{-}\)Well
\end{tabular} \& \begin{tabular}{l}
Resistor Value Range \\
Absolute Accuracy \\
Matching \\
Temeperature Coefficient \\
Resistor Value Range \\
Absolute Accuracy \\
Matching \\
Temperature Coefficinet \\
Resistor Value Range \\
Absolute Accurace \\
Matching \\
Temperature Coefficient \\
Voltage Coefficient
\end{tabular} \& 0.15
0.75

5 \& \& $$
\begin{gathered}
20 \\
\pm 20 \\
\pm 1 \\
0.15 \\
100 \\
\pm 20 \\
\pm 1 \\
0.15 \\
2000 \\
\pm 20 \\
\pm 2 \\
\pm 1 \\
5
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\mathrm{k} \Omega \\
\% \\
\% \\
\% /{ }^{\circ} \mathrm{C} \\
\mathrm{k} \Omega \\
\% \\
\% \\
\% /{ }^{\circ} \mathrm{C} \\
\mathrm{k} \Omega \\
\% \\
\% \\
\% /{ }^{\circ} \mathrm{C} \\
\% N
\end{gathered}
$$
\]

\hline SWIX MN1X/ MP1X \& | Switches |
| :--- |
| . Analog Switch |
| . MOS Switch | \& Ron Value Range Ron Value Range \& 50 \& 10 \& \[

$$
\begin{aligned}
& 30 \\
& 500
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{k} \Omega \\
\Omega
\end{gathered}
$$
\]

\hline IPOLXX ISyy \& Programmable Reference Current Generator \& | Current |
| :--- |
| Current Step |
| Supply Voltage Rejection $\left(4 \mathrm{~V}<V_{D D}<10 \mathrm{~V}\right)$ | \& 1 \& \[

$$
\begin{gathered}
1 \\
+2
\end{gathered}
$$

\] \& 250 \& \[

$$
\begin{gathered}
\mu \mathrm{A} \\
\mu \mathrm{~A} \\
\% N
\end{gathered}
$$
\]

\hline OPA2 \& General Purpose Operatıonal Amplifier \& Phase Margin Unit Gain Bandwidth ($C_{L}=100 \mathrm{pF}, R_{L}=10 \mathrm{k} \Omega$) Offset \& \& \[
$$
\begin{aligned}
& 80 \\
& \\
& 3.3 \\
& \pm 5
\end{aligned}
$$

\] \& ± 10 \& | Degrees |
| :--- |
| MHz |
| mV |

\hline OTA1 \& Transconductance Amplifier \& Unit Gain Bandwidth ($\left.\mathrm{C}_{\mathrm{L}}=3.5 \mathrm{pF}\right)$ \& 7 \& 10.5 \& \& MHz

\hline POR1 \& Static Power on Reset \& $$
\begin{aligned}
\hline \text { Active Voltage }\left(\begin{array}{rl}
\left(V_{D D}\right. & =10 \mathrm{~V}) \\
\left(\mathrm{V}_{\mathrm{DD}}\right. & =5 \mathrm{~V})
\end{array}\right. \\
\hline
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& 4.5 \\
& 3.5
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
$$
\]

\hline VREF \& | Voltage Bandgap |
| :--- |
| Reference | \& Output Voltage \& 1.15 \& 1.18 \& 1.20 \& V

\hline ZENx \& Zener Diode \& Zener Voltage (bias current $=50 \mu \mathrm{~A}$) \& 5.3 \& 5.6 \& 5.9 \& V

\hline OSC11 \& Crystal Oscillator \& Frequency \& 0.1 \& \& 12 \& MHz

\hline OSC31 \& RC Timer \& Frequency Stability Versus Temperature Stability Versus Supply Voltage \& \& $$
\begin{aligned}
& 100 \\
& 0.02 \\
& 0.5
\end{aligned}
$$ \& 500 \& \[

$$
\begin{aligned}
& \mathrm{kHz} \\
& \% /{ }^{\circ} \mathrm{C} \\
& \% \mathrm{~N} \\
& \hline
\end{aligned}
$$
\]

\hline ADC8Bx \& 8 Bits Analog to Digital Converter \& Conversion Time Integral non Linearity \& \& \& $$
\begin{gathered}
25 \\
\pm 0.5
\end{gathered}
$$ \& \[

\underset{LSB}{\mu \mathrm{S}}
\]

\hline SCFx \& Biquadratic Filter Cell \& Signal Frequency Order \& 2 \& \& $$
\begin{aligned}
& 30 \\
& 12
\end{aligned}
$$ \& kHz

\hline
\end{tabular}

Note : Refer to TSGSM User's Manual for more detailed informations.

PACKAGING

SGS-THOMSON has a wide variety of package options available to the user :

- Dual in line packages (DIP)
- Plastic
- Cerdip
- Side Braze
- Chip carriers
- Plastic Leaded Chip Carriers (PLCC)
- Ceramic Leadless Chip Carriers (CLCC)
- Ceramic Leaded Chip Carriers (LDCC)
- Small outlines (SO)

Where different packaging requirements are needed, contact SGS-THOMSON Marketing. Standard cells products in dice form (chip tray or wafer form)can also be supplied.

ORDER INFORMATION

$$
\begin{array}{ll}
\mathrm{C} & : 0^{\circ} \mathrm{C} /+70^{\circ} \mathrm{C} \\
\mathrm{l} & :-25^{\circ} \mathrm{C}+85^{\circ} \mathrm{C} \\
\mathrm{M} & :-55^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C} \\
\mathrm{~T} & :-40^{\circ} \mathrm{C} /+105{ }^{\circ} \mathrm{C} \\
\mathrm{~V} & :-40^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}
\end{array}
$$

MIXED ANALOG-DIGITAL BIPOLAR ARRAY

TSFJ SERIES

MIXED ANALOG - DIGITAL BIPOLAR ARRAYS

FEATURES

- ADVANCED BIPOLAR TECHNOLOGY:
- NPN, $\mathrm{FT}=3 \mathrm{GHz}$
- 2 Metal Layers
- 100MHz ECL Flip-Flop
- FULL ESD PROTECTION
- POWER SUPPLY:
- Maximum Ratings = UP to 15 V
- Operating Conditions $=3$ to 12 V
- ANALOG - DIGITAL ARRAYS :
- Analog Tiles
- ECL Tile For High Speed Logic
- 1^{2} L Core For Low Frequency Random Logic
- Power Tile With 200mA Capability
- 5 ARRAYS AVAILABLE :

J4, J6, J9, J13, J23 from 600 to 3000 Components

- CAD SOFTWARE SUPPORT :
- ADS-PC (Analog Design System - PC)
- Fully Integrated in PC Environment
- P-CAD* Software, for Schematic Capture, Simulation, and Layout
- OPERATING TEMPERATURE RANGE :

Commercial : 0 to $70^{\circ} \mathrm{C}$
Industrial : -40 to $+85^{\circ} \mathrm{C}$
Military : -55 to $+125^{\circ} \mathrm{C}$

- PACKAGE OPTIONS
- DIL : Plastic or Ceramic
- SMD : SO, PLCC, LCCC, QFP

USIC PRODUCTS DESCRIPTION

SGS-THOMSON Microelectronics introduce the mixed analog-digital arrays developped on a 3 GHz process. Using its expertise in bipolar arrays, SGS-THOMSON has developed this new series to offer a product on leading edge of advan ced technology :

- High speed process (NPN, $\mathrm{FT}_{\mathrm{T}}=3 \mathrm{GHz}$)
- Architecture with tile concept to improve the efficiency of the placement and routing
- 2 customized metal layers with 4 masks to personalize (contact, M1, via, M2)
- Complete CAD system on a PC from schematic capture up to the layout.

Figure 1 : Example of TSFJ13 architecture.

TSFJ ARCHITECTURE

TECHNOLOGY

TSFJ series developed by SGS-THOMSON is using an advanced bipolar process with high frequency performance ($\mathrm{NPN}, \mathrm{F}_{\mathrm{t}}=3 \mathrm{GHz}$). With a double metal layer the parasitic elements are minimized to improve the layout density and to increase the performances.
The process is very well suited for accurate analog bipolar design. The other key feature is introduced with the digital capability using either ECL or I2L functions.
Thanks to protection networks on sequential input pad, the complete TSFJ series is protected against ESD parasitic effects.

TILE ARCHITECTURE

The TSFJ series has an architecture based on a tile concept in order to take advantage of efficient layout.
For SGS-THOMSON a tile is an optimized placement of basic components such as transistors, resistors, and capacitors, with no routing done in advance. When customization is prepared, the designer optimizes the routing of each tile according to needs.
6 different types of tiles have been developed :

- LINEAR TILE, optimized for analog functions (Op-amps, comparators, ...)
- 6 standard NPN (hFE $=105$, and $\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$)
- 2 low noise NPN
-7 lateral PNP ($\mathrm{h}_{\mathrm{FE}}=52$, and $\mathrm{I}_{\mathrm{C}}=1 \mu \mathrm{~A}$)
- 44 resistances from 100Ω to $50 \mathrm{~K} \Omega$
- POWER TILE, optimized for power interface capability ;
- 4 standard substrate PNP
- 1 power substrate PNP ($\mathrm{I}_{\mathrm{kF}}=10 \mathrm{~mA}$)
- 1 power NPN ($\mathrm{IkF}_{\mathrm{k}}=314 \mathrm{~mA}$)
- 1 medium power NPN ($\mathrm{kF}=78 \mathrm{~mA}$)
- 3 standard NPN
- I^{2} L LOGIC TILE, optimized to implement random or logic using standard I2L functions (NAND, AND, NOR, OR, Flip-flop, ...)
- row of I2L operators
- ECL LOGIC TILE, optimized for high speed logic up to 100 MHz
- equivalent to 1 D flip-flop
- BUILT-IN FUNCTION TILES, a certain number of predefined tile have been created to fulfill some specific analog requests such as ;
- 1 bandgap voltage reference
- 1 oscillator (RC or quartz)
- 1 voltage regulator
- 1 R-2R resistor ladder for 6 and 8 bits DAC
- RESISTOR/CAPACITOR TILE, optimized for RC network or compensation capacitor purpose - 2.5 pF and 7 pF capacitors available

Figure 2 : Example of a symbolic Linear Tile.

TSFJ SERIES

Figure 3 : TSFJ Series : The Available Tiles.

Tiles	Nb Components	J04	J06	J09	J13	J23
ECL	86			4	4	5
12L	9	6	15	18	36	54
HF	46			1	1	1
CAPRES	24			2	2	
REFECL	31			1	1	1
DAC	33			1	1	
R2R	46					1
LIN	59	6	8	10	14	24
RES	21	1	1			4
PWR	34	1	2	2	2	4
PWR1	34	1	2	2	2	4
BANDGAP	37	1	1	1	1	1
OSCIL	23	1	1	1	1	1
PROTECA	2	7	8	11	13	18
PROTECB	2	7	7	11	13	18
CAP1	1	4	6	8	8	10
CAP2	2	2	4	2	4	9
CAPAS	3		1			
DIODES	2	2	4	4	4	8
PUISS		1				
ALIM	40		1	1	1	2
	TOTAL :	600	919	1554	1964	3067

E88TSFJ-03
Figure 4 : TSFJ Series : The Transistors.

Components	J04	J06	J09	J13	J23
NPN 5mA	54	79	201	225	331
NPN 16mA	14	18	24	32	52
NPN 50mA	2	4	4	4	8
NPN 100mA	2	2	2	2	4
NPN 200mA	2	4	4	4	8
LATERAL PNP 60 $\mu \mathrm{A}$	50	68	83	111	184
SUBSTRATE PNP	8	16	16	16	32
SUBSTRATE PNP 10mA	2	4	4	4	8

E88TSFJ-04

Figure 5: TSFJ Series: The Resistors
High values

Components	J04	J06	J09	J13	J23
$3 \mathrm{~K} \Omega \mathrm{RI}$	0	0	10	10	10
$5 \mathrm{~K} \Omega \mathrm{RI}$	36	56	64	80	136
$8 \mathrm{~K} \Omega \mathrm{RI}$	0	0	18	18	18
$10 \mathrm{~K} \Omega \mathrm{RI}$	64	80	96	128	202
$40 \mathrm{~K} \Omega \mathrm{RI}$	0	2	2	2	2
$50 \mathrm{~K} \Omega \mathrm{RI}$	0	4	4	4	4
$50 \mathrm{~K} \Omega \mathrm{SB}$	24	32	40	56	88
$100 \mathrm{~K} \Omega \mathrm{SB}$	4	4	12	12	20

Medium and low values

Components	J04	J06	J09	J13	J23
$30 \Omega \mathrm{PL}$	9	17	17	17	33
$100 \Omega \mathrm{PL}$	60	80	116	156	260
$200 \Omega \mathrm{PL}$	0	0	16	16	20
$300 \Omega \mathrm{PL}$	0	0	9	9	8
$1 \mathrm{~K} \Omega \mathrm{BEX}$	130	182	398	470	720

E88TSFJ-05

ADS-PC : ANALOG DESIGN SYSTEM - PC

The TSFJ series is fully supported by a complete Computer Aided Design (CAD) system. The ADSPC tool offers capabilities of schematic entry, analog and digital simulation and symbolic layout, using a standard software package from PCAD.
The ADS-PC software requires a low cost IBM PC AT3 or fully compatible with the following configuration :

- 640 KB RAM, coprocessor 80287
optional : 80386 and 80387 accelerator boards
2MB EMS board
- microsoft parallel mouse
- EGA graphic monitor
- 30 MB hard disk
- laser jet printer

Checking and mask generation are implemented on DEC ${ }^{\text {TM }}$, VAX ${ }^{\text {TM }}$ and SUN computer systems.

SCHEMATIC GRAPHIC CAPTURE

PC-CAPS ${ }^{T M}$ software, from P-CAD ${ }^{T M}$, provides capture of schematic circuit diagram, allowing the circuit description in a hierarchical way* and using either macrocell from ST library or basic array components.
A database is generated (netlist extraction) for simulation and symbolic layout.

* (symbols can be created to represent schematic designs and can be used as components in higherlevel schematics)

ANALOG SIMULATION

The analog simulation is performed using PSPICE ${ }^{\text {TM }}$ software and the models library for basic components and macrocells. The result analysis is performed using graphic representation or listing edition.
PSPICE input files are the net list issued from schematic capture, command file, configuration file and simulation environment (active device level description, technology worst cases...).

DIGITAL SIMULATION

PC-LOGS ${ }^{\text {TM }}$, from P-CAD ${ }^{\text {TM }}$, is a logic simulation program providing primitive symbols library and using commands interactively or in batch mode to set up and perform a simulation.
Simulation results can be displaid to the screen in graphic or tabular forms. PC-LOGS inputs are of two types : a verified netlist and user commands.

Note: PSPICE is a trademark of MICROSIM.

PLACEMENT AND ROUTING

PC-CARDS ${ }^{T M}$, from P-CAD ${ }^{T M}$, is built around an intelligent database that continually keeps track of components and connectivities.

The on-screen menu includes commands to draw, edit, move, delete, zoom in and out, view selected window.

Figure 6 : ADS - PC Design Flow.

CUSTOMER DESIGN INTERFACE

SGS-THOMSON has developed several interfaces for customers, giving them easy and flexible design approaches for TSFJ mixed analog/ digital bipolar arrays.
User can access ADS-PC system ; - via the SGS-THOMSON Design centers

- via CAE workstations using a PC configuration and the $P-C A D^{T M}$ software package
According to all of these design possibilities, SGSTHOMSON defined 2 main customer interfaces. Next figure outlines these interfaces. Each interface delimits the responsabilities of customer and SGSTHOMSON during circuit development flow.

	Interface 2	Interface 3
Definition of Circuit Specifications	Customer	Customer
Electrical Description (analog + digital)	Customer	Customer
Test Procedure	Customer	Customer
Graphic Capture + Input Signal Entry	SGS-THOMSON	Customer
Design Verification	SGS-THOMSON	Customer
Simulation (analog + digital)	SGS-THOMSON	Customer
Approval	Customer	Customer/SGS-THOMSON
Place and Route	SGS-THOMSON	Customer
Final Design Release	Customer	Customer/SGS-THOMSON
Test Program Generation + Test Tooling	SGS-THOMSON	SGS-THOMSON
Mask Tooling	SGS-THOMSON	SGS-THOMSON
Prototype Manufacturing	SGS-THOMSON	SGS-THOMSON
Prototype Delivery	SGS-THOMSON	SGS-THOMSON

With interface 3, design can be done either at SGS-THOMSON Microelectronics design center facilities or at customer location.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, Voltage Referenced to V -)

Symbol	Parameter	Value		Unit
		Min.	Max.	
V_{+}	Supply Voltage	-0.5	+15	V
$\mathrm{~T}_{\text {sta }}$	Storage Temperature (ceramic)	-60	+150	${ }^{\circ} \mathrm{C}$
	Storage Temperature (plastic)	-40	+125	${ }^{\circ} \mathrm{C}$

Stresses above those listed order "maximum rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these on any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS (Voltage Referenced to V-)

Symbol	Parameter		Value			Unit
		Min.	Typ.	Max		
V_{+}	Operating Supply Voltage	3		12	V	
$\mathrm{~T}_{\text {amb }}$	Operating Ambient Temperature	Military	-55		+125	${ }^{\circ} \mathrm{C}$
		Industrial	-40		+85	${ }^{\circ} \mathrm{C}$
		Commercial	0		+70	${ }^{\circ} \mathrm{C}$

DC GENERAL ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
	Resistors					
P+	$\mathrm{P}+$ Diffusion	Resistor Value Range Absolute Accuracy Matching (note 1) Matching (note 2) Temperature Coefficient ($1^{\text {st }}$ order)	30		$\begin{gathered} 420 \\ \pm 25 \\ \pm 2 \\ \pm 6 \\ 0.12 \end{gathered}$	$\begin{gathered} \Omega \\ \% \\ \% \\ \% \\ \% /{ }^{\circ} \mathrm{C} \end{gathered}$
$\mathrm{B}_{\text {ext }}$	Extrinsic Base Region	Resistor Value Range Absolute Accuracy Matching (1) Matching (2) Temperature Coefficient ($1^{\text {st }}$ order)	270		$\begin{gathered} \hline 5000 \\ \pm 15 \\ \pm 2 \\ \pm 6 \\ 0.09 \\ \hline \end{gathered}$	$\begin{gathered} \Omega \\ \% \\ \% \\ \% \\ \% /{ }^{\circ} \mathrm{C} \end{gathered}$
R_{1}	Implanted Resistor	Resistor Value Range Absolute Accuracy Matching (1) Matching (2) Temperature Coefficient ($1^{\text {st }}$ order)	5		$\begin{gathered} 50 \\ \pm 15 \\ \pm 2 \\ \pm 6 \\ 0.21 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{K} \Omega \\ \% \\ \% \\ \% \\ \% /{ }^{\circ} \mathrm{C} \end{gathered}$
Bint	Intrinsec Base Region	Resistor Value Range Absolute Accuracy Matching (1) Matching (2)	50	100 ± 25 ± 2 ± 6		$\begin{gathered} \hline \mathrm{K} \Omega \\ \% \\ \% \\ \% \\ \hline \end{gathered}$
	Capacitors	Capacitor Value Range Absolute Accuracy	2.5		$\begin{gathered} 7 \\ \pm 20 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \% \end{aligned}$
V+		Maximum Operating Voltage			20	V
$\mathrm{N}_{\text {BPC1 }}$		std NPN Transistor (note 3)				
Vвсво	Breakdown Voltage	Collector-base	40			V
Vbceo	Breakdown Voltage	Collector-emitter	18			V
VBCSO	Breakdown Voltage	Collector-substrate	40			V
$\begin{aligned} & \mathrm{F}_{\mathrm{FE}} \\ & \mathrm{I}_{\mathrm{KF}} \end{aligned}$	Current Gain Knee Current	@ $\mathrm{l}_{\mathrm{c}}=100 \mu \mathrm{~A}$		$\begin{aligned} & 100 \\ & 5.6 \end{aligned}$		mA
NPWR		Power NPN Transistor (note 3)		$\begin{aligned} & 140 \\ & 314 \end{aligned}$		
$V_{\text {bcbo }}$	Breakdown Voltage	Collector-base	40			v
$V_{\text {bceo }}$	Breakdown Voltage	Collector-emitter	18			V
$\underset{\mathrm{I}_{\mathrm{KF}}}{\mathrm{~V}_{\mathrm{BCO}} \mathrm{H}_{\mathrm{FE}}}$	Breakdown Voltage	Collector-substrate	40			V
	Current Gain Knee Current	@ $\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}$				mA

Notes : matching between 2 resistors of the same value, closed to each other and with the same orientation on the die.
anatching between 2 resistors of different values, close to each other and with the same orientation on the die. 3or more informations refer to the TSFJ user's manual.
4koltage references are provided by an "ECL reference" macrocell (REFECL) built on a specific tile.
5 nput voltages could be supplied by a specific tile called HFECL.
coutput levels are not compatible with standard $10 \mathrm{~K}, 100 \mathrm{~K} \mathrm{ECL}$ series.

DC GENERAL ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max.	
PNPS		Substrate PNP Transistor (note 3)				
$V_{\text {bcbo }}$	Breakdown Voltage	Collector-base	40			V
$V_{\text {bCE }}$	Breakdown Voltage	Collector-emitter	18			V
$V_{\text {bcso }}$	Breakdown Voltage	Collector-substrate	40			v
$\mathrm{H}_{\text {fe }}$	Current Gain	@ $\mathrm{I}_{\mathrm{c}}=1 \mu \mathrm{~A}$		160		
I_{KF}	Knee Current			40		$\mu \mathrm{A}$
		ECL Cells ($\mathrm{V}_{+}=5 \mathrm{~V} \pm 10 \%$)				
V_{R}	$\mathrm{V}_{\text {reference }}$	Voltage Reference (note 4)		. 97		v
$\mathrm{V}_{T 1}$	$\mathrm{V}_{\text {reference }}$	Voltage Reference (note 4)		3.92		V
$V_{\text {T2 }}$	$\mathrm{V}_{\text {reference }}$	Voltage Reference (note 4)		3.20		V
$\mathrm{V}_{\text {IL }}$	Input Voltage	(note 5)			3.6	V
$\mathrm{V}_{\text {IH }}$	Input Voltage	(note 5)	4.3			V
VoL	Output Voltage	(note 6)			3.6	V
V_{OH}	Output Voltage	(note 6)	4.3			V

Notes: matching between 2 resistors of the same value, close to each other and with the same orientation on the die. anatching between 2 resistors of different values, close to other and with the same orientation on the die. 3or more informations refer to the TSFJ user's manual.
4 oltage references are provided by an "ECL reference" macrocell (REFECL) built on a specific tile.
5nput voltages could be supplied by a specific tile called HF .
coutput levels are not compatible with standard 10K, 100K ECL senies.
DIGITAL LIBRARY AC ELECTRICAL CHARACTERISTICS ABSTRACT
(unless otherwise specified, $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$, typical process)

Symbol	Parameter	Test Conditions	Value			Unit
			Min.	Typ.	Max	
		ECL CELLS				
V_{s}	Voltage Swing			600		mV
TG	Toggle Frequency	D Type Flip-flop			100	MHz
tplu	Propagation Delay	NAND2, (FO=1)		1.1		ns
tPHL	Propagation Delay	NAND2, (FO=1)		3.2		ns
		1^{2} L CELLS (note 1)				
T_{G}	Toggle Frequency	D Type Flip-flop @ Injection = $1 \mu \mathrm{~A}$ @ Injection $=10 \mu \mathrm{~A}$			$\begin{aligned} & 160 \\ & 600 \end{aligned}$	$\begin{aligned} & \mathrm{KHz} \\ & \mathrm{KHz} \\ & \hline \end{aligned}$

Note: 1. $I^{2} \mathrm{~L}$ cells have been characterized between $0.1 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$.

ANALOG LIBRARY, AC ELECTRICAL CHARACTERISTICS ABSTRACT

(unless otherwise specified, $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$, typical process)
JOPA1 - Programmable Operational Amplifier ($\mathrm{V}_{\mathrm{cc}} \pm 6 \mathrm{~V}$, $\mathrm{I}_{\text {set }}=20 \mu \mathrm{~A}$)

Symbol	Parameter	Test Conditions	Typical Value	Unit
B	Unity Gain Bandwidth	$\mathrm{RL}=5 \mathrm{~K} \Omega ; \mathrm{CL}=20 \mathrm{pF}$	1	MHz
$\phi \mathrm{M}$	Phase Margin	$\mathrm{Av}=1 ; \mathrm{RL}=5 \mathrm{~K} \Omega ; \mathrm{CL}=20 \mathrm{pF}$	60,	
Svo	Slew Rate	$\mathrm{Av}=1 ; \mathrm{RL}=5 \mathrm{~K} \Omega ; \mathrm{CL}=20 \mathrm{pF}$	0.35	$\mathrm{~V} / \mu \mathrm{s}$
Av	Open-loop Voltage Gain	$\mathrm{RL}=5 \mathrm{~K} \Omega ; \mathrm{CL}=20 \mathrm{pF}$	90	dB

JCOMP1 - Programmable Voltage Comparator (LM139 type)

Symbol	Parameter	Test Conditions	Typical Value	Unit
tref	Large Signal Response Time	$\mathrm{RL}=5 \mathrm{~K} \Omega ; \mathrm{CL}=2 \mathrm{pF}$ with Overdrive $: 100 \mathrm{mV}$	300	ms
tre	Small Signal Response Time	$\mathrm{RL}=5 \mathrm{~K} \Omega ; \mathrm{CL}=2 \mathrm{pF}$ with Overdrive $: 5 \mathrm{mV}$	1	$\mu \mathrm{~s}$
AVD	Large Signal Voltage Gain		87	dB

ANALOG BIPOLAR ARRAY

HIGH FREQUENCY ANALOG BIPOLAR ARRAY

FEATURES

The TSFK09 array is manufactured using a very high frequency technology (Ft of $\mathrm{NPN}=3 \mathrm{GHz}$) which allows a 15 V maximum supply operating voltage.

- TECHNOLOGY HF2C, 2 METAL LAYERS
- 1 METAL LAYER TO CUSTOMIZE
- 28 BONDING PADS (maximum)
- 188 NPN TRANSISTORS
- 28 PNP TRANSISTORS (placed in peripheral)
- 686 RESISTORS
- MAXIMUM SUPPLY VOLTAGE $=15 \mathrm{~V}$

DESCRIPTION

The TSFK09 array is a prediffused bipolar array of components allowing the user to design his specific applications in a short cycle time and with a minimum risk of errors.

The TSFK09 array from SGS-THOMSON Microelectronics is specially intended for use in video, telecom-
munication, instrumentation and other high frequency applications, but it could be used with benefit for low frequency applications.
Using kit parts for breadboard, the designer has the capability to validate the schematics in the final application environment.

ANALOG ARRAY:

The structure of the TSFK09 based on a regular matrix of 3×7 tiles, improves the efficiency of the layout.
Each tile contains :

- 6 QN1 type NPN transistors
- 2 QN2 type NPN transistors
- 100, 200, 400 and 800 P+ type resistors, $1 \mathrm{~K}, 2 \mathrm{~K}$, $4 \mathrm{~K}, 8 \mathrm{~K}$ and 16 K Pextrinsic base resistors.

2 independent resistor tubs allow placing of 2 positive power supplies if required.

Figure 1 : TSFK09 Array Architecture.

TSFK09 SERIES

MAXIMUM VOLTAGE

Volts	NPN	PNP
Collector-base	25	25
Collector-emitter	15	15
Collector-substrate	25	
Base-substrate		25
Emitter-base	5.8	
Base-emitter		25

Resistor voltage $=20 \mathrm{~V}$ maximum.
Capacitor voltage $= \pm 20 \mathrm{~V}$ maximum.

ELECTRICAL CHARACTERISTICS

Current Gain hFE		Resistor Tolerances	Resistors Matching

DEVICES MODELING

All basic components are available whit SPICE models, for the 4 different kinds of transistors. The parameters are:

Symbol	Parameter	QN1	QN2	QN4	PNP	Unit
I_{s}	Transport Saturation Current $\left(10^{-16}\right)$	2.1	4.19	10.5	0.5	A
$\mathrm{~B}_{\mathrm{F}}$	Ideal Maximum Forward Beta	136	136	136	73	
$\mathrm{~V}_{\mathrm{AF}}$	Forward Early Voltage	35	35	35	41	V
I_{KF}	Knee Current	14.7	29.4	73.5	43.10^{-3}	mA
R_{B}	Zero Bias Resistance	292	146	58.4	190	Ω
R_{BM}	Minimum Base Resistance	56.5	28.2	11.3	61.3	Ω
R_{E}	Emitter Resistance	9.8	4.9	1.96	8.90	Ω
R_{C}	Collector Resistance	79.5	53.9	32.6	8	Ω

ANALOG SWITCHED CAPACITOR FILTER ARRAYS

SGS-THOMSON
NMCROELECTRONICS

MASK PROGRAMMABLE FILTERS ANALOG SWITCHED CAPACITOR FILTER ARRAYS

FEATURES

- HCMOS MASK PROGRAMMABLE SWITCHED CAPACITOR FILTERS : Fast Design Turnaround Time (5 to 6 weeks average), Thanks To Gate Array Approach
- INTEGRATION OF ANY KING OF CLASSIC, NON-CLASSIC FILTERS : Bandpass, Lowpass, Highpass, Band Reject...
Cauer, Chebychev, Butterworth, Legendre...
- FILTER ORDER : From 2 to 12
- CASCADABLE STRUCTURE : Higher Order Achievable
- NO EXTERNAL COMPONENTS REQUIRED TO REALIZE THE FILTERING FUNCTION
- ADDITIONAL OPTIONS AVAILABLE ON CHIP :
_ Uncommited Op-Amps (for anti-aliasing and/or smoothing filters, half or full wave rectifiers...) ;
- Internal Divider (sampling frequency generated ; from external clock) ;
- Output Sample-and-Hold
- Tsgf Series Provides:
- Leapfrog Structure For Very Low Sensitivity Filters ;
- Cascadable Biquadratic Cells For Non-classic Filter Design
- TSGF SERIES FULLY SUPPORTED BY "FILCAD"® CAD SOFTWARE FROM FILTER SYNTHESIS AND SIMULATION UP TO LAYOUT
- Application Notes
- Evaluation Boards
- Input Signal Frequency: 0 to 30 KHz
- Signal To Noise Ratio : 60 to 85dB
- POWER SUPPLY: Dual $\pm 5 \mathrm{~V}$ Single 0-10V Single 0-5V
- ADJUSTABLE POWER CONSUMPTION 0.5 mW to 20 mW per Filter Order
- QUALITY FACTOR : UP to 50
- PASS-BAND GAIN : UP to 40dB
- INPUT SENSITIVITY : 1mV RMS (min)

DESCRIPTION

TSGF series is a family of Mask Programmable Filters (MPFs) developed by SGS-THOMSON Microelectronics.

The TSGF product range is composed of 3 switched capacitor filter base arrays, TSGF04, TSGF08 and TSGF12 providing filter integration capability from 2nd to 12th order.

TSGF04/08/12 are using "gate array" technique : the filter customization is achieved only by the final metallization mask.

Therefore TSGF series provide users with filter integration solutions with very fast design turn-around time : 5 to 6 weeks up to delivery of full tested prototypes.
TSGF04/08/12 base arrays provide on chip all necessary functions to realize all kind of filters :

- transconductance amplifiers
- switches
- capacitor fields
- sample-and-hold
- non overlapping phase generator

Additional on-chip integration capabilities are offered by TSGF products such as :

- prefiltering and post filtering functions antialiasing and smoothing filters)
- cosine filter
- output sample-and-hold driving
- power consumption adjustment
- output DC level adjustment.

TSGF series provide users a fast and complete design solution for their specific filter circuits resulting in highly accurate and reliable products thanks to switched capacitor technique.
But SGS-THOMSON filtering approach is not only limited to the Mask Programmable Filter (MPF) products.

TSGF SERIES PRODUCT RANGE

| Part
 Number | Number of
 on-chips Filters | Filter
 Order | Uncommitted
 Op-amps | Clock | Output
 Sample-and
 Hold | Packages |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Users are given :

- Standard Device Filters which are general purpose filters designed by SGS-THOMSON from the 3 TSGF base arrays.
- TSG 87xx developed on TSGF04 filter array (2nd to 4th order)
- TSG 85xx developed on TSGF08 filter array (4th to 8th order)
- TSG 86xx developed on TSGF12 filter array (8th to 12th order).
Refer to data sheets of these standard filter products.
- "Gate Array" Filters which are the TSGF04, TSGF08, TSGF12 filter arrays described in this data sheet.
- "Standard Cell" Filters

By offering TSGF-like macrocells in its library, the mixed analog/digital TSGSM Standard Cell family also provides filtering capabilities and then can extend integration possibilities offered by TSGF series.
For example higher than 12th order filters or circuit combining filters with digital and analog functions on the same chip are achievable with TSGSM Standard Cells.

SWITCHED CAPACITOR TECHNIQUE

SGS-THOMSON TSGF products are active filters where resistors are replaced by capacitors which are switched at a frequency, named sampling frequency (F_{1}).
Figure 1 is showing the basic principle of switched capacitor technique.

Figure 1.

The 2 switches (S1 and S2) are controlled by 2 complementary and non overlapping clock phases.
During the phase $\varnothing=1$ (S1 on, S2 off) the charge stored in C1 is :
Q1 = C1.V1
(1)

During the phase $\bar{\varnothing}=1$ (S1 off, S2 on) the charge stored in C1 becomes :
Q2 $=$ C1.V2 (2)
During a complete clock period $\mathrm{Ti}=\frac{1}{\mathrm{Fi}}=\varnothing+\bar{\varnothing}$ the transferred charge is :
$\Delta \mathrm{Q}=\mathrm{Q} 1-\mathrm{Q} 2=\mathrm{C} 1$ (V1-V2) (3)
During this Ti period, this charge flow is equivalent to a current, I :
$\Delta \mathrm{Q}=\mathrm{C} 1(\mathrm{~V} 1-\mathrm{V} 2)=\mathrm{I} . \mathrm{Ti}(4)$

$$
\begin{equation*}
\mathrm{I}=\mathrm{C} 1 . \mathrm{Fi}(\mathrm{~V} 1-\mathrm{V} 2)=\frac{\mathrm{C} 1(\mathrm{~V} 1-\mathrm{V} 2)}{\mathrm{Ti}} \tag{5}
\end{equation*}
$$

Comparing (5) with Ohm's law applied to a resistance :

$$
\begin{equation*}
I=\frac{V_{1}-V_{2}}{R} \tag{6}
\end{equation*}
$$

The equivalent resistor is then :

$$
\mathrm{Req}=\frac{\mathrm{Ti}}{\mathrm{C} 1}
$$

Then, with (7), a RC product becomes :

SWITCHED CAPACITOR FILTER BENEFITS

In active filters, the time constant is fixed by the RC product but the component values R and C used with the Op-amp are absolutely uncorrelated: so trimmings, tunings are very often needed to obtain an accurate template. On the other hand, with switched capacitor networks, only capacitor ratios are used. These ratios are obtained with capacitors integrated on the same chip. The available accuracy is 0.1% to 0.5% whatever the temperature condition may be.

As the time constant is fixed by capacitor ratio, fully integrated filters are achievable without trimming. In addition, as shown in (8) the time constant RC is proportional to the sampling period Ti : the filter cut-off frequency can be shifted by tuning the sampling clock frequency without any change on the shape of response curves.

SWITCHED CAPACITOR FILTER FEATURES

Key Points	Results
- Monolithic Filter. - The coefficients of the filter transfer function are completely determined by : - a single crystal controlled clock frequency - and ratioed capacitors - Fully HCMOS Integrated Filters - Switched capacitor filters are sampled-and-hold circuits.	- Board Size Reduction. - High Accuracy Template. - Stability in Temperature and Time. - High Order Filter Achievable. - No Adjustment. - Clock Tunable Cutoff Frequency. - Low Power. - No External Components. - Ease and Safety of Use. - Antialiasing prefiltering is required if the input signal is wide band. - Smoothing post filtering may be used to avoid spectral rays around the sampling frequency.

SWITCHED CAPACITOR FILTER ARRAY ARCHITECTURE

Analog switched capacitor filter arrays, TSGF series, are processed with a $3.5 / 2$ polysilicon layer/1 metal layer HCMOS process.
SGS-THOMSON offers 3 filter base arrays, TSGF04, TSGF08 and TSGF12, providing filtering capabilities from 2nd to 12th order.
The 3 arrays are designed around a "Universal biquadratic filter cell", SGS-THOMSON patented. This cell consists of 2 adder integrators using a transconductance amplifier, switches, and capacitor fields. Fields of capacitors are composed of hundred unit capacitors (0.1 pF) and then provide high and accurate capacitor values.
Figure 2 shows the TSGF08 chips, outlining all functions available on TSGF filter arrays :
_ Universal 2nd order Filter Cell. Clock divider generating internal sampling frequency from external clock.

- Non overlapping phase generator.
- Input Sample-and-Hold.
- Uncommitted free Op-amps. Power consumption Adjustment cells for filter and Opamps.
- Output Sample-and-Hold.

The intemal sampling frequency Fi can be set from 500 Hz to 700 KHz by an external oscillator (or an internal one with TSGF04 base wafer).
When the external available clock frequency is higher than 700 KHz , the set of Mask Programmable dividers by 2 is used to adapt the external clock frequency to the sampling frequency. In any case the external clock frequency must be lower than 5 MHz .

As the ratio $\mathrm{Fi} / \mathrm{Fc}$ between sampling frequency Fi and selected filter frequency Fc is a constant, designers can move the filter characteristics (central or cut-off frequency) only by tuning the clock.
A 10 V power supply, either 0 V and 10 V , or -5 V and +5 V , gives the best performances : maximum output swing of 8 V .
The TSGF filters can also operate with a standard $0 / 5 \mathrm{~V}$ power supply. In that case the maximum output swing is 2.2 V .
Typical power consumption is 0.5 mA per filter order. This power consumption is user adjustable between 0.1 mA and 2 mA with an external resistor, depending on the frequency range.
The power consumption adjustment is also provided to the uncommitted operational amplifiers : the bias current must be increased when a high gain - bandwidth product is required.
These uncommitted Op-amps give the designer the capability to create auxiliary circuits like voltage gain, prefiltering and post filtering functions half or full wave rectifier functions, or local oscillator (refer to application notes AN-061, AN-069, AN-070, AN075).

The offset voltage of TSGF products is typically a few millivolts, with a 300 mV max depending of the filter type.
Moreover, there is a possibility to adjust the filter output DC levels, thanks to an external bias voltage applied on "LVL" pin. Automatic offset compensation can be done by mean of one uncommitted on-chip operational amplifier, as indicated in Application note AN-069.
The TSGF products feature a high input impedance (typ. : $3 \mathrm{M} \Omega$) and a low output impedance (typ. : 10Ω) allowing then cascadable filter network in order to achieve higher than 12th order.
The output buffers are configurated as sample-andhold amplifiers which can drive a $1 \mathrm{~K} \Omega$ load resistance and a 100 pF load capacitance.
On the TSGF04 and TSGF12 an external sample-and-hold clocking allows to connect the filter output directly to an analog to digital converter (Optional ; see fig. 7).
In addition some particular switched capacitor cells have been implemented on the first 2 integrators of each chip allowing realization of special functions like :

- cosine filter
- complementary high pass filter
- exact bilinear leapfrog filter.

Figure 3a : TSG8512 : 7th Order Cauer Low 0 pass Filter.

Figure 3b : TSG8551 : 8th Order High-Q Band pass Filter $(Q=35)$.

BENEFITS

With the TSGF series of SGS-THOMSON, designers are given unique "Gate Array" filter products for the replacement of their passive/active filters or the design of new filters.
The TSGF04/08/12 provide then with gate Array technique 3 complete arrays where all functions necessary to realize the filter function and its external circuit environment are available on chips.
The switched capacitor process permits the realization of very accurate and fully integrated filters and breaks down the equipment production costs by providing fully tested filters parts : tuning or adjustment of external components are no more necessary with TSGF series.
Figures $3 \mathrm{~A}, 3 \mathrm{~B}$ is showing 2 examples of Standard Filters designed with the TSGF08 matrix.

APPLICATIONS

TSGF products from SGS-THOMSON can integrate all filtering functions (replacement of active or passive filters...) and then can be implemented very quickly into an application/equipment requiring a filter with a maximum input signal frequency of 30 KHz .

Mask Programmable Filters (MPFS) typical applications are:

- audio filtering/processing
- signal/frequency detection
- scrambling/coding
- spectrum analysis
- process control
- remote control
- harmonic analysis
- equalization
- frequency tracking
- alarm systems
- robotics
- anti-knock system
- data acquisition (before A/D and after D/A converters)
- automatic answering
- inwarding
- spreech processing
- security system (coding, recognition)
- sonar detection
- mobile radio
- modems

BLOCK DIAGRAMS

Figure 4 outlines the mean features and options offered by each of the 3 MPF arrays by showing TSGF04, TSGF08 and TSGF12 block diagrams.

Figure 4a: TSGF04 Block Diagram.

Figure 4b and 4c: TSGF08 and TSGF12 Block Diagrams.

SCS.THOMSOM
Mocmokyecrioonnce

TSGF SERIES

PIN DESCRIPTION

The table below gives the pin description of the 3 MPF arrays, TSGF04 TSGF08 and TSGF12. The pin assignment is given for the extended and com-
plete version of each array, i. e. with all the available on-chip options connected to the package.

Name	$\begin{gathered} \text { Pin } \\ \text { Type } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TSFG04 } \\ \mathbf{N}^{\circ} \\ \hline \end{array}$	$\begin{gathered} \text { TSGF08 } \\ \mathbf{N}^{\circ} \end{gathered}$	$\begin{gathered} \text { TSGF12 } \\ \mathbf{N}^{\circ} \end{gathered}$	Function	Description
V^{+}	Input	1	1	1	Positive Supply	
V	Input	2	2	2	Negative Supply	
LVL	Input	6	3	LVL1 5 LVL2 20	Output DC Level Adjustment	Filter output DC level adjustment when connecting a potentiometer between V^{+} and V with is middle point to LVL. When no adjustment is needed, LVL pin is connected to GND.
IN	Input	7	4	IN1 4 IN2 9	Filter Input	
GND	Input	8	5	8	General Ground	$\text { GND voltage }=\frac{\mathrm{V}^{+}+\mathrm{V}^{-}}{2}$
OUT	Output	9	6	OUT1 6 OUT2 7	Filter Output	
CLK	Input	See CLKIN	7	CLK1 10 CLK2 11	Clock Input	TTL/CMOS Level Compatibility
PWF	Input	14	8	12	Filter Power Adjustment	Filter power consumption can be chosen by connecting a resistor between PWF and GND (or V^{+}). Stand by mode is obtained by connecting PWF to V (or non connected)
PWA	Input	10*	9	13	Op Amp Power Adjustment	Idem PWF but for Op Amp (PWA)
-EB	Input		10	14	Inverting Input Op Amp B	
SB	Output		11	15	Output Op Amp B	
+EB	Input		12	16	Non Inverting Input Op Amp B	
+EA	Input	5	13	17	Non Inverting Input Op Amp A	
SA	Output	4	14	18	Output Op Amp A	
-EA	Input	3	15	19	Inverting Input Op Amp A	
NC			16		Non Connected	
CLKSH	Input	10*		3	S/H Clock Input	External Driving Clock of Output Sample-and-hold
CLKIN	Input	12			Clock Input	See TSGF04 Clock Oscillator Section
CLKR	Output	13			Clock Pin for External Oscillator	For TSGF04, external RC or crystal oscillator are connected to CLKIN and CLKR pins. See TSGF04 clock oscillator section
CLKM	Input	11			Clock Selection Mode	Connected to GND or V see TSGF04 clock oscillator section

For TSGF04 when external driving clock of output sample-and-hold (CLKSH) is used, PWF realizes the power adjustment of both uncommitted Op-amp and filter.
Note: For other packing pin-out, refer to package drawings and pin-out at the end of data sheet.

FUNCTIONAL DESCRIPTION

INTERNAL CLOCK DIVIDER (CLK)

The internal sampling frequency F_{i} can be fixed from 500 Hz to 700 KHz (Fi can be used between 700 KHz and 1 MHz with some limitations) by an external oscillator (or internal one with TSGF04 filter array). When the external clock frequency F_{e}, is higher than 700 KHz , a mask programmable on-chip divider is used to adapt available clock frequency to the sampling rate.

	TSGF04	TSGF08	TSGF12
Number of Divide by 2 Available Per Chip	8	10	8
Max. $\mathrm{Fe}_{\mathrm{e}} /$ Fi Ratio	256	1024	256

In any case, the external clock frequency F_{e} must be less than 5 MHz .
Example : The TSG8510 features (TSG8510 is a standard filter based on TSGF08 array) :
$\mathrm{F}_{\mathrm{e}} \max =1.5 \mathrm{MHz}$ and $\mathrm{F}_{1} \max =750 \mathrm{KHz}$ then

$$
\frac{\mathrm{F}_{\mathrm{e}}}{\mathrm{~F}_{\mathrm{i}}}=2
$$

only one divider by 2 is used for this filter (which is the case of most of SGS-THOMSON' general purpose filters).

Note : As the internal clock divider is mask programmable, the ratio $\mathrm{Fe} / \mathrm{FI}_{1}$ is fixed for each filter. The change of this ratio is possible but results into a new part number.

ADJUSTMENT OF OUTPUT DC LEVEL (LVL)

The output DC offset voltage can be removed thanks to an external bias voltage applied on "LVL" pin, as shown on figure 8.
However automatic offset compensation can be implemented by using one of the uncommitted on-chip Op-amps, as indicated in application note AN-069 (see fig. 9 in AN-069).
The offset voltage of TSGF filters is typically a few millivolts, with a 300 mV max, depending on the type of the filter.
A drift of this offset voltage can be observed when user increases the power consumption of the filter with an external resistor connected to PWF pin. So when the filter operates at high frequencies, a compromise exists between the filter frequency response performance and its output DC offset voltage. When no DC output level adjustment is required,

LVL pin has to be connected to the GND voltage.
The level gain, LG, of each filter can be deduced from the curve representing Vout $=f(L V L)$. This curve is filter dependent.
For example the TSG8510 presents following curve shown in figure 5 (measured with $\mathrm{F}_{\mathrm{e}}=256 \mathrm{KHz}$, IPWF $=100 \mu \mathrm{~A})$:

Figure 5 : Output DC Voltage Adjustment from LVL Pin.

The TSG8510's level gain is :

$$
\mathrm{LG}=\frac{\mathrm{VOUT}}{\mathrm{LVL}} \cong \frac{1000}{300} 3.3
$$

For example if one TSG8510 presents a 100 mV offset voltage at its output, user must apply an external bias voltage $\mathrm{LVL}=30 \mathrm{mV}$ to compensate it.

FILTER POWER ADJUSTMENT (PWF)

The filter power consumption can be chosen by connecting an external resistor, Rpwf between PWF and GND (or V_{+}) pins.
This power adjustment operates the variation of the bias current of the integrators used in the switched capacitor filter. This current, IPWF, can be low when filter operates at low cut-off frequencies ($\mathrm{F}_{\mathrm{c}} \cong 1 \mathrm{KHz}$), but must be increased at high cut-off frequencies ($F_{\mathrm{c}} \cong 20 \mathrm{KHz}$), in order to charge and discharge the capacitors at a higher, rate.
As a result, an optimal choice of IpWF bias current can be deduced from the curve representing IPwF = $f\left(\mathrm{~F}_{\mathrm{e}}\right), \mathrm{F}_{\mathrm{e}}$ being the external clock frequency applied on CLK pin.
This curve is dependent on the filter. For example, as shown in figure 6, the TSG8510 presents following characteristics:

Example : if the cutoff frequency of the low pass TSG8510 filter has to be set at 3.4 KHz , user must apply the external clock frequency $\mathrm{Fe}_{\mathrm{e}}=75.3 \times 3.4=$ 256 KHz .

Figure 6 : TSGF10 user's Guide for IPWFand RPWF Choise.

The User's guide for IpwF choice indicates:

- optimal lpwF $=100 \mu \mathrm{~A}$
$R_{\text {PWF }}=35 \mathrm{k} \Omega$
- non recommanded zone for lpwF $100 \mu \mathrm{~A}$ Operation within this area can lead to increase the ripple in the pass band and to decrease the stop band attenuation.
- zone of correct functioning with over consumption for IpwF $>100 \mu \mathrm{~A}$.
Note : Power consumption choice has to be prioritized when major concern in TSGF design is the frequency response (gain versus frequency). The output DC offset voltage comes in 2nd position in that case.

EXTERNAL DRIVING OF OUTPUT SAMPLE-AND-HOLD

This facility allows the filter output to be connected directly to an analog-to-digital converter, as illustrated in figure 7.
The clock signal which enters on the CLKSH pin must be synchronous with the sampling frequency. As a result, the external clock frequency F_{e} must be the sampling frequency F_{i} (the on-chip divider does not have to be used).

Figure 7 : External Driving of Output Sample and Hold (example).

The clock signal applied on CLKSH pin has to be optimized in order to read a settled signal issued from the switched capacitor filter.
On the example shown in figure 7, a 12th order low pass filter makes an ideal antialiasing filter to precede data conversion. The filter precludes the need for oversampling when driving the A/D converter.
CLKSH option is only available on TSGF04 and

USE OF THE MPF WITH - 5V/+5V DUAL POWER SUPPLY

The adjustment of the DC output level of the M.P.F. is achieved by an external voltage source (for example, a bridge divider connected between the positive and the negative power supplies and whose the middle point is connected to the LVL pin of the M.P.F.). If no output DC adjustment is required, the LVL pin can be directly connected to GND.
The consumption of the filter can be also adjusted by means of an external resistance connected between GND (or V^{+}) and the PWF pin of the circuit. The consumption can thus be chosen to match the particular application.

Figure 8 : Example of a TSGF08 Fed in Dual Supply : $+5 \mathrm{~V}, 0,-5 \mathrm{~V}$.

If the Op-Amps are not used, RPWA has not to be connected between PWA and GND.

The stand-by mode is obtained by strapping the PWF pin to V (or non connected).
The adjustment of the power consumption of the two operational amplifiers can be achieved exactly like for the previous case, but via the PWA pin of the circuit. The stand-by mode is also obtained by strapping the PWA pin to V (or non connected).
The clock levels are TTL, but CMOS levels are accepted. With these previous conditions, the output linear dynamic range of the M.P.F. is about 8 V , between -4.5 V and +3.5 V .
A capacitor CPwF can be added in parallel with RpwF in order to improve the clock feedthrough rejection : (Typical value CpwF $=33 \mathrm{pF}$).
As for all CMOS circuits operating with dual power supply ($-5 \mathrm{~V}, 0,+5 \mathrm{~V}$), it is advised to use clamping diodes (Threshold voltage less than 0.6 V) (Schottky is preferrable) in order to avoid transients during power up which could drive TSGF circuits over their maximum ratings. Only 1 Schottky diode between GND and $\mathrm{V}+$ is sufficient for TSGF products.

USE OF THE MPF WITH 0/10V SINGLE POWER SUPPLY

In this case, V is the reference ground of the circuit and GND must be adjusted to +5 V by means of the potentiometer $\left.\mathrm{PL}_{\mathrm{L}}(\mathrm{V}+-\mathrm{V}) / 2\right)$, or by using a simple bridge divider. But in that case small resistors values $(2 k \Omega)$ have to be used in order to set GND at a low impedance value.
The adjustments of the DC output level of the M.P.F. of the power consumptions of the filter and of the operational amplifiers can be achieved exactly like previously.
The high level of the clock must be at least 1.4 V upper the GND level.
With these previous conditions, the output linear dynamic range of the M.P.F. is about 8 V between 0.5 and 8.5 V .

Figure 9 : Example of a TSGF08 FED, in Single Power Supply 0 -10V.

* GND is used, when the user provides the 5 V voltage.

USE OF THE MPF WITH 0/5V SINGLE POWER SUPPLY

In this case, V is the reference ground of the circuit
and GND must be adjusted to +2.5 V by means of the potentiometer $\mathrm{P}_{\mathrm{L}}((\mathrm{V}+-\mathrm{V}) / 2)$, and one $\mathrm{Op-amp}$ used as buffer in order to provide a low impedance on GND reference.
Otherwise, without Op-amp, a simple bridge divider is sufficient, but small resistor values ($2 \mathrm{k} \Omega$) have to be used in order to set GND at a low impedance value.
The other adjustments are achieved exactly like previously except for bias resistance of the filter and of the operational amplifiers (Rpwf and RpwA), whose must be exclusively to $\mathrm{V}+$.
The clock levels must be CMOS levels. With these previous conditions, the output linear dynamic range of the M.P.F. is about 2.2V, between 1.2 and 3.4 V .

ANTI-ALIASING AND SMOOTHING

Anti-Aliasing

The switched capacitor filters are sampled systems and must verify the SHANNON condition imposing a sampling frequency (F_{i}) equal, at least, to double of the upper frequency (F_{c}) contained in the spectrum to transmit. With this condition, no information is added or lost on the transmitted signal. This theorem describes the well-known phenomenon called spectrum aliasing shown figure 11 where the entire spectrum to transmit appears around $\mathrm{F}_{\mathrm{i}}, 2 \mathrm{~F}_{\mathrm{i}}, 3 \mathrm{~F}_{\mathrm{i}}$... and so on.
Thus, all spectrum components of the signal contained around these frequencies are transmitted by the M.P.F., oppositively to the desired result.
To cancel the effects of this phenomenon, it is required, before all sampled systems, to filter all the
spectrum components of the intput signal upper than $F_{1}-F_{c}$. An analog filter, called "anti-aliasing filter", must be therefore applied before the M.P.F.

Figure 10 : Example of a TSGF08 FED in Single Power Supply 0-5V.

*GND is used, when the user provides the 2.5 V Voltage.

Figure 11.

- Without anti-alıasıng filter : Spectrum to transmit \neq transmitted spectrum
- With anti-aliasing filter: Spectrum to transmit = transmitted spectrum

The selectivity of this filter depends upon the F_{V} / F_{c} ratio.
If $\mathrm{F}_{\mathrm{i}} / \mathrm{F}_{\mathrm{c}}$ 200, a RC filter (first order low-pass) is sufficient.
If $F_{/} / F_{c}$ 200, a SALLEN-KEY structure (second order low-pass) must be used. This structure and its
relationships are described (figure 12). In there relationships, F_{c} is the cut-off frequency desired of the anti-aliasing filter and ξ its damping coefficient. For a cut-off as tight as possible and in order to correct the $\sin \mathrm{x} / \mathrm{x}$ effect, ξ must have a value around 0.7.

Figure 12.

R1 = R2 = arbitrary value
$\mathrm{Fc}=$ cut-off frequency for the antialiasing filter.
An optimal chooce is $\mathrm{Fc}=2 \times$ cut-off frequency of the mann filter
$x=$ damping coefficient ; the optimal value is 0.7
$\mathrm{C} 1=\frac{\xi}{2 \pi \mathrm{R} 1 \mathrm{Fc}}$
(C1 = $\xi 2-C 2$)
$C 2=\frac{1}{2 \pi \xi R 1 F c}$
SALLEN-KEY structure (second order low-pass Filter) for anti-aliasing and smoothing.
Note: If FI/Fc 2 (figure 13), the spectrum to transmit and the spectrum aliased have a part in common and it becomes impossible to share the useful signals from the undesirable signals.
Figure 13.

When $\mathrm{Fi} / \mathrm{Fc}<2$, the spectrum component included between $\mathrm{Fi}-\mathrm{Fc}$ and Fc and which are due to spectrum aliasing are not
stopped by the sampled filter.

Smoothing

As the signal obtained at the output of the M.P.F. is a sampled and hold signal, it is often required to smooth it. This smoothing filter can be achieved from the SALLEN-KEY structure previously described (figure 12).

Hardware implementation

In order to make easier anti-aliasing and smoothing. SGS-THOMSON has designed, on the TSGF chip one or, two general purpose operational amplifiers. A few external components are therefore sufficient to achieve these functions (figure 14).
On the other hand, in the most of M.P.F.'s, a spe cial integrated cell is included in the chip (cosine filter) to reduce the aliasing effects around F_{i}.

Figure 14. M.P.F. With anti-aliasing and smoothing filters.

E88TSGFSERIES-17
$P_{L}=20 \mathrm{k} \Omega$ (multiturn)
$10 \mathrm{k} \Omega \leq R_{\text {PWF }}, R_{\text {PWA }} \leq 75 \mathrm{k} \Omega$
R1,R2,C1,C2 See anti-aliasing
R'1, R'2,C'1,C'2 $\}$ and smoothing considerations
Figure 15. Second order low-pass Filter (SALLEN-KEY STRUCTURE) with a transistor replacing the operational amplifier.

E88TSGFSERIES-18
Nonetheless, if the application allows it, these two operational amplifiers can be used to implement other functions (gain, comparator, oscillator...).
In this case, the circuit shown Figure 15 can be used as anti-aliasing or smoothing filter. This structure is the same as the SALLEN-KEY structure described in Figure 12 (second order low-pass), in the same way as the corresponding relationships.

CUT-OFF FREQUENCY DEFINITION

Figure 16 : Design Specifications.

The cut-off frequency Fc is the passband limit frequency as defined on the design specifications above mentioned. The maximum value of the attenuation variation in the passband: Ap is 3 dB for Butterworth, Bessel and Legendre filters (figure 17a), and is called passband ripple for Chebychev (figure 17b) and Cauer filters (figure 17c).

Figure 17a.

Figure 17b.

The passband ripple is design dependent and between 0.05 dB and 0.2 dB with TSGF standard filters. The parameters Go called passband gain is the maximum value of the gain in the passband, and may have low variation from part to part.

E88TSGFSERIES-20
E88TSGFSERIES-21

E88TSGFSERIES-22

ELECTRICAL SPECIFICATION

The following electrical characteristics are common to the 3 base filter arrays TSGF04, TSGF08 and

TSGF12, because theirs structures are designed with the same basic components.

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$, IPWF $=100 \mu \mathrm{~A}$ (unless otherwise specified)

Symbol	Parameter	Value	Unit
V_{+}	Positive Supply Voltage	-0.15 to +7	V
$\mathrm{~V}-$	Negative Supply Voltage	-7 to +0.15	V
V	Voltage to any Pin (except for GND)	$(\mathrm{V}-)-0.3$ to $(\mathrm{V}+)+0.3$	V
$\mathrm{~T}_{\text {op }}$	Operating Temperature Range	$\mathrm{T}_{\mathrm{min}}-5^{\circ} \mathrm{C}$ to $\mathrm{T}_{\max }+5^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-60 to +150	${ }^{\circ} \mathrm{C}$

WARNING: DUAL POWER SUPPLY (-5V, 0, + 5V)

Although TSGF circuits are internally gate protected to minimize the possibility of static damage, MOS handling and operating procedure precautions should be observed. Maximum rated supply voltages must not be exceeded. Use decoupling networks to remove power supply turn on/off transients, ripple and switching transients.

Do not apply independently powered signals or clocks to the chip with power off as this will forward bias the substrate. Damage may result if external protection precautions are not taken :
As for all CMOS circuits operating with three supply voltages (V_{+}, GND, $\mathrm{V}-$), it is advised to use clamping diodes (Schottky is preferable), in order to avoid transient during power up that would drive the circuit over its maximum ratings (see figure 18).

Figure 18 : Application Hint for CMOS ICs with Three Supply Voltages.

ELECTRICAL OPERATING CHARACTERISTICS
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{PWF}}=100 \mu \mathrm{~A}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V^{+}	Positive Supply Voltage	4	5	6	V
V^{-}	Negative Supply Voltage	-6	-5	-4	V
V OUT	Output Voltage Swing (*)	$\left(\mathrm{V}^{-}\right)+0.5$		$\left(\mathrm{V}^{+}\right)-1.5$	$V_{P P}$
$\mathrm{V}_{\text {IN }}$	Input Voltage (*) (with filter gain $=0 \mathrm{~dB}$)	$\left(\mathrm{V}^{-}\right)+0.5$		$\left(\mathrm{V}^{+}\right)-1.5$	V_{PP}
IPWF	Bias Current on PWF (stand-by mode by connecting PWF to V^{-})	50		250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	TTL Clock Input "0" (**)			+ 0.8	V
$\mathrm{V}_{\text {IH }}$	TTL Clock Input "1" (**)	2			V
$\mathrm{T}_{\text {CP }}$	Ext. Clock Pulse Width	80			ns
$\mathrm{R}_{\text {IN }}$	Input Resistance	1	3		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			20	pF
R OUT	Output Resistance		10		Ω
C_{L}	Load Capacitance			100	pF
R_{L}	Load Resistance	0.1	1		$k \Omega$

Note : with supply $(0,+10 \mathrm{~V})$: same specifications with single supply $(0,+5 \mathrm{~V})$: contact SGS-THOMSON sales office or representative.
(*) Depending on Ipwf current
(**) TTL levels are referenced to GND voltage

Other filter's characteristics, such as noise, power supply rejection ratio, total harmonic distortion... are filter dependent. As a result, for such characteristics, SGS-THOMSON can only guarantee the lower level of performance for each parameter, as indicated below. (this lower level has been determined from measurements on a set of hundred different TSGF filters, as shown in figure 19).
PSRR + > 2dB : V+ Power supply rejection ratio. PSRR - > 10dB : V Power supply rejection ratio.
$\mathrm{V}_{\mathrm{n}} 1 \mathrm{mVrms}$: V_{n} is the total output noise voltage measured in the passband of the filter.
SNR > 57dBm/600 *** : Signal to noise ratio with $\mathrm{V}_{\mathrm{IN}}=775 \mathrm{mV} \mathrm{rms}$.
SNR $>65 \mathrm{dBV}$: signal to noise ratio with
$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{Vrms}$.
THD < 0.1\% : Total harmonic distortion.
As such characteristics are not predictable from
simulation results, their typical values are provided from measurements of the customized filter prototypes. (These measurements could be performed by SGS-THOMSON on special request).
These typical values, obtained with TSGF products, are better than the lowest level guaranteed, and designers can get a more accurate idea about them by two means.

1) Such characteristics are given for general-purpose filters. Refer to TSG85xx, 86xx, 87xx data sheets.
2) Figure 19 gives histograms of the 5 parameters discussed above. These histograms indicate the distribution of the typical value of the considered parameter over a set of hundred different TSGF filters. (Note that the aim of these histograms indicate the dispersion of the considered characteristic for a given TSGF filter).

Figure 19 : Distribution of Typical Value Over a set of Hundred Different TSGF Filters.

Figure 20 : Method of Noise Measurement.

Position 1 : Calibration of the spectrum analyzer to 0 dBV ($1 \mathrm{Vrms)}$.
Position 2 : Measurement with filter input connected to GND.

Figure 20 : (continued).

UNCOMMITTED ON-CHIP OPERATIONAL AMPLIFIERS

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{RL}=2 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{PWA}}=100 \mu \mathrm{~A}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\begin{aligned} & \mathrm{G}_{0}{ }^{+} \\ & \mathrm{G}_{0}{ }^{-} \\ & \hline \end{aligned}$	DC Open Loop Gain (without load)	$\begin{aligned} & \hline 60 \\ & 60 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 75 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
G_{Bp}	Gain Bandwidth Product (without load)	1	2		MHz
V_{10}	Input Offset Voltage (without load)		± 5	± 10	mV
$\mathrm{V}_{\text {OP }} \mathrm{P}$	Output Swing		$\begin{gathered} \hline-4.5 \\ 3.5 \end{gathered}$	$\begin{gathered} \hline-4.7 \\ 3.7 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
IB	Input Bias Current (without load)		± 5	± 10	nA
SVR	Supply Rejection (without load)	60	65		dB
CMR	Common Mode Rejection $\mathrm{V}_{\text {CM }}=1 \mathrm{~V}$ (without load)	60	65		dB
Ro	Output Resistance		10		Ω
$\begin{aligned} & \mathrm{la}^{+} \\ & \mathrm{la}^{-} \end{aligned}$	Supply Current		$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$	$\underset{\mathrm{mA}}{\mathrm{~mA}}$
$\begin{aligned} & \mathrm{SR}^{+} \\ & \mathrm{SR}^{-} \\ & \hline \end{aligned}$	Slew Rate	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 6 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \hline \end{aligned}$

USER'S GUIDE OF IPWA AND RPWA FOR UNCOMMITTED ON-CHIP OPERATIONAL AMPLIFIER

E88TSGFSERIES-31

CAD SOFTWARE : FILCAD
In order to take full advantage of the Mask Programmable filter TSGF approach for Semicustom applications, SGS-THOMSON has developed a comprehensive software package called FILCAD® to cover all the development steps, starting from the feasibility evaluation of the customer's specifications, up to the single-metal interconnection routing required for the MPF customization.
More specifically, the FILCAD system gives the designer strong assistance during the following steps :

- Evaluation of MPF solutions well suited to specific filter circuit requirements,
- Filter synthesis, leading to a switched capacitor electrical schematic,
- MPF filter simulation (performed with MPF capacitor capabilities),
- Schematic capture and routing of the optional connections,
- Layout file generation, and final verification performed by accurate post-routing simulation.
All FILCAD modules run on VAX ${ }^{\circledR}$ under VMS operating System, and are linked together as shown in Figure 21. All modules are fully described in the

TSGF's User's manual (Vol. 5 of SGS-THOMSON ASIC User's Manuals).
The entry to FILCAD is the customer filter specification which can be provided to SGS-THOMSON in different forms:

- amplitude - phase - group delay templates
- poles and zeros
- biquadratic cell coefficients
- polynomial transfer functions

In addition SGS-THOMSON can perform feasibility study of customer specific filter circuits. In a order for customers to get fast and accurate answer, SGSTHOMSON generates a feasibility analysis TSGF questionnaire that customers are kindly required to complete. This questionnaire is available on request at SGS-THOMSON Design centers ornearest sales office or representative.
MPF $^{\circledR}$ and FILCAD ${ }^{\circledR}$ are registered trademarks of SGS-THOMSON.
FILCAD, CAD software package developed by SGS-THOMSON for Switched Capacitor Filter designs, TSGF series, is also available for mixed analog-digital TSGSM Standard Cells or Full custom circuits integrating TSGF-like filtering functions.

Figure 21.

SWITCAP is a trademark of Columbia University

SGS-THOMSON proposes presently 2 design interfaces to customers for the design of their filter circuits with TSGF series :

- design entirely done by SGS-THOMSON at Design Centers ;
- design done by customer up to simulation and then completed by SGS-THOMSON.
The table following outlines customer and SGSTHOMSON respective responsibilities for these 2 design interfaces.

TSGF SERIES

DESIGN INTERFACES

Design Step	FILCAD Software	Int 2	Int 3
Theoretical Syntehsis	EVA	SGS-THOMSON	Customer
Switched Capacitor Filters Schematics before Scaling	SYCAB or SAFIR	SGS-THOMSON	Customer
Final Schematics	SIRENA (SWITCAP)	SGS-THOMSON	Customer
Additional Simulation	SIRENA (SWITCAP)	SGS-THOMSON	Customer
Approval	Customer	SGS-THOMSON	
Schematics Capture	SCAPTURE	SGS-THOMSON	SGS-THOMSON
Layout - Personnalization Mask Generation	FACTOR	SGS-THOMSON	SGS-THOMSON
Post Routing Simulation	SIRENA (SWITCAP)	SGS-THOMSON	SGS-THOMSON

DOCUMENTATION AND SUPPORT

In order to bring users the maximum support on switched capacitor TSGF filter arrays, SGS-THOMSON generated a complete set of documentation and tools which are available on request :

- TSGF User's Manual
- Application Notes (included)
- AN052 : How to choose a filter in a specific application
- AN061 : implementation and applications around
- Standard MPFS
- AN069 : A supplement to the utilization of switched capacitor filters.
AN070: Band Pass and Band Stop Filters.
- AN075 : Signal detection and sinewave generation.
- MPF evaluation boards.
- TSGF feasibility/analysis questionnaire.

In addition specialists can be contacted within SGSTHOMSON Microelectronics Filter Design Centers.

TSGF SERIES

$2^{\text {nd }}$ TO $4^{\text {th }}$ ORDER ANALOG FILTER

With the TSGF04 array, the user is given 2 different pin-out configurations:

- 8 pin DIL only the filter up to 4th order is accessible.
- 14 pin DIL version where in addition, one uncommitted Op-amp and one internal oscillator capability are offered.
When the external driving of output sample-andhold is used (CLKSH pin), PWF pin realizes the power adjustement of both uncommited Op-Amp and filter unit.
TSGF04 are also available in SO wide package version (0.3 inch) : 16 pin version only.

TSGF04
BLOCK DIAGRAM
See figure 4 (E88TSGFSERIES-05)

P
DIP-8
(Plastic Package)

P
DIP-14
(Plastic Package)

PIN CONNECTIONS

E88TSGF04-01

8 pins : FILTER ONLY Compatible with TSGF08

E88TSGF04-02
14 pins : FILTER
:+1 Op - Amp

CLOCK OSCILLATOR

The TSGF04 base accepts external compatible TTL/CMOS clocks on CLKIN pin and provides an internal oscillator performed either by RC or crystal connected between CLKIN and CLKR pins.
The clock selection mode is provided by CLKM pad which can be connected to V - or GND voltage levels. This connection is realized by two means, depending on the package type chosen :

- with 14-pin package, via CLKM pin.
- with 8-pin package, by internal connection readily performed, only on custom filters.
(Note that CLKM pin connected to V_{+}, allows the selection of the internal crystal-controlled oscillator, but the selection by CLKM connected to V - is recommended).
The different possibilities are shown below:
- two internal oscillator modes:
- RC
- Crystal

- three external clocks :
- low-TTL
- high-TTL

E88TSGF04-05

The "low-TTL" and "high-TTL" clock levels are :

For each package version, the following tables resume, the availability of the different clocks, in terms of the power supply.
Note that in 8-pin version, the clock mode (CLKM)

8-pin Package			
	$\mathbf{0 / 5 V}$	$\mathbf{0 / 1 0 V}$	$-\mathbf{5 / + 5 V}$
Low-TTL	NO	C	C
High-TTL	NO	YES	YES
CMOS	C	YES	YES
RC Mode	NO	NO	NO
Crystal Mode	NO	NO	NO

is internally set to GND voltage, except in the case of CMOS clock and $0-5 \mathrm{~V}$ power supply, where CLKM is internally connected to V - voltage.

$\mathbf{1 4 - p i n}$ Package			
	$\mathbf{0} 5 \mathrm{~V}$	$\mathbf{0} / \mathbf{1 0 V}$	$\mathbf{- 5 / +} \mathbf{5 V}$
Low-TTL	NO	C	C
High-TTL	NO	CLKM $=\mathrm{GND}$	CLKM $=\mathrm{GND}$
CMOS	CLKM $=\mathrm{V}-$	CLKM $=\mathrm{GND}$	CLKM $=\mathrm{GND}$
RC Mode	CLKM $=\mathrm{V}-$	CLKM $=\mathrm{V}-$	CLKM $=\mathrm{V}-$
Crystal Mode	CLKM $=\mathrm{V}-$	CLKM $=\mathrm{V}-$	CLKM $=\mathrm{V}-$

C = Customization option.

ELECTRICAL OPERATING CHARACTERISTICS

WITH SINGLE SUPPLY VOLTAGE
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}+=10 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{GND}=5 \mathrm{~V}$ (unless otherwise specified)

CLKM	Parameter	Min.	Typ.	Max.	Unit
GND	Threshold Voltage External Clock Frequency		1.5	5	$\begin{gathered} \mathrm{V} \\ \mathrm{MHz} \end{gathered}$
V -	RC MODE : High Threshold Voltage on CLKIN Corresponding Voltage on CLKR Low Threshold Voltage on CLKIN Corresponding Voltage on CLKR Oscillator Frequency Resistor Capacitor	$\begin{gathered} 1 \\ 1.5 \\ 2 \\ 2 \\ 0 \end{gathered}$	$\begin{gathered} 1.25 \\ -5 \\ -1.25 \\ +5 \end{gathered}$	$\begin{gathered} 1.5 \\ -1 \\ 5 \\ 10000 \\ 47 \end{gathered}$	$\begin{gathered} V \\ V \\ V \\ V \\ M H z \\ \mathrm{k} \Omega \\ \mathrm{nF} \end{gathered}$
V -	CRYSTAL MODE : Oscillator Frequency Resistor Capacitor C_{R} Capacitor $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	1	$\begin{gathered} 5 \\ 100 \\ 30 \end{gathered}$	$\begin{gathered} \mathrm{MHz} \\ \mathrm{M} \Omega \\ \mathrm{pF} \\ \mathrm{pF} \end{gathered}$

ELECTRICAL OPERATING CHARACTERISTICS (continued)
WITH DUAL SUPPLY VOLTAGE
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$ (unless otherwise specified)

CLKM	Parameter	Min.	Typ.	Max.	Unit
GND	Threshold Voltage External Clock Frequency		6.5	5	V
V -	RC MODE : High Threshold Voltage on CLKIN Corresponding Voltage on CLKR Low Threshold Voltage on CLKIN Corresponding Voltage on CLKR Oscillator Frequency Resistor Capacitor	$\begin{gathered} 6 \\ 3.5 \\ \\ 2 \\ 0 \end{gathered}$	$\begin{gathered} 6.25 \\ 0 \\ 3.75 \\ +10 \end{gathered}$	$\begin{gathered} 6.5 \\ 4 \\ 5 \\ 10000 \\ 47 \end{gathered}$	$\begin{gathered} V \\ V \\ V \\ V \\ M H z \\ \mathrm{k} \Omega \\ \mathrm{nF} \end{gathered}$
V -	CRYSTAL MODE : Oscillator Frequency Resistor Capacitor C_{R} Capacitor C_{IN}	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	1	$\begin{gathered} 5 \\ 100 \\ 30 \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{M} \Omega \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \hline \end{aligned}$

WITH SINGLE SUPPLY VOLTAGE
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{GND}=2.5 \mathrm{~V}$ (unless otherwise specified)

CLKM	Parameter	Min.	Typ.	Max.	Unit
GND	Threshold Voltage External Clock Frequency		3.8	5	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{MHz} \end{gathered}$
V -	RC MODE : High Threshold Voltage on CLKIN Corresponding Voltage on CLKR Low Threshold Voltage on CLKIN Corresponding Voltage on CLKR Oscillator Frequency Resistor Capacitor	$\begin{gathered} 3 \\ 1.5 \\ \\ 2 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 3.2 \\ 0 \\ 1.8 \\ +5 \end{gathered}$	$\begin{gathered} 3.4 \\ 2 \\ 5 \\ 10000 \\ 47 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{MHz} \\ \mathrm{k} \Omega \\ \mathrm{nF} \end{gathered}$
V -	CRYSTAL MODE : Oscillator Frequency Resistor Capacitor C_{R} Capacitor $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	1	$\begin{gathered} 5 \\ 100 \\ 30 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{M} \Omega \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \hline \end{aligned}$

INVERTING TRIGGER FUNCTIONING FREQUENCY VARIATION AS FUNCTION OF R
With internal RC oscillator mode, the user's guide for R and C choice is given by the following curves and for both supply voltages : $0.5 \mathrm{~V}, 0.10 \mathrm{~V}$.

SGS-THOMSON

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

14 PINS - PLASTIC DIP

14 Pins

$4^{\text {th }}$ TO $8^{\text {th }}$ ORDER ANALOG FILTER

The TSGF08 array provides users with filter integration from 4th to 8 th order. 2 package versions are offered to users :

- 8 pin DIL, where only the filter unit is accessible, - 16 pin DIL, where 2 uncommitted Op-amps are added to previous version.
TSGF08 are also available in SO wide package version (0.3 inch) : 16 pin version only.

TSGF08

BLOCK DIAGRAM
See figure 4 (E88TSGFSERIES-05)

PIN CONNECTIONS

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC DIP

16 PINS - PLASTIC DIP

$8^{\text {th }}$ TO $12^{\text {th }}$ ORDER ANALOG FILTER

TSGF12 array offers the capability to integrate either one single from 8th to 12th order or two different filters whose sum of orders cannot exceed 12.
These 2 different filters can have either same clock or 2 different clock inputs.
The TSGF12 package versions are:

- 16 pin DIL : 1 filter +2 Op-amps
-16 pin DIL : 1 filter +2 Op-amps +2 driving of output S/H
- 16 pin DIL : 2 filters + 1 Op-amps +2 clock inputs.
- 18 pin DIL : 2 filters + 2 Op-amps +1 clock input.
- 20 pin DIL : 2 filters + 2 Op-amps +2 clock inputs.
-20 pin DIL : 2 filters +2 Op-amps
+2 clock inputs +2 driving of output S / H.
TSGF12 array are also available in SO wide package version (0.3 inch) : 18 and 24 pin versions.
In case of dual filter integration, the CLKSH pin operates only on the output of filter $n^{\circ} 1$ (OUTPUT 1). In the same case, for the 16 pin version, only LVL2 pin is available : therefore user can only adjust the Output DC level of filter 2.
Clock divider :
The number of dividers by 2 available on TSGF12 array is 8 .
Therefore in case of dual filter on chip integration, there are 2 possibilities to use the clock divider :
- if one filter does not require internal dividers, the 8 dividers by 2 are available for the second filter ;
- if the first filter requires n internal dividers, there remains only $7-n$ available for the second filter.

TSGF12
BLOCK DIAGRAM
See figure 4 (E88TSGFSERIES-05)

P
DIP-16
(Plastic Package)

P
DIP-18
(Plastic Package)

P
DIP-20
(Plastic Package)

PIN CONNECTIONS

E88TSGF12-01
16 PINS : 2 filters

> + 1 OP - Amp
> +2 Clock inputs.

16 PINS : 1 filters

+ 2 OP - Amps
+ Driving of output S/H.

E88TSGF12-04
20 PINS : 2 filters

+ 2 OP - Amps
+2 Clock inputs.

E88TSGF12-02
16 PINS : 1 filter
+2 OP - Amp
Compatible with TSGF08

E88TSGF12-04
18 PINS : 2 filters
+1 OP - Amp
+1 Clock input.

20 PINS : 2 filters
+2 OP - Amps
+2 Clock inputs

+ Driving of output S / H.

PACKAGE MECHANICAL DATA

16 PINS - PLASTIC DIP

18 PINS - PLASTIC DIP

20 PINS - PLASTIC DIP

ORDER INFORMATION

MASK PROGRAMMABLE FILTERS

FEATURES

- CAUER TYPE
- 5th ORDER
- STOPBAND ATTENUATION : 33dB (typ.)
- PASSBAND RIPPLE : 0.05dB (typ.)
- CLOCK TO CUT-OFF FREQ; RATIO : 75.3
- CLOCK FREQUENCY RANGE : 1 to 1500 kHz
- CUT-OFF FREQUENCY RANGE : 13 Hz to 20kHz
Note : For general characteristics, see TSG85XX specifications. For non standard quality level, consult SGS-THOMSON general ordering information.

DESCRIPTION

The TSG8510 is a HCMOS lowpass elliptic filter.

PIN CONNECTIONS

 8 pins : FILTER ONLY E88TSG8510-01	$16 \text { pins : FILTER + } 2 \text { OP-AMPs }$

AMPLITUDE RESPONSE CURVE

NORMALIZED FREQUENCY
E88TSG8510-04

FILTER SPECIFICATIONS
Lowpass Filter: TSG8510; Type : Cauer ; Order : 5.
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}, \mathrm{I}_{\mathrm{PWF}}=100 \mu \mathrm{~A}$

Symbol	Parameter		Typ.	Tested Limits	Unit
F_{e}	External Clock Frequency		$\begin{gathered} 1 \\ 1500\left(^{*}\right) \\ \hline \end{gathered}$		$\begin{aligned} & \hline \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \\ & \hline \end{aligned}$
F_{1}	Internal Sampling Frequency		$\begin{gathered} 0.5 \\ 750\left(^{*}\right) \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
$\mathrm{F}_{\mathrm{e}} / \mathrm{F}_{\mathrm{c}}$	Clock to Cutoff fr. Ratio		$75.3 \pm 1 \%$		
F_{c}	Cutoff Frequency		$\begin{aligned} & 0.013 \\ & 20\left({ }^{*}\right) \\ & \hline \end{aligned}$		$\begin{aligned} & \begin{array}{l} \mathrm{kHz}(\min) \\ \mathrm{kHz}(\max) \end{array} \\ & \hline \end{aligned}$
G_{0}	Passband Gain		$\begin{gathered} -0.3 \\ 0 \\ \hline \end{gathered}$		$\mathrm{dB}(\min)$ $\mathrm{dB}(\max)$
Ap	Passband Ripple	$\mathrm{Fe}=256 \mathrm{kHz}$	0.05	0.4	dB (max)
As	Stopband Attenuation	$\begin{aligned} & \mathrm{Fe}=256 \mathrm{kHz} \\ & \mathrm{~F}>1.37 \mathrm{Fc} \end{aligned}$	33	32	dB (min)
Voff	Output DC Offset Voltage	$\mathrm{LVL}=0 \mathrm{~V}$	± 100	± 200	mV (max)
LVL	DC Level Adjustment		± 60		mV
LG	Level gain		3.3		
$\mathrm{R}_{\text {PwF }}$	PWF Resistance		$\begin{aligned} & \hline 10 \\ & 72 \\ & \hline \end{aligned}$		$\mathrm{k} \Omega$ (min) $k \Omega$ (max)
Ipwf	Input Current on PWF		$\begin{array}{r} 50 \\ 250 \\ \hline \end{array}$		$\mu \mathrm{A}(\min)$ $\mu \mathrm{A}$ (max)
1^{+}	V^{+}Supply Current	$\begin{aligned} & \mathrm{Fe}=100 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{pwa}}=0 \mu \mathrm{~A} \end{aligned}$	3	5	mA (max)
$1-$	V^{-}Supply Current		3	5	mA (max)
PSRR ${ }^{+}$	V^{+}Supply Rjection Ratio	$\begin{aligned} & \mathrm{Fe}=256 \mathrm{kHz} \\ & \mathrm{Fin}=1 \mathrm{kHz} \end{aligned}$	35		dB
PSRR ${ }^{-}$	V^{-}Supply Rejection Ratio		55		dB
$\mathrm{R}_{\text {IN }}$	Input Resistance		3		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		20		pF
V	Output Voltage Swing		$\begin{aligned} & \hline+3.5 \\ & -4.5 \end{aligned}$		$\mathrm{Vp}-\mathrm{p}$ (max)
Vn	Output Noise	$\begin{aligned} & \mathrm{BW}=3.4 \mathrm{kHz} \\ & \mathrm{Fe}=256 \mathrm{kHz} \\ & \mathrm{Vin}=2 \mathrm{Vrms} \end{aligned}$	89		$\mu \mathrm{V}$ rms
SNR	Signal to Noise Ratio		87		dB

(*) At maximum Fe : - stopband attenuation $\mathrm{As}>32 \mathrm{~dB}$ for $\mathrm{F}>1.37 \mathrm{Fc}$
(with $\mathrm{l}_{\mathrm{pwf}}=250 \mu \mathrm{~A}$) - passband ripple: $\mathrm{A}_{\mathrm{p}}=0.8 \mathrm{~dB}$
passband gain : $\mathrm{G}_{0}=-0.4 \mathrm{~dB}$

PHASE RESPONSE CURVE (in passband)

NORMALIZED FREQUENCY
E88TSG8510-05

GROUP DELAY CURVE (in passband)

E88TSG8510-06

OUTPUT DC VOLTAGE ADJUSTMENT FROM LVL PIN

E88TSG8510-07

USER'S GUIDE FOR Ipwf AND Rpwf CHOICE

PACKAGE MECHANICAL DATA

16 PINS - Plastic Dip

8 PINS - Plastic Dip

ORDER INFORMATION

Plastic	16 Pins Package : TSG8510XP
Ceramic	16 Pins Package : TSG8510XC
Cerdip	16 Pins Package : TSG8510XJ
Plastic	8 Pins Package : TSG8510101XP

[^3]
LOWPASS ELLIPTIC SWITCHED CAPACITOR MASK PROGRAMMABLE FILTER

FEATURES

- CAUER TYPE
- 7th ORDER
- STOPBAND ATTENUATION : 55dB (typ)
- PASSBAND RIPPLE : 0.1 dB (typ)
- CLOCK TO CUT-OFF FREQ. RATIO : 75.3
- CLOCK FREQUENCY RANGE : 1 to 1300 kHz
- CUT-OFF FREQUENCY RANGE : 13 Hz to 17.3 kHz

Note : For general characteristics, see TSG85XX specifications. For non standard quality level, consult SGS-THOMSON general ordering information.

DESCRIPTION

The TSG8511 is a HCMOS lowpass elliptic filter.

PIN CONNECTIONS

AMPLITUDE RESPONSE CURVE

FILTER SPECIFICATIONS
Lowpass Filter: TSG8511; Type ; Cauer ; Order : 7.
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}, \mathrm{I}_{\mathrm{PWF}}=100 \mu \mathrm{~A}$

Symbol	Parameter		Typ.	Tested Limits	Unit
Fe	External Clock Freq.		$\begin{gathered} 1 \\ 1300\left(^{*}\right) \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
Fi	Internal Sampling Freq.		$\begin{gathered} 0.5 \\ 650\left({ }^{\star}\right) \\ \hline \end{gathered}$		kHz (min) kHz (max)
$\mathrm{Fe} / \mathrm{Fc}$	Clock to Cutoff fr. Ratio		$75.3 \pm 1 \%$		
Fc	Cutoff Frequency		$\begin{gathered} 0.013 \\ 17.3\left({ }^{*}\right) \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
G。	Passband Gain		$\begin{gathered} -0.3 \\ 0 \end{gathered}$		dB (min) dB (max)
Ap	Passband Ripple	$\mathrm{Fe}=256 \mathrm{kHz}$	0.1	0.5	dB (max)
As	Stopband Attenuation	$\begin{aligned} & \mathrm{Fe}=256 \mathrm{kHz} \\ & \mathrm{~F}>1.3 \mathrm{Fc} ; \end{aligned}$	55	50	dB (min)
Voff	Output DC Offset Voltage	$\mathrm{LVL}=0 \mathrm{~V}$	± 150	± 300	mV (max)
LVL	DC Level Adjustment		± 64		mV
LG	Level gain		-4.7		
R ${ }_{\text {PwF }}$	PWF Resistance		$\begin{aligned} & 10 \\ & 72 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \text { (min) } \\ & \mathrm{k} \Omega \text { (max) } \\ & \hline \end{aligned}$
IpwF	Input Current on PWF		$\begin{gathered} 50 \\ 250 \end{gathered}$		$\mu \mathrm{A}$ (min) $\mu \mathrm{A}$ (max)
I^{+}	V^{+}Supply Current	$\begin{aligned} & \mathrm{Fe}=100 \mathrm{kHz} \\ & \mathrm{lpwa}=0 \mu \mathrm{~A} \end{aligned}$	3.5	5	mA (max)
1^{-}	V^{-}Supply Current		3.5	5	mA (max)
PSRR ${ }^{+}$	V^{+}Supply Rejection Ratio	$\begin{aligned} & \mathrm{Fe}=256 \mathrm{kHz} \\ & \mathrm{Fin}=1 \mathrm{kHz} \end{aligned}$	32		dB
PSRR ${ }^{-}$	V^{-}Supply Rejection Ratio		47		dB
$\mathrm{R}_{\text {IN }}$	Input Resistance		3		$\mathrm{M} \Omega$
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance		20		pF
Vó	Output Voltage Swing		$\begin{array}{r} +3.5 \\ -4.5 \end{array}$		Vp-p (max)
Vn	Output Noise	$\begin{aligned} & \text { BW }=3.4 \mathrm{kHz} \\ & \mathrm{Fe}=256 \mathrm{kHz} \\ & \mathrm{Vin}=2 \mathrm{Vrms} \end{aligned}$	158		$\mu \mathrm{V}$ rms
SNR	Signal to Noise Ratıo		82		dB

$\begin{array}{ll}\text { (*) At maxımum } \mathrm{Fe} & \text { - stopband attenuation } \mathrm{As}>50 \mathrm{~dB} \text { for } \mathrm{F}>1.3 \mathrm{Fc} \\ \text { (with } \mathrm{I}_{\mathrm{pwf}}=250 \mu \mathrm{~A} \text {) } & \text { - passband ripple }: A_{p}=0.5 \mathrm{~dB} \\ & \text { - passband gain }: \mathrm{G}_{0}=-0.7 \mathrm{~dB}\end{array}$

PHASE RESPONSE CURVE (in passband)

E88TSG8511-05

GROUP DELAY CURVE (in passband)

OUTPUT DC VOLTAGE ADJUSTMENT FROM LVL PIN

E88TSG8511-07

USER'S GUIDE FOR Ipwf AND Rpwf CHOICE

PACKAGE MECHANICAL DATA

16 PINS - Plastic Dip

8 PINS - Plastic Dip

ORDER INFORMATION

Plastic	16 Pins Package: TSG8511XP
Ceramic	16 Pins Package :TSG8511XC
Cerdip	16 Pins Package: TSG8511XJ
Plastic	8 Pins Package: TSG85111XP

$\mathrm{X}:$ Temperature Range $=\mathrm{C}: 0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$
1: $-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
V : $-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
M : $-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$

FEATURES

- CAUER TYPE
- 7th ORDER
- STOPBAND ATTENUATION : 85dB (typ)
- PASSBAND RIPPLE : 0.15dB (typ)
- CLOCK TO CUT-OFF FREQ. RATIO : 100
- CLOCK FREQUENCY RANGE : 1 to 2000 kHz
- CUT-OFF FREQUENCY RANGE : 10 Hz to 20 kHz

Note : For general characteristics, see TSG85XX specifications. For non standard quality level, consult SGS-THOMSON general ordering information.

The TSG8512 is a HCMOS lowpass elliptic filter.

PIN CONNECTIONS

AMPLITUDE RESPONSE CURVE

NORMALIZED FREQUENCY
E88TSG8512-04

FILTER SPECIFICATIONS

Lowpass Filter : TSG8512 ; Type : Cauer ; Order : 7.
$\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}, \mathrm{IPWF}=100 \mu \mathrm{~A}$

Symbol	Parameter		Typ.	Tested Limits	Unit
Fe	External Clock Frequency		$\begin{gathered} 1 \\ 2000\left(^{*}\right) \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
Fi	Internal Sampling Frequency		$\begin{gathered} 0.5 \\ 1000\left(^{*}\right) \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \\ & \hline \end{aligned}$
$\mathrm{Fe} / \mathrm{F}_{\mathrm{c}}$	Clock to Cutoff Frequency Ratio		$100 \pm 1 \%$		
F_{c}	Cutoff Frequency		$\begin{aligned} & 0.010 \\ & 20\left(^{*}\right) \\ & \hline \end{aligned}$		kHz (min) kHz (max)
Go	Passband Gain		$\begin{gathered} -0.3 \\ 0 \end{gathered}$		$\begin{aligned} & \mathrm{dB}(\min) \\ & \mathrm{dB}(\max) \end{aligned}$
Ap	Passband Ripple	$\mathrm{Fe}=100 \mathrm{kHz}$	0.15	0.5	dB (max)
$\mathrm{A}_{\text {s }}$	Stopband Attenuation	$\begin{aligned} & \mathrm{Fe}_{\mathrm{e}}=100 \mathrm{kHz} \\ & \mathrm{~F}>1.8 \mathrm{~F}_{\mathrm{c}} \end{aligned}$	85	75	dB (min)
Voff	Output DC Offset Voltage	$\mathrm{LVL}=0 \mathrm{~V}$	± 150	300	mV (max)
LVL	DC Level Adjustment		± 22.5		mV
LG	Level gain		-11.1		
RpWF	PWF Resistance		$\begin{aligned} & 10 \\ & 72 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega(\min) \\ & \mathrm{k} \Omega(\max) \end{aligned}$
IPWF	Input Current on PWF		$\begin{gathered} 50 \\ 250 \\ \hline \end{gathered}$		$\mu \mathrm{A}(\min)$ $\mu \mathrm{A}$ (max)
I^{+}	V^{+}Supply Current	$\begin{aligned} & \mathrm{Fe}=100 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{pwa}}=0 \mu \mathrm{~A} \end{aligned}$	3.5	5	mA (max)
I^{-}	V Supply Current		3.5	5	mA (max)
PSRR ${ }^{+}$	V^{+}Supply Rejection Ration	$\begin{aligned} & \mathrm{Fe}_{\mathrm{e}}=200 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{in}}=1 \mathrm{kHz} \end{aligned}$	20		dB
PSRR ${ }^{-}$	V Supply Rejection Ratio		35		dB
RIN	Input Resistance		3		$\mathrm{M} \Omega$
CIN	Input Capacitance		20		pF
Vo	Output Voltage Swing		$\begin{aligned} & +3.5 \\ & -4.5 \end{aligned}$		$V_{p-p}(\max)$
V_{n}	Output Noise	$\begin{aligned} & \mathrm{BW}=1 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{e}}=100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	112		$\mu \mathrm{V}_{\text {rms }}$
SNR	Signal to Noise Ratio		85		dB

[^4]PHASE RESPONSE CURVE (in passband)

E88TSG8512-05

GROUP DELAY CURVE (in passband)

E88TSG8512-06

OUTPUT DC VOLTAGE ADJUSTMENT FROM LVL PIN

USER'S GUIDE FOR Ipwf AND Rpwf CHOICE

PACKAGE MECHANICAL DATA

16 PINS - Plastic Dip

8 PINS - Plastic Dip

ORDER INFORMATION

Plastic	16 Pins Package : TSG8512XP
Ceramic	16 Pins Package : TSG8512XC
Cerdip	16 Pins Package : TSG8512XJ
Plastic	8 Pins Package : TSG85121XP

$\mathrm{X}:$ Temperature Range $=\mathrm{C}: 0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$
I: $-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
$\mathrm{V}:-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
M : $-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$

LOWPASS POLINOMIAL SWITCHED CAPACITOR MASK PROGRAMMABLE FILTER

FEATURES

- CHEBYCHEV TYPE
- 8th ORDER
- STOPBAND ATTENUATION : 69dB (typ) AT $2 \times \mathrm{F}_{\mathrm{c}}$
- PASSBAND RIPPLE : 0.15dB (typ)
- CLOCK TO CUT-OFF FREQ; RATIO : 60
- CLOCK FREQUENCY RANGE : 1 to 1500 kHz
- CUT-OFF FREQUENCY RANGE : 16 Hz to 25 kHz

Note : For general characteristics, see TSG85XX specifications. For non standard quality level, consult SGS-THOMSON general ordering information.

DESCRIPTION

The TSG8513 is a HCMOS lowpass polynomial filter.

P DIP-16 (Plastic Package)

P
DIP-8
(Plastic Package)
\qquad

PIN CONNECTIONS

AMPLITUDE RESPONSE CURVE

NORMALIZED FREQUENCY
E88TSG8513-04
FILTER SPECIFICATIONS
Lowpass Filter : TSG8513; Type : Chebychev ; Order : 8.
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}, \mathrm{I}_{\mathrm{PWF}}=100 \mu \mathrm{~A}$

Symbol	Parameter		Typ.	Tested Limits	Unit
Fe	External Clock Frequency		$\begin{gathered} 1 \\ 1500\left(^{*}\right) \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
Fi	Internal Sampling Freq.		$\begin{gathered} 0.5 \\ 750\left(^{*}\right) \end{gathered}$		kHz (min) kHz (max)
$\mathrm{Fe} / \mathrm{Fc}$	Clock to Cutoff fr. Ratio		$60 \pm 1 \%$		
Fc	Cutoff Frequency		$\begin{aligned} & 0.016 \\ & 25\left({ }^{(*)}\right. \end{aligned}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \\ & \hline \end{aligned}$
G_{0}	Passband Gaın		$\begin{gathered} -0.3 \\ 0 \end{gathered}$		$\mathrm{dB}(\min)$ dB (max)
Ap	Passband Ripple	$\mathrm{Fe}=60 \mathrm{kHz}$	0.15	0.5	dB (max)
As	Stopband Attenuation	$\begin{aligned} & \mathrm{Fe}=60 \mathrm{kHz} \\ & \mathrm{~F}>2 \mathrm{Fc} \\ & \hline \end{aligned}$	69	65	dB (min)
Voff	Output DC Offset Voltage	$\mathrm{LVL}=0 \mathrm{~V}$	± 100	± 250	mV (max)
LVL	DC Level Adjustment		± 100		mV (max)
LG	Level gain		-2.5		
$\mathrm{R}_{\text {PwF }}$	PWF Resistance		$\begin{aligned} & \hline 10 \\ & 72 \\ & \hline \end{aligned}$		$k \Omega$ (min) $k \Omega$ (max)
Ipwf	Input Current on PWF		$\begin{array}{r} 50 \\ 250 \end{array}$		$\mu \mathrm{A}$ (min) $\mu \mathrm{A}$ (max)
1^{+}	V^{+}Supply Current	$\begin{aligned} & \mathrm{Fe}=100 \mathrm{kHz} \\ & \mathrm{lpwa}=0 \mu \mathrm{~A} \end{aligned}$	3.8	5	mA (max)
1^{-}	V^{-}Supply Current		3.8	5	mA (max)
PSRR ${ }^{+}$	V^{+}Supply Rejection Ratio	$\begin{aligned} & \mathrm{Fe}=120 \mathrm{kHz} \\ & \mathrm{Fin}=1 \mathrm{kHz} \end{aligned}$	25		dB
PSRR ${ }^{-}$	V^{-}Supply Rejection Ratio		40		dB
$\mathrm{R}_{\text {IN }}$	Input Resistance		3		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		20		pF
Vo	Output Voltage Swing		$\begin{aligned} & +3.5 \\ & -4.5 \end{aligned}$		$\mathrm{Vp-p}$ (max)
Vn	Output Noise	$\begin{aligned} & \mathrm{BW}=1 \mathrm{kHz} \\ & \mathrm{Fe}=60 \mathrm{kHz} \\ & \mathrm{Vin}=2 \mathrm{Vrms} \end{aligned}$	107		$\mu \mathrm{V}$ rms
SNR	Signal to Noise Ratio		85		dB

(*) At maximum Fe : - stopband attenuation $\mathrm{As}>55 \mathrm{~dB}$ for $\mathrm{f}>2 \mathrm{Fc}$
(with $\mathrm{I}_{\mathrm{pwf}}=250 \mu \mathrm{~A}$) - passband ripple : $\mathrm{A}_{\mathrm{p}}=0.8 \mathrm{~dB}$

- passband gain : $\mathrm{G}_{0}=-0.6 \mathrm{~dB}$

PHASE RESPONSE CURVE (in passband)

NORMALIZED FREQUENCY

E88TSG8513-05

GROUP DELAY CURVE (in passband)

E88TSG8513-06

OUTPUT DC VOLTAGE ADJUSTMENT FROM LVL PIN

E88TSG8513.07

USER'S GUIDE FOR Ipwf AND Rpwf CHOICE

PACKAGE MECHANICAL DATA

16 PINS - Plastic Dip

8 PINS - Plastic Dip

ORDER INFORMATION

Plastic	16 Pins Package : TSG8513XP
Ceramic	16 Pins Package : TSG8513XC
Cerdip	16 Pins Package : TSG8513XJ
Plastic	8 Pins Package : TSG85131XP

$$
\begin{aligned}
& \mathrm{X}: \text { Temperature Range }= \mathrm{C}: 0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C} \\
& 1:-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C} \\
& \mathrm{~V}:-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C} \\
& \mathrm{M}:-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}
\end{aligned}
$$

LOWPASS POLYNOMIAL SWITCHED CAPACITOR MASK PROGRAMMABLE FILTER

FEATURES

- BUTTERWORTH TYPE
- 8th ORDER
- STOPBAND ATTENUATION : 74dB (typ) AT $3.6 \times \mathrm{F}_{\mathrm{c}}$
- PASSBAND RIPPLE : MAXIMALLY FLAT
- CLOCK TO CUT-OFF FREQ. RATIO : 80
- CLOCK FREQUENCY RANGE : 1 to 1000 kHz
- CUT-OFF FREQUENCY RANGE : 12.5 Hz to 12.5 kHz

Note : For general characteristics, see TSG85XX specifications. For non standard quality level, consult SGS-THOMSON general ordering information.

DESCRIPTION

The TSG8514 is a HCMOS lowpass polynomial filter.

P DIP-16 (Plastic Package)

FP
SO-16
(Plastic Micropackage)

$\stackrel{\mathbf{P}}{\mathbf{D}}$
(Plastic Package)

PIN CONNECTIONS

AMPLITUDE RESPONSE CURVE

NORMALIZED FREQUENCY
E88TSG8514-04

FILTER SPECIFICATIONS

Lowpass Filter : TSG8514 ; Type : Butterworth ; Order : 8.
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}, \mathrm{I}_{\mathrm{PWF}}=100 \mu \mathrm{~A}$

Symbol	Parameter		Typ.	Tested Limits	Unit
Fe	External Clock Frequency		$\begin{gathered} 1 \\ 100\left(^{*}\right) \\ \hline \end{gathered}$		kHz (min) kHz (max)
Fi	Internal Sampling Freq.		$\begin{gathered} 0.5 \\ 500\left(^{*}\right) \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
$\mathrm{Fe} / \mathrm{Fc}$	Clock to Cutoff fr. Ratio		$80 \pm 1 \%$		
Fc	Cutoff Frequency		$\begin{array}{r} 0.0125 \\ 12.5\left({ }^{*}\right) \\ \hline \end{array}$		$\begin{array}{r} \mathrm{kHz}(\min) \\ \mathrm{kHz}(\max) \\ \hline \end{array}$
G。	Passband Gain		$\begin{gathered} -0.3 \\ 0 \end{gathered}$		$\begin{aligned} & \mathrm{dB}(\min) \\ & \mathrm{dB}(\max) \end{aligned}$
Ap	Passband Ripple	$\mathrm{Fe}=80 \mathrm{kHz}$	maxi mally Flat		dB (max)
As	Stopband Attenuation	$\begin{aligned} & \mathrm{Fe}=80 \mathrm{kHz} \\ & \mathrm{~F}>3.6 \mathrm{Fc} \end{aligned}$	74	68	dB (min)
Voff	Output DC Offset Voltage	$\mathrm{LVL}=0 \mathrm{~V}$	± 100	± 200	mV (max)
LVL	DC Level Adjustment		± 100		mV
LG	Level gain		-2		
R ${ }_{\text {PwF }}$	PWF Resistance		$\begin{aligned} & 10 \\ & 72 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega(\min) \\ & \mathrm{k} \Omega(\max) \end{aligned}$
Ipwf	Input Current on PWF		$\begin{gathered} 50 \\ 250 \end{gathered}$		$\mu \mathrm{A}$ (min) $\mu \mathrm{A}$ (max)
I^{+}	V^{+}Supply Current	$\begin{aligned} & \mathrm{Fe}=100 \mathrm{kHz} \\ & I_{\text {pwa }}=0 \mu \mathrm{~A} \end{aligned}$	3.8	5	mA (max)
$1-$	V^{-}Supply Current		3.8	5	mA (max)
PSRR ${ }^{+}$	V^{+}Supply Rjection Ratio	$\begin{aligned} & \mathrm{Fe}=160 \mathrm{kHz} \\ & \mathrm{Fin}=1 \mathrm{kHz} \end{aligned}$	30		dB
PSRR ${ }^{-}$	V^{-}Supply Rejection Ratio		42		dB
$\mathrm{R}_{\text {IN }}$	Input Resistance		3		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		20		pF
Vo	Output Voltage Swing		$\begin{array}{r} +3.5 \\ -4.5 \end{array}$		Vp-p (max)
Vn	Output Noise	$\begin{aligned} & \mathrm{BW}=3.4 \mathrm{kHz} \\ & \mathrm{Fe}=256 \mathrm{kHz} \\ & \mathrm{Vin}=2 \mathrm{Vrms} \\ & \hline \end{aligned}$	86		$\mu \mathrm{V}$ rms
SNR	Signal to Noise Ratio		87		dB

(*) At maximum $\mathrm{Fe}:-$ stopband attenuation $\mathrm{As}>50 \mathrm{~dB}$ for $\mathrm{F}>3.6 \mathrm{Fc}$
(with $\mathrm{I}_{\mathrm{pwf}}=250 \mu \mathrm{~A}$) - passband gain $: \mathrm{G}_{0}=-0.5 \mathrm{~dB}$

PHASE RESPONSE CURVE (in passband)

NORMALIZED FREQUENCY
E88TSG8514-05

GROUP DELAY CURVE (in passband)

OUTPUT DC VOLTAGE ADJUSTMENT FROM LVL PIN

E88TSG8514-07

USER'S GUIDE FOR Ipwf AND Rpwf CHOICE

PACKAGE MECHANICAL DATA

16 PINS - Plastic Dip

16 PINS - Plastic Micropackage

dimensions in mm
$16_{\text {pins }}$

8 PINS - Plastic Dip

ORDER INFORMATION

Plastic	16 Pins Package : TSG8514XP
Ceramic	16 Pins Package : TSG8514XC
Cerdip	16 Pins Package : TSG8514XJ
Plastic	8 Pins Package : TSG85141XP

$\mathrm{X}:$ Temperature Range $=\mathrm{C}: \quad 0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$
I: $-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
$\mathrm{V}:-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
M : $-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$

FEATURES

- CAUER TYPE
- 3th ORDER
- STOPBAND ATTENUATION : 15dB (typ)
- PASSBAND RIPPLE : 0.2dB (typ)
- CLOCK TO CUT-OFF FREQ. RATIO : 320
- CLOCK FREQUENCY RANGE : 4 to 2400 kHz
- CUT-OFF FREQUENCY RANGE : 12 Hz to 7.5 kHz
* According to spectrum aliasing phenomenon, the TSG8530 must be considered as a highpass filter only in the range [$\mathrm{Fc}, \mathrm{F} / 2$], where Fi is the internal sampling frequency.

Note : For general characteristics, see TSG85XX specifications. For non standard quality level, consult SGS-THOMSON general ordering information.

DESCRIPTION

The TSG8530 is a HCMOS highpass* elliptic filter.

PIN CONNECTIONS

AMPLITUDE RESPONSE CURVE

NORMALIZED FREQUENCY
E88TSG8530-04

FILTER SPECIFICATIONS
Highpass Filter : TSG8530; Type : Cauer ; Order : 3.
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}^{-}=100 \mathrm{pF}, \mathrm{I}_{\text {PWF }}=100 \mu \mathrm{~A}$

Symbol	Parameter		Typ.	Tested Limits	Unit
Fe	External Clock Frequency		$\begin{gathered} 4 \\ 2400\left({ }^{\star}\right) \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz} \text { (max) } \end{aligned}$
Fi	Internal Sampling Frequency		$\begin{gathered} 2 \\ 1200\left({ }^{*}\right) \end{gathered}$		$\begin{aligned} & \mathrm{KHz}(\min) \\ & \mathrm{kHz}(\max) \\ & \hline \end{aligned}$
$\mathrm{Fe} / \mathrm{Fc}$	Clock to Cutoff fr. Ratio		$320 \pm 1 \%$		
Fc	Cutoff Frequency		$\begin{aligned} & 0.0125 \\ & 7.5\left({ }^{*}\right) \\ & \hline \end{aligned}$		$\begin{array}{r} \mathrm{kHz}(\min) \\ \mathrm{kHz}(\max) \\ \hline \end{array}$
G。	Passband Gain		$\begin{gathered} -0.3 \\ 0 \end{gathered}$		dB (min) dB (max)
Ap	Passband Ripple [$\quad[\mathrm{Fc}, 30 \mathrm{Fc}] \mathrm{Fe}=320 \mathrm{kHz}$		0.2	0.5	dB (max)
As	Stopband Attenuation	$\mathrm{F}<0.49 \mathrm{Fc} \mathrm{Fe}=320 \mathrm{kHz}$	15	14	dB (min)
Voff	Output DC Offset Voltage	LVL $=0 \mathrm{~V}$	± 100	± 200	mV (max)
LVL	DC Level Adjustment		± 40		mV
LG	Level gain		-6		
$\mathrm{R}_{\text {PwF }}$	PWF Resistance		$\begin{aligned} & 10 \\ & 72 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega(\min) \\ & \mathrm{k} \Omega(\max) \end{aligned}$
IpwF	Input Current on PWF		$\begin{gathered} 50 \\ 250 \end{gathered}$		$\mu \mathrm{A}$ (min) $\mu \mathrm{A}$ (max)
$1+$	V^{+}Supply Current	$\begin{aligned} & \mathrm{Fe}=100 \mathrm{kHz} \\ & \mathrm{lpwa}=0 \mu \mathrm{~A} \end{aligned}$	2.8	5	mA (max)
1^{-}	V^{-}Supply Current		2.8	5	mA (max)
PSRR ${ }^{+}$	V^{+}Supply Rejection Ratio	$\begin{aligned} & \mathrm{Fe}=32 \mathrm{kHz} \\ & \mathrm{Fin}=1 \mathrm{kHz} . \end{aligned}$	33		dB
PSRR ${ }^{-}$	V^{-}Supply Rejection Ratio \quad Fin $=1 \mathrm{kHz}$.		38		dB
RIN	Input Resistance		3		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		20		pF
Vo	Output Voltage Swing		$\begin{array}{r} +3.5 \\ -4.5 \end{array}$		Vp-p (max)
Vn	Output Noise	$\begin{aligned} & \mathrm{BW}=2 \mathrm{kHz} \\ & \mathrm{Fe}=32 \mathrm{kHz} \\ & \mathrm{Vin}=2 \mathrm{Vrms} \end{aligned}$	80		$\mu \mathrm{V}$ rms
SNR	Signal to Noise Ratio		85		dB

(*) At maximum Fe : - stopband attenuation As $>14 \mathrm{~dB}$ for $\mathrm{F}<0.49 \mathrm{Fc}$
(with $\mathrm{I}_{\mathrm{pwf}}=250 \mu \mathrm{~A}$) - passband ripple : $\mathrm{A}_{\mathrm{p}}=0.2 \mathrm{~dB}$

- passband gain $: \mathrm{G}_{0}=-0.6 \mathrm{~dB}$

PHASE RESPONSE CURVE (in passband)

NORMALIZED FREQUENCY
E88TSG8530-05

GROUP DELAY CURVE (in passband)

E88TSG8530-06

OUTPUT DC VOLTAGE ADJUSTMENT FROM LVL PIN

E88TSG8530-07

USER'S GUIDE FOR Ipwf AND Rpwf CHOICE

PACKAGE MECHANICAL DATA

16 PINS - Plastic Dip

8 PINS - Plastic Dip

ORDER INFORMATION

Plastic	16 Pins Package : TSG8530XP
Ceramic	16 Pins Package $:$ TSG8530XC
Cerdip	16 Pins Package : TSG8530XJ
Plastic	8 Pins Package $:$ TSG85301XP
X: Temperature Range $=\mathrm{C}:\left(0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}\right.$	
1	$1:-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
$\mathrm{V}:-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$	
$\mathrm{M}:-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	

FEATURES

- CAUER TYPE
- 6th ORDER
- STOPBAND ATTENUATION : 32dB (typ)
- PASSBAND RIPPLE : 0.15dB (typ)
- CLOCK TO CUT-OFF FREQ. RATIO : 400
- CLOCK FREQUENCY RANGE : 4 to 1800 kHz
- CUT-OFF FREQUENCY RANGE : 10 Hz to 4.5 kHz
* Accordıng to spectrum aliasing phenomenon, the TSG8531 must be considered as a highpass filter only in the range [$\mathrm{Fc}, \mathrm{Fi} / 2]$, where Fi is the internal sampling frequency.
Note : For general characteristics, see TSG85XX specifications. For non standard quality level, consult SGS-THOMSON general ordering information.

DESCRIPTION

The TSG8531 is a HCMOS highpass* elliptic filter.

PIN CONNECTIONS

AMPLITUDE RESPONSE CURVE

NORMALIZED FREQUENCY
E88TSG8531-04
FILTER SPECIFICATIONS
Highpass Filter:TSG8531; Type : Cauer; Order: 6.
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{RL}=5 \mathrm{k} \Omega, C L=100 \mathrm{pF}, \mathrm{I}_{\mathrm{PWF}}=100 \mu \mathrm{~A}$

Symbol	Parameter		Typ.	Tested Limits	Unit
Fe	External Clock Frequency		$\begin{gathered} 4 \\ 1800\left(^{*}\right) \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
Fi	Internal Sampling Freq.		$\begin{gathered} 2 \\ 900\left({ }^{*}\right) \\ \hline \end{gathered}$		kHz (min) kHz (max)
$\mathrm{Fe} / \mathrm{Fc}$	Clock to Cutoff fr. Ratio		$400 \pm 1 \%$		
Fc	Cutoff Frequency		$\begin{aligned} & 0.01 \\ & 4.5\left({ }^{*}\right) \end{aligned}$		$\begin{array}{r} \mathrm{kHz}(\min) \\ \mathrm{kHz}(\max) \\ \hline \end{array}$
G_{0}	Passband Gain		$\begin{gathered} \hline-0.1 \\ 0.1 \end{gathered}$		$\begin{aligned} & \mathrm{dB}(\min) \\ & \mathrm{dB}(\max) \end{aligned}$
Ap	Passband Ripple	$\begin{aligned} & {[\mathrm{Fc}, 30 \mathrm{Fc}]} \\ & \mathrm{Fe}=400 \mathrm{kzz} \end{aligned}$	0.15	0.4	dB (max)
As	Stopband Attenuation	$\begin{aligned} & \mathrm{F}<0.55 \mathrm{Fc} \\ & \mathrm{Fe}=400 \mathrm{kHz} \end{aligned}$	32	30	dB (min)
Voff	Output DC Offset Voltage	LVL $=0 \mathrm{~V}$	± 100	± 200	mV (max)
LVL	DC Level Adjustment		± 300		mV
LG	Level gain		0.1		
Rpwf	PWF Resistance		$\begin{aligned} & \hline 10 \\ & 72 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega(\min) \\ & \mathrm{k} \Omega(\max) \end{aligned}$
Ipwf	Input Current on PWF		$\begin{array}{r} 50 \\ 250 \\ \hline \end{array}$		$\begin{aligned} & \mu \mathrm{A}(\min) \\ & \mu \mathrm{A}(\max) \\ & \hline \end{aligned}$
I^{+}	V^{+}Supply Current	$\begin{aligned} & \mathrm{Fe}=100 \mathrm{kHz} \\ & \mathrm{lpwa}=0 \mu \mathrm{~A} \end{aligned}$	3.5	5	mA (max)
$1-$	V^{-}Supply Current		3.5	5	mA (max)
PSRR ${ }^{+}$	V^{+}Supply Rejection Ratio	$\begin{aligned} & \mathrm{Fe}=40 \mathrm{kHz} \\ & \mathrm{Fin}=1 \mathrm{kHz} \end{aligned}$	36		dB
PSRR ${ }^{-}$	V^{-}Supply Rejection Ratio		48		dB
$\mathrm{R}_{\text {IN }}$	Input Resistance		3		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		20		pF
Vo	Output Voltage Swing		$\begin{aligned} & +3.5 \\ & +4.5 \end{aligned}$		Vp-p (max)
Vn	Output Noise	$\begin{aligned} & \mathrm{BW}=2 \mathrm{kHz} \\ & \mathrm{Fe}=40 \mathrm{kHz} \\ & \mathrm{Vin}=2 \mathrm{Vrms} \end{aligned}$	178		$\mu \mathrm{Vrms}$
SNR	Signal to Noise Ratio		80		dB

(*) At maximum Fe : - stopband attenuation As $>30 \mathrm{~dB}$ for $\mathrm{F}>0.55 \mathrm{Fc}$
(with $l_{p w f}=250 \mu A$) \quad - passband npple : $A_{p}=0.3 \mathrm{~dB}$

- passband gain $: G_{0}=-1 \mathrm{~dB}$

PHASE RESPONSE CURVE (in passband)

E88TSG8531-05

GROUP DELAY CURVE (in passband)

E88TSG8531-06

OUTPUT DC VOLTAGE ADJUSTMENT FROM LVL PIN

E88TSG8531-07

USER'S GUIDE FOR Ipwf AND Rpwf CHOICE

PACKAGE MECHANICAL DATA

16 PINS - Plastic Dip

8 PINS - Plastic Dip

ORDER INFORMATION

Plastic	16 Pins Package : TSG8531XP
Ceramic	16 Pins Package : TSG8531XC
Cerdip	16 Pins Package : TSG8531XJ
Plastic	8 Pins Package : TSG85311XP

X : Temperature Range $=\mathrm{C}: 0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$ 1: $-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
V: $-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
M : $-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$

HIGHPASS POLYNOMIAL SWITCHED CAPACITOR MASK PROGRAMMABLE FILTER

FEATURES

- CHEBYCHEV TYPE
- 6th ORDER
- STOPBAND ATTENUATION : 60dB (typ) AT $0.25 \times \mathrm{F}_{\mathrm{c}}$
- PASSBAND RIPPLE : 0.45dB (typ)
- CLOCK TO CUT-OFF FREQ. RATIO : 500
- CLOCK FREQUENCY RANGE : 5 to 1800 kHz
- CUT-OFF FREQUENCY RANGE : 10 Hz to 3.6 kHz
* According to spectrum aliasing phenomenon, the TSG8532 must be considered as a highpass filter only in the range [Fc, Fi/2], where Fi is the internal sampling frequency.
Note : For general characteristics, see TSG85XX specifications. For non standard quality level, consult SGS-THOMSON general ordering information

DESCRIPTION

The TSG8532 is aHCMOS highpass* polynomial filter.

PIN CONNECTIONS

8 pins : FILTER ONLY E88TSG8532-01	$16 \text { pins : FILTER + } 2 \text { OP-AMPs }$

AMPLITUDE RESPONSE CURVE

FILTER SPECIFICATIONS
Highpass Filter: TSG8532 ; Type : Chebychev; Order : 6.
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}$, IPWF $=100 \mu \mathrm{~A}$

Symbol	Parameter		Typ.	Tested	Unit
$\mathrm{Fe}^{\text {e }}$	External Clock Frequency		$\begin{gathered} 5 \\ 1800\left(^{*}\right) \end{gathered}$		$\begin{aligned} & \hline \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
$\mathrm{Fi}^{\text {i }}$	Internal Sampling Frequency		$\begin{gathered} 2.5 \\ 900\left(^{*}\right) \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
$\mathrm{Fe} / \mathrm{Fc}$	Clock to Cutoff Frequency Ratio		$500 \pm 1 \%$		
F_{c}	Cutoff Frequency		$\begin{gathered} 0.01 \\ 3.6\left({ }^{*}\right) \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
Go	Passband Gain		$\begin{gathered} -0.4 \\ 0 \end{gathered}$		dB (min) dB (max)
A_{p}	Passband Ripple	$\begin{aligned} & {[1 \mathrm{Fc}, 45 \mathrm{Fc}]} \\ & \mathrm{Fe}_{\mathrm{e}}=500 \mathrm{kHz} \end{aligned}$	0.45	0.8	dB (max)
A_{s}	Stopband Attenuation	$\begin{aligned} & \mathrm{F} 0.25 \mathrm{~F} \mathrm{c} \\ & \mathrm{Fe}_{\mathrm{e}}=500 \mathrm{kHz} \end{aligned}$	60	55	dB (min)
$V_{\text {off }}$	Output DC Offset Voltage	$\mathrm{LVL}=0 \mathrm{~V}$	± 80	± 200	mV (max)
LVL	DC Level Adjustment		± 75		mV (max)
LG	Level gain		-27		
RpwF	PWF Resistance		$\begin{aligned} & \hline 10 \\ & 72 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \text { (min) } \\ & \mathrm{k} \Omega(\max) \end{aligned}$
IPWF	Input Current on PWF		$\begin{gathered} 50 \\ 250 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A}(\min) \\ & \mu \mathrm{A}(\max) \end{aligned}$
1^{+}	V^{+}Supply Current	$\begin{aligned} & \mathrm{F}_{\mathrm{e}}=100 \mathrm{kHz} \\ & \mathrm{lpwa}=0 \mu \mathrm{~A} \end{aligned}$	3.4	5	mA (max)
$1-$	\checkmark Supply Current		3.4	5	mA (max)
PSRR ${ }^{+}$	V^{+}Supply Rejection Ratio	$\begin{aligned} & \mathrm{F}_{\mathrm{e}}=50 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{In}}=1 \mathrm{kHz} \end{aligned}$	49		dB
PSRR ${ }^{-}$	\checkmark Supply Rejection Ratio		46		dB
Rin	Input Resistance		3		M Ω
CIN	Input Capacitance		20		pF
V	Output Voltage Swing		$\begin{aligned} & +3.5 \\ & -4.5 \end{aligned}$		$\mathrm{V}_{\mathrm{p}-\mathrm{p}}(\mathrm{max})$
V_{n}	Output Noise	$\begin{aligned} & \hline \mathrm{BW}=2 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{e}=50 \mathrm{kHz}} \\ & \mathrm{~V}_{\mathrm{in}}=2 \mathrm{~V}_{\text {rms }} \end{aligned}$	88		$\mu \mathrm{V}_{\text {rms }}$
SNR	Signal to Noise Ratio		85		dB

(*) At maximum Fe :
(with $l_{p w f}=250 \mu \mathrm{~A}$) \quad - passband ripple : $\mathrm{Ap}_{\mathrm{p}}=0.8 \mathrm{~dB}$

- passband gain : $\mathrm{G}_{0}=-0.8 \mathrm{~dB}$

PHASE RESPONSE CURVE (in passband)

E88TSG8532-05

GROUP DELAY CURVE (in passband)

E88TSG8532-06

OUTPUT DC VOLTAGE ADJUSTMENT FROM LVL PIN

E88TSG8532-07

USER'S GUIDE FOR Ipwf AND Rpwf CHOICE

PACKAGE MECHANICAL DATA

16 PINS - Plastic Dip

8 PINS - Plastic Dip

(1) Nominal dimension
(2) True geometrical position

ORDER INFORMATION

Plastic	16 Pins Package : TSG8532XP
Ceramic	16 Pins Package : TSG8532XC
Cerdip	16 Pins Package : TSG8532XJ
Plastic	8 Pins Package : TSG85321XP

$\mathrm{X}:$ Temperature Range $=\mathrm{C}: \quad 0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$
I: $-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
$\mathrm{V}:-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
M : $-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$

TSG8550

BANDPASS SWITCHED CAPACITOR MASK PROGRAMMABLE FILTER

FEATURES

- CAUER TYPE
- 6th ORDER
- SELECTIVITY FACTOR : Q = 7
- GAIN AT CENTER FREQUENCY : OdB (typ)
- LOW STOPBAND ATTENUATION : 40dB (typ)
- HIGH STOPBAND ATTENUATION : 40dB (typ)
- CLOCK TO CENTER FREQ. RATIO : 48
- CLOCK FREQUENCY RANGE : 1 to 1200 kHz
- CENTER FREQUENCY RANGE : 20.8 Hz to 25 kHz

Note : For general characteristics, see TSG85XX specifications. For non standard quality level, consult SGS-THOMSON general ordering information.

DESCRIPTION

The TSG8550 is a HCMOS Cauer bandpass filter.

PIN CONNECTIONS

AMPLITUDE RESPONSE CURVE

E88TSG8550-04

FILTER SPECIFICATIONS

Band-pass Filter : TSG8550 ; Type : Cauer ; Order : 6.
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}, \mathrm{IPWF}=50 \mu \mathrm{~A}$

(*) At maxımum $\mathrm{Fe}:-$ stopband attenuation Als $>36 \mathrm{~dB}$ for $\mathrm{F}>0.8 \mathrm{Fo}$
(with $I_{p w f}=250 \mu \mathrm{~A}$) - stopband attenuation Ahs $>42 \mathrm{~dB}$ for $\mathrm{F}>1.24 \mathrm{Fo}$

- passband ripple
- Gain at center freq.
- - 3dB bandwidth
- Selectivity
$\mathrm{Ap}_{\mathrm{p}}=0.3 \mathrm{~dB}$
$\mathrm{G}_{\mathrm{o}}=-1.5 \mathrm{~dB}$
$B W=3.15 \mathrm{kHz}$ [0.926Fo, 1.052Fo]
$Q=7.9$

FILTER SPECIFICATIONS (continued)

Symbol	Parameter		Typ.	Tested Limits	Unit
I^{+}	V^{+}Supply Current	$\begin{aligned} & \mathrm{Fe}=48 \mathrm{kHz} \\ & \mathrm{lpwa}=0 \mu \mathrm{~A} \end{aligned}$	1.7	5	mA (max)
I^{-}	V^{-}Supply Current		1.7	5	mA (max)
PSRR ${ }^{+}$	V^{+}Supply Rejection Ratio	$\begin{aligned} & \mathrm{Fe}=48 \mathrm{kHz} \\ & \mathrm{Fin}=1 \mathrm{kHz} \end{aligned}$	9		dB
PSRR ${ }^{-}$	V^{-}Supply Rejection Ratio		20		dB
Rin	Input Resistance		3		$\mathrm{M} \Omega$
Cin	Input Capacitance		20		pF
Vo	Output Voltage Swing		$\begin{aligned} & +3.5 \\ & -4.5 \end{aligned}$		Vp-p (max)
Vn	Output Noise	$\begin{aligned} & \mathrm{BW}=144 \mathrm{kHz} \\ & \mathrm{CPWF}=33 \mathrm{pF} \\ & \mathrm{Fe}=48 \mathrm{~Hz} \\ & \mathrm{Vin}=2 \mathrm{Vrms} \\ & \hline \end{aligned}$	272		$\mu \mathrm{V}$ rms
SNR	Signal to Noise Ratio		78		dB

PHASE RESPONSE CURVE (in passband)

E88TSG8550-05

GROUP DELAY CURVE (in passband)

[^5]E88TSG8550-06

OUTPUT DC VOLTAGE ADJUSTMENT FROM LVL PIN

E88TSG8550-07

USER'S GUIDE FOR Ipwf AND Rpwf CHOICE

E88TSG8550-08

PACKAGE MECHANICAL DATA

16 PINS - Plastic Dip

8 PINS - Plastic Dip

ORDER INFORMATION

Plastic	16 Pins Package : TSG8550XP
Ceramic	16 Pins Package : TSG8550XC
Cerdip	16 Pins Package : TSG8550XJ
Plastic	8 Pins Package : TSG85501XP

$\mathrm{X}:$ Temperature Range $=\mathrm{C}: 0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$
I: $-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
V : $-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
M : $-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$

FEATURES

- 8th ORDER
- SELECTIVITY FACTOR : Q = 35
- GAIN AT CENTER FREQUENCY : 30dB (typ)
- LOW STOPBAND ATTENUATION : 70dB (typ)
- HIGH STOPBAND ATTENUATION : 70dB (typ)
- CLOCK TO CENTER FREQ. RATIO : 187.2
- CLOCK FREQUENCY RANGE : 4 to 3800 kHz
- CENTER FREQUENCY RANGE : 22 Hz to 20.3kHz

Note : For general characteristics, see TSG85XX specifications. For non standard quality level, consult SGS-THOMSON general ordering information.

DESCRIPTION

The TSG8551 is a HCMOS high selectivity bandpass filter.

PIN CONNECTIONS

AMPLITUDE RESPONSE CURVE

E88TSG8551-04
FILTER SPECIFICATIONS
Bandpass Filter: TSG8551 ; Type : High Q; Order : 8.
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{RL}=5 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}, \mathrm{IPWF}=1000 \mu \mathrm{~A}$

Symbol	Parameter		Typ.	Tested Limits	Unit
Fe	External Clock Frequency		$\begin{gathered} 4 \\ 3800\left({ }^{\star}\right) \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
Fi	Internal Sampling Frequency		$\begin{gathered} 0.5 \\ 475\left(^{*}\right) \end{gathered}$		$\begin{aligned} & \mathrm{kHz} \text { (min) } \\ & \mathrm{kHz} \text { (max) } \end{aligned}$
$\mathrm{Fe}_{\mathrm{e}} / \mathrm{Fo}_{0}$	Clock to Cutoff Frequency Ratio		$187.2 \pm 1 \%$		
Fo	Center Frequency		$\begin{gathered} 0.022 \\ 20.3 \text { (*) }^{\prime} \end{gathered}$		$\begin{aligned} & \mathrm{kHz}(\min) \\ & \mathrm{kHz}(\max) \end{aligned}$
Go	Gain at Center Frequency	$\mathrm{Fe}=400 \mathrm{kHz}$	30	$\begin{aligned} & 32 \\ & 26 \end{aligned}$	$\begin{aligned} & \mathrm{dB}(\max) \\ & \mathrm{dB}(\min) \end{aligned}$
Q	Selectivity Coefficient		35		
Ap	Passband Ripple				dB (max)
Als	Low Stopband Attenuation	F 0.8 Fo	70	55	dB (min)
Ahs	High Stopband Attenuation	F 1.2 Fo	70	55	dB (min)
Voff	Output DC Offset Voltage	$\mathrm{LVL}=0 \mathrm{~V}$	± 100	± 200	mV (max)
LVL	DC Level Adjustment		± 70		mV (max)
LG	Level Gain		-3.3		
RPWF	PWF Resistance		$\begin{aligned} & 10 \\ & 72 \end{aligned}$		$\mathrm{k} \Omega$ (min) $\mathrm{k} \Omega$ (max)
IPWF	Input Current on PWF		$\begin{gathered} 50 \\ 250 \\ \hline \end{gathered}$		$\mu \mathrm{A}$ (min) $\mu \mathrm{A}$ (max)
I^{+}	V^{+}Supply Current	$\begin{aligned} & \mathrm{Fe}=100 \mathrm{kHz} \\ & \text { Ipwa }=0 \mu \mathrm{~A} \end{aligned}$	3.8	5	$m A(\max)$
Γ	\checkmark Supply Current		3.8	5	mA (max)
PSRR ${ }^{+}$	V^{+}Supply Rejection Ration	$\mathrm{Fe}_{\mathrm{e}}=187.2 \mathrm{kHz}$	10**		dB
PSRR ${ }^{-}$	V Supply Rejection Ratio	Fin=1kHz	19**		dB
RIN	Input Resistance		3		$\mathrm{M} \Omega$
CIN	Input Capacitance		20		pF
Vo	Output Voltage Swing		$\begin{aligned} & +3.5 \\ & -4.5 \end{aligned}$		$V_{p-p}(\max)$
V_{n}	Output Noise	$\begin{aligned} & \hline \mathrm{BW}=3 \mathrm{~Hz} \\ & \mathrm{Fe}_{\mathrm{e}}=2187.2 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{In}}=2 \mathrm{~V}_{\mathrm{rms}} \\ & \hline \end{aligned}$	56**		$\mu \mathrm{V}_{\text {rms }}$
SNR	Signal to Noise Ratio		90**		dB

[^6]PHASE RESPONSE CURVE (in passband)

E88TSG8551-05

AMPLITUDE RESPONSE TEMPLATE (tested)

OUTPUT DC VOLTAGE ADJUSTMENT FROM LVL PIN

E88TSG8551-07

USER'S GUIDE FOR Ipwf AND Rpwf CHOICE

PACKAGE MECHANICAL DATA

16 PINS - Plastic Dip

8 PINS - Plastic Dip

ORDER INFORMATION

Plastic	16 Pins Package : TSG8551XP
Ceramic	16 Pins Package : TSG8551XC
Cerdip	16 Pins Package : TSG8551XJ
Plastic	8 Pins Package : TSG85511XP

$\mathrm{X}:$ Temperature Range $=\mathrm{C}: 0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \text { I }:-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C} \\
& \mathrm{~V}:-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C} \\
& \mathrm{M}:-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}
\end{aligned}
$$

HIGH SELECTIVITY BANDPASS SWITCHED CAPACITOR FILTER

FEATURES

- 4th ORDER
- SELECTIVITY FACTOR Q = 25
. GAIN AT CENTER FREQUENCY Go : 20dB (typ.)
- LOW STOPBAND ATTENUATION: Go:-65dB (typ.) AT $\mathrm{f}<0.3$ fo
- HIGHSTOPBAND ATTENUATION:Go:-65dB (typ.) AT f>3 fo
- CLOCK TO CENTER FREQ. RATIO : 60
- CLOCK FREQUENCY RANGE : 1.5 to 720 kHz
- CENTER FREQUENCY RANGE : 25 Hz to 12 kHz

Note: For general characteristics, see TSGF04 specifications. For non standard quality level, consult SGS-THOMSON general ordering information.

DESCRIPTION

The TSG8751 is a HCMOS high selectivity bandpass filter.

PIN CONNECTIONS

8 pins : FILTER ONLY DIP-8 Package	14 pins : FILTER + 1 OP-AMP DIP-14 Package
E88TSG8751-01	E88TSG8751-02

AMPLITUDE RESPONSE CURVE

BLOCK DIAGRAM

FILTER SPECIFICATIONS

ELECTRICAL OPERATING CHARACTERISTICS

$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{CL}=100 \mathrm{pF}$, IPWF $=50 \mu \mathrm{~A}$ (unless otherwise specified)

Symbol	Parameter		Value			Unit
			Min.	Typ.	Max.	
$\mathrm{Fe}^{\text {e }}$	External Clock Frequency		1.5		720 (*)	kHz
$\mathrm{Fi}^{\text {i }}$	Internal Sampling Frequency		0.75		360(*)	kHz
$\mathrm{Fe}_{\mathrm{e}} / \mathrm{F}_{0}$	Clock to Center Frequency Ratio		58.8	60	61.2	
F_{0}	Center Frequency	$\mathrm{ff}_{0}=(\mathrm{flc}+\mathrm{fhc}) 2$	0.025		12(*)	kHz
Go	Gain at Center Frequency	$\begin{aligned} & \mathrm{Fe}=60 \mathrm{kHz} \\ & \mathrm{IPWF}=50 \mu \mathrm{~A} \end{aligned}$	19	20	21	dB
Fic	Low Cut Off Frequency	$\mathrm{Flc}_{\text {c }}=0.98 \mathrm{Fo}$	0.0245		11.76	kHz
Fhc	High Cut Off Frequency	$\mathrm{F}_{\mathrm{hc}}=1.02 \mathrm{fo}$	0.0255		12.24	kHz
BW	-3dB Bandwich	[$0.98 \mathrm{fo}, 1.02 \mathrm{fo}$]	1		480	Hz
Q	Quality Factor	$\mathrm{Q}=\mathrm{fo}_{0} \mathrm{BW}$		25		
Als	Low Stopband Attenuation	f 0.3 fo	G0-63	G0-65		dB
Ahs	High Stopband Attenuation	$f 3$ fo	$\mathrm{G}_{0}-63$	$\mathrm{G}_{0}-65$		dB
Voff	Output DC Offset Voltage	$\begin{aligned} & \mathrm{LVL}=0 \mathrm{~V} \\ & \mathrm{lPWF}=50 \mu \mathrm{~A} \end{aligned}$		± 100	± 200	mV
LVL	DC Level Adjustment			± 67		mV
LG	Level Gain			3		
Rpwf	PWF Resistance		20		72	k Ω
IPWF	Input Current on PWF		50		150	mA
$1+$ 1^{-}	Supply Current	$\begin{aligned} & \mathrm{Fe}=60 \mathrm{kHz} \\ & \mathrm{IPWF}=50 \mu \mathrm{~A} \\ & \mathrm{IPWA}=0 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$	3 3	mA
$\begin{aligned} & \text { PSRR + } \\ & \text { PSRR - } \end{aligned}$	Supply Rejection Ratio	$\begin{aligned} & \mathrm{F}_{\mathrm{e}}=60 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{in}}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 30\left({ }^{* *}\right) \\ & 31(*) \end{aligned}$		dB
Rin	Input Resistance			3		$\mathrm{M} \Omega$
CIN	Input Capacitance			20		pF
Vo	Output Voltage Swing			$\begin{aligned} & \hline+3.5 \\ & -4.5 \end{aligned}$		VPP
$\mathrm{V}_{\text {A }}$	Output Noise	$\begin{aligned} & \mathrm{BW}=1 \mathrm{kHz} \\ & \mathrm{Fe}_{\mathrm{e}}=60 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{rms}} \end{aligned}$		91.8(*)		$\mu \mathrm{V}_{\text {rms }}$
SNR	Signal to Noise Ratio			66		dB

(*) At maximum f_{e} (with IPWF $=150 \mu \mathrm{~A}$): $\mathrm{f}_{\mathrm{e}} / \mathrm{f}_{0}=61 \pm 2 \%$.
(* *) Value divided by the gain.

TYPICAL AMPLITUDE RESPONSE CURVE

E88TSG8751-06

TYPICAL AMPLITUDE RESPONSE CURVE IN PASSBAND

TYPICAL PHASE RESPONSE CURVE IN PASSBAND

E88TSG8751-08

TYPICAL GROUP DELAY CURVE IN PASSBAND
NORMALIZED GROUP DELAY (SEC. Hz)

E88TSG8751-09

TYPICAL OUTPUT DC VOLTAGE ADJUSTMENT FROM LVL PIN

E88TSG8751-10

USER'S GUIDE FOR Ipwf AND Rpwf CHOICE

CLOCK OSCILLATOR

The TSGF04 base accepts external compatible TTL/CMOS clocks on CLKIN pin and provides an internal oscillator performed either by RC or crystal connected between CLKIN and CLKR pins.
The clock selection mode is provided by CLKM pad which can be connected to V - or GND voltage levels. This connection is realized by two means, depending on the package type chosen :

- with 14-pin package, via pin CLKM
-with 8-pin package, by internal connection readily performed, only on custom filters.
(note that CLKM pin connected to V_{+}, allows the selection of the internal crystal-controlled oscillator, but the selection by CLKM connected to V - is recommended).

The different possibilities are :
-two internal oscillator modes

- RC
- Crystal
- three external clocks
-low-TTL
-high-TTL
-CMOS

E88TSG8751-14

The "Low-TTL" and "High-TTL" clock levels are :

For each package version, the following tables resume, the availability of the different clocks, in terms of the power supply.

$\mathbf{8}$-Pin Package			
	$\mathbf{0 . 5 V}$	$\mathbf{0 . 1 0 V}$	$\mathbf{- 5 . + 5 V}$
Low-TTL	NO	C	C
High-TTL	NO	YES	YES
CMOS	C	YES	YES
RC Mode	NO	NO	NO
Crystal Mode	NO	NO	NO

C = Customızation optıon.

Note that in 8 -pin version, the clock mode (CLKM) is internally set to GND voltage, except in the case of CMOS clock and $0-5 \mathrm{~V}$ power supply, where CLKM is internally connected to V - voltage.

14-Pin Package			
	$\mathbf{0 . 5 V}$	$\mathbf{0 . 1 0 V}$	$\mathbf{- 5 . + 5 V}$
Low-TTL	NO	C	C
High-TTL	NO	CLKM $=$ GND	CLKM $=$ GND
CMOS	CLKM $=\mathrm{V}^{-}$	CLKM $=$GND	CLKM $=$GND
RC Mode	CLKM $=\mathrm{V}^{-}$	CLKM $=\mathrm{V}^{-}$	CLKM $=\mathrm{V}^{-}$
Crystal Mode	CLKM $=\mathrm{V}^{-}$	CLKM $=\mathrm{V}^{-}$	CLKM $=\mathrm{V}^{-}$

ELECTRICAL OPERATING CHARACTERISTICS

WITH DUAL SUPPLY VOLTAGE

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, (unless otherwise specified)

Symbol	Parameter	Value			Unit
		Min.	Typ.	Max.	
GND	Threshold Voltage External Clock Frequency		1.5	5	$\begin{gathered} \mathrm{V} \\ \mathrm{MHz} \end{gathered}$
V -	RC MODE : High Threshold Voltage on CLKIN Corresponding Voltage on CLKR Low Threshold Voltage on CLKIN Corresponding Voltage on CLKR Oscillator Frequency Resistor Capacitor	$\begin{gathered} 1 \\ -1.5 \\ \\ 2 \\ 0 \end{gathered}$	$\begin{gathered} 1.25 \\ -5 \\ -1.25 \\ +5 \end{gathered}$	$\begin{gathered} 1.5 \\ -1 \\ 5 \\ 10{ }_{0} 000 \\ 47 \end{gathered}$	$\begin{gathered} V \\ V \\ V \\ V \\ \mathrm{VHz} \\ \mathrm{k} \Omega \\ \mathrm{nF} \end{gathered}$
V -	CRYSTAL MODE : Oscillator Frequency Resistor Capacitor C_{R} Capacitor $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	1	$\begin{gathered} 5 \\ 100 \\ 30 \end{gathered}$	$\begin{gathered} \mathrm{MHz} \\ \mathrm{M} \Omega \\ \mathrm{pF} \\ \mathrm{pF} \end{gathered}$

ELECTRICAL OPERATING CHARACTERISTICS (continued)

WITH SINGLE SUPPLY VOLTAGE
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}+=10 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{GND}=5 \mathrm{~V}$, (unless otherwise specified)

CLKM	Parameter	Value			Unit
		Min.	Typ.	Max.	
GND	Threshold Voltage External Clock Frequency		6.5	5	$\begin{gathered} \mathrm{V} \\ \mathrm{MHz} \end{gathered}$
V -	RC MODE : High Threshold Voltage on CLKIN Corresponding Voltage on CLKR Low Threshold Voltage on CLKIN Corresponding Voltage on CLKR Oscillator Frequency Resistor Capacitor	$\begin{gathered} 6 \\ 3.5 \\ 2 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 6.25 \\ 0 \\ 3.75 \\ +10 \end{gathered}$	$\begin{array}{\|c} 6.5 \\ 4 \\ 5 \\ 10 \\ 47 \end{array}$	$\begin{gathered} V \\ V \\ V \\ V \\ M H z \\ \mathrm{k} \Omega \\ \mathrm{nF} \\ \hline \end{gathered}$
V -	CRYSTAL MODE : Oscillator Frequency Resistor Capacitor C_{R} Capacitor C_{IN}	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	1	5	$\begin{gathered} 30 \\ \mathrm{MHz} \\ \mathrm{M} \Omega \\ \mathrm{pF} \end{gathered}$

WITH SINGLE SUPPLY VOLTAGE
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{GND}=2.5 \mathrm{~V}$, (unless otherwise specified)

CLKM	Parameter	Value			Unit
		Min.	Typ.	Max.	
GND	Threshold Voltage External Clock Frequency		3.8	5	$\begin{gathered} \mathrm{V} \\ \mathrm{MHz} \end{gathered}$
V -	RC MODE : High Threshold Voltage on CLKIN Corresponding Voltage on CLKR Low Threshold Voltage on CLKIN Corresponding Voltage on CLKR Oscillator Frequency Resistor Capacitor	$\begin{gathered} 3 \\ 1.5 \\ \\ 2 \\ 0 \end{gathered}$	$\begin{gathered} 3.2 \\ 0 \\ 1.8 \\ +5 \end{gathered}$	$\begin{gathered} 3.4 \\ 2 \\ 5 \\ 10000 \\ 47 \end{gathered}$	$\begin{gathered} V \\ V \\ V \\ V \\ \mathrm{VHz} \\ \mathrm{kH} \\ \mathrm{nF} \end{gathered}$
V -	CRYSTAL MODE : Oscillator Frequency Resistor Capacitor C_{R} Capacitor $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	1	$\begin{gathered} 5 \\ 100 \\ 30 \end{gathered}$	MHz $\mathrm{M} \mathrm{\Omega}$ pF

With internal RC oscillator mode, the user's guide for R and C choice is given by following curves and for both supply voltages : $0-5 \mathrm{~V}, 0-10 \mathrm{~V}$.

SGS-THOMSON
MMCRORLEGURONICS

PACKAGE MECHANICAL DATA

14 PINS - Plastic Dip

14 Pins

8 PINS - Plastic Package

ORDER INFORMATION

Plastic	16 Pins Package : TSG8751XP
Ceramic	16 Pins Package : TSG8751XC
Cerdip	16 Pins Package : TSG8751XJ
Plastic	8 Pins Package : TSG87511XP

$$
\begin{aligned}
& \mathrm{X}: \text { Temperature Range }= \mathrm{C}: 0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C} \\
& \mathrm{I}:-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C} \\
& \mathrm{~V}:-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C} \\
& \mathrm{M}:-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}
\end{aligned}
$$

APPLICATION NOTES

HOW TO CHOOSE A FILTER IN A SPECIFIC APPLICATION

INTRODUCTION

OBJECT OF THIS APPLICATION NOTE

The approach of SGS-THOMSON Microelectronics regarding filtering is aimed at providing all the information required for designing the filter best tailored for a given application. The first step in this approach, and undoubtedly the most important since it is essential for all the others, therefore consists in indicating how, starting from this application, the complete system specifications of a filter must be written. This is the purpose of this application note.

REMINDERS ABOUT THE PRESENT STATUS OF THE SGS-THOMSON FILTERS

The SGS-THOMSON approach consists in manufacturing Mask Programmable Filters (M.P.F). These filters are of the switched capacitor type. They all have the same structure, up to the last mask level (interconnection level). This level is therefore the only one differenciating these filters from one another. We will not describe in full detail the structure of these filters, but simply remind their main features, and then briefly describe the presently available M.P.F's.

MAIN FEATURES :

The main features of these M.P.F's are as follows :

- TECHNOLOGY HCMOS1 (high-density linear CMOS)
- AVAILABLE ORDERS 2 TO 12 (whatever the type of M.P.F.)
- INPUT SIGNAL FREQUENCY 0 TO 30KHz
- INTERNAL SAMPLING FREQUENCY: 500 Hz TO 1 MHz (depending on the M.P.F. considered)
- INTERNAL SAMPLING FREQUENCY/CUTOFF FREQUENCY RATIO : 10 TO 200 (depending on the M.P.F. considered)
- THE RESPONSE CURVES (amplitude and phase) may be translated by changing the sampling frequency
- SIGNAL/NOISE RATIO : 70 TO 85dB (depending on the internal structure of the M.P.F. considered)
- POWER SUPPLIES : +5V OR - 10V
- CONSUMPTION MAY BE ADJUSTED BETWEEN 0.5 TO 20mW PER ORDER

By O. Leenhardt

- ACCURACY OF THE CAPACITOR RATIOS : 0.1\%
- ACCURACY OF THE CUT-OFF FREQUENCIES : 0.5\% (max.).

STANDARD M.P.F.'S AND CUSTOM
M.P.F.'S :

SGS-THOMSON MANUFACTURES TWO TYPES OF M.P.F.'S
 - Standard M.P.F.'s :

They make up a family presently consisting of 10 models, but this family will expand in the future, according to the evolution of requirements. These M.P.F.'s are the following :

- 5 Low-pass M.P.F.'s:

TS 8510 (CAUER, 5th order : 32dB attenuation)
TS 9511 (CAUER, 7th order : 50dB attenuation)
TS 8512 (CAUER, 7th order : 75dB attenuation)
TS 8513 (CHEBYCHEV, 8th order)
TS 8514 (BUTTERWORTH, 8th order)

- 3 High-pass M.P.F.'s:

TS 8530 (CAUER, 3rd order : 15dB attenuation)
TS 8531 (CAUER, 6th order : 15dB attenuation)
TS 8532 (CHEBYCHEV, 6th order)

- 1 Notch M.P.F.'s :

TS 8540 (8th order : Q = 7)

- 2 Band-pass M.P.F.'s:

TS 8550 (CAUER, 3rd order : Q = 5)
TS 8551 (high-selectivity filter Q : 35)
Note : The detailed description of these M.P.F.'s has been the subject of a previous application note.

- Custom M.P.F.'s :

SGS-THOMSON commits itself to supply the first samples 4 to 6 weeks after the customer's definition of the template. All types of filters may be provided (BUTTERWORTH, LEGENDRE, CHEBYCHEV, BESSEL, CAUER), for conventional applications (low-pass, high-pass, bandpass, notch filters, group delay equalizers) or for simultaneous optimization of the amplitude and the phase templates.

APPLICATION NOTE

HOW TO DEFINE THE COMPLETE SYSTEM SPECIFICATIONS OF A FILTER

FILTER SYSTEM SPECIFICATIONS

The system specifications of a filter are complete when they indicate :

- the amplitude template (amplitude response curve)
- the phase template (phase response curve)
- the group delay curve
- the pulse and step responses
- the dynamics
- the noise factor
- the input and output impedances
- the load impedance (resistance and capacitance)
- the type of signals to filter (level, spectrum,...)
- the value of the power supply sources
- the operating temperature range
- the size (the dimensions)
- the price

Amongst all these parameters, the knowledge of three of them is essential from the technical point of view :

- the amplitude template
- the phase template
- the group delay curve.

As we shall see later on, the following definitions may be used, with minor modifications, for all types of filters. Our definitions are given only for low-pass filters, since we can always relate back to this type when studying any other kind of filter (see 3.B).

Figure 1 : Different Parameters used for Defining an Amplitude Template.

- Amplitude Template (figure1) :

We cannot expect two filters, assumed to be similar, to have exactly identical response curves. This is the reason why we use the concept of template, which is a sort of envelope of the response curve limits in terms of the frequency. The amplitude template is therefore the graphical representation of the filter's "amplitude - frequency" limiting conditions. Its definition is based on the following parameters (lowpass filter) :

- maximum passband attenuation (or gain) $\left(\mathrm{G}_{\mathrm{a}}\right)$: maximum level the signal may reach within the passband (in dB).
- minimum passband attenuation (or gain) (Gb) : minimum level the signal may reach within the passband (in dB).
- minimum stopband attenuation (Gc) : minimum attenuation level of the signal within the stopband (in dB).
- passband band of frequencies for which the attenuation (or the gain) must fall between G_{a} and G_{b}.
- transition band : band of frequencies for which the attenuation must fall between G_{b} and G_{c}.
- stopband: band of frequencies for which the attenuation must be less than G_{c}.
_ cut-off frequency $\left(F_{a}\right)$: passband upper limit.
- selectivity factor k : equal to the ratio $\mathrm{F}_{2} / \mathrm{F}_{\mathrm{b}}$, it defines the width of the template transition band, and therefore of the filter selectivity. It is always less than 1.
Other parameters must be added when the response curve considered falls within this template:
- passband transfer factor (K) : attenuation (or gain) factor of the response curve within the passband, relative to the 0 dB (in dB).
- passband ripple : maximum amplitude difference between two points of the response curve within the passband.
- cut-off frequency $\left(\mathrm{F}_{\mathrm{c}}\right)$: frequency corresponding to a 3 dB attenuation relative to the passband transfer factor.
Note : The template of a filter is therefore completely determined once the values of $G_{a}, G_{b}, G_{c}, F_{a}$ and F_{b} are known.
- Phase template :

Within a real filter, all the frequencies are not transmitted at the same velocity. A non-constant phase shift results (and therefore a distortion) between the output signal and the filter input signal. The phase response curve of a filter is the phase shift curve due to this filter, in terms of the frequency. As with the amplitude response curve, it must be within a phase template, sort of graphical representation of the "phase - frequency" limiting conditions of the filter.

- Group delay curve :

As a consequence of what we have seen above, the group delay concept is preferred to that of propagation velocity of each of the frequencies of a spectrum. We shall thus no longer speak of the propagation velocity for a given frequency, but for a group of frequencies. This group delay is related to the phase shift by the following relationship :

$$
t=\frac{d \Phi}{d \omega}
$$

with $\omega=$ pulsation.
We may infer from this relationship that the steeper the slope of the phase response curve in terms of the frequency, and therefore the more abrupt the filter cut-off, the greater the group delay of a filter will be :
Note: On the group delay curve of the different filters shown below (see 3.D), the value to read on the y-axis corresponds to a normalized group delay ω_{c}. T equal to T_{0}, that is an actual group delay expressed in seconds equal to: $T=T_{0} / \omega_{c}$, with $\omega_{c}=$ cut-off pulsation of the filter.

- Other parameters :
- pulse and step responses:

The pulse response of a filter is its response to a DIRAC pulse. It can be shown that :

- $x(t)$ any type of signal : $y(t)=h(t) * x(t)$ with \star - convolution product
$\rightarrow Y(p)=H(p) . X(p)$ with $H(p)$ - transfer function
- $x(t) \operatorname{DIRAC}$ pulse $(\delta(t)): y \delta(t)=h(t) *(t)$

$$
\rightarrow Y \delta(p)=H(p)
$$

The pulse response $y(t)$ of a filter is the time representation of its transfer function $\mathrm{H}(\mathrm{p})$. It is an intrinsic feature of the filter. It contains all the information relative to the response of the filter to any type of signal.
The step response of a filter is its response to a HEAVISIDE step (unit step). On figure 2, we can see the concept of filter settling time. In effect, if a signal having a spectrum within the filter passband is applied to the filter, the settling time is equal to the time elapsed between the time the signal was applied at the filter input and the output signal obtained, to within a given percentage of the final value (1%). This settling time is closely related to the width (B) of the filter passband ($1 / \mathrm{B}$ for a bandpass, $1 / 2 \mathrm{~B}$ for a low-pass).

- dynamics.

The dynamics of a filter is the ratio between the maximum level of the output signal and its minimum level, that is, the noise level. It is expressed in dB .

- noise factor.

The noise factor is the ratio between the total filter output noise power and the output noise power due only to the noise applied at the input. It is expressed in dB. For a given structure, the filter output noise mainly depends on the amplitude template, since it is an exponential function of the overvoltage factor Q (see 3.C). In the active filters, the noise is not "white", or at least not throughout the band considered. It is therefore necessary to split this band up into several frequency areas, and to define the corresponding noise features for each of them. We may then speak of a noise power (or voltage) per Hertz (or Hertz square root), for a given frequency ($\mathrm{nW} / \mathrm{Hz}$ or $\mathrm{nV} / \sqrt{\mathrm{Hz}}$). The noise optimization of a filter is not always easy, and this could be kept in mind at system specifications definition time, especially for filters requiring high dynamics (60 dB).

- type of signals to be filtered:

APPLICATION NOTE

Although this may seem obvious, it is not useless to remind the importance of knowing accurately the type of signal to filter, before defining the system specifications of the filter. The signal amplitude curve must be studied in detail (regarding the com-
patibility with the authorized filter input swing), as well as its frequency spectrum, in order to suppress the possible interaction of undesired frequencies (50 Hz , various harmonic components,...) during system specifications definition time.

Figure 2 : Settling Time (t_{s}) of the Step Response of a Unit Step (v_{i}).

PROTOTYPE LOW-PASS FILTER

- Frequency standardization:

By standardizing the frequency units, the template
of any filter may be related back to an template for which only the frequency ratios intervene.

Examples:

- low-pass:

- High-pass:

- Bandpass:

Fo $\sqrt{\mathrm{Fcb}} \cdot \mathrm{Fch}$ characteristic frequency
B Fch - Fcb passband
$\Delta \quad \frac{B}{F_{0}}$ relative band
k $\frac{F^{\prime \prime} b-F^{\prime} b}{F^{\prime \prime} a-F^{\prime} a}$ selectivity factor

$$
\begin{array}{ll}
f^{\prime} \mathrm{a}=\frac{F^{\prime} \mathrm{a}}{F_{0}}<1 & f^{\prime \prime} \mathrm{a}=\frac{\mathrm{F}^{\prime \prime} \mathrm{a}}{F_{0}}>1 \\
f_{c b}=\frac{F_{c b}}{F_{o}}<1 & f_{c h}=\frac{F_{c h}}{F_{0}}>1 \\
f^{\prime} b=\frac{F^{\prime} b}{F_{o}}<1 & f^{\prime \prime} b=\frac{F^{\prime \prime} b}{F_{0}}>1
\end{array}
$$

- notch:

- Prototype low-pass filter :

Once the standardizations above have been performed, some transformations allow the high-pass, bandpass and notch filter template to relate back to that of a so-called "prototype" low-pass filter. These frequency transformations are as follows:

- low-pass \rightarrow high-pass.

It consists in replacing p by $1 / p$ in the low-pass filter transfer function. Thus, conversion from the lowpass template to the high-pass template is performed in the following way:
$f_{a} \rightarrow f^{\prime}$ a $1 / f_{a}$
$f_{b} \rightarrow f$ 'b $1 / f_{b}$

- low-pass \rightarrow bandpass:

It consists in replacing p by $\frac{1}{4}(p+1 / p)$ in the lowpass filter transfer function. Thus, conversion from the low-pass template to the bandpass template is performed in the following way:
$f_{c b} f_{c h} f^{\prime} \mathrm{f} \mathrm{f"a}_{\mathrm{a}} \mathrm{f}_{\mathrm{f}} \mathrm{ft}_{\mathrm{b}} 1$

- low-pass \rightarrow notch filter:

It consists in replacing p by $\frac{1}{\frac{1}{\Delta} \cdot(p+1 / p)}$
in the low-pass filter transfer function. Thus, conversion from the low-pass template to the notch filter template is performed in the following way:
$f_{c b} f_{c h} f_{a}^{\prime} f^{\prime \prime} a f_{b}^{\prime \prime} f_{b} 1$
Therefore, in the remaining parts of this notice, all the calculations and examples will be related back to a (prototypa) frequency-standardized low-pass filter template, since conversion to the template of
any other type of filter can be obtained using the transformations above.

FILTER TRANSFER FUNCTION :

- General definitions :

The transfer function is the mathematical representation of the filter amplitude response curve. It is an obligatory intermediate, allowing the calculations of the different filter factors to be carried out. It is expressed as a ratio between the output level and the input level of the filter, in terms of the frequency. This ratio may be expressed as a function of the complex variable p :

$$
\begin{equation*}
H(p)=K \frac{N(p)}{D(p)} \tag{1}
\end{equation*}
$$

with $N(p)$ and $D(p): p$ polynomials.
This expression may therefore be written in the following way:

$$
\begin{equation*}
H(p)=K \frac{a_{m} \cdot p^{m}+\ldots \ldots+a_{1} \cdot p+a_{0}}{b_{n} \cdot p^{n}+\ldots \ldots+b_{1} \cdot p+b_{0}} \tag{2}
\end{equation*}
$$

In this form, the order of the filter is defined as being equal to the degree of the denominator $D(p)$ (in this case, n). The stability criterium for a filter dictates that the degree of $D(\mathrm{p})$ (the order of the filter) be greater or equal to the degree of $N(p)$. On the other hand, the higher the order of a filter, the more abrupt its cut-off, as can be seen on the relationship providing the asymptotic slope of a filter at the cut-off, in terms of its order:
P6.n (dB per octave)

We may also express the transfer function in another way, by replacing the coefficients a_{0}, \ldots, a_{m}, b_{o}, \ldots, b_{n} by the roots $z_{1}, \ldots, z_{m} ; p_{1}, \ldots, p_{n}$ of the $N(p)$ and $D(p)$ polynomials :

$$
\begin{equation*}
H(p)=K \frac{\left(p-z_{1}\right) \ldots \ldots \ldots \ldots \ldots . .\left(p-z_{m}\right)}{\left(p-p_{1}\right) \ldots \ldots \ldots . .\left(p-p_{n}\right)} \tag{3}
\end{equation*}
$$

The zeros of the transfer function are the Z_{1}, \ldots, Z_{m} constants and the poles are the P_{1}, \ldots, P_{n} constants

These constants are either real or imaginary conjugated.
It can be shown that if n is even, the poles of $H(p)$ are all imaginary conjugated, two by two, and that if n is odd there is a single negative real root. $D(p)$ may therefore be written in the form of a product of 2nd order factors if n is even, and in the form of a product of 2nd order factors and of a 1st order factor, if n is odd. A new expression can then be obtained for the transfer function :

$$
\begin{equation*}
H(p)=K \frac{\left(p-z_{1}\right) \ldots \ldots \ldots\left(p-z_{m}\right)}{\left(p-p_{0}\right) \cdot\left(p^{2}+2_{n} \cdot \delta 1 \cdot p+\rho_{1}^{2}\right) \ldots \ldots \ldots\left(p^{2}+2 \cdot \delta k \cdot p \cdot \rho_{1}^{2}\right)} \tag{4}
\end{equation*}
$$

with $K=\frac{n-1}{2}$ if n is odd, and $k=\frac{n}{2}$ and without $\left(p-p_{o}\right)$ if is even

It can then be shown that any filter can be obtained by cascading 2 nd order cells if n is even, or 2nd order cells and one 1st order cell if n is odd.

- General transfer function for a 1 st order cell :

It may be expressed as :

$$
H(p)=K \frac{N(p)}{1+a \cdot p}
$$

with

- p complex pulsation
- a time constant

This last parameter allows the cut-off pulsation (and therefore the cut-off frequency) of the cell to be defined as its reciprocal
($\omega c=1 / a$ and $F_{c}=1 /(2 \cdot \pi \cdot a)$).
a is a time value such that 3.a (5.a) characterises the time after which the response has reached 95% (99%) of its final value.
Note : The expression of $\mathrm{N}(\mathrm{p})$ depends on the type of filter considered :

- polynomial low-pass filter: $N(p)=1$
- polynomial high-pass filter : $N(p)=p / a$ (with $p \rightarrow$ 1/p)
- General transfer function for a 2nd order cell :

It may be written as follows :

$$
H(p)=K \frac{N(p)}{1+2 \cdot \xi \cdot p / \omega_{0}+p^{2} / \omega_{0}^{2}}
$$

with :

- p : complex pulsation
- K : passband transfer factor
- For Low-pass and high-pass cells :

The relationship above allows the following parameters to be defined :

- the undamped natural pulsation ω_{0} (or characteristic pulsation) used as a standardization pulsation (F_{0} : characteristic frequency).
- the damping factor ξ, magnitude without units specifying the shape of the filter responses:
if $\xi<0.707$ distinct, transient, ω p pulsation oscillations for the unit response ; resonance on the frequency response,
if $0.707<\xi<1$ not very distinct, transient oscillations.; the final value of the unit response is overstepped. No resonance on the frequency response,
if $\xi=1 \quad$ damping factor critical value,
if $\xi>1$ no oscillation, a periodic response without overstepping the final value of the unit response.
- the natural pulsation of the filter $\omega \rho=\omega_{\circ} . \sqrt{ } 1-\xi^{2}$ characterising the pulsation of the filter transient oscillations,
- the resonance pulsation $\omega_{r}=\omega_{o} . \sqrt{ } 1-2 .^{2}$, specifying the resonance position,
- the overvoltage or resonance factor

$$
Q=\frac{|H(j \omega r)|}{|H(O)|}=\frac{\sqrt{1}}{2 \cdot \xi 1-\xi^{2}}
$$

specifying the value of the gain of the filter for the resonance pulsation.

- the relative band Δ related to the overvoltage factor by the relationship

$$
Q=\frac{1}{\Delta}
$$

Note : The expression of $N(p)$ depends on the type of filter considered :

- polynomial low-pass filter: $N(p)=1$
- polynomial high-pass filter: $N(p)=p_{2}^{2} / \omega^{2}$
- low-pass elliptic filter: $N(p)=p^{2+} \omega_{\infty}{ }^{2}$ with $\omega_{\infty}>\omega_{0}$
- high-pass elliptic filter: $\mathrm{N}(\mathrm{p})=\mathrm{p}^{2+} \omega_{\infty}{ }^{2}$ with $\omega_{\infty}>\omega_{0}$
- bandpass and notch filter cells :

The relationships above are slightly different for a bandpass and notch filter, 2nd order cell. In this case:

- $F_{0}=\sqrt{F_{C B} \cdot F_{C H}}$ with $F_{c b}$ and $F_{c h}$: low and high cut-off frequencies of the cell.
- $Q F_{0} / \Delta F$ with $\Delta F=F_{c h}-F_{c b}$, called relative band.

We may infer from this relationship :

$$
\mathrm{Q}=\frac{\mathrm{F}_{\mathrm{ch}}-\mathrm{F}_{\mathrm{cb}}}{\mathrm{~F}_{\mathrm{o}}}
$$

Note : The expression of $N(p)$ depends on the type of filter considered :

- bandpass filter $N(p)=2, \xi . P / \omega_{0}$
- notch filter $N(p)=p^{2+} \omega^{2}$
- Conclusion

Figure 3 shows the shapes of the amplitude response curves of the 1st and 2nd order low-pass cells, for different values of ξ. Let us keep in mind that a 2nd order filter presenting interesting features is obtained for $\xi 0.707$. In effect, the transient oscillations and the resonance $(Q=1)$ no longer appear, and the frequency response presents a passband equal to the value $F_{0} \omega_{0} /(2 \cdot \pi)$.

Figure 3 : Amplitude Response Curves of a 1st and a 2nd Order Low Pass Cells in Terms of the Damping Factor (called Z on this figure).

CHARACTERISTIC FUNCTIONS

The major problem when designing a filter consists in factorising $N(p)$ and $D(p)$, in order to write the transfer function in the form shown on expression 4. To simplify the calculations, it is often preferrable to start from the template considered and to try to have a well known characteristic function pass within it. As there are a great number of functions that may be inscribed within a given template, the selection of one of them will depend on the following features :

- it must be possible to synthesize it
- it must be possible to split it up into a product (or an addition) of functions, and it must be possible to carry each one out
- it must comply with the filter system specifications (phase, group delay,...)

The filter designer must therefore optimize his selection, taking into account all these constraints. A relatively great number of well known characteristic functions simplifies this task.

- Low-pass polynomial filters :

Their transfer functions comply with $\mathrm{N}(\mathrm{p}) 1$. The following are the most often used :

- BUTTERWORTH filters:

They correspond to amplitude response curves with the following features (figure 4).

Figure 4 : Amplitude Response Curves of the Butterworth Low Pass Filters.

- no ripple within the passband

The phase response curves of these filters present

- not very rapid cut-off near the cut-off frequency.

Figure 5 : Phase Response Curves of the Butterworth Low Pass Filters.

The group delays are relatively constant within the passband and their ratio with the group delays of the frequencies around the cut-off frequency is equal to $1 / 2$ (figure 6).

Note : The higher the order n of the filter, the closer the amplitude response curve will be to the ideal curve (rectangular template)

Figure 6 : Group Delay Curves of the Butterworth Low Pass Filters.

- LEGENDRE filters :

They correspond to amplitude response curves having the following features (figure 7) :

- cut-off as rapid as possible near the cut-off frequency
- regular attenuation within the stopband

Figure 7 : Amplitude Response Curves of the Legendre Low Pass Filters.

The phase response curves are practically identical to those of a BUTTERWORTH filter (figure 8). Regarding the group delays for a given order, they are relatively constant within the passband, and their ratio with the group delays for the frequencies around
the cut-off frequency is equal to $1 / 2$ (figure 9). But since the slopes of these curves are very steep for this frequency, these time are in general higher than those of the BUTTERWORTH filters.

Figure 8 : Phase Response Curves of the Legendre Low Pass Filters.

Figure 9 : Group Delay Curves of the Legendre Low Pass Filters.

APPLICATION NOTE

- - CHEBYCHEV filters

They correspond to amplitude response curves presenting the following features (figure 10).

- - ripples within the passband (up to 2dB)
- - rapid cut-off near the cut-off frequency (at least in the first octave)

Figure 10 : Amplitude Response Curves of the Chebychev Low Pass Filters.

The phase response curves present greater rotations than those of the BUTTERWORTH filters (figure 11). The group delays within the passband are not identical for a given order, and their ratio with the group delays of the frequencies around the cut-off
frequency is equal to $1 / 3$ (figure 12).
Note : The order of a CHEBYCHEV filter is equal to the number of extrema of the amplitude response curves located within the passband.

Figure 11 : Phase Response Curves of the Chebychev Low Pass Filters.

Figure 12 : Group delay Curves of the Chebychev Low Pass Filters.

- BESSEL filters

They correspond to amplitude response curves presenting the following features (figure 13) :

- very slow cut-off near the cut-off frequency
- small attenuation within the stopband

Figure 13 : Amplitude Responses Curves of the Bessel Low Pass Filters.

APPLICATION NOTE

The phase response curves are practically identical to those of the BUTTERWORTH filters (figure 14). These filters are mainly interesting because of their group delays, strictly constant within the passband until beyond the cut-off frequency (figure 15). They
therefore have a very_close to a pure delay characteristic, and they mưst be used in all applications for which the non-distortion of the signal is an essential factor.

Figure 14 : Phase Response Curves of the Bessel Low Pass Filters.

Figure 15 : Group Delay Curves of the Bessel Low Pass Filters.

- Low-pass elliptic filters :

Their transfer functions are such that $N(p)$ may be expressed in the following way:
$N(p)=\left(p^{2}+\omega_{1}^{2}\right)$.$\left(\mathrm{p}^{2}+\omega_{k}^{2}\right)$ with
 $k=\frac{n}{2}$ if n is even

$$
k=\frac{n-1}{2} \text { if } n \text { is odd }
$$

and $\omega_{1}, \ldots, \omega_{k}$: transmission zeros.

- CAUER filters:

They correspond to amplitude response curves presenting the following features (figure 16).

- ripples within the passband
- very rapid cut-off near the cut-off frequency
- presence of one or several transmission zeros ($\mathrm{N}(\mathrm{p}$) roots)

Figure 16 : Amplitude Response Curves of the Cauer Low Pass Filters.

APPLICATION NOTE

The phase response curves have greater rotations than the CHEBYCHEV filter ones (figure 17).
The group delays are very different for a given or-
der, from one area of the passband to another, and their ratio with the group delays of the frequencies around the cut-off frequency is equal to $1 / 10$ (figure 18).

Figure 17 : Phase Response Curves of the Cauer Low Pass Filters.

Figure 18 : Group Delay Curves of the Cauer Low Pass Filters.

APPLICATION NOTE

- Conclusion :

A number of nomographs, tables and curves provide, for each type of function and according to its order, the amplitude response curves, the phase response curves, the group delay curves, and also the pulse and step responses. All these characteristics, and a few others, are summarized in the table on figure 19.
Regarding our subject, we will keep in mind the following:

- The BUTTERWORTH filters are interesting because of the regularity of their passband (no rip-
ple) but their cut-off is not very abrupt
- The LEGENDRE filters associate a convenient regularity of the amplitude response curve with a cut-off abruptness and a transient behaviour that are of good quality
- The CHEBYCHEV filters present, at least within the first octave, an abrupt cut-off, but their transient behaviour is not very performing
- The BESSEL filters present a very good transient behaviour, but their cut-off is not very abrupt
- The CAUER filters allow an extremely abrupt cutoff be obtained, but their group delay regularity is mediocre. They present transmission zeros.

Figure 19: Comparison between the Performances of the Different Kinds of Filters.

Kind of Performance	Kind of Filter				
	Butterworth	Legendre	Chebychev	Bessel	Cauer
Cut-off Abruptness for a Given Order	- -	-	■ ■	- - -	■■■
Regularity of the Amplitude Response Curve	■■ ■	■ ■	Ripple withın the Passband/ regular within the Notch	■ ■	Ripple within the Passband and the Notch
Regularity of the Group Delay	\square	-	- -	■ ■	- - -
Sensitıvity	■ ■	$\square \square$	\bigcirc	$\square \square$	- -
Transient Condition Distortions	■ ■	■ ■	- -	■■■	- - -
Transmission Zeros	None	None	None	None	Yes
Required Overvoltage Factors	Very Low	Low	Medium	Medium	High

- : Very Mediocre

■■■: Excellent

- : Mediocre ■ ■ : Very Good
- Medıum ■ : Good

SOME IDEAS CONCERNING FILTERS DESIGN

We will assume for the following that the future designer has a comprehensive knowledge of the system specifications of the filter required for this application. We will show briefly how, starting from these system specifications, he may design the filter required. Since this study is beyond the scope of his application specification, this approach will necessarily be very brief.
The design of a filter is performed in four steps :

- determining the characteristic parameters of the filter
- selecting the type of filter
- calculating the filter transfer function
- filter synthesis

A. DETERMINING THE CHARACTERISTIC PARAMETERS OF THE FILTER :

From the amplitude template related back to the prototype filter template (standardized low-pass), the following parameters are assumed to be known :

- G_{a}. maximum gain within the passband
- G_{b}. maximum attenuation within the passband
- Gc. minimum attenuation within the stopband
- k selectivity
- Δ relative band (only for the bandpass and the notch filters)
The knowledge of these parameters will allow the complete design of the filter to be performed.

B. SELECTING THE TYPE OF FILTER :

We have seen the different features of the BUTTERWORTH, LEGENDRE, CHEBYCHEV, BESSEL and CAUER filters. Let us keep in mind that the main criteria used for selecting a given type of filter are the following:

- the cut-off abruptness
- the passband regularity
- the group delay regularity
- the existence of transmission zeros
- the behaviour under transient conditions

C. CALCULATING THE FILTER TRANSFER FUNCTION :

Let us assume that the type of filter is known. We
must now determine its transfer function. Three steps are required to this end:
a) determining the degree of this function :

The desired amplitude template is related back to the prototype filter template (standardized lowpass) ; by placing the different response curves of the above filters within this template, we obtain not only a type of filter but also its order, and thereby the degree of the corresponding transfer function.
b) determining the transfer function of the prototype filter:

Depending on the different values of the parameters of the prototype amplitude template desired, a number of nomographs and tables allow the calculation of the transfer function corresponding to this template to be carried out.
c) transposing the transfer function :

If the filter to be designed is not a low-pass (highpass, bandpass, notch filter), the transfer function determined above may be transposed to the corresponding transfer function, using the transformations defined above.

D. FILTER SYNTHESIS :

It mainly consists in factorising the final transfer function in the form of a product of 1st and 2nd degree factors. The desired filter may then be easily designed, by cascading the 1 st and 2 nd order elementary filters corresponding to each of these factors.

CONCLUSION :

In most - not to say all - electronic applications, the filtering portion has become one of the most important. We have found that it also was the least well known. By defining all the parameters specified in the system specifications of a filter, and by providing a selection guide amongst the different existing types, we offer anybody who whishes to do so the possibility of making up for lost time, and seeing how this may be inserted into his general application.

SCS-THOMSON MICROELCTRONICS

IMPLEMENTATION AND APPLICATIONS AROUND STANDARD MPF

INTRODUCTION

At a time when increased miniaturisation is the vogue, the problems posed by the filtering of electrical parameters are on an upward trend. The increase in filter order, progressively improved performances mean generally that in order to solve these problems, a considerable increase in components (also generally their size) has to be used. The adjustments in consequence become also more difficult to effect.
In this gloomy context, the advent of switched capacitor techniques has considerably widened the scope of classical filters. Not content to rest here, SGS-THOMSON Microelectronics goes even further and offers an even new concept in filtering : the M.P.F. (Mask Programmable Filter).

This application note has therefore several objectives : to explain the switched capacitor principle (application, advantages), to describe the M.P.F. general circuit (structure, block diagram, principal characteristics), to present the SGS-THOMSON approach (standard, custom) and to finish by a quick description of all the possible applications of the M.P.F. and more specially one amongst them : the frequency detection.

THE SWITCHED CAPACITOR

PRINCIPLE :

Consider figure 1. When the switch is in position 1, the charge at the capacitor terminals is Q1 $=\mathrm{C} \times \mathrm{V} 1$. If the switch is now moved in position 2 , the charge at the terminals of C becomes $\mathrm{Q} 2=\mathrm{C} \times \mathrm{V} 2$. This switching allows a charge transfer $\mathrm{Q}=\mathrm{Q} 2-\mathrm{Q} 1=$ $\mathrm{C} \times\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=\mathrm{C} \times \Delta \mathrm{V}$ between the points 1 and 2 of the circuit.
This charge transfer in equivalent to the flow of a current $\mathrm{I}=\Delta \mathrm{Q} / \mathrm{T}=\Delta \mathrm{Q} \times \mathrm{F}=\mathrm{C} \times \Delta \mathrm{V} \times \mathrm{F}$ where F is the commutating frequency of the switch. ($F=1 / T$) If we compare now the previous expression with Ohm law applied to a resistance ($\mathrm{I}=\Delta \mathrm{V} / \mathrm{R}$), then we can deduce an electrical equivalence between the resistor and the switched capacitor :

$$
R=\frac{1}{C \times F}
$$

The technique of switched capacitors enables us therefore to simulate resistors with capacitors. Additionnally, the values of these resistors vary with the sampling frequency employed. These two key points offer considerable advantages to this technique.
This relationship leads to an important comment. In effect, the equivalence "transfered charge = discrete quantity of current" is only valid for high switching speeds. This is certainly the case for switched capacitor filters where, in order to avoid aliasing and smoothing problems inherent in all sampling systems, relatively high sampling frequencies are used, sufficiently high, in any case, for the previous relationship to remain valid.

EXAMPLE OF THE APPLICATION WITH AN INTEGRATOR:

In order to understand the operation of a switched capacitor integrator, consider the case of a standard inverting integrator as shown in figure 2.
Remember that the time constant of this circuit ($=R \times C^{\prime}$) determines, in active filter circuits, parameters such as bandwith and cut-off frequency.
However, in this example, this time constant presents a major obstacle : the total lack of correlation between the values of R and C^{\prime}. The eventual variations or drifts of these two values not necessarilymoving in the same direction, leads to a relatively high and difficult to handle innacuracy when associated with the values mentioned above.
Consider now the switched capacitor integrator shown in figure 3. According to the equivalence previously mentioned, the time constant of this integrator is equal to :

$$
\tau=\frac{\mathrm{C}^{\prime}}{\mathrm{C} \times \mathrm{F}}
$$

APPLICATION NOTE

Figure 1 : Principle of the Switched Capacitor.
1: C produces the charge $\mathrm{Q}_{1}=\mathrm{C} \times \mathrm{V}_{1}$
2: C produces the charge $\mathrm{Q}_{2}=\mathrm{C} \times \mathrm{V}_{2}$

Figure 2 : Standard Inverting Integrator ($\tau=\mathrm{R} \times \mathrm{C}^{\prime}$).

Figure 3 : Switched Capacitor Inverting Integrator ($\tau=\frac{C^{\prime}}{C \times F}$).

where F is the switching frequency

$$
\left(F=\frac{1}{T} \quad \text { with } T=\Phi+\bar{\Phi}\right)
$$

APPLICATION NOTE

Then, we show in a standard integrator, accuracy depends upon the absolute values of the components, when in a switched capacitor integrator, only the relative values are considered.

ADVANTAGES OF THE SWITCHED CAPACITOR TECHNIQUE :

The preceeding result shows three major advantages.
The first concerns the relative ease with which an MOS technology can supply excellent precision of capacitor ratio (0.1%). Also, since it is not difficult to obtain good sampling frequency accuracy, the accuracy of the global time constant can attain, with the switched capacitor technique and no external adjustments, values better than 0.5%. It is this precision that we find over the complete frequency range of M.P.F.

The second advantage concerns the equivalence "resistance = switched capacitor" and the possibility offered by this relationship of being able to integrate, in MOS technology, high values of resistance on a small surface area.

Finally, the use of a clock offers considerable scope for modification of the time constant by simple sampling frequency adjustment. Since this time constant is proportional to the cut-off frequency, we can deduce that a constant ratio exists between the sampling frequency and the cutt-off frequency of the M.P.F. It is possible therefore, using this technique, to offset the cut-off frequency of the M.P.F. by sim-
ply modifying the sampling frequency. This last point highlights the extreme flexibility of use of the M.P.F. Other advantages of equal importance such as the almost total absence of external components, low power consumption, no adjustment and high temperature stability confer on the M.P.F. extreme flexibility of use and very high operating reliability.

THE TS85XX PRODUCT

THE M.P.F. STRUCTURE :

The problems encountered now in filtering (varied requirements, prohibitive costs, long lead times) lead SGS-THOMSON to choose a pre-diffused technique where the final characterization of the filter is defined by the interconnection mask (last level of masking).
This structure, shown in figure 4, consists of 8 elementary cells each formed by a switched capacitor integrator and two capacitor areas CE and Cl . Each area contains a high number of incremental capacitors each of value 0.1 pF . Thus, according to the type and filter order of M.P.F. required, the integrators can be interconnected, and according to the "Gain-Frequency" response curve required, the various incremental capacitors are also interconnected. The number of incremental capacitors thus connected varies from one area to another and depends upon the different coefficients of the transfer function that the M.P.F. is required to execute.
N.B. : Generally, the number of integrators interconnected is equivalent to the filter order obtained.

Figure 4 : A filtering unit consisting of 8 elementary cells each containing a switched capacitor integrator. Each capacitance area (Cl and CE) contains an optimum number of incremental capacitors of 0.1 pF .

Block Diagram :

The block diagram of the M.P.F. structure utilised is shown in figure 5. The principal internal functions are:

- a filtering unit composed of 8 switched capacitor integrators interconnectable between each other at the final mask level (interconnection level),
- a clock generator producing the various phases required for the internal switching of the capacitors. These phases are imperatively non-overlapping. The internal clock is obtained via a divider, equally mask programmable, and which matches the external clock defined by the user to that of the M.P.F. As the clock input is TTL compatible, a TTL-MOS level interface is provided, within the circuit, in order to obtain the correct voltage swings,
- a sample and hold unit before the filtering unit,
- a sample and hold amplifier tied to the output of the filtering unit and which enables low impedance signals to be available at the output of the M.F.P.
- the adjustment of the DC output level of the M.P.F. by an external voltage source (for example a divider connected between the positive and the negative power supplies and whose midpoint is connected to LVL pin of the M.P.F.),
- two general purpose and independant operational amplifiers available and destined to be used by the customer for other applications associated with the M.P.F. (anti-aliasing, smoothing, comparator, oscillator,...) in association with external components (R, C, crystal),
- the adjustment of the power consumption of the filter by means of the external resistance tied between the positive supply terminal V^{+}(or ground) and the corresponding pin of the circuit (PWF). The power consumption can thus be choosen to match the particular application.
- The stand-by mode is obtained by strapping pin PWF to the negative supply terminal V^{-},
- the adjustment of the power consumption of the two operational amplifiers, obtainable exactly as for the previous case but via the pin PWA of the circuit.

Figure 5 : Block Diagram of the Construction Chosen by SGS-THOMSON.

Principal Characteristics :

The principal characteristics of product TS85XX are as follows :

- technology : HCMOS1 (high density linear CMOS)
- available order : 2 to 8 (whatever the type of M.P.F.)
- input signal frequency: 0 to 30 kHz
- internal sampling frequency : 0.5 to 1000 kHz (depends upon the M.P.F. under consideration)
- ratio between internal sampling frequency and cut-off frequency : 10 to 200 (depends upon the M.P.F. under consideration)
- response curves (amplitude and phase) translatable by changing the sampling frequency
- signal to noise ratio : 70 to 85 dB (depends upon the internal construction of the M.P.F.)
- power supply : $\pm 5 \mathrm{~V}$ or $0-10 \mathrm{~V}$
- power consumption adjustable from 0.5 to 20 mW per order
- capacitor ratio tolerance : 0.1%
- cut-off frequency tolerance : 0.5% (max)

THE SGS-THOMSON APPROACH

The SGS-THOMSON approach is to produce two types of M.P.F. : custom M.F.P.'s and standard M.F.P.'s.

CUSTOM M.P.F.'s :

SGS-THOMSON undertakes to deliver the first samples within 6 to 8 weeks maximum after the definition of the overall specification by the customer. All types of filters can be designed (BUTTERWORTH, LEGENDRE, BESSEL, CHEBYCHEV, CAUER,...) according to the general applications (low-pass, high-pass, band-pass, notch, group delay time correctors) or by simultaneous optimisation of the response curve both in amplitude and in phase. A special application note on the custom M.P.F. will explain later now to define all the specifications required to design a filter and how to choose among them according to the desired application.

STANDARD M.P.F.'s :

These constitute a family, currently of 11 circuits, which will expand in the future according to the evolution of the market requirements. Here is the description of this family :

Part Number	Function	Type	Order	Clock to Cutt-off Freq. Ratio	Stopband Attenuation
TS8510	Low-pass	CAUER	5	75.3	33dB (typ)
TS8511	Low-pass	CAUER	7	75.3	55 dB (typ)
TS8512	Low-pass	CAUER	7	100	85dB (typ)
TS8513	Low-pass	CHEBYCHEV	8	60	80dB (typ)
TS8514	Low-pass	BUTTERWORTH	8	80	74 dB (typ)
TS8530	High-pass	CAUER	3	320	15 dB (typ)
TS8531	High-pass	CAUER	6	400	32dB (typ)
TS8532	High-pass	CHEBYCHEV	6	500	60 dB (typ)
TS8550	Band-pass	CAUER (Q $=5$)	8	60	
TS8551	Band-pass	Q $=35$	8	187.2	70dB (typ)

N.B. : For other information, please consult the corresponding data sheets.

APPLICATIONS

GENERAL APPLICATIONS AROUND M.P.F. :
With this new concept of M.P.F., SGS-THOMSON is looking to cover all applications covering standard filters (passive, active) involved in the processing of analog signals.
Amongst these, telecommunications (modem, PABX, telephone line, signaler, mobil telephone), data acquisition (before A/D conversion and after D/A conversion), speech (detection, analysis, storage), portable instrumentation (geophysics, biomedical) and specially industrial applications (process control, servomotor control, remote control). For all these applications, each filter, function is reduced to one M.P.F. derived either from the standard range of M.P.F. or from custom design M.P.F.'s, according to the requirements of the equipment.
HARDWARE IMPLEMENTATION AROUND M.P.F. :

TYPICAL USE OF THE M.P.F. (figure 6) : The M.P.F. is fed in dual supply : $\pm 5 \mathrm{~V}$.

The adjustment of the DC output level of the M.P.F.
is achieved by an external voltage source (for example, a bridge divider connected between the positive and the negative power supplies and whose the middle point is connected to the LVL pin of the M.P.F.). If no output DC adjustment is required, the LVL pin can be directly connected to GND.
The consumption of the filter can be also adjusted by means of an external resistance connected between V^{+}(or GND) and the PWF pin of the circuit.
The consumption can thus be chosen to match the particular application.
The stand-by mode is obtained by strapping the PWF pin to V (or non connected).
The adjustment of the power consumption of the two operational amplifiers can be achieved exactly like for the previous case, but via the PWA pin of the circuit. The stand-by mode is also obtained by strapping the PWA pin to V (or non connected).
The clock levels are TTL, but CMOS levels are accepted.
With these previous conditions, the output linear dynamic range of 'the M.P.F. is about 8 V , between -4.5 and 3.5 V .

Figure 6 : Typical Use of the M.P.F. $(\pm 5 \mathrm{~V})$.

[^7]USE OF THE M.P.F. WITH 0-10V (figure 7) : The M.P.F. is fed in single supply: $0-10 \mathrm{~V}$.

In this case, V is the reference ground of the circuit and GND must be adjusted to +5 V by means of the potentiometer $\left.\mathrm{PL}^{(}\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) / 2\right)$.
The adjustments of the DC output level of the M.P.F., of the power consumptions of the filter and
of the operational amplifiers can be achieved exactly like previously.
The high level of the clock must be at least 1.4 V upper the GND level.
With these previous conditions, the output linear dynamic range of the M.P.F. is about 8 V between 0.5 and 8.5 V .

Figure 7 : Use of the M.P.F. with 0-10V.

APPLICATION NOTE

USE OF THE M.P.F. WITH 0-5V (figure 8) : The M.P.F. is fed on in single supply : $0-5 \mathrm{~V}$.

In this case, V is the reference ground of the circuit and GND must be adjusted to +2.5 V by means of the potentiometer $\mathrm{PL}_{\mathrm{L}}\left(\left(\mathrm{V}^{+}-\mathrm{V}\right) / 2\right)$.
The other adjustments are achieved exactly like
previously except for bias resistances of the filter and of the operational amplifiers (Rf and Rop), whose must be exclusively connected to V^{+}.
The clock levels must be TTL levels. With these previous conditions, the output linear dynamic range of the M.P.F. is about 2.2 V , between 1.2 and 3.4 V .

Figure 8 : Use of the M.P.F. with $0-5 \mathrm{~V}$.

ANTI-ALIASING AND SMOOTHING :

- Anti-aliasing : the switched capacitor filters are sampled systems and must verify the SHANNON condition imposing a sampling frequency (Fs) equal, at least, to the double of the upper frequency (Fc) contained in the spectrum to transmit. With this condition, no information is added or lost on the transmitted signal. This theorem describes the well-known phenomenon called spectrum aliasing shown figure 9 , where the entire spectrum to transmit appears around Fs, 2 Fs, 3 Fs,... and so on. Thus, all spectrum components of the signal contained around these frequencies are transmitted by the M.P.F., oppositively to the desired result.
To cancel the effects of this phenomenon, it is required, before all sampled system, to filter all the spectrum components of the input signal upper than Fs-Fc. An analog filter, called "anti-aliasing filter", must be therefore applied before the M.P.F.

The selectivity of this filter depends upon the $\mathrm{Fs} / \mathrm{Fc}$ ratio.
If Fs/Fc > 200, a RC filter (first order low-pass) is sufficient.
If $\mathrm{Fs} / \mathrm{Fc}<200$, a SALLEN-KEY structure (second order low-pass) must be used.
This structure and its relationship are described figure 10. In these relationship, Fc is the cut-off frequency desired of the anti-aliasing filter and ξ its damping coefficient. For a cut-off as tight as possible and without overvoltage around it, ξ must have a value around 0.7 .
N.B. : If $\mathrm{Fs} / \mathrm{Fc}<2$ (figure 11), the spectrum to transmit and the spectrum aliased have a part in common and it becomes impossible to share the useful signals from the undesirable signals.

- Smoothing : as the signal obtained as the output of the M.P.F. is a sampled and hold signal, it is often required to smooth it. This smoothing filter can be achieved from the SALLEN-KEY structure previously described (figure 9).

Figure 9 : Phenomenon of the Spectrum Aliasing.

SGS-THOMSON

APPLICATION NOTE

Figure 10 : Sallen-key (second order low-pass filter) for Anti-aliasing and Smoothing.

$R_{1}=R_{2}=$ arbitrary value
$\mathrm{F}_{\mathrm{c}}=$ cut-off frequency desired
$\xi=$ damping coefficient

$$
\begin{array}{r}
C_{1}=\frac{\xi}{2 \pi R_{1} \times F_{c}} \\
\left(C_{1}=\xi^{2} \times C_{2}\right) \\
C_{2}=\frac{1}{2 \pi \xi R_{1} \times f_{c}}
\end{array}
$$

Figure 11 When Fs/Fc<2, the spectrum components including between Fs-Fc and Fc and which are due to spectrum aliasing are not stopped by the sampled filter.

E88AN061-11

- Hardware implementation : in order to make easier anti-aliasing and smoothing, SGS-THOMSON has designed, on the even chip of the
M.P.F., two general purpose operational amplifiers. A few external components are therefore sufficient to achieve these functions (figure 12).

Figure 12 : M.P.F. with Anti-aliasing and Smoothing Filters.

On the other hand, it the most M.P.F.'s, a special integrated cell is included in the chip (cosine filter) to reduce the aliasing effects around Fs.
Nonetheless, if the application allow it, these two operational amplifiers can be used to implement other functions (gain, comparator, oscillator,...).

In this case, the circuit shown figure 13 can be used as anti-aliasing or smoothing filter. This structure is the same as the SALLEN-KEY structure described figure 9 (second order low-pass), in the same way as the corresponding relationship.

APPLICATION NOTE

Figure 13 Second Order Low-pass Filter (sallen-key structure) with a transistor replacing the operational Amplifier.

IMPLEMENTATION OF THE M.P.F. CLOCK FROM EXTERNAL COMPONENTS (figure 14) :
A mouting with a minimum of external components allows to achieve the clock required for the M.P.F.

The value of the frequency obtained with this mounting depends upon C value, as shown on the following board:

$\mathbf{C}(\mathrm{nF})$	47	15	6.8	2.2	1	0.47	0.33	0.22
$\mathbf{F}_{\mathbf{s}} \min (\mathrm{kHz})$	1.5	4.3	6.7	30	44	84	126	172
$\mathrm{~F}_{\mathbf{s}} \max (\mathrm{kHz})$	16	48	183	305	1020	1750	2430	3010

N.B. : The accuracy of these values is 20%, according to the usual resistor and capacitor accuracy.

Figure 14 : M.P.F. Clock Achieved from External Components.

APPLICATION EXAMPLE : FREQUENCY DETECTION :

The principle of this type of application is as follows : a sinewave (amplitude x, frequency f) modulated by digital information is superposed to an other signal, that we shall call the main signal. To better understand and illustrate this example, we shall take the hypothesis of a main signal equally sinoidal (amplitude X, frequency F) and we shall assume that X $\gg x$ and $F<f(T>t)$. Thus, the main signal is modulated by frequency f during high level (+5 V) and not modulated during low level (0 V) of the bit to be transmitted. These wave trains can, for example, correspond to commands that must be received and then understand by a microprocessor in a suitable format for their processing.
Therefore, these wave trains must be detected and then applied to the microprocessor in form of logic pulse, of which high levels (+5 V) correspond to the presence and low levels ($O \mathrm{~V}$) to the absence of the waves.
In this type of application, two factors are of prime consideration, namely : selectivity and size. Both transmission channel and transferred data being prone to noise, the M.P.F. must be adequately selective to reject the unwanted frequencies close to the center frequency f . On the other hand, as far as the industrial aspect of the application is concerned, the size is considered to be of major importance since it is impractical to envisage a large area to accomodate only the filtering section.
Let's consider the general diagram of figure 15. By using a suitable sampling frequency (Fs), the M.P.F. can have a center frequency equal to f.
Since TS8551 is a highly selective filter and the modulated wave has a very stable frequency, the M.P.F. will only filter out the main signal (frequency F) and let through the modulated signal (frequency f). An attenuator stage and an anti-aliasing analog
filter are required preceeding the M.P.F. The attenuator stage is used to match the amplitude of the main signal (X) to the input characteristics of the M.P.F., and the analog filter to prevent the M.P.F. from passing the frequency spectrum of the incident wave aliased around Fs. At the output of the M.P.F., the combination of a first order high pass CR filter and a negative voltage clipping diode will produce a sinewave of frequency f and amplitude v. Following this filter, an amplifier of gain $G>1$ also delivers a sinewave signal of frequency f but of amplitude $V=G \times v$.
The following first order low pass RC filter detects the enveloppe of the amplified signal and then compares it with a reference voltage Vref.
If $\mathrm{V}>\mathrm{V}$ ref, the output of the operational amplifier goes to the positive saturation state (+Vsat) thereby indicating the presence of the wave, whereas if V < Vref, then the amplifier goes to the negative saturation state ($-V$ sat) to indicate the absence of the wave. A negative voltage clipping diode at the output of the comparator will provide a succession of high (+5 V) and low (0 V) states producing a pulse train. The period and the duration of this pulse train inform the microprocessor of the precise nature of control signal sent.

CONCLUSION

This unique example is sufficient to demonstrate the outstanding application possibilities offered by the M.P.F. Many other features were also discussed in various sections of the present article. Relying on these established facts, SGS-THOMSON is ready to provide an answer to every filtering problem in any application. Due to its remarkable and unlimited possibilities, the M.P.F. concept is estimated to become, in a very near future, as widely employed as gate-arrays and mask programmable ROM microcomputer devices are nowadays.

Figure 15 Example of an Application of the M.P.F. with a very Selective Band-pass Filter : the Frequency Tracking.

APPLICATION NOTE

A SUPPLEMENT TO THE UTILIZATION OF SWITCHED CAPACITOR FILTERS

INTRODUCTION

This application note is a complement to the "Application Note AN-061" which introduced the range of switched capacitor filters manufactured by SGS-THOMSON Microelectronics and discussed the following topics:

- Anti-aliasing \& Smoothing filters
- Ground pin biasing techniques using a single supply voltage
- dc output level adjustment

The present application note outlines and provides an in-depth discussion of other important factors related to the use of switched capacitor filters, namely:

- Gain adjustment
- dc output level locking
. Oscillators
- Regulated power supply
- Wiring \& Layout recommendations

Information contained in various sections will yield cost-effective solutions and enable the designer to take full advantage of the outstanding performances
offered by SGS-THOMSON' range of Switched Capacitor Filters ; TSG85XX, TSG86XX, TSG87XX Standard Series and Semicustom Filters.

GAIN ADJUSTMENT

Majority of standard SGS-THOMSON filters have an inherent pass band gain of approximately OdB. In certain applications however, a larger gain value combined with the gain adjustment possibility is required.
Gain adjustment can be accomplished using one of the operational amplifiers available in the same package as the filter circuit.
Two cases are discussed next :

- Operational amplifier used for gain adjustment
- Sallen-Key Cell with gain adjustment

USING AN OPERATIONAL AMPLIFIER

This is the most straightforward solution. Amplifier configurations are commonplace and well-known. The two main arrangements are illustrated next.

Figure 1 : Inverting Configuration.

Figure 2 : Non-Inverting Configuration.

APPLICATION NOTE

This type of configuration yields high gain values. Only limitations are those related to the electrical characteristics of the operational amplifiers such as : gain-bandwidth-product " 2 MHz typ." or the output voltage range " $-4.2 \mathrm{~V},+3.5 \mathrm{~V}$ " (values measured using symmetrical $-5 \mathrm{~V},+5 \mathrm{~V}$ power supplies).

Figure 3 illustrates the arrangement of a non-inverting configuration.
In order to obtain an enhanced signal-to-noise ratio, the amplifier is directly coupled to the filter output which will reduce the noise spectrum.

Figure 3 : Gain Adjustment.

SALLEN-KEY CELL WITH GAIN ADJUSTMENT

In some applications, the operational amplifiers available within the filter circuit may be already used to implement anti-aliasing and smoothing filters generally required for switched capacitor filters.

In this case, the smoothing filter can be implemented using a second order Sallen-key cell with a gain higher than 1 . Figure 4 depicts this arrangement and figure 5 illustrates an example of the actual configuration.

Figure 4 : General Arrangement of a Sallen-Key Cell (with gain adjustment).

Figure 5 : Sallen-Key Cell (with gain adjustment).

Figure 6 outlines the response curves of the Sallen-key cell obtained at various potentiometer settings, i.e. at different gain values.

Figure 6 : Frequency Response of Sallen-Key Cell (with gain adjustment).

It is clear that the damping factor varies as a function of α.

This configuration provides gain values of up to 6 dB without any appreciable overshoot in the response curves.

FILTER OUTPUT DC LEVEL LOCKING

Switched capacitor filters manufactured by SGSTHOMSON feature a "Level" (LVL) terminal for the adjustment of the output dc level.
This function is accomplished by applying to this pin, a dc signal corresponding to the desired output dc
level. Characteristic curves labeled "Output voltage versus voltage on LVL pin" are used to determine the value of the voltage to be applied to LVL terminal. This curve is available in each filter technical data sheet. In general, the voltage applied to "LVL" pin and hence the filter output level, is set by a potentiometer inserted between V and V^{+}potentials.
The output level is generally set a OV or at "Ground" (GND) pin potential.
In this case, an "automatic offset compensation" feature may be implemented as illustrated in figure 7 .

Figure 7 : Automatic Offset Compensation.

E88AN069-07

The detector has a very low cut-off frequency in order to detect the output dc level and to control it through "LVL" pin.
According to the filter type, two cases are possible :
THE DC OUTPUT VOLTAGE IS DIRECTLY PROPORTIONAL TO THE VOLTAGE APPLIED TO "LVL" PIN

In this case, the output signal polarity should be inverted for feed-back functions.

A conventional integrator configuration using operational amplifier may be used for this purpose. This configuration is given in figure 8.
The feed-back loop behaves as an integrator at frequencies very much higher than the cut-off frequency

$$
2 \pi \times \mathrm{R} 2 \times \mathrm{C}
$$

The dc gain is " $-\frac{\mathrm{R} 2}{\mathrm{R} 1}$ " and may be adjusted by modifying the value of the either resistor ; thus allowing accurate control of precision and response.

Figure 8 : Output dc Level is inverted and Feedback to "LVL" Pin for Automatic Offset Compensation.

Here, we have chosen to adjust the value of R2 resistor, so that when R2 value is increased the gain also increases, but the cut-off frequency falls.
Therefore, any risk of instability occurrence at high gain is eliminated.

Figure 9 depicts the practical application diagram. As shown, the feed-back network is readily implemented using one of the operational amplifiers available within the filter package.

Figure 9 : Automatic Offset Compensation.

THE DC OUTPUT VOLTAGE IS INVERSELY PROPORTIONAL TO THE VOLTAGE APPLIED TO "LVL" PIN
The output signal no longer requires polarity inversion and the arrangement is simplified to a conventional RC integrator as shown in figure 10.

Figure 10 : Only a R-C Cell (1st order low-pass) is needed for Automatic Offset Compensation.

The RC time constant should be selected to be high in comparison to the period of the signal transmitted through filter. Due to low output filter impedance and
high input impedance of R-C cell, the output signal is not subjected to any disturbance.
Figure 11 outlines the practical application diagram.

Figure 11 : Automatic Offset Compensation.

E88AN069-11

A non-inverting operational amplifier configuration may be used, if feed-back loop gain control is required.
Note : "LVL" pin voltage can be locked onto any variable voltage by following the same procedure as
mentioned earlier - i.e. output signal detection followed by the amplification of the difference signal measured between the output voltage and the adjustable control voltage.

E88AN069-12

CLOCK OSCILLATORS

Switched capacitor filters require an external clock for operation. This clock sets the internal sampling frequency of the filter and also determines the frequency range. The clock circuit is generally implemented using logic gates.
The Mask Programmable Filters of SGS-THOMSON feature two uncommitted operational amplifiers integrated on the same silicon chip that are available for functions related to filtering.
The objective of this section is to illustrate how one of these operational amplifiers may be configured
as oscillator thereby providing the clock required for the switched capacitor filters.
Two types of oscillator will be discussed :

- RC-type free-running relaxation oscillators
- Crystal-controlled oscillators (Quartz or Ceramic Resonator)

FREE-RUNNING RELAXATION OSCILLATORS
This type of oscillator relies on the principles of a capacitor " C " charge-up and discharge through a resistor "R" as shown in figure 12.

Figure 12 : Free-Running Multivibrator.

E88AN069-13

When the output voltage is positive, the voltage at the non-inverting terminal is $\mathrm{V}_{\mathrm{o}} \frac{\mathrm{R1} 1}{\mathrm{R1}+\mathrm{R2}}$ and the $R 1+R 2$
capacitor C begins charging through resistor R until the voltage at the inverting terminal becomes equal to the voltage at the non-inverting terminal i.e.,

$$
V_{0} \frac{R 1}{R 1+R 2}
$$

The amplifier is then triggered, its output falls to low saturation level, C is discharged via R until the inverting input becomes once again negative with respect to the non-inverting input. Then the output voltage returns to the high saturation value and the entire cycle is repeated. If high and low saturation levels have the same absolute values, the oscillator output signal would have the following characteristics:

- Duty Cycle : 0.5
- Period : T = 2 RC log $\left(1+2 \frac{R 1}{R 2}\right)$

It is clear that since C has a fixed value, the frequency of this multivibrator is readily set by adjusting the value of R (potentiometer).
If high and low saturation voltages are not identical, these values will be taken into consideration in the above expression for period calculation and the value of the duty cycle will no longer be 0.5. In addition, the frequency and the amplitude of the output signal will both vary as a function of the operational amplifier power supply. A good frequency and amplitude stability is achieved using two zener diodes to limit the output signal excursion.
In the case of SGS-THOMSON filters, the saturation voltages have different absolute values as illustrated by the oscillogram of figure 14 and the duty cycle has a value different from 0.5 mentioned earlier. This is not however an important matter as the filter circuit contains a clock shaping stage and can therefore accept directly the operational amplifier output signal.

In this case, the oscillator period is:
$T=R C \log \left[1+\frac{R 1}{R 2}\left(1-\frac{\mathrm{V}_{\text {sat }}^{+}}{\mathrm{V}_{\text {sat }}^{-}}\right)\right]+\mathrm{RC} \log \left[1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\left(1-\frac{\mathrm{V}_{\text {sat }}^{-}}{\mathrm{V}_{\text {sat }}^{+}}\right)\right]$

Where $\mathrm{V}^{+}+$and V^{+}are respectively high and low saturation voltages of the operational amplifier. $V_{\text {sat }}^{+}$ and $\mathrm{V}_{\text {sat }}^{-}$are given in data sheets :
$\mathrm{V}_{\text {sat }}^{+}=+3.5 \mathrm{~V}, \mathrm{~V}_{\text {sat }}^{-}=-4.5 \mathrm{~V}$ for TSG85XX and +5 V , -5 V power supply.
Electrical configurations are given in figures 16 and 17 that illustrate how by using currently available components, a low-cost and perfectly stand-alone filter application is implemented.
Figure 17 illustrates the application using a single +10 V or +5 V power supply. In this case, the second operational amplifier is configured as voltage follower and used to bias "Ground" and "Level" pins.
Clock signal waveforms generated by this type of multivibrator are depicted in figures 14 and 15.
The oscillogram of figure 14 is the waveform obtained using $-5 \mathrm{~V},+5 \mathrm{~V}$ power supplies and shows in particular how the output signal may go negative.
Thanks to its integrated clock shaping stage, the filter can accept this negative going signal - thus offering an outstanding flexibility for the implementation of clock oscillators.

The TSG8550 filter was tested in various oscillator configurations and response curves obtained are depicted in paragraph 4.4 at the end of this section.

With reference to these curves, it is observed that the filter circuit operates ideally with the free-running oscillator discussed earlier.

Some curves also illustrate the filter response characteristics obtained using an external clock generated by conventional logic gates. Note that both curves are perfectly superimposed.

The foregoing discussion demonstrated that this type of oscillator offers satisfactory results irrespective of the power supply type $:-5 \mathrm{~V},+5 \mathrm{~V}-0 \mathrm{~V},+10 \mathrm{~V}$ $-0 \mathrm{~V},+5 \mathrm{~V}$.

Note also that this type of oscillator can operate at relatively high frequencies. In fact, the response curves of the TSG8550 were obtained at oscillator frequencies of up to 1.2 MHz approximately. In this case however, one should use a low value biasing resistor (here, Rpwa $=10 \mathrm{k} \Omega$), to obtain appropriate "slew rate" at the operating frequency.

Figure 13

EXTERNAL TTL-type CLOCK
(generated by logic gates)

2volts/division
$2 \mu \mathrm{~s} /$ division
E88AN069-14

Figure 14

RC-type FREE-RUNNING OSCILLATOR
(using one of the filter op-amps)
[$-5 \mathrm{~V},+5 \mathrm{~V}$ power supplies]

2volts/division
$2 \mu \mathrm{~s} /$ division
E88ANO69-15

Figure 15

RC-type FREE-RUNNING OSCILLATOR

$$
\text { (} 0,+10 \mathrm{~V} \text { power supply) }
$$

2volts/division
$2 \mu \mathrm{~s} /$ division
E88AN069-16

APPLICATION NOTE

Figure 16 : RC-type Free-Running Oscillator ($+5 \mathrm{~V},-5 \mathrm{~V}$ power supplies).

Figure 17 : RC-type Free-Running Oscillator ($0,+10 \mathrm{~V}$ or $0,+5 \mathrm{~V}$ power supplies).

E88AN069-18

CRYSTAL-CONTROLLED OSCILLATORS (or Ceramic Resonator)

The multivibrator circuit described above is a lowcost oscillator providing satisfactory operation of the switched capacitor filters.
It has however two drawbacks :

- Frequency adjustment by a potentiometer
- Frequency variation with device power supply

Better frequency stability combined with simplicity of use will be obtained if a crystal-controlled oscillator is used for clock generation.
This solution is particularly interesting in applications not requiring any adjustment of the clock fre-
quency ; as is the case of the most applications built around filters.

Note however that if frequency adjustment is required, one may either switch between various resonators or implement a master oscillator followed by a frequency divider circuit.

TRANSISTOR-BASED OSCILLATOR

In untuned oscillators, the crystal is most often operated in its fundamental mode. Figure 18 illustrates the arrangement of the oscillator to be discussed next.

Figure 18 : Crystal-controlled Oscillator.

This is a Colpitts-type parallel resonance oscillator. The operating point of the crystal is such that it behaves like a high Q choke. A capacitive bridge provides the energy required to initiate the oscillation.
This oscillator does not require any adjustment - its frequency is highly stable whatever the power supply mode $(-5 \mathrm{~V},+5 \mathrm{~V}-0 \mathrm{~V},+5 \mathrm{~V}-0 \mathrm{~V},+10 \mathrm{~V})$.
Due to the operating frequency value of this application, a small signal "general purpose" transistor will be suitable.
Here, we have employed a Ceramic Resonator whose fundamental frequency is fosc $=540 \mathrm{kHz}$.

This is a popular resonator used in particular as oscillator for SGS-THOMSON range of television circuits (time base, switching power supplies, chroma decoder, etc...) and is therefore available at low-cost "consumer" price.
The oscillogram of figure 19 illustrates the output signal waveform of this oscillator. Although its shape differs from that generated by a TTL clock as illustrated in figure 13, this is a negligible drawback as switched capacitor filters manufactured by SGSTHOMSON feature a built-in signal shaping stage on clock inputs.

Figure 19

COLPITTS OSCILLATOR WAVEFORM

(ceramic resonator)
[$0,+5 \mathrm{~V}$ power supply]

1volt/division

$0.5 \mathrm{~ms} /$ division
 E88AN069-20

Various response curves obtained employing this oscillator in combination with TSG8550 filter operated at different power supply modes, are given at the end of this section in paragraph 4.4.
Similar procedure was applied but using an external clock generated by TTL-type logic gates. It is seen that there is no significant difference between the curves obtained in this case and those obtained previously.

It is therefore obvious that the filter operates satisfactorily with an external Colpitts-type oscillator.

OPERATIONAL AMPLIFIER-BASED OSCILLATOR

Figure 20 shows the general arrangement of this oscillator.

Figure 20 : Crystal-controlled Oscillator.

The above figure illustrates how a crystal-controlled oscillator is readily configured using one of the operational amplifiers available within the package of the switched capacitor filters of SGS-THOMSON.

The resonator is directly inserted within the positive feed-back loop. The oscillation is initiated when the transmission through crystal is at its maximum value, i.e. when the series resonance of the crystal occurs. High input impedance of the operational amplifier together with the blocking capacitor C1 con-
tribute towards oscillator stability. The feed-back to inverting input through resistor R2 ensures oscillator start-up and dc stability.
The negative feed-back at high frequencies is attenuated by capacitor C 2 whose value should be so selected to prevent the resonator from locking onto a partial mode. The non-inverting input is biased with respect to filters "Ground" pin potential.
Application diagrams are depicted in figures 21 and 23.

Figure 21 : Ceramic Resonator - Controlled Oscillator ($-5 \mathrm{~V},+5 \mathrm{~V}$ power supplies).

Figure 22

OSCILLATOR CONTROLLED BY CERAMIC RESONATOR

(using one of the filter op-amps)
[$-5 \mathrm{~V},+5 \mathrm{~V}$ power supplies]

2volts/division
 $0.5 \mathrm{~ms} /$ division

E88AN069-23

Figure 23 illustrates the application using a single power supply.
In this arrangement, the second operational amplifier configured as voltage follower is used to bias fil-

ter's "Ground" and "Level" pins.
Once again, the same "consumer" ceramic resonator running at fosc $=\mathbf{5 4 0 k H z}$ has been employed in this application.

Figure 23 : Ceramic Resonator - Controlled Oscillator ($0,+10 \mathrm{~V}$ or $0,+5 \mathrm{~V}$ power supplies).

Oscillogram of figure 22 shows the clock signal waveform obtained from the application depicted in figure 21. Similar waveforms are obtained from the single supply voltage application illustrated in figure 23 - only the output voltage levels are different.
As shown in response curves of paragraph 4.4, the TSG8550 filter operates satisfactorily with this type of oscillator. Once again, note that there is no difference between the curves obtained using this oscillator and those using an external TTL-type oscillator.
Obviously, operation at other frequencies is possible by using different ceramic resonators. The basic configuration remains the same however.

CONCLUSION

The discussion throughout this section demonstrated how, a clock oscillator is readily built, and a perfectly stand-alone filter implemented, using only a single integrated circuit.

- In applications where frequency adjustment facility is required and price is the prime objective, RC-type free-running oscillators are recommended.
- Crystal-controlled oscillators are suitable for applications requiring highly stable fixed oscillator frequencies.
- Finally, the oscillator using a single transistor allows use of an 8-pin filter package or to save the two operational amplifiers of the filter for other functions - thereby simplifying the application configuration.

These results have been obtained thanks to the highly efficient and flexible clock input terminal of SGS-THOMSON' Switched Capacitor Filters.

All of the oscillators covered in this section, are in addition to TSG8550, also suitable for use with other standard filter types and semicustom filters.

TSG8550 RESPONSE CURVES USING DIFFERENT CLOCK OSCILLATORS
Figure 24 : RC-Multivibrator Operation (at 153 kHz and $+5 \mathrm{~V},-5 \mathrm{~V}$ power supply).

Figure 25 : RC-Multivibrator Operation (at $0 \mathrm{~V},+10 \mathrm{~V}$ power supply).

Figure 26 : RC-Multivibrator Operation (at $0 \mathrm{~V},+5 \mathrm{~V}$ power supply).

Clock Frequency : 123kHz

1- External Clock
2-Free-running Oscillator
R: $2.5 \mathrm{k} \Omega$
C: 3.3 nF

START 1 OOD. OOOHz STOP 11000.000 Hz
AMPTD -20 . OdBm
E88AN069-27
Figure 27 : RC-Multivibrator Operation (at 307 kHz clock frequency).

TSG8550

Power Supply : $-5 \mathrm{~V},+5 \mathrm{~V}$
Clock Frequency : 307 kHz

1- External Clock
2-Free-running Oscillator

$$
\mathrm{R}: 2.5 \mathrm{k} \Omega
$$

C: 1 nF

Figure 28 : RC-Multivibrator Operation (at 847 kHz clock frequency).

TSG8550

Power Supply : $-5 \mathrm{~V},+5 \mathrm{~V}$

Clock Frequency : 847 kHz

1- External Clock
2- Free-running Oscillator
R: $2.5 \mathrm{k} \Omega$
C: 220pF

E88AN069-29

Figure 29 : Using an External Transistor-based Oscillator (colpitts type).

TSG8550

Power Supply : -5V, +5V

Clock Frequency : 540 kHz

1- External Clock (TTL)
2-Colpitts Oscillator

APPLICATION NOTE

Figure 30 : Using a Crystal-controlled Oscillator (implemented with an internal op-amp).

E88AN069-31
Figure 31 : Operation with Crystal-controlled Oscillator (at 0V, +10V power supply).

TSG8550

Power Supply : 0V, +10V

Clock Frequency : 540kHz

1- External Clock (TTL)
2- Operational Amplifier

Ceramic Resonator

APPLICATION NOTE

Figure 32 : Operation with Crystal-controlled Oscillator (at 0V, +5 V power supply).

E88AN069-33

TSG8550
Power Supply: 0V, +5V
Clock Frequency : 540 kHz
1- Extemal Clock (TTL)
2- Operational Amplifier
$+$
Ceramic Resonator

Also, the efficiency of each regulation and its in-
fluence on the power supply rejection ratio will be
Also, the efficiency of each regulation and its in-
fluence on the power supply rejection ratio will be outlined.

ZENER DIODE REGULATION

This is the most straightforward method of voltage regulation. In general, since the current provided by
the zener diode is not sufficient, it is consequently regulation. In general, since the current provided by
the zener diode is not sufficient, it is consequently impractical to power the device directly by zener
voltage. Figure 33a illustrates the solution to overimpractical to power the device directly by zener
voltage. Figure 33a illustrates the solution to overcome this problem.

REGULATED POWER SUPPLIES

Some applications may require a high power supply rejection ratio. This can be achieved by regulating the filter power supply.
The objective of this section is to cover various regulation methods resorting to a minimum number of components.
The subjects discussed are the following :

- Zener Diode Regulation
- Regulation using one of the filter's operational amplifiers

Figure 33a: Zener Regulation.

E88AN069-34

APPLICATION NOTE

From the unregulated voltage $\mathbf{V}_{\mathbf{I}}$, a stable voltage independent from V^{+}, variations is obtained across the zener diode. A voltage follower transistor delivers the current required by the device. The output voltage is: $\mathrm{V}_{\mathrm{Z}}-\mathrm{V}_{\mathrm{BE}}$ and therefore independent from V^{+}. V_{BE} varies as a function of l_{E} current flowing through the transistor. This variation is almost negligible due to the fact that :

(where l α is the base-emitter junction saturation current), that is, V_{be} increases by 18 mV when the current doubles. The optional 500Ω resistor limits the current and protects the transistor against possible short-circuits.
A capacitor may be connected across the zener diode so as to filter the noise inherent to this type of diode.
If a variable power supply is required, a potentiometer may be connected across the zener diode as shown in figure 33b.

Figure 33b : Variable Zener Power Supply.

This arrangement is equally applicable to a negative power supply ($\mathbf{V}_{\mathbf{I}}$). In this case a PNP transistor is used as shown in figure 33c.

Figure 33c : Negative Zener Regulation.

A symmetrical power supply may thus be implemented using this method.
Note : This type of regulation is not temperaturecompensated. One should expect an approximate$\mathrm{ly}+3 \mathrm{mV} / \mathrm{C}$ drift in output voltage value. Generally, this value is acceptable for the supply of integrated circuits such as SGS-THOMSON Filters.

REGULATION USING AN OPERATIONAL AMPLIFIER

With the Mask Programmable Filters (MPF), independent and uncommitted operational amplifiers are available to implement functions related to filtering.
One of this amplifiers can be used to achieve power supply regulation as illustrated in figure 34.
This configuration offers an excellent regulation thanks to the high open loop gain of the operational amplifier.

Figure 34 : Power Supply Regulation (using an internal op-amp).

The reference voltage is generated by a zener diode. Since the amplifier is located within the filter package, it is also powered by the regulated output voltage $\mathrm{V}^{+} \mathrm{o}$. The $6.8 \mathrm{k} \Omega$ resistor connected between the collector and the base of the ballast transistor ensures start-up. This transistor does not need to be of power type as the output current value remains low. A zener diode connected in series with the amplifier output is necessary to provide for a sufficient voltage excursion to enable the regulation.

The output voltage can be accurately adjusted by setting the values of the bridge elements R1, R2 and using the relationship :

$$
\mathrm{V}^{+} \mathrm{o}=\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 1}\right)-\mathrm{V}_{\mathrm{z}}
$$

The regulation performed following this procedure, takes into account both, the input voltage " V_{1} " and the "load variations". This power supply is therefore particularly suitable for complete applications built around SGS-THOMSON' MPFs.

Figure 35 : Filter with Single Power Supply Regulation.

APPLICATION NOTE

A symmetrical regulated power supply can be implemented using the other operational amplifier of the filter circuit to perform negative supply regulation. One can obviously use the previous configuration and adapt the arrangement to negative voltage while also replacing the NPN ballast transistor by a PNP type.
Figure 36 illustrates the appropriate solution. The objective is to obtain two regulated $\mathrm{V}^{+} \circ$ and V o volt-
ages with their absolute values as close to each other as possible. The positive regulated voltage $\mathrm{V}^{+} \mathrm{O}$ is obtained using the configuration described earlier. The negative voltage regulation resorts to an additional operational amplifier, operating in unity gain inverting configuration. Since the regulated \checkmark o voltage follows accurately the variations of the V^{+}o voltage, a unique reference voltage is sufficient.

Figure 36 : Symmetrical Regulated Power Supply.

Figure 37 : Filter with Symmetrical Power Supply Regulation.

As shown in figure 38, a symmetrical power supply can be built using, a single regulated power supply, a resistor bridge and an operational amplifier con-
figured as voltage follower. The symmetrical accuracy of this configuration is determined by the precision of the bridge.

Figure 38 : Split Power Supply.

Note : This configuration can be simplified by replacing the operational amplifier with a transistor operating as voltage follower. In this case, the resistor bridge must be readjusted taking into consideration the voltage shift due to the transistor base-emitter voltage drop.

POWER SUPPLY REJECTION RATIO
Figures 39 thru 44 given at the end of this section in paragraph 5.5 depict supply rejection characteristics of the TSG8550 filter.
It is seen that in general V^{-}rejection ratios are approximately -10 dB less than those measured for V^{+} supply.

A single power supply filtering capacitor (electrolytic) located close to the device will appreciably improve the rejection ratio (approximately -15 dB reduction).
A zener diode used for regulation will further improve the results and with the addition of filtering capacitor, one can obtain excellent results (up to -60 dB).
The method of using a voltage follower transistor following the zener diode results in an improved rejection ratio compared to the rejection ratio obtained with a zener diode without filtering. Note that the quality of the zener diode used has a significant influence on the results -e.g. the rejection ratios obtained using a 5.6 V zener diode are much better than those obtained using a 4.7 V zener diode. This is due to the fact that the 5.6 V zener diodes exhibit a much steeper breakdown characteristics.
Finally, the symmetrical voltage regulator using operational amplifiers discussed earlier (figure 36)
yields an excellent rejection ratio of less than-60dB. It is a difficult task to further improve this ratio as at lower values, other sources of noise will be also measured.

CONCLUSION

To improve power supply rejection ratio, supply voltage filtering by capacitor or using a zener diode are simple and efficient solutions.
In addition, if perfect power supply regulation for an application built around a SGS-THOMSON' MPF is also required, it would then be interesting to implement the regulator using the operational amplifiers available within the filter package.

SUPPLY REJECTION CHARACTERISTICS OF TSG8550 FILTER

The response curve of TSG8550 is drawn on each plot with a dotted line trace.

Figure 39 : V^{+}Rejection Ratio (with a single filtering capacitor).

Figure 40 : V Rejection Ratio (with a single filtering capacitor).

Figure 41 : V Rejection Ratio (with a zener diode and a filtering capacitor).

Figure 42 : V^{+}Rejection Ratio (with a zener diode and a transistor).

Figure 43 : V^{+}Rejection Ratio (operational amplifier symmetrical regulator) [filtering capacitor : $33 \mu \mathrm{~F}$].

Figure 44 : V Rejection Ratio (operational amplifier symmetrical regulator).

WIRING RECOMMENDATIONS

This last section details the practical application considerations applicable to SGS-THOMSON range of Switched Capacitor Filters. The discussion will enable the designer to attain remarkable performances and to obtain in particular excellent signal-to-noise ratio.
Layout rules are sub-divided into 3 important sections:

- Power supply decoupling
- Ground connections
- Operational amplifiers layout considerations

POWER SUPPLY DECOUPLING

Power supply voltages " $\mathrm{V}^{+"}$ and "V" as well as "LVL" pin voltage (that in order to set the output dc level is generally amplified within the device) must be carefully decoupled.
Similarly, in the case of a single power supply operation, the dc voltage applied to "Ground" (GND) pin must be efficiently decoupled.
For decoupling purposes, one can use a high quality capacitor located very close to the filter package pin under consideration ($\mathrm{V}^{+}, \mathrm{V}, \mathrm{LVL}$ or GND). A capacitor of a few tens of nF will suffice.

Also, decoupling PWA and PWF pins will improve the signal-to-noise ratio. These pins determine the biasing current of, either operational amplifiers, or the filter and consequently have an influence on the overall device performance.

A capacitor of approximately 30 pF coupled to PWF pin and connected in parallel with the filter biasing resistor RpWF', will in particular, prevent the occurrence of the so called "clock feedthrough" phenomenon. Clock feedthrough is defined as the "presence of the clock frequency harmonics at the filter output" and can give rise to disturbances within the stop band region.

GROUND CONNECTIONS

Conventional printed circuit board layout rules must be respected.
Ground connections must be wide enough to avoid occurrence of stray resistances that can cause ground pin (GND) voltage to fluctuate as a function of the current flowing through ground connections.
Star connection, starting from the GND pin and going to various application ground terminals, must be used as often as possible.
Particular attention must be paid to appropriate separation between the filter proper ground and the ground of complementary functions (clock, amplifier, comparator, ..) built using the on-chip operational amplifiers.

OPERATIONAL AMPLIFIERS LAYOUT CONSIDERATIONS

The two operational amplifiers available within the filter package are generally used for building antialiasing and smoothing filters connected to the switched capacitor filter input and output terminals.

APPLICATION NOTE

Consequently, connections such as : common ground, too close p c board adjacent tracks, etc.. susceptible to cause interaction between input and output signals, must be avoided.
Non-inverting terminals (+E) need special precaution. In fact, these inputs are of high impedance type and located next to each other in standard filter pinout configurations. In the case of standard SallenKey cells performing anti-aliasing and smoothing functions, since the filter input and output signals are routed via these two inputs, there will be risk of interaction between the signals. Therefore, tracks connecting to +E inputs must be separated by as much as possible and the capacitor values of the Sallen-Key Cell must be selected large enough so
as to minimize the loading impedance on these pins. Low value resistors are used to achieve the latter requirement - $\mathrm{R}=10 \mathrm{k}$ will in general enable the selection of suitable capacitor values.

CONCLUSION

Excellent application performances using SGSTHOMSON Microelectronics Switched Capacitor Filters will be obtained by observing the foregoing rules and recommendations.

Information contained in this application note is applicable to any of the standard and semicustom filters ; i.e. the entire range of Mask Programmable Filters.

BAND-PASS AND BAND-STOP FILTERS

INTRODUCTION

Standard switched capacitor filters currently marketed by SGS-THOMSON Microelectronics cover in particular a range of Band-pass and Band-reject filters - all of which have in general a high selectivity factor.
One may require to implement a band-pass or bandstop filter of lower Q figure.
The objective of this application note is just to demonstrate how such requirement is fulfilled by using one low-pass and one high-pass standard filters.

Throughout our discussion, we shall outline and illustrate, once again, the remarkable flexibility of use inherent to switched capacitor filters.
Subjects covered are :

- 1 - Band-pass Filters
- 2 - Band-stop or Band-reject Filters

BAND-PASS FILTERS

FILTER SYNTHESIS FUNDAMENTALS

Cascaded combination of one low-pass and one high-pass filters yields a band-pass filter.

Figure 1 : Band-Pass Filter Fundamentals.

Note however that in this arrangement the low-pass filter precedes the high-pass filter so as to limit the signal frequency band as it enters the first stage, thus improving the signal-to-noise ratio.
Switched capacitor filters manufactured by SGSTHOMSON are active filters having a high input and a low output impedances of typically " $3 \mathrm{M} \Omega$ " and " 10Ω " respectively, thus making them particularly suitable for cascaded combination - by coupling the output of one to the input of the other.
The following standard filters are employed throughout the present section :
_ TSG8512 : 7th order Cauer-type low-pass filter

- TSG8532 : 6th order Chebychev-type highpass filter
Obviously, other standard filters may be cascaded according to requirements.

USING A COMMON CLOCK
Figure 2 depicts the frequency response of the two filters put in cascade and operating at an identical clock frequency of 400 kHz .

APPLICATION NOTE

Figure 2 : Band-Pass Filter Frequency Response.

REF LEVEL	/DIV	MARKER 4	261. 500 Hz
C. OOCdB	10. 000 dB	MAG (B/R)	-3.221

It is clearly seen that there is no significant difference between this curve and the curves of figure 3 illustrating the frequency response of the filters operating separately but at the same 400 kHz clock
frequency.
It is thus obvious that direct cascading of the filters does not affect the operating characteristics of the either filter.

Figure 3 : Frequency Response of Low-Pass (TSG8512)\& High-Pass (TSG8532) Filters [common clock frequency: 400 kHz .

(1)

TSG8512 (low-pass filter)
"Clock Frequency : 400kHz"
(2)

TSG8532 (high-pass filter) "Identical Clock Frequency : 400kHz"

Figure 4 outlines the interesting characteristics of a band-pass filter implemented as discussed above.
Figure 4 : Frequency Range Shifting of Band-Pass Filter.
REF LEVEL
O. OOOCB
O. OOOdB

Figure 4 illustrates how by simple modification of the common clock frequency, the frequency range of the band-pass filter is shifted without causing any modification to its frequency response curve.
Due to inherent characteristics of the switched capacitor filters, the clock to cut-off frequency ratio is always known. It is thus a simple matter to calculate the clock frequency as a function of the signal frequency one wishes to use.
For example, in the case of TSG8512 filter, this ratio is:

$$
\frac{f e}{f c}=100 \pm 1 \%
$$

Where f_{e} is the external clock frequency.
If f_{c} is to be the upper cut-off frequency equal to 5 kHz , we shall therefore select $\mathrm{f}_{\mathrm{e}}=500 \mathrm{kHz}$.
Also, since $\frac{f_{e}}{f^{\prime} c}=500 \pm 1 \%$ for TSG8532, the lower cut-off frequency f'c will be $1 \mathbf{k H z}$.
This curve is given in figure 4.
Note that in all cases, the passband width remains constant at $\mathbf{4 \times f} \mathbf{~ c}$.

Different bandwidths are obtained by cascading other standard filter types.

Corresponding calculations are similar to those outlined above.

TWO DIFFERENT CLOCK FREQUENCIES (figure 5)
Figure 6 depicts the frequency response of a bandpass filter implemented by cascading TSG8512 and TSG8532 filters but each operating at a different frequency.
Similar to the former case, it is obvious that the frequency response characteristics of the individual filters are not modified by this configuration and remain unchanged after cascading.
Note however that in this case, the signal delivered at the output of the first filter (TSG8512) goes through a smoothing filter before entering the second filter (TSG8532).
This process is necessary as the operating frequencies of the filters are different and consequently there will be lack of synchronization between the sampling performed by each individual filter.
In the absence of the signal smoothing process, this fact will give rise to disturbances within the cut-off frequency band.
Similarly, the signal delivered by the second filter goes through a smoothing filter.
These smoothing filters are implemented by 2nd order Sallen-Key Cells each using one of the onchip operational amplifiers of the switched capacitor filter (figure 5).

APPLICATION NOTE

Figure 5 : Band-Pass Filter (two separate clocks).

The cut-off frequency of these Sallen-Key Cells is chosen to be twice the upper cut-off frequency of
the band-pass filter so as to eliminate any signal disturbance within the pass band region.

Figure 6 : Low Q Band-pass Frequency Response Characteristics.

Figure 7 illustrates how the cascading of two filters yields an extremely steep band-pass characteristics.
Figure 7 : Steep Band-pass Frequency Response Characteristics.
REF LEVEL
O. Doode
$\begin{array}{llr}\text { /DIV } & \text { MARKER } 1 & 625.929 \mathrm{~Hz} \\ 10.000 d B & \text { MAG (B/R) } & -3.298 d B\end{array}$

STEEP BAND-PASS

TSG8512 "Clock : 200kHz"
TSG8532 "Clock : 800kHz"

APPLICATION NOTE

The band-pass obtained in this case has a selectivity factor of about 4.
Note that the clock frequencies employed (200 kHz and 800 kHz) allow the use of a single external oscillator running at 800 kHz (or its multiple frequencies). The second clock frequency is then derived

Figure 8 : Shifting the Upper Cut-off Frequency.

Figure 9 : Shifting The Lower Cut-off Frequency.

REF LEVEL	IDIV	MARKER 5	790.492 Hz
$0.000 d B$	$10.00 D d B$	$M A G(B / R)$	$-4.044 d B$

Each cut-off frequency is adjusted with precision and if separate clocks are used, adjustments will be entirely independent.
If separate clocks are not available, one may use a single master oscillator and then derive the required frequencies using a frequency divider circuit.

In this case, the frequencies would be the multiples of one another.
By appropriate selection of the division factor, the frequency bandwidth is changed.
The filter frequency response curve is readily shifted along the frequency axis by simple modification of the master oscillator frequency (figure 10).

Figure 10 : Clock Generation for Adjustable Band-pass (deriving two different clock frequencies from a master oscillator).

Illustrated example gives identical results to those depicted in figure 8.
According to requirements, a single 4-bit 74163 TTL-type counter may be used as frequency divider.
For adjustable band-stop filter, either a 4020-type 14-stage counter or a 4060-type counter that also includes an on-chip crystal oscillator would be suitable alternatives.
To implement an appropriate oscillator, refer to the
"Application Note : AN-069" [A Supplement to the Utilization of Switched Capacitor Filters] that
discusses in detail how to build crystal-controlled and free-running oscillators using the on-chip operational amplifiers of the filter circuits.
For example, curves depicted in figure 9 may be obtained, in the case of TSG8512, using the ceramic resonator discussed in the application note mentioned above - and in the case of TSG8532, by adjusting the frequency of a free-running oscillator whose frequency is varied by a potentiometer as illustrated in figure 11.

APPLICATION NOTE

Figure 11 : Adjustable Band-pass Filter (upper cut-off frequency set by crystal-controlled oscillator).

A band-pass filter is thus implemented using only 2 switched capacitor filters of SGS-THOMSON configured as active elements.

A wide frequency adjustment range is available using RC-type free-running relaxation oscillators (figure 12).

Figure 12 : Adjustable Band-pass Filter (upper and lower cut-off frequencies are both adjustable).

In order to obtain excellent performances and specially to improve the signal-to-noise ratio, addition of anti-aliasing and smoothing filters suited with the
upper cut-off frequency of the band-pass is also necessary.

APPLICATION NOTE

BAND-STOP FILTERS

FILTER SYNTHESIS FUNDAMENTALS (figure 16)

Figure 13 : Band-stop Filter Fundamentals.

A band-stop filter is obtained by adding the output signals of a high-pass and a low-pass filter.
The adder circuit is configured using an operational amplifier.
In the case of SGS-THOMSON switched capacitor filters, the adder circuit is readily implemented using one of the operational amplifiers contained in the
same package as the filter circuitry. It is thus clear that only two packages, one low-pass and the other high-pass, are required to implement a band-stop filter.
An adder is built using either of the configurations given below :

Figure 14 : Inverting Adder.

E88AN070-15

Figure 15 : Non Inverting Adder.

Figure 16 : Band-Stop Filter (two separate clocks).

APPLICATION NOTE

RESULTS
Similar to band-pass discussion, the standard devices employed here are :

TSG8512 : Low-pass
TSG8532 : High-pass

Other standard circuits can be used according to the desired cut-off frequency slope and attenuation.
Figure 17 depicts the response curves of the individual filters.

Figure 17 : Frequency Response of Low-pass \& High-pass Filters.

Figure 18 illustrates the frequency response curve of the band-stop filter built using these two filters operating at the same frequency as previously.

Once again, it is obvious that the operating characteristics of each filter remain unaffected by this arrangement. The response curve is obtained directly from figure 17.

Figure 18 : Band-reject Frequency Response.

BAND-REJECT FILTER

TSG8512 "Clock : 32kHz"
$+$
TSG8532 "Clock : 1.170MHz"
(1)

With non-inverting Adder
(filter op-amp RpwA $=39 \mathrm{k} \Omega$)

With inverting Adder (filter op-amp)

Also, there is no significant difference between an inverting and a non-inverting adder (except for output signal phase inversion).
For our present discussion, from now on, we shall use non-inverting adder arrangement. The configuration will therefore be identical to that given in figure 16 ; that illustrates how a band-stop filter is readily built using two switched capacitor filters.
In figures 19 and 20, the clock frequency of one filter is constant while the other is adjustable.
The outstanding flexibility of such band-stop filter is clearly demonstrated by observing the fact that the adjustment of one filter has no influence whatsoever on the other.

As discussed earlier, refer to section concerning Oscillators (Application Note : AN-069) for details on how to implement the appropriate clock circuits.
One of the operational amplifiers available may be used to build crystal-controlled or RC-type variable oscillators.
Electrical diagrams of these oscillators are identical to those given in figures 11 and 12.
Similarly, if clock frequencies are multiples of each other, a single master oscillator and frequency divider combination may be used.
Any modification of the master frequency will shift the filter response curve along the frequency axis (see figure 10).

Figure 19 : Shifting the Lower Cut-off Frequency.

BAND-STOP FILTER

$$
\begin{aligned}
& \text { TSG8532 "Fixed Clock : } 1.5 \mathrm{MHz} " \\
&+ \\
& \text { TSG8512 "Variable Clock :" } \\
& \rightarrow \mathbf{2 . 5 \mathrm { kHz }} \\
& \rightarrow \mathbf{7 . 5 \mathrm { kHz }} \\
& \rightarrow \mathbf{1 5 k H z} \\
& \rightarrow 25 \mathrm{kHz} \\
& \rightarrow 50 \mathrm{kHz} \\
& \rightarrow 70 \mathrm{kHz}
\end{aligned}
$$

Figure 20 : Shifting the Upper Cut-off Frequency.

E88AN070-20

BAND-REJECT FILTERS (figure 21)
An interesting application of band-stop filters is implementation of frequency-reject filters, i.e. steep band-stop filters.

BAND-STOPFILTER
TSG8512 "Fixed Clock : 2kHz"
$+$
TSG8532 "Variable Clock :"
$\rightarrow 40 \mathrm{kHz}$
$\rightarrow 60 \mathrm{kHz}$
$\rightarrow 80 \mathrm{kHz}$
$\rightarrow \mathbf{1 0 0 k H z}$
$\rightarrow \mathbf{2 0 0 k H z}$
$\rightarrow 400 \mathrm{kHz}$
$\rightarrow 600 \mathrm{kHz}$
$\rightarrow 800 \mathrm{kHz}$

For this application, a low-pass TSG8512 and a high-pass TSG8531 filters are used. The TSG8531 is a standard 6th order Cauer-type high-pass filter and was chosen for this application due to its sharp cut-off characteristics.

Figure 21 : Band-reject Filter (adjustable center frequency).

Figure 22 shows response curves obtained at different center frequencies.
Figure 22 : Shifting the Frequency Response of Band-reject Filter.

| REF LEVEL S'DIV MARKER i OC. OOOHz | | |
| :--- | :--- | :--- | :--- |
| O. OOCdB | IO. OOOdB MAG (B/R) | $-52.073 d B$ |

The frequency ratio of the clocks was selected to be constant and equal to 10.
This allows use of a single oscillator followed by a frequency divider.
Figure 21 illustrates the electrical diagram of this band-reject filter.
This type of band-reject filter is generally employed for the suppression of mains frequency transients, i.e. 50 Hz or 60 Hz .

In this case, the application characteristics are as follows:

50 Hz center frequency :
TSG8531 filter clock frequency : 36 kHz TSG8512 filter clock frequency : 3.6 kHz Selectivity Factor: Q 1.6
Attenuation at $50 \mathrm{~Hz}: 45 \mathrm{~dB}$

60 Hz center frequency :

TSG8531 filter clock frequency : 43kHz TSG8512 filter clock frequency : 4.3 kHz
Selectivity Factor: Q 1.6
Attenuation at $60 \mathrm{~Hz}: 48 \mathrm{~dB}$

Figure 23 : 50Hz Band-reject Filter Frequency Response.

REF LEVEL	OIV	MARKER $50.119 H z$
$0.000 d B$	$10.000 d B$	MAG (B/R) $-43.664 d B$

Figure 24 : 60Hz Band-reject Filter Frequency Response. $\begin{array}{lll}\text { REF LEVEL } & \text { JDIV } & \text { MARKER } 80.351 \mathrm{~Hz} \\ \text { D. DODdB } & 10.000 d B & \text { MAG (B/R) }-41.573 \mathrm{~dB}\end{array}$

E88AN070-24

50 Hz BEJECT
TGS 8512 "Clock : $\mathbf{3 . 6 k H z "}$
+
TSG 8531 "Clock : 36kHz"

60Hz REJECT
TGS 8512 "Clock : 4.3 kHz "
TSG 8531 "Clock : 43kHz"

SWITCHED CAPACITOR FILTERS SIGNAL DETECTION \& SINEWAVE GENERATION

INTRODUCTION

The present note outlines the specifications of high selectivity factor ($Q>1$) band-pass filters such as standard TSG8551 and TSG8550 devices.

Subjects covered are :

- Signal Detection

- Implementation of a very low distortion sinewave oscillator.

These application fields cover a wide range of practical configurations built around the switched capacitor filters - few examples of which will be described in detail.

SIGNAL DETECTION

This section discusses various types of the signal detection techniques and gives an application example of each.
The following topics will be covered successively :

- Amplitude detection
- Frequency detection

- Burst duration detection

The TSG8551 standard filter is best suited to this type of application. This is a selective band-pass 8 th order switched capacitor filter with selectivity factor Qequal to 35 . In addition, it has a relatively high gain (30 dB typ.) at center frequency. The attenuation within the stop band region is typically 70 dB .

Consequent to the foregoing, it is obvious that the TSG8551 is perfectly suitable for signal detection applications. Since the clock frequency to filter center frequency ratio is constant, the TSG8551 can be accurately locked onto the signal to be detected, by adjusting the external clock frequency.

AMPLITUDE DETECTION

The objective is to measure the amplitude of a given signal selected by the TSG8551 filter.
Irrespective of the signal shape, the filter delivers a sinewave frequency of which corresponds to the filter center frequency. This is particularly useful when measuring a signal super imposed on a carrier or lost within interference signals.

By Jacques REBERGA

The detected amplitude level depends on the filter gain at center frequency. As specified in technical data sheet, the TSG8551 filter has a fixed gain guaranteed gain value of 28 to 32 dB at 400 kHz clock frequency.
This application requires an extremely stable "Quartz or Ceramic Resonator" - controlled clock generator.
In fact, any clock frequency drift will cause center frequency displacement and thus detected signal amplitude variation.
We shall demonstrate in the present application note, how it is possible to lock the clock frequency onto the frequency of the signal to be detected (section 2.1.3).
Filter offset compensation is necessary in order to obtain an error-free measurement of the signal amplitude.
This function is easily implemented using "LEVEL" pin of the TSG8551 which controls the output dc level and can therefore be used to bring this level down to zero. Same as for all other SGS-THOMSON Microelectronics switched capacitor filters, an automatic offset compensation feature can be also implemented (refer to application note "AN-069" for detailed discussion of this topic).

SENSITIVITY OF SWITCHED CAPACITOR FILTERS

Minimum signal amplitude detectable by TSG8551 is around 1 mV peak-to-peak. Signals of lower amplitude can be processed provided that they go through a pre-amplifier before entering the filter input. The pre-amplifier can be implemented using one of the on-chip operational amplifiers. In this case, the signal level at amplifier input must be at least $100 \mu \mathrm{~V}$ peak-to-peak.

RECTIFICATION

In order to measure the amplitude, the signal is generally first rectified (half- or full-wave rectification).
Once again, the on-chip operational amplifiers can be used to perform this task.

APPLICATION NOTE

HALF-WAVE RECTIFICATION

Figure 1 illustrates the operating principles of this rectifier.
Figure 1 : Half-Wave Rectification Principles.
Diode D1 conducts during the input signal positive half cycle while diode D2 is reverse biased and there is therefore no signal at the output.
During the negative half cycle, diode D1 is reverse biased and diode D2 conducts - the amplifier operates in unity gain inverting configuration and consequently inverts the negative going input signal and delivers a positive output signal.

The gain of this configuration can be set by adjusting the value of the feed-back resistor - thereby allowing signal amplification if necessary.
As depicted in figure 2, practical configuration using
one of the on-chip operational amplifiers is readily implemented. The output signal offset can be suppressed by routing the signal through a capacitor before its application to the rectifier.

Figure 2 : Application Configuration of the Half-wave Rectifier.

E88AN075-02

FULL-WAVE RECTIFICATION

Figure 3 depicts the operating principles of this rectifier.
Figure 3 : Full-wave Rectification Principles.
The first amplifier (A1) operates as half-wave rectifier - the two rectified half-cycles are forwarded to the second amplifier (A2) that inverts once again the positive half-cycles and transmits directly the negative half-cycles of the input signal.

This configuration uses two operational amplifiers. The arrangement is straightforward, while resistors are of identical value and therefore easily matched - yielding accurate rectification.

Figure 4 illustrates the practical configuration using the on-chip operational amplifiers of the switched capacitor filter.

Since rectifier configurations are sensitive to input signal offset, a $4.7 \mu \mathrm{~F}$ capacitor is inserted between the filter output and the rectifier.
A simple R-C network arrangement at filter output allows dc level extraction from the rectified signal.

Figure 4 : Application Configuration of the Full-Wave Rectifier.

CLOCK FREQUENCY LOCKING

As mentioned earlier, amplitude detection using a highly selective filter such as TSG8551 requires perfect frequency stability of both, the signal to be detected and the filter clock frequency which
determines the band-pass center frequency. Otherwise, frequency beating between the filter center frequency and the signal frequency would be produced - resulting in amplitude modulation of the filter output signal.

APPLICATION NOTE

If the signal frequency is stable, it is an easy task to implement a clock oscillator using either of sufficiently stable quartz or ceramic resonators.
In general, the signal to be detected is also subject to frequency variations. This requires the filter cen-
ter frequency to be locked onto the signal frequency. The easiest solution to achieve this requirement is to use a Phase Locked Loop (PLL) operating principles of which are depicted in figure 5.

Figure 5 : Phase Locked Loop Block Diagram.

Phase locking yields:

$$
\frac{f}{M}=\frac{f H}{N}
$$

i.e. $f_{H}=\frac{N}{M} f$

The only requirement is therefore to select N and M values such as to make $\frac{N}{N}$ to correspond to the
constant clock frequency-to-TSG8551 center frequency ratio - i.e. "187.2 1\%".
Thus if one selects $M=5$ the corresponding N value would be 936 .

As illustrated in figure 6, the PLL block diagram outlined in figure 5 can be simplified by removing the frequency divider networks.

Figure 6 : Simplified PLL Block Diagram.

In this case, the phase is locked onto the frequency of the signal to be detected, and any variation of this frequency will produce an error voltage at the output of low-pass filter. This error voltage goes through a matching stage (amplification, filtering, ..) and is
then applied to a Voltage-Controlled Oscillator (VCO) output frequency of which is used as clock for the TSG8551.
Figure 7 depicts the practical application diagram of this arrangement.

Figure 7 : Locking the Clock Frequency onto the Detected Signal Frequency.

The 4046 (CMOS) device fulfils PLL functions while the 74S124 (TTL) circuit generates the clock signal. This application is well suited to amplitude detection of medium frequency signals " 190 Hz ".
The component values given in figure 7 allow the PLL to remain locked within a frequency range of \pm 25 Hz around the 190 Hz - and if the input signal amplitude is constant, the amplitude of the detected signal would remain constant within a $\pm 10 \mathrm{~Hz}$ range around the 190 Hz .

It is obvious that the PLL operates ideally within the latter frequency range and as a consequence, the implemented filter is a true tracking filter.
However, filtering of the 4046 device output voltage produces a time constant of approximately 0.2 second. Consequently, the given configuration can follow only relatively low frequency variations of the signal to be detected - "about $10 \mathrm{~Hz} / \mathbf{s e c}$ max." which corresponds to the characteristics of this type of application (frequency drift with aging and tem-

APPLICATION NOTE

perature). A drawback associated to this type of PLL is the risk of locking onto an undesired interference signal the frequency of which falls within the capture range. For this reason and in order to limit the noise spectrum, the signal goes through an anti-aliasing filter before entering the filter input. Similarly, a smoothing filter is inserted between the filter output and the phase comparator input. These filters are implemented by Sallen-Key Cells using the filter operational amplifiers. If required, the PLL capture range can be readily reduced.

FREQUENCY DETECTION

The most frequent application is the detection of presence or the absence of a signal at a given frequency.
Thanks to its high selectivity and gain, the TSG8551 is particularly suitable for this type of applications.

By adjusting its clock frequency, the TSG8551 center frequency can vary from a few tens of Hertz (22 Hz typ.) to few tens of kilo Hertz (20.3 kHz typ.). As outlined in the previous section, a highly stable clock oscillator together with precautions to avoid parasitic signals are the major requirements for appropriate and error-free signal detection.
In general, the detected frequency must, after filtering, go through a signal shaping stage in order to become suitable for use by other devices.
The TSG8551 output signal can be made TTL-compatible by using one of the on-chip operational amplifiers configured as Schmitt Trigger.
Figure 8 outlines the operating fundamentals of the Schmitt trigger. Selecting a low hysteresis ratio, the amplifier output flips between the two saturation voltages at low amplitude input signals.

Figure 8 : Schmitt Trigger Operating Fundamentals.
A low positive feed-back is applied to the amplifier by feeding the reference input with a fraction of the output voltage. Due to hysteresis, the output voltage level change does not occur at the same voltage level for input voltage rising or falling. The hysteresis ratio is determined by :

$$
V_{0} \frac{R 2}{R 1+R 2}
$$

Note that the illustrated trigger is of inverting type.

E88AN075-08
E88AN075-09

Figure 9 illustrates the practical application diagram with TSG8551 configured for frequency detection.
Figure 9 : Frequency Detection \& TTL-Compatible Output (component values of the smoothing filter apply to a frequency of approximately 200 Hz).

The $100 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ resistors set the hysteresis at $1 / 10$ th of the amplifier saturation voltage. Trigger thresholds are therefore -450 mV and +300 mV approximately. Consequently, the trigger will operate satisfactorily when the TSG8551 output signal reaches 1 V peak-to-peak (500 mV amplitude).

The 1V peak-to-peak output level corresponds to an approximately 30 mV peak-to-peak filter signal input. The voltage at trigger output swings between -5 V and +3.5 V for TSG8551 symmetrical power supply of $-5 \mathrm{~V},+5 \mathrm{~V}$.

A diode connected to the output stops the negative half-cycle and makes the signal compatible for use with TTL devices (typical levels : $-0.6 \mathrm{~V},+3.5 \mathrm{~V}$).

Note that in order to avoid offset problems at the filter output, the signal goes through a 470nF capacitor before entering the trigger.
The output signal is sampled by the switched capacitor filter and needs smoothing before going through the Schmitt trigger for shaping.

BURST DURATION DETECTION

Another application of signal detection at a given frequency is the measurement of the signal burst duration. In this case, the burst must be detected without introducing any delay. One must therefore select a filter the group delay of which is compatible with the burst duration at the frequency under consideration. Generally, a group delay equal to $1 / 10$ th of the burst duration is acceptable.
Oscillogram of figure 10 illustrates the burst detection of a 190 Hz signal frequency using TSG8550 filter particularly suitable for this type of application.
The TSG8550 is a band-pass filter with its gain at center frequency and selectivity factor equal to 0 dB and 7 respectively.
Its group delay at 190 Hz center frequency is about $\mathbf{2 2 m s}$ - making it suitable for burst detection of at least 250ms duration as shown in figure 10.
The application configuration used is a straightforward typical arrangement of the switched capacitor filters and does not include any anti-aliasing or smoothing filter.

Figure 10 : BURST DURATION DETECTION using TSG8550

- Signal Frequency : $\mathbf{1 9 0 H z}$
- Waveform 1 (upper)
- Filter input : $200 \mathrm{mV} / \mathrm{div}$
- Waveform 2 (lower)
- Filter output : 50mV/div
- $t=50 \mathrm{~ms} / \mathrm{div}$

Comment : The filter is suitable for signal detection at this frequency

The oscillogram of figure 11 depicts the results obtained using TSG8551 filter the group delay of which is about ten times higher than that of TSG8550 ; i.e. about 200 ms at 190 Hz frequency.

Figure 11 : BURST DURATION DETECTION using TSG8551

- Signal Frequency : 190Hz
- Waveform 1 (upper)
- Filter input : 200mV/div
- Waveform 2 (lower)
- Filter output : 2V/div
- $t=50 \mathrm{~ms} / \mathrm{div}$

Comment : The filter exhibits a relatively high group delay for this frequency

Note that the group delay is independent of the signal amplitude and inversely proportional to the signal frequency - as indicated by the oscillogram of

It can be seen that the output burst is distorted because of an important delay during rising and falling phases.

E88ANO75-12
figure 12 where the measured settling time is 20 ms for a $\mathbf{2 k H z}$ signal frequency filtered by TSG8551.

As the foregoing discussion demonstrated, a switched capacitor filter can be used to detect the presence and the burst duration of a signal. This
type of application is used for data detection - e.g. detection of a binary code transmitted using on-off frequency modulation technique as shown below :

A microprocessor unit can be used to process the signal and, for example, to compare it with the contents of a ROM. After detection by switched capacitor filter, a single R-C low-pass cell is sufficient to extract the signal envelope.
Applications are numerous : remote-control, data transmission on teleprinters, etc ..

CONCLUSION

Wide range of currently available SGS-THOMSON Switched Capacitor Filters provide for appropriate selection of suitable filters meeting the requirements of every specific signal detection application.
The types most often used are standard band-pass filters, which in combination with the on-chip operational amplifiers, greatly simplify the design of signal detection applications. Also, such configuration arrangement offers the possibility of implementing additional functions related to signal detection such as rectification, signal shaping, signal amplification, etc... .
A true tracking filter is implemented by locking the filter clock onto the frequency of the signal to be detected.

The signal detection topic covers a wide range of applications - few examples of which were detailed throughout the present discussion. A single integrated filter associated to a few low-cost components, enables the design of complex functions.

VERY LOW DISTORTION SINEWAVE GENERATOR

INTRODUCTION

Thanks to its high coefficient of selectivity, the TSG8551 filter is best suited to this application. This filter can extract from a complex signal, the component located at the filter center frequency.
In all cases, the TSG8551 output signal is nearly a pure frequency waveform, i.e. a sinewave.
We shall use this property to implement a sinewave generator, using only a single TSG8551 package.
Various configuration arrangements will be discussed and it will be demonstrated that thanks to the remarkable characteristics of the switched capacitor filters, there is a tremendous number of application possibilities for this type of oscillators.

Figure 13 : Sinewave Generator Block Diagram.

APPLICATION NOTE

OPERATING PRINCIPLES

If a TSG8551 filter is configured in closed-loop, it begins oscillating at its center frequency.
Due to high filter gain and in order to avoid the saturation of the output stage, it is necessary to insert an attenuator within the feed-back loop.
With suitable attenuation, the filter output signal will be a sampled sinewave, and must go through a smoothing filter to obtain the final sinewave - the frequency of which will be proportional to the clock frequency.

IMPLEMENTATION

The most delicate task of this configuration is the design of the feed-back loop attenuator. In fact, an ordinary potentiometer cannot fulfil this requirement since too low an attenuation will cause the filter output signal amplitude to rise to the saturation level, while excessive attenuation will result in the signal
amplitude falling gradually until the oscillator is completely halted. It is thus clear that the position of balance is quite unstable using a potentiometer.

ALTERNATIVE 1 (figure 14)

The appropriate solution is to design a true Automatic Gain Control (AGC).

A simple configuration can be obtained resorting to the properties of the Field Effect Transistors (FET) which behave as variable resistors as a function of the voltage applied to the gate.

The FET is used as a potentiometer, the gate biasing voltage is supplied by the negative amplitude of the output signal which is rectified by a diode and filtered by a capacitor. An N-channel FET is used here, so that, when the output signal rises, the gate voltage becomes more negative and therefore the FET conducts less, resulting in filter input signal attenuation.

Figure 14 : Sinewave Generator (with AGC).

Inversely, when the output signal level falls, the transistor conducts more and as a consequence, the input signal amplitude rises. A potentiometer placed before the FET attenuates the output signal so as to enable the FET to operate at low drain-source voltage levels, i.e. within characteristic area where drain to source resistance varies linearly as a function of the gate voltage.

This configuration delivers a stable output signal amplitude of approximately 5 V peak-to-peak irrespective of the clock frequency within the operating frequency range of the TSG8551 (center frequency : 20 Hz to 20 kHz). Sinewave smoothing is performed by one of the filter operational amplifiers configured in second-order low-pass (Sallen-key structure).

ALTERNATIVE 2 (figure 15)

In this case, the output signal is clipped by two in-verse-parallel connected diodes. This arrangement results in constant signal amplitude whatever the output signal amplitude (provided that it is higher
than the diode threshold). A potentiometer allows to set the input level at a constant value and therefore adjust the output amplitude so as to avoid saturation.

Figure 15 : Sinewave Generator (with amplitude adjustment).

This simplified arrangement gives satisfactory results within the entire frequency range. The output sinewave distortion is about 0.2% (total harmonic distortion).
Figure 16.

ALTERNATIVE 3

This solution if of simple implementation - attenuator adjustment does not involve any complication, but the configuration requires two TSG8551 filter packages.
The first TSG8551 is configured in closed-loop and therefore delivers a constant amplitude square waveform with its frequency equal to the filter center frequency. The filter power supply voltages
determine the saturation voltages of the output amplifier and hence the signal amplitude. If this signal is sufficiently attenuated and then filtered once again by another TSG8551 centered on the same frequency, then a pure sinewave corresponding to the fundamental signal component would be obtained. Both TSG8551 filters are therefore driven by the same clock frequency and the smoothing is performed as previously using one of the filter operational amplifiers.

APPLICATIONS

- Since the frequency of the output sinewave is readily adjustable by the clock frequency, the first application of this oscillator is Low Frequency Signal Generator.
- Using an operational amplifier, the generated sinewave can be easily converted to square and triangular waveforms.
- If a VCO is used for clock generation, then the sinewave frequency can be modified by the voltage applied to the VCO. This property can be used for frequency (or phase) modulation.
- An interesting application using two TSG8551 filters is as follows :

Figure 17 : Network Analyzer.

The first filter operates as sinewave oscillator as discussed earlier while the second filter being driven by the same clock frequency, is automatically tuned at a center frequency equal to the oscillator frequency.
This configuration can be used to implement a selective voltmeter or a network analyzer. The oscillator signal is applied to the input of the device under test the output signal of which goes through the second TSG8551 and is then transmitted towards a measuring or recording instrument. Modifying the clock frequency, the entire low frequency range is scanned while the analyzing filter remains tuned on the input signal frequency.

CONCLUSION
Section 3 covered original design ideas built around switched capacitor filters which depart slightly from typical applications. This should enable the designer to explore new applications by taking full advantage of the flexibility of use inherent to switched capacitor filters. These filters can be undoubtedly integrated into other application configurations thus offering design simplification and performance enhancement.

SALES OFFICES

EUROPE

DENMARK

Herlev
Tel.: (45-2) 948533
FINLAND
Lohja SF-08150
Tel.: 12.155.11
FRANCE
Gentilly
Tel.: (33-1) 47407575
Strasbourg
Tel.: (33) 88755066

GERMANY

Frankfurt 71
Tel.' (49-69) 237492
Grasbrunn
Tel : (49-89) 460060
Hannover 1
Tel.: (49-511) 634191
Nürnberg 20
Tel.: (49-911) 598930
Siegburg
Tel.: (49-241) 660 84-86
Stuttgart 1
Tel.: (49-711) 692041
ITALY
Assago
Tel.: (39-2) 89213.1
Casalecchio di Reno (BO)
Tel.: (39-51) 591914

Rome

Tel.: (39-6) 844-3341

NETHERLANDS

Eindhoven
Tel.: (31-40) 550015

SPAIN

Barcelona
Tel.: (34-3) 4143300
Madrid
Tel.: (34-1) 4051615

SWEDEN

Kista
Tel : (46-8) 7939220
SWITZERLAND
Grand-Saconnex
(Genève)
Tel: (41-22) 7986462
UNITED KINGDOM and EIRE
Marlow, Bucks
Tel.: (44-628) 890800

AMERICAS

BRAZIL
São Paulo
Tel.: (55-11) 883-5455
CANADA
Brampton, Ontario
Tel.: (416) 455-0505
U.S.A.

Alabama
Huntsville: (205) 533-5995
Arizona
Phoenix: (602) 867-6340
California
Santa Ana: (714) 957-6081
San Jose: (408) 452-8585

Colorado

Boulder (303) 449-9000
Illinois
Schaumburg (708) 517-1890
Indiana
Kokomo: (317) 459-4700
Massachusetts
Lincoln (617) 259-0300
Michigan
Livonia: (313) 462-4030
New Jersey
Voorhees: (609) 772-6222
New York
Poughkeepsie: (914) 454-8813
North Carolina
Raleigh: (919) 787-6555
Texas
Carrollton: (2.14) 466-8844

ASIA/PACIFIC

AUSTRALIA
Edgecliff
Tel.: (61-2) 3273922
HONG KONG
Wanchai
Tel.: (852-5) 8615788
INDIA
New Delhi
Tel.: (91-11) 3715191
MALAYSIA
Pulau Pinang 10400
Tel.: (04) 379735
KOREA
Seoul 121
Tel.: (82-2) 553-0399
SINGAPORE
Singapore
Tel.: (65) 4821411
TAIWAN
Taipei
Tel.: (886-2) 755-4111

JAPAN

DESIGN CENTERS

USA

Carroliton, TX 75006-5039
1310 Electronics Drive MS 2337
Tel.: (1) 214/466-8844
Lincoln, MA 01773
55 Old Bedford Rd.
Tel.: (1) 617/258-0300
San Jose, CA 95110 2055 Gateway Place Suite 300
Tel.: (1) 408/452-8585

EUROPE

FRANCE
94253 Gentilly Cedex
7, avenue Gallieni - BP 93
Tel.: (33-1) 47407575

GERMANY

8011 Grasbrunn
Bretonischer Ring 4
Neukeferloh Technopark
Tel.: (49-89) 460060
ITALY
20041 Agrate Brianza
Centro Direzıonale Colleoni
Palazzo Orione 1/2
Tel.: (39-39) 63791-31
40033 Casalecchio di Reno (BO)
Via R. Fucini, 12
Tel.: (39-51) 591914

SPAIN

28027 Madrid
Calle Albacete 5
Tel.: (34-1) 4051615

SWEDEN

S-16421 Kista
Borgarfjordsgatan, 13
Box 1094
Tel.: (46-8) 7939220
UNITED KINGDOM and EIRE
Marlow, Bucks SL71YL
Planar House, Parkway
Globe Park
Tel.: (44-628) 890800

ASIA/PACIFIC

HONG KONG

Wanchai
22nd Floor
Hopewell Centre
183 Queen's Road East
Tel.: (852-5) 8615788

KOREA

Seoul 121
8th floor Shinwon Building
823-14, Kuksman-Dong
Kang-Nam-Gu
Tel. (82-2) 553-0399

SINGAPORE

Singapore 2056
28 Ang Mo Kıo
Industrial Park 2
Tel.: (65) 482-1411

TAIWAN

Taipei
12th Floor
571, Tun Hua South Road
Tel. (886-2) 755-4111

JAPAN

JAPAN
Tokyo 108
Nisseki - Takanawa
Bldg. 4 F
2-18-10 Takanawa
Minato-Ku
Tel.: (81-3) 3280-4121

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1991 SGS-THOMSON Microelectronics - All Rights Reserved
Cover design by Keith \& Koppel, Segrate, Italy
Printed by Garzanti, Cernusco S/N, Italy
SUN is a Trademark of Sun Microsystems Inc. MENTOR is a trademark of Mentor Graphics Corp.
VIEWLOGIC is a registered trademark of Viewlogic System Inc.
PC is a registered trademark of International Business Machines
EDGE and TANCELL are trademarks of Cadence Design Systems Inc.
SABER is a trademark of Analogy
PC-CAPS, PC-LOGS, PC-CARDS and PC-CAD are trademarks of PCAD.
VAX and DEC is a trademark of Digital Equipment Corporation P SPICE is a trademark of MICROSIM
MPF and FILCAD are Registered Trademarks of SGS-THOMSON
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.

[^0]: * Source Dataquest 1/91

[^1]: (1) For each type of cell, the TSGSM library provides extensive number of options as for example

 - NAND type cells 2.3,4 or 6 input NAND's
 - D flip-flop cells with low set. with low reset
 - input buffers TTL. CMOS. with pull-up

[^2]: Note : Refer to TSGSM User's Manual for more detailed informations.

[^3]: $\mathrm{X}:$ Temperature Range $=\mathrm{C}: \quad 0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$
 I: $-25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
 $\mathrm{V}:-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
 M : $-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$

[^4]: (*) At maximum Fe : - stopband attenuation $\mathrm{As}>62 \mathrm{~dB}$ for $\mathrm{F}>1.8 \mathrm{Fc}$
 (with $\mathrm{l}_{\mathrm{pwf}}=250 \mu \mathrm{~A}$) - passband ripple : $\mathrm{Ap}_{\mathrm{p}}=0.6 \mathrm{~dB}$

 - passband gain : $\mathrm{G}_{0}=-0.4 \mathrm{~dB}$

[^5]:

[^6]: ${ }^{*}{ }^{\text {IpWF }}=200 \mu \mathrm{~A}$

 * * Value divided by the gain.

[^7]: * If the OP.AMPS are not used, Rop must not be connected between PWA and GND (or V^{+}).

