DATABOUK DISCRETE POWER DEVICES 5th EDITION

criterion (408) 988-6300

manufacturers representatives

3350 Scott Blvd., Bldg. 44, Santa Clara, CA 95051

ISSUED OCTOBER 1982

NYAG S**AW**OR EREPORT

INTRODUCTION

This databook contains data sheets on the SGS-ATES range of discrete power devices for professional, industrial and consumer applications.

Selection guides are provided in the following pages to facilitate rapid identification of the most suitable device for the intended use.

The information on each product has been specially presented in order that the performance of the product can be readily evaluated within any required equipment design.

1

SGS-ATES GROUP OF COMPANIES

INTERNATIONAL HEADQUARTERS

SGS-ATES Componenti Elettronici SpA Via C. Olivetti 2 - 20041 Agrate Brianza - Italy Tel.: 039 - 65551 Telex: 330131-330141

BENELUX SGS-ATES ComponentI Elettronici SpA Benelux Sales Office B- 1180 Bruxelles Winston Churchill Avenue, 122 Tel.: 02 - 3432439 Telex: 24149 B

DENMARK SGS-ATES Scandinavia AB Sales Office 2730 Herlev Herlev Torv, 4 Hel: 02 - 948533 Telex: 35411

EASTERN EUROPE SGS-ATES Componenti Elettronici SpA Export Sales Office 20041 Agrate Brianza - Italy Via C. Olivetti, 2 Tel.: 039 - 6555287/6555207 Telex: 330131-330141

FRANCE SGS-ATES France S.A. 75643 Paris Cedex 13 Résidence "Le Palatino" 17, Avenue de Choisy Tel.: 01 - 5842730 Telex: 042 - 250938

 WEST GERMANY

 SGS-ATES Deutschland Halbleiter

 Bauelement GmbH

 8018 Grafing bei München

 Haidling, 17

 Tel:: 08092-690

 Telex: 05 27378

 Sales Offices:

 3012 Langenhagen

 Hubertusstrasse, 7

 Tel:: 0511 - 772075/7

 Tels:: 09 23195

 8000 München 90

 Tegernseer Landstr., 146

 Tel:: 089 - 6925100

 Telex: 05 215784

 8500 Nürnberg 30

 Ostendstr., 204

 Tel:: 0511-572977/78/79

 Tels:: 0626243

 7000 Stuttgart 80

 Kaliferweg, 45

 Tel:: 0711 - 713091/2

 Tels:: 07255545

HONG KONG SGS-ATES Singapore (Pte) Ltd. 9th Floor, Block N, Kaiser Estate, Phase III, 11 Hok Yuen St., Hung Hom, Kowloon Tel::: 3-644251/5 Telex: 63906 ESGIE HX ITALY SGS-ATES Componenti Elettronici SpA Direzione Commerciale Italia 20149 Milano Via Correggio, 1/3 Tel.: 02 - 4095651 Sales Office : 40128 Bologna Via Corticella, 231 Tel.: 051 - 326684 00199 Roma Piazza Gondar, 11 Tel.: 06 - 8392848/8312777

SINGAPORE SGS-ATES Singapore (Pte) Ltd. Singapore 1231 Lorong 4 & 6 - Toa Payoh Tel.: 2531411 Telex: ESGIES RS 21412

SWEDEN SGS-ATES Scandinavia AB 19501 Märsta Box 144 Tel.: 0760 - 40120 Telex: 042 - 10932

SWITZERLAND SGS-ATES Componenti Elettronici SpA Swiss Sales Offices 6340 Baar Oberneuhofstrasse, 2 Tel.: 042 - 315955 Telex: 864915 1218 Grand-Saconnex (Geneve) Chemin François-Lehmann 22 Tel.: 022 - 986462/3 Telex: 28895

UNITED KINGDOM SGS-ATES (United Kingdom) Ltd. Aylesbury, Bucks Planar House, Walton Street Tel.: 0296 - 5977 Telex: 041 - 83245

U.S.A. SGS-ATES Seminconductor Corporation Scottsdale, AZ 85251 7117, East 3rd Avenue Tel.: (602) 990-9553 Telex: SGS ATES SCOT 165808 75248 Dallas, TX 16970 Dallas, North Parkway Building 700, Suite 702 Tel.: (214) 733-1515 Des Plaines, IL 60018 2340, Des Plaines Ave Suite 309 Tel.: (312) 296-4035 Telex: 282547 Santa Clara, CA 95051 2700, Augustine Drive Tel.: (408) 727-3404 Telex: 346402 Waltham, MA 02154 240, Bear Hill Road Tele:: 923495 WHA Woodland Hills, CA 91367 6355, Topange Canyon Boulevard Suite 220 Tel.: (213) 716-6600 Telex: 182863

TABLE OF CONTENTS

ALPHANUMERICAL INDEX	Page	4
SELECTION GUIDES BASED ON TECHNOLOGY AND PACKAGES		8
CROSS REFERENCE GUIDE		19
ALPHABETICAL LIST OF SYMBOLS		28
RATING SYSTEMS FOR ELECTRONIC DEVICES		31
QUALITY (SURE 3)		33
HANDLING OF POWER PLASTIC TRANSISTOR		34
ACCESSORIES AND MOUNTING INSTRUCTIONS		38
DATA-SHEETS		47

ALPHANUMERICAL INDEX

Туре	Page	Туре	Page	Туре	Page
BD 175	48	BD 436	82	BD 911	120
BD 176	52	BD 437	78	BD 912	124
BD 177	48	BD 438	82	BDV 64	128
BD 178	52	BD 439	86	BDV 64A	128
BD 179	48	BD 440	90	BDV 64B	128
BD 180	52	BD 441	86	BDV 65	128
BD 233	56	BD 442	90	BDV 65A	128
BD 234	60	BD 533	94	BDV 65B	128
BD 235	56	BD 534	98	BDW 51	133
BD 236	60	BD 535	94	BDW 51A	133
BD 237	56	BD 536	98	BDW 51B	133
BD 238	60	BD 537	94	BDW 51C	133
BD 239	64	BD 538	98	BDW 52	138
BD 239A	64	BD 675A	102	BDW 52A	138
BD 239B	64	BD 676A	106	BDW 52B	138
BD 239C	64	BD 677	102	BDW 52C	138
BD 240	66	BD 677A	102	BDW 91	143
BD 240A	66	BD 678	106	BDW 92	147
BD 240B	66	BD 678A	106	BDW 93	151
BD 240C	66	BD 679	102	BDW 93A	151
BD 241	70	BD 679A	102	BDW 93B	151
BD 241A	70	BD 680	106	BDW 93C	151
BD 241B	70	BD 680A	106	BDW 94	156
BD 241C	70	BD 681	102	BDW 94A	156
BD 242	72	BD 682	106	BDW 94B	156
BD 242A	72	BD 705	110	BDW 94C	156
BD 242B	72	BD 706	115	BDX 53	161
BD 242C	72	BD 707	110	BDX 53A	161
BD 243	74	BD 708	115	BDX 53B	161
BD 243A	74	BD 709	110	BDX 53C	161
BD 243B	74	BD 710	115	BDX 53E	165
BD 243C	74	BD 711	110	BDX 53F	165
BD 244	76	BD 712	115	BDX 53S	169
BD 244A	76	BD 905	120	BDX 54	173
BD 244B	76	BD 906	124	BDX 54A	173
BD 244C	76	BD 907	120	BDX 54B	173
BD 433	78	BD 908	124	BDX 54C	173
BD 434	82	BD 909	120	BDX 54E	177
BD 435	78	BD 910	124	BDX 54F	177

Туре	Page	Type Page		Туре	Page
BDX 54S	181	BU 408D	255	BUW 34	359
BDX 85	185	BU 426	267	BUW 35	359
BDX 85A	185	BU 426A	267	BUW 36	359
BDX 85B	185	BU 801	270	BUW 42	364
BDX 85C	185	BU 806	275	BUW 44	366
BDX 86	190	BU 807	275	BUW 45	366
BDX 86A	190	BU 810	281	BUW 46	366
BDX 86B	190	BU 910	285	BUX 10	371
BDX 86C	190	BU 911	285	BUX 11	377
BDX 87	195	BU 912	285	BUX 11N	383
BDX 87A	195	BU 920P	290	BUX 12	389
BDX 87B	195	BU 921P	290	BUX 13	395
BDX 87C	195	BU 922P	290	BUX 14	397
BDX 88	200	BU 930	293	BUX 20	399
BDX 88A	200	BU 930P	299	BUX 21	405
BDX 88B	200	BU 931	293	BUX 22	411
BDX 88C	200	BU 931P	299	BUX 40	417
BDY 57	205	BU 932	293	BUX 41	423
BDY 58	205	BU 932P	299	BUX 41N	429
BDY 90	208	BUR 50	301	BUX 42	435
BDY 91	208	BUR 51	307	BUX 43	441
BDY 92	208	BUR 52	313	BUX 44	443
BFX 34	210	BUT 13	319	BUX 46	445
BSS 44	214	BUT 13P	327	BUX 47	447
BDW 67	218	BUV 20	335	BUX 48	449
BDW 68	218	BUV 21	335	BUX 48A	449
BU 125	222	BUV 22	335	BUX 48B	449
BU 125S	226	BUV 23	338	BUX 48C	449
BU 325	230	BUV 24	338	BUX 80	459
BU 326	235	BUV 25	338	BUX 84	464
BU 326A	240	BUV 46	341	BUY 18S	466
BU 326S	245	BUV 47	343	BUY 47	469
BU 406	249	BUV 47A	343	BUY 48	469
BU 406D	255	BUV 48	346	BUY 49P	474
BU 406H	249	BUV 48A	346	BUY 49S	476
BU 407	261	BUW 11	348	BUY 68	480
BU 407D	255	BUW 12	351	BUY 69A	484
BU 407H	261	BUW 12A	351	BUY 69B	484
BU 408	249	BUW 32	354	BUY 69C	484

ALPHANUMERICAL INDEX (continued)

Туре	Page	Туре	Page	Туре	Page
D44 C1	487	MJ 10004P	501	TIP 32A	530
D44 C2	487	MJ 10005	501	TIP 32B	530
D44 C3	487	MJ 10005P	501	TIP 32C	530
D44 C4	487	MJ 11011	504	TIP 41	532
D44 C5	487	MJ 11012	504	TIP 41A	532
D44 C6	487	MJ 11013	504	TIP 41B	532
D44 C7	487	MJ 11014	504	TIP 41C	532
D44 C8	487	MJ 11015	504	TIP 42	534
D44 C9	487	MJ 11016	504	TIP 42A	534
D44 C10	487	MJE 340	506	TIP 42B	534
D44 C11	487	MJE 350	506	TIP 42C	534
D44 C12	487	MJE 700	508	TIP 47	536
D44 H1	489	MJE 701	508	TIP 48	536
D44 H2	489	MJE 702	508	TIP 49	536
D44 H4	489	MJE 703	508	TIP 50	536
D44 H5	489	MJE 800	508	TIP 51	542
D44 H7	489	MJE 801	508	TIP 52	542
D44 H8	489	MJE 802	508	TIP 53	542
D44 H10	489	MJE 803	508	TIP 54	542
D44 H11	489	MJE 13002	511	TIP 100	545
D44 Q1	491	MJE 13003	511	TIP 101	545
D44 Q3	491	MJE 13004	517	TIP 102	545
D44 Q5	491	MJE 13005	517	TIP 105	547
MJ 900	493	MJE 13006	522	TIP 106	547
MJ 901	493	MJE 13007	522	TIP 107	547
MJ 1000	493	MJE 13007A	522	TIP 110	549
MJ 1001	493	TIP 29	524	TIP 111	549
MJ 2500	495	TIP 29A	524	TIP 112	549
MJ 2501	495	TIP 29B	524	TIP 115	551
MJ 2955	497	TIP 29C	524	TIP 116	551
MJ 3000	495	TIP 30	526	TIP 117	551
MJ 3001	495	TIP 30A	526	TIP 120	553
MJ 4030	499	TIP 30B	526	TIP 121	553
MJ 4031	499	TIP 30C	526	TIP 122	553
MJ 4032	499	TIP 31	528	TIP 125	558
MJ 4033	499	TIP 31A	528	TIP 126	558
MJ 4034	499	TIP 31B	528	TIP 127	558
MJ 4035	499	TIP 31C	528	TIP 130	563
MJ 10004	501	TIP 32	530	TIP 131	563

Туре	Page	Туре	Page	Туре	Page
TIP 132	563	2N 5336	615	2N 6123	675
TIP 135	565	2N 5337	615	2N 6124	679
TIP 136	565	2N 5338	615	2N 6125	679
TIP 137	565	2N 5339	615	2N 6126	679
TIP 140	567	2N 5415	620	2N 6282	683
TIP 141	567	2N 5416	620	2N 6283	683
TIP 142	567	2N 5671	624	2N 6284	683
TIP 145	567	2N 5672	624	2N 6285	683
TIP 146	567	2N 5679	628	2N 6286	683
TIP 147	567	2N 5680	628	2N 6287	683
2N 3055E	572	2N 5681	630	2N 6288	673
2N 3439	576	2N 5682	630	2N 6290	673
2N 3440	576	2N 5875	632	2N 6292	673
2N 3713	580	2N 5876	632	2N 6354	685
2N 3714	580	2N 5877	637	2N 6386	690
2N 3715	580	2N 5878	637	2N 6387	690
2N 3716	580	2N 6032	642	2N 6388	690
2N 3789	584	2N 6033	642	2N 6486	693
2N 3790	584	2N 6034	647	2N 6487	693
2N 3791	584	2N 6035	647	2N 6488	693
2N 3792	584	2N 6036	647	2N 6489	696
2N 4234	588	2N 6037	651	2N 6490	696
2N 4235	588	2N 6038	651	2N 6491	696
2N 4236	588	2N 6039	651	2N 6496	595
2N 4895	591	2N 6050	655	2N 6544	699
2N 4896	591	2N 6051	655	2N 6545	699
2N 4897	591	2N 6052	655	2N 6546	702
2N 5038	595	2N 6053	660	2N 6547	702
2N 5039	595	2N 6054	660	2N 6702	705
2N 5151	601	2N 6055	664		
2N 5152	604	2N 6056	664		
2N 5153	601	2N 6057	668	1	
2N 5154	604	2N 6058	668		
2N 5190	607	2N 6059	668		
2N 5191	607	2N 6107	673		
2N 5192	607	2N 6109	673		
2N 5193	611	2N 6111	673		
2N 5194	611	2N 6121	675		
2N 5195	611	2N 6122	675		

SELECTION GUIDES BASED ON TECHNOLOGY AND PACKAGES

SGS power transistors cover a wide range of technologies optimized for almost every application. These include epitaxial base (medium voltage, high ruggedness, general purpose) epitaxial planar (high speed with good voltage capability) multiepitaxial planar (high current switching) and multiepitaxial mesa (high voltage-high power switching).

A wide choice of packages are available.

In order to be easy to use following power transistor selector guides cover only a part of the complete range. Other voltage ratings and gain selections shown on the full data sheets are equally available. Many older devices which are less popular for new designs are also in production. Your nearest SGS sales office or distributor has full details available on request.

EPITAXIAL BASE – I_{CM} 1 to 15A; V_{CEO} 22 to 180V

NPN and PNP types (perfect complementary pairs) Medium V_{CEO} range (22 to 100V) Medium switching speed Medium f_{T} (2 to 20 MHz) High ruggedness Monolithic Darlington capability

EPITAXIAL BASE

								G	0	G)
	і _с (А)	V _{СВО} (V)	V _{CEO} (V)	P _{tot} (W)	Package	NPN	PNP	h _{FE} min	I _C /V _{CE} (A/V)	V _{CEsat} max (V)	I _C /I _B (A/mA)
	1	40	40	30	TO-220	TIP29	TIP30	15	1.0/4	0.70	1.0/125
	1	60	60	30	TO-220	TIP29A	TIP30A	15	1.0/4	0.70	1.0/125
	1	80	80	30	TO-220	TIP29B	TIP30B	15	1.0/4	0.70	1.0/125
	1	100	100	30	TO-220	TIP29C	TIP30C	15	1.0/4	0.70	1.0/125
	2	45	45	25	TO-126	BD233	BD234	25	1.0/2	0.60	1.0/100
	2	55	45	30	TO-220	BD239	BD240	15	1.0/4	0.70	1.0/200
	2	60	60	25	TO-126	BD235	BD236	25	1.0/2	0.60	1.0/100
	2	70	60	30	TO-220	BD239A	BD240A	15	1.0/4	0.70	1.0/200
	2	100	80	25	TO-126	BD237	BD238	25	1.0/2	0.60	1.0/100
	2	90	80	30	TO-220	BD239B	BD240B	15	1.0/4	0.70	1.0/200
	2	115	100	30	TO-220	BD239C	BD240C	15	1.0/4	0.70	1.0/200
*	2	60	60	50	TO-220	TIP110	TIP115	1000	1.0/4	2.50	2.0/8
*	2	80	80	50	TO-220	TIP111	TIP116	1000	1.0/4	2,50	2.0/8
*	2	100	100	50	TO-220	TIP112	TIP117	1000	1.0/4	2.50	2.0/8
	3	45	45	30	TO-126	BD175	BD176	15	1.0/2	0.80	1.0/100
	3	60	60	30	TO-126	BD177	BD178	15	1.0/2	0.80	1.0/100
	3	80	80	30.	TO-126	BD179	BD180	15	1.0/2	0.80	1.0/100
	3	55	45	40	TO-220	BD241	BD242	25	1.0/4	1.20	3.0/600
	3	40	40	40	TO-220	TIP31	TIP32	25	1.0/4	1.20	3.0/375
	3	70	60	40	TO-220	BD241A	BD242A	25	1.0/4	1.20	3.0/600
	3	60	60	40	TO-220	TIP31A	TIP32A	25	1.0/4	1.20	3.0/375
	3	90	80	40	TO-220	BD241B	BD242B	25	1.0/4	1.20	3.0/600
	3	80	80	40	TO-220	TIP31B	TIP32B	25	1.0/4	1.20	3.0/375
	3	115	100	40	TO-220	BD241C	BD242C	25	1.0/4	1.20	3.0/600
	3	100	100	40	TO-220	TIP31C	TIP32C	25	1.0/4	1.20	3.0/375

SELECTION GUIDES BASED ON TECHNOLOGY AND PACKAGES (continued)

								(ฉ	(ວວ
	I _C (A)	V _{CBO}	V _{CEO}	P _{tot} (W)	Package	NPN	PNP	h _{FE}	I _C /V _{CE}	V _{CEsat}	I _C /I _B
]	min	(A/V)	max (V)	(A/mA)
	4	40	40	40	TO-126	2N5190	2N5193	25	1.50/2	0.60	1.50/150
*	4	60	60	40	TO-126	BD677	BD678	750	1.50/3	2.50	1.50/6
¥	4	80	80	40	TO-126	BD679	BD680	750	1.50/3	2.50	1.50/6
	4	80	80	40	TO-126	2N5192	2N5195	20	1.50/2	0.60	1.50/150
*	4	100	100	40	TO-126	BD681	BD682	750	1.50/3	2.50	1.50/6
	4	22	22	36	TO-126	BD433	BD434	50	2 0/1	0.50	2 0/200
	4	32	32	36	TO-126	BD435	BD436	50	2.0/1	0.50	2.0/200
1	4	45	45	36	TO-126	BD437	BD438	40	2.0/1	0.60	2.0/200
*	4	45	45	40	TO-126	BD675A	BD676A	750	2.0/3	2.80	2.0/8
	4	45	45	50	TO-220	BD533	BD534	25	2.0/2	0.80	2.0/200
	4	60	60	36	TO-126	BD439	BD440	25	2.0/1	0.80	2.0/200
*	4	60	60	40	TO-126	BD677A	BD678A	750	2.0/3	2.80	2.0/8
	4	60	60	50	TO-220	BD535	BD536	25	2.0/2	0.80	2.0/200
	4	80	80	36	TO-126	BD441	BD442	15	2.0/1	0.80	2.0/200
*	4	80	80	40	TO-126	BD679A	BD680A	750	2.0/3	2.80	2.0/8
	4	80	80	50	TO-220	BD537	BD538	15	2.0/2	0.80	2.0/200
*	4	180	180	10	то-39	BDW91	BDW92	1000	2.0/5	2.0	2.0/4
*	5	60	60	65	TO-220	TIP120	TIP125	1000	3.0/3	2.0	3.0/12
×	5	80	80	65	TO-220	TIP121	TIP126	1000	3.0/3	2.0	3.0/12
*	5	100	100	65	TO-220	TIP122	TIP127	1000	3.0/3	2.0	3.0/12
*	-	A C	40	FO	TO 220	80000	DDW/04	-	0.010		
*	0	45	45	50	TO 220	BDW23	BDW24	750	2.0/3	2.0	2.0/8
*	. O	00	00	50	TO-220	DDWZSA	DDW24A	750	2.0/3	2.0	2.0/6
×	ß	100	100	50	TO-220	BDW230	BDW240	750	2.0/3	2.0	2.0/0
*	6	140	140	60	TO-220	BDV53E	BDY5/F	500	2.0/5	2.0	2.0/10
*	с А	150	150	15	TO-39	BDX53C	BDX54S	500	2.0/5	2.0	2.0/10
*	6	160	160	60	TO-220	BDX53F	BDX54F	500	2.0/5	2.0	2.0/10
	6	45	45	65	TO-220	BD243	BD244	15	3 0/4	1 50	6 0/1000
	6	40	40	65	TO-220	TIP41	TIP42	15	3 0/4	1.50	6.0/600
Ì	6	60	60	65	TO-220	BD243A	BD244A	15	3.0/4	1.50	6.0/1000
	6	60	60	65	TO-220	TIP41A	TIP42A	15	3.0/4	1.50	6.0/600
	6	80	80	65	TO-220	BD243B	BD244B	15	3.0/4	1.50	6.0/1000
	6	80	80	65	TO-220	TIP41B	TIP42B	15	3.0/4	1.50	6.0/600
	6	100	100	65	TO-220	BD243C	BD244C	15	3.0/4	1.50	6.0/1000
	6	100	100	65	TO-220	TIP41C	TIP42C	15	3.0/4	1.50	6.0/600
				1	•		1			1	1

EPITAXIAL BASE (continued)

								6	a	6	a
	і _с (д)	•сво (V)	VCEO (V)	(W)	Package	NPN	PNP	h _{FE} min	I _C /V _{CE} (A/V)	V _{CEsat} max (V)	I _C /I _B (A/mA)
	7	80	70	40	TO-220	2N6292	2N6107	30	4.0/2	1.0	2.0/200
	7	40	30	40	TO-220	2N6288	2N6111	30	4.0/3	1.0	3.0/300
*	8	40	40	65	TO-220	2N6386		1000	3.0/3	2.0	3.0/6
*	8	45	45	60	TO-220	BDX53	BDX54	750	3.0/3	2.0	3.0/12
*	8	60	60	60	TO-220	BDX53A	BDX54A	750	3.0/3	2.0	3.0/12
*	8	60	60	90	TO-3	MJ1000	MJ900	1000	3.0/3	2.0	3.0/12
*	8	80	80	60	TO-220	BDX53B	BDX54B	750	3.0/3	2.0	3.0/12
*	8	80	80	90	TO-3	MJ1001	MJ901	1000	3.0/3	2.0	3.0/12
*	8	100	100	60	TO-220	BDX53C	BDX54C	750	3.0/3	2.0	3.0/12
*	8	60	60	70	TO-220	TIP130	TIP135	1000	4.0/4	2.0	4.0/16
*	8	80	80	70	TO-220	TIP131	TIP136	1000	4.0/4	2.0	4.0/16
*	8	100	100	70	TO-220	TIP132	TIP137	1000	4.0/4	2.0	4.0/16
*	10	45	45	100	то-з	BDX85	BDX86	1000	3.0/3	2.0	4.0/16
*	10	60	60	100	TO-3	BDX85A	BDX86A	1000	3.0/3	2.0	4.0/16
*	10	80	80	100	TO-3	BDX85B	BDX86B	1000	3.0/3	2.0	4.0/16
*	10	100	100	100	то-з	BDX85C	BDX86C	1000	3.0/3	2.0	4.0/16
*	10	60	60	65	TO-220	2N6387		1000	5.0/3	2.0	5.0/10
*	10	60	60	150	TO-3	MJ3000	MJ2500	1000	5.0/3	2.0	5.0/20
	10	60	60	150	TO-3	2N5877	2N5875	20	4.0/4	1.0	5.0/500
	10	80	60	150	TO-3	2N3715	2N3791	30	3.0/2	0.80	5.0/500
*	10	80	80	65	TO-220	2N6388		1000	5.0/3	2.0	5.0/10
*	10	80	80	150	TO-3	MJ3001	MJ2501	1000	5.0/3	2.0	5.0/20
	10	80	80	150	TO-3	2N5878	2N5876	20	4.0/4	1.0	5.0/500
	10	100	80	150	ТО-3	2N3716	2N3792	30	3.0/2	0.80	5.0/500
	12	45	45	75	TO-220	BD705	BD706	20	4.0/4	1.0	4.0/400
	12	60	60	75	TO-220	BD707	BD708	15	4.0/4	1.0	4.0/400
	12	80	80	75	TO-220	BD709	BD710	15	4.0/4	1.0	4.0/400
	12	100	100	75	TO-220	BD711	BD712	15	4.0/4	1.0	4.0/400
*	12	45	45	80	TO-220	BDW93	BDW94	750	5.0/3	2.0	5.0/20
*	12	60	60	80	TO-220	BDW93A	BDW94A	750	5.0/3	2.0	5.0/20
*	12	80	80	80	TO-220	BDW93B	BDW94B	750	5.0/3	2.0	5.0/20
*	12	100	100	80	ТО-220	BDW93C	BDW94C	750	5.0/3	2.0	5.0/20
*	12	45	45	120	то-з	BDX87	BDX88	1000	5.0/3	2.0	6.0/24
*	12	60	60	120	TO-3	BDX87A	BDX88A	1000	5.0/3	2.0	6.0/24

EPITAXIAL BASE (continued)

SELECTION GUIDES BASED ON TECHNOLOGY AND PACKAGES (continued)

								6)	G	p
	і _с (А)	•сво (V)	VCEO (V)	(W)	Package	NPN	PNP	h _{FE} min	I _C /V _{CE} (A/V)	V _{CEsat} max (V)	I _C /I _B (A/mA)
*	12 12	80 100	80 100	120 120	ТО-3 ТО-3	BDX87B BDX87C	BDX88B BDX88C	1000 1000	5.0/3 5.0/3	2.0 2.0	6.0/24 6.0/24
	15 15 15 15 15 15 15	100 45 45 60 60 80 80 100	60 45 45 60 60 80 80 80	115 90 125 90 125 90 125 90	TO-3 TO-220 TO-3 TO-220 TO-3 TO-220 TO-3 TO-220	2N3055E BD905 BDW51 BD907 BDW51A BD909 BDW51B BD911	MJ2955 BD906 BDW52 BD908 BDW52A BD910 BDW52B BD912	20 15 20 15 20 15 20 15	4.0/4 5.0/4 5.0/4 5.0/4 5.0/4 5.0/4 5.0/4 5.0/4	1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.0/400 5.0/500 5.0/500 5.0/500 5.0/500 5.0/500 5.0/500 5.0/500
	15	100	100	125	TO-3	BDW51C	BDW52C	20	5.0/4	1.0	5.0/500

EPITAXIAL BASE (continued)

EPITAXIAL PLANAR -- I_{CM} 0.5 to 2A; V_{CEO} 45 to 350V

NPN and PNP types Good voltage capability (V_{CES} up to 400V) Low saturation voltage Low leakage Very high f_{T} (up to 100 MHz) Very high speed Moderate ruggedness Total base-collector passivation

EPITAXIAL PLANAR

	VCBO	VCEO	Ptot				(<u>ā</u>	(D
(Ă)	(V)	(V)	(₩)	Package	NPN	PNP	h _{FE} min	I _C /V _{CE} (A/V)	V _{CEsat} max (V)	I _C /I _B (A/mA)
0.5 1 1 1 1	300 45 60 80 120	300 45 60 80 120	20 12 12 12 12 10	TO-126 TO-126 TO-126 TO-126 TO-39	MJE340 BD135 BD137 BD139 2N5682	MJE350 BD136 BD138 BD140 2N5680	30 40 40 40 40	0.05/10 0.15/2 0.15/2 0.15/2 0.25/2	0.5 0.5 0.5 1.0	0.50/50 0.50/50 0.50/50 0.50/50
1 1 1 1	200 300 350 450	200 250 300 350	10 10 10 10	TO-39 TO-39 TO-39 TO-39 TO-39	2N3440 2N3439	2N5415 2N5416	30 40 30 40	0.05/10 0.02/10 0.05/10 0.02/10	2.5 0.5 2.5 0.5	0.05/5 0.05/4 0.05/5 0.05/4
1.5 1.5 2 2 2	120 150 50 75 100	120 150 45 60 80	5 5 25 25 25	TO-39 TO-39 TO-126 TO-126 TO-126 TO-126	BSW67 BSW68 BD375 BD377 BD379	BD376 BD378 BD380	15 15 40 40 40	1.0/5 1.0/5 0.15/2 0.15/2 0.15/2	1.0 1.0 1.0 1.0 1.0	1.0/150 1.0/150 1.0/100 1.0/100 1.0/100
3 3 3	250 200 250	150 200 200	10 25 10	TO-39 TO-126 TO-39	BU125S BU325 BUY49S	2014224	30 30 40	0.25/3 0.50/5 0.50/5	1.5 1.5 0.2	0.50/50 0.50/50 0.50/50
5555555	100 65 150 100 100 100	60 60 80 80 100 100	5 5 7 11.7 6 6	TO-39 TO-39 TO-39 TO-39 TO-39 TO-39 TO-39	BFX34 2N4897 2N5154 2N5338 2N5339	BSS44 2N5153	40 40 40 70 20 40	2.0/2 2.0/2 2.0/2 2.50/5 5.0/2 5.0/2	1.0 1.0 1.0 0.7 1.2 1.2	5.0/500 5.0/500 5.0/500 2.50/250 5.0/500 5.0/500
7 7 7 7 7 7 7 7 7 7 7 8	130 100 150 330 330 200 400 400 400 330	60 60 120 150 170 200 200 150	10 10 60 60 10 60 60 50 60	TO-39 TO-39 TO-220 TO-220 TO-39 TO-220 TO-220 TO-220 TO-3 TO-220	BU125 BUY68 BUY47 BU407D BU407 BUY48 BU406D BU406 BU406 BUY18S BU807		15 40 15 8 10 15 8 10 20	5.0/2 1.0/1 5.0/5 5.0/1 5.0/1 5.0/5 5.0/1 5.0/1 1.0/5 5.0/2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	5.0/500 5.0/500 5.0/500 5.0/650 5.0/500 5.0/650 5.0/650 5.0/500 5.0/500
8	400	200	60	TO-220	BU806		100	5.0/2	1.5	5.0/50

SELECTION GUIDES BASED ON TECHNOLOGY AND PACKAGES (continued)

MULTIEPITAXIAL PLANAR - ICM 1 to 70A; VCEO 75 to 450V

 $\begin{array}{l} I_C \text{ range up to 70A} \\ \text{Good } h_{\text{FE}} \text{ linearity} \\ \text{Very low leakage} \\ \text{High switching speed} \\ \text{High } s_{5/D} \text{ capability} \\ \text{Total base-collector passivation} \end{array}$

MULTIEPITAXIAL PLANAR

1							6)	(0
	I _C (A)	v _{сво} (V)	V _{CEO} (V)	P _{tot} (W)	Package	NPN	h _{FE} min	I _C /V _{CE} (A/V)	V _{CEsat} max (V)	I _C /I _B (A/mA)
	1	350	250	40	TO-220	TIP47	10	1.0/10	1.0	1.0/200
	1	400	300	40	TO-220	TIP48	10	1.0/10	1.0	1.0/200
	1	450	350	40	TO-220	TIP49	10	1.0/10	1.0	1.0/200
	1.5	700	400	40	TO-126	MJE13003	5	1.0/2	1.0	1.0/250
1	2.5	600	400	36	TO-126	BU801	100	1.0/3	2.2	1.0/15
*	6	400	350	60	TO-220	BU910	20	4.0/1.8	1.8	2.50/50
*	6	450	400	60	TO-220	BU911	20	4.0/1.8	1.8	2.50/50
*	6	500	450	60	TO-220	BU912	20	4.0/1.8	1.8	2.0/50
Γ	10	100	80	60	то-3	BDY91	20	10.0/5	0.5	5.0/500
	10	120	100	60	то-3	BDY90	20	10.0/5	0.5	5.0/500
	10	150	120	140	то-3	2N6354	20	5.0/2	0.5	5.0/500
	12	300	250	120	то-3	BUX42	8	6.0/4	1.2	4.0/400
	15	150	110	140	то-3	2N6496	12	8.0/2	1.0	8.0/800
	18	220	160	120	то-3	BUX41N	8	12.0/4	1.2	8.0/800
	15	250	200	120	то-3	BUX41	8	8.0/4	1.2	5.0/500
	20	120	75	140	то-3	2N5039	20	10.0/5	1.0	10.0/1000
	20	150	90	140	TO-3	2N5038	20	12.0/5	1.0	12.0/1200
	20	160	125	120	то-3	BUX40	8	15.0/4	1.2	10.0/1000
	20	220	160	150	то-3	BUX11N	10	15.0/4	0.6	8.0/800
	20	250	200	150	TO-3	BUX11	10	12.0/4	0.6	6.0/600
	20	300	250	150	то-3	BUX12	10	10.0/4	1.0	5.0/500
	25	120	80	175	то-3	BDY57	20	10.0/4	1.4	10.0/1000
	25	160	125	175	TO-3	BDY58	20	10.0/4	1.4	10.0/1000
	25	160	125	150	то-3	BUX10	10	20.0/4	0.6	10.0/1000

						@		6	
I _C (A)	, V _{СВО} (V)	V _{CEO} (V)	P _{tot} (W)	Package	NPN	h _{FE} min	I _C /V _{CE} (A/V)	V _{CEsat} max (V)	I _C /I _B (A/mA)
30	120	90	140	TO-3	2N5671	20	20.0/5	0.75	15.0/1200
30	150	120	140	TO-3	2N5672	20	20.0/5	0.75	15.0/1200
40	150	120	140	TO-3	2N6033	10	40.0/2	1.0	40.0/4000
40	250	200	250	TO-3	BUV21	10	25.0/4	0.6	12.0/1200
40	250	200	350	TO-3	BUX21	10	25.0/4	0.6	12.0/1200
40	300	250	250	ТО-3	BUV22	10	20.0/4	1.0	10.0/1000
40	300	250	350	TO-3	BUX22	10	20.0/4	1.0	10.0/1000
50	100	00	140	TO 0	2010020	10	50.0/0.0	10	50.0/5000
50	120	90	140	10-3	2100032	10	50.0/2.6	1.3	50.0/5000
50	160	125	250	10-3	BUV20	10	50.0/4	0.6	25.0/2500
50	160	125	350	10-3	BUX20	10	50.0/4	0.6	25.0/2500
60	300	200	350	TO-3	BUR51	15	50.0/4	1.0	30.0/2000
60	350	250	350	TO-3	BUR52	15	40.0/4	1.8	25.0/2000
70	200	125	350	то-3	BUR50	15	50.0/4	1.0	35.0/2000

MULTIEPITAXIAL PLANAR (continued)

SELECTION GUIDES BASED ON TECHNOLOGY AND PACKAGES

(continued)

MULTIEPITAXIAL MESA – I_{CM} 4 to 30A; V_{CEO} 325 to 600V

NPN and PNP types High voltage (V_{CBO} up to 1000V) High power Very good I_{s/b} and E_{s/b} performance High switching speed High f_T (20 MHz) Good stability

MULTIEPITAXIAL MESA

							(G	D
(A)	V _{СВО} (V)	V _{CEO} (V)	P _{tot} (W)	Package	NPN	PNP	h _{FE} min	I _C /V _{CE} (A/V)	V _{CEsat} max(V)	Ι _C /Ι _Β (A/mA)
4	700	400	75	TO-220	MJE13005		10	1.0/5	0.6	2.0/500
6 6 6 6	800 800 800 900 900	375 375 400 400 400	75 113 60° 75 113	TO-3 SOT-93 TO-3 TO-3 SOT-93	BU326 BU426 BU326S BU326A BU426A		25• 25• 3.5 25• 25•	1.00/5 0.60/5 4.0/5 1.00/5 0.60/5	1.5 1.5 1.5 1.5 1.5	2.50/500 2.50/500 2.50/500 2.50/500 2.50/500
8 8 8.5	450 700 850 850	400 400 400 400	120 80 125 107	TO-3 TO-220 TO-3 TO-3	BUX44 MJE13007 2N6545 BUX47		8 8 4 3	4.0/4 2.0/5 8.0/5 9.0/3	1.5 1.5 1.5 1.5	4.0/800 5.0/1000 5.0/1000 6.0/1200
10 10 10 10 10 10 10 10	400 800 500 800 450 800 1000 900	325 325 400 400 400 400 400 400 450	120 100 125 125 150 100 100 125	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	BUX43 BUY69B BUW34 BUW35 BUX14 BUX80 BUY69A BUW36	BUW32	8 15 15 15 5 15	5.0/4 2.50/10 1.0/5 1.0/5 6.0/4 5.0/1.5 2.50/10 1.0/5	2.0 3.3 1.5 1.6 1.5 3.3 1.5	5.0/1000 8.0/2500 5.0/1000 6.0/1200 5.0/1000 8.0/2500 5.0/1000
15 15 15 15 15 15 15 15 15 15 15	400 400 450 500 800 850/450 850 500 900 1000 500 1000	325 350 400 400 400 400 400 450 450 450 500 600	150 150 175 175 175 175 150 175 175 350 175	TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3 TO-3	BUX13 BU930 BU931 BUW44 BUW45 BUX48 2N6547 BU932 BUW46 BUX48A BUX25 BUX48B	BUW42	8 40 40 5 5 40 7 5 8 15	8.0/4 10.0/1.8 10.0/1.8 6.0/1.5 7.0/1.5 15.0/3 15.0/5 10.0/1.8 7.0/1.5 12.0/3 8.0/4 1.0/10	1.5 1.8 1.8 3.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.0 2.0	8.0/1600 8.0/100 8.0/100 10.0/2000 10.0/2000 10.0/2000 8.0/150 10.0/2000 8.0/150 8.0/1600 8.0/1600 8.0/1600
20 30 30 20	450 400 400 450	400 325 325 400	350 250 350 250	TO-3 TO-3 TO-3 TO-3	BUX24 BUV23 BUX23 BUV24		8 8 8 8	12.0/4 16.0/4 16.0/4 12.0/4	1.0 1.0 1.0 1.0	12.0/2400 16.0/3200 16.0/3200 12.0/2400

* Darlington types, Multiepitaxial planar

Typical.

° T_C = 75°C.

Recent product introductions

EPITAXIAL BASE

		V	v	D.				6)	(þ
	і _с (А)	•сво (V)	*CEO (V)	(W)	Package	NPN	PNP	h _{FE} min.	I _C /V _{CE} (A/V)	V _{CEsat} max. (V)	I _C /I _B (A/mA)
*	12	60	60	125	SOT-93	BDV65	BDV64	1000	5.0/4	2.0	5.0/20
*	12	80	80	125	SOT-93	BDV65A	BDV64A	1000	5.0/4	2.0	5.0/20
*	12	100	100	125	SOT-93	BDV65B	BDV64B	1000	5.0/4	2.0	5.0/20
*	16	60	60	150	TO-3	MJ4030	MJ4033	1000	10/3	4.0	16/80
*	16	80	80	150	TO-3	MJ4031	MJ4034	1000	10/3	4.0	16/80
*	16	100	100	150	TO-3	MJ4032	MJ4035	1000	10/3	4.0	16/80
*	30	60	60	200	TO-3	MJ11012	MJ11011	200	30/5	4.0	30/300
*	30	90	90	200	то-з	MJ11014	MJ11013	200	30/5	4.0	30/300
*	30	120	120	200	то-з	MJ11016	MJ11015	200	30/5	4.0	30/300
*	10	60	60	125	SOT-93	TIP140	TIP145	500	10/4	3.0	10/40
*	10	80	80	125	SOT-93	TIP141	TIP146	500	10/4	3.0	10/40
*	10	100	100	125	SOT-93	TIP142	TIP147	500	10/4	3.0	10/40
	20	60	60	160	TO-3	2N6285	2N6282	750	10/3	3.0	20/200
	20	80	80	160	TO-3	2N6286	2N6283	750	10/3	3.0	20/200
	20	100	100	160	то-з	2N6287	2N6284	750	10/3	3.0	20/200

* Darlington types

MULTIEPITAXIAL PLANAR

		Vana Vara P		D	tot Baskara		@)	@		
	(A)	•сво (V)	VCEO (V)	(W)	Package	NPN	h _{FE} min.	I _C /V _{CE} (A/V)	V _{CEsat} max. (V)	I _C /I _B (A/mA)	
*	7	600	400	75	TO-220	BU810	10	7.0/3	2.0	2.0/20	
*	28	600	400	175	ТО-3	BUT13	30	10/5	5.0	28/5600	
*	28	600	400	150	SOT-93	BUT13P	30	10/5	5.0	28/5600	
ĺ	3	250	200	15	TO-126	BUY49P	40	0.5/5	0.2 ·	0.5/50	
*	20	400	350	176	то-з	MJ10004	50	5.0/5	1.9	10/400	
*	20	450	400	175	TO-3	MJ10005	50	5.0/5	1.9	10/400	
*	20	400	350	150	SOT-93	MJ10004P	50	5,0/5	1.9	10/400	
*	20	450	400	150	SOT-93	MJ10005P	50	5.0/5	1.9	10/400	

SELECTION GUIDES BASED ON TECHNOLOGY AND PACKAGES (continued)

	[@		(0
(A)	V сво (V)	VCE0 (V)	(W)	Pack age	NPN	h _{FE} (min.)	I _C /V _{CE} (A/V)	V _{CEsat} max (V)	I _C /I _B (A/mA)
• 10	400	350	105	SOT-93	BU920P	50	7.0/1.8	1.8	5/50
* 10	450	400	105	SOT-93	BU921P	50	7.0/1.8	1.8	5/50
* 10	500	450	105	SOT-93	BU922P	50	7.0/1.8	1.8	5/50
4	40	30	30	TO-220	D44C1	25	1.0/1	0.5	1/100
4	55	45	30	TO-220	D44C4	25	1.0/1	0.5	1/100
4	70	60	30	TO-220	D44C7	25	1.0/1	0.5	1/100
4	90	80	30	TO-220	D44C10	25	1.0/1	0.5	1/100
10	-	30	50	TO-220	D44H1	20	4.0/1	1.0	8/800
10	-	45	50	TO-220	D44H4	20	4.0/1	1.0	8/800
10	- 1	60	50	TO-220	D44H7	20	4.0/1	1.0	8/800
10	-	80	50	TO-220	D44H10	20	4.0/1	1.0	8/800
4	200	125	31.25	TO-220	D44Q1	20	2.0/10	1.0	2/200
4	250	175	31.25	TO-220	D44Q3	20	2.0/10	1.0	2/200
4	300	225	31.25	TO-220	D44Q5	20	2.0/10	1.0	2/200
1	500	400	40	TO-220	TIP50	10	1.0/10	1.0	1/200
15	400	360	105	SOT-93	BU930P	40	10/1.8	1.8	8/100
15	450	400	105	SOT-93	BU931P	40	10/1.8	1.8	8/100
15	500	450	105	SOT-93	BU932P	53	8.0/1.8	1.8	8/150
7	140	90	50	TO-220	2N6702	20	5.0/2	1.5	7/700

MULTIEPITAXIAL PLANAR (continued)

* Darlington types

MULTIEPITAXIAL MESA

	V	V	D			(<u>þ</u>	(<u>)</u>
(A)	*сво (V)	VCEO (V)	(W)	Package	NPN	hfe (min.)	I _C /V _{CE} (A/V)	V _{CEsat} max. (V)	I _C /I _B (A/mA)
5	850	400	850	TO-220	BUV46	5.0	3.5/5	1.5	2.5/500
9	850	400	120	SOT-93	BUV47	3.0	8.0/3	1.5	5.0/1000
9	1000	450	120	SOT-93	BUV47A	3.0	8.0/3	1.5	5.0/1000
5	850	400	100	SOT-93	BUW11	5.0	3.0/1.5	1.5	3.0/600
8	850	400	125	SOT-93	BUW12	5.0	6.0/1.5	1.5	6.0/1200
8	1000	450	125	SOT-93	BUW12A	5.0	6.0/1.5	1.5	6.0/1200
15	1000	700	175	TO-3	BUX48C	2.5	10/3	1.5	6.0/1500
2	800	400	40	TO-220	BUX84	50(°)	0.1/5	1.1	1.0/200
15	850	400	150	SOT-93	BUV48	5.0	15/5	1.5	10/2000
15	1000	450	150	SOT-93	BUV48A	5.0	12/5	1.5	8.0/1600
50	160	125	250	TO-3	BUV20	10	50/4	1.2	50/5000
40	250	200	250	TO-3	BUV21	10	25/4	1.5	25/3000
40	300	250	250	TO-3	BUV22	10	20/4	1.5	20/2500
30	• 400	325	250	TO-3	BUV23	8.0	16/4	1.0	16/3200
20	450	400	250	TO-3	BUV24	8.0	12/4	1.0	12/2400
15	500	500	250	TO-3	BUV25	8.0	8.0/4	1.0	8.0/1600
3	350	250	100	SOT-93	TIP51	10	3.0/10	1.5	3.0/600
3	400	300	100	SOT-93	TIP52	10	3.0/10	1.5	3.0/600
3	450	350	100	SOT-93	TIP53	10	3.0/10	1.5	3.0/600
3	500	400	100	SOT-93	TIP54	10	3.0/10	1.5	3.0/600

(°) Typical

CROSS REFERENCE GUIDE

ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE
BD 135	BD 135	*	BD 205	BD 905	120	BD 243	BD 243	74
BD 136	BD 136	*	BD 206	BD 906	124	BD 243A	BD 243A	74
BD 137	BD 137	*	BD 207	BD 907	120	BD 243B	BD 243B	74
BD 138	BD 138	*	BD 208	BD 908	124	BD 243C	BD 243C	74
BD 139	BD 139	*	BD 220	BD 537	94	BD 244	BD 244	76
BD 140	BD 140	*	BD 221	BD 533	94	BD 244A	BD 244A	76
BD 165	BD 437	78	BD 222	BD 535	94	BD 244B	BD 244B	76
BD 166	BD 438	82	BD 223	BD 538	98	BD 244C	BD 244C	76
BD 167	BD 439	86	BD 224	BD 534	98	BD 245	BD 705	110
BD 168	BD 440	90	BD 225	BD 536	98	BD 245A	BD 707	110
BD 169	BD 441	86	BD 226	BD 375	*	BD 245B	BD 709	110
BD 170	BD 442	90	BD 227	BD 376	*	BD 245C	BD 711	110
BD 175	BD 175	48	BD 228	BD 377	*	BD 246	BD 706	115
BD 176	BD 176	52	BD 229	BD 378	*	BD 246A	BD 708	115
BD 177	BD 177	48	BD 230	BD 379	*	BD 246B	BD 710	115
BD 178	BD 178	52	BD 231	BD 380	*	BD 246C	BD 712	115
BD 179	BD 179	48	BD 233	BD 233	56	BD 253	BUW 24	*
BD 180	BD 180	52	BD 234	BD 234	60	BD 253A	BUW 25	*
BD 181	BD 181	*	BD 235	BD 235	56	BD 253B	BU 136	*
BD 182	BD 182	*	BD 236	BD 236	60	BD 253C	BU 326A	240
BD 183	BD 183	*	BD 238	BD 238	60	BD 262	BD 678	106
BD 185	BD 435	78	BD 239	BD 239	64	BD 262A	BD 680	106
BD 186	BD 436	82	BD 239A	BD 239A	64	BD 262B	BD 682	106
BD 187	BD 437	78	BD 239B	BD 239B	64	BD 263	BD 677	102
BD 188	BD 438	82	BD 239C	BC 239C	64	BD 263A	BD 679	102
BD 189	BD 439	86	BD 240	BD 240	66	BD 263B	BD 681	102
BD 190	BD 440	90	BD 240A	BD 240A	66	BD 264	BDW 24A	*
BD 195	BD 533	94	BD 240B	BD 240B	66	BD 264A	BDW 24B	*
BD 196	BD 534	98	BD 240C	BD 240C	66	BD 265	BDW 23A	*
BD 197	BD 535	94	BD 241	BD 241	70	BD 265A	BDW 23B	*
BD 198	BD 536	98	BD 241A	BD 241A	70	BD 266	BDX 54A	173
BD 199	BD 537	94	BD 241B	BD 241B	70	BD 266A	BDX 54B	173
BD 200	6D 538	98	BD 241C	BD 241C	70	BD 266B	BDX 54C	173
BD 201	BD 705	110	BD 242	BD 242	72	BD 267	BDX 53A	161
BD 202	BD 706	115	BD 242A	BD 242A	72	BD 267A	BDX 53B	161
BD 203	BD 707	110	BD 242B	BD 242B	72	BD 267B	BDX 53C	161
BD 204	BD 708	115	BD 242C	BD 242C	72	BD 268	BDW 94A	156

CROSS REFERENCE GUIDE (continued)

ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAĠE	ТҮРЕ	SGS-ATES NEAREST	PAGE
BD 268A	BDW 94B	156	BD 435	BD 435	78	BD 586	BD 534	98
BD 269	BDW 93A	151	BD 436	BD 436	82	BD 587	BD 535	94
BD 269A	BDW 93B	151	BD 437	BD 437	78	BD 588	BD 536	98
BD 271	BD 533	94	BD 438	BD 438	82	BD 589	BD 537	94
BD 272	BD 534	98	BD 439	BD 439	86	BD 590	BD 538	98
BD 273	BD 535	94	BD 440	BD 440	90	BD 595	BD 705	110
BD 274	BD 536	98	BD 441	BD 441	86	BD 596	BD 706	115
BD 275	BD 537	94	BD 442	BD 442	90	BD 597	BD 707	110
BD 276	BD 538	98	BD 533	BD 533	94	BD 598	BD 708	115
BD 277	BD 664	*	BD 534	BD 534	98	BD 599	BD 709	110
BD 278	BD 663	*	BD 535	BD 535	94	BD 600	BD 710	115
BD 301	BD 533	94	BD 536	BD 536	98	BD 601	BD 711	110
BD 302	BD 534	98	BD 537	BD 537	94	BD 602	BD 712	115
BD 303	BD 535	94	BD 538	BD 538	98	BD 605	BD 905	120
BD 304	BD 536	98	BD 539	BD 241	70	BD 606	BD 906	124
BD 311	BDW 51A	133	BD 539A	BD 241A	70	BD 607	BD 907	120
BD 312	BDW 52A	138	BD 539B	BD 241B	70	BD 608	BD 908	124
BD 313	BDW 51B	133	BD 539C	BD 241C	70	BD 609	BD 909	120
BD 314	BDW 52B	138	BD 540	BD 242	72	BD 610	BD 910	124
BD 331	BDX 53A	161	BD 540A	BD 242A	72	BD 633	BD 533	94
BD 332	BDX 54A	173	BD 540B	BD 242B	72	BD 634	BD 534	98
BD 333	BDX 53B	161	BD 540C	BD 242C	72	BD 635	BD 535	94
BD 334	BDX 54B	173	BD 543	BD 905	120	BD 636	BD 536	98
BD 335	BDX 53C	161	BD 543A	BD 907	120	BD 637	BD 537	94
BD 336	BDX 54C	173	BD 543B	BD 909	120	BD 638	BD 538	98 [.]
BD 361	BD 433	78	BD 544	BD 906	124	BD 643	BDX 53	161
BD 361A	BD 433	78	BD 544A	BD 908	124	BD 644	BDX 54	173
BD 362	BD 434	82	BD 544B	BD 910	124	BD 645	BDX 53A	161
BD 362A	BD 434	82	BD 561	BD 437	78	BD 646	BDX 54A	173
BD 375	BD 375	*	BD 562	BD 438	82	BD 647	BDX 53B	161
BD 376	BD 376	*	BD 575	BD 533	94	BD 648	BDX 54B	173
BD 377	BD 377	*	BD 576	BD 534	98	BD 649	BDX 53C	161
BD 378	BD 378	*	BD 577	BD 535	94	BD 650	BDX 54C	173
BD 379	BD 379	*	BD 578	BD 536	98	BD 663	BD 663	*
BD 380	BD 380	*	BD 579	BD 537	94	BD 664	BD 664	*
BD 433	BD 433	78	BD 580	BD 538	98	BD 675A	BD 675A	102
BD 434	BD 434	82	BD 585	BD 533	94	BD 676A	BD 676A	106

				Contraction of the second	· · · · · ·	r	1 - 2 - 2 - 2 - 2 - 2 - 1	
ТҮРЕ	SGS-ATES NEAREST	PAGE	түре	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE
BD 677	BD 677	102	BD 796	BD 706	115	BD 943	BD 533	94
BD 677A	BD 677A	102	BD 797	BD 707	110	BD 944	BD 534	98
BD 678	BD 678	106	BD 798	BD 708	115	BD 945	BD 535	94
BD 678A	BD 678A	106	BD 799	BD 709	110	BD 946	BD 534	98
BD 679	BD 679	102	BD 800	BD 710	115	BD 947	BD 533	94
BD 679A	BD 679A	102	BD 801	BD 711	110	BD 948	BD 534	98
BD 680	BD 680	106	BD 802	BD 712	115	BD 949	BD 241A	70
BD 680A	BD 680A	106	BD 805	BD 905	120	BD 950	BD 242A	72
BD 681	BD 681	102	BD 806	BD 906	124	BD 951	BD 241B	70
BD 682	BD 682	106	BD 807	BD 907	120	BD 952	BD 242B	72
BD 695A	BDX 53	161	BD 808	BD 908	124	BD 953	BD 241C	70
BD 696A	BDX 54	173	BD 809	BD 909	120	BD 954	BD 242C	72
BD 697	BDX 53A	161	BD 810	BD 910	124	BDT 62	BDW 94A	156
BD 697A	BDX 53A	161	BD 895	BDW 93	151	BDT 62A	BDW 94B	156
BD 698	BDX 54A	173	BD 896	BDW 94	156	BDT 62B	BDW 94C	156
BD 698A	BDX 54A	173	BD 897	BDW 93A	151	BDT 63	BDW 93A	151
BD 699	BDX 53B	161	BD 898	BDW 94A	151	BDT 63A	BDW 93B	151
BD 699A	BDX 53B	161	BD 899	BDW 93B	151	BDT 63B	BDW 93C	151
BD 700	BDX 54B	173	BD 900	BDW 94B	156	BDT 91	BD 907	120
BD 700A	BDX 54B	173	BD 901	BDW 93C	151	BDT 92	BD 908	124
BD 701	BDX 53C	161	BD 902	BDW 94C	156	BDT 93	BD 909	120
BD 702	BDX 54C	173	BD 905	BD 905	120	BDT 94	BD 910	124
BD 705	BD 705	110	BD 906	BD 906	124	BDT 95	BD 911	120
BD 706	BD 706	115	BD 907	BD 907	120	BDT 96	BD 912	124
BD 707	BD 707	110	BD 908	BD 908	124	BDV 64	BDV 64	128
BD 708	BD 708	115	BD 909	BD 909	120	BDV 64A	BDV 64A	128
BD 709	BD 709	110	BD 910	BD 910	124	BDV 64B	BDV 64B	128
BD 710	BD 710	115	BD 911	BD 911	120	BDV 65	BDV 65	128
BD 711	BD 711	110	BD 912	BD 912	124	BDV 65A	BDV 65A	128
BD 712	BD 712	115	BD 933	BD 239	64	BDV 65B	BDV 65B	128
BD 733	BD 533	94	BD 934	BD 240	66	BDW 21	BDW 21	*
BD 734	BD 534	98	BD 935	BD 239A	64	BDW 21A	BDW 21A	*
BD 735	BD 533	94	BD 936	BD 240A	66	BDW 21B	BDW 21B	*
BD 736	BD 534	98	BD 937	BD 239B	64	BDW 21C	BDW 21C	*
BD 737	BD 533	94	BD 938	BD 240B	66	BDW 22	BDW 22	*
BD 738	BD 534	98	BD 939	BD 239C	64	BDW 22A	BDW 22A	*
BD 795	BD 705	110	BD 940	BD 240C	66	BDW 22B	BDW 22B	*

CROSS REFERENCE GUIDE (continued)

ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE
BDW 22C	BDW 22C	*	BDW 74	BDW 94	156	BDX 64A	BDX 88B	200
BDW 23	BDW 23	*	BDW 74A	BDW 94A	156	BDX 64B	BDX 88C	200
BDW 23A	BDW 23A	*	BDW 74B	BDW 94B	156	BDX 65	BDX 87A	195
BDW 23B	BDW 23B	*	BDW 74C	BDW 74C	156	BDX 65A	BDX 87B	195
BDW 23C	BDW 23C	*	BDW 91	BDW 91	143	BDX 65B	BDX 87C	195
BDW 24	BDW 24	*	BDW 92	BDW 92	147	BDX 70	BDX 71	*
BDW 24A	BDW 24A	*	BDW 93	BDW 93	151	BDX 77	BD 709	110
BDW 24B	BDW 24B	*	BDW 93A	BDW 93A	151	BDX 78	BD 710	115
BDW 24C	BDW 24C	*	BDW 93B	BDW 93B	151	BDX 83	BDX 87	195
BDW 51	BDW 51	133	BDW 93C	BDW 93C	151	BDX 83A	BDX 87A	195
BDW 51A	BDW 51A	133	BDW 94	BDW 94	156	BDX 83B	BDX 87B	195
BDW 51B	BDW 51B	133	BDW 94A	BDW 94A	156	BDX 83C	BDX 87C	195
BDW 51C	BDW 51C	133	BDW 94B	BDW 94B	156	BDX 84	BDX 88	200
BDW 52	BDW 52	138	BDW 94C	BDW 94C	156	BDX 84A	BDX 88A	200
BDW 52A	BDW 52A	138	BDX 33	BDX 53	161	BDX 84B	BDX 88B	200
BDW 52B	BDW 52B	138	BDX 33A	BDX 53A	161	BDX 84C	BDX 88C	200
BDW 52C	BDW 52C	138	BDX 33B	BDX 53B	161	BDX 85	BDX 85	185
BDW 53	BDW 23	*	BDX 33C	BDX 53C	161	BDX 85A	BDX 85A	185
BDW 53A	BDW 23A	*	BDX 34	BDX 54	173	BDX 85B	BDX 85B	185
BDW 53B	BDW 23B	*	BDX 34A	BDX 54A	173	BDX 85C	BDX 85C	185
BDW 53C	BDW 23C	*	BDX 34B	BDX 54B	173	BDX 86	BDX 86	190
BDW 54	BDW 24	*	BDX 34C	BDX 54C	173	BDX 86A	BDX 86A	190
BDW 54A	BDW 24A	*	BDX 53	BDX 53	161	BDX 86B	BDX 86B	190
BDW 54B	BDW 24B	*	BDX 53A	BDX 53A	161	BDX 86C	BDX 86C	190
BDW 54C	BDW 24C	*	BDX 53B	BDX 53B	161	BDX 87	BDX 87	195
BDW 63	BDX 53	161	BDX 53C	BDX 53C	161	BDX 87A	BDX 87A	195
BDW 63A	BDX 53A	161	BDX 54	BDX 54	173	BDX 87B	BDX 87B	195
BDW 63B	BDX 53B	161	BDX 54A	BDX 54A	173	BDX 87C	BDX 87C	195
BDW 63C	BDX 53C	161	BDX 54B	BDX 54B	173	BDX 88	BDX 88	200
BDW 64	BDX 54	173	BDX 54C	BDX 54C	173	BDX 88A	BDX 88A	200
BDW 64A	BDX 54A	173	BDX 62	BDX 86A	190	BDX 88B	BDX 88B	200
BDW 64B	BDX 54B	173	BDX 62A	BDX 86B	190	BDX 88C	BDX 88C	200
BDW 64C	BDX 54C	173	BDX 62B	BDX 86C	190	BDX 91	BDW 21A	*
BDW 73	BDW 93	151	BDX 63	BDX 85A	185	BDX 92	BDW 22A	*
BDW 73A	BDW 93A	151	BDX 63A	BDX 85B	185	BDX 93	BDW 21B	*
BDW 73B	BDW 93B	151	BDX 63B	BDX 85C	185	BDX 94	BDW 22B	*
BDW 73C	BDW 93C	151	BDX 64	BDX 88A	200	BDX 95	BDW 21C	*

ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE
BDX 96	BDW 22C	*	BU 361	BUW 35	359	BUR 21	BUV 21	335
BDY 57	BDY 57	205	BU 406	BU 406	249	BUR 22	BUV 22	335
BDY 58	BDY 58	205	BU 406D	BU 406D	255	BUR 23	BUV 23	338
BDY 90	BDY 90	208	BU 406H	BU 406H	249	BUR 24	BUV 24	338
BDY 91	BDY 91	208	BU 407	BU 407	261	BUR 50	BUR 50	301
BDY 92	BDY 92	208	BU 407D	BU 407D	255	BUR 51	BUR 51	307
BFX 34	BFX 34	210	BU 407H	BU 407H	261	BUR 53	BUR 52	313
BSS 44	BSS 44	214	BU 408	BU 408	249	BUS 12	BUW 35	359
BSW 67	BSW 67	218	BU 408D	BU 408D	255	BUW 12A	BUW 36	359
BSW 68	BSW 68	218	BU 411	BU 607D	*	BUS 13	BUX 48	449
BU 104	BU 606	*	BU 412	BU 607D	*	BUS 13A	BUW 46	366
BU 104D	BU 606D	*	BU 426	BU 426	267	BUT 13	BUT 13	319
BU 104DP	BU 406D	255	BU 426A	BU 426A	267	BUT 13P	BUT 13P	327
BU 106	BU 607	*	BU 606	BU 606	*	BUV 20	BUV 20	335
BU 107	BU 607	*	BU 606D	BU 606D	*	BUV 21	BUV 21	335
BU 109	BU 607	*	BU 607	BU 607	*	BUV 22	BUV 22	335
BU 109D	BU 607D	*	BU 607D	BU 607D	*	BUV 23	BUV 23	338
BU 109DP	BU 407D	255	BU 608	BU 608	*	BUV 24	BUV 24	338
BU 110	BU 607	*	BU 608D	BU 608D	*	BUV 25	BUV 25	338
BU 111	BUW 24	*	BU 807	BU 807	275	BUV 46	BUV 46	341
BU 125	BU 125	222	BU 810	BU 810	281	BUV 47	BUV 47	343
BU 125S	BUS 1255	226	BU 910	BU 910	285	BUV 47A	BUV 47A	343
BU 126	BU 126	*	BU 911	BU 911	285	BUV 48	BUV 48	346
BU 129	BU 606	*	BU 912	BU 912	285	BUV 48A	BUV 48A	346
BU 133	BU 126	*	BU 920	BU 920	*	BUW 11	BUW 11	348
BU 134	BUW 25	*	`BU 920P	BU 920P	290	BUW 12	BUW 12	351
BU 137	BUY 69A	484	BU 921	BU 921	*	BUW 12A	BUW 12A	351
BU 310	BU 607	*	BU 921P	BU 921P	290	BUW 24	BUW 24	*
BU 311	BU 607	*	BU 922	BU 922	*	BUW 25	BUW 25	*
BU 312	BU 607	*	BU 922P	BU 922P	290	BUW 26	BUW 26	*
BU 322	BU 920	*	BU 930	BU 930	293	BUW 32	BUW 32	354
BU 322A	BU 922 ·	*	BU 930P	BU 930P	299	BUW 34	BUW 34	359
BU 323	BU 930	293	BU 931	BU 931	293	BUW 35	BUW 35	359
BU 323A	BU 932	293	BU 931P	BU 931P	299	BUW 36	BUW 36	359
BU 326	BU 326S	245	BU 932	BU 932	293	BUW 42	BUW 42	364
BU 326A	BU 326A	240	BU 932P	BU 932P	299	BUW 44	BUW 44	366
BU 326S	BU 326S	245	BUR 20	BUV 20	335	BUW 45	BUW 45	366

CROSS REFERENCE GUIDE (continued)

ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE
BUW 46	BUW 46	366	BUX 37	BU 931	293	D44 C2	D44 C2	487
BUW 57	BUX 10	371	BUX 40	BUX 40	417	D44 C3	D44 C3	487
BUW 58	BUX 11N	383	BUX 40A	BUX 40	417	D44 C4	D44 C4	487
BUW 66	BUW 66	*	BUX 40S	BUX 40	417	D44 C5	D44 C5	487
BUW 67	BUW 67	*	BUX 41	BUX 41	423	D44 C6	D44 C6	487
BUW 73	BUX 11	377	BUX 41N	BUX 41N	429	D44 C7	D44 C7	487
BUX 10	BUX 10	371	BUX 41S	BUX 41	423	D44 C8	D44 C8	487
BUX 10S	BUX 10	371	BUX 42	BUX 42	435	D44 C9	D44 C9	487
BUX 11	BUX 11	377	BUX 43	BUX 43	441	D44 C10	D44 C10	487
BUX 11N	BUX 11N	383	BUX 44	BUX 44	443	D44 C11	D44 C11	487
BUX 11S	BUX 11	377	BUX 45	BUW 34	359	D44 C12	D44 C12	487
BUX 12	BUX 12	389	BUX 46	BUX 46	445	D44 H1	D44 H1	489
BUX 13	BUX 13	395	BUX 47	BUX 47	447	D44 H2	D44 H2	489
BUX 14	BUX 14	397	BUX 48	BUX 48	449	D44 H4	D44 H4	489
BUX 15	BUW 44	366	BUX 48A	BUX 48A	449	D44 H5	D44 H5	489
BUX 16	BUW 24	*	BUX 48B	BUX 48B	449	D44 H7	D44 H7	489
BUX 16A	BUW 24	*	BUX 48C	BUX 48C	449	D44 H8	D44 H8	489
BUX 16B	BUW 24	*	BUX 77	BUX 77	*	D44 H10	D44 H10	489
BUX 16C	BUW 24	*	BUX 78	BUX 78	*	D44 H11	D44 H11	489
BUX 17	BUX 41N	429	BUX 80	BUX 80	*	D44 Q1	D44 Q1	491
BUX 17A	BUX 42	435	BUX 82	BUX 82	*	D44 Q3	D44 Q3	491
BUX 17B	BUW 44	366	BUX 84	BUX 84	*	D44 Q5	D44 Q5	491
BUX 17C	BUW 44	366	BUX 97	BUX 97	*	MJ 424	BUW 35	359
BUX 18	BUX 41	423	BUX 97A	BUX 97A	*	MJ 425	BUW 35	359
BUX 18A	BUX 42	435	BUX 97B	BUX 97B	*	MJ 900	MJ 900	493
BUX 18B	BUW 35	359	BUY 18S	BUY 18S	466	MJ 901	MJ 901	493
BUX 18C	BUW 35	359	BUY 47	BUY 47	469	MJ 1000	MJ 1000	493
BUX 20	BUX 20	399	BUY 48	BUY 48	469	MJ 1001	MJ 1001	493
BUX 20S	BUX 20	399	BUY 49P	BUY 49P	474	MJ 2500	MJ 2500	495
BUX 21	BUX 21	405	BUY 49S	BUY 49S	476	MJ 2501	MJ 2501	495
BUX 21S	BUX 21	405	BUY 57	BUX 40	417	MJ 2955	MJ 2955	497
BUX 22	BUX 22	411	BUY 58	BUX 41N	429	MJ 3000	MJ 3000	495
BUX 23	BUV 23	338	BUY 68	BUY 68	480	MJ 3001	MJ 3001	495
BUX 24	BUV 24	338	BUY 69A	BUY 69A	484	MJ 3029	BUW 24	*
BUX 25	BUV 25	338	BUY 69B	BUY 69B	484	MJ 3030	BUW 25	*
BUX 28	BU 920	*	BUY 69C	BUY 69C	484	MJ 3040	BU 920P	290
BUX 29	BU 921	*	D44 C1	D44 C1	487	MJ 3041	BU 920P	290

ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE
MJ 3042	BU 920P	290	MJE 801	MJE 801	508	TIP 32C	TIP 32C	530
MJ 4030	MJ 4030	499	MJE 802	MJE 802	508	TIP 41	TIP 41	532
MJ 4031	MJ 4031	499	MJE 803	MJE 803	508	TIP 41A	TIP 41A	532
MJ 4032	MJ 4032	499	MJE 13002	MJE 13002	511	TIP 41B	TIP 41B	532
MJ 4033	MJ 4033	499	MJE 13003	MJE 13003	511	TIP 41C	TIP 41C	532
MJ 4034	MJ 4034	499	MJE 13004	MJE 13004	517	TIP 42	TIP 42	534
MJ 4035	MJ 4035	499	MJE 13005	MJE 13005	517	TIP 42A	TIP 42A	534
MJ 10000	BU 930	293	MJE 13006	MJE 13006	522	TIP 42B	TIP 42B	534
MJ 10001	BU 931	293	MJE 13007	MJE 13007	522	TIP 42C	TIP 42C	534
MJ 10002	BU 920P	290	MJE 13007A	MJE 13007A	522	TIP 47	TIP 47	536
MJ 10003	BU 921P	-290	SE 9300	BDW 93A	151	TIP 48	TIP 48	536
MJ 10004	MJ 10004	501	SE 9301	BDW 93B	151	TIP 49	TIP 49	536
MJ 10004P	MJ 10004P	501	SE 9302	BDW 93C	151	TIP 50	TIP 50	536
MJ 10005	MJ 10005	501	SE 9303	BDX 87A	195	TIP 51	TIP 51	542
MJ 10005P	MJ 10005P	501	SE 9304	BDX 87B	195	TIP 52	TIP 52	542
MJ 11011	MJ 11011	504	SE 9305	BDX 87C	195	TIP 53	T'IP 53	542
MJ 11012	MJ 11012	504	SE 9400	BDW 94A	156	TIP 54	TIP 54	542
MJ 11013	MJ 11013	504	SE 9401	BDW 94B	156	TIP 73	BD 905	120
MJ 11014	MJ 11014	504	SE 9402	BDW 94C	156	TIP 73A	BD 907	120
MJ 11015	MJ 11015	504	SE 9403	BDX 88A	200	TIP 73B	BD 909	120
MJ 11016	MJ 11016	504	SE 9404	BDX 88B	200	TIP 73C	BD 911	120
MJ 10012	BU 931	293	SE 9405	BDX 88C	200	TIP 74	BD 906	124
MI 13014	BLIW 34	359	TIP 29	TIP 29	524	TIP 74A	BD 908	124
MI 13015	BUW 34	350	TIP 29A	TIP 29A	524	TIP 74B	BD 910	124
MI 12220	DUV 41	422	TIP 29B	TIP 29B	524	TIP 74C	BD 912	124
MI 10001		423	TIP 29C	TIP 29C	524	TIP 100	BDX 53A	161
IVIJ 13331	BUX 42	435	TIP 30	TIP 30	526	11P 101	BDX 53B	161
MJ 13332	BUV 23	338	TIP 30A	TIP 30A	526	TIP 102	BDX 53C	161
MJ 13333	BUV 24	338	TIP 30B	TIP 30B	526	TIP 105	BDX 54A	173
MJ 13334	BOV 24	338	TIP 30C	TIP 30C	526	TIP 106	BDX 54B	1/3
MJE 340	MJE 340	506		11931	528		BDX 54C	1/3
MJE 350	MJE 350	506	11P 31A	TIP 31A	528		11P 110	549
	MJE 700	508	11P 31B	11P 31B	528		118 111	549
	MJE 701	508	1 HP 31C	1 HP 31C	528		TIP 112	549
	MJE 702	508	11P 32	TIP 32	530		TIP 115	551
	MJE 703	508	TIP 32A	TIP 32A	530		11P 116	551
MJE 800	MDF 800	508	LTIP 32B	1 IP 32B	530	/ 11 אוו ן	IIP 117	551

CROSS REFERENCE GUIDE (continued)

ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE
TIP 120	TIP 120	553	2N 3715	2N 3715	580	2N 5490	BD 705	110
TIP 121	TIP 121	553	2N 3716	2N 3716	580	2N 5492	BD 707	110
TIP 122	TIP 122	553	2N 3719	BSS 44	214	2N 5494	BD 705	110
TIP 125	TIP 125	558	2N 3720	BSS 44	214	2N 5496	BD 709	110
TIP 126	TIP 126	558	2N 3789	2N 3789	584	2N 5671	2N 5671	624
TIP 127	TIP 127	558	2N 3790	2N 3790	584	2N 5672	2N 5672	624
TIP 130	TIP 130	563	2N 3791	2N 3791	584	2N 5681	BSW 67	218
TIP 131	TIP 131	563	2N 3792	2N 3792	584	2N 5682	BSW 67	218
TIP 132	TIP 132	563	2N 3830	BUY 68	480	2N 5758	BDW 51C	133
TIP 135	TIP 135	565	2N 3831	BUY 68	480	2N 5781	BSS 44	214
TIP 136	TIP 136	565	2N 3924	BUY 68	480	2N 5782	BSS 44	214
TIP 137	TIP 137	565	2N 4234	2N 4234	588	2N 5783	BSS 44	214
TIP 140	TIP 140	567	2N 4235	2N 4235	588	2N 5784	BUY 68	480
TIP 141	TIP 141	567	2N 4236	2N 4236	588	2N 5785	BUY 68	480
TIP 142	TIP 142	567	2N 4895	2N 4895	591	2N 5786	BUY 68	480
TIP 145	TIP 145	567	2N 4896	2N 4896	591	2N 5875	2N 5875	632
TIP 146	TIP 146	567	2N 4897	2N 4897	591	2N 5876	2N 5876	632
TIP 147	TIP 147	567	2N 5038	2N 5038	595	2N 5877	2N 5877	637
TIP 150	BU 910	285	2N 5039	2N 5039	595	2N 5878	2N 5878	637
TIP 151	BU 910	285	2N 5157	BUW 35	359	2N 5879	BDW 52A	138
TIP 152	BU 911	285	2N 5190	2N 5190	607	2N 5880	BDW 52B	138
TIP 660	BU 920P	290	2N 5191	2N 5191	607	2N 5881	BDW 51A	133
TIP 661	BU 920P	290	2N 5192	2N 5192	607	2N 5882	BDW 51B	133
TIP 662	BU 921P	290	2N 5193	2N 5193	611	2N 6032	2N 6032	642
2N 3055E	2N 3055E	572	2N 5194	2N 5194	611	2N 6033	2N 6033	642
2N 3418	2N 3418	*	2N 5195	2N 5195	611	2N 6034	2N 6034	647
2N 3419	2N 3419	*	2N 5241	BUW 34	359	2N 6035	2N 6035	647
2N 3420	2N 3420	*	2N 5294	BD 537	94	2N 6036	2N 6036	647
2N 3421	2N 3421	*	2N 5296	BD 533	94	2N 6037	2N 6037	651
2N 3439	2N 3439	576	2N 5298	BD 535	94	2N 6038	2N 6038	651
2N 3440	2N 3440	576	2N 5333	BSS 44	214	2N 6039	2N 6039	651
2N 3445	BDW 51A	133	2N 5334	BUY 68	480	2N 6040	BDX 54A	173
2N 3446	BDW 51B	133	2N 5335	BUY 47	469	2N 6041	BDX 54B	173
2N 3553	BUY 68	480	2N 5336	2N 5336	615	2N 6042	BDX 54C	173
2N 3554	BUY 68	480	2N 5337	2N 5337	615	2N 6043	BDX 53A	161
2N 3713	2N 3713	580	2N 5338	2N 5338	615	2N 6044	BDX 53B	161
2N 3714	2N 3714	580	2N 5339	2N 5339	615	2N 6045	BDX 53C	161

ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE	ТҮРЕ	SGS-ATES NEAREST	PAGE
2N 6050	2N 6050	655	2N 6292	2N 6292	673	2N 6547	2N 6547	702
2N 6051	2N 6051	655	2N 6306	BUW 34	359	2N 6569	BDW 51	133
2N 6052	2N 6052	655	2N 6307	BUW 35	359	2N 6573	BUW 44	366
2N 6053	2N 6053	660	2N 6308	BUW 35	359	2N 6574	2N 6546	702
2N 6054	2N 6054	660	2N 6338	BUX 10	371	2N 6575	BUW 45	366
2N 6055	2N 6055	664	2N 6339	BUX 10	371	2N 6594	BDW 52	138
2N 6056	2N 6056	664	2N 6340	BUX 11N	383	2N 6648	BDX 88	200
2N 6057	2N 6057	668	2N 6341	BUX 11N	383	2N 6649	BDX 88A	200
2N 6058	2N 6058	668	2N 6354	2N 6354	685	2N 6650	BDX 88B	200
2N 6059	2N 6059	668	2N 6383	BDX 87	195	2N 6666	BDX 54	173
2N 6107	2N 6107	673	2N 6384	BDX 87A	195	2N 6667	BDX 54A	173
2N 6109	2N 6109	673	2N 6385	BDX 87B	195	2N 6668	BDX 54B	173
2N 6111	2N 6111	673	2N 6386	2N 6386	690	2N 6702	2N 6702	705
2N 6121	2N 6121	675	2N 6387	2N 6387	690			
2N 6122	2N 6122	675	2N 6388	2N 6388	690			
2N 6123	2N 6123	675	2N 6469	BDW 52	138			
2N 6124	2N 6124	679	2N 6470	BDW 51	133			
2N 6125	2N 6125	679	2N 6471	BDW 51A	133			
2N 6126	2N 6126	679	2N 6472	BDW 51B	133			
2N 6226	BDW 52C	138	2N 6473	BD 711	110			
2N 6246	BDW 52A	138	2N 6475	BD 712	115			
2N 6247	BDW 52B	138	2N 6486	2N 6486	693			
2N 6249	BUX 41	423	2N 6487	2N 6487	693			
2N 6250	BUX 42	435	2N 6488	2N 6488	693			
2N 6251	BUW 44	366	2N 6489	2N 6489	696			
2N 6274	BUV 20	335	2N 6490	2N 6490	696			
2N 6275	BUV 20	335	2N 6491	2N 6491	696		1000	
2N 6276	BUV 21	335	2N 6496	2N 6496	595			
2N 6277	BUV 21	335	2N 6511	BUW 34	359		and the second	
2N 6282	2N 6282	683	2N 6512	BUW 34	359			
2N 6283	2N 6283	683	2N 6513	BUW 34	359			
2N 6284	2N 6284	683	2N 6514	BUW 34	359			
2N 6285	2N 6285	683	2N 6531	BDX 53C	161			
2N 6286	2N 6286	683	2N 6532	BDX 53C	161	[
2N 6287	2N 6287	683	2N 6544	2N 6544	699	1		
2N 6288	2N 6288	673	2N 6545	2N 6545	699			
2N 6290	2N 6290	673	2N 6546	2N 6546	702			

ALPHABETICAL LIST OF SYMBOLS

В	Bandwidth
C _{CBO}	Collector-base capacitance (emitter open to a.c. and d.c.)
d	Distortion
E _{s/b}	Second breakdown energy (with base-emitter junction reverse biased)
f	Frequency
f _T	Transition frequency
G _v	Voltage gain
h _{fe}	Common emitter, small-signal value of the short-circuit forward current transfer ratio
h _{FE}	Common emitter, static value of the forward current transfer ratio
h_{FE1}/h_{FE2}	Common emitter, static value of the forward current transfer matched pair ratio
I _B	Base current
I _{B1}	Turn-on current
I _{B2}	Turn-off current
I _{BF}	Base forward current
I _{BFM}	Base forward peak current
I _{BM}	Base peak current
I _{BR}	Base reverse current
I _{BRM}	Base reverse peak current
I _C	Collector current
I _{CBO}	Collector cutoff current with emitter open
I _{CEO}	Collector cutoff current with base open
I _{CER}	Collector cutoff current with specified resistance between emitter and base
I _{CES}	Collector cutoff current with emitter short-circuited to base
I _{CEV}	Collector cutoff current with specified reverse voltage between emitter and base
I _{CM}	Collector peak current
I _d	Drain current
I _E	Emitter current

I _{EBO}	Emitter cutoff current with collector open
I _F	Continuous DC forward current
I _{FM}	Peak forward current
I _R	Continuous DC reverse current
l _{s/b}	Second breakdown collector current (with base-emitter junction forward biased)
Po	Output power of a specified circuit
P _{tot}	Total power dissipation
R _{BB}	Base dropping resistance
R _{BE}	Resistance between base and emitter
R _{CC}	Collector dropping resistance
R _{EE}	Emitter dropping resistance
RL	Load resistance
R _{th}	Thermal resistance
R _{th j-amb}	Thermal resistance junction-to-ambient
R _{th j-case}	Thermal resistance junction-to-case
t	Time
T _{amb}	Ambient temperature
T _{case}	Case temperature
t _f	Fall time
Tj	Junction temperature
t _{off}	Turn-off time
t _{on}	Turn-on time
t _r	Rise time
t _s	Storage time
T _{stg}	Storage temperature
V _{BE}	Base-emitter voltage
V _{BE (sat)}	Base-emitter saturation voltage
V _{(BR) CBO}	Collector-base breakdown voltage with emitter open
V _{(BR) CEO}	Collector-emitter breakdown voltage with base open

ALPHABETICAL LIST OF SYMBOLS (continued)

$V_{(BR) CER}$	Collector-emitter breakdown voltage with specified resistance
$V_{(BR) CES}$	Collector-emitter breakdown voltage with emitter short-circuited to base
$V_{(BR) CEV}$	Collector-emitter breakdown voltage with specified reverse voltage between emitter and base
$V_{(BR) EBO}$	Emitter-base breakdown voltage with collector open
V _{CB}	Collector-base voltage
V _{CBO}	Collector-base voltage with emitter open
V _{CE}	Collector-emitter voltage
V _{CEK}	Knee voltage at specified condition
V _{CEO}	Collector-emitter voltage with base open
V _{CEO (sus)}	Collector-emitter sustaining voltage with base open
V _{CER}	Collector-emitter voltage with specified resistance between emitter and base
V _{CER (sus)}	Collector-emitter sustaining voltage with specified resistance between emitter and base
V _{CE (sat)}	Collector-emitter saturation voltage
V _{CES}	Collector-emitter voltage with emitter short-circuited to base
V _{CEV}	Collector-emitter voltage with specified reverse voltage between emitter and base
V _{CEV (sus)}	Collector-emitter sustaining voltage with specified reverse voltage between emitter and base
V _{CEX (sus)}	Collector-emitter sustaining voltage with specified circuit between emitter and base
V _{EB}	Emitter-base voltage
V _{EBO}	Emitter-base voltage with collector open
V _F	Continuous DC forward voltage
V _i	Input voltage of a specified circuit
V _R	Continuous DC reverse voltage
V _{RM}	Peak reverse voltage
Z _{BE}	Impedance between base and emitter
Z _i	Input impedance

RATING SYSTEMS FOR ELECTRONIC DEVICES

A. DEFINITIONS OF TERMS USED

a. **Electronic device.** An electronic tube or valve, transistor or other semiconductor device.

Note: This definition excludes inductors, capacitors, resistors and similar components.

- b. **Characteristic.** A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.
- c. **Bogey electronic device.** An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.
- d. Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determinated for specified values of environment and operation, and may be stated in any suitable terms. Note: Limiting conditions may be either maxima or minima.
- e. Rating system. The set of principles upon which ratings are established and which determines their interpretation.
 Note: The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

B. ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

RATING SYSTEMS FOR ELECTRONIC DEVICES (continued)

C. DESIGN - MAXIMUM RATING SYSTEM

Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions. These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment, component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

D. DESIGN - CENTRE RATING SYSTEM

Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply-voltage.

The Absolute Maximum Rating System is commonly used for semiconductor devices.

QUALITY

- 100% ELECTRICAL TESTING
- MARKING
- GROUP A ACCEPTANCE
- PACKING
- PACKING AND DOCUMENTATION ACCEPTANCE
- SHIPPING

GROUP A ACCEPTANCE

Sub- group	Parameters	Temp. °C	insp. Level	Acceptablee quality level (AQL) Hermetic and molded packages
A1	Visual and Mechanical Inspection, Major Minor		I	0.25 1
*A2	Inoperative failure (electrical and mechanical)	25°C	П	0.15
A3	DC parameters	25°C	11	0.65
	h _{FE} ranges ⁻	23 0		1
A4	AC parameters at 25°C and DC parameters at high temperature		S4	2.5

- $\hfill\square$ Applicable when h_{FE} is guaranteed as min and max
- * Definition of electrical inoperative:
 - open or short circuit
 - < 80% of guaranteed spec value for: BV_{CBO}, BV_{CEO}, BV_{CER}, BV_{CES}, BV_{CEV}, BV_{EBO}
 - > 200% of guaranteed spec value for: V_{CE(sat)}
 - >200% of guaranteed spec value for: $I_{CBO},\,I_{CES},\,I_{CEO},\,I_{CEV}$ at 50% guaranteed BV value
 - ->150% of guaranteed max spec values for h_{FE}
 - -<~50% of guaranteed min spec values for h_{FE}

For further information Quality and Reliability see the SGS SURE 3 programme.

PRECAUTIONS FOR PHYSICAL HANDLING OF POWER PLASTIC TRANSISTOR [TO-220, SOT-93, TO-126 (SOT-32)]

When mounting power transistors certain precautions must be taken in operations such as bending of leads, mounting of heatsink, soldering and removal of flux residue. If these operations are not carried out correctly, the device can be damaged or reliability compromised.

1. Bending and cutting leads

The bending or cutting of the leads requires the following precautions:

- 1.1. When bending the leads they must be clamped tightly between the package and the bending point to avoid strain on the package (in particular in the area where the leads enter the resin) (fig. 1). This also applies to cutting the leads (fig. 2).
- 1.2. The leads must be bent at a minimum distance of 3 mm from the package (fig. 3a).
- 1.3. The leads should not be bent at an angle of more than 90° and they must be bent only once (fig. 3b).
- 1.4. The leads must never be bent laterally (fig. 3c).
- 1.5. Check that the tool used to cut or form the leads does not damage them or ruin their surface finish.
- Fig. 1 Bending the leads

Fig. 2 - Lead forming or cutting mechanism

Fig. 3 - Angles for lead wire bending

2. Mounting on printed circuit

During mounting operations be careful not to apply stress to the power transistor.

- 2.1. Adhere strictly to the pin spacing of the transistor to avoid forcing the leads.
- 2.2. Leave a suitable space between printed circuit and transistor, if necessary use a spacer.
- 2.3. When fixing the device to the printed circuit do not put mechanical stress on the transistor. For this purpose the device should be soldered to the printed circuit board after the Transistor has been fixed to the heatsink and the heatsink to the printed circuit board.

3. Soldering

In general a transistor should never be exposed to high temperature for any length of time. It is therefore preferable to use soldering methods where the transistor is exposed to the lowest possible temperatures for a short time.

- 3.1. Tolerable conditions are 260°C for 10 sec or 350°C for 3 sec. The graphs in fig. 4 give an idea of the excess junction temperature during the soldering process for a TO-220 (Versawatt). It is also important to use suitable fixes for the tin baths to avoid deterioration of the leads or of the package resin.
- 3.2. An excess of residual flux between the pins of the transistor or in contact with the resin can reduce the long-term reliability of the device. The solvent for removing excess flux must be chosen with care. The use of solvents derived from trichloroethylene is not recommended on plastic packages because the residue can cause corrosion.

Fig. 4 - Junction temperatures during soldering

4. Mounting at heatsink

To exploit best the performance of power transistors a heatsink with R_{th} suitable for the power that the transistor will dissipate must be used.

4.1. The plastic packages used by SGS for its power transistors (SOT-32, SOT-93, Versawatt) provide for the use of a single screw to fix the package to the heatsink. A compression spring (clip) can be sufficient as an alternative (fig. 5).

Fig. 5 - SOT-93 mounting examples

The screw should be properly tightened to ensure good contact between the back of the package and the heatsink but should not be too tight to avoid deformation of the copper part (tab) of the package causing breaking of the die or separation of the resin from the tab.

4.2. The contact R_{th} between device and heatsink can be improved by inserting a thin layer of silicone grease with fluidity sufficient to guarantee perfectly uniform distribution on the surface of the tab. The thermal resistance with and without silicone grease is given in fig. 6. An excessively thick layer or an excessive viscosity of the grease can degrade the R_{th} .

5. Heatsink problems

The most important aspect from the point of view of reliability of a power transistor is that the heatsink should be dimensioned to keep the T_j of the device as low as possible. From the mechanical point of view, however, the heatsink must be realized so that it does not damage the device.

Fig. 6 – Contact thermal resistance vs. insulator thickness.

- 5.1. The planarity of the contact surface between device and heatsink must be < 25 μm for TO-220, SOT-93, TO-126 (SOT-32).
- 5.2. If self threading screws are used there must be an outlet for the material that is deformed during formation of the thread. The diameter ϕ 1 (fig. 7) must be large enough to avoid distortion of the
- Fig. 7 Device mounting

tab during tightening. For this purpose it may be useful to insert a washer or use screws of the type shown in fig. 8 where the pressure on the tab is distributed on a much larger surface. Sometimes when the hole in the heatsink is formed with a punch, around the hole

or hollow there may be a ring which is lower than the heatsink surface. This is dangerous because it may lead to distortion of the tab as mentioned before.

5.3. A very serious problem is that of the rigidity between heatsink, device and printed circuit board. Once the device and the heatsink are mechanically connected, and the heatsink is fixed to the apparatus frame, the device and the PCB are bound together by the leads of the devices. A solution of this type is extremely dangerous. Fig. 8 - Suggested screw

ACCESSORIES AND MOUNTING INSTRUCTIONS

TO-3

Maximum torque (applied to mounting flange) Recommended: 0,55 Nm Maximum: 1 Nm.

Maximum torque (applied to mounting flange) Recommended: 0.55 Nm Maximum: 1 Nm.

ACCESSORIES AND MOUNTING INSTRUCTIONS (continued)

TO-126 (SOT-32)

Maximum torque (applied to mounting flange) Recommended: 0.55 Nm Maximum: 0.7 Nm

Maximum torque (applied to mounting flange) Recommended: 0.55 Nm Maximum: 0.7 Nm.

41

ACCESSORIES AND MOUNTING INSTRUCTIONS (continued)

TO-220

Maximum torque (applied to mounting flange) Recommended: 0.55 Nm Maximum: 0.7 Nm. CDA 3126A

CDA 3126B

43

ACCESSORIES AND MOUNTING INSTRUCTIONS (continued)

CDA 3154

CDA 3155

A - 0024/2

Suffix	Package	а	ь	c	d	e
Α	TO-3	6.40 to 6.60	3.00 to 3.10	4.00 to 4.05	1,1 max	1.55 to 1.65
В	TO-220	5.30 to 5.50	3,00 to 3,10	3.83 to 3.88	0.60 to 0,65	1.70 to 1.80
С	SOT-93	6,40 to 6.60	3.00 to 3.10	4,00 to 4,05	1.3 to 1.4	2.7 to 2.9

Material: Nylon; Dimensions: mm.

CDA 3159

A-0026/3

TYPE	MATERIAL	NOTE
CDA 3159	MICA	

CDA 3162

A-0025/3

45

ACCESSORIES AND MOUNTING INSTRUCTIONS (continued)

CDA 3163

A-0023/3

TYPE	MATERIAL	NOTE
CDA 3163	Steel nickel plated	

CDA 3164

TYPE	max	imin	max	D min	D1	S	h1	NOTE
CDA 3164	3.3	3,1	7.1	6.8	5.2	0.4	0.8	

MATERIAL: Steel nickel plated

DATA SHEETS

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 175, BD 177 and BD 179 are silicon epitaxial-base NPN power transistors in Jedec TO-126 plastic package intended for use in medium power linear and switching applications.

The complementart PNP types are the BD 176, BD 178 and BD 180.

ABSOL	UTE MAXIMUM RATINGS	BD 175	BD 177	BD 179
V _{CBO} V _{CEO} V _{EBO} I _C I _{CM} P _{tot} T _{stg}	Collector-base voltage ($I_E=0$) Collector-emitter voltage ($I_B=0$) Emitter-base voltage ($I_C=0$) Collector current Collector peak current Total power dissipation at T _{case} $\leq 25^{\circ}$ C Storage temperature	45V 45V	60V 60V 5V 3A 7A 30W 65 to 150°	80V 80V
'j	ounction temperature		100 0	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	4.16 °C/W
------------------------	----------------------------------	-----	-----------

ELECTRICAL CHARACTERISTICS (T $_{case}$ = 25°C unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ. Max.	Unit
I _{СВО}	Collector cutoff current ($I_E = 0$)	for BD175 for BD177 for BD179	V _{CB} =45V V _{CB} =60V V _{CB} =80V	100 100 100	μΑ μΑ μΑ
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	V _{EB} =5V		1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	l _c =100 mA for BD175 for BD177 for BD179		45 60 80	V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C =1A	$I_{B} = 0.1A$	0.8	V
V _{BE} *	Base-emitter voltage	I _C =1A	V _{CE} =2V	1.3	v
h _{FE} *	DC current gain	$I_{C} = 150 \text{mA}$ $I_{C} = 1 \text{A}$	V _{CE} =2V V _{CE} =2V	40 15	_
f _T	Transistion frequency	I _C =250mA	V _{CE} =10V	3	MHz

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle $\leq 1.5\%$

Safe operating areas

DC current gain

DC transconductance

Collector-emitter saturation voltage

Base-emitter saturation voltage

Satured switching characteristics

Power derating chart

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 176, BD 178 and BD 180 are silicon epitaxial-base PNP power transistors in Jedec TO-126 plastic package intended for use in medium power linear and switching applications.

The complementary NPN types are the BD 175, BD 177 and BD 179.

ABSO	LUTE MAXIMUM RATINGS	BD 176	BD 178	BD 180
V _{CBO}	Collector-base voltage ($I_E = 0$)	-45V	-60V	-80V
V _{CEO} V _{EBO}	Emitter-base voltage ($I_{B}=0$)	-45 V	-5V	-80V
I _C	Collector current Collector peak current		-3A -7A	
P _{tot}	Total power dissipation at T _{case} ≤25℃		30W	C
T _j stg	Junction temperature	-	150°C	0

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	4.16 °C/W
------------------------	----------------------------------	-----	-----------

ELECTRICAL CHARACTERISTICS (T $_{case}$ = 25°C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{сво}	Collector cutoff current (I $_{\rm E}$ =0)	for BD176 V _{CB} =-45V for BD178 V _{CB} =-60V for BD180 V _{CB} =-80V	-100 -100 -100	μΑ μΑ μΑ
I _{EBO}	Emitter cutoff current ($I_{c} = 0$)	V _{EB} =-5V	-1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	l _C =-100 mA for BD176 for BD178 for BD180	-45 -60 -80	V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C =-1A I _B =-0.1A	-0.8	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -1A$ $V_{\rm CE} = -2V$	-1.3	v
h _{FE} *	DC current gain	$V_{c} = -150 \text{mA V}_{CE} = -2 \text{V}$ $V_{c} = -1 \text{A} \text{V}_{CE} = -2 \text{V}$	40 15	-
f _T	Transistion frequency	$I_{c} = -250 \text{mA V}_{ce} = -10 \text{V}$	3	MHz

* Pulsed: pulse duration = 300 μ s, duty cycle $\leq 1.5\%$

Safe operating areas

DC current gain

Collector-emitter saturation voltage

G-3705

 $I_{C} = -3A$

- I_B (A)

1C =- 2A

10-1

Collector-emitter saturation voltage

Base-emitter saturation voltage

Satured switching characteristics

Power derating chart

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 233, BD 235 and BD 237 are silicon epitaxial-base NPN power transistors in Jedec TO-126 plastic package intended for use in medium power linear and switching applications.

The complementary PNP types are the BD 234, BD 236 and BD 238 respectively.

ABSO	LUTE MAXIMUM RATINGS	BD 233	BD 235	BD 237
V _{CBO} V _{CEO} V _{CER} V _{EBO} I _C I _{CM} P _{tot}	Collector-base voltage ($I_E=0$) Collector-emitter voltage ($I_B=0$) Collector-emitter voltage ($I_B=0$) Emitter-base voltage ($I_C=0$) Collector current Collector peak current Total power dissipation at $T_{case} \le 25^{\circ}$ C	45V 45V 45V	60V 60V 5V 2A 6A 25W	100V 80V 100V
T _j stg	Junction temperature		150 ℃	C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case} T	hermal resistance junction-case	max	5	°C/W
--------------------------	---------------------------------	-----	---	------

ELECTRICAL CHARACTERISTICS (T case=25°C unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ.	Max.	Unit
I _{CBO}	Collector cutoff current (I _E =0)	for BD233 for BD235 for BD237 T_{case} = 150°C for BD233 for BD235 for BD237	$V_{CB} = 45V$ $V_{CB} = 60V$ $V_{CB} = 100V$ $V_{CB} = 46V$ $V_{CB} = 60V$ $V_{CB} = 100V$		100 100 100 2 2 2 2	μΑ μΑ μΑ mA mA
I _{EBO}	Emitter cutoff current (I $_{\rm C}$ =0)	V _{EB} =5V			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	l _c =100 mA for BD233 for BD235 for BD237		45 60 80		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C =1A	I _B =0.1A		0.6	v
V _{BE} *	Base-emitter voltage	∣ _C =1A	V _{CE} =2V		1.3	V
h _{FE} *	DC current gain	$ _{C} = 150 \text{mA}$ $ _{C} = 1 \text{A}$	V _{CE} =2V V _{CE} =2V	40 25		_
f _T	Transistion frequency	l _c =250mA	V _{CE} =10V	3		MHz
h _{FE1} /h _{FE}	2 [*] Matched pairs BD233 / BD234 BD235 / BD236 BD237 / BD238	l _c =150mA	V _{CE} =2V	1.6	3	_

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle $~\leq\!1.5\%$

Safe operating areas

DC current gain

 $\begin{pmatrix} 1 \\ (A) \\ 1 \\ 0.5 \\ 0 \\ 0.5 \\ 0 \\ 0.5 \\ 0 \\ 0.5 \\ 0 \\ 0.5 \\ 0 \\ 0.5 \\ 1 \\ 1.5 \\ VCE = 2V \\ 0 \\ 0.5 \\ 1 \\ 1.5 \\ VCE = 2V \\ 0 \\ 0.5 \\ 1 \\ 1.5 \\ VEE \\ VCE = 2V \\ 0 \\ 0.5 \\ 1 \\ 1.5 \\ VEE \\ VCE \\ VC$

DC transconductance

Collector-emitter saturation voltage

Collector-emitter saturation voltage

6-3723 V_{BE}(sat) (v) 1 hFE = 10 0.5 0 6 8 I_C(A) 2 4 6 8 2 4 10-1 1

Base-emitter saturation voltage

Satured switching characteristics

Power derating chart

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 234, BD 236 and BD 238 are silicon epitaxial-base PNP power transistors in Jedec TO-126 plastic-package intended for use in medium power linear and switching applications.

The complementary NPN types are the BD 233, BD 235 and BD 237 respectively.

ABSOLUTE MAXIMUM RATINGS			BD236	BD238
V _{CBO} V _{CEO} V _{CER} V _{EBO} I _C I _{CM} P _{tot}	Collector-base voltage ($I_E=0$) Collector-emitter voltage ($I_B=0$) Collector-emitter voltage ($R_{BE}=1K\Omega$) Emitter-base voltage ($I_C=0$) Collector current Collector peak current Total power dissipation at T _{case} $\leq 25^{\circ}$ C	-45V -45V -45V	-60V -60V -60V -5V -2A -6A 25W	-100V -80V -100V
T _j ^{stg}	Junction temperature		150°C	•

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	5	°C/W
------------------------	----------------------------------	-----	---	------

ELECTRICAL CHARACTERISTICS (T case = 25°C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{СВО}	Collector cutoff current ($I_E = 0$)	for BD234 V $_{CB}$ = -45V for BD236 V $_{CB}$ = -60V for BD238 V $_{CB}$ = -60V T $_{case}$ = 150°C for BD234 V $_{CB}$ = -45V for BD236 V $_{CB}$ = -60V	-100 -100 -100 -100 -2 -2	μΑ μΑ μΑ mA
		for BD238 V _{CB} =-100V	-2	mA
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	V _{EB} =-5V	-1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B =0)	l _C =-100 mA for BD234 for BD236 for BD238	-45 -60 -80	> > >
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -1A$ $I_{\rm B} = -0.1A$	-0.6	v
V _{BE} *	Base-emitter voltage	$I_{\rm C}$ =-1A $V_{\rm CE}$ =-2V	-1.3	v
h _{FE} *	DC current gain	$I_{C} = -150 \text{mA V}_{CE} = -2 \text{V}$ $I_{C} = -1 \text{A} \text{V}_{CE} = -2 \text{V}$	40 25	_
f _T	Transistion frequency	$I_{c} = -250 \text{mA V}_{ce} = -10 \text{V}$	3	MHz
h _{FE1} /h _{FE2}	Matched pairs BD233 / BD234 BD235 / BD236 BD237 / BD238	$I_{\rm C}$ =150mA V _{CE} =2V	1.6	_

* Pulsed: pulse duration = 300 μ s, duty cycle \leq 1.5%

G- 3702 - I_C 8 I_C MAX (PULSED) * PULSED OPERATION 100 µş 4 1045 1ms IC MAX (CONTINUOUS) 2 DC OPERATION 1 8 * FOR SINGLE NON REPETITIVE PULSE 6 4 2 BD 234 BD 236 BD 238 10-1 -V_{CE} (V) 2 4 6 8 2 4 10 1

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

G- 3707 -VBE(sat) (v) 1 0.5 hFE=10 0 2 6 8 2 4 6 8 -I_C(A) 4 10-1

1

Base-emitter saturation voltage

Power derating chart

EPITAXIAL-BASE NPN

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 239, BD 239A, BD 239B and BD 239C are silicon epitaxial-base NPN power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary PNP types are BD 240, BD 240A, BD 240B and BD 240C respectively.

ABSOLUTE MAXIMUM RATINGS

| BD239 |BD239A|BD239B|BD239C

V _{CER} V _{CEO}	Collector-emitter voltage ($R_{BE} = 100\Omega$) Collector-emitter voltage ($I_B = 0$)	55V 45V	70V 60V	90V 80V	115V 100V
V _{EBO}	Emitter-base voltage $(I_c = 0)$		5	V	
l _C	Collector current	2A			
I _{CM}	Collector peak current	4A			
IB	Base current	0.6A			
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	30W			
	T _{amb} ≤25°C		2	N	
T _{sta}	Storage temperature		-65 to	150°C	
Tj	Junction temperature		150	0°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	4.17	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions		Min. Typ.	Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for BD 239 at $V_{CE} = 30V$ for BD 239B $V_{CE} = 60V$	nd BD 239A and BD 239C		0.3 0.3	mA mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for BD 239 for BD 239A for BD 239B for BD 239C	$V_{CE} = 45V$ $V_{CE} = 60V$ $V_{CE} = 80V$ $V_{CE} = 100V$		0.2 0.2 0.2 0.2	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 5V$			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	I _C = 30mA for BD 239 for BD 239A for BD 239B for BD 239C		45 60 80 100		V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C = 1A	$I_{B} = 0.2A$		0.7	V
V _{BE (on)} *	Base-emitter voltage	I _C = 1A	$V_{CE} = 4V$		1.3	V
h _{FE} *	DC current gain	$\begin{array}{l} I_{C}=0.2A\\ I_{C}=1A \end{array}$	$\begin{array}{l} V_{CE} = 4V \\ V_{CE} = 4V \end{array}$	40 15		_
h _{fe}	Small signal current gain	$I_{C} = 0.2A$ f = 1KHz $I_{C} = 0.2A$ f = 1MHz	$V_{CE} = 10V$ $V_{CE} = 10V$	20 3		

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

EPITAXIAL-BASE PNP

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 240, BD 240A, BD 240B and BD 240C are silicon epitaxial-base PNP power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary NPN types are BD 239, BD 239A, BD 239B and BD 239C respectively.

ABSOLUTE MAXIMUM RATINGS

BD 240 BD 240A BD 240B BD 240C

V _{cer} V _{ceo}	Collector-emitter voltage ($R_{BE} = 100\Omega$) Collector-emitter voltage ($I_B = 0$)	-55V -45V	-70∨ -60∨	-90∨ -80V	115V -100V
V _{EBO}	Emitter-base voltage ($I_{C} = 0$)		-5\	/	
l _c	Collector current		-24	4	
CM	Collector peak current		-47	4	
1 _B	Base current	-0.6A			
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	30W			
	T _{amb} ≤ 25°C		2	W	
T _{stg}	Storage temperature		-65 to	150°C	
Tj	Junction temperature		150	0°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max.	4.17	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max.	6 2.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
I _{CEO}	Collector cutoff current (I _B = 0)	for BD240 an V _{CE} = -30V for BD240B a V _{CE} = -60V	d BD240A nd BD240C			-0.3 -0.3	mA mA
I _{CES}	Collector cutoff current (V _{BE} = 0)	for BD240 for BD240A for BD240B for BD240C	$V_{CE} = -45V$ $V_{CE} = -60V$ $V_{CE} = -80V$ $V_{CE} = -100V$			-0.2 -0.2 -0.2 -0.2	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = -5V$				-1	mA
* V _{CEO(sus})	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -30mA for BD240 for BD240A for BD240B for BD240C		-45 -60 -80 -100			V V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	I _C = -1A	I _B = -0.2A			-0.7	v
V _{BE(on)} *	Base-emitter voltage	I _C = -1A	$V_{CE} = -4V$			-1.3	V
h _{FE} *	DC current gain	$I_{c} = -0.2A$ $I_{c} = -1A$	$V_{CE} = -4V$ $V_{CE} = -4V$	40 15			-
h _{fe}	Small signal current gain	$I_{c} = -0.2A$ f = 1KHz $I_{c} = -0.2A$ f = 1MHz	$V_{CE} = -10V$ $V_{CE} = -10V$	20 3			_

* Pulsed: pulse duration = 300 μ s, duty cycle $\leq 2\%$.

10-2

V_{CE} = 2V

, 10-1

Ħ

 ⁴ ⁶ ⁸ ¹C (A)

=-55°C

Input and output capacitance

Base-emitter voltage

Collector-emitter saturation voltage

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 241, BD 241A, BD 241B and BD 241C are silicon epitaxial-base NPN power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary PNP types are the BD 242, BD 242A, BD 242B and BD 242C respectively.

ABSOLUTE MAXIMUM RATINGS

BD241 BD241ABD241BBD241C

Collector-emitter voltage ($R_{BE} = 100\Omega$) Collector-emitter voltage ($I_B = 0$)	55V 45V	70V 60V	90V 80V	115V 100V
Emitter-base voltage $(I_{\rm C} = 0)$		5	V	
Collector current	3A			
Collector peak current	5A			
Base-current	1A			
Total power dissipation at $T_{case} \leq 25^{\circ}C$	40W			
T _{amb} ≤25°C		2	W	
Storage temperature		-65 to	150°C	
Junction temperature		150	O°C	
	$\begin{array}{l} \mbox{Collector-emitter voltage} (R_{BE} = 100\Omega) \\ \mbox{Collector-emitter voltage} (I_B = 0) \\ \mbox{Emitter-base voltage} (I_C = 0) \\ \mbox{Collector current} \\ \mbox{Collector peak current} \\ \mbox{Base-current} \\ \mbox{Total power dissipation at } T_{case} \leqslant 25^{\circ}\text{C} \\ \mbox{T}_{amb} \leqslant 25^{\circ}\text{C} \\ \mbox{Storage temperature} \\ \mbox{Junction temperature} \end{array}$	$ \begin{array}{ll} \mbox{Collector-emitter voltage } (R_{BE} = 100\Omega) & 55V \\ \mbox{Collector-emitter voltage } (I_{B} = 0) & 45V \\ \mbox{Emitter-base voltage } (I_{C} = 0) & \\ \mbox{Collector current} & \\ \mbox{Collector peak current} & \\ \mbox{Base-current} & \\ \mbox{Total power dissipation at } T_{case} \leqslant 25^{\circ}\text{C} \\ & T_{amb} \leqslant 25^{\circ}\text{C} \\ \mbox{Storage temperature} & \\ \mbox{Junction temperature} & \\ \end{array} $	$ \begin{array}{c c} \mbox{Collector-emitter voltage} ({\sf R}_{\sf BE}=100\Omega) & 55V & 70V \\ \mbox{Collector-emitter voltage} ({\sf I}_{\sf B}=0) & 45V & 60V \\ \mbox{Emitter-base voltage} ({\sf I}_{\sf C}=0) & 5 \\ \mbox{Collector current} & 3 \\ \mbox{Collector peak current} & 5 \\ \mbox{Base-current} & 1 \\ \mbox{Total power dissipation at } T_{case} \leqslant 25^{\circ}{\rm C} & 40 \\ \mbox{T}_{amb} \leqslant 25^{\circ}{\rm C} & 22 \\ \mbox{Storage temperature} & -65 \mbox{ to } \\ \mbox{Junction temperature} & 150 \\ \mbox{Collector current} & 5 \\ \mbox{Collector current} & $	$\begin{array}{c c} \mbox{Collector-emitter voltage } ({\sf R}_{\sf BE}=100\Omega) & 55V & 70V & 90V \\ \mbox{Collector-emitter voltage } ({\sf I}_{\sf B}=0) & 45V & 60V & 80V \\ \mbox{Emitter-base voltage } ({\sf I}_{\sf C}=0) & 5V & 60V & 80V \\ \mbox{Collector current} & 3A & 5V & 5V \\ \mbox{Collector peak current} & 5A & 5A & 5A \\ \mbox{Base-current} & 1A & 5A & 5A & 5A \\ \mbox{Total power dissipation at $T_{case} \leq 25^{\circ}C$ & 40W & $T_{amb} \leq 25^{\circ}C$ & 2W & -65 to $150^{\circ}C$ & 150^{\circ}C & $150^{\circ}C$ & 15

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max 3.13 °C/W
R _{th j-amb}	Thermal resistance junction-ambient	max 62.5 °C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \,^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min. Typ. Max	. Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BD 241 at $V_{CE} = 30V$ for BD 241B $V_{CE} = 60V$	nd BD 241A and BD 241C	0.3	mA mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for BD 241 for BD 241A for BD 241A for BD 241B for BD 241C	$V_{CE} = 45V$ $V_{CE} = 60V$ $V_{CE} = 80V$ $V_{CE} = 100V$	0.2 0.2 0.2 0.2	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$	I	1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	$I_{C} = 30mA$ for BD 241 for BD 241A for BD 241A for BD 241B for BD 241C		45 60 80 100	V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 3A$	I _B = 0.6A	1.2	V
$V_{BE(on)}^{*}$	Base-emitter voltage	$I_{\rm C} = 3A$	$V_{CE} = 4V$	1.8	V
h _{FE} *	DC current gain	$I_{\rm C} = 1 {\rm A}$ $I_{\rm C} = 3 {\rm A}$	$\begin{array}{l} V_{CE} = 4V \\ V_{CE} = 4V \end{array}$	25 10	-
h _{fe}	Small signal current gain	$I_{C} = 0.5A$ f = 1KHz $I_{C} = 0.5A$ f = 1MHz	$V_{CE} = 10V$ $V_{CE} = 10V$	20 3	

* Pulsed: pulse duration = $300\mu s$, duty cycle $\leq 2\%$.

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 242, BD 242A, BD 242B and BD 242C are silicon epitaxial-base PNP power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary NPN types are the BD 241, BD 241A, BD 241B and BD 241C respectively.

ABSOLUTE MAXIMUM RATINGS

| BD242 |BD242A|BD242B|BD242C

V _{CER} V _{CEO}	Collector-emitter voltage ($R_{BE} = 100\Omega$) Collector-emitter voltage ($I_B = 0$)	–55V –45V	–70V –60V	-90V -80V	_115V _100V	
V _{EBO}	Emitter-base voltage $(I_c = 0)$		-5	5V		
I _C	Collector current		-3	3A		
I _{CM}	Collector peak current	_5A				
I _B	Base-current	-1A				
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	40W				
	T _{amb} ≤25°C		2'	W		
T _{sta}	Storage temperature		–65 to	150°C		
Τ _j	Junction temperature	150°C				

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	3.13	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	62.5	°C/W
• in j-amo	mermar resistance junetion ambient	max	02.0	0/11

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \degree C$ unless otherwise specified)

	Parameter	Test co	nditions	Min. 1	yp. Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for BD 242 at $V_{CE} = -30V$ for BD 242B $V_{CE} = -60V$	nd BD 242A and BD 242C		-0.3 -0.3	mA mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for BD 242 for BD 242A for BD 242B for BD 242B for BD 242C	$\begin{array}{l} V_{CE}=-45V\\ V_{CE}=-60V\\ V_{CE}=-80V\\ V_{CE}=-100V \end{array}$		-0.2 -0.2 -0.2 -0.2	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = -5V$			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	$I_{C} = -30mA$ for BD 242 for BD 242A for BD 242B for BD 242B for BD 242C		-45 -60 -80 -100		V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -3A$	$I_{B} = -0.6A$		-1.2	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -3A$	$V_{CE} = -4V$		-1.8	V
h _{FE} *	DC current gain	$\begin{array}{l} I_{C}=-1A\\ I_{C}=-3A \end{array}$	$\begin{array}{l} V_{CE}=-4V\\ V_{CE}=-4V \end{array}$	25 10		_
h _{fe}	Small signal current gain	$I_{C} = -0.5A$ f = 1KHz $I_{C} = -0.5A$ f = 1MHz	$V_{CE} = -10V$ $V_{CE} = -10V$	20 3		

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

EPITAXIAL-BASE NPN

POWER LINEAR AND SWITCHING APPLICATIONS

The BD 243, BD 243A, BD 243B and BD 243C are silicon epitaxial-base NPN power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary PNP types are the BD 244, BD 244A, BD 244B and BD 244C respectively.

ABSOLUTE MAXIMUM RATINGS

| BD243 |BD243A|BD243B|BD243C

V _{CBO} V _{CEO}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$)	45V 45V	60V 60V	80V 80V	100V 100V	
V _{EBO}	Emitter-base voltage $(I_c = 0)$	5V				
l _c	Collector current	6A				
I _{CM}	Collector peak current	10A				
I _B	Base current	2A				
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	65W				
T _{sta}	Storage temperature	–65 to 150°C				
Tj	Junction temperature		150	0°C		

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	1.92	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \,^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ. I	Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for BD 243 at $V_{CE} = 30V$ for BD 243B $V_{CE} = 60V$	nd BD 243A and BD 243C		0.7 0.7	mA mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for BD 243 for BD 243A for BD 243B for BD 243C	$V_{CE} = 45V$ $V_{CE} = 60V$ $V_{CE} = 80V$ $V_{CE} = 100V$		0.4 0.4 0.4 0.4	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	$I_{C} = 30mA$ for BD 243 for BD 243A for BD 243A for BD 243B for BD 243C		45 60 80 100		V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C = 6A	$I_B = 1A$		1.5	V
V _{BE} *	Base-emitter voltage	I _C = 6A	$V_{CE} = 4V$		2	V
h _{FE} *	DC current gain	$I_{\rm C} = 0.3 {\rm A}$ $I_{\rm C} = 3 {\rm A}$	$\begin{array}{l} V_{CE} = 4V \\ V_{CE} = 4V \end{array}$	30 15		
h _{fe}	Small signal current gain	$I_{C} = 0.5A$ f = 1KHz $I_{C} = 0.50$ f = 1MHz	$V_{CE} = 10V$ $V_{CE} = 10V$	20 3		

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

POWER LINEAR AND SWITCHING APPLICATIONS

The BD 244, BD 244A, BD 244B and BD 244C are silicon epitaxial-base PNP power transistors in Jedec TO-220 plastic package intended for use in medium power linear and switching applications.

The complementary NPN types are the BD 243, BD 243A, BD 243B and BD 243C respectively.

ABSOLUTE MAXIMUM RATINGS

| BD244 |BD244A|BD244B|BD244C

V _{CBQ}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_P = 0$)	-45V -45V	-60V	-80V	-100V	
VERO	Emitter-base voltage ($I_c = 0$)		5	V	,	
	Collector current	6A				
ICM	Collector peak current	_10A				
I _B	Base current	-2A				
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	65W				
T _{stg}	Storage temperature	–65 to 150°C				
Tj	Junction temperature		150	0°C		
		1				

INTERNAL SCHEMATIC DIAGRAM

c

MECHANICAL DATA

R _{th i-case}	Thermal resistance junction-case	max	1.92	°C/W
R _{th j-amb.}	Thermal resistance junction-ambient	max	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \,^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ	. Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for BD 244 at $V_{CE} = -30V$ for BD 244B $V_{CE} = -60V$	nd BD 244A and BD 244C		-0.7 -0.7	mA mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for BD 244 for BD 244A for BD 244B for BD 244C	$\begin{array}{l} V_{CE} = -45V \\ V_{CE} = -60V \\ V_{CE} = -80V \\ V_{CE} = -100V \end{array}$		-0.4 -0.4 -0.4 -0.4	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = -5V$			_1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	$I_{C} = -30mA$ for BD 244 for BD 244A for BD 244A for BD 244B for BD 244C		45 60 80 100		V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -6A$	$I_{B} = -1A$		-1.5	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -6A$	$V_{CE} = -4V$		-2	V
h _{FE} *	DC current gain	$\begin{array}{l} I_{C}=-0.3A\\ I_{C}=-3A \end{array}$	$\begin{array}{l} V_{CE}=-4V\\ V_{CE}=-4V \end{array}$	30 15		
h _{fe}	Small signal current gain	$I_{C} = -0.5A$ f = 1KHz $I_{C} = -0.5A$ f = 1MHz	$V_{CE} = -10V$ $V_{CE} = -10V$	20 3		

*Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 433, BD 435 and BD 437 are silicon epitaxial-base NPN power transistors in Jedec TO-126 plastic package, intended for use in medium power linear and switching applications.

The BD 433 is especially suitable for use in car-radio output stages.

The complementary PNP types are the BD 434, BD 436 and BD 438 respectively.

ABSO	LUTE MAXIMUM RATINGS	BD 433	BD 435	BD 437
V _{CBO} V _{CES} V _{CEO} V _{EBO} I _C I _{CM}	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(V_{BE} = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Collector peak current $(t \le 10 \text{ms})$ Base current	22V 22V 22V 22V	32V 32V 32V 5V 4A 7A 1A	45V 45V 45V
P _{tot} T _{stg} T _j	Total power dissipation at T _{case} ≤25°C Storage temperature Junction temperature	- 1	36 W 65 to 150° 150°C	С

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th i-case} Thermal resistance junction-case	max	3.5	°C/W
R _{th j-amb} Thermal resistance junction-ambient	max	100	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test cor	nditions	Min.	Тур.	Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	for BD433 for BD435 for BD437	$V_{CB} = 22V$ $V_{CB} = 32V$ $V_{CB} = 45V$			100 100 100	μ Α μ Α μ Α
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for BD433 for BD435 for BD437	$\begin{array}{l} V_{CE} = \ 22V \\ V_{CE} = \ 32V \\ V_{CE} = \ 45V \end{array}$			100 100 100	μΑ μΑ μΑ
I _{EBO}	Emitter cutoff current $(I_{C} = 0)$	V _{EB} = 5V				1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA	for BD433 for BD435 for BD437	22 32 45			V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 2A$	$I_{B} = 0.2A$ for BD433 for BD435 for BD437		0.2 0.2 0.2	0.5 0.5 0.6	V V V
V _{BE} *	Base-emitter voltage	$I_{C} = 10 \text{ mA}$ $I_{C} = 2 \text{ A}$	$V_{CE} = 5V$ $V_{CE} = 1V$ for BD433 for BD435 for BD437		0.58	1.1 1.1 1.2	V V V V
h _{FE} *	DC current gain	$I_C = 10 \text{ mA}$ $I_C = 500\text{mA}$ $I_C = 2 \text{ A}$	$V_{CE} = 5V$ for BD433 for BD435 for BD437 $V_{CE} = 1V$ $V_{CE} = 1V$ for BD433 for BD435 for BD437	40 40 30 85 50 50 40	130 130 130 140		
h_{FE_1}/h_{FE_2}	*Matched pair	$I_{\rm C} = 500 {\rm mA}$	$V_{CE} = 1V$			1.4	
f _T	Transition frequency	$I_{\rm C} = 250 {\rm mA}$	$V_{CE} = 1V$	3			MHz

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

Safe operating areas

DC current gain

DC transconductance

۱_C

(A)

4

3

2

1

0

Collector-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 434, BD 436 and BD 438 are silicon epitaxial-base PNP power transistors in Jedec TO-126 plastic package, intended for use in medium power linear and switching applications.

The BD 434 is especially suitable for use in car-radio output stages.

The complementary NPN types are the BD 433, BD 435 and BD 437 respectively.

ABSOLUTE MAXIMUM RATINGS			BD 436	BD 438
V_{CBO} V_{CES} V_{CEO} V_{EBO} I_C I_{CM} I_B P_{tot} T_{stg} T_j	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(V_{BE} = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Collector peak current (t ≤ 10 ms) Base current Total power dissipation at $T_{case} \leq 25^{\circ}$ C Storage temperature Junction temperature	-22V -22V -22V -22V	-32V -32V -32V -5V -4A -7A -1A 36 W 65 to 150° 150°C	-45V -45V -45V C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	3.5	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	100	°C/W
-		1		

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test cor	nditions	Min.	Тур. Мах.	Unit
I _{CBO}	Collector cutoff current ($I_E = 0$).	for BD434 for BD436 for BD438	$V_{CB} = -22V$ $V_{CB} = -32V$ $V_{CB} = -45V$		-100 -100 -100	μ Α μΑ μΑ
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for BD434 for BD436 for BD438	$V_{CE} = -22V$ $V_{CE} = -32V$ $V_{CE} = -45V$		-100 -100 -100	μΑ μΑ μΑ
I _{EBO}	Emitter cutoff current $(I_{C} = 0)$	$V_{EB} = -5V$			-1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100mA	for BD434 for BD436 for BD438	-22 -32 -45		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C = -2A	$I_{B} = -0.2A$ for BD434 for BD436 for BD438		-0.2 -0.5 -0.2 -0.5 -0.2 -0.6	V V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -10 \text{ mA}$ $I_{\rm C} = -2 \text{ A}$	$V_{CE} = -5V$ $V_{CE} = -1 V$ for BD434 for BD436 for BD438		-0.58 -1.1 -1.1 -1.2	V V V V
h _{FE} *	DC current gain	$I_{C} = -10 \text{mA}$ $I_{C} = -500 \text{mA}$ $I_{C} = -2 \text{ A}$	$V_{CE} = -5V$ for BD434 for BD436 for BD438 $V_{CE} = -1V$ $V_{CE} = -1V$ for BD434 for BD436 for BD438	40 40 30 85 50 50 40	140 140 140 140	
h_{FE_1}/h_{FE_2}	*Matched pair	$I_{\rm C} = -500 {\rm mA}$	V _{CE} = - 1V		1.4	-
f _T	Transition frequency	l _c = -250mA	$V_{CE} = -1V$	3		MHz

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

Safe operating areas

G-2467 -IC (A) 10 PULSE OPERATION IC MAX PULSED +++-10µs TT 1000 IC MAX CONTINUOU П DC OPERATION ims 111 *FOR SINGLE NON REPETITIVE PULSE 10 ms 1 BD438 BD436 BD 434 10-1 $10^{2} - V_{CE}(V)$ 1 10

DC current gain

DC transconductance

Collector-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 439 and BD 441 are silicon epitaxial-base NPN power transistors in Jedec TO-126 plastic package, intended for use in power linear and switching applications. The complementary PNP types are the BD 440 and BD 442 respectively.

ABSO	LUTE MAXIMUM RATINGS	BD 439	BD 441
V _{CBO} V _{CES} V _{CEO} V _{EBO} I _C I _{CM} I _B P _{tot} T	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(V_{BE} = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Collector peak current (t ≤ 10 ms) Base current Total power dissipation at $T_{case} \leq 25^{\circ}$ C Storage temperature	60V 60V 60V 60V	80V 80V 5V 4A 7A 6 W 50°C
T _j	Junction temperature	15	50°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	3.5	°C∕W
R _{th j-amb}	Thermal resistance junction-ambient	max	100	°C∕W
		1		

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min	. Тур.	Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	for BD439 for BD441	$V_{CB} = 60V$ $V_{CB} = 80V$			100 100	μ Α μ Α
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for BD439 for BD441	$V_{CE} = 60V$ $V_{CE} = 80V$			100 100	μ Α μ Α
I _{EBO}	Emitter cutoff current (I _C = 0)	$V_{EB} = 5V$				1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA	for BD 439 for BD 441	60 80			V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 2A$	I _B = 0.2A			0.8	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 10 \text{ mA}$ $I_{\rm C} = 2 \text{ A}$	$V_{CE} = 5V$ $V_{CE} = 1V$		0.58	1.5	V V
h _{FE} *	DC current gain	$I_c = 10 \text{ mA}$ $I_c = 500\text{mA}$ $I_c = 2 \text{ A}$	$V_{CE} = 5V$ for BD 439 for BD 441 $V_{CE} = 1V$ for BD 439 for BD 441 $V_{CE} = 1V$ for BD 439	20 15 40 40 25	130 130 140 140		
b /b	*Matchad pair	L - 500mA	tor BD 441	15		1 /	
"FE1 ^{/ "FE} 2			v _{CE} = 1V			1.4	
† _T	Transition frequency	$I_{\rm C} = 250 {\rm mA}$	$V_{CE} = 1V$	3			MHz

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

G-2465 ۱_C (A) 10 IC MAX PULSED PULSE OPERATION * 1µs TIONS IC MAX CONTINUOUS -100_/us DC OPERATION *FOR SINGLE NON REPETITIVE PULSE 1ms 1 -10ms BD 441 BD439 10-1 10 10² 1 $V_{CE}(v)$

Safe operating areas

Collector-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 440 and BD 442 are silicon epitaxial-base PNP power transistors in Jedec TO-126 plastic package intended for use in power linear and switching applications. The complementary NPN types are the BD439 and BD441 respectively.

ABSO	LUTE MAXIMUM RATINGS	BD 440	BD 442
V_{CBO} V_{CES} V_{CEO} V_{EBO} I_C I_C I_B P_{tot}	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(V_{BE} = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Collector peak current (t ≤ 10 ms) Base current Total power dissipation at $T_{case} \leq 25^{\circ}$ C Storage temperature	-60V -60V -60V -60V	-80V -80V -80V -5V -4A -7A -1A -6 W 0 150°C
T _j	Junction temperature	-031	50°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

10/82

R _{th i-case}	Thermal resistance junction-case	max	3.5	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	100	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test cor	Test conditions		Min. Typ. Max.		
I _{СВО}	Collector cutoff current ($I_E = 0$)	for BD440 for BD442	$V_{CB} = -60V$ $V_{CB} = -80V$			-100 -100	μ Α μ Α
I _{CES}	Collector cutoff current (V _{BE} = 0)	for BD440 for BD442	$V_{CE} = -60V$ $V_{CE} = -80V$			-100 -100	μ Α μ Α
I _{EBO}	Emitter cutoff current $(I_c = 0)$	$V_{EB} = -5V$				-1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	l _C = -100mA	for BD 440 for BD 442	-60 -80			V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C}$ = -2A	I _B = -0.2A			-0.8	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -10 {\rm mA}$ $I_{\rm C} = -2 {\rm A}$	$V_{CE} = -5V$ $V_{CE} = -1V$		-0.58	-1.5	V V
h _{FE} *	DC current gain	$I_{\rm C}$ = -10mA $I_{\rm C}$ = -500mA	$V_{CE} = -5V$ for BD 440 for BD 442 $V_{CE} = -1V$ for BD 440 for BD 442	20 15 40	140 140 140		
		I _C = -2 A	$V_{CE} = -1V$ for BD 440 for BD 442	25 15	140		-
h_{FE_1}/h_{FE_2}	*Matched pair	$I_{\rm C} = -500 {\rm mA}$	$V_{CE} = -1V$			1.4	—
f _T	Transition frequency	I _C = -250mA	$V_{CE} = -1V$	3			MHz

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

G-2456 -IC (A) 10 IC MAX PULSED PULSE OPERATION * 1µs 10µ5 MAX CONTINUOUS Ic 100µs DC OPERATION *FOR SINGLE NON REPETITIVE PULSE Ims 1 10ms BD 442 BD 440 10-1 10 $10^{2} - V_{CE}(v)$ 1

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Transition frequency

G-488 ссво (pF) 10² _ν_{CB}(ν) 10-1

Saturated switching characteristics

Power rating chart

Collector-base capacitance

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 533, BD 535 and BD 537 are silicon epitaxial-base NPN power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary PNP types are the BD 534, BD 536 and BD 538 respectively.

ABSOLUTE MAXIMUM RATINGS			BD 535	BD 537		
V _{CBO}	Collector-base voltage $(I_E = 0)$	45V	45V 60V			
V _{CES}	Collector-emitter voltage (V _{BE} = 0)	45V	60V	80V		
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	45V	60V	80V		
V _{EBO}	Emitter-base voltage $(I_{C} = 0)$		5V			
I _C , I _E	Collector and emitter current		8A			
I _B	Base current		1A			
P _{tot}	Total power dissipation at T _{case} ≪25°C		50 W			
T _{sta}	Storage temperature	-6	-65 to 150°C			
Tj	Junction temperature		150°C			

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th i-case}	Thermal resistance junction-case	max	2.5	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	70	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test cor	nditions	Min. ⁻	Тур.	Max.	Unit
I _{CBO}	Collector cutoff current ($I_E = 0$)	for BD533 for BD535 for BD537	$V_{CB} = 45V$ $V_{CB} = 60V$ $V_{CB} = 80V$			100 100 100	μ Α μ Α μΑ
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for BD533 for BD535 for BD537	$V_{CE} = 45V$ $V_{CE} = 60V$ $V_{CE} = 80V$			100 100 100	μΑ μΑ μΑ
I _{EBO}	Emitter cutoff current $(I_C = 0)$	$V_{EB} = 5V$				1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA	for BD533 for BD535 for BD537	45 60 80			V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 2A$ $I_{\rm C} = 6A$	$I_{B} = 0.2A$ $I_{B} = 0.6A$		0.8	0.8	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 2 {\rm A}$	$V_{CE} = 2 V$			1.5	V
h _{FE} *	DC current gain	$I_{C} = 10 \text{ mA}$ $I_{C} = 500 \text{mA}$ $I_{C} = 2 \text{ A}$	$V_{CE} = 5V \\ for BD533 \\ for BD535 \\ for BD537 \\ V_{CE} = 2V \\ V_{CE} = 2V \\ V_{CE} = 2V \\ for BD533 \\ for BD535 \\ for BD537 \\ \end{cases}$	20 20 15 40 25 25 15			
f _T	Transition frequency	$I_{\rm C} = 500 {\rm mA}$	$V_{CE} = 1V$	3	12		MHz
h _{FE} group	s**: J K	$I_{C} = 2A$ $I_{C} = 3A$ $I_{C} = 2A$ $I_{C} = 3A$	$V_{CE} = 2 V$	30 15 40 20		75 100	

* Pulsed: pulse duration = 300 $\mu \text{s},$ duty cycle = 1.5% ** Only on request

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The BD 534, BD 536 and BD 538 are silicon epitaxial-base PNP power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary NPN types are the BD 533, BD 535 and BD 537 respectively.

ABSOLUTE MAXIMUM RATINGS	BD 534	BD 536	BD 538
$ \begin{array}{lll} V_{CBO} & Collector-base voltage (I_E = 0) \\ V_{CES} & Collector-emitter voltage (V_{BE} = 0) \\ V_{CEO} & Collector-emitter voltage (I_B = 0) \\ V_{CEO} & Emitter-base voltage (I_C = 0) \\ I_C, I_E & Collector and emitter current \\ I_B & Base current \\ P_{tot} & Total power dissipation at T_{case} \leqslant 25^{\circ}C \\ T_{stg} & Storage temperature \\ T_j & Junction temperature \end{array} $	-45V -45V -45V -6	-60V -60V -50V -8A -1A 50 W 55 to 150° 150°C	-80V -80V -80V C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	2.5	°Ċ/W
R _{th j-amb}	Thermal resistance junction-ambient	max	70	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test con	ditions	Min.	Тур. Мах.	Unit
I _{CBO}	Collector cutoff current ($I_E = 0$)	for BD534 for BD536 for BD538	$V_{CB} = -45V$ $V_{CB} = -60V$ $V_{CB} = -80V$		-100 -100 -100	μ Α μ Α μ Α
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for BD534 for BD536 for BD538	$\begin{array}{l} V_{CE} = \ -45V \\ V_{CE} = \ -60V \\ V_{CE} = \ -80V \end{array}$		-100 -100 -100	μ Α μ Α μ Α
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	V _{EB} = -5V			-1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100mA	for BD 534 for BD 536 for BD 538	-45 -60 -80		> > >
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -2A$ $I_{\rm C} = -6A$	$I_{B} = -0.2A$ $I_{B} = -0.6A$		-0.8 -0.8	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C}$ = -2A	$V_{CE} = -2 V$		-1.5	V
h _{FE} *	DC current gain	$I_{C} = -10 \text{ mA}$ $I_{C} = -500 \text{mA}$ $I_{C} = -2 \text{ A}$	$V_{CE} = -5V \\ for BD 534 \\ for BD 536 \\ for BD 538 \\ V_{CE} = -2V \\ V_{CE} = -2V \\ V_{CE} = -2V \\ for BD 534 \\ for BD 536 \\ for BD 538 \\ \end{cases}$	20 20 15 40 25 25 15		
f _T	Transition frequency	$I_{\rm C}$ = -500mA	$V_{CE} = -1V$	3	16	MHz
h _{FE} group	ıs**: J К	$I_{C} = -2A$ $I_{C} = -3A$ $I_{C} = -2A$ $I_{C} = -3A$	$V_{CE} = -2 V$ $V_{CE} = -2 V$ $V_{CE} = -2 V$ $V_{CE} = -2 V$	30 15 40 20	75 100	

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5% ** Only on request

DC current gain

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL-BASE NPN

BD675A

RD681

679/8

The BD 675A, BD 677, BD 677A, BD 679, BD 679A and BD 681 are silicon epitaxial-base NPN power transistors in monolithic Darlington configuration and are mounted in Jedec TO-126 plastic package. They are intended for use in medium power linear and switching applications. The complementary PNP types are the BD 676A, BD 678, BD 678A, BD 680, BD 680A and BD 682 respectively.

ABSOLUTE MAXIMUM RATINGS	BD67	5A BD677 BD677	BD679 BD679A	BD681
$\begin{array}{lll} V_{CBO} & Collector-base voltage (I_E = 0) \\ V_{CEO} & Collector-emitter voltage (I_B = 0) \\ V_{EBO} & Emitter-base voltage (I_C = 0) \\ I_C & Collector current \\ I_{CM} & Collector peak current (repetitir) \\ I_B & Base current \\ P_{tot} & Total power dissipation at T_{case} \\ T_{stg} & Storage temperature \\ T_j & Junction temperature \end{array}$)) 45\ 45\ ≪25°C	/ 60V / 60V 10 4 -65 to 15	80V 80V 5V 4A 6A 00mA 0W 00V 00 150°C 50°C	100V 100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

10/82

R _{th j-case}	Thermal resistance junction-case	max	3.12	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	100	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CBO}	Collector cutoff current ($I_E = 0$)		200 100 200 200	μΑ μΑ μΑ μΑ
I _{CEO}	Collector cutoff current ($I_B = 0$)		500 100 500 500	μΑ μΑ μΑ μΑ
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 5 V$	2	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 50 mA for BD675A for BD677/677A for BD679/679A for BD681	45 60 80 100	V V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	for BD677/679/681 $I_{C} = 4 A$ $I_{B} = 40 mA$ for BD675A/677A/679A $I_{C} = 2A$ $I_{B} = 8mA$	2.7 2.8	V V
V _{BE} *	Base-emitter voltage		2.5 2.5	V V
h _{FE} *	DC current gain		110 750	
h _{fe}	Small signal current gain	$I_{\rm C} = 1.5 \text{A}$ $V_{\rm CE} = 3 \text{V}$ f = 1 MHz	1	

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

V_{BE} (V)

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Small signal current gain

Saturated switching characteristics

EPITAXIAL-BASE PNP

MEDIUM POWER DARLINGTONS

The BD 676A, BD 678, BD 678A, BD 680, BD 680A and BD 682 are silicon epitaxial-base PNP power transistors in monolithic Darlington configuration and are mounted in Jedec TO-126 plastic package. They are intended for use in medium power linear and switching applications. The complementary NPN types are the BD 675A, BD 677, BD 677A, BD 679, BD 679A and BD 681 respectively.

ABSOI	UTE MAXIMUM RATINGS	BD676A	BD678 BD678A	BD680 BD680A	BD682
$V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_{CM} \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j$	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Collector peak current (repetitive) Base current Total power dissipation at $T_{case} \leq 25^{\circ}C$ Storage temperature Junction temperature	-45V -45V	-60V -60V -4 -100 40 -65 to 150	-80V -80V SV SA DmA JW 150°C J °C	-100V -100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th i-case}	Thermal resistance junction-case	max	3.12	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	100	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{сво}	Collector cutoff current $(I_E = 0)$	for BD676A $V_{CB} = -45V$ for BD678/678A $V_{CB} = -60V$ for BD680/680A $V_{CB} = -80V$ for BD682 $V_{CB} = -100V$	-200 -100 -200 -200	μΑ μΑ μΑ μΑ
I _{CEO}	Collector cutoff current ($I_B = 0$)		-500 -100 -500 -500	μΑ μΑ μΑ μΑ
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = -5 V$	-2	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -50 mA for BD676 A for BD678/678A for BD680/680A for BD682	-45 -60 -80 -100	V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	for BD678/680/682 $I_{C} = -4A$ $I_{B} = -40 \text{ mA}$ for BD676A/678A/680A $I_{C} = -2A$ $I_{B} = -8\text{mA}$	-2.7 -2.8	V . V
V _{BE} *	Base-emitter voltage	for BD678/680/682 $I_{C} = -1.5A$ $V_{CE} = -3V$ for BD676A/678A/680A $I_{C} = -2A$ $V_{CE} = -3V$	-2.5 -2.5	v v
h _{FE} *	DC current gain	for BD678/680/682 $I_{C} = -4A$ $V_{CE} = -3V$ for BD676A/678A/680A $I_{C} = -2A$ $V_{CE} = -3V$	110 750	
h _{fe}	Small signal current gain	$I_{\rm C}$ = -1.5A $V_{\rm CE}$ = -3V f = 1 MHz	1	

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

DC transconductance

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Small signal current gain

Saturated switching characteristics

POWER LINEAR AND SWITCHING APPLICATIONS

The BD705, BD707, BD709 and BD711 are silicon epitaxial-base NPN power transistors in Jedec TO-220 plastic package intended for use in power linear and switching applications.

The complementary PNP types are the BD706, BD708, BD710 and BD712 respectively.

ABSOLUTE MAXIMUM RATINGS	BD705	BD707	BD709	BD711
$ \begin{array}{ll} V_{CBO} & Collector-base voltage (I_{E}=0) \\ V_{CES} & Collector-emitter voltage (V_{BE}=0) \\ V_{CEO} & Collector-emitter voltage (I_{B}=0) \\ V_{EBO} & Emitter-base voltage (I_{C}=0) \\ I_{C} & Collector current \\ I_{B} & Base current \\ P_{tot} & Total power dissipation at T_{case} \leqslant 25^{\circ}C \\ T_{stg} & Storage temperature \\ T_{j} & Junction temperature \end{array} $	45V 45V 45V	60V 60V 60V 5 12 5 75 -65 to 15	80V 80V 80V 2A 5W 150°C 0°C	100V 100V 100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.67	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	70	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test cor	nditions	Min. Typ.	Max.	Unit
I _{CBO}	Collector cutoff current (I _E = 0)	for BD705 for BD707 for BD709 for BD711 $T_{case} = 150^{\circ}C$ for BD705 for BD707 for BD709 for BD711	$V_{CB} = 45 V$ $V_{CB} = 60 V$ $V_{CB} = 80 V$ $V_{CB} = 100 V$ $V_{CB} = 45 V$ $V_{CB} = 60 V$ $V_{CB} = 80 V$ $V_{CB} = 100 V$		100 100 100 100 1 1 1 1 1	μΑ μΑ μΑ mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BD705 for BD707 for BD709 for BD711	$V_{CE} = 22 V$ $V_{CE} = 30 V$ $V_{CE} = 40 V$ $V_{CE} = 50 V$		1 1 1	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 5 V$			1	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100 mA	for BD705 for BD707 for BD709 for BD711	45 60 80 100		> > > >
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 4 {\rm A}$	$I_{B} = 0.4 A$		1	V
V _{CEK} *	Knee voltage	$I_{\rm C} = 3A$	I _B = **	0.4		V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 4A$	$V_{CE} = 4V$		1.5	V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions			Min.	Тур.	Max.	Unit
h _{FE} *	DC current gain		= 0.5A = 2A	$V_{CE} = 2V$ $V_{ce} = 2V$	40	120	400	_
		'C	- 2/	for BD705	30			
				for BD707	30			
				for BD709	30			
		I _C	= 4A	$V_{CE} = 4V$				
				for BD705	20	30	150	
				for BD707	15		150	
				for BD709	15		150	
			104	for BD711	15		150	
		'c	= 10A	$V_{CE} = 4V$	5	10		
				for BD705	5	10		_
				for BD709	Ŭ	8		
				for BD711		8		—
f _T	Transition frequency	۱ _c	= 300mA	$V_{CE} = 3V$	3			MHz

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5% ** Value for which I_C = 3.3 A at V_{CE} = 2 V

DC transconductance

Collector-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL-BASE PNP

POWER LINEAR AND SWITCHING APPLICATIONS

The BD706, BD708, BD710 and BD712 are silicon epitaxial-base PNP power transistors in Jedec TO-220 plastic package, intended for use in power linear and switching applications.

The complementary NPN types are the BD705, BD707, BD709 and BD711 respectively.

ABSOLUTE MAXIMUM RATINGS			BD708	BD710	BD712
$V_{CBO} V_{CES} V_{CEO} V_{CEO} V_{EBO} I_C I_B P_{tot} T_{stg} T_j$	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(V_{BE} = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Base current Total power dissipation at $T_{case} \leq 25^{\circ}$ C Storage temperature Junction temperature	-45V -45V -45V	-60V -60V -60V -5 -1; -5 -5 75 -65 to 15(-80V -80V -80V 2A A W 150°C 0°C	-100V -100V -100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test cor	nditions	Min. Typ. N	lax.	Unit
I _{CBO}	Collector cutoff current (I _E = 0)	for BD706 for BD708 for BD710 for BD712 $T_{case} = 150^{\circ}C$ for BD706 for BD708 for BD710 for BD712	$\begin{array}{l} V_{CB} = -45 \ V \\ V_{CB} = -60 \ V \\ V_{CB} = -80 \ V \\ V_{CB} = -100 \ V \\ V_{CB} = -45 \ V \\ V_{CB} = -60 \ V \\ V_{CB} = -80 \ V \\ V_{CB} = -100 \ V \end{array}$	-1 -1 -1 -1	00 00 00 -1 -1 -1 -1 -1	μΑ μΑ μΑ mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BD706 for BD708 for BD710 for BD712	$V_{CE} = -22 V V_{CE} = -30 V V_{CE} = -40 V V_{CE} = -50 V$		-1 -1 -1 -1	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = -5 V$			-1	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C . = -100mA	for BD706 for BD708 for BD710 for BD712	-45 -60 -80 -100		V V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -4$ A	I _B = -0.4 A		-1	V
V _{CEK} *	Knee voltage	$I_{\rm C} = -3A$	I _B = **	-0.4		V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -4A$	$V_{CE} = -4V$	-	1.5	V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter		Test conditions			Тур.	Max.	Unit
h _{FE} *	DC current gain	I _C	= -0.5A = -2A	$V_{CE} = -2V$ $V_{CE} = -2V$	40	120	400	_
			273	for BD706 for BD708	30 30			_
			= -4A	for BD710 V _{CE} = -4V	30			
				for BD706 for BD708	20 15	30	150 150	
				for BD710 for BD712	15 15		150 150	_
		¹ C	= -10A	V _{CE} = -4V for BD706 for BD708	5	12 12		
				for BD710 for BD712		8		
f _T	Transition frequency	۱ _c	= -300mA	$V_{CE} = -3V$	3			MHz

 * Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5% ** Value for which I $_{C}$ = -3.3 A at V $_{CE}$ = -2 V

Safe operating areas

DC current gain

DC transconductance

Transition frequency

Collector-base capacitance

t (µs) V_{CC} = 30V I_{B1} = I_{B2} h_{FE}= 10 6 4 2 ts 1 \square 6 4 ---ton 2 10¹ 8 2 4 4 6 ¹ د (۸) 2 1

Saturated switching characteristics

Power rating chart

POWER LINEAR AND SWITCHING APPLICATIONS

The BD 905, BD 907, BD 909, BD 911 are silicon epitaxial-base NPN power transistors in Jedec TO-220 plastic package. They are intended for use in power linear and switching applications.

The complementary PNP types are the BD 906, BD 908, BD 910 and BD 912 respectively.

ABSOLUTE MAXIMUM RATINGS	BD905	BD907	BD909	BD911
$\begin{array}{lll} V_{CBO} & Collector-base voltage (I_E=0) \\ V_{CEO} & Collector-emitter voltage (I_B=0) \\ V_{EBO} & Emitter-base voltage (I_C=0) \\ I_E, I_C & Emitter and collector current \\ I_B & Base current \\ P_{tot} & Total power dissipation at T_{case} \leqslant 25^\circ C \\ T_{stg} & Storage temperature \\ T_j & Junction temperature \end{array}$	45V 45V	60V 60V 5 1 5 90 -65 to 150	80V 80V 5A A 150°C 0°C	100V 100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.4	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test con	Min. Typ. Max.	Unit	
I _{CBO}	Collector cutoff current (I _E = 0)	for BD905 for BD907 for BD909 for BD911 $T_{case} = 150^{\circ}C$ for BD905 for BD907 for BD909 for BD911	$V_{CB} = 45V V_{CB} = 60V V_{CB} = 80V V_{CB} = 100V V_{CB} = 45V V_{CB} = 60V V_{CB} = 80V V_{CB} = 100V $	500 500 500 500 5 5 5 5 5 5	μΑ μΑ μΑ mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BD905 for BD907 for BD909 for BD911	$V_{CE} = 30V$ $V_{CE} = 30V$ $V_{CE} = 40V$ $V_{CE} = 50V$	1 1 1 1	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 5V$		1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA	for BD905 for BD907 for BD909 for BD911	45 60 80 100	V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 5A$ $I_{\rm C} = 10A$	$I_B = 0.5A$ $I_B = 2.5A$	1 3	V V
V _{BE (sat)} *	Base-emitter saturation voltage	I _C = 10A	I _B = 2.5A	2.5	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 5A$	$V_{CE} = 4V$	1.5	V
h _{FE} *	DC current gain	$I_{C} = 0.5A$ $I_{C} = 5A$ $I_{C} = 10A$	$V_{CE} = 4V$ $V_{CE} = 4V$ $V_{CE} = 4V$	40 250 15 150 5	
f _T	Transition frequency	$I_{\rm C} = 0.5 {\rm A}$	$V_{CE} = 4V$	3	MHz

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

DC transconductance

Collector-emitter saturation voltage

Transition frequency

Collector-base capacitance

Power rating chart

POWER LINEAR AND SWITCHING APPLICATIONS

The BD 906, BD 908, BD 910 and BD 912 are silicon epitaxial-base PNP power transistors in Jedec TO-220 plastic package.

They are intended for use in power linear and switching applications.

The complementary NPN types are the BD 905, BD 907, BD 909 and BD 911 respectively.

ABSOI	UTE MAXIMUM RATINGS	BD906	BD908	BD910	BD912
$\begin{array}{c} & \\ V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_E, \ I_C \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j \end{array}$	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Emitter and collector current Base current Total power dissipation at $T_{case} \le 25^{\circ}$ C Storage temperature Junction temperature	-45V -45V	-60V -60V -5 -5 90 -65 to 150	-80V -80V 5A 5A W 150°C 0°C	-100V -100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R_{th j-case}

Thermal resistance junction-case

max 1.4 °C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test con	Min. Typ. Max.	Unit	
Ісво	Collector cutoff current (I _E = 0)	for BD906 for BD908 for BD910 for BD912 $T_{case} = 150^{\circ}C$ for BD906 for BD908 for BD910 for BD912	$\begin{array}{l} V_{CB} = -45V \\ V_{CB} = -60V \\ V_{CB} = -80V \\ V_{CB} = -100V \\ \end{array} \\ \begin{array}{l} V_{CB} = -45V \\ V_{CB} = -60V \\ V_{CB} = -80V \\ V_{CB} = -100V \end{array}$	-500 -500 -500 -500 -5 -5 -5 -5 -5	μΑ μΑ μΑ mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BD906 for BD908 for BD910 for BD912	$V_{CE} = -30V$ $V_{CE} = -30V$ $V_{CE} = -40V$ $V_{CE} = -50V$	-1 -1 -1 -1	mA mA mA mA
I _{EBO}	Emitter cutoff current $(I_{C} = 0)$	$V_{EB} = -5V$		-1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100mA	for BD906 for BD908 for BD910 for BD912	-45 -60 -80 -100	V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -5A$ $I_{\rm C} = -10A$	$I_{B} = -0.5A$ $I_{B} = -2.5A$	-1 -3	V V
V _{BE (sat)} *	Base-emitter saturation voltage	I _C = -10A	Ι _B = -2.5A	-2.5	V
V _{BE} *	Base-emitter voltage	$I_{\rm C}$ = -5A	$V_{CE} = -4V$	-1.5	V
h _{FE} *	DC current gain	$I_{\rm C} = -0.5 {\rm A}$ $I_{\rm C} = -5 {\rm A}$ $I_{\rm C} = -10 {\rm A}$	$V_{CE} = -4V$ $V_{CE} = -4V$ $V_{CE} = -4V$	40 250 15 150 5	
f _T	Transition frequency	$I_{\rm C} = -0.5 {\rm A}$	$V_{CE} = -4V$	3	MHz

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

Safe operating areas

DC current gain

DC transconductance

Collector-emitter saturation voltage

Base-emitter saturation voltage

Transition frequency

Collector-base capacitance

Power rating chart

EPITAXIAL-BASE NPN/PNP

POWER DARLINGTONS

The BDV65, BDV65A, BDV65B, are silicon epitaxial-base NPN transistors in monolithic Darlington configuration and are mounted in SOT-93 plastic package. They are intended for use in power linear and switching applications.

The complementary PNP types are BDV64, BDV64A, BDV64B respectively.

ABSOLUTE MAXIMUM RATINGS		* PNP	BDV64	BDV64A	BDV64B
		NPN	BDV65	BDV65A	BDV65B
V _{CBO}	Collector-base voltage ($I_E = 0$)		60V	80V	100V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)		60V	80V	100V
V _{EBO}	Emitter-base voltage ($I_{C} = 0$)			5V	
l _c	Collector current			12A	
I _{CM}	Collector peak current (repetitive)			20A	
l _B	Base current			0.5A	
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$			125W	
Τ _{sta}	Storage temperature			65 to 150°	С
Tj	Junction temperature			150°C	

* For PNP types voltage and current values are negative

INTERNAL SCHEMATIC DIAGRAMS

MECHANICAL DATA

Dimensions in mm

R _{thj-case}	Thermal resistance junctioncase	max.	1	°C/W
-----------------------	---------------------------------	------	---	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CBO}	Collector cutoff current ($I_E = 0$)	for BDV64/5 $V_{CB} = 60V$ for BDV64A/5A $V_{CB} = 80V$ for BDV64B/5B $V_{CB} = 100V$ $T_{case} = 150^{\circ}C$ for BDV64/65 $V_{CB} = 30V$ for BDV64A/5A $V_{CB} = 40V$ for BDV64B/5B $V_{CB} = 50V$	400 400 400 2 2 2 2	μΑ μΑ μΑ mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BDV64/65 $V_{CE} = 30V$ for BDV64A/5A $V_{CE} = 40V$ for BDV64B/5B $V_{CE} = 50V$	1 1 1	mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EBO} = 5V	5	mA
V _{CEO (sus})	Collector-emitter sustaining voltage $(I_B = 0)$	Ic = 30mA for BDV64/65 for BDV64A/5A for BDV64B/5B	60 80 100	v v v
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 5A$ $I_{\rm B} = 20mA$	2	V
V _{BE} *	Base-emitter voltage	$I_{C} = 5A$ $V_{CE} = 4V$	2.5	V
h _{FE} *	DC current gain		2500 1000 500	
V _F	Parallel diode forward voltage	I _F = 5A	1.2	V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test cor	nditions	Min. Typ. Ma	. Unit
h _{fe}	Small signal current gain	I _C = 5A f = 1 MHz	$V_{CE} = 4V$	60	-
С _{сво}	Collector-base capacitance	V _{CB} = 10V f = 1 MHz	I _E = 0	100	pF
t _{on}	Turn-on time	-		0.5	μs
t _s	Storage time	$I_{\rm C} = 5A$	$I_{B1} = 20 \text{mA}$	1.1 ** 1.3	μs μs
t _f	Fall time	1 _{B2} 20A	v _{cc} = 16v	2.5 ** 1.0	μs μs

* Pulsed: pulse duration = 300 μ s duty cycle = 1.5%

** For PNP types

For PNP types voltage and current values are negative

130

DC transconductance (BDV64 series) G - 4748

G - 475 0

1_B (mA)

Collector-emitter saturation voltage Collector-emitter saturation voltage (BDV64 series) (BDV64 series) G - 4749 VCE (sat) VCE(sat) (V) (v) 10 A 6A 3 A hFE = 250 3 2 2 1 1 0 0 101 10 1 10 1 10 I_C (A)

EPITAXIAL-BASE NPN

BDW51 | BDW51A BDW51B BDW51C

POWER LINEAR AND SWITCHING APPLICATIONS

The BDW 51, BDW 51A, BDW 51B and BDW 51C are silicon epitaxial-base NPN power transistors in Jedec TO-3 metal case. They are intended for use in power linear and switching applications.

The complementary PNP types are the BDW 52, BDW 52A, BDW 52B and BDW 52C respectively.

ABSOLUTE MAXIMUM RATINGS

V_{CBO} Collector-base voltage ($I_E = 0$) 45V 60V 80V 100V V_{CES} Collector-emitter voltage $(V_{BE} = 0)$ 45V 60V 80V 100V Collector-emitter voltage $(I_B = 0)$ V_{CEO} 45V 60V 80V 100V Emitter-base voltage $(I_c = 0)$ V_{EBO} 5V $I_{\rm C}$ Collector current 15A Collector peak current (repetitive) 20A I_{CM} Base current 7A I_{B} P_{tot} T_{stg} Total power dissipation at T_{case}≤25°C 125W Storage temperature -65 to 200°C 200 °C Τĭ Junction temperature

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

Collector connected to case

TO-3

R _{th j-case}	Thermal resistance junction-case	max	1.4	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test cor	nditions	Min. Typ.	Max.	Unit
I _{CBO}	Collector cutoff current (I _E = 0)	for BDW51 for BDW51A for BDW51B for BDW51C $T_{case} = 150^{\circ}C$ for BDW51 for BDW51A for BDW51B for BDW51C	$V_{CB} = 45V V_{CB} = 60V V_{CB} = 80V V_{CB} = 100V V_{CB} = 60V V_{CB} = 80V V_{CB} = 80V V_{CB} = 100V $		500 500 500 500 500 5 5 5 5 5	μΑ μΑ μΑ mA mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BDW51 for BDW51A for BDW51B for BDW51C	$V_{CE} = 22V$ $V_{CE} = 30V$ $V_{CE} = 40V$ $V_{CE} = 50V$		1 1 1 1	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 5 V$			2	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100 mA	for BDW51 for BDW51A for BDW51B for BDW51C	45 60 80 100		V V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 5A$ $I_{\rm C} = 10A$	$I_{B} = 0.5A$ $I_{B} = 2.5A$		1 3	V V
V _{BE(sat)} *	Base-emitter saturation voltage	I _C = 10A	I _B = 2.5A		2.5	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 5A$	$V_{CE} = 4V$		1.5	V
h _{FE} *	DC current gain	$I_{\rm C} = 5A$ $I_{\rm C} = 10A$	$V_{CE} = 4V$ $V_{CE} = 4V$	20 5	150	_
f _T	Transition frequency	$I_{\rm C} = 0.5 {\rm A}$	$V_{CE} = 4V$	3		MHz

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

DC current gain

DC transconductance

Collector-emitter saturation voltage

Base-emitter saturation voltage

Collector-base capacitance

Transition frequency

Saturated switching characteristics

Power rating chart

POWER LINEAR AND SWITCHING APPLICATIONS

The BDW 52, BDW 52A, BDW 52B and BDW 52C are silicon epitaxial-base PNP power transistors in Jedec TO-3 metal case. They are intended for use in power linear and switching applications.

The complementary NPN types are the BDW 51, BDW 51A, BDW 51B and BDW 51C respectively.

ABSOLUTE MAXIMUM RATINGS

BDW52 | BDW52A|BDW52B|BDW52C

V _{CBO} V _{CES} V _{CEO}	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(V_{BE} = 0)$ Collector-emitter voltage $(I_B = 0)$	-45V -45V -45V	-60V -60V -60V	-80V -80V -80V	-100V -100V -100V
V _{FBO}	Emitter-base voltage $(I_{c} = 0)$		-5	δV	
I _C	Collector current	-15A			
I _{CM}	Collector peak current		-2	0A	
I _B	Base current		-7	Ά	
P _{tot}	Total power dissipation at T _{case} ≤25°C		12	5W	
T _{sta}	Storage temperature		-65 to	200°C	
Tj	Junction temperature		200	O°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.4	°C/W
R _{th j-case}	I nermal resistance junction-case	max	1.4	۰C

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test con	ditions	Mìn. Typ. Max.		Unit
I _{CBO}	Collector cutoff current (I _E = 0)	for BDW52 for BDW52A for BDW52B for BDW52C $T_{case} = 150^{\circ}C$ for BDW52 for BDW52A for BDW52B for BDW52C	$V_{CB} = -45V V_{CB} = -60V V_{CB} = -80V V_{CB} = -100V V_{CB} = -45V V_{CB} = -60V V_{CB} = -80V V_{CB} = -100V $	-5 -5 -5 -5	00 00 00 -5 -5 -5 -5 -5	μΑ μΑ μΑ mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BDW52 for BDW52A for BDW52B for BDW52C	$V_{CE} = -22V$ $V_{CE} = -30V$ $V_{CE} = -40V$ $V_{CE} = -50V$		-1 -1 -1 -1	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = -5 V$			-2	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100 mA	for BDW52 for BDW52A for BDW52B for BDW52C	-45 -60 -80 -100		V V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -5A$ $I_{\rm C} = -10A$	$I_{B} = -0.5A$ $I_{B} = -2.5A$		-1 -3	V V
V _{BE(sat)} *	Base-emitter saturation voltage	Ι _C = -10Α	Ι _B = -2.5A	-2	2.5	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -5A$	$V_{CE} = -4V$	-1	1.5	V
h _{FE} *	DC current gain	$I_{\rm C} = -5A$ $I_{\rm C} = -10A$	$V_{CE} = -4V$ $V_{CE} = -4V$	20 1 5	50	
f _T	Transition frequency	$I_{\rm C} = -0.5 {\rm A}$	$V_{CE} = -4V$	3		MHz

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

G-2682 Safe operating areas -IC *PULSE OPERATION IC MAX PULSED (for BDW52 and BDW52A) -100us (A) IC MÁX CONTINUOUS 10 DC OPERATION *****FOR SINGLE NON 1ms REPETITIVE PULSE 1 10m's BDW52 BDW52A 10-1 $10^{2} - V_{CE}$ (V) 10 1 G-2681 Safe operating areas -Ic *PULSE OPERATION (for BDW52B and BDW52C) IC MAX PULSED 10µs (A) IC MAX CONTINUOUS 100µs 10 DC OPERATION * FOR SINGLE NON REPETITIVE PULSE 1 1ms -BDW52B-10ms BDW52C= 10-1 10² –V_{CE} (V) 1 10

DC current gain

DC transconductance

Collector-emitter saturation voltage

G -V_{CE(sat)} (V) ₩ 10 h_{FE}=10 1. 10¹ ₩ 10² 4 6 8 1 4 6 ⁶ 10² 2 2 4 6 B 10 2 2 4 68 I_C(A) 10⁻¹

Base-emitter saturation voltage

Collector-base capacitance

Transition frequency

Saturated switching characteristics

Power rating chart

EPITAXIAL-BASE NPN

MEDIUM POWER DARLINGTON

The BDW 91 is a silicon epitaxial base NPN transistor in monolithic Darlington configuration mounted in Jedec TO-39 metal case. It is intended for use in switching and linear applications. The complementary PNP type is the BDW92.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage ($I_E = 0$)	180	v
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	180	V
V _{FBO}	Emitter-base voltage $(I_{c} = 0)$	6	V
I _C	Collector current	4	Α
l _B	Base current	100	mΑ
P _{tot}	Total power dissipation at T case <25°C	10	w
101	T _{amb} ≤25°C	1	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

Collector connected to case

TO-39

R _{th j-case}	Thermal resistance junction-case	max	17.5	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	175	°C/W

ELECTRICAL CHARACTERISTICS (T case = 25°C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CBO}	Collector cutoff current (I _E =0)	V _{CB} =180V	50	μA
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} =90V	50	μA
I _{EBO}	Emitter cutoff current (I _C =0)	V _{BE} =6V	0.4 2	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =50 mA	180	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 2A$ $I_{\rm B} = 4mA$	2	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 2A$ $V_{\rm CE} = 2V$	2.5	V
h _{FE} *	DC current gain	$I_{C} = 2A$ $V_{CE} = 5V$ $I_{C} = 50mA$ $V_{CE} = 5V$	1000 3000 150 300	
V _F *	Parallel diode forward voltage	∣ _F =2A	2.5	v
h _{fe}	Small signal currente gain	$I_{C} = 0.5A$ $V_{CE} = 2V$ f = 1MHz	20	-

* Pulsed: pulse duration = 300 μ sec, duty cycle = 1%

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

EPITAXIAL-BASE PNP

MEDIUM POWER DARLINGTON

The BDW 92 is a silicon epitaxial base PNP transistor in monolithic Darlington configuration mounted in Jedec TO-39 metal case. It is intended for use in switching and linear applications.

The complementary NPN type is the BDW91.

ABSOLUTE MAXIMUM RATINGS

V/		100	
V _{CBO}	Collector-base voltage ($I_E = 0$)	-180	v
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	-180	V
V _{FBO}	Emitter-base voltage $(I_c = 0)$	-6	V
I _C	Collector current	-4	Α
l _B	Base current	-100	mΑ
P _{tot}	Total power dissipation at T case ≤25°C	10	w
101	T _{amb} ≤25°C	1	w
T _{sta}	Storage temperature	-65 to 200	°C
T	Junction temperature	200	°C
-			

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Collector connected to case

Dimensions in mm

147

TO-39

ELECTRICAL CHARACTERISTICS (T case = 25°C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	V _{CB} =-180V	-50	μA
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} =-90V	-50	μA
I _{EBO}	Emitter cutoff current (I _C =0)	V _{BE} = -6V	-0.4 -2	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =-50 mA	-180	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -2A$ $I_{\rm B} = -4mA$	-2	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -2A$ $V_{\rm CE} = -2V$	-2.5	v
h _{FE} *	DC current gain	$I_{c} = -2A$ $V_{CE} = -5V$ $I_{c} = -50mA$ $V_{CE} = -5V$	1000 3000 150 300	
V _F *	Parallel diode forward voltage	I _F = 2A	-2.5	v
h _{fe}	Small signal current gain	I _C =-0.5A V _{CE} =-2V f = 1MHz	20	

* Pulsed: pulse duration = 300 μ s, duty cycle = 1%

G-3926 -IC Safe operating areas PULSE OPERATION* 8 IC MAX PULSED (A) 6 ΰus 100 4 IC MAX μs 1ms CONT 2 1 8 6 DC OPERATION 4 2 ***FOR SINGLE NON** REPETITIVE PULSE 10 -1 8 6 4 2 10-2 2 2 4 6 8 2 4 68 4 68 10² 1 10 L₁₈₀ _V_{CE} (V) DC current gain DC transconductance G-3929 hFE 8 -¹c (A) 4 Ш - 2 V_{CE} = - 2V з V_{CE} =-51 10³ 8 6 4 2 2 V_{CE} =-2V 10² 8 6 1 4 2 10 8 2 4 6 2 4 68 2 6 8 10-2 10⁻¹ -V_{BE} (V) 0 0,5 1 1,5

BDW92

149

1

-1_C (A)

Collector-emitter saturation voltage

Base-emitter saturation voltage G-3932 t (µs) -V_{BE(sat)} h_{FE} =250 10-1 10-1 -I_C (A) 10 ^{- 1}

Saturated switching characteristics

EPITAXIAL-BASE NPN

POWER DARLINGTONS

The BDW 93, BDW 93A, BDW 93B and BDW 93C are silicon epitaxial-base NPN transistors in monolithic Darlington configuration and are mounted in Jedec TO-220 plastic package. They are intended for use in power linear and switching applications. The complementary PNP types are the BDW 94, BDW 94A, BDW 94B and BDW 94C respectively.

ABSO	LUTE MAXIMUM RATINGS	BDW93	BDW93A	BDW93B	BDW93C
$\begin{array}{c} & V_{CBO} \\ V_{CEO} \\ I_C \\ I_{CM} \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j \end{array}$	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ Collector current Collector peak current Base current Total power dissipation at $T_{case} \le 25^{\circ}$ C Storage temperature Junction temperature	45V 45V	60V 60V 12 15 0.3 80 -65 to 150	80V 80V 2A 5A 2A 0W 150°C 0°C	100V 100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-220

R _{th j-case}	Thermal resistance junction-case	max	1.56	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test con	ditions	Min.	Тур.	Max.	Unit.
I _{CBO}	Collector cutoff current (I _E = 0)	for BDW93 for BDW93A for BDW93B for BDW93C $T_{case} = 150^{\circ}C$ for BDW93 for BDW93A for BDW93B	$V_{CB} = 45V$ $V_{CB} = 60V$ $V_{CB} = 80V$ $V_{CB} = 100V$ $V_{CB} = 45V$ $V_{CB} = 60V$ $V_{CB} = 80V$ $V_{CB} = 80V$			100 100 100 100 5 5 5	μΑ μΑ μΑ mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BDW93 for BDW93A for BDW93B for BDW93C	$V_{CE} = 40V$ $V_{CE} = 60V$ $V_{CE} = 80V$ $V_{CE} = 80V$			1 1 1 1	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$		-		2	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA for BDW93 for BDW93A for BDW93B for BDW93C		45 60 80 100			V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 5A$ $I_{\rm C} = 10A$	$I_B = 20mA$ $I_B = 100mA$			2 3	V V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 5A$ $I_{\rm C} = 10A$	$I_B = 20mA$ $I_B = 100mA$			2.5 4	V V
h _{FE} *	DC current gain	$I_{C} = 3A$ $I_{C} = 5A$ $I_{C} = 10A$	$V_{CE} = 3V$ $V_{CE} = 3V$ $V_{CE} = 3V$	1000 750 100	2	0000	
V _F *	Parallel-diode forward voltage	$I_F = 5A$ $I_F = 10A$			1.3 1.8	2 4	V V
h _{fe}	Small signal current gain	$I_{C} = 1A$ f = 1 MHz	V _{CE} = 10V	20			_

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

DC current gain

DC transconductance

Collector-emitter saturation voltage

h_{fe} FTT ttt 10³ VCE=3V IC=2 A 10² 10 1 10-2 10-3 10-1 1 t (MHz)

Small signal current gain

Collector-base capacitance

Power rating chart

Saturated switching characteristics

G-2683 t (µs) G_2599/1 Ptot (W) hFE=250 V_{CC}=30V 100 IB1=-IB2 tf 80 ts 60 1 toi 40 20 10-1 2 4 I_C (A) 1 0 25 50 75 100 T_{case} (°C)

EPITAXIAL-BASE PNP

POWER DARLINGTONS

The BDW 94, BDW 94A, BDW 94B and BDW 94C are silicon epitaxial-base PNP transistors in monolithic Darlington configuration and are mounted in Jedec TO-220 plastic package. They are intended for use in power linear and switching applications. The complementary NPN types are the BDW 93, BDW 93A, BDW 93B and BDW 93C respectively.

ABSOLUTE MAXIMUM RATINGS BDW94 BDW94ABDW94BBDW94C Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ -45V -60V -80V -100V V_{CBO} V_{CEO} -45V -60V -80V -100V Collector current -12A $I_{\rm C}$ Collector peak current -15A I_{CM} Base current -0.2A Total power dissipation at $T_{case} \le 25^{\circ}C$ 80W Т Storage temperature -65 to 150°C sta T, Junction temperature 150°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

STS BDW94 BDW94A BDW94B BDW94C

THERMAL DATA

R _{th j-case} Thermal resistance junction-case max	1.56	°C/W
---	------	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test con	ditions	Min. Typ. Max	. Unit
I _{сво}	Collector cutoff current (I _E = 0)	for BDW94 for BDW94A for BDW94B for BDW94C $T_{case} = 150^{\circ}C$ for BDW94 for BDW94A for BDW94B for BDW94C	$\begin{array}{l} V_{CB} = -45V \\ V_{CB} = -60V \\ V_{CB} = -80V \\ V_{CB} = -100V \\ \end{array} \\ \begin{array}{l} V_{CB} = -45V \\ V_{CB} = -60V \\ V_{CB} = -80V \\ V_{CB} = -100V \end{array}$	-100 -100 -100 -100 -5 -5 -5 -5 -5	μΑ μΑ μΑ μΑ mA mA mA
I _{CEO}	Collector cutoff current $(I_B = 0)$	for BDW94 for BDW94A for BDW94B for BDW94C	$V_{CE} = -40V$ $V_{CE} = -60V$ $V_{CE} = -80V$ $V_{CE} = -80V$	-1 -1 -1 -1	mA mA mA mA
I _{EBO}	Emitter cutoff current $(I_c = 0)$	V _{EB} = -5V		· -2	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100mA for BDW94 for BDW94A for BDW94B for BDW94C	,	-45 -60 -80 -100	V V V V
V _{CE≪sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -5A$ $I_{\rm C} = -10A$	$I_B = -20 \text{mA}$ $I_B = -100 \text{mA}$	-2 -3	V V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{C} = -5A$ $I_{C} = -10A$	$I_B = -20mA$ $I_B = -100mA$	-2.5 -4	V V
h _{FE} *	DC current gain	$I_{C} = -3A$ $I_{C} = -5A$ $I_{C} = -10A$	$\begin{array}{l} V_{CE}=\ -3V\\ V_{CE}=\ -3V\\ V_{CE}=\ -3V \end{array}$	1000 750 20000 100	
V _F *	Parallel-diode forward voltage	$I_F = 5A$ $I_F = 10A$		1.3 2 1.8 4	V V
h _{te}	Small signal current gain	$I_{C} = -1A$ f = 1 MHz	V _{CE} = -10V	20	_

 $^*\,$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

Safe operating areas (for **BDW94** and **BDW94**A)

Safe operating areas (for **BDW94B** and **BDW94C**)

DC current gain

DC transconductance

-YCE(sat) (v) 2 1 0 2.5 5 7.5 -lc (A)

Collector-emitter saturation voltage

Collector-base capacitance

Power rating chart

Saturated switching characteristics

EPITAXIAL-BASE NPN

POWER DARLINGTONS

The BDX 53, BDX 53A, BDX 53B and BDX 53C are silicon epitaxial-base NPN transistors in monolithic Darlington configuration and are mounted in Jedec TO-220 plastic package, intended for use in hammer drivers, audio amplifiers and other medium power linear and switching applications.

The complementary PNP types are the BDX 54, BDX 54A, BDX 54B and BDX 54C respectively.

ABSOLUTE MAXIMUM RATINGS	BDX53	BDX53A	BDX53B	BDX53C
$ \begin{array}{ll} V_{CBO} & Collector-base voltage (I_{E}=0) \\ V_{CEO} & Collector-emitter voltage (I_{B}=0) \\ V_{EBO} & Emitter-base voltage (I_{C}=0) \\ I_{C} & Collector current \\ I_{CM} & Collector peak current (repetitive) \\ I_{B} & Base current \\ P_{tot} & Total power dissipation at T_{case} \leqslant 25^{\circ}C \\ T_{stg} & Storage temperature \\ T_{j} & Junction temperature \end{array} $	45V 45V	60V 60V 5 8 12 0. 60 -65 to 150	80V 80V V A 2A 2A 0W 150°C 0°C	100V 100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Collector connected to tab.

Dimensions in mm

TO-220

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test cor	nditions	Min. Ty	p. Max.	Unit
I _{CBO}	Collector cutoff current $(I_E = 0)$	for BDX53 for BDX53A for BDX53B for BDX53C	$V_{CB} = 45V$ $V_{CB} = 60V$ $V_{CB} = 80V$ $V_{CB} = 100V$		200 200 200 200	μΑ μΑ μΑ μΑ
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BDX53 for BDX53A for BDX53B for BDX53C	$V_{CE} = 22V$ $V_{CE} = 30V$ $V_{CE} = 40V$ $V_{CE} = 50V$		500 500 500 500	μ Α μ Α μ Α
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 5 V$			2	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	l _C = 100 mA	for BDX53 for BDX53A for BDX53B for BDX53C	45 60 80 100		>>>>
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C = 3A	$I_B = 12mA$		2	V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 3A$	I _B = 12mA		2.5	V
h _{FE} *	DC current gain	$I_{\rm C} = 3A$	$V_{CE} = 3V$	750	1.1	_
V _F	Parallel-diode forward voltage	I _F = 3A I _F = 8A		1. 2.	8 2.5 5	V V

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

DC current gain

DC transconductance

Small signal current gain

Saturated switching characteristics

EPITAXIAL-BASE NPN

POWER DARLINGTONS

The BDX 53E, BDX 53F are silicon epitaxial base NPN transistors in monolithic Darlington configuration and **are** mounted in Jedec TO-220 plastic package. They are intended for use in power linear and switching applications. The complementary PNP types are the BDX 54E and BDX 54F respectively.

ABSO	LUTE MAXIMUM RATINGS	BDX53	E BDX53F
$V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_{C} \\ I_{B} \\ P_{tot} \\ T_{stg} \\ T_{j}$	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Collector peak current Base current Total power dissipation at $T_{case} \le 25^{\circ}$ C Storage temperature Junction temperature	140V 140V 0 6 -65 tr	160V 160V 5V 8A 12A 0.2A 50W 0 150°C 50°C
		(

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-220

th j-amb

ELECTRICAL CHARACTERISTICS (T $_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ. Ma	ax.	Unit
I _{ceo}	Collector cutoff current ($I_B = 0$)	for BDX53E for BDX53F	V _{CE} = 70V V _{CE} = 80V	0 0).5).5	mA mA
I _{CBO}	Collector cutoff current ($I_E = 0$)	for BDX53E for BDX53F	V _{CB} =140V V _{CB} =160V	0 0).2).2	mA mA
I _{EBO}	Emitter cutoff current (I _E =0)	V _{EB} =5V			5	mA
V _{CEO} (sus)	*Collector-emitter sustaining voltage (I _B = 0)	I _C =50 mA for BDX53E for BDX53F		140 160		v v
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C = 2A	I _B =10mA		2	V
V _{BE (sat)} *	Base-emitter saturation voltage	I _C =2A	I _B =10mA	2	2.5	V
h _{FE} *	DC current gain	I _C =2A I _C =3A	V _{CE} =5V V _{CE} =5V	500 150		
V _F *	Parallel diode forward voltage	I _F =2A		2	2.5	v
h _{fe}	Small signal currente gain	l _c =0.5A f=1MHz	V _{CE} =2V	20		

* Pulsed: pulse duration = 300 μ s, duty cycle = 1%

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

EPITAXIAL-BASE NPN

MEDIUM POWER DARLINGTON

The BDX53S is a silicon epitaxial-base NPN transistor in monolithic Darlington configuration and is mounted in Jedec TO-39 metal case. It is intended for use in medium in power linear and switching applications. The complementary PNP type is the BDX54S

ABSOLUTE MAXIMUM RATINGS

V _{CBO} V _{CEO}	Collector-base voltage ($I_{E}=0$) Collector-emitter voltage ($I_{E}=0$)	150 150	V V
VEBO	Emitter-base voltage $(I_c = 0)$	5	v
	Collector current	6	Α
I _{CM}	Collector peak current	10	Α
I _B	Base current	0.2	Α
P _{tot}	Total power dissipation at T _{case} ≤25°C	15	W
	T _{amb} ≤25°C	1	w
T _{stg} T _j	Storage temperature Junction temperature	-65 to 200 200	°C ℃

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Collector connected to case

Dimensions in mm

TO-39

R _{th j-case} T	hermal resistance junction-case	max	11.66	°C/W
R _{th j-amb} T	hermal resistance junction-ambient	max	175	°C/W

ELECTRICAL CHARACTERISTICS (T $_{case}$ = 25°C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	V _{CB} =150V T _{case} =125 <i>°</i> C	0.2	mA
		V _{CB} =150V	2	mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} =75V	0.2	mA
I _{EBO}	Emitter cutoff current (I $_{\rm C}~=$ 0)	V _{EB} =5V	5	mA
V _{CEO} (sus) ³	*Collector-emitter sustaining voltage (I _B = 0)	l _c =50 mA	150	v
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C =2A I _B =8mA	2	v
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 2A$ $I_{\rm B} = 8mA$	2.5	V
h _{FE} *	DC current gain	$I_{C} = 100 \text{mA} \text{ V}_{CE} = 5 \text{V}$ $I_{C} = 2 \text{A} \text{ V}_{CE} = 5 \text{V}$	100 500	
V _F *	Parallel diode forward voltage	I _F =2A	2.5	V
h _{fe}	Small signal currente gain	I _C =0.5A V _{CE} =2V f = 1MHz	20	_

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1 %

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

EPITAXIAL-BASE PNP

POWER DARLINGTONS

The BDX 54, BDX 54A, BDX 54B and BDX 54C are silicon epitaxial-base PNP transistors in monolithic Darlington configuration and are mounted in Jedec TO-220 plastic package, intended for use in hammer drivers, audio amplifiers and other medium power linear and switching applications.

The complementary NPN types are the BDX 53, BDX 53A, BDX 53B and BDX 53C respectively.

ABSOLUT	E MAXIMUM RATINGS	BDX54	BDX54A	BDX54B	BDX54C
$\begin{array}{c} & \\ V_{CBO} & Co\\ V_{CEO} & Co\\ V_{EBO} & Err\\ I_C & Co\\ I_{CM} & Co\\ I_B & Ba\\ P_{tot} & To\\ T_{stn} & Stc\\ \end{array}$	Illector-base voltage $(I_E = 0)$ Illector-emitter voltage $(I_B = 0)$ nitter-base voltage $(I_C = 0)$ Illector current Illector peak current (repetitive) se current tal power dissipation at $T_{case} \leq 25^{\circ}C$ orage temperature	-45V -45V	-60V -60V -5 -5 -6 -1 -0. 60 -65 to	-80V -80V 5V 3A 2A 2A 2A 0W 150°C	-100V -100V
T _j Ju	nction temperature		150	O°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	2.08	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	70	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test cor	nditions	Min.	Тур. Мах.	Unit
I _{CBO}	Collector cutoff current ($I_E = 0$)	for BDX54 for BDX54A for BDX54B for BDX54C	$V_{CB} = -45V$ $V_{CB} = -60V$ $V_{CB} = -80V$ $V_{CB} = -100V$		-200 -200 -200 -200	μΑ μΑ μΑ μΑ
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BDX54 for BDX54A for BDX54B for BDX54C	$V_{CE} = -22V$ $V_{CE} = -30V$ $V_{CE} = -40V$ $V_{CE} = -50V$		-500 -500 -500 -500	μΑ μΑ μΑ μΑ
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = -5 V$			-2	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	l _C = -100 mA	for BDX54 for BDX54A for BDX54B for BDX54C	-45 -60 -80 -100		V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C = -3A	$I_B = -12mA$		-2	V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = -3A$	$V_{CE} = -12mA$		-2.5	V
h _{FE} *	DC current gain	$I_{\rm C} = -3A$	$V_{CE} = -3V$	750	1	
V _F	Parallel-diode forward voltage	$I_F = 3A$ $I_F = 8A$			1.8 2.5 2.5	V V

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Collector-emitter saturation voltage

Small signal current gain $h_{fe} = \begin{pmatrix} -2en \\ -10^{2} \\ 0 \\ 0 \\ 0 \\ 10^{-3} \\ 10^{-2} \\ 0^{-2} \\ 10^{-1}$

Saturated switching characteristics

EPITAXIAL-BASE PNP

POWER DARLINGTONS

The BDX 54E, BDX 54F are silicon epitaxial base PNP transistors in monolithic Darlington configuration and are mounted in Jedec TO-220 plastic package. They are intended for use in power linear and switching applications. The complementary NPN types are the BDX 53E and BDX 53F respectively.

ABSO	LUTE MAXIMUM RATINGS	BDX54E	BDX54F
V _{CBO} V _{CEO} V _{EBO} I _C I _{CM} I _B P _{tot}	Collector-base voltage ($ _{E}=0$) Collector-emitter voltage ($ _{B}=0$) Emitter-base voltage ($ _{C}=0$) Collector current Collector peak current Base current Total power dissipation at T _{case} $\leq 25^{\circ}$ C Storage temperature	-140V -140V -5V -8A -12 <i>i</i> -0.2 60V -65 to 1	-160V -160V / A A A V 50°C
Tj	Junction temperature	150°	C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-220

R _{th j-case}	Thermal resistance junction-case	max	2.08	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	70	°C/W

ELECTRICAL CHARACTERISTICS (T case = 25°C unless otherwise specified)

	Parameter	Test conditions		Min. Typ. Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BDX54E for BDX54F	V _{CE} =-70V V _{CE} =-80V	-0.5 -0.5	mA mA
I _{сво}	Collector cutoff current ($I_E = 0$)	for BDX54E for BDX54F	V _{СВ} ≕-140V v _{СВ} ≕-160V	-0.2 -0.2	mA mA
I _{EBO}	Emitter cutoff current (I _E =0)	V _{EB} =-5V		-5	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	l _c =-50 mA for BDX54E for BDX54F		-140 -160	v v
V _{CE (sat)} *	Collector-emitter saturation voltage	Ι _C =-2Α	I _B =-10mA	-2	v
V _{BE (sat)} *	Base-emitter saturation voltage	I _C =-2A	I _B =-10mA	-2.5	V
h _{FE} *	DC current gain	I _C =-2A I _C =-3A	V _{CE} =-5V V _{CE} =-5V	500 150	
V _F *	Parallel diode forward voltage	I _F = 2A		-2.5	v
h _{fe}	Small signal currente gain	I _C =-0.5A f = 1MHz	V _{CE} =-2V	20	-

* Pulsed: pulse duration = 300 μ s, duty cycle = 1%

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

EPITAXIAL-BASE PNP

MEDIUM POWER DARLINGTON

The BDX 54S is a silicon epitaxial-base PNP transistor in monolithic Darlington configuration and is mounted in Jedec TO-39 metal case. It is intended for use in medium power linear and switching applications.

The complementary NPN type is the BDX 53S.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage ($I_F = 0$)	-150	V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	-150	V
V _{FBO}	Emitter-base voltage $(I_{c} = 0)$	-5	V
I _C	Collector current	-6	Α
I _{CM}	Collector peak current	-10	Α
I _B	Base current	-0.2	Α
P _{tot}	Total power dissipation at T _{case} ≤25°C	15	W
101	T _{amb} ≤25°C	1	W
T _{sta}	Storage temperature	-65 to 200	°C
T	Junction temperature	200	°C
•		1	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

Collector connected to case

TO-39

R _{th j-amb} Thermal resistance junction-ambient max 175	ance junction-case max 11.66 °C/W ance junction-ambient max 175 °C/W
---	---

ELECTRICAL CHARACTERISTICS (T $_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	V _{CB} =-150V T _{case} =125°C	-0.2	mA
		v _{CB} =-150V	-2	MA
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} =-75V	-0.2	mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} =-5V	-5	mΑ
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	I _C =-50 mA	-150	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -2A$ $I_{\rm B} = -8mA$	-2	V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = -2A$ $I_{\rm B} = -8mA$	-2.5	V
h _{FE} *	DC current gain	$I_{c} = -100 \text{mA V}_{CE} = -5 \text{V}$ $I_{c} = -2 \text{A} \text{V}_{CE} = -5 \text{V}$	100 500	_
V _F *	Parallel diode forward voltage	I _{F ,} =-2A	-2.5	V
h _{fe}	Small signal currente gain	$V_{c} = -0.5A$ $V_{ce} = -2V$ f = 1MHz	20	—

* Pulsed: pulse duration = 300 μ s, duty cycle = 1%

-3930 -VCE(sat) (V) hFE=500 hFE =250 hFE = 50 1,5 1 0,5 0 4 6 8 2 4 68 • 2 4 6 8 10-2 10-1 -I_C (A) 1

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage G-3932 t -V_{BE(sat)} (µs) 8 3 hFE =250 1 2 8 6 4 1 2 10 -1 0 4 6 4 6 8 2 8 10-1 -1_C (A) 1

Saturated switching characteristics

EPITAXIAL-BASE NPN

POWER DARLINGTONS

The BDX 85, BDX 85A, BDX 85B and BDX 85C are silicon epitaxial-base NPN power transistors in monolithic Darlington configuration and are mounted in Jedec TO-3 metal case. They are intended for use in power linear and switching applications. The complementary PNP types are the BDX 86, BDX 86A, BDX 86B and BDX 86C respectively.

ABSOI	UTE MAXIMUM RATINGS	BDX85	BDX85A	BDX85B	BDX85C
V_{CBO} V_{CEO} V_{EBO} I_{C} I_{CM} I_{B} P_{tot} T_{stg} T_{j}	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Collector peak current (repetitive) Base current Total power dissipation at $T_{case} \le 25^{\circ}C$ Storage temperature Junction temperature	45V 45V	60V 60V 5 10 11 0. 10 -65 to 200	80V 80V V DA 5A 1A 0W 200°C 0 °C	100V 100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

185

R_{th i-case} Thermal resistance junction-case

max 1.75 °C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CBO}	Collector cutoff current (I _E = 0)	for BDX85 $V_{CB} = 45 V$ for BDX85A $V_{CB} = 60 V$ for BDX85B $V_{CB} = 80 V$ for BDX85C $V_{CB} = 100 V$ $T_{case} = 150^{\circ}C$ for BDX85 $V_{CB} = 45 V$ for BDX85A $V_{CB} = 60 V$ for BDX85B $V_{CB} = 80 V$ for BDX85C $V_{CB} = 100 V$	500 500 500 500 5 5 5 5 5 5 5	μΑ μΑ μΑ mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)		1 1 1 1	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	V _{EB} = 5 V	2	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100 mA for BDX85 for BDX85A for BDX85B for BDX85C	45 60 80 100	> > > >
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 4A \qquad I_{\rm B} = 16 \text{ mA}$ $I_{\rm C} = 8A \qquad I_{\rm B} = 40 \text{ mA}$	2 4	V V
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{\rm C}$ = 8A $I_{\rm B}$ = 80 mA	4	V
V _{BE} *	Base-emitter voltage	$I_{\rm C}$ = 4A $V_{\rm CE}$ = 3V	2.8	V
h _{FE} *	DC current gain	$ \begin{array}{ll} I_{C} &= 3A & V_{CE} = 3V \\ I_{C} &= 4A & V_{CE} = 3V \\ I_{C} &= 8A & V_{CE} = 4V \end{array} $	1000 750 18000 200	
V _F	Parallel-diode forward voltage	$I_F = 3A$ $I_F = 8A$	1.8 2.5	V V
h _{fe}	Small signal current gain	$I_{\rm C} = 3A$ $V_{\rm CE} = 3V$ f = 1 MHz	10	_

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

DC current gain

-236 ۱_C (A) VCE=3V 8 6 4 2 0 0.5 1 1.5 VBE(V)

DC transconductance

Small signal current gain

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL-BASE PNP

POWER DARLINGTONS

The BDX 86, BDX 86A, BDX 86B and BDX 86C are silicon epitaxial-base PNP power transistors in monolithic Darlington configuration and are mounted in Jedec TO-3 metal case. They are intended for use in power linear and switching applications. The complementary NPN types are the BDX 85, BDX 85A, BDX 85B and BDX 85C respectively.

ABSO	LUTE MAXIMUM RATINGS	BDX86	BDX86A	BDX86B	BDX86C
V_{CBO} V_{CEO} V_{EBO} I_{C} I_{CM} I_{B} P_{tot} T_{stg} T_{j}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Collector peak current (repetitive) Base current Total power dissipation at $T_{case} \le 25^{\circ}$ C Storage temperature Junction temperature	-45V -45V	-60V -60V -1 -1 -0. 10 -65 to 200	-80V -80V 5V 5A 1A 0W 200°C 0 °C	-100V -100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R_{th j-case} Thermal resistance junction-case

max 1.75 °C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CBO}	Collector cutoff current (I _E = 0)	for BDX86 $V_{CB} = -45 \text{ V}$ for BDX86A $V_{CB} = -60 \text{ V}$ for BDX86B $V_{CB} = -80 \text{ V}$ for BDX86C $V_{CB} = -100 \text{ V}$ $T_{case} = 150^{\circ}\text{C}$ for BDX86 $V_{CB} = -45 \text{ V}$ for BDX86A $V_{CB} = -60 \text{ V}$ for BDX86B $V_{CB} = -80 \text{ V}$ for BDX86C $V_{CB} = -100 \text{ V}$	-500 -500 -500 -500 -5 -5 -5 -5 -5	μΑ μΑ μΑ mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BDX86 $V_{CE} = -22 V$ for BDX86A $V_{CE} = -30 V$ for BDX86B $V_{CE} = -40 V$ for BDX86C $V_{CE} = -50 V$	-1 -1 -1 -1	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	V _{EB} = -5 V	-2	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100 mA for BDX86 for BDX86A for BDX86B for BDX86C	-45 -60 -80 -100	V V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$\begin{array}{rrrr} I_{C} &= -4A & I_{B} &= -16 \text{ mA} \\ I_{C} &= -8A & I_{B} &= -40 \text{ mA} \end{array}$	-2 -4	V V
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{\rm C} = -8A$ $I_{\rm B} = -80$ mA	-4	V
V _{BE} *	Base-emitter voltage	$I_{\rm C}$ = -4A $V_{\rm CE}$ = -3V	-2.8	V
h _{FE} *	DC current gain	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1000 750 18000 200	
V _F	Parallel-diode forward voltage	$I_F = 3A$ $I_F = 8A$	1.8 2.5	V V
h _{fe}	Small signal current gain	$I_{\rm C} = -3A$ $V_{\rm CE} = -3V$ f = 1 MHz	10	

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas (for **BDX86** and **BDX86**A)

Safe operating areas (for **BDX86B** and **BDX86C**)

DC current gain

DC transconductance

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Small signal current gain

Collector-base capacitance

Power rating chart

EPITAXIAL-BASE NPN

POWER DARLINGTONS

The BDX 87, BDX 87A, BDX 87B and BDX 87C are silicon epitaxial-base NPN power transistors in monolithic Darlington configuration and are mounted in Jedec TO-3 metal case. They are intended for use in power linear and switching applications. The complementary PNP types are the BDX 88, BDX 88A, BDX 88B and BDX 88C respectively.

ABSO	LUTE MAXIMUM RATINGS	BDX87	BDX87A	BDX87B	BDX87C
$V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_{CM} \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j$	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Collector peak current (repetitive) Base current Total power dissipation at $T_{case} \le 25^{\circ}C$ Storage temperature Junction temperature	45V 45V	60V 60V 5 12 18 0. 12 -65 to 200	80V 80V 2A 3A 2A 0W 200°C 0 °C	100V 100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

195

TO-3

R _{th j-case}	Thermal resistance junction-case		max	1.45	°C/W
------------------------	----------------------------------	--	-----	------	------

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CBO}	Collector cutoff current (I _E = 0)	for BDX87 $V_{CB} = 45 V$ for BDX87A $V_{CB} = 60 V$ for BDX87B $V_{CB} = 80 V$ for BDX87C $V_{CB} = 100 V$ $T_{case} = 150^{\circ}C$ for BDX87 $V_{CB} = 45 V$ for BDX87A $V_{CB} = 60 V$ for BDX87B $V_{CB} = 80 V$ for BDX87C $V_{CB} = 100 V$	500 500 500 500 5 5 5 5 5 5	μΑ μΑ μΑ mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BDX87 $V_{CE} = 22 V$ for BDX87A $V_{CE} = 30 V$ for BDX87B $V_{CE} = 40 V$ for BDX87C $V_{CE} = 50 V$	1 1 1 1	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 5 V$	2	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100 mA for BDX87 for BDX87A for BDX87B for BDX87C	45 60 80 100	V V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$\begin{array}{rrrr} I_{\rm C} = 6 A & I_{\rm B} & = 24 \mbox{ mA} \\ I_{\rm C} = 12 A & I_{\rm B} & = 120 \mbox{ mA} \end{array}$	2 3	V V
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 12 {\rm A}$ $I_{\rm B} = 120 {\rm mA}$	4	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 6A$ $V_{\rm CE} = 3V$	2.8	V
h _{FE} *	DC current gain	$ I_C = 5A \qquad V_{CE} = 3V \\ I_C = 6A \qquad V_{CE} = 3V \\ I_C = 12A \qquad V_{CE} = 3V $	1000 750 18000 100	
V _F	Parallel-diode forward voltage	$I_F = 3A$ $I_F = 8A$	1.8 2.5	V V
h _{fe}	Small signal current gain	$I_{C} = 5A$ $V_{CE} = 3V$ f = 1 MHz	25	_

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

DC current gain

DC transconductance

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

h_{fe} 10³ 2 10² V_{CE} = 3V I_C = 5A 10 8 FH 2 1 4 6 68 10-³ 0-2 10-1 1 f (MHz)

Collector-base capacitance

6-487 ссво (pF) 6 4 2 10² 8 6 4 2 10 • •св(v) 2 4 6 8 2 4 1 10

Saturated switching characteristics

Small signal current gain

EPITAXIAL-BASE PNP

POWER DARLINGTONS

The BDX 88, BDX 88A, BDX 88B and BDX 88C are silicon epitaxial-base PNP power transistors in monolithic Darlington configuration and are mounted in Jedec TO-3 metal case. They are intended for use in power linear and switching applications. The complementary NPN types are the BDX 87, BDX 87A, BDX 87B and BDX 87C respectively.

ABSOLUTE MAXIMUM RA	FINGS	BDX88	BDX88A	BDX88B	BDX88C
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$(I_E = 0)$ $ge (I_B = 0)$ c = 0) (repetitive) $at T_{case} \leq 25^{\circ}C$	-45V -45V	-60V -60V -5 -12 -12 -0. 120 -65 to 200	-80V -80V 2A 3A 2A 200°C 200°C 0°C	-100V -100V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case} Thermal resistance junction-case	max	1.45	°C/W
---	-----	------	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CBO}	Collector cutoff current (I _E = 0)	for BDX88 $V_{CB} = -45 V$ for BDX88A $V_{CB} = -60 V$ for BDX88B $V_{CB} = -80 V$ for BDX88C $V_{CB} = -100 V$ $T_{case} = 150^{\circ}C$ for BDX88 $V_{CB} = -45 V$ for BDX88A $V_{CB} = -60 V$ for BDX88B $V_{CB} = -80 V$ for BDX88C $V_{CB} = -100 V$	-500 -500 -500 -500 -5 -5 -5 -5 -5	μΑ μΑ μΑ mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	+ + + + + +	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = -5 V$	-2	mA
V _{CEO(sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100 mA for BDX88 for BDX88A for BDX88B for BDX88C	-45 -60 -80 -100	V V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{\rm C}$ = -6A $I_{\rm B}$ = -24 mA $I_{\rm C}$ = -12A $I_{\rm B}$ = -120 mA	-2 -3	V V
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{\rm C}$ = -12A $I_{\rm B}$ = -120 mA	-4	V
V _{BE} *	Base-emitter voltage	$I_{C} = -6A$ $V_{CE} = -3V$	-2.8	۷
h _{FE} *	DC current gain		1000 750 18000 100	
V _F	Parallel-diode forward voltage	$I_F = 3A$ $I_F = 8A$	1.8 2.5	V V
h _{fe}	Small signal current gain	$I_{C} = -5A$ $V_{CE} = -3V$ f = 1 MHz	35	

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas (for **BDX88** and **BDX88A**)

G-2384

DC transconductance

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Small signal current gain

Collector-base capacitance

Saturated switching characteristics

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTORS

The BDY 57 and BDY 58 are silicon multiepitaxial planar NPN transistors in Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS			BDY 58
V _{CBO} V _{CEO} V _{EBO} I _C I _B	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Base current	120V 80V 1(25 6	160V 125V 5A 5A
P _{tot} T _{stg} T _j	Storage temperature	-65 to 20	200°C 0°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	1	°C/W
	•	1		

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max	. Unit
I _{Сво}	Collector cutoff current ($I_E = 0$)	$V_{CB} = 120V$	1	mA
I _{CER}	Collector cutoff current		10	mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} = 10V	0.5	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C = 100mA for BDY 57 for BDY 58	80 125	v v
V _(BR) CBO	*Collector-base breakdown voltage	I _C = 5mA for BDY 57 for BDY 58	120 160	v v
V _{(BR) EBO} '	* Emitter-base breakdown voltage (I _C = 0)	I _E = 5mA	10	V
V _{CE sat} *	Collector-emitter saturation voltage	$I_{\rm C} = 10$ A $I_{\rm B} = 1$ A	0.5 1.4	V
V _{BE sat} *	Base-emitter saturation voltage	$I_{\rm C} = 10$ A $I_{\rm B} = 1$ A	1.4 2	V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
h _{FE} *	DC current gain	$ \begin{array}{ll} I_C = 10A & V_{CE} = 4V \\ I_C = 20A & V_{CE} = 4V \\ T_{case} = -30^\circ C \end{array} $	20	15	60	
		$I_{C} = 10A$ $V_{CE} = 4V$	10			
f _T	Transition frequency	$\begin{array}{l} I_{C}=1A \\ f=10MHz \end{array} V_{CE}=15V \\ \end{array}$	7			MHz
t _{on}	Turn-on time	$I_{\rm C} = 15 {\rm A}$ $I_{\rm B1} = 1.5 {\rm A}$			1	μs
t _{off}	Turn-off time	$I_{C} = 15A$ $I_{B1} = -I_{B2} = 1.5A$			2	μs
	Clamped E _{s/b} Collector current	$V_{(clamp)} = 125V$ L = 500 μ H	15			A

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

HIGH CURRENT, HIGH SPEED TRANSISTORS

The BDY 90, BDY 91, BDY 92 are silicon multiepitaxial planar NPN transistors in Jedec TO-3 metal case intended for use in switching and linear applications in military and industrial equipment.

ABSC	DLUTE MAXIMUM RATINGS	BDY 90	BDY 91	BDY 92
V_{CBO} V_{CEV} V_{CEO} I_C I_C I_B P_{tot} T_{stg} T_s	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(V_{BE} = -1,5V)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Collector peak current Base current Total power dissipation at $T_{case} \leq 25^{\circ}C$ Storage temperature	120V 120V 100V	100V 100V 80V 6V 10A 15A 2A 60W 65 to 175° 175°C	80V 80V 60V
Р _{tot} Т _{stg} Т _j	Total power dissipation at $T_{case} \leq 25^{\circ}C$ Storage temperature Junction temperature	_	60W 65 to 175° 175°C	C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	2.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

	Parameter	Test co	onditions	Min. T	yp. Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	$V_{CB} = V_{CBO} r$	nax		1	mA
I _{CEV}	Collector cutoff current $(V_{RE} = -1.5V)$	$V_{CE} = V_{CEV} m$ $T_{case} = 150^{\circ}C$ $V_{CE} = V_{CEV} m$	nax C nax		1 3	mA mA
I _{EBO}	Emitter cutoff current $(I_c = 0)$	$V_{EB} = 6V$			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA for BDY 90 for BDY 91 for BDY 92		120 100 80		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 5A$ $I_{C} = 10A$ for BDY 90 , for BDY 92	I _B = 0.5A I _B = 1A BDY 91		0.5 1.5 1	V V V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 5A$ $I_{\rm C} = 10A$	$I_B = 0.5A$ $I_B = 1A$		1.2 1.5	V V
h _{FE} *	DC current gain	$I_{C} = 1A$ $I_{C} = 5A$ $I_{C} = 10A$	$\begin{array}{l} V_{CE}=2V\\ V_{CE}=5V\\ V_{CE}=5V \end{array}$	35 30 20	120	
f _t	Transition frequency	I _C = 0.5A f = 5MHz	$V_{CE} = 5V$		70	MHz
t _{on}	Turn-on time	$\begin{array}{l} I_{C}=5A\\ V_{CC}=30V \end{array}$	$I_{B1} = 0.5A$		0.35	μs
t _s	Storage time	$I_{\rm C} = 5A$	I _{B1} =-I _{B2} =0.5A		1.3	μs
t _f	Fall time	$V_{\rm CC} = 30V$			0.2	μs

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

HIGH CURRENT, GENERAL PURPOSE TRANSISTOR

The BFX 34 is a silicon epitaxial planar NPN transistor in Jedec TO-39 metal case, intended for high current applications.

Very low saturation voltage and high speed at high current levels make it ideal for power drivers, power amplifiers, switching power supplies relay drivers, inverters.

ABSOLUTE MAXIMUM RATINGS

VCRO	Collector-base voltage ($I_{\rm E} = 0$)	120	v
VCEO	Collector-emitter voltage $(I_{B} = 0)$	60	V
VEBO	Emitter-base voltage $(I_c = 0)$	6	V
	Collector current	5	А
P _{tot}	Total power dissipation at $T_{amb} \leq 25^{\circ}C$	0.87	W
101	$T_{case} \leq 25^{\circ}C$	5	w
Teta	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

c

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	35	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	200	°C/W
,		1		

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	V _{CE} = 60V	0.02 10	μΑ
I _{EBO}	Emitter cutoff current (I _C = 0)	$V_{EB} = 4V$	0.05 10	μΑ
V _{(BR) CBO} *	Collector-base breakdown voltage $(I_E = 0)$	I _C = 5mA	120	V
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA	60	V
V _{EBO} *	Emitter-base voltage (I _C =0)	I _E = 1 mA	6	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 5 \text{A}$ $I_{\rm B} = 0.5 \text{A}$	0.4 1	V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 5 \text{A}$ $I_{\rm B} = 0.5 \text{A}$	1.3 1.6	V
h _{FE} *	DC current gain	$ \begin{array}{ll} I_{C} &= 1 A & V_{CE} = 2 V \\ I_{C} &= 1.5 A & V_{CE} = 0.6 V \\ I_{C} &= 2 A & V_{CE} = 2 V \end{array} $	100 75 40 80 150	
f _T	Transition frequency	$I_{C} = 0.5 \text{ A} \text{ V}_{CE} = 5 \text{ V}$ f = 20 MHz	70 100	MHz
C _{EBO}	Emitter-base capacitance	$I_{C} = 0$ $V_{EB} = 0.5V$ f = 1 MHz	300 500	pF
С _{сво}	Collector-base capacitance	$I_E = 0$ $V_{CB} = 10V$ f = 1 MHz	40 100	pF
t _{on}	Turn-on time	$I_{\rm C} = 5 {\rm A} {\rm V}_{\rm CC} = 20 {\rm V}$	0.25 0.6	μS
t _{off}	Turn-off time	$I_{B1} = -I_{B2} = 0.5 A$	0.6 1.2	μS

 $^*\,$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

Safe operating areas

DC current gain

Output characteristics

Collector-emitter saturation voltage

Base-emitter saturation voltage

Small signal current gain

Emitter-base and collector-base capacitances

10-1

10-2

I_C (A)

1

EPITAXIAL PLANAR PNP

HIGH CURRENT, GENERAL PURPOSE TRANSISTOR

The BSS 44 is a silicon epitaxial planar PNP transistor in Jedec TO-39 metal case. It is used for high-current switching and power amplifier applications up to 5A.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage ($I_{\rm F} = 0$)	-65	V
VCEO	Collector-emitter voltage $(I_{B} = 0)$	-60	V
VEBO	Emitter-base voltage $(I_c = 0)$	-6	V
I _C	Collector current	-5	Α
P _{tot}	Total power dissipation at $T_{amb} \le 25^{\circ}C$	0.87	W
101	T _{case} ≤25°C	5	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	35	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	200	°C/W
any anno	-			

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	V _{CE} = -60V	-0.5	μA
V _{(BR) CBO}	Collector-base breakdown voltage (I _E = 0)	$I_{\rm C}$ = -1 mA	-65	V
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -50 mA	-60	V
V _{EBO} *	Emitter-base voltage (I _C =0)	l _E = -1 mA	-6	V
V _{CE (sat)} *	Collector-emitter saturation voltage		-0.1 -0.4 -1	V V
V _{BE (sat)} *	Base-emitter saturation voltage		-0.8 -1.1 -1.6	V V
h _{FE} *	DC current gain	$ \begin{array}{ll} I_{C} &= -0.5A & V_{CE} = -2V \\ I_{C} &= -2A & V_{CE} = -2V \\ I_{C} &= -5A & V_{CE} = -2V \end{array} $	30 40 70 45	
f _T	Transition frequency	$I_{\rm C}$ = -0.5A $V_{\rm CE}$ = -5V	80	MHz
C _{CBO}	Collector-base capacitance	$I_{E} = 0 \qquad V_{CB} = -10 V$ f = 1 MHz	100	pF
t _{on}	Turn-on time	$I_{\rm C}$ = -0.5A $V_{\rm CC}$ = -20V	0.065	μS
t _{off}	Turn-off time	$I_{B1} = -I_{B2} = -50 \text{mA}$	0.45	μS

 $^*\,$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL PLANAR NPN

HIGH VOLTAGE SWITCH

The BSW 67 and BSW 68 are silicon epitaxial planar NPN transistors in Jedec TO-39 metal case. They are intended for high voltage inductive load switching applications.

ABSOLUTE MAXIMUM RATINGS

Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ 120V 150V V_{CBO} V_{CEO} 120V 150V Collector current 1.5A $I_{\rm C}$ Collector peak current 2A I_{СМ} \breve{P}_{tot} Total power dissipation at $T_{amb} \leq$ 0.7W 45°C $T_{case}^{amb} \leqslant 25^{\circ}C T_{case} \leqslant 100^{\circ}C$ 5W 2.85W T_{stg} T_j Storage temperature -65 to 200 °C Junction temperature 200 °C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

BSW 67 | BSW 68

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CBO}	Collector cutoff current ($I_E = 0$)		100 50 100 50	nA μA nA μA
V _{(BR) CBO}	Collector-base breakdown voltage $(I_E = 0)$	I _C = 100 μA for BSW 67 for BSW 68	120 150	v v
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100 mA for BSW 67 for BSW 68	120 150	V V
V _{EBO} *	Emitter-base voltage (I _C =0)	I _E = 100 μA	6	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0.15 0.5 1	V V V
V _{BE (sat)} *	Base-emitter voltage	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9 1.1 1.2	V V V
h _{FE} *	DC current gain	$ \begin{array}{lll} I_{C} &= 0.1 \ A & V_{CE} = 5 \ V \\ I_{C} &= 0.5 \ A & V_{CE} = 5 \ V \\ I_{C} &= 1 \ A & V_{CE} = 5 \ V \end{array} $	40 30 15	
f _T	Transition frequency	$I_{\rm C}$ = 100mA V _{CE} = 20 V	80	MHz
C _{CBO}	Collector-base capacitance	$I_{E} = 0$ $V_{CB} = 10 V$ f = 1 MHz	35	pF
t _{on}	Turn-on time	$I_{\rm C} = 0.5 {\rm A} {\rm V}_{\rm CC} = 20 {\rm V}$	0.3	μS
t _{off}	Turn-off time	$I_{B1} = -I_{B2} = 0.05 \text{ A}$	1	μS

 $^*\,$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

HIGH CURRENT, GENERAL PURPOSE TRANSISTOR

The BU 125 is a silicon epitaxial planar NPN transistor in Jedec TO-39 metal case. It is used in TV horizontal output and general purpose applications.

ABSOLUTE MAXIMUM RATINGS

VCBO	Collector-base voltage $(I_{F} = 0)$	130	V
VCEO	Collector-emitter voltage $(I_{B} = 0)$	60	V
V _{FBO}	Emitter-base voltage $(I_{c} = 0)$	6	V
I _C	Collector current	7	Α
P _{tot}	Total power dissipation at $T_{amb} \leq 25^{\circ}C$	1	W
101	T _{case} ≤50°C	10	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th i-case}	Thermal resistance junction-case	max	15	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	175	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	V _{CB} = 100 V		0.02	10	μA
V _{(BR) CBO} *	Collector-base breakdown voltage $(I_E = 0)$	$I_{\rm C} = 1 \rm{mA}$	130			V
V _{(BR) CES} *	Collector-emitter breakdown voltage $(V_{BE} = 0)$	I _C = 1 mA	130			V
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	$I_{\rm C}$ = 50 mA	60			V
V _{EBO} *	Emitter-base voltage (I _C =0)	I _E = 1 mA	5			V
V _{CE (sat)} *	Collector-emitter saturation voltage	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.25 1.2	V V
V _{BE (sat)} *	Base-emitter saturation voltage			0.9 1.3	1 1.6	V V
h _{FE} *	DC current gain		40 15	155 60		
f _T	Transition frequency	$I_{C} = 0.5 \text{ A} V_{CE} = 5 \text{ V}$	50			MHz
С _{сво}	Collector-base capacitance	$I_{E} = 0$ $V_{CB} = 10 V$ f = 1 MHz			80	pF
t _{off}	Turn-off time	$I_{C} = 5 A V_{CC} = 20 V$ $I_{B1} = -I_{B2} = 0.5 A$			0.65	μS

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

Base-emitter saturation voltage

DC current gain

Collector-emitter saturation voltage

V_{CE(sat} чc (A) (V) hFE=10 hFE=10 8 1 6 4 0.5 2 111 0 10⁻² 10-1 0.5 1 I_C (A) 0 1 1.5 V_{BE(sat)} (V)

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL PLANAR NPN

HIGH VOLTAGE POWER AMPLIFIER

The BU 125S is a silicon epitaxial planar NPN transistor in Jedec TO-39 metal case. It is intended for general purpose, linear and switching applications.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage ($I_{\rm E} = 0$)	250	V
VCEV	Collector-emitter voltage ($V_{BE} = -1.5V$)	250	V
VCEO	Collector-emitter voltage $(I_{B} = 0)$	150	V
V _{FBO}	Emitter-base voltage $(I_c = 0)$	6	V
I _C	Collector current	3	А
I _{CM}	Collector peak current (repetitive)	5	Α
I _B	Base current	0.5	А
P _{tot}	Total power dissipation at $T_{amb} \leq 25^{\circ}C$	1	W
	$T_{case} \leq 50^{\circ}C$	10	w
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ.	Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	V _{CB} = 200 V		10	μΑ
I _{EBO}	Emitter cutoff current $(I_{\rm C} = 0)$	$V_{EB} = 6 V$		1	mA
V _{CBO}	Collector-base voltage $(I_E = 0)$	I _C = 1mA	250		V
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	$I_{\rm C}$ = 20 mA	150		V
V _{CE (sat)}	Collector-emitter saturation voltage	$I_{\rm C}$ = 500mA $I_{\rm B}$ = 50mA		1.5	V
h _{FE}	DC current gain	$ I_C = 5 \text{ mA} V_{CE} = 10V \\ I_C = 250 \text{mA} V_{CE} = 3V $	30 30		_
f _T	Transition frequency	$I_{\rm C}$ = 100mA $V_{\rm CE}$ = 10V	15		MHz
С _{сво}	Collector-base capacitance	$\begin{array}{ll} I_{E} &= 0 & V_{CB} = 20 \ V \\ f &= 1 \ MHz \end{array}$		35	pF
t _{on}	Turn-on time	$I_{\rm C} = 0.5 \text{ A}$ $V_{\rm CC} = 20 \text{ V}$	0.3		μS
t _{off}	Turn-off time	$I_{B1} = -I_{B2} = 0.05 \text{ A}$	1		μS

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL PLANAR NPN

HIGH VOLTAGE SWITCH

The BU 325 is a silicon planar epitaxial NPN transistor in Jedec TO-126 plastic case. It is intended for high voltage, high current linear and switching applications.

ABSOLUTE MAXIMUM RATINGS

V_{CBO} V_{CEO} V_{EBO} I_{C} I_{B} P_{tot}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Base current Total power dissipation at $T_{amb} \le 25 ^{\circ}$ C $T_{case} \le 25 ^{\circ}$ C	200 200 5 3 1 1.25 25	> > > < < < < < < < < < < < < < < < < <
T _{stg} T _j	Storage temperature Junction temperature	-65 to 150 150	∾ ℃ ℃

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case} Thermal resistance junction-case	max	5	℃/W
R _{th j-amb} Thermal resistance junction-amb.	max	100	℃/W

BU325

$\textbf{ELECTRICAL CHARACTERISTICS} (T_{case} = 25\,^{o}\!C \text{ unless otherwise specified})$

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{сво}	Collector cutoff current (1 _E =0)	V _{CB} =200V	100	μA
V _{CBO}	Collector base breakdown voltage $(I_E = 0)$	Ι _C =100μΑ	200	V
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	l _c =10mA	200	V
V _{EBO} *	Emitter-base voltage (1 _C =0)	I _E =1mA	5	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 150 \text{mA} I_{B} = 15 \text{mA}$ $I_{C} = 500 \text{mA} I_{B} = 50 \text{mA}$	0.06 1.0 0.10 1.5	v v
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = 150 \text{mA} I_{B} = 15 \text{mA}$ $I_{C} = 500 \text{mA} I_{B} = 50 \text{mA}$	0.73 1.0 0.80 1.2	v v
h _{FE} *	DC current gain	$ \begin{array}{c} I_{C} = 50 \text{mA} V_{CE} = 5 \text{V} \\ I_{C} = 150 \text{mA} V_{CE} = 5 \text{V} \\ I_{C} = 500 \text{mA} V_{CE} = 5 \text{V} \end{array} $	30 200 30 200 30 200 30 200	_ _ _

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
f _T	Transition frequency	$I_{\rm C}$ =500mA $V_{\rm CE}$ =5V	40	MHz
C _{CBO}	Collector-base capacitance	I _E =0 V _{CB} =10V f =1MHz	50	рF
t _{on}	Turn-on time	I _C =0.5A I _{B1} =50mA V _{CC} =20V	0.3	μs
t _{off}	Turn-off time	I _C =0.5A I _{B1} =-I _{B2} =50mA V _{CC} =20V	1	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Transition frequency

Collector-emitter saturation voltage

Saturated switching characteristics

Power rating chart

ł

MULTIEPITAXIAL MESA NPN

HIGH VOLTAGE POWER SWITCH

The BU 326 is a silicon multiepitaxial mesa NPN transistor in a Jedec TO-3 metal case particularly intended for switch-mode CTV supply system.

ABSOLUTE MAXIMUM RATINGS

V _{CES}	Collector-emitter voltage ($V_{BE}=0$)	800	V
V _{CEO}	Collector-emitter voltage (1 _B =0)	375	V
V _{FBO}	Base-emitter voltage (I _c =0)	10	V
	Collector current	6	Α
I _{CM}	Collector peak current	8	Α
I _B	Base current	3	Α
P _{tot}	Total power dissipation at $T_{case} \leq 25 ^{\circ}C$	75	W
T	Storage temperature	-65 to 200	°C
T _j	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

I

R _{th j-case}	Thermal resistance junction-case	max	2.33	°C/W

ELECTRICAL CHARACTERISTICS (T $_{case} = 25 \, ^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE}=0$)	V _{CE} =800V V _{CE} =800V	T _{case} =125℃		1 2	mA mA
I _{EBO}	Emitter cutoff current (1 _C =0)	V _{EB} =10V			10	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C =100mA		325		V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C =2.5A I _C =4A	I _B =0.5A I _B =1.25A		1.5 3	v v
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =2.5A I _C =4A	I _B =0.5A I _B =1.25A		1.4 1.6	v v
h _{FE} *	DC current gain	Ι _C =1Α	V _{CE} =5V	25		_
t _{on}	Turn-on time	l _c =2.5A V _{cc} =250V	I _{B1} =0.5A		0.5	μs
, t _s	Storage time	_C =2.5A _{B2} =-1A	I _{B1} =0.5A V _{CC} =250V		3.5	μs
t _f	Fall time	I _C =2.5A I _{B2} =-1A	I _{B1} =0.5A V _{CC} =250V		0.5	μs

* Pulsed: pulse duration $=\!300\,\mu s,$ duty cycle $=\!1.5\%$

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

ł

Base-emitter saturation voltage

Saturated switching characteristics

MULTIEPITAXIAL MESA NPN

HIGH VOLTAGE POWER SWITCH

The BU 326A is a silicon multiepitaxial mesa NPN transistor in Jedec TO-3 metal case particularly intended for switch-mode CTV supply system.

ABSOLUTE MAXIMUM RATINGS

V _{CES}	Collector-emitter voltage (V _{BF} =0)	900	V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	400	V
V _{FBO}	Emitter-base voltage $(I_c = 0)$	10	V
	Collector current	6	Α
I _{CM}	Collector peak current	8	Α
I _B	Base current	3	Α
P _{tot}	Total power dissipation at T _{case} ≤25 ℃	75	W
Teta	Storage temperature	-65 to 200	°C
Ti	Junction temperature	200	°C
,		1	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

ELECTRICAL CHARACTERISTICS (T $_{case} = 25 \, ^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ.	Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} =0)	V _{CE} =900V V _{CE} =900V	T _{case} =125℃		1 2	m A m A
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} =10V			10	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	∣ _C =100mA		400		V
V _{CE (sat)} *	Collector-emitter saturation voltage	_C =2.5A _C =4A	I _B =0.5A I _B =1.25A		1.5 3	v v
V _{BE(sat)} *	Base-emitter saturation voltage	_C =2.5A _C =4A	I _B =0.5A I _B =1.25A		1.4 1.6	V V
h _{FE} *	DC current gain	I _C =1A	V _{CE} =5V	25		—
t _{on}	Turn-on time	l _c =2.5A V _{CC} =250V	I _{B1} =0.5A		0.5	μs
t _s	Storage time	I _C =2.5A I _{B2} =-1A	I _{B1} =0.5A V _{CC} =250V		3.5	μs
t _f	Fall time	I _C =2.5A I _{B2} =-1A	I _{B1} =0.5A V _{CC} =250V		0.5	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

- $\begin{array}{ll} I- & \mbox{Area of permissible}\\ & \mbox{operation} & \mbox{during}\\ & \mbox{turn}-\mbox{on} & \mbox{provided}\\ & \mbox{R}_{\text{BE}}{=}100\Omega \mbox{ and } t_{\text{p}}{\leq}\\ & \mbox{0.6} \ \mu s \end{array}$
- II— Area of permissible operation with V $_{\text{BE}} \leq$ 0 and $t_p \leq 2 \ \mu s$

Derating curves

Thermal transient response

DC current gain

Collector-emitter saturation voltage

G-345

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

MULTIEPITAXIAL MESA NPN

HIGH VOLTAGE POWER SWITCH

The BU 326S is a silicon multiepitaxial NPN transistor in Jedec TO-3 metal case, particularly intended for switch-mode CTV applications.

ABSOLUTE MAXIMUM RATINGS

VCES	Collector-emitter voltage ($V_{BE} = 0$)	800	V
VCEO	Collector-emitter voltage $(I_{B} = 0)$	400	V
VEBO	Emitter-base voltage $(I_c = 0)$	7	V
	Collector current	6	A
ICM	Collector peak current	8	A
I _B	Base current	3	Α
P _{tot}	Total power dissipation at $T_{case} \leq 75^{\circ}C$	60	W
Teta	Storage temperature	-65 to 175	°C
Tj	Junction temperature	175	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

245

TO-3

R _{th j-case}	Thermal resistance junction-case	max	1.67	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур. Ма	. Unit
I _{CES}	Collector cutoff current (V _{BE} = 0)	$V_{CE} = 800 V$ $V_{CE} = 800 V$ $T_{case} = 150^{\circ}C$		1 3	mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 7 V$		1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA	400		. V
V _{CE (sat)} *	Collector-emitter saturation voltage			1.5 3	V V
V _{BE (sat)} *	Base-emitter saturation voltage	$\begin{array}{rrrr} I_C &= 2.5 A & I_B &= 0.5 A \\ I_C &= 4 A & I_B &= 1.25 A \end{array}$		1.4 1.8	V V
h _{FE} *	DC current gain	$I_{\rm C}$ = 4 A $V_{\rm CE}$ = 5V	3.5	10	—
f _T	Transition frequency	$I_{\rm C} = 0.5 {\rm A} {\rm V}_{\rm CE} = 10 {\rm V}$		20	MHz
t _{on}	Turn-on time	$I_{C} = 2.5A$ $V_{CC} = 250V$ $I_{B1} = 0.5A$		0.3	μs
t _s	Storage time	$I_{\rm C} = 2.5 {\rm A} {\rm V}_{\rm CC} = 250 {\rm V}$		1.8	μs
t _{fs}	Fall time	$I_{B1} = 0.5A$ $I_{B2} = -1A$		0.3	μS

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

 $^{h}\mathrm{FE}$ V_{CE}=5V 6 8 I_C (A) 10-1

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

hfe s 6 4 2 IC=0.5A VCE=5V 10 8 ++++ 6 4 2 t 4 6 8 2 68 4 6 8 f (MHz) 2 4 2 10-1

1

Small signal current gain

Collector-base capacitance

Saturated switching characteristics

10

EPITAXIAL PLANAR NPN

HORIZONTAL TV DEFLECTORS

The BU 406, BU 406H and BU 408 are silicon epitaxial planar NPN transistors in Jedec TO-220 plastic package. They are fast switching, high voltage devices for use in horizontal deflection output stages of large screen MTV receivers with 110° CRT.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage $(I_{E} = 0)$	400	V
V _{CEV}	Collector-emitter voltage (V _{BE} = -1.5V)	400	V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	200	V
V _{EBO}	Emitter-base voltage $(I_{c} = 0)$	6	V
	Collector current	7	Α
I _{CM}	Collector peak current (repetitive)	10	Α
I _{CM}	Collector peak current (t = 10 ms)	15	Α
I _B	Base current	4	A
P _{tot}	Total power dissipation at $T_{case} \leq 25 \ ^{\circ}C$	60	W
T _{sta}	Storage temperature	-65 to 150	°C
Tj	Junction temperature	150	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

Collector connected to tab.

R _{th j-case}	Thermal resistance junction-case	max	2.08	°C/W
R _{th i-amb}	Thermal resistance junction-ambient	max	70	°C/W
in j-amb	,			

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise specified)

	Parameter	Test con	ditions	Min. Typ. Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$V_{CE} = 400 V$ $V_{CE} = 250 V$ $V_{CE} = 250 V$	T _{case} = 150°C	5 100 1	mA μA mA
I _{EBO}	Emitter cutoff current ($I_{\rm C} = 0$)	$V_{EB} = 6 V$		1	mA
V _{CE (sat)} *	Collector-emitter saturation voltage	for BU406 $I_{C} = 5 A$ for BU406H $I_{C} = 5 A$ for BU408 $I_{C} = 6 A$	$I_{B} = 0.5 A$ $I_{B} = 0.8 A$ $I_{B} = 1.2 A$	1 1. 1	v v v
V _{BE (sat)} *	Base-emitter saturation voltage	for BU406 $I_{C} = 5 A$ for BU406H $I_{C} = 5 A$ for BU408 $I_{C} = 6 A$	$I_{B} = 0.5 A$ $I_{B} = 0.8 A$ $I_{B} = 1.2 A$	1.2 1.2 1.5	v v v
f _T	Transition frequency	$I_{\rm C} = 0.5 {\rm A}$	$V_{CE} = 10 V$	10	MHz
t _{off} **	Turn-off time	for BU406 $I_{C} = 5 A$ for BU406H $I_{C} = 5 A$ for BU408 $I_{C} = 6 A$	$I_{B end} = 0.5A$ $I_{B end} = 0.8A$ $I_{B end} = 1.2A$	0.75 0.4 0.4	μs μs μs
I _{s/b}	Second breakdown collector current	$V_{CE} = 40 V$	t = 10ms	4	A

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5% ** See test circuit

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Collector cutoff current

Storage time

Fall time

Turn-off time

SWITCHING TIMES

Test circuit (fall, storage and turn-off time)

Turn-off time

Turn-off time is the time for the collector current $\rm I_C$ to decrease to 100mA after the collector to emitter voltage V_CE has risen 3V into its flyback excursion

S-0857

APPLICATION INFORMATION

BU 406 - application circuit for 17" to 24" - 110° - 28 mm neck picture tubes

★N1=125 turns Ø 0.3 mm; N2=25 turns Ø 0.6 mm; GAP=0.12 mm; CORE=DOUBLE E 19x5x8 mm; FERRITE 3E1 TYPE

EPITAXIAL PLANAR NPN

BU406D | BU407D | BU408D

HORIZONTAL TV DEFLECTORS

The BU 406D, BU 407D and BU 408D are silicon planar epitaxial NPN transistors with integrated damper diode, in Jedec TO-220 plastic package. They are fast switching, high voltage devices for use in horizontal deflection output stages of MTV receivers with 110° CRT.

The BU 406D and BU 408D are primarily intended for large screen, while the BU 407D is for medium and small screens.

ABSOLUTE MAXIMUM RATINGS

400V 330V 400V V_{CBO} Collector-base voltage $(I_F = 0)$ Collector-emitter voltage ($V_{BE} = -1.5V$) Emitter-base voltage ($I_C = 0$) V_{CEV} 400V 330V 400V 6V V_{FBO} Collector current 7A $I_{\rm C}$ Collector peak current (repetitive) 10A I_{CM} Collector peak current (t = 10 ms) 15A I_{CM} Base current 4A I_B P_{tot} Total power dissipation at $T_{case} \le 25$ °C 60W T_{stg} -65 to 150 °C Storage temperature Τj Junction temperature 150 °C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	2.08	°C/W
R _{th i-amb}	Thermal resistance junction-ambient	max	70	°C/W
, in j-anno				

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ.	Max.	Unit
I _{CEV}	Collector cutoff current ($V_{BE} = -1.5V$)	for BU406D and BU408D V _{CE} = 400 V for BU407D V _{CE} = 330 V		15 15	mA mA
I _{EBO}	Emitter cutoff current (I _C = 0)	V _{EB} = 6 V		400	mA
V _{CE (sat)} *	Collector-emitter saturation voltage	for BU406D and BU407D $I_{C} = 5 A$ $I_{B} = 0.65 A$ for BU408D $I_{C} = 6 A$ $I_{B} = 1.2 A$		1 1	V V
V _{BE (sat)} *	Base-emitter saturation voltage	for BU406D and BU407D $I_{C} = 5 A$ $I_{B} = 0.65A$ for BU408D $I_{C} = 6 A$ $I_{B} = 1.2 A$		1.3 1.5	v v
f _T	Transition frequency	$I_{\rm C} = 0.5 {\rm A} {\rm V}_{\rm CE} = 10 {\rm V}$	10		MHz
t _{off}	Turn-off time	for BU406D and BU407D $I_{C} = 5 A$ $I_{B end} = 0.65 A$ for BU408D $I_{C} = 6 A$ $I_{C} = 1.2 A$		0.75	μS
		IC - UA IB end - 1.2A		0.5	μ3
I _{s/b}	Second breakdown collector current	$V_{CE} = 40 V$ t = 10 ms	4		A
V _F	Diode forward voltage	I _F = 5 A		1.5	V

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Forward voltage

SWITCHING TIMES

Test circuit (fall, storage and turn-off time)

Waveforms

Turn-off time

Turn-off time is the time for the collector current $1_{\rm C}$ to decrease to 100mA after the collector to emitter voltage V_{CE} has risen 3V into its flyback excursion

S-0857

APPLICATION INFORMATION

Two examples are given of the BU 406D and BU 407D in conventional MTV horizontal deflection circuits.

BU 406D - application circuit for 17" to 24" - 110° - 28 mm neck picture tubes

BU 407D - application circuit for 12'' to 17'' - 110° - 20 mm neck picture tubes (driver supply voltage = 10.8 V)

APPLICATION INFORMATION (continued)

BU 407D - application circuit for 12" to 17" - 110° - 20 mm neck picture tubes (driver supply voltage = 25 V)

*N1=125 turns Ø 0.3mm; N2=25 turns Ø 0.6mm; GAP=0.12mm; CORE=DOUBLE E 19x5x8 mm;FERRITE 3E1 TYPE

EPITAXIAL PLANAR NPN

HORIZONTAL TV DEFLECTORS

The BU 407 and BU 407H are silicon epitaxial planar NPN transistors in Jedec TO-220 plastic package.

They are fast switching, high voltage devices for use in horizontal deflection output stages of medium and small screens MTV receivers with 110° CRT.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage $(I_E = 0)$	330	V
V _{CEV}	Collector-emitter voltage (V _{BE} = -1.5V)	330	V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	150	V
V _{FBO}	Emitter-base voltage $(I_{c} = \bar{0})$	6	V
	Collector current	7	A
I _{CM}	Collector peak current (repetitive)	10	A
I _{CM}	Collector peak current ($t = 10 \text{ ms}$)	15	A
I _B	Base current	4	A
P _{tot}	Total power dissipation at $T_{case} \leq 25 \ ^{\circ}C$	60	W
T _{sta}	Storage temperature	-65 to 150	°C
Τj	Junction temperature	150	°C

INTERNAL SCHEMATIC DIAGRAM

c

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	2.08	°C/W
R _{th i-amb}	Thermal resistance junction-ambient	max	70	°C/W
• •th j-amb	Janotion ambient	max		0/11

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

Parameter		Test cor	nditions	Min. Typ. Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} = 0)	$V_{CE} = 330V$ $V_{CE} = 200V$ $V_{CE} = 200V$	T _{case} = 150°C	5 100 1	mA μA mA
I _{EBO}	Emitter cutoff current ($I_{\rm C} = 0$)	$V_{EB} = 6 V$		1	mA
V _{CE (sat)} *	Collector-emitter saturation voltage	for BU407 I _C = 5 A for BU407H	I _B = 0.5A	1	- V
		$I_{\rm C} = 5 \rm A$	$I_{\rm B} = 0.8A$	1	V
V _{BE (sat)} *	Base-emitter saturation voltage	for BU407 I _C = 5 A for BU407H	I _B = 0.5A	1.2	v
		$I_{\rm C} = 5 {\rm A}$	$I_{B} = 0.8A$	1.2	v
f _T	Transition frequency	$I_{\rm C} = 0.5 {\rm A}$	$V_{CE} = 10 V$	10	MHz
t _{off} **	Turn-off time	for BU407 I _C = 5 A for BU407H	I _{B end} = 0.5A	0.75	μS
		$I_{\rm C} = 5 \text{A}$	$I_{B end} = 0.8A$	0.4	μS
I _{s/b}	Second breakdown collector current	V _{CE} = 40 V	t = 10ms	4	A

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5% ** See test circuit

hFE V_{CE} = 5V ι_C(Α) 10-1

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Collector cutoff current

Storage time

Turn-off time

SWITCHING TIMES

Test circuit (fall, storage and turn-off time)

Ic 5-0856 ts tf Turn-off time

Turn-off time is the time for the collector current $\rm I_C$ to decrease to 100mA after the collector to emitter voltage V_{CE} has risen 3V into its flyback excursion

S-0857

APPLICATION INFORMATION

Two examples are given of the BU407 in conventional MTV horizontal deflection circuits

BU 407 - application circuit for 12'' to 17'' - 110° - 20 mm neck picture tubes (driver supply voltage = 10.8V)

BU 407 - application circuit for 12" to 17" - 110° - 20 mm neck picture tubes (driver supply voltage = 25 V)

MULTIEPITAXIAL MESA NPN

BU426

HIGH VOLTAGE POWER SWITCH

The BU426 and BU426A are silicon multiepitaxial mesa NPN transistors in SOT-93 plastic package, particularly intended for switch-mode CTV supply systems.

ABSOLUTE MAXIMUM RATINGS

V _{CES} V _{CEO}	Collector-emitter voltage ($V_{BE} = 0$) Collector-emitter voltage ($I_B = 0$)	800 V 375 V	900∨ 400∨
V _{EBO}	Emitter-base voltage $(I_{C} = 0)$		10V
l _c	Collector-current		6A
I _{CM}	Collector-peak current (t _p = 2ms)		8A
I _B	Base current	1	3A
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	11	3W
T _{stg}	Storage temperature	-65°C 1	to 150°C
Tj	Junction temperature	15	0°C

INTERNAL SCHEMATIC DIAGRAM

BO-R

MECHANICAL DATA

Dimensions in mm

BU426A

R _{th j-case} Thermal resistance junction-case	max.	1.1	°C/W
---	------	-----	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test co	onditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} = 0)	for BU426 for BU426A T _{case} = 125°C for BU426 for BU426A	$V_{CE} = 800V$ $V_{CE} = 900V$ $V_{CE} = 800V$ $V_{CE} = 900V$			1 1 2 2	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	V _{EB} = 10V				10	mA
V _{CEO(sus})	Collector-emitter sustaining voltage $(I_B = 0)$	for BU426 for BU426A	$I_{C_{v}} = 100 \text{mA}$ $I_{C} = 100 \text{mA}$	375 400			V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{C} = 2.5A$ $I_{C} = 4A$	I _B = 0.5A I _B = 1.25A			1.5 3	v v
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = 2.5A$ $I_{C} = 4A$	$I_{B} = 0.5A$ $I_{B} = 1.25A$			1.4 1.6	v v
h _{FE} *	DC current gain	I _C = 0.6A	$V_{CE} = 5V$		30	60	v
t _{on}	Turn-on time	$I_{C} = 2.5A$ $I_{B1} = 0.5A$	$V_{CC} = 250V$		0.25	0.5	μs

ELECTRICAL CHARACTERISTIC (Continued)

Parameter		Test conditions		Min. Ty	p. Max.	Unit
t _s	Storage time	$l_{c} = 2.5A$	I _{B1} = 0.5A	2.5	3.5	μs
t _f	Fall time	$I_{B2} = -1A$	$V_{CC} = 250V$	0.2	0.5	μs
t _f	Fall time	$I_{C} = 2.5A$ $I_{B2} = -1A$ $T_{case} = 100^{\circ}$	$I_{B1} = 0.5A$ $V_{CC} = 250V$ C		0.75	μs

* Pulsed: pulse duration = 300 μ s duty cycle = 1.5%.

 $I_{}=$ Area of permissible operation driving turn-on provided $R_{BE}=100 \Omega$ and $t_{p} \leqslant 0.6 \ \mu s$. II = Area of permissible operation with $V_{BE} \leqslant 0$; $t_{p} \leqslant 2 \ \mu s$.

EPITAXIAL PLANAR NPN

HIGH VOLTAGE FAST DARLINGTON

BI1801

The BU801 is a silicon epitaxial planar NPN Darlington transistor with integrated baseemitter speed-up diode, mounted in Jedec TO-126 plastic package. It is particularly suitable as output stage in medium power and driver stage in high power, fast switching applications.

ABSOLUTE MAXIMUM RATINGS

V _{сво}	Collector-base voltage ($I_E = 0$)	600	v
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	400	v
V _{EBO}	Emitter-base voltage ($I_{C} = 0$)	. 7	v
I_{C}, I_{E}	Collector and emitter currents	3	Α
i _B	Base current	1	Α
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	40	W
T _{stg}	Storage temperature	-65 to 150	°C
Tj	Junction temperature	150	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	3.12	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min.	Тур.	Max.	Ünit
I _{CES}	Collector-cutoff current (V _{BE} = 0)	V _{CE} = 600V				200	μΑ
I _{CEO}	Collector-cutoff current (I _B = 0)	V _{CE} =400V				1	mA
I _{ЕВО} *	Emitter cutoff current (I _C = 0)	V _{EB} =7V				100	mA
V _{CEO (sus)} *	^t Collector-emitter sustaining voltage	I _C = 10 mA		400			v
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_c = 200 \text{ mA}$ $I_c = 1A$ $I_c = 2A$	$I_B = 2 \text{ mA}$ $I_B = 20 \text{ mA}$ $I_B = 200 \text{ mA}$		1.0 1.2 1.8	1.5 2.0 3.0	V V V
V _{BE(sat)} *	Base-emitter saturation voltage	$I_c = 200 \text{ mA}$ $I_c = 1A$ $I_c = 2A$	$I_{B} = 2 \text{ mA}$ $I_{B} = 20 \text{ mA}$ $I_{B} = 200 \text{ mA}$			2 2.5 3	V V V
'FE [*]	DC current gain	I _C = 200 mA	V _{CE} = 3V	100			-
V _F *	Diode forward voltage	I _F = 1A				4	V

RESISTIVE SWITCHING TIMES

t _{on}	Turn-on time	$V_{cc} = 250V$	0.17	0.8	μs
t _s	Storage time	$I_{B_1} = 2 \text{ mA}$	0.37	1	μs
t _f	Fall time	V BEoff 5 V	0.13	0.5	μs

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ.	Max.	Unit
t _{on}	Turn-on time	$V_{cc} = 250V$	0.18	0.8	μs
t _s	Storage time	$I_{B1} = 20 \text{ mA}$	0.38	1	μs
t _f	Fall time	$V_{BEoff} = -5V$	0.09	0.5	μs
INDUC	NDUCTIVE SWITCHING TIMES				
t _s	Storage time	$V_{Clamp} = 250V$	0.35	1	μs
t _f	Fall time	$V_{BEoff} = -5V$	0.09	0.4	μs
t _s	Storage time	$V_{\text{Clamp}} = 250V$	0.5	1	μs
t _f	Fall time	$V_{BEoff} = -5V$	0.06	0.4	μs

* Pulsed: Pulse duration = $300 \,\mu$ s, duty cycle = 1.5%

Collector-emitter saturation voltage

1

Base-emitter saturation voltage

ĦΠ

10-1

0

10 - ²

Collector-emitter saturation voltage

I_C (A)

Derating curves

G-4717

I_C (A)

EPITAXIAL PLANAR NPN

FAST SWITCHING DARLINGTON TRANSISTORS

The BU 806 and BU 807 are silicon epitaxial planar NPN power Darlington transistors with integrated base-emitter speed-up diode, mounted in Jedec TO-220 plastic package. They are high voltage, high current devices for fast switching applications. In particular they can be used in horizontal output stages of 110° CRT video displays. The BU 806 is primarily intended for large screeen, while the BU 807 is for medium and small screens.

ABSOLUTE MAXIMUM RATINGS		BU 807
$\begin{array}{lll} V_{CBO} & \mbox{Collector-base voltage } (I_{E}=0) \\ V_{CEV} & \mbox{Collector-emitter voltage } (V_{BE}=-6V) \\ V_{CEO} & \mbox{Collector-emitter voltage } (I_{B}=0) \\ V_{EBO} & \mbox{Emitter-base voltage } (I_{C}=0) \\ I_{C} & \mbox{Collector current} \\ I_{CM} & \mbox{Collector peak current} \\ I_{DM} & \mbox{Damper diode peak forward current} \\ I_{B} & \mbox{Base current} \\ P_{tot} & \mbox{Total power dissipation at } T_{case} \leq 25^{o}C \\ T_{stg} & \mbox{Storage temperature} \\ T_{j}^{-} & \mbox{Junction temperature} \end{array}$	400V 400V 200V 6 1 1 2 60 -65 to 15	330V 330V 150V 3V 5A 0A 2A 0W 150°C 0°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	2.08	°C/W
R _{th j-case}	Thermal resistance junction-ambient	max	70	℃/W

ELECTRICAL CHARACTERISTICS (T $_{case} = 25 \, ^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ. Ma	ax.	Unit
I _{CES}	Collector cutoff current ($V_{BE}=0$)	for BU807 for BU806	V _{CE} =330V V _{CE} =400V	1(1(00 00	μΑ μΑ
I _{CEV}	Collector cutoff current (V _{BE} =-6V)	for BU807 for BU806	V _{CE} =330V V _{CE} =400V	1(1(00 00	μΑ μΑ
I _{EBO}	Emitter cutoff current (1 _C =0)	V _{EB} =6V			3	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (1 _B =0)	l _c =100mA for BU807 for BU806		150 200		V V
V _{CE (sat)} *	Collector-emitter saturation voltage	Ι _C =5Α	I _B =50mA	1.	.5	v
V _{BE (sat)} *	Base-emitter saturation voltage	I _C =5A	I _B =50m A	2	.4	٧
V _F *	Damper diode forward voltage	I _F =4A			2	v
t _{off} **	Turn-off time	I _C =5A	I _{B1} =50m A	0.4	1	μs
t _{on}	Turn-on time	RESISTIVEL	.OAD	0.35		μs
t _s	Storage time	I _C =5A I _{B2} =-500mA	I _{B1} =50m A A V _{CC} =100 V	0.55		μs
t _f	Fall time			0.2		μs

* Pulsed: pulse duration = 300µs, duty cycle = 1,5%
** See test circuit

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Damper diode

Saturated switching characteristics (resistive load)

HORIZONTAL DEFLECTION TURN-OFF TIME

Test circuit

Turn-off time waveform

Turn-off time is the time for the collector current $\rm I_C$ to decrease to 100mA after the collector to emitter voltage VCE has risen 3V into its flyback excursion

S-0857

APPLICATION INFORMATION

Horizontal deflection circuit using the darlington BU 806 directly driven by the TDA 1180 (B & W TV set: large screen solution)

 $L_{I} = Linearity inductance 19 \div 39 \mu H$

Horizontal deflection circuit using the darlington BU 807 directly driven by the TDA 1180 (B & W TV set: small screen solution).

 $L_1 = Linearity inductance 37 \div 67 \mu H$

EPITAXIAL PLANAR NPN

MEDIUM POWER FAST SWITCHING

The BU810 is a silicon epitaxial planar NPN Darlington transistor with integrated baseemitter speed-up diode, mounted in Jedec TO-220 plastic package. It is particularly suitable as output stage in medium power, fast switching applications.

ABSOLUTE MAXIMUM RATINGS

And the second se			
V _{CBO} V _{CEO}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$)	600 400	v v
VEBO	Emitter-base voltage $(I_{C} = \bar{0})$	5	V
l _c	Collector current	7	A
ICM	Collector peak current	10	Α
I _B	Base current	2	A
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	75	W
T _{sta}	Storage temperature	-65 to 150	°C
Tj	Junction temperature	150	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{thj-case}	Thermal resistance junction-case	max.	1.66	°C/W
-----------------------	----------------------------------	------	------	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	$\begin{array}{l} \text{Collector cutoff} \\ \text{current (V}_{\text{BE}} = \textbf{0}) \end{array}$	$V_{CE} = 600V$			200	μA
I _{CEO}	Collector cutoff current ($I_B = 0$)	$V_{CE} = 400V$			1	mA
Ι _{ΕΒΟ} *	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$			150	mA
V _{CEO(sus})	Collector-emitter sustaining voltage	I _C = 100mA	400			V
V _{CE(sat)} *	Collector-emitter saturation voltage	$ \begin{array}{ll} I_{C} = 2A & I_{B} = 20 mA \\ I_{C} = 4A & I_{B} = 200 mA \\ I_{C} = 7A & I_{B} = 0.7A \end{array} $			2 2.5 3	V V V
V _{BE(sat)} *	Base-emitter saturation voltage	$\begin{array}{ll} I_{C}=2A & I_{B}=20mA \\ I_{C}=4A & I_{B}=200mA \end{array}$			2.2 3	V V
V _F *	Diode forward voltage	I _F = 7A			3	v

RESISTIVE SWITCHING TIMES

t _{on}	Turn-on time	$V_{00} = 250 V$	0.6	μs
t _s	Storage time	$I_{c} = 2A$ $I_{B1} = 20mA$	1.5	μs
t _f	Fall time	VBE(off) 5 V	0.5	μs

INDUCTIVE SWITCHING TIMES

t _s	Storage time		1.5	μs
t _f	Fall time	$V_{\text{Clamp}} = 250V$	0.4	μs
t _s	Storage time	$V_{BE(off)} = -5V$	1.5	μs
t _f	Fall time		0.7	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%.

Safe operating areas

DC current gain

Base-emitter saturation voltage

Saturated switching characteristics (resistive load) (µs) V_{CE} = 250V hFE= 100 4 VBE = -5 V T_c = 25°C 2 1 8 6 4 2 10¹ 8 6 4 2 10² 4 2 6 8 2 4 ۱_с (A) 10¹ 1

Saturated switching characteristics

MULTIEPITAXIAL PLANAR NPN

HIGH VOLTAGE POWER DARLINGTON

The BU 910, BU 911 and BU 912 are high voltage, silicon NPN transistors in monolithic Darlington configuration in Jedec TO-220 plastic package, designed for applications such as electronic ignition, DC and AC motor controls, solenoid drivers, etc.

ABSOLUTE MAXIMUM RATINGS		BU 911	BU 912
$\begin{array}{lll} V_{CES} & Collector-emitter voltage (V_{BE}=0) \\ V_{CEO} & Collector-emitter voltage (I_B=0) \\ V_{EBO} & Emitter-base voltage (I_C=0) \\ I_C & Collector current \\ I_{CM} & Collector peak current \\ I_B & Base current \\ P_{tot} & Total power dissipation at T_{case} \leq 25^{\circ}C \\ T_{stg} & Storage temperature \\ T_j & Junction temperature \end{array}$	400∨ 350∨	450V 400V 5V 6A 10A 1A 60W 65 to 150° 150°C	500V 450V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-220

,

R _{th j-case}	Thermal resistance junction-case	max	2.08 °C/W
,			

ELECTRICAL CHARACTERISTICS (T case=25°C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} =0)		1 1 1 5 5 5	mA mA mA mA mA
I _{CEO}	Collector cutoff current (I $_{\rm B}$ =0)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 1 1	mA mA mA
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	V _{EB} =5V	5	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B =0)	l _c =100 mA for BU910 for BU911 for BU912	350 400 450	V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	for BU910 and BU911 $I_{C} = 2.5A$ $I_{B} = 50mA$ for BU912 $I_{C} = 2A$ $I_{B} = 50mA$ All types $I_{C} = 4A$ $I_{B} = 200mA$	1.8 1.8 1.8	V V V
V _{BE (sat)} *	Base-emitter saturation voltage	for BU910 and BU911 $I_{C} = 2.5A$ $I_{B} = 50mA$ for BU912 $I_{C} = 2A$ $I_{B} = 50mA$ All types $I_{C} = 4A$ $I_{B} = 200mA$	2.2 2.2 2.5	V V V
V _F	Diode forward voltage	I _F =4A	2.5	V

*Pulsed: pulse duration = 300 $\mu s,~duty~cycle$ = 1.5%

Safe operating areas

Derating curves

Thermal transient response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-Emitter saturation voltage

Saturated switching characteristics

Clamped reverse bias safe operating areas

Clamped E_{s/b}test circuit

HIGH VOLTAGE POWER DARLINGTON

The BU920P, BU921P, BU922P are high voltage high current silicon NPN transistors in monolithic Darlington configuration in SOT-93 plastic package, specially intended for automotive ignition applications and invert circuits for motor controls.

ABSOL	UTE MAXIMUM RATINGS	BU920P	BU921P	BU922P	
V _{CES}	Collector-emitter voltage ($V_{BE} = 0$) Collector-emitter voltage ($I_{D} = 0$)	400V 350V	450V 400V	500V 450V	
	Emitter-base voltage $(I_c = 0)$		5V	1 100 1	
	Collector current		10A		
ICM	Collector peak current		15A		
I _B	Base current		5A		
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$		105W		
T _{sta}	Storage temperature	-65 to 150°C			
Tj	Junction temperature		150°C		

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max.	1.2	°C/W
------------------------	----------------------------------	------	-----	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cutoff	for BU920P	V _{CE} = 400V			1	mA
_	current ($V_{BE} = 0$)	for BU921P	$V_{CE} = 450V$			1	mA
		for BU922P	$V_{CE} = 500V$			1	mA
		$T_{case} = 150^{\circ}C$)				
		for BU920P	$V_{CE} = 400V$			5	mA
		for BU921P	$V_{CE} = 450V$			5	mA
		for BU922P	$V_{CE} = 500V$			5	mA
I _{CEO}	Collector cutoff	for BU920P	V _{CE} = 350V			1	mA
	current ($I_{C} = 0$)	for BU921P	$V_{CE} = 400V$			1	mΑ
		for BU922P	$V_{CE} = 450V$			1	mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} = 5V				20	mA
V _{CEO} (sus)	Collector-emitter	$I_{c} = 100 \text{mA}$	for BU920P	350			v
==0(303)	sustaining voltage	-	for BU921P	400			V
	(I _B = 0)		for BU922P	450			V

Parameter	Test conditions	Min.	Тур. Мах.	Unit
V _{CE(sat)} * Collector-emitter saturation voltage	$I_{C} = 5A$ $I_{B} = 50mA$ $I_{C} = 7A$ $I_{B} = 140mA$		1.8 1.8	v v
V _{BE(sat)} * Base-emitter saturation voltage	$I_{C} = 5A \qquad I_{B} = 50mA$ $I_{C} = 7A \qquad I_{B} = 140mA$		2.2 2.5	v v
V _F * Diode forward voltage	I _F = 7A		2.5	v

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%.

Safe operating areas

HIGH VOLTAGE POWER DARLINGTON

The BU 930, BU 931 and BU 932 are high voltage, high current silicon NPN transistor in monolithic Darlington configuration in Jedec TO-3 metal case specially intended for automative ignition applications and inverter circuits for motor controls.

ABSOLUTE MAXIMUM RATINGS		BU930	BU931	BU932
$V_{CES} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_{CM} \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j$	Collector-emitter voltage ($V_{BE}=0$) Collector-emitter voltage ($I_B=0$) Emitter-base voltage ($I_C=0$) Collector current Collector peak current Base current Total power dissipation at $T_{case} \le 25 ^{\circ}$ C Storage temperature Junction temperature	400∨ 350∨ -(450V 400V 5V 15A 20A 1A 150W 55 to 175° 175℃	500∨ 450∨

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-3

R _{th j-case}	Thermal resistance junction-case	max	1	°C∕W
------------------------	----------------------------------	-----	---	------

$\textbf{ELECTRICAL CHARACTERISTICS} (T_{case} = 25\,^{o}\text{C} \text{ unless otherwise specified})$

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} =0)		1 1 5 5 5 5	mA mA mA mA mA
I _{CEO}	Collector cutoff current (1 _B =0)		1 1 1	mA mA mA
I _{EBO}	Emitter cutoff current (1 _C =0)	V _{EB} =5V	50	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	l _c =100mA for BU930 for BU931 for BU932	350 400 450	V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	for BU930 and BU931 $I_{C} = 7A$ $I_{B} = 70mA$ $I_{C} = 8A$ $I_{B} = 100mA$ $I_{C} = 10A$ $I_{B} = 250mA$ for BU932 $I_{C} = 8A$ $I_{B} = 150mA$	1.6 1.8 1.8 1.8	V V V V
V _{BE(sat)} *	Base-emitter saturation voltage	for BU930 and BU931 $I_{C} = 8A$ $I_{B} = 100mA$ $I_{C} = 10A$ $I_{B} = 250mA$ for BU932 $I_{C} = 8A$ $I_{B} = 150mA$	2.2 2.5 2.2	v v v

	Parameter	Test conditions	Min. Typ. Max.	Unit
V _F *	Diode forward voltage	_F =10A	2.5	V
	Functional test (see test circuit figg. 2 and 3)	for BU930 V _{CE} =350V L=7mH for BU931 and BU932 V _{CE} =400V L=7mH	8	A A

* Pulsed: pulse duration = 300 µs, duty cycle = 1.5%

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Base-emitter saturation voltage

Collector-emitter saturation voltage

Saturated switching characteristics

Fig. 1 - Clamped Esth test circuit

Fig. 2 - Functional test circuit

AUTOMOTIVE IGNITION DARLINGTON

The BU930P, BU931P and BU932P are high voltage silicon NPN Darlington transistors in SOT-93 specially intended for automotive ignition application and inverter circuits for motor controls.

ABSOI	LUTE MAXIMUM RATINGS	BU930P	BU931P	BU932P	
V _{CES}	Collector-emitter voltage (V _{BE} = 0)	400V	450V	500V	
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	350V	400V	450V	
V _{EBO}	Emitter-base voltage ($I_{C} = 0$)		5V		
I _c	Collector current		15A		
I _{CM}	Collector peak current		20A		
l _B	Base current		1A		
P _{tot}	Total power dissipation $T_{case} \leq 25^{\circ}C$		105W		
T _{stq}	Storage temperature		-65 to 150°	С	
T _j	Junction temperature		150°C		

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case} Thermal resistance junction-case	max.	1.2	°C/W
---	------	-----	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} = 0)	$ \begin{array}{ll} \mbox{for BU930P} & V_{CE} = 400V \\ \mbox{for BU931P} & V_{CE} = 450V \\ \mbox{for BU932P} & V_{CE} = 500V \\ \mbox{T}_{case} = 150^{\circ}C \\ \mbox{for BU930P} & V_{CE} = 400V \\ \mbox{for BU931P} & V_{CE} = 450V \\ \mbox{for BU932P} & V_{CE} = 500V \\ \end{array} $			1 1 5 5 5	mA mA mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)				1 1 1	mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} = 5V			50	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage	I _C = 100mA for BU930P for BU931P for BU932P	350 400 450			V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$ \begin{array}{ll} \mbox{for $BU930P$} & \mbox{and $BU931P$} \\ \mbox{I}_C = 7A & \mbox{I}_B = 70mA \\ \mbox{I}_C = 8A & \mbox{I}_B = 100mA \\ \mbox{I}_C = 10A & \mbox{I}_B = 250mA \\ \mbox{for $BU932P$} \\ \mbox{I}_C = 8A & \mbox{I}_B = 150mA \\ \end{array} $			1.6 1.8 1.8 1.8	v v v v
V _{BE (sat)} *	Base-emitter saturation voltage	$ \begin{array}{ll} \mbox{for $BU930P$} \\ I_C = 8A \\ I_C = 10A \\ \mbox{for $BU932P$} \\ I_C = 8A \\ I_B = 100mA \\ I_B = 250mA \\ I_B = 150mA \end{array} $			2.2 2.5 2.2	v v v
V _F *	Diode forward voltage	I _F = 10A			2.5	V

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%.

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUR 50 is a silicon multiepitaxial planar NPN transistor in modified Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

Vana	Collector-base voltage $(1 = 0)$	200	v
VCEO	Collector-emitter voltage ($I_{\rm P}=0$)	125	v
VEBO	Emitter-base voltage $(I_c = 0)$	10	V
	Collector current	70	Α
I _{CM}	Collector peak current ($t_p = 10 \text{ ms}$)	100	Α
I _B	Base current	20	Α
Piot	Total power dissipation at $T_{case} \leq 25 ^{\circ}C$	350	W
T	Storage temperature	-65 to 200	°C
Ti	Junction temperature	200	°C
,			

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	0.5	°C/W

ELECTRICAL CHARACTERISTICS (T_{case}=25 °C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{Сво}	Collector cutoff current (1 _E =0)	V _{CB} =200V V _{CB} =200V T _{case} =125℃	0.2 2	mA mA
I _{CEO}	Collector cutoff current ($I_B=0$)	V _{CE} =125V	1	mA
I _{EBO}	Emitter cutoff current (1 _c =0)	V _{EB} =7V	0.2	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =200mA	125	V
V _{EBO}	Emitter-base voltage (1 _C = 0)	I _E =10mA	10	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 35A$ $I_{B} = 2A$ $I_{C} = 70A$ $I_{B} = 7A$	1 0.8 1.5	V V
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = 35A$ $I_{B} = 2A$ $I_{C} = 70A$ $I_{B} = 7A$	1.8 1.6 2	× ×
h _{FE} *	DC current gain	$V_{C} = 5A$ $V_{CE} = 4V$ $V_{C} = 50A$ $V_{CE} = 4V$	20 100 15	-
I _{s/b}	Second breakdown collector current	V _{CE} =20V t = 1s	17.5	A
f _T	Transition frequency	$I_{C} = 1A$ $V_{CE} = 5V$ f =1MHz	10 16	MHz

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	I _C =70A I _{B1} =7A V _{CC} =60V	0.5 1.2	μs
t _s	Storage time (fig. 2)	∣ _c =70A ∣ _{B1} =7A	0.82 2	μs
t _f	Fall time (fig. 2)	$V_{B2} = -7A$ $V_{CC} = 60V$	0.1 0.5	μs
	Clamped E _{s/b} Collector current (fig. 1)	V _{clamp} =125V L = 500µ H	70	A

* Pulsed: pulse duration =300 μs , duty cycle ${\,\leq}2\%$

Derating curves

Thermal transient response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Fig. 1 - Clamped E_{s/b} test circuit

Fig. 2 – Switching times test circuit (resistive load)

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUR 51 is a silicon multiepitaxial planar NPN transistor in modified Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage $(I_F = 0)$	300	\
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	200	V
V _{EBO}	Emitter-base voltage $(I_{c} = 0)$	10	V
1 _C	Collector current	60	A
I _{CM}	Collector peak current (t _p =10 ms)	80	Α
I _B	Base current	16	A
P _{tot}	Total power dissipation at T _{case} ≤25 ℃	350	W
T _{sta}	Storage temperature	-65 to 200	°C
T	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

k

R _{th j-case} Thermal resistance junction-case m	nax	0.5	°C/W
---	-----	-----	------

ELECTRICAL CHARACTERISTICS (T $_{case} = 25 \,^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{сво}	Collector cutoff current (1 _E =0)	V _{CB} =300V V _{CB} =300V T _{case} =125℃	0.2 2	mA mA
I _{CEO}	Collector cutoff current (1 _B =0)	V _{CE} =200V	1	mA
I _{EBO}	Emitter cutoff current (1 _C =0)	V _{EB} =7V	0.2	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	l _c =200mA	200	v
V _{EBO}	Emitter-base voltage (1 _C =0)	I _E =10mA	10	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 30A$ $I_{B} = 2A$ $I_{C} = 50A$ $I_{B} = 5A$	1 0.9 1.5	v v
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = 30A$ $I_{B} = 2A$ $I_{C} = 50A$ $I_{B} = 5A$	1.8 1.55 2	v v
h _{FE} *	DC current gain	$I_{C} = 5A$ $V_{CE} = 4V$ $I_{C} = 50A$ $V_{CE} = 4V$	20 100 15	
I _{s/b}	Second breakdown collector current	V _{CE} =20V t = 1s	17.5	A
f _T	Transition frequency	I _C =1A V _{CE} =5V f =1MHz	10 16	MHz

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	I _C =50A I _{B1} =5A V _{CC} =100V	0.35 1	μs
t _s	Storage time (fig. 2)	I _C =50A I _{B1} =5A	0.9 2	μs
t _f	Fall time (fig. 2)	_{B2} =-5A V _{CC} =100V	0.24 0.6	μs
	Clamped E _{s./b} Collector current (fig. 1)	V _{clamp} =200V L =500μ H	50	A

* Pulsed: pulse duration = 300 µs, duty cycle \leq 2%

Safe operating areas

Thermal transient response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Fig. 1 - Clamped Estb circuit

Fig. 2 – Switching times test circuit (resistive load)

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUR 52 is a silicon multiepitaxial planar NPN transistor in modified Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage $(I_F = 0)$	350	v
V _{CEO}	Collector-emitter voltage $(I_{B}=0)$	250	V
V _{EBO}	Emitter-base voltage $(I_{c} = 0)$	10	V
	Collector current	60	A
I _{CM}	Collector peak current (t _n =10 ms)	80	A
I _B	Base current	16	Α
P _{tot}	Total power dissipation at T _{case} ≤25 ℃	350	W
T	Storage temperature	-65 to 200	°C
Ti	Junction temperature	200	°C
,			

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

Modified TO-3

313

R _{th j-case}	Thermal resistance junction-case	max	0.5	°C/W
		i i		

$\textbf{ELECTRICAL CHARACTERISTICS} (T_{case} = 25\,^{\circ}\text{C} \, \text{unless otherwise specified})$

	Parameter	Test co	nditions	Min. T	yp. Max.	Unit
I _{CBO}	Collector cutoff current (1 _E =0)	V _{CB} =350V V _{CB} =350V T _{case} =125°C			0.2 2	mA mA
I _{CEO}	Collector cutoff current ($I_B=0$)	V _{CE} =250V			1	mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} =7V			0.2	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =200mA		250		V
V _{EBO}	Emitter-base voltage (1 _C = 0)	I _E =10mA		10		V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C =25A I _C =40A	I _B =2A I _B =4A		1 0.70 1.5	v v
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =25A I _C =40A	I _B =2A I _B =4A		1.8 1.5 2	× ×
h _{FE} *	DC current gain	I _C =5A I _C =40A	V _{CE} =4V V _{CE} =4V	20 15	100	-
l _{s ∕b}	Second breakdown collector current	V _{CE} =20V	t =1s	17.5		A
f _T	Transition frequency	I _C =1A f =1MHz	V _{CE} =5V	10	16	MHz
t _{on}	Turn-on time (fig. 2)	I _C =40A V _{CC} =100V	I _{B1} =4A		0.3 1	μs

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _s	Storage time (fig. 2)	I _C =40A I _{B1} =4A	1.2 2	μs
t _f	Fall time (fig. 2)	$I_{B2} = 4A$ $V_{CC} = 100V$	0.20 0.6	μs
	Clamped E _{s/b} Collector current (fig. 1)	V _{clamp} =250V L=500μH	40	A

* Pulsed: pulse duration = $300 \,\mu$ s, duty cycle $\leq 2\%$

Derating curves

Thermal transient response

DC current gain

Collector-emitter saturation voltage

G - 3894 V_{CE}(sat) (V) 4 1C: 10A 20A -30A -40A -50A -60A 3 2 1 0 1₈ (A) 2 4 6 8

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Fig. 1 - Clamped E_{s *b*} test circuit

Fig. 2 – Switching times test circuit (resistive load)

EPITAXIAL PLANAR NPN

HIGH VOLTAGE, HIGH POWER, FAST SWITCHING

The BUT13 is a silicon epitaxial planar NPN Darlington transistor with integrated baseemitter speed-up diode, mounted in jedec TO-3 metal case. It is particularly suitable as output stage in high power, fast switching applications.

ABSOLUTE MAXIMUM RATINGS

V _{сво}	Collector-base voltage ($I_{E} = 0$)	600	V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	400	V
VEBO	Emitter-base voltage $(I_{C} = \bar{0})$	10	V
I _C	Collector current	28	A
I _{CM}	Collector peak current ($t_p = 10ms$)	35	Α
IB	Base current	6	A
P _{tot}	Total power dissipation $T_{case} \leq 25^{\circ}C$	175	W
T _{sta}	Storage temperature	-65 to 200	°C
Ti	Junction temperature	200	°C
		1	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

319

Dimensions in mm

R _{th j-case} Thermal resistance junction-case r	max.	1	°C/W
---	------	---	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min.	Тур.	Max.	Unit
I _{CEV}	Collector cutoff current (V _{BE} = -1.5V)	$\begin{array}{l} V_{CE} = 600V \\ V_{CE} = 600V \end{array}$	$T_{case} = 100^{\circ}C$			100 2	μA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} = 400V				1	mA
I _{EBO} *	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 2V$				175	mA
V _{CEO (sus)}	Collector cutoff sustaining voltage	I _C = 100mA		400			V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{c} = 10A$ $I_{c} = 18A$ $I_{c} = 22A$ $I_{c} = 28A$	$I_{B} = 0.5A$ $I_{B} = 1.8A$ $I_{B} = 2.2A$ $I_{B} = 5.6A$			2 2.5 3 5	V V V V
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = 10A$ $I_{C} = 18A$ $I_{C} = 22A$	$I_{B} = 0.5A$ $I_{B} = 1.8A$ $I_{B} = 2.2A$			2.5 3 3.3	V V V
h _{FE}	DC current gain	$I_{C} = 10A$ $I_{C} = 18A$	$V_{CE} = 5V$ $V_{CE} = 5V$	30 20			V V
V _F	Diode forward voltage	I _F = 22A				4	V

RESISTIVE SWITCHING TIMES

t _{on}	Turn-on time	$V_{CC} = 250V I_{C} = 10A$ $I_{B1} = 0.5A$ $V_{BE(off)} = -5V$	0.35	0.6	μs
t _s	Storage time		0.8	1.5	μs
t _f	Fall time		0.25	0.6	μs

	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
INDUCTIVE SWITCHING TIMES								
ts	Storage time	$V_{Clamp} = 250V I_{C} = 10A$ $I_{B1} 0.5A; V_{BE(off)} = -5V$		0.8	1.5	μs		
t _f	Fall time			0.08	0.5	μs		
ts	Storage time	$V_{Clamp} = 250V I_{C} = 20A$ $I_{B1} = 2A; V_{BE(off)} = 5V$		0.8	1.5	μs		
t _f	Fall time			0.35	0.7	μs		

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%.

Safe operating areas

Collector-emitter saturation voltage

Collector-emitter saturation voltage G - 4726 V_{CE(sat)} (v) Ш 11 15 A 0,1 1A 5 A 10 A 20 A Ш 3 2 1111 1 10² 10³ 10 IB (mA) 1

Base-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Collector base capacitance

Collector cutoff current

Reverse peak current $I_{B,2}$ (A) $V_{B,E}=-5V$ $V_{B,E}=-1V$ $V_{B,E}=-1V$ $V_{B,E}=-1V$ I_{D} I_{C} (A)

Saturated switching characteristics (resistive load)

Storage time

Overload safe operating areas G-4818 Iс (А) 1_B = 500 mA 5 µs 1_B = 1A 1_B=2/ 1_B=250 m A 40 20µs Iсм ------30 Lesson A 20 10 100 200 300 400 V_{CE}(V) 0

Thermal transient response

EPITAXIAL PLANAR NPN

HIGH VOLTAGE, HIGH POWER, FAST SWITCHING

The BUT13P is a silicon epitaxial planar NPN Darlington transistor with integrated base-emitter speed-up diode, mounted in SOT-93 plastic package.

It is particularly suitable as output stage in high power, fast switching applications.

ABSOLUTE MAXIMUM RATINGS

V _{сво}	Collector-base voltage ($I_E = 0$)	600	· V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	400	V
V _{EBO}	Emitter-base voltage ($I_{C} = 0$)	10	V
I _C	Collector current	28	A
ICM	Collector peak current ($t_p = 10 \text{ ms}$)	35	A
l _B	Base current	6	A
P _{tot}	Total power dissipation $T_{case} \leq 25^{\circ}C$	150	W
T _{sta}	Storage temperature	-65 to 175	°C
Tj	Junction temperature	175	°C
		1	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case} Thermal resistance junction-case r	max	1	°C/W
---	-----	---	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CEV} *	Collector cutoff current (V _{BE} = -1.5V)	$V_{CE} = 600V$ $V_{CE} = 600V$ (T _C = 100°C)			100 2	μA mA
I _{CEO}	Collector cutoff current (I _B = 0)	V _{CE} = 400V			1	mA
I _{ЕВО} *	Emitter cutoff current (I _C = 0)	V _{EB} = 2V			175	mA
V _{CEO(sus)}	*Collector-emitter sustaining voltage	I _C = 100 mA	400			v
V _{CE(sat)} *	Collector-emitter saturation voltage	$ \begin{array}{ll} I_{C} = 10A & I_{B} = 0.5A \\ I_{C} = 18A & I_{B} = 1.8A \\ I_{C} = 22A & I_{B} = 2.2A \\ I_{C} = 28A & I_{B} = 5.6A \end{array} $			2 2.5 3 5	> > > >
V _{BE(sat)} *	Base-emitter saturation voltage	$ \begin{array}{c} I_{C} = 10A & I_{B} = 0.5A \\ I_{C} = 18A & I_{B} = 1.8A \\ I_{C} = 22A & I_{B} = 2.2A \end{array} $			2.5 3 3.3	V V V
h _{FE}	DC Current gain	$\begin{array}{c} I_{C} = 10A & V_{CE} = 5V \\ I_{C} = 18A & V_{CE} = 5V \end{array}$	30 20			-
VF	Diode forward voltage	I _F = 22A			4	V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
RESIS	RESISTIVE SWITCHING TIMES								
t _{on}	Turn-on time	$V_{cc} = 250V$ $I_c = 10A$ $I_{B1} = 0.5A$		0.35	0.6	μs			
t _s	Storage time			0.8	1.5	μs			
t _f	Fall time	VBE(off)		0.25	0.6	μs			

INDUCTIVE SWITCHING TIMES

ts	Storage time	$V_{Clamp} = 250V$	1 - 0 F A	0.8	1.5	μs
t _f	Fall time	$V_{BE(off)} = -5V$	$I_{B1} = 0.5A$	0.08	0.5	μs
t _s	Storage time	$V_{Clamp} = 250V$	l2Δ	0.8	1.5	μs
t _f	Fall time	$V_{BE(off)} = -5V$	1 _{B1} - 2A	0.35	0.7	μs

* Pulsed: pulse duration = $300 \ \mu$ s, duty cycle = 1.5%

=10

1_c⁶ ⁸

Collector-emitter saturation voltage Collector-emitter saturation voltage V_{CE(sat)} (V) V_{CE(sat)} (v) h_{FE} = 10 10 8 10 8 hFE=20 125°C 25°C hFE=100 hee 40 ° C 6 8 10 1 1_c(A) 10¹

Base-emitter saturation voltage

Base-emitter saturation voltage

Collector-base capacitance

ICEV Temperature

Saturated switching characteristics

Storage time (inductive)

Storage time (inductive)

Safe operating areas

Thermal transient response

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT POWER SWITCH

The BUV20, BUV21 and BUV22 are silicon multiepitaxial planar NPN transistor in Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ini ai

ABSOI	UTE MAXIMUM RATINGS	BUV20	BUV21	BUV22
V_{CBO} V_{CER} V_{CEO} V_{CEO} I_{C} I_{C} I_{B} P_{tot} T_{stg} T_{j}	$\begin{array}{l} \mbox{Collector-base voltage} (I_E=0) \\ \mbox{Collector-emitter voltage} (R_{BE}=100 \alpha) \\ \mbox{Collector-emitter voltage} (V_{BE}=-1.5V) \\ \mbox{Collector-emitter voltage} (I_B=0) \\ \mbox{Emitter-base voltage} (I_C=0) \\ \mbox{Collector current} \\ \mbox{Collector peak current} \\ \mbox{Base current} \\ \mbox{Total power dissipation at } T_{case} \leqslant 25^{\circ}\text{C} \\ \mbox{Storage temperature} \\ \mbox{Junction temperature} \end{array}$	160V 150V 160V 125V 7V 50A 60A 10A	250V 240V 250V 200V 7V 40A 50A 8A 250W 65 to 200° 200°C	300V 290V 300V 250V 7V 40A 50A 8A
		1		

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

0.7	°C/W
(0.7

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)				3 3 3	mA mA mA
I _{CEX}	Collector cutoff current (V _{BE} = -1.5A)	$V_{CE} = V_{CEX}$ for BUV20 for BUV21 for BUV22 at $T_{case} = 125^{\circ}C$ for BUV20 for BUV21 for BUV22			3 3 12 12 12	mA mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$			1	mA
V _{CEO(sus})	Collector-emitter sustaining voltage $(I_B = 0)$	I _c = 200mA L = 25mH for BUV20 for BUV21 for BUV22	125 200 250			v v v
V _{(BR)EBO} *	Emitter-base breakdown voltage (I _C = 0)	I _E = 50mA	7			V
V _{CE(sat)} *	Collector-emitter saturation voltage			0.3 0.7 0.2 0.9 0.2 0.5	0.6 1.2 0.6 1.5 1	> > > > >
V _{BE(sat)} *	Base-emitter saturation voltage	for BUV20 $I_C = 50A$ $I_B = 5A$ for BUV21		1.4	2	v
		$I_{C} = 25A \qquad I_{B} = 3A$ for BUV22 $I_{C} = 40A \qquad I_{B} = 4A$		1.2	1.5 1.5	v v

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions		Min.	Тур.	Max.	Unit
h _{FE} *	DC current gain	for BUV20 $V_{CE} = 2V$ $V_{CE} = 4V$ for BUV21	I _C = 25A I _C = 50A	20 10		60	-
		$V_{CE} = 2V$ $V_{CE} = 4V$ for BUV22	$I_{C} = 12A$ $I_{B} = 25A$	20 10		60	-
		$V_{CE} = 4V \\ V_{CE} = 4V$	$I_{c} = 10A$ $I_{c} = 20A$	20 10		60	-
f _T	Transition frequency	V _{CE} = 15V f = 10MHz	$I_{C} = 2A$	8			MHz
t _{on}	Turn-on time	for BUV20 $I_c = 50A$ for BUV21	I _B = 5A			1.5	μs
		$I_C = 25A$ for BUV22	$I_B = 3A$			1.2	μs
		I _C = 20A	I _B = 2.5A			1.3	μs
t _f	Fall time	for BUV20 I _C = 50A for BUV21	I _{B1} =-I _{B2} =5A			0.3	μs
		$I_{\rm C} = 25A$	$I_{B1} = -I_{B2} = 3A$			0.4	μs
		$I_{\rm C} = 20A$	$I_{B1} = -I_{B2} = 2.5A$			0.5	μs
t _s	Storage time	for BUV20 $I_c = 50A$ for BUV21	I _{B1} =-I _{B2} =5A			1.2	μs
		lc = 25A	$I_{B1} = -I_{B2} = 3A$			1.8	μs
		$I_{\rm C} = 20$ A	$I_{B1} = -I_{B2} = 2.5A$			2	μs

* Pulsed. pulse duration = 300 μ s, duty cycle \leq 2%.

POWER SWITCH

The BUV23, BUV24 and BUV25 are silicon multiepitaxial mesa NPN transistors in Jedec TO-3 metal case, intended for use in power switching applications in military and industrial equipments.

ABSO	LUTE MAXIMUM RATINGS	BUV23	BUV24	BUV25
V _{CBO}	Collector-base voltate (I _E = 0)	400∨	450V	500V
VCER	Collector -emitter voltage ($R_{BE} = 100\Omega$)	390V	440V	500V
V _{CEX}	Collector-emitter voltage ($V_{BE} = -1.5V$)	400V	450V	500V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	325V	400∨	500V
V _{EBO}	Emitter-base voltage ($I_c = 0$)	7V	7V	7V
l _c	Collector current	30A	20A	15A
ICM	Collector peak current ($t_p = 10ms$.)	40A	30A	20A
I _B	Base current	6A	4A	3A
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$		250W	1
T _{stg}	Storage temperature		-65 to 200°	С
Tj	Junction temperature		200° C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case} Thermal	resistance junction-case	max.	0.7	°C/W
--------------------------------	--------------------------	------	-----	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	$V_{CE} = 260V$ $V_{CE} = 320V$ $V_{CE} = 400V$	for BUV23 for BUV24 for BUV25			3 3 3	mA mA mA
I _{CEX}	Collector cutoff current ($V_{BE} = -1.5V$)	$V_{CE} = V_{CEX}$ $T_{case} = 125^{\circ}C$ $V_{CE} = V_{CEX}$				3 12	mA mA
ево	Emitter cutoff current ($I_{C} = 0$)	$V_{EB} = 5V$				1	mA
V _{CE(sat)} *	Collector-emitter saturation voltage	for BUV23 $I_{c} = 8A$ $I_{c} = 16A$ for BUV24 $I_{c} = 6A$ $I_{c} = 12A$	$I_{B} = 1.6A$ $I_{B} = 3.2A$ $I_{B} = 1.2A$ $I_{B} = 2.4A$		0.2 0.35 0.15 0.3	0.8 1 0.6 1	
		for BUV25 I _C = 4A I _C = 8A	I _в = 0.8А I _в = 1.6А		0.2 0.6	0.6 1	v v
V _{BE(sat)} *	Base-emitter saturation voltage	for BUV23 I _C = 16A for BUV24	I _B = 3.2A		1.15	1.5	v
		I _C = 12A for BUV25 I _C = 8A	I _B = 2.4A I _B = 1.6A		1 1.2	1.15 1.5	
V _{CEO(sus})	Collector-emitter sustaining voltage	I _C = 200mA	L = 25mH for BUV23 for BUV24 for BUV25	325 400 500			V V V
V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	I _E = 50mA		7			V
h _{FE} *	DC current gain	$V_{CE} = 4V$ $I_{C} = 8A$ $I_{C} = 16A$	for BUV23	15 8		60	-
		$V_{CE} = 4V$ $I_{C} = 6A$ $I_{C} = 12A$	for BUV24	15 8		60	
		$V_{CE} = 4V$ $I_{C} = 4A$ $I_{C} = 8A$	tor BUV25	15 8		60	-

ELECTRICAL CHARACTERISTICS (continued)

Para	meter	Test co	onditions	Min.	Тур.	Max.	Unit
f _T Trans	sition frequency	V _{CE} = 15V f = 10MHz	$I_{C} = 2A$	8			MHz
t _{on} Turn-	-on time	for BUV23 I _C = 16A for BUV24	I _B = 3.2A		0.55	1.3	μs
· ·		I _C = 12A for BUV25	$I_{B} = 2.4A$		0.6	1.6	μs
		$I_{\rm C} = 8A$	$I_B = 1.6A$		0.9	1.8	μs
t _f Fall t	ime	for BUV23 I _C = 16A; I _{B1} for BUV24	$= -I_{B2} = 3.2A$		0.26	1.2	μs
		$I_{C} = 12A; I_{B1}$	$= -I_{B2} = 2.4A$		0.6	1.4	μs
		$I_{C} = 8A; I_{B1}$	$= -I_{B2} = 1.6A$		0.9	1.6	μs
t _s Stora	ige time	for BUV23 $I_{C} = 16A; I_{B1}$ for BUV24	= -I _{B2} = 3.2A		1.7	2.5	μs
		$I_{C} = 12A; I_{B1}$	$= -I_{B2} = 2.4A$		1.5	3	μs
		$I_{\rm C} = 8A; I_{\rm B1}$	= -I _{B2} = 1.6A		3.5	5	μs

* Pulsed: pulse duration = 300 μ s, duty cycle $\leq 2\%$.

HIGH VOLTAGE POWER SWITCH

The BUV46 is a silicon multiepitaxial mesa NPN transistor in Jedec TO-220 plastic package, intended for high voltage, fast switching applications.

ABSOLUTE MAXIMUM RATINGS

VCES	Collector-emitter voltage ($V_{BE} = 0$)	850	v
VCEX	Collector-emitter voltage ($V_{BE} = -2.5V$)	850	V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	400	V
V _{EBO}	Emitter-base voltage ($I_{C} = 0$)	7	V
I _C	Collector current	5	Α
I _B	Base current	3	Α
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	85	W
T _{stq}	Storage temperature	-65 to 175	°C
Τj	Junction temperature	175	°C

INTERNAL SCHEMATIC DIAGRAM

во

MECHANICAL DATA

Collector connected to tab.

Dimensions in mm

TO-220

R _{th j-case}	Thermal resistance junction-case	max.	1.76	°C/W
-				

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$V_{CE} = 850V$ $V_{CE} = 850V$ $T_{case} = 125^{\circ}C$			100 1	μA mA
I _{CER}	Collector cutoff current ($R_{BE} = 10\Omega$)	$\begin{array}{l} V_{CE} = 850V \\ V_{CE} = 850V T_{case} = 125^{\circ}C \end{array}$			300 2	μA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 7V$			1	mA
V _{CEO (sus)}	Collector-emitter sustaining voltage	I _C = 100mA	400			v
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 2.5A$ $I_{B} = 0.5A$ $I_{C} = 3.5A$ $I_{B} = 0.7A$			1.5 5	v v
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 2.5 {\rm A}$ $I_{\rm B} = 0.5 {\rm A}$			1.3	v
t _{on}	Turn-time				1	μs
t _s	Storage time	$\begin{bmatrix} I_{C} = 2.5A & V_{CC} = 150V \\ I_{B1} = -I_{B2} = 0.5 A \end{bmatrix}$			3	μs
t _f	Fall time				0.8	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 2%.

HIGH VOLTAGE POWER SWITCH

The BUV47 is silicon multiepitaxial mesa NPN transistor in SOT-93 plastic package. It is intended for high voltage, fast switching and industrial applications.

ABSO	LUTE MAXIMUM RATINGS		BUV47	BUV47A
$\begin{array}{c} V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_{CM} \\ I_B \\ I_{BM} \\ P_{tot} \\ T_{stg} \\ T_j \end{array}$		°C	850V 400V 1 -65 tc 17	1000V 450V 7V 9A 5A 3A 6A 20W 0 175°C 5°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case} Thermal resistance junction-case max.	1.25	°C/W
--	------	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
I _{CEX}	Collector cutoff current (V _{BE} = -2.5V)	$V_{CE} = V_{CBO}$ $V_{CE} = V_{CBO}$	$T_{case} = 125^{\circ}C$			0.15 1.5	mA mA
I _{CER}	Collector cutoff current ($R_{BE} = 10\Omega$)	$V_{CE} = V_{CBO}$ $V_{CE} = V_{CBO}$	$T_{case} = 125^{\circ}C$			0.4 3	mA mA
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	V _{EB} = 5V				1	mA
V _{EBO}	Emitter-base voltage ($I_{C} = 0$)	I _E = 0.05A	:	7		30	mA
V _{CEO(sus)}	Collector-emitter sustaining voltage	$I_{\rm C} = 0.2A$ L = 25mH		400			V
	$(I_{B}=0)$	for BUV4/A		450			V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{C} = 5A$ $I_{C} = 8A$	$I_B = 1A$ $I_B = 2.5A$			1.5 3	v v
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = 5A$	I _B = 1A			1.6	V

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions	Min.	Тур.	Max.	Unit
t _{on}	Turn-on time	Desisting local			1	μs
t _s	Storage time	Resistive load $I_{C} = 5A$ $I_{B1} = 1A$			3	μs
t _f	Fall time	$V_{B2} = -1A$ $V_{CC} = 150V$			0.8	μs
t _f	Fall time	$\label{eq:Inductive load} \begin{array}{ll} \mbox{Inductive load} \\ \mbox{I}_{C} = 5A & \mbox{I}_{B1} = 1A \\ \mbox{V}_{BE} = -5V & \mbox{V}_{CC} = 300V \\ \mbox{L} = 3\mu H & \mbox{T}_{j} = 100^{\circ} \mbox{C} \end{array}$			0.5	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%.

Safe operating areas

HIGH VOLTAGE FAST SWITCHING

The BUV48 is silicon multiepitaxial mesa NPN transistor in SOT-93 plastic package. It is intended for high voltage, high current, fast switching and industrial applications.

. AND THE REAL

ABSOL	UTE MAXIMUM RATINGS	BUV48	BIV48A	
V _{CBO}	Collector-base voltage $(I_E = 0)$	850V	1000V	
VCEO	Collector-emitter voltage $(I_B = V)$	4000	450V	
V _{EBO}	Emitter-base voltage (I _C = 0)		7V	
I _C	Collector current	15A		
I _{CM}	Collector peak current	3	0A	
I _B	Base current		4A	
I _{BM}	Base peak current	2	0A	
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	15	WO	
T _{stq}	Storage temperature	17	5°C	
Тj	Junction temperature	-65 to	175°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max.	1	°C/W
R _{th j-case}	Thermal resistance junction-case	max.	1	

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
I _{CEX}	Collector cutoff current ($V_{BE} = 2.5V$)	$V_{CE} = V_{CBO}$ $V_{CE} = V_{CBO}$	$T_{case} = 125^{\circ}C$			0.2 2	mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$				1	mA
I _{CER}	Collector cutoff current (R_{BE} = 10 Ω)	$\begin{array}{l} V_{CE} = V_{CBO} \\ V_{CE} = V_{CBO} \end{array}$	$T_{case} = 125^{\circ}C$			0.5 4	mA mA
V _{CEO (sus})	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 200mA	L = 25mH for BUV48 for BUV48A	400 450			v v
V _{EBO}	Emitter-base voltage ($I_{\rm C} = 0$)	I _E = 0.05A		7		30	V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{c} = 10A$ $I_{c} = 8A$ $I_{c} = 15A$ $I_{c} = 12A$	$I_{B} = 2A$ for BUV48 $I_{B} = 1.6A$ for BUV48A $I_{B} = 3A$ for BUV48 $I_{B} = 2.4A$ for BUV48A			1.5 1.5 5 5	v v v v
V _{BE(sat)} *	Baseemitter saturation voltage	$I_{\rm C} = 10$ A $I_{\rm C} = 8$ A	$I_B = 2A$ for BUV48 $I_B = 1.6A$ for BUV48A			1.6 1.6	v v
t _{on}	Turnon time	$V_{cc} = 150V$	$V_{BE} = -6V$		0.55	1	μs
ts	Storage time	$R_{B2} = 1.5; I_C = 10A (BUV48)$ $I_C = 8A (BUV48A)$			1.5	3	μs
t _f	Fall time	$ _{B1} = - _{B2} = 1$ $ _{B1} = - _{B2} = 1$.6A (BUV48A)		0.3	0.8	μs

* Pulsed: pulse duration = 300 μ s duty cycle = 1.5%.

HIGH VOLTAGE POWER SWITCH

The BUW11 is silicon multiepitaxial mesa NPN transistors in SOT-93 plastic package. It is intended for high voltage, fast switching industrial applications.

. Alian

ABSOLUTE MAXIMUM RATINGS

V _{CES}	Collector-emitter voltage (V _{BE} = 0)	850	v
V _{CEO}	Collector-emitter voltage (I = 0)	400	V
I _C	Collector current	5	А
ICM	Collector peak current ($t_p \leq 2 m_s$.)	10	А
I _B	Base current	2	Α
I _{BM}	Base peak current ($t_p \leq 2$ ms.)	3	Α
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	100	W
T _{stg}	Storage temperature	-65 to 175	°C
Τj	Junction temperature	175	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max.	1.5	°C/W
------------------------	----------------------------------	------	-----	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$V_{CE} = 850V$ $V_{CE} = 850V$ $T_j = 125^{\circ}C$			1 2	mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 9V$			10	mA
V _{CEO (sus)}	Collector-emitter sustaining voltage	I _C = 100mA L = 25mH	400			V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 3A$ $I_{\rm B} = 0.6A$			1.5	V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 3A$ $I_{\rm B} = 0.6A$			1.4	V
t _{on}	Turn-on time				1	μs
t _s	Storage time	$I_{C} = 3A$ $I_{B1} = 0.6A$ $I_{B2} = -0.6A$			4	μs
t _f	Fall time				0.8	μs

* Pulsed: pulse duration = $300 \,\mu s$, duty cycle = 1.5%.

Safe operating areas

HIGH VOLTAGE POWER SWITCH

The BUW12 and BUW12A are silicon multiepitaxial mesa NPN transistors in SOT-93 plastic package, particularly intended for high voltage, fast switching industrial applications.

ABSOL	UTE MAXIMUM RATING	BUW12	BUW12A
V _{CES} V _{CEO}	Collector-emitter voltage ($V_{BE} = 0$) Collector-emitter voltage ($I_B = 0$)	850∨ 400∨	1000∨ 450∨
I _C	Collector current		8A
I _{CM}	Collector peak current (t _p \leq 2ms)	2	20A
l _B	Base current		4A
I _{BM}	Base peak current (t _p ≤ 2ms)		6A
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	12	25W
T _{sta}	Storage temperature	-65 to	o 175°C
T _j	Junction temperature	17	5°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

10/82

R _{th j-case}	Thermal resistance junction-case	max.	1.2	°C/W
------------------------	----------------------------------	------	-----	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$V_{CE} = V_{CES}$ $V_{CE} = V_{CES}$ $T_j = 125^{\circ}C$			1 3	mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} = 9V			10	mA
V _{CEO(sus})	Collector-emitter sustaining voltage	I _C = 100mA L = 25mH	400			v
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 6A$ $I_{\rm B} = 1.2A$		_	1.5	v
V _{BE(sat)} *	Base emitter saturation voltage	$I_{\rm C} = 6A$ $I_{\rm B} = 1.2A$			1.5	v
t _{on}	Turn-on time				1	μs
t _s	Storage time	$I_{C} = 6A$ $I_{B1} = 1.2A$ $I_{B2} = 1.2A$			4	μs
t _f	Fall time				0.8	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%.

í

Safe operating areas

HIGH VOLTAGE POWER SWITCH

The BUW 32 is a silicon multipitaxial mesa PNP transistor in Jedec TO-3 metal case. It is intended for high voltage, fast switching and industrial applications. The complementary NPN type is the BUW 35.

ABSOLUTE MAXIMUM RATINGS

V	Collector-emitter voltage $(V_{} - 0)$	450	v
Vore	Collector-emitter voltage $(1_{BE} = 0)$	-400	v
	Emitter-base voltage $(1_c = 0)$	-7	v
	Collector current	-10	Å
I _B	Base current	-5	Α
P _{tot}	Total power dissipation at T _{case} ≤25°C	125	W
T _{sto}	Storage temperature	-65 to 200	°C
T	Junction temperature	200	°C
		1	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} =0)	V _{CE} =-450V	-500	μA
I _{CES}	Collector cutoff current ($I_c=0$)	V _{CE} =-450 V T _{case} =125℃	-3	mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} =-7V	-1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (1 _B =0)	I _C =-100mA	-400	V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C =-5A I _B =-1A	-1.5	V
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =-5A I _B =-1A	-1.5	v
h _{FE} *	DC current gain	I _C =-1A V _{CE} =-5V	15	—
t _{on}	Turn-on time	I _C =-5A I _B =-1A V _{CC} =-250V	0.75	μs
t _s	Storage time	I _C =-5A V _{CC} =-250V	3	μs
t _f	Fall time	_{B1} =-1A _{B2} =2A	0.8	μs

* Pulsed: pulse duration = $300 \,\mu$ s, duty cycle = 1.5%

Safe operating areas

Transient thermal response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Clamped Es/b test circuit

HIGH VOLTAGE POWER SWITCH

The BUW 34, BUW 35 and BUW 36 are silicon multiepitaxial mesa NPN transistors in Jedec TO-3 metal case. They are intended for high voltage, fast switching applications.

ABSOLUTE MAXIMUM RATINGS			BUW35	BUW36
$\begin{array}{c} V_{CES} & C\\ V_{CEO} & C\\ V_{EBO} & E\\ I_C & C\\ I_{CM} & C\\ I_{B} & B\\ P_{tot} & T\\ T_{stg} & S\\ T_j & J\\ \end{array}$	ollector-emitter voltage ($V_{BE} = 0$) ollector-emitter voltage ($I_B = 0$) mitter-base voltage ($I_C = 0$) ollector current ollector peak current ase current otal power dissipation at $T_{case} \le 25$ °C torage temperature unction temperature	500V 400V	800V 400V 7V 10A 15A 5A 125W 65 to 200° 200°C	900∨ 450∨

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance ju	nction-case		max	1.4	°C/W
ELECTRI	CAL CHARACTERIS	TICS(T _{case} =2	5°C unless oth	erwise spe	cified)
	Parameter	Test co	nditions	Min. Typ.	Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} =0)	for BUW34 for BUW35 for BUW36 T _{case} =125°C for BUW34 for BUW35 for BUW36	$V_{CE} = 500V \\ V_{CE} = 800V \\ V_{CE} = 900V \\ V_{CE} = 500V \\ V_{CE} = 800V \\ V_{CE} = 900V \\ V_{CE} = 900$		500 500 500 3 3 3	μΑ μΑ μΑ mA mA
I _{EBO}	Emitter cutoff current (1 _C =0)	V _{EB} =7V			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B =0)	I _C =100mA for BUW34 for BUW35 for BUW36		400 400 450		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	All types for BUW35 for BUW36	$I_{C} = 5A$ $I_{B} = 1A$ $I_{C} = 8A$ $I_{B} = 2.5A$ $I_{C} = 8A$ $I_{B} = 2:5A$		1.5 1.5 3	V V V
V _{BE(sat)} *	Base-emitter saturation voltage	All types for BUW35 for BUW36	$ _{C} = 5A$ $ _{B} = 1A$ $ _{C} = 8A$ $ _{B} = 2.5A$ $ _{C} = 8A$ $ _{B} = 2.5A$		1.5 1.8 1.8	V V V
h _{FE} *	DC current gain	I _C =1A	V _{CE} =5V	15		-
t _{on}	Turn-on time	I _C =5A I _{B1} =1A	V _{CC} =250V		0.75	μs
t _s	Storage time	Ι _C =5Α	V _{cc} =250V		3	μs
t _f	Fall time	I _{B1} =1A	I _{B2} =-1A		0.8	μs

^{*} Pulsed: pulse duration = $300 \,\mu s$, duty cycle = 1.5%

Safe operating areas

Derating curves

Transient thermal response

G-3693 hFE 8 = 125°C Tcase 25°C -30°C 10 6 4 V_{CE} = 5V l 2 1 2 4 6 8 2 4 ⁶ ⁸ ¹C (Α) 1 10⁻¹

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Clamped E_{s/b} test circuit

MULTIEPITAXIAL MESA PNP

HIGH VOLTAGE POWER SWITCH

The BUW42 is a silicon multiepitaxial mesa PNP transistor in Jedec TO-3 metal case, intended in fast switching applications for high output powers. The complementary NPN types are the 2N6547 and the BUX48.

ABSOLUTE MAXIMUM RATINGS

V	Collector emitter velters $(V - 0)$	450	v
VCES	Conector-emitter voltage (V _{BE} – U)	-450	v
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	-400	V
V _{EBO}	Emitter-base voltage ($I_c = 0$)	-7	V
I _C	Collector current	-15	Α
I _{CM}	Collector peak current	30	Α
l _B	Base current	-10	Α
P _{tot}	Total power dissipation $T_{case} \leq 25^{\circ}C$	150	W
T _{stq}	Storage temperature	-65 to 175	°C
T _j	Junction temperature	175	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max.	1	°C/W
------------------------	----------------------------------	------	---	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$V_{CE} = -450V$ $V_{CE} = -450V$ $T_{case} = 100^{\circ}C$			-1 -4	mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} = -7V			-1	mA
V _{CEO(sus)}	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100mA			-400	· V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{C} = -10A \qquad I_{B} = -2A$ $I_{C} = -15A \qquad I_{B} = -3A$ $T_{case} = 100^{\circ}C$ $I_{C} = -10A \qquad I_{B} = -2A$			-1.5 -5 -2.5	v v v
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = -10A \qquad I_{B} = -2A$ $T_{case} = 100^{\circ}C$ $I_{C} = -10A \qquad I_{B} = -2A$			-1.6 -1.6	v v
h _{FE} *	DC current gain	$I_{c} = -5A$ $V_{cE} = -2V$ $I_{c} = -10A$ $V_{cE} = -2V$	12 6		60 30	_
t _{on}	Turn-on time	Resistive load			1	μs
t _s	Storage time	$V_{cc} = -250V$ $I_{c} = -10A$			4	μs
t _f	Fall time	$I_{B1} = -I_{B} = -2A$			0.7	μs

* Pulsed: pulse duration = 200 μ s, duty cycle = 1.5%.

MULTIEPITAXIAL MESA NPN

HIGH VOLTAGE, HIGH CURRENT POWER SWITCH

The BUW 44, BUW 45 and BUW 46 are multiepitaxial mesa NPN transistors in Jedec TO-3 metal case, intended in fast switching applications for high output powers.

ABSOL	UTE MAXIMUM RATINGS	BUW44	BUW45	BUW46
V _{CES} V _{CEO} V _{EBO} I _C I _{CM} I _B P _{tot} T _{stg} T _j	Collector-emitter voltage ($V_{BE}=0$) Collector-emitter voltage ($I_B=0$) Emitter-base voltage ($I_C=0$) Collector current Collector peak current Base current Total power dissipation at $T_{case} \le 25^{\circ}$ C Storage temperature Junction temperature	500V 400V	800V 400V 7V 15A 30A 10A 175W 65 to 200° 200°C	900V 450V C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

5/80

R _{th j-case} Thermal resistance junction-case	max	1	°C/W
---	-----	---	------

ELECTRICAL CHARACTERISTICS (T $_{case}$ = 25°C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} =0)		500 500 500 3 3 3 3	μΑ μΑ μΑ mA mA
I _{EBO}	Emitter cutoff current (I _C =0)	V _{EB} =7V	1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =100mA for BUW44 for BUW45 for BUW46	400 400 450	V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	for BUW44 $I_{C} = 10A$ $I_{B} = 2A$ $I_{C} = 6A$ $I_{B} = 1A$ for BUW45 and BUW46 $I_{C} = 10A$ $I_{B} = 2A$ $I_{C} = 7A$ $I_{B} = 1A$	3 1.5 1.5 1.5	
V _{BE(sat)} *	Base-emitter saturation voltage	for BUW44 $I_{C} = 10A$ $I_{B} = 2A$ $I_{C} = 6A$ $I_{B} = 1A$ for BUW45 and BUW46 $I_{C} = 10A$ $I_{B} = 2A$ $I_{C} = 7A$ $I_{B} = 1A$	1.8 1.4 1.8 1.4	V V V V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test co	onditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time	l _c =10A V _{cc} =250V	I _{B1} =2A	0.75	μs
t _s	Storage time	l _c =10A	I _{B1} =2A	3	μs
t _f	Fall time	I _{B2} = -2A	V _{cc} =250V	0.8	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

DC current gain

Collector-emitter saturation voltage

G-3823 V_{CE(sat}) (v) hFE =5 1 Tcase = 125°C 25°C - 30°C 0.5 0 68 4 6 8 4 68 10⁻¹ 1_C(A) 10 1

Collector-emitter saturation voltage

Clamped reverse bias safe operating areas G-3832 1.7 10 8 6 4 2 BUW45 BUW46 ۱ 8 6 4 BUW44 2 I 10-1 100 200 450 750 VCE(clamp)(V)

Clamped E_{s /b} test circuit

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUX 10 is a silicon multiepitaxial planar NPN transistor in Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage (1 E=0)	160	V
V _{CEX}	Collector-emitter voltage (V _{BE} =-1.5V)	160	V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	125	V
V _{EBO}	Emitter-base voltage $(I_{c}=0)$	7	V
I _C	Collector current	25	A
I _{CM}	Collector peak current (t _p =10 ms)	30	A
I _B	Base current	5	Α
P _{tot}	Total power dissipation at T _{case} ≤25 ℃	150	W
T _{sta}	Storage temperature	-65 to 200	°C
T	Junction temperature	200	°C
•			

INTERNAL SCHEMATIC DIAGRAM

 \sim

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.17	°C/W
				•

ELECTRICAL CHARACTERISTICS (T_{case} = $25 \,^{\circ}$ C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max	Unit
I _{CEO}	Collector cutoff current (I _B =0)	V _{CE} =100V	1.5	mA
I _{CEX}	Collector cutoff current	$V_{CE} = 160V$ $V_{BE} = -1.5V$ $T_{case} = 125 \circ C$ $V_{CE} = 160V$ $V_{BE} = -1.5V$	1.5	mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} =5V	1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =200mA	125	V
V _{EBO}	Emitter-base voltage (1 _C =0)	I _E =50mA	7	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 10A$ $I_{B} = 1A$ $I_{C} = 20A$ $I_{B} = 2A$	0.3 0.6 0.7 1.2	V V
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =20A I _B =2A	1.6 2	V
h _{FE} *	DC current gain	$I_{C} = 10A$ $V_{CE} = 2V$ $I_{C} = 20A$ $V_{CE} = 4V$	20 60 10	-
l _{s/b}	Second breakdown collector current	$\begin{array}{lll} V_{CE}{=}30V & t=1s\\ V_{CE}{=}48V & t=1s \end{array}$	5 1	A A
f _T	Transition frequency	I _C =1A V _{CE} =15V f =10MHz	8	MHz

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	I _C =20A I _{B1} =2A V _{CC} =30V	0.5 1.5	μs
t _s	Storage time (fig. 2)	I _C =20A I _{B1} =-I _{B2} =2A	0.6 1.2	μs
t _f	Fall time (fig. 2)	V _{CC} =30∨	0.15 0.3	μs
	Clamped E _{s/b} Collector current (fig. 1)	V _{clamp} =125V L=500µ H	20	A

* Pulsed: pulse duration = 300 μ s, duty cycle \leq 2%

Safe operating areas

Derating curves

Thermal transient response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Fig. 1 - Clamped Est test circuit

Fig. 2 – Switching times test circuit (resistive load)

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUX 11 is a silicon multiepitaxial planar NPN transistor in Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO} V _{CEX} V _{CEO} V _{EBO}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($V_{BE} = -1.5V$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$)	250 250 200 7	
C	Collector current	20	A
I _{CM}	Collector peak current (t _p =10 ms)	25	A
I _B	Base current	4	A
P _{tot}	Total power dissipation at T _{case} ≤25 ℃	150	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

BUX11

5/80

R _{th j-case}	Thermal resistance junction-case	max	1.17	°C/W
'th j-case	merman esistance junction-case	шал	1.17	0, 11

ELECTRICAL CHARACTERISTICS (T $_{case} = 25 \, ^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min. Ty	p. Max.	Unit
I _{CEO}	Collector cutoff current (I _B =0)	V _{CE} =160V			1.5	mA
I _{CEX}	Collector cutoff current	V _{CE} =250V V _{CE} =250V T _{case} =125°C	V _{BE} =-1.5V V _{BE} =-1.5V		1.5 6	mA mA
I _{EBO}	Emitter cutoff current (1 _C =0)	V _{EB} =5V			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =200mA		200		V
V _{EBO}	Emitter-base voltage (1 _C = 0)	I _E =50mA		7		V
V _{CE (sat)} *	Collector-emitter saturation voltage	_C =6A _C =12A	I _B =0.6A I _B =1.5A	0 0	0.3 0.6 0.6 1.5	V V
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =12A	I _B =1.5A	1	.3 1.5	V
h _{FE} *	DC current gain	I _C =6A I _C =12A	V _{CE} =2V V _{CE} =4V	20 10	60	_
I _{s/b}	Second breakdown collector current	V _{CE} =30V V _{CE} =140V	t = 1s t = 1s	5 0.15		A A
f _T	Transition frequency	I _C =1A f =10MHz	V _{CE} =15V	8		MHz

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	_C =12A _{B1} =1.5A V _{CC} =150V	0.3 1	μs
t _s	Storage time (fig. 2)	I _C =12A I _{B1} =1.5A	1.2 1.8	μs
t _f	Fall time (fig. 2)	_{B2} =-1.5A V _{CC} =150V	0.24 0.4	μs
	Clamped E _{s/b} Collector current (fig. 1)	V _{clamp} =200V L=500μH	12	A

* Pulsed: pulse duration =300 $\mu s,$ duty cycle $\leq \! 2\%$

Derating curves

Thermal transient response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Fig. 1 - Clamped Es/b test circuit

Fig. 2 — Switching times test circuit (resistive load)

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUX 11N is a silicon multiepitaxial planar NPN transistor in Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage ($I_F = 0$)	220	v
VCFX	Collector-emitter voltage $(V_{BE}=-1.5V)$	220	V
VCEO	Collector-emitter voltage $(I_{B}=0)$	160	V
V _{FBO}	Emitter-base voltage $(I_c = 0)$	7	V
	Collector current	20	Α
ICM	Collector peak current (t _n =10 ms)	25	A
I _B	Base current	5	Α
Piot	Total power dissipation at $T_{case} \leq 25^{\circ}C$	150	W
Teta	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Collector connected to case $\underbrace{\begin{array}{c} 26.2^{max} \\ \hline \\ 90.9 \\ \hline \\ 90.9 \\ \hline \\ 0.9 \\ \hline 0.9 \\ 0.9 \\ \hline 0.9 \\ \hline$

Dimensions in mm

R _{th i-case}	Thermal resistance junction-case	max	1.17	°C/W
in j-case	·····			

ELECTRICAL CHARACTERISTICS (T $_{case}$ = 25°C unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ.	Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} = 130V			1.5	mA
I _{CEX}	Collector cutoff current	V _{CE} = 220V V _{CE} = 220V T _{case} = 125°C	V _{BE} = -1.5V V _{BE} = -1.5V		1.5 6	mA mA
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	V _{EB} = 5V			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	l _C		160		v
V _{EBO}	Emitter-base voltage (I _C =0)	l _E = 50mA		7		V
V _{CE (sat)} *	Collector-emitter saturation voltage	$ _{C} = 8A$ $ _{C} = 15A$	$I_{B} = 0.8A$ $I_{B} = 1.88A$	0.3 0.6	0.6 1.5	V V
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =15A	I _B = 1.88A	1.4	1.8	V
h _{FE} *	DC current gain	$ _{C} = 8A$ $ _{C} = 15A$	V _{CE} =2V V _{CE} =4V	20 10	60	_
l _{s∕b}	Second breakdown collector current	V _{CE} =30V V _{CE} =140V	t = 1s t = 1s	5 0.15		A A
f _T	Transition frequency	V _{CE} = 15V f = 10MHz	I _C = 1A	8		MHz

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	$I_{C} = 15A$ $I_{B1} = 1.88A$ $V_{CC} = 30V$	0.4 1.5	μs
t _s	Storage time (fig. 2)	I _C =15A I _{B1} =-I _{B2} =1.88A	0.75 1.5	μs
t _f	Fall time (fig. 2)	V _{CC} =30V	0.14 0.5	μs
	Clamped E _{s/b} Collector current (fig. 1)	V _{clamp} =160V L=500μH	15	A

* Pulsed: pulse duration = 300 μ s, duty cycle \leq 2%

Safe operating areas

Derating curves

Thermal transient response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Fig. 1 – Clamped $E_{s/b}$ test circuit

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUX 12 is a silicon multiepitaxial planar NPN transistor in Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

VCBO	Collector-base voltage ($ _{E} = 0$)	300	v
VCEX	Collector-emitter voltage (V BF=-1.5V)	300	v
VCEO	Collector-emitter voltage $(I_{B}=0)$	250	Ň
VEBO	Emitter-base voltage $(I_c = 0)$	7	V
	Collector current	20	Α
I _{CM}	Collector peak current (t _n =10 ms)	25	Α
I _B	Base current	4	Α
P,	Total power dissipation at T _{case} ≤25 °C	150	W
T	Storage temperature	-65 to 200	°C
T _i ^{sig}	Junction temperature	200	°C
,			

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.17	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = $25 \,^{\circ}$ C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CEO}	Collector cutoff current (1 _B =0)	V _{CE} =200V	1.5	mA
I _{CEX}	Collector cutoff current	$V_{CE} = 300V$ $V_{BE} = -1.5V$ $T_{case} = 125 °C$ $V_{CE} = 300V$ $V_{BE} = -1.5V$	1.5 6	mA mA
I _{EBO}	Emitter cutoff current (1 _C =0)	V _{EB} =5V	1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =200mA	250	V
V _{EBO}	Emitter-base voltage (1 _C =0)	I _E =50mA	7	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 5A$ $I_{B} = 0.5A$ $I_{C} = 10A$ $I_{B} = 1.25A$	0.22 1 0.5 1.5	v v
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =10A I _B =1.25A	1.23 1.5	V
h _{FE} *	DC current gain	$I_{C} = 5A$ $V_{CE} = 4V$ $I_{C} = 10A$ $V_{CE} = 4V$	20 60 10	
I _{s/b}	Second breakdown collector current	$V_{CE} = 30V$ t = 1s $V_{CE} = 140V$ t = 1s	5 0.15	A A
f _T	Transition frequency	I _C =1A V _{CE} =15V f =10MHz	8	MHz

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	I _C =10A I _{B1} =1.25A V _{CC} =150V	0.28 1	μs
t _s	Storage time (fig. 2)	I _C =10A I _{B1} =1.25A	1.45 2	μs
t _f	Fall time (fig. 2)	$V_{B2} = -1.25A V_{CC} = 150V$	0.23 0.5	μs
	Clamped E _{s/b} Collector current (fig. 1)	V _{clamp} =250V L = 500μ H	10	A

* Pulsed: pulse duration = 300 μ s, duty cycle \leq 2%

Safe operating areas

Derating curves

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Fig. 1 – Clamped $E_{s/b}$ test circuit

MULTIEPITAXIAL MESA NPN

HIGH VOLTAGE POWER SWITCH

The BUX 13 is a silicon multiepitaxial mesa NPN transistor in Jedec TO-3 metal case, intended for high voltage, fast switching applications.

ABSOLUTE MAXIMUM RATINGS

V _{CES}	Collector-emitter voltage ($V_{BE} = 0$)	400	V
V _{CEB}	Collector-emitter voltage ($R_{BE} \leq 100\Omega$)	390	v
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	325	V
V _{EBO}	Base-emitter voltage $(I_{c} = 0)$	7	V
	Collector current	15	А
I _{CM}	Collector peak current ($t_p \leq 10$ ms)	20	А
I _B	Base current	3	А
P _{tot}	Total power dissipation at T _{case} ≤25°C	150	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Collector connected to case

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.17	°C/W
· · · , · · · · ·	-	1		

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min. Typ.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$\begin{array}{l} V_{CE} = 400V \\ V_{CE} = 400V \end{array}$	$T_{case} = 125^{\circ}C$		1.5 6	mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	$V_{CE} = 260V$			1.5	mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 7V$			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA		325		V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 4A$ $I_{\rm C} = 8A$	$I_{B} = 0.8A$ $I_{B} = 1.6A$		0.8 1.5	v v
V _{BE (sat)} *	Base-emitter saturation voltage	I _C = 8A	I _B = 1.6A		1.5	V
h _{FE} *	DC current gain	$I_{\rm C} = 4A$ $I_{\rm C} = 8A$	$V_{CE} = 4V$ $V_{CE} = 4V$	15 8	60	
f _T	Transition frequency	$I_{C} = 1A$ f = 10MHz	$V_{CE} = 15V$	8		MHz
t _{on}	Tu <u>rn-</u> on time	$\begin{array}{l} I_{C}=8A\\ V_{CC}=150V \end{array}$	$I_{B1} = 1.6A$		1.2	μs
t _s	Storage time	$I_{\rm C} = 8A$			2.5	μs
t _f	Fall time	$I_{B1} = -I_{B2} = 1$ $V_{CC} = 150V$	I.6A		1	μs

* Pulsed: pulse duration = 300μ s, duty cycle ≤ 2 %.

MULTIEPITAXIAL MESA NPN

HIGH VOLTAGE POWER SWITCH

The BUX 14 is a silicon multiepitaxial mesa NPN transistor in Jedec TO-3 metal case, intended for high voltage, fast switching applications

ABSOLUTE MAXIMUM RATINGS

V _{CES}	Collector-emitter voltage ($V_{BF} = 0$)	450	v
VCER	Collector-emitter voltage ($R_{BE} \leq 100\Omega$)	440	V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	400	V
V _{EBO}	Base-emitter voltage $(I_c = 0)$	7	V
I _C	Collector current	10	А
I _{CM}	Collector peak current (t _p ≤10ms)	15	А
l _B	Base current	2	А
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	150	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th i-case}	Thermal resistance junction-case	max	1.17	°C/W
	•			

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$\begin{array}{l} V_{CE} = 450V \\ V_{CE} = 450V \end{array}$	$T_{case} = 125^{\circ}C$		1.5 6	mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} = 320V			1.5	mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 7V$			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	I _C = 100mA		400		V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 3A$ $I_{\rm C} = 6A$	$I_{\rm B} = 0.6 {\rm A}$ $I_{\rm B} = 1.2 {\rm A}$		0.6 1.5	v v
V _{BE (sat)} *	Base-emitter saturation voltage	I _C = 6A	I _B = 1.2A		1.5	v
h _{FE} *	DC current gain	$I_{\rm C} = 3A$ $I_{\rm C} = 6A$	$\begin{array}{l} V_{CE} = 4V \\ V_{CE} = 4V \end{array}$	15 8	60	_
f _T	Transition frequency	$I_{c} = 1A$ f = 10MHz	$V_{CE} = 15V$	8		MHz
t _{on}	Turn-on time	$I_{\rm C} = 6A$ $V_{\rm CC} = 150V$	I _{B1} = 1.2A		1.4	μs
t _s	Storage time	I _C = 6A I _{B1}	$= -I_{B2} = 1.2A$		3	μs
t _f	Fall time	$V_{CC} = 150V$			1.2	μs

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUX 20 is a silicon multiepitaxial planar NPN transistor in modified Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage ($I_F = 0$)	160	V
VCEX	Collector-emitter voltage, $(V_{PE} = -1.5 V)$	160	V
VCEO	Collector-emitter voltage $(I_B = 0)$	125	V
VEBO	Emitter-base voltage $(I_c = 0)$	7	V
	Collector current	50	Α
I _{CM}	Collector peak current ($t_n = 10 \text{ ms}$)	60	A
	Base current	10	Α
P.,	Total power dissipation at $T_{area} \leq 25 ^{\circ}\text{C}$	350	W
T	Storage temperature	-65 to 200	°C
T	Junction temperature	200	°C
•			

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

ELECTRICAL CHARACTERISTICS (T $_{case} = 25 \, ^{o}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CEO}	Collector cutoff current (1 _B =0)	V _{CE} =100V	3	mA
I _{CEX}	Collector cutoff current	V _{CE} =160V V _{BE} =-1.5V T _{case} =125°C	3	mA
		V _{CE} =160V V _{BE} =-1.5V	12	mA
I _{EBO}	Emitter cutoff current (1 _C =0)	V _{EB} =5V	1	mA
V _{CEO (sus)}	*Collector⊹emitter sustaining voltage	l _c =200mA	125	v
V _{EBO}	Emitter-base voltage $(1_{C} = 0)$	l _E =50mA	7	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$ _{C} = 25A$ $ _{B} = 2.5A$ $ _{C} = 50A$ $ _{B} = 5A$	0.3 0.6 0.55 1.2	v v
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =50A I _B =5A	1.35 2	V
h _{FE} *	DC current gain	$\begin{array}{c} \begin{array}{c} {}_{C} \end{array} = 25 \text{A} \\ \begin{array}{c} {}_{C} \end{array} = 50 \text{A} \\ \end{array} \begin{array}{c} {}_{C} \end{array} V \begin{array}{c} {}_{CE} = 2 \text{V} \\ {}_{CE} = 4 \text{V} \end{array}$	20 60 10	-
l _{s/b}	Second breakdown collector current	$\begin{array}{ll} V_{CE}{=}40V & t=1s\\ V_{CE}{=}20V & t=1s \end{array}$	1.5 17.5	A A
f _T	Transition frequency	V _{CE} =15V I _C =2A f =10MHz	8	MHz

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	I _C =50A I _{B1} =5A V _{CC} =60V	0.4 1.5	μs
t _s	Storage time (fig. 2)	I _C =50A I _{B1} =5A	0.85 1.2	μs
t _f	Fall time (fig. 2)	$V_{B2} = -5A$ $V_{CC} = 60V$	0.1 0.3	μs
	Clamped E _{s,b} Collector current (fig. 1)	V _{clamp} =125V L=500μH	50	A

* Pulsed: pulse duration =300 μs , duty cycle $\leq 2\%$

Safe operating areas

Derating curves

Thermal transient response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Fig. 1 - Clamped Estb test circuit

Fig. 2 – Switching times test circuit (resistive load)

The BUX 21 is a silicon multiepitaxial planar NPN transistor in modified Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage ($ _{E} = 0$)	250.	v
VCEX	Collector-emitter voltage ($V_{EB} = -1.5V$)	250	v
VCEO	Collector-emitter voltage $(I_B = 0)$	200	V
V _{EBO}	Emitter-base voltage $(I_c = 0)$	7	V
	Collector current	40	A
I _{CM}	Collector peak current (t _n =10 ms)	50	A
I _B	Base current	8	A
Piot	Total power dissipation at $T_{case} \leq 25$ °C	350	W
T _{sta}	Storage temperature	-65 to 200	°C
T _i "	Junction temperature	200	°C
•			

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

BUX21

$\textbf{ELECTRICAL CHARACTERISTICS} (T_{case} = 25\,^{o}\text{C} \text{ unless otherwise specified})$

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} =160V	3	mA
ICEX	Collector cutoff current	V _{CF} =250V V _{BE} =-1.5V T _{case} =125℃ V _{CF} =250V V _{BF} =-1.5V	3	mA mA
I _{EBO}	Emitter cutoff current (1 _c =0)	V _{EB} =5V	1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =200mA	200	v
V _{EBQ}	Emitter-base voltage (1 _C =0)	I _E =50mA	7	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$\begin{array}{c} I_{C} = 12A \\ I_{C} = 25A \end{array} \begin{array}{c} I_{B} = 1.2A \\ I_{B} = 3A \end{array}$	0.22 0.6 0.4 1.5	v v
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =25A I _B =3A	1.2 1.5	V
h _{FE} *	DC current gain	$V_{C} = 12 \qquad V_{CE} = 2V \\ V_{C} = 25 \qquad V_{CE} = 4V$	20 60 10	_
l _{s/b}	Second breakdown collector current	$\begin{array}{ll} V_{CE} = 140V & t = 1s \\ V_{CE} = 20V & t = 1s \end{array}$	0.15 17.5	A A
f _T	Transition frequency	V _{CE} =15V I _C =2 f =10MHz	8	MHz

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	I _C =25A I _{B1} =3A V _{CC} =100V	0.24 1.2	μs
t _s	Storage time (fig. 2)	I _C =25A I _{B1} =3A	1.3 1.8	μs
t _f	Fall time (fig. 2)	I _{B2} =-3A V _{CC} =100V	0.18 0.4	μs
	Clamped E _{s./b} Collector current (fig. 1)	V _{clamp} =200∨ L = 500µ H	30	A

* Pulsed: pulse duration =300 μs , duty cycle $\leq \! 2\%$

Derating curves

407

Thermal transient response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Collector-base capacitance

.

Fig. 1 - Clamped E_{s/b} test circuit

Fig. 2 – Switching times test circuit (resistive load)

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUX 22 is a silicon multiepitaxial planar NPN transistor in modified Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage ($I_{E}=0$)	300	v
VCEY	Collector-emitter voltage (V BE-1.5V)	300	V
VCEO	Collector-emitter voltage $(I_B = 0)$	250	V
VEBO	Emitter-base voltage $(I_c = 0)$	7	V
	Collector current	40	Α
	Collector peak current ($t_p = 10 \text{ ms}$)	50	Α
	Base current	8	Α
P	Total power dissipation at T _{osse} ≤25 °C	350	W
T	Storage temperature	-65 to 200	°C
T _i	Junction temperature	200	°C
1			

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	0.5	°C/W
R _{th j-case}	Thermal resistance junction-case	max	0.5	°C∕V

ELECTRICAL CHARACTERISTICS (T $_{case} = 25 \, ^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CEO}	Collector cutoff current (1 _B =0)	V _{CE} =200V	3	mA
I _{CEX}	Collector cutoff current	V _{CE} =300V V _{BE} =-1.5V T _{case} =125℃ V _{CE} =300V V _{BE} =-1.5V	3 12	mA mA
I _{EBO}	Emitter cutoff current (1 _C =0)	V _{EB} =5V	1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =200m A	250	V
V _{EBO}	Emitter-base voltage (1 _C =0)	l _E =50mA	7	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 10A$ $I_{B} = 1A$ $I_{C} = 20A$ $I_{B} = 2.5A$	0.2 1 0.32 1.5	v v
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =20A I _B =2.5A	1.1 1.5	V
h _{FE} *	DC current gain	$I_{C} = 10A$ $V_{CE} = 4V$ $I_{C} = 20A$ $V_{CE} = 4V$	20 60 10	_
l _{s/b}	Second breakdown collector current	$V_{CE} = 140V$ $t = 1s$ $V_{CE} = 20V$ $t = 1s$	0.15 17.5	A A
f _T	Transition frequency	I _C =2A V _{CE} =15V f =10MHz	10	MHz

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	I _C =20A I _{B1} =2.5A V _{CC} =100V	0.22 1.3	μs
t _s	Storage time (fig. 2)	_C =20A _{B1} =2.5A	1.5 2	μs
t _f	Fall time (fig. 2)	_{B2} =-2.5A V _{CC} =100V	0.17 0.5	μs
	Clamped E _{s/b} Collector current (fig. 1)	V _{clamp} =250V L =500µH	25	A

* Pulsed: pulse duration = 300 μ s, duty cycle \leq 2%

Safe operating areas

Derating curves

Thermal transient response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Fig. 1 – Clamped $E_{s/b}$ test circuit

Fig. 2 – Switching times test circuit (resistive load)

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUX 40 is a silicon multiepitaxial planar NPN transistor in Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO} V _{CEX} V _{CEO} V _{EBO}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($V_{BE} = -1.5V$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$)	160 160 125 7	V V V V
I _C	Collector current	20	A
I _{CM}	Collector peak current (t _p =10ms)	28	Α
I _B	Base current	4	Α
P _{tot}	Total power dissipation at T _{case} ≤25°C	120	W
T _{sta}	Storage temperature	-65 to 200	°C
T _j	Junction temperature	200	°C
		1	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

0

TO-3

R _{th j-case}	Thermal resistance junction-case	max	1.46 °C/W
------------------------	----------------------------------	-----	-----------

ELECTRICAL CHARACTERISTICS (T $_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Mi	n. Typ.	Max.	Unit
I _{CEO}	Collector, cutoff current (I _B =0)	V _{CE} =100V			1	mA
I _{CEX}	Collector cutoff current	V _{CE} =160V V _{BE} =-1.8 T _{case} =125℃	5V		1	mA
		V _{CE} =160V V _{BE} =-1.	5V		5	mΑ
I _{EBO}	Emitter-cutoff current (I _C =0)	V _{EB} =5V			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	l _c =200mA	12	25		v
V _{EBO}	Emitter-base voltage (I _C =0)	I _E =50mA	7			v
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 10A$ $I_{B} = 1A$ $I_{C} = 15A$ $I_{B} = 1.8$	8 A	0.6 0.9	1.2 1.6	v v
V _{BE (sat)} *	Base-emitter saturation voltage	I _C =15A I _B =1.8	8A	1.7	2	v
h _{FE} *	DC current gain	$I_{C} = 10A$ $V_{CE} = 4V$ $I_{C} = 15A$ $V_{CE} = 4V$	15 8	5	45	
I _{s/b}	Second breakdown collector current	$V_{CE} = 30V$ t = 1 s $V_{CE} = 50V$ t = 1 s	4 1			A A
f _T	Transition frequency	$I_{c} = 1A$ $V_{cE} = 15$ f = 10MHz	√ 8			MHz

* Pulsed: pulse duration = 300 μ s, duty cycle \leq 2%.

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (see fig. 2)	$I_{C} = 15A$ $I_{B1} = 1.88A$ $V_{CC} = 30V$	0.35 1.2	μs
t _s	Storage time (see fig. 2)	$I_{\rm C} = 15 {\rm A} I_{\rm B1} = -I_{\rm B2} = 1.88 {\rm A}^{-1}$	0.85 1	μs
t _f	Fall time (see fig. 2)	V _{CC} =30V	0.14 0.4	μs
	Clamped E _{s/b} Collector current (see fig. 1)	V _{CLAMP} =125V L = 500µH	15	A

Derating curves

G-3935/1 NR 2 Zth=NR.Rth 10 2 ۱ 8 2 10-1 = 0.5 5 ٤= s =0.3 5 = 0.2 2 s = 0.1 s = 0.05 10-2 **δ**=0 10-3 8 4 4 10-4 10-3 10-2 10-5 10⁻¹ γ (sec)

Thermal transient response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Fig. 1 - Clamped E_{s/b}test circuit

Fig. 2 – Switching times test circuit (resistive load)

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUX 41 is a silicon multiepitaxial planar NPN transistor in Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage ($I_F = 0$)	250	V
V _{CEX}	Collector-emitter voltage (V _{BE} =-1.5V)	250	V
VCEO	Collector-emitter voltage $(I_B = 0)$	200	V
V _{FBO}	Emitter-base voltage $(I_c = 0)$	7	V
	Collector current	15	A
I _{CM}	Collector peak current ($t_n = 10 \text{ ms}$)	20	A
I B	Base current	3	A
P,	Total power dissipation at $T_{case} \leq 25 ^{\circ}C$	120	W
T	Storage temperature	-65 to 200	°C
T _i "	Junction temperature	200	°C
1	-		

BO

oc

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case} Thermal resistance junction-case m	nax ⁻	1.46	°C/W
---	------------------	------	------

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test con	ditions	Min. Typ.	Max.	Unit
I _{CEO}	Collector cutoff current (I _B =0)	V _{CE} =160V			1	mÁ
I _{CEX}	Collector cutoff current	V _{CE} =250V T _{case} =125 ℃ V _{CE} =250V	V _{BE} =-1.5V V _{BE} =-1.5V		1 5	mA mA
I _{EBO}	Emitter cutoff current (1 _c =0)	V _{EB} =5V			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =200m A		200		V
V _{EBO}	Emitter-base voltage (1 _C =0)	I _E =50mA		7		V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C =5A I _C =8A	I _B =0.5A I _B =1A	0.38 0.6	1.2 1.6	> >
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =8A	I _B =1A	1.35	2	V
h _{FE} *	DC current gain	I _C =5A I _C =8A	V _{CE} =4V V _{CE} =4V	15 8	45	
l _{s/b}	Second breakdown collector current	V _{CE} =30V V _{CE} =135V	t =1s t =1s	4 0.15		A A
f _t	Transition frequency	f =1A f =10MHz	V _{CE} =15V	8		MHz

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	I _C =8A I _{B1} =1A V _{CC} =150V	0.28 1	μs
t _s	Storage time (fig. 2)	I _C =8Å I _{B1} =1A	1.2 1.7	μs
t _f	Fall time (fig. 2)	I _{B2} =-1A V _{CC} =150V	0.25 0.8	μs
	Clamped E _{s/b} Collector current (fig. 1)	V _{clamp} =200V L = 500µ H	8	A

* Pulsed: pulse duration = 300 μ s, duty cycle \leq 2%

Safe operating areas

Derating curves

425

Thermal transient response

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

G-3940 (,us) 2 V_{CC} =150 V V_{CC} =150 V V_{CC} =150 V V_{CC} =25°C

t_{on} t_f

> ^в І_С(А)

Saturated switching characteristics

10

1

Collector-base capacitance

Fig. 1 – Clamped E_{s/b}test circuit

Fig. 2 – Switching times test circuit (resistive load)

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUX 41N is a silicon multiepitaxial planar NPN transistor in Jedec TO-3 metal case intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

Vana	Collector-base voltage $(1 = 0)$	220	v
VCEV	Collector-emitter voltage ($V_{\rm PE}$ =-1.5V)	220	Ň
VCEO	Collector-emitter voltage ($I_{\rm R}=0$)	160	v
VEBO	Emitter-base voltage $(I_c = 0)$	7	V
	Collector current	18	A
I _{CM}	Collector peak current (t _n =10 ms)	25	A
I _B	Base current	3.6	A
P _{tot}	Total power dissipation at T _{case} ≤25 ℃	120	W
T _{sta}	Storage temperature	-65 to 200	°C
T	Junction temperature	200	°C
'			

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.46	°C∕W
------------------------	----------------------------------	-----	------	------

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CEO}	Collector cutoff current (I _B =0)	V _{CE} =130V	1	mA
I _{CEX}	Collector cutoff current	$V_{CE} = 220V$ $V_{BE} = -1.5V$ $T_{case} = 125 ^{\circ}C$. 1	mA
		V _{CE} =220V V _{BE} =-1.5V	5	mA
Ι _{ΕΒΟ}	Emitter cutoff current (1 _c =0)	V _{EB} =5V	1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	l _c =200mA	160	v
V _{EBO}	Emitter-base voltage (I _C =0)	l _E =50mA	7	v
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 8A$ $I_{B} = 0.8A$ $I_{C} = 12A$ $I_{B} = 1.5A$	0.5 1.2 0.75 1.6	v v
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =12A I _B =1.5A	1.5 2	v
h _{FE} *	DC current gain	$I_{C} = 8A$ $V_{CE} = 4V$ $I_{C} = 12A$ $V_{CE} = 4V$	15 45 8	
l _{s/b}	Second breakdown collector current	$V_{CE} = 30V$ t = 1s $V_{CE} = 100V$ t = 1s	4 0.27	A A
f _T	Transition frequency	I _C =1A V _{CE} =15V f =10MHz	8	MHz

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	I _C =12A I _{B1} =1.5A V _{CC} =30V	0.35 1.3	μs
t _s	Storage time (fig. 2)	I _C =12A	0.85 1.5	μs
t _f	Fall time (fig. 2)	I _{B1} =-I _{B2} =1.5 A V _{CC} =30V	0.14 0.8	μs
	Clamped E _{s/b} Collector current (fig. 1)	V _{CLAMP} ==160V L = 500μ H	12	A

* Pulsed: pulse duration = 300 μ s, duty cycle \leq 2%

Derating curves

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Saturated switching characteristics

Transition frequency

Fig. 1 – Clamped $E_{s/b}$ test circuit

Fig. 2 - Switching times test circuit (resistive load)

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTOR

The BUX 42 is a silicon multiepitaxial planar NPN transistor in Jedec TO-3 metal case, intended for use in switching and linear applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage ($I_{\rm F} = 0$)	300	V
VCEX	Collector-emitter voltage (V _{BE} =-1.5V)	300	V
VCEO	Collector-emitter voltage $(I_B = 0)$	250	V
VEBO	Emitter-base voltage $(I_c = 0)$	7	V
	Collector current	12	Α
ICM	Collector peak current (t _n =10 ms)	15	Α
I _B	Base current	2.4	Α
P,	Total power dissipation at T case ≤25 °C	120	W
T _t	Storage temperature	-65 to 200	°C
T [°]	Junction temperature	200	°C
•		1	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

BIIX42

R _{th i-case}	Thermal resistance junction-case	max	1.46	°C∕W
in j=case	-			

ELECTRICAL CHARACTERISTICS (T $_{case} = 25 \, ^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max	. Unit
I _{CEO}	Collector cutoff current ($I_B=0$)	V _{CE} =200V	-	mA
I _{CEX}	Collector cutoff current	V _{CE} =300V V _{BE} =-1.5 T _{case} =125℃ V _{CE} =300V V _{BE} =-1.5	V s	mA 5 mA
I _{EBO}	Emitter cutoff current (1 _c =0)	V _{EB} =5V		mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage	I _C =200mA	250	V
V _{EBO}	Emitter-base voltage (1 _C =0)	I _E =50mA	7	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$\begin{array}{ccc} I_{C} =& 4A & I_{B} =& 0.4A \\ I_{C} =& 6A & I_{B} =& 0.75 \end{array}$	A 0.33 1.2 5A 0.45 1.6	
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =6A I _B =0.75	5A 1.23 2	2 V
h _{FE} *	DC current gain	$\begin{array}{ccc} I_{C} &=\!\! 4A & V_{CE} \!=\!\! 4V \\ I_{C} &=\!\! 6A & V_{CE} \!=\!\! 4V \end{array}$	15 45 8	5 _
I _{s/b}	Second breakdown collector current	$V_{CE} = 135V$ t = 1s $V_{CE} = 30V$ t = 1s	0.15 4	A A
f _T	Transition frequency	I _C =1A V _{CE} =15V f =10MHz	8	MHz

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _{on}	Turn-on time (fig. 2)	I _C =6A I _{B1} =0.75A V _{CC} =150V	0.23 1	μs
t _s	Storage time (fig. 2)	I _C =6A I _{B1} =0.75A	1.5 2	μs
t _f	Fall time (fig. 2)	_{B2} =-0.75A V _{CC} =150V	0.2 1.2	μs
	Clamped E _{s/b} Collector current (fig. 1)	V _{clamp} =250V L = 500µ H	6	A

* Pulsed: pulse duration = 300 μ s, duty cycle \leq 2%

Safe operating areas

Derating curves

Thermal transient response

G-3936

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

Transition frequency

Collector-base capacitance

Fig. 1 - Clamped Esth test circuit

Fig. 2 - Switching times test circuit (resistive load)

HIGH VOLTAGE POWER SWITCH

The BUX 43 is a silicon multiepitaxial mesa NPN transistor in Jedec TO-3 metal case, intended for high voltage, fast switching applications.

ABSOLUTE MAXIMUM RATINGS

V _{CES}	Collector-emitter voltage ($V_{BE} = 0$)	400	v
V _{CER}	Collector-emitter voltage ($R_{BE} \leq 100\Omega$)	360	V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	325	V
V _{EBO}	Emitter-base voltage $(I_{\rm C} = 0)$	7	V
	Collector current	10	A
ICM	Collector peak current ($t_p \leq 10$ ms)	12	A
I _B	Base current	2	A
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	120	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-3

R _{th j-case} Thermal resistance junction-case	max	1.46	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min. Typ.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$\begin{array}{l} V_{CE} = 400V \\ V_{CE} = 400V \end{array}$	$T_{case} = 125^{\circ}C$		1 5	mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	$V_{CE} = 260V$			1	mA
I _{EBO}	Emitter cutoff current $(I_C = 0)$	$V_{EB} = 7V$			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA		325		V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 3A$ $I_{\rm C} = 5A$	$I_B = 0.375A$ $I_B = 1A$		1 1.6	V V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 5 {\rm A}$	I _B = 1A		2	V
h _{FE} *	DC current gain	$I_{\rm C} = 3A$ $I_{\rm C} = 5A$	$\begin{array}{l} V_{CE} = 4V \\ V_{CE} = 4V \end{array}$	15 8	60	
f _T	Transition frequency	$I_{\rm C} = 1A$ f = 10MHz	$V_{CE} = 15V$	8		MHz
t _{on}	Turn-on time	$I_{\rm C} = 5 {\rm A} \\ V_{\rm CC} = 150 {\rm V}$	I _{B1} = 1A		1	μs
t _s	Storage time	$I_{\rm C} = 5 A \qquad I_{\rm E}$	$_{31} = -I_{B2} = 1A$		2.2	μs
t _f	Fall time	$V_{CC} = 150V$			1.2	μs

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

HIGH VOLTAGE POWER SWITCH

The BUX 44 is a silicon multiepitaxial mesa NPN transistor in Jedec TO-3 metal case, intended for high voltage, fast switching applications.

ABSOLUTE MAXIMUM RATINGS

V_{CES}	Collector-emitter voltage ($V_{BE} = 0$)	450	V
V _{CEB}	Collector-emitter voltage ($R_{BF} \leq 100\Omega$)	440	V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	400	V
V _{EBO}	Emitter-base voltage $(I_c = 0)$	7	V
I _C	Collector current	8	A
I _{CM}	Collector peak current ($t_n \leq 10$ ms)	10	A
I _B	Base current	1.6	A
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	120	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

	•			
R _{th j-case}	Thermal resistance junction-case	max	1.46	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions		Min. Typ.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$\begin{array}{l} V_{CE} = 450V \\ V_{CE} = 450V \end{array}$	$T_{case} = 125^{\circ}C$		1 5	mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} = 320V			1	mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 7V$			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA		400		V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 2A$ $I_{\rm C} = 4A$	$\begin{array}{l} I_B=0.25A\\ I_B=0.8A \end{array}$		1 2	V V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 4 {\rm A}$	$I_{B} = 0.8A$		2	V
h _{FE} *	DC current gain	$I_{\rm C} = 2A$ $I_{\rm C} = 4A$	$V_{CE} = 4V$ $V_{CE} = 4V$	15 8	45	_
f _T	Transition frequency	I _C = 1A f = 10MHz	$V_{CE} = 15V$	8		MHz
t _{on}	Turn-on time	$I_{C} = 4A$ $V_{CC} = 150V$	$I_{B} = 0.8A$		1	μs
t _s	Storage time	$I_{\rm C} = 4A I_{\rm B1}$	$= -I_{B2} = 0.8A$		2.5	μs
t _f	Fall time	$v_{\rm CC} = 150V$			1.2	μs

* Pulsed: pulse duration = 300μ s, duty cycle ≤ 2 %.

STS BUX46

HIGH VOLTAGE POWER SWITCH

The BUX 46 is a silicon multiepitaxial mesa NPN transistor in Jedec TO-3 metal case, intended for high voltage, fast switching applications.

ABSOLUTE MAXIMUM RATINGS

V _{CES}	Collector-emitter voltage ($V_{BE} = 0$)	850	v
V _{CER}	Collector-emitter voltage ($R_{BE} \leq 10\Omega$)	850	V
V _{CEO}	collector-emitter voltage $(I_B = 0)$	400	V
V_{EBO}	Emitter-base voltage ($I_c = 0$)	7	V
l _c	Collector current	5	A
l _B	Base current	3	A
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	85	W
T _{stg}	Storage temperature	-65 to 175	°C
Tj	Junction temperature	175	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th i-case}	Thermal resistance junction-case	max	1.75	°C/W
· · · · · · · · · · · · · · · · · · ·	······			

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$V_{CE} = 850V$ $V_{CE} = 850V$ $T_{case} = 125^{\circ}C$	100 1	μA mA
I _{CER}	Collector cutoff current ($R_{BE} \leq 10\Omega$)	$V_{CE} = 850V$ $V_{CE} = 850V$ $T_{case} = 125^{\circ}C$	300 2	μA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 7V$	1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA	400	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$\begin{array}{ll} I_{C} = 2.5 A & I_{B} = 0.5 A \\ I_{C} = 3.5 A & I_{B} = 0.7 A \end{array}$	1.5 5	V V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 2.5 {\rm A}$ $I_{\rm B} = 0.5 {\rm A}$	1.3	V
t _{on}	Turn-on time		1	μs
ts	Storage time	$I_{C} = 2.5A$ $V_{CC} = 150V$ $I_{B1} = -I_{B2} = 0.5A$	3	μs
t _f	Fall time	-	0.8	μs

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

STS BUX47

HIGH VOLTAGE POWER SWITCH

The BUX 47 is a silicon multiepitaxial mesa NPN transistor in Jedec TO-3 metal case, intended for high voltage, fast switching applications.

ABSOLUTE MAXIMUM RATINGS

V _{CES}	Collector-emitter voltage ($V_{BF} = 0$)	850	V
VCEB	Collector-emitter voltage ($R_{BE} \leq 10\Omega$)	850	V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	400	V
V _{EBO}	Emitter-base voltage $(I_c = 0)$	7	V
	Collector current	8.5	A
I _{CM}	Collector peak current (t _p ≤10ms)	12	A
I _B	Base current	3	A
I _{BM}	Base peak current (t _n ≤10ms)	6	A
Ptot	Total power dissipation at $T_{case} \leq 25^{\circ}C$	107	W
T _{sta}	Storage temperature	-65 to 175	°C
Tj	Junction temperature	175	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.4	°C/W
,	•			

ELECTRICAL	CHARACTERISTICS	$(T_{case} = 25^{\circ}C \text{ unless})$	otherwise specified)
------------	------------------------	---	----------------------

	Parameter	Test co	onditions	Min. Typ.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$\begin{array}{l} V_{CE} = 850V \\ V_{CE} = 850V \end{array}$	$T_{case} = 125^{\circ}C$		150 1.5	μA mA
I _{CER}	Collector cutoff current ($R_{BE} \leq 10\Omega$)	$\begin{array}{l} V_{CE} = 850V \\ V_{CE} = 850V \end{array}$	$T_{case} = 125^{\circ}C$		400 3	μA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 7V$			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	I _C = 100mA		400		V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 6A$ $I_{\rm C} = 9A$	$I_B = 1.2A$ $I_B = 3A$		1.5 3	× ×
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 6A$	$I_{B} = 1.2A$		1.6	۷
t _{on}	Turn-on time				1	μs
ts	Storage time	$I_{C} = 6A$ $I_{B1} = -I_{B2} = 1$	V _{CC} = 150V .2A		3	μs
t _f	Fall time				0.8	μs

* Pulsed: pulse duration = 300μ s, duty cycle ≤ 2 %.

VERY HIGH VOLTAGE POWER SWITCH

The BUX48 series are multiepitaxial mesa NPN transistors in a Jedec TO-3 metal case, particularly intended for switching and industrial applications from single and three-phase mains operation.

ABSO	LUTE MAXIMUM RATINGS	BUX48	BUX48A	BUX48B	BUX48C
V_{CES} V_{CEO} V_{CEO} I_C I_C I_C I_B I_BM P_{tot} T_{stg} T_j	$ \begin{array}{l} \mbox{Collector-emitter voltage } (V_{BE}=0) \\ \mbox{Collector-emitter voltage } (R_{BE}=10_{\Omega}) \\ \mbox{Collector-emitter voltage } (I_{B}=0) \\ \mbox{Emitter-base voltage } (I_{C}=0) \\ \mbox{Collector current} \\ \mbox{Collector peak current } (t_{p}\leqslant 5ms) \\ \mbox{Collector peak current non repetitive} \\ \mbox{(}t_{p}\leqslant 20\ \mu s) \\ \mbox{Base current} \\ \mbox{Base current} \\ \mbox{Base peak current } (t_{p}\leqslant 5ms) \\ \mbox{Total power dissipation at } T_{case}\leqslant 25^{\circ}\text{C} \\ \mbox{Storage temperature} \\ \mbox{Junction temperature} \end{array} $	850V 850V 400V	1000V 1000V 450V 7 15 30 55 4 20 17 -65 to 200	1000V 1000V 600V V 6A DA 5A A DA 5W 200°C 2°C	1000V 1000V 700V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max.	1	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} = 0)	for BUX48 and BUX48A $V_{CE} = V_{CES}$ $T_{case} = 125^{\circ}C$ $V_{CE} = V_{CES}$ for BUX48B and BUX48C $V_{CE} = V_{CES}$ $T_{case} = 125^{\circ}C$			200 2 500	μA mA μA
	10	$V_{CE} = V_{CES}$			3	mA
ICER	Collector cutoff current (R _{BE} = 10Ω)	$V_{CE} = V_{CES}$ $T_{case} = 125^{\circ}C$			500	μΑ
		$V_{CE} = V_{CES}$			4	mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for BUX48B $V_{CE} = V_{CEO}$ for BUX48C			1	mA
		$V_{CE} = V_{CEO}$			1	mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$			1	mA
V _{CEO(sus)}	Collector-emitter sustaining voltage		400 450 600 700			> > > >
V _{CER (sus})	Collector-emitter sustaining voltage $(R_{BE} = 10\Omega)$	for BUX48B and BUX48C $L = 2mH$ $V_{Clamp} = 1000V$ $I_C = 0.5A$	1000			v

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions	Min.	Typ.	Max.	Unit
V _{CE(sat)} * Collector-em saturation vo	itter Itage	for BUX48 $I_{c} = 10A$ $I_{B} = 2A$ $I_{c} = 15A$ $I_{B} = 3A$ for BUX48A $I_{c} = 8A$ $I_{B} = 1.6A$ $I_{c} = 12A$ $I_{B} = 2.4A$ for BUX48B and BUX48C $I_{c} = 6A$ $I_{B} = 1.5A$ $I_{c} = 8A$ $I_{B} = 2.5A$ $I_{c} = 10A$ $I_{B} = 4A$			1.5 5 1.5 5 1.5 2 3	
V _{BE(sat)} * Base-emitter saturation vo	ltage	for BUX48 $I_C = 10A$ $I_B = 2A$ for BUX48A $I_C = 8A$ $I_B = 1.6A$ for BUX48B and BUX48C $I_C = 6A$ $I_B = 1.5A$ $I_C = 10A$ $I_B = 4A$			1.6 1.6 1.6 2	<pre>> > > > > > > ></pre>
t _{on} Turn-on time (resistive load	2)	for BUX48 $V_{CC} = 150V I_{C} = 10A$ $I_{B1} = -I_{B2} = 2A$ for BUX48A $V_{CC} = 150V I_{C} = 8A$ $I_{B1} = -I_{B2} = 1.6A$ for BUX48B and BUX48C $V_{CC} = 250V I_{C} = 6A$ $I_{B1} = -I_{B2} = 1.5A$		0.500	1 1 1	μs μs μs
t _s Storage time (resistive load	1)	for BUX48 $V_{CC} = 150V I_{C} = 10A$ $I_{B1} = -I_{B2} = 2A$ for BUX48A $V_{CC} = 150V I_{C} = 8A$ $I_{B1} = -I_{B2} = 1.6A$ for BUX48B and BUX48C $V_{CC} = 250V I_{C} = 6A$ $I_{B1} = -I_{B2} = 1.5A$		1.5	3 3 3	μs μs μs
t _f Fall time (resistive loac	()	for BUX48 $V_{CC} = 150V I_{C} = 10A$ $I_{B1} = -I_{B2} = 2A$ for BUX48A $V_{CC} = 150V I_{C} = 8A$ $I_{B1} = -I_{B2} = 1.6A$ for BUX48B and BUX48C $V_{CC} = 250V I_{C} = 6A$ $I_{B1} = -I_{B2} = 1.5A$		0.200	0.8 0.8 0.8	μs μs μs

* Pulsed: pulse duration = 300 μ s, duty cyle -1.5%.

Safe operating areas

I - Area of permissible operation during turn-on provided $R_{BE} \leqslant 100\Omega$ and $t_p \leqslant 0.25 \ \mu s$

Safe operating areas

I - Area of permissible operation during turn-on provided R_{BE} \leq 100 Ω and t_p \leq 0,25 μ s

Clamped reverse bias safe operating

Collector-emitter saturation voltage G - 4819 V_{CE(sat)} (v) Tcase=125°C 1 25°C h_{FF}= 5 0.5 0 - 1 10

Collector-emitter saturation voltage G-4820 V_{CE(sat)} (V) I_C :1A 2A 3A 4A 5A 6A 7A 2 8A 1 1 0 2 IB(A)

Base-emitter saturation voltage

1

1_C (A)

Saturated switching characteristics

Saturated switching characteristics

Saturated switching characteristics

G- 3821

Tcase(*C)

Thermal transient response

DC current gain (only for BUX48/A)

Collector-emitter saturation voltage

Base-emitter saturation voltage (only for BUX48/A)

Extreme characteristics I_C vs. V_{BE} at V_{CE} constant (only for BUX48/A)

Switching times test circuit inductive load

Discrete Darlington configuration using BUX48 series devices

Switchable power at 30A:18KVA

HIGH VOLTAGE POWER SWITCH

The BUX 80 is a silicon multiepitaxial mesa NPN transistor in Jedec TO-3 metal case, particularly intended for converters, inverters, switching regulators and motor control systems applications.

ABSOLUTE MAXIMUM RATINGS

V	Collector-emitter voltage $(V_{} = 0)$	800	v
V CES	Collector-emitter voltage ($B_{E} = 0$)	500	v
CER	Conector-entitien voltage (TrBE-0022)	500	v
VCEO	Collector-emitter voltage ($I_B = 0$)	400	- V
V _{FBO}	Emitter-base voltage $(I_c = 0)$	10	V
I _C	Collector current	10	Α
I _{CM}	Collector peak current	15	Α
l _B	Base current	5	Α
P _{tot}	Total power dissipation at T _{case} ≤40°C	100	W
T _{sta}	Storage temperature	-65 to 150	°C
T _i	Junction temperature	150	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

e

C-0124

BUX80

459

5/80

TO-3

R _{th j-case}	Thermal resistance junction-case	max	1.1	°C/W
------------------------	----------------------------------	-----	-----	------

ELECTRICAL CHARACTERISTICS (T $_{case} = 25 \,^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. N	Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} =0)	V _{CE} =800V V _{CE} =800V T _{case} =125°C		1 3	mA mA
I _{EBO}	Emitter cutoff current (1 _C =0)	V _{EB} =10V		10	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B =0)	l _c =100mA	400		V
V _{CER(sus)} *	Collector-emitter sustaining voltage (R_{BE} =50 Ω)	l _c =100mA	500		V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 5A$ $I_{B} = 1A$ $I_{C} = 8A$ $I_{B} = 2.5A$		1.5 3	v v
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = 5A$ $I_{B} = 1A$ $I_{C} = 8A$ $I_{B} = 2.5A$		1.4 1.8	v v
h _{FE} *	DC current gain	I _C =1.2A V _{CE} =5V	30		-
t _{on}	Turn-on time	I _C =5A I _{B1} =1A V _{CC} =250V		0.5	μs
t _s	Storage time	$I_{C} = 5A$ $I_{B1} = 1A$ $I_{B2} = -2A$ $V_{CC} = 250V$		3.5	μs
t _f	Fall time	$I_{C} = 5A$ $I_{B1} = 1A$ $I_{B2} = -2A$ $V_{CC} = -250V$		0.5	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

I- Area of permissible operation during Turn-on provided R $_{BE} \leq 100 \Omega$ and t $_p \leq 0,6 \mu s$

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

462

Saturated switching characteristics

Saturated switching characteristics

Clamped E_{s/b} test circuit

t_f

4

2

I_C(A)

6

6

4

2

1Q⁻¹

1

HIGH VOLTAGE SWITCH

The BUX84, is a multiepitaxial mesa NPN transistor, intended for use in converters inverters, switching regulators, motor control systems and switching applications. It is mounted in Jedec TO-220 plastic package.

ABSOLUTE MAXIMUM RATINGS

V _{CES}	Collector-emitter voltage ($V_{BE} = 0$)	800	V
V _{CEO}	Collector-emitter voltage $(I_B = 0)^{\circ}$	400	V
I _C	Collector current	2	Α
ICM	Collector peak current	3	Α
I _B	Base current	0.75	Α
I _{BM}	Base peak current	1	Α
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	40	W
T _{stq}	Storage temperature	-65 to 150	°C
Тj	Junction temperature	150	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junctioncase	max.	2.5	°C/W
------------------------	---------------------------------	------	-----	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless ohterwise specified)

Parameter		Test conditions		Тур.	Max.	Unit
Collector cutoff current ($V_{BE} = 0$)	$V_{CE} = V_{CES}$ $V_{CE} = V_{CES}$	$T_j = 125^{\circ}C$			200 1.5	μA mA
Emitter cutoff current ($I_{\rm C} = 0$)	V _{EB} = 5V				1	mΑ
Collector-emitter sustaining voltage	I _C = 100mA L = 25mH	I _B = 0	400			v
Collector-emitter saturation voltage	$I_{C} = 0.3A$ $I_{C} = 1A$	$I_B = 30mA$ $I_B = 0.2A$			1.5 3	v v
Base-emitter saturation voltage	I _C = 1A	I _B = 0.2A			1.1	V
DC current gain	$V_{CE} = 5V$	$I_{\rm C} = 0.1 {\rm A}$		50		
Turn-on time				300	500	ns
Storage time	$I_{C} = 1A$ $I_{B} = 0.2A$	V _{CC} = 250V -I _B = 0.4A		1	3.5	μs
Fall time				0.1	1.4	μs
	ParameterCollector cutoff current ($V_{BE} = 0$)Emitter cutoff current ($I_C = 0$)Collector-emitter sustaining voltageCollector-emitter saturation voltageBase-emitter saturation voltageDC current gainTurn-on timeStorage timeFall time	ParameterTest orCollector cutoff current ($V_{BE} = 0$) $V_{CE} = V_{CES}$ Emitter cutoff current ($I_C = 0$) $V_{EB} = 5V$ Collector-emitter sustaining voltage $I_C = 100mA$ $L = 25mH$ Collector-emitter saturation voltage $I_C = 0.3A$ $I_C = 1A$ Base-emitter saturation voltage $I_C = 1A$ DC current gain $V_{CE} = 5V$ Turn-on time $I_C = 1A$ $I_B = 0.2A$ Fall time $I_C = 1A$	ParameterTest conditionsCollector cutoff current ($V_{BE} = 0$) $V_{CE} = V_{CES}$ $V_{CE} = V_{CES}$ $T_j = 125°CEmitter cutoffcurrent (I_C = 0)V_{EB} = 5VCollector-emittersustaining voltageI_C = 100mAI_C = 100mAI_B = 0L = 25mHCollector-emittersaturation voltageI_C = 0.3AI_C = 1AI_B = 0.2ABase-emittersaturation voltageI_C = 1AI_C = 1AI_B = 0.2ADC current gainV_{CE} = 5VI_C = 0.1ATurn-on timeI_C = 1AI_B = 0.2AStorage timeI_C = 1AI_B = 0.2AFall timeV_{CC} = 250VI_B = 0.2A$	ParameterTest conditionsMin.Collector cutoff current ($V_{BE} = 0$) $V_{CE} = V_{CES}$ $V_{CE} = V_{CES}$ $T_{J} = 125°C$ TEmitter cutoff current ($I_C = 0$) $V_{EB} = 5V$ 400Collector-emitter sustaining voltage $I_C = 100mA$ $I_C = 100mA$ $I_B = 0$ $L = 25mH$ $I_B = 0$ $I_B = 30mA$ $I_B = 0.2A$ Collector-emitter saturation voltage $I_C = 0.3A$ $I_C = 1A$ $I_B = 0.2A$ $I_B = 30mA$ $I_B = 0.2A$ Base-emitter saturation voltage $I_C = 1A$ $I_C = 1A$ $I_B = 0.2A$ $I_C = 0.1A$ Turn-on time $I_C = 1A$ $I_B = 0.2A$ $V_{CE} = 250V$ $I_B = 0.2A$ Fall time $I_C = 1A$ $I_B = 0.2A$ $V_{CC} = 250V$ $I_B = 0.4A$	ParameterTest conditionsMin. Typ.Collector cutoff current ($V_{BE} = 0$) $V_{CE} = V_{CES}$ $V_{CE} = V_{CES}$ $T_{J} = 125°CTEmitter cutoffcurrent (I_C = 0)V_{EB} = 5V400Collector-emittersustaining voltageI_C = 100mAI_C = 25mHI_B = 0I_B = 30mAI_B = 0.2ACollector-emittersaturation voltageI_C = 0.3AI_C = 1AI_B = 0.2AI_B = 30mAI_B = 0.2ABase-emittersaturation voltageI_C = 1AI_C = 1AI_B = 0.2AI_B = 0.2ADC current gainV_{CE} = 5VI_C = 0.1AI_CTurn-on timeFall timeI_C = 1AI_B = 0.2AV_{CE} = 250VI_B = 0.4A$	ParameterTest conditionsMin. Typ. Max.Collector cutoff current ($V_{BE} = 0$) $V_{CE} = V_{CES}$ $V_{CE} = V_{CES}$ $T_{J} = 125°C$ 200 (1.5)Emitter cutoff current ($I_{C} = 0$) $V_{EB} = 5V$ 1Collector-emitter sustaining voltage $I_{C} = 100mA$ $L = 25mH$ $I_{B} = 0$ $L = 25mH$ 400Collector-emitter sustaining voltage $I_{C} = 0.3A$ $I_{C} = 1A$ $I_{B} = 0.2A$ $I_{B} = 30mA$ $I_{C} = 1A$ $I_{B} = 30mA$ $I_{C} = 1A$ $I_{B} = 0.2A$ Base-emitter saturation voltage $I_{C} = 1A$ $I_{C} = 5V$ $I_{C} = 0.1A$ 50 Turn-on time $I_{C} = 1A$ $I_{B} = 0.2A$ 300 500 Storage time $I_{C} = 1A$ $I_{B} = 0.2A$ $I_{C} = 250V$ $I_{B} = 0.2A$ $I_{C} = 3000$ Fall time 0.1 1.4

* Pulsed: pulse duration = 300 μ s, duty cycle = 1%.

FAST SWITCHING HIGH VOLTAGE POWER

The BUY 18S is a silicon planar epitaxial NPN transistor in Jedec TO-3 metal case. It is intended for high-voltage switching power applications.

ABSOLUTE MAXIMUM RATINGS

VCRO	Collector-base voltage ($I_{r} = 0$)	400	v
VCEO	Collector-emitter voltage $(I_{\rm B} = 0)$	200	V
VEBO	Emitter-base voltage $(I_c = 0)$	6	V
I _C	Collector current	7	Α
I _{CM}	Collector peak current (repetitive)	10	Α
I _{CM}	Collector peak current (t \leq 10 ms)	15	Α
I _B	Base current	4	Α
P _{tot}	Total power dissipation at $T_{case} \le 75 \text{ °C}$	50	W
T _{sta}	Storage temperature	-65 to 175	°C
Tj	Junction temperature	175	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	2 °	C/W
------------------------	----------------------------------	-----	-----	-----

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test cor	nditions	Min.	Тур.	Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	$V_{CB} = 200V$ $V_{CB} = 200V$	T _{case} = 100°C			10 2	μA mA
V _{(BR) CBO} *	Collector-base breakdown voltage (I _E = 0)	$I_{\rm C} = 5 \rm{mA}$		400			V
V _{EBO} *	Emitter-base voltage (I _c =0)	I _E = 1 mA		6			V
V _{CEO (SUS)}	*Collector-emitter sustaining voltage (I _B = 0)	$I_{\rm C}$ = 20 mA		200			V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 5A$ $I_{\rm C} = 7A$	$\begin{array}{rcl} I_{\rm B} &= 0.5 {\rm A} \\ I_{\rm B} &= 0.7 {\rm A} \end{array}$		1	1	V V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 5A$ $I_{\rm C} = 7A$	$\begin{array}{ll} I_{\rm B} &= 0.5 {\rm A} \\ I_{\rm B} &= 0.7 {\rm A} \end{array}$			1.4 1.6	V V
h _{FE} *	DC current gain	$I_{\rm C} = 1 {\rm A}$	$V_{CE} = 5V$	20	35		
f _T	Transition frequency	$I_{\rm C}$ = 0.5 A	$V_{CE} = 10V$		30		MHz
C _{CBO}	Collector-base capacitance	$ \begin{array}{ll} I_E &= 0\\ f &= 1 \text{ MHz} \end{array} $	$V_{CB} = 50V$		55		pF
t _{on}	Turn-on time	$I_{\rm C} = 5A$	$I_{B1} = 0.5A$			1	μS
t _{off}	Turn-off time	$I_{\rm C} = 5A$ $I_{\rm B1} = -I_{\rm B2} = 0$	0.5A		0.3	1	μS
I _{s/b} **	Second breakdown collector current	$V_{CE} = 40V$		1			A

 $^*\,$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5 % $^{**}\,$ Pulsed: 1s, non repetitive pulse

G - 1492 ۱c TTT (A) * PULSE MAX OPERATION (PULSED) 10 €1m s CONTINUOUS 10 ms DC OPERATION 1 TIIII *FOR SINGLE NON REPETITI PULSE ISID LIMITED 10-1 1111 册 VCEO MAX = 200 10-2 6 8 4 8 68 10² 1 10 10³ $V_{CE}(v)$

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

EPITAXIAL PLANAR NPN

HIGH VOLTAGE, HIGH CURRENT SWITCH

The BUY 47 and BUY 48 are silicon epitaxial planar NPN transistors in Jedec TO-39 metal case. They are used in high-voltage, high-current switching applications up to 7 A.

ABSO	LUTE MAXIMUM RATINGS		BUY 47	BUY 48	
V _{CBO}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_E = 0$)		150V 120V	200V	
V _{EBO}	Emitter-base voltage ($I_c = 0$)		6	V	
I _{СМ}	Collector peak current (repetitive)		7A 10A		
P _{tot}	Total power dissipation at T _{amb} ≤ 25°C T _{case} ≤50°C		1W 10W		
T _{stg} T _j	Storage temperature Junction temperature		-65 to 200 °C 200 °C		

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	15	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	175	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cutoff current ($I_E = 0$)	for BUY 47 $V_{CB} = 80 V$ $V_{CB} = 80 V$ for BUY 48 $V_{CB} = 100 V$ $V_{CB} = 100 V$	$T_{case} = 125^{\circ}C$ $T_{case} = 125^{\circ}C$			10 1 10 1	μA mA μA mA
V _{(BR) CBO} *	Collector-base breakdown voltage $(I_E = 0)$	I _C = 1 mA	for BUY 47 for BUY 48	150 200			V V
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	$I_{\rm C} = 20 \rm mA$	for BUY 47 for BUY 48	120 170			V V
V _{EBO} *	Emitter-base voltage (I _c =0)	I _E = 1 mA		6			V
V _{CE (sat)} *	Collector-emitter saturation voltage	$\begin{array}{rcl} I_{\rm C} &= 0.5 \ {\rm A} \\ I_{\rm C} &= 2 \ {\rm A} \\ I_{\rm C} &= 5 \ {\rm A} \end{array}$	$l_{B} = 50 \text{ mA}$ $l_{B} = 0.2 \text{ A}$ $l_{B} = 0.5 \text{ A}$	· .	0.05	0.45 1	V V V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 0.5 {\rm A}$ $I_{\rm C} = 2 {\rm A}$ $I_{\rm C} = 5 {\rm A}$	$I_{B} = 50 \text{ mA}$ $I_{B} = 0.2 \text{ A}$ $I_{B} = 0.5 \text{ A}$		0.8	1.1 1.5	V V V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
h _{FE} *	DC current gain	$ \begin{array}{ll} I_{C} &= 50 \text{ mA} & V_{CE} = 5 \text{ V} \\ I_{C} &= 0.5 \text{ A} & V_{CE} = 5 \text{ V} \\ I_{C} &= 2 \text{ A} & V_{CE} = 5 \text{ V} \\ I_{C} &= 5 \text{ A} & V_{CE} = 5 \text{ V} \end{array} $	40 40 15	130 150 130 45		
f _T	Transition frequency	$I_{\rm C}$ = 100mA $V_{\rm CE}$ = 10 V		90		MHz
C _{CBO}	Collector-base capacitance	$I_{E} = 0$ $V_{CB} = 50 V$ f = 1 MHz		45	80	pF
t _{on}	Turn-on time	$I_{\rm C} = 5 {\rm A} {\rm V}_{\rm CC} = 40 {\rm V}$			1	μS
t _{off}	Turn-off time	$I_{B1} = -I_{B2} = 0.5 \text{ A}$			2	μS

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

471

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Collector-base capacitance

Saturated switching characteristics

Power rating chart

Switching time test circuit

HIGH VOLTAGE, MEDIUM CURRENT SWITCH

The BUY49P is a silicon epitaxial planar NPN transistor in Jedec TO-126 plastic package. It is used in high-current switching applications up to 3A.

ABSOLUTE MAXIMUM RATINGS

	ALL THE ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	A STATE OF A	
Vсво	Collector-base voltage (I _E = 0)	250	v
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	200	V
V _{EBO}	Emitter-base voltage (I _C = 0)	6	V
I _C	Collector current	3	Α
I _{CM}	Collector peak current	5	А
P _{tot}	Total power dissipation at $T_{amb} \leq 25^{\circ}C$	15	W
T _{stq}	Storage temperature	-65 to 150	°C
T _j	Junction temperature	150	°C

BO

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th i-case}	Thermal resistance junction-case	max.	8.33	°C/W
in j=case	-	i		

BUY49P

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	V _{CB} = 200V				0.1	μΑ
V _{сво} *	Collector-base breakdown voltage $(I_E = 0)$	$I_{C} = 100 \mu A$		250			V
V _{CEO(sus)}	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 20mA		200			V
V _{EBO} *	Emitter-base voltage ($I_{C} = 0$)	I _E = 1mA		6			V
V _{CE(sat)} *	Collector-emitter saturation voltage	I _C = 0.5A	$I_B = 50 \text{mA}$			0.2	V
V _{BE(sat)} *	Base-emitter saturation voltage	I _C = 0.5A	I _B = 50mA			1.1	V
h _{FE} *	DC current gain	$I_{C} = 20mA$ $I_{C} = 20mA$ $I_{C} = 0.5A$ $I_{C} = 20mA$ $T_{case} = -55^{\circ}C$	$V_{CE} = 2V$ $V_{CE} = 5V$ $V_{CE} = 5V$ $V_{CE} = 2V$	30 40 40 16		120	-
f _T	Transition frequency	$I_{C} = 100 \text{mA}$	$V_{CE} = 10V$	30			MHz
С _{сво}	Collector-base capacitance	$I_E = 0$ f = 1MHz	V _{CB} = 10V			50	pF
t _{on}	Turn-on time	I _C = 0.5A	$V_{CC} = 20V$			0.8	μs
t _{off}	Turn-off time	$ \mathbf{I}_{B1} = -\mathbf{I}_{B2} = \mathbf{I}_{B2}$	50mA			2.5	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%.

EPITAXIAL PLANAR NPN

HIGH VOLTAGE, MEDIUM CURRENT SWITCH

The BUY 49S is a silicon epitaxial planar NPN transistor in Jedec TO-39 metal case. It is used in high-voltage, high-current switching applications up to 3A.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage $(I_{\rm F}=0)$	250	V
VCEO	Collector-emitter voltage $(I_B = 0)$	200	v
V _{FBO}	Emitter-base voltage $(I_{c} = 0)$	6	V
I _C	Collector current	3	А
I _{CM}	Collector peak current	5	А
P _{tot}	Total power dissipation at $T_{amb} \le 25^{\circ}C$	1	W
	T _{case} ≤50°C	10	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th i-case}	Thermal resistance junction-case	max	15	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	175	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	$V_{CB} = 200 V$ $V_{CB} = 200 V$ $T_{case} = 150 °C$			0.1 50	μ Α μΑ
V _{(BR) CBO} *	Collector-base breakdown voltage $(I_E = 0)$	$I_{\rm C}$ = 100 μ A	250			V
VCEO (sus)*	Collector-emitter sustaining voltage $(I_B = 0)$	$I_{\rm C}$ = 20 mA	200			V
V _{EBO} *	Emitter-base voltage (I _c =0)	I _E = 1 mA	6			V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 0.5 {\rm A} I_{\rm B} = 50 {\rm mA}$			0.2	V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 0.5 {\rm A} I_{\rm B} = 50 {\rm mA}$			1.1	V
h _{FE} *	DC current gain		40 40 16	80		-
f _T	Transition frequency	$I_{\rm C}$ = 100mA $V_{\rm CE}$ = 10 V	50			MHz
C _{CBO}	Collector-base capacitance	$I_{E} = 0$ $V_{CB} = 10 V$ f = 1 MHz			30	pF
t _{on}	Turn-on time	$I_{\rm C} = 0.5 {\rm A} {\rm V}_{\rm CC} = 20 {\rm V}$		0.3		μS
t _{off}	Turn-off time	$I_{B1} = -I_{B2} = 50 \text{ mA}$		1		μS
I _{s/b} **	Second breakdown collector current	V _{CE} = 50 V	0.2			A

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5% ** Pulsed: 1s, non repetitive pulse

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL PLANAR NPN

HIGH CURRENT, GENERAL PURPOSE TRANSISTOR

The BUY 68 is a silicon epitaxial planar NPN transistor in Jedec TO-39 metal case. It is used for high-current switching applications and in power amplifiers. The BUY 68 is available in 3 h_{FE} gain bands.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage $(I_{\rm F}=0)$	100	v
VCER	Collector-emitter voltage ($R_{BE} \leq 10 \Omega$)	80	V
VCEO	Collector-emitter voltage $(I_{B} = 0)$	60	V
VEBO	Emitter-base voltage $(I_c = 0)$	6	V
	Collector current	7	А
P _{tot}	Total power dissipation at $T_{amb} \leq 25^{\circ}C$	1	W
101	$T_{case} \leq 50^{\circ}C$	10	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°G

MECHANICAL DATA

R _{th i-case}	Thermal resistance junction-case	max	15	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	175	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{СВО}	Collector cutoff current ($I_E = 0$)	$V_{CB} = 60 V$			1	μΑ
V _{(BR) CBO} *	Collector-base breakdown voltage (I _E = 0)	$I_{\rm C}$ = 1 mA	100			V
V _{CER (sus)} *	Collector-emitter sustaining voltage $(R_{BE} = 10 \Omega)$	$I_{\rm C}$ = 50 mA	80			V
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	$I_{\rm C}$ = 50 mA	60			V
V _{EBO} *	Emitter-base voltage (I _C =0)	I _E = 1 mA	6			V
V _{CE (sat)} *	Collector-emitter saturation voltage	$ \begin{array}{ll} I_{C} &= 2 \mbox{ A} & I_{B} &= 0.2 \mbox{ A} \\ I_{C} &= 5 \mbox{ A} & I_{B} &= 0.5 \mbox{ A} \end{array} $			0.6 1	V V
V _{BE (sat)} *	Base-emitter saturation voltage			1 1.2	1.3 1.6	V V
h _{FE} *	DC current gain	$\begin{split} I_{C} &= 0.1 \text{ A} & V_{CE} = 1 \text{ V} \\ & \text{Group 6} \\ & \text{Group 10} \\ I_{C} &= 1 \text{ A} & V_{CE} = 1 \text{ V} \\ & \text{Group 6} \\ & \text{Group 10} \\ & \text{Group 16} \end{split}$	40 40 63 100 40 63 100	130 70 110 170 130 70 110 170	250 100 160 250	
f _T	Transition frequency	$I_{\rm C} = 0.5 {\rm A} {\rm V}_{\rm CE} = 5 {\rm V}$	50			MHz
С _{сво}	Collector-base capacitance	$\begin{array}{ll} I_{E} &= 0 & V_{CB} = 10 \ V \\ f &= 1 \ MHz \end{array}$			80	pF
t _{on}	Turn-on time	$I_{\rm C} = 5 \text{A}$ $V_{\rm CC} = 20 \text{V}$			0.35	μS
t _{off}	Turn-off time	$I_{B1} = -I_{B2} = 0.5 \text{ A}$			0.75	μS

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

MULTIEPITAXIAL MESA NPN

HIGH VOLTAGE POWER SWITCH

The BUY 69A, BUY 69B, and BUY 69C are silicon multiepitaxial mesa NPN transistors in Jedec TO-3 metal case. They are intended for horizontal deflection output stage of CTV receivers and high voltage, fast switching and industrial applications.

ABSO	LUTE MAXIMUM RATINGS	BUY 69A	BUY 69B	BUY 69C
$\begin{array}{l} V_{CES} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_C \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j \end{array}$	$ \begin{array}{l} \mbox{Collector-emitter voltage } (V_{BE}=0) \\ \mbox{Collector-emitter voltage } (I_B=0) \\ \mbox{Emitter-base voltage } (I_C=0) \\ \mbox{Collector current} \\ \mbox{Collector peak current } (t_p \leqslant 10 \text{ms}) \\ \mbox{Base current} \\ \mbox{Total power dissipation at } T_{case} \leqslant 25^{\circ}\text{C} \\ \mbox{Storage temperature} \\ \mbox{Junction temperature} \end{array} $	1000V 400V	800V 325V 8V 10A 15A 3A 100W 65 to 200° 200°C	500V 200V °C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-3

5/80

R _{th j-case}	Thermal resistance junction-case	max	1.75	°C/W
		1		

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \,^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min. Typ.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for BUY69A for BUY69B for BUY69C	$\begin{array}{l} V_{CE} = 1000V \\ V_{CE} = 800V \\ V_{CE} = 500V \end{array}$		1 1 1	mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 8V$			1	mA
V _{сво}	Collector-base voltage $(I_E = 0)$	for BUY69A for BUY69B for BUY69C	$ I_C = 1mA I_C = 1mA I_C = 1mA $	1000 800 500		V V V
V _{CEO} (sus)	*Collector-emitter sustaining voltage $(I_B = 0)$	$\label{eq:lc} \begin{split} I_C &= 100\text{mA}\\ \text{for } \textbf{BUY 69A}\\ \text{for } \textbf{BUY 69B}\\ \text{for } \textbf{BUY 69C} \end{split}$		400 325 200		v v v
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 8A$	$I_{B} = 2.5A$		3.3	V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C}=8{\sf A}$	$I_{B} = 2.5A$		2.2	V
h _{FE} *	DC current gain	$I_{\rm C} = 2.5 A$	$V_{CE} = 10V$	15		—
f _T	Transition frequency	I _C = 0.5A	$V_{CE} = 10V$	10		MHz
I _{S/b} **	Second breakdown collector current	$V_{CE} = 25V$		4		A
t _{on}	Turn-on time	$I_{C} = 5A$ $I_{B1} = 1A$	$V_{CE} = 250V$	0.2		μs

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
ts	Storage time	$I_{\rm C} = 5A$ $V_{\rm CE} = 250V$	1.7	μs
t _f	Fall time	$I_{B1} = -I_{B2} = 1A$	0.3	μs
t _f	Fall time		1	μs

* Pulsed: pulse duration = 300μ s, duty cycle = 1.5%** Pulsed: 1 s, non repetitive pulse

For characteristics curves see the BUW 34/5/6 series.

MULTIEPITAXIAL PLANAR NPN

LINEAR AND SWITCHING APPLICATIONS

The D44C1 to D44C12 are silicon multiepitaxial planar transistors in TO-220 plastic package intended for linear and switching applications.

ABSOI	UTE MAXIMUM RATINGS	D44C 1/2/3	D 44C 4/5/6	D44C 7/8/9	D44C 10/11/12
V _{CES}	Collector-emitter voltage (V _{BE} = 0)	40V	55V	70V	90V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	30∨	45V	60V	80V
V _{EBO}	Emitter-base voltage ($I_c = 0$)	5V	5V	5V	5V
I _C	Collector current			4A	
I _{CM}	Collector peak current $(t_p = 10ms)$			6A	
P _{tot}	Total power dissipation $T_{case} \leq 25^{\circ}C$		3	ow	
	T _{amb} ≤ 25°C	1,67W			
Τ _{sta}	Storage temperature		-55 to	150°C	
T _j	Junction temperature		150	D°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-220

R _{th j-case}	Thermal resistance junction-case	max.	4.2	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max.	75	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cutoff current (V _{BE} = 0)	$V_{CE} = Rated V_{CES}$			10	μA
I _{ЕВО} *	Emitter cutoff current (I _C = 0)	V _{EB} = 5V			100	μA
* V _{CEO (sus})	Collector~emitter sustaining voltage	I _C = 100mA for D44C1-2-3 for D44C4-5-6 for D44C7-8-9 for D44C10-11-12	30 45 60 80			V V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$ I_{C} = 1A \qquad I_{B} = 50 mA \\ for D44C2-3-5-6-8-9-11-12 \\ I_{C} = 1A \qquad I_{B} = 0.1A \\ for D44C1-4-7-10 $			0.5 0.5	v v
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 1$ A $I_{\rm B} = 100$ mA			1.3	V
h _{FE} *	DC current gain	$\begin{split} I_{C} &= 0.2A V_{CE} = 1V \\ I_{C} &= 2A V_{CE} = 1V \\ \text{for } \textbf{D44C3-6-9-12} \\ I_{C} &= 0.2A V_{CE} = 1V \\ I_{C} &= 1A V_{CE} = 1V \\ \text{for } \textbf{D44C2-5-8-11} \end{split}$	40 20 100 20		120 220	_
		$ I_{C} = 0.2A \qquad V_{CE} = 1V \\ I_{C} = 1A \qquad V_{CE} = 1V \\ for D44C1-4-7-10 $	25 10			

* Pulsed: pulse duration = 300 μ s, duty cycle = 2%.

MULTIEPITAXIAL PLANAR NPN

SWITCHING APPLICATIONS GENERAL PURPOSE

The D44H series are silicon multiepitaxial planar transistors and are mounted in Jedec TO-220 plastic package.

They are intended for various switching and general purpose applications.

ABSO	LUTE MAXIMUM RATINGS	D44H1/2	D44H4/5	D44H7/8	D44H10/11
V _{CEO}	Collector-emitter voltate $(I_B = 0)$	30∨	45V	60V	80V
V _{EBO}	Emitter base voltage ($I_{C} = 0$)	dillo		5V	
I _C	Collector current	10A			
I _{CM}	Collector peak current		2	0A	
P _{tot}	Total power dissipation T _{case} ≤ 25°C		5	ow	
T _{sta}	Storage temperature		-55 to	o 150°C	
Tj	Junction temperature		15	0°C	

вC

 \cap^{c}

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-220

R _{th j-case}	Thermal resistance junction-case	max.	2.5	°C/W
		1		

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	$V_{CB} = Rated V_{CEO}$			10	μΑ
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	$V_{EB} = Rated V_{EBO}$			100	μΑ
V _{CEO (sus})	Collector-emitter sustaining voltage	I _C = 100mA for D44H1/2 for D44H4/5 for D44H7/8 for D44H10/11	30 45 60 80			> > > >
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 8A$ $I_{B} = 0.4A$ for D44H2/5/8/11 $I_{C} = 8A$ $I_{B} = 0.8A$ for D44H1/4/7/10			1 1	v v
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 8$ A $I_{\rm B} = 0.8$ A			15	V
h _{FE} *	DC current gain	$V_{CE} = 1V I_{C} = 2A$ for D44H1/4/7/10 for D44H2/5/8/11 $V_{CE} = 1V I_{C} = 4A$ for D44H1/4/7/10 for D44H2/5/8/11	35 60 20 40			

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%.

MULTIEPITAXIAL PLANAR NPN

LINEAR AND SWITCHING APPLICATIONS

The D44Q1, D44Q3 and D44Q5 are silicon multiepitaxial planar transistors in TO-220 plastic package intended for linear and switching applications.

ill Wayne.

ABSOL	UTE MAXIMUM RATINGS	D44Q1	D44Q3	D44Q5	
V _{CBO}	Collector-base voltage $(I_E = 0)$	200V	250V	300∨	
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	125V	175V	225V	
V _{EBO}	Emitter-base voltage ($I_B = 0$)	7∨	7∨	7∨	
I _C	Collector current		4A		
P _{tot}	Total power dissipation $T_{case} \leq 25^{\circ}C$	1	31.25W		
	T _{amb} ≤ 25°C	1.67W			
T _{stq}	Storage temperature	–55 to 150°C			
Т _ј	Junction temperature		150°C		

C

BC

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-220

R _{th i-case}	Thermal resistance junctioncase	max.	4	°C/W
R _{th j-amb} .	Thermal resistance junctionambient	max.	75	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min.	Тур.	Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	Rated V _{CEO}				10	μA
V _{CEO(sus})	Collector emitter sustaining voltage	I _C = 10mA	for D44Q1 for D44Q3 for D44Q5	125 175 225			V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{C} = 2A$	I _B = 0.2A			1	V
V _{BE(sat)} *	Base-emitter saturation voltage	I _C = 2A	$I_{B} = 0.2A$			1.3	v
h _{FE} *	DC current gain	$I_{C} = 0.2A$ $I_{C} = 2A$	$V_{CE} = 10V$ $V_{CE} = 10V$	30 20			
f _T	Transition frequency	$I_{C} = 100 \text{mA}$	$V_{CE} = 10V$		20		MHz
С _{сво}	Collector base capacitance	$V_{CB} = 10V$	f = 1MHz		32		рF
t _{on}	Turn-in time					0.4	μs
t _s	Storage time	$V_{CC} = 50V$ $I_C = 1A$	0.1.4			2	μs
t _f	Fall time	$ _{B1} = - _{B2} =$	U. TA			1.7	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 2%.

۰,

EPITAXIAL-BASE NPN/PNP

COMPLEMENTARY POWER DARLINGTONS

The MJ 900, MJ 901, MJ 1000 and MJ 1001 are silicon epitaxial-base transistors in monolithic Darlington configuration, and are mounted in Jedec TO-3 metal case. They are intended for use in power linear and switching applications.

The PNP types are the MJ 900 and MJ 901 and their complementary NPN types are the MJ 1000 and MJ 1001 respectively.

ABSOLUTE MAXIMUM RATINGS PNP°		MJ 900	MJ 901	
		NPN	MJ1000	MJ1001
$V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j$	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Base current Total power dissipation at $T_{case} \le 25$ °C Storage temperature Junction temperature		60V 60V 5 8 0. 90 -65 to 200	80V 80V V A 1A 200 °C 200 °C

° For PNP types voltage and current values are negative

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	1.94	°C/W

ELECTRICAL CHARACTERISTICS ° (T_{case} = 25°C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CER}	Collector cutoff current (R _{BE} = 1kΩ)	for MJ900 and MJ1000 V _{CE} = 60 V for MJ901 and MJ1001	1	mA
		$V_{CE} = 80 V$ $T_{case} = 150^{\circ}C$ for MJ900 and MJ1000 $V_{CE} = 60 V$ for M 1901 and M 11001	5	mA mA
		$V_{CE} = 80 V$	5	mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for MJ900 and MJ1000 V _{CE} = 30 V for MJ901 and MJ1001	0.5	mA
		$V_{CE} = 40 V$	0.5	mA
I _{EBO}	Emitter cutoff current ($I_{\rm C} = 0$)	V _{EB} = 5 V	2	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA for MJ900 and MJ1000 for MJ901 and MJ1001	60 80	V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$ I_C = 3 A \qquad I_B = 12mA \\ I_C = 8 A \qquad I_B = 40mA $	2 4	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 3 {\rm A} \qquad V_{\rm CE} = 3 {\rm V}$	2.5	V
h _{FE} *	DC current gain		1000 750	_

 $^*\,$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5% $^\circ\,$ For PNP types current and voltage values are negative

For characteristic curves see the 2N 6053/55 series

EPITAXIAL-BASE NPN/PNP

COMPLEMENTARY POWER DARLINGTONS

The MJ 2500, MJ 2501, MJ 3000 and MJ 3001 are silicon epitaxial-base transistors in monolithic Darlington configuration and are mounted in Jedec TO-3 metal case. They are intended for use in power linear and switching applications.

The PNP types are the MJ 2500 and MJ 2501 and the ir complementary NPN types are the MJ 3000 and MJ 3001 respectively.

ABSOLUTE MAXIMUM RATINGS PNP°		PNP°	MJ2500	MJ2501
		NPN	MJ3000	MJ3001
$V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j$	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Base current Total power dissipation at $T_{case} \le 25$ °C Storage temperature Junction temperature		60V 60V 5 10 0.3 15 -65 to 200	80V 80V V 2A 2A 200 °C 200 °C

° For PNP types voltage and current values are negative

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	1.17	°C/W

ELECTRICAL CHARACTERISTICS ° (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CER}	Collector cutoff current ($R_{BE} = 1k\Omega$)	for MJ2500 and MJ3000 V _{CE} = 60 V for MJ2501 and MJ3001	1	mA
		$V_{CE} = 80 V$ $T_{case} = 150^{\circ}C$ for M 12500 and M 12000	1	mA
		V _{CE} = 60 V for MJ2501 and MJ3001	5	mA
		V _{CE} = 80 V	5	mA
I _{CEO}	Collector cutoff current $(I_B = 0)$	for MJ2500 and MJ3000 V _{CE} = 30 V for MJ2501 and MJ3001	1	mA
		$V_{CE} = 40 \text{ V}$	1	mA
I _{EBO}	Emitter cutoff current $(I_{C} = 0)$	$V_{EB} = 5 V$	2	mA
V _{CEO (sus)} *	Collector-emitter	$I_{\rm C} = 100 {\rm mA}$	<u></u>	V
	$(I_B = 0)$	for MJ2500 and MJ3000 for MJ2501 and MJ3001	80	V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$ I_C = 5 \text{ A} \qquad I_B = 20 \text{mA} \\ I_C = 10 \text{ A} \qquad I_B = 50 \text{mA} $	2 4	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 5 {\rm A} \qquad V_{\rm CE} = 3 {\rm V}$	3	V
h _{₱E} *	DC current gain	$I_{\rm C} = 5 \text{A} \qquad V_{\rm CE} = 3 \text{V}$	1000	—

* Pulsed: pulse duration = $300 \ \mu$ s, duty cycle = 1.5%* For PNP types current and voltage values are negative For characteristic curves see the 2N6050 / 57 series

EPITAXIAL-BASE PNP

POWER LINEAR AND SWITCHING APPLICATIONS

The MJ 2955 is a silicon epitaxial-base PNP power transistor in Jedec TO-3 metal case. It is intended for power switching circuits, series and shunt regulators, output stages and hi-fi amplifiers.

ABSOLUTE MAXIMUM RATINGS

VCBO	Collector-base voltage ($I_{\rm F} = 0$)	-100	V
V _{CEB}	Collector-emitter voltage ($R_{BE} \leq 100 \Omega$)	-70	V
VCEO	Collector-emitter voltage $(I_{\rm B} = 0)$	-60	V
V _{EBO}	Emitter-base voltage $(I_{c} = 0)$	-7	V
	Collector current	-15	Α
l _B	Base current	-7	A
P _{tot}	Total power dissipation at T _{case} ≤ 25 °C	150	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Ł

R _{th j-case}	Thermal resistance junction-case	max	1.17	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test conditions	Min.	Тур. Мах.	Unit
I _{CEX}	Collector cutoff current (V_{BE} = 1.5V)	$V_{CE} = -100V$ $V_{CE} = -100V$ $T_{case} = 150^{\circ}C$		-1 -5	mA mA
I _{CEO}	Collector cutoff current $(I_B = 0)$	$V_{CE} = -30 V$		-0.7	mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{BE} = 7 V$		-5	mΑ
V _{CER (sus)} *	Collector-emitter sustaining voltage $(R_{BE} = 100 \ \Omega)$	I _C = -200mA	-70		V
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -200mA	-60		V
V _{CE (sat)} *	Collector-emitter saturation voltage	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-1.1 -3	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C}$ = -4 A $V_{\rm CE}$ = -4 V		-1.8	V
h _{FE} *	DC current gain		20 5	70	
f _T	Transition frequency	$I_{\rm C}$ = -0.5A $V_{\rm CE}$ = -10V	4		MHz

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5% For characteristic curves see the 2N 5875 series

EPITAXIAL-BASE NPN/PNP

GENERAL PURPOSE

The MJ4030/31/32/33/34/35 are medium-power silicon Darlington in Jedec TO-3 metal case, intended for use in general purpose and amplifier applications.

ABSOLUTE MAXIMUM RATINGS NPN		NPN	MJ4030	MJ4031	MJ4032	
		PNP*	MJ4033	MJ4034	MJ4035	
V _{CBO}	Collector-base voltage ($I_E = 0$)		60V	80V	100∨	
V _{CEO}	Collector-emitter voltage ($I_B = 0$)		60V	80V	100∨	
V _{EBO}	Emitter-base voltage ($I_{C} = 0$)			5V		
I _C	Collector current			16A		
I _B	Base current			0.5A		
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$		150W			
T _{stq}	Storage temperature		-65 to 200°C			
Tj	Junction temperature		200° C			

* For NPN types voltage and current values are negative

INTERNAL SCHEMATIC DIAGRAMS

MECHANICAL DATA

R _{th j-case}	Thermal resistance junctioncase	max.	1.17	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	$V_{CE} = 30V I_{B} = 0 MJ4030/33 V_{CE} = 40V I_{B} = 0 MJ4031/34 V_{CE} = 50V I_{B} = 0 MJ4032/35 I_{B} I_{B} = 0 MJ4032/35 I_{B} I_{B} $			3 3 3	mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{BE} = 5V$ $I_C = 0$			5	mA
I _{CER}	Collector cutoff current (R _{BE} = 1KΩ)				1 1 5 5 5	mA mA mA mA mA
V _{(BR)CEO}	* Collector-emitter Breakdown voltage	$I_{C} = 100 \text{mA}$ $I_{B} = 0$ for MJ4030/33 for MJ4031/33 for MJ4032/35	60 80 100			V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{C} = 10A \qquad I_{B} = 40mA$ $I_{C} = 16A \qquad I_{B} = 80mA$			2.5 4	v v
V _{BE} *	Base-emitter voltage	$I_{C} = 10A$ $V_{CE} = 3V$			3	V
h _{FE} *	DC Current gain	$I_{C} = 10A$ $V_{CE} = 3V$	1000)		-

* Pulsed: pulse duration = 300 μ s, duty cycles $\leq 2\%$.

For PNP types voltage and current values are negative.

EPITAXIAL PLANAR NPN

HIGH POWER FAST SWITCHING

The MJ10004/10005 are silicon darlington transistors with integrated base-emitter speedup diode, mounted in Jedec TO-3 metal case designed for high-power, fast switching applications. The MJ10004P and MJ10005P are mounted in SOT-93 case similar to TO-218.

ABSOL	UTE MAXIMUM RATINGS	MJ10004/5	MJ1004P/5P	
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	350V	400V	
V _{CEX}	Collector-emitter voltage ($V_{BE} = -5V$)	400V	450V	
V _{CEV}	Collector-emitter voltage (V _{BE} = 1,5V)	450V	500V	
V _{EBO}	Emitter-base voltage $(I_{C} = 0)$	8V		
I _C	Collector current	20A		
I _{CM}	Collector peak current	30A		
I _B	Base current	2.5A		
вм	Base peak current	5A		
P	Total power discipation at T < 25°C	TO-3	SOT-93	
' tot	Total power dissipation at 1 case < 25 C	175W	150W	
T _{stg}	Storage temperature	-65 to 200°C	-65 to 175°C	
T _j	Junction temperature	200°C	175°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case} Thermal resistance junction-case	max.	1	°C/W
---	------	---	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур. Мах.	Unit
I _{CER}	Collector cutoff current ($R_{BE} = 50\Omega$)	$V_{CE} = Rated V_{CEV}$ $T_{case} = 100^{\circ}_{C}C$		5	mA
I _{CEV}	Collector cutoff current ($V_{BE} = 1.5V$)	$V_{CEV} = Rated Value$ $V_{CEV} = Rated Value$ $T_{case} = 150^{\circ}C$		0.25 5	mA mA
I _{EBO}	Emitter cutoff current (I _C = 0)	V _{EB} = 2V		175	mA
V _{CEO(sus})	Collector-emitter sustaining voltage $I_B = 0$)	$I_{C} = 250 \text{mA}$ $V_{Clamp} = \text{Rated } V_{CEO}$ for MJ10004 for MJ10005	350 400		v v
V _{CEX (sus})	Collector-emitter sustaining voltage (V _{BE} = -5V)	$\begin{split} I_{C} &= 2A \\ V_{Clamp} &= Rated \ V_{CEX} \\ T_{case} &= 100^{\circ}C \\ for \ \text{MJ10004} \\ for \ \text{MJ10005} \\ I_{C} &= 10A \\ V_{Clamp} &= Rated \ V_{CEX} \\ for \ \text{MJ10004} \\ for \ \text{MJ10005} \end{split}$	400 450 275 325		V V V V
V _{CE(sat)} *	Collector-emitter saturation voltage			1.9 (°)3 2.5	v v v
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = 10A$ $I_{B} = 400mA$ $I_{C} = 10A$ $I_{B} = 400mA$ $T_{case} = 100^{\circ}C$		2.5 2.5	v v

(•) For MJ10004P/5P = 5V max.

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

MJ10004 / 5 MJ10004P / 5P

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
h _{FE} *	DC current gain	$ \begin{array}{ll} I_{C} = 5A & V_{CE} = 5V \\ I_{C} = 10A & V_{CE} = 5V \end{array} $	50 40		600 400	
V _f *	Diode forward voltage	I _F = 10A		3	5	v
h _{fe}	Small-signal current gain	$I_{C} = 1A$ $V_{CE} = 10V$ $f_{test} = 1MHz$	10			
C _{ob}	Output capacitance	$\begin{array}{l} V_{CB} = 10V I_E = 0 \\ f_{test} = 100MHz \end{array}$	100		325	pF
t _{on}	Turn-on time	$V_{cc} = 250V \ I_{c} = 10A$		0.22	0.8	μs
t _r	Rise time	$I_{B1} = -I_{B2} = 400 \text{mA}$ $V_{BE(off)} = 5 \text{V}$		0.6	1.5	μs
t _f	Fall time	$t_p = 50\mu s$ duty cycle -2%		0.15	0.5	μs

*Pulsed: pulse duration = 300 μ duty cycle = 1.5%.

EPITAXIAL-BASE NPN/PNP

GENERAL PURPOSE

The MJ11011/12/13/14/15/16 are silicon transistors in Darlington configuration in Jedec TO-3 metal-case. Intended for general purpose and amplifier applications.

ABSOL	UTE MAXIMUM RATINGS P	NP*	MJ11011	MJ11013	MJ11015	
	N	PN	MJ11012	MJ11014	MJ11016	
V _{CBO}	Collector-base voltage ($I_E = 0$)	Â	60V	90∨	120V	
V _{CEO}	Collector-emitter voltage (I _B = 0)	gar.	60V	90V	120V	
V _{EBO}	Base-emitter voltage $(I_{C} = 0)$		5V			
I _C	Collector current			30A		
I _B	Base current			1A		
P _{tot}	Total power dissipation at $T_{case} \leqslant 25^{\circ}C$		200W			
T _{sta}	Storage temperature		-65 to 200°C			
Τ _j	Junction temperature			200°C		

* For PNP types voltage and current values are negative

INTERNAL SCHEMATIC DIAGRAMS

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	0.87	°C/W
,				

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} = 50V			1	mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{BE} = 5V$			5	mA
I _{CER}	Collector cutoff current ($R_{BE} = 1K_{\Omega}$)	for MJ11011/12 $V_{CE} = 60V$ for MJ11013/14 $V_{CE} = 90V$ for MJ11015/16 $V_{CE} = 120V$ $T_{case} = 150^{\circ}C$ for MJ11011/12 $V_{CE} = 60V$ for MJ11013/14 $V_{CE} = 90V$ for MJ11015/16 $V_{CE} = 120V$			1 1 5 5 5	mA mA mA mA mA
V _{(BR)CEC}	, Collector emitter breakdown voltage	I _C = 100mA I _B = 0 for MJ11011/12 for MJ11013/14 for MJ11015/16	60 90 120			V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{C} = 20A \qquad I_{B} = 200mA$ $I_{C} = 30A \qquad I_{B} = 300mA$			3 4	v v
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = 20A \qquad I_{B} = 200mA$ $I_{C} = 30A \qquad I_{B} = 300mA$			3.5 5	V V
h _{FE} *	DC current gain	$ \begin{array}{ll} I_{C} = 20A & V_{CE} = 5V \\ I_{C} = 30A & V_{CE} = 5V \end{array} $	1000 200)		_
h _{fe}	Small signal current gain	$I_{c} = 10A$ $V_{CE} = 3V$ f = 1MHz	4			

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

For PNP devices voltage and current values are negative.

EPITAXIAL PLANAR NPN/PNP

HIGH VOLTAGE POWER TRANSISTOR

The MJE340/MJE350 are silicon epitaxial planar transistors in jedec TO-126 plastic package intended for use in medium power linear and switching applications.

ABSOLUTE MAXIMUM RATINGS

V _{CEO}	Collector-emitter voltage $(I_B = 0)$	300	v
V _{EBO}	Emitter-base voltage ($I_{C} = 0$)	3	V
I _C	Collector current	0.5	Α
P _{tot}	Total power dissipation at $T_{case} \ge 25^{\circ}C$	20.8	W
T _{stq}	Storage temperature	-65 to 150	°C
Tj	Junction temperature	150	°C

40

For PNP types voltage and current values are negative

INTERNAL SCHEMATIC DIAGRAMS

MECHANICAL DATA

10/82

R _{th j-case}	Thermal resistance junction-case	max.	6.0	°C/W
------------------------	----------------------------------	------	-----	------

MJE340 MJE350

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур. Мах	Unit
I _{сво}	Collector cutoff current ($I_B = 0$)	V _{CB} = 300V		100	μA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} = 3V		100	μΑ
V _{CEO(sus})	Collector-emitter sustaining voltage $(I_B = 0)$	$I_{C} = 1 m A$	300		V
h _{FE}	DC current gain	$I_{C} = 50 \text{mA}$ $V_{CE} = 10 \text{V}$	30	240	-

* Pulsed: pulse duration = 300 μ s, duty cycle $\leq 2\%$.

For PNP types voltage and current values are negative.

EPITAXIAL-BASE NPN/PNP

MEDIUM POWER DARLINGTONS

The MJE 700, MJE 701, MJE 702, MJE 703, MJE 800, MJE 801, MJE 802 and MJE 803 are silicon epitaxial-base power transistors in monolithic Darlington configuration and are mounted in Jedec TO-126 plastic package.

They are intended for use in medium power linear and switching applications.

The PNP types are the MJE 700, MJE 701, MJE 702 and MJE 703 and their complementary NPN types are the MJE 800, MJE 801, MJE 802 and MJE 803.

		PNP°	MJE700 MJE701	MJE702 MJE703
ABSO	LUTE MAXIMUM RATINGS	NPN	MJE800 MJE801	MJE802 MJE803
$V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j$	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Base current Total power dissipation at $T_{case} \le 25$ °C Storage temperature Junction temperature		60V 60V 5 4 0. 40 -65 to 150	80V 80V A 1A 0W 150 °C 0 °C

° For PNP devices voltage and current values are negative

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	3.13	°C/W
		1		

ELECTRICAL CHARACTERISTICS ° (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test con	ditions	Min. Typ.	Max.	Unit
I _{CBO}	Collector cutoff current (I _E = 0)	for MJE 700, MJE 800, $V_{CB} = 60 V$ $V_{CB} = 60 V$ for MJE 702, MJE 802, $V_{CB} = 80 V$ $V_{CB} = 80 V$	MJE 701, MJE 801 Tcase = 100°C MJE 703, MJE 803 Tcase = 100°C		100 2 200 2	μA mA μA mA
I _{CEO}	Collector cutoff current $(I_B = 0)$	for MJE 700, MJE 800, $V_{CE} = 30 V$ for MJE 702, MJE 802, $V_{CE} = 40 V$	MJE 701, MJE 801 MJE 703, MJE 803		100 500	μA μA
I _{EBO}	Emitter cutoff current $(I_c = 0)$	$V_{EB} = 5 V$			2	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	for MJE 700, MJE 800, I _C = 50 mA for MJE 702, MJE 802, I _C = 50 mA	MJE 701, MJE 801 MJE 703, MJE 803	60 80		V V
V _{CE (sat)} *	Collector-emitter saturation voltage	for MJE 700, MJE 800, $I_{\rm C} = 4$ A for MJE 701, MJE 801, $I_{\rm C} = 2$ A			2.7	v v

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test con	ditions	Min. Typ.	Max.	Unit
V _{BE} *	Base-emitter voltage	for MJE 700, MJE 800, $I_{\rm C} = 1.5$ A for MJE 701, MJE 801, $I_{\rm C} = 2$ A			2.5 2.5	v v
h _{FE} *	DC current gain	for MJE 700, MJE 800, $I_{\rm C} = 4$ A for MJE 701, MJE 801, $I_{\rm C} = 2$ A		110 750		
h _{fe}	Small signal current gain	$I_{C} = 1.5 A$ f = 1 MHz	$V_{CE} = 3 V$	1		

* Pulsed: pulse duration = 300μ s, duty cycle = 1.5%* For PNP devices voltage and current values are negative For characteristic curves see the 2N 6034/2N 6039 series

MULTIEPITAXIAL BIPLANAR NPN

LINEAR AND SWITCHING APPLICATIONS

The MJE13002 and MJE13003 are silicon multiepitaxial biplanar transistors in TO-126 plastic package intended for linear and switching applications.

ABSOLUTE MAXIMUM RATINGS

| MJE13002 | MJE13003

_				
V _{CBO} Co	end of the set of the	600∨ 300∨	700∨ 400∨	
	nitter-base voltage ($I_c = 0$)	9V		
I _C Co	llector current	1.5V		
I _{CM (*)} Co	llector peak current	3A		
I _B Ba	se current	0.75A		
I _{BM (*)} Ba	se peak current	1.5A		
P _{tot} To	tal power dissipation at $T_{case} \leq 25^{\circ}C$	40W		
	T _{amb} ≤25°C	1.4	W	
T _j , T _{stg} Ju	nction, Storage temperature	-65 to 150°C		

* Pulse width = 5msec., duty cycle \leq 10%.

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th i-case}	Thermal resistance junction-case	max.	3.12	°C/W
R _{th j-amb}	Thermal resistance junction ambient	max.	89	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for MJE13002 $V_{CES} = 600$ for MJE13003 $V_{CES} = 700$ $T_{CES} = 100^{\circ}C$	V V		1 1	mA mA
		for MJE13002 $V_{CES} = 600$ for MJE13003 $V_{CES} = 700$	v v		5 5	mA mA
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	$V_{EB} = 9V$			1	mA
V _{CEO(sus})	Collector-emitter sustaining voltage	I _C = 10mA for MJE1300 for MJE1300	2 300 3 400			> >
V _{CE(sat)} *	Collector-emitter saturation voltage	$ \begin{array}{ll} I_{C}=0.5A & I_{B}=0.1A \\ I_{C}=1A & I_{B}=0.25A \\ I_{C}=1.5A & I_{B}=0.5A \\ I_{C}=1A & I_{B}=0.25A \\ T_{case}=100^{\circ}C \end{array} $			0.5 1 3 1	> > > >
V _{BE(sat)} *	Base-emitter saturation voltage				1 1.2 1.1	> > >
h _{FE} *	DC current gain	$ I_C = 0.5A \qquad V_{CE} = 2V \\ I_C = 1A \qquad V_{CE} = 2V $	8 5		40 25	
f _T	Transition frequency	$V_{CE} = 10V$ f = 1MHz I _C = 100mA	5	10		MHz
С _{сво}	Collector-base capacitance	V _{CB} = 10V		30		pF

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _r	Rise time	Resistive load		0.24	1	μs
ts	Storage time	$V_{CC} = 125V$ $I_C = 1A$		1.7	4	μs
t _f	Fall time	$I_{B1} = -I_{B2} = 0.2A$		0.5	1	μs
t _{sv}	Voltage storage time	Inductive load		0.8	4	μs
t _c	Commutation time	$I_{C} = IA$ $I_{B1} = 0.2A$ $V_{BE(off)} = 5V$ $L = 50mH$ $V_{Clamp} = 300V$		0.1	0.75	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 2%

Safe operating areas

Collector-emitter saturation voltage

Collector-base capacitance

MULTIEPITAXIAL MESA NPN

HIGH VOLTAGE POWER SWITCH

The MJE13004/13005 are silicon multiepitaxial mesa NPN transistors in Jedec TO-220 plastic package particularly intended for switch-mode applications.

ABSOLUTE MAXIMUM RATINGS

Collector-emitter voltage Collector-emitter voltage $(I_B = 0)$	600∨ 300∨	700V 400V
Emitter-base (I _C = 0)	e e)V
Collector current	4	IA
Collector peak current	6	BA
Base current	2	2A
Base peak current	4	IA
Total power dissipation at $T_{case} \leq 25^{\circ}C$	75	5W
Storage temperature	65 to	150°C
Junction temperature	150	D°C
	$\begin{array}{l} \mbox{Collector-emitter voltage} \\ \mbox{Collector-emitter voltage (I}_B = 0) \\ \mbox{Emitter-base (I}_C = 0) \\ \mbox{Collector current} \\ \mbox{Collector peak current} \\ \mbox{Base peak current} \\ \mbox{Base peak current} \\ \mbox{Total power dissipation at } T_{case} \leqslant 25^{\circ}\mbox{C} \\ \mbox{Storage temperature} \\ \mbox{Junction temperature} \end{array}$	Collector-emitter voltage Collector-emitter voltage ($I_B = 0$)600V 300VEmitter-base ($I_C = 0$)300VCollector current Collector peak current4Base peak current Total power dissipation at $T_{case} \le 25^{\circ}$ C75Storage temperature Junction temperature-65 to

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

MJE13004 | MJE13005

Collector connected to tab.

517

10/82

R _{th j-case}	Thermal resistance junction-case	max.	1.67	°C/W
------------------------	----------------------------------	------	------	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _{CEV}	Collector cutoff current (V _{BE} = -1.5V)	for MJE13004 $V_{CE} = 600V$ $V_{CE} = 600V$ for MJE13009 $V_{CE} = 700V$ $V_{CE} = 700V$				1 5 1 5	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	$V_{EB} = 9V$				1	mA
V _{CEO(sus)}	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 10mA	for MJE13004 for MJE13005	300 400			V V
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{C} = 1A$ $I_{C} = 2A$ $I_{C} = 4A$	$I_{B} = 0.2A$ $I_{B} = 0.5A$ $I_{B} = 1A$			0.5 0.6 1	V V V
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = 1A$ $I_{C} = 2A$	$I_{B} = 0.2A$ $I_{B} = 0.5A$			1.2 1.6	V V
h _{FE}	DC current gain	$I_{C} = 1A$ $I_{C} = 2A$	$V_{CE} = 5V$ $V_{CE} = 5V$	10 8	30	60 40	
t _{on}	Turn-on time	$= 2\Delta$				0.8	μs
t _s	Storage time	$ I_{B1} = -I_{B2} = -I_{$	0.4A			4	μs
t _f	Fall time					0.9	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%.

Safe operating areas

Collector-emitter saturation voltage

MJE13004 MJE13005

Collector-emitter saturation voltage

G 483 V_{BE(sat)} (v)-30 °C-25 °C-25 °C-Tc 1.5 1 0.5 0 10² 10⁻¹ 1_C (A) 1

Saturated switching characteristics 6-483 t (µs) V_{CC} = 250V h_{FE} = 5 I_{B2} = -2I_{B1} T_c = 25°C 10 t, 2 1 e tŧ ton 101 0.5 6 8 2 4 6-Г_С⁸(А) 1

Saturated switching characteristics

Base-emitter saturation voltage

Clamped E_{s/b} test circuit

MULTIEPITAXIAL MESA NPN

de.

MOTOR CONTROL, SWITCH REGULATORS

The MJE13006, MJE13007 and MJE13007A are silicon multiepitaxial mesa NPN transistors. They are mounted in Jedec TO-220 plastic package, intended for use in motor controls, switching regulator's etc.

ABSOL	UTE MAXIMUM RATINGS	MJE13006	MJE13007	MJE13007A
$V_{CEO} \\ V_{CEV} \\ V_{EBO} \\ I_C \\ I_C \\ I_B \\ I_B \\ I_E \\ I_E \\ I_E \\ I_E \\ T_s \\ T_j$	Collector-emitter voltage $(I_B = 0)$ Collector-emitter voltage Emitter-base voltage $(I_C = 0)$ Collector current Collector peak current Base peak current Emitter current Emitter current Total power dissipation at $T_{case} -25^{\circ}C$ Storage temperature Junction temperature	300V 600V	400V 700V 9V 8A 16A 4A 8A 12A 24A 80W -65 to 150° 150°C	400∨ 850∨ C

INTERNAL SCHEMATIC DIAGRAMS

MECHANICAL DATA

R _{th i-case}	Thermal resistance junction-case	max.	1.56	°C/W

MJE13006 MJE13007 MJE13007A

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions	Min.	Тур.	Max.	Unit
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 9V$ $I_{C} = 0$			1	mA
I _{CEV}	Collector cutoff current	$V_{CEV} = Rated valueV_{BE(off)} = 1.5VV_{CEV} = Rated valueV_{BE(off)} = 1.5VT_{case} = 100°C$			1 5	mA mA
V _{CEO(sus})	Collector-emitter sustaining voltage	$I_{C} = 10mA$ $I_{B} = 0$ for MJE13006 for MJE13007/13007A	300 400			V V
V _{CE(sat)} *	Collector-emitter saturation voltage				1 1.5 3 2	> > > >
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{C} = 2A \qquad I_{B} = 0.4A$ $I_{C} = 5A \qquad I_{B} = 1A$ $I_{C} = 5A \qquad I_{B} = 1A$ $T_{case} = 100^{\circ}C$			1.2 1.6 1.5	V V V
h _{FE} *	DC current gain	$ I_{C} = 2A \qquad V_{CE} = 5V \\ I_{C} = 5A \qquad V_{CE} = 5V $	8 6		40 30	
f _T	Transition frequency	$I_{c} = 500 \text{mA}$ $V_{cE} = 10 \text{V}$ f = 1MHz	4			MHz
C _{ob}	Output capacitance	$V_{CB} = 10V I_E = 0$ f = 0.1MHz		110		pF
t _{on}	Turn-on time	$V_{cc} = 125V \ I_{c} = 5A$			1.1	μs
t _s	Storage time	$ I_{B1} = I_{B2} = 1A$ $t_p = 25\mu s$			3	μs
t _f	Fall time	Duty Cycle ≤ 1%			0.7	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%.

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The TIP 29, TIP 29A, TIP 29B and TIP 29C are silicon epitaxial-base NPN power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary PNP types are the TIP 30, TIP 30A, TIP 30B and TIP 30C.

ABSOLUTE MAXIMUM RATINGS			TIP 29A	TIP 29B	TIP 29C
V _{CBO}	Collector-base voltage ($I_E = 0$)	40V	60V	80V	100V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	40V	60V	80V	100V
V_{EBO}	Emitter-base voltage ($I_c = 0$)	5V			
Ic	Collector current	1A			
I _{CM}	Collector peak current	3A			
l _B	Base current	0.4A			
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	d 30W			
	T _{amb} ≤25°C		2	W	
T _{sta}	Storage temperature		-65 to	150°C	
Τj	Junction temperature		150	O°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \,^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions		Min. Typ.	Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for TIP 29 an $V_{CE} = 30V$ for TIP 29B a $V_{CE} = 60V$	ad TIP 29A and TIP 29C		0.3 0.3	mA mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for TIP 29 for TIP 29A for TIP 29B for TIP 29C	$V_{CE} = 40V$ $V_{CE} = 60V$ $V_{CE} = 80V$ $V_{CE} = 100V$		0.2 0.2 0.2 0.2	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 5V$			1	mA
V _{CE0 (sus)} *	^t Collector-emitter sustaining voltage $(I_B = 0)$	$I_{C} = 30mA$ for TIP 29 for TIP 29A for TIP 29B for TIP 29B for TIP 29C		40 60 80 100		V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C = 1A	$I_B = 125 mA$		0.7	V
V _{BE (on)} *	Base-emitter voltage	I _C = 1A	$V_{CE} = 4V$		1.3	V
h _{FE} *	DC current gain	$\begin{array}{l} I_{C}=0.2A\\ I_{C}=1A \end{array}$	$\begin{array}{l} V_{CE} = 4V \\ V_{CE} = 4V \end{array}$	40 15	75	_
h _{fe}	Small signal current gain	$I_{C} = 0.2A$ f = 1KHz $I_{C} = 0.2A$ f = 1MHz	$V_{CE} = 10V$ $V_{CE} = 10V$	20 3		

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The TIP 30, TIP 30A, TIP 30B and TIP 30C are silicon epitaxial-base PNP power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary NPN types are the TIP 29, TIP 29A, TIP 29B and TIP 29C respectively.

ABSO	LUTE MAXIMUM RATINGS	TIP 30	TIP 30A	TIP 30B	TIP 30C
V _{CBO}	Collector-base voltage ($I_E = 0$)	-40V	-60V	-80V	-100V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	-40V	-60V	-80V	-100V
V _{EBO}	Emitter-base voltage ($I_c = 0$)	-5V			
I _C	Collector current	—1A			
I _{CM}	Collector peak current	-3A			
I _B	Base current		-0.4	4A	
P _{tot}	Total power dissipation at T _{case} ≤ 25°C	30W			
	T _{amb} ≤25°C		2	W	
T _{sta}	Storage temperature		-65 to	150°C	
Τ _j	Junction temperature		150	О°С	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

5/80

R _{th j-case}	Thermal resistance junction-case	max	4.17	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

	Parameter	Test conditions		Min. Typ	o. Max.	Unit
I _{CEO}	Collector-cutoff current $(I_B = 0)$	for TIP 30 an $V_{CE} = -30V$ for TIP 30B a $V_{CE} = -60V$	id TIP 30A and TIP 30C		-0.3 -0.3	mA mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for TIP 30 for TIP 30A for TIP 30B for TIP 30C	$\begin{array}{l} V_{CE}=-40V\\ V_{CE}=-60V\\ V_{CE}=-80V\\ V_{CE}=-100V \end{array}$		-0.2 -0.2 -0.2 -0.2	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = -5V$			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	$\label{eq:lc} \begin{array}{l} I_{C} = -30 mA \\ for \ \text{TIP} \ \text{30} \\ for \ \text{TIP} \ \text{30A} \\ for \ \text{TIP} \ \text{30B} \\ for \ \text{TIP} \ \text{30C} \end{array}$		-40 -60 -80 -100		V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = -1A;$	$I_B = -125 mA$		-0.7	V
$V_{BE(on)}^{*}$	Base-emitter voltage	$I_{\rm C} = -1{\rm A}$	$V_{CE} = -4V$		-1.3	V
h _{FE} *	DC current gain	$\begin{array}{l} I_{C}=-0.2A\\ I_{C}=-1A \end{array}$	$\begin{array}{l} V_{CE}=-4V\\ V_{CE}=-4V \end{array}$	40 15	75	_
h _{fe}	Small signal current gain	$\label{eq:lc} \begin{array}{l} I_C = -0.2A \\ f = 1 K Hz \\ I_C = -0.2A \\ f = 1 M Hz \end{array}$	$V_{CE} = -10V$ $V_{CE} = -10V$	20 3		

* Pulsed: pulse duration = $300\mu s$, duty cycle $\leq 2\%$.

EPITAXIAL-BASE NPN

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The TIP 31, TIP 31A, TIP 31B and TIP 31C are silicon epitaxial-base NPN power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary PNP types are the TIP 32, TIP 32A, TIP 32B and TIP 32C.

ABSOLUTE MAXIMUM RATINGS			TIP 31A	TIP 31B	TIP 31C
V _{CBO}	Collector-base voltage ($I_E = 0$)	40V	60V	80V	100V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	40V	60V	80V	100V
V _{EBO}	Emitter-base voltage ($I_c = 0$)	5V			
I _C	Collector current	3A			
I _{CM}	Collector peak current		5	A	
I _B	Base-current		1	A	
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	40W			
	T _{amb} ≤25°C		2	W	
T _{sta}	Storage temperature		-65 to	150°C	
Τj	Junction temperature		150)°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	3.12	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \,^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions		Min. Typ.	Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for TIP 31 an $V_{CE} = 30V$ for TIP 31B a $V_{CE} = 60V$	nd TIP 31A and TIP 31C		0.3 0.3	mA mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for TIP 31 for TIP 31A for TIP 31B for TIP 31C	$V_{CE} = 40V$ $V_{CE} = 60V$ $V_{CE} = 80V$ $V_{CE} = 100V$		0.2 0.2 0.2 0.2	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_{\rm C} = 0$)	$V_{EB} = 5V$			1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	$I_{C} = 30 \text{mA}$ for TIP 31 for TIP 31A for TIP 31B for TIP 31C		40 60 80 100		V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C = 3A	$I_B = 375 mA$		1.2	V
V _{BE (on)} *	Base-emitter voltage	$I_{\rm C} = 3A$	$V_{CE} = 4V$		1.8	V
h _{FE} *	DC current gain	$I_{\rm C} = 1 {\rm A}$ $I_{\rm C} = 3 {\rm A}$	$\begin{array}{l} V_{CE} = 4V \\ V_{CE} = 4V \end{array}$	25 10	50	_
h _{fe}	Small signal current gain	$I_{C} = 0.5A$ f = 1KHz $I_{C} = 0.5A$ f = 1MHz	$V_{CE} = 10V$ $V_{CE} = 10V$	20 3		

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The TIP 32, TIP 32A, TIP 32B and TIP 32C are silicon epitaxial-base PNP power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary NPN types are the TIP 31, TIP 31A, TIP 31B and TIP 31C.

ABSOLUTE MAXIMUM RATINGS			TIP 32A	TIP 32B	TIP 32C
V _{CBO}	Collector-base voltage ($I_c = 0$)	-40V	-60V	-80V	-100V
V _{CEO} .	Collector-emitter voltage ($I_B = 0$)	40V	-60V	−80V	-100V
V_{EBO}	Emitter-base voltage ($I_c = 0$)	-5V			
I _C	Collector current	-3A			
I _{CM}	Collector peak current		-5	A	
l _B	Base-current		-1	A	
Ptot	Total power dissipation at $T_{case} \leq 25^{\circ}C$	40W			
	T _{amb} ≤25°C		2	W	
T _{stg}	Storage temperature		-65 to	150°C	
Τj	Junction temperature		150	0°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	3.12	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Parameter		Test conditions		Min. Typ	o. Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for TIP 32 an $V_{CE} = -30V$ for TIP 32B a $V_{CE} = -60V$	and TIP 32A		-0.3 -0.3	mA mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for TIP 32 for TIP 32A for TIP 32B for TIP 32C	$\begin{array}{l} V_{CE}=-40V\\ V_{CE}=-60V\\ V_{CE}=-80V\\ V_{CE}=-100V \end{array}$		-0.2 -0.2 -0.2 -0.2	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_{\rm C} = 0$)	$V_{EB} = -5V$			-1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	$I_{C} = -30mA$ for TIP 32 for TIP 32A for TIP 32B for TIP 32C		-40 -60 -80 -100		V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -3A$	$I_B = -375 \text{mA}$		-1.2	V
V _{BE (on)} *	Base-emitter voltage	$I_{\rm C} = -3A$	$V_{CE} = -4V$		-1.8	V
h _{FE}	DC current gain	$\begin{array}{l} I_{\rm C} = -1 A \\ I_{\rm C} = -3 A \end{array}$	$\begin{array}{l} V_{CE}=-4V\\ V_{CE}=-4V \end{array}$	25 10	50	_
h _{fe}	Small signal current gain	$I_{C} = -0.5A$ f = 1KHz $I_{C} = -0.5A$ f = 1MHz	$V_{CE} = -10V$ $V_{CE} = -10V$	20 3		

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The TIP 41, TIP 41A, TIP 41B, and TIP 41C are silicon epitaxial-base NPN power transistors in Jedec TO-220 plastic package intended for use in medium power linear and switching applications.

The complementary PNP types are the TIP 42, TIP 42A, TIP 42B and TIP 42C respectively.

ABSOLUTE MAXIMUM RATINGS		TIP41	TIP41A	TIP41B	TIP41C
V _{CBO}	Collector-base voltage ($I_E = 0$)	40V	60V	80V	100V
V _{CEO} V _{EBO}	Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$)	40V 60V 80V 100V 5V			100V
lc	Collector current	6A			
СМ	Collector peak current		10	A	
I _B	Base current	3A ČEW			
⊢ tot	Total power dissipation at $T_{case} \approx 25$ C $T_{amb} \ll 25^{\circ}$ C	2W			
T _{stg}	Storage temperature	–65 to 150°C			
l j	Junction temperature		150	J°C	

INTERNAL SCHEMATIC DIAGRAM

С

MECHANICAL DATA

Dimensions in mm

5/80

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise specified)

	Parameter	Test conditions		Min. Typ. Ma	ax.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	for TIP41 an $V_{CE} = 30V$ for TIP41B a $V_{CE} = 60V$	and TIP41A	0.	.7 .7	mA mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for TIP41 for TIP41A for TIP41B for TIP41C		0 0 0 0	.4 .4 .4	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$			1	mA
V _{CEO (sus)} '	* Collector-emitter sustaining voltage (I _B = 0)	$I_{C} = 30mA$ for TIP41 for TIP41A for TIP41B for TIP41B		40 60 80 100		V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 6A$	$I_{B} = 0.6A$	1.	.5	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 6A$	$V_{CE} = 4V$		2	V
h _{FE} *	DC current gain	$\begin{array}{ll} I_C &= 0.3A \\ I_C &= 3A \end{array}$	$\begin{array}{l} V_{CE} = 4V \\ V_{CE} = 4V \end{array}$	30 15 7	'5	
h _{fe}	Small signal current gain	$ I_C = 0.5A \\ f = 1 KHz \\ f = 1 MHz $	$V_{CE} = 10V$	20 3		-

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The TIP 42, TIP 42A, TIP 42B and TIP 42C are silicon epitaxial-base PNP power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary NPN types are the TIP 41, TIP 41A, TIP 41B and TIP 41C respectively.

ABSOLUTE MAXIMUM RATINGS			TIP 42A	TIP 42B	TIP 42C
V _{CBO}	Collector-base voltage ($I_E = 0$)	-40V	-60V	-80V	-100V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	-40V	-60V	-80V	-100V
V_{EBO}	Emitter-base voltage $(I_{\rm C} = 0)$	-5V			
I _C	Collector current	-6A			
I _{CM}	Collector peak current		-10)A	
l _B	Base current		-3	A	
Ptot	Total power dissipation at $T_{case} \leq 25^{\circ}C$	65W			
	T _{amb} ≤25°C		2	W	
T _{sta}	Storage temperature		-65 to	150°C	
Τ _j	Junction temperature		150	0°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	1.92	°C/W
n th j-amb	mermai resistance junction-ambient	max	02.5	0/ 00

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \,^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min. Typ	o. Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for TIP 42 an $V_{CE} = -30V$ for TIP 42B a $V_{CE} = -60V$	d TIP 42A and TIP 42C		-0.7 -0.7	mA mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for TIP 42 for TIP 42A for TIP 42B for TIP 42C	$\begin{array}{l} V_{CE} = -40V \\ V_{CE} = -60V \\ V_{CE} = -80V \\ V_{CE} = -100V \end{array}$		-0.4 -0.4 -0.4 -0.4	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = -5V$			-1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	$I_{C} = -30 \text{mA}$ for TIP 42 for TIP 42A for TIP 42B for TIP 42B		-40 -60 -80 -100		V V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -6A$	$I_{\rm B} = -0.6A$		-1.5	V
V _{BE (on)} *	Base-emitter voltage	$I_{\rm C} = -6A$	$V_{CE} = -4V$		-2	V
h _{FE} *	DC current gain	$I_{\rm C} = -0.3 {\rm A}$ $I_{\rm C} = -3 {\rm A}$		30 15	75	
h _{fe}	Small signal current gain	$I_{C} = -0.5A$ f = 1KHz $I_{C} = -0.5A$ f = 1MHz	$V_{CE} = -10V$ $V_{CE} = -10V$	20 3		

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

LINEAR AND SWITCHING APPLICATIONS

The TIP47 to TIP50 are silicon multiepitaxial planar transistors in TO-220 plastic package intended for linear and switching applications.

ABSOL	UTE MAXIMUM RATINGS	TIP47	TIP48	TIP49	TIP50
V _{CBO}	Collector base voltage ($I_E = 0$)	350V	400V	450V	500V
V _{CEO}	Collector emitter voltage (I _B = 0) 🔨 🦽	250V	300V	350V	400V
V _{EBO}	Emitter base voltage $(I_{C} = 0)$		5١	/	
l _c	Collector current		17	4	
I _{CM}	Collector peak current		2/	4	
l _B	Base current		0.	6A	
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$		4	WC	
Ptot	Total power dissipation at $T_{amb} \leq 25^{\circ}C$:	2W	
T _{sta}	Storage temperature		-65 to	150°C	
Tj	Junction temperature		15	0°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{thj-case}	Thermal resistance junction-case	max.	3.125	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max.	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector cutoff current (V $_{BE} = 0$)	for TIP47 for TIP48 for TIP49 for TIP50	$V_{CE} = 350V$ $V_{CE} = 400V$ $V_{CE} = 450V$ $V_{CE} = 500V$			1 1 1 1	mA mA mA mA
I _{CEO}	Collector cutoff current (I _B = 0)	for TIP47 for TIP48 for TIP49 for TIP50	$V_{CE} = 150V$ $V_{CE} = 200V$ $V_{CE} = 250V$ $V_{CE} = 300V$			1 1 1 1	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	V _{EB} = 5V				1	mA
V _{CEO(sus})	Collector emitter sustaining voltage	I _C = 30mA	for TIP47 for TIP48 for TIP49 for TIP50	250 300 350 400			V V V V
V _{CE(sat)} *	Collector emitter saturation voltage	I _C = 1A	I _B = 0.2A			1	v
V _{BE(on)} *	Base emitter on voltage	I _C = 1A	$V_{CE} = 10V$			1.5	v

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Test conditions		Min.	Тур. Мах	. Unit
h _{FE} *	DC current gain	$I_{C} = 0.3A$ $I_{C} = 1A$	$V_{CE} = 10V$ $V_{CE} = 10V$	30 10	150	
f _T	Transition frequency	V _{CE} = 10V f = 2MHz	I _C = 0.2A	10		MHz
h _{fe}	Small signal current gain	V _{CE} = 10V f = 1KHz	I _C = 0.2	25		_

* Pulsed: pulse duration = 300 μ s duty cycle \leq 2%.

Safe operating areas

6-4801

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Collector-base capacitance

Clampled reverse bias safe operating areas

MULTIEPITAXIAL MESA NPN

HIGH VOLTAGE POWER SWITCH

The TIP51, TIP52, TIP53, TIP54 are silicon multiepitaxial mesa NPN transistors in SOT-93 plastic package.

They are intended for high voltage, fast switching industrial and consumer applications.

ABSOL	UTE MAXIMUM RATINGS	TIP51	TIP52	TIP53	TIP54		
V _{CES}	Collector-emitter voltage ($V_{BE} = 0$)	350V	400V	450V	500V		
V _{CEO}	Collector-emitter voltage (I _B = 0)	250V	300V	350V	400V		
V _{EBO}	Emitter-base voltage (I _C = 0)	1	5V				
I _C	Collector current		3V				
ICM	Collector peak current			5A			
I _B	Base current		0.6A				
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$		100W				
T _{sta}	Storage temperature		-65 to 150°C				
Tj	Junction temperature		150°C				

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max.	1.25	°C/W
------------------------	----------------------------------	------	------	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min.	Тур.	Max.	Unit
I _{CES}	$ \begin{array}{l} \mbox{Collector-cutoff} \\ \mbox{current (V}_{BE}=0) \end{array} \end{array} $	for TIP51 for TIP52 for TIP53 for TIP54	Vce = 350V Vce = 400V Vce = 450V Vce = 500V			1 1 1 1	mA mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for TIP51 for TIP52 for TIP53 for TIP54	Vce = 150V Vce = 200V Vce = 250V Vce = 300V			1 1 1 1	mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$				1	mA
V _{CEO(sus})	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 30mA	for TIP51 for TIP52 for TIP53 for TIP54	250 300 350 400			V V V V
V _{CE(sat)} *	Collector-emitter saturation voltage	I _C = 3A	I _В = 0.6А			1.5	V
V _{BE} *	Base-emitter	I _C = 3A	$V_{CE} = 10V$			1.5	v
h _{FE} *	DC current gain	$I_{\rm C} = 0.3 {\rm A}$ $I_{\rm C} = 3 {\rm A}$	$V_{CE} = 10V$ $V_{CE} = 10V$	30 10		150	
h _{fe}	Small signal current gain	$I_{c} = 0.2A; V_{c}$ $I_{c} = 0.2A; V_{c}$	_E =10V; f=1KHz E=10V; f=1MHz	30 2.5			_

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min.	Тур. Мах.	Unit
E _{s/b}	Second breakdown Un clamped energy	$V_{BE} = 20V$ $R_{BE} = 100\Omega$ L = 30mH	100		mJ
t _{on}	Turn-on time	$I_{C} = 1A$ $I_{B1} = 100mA$ $V_{CC} = 200V$		0.2	μs
t _{off}	Turn-off time	$I_{C} = 1A$ $I_{B1} = -I_{B2} = 100mA$ $V_{CC} = 200V$		2	μs

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

EPITAXIAL-BASE NPN

POWER DARLINGTONS

The TIP 100, TIP 101 and TIP 102 are silicon epitaxial-base NPN transistors in monolithic Darlington configuration mounted in Jedec TO-220 plastic package, intended for use in power linear and switching applications.

The complementary PNP types are the TIP 105, TIP 106 and TIP 107 respectively.

ABSC	LUTE MAXIMUM RATINGS	TIP 100	TIP 101	TIP 102	
V _{CBO}	Collector-base voltage ($I_E = 0$)	60V	80V	100V	
VCEO	Collector-emitter voltage $(I_{B} = 0)$	60V	80V	100V	
V _{EBO}	Emitter-base voltage $(I_{C} = 0)$	5V			
I _C	Collector current	8A			
I _{CM}	Collector peak current	15A			
I _B	Base current		1A		
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$		80W		
	T _{amb} ≤25°C		2W		
T _{sta}	Storage temperature		65 to 150°	°C	
Tj	Junction temperature		150°C		

MECHANICAL DATA

Dimensions in mm

Collector connected to tab.

то-220

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions		Min. Typ	o. Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	for TIP 100 for TIP 101 for TIP 102	$\begin{array}{l} V_{CE}=30V\\ V_{CE}=40V\\ V_{CE}=50V \end{array}$		50 50 50	μΑ μΑ μΑ
I _{сво}	Collector cutoff current ($I_E = 0$)	for TIP 100 for TIP 101 for TIP 102	$\begin{array}{l} V_{CB}=60V\\ V_{CB}=80V\\ V_{CB}=100V \end{array}$		50 50 50	μΑ μΑ μΑ
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$			8	mA
V _{CE0 (sus)} '	* Collector-emitter sustaining voltage (I _B = 0)	I _C = 30mA for TIP 100 for TIP 101 for TIP 102		60 80 100		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 3A$ $I_{\rm C} = 8A$	$I_B = 6mA$ $I_B = 80mA$		2 2.5	v v
V _{BE} *	Base-emitter voltage	I _C = 8A	$V_{CE} = 4V$		2.8	V
h _{FE} *	DC current gain	$I_{\rm C} = 3A$ $I_{\rm C} = 8A$	$V_{CE} = 4V$ $V_{CE} = 4V$	1000 200	20000	_
V _F *	Forward voltage of commutation diode $(I_B = 0)$	$I_{\rm F} = -I_{\rm C} = 10$)A		2.8	V

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

EPITAXIAL-BASE PNP

POWER DARLINGTONS

The TIP 105, TIP 106 and TIP 107 are silicon epitaxial-base PNP transistors in monolithic Darlington configuration mounted in Jedec TO-220 plastic package intended for use in power linear and switching applications.

The complementary NPN types are the TIP 100, TIP 101 and TIP 102 respectively.

ABSC	DLUTE MAXIMUM RATINGS	TIP 105	TIP 106	TIP 107	
V _{CBO}	Collector-base voltage ($I_E = 0$)	-60V	-80V	-100V	
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	-60V	-80V	_100V	
V _{EBO}	Emitter-base voltage $(I_{C} = 0)$	-5V			
l _C	Collector current	-8A			
I _{CM}	Collector peak current	-15A			
IB	Base current		-1A		
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$		80W		
	T _{amb} ≤25°C		2W (
T _{sto}	Storage temperature	-65 to 150°C			
Tj	Junction temperature		150°C		

MECHANICAL DATA

Dimensions in mm

547

TO-220

R _{th j-case}	Thermal resistance junction-case	max	1.56	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	62.5	°C/W
ing and	,			

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	Test conditions		o. Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	for TIP 105 for TIP 106 for TIP 107	$\begin{array}{l} V_{CE}=-30V\\ V_{CE}=-40V\\ V_{CE}=-50V \end{array}$		-50 -50 -50	μΑ μΑ μΑ
I _{CBO}	Collector cutoff current ($I_E = 0$)	for TIP 105 for TIP 106 for TIP 107	$\begin{array}{l} V_{CB}=-60V\\ V_{CB}=-80V\\ V_{CB}=-100V \end{array}$		-50 -50 -50	μΑ μΑ μΑ
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = -5V$	э		-8	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	$I_{\rm C} = -30 \text{mA}$ for TIP 105 for TIP 106 for TIP 107	,	-60 -80 -100		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -3A$ $I_{\rm C} = -8A$	$I_B = -6mA$ $I_B = -80mA$		-2 -2.5	V V
V _{BE (on)} *	Base-emitter voltage	$I_{\rm C} = -8A$	$V_{CE} = -4V$		-2.8	V
h _{FE} *	DC current gain	$I_{\rm C} = -3A$ $I_{\rm C} = -8A$	$\begin{array}{l} V_{CE}=-4V\\ V_{CE}=-4V \end{array}$	1000 200	20000	_
V _F *	Forward voltage of commutation diode $(I_B = 0)$	$I_{F} = -I_{C} = -$	10A		-2.8	V

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

EPITAXIAL-BASE NPN

POWER DARLINGTONS

The TIP 110, TIP 111 and TIP 112 are silicon epitaxial-base NPN transistors in monolithic Darlington configuration in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary PNP types are the TIP 115, TIP 116 and TIP 117 respectively.

ABSC	OLUTE MAXIMUM RATINGS	TIP 110	TIP 111	TIP 112	
V _{CBO}	Collector-base voltage ($I_E = 0$)	60V	80V	100V	
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	60V	80V	100V	
V _{EBO}	Emitter-base voltage $(I_{C} = 0)$	5V			
l _c	Collector current	2A			
I _{CM}	Collector peak current	4A			
IB	Base current		50mA		
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$		50W		
	T _{amb} ≤25°C	2W			
T _{sta}	Storage temperature	−65 to 150°C			
Tj	Junction temperature		150°C		

MECHANICAL DATA

Dimensions in mm

Collector connected to tab.

TO-220

R _{th j-case}	Thermal resistance junction-case	max	2.5	°C/W
R _{th i-amb}	Thermal resistance junction-ambient	max	62.5	°C/W
- in j-and	· · · · · · · · · · · · · · · · · · ·	1		-

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min. Typ.	Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	for TIP 110 for TIP 111 for TIP 112	$\begin{array}{l} V_{CE}=30V\\ V_{CE}=40V\\ V_{CE}=50V \end{array}$		2 2 2	mA mA mA
I _{CBO}	Collector cutoff current ($I_E = 0$)	for TIP 110 for TIP 111 for TIP 112	$V_{CB} = 60V$ $V_{CB} = 80V$ $V_{CB} = 100V$		1 1 1	mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$			2	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B =0)	I _C = 30mA for TIP 110 for TIP 111 for TIP 112		60 80 100		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C = 2A	$I_{B} = 8mA$		2.5	V
V _{BE (on)} *	Base-emitter voltage	$I_{\rm C} = 2A$	$V_{CE} = 4V$		2.8	V
h _{FE} *	DC current gain	$\begin{array}{l} I_{C} = 1A \\ I_{C} = 2A \end{array}$	$\begin{array}{l} V_{CE} = 4V \\ V_{CE} = 4V \end{array}$	1000 500		_

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

EPITAXIAL-BASE PNP

POWER DARLINGTONS

The TIP 115, TIP 116 and TIP 117 are silicon epitaxial-base PNP transistors in monolithic Darlington configuration in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary NPN types are the TIP 110, TIP 111 and TIP 112 respectively.

ABSOLUTE MAXIMUM RATINGS		TIP 115	TIP 116	TIP 117	
V _{CBO}	Collector-base voltage ($I_E = 0$)	-60V	-80V	-100V	
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	-60V	-80V	-100V	
V _{EBO}	Emitter-base voltage $(I_{C} = 0)$	-5V			
I _C	Collector current	-2A			
ICM	Collector peak current	-4A			
I _B	Base current	—50mA			
P _{tot}	Total power dissipation at $T_{case} \leq 25$ °C	50W			
	T _{amb} ≤25°C		2W		
T _{sta}	Storage temperature		65 to 150°	°C	
Τj	Junction temperature		150°C		

MECHANICAL DATA

Dimensions in mm

TO-220

R _{th i-case}	Thermal resistance junction-case	max	2.5	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min. Typ	Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for TIP 115 for TIP 116 for TIP 117	$\begin{array}{l} V_{CE}=-30V\\ V_{CE}=-40V\\ V_{CE}=-50V \end{array}$		-2 -2 -2	mA mA mA
I _{сво}	Collector cutoff current ($I_E = 0$)	for TIP 115 for TIP 116 for TIP 117	$\begin{array}{l} V_{CB}=-60V\\ V_{CB}=-80V\\ V_{CB}=-100V \end{array}$		-1 -1 -1	mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = -5V$			-2	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B =0)	$\begin{array}{l} I_{C}=-30 mA \\ for \ \textbf{TIP} \ \textbf{115} \\ for \ \textbf{TIP} \ \textbf{116} \\ for \ \textbf{TIP} \ \textbf{117} \end{array}$		-60 -80 -100		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -2A$	$I_{B} = -8mA$		-2,5	V
V _{BE (on)} *	Base-emitter voltage	$I_{\rm C} = -2A$	$V_{CE} = -4V$		-2.8	V
h _{FE} *	DC current gain	$\begin{array}{l} I_{C}=-1A\\ I_{C}=-2A \end{array}$	$\begin{array}{l} V_{CE}=-4V\\ V_{CE}=-4V \end{array}$	1000 500		

* Pulsed: pulse duration = $300\mu s$, duty cycle $\leq 2\%$.

EPITAXIAL-BASE NPN

POWER DARLINGTONS

The TIP 120, TIP 121 and TIP 122 are silicon epitáxial-base NPN transistors in monolithic Darlington configuration in Jedec TO-220 plastic package, intended for use in power linear and switching applications.

The complementary PNP types are the TIP 125, TIP 126 and TIP 127 respectively.

ABSOLUTE MAXIMUM RATINGS		TIP 120	TIP 121	TIP 122	
V _{CBO}	Collector-base voltage ($I_E = 0$)	60V 80V 100			
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	60V	80V	100V	
V _{EBO}	Emitter-base voltage $(I_{C} = 0)$	5V			
I _C	Collector current	5A			
I _{CM}	Collector peak current	8A			
I _B	Base current	0.1A			
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$		65W		
	T _{amb} ≤25°C		2W		
T _{sta}	Storage temperature		65 to 150°	°C	
Tj	Junction temperature		150°C		

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.92	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	62.5	°C/W
ith j-amb		max	02.0	0/11

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min. Typ.	Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for TIP 120 for TIP 121 for TIP 122	$\begin{array}{l} V_{CE}=30V\\ V_{CE}=40V\\ V_{CE}=50V \end{array}$		0.5 0.5 0.5	mA mA mA
I _{CBO}	Collector cutoff current $(I_E = 0)$	for TIP 120 for TIP 121 for TIP 122	$V_{CB} = 60V$ $V_{CB} = 80V$ $V_{CB} = 100V$		0.2 0.2 0.2	mA mA mA
I _{EBO}	Emitter cutoff current ($I_{\rm C} = 0$)	$V_{EB} = 5V$			2	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B =0)	I _C = 30mA for TIP 120 for TIP 121 for TIP 122		60 80 100		> > >
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 3A$ $I_{\rm C} = 5A$	$I_B = 12mA$ $I_B = 20mA$		2 4	v v
V _{BE (on)} *	Base-emitter voltage	$I_{\rm C} = 3A$	$V_{CE} = 3V$		2.5	V
h _{FE} *	DC current gain	$\begin{array}{l} I_{C}=0.5A\\ I_{C}=3A \end{array}$	$\begin{array}{l} V_{CE}=3V\\ V_{CE}=3V \end{array}$	1000 1000		_

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

Base-emitter voltage

Collector base capacitance

Saturated switching characteristics

EPITAXIAL-BASE PNP

POWER DARLINGTONS

The TIP 125, TIP 126 and TIP 127 are silicon epitaxial-base PNP transistors in monolithic Darlington configuration in Jedec TO-220 plastic package, intended for use in power linear and switching applications.

The complementary NPN types are the TIP 120, TIP 121 and TIP 122 respectively.

ABSOLUTE MAXIMUM RATINGS		TIP 125	TIP 126	TIP 127		
V _{CBO}	Collector-base voltage ($I_E = 0$)	-60V -80V -100				
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	-60V	–80V	_100V		
V_{EBO}	Emitter-base voltage $(I_{\rm C} = 0)$	-5V				
l _C	Collector current	-5A				
I _{CM}	Collector peak current	-8A				
I _B	Base current	-0.1A				
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	1	65W			
	T _{amb} ≤25°C	2W				
T _{sta}	Storage temperature	−65 to 150°C				
Tj	Junction temperature		150°C			

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.92	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

	Parameter	Test co	onditions	Min. Typ	. Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for TIP 125 for TIP 126 for TIP 127	$\begin{array}{l} V_{CE}=-30V\\ V_{CE}=-40V\\ V_{CE}=-50V \end{array}$		-0.5 -0.5 -0.5	mA mA mA
I _{сво}	Collector cutoff current $(I_E = 0)$	for TIP 125 for TIP 126 for TIP 127	$\begin{array}{l} V_{CB}=-60V\\ V_{CB}=-80V\\ V_{CB}=-100V \end{array}$		-0.2 -0.2 -0.2	mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = -5V$			-2	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B =0)	I _C = -30mA for TIP 125 for TIP 126 for TIP 127		-60 -80 -100		>>>
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -3A$ $I_{\rm C} = -5A$	$\begin{array}{l} I_{B}=-12mA\\ I_{B}=-20mA \end{array}$		-2 -4	> >
V _{BE (on)} *	Base-emitter voltage	$I_{\rm C} = -3A$	$V_{CE} = -3V$		-2.5	V
h _{FE} *	DC current gain	$\begin{array}{l} I_{C}=-0.5A\\ I_{C}=-3A \end{array}$	$\begin{array}{l} V_{CE}=-3V\\ V_{CE}=-3V \end{array}$	1000 1000		÷

*Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

Safe operating areas

DC current gain

Base-emitter voltage

3

Collector-emitter saturation voltage

Collector base capacitance

Saturated switching characteristics

POWER DARLINGTONS

The TIP130, TIP131 and TIP 132 are silicon epitaxial-base NPN transistors in monolithic Darlington configuration mounted in Jedec T0-220 plastic package intended for use in power linear and switching applications.

The complementary PNP types are the TIP 135, TIP 136 and TIP 137 respectively.

100V
100V
-

MECHANICAL DATA

Dimensions in mm

Collector connected to tab.

TO-220

R _{th j-case}	Thermal resistance junction-case	max	1.78	°C/W
H _{th j-amb}	Inermal resistance junction-ambient	max	62.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} \stackrel{*}{=} 25 \,^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min. T	/p. Max.	Unit
I _{CEO}	Collector cutoff current $(I_B = 0)$	for TIP 130 for TIP 131 for TIP 132	$V_{CE} = 30V$ $V_{CE} = 40V$ $V_{CE} = 50V$		0.5 0.5 0.5	mA mA mA
I _{СВО}	Collector cutoff current $(I_E = 0)$	for TIP 130 for TIP 131 for TIP 132	$V_{CB} = 60V$ $V_{CB} = 80V$ $V_{CB} = 100V$		0.2 0.2 0.2	mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$			5	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 30mA for TIP 130 for TIP 131 for TIP 132		60 80 100		> > >
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 4A$ $I_{\rm C} = 6A$	$I_B = 16mA$ $I_B = 30mA$		2 3	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 4 {\rm A}$	$V_{CE} = 4V$		2.5	V
h _{FE} *	DC current gain	$I_{\rm C} = 1 {\rm A}$ $I_{\rm C} = 4 {\rm A}$	$V_{CE} = 4V$ $V_{CE} = 4V$	500 1000	15000	_

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$

EPITAXIAL-BASE PNP

POWER DARLINGTONS

The TIP 135, TIP 136 and TIP 137 are silicon epitaxial-base PNP transistors in monolithic Darlington configuration in Jedec TO-220 plastic package, intended for use in power linear and switching applications.

The complementary NPN types are the TIP 130, TIP 131 and TIP 132 respectively.

ABSC	LUTE MAXIMUM RATINGS	TIP 135	TIP 136	TIP 137
V _{CBO}	Collector-base voltage $(I_E = 0)$	-60V	-80V	-100V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	-60V	—80V	-100V
V _{EBO}	Emitter-base voltage $(I_{\rm C} = 0)$		-5V	
	Collector current		-8A	
I _{CM}	Collector peak current		-12A	
I _B	Base current		-0.3A	
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$		70W	
	T _{amb} ≤25°C		2W	
T _{sta}	Storage temperature		65 to 150°	°C
Tj	Junction temperature		150°C	

MECHANICAL DATA

Dimensions in mm

Collector connected to tab.

5/80

TO-220

R _{th j-case}	Thermal resistance junction-case	max	1.78	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	62.5	°C/W
•		1		

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions		Min. Ty	/p. Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	for TIP 135 for TIP 136 for TIP 137	$\begin{array}{l} V_{CE}=-30V\\ V_{CE}=-40V\\ V_{CE}=-50V \end{array}$		-0.5 -0.5 -0.5	mA mA mA
I _{CBO}	Collector cutoff current $(I_E = 0)$	for TIP 135 for TIP 136 for TIP 137	$\begin{array}{l} V_{CB}=-60V\\ V_{CB}=-80V\\ V_{CB}=-100V \end{array}$		-0.2 -0.2 -0.2	mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = -5V$			-5	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	I _C = -30mA for TIP 135 for TIP 136 for TIP 137		-60 -80 -100		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -4A$ $I_{\rm C} = -6A$	$I_{B} = -16mA$ $I_{B} = -30mA$		-2 -3	V V
V _{BE (on)} *	Base-emitter voltage	$I_{\rm C} = -4A$	$V_{CE} = -4V$		-2.5	V
h _{FE} *	DC current gain	$I_{\rm C} = -1A \\ I_{\rm C} = -4A$	$\begin{array}{l} V_{CE}=-4V\\ V_{CE}=-4V \end{array}$	500 1000*	15000	_

*Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

EPITAXIAL-BASE NPN/PNP

POWER DARLINGTONS

The TIP140, TIP141, TIP142 are silicon epitaxial base NPN transistors in monolithic Darlington configuration and are mounted in SOT-93 plastic package. They are intended for use in power linear and switching applications.

The complementary PNP types are TIP145, TIP146, TIP147 respectively.

ABSO	LUTE MAXIMUM RATINGS	NPN *PNP	TIP140 TIP145	TIP141 TIP146	TIP142 TIP147
V _{CBO}	Collector-base voltage ($I_E = 0$)		60V	80V	100V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)		60V	80∨	100V
V _{EBO}	Emitter base voltage ($I_{C} = 0$)			5V	
l _c	Collector current			10A	
I _{CM}	Collector peak current (repetitive)			20A	
I _B	Base current			0.5A	
P _{tot}	Total power dissipation at $T_{case} \leq 25$	ю°С		125W	
T _{stg}	Storage temperature			65 to 150°C)
Τj	Junction temperature			150°C	

* For PNP types voltage and current values are negative.

MECHANICAL DATA

Dimensions in mm

R _{thj-case}	Thermal resistance junction-case	max	1	°C/W
-----------------------	----------------------------------	-----	---	------

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise specified)

	Parameter	Test c	onditions	Min. Ty	p. Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	for TIP140/5 for TIP141/6 for TIP142/7	$V_{CB} = 60V$ $V_{CB} = 80V$ $V_{CB} = 100V$		1 1 1	mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for TIP140/5 for TIP141/6 for TIP142/7	$V_{CB} = 30V$ $V_{CE} = 40V$ $V_{CE} = 50V$		2 2 2	mA mA mA
I _{EBO}	Emitter cutoff current $(I_{C} = 0)$	$V_{EBO} = 5V$			2	mA
V _{CEO (sus})	Collector emitter sustaining voltage $(I_B = 0)$	I _C = 30 mA	for TIP140/5 for TIP141/6 for TIP142/7	60 80 100		> > >
V _{CE (sat)} *	Collectoremitter saturation voltage	$I_{\rm C} = 5A$ $I_{\rm C} = 10A$	$I_B = 10 \text{ mA}$ $I_B = 40 \text{ mA}$		2 3	v v
V _{BE} *	Base-emitter voltage	I _C = 10A	$V_{CE} = 4V$		3	V
h _{FE} *	DC current gain	$I_{C} = 5A$ $I_{C} = 10A$	$V_{CE} = 4V$ $V_{CE} = 4V$	1000 500		_
t _{on}	Turn-on time	I _C = 10A	I _{B1} = 40 mA	0.9	9	μs
t _{off}	Turn-off time	I _{B2} = -40 mA	$R_{L} = 3\Omega$	4		μs

* Pulsed: pulse duration = 200 μ s, duty cycle = 1.5%.

For PNP devices voltage and current values are negative

DC transconductance (TIP145/6/7)

POWER LINEAR AND SWITCHING APPLICATIONS

The 2N 3055E is a silicon epitaxial-base NPN transistor in Jedec TO-3 metal case. It is intended for power switching circuits, series and shunt regulators, output stages and high fidelity amplifiers.

ABSOLUTE MAXIMUM RATINGS

2N3055E

V _{CBO}	Collector-base voltage ($I_{\rm E} = 0$)	100	V
VCER	Collector-emitter voltage ($R_{BF} = 100\Omega$)	70	V
VCEO	Collector-emitter voltage $(I_{B} = 0)$	60	V
V _{FBO}	Emitter-base voltage $(I_c = 0)$	7	· V
I _C	Collector current	15	Α
I _B	Base current	7	Α
P _{tot}	Total power dissipation at $T_{case} \leq 25 \ ^{\circ}C$	115	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

R _{th j-case}	Thermal resistance junction-case	max	1.5	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

	Parameter	Test con	ditions	Min. Typ. Max.	Unit
I _{CEV}	Collector cutoff current (V_{BE} = -1.5V)	$V_{CE} = 100 V$ $V_{CE} = 100 V$	T _{case} = 150°C	1 5	mA mA
I _{CEO}	Collector cutoff current $(I_B = 0)$	V _{CE} = 30 V		0.7	mA
I _{EBO}	Emitter cutoff current $(I_{c} = 0)$	$V_{EB} = 7 V$		5	mA
V _{CER (sus})*	Collector-emitter sust. voltage ($R_{BE} = 100\Omega$)	$I_{\rm C}$ = 200 mA		70	V
V _{CEO (sus)}	*Collector-emitter sust. voltage (I _B = 0)	$I_{\rm C} = 200 {\rm mA}$		60	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 4 A$ $I_{C} = 10 A$	$I_{B} = 400 \text{mA}$ $I_{B} = 3.3 \text{A}$	1 3	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 4 {\rm A}$	$V_{CE} = 4 V$	1.5	V
h _{FE} *	DC current gain Group 4 Group 5 Group 6 Group 7	$I_{C} = 0.5 A I_{C} = 4 A I_{C} = 10 A$	$V_{CE} = 4 V$	20 50 35 75 60 145 120 250 20 70 5	
h _{FE1} /h _{FE2}	*Matched pair	$I_{\rm C} = 0.5 {\rm A}$	$V_{CE} = 4 V$	1.6	-
f _T	Transition frequency	$I_{\rm C} = 1 {\rm A}$	$V_{CE} = 4 V$	2.5	MHz
I _{s/b} **	Second breakdown collector current	$V_{CE} = 40 V$		2.87	A

 * Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5% ** Pulsed: 1s, non repetitive pulse

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Small signal current gain

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL PLANAR NPN

HIGH VOLTAGE TRANSISTORS

The 2N3439, 2N3440 are high voltage silicon epitaxial planar transistors designed for use in consumer and industrial line-operated applications. These devices are particularly suited as drivers in high-voltage low current inverters, switching and series regulators.

ABSO	LUTE MAXIMUM RATINGS	2N3439	2N3440
V _{CBO} Voro	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_E = 0$)	450V 350V	300V 250V
V _{EBO}	Emitter-base voltage ($I_c = 0$)	7	V A
'C I _B	Base current	0.	5A
r _{tot}	Total power dissipation at $T_{case} \ge 25 °C$ $T_{amb} \le 50 °C$	1	W
I _{stg} T _j	Storage temperature Junction temperature	-65 to 200	200°C 0°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

Rth j-caseThermal resistance junction-casemaxRth j-ambThermal resistance junction-ambientmax	17.5	°C/W
--	------	------

ELECTRICAL CHARACTERISTICS (T $_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min. Typ. Max.	Unit
I _{СВО}	Collector cutoff current ($I_E = 0$)	for 2N3439 for 2N3440	V _{CB} ≕360V V _{CB} ≕250V	20 20	μΑ μΑ
I _{CEO}	Collector cutoff current ($I_B = 0$)	for 2N3439 for 2N3440	V _{CE} =300V V _{CE} =200V	20 50	μΑ μΑ
I _{CEX}	Collector cutoff current (V _{BE} =-1,5V)	for 2N3439 for 2N3440	V _{CE} =450V V _{CE} =300V	500 500	μΑ μΑ
I _{EBO}	Emitter cutoff current (1 _C =0)	V _{EB} =6V		20	μA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (1 _B =0)	l _c =50mA for 2N3439 for 2N3440		350 250	v v
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C =50mA	I _B =4mA	0.5	V
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =50mA	I _B =4mA	1.3	V
C _{ob}	Output capacitance	V _{CB} =10V, f=	MHz	10	pF
h _{FE} *	DC current gain	l _c =20mA	V _{CE} =10V	40 160	-
		$I_{\rm C} = 2mA$	V _{CE} =10V	30	-
h _{fe}	Small signal current gain	l _c =5mA f = 1 KHz	V _{CE} =10V	25	_
f _T	Transition frequency	I _c =10mA f=5MHz	V _{CE} =10V	15	MHz

* Pulsed: pulse duration =300 $\mu s,$ duty cycle $\leq\!2\%$

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Base emitter voltage

Transition frequency

Power rating chart

POWER LINEAR AND SWITCHING APPLICATIONS

The 2N 3713, 2N 3714, 2N 3715 and 2N 3716 are silicon epitaxial-base NPN power transistors in Jedec TO-3 metal case. They are intended for use in power linear and switching applications.

The complementary PNP types are the 2N 3789, 2N 3790, 2N 3791 and 2N 3792 respectively.

ABSC	DUTE MAXIMUM RATINGS	2N371 2N371	3 2N3714 5 2N3716
$V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j$	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Base current Total power dissipation at $T_{case} \le 25^{\circ}$ C Storage temperature Junction temperature	80V 60V -65 2	100V 80V 7V 10A 4A 150W to 200°C 000 °C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.17	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CEX}	Collector cutoff current $(V_{BE} = -1.5 V)$	$V_{CE} = 80 V$ for 2N3713 and 2N3715 $V_{CE} = 100 V$ for 2N3714 and 2N3716 $T_{case} = 150 °C$	1	mA mA
		for 2N3713 and 2N3715 V _{CE} = 80 V for 2N3714 and 2N3716	10 10	mA mA
I _{EBO}	Emitter cutoff current (I _C = 0)	$V_{EB} = 7 V$	5	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 200 mA for 2N3713 and 2N3715 for 2N3714 and 2N3716	60 80	V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 5$ A $I_{\rm B} = 0.5$ A for 2N3713 and 2N3714 for 2N3715 and 2N3716	1 0.8	v v
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{C} = 5 A$ $I_{B} = 0.5 A$ for 2N3713 and 2N3714 for 2N3715 and 2N3716	2 1.5	v v
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 3 \text{A} \qquad V_{\rm CE} = 2 \text{V}$	1.5	V
h _{FE} *	DC current gain	$ I_{C} = 1 A \qquad V_{CE} = 2 V \\ for 2N3713 and 2N3714 \\ for 2N3715 and 2N3716 \\ I_{C} = 3 A \qquad V_{CE} = 2 V \\ for 2N3713 and 2N3714 \\ for 2N3714 \\ $	25 90 50 150 15	
		for 2N3/15 and 2N3/16 $I_{\rm C} = 10 \text{ A} V_{\rm CE} = 4 \text{ V}$	5 120	_
f _T	Transition frequency	$I_{\rm C} = 0.5 {\rm A} {\rm V}_{\rm CE} = 10 {\rm V}$	4	MHz

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

Safe operating areas

DC current gain

DC transconductance

Collector-emitter saturation voltage

2

Í_C (A)

Base-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

583

EPITAXIAL-BASE PNP

POWER LINEAR AND SWITCHING APPLICATIONS

The 2N 3789, 2N 3790, 2N 3791 and 2N 3792 are silicon epitaxial-base PNP power transistors in Jedec TO-3 metal case. They are intended for use in power linear and switching applications.

The complementary NPN types are the 2N 3713, 2N 3714, 2N 3715 and 2N 3716 respectively.

ABSOLUTE MAXIMUM RATINGS		2N3789 2N3791	2N3790 2N3792
$V_{CBO} V_{CEO} V_{EBO} I_C I_B P_{tot} T_{stg} T$	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Base current Total power dissipation $T_{case} \le 25^{\circ}C$ Storage temperature	-60V -60V -1 -1 -2 15 -65 to	-80V -80V 7V 0A 4A 0W 200°C
'j	Junction temperature	200	50

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.17	°C/W
------------------------	----------------------------------	-----	------	------

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test conditions	Min.	Тур. Мах.	Unit
I _{CEX}	Collector-emitter cutoff current $(V_{BE} = 1.5 V)$	V_{CE} = -60 V for 2N3789 and 2N3791 V_{CE} = -80 V for 2N3790 and 2N3792		-1 -1	mA mA
		$T_{case} = 150 \ ^{\circ}C$ $V_{CE} = -60 \ V$ for 2N3789 and 2N3791 $V_{CE} = -80 \ V$ for 2N3790 and 2N3792		-5	mA
I _{EBO}	Emitter cutoff	$V_{EB} = -7 V$		-5	mA
	current ($I_{C} = 0$)				
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -200 mA for 2N3789 and 2N3791 for 2N3790 and 2N3792	-60 -80		V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = -4 \text{ A}$ $I_{B} = -0.4 \text{ A}$ for 2N3789 and 2N3790 $I_{C} = -5 \text{ A}$ $I_{B} = -0.5 \text{ A}$		-1	v
		for 2N3791 and 2N3792		-1	V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = -4$ A $I_{\rm B} = -0.4$ A for 2N3789 and 2N3790		-2	v
		for 2N3791 and 2N3792		-1.5	V
h _{FE} *	DC current gain	$l_{c} = -1 A$ $V_{CE} = -2 V$ for 2N3789 and 2N3790 for 2N3791 and 2N3792 $l_{c} = -3 A$ $V_{CE} = -2 V$ for 2N3789 and 2N3790 for 2N3791 and 2N3792	25 50 15 30	90 150 120	
		$I_{\rm C}$ = -10A $V_{\rm CE}$ = -4 V	5		
f _T	Transition frequency	$I_{\rm C}$ = -0.5A $V_{\rm CE}$ = -10 V	4		MHz

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

DC current gain

DC transconductance

Collector-emitter saturation voltage

Base-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

MEDIUM POWER GENERAL PURPOSE TRANSISTORS

The 2N4234, 2N4235 and 2N4236 are silicon epitaxial planar PNP transistors in Jedec TO-39 metal case.

They are intended for use in switching and amplifier applications.

The complementary NPN types are the 2N4237, 2N4238 and 2N4239 respectively.

ABSC	LUTE MAXIMUM RATINGS	2N4234	2N4235	2N4236
V _{CBO} V _{CEO} V _{EBO}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$)	-40V -40V	-60V -60V -7V	80V 80V
I _B P _{tot}	Base current Total power dissipation at $T_{case} \le 25^{\circ}C$		-0.2A 6W	
T _{stg} T _j	Storage temperature Junction temperature	-	65 to 200° 200°	C

INTERNAL SCHEMATIC DIAGRAM

c

MECHANICAL DATA

Dimensions in mm

Collector connected to case

TO-39

R _{th i-case}	Thermal resistance junction-case	max	29	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	175	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CBO}	Collector cutoff current $(I_E = 0)$		-0.1 -0.1 -0.1	mA mA mA
I _{CEV}	Collector cutoff current ($V_{BE} = 1.5$)	$ \begin{array}{ll} \mbox{for $2N4234$} & V_{CE} = -40V \\ \mbox{for $2N4235$} & V_{CE} = -60V \\ \mbox{for $2N4236$} & V_{CE} = -80V \\ \mbox{T}_{case} = 150^\circ C \\ \mbox{for $2N4234$} & V_{CE} = -30V \\ \mbox{for $2N4235$} & V_{CE} = -40V \\ \mbox{for $2N4236$} & V_{CE} = -60V \\ \end{array} $	-0.1 -0.1 -0.1 -0.1 -1 -1 -1	mA mA mA mA mA
I _{CEO}	Collector cutoff current $(I_B = 0)$	$ \begin{array}{ll} \mbox{for $2N4234$} & V_{CE} = -30V \\ \mbox{for $2N4235$} & V_{CE} = -40V \\ \mbox{for $2N4236$} & V_{CE} = -60V \\ \end{array} $	-1 -1 -1	mA mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{BE} = 7V$	-0.5	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100mA for 2N4234 for 2N4235 for 2N4236	-40 -60 -80	V V V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test co	nditions	Min. Typ.	Max.	Unit
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -1$ A	$I_{\rm B} = -100 {\rm mA}$		-0.6	V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = -1 A$	$I_B = -100 \text{mA}$		-1.5	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -0.25 A$	$V_{CE} = -1V$		-1.0	V
h _{FE} *	DC current gain	$\label{eq:lc} \begin{array}{l} I_{C}=-100mA\\ I_{C}=-250mA\\ I_{C}=-500mA\\ I_{C}=-1A \end{array}$	$\begin{array}{l} V_{CE}=-1V\\ V_{CE}=-1V\\ V_{CE}=-1V\\ V_{CE}=-1V\\ V_{CE}=-1V \end{array}$	40 30 20 10	150	
f _T	Transition frequency	$I_{\rm C} = -100 {\rm mA}$ f = 1MHz	$V_{CE} = -10V$	3		MHz
С _{сво}	Collector-base capacitance	$I_E = 0$ f = 100KHz	$V_{CB} = -10V$		100	рF
h _{fe}	Small signal current gain	$I_{\rm C} = -50 {\rm mA}$ f = 1KHz	$V_{CE} = -10V$	25		—

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$

EPITAXIAL PLANAR NPN

HIGH CURRENT, FAST SWITCHING APPLICATIONS

The 2N 4895, 2N 4896 and 2N 4897 are silicon expitaxial planar NPN transistors in Jedeo TO-39 metal case.

They are intended for high current, fast switching applications and for power amplifiers.

ABSO	LUTE MAXIMUM RATINGS	2N4895	2N4896	2N4897
V _{CBÔ} V _{CEO}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$)	120V 60V	120V 60V	150V 80V
V _{EBO}	Emitter-base voltage $(I_c = 0)$		6V	
I _C	Collector current		5A	
P _{tot}	Total power dissipation at T _{amb} ≤25°C		1W	
	T _{case} ≪25°C		7W	
	T _{case} ≪100°C		4W	
T _{sta}	Storage temperature	-6	65 to 200 °	°C
Тj	Junction temperature		200 °C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

Collector connected to case

TO-39

R _{th j-case}	Thermal resistance junction-case	max max	25 175	°C/W °C/W
R _{th j-amb}	inermal resistance junction-ambient	max	175	0/00

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions	Min.	Тур. Мах.	Unit
I _{CES}	Collector cutoff current (V _{BE} = 0)	for 2N4895 and 2N4896 $V_{CE} = 120V$ $V_{CE} = 60V$ $V_{CE} = 60V$ $T_{case} = 150^{\circ}C$ for 2N4897 $V_{CE} = 150V$ $V_{CE} = 100V$ $V_{CE} = 150^{\circ}C$		1 100 1 1 100	mΑ μΑ μΑ mΑ μΑ
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 6 V$		1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 50 mA for 2N4895 and 2N4896 for 2N4897	60 80		v v
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 5 {\rm A} \qquad I_{\rm B} = 0.5 {\rm A}$		1	.V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 5 {\rm A} \qquad I_{\rm B} = 0.5 {\rm A}$		1.6	V
h _{FE} *	DC current gain	$I_{c} = 2 A$ $V_{cE} = 2 V$ for 2N4895 and 2N4897 for 2N4896 $I_{c} = 2 A$ $V_{cE} = 2 V$ $T_{c} = -55^{\circ}C$	40 100	120 300	
		for 2N4895 and 2N4897 for 2N4896	15 35		_
f _T	Transition frequency	$I_{C} = 0.5A$ $V_{CE} = 5 V$ for 2N4895 and 2N4897 for 2N4896	50 80		MHz MHz
С _{сво}	Collector-base capacitance	$ I_E = 0 V_{CB} = 10 V f = 1 MHz $		80	pF
t _{on}	Turn-on time	$I_{C} = 5 A$ $V_{CC} = 20V$ $I_{B1} = 0.5 A$		0.35	μS
t _s	Storage time	$I_{\rm C} = 5 \text{A} \qquad V_{\rm CC} = 20 \text{V}$		0.35	μS
·t _f	Fall time	$I_{B1} = -I_{B2} = 0.5A$		0.3	μS

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

DC current gain

DC transconductance

Collector-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

MULTIEPITAXIAL PLANAR NPN

HIGH CURRENT POWER SWITCH

The 2N 5038, 2N 5039 and 2N 6496 are silicon planar multiepitaxial NPN transistors in Jedec TO-3 metal case.

They are especially intended for high current and fast switching applications.

ABSOLUTE MAXIMUM RATINGS	2N5038	2N5039	2N6496
$ \begin{array}{ll} V_{CBO} & \mbox{Collector-base voltage } (I_E = 0) \\ V_{CEX} & \mbox{Collector-emitter voltage } (V_{BE} = -1.5V, R_{BE} = 100\Omega) \\ V_{CER} & \mbox{Collector-emitter voltage } (R_{BE} \leq 50 \Omega) \\ V_{CEO} & \mbox{Collector-emitter voltage } (I_B = 0) \\ V_{EBO} & \mbox{Emitter-base voltage } (I_C = 0) \\ I_C & \mbox{Collector current} \\ I_{CM} & \mbox{Collector peak current} \\ I_B & \mbox{Base current} \\ P_{tot} & \mbox{Total power dissipation at } T_{case} \leq 25 \ ^{\circ}\text{C} \\ T_{stg} & \mbox{Storage temperature} \\ T_j & \mbox{Junction temperature} \end{array} $	150V 150V 110V 90V 7V 20A 30A	120V 120V 95V 75V 20A 30A 5A 140W 55 to 200 200 °C	150V 150V 130V 110V 7V 15A

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.25	[•] ℃/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test con	ditions	Min. Typ.	Max.	Unit
I _{CEV}	Collector cutoff current (V _{BE} = -1.5 V)	for 2N5038 $V_{CE} = 140 V$ $V_{CE} = 100V$ for 2N5039	T _{case} =150°C		50 10	mA mA
		$V_{CE} = 110V$ $V_{CE} = 85V$ for 2N6496	$T_{case} = 150^{\circ}C$		10	mA
		V _{CE} = 130V V _{CE} = 130V	T _{case} = 150°C		20 25	mA mA
I _{CEO}	Collector cutoff current (I _B = 0)	for 2N5038 $V_{CE} = 70 V$ for 2N5039 $V_{OE} = 55 V$			20 20	mA mA
I _{EBO}	Emitter cutoff $(l_{r} = 0)$	$V_{EB} = 7 V$ $V_{EB} = 5 V$			50	mA
		V _{EB} — 3 V	for 2N5038 for 2N5039		5 15	mA mA
V _{CEX (sus)} *	Collector-emitter sustaining voltage $(V_{BE} = -1.5V, R_{BE} = 100\Omega)$	$I_{\rm C}$ = 200 mA	for 2N5038 for 2N5039 for 2N6496	150 120 150		V V V
V _{CER (sus)} *	Collector-emitter sustaining voltage $(R_{BE} = 50 \Omega)$	l _c = 200mA	for 2N5038 for 2N5039 for 2N6496	110 95 130		V V V
V _{CEO (sus})*	Collector-emitter sustaining voltage $(I_B = 0)$	$I_{\rm C} = 200 {\rm mA}$	for 2N5038 for 2N5039 for 2N6496	90 75 110		V V V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
V _{CE (sat)} *	Collector-emitter saturation voltage		1 2.5 1 2.5 1	
V _{BE (sat)} *	Base-emitter saturation voltage	for 2N5038 and 2N5039 $I_{C} = 20 \text{ A}$ $I_{B} = 5 \text{ A}$ for 2N6496 $I_{C} = 8 \text{ A}$ $I_{B} = 0.8 \text{ A}$	3.3 2	v v
V _{BE} *	Base-emitter voltage	for 2N5038 $I_{C} = 12 A$ $V_{CE} = 5 V$ for 2N5039 $I_{C} = 10 A$ $V_{CE} = 5 V$ for 2N6496 $I_{C} = 8 A$ $V_{CE} = 2 V$	1.8 1.8 1.6	v v v
h _{FE} *	DC current gain		50 250 20 100 30 250 20 100 12 100	
h _{fe}	Small signal current gain	$I_{C} = 2 A$ $V_{CE} = 10 V$ f = 5 MHz	12	_
С _{сво}	Collector-base capacitance	$I_{E} = 0$ $V_{CB} = 10 V$ f = 1 MHz	300	pF
t _r	Rise time	for 2N5038 $I_{C} = 12 A V_{CC} = 30 V$ $I_{C} = -12 A = -12 A$	0.5	μS
t _s	Storage time	for 2N5039 $I_{C} = 10 \text{ A}$ $V_{CC} = 30 \text{ V}$ $I_{B1} = -I_{B2} = 1 \text{ A}$ for 2N6496	1.5	μS
t _f	Fall time	$I_{C} = 8 A$ $V_{CC} = 30 V$ $I_{B1} = -I_{B2} = 0.8 A$	0.5	μS

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
l _{s/b} **	Second breakdown collector current	$\begin{array}{l} V_{CE} = \ 28 \ V \\ V_{CE} = \ 45 \ V \end{array}$	5 0.9	A A
E _{s/b}	Second breakdown energy	$\begin{array}{lll} V_{BE}=~-4~V & R_{BE}=~20~\Omega \\ L &=~180~\mu H \\ & \mbox{for}~2N5038 \\ & \mbox{for}~2N5039 \\ & \mbox{for}~2N6496 \end{array}$	13 13 5.7	mJ mJ mJ

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

** Pulsed: 1 s non repetitive pulse

Safe operating areas (for **2N6496**)

Collector-emitter saturation voltage $v_{CE(sat)}$ 10^{-1} 10^{-2} 10^{-1}

Collector-emitter saturation voltage $v_{CE}(sat)$ v_{CE}

Base-emitter saturation voltage

VBE(on) vs. collector current

Saturated switching characteristics

Transition frequency

EPITAXIAL PLANAR PNP

HIGH SPEED MEDIUM VOLTAGE SWITCHES

The 2N5151 and 2N5153 are silicon epitaxial planar PNP transistors in Jedec TO-39 metal case intended for use in switching applications. The complementary NPN types are the 2N5152 and 2N5154 respectively.

ABSC	DLUTE MAXIMUM RATINGS	2N5151	2N5153	
V _{CBO}	Collector-base voltage ($I_E = 0$)	-100V		
VCEO	Collector-emitter voltage $(I_{B} = 0)$	-8	0V	
V _{FBO}	Emitter-base voltage $(I_c = 0)$	5	.5V	
l _C	Collector current		5A	
ICM	Collector peak current	1	0A	
IB	Base current	2	.5A	
P _{tot}	Total power dissipation at $T_{case} \leq 50^{\circ}C$	10	W	
	T _{case} ≤ 100°C	6.	7W	
	$T_{amb} \leq 25^{\circ}C$	1	W	
T _{sta}	Storage temperature	-65 to	200°C	
Tj	Junction temperature	200	О°С	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

Collector connected to case

TO-39

R _{th j-case}	Thermal resistance junction-case	max	15	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	175	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min. Typ	. Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$\begin{array}{l} V_{CE}=-60V\\ V_{CE}=-100V \end{array}$			_1 _1	μA mA
I _{CEV}	Collector cutoff current ($V_{BE} = 2V$)	$\begin{array}{l} V_{CE}=-60V\\ T_{case}=150^{\circ}C \end{array}$			-500	μA
I _{CEO}	Collector cutoff current $(I_B = 0)$	$V_{CE} = -40V$			-50	μA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$\begin{array}{l} V_{\text{EB}} = -4V \\ V_{\text{EB}} = -5.5V \end{array}$			_1 _1	μA mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	$I_{\rm C} = -100 {\rm mA}$		-80		V
V _{CE (sat)} *	Collector-emitter saturation voltage	$\begin{array}{l} I_{C}=-2.5A\\ I_{C}=-5A \end{array}$	$I_B = -250 \text{mA}$ $I_B = -500 \text{mA}$	-	-0.75 -1.5	V
V _{BE (sat)} *	Base-emitter saturation voltage	$\begin{array}{l} I_{C}=-2.5A\\ I_{C}=-5A \end{array}$	$I_B = -250mA$ $I_B = -500mA$	-	–1.45 –2.2	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -2.5 A$	$V_{CE} = -5V$	-	_1.45	V
h _{FE} *	DC current gain	for 2N5151 $l_{c} = -50mA$ $l_{c} = -2.5A$ $l_{c} = -5A$ $T_{case} = -55^{\circ}C$ $l_{c} = -2.5A$ for 2N5153 $l_{c} = -2.5A$ $l_{c} = -2.5A$ $l_{c} = -5A$ $T_{case} = -55^{\circ}C$ $l_{c} = -2.5A$	$V_{CE} = -5V$	20 30 20 15 50 70 40 35	90 200	

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
C _{CBO}	Collector-base capacitance	$ I_E = 0 \qquad V_{CB} = -10V $ f = 1MHz	250	pF
h _{fe}	Small signal current gain	$\begin{array}{ll} I_{C}=-0.1A & V_{CE}=-5V \\ f=1KHz & \\ for \ \textbf{2N5151} \\ for \ \textbf{2N5153} \\ I_{C}=-0.5A & V_{CE}=-5V \\ f=20MHz \\ for \ \textbf{2N5151} \\ for \ \textbf{2N5153} \end{array}$	20 50 3 3.5	
t _{on}	Turn on time	$\begin{array}{l} I_C = -5A \\ V_{CC} = 30V \end{array} I_{B1} = -0.5A \end{array} \label{eq:lc}$	0.5	μS
t _{off}	Turn off time		1.3	μs

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

HIGH SPEED MEDIUM VOLTAGE SWITCHES

The 2N5152 and 2N5154 are silicon epitaxial planar NPN transistors in Jedec TO-39 metal case intended for use in switching applications. The complementary PNP types are the 2N5151 and 2N5153 respectively.

ABSC	DLUTE MAXIMUM RATINGS	2N5152	2N5154
VCBO	Collector-base voltage ($I_F = 0$)	10	0V
VCEO	Collector-emitter voltage $(I_{\rm B} = 0)$	80	VC
VEBO	Emitter-base voltage $(I_{C} = 0)$	6	V
	Collector current	2	A
I _{CM}	Collector peak current	10)A
I _B	Base current	1	A
P _{tot}	Total power dissipation at $T_{case} \leq 50^{\circ}C$	10	W
	T _{case} ≤ 100 °C	6.7	7W
	$T_{amb} \leq 25^{\circ}C$	1	W
T _{sta}	Storage temperature	-65 to	200°C
Tj	Junction temperature	200	0°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-39

R _{th j-case}	Thermal resistance junction-case	max	15	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	175	°C/W
• • In j-anio				

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Ma	x. Unit
I _{CES}	$\begin{array}{l} Collector \ cutoff \\ current \ (V_{BE}=0) \end{array}$	$\begin{array}{l} V_{CE}=60V\\ V_{CE}=100V \end{array}$	-	Ι μΑ I mA
I _{CEV}	Collector cutoff current ($V_{BE} = -2V$)	$V_{CE} = 60V$ $T_{case} = 150$ °C	500) μΑ
I _{CEO}	Collector cutoff current ($I_B = 0$)	$V_{CE} = 40V$	50	μΑ
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 5V$ $V_{EB} = 6V$	-	Ι μΑ I mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA	80	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$\begin{array}{ll} I_C = 2.5 A & I_B = 250 m A \\ I_C = 5 A & I_B = 500 m A \end{array}$	0.7! 1.!	5 V 5 V
V _{BE (sat)} *	Base-emitter saturation voltage	$\begin{array}{ll} I_C = 2.5 A & I_B = 250 m A \\ I_C = 5 A & I_B = 500 m A \end{array}$	1.4 2.	5 V 2 V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 2.5 \text{A}$ $V_{\rm CE} = 5 \text{V}$	1.4	5 V
h _{FE} *	DC current gain	for 2N5152 $I_{C} = 50 \text{mA}$ $V_{CE} = 5V$ $I_{C} = 2.5\text{A}$ $V_{CE} = 5V$ $I_{C} = 5\text{A}$ $V_{CE} = 5V$ $T_{CE} = 5V$	20 30 90 20	D
		$I_{\rm C} = 2.5 {\rm A}$ $V_{\rm CE} = 5 {\rm V}$	15	
		$I_{C} = 50 \text{mA} V_{CE} = 5V$ $I_{C} = 2.5A V_{CE} = 5V$ $I_{C} = 5A V_{CE} = 5V$ $T = 55^{\circ}\text{C}$	50 70 200 40	
		$I_{case} = -55$ C $I_{C} = 2.5A$ V _{CE} = 5V	35	_

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max	Unit
C _{CBO}	Collector-base capacitance	$ I_E = 0 V_{CB} = 10V f = 1MHz $	250	рF
h _{fe}	Small signal current gain	$\begin{array}{ll} I_{C}=0.1A & V_{CE}=5V\\ f=1KHz & \\ for \ \textbf{2N5152}\\ for \ \textbf{2N5154}\\ I_{C}=0.5A & V_{CE}=5V\\ f=20MHz\\ for \ \textbf{2N5152}\\ for \ \textbf{2N5154} \end{array}$	20 50 3 3.5	
t _{on}	Turn on time	$\begin{array}{l} I_C = 5A \\ V_{CC} = 30V \end{array} \hspace{0.5cm} I_{B1} = 0.5A \end{array}$	0.5	μs
t _{off}	Turn off time		1.3	μs

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

EPITAXIAL-BASE NPN

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The 2N 5190, 2N 5191, 2N 5192 are silicon epitaxial-base NPN power transistors in Jedec TO-126 plastic package, intended for use in medium power linear and switching applications.

The complementary PNP types are the 2N 5193, 2N 5194 and 2N 5195 respectively.

ABSOLUTE MAXIMUM RATINGS	2N5190	2N5191	2N5192
$\begin{array}{ll} V_{CBO} & \mbox{Collector-base voltage } (I_E = 0) \\ V_{CEO} & \mbox{Collector-emitter voltage } (I_B = 0) \\ V_{EBO} & \mbox{Emitter-base voltage } (I_C = 0) \\ I_C & \mbox{Collector current} \\ I_{CM} & \mbox{Collector peak current } (t \leqslant 10 \mbox{ ms}) \\ I_B & \mbox{Base current} \\ P_{tot} & \mbox{Total power dissipation at } T_{case} \leqslant 25^{\circ}\mbox{C} \\ T_{stg} & \mbox{Storage temperature} \\ T_j & \mbox{Junction temperature} \end{array}$	40V 40V - (60V 60V 5V 4A 7A 1A 40W 55 to 150° 150°C	80V 80V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

(1) Within this region the cross-section of the leads is uncontrolled

TO-126 (SOT-32)

22

4.4 P032

R _{th j-case}	Thermal resistance junction-case	max	3.12	°C/W
R _{th j-amb}	I hermal resistance junction-ambient	max	100	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise specified)

	Parameter Test conditions		Min. Typ.	Max.	Unit	
I _{CBO}	Collector cutoff current ($I_E = 0$)	for 2N5190 for 2N5191 for 2N5192	$V_{CB} = 40V$ $V_{CB} = 60V$ $V_{CB} = 80V$		100 100 100	μΑ μΑ μΑ
I _{CEX}	Collector cutoff current ($V_{EB} = 1.5V$)	for 2N5190 for 2N5191 for 2N5192 T _{case} = 125°C	$V_{CE} = 40V$ $V_{CE} = 60V$ $V_{CE} = 80V$		100 100 100	μΑ μΑ μΑ
		for 2N5190 for 2N5191 for 2N5192	$V_{CE} = 40V$ $V_{CE} = 60V$ $V_{CE} = 80V$		2 2 2	mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for 2N5190 for 2N5191 for 2N5192	$V_{CE} = 40V$ $V_{CE} = 60V$ $V_{CE} = 80V$		1 1 1	mA mA mA
I _{EBO}	Emitter cutoff current $(I_{C} = 0)$	$V_{EB} = 5V$			1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA	for 2N5190 for 2N5191 for 2N5192	40 60 80		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 1.5 \text{A}$ $I_{\rm C} = 4 \text{A}$	$I_B = 0.15A$ $I_B = 1A$		0.6 1.4	V V
V _{BE} *	Base-emitter voltage	I _C = 1.5A	$V_{CE} = 2V$		1.2	V
h _{FE} *	DC current gain	I _C = 1.5A	V _{CE} = 2V for 2N5190 for 2N5191 for 2N5192	25 25 20	100 100 80	
		$I_{\rm C} = 4A$	V _{CE} = 2V for 2N5190 for 2N5191 for 2N5192	10 10 7		
f _T	Transition frequency	$I_{C} = 1A$	$V_{CE} = 10V$	2		MHz

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

DC current gain

Collector-emitter saturation voltage

V_{CE(sat)₈} `(v) َ h_{FE}=10 4 2 10⁻¹ 8 6 4 2 10⁻² ⁶ ^θ Ι_C (Α) 2 4 6 8 2 4 10-1 1

Base-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL-BASE PNP

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The 2N 5193, 2N 5194, 2N 5195 are silicon epitaxial-base PNP power transistors in Jedec TO-126 plastic package, intended for use in medium power linear and switching applications.

The complementary NPN types are the 2N 5190, 2N 5191, 2N 5192 respectively.

ABSO	ABSOLUTE MAXIMUM RATINGS		2N5194	2N5195	
V _{CBO}	Collector-base voltage $(I_E = 0)$	-40V	-60V	-80V	
V _{CEO}	Collector-emitter voltage (I _B = 0)	-40V	I -60V	I -80V	
V _{EBO}	Emitter-base voltage (I _C = 0)		-5V		
	Collector current		-4A		
I _{CM}	Collector peak current (t \leq 10 ms)		-7A		
I _B	Base current		-1A		
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$		40W		
T _{sta}	Storage temperature	-6	-65 to 150°C		
Tj	Junction temperature		150°C		

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-126 (SOT-32)

1.2

0.58

R _{th i-case}	Thermal resistance junction-case	max	3.12	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	100	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test cor	nditions	Min. Typ	. Max.	Unit
I _{CBO}	Collector cutoff current $(I_E = 0)$	for 2N5193 for 2N5194 for 2N5195	$V_{CB} = -40V$ $V_{CB} = -60V$ $V_{CB} = -80V$		-100 -100 -100	μΑ μΑ μΑ
I _{CEX}	Collector cutoff current ($V_{EB} = 1.5$)	for 2N5193 for 2N5194 for 2N5195 T _{case} = 125°C	$\begin{array}{l} V_{CE}=~-40V\\ V_{CE}=~-60V\\ V_{CE}=~-80V \end{array}$		-100 -100 -100	μΑ μΑ μΑ
		for 2N5193 for 2N5194 for 2N5195	$V_{CE} = -40V$ $V_{CE} = -60V$ $V_{CE} = -80V$		-2 -2 -2	mA mA mA
I _{CEO}	Collector cutoff current $(I_B = 0)$	for 2N5193 for 2N5194 for 2N5195	$\begin{array}{l} V_{CE}=~-40V\\ V_{CE}=~-60V\\ V_{CE}=~-80V \end{array}$		-1 -1 -1	mA mA mA
I _{EBO}	Emitter cutoff current $(I_{\rm C} = 0)$	$V_{EB} = -5V$			-1	mA
V _{CEO (} sus)*	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100mA	for 2N5193 for 2N5194 for 2N5195	-40 -60 -80		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -1.5 {\rm A}$ $I_{\rm C} = -4 {\rm A}$	$I_{B} = -0.15A$ $I_{B} = -1A$		-0.6 -1.2	V V
V _{BE} *	Base-emitter voltage	I _C = -1.5A	$V_{CE} = -2V$		-1.2	V
h _{FE} *	DC current gain	I _C = -1.5A	V _{CE} = -2V for 2N5193 for 2N5194 for 2N5195	25 25 20	100 100 80	
		I _C = -4A	v _{CE} = -2V for 2N5193 for 2N5194 for 2N5195	10 10 7		 _
f _T	Transition frequency	$I_{\rm C} = -1$ A	$V_{CE} = -10V$	2		MHz

* Pulsed: pulse duration = $300 \ \mu$ s, duty cycle = 1.5%

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

fT (MHz) 15 0 0 10⁻¹ 1 1 10^{-2/2/2} 10^{-2/2/2} 10^{-2/2/2} 10⁻¹ 1⁻¹C(A)

Transition frequency

Saturated switching characteristics

Power rating chart

EPITAXIAL PLANAR NPN

HIGH CURRENT FAST SWITCHING APPLICATIONS

The 2N 5336, 2N 5337, 2N 5338 and 2N 5339 are silicon epitaxial planar NPN transistors in Jedec TO-39 metal case.

They are intended for high current switching applications up to 5A.

ABSO	LUTE MAXIMUM RATINGS	2N5336 2N5337	2N5338 2N5339
$V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_{CM} \\ I_B \\ P_{tot}$	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Collector peak current Base current Total power dissipation at $T_{amb} \leq 25^{\circ}C$ $T_{acco} \leq 25^{\circ}C$	80V 80V 6 5 7 1 1	100V 100V A A A W W
${{T}_{{ m{stg}}}}{{T}_{{ m{j}}}}$	Storage temperature Junction temperature	-65 to 200	200 °C) °C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

Collector connected to case

TO-39

R _{th j-case}	Thermal resistance junction-case	max	29.2	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	175	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ.	Max.	Unit
I _{CBO}	Collector cutoff current (I _E = 0)	for 2N5336 and 2N5337 $V_{CB} = 80 V$ for 2N5338 and 2N5339 $V_{CB} = 100 V$		10 10	μ Α μ Α
I _{CEO}	Collector cutoff current $(I_B = 0)$	for 2N5336 and 2N5337 $V_{CE} = 75 V$ for 2N5338 and 2N5339 $V_{CE} = 90 V$		100 100	μ Α μ Α
I _{CEX}	Collector cutoff current (V _{BE} = -1.5 V)	for 2N5336 and 2N5337 $V_{CE} = 75 V$ $V_{CE} = 75 V$ $T_{case} = 150^{\circ}C$ for 2N5338 and 2N5339 $V_{CE} = 90 V$ $V_{CE} = 90 V$ $T_{case} = 150^{\circ}C$		10 1 10 1	μΑ mA μA mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 50 mA for 2N5336 and 2N5337 for 2N5338 and 2N5339	80 100		V V
V _{CE (sat)} *	Collector-emitter saturation voltage			0.7 1.2	V V
V _{BE (sat)} *	Base-emitter saturation voltage			1.2 1.8	V V
h _{FE} *	DC current gain	$ I_{\rm C} = 0.5 {\rm A} {\rm V}_{\rm CE} = 2 {\rm V} \\ for 2N5336 and 2N5338 \\ for 2N5337 and 2N5339 \\ I_{\rm C} = 2 {\rm A} \qquad {\rm V}_{\rm CE} = 2 {\rm V} \\ for 2N5336 and 2N5338 \\ for 2N5337 and 2N5339 \\ I_{\rm C} = 5 {\rm A} \qquad {\rm V}_{\rm CE} = 2 {\rm V} \\ for 2N5336 and 2N5338 \\ for 2N5337 and 2N5338 \\ for 2N5337 and 2N5338 \\ for 2N5337 and 2N5339 \\ for 2N5337 \\ for 2N537 \\ for 2N5$	30 60 30 60 20 40	120 240	

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
f _T	Transition frequency	$I_{\rm C}$ = 0.5A $V_{\rm CE}$ = 10 V	30	MHz
С _{СВО}	Collector-base capacitance	$V_{CB} = 10V I_{E} = 0$ f = 0.1 MHz	250	pF
t _{on}	Turn-on time	$I_{C} = 2 A$ $V_{CC} = 40V$ $I_{B1} = 0.2 A$	200	ns
t _s	Storage time	$I_{\rm C} = 2 \text{ A}$ $V_{\rm CC} = 40 \text{ V}$	2	μS
t _f	Fall time	$I_{B1} = -I_{B2} = 0.2 \text{ Å}$	200	ns

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Collector-base capacitance

Saturated switching characteristics

Power rating chart

Switching time test circuit

EPITAXIAL PLANAR PNP

HIGH VOLTAGE TRANSISTORS

The 2N5415, 2N5416 are high voltage silicon epitaxial planar transistors designed for use in consumer and industrial line-operated applications. These devices are particularly suited as drivers in high-voltage low current inverters, switching and series regulators.

ABSOLUTE MAXIMUM RATINGS		2N541	5 2N5416
$V_{CBO} V_{CEO} V_{EBO} I_C I_B P_{tot}$	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Base current Total power dissipation at $T_{case} \le 25^{\circ}C$ $T_{amb} \le 50^{\circ}C$	-200V -200V -4V -4	-350V -300V -6V -1A 0.5A 0W 1W
T _{stg} T _j	Storage temperature Junction temperature	-65 t 2	o 200°C 00°C

INTERNAL SCHEMATIC DIAGRAM

Dimensions in mm

ELECTRICAL CHARACTERISTICS (T_{case} = 25° C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	for 2N5415 V _{CB} =-175V for 2N5416 V _{CB} =-280V	-50 -50	μΑ μΑ
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} =-150V	-50	μA
I _{EBO}	Emitter cutoff current (1 _C =0)	for 2N5415 V _{EB} =-4V for 2N5416 V _{EB} =-6V	-20 -20	μΑ μΑ
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B =0)	l _c =-10mA for 2N5415 for 2N5416	-200 -300	V V
V _{CER} *	Collector-emitter sustaining voltage $(R_{BE}=50\Omega)$	l _c =-50mA for 2N5416	-350	v
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C =-50mA I _B =-5mA	-2.5	V
V _{BE} *	Base-emitter voltage	I _C =-50mA V _{CE} =-10V	-1.5	V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test co	nditions	Min. Typ.	Max.	Unit
h _{FE} *	DC current gain	l _c =-50mA for 2N5415 for 2N5416	V _{CE} =-10V	30 30	150 120	
h _{fe}	Small signal current gain	I _C =-5mA f =1KHz	V _{CE} =-10V	25		-
f _T	Transition frequency	I _C =-10mA f =5MHz	V _{CE} =-10V	15		MHz
С _{СВО}	Collector-base capacitance	I _E =0 f=1MHz	V _{CB} =-10V		25	рF

* Pulsed: pulse duration = 300 μ s, duty cycle \leq 2%

Safe operating areas

DC current gain

Collector-emitter saturation voltage Base-emitter voltage

Transition frequency

Switching times

HIGH CURRENT FAST SWITCHING APPLICATIONS

The 2N 5671 and 2N 5672 are silicon multiepitaxial planar NPN transistors in Jedec TO-3 metal case.

They are especially intended for high current, fast switching industrial applications.

ABSOLUTE MAXIMUM RATINGS	2N5671	2N5672
$ \begin{array}{ll} V_{CBO} & \mbox{Collector-base voltage} (I_E = 0) \\ V_{CEX} & \mbox{Collector-emitter voltage} (V_{BE} = -1.5 \ V, \ R_{BE} = 50 \ \Omega) \\ V_{CER} & \mbox{Collector-emitter voltage} (I_B = 0) \\ V_{CEO} & \mbox{Collector-emitter voltage} (I_C = 0) \\ I_C & \mbox{Collector current} \\ I_B & \mbox{Base current} \\ P_{tot} & \mbox{Total power dissipation at } T_{case} \leqslant 25 \ ^{\circ}\ C \\ T_{stg} & \mbox{Storage temperature} \\ T_j & \mbox{Junction temperature} \end{array} $	120V 120V 110V 90V 7 30 10 14 -65 to 200	150V 150V 140V 120V V 0A 0A 0W 200 °C 0 °C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.25	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test con	ditions	Min.	Тур.	Max.	Unit
I _{CEV}	Collector cutoff current (V_{BE} = -1.5 V)	for 2N5671 for 2N5672 V _{CE} = 100V	$V_{CE} = 110 V$ $V_{CE} = 135 V$ $T_{case} = 150^{\circ}C$ for 2N5671 for 2N5672			12 10 15 10	mA mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	V _{CE} = 80 V				10	mA
I _{EBO}	Emitter cutoff current $(I_C = 0)$	V _{EB} = 7 V				10	mA
V _{CEX (sus)} *	Collector-emitter sustaining voltage ($V_{BE} = -1.5V$, $R_{BE} = 50\Omega$)	$I_{\rm C} = 200 \text{ m}\text{A}$	for 2N5671 for 2N5672	120 150			V V
V _{CER (sus)} *	Collector-emitter sustaining voltage $(R_{BE} = 50 \ \Omega)$	$I_{\rm C}$ = 200mA	for 2N5671 for 2N5672	110 140			V V
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	$I_{\rm C}$ = 200mA	for 2N5671 for 2N5672	90 120			v v
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C = 15 A	Ι _B = 1.2 A		u _{ti}	0.75	V
V _{BE (sat)} *	Base-emitter saturation voltage	I _C = 15 A	l _B = 1.2 A			1.5	V
V _{BE} *	Base-emitter voltage	I _C = 15 A	$V_{CE} = 5 V$			1.6	۷
h _{FE} *	DC current gain	$\begin{array}{r} I_{\rm C} &= 15 \text{ A} \\ I_{\rm C} &= 20 \text{ A} \end{array}$	$V_{CE} = 2 V$ $V_{CE} = 5 V$	20 20		100	
f _T	Transition frequency	$I_{\rm C} = 2 {\rm A}$	$V_{CE} = 10 V$	50			MHz

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ.	Max.	Unit
С _{сво}	Collector-base capacitance	$I_{E} = 0$ $V_{CB} = 10 V$ f = 1 MHz		900	pF
t _{on}	Turn-on time	$I_{C} = 15 \text{ A} V_{CC} = 30 \text{ V}$ $I_{B1} = -I_{B2} = 1.2 \text{ A}$		0.5	μS
t _s	Storage time			1.5	μS
t _f	Fall time			0.5	μS
I _{s/b} **	Second breakdown collector current	$V_{CE} = 24 V$ $V_{CE} = 45 V$	5.8 0.9		A A
E _{s/b}	Second breakdown energy	$\begin{array}{l} V_{BE}=\text{ -4 V}, R_{BE}=\text{ 20 }\Omega\\ L=\text{ 180 }\muH \end{array}$	20		mJ

Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5% Pulsed: 1 s, non repetitive pulse

**

Safe operating areas

DC transconductance

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Saturated switching characteristics

PNP SILICON TRANSISTORS

2N5679 2N5680

The 2N5679 and 2N5680 are silicon epitaxial planar PNP transistors in Jedec TO-39 metal case intended for use as drivers for high power transistors in general purpose, amplifier and switching circuit.

The complementary NPN types are the 2N5681 and 2N5682 respectively.

ABSOLUTE MAXIMUM RATINGS			2N5680
V _{CBO} V _{CEO}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$)	-100V -100V	-120V -120V
V _{EBO}	Emitter-base voltage $(I_c = 0)$		4V
I _B	Base current		
P _{tot}	Total power dissipation at T _{case} ≤25°C T _{out} ≤25°C	10W	
T _{stg} Tj	Storage temperature Junction temperature	–65 to 200	200°C)°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	17.5	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	175	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ. Max.	Unit
I _{СВО}	Collector cutoff current ($I_E = 0$)	for 2N5679 for 2N5680	$\begin{array}{l} V_{CB}=-100V\\ V_{CB}=-120V \end{array}$	1 1	μΑ μΑ
I _{CEV}	Collector cutoff current $(V_{PP} = 1.5)$	for 2N5679 for 2N5680 T = 150°C	$\begin{array}{l} V_{CE}=-100V\\ V_{CE}=-120V \end{array}$	1 1	μΑ μΑ
	(VBE - 1.0)	for 2N5679 for 2N5680	$\begin{array}{l} V_{CE}=-100V\\ V_{CE}=-120V \end{array}$	-1 -1	mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for 2N5679 for 2N5680	$\begin{array}{l} V_{CE}=-70V\\ V_{CE}=-80V \end{array}$	-10 -10	μΑ μΑ
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = -4V$		_1	μA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -10mA for 2N5679 for 2N5680		100 120	v v
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = -250 \text{mA}$ $I_{C} = -500 \text{mA}$ $I_{C} = -1 \text{A}$	$I_{B} = -25mA$ $I_{B} = -50mA$ $I_{B} = -200mA$	-0.6 -1 -2	V V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -250 {\rm mA}$	$V_{CE} = -2V$	_1	V
h _{FE} *	DC current gain	$I_C = -250 \text{mA}$ $I_C = -1 \text{A}$	$\begin{array}{l} V_{CE}=-2V\\ V_{CE}=-2V \end{array}$	40 150 5	
f _T	Transition frequency	$I_{\rm C} = -100 {\rm mA}$ f = 10MHz	$V_{CE} = -10V$	30	MHz
С _{сво}	Collector-base capacitance	$I_E = 0$ f = 1MHz	$V_{CB} = -20V$	50	pF
h _{fe}	Small signal current gain	$I_{\rm C} = -0.2 {\rm A}$ f = 1KHz	$V_{CE} = -1.5V$	40	_

* Pulsed: pulse duration = $300\mu s$, duty cycle $\leq 2\%$.

EPITAXIAL PLANAR NPN

GENERAL PURPOSE TRANSISTORS

The 2N5681 and 2N5682 are silicon epitaxial planar NPN transistors in Jedec TO-39 metal case intended for use as drivers for high power transistors in general purpose amplifier and switching circuits.

The complementary PNP types are the 2N5679 and 2N5680 respectively.

ABSO	LUTE MAXIMUM RATINGS	2N5681	2N5682
V _{CBO} V _{CEO}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$)	100V 100V	120V 120V
V _{EBO}	Emitter-base voltage ($I_c = 0$)	4V	
C	Collector current	1A	
I _B	Base current	0.	5A
P _{tot}	Total power dissipation at $T_{case} \le 25 ^{\circ}C$ $T_{amb} \le 25 ^{\circ}C$	10W 1W	
T _{stg} T _j	Storage temperature Junction temperature	–65 to 200°C 200°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	17.5	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	175	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test co	onditions	Min. 1	ур. Ма х.	Unit
I _{CBO}	Collector cutoff current ($I_E = 0$)	for 2N5681 for 2N5682	$\begin{array}{l} V_{CB}=100V\\ V_{CB}=120V \end{array}$		1 1	μΑ μΑ
I _{CEV}	Collector cutoff current $(V_{BE} = -1.5V)$	for 2N5681 for 2N5682 $T_{case} = 150^{\circ}$ for 2N5681 for 2N5682	$V_{CE} = 100V$ $V_{CE} = 120V$ C $V_{CE} = 120V$ $V_{CE} = 100V$ $V_{CE} = 120V$		1 1 1 1	μΑ μΑ mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for 2N5681 for 2N5682	$V_{CE} = 70V$ $V_{CE} = 80V$		10 10	μΑ μΑ
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 4V$			1	μA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_{\rm B} = 0)$	I _C = 10mA for 2N5681 for 2N5682		100 120		V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$\begin{array}{l} I_{C}=250 mA\\ I_{C}=500 mA\\ I_{C}=1A \end{array}$	$I_{B} = 25mA$ $I_{B} = 50mA$ $I_{B} = 200mA$		0.6 1 2	V V V
V _{BE} *	Base-emitter voltage	I _C = 250mA	$V_{CE} = 2V$		1	V
h _{FE} *	DC current gain	$I_{\rm C} = 250 {\rm mA}$ $I_{\rm C} = 1{\rm A}$	$\begin{array}{l} V_{CE}=2V\\ V_{CE}=2V \end{array}$	40 5	150	
f _T	Transition frequency	$I_{\rm C} = 100 {\rm mA}$ f = 10MHz	$V_{CE} = 10V$	30		MHz
C _{CBO}	Collector-base capacitance	$I_E = 0$ f = 1MHz	$V_{CB} = 20V$		50	pF
h _{fe}	Small signal current gain	$I_{\rm C} = 0.2 \text{A}$ f = 1KHz	$V_{CE} = 1.5V$	40		

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

EPITAXIAL-BASE PNP

SILICON HIGH POWER TRANSISTORS

The 2N 5875 and 2N 5876 are silicon epitaxial-base PNP power transistors in Jedec TO-3 metal case. They are intended for use in power linear and switching applications. The complementary NPN types are the 2N 5877 and 2N 5878 respectively.

ABSO	LUTE MAXIMUM RATINGS	2N5875	2N5876
$V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j$	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Collector peak current Base current Total power dissipation at $T_{case} \le 25^{\circ}$ C Storage temperature Junction temperature	-60V -60V -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	-80V -80V 5V 0A 0A 4A 0W 200°C 0°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.17	°C/W
------------------------	----------------------------------	-----	------	------

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	$\begin{array}{ll} \mbox{for $2N5875$} & V_{CB} = -60V \\ \mbox{for $2N5876$} & V_{CB} = -80V \\ \end{array}$	-0.5 -0.5	mA mA .
I _{CEO}	Collector cutoff current ($I_B = 0$)	for 2N5875 $V_{CE} = -30V$ for 2N5876 $V_{CE} = -40V$	-1 -1	mA mA
I _{CEX}	Collector cutoff current ($V_{BE} = 1.5 V$)	for 2N5875 $V_{CE} = -60V$ for 2N5876 $V_{CE} = -80V$ $T_{case} = 150 \ ^{\circ}C$	-0.5 -0.5	mA mA
		for 2N5875 $V_{CE} = -60V$ for 2N5876 $V_{CE} = -80V$	-5 -5	mA mA
I _{EBO}	Emitter cutoff current ($I_{\rm C} = 0$)	$V_{EB} = -5 V$	-1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -200 mA for 2N5875 for 2N5876	-60 -80	V V
V _{CE (sat)} *	Collector-emitter saturation voltage		-1 -3	V V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C}$ = -10A $I_{\rm C}$ = -2.5A	-2.5	V
V _{BE} *	Base-emitter voltage	$I_{\rm C}$ = -4A $V_{\rm CE}$ = -4V	-1.5	V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Ty	p. Max.	Unit
h _{FE} *	DC current gain	$ I_C = -4A \qquad V_{CE} = -4V \\ I_C = -10A \qquad V_{CE} = -4V $	20 4	100	_
f _T	Transition frequency	$I_{\rm C}$ = -0.5A $V_{\rm CE}$ = -10V	4		MHz
С _{сво}	Collector-base capacitance	$V_{CB} = -10V$ f = 1 MHz I _E = 0		500	pF
t _r	Rise time	$I_{C} = -4A$ $V_{CC} = -30V$ $I_{B1} = -0.4A$		0.7	μS
t _s	Storage time	$I_{\rm C} = -4A$ $V_{\rm CC} = -30V$		1	μS
t _f	Fall time	$I_{B1} = -I_{B2} = -0.4A$		0.8	μS

* Pulsed: pulse duration = $300 \ \mu$ s, duty cycle = 1.5%

Safe operating areas

DC current gain

DC transconductance

Collector-emitter saturation voltage

Base-emitter saturation voltage

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL-BASE NPN

SILICON HIGH POWER TRANSISTORS

The 2N 5877 and 2N 5878 are silicon epitaxial-base NPN power transistors in Jedec TO-3 metal case. They are intended for use in power linear and switching applications. The complementary PNP types are the 2N 5875 and 2N 5876 respectively.

ABSOLUTE MAXIMUM RATINGS

 $\begin{array}{l} \mbox{Collector-base voltage (} I_{\rm E} = 0) \\ \mbox{Collector-emitter voltage (} I_{\rm E} = 0) \\ \mbox{Emitter-base voltage (} I_{\rm C} = 0) \end{array}$ V_{CBO} 60V 80V V_{CEO} 60V 80V VEBO 5V $I_{\rm C}$ Collector current 10A Collector peak current I_{CM} 20A Base current 4A Total power dissipation at $T_{case} \le 25^{\circ}C$ 150W T_{stg} Storage temperature -65 to 200°C T_{j} Junction temperature 200°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

2N5877 | 2N5878

Collector connected to case

87^{max} 11.7 17^{max}

TO-3

R _{th j-case}	Thermal resistance junction-case	max	1.17	°C/W
		1		

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter Test conditions		ditions	Min. Typ. Max.	Unit	
I _{CBÓ}	Collector cutoff current ($I_E = 0$)	for 2N5877 for 2N5878	$V_{CB} = 60V$ $V_{CB} = 80V$	0.5 0.5	mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for 2N5877 for 2N5878	$V_{CE} = 30V$ $V_{CE} = 40V$	1 1	mA mA
I _{CEX}	Collector cutoff current (V _{BE} = -1.5 V)	for 2N5877 for 2N5878 T _{case} = 150 °C for 2N5877	$V_{CE} = 60V$ $V_{CE} = 80V$ $V_{CE} = 60V$	0.5 0.5 5	mA mA mA
		for 2N5878	$V_{CE}^{OL} = 80V$	5	mA
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	$V_{EB} = 5 V$		1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	$I_{\rm C}$ = 200 mA	for 2N5877 for 2N5878	60 80	V V
V _{CE (sat)} *	Collector emitter saturation voltage	$I_{\rm C} = 5 \text{ A}$ $I_{\rm C} = 10 \text{ A}$	$\begin{array}{ll} I_{B} &= 0.5A\\ I_{B} &= 2.5A \end{array}$	1 3	V V
V _{BE (sat)} *	Base-emitter saturation voltage	I _C = 10A	$I_{\rm C} = 2.5 {\rm A}$	2.5	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 4A$	$V_{CE} = 4V$	1.5	V

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max.	Unit
h _{FE} *	DC current gain	$ \begin{array}{ccc} I_{\rm C} &= 4 A & V_{\rm CE} = 4 V \\ I_{\rm C} &= 10 A & V_{\rm CE} = 4 V \end{array} $	20 100 4	_
f _T	Transition frequency	$I_{\rm C} = 0.5 {\rm A} {\rm V}_{\rm CE} = 10 {\rm V}$	4	MHz
С _{СВО}	Collector-base capacitance	$V_{CB} = 10V$ f = 1 MHz I _E = 0	300	[°] p [°] F
t _r	Rise time	$I_{C} = 4A$ $V_{CC} = 30V$ $I_{B1} = 0.4A$	0.7	μS
t _s	Storage time	$I_{\rm C} = 4A$ $V_{\rm CC} = 30V$	1	μS
t _f	Fall time	$I_{B1} = -I_{B2} = 0.4A$	0.8	μS

* Pulsed: pulse duration = $300 \,\mu$ s, duty cycle = 1.5%

Safe operating areas

DC current gain

DC transconductance

Collector-emitter saturation voltage

V_{CE(sat)} (V) h_{FE} = 10 10-1 10-2 6 8 1 4 6 8 I_C (A) 10-1

Base-emitter saturation voltage

Collector-base capacitance

Saturated switching characteristics

Power rating chart

HIGH CURRENT, HIGH SPEED, HIGH POWER TRANSISTORS

The 2N 6032 and 2N 6033 are silicon multiepitaxial planar NPN transistors in modified Jedec TO-3 metal case.

They have high current, high power handling capability, fast switching speed and are intended for use in switching and linear applications in military and industrial equipment.

ABSO	LUTE MAXIMUM RATINGS	2N6032	2N6033
$V_{CBO} \\ V_{CEX} \\ V_{CER} \\ V_{CEO} \\ V_{EBO}$	Collector-base voltage ($I_E = 0$)	120V	150V
	Collector-emitter voltage ($V_{BE} = -1.5 \text{ V}, R_{BE} = 50 \Omega$)	120V	150V
	Collector-emitter voltage ($R_{BE} = 50 \Omega$)	110V	140V
	Collector-emitter voltage ($I_B = 0$)	90	120V
	Emitter-base voltage ($I_C = 0$)	7V	7V
I _C	Collector current	50A	40A
I _B	Base current	1()A
P _{tot}	Total power dissipation at T _{case} ≤ 25 °C	14	0W
T _{stg}	Storage temperature	-65 to	200 °C
T _j	Junction temperature	200) °C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

6/77

R _{th j-case}	Thermal resistance junction-case	max	1.25	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

	Parameter	Test conditions		Min.	Тур. Мах.	Unit
I _{CEV}	Collector cutoff current (V _{BE} = -1.5 V)	for 2N6032 $V_{CE} = 110V$ $V_{CE} = 100V$ for 2N6033 $V_{CE} = 135V$ $V_{CE} = 100V$	$T_{case} = 150^{\circ}C$ $T_{case} = 150^{\circ}C$		12 15 10 10	mA mA mA mA
I _{CEO}	Collector cutoff current $(I_B = 0)$	V _{CE} = 80 V			10	mA
I _{EBO}	Emitter cutoff current (I _C = 0)	V _{EB} = 7 V			10	mA
V _{CEX (sus)} *	Collector-emitter sustaining voltage $(V_{BE} = -1.5V, R_{BE} = 50\Omega, L=2mH)$	I _C = 200 mA for 2N6032 for 2N6033		120 150		V V
V _{CER (sus)} * (F	Collector-emitter sustaining voltage $R_{BE} = 50\Omega$, L= 15 mH)	I _C = 200mA for 2N6032 for 2N6033		110 140		V V
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 200mA for 2N6032 for 2N6033		90 120		V V
V _{CE (sat)} *	Collector-emitter saturation voltage	for 2N6032 $I_{\rm C} = 50$ A for 2N6033 $I_{\rm C} = 40$ A	$I_B = 5 A$ $I_B = 4 A$		1.3 1	v v
V _{BE (sat)} *	Base-emitter saturation voltage	for 2N6032 $I_{\rm C} = 50 \text{ A}$ for 2N6033 $I_{\rm C} = 40 \text{ A}$	$I_B = 5 A$ $I_B = 4 A$		2 2	v v

ELECTRICAL CHARACTERISTICS (continued)

	Parameter	Test conditions	Min. Typ. Max	. Unit
V _{BE} *	Base-emitter voltage	for 2N6032 $I_{C} = 50 \text{ A}$ $V_{CE} = 2 \text{ V}$ for 2N6033 $I_{C} = 40 \text{ A}$ $V_{CE} = 2 \text{ V}$	2	V V
h _{FE} *	DC current gain	for 2N6032 $I_{C} = 50 \text{ A}$ $V_{CE} = 2.6 \text{ V}$ for 2N6033 $I_{C} = 40 \text{ A}$ $V_{CE} = 2 \text{ V}$	10 50 10 50	_
h _{fe}	Small-signall current gain	$I_{C} = 2 A$ $V_{CE} = 10 V$ f = 5 MHz	10	_
С _{сво}	Collector-base capacitance	$I_{E} = 0$ $V_{CB} = 10 V$ f = 1 MHz	800	pF
t _r	Rise time	for 2N6032 $I_{\rm C} = 50 \text{ A} V_{\rm CC} = 30 \text{ V}$	1	μS
t _s	Storage time	for 2N6033	1.5	μS
t _f	Fall time	$I_{C} = 40 \text{ A}$ $V_{CC} = 30 \text{ V}$ $I_{B1} = -I_{B2} = 4 \text{ A}$	0.5	μS
_{s/b} **	Second breakdown collector current	V _{CE} = 24 V V _{CE} = 40 V	5.8 0.9	A A
E _{s∕b}	Second breakdown energy	$\begin{array}{l} V_{BE}=\text{ -4 V, } R_{BE}=\text{ 5 }\Omega\\ L=\text{ 310 }\muH \end{array}$	62	mJ

* Pulsed: pulse duration = $300 \ \mu$ s, duty cycle = 1.5%** Pulsed: 1 s non repetitive pulse

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL-BASE PNP

MEDIUM POWER DARLINGTONS

The 2N 6034, 2N 6035 and 2N 6036 are silicon epitaxial-base PNP power transistors in monolithic Darlington configuration and are mounted in Jedec TO-126 plastic package. They are intended for use in medium power linear and switching applications. The complementary NPN types are the 2N 6037, 2N 6038 and 2N 6039 respectively.

ABSOLUTE MAXIMUM RATINGS			2N6035	2N6036
V _{CBO} V _{CEO} V _{EBO} I _C I _C I _C	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Collector peak current Base current Total pawar displaction at $T_{exc} \leq 0E^{\circ}C$	-40V -40V	-60V -60V -5V -4A -8A -100mA	-80V -80V
Ρ _{tot} T _{stg} T _j	Storage temperature	- (4000 65 to 150° 150°C	С

INTERNAL SCHEMATIC DIAGRAM

27^{max}

MECHANICAL DATA

Dimensions in mm

TO-126 (SOT-32)

1.2

0.58

R _{th j-case}	Thermal resistance junction-case	max	3.12	°C/W
R _{th i-amb}	Thermal resistance junction-ambient	max	83.3	°C/W
ui j-anio	,			• • • •

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test con	ditions	Min. Typ. Max	. Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	for 2N6034 for 2N6035 for 2N6036	$V_{CB} = -40V$ $V_{CB} = -60V$ $V_{CB} = -80V$	-500 -500 -500	μΑ μΑ μΑ
I _{CEO}	Collector cutoff current ($I_B = 0$)	for 2N6034 for 2N6035 for 2N6036	$V_{CE} = -20V$ $V_{CE} = -30V$ $V_{CE} = -40V$	-500 -500 -500	μΑ μΑ Α
I _{CEX}	Collector cutoff current (V _{EB} = -1.5V)	for 2N6034 for 2N6035 for 2N6036 T _{case} = 125 °C for 2N6034 for 2N6035 for 2N6036	$V_{CE} = -40V V_{CE} = -60V V_{CE} = -80V V_{CE} = -40V V_{CE} = -60V V_{CE} = -80V \\$	-0.5 -0.5 -0.5 -2 2 -2	mA mA mA mA mA
I _{EBO}	Emitter cutoff current $(I_c = 0)$	$V_{EB} = -5V$		2	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100mA	for 2N6034 for 2N6035 for 2N6036	-40 -60 -80	V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -2A$ $I_{\rm C} = -4A$	$I_B = -8mA$ $I_B = -40mA$	-2 -3	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C}$ = -2A	$V_{CE} = -3V$	-2.8	V
h _{FE} *	DC current gain	$I_{C} = -0.5A$ $I_{C} = -2A$ $I_{C} = -4A$	$\begin{array}{l} V_{CE} = \ -3V \\ V_{CE} = \ -3V \\ V_{CE} = \ -3V \end{array}$	500 750 15000 100	-
h _{fe}	Small signal current gain	$\begin{array}{rcl} I_{\rm C} &= -0.75\\ f &= 1 \ \rm MHz \end{array}$	$V_{CE} = -10V$	1	_
C _{CBO}	Collector-base capacitance	$V_{CB} = -10V$ f = 1 MHz	I _E = 0	200	pF

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

DC transconductance

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Saturated switching characteristics

EPITAXIAL-BASE NPN

MEDIUM POWER DARLINGTONS

The 2N 6037, 2N 6038 and 2N 6039 are silicon epitaxial-base NPN power transistors in monolithic Darlington configuration and are mounted in Jedec TO-126 plastic package. They are intended for use in medium power linear and switching applications. The complementary PNP types are the 2N 6034, 2N 6035 and 2N 6036 respectively.

ABSOLUTE MAXIMUM RATINGS	2N6037	2N6038	2N6039
$\begin{array}{lll} V_{CBO} & Collector-base voltage (I_E = 0) \\ V_{CEO} & Collector-emitter voltage (I_B = 0) \\ V_{EBO} & Emitter-base voltage (I_C = 0) \\ I_C & Collector current \\ I_{CM} & Collector peak current \\ I_B & Base current \\ P_{tot} & Total power dissipation at T_{case} \leqslant 25^{\circ}C \\ T_{stg} & Storage temperature \\ T_j & Junction temperature \end{array}$	40V 40V	60V 60V 5V 4A 8A 100mA 40W 65 to 150° 150°C	80V 80V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-126 (SOT-32)

R _{th j-case}	Thermal resistance junction-case	max	3.12	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise specified)

	Parameter	Test cor	nditions	Min. Typ	. Max.	Unit
I _{CBO}	Collector cutoff current ($I_E = 0$)	for 2N6037 for 2N6038 for 2N6039	$V_{CB} = 40V$ $V_{CB} = 60V$ $V_{CB} = 80V$		500 500 500	μΑ μΑ μΑ
I _{CEO}	Collector cutoff current ($I_B = 0$)	for 2N6037 for 2N6038 for 2N6039	$V_{CE} = 20V$ $V_{CE} = 30V$ $V_{CE} = 40V$		500 500 500	μΑ μΑ μΑ
I _{CEX}	Collector cutoff current (V _{EB} = 1.5V)	for 2N6037 for 2N6038 for 2N6039 T _{case} = 125 °C for 2N6037 for 2N6038 for 2N6039	$V_{CE} = 40V$ $V_{CE} = 60V$ $V_{CE} = 80V$ $V_{CE} = 40V$ $V_{CE} = 60V$ $V_{CE} = 80V$		0.5 0.5 0.5 2 2 2	mA mA mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 5V$			2	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA	for 2N6037 for 2N6038 for 2N6039	40 60 80		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 2A$ $I_{\rm C} = 4A$	$I_B = 8mA$ $I_B = 40mA$		2 3	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 2A$	$V_{CE} = 3V$		2.8	V
h _{FE} *	DC current gain	$I_{C} = 0.5A$ $I_{C} = 2A$ $I_{C} = 4A$	$V_{CE} = 3V$ $V_{CE} = 3V$ $V_{CE} = 3V$	500 750 1 100	5000	_
h _{fe}	Small signal current gain	$I_{C} = 0.75A$ f = 1 MHz	$V_{CE} = 10V$	1		
С _{сво}	Collector-base capacitance	$V_{CB} = 10V$ f = 1 MHz	I _E = 0		100	pF

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

DC current gain

hFE 8 V_{CE}≖3V 10³ ί_C (Α) 10-1

DC transconductance

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Small signal current gain

Saturated switching characteristics

4

EPITAXIAL-BASE PNP

POWER DARLINGTONS

The 2N 6050, 2N 6051 and 2N 6052 are silicon epitaxial-base PNP transistors in monolithic Darlington configuration and are mounted in Jedec TO-3 metal case. They are intended for use in power linear and switching applications.

The complementary NPN types are the 2N 6057, 2N 6058 and 2N 6059 respectively.

ABSOLUTE MAXIMUM RATINGS			2N6051	2N6052
$\begin{array}{c} V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_{CM} \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j \end{array}$	Collector-base voltage ($ _{E}=0$) Collector-emitter voltage ($ _{B}=0$) Emitter-base voltage ($ _{C}=0$) Collector current Collector peak current Base current Total power dissipation at T _{case} ≤ 25 °C Storage temperature Junction temperature	-60V -60V	-80V -80V -5V -12A -20A -0.2A 150W 65 to 200 200°C	-100∨ -100∨ °C
		(

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-3

R _{th i-case}	Thermal resistance junction-case	max	1.17	°C/W
in roase		1		

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	S	Min. Typ.	Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)		-30V -40V -50V		-1 -1 -1	mA mA mA
I _{CEX}	Collector cutoff current (V_{EB}^{\cdot} = -1.5V)	for 2N6050 $V_{CE} =$ for 2N6051 $V_{CE} =$ for 2N6052 $V_{CE} =$ $T_{case} = 150 °C$ for 2N6050 $V_{CE} =$ for 2N6051 $V_{CE} =$ for 2N6052 $V_{CE} =$	-60V -80V -100V -60V -80V -100V		-0.5 -0.5 -0.5 -5 -5	mA mA mA mA mA
I _{EBO}	Emitter cutoff current (I _C = 0)	$V_{EB} = -5V$	3		-2	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100mA for 2N for 2N for 2N	16050 16051 16052	-60 -80 -100		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -6 \text{ A} \qquad I_{\rm B} = I_{\rm C} = -12 \text{ A} \qquad I_{\rm B} = 12 \text{ A}$	-24mA -120mA		-2 -3	V V
V _{BE (sat)} *	Base-emitter saturation voltage	I _C = -12A I _B =	-120mA		-4	V
V _{BE} *	Base-emitter voltage	$I_{\rm C}$ = -6A $V_{\rm CE}$ =	-3V		-2.8	V
h _{FE} *	DC current gain	$\begin{array}{rcl} I_{\rm C} &= -6 {\rm A} & V_{\rm CE} = \\ I_{\rm C} &= -12 {\rm A} & V_{\rm CE} = \end{array}$	-3∨ -3∨	750 11 100	8000	_
h _{fe}	Small signal current gain	$I_{C} = -5A$ $V_{CE} = f$ = 1 MHz	-3V	4		_
C _{CBO}	Collector-base capacitance	$V_{CB} = -10V$ f = 1 MHz I _E =	0		500	pF

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas for 2N6051

Safe operating areas for 2N6052

h_{FE8} V_{CE}=3V 104₈ 125°C 10³ 25°C -40°C 10² 10-1 $I_{C}(A)$

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

DC transconductance

G - 3743 Ссво, (pF) f 10² -V_{CB}(V)

Collector-base capacitance

Saturated switching characteristics

EPITAXIAL-BASE PNP

POWER DARLINGTONS

2N6053 2N6054

The 2N 6053 and 2N 6054 are silicon epitaxial-base PNP transistors in monolithic Darlington configuration and are mounted in Jedec TO-3 metal case. They are intended for use in power linear and switching applications.

The complementary NPN types are the 2N 6055 and 2N 6056 respectively.

ABSOLUTE MAXIMUM RATINGS			2N6054
V_{CBO} V_{CEO} V_{EBO} I_{C} I_{CM} P_{tot} T_{sta}	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Collector peak current Base current Total power dissipation at $T_{case} \le 25^{\circ}C$ Storage temperature	-60V -60V -5 -5 -5 -12 -120 -120 -65 to	-80V -80V 5V 6A 6A 0mA 0W 200°C
T _j	Junction temperature	200	0°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.75	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test cor	nditions	Min. Typ.	Max.	Unit
I _{CEX}	Collector cutoff current ($V_{BE} = 1.5V$)	for 2N6053 for 2N6054 T = 150 °C	$V_{CE} = -60V$ $V_{CE} = -80V$		500 500	μ Α μ Α
		for 2N6053 for 2N6054	$V_{CE} = -60V$ $V_{CE} = -80V$		-5 -5	mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for 2N6053 for 2N6054	$V_{CE} = -30V$ $V_{CE} = -40V$	-	-0.5 -0.5	mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = -5V$			-2	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100mA	for 2N6053 for 2N6054	-60 -80		V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -4A$ $I_{\rm C} = -8A$	$I_B = -16mA$ $I_B = -80mA$		-2 -3	V V
V _{BE (sat)} *	Base-emitter saturation voltage	I _C = -8A	I _B = -80mA		-4	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -4A$	$V_{CE} = -3V$		-2.8	V
h _{FE} *	DC current gain	$I_{\rm C} = -4A$ $I_{\rm C} = -8A$	$V_{CE} = -3V$ $V_{CE} = -3V$	750 18 100	000	
h _{fe}	Small signal current gain	$I_{C} = -3A$ f = 1 MHz	$V_{CE} = -3V$	4		
С _{сво}	Collector-base capacitance	$V_{CB} = -10V$ f = 1 MHz	$I_{E} = 0$		300	pF

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

DC current gain

DC transconductance

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Collector-base capacitance

Small signal current gain

EPITAXIAL-BASE NPN

POWER DARLINGTONS

2N6055 2N6056

The 2N 6055 and 2N 6056 are silicon epitaxial-base NPN transistors in monolithic Darlington configuration and are mounted in Jedec TO-3 metal case intended for use in power linear and switching applications.

The complementary PNP types are the 2N 6053 and 2N 6054 respectively.

ABSO	LUTE MAXIMUM RATINGS	2N6055	2N6056
V_{CBO} V_{CEO} V_{EBO} I_{C} I_{CM} I_{B} P_{tot} T_{stg}	Collector-base voltage $(I_E = 0)$ Collector-emitter voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector current Collector peak current Base current Total power dissipation at $T_{case} \le 25^{\circ}C$ Storage temperature	60V 60V 12 11 -65 tú	80V 80V 5V 8A 6A 0mA 00W 5 200°C
.1		-	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.75	°C/W
11] 0000	-			

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter Test conditions			Min. Ty	p. Max.	Unit
I _{CEX}	Collector cutoff current (V_{BE} = -1.5V)	for 2N6055 for 2N6056 T = 150 °C	$V_{CE} = 60V$ $V_{CE} = 80V$		500 500	μ Α μΑ
		for 2N6055 for 2N6056	$V_{CE} = 60V$ $V_{CE} = 80V$		5 5	mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for 2N6055 for 2N6056	$V_{CE} = 30V$ $V_{CE} = 40V$		0.5 0.5	mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 5V$			2	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA	for 2N6055 for 2N6056	60 80		V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 4A$ $I_{\rm C} = 8A$	$I_{B} = 16mA$ $I_{B} = 80mA$		2 3	V V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 8A$	I _B = 80mA		4	V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 4 {\rm A}$	$V_{CE} = 3V$		2.8	V
h _{FE} *	DC current gain	$I_{\rm C} = 4A$ $I_{\rm C} = 8A$	$V_{CE} = 3V$ $V_{CE} = 3V$	750 100	18000	_
h _{fe}	Small signal current gain	$I_{C} = 3A$ f = 1 MHz	$V_{CE} = 3V$	4		_
С _{сво}	Collector-base capacitance	$V_{CB} = 10V$ f = 1 MHz	I _E = 0		200	pF

 $^*\,$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

Safe operating areas

-100 µs Ims 5ms 2N6055 2N6056 10-1 10² V_{CE} (V)

G-2523

DC current gain

DC transconductance

Collector-emitter saturation voltage

VCE (sat) (V) 3 2 1 0 10⁻¹ 1 10 1_B(mA)

Collector-emitter saturation voltage

Collector-base capacitance

EPITAXIAL-BASE NPN

POWER DARLINGTONS

The 2N 6057, 2N 6058 and 2N 6059 are silicon epitaxial-base NPN transistor in monolithic Darlington configuration and are mounted in Jedec TO-3 metal case. They are intended for use in power linear and switching applications.

The complementary PNP types are the 2N 6050, 2N 6051 and 2N 6052 respectively.

ABSOLUTE MAXIMUM RATINGS			2N6058	2N6059
$\begin{array}{c} V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_{C} \\ I_{B} \\ P_{tot} \\ T_{stg} \\ T_{j} \end{array}$	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Collector peak current Base current Total power dissipation at $T_{case} \le 25 ^{\circ}$ C Storage temperature Junction temperature	60V 60V -	80V 80V 5V 12A 20A 0.2A 150W 65 to 200° 200°C	100V 100V
		1		

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

ELECTRICAL CHARACTERISTICS (T $_{case} = 25 \, ^{\circ}C$ unless otherwise specified)

	Parameter	Test co	nditions	Min. Typ	o. Max.	Unit
I _{CEO}	Collector cutoff current (I _B =0)	for 2N6057 for 2N6058 for 2N6059	V _{CE} =30V V _{CE} =40V V _{CE} =50V		1 1 1	mA mA mA
I _{CEX}	Collector cutoff current (V _{BE} =0)	for 2N6057 for 2N6058 for 2N6059 T _{case} =150°C for 2N6057 for 2N6058	$V_{CE}=60V$ $V_{CE}=80V$ $V_{CE}=100V$ $V_{CE}=60V$ $V_{CE}=80V$		0.5 0.5 0.5 5	mA mA mA mA
		for 2N6059	V _{CE} =100V		5	mΑ
Ι _{ΕΒΟ}	Emitter cutoff current ($I_C = 0$)	V _{EB} =5V			2	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	l _c =100mA for 2N6057 for 2N6058 for 2N6059		60 80 100		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	I _C =6A I _C =12A	I _B =24mA I _B =120mA		2 3	V V
V _{BE(sat)} *	Base-emitter saturation voltage	I _C =12A	I _B =120mA		4	V
V _{BE} *	Base-emitter voltage	I _C =6A	V _{CE} =3V		2.8	V
h _{FE} *	DC current gain	I _C =6A I _C =12A	V _{CE} =3V V _{CE} =3V	750 100	18000	
h _{fe}	Small signal current gain	I _C =5A f =1MHz	V _{CE} =3V	4		_
C _{CBO}	Collector-base capacitance	V _{CB} =10V f =1MHz	l _E =0		300	pF

* Pulsed: pulse duration =300 $\mu s,$ duty cycle $\leq 1.5\%$

Safe operating areas for 2N6057

Safe operating areas for 2N6059

DC current gain

Collector-emitter saturation voltage

Collector-emitter saturation voltage

Base-emitter saturation voltage

DC transconductance

Collector-emitter saturation voltage

Small signal current gian h_{fe} ++++ H 10³ 10² 1111 V_{CE} = 3V ^IC = 5A 10 ÷. 1 4 6 8 4 6 8 6 8 4 6 8 10-2 10-3 10-1 1 f (MHz)

Saturated switching characteristics

EPITAXIAL-BASE NPN/PNP

GENERAL PURPOSE COMPLEMENTARY PAIRS

The 2N 6107, 2N 6109, 2N 6111, 2N 6288, 2N 6290 and 2N 6292 are epitaxial-base silicon transistors in Jedec TO-220 plastic package. They are intended for a wide variety of medium power switching and linear applications.

The PNP types are the 2N 6107, 2N 6109, 2N 6111 and their complementary NPN types are the 2N 6292, 2N 6290 and 2N 6288 respectively.

ABSOLUTE MAXIMUM RATINGS		ΡΝΡ °	2N6107	2N6109	2N6111
		NPN	2N6292	2N6290	2N6288
$V_{CBO} \\ V_{CEX} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j$	Collector-base voltage ($I_E = 0$) Collector-emitter voltage ($R_{BE} = 100\Omega$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Base current Total power dissipation at $T_{case} \le 25$ °C Storage temperature Junction temperature		80V 80V 70V	60V 60V 50V 5V 7A 3A 40W 55 to 150 ° 150 °C	40V 40V 30V

° For PNP devices voltage and current values are negative

INTERNAL SCHEMATIC DIAGRAMS

ÔĘ

MECHANICAL DATA

Dimensions in mm

Collector connected to tab.

TO-220

R _{th i-case}	Thermal resistance junction-case	max	3.125	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	70	°C/W

ELECTRICAL CHARACTERISTICS° ($T_{case} = 25$ °C unless otherwise specified)

And the second se		and the second se	and the second se					
Test conditions		2N611	1 2N	6109	2N6	6107	PNP	
1051	conui	10115	2N628	8 2N	6290	2N6	292	NPN
V _{CE} (V)	I _c (A)	I _B (A)	Min. Ma	ax. Min	. Max	Min.	Max.	Unit
80 60 40			0.	.1	0,1		0.1	mΑ
70 50 30			2	2	2		2	
60 40 20			1		1		1	mA
	0		1		1		1	mA
	0.1		40	60		80		V
	0.1	0	30	50		70		V
	2 2.5 3 7	0.2 0.25 0.3 3	3.	5	1 3.5		1 3.5	v
4 4 4 4	2 2.5 3 7		1	.5	1.5 3		1.5 3	V
4 4 4 4	2 2.5 3 7		30 15 2.3	50 2.3	150	30 2.3	150	_
4	0.5		20	20		20		—
4	0.5		10	10		10		
4	0.5		4	4		4		
			25	50	250		250	pF
	Test V _{CE} (V) 80 60 40 70 50 30 60 40 20 20 20 4	Test condi $V_{CE}(V)$ $I_c(A)$ 80 60 40 20 60 40 70 50 30 0 60 40 20 0 0 0.1 20 0 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 7 4 2 4 7 4 0.5 4 0.5 4 0.5 4 0.5	Test conditions $V_{CE}(V)$ $I_{C}(A)$ $I_{B}(A)$ 80 60 40 70 50 30 70 50 30 70 50 30 60 40 20 0 0 0 0.0 0.1 0 0.1 0.1 0 2.5 0.2 0.25 3 7 3 4 2.5 3 4 2.5 3 4 2.5 4 4 2.5 4 4 2.5 4 4 7 4 4 7 4 4 0.5 4 4 0.5 4 4 0.5 4 4 0.5 4 4 0.5 4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Test conditions 2N6111 2N6109 2N6 $V_{ce}(V)$ $I_c(A)$ $I_b(A)$ Min. Max. Min. Max. Min. 80 0 0.1 0.1 0.1 0.1 70 2 2 2 2 2 60 0 2 2 2 2 60 0 1 1 1 1 70 2 2 2 2 2 60 40 1 1 1 1 20 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 20 0.1 0 30 50 70 4 2.5 0.3 1 3.5 3.5 4 2.5 3 1.5 3.5 3.5 4 2.5 3.0 150<	Test condition 2N6111 2N6109 2N6107 $V_{ce}(V)$ $I_c(A)$ $I_{b}(A)$ Min. Max. Min. Max. Min. Max. 80 0 0.1 0.1 0.1 0.1 0.1 70 0.1 0.1 0.1 0.1 0.1 0.1 70 0.1 0.1 0.1 0.1 0.1 0.1 70 0.1 0.1 0.1 0.1 0.1 0.1 70 0.1 0.1 1.1 1.1 1.1 70 0.1 40 60 80 20 0.1 40 60 80 1 0.1 0 30 50 70 22 2.5 0.2 1.5 1.5 3.5 4 2.5 0.2 1.5 1.5 3.5 3.5 4 2.5 3.0 150 2.3

 $^*\,$ Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5% $^\circ\,$ For PNP devices voltage and current values are negative

For characteristic curves see the BD 533 (NPN) and BD 534 (PNP) series

EPITAXIAL-BASE NPN

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The 2N 6121, 2N 6122 and 2N 6123 are silicon epitaxial-base NPN power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary PNP types are the 2N 6124, 2N 6125 and 6126 respectively.

ABSOLUTE MAXIMUM RATINGS	2N6121	2N6122	2N6123
$\begin{array}{lll} V_{CBO} & \mbox{Collector-base voltage } (I_E=0) \\ V_{CES} & \mbox{Collector-emitter voltage } (V_{BE}=0) \\ V_{CEO} & \mbox{Collector-emitter voltage } (I_B=0) \\ V_{EBO} & \mbox{Emitter-base voltage } (I_C=0) \\ I_C & \mbox{Collector current} \\ I_{CM} & \mbox{Collector peak current} \\ I_B & \mbox{Base current} \\ P_{tot} & \mbox{Total power dissipation at } T_{case} \leqslant 25^{\circ}\mbox{C} \\ T_{stg} & \mbox{Storage temperature} \\ T_j & \mbox{Junction temperature} \end{array}$	45V 45V 45V	60V 60V 5V 4A 7A 1A 40W 55 to 150° 150 °C	80V 80V 80V 80V

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

TO-220

R _{th i-case}	Thermal resistance junction-case	max	3.12	°C/W
R _{th j-amb}	Thermal resistance juntion-ambient	max	70	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test co	nditions	Min.Typ.Max.	Unit
I _{CBO}	Collector cutoff current ($I_E = 0$)	for 2N6121 for 2N6122 for 2N6123	$V_{CB} = 45 V$ $V_{CB} = 60 V$ $V_{CB} = 80 V$	100 100 100	μΑ μΑ μΑ
I _{CEX}	Collector cutoff current (V _{BE} = -1.5V)	for 2N6121 for 2N6122 for 2N6123 $T_{case} = 125$ ° for 2N6121 for 2N6122 for 2N6123	$V_{CE} = 45 V V_{CE} = 60 V V_{CE} = 80 V C V_{CE} = 45 V V_{CE} = 60 V V_{CE} = 80 V V_{CE} = 80 V $	100 100 100 2 2 2 2	μΑ μΑ μΑ mA mA
I _{CEO}	Collector cutoff current $(I_B = 0)$	for 2N6121 for 2N6122 for 2N6123	$V_{CE} = 45 V$ $V_{CE} = 60 V$ $V_{CE} = 80 V$	1 1 1	mA mA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 5 V$		1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100 mA	for 2N6121 for 2N6122 for 2N6123	45 60 80	V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 1.5 {\rm A}$ $I_{\rm C} = 4 {\rm A}$	$I_B = 0.15A$ $I_B = 1A$	0.6 1.4	V V
V _{BE} *	Base-emitter voltage	I _C = 1.5 A	$V_{CE} = 2 V$	1.2	v
h _{FE} *	DC current gain	$I_{\rm C} = 1.5 \text{ A}$ $I_{\rm C} = 4 \text{ A}$	$V_{CE} = 2 V$ for 2N6121 for 2N6122 for 2N6123 $V_{CE} = 2 V$ for 2N6121 for 2N6122 for 2N6123	25 100 25 100 20 80 10 10 7	
h _{fe}	Small signal current gain	$I_{C} = 1 A$ f = 1 MHz	$V_{CE} = 4 V$	2.5	_

* Pulsed: pulse duration = 300 μ s, duty cycle = 1.5%

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Transition frequency

fT (MHz) 10 5 0 10⁻¹ 1 IC (A)

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL-BASE PNP

MEDIUM POWER LINEAR AND SWITCHING APPLICATIONS

The 2N 6124, 2N 6125 and 2N 6126 are silicon epitaxial-base PNP power transistors in Jedec TO-220 plastic package, intended for use in medium power linear and switching applications.

The complementary NPN types are the 2N 6121, 2N 6122 and 2N 6123 respectively.

ABSOLUTE MAXIMUM RATINGS	2N6124	2N6125	2N6126
$\begin{array}{lll} V_{CBO} & \text{Collector-base voltage } (I_{E}=0) \\ V_{CES} & \text{Collector-emitter voltage } (V_{BE}=0) \\ V_{CEO} & \text{Collector-emitter voltage } (I_{B}=0) \\ V_{EBO} & \text{Emitter-base voltage } (I_{C}=0) \\ I_{C} & \text{Collector current} \\ I_{CM} & \text{Collector peak current} \\ I_{B} & \text{Base current} \\ P_{tot} & \text{Total power dissipation } T_{case} \leqslant 25^{\circ}\text{C} \\ T_{stg} & \text{Storage temperature} \\ T_{j} & \text{Junction temperature} \end{array}$	-45V -45V -45V -45V	-60V -60V -60V -4A -7A -1A 40W 55 to 150° 150 °C	-80V -80V -80V C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Collector connected to tab.

Dimensions in mm

TO-220

6/77

R _{th j-case}	Thermal resistance junction-case	max	3.12	°C/W
R _{th j-amb}	Thermal resistance juntion-ambient	max	70	°C/W
		-		

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

Parameter		Test con	Min. Typ	Unit		
I _{сво}	Collector cutoff current ($I_E = 0$)	for 2N6124 for 2N6125 for 2N6126	$V_{CB} = -45 V$ $V_{CB} = -60 V$ $V_{CB} = -80 V$		-100 -100 -100	μΑ μΑ μΑ
I _{CEX}	Collector cutoff current (V _{BE} = 1.5V)	for 2N6124 for 2N6125 for 2N6126 $T_{case} = 125 °C$ for 2N6124 for 2N6125 for 2N6126	$V_{CE} = -45 V V_{CE} = -60 V V_{CE} = -80 V V_{CE} = -45 V V_{CE} = -60 V V_{CE} = -80 V $		-100 -100 -100 -2 -2 -2 -2	μΑ μΑ μΑ mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)	for 2N6124 for 2N6125 for 2N6126	$V_{CE} = -45 V$ $V_{CE} = -60 V$ $V_{CE} = -80 V$		-1 -1 -1	mA mA mA
I _{EBO}	Emitter cutoff current (I _C = 0)	V _{EB} = -5 V			-1	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = -100 mA	for 2N6124 for 2N6125 for 2N6126	-45 -60 -80		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = -1.5 \text{A}$ $I_{\rm C} = -4 \text{ A}$	$I_{B} = -0.15A$ $I_{B} = -1A$		-0.6 -1.4	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -1.5 {\rm A}$	$V_{CE} = -2 V$		-1.2	V
h _{FE} *	DC current gain	$I_{\rm C} = -1.5 \text{A}$ $I_{\rm C} = -4 \text{A}$	$V_{CE} = -2 V$ for 2N6124 for 2N6125 for 2N6126 $V_{CE} = -2 V$ for 2N6124 for 2N6125 for 2N6126	25 25 20 10 10 7	100 100 80	
h _{fe}	Small signal current gain	$ \begin{array}{rcl} I_{\rm C} &= -1 \ {\rm A} \\ f &= 1 \ {\rm MHz} \end{array} $	$V_{CE} = -4 V$	2.5		

* Pulsed: pulse duration = 300 $\mu s,$ duty cycle = 1.5%

Safe operating areas

DC current gain

Collector-emitter saturation voltage

Base-emitter saturation voltage

Transition frequency

Collector-base capacitance

Saturated switching characteristics

Power rating chart

EPITAXIAL-BASE NPN/PNP

The 2N6282, 2N6283 and 2N6284 NPN types and the complementary types are mounted in jedec TO-3 metal case, intended for use in general-purpose amplifier and low-frequency switching applications. The complementary PNP types are 2N6285, 2N6286 and 2N6287.

ABSOL	UTE MAXIMUM RATINGS	PN JP	2N6282 2N6285	2N6283 2N6286	2N6284 2N6287
$V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ I_{CM} \\ I_B \\ P_{tot} \\ T_{stg} \\ T_j$	$\begin{array}{l} \mbox{Collector-base voltage (I_E=0)} \\ \mbox{Collector-emitter voltage (I_B=0)} \\ \mbox{Emitter-base voltage (I_C=0)} \\ \mbox{Collector current} \\ \mbox{Collector current} \\ \mbox{Collector peak current (t_p=10ms)} \\ \mbox{Base current} \\ \mbox{Total power dissipation at } T_{case} \geq 25^{\circ} C \\ \mbox{Storage temperature} \\ \mbox{Junction temperature} \end{array}$		60V 60V	80V 80V 5V 20A 40A 0.5A 160W -65 to 200° 200°C	100V 100V

* For PNP types voltage and current values are negative

INTERNAL SCHEMATIC DIAGRAMS

MECHANICAL DATA

Dimensions in mm

2N6282 / 2N6285 2N6283 / 2N6286 2N6284 / 2N6287

R _{th j-case}	Thermal resistance junction-case	max.	1.9	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _{CEO}	Collector cutoff current ($I_B = 0$)	$ \begin{array}{ll} \mbox{for $2N6282/85$} & \mbox{V}_{CE} = 30 \\ \mbox{for $2N6283/86$} & \mbox{V}_{CE} = 40 \\ \mbox{for $2N6284/87$} & \mbox{V}_{CE} = 50 \\ \end{array} $				1 1 1	mA mA mA
I _{EBO}	Emitter cutoff current ($I_{C} = 0$)	V _{BE} = 5V				2	mA
I _{CEX}	Collector cutoff current ($V_{BE} = 1,5V$)					0.5 5	mA mA
V _{CEO(sus})	Collector-emitter sustaining voltage	$I_{C} = 0.1A \qquad I_{B} = 0 \\ for 2N6282/ \\ for 2N6283/ \\ for 2N6284/ \\ \label{eq:IC}$	85 86 87	60 80 100			> > >
V _{CE(sat)} *	Collector-emitter saturation voltage	$I_{C} = 10A \qquad I_{B} = 40mA$ $I_{C} = 20A \qquad I_{B} = 200mA$				2 3	V V
V _{BE(sat)} *	Base-emitter saturation voltage	$I_{\rm C} = 20$ A $I_{\rm B} = 200$ mA				4	v
V _{BE(on)} *	Base-emitter voltage	$I_{\rm C} = 10 {\rm A}$ $V_{\rm CE} = 3 {\rm V}$				2.8	V
h _{FE} *	DC current gain	$\begin{array}{ll} I_{C} = 10A & V_{CE} = 3V \\ I_{C} = 20A & V_{CE} = 3V \end{array}$		750 100		18000	_
С _{сво}	Collector-base capacitance					400 600	pF pF
h _{fe}	Small signal current gain	$I_{c} = 10A$ $V_{cE} = 3V$ f = 1KHz		300			_

* Pulsed: pulse duration = 300 μ s, duty cycle = 2%.

For PNP types voltage and current values are negative

MULTIEPITAXIAL PLANAR NPN

HIGH SPEED SWITCHING APPLICATIONS

The 2N 6354 is a silicon planar multiepitaxial NPN transistor in Jedec TO-3 metal case. It is intended for use in high speed switching applications in military and industrial equipment.

ABSOLUTE MAXIMUM RATINGS

V _{CBO}	Collector-base voltage $(I_{\rm F}=0)$	150	V
VCEX	Collector-emitter voltage ($R_{BF} = 500\Omega$)	130	V
VCEO	Collector-emitter voltage $(I_{B} = 0)$	120	V
V _{FBO}	Emitter-base voltage $(I_c = 0)$	6.5	V
I _C	Collector current	10	Α
I _{CM}	Collector peak current	12	Α
IB	Base current	5	Α
P _{tot}	Total power dissipation at $T_{case} \le 25 \text{ °C}$	140	W
T _{sta}	Storage temperature	-65 to 200	°C
Tj	Junction temperature	200	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

10/82

R _{th j-case}	Thermal resistance junction-case	max	1.25	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{сво}	Collector cutoff current ($I_E = 0$)	V _{CB} = 150 V	5	mA
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	$V_{CE} = 140 V$ $V_{CE} = 140 V$ $T_{case} = 150^{\circ}C$	10 20	mA mA
I _{CEO}	Collector cutoff current $(I_B = 0)$	V _{CE} = 100 V	20	mA
I _{EBO}	Emitter cutoff current (I _C = 0)	V _{EB} = 6.5 V	5	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	$I_{\rm C}$ = 200 mA	120	V
V _{CER (sus)} *	Collector-emitter sustaining voltage $(R_{BE} = 100\Omega)$	$I_{\rm C}$ = 200 mA	130	V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 10 A$ $I_{B} = 1 A$ $I_{C} = 5 A$ $I_{B} = 0.5 A$	1 0.5	V V
V _{BE (sat)} *	Base-emitter saturation voltage	$I_{C} = 10 A$ $I_{B} = 1 A$ $I_{C} = 5 A$ $I_{B} = 0.5 A$	2 1.3	V V
h _{FE} *	DC current gain		20 150 10 100	_
h _{fe}	Small signal current gain	$I_{C} = 1 A V_{CE} = 10 V f = 10 MHz$	8	
С _{сво}	Collector-base capacitance	$I_{E} = 0 \qquad V_{CB} = 10 V$ f = 1 MHz	300	pF
t _r	Rise time	$I_{C} = 5 A$ $V_{CC} = 30 V$ $I_{B1} = -I_{B2} = 0.5 A$ $I_{a} = 10 A$ $V_{cc} = 30 V$	0.3	μS
		$I_{B1} = -I_{B2} = 1A$	1	μs

	Parameter	Test conditions	Min. Typ. Max.	Unit
t _s	Storage time	$I_{C} = 5 A V_{CC} = 30 V$ $I_{B1} = -I_{B2} = 0.5 A$	1	μS
t _f	Fall time	$I_{C} = 5 A V_{CC} = 30 V$ $I_{B1} = -I_{B2} = 0.5 A$	0.2	μS
** s/b	Second breakdown collector current	V _{CE} = 25 V	5.5	A
E _{s/b}	Second breakdown energy	$ I_C = 5 \text{ A} \qquad V_{\text{EB}} = 1 \text{ V} \\ R_{\text{BE}} = 50 \ \Omega \qquad L = 25 \ \mu\text{H} $	0.3	mJ

* Pulsed: pulse duration = $300 \ \mu s$, duty cycle = 1.5%

** Pulsed: 1 s, non repetitive pulse

Safe operating areas

Collector-emitter saturation voltage

Base-emitter saturation voltage

V_{BE(on)} vs. collector current

(,us) (,us)(

Saturated switching characteristics

Transition frequency

EPITAXIAL-BASE NPN

POWER DARLINGTON TRANSISTORS

The 2N 6386, 2N 6387 and 2N 6388 are silicon epitaxial-base NPN transistors in monolithic Darlington configuration and are mounted in Jedec TO-220 plastic package. They are intended for use in low and medium frequency power applications.

ABSOLUTE MAXIMUM RATINGS	2N6386	2N6387	2N6388
$\begin{array}{ll} V_{CBO} & Collector-base voltage (I_B=0) \\ V_{CEV} & Collector-emitter voltage (V_{BE}=-1.5 \ V) \\ V_{CER} & Collector-emitter voltage (R_{BE}\leqslant 100\Omega) \\ V_{CEO} & Collector-emitter voltage (I_B=0) \\ V_{EBO} & Emitter-base voltage (I_C=0) \\ I_C & Collector current \\ I_{CM} & Collector peak current \\ I_B & Base current \\ I_B & Base current \\ T_{stg} & Storage temperature \\ T_i & Junction temperature \end{array}$	40V 40V 40V 40V 5V 8A	60V 60V 60V 5V 10A 15A 250mA 65W 55 to 150 150 °C	80V 80V 80V 80V 5V 10A

MECHANICAL DATA

Dimensions in mm

R _{th j-case}	Thermal resistance junction-case	max	1.92	°C/W
"th j-case	mermai resistance junction-case	max	1.92	0/1

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CEV}	Collector cutoff current (V _{BE} = -1.5 V)	$\begin{array}{lll} V_{CE} = 40 \ V & \mbox{for $2N6386$} \\ V_{CE} = 60 \ V & \mbox{for $2N6387$} \\ V_{CE} = 80 \ V & \mbox{for $2N6388$} \\ T_{case} = 125 \ C & \ V_{CE} = 40 \ V & \mbox{for $2N6386$} \\ V_{CE} = 60 \ V & \mbox{for $2N6386$} \\ V_{CE} = 80 \ V & \mbox{for $2N6388$} \\ \end{array}$	0.3 0.3 0.3 3 3 3	mA mA mA mA mA
I _{CEO}	Collector cutoff current ($I_B = 0$)		1 1 1	mA mA mA
I _{EBO}	Emitter-base current (I _C = 0)	$V_{EB} = 5 V$	5	mA
V _{CEO (sus)} *	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 200 mA for 2N6386 for 2N6387 for 2N6388	40 60 80	V V V
V _{CER (sus)} *	Collector-emitter sustaining voltage $(R_{BE} = 100 \ \Omega)$	I _C = 200 mA for 2N6386 for 2N6387 for 2N6388	40 60 80	V V V
V _{CEV (sus)} *	Collector-emitter sustaining voltage $(V_{BE} = -1.5 V)$	l _C = 200 mA for 2N6386 for 2N6387 for 2N6388	40 60 80	V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	for 2N6386 $I_{C} = 3 A$ $I_{B} = 6 mA$ for 2N6387 and 2N6388 $I_{C} = 5 A$ $I_{B} = 10mA$ for 2N6386 $I_{C} = 8 A$ $I_{B} = 80mA$ for 2N6387 and 2N6388 $I_{C} = 10 A$ $I_{B} = 100mA$	2 2 3 3	V V V

	Parameter	Test conditions	Min. Typ.	Max.	Unit
V _{BE} *	Base-emitter voltage	for 2N6386 $I_{C} = 3 A$ $V_{CE} = 3 V$ for 2N6387 and 2N6388 $I_{C} = 5 A$ $V_{CE} = 3 V$ for 2N6386 $I_{C} = 8 A$ $V_{CE} = 3 V$		2.8 2.8 4.5	V V V
		for 2N6387 and 2N6388 $I_{\rm C} = 10$ A $V_{\rm CE} = 3$ V		4.5	v
h _{FE} *	DC current gain	for 2N6386 $I_{C} = 3 A$ $V_{CE} = 3 V$ for 2N6387 and 2N6388 $I_{C} = 5 A$ $V_{CE} = 3 V$ for 2N6386 $I_{C} = 8 A$ $V_{CE} = 3 V$ for 2N6387 and 2N6388 $I_{C} = 10 A$ $V_{CE} = 3 V$	1000 2 1000 2 100 100	20000	
h _{fe}	Small signal current gain		20 1000		-
V _F *	Paralled-diode forward voltage	for 2N6386 I _F = 8 A for 2N6387 and 2N6388 I _F = 10 A		4 4	v v
С _{сво}	Collector-base capacitance	$I_{E} = 0 \qquad V_{CB} = 10 V$ f = 1 MHz		200	pF
I _{s/b} **	Second breakdown collector current	V _{CE} = 25 V	2.6		A
E _{s/b}	Second breakdown energy		120		mJ

* Pulsed: pulse duration = $300 \ \mu$ s, duty cycle = 1.5%** Pulsed: 1s non repetitive pulse

EPITAXIAL-BASE NPN

POWER LINEAR AND SWITCHING APPLICATIONS

The 2N6486, 2N6487 and 2N6488 are silicon epitaxial-base NPN transistors mounted in Jedec TO-220 plastic package.

They are intended for use in power linear and switching applications.

The complementary PNP types are the 2N6489, 2N6490 and 2N6491 respectively.

ABSC	ABSOLUTE MAXIMUM RATINGS		2N6487	2N6488
V _{CBO}	Collector-base voltage ($I_E = 0$)	50V	70V	90V
V _{CEX}	Collector-base voltage ($V_{BE} = 1.5V$; $R_{BE} = 100\Omega$)	50V	70V	90V
V _{CEO}	Collector-base voltage $(I_B = 0)$	40V	60V	80V
V_{EBO}	Emitter-base voltage $(I_{C} = 0)$	5V		
l _C	Collector-current	15A		
I _B	Base-current	5A		
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	75W		
	T _{amb} ≤25°C	1.8W		
T _{sta}	Storage temperature	–65 to 150°C		
Tj	Junction temperature		150°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Collector connected to tab.

Dimensions in mm

693

TO-220

R _{th i-case}	Thermal resistance junction-case	max	1.67	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	70	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CEO}	Collector-cutoff current $(I_B = 0)$		1 1 1	mA mA mA
I _{CEX}	Collector-cutoff current (V_{BE} =-1.5V R_{BE} = 100 Ω)		0.5 0.5 0.5 5 5 5	mA mA mA mA mA
I _{CER}	Collector-cutoff current (R_{BE} = 100 Ω)	$ \begin{array}{ll} \mbox{for $2N6486$} & V_{CE} = 35V \\ \mbox{for $2N6487$} & V_{CE} = 55V \\ \mbox{for $2N6488$} & V_{CE} = 75V \\ \end{array} $	0.5 0.5 0.5	mA mA mA
I _{EBO}	Emitter-cutoff current ($I_c = 0$)	$V_{BE} = 5V$	1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 200mA for 2N6486 for 2N6487 for 2N6488	40 60 80	v v v
V _{CER (sus)}	*Collector-emitter sustaining voltage ($R_{BE} = 100\Omega$)	I _C = 200mA for 2N6486 for 2N6487 for 2N6488	45 65 85	v v v

	Parameter	Test conditions		Min. Ty	vp. Max.	Unit
V _{CEX (sus)}	* Collector-emitter sustaining voltage $(V_{BE} = -1.5V;$ $R_{BE} = 100\Omega)$	I _C = 200mA for 2N6486 for 2N6487 for 2N6488		50 70 90		V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{\rm C} = 5A$ $I_{\rm C} = 15A$	$I_{B} = 0.5A$ $I_{B} = 5A$		1.3 3.5	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = 5A$ $I_{\rm C} = 15A$	$V_{CE} = 4V$ $V_{CE} = 4V$		1.3 3.5	V V
h _{FE} *	DC current gain	$I_{\rm C} = 5A$ $I_{\rm C} = 15A$	$\begin{array}{l} V_{CE} = 4V \\ V_{CE} = 4V \end{array}$	20 5	150	_
h _{fe}	Small signal current gain	$I_{C} = 1A$ f = 1MHz $I_{C} = 1A$ f = 1KHz	$V_{CE} = 4V$ $V_{CE} = 4V$	5 25		

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

POWER LINEAR AND SWITCHING APPLICATIONS

The 2N6489, 2N6490 and 2N6491 are silicon epitaxial-base PNP transistors mounted in Jedec TO-220 plastic package.

They are intended for use in power linear and switching applications.

The complementary NPN types are the 2N6486, 2N6487 and 2N6488 respectively.

ABSC	DLUTE MAXIMUM RATINGS	2N6489	2N6490	2N6491
V _{CBO} V _{CEX}	Collector-base voltage ($I_E = 0$) Collector-base voltage ($V_{BE} = 1.5V$; $R_{BF} = 100\Omega$)	-50V -50V	-70V -70V	-90V -90V
V_{CEO} V_{EBO} I_C I_B P_{tot}	Collector-base voltage $(I_B = 0)$ Emitter-base voltage $(I_C = 0)$ Collector-current Base-current Total power dissipation at $T_{case} \le 25^{\circ}C$ $T_{amb} \le 25^{\circ}C$	_40V	–60V –5V –15A –5A 75W 1.8W	–80V
T _{stg} T _j	Storage temperature Junction temperature	-	65 to 150° 150°C	C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

5/80

R _{th j-case}	Thermal resistance junction-case	max	1.67	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	70	°C/W
ar j amb				

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \,^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions		Min. Typ. Max.	Unit
I _{CEO}	Collector-cutoff current $(I_B = 0)$	$\begin{array}{ll} \mbox{for $2N6489$} & V_{CE} = - \\ \mbox{for $2N6490$} & V_{CE} = - \\ \mbox{for $2N6491$} & V_{CE} = - \end{array}$	20V 30V 40V	-1 -1 -1	mA mA mA
I _{CEX}	Collector-cutoff current ($V_{BE} = 1.5V$ $R_{BE} = 100\Omega$)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	45V 65V 85V 40V 60V 80V	-0.5 -0.5 -0.5 -5 -5	mA mA mA mA mA
I _{CER}	Collector cutoff current(R_{BE} =100 Ω)		35V 55V 75V	0.5 0.5 0.5	mA mA mA
I _{EBO}	Emitter-cutoff current	$V_{BE} = -5V$		_1	mA
V _{CEO (sus)}	*Collector-emitter sustaining voltage (I _B = 0)	I _C = -200mA for 2N6489 for 2N6490 for 2N6491		40 60 80	V V V
V _{CER (sus)}	*Collector-emitter sustaining voltage ($R_{BE} = 100\Omega$)	I _C = -200mA for 2N6489 for 2N6490 for 2N6491		-45 -65 -85	V V V

	Parameter	Test co	onditions	Min.	Тур.	Max.	Unit
V _{CEX (sus)}	* Collector-emitter sustaining voltage $(V_{BE} = 1.5V;$ $R_{BE} = 100\Omega)$	I _C = -200mA for 2N6489 for 2N6490 for 2N6491		-50 -70 -90			V V V
V _{CE (sat)} *	Collector-emitter saturation voltage	$\begin{array}{l} I_{C}=-5A;\\ I_{C}=-15A; \end{array}$	$\begin{array}{l} I_{B}=-0.5A\\ I_{B}=-5A \end{array}$			–1.3 –3 <i>.</i> 5	V V
V _{BE} *	Base-emitter voltage	$I_{\rm C} = -5A$ $I_{\rm C} = -15A$	$\begin{array}{l} V_{CE}=-4V\\ V_{CE}=-4V \end{array}$			–1.3 –3.5	V V
h _{FE} *	DC current gain	$I_{\rm C} = -5A$ $I_{\rm C} = -15A$	$\begin{array}{l} V_{CE}=-4V\\ V_{CE}=-4V \end{array}$	20 5		150	
h _{fe}	Small signal emitter gain	$I_{C} = -1A$ f = 1MHz $I_{C} = -1A$ f = 1KHz	$V_{CE} = -4V$ $V_{CE} = -4V$	5 25			_

* Pulsed: pulse duration = 300μ s, duty cycle $\leq 2\%$.

MULTIEPITAXIAL MESA NPN

HIGH VOLTAGE POWER SWITCH

The 2N6544 and 2N6545 are multiepitaxial mesa NPN transistors in Jedec TO-3 metal case. They are intended for high voltage, fast switching applications.

ABSOLUTE MAXIMUM RATINGS

V _{CES} V _{CEX}	Collector-emitter voltage ($V_{BE} = 0$) (Clamped) Collector-emitter voltage ($V_{BE} = -5V$)	650V 350V	850V 450V
V_{CEO}	Collector-emitter voltage $(I_{B} = 0)$	300V	400V
V _{EBO}	Emitter-base voltage $(I_c = 0)$	9	V
lc	Collector current	8	A
ICM	Collector peak current ($t_p = 10$ ms)	16	6A
B	Base current	8	A
P _{tot}	Total power dissipation at $T_{case} \leq 25^{\circ}C$	12	5W
T _{sta}	Storage temperature	-65 to 200°C	
Tj	Junction temperature	200)°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

\$ 10

2N6544 | 2N6545

Collector connected to case

то-з

R _{th j-case}	Thermal resistance junction-case	max.	1.4	°C/W
,	•			

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

	Parameter	Test conditions	Min. Typ. Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for 2N6544 $V_{CE} = 650V$ for 2N6545 $V_{CE} = 850V$ $T_{case} = 100^{\circ}C$ for 2N6544 $V_{CE} = 650V$	0.5 0.5 2.5	mA mA
		for 2N6545 $V_{CE} = 0.00V$	2.5	mA
I _{CER}	Collector cutoff current ($R_{BE} = 50\Omega$)	$\begin{array}{l} T_{case} = 100^{\circ}\text{C} \\ \text{for 2N6544} V_{CE} = 650\text{V} \\ \text{for 2N6545} V_{CE} = 850\text{V} \end{array}$	3 3	mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 9V$	1	mA
V _{CEO (sus)} '	^t Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA for 2N6544 for 2N6545	300 400	v v
V _{CEX (sus)}	Collector-emitter sustaining voltage (clamped E _{s/b})	$I_{C}/I_{B} = 5$ $L = 180 \mu H$ $V_{BE} = -5V$ $T_{case} = 100 ^{\circ}C$ $V_{clamp} = rated V_{CEX (sus)}$ $L = -4.54$		
		for 2N6544 for 2N6545 $V_{clamp} = rated V_{CEO (sus)} - 100V$	350 450	V V
		I _C = 8A for 2N6544 for 2N6545	200 300	v v
l _{s/b}	Second breakdown collector current	t = 1 s (non repetitive) $V_{CE} = 100V$	0.2	A
E _{s/b}	Second breakdown energy	$L = 40 \mu H$ $V_{BE} = -4V$ $R_{BE} = 50 \Omega$	500	μJ

	Parameter	Test conditions		Min. Typ.	Max.	Unit
h _{FE} *	DC current gain	$\begin{array}{l} I_{C}=2.5A\\ I_{C}=5A \end{array}$	$\begin{array}{l} V_{CE}=3V\\ V_{CE}=3V \end{array}$	12 7	60 35	
V _{CE (sat)} *	Collector-emitter saturation voltage	$I_{C} = 5A$ $I_{C} = 8A$ $T_{case} = 100^{\circ}C$	$I_{B} = 1A$ $I_{B} = 2A$		1.5 5	V V
		$I_{\rm C} = 5A$	$I_B = 1A$		2.5	V
V _{BE (sat)} *	Base-emitter	$I_{\rm C} = 5A$	$I_{B} = 1A$		1.6	V
	saturation voltage	T _{case} = 100°C I _C = 5A	$I_{B} = 1A$		1.6	v
f _T	Transition frequency	$I_{C} = 0.3A$ f = 1MHz	$V_{CE} = 10V$	6	24	MHz
С _{СВО}	Collector-base capacitance	$V_{CB} = 10V$ f = 1MHz	$I_E = 0$		200	pF
t _{on}	Turn-on time	RESISTIVE L	OAD		1	μs
t _s	Storage time	I _C = 5A I _{B1} = −I _{B2} = 1	V _C =250V A		4	μs
t _f	Fall time				1	μs
t _s	Storage time	INDUCTIVE L $I_C = 5A (pk)$ $I_{B1} = 1A$ $I = 180 \mu H$.OAD V _{BE} = -5V		4	μs
t _f	Fall time	T _{case} = 100°C for 2N6544 for 2N6545	$V_{clamp} = 350V$ $V_{clamp} = 450V$		0.9	μs

* Pulsed: pulse duration = $300\mu s$, duty cycle = 1.5 %.

For characteristic curves see the BUW 35 type.

HIGH VOLTAGE, HIGH CURRENT POWER SWITCH

The 2N6546 and 2N6547 are multiepitaxial mesa NPN transistors in Jedec TO-3 metal case, intended in fast switching applications for high output power.

ABSOLUTE MAXIMUM RATINGS			2N6547
V _{CES} V _{CEX} V _{CEO} V _{EBO} I _C	Collector-emitter voltage ($V_{BE} = 0$) (Clamped) Collector-emitter voltage ($V_{BE} = -5V$) Collector-emitter voltage ($I_B = 0$) Emitter-base voltage ($I_C = 0$) Collector current Collector peak current	650V 350V 300V 9 15	850V 450V 400V V 5A 0A
I_B P_{tot} T_{stg} T_j	Base current Total power dissipation at $T_{case} \le 25^{\circ}C$ Storage temperature Junction temperature	10A 175W -65 to 200°C 200°C	

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

R _{th i-case}	Thermal resistance junction-case	max.	1	°C/W
11 0000				

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions	Min. Typ. Max.	Unit
I _{CES}	Collector cutoff current ($V_{BE} = 0$)	for 2N6546 $V_{CE} = 650V$ for 2N6547 $V_{CE} = 850V$ $T_{case} = 100^{\circ}C$ for 2N6546 $V_{CE} = 650V$	1 1 4	mA mA mA
		for 2N6547 $V_{CE}^{OL} = 850V$	4	mA
I _{CER}	Collector cutoff current ($R_{BE} = 50\Omega$)	$\begin{array}{l} {T_{case}=100^\circC} \\ \text{for $2N6546$} & {V_{CE}=650V} \\ \text{for $2N6547$} & {V_{CE}=850V} \end{array}$	5 5	mA mA
I _{EBO}	Emitter cutoff current ($I_C = 0$)	$V_{EB} = 9V$	1	mA
V _{CEO} (sus)	*Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA for 2N6546 for 2N6547	300 400	V V
V _{CEX} (sus)	[*] Collector-emitter sustaining voltage (clamped E _{S/B})	$\begin{split} I_{C}/I_{B} &= 5 \\ L &= 180 \mu H \\ V_{BE} &= -5 V \\ T_{case} &= 100 ^{\circ}C \\ V_{clamp} &= rated V_{CEX (sus)} \\ I_{C} &= 8A \\ for \textbf{2N6546} \\ for \textbf{2N6547} \\ V_{clamp} &= rated V_{CEO (sus)} - 100 V \\ I_{C} &= 15A \\ for \textbf{2N6546} \\ for \textbf{2N6546} \\ for \textbf{2N6547} \end{split}$	350 450 200 300	V V V V
I _{s/b}	Second breakdown collector current	t = 1 s (non repetitive) $V_{CE} = 100V$	0.2	А
E _{s/b}	Second breakdown energy		2	mJ

Parameter		Test conditions		Min. Typ.	Max.	Unit
h _{FE} *	DC current gain	$ I_C = 5A \qquad V_{CE} = 1 \\ I_C = 10A \qquad V_{CE} = 1 $	2V 2V	12 6	60 30	
V _{CE (sat)} *	Collector-emitter saturation voltage	$ I_C = 10A \qquad I_B = 2A \\ I_C = 15A \qquad I_B = 3A \\ T_{case} = 100^{\circ}C $			1.5 5	V V
		$I_{\rm C} = 10$ $I_{\rm B} = 2$	1		2.5	V
V _{BE (sat)} *	Base-emitter	$I_{\rm C} = 10A$ $I_{\rm B} = 2A$	λ		1.6	V
	saturation voltage	$I_{case} = 100$ °C $I_{C} = 10A$ $I_{B} = 2A$	λ.		1.6	v
f _T	Transition frequency	$ I_C = 0.5A \qquad V_{CE} = \\ f = 1 MHz $	10V	6	24	MHz
С _{сво}	Collector-base capacitance	$\begin{array}{ll} V_{CB}=10V & I_{E}=0\\ f=1MHz \end{array}$			360	pF
t _{on}	Turn-on time	RESISTIVE LOAD			1	μs
t _s	Storage time	$V_{CC} = 250V$ $I_C = 10$ $I_{B1} = -I_{B2} = 2A$	A		4	μs
t _f	Fall time				0.7	μs
t _s	Storage time	INDUCTIVE LOAD $I_{C} = 10A (pk)$ $I_{B1} = 2A V_{BE} =$ $I_{L} = 180 \mu H$	-5V		5	μs
t _f	Fall time	$T_{case} = 100 °C$ for 2N6546 V _{clamp} for 2N6547 V _{clamp}	= 350V = 450V		1.5	μs

* Pulsed: pulse duration = 300μ s, duty cycle = 1.5%.

For characteristic curves see the BUW 45 type.

MULTIEPITAXIAL PLANAR NPN

SWITCHING AND GENERAL PURPOSE

The 2N6702 is a silicon multiepitaxial planar NPN transistor and is mounted in Jedec TO-220 plastic package.

It is intended for various switching and general purpose applications

ABSOLUTE MAXIMUM RATINGS

		1	
V _{CEV}	Collector-emitter voltage (V _{BE} = -1.5 V)	140	V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	90	V
V _{EBO}	Emitter-base voltate (I _C = 0)	7	V
I _C	Collector current	7	Α
I _{CM}	Collector peak current	10	Α
I _B	Base current	5	Α
P _{tot}	Total power dissipation ($T_{case} \leq 25^{\circ}C$)	50	W
T _{stg}	Storage temperature	-65 to 150	°C
Tj	Junction temperature	150	°C

INTERNAL SCHEMATIC DIAGRAM

MECHANICAL DATA

Dimensions in mm

ELECTRICAL CHARACTERISTICS ($T_{case} = 25^{\circ}C$ unless otherwise specified)

Parameter		Test conditions		Min.	Тур.	Max.	Unit
I _{CEV}	Collector cutoff current (V _{RE} =-1.5V)	$V_{CE} = 140V$ $V_{CE} = 140V$ at T _{CE} = 125	°C			100 1	μA mA
I _{EBO}	Emitter cutoff current ($I_c = 0$)	$V_{EB} = 7V$				100	μA
* V _{CEO(sus)}	Collector-emitter sustaining voltage $(I_B = 0)$	I _C = 100mA		90			V
V _{CE(sat)} *	Collector-emitter saturation voltage	I _C = 5A; I _C = 7A;	$I_{B} = 0.5A$ $I_{B} = 0.7A$			0.8 1.5	v v
V _{BE(sat)} *	Base-emitter saturation voltage	I _C = 5A;	I _B = 0.5A			1.5	V
h _{FE} *	DC current gain	$I_{C} = 0.2A;$ $I_{C} = 5A;$	$V_{CE} = 2V$ $V_{CE} = 2V$	30 20			_
h _{fe}	Small signal current gain	I _C = 0.5A; f = 5MHz	$V_{CE} = 10V$	4		40	-
f _T	Transition frequency	I _C = 0.5A; f = 5MHz	$V_{CE} = 10V$	20		200	MHz
С _{сво}	Collector base capacitance	I _E = 0; f = 100KHz	$V_{CB} = 10V$	50		150	pF
I _{s/b}	Second breakdown	$V_{CE} = 20V;$	t = 100 ms	2.5			Α
t _d	Delay time	I _C = 5A; V _{CC} = 70V	I _{B1} = 0.5A			0.1	μs
t _r	Rise time					0.25	μs
t _s	Storage time	$I_{C} = 5A; I_{B1} =$	-I _{B2} =0.5A			1	μs
t _r	Fall time	$V_{CC} = 70\overline{V}$				0.5	μs
* Pulsed: pulse duration = 300 μ sec.; duty cycle \leq 2%.							

DESIGN AND TECHNICAL NOTES APPLICABLE TO POWER DEVICES

DN300 – HORIZONTAL DEFLECTION IN B/W TV SETS USING THE SGS-ATES DARLINGTONS BU806/7

Horizontal deflection circuits for B/W receivers using the BU806 and BU807 darlingtons driven by the TDA1180. A short reliability report on the TO-220 plastic package is included.

DN306 – PARALLEL CONNECTION OF HIGH VOLTAGE TRANSI-STORS

Connecting high-voltage transistors in parallel; obtaining good performance and reliable operation.

DN307 – AUDIO AMPLIFIERS

Audio amplifiers with output powers of 35W, 50W and 75W using complementary power transistors. Full constructional details are provided.

DN308 – DRIVING CIRCUITS FOR SGS-ATES SWITCHING TRAN-SISTORS

Driving circuits which optimize the switching efficiency of power stages. This consideration is of particular importance when the duty cycle or switching frequency is variable.

DN323 – BUW34 AND BUW44 HIGH VOLTAGE TRANSISTOR AP-PLICATIONS: 400W AND 600W SWITCH-MODE MAINS ISOLATED SUPPLIES

The design of two switch-mode regulated supplies: 24V/400W and 24V/600W. Details of the performance and construction are included.

DN328 – OPTIMUM BASE DRIVE VERSUS COLLECTOR CURRENT WAVEFORM

Improving the switching behaviour of power devices for both triangular and trapezoidal collector current waveforms.

DN335 – REVERSE SECONDARY BREAKDOWN

A description of the phenomenon and power transistor ratings for both clamped and unclamped $\mathsf{E}_{\mathsf{s/b}}$ stresses.

DN336 – DIRECT SECONDARY BREAKDOWN

A description of the $I_{s/b}$ rating in power transistors and how to obtain reliable operation in repetitive pulse conditions.

DN337 - COMPLEMENTARY PAIRS IN SWITCHING APPLICATIONS

The advantages of complementary transistors in circuit design. Includes an application example: a 720W switch-mode converter in bridge configuration.

TN146 - USING THE L200 ADJUSTABLE VOLTAGE AND CURRENT REGULATOR

Description and applications of the L200, versatile variable regulator (2.85 to 36V, 2A max.)

TN150 - 40 INDUSTRIAL APPLICATION IDEAS

Industrial applications for linear integrated circuits and power transistors.

All these Design and Technical Notes can be obtained free of charge from the SGS-ATES sales network.

Information furnished is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-ATES. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and substitutes all information previously supplied.

SGS-ATES GROUP OF COMPANIES Italy – France – Germany – Malta – Malaysia – Singapore – Sweden – United Kingdom – U.S.A. © SGS-ATES Componenti Elettronici SpA, 1982 - Printed in Italy

ORDER CODE: DAPWR/5