DOCUMENT NO. R6500 N09 REV. 1, MAY 1980

JUN 9 1986

Rockwell

R6500 Microcomputer System APPLICATION NOTE

Interfacing R6500 Microprocessors To a Floppy Disk Controller

PURPOSE

Microprocessors in the R6500 family can operate with a wide variety of special-purpose peripheral controller devices. This Application Note describes the interface between an R6500 microprocessor and either of two Western Digital Floppy Disk Formatter/Controller devices, FDC 1781 or FDC 1791. The interface to the FDC 1781 requires a pair of one-shots, whereas the FDC 1791 can be interfaced directly. In both cases, the processor access time is one cycle.

DESCRIPTION

The basic interface for both Western Digital devices is shown in Figure 1. Data is passed between the R6500 microprocessor and the floppy disk controller on an 8-bit, bi-directional data bus. Address bus lines A0 and A1 select the FDC registers to be accessed. The remaining Address Bus lines, A2 through A15, can be used to generate a Chip Select signal (\overline{CS}) when the FDC has been addressed. The \emptyset 2 clock from the processor is used to generate strobes RE and WE, for reading and writing the FDC registers.

TIMING

R6500 processors that run on a 1-MHz clock with 50-percent duty cycle will produce \emptyset_2 pulse widths (PHW \emptyset_2) of 470 ns minimum. Since the Western Digital FDC 1791 device requires Read and Write pulse widths (RE and WE, respectively) of 400 ns, the \emptyset_2 clock is adequate to generate these pulses directly. However, the FDC 1781 requires a minimum pulse width of 500 ns for both RE and WE, so some additional strobe-generation circuitry must be included in that interface.

This circuitry is comprised of two one-shots, t_{W1} and t_{W2} , in which t_{W1} determines the start of the pulse and t_{W2} determines the width of the pulse. The limiting equation for t_{W1} is:

$$T_{ADS} + T_{ADD} + 50 < t_{W1} < 475$$
 ns (Equation 1)

where TADS = Address Setup Time from R6500 (225 ns max)

TADD = Address Detect Delay Time

and the limiting equation for t_{W2} is:

500 ns $< t_{W2} < 1000$ ns - t_{W1}

A simple way to guarantee that the timing requirements are met is to make t_{W1} and t_{W2} approach their respective

(Equation 2)

© Rockwell International Corporation 1980 All Rights Reserved Printed in U.S.A. lower bounds. The Write cycle timing is satisfied when the Read cycle timing is satisfied, except that the t_{W2} pulse should be made wide enough to allow the Write data to have adequate setup time. The constraints are reflected in this equation:

975 ns $< t_{W1} + t_{W2}$ (Equation 3)

Time t_{W1} should be made as narrow as possible, with t_{W2} widened to satisfy Equations 1 and 2. Figure 2 summarizes the timing relationships.

INTERFACING 2-MHZ R6500 MICROPROCESSORS

The interface described is based on a 1-MHz R6500 microprocessor. To use a 2-MHz microprocessor (R6500A series), a clock stretching circuit is necessary. This circuit is described in a separate Application Note, "R650X Clock Stretching for Use with Slower Peripherals", Rockwell Document No. R6500N07.

WESTERN DIGITAL TIMING SPECIFICATIONS

Characteristic	Symbol	Min	Max	Units
Read Data Access Time, from RE	TDACC		350	ns
Read Data Hold Time, from RE	трон	50		ns
RE Pulse Width For FDC 1781 For FDC 1791	T _{RE}	500 400		ns
Write Data Hold Time, from WE 🕈	т _{DH}	20		ns
Data Setup Time to \overline{WE}	T _{DS}	250		ns
WE Pulse Width For FDC 1781 For FDC 1791	Τ _{WE}	350 350		ns
Setup Address and \overline{CS} to \overline{WE}	T _{SET}	50		ńs

NOTE: For R6500 timing specifications, refer to the R6500 Microprocessors Data Sheet, Rockwell Document No. 29000D39.

WESTERN DIGITAL TIMING SPECIFICATIONS

Figure 2. Read/Write Timing

ELECTRONIC DEVICES DIVISION REGIONAL ROCKWELL SALES OFFICES

I INI	TED	STATES
011		JIMILD

Electronic Devices Division Rockwell International 3310 Miraloma Avenue P.O. Box 3669 Anaheim, California 92803 (714)632-3729 TWX: 910 591-1698

Electronic Devices Division Rockwell International P.O. Box 10462 Dallas, Texas 75207 (214) 996-5794/5780 Telex: 73-307 73-2490

Electronic Devices Division Rockwell International 1601 Civic Center Drive, Suite 203 Santa Clara, California 95050 (408) 984-6070 Telex: 171135 Mission snta Electronic Devices Division Rockwell International 10700 West Higgins Rd., Suite 102 Rosemont, Illinois 60018 (312) 297-8862 TWX: 910 233-0179 (Ri MED ROSM)

Electronic Devices Division Rockwell International 5001B Greentree Executive Campus, Rt. 73 Martton, N.J. 08053 (609) 596-0090 TWX: 710 940-1377

EUROPE

Electronic Devices Division Rockwell International GmbH Fraunhoferstrasse 11 D-8033 Munchen-Martinsried Germany (089) 859-9575 Telex: 0521/2650

Hockweir-Collins Heathrow House, Bath Rd. Crawford, Hunslow, Middlesex, England (01) 759-9911 Telex: 851-25463 FAR EAST

Electronic Devices Division Rockwell-Collins

Electronic Devices Division Rockwell International Overseas Corp. Itohpia Hirakawa-cho Bidg. 7-6, 2-chome, Hirakawa-cho Chiyoda-ku, Tokyo 102, Japan (03) 255-8606 Telex, J22198

YOUR LOCAL REPRESENTATIVE

5-80