

A New Approach To Data Service . . . 1975 RCA Solid State DATABOOKS

Seven textbook-size volumes covering all current commercial RCA solid-state devices (through January 1, 1975)
Linear Integrated Circuits and DMOS Devices (Data only) SSD-201C
Linear Integrated Circuits and DMOS Devices (Application Notes only) SSD-202C
COS/MOS Digital Integrated Circuits SSD-203C
Power Transistors SSD-204C
RF/Microwave Devices SSD-205C
Thyristors, Rectifiers, and Diacs SSD-206C
High-Reliability Devices SSD-207CAnnouncement Newsletter: "What's New in Solid State"Availabe FREE to all DATABOOK users.
"Bingo-type Response-Card Service" included with News- letter Available FREE to all DATABOOK users.Update Mailing Service available by subscription.Indexed Binder available for Update Filing.NOTE: See pages 3 and 4 for additional information on thistotal data service. To qualify for Newsletter mailing,use the form on page 4 (unless you received yourDATABOOK directly from RCA). You must qualifyannually since a new mailing list is started for eachedition of the DATABOOKS.

nen High-Reliability devies

This DATABOOK contains descriptive text, data, and related application notes on high-reliability power transistors, rf power transistors, thyristors, and integrated circuits presently available from RCA Solid State Division as either standard or custom products. For ease of type selection, a complete index to these high-reliability devices is given on pages 6-10. Text material and data are then grouped according to type of devices: (a) power transistors, (b) rf power transistors, (c) thyristors, (d) linear and COS/MOS integrated circuits.

For ease of reference, data sheets in each category are arranged as nearly as possible in order of typenumber sequence. Because some data sheets include more than one type number, however, some types may be out of sequence. If you don't find the number you're looking for where you expect it to be, please refer to the Index to Devices on pages 6-10.

Trade Mark (s) Registered ${ }^{\circledR}$

Marca(s) Registrada(s)

Copyright 1974 by RCA Corporation
(All rights reserved under Pan-American Copyright Convention)

Printed in USA/11-74

Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.

RCA Solid State Total Data Service System

The RCA Solid State DATABOOKS are supplemented throughout the year by a comprehensive data service system that keeps you aware of all new device announcements and lets you obtain as much or as little product information as you need - when you need it.

New solid-state devices and related publications announced during the year are described in a newsletter entitled "What's New in Solid State". If you obtained your DATABOOK(s) directly from RCA, your name is already on the mailing list for this newsletter. If you obtained your book(s) from a source other than RCA and wish to receive the newsletter, please fill out the form on page 4, detach it, and mail it to RCA.

Each newsletter issue contains a "bingo"-type fast-response form for your use in requesting information on new devices of interest to you. If you wish to receive all new product information published throughout the year, without having to use the newsletter response form, you may subscribe to a mailing service which will bring you all new data sheets and application notes in a package every other month. You can also obtain a binder for easy filing of all your supplementary material. Provisions for obtaining information on the update mailing service and the binder are included in the order form on page 4.

Because we are interested in your reaction to this approach to data service, we invite you to add your comments to the form when you return it, or to send your remarks to one of the addresses listed at the top of the form. We solicit your constructive criticism to help us improve our service to you.

Order Form for＂What＇s New in Solid State＂ and for further information on Update Mailings and Binders

Please fill out just one copy of this form，and mail it to：
（a）from U．S．A．and Canada：
RCA Solid State Division
Box 3200 ．
Somerville，N．J．，U．S．A． 08876
（b）from Latin America and Far East：
RCA Solid State
International Sales
Somerville，N．J．，U．S．A． 08876
（c）from United Kingdom，Europe，Middle East，and Africa：

RCA Limited	RCA s．a．	
Sunbury－on－Thames	or	4400 Herstal
Middlesex TW16 7HW，England		Liege，Belgium

\square Please add my name to the mailing list for＂What＇s New in Solid State＂
\square Please send me details on obtaining update mailings for my DATABOOKS and a binder for filing of supplementary material．

Function：（Check One）

AD Executive／Administration B ロ Purchasing／Procurement
C口 Research／Development
Do Design Engineer
E ロ Application／Components Engineer
F O Production／Manufacturing
G D Documentation／Library
Hロ Reliability／QA
－Education／Training
J ロ Program／Project Management
$K \square$ Marketing

Activity：（Check One）

A B Broadcast
B Communication
C ㅁ Instrumentation／Control
D－Computer／Data Processin
E ㅁ Computer，Peripheral
F \square Automotive
G a Industrial
H Medical
1 R Research
J T Transportation
K－Consumer，Electronic
L Consumer，Appliance
M ロ Space
N O Ordnance
0 ㅁ Avionics
P Electronic Warfare

Table of Contents

Pages

Index to High-Reliability Solid-State Devices 6
Index to Application Notes 10
Introduction to High-Reliability Solid-State Devices 11
High-Reliability Power Transistors 15
JAN, JANTX, and JANTXV Types 30
Custom (Non-JAN) Types 38
Radiation-Hardened Types 49
Application Notes 51
High-Reliability RF Power Devices 67
JAN, JANTX, and JANTXV Types 79
HR-Series Types 85
Premium and Ultra-High-Reliability Types 135
Application Note 179
High-Reliability Power Hybrid Circuit (Multi-Purpose 7-Ampere Operational Amplifier) 183
High-Reliability Thyristors 193
Triacs 200
Silicon Controlled Rectifiers 212
High-Reliability Integrated Circuits 225
Linear Types 241
DMOS Devices 403
Linear IC Application Notes 415
COS/MOS Types 427
COS/MOS Application Notes 706
Appendix - Test Circuits (COS/MOS) and Dimensional Outlines 726
Operating Considerations for RCA Solid-State Devices 740

Type	Page	Product Line	Description	Type	Page	Product Line	Description
2N681*	212	SCR	25-A silicon controlled rectifier	2N5572*	202	Triac	15-A silicon triac
2N682*	212	SCR	25-A silicon controlled rectifier	2N5573*	202	Triac	15-A silicon triac
2N683*	212	SCR	25-A silicon controlled rectifier	2N5574*	202	Triac	15-A silicon triac
2N684*	212	SCR	25-A silicon controlled rectifier	2N5578*	43	PWR	Hometaxial-base n-p-n power
2N685*	212	SCR	25-A silicon controlled rectifier				transistor
2N686*	212	SCR	25-A silicon controlled rectifier	2N5754*	203	Triac	2.5-A silicọn triac
2N687*	212	SCR	25-A silicon controlled rectifier	2N5755*	204	Triac	2.5-A silicon triac
2N688*	212	SCR	25-A silicon controlled rectifier	2N5756*	204	Triac	2.5-A silicon triac
2N689**	212	SCR	25-A silicon controlled rectifier	2N5757*	204	Triac	2.5-A silicon triac
2N690*	212	SCR	25-A silicon controlled rectifier	2N5781*	44	PWR	General-purpose p-n-p power
2N2102**	38	PWR	Medium-power n-p-n transistor				transistor
2N3054*	38	PWR	Hometaxial-base mediumpower n-p-n transistor	2N5784*	44	PWR	General-purpose p-n-p power transistor
2N3228*	213	SCR	5-A silicon controlled rectifier	2N5954*	45	PWR	Medium-power p-n-p transistor
2N3263*	39	PWR	High-speed n-p-n power transistor	2N6033*	45	PWR	High-speed n-p-n power transistor
2N3265*	39	PWR	High-speed n-p-n power transistor	2N6056*	46	PWR	8-A n-p-n Darlington power transistor
2N3525**	213	SCR	5-A silicon controlled rectifier	2N6079*	46	PWR	High-voltage n-p-n power
2N3528*	213	SCR	2-A silicon controlled rectifier				transistor
2N3529**	213	SCR	2-A silicon controlled rectifier	2N6248*	47	PWR	High-power p-n-p transistor
2N3650*	214	SCR	35-A silicon controlled rectifier	2N6251*	47	PWR	High-voltage $n-p-n$ power
2N3651*	214	SCR	35-A silicon controlled rectifier				- transistor
2N3652**	214	SCR	35-A silicon controlled rectifier	2N6385*	48	PWR	10-A n-p-n Darlington power
2N3653*	214	SCR	35-A silicon controlled rectifier				transistor
2N3654**	215	SCR	35-A silicon controlled rectifier	2N6479*	49	PWR	Radiation-hardened n-p-n
2N3655**	215	SCR	35-A silicon controlled rectifier				power transistor
2N3656**	215	SCR	35-A silicon controlled rectifier	2N6480*	49	PWR	Radiation-hardened n-p
2N3657*	215	SCR	35-A silicon controlled rectifier				power transistor
2N3658*	215	SCR	35-A silicon controlled rectifier	2N6381*	49	PWR	Radiation-hardened n-p-n
2N3668*	216	SCR	12.5-A silicon controlled rectifier				power transistor
2N3669*	216	SCR	12.5-A silicon controlled rectifier	2N6482*	49	PWR	Radiation-hardened n-p-n
2N3670**	216	SCR	12.5-A silicon controlled rectifier				power transistor
2N3773*	40	PWR	Hometaxial-base n-p-n power transistor	40279	135	RF	VHF/UHF n-p-n power transistor
2N3870*	217	SCR	35-A silicon controlled rectifier	40294	139	RF	UHF n-p-n power transistor
2N3871**	217	SCR	35-A silicon controlled rectifier	40296	144	RF	UHF n-p-n power transistor
2N3872*	217	SCR	35-A silicon controlled rectifier	40305	150	RF	VHF/UHF n-p-n power
2N3873*	217	SCR	35-A silicon controlled rectifier				transistor
2N3879*	40	PWR	High-speed n-p-n power transistor	40306	150	RF	VHF/UHF n-p-n power transistor
2N3896*	217	SCR	35-A silicon controlled rectifier	40307	150	RF	VHF/UHF n-p-n power
2N3897*	217	SCR	35-A silicon controlled rectifier				transistor
2N3898*	217	SCR	35-A silicon controlled rectifier	40414	154	RF	UHF n-p-n power transistor
2N3899*	217	SCR	35-A silicon controlled rectifier	40577	158	RF	VHF n-p-n power transistor
2N4036*	41	PWR	Medium-power p-n-p transistor	40578	163	RF	VHF/UHF n-p-n power
2N4101*	213	SCR	5-A silicon controlled rectifier				transistor
2N4102*	213	SCR	2-A silicon controlled rectifier	40605	173	RF	VHF/UHF n-p-n power
2N5240*	41	PWR	High-voltage $n-p-n$ power transistor	40606	173	RF	transistor VHF/UHF n-p-n power
2N5262*	42	PWR	High-voltage, high-speed n-p-n transistor	CA101/...	241	LIC	transistor Operational amplifier
2N5320*	42	PWR	General-purpose n-p-n power	CA101A/...	241	LIC	Operational amplifier
			transistor	CA107/...	249	LIC	Operational amplifier
2N5322*	43	PWR	General-purpose p-n-p power	CA108/...	254	LIC	Operational amplifier
			transistor	CA108A/...	254	LIC	Operational amplifier
2N5441*	200	Triac	40-A silicon triac	CA111/...	259	LIC	Comparator
2N5442*	200	Triac	40-A silicon triac	CA723/...	264	LIC	Operational amplifier
2N5443*	200	Triac	40-A silicon triac	CA741/...	270	LIC	Operational amplifier
2N5444*	200	Triac	40-A silicon triac	CA747/...	270	LIC	Operational amplifier
2N5445*	200	Triac	40-A silicon triac	CA748/...	270	LIC	Operational amplifier
2N5446*	200	Triac	40-A silicon triac	CA1558/...	270	LIC	Operational amplifier
2N5567*	201	Triac	$10-\mathrm{A}$ silicon triac	CA3000/...	276	LIC	DC amplifier
2N5568*	201	Triac	10-A silicon triac	CA3001/...	282	LIC	Video amplifier
2N5569*	201	Triac	10-A silicon triac	CA3002/...	288	LIC	IF amplifier
2N5570*	201	Triac	10-A silicon triac	CA3004/...	293	LIC	RF amplifier
2N5571*	202	Triac	15-A silicon triac	CA3006/...	298	LIC	RF amplifier
				CA3015A/...	302	LIC	Operational amplifier

Index to High-Reliability Solid-State Devices (Cont'd)

Type	Page	Product Line	Description	Type	Page	Product Line	Description
CA3018/...	308	LIC	Transistor array	CD4030A/...	539	cos/mos	Quad exclusive-OR gate
CA3019/...	316	LIC	Diode array	CD4031A/...	543	cos/mos	64 -stage static shift register
CA3020A/...	320	LIC	Wide-band power amplifier	CD4032A/...	548	cos/mos	Triple serial adder (positive
CA3026/...	325	LIC	Dual differential amplifier				logic)
CA3028B/...	331	LIC	Differential/cascode amplifier	CD4033A/...	517	COS/MOS	Decade counter/divider
СА3039/...	336	LIC	Diode array	CD4034A/...	552	cos/mos	MSI 8 -stage static bus register
CA3045/...	340	LIC	Transistor array	CD4035A/...	557	cos/mos	4 -stage parallel in/out shift
CA3049/...	345	LIC	Dual differential amplifier				register
CA3058/...	350	LIC	Zero-voltage switch	CD4036A/...	561	COS/MOS	4-word-x-8-bit RAM (binary
CA3078A/...	356	LIC	Micropower operational amplifier				addressing)
CA3080/...	363	LIC	Operational transconductance amplifier	CD4038A/...	548	COS/MOS	Triple serial adder (negative logic)
CA3080A/...	363	LIC	Operational transconductance amplifier	CD4039A/...	561	COS/MOS	4-word-x-8-bit RAM (wordline addressing)
CA3085/...	370	LIC	Positive voltage regulator	CD4040A/...	566	cos/mos	12-stage binary counter/divider
CA3085A/...	370	LIC	Positive voltage regulator	CD4041A/...	571	cos/mos	Quad true/complement buffer
CA3085B/...	370	LIC	Positive voltage regulator	CD4042A/...	576	cos/mos	Quad clocked "D" latch
CA3094/...	375	LIC	Programmable power-switch/ amplifier	$\begin{aligned} & \text { CD4043A/... } \\ & \text { CD4044A/... } \end{aligned}$	$\begin{aligned} & 580 \\ & 580 \end{aligned}$	cos/mos cos/mos	Quad 3-state NOR R/S latch Quad 3-state NAND R/S latch
CA3094A/...	375	LIC	Programmable power-switch/ amplifier	CD4045A/... CD4046A/	584 589	cos/mos cos/mos	21 -stage counter Micropower phase-locked loop
CA3094B/...	375	LIC	Programmable power-switch/ amplifier	CD4047A/...	596	cos/mos	Monostable/astable multivibrator
CA3100/...	383	LIC	Wide-band operational amplifier	CD4048A/...	605	cos/mos	Expandable 8-input gate
CA3118/...	389	LIC	High-voltage n-p-n transistor array	CD4049A/...	610	COS/MOS	Hex buffer/converter
CA3118A/...	389	LIC	High-voltage n-p-n transistor array				(inverting)
CA3130A/...	397	LIC	amplifier COS/MOS-bipolar operational amplifier	CD4050A/... CD4057A/...	610 616	cos/mOS cos/mOS	Hex buffer/converter (non-inverting) LSI 4-bit arithmetic logic unit
CA3130B/...	397	LIC	COS/MOS-bipolar operational amplifier	CD4060A/...	624	cos/mos	Binary counter/divider and oscillator
CD4000A/...	427	cos/mos	Dual 3-input NOR gate plus inverter	$\begin{aligned} & \text { CD4061A/... } \\ & \text { CD4062A/... } \end{aligned}$	$\begin{aligned} & 630 \\ & 637 \end{aligned}$	cos/mos cos/mos	Static random-access memory Dynamic shift register
CD4001A/...	427	cos/mOS	Quad 2-input NOR gate	CD4063B/...	644	cos/mos	Magnitude comparator
CD4002A/...	427	cos/mos	Dual 4 -input NOR gate	CD4066A/...	649	cos/mos	Quad bilateral switch
CD4006A/...	433	cos/mos	18-stage static shift register	CD4068B/...	655	cos/mos	NAND gate
CD4007A/...	438	cos/mos	Dual complementary pair plus inverter	$\begin{aligned} & \text { CD4069B/... } \\ & \text { CD4071B/... } \end{aligned}$	660 665	cos/mos cos/mos	Hex inverter OR gate
CD4008A/...	444	cos/mos	4-bit full adder with paralle! carry	$\begin{aligned} & \text { CD4072B/... } \\ & \text { CD4073B/... } \end{aligned}$	665	cos/mos cos/mos	OR gate AND gate
こD4009A/...	450	cos/mos	Hex buffer/converter (inverting)	$\begin{aligned} & \text { CD4075B/... } \\ & \text { CD4078B/... } \end{aligned}$	$\begin{aligned} & 665 \\ & 677 \end{aligned}$	cos/mos cos/mos	OR gate 8 -input NOR gate
2D4010A/...	450	cos/mos	Hex buffer/converter (non-inverting)	$\begin{aligned} & \text { CD4081B/... } \\ & \text { CD4082B/... } \end{aligned}$	671 671	cos/mos cos/MOS	AND gate AND gate
, $\mathrm{D} 4011 \mathrm{~A} / . .$.	456	cos/mos	Quad 2-input NAND gate	CD4085B/...	682	cos/mos	AND-OR-INVERT gate
, $D 4012 \mathrm{~A} / .$. .	456	cos/mos	Dual 4-input NAND gate	CD4086B/...	688	cos/mos	Expandable AND-OR-INVERT
, D4013A/...	463	COS/MOS	Dual "D" flip-flop with set/reset	CD4514B/...	694	cos/mos	gate Latch/line decoder
;D4014A/...	468	cos/mos	8 -stage static shift register	CD4515B/...	694	cos/mos	Latch/line decoder
:D4015A/...	473	cos/mos	Dual 4-stage static shift register	$\begin{aligned} & \text { CD4518B/... } \\ & \text { CD4520B/... } \end{aligned}$	700	cos/MOS cos/mOS	Dual up counter Dual up counter
:D4016A/...	478	cos/mos	Quad bilateral switch	HC2000H/...	183	HYB	Multipurpose 7-A operational
:D4017A/...	484	cos/mos	Decade counter/divider				amplifier
:D4018A/...	489	cos/mos	Presettable divide-by-"N" counter	HR2N2857 HR2N3375	85 87	$\begin{aligned} & \text { RF } \\ & \text { RF } \end{aligned}$	UHF n-p-n power transistor VHF/UHF n-p-n power
D4019A/...	494	cos/mos	Quad AND-OR select gates				transistor
D4020A/...	497	cos/mos	14-stage binary counter/divider	HF2N3553	89	RF	VHF/UHF n-p-n power
D4021A/...	502	cos/mos	8 -stage static shift register				transistor
D4022A/...	507	cos/mos	Divide-by-8 counter/divider	HR2N3632	91	RF	VHF/UHF n-p-n power
D4023A/...	456	cos/mos	Triple 3-input NAND gate				transistor
D4024A/...	512	cos/mos	7 -stage binary counter	HR2N3866	93	RF	N-P-N rf power transistor
D4025A/...	427	cos/mos	Triple 3-input NOR gate	HR2N5071	95	RF	VHF n-p-n power
D4026A/...	517	cos/mos	Decade counter/divider				transistor
D4027A/...	524	cos/mos	Dual J-K master-slave flip-flop				
D4028A/...	529 533	COS/MOS	BCD-to-decimal decoder Presettable up/down counter	HR2N5090	97	RF	VHF/UHF n-p-n power transistor

Index to High-Reliability Solid-State Devices (Cont'd)

Type	Page	Product Line	Description	Type	Page	Product Line	Description
HR2N5470	99	RF	UHF/microwave n-p-n power transistor	JAN2N1486	30	PWR	Hometaxial-base n-p-n power transistor
HR2N5916	101	RF	VHF/UHF n-p-n power transistor	JAN2N1487	31	PWR	Hometaxial-base n-p-n power transistor
HR2N5918	103	RF	VHF/UHF n-p-n power transistor	JAN2N1488	31	PWR	Hometaxial-base n-p-n power transistor
HR2N5919A	105	RF	VHF/UHF n-p-n power transistor	JAN2N1490	31	PWR	Hometaxial-base n-p-n power transistor
HR2N5920	107	RF	UHF/microwave n-p-n power transistor	JAN2N1493 JAN2N2015	$\begin{aligned} & 71 \\ & 31 \end{aligned}$	RF PWR	VHF n-p-n power transistor Hometaxial-base n-p-n power
HR2N5921	109	RF	UHF/microwave n-p-n power transistor	JAN2N2016	31	PWR	transistor Hometaxial-base n-p-n power
HR2N6105	111	RF	VHF/UHF n-p-n power transistor	JAN2N2857	80	RF	transistor UHF n-p-n power transistor
HR2N6265	113	RF	VHF/UHF n-p-n power transistor	JAN2N3055	32	PWR	Hometaxial-base n-p-n power transistor
HR2N6266	115	RF	Microwave n-p-n power transistor	JAN2N3375	81	RF	VHF/UHF n-p-n power transistor
HR2N6267	117	RF	Microwave n-p-n power transistor	JAN2N3439	32	PWR	High-voltage n-p-n power transistor
HR2N6268	119	RF	Microwave n-p-n power transistor	JAN2N3440	32	PWR	High-voltage n-p-n power transistor
HR2N6269	121	RF	Microwave n-p-n power transistor	JAN2N3441	33	PWR	High-voltage n-p-n power transistor
HR2N6390	123	RF	Microwave n-p-n power transistor	JAN2N3442	33	PWR	High-voltage n-p-n power transistor
HR2N6391	125	RF	Microwave n-p-n power transistor	JAN2N3553	81	RF	VHF/UHF n-p-n power transistor
HR2N6392	127	RF	Microwave n-p-n power transistor	JAN2N3584	34	PWR	High-voltage n-p-n power transistor
HR2N6393	129	RF	Microwave n-p-n power transistor	JAN2N3585	34	PWR	High-voltage n-p-n power transistor
HR3N187	403	DMOS	Dual-gate of MOS transistor	JAN2N3771	34	PWR	High-current n-p-n power
HR3N200	409	DMOS	Dual-gate rf MOS transistor				transistor
HR2001	121	RF	Microwave n-p-n power transistor	JAN2N3772	34	PWR	High-current n-p-n power transistor
HR2003	123	RF	Microwave n-p-n power transistor	JAN2N3866	82	RF	VHF/UHF n-p-n power transistor
HR2005	125	RF	Microwave n-p-n power transistor	JAN2N4440	81	RF	VHF/UHF n-p-n power transistor
HR2010	127	RF	Microwave n-p-n power transistor	JAN2N5038	35	PWR	High-speed n-p-n power transistor
HE3001	129	RF	Microwave n-p-n power transistor	JAN2N5039	35	PWR	High-speed n-p-n power transistor
HF3003	129	RF	Microwave n-p-n power transistor	JAN2N5071 JAN2N5109	$\begin{aligned} & 82 \\ & 83 \end{aligned}$	$\begin{aligned} & \text { RF } \\ & \text { RF } \end{aligned}$	VHF n-p-n power transistor VHF/UHF n-p-n power
HR3005	129	RF	Microwave n-p-n power transistor	JAN2N5415	35	PWR	transistor High-voltage n-p-n power
HR40915	131	RF	Microwave n-p-n power transistor	JAN2N5416	35	PWR	transistor High-voltage n-p-n power
HR41039	133	RF	VHF n-p-n power transistor				transistor
JAN2N918	78	RF	VHF/UHF low-power n-p-n transistor	JAN2N5671	34	PWR	High-speed n-p-n power transistor
JAN2N1479	30	PWR	Hometaxial-base n-p-n power transistor	JAN2N5672	34	PWR	High-speed n-p-n power transistor
JAN2N1480	30	PWR	Hometaxial-base n-p-n power transistor	JAN2N5838	36	PWR	High-speed n-p-n power transistor
JAN2N1481	30	PWR	Hometaxial-base n-p-n power transistor	JAN2N5839	36	PWR	High-voltage n-p-n power transistor
JAN2N1482	30	PWR	Hometaxial-base n-p-n power transistor	JAN2N5840	37	PWR	High-voltage n-p-n power transistor
JAN2N1483	30	PWR	Hometaxial-base n-p-n power transistor	JAN2N5918	83	RF	VHF/UHF n-p-n power transistor
JAN2N1484	30	PWR	Hometaxial-base n-p-n power transistor	JAN2N5919A	84	RF	VHF/UHF n-p-n power transistor
JAN2N1485	30	PWR	Hometaxial-base n-p-n power transistor	JAN2N6211	37	PWR	High-voltage p-n-p power transistor

Index to High-Reliability Solid-State Devices (Cont'd)

Type	Page	Product Line	Description	Type	Page	Product Line	Description
JAN2N6212	37	PWR	High-voltage p-n-p power transistor	JANTXV2N3585	34	PWR	High-voltage $n-p-n$ power transistor
JAN2N6213	37	PWR	High-voltage p-n-p power transistor	JANTXV2N4440	81	RF	VHF/UHF n-p-n power transistor
JANTX2N1479	30	PWR	Hometaxial-base n-p-n power transistor	$\begin{aligned} & \text { S2400A* } \\ & \text { S2400B* } \end{aligned}$	$\begin{aligned} & 218 \\ & 218 \end{aligned}$	$\begin{aligned} & \text { SCR } \\ & \text { SCR } \end{aligned}$	4.5-A silicon controlled rectifier 4.5-A silicon controlled rectifier
JANTX2N1480	30	PWR	Hometaxial-base n-p-n power transistor	$\begin{aligned} & \text { S2400D* } \\ & \text { S2400M* } \end{aligned}$	218 218	SCR	4.5-A silicon controlled rectifier 4.5-A silicon controlled rectifier
JANTX2N1481	30	PWR	Hometaxial-base n-p-n power transistor	$\begin{aligned} & \text { S2600B* } \\ & \text { S2600D* } \end{aligned}$	219 219	SCR SCR	7-A silicon controlled rectifier 7-A silicon controlled rectifier
JANTX2N1486	30	PWR	Hometaxial-base n-p-n power transistor	$\begin{aligned} & \text { S2600M* } \\ & \text { S2610B* }^{*} \end{aligned}$	$\begin{aligned} & 219 \\ & 219 \end{aligned}$	SCR	7-A silicon controlled rectifier 3.3-A silicon controlled rectifier
JANTX2N2857	80	RF	UHF n-p-n power transistor	S26100**	219	SCR	3.3-A silicon controlled rectifier
JANTX2N3055	80	PWR	Hometaxial-base n-p-n power transistor	$\begin{aligned} & \text { S2610M* } \\ & \text { S2620B** } \end{aligned}$	219 219	SCR	3.3-A silicon controlled rectifier 7-A silicon controlled rectifier
JANTX2N3375	81	RF	VHF/UHF n-p-n power transistor	$\begin{aligned} & \text { S2620D* } \\ & \text { S2620M* } \end{aligned}$	$\begin{aligned} & 219 \\ & 219 \end{aligned}$	$\begin{aligned} & \text { SCR } \\ & \text { SCR } \end{aligned}$	7-A silicon controlled rectifier 7-A silicon controlled rectifier
JANTX2N3439	32	PWR	High-voltage $n-p-n$ power transistor	$\begin{aligned} & \text { S3700B* } \\ & \text { S3700D* }^{*} \end{aligned}$	220 220	$\begin{aligned} & \text { SCR } \\ & \text { SCR } \end{aligned}$	5-A silicon controlled rectifier 5-A silicon controlled rectifier
JANTX2N3440	32	PWR	High-voltage $n-p-n$ power transistor	$\begin{aligned} & \text { S3700M* } \\ & \text { S3701MI } \end{aligned}$	220	SCR	5-A silicon controlled rectifier 5-A silicon controlled rectifier
JANTX2N3441	33	PWR	High-voltage n-p-n power transistor	$\begin{aligned} & \text { S3704A* } \\ & \text { S3704B* } \end{aligned}$	222 222	$\begin{aligned} & \text { SCR } \\ & \text { SCR } \end{aligned}$	5-A silicon controlled rectifier 5-A silicon controlled rectifier
JANTX2N3442	33	PWR	High-voltage n-p-n power transistor	$\begin{aligned} & \text { S3704D* } \\ & \text { S3704M* } \end{aligned}$	222	$\begin{aligned} & \text { SCR } \\ & \text { SCR } \end{aligned}$	5-A silicon controlled rectifier 5-A silicon controlled rectifier
JANTX2N3553	81	RF	VHF/UHF n-p-n power transistor	$\begin{aligned} & \text { S3704S* } \\ & \text { S3714A* } \end{aligned}$	$\begin{aligned} & 222 \\ & 222 \end{aligned}$	$\begin{aligned} & \text { SCR } \\ & \text { SCR } \end{aligned}$	5-A silicon controlled rectifier 5-A silicon controlled rectifier
JANTX2N3585	34	PWR	High-voltage n-p-n power transistor	$\begin{aligned} & \text { S3714B* } \\ & \text { S3714D* } \end{aligned}$	222	SCR	5-A silicon controlled rectifier 5-A silicon controlled rectifier
JANTX2N3771	34	PWR	High-current n-p-n power transistor	$\begin{aligned} & \text { S3714M** } \\ & \text { S3714S** } \end{aligned}$	222	$\begin{aligned} & \text { SCR } \\ & \text { SCR } \end{aligned}$	5-A silicon controlled rectifier 5-A silicon controlled rectifier
JANTX2N3772	34	PWR	High-current n-p-n power transistor	S6400N* S6410N*	217 217	SCR SCR	35-A silicon controlled rectifier 35-A silicon controlled rectifier
JANTX2N4440	81	RF	VHF/UHF n-p-n power transistor	S6420A* ${ }_{\text {S6420 }}{ }^{\text {a }}$	217 217	SCR SCR	35-A silcion controlled rectifier 35-A silicon controlled rectifier
JANTX2N5038	35	PWR	High-speed n-p-n power transistor	S6420D** ${ }_{\text {S6420M }}{ }^{\text {a }}$	217 217	SCR	35-A silicon controlled rectifier 35-A silicon controlled rectifier
JANTX2N5039	35	PWR	High-speed n-p-n power transistor	S6420N* ${ }_{\text {S6431M* }}{ }^{\text {a }}$	217 224	SCR	35-A silicon controlled rectifier 35-A silicon controlled rectifier
JANTX2N5071	82	RF	VHF n-p-n power transistor	S7430M**	214	SCR	35-A silicon controlled rectifier
JANTX2N5109	83	RF	VHF/UHF n-p-n power transistor	S7432M*	215 204	$\begin{aligned} & \text { SCR } \\ & \text { Triac } \end{aligned}$	35-A silicon controlled rectifier 2.5-A silicon triac
JANTX2N5415	31	PWR	High-voltage n-p-n power transistor	$\begin{aligned} & \text { T2300B** } \\ & \text { T2300D* } \end{aligned}$	204	Triac	2.5-A silicon triac 2.5-A silicon triac
JANTX2N5416	31	PWR	High-voltage p-n-p power transistor	T2302A**	204 204	Triac Triac	2.5-A silicon triac 2.5-A silicon triac
JANTX2N5671	36	PWR	High-speed n-p-n power transistor	T2304B**	205 205	Triac Triac	$0.5-\mathrm{A}$ silicon triac $0.5-\mathrm{A}$ silicon triac
JANTX2N5672	36	PWR	High-speed n-p-n power transistor	T2305B**	205 205	Triac Triac	$0.5-\mathrm{A}$ silicon triac $0.5-\mathrm{A}$ silicon triac
JANTX2N5840	36	PWR	High-voltage n-p-n power transistor	$\begin{aligned} & \text { T2310A** } \\ & \text { T2310B* } \end{aligned}$	204	Triac Triac	1.6-A silicon triac 1.6-A silicon triac
JANTX2N5919A	84	RF	VHF/UHF n-p-n power transistor	T2310D***	204	Triac Triac	1.6-A siticon triac 1.9-A silicon triac
JANTX2N6211	37	PWR	High-voltage p-n-p power transistor	T2312B*********	204	Triac Triac	1.9-A silicon triac 1.9-A silicon triac
IANTX2N6212	37	PWR	High-voltage p-n-p power transistor	T2313A********	204	Triac Triac	1.9-A silicon triac 1.9-A silicon triac
IANTX2N6213	37	PWR	High-voltage p-n-p power transistor	$\begin{aligned} & \text { T2313D* } \\ & \text { T2313M** } \end{aligned}$	204	Triac Triac	1.9-A silicon triac 1.9-A silicon triac
IANTXV2N3375	81	RF	VHF/UHF n-p-n power transistor	T27008**	206	Triac Triac	6 -A silicon triac 6-A silicon triac
ANTXV2N3553	81	RF	VHF/UHF n-p-n power transistor	T27108**	206 206	Triac Triac	3.3-A silicon triac 3.3-A silicon triac
ANTXV2N3584	34	PWR	High-voltage n - p-n power transistor	T4100M*	201	Triac	15-A silicon triac

High-reliability versions of these types are available on a custom basis.

Index to High-Reliability Solid-State Devices (Cont'd)

Type	Page	Product Line	Description	Type	Page	Product Line	Description
T4101M*	201	Triac	10-A silicon triac	T6411B*	208	Triac	30-A silicon triac
T4103B*	207	Triac	15-A silicon triac	T64110*	208	Triac	30-A silicon triac
T4103D*	207	Triac	15-A silicon triac	T6411M*	208	Triac	30-A silicon triac
T4104B*	207	Triac	10-A silicon triac	T6414B*	209	Triac	40-A silicon triac
T4104D*	207	Triac	10-A silicon triac	T6414D*	209	Triac	40-A silicon triac
T4105B*	207	Triac	6-A silicon triac	T6415B*	209	Triac	25-A silicon triac
T4105D*	207	Triac	6-A silicon triac	T6415D*	209	Triac	25-A silicon triac
T4110M*	202	Triac	15-A silicon triac	T6421B*	208	Triac	30-A silicon triac
T4111M*	202	Triac	10-A silicon triac	T6421D*	208	Triac	30-A silicon triac
T4113B*	207	Triac	15-A silicon triac	T6421M*	208	Triac	30-A silicon triac
T4113D*	207	Triac	15-A silicon triac	T8401B*	210	Triac	60-A silicon triac
T4114B	207	Triac	10-A silicon triac	T8401D*	210	Triac	60-A silicon triac
T4114D*	207	Triac	10-A silicon triac	T8401 ${ }^{*}$ *	210	Triac	60-A silicon triac
T4115B*	207	Triac	6 -A silicon triac	T8411B*	210	Triac	60-A silicon triac
T4115D*	207	Triac	6-A silicon triac	T84110**	210	Triac	60-A silicon triac
T41208*	202	Triac	15-A silicon triac	T8411M*	210	Triac	60-A silicon triac
T41200*	202	Triac	15-A silicon triac	T8421B*	210	Triac	60-A silicon traic
T4120M*	202	Triac	15-A silicon triac	T84210*	210	Triac	60-A silicon triac
T41218*	201	Triac	10-A silicon triac	T8421M*	210	Triac	60-A silicon triac
T41210*	201	Triac	10-A silicon triac	T8430B*	211	Triac	80-A silicon traic
T4121M*	201	Triac	10-A silicon triac	T84300*	211	Triac	80-A silicon traic
T6401B*	208	Triac	$30-\mathrm{A}$ silicon triac	T8430M*	211	Triac	80-A silicon triac
T6401D*	208	Triac	30-A silicon triac	T8440B*	211	Triac	80-A silicon triac
T6401M*	208	Triac	30-A silicon triac	T8440D*	211	Triac	80-A silicon triac
T6404B*	209	Triac	40-A silicon triac	T8440M*	211	Triac	80-A silicon triac
T6404D*	209	Triac	40-A silicon triac	T8450B*	211	Triac	80-A silicon triac
T6405B*	209	Triac	25-A silicon traic	T84500*	211	Triac	80-A silicon triac
T6405D*	209	Triac	25-A silicon triac	T8450M*	211	Triac	80-A silicon triac

*High-relaibility versions of these types are available on a custom basis.

Index to Application Notes

Number Title Page
AN-6071 Evaluation of Hermeticity of Aluminum TO-3 Packages Under Thermal-Cycling Conditions (Reliability Report) 51
AN-6229 Microwave Power-Transistor Reliability as a Function of Current Density and Junction Temperature 179
AN-6249 Real-Time Controls of Silicon Power-Transistor Reliability 53
AN-6320 Radiation Hardness Capability of RCA Silicon Power Transistors 58
ICAN-6000 Handling Considerations for MOS Integrated Circuits 706
ICAN-6224 Radiation Resistance of COS/MOS CD4000A Series 716
RIC-102C High-Reliability COS/MOS CD4000A Slash (/) Series Types Screened to MIL-STD-883 714
RIC-104A High-Reliability COS/MOS MIL-M-38510 CD4000A-Series Types 720
RIC-202A High-Reliability CA3000 Slash (/) Series Types Screened to MIL-STD-883 415
RIC-204High-Reliability MIL-M-38510 CA3000-Series Types 421
1CE-402 Operating Considerations for RCA Solid-State Devices 740

Introduction to High-Reliability Solid-State Devices

The advent of the transistor in 1948 marked a dramatic step forward in the potential reliability of electronic equipment. Much of this solid-state reliability potential has been realized and, without doubt, has played a key role in the phenomenal growth and diversification of electronics over the past two decades. In spite of this achievement, however, the demand and need for greater reliability assurance in solid-state devices continues to grow.

Electronic systems continue to grow more complex as more comprehensive functions are provided. In the process, greater quantities, or more sophisticated and complex devices are used. The development cycle for systems continues to decrease so that less and less time is available for component reliability testing in operating systems. Electronics systems are becoming interlocked with huge dollar investments, with the social and political fabric of society, and with vital national security to such a degree that a system failure may have immediate and visible impact. Consumers are demanding better warranties at a time when service costs are rising rapidly. Further, a dynamic solid-state technology rapidly generates new devices that offer even greater functional and reliability potential.

Solid-state devices classified as high-reliability types have come to be primarily associated with military and aerospace applications. In many ways, this association is misleading because the commercial equipment market is probably the largest user of high-reliability products, but not necessarily by that label. Military and aerospace agencies, however, have been largely responsible for establishment of comprehensive published reliability specifications and standards which have been accepted by the solid-state industry. MIL standards dominate the procedures used to specify high-reliability solid-state devices and represent a common reference point frequently used by commercial users to define their requirements.

Commercial High-Reliability Requirements

The dominant market for solid-state devices today is commercial. The bulk of the parts produced are initially designed, developed, and manufactured to meet specific functional, quality, and reliability needs of a class of commercial electronic equipment. Commercial equipment tends to be evolutionary and to be produced continuously over longer periods and in larger quantities than is the case with equipment for military and aerospace systems. At the outset, the commercial user is more likely, than is the military and aerospace user, to be involved in influencing the solid-state device manufacturer to his particular functional and economic requirements. His opportunity to evaluate early devices and influence corrective measures for his application is greater. All these factors enhance the ability of both the solid-state manufacturer and the user to reach a
balance between reliability and economics which matches a particular need.

One of the most important factors, which brings lower cost to the commercial user without sacrifice in reliability, is his ability, together with that of the manufacturer, to identify accurately over a period of time a few relatively simple controls and/or screens which can be used to effectively eliminate potential failures in his particular application. This ability is possible because his application is specific and continuous, and device volumes are considerable. The commercial user generally achieves the reliability he requires without elaborate specifications and with a minimum of administrative procedures.

Military and Aerospace High-Reliability Requirements

Military and aerospace requirements for highreliability solid-state devices are extremely large and diverse, not only in terms of performance, operating conditions, and reliability, but also in terms of logistics and procurement. As a result of these requirements, the military services have jointly developed specifications and standards under which most military end-use solid-state devices are procured. To simplify procurement, logistics, and the development of reliability data, MIL specs are not issued for the full spectrum of devices manufactured; rather, they are restricted to those devices for which significant need is demonstrated and are specified so that the device can have as wide applicability as possible. Although the limits for operating conditions may exceed those required for some applications, they simplify procurement and assure a supply of devices for the majority of military equipment. These standards also cover a wide range of requirements for the manufacturer on such things as:
(a) The procedure and requirements for a manufacturer to become certified to manufacture MIL-spec parts.
(b) The requirements for qualifying parts.
(c) Product-assurance provisions in such areas as quality control, inspection procedures, personnel training, cleanliness, failure analysis, and documentation.
(d) Test methods and procedures.
(e) Marking and identification of product.
(f) Preservation and packing.

A large number of transistor types are covered by published military specifications. Specifications for microcircuits (integrated circuits) are relatively new, and only a limited number of military specifications have been approved and issued. Many types of devices, both transistors and integrated circuits, are not covered by military specifications, either because they are too new
or are not used in sufficient quantities. Many of these devices offer the most recent technological advances or have special performance characteristics which offer advantages to the designer of high-reliability equipment. RCA cooperates with the users of such devices in establishment of high-reliability specifications, patterned after MIL standards, which allow these devices to be approved for use in military and aerospace systems, as well as commercial equipment. If the use warrants, these specifications may be submitted by RCA, or the user, to the cognizant military specification agency as candidates for MIL approval as a standard type.

Most procurements of solid-state devices for military systems are made by the equipment contractor from the MIL-STD parts list as awards are received for electronic equipment. Some military and aerospace programs, because of their size, duration, or special requirements (Minuteman and Apollo are two examples), require that special specifications and process methods, or even special production lines, be established and tailored to the particular functional, reliability, and economic needs of the program. RCA Solid State Division has frequently used the resources of its laboratories, production facilities, and expert technical staff to contribute to the success of such programs.

Military Specifications

There are two major military specifications used for the procurement of standard solid-state devices by the military. These specifications are MIL-S-19500, which covers devices such as discrete transistors, thyristors, and diodes, and MIL-M-38510, which covers microcircuits, both hybrid and monolithic.

MIL-S-19500 is the specification for the familiar "JAN'' transistors. Detailed electrical specifications are prepared as needed by the three military services and coordinated by the Defense Electronic Supply Center. At present, approximately five hundred detailed electrical specifications are included in the MIL-S-19500 system.

Three levels of reliability, JAN, TX, and TXV, are defined by MIL-S-19500. Devices designated as JAN types receive lot screening only and are the least expensive. Devices designated as TX receive some 100 -per-cent screening (primarily burn-in) and a tight lotsampling plan. Not all detailed specifications include TX requirements. Devices designated as TXV are tested the same as TX devices; however, they receive an additional visual inspection prior to sealing the package. Only a few detailed specifications include TXV testing.

The Defense Electronic Supply Center maintains a "Qualified Products List'" of all vendors qualified to produce devices in accordance with MIL-S-19500. This list is published periodically and is available to manufacturers of military equipment. NASA, to date, has not been a heavy user of MIL-S-19500, preferring instead to procure devices to their own specifications.

MIL-M-38510 is the relatively new military specification for microcircuits. This specification is far more
demanding than MIL-S-19500 and presently only a few vendors have parts on the Qualified Products List. MIL-M-38510 also defines three levels (classes A, B, and C) of reliability testing. These levels, however, are markedly different from those defined by MIL-S-19500. Class A, the highest level, is intended primarily for flight and other highly critical applications. Class A devices undergo a lengthy list of 100 -per-cent screens, plus a tight lot-sampling plan. Class \mathbf{B} devices are intended for general military usage and undergo less (but still extensive) 100-per-cent testing than Class A units. Class C devices undergo the least amount of 100 -per-cent testing and are, of course, the least expensive.

Approximately 40 detailed specifications are currently included in the MIL-M-38510 system. A Qualified Products List for these devices is maintained by the Defense Electronic Supply Center. NASA is now starting to use MIL-M-38510 specifications.

Both MIL-M-38510 and MIL-S-19500 attempt to make available to the designer of military equipment a list of standard, qualified, general-purpose parts which are acceptable to the military. Although MIL-S-19500 and MIL-M-38510 do not cover every solid-state device available on the market, and do not attempt to do so, enough devices are available to build the majority of military equipment. Use of these devices makes the job of spare-parts inventory far simpler for the military and the job of specification negotiations far easier for the equipment manufacturer.

Special Terms and Definitions

Acceptable Quality Level (AQL) is the maximum percent defective (or the maximum number of defects per hundred units) that for purposes of sampling inspection, can be considered satisfactory as a process average.

Acceptable Reliability Level (ARL) is a nominal value expressed in terms of percent failures per 1000 operating hours specified for acceptance of parts or equipment. It is the level of reliability that will be accepted at some confidence level by a reliability sampling plan.

Acceptance/Rejection Criteria is the extent of defectiveness allowed in a sample of tested product which will assure the quality level specified.

Assignable Causes of Variation are other-thanchance causes, such as unexpected and abnormal variations in material and machines, lack of skill or carelessness in manual operations, abnormal changes in power supply, rough handling, etc. These causes normally can be identified and eliminated economically.

Average is the arithmetic mean of a set of \mathbf{n} numbers. I'he average is obtained by dividing the sum of the numbers by \mathbf{n}.

Average Outgoing Quality (AOQ) is the average outgoing quality of product after 100 percent inspection of rejected lots, with replacement by good units of all defective units found in inspection.

Average Outgoing Quality Limit (AOQL) (in outgoing product after inspection) is the maximum value of the AOQ that a sampling plan will assure over a long period of time, no matter how defective the product may be when submitted for inspection.
Indifference Quality Level (IQL) is the product quality which will be accepted as often as it is rejected. It has a 0.50 probability of acceptance.

Burn-in is a process of "shakedown" operation of each item of finished product that is performed prior to placing the item in use.

Catastrophic Failure is a sudden change in the operating characteristics of the product which would cause the item to be inoperative (e.g., circuit opens or shorts, structural failure, etc.).

Chance or Random Failure is a failure that occurs at random within the operational time of the product after all efforts have been made to eliminate design and before wear-out becomes the predominant cause of failure.

Characteristic is a trait, property, or feature of a specified item, type of item, or group of items.

Confidence Level is the degree of desired trust or assurance in a given result. A confidence level, which always is associated with some assertion, measures the probability that a given assertion is true.

Confidence Interval is a range of values that is believed to include, with a preassigned degree of confidence (confidence level), the true value of a characteristic of the lot or universe for a given percentage of the time. For example, 95% confidence limits for a sample of 10 with a ratio of successes to total number tested of 0.9 (9 successes and 1 failure) would be 0.54 and 1.0; that is, even with an observed success ratio of 0.9 (90%), the best that can be said is that the true ratio lies between $0.54(54 \%)$ and $1.0(100 \%)$ as estimated 95% of the time.

Consumer's (Beta, β) Risk is the probability that a sampling plan will accept unsatisfactory material. Consumer's risk normally is associated with the lot tolerance percent defective (LTPD) having a probability of acceptance of 0.10 .

Control Chart (Quality) is a chart identifying the expected level of a characteristic and statistical control limits placed above and/or below this level. Successive values of some quality measure (e.g., defects-per-unit, defectives, percent defective, averages, etc.) are plotted on this chart for judging patterns and significant variations in the characteristic.

Control Limits (Quality) are the statistical limits (usually designated in multiples of the standard devia-
tion) of the characteristic measured, such as defects per unit, defectives, percent defective, averages, etc., about the expected level. Values fluctuating within the control limits are considered comparable to the expected quality level. Value falling outside these limits indicate a significant change in the measured characteristic.

Defect is the occurrence, in an individual element or part, of a characteristic which fails to meet the specified standard.

Defective is the status of an individual article that contains one or more defects.

Degradation Failure is a failure that results from a gradual change in performance characteristics with time to a value outside the specified limits of the product but would not cause the item to be inoperative.

Environment is the aggregate of all the conditions and influences that can affect the operation of the product (e.g., temperature, humidity, acceleration, shock, vibration, radiation, etc.).

Failure Mechanism is the basic physical or chemical cause for failure.

Failure Mode is the characteristic which was observed to fail.

Failure Rate is defined as the number of failures within a time interval. In the case of exponentially distributed times-to-failure, the failure rate is defined as the reciprocal of mean-time-to-failure (i.e., failure rate equals $1 / \mathrm{m}$, where m is the mean time between failures).

Heterogeneity is a state or conditions of dissimilarity of nature, kind, or degree.
Homogeneity is a state or condition of similarity of nature, kind, or degree.

Inherent Reliability is maximum reliability attainable with an item of a particular design.

Inspection (Final) is the application of an inspection act, just prior to shipment of the product. Shipment in this case may be to the customer, to a storage area, or to assembly shops within RCA, where the product in question becomes a component of a larger unit of product.

Inspection (Process) is the application of an inspection act at various stages in the manufacturing process prior to the final stage.

Inspection Act is the determination of conformance to specified requirements and general standards of acceptable workmanship.

Inspection Item is any specific requirement, characteristic, or feature for which inspection is made.

Inspection Lot, for purposes of acceptance-sampling inspection, is defined as an aggregation of articles submitted for inspection at one time that has been produced, as far as practicable, under what are judged to be essentially the same conditions.

Inspection Point is a designated position within the manufacturing process at which inspection effort is applied.

Inspection by Attributes is the determination of conformance of a particular inspection item without reference to degree or magnitude. For example, go/no-go testing.

Inspection by Variables consists of a determination of the magnitude of the characteristic covered by the inspection item and use of approved statistical quality control techniques to determine conformance to specifications.

Lambda, λ (Life Test Failure Rate) is defined as the lot tolerance percent defective (LTPD) per 1000 hours.

Lot Tolerance Percent Defective (LTPD) is the percent defective of a sampling plan for which the probability of acceptance is low (commonly 10% probability of acceptance unless otherwise stated).

Mean Time Between Failures (MTBF) is the average time between failures.

Operating Time is the time during which power is applied to an item.

Parameter is a quantity or value that remains constant within a given set of conditions (i.e., is subject to change only if the conditions change).

Population (Universe) is the total collection of units from a common source.

Precision is the degree to which repeated observations of a class of measurements conform to themselves.

Process Average is the average percent defective or average number of defects per hundred units of product found during initial inspection. Initial inspection is the first inspection of product (as distinguished from inspection of product resubmitted after prior rejections) and includes only first sample results where multiple sampling plans are used.

Producer's (Alpha, α) Risk is the probability that a sampling plan will reject satisfactory material. Producers risk normally is associated with a percent defective which has a probability of rejection of 0.05 .

Random Selection is the selection of items from a population in a manner such that each item has an equal and independent chance of being elected.

Range is the difference between the greatest and the least of a set of variate values.

Real Time Control is a continuous acceptance and interpolation of data against established criteria.

Redundancy is the existence of more than one means for accomplishing a given task in which more than one means must fail before there is an overall failure of the system.

Reliability (Mathematical) is the probability of an item performing its intended purpose for a specified period of time under given conditions.

Sample is a group of items chosen by random selection.

Sampling Inspection is a random and representative selection of a portion of the units from a lot in accordance with the specified sampling plan. Each unit in the selected sample is inspected to determine whether or not each unit conforms to specification requirements.

Sampling Plan is an inspection plan that specifies sample sizes and criteria for accepting or rejecting an inspection lot based on the results of inspecting the sample.

Shelf Life is the length of time an item can be stored under specified conditions and still meet specified requirements with a specified level of assurance.

Specification is a detailed description of the characteristics of a product and of the criteria that must be used for determining whether the product conforms to the description.

State of the Art is the level at which technology has been developed at any period of time.

Stratified Sample is a group of items selected from sublots so that the number of items included in the sample from each sublot is proportional to the size of the sublot. Random selection of items from within each sublot is required.

Tolerance is the allowable variation in measurements within which an item is judged acceptable.

Useful Life is the total operating time between burn-in and wear-out.

Variables Testing is a test procedure in which the items under test are classified according to quantitative, rather than qualitative, measure of characteristics.

High-Reliability
 Power Transistors

High-Reliability Power Transistors

A number of factors such as second breakdown, power dissipation, current and voltage ratings, maximum operating areas, temperature, and thermal-fatigue considerations affect the performance and reliability of power transistors in various circuit applications. These factors define the maximum limits of reliable transistor operation for both steady-state and pulsed conditions. Each of these factors must be given careful consideration in the development and production of power transistors for military, aerospace, and critical industrial applications for which high reliability is a prime objective. In such applications, replacement of defective parts is often difficult or impossible or may result in considerable expense. Care must be taken to assure that field failure rates are held to an absolute minimum. The following guidelines should be followed in an effort to achieve this objective.

Electrical Considerations:

Voltage Device voltages should be limited to 70 Breảkdowns per-cent of the maximum rates values.

Current A margin of 15 to 20 per cent above the

Gain

Second- Sufficient Is/b protection must be providBreakdown
Energy Tests ed for forward-bias conditions and sufficient Es/b protection must be provided for inductive circuits.

Reliability Considerations:

High- Such tests are required to guarantee highTemperature temperature performance.
Tests
Low-Level Test for stability.
Leakage
Tests
$\begin{array}{ll}\text { Delta } & \begin{array}{l}\text { Adequate heat sinks must be provided } \\ \text { Temperature } \\ \text { so that case temperature is held to a }\end{array} \\ \text { Tests } & \text { minimum. } \\ \text { Operating } & \begin{array}{l}\text { Device operating temperatures should be }\end{array} \\ \text { Temperature } & \text { limited to } 50 \text { to } 75 \text { per cent of maximum }\end{array}$
$\begin{array}{ll}\text { Delta } & \begin{array}{l}\text { Adequate heat sinks must be provided } \\ \text { Temperature }\end{array} \\ \text { so that case temperature is held to a } \\ \text { Tests } & \text { minimum. }\end{array}$
$\begin{array}{ll}\text { Delta } & \begin{array}{l}\text { Adequate heat sinks must be provided } \\ \text { Temperature }\end{array} \\ \text { so that case temperature is held to a } \\ \text { Tests } & \text { minimum. }\end{array}$
$\begin{array}{ll}\text { Delta } & \begin{array}{l}\text { Adequate heat sinks must be provided } \\ \text { Temperature } \\ \text { To that case temperature is held to a } \\ \text { minimum. }\end{array} \\ & \\ \text { Operating } & \begin{array}{l}\text { Device operating temperatures should be }\end{array} \\ \text { Temperature } & \text { limited to } 50 \text { to } 75 \text { per cent of maximum }\end{array}$
$\begin{array}{ll}\text { Delta } & \begin{array}{l}\text { Adequate heat sinks must be provided } \\ \text { Temperature } \\ \text { so that case temperature is held to a } \\ \text { minimum. }\end{array} \\ & \\ \text { Operating } & \begin{array}{l}\text { Device operating temperatures should be }\end{array} \\ \text { Temperature } & \text { limited to } 50 \text { to } 75 \text { per cent of maximum }\end{array}$
$\begin{array}{ll}\text { Delta } & \begin{array}{l}\text { Adequate heat sinks must be provided } \\ \text { Temperature } \\ \text { so that case temperature is held to a } \\ \text { minimum. }\end{array} \\ & \\ \text { Operating } & \begin{array}{l}\text { Device operating temperatures should be }\end{array} \\ \text { Temperature } & \text { limited to } 50 \text { to } 75 \text { per cent of maximum }\end{array}$
$\begin{array}{ll}\text { Delta } & \begin{array}{l}\text { Adequate heat sinks must be provided } \\ \text { Temperature }\end{array} \\ \text { so that case temperature is held to a } \\ \text { Tests } & \text { minimum. }\end{array}$
$\begin{array}{ll}\text { Delta } & \begin{array}{l}\text { Adequate heat sinks must be provided } \\ \text { Temperature }\end{array} \\ \text { so that case temperature is held to a } \\ \text { Tests } & \text { minimum. }\end{array}$ rated values.

Transistor Circuits should include provisions to proProtection required values should be provided to allow for degradation. tect power transistors against electrical transients.

Second Breakdown

Second breakdown is a potentially destructive phenomenon that can occur in all power transistors within the maximum current and voltage ratings of the device. A simplified explanation is that localized thermal regeneration occurs, and the transistor exhibits a lower value of breakdown voltage, referred to as the "second breakdown". The lower value of voltage results from thermal generation of charge-carrier pairs (holes and electrons) at high localized temperatures which alter the conductivity of the semiconductor in that vicinity. This localized effect reduces the ability of the transistor to support the applied voltage. Fig. $2-1$ shows qualitatively what happens under primary or second breakdown.

Fig. 2-1-Primary and secondary breakdown voltages.
Reverse-Bias Second Breakdown-Reversebias second breakdown is a phenomenon that may occur when the collector current continues to flow under reverse-bias conditions and causes the injected current to be concentrated in the central portions of the emitter, in contrast to the normal edge injection of the current. If the injected current is severely restricted to a very small central area by a large reverse emitter-base bias, the current density can rise to very large levels-in the order of thousands of amperes per square centimeter. If the collector of the transistor is of high-resistivity suicon, the nign current density may inject a density of charge carriers that is equal to or greater than the collector impurity density. In this local region, the base widens and the collector depletion layer expands until the injected current density is smaller than the collector impurity density. If the current density is sufficiently high, the collector depletion layer expands to a more heavily doped collector region, such as an epitaxial substate. When the collector depletion layer expands, the collector breakdown voltage is governed by the impurity gradient related to the base doping and the heavily doped collector. The collector breakdown voltage normally supports only a fraction of the original
voltage, and the second-breakdown voltage results. The thermal effects from the large current densities also contribute to the regeneration process. Fig. 2-2 shows the process of reverse-bias second breakdown.

Fig. 2-2-Reverse-bias second breakdown.
In an inductive circuit, a situation exists such that collector current flows in the forward direction while the transistor is being turned off, and a high voltage is induced across the device. As a result, the transistor enters the sustaining region. The hot spot that forms during reverse-bias second breakdown may then be generated by current crowding in the depletion region, as shown in Fig. 2-3.

Fig. 2-3-Cross section showing current crowding that occurs during reverse-bias second breakdown.

The reverse base current that flows laterally through the base region creates an electric field. For an n-p-n transistor, electrons flow from the emitter to the collector across the base region. The field causes these carriers to flow mainly from the center of the emitter, because the emitter-base forward bias is greatest at this point. Because the device is in the sustaining region as a result of circuit conditions, a depletion region is present. Carriers (electrons) that flow across this region, which resembles two plates of a capacitor, decrease in potential. Therefore, energy is transformed to heat and causes a hot spot and possibly reverse-bias second breakdown (Es/b). Typical examples of this situation are circuits, such as those shown in Fig. 2-4, in which an unclamped inductive load or a non-commutated leakage inductance is present.

Anything that increases the transverse base field aggravates hot-spot formation. Therefore, higher reverse base currents that result from decreased base-drive resistance or higher reverse voltages diminish Es/b capabil-

Fig. 2-4-Examples of (a) unclamped inductive loads and (b) uncommutated leakage inductance.
ity, as shown in Fig. 2-5. This figure shows the effect of variations in the external base-to-emitter resistance Rbe, the reverse base-to-emitter voltage Vbe, and the load inductance L.

(a)
(b)

Fig. 2-5-(a) Typical inductive-load circuit and (b) variation of second-breakdown capability as a function of circuit parameters.

A test set which makes the measurement of reversebias second breakdown possible and also protects the transistor being tested is shown in Fig. 2-6. A test cycle includes the following steps:

1. The transistor is driven to the desired collectorcurrent level in saturation.
2. The transistor is reverse-biased.
3. The transistor enters the sustaining region, VCEX(sus).
4. Energy is absorbed by the transistor.

If failure occurs, high-frequency noise is sensed at the base of the transistor. A "crowbar" (transistor) in parallel with the transistor being tested is then turned on, and energy is shunted through this "crowbar"' to protect the transistor undergoing the test. Fig. 2-7 shows the voltage-current relationship during the reverse-bias second-breakdown (Essb) test.

Forward-Bias Second Breakdown-Forwardbias second breakdown is somewhat different from reverse-bias second breakdown. As shown in Fig. 2-8, the localized heating results because the current density J crosses the depletion region (collector field) V_{c} to yield a power density \mathbf{P}. As \mathbf{P} increases, more current

Fig. 2-6-Reverse-bias second-breakdown (Esib) test set.

Fig. 2-7-Waveforms during second-breakdown (Ess/b) test.

Fig. 2-8-Forward-bias second breakdown.
is injected into the localized area. The increase in current is caused by a decrease in the localized Vbe, at an approximate rate of 2 millivolts per ${ }^{\circ} \mathrm{C}$. The local system becomes regenerative as more heat from the increased power density reduces Vbe and thereby increases the current injection.

The forward-bias second-breakdown current, Is/b, is defined as the current at the onset of second breakdown, and is closely related to the collector field V_{c}, the current density \mathbf{J}, and other properties of the transistor. Forward-bias second breakdown is also related to charge-carrier transit time across the base region, and is controlled by base width and any accelerating fields that exist in the base. The longer the transit time required for the charge carrier to cross the base, the more lateral diffusion of the charge and thus the greater the reduction in the current density at the edge of the collector depletion layer. This diffusion effect, referred to as "fanout,'" is enhanced by wide base widths and homogeneously doped bases. Because the forward-bias second breakdown is related to the base width, it is also related to frequency response. For a given structure, this frequency relationship is expressed by the following empirical equation:

$$
\mathrm{I}_{\mathrm{S} / \mathrm{b}} \approx\left(\frac{1}{\sqrt{\mathrm{r}_{\mathrm{T}}}}\right)^{\mathrm{K}}
$$

Operation in the forward-bias region subjects the transistor to simultaneous current and voltage. This condition causes current concentrations as previously discussed. This type of rating must be considered for all linear applications of transistors.

The block diagram of a nondestructive secondbreakdown test set is shown in Fig. 2-9. The transistor under test is in series with a pass transistor and is driven by a differential amplifier at a current level selected by the operator. The level selected is independent of transistor current-transfer ratio. The pass transistor is operated out of saturation, so that fast turn-off is possible. A second differential amplifier senses the voltage across the pass transistor and the 1 -ohm resistor in series with it. This voltage is held constant throughout the test to improve the accuracy of the secondbreakdown voltage reading. The circuit is arranged so that only the collector current of the transistor under test passes through the 1 -ohm resistor. The voltage across this resistor, therefore, provides an accurate indication of collector current.

Fig. 2-9-Block diagram of test set for forward-bias secondbreakdown current (l/s/b).

The onset of second breakdown is detected by use of the primary of a pulse transformer connected in series with the collector of the transistor under test. Under second-breakdown conditions, the rapid rate of rise of collector current induces a voltage $\mathrm{L}(\mathrm{di} / \mathrm{dt})$ in the transformer secondary which is coupled to the input circuit of the series pass transistor. This voltage turns off the series pass transistor in one microsecond. Simultaneously, a voltage is developed across the transformer primary of a polarity that immediately reduces the voltage across the transistor under test. The inductance of the transformer also aids in limiting immediate current rise in the transistor being tested.

The test-set characteristics, together with the protective cutout circuit, prevent damage to the transistor during the second-breakdown test. The complete cutout time of the actual test set is approximately one microsecond; this value is sufficient to prevent destruction of any transistor currently available.

The pulse width of the voltage and current applied to the transistor under test can be varied from 0.5 millisecond to several seconds. For dc second-breakdown tests, a pulse width of 0.5 to 2 seconds is required because the thermal time constant of the power-transistor pellet and mounting block may be several tenths of a second.

A comparison of energy-handling capability for several transistor structures is shown in Table 2-1.

Table 2-1-Comparison of Energy-Handling Capability

$\mathrm{I}_{\mathrm{C}} \times \mathrm{V}_{\mathrm{CEO}}$ (1-Second pulse)		Forward Bias Energy Handling at $\mathrm{V}_{\mathrm{CEO}}$ Limit J	Reverse-Bias Energy $\mathrm{E}_{\mathrm{S} / \mathrm{b}}$ mJ
Doped - $\pi \nu$			
2N5240	0.08×300	024	1.6
2N5840	0.02×350	$0 \quad 7.0$	0.45
Double-diffused, double-epitaxial			
2N5038	0.25×90	22.5	13
2N5672	0.12×120	$0 \quad 14.4$	20
2N6032	0.05×120	$0 \quad 6$	40
2N3879	0.09×75	6.85	1.0
Hometaxial- Base			
2N5578	1.5×70	105	800
2N3055	1.9×60	115	170
2N3773	0.6×140	84	310

Inductive Voltage-Breakdown Testing

In most practical applications of transistors, the highest voltage that appears across the transistor results from the turn-off of the transistor, because the transistor switches from a high-current "on"' state to a "cut-off", state. Inductive testing simulates this condition very closely, as shown in Fig. 2-10. Curve-tracer testing, on the other hand, subjects the transistor to an increasing voltage until the required current is achieved; i.e., the

Fig. 2-10-Inductive voltage-breakdown testing of a transistor: (a) load line; (b) test circuit.
high-current, high-voltage measuring point is approached from the other direction with the collector current Ic lagging the collector-to-emitter voltage Vce, as shown in Fig. 2-11. Unless sufficient current is supplied to the place the transistor in the sustaining region, the breakdown voltage measured is artificially high. If this high current is passed through a transistor with a high breakdown voltage, a high dissipation results. This dissipation is not uniformly distributed over the whole junction, but tends to concentrate in the spots with the lowest breakdown. This concentration is further aggravated when the base-to-emitter junction is reversebiased. The small areas that break down first form hot spots. These hot spots result in further current concentration with time, and possible device destruction. Fig. 2-12 shows the test circuit used in the curve-tracer test.

Fig. 2-11-Load line for curve-tracer voltage-breakdown testing.

Fig. 2-12-Test setup for curve-tracer voltage-breakdown testing.
The 8-millisecond sweep of a curve tracer is relatively slow compared to inductive sweeping. This sweep allows time for the current to concentrate and to deliver an, appreciable and variable amount of energy. Inductive testing, on the other hand, delivers a relatively fixed amount of energy in a short time (0.6 millisecond maximum for the 2N4348 transistor). Less concentration of current is allowed, and the test is potentially less destructive and provides a more realistic rating. Curve-
tracer testing may reject transistors that will operate satisfactorily in any practical application because the opportunity for the occurrence of hot spots is increased, and lower values of VCEO are measured.

Effect of Temperature on Silicon Transistors

The characteristics of transistors vary with changes in temperature. In view of the fact that most circuits operate over a wide range of environments, a good circuit design should compensate for such changes so that operation is not adversely affected by the temperature dependence of the transistors.

Current Gain-The effect of temperature on the gain of a silicon transistor is dependent upon the level of the collector current, as shown in Fig. 2-13. At the lower current levels, the current-gain parameter hre increases with temperature. At higher currents, however, hFE may increase or decrease with a rise in temperature because it is a complex function of many components.

Fig. 2-13-Current gain as a function of collector current at different températures.

Base-to-Emitter Voltage-Fig. 2-14 shows the effect of changes in temperature on the base-to-emitter voltage (Vbe) of silicon transistors. Two factors, the base resistance (rb') and the height of the potential barrier at the base-emitter junction (Vbe'), influence and behavior of the base-to-emitter voltage. As the temperature rises, material resistivity increases; as a result, the value of the base resistance rob' becomes greater. The barrier potential Vbe' of the base-emitter junction, however, decreases with temperature. The following equation shows the relationship between the base-to-emitter voltage and the two temperature-dependent factors:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{BE}} & =\mathrm{I}_{\mathrm{B}} \mathrm{r}_{\mathrm{bb}}{ }^{\prime}+\mathrm{V}_{\mathrm{BE}^{\prime}} \\
& =\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{~h}_{\mathrm{FE}}} \mathrm{r}_{\mathrm{b}}{ }^{\prime}+\mathrm{V}_{\mathrm{BE}^{\prime}}
\end{aligned}
$$

As indicated by this equation, the base-to-emitter voltage diminishes with a rise in temnerature for low values of collector current, but tends to increase with a rise in temperature for higher values of collector current.

Collector-to-Emitter Saturation Voltage-The collector-to-emitter saturation voltage VCE (sat) is affected primarily by collector resistivity (ρ_{C}) and the

Fig. 2-14-Collector current as a function of base-to-emitter voltage at different temperatures.
amount by which the natural gain of the device (hFe) exceeds the gain with which the circuit drives the device into saturation. This latter gain is known as the forced gain (hFEf).

At lower collector currents, the natural hFE of a transistor increases with temperature, and the IR drop in the transistor is small. The collector-to-emitter saturation voltage, therefore, diminishes with increasing temperature if the circuit continues to maintain the same forced gain. At higher collector currents, however, the IR drop increases, and gain may decrease. This decrease in gain causes the collector-to-emitter saturation voltage to increase and possibly to exceed the room-temperature $\left(25^{\circ} \mathrm{C}\right)$ value. Fig. 2-15 shows the effect of temperature on the collector-to-emitter saturation voltage.

Fig. 2-15-Collector current as a function of collector-toemitter saturation voltage at different temperatures.

Collector Leakage Currents-Reverse collector current is a resultant of three components, as shown by the following equation:

$$
\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{D}}+\mathrm{I}_{G}+\mathrm{I}_{\mathrm{S}}
$$

Fig. 2-16 shows the variations of these components with temperature.

Fig. 2-16-Reverse collector current as a function of temperature.

The diffusion or saturation current Ib is a result of carriers that diffuse to the collector-base junction and are accelerated across the depletion region. This component is small until temperatures near $175^{\circ} \mathrm{C}$ are reached. The component Ig results from charge-generated carriers that are created by the flow of diffusion carriers across the depletion region. This component increases rapidly with temperature. ID and IG are referred to as bulk leakages. The term Is represents surface leakage which is caused by local inversion, channeling, ions, and moisture. This leakage component is dependent on many factors, and its variations with changes in temperature are difficult to predict.

At low temperatures, either surface or bulk leakage can be the dominant leakage factor, particularly in transistors that employ a mesa structure. At high temperatures, charge-generated carriers and diffusion current are the major causes of leakage in both mesa and planar transistor structures; the current Ig, therefore, is the dominant leakage component. Because of the dominance of surface leakage Is at low temperatures and the fact that this leakage may vary either directly or inversely with temperature, it is not possible to define a constant ratio of the leakage current at low temperatures to that at high temperatures. In view of the fact that power transistors are normally operated at high junction temperatures, it is more meaningful to compare the leakage characteristics of both mesa and planar transistors at high temperatures. The relative reliability of different types of power transistors, which is in no way related to the magnitude of low-temperature leakage current, is also best compared at high temperatures.

Pulsed Safe-Area Systems

On the basis of the heat storage in the thermal mass of the silicon chip and its mounting system, the peak power-handling capability of transistors increases with decreases in pulse duration. Fig. 2-17 shows normalized thermal resistance N_{R} as a function of time for a specific transistor and indicates that power substantially higher than rated steady-state values may be applied for short periods of time without exceeding the maximum rated junction temperature. These values of increased power correspond to $\left(1 / N_{R}\right) P($ dc $)$, where $1 / N_{R}$ is the normalized power multiplier and $\mathrm{P}(\mathrm{dc})$ is the steady-state power rating at the case temperature of interest.

NORMALIZED THERMAL RESISTANCE

Fig. 2-17-Normalized thermal resistance.

The dissipation-limited region of the pulsed safe-area rating chart shown in Fig. 2-18 is prepared by use of the normalized thermal resistance from the following equation:

$$
\mathrm{P}_{\mathrm{diss}}=\left[\mathrm{T}_{\mathrm{J}}(\max)-\mathrm{T}_{\mathrm{C}}\right] / \theta_{\mathrm{J}-\mathrm{C}}\left(\mathrm{~N}_{\mathrm{R}}\right)
$$

This equation indicates a constant-power curve which can be represented on a log-log volt-ampere graph by a straight line that has a slope of -1 (from $\mathrm{I}=\mathrm{PV}-{ }^{-1}$).

The pulsed power curves are usually calculated and then verified by nondestructive tests along the constantpower curves from low to higher voltages. When dissipation is the only limiting factor, the -1 slope is continued to the transistor forward-biased avalanche breakdown voltage rating, at which point $V_{a m}=1$ and may be approximated by Vceo(sus). When second breakdown (I / b) is the limiting factor, the slope changes from -1 to a higher value, usually between -1.5 and -4 , according to the following relationship:

$$
\mathrm{I}_{\mathrm{S} / \mathrm{b}}=\mathrm{PV}^{-\mathrm{N}}
$$

Fig. 2-18-Safe-operating-area chart.
Fig. 2-19 shows the derating curve for operation of a power transistor at case temperatures above $25^{\circ} \mathrm{C}$. The I / s limit is derated less with increasing temperature than the dissipation limit because the concentration of current that results in circuit breakdown is less severe than dissipation factors as temperature increases.

Fig. 2-19-Derating curve for case temperatures above $25^{\circ} \mathrm{C}$.

For pulsed operation, the derating factor shown in Fig. 2-19 must be applied to the appropriate curve on the safe-area rating chart. For the derating, the effective case temperature Tc (eff) may be approximated by the average junction temperature $\mathrm{T}_{\mathrm{j}}(\mathrm{av})$. The average junction temperature is determined as follows:

$$
\mathrm{T}_{\mathrm{j}}(\mathrm{av})=\mathrm{T}_{\mathrm{C}}+\mathrm{P}_{\mathrm{AV}}\left(\theta_{\mathrm{J}-\mathrm{C}}\right)
$$

This approach results in a conservative rating for the pulsed capability of the transistor. A more accurate determination can be made by computation of actual instantaneous junction temperatures.

Depending upon whether time markers can be placed along the load line, two methods are available to determine whether a transistor will be operated within its safe-area limits in a given circuit.
I. Without Time Markers: The energy of the load line is concentrated at a single point ($\mathrm{I} w, \mathrm{Vw}$) at which the greatest load-line penetration outside the safe area occurs. Multiplication of the waveforms of collector current IC and the collector-to-emitter voltage Va yields a waveform of instantaneous power as a function of time. Integration of one cycle of this instantaneouspower waveform results in an energy E. The width (t_{p}) of an equivalent pulse may be determined as follows:

$$
\mathrm{t}_{\mathrm{p}}=\mathrm{E} / \mathrm{V}_{\mathrm{W}} \mathrm{I}_{\mathrm{W}}
$$

The voltage Vw , the current Iw, and the pulse width $t \mathrm{t}$ are compared to the corresponding values of the pulsed safe area on the derated curves.
2. With Time Markers: If time-marked load lines are available, either through the use of dual-trace waveforms of collector-to-emitter voltage and collector current as a function of time or Z-axis modulation of
oscilloscope traces, an alternative approach may be used. The marked load line is sketched on the derated curves. If the transistor is being operated in the safe area, the trace time of the portion of the load line that extends outside a given pulsed safe area should not be greater than the specified pulsed width for that safe area. For example, the load line should not spend more than 1 millisecond outside the 1 -millisecond safe area.

Thermal Fatigue

Significant temperature variations occur in power transistors because of changes in ambient temperature and in the power dissipation during operation. These variations in temperature result in cyclic mechanical stresses at the interface of the semiconductor pellet and the metal header to which the pellet is bonded because of the difference in the thermal expansions of these parts. These stresses are a function of the difference in the coefficients of thermal expansion of the semiconductor and metallic materials, of the change in temperature at the interface, and of the dimensions of the interface.

Power transistors are subjected to thermal-cycling stresses in all practical applications. Table 2-2 lists examples of the thermal cycling that a power transistor may be required to withstand in several typical applications. These data show that the thermal-cycling requirements may be very severe even in some of the more common types of applications. The cyclic stresses produced by the continuous thermal cycling may result in dislocation "pile-ups"' at points of discontinuity such as may be produced by voids and impurities. Such dislocations cause localized hardening and cracks that may eventually lead to transistor failures. This type of failure

Table 2-2 - Thermal-Cycling Requirements, for Typical Applications of Power Transistors.

Application	Circuit	$\mathrm{P}_{\boldsymbol{T}}$ (W)	$\Delta T C$ $\left({ }^{\circ} \mathrm{C}\right)$	Minimum Equipment Life Required (years)	Typical ThermalCycling Rating Required (cycles)
Auto radio audio output	$\begin{array}{ll} \hline \hline \text { Class } & \mathrm{A} \\ \text { Class } & \mathrm{AB} \end{array}$	$\begin{aligned} & 8 \\ & 2 \end{aligned}$	$\begin{aligned} & 75 \\ & 45 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5,000 \\ & 5,000 \end{aligned}$
Power supply	Series regulator Switching regulator	$\begin{aligned} & 50 \\ & 15 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5,000 \\ & 5,000 \end{aligned}$
$\mathrm{Hi} \cdot \mathrm{Fi}$ audio amplifier	Class AB	35	50	5	5,000
Computer power supply	Series regulator	50	65	10	10,000
Computer peripheral equip.	Solenoid driver	5	5	10	1.3×10^{8}
Television	Vertical output Audio output	$\begin{gathered} 10 \\ 8 \end{gathered}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5,000 \\ & 5,000 \end{aligned}$
Sonar modulator	Linear amplifier	100	55	10	144×10^{3}

may be considered simply as fatigue wearout that results from continuous flexing of materials during thermal cycling.

Effect of Assembly Methods and Package Material on Thermal-Cycling Capability - The thermal-cycling stresses set up at the interface of two dissimilar materials because of the difference in the coefficients of thermal expansion of the materials can be reduced by insertion of a material that has an intermediate expansion coefficient between them. Fig. 220(a) illustrates the use of a molybdenum slab as an expansion matcher in a silicon power transistor to reduce the cyclic thermal stresses between the silicon pellet and the copper header. Use of this technique can result in significant improvement in the thermal-cycling capability of power transistors.

Fig. 2-20-Cross section of a transistor that uses a molybdenum expansion matcher between pellet and header; (b) cross section of a transistor in which pellet is soldered directly to copper.
Use of silicon-gold eutectic bonding to attach the semiconductor pellet to the header results in a pellet-to-header joint that can withstand a very large number of number of thermal cycles. When this type of hardsolder bonding is used, however, the stress generated because of a thermal mismatch is transmitted to the pellet, which in most power transistors is made of silicon. Because silicon is relatively weak in tensile strength and is highly " notched sensitive," the cyclic thermal stresses may result in the propagation of cracks in the silicon pellet unless either the pellet is very small or an expansion matcher is used.

In most silicon power transistors, lead solder is used to bond the pellet to the header. The cyclic thermal stresses produced at the mounting interface are then absorbed by non-elastic deformation of the soft solder material, and very little stress is transmitted to the pellet. The continuous flexing of the solder, however, may eventually lead to fatigue failure in this material. Any impurities in the solder results in dislocation pile-ups that accelerate the failure. RCA has developed a process that significantly reduces the impurities introduced into
the lead solder. Use of this proprietary "controlled solder process" (CSP) makes it possible to avoid microcracks that propagate to cause fatigue failures in power transistors and, therefore, greatly increases the thermalcycling capability of these devices.

Thermal-Cycling Rating Chart-An equipment manufacturer should make certain that power-transistor circuits are designed so that cyclic thermal stresses are mild enough to assure that no transistor fatigue failures occur during the required operating life of this equipment. Experimental results indicate that the thermalcycling capability of a power transistor can be predicted by use of the following mechanical-activation energy equation:

$$
\mathrm{N}=\mathrm{Ae}_{1 .} / \Delta \mathrm{T}
$$

where N is the number of cycles to failure, A is a system constant, γ_{ϕ}. is a constant proportional to the mechanical-activation energy required to produce a failure, and $\Delta \mathrm{T}$ is proportional to the energy supplied as a result of the change in temperature at the mounting interface.

The above equation, together with empirical data, forms the basis for a new thermal-cycling rating system developed by RCA. This rating system, which is the first of this type in the industry, shows the relationship between total transistor power dissipation, the change in case temperature, and the number of thermal cycles that the transistor is rated to withstand.

Fig. 2-2 1 shows a typical thermal-cycling rating chart . This chart is provided in the form of a log-log presentation in which total transistor power dissipation is denoted by the ordinate and the thermal-cycling capability (number of cycles to failure) is indicated by the abscissa. Rating curves are shown for various magnitudes of change in case temperature. Use of this chart makes it possible for a circuit designer to avoid transistor thermal-fatigue failures during the operating life of this equipment. In general, power dissipation is a fixed system requirement. The designer also knows the number of thermal cycles that a power transistor will be subjected

Fig. 2-21-Thermal-cycling rating chart for an RCA hermetic power transistor.
to during the minimum required life of the equipment. For these conditions, the chart indicates the maximum allowable change in case temperature. (If the rating point does not lie exactly on one of the rating curves, the allowable change in case temperature can be approximated by linear interpolation.) The designer can then determine the minimum size of heat sink required to restrict the change in case temperature within this maximum value.

Thermal-cycling ratings are included in the technical data for all RCA silicon power transistor announced since January 1, 1971. Similar ratings are being added for earlier power transistors as sufficient date are accumulated.

RCA experience in determining thermal-cycling rating has shown that package material is also a very important consideration in relation to thermal fatigue. Comparison data on the RCA steel packages and aluminum packages are given in the RCA Reliability Report, "Evaluation of Aluminum TO-3 Packages Under Thermal-Cycling Conditions'" (AN-6071), shown later in the section Application Notes on Power Transistors.

These data show that the thermal-cycling capability of RCA's steel package with its glass-to-stem seal, welded cap, and controlled solder process is far superior (more than an order of magnitude better) to that of a similar type aluminum package and hard-solder mounting system.

Thermal-Fatigue Testing-The RCA thermalcycling ratings allow a circuit designer to use power transistors with assurance that fatigue failures of these devices will not occur during the minimum required life of his equipment. These ratings provide valid indications of the thermal-cycling capability of power transistors for all types of operating conditions. On the basis of these ratings, limiting conditions can be established during circuit design so that the possibility of transistor thermal-fatigue failures are avoided.

Obviously, all individual power transistors cannot be tested to determine their thermal-cycling capability because such tests are expensive, time consuming, and destructive. The validity of the RCA thermal-cycling ratings results from the application of stringent process controls at each step in the manufacture of power transistors and from the testing of a statistically significant number of samples. Thermal-cycling ratings for power
transistors provide the same type of assurance that a device will not fail when operated within ratings as that provided by the more familiar voltage, current, and second-breakdown ratings.
During thermal-fatigue testing of power transistors, the operating power for the device is usually equivalent to that expected to be applied during normal operation. The transistor is operated until the rise in case temperature is equal to the maximum value anticipated in the intended application. The case temperature is then reduced to the initial value by use of forced-air or water cooling. The cycle is repeated until failure occurs, as indicated by a significant increase in the transistor thermal resistance. The transistor heat sink and the timing of the temperature-cycling are selected to simulate as closely as possible the actual conditions that the transistor will be subjected to in the actual application. Table 2-3 shows the results of thermal-fatigue tests on several RCA transistors.

Effect of Radiation on RCA Power Transistors

There has been an increasing requirement for modern military systems to be "radiation hard", i.e., resistant to the effects of nuclear radiation. The electronic equipment in these systems must be carefully designed to achieve the required hardness. Solid-state devices have been the subject of particularly close attention.

Nuclear radiation has two major effects on power transistors. First, photocurrents generated by highintensity irradiation can cause transistor saturation and possible circuit malfunction during the exposure. Second, prolonged exposure to bombardment by heavy particles such as neutrons can cause permanent changes in the transistor characteristics. These changes, which are caused by displacement damage to the semiconductor crystal, are primarily manifested as a decrease in transistor gain and an increase in saturation voltages. Table 2-4 summarizes the basic considerations relative to both displacement damage and photocurrents.

Power transistors must be optimally designed to minimize these radiation effects and maintain the required power-handling capability. The key design parameters are a thin low resistivity, low volume base, and a collector as thin and as low in resistivity as possible consistent with voltage breakdown requirements. Trans-

Table 2-3 - Thermal-Fatigue Performance of some Typical RCA Power Transistors

Type	Pellet Size Mils x Mils		Mounting Material	Material to which Die is Attached	CSP	Change in Case Temp. oc	Power Dissipation Watts	No. of Cycles. to 10\% Failure
2N3773*	250	250	Lead	Copper	No	42	85	1,000
2N3773	250	250	Lead	Molybdeum	No	42	85	9,600
2N3772	250	250	Lead	Copper	Yes	90	16	$34,500^{* *}$
2N3055	180	180	Lead	Copper	No	65	50	3,500
2N3055	180	180	Lead	Copper	Yes	90	6.7	$40,000^{* * *}$
2N6032	230	230	Silicon Gold	Molybdeum	No	53	105	$12,793^{* * *}$
2N5298	130	130	Lead	Copper	No	50	18	10,000
2N5240	130	130	Lead	Copper	Yes	42	51	$8,500^{* * *}$
2N5039	145	183	Lead	Copper	Yes	73	59	$10,000^{* * *}$

[^0]Table 2-4 - Effect of Nuclear Radiation on Power Transistors

Displacement Damage		Photocurrents	
Cause	Heavy particles, such as neutrons, bombarding the transistor and creating defects in the semiconductor material. Decreases lifetime in the base and in-	Cause	High-intensity, high-energy radiation such as gamma, X-rays, electrons, neutrons, etc. generating electronhole pairs.
Result	ipermanent gain degradation and	Result	Relatively large currents lasting as long as the transistor is exposed to radiation.
	Increase in VCE(sat), leakage, and Vce. These changes are referred to as semipermanent because annealing at several hundred degrees centigrade for a few hours recovers most of the degradation.	Radiation Parameter	Radiation is usually defined in terms of $\operatorname{rad}(\mathrm{Si})$, where one $\operatorname{rad}(\mathrm{Si})$, identified by the symbol γ (gamma) is the amount of radiation required to deposit 100 ergs in one gram of silicon. $\dot{\gamma}$ (gamma dot) is defined as the dose rate
Radiation Parameter	Particles per square centimeter, called fluence, designated by the symbol Φ. The commonly used unit for this parameter is neutrons per square centimeter $\left(\mathrm{n} / \mathrm{cm}^{2}\right)$.	General	in $\operatorname{rad}(\mathrm{Si})$ per second. Collector-base photocurrents (Ipp) and emitter-base photocurrents (Icc) are variously plotted as amperes versus $\dot{\gamma}$, or coulombs versus γ (coul/rad).
Relationship at Different Radiation Levels	Formula commonly used to extrapolate gain degradation results from one fluence level to another. $1 /$ hFE $2=(1 /$ hFE1 $)+\mathrm{K}^{1} \Phi$ where hFE2 $=$ post-radiation gain $\mathrm{hrFEI}^{\mathrm{L}}=$ pre-radiation gain $\mathrm{K}^{1}=$ damage constant in $\mathrm{cm}^{2} / \mathrm{n}$ $\Phi=$ fluence in $\mathrm{n} / \mathrm{cm}^{2}$		At low dose rates, photocurrents are generally quite well-behaved and reasonably predictable from the formula $\mathrm{I}=\mathrm{G} \gamma$ where G is a function of the effective volume of the junction. (At relatively high dose rates, some transistors exhibit a departure from the assumed linear dose-rate dependence.)

istors that meet these design criteria are typified by high fr, fast switching speeds, and moderate breakdown voltages.

RCA has developed power transistors which offer an optimized performance trade-off of radiation hardness, voltage, safe area, and power capability. For example, both photocurrent and voltage breakdown increase with increased collector resistivity because carrier lifetime is a function of resistivity. Collector resistivity, therefore, is fine-tuned to provide the maximum voltage breakdown possible with acceptable photocurrent performance. Post-radiation beta degradation is a function of base width, as is the frequency cutoff. Both of these characteristics are enhanced with decreasing base width. However, the safe-area capability is also a function of base width. Consequently, this parameter is fine-tuned to achieve optimum electrical performance and radiation hardness. Other techniques can be employed to enhance safe-area capability, such as the introduction of various amounts of ballasting.

Manufacturing Controls

RCA high-reliability power transistors are processed in accordance with the provisions of MIL-S-19500. These provisions include the following items:

1. A clearly defined procedure for the conversion of a customer specification into an RCA internal
specification with built-in safeguards to assure the customer that the delivered parts meet or exceed his specification requirements.
2. A formalized personnel training and testing program which assures that each operation is performed correctly.
3. A complete inspection of incoming materials, utilities, and work in process using on-site facilities such as scanning-electron-microscope, and X -ray equipment.
4. Maintenance of cleanliness in work areas.
5. Rigorous control over changes in design, materials, and processes with documentation kept in active files for a minimum of three years.
6. Tool and test equipment maintenance and calibration in strict accordance with MIL-C-45662, "Calibration System Requirements."
7. A quality-assurance program in accordance with MIL-Q-9858, "Quālity Program Requirements."
Detailed processing and screening requirements for RCA high-reliability power transistors are defined in the following paragraphs.

Processing and Screening

RCA offers a number of power transistors that have been qualified as JAN, JANTX, and/or JANTXV de-
vices in accordance with MIL-S-19500. These devices, which include hometaxial-base types, high-voltage types, and high-speed types, together with the detailed electrical (slash-sheet) specification number for them, are listed in Table 2-5.
Fig. 2-22 shows the processing requirements specified by MIL-S-19500 for JAN, JANTX, and JANTXV power transistors.

In addition to JAN, JANTX, and JANTXV types, many other RCA power transistors that are subjected to high-reliability preconditioning and screening in accordance with the Group A, B, and C Sampling Tests as specified in MIL-STD-750 or special customer requirements can be obtained on a custom basis. These power transistors can be supplied to four basic reliability levels. The preconditioning and screening for Level 1 is the same as that for JANTXV devices and, in addition, includes X-ray inspection. Level 2 corresponds directly to the JANTXV level. Level 3 devices are equivalent to JANTX devices. For RCA Level 4 devices, the preconditioning consists of burn-in only.
Fig. 2-23 shows the basic processing steps required for RCA high-reliability power transistors for each reliability level, and Table 2-6 lists the screening tests to which these devices are subjected. Tables 2-7, 2-8, and 2-9 list the Groups A, B, and C Sampling Tests and the

Table 2-5 - JAN and JANTX RCA Power Transistors

Basic Device Type Nos.
 Hometaxial-Base Types

2N1479, 2N1480, 2N1481, 2N1482
2N1483, 2N1484, 2N1485, 2N1486
2N1487, 2N1488, 2N1489, 2N1490
2N2015, 2N2016
2N3055
2N3441
2N3442
2N3771, 2N3772
MIL-S-19500/207
MIL-S-19500/180
MIL-S-19500/208
MIL-S-19500/248
MIL-S-19500/407
MIL-S-19500/369
MIL-S-19500/370
MIL-S-19500/413

High-Voltage Types

2N3584, 2N3585
2N6211, 2N6212, 2N6213
2N3439, 2N3440
2N5415, 2N5416
2N5838, 2N5839, 2N5840
High-Speed Types
2N5038, 2N5039
MIL-S-19500/439
2N5671, 2N5672
MIL-S-19500/488

Fig. 2-22—Order of procedure diagram for JAN, JANTX, and JANTXV power transistors.
test methods specified by MIL-STD-750. The lotsampling plans used for RCA high-reliability power transistors, as defined by MIL-S-19500 and MIL-STD-105D, are shown in Tables 2-10, 2-11, and 2-12.

The electrical ratings and characteristics and special features of JAN, JANTX, ànd JANTXV types and of other RCA power transistors for which high-reliability versions can be obtained are shown in the data charts at the end of this section.

Fig. 2-23-Process-flow chart for four reliability levels of RCA high-reliability power transistors.

Table 2-6— Screening Tests for RCA High-Reliability Power Transistors

Test	MIL-STD-750			Screening Levels			
	Conditions	Method	Conditions	1	2	3	4
1. Precap Visual		2072		X	X		
2. Seal and Lot Identification				X	X	X	X
3. High Temp Storage	24 hrs at $200^{\circ} \mathrm{C}$			X	X	X	
4. Temperature Cycling	10 cycles	1051	C	X	X	X	
5. Acceleration	Y_{1} direction	2006		X	X	X	
6. Fine Leak		1071	G or H	X	X	X	
7. Gross Leak		1071	A,C,D or F	X	X	X	
8. Reverse Bias	24 hrs at $150^{\circ} \mathrm{C}$	1039	A	X	X	X	
9. Serialize				X	X	x	
10. Pre Burn-in Electrical				X	X	X	
11. Burn-in	168 hrs at $25^{\circ} \mathrm{C}$	1039	B	X	X	X	X
12. Post Burn-in Electrical				X	X	X	
13. Final Electrical				X	X	X	X
14. Radiographic Inspection		2076		X			
15. External Visual		2071		X	X	X	

[^1]Table 2-7 - Group A Inspections
Table 2-8 - Group B Inspections

Subgroup	Test	MIL-STD-750 Method	Subgroup	Test	MIL-STD-750 Method
1	Visual \& Mech Examination	2071	1	Physical dimensions	2066
2	Buceo, Bucer, or Bucex	3011	2	Solderability	2026
	Iceo, Icer, or Icex	3041		Temperature Cycling	1051
	lebo	3061		Moisture Resistance	1021
3	hfe	3076	3	Shock	2016
	$V_{\text {cE(sat) }}$	3071		Vibration, Variable Frequency	2056
	Vbe	3066		Constant Accleration	2066
4	hFE	3306	4	Safe Operating Area	3051
	Cobo	3236	5	High Temperature Life	1031
	ton	3251	6	Steady-State Operation Life	1026
	toft	3251			
5	$150^{\circ} \mathrm{C}$ leex	3041			
	$-65^{\circ} \mathrm{C}$ hre	3076			
			Table 2-9 - Group C Inspections		
					MIL-STD-750
			Subgroup	Test	Method
			1	Barometric Pressure	1001
			2	Salt Atmosphere	1041

MIL-STD-750 Method

2066
2026
1051
1021
2056
2066
3051
1031
1026

MIL-STD-750
Method
1001
1041

TABLE 2-10 - LTPD sampling plans $1 / 2 / 3 /$
Minimum size of sample to be tested to assure, with a 90 percent confidence, that a lot having percent-defective equal to the sDecified LTPD will not be accepted (single sample).

Max.Percent Defective (LTPD) or λ	20	15	10	7	5	3	2	1.5	1	0.7	0.5	0.3
Acceptance Number (c) $(r=c+i)$	Minimum Sample Sizes (For device-hours required for life test, multiply by 1000)											
0	$\begin{gathered} 11 \\ (0.46) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ (0.34) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 22 \\ (0.23) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 32 \\ (0.16) \\ \hline \end{array}$	$\begin{gathered} 45 \\ (0.11) \\ \hline \end{gathered}$	$\begin{gathered} 76 \\ (0.07) \\ \hline \end{gathered}$	$\begin{gathered} 116 \\ (0.04) \\ \hline \end{gathered}$	$\begin{gathered} \hline 153 \\ (0.03) \end{gathered}$	$\begin{gathered} 231 \\ (0.02) \end{gathered}$	$\begin{gathered} 328 \\ (0.02) \end{gathered}$	$\begin{gathered} 461 \\ (0.01) \\ \hline \end{gathered}$	$\begin{gathered} 767 \\ (0.007) \\ \hline \end{gathered}$
1	$\begin{gathered} 18 \\ (2.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 25 \\ (1.4) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 38 \\ (0.94) \\ \hline \end{array}$	$\begin{gathered} 55 \\ (0.65) \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ (0.46) \\ \hline \end{gathered}$	$\begin{gathered} 129 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} 195 \\ (0.18) \\ \hline \end{gathered}$	$\begin{aligned} & 258 \\ & (0.14) \end{aligned}$	$\begin{gathered} 390 \\ (0.09) \end{gathered}$	$\begin{gathered} 555 \\ (0.06) \\ \hline \end{gathered}$	$\begin{gathered} 778 \\ (0.045) \\ \hline \end{gathered}$	$\begin{gathered} 1296 \\ (0.027) \\ \hline \end{gathered}$
2	$\begin{gathered} 25 \\ (3.4) \end{gathered}$	$\begin{gathered} 34 \\ (2.24) \end{gathered}$	$\begin{array}{\|c\|} \hline 52 \\ (1.6) \end{array}$	$\begin{gathered} 75 \\ (1.1) \end{gathered}$	$\begin{gathered} 105 \\ (0.78) \\ \hline \end{gathered}$	$\begin{gathered} 176 \\ (0.47) \\ \hline \end{gathered}$	$\begin{gathered} 266 \\ (0.31) \end{gathered}$	$\begin{gathered} 354 \\ (0.23) \end{gathered}$	$\begin{gathered} 533 \\ (0.15) \end{gathered}$	$\begin{gathered} 759 \\ (0.11) \end{gathered}$	$\begin{gathered} 1065 \\ (0.080) \end{gathered}$	$\begin{gathered} 1773 \\ (0.045) \end{gathered}$
3	$\begin{array}{r} 32 \\ (4.4) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 43 \\ (3.2) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 65 \\ (2.1) \\ \hline \end{array}$	$\begin{gathered} 94 \\ (1.5) \end{gathered}$	$\begin{array}{\|c\|} \hline 132 \\ (1.0) \\ \hline \end{array}$	$\begin{gathered} 221 \\ (0.62) \\ \hline \end{gathered}$	$\begin{gathered} 333 \\ (0.41) \end{gathered}$	$\begin{gathered} 444 \\ (0.31) \\ \hline \end{gathered}$	$\begin{gathered} 668 \\ (0.20) \\ \hline \end{gathered}$	$\begin{gathered} 953 \\ (0.14) \end{gathered}$	$\begin{gathered} 1337 \\ (0.10) \\ \hline \end{gathered}$	$\begin{gathered} 2226 \\ (0.062) \end{gathered}$
4	$\begin{gathered} 38 \\ (5.3) \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ \hline(3.9) \end{gathered}$	$\begin{gathered} 78 \\ \hline(2.6) \\ \hline \end{gathered}$	$\begin{aligned} & 113 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 158 \\ & \hline(1.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 265 \\ & (0.75) \end{aligned}$	$\begin{gathered} 398 \\ (0.50) \\ \hline \end{gathered}$	$\begin{gathered} 531 \\ (0.37) \\ \hline \end{gathered}$	$\begin{gathered} 798 \\ (0.25) \\ \hline \end{gathered}$	$\begin{aligned} & 1140 \\ & (0.17) \end{aligned}$	$\begin{aligned} & 1599 \\ & (0.12) \\ & \hline \end{aligned}$	$\begin{gathered} 2663 \\ (0.074) \\ \hline \end{gathered}$
5	$\begin{gathered} 45 \\ (6.0) \end{gathered}$	$\begin{gathered} 60 \\ (4.4) \end{gathered}$	$\begin{gathered} 91 \\ (2.9) \end{gathered}$	$\begin{aligned} & 131 \\ & (2.0) \end{aligned}$	$\begin{gathered} 184 \\ (1.4) \end{gathered}$	$\begin{array}{c\|} \hline 308 \\ (0.85) \end{array}$	$\begin{gathered} 462 \\ (0.57) \end{gathered}$	$\begin{gathered} 617 \\ (0.42) \end{gathered}$	$\begin{gathered} 927 \\ (0.28) \end{gathered}$	$\begin{gathered} 1323 \\ (0.20) \end{gathered}$	$\begin{gathered} 1855 \\ (0.14) \end{gathered}$	$\begin{gathered} 3090 \\ (0.085) \end{gathered}$
6	$\begin{gathered} 51 \\ (6.6) \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ (4.9) \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline 104 \\ (3.2) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 149 \\ (2.2) \\ \hline \end{array}$	$\begin{array}{\|l} 209 \\ (1.6) \\ \hline \end{array}$	$\begin{gathered} 349 \\ (0.94) \\ \hline \end{gathered}$	$\begin{gathered} 528 \\ (0.62) \\ \hline \end{gathered}$	$\begin{gathered} 700 \\ (0.47) \\ \hline \end{gathered}$	$\begin{gathered} 1054 \\ (0.31) \\ \hline \end{gathered}$	$\begin{gathered} 1503 \\ (0.22) \\ \hline \end{gathered}$	$\begin{gathered} 2107 \\ (0.155) \\ \hline \end{gathered}$	$\begin{gathered} 3509 \\ (0.093) \\ \hline \end{gathered}$
7	$\begin{gathered} 57 \\ (7.2) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 77 \\ (5.3) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 116 \\ (3.5) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 166 \\ (2.4) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 234 \\ (1.7) \\ \hline \end{array}$	$\begin{aligned} & 390 \\ & (1.0) \\ & \hline \end{aligned}$	$\begin{gathered} 589 \\ (0.67) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 783 \\ (0.51) \\ \hline \end{array}$	$\begin{gathered} 1178 \\ (0.34) \\ \hline \end{gathered}$	$\begin{gathered} 1680 \\ (0.24) \\ \hline \end{gathered}$	$\begin{gathered} 2355 \\ (0.17) \end{gathered}$	$\begin{gathered} 3922 \\ (0.101) \\ \hline \end{gathered}$
8	$\begin{gathered} 63 \\ (7.7) \end{gathered}$	$\begin{array}{\|c} \hline 85 \\ (5.6) \end{array}$	$\begin{array}{\|l\|} \hline 128 \\ (3.7) \end{array}$	$\begin{gathered} 184 \\ (2.6) \end{gathered}$	$\begin{array}{\|l\|} \hline 258 \\ (1.8) \end{array}$	$\begin{aligned} & 431 \\ & (1.1) \end{aligned}$	$\begin{gathered} 648 \\ (0.72) \end{gathered}$	$\begin{array}{\|c\|} \hline 864 \\ (0.54) \\ \hline \end{array}$	$\begin{gathered} 1300 \\ (0.36) \end{gathered}$	$\begin{gathered} 1854 \\ (0.25) \end{gathered}$	$\begin{gathered} 2599 \\ (0.18) \end{gathered}$	$\begin{gathered} 4329 \\ (0.108) \end{gathered}$
9	$\begin{gathered} 69 \\ (8.1) \\ \hline \end{gathered}$	$\begin{gathered} 93 \\ \hline(6.0) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 140 \\ (3.9) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 201 \\ (2.7) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 282 \\ (1.9) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 471 \\ (1.2) \\ \hline \end{array}$	$\begin{gathered} 709 \\ (0.77) \\ \hline \end{gathered}$	$\begin{gathered} 945 \\ (0.58) \\ \hline \end{gathered}$	$\begin{gathered} 1421 \\ (0.38) \\ \hline \end{gathered}$	$\begin{gathered} 2027 \\ (0.27) \\ \hline \end{gathered}$	$\begin{array}{r} 2842 \\ \mathbf{(0 . 1 9)} \\ \hline \end{array}$	$\begin{gathered} 4733 \\ (0.114) \\ \hline \end{gathered}$
10	$\begin{gathered} 75 \\ (8.4) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 100 \\ (6.3) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 152 \\ (4.1) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 218 \\ (2.9) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 306 \\ (2.0) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 511 \\ (1.2) \\ \hline \end{array}$	$\begin{aligned} & 770 \\ & (0.80) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 1025 \\ (0.60) \\ \hline \end{array}$	$\begin{aligned} & 1541 \\ & (0.40) \end{aligned}$	$\begin{gathered} 2199 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} 3082 \\ (0.20) \end{gathered}$	$\begin{gathered} 5133 \\ (0.120) \end{gathered}$

1/ Sample sizes are based upon the Poisson exponential binomial limit.
2/ The minimum quality (approximate AQL) required to accept (on the average) $\mathbf{1 9} \mathbf{~ o f ~} \mathbf{2 0}$ lots is shown in parenthesis for information only.
3/ This sampling plan is derived from Table C-1 in Appendix C of MIL-S-19500.

TABLE 2-11 - Sample Size Code Letters*

Lot or batch size			General inspection levels		
			I	II	III
2	to	8	A	A	B
9	to	15	\wedge	B	C
16	to	25	B	C	D
26	to	50	C	1)	E
51	to	90	C	F	F
91	to	150	D	F	G
151	to	280	E	G	H
281	to	500	F	11	J
501	to	1200	G	J	K
1201	to	3200	H	K	L
3201	to	10000	J	L	M
10001	to	35000	K	M	N
35001	to	150000	L	N	Γ
150001	to	500000	M	P	Q
500001	and	over	N	Q	R

* Derived from Table I of MIL-STD-105D

TABLE 2-12 - Single Sampling Plans for Normal Inspection*

Sample size code letter	Sample size	Acceptable Quality Levels (normal inspection)																	
		0.010	0.015	0.025	0.040	0.065	0.10	0.15	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5	10	15	25
		Ac Re	Ac Re	Ac Re	Ac He	Ac Re	Ac He	Ac He	Ac Re	Ac He	Ac Rr	Ac fle	Ac He	Ac Re					
$\begin{aligned} & \mathrm{A} \\ & \mathbf{B} \\ & \mathbf{C} \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \end{aligned}$	7 1						 0	 $10 \quad 11$				\square	$\xrightarrow[0]{\square}$	$\xrightarrow{3}$		12	$\begin{array}{ll} 1 & 2 \\ 2 & 3 \end{array}$	$\begin{array}{ll} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{array}$
D E F	8 13 20													$\begin{array}{ll} \square \\ 1 & 2 \\ 2 & 3 \end{array}$	$\begin{array}{ll} 1 & 2 \\ 2 & 3 \\ 3 & 6 \end{array}$	$\begin{array}{ll} 2 & 3 \\ 3 & 4 \\ 5 & 6 \end{array}$	$\begin{array}{ll} 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{array}$	$\begin{array}{rrr}5 & 6 \\ 7 & 8 \\ 10 & 11\end{array}$	
$\begin{gathered} \mathrm{G} \\ \mathrm{H} \\ \mathrm{~J} \end{gathered}$	32 50 80			$\begin{array}{ll} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{array}$									$\begin{array}{ll} 2 & 3 \\ 3 & 4 \\ 5 & 6 \end{array}$	$\begin{array}{ll}3 & 4 \\ 5 & 6 \\ 7 & 8\end{array}$	$\begin{array}{rr} 5 & 0 \\ 7 & 8 \\ 10 & 11 \end{array}$	$\begin{array}{cc}: & 8 \\ 10 & 11 \\ 14 & 15\end{array}$	$\begin{array}{ll}10 & 11 \\ 14 & 15 \\ \therefore 1 & 22\end{array}$	$\begin{array}{lll}14 & 15 \\ 21 & 22 \\ \end{array}$	
$\begin{aligned} & \mathrm{K} \\ & \mathrm{~L} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & 125 \\ & 200 \\ & 315 \end{aligned}$			$\overbrace{1}^{4}$				$\begin{array}{rr}5 & 0 \\ : & 8 \\ 10 & 11\end{array}$					$\begin{array}{rr}7 & 8 \\ 10 & 11 \\ 14 & 15\end{array}$	$\begin{array}{ll} 10 & 11 \\ 14 & 15 \\ 2 \mathrm{i} & 22 \end{array}$	$\left\|\begin{array}{ll} 14 & 15 \\ 21 & 22 \end{array}\right\|$		75		
$\begin{aligned} & N \\ & \mathrm{P} \\ & \mathrm{O} \end{aligned}$	$\begin{array}{r} 500 \\ 800 \\ 1250 \end{array}$							$\begin{array}{ll}2 & 3 \\ 3 & 4 \\ 5 & 6\end{array}$							5			\cdots	
R	2000			12		34		$7 \quad 8$					\square	\square	\square	\square	\square		
* Use first ampling plan below arrow. If sample size equals, or exceeds, lot or batch size. do 100 percent inspection \Rightarrow Use first ampling plan above arrow. Derived from Table II-A of MIL-STD-105D Ac $=$ Acceptance num Re $=$ Rejection numbe																			

Silicon N-P-N Power Transistors

JAN Electrical Specification: MIL-S-19500/207
Structure: Hometaxial-base
Applications: Power-switching, amplifiers

Package: JEDEC TO-5
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=1 \mathrm{~W} ; \mathrm{V}_{\mathrm{CEO}}=40 \mathrm{~V}(2 \mathrm{~N} 1479,2 \mathrm{~N} 1481)$
$=55 \mathrm{~V}$ (2N1480, 2N1482)

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}^{\mathrm{C}} \mathrm{C}=5 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=28 \mathrm{~V}$	600	-	kHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}^{\prime}=200 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=4 \mathrm{~V}$	35	100	2N1489 2N1490
			20	60	2N1479 2N1480
Saturated Switching Time: Turn-on	ton	$1 \mathrm{C}=200 \mathrm{~mA}$	-	25	$\mu \mathrm{s}$
Turn-off	toFF	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$	-	25	$\mu \mathrm{s}$

For characteristics curves and test conditions, refer to published data for basic type in File No. 135.

JAN2N1483-JAN2N1486 JANTX2N1483-JANTX2N1486

JAN Electrical Specification: MIL-S-19500/180
Structure: Hometaxial-base
Applications: Power-switching, amplifiers System Usage: Military

Package: JEDEC TO-8
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=1.75 \mathrm{~W} ; \mathrm{V}_{\mathrm{CEO}}=40 \mathrm{~V}(2 \mathrm{~N} 1483,2 \mathrm{~N} 1485)$
$=55 \mathrm{~V}(2 \mathrm{~N} 1484,2 \mathrm{~N} 1486)$

ELECTRICAL CHARACTERISTICS, At Case Temperature $(T C)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V}$	600	-	kHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}^{\mathrm{C}}=750 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=4 \mathrm{~V}$	35	100	2N1485 2N1486
			20	60	$\begin{aligned} & \text { 2N1483 } \\ & \text { 2N1484 } \end{aligned}$
Saturated Switching Time: Turn-on	tON	$\mathrm{I}^{\mathrm{C}}=750 \mathrm{~mA}$	-	25	$\mu \mathrm{s}$
Turn-off	tOFF	$1 \mathrm{C}=750 \mathrm{~mA}$	-	25	$\mu \mathrm{s}$

For characteristics curves and test conditions, refer to published data for basic type in File No. 137.

JAN2N1487-JAN2N1490

JAN Electrical Specification: MIL-S-19500/208 Structure: Hometaxial-base
Applications: Power-switching, amplifiers System Usage: Military

Silicon N-P-N Power Transistors

Package: JEDEC TO-3
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=75 \mathrm{~W} ; \mathrm{V}_{\mathrm{CEO}}=40 \mathrm{~V}$ (2N1487, 2N1489) $=55 \mathrm{~V}(2 \mathrm{~N} 1488,2 \mathrm{~N} 1490)$

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=12 \mathrm{~V}$	500	-	kHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=1.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}$	25	75	$\begin{aligned} & \text { 2N1489 } \\ & \text { 2N1490 } \\ & \hline \end{aligned}$
			15	45	$\begin{aligned} & \text { 2N1487 } \\ & \text { 2N1488 } \end{aligned}$
Saturated Switching Time: Turn-on	tON	$I^{\prime}=1.5 \mathrm{~A}$	-	25	$\mu \mathrm{s}$
Turn-off	toFF	$\mathrm{I}^{\prime}=1.5 \mathrm{~A}$	-	25	$\mu \mathrm{s}$

For characteristics curves and test conditions, refer to published data for basic type in File No. 139.

JAN2N2015
JAN2N2016

Hometaxial-Base
Silicon N-P-N Power Transistors

JAN Electrical Specification: MIL-S-19500/ 248
Structuer: Hometaxial-base
Applications: Power-switching, amplifiers System Usage: Military

Package: JEDEC TO-36
Maximum Ratings: $\mathrm{P}_{\mathbf{T}}=150 \mathrm{~W}$; $\mathrm{V}_{\mathrm{CEO}}=\mathbf{5 0} \mathrm{V}$ (2N2015)
$=65 \mathrm{~V}(2 \mathrm{~N} 2016)$

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	fT	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=4 \mathrm{~V}$	800	-	kHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}^{\prime}=5 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=4 \mathrm{~V}$	15	50	
Collector-to-Emitter Saturation Voltage	$V_{\text {CE }}($ sat)	$\mathrm{I}^{\prime}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~A}$	-	1.25	V

[^2]JAN Electrical Specification: MIL-S-19500/407
Structure: Hometaxial-base
Applications: Power-switching, amplifiers

System Usage: Military
Package: JEDEC TO-3
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=117 \mathrm{~W} ; \mathrm{V}_{\mathrm{CEO}}=70 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{C E}=4 \mathrm{~V}$	800	-	kHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~A}, \mathrm{~V}_{C E}=4 \mathrm{~V}$	20	-	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}^{\prime}=4 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A}$	-	0.75	V
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\mathrm{CE}}=70 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	1.67	-	A
Saturated Switching Time: Turn-on	ton	$I_{C}=4 \mathrm{~A}$	-	6	$\mu \mathrm{s}$
Turn-off	tOFF	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~A}$	-	12	$\mu \mathrm{s}$
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=20 \mathrm{~W}, \Delta \mathrm{~T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$	3×10^{5}	-	Thermal Cycles

For characteristics curves and test conditions, refer to published data for basic type in File No. 524.

JAN2N3439, JAN2N3440 High-Voltage JANTX2N3439, JANTX2N3440 Silicon N-P-N Power Transistors

JAN Electrical Specification: MIL-S-19500/368
Structure: Double-diffused epitaxial
Applications: High-voltage amplifiers, inverters, regulators System Usage: Military

Package: JEDEC TO-39 (2N3439S) or JEDEC TO-5 (2N3439L)
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=0.8 \mathrm{~W} ; \mathrm{V}_{\mathbf{C E O}}=350 \mathrm{~V}$ (2N3439)
$=250 \mathrm{~V}$ (2N3440)

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	${ }_{\text {f }}$	$\mathrm{I} \mathrm{C}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$	15	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{IC}=20 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$	40	160	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$I_{C}=50 \mathrm{~mA}, I_{B}=4 \mathrm{~mA}$	-	0.5	V
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\mathrm{CE}}=200 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	50	-	mA
Saturated Switching Time: Turn-on	ton	$\mathrm{IC}=20 \mathrm{~mA}$	-	,	$\mu \mathrm{s}$
Turn-off	tof	$\mathrm{I}^{\mathrm{C}}=20 \mathrm{~mA}$	-	10	$\mu \mathrm{s}$

[^3]JAN Electrical Specification: MIL-S-19500/369
Structure: Hometaxial-base
Applications: High-voltage power switching, amplifiers

System Usage: Military
Package: JEDEC TO-66
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=\mathbf{2 5} \mathrm{W}$; $\mathrm{V}_{\mathrm{CEO}}=140 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwiṣe Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}^{\text {C }}=0.5 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=4 \mathrm{~V}$	400	-	kHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=4 \mathrm{~V}$	25	100	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}^{\prime}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{~A}$	-	1	V
Second-Breakdown Collector Current: With base forward-biased	IS/b	$V_{C E}=30 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	833	-	mA
Saturated Switching Time: Turn-on	ton	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}$	-	8	$\mu \mathrm{s}$
Turn-off	tOFF	$\mathrm{I}^{\prime}=0.5 \mathrm{~A}$	-	15	$\mu \mathrm{s}$
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=4 \mathrm{~W}, \Delta \mathrm{~T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$	5×10^{5}	-	Thermal Cycles

For characteristics curves and test conditions, refer to published data for basic type in File No. 529.

JAN Electrical Specification: MIL-S-19500/370
Structure: Hometaxial-base
Applications: High-voltage power switching, amplifiers

System Usage: Military
Package: JEDEC TO-3
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=117 \mathrm{~W}$; $\mathrm{V}_{\mathrm{CEO}}=140 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Un/ess Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}, \mathrm{~V}_{C E}=4 \mathrm{~V}$	100	-	kHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}^{\prime}=3 \mathrm{~A}, \mathrm{~V}_{C E}=4 \mathrm{~V}$	20	70	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}^{\prime}=3 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.3 \mathrm{~A}$	-	1	V
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\mathrm{CE}} \geqslant 8 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	1.5	-	A
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=20 \mathrm{~W}, \Delta \mathrm{TC}=50^{\circ} \mathrm{C}$	3×10^{5}	-	Thermal Cycles

For characteristics curves and test conditions, refer to published data for basic type in File No. 528.

JAN Electrical Specification: MIL-S-19500/384
Structure: Double-diffused epitaxial collector
Applications: High-voltage amplifiers, inverters, regulators System Usage: Military

Package: JEDEC TO-66
Maximum Ratings: $\mathrm{P}_{\mathbf{T}}=35 \mathrm{~W} ; \mathrm{V}_{\mathrm{CEO}}=\mathbf{2 5 0} \mathrm{V}$ (2N3584)
$=300 \mathrm{~V}(2 \mathrm{~N} 3585)$

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	fT	$\mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$	15	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}^{\prime}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	25	100	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.125 \mathrm{~A}$	-	0.75	V
Second-Breakdown Energy: With base reverse-biased	$\mathrm{E}_{\mathrm{S} / \mathrm{b}}$	$\begin{gathered} I_{C}=2 \mathrm{~A}, \mathrm{~L}=100 \mu \mathrm{H} \\ R_{B E}=20^{\circ} \Omega \end{gathered}$	200	-	$\mu \mathrm{J}$
Second-Breakdown Collector Current: With base forward-biased	IS/b	$V_{C E}=100 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	350	-	mA
Saturated Switching Time: Turn-on	ton	$I_{C}=1 \mathrm{~A}$	-	3	$\mu \mathrm{s}$
Turn-off	tOFF	$I_{C}=1 \mathrm{~A}$	-	7	$\mu \mathrm{s}$

For characteristics curves and test conditions, refer to published data for basic type in File No. 138.

JAN2N3771, JAN2N3772 High-Current JANTX2N3771, JANTX2N3772 Silicon N-P-N Power Transistors

JAN Electrical Specification: MIL-S-19500/413
Structure: Hometaxial-base
Applications: Power-switching, amplifiers, inverters
System Usage: Military

Package: JEDEC TO-3
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=150 \mathrm{~W} ; \mathrm{V}_{\mathrm{CEO}}=40 \mathrm{~V}$ (2N3771)
$=60 \mathrm{~V}(2 \mathrm{~N} 3772)$

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	${ }_{\text {f }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}$	600	-	kHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}$	15	60	2N3772
		$\mathrm{I}^{\prime} \mathrm{C}=15 \mathrm{~A} ; \mathrm{V}_{\text {CE }}=4 \mathrm{~V}$	15	60	2N3771
Second-Breakdown Energy: With base reverse-biased	$E_{S / b}$	$\begin{aligned} & \mathrm{I} C=5 \mathrm{~A}, \mathrm{~L}=40 \mathrm{mH}, \\ & \mathrm{R}_{\mathrm{BE}}=100 \Omega \end{aligned}$	500	-	mJ
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\mathrm{CE}}=60 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	2.5	-	A
Saturated Switching Time: Turn-on	ton	$\begin{array}{\|ll\|} \hline 2 \mathrm{~N} 3772 & 2 \mathrm{~N} 3771 \\ \mathrm{I}_{\mathrm{C}}=10 \mathrm{~A} & \mathrm{I}_{\mathrm{C}}=15 \mathrm{~A} \\ \hline \end{array}$	-	$\begin{array}{\|cc\|} \hline \text { 2N3771 } & \text { 2N3772 } \\ 10 & 8 \\ \hline \end{array}$	$\mu \mathrm{s}$
Turn-off	tofF	$I_{C}=10 \mathrm{~A} \quad \mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}$	-	$12 \quad 10$	$\mu \mathrm{s}$
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=20 \mathrm{~W}, \Delta \mathrm{~T} \mathrm{C}=50^{\circ} \mathrm{C}$	4×10^{5}	-	Thermal Cycles

[^4]
JAN2N5038, JA N2N5039 High-Speed JANTX2N5038, JANTX2N5039 Silicon N-P-N Power Transistors

JAN Electrical Specification: MIL-S-19500/439
Structure: Multiple-emitter sites, double-diffused epitaxial collector
Applications: Switching regulators, inverters, amplifiers

System Usage: Military
Package: JEDEC TO-3
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=140 \mathrm{~W} ; \mathrm{V}_{\mathrm{CEO}}=90 \mathrm{~V}(2 \mathrm{~N} 5038)$
$=75 \mathrm{~V}$ (2N5039)

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	${ }_{\text {f }}$	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$	60	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=12 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	20	-	2N5038
		$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{~V}_{C E}=5 \mathrm{~V}$	20	-	2N5039
Second-Breakdown Energy: With base reverse-biased	$E_{S / b}$	$\begin{gathered} \mathrm{I} \mathrm{C}=12 \mathrm{~A}, \mathrm{~L}=180 \mu \mathrm{H}, \\ \mathrm{R}_{\mathrm{BE}}=20 \Omega \end{gathered}$	13	-	mJ
Second Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{C E}=45 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	0.9	-	A
Saturated Switching Time: Turn-on	ton	$\mathrm{IC}=12 \mathrm{~A}$	-	0.5	$\mu \mathrm{s}$
Turn-off	tof	$\mathrm{I}^{\mathrm{C}} \mathrm{C}=12 \mathrm{~A}$	-	2	$\mu \mathrm{s}$
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=20 \mathrm{~W}, \Delta \mathrm{~T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$	4×10^{5}	-	Thermal Cycles

For characteristics curves and test conditions, refer to published data for basic type in File No. 367.

JAN2N5415, JAN2N5416 High-Voltage
 JANTX2N5415, JANTX2N5416 Silicon P-N-P Power Transistors

JAN Electrical Specification: MIL-S-19500/485
Structure: Double-diffused epitaxial
Applications: High-voltage amplifiers, inverters, regulators System Usage: Military

Package: JEDEC TO-5

Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=0.75 \mathrm{~W} ; \mathrm{V}_{\mathrm{CEO}}=-200 \mathrm{~V}(2 \mathrm{~N} 5415)$
$=-300 \mathrm{~V}(2 N 5416)$

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}^{\text {C }}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V}$	15	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-10 \mathrm{~V}$	30	120	
Collector-to-Emitter Saturation Voltage	$V_{C E}$ (sat)	$I_{C}=-50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-5 \mathrm{~mA}$	-	-2	V
Second-Breakdown Collector Current: With base forward-biased	IS/b	$V_{C E}=-100 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	-100	-	mA
Saturated Switching Time: Turn-on	ton	$\mathrm{I}^{\prime}=-50 \mathrm{~mA}$	-	1	$\mu \mathrm{s}$
Turn-off	toFF	$\mathrm{I}^{\text {C }}=-50 \mathrm{~mA}$	-	10	$\mu \mathrm{s}$

[^5]JAN2N5671, JAN2N5672 JANTX2N5671, JANTX2N5672

High-Speed
Silicon N-P-N Power Transistors

JAN Electrical Specification: MIL-S-19500/488
Structure: Double-diffused epitaxial collector
Applications: Switching regulators, amplifiers System Usage: Military

Package: JEDEC TO-3
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=140 \mathrm{~W} ; \mathrm{V}_{\mathrm{CEO}}=\mathbf{9 0} \mathrm{V}$ (2N5671)
$=120 \mathrm{~V}$ (2N5672)

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$	50	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}$	20	100	
Collector-to-Emitter Saturation Voltage	$V_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{~A}$	-	0.75	V
Second-Breakdown Energy: With base reverse-biased	$E_{S / b}$	$\begin{gathered} \mathrm{I} \mathrm{C}=15 \mathrm{~A}, \mathrm{~L}=180 \mu \mathrm{H} \\ \mathrm{R}_{\mathrm{BE}}=20 \Omega \end{gathered}$	20	-	mJ
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\text {CE }}=45 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	0.9	-	A
Saturated Switching Time: Turn-on	ton	$\mathrm{I}^{\prime} \mathrm{C}=15 \mathrm{~A}$	-	0.5	$\mu \mathrm{s}$
Turn-off	tofF	$\mathrm{I}^{\prime} \mathrm{C}=15 \mathrm{~A}$	-	2	$\mu \mathrm{s}$

For characteristics curves and test conditions, refer to published data for basic type in File No. 383.

JAN2N5838-JAN2N5840 High-Voltage JANTX2N5838-JANTX2N5840 Silicon N-P-N Power Transistors

JAN Electrical Specification: MIL-S-19500/487
Structure: Double-diffused, epitaxial-base
Applications: High-voltage switching regulators, inverters
System Usage: Military

Package: JEDEC TO-3
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=100 \mathrm{~W} ; \mathrm{V}_{\mathrm{CEO}}=\mathbf{2 5 0} \mathrm{V}$ (2N5838)
$=275 \mathrm{~V}$ (2N5839)
$=350 \mathrm{~V}$ (2N5840)

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Procuct	$\mathrm{f}^{\text {T }}$	$\mathrm{I}^{\prime}=0.2 \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$	5	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}^{\prime}=2 \mathrm{~A}, \mathrm{~V}_{C E}=3 \mathrm{~V}$	10	50	$\begin{aligned} & \text { 2N5840 } \\ & \text { 2N5839 } \end{aligned}$
		$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=2 \mathrm{~V}$	8	40	2N5838
Second-Breakdown Energy: With base reverse-biased	$E_{S / b}$	$\begin{aligned} & \mathrm{IC}=3 \mathrm{~A}, \mathrm{~L}=100 \mu \mathrm{H} \\ & \mathrm{R}_{\mathrm{BE}}=50 \Omega \end{aligned}$	0.45	-	mJ
Second-Breakdown Collector Current: With base forward-biased	IS/b	$V_{C E}=40 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	2.5	-	A
Saturated Switching Time: Turn-on	ton	$1 \mathrm{C}=2 \mathrm{~A}$	-	1.75	$\mu \mathrm{s}$
Turn-off	toFF	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}$	-	4.5	$\mu \mathrm{s}$

[^6]
JAN2N6211-JAN2N6213 JANTX2N6211-JANTX2N6213

High-Voltage
Silicon P-N-P Power Transistors

JAN Electrical Specification: MIL-S-19500/461
Structure: Double-diffused epitaxial collector
Applications: High-voltage amplifiers, inverters, regulators System Usage: Military

Package: JEDEC TO-66
Maximum Ratings: $\mathrm{P}_{\mathrm{T}}=35 \mathrm{~W} ; \mathrm{V}_{\mathrm{CE}}=225 \mathrm{~V}$ (2N6211)
$=300 \mathrm{~V}$ (2N6212)
$=350 \mathrm{~V}$ (2N6213)

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	${ }_{\text {f }}$	$\mathrm{I}_{\mathrm{C}}=-0.2 \mathrm{~A}, \mathrm{~V}_{C E}=-10 \mathrm{~V}$	20	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-4 \mathrm{~V}$	10	100	2N6213
		$\mathrm{I}^{\text {C }}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-3.2 \mathrm{~V}$	10	100	2N6212
		$\mathrm{I}^{\prime} \mathrm{C}=-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=-2.8 \mathrm{~V}$	10	100	2N6211
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{C E}=-40 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	-0.875	-	A
Saturated Switching Time: Turn-on	toN	$\mathrm{I}^{\prime}=-1 \mathrm{~A}$	-	0.6	$\mu \mathrm{s}$
Turn-off	toFF	$\mathrm{I}^{\prime} \mathrm{C}=-1 \mathrm{~A}$	-	3.1	$\mu \mathrm{s}$
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=2 \mathrm{~W}, \Delta \mathrm{~T} \mathrm{C}=50^{\circ} \mathrm{C}$	7×10^{5}	-	Thermal Cycles

For characteristics curves and test conditions, refer to published data for basic type in File No. 507.

Structure: Planar, Double-diffused epitaxial collector
Applications: Small-signal and medium-power general usage
System Usage: NASA SATURN
Package: JEDEC TO-39 (2N2102S) or JEDEC TO-5 (2N2102L)
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=65 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=1 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}^{\prime}=50 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$	120	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	40	-	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$I_{C}=150 \mathrm{~mA}, I_{B}=15 \mathrm{~mA}$	-	1.5	V

For characteristics curves and test conditions, refer to published data for basic type in File No. 106.

Hometaxial-Base

2N3054 Silicon N-P-N Power Transistor

Structure: Hometaxial-base
Applications: Power-switching, amplifiers
System Usage: Military
Package: JEDEC TO-66
Maximum Ratings: $\mathbf{V}_{\text {CEO }}=55 \mathrm{~V}, \mathrm{P}_{\mathbf{T}}=\mathbf{2 5} \mathrm{W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	${ }_{\mathrm{f}} \mathrm{T}$	$\mathrm{I}^{\text {C }}=0.2 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=4 \mathrm{~V}$	800	-	kHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=4 \mathrm{~V}$	25	-	
Collector-to-Emitter Saturation Voltage	$V_{C E}$ (sat)	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{~A}$	-	1	V
Second-Breakdown Collector Current: With base forward-biased	IS/b	$V_{C E}=55 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	0.455	-	A
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=4 \mathrm{~W}, \Delta \mathrm{~T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$	5×10^{5}	-	Thermal Cycles

For characteristics curves and test conditions, refer to published data for basic type in File No. 527.

High-Power, High-Speed, High-Current Silicon N-P-N Power Transistor

Structure: Double-diffused epitaxial collector
Applications: High-speed switching, amplifiers, inverters
System Usage: Minuteman, SRAM
Package: Radial, hermetic
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=\mathbf{9 0} \mathrm{V}, \mathrm{P}_{\mathrm{T}}=84 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Un/ess Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	f_{T}	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$	20	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}, \mathrm{~V}_{C E}=3 \mathrm{~V}$	25	-	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}($ sat $)$	$\mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{~A}$	-	0.75	V
Second-Breakdown Energy: With base reverse-biased	$E_{S / b}$	$\begin{gathered} \mathrm{IC}=10 \mathrm{~A}, \mathrm{~L}=40 \mu \mathrm{H} \\ \mathrm{R}_{\mathrm{BE}}=20 \Omega \end{gathered}$	2	-	mJ
Second-Breakdown Collector Current: With base forward-biased	IS/b	$V_{C E}=75 \mathrm{~V}, \mathrm{t}=250 \mu \mathrm{~s}$	350	-	A
Saturated Switching Time: Turn-on	ton	$\mathrm{I}^{\prime} \mathrm{C}=15 \mathrm{~A}$	-	0.5	$\mu \mathrm{s}$
Turn-off	toFF	$\mathrm{IC}=15 \mathrm{~A}$	-	2	$\mu \mathrm{s}$

For characteristics curves and test conditions, refer to published data for basic type in File No. 54.

High-Power, High-Speed, High-Current Silicon N-P-N Power Transistor

Structure: Double-diffused epitaxial collector
Applications: High-speed switching, amplifiers, inverters
System Usage: Minuteman, SRAM
Package: JEDEC TO-63
Maximum Ratings: $\mathrm{V}_{\text {CEO }}=90 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=125 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	f_{T}	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$	20	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}$	25	-	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{~A}$	-	0.75	V
Second-Breakdown Energy: With base reverse-biased	$E_{S / b}$	$\begin{gathered} \mathrm{I} C=10 \mathrm{~A}, \mathrm{~L}=40 \mu \mathrm{H} \\ \mathrm{R}_{\mathrm{BE}}=20 \Omega \end{gathered}$	2	-	mJ
Second Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\mathrm{CE}}=75 \mathrm{~V}, \mathrm{t}=250 \mu \mathrm{~s}$	350	-	mA
Saturated Switching Time: Turn-on	ton	$I_{C}=15 \mathrm{~A}$	-	0.5	$\mu \mathrm{s}$
Turn-off	tOFF	$I^{\prime} \mathrm{C}=15 \mathrm{~A}$	-	2	$\mu \mathrm{s}$

[^7]Structure: Hometaxial-base
Applications: High-voltage inverters, amplifiers, hammer drivers
System Usage: VIKING
Package: JEDEC TO-3
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=140 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=150 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{C E}=4 \mathrm{~V}$	200	-	kHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}^{\prime}=8 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=4 \mathrm{~V}$	15	-	
Collector-to-Emitter Saturation Voltage	$V_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=8 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.8 \mathrm{~A}$	-	1.4	V
Second-Breakdown Energy: With base reverse-biased	$\mathrm{E}_{\text {S/b }}$	$\begin{gathered} \mathrm{I}^{\mathrm{C}}=2.5 \mathrm{~A}, \mathrm{~L}=40 \mathrm{mH} \\ \mathrm{RBE}=100 \Omega \end{gathered}$	0.125	-	J
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{C E}=100 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	1.5	-	A
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=20 \mathrm{~W}, \Delta \mathrm{~T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$	4×10^{5}	-	Thermal Cycles

For characteristics curves and test conditions, refer to published data for basic type in File No. 526.

2N3879

High-Current,High-Speed Silicon N-P-N Power Transistor

Structure: Double-diffused epitaxial collector
Applications: High-current, high-speed switching
System Usage: Military
Package: JEDEC TO-66
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=75 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=35 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	60	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}^{\prime}=4 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	20	-	
Collector-to-Emitter Saturation Voltage	$V_{C E}$ (sat)	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A}$	-	1.2	V
Second-Breakdown Energy: With base reverse-biased	$E_{S / b}$	$\begin{gathered} \mathrm{IC}=4 \mathrm{~A}, \mathrm{~L}=125 \mu \mathrm{H} \\ \mathrm{R}_{\mathrm{BE}}=50 \Omega \end{gathered}$	1	-	mJ
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	500	-	mA
Saturated Switching Time: Turn-on	ton	$I_{C}=4 \mathrm{~A}$	-	440	ns
Turn-off	tOFF	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~A}$	-	1200	ns

[^8]
Medium-Power

Structure: Planar, double-diffused epitaxial collector
Applications: Small-signal, medium-power amplifiers
System Usage: Military
Package: JEDEC TO-39 (2N4036S) or JEDEC TO-5 (2N4036L)
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=-65 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=1 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=-50 \mathrm{~mA}, \mathrm{~V}_{C E}=-10 \mathrm{~V}$	60	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{~V}$	40	-	
Collector-to-Emitter Saturation Voltage	$V_{C E}$ (sat)	$I_{C}=-150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-15 \mathrm{~mA}$	-	-0.65	V
Saturated Switching Time: Turn-on	ton	$\mathrm{I}_{\mathrm{C}}=-150 \mathrm{~mA}$	-	110	ns
Turn-off	tofF	$\mathrm{I}^{\text {C }}=-150 \mathrm{~mA}$	-	700	ns

For characteristics curves and test conditions, refer to published data for basic type in File No. 216.

High-Voltage, High-Power
2N5240 Silicon N-P-N Power Transistor

Structure: Double-diffused epitaxial collector
Applications: Series regulators, power amplifiers
System Usage: Military
Package: JEDEC TO-3
Maximum Ratings: $\mathbf{V}_{\text {CEO }}=\mathbf{3 0 0} \mathrm{V}, \mathrm{P}_{\mathbf{T}}=100 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}^{\prime}=0.2 \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$	5	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$	20	-	
Collector-to-Emitter Saturation Voltage	$V_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~A}$	-	2.5	V
Second-Breakdown Energy: With base reverse-biased	$E_{S / b}$	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=4 \mathrm{~A}, \mathrm{~L}=0.2 \mathrm{mH} \\ \mathrm{R}_{\mathrm{BE}}=50 \Omega \end{gathered}$	1.6	-	mJ
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\mathrm{CE}}=150 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	0.67	-	A

[^9]
High-Speed

2N5262
Silicon N-P-N Power Transistor

Structure: Double-diffused epitaxial
Applications: Core drivers, high-speed amplifiers
System Usage: AEGIS
Package: Low-profile TO-39
Maximum Ratings: $\mathrm{V}_{\mathbf{C E O}}=50 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=1 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature (T_{C}) $=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$	250	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$	25	-	
Collector-to-Emitter Saturation Voltage	$V_{C E}$ (sat)	$I_{C}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A}$	-	0.8	V
Saturated Switching Time: Turn-on	ton	$I C=1 A$	-	30	ns
Turn-off	tOFF	$\mathrm{IC}=1 \mathrm{~A}$	-	60	ns

For characteristics curves and test conditions, refer to published data for basic type in File No. 313.

2N5320

High-Speed

Structure: Double-diffused epitaxial collector
Applications: Small-signal and medium-power amplifiers
System Usage: Military
Package: JEDEC TO-39 (2N5320S) or JEDEC TO-5 (2N5320L)
Maximum Ratings: $\mathbf{V}_{\text {CEO }}=75 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=1 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	f_{T}	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}$	50	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}$	30	-	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\mathrm{CE}}($ sat $)$	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$	-	0.5	V
Saturated Switching Time: Turn-on	t_{ON}	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$	-	80	ns
Turn-off	tOFF	$\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}$	-	800	ns

For characteristics curves and test conditions, refer to published data for basic type in File No. 325.

High-Speed

Structure: Double-diffused epitaxial collector
Applications: Small-signal, medium-power amplifiers
System Usage: Military
Package: JEDEC TO-39 (2N5322S) or JEDEC TO-5 (2N5322L)
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=-75 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=1 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	f^{\top}	$I_{C}=-50 \mathrm{~mA}, \mathrm{~V}_{C E}=-4 \mathrm{~V}$	50	-	MHz
DC Forward-Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$	$\mathrm{I}_{\mathrm{C}}=-500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=-4 \mathrm{~V}$	30	-	
Collector-to-Emitter Saturation Voltage	$V_{\text {CE }}$ (sat)	$\mathrm{I}^{\prime}=-500 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{~mA}$	-	-0.7	V
Saturated Switching Time: Turn-on	ton	$I_{C}=-500 \mathrm{~mA}$	-	100	ns
Turn-off	tOFF	$\mathrm{I}^{\prime}=-500 \mathrm{~mA}$	-	1000	ns

For characteristics curves and test conditions, refer to published data for basic type in File No. 325.

Structure: Multiple-emitter sites, hometaxial-base
Applications: High-current, high-power amplifiers and switching
System Usage: TOW, Sonobuoy
Package: JEDEC TO-3 with 0.060 -inch-diameter pins
Maximum Ratings: $\mathbf{V}_{\text {CEO }}=\mathbf{7 0} \mathrm{V}, \mathrm{P}_{\mathbf{T}}=\mathbf{3 0 0} \mathbf{W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	f_{T}	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=4 \mathrm{~V}$	400	-	kHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V}$	10	-	
Collector-to-Emitter Saturation Voltage	$V_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=4 \mathrm{~A}$	-	1.5	V
Second-Breakdown Energy: With base reverse-biased	$E_{S / b}$	$\begin{gathered} I^{\prime} \mathrm{C}=7 \mathrm{~A}, \mathrm{~L}=33 \mathrm{mH} \\ \mathrm{R}_{\mathrm{BE}}=10 \Omega \end{gathered}$	0.8	-	J
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	12	-	A

[^10]
High-Speed

Structure: Epitaxial-base

Applications: Medium-power switching and amplifiers
System Usage: Military
Package: JEDEC TO-5
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=-65 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=1 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=-0.1 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-2 \mathrm{~V}$	8	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}^{\prime} \mathrm{C}=-1 \mathrm{~A}, \mathrm{~V}_{C E}=-2 \mathrm{~V}$	20	-	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$I_{C}=-1 A, I_{B}=-0.1 \mathrm{~A}$	-	-0.5	V
Saturated Switching Time: Turn-on	ton	$\mathrm{I}^{\prime} \mathrm{C}=-1 \mathrm{~A}$	-	0.5	$\mu \mathrm{s}$
Turn-off	tofF	${ }^{\prime} \mathrm{C}=-1 \mathrm{~A}$	-	2.5	$\mu \mathrm{s}$

For characteristics curves and test conditions, refer to published data for basic type in File No. 413.

Hometaxial-Base

Structure: Hometaxial-base
Applications: Medium-power switching, amplifiers
System Usage: Military
Package: JEDEC TO-5
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=65 \mathrm{~V}, \mathrm{P}_{\mathbf{T}}=1 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Un/ess Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	fT	$\mathrm{I} \mathrm{C}=0.1 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=2 \mathrm{~V}$	1	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{C E}=2 \mathrm{~V}$	20	-	
Collector-to-Emitter Saturation Voitage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A}$	-	0.5	V
Saturated Switching Time: Turn-on	ton	$I_{C}=1 \mathrm{~A}$	-	5	$\mu \mathrm{s}$
Turn-off	toFF	$I_{C}=1 \mathrm{~A}$	-	15	$\mu \mathrm{s}$

[^11]Structure: Epitaxial-base
Applications: Power-switching, amplifiers
System Usage: Military
Package: JEDEC TO-66
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=-80 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=40 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$I_{C}=-1 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=-4 \mathrm{~V}$	5	-	MHz
DC Forward-Current Transfer Ratio	hFE	$I_{C}=-2 A, V_{C E}=-4 V$	20		
Collector-to-Emitter Saturation Voltage	$V_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=-2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-0.2 \mathrm{~A}$	-	-1	V

For characteristics curves and test conditions refer to published data for basic type in File No. 675.

2N6033

High-Current, High-Speed, High-Power Silicon $\mathbb{N}-\mathbb{P}-\mathbb{N}$ Power Transistor

Structure: Double-diffused epitaxial collector
Applications: High-current, fast switching
System Usage: SAFEGUARD
Package: JEDEC TO-3 with 0.060 -inch-diameter pins
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=120 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=140 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Un/ess Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	${ }_{\text {f }}$	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=10 \mathrm{~V}$	50	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}$	10	-	
Collector-to-Emitter Saturation Voltage	$V_{C E}$ (sat)	$\mathrm{I}^{\prime} \mathrm{C}=40 \mathrm{~A}, \mathrm{IB}=4 \mathrm{~A}$	-	1	V
Second-Breakdown Energy: With base reverse-biased	$E_{S / b}$	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}, \mathrm{~L}=310 \mu \mathrm{H} \\ \mathrm{R}_{\mathrm{BE}}=5 \Omega \end{gathered}$	62	-	mJ
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\text {CE }}=40 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	0.9	-	A
Saturated Switching Time: Turn-on	ton	$\mathrm{I}^{\prime} \mathrm{C}=40 \mathrm{~A}$	-	1	$\mu \mathrm{s}$
Turn-off	toFF	$\mathrm{I}^{\prime} \mathrm{C}=40 \mathrm{~A}$	-	2	$\mu \mathrm{s}$

[^12]
Darlington

2N6056
Silicon N-P-N Power Transistor

Structure: Monolithic, epitaxial-base
Applications: Power-switching, amplifiers, hammer drivers
System Usage: Military
Package: JEDEC TO-3
Maximum Ratings: $\mathrm{V}_{\mathbf{C E O}}=\mathbf{8 0} \mathrm{V}, \mathrm{P}_{\mathbf{T}}=100 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Un/ess Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	${ }_{\text {f }}$	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}$	4	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~A}, \mathrm{~V}_{C E}=3 \mathrm{~V}$	750	-	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}_{C}=4 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=16 \mathrm{~mA}$	-	2	V
Second-Breakdown Energy: With base reverse-biased	$\mathrm{E}_{\mathrm{S} / \mathrm{b}}$	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{~L}=12 \mathrm{mH} \\ \mathrm{R}_{\mathrm{BE}}=100 \Omega \\ \hline \end{gathered}$	150	-	mJ
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\text {CE }}=40 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	2	-	A
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=10 \mathrm{~W}, \Delta \mathrm{~T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$	8×10^{5}	-	Thermal Cycles

For characteristics curves and test conditions, refer to published data for basic type in File No. 563.

Structure: Multiple-emitter sites, double-diffused epitaxial
Applications: High-voltage inverters
System Usage: SAFEGUARD
Package: JEDEC TO-66
Maximum Ratings: $\mathrm{V}_{\text {CEO }}=350 \mathrm{~V}, \mathrm{P}_{\mathbf{T}}=45 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$\mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$	1	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=1.2 \mathrm{~A}, \mathrm{~V}_{C E}=1 \mathrm{~V}$	12	-	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=1.2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A}$	-	0.5	V
Second-Breakdown Energy: With base reverse-biased	$\mathrm{E}_{S / \mathrm{b}}$	$\begin{gathered} \mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}, \mathrm{~L}=100 \mu \mathrm{H} \\ \mathrm{R}_{\mathrm{BE}}=50 \Omega \end{gathered}$	0.45	-	mJ
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	0.9	-	A

[^13]
High-Speed, High-Power Silicon P-N-P Power Transistor

Structure: Epitaxial-base
Applications: Power-switching
System Usage: Military
Package: JEDEC TO-3
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=\mathbf{- 1 0 0} \mathrm{V}, \mathrm{P}_{\mathrm{T}}=125 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	$\mathrm{f}^{\text {T }}$	$I^{\prime}=-1 \mathrm{~A}, V_{C E}=-4 \mathrm{~V}$	10	-	MHz
DC Forward-Current Transfer Ratio	hFE	$I_{C}=-5 \mathrm{~A}, \mathrm{~V}_{C E}=-4 \mathrm{~V}$	20	-	
Collector-to-Emitter Saturation Voltage	$V_{C E}$ (sat)	$\mathrm{I}^{\prime}=-5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-0.5 \mathrm{~A}$	-	-1.3	V
Second-Breakdown Collector Current: With base forward-biased	IS/b	$V_{C E}=-42 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	-1.25	-	A
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=10 \mathrm{~W}, \Delta \mathrm{~T}_{\mathrm{C}}=50^{\circ}$	1.5×10^{6}	-	Thermal Cycles

For characteristics curves and test conditions, refer to published data for basic type in File No. 541.

2N6251

High-Voltage

Structure: Multiple-epitaxial
Applications: High-voltage inverters
System Usage: MARK-48, P-3-C
Package: JEDEC TO-3
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=\mathbf{3 5 0} \mathrm{V}, \mathrm{P}_{\mathrm{T}}=175 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	${ }_{\mathrm{f}} \mathrm{T}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{C E}=10 \mathrm{~V}$	2.5	-	MHz
DC Forward-Current Transfer Ratio	hFE	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{~V}_{C E}=3 \mathrm{~V}$	6	-	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=1.67 \mathrm{~A}$	-	1.5	V
Second-Breakdown Energy: With base reverse-biased	$\mathrm{E}_{\mathrm{S} / \mathrm{b}}$	$\begin{gathered} \mathrm{I} C=10 \mathrm{~A}, \mathrm{~L}=50 \mu \mathrm{H} \\ \mathrm{R}_{\mathrm{BE}}=100 \Omega \end{gathered}$	2.5	-	mJ
Second-Breakdown Collector Current: With base forward-biased	IS/b	$\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	5.8	-	A
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=20 \mathrm{~W}, \Delta \mathrm{~T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$	2×10^{5}	-	Thermal Cycles

For characteristics curves and test conditions, refer to published data for basic type in File No. 523.

Darlington

2N6385
Silicon N-P-N Power Transistor

Structure: Monolithic, epitaxial-base
Applications: Power-switching, amplifiers, hammer drivers
System Usage: Military
Package: JEDEC TO-3
Maximum Ratings: $\mathrm{V}_{\mathrm{CEO}}=\mathbf{8 0} \mathrm{V}, \mathrm{P}_{\mathbf{T}}=100 \mathrm{~W}$
ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	SYMBOL	TEST CONDITIONS	LIMITS		UNITS
			MIN.	MAX.	
Gain-Bandwidth Product	${ }_{\text {f }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$	20	-	MHz
DC Forward-Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}$	1000	-	
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.0 .1 \mathrm{~A}$	-	2	V
Second-Breakdown Energy: With base reverse-biased	$\mathrm{ES}_{\mathrm{S} / \mathrm{b}}$	$\begin{gathered} \mathrm{I}==4.5 \mathrm{~A}, \mathrm{~L}=12 \mathrm{mH} \\ \mathrm{R}_{\mathrm{BE}}=100 \Omega \end{gathered}$	120	-	mJ
Second-Breakdown Collector Current: With base forward-biased	Is/b	$\mathrm{V}_{\text {CE }}=75 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s}$	0.22	-	A
Thermal-Cycling Rating		$\mathrm{P}_{\mathrm{T}}=10 \mathrm{~W}, \Delta \mathrm{~T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$	8×10^{5}	-	Thermal Cycles

For characteristics curves and test conditions, refer, to published data for basic type in File No. 609.

Epitaxial-Planar Types for Aerospace and Military Applications
Rated for Operation in Radiation Environments with Neutron Fluence Levels to 1×1^{14} Neutrons $/ \mathrm{cm}^{2}$ and Gamma Exposure up to $1 \times 10^{8} \mathrm{Rad}(\mathrm{Si}) / \mathrm{s}$

ELECTRICAL CHARACTERISTICS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ PRE-RADIATION

[^14]POST-NEUTRON-RADIATION ELECTRICAL CHARACTERISTICS
AFTER EXPOSURE TO 5×10^{13} NEUTRONS $/ \mathrm{cm}^{2}$ (1 MeV equiv.), At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS For all Types		UNITS
		VOLTAGE V dc			CURRENT A de				
		$V_{C E}$	$V_{B E}$	VEB	IC	I_{B}	MIN.	MAX.	
Collector Cutoff Current: With base-emitter junction reverse-biased	ICEV	100	0				-	1.2	mA
* Emitter Cutoff Current	IEBO			5			-	2.2	mA
Collector-to-Emitter Sustaining Voltage: With base open	$\mathrm{V}_{\text {CEO }}$ (sus)				$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 80^{b} \\ & 60^{c} \end{aligned}$	-	V
Collector-to-Emitter Saturation Voltage	$V_{C E}$ (sat)				$7^{\text {a }}$	1.4	-	1.5	V
Base-to-Emitter Saturation Voltage	$V_{B E}$ (sat)				$7^{\text {a }}$	1.4	-	1.5	V
DC Forward Current Transfer Ratio	hFE	5			$7^{\text {a }}$		12	-	
Magnitude of Common Emitter, Small-Signal Short Circuit Forward Current Transfer Ratio ($\mathrm{f}=10 \mathrm{MHz}$)	$\left\|h_{\text {fe }}\right\|$	5			1		10	-	
* Damage Constant	$\mathrm{K}^{\mathbf{4}}$						-	9×10^{-16}	

* In accordance with JEDEC registration data format
JS-6 RDF-1.
a Pulsed; pulse duration $\leq 350 \mu \mathrm{~s}$, duty factor $\leq 2 \%$.
b For types 2N6480, 2N6482.
c For types 2N6479, 2N6481.
${ }^{\Delta}$ Damage constant $K=\frac{\frac{1}{h_{F E_{2}}}-\frac{1}{h_{F E_{1}}}}{\varphi}$

Where $\mathrm{h}_{\mathrm{FE}_{1}}=$ Beta prior to exposure
${ }^{h_{F E}}{ }_{2}=$ Beta after exposure
$\phi=$ Neutron fluence (1 MeV equiv.)
Knowing $\mathrm{K}, \mathrm{h}_{\mathrm{FE}_{2}}$ may be calculated for other
fluences using the relationship:

$$
h_{F E_{2}}=\frac{1}{K_{\phi}+\frac{1}{h_{F E_{1}}}}
$$

TYPICAL CHARACTERISTIC DURING GAMMA EXPOSURE FOR DOSE RATES OF LESS THAN 1×10^{8} RAD(Si)/sec

CHARACTERISTIC	SYMBOL	TEST	TIONS	LIMITS	UNITS
		VOLTAGE - V dc		For all Types	
		$\mathrm{v}_{\text {CB }}$	V_{BE}	TYPICAL	
Collector-to-Base Charge Generation Constant	(C)	20	0	5×10^{-8}	$\frac{\text { Coulomb }}{\text { Rad }}$

The charge generated in the depletion region of a transistor is proportional to the volume of the depletion region, the total dose, and the energy of the gamma radiation.

The primary base-collector photo current $\left[I_{\text {pp(base })}\right]=(\mathrm{C}) \dot{\gamma}$, where $\dot{\gamma}$ is the gamma dose rate in $\mathrm{Rad}(\mathrm{Si}) / \mathrm{s}$.

Evaluation of Hermeticity of Aluminum TO-3 Packages Under Thermal-Cycling Conditions (Reliability Report)

Abstract

A program that continually upgrades product and develops meaningful rating systems is a requirement in the power-semiconductor business. RCA's program has played a major role in the development of products and has led to the specification of $\mathrm{IS} / \mathrm{b}, \mathrm{ES} / \mathrm{b}$, and thermal-cycling ratings. RCA's experience in determining the thermal-cycling ratings of power transistors has shown that package material and assembly systems must be looked at very carefully from a thermal-fatigue viewpoint. This report evaluates the thermal capabilities of our competitors' aluminum TO-3 package with soldered-in leads against the RCA steel TO-3 package with glass-sealed leads.

Failure Data

In conjunction with its ongoing thermal-cycling rating program, RCA continually evaluates product from its major competitors. The results of this evaluation are quite significant in the case of the aluminum TO-3 package. Type 2N3055 product in the aluminum TO-3 package from three major competitors has been evaluated and the results compared to those achieved with RCA's steel TO-3 package. None of the competitors' product tested passed RCA's thermal-cycling criteria, and, in addition, all of the product demonstrated early failures in thermal-fatigue tests for hermeticity. It is RCA's opinion that the aluminum package as it is now manufactured is unacceptable, and that, in

Table I - Results of 16-W Thermal-Cycling
Test of $2 \mathrm{~N} 3055-10,000$ Cycles
$\mathrm{I}_{\mathrm{C}}=40$ to $130^{\circ} \mathrm{C}$, No. of Units $=10$

TEST	NO. OF FAILURES ALUM. TO-3			STEEL TO-3 RCA
	Mfr. A	Mfr. B	Mfr. C	
Helium Leak Fine	8	4	3	0
Freon Bubble -				
Gross	2	5	0	0
Total	10	9	3	0
Cumulative Electrical	7 Short	5 Short	1 Open	0
Failures for 10,000		$10_{\text {jc }}{ }^{*}$	4 Short	
Cycles				
${ }^{*} \theta_{\mathrm{jc}}$ increased more tha	25 percen			

addition, it has some fundamental engineering problems that indicate that it may never be a viable hermetic-package system. Tables I and II show typical examples of the data gathered during tests of Type 2N3055 devices in aluminum TO-3 packages. Tables III and IV show additional data on a second, recently announced transistor type housed in the aluminum TO-3 package. Note that most failures occurred before 5000 cycles.

Failure Analysis

Helium Leak Test - Before and after each test, all units were checked by submitting them to a four-hour helium bomb and then to a helium-leak detector.

Freon Bubble - The freon-bubble test is a gross-leak test in which the units are freon-bombed overnight (in FC-78 helium) and then submerged in hot freon (FC-43) and checked for bubble exodus. Analysis of the leakers showed that the devices lost hermeticity at the glass eyelet assemblies (emitter and base leads) thei are soldered into the aluminum header after the number of thermal cycles indicated. Note that no RCA devices failed the thermal-cycling test. RCA steel TO-3 devices were included in these tests only as controls; the life of the RCA steel-packaged 2N3055 on the $16 . \mathrm{W}$ thermal-cycling test is typically well beyond 100,000 cycles before first failures.

Table II - Results of Temperature-Cycling Test of 2N3055-75 Cycles
$\left(T_{C}=-65\right.$ to $+150^{\circ} \mathrm{C}$, No. of units $=15$)

TEST	NO. OF FAILURES ALUM. TO-3			STEEL TO-3 RCA
	Mfr. A	Mfr. B	Mrf. C	
Helium Leak Fine	9	14	5	0
Freon Bubble -				
Gross	0	1	1	0
Total	9	15	6	0

Table III - Results of 16-W Thermal-Cycling Test on Second
Device - $\mathbf{3 0 0 0}$ Cycles
$\left(T_{C}=40\right.$ to $130^{\circ} \mathrm{C}$, No. of units $=12$)
NO. OF FAILURES
TEST
ALUM. TO-3
MANUFACTURER A
Helium Leak -
Fine
0
Freon Bubble Gross

Total

Engineering Problem

Fig. 1 shows an exploded view of the aluminum TO-3 package; all three competitors use lead eyelet assemblies that are soldered into the aluminum flange. The cyclic heating and cooling of the aluminum package cause expansion and contraction of the flange with respect to the eyelet assembly and propagate microcracks that ultimately cause leaks. Contamination of the solder holding the eyelet assembly probably initiates the problem.

Fig.1- Aluminum TO-3 package.

Fig. 2 shows the RCA steel TO-3 package. Note the glass-to-stem seal with no solder interface. This configuration is possible with the steel package because the melting point of steel is far higher than the melting point of glass. It is not possible to use the same system with the aluminum

Table IV - Results of Temperature Cycling Test on Second Device - 25 Cycles
$\left(T_{C}=-65\right.$ to $+150^{\circ} \mathrm{C}$, No. of units $=12$)

TEST

NO. OF FAILURES
 ALUM. TO-3 MANUFACTURER A

Helium Leak -
Fine 0

Freon Bubble -
Gross
Total

3
3
header because the melting point of aluminum is below that of the glass used in the seal. Consequently, manufacturers who use aluminum packages are forced to use a soldered-in assembly.

Fig.2- RCA steel TO-3 package.

Conclusion

RCA's competitors have proclaimed the attributes of aluminum packages and hard-solder power (the power available from a package in which the pellet has been mounted by the use of a hard-solder method). We believe that the soldered-in eyelet associated with the aluminum package has serious reliability and fundamental engineering problems. This is also true of their so-called "hard-solder" packages, which use the same type of soldered-in eyelet assemblies. RCA's steel package with its glass-to-stem seal, welded cap, and controlled solder process, is far superior to the aluminum package and hard-solder mounting system-over an order of magnitude better. The aluminum package has a long way to go to compete. The customer who buys a device in a TO-3 package may think he is buying long-term hermeticity; he may have a serious problem if it's aluminum.

Real－Time Controls of Silicon Power－Transistor Reliability

L．J．Gallace and V．J．Lukach

This Note compares the traditional，classical approach to the reliability－assurance testing of power transistors with a newer classification of testing：Real－Time Control，RTC．The classical approach is commonly referred to as Group B，and in－ volves a series of mechanical，environmental，and life stress tests．RTC is a continuous，systematic evaluation and control in＂real time＂of basic，potential failure mechanisms．It is an important supplement to a total program intended to assure the reliable performance of power transistors．

Classical Method of Determining Reliability

When examining semiconductor reliability，the term＂re－ liability＂itself must first be defined and understood．Because ＂reliability＂means different things to different people，it be－ comes necessary to define the degree or level of reliability re－ quired in the classical and universal language of statistics．The procedure of accumulating life－test data under conditions which may be application－oriented to obtain MTF（mean－time－to－ failure）data is an oversimplified way of demonstrating re－ liability when one desires millions of device hours with a small number of failures．Unless one is interested in demonstrating only modest levels of reliability，this procedure will be totally inadequate for determining how well the manufacturing process produces devices that meet the intended design criteria．

Table I indicates the enormous sample sizes required to demonstrate very low failure rates by the classical method． The equally enormous expenditures in facilities and time required to test samples of the sizes shown is obvious．

Table I－Sample Size Required for $\mathbf{1 0 0 0}$－Hour Life Test

Failure Rate \％／ 1000 Hrs．	With Zero	With One	With Three
	Failures	Failure	Failures
	at 90%	at 90%	at 90%
	Confidence	Confidence	Confidence
1.0	231	390	668
0.1	2，303	3，891	6，681
0.01	23，026	38，980	66，808
0.001	230，000	389，000	668，000

Fig．1（a）shows the＂bathtub curve＂used in the classical method to characterize the random failure region；this curve is an oversimplification of the three curves shown in Fig．1（b） representing various failure modes．Clearly，the bathtub－ curve method of determing a region which by its very definition is random and largely unpredictable is unsatisfactory．

Fig． 1 －（a）Generalized＂bathtub＂failure－rate curve，（b）family of curves from which the＂bathtub＂curve in（a）is derived．

Comparison of Group B and RTC

The classical approach was developed years ago because some over－all protection in the form of reliability assurance was needed by customers．These Group B tests，performed under standardized MIL－STD－750 conditions，were necessary and useful．However，times have changed．Reliability engineers have overstress－tested devices to destruction；in addition，a wealth of customer field information is available．Failure analy－ sis performed on a routine basis has added even more knowl－ edge．The net result is a greater understanding and appreciation of categories of potential failure mechanisms associated with different product designs than was previously possible；RTC is a reliability－assurance testing system that takes advantage of all this information．

Reliability-assurance data published per specific customers' requests has traditionally consisted of Group-B test results. In general, the summation of data shows large sample sizes with near zero total failures. RTC, with its accelerated test conditions, may not show zero failures. Therefore, when RTC data is published externally, customers must be educated in its interpretation. This education usually consists of personal contact and a qualitative explanation of each report.

The foundation of RTC is accelerated testing, tests performed at higher than normal stress levels to increase the failure rate and shorten the time to wearout. There is almost no mechanical, environmental, life, or combined stress test for which accelerated test conditions cannot be achieved. Table II lists the various tests with recommended directions for acceleration. The reliability tests of the future will use accelerated testing techniques that are associated with real-time-control theory to provide meaningful, quick appraisals and predictions of the reliability of solid-state components.

Table III describes some of the most important differences that exist between the classical form of testing and RTC. The power and advantages of RTC are clearly visible.

Real-Time Controls

Real-time controls are accelerated tests used to control reliability - a design and process parameter. In the real-time method of determining reliability, a continuous flow of data is interpolated into established criteria to provide an indication of how well the manufacturing process is producing

Table II - Tests and Acceleration Directions

Test
Mechanical
Lead fatigue
Lead pull
Lead torque
Centrifuge
Impact shock
Vibration
Solderability

Environmental

Moisture resistance/ Increase time; use pressure cooker/ relative humidity
Salt atmosphere
Temperature cycling
Thermal shock
Life
Operating life Increase Tjunction
Storage life
Thermal fatigue
Reverse bias

Direction of Stress Acceleration

Increase bends to package destruction Increase weight to package destruction
Increase torque to package destruction
Increase G-force
Increase G-force
Equipment limited
Increase preconditioning stress, e.g.,
3 hrs . in steam autoclave; use moisture with bias Increase time Increase cycles; increase ΔT ambient Increase cycles; increase ΔT liquid Increase T ambient Increase $\Delta T_{\text {case }}$; increase cycles Increase T ambient; increase voltage
product that meets the criteria. By comparing actual to historical data, changes required in the manufacturing process to improve the reliability of the product can be made on a day-to-day basis.

The tests used as real-time controls are selected on the basis of extensive reliability-engineering work done during the design

Table III - Differences Between Classical Group-B Tests and Real-Time Controls

APPROACH

1. Test Considerations
2. Overall
3. Types of Failure
4. Frequency
5. Product Stage
6. Sample Size

GROUP-B TESTS

At maximum device ratings or less
General, multi-subgroups, "shotgun" approach

Non-predictable multi-failure modes; read 6 to 15 electrical parameters

Usually once per month
Completed, electrically tested product
Large (approximately 150 per each subgroups)

Very poor, after the fact
Poor, considering current low level failure rates

8 tests/rack/year (1000 hr. test and down period)
Approximately 6 weeks

EFFECTIVENESS

4. Efficiency of One Test Rack

5. Test Duration

3. Problem Detection, Feedback, Poor Corrective Action
1. Decisions
2. Reliability Predictability

REAL-TIME CONTROLS

Overstress many times to destruction
Specific, predetermined reliability engineering experimentation necessary, "rifle" approach.

Visually one failure mode; i.e., look for evidence of one specific failure mechanism. Many times electrical readings not required.
Weekly - Daily - Hourly
All stages of product
Small (approximately 40), taken more frequently

Immediate and Direct

Excellent, considering protection from accelerated conditions
Excellent, quick response on today's product with measurable quick evaluation of corrective action
90 tests/rack/year (3 day max. and 1 day for changing product)
Minutes to three days maximum
of a new product. Reliability, design, and applications engineers work together to develop an integrated matrix of mechanical, electrical, thermal, and environmental stress tests that will provide information concerning allowable margins of materials, process, and structure in the manufacturing process. Failure mechanisms detected during the manufacturing process can then be continually controlled even though they occur under accelerated conditions, and the product reliability margin, as shown in Fig. 2, can be maintained. Very often a two- or three-day accelerated life test can be used to predict the performance of a product in an actual application over a five-to

Fig. 2 - Curve demonstrating product-reliability margin.
seven-year period. For this reason, a major effort is made to correlate accelerated-test data to use conditions.

Information generated by the RTC method has unquestionable validity because tests are well controlled, and all ambiguties have been removed. Not only is the stress application and duration known for acceptable product, but, in most cases, RTC may be used to evaluate and control individual failure mechanisms. Current as well as historical and projected operating information is generated for analysis.

Real-Time Control Programs

Thermal Cycling

The first real-time control was developed by RCA to control the thermal-cycling capability of silicon power transistors in plastic packages. ${ }^{1,2,3}$ The thermal-cycling capability is determined from a system of rating curves which defines cycle life in terms of power and changes in case temperature. RTC tests are designed to produce information in three days for use in process-control. Table IV shows the sampling plan
and test conditions for real-time control of thermal-cycling capability of VERSAWATT transistors. Fig. 3 shows the

Fig. 3 - Difference in thermal-cycling tests for the standardquality, Group-B method and the accelerated RTC method.
differences in the thermal-cycling tests for the standardquality, group-B method and the accelerated RTC method. The thermal-cycling test circuit, Fig. 4, includes an indicator

Fig. 4 - The thermal cycle test circuit used to obtain the data in Table IV.

Table IV - Sampling Plan and Test for Real-Time-Control of VERSAWATT TO-220 Thermal-Cycling Capability OBJECTIVES

1. Provide a Meaningful Control for Critical Thermal-Cycling Capability.
2. Detect Lot-to-Lot Differences.
3. Initiate Corrective Actions and/or Holding Actions.

TEST CONDITIONS AND ACCEPTANCE CRITERIA
Accelerated Thermal Cycling - Free Air, $4.75 \mathrm{~W}, \Delta \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{ON}}=50 \mathrm{Sec}$. ,

$$
\begin{aligned}
& \mathrm{t} \mathrm{OFF}=100 \mathrm{Sec} ., \mathrm{n}=40: \\
& \mathrm{c}=0 @ 1700 \mathrm{cycles}, \text { or } \\
& \mathrm{c}=1 @ 3000 \text { cycles }
\end{aligned}
$$

FAILURES - Check for Opens on Rack, in Addition to Group B Tests End Points Including Top-Contact and Bottom-Contact Electrical Parameters.
NOTE: In No Way Does This Real-Time-Control De-Emphasize An Existing Disciplined And Total In-Process Quality-Control Program-From Incoming Inspection Through Warehousing.
circuit for open-emitter or open-base contacts. The failure-rate data for VERSAWATT product tested under the RTC accelerated conditions is shown in Table V.

Table V - Failure-Rate Data for 1972 for VERSAWATT Product Tested Under RTC

No. of Lots	No. of Units	No. Lots Failed	No. of Units Failed	Per cent Failed
104	4,150	1	6	0.144

Pull Strength

RTC may be practiced either on a lot-by-lot or shift basis. For example, each day, 30 samples per shift of power transistors are subjected to the following sequence of tests immediately after the soldering of the emitter, base, and collector contacts, i.e., just before the units are plastic encapsulated:

1. Autoclave ($121^{\circ} \mathrm{C}, 30 \mathrm{psia}, 4$ hours)
2. Pull test on emitter-base contacts

The purpose of the autoclave is to age the unprotected soldered joint so that poor solder contacts are more easily detected. A typical distribution for the pull-strength test is shown in Fig. 5. A contact that cannot withstand at least

Fig. 5 - A typical pull-strength distribution after autoclave at 30 psia, $T=121^{\circ} \mathrm{C}, 4$ hours.

10 ounces of pull is a failure. The autoclave-plus-pull-test RTC checks only the mechanical strength of the solder joint, and provides a direct measure of the success of the soldering process on a real-time basis. Deficiencies discovered as a result of the pull-strength test are corrected in subsequent shifts.

Wire-Bond Test

A thermal shock test of plastic product using wire bonds for emitter-base connections is performed weekly, and is very effective in monitoring a major failure mechanism which manifests itself as intermittent opens under thermal operation. The sampling plan and test conditions for the thermal-shock RTC are as follows:

Sample Size	Conditions	Cycles	Dwell Time
40	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	100	30 sec. at each extreme

The test proceeds as follows:

1. Perform end-point test for hot intermittent opens.
2. Make curve-tracer measurement with power applied; allow device to heat to $125^{\circ} \mathrm{C}$.
3. Criticize data for stability criteria ("jitter").
4. Reject all unstable product and confirm rejects by failure analysis.

Aluminum-Gold Bonding

The aluminum-gold bonding RTC was developed to detect the failure mechanism of bond lifts in gold bonds caused by the presence of impurities in the gold. The failure mechanism occurs after life testing at high temperatures $\left(200^{\circ} \mathrm{C}\right)$ without any apparent force being applied. The test is performed on a lot basis according to the following sampling plan, test conditions, and procedures:

1. Sample size is 15 devices with at least 30 wire bonds, pulltest one half of the wire bonds on each unit.
2. Bake 1 hour at $390^{\circ} \mathrm{C}$.
3. Perform pull-test on remaining wires.
4. Observe number of bond-lift failures.

Fig. 6 is a graphical representation of the results of the aluminum-gold bonding test is performed on gold-plated parts for four different lots.

Fig. 6 - Bond-pull test results before and after 390° C bake.

Additional Tests

Additional real-time controls for maintaining the thermalcycling capability of both hermetic- and plastic-packaged power transistors are shown in Table VI. These tests were developed because of the success of earlier RTC tests on the

Conclusion

The accelerated tests of the real-time-control method of realiability determination are invaluable tools in attaining the most reliable silicon power transistors. These tests, used in conjunction with or as substitutes for the tests of the Group B

Table VI - Real-Time Thermal-Cycling Test Conditions

PACKAGE	POWER (WATTS)	$\mathbf{T}_{\mathbf{c}}\left({ }^{\circ} \mathbf{C}\right)$	$\left.\Delta \mathbf{T}_{\mathbf{c}} \mathbf{}^{\circ} \mathbf{C}\right)$	$\mathbf{t}_{\text {on }}$	$\mathbf{t}_{\mathbf{o f f}}$	HEAT SINK
TO-220 VERSAWATT	18	55 to 110	55	3 min .3 min.	$3^{\circ} \mathrm{C} / \mathrm{W}$	
	4.75	35 to 155	125	50 s	100 s	Free Air
TO-3 Hermetic	16	40 to 130	90	50 s	100 s	Free Air
	56	70 to 120	50	15 s	25 s	$6.3^{\circ} \mathrm{C} / \mathrm{W}$
TO-66 Hermetic	8.5	35 to 155	120	50 s	100 s	Free Air
RCA "TO-5" Plastic	1.5	35 to 135	100	60 s	90 s	Free Air
TO-5 Hermetic	1.5	30 to 115	85	60 s	90 s	Free Air

TO-220 plastic-packaged silicon power devices. RTC tests have developed for all silicon power transistors because of demands for increased reliability by automotive and consumer-product manufacturers.

RTC Used to Achieve a Higher Reliability Level

Real-time controls not only maintain an acceptable reliability level as intended by the design of the product, but, because they are most often highly accelerated tests that show the difference in lot capability or margin of acceptability of the product manufactured, they tend to force the level of reliability higher. Fig. 7 shows how reliability levels are distributed with and without RTC.

Fig. 7 - Distribution of reliability levels with and without RTC.
or classical method, have been proven more effective than previous tests or applications-oriented derated conditions in predicting and assuring reliability levels. The success of the RTC method is directly related to a complete understanding of device and manufacturing-process capability.

REFERENCES AND BIBLIOGRAPHY

1. G. A. Lang, B. J. Fehder, W. D. Williams, "Thermal Fatigue in Silicon Power Transistors", IEEE Transactions on Electron Devices, September, 1970.
2. V. J. Lukach, L. Gallace, and W. D. Williams, "Thermal Cycling Ratings of Power Transistors", RCA Application Note AN-4783.
3. L. Gallace, "Quantitative Measurement of Thermal Cycling Capability of Silicon Power Transistors", RCA Application Note, AN-6163.
4. L. J. Gallace and J. S. Yara, "Evaluating Reliability of Plastic Packaged Power Transistors in Consumer Applications", IEEE Transactions on Broadcast and Television, Vol. BTR-19, No. 3, August 1973.
5. D. M. Baugher and L. J. Gallace, "Methods and Test Procedures for Achieving Various Levels of Power Transistor Reliability", Proceedings of "Improving Producibility" Workshop, WESCON, September 1973.
6. C. W. Horsting, "Purple Plague and Gold Purity" 10th Annual Proceedings IEEE Reliability Physics Symposium April 5-7, 1972.

Radiation-Hardness Capability of RCA Silicon Power Transistors

R. B. Jarl

Because all military systems and weaponry may at one time be exposed to nuclear radiation, the effects of this radiation on the electronic system components must be determined and allowed for in the design. This Note describes the types of radiation damage that might be experienced by a power device and the tests used to determine the design most effective in preventing this damage.

"RADIATION HARDNESS"

In reality there is no such thing as a "radiation hard" transistor. A circuit or a device is considered "radiation hard" for a given application; the criteria is whether the entire circuit will perform its intended function after being exposed to a given radiation condition. There are several levels of nuclear radiation for which equipment is designed. For example, a hand-carried transceiver is designed for a radiation level of possibly one thousand times less than the guidance electronics in an ICBM warhead because, in its environment, the transceiver would be destroyed by a nuclear-weapon blast effect while the radiation level was still very low. An ICBM, on the other hand, flies outside the earth's atmosphere; hence, the destructive mechanism might not be blast effect but, more likely, neutron, gamma, and X-ray effects from the defensive missile burst. The levels of radiation from which manned aircraft, weapons stores, missile launch systems and the like have to be protected lie somewhere between the levels for the transceiver and the ICBM.

All transistors suffer degradation in gain, saturation, and leakage when exposed to nuclear radiation. The problem is to acquire sufficient knowledge of the transistor behavior after such exposure to allow the circuit designer to adjust the design for any undesirable changes that may occur in the device characteristics. The transistor designer may optimize a power device for radiation characteristics, but usually at the expense of its dc operating capability.

DAMAGE CLASSIFICATION

The types of radiation damage that may be inflicted upon a power device are classified as follows:

1. Physical Damage
2. Displacement Damage
3. Transient Radiation Energy Effect (TREE)
4. Ionizing Electromagnetic Pulse Effects (IEMP)

Physical Damage is inflicted on a device by "flash X-rays" from a nearby nuclear explosion. The X-rays produce a thermo-mechanical shock-wave in the dense material to which the transistor die is attached, usually molybdenum, copper, or gold. This shockwave then propagates into the transistor die and, if strong enough, will cause visible fracturing of the device.

Displacement Damage refers to changes in the atomic structure of the silicon crystal caused primarily by the disruption of the crystal lattice by impacting neutrons. The result of this damage is an increased recombination rate in the base and increased collector-body series resistance. The combined effect is manifest by a decrease in current gain and an increase in collector-emitter saturation voltage.

Transient Radiation Energy Effects (TREE) are caused mainly by gamma rays which produce large numbers of whole electron pairs in the collector-base and emitter-base junctions and cause large photo-currents to flow in the associated circuits. Intense gamma radiation may also cause current-gain degradation similar to that caused by neutron exposure, but the effect is modest compared to neutron effects.

Ionizing Electromagnetic Pulse (IEMP) Effects are the result of an intense ionization of the surroundings of an aircraft or space vehicle that produces a voltage gradient over the hull of several hundred thousand volts. Wherever there is a gap in the metal skin, such as access doors, windows, or antenna feedthroughs, the field will redistribute itself and follow the path of least resistance, possibly down into the vehicle electronics. Should the IEMP suppression be insuffi-
cient, high-current pulses may be induced in the system electronics. In most cases, the protection of the small signal and logic circuits will dictate IEMP suppression well below the capabilities of the power devices. Where a power device will be exposed to an IEMP condition, a pulsed safe-area test may be applied to simulate the situation and verify the device durability.

This Note is confined to the discussion of displacement damage (neutron effects) and transient-radiation effects (photocurrents), the main cause of failure of power devices exposed to nuclear radiation.

DEVICES TESTED

Recently, six different RCA power-transistor structures, as detailed in Table I, were subjected to fission spectrum

TABLE I
IRRADIATED POWER-TRANSISTOR SWITCHES

Transistor	Description	$\begin{gathered} \text { Size } \\ \text { (mils) } \end{gathered}$	$\mathrm{V}_{\text {CEO }}$ (volts)	$\begin{gathered} \mathrm{f}_{\mathrm{T}} \\ (\mathrm{MHz}) \end{gathered}$
2N6479	15A pwr sw. $n-p-n$	155×155	$\simeq 60-80$	100-140
2N5671	30A pwr sw. n-p-n	210×220	100-140	60-90
2N5038	20A pwr sw. n-p-n	143×182	100-140	70-100
2N3878	$\begin{gathered} \text { 7A pwr sw. } \\ \text { n-p-n } \end{gathered}$	103×103	75.110	60-90
2N5320	1A ampl. \& sw n-p-n	$\text { v. } 42 \times 42$	70-120	120-180
2N6247	$\begin{aligned} & 10 \mathrm{~A} \mathrm{ampl} . \\ & \mathrm{p}-\mathrm{n}-\mathrm{p} \end{aligned}$	150×150	60-80	4-10

neutron exposure and gamma radiation to determine their tolerance to nuclear and space radiation. Each sample consisted of 20 units. Except for the 2N6479, which was designed as a radiation tolerant device, these are standard commercial power transistors. The devices were evaluated for tolerance to neutron exposure and primary and secondary photocurrent generation as a function of gamma-ray intensity. Fig. 1 shows the circuit configuration and biasing used in measuring photocurrent.

Neutron Testing

Each unit tested for neutron tolerance received five fission-spectrum neutron exposures; the total fluence was sufficient to produce almost a total degradation in current gain $\left(\mathrm{H}_{\mathrm{FE}}\right)$. Before and after each exposure, 5 -volt, H_{FE}, appropriate $\mathrm{V}_{\mathrm{CE}}($ sat $), \mathrm{V}_{\mathrm{BE}}$ (sat), $\mathrm{I}_{\mathrm{CBO}}, \mathrm{I}_{\mathrm{EBO}}$ and switching speed data were taken. Only H_{FE} and V_{CE} (sat) degradation showed themselves to be of primary concern. $\mathrm{I}_{\mathrm{CBO}}$ and $\mathrm{I}_{\text {EBO }}$ increased by only small and relatively manageable amounts.

Fig. 1. Circuit and biasing arrangement for measuring photocurrent.
$\mathrm{V}_{\mathrm{CEO}}$ increased, as did f_{T} (current gain bandwidth product), while switching times decreased. $\mathrm{V}_{\mathrm{BE}}{ }^{(\text {sat }) ~ i n-~}$ creased somewhat but was still very manageable.

It is possible to predict H_{FE} after neutron exposure as a function of an empirically determined damage coefficient, K_{D} :
empirically determined damage coefficient, K_{D} :

$$
\begin{align*}
& \mathrm{K}_{\mathrm{D}} \Phi=\frac{1}{\mathrm{H}_{\mathrm{FE}}{ }^{\Phi}}-\frac{1}{\mathrm{H}_{\mathrm{FEo}}} \tag{1}\\
& \text { or } \\
& \mathrm{H}_{\mathrm{FE} \phi}=\frac{1}{\mathrm{~K}_{\mathrm{D}^{\Phi}}+\frac{1}{\mathrm{H}_{\mathrm{FEo}}}} \tag{2}
\end{align*}
$$

Where:
$\mathrm{H}_{\mathrm{FE} \phi}=$ Current gain after neutron exposure
$\mathrm{H}_{\mathrm{FEo}}=$ Current gain before neutron exposure
$\Phi=$ Cumulative neutron fluence
K_{D}
(The derivation of Equations 1 and 2 is given in the Appendix.) The more common form of this relationship is:

$$
\begin{equation*}
\mathrm{K} \Phi\left(\frac{1}{2 \pi \mathrm{f}_{\mathrm{T}}}\right)=\frac{1}{\mathrm{H}_{\mathrm{FE} \phi}}-\frac{1}{\mathrm{H}_{\mathrm{FEo}}} \tag{3}
\end{equation*}
$$

The factor $\frac{1}{2 \pi \mathrm{f}_{\mathrm{T}}}$, the gain-bandwidth product, is an approximation of the base transit time. Eq. 3 works well with small signal-devices, where f_{T} may be easily and repeatedly measured at the same collector current and voltage levels as the other parameters of concern. The measurement of f_{T} at currents greater than 1 ampere is extremely difficult owing to junction-temperature problems. Furthermore, because of the low output impedances which exist, and the difficulty of obtaining a load impedance which must be even lower, the f_{T} results are only qualitative in
nature. The gain-bandwidth product within members of a given device design are generally uniform; therefore, for this study, $\frac{1}{2 \pi f_{T}}$ was merged with K (the recombination-rate damage coefficient) such that:
$K_{D}=\frac{K}{2 \pi f_{T}}=$ composite $H_{F E}$ damage coefficient.
Figs.2, 3(a) through 3(m), and 4(a) through 4(f) present the following typical information on the devices tested:
V_{CE} (sat) vs cumulative neutron fluence (Φ) at a forced gain of $4\left(I_{C} / I_{B}=4\right)$.
V_{CE} (sat) vs cumulative neutron fluence (Φ) at a forced gain of $8\left(\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}=8\right)$.
H_{FE} vs I_{C} prior to radiation
Recombination-rate damage coefficient $\left(K_{D}\right)$ vs ${ }_{C}$.

Fig. 2. Composite graph of recombination-rate damage coefficient as a function of collector current for the power transistors discussed in this Note.

(a) $2 N 6479$ (3A)

Fig. 3. Collector-emitter saturation voltage and current gain as a function of cumulative neutron fluence for the power transistors discussed in this Note.

(b) 2N6479 (10A)

(c) 2N5672 (3A)

(d) 2N5672 (10A)

Fig. 3. Collector-emitter saturation voltage and current gain as a function of cumulative neutron fluence for the power transistors discussed in this Note.

(e) 2N5038 (3A)

(f) 2N5038 (10A)

(g) $2 N 3878$ (0.3A)

Fig. 3. Collector-emitter saturation voltage and current gain as a function of cumulative neutron fluence for the power transistors discussed in this Note.

(h) 2 N3878 (1A)

(i) $2 N 3878$ (2A)

Fig. 3. Collectoremitter saturation voltage and current gain as a function of cumulative neutron fluence for the power transistors discussed in this Note.

(k) 2N5320 (0.3A)

(m) 2N6248 (5A, $V_{C E} ; 4 A, H_{F E}$)

Fig. 3. Collector-emitter saturation voltage and current gain as a function of cumulative neutron fluence for the power transistors discussed in this Note.

(a) $2 N 6479$

(b) $2 N 5672$

(c) $2 N 5038$

Fig. 4. Recombination-rate damage coefficient and current gain as a function of collector current for the power transistors discussed in this Note.

(e) $2 N 5320$

(f) $2 N 6248$

Fig. 4. Recombination-rate damage coefficient and current gain as a function of collector current for the power transistors discussed in this Note.

Photocurrent Testing

The effect on power transistors of high-intensity radiation, such as high-energy electrons, gamma rays, and X-rays, is ionization in the collector-base and emitter-base depletion layers that produces primary photocurrents proportional to the electrical volumes of the junctions. When these photocurrents flow through the biasing networks and are sufficient to produce the appropriate IR drops in the circuit extrinsic to the base-emitter circuit, the device may become forward biased, producing what is known as "secondary photocurrent" by means of conventional H_{FE} amplification. Primary photocurrent production is predictable and can be stated as a coefficient of $6.4 \mu \mathrm{~A} / \mathrm{rad}(\mathrm{Si}) / \mathrm{cm}^{3}$. The expression for the collector-base photocurrent, $\mathrm{I}_{\mathrm{ppc}}$, may be written as

$$
\mathrm{I}_{\mathrm{ppc}}=6.4 \times 10^{-6} \times \mathrm{AxW}
$$

where A is the area of the base in cm^{2} and W is the width of the collector-base depletion layer in centimeters. Note that W is to some degree voltage dependent; therefore, $\mathrm{I}_{\mathrm{ppc}}$ will also be voltage dependent to the extent that the collector depletion layer widens according to the collector voltage and the impurity ratio between the base and collector layers.

Fig. 1 shows the circuit used for obtaining the photocurrent data in this Note; it is not entirely satisfactory for the levels of photocurrent that may occur in large power devices. Because the photocurrent is measured by monitoring the voltage across a 50 -ohm termination resistor, the arrangement saturates at a photocurrent of $\frac{\mathrm{V}_{\mathrm{CC}}}{50}$ thus, the amount of current measured is not a true indication of $\mathrm{I}_{\mathrm{ppc}}$ at the higher exposure levels. The curves of Figs. 5(a) through $5(\mathrm{f})$ should be evaluated with this fact in mind:

(a) $2 N 6479$

Fig. 5. Collector-base photocurrent as a function of dose rate for the power transistors discussed in this Note.

Fig. 5. Collector-base photocurrent as a function of dose rate for the power transistors discussed in this Note.

Fig. 5. Collector-base photocurrent as a function of dose rate for the power transistors discussed in this Note.
Characterization of the devices tested consisted of measuring the primary photocurrents in the transistors and plotting these as functions of radiation dose rate. Tests were performed at the 25 MeV linear-accelerator facility at the White Sands Missile Range, New Mexico. Radiation pulse widths of 5 to 6 microseconds were used to attain equilibrium photocurrent. All testing was performed with the accelerator in the electron-beam mode of operation. Variations in dose rate were obtained by positioning the test device at different distances from the beam port. Dose rates ranged from about 5×10^{5} to $2 \times 10^{8} \mathrm{rad}(\mathrm{Si}) / \mathrm{s}$ and were determined from the responses of a calibrated diode. The radiation response of the diode was, in turn, calibrated against lithium fluoride, Tiny Thermoluminescent Dosimetry Discs (TTDD's), and calcium fluoride impregnated Teflon chips, both of which were positioned in the area normally occupied by the device under test.

The photocurrent characteristics of the various devices evaluated are shown in Table II and described below.

TABLE II
DEVICE PHOTOCURRENT CHARACTERISTICS

Transistor Type			$\begin{aligned} & \text { TOTAL GAMMA DOSE } \\ & \left(\text { rads-silicon } \times 10^{3}\right) \\ & \hline \end{aligned}$			5
	Test No.	1	2	3	4	
2N6479		. 93	2.2	4.2	33.2	79.2
2N5671		1.2	2.3	3.7	26.7	58
2N5038		1.5	2.7	4.1	25.1	38
2N3878		. 93	2.13	3.63	24.6	49.6
2N5320		. 85	2.0	3.4	32	73
2N6247		. 83	1.68	2.68	6.1	26.3

2N6479. Relatively linear collector-base photocurrents were observed. The emitter-base plot was non-linear. Secondary photocurrent began at $3 \times 10^{7} \mathrm{rad} / \mathrm{s}$. The primary photocurrent generation rates in amperes per rad per second are:
collector-base $\quad 5 \times 10^{-9} \mathrm{~A} / \mathrm{rad} / \mathrm{s}$
emitter-base $\quad 1 \times 10^{-11} \mathrm{~A} / \mathrm{rad} / \mathrm{s}$ (approx.) non-linear
2N5671-2. Both the collector-base and emitter-base junctions exhibit a linear relationship between the photocurrent and the dose rate. However, this transistor type switched into the secondary-photocurrent mode from 5 x 10^{6} to $2 \times 10^{7} \mathrm{rad} / \mathrm{s}$, so that the points of the emitter plot are accordingly reduced in quantity. The plot in Fig. 5(b) yields a primary photocurrent generation rate of:

$$
\begin{array}{ll}
\text { collector-base } & 4.8 \times 10^{-9} \mathrm{~A} / \mathrm{rad} / \mathrm{s} \\
\text { emitter-base } & 2 \times 10^{-10} \mathrm{~A} / \mathrm{rad} / \mathrm{s}
\end{array}
$$

2N5038-9. Linear relationships between the photocurrent and dose rate for both collector-base and emitter-base junctions were obtained. The onset of secondary photocurrent was observed at dose rates of 2×10^{7} to 2×10^{8} $\mathrm{rad} / \mathrm{s}$. The primary photocurrent generation rates taken from Fig. 5(c) are:

$$
\begin{array}{ll}
\text { collector-base } & 3.1 \times 10^{-9} \mathrm{~A} / \mathrm{rad} / \mathrm{s} \\
\text { emitter-base } & 6.5 \times 10^{-11} \mathrm{~A} / \mathrm{rad} / \mathrm{s}
\end{array}
$$

2N3878-9. The collector-base junction shows a linear relationship between photocurrent and dose rate, whereas the emitter base is very non-linear. The non-linearity holds even though data is plotted from 5×10^{5} to $10^{8} \mathrm{rad} / \mathrm{s}$, and secondary photocurrent did not begin until the dose rate was $3 \times 10^{7} \mathrm{rad} / \mathrm{s}$. The primary photocurrent-generation rates are:
collector-base $\quad 2.4 \times 10^{-9} \mathrm{~A} / \mathrm{rad} / \mathrm{s}$
emitter-base $1 \times 10^{-11} \mathrm{~A} / \mathrm{rad} / \mathrm{s}$ (approx.) non-linear
2N5320. Linear results. Secondary photocurrent is not observed for this device for dose rates as high as 3×10^{7} ad / s. The collector-base photocurrent generation rate is 4 x $10^{-10} \mathrm{~A} / \mathrm{rad} / \mathrm{s}$.

2N6247-8. Linear relationship between photocurrent and lose rate for both junctions were seen. Secondary photourrent was observed at about $3 \times 10^{7} \mathrm{rad} / \mathrm{s}$. Primaryhotocurrent generation rates are:
collector-base $\quad 2.9 \times 10^{-9} \mathrm{~A} / \mathrm{rad} / \mathrm{s}$
emitter-base $\quad 2.1 \times 10^{-10} \mathrm{~A} / \mathrm{rad} / \mathrm{s}$

APPENDIX
 DERIVATION OF THE NEUTRON-DAMAGE COEFFICIENT

The common-emitter current gain at a constant voltage may be expressed as:

$$
\begin{align*}
\mathrm{H}_{\mathrm{FE}} & =\frac{1}{\mathrm{t}_{\mathrm{b}} \mathrm{R}}-1 \tag{A-1}\\
\text { where: } & \\
\mathrm{t}_{\mathrm{b}} & =\text { base transit time } \\
\mathrm{R} & =\text { base recombination rate }
\end{align*}
$$

The recombination rate (R) is proportional to the number of defects produced in the base by neutron radiation. The number of defects is proportional to the total exposure. Therefore, R may be expressed as:
$\mathrm{R}=\mathrm{R}_{\mathrm{o}}+\mathrm{K} \Phi$
where:
$\mathrm{K} \quad=$ a damage coefficient
$\Phi \quad=$ total neutron fluence
The base transit time, $\left(\mathrm{t}_{\mathrm{b}}\right)$, may be approximated by the relationship:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{b}} \quad=\frac{1}{2 \pi \mathrm{f}_{\mathrm{T}}} \tag{A-3}
\end{equation*}
$$

Manipulation of Eqs. A-1 and A-2 yields the expression:
$\mathrm{K} \Phi=\frac{1}{\mathrm{t}_{\mathrm{b}}}\left(\frac{1}{\mathrm{H}_{\mathrm{FE} \phi^{+1}}}-\frac{1}{\mathrm{H}_{\mathrm{FEO}}{ }^{+1}}\right)$
where:
$\mathrm{H}_{\mathrm{FEo}}=\mathrm{H}_{\mathrm{FE}}$ prior to neutron exposure ${ }^{1}$
$\mathrm{H}_{\mathrm{FE} \phi}=\mathrm{H}_{\mathrm{FE}}$ after neutron exposure ${ }^{2}$
Simplifying,

$$
\begin{equation*}
\mathrm{H}_{\mathrm{FEo}}+1=\mathrm{H}_{\mathrm{FEo}} \tag{A-5}
\end{equation*}
$$

Eq. A-4 now becomes

$$
\begin{equation*}
\mathrm{K} \Phi=\frac{1}{\mathrm{t}_{\mathrm{b}}}\left(\frac{1}{\mathrm{H}_{\mathrm{FE} \phi}+1}-\frac{1}{\mathrm{H}_{\mathrm{FEO}}}\right) \tag{A-6}
\end{equation*}
$$

A reorganization yields:

$$
\begin{equation*}
1+\mathrm{H}_{\mathrm{FE}}=\frac{1}{\mathrm{t}_{\mathrm{b}} \mathrm{~K} \Phi+\frac{1}{\mathrm{H}_{\mathrm{FEo}}}} \tag{A-7}
\end{equation*}
$$

If Eq. A-3 is then substituted in Eq. A-7, the expression becomes:

$$
\begin{equation*}
1+\mathrm{H}_{\mathrm{FE}}=\frac{1}{\frac{\mathrm{~K} \Phi}{2 \pi \mathrm{f}_{\mathrm{T}}}+\frac{1}{\mathrm{H}_{\mathrm{FEO}}}} \tag{A-8}
\end{equation*}
$$

As described in the main text, f_{T} and K may be merged as:

$$
\begin{equation*}
\frac{\mathrm{K}}{2 \pi \mathrm{f}_{\mathrm{T}}}=\mathrm{K}_{\mathrm{D}} \tag{A-9}
\end{equation*}
$$

$1+\mathrm{H}_{\mathrm{FE} \phi}$ is usually expressed as $\mathrm{H}_{\mathrm{FE} \phi}$, and the expression becomes:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{FE} \phi}=\frac{1}{\mathrm{~K}_{\mathrm{D}}{ }^{\Phi+} \frac{1}{\mathrm{H}_{\mathrm{FEo}}}} \tag{A-10}
\end{equation*}
$$

REFERENCES

1. Larin, Radiation Effects in Semiconductors, pp. 17, eq. 2.19, 2.20, John Wiley, New York, 1968
2. Same as ref. 1, pp. 14, eq. 2.11
3. Rockwell International, Internal letter 73-551-012-79, October 15, 1973

High-Reliability
 RF Power Transistors

High-Reliability RF Power Transistors

During the past several years, the RCA Solid State Division has conducted intensive programs to improve the quality and reliability of rf power transistors. The significant technological improvements that have resulted from these programs have advanced rf power transistors to the point that such devices are now used with confidence in numerous equipments in which high reliability is a prime requisite.

Design Features

The recent technological advances in RCA rf power transistors are extensions of the RCA overlay-transistor concept. Table 3-1 summarizes some of the major design features of RCA rf power transistors.
Overlay Transistor Structure-The RCA overlay design,* the basic type of structure used for RCA highreliability rf power transistors, employs a unique emitter construction that makes possible exceptional powerfrequency capabilities. The emitter is separated into many discrete sites that are connected in parallel to provide the increased current-handling capability required at high power levels. This type of emitter structure provides the high ratio of emitter periphery to base area that is essential to the generation of high power levels at high frequencies. In addition, the overlay construction makes possible current densities in the emitter mentallizing fingers that are significantly less than those in other high-frequency transistor structures. The adverse effect of high current density on transistor reliability, particularly with respect to failures caused by aluminum migration, is discussed subsequently.

The reduced emitter current density in overlay transistors can be attributed primarily to the relatively broad metal fingers used to interconnect the discrete emitter sites. These fingers are typically an order of magnitude wider than the ones used in interdigitated or mesh types of transistor structures. In addition, the separation between the emitter and base metallized fingers is 3 to 4
times greater than that in other types of high-frequency transistor structures. This increased separation permits the deposition of thicker metallizing layers and, therefore, results in a further reduction in current densities.

Emitter-Site Ballasting-A major technological development in the evolution of rf power transistors is a unique process in which an integral series resistor is introduced directly above each emitter site of an overlay transistor structure. RCA uses this process, which is referred to as emitter-site ballasting, to achieve rugged and reliable fine-line precise-geometry rf power transistors without sacrifice in high-frequency performance.

In overlay transistors, additional conducting and insulating layers can be readily introduced between the aluminum metallization and the shallow diffused emitter sites (shallow emitter diffusion is a requirement for good microwave performance). RCA has developed a technique in which a polycrystalline silicon layer (PSL) is interspersed between these regions. This interlayer, the resistivity of which can be accurately controlled by impurity doping, is used as the medium for the emitter-site ballasting of RCA microwave power transistors. Fig. 3-1 shows top and cross-sectional views of the emitterfinger structure of an overlay transistor that includes the polycrystalline silicon layer.
The resistivity of the polycrystalline silicon layer and the geometry of the contacting aluminum are controlled to form a ballast resistor in series with each emitter site. This ballasting has proved very effective in the reduction of hot spots, i.e., localized heated areas that result when the emitter-to-collector current is allowed to concentrate within small regions of the transistor pellet. Such current concentrations may occur when a large number of transistor elements are interconnected electrically, but are not coupled thermally. The formation of such hot spots can result in a regenerative condition that leads to localized thermal runaway and the consequent destruction of the transistor.

* U.S. Patent No. 3,434,019, March 18, 1969

Table 3-1 - Design Features

Feature	Advantages
Overlay structure	Reduces current density Minimizes aluminum migration
Emitter-site ballasting	Reduces formation of isolated hot spots Improves safe operating area Improves transistor resistance to failure under high VSWR conditions
Polycrystalline silicon layer (PSL)	Minimizes "alloy spike" failures Minimizes dielectric failures
Glass-passivated aluminum metallizing	Minimizes aluminum migration Hermetic package Improves resistance to moisture Results in rugged mechanical construction Features low inductances and low parasitic capacitances Provided in both stripline and coaxial configurations

Fig. 3-1-Emitter-finger structure of an overlay transistor that contains the polycrystalline silicon layer (PSL).

The ballast resistors connected in series with each emitter site provide internal biasing control to prevent excessive current in any portion of the transistor. The formation of hot spots is thereby significantly reduced. Because the overlay construction results in an emitter that is segmented into many separate sites connected in parallel, each hot spot may be isolated and controlled so that the injection of charge carriers across the transistor chip is made more uniform.

The emitter-site ballasting results in a more uniform current distribution and, therefore, makes possible more effective utilization of emitter periphery. Consequently, transistor power-output and overdrive capabilities are increased, and the forward-bias safe-operating area (determined by infrared measurements) is enlarged. This latter factor is important for linear applications of high-frequency power transistors.

The formation of transistor hot spots under rf conditions increases as the output VSWR increases. Transistor failures caused by high VSWR conditions are often related to forward-bias second breakdown, which is characterized by extremely high localized currents. Emitter-site-ballasted transistors, therefore, have a substantially greater immunity to failure produced by high VSWR conditions such as those encountered in some broadband amplifiers. This immunity is particularly demonstrated by the RCA $2-\mathrm{GHz}$ series of microwave
power transistors. For example, the RCA-2N6265, 2N6266, RCA2003, and RCA2005 2-GHz transistors are characterized to withstand an infinite VSWR at rated power levels and the specified frequency. Higher-power types included in the $2-\mathrm{GHz}$ series, such as the 2N6267 and the RCA2010, are characterized to withstand a VSWR of 10 to 1 at rated power levels and the specified frequency.

Polycrystalline Silicon Layer-In addition to its use as a medium for emitter-site ballasting, the polycrystalline silicon layer (PSL) also helps to minimize two other thermally induced failure modes that occur in highfrequency power transistors. As shown in Fig. 3-1, this layer forms a barrier between the aluminum metallization and the shallow diffused emitter region and, therefore, substantially reduces the possibility of "alloy spike" failures, i.e., emitter-to-base shorts caused by intermetallic formations of silicon and aluminum that may occur under severe hot-spot conditions.
The polycrystalline silicon layer also provides a barrier between the aluminum emitter finger and the silicon-dioxide insulating layer over the base. This barrier minimizes the possibility of emitter-to-base shorts caused by dielectric failures that result from an interaction between the aluminum and the silicon dioxide.

Recent reliability studies of high-frequency transistors operated under overstress conditions (i.e., at junction temperatures greater than $200^{\circ} \mathrm{C}$) demonstrated an order of magnitude improvement in the mean time between failures for types that contain the polycrystalline silicon layer over that of similar types in which this layer is not used. These results verify that the PSL technique contributes substantially to over-all device reliability and therefore is an important feature in the construction of high-frequency power transistors.

Glass-Passivated Aluminum-In RCA rf power transistors, a silicon dioxide layer is deposited over the aluminum metallization. This deposition results in an increase of 40 per cent in the activation energy required for the initiation of aluminum migration. The mean time between failure of large crystalline aluminum passivated in this way is increased by approximately four times at a current density of 1×10^{5} amperes/centimeter ${ }^{2}$. The silicon dioxide layer also protects the aluminum from contamination and from damage that may result because of scratches or smears during device assembly.

RCA has recently concluded a study on electronmigration failure mechanisms in rf power transistors. The RCA-2N6267, a 10 -watt, $2-\mathrm{GHz}$ transistor that has the highest current density of any RCA microwave power type, was used as the test device in this study. The median time to failure (MTF) was determined for more than one-hundred 2N6267 transistors that were dcbiased to simulate high-current-density and high-junction-temperature operating conditions. The effects of hot-spot junction temperatures over the range from $230^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$, as determined from infrared scanning,
and of current densities in the metallization of 1×10^{3} amperes/centimeter ${ }^{2}$ to 3×10^{5} amperes/centimeter ${ }^{2}$ were observed. On the basis of the results obtained, the MTF of the transistors at the typical operating current density of 1×10^{5} amperes/centimeter and the typical operating junction temperature of $150^{\circ} \mathrm{C}$ was predicted to be 100 years. Even at an operating junction temperature equal to twice the typical value (i.e., at 2×10^{5} amperes/centimeter ${ }^{2}$), an MTF of 12 years is predicted for operation of the transistors at a junction temperature of $150^{\prime} \mathrm{C}$. These results indicate that, under normal conditions, migration failures should not be a factor for RCA rf power transistors.
Gold Metallization-In some RCA microwave power transistors, particularly those intended for military phased-array-radar applications, gold metallization is employed to meet government specifications. These transistors use a metallization system that was developed by RCA for a high-volume, high-reliability military application. In this system, the contacting layer is a noble-metal, silicide upon which successive layers of titanium, platinum, and gold are superimposed. Tests of transistors operated under extreme overstress conditions (i.e., at current densities equal to twice the typical value and a hot-spot junction temperature of $285^{\circ} \mathrm{C}$) showed that transistors that use the gold metallization have a median time to failure 11 times that of transistors with the same geometry that use glass-passivated aluminum metallization. The MTF data given in the preceding paragraph for overlay transistor structures that use glass-passivated aluminum metallization, however, show that this type of metallization is more than adequate for most applications.

Hermetic Transistor Packages - The package of a power transistor used in microwave applications becomes an integral circuit element that has a critical bearing on over-all circuit performance. A suitable package for a microwave power transistor should have good thermal properties and low parasitic reactances. Package parasitic reactances and resistive losses significantly affect circuit performance characteristics such as power gain, bandwidth, and stability. The most critical parasitics are the inductances of the emitter and base leads. The higher the power capabilities of the transistor, the lower the device impedances, particularly at the input. For high-power high-frequency transistors, the input impedance is determined primarily by the package, rather than by the transistor pellet. Consequently, such transistors should be encased in well-designed and wellconstructed packages.

All RCA high-reliability of power transistors are supplied in metal-ceramic or laminated-ceramic packages. These packages, which are sealed with metallized ceramic interfaces, provide a true hermetic enclosure that can withstand thermal cycling from $65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ and power cycling such as may be encountered in transmitter service. In addition, these packages are mechanically rugged and are essentially impervious to moisture and other external contaminants.

Fig. 3-2 shows photographs of packages used for RCA high-reliability rf power transistors. These RCA hermetic transistor packages are specially designed to have extremely good thermal properties. For example, in the metal-ceramic packages, such as the HF-11, HF-21, and HF-28, the transistor pellet is mounted on a silver block or stud which is connected to the collector terminal. In the HF-46, a laminated-ceramic package, the pellet is mounted directly on a beryllium-oxide substrate. In each case, the initial heat spreader, i.e., the silver block or beryllium-oxide substrate, is a material that has a high thermal conductivity.

The RCA microwave-transistor packages, in addition to being mechanically rugged hermetic designs with excellent thermal properties, also have very low values of parasitic reactances and excellent isolation between input and output.

Fig. 3-2-Packages used for RCA high-reliability rf power transistors

Special Rating Concepts

Unlike low-frequency high-power transistors, many rf devices can fail within the dissipation limits set by the classical junction-to-case thermal resistance during operation under conditions of high load VSWR, high collector supply voltage, or linear (Class A or AB) operation. Failure can be caused by hotspotting, which results
from local current concentration in the active areas of the device, and may appear as a long-term parameter degradation. Localized hotspotting can also lead to catastrophic thermal runaway.

The presence of hotspots can make virtually useless the present method of calculating junction temperature by measurements of average thermal resistance, case temperature, and power dissipation. However, by use of an infrared microscope, the spot temperature of a small portion of an rf transistor pellet can be determined accurately under actual or simulated device operating conditions. The resultant peak-temperature information is used to characterize the device thermally in terms of junction-to-case hotspot thermal resistance, 倣-c.

The use of hotspot thermal resistance improves the accuracy of junction temperature and related reliability predictions, particularly for devices involved in linear or mismatch service.

DC Safe Area-The safe area determined by infrared techniques represents the locus of all current and voltage combinations within the maximum ratings of a device that produce a specified spot temperature (usually $200^{\circ} \mathrm{C}$) at a fixed case temperature. The shape of this safe area is very similar to the conventional safe area in that there are four regions, as shown in Fig. 3-3: constant

Figure 3-3. Safe-area curve for an rf power transistor determined by infrared techniques.
current, constant power, derating power, and constant voltage.

Regions I and IV, the constant-current and constantvoltage regions, respectively, are determined by the maximum collector current and Vceo ratings of the device. Region II is dissipation-limited; in the classical safe area curve, this region is determined by the following relationship:

$$
P_{\max }=\frac{T_{J}(\max)-T_{C}}{\theta_{J-C}}
$$

where Tc is the case temperature.
This relationship holds true for the infrared safe area; $P_{\text {max }}$ may be slightly lower because the reference temperature $\mathrm{T}_{\left.\mathrm{I}_{\text {(max }}\right)}$ is a peak value rather than an average
value. The hotspot thermal resistance ($\theta \mathrm{ss} \mathrm{sc}$) may be calculated from the infrared safe area by use of the following definition:

$$
\Theta_{\mathrm{JS}-\mathrm{C}}=\frac{\mathrm{T}_{\mathrm{JS}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{P}}
$$

where Tis is highest spot temperature $\left[\mathrm{T}_{(\text {max })}\right.$ for the safe area] and P is the dissipated power $(=\mathrm{I} \times \mathrm{V}$ product in Region 1I).

The collector voltage at which regions II and III intersect, called the knee voltage V_{k}, indicates the collector voltage at which power constriction and resulting hotspot formation begins. For voltage levels above V_{k}, the allowable power decreases. Region III is very similar to the second-breakdown region in the classical safe area curve except for magnitude. For many rf power transistors, the hotspot-limited region can be significantly lower than the second-breakdown locus. Generally V_{K} decreases as the size of the device is increased.

Fig. 3-4 shows the temperature profiles of two transistors with identical junction geometrics that operate at the same dc power level. If devices are operated on the dissipation-limited line of their classical safe areas, the profiles show that the temperature of the unballasted device rises to values $130^{\circ} \mathrm{C}$ in excess of the $200^{\circ} \mathrm{C}$ rating. Temperatures of this magnitude, although not necessarily destructive, seriously reduce the lifetime of the device.

Figure 3-4. Thermal profiles of a ballasted and an unballasted power transistor during dc operation.

Effect of Emitter Ballasting-The profiles shown in Fig. 3-4 also demonstrate the effectiveness of emitter ballasting in the reduction of power (current) constriction. In the ballasted device, a biasing resistor is introduced in series with each emitter or small groups of emitters. If one region draws too much current, it will be biased towards cutoff, allowing a redistribution of current to other areas of the device.

The amount of ballasting affects the knee voltage, Vk_{K}, as shown in Fig. 3-5. A point of diminishing returns is reached as Vк approaches Vceo.

RF Operation-In normal class C rf operation, the hotspot thermal resistance is approximately equal to the classical average thermal resistance. If the proper collector loading (match) is maintained, $\theta \mathrm{s}-\mathrm{c}$ is independent of output power at values below the saturated- or

Figure 3-5. Safe-area voltage for an rf power transistor as a function of total ballasting resistance.
slumping-power level, and is independent of collector supply voltage at values within +30 per cent of the recommended operating level.

Power constriction in rf service normally occurs only for collector load VSWR's greater than 1.0. A transistor that has a mismatched load experiences temperatures far in excess of device ratings, as shown in Fig. 3-6(a) for VSWR $=3.0$. For comparison, the temperature profile for the matched condition is shown in Fig. 3-6(b).

Fig. 3-7 is a typical family of thermal-resistance curves that indicate the response of a device to various

Figure 3-6. Thermal profile of a power transistor during rf operation: (a) under mismatched conditions; (b) under matched conditions.
levels of VSWR and collector supply voltage. Ass-c responds to even slight increases in VSWR above 1.0 and saturates at a VSWR in the range of 3 to 6 . The saturated level increases with increasing supply voltage. Devices with high knee voltages tend to show smaller changes of oss.c with VSWR and supply voltage. oss-c under mismatch is independent of frequency and power level, and reaches its highest values at load angles that
produce maximum collector current. Power level does, however, influence the temperature rise and probability of failure.

Device failure can also occur at a load angle that produces minimum collector current. Under this condition, collector voltage swing is near its maximum, and an avalanche breakdown can result. This mechanism is sensitive to frequency and power level, and becomes predominant at lower frequencies because of the decreasing rf-breakdown capability of the device.

Figure 3-7. Mismatch-stress thermal characteristics for the 2N5071.

Collector mismatch can be caused by the following conditions:

1. Antenna loading changes in mobile applications when the vehicle passes near a metallic structure.
2. Antenna damage.
3. Transmission-line failure because of line, connector, or switch defects.
4. Variable loading caused by nonlinear input characteristics of a following transistor (particularly broadband) or varactor stage.
5. Supply-voltage changes that reflect different loadline requirements in class C .
6. Tolerance variations on fixed-tuned or stripline circuits.
7. Matching network variations in broadband service.

Case-Temperature Effects-The thermal resistance of both silicon and beryllium oxide, two materials that are commonly used in rf power transistors, increases about 70 per cent as the temperature increases from 25 to $200^{\circ} \mathrm{C}$. Other package materials such as steel, kovar, copper, or silver, exhibit only minor increases in thermal resistance (about 5 per cent). The over-all increase in As-c of a device depends on the relative amounts of these materials used in the thermal path of the device; typically the increase of $\theta \mathrm{s}$ sc ranges from 5 per cent to 70 per cent. Fig. 3-8 shows the rf and dc thermal resistance coefficients for a typical rf transistor. For both cases, the coefficient is referenced to a $100^{\circ} \mathrm{C}$ case and is defined as follows:

$$
K_{0100}=\frac{\Theta_{\mathrm{s}-\mathrm{C}}}{\Theta_{\mathrm{J}-\mathrm{C}} \cdot \mathrm{at}_{\mathrm{C}}=100^{\circ} \mathrm{C}}
$$

The rf coefficient changes more than the dc coefficient, because of the power constriction that occurs in rf operation at elevated case temperature.

Figure 3-8. Thermal-resistance coefficient for the 2N5071.

RF Avalanche Breakdown Voltage-The voltage breakdown mechanism is a time dependent phenomenon; and, therefore, breakdown voltages under pulsed and rf conditions are higher than the dc values. This is obviously true when the time during which the device is subject to fields of breakdown intensity is short with respect to the mechanism time constant and the off-time is sufficiently long to permit the relaxation of this mechanism. Under these conditions, a catastrophic level cannot be reached during a single pulse, and the accumulative effect of several pulses is prevented by the off-time relaxation. Tests have demonstrated that a de.vice that has a dc breakdown voltage (BV сво) of between 60 and 80 volts can often withstand about 135 volts (collector to base) under pulse lengths shorter than 0.25 microsecond. RF performance (particularly classes B and C) is analogous to pulsed operation in the sense that the instantaneous rf voltages are at their peak value for only a fraction of the cycle. (For example, at 1.3 GHz , the period of a cycle is 0.77 nanosecond and the voltage is peaked for less than $1 / 4$ cycle. Therefore, the highintensity fields exist for less than 0.19 nanosecond.

The increased rf breakdown-voltage capability has been shown empirically. RF breakdown voltages approximately twice that at low frequencies have been achieved. One possible theoretical explanation is based on the following relationship between rf breakdown and current gain which in effect expresses the relationship at one operating frequency in terms of the alpha and beta cut-off frequencies of the device.

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{CBO}}}{}{ }^{(\mathrm{RF})}=\left\{\left[1+\left(\frac{\omega}{\mathrm{V}_{\mathrm{CBO}}}\right)^{2}\right] \times\right. \\
& {\left.\left[1+2 \mathrm{M}\left(\frac{\omega}{\omega_{\beta}}\right)^{2}\right]\right\}^{1 / 2 \mathrm{n}} }
\end{aligned}
$$

where $M=$ "excess phase" factor, $\omega_{\beta}=$ beta cut-off
frequency $=\omega_{\tau} / \beta, \eta=$ empirical constant ranging from 2 to 10 , and $\omega=$ operating frequency

In reality $\omega_{0} / \omega_{\beta}$ is a relationship between the device transit times (i.e., time constants) and the operating frequency, for example:

$$
\frac{\omega_{\mathrm{o}}}{\omega_{\beta}}=\frac{2 \pi \mathrm{fo}}{\frac{1}{\tau_{\beta}}}=\frac{2 \pi}{\tau_{\beta}} \frac{\tau_{\mathrm{o}}}{}
$$

where $\tau=\frac{1}{\omega_{\beta}}=$ beta transit time and $\tau_{0}=\frac{1}{\mathbf{f}_{\mathrm{o}}}=$ period (time of one cycle)
The ratio $\omega / \omega \beta$, therefore, normalizes the time (duration) of voltage stress to the time of transit of the device.

The curve of this function is shown in Fig. 3-9. This curve indicates that a transistor operating at its cutoff frequency ω t could theoretically have a breakdown voltage equal to six times the dc breakdown voltage. More typically, two to three times the dc breakdown voltage has been observed. A further increase in safety factor is obtained from the fact that the VcEsat is greater under rf conditions because the instantaneous peak voltage is given by

$$
\begin{aligned}
\mathrm{V} \text { inst. } & =\mathrm{Vcc}+(\text { VrF peak }) \\
& =\mathrm{Vcc}+(\text { Vcc }-V \mathrm{Vcesat}) \\
& =2 \mathrm{Vcc}-\text { Vcesat }^{2}
\end{aligned}
$$

Vcesat increases with operating frequency; the maximum instantaneous voltage, therefore, is lower at the higher frequencies further increasing the safety factor.

Both theoretical and empirical evidence support the contention that rf breakdown voltage can be considerably higher than BVcbo (static). Therefore, reliable operation can be obtained even though Vcc is more than one-half BV сbo (static).

Fig. 3-9-Relationship of rf voltage breakdown to dc voltage breakdown as a function of frequency.

Reliability as a Function of Current Density and Junction Temperature

Questions are frequently asked concerning the life of rf power transistors that use an aluminum metallization system in connection with electromigration-related failure modes. Electromigration of the aluminum has been shown to occur in the presence of high current densities and elevated temperatures. This condition results from the mass transport of metal by momentum exchange between thermally activated metal ions and conducting electrons. As a consequence, the original uniform aluminum film is reconstructed to form thin conductor regions and extruded appearing hilocks.

The process can be accompanied by the solid-state dissolution of silicon in the aluminum. This latter effect usually occurs to a limited extent in transistormanufacturing heat treatments until the aluminumsilicon saturation point is reached. As a result, only a very small additional amount of silicon dissolves during normal operation of the device. At high current densities and elevated temperatures, however, the electromigration process can act to transport the thermally diffused silicon ions away from the silicon-aluminum interface, and silicon diffusion into the aluminum is then allowed to continue until eventually failure of the transistor junctions occurs.

Test Conditions-The effects of electromigration on the lifetime of RCA rf power transistors in relation to various current densities and junction temperatures were evaluated in an accelerated-operating-life test program. DC current-voltage conditions were used because electromigration is responsive to the dc components of the total wave form used in rf applications, i.e., electromigration is effected by the unidirectional components of the field. Tests were conducted at three different emitter stripe current densities (JE). The tests at each current density, in turn, were conducted at three different peak junction temperatures (T_{j}), all of which were accelerated above normal use conditions. Peak junction temperature was determined by infrared scanning of the transistor pellet at each life-test condition. Table 3-2 shows the matrix of test conditions. The sample size per test condition ranged from 10 to 15 units.

Test Vehicle-The RCA 2N6267 was used as the test vehicle because it is required to withstand one of the highest current of densities of any RCA rf power transistor (this transistor, therefore, represents a "worst-case" candidate). All the transistors used in the test were standard-product commercial devices, i.e., they were not subjected to conventional high-reliability screening prior to life testing.

Failure Mode-The accelerated test conditions produced failures that resulted from electromigration of aluminum and silicon. The failure indicator was degradation of the transistor junctions. RF power output measured at frequent life-test down periods prior to device junction failure exhibited only slight degradation (typically 8%); this degradation is extremely small in view of the severity of the test conditions.

Test Data-An Arrhenious plot ($1 / \mathrm{T}-\log$ scale) of the log-normal median time to failure (MTF) obtained from each test is shown in Fig. 3-10. The curves shown are extrapolated down from the data points in order to enable prediction of the MTF at operating junction temperatures below the maximum rated value of $200^{\circ} \mathrm{C}$. An MTF of 9.5×10^{5} hours (or greater than 100 years) is estimated for the 2 N 6267 test vehicle at its typical application current density of $8.5 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$ and junction temperature of $150^{\circ} \mathrm{C}$.

Points from each curve in the Arrhenious plot were taken in the temperature range of $200^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ and replotted on a log-log scale, shown in Fig. 3-11, for extrapolation over various current densities. Fig. 3-11 represents general curves of MTF as a function of emitter current density and peak junction temperature. These curves can be used to estimate the MTF of an rf power transistor at its typical operating current density. Table 3-3 lists several RCA transistors designed to operate at microwave frequencies and shows the predicted MTF of these devices for typical application values of collector current, emitter stripe current density, and peak junction temperature. The microwave transistors are glasspassivated devices. It has been shown that the MTF of devices in which the glass passivation is not used is reduced by a factor of 10 . Table $3-4$ shows the MTF for non-glass-passivated rf devices predicted by use of this acceleration factor.

Table 3-2 Accelerated Life-Test Conditions

Collector Current (A)	Emitter Current(A)	Emitter Stripe Current Density (A/cm ${ }^{2}$)	Peak Junction Temperature in Degrees Centigrade*		
			Ti1	TJ2	T/3
1	1.02	8.5×10^{4}	300	280	154
2	2.07	1.7×10^{5}	283	258	230
3	3.22	2.7×10^{5}	300	273	240
		k temperature each life-test to achieve th life test.	aver on. differe		

Fig. 3-10-Arrhenious plot showing extrapolation to lower temperatures from the life-test MTF points.

Fig. 3-11-MTF as a function of current density and junction temperature.

Table 3-3 - Estimated MTF for Glass-Passivated RF Power Transistors at Typical-Application Current Densities

Type	IE(Amps)	$\left.\mathrm{JE}(\mathbf{1 0 4 A / C M})^{2}\right)$	MTF $\left(10^{6} \mathrm{H}\right.$ $\mathrm{T}=150^{\circ} \mathrm{C}$
2N5470	0.119	5.2	4
2N5920	0.180	5.5	3.5
2N5921	0.450	3.5	12
2N6265	0.215	6.5	2
2N6266	0.540	4.2	7
2N6267	1.10	8.5	.95
2N6268	0.275	8.3	1
2N6269	0.920	7.2	1.5
RCA2001	0.120	3.8	10
RCA2003	0.300	9	.8
RCA2005	0.540	4.2	7
RCA2010	1.10	8.5	.95
RCA3001	0.120	3.8	10
RCA3003	0.300	9	.8
RCA3005	0.540	8	1.1
40915	0.0015	4.2	7
41039	0.030	1	300

Table 3-4 - Estimated MTF for Non-Glass-Passivated Devices at Typical-Application Current Densities.

Type	Typical k $(\mathrm{~mA})$	JE $\left(10^{4} \mathrm{amps} / \mathrm{cm}^{2}\right)$	MTF $T_{i}=150^{\circ} C^{\prime}$ $\left(10^{6}\right.$ hours $)$
2N1493	25	2.5	3.5
2N2631	375	2.7	2.5
2N2857	1.5	0.72	15.0
2N2876	500	3.5	1.3
2N3118	50	5.1	0.4
2N3375	350	2.4	2.8
2N3553	150	1.0	12.0
2N3632	600	2.1	6.0
2N3866	70	3.8	1.0
2N5016	900	4.5	.6
2N5071	1300	3.7	1.2
2N5090	85	4.6	.58
2N5109	50	2.7	2.5
2N5916	120	5.7	0.3
2N5918	480	5.7	0.3
2N5919A	800	4.0	0.8
2N5994	2400	7.2	0.15
2N6093	5100	4.8	.5
2N6105	1350	4.4	.7
41024	100	5.4	.35

RCA JAN, JANTX, and JANTXV RF Power Transistors

RCA can supply a number of rf power transistors that have been qualified as JAN, JANTX, and/or JANTXV types in accordance with MIL-S-19500. These transistors, together with the MIL-S-19500 detailed electrical (slash-sheet) specifications for them, are listed below:

Basic Device Type No. Electrical Specification No.*

2N918
2N1493
2N2857
2N3375, 2N3553, 2N4440
2N3866
2N5071
2N5109
2N5918
2N5919A

MIL-S-19500/301
MIL-S-19500/247
MIL-S-19500/343
MIL-S-19500/341
MIL-S-19500/398
MIL-S-19500/442
MIL-S-19500/453
MIL-S-19500/473
MIL-S-19500/475
*MIL-S-19500 detailed electrical specifications for JAN, JANTX, and JANTXV devices can be obtained from the Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, Pa.

RCA HR-Series RF Power TransistorsProcessing and Screening

RCA HR-series types are high-reliability rf and microwave power transistors intended for applications in aerospace, military, and industrial equipment. These transistors are supplied to three screening levels (/1,/2, /3) which meet the electrical mechanical, and environmental test, methods, and procedures established for power transistors in MIL-STD-750. Table 3-5 defines
these reliability levels in terms of system-application usage.

RCA can provide on request SEM (Scanning Electron Microscope) inspection photographs to NASAGoddard Specification GSFC-S-311-P-12A for each wafer lot tested to level /1. Precap Visual Inspection is conducted in conformance with Method 2072 of MIL-STD-750.

Table 3-5- Reliability Levels for RCA High-Reliability RF and Microwave Transistor
RCA
Level

12 Military and Industrial (For example in Airborne Electronics)
/3 Military and Industrial (For example in Ground Based Electronics)

Description

For devices intended for applications in which maintenance and replacement are extremely difficult or impossible, and Reliability is imperative.

For devices intended for applications in which maintenance and replacement can be performed, but are difficult and expensive.

For devices intended for applications in which replacement can readily be accomplished.

HR-series transistors are available in RCA HF-28 and HF-46 and JEDEC TO-60, TO-201AA, TO-215AA, TO-216AA TO-5, TO-39, and TO-72 packages. The product-flow diagram shown in Fig. 3-12 lists a summary of processing, screening, tests, and sampling procedures followed in the manufacture of these transistors.
Table 3-6 provides detailed information for the screening tests included in the product-flow diagram. Table 3-7 gives pre-burn-in and post-burn-in electrical tests and delta limits for critical test parameters.
When ordering HR-series types, the appropriate reliability level should be indicated by addition of the suffix $/ 1, / 2$, or $/ 3$ to the type number. For example, the 2N6265 processed to level $/ 3$ requirements should be marked HR2N6265/3.

The parameters listed in Table 3-7 are tested before and after burn-in, and the data are recorded for all devices in the lot. The parameters measured shall not have changed during burn-in from the initial value by more than the specified delta (Δ) limit or beyond the end-point limits given in Table 3-7.

All devices that exceed these limits are removed from the inspection lot, and the quality removed are noted in the lot history. If the quantity removed after burn-in exceeds 10 per cent of the devices subjected to burn-in, the entire lot is rejected.

Table 3-6- Description of Total Lot Screening for HR-Series if power transistors*

Test	Conditions	MIL-STD-750 or -202		Screening Levels•		
		Method	Cond.	/1	12	13
Wafer Lot Identification	-	-	-	X	-	-
SEM Inspection	-	GSFC-S-31	P-12A.	S	-	-
Precap Visual	-	2072	-	X	X	-
Seal and Lot Identification	-	-	-	X	X	X
Stabilization Bake	$\begin{aligned} & 24 \mathrm{hrs} \min \text { at } \\ & 200^{\circ} \mathrm{C} \end{aligned}$	-	-	X	X	X
Temperature Cycling	10 cycles	1051/107C	-	x	X	X
Centrifuge	$\begin{gathered} \text { 20,000G, } \mathrm{Y}_{1} \\ \text { direction } \end{gathered}$	2006	-	x	X	X
Fine Leak	-	112	CIII	x	x	x
Gross Leak	-	112	A or B	X	X	X
HTRB (High-Temperature						
Reverse Bias)	80% VcB, $150^{\circ} \mathrm{C}$ min	-	-	X	X	X
Serialize	-	-	-	X	X	X
Pre-Burn-in Electrical	See detail Specification			X	X	X
Burn-In				X	X	X
Post-Burn-in Electrical				X	X	X
Final Group A				X	X	X

* Data on specific HR-Series types given in following pages show test conditions and limits.
- $x=100 \%$ Testing; $S=$ Sample of 5 (random selection from each wafer); $-=$ not performed.
- This specification, which was written by NASA Goddard Space Flight Center, is the industry standard.

Table 3-7-Burn-In Test Measurements
MIL-STD-750

Test	Method	Conditions \& Limits	Symbol	Δ Limits
Collector cutoff current	3041		-	100\% of pre-burn-in value or
		Per		10\% of Group -A Limit
		Detailed		whichever is greater
Forward-current transfer ratio	3076	Electrical	hee	$\pm 20 \%$ of pre-burn-in value
		Specification		
Power output	-		Pout	

Fig. 3-12-Product Flow Diagram for RCA HR-Series rf power transistors (See Tables 3-6 and 3-7 for additional details)

RCA Premium - and Ultra-High-Reliability RF Power Transistors

RCA also supplies several transistors referred to as premium- or ultra-high-reliability types. Processing and screening requirements and ratings and electrical characteristics for these transistors are included in the technical data for these types at the end of this section.

Quality Assurance Program

In addition to the prescribed screening requirements, RCA maintains a general Quality Assurance Program for high-reliability rf transistors which includes the following functions:

1. A system for controlling the conversion of a customer specification into an internal RCA specification which assures complete compliance with customer requirements. Also, this system provides for control of documentation regarding changes in design, processes, materials, and elec-
trical characteristics. All processes, work instructions, and quality inspections are clearly defined and documented.
2. Maintenance of test equipment and tools kept in strict compliance with MIL-C-45662, "Calibration System Requirements:"
3. Quality Inspection in accordance with MIL-I45208. Specifically, this program incorporates the following quality inspections:
(a) A thorough inspection of incoming raw parts and materials.
(b) Wafer-processing visual inspections and bond-pull tests to check metallization-to-wafer adherence.
(c) Pellet visual inspection after wafer dicing (SEM inspection of pellets when required by purchase order).
(d) Package-assembly visual inspection.
(e) In-process bond-pull test to monitor pellet-topackage adherence.
(f) In-process bond-pull test to monitor integrity of bond-wire contact.
(g) Precap visual inspection.
(h) Package cap-seal visual inspection.
(i) Hermeticity (fine and gross) leak-test audit performed after 100% testing.
(j) Group A electrical-test audit performed after 100% testing.
(k) Completed-unit external visual inspection
(1) Group B reliability test sampling from parent types in accordance with MIL-STD-750 test methods.
4. Quality-control sampling procedures in accordance with MIL-STD-105 and MIL-S-19500.
5. Thorough records kept on all inspections. All data kept on active file for a minimum of 3 years.

Technical Data

Significant electrical ratings and characteristics and special features of RCA JAN, JANTX, and JANTXV rf power transistors; HR-series rf power transistors; and premium- and ultra-high-reliability rf power transistors are given in the data charts on the following pages.

JAN Electrical Specifications: MILS-19500/301A
Package: JEDEC TO-72
Maximum Ratings

PT		$\mathrm{V}_{\text {cbo }}$	VEbo	VCEO	IC	TJ	$\mathrm{T}_{\text {stg }}$
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}{ }^{1 /}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \xlongequal{2}$						
mW	mW	$\underline{\mathrm{Vdc}}$	Vdc	$\underline{\mathrm{Vdc}}$	mAdc	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
300	200	30	3	15	50	+200	-65 to +200

[^15]Primary Electrical Characteristics

Limits	hfe $\begin{aligned} & \mathrm{I} \mathrm{C}=3 \mathrm{mAdc} \\ & \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{Vdc} \end{aligned}$	$\begin{gathered} h_{\mathrm{fe}} \\ \mathrm{I}_{\mathrm{C}}=4 \mathrm{mAdc} \\ \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc} \\ \mathrm{f}=100 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathbf{r}_{\mathbf{\prime}} \mathrm{C}_{\mathbf{c}} \\ \mathrm{I}_{\mathrm{E}}=-4.0 \mathrm{mAdc} \\ \mathrm{~V}_{\mathrm{CB}}=10 \mathrm{Vdc} \\ \mathrm{f}=79.8 \mathrm{MHz} \end{gathered}$	Cobo $\begin{gathered} \mathrm{VCB}=10 \mathrm{Vdc} \\ I E=0 \\ 100 \mathrm{kHz} \leqslant \mathrm{f} \leqslant 1 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{NF} \\ \mathrm{~V}_{\mathrm{CE}}=6 \mathrm{Vdc} \\ \mathrm{I}_{\mathrm{C}}=1 \mathrm{mAdc} \\ \mathrm{f}=60 \mathrm{MHz} \\ \mathrm{~g}_{\mathrm{S}}=2.5 \mathrm{mmho} \end{gathered}$	Gpe $\begin{gathered} V_{C B}=12 \mathrm{Vdc} \\ I_{C}=6.0 \mathrm{mAdc} \\ \mathrm{f}=200 \mathrm{MHz} \end{gathered}$
			psec	pF	dB	dB
Min	20	6.0	-	-	-	15
Max	200	-	25	1.7	6.0	-

For characteristic curves and test conditions, refer to data on basic type in File No. 83.

JAN2N1493

Silicon $\mathbf{N}-\mathbf{P}-\mathbf{N}$ VHF Transistor

JAN Electrical Specification: MIL-S-19500/247
Package: JEDEC TO-39
Maximum Ratings

$\mathrm{P}^{1 / 1}$	VCBO	VCEX	VEBO	$\mathrm{R}_{\theta} \mathrm{JC}$	TJ	Tstg
W	$\underline{\mathrm{Vdc}}$	Vdc	Vdc	${ }^{\circ} \mathrm{C} / \mathrm{W}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
3.5	100	100	4.5	50	+200	-65 to +200

$1 /$ This power-dissipation rating is for 1,000 hours expected life at $T_{A}=+25^{\circ} \pm 3^{\circ} \mathrm{C}$.

Primary Electrical Characteristics

Limits	$\begin{gathered} \text { PG } \\ \text { lat: } \mathrm{f}=70 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{CC}}=50 \mathrm{Vdc} \\ \mathrm{I}_{\mathrm{C}}=25 \mathrm{mAdc} \end{gathered}$	$\begin{gathered} h_{\mathrm{fe}} \\ \mathrm{f}=70 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{Vdc} \\ \mathrm{IC}=15 \mathrm{mAdc} \end{gathered}$	$\begin{gathered} \text { hFE } \\ V_{C E}=20 \mathrm{Vdc} \\ I_{E}=10 \mathrm{mAdc} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{ob}} \\ \mathrm{f}=0.1 \text { to } \mathrm{l} .0 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{CB}}=20 \mathrm{Vdc} \\ \mathrm{I}_{\mathrm{E}}=0 \end{gathered}$	$\begin{gathered} r_{b}{ }^{\prime} \mathrm{C}_{\mathrm{c}} \\ \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{Vdc} \\ \mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc} \end{gathered}$
	dB	-	-	pF	psec
Min.	10	2.5	50	-	-
Max.	-	-	200	5.0	100

[^16]JAN Electrical Specifications: MIL-S-19500/343A
Service: For UHF
Package: JEDEC TO-72
Maximum Ratings

$\begin{gathered} \mathrm{P}_{\mathrm{T}^{1 / /}} \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathbf{P T}^{2 / \Omega} \\ \mathbf{T C}=25^{\circ} \mathbf{C} \end{gathered}$	$\mathrm{V}_{\text {cbo }}$	Vceo	Vebo	TA	IC
mW	mW	Vdc	Vdc	Vdc	${ }^{\circ} \mathrm{C}$	mAdc
200	300	30	15	3	-65 to +200	40

$\frac{1 /}{}$ Derate linearly $1.14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$.
2/ Derate linearly $1.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$.

Primary Electrical Characteristics

	hFE	\|hfel	$\mathrm{C}_{\text {cb }}$	NF	GPE	$\mathrm{rb}^{\prime} \mathrm{C}_{\mathrm{c}}$
Limits	$\begin{aligned} & \mathrm{V} C E=1 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{mAdc} \end{aligned}$	$V_{C E}=6 \mathrm{Vdc}$ IC $=5 \mathrm{mAdc}$ $f=100 \mathrm{MHz}$	$\begin{gathered} \mathrm{VCB}_{\mathrm{CB}}=10 \mathrm{Vdc} \\ \mathrm{IE}=0 \\ 100 \mathrm{kHz} \leqslant \mathrm{f} \leqslant 1 \mathrm{MHz} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{VCE}=6 \mathrm{Vdc} \\ \mathrm{IC}=1.5 \mathrm{mAdc} \\ \mathrm{f}=450 \mathrm{MHz} \\ \mathrm{Rg}_{\mathrm{g}}=50 \mathrm{ohms} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{VCE}=6 \mathrm{Vdc} \\ & \mathrm{IC}=1.5 \mathrm{mAdc} \\ & \mathrm{f}=450 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & V_{C B}=6 V d c \\ & I E=2 \mathrm{mAdc} \\ & \mathrm{f}=31.9 \mathrm{MHz} \end{aligned}$
			pF	dB	dB	psec
Min	30	10	-	-	12.5	4
Max	150	19	1.0	4.5	21	15

For characteristic curves and test conditions, refer to data on basic type in File No. 61.

JAN Electrical Specifications: MIL-S-19500/341
Package: JEDEC TO-39-2N3553
JEDEC TO-60-2N3375, 2N4440
Maximum Ratings

Type	$\begin{gathered} \mathrm{P}_{\mathrm{T}} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{P}_{\mathrm{T}} \\ \mathrm{~T}=\mathrm{C}^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {cbo }}$	Vceo	Vebo	Ic	$\mathrm{T}_{\text {stg }}$	TJ
	W	W	$\underline{\mathrm{Vdc}}$	$\underline{\mathrm{Vdc}}$	$\underline{\mathrm{Vdc}}$	Adc	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
2N3375, 2N4440	2.61 /	$11.6{ }^{3 / 1}$	65	40	4	1.5	-65 to +200	+200
2N3553	$1.0{ }^{21}$	7.041	65	40	4	1.0	-65 to +200	+200

$\frac{1}{2}$ Derating linearly at $14.86 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$.
$2 /$ Derate linearly at $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$.
$3 /$ Derate linearly at $0.066 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$.
${ }^{4 /}$ Derate linearly at $0.04 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}^{\mathrm{C}}>25^{\circ} \mathrm{C}$.

Primary Electrical Characteristics

Limits	$\mathrm{V}_{C E}\left(\right.$ sat) ${ }^{1-1}$		$\begin{gathered} C_{\text {obo }} \\ I_{E}=0 \\ V_{C B}=30 \mathrm{Vdc} \\ 100 \mathrm{kHz} \leqslant \mathrm{f} \leqslant 1 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \left\|\mathrm{h}_{\mathrm{fe}}\right\| \\ \mathrm{V}_{\mathrm{CE}}=28 \mathrm{Vdc} \\ \mathrm{I}_{\mathrm{C}}=125 \mathrm{mAdc} \\ \mathrm{f}=100 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{hFE}_{\mathrm{FE}} \\ \mathrm{~V}_{C E}=5 \mathrm{Vdc}{ }^{1} \\ \mathrm{IC}=150 \mathrm{mAdc} \end{gathered}$
	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{B}}=100 \mathrm{mAdc} \end{aligned}$	$\begin{aligned} & I_{C}=250 \mathrm{mAdc} \\ & I_{B}=50 \mathrm{mAdc} \end{aligned}$			
	$\begin{aligned} & \text { 2N3375 } \\ & \text { 2N4440 } \end{aligned}$	2N3553			
	Vdc	Vdc	pF		
Min	-	-	-	3.5	15
Max	0.7	0.6	10	-	150

Limits	POE		PoE	POE	
	$\begin{aligned} & P_{\text {IE }}=1.0 \mathrm{~W} \\ & f=100 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{IE}}=1.0 \mathrm{~W} \\ & \mathrm{f}=400 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { PIE }=0.25 \mathrm{~W} \\ & f=175 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { PIE }=1.0 \mathrm{~W} \\ & f=100 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & P_{I E}=1.0 \mathrm{~W} \\ & f=400 \mathrm{MHz} \end{aligned}$
	2N3375		2N3553	2N4400	
	W	W	W	W	W
Min	7.5	3.0	2.5	10	4.0
Max	14	6.0	5.0	16	8.0

1/Pulsed test
For characteristic curves and test conditions, refer to data on basic type in File No. 386.

JAN Electrical Specification: MIL-S-19500/398
Package: JEDEC TO-39
Maximum Ratings

$\begin{gathered} \mathrm{PT}^{1 / 1} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\text {cbo }}$	Vebo	Vceo	IC	$\mathrm{T}_{\text {stg }}$	TJ
\underline{W}	$\underline{\mathrm{Vdc}}$	Vdc	$\underline{\mathrm{Vdc}}$	Adc	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
1.0	60	3.5	30	0.4	-65 to +200	+200

$1 /$ Derate linearly at $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$.

Primary Electrical Characteristics

Limits	hFE $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc} \end{aligned}$	$\begin{gathered} \left\|h_{\mathrm{fe}}\right\| \\ \mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc} \\ \mathrm{IC}=\mathbf{5 0} \mathrm{mAdc} \\ \mathrm{f}=\mathbf{2 0 0} \mathrm{MHz} \end{gathered}$	$\begin{gathered} C_{\text {obo }} \\ V_{C B}=28 \mathrm{Vdc} \\ I E=0 \\ 100 \mathrm{kHz} \leqslant \mathrm{f} \leqslant 1 \mathrm{MHz} \end{gathered}$	$\begin{gathered} V_{C E}(\text { sat }) \\ I_{C}=100 \mathrm{mAdc} \\ I_{B}=10 \mathrm{mAdc} \end{gathered}$	$\begin{gathered} \text { POE } \\ V_{C C}=28 \mathrm{Vdc} \\ \mathrm{PIE}^{2}=0.15 \mathrm{~W} \\ \mathrm{f}=400 \mathrm{MHz} \end{gathered}$	PoE $\begin{aligned} & V_{C C}=28 \mathrm{Vdc} \\ & P_{I E}=0.075 \mathrm{~W} \\ & \mathrm{f}=400 \mathrm{MHz} \end{aligned}$
			pF	$\underline{\mathrm{Vdc}}$	W	W
Min	15	2.5	-	-	1.0	0.5
Max	200	8.0	3.0	1.0	2.0	-

For characteristic curves and test conditions, refer to data on basic type in File No. 80.

JAN2N5071,

Silicon N-P-N Emitter-Ballasted Overlay VHF Transistor

 JANTX2N5071JAN Electrical Specification: MIL.S-19500/442
Package: JEDEC TO-60
Maximum Ratings

$\begin{gathered} \mathrm{P}_{\mathrm{T}^{1 /}} \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{PT}^{2 /} \\ \mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C} \end{gathered}$	VCEO	Vebo	Vcex	Ic	TOper. $\mathrm{T}_{\mathrm{stg}}$.
W	W	$\underline{\mathrm{Vdc}}$	$\underline{\mathrm{Vdc}}$	$\underline{\text { Vdc }}$	Adc	${ }^{\circ} \mathrm{C}$
2.6	70	35	4	65	10	$\begin{aligned} & -65 \text { to } \\ & +200 \end{aligned}$

[^17]Primary Electrical Characteristics

Limits	$\begin{gathered} \mathrm{h}_{\mathrm{FE}} \\ \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc} \\ \mathrm{l} \mathrm{C}=3 \mathrm{Adc} \end{gathered}$	$\begin{gathered} C_{\text {obo }} \\ \mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc} \\ \mathrm{I}_{\mathrm{E}}=0 \\ 100 \mathrm{kHz} \leqslant \mathrm{f} \leqslant 1 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { POE } \\ \text { PIE }=3 \mathrm{~W} \\ \mathrm{f}=76 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { VSWR } \\ \mathbf{f = 3 0 \mathrm { MHz }} \\ \text { POE }=30 \mathrm{~W} \end{gathered}$	$\mathrm{R}_{\theta} \mathrm{JC}$
Min. Max.	$\begin{array}{r} 15 \\ 100 \end{array}$	pF	W	3:1 All Phases	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		85	24		
			34		2.5

[^18]JAN Electrical Specification: MIL-S-19500/453
Package: JEDEC TO-39
Maximum Ratings

$\begin{gathered} \mathrm{PT}^{1^{\prime}} \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	Vcbo	Vebo	VCEO	$V_{\text {CER }}$	IC	$\mathrm{T}_{\text {stg }}$	TJ
W	$\underline{\mathrm{Vdc}}$	$\underline{\mathrm{Vdc}}$	$\underline{\mathrm{Vdc}}$	$\underline{\mathrm{Vdc}}$	Adc	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
1.0	40	3.0	20	40	0.4	- 65 to +200	+200

$1 /$ Derate linearly $5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$.

Primary Electrical Characteristics

Limits	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc} \end{aligned}$	$\begin{gathered} \left\|h_{\mathrm{fe}}\right\| \\ \mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc} \\ \mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc} \\ \mathrm{f}=200 \mathrm{MHz} \end{gathered}$	Cobo $\begin{gathered} V_{C B}=28 \mathrm{Vdc} \\ I E=0 \\ 100 \mathrm{kHz} \leqslant \mathrm{f} \leqslant 1 \mathrm{MHz} \end{gathered}$	$\begin{gathered} V_{C E} \text { (sat) } \\ I_{C}=100 \mathrm{mAdc} \\ I_{B}=10 \mathrm{mAdc} \end{gathered}$	$\begin{gathered} \mathrm{GPe} \\ \mathrm{~V}_{\mathrm{CE}}=15 \mathrm{Vdc} \\ \mathrm{P}_{\mathrm{IE}}=10 \mathrm{dBM} \\ \mathrm{IC}=10 \mathrm{mAdc} \\ \mathrm{f}=200 \mathrm{MHz} \end{gathered}$
			pF	Vdc	dB
Min	40	6.0	-	-	11.0
Max	120	9.0	3.5	0.5	-

For characteristic curves and test conditions, refer to data on basic type in File No. 281.

JAN2N5918-

Silicon N-P-N Emitter-Ballasted VHF-UHF Transistor

JAN Electrical Specification: MIL-S-19500/473
Package: JEDEC TO-216AA
Maximum Ratings

$\mathbf{P T}^{1 /}$ $\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathbf{C}$	$\mathbf{P}_{\mathbf{T}^{2 /}}$ $\mathbf{T}_{\mathbf{C}}=75^{\circ} \mathbf{C}$	$\mathbf{V}_{\mathbf{C E O}}$	$\mathbf{V}_{\mathrm{EBO}}$	$\mathbf{V}_{\mathbf{C E X}}$	$\mathbf{I c}^{\mathbf{I}}$	$\mathbf{T}_{\mathbf{J}}$
$\frac{\mathrm{W}}{2.4}$	$\frac{\mathrm{~W}}{10}$	$\frac{\mathrm{Vdc}}{30}$	$\frac{\mathrm{Vdc}}{4}$	$\frac{\mathrm{Vdc}}{60}$	$\frac{\mathrm{Adc}}{0.75}$	$\frac{{ }^{\circ} \mathrm{C}}{-65 \text { to }+200}$

[^19]Primary Electrical Characteristics

Limits	$\begin{gathered} \mathrm{V}_{\mathrm{CE}} \text { (sat) } \\ \mathrm{IC}_{\mathrm{C}}=2 \mathrm{Adc} \\ \mathrm{IB}_{\mathrm{B}}=400 \mathrm{mAdc} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{hFE} \\ \mathrm{~V} \mathrm{CE}=4 \mathrm{Vdc} \\ \mathrm{IC}=0.5 \mathrm{Adc} \\ \hline \end{gathered}$	$\begin{gathered} C_{\text {obo }} \\ V_{C B}=30 \mathrm{Vdc} \\ I E=0 \\ 100 \mathrm{kHz} \leqslant f \leqslant 1 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { POE } \\ \begin{array}{c} P_{I E}=1.59 \mathrm{w} \\ \mathrm{f}=400 \mathrm{MHz} \end{array} \end{gathered}$
	$\underline{\mathrm{Vdc}}$		pF	w
Min	-	15	-	10
Max	-	200	13	13

[^20]JAN Electrical Specifications: MILS-19500/475
Service: For UHF
Package: JEDEC TO-216AA
Maximum Ratings

$\mathbf{P T}_{\mathbf{~}}{ }^{\mathbf{1}}$ $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathbf{C}$	$\mathbf{P}_{\mathbf{T}}{ }^{\mathbf{2}}$ $\mathbf{T}_{\mathbf{C}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{V}_{\mathbf{C E O}}$	$\mathbf{V}_{\mathbf{E B O}}$	$\mathbf{V} \mathbf{C E X}$	$\mathbf{I C}_{\mathbf{C}}$	$\mathbf{T}_{\mathbf{A}}$
$\frac{\mathrm{W}}{2.6}$	$\frac{\mathrm{~W}}{25}$	$\frac{\mathrm{Vdc}}{30}$	$\frac{\mathrm{Vdc}}{4}$	$\frac{\mathrm{Vdc}}{65}$	$\frac{\mathrm{Adc}}{4.5}$	$\frac{{ }^{\circ} \mathrm{C}}{-65 \text { to }+200}$

${ }^{1}$ Derate linearly $15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$.
${ }^{2}$ Derate linearly $200 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>75^{\circ} \mathrm{C}$.

Primary Electrical Characteristics

Limits	$\begin{gathered} \text { VCE (sat) } \\ I_{C}=2 \mathrm{Adc} \\ I_{B}=400 \mathrm{mAdc} \end{gathered}$	$\begin{gathered} h_{F E} \\ V_{C E}=4 \mathrm{Vdc} \\ \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{Adc} \end{gathered}$	$\begin{gathered} C_{\text {obo }} \\ V_{C B}=30 \mathrm{Vdc} \\ I_{E}=0 \\ 100 \mathrm{khz} \leqslant f \leqslant 1 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { Pout } \\ P_{\text {in }}=4 \mathrm{~W} \\ f=400 \mathrm{MHz} \end{gathered}$
	Vdc		pF	W
Min	---	10	-	16
Max	2	200	22	22

[^21]

Silicon \mathbb{N}-P-N Epitaxial Planar Transistor

For UHF Applications in Industrial and Military Equipment

Features:

- High gain-bandwidth product $\mathrm{f} \boldsymbol{T}=\mathbf{1 0 0 0} \mathbf{M H z} \mathbf{~ m i n}$.
- High converter ($450-$ to $-30-\mathrm{MHz}$) gain $\mathbf{G}_{\mathbf{c}}=15 \mathrm{~dB}$ typ. for circuit bandwidth of approximately 2 MHz

The RCA-HR2N2857 is a high-reliability version of the RCA-2N2857. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N2857 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N2857 transistor in RCA data bulletin file No. 61.

- High power gain as neutralized amplifier -
 bandwidth of 20 MHz
- High power output as uhf oscillator $P_{0}=\left\{\begin{array}{l}30 \mathrm{~mW} \text { min., } 40 \mathrm{~mW} \text { typ. at } 500 \mathrm{MHz} \\ 20 \mathrm{~mW} \text { typ., at } 1 \mathrm{GHz}\end{array}\right.$
- Low device noise figure $N F=\left\{\begin{array}{l}4.5 \mathrm{~dB} \text { max. as } 450 \mathrm{MHz} \text { amplifier } \\ 7.5 \mathrm{~dB} \text { typ. as } 450-\text { to }-30-\mathrm{MHz} \text { converter }\end{array}\right.$
- Low collector-to-base time constant $\mathbf{r}_{\mathbf{b}}{ }^{\prime} \mathbf{C}_{\mathbf{c}}=7 \mathrm{ps}$ typ.
- Low collector-to-base feedback capacitance $\mathrm{C}_{\mathrm{cb}}=0.6 \mathrm{pF}$ typ.

I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE	$\mathrm{V}_{\text {CBO }}$	30 V
COLLECTOR-TO-EMITTER VOLTAGE	$V_{\text {ceo }}$	15 V
EMITTER-TO-BASE VOLTAGE	$V_{\text {Ebo }}$	2.5 V
COLLECTOR CURRENT	${ }^{\prime} \mathrm{C}$	40 mA
TRANSISTOR DISSIPATION:	P_{T}	
At case temperature up to $25{ }^{\circ} \mathrm{C}$		300 mW
At case temperatures above 250 C		Derate at $1.72 \mathrm{~mW} / \mathrm{o}^{\circ} \mathrm{C}$
At ambient temperatures up to 250 C		200 mW
At ambient temperatures abovf 250 C		Derate at $1.14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:		
Storage and operating (Junction)		-65 to +200 oc
LEAD TEMPERATURE (During Soldering):		
At distances $\geq 1 / 32 \mathrm{in}$. from seating surface for 10 s max.		265 OC

II. GROUP A TESTS, at Ambient Temperature $\left(T_{A}\right)=25^{\circ} \mathrm{C}$

CHARACTERISTIC	Symbol	TEST CONDITIONS							LIMITS		Units
		Frequency f	DC Collector- to-Base Voltage $V_{C B}$	DC Collector-to-Emitter Voltage $V_{C E}$	DC Emitter- to-Base Voltage VEB	DC Emitter Current IE	DC Base Current I_{B}	DC Collec- tor Current ${ }^{\mathrm{I} C}$			
		MHz	V	V	V	mA	mA	mA	Min.	Max.	
Collector Cutoff Current	${ }^{\text {C }}$ CBO		15			0			-	10	nA
Collector-to-Base Breakdown Voltage	$\mathrm{BV}_{\text {CBO }}$					0		0.001	30	-	V
Collector-to-Emitter Breakdown Voltage	BVCEO						0	3	15	-	V
Emitter-to-Base Breakdown Voltage	BVEBO					-0.01		0	2.5	-	V
Static Forward Current Transfer Ratio	$h_{\text {FE }}$			1				3	30	150	
Small-Signal Forward Current Transfer Ratio	$h_{\text {fe }}$	$\begin{aligned} & 0.001^{c} \\ & 100^{c} \end{aligned}$		$\begin{aligned} & 6 \\ & \hline 6 \end{aligned}$				2	$\begin{aligned} & 50 \\ & 10 \end{aligned}$	$\begin{array}{r} 220 \\ 19 \end{array}$	
Collector-to-Base Feedback Capacitance	C_{cb}	0.1 to lb	10			0			-	1.0	pF
Collector-to-Base Time Constant	$\mathrm{rb}^{\prime} \mathrm{C}_{\mathrm{c}}$	$31.9{ }^{\text {c }}$	6			-2			4	15	ps
Small-Signal CommonEmitter Power Gain in Neutralized Amplifier Circuit	G_{pe}	$450{ }^{\text {c }}$		6				1.5	12.5	19	dB
Power Output as Oscillator	P_{0}	$\geqslant 500^{\text {a }}$	10			-12			30	-	mW
UHF Device Noise Figure	NF	450 c, d, f		6				1.5	-	4.5	dB
UHF Measured Noise Figure	NF	$450{ }^{\text {c, d }}$		6				1.5	-	5.0	dB

a Fourth lead (case) not connected.
b Three-terminal measurement: Lead No. 1 (Emitter) and lead No. 4 (Case) connected to guard terminal.
c Fourth lead (case) grounded.
d Generator resistance $\mathbf{R}_{\mathbf{g}}=\mathbf{5 0}$ ohms.
e Generator resistance $\mathrm{R}_{\mathrm{g}}=\mathbf{4 0 0}$ ohms.
f Device noise figure is approximately 0.5 dB lower than the measured noise figure. The difference is due to the insertion loss at the input of the test circuit (0.25 dB) and the contribution of the following stages in the test setup (0.25 dB).
*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C B}=15 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=0.2 \mathrm{~W}$

Silicon N-P-N Overlay Transistor

For VHF/UHF Applications
Features:

- 7.5 W (MIN) output at 100 MHz Class C
- 3.0 W (MIN) output at 400 MHz Class C
- 2.5 W (Typ) output at 500 MHz , Oscillator
- High Voltage Ratings
- Hermetic stud-type package
- All electrodes isolated from stud

Abstract

The RCA-HR2N3375 is a high-reliability version of the RCA-2N3375. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N3375 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N3375 transistor in RCA data bulletin file No. 386.

I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE .	$\mathrm{V}_{\text {CBO }}$	65	V
COLLECTOR-TO-EMITTER VOLTAGE:			
With external base-to-emitter voltage $\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}$.	$V_{\text {CEV }}$	65	V
With base open	$V_{\text {CEO }}$	40	V
EMITTER-TO-BASE VOLTAGE	$V_{\text {EBO }}$	4	V
CONTINUOUS COLLECTOR CURRENT	${ }^{1} \mathrm{C}$	0.5	A
TRANSISTOR DISSIPATION:	P_{T}		
At case temperatures up to $25^{\circ} \mathrm{C}$		11.6	W
At case temperatures above $25^{\circ} \mathrm{C}$. .	Derate linearly at	0.066	W/ ${ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:			
Storage and Operating (Junction) .		-65 to +200	${ }^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During soldering):			
At distances $\geqslant 1 / 16 \mathrm{in}$. $(1.58 \mathrm{~mm})$ from insulating wafer for 10 s max.		230	${ }^{\circ} \mathrm{C}$

II. GROUP A TESTS. At Case Temperature $\left(\mathbf{T}_{\mathbf{C}}\right)=\mathbf{2 5}{ }^{\circ} \mathbf{C}$.

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS						LIMITS		UNITS
		$\begin{gathered} \hline \mathrm{DC} \\ \text { Collector } \\ \text { Volts } \end{gathered}$		$\begin{gathered} \hline \text { DC } \\ \text { Base } \\ \text { Volts } \end{gathered}$	DCCurrent(Milliamperes)					
		$\mathrm{V}_{\text {CB }}$	$\mathrm{v}_{\text {CE }}$	$V_{B E}$	${ }^{\prime} \mathrm{E}$	I_{B}	${ }^{\prime}$	Min.	Max.	
Collector-Cutoff Current	'CEO		30			0		-	. 1	mA
Collector-to-Base Breakdown Voltage	$V_{\text {(BR)CBO }}$				0		0.1	65	-	V
Collector-to-Emitter	$v_{\text {(BR)CEO }}$					0	0 to 200a	40^{6}	-	V
Breakdown Voltage	$\mathrm{v}_{\text {(BR)CEV }}$			-1.5			0 to 200 ${ }^{\text {a }}$	65^{5}	-	v
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR)EBO }}$				0.1		0	4	-	V
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\mathrm{CE}}{ }^{\text {(sat) }}$					100	500	-	1	V
DC Forward Current Transfer Ratio	$h_{\text {FE }}$		5				150	10	-	

DYNAMIC

${ }^{\text {a }}$ Pulsed through an inductor $(25 \mathrm{mH})$; duty factor $=50 \%$.
${ }^{\mathrm{b}}$ Measured at a current where the breakdown voltage is a minimum.
${ }^{c}$ For $\mathrm{P}_{\text {IE }}=1.0 \mathrm{~W}$; minimum efficiency 65%.
$d_{\text {For }} P_{I E}=1.0 \mathrm{~W}$ minimum efficiency 40%.
*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=2.6 \mathrm{~W}$

Solid State

 Division

Silicon N-P-N Overlay Transistor

For VHF/UHF Applications

Features:

- 2.5 W (MIN) output at 175 MHz , Class C Amplifier

■ 1.5 W (Typ) output at 500 MHz , Oscillator

- High Voltage Ratings
The RCA-HR2N3553 is a high-reliability version of the RCA-2N3553. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N3553 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N3553 transistor in RCA data bulletin file No. 386.

I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE $\mathrm{V}_{\mathrm{CBO}} \quad 65$ v
COLLECTOR-TO-EMITTER VOLTAGE:
With external base-to-emitter voltage $\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}$. $\mathrm{V}_{\text {CEV }} \quad 65$v
With base open $V_{\text {CEO }} \quad 40$ v
EMITTER-TO-BASE VOLTAGE $\mathrm{V}_{\text {EBO }}$ 4 v
CONTINUOUS COLLECTOR CURRENT ${ }^{\prime} \mathrm{C}$ 0.33
TRANSISTOR DISSIPATION:
P_{T}
At case temperatures up to $25^{\circ} \mathrm{C}$ 7w
At case temperatures above $25^{\circ} \mathrm{C}$ Derate linearly at 0.04
TEMPERATURE RANGE:
Storage and Operating (Junction) -65 to +200 ${ }^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During soldering):At distances $\geqslant 1 / 16 \mathrm{in}$. $(1.58 \mathrm{~mm})$ from seating plane for 10 s max. . . 230${ }^{\circ} \mathrm{C}$
II. GROUP A TESTS. At Case Temperature $\left(\mathbf{T}_{\mathbf{C}}\right)=25^{\circ} \mathrm{C}$.

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS						LIMITS		UNITS
		DCCollectorVolts		$\begin{gathered} \text { DC } \\ \text { Base } \\ \text { Volts } \\ \hline \end{gathered}$	DCCurrent(Milliamperes)					
		$\mathrm{V}_{\mathbf{C B}}$	$\mathrm{V}_{\mathbf{C E}}$	V_{BE}	${ }^{\prime} \mathrm{E}$	${ }^{\prime}$ B	${ }^{\prime} \mathrm{C}$	Min.	Max.	
Collector-Cutoff Current	$I_{\text {CEO }}$		30			0		-	. 1	mA
Collector-to-Base Breakdown Voltage	$V_{\text {(BR)CBO }}$				0		0.3	65	-	V
Collector-to-Emitter Breakdown Voltage	$\begin{array}{\|l\|} \hline V_{\text {(BR)CEO }} \\ V_{\text {(BR)CEV }} \\ \hline \end{array}$			-1.5		0	$\begin{aligned} & 0 \text { to } 200^{a} \\ & 0 \text { to } 200^{a} \end{aligned}$	$\begin{aligned} & 40^{b} \\ & 65^{b} \end{aligned}$	$-$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR)EBO }}$				0.1		0	4	-	V
Collector-to-Emitter Saturation Voltage	V_{CE} (sat)					50	250	-	1	V
DC Forward Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$		5				150	10	-	

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS						LIMITS		UNITS
		DC Collector Volts		$\begin{gathered} \hline \text { DC } \\ \text { Base } \\ \text { Volts } \\ \hline \end{gathered}$	DCCurrent(Milliamperes)					
		$\mathrm{V}_{\mathbf{C B}}$	$\mathrm{V}_{\text {CE }}$	$\mathrm{V}_{\text {BE }}$	${ }^{\prime} E$	${ }^{\prime}$ B	${ }^{\prime} \mathrm{C}$	Min.	Max.	
Collector-to-Base Capacitance Measured at 1 MHz	$\mathrm{C}_{\text {obo }}$	30			0			-	10	pF
RF Power Output Amplifier, Unneutralized At 175 MHz	$\mathrm{P}_{\text {OE }}$		28					$2.5{ }^{\text {c }}$		W

${ }^{\text {a }}$ Pulsed through an inductor (25 mH); duty factor $=50 \%$.
${ }^{\mathrm{b}}$ Measured at a current where the breakdown voltage is a minimum.
${ }^{c_{\text {For }} P_{I E}}=2.5 \mathrm{~W}$; minimum efficiency $=50 \%$.
*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C E}=30 \mathrm{~V}$
$P_{T}=1 \mathrm{~W}$

Silicon N-P-N Overlay Transistor

For VHF Applications

Features.

- 13.5 W (MIN) output at 175 MHz Class C
- 10.0 W (Typ) output at $\mathbf{2 6 0} \mathbf{~ M H z}$ Class C
- High Voltage Ratings
- Hermetic stud-type package
- All electrodes isolated from stud

The RCA-HR2N3632 is a high-reliability version of the RCA-2N3632. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N3632 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N3632 transistor in RCA data bulletin file No. 386.
I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE	$\mathrm{V}_{\text {CBO }}$	65	V
COLLECTOR-TO-EMITTER VOLTAGE:			
	$V_{\text {CEV }}$	65	V
With base open	$V_{\text {CEO }}$	40	V
EMITTER-TO-BASE VOLTAGE	$V_{\text {EBO }}$	4	\checkmark
CONTINUOUS COLLECTOR CURRENT	${ }^{\prime} \mathrm{C}$	1.0	A
TRANSISTOR DISSIPATION:	P_{T}		
At case temperatures up to $25^{\circ} \mathrm{C}$		23	W
At case temperatures above $25^{\circ} \mathrm{C}$	Derate linearly at	0.13	W/ ${ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:			
Storage and Operating (Junction) .		-65 to +200	${ }^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During soldering):			
At distances $\geqslant 1 / 16$ in (1.58 mm) from insulating wafer for 10 s max.		230	${ }^{\circ} \mathrm{C}$

II. GROUP A TESTS. At Case Temperature $\left(\mathbf{T}_{\mathbf{C}}\right)=25^{\circ} \mathrm{C}$.

StATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS						LIMITS		UNITS
		$\begin{gathered} \hline \mathrm{DC} \\ \text { Collector } \\ \text { Volts } \end{gathered}$		$\begin{aligned} & \text { DC } \\ & \text { Base } \\ & \text { Volts } \end{aligned}$	DCCurrent(Milliamperes)					
		v_{CB}	$\mathrm{v}_{\text {CE }}$	$\mathrm{V}_{\text {BE }}$	${ }^{\text {I }}$ E	${ }^{\prime}$ B	${ }^{\prime}$	Min.	Max.	
Collector-Cutoff Current	ICEO		30			0		-	0.25	mA
Collector-to-Base Breakdown Voltage	$V_{\text {(BR) }}{ }^{\text {cho }}$				0		0.5	65	-	V
Collector-to-Emitter	$\mathrm{V}_{\text {(BR) }} \mathrm{V}^{\text {CEO }}$					0	0 to 200 ${ }^{\text {a }}$	40^{5}	-	V
Breakdown Voltage	$\mathrm{v}_{\text {(BR) }}{ }^{\text {CEV }}$			-1.5			0 to $200^{\text {a }}$	$65^{\text {b }}$	-	V
$\begin{array}{\|l\|} \hline \text { Emitter-to-Base } \\ \text { Breakdown Voltage } \\ \hline \end{array}$	$V_{\text {(BR)EBO }}$. 25		0	4	-	V
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{C E}$ (sat)					100	500	-	1	V
DC Forward Current Transfer Ratio	${ }^{\text {h FE }}$		5				300	10	-	

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS						LIMITS		UNITS
		DC Collector Volts		$\begin{gathered} \hline \text { DC } \\ \text { Base } \\ \text { Volts } \end{gathered}$	DCCurrent(Milliamperes)					
		v_{CB}	$\mathrm{v}_{\text {CE }}$	$\mathrm{V}_{\text {BE }}$	${ }^{\prime} \mathrm{E}$	${ }^{\prime}$ B	${ }^{\prime}$	Min.	Max.	
Collector-to-Base Capacitance Measured at 1 MHz	$\mathrm{C}_{\text {obo }}$	30			0			-	20	pF
RF Power Output Amplifier, Unneutralized At 175 MHz	$\mathrm{P}_{\text {OE }}$		28					$13.5{ }^{\text {c }}$		w
260 MHz			28					$10^{\text {d }}$		

${ }^{\mathrm{b}}$ Measured at a current where the breakdown voltage is a minimum.
$\mathrm{c}_{\text {For }} \mathrm{PIEF}=3.5 \mathrm{~W}$; minimum efficiency $=70 \%$.
$d_{\text {For }} P_{\text {IE }}=3.0 \mathrm{~W}$; typical efficiency $=60 \%$.
*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$
$P_{T}=2.6 \mathrm{~W}$

Solid State
 Division

HR2N3866

Silicon N－P－N Overlay Transistor

High－Gain Driver for VHF／UHF Applications in Military and Industrial Communications Equipment

Features：

－High power gain，unneutralized Class \mathbf{C} amplifier $1-\mathrm{W}$ output at 400 MHz （ $10-\mathrm{dB}$ gain） 1－W output at 250 MHz （ $15-\mathrm{dB}$ gain） 1－W output at 175 MHz （17－dB gain） 1－W output at 100 MHz （20－dB gain）

The RCA－HR2N3866 is a high－reliability version of the RCA－2N3866．It is specially processed and screened for high reliability in accordance with the basic schedules out－ lined earlier in the discussion of Processing and Screening of HR－Series High－Reliability Transistors．The maximum ratings，specific electrical（Group A）tests and test limits， and the burn－in conditions for the HR2N3866 are shown below．The basic electrical－characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N3866 transistor in RCA data bulletin file No． 80.
－Low output capacitance $\mathrm{C}_{\text {obo }}=\mathbf{3 p F}$ max．

1．MAXIMUM RATINGS，Absolute－Maximum Values：

II．GROUP A TESTS，at Case Temperature（TC）$=\mathbf{2 5}$（ C

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC VOLTAGE （V）		DC CURRENT （mA）					
		$\mathrm{v}_{\text {CE }}$	$\mathrm{V}_{\text {EB }}$	$l^{\prime} \mathrm{E}$	I_{B}	${ }^{\text {I }}$ c	MIN．	MAX．	
Collector Cutoff Current： Base－emitter junction reverse biased	＇CEX	55	1.5				－	0.1	mA
Base open	ICEO	28			0		－	20	$\mu \mathrm{A}$
Collector－to－Base Breakdown Voltage	$V_{\text {（BR）} ⿻ 丷 木 ⿴ 囗}$			0		0.1	55	－	v
Collector－to－Emitter Breakdown Voltage： With base open	$V_{\text {（BR）CEO }}$				0	5	30	－	v
With base connected to emitter through 10 －ohm resistor	$V_{\text {（BR）}}$ CER		0			5	55	－	
Emitter－to－Base Breakdown Voitage	$V_{\text {（BR）}}$ Ebo			0.1		0	3.5	－	V
Emitter－Cutoff Current	Iebo		3.5				－	0.1	mA
Collector－to－Emitter Saturation Voltage	$V_{C E}$（sat）				20	100	－	1.0	V
DC Forward－Current Transfer Ratio	$h_{\text {FE }}$	5				50	10	200	
Thermal Resistance（Junction－to－Case）	$\mathrm{R}_{\theta \mathrm{JC}}$						－	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

TEST AND CONDITIONS	SYMBOL	FREQUENCYMHz	LIMITS		UNITS
			MIN．	MAX．	
$\begin{aligned} & \text { Power Output }\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}\right) \text { : } \\ & \mathrm{P}_{\mathrm{IE}}=0.1 \mathrm{~W} \end{aligned}$	Poe	400	1.0	－	W
Large－Signal Common－Emitter Power Gain（ $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$ ）： $P_{I E}=0.1 \mathrm{~W}$	GPE	400	10	－	dB
$\begin{aligned} & \text { Collector Efficiency }\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{VI}\right. \text { : } \\ & \mathrm{P}_{\mathrm{IE}}=0.1 \mathrm{~W}, \mathrm{P}_{\mathrm{OE}}=1 \mathrm{~W} \text {, Source Impedance }=50 \Omega \end{aligned}$	η_{c}	400	45	－	\％
Magnitude of Common－Emitter，Small－Signal，Short－Circuit Forward－Current Transfer Ratio： $I^{\prime} C=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=15 \mathrm{~V}$	$\left\|h_{\text {fe }}\right\|$	200	2.5	－	
Available Amplifier Signal Input Power， $\mathrm{P} O E=1 \mathrm{~W}$ ， Source Impedance $=50 \Omega$	P_{i}	400	－	0.1	W
Common－Base Output Capacitance（ $\left.\mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}\right)$	Cobo	1	－	3	pF

＊Recorded before and after burn－in for each device（serialized）．

III．BURN－IN CONDITIONS

$T_{A}=250 \mathrm{C}$
$V_{C B}=28 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=1 \mathrm{~W}$

24-W (CW), 76-MHz EmitterBallasted Overlay Transistor

Silicon N-P-N Device for 24-Volt Applications in VHF Communications Equipment

Features:

- For class B or class C amplifiers
- For $\mathbf{2 4 - V}$ FM ($\mathbf{3 0}$ to 76 MHz) communications
- 24 W output at 76 MHz with 9 dB gain (Min.)

The RCA-HR2N5071 is a high-reliability version of the RCA-2N5071. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N5071 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2 N 5071 transistor in RCA data bulletin file No. 269.
I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE . V CBO	65	V
COLLECTOR-TO-EMITTER VOLTAGE V VEO	30	V
EMITTER-TO-BASE VOLTAGE . V VBO	4	V
COLLECTOR CURRENT:		
Continuous . ${ }^{\text {I }}$ C	3.3	A
Peak	10	A
CONTINUOUS BASE CURRENT . I $_{\text {B }}$	1	A
'TRANSISTOR DISSIPATION: $\mathrm{P}_{\text {T }}$		
At case temperatures up to $25^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots . .$.	70	W
At case temperatures above $25^{\circ} \mathrm{C}$. Derates linearly at	0.4	W/ ${ }^{\circ} \mathrm{C}$
*TEMPERATURE RANGE:		
Storage and operating (junction)	-65 to 200	${ }^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During soldering):		
At distances $\geq 1 / 32 \mathrm{in}$. $(0.8 \mathrm{~mm})$ from insulating wafer for 10 s max.	230	${ }^{\circ} \mathrm{C}$

II. GROUP A TESTS. At Case Temperature $\left(\mathbf{T}_{\mathbf{C}}\right)=\mathbf{2 5}{ }^{\circ} \mathrm{C}$.

STATIC

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS			LIMITS		UNITS
		DC Collector Supply ($\mathbf{V C C}_{\mathbf{C C}}$)-V	$\begin{aligned} & \text { Input Power } \\ & \left(\mathrm{P}_{\mathrm{IE}}\right)-\mathrm{W} \\ & \hline \end{aligned}$	Frequency (f) -MHz			
					MIN.	MAX.	
Power Output	$\mathrm{P}_{\text {OE }}$	24	3	76	24	-	W
Power Gain	$\mathrm{G}_{\text {PE }}$	24	3	76	9	-	dB
Available Amplifier Signal Input Power	P_{i}	Source impedance $(\mathrm{Zg})=50$	$\mathrm{P}_{\mathrm{OE}}=24 \mathrm{~W}$	76	-	3	W
Collector Efficiency	η_{C}	24	3	76	60	-	\%
Load Mismatch	LM	24	1.2	30	GSW	$\begin{aligned} & \text { O GO } \\ & \text { Q }=3: 1 \end{aligned}$	
Collector-to-Base Capacitance	$\mathrm{C}_{\text {obo }}$	$\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$	-	1	-	85	pF

${ }^{\text {a }}$ Pulsed through a $25-\mathrm{mH}$ inductor; duty factor $=50 \%$; repetition rate $>60 \mathrm{~Hz}$.
*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$T_{A}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=2.6 \mathrm{~W}$

Solid State Division

High-Power Silicon $\mathbb{N}-\mathrm{P}-\mathbb{N}$ Overlay Transistor

High-Gain Type for Class A, B, or C Operation in VHF/UHF Circuits
Features:
- Maximum-safe-area-of-operation curve
- $1.2 \cdot \mathrm{~W}$ (min.) output at 400 MHz ($7.8-\mathrm{dB}$ gain)
- $1.6-\mathrm{W}$ (typ.) output at 175 MHz (12-dB gain)

The RCA-HR2N5090 is a high-reliability version of the RCA-2N5090. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N5090 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N5090 transistor in RCA data bulletin file No. 270.

I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE $\mathrm{V}_{\mathrm{CBO}} \quad 55$
COLLECTOR-TO-EMITTER VOLTAGE:
With external base-to-emitter resistance, $\mathrm{R}_{\mathrm{BE}}=10 \Omega$ $V_{\text {CER }} \quad 55$ 55 V
With base open $V_{\text {CEO }}$ 30 V
EMITTER-TO-BASE VOLTAGE VEbo 3.5 V
CONTINUOUS COLLECTOR CURRENT I^{\prime} 0.4 A
CONTINUOUS BASE CURRENT ${ }^{\prime} \mathrm{B}$ 0.4
TRANSISTOR DISSIPATION: P_{T}
At case temperatures up to $100^{\circ} \mathrm{C}$ 4 W
At case temperatures above $100^{\circ} \mathrm{C}$ Derate linearly at 0.04 W/ ${ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:
Storage and Operating (Junction) -65 to +200 ${ }^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During Soldering):
At distances $\geq 1 / 16 \mathrm{in}$. (1.58 mm) from insulating wafer for 10 s max 230${ }^{\circ} \mathrm{C}$

II. GROUP A TESTS, at Case Temperature (T_{C}) $=\mathbf{2 5 0} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC COLLECTOR VOLTAGE V	DC BASE VOLTAGE V	DC CURRENT mA					
		V_{CE}	$V_{B E}$	${ }^{\text {E }}$ E	'B	${ }^{1} \mathrm{C}$	MIN.	MAX.	
Collector Cutoff Current: With base open	ICEO	28			0		-	0.02	mA
With base-emitter junction reverse-biased	ICEV	55	-1.5				-	0.1	
Emitter Cutoff Current	Iebo		3.5			0	-	0.1	mA
Collector-to-Base Breakdown Voltage	$V_{\text {(BR) }}$ CBO			0		0.1	55	-	V
Collector-to-Emitter Sustaining Voltage: With base open	$\mathrm{V}_{\text {CEO }}$ (sus)				0	5	30	-	V
With external base-to-emitter resistance $\left(R_{B E}\right)=10 \Omega$	$\mathrm{V}_{\text {CER }}$ (sus)					5	$55^{\text {a }}$	-	
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR)EBO }}$			0.1		0	3.5	-	V
Collector-to-Emitter Saturation Voltage	$V_{C E}$ (sat)				20	100	-	1.0	V
DC Forward-Current Transfer Ratio	$h_{\text {FE }}$	5				50	10	200	
Thermal Resistance (Junction-to-Case)	R $\theta \mathrm{Jc}$						-	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC COLLECTOR voltage v	OUTPUT POWER ($P_{\text {OE }}$) W	INPUT POWER ($P_{\text {IE }}$) W	COLLECTOR CURRENT (IC) mA	FREQUENCY (f) MHz			
							MIN.	MAX.	
Power Output (Class C amplifier, unneutralized)	PoE	$\mathrm{V}_{\mathrm{CC}}=28$		0.2		400	1.2	-	W
Gain-Bandwidth Product	${ }^{\text {T }}$	$\mathrm{V}_{\text {CE }}=15$			50		500	-	MHz
Magnitude of Common Emitter, Small-Signal, Short-Circuit Forward-Current Transfer Ratio	$\left\|h_{f e}\right\|$	$V_{C E}=15$			50		2.5	-	
Available Amplifier Signal Input Power	P_{i}		1.2			400	-	0.2	W
Collector Efficiency	η_{C}		1.2				45	-	\%
Collector-to-Base Capacitance	$\mathrm{C}_{\text {obo }}$	$\mathrm{V}_{\mathrm{CB}}=30$				1	-	3.5	pF

apulse through a $25-\mathrm{mH}$ inductor; duty factor $=0.05$.

* Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C B}=28 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=1.75 \mathrm{~W}$

Silicon $\mathbb{N}-\mathrm{P}-\mathbb{N}$ Overlay Transistor

For UHF/Microwave Power Amplifiers, Microwave Fundamental-Frequency Oscillators, and Frequency Multipliers

Features:

- 1-W output with $5-\mathrm{dB}$ gain (min.) at $\mathbf{2 ~ G H z}$
- 2-W output with $10-\mathrm{dB}$ gain (typ) at 1 GHz

The RCA-HR2N5470 is a high-reliability version of the RCA-2N5470. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N5470 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N5470 transistor in RCA data bulletin file No. 350.

- Ceramic-metal hermetic package with low inductance and low parasitic capacitances

I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE	$\mathrm{V}_{\text {CBO }}$	55	V
COLLECTOR-TO-EMITTER VOLTAGE:			
With external base-to-emitter resistance, $\mathrm{R}_{\mathrm{BE}}=10 \Omega$	$V_{\text {CER }}$	55	V
EMITTER-TO-BASE VOLTAGE	$V E B O$	3.5	V
PEAK COLLECTOR CURRENT		0.4	A
CONTINUOUS COLLECTOR CURRENT	${ }^{\prime} \mathrm{C}$	0.2	A
TRANSISTOR DISSIPATION:	P_{T}		
At case temperatures up to $25^{\circ} \mathrm{C}$		3.5	W
At case temperatures above $25^{\circ} \mathrm{C}$		Derate at 0.02	W/ ${ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:			
Storage and operating (Junction)		-65 to +200	${ }^{\circ} \mathrm{C}$

II. GROUP A TESTS, at Case Temperature ($\mathbf{T}_{\mathbf{C}}$) $=\mathbf{2 5 0} \mathrm{C}$

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC Collector Voltage (V)		DC Current (mA)					
		$\mathrm{V}_{C B}$	$\mathrm{V}_{\text {CE }}$	${ }^{\text {I }}$ E	${ }^{\prime} B$	${ }^{1} \mathrm{C}$	Min.	Max.	
Collector Cutaff Current	${ }^{\text {I CES }}$		50				-	1	mA
Collector-to-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR) } ⿻ \mathrm{CBO}}$			0		0.1	55	-	v
Collector-to-Emitter Sustaining Voltage: With external base-to-emitter resistance $\left(R_{B E}\right)=10 \Omega$	$\mathrm{V}_{\text {CER }}$ (sus)					5	55	-	v
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR)EbO }}$			0.1		0	3.5	-	V
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)				10	100	-	1.0	V
Collector-to-Base Capacitance (Measured at 1 MHz)	C_{cb}	30		0			-	3.0	pF
RF Power Output (Common-Base Amplifier): At $2 \mathrm{GHz}^{\mathrm{a}}$	POB	28					1.0	-	W
Forward Current Transfer Ratio	$h_{\text {FE }}$		5			50	30	150	

a For $P_{\text {IB }}=0.316 \mathrm{~W}$; minimum efficiency $=30 \%$.
*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$T_{A}=25^{\circ} \mathrm{C}$
$V_{C B}=15 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=1 \mathrm{~W}$

The RCA-HR2N5916 is a high-reliability version of the RCA-2N5916. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N5916 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N5916 transistor in RCA data bulletin file No. 425.

- Low-inductance, ceramic-metal hermetic package
- All electrodes isolated from stud

I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-EMITTER VOLTAGE:

EMITTER-TO-BASE VOLTAGE . VEBO V 3.5 V
CONTINUOUS COLLECTOR CURRENT ... IC A
TRANSISTOR DISSIPATION: P_{T}

At case temperatures above $100^{\circ} \mathrm{C}$. Derate linearly at 0.04 W/o ${ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:
Storage and Operating (Junction) . -65 to +200 ${ }^{\circ} \mathrm{C}$
CASE TEMPERATURE (During Soldering):

${ }^{\circ} \mathrm{C}$

HR2N5916
II. GROUP A TESTS, at Case Temperature (T_{C}) $=25^{\circ} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC Collector Voltage	DC Base Voltage	DC Current mA					
		$V_{\text {CE }}$	$V_{B E}$	I_{E}	I_{B}	${ }^{\prime} \mathrm{C}$	Min.	Max.	
Collector-to-Emitter Cutoff Current: Base-emitter junction shorted	ICES	30	0				-	1	mA
Collector-to-Emitter Breakdown Voltage:	$V_{(B R) C E S}$		0			$5^{\text {a }}$	55	-	
With base open	$V_{\text {(BR) }}$ CEO					$5{ }^{3}$	24	-	V
Emitter-to-Base Breakdown Voltage	$V_{(B R)}{ }^{\text {EBO }}$			0.1		0	3.5	-	V
Collector-to-Emitter Saturation Voltage	$V_{C E}$ (sat)				10	100	-	0.5	V
Forward Current Transfer Ratio	hFE	5				50	30	150	
Thermal Resistance: (Junction-to-Case)	$\mathrm{R}_{\theta \text { JC }}$						-	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS		UNITS
		DC Collector Supply$\left(v_{C C}\right)-v$	Output Power (POE) - W	Input Power $(P(E)-W$	Frequency$\text { (f) }-\mathrm{MHz}$			
						Min.	Max.	
Power Output	PoE	28		0.2	400	2.0	-	W
Power Gain	GPE	28	2		400	10	-	dB
Collector Efficiency	η_{C}	28		0.2	400	50	-	\%
Collector-Base Capacitance	C_{cb}	$30\left(\mathrm{~V}_{\mathrm{CB}}\right)$			1	-	4.5	pF

a Pulsed through a $25-\mathrm{mH}$ inductor; duty factor $=50 \%$
*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CB}}=16 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=1.3 \mathrm{~W}$

JEDEC TO－216AA Package

10－W，400－MHz High－Gain Silicon N－P－N Emitter－Ballasted Overlay Transistor

For VHF／UHF Communications Equipment

Features：
－10－W output at 400 MHz （ $8 . \mathrm{dB}$ min．gain）
－Emitter－ballasting resistors
－Broadband performance（ $\mathbf{2 2 5}-\mathbf{4 0 0} \mathbf{~ M H z}$ ）

The RCA－HR2N5918 is a high－reliability version of the RCA－2N5918．It is specially processed and screened for high reliability in accordance with the basic schedules out－ lined earlier in the discussion of Processing and Screening of HR－Series High－Reliability Transistors．The maximum ratings，specific electrical（Group A）tests and test limits， and the burn－in conditions for the HR2N5918 are shown below．The basic electrical－characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N5918 transistor in RCA data bulletin file No． 448.
－Low－inductance ceramic－metal hermetic package
a All electrodes isolated from stud
－Radial leads for stripline circuits

I．MAXIMUM RATINGS，Absolute－Maximum Values：

COLLECTOR－TO－EMITTER VOLTAGE：		
With base open	$V_{\text {CEO }}$	30
COLLECTOR－TO－BASE VOLTAGE	$V_{\text {CBO }}$	60
EMITTER－TO－BASE VOLTAGE	VEbo	4
CONTINUOUS COLLECTOR CURRENT	${ }^{1} \mathrm{C}$	0.75

TRANSISTOR DISSIPATION： PT
At case temperatures up to $75^{\circ} \mathrm{C}$ 10 W
At case temperatures above $75^{\circ} \mathrm{C}$ Derate linearly at 0.08 W／${ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE：
Storage and Operating（Junction） -65 to +200 ${ }^{\circ} \mathrm{C}$
CASE TEMPERATURE（During Soldering）：
For 10 s max 230 ${ }^{\circ} \mathrm{C}$

HR2N5918
II. GROUP A TESTS, at Case Temperature (T_{C}) $=\mathbf{2 5 0} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC Collector Voltage$\|$VCE	DC Base Voltage $V_{B E}$	DC Current mA					
				IE	${ }^{\prime} \mathrm{B}$	${ }^{\prime}$	Min.	Max.	
Collector-to-Emitter Cutoff Current: Base-emitter junction shorted	ICES	30	0				-	5	mA
Collector-to-Emitter Breakdown Voltage:	$V_{\text {(BR) }} \mathrm{V}_{\text {(BR) }}$		0			100a	60	-	v
With base open	$V_{\text {(BR) }}$ CEO					$100^{\text {a }}$	30	-	
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR)EBO }}$			1		0	4	-	v
Forward Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$	4				500	10	200	
Thermal Resistance, (Junction to Case)	$\mathrm{R}_{\theta \mathrm{JC}}$						-	12.5	${ }^{\circ} \mathrm{C} / \mathrm{N}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS		UNITS
		DC Collector Supply $\left(V_{\mathrm{CC}}\right)-\mathrm{V}$	Output Power $(\text { POE })-W$	Input Power $(P(E)-W$	Frequency (f) -MHz			
						Min.	Max.	
Power Output	POE	28		1.59	400	10	-	w
Power Gain	GPE	28	10		400	8	-	dB
Collector Efficiency	η_{C}	28	10		400	60	-	\%
Collector-to-Base Output Capacitance	Cobo	$30\left(\mathrm{~V}_{\mathrm{CB}}\right)$			1	-	13	pF

aPulsed through a $25-\mathrm{mH}$ inductor; duty factor $=\mathbf{5 0 \%}$.
*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$T_{A}=25^{\circ} \mathrm{C}$
$V_{C B}=28 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=2.4 \mathrm{~W}$.

Solid State Division

16-W, 400-MHz, Silicon $\mathbb{N}-\mathrm{P}-\mathrm{N}$ Emitter-Ballasted Overlay Transistor

Overdrive Capability of 20 W Output
Features:

- 6.dB gain (min.) at 400 MHz with $16-\mathrm{W}$ (min.) output
- Integral emitter-ballasting resistors
- Broadband performance ($\mathbf{2 2 5} \mathbf{- 4 0 0} \mathbf{~ M H z}$)
- Low-inductance ceramic-metal hermetic package

The RCA-HR2N5919A is a high-reliability version of the RCA-2N5919A. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N5919A are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N5919A transistor in RCA data bulletin file No. 505.

- Radial leads for microstripline circuits
- All electrodes isolated from the stud

I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-EMITTER VOLTAGE:

With base open . $V_{\text {VEO }}$
$30 \cdot V$
COLLECTOR-TO-BASE VOLTAGE . VCBO V 65 V

CONTINUOUS COLLECTOR CURRENT ... IC
4.5

A
TRANSISTOR DISSIPATION:

At case temperatures above $75^{\circ} \mathrm{C}$

Derate at $0.2 \mathrm{~W} / \mathrm{O}^{\mathrm{O}}$

TEMPERATURE RANGE:
Storage and operating (Junction) . $\quad-65$ to +200
${ }^{\circ} \mathrm{C}$
CASE TEMPERATURE (During Soldering):
For 10 s max.
230
${ }^{\circ} \mathrm{C}$
II. GROUP A TESTS, at Case Temperature $\left(\mathbf{T}_{\mathbf{C}}\right)=\mathbf{2 5}{ }^{\mathbf{\circ}} \mathbf{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC Collector Voltage-V	$\begin{array}{\|l} \mathrm{DC} \\ \text { Base } \\ \text { Voltage-V } \end{array}$	DC Current mA					
				${ }^{\prime} \mathrm{E}$	${ }^{\prime} B$	${ }^{\prime} \mathrm{C}$	Min.	Max.	
Collector-to-Emitter Cutoff Current: With base connected to emitter	ICES	30	0				-	10	mA
Collector-to-Emitter Breakdown Voltage: With base connected to emitter	$V_{\text {(BR)CES }}$		0			200 ${ }^{\text {a }}$	65	-	V
With base open	$V_{\text {(BR) }}$ CEO				0	$200^{\text {a }}$	30	-	
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR)EBO }}$			5		0	4	-	V
Forward Current Transfer Ratio	$h_{\text {FE }}$	4				500	10	200	
Thermal Resistance (Junction-to-Case)	R日Jc						-	5.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

aPulsed through a $\mathbf{2 5}-\mathrm{mH}$ inductor; duty factor $=\mathbf{5 0 \%}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS		UNITS
		DC Collector Supply ($\mathrm{VCC}_{\mathrm{CC}}$)-V	Input Power ($\mathrm{P}_{\mathrm{I}} \mathrm{E}$)-W	Output Power ($\mathrm{POE}_{\text {O }}$-W	Frequency (f) MHz			
						Min.	Max.	
Output Power	PoE	28	4.0		400	16	-	W
Overdrive Objective Test		28	7.0		400	20	-	
Power Gain	GPE	28		16	400	6	-	dB
Collector Efficiency	η_{C}	28	4.0		400	65	-	\%
Collector-to-Base Output Capacitance	Cobo	30 ($\mathrm{VCB}_{\text {c }}$)			1	-	22	pF

*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C B}=28 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=2.6 \mathrm{~W}$

2-W, 2-GHz, Emitter-Ballasted Silicon N-P-N Overlay Transistor

For UHF/Microwave Power Amplifiers, Microwave Fundamental-Frequency Oscillators, and Frequency Multipliers

Features:

- 2-W output with $10-\mathrm{dB}$ gain (min.) at 2 GHz
- 3 -W output with $12-\mathrm{dB}$ gain (typ.) at 1 GHz

The RCA-HR2N5920 is a high-reliability version of the RCA-2N5920. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N5920 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N5920 transistor in RCA data bulletin file No. 440.

- Ceramic-metal hermetic package with low inductance and low parasitic capacitances
- Stable common-base operation
- For coaxial, microstripline, and lumped-constant circuit applications
- Integral emitter-ballasting resistors

II. GROUP A TESTS, at Case Temperature (T_{C}) $=\mathbf{2 5 0} \mathrm{C}$

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC Collector or Base Voltage (V)		DC Current (mA)					
		$\mathrm{V}_{\text {CE }}$	V_{BE}	I_{E}	${ }^{\prime} \mathrm{B}$	${ }^{\text {I }}$	Min.	Max.	
Collector Cutoff Current	${ }^{\text {ICES }}$	45	0				-	2	mA
Collector-to-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$			0		1	50	-	V
Collector-to-Emitter Breakdown Voltage: With external base-to-emitter resistance $\left(\mathrm{R}_{\mathrm{BE}}\right)=10 \Omega$	$V_{(B R) C E R}$					5	50	-	V
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR) }}$ EBO			0.1		0	3.5	-	V
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{C E}$ (sat)				10	100	-	1	v
Forward Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$	5				100	20	200	
Thermal Resistance (Junction-to-collector terminal)	R $\mathrm{JJCT}^{\text {a }}$						-	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

CHARACTERISTIC	SYMBOL	POWER INPUT $\mathrm{P}_{\text {IB }}(\mathrm{W})$	POWER OUTPUT $\mathrm{P}_{\mathrm{OB}}(\mathrm{W})$	SUPPLY VOLTAGE $\mathrm{V}_{\mathrm{CC}}(\mathrm{V})$	$\begin{aligned} & \text { FREQUENCY } \\ & \text { (f) } \\ & \text { GHz } \end{aligned}$	LIMITS		UNITS
						Min.	Max.	
Power Output	P_{OB}	0.2	-	28	2	2	-	w
Power Gain	GPB	0.2	2.0	28	2	10	-	dB
Collector Efficiency	η_{C}	0.2	2.0	28	2	40	-	\%
Collector-to-Base Capacitance	$\mathrm{C}_{\text {obo }}$			$30\left(\mathrm{~V}_{C B}\right)$	1 MHz		3	pF

*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C B}=15 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=2 \mathrm{~W}$

5-W, 2-GHz, Emitter-Ballasted Silicon N-P-N Overlay Transistor

For UHF/Microwave Power Amplifiers, Microwave Fundamental-Frequency Oscillators, and Frequency Multipliers

Features:

(I 5.W output with $5.5-\mathrm{dB}$ gain (typ.) at $2.3 \mathbf{G H z}$
a 5-W output with $7-\mathrm{dB}$ gain (min.) at $2 \mathbf{~ G H z}$

- 10-W output with $11-\mathrm{dB}$ gain (typ.) at 1.2 GHz

The RCA-HR2N5921 is a high-reliability version of the RCA-2N5921. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N5921 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N5921 transistor in RCA data bulletin file No. 427.
a Integral emitter-ballasting resistors

- Ceramic-metal hermetic package with low inductance and low parasitic capacitances

I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-EMITTER VOLTAGE:

EMITTER-TO-BASE VOLTAGE . VEBO .
DC COLLECTOR CURRENT (Continuous) . IC IC A
TRANSISTOR DISSIPATION:
P_{T}

At case temperatures above 250 C , derate linearly . $0.083 \mathrm{~W} /{ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:
Storage and Operating (Junction) . $\quad-65$ to +200
${ }^{\circ} \mathrm{C}$
CASE TEMPERATURE (During Soldering):
For 10 smax. 230
${ }^{\circ} \mathrm{C}$

II. GROUP A TESTS, at Case Temperature (T_{C}) $=\mathbf{2 5 0} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC Collector or Base Voltage (V)		DC Current (mA)					
		$V_{\text {CE }}$	$V_{B E}$	${ }_{\text {I }}$	I_{B}	${ }^{\prime} \mathrm{C}$	Min.	Max.	
Collector Cutoff Current	${ }^{\text {I Ces }}$	45	0				-	2	mA
Collector-to-Base Breakdown Voltage	$V_{\text {(BR) }}$ CBO			0		5	50	-	V
Collector-to-Emitter Breakdown Voltage: With external base-to-emitter resistance $\left(\mathrm{R}_{\mathrm{BE}}\right)=10 \Omega$	$V_{\text {(BR) CER }}$					10	50	-	v
Emitter-to-Base Breakdown Voltage.	$V_{\text {(BR) }{ }^{\text {ebo }}}$			0.1		0	3.5	-	v
Collector-to-Emitter Saturation Voltage	$V_{C E}$ (sat)				20	100	-	1	V
Forward Current Transfer Ratio	$h_{\text {FE }}$	5				500	20	200	
Thermal Resistance (Junction-to-Flange)	R ${ }^{\text {JF }}$						-	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS		LIMITS		UNITS
		Frequency (f) -GHz	DC Collector Supply Voltage (V_{CC}) - V			
				Min.	Max.	
Output Power $\mathrm{P}_{\text {IB }}=1 \mathrm{~W}$	P_{OB}	2	28	5	-	w
Power Gain POB $=5 \mathrm{~W}$	GPB	2	28	7	-	dB
Collector Efficiency $\mathrm{P}_{\mathrm{OB}}=5 \mathrm{~W}$	η_{C}	2	28	40	-	\%
Collector-to-Base Capacitance $\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$	$\mathrm{C}_{\text {obo }}$	1 MHz	-	-	8.5	pF

*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$
$V_{C B}=8 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=3.2 \mathrm{~W}$

Solid State Division

$30-\mathrm{W}, 400-\mathrm{MHz}$ Broadband Emitter-Ballasted Silicon $\mathbb{N}-\mathrm{P}-\mathbb{N}$ Overlay Transistor

Features:
- 5 -dB gain (min.) at 400 MHz with 30 watts (min .) output
- Emitter-ballasting resistors
- Broadband performance (225-400 MHz)
a Low-inductance ceramic-metal hermetic package

The RCA-HR2N6105 is a high-reliability version of the RCA-2N6105. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N6105 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N6105 transistor in RCA data bulletin file No. 504.

[^22]
I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-EMITTER VOLTAGE:

With base open	$V_{\text {CEO }} 30$	V
COLLECTOR-TO-BASE VOLTAGE	$V_{\text {CBO }} 65$	V
EMITTER-TO-BASE VOLTAGE	VEBO 4	V
CONTINUOUS COLLECTOR CURRENT	IC	A
TRANSISTOR DISSIPATION:	$\mathrm{P}_{\mathbf{T}}$	
At case temperatures up to $75^{\circ} \mathrm{C}$	36	W
At case temperatures above 750 C	Derate linearly at 0.288	W/oc
TEMPERATURE RANGE:		
Storage and operating (Junction)	-65 to +200	${ }^{\circ} \mathrm{C}$
CASE TEMPERATURE (During Soldering)		
For 10 s max.	230	${ }^{\circ} \mathrm{C}$

II. GROUP A TESTS, at Case Temperature (T_{C}) $=\mathbf{2 5 0} \mathbf{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS		UNITS
				DC Current mA				
		$\mathrm{v}_{\text {CE }}$	$V_{B E}$	${ }^{\text {I }}$ E	${ }^{\text {I }}$	Min.	Max.	
Collector-to-Emitter Cutoff Current: Base connected to emitter	ICES	30	0			-	10	mA
Collector-to-Emitter Breakdown Voltage: With base connected to emitter	$V_{\text {(BR) }}$ CES		0		200 ${ }^{\text {a }}$	65	-	v
With base open	$V_{\text {(BR) }}$ CEO				$200^{\text {a }}$	30	-	
Emitter-to-Base Breakdown Voltage	$V_{\text {(bR) }}$ ebo			5	0	4	-	V
Forward Current Transfer Ratio	$h_{\text {FE }}$	4			500	10	200	
Thermal Resistance (Junction-to-Case)	R OJC						3.5	${ }^{\circ} \mathrm{C} / \mathrm{N}$

aPulsed through a $\mathbf{2 5}-\mathrm{mH}$ inductor; duty factor $=\mathbf{5 0 \%}$.

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS		UNITS
		DC Collector Supply$\left(v_{C C}\right)-v$	Input Power $\left(P_{I E}\right)-W$	Output Power (POE) - W	Frequency$\text { (F) }-\mathrm{MHz}$			
						Min.	Max.	
Output Power	POE	28	9.5		400	30	-	
Overdrive Test	PoEO	28	12.0		400	34	-	
Power Gain	GPE	28		30	400	5	-	dB
Collector Efficiency	η_{C}	28	9.5		400	65	-	\%
Collector-to-Base Output Capacitance	$\mathrm{C}_{\text {obo }}$	$30\left(V_{C B}\right)$			1	-	35	pF

* Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$T_{A}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=2.6 \mathrm{~W}$

2－W，2－GHz，Emitter－Ballasted Silicon N－P－N Overlay Transistor

For UHF／Microwave Power Amplifiers， Microwave Fundamental－Frequency Oscillators，and Frequency Multipliers
Features：
－VSWR capability of ∞ ： 1 at 2 GHz
－2．W output with 8．2－dB gain（min．）at $2 \mathbf{~ G H z}$
－3－W output with $12-\mathrm{dB}$ gain（typ．）at 1 GHz

The RCA－HR2N6265 is a high－reliability version of the RCA－2N6265．It is specially processed and screened for high reliability in accordance with the basic schedules out－ lined earlier in the discussion of Processing and Screening of HR－Series High－Reliability Transistors．The maximum ratings，specific electrical（Group A）tests and test limits， and the burn－in conditions for the HR2N6265 are shown below．The basic electrical－characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N6265 transistor in RCA data bulletin file No． 543.
－Ceramic－metal hermetic stripline package with low inductance and low parasitic capacitances
－For microstripline and lumped－constant circuit applications

I．MAXIMUM RATINGS，Absolute－Maximum Values：

COLLECTOR－TO－BASE VOLTAGE	$\mathrm{V}_{\text {CBO }} \quad 50$	V
COLLECTOR－TO－EMITTER VOLTAGE：		
With external base－to－emitter resistance， $\mathrm{R}_{\mathrm{BE}}=10 \Omega$	VCER 50	v
EMITTER－TO－BASE VOLTAGE	VEBO 3.5	V
CONTINUOUS COLLECTOR CURRENT	IC 0.275	A
TRANSISTOR DISSIPATION：	P_{T}	
At case temperature up to 750 C	6.25	W
At case temperature above 750 C	Derate linearly at 0.05	W／OC
TEMPERATURE RANGE：		
Storage and operating（Junction）	-65 to +200	${ }^{\circ} \mathrm{C}$
CASE TEMPERATURE（During Soldering）：		
For 10 s max．	230	${ }^{\circ} \mathrm{C}$

II. GROUP A TESTS, at Case Temperature (T_{C}) $=\mathbf{2 5 0} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC Collector or Base Voltage (V)		DC Current (mA)					
		$V_{C E}$	B_{BE}	IE	${ }^{\prime} \mathrm{B}$	${ }^{\text {IC }}$	Min.	Max.	
Collector Cutoff Current	${ }^{\text {I CES }}$	45	0				-	2	mA
Collector-to-Base Breakdown Voltage	$V_{(B R) C B O}$			0		5	50	-	V
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR) }}$ EBO			0.1		0	3.5	-	V
Collector-to-Emitter Breakdown Voltage: External base-to-emitter resistance $\mathrm{R}_{\mathrm{BE}}=10 \Omega$	$V_{\text {(BR)CER }}$					10	50	-	V
Forward Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$	5				100	10	200	
Thermal Resistance (Junction-to-Flange)	R θ JF						-	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

CHARACTERISTIC	SYMBOL	POWER INPUT $P_{I B}(W)$	POWER OUTPUT $P_{O B}(W)$	SUPPLY VOLTAGE $V_{C}(V)$	FREQUENCY (f) GHz	LIMITS		UNITS
						Min.	Max.	
Power Output	$\mathrm{P}_{\text {OB }}$	0.3		28	2	2	-	W
Power Gain	GPB	0.3	2.0	28	2	8.2	-	dB
Collector Efficiency	η_{C}	0.3	2.0	28	2	33	-	\%
Collector-to-Base Capacitance	$\mathrm{C}_{\text {obo }}$			$30\left(\mathrm{~V}_{\mathrm{CB}}\right)$	1 MHz	-	5	pF

*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{A}}=250 \mathrm{C}$
$V_{C B}=15 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=2 \mathrm{~W}$

5-W, 2-GHz, Emitter-Ballasted Silicon N-P-N Overlay Transistor

For UHF/Microwave Power Amplifiers, Microwave Fundamental-Frequency Oscillators,and Frequency Multipliers
\section*{Features:}
- Emitter-ballasting resistors
- VSWR capability of $\infty: 1$ at 2 GHz
- 5 -W output with 7 -dB gain (min.) at $2 \mathbf{~ G H z}$

The RCA-HR2N6266 is a high-reliability version of the RCA-2N6266. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N6266 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N6266 transistor in RCA data bulletin file No. 544 .

- 13.5-W output with $11-\mathrm{dB}$ gain (typ.) at $1 \mathbf{~ G H z}$
- Ceramic-metal hermetic stripline package with low inductance and low parasitic capacitances
- Stable common-base operation
- For microstripline, stripline, and lumped-constant circuit applications

I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE	$\mathrm{V}_{\text {CBO }}$	50	V
COLLECTOR-TO-EMITTER VOLTAGE:			
With external base-to-emitter resistance, $\mathrm{R}_{\mathrm{BE}}=10 \Omega$	$V_{\text {CER }}$	50	V
EMITTER-TO-BASE VOLTAGE	VEBO	3.5	V
CONTINUOUS COLLECTOR CURRENT	I_{C}	1	A
TRANSISTOR DISSIPATION:	P_{T}		
At case temperature up to $75^{\circ} \mathrm{C}$		14.8	W
At case temperature above $75^{\circ} \mathrm{C}$	Derat	0.118	W/ ${ }^{\text {c }}$
TEMPERATURE RANGE:			
Storage and operaging (Junction)	-65 to +200 oc		
CASE TEMPERATURE (During Soldering):			
For 10 s max.		230	${ }^{\circ} \mathrm{C}$

II. GROUP A TESTS, at Case Temperature $(T C)=250 \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC Collector or Base Voltage (V)							
		$\mathrm{V}_{\text {ce }}$	V_{BE}	${ }^{\text {I }}$ E	${ }^{\prime} \mathrm{B}$	${ }^{\prime} \mathrm{C}$	Min.	Max.	
Collector Cutoff Current	ICES	45	0				-	2	mA
Collector-to-Base Breakdown Voltage	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$			0		5	50	-	v
Emitter-to-Base Breakdown Voltage	B(BR)EBO			0.1		0	3.5	-	V
Collector-to-Emitter Breakdown Voltage With external base-to-emitter resistance $\left(R_{B E}\right)=10 \Omega$	$V_{\text {(BR) }}$ CER					10	50	-	v
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)				20	100	-	1.	V
Forward Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$	5				100	15	200	
Thermal Resistance (Junction-to-Flange)	R 0 JF						-	8.5	${ }^{\circ} \mathrm{C} / \mathrm{w}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS		LIMITS		UNITS
		Frequency$\text { (f) }-\mathrm{GHz}$	DC Collector Supply Voltage $\left(V_{C C}\right)-V$			
				Min.	Max.	
Output Power, $\mathrm{P}_{18}=1 \mathrm{~W}$	POB	2	28	5	-	w
Power Gain, $\mathrm{P}_{\mathrm{OB}}=5 \mathrm{~W}$	GPB	2	28	7	-	dB
Collector Efficiency, POB $=5 \mathrm{~W}$	η_{C}	2	28	33	-	\%
Collector-to-Base Capacitance $\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$	$\mathrm{C}_{\text {obo }}$	1 MHz		-	10	pF

*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$T C=1350 \mathrm{C}$
$V_{C B}=8 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=3.2 \mathrm{~W}$

Solid State

10-W, 2-GHz, Emitter-Ballasted Silicon N-P-N Overlay Transistor

For UHF/Microwave Power Amplifiers, Microwave Fundamental-Frequency Oscillators, and Frequency Multipliers

Features:

- Emitter-ballasting resistors
- 10-W output with $7-\mathrm{dB}$ gain (min.) at $2 \mathrm{GHz}(28 \mathrm{~V})$
m 8-W output with 6-dB gain (typ.) at $2.3 \mathrm{GHz}(28 \mathrm{~V}$)

The RCA-HR2N6267 is a high-reliability version of the RCA-2N6267. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N6267 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 2N6267 transistor in RCA bulletin file No. 545.
a VSWR capability of $\mathbf{1 0 : 1}$ at $\mathbf{2 ~ G H z}$

- Ceramic metal hermetic stripline package with low inductance and low parasitic capacitances
- Stable common-base operation
- For microstripline, stripline, and lumped-constant circuit applications

I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE . V VBO 50
COLLECTOR-TO-EMITTER VOLTAGE:
With external base-to-emitter resistance, $\mathrm{R}_{\mathrm{BE}}=10 \Omega \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots \mathrm{V}_{\text {CER }} . \ldots \ldots$
EMITTER-TO-BASE VOLTAGE . VEBO 3.5
CONTINUOUS COLLECTOR CURRENT .. IC
IC $\quad 1.5$
P_{T}
At case temperature up to 750 C 21
Derate linearly at $0.168 \mathrm{~W} /{ }^{\circ} \mathrm{C}$

TEMPERATURE RANGE:

Storage and Operating (Junction)
-65 to +200
${ }^{\circ} \mathrm{C}$

HR2N6267

II. GROUP A TESTS, at Case Temperature ($\mathbf{T C}$) $=25^{\circ} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		DC Collector or Base Voltage (V)		DC Current (mA)					
		$V_{\text {CE }}$	$V_{B E}$	I_{E}	${ }^{1} \mathrm{~B}$	${ }^{1} \mathrm{C}$	Min.	Max.	
Collector Cutoff Current	'ces	45	0				-	2	mA
Collector-to-Base Breakdown Voltage	$V_{\text {(BR) }}$ CBO			0		5	50	-	V
Emitter-to-Base Breakdown Voitage	$V_{\text {(BR) }}$			0.1		0	3.5	-	v
Collector-to-Emitter Breakdown Voltage: With external base-to-emitter resistance $\left(\mathrm{R}_{\mathrm{BE}}\right)=10 \Omega$	$V_{\text {(BR) CER }}$					10	50	-	v
Collector-to-Emitter Saturation Voitage	$\mathrm{V}_{\text {CE }}$ (sat)				20	100	-	1	v
Forward Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$	5				100	15	200	
Thermal Resistance (Junction-to-Flange)	$\mathrm{R}_{\text {OJF }}$						-	6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS		LIMITS		UNITS
		Frequency (f) -GHz	DC Collector Supply Voltage $\left(V_{C C}\right)-V$			
				Min.	Max.	
Output Power, $\mathrm{P}_{18}=2 \mathrm{~W}$	P_{OB}	2	28	10	-	w
Power Gain, $\mathrm{P}_{\mathrm{OB}}=10 \mathrm{~W}$	GPB	2	28	7	-	dB
Collector Efficiency, $\mathrm{P}_{\mathrm{OB}}=10 \mathrm{~W}$	η_{C}	2	28	35	-	\%
Collector-to-Base Capacitance, $\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$	Cobo	1 MHz		-	13	pF

*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$T_{C}=1450 \mathrm{C}$
$\mathrm{V}_{\mathrm{CB}}=8 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=3.2 \mathrm{~W}$

6.5- and 2-W, 2.3-GHz, Emitter-Ballasted Silicon N-P-N Overlay Transistors

For Use in Microwave Power Amplifiers, Fundamental-Frequency Oscillators, and Frequency Multipliers

Features:

- Designed for 20 to $\mathbf{2 4 - V}$ equipment
- Emitter-ballasting resistors

The RCA-HR2N6268 and RCA-HR2N6269 are high-reliability versions of the RCA-2N6268 and RCA-2N6269. They are specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HRSeries High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2N6268 and HR2N6269 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are the same as those given for the basic 2N6268 and 2N6269 transistors in RCA data bulletin file No. 546.

- VSWR capability of $\mathbf{1 0 : 1}$ at 2.3 GHz
- 2-W output with $\mathbf{7 - d B}$ gain (min.) at $2.3 \mathbf{G H z}$ (HR2N6268)
a 6.5-W output with $5-\mathrm{dB}$ gain (min.) at 2.3 GHz (HR2N6269)
- Stable common-base operation

II. GROUP A TESTS, at Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS				UNITS
		DC COLLECTOR OR BASE VOLTAGE (V)		DC CURRENT (mA)			HR2N6268		HR2N6269		
		$\mathrm{V}_{\text {CE }}$	VBE	IE	I_{B}	${ }^{\prime} \mathrm{C}$	MIN.	MAX.	MIN.	MAX.	
Collector Cutoff Current	ICES	40	0			:	-	2	-	2	mA
Collector-to-Base Breakdown Voltage	$V(B R) C B O$			0		5	45	-	45	-.	V
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR) }}$ EBO			0.1		0	3.5	-	3.5	-	V
Collector-to-Emitter Breakdown Voltage With external base-to-emitter resistance $\left(R_{B E}\right)=10 \Omega$	V (BR)CER					10	45	-	45	-	V
Collector-to-Emitter Saturation Voltage	$V_{\text {cE }}$ (sat)				$\begin{array}{\|l} 10 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & \hline 100 \\ & 100 \\ & \hline \end{aligned}$	-	1	-	1	V
Thermal Resistance (Junction-to-Flange)	$\mathrm{R}_{\text {ө JF }}$						-	20	-	6	${ }^{\circ} \mathrm{C} / \mathrm{N}$
Forward Current Transfer Ratio	$h_{\text {FE }}$	5				100	10	200	15	200	

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS		LIMITS				UNITS
		FREQUENCY$\text { (f) }-\mathrm{GHz}$	$\begin{gathered} \text { DC } \\ \text { COLLECTOR } \\ \text { SUPPLY } \\ \text { VOLTAGE } \\ \left(V_{C C}\right)-V \\ \hline \end{gathered}$	HR2N6268		HR2N6269		
				MIN.	MAX.	MIN.	MAX.	
Output Power, $\begin{aligned} \mathrm{P}_{\mathrm{IB}} & =0.4 \mathrm{~W} \\ & =2 \mathrm{~W}\end{aligned}$	${ }^{\text {P }}$ OB	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	2	-	- 6.	-	W
$\text { Power Gain, } \begin{aligned} \mathrm{P}_{\mathrm{OB}} & =2 \mathrm{~W} \\ & =6.5 \mathrm{~W} \end{aligned}$	GPB	$\begin{aligned} & 2.3 \\ & 2.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & \hline \end{aligned}$	7 -	-	5	-	dB
$\text { Collector Efficiency, } \begin{aligned} \mathrm{P}_{\mathrm{OB}} & =2 \mathrm{~W} \\ & =6.5 \mathrm{~W} \end{aligned}$	η_{C}	$\begin{aligned} & 2.3 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{array}{r}33 \\ - \\ \hline\end{array}$	-	$\overline{32}$	-	\%
Collector-to-Base Capacitance $V_{C B}=30 \mathrm{~V}$	Cobo	1 MHz		-	5.5	-	13	pF

*Recorded before and after burn-in for each device (serialized).
III. BURN-IN CONDITIONS

	HR2N6268	HR2N6269	
$T_{\text {A }}$	25	-	${ }^{\circ} \mathrm{C}$
TC	-	145	${ }^{\circ} \mathrm{C}$
$V_{C B}$	15	8	V
$\mathrm{P}_{\text {T }}$	2	3.2	W

RCA HF-46
(RCA HF-46 can also be supplied without flange upon request.)

1-W, 2-GHz, Emitter-Ballasted Silicon N-P-N Overlay Transistor

For Use in Microwave Power Amplifiers, Fundamental-Frequency Oscillators, and Frequency Multipliers

Features:

- 1-W output with $7-\mathrm{dB}$ gain (min.) at $2 \mathrm{GHz}, 28 \mathrm{~V}$
- Load VSWR capability of $10: 1$ at 2 GHz
- Emitter-ballasting resistors
- Stable common-base operation

The RCA-HR2001 is a high-reliability version of the RCA2001. It is specially processed and screened for high reliability in accordance with the basic scheduies outlined earlier in the discussion of Processing and Screening of HR-Series HighReliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2001 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic RCA-2001 transistor in RCA data bulletin file No. 759.

- Ceramic-metal hermetic stripline package with low inductance and low parasitic capacitances
- For stripline, microstripline, and lumped-constant circuits
I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE	.	.	.
EMITTER-TO-BASE VOLTAGE.	.	.	.

ELECTRICAL CHARACTERISTICS, at Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$ STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS RCA2001		UNITS
		Voltage V dc		Current mA dc				
		VCE	VCB	$I_{\text {E }}$	${ }^{\prime}$	MIN.	MAX.	
Collector Cutoff Current: With emitter open	ICBO		28	0		-	0.5	mA
Collector-to-Base Breakdown Voltage	V (BR)CBO			0	5	50	-	V
Emitter-to-Base Breakdown Voltage	$V(B R) E B O$			0.1	0	3.5	-	V
Thermal Resistance: (Junction-to-Case)	$\mathrm{R}_{\text {өJC }}$					-	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Forward Current Transfer Ratio	hFE	5			100	15	120	

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS RCA2001		UNITS
		$\begin{gathered} \hline \text { VOLTAGE } \\ \text { V dc } \\ \hline \end{gathered}$	$\begin{gathered} \text { FREQUENCY } \\ \text { GHz } \\ \hline \end{gathered}$	POWER W				
		Vcc	f	PIB	POB	MIN.	MAX.	
Output Power	P_{OB}	28	2	0.2		1	-	W
Large-Signal Common-Base Power Gain	GPB	28	2		1	7	-	dB
Collector Efficiency	η_{C}	28	2		1	30	-	\%
Collector-to-Base Output Capacitance	Cobo	$V_{C B}=28$	1 MHz			-	3	pF

* Recorded before and after burn-in for each device (serialized).
III. BURN-IN CONDITIONS
$\mathrm{T}_{\mathrm{C}}=130^{\circ} \mathrm{C}$
$V_{C B}=15 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=1.9 \mathrm{~W}$

2．5－and 3－W，2－GHz，Emitter－Ballasted Silicon N－P－N Overlay Transistors

For Use in Microwave Power Amplifiers， Fundamental－Frequency Oscillators， and Frequency Multipliers

Features：
－2．5－W output with 7－dB gain（min．）at $2 \mathrm{GHz}, 28 \mathrm{~V}$（HR2003）
－3－W output with $8-\mathrm{dB}$ gain（min．）at $2 \mathrm{GHz}, 28 \mathrm{~V}$（HR2N6390）

The RCA－HR2003 and RCA－HR2N6390 are high－reliability versions of the RCA 2003 and RCA 2N6390．They are specially processed and screened for high reliability in ac－ cordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR－Series High－ Reliability Transistors．The maximum ratings，specific elec－ trical（Group A）tests and test limits，and the burn－in condi－ tions for the HR2003 and HR2N6390 are shown below． The basic electrical－characteristics curves and test condi－ tions and the mechanical details for these devices are the same as those given for the basic RCA 2003 and 2N6390 transistors in RCA data bulletin file No． 626.
m Load－VSWR capability of ∞ ： 1 at 2 GHz
－Emitter－ballasting resistors
－Stable common－base operation

I．MAXIMUM RATINGS，Absolute－Maximum Values：		HR2003	HR2N6390	
COLLECTOR－TO－BASE VOLTAGE	$\mathrm{V}_{\text {CBO }}$	50	50	V
COLLECTOR－TO－EMITTER VOLTAGE：				
With external base－to－emitter resistance， $\mathrm{R}_{\mathrm{BE}}=10 \Omega$	$V_{\text {CER }}$	50	50	V
EMITTER－TO－BASE VOLTAGE	Vebo	3.5	3.5	V
CONTINUOUS COLLECTOR CURRENT	${ }^{1} \mathrm{C}$	1	1	A
TRANSISTOR DISSIPATION：	$\mathrm{P}_{\text {T }}$			
At case temperature up to $75^{\circ} \mathrm{C}$		8.34	8.34	W
At case temperature above $75^{\circ} \mathrm{C}$ ．．．．．．．．．．．．．．．．Derate linearly at		0.067	0.067	W／${ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE：				
Storage and operating（Junction）		－65	＋200	${ }^{\circ} \mathrm{C}$
LEAD TEMPERATURE（During Soldering）：				
At distances $\geqslant 0.02 \mathrm{in}$ ．$(0.5 \mathrm{~mm})$ from seating plane for 10 s max．			230	${ }^{\circ} \mathrm{C}$

HR2003, HR2N6390
II. GROUP A TESTS, at Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS				UNITS
		Voltage V dc		Current mA dc		HR2003		HR2N6390		
		$\mathrm{V}_{\text {CE }}$	VCB	IE	Ic	MIN.	MAX.	MIN.	MAX.	
Collector Cutoff Current: With emitter open	ICBO		28	0		-	0.5	-	-	mA
With emitter connected to base	ICES	45				-	-	-	2	
Collector-to-Base Breakdown Voltage	$V_{(B R) C B O}$			$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	1 2	50	-	50	-	V
Collector-to-Emitter Breakdown Voltage: With external base-toemitter resistance $\left(\mathrm{R}_{\mathrm{BE}}\right)=10 \Omega$	$V(B R) C E R$				5	50	-	50	-	V
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR) EBO }}$			1	0	3.5	-	3.5	-	V
Forward Current Transfer Ratio	hFE	10			50	20	120	20	120	
Thermal Resistance: (Junction-to-Case)	RoJC					-	15	-	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS				UNITS
		VOLTAGE$\frac{\mathrm{V} \mathrm{dc}}{\mathrm{~V}_{\mathrm{CC}}}$	$\begin{gathered} \text { FREQUENCY } \\ \text { GHz } \end{gathered}$	POWERw		HR2003		HR2N6390		
				P_{18}	P_{OB}	MIN.	MAX.	MIN.	MAX.	
Output Power	${ }^{\text {POB }}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 0.5 \\ 0.475 \end{gathered}$		2.5	-	$\overline{3}$	-	W
Large-Signal Common-Base Power Gain	GPB	28 28	2 2		$\begin{gathered} 2.5 \\ 3 \end{gathered}$	7 -	-	8	-	dB
Collector Efficiency	η_{C}	$\begin{aligned} & 28 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$		$\begin{gathered} 2.5 \\ 3 \\ \hline \end{gathered}$	30	-	30	-	\%
Collector-to-Base Output Capacitance	Cobo	$V_{C B}=28$	1 MHz			-	5	-	5	pF

*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$T_{A}=25^{\circ} \mathrm{C}$
$V_{C B}=15 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=2 \mathrm{~W}$

5-W, 2-GHz, Emitter-Ballasted Silicon N-P-N Overlay Transistors

For Use in Microwave Power Amplifiers, Fundamental-Frequency Oscillators, and Frequency Multipliers

Features:

- 5-W output with $7-\mathrm{dB}$ gain (min.) at $2 \mathrm{GHz}, 28 \mathrm{~V}$ for both types
- Load-VSWR capability of ∞ : $\mathbf{1}$ at $\mathbf{2 ~ G H z}$

The RC.A-HR2005 and RCA-HR2N6391 are high-reliability versions of the RCA 2005 and RCA-2N6391. They are specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series HighReliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2005 and HR2N6391 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are the same as those given for the basic RCA2005 and 2N6391 transistors in RCA data bulletin file No. 627.

- Emitter-ballasting resistors
- Stable common-base operation

I. MAXIMUM RATINGS, Absolute-Maximum Values:		HR2005	HR2N6391	
COLLECTOR-TO-BASE VOLTAGE	$\mathrm{V}_{\text {CBO }}$	50	50	V
COLLECTOR-TO-EMITTER VOLTAGE:				
With external base-to-emitter resistance, $\mathrm{R}_{\mathrm{BE}}=10 \Omega$	VCER	50	50	V
EMITTER-TO-BASE VOLTAGE	Vebo	3.5	3.5	V
CONTINUOUS COLLECTOR CURRENT	${ }^{1} \mathrm{C}$	2.5	2.5	A
TRANSISTOR DISSIPATION:	P_{T}			
At case temperature up to $75^{\circ} \mathrm{C}$		16.7	16.7	W
At case temperature above $75^{\circ} \mathrm{C}$. Derate linearly at		0.133	0.133	W/ ${ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:				
Storage and operating (Junction)		-65 to +200		${ }^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During Soldering) :				
At distances $\geqslant 0.02 \mathrm{in} .(0.5 \mathrm{~mm})$ from seating plane for 10 s max. .			230	${ }^{\circ} \mathrm{C}$

HR2005, HR2N6391
II. GROUP A TESTS, at Case Temperature $(T C)=25^{\circ} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS				UNITS
		Voltage V de		Current mA dc		HR2005		HR2N6391		
		VCE	$\mathrm{V}_{\text {CB }}$	IE	IC	MIN.	MAX.	MIN.	MAX.	
Collector Cutoff Current: With emitter open	ICBO		28	0		-	0.5	-	-	mA
With emitter connected to base	ICES	45				-	-	-	3	
Collector-to-Base Breakdown Voltage	V (BR) CBO			$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	50	-	50	-	V
Collector-to-Emitter Breakdown Voltage: With external base-toemitter resistance $\left(\mathrm{R}_{\mathrm{BE}}\right)=10 \Omega$	$V_{\text {(BR) }}$ CER				5	50	-	50	-	V
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR)EBO }}$			1	0	3.5	-	3.5	-	V
Forward Current Transfer Ratio	hFE	10			200	20	120	20	120	
Thermal Resistance: (Junction-to-Case)	$\mathrm{R}_{\text {OJC }}$					-	7.5	-	7.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS				UNITS
		VOLTAGE V dc	$\begin{gathered} \text { FREQUENCY } \\ \text { GHz } \\ \hline \end{gathered}$	POWER W		HR2005		HR2N6391		
		$\mathrm{V}_{\text {cc }}$	f	$P_{1 B}$	POB	MIN.	MAX.	MIN.	MAX.	
Output Power	${ }^{\text {POB }}$	28	2	1		5	-	5	-	W
Large-Signal Common-Base Power Gain	GPB	28	2		5	7	-	7	-	dB
Collector Efficiency	η_{C}	28	2		5	30	-	30	-	\%
Collector-to-Base Output Capacitance	Cobo	$V_{C B}=28$	1 MHz			-	9	-	9	pF

*Recorded before and after burn-in for each device (serialized).
III. BURN-IN CONDITIONS
$\mathrm{T}_{\mathrm{C}}=135^{\circ} \mathrm{C}$
$V_{C B}=8 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=3.2 \mathrm{~W}$

Solid State Division

RCA HF-46
(RCA HF-46 can also be supplied without flange upon request.)

10-W, 2-GHz, Emitter-Ballasted Silicon $\mathbb{N}-\mathrm{P}-\mathbb{N}$ Overlay Transistors

For Use in Microwave Power Amplifiers, Fundamental-Frequency Oscillators, and Frequency Multipliers

Features:

- 10-W output with $7-\mathrm{dB}$ gain $(\min$.$) at 2 \mathrm{GHz}, 28 \mathrm{~V}$ (HR2N6393)
- $10-\mathrm{W}$ output with $5-\mathrm{dB}$ gain (min.) at $2 \mathrm{GHz}, 28 \mathrm{~V}$ (HR2010, HR2N6392)

The RCA-HR2010, RCA-HR2N6392, and RCA-HR2N6393 are high-reliability versions of the RCA 2010, RCA-2N6392, and RCA-2N6393. They are specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR2010, HR2N6392, and HR2N6393 are shown below. The basic electricalcharacteristics curves and test conditions and the mechanical details for these devices are the same as those given for the basic RCA 2010, 2N6392, and 2N6393 transistors in RCA data bulletin file No. 628.

- Load-VSWR capability of $\mathbf{1 0 : 1}$ at 2 GHz
- Emitter-ballasting resistors
- Stable common-base operation

I. MAXIMUM RATINGS, Absolute-Maximum Values:		HR2010	HR2N6392	HR2N6393	
COLLECTOR-TO-BASE VOLTAGE	$\mathrm{V}_{\text {CBO }}$	50	50	45	V
COLLECTOR-TO-EMITTER VOLTAGE:					
With external base-to-emitter resistance, $\mathrm{R}_{\mathrm{BE}}=10 \Omega$	$V_{\text {CER }}$	50	50	45	V
EMITTER-TO-BASE VOLTAGE	VEBO	3.5	3.5	3.5	V
CONTINUOUS COLLECTOR CURRENT	${ }^{1} \mathrm{C}$	3.5	3.5	3.5	A
TRANSISTOR DISSIPATION:	PT				
At case temperature up to $75^{\circ} \mathrm{C}$		21	21	21	W
At case temperature above $75^{\circ} \mathrm{C}$. Derate linearly at		0.167	0.167	0.167	W/ ${ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:					
Storage and operating (Junction)			-65 to +200		${ }^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During Soldering) :					
At distances $\geqslant 0.02 \mathrm{in}$. $(0.5 \mathrm{~mm})$ from seating plane for 10 s max.			230		${ }^{\circ} \mathrm{C}$

II. GROUP A TESTS, at Case Temperature $(T C)=25^{\circ} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS						UNITS
		Voltage V dc		Current mA dc		HR2010		HR2N6392		HR2N6393		
		$\mathrm{V}_{\text {ce }}$	$V_{C B}$	IE	IC	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Collector Cutoff Current: With emitter open	ICBO		28			-	0.5	-	-	-	-	mA
With emitter connected to base	ICES	$\begin{aligned} & 45 \\ & 40 \\ & \hline \end{aligned}$				-	-	-	3	-	3	
Collector-to-Base Breakdown Voltage	$V(B R) C B O$			0	5	50	-	50	-	45	-	V
Collector-to-Emitter Breakdown Voltage: With external base-toemitter resistance $\left(\mathrm{R}_{\mathrm{BE}}\right)=10 \Omega$	$V^{\prime}(B R) C E R$				5	50	-	50	-	45	-	V
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR) }}$ EBO			1	0	3.5	-	3.5	-	3.5	-	V
Forward Current Transfer Ratio	hFE	10			$500^{\text {a }}$	20	120	20	120	20	120	
Thermal Resistance: (Junction-to-Case)	$\mathrm{R}_{\theta \mathrm{JC}}$					-	6	-	6	-	6	º'/W

${ }^{a}$ Pulse test: pulse duration $=80 \mu \mathrm{~s}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS						UNITS
		$\begin{array}{\|c\|} \hline \text { VOLTAGE } \\ \mathrm{V} \mathrm{dc} \end{array} \mathrm{C}$	$\begin{gathered} \text { FREQUENCY } \\ \text { GHz } \\ \hline \mathrm{f} \\ \hline \end{gathered}$	POWER w		HR2010		HR2N6392		HR2N6393		
				PIB	POB	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Output Power	POB	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 3 \end{aligned}$		$\overline{10}$	-	$\overline{10}$	-	10 -	-	W
Large-Signal Common-Base Power Gain	Gpb	28	2		10	5	-	5	-	7	-	dB
Collector Efficiency	η_{C}	28	2		10	33	-	33	-	35	-	\%
Collector-to-Base Output Capacitance	$\mathrm{C}_{\text {obo }}$	$V_{C B}=28$	1 MHz			-	10	-	11	-	11	pF

*Recorded before and after burn-in for each device (serialized).

III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{C}}=145^{\circ} \mathrm{C}$
$V_{C B}=8 \mathrm{~V}$
$\mathrm{P}_{\mathrm{T}}=3.2 \mathrm{~W}$

Solid State Division

1-W, 2.5-W, and 4.5-W, 3-GHZ, Emitter-Ballasted N-P-N Transistors

Features:

- 1-W output with 7-dB gain (min.) at $\mathbf{3} \mathbf{~ G H z}$ (HR3001)
- 2.5-W output with $5-\mathrm{dB}$ gain (min.) at 3 GHz (HR3003)
- 4.5-W output with $5-\mathrm{dB}$ gain (min.) at 3 GHz (HR3005)
- Emitter-ballasting resistors
- Stable common-base operation

The RCA-HR3001, RCA-HR3003, and RCA-HR3005 are high-reliability versions of the RCA3001, RCA3003, and RCA3005. They are specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR3001, HR3003, and HR3005 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are the same as those given for the basic RCA3001, RCA3003, and RCA3005 transistor in RCA data bulletin file No. 657.

- Hermetic stripline package with low inductances and low parasitic capacitances
(u) Load-VSWR capability of $\mathbf{1 0 : 1}$ at $\mathbf{3} \mathbf{~ G H z}$

I. MAXIMUM RATINGS, Absolute-Maximum Values:		HR3001	HR3003	HR3005	
COLLECTOR-TO-BASE VOLTAGE	VCBO	50	50	50	V
EMITTER-TO-BASE VOLTAGE	Vebo	3.5	3.5	3.5	V
TRANSISTOR DISSIPATION:	PT				
At case temperature up to $75^{\circ} \mathrm{C}$		5	8.34	14.7	w
At case temperature above $75^{\circ} \mathrm{C}$. Derate linearly at		0.04	0.067	0.118	W/ ${ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:					
Storage and operating (Junction)			-65 to +200		${ }^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During Soldering):					
At distances $\geqslant 0.02 \mathrm{in}$. (0.5 mm) from seating plane for 10 s max.			230		${ }^{\circ} \mathrm{C}$

HR3001, HR3003, HR3005
II. GROUP A TESTS, at Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS						UNITS
		Voltage V dc		Current mA dc		HR3001		HR3003		HR3005		
		$V_{C E}$	V_{CB}	${ }^{\prime} E$	${ }^{\prime} \mathrm{C}$	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Collector Cutoff Current: With emitter open	${ }^{1} \mathrm{CBO}$		28	0		-	0.5	-	0.5	-	0.5	mA
Collector-to-Base Breakdown Voltage	$V_{(B R) C B O}$			0	5	50	-	50	-	50	-	V
Emitter-to-Base Breakdown Voltage	$V_{(B R) E B O}$			0.1	0	3.5	-	3.5	-	3.5	-	V
Forward Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$	5			100	15	120	15	120	15	120	
Thermal Resistance: (Junction-to-Case)	$\mathrm{R}_{\text {日JC }}$					-	25	-	15	-	8.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS				LIMITS						UNITS
		VOLTAGE Vdc V_{CC}	$\left.\begin{array}{c}\text { FREQUENCY } \\ \text { GHz }\end{array}\right\}$	$\begin{aligned} & \text { POWER } \\ & W \end{aligned}$		HR3001		HR3003		HR3005		
				PIB	POB	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Output Power	POB	$\begin{aligned} & 28 \\ & 28 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.2 \\ 0.8 \\ 1.4 \\ \hline \end{array}$		$\begin{aligned} & 1.0 \\ & - \\ & - \\ & \hline \end{aligned}$	-	- 2.5 -	-	- - 4.5	-	W
Large-Signal Common-Base Power Gain	GPB	$\begin{aligned} & 28 \\ & 28 \\ & 28 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.5 \\ & 4.5 \\ & \hline \end{aligned}$	7 - -	-	$\overline{5}$	-	-	-	dB
Collector Efficiency	η_{C}	$\begin{aligned} & 28 \\ & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.5 \\ & 4.5 \end{aligned}$	30	-	$\overline{30}$	-	-	-	\%
Collector-to-Base Output Capacitance	$\mathrm{C}_{\text {obo }}$	$V_{C B}=28$	1 MHz			-	3	-	5	-	7	pF

*Recorded before and after burn-in for each device (serialized).
III. BURN-IN CONDITIONS

	HR3001	HR3003	HR3005	
T_{A}	-	25	-	${ }^{\circ} \mathrm{C}$
T_{C}	130	-	145	${ }^{\circ} \mathrm{C}$
V CB	15	15	8	V
PT	1.9	2.0	3.2	W

0.2-to-1.4-GHz Low-Noise Silicon N-P-N Transistor

For High-Gain Small-Signal Applications

Features:

- Low noise figure:
$\mathrm{NF}=\mathbf{2 . 5 \mathrm { dB }}$ (max.) with 11 dB gain at 450 MHz
$=3.0 \mathrm{~dB}$ (typ.) at 890 MHz
$=4.5 \mathrm{~dB}$ (typ.) at 1.3 GHz 口 High gain-bandwidth product
a High gain (tuned, unneutralized):
- Large dynamic range
$\mathrm{G}_{\mathrm{PE}}=14 \mathrm{~dB}(\min$.$) at 450 \mathrm{MHz}$ a Low distortion
$=6.5 \mathrm{~dB}$ (typ.) at 1.3 GHz

The RCA-HR40915 is a high-reliability version of the RCA-40915. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR40915 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 40915 transistor in RCA data bulletin file No. 574.
I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE	$V_{\text {CBO }}$	35	V
COLLECTOR-TO-EMITTER VOLTAGE	$V_{\text {CEO }}$	15	V
EMITTER-TO-BASE VOLTAGE	$V_{\text {EbO }}$	3.5	\checkmark
CONTINUOUS COLLECTOR CURRENT	${ }^{1} \mathrm{C}$	40	mA
TRANSISTOR DISSIPATION:	P_{T}		
At ambient temperatures up to $25^{\circ} \mathrm{C}$		200	mW
At ambient temperatures above $25^{\circ} \mathrm{C}$	Derate linearly at	1.14	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:			
Storage and Operating (Junction)		5 to +200	${ }^{\circ} \mathrm{C}$

II. GROUP A TESTS, At Ambient Temperature $\left(T_{A}\right)=25^{\circ} \mathrm{C}$.

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
		```DC COLLECTOR voltage (V)```		$\begin{gathered} \text { DC } \\ \text { CURRENT } \\ (\mathrm{mA}) \end{gathered}$					
		$\mathrm{V}_{C B}$	$\mathrm{v}_{\text {CE }}$	${ }^{\prime} \mathrm{E}$	$\mathrm{I}_{\mathrm{B}}$	${ }^{1} \mathrm{C}$	MIN.	MAX.	

STATIC

Collector Cutoff Current	$I^{\prime}$ CBO	10		0			-	20	$n A$
Collector-to-Base   Breakdown Voltage	$\mathrm{V}_{\text {(BR)CBO }}$			0		0.01	35	-	V
Collector-to-Emitter   Breakdown Voltage	$\mathrm{V}_{\text {(BR)CEO }}$				0	0.1	15	-	V
Emitter-to-Base   Breakdown Voltage	$\mathrm{V}_{\text {(BR)EBO }}$			0.01		0	3.5	-	V
DC Forward-Current   Transfer Ratio	$\mathrm{h}_{\text {FE }}$		10			3	20	-	-
Thermal Resistance:   (Junction-to-Ambient)	$\mathrm{R}_{\text {OJA }}$						-	880	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

Device Noise Figure (f $=450 \mathrm{MHz}$ )	NF		10			1.5	-	2.5	dB
Small-Signal Common-Emitter   Power Gain (f $=450 \mathrm{MHz}$ )   Unneutralized Amplifier	GPE		10			1.5	14	-	dB
At minimum noise figure	GPE		10			1.5	11.0	-	dB
Collector-to-Base Output   Capacitance ( $\mathrm{f}=1 \mathrm{MHz}$ )	$\mathrm{C}_{\mathrm{obo}}$	10		0			-	1.0	pF

*Recorded before and after burn-in for each device (serialized).
III. BURN-IN CONDITIONS
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C B}=15 \mathrm{~V}$
$P_{T}=0.2 \mathrm{~W}$


## Silicon N-P-N Overlay Transistor

## For VHF Broadband Amplifiers in CATV and MATV Equipment

Features:

- Low Device Noise Figure:
$200-\mathrm{MHz}$ narrow-band $(30 \mathrm{~mA})=3 \mathrm{~dB}$ max.
$60-\mathrm{MHz}$ narrow-band $(30 \mathrm{~mA})=\mathbf{2 . 2 ~ d B ~ m a x . ~}$
$50-250-\mathrm{MHz}$ broadband $=6.5 \mathrm{~dB}$ typ.
- High Gain:
$\mathrm{G}_{\mathrm{PE}}(200 \mathrm{MHz}, 30 \mathrm{~mA})=15 \mathrm{~dB}$ min.
$\mathrm{G}_{\mathrm{VE}}(50-250 \mathrm{MHz}$, broadband) $=\mathbf{1 0} \mathrm{dB}$ typ.
$f_{T}(30 \mathrm{~mA})=1.8 \mathrm{GHz} \mathrm{min}$.
- Low Distortion:

Cross-modulation ( $40 \mathrm{dBmV}, 17 \mathrm{~V}, 60 \mathrm{~mA}$ ) $=-67 \mathrm{~dB}$ typ.
IMD ( $50 \mathrm{dBmV}, 17 \mathrm{~V}, 60 \mathrm{~mA})=-55 \mathrm{~dB}$ typ.

- Collector-to-Base Time Constant:
$(f=31.9 \mathrm{MHz})=7.0 \mathrm{ps}$ typ.

The RCA-HR41039 is a high-reliability version of the RCA-41039. It is specially processed and screened for high reliability in accordance with the basic schedules outlined earlier in the discussion of Processing and Screening of HR-Series High-Reliability Transistors. The maximum ratings, specific electrical (Group A) tests and test limits, and the burn-in conditions for the HR41039 are shown below. The basic electrical-characteristics curves and test conditions and the mechanical details for this device are the same as those given for the basic 41039 transistor in RCA data bulletin file No. 764.

## I. MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-BASE VOLTAGE ............................... $\mathrm{V}_{\text {CBO }} 40$ V

With base open	$\mathrm{V}_{\text {CEO }}$	25
EMITTER-TO-bASE VOLTAGE.	$\mathrm{V}_{\text {EBO }}$	3.5
CONTINUOUS COLLECTOR CURRENT	${ }^{\prime} \mathrm{C}$	0.25

TRANSISTOR DISSIPATION:
At case temperatures up to $75^{\circ} \mathrm{C}$
${ }^{P}{ }_{T}$


## TEMPERATURE RANGE:

Storage \& Operating (Junction)
LEAD TEMPERATURE (During soldering):
At distances $\geqslant 1 / 32 \mathrm{in}$. $(0.8 \mathrm{~mm})$ from seating plane for 10 s max.
II. GROUP A TESTS, At Case Temperature $\left(T_{C}\right)=25^{\circ} \mathrm{C}$

STATIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
				DC   Current mA					
		$\mathrm{V}_{\mathrm{CB}}$	$\mathrm{V}_{\text {CE }}$	$I_{E}$	${ }^{\prime}$ B	${ }^{\prime}$	Min.	Max.	
Collector-Cutoff Current	$\mathrm{I}_{\mathrm{CBO}}$	18			0		-	100	$\mu \mathrm{A}$
Collector-to-Base Breakdown Voltage	$V_{\text {(BR)CBO }}$			0		1	40	-	V
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR) }}$ EBO			0.1		0	3.5	-	V
Collector-to-Emitter Sustaining Voltage:   With base open	$\mathrm{V}_{\text {VEO }}{ }^{\text {(sus) }}$				0	20	25	-	V
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{C E}$ (sat)				10	100	-	0.25	V
DC Forward-Current Transfer Ratio	$\mathrm{h}_{\text {FE }}$		15			50	60	350	
Thermal Resistance: (Junction-to-Case)	$\mathrm{R}_{\theta \mathrm{JC}}$						-	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DYNAMIC

CHARACTERISTIC	SYMBOL	TEST CONDITIONS					LIMITS		UNITS
				DCCurrent mA					
		$\mathrm{V}_{\mathbf{C B}}$	$\mathrm{V}_{\text {CE }}$	${ }^{\prime} E$	${ }^{\prime}$ B	${ }^{\prime} \mathrm{C}$	Min.	Max.	
Small-Signal, Common-Emitter Power Gain ( $f=200 \mathrm{MHz}$ )	$\mathrm{G}_{\text {PE }}$		15			30	15	-	dB
Noise Figure (Measured) ( $\mathrm{f}=200 \mathrm{MHz}$ )	NF		15			30	-	$3.2{ }^{\text {a }}$	dB
Wideband Voltage Gain ( $f=50.250 \mathrm{MHz}$ )	$\mathrm{G}_{\mathrm{VE}}$		17			60	9.5	-	dB
12-Channel Cross Modulation   Distortion ( $f=50-250 \mathrm{MHz}$;   output level $=40 \mathrm{dBmV}$ )	CMD		17			60	-62	-	dB
Gain-Bandwidth Product $(f=200 \mathrm{MHz})$	${ }^{\mathbf{f}}$ T		$\begin{aligned} & 15 \\ & 15 \end{aligned}$			30 60	$\begin{gathered} 1.8 \\ 2 \end{gathered}$	-	GHz
Collector-to-Base Capacitance ( $\mathrm{f}=1 \mathrm{MHz}$ )	$\mathrm{C}_{\text {obo }}$	30					-	2.5	pF

${ }^{a}$ Because of insertion loss of input test circuit, device noise figure is approximately 0.2 dB less than measured.
*Recorded before and after burn-in for each device (serialized).

## III. BURN-IN CONDITIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$V_{C B}=15 \mathrm{~V}$
$P_{T}=1 \mathrm{~W}$


## Solid State Division

The RCA-40279 is the ultra-high reliability version of the RCA-2N3375 epitaxial silicon N-P-N planar transistor intended for class-A, -B, or -C amplifier, frequency multiplier, or oscillator operation. This device is subjected to special preconditioning tests for selection in ultra-high-reliability, large-signal, highpower, VHF-UHF applications in Space, Military, and Industrial communications equipment.

## - Ultra-High Reliability

## - Complete Qualification Testing

RF SERVICE, Maximum Ratings (Absolute-Maximum Values)
Collector-To-Base Voltage, $\mathrm{V}_{\mathrm{CBO}}$
65
volts
Collector-To-Emitter Voltage:

With base open, $V_{C E O}$	40	volts
With $V_{B E}=-1.5$ volts, $V_{G E V}$	65	volts
Emitter-To-Base Voltage, $V_{E B O}$	4	volts
Collector Current, IC	1.5	amps.

## High-Power

VHF-UHF

## Amplifier



Transistor Dissipation, PT : At $T_{C}$ up to $25^{\circ} \mathrm{C}$
11.6
watts At $T_{C}$ above $25^{\circ} \mathrm{C} \ldots .$. . Derate linearly to 0 watts at $200^{\circ} \mathrm{C}$
Temperature Range:

Storage	-65 to 200	${ }^{\circ} \mathrm{C}$
Operating (Junction)	-65 to 200	${ }^{\circ} \mathrm{C}$

Lead Temperature (During soldering):
At distances $1 / 32^{\prime \prime}$ from insulating wafer for 10 sec . max.

230
${ }^{0} \mathrm{C}$

ELECTRICAL CHARACTERISTICS - Case Temp. $=25^{\circ} \mathrm{C}$ (Unless Otherwise Specified)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS						LIMITS		UNITS
		$\begin{aligned} & \text { DC } \\ & \text { COLLECTOR } \\ & \text { VOLTS } \\ & \hline \end{aligned}$		$\begin{array}{\|c} \text { DC } \\ \text { BASE } \\ \text { VOLTS } \end{array}$	$\qquad$					
		$\mathrm{V}_{\text {CB }}$	$V_{C E}$	$V_{\text {BE }}$	IE	IB	IC	Min.	Max.	
Collector-Cutoff Current	ICEO	-	30	-	-	0	-	-	0.1	$\mu \mathrm{a}$
Collector To-Base Breakdown Voltage	$\mathrm{BV}_{\text {CBO }}$	-	-	-	0	-	0.1	65	-	Volts
Collector-To-Emitter Breakdown Voltage	$\mathrm{BV}_{\text {CEO }}$	-	-	-	-	0	0 to 200*	40**	-	Volts
Collector-To-Emitter Breakdown Voltage	$\mathrm{BV}_{\text {CEV }}$	-	-	-1.5	-	-	0 to 200*	$65^{* *}$	-	Volts
Emitter-To-Base Breakdown Voltage	BVEBO	-	-	-	0.1	-	0	4	-	Volts
Collector-To-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	-	-	-	-	100	0.5 amp	-	1	Volt
Output Capacitance	$\mathrm{C}_{0}$	30	-	-	0	-	-	-	10	pf
RF Power Output Amplifier, Unneutralized   At 100 Mc (See Fig. 1)   At 400 Mc (See Fig. 2)	POUT	-	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	-	-	-	-	$\begin{array}{r} 7.5^{\circ} \\ 3 \pm \end{array}$	-	Watts Watts
Forward Current Transfer Ratio	$h_{\text {FE }}$	-	5	-	-	-	150	10	-	-

* Pulsed through an inductor ( 25 mh ); duty factor $=50 \%$
* Measured at a current where the breakdown voltage is a minimum.
- For $P_{I N}=1.0 \mathrm{w}$; minimum efficiency $=65 \%$
$\triangle$ For $P_{I N}=1.0 \mathrm{w}$; minimum efficiency $=40 \%$


## TO-60 DIMENSIONAL OUTLINE



FIGURE 1
RF AMPLIFIER CIRCUIT FOR 40279 POWER-OUTPUT TEST


NOTE 1: GENERATOR IMPEDANCE $=50$ OHMS.
NOTE 2: LOAD IMPEDANCE $=50$ OHMS.
FOR $100-M C$ OPERATION
$C_{1}, C_{2}: 7-100 \mathrm{PF}$
$\mathrm{C}_{3}, \mathrm{C}_{4}: 4-40 \mathrm{PF}$
$C_{5}$ : 330 PF, DISC CERAMIC
$C_{6}: 1500 \mathrm{PF}$
$C_{7}: 0.005 \mu \mathrm{~F}$, DISC CERAMIC
$L_{1}$ : 3 TURNS NO. 16 WIRE, $1 / 4^{\prime \prime} 1 D, 5 / 16^{\prime \prime}$ LONG
$L_{2}$ : FERRITE CHOKE, $z=750( \pm 20 \%)$ OHMS
$L_{3}: 2.4-\mu_{H}$ CHOKE
$L_{4}$ : 5 TURNS NO. 16 WIRE, $5 / 16^{\prime \prime}$ ID, $7 / 16^{\prime \prime}$ LONG
$R_{1}$ : 1.35 OHMS, NON-INDUCTIVE
FIGURE 2.
RF AMPLIFIER CIRCUIT FOR 40279
POWER-OUTPUT TEST


RELIABILITY TESTING

Electrically, the RCA-40279 is similar to the RCA-2N3375; the exception being the 40279 ICEO is 100 nanoamperes maximum. In addition to Preconditioning and Group $A$ tests, a Quali-
fication Approval test series (Group B Tests) is performed on a semi-annual basis. All units are tested to assure freedom from second breakdown in Class-A applications.

## Preconditioning (100 Per Cent Testing of Each Transistor)

1. Serialization
2. Record ${ }^{\text {CEOO }}, \mathrm{h}_{\text {FE }}, \mathrm{V}_{\text {CE }}(\mathrm{sat})$
3. Temperature Cycling-Method 102 A of MIL-STD-202, 5 cycles, $-65^{\circ} \mathrm{C}+200^{\circ} \mathrm{C}$
4. Bake, 72 hours minimum, $+200^{\circ} \mathrm{C}$
5. Constant Acceleration-Method 2006 of MIL-STD-750, 10, 000G, $Y_{1}$ and $Y_{2}$ axes
6. Record ${ }^{\text {CEO }}, h_{F E}, V_{C E}$ (sat)
7. Reverse Bias Age, $\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}, \mathrm{t}=168$ hours
*8. Record $I_{C E O}, h_{F E}, V_{C E}$ (sat)
8. Power Age, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C B}=28 \mathrm{~V}, \mathrm{t}=500$ hours, $P_{D}=2.6 \mathrm{~W}$, free air
*10. Record ICEO, $\mathrm{h}_{\text {FE }}, \mathrm{V}_{\mathrm{CE}}$ (sat) at 168 hours and 500 hours
9. Helium Leak, $1 \times 10^{-8} \mathrm{cc} / \mathrm{sec}$. max.
10. Methanol Bomb, 70 psig, 18 to 24 hours
11. X-Ray, RCA spec. 1750326
12. Record Subgroups 2 and 3 of Group A Tests

Delta criteria after 168 hours Reverse Bias Age and after 168 hours and 500 hour Power Age
$\Delta I_{\text {CEO }} \quad+100 \%$ or +10 nanoamperes whichever is greater
$\Delta$ hFE $\pm 30 \%$
$\Delta V_{C E}($ sat $) \pm 0.1 \mathrm{~V}$

Group A Tests

TEST METHOD PER MIL-STD. 750	EXAMINATION OR TEST	CONDITIONS	LTPD	SYMBOL	LImits		UNITS
					MIN.	MAX.	
2071	Subgroup 1		10				-
	Visual and Mechanical Examination	-	-	-	-	-	
	Subgroup 2		5				
3036D	Collector-To-Emitter Cutoff Current	$V_{C E}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	-	ICEO	-	100	namps
3001D	Collector-To-Base Breakdown Voltage	$\begin{aligned} & I C=100 \mu, \\ & I_{E}=0 \end{aligned}$	-	$\mathrm{BV}_{\text {CBO }}$	65	-	Volts
3026 D	Emitter-To-Base Breakdown Voltage	$\begin{aligned} & I_{E}=100 \mu a, \\ & I_{C}=0 \end{aligned}$	-	BVEBO	4	-	Volts
30110	Collector-To-Emitter Breakdown Voltage	$I_{\text {(Inductive) }} I_{B}=0$	-	$\mathrm{BV}_{\text {CEO }}$	40	-	Volts
3011A	Collector-To-Emitter Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0 \text { to } 200 \mathrm{ma} \\ & \text { (inductive) } \\ & \mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V} \end{aligned}$	-	$\mathrm{BV}_{\text {CEV }}$	65	-	Volts
3071	Collector-To-Emitter Saturation Voltage	$\begin{aligned} & I_{C}=500 \mathrm{ma}, \\ & I_{B}=100 \mathrm{ma} \end{aligned}$	-	$V_{C E}$ (sat)	-	1	Volt
3076	Forward Current Transfer Ratio	$\begin{aligned} & I_{C E}=150 \mathrm{ma} \\ & V_{C E}=5 \mathrm{~V} \end{aligned}$	-	$h_{\text {he }}$	10	-	
	Subgroup 3		5				
3236	Output Capacitance	$\begin{aligned} & \mathrm{f}=140 \mathrm{Kc}, \\ & \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$	-	$\mathrm{C}_{\text {ob }}$	-	10	pf
See Fig. 1	R.F. Power Output (Min. Eff. $=65 \%$ )	$\begin{aligned} & V_{C E}=28 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{i}} \mathrm{~V}=1 W^{\prime} \end{aligned}$	-	POUT	7.5	-	Watts
See Fig. 2	R.F. Power Output (Min. Eff. $=40 \%$ )	$\begin{aligned} & V_{C E}=28 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{i}}=1 W_{1}=400 \mathrm{mc} \end{aligned}$	-	Pout	3	-	Watts
	Subgroup 4		15				
3036D	Collector Cutoff Current	$\begin{aligned} & T_{A}=150^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, \\ & V_{C B} \mathrm{CB}=30 \mathrm{~V}, \\ & T_{E}=0 \end{aligned}$	-	${ }^{\prime} \mathrm{CBO}$	-	100	$\mu \mathrm{mp}$
3076	Forward Current Transfer Ratio	$\begin{aligned} & T_{A}=150^{\circ} \mathrm{C} \pm 30 \mathrm{C}, \\ & \mathrm{C}^{C}=150 \mathrm{ma}, \\ & V_{C E}=5 \mathrm{~V} \end{aligned}$	-	${ }^{\text {hFE }}$	-	200	-

Group B Tests


* Acceptance/Rejection Criteria of Group B tests: For an LTPD plan of $7 \%$ the total sample size is 80 for which the maximum number of rejects allowed is 2 . Acceptance is also subject to a maximum of one (1) reject per Subgroup.
Group B tests are performed once every six months as part of Qualification Approval.


RF Power Transistors
Solid State Division

RCA-40294 is an ultra-high-reliability double-diffused, epitaxial planar transistor of the silicon NPN type for low-noise amplifier, mixer, and oscillator applications at frequencies up to 500 MHz (common-emitter configuration), and up to 1200 MHz (common-base configuration).

This transistor is electrically and mechanically like RCA-2N2857, but is specially processed, preconditioned, and tested for critical aerospace and military applications.

The 40294 utilizes a hermetically sealed JEDEC TO-72 package. All active transistor elements are insulated from the case, which may be grounded by a fourth lead in applications requiring shielding of the device.

The curves of Typical Characteristics shown in the technical bulletin for RCA-2N2857 also apply for RCA-40294.


[^23]
# ULTRA-HICHH-RELIABBLITY SILICON N.P.P EPTIAXIAL PLANAR TRASIISTOR 

For UHF Applications in Critical Aerospace and Military Equipment

Features

- Meets performance requirements of TX2N2857 MIL-S19500/343 USAF, 7 March 1966
- Extra-rigorous control and inspection of all parts, materials, and internal assemblies before sealing
- $100 \%$ thermal and mechanical preconditioning after sealing
- complete electrical and mechanical QUALITY CONFORMANCE test program
- 100\% RELIABILITY ASSURANCE testing
- 100\% PERFORMANCE-REQUIREMENTS testing
- $100 \%$ Noise Figure and Power Gain Tests at 450 MHz
- high gain-bandwidth product -
$\mathrm{f}_{\mathrm{T}}=1000 \mathrm{MHz} \mathrm{min}$.
- very low Device Noise Figure -
$\mathrm{NF}=4.5 \mathrm{~dB}$ max. at 450 MHz
- high power gain as neutralized amplifier $\mathrm{G}_{\mathrm{pe}}=12.5 \mathrm{~dB} \min$. at 450 MHz for circuit bandwidth of 20 MHz
- high power output as uhf oscillator $P_{0}=30 \mathrm{~mW}$ min. at 500 MHz
- low collector-to-base time constant $r_{b} C_{c}=15 \mathrm{ps}$ max.


Fig. 1 - High-Reliability Testing Process Flow Diagram

## TABLEI 100\% PRECONDITIONING

 BEFORE FACTORY, QUALITY, RELIABILITY-ASSURANCE AND PERFORMANCE REQUIREMENTS TESTSSTABILIZATION bAKE<br>48 hours minimum at $200^{\circ} \mathrm{C}$

TEMPERATURE CYCLING
(PER MILSTD-750 METHOD 1051, COND. C) . . . . . . . . . . 5 complete cycles from $-65^{\circ} \mathrm{C}$ to $+2000^{\circ} \mathrm{C}$, each including 15 minutes at $-65^{\circ} \mathrm{C}, 15$ minutes at $+200^{\circ} \mathrm{C}$, and 5 minutes at $25^{\circ} \mathrm{C}$
HELIUM-LEAK TEST (PER MIL-STD-202, METHOD 112 COND. C, PROC.IIA). . . . Leakage may not exceed $10^{-8} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ BUBBLE TEST (PER MIL-STD-202, METHOD 112 COND. A) . . . . . . . . . . . $150^{\circ} \mathrm{C}$ minimum, 1 minute, ethylene glycol CONSTANT-ACCELERATION (CENTRIFUGE) TEST (PER MIL-STD-750, METHOD 2006). . 20,000 G's; Y 1 plane, 1 minute

DIMENSIONAL OUTLINE


92CS-12817

## TERMINAL DIAGRAM <br> Bottom View

$$
\begin{array}{ll}
\text { LEAD } & 1 \text { - EMITTER } \\
\text { LEAD } & 2 \text { - BASE } \\
\text { LEAD } & 3 \text { - COLLECTOR } \\
\text { LEAD } & 4 \text { - CONNECTED } \\
\text { TO CASE }
\end{array}
$$



NOTE 1: THE SPECIFIED LEAD DIAMETER APPLIES IN THE ZONE BETWEEN $0.050^{\prime \prime}$ AND $0.250^{\prime \prime}$ FROM THE SEATING PLANE. FROM $0.250^{\prime \prime}$ TO THE END OF THE LEAD A MAXIMUM DIAMETER OF $0.021^{\prime \prime}$ IS HELD. OUTSIDE OF THESE ZONES, THE LEAD DIAMETER IS NOT CONTROLLED.
NOTE 2: MAXIMUM DIAMETER LEADS AT A GAUGING PLANE $0.054^{\prime \prime}+0.001^{\prime \prime}-0.000^{\prime \prime}$ BELOW SEATING PLANE TO BE WITHIN $0.007^{\prime \prime}$ OF THEIR TRUE LOCATION RELATIVE TO MAX. WIDTH TAB AND TO THE MAXIMUM $0.230^{\prime \prime}$ DIAMETER MEASURED WITH A SUITABLE GAUGE. WHEN GAUGE IS NOT USED, MEASUREMENT WILL BE MADE AT SEATING PLANE.
NOTE 3: FOR VISUAL ORIENTATION ONLY.
NOTE 4: TAB LENGTH TO BE $0.028^{\prime \prime}$ MINIMUM - $0.048^{n}$ MAXIMUM, ANDWILL BE DETERMINED BY SUBTRACTING DIAMETER A FROM DIMENSION B.

TABLE II
GROUP A TESTS

Subgroup	$\xrightarrow[\text { Lot }]{\text { Loler. }}$ ance Per Cent Defective	Characteristic Test	Symbol	$\begin{gathered} \text { MIL_STD } \\ 750 \\ \text { Reference } \\ \text { Test } \\ \text { Method } \end{gathered}$	TEST CONDITIONS							LIMITS		Units
					Ambient Tem-perature $T_{A}$	Fre-quency $f$	DC Collector- to-Base Voltage VCB	DC   Collector-toEmitter Voltage VCE	DC Collector Current IC	$\begin{aligned} & \text { DC } \\ & \text { Emitter } \\ & \text { Current } \\ & \text { IE } \end{aligned}$	$\begin{array}{\|c\|} \text { DC } \\ \text { Base } \\ \text { Cur- } \\ \text { rent } \\ \text { IB } \\ \hline \end{array}$	$\begin{gathered} \text { RCA } \\ 40294 \end{gathered}$		
					- C	MHz	V	V	mA	mA	mA	Min.	Max.	
1	5	Visual and Mechanical Examination	--	2071	--	--	--	--	--	--	--	--	--	
2	3	CollectorCutoff Current	${ }^{\prime} \mathrm{CBO}$	$\begin{gathered} 3036 \\ \text { Bias Condi- } \\ \text { tion D } \end{gathered}$	25さ 3	--	15			0		--	10	$n \mathrm{~A}$
		CollectorCutoff Current	I'CES	$\begin{array}{c\|} \hline 3041 \\ \text { Bias Condi- } \\ \text { tion C } \end{array}$	$25 \pm 3$	--		16				-	100	nA
		$\begin{aligned} & \text { Collector-to-Base } \\ & \text { Breakdown } \\ & \text { Voltage } \\ & \hline \end{aligned}$	BVCBO	$\begin{array}{\|c\|} \hline 3001 \\ \text { Test Condi- } \\ \text { tion D } \\ \hline \end{array}$	$25 \pm 3$	--			0.001	0		30	-	V
		Collector-to-Emitter Breakdown Voltage	$\underset{(\text { sus })}{\text { BVCEO }}$	$\begin{array}{\|c\|} \hline 3011 \\ \text { Test Condi- } \\ \text { tion D } \\ \hline \end{array}$	$25 \pm 3$	--			3*		0	15	--	V
		Emitter-to-Base Breakdown Voltage	BVEBO	$\begin{gathered} 3026 \\ \text { Test Condi- } \\ \text { tion D } \end{gathered}$	25ı3	--			0	-0.001		2.5	--	V
		Base-toEmitter Voltage	$V_{\text {BE }}$	$\begin{gathered} 3066 \\ \text { Test Condi- } \\ \text { tion A } \end{gathered}$	$25 \pm 3$	--			10		1	--	1	V
		Collector-to-Emitter Voltage	$V_{C E}$	3071	$25 \pm 3$	--			10		1	--	0.4	V
		Static Forward Current-Transfer Ratio	$h_{\text {FE }}$	3076	$25 \pm 3$	--		1	3			30	150	
3	10	Small-Signal Power Gains	Gpe		$25 \pm 3$	450		6	1.5			12.5	19	dB
		Device Noise Figure ${ }^{*}$ : Generator Resistance $\left(R_{G}\right)=50 \Omega$	NF		$25 \pm 3$	450		6	1.5			--	4.5	dB
		$\begin{aligned} & \text { Measured Noise Figure } \\ & \text { Generator Resistance } \\ & \mathbf{R}_{\mathbf{G}}=50 \Omega \end{aligned}$	NF		$25 \pm 3$	450		6	1.5			--	5.0	dB
		Collector-to-Base Time Constanta	${ }^{\prime} b^{\prime} C_{c}$		$25 \pm 3$	31.9		6		-2		4	15	ps
		Oscillator Power Output	$P_{0}$		$25 \pm 3$	$\geq 500$	10			-12		30	--	mW
		Collector-to-Base Feedback Capacitance	$\mathrm{C}_{\mathrm{cb}}$		25さ 3	$\begin{aligned} & \underset{2}{2} 0.1 \\ & \leq 1 \end{aligned}$	10			0		--	1	pF
4	10	Static Forward Current Transfer Ratio (Low Temperature)	$h_{\text {FE }}$	3076	-55 $\pm 3$	-		1	3			10	--	
		Collector-Cutoff Current (High Temperature)	ÍcBo	$\begin{gathered} 3036 \\ \text { Bias Condi- } \\ \text { tion D } \end{gathered}$	$150^{+5}$	--	15			0		--	1	$\mu \mathrm{A}$
		Small-Signal, Short Circuit Forward Cur-rent-Transfer Ratios	$h_{f e}$	3206	$25 \pm 3$	0.001		6	2			50	220	
		Magnitude of Small-Signal, Short-Circuit Forward Current Transfer Ratio	$\left\|h_{f e}\right\|$	3206	$25 \pm 3$	100		6	5			10	19	

* Pulse Test

4 Lead No. 4 (Case) Grounded

- Device noise figure is approximately 0.5 dB lower than the measured noise figure. The difference is due to the insertion loss at the input of the test amplifier and the contribution of the following stages in the test setup.
- Three-terminal measurement with emitter and case leads guarded.

TABLE III GROUP B TESTS


TABLE IV
100\% RELIABILITY ASSURANCE TEST
the cumulative rejects of tables iv and v shall not exceed $10 \%$ of the lot

Test	$\begin{aligned} & \text { MIL-STD } \\ & 750 \\ & \text { Reference } \end{aligned}$	INITIAL AND ENDPOINT CHARACTERISTICS TESTS				
		Characteristic Test	RCA-40294		$\begin{aligned} & \text { MIL.STD } \\ & 750 \\ & \text { Reference } \end{aligned}$	Test   Conditions
			Initial Value	$\begin{gathered} \text { Endpoint } \\ \text { Value } \end{gathered}$		
POWER BURN.IN:   Common-Base Circuit $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25 \pm 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CB}}=12.5 \pm 0.5 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{T}}=200 \mathrm{~mW} \end{aligned}$   Duration=340 hours	1026	$\triangle \mathrm{ICBO}$	$10 \text { max. }$	$\begin{gathered} \Delta= \pm 5 \\ n \mathrm{nA} \end{gathered}$	$\begin{gathered} 3036 \\ \text { Bias Condi- } \\ \text { tion D } \end{gathered}$	$\begin{aligned} & T_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C B}=15 \mathrm{~V} \end{aligned}$
		$\Delta h_{\text {FE }}$	$\begin{gathered} 30 \text { min. } \\ 150 \text { max. } \end{gathered}$	$\Delta= \pm 15 \%$	3076	$\begin{aligned} & \mathrm{T}_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C E}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \end{aligned}$

TABLE V
100\% PERFORMANCE REQUIREMENTS TESTS
the cúmulative rejects of tables iv and V shall not exceed $10 \%$ of the lot

Test	Symbol	$\begin{aligned} & \text { MIL-STD } \\ & 750 \\ & \text { Reference } \end{aligned}$	TEST CONDITIONS							LIMITS		Units
			Ambient   Temperature $T_{A}$	Fre-quency $f$	DC Collector-to-Base Voltage $V_{C B}$	DC Collector-to-Emitter Voltage VCE	DC Col. lector Current IC		DC   Base Current $I_{B}$	$\begin{gathered} \text { RCA } \\ 40294 \end{gathered}$		
			${ }^{\circ} \mathrm{C}$	MHz	V	V	mA	mA	mA	Min.	Max.	
Collector-Cutoff Current	ICBO	$\begin{gathered} 3036 \\ \text { Bias Condi- } \\ \text { tion D } \end{gathered}$	$25 \pm 3$	--	15			0		--	10	nA
Collector-Cutoff Current	${ }^{1} \mathrm{CES}$	3041   Bias Condition C	$25 \pm 3$	-		16				--	100	nA
Collector-to.Base Breakdown Voltage	$\mathrm{BV}^{\text {CBO }}$	$\begin{gathered} 3001 \\ \text { Test Condi- } \\ \text { tion D } \end{gathered}$	$25 \pm 3$	--			0.001	0		30	--	V
Collector-to-Emitter Breakdown Voltage	BVCEO (sus)	$\begin{gathered} 3011 \\ \text { Test Condi- } \\ \text { tion D } \end{gathered}$	$25 \pm 3$	--			3*		0	15	--	V
Emitter-to-Base Breakdown Voltage	BVEbo	$\begin{gathered} 3026 \\ \text { Test Condi- } \\ \text { tion D } \end{gathered}$	$25 \pm 3$	--			0	-0.001		2.5	--	V
Base-to-Emitter Voltage	$V_{B E}$	$\begin{gathered} 3066 \\ \text { Test Condi- } \\ \text { tion A } \end{gathered}$	$25 \pm 3$	--			10		1	-	1	V
Collector-to-Emitter Voltage	$V_{C E}$	3071	25:3	--			10		1	--	0.4	V
Static Forward Current-Transfer Ratio	$h_{\text {FE }}$	3076	$25 \pm 3$	--		1	3			30	150	
Device Noise   Figurea: Generator   Resistance ( $\mathrm{R}_{\mathrm{G}}$ ) $=50$   Ohms	NF	--	$25 \pm 3$	450		6	1.5			--	4.5	dB
Measured Noise Figure Generator Resistance $\mathrm{R}_{\mathrm{G}}=$ $50 \Omega_{1}$	NF		$25 \pm 3$	450		6	1.5			--	5.0	dB
Visual Examination   (External)   Under 20-Power   Magnification		Examine leads, header, and shell for visual defects.										

[^24]RF Power Transistors


# Ultra-High-Reliability Silicon N-P-N Epitaxial Planar Transistor <br> For UHF Applications in Critical <br> Aerospace and Military Equipment 

## Features.

- Meets performance requirements of TX2N2857 MIL-S19500/343 USAF, 7 March 1966
- Extra-rigorous control and inspection of all parts, materials, and internal assemblies before sealing
- 100\% thermal and mechanical preconditioning after sealing

RCA-40296 is an ultra-high-reliability double-diffused, epitaxial planar transistor of the silicon n-p-n type for low-noise amplifier, mixer, and oscillator applications at frequencies up to 500 MHz (common-emitter configuration), and up to 1200 MHz (common-base configuration).
This transistor is electrically and mechanically like RCA2N2857, but is specially processed, preconditioned, and tested for critical aerospace and military applications.
The 40296 utilizes a hermetically sealed JEDEC TO-72 package. All active transistor elements are insulated from the case, which may be grounded by a fourth lead in applications requiring shielding of the device.

- Complete electrical and mechanical QUALITY CONFORMANCE test program
- 100\% RELIABILITY ASSURANCE testing
- 100\% PERFORMANCE-REQUIREMENTS testing
- $100 \%$ noise figure and power gain tests at 450 MHz

The curves of Typical Characteristics shown in the technical bulletin for RCA-2N2857 also apply for RCA-40296.

## MAXIMUM RATINGS, Absolute-Maximum Values:

COLLECTOR-TO-EMITTER VOLTAGE	$\mathrm{v}_{\text {CEO }}$	15	v
Collector-to-base voltage	$\mathrm{v}_{\text {CBO }}$	30	v
EMITTER-TO-bASE VOLTAGE	$\mathrm{V}_{\text {EBO }}$	2.5	V
CONTINUOUS COLLECTOR CURRENT	${ }^{\prime} \mathrm{C}$	40	mA
TRANSISTOR DISSIPATION	${ }^{\text {P }}$		
With heat sink, at case ${ }^{*}$ temperatures up to $25^{\circ} \mathrm{C}$		300	mW
With heat sink, at case* temperatures above $25^{\circ} \mathrm{C}$		Derate linearly 1.72	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
At ambient temperatures up to $25^{\circ} \mathrm{C} \ldots \ldots \ldots$.		200	
At ambient temperatures above $25^{\circ} \mathrm{C}$		Derate linearly 1.14	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:   Storage \& Operating (Junction)		-65 to +200	${ }^{\circ} \mathrm{C}$
CASE TEMPERATURE (During soldering):			
At distances $\geqslant 1 / 32 \mathrm{in}$. $(0.8 \mathrm{~mm})$ from seating surface for 10 seconds max.		265	${ }^{\circ} \mathrm{C}$

[^25]

Fig. 1 - High-Reliability Testing Process Flow Diagram


NOTE 1: (NEUTRALIZATION PROCEDURE): (A) CONNECT A $450-\mathrm{MHz}$ SIGNAL GENERATOR (WITH Rg $=50$ OHMS) TO THE INPUT TERMINALS OF THE AMPLIFIER. (B) CONNECT A 50-OHM RF VOLTMETER ACROSS THE OUTPUT TERMINALS OF THE AMPLIFIER. (C) APPLY VEE, AND WITH THE SIGNAL GENERATOR ADJUSTED FOR 5 mV OUTPUT FROM THE AMPLIFIER, TUNE C1, C3, AND C4 FOR MAXIMUM OUTPUT. (D) INTERCHANGE THE CONNECTIONS TO THE SIGNAL GENERATOR AND THE RF VOLTMETER. (E) WITH SUFFICIENT SIGNAL APPLIED TO THE OUTPUT TERMINALS OF THE AMPLIFIER, ADJUST C2 FOR A MINIMUM INDICATION AT THE INPUT. (F) REPEAT STEPS (A), (B), AND (C) TO DETERMINE IF RETUNING IS NECESSARY.
NOTE 2: L1 \& L2-SILVER-PLATED BRASS ROD, 1-1/2" LONG $\times 1 / 4^{\prime \prime}$ DIA. INSTALL AT LEAST $1 / 2^{\prime \prime}$ FROM NEAREST VERTICAL CHASSIS SURFACE.
NOTE 3: EXTERNAL INTERLEAD SHIELD TO ISOLATE THE COLLECTOR LEAD FROM THE EMITTER AND BASE LEADS.

Fig. 2 - Neutralized Amplifier Circuit Used to Measure $450 \cdot \mathrm{MHz}$ Power Gain and Noise Figure.

TABLE I $100 \%$ PRECONDITIONING BEFORE FACTORY, QUALITY, RELIABILITY-ASSURANCE AND PERFORMANCE REQUIREMENTS TESTS

## STABILIZATION BAKE

 48 hours minimum at $200^{\circ} \mathrm{C}$ TEMPERATURE CYCLING(PER MIL-STD-750 METHOD 1051, COND. C) . . . . . . . . . . . 5 complete cycles from $-65^{\circ} \mathrm{C}$ to +2000 C, each including 15 minutes at $-65^{\circ} \mathrm{C}, 15$ minutes at $+200^{\circ} \mathrm{C}$, and 5 minutes at $25^{\circ} \mathrm{C}$
HELIUM-LEAK TEST (PER MIL-STD-202, METHOD 112 COND. C, PROC.IIIA). . . Leakage may not exceed $10^{-8} \mathrm{~atm} \mathrm{cc} / \mathrm{s}$ BUBBLE TEST (PER MIL-STD-202, METHOD 112 COND. A) $150^{\circ} \mathrm{C}$ minimum, 1 minute, ethylene glycol CONSTANT-ACCELERATION (CENTRIFUGE) TEST (PER MIL-STD-750, METHOD 2006). . 20,000 G's; Y1 plane, 1 minute

TABLE II
GROUP A TESTS

Subgroup	$\xrightarrow[\text { Lot }]{\text { Loler- }}$ ance Per Cent Defective	Characteristic Test	Symbol	$\begin{gathered} \text { MIL-STD } \\ 750 \\ \text { Reference } \\ \text { Test } \\ \text { Method } \end{gathered}$	TEST CONDITIONS							LIMITS		Units
					Am-   bient   Tem-perature TA	Fre. quency f	DC Collector-to-Base Voltage $V_{C B}$	DC   Collector-toEmitter Voltage VCE	DC Collector Current IC	DC Emitter Current IE	DC Base Current IB	$\begin{gathered} \text { RCA } \\ 40296 \end{gathered}$		
					- C	MHz	V	V	mA	mA	mA	Min.	Max.	
1	5	Visual and Mechanical Examination	--	2071	--	--	--	--	--	--	-	--	--	
2	3	CollectorCutoff Current	${ }^{1} \mathrm{CBO}$	$\begin{array}{\|c\|} \hline 3036 \\ \text { Bias Condi- } \\ \text { tion D } \\ \hline \end{array}$	$25 \pm 3$	--	15			0		--	10	nA
		CollectorCutoff Current	${ }^{\text {I CeS }}$	3041 Bias Condi- tion C	$25 \pm 3$	--		16				--	100	nA
		Collector-to-Base   Breakdown   Voltage	$\mathrm{BV}_{\mathrm{CBO}}$	$\begin{array}{\|c\|} \hline 3001 \\ \text { Test Condi- } \\ \text { tion D } \\ \hline \end{array}$	$25 \pm 3$	--			0.001	0		30	-	V
		Collector-to-Emitter Breakdown Voltage	$\underset{(\text { sus })}{\mathrm{BV}_{\text {CEO }}}$	$\begin{gathered} 3011 \\ \text { Test Condi- } \\ \text { tion D } \\ \hline \end{gathered}$	$25 \pm 3$	--			3*		0	15	--	V
		Emitter-to-Base   Breakdown   Voltage	BVEBO	$\begin{gathered} 3026 \\ \text { Test Condi- } \\ \text { tion D } \end{gathered}$	$25 \pm 3$	--			0	0.001		2.5	--	V
		Base-to-   Emitter   Voltage	$V_{B E}$	$\begin{gathered} 3066 \\ \text { Test Condi- } \\ \text { tion A } \end{gathered}$	$25 \pm 3$	-			10		1.	-	1	V
		$\begin{array}{\|l} \hline \text { Collector- } \\ \text { to-Emitter } \\ \text { Voltage } \\ \hline \end{array}$	${ }^{\mathrm{V}} \mathrm{CE}$	3071	25: 3 -	--			10		1	--	0.4	V
		Static Forward Current-Transfer Ratio	$h_{\text {FE }}$	3076	$25 \pm 3$	--		1	3			30	150	
3	10	Small-Signal Power Gaina	$G_{p e}$		$25 \pm 3$	450		6	1.5			11.5	16.5	dB
		Device Noise Figure ${ }^{*}$ : Generator Resistance $\left(R_{G}\right)=50 \Omega$	NF		$25 \pm 3$	450		6	1.5			--	3.4	dB
		$\begin{aligned} & \text { Measured Noise Figure } \\ & \text { Generator Resistance } \\ & \mathrm{R}_{\mathrm{G}}=50 \Omega \end{aligned}$	NF		$25 \pm 3$	450		6	1.5				4.2	dB
		Collector-to-Base Time Constanta	$\mathrm{r}_{\mathrm{b}}, \mathrm{C}_{\mathrm{c}}$		25:3	31.9		6		-2		4	15	ps
		Oscillator Power Output	$P_{0}$		25:3	$\geq 500$	10			-12		30	--	mW
		Collector-to-Base Feedback Capacitance	$\mathrm{C}_{\mathrm{cb}}$		25:3	$\begin{aligned} & \underset{\vdots}{2} 0.1 \\ & \leq 1 \end{aligned}$	10			0		--	1	pF
4	10	Static Forward Current Transfer Ratio (Low Temperature)	$h^{\text {F }}$ E	3076	- $55 \pm 3$	--		1	3			10	--	
		Collector-Cutoff Current (High Temperature)	${ }^{1} \mathrm{CBO}$	3036 Bias Condi- tion D	$150^{+0}$	-	15			0		--	1	$\mu \mathrm{A}$
		Small-Signal, Short Circuit Forward Cur-rent-Transfer Ratioa	$h_{\text {fe }}$	3206	25:3	0.001		6	2			50	220	
		Magnitude of Small-Signal, Short-Circuit Forward Current Transfer Ratio	$\left\|h_{f e}\right\|$	3206	25 $\pm 3$	100		6	5			10	20	

* Pulse Test

A Lead No. 4 (Case) Grounded

- Device noise figure is approximately 0.5 dB lower than the measured noise figure. The difference is due to the insertion loss at the input of the test amplifier and the contribution of the following stages in the test setup.
- Three-terminal measurement with emitter and case leads guarded.

TABLE III GROUP B TESTS

Subgroup	Test	$\begin{aligned} & \text { MIL.STD } \\ & 750 \\ & \text { Reference } \end{aligned}$	Lot   Tolerance   Per Cent   Defective   $\%$	INITIAL AND ENDPOINT CHARACTERISTICS TESTS							Units
				Characteristic Test	$\begin{aligned} & \text { MIL.STD } \\ & 750 \\ & \text { Reference } \end{aligned}$	Test   Conditions	RCA. 40296				
							Initial Values		End Point Values		
							Min.	Max.	Min.	Max.	
1	PHYSICAL DIMENSIONS   (See Dimensional Out-   line Drawing on page 7	2066	20	--	--	--	--	--	--	--	
2	SOLDERABILITY   Solder Temp. $=260 \pm 5^{\circ} \mathrm{C}$	2026	10	${ }^{\prime} \text { CBO }$	3036 D	$\begin{aligned} & \mathrm{T}_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C B}=15 \mathrm{~V} \end{aligned}$	--	10	--	10	nA
	TEMPERATURE. CYCLING TEST (Condition C)	1051									
	THERMAL-SHOCK TEST: $\begin{aligned} & \mathrm{T}_{\text {min }}=0_{-0}^{+5}{ }^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {max }}=100_{-5}^{+0}{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 1056 \\ \text { Test Condi- } \\ \text { tion } A \end{gathered}$		$h_{F E}{ }^{E}$	3076	$\begin{aligned} & \mathrm{T}_{A}=25.3^{\circ} \mathrm{C} \\ & \mathrm{v}_{\mathrm{CE}}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \end{aligned}$	30	150	30	150	
	MOISTURE-RESISTANCE TEST	1021									
3	SHOCK TEST: NON-OPERATING 1500 G's, 0.5 ms 5 blows each in $X_{1}$, $Y_{1}, Y_{2}$, and $Z_{1}$ planes	2016	10	${ }^{1} \mathrm{CBO}$	3036 D	$\begin{aligned} & T_{A}=25: 3^{\circ} \mathrm{C} \\ & { }^{V_{C B}}=15 \mathrm{~V} \end{aligned}$	--	10	--	10	$n \mathrm{~A}$
	VIBRATION FATIGUE TEST: NON-OPERATING $60 \pm 20 \mathrm{~Hz}, 20 \mathrm{G}$ 's	2046		${ }^{h_{F E}}$	3076	$\begin{aligned} & \mathrm{T}_{A}=25 \div 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \end{aligned}$	30	150	30	150	
	VIBRATION VARIABLE- IFREQUENCY TEST	2056									
	CONSTANT-ACCELERA. TION TEST: 20,000 G's	2006									
4	TERMINAL STRENGTH TEST	$\left\lvert\, \begin{gathered} 2036 \\ \text { Test Condi- } \\ \text { tion E } \end{gathered}\right.$	20	Helium Leak Test		$\begin{aligned} & T_{A}=150^{\circ} \mathrm{C} \\ & 1 \text { minnute } \\ & 1 \text { minute } \end{aligned}$	--	--	--	$10^{-8}$	$\underset{\mathrm{cm}^{3} / \mathrm{s}}{\mathrm{~atm}}$
				Bubble Test	$\left\lvert\, \begin{gathered} \text { MIL_STD } \\ \text { 202 } \\ \text { Condition } \\ \mathbf{A} \end{gathered}\right.$						
5	SALT-ATMOSPHERE TEST	1041	20	${ }^{1} \mathrm{CBO}$	3036D	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25.3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CB}}=15 \mathrm{~V} \end{aligned}$	--	10	--	10	nA
				${ }^{h_{F E}}$	3076	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25 \div 3^{\circ} \mathrm{C} \\ & \mathrm{v}_{\mathrm{CE}}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \\ & \hline \end{aligned}$	30	150	30	150	
6	HIGH-TEMPERATURE   LIFE TEST (NON.   OPERATING):   $T_{A}=200: 10^{\circ} \mathrm{C}$   Duration $=1000 \mathrm{hrs}$.	1031	$\lambda=7 \%$	${ }^{1}$ CBO	3036D	$\begin{aligned} & \mathrm{T}_{A}=25: 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C B}=15 \mathrm{~V} \end{aligned}$	--	10	--	20	$n \mathrm{~A}$
				${ }^{h_{F E}}$	3076	$\begin{aligned} & \mathrm{T}_{A}=25: 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C E}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \end{aligned}$	30	150	24	180	
7	STEADY-STATE OPERA. TION LIFE TEST:   Common-Baso Circuit   $\mathrm{T}^{\prime} \mathrm{A}=25 \pm 3^{\circ} \mathrm{C}$   $V_{C B}=12.5 \div 0.5 \mathrm{~V}$   $\mathrm{P}_{\mathrm{T}}=200 \mathrm{~mW}$   Duration $=1000 \mathrm{hrs}$.	1026	$\lambda=7 \%$	${ }^{1} \mathrm{CBO}$	3036D	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25 \pm 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C B}=15 \mathrm{~V} \end{aligned}$	--	10	--	20	$n \mathrm{~A}$
				${ }^{h_{F E}}$	3076	$\begin{aligned} & \mathrm{T}_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C E}=1 \mathrm{~V} \\ & \mathrm{IC}=3 \mathrm{~mA} \\ & \hline \end{aligned}$	30	150	24	180	

TABLEIV
100\% RELIABILITY ASSURANCE TEST
the cumulative rejects of tables iv and v shall not exceed $10 \%$ of the lot

Test	$\begin{aligned} & \text { MIL.STD } \\ & 750 \\ & \text { Reference } \end{aligned}$	INITIAL AND ENDPOINT CHARACTERISTICS TESTS				
		Characteristic Test	RCA. 40296		$\begin{aligned} & \hline \text { MIL.STD } \\ & 750 \\ & \text { Reference } \end{aligned}$	Test   Conditions
			Initial Value	Endpoint Value		
POWER BURN-IN:   Common-Base Circuit $\begin{aligned} & \mathrm{T}_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & V_{C B}=12.5 \pm 0.5 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{T}}=200 \mathrm{~mW} \end{aligned}$   Duration $=340$ hours	1026	AICBO	$10 \text { max. }$	$\begin{gathered} \Delta= \pm 5 \\ \mathrm{nA} \end{gathered}$	$\begin{gathered} 3036 \\ \text { Bias Condi- } \\ \text { tion D } \end{gathered}$	$\begin{aligned} & \top_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & V_{C B}=15 \mathrm{~V} \end{aligned}$
		$\Delta_{\text {hfe }}$	$\begin{gathered} 30 \text { min. } \\ 150 \text { max. } \end{gathered}$	$\Delta= \pm 15 \%$	3076	$\begin{aligned} & \mathrm{T}_{A}=25.3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C E}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \end{aligned}$

TABLE V
100\% PERFORMANCE REQUIREMENTS TESTS
THE CUMULATIVE REJECTS OF TABLES IV AND V SHALL NOT EXCEED $10 \%$ OF THELOT

Test	Symbol	$\begin{aligned} & \text { MIL.STD } \\ & 750 \\ & \text { Reference } \end{aligned}$	TEST CONDITIONS							LIMITS$\begin{gathered} \text { RCA } \\ 40296 \end{gathered}$		Units
			Ambient   Temperature $T_{A}$	Fre. quen. cy $f$	DC Collectorto. Base Voltage $V_{C B}$	DC Collector-to-Emitter Voltage VCE	DC Col- lector Current IC	DC Emit- ter Current IE	$\begin{gathered} D C \\ \text { Base } \\ \text { Current } \\ \text { iB } \end{gathered}$			
			${ }^{\circ} \mathrm{C}$	MHz	V	V	mA	mA	mA	Min.	Max.	
Collector-Cutoff Current	${ }^{1} \mathrm{CBO}$	$\begin{gathered} 3036 \\ \text { Bias Condi- } \\ \text { tion D } \end{gathered}$	$25 \cdot 3$	-	15			0		--	10	$n A$
Collecicr.Cutaff Current	${ }^{\prime} \mathrm{CES}$	$\begin{gathered} 3041 \\ \text { Bias Condi- } \\ \text { tion C } \end{gathered}$	25-3	-		16				--	100	nA
Collector-to.Base Breakdown Voltage	$\mathrm{BV}_{\text {CBO }}$	$\begin{gathered} 3001 \\ \text { Test Condi- } \\ \text { tion D } \end{gathered}$	$25 \cdot 3$	--			0.001	0		30	--	V
Collectot-to-Emitter Breakdown Voltage	$\begin{gathered} B V_{C E O} \\ \text { (sus) } \end{gathered}$	$\begin{gathered} 3011 \\ \text { Test Condi- } \\ \text { tion } D \end{gathered}$	$25 \cdot 3$	$\sim$			$3 *$		0	15	--	V
Emitter-to-Base Breakdown Voltage	BVEBO	$\begin{gathered} 3026 \\ \text { Test Condi- } \\ \text { tion D } \end{gathered}$	$25 \cdot 3$	--			0	0.001		2.5	--	V
Base-to.Emitter Voltage	$\mathrm{V}_{\text {BE }}$	$\begin{gathered} 3066 \\ \text { Test Condi- } \\ \text { tion } A \end{gathered}$	$25 \cdot 3$	--			10		1	--	1	V
Collector-to-Emitter Voltage	${ }^{\text {V CE }}$	3071	25-3	--			10		1	--	0.4	V
Static Forward Current-Transfer Ratio	$h_{\text {FE }}$	3076	$25 \cdot 3$	--		1	3			30	150	
Device Noise   Figurea: Generator Resistance ( $\mathrm{R}_{\mathrm{G}}$ ) $=50$ Ohms (See Fig. 3 for Test Circuit)	NF	--	25-3	450		6	1.5			--	3.9	dB
Visual Examination (External) Under 20-Power Magnification		Examine leads, header, and shell for visual defects.										

* Puise Test
a Lead No. 4 (Case) Grounded


## DIMENSIONAL OUTLINE

JEDEC TO-72


TERMINAL CONNECTIONS
Lead 1 - Emitter
Lead 2 - Base
Lead 3-Collector
Lead 4 - Connected to case

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX	MIN.	MAX.	
A	0.170	0.210	4.32	5.33	
$\bigcirc$	0.016	0.021	0.406	0.533	2
$\phi \mathrm{b}_{2}$	0.016	0.019	0.406	0.483	2
¢D	0.209	0.230	5.31	5.84	
$\phi_{1}$	0.178	0.195	4.52	4.95	
e	0.100 T.P.		2.54 T.P.		4
el	0.050 T.P.		1.27 T.P.		4
h		0.030		0.762	
;	0.036	0.046	0.914	1.17	
k	0.028	0.048	0.711	1.22	3
1	0.500		12.70		2
$1 /$		0.050		1.27	2
$\mathrm{I}_{2}$	0.250		6.35		2
$\alpha$		P.		P.	4. 6

Note 1: (Four leads). Maximum number leads omitted in this outline, "none" (0). The number and position of leads actually present are indicated in the product registration. Outline designation determined by the location and minimum angular or linear spacing of any two adjacent leads.
Note 2: (All leads) $\phi \mathrm{b}_{2}$ applies between $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$. $\phi \mathrm{b}$ applies between $\mathrm{I}_{2}$ and 0.50 in . ( 12.70 mm ) from seating plane. Diameter is uncontrolled in $\mathrm{I}_{1}$ and beyond 0.50 in . ( 12.70 mm ) from seating plane.
Note 3: Measured from maximum diameter of the product.
Note 4: Leads having maximum diameter 0.019 in . ( 0.484 mm ) measured in gaging plane 0.054 in . $(1.37 \mathrm{~mm})+0.001 \mathrm{in}$. $(0.025$ $\mathrm{mm})-0.000(0.000 \mathrm{~mm})$ below the seating plane of the product shall be within $0.007 \mathrm{in} .(0.178 \mathrm{~mm})$ of their true position relative to a maximum width tab.
Note 5: The product may be measured by direct methods or by gage.
Note 6: Tab centerline.


Solid State Division

RF Power Transistors
40305 40306 40307

RCA-40305, 40306, and 40307 are high-reliability variants of RCA-2N3553, 2N3375, and 2N3632 epitaxial silicon n-p-n overlay transistors. They are intended for Class- $A^{A}$, -B , or -C amplifier, frequency multiplier, or oscillator operation.

These devices are subjected to special preconditioning tests for selection in high-reliability, large-signal, high-power, VHF-UHF applications in Space, Military, and Industrial communications equipment.


## FEATURES

- High-Reliability Assured By Seven (7) Preconditioning Steps
- Data Recorded Before and After "Power-Age Test"" and Held to Critical Delta Criteria
- 100 Per-Cent Tested to Assure Freedom from Second Breakdown for Operation in Class-A Applications
- High Power Output, POUT, Unneutralized Class-C Amplifier -

At $400 \mathrm{Mc}, \quad 3 \mathrm{wmin}$. (40306)
$175 \mathrm{Mc}\left\{\begin{array}{l}13.5 \mathrm{w} \min .(40307) \\ 2.5 \mathrm{w} \min .\end{array}(40305)\right.$
$100 \mathrm{Mc}, \quad 7.5 \mathrm{w}$ min. (40306)

RF SERVICE
Maximum Ratings, Absolute-Maximum Values
$\begin{array}{llllllll}40305 & 40306 & 40307 & 40305 \quad 40306 & 40307\end{array}$


[^26]ELECTRICAL CHARACTERISTICS
Case Temperature $=25^{\circ} \mathrm{C}$

Characteristic	Symbol	TEST CONDITIONS						Limits						Units
		$\xrightarrow[\substack{\text { DC } \\ \text { Collector } \\ \text { Volts }}]{\text { V }}$		DC Base Volts VBE	$\underset{\substack{\text { CCurrent } \\ \text { (Milliamperes) }}}{\substack{\text { DC } \\ \text { ( }}}$			40305		40306		40307		
		VCB	VCE		IE	$I_{B}$	${ }^{1} \mathrm{C}$	Min.	Max.	Min.	Max.	Min.	Max.	
Collector-Cutoff Current	$\mathrm{I}_{\text {CEO }}$		30			0		-	0.1	-	0.1	-	0.25	$\mu \mathrm{amp}$
Collector-to-Base Breakdown Voltage	$\mathrm{BV}_{\mathrm{CBO}}$				0 0 0		0.1 0.3 0.5	-	-	65 - -	-	-	-	volts
Emitter-to-Base Breakdown Voltage	$\mathrm{BV}_{\text {EBO }}$				$\begin{array}{r} 0.1 \\ 0.25 \end{array}$		0 0	4	-	4	-	$\overline{4}$	-	volts
Collector-to-Emitter Breakdown Voltage	$\mathrm{BV}_{\text {CEO }}$					0	0 to $200^{\circ}$	$40^{\text {b }}$	-	$40^{\text {b }}$	-	$40^{\text {b }}$	-	volts
	$\mathrm{BV}_{\text {CEX }}$			-1.5			0 to $200^{\circ}$	$65^{\text {b }}$	-	$65^{\text {b }}$	-	$65{ }^{\text {b }}$	-	volts
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\mathrm{CE}}{ }^{\text {(sat) }}$					$\begin{array}{r} 100 \\ 50 \end{array}$	500 250	-	$\overline{1}$	-	1	-	1	volt
DC Forward-Current Transfer Ratio	${ }^{\text {h }}$ FE		5				150 300	10	-	10	-	10	-	
Collector-to-Base Capacitance Measured at 1 Mc	$\mathrm{C}_{\text {ob }}$	30			0			-	10	-	10	-	20	pf
```RF Power Output Amplifier, Unneutralized At 100 Mc 175 Mc 175 Mc 400 Mc```	$\mathrm{P}_{\text {OUT }}$		28 28 28 28					2.5 - -	-	$\begin{gathered} 7.5^{c} \\ - \\ 3^{f} \\ \hline \end{gathered}$	-	13.5 ${ }^{-}$	-	watts

${ }^{\text {a }}$ Pulsed through an inductor (25 mh); duty factor $=50 \%$.
${ }^{\mathrm{b}}$ Measured at a current where the breakdown voltage is a minimum.
${ }^{c}$ For $\mathrm{P}_{\mathrm{IN}}=1.0 \mathrm{w}$; minimum efficiency $=65 \%$.
${ }^{d}$ For $P_{\text {IN }}=1 / 4 w$; minimum efficiency $=50 \%$.
${ }^{\text {e }}$ For $\mathrm{P}_{\mathrm{IN}}=3.5 \mathrm{w}$; minimum efficiency $=70 \%$.
${ }^{f}$ For $\mathrm{P}_{\mathrm{IN}}=1.0 \mathrm{w}$; minimum efficiency $=40 \%$.

RELIABILITY TESTING

RCA types 40305,40306 , and 40307 are electrically lower collector-cutoff current. I ${ }_{\text {CEO }}$ for the 40305 and similar to RCA-2N3553, 2N3375, and 2N3632 respec- 40306 is 100 nanoamperes maximum and $\mathrm{I}_{\mathrm{CEO}}$ for the tively; but they differ in that they have substantially 40307 is 250 nanoamperes maximum.

Preconditioning (100 Per-Cent Testing of Each Transistor)

1. Helium Leak, $1 \times 10^{-8} \mathrm{cc} / \mathrm{sec}$. max.
2. Temperature Cycling-Method 102A of MIL-STD-202, 3 cycles, $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
3. Methanol Bomb, 70 psig, 16 hours minimum
4. Bake, 72 hours minimum, $+200^{\circ} \mathrm{C}$
5. Power Age, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}, \mathrm{t}=168$ hours, free air
$P_{D}(40305)=1$ watt
$P_{D}(40306,40307)=2.6$ watts
*9. Record $\mathrm{I}_{\mathrm{CEO}}, \mathrm{h}_{\mathrm{FE}}, \mathrm{V}_{\mathrm{CE}}$ (sat)
6. X-Ray Inspection, RCA Spec. 1750326
7. Record Subgroups 2 and 3 of Group A Tests.

* Delta criteria after 168 hours Power Age

5. Constant Acceleration-Method 2006 of MIL-STD-750, $10,000 \mathrm{G}, \mathrm{Y}_{1}$ axis
6. Serialization
7. Record $\mathrm{I}_{\mathrm{CEO}}, \mathrm{h}_{\mathrm{FE}}, \mathrm{V}_{\mathrm{CE}}{ }^{\text {(sat) }}$
$\mathrm{I}_{\mathrm{CEO}}$ $\begin{cases}40305 & +100 \% \text { or +10 nanoamperes } \\ 40306 & \begin{array}{l}\text { whichever is greater }\end{array} \\ \mathrm{I}_{\mathrm{CEO}} & 40307 \\ & \begin{array}{l}+100 \% \text { or }+25 \text { nanoamperes } \\ \text { whichever is greater }\end{array} \\ \mathrm{h}_{\mathrm{FE}} & \pm 30 \% \\ \mathrm{~V}_{\mathrm{CE}} \text { (sat) } & \pm 0.1 \mathrm{~V}\end{cases}$

Group A Tests

TESTMETHODPERMIL-STD. 750	$\begin{gathered} \text { EXAMINATION } \\ \text { OR } \\ \text { TEST } \end{gathered}$	SYMBOL	CONDITIONS	LTPD	LImits						UNITS
					40305		40306		40307		
					Min.	Max.	Min.	Max.	Min.	Max.	
2071	Subgroup 1 Visual and Mechanical Examination	-	-	10	-	-	-	-	-	-	-
3041D	Subgroup 2 Collector-To-Emitter Cutoff Current	${ }^{\mathrm{I}} \mathrm{CEO}$	$\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	5	-	0.1	-	0.1	-	0.25	$\mu \mathrm{mmp}$
3001D	Collector-To-Base Breakdown Voltage	$\mathrm{BV}_{\text {CBO }}$	$\mathrm{I}_{\mathrm{C}}=300 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0$	-	65	-	-	-	-	-	volts
			$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0$	-	-	-	65	-	-	-	volts
			$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{a}, \mathrm{I}_{\mathrm{E}}=0$	-	-	-	-	-	65	-	volts
3026D	Emitter-To-Base Breakdown Voltage	$\mathrm{BV}_{\text {EBO }}$	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{a}, \mathrm{I}_{\mathrm{C}}=0$	-	4	-	4	-	-	-	volts
			$\mathrm{I}_{\mathrm{E}}=250 \mu \mathrm{a}, \mathrm{IC}=0$	-	-	-	-	-	4	-	volts
3011D	Collector-To-Emitter Breakdown Voltage	$\mathrm{BV}_{\text {CEO }}$	$\mathrm{I}_{\mathrm{C}}=0$ to $200 \mathrm{ma}^{\text {a }}, \mathrm{I}_{\mathrm{B}}=0$	-	$40^{\text {b }}$	-	$40^{\text {b }}$	-	$40^{\text {b }}$	-	volts
3011A	Collector-To-Emitter Breakdown Voltage	${ }^{B V_{C E X}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{I}}=0 \text { to } 200 \mathrm{ma}^{\mathrm{a}}, \\ & \mathrm{~V}_{\mathrm{BE}}=-1.5 \mathrm{~V} \end{aligned}$	-	$65^{\text {b }}$	-	$65^{\text {b }}$	-	$65^{\text {b }}$	-	volts
3071	Collector-To-Emitter Saturation Voltage	$\mathrm{V}_{\mathrm{CE}}{ }^{\text {(sat) }}$	$\mathrm{I}_{\mathrm{C}}=250 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{ma}$	-	-	1	-	-	-	-	volts
			$\mathrm{I}_{\mathrm{C}}=500 \mathrm{ma}, \mathrm{IB}=100 \mathrm{ma}$	-	-	-	-	1	-	1	volts
3076	Forward Current Transfer Ratio	${ }^{\text {h }}$ FE	$\mathrm{I}_{\mathrm{C}}=150 \mathrm{ma}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	-	10	-	10	-	-	-	
			$\mathrm{I}_{\mathrm{C}}=300 \mathrm{ma}, \mathrm{v}_{\mathrm{CE}}=5 \mathrm{~V}$	-	-	-	-	-	10	-	
3236	Subgroup 3 Open Circuit Output Capacitance	$\mathrm{C}_{\text {ob }}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{Mc}, \mathrm{v}_{\mathrm{CB}}=30 \mathrm{v}, \\ & \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$	5	-	10	-	10	-	20	pf
	R. F. Power Output	$\mathrm{P}_{\text {OUT }}$	$\mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}$, $\mathrm{P}_{\text {IN }}=0.25$ watt, $\mathrm{f}=175 \mathrm{Mc}$, Min. Effic. $=50 \%$	-	2.5	-	-	-	-	-	watts
			$\mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}$, ${ }^{\mathrm{P}} \mathrm{IN}=1$ watt, $\mathrm{f}=100 \mathrm{Mc}$, Min. Effic. $=65 \%$	-	-	-	7.5	-	-	-	watts
			$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}, \\ & \mathrm{P} \mathrm{IN}=3.5 \text { watts, } \\ & \mathrm{f}=175 \mathrm{Mc}, \\ & \mathrm{Min} . \text { Effic. }=70 \% \end{aligned}$	-	-	-	-	-	13.5	-	watts
			$\begin{aligned} & \mathrm{V} C E=28 \mathrm{~V}, \\ & \mathrm{P} \text { 部 } 1 \mathrm{watt}, \\ & \mathrm{f}=400 \mathrm{Mc}, \\ & \mathrm{Min} . \text { Effic. }=40 \% \end{aligned}$	-	-	-	3	-	-	-	watts
3036D	Subgroup 4 Collector Cutoff Current	${ }^{\text {I }}$ CBO	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$	15	-	100	-	100	-	250	$\mu \mathrm{mmp}$
3076	Forward Current Transfer Ratio	${ }^{\mathrm{h}} \mathrm{FE}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{C}}=150 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	-	-	200	-	200	-	-	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{C}}=300 \mathrm{ma}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	-	-	-	-	-	-	200	

[^27]
DIMENSIONAL OUTLINES

FOR TYPES 40306, 40307
JEDEC TO.60

Dimensions in Inches
NOTE 1: THE PIN SPACING PERMITS INSERTION IN ANY SOCKET HAVING A PIN-CIRCLE DIAMETER OF O.200" AND CONTACTS WHICH WILL ACCOMMODATE PINS HAVING A DIAMETER OF 0.035" MIN., 0.045* MAX.
NOTE 2: THE TORQUE APPLIED TO A 10-32 HEX NUT ASSEMBLED ON THE THREAD DURING INSTALLATION SHOULD NOT EXCEED 12 INCH-POUNDS.
NOTE 3: THIS DEVICE MAY BE OPERATED IN ANY POSITION.

```
FOR TYPE 40305
JEDEC T0.39
```


Dimensions in Inches

TERMINAL CONNECTIONS

Pin or Lead No. 1 - Emitter
Pin or Lead No. 2 - Base
Pin or Lead No. 3 - Collector (For 40306, 40307)
Collector, Case (For 40305)

40414

High-Reliability Silicon N-P-N Epitaxial Planar Transistor

For UHF Applications in Industrial and Military Equipment

Features:

■ High gain-bandwidth product: $\mathrm{f}_{\mathrm{T}}=\mathbf{1 0 0 0} \mathbf{~ M H z ~ m i n}$.

- High converter (450 -to- $\mathbf{3 0} \mathrm{MHz}$) gain: $\mathrm{G}_{\mathrm{c}}=\mathbf{1 5} \mathrm{dB}$ typ. for circuit bandwidth of approximately 2 MHz
- High power gain as neutralized amplifier: GPE $=\mathbf{1 2 . 5 ~ d B ~ m i n . ~ a t ~} 450 \mathrm{MHz}$ for circuit bandwidth of $\mathbf{2 0} \mathbf{~ M H z}$
- High power output as uhf oscillator: $\mathrm{POE}=\left\{\begin{array}{l}30 \mathrm{~mW} \min ., 40 \mathrm{~mW} \text { typ. at } 500 \mathrm{MHz} \\ 20 \mathrm{~mW} \text { typ., at } 1 \mathrm{GHz}\end{array}\right.$

RCA-40414 is a double-diffused epitaxial planar transistor of the silicon n-p-n type. It is extremely useful in low-noiseamplifier, oscillator, and converter applications at frequencies up to 500 MHz in the common-emitter configuration, and up to 1200 MHz in the common-base configuration.
The 40414 is electrically and mechanically like the RCA2N2857, but each shipment of the RCA-40414 is accompanied by a certified summary of the results of the Group A Electrical Tests and the Group B Environmental Tests shown in Tables I and II, respectively. The Test Data Summary and Certification shown in the Specimen Copy on page 5 are the results of the acceptance tests for the production lot from which the shipment is made.

- Low device noise figure:

$$
\mathrm{NF}=\left\{\begin{array}{l}
4.5 \mathrm{~dB} \text { max. as } 450 \mathrm{MHz} \text { amplifier } \\
7.5 \mathrm{~dB} \text { typ., as } 450-\text { to }-30 \mathrm{MHz} \text { converter }
\end{array}\right.
$$

- Low collector-to-base time constant: $\mathrm{rb}^{\prime} \mathrm{C}_{\mathrm{c}}=7 \mathrm{ps}$ typ.
- Low collector-to- base feedback capacitance:

$$
\mathrm{C}_{\mathbf{c b}}=0.6 \mathrm{pF} \text { typ. }
$$

RCA-40414 utilizes a hermetically sealed 4-lead JEDEC TO-72 package. All active elements of the transistor are insulated from the case, which may be grounded by means of the fourth lead in applications requiring shielding of the device.
The curves of Typical Characteristics shown in the Technical Bulletin for RCA-2N2857 also apply for RCA-40414.

Maximum Ratings, Absolute-Maximum Values:

[^28]TABLE I - GROUP A TESTS

$\begin{aligned} & \text { Sub- } \\ & \text { group } \end{aligned}$	Lot Toler- ance Per Cent Defect- ive	Characteristic Test	Symbol	MIL-STD 750 Reference Test Method	TEST CONDITIONS						LIMITS RCA 40414		Units
					Am. bient Tem-perature T_{A}	$\begin{gathered} \text { Fre- } \\ \text { quen- } \\ \text { cy } \\ \text { f } \end{gathered}$	DC Collector- to-Base Voltage $V_{C B}$	DC Collector-toEmitter Voltage $V_{C E}$	DC Collector Current ${ }^{\prime} \mathrm{C}$	DC Emitter Current I_{E}			
					${ }^{\circ} \mathrm{C}$	M Hz	V	V	mA	mA	Min.	Max.	
1	10	Visual and Mechanical Examination	*-	2071	--	--	--	-*	--	\cdots	-.	\cdots	
2	5	Collector- Cutoff Current	${ }^{\text {I CBO }}$	3036 Bias Condition D	25 ± 3	--	15			0	--	10	nA
		Collector-to-Base Breakdown Voltage	BVCbO	3001 Test Condi- tion D	25 ± 3	--			0.001	0	30	--	V
		Collector-to-Emitter Breakdown Voltage	$\left\lvert\, \begin{gathered} \mathrm{BV}_{\text {CEO }} \\ \text { (sus) } \end{gathered}\right.$	3011 Test Condition D	$25 \div 3$	--			3*	$18=0$	15	-	V
		Emitter-to-Base Breakdown Voltage	BVEBO	3026 Test Condi- tion D	25 ± 3	-.			0	-0.01	2.5	-	V
		Static Forward Current-Transfet Ratio	${ }^{\mathrm{h}} \mathrm{FE}$	3076	$25: 3$	--		1	3		30	150	
3	15	Small-Signal Powet Gain ${ }^{\wedge}$	Gpe		25:3	450		6	1.5		12.5	19	dB
		Device Noise Figureo: Generator Resistance $\left(R_{G}\right)=50 \Omega$	NF		$25 \cdot 3$	450		6	1.5		-	4.5	dB
		Measured Noise Figure: Generator Resistance $\left.\left(R_{G}\right)=503\right)_{1}^{4}$	NF		25:3	450		6	1.5		-	5.0	dB
		Collector-to-Base Time Constant ${ }^{4}$	${ }^{\prime} \mathrm{b}^{\prime} \mathrm{C}_{\mathrm{c}}$		$25 \cdot 3$	31.9	6		2		4	15	ps
		Oscillator Power Output (See Fig. 4 for Test Circuit)	P_{0}		$25: 3$	$\bigcirc 500$	10			-12	30	--	mW
		Collector-to-Base Feedback Capacitance ${ }^{\bullet}$	C_{cb}		$25 \div 3$	$\begin{aligned} & \therefore 0.1 \\ & -1 \end{aligned}$	10			0	-.	1	pF
4	15	Static Forward Current Transfer Ratio (Low Temperature)	$h^{\text {hFE }}$	3076	-55-3	--		1	3		10	-	
		Collector-Cutoff Curtent (High Temperature)	ICBO	```3036 Bias Condi- tion D```	150	--	15			0	--	1	$\mu \mathrm{A}$
		Small-Signal, Short Circuit Forward Cur-rent-Transfer Ratio ${ }^{\Delta}$	$\mathrm{hfe}_{\text {fe }}$	3206	25 ± 3	0.001		6	2		50	220	
		Magnitude of SmallSignal, Short-Circuit Forward CurrentTransfer Ratio	$\left\|h_{\text {fe }}\right\|$	3206	$25+3$	100		6	5		10	19	
* Pulse Test ${ }^{4}$ Lead No. 4 (Case) Grounded - Three-terminal measurement with emitter and case leads guarded.			- Device noise figure is approximately 0.5 dB lower than the measured noise figure. The difference is due to the insertion loss at the input of the test amplifier and the contribution of the following stages in the test setup.										

TABLE II - GROUP B TESTS

Subgroup	Test	$\begin{aligned} & \text { MIL-STD } \\ & 750 \\ & \text { Reference } \end{aligned}$	Lot Tolerance PerCent Defective $\%$	INITIAL AND ENDPOINT CHARACTERISTICS TESTS							Units
				Charac. teristic Test	$\begin{gathered} \text { MIL-STD } \\ 750 \\ \text { Reference } \end{gathered}$	Test Conditions	RCA-40414				
							Initial Values		End Point Values		
							Min.	Max.	Min.	Max.	
1	PHYSICAL DIMENSIONS (See Dimensional Outline Drawing on page 6)	2066	20	-*	-	-	-	\cdots	-	-	
2	SOLDERABILITY Without Aging	2026	20	${ }^{1} \mathrm{CBO}$	3036D	$\begin{aligned} & T_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & V_{C B}=15 \mathrm{~V} \end{aligned}$	-	10	--	30	nA
	TEMPERATURECYCLING TEST (Condition C)	1051									
	THERMAL-SHOCK TEST: $\begin{aligned} & T_{\min }=0_{-0}^{+5}{ }^{\circ} \mathrm{C} \\ & T_{\max }=100_{-5}^{+0}{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 1056 \\ \text { Test Condi- } \\ \text { tion A } \end{gathered}$		${ }^{h_{F E}}$	3076	$\begin{aligned} & T_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & V_{C E}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \end{aligned}$	30	150	18	--	
	MOISTURE-RESISTANCE TEST	1021									
3	SHOCK TEST: NON-OPERATING 1500 G 's, 0.5 ms 5 blows each in X_{1}, Y_{1}, Y_{2} and Z_{1} planes	2016	20	'cBo	3036 D	$\begin{aligned} & T_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & V_{C B}=15 \mathrm{~V} \end{aligned}$	--	10	--	30	nA
	VIBRATION FATIGUE	2046									
	$60 \pm 20 \mathrm{~Hz}, 20 \mathrm{G} \cdot \mathrm{~s}$	2046		${ }^{\text {hFE }}$	3076	$\begin{aligned} & \mathrm{T}_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V} \\ & \mathrm{I}^{\mathrm{C}}=3 \mathrm{~mA} \end{aligned}$	30	150	18	--	
	VIBRATION VARIABLEFREQUENCY TEST	2056									
	CONSTANT-ACCELERATION TEST: 20,000 G's	2006									
4	TERMINAL STRENGTH TEST	$\begin{gathered} 2036 \\ \text { Test Condi- } \\ \text { tion E } \end{gathered}$	20	-	--	-	-	\cdots	-*	-	
				..	--	--	--	-	\cdots	-	
5	SALT-ATMOSPHERE TEST	1041	20	ICBo	3036D	$\begin{aligned} & T_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & V_{C B}=15 \mathrm{~V} \end{aligned}$	-	10	--	30	nA
				$h_{\text {FE }}$	3076	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25 \pm 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C E}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \end{aligned}$	30	150	18	-	
6	HIGH-TEMPERATURE LIFE TEST (NONOPERATING):$\begin{aligned} & T_{A}=200 \pm 10^{\circ} \mathrm{C} \\ & \text { Duration }=1000 \mathrm{hrs} . \end{aligned}$	1031	$\lambda=10 \%$	ICBO	3036D	$\begin{aligned} & T_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & V_{C B}=15 \mathrm{~V} \end{aligned}$	-	10	-	30	nA
				$h_{\text {FE }}$	3076	$\begin{aligned} & \mathrm{T}_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \end{aligned}$	30	150	18	\cdots	
7	STEADY-STATE OPERA- TION LIFE TEST: Common-Base Circuit $\begin{aligned} & T_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C B}=12.5 \pm 0.5 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{T}}=200 \mathrm{~mW} \\ & \text { Duration }=1000 \mathrm{hrs} . \end{aligned}$	1026	$\lambda=10 \%$	'c80	3036D	$\begin{aligned} & T_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & V_{C B}=15 \mathrm{~V} \end{aligned}$	\cdots	10	--	30	nA
				$h_{\text {he }}$	3076	$\begin{aligned} & \mathrm{T}_{A}=25 \pm 3^{\circ} \mathrm{C} \\ & \mathrm{~V}_{C E}=1 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA} \end{aligned}$	30	150	18	--	

DIMENSIONAL OUTLINE

JEDEC TO-72

92CS-17444

TERMINAL CONNECTIONS

Lead 1 - Emitter
Lead 2 - Base
Lead 3 - Collector
Lead 4. - Connected to case

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	max.	MIN.	MAX	
A	0.170	0.210	4.32	5.33	
¢	0.016	0.021	0.406	0.533	2
¢ b_{2}	0.016	0.019	0.406	0.483	2
¢D	0.209	0.230	5.31	5.84	
$\phi \mathrm{D}_{1}$	0.178	0.195	4.52	4.95	
e	0.100 T.P.		2.54 T.P.		4
e1	0.050 T.P.		1.27 T.P.		4
h		0.030		0.762	
i	0.036	0.046	0.914	1.17	
k	0.028	0.048	0.711	1.22	3
1	0.500		12.70		2
11		0.050		1.27	2
I_{2}	0.250		6.35		2
α	45°	P.	45		4. 6

Note 1: (Four leads). Maximum number leads omitted in this outline, "none" (0). The number and position of leads actually present are indicated in the product registration. Outline designation determined by the location and minimum angular or linear spacing of any two adjacent leads.
Note 2: (All leads) $\phi \mathrm{b}_{2}$ applies between I_{1} and $\mathrm{I}_{2} . \phi \mathrm{b}$ applies between I_{2} and 0.50 in . (12.70 mm) from seating plane. Diameter is uncontrolled in I_{1} and beyond 0.50 in . (12.70 mm) from seating plane.
Note 3: Measured from maximum diameter of the product.
Note 4: Leads having maximum diameter $0.019 \mathrm{in} .(0.484 \mathrm{~mm})$ measured in gaging plane $0.054 \mathrm{in} .(1.37 \mathrm{~mm})+0.001 \mathrm{in} .(0.025$ $\mathrm{mm})-0.000(0.000 \mathrm{~mm})$ below the seating plane of the product shall be within $0.007 \mathrm{in} .(0.178 \mathrm{~mm})$ of their true position relative to a maximum width tab.
Note 5: The product may be measured by direct methods or by gage.
Note 6: Tab centerline.

凡[B/

RF Power Transistors

Solid State

 Division
HIGH-RELIABILITY TRANSISTOR

RCA-40577* is a high-reliability variant of the RCA-2N3118, a triple-diffused transistor. It is especially processed for high reliability. It is intended for Class A and C amplifier, frequency multiplier or oscillator operation in high-reliability, large-signal, highpower VHF applications in Space, Military, and Industrial communications equipment.

High reliability is assured by eight preconditioning steps, including drift temperature measurements after the High Temperature Reverse Bias and Power Age tests. The 40577 also features complete qualification and lot acceptance testing.

High-Gain Device for Class A or C Operation in VHF Circuits

- 8 Preconditioning Steps

Complete Qualification and Lot Acceptance Testing

- 1.0 Watt Output Min. at 50 MHz
- 0.4 Watt Output Min. at 150 MHz

*Formerly RCA-Dev. No. TA7079

RATINGS

Maximum Ratings, Absolute-Maximum Values:

COLLECTOR-TO-EMITTER VOLTAGE:	
With $\mathrm{V}_{\mathrm{BE}}=-1.5$ volts	$\mathrm{V}_{\text {CEV }} 85 \mathrm{~V}$
With base open	$V_{\text {CEO }} 60 \mathrm{~V}$
EMITTER-TO-BASE VOLTAGE	$\mathrm{V}_{\text {EBO }} 4 \mathrm{~V}$
COLLECTOR CURRENT	$\begin{array}{lll}\text { I } & 0.5 & \text { A }\end{array}$
TRANSISTOR DISSIPATION	
At case temperatures up to $25^{\circ} \mathrm{C}$.	3 W
At free-air temperatures up to $25^{\circ} \mathrm{C}$	0.5 W
At case temperatures above $25^{\circ} \mathrm{C}$.	. See Fig. 4
TEMPERATURE RANGE:	
Storage \& Operating (Junction)	-65 to $200{ }^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During soldering):	
At distances $\geq 1 / 32 \mathrm{in}$. from insulating wafer for 10 s max. . . .	$230{ }^{\circ} \mathrm{C}$

TYPICAL POWER OUTPUT vs. POWER INPUT

Fig. 1

ELECTRICAL CHARACTERISTICS
Case Temperature $=25^{\circ} \mathrm{C}$
Except As Indicated

Characteristics	Symbols	TEST CONDITIONS							LIMITS		Units
		Frequency (MHz)	DC Collector-to-Base Voltage (volts)	DC Collector-to-Emitter Voltage (volts)		$\begin{gathered} \text { DC } \\ \text { Current } \\ \text { (Milliamperes) } \end{gathered}$					
		f	VCB	VCE	$\mathrm{V}_{\text {BE }}$	1 C	IE	I_{B}	Min.	Max.	
Collector-Cutoff $25^{\circ} \mathrm{C}^{\text {a }}$ Current $150^{\circ} \mathrm{C}^{\mathrm{a}}$	$\mathrm{I}_{\mathrm{CBO}}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$				0 0			10 5	nA $\mu \mathrm{A}$
Emitter-to-Base Breakdown Voltage	BVEBO					0	0.1		4		volts
Collector-to-Emitter Breakdown Voltage (Sustaining)	$\mathrm{BV}_{\mathrm{CEO}^{(s u s)}}$					${ }_{\text {pulsed }} \mathrm{b}$		0	60		volts
Reverse Collector-to-Emitter Breakdown Voltage	BVCEX				-1.5	0.1			85		volts
Output Capacitance	$\mathrm{C}_{\text {ob }}$	1	28			0				6	pF
$\mathrm{r}_{\mathrm{bb}}{ }^{\prime} \mathrm{C}_{\mathrm{b}}{ }^{\prime} \mathrm{c}$ Product	${ }^{\text {r }}{ }^{\prime}{ }^{\prime} \mathrm{C}_{\mathrm{b}}{ }^{\prime} \mathrm{c}$	50		28		25				60	ps
DC Forward-Current Transfer Ratio ${ }^{\text {b }}$	${ }^{\mathrm{h}} \mathrm{FE}$			5		100			50	275	
Small-Signal Forward-Current Transfer Ratio	$\mathrm{h}_{\text {fe }}$	50		28		25			5		
Real Part of Short-Circuit Input Impedance	$\mathrm{h}_{\text {ie }}$ (real)	50		28		25			25	75	ohms
Real Part of Short-Circuit Output Impedance	$1 / \mathrm{Y}_{22}$ (real)	50		28		25			500	1000	ohms
Output Power Class-C Service Pin $=0.1$ watt (with heat sink)	$\mathrm{P}_{\text {OUT }}$	$\begin{aligned} & 50 \\ & 150 \end{aligned}$		$\begin{aligned} & 28 \\ & 28 \end{aligned}$					$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$		watt watt
Power Gain Class-A Service $P_{\text {out }}=0.2$ watt (with heat sink)	PG	50		28		25			18		dB

${ }^{a_{T}}{ }_{\mathrm{FA}}=$ free air temperature.
${ }^{6}$ Pulse duration $300 \mu \mathrm{~s}$; duty factor, less than 1.8%.
typical large-signal operation, Class_C service

150 MH :

Fig. 2

DISSIPATION DERATING CURVE

Fig. 3

RELIABILITY SPECIFICATIONS

In addition to Preconditioning and Group A tests, a Qualification Approval test series (Group B tests) is
performed on each lot.

Preconditioning (100 Per Cent Testing of Each Transistor)

1. Serialization
2. Record $\mathrm{I}_{\mathrm{CBO}}, \mathrm{h}_{\mathrm{FE}}$
3. Temperature Cycling-Method 107 B , Cond. C of MIL-STD-202, 5 cycles, $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
4. Bake, 72 hours minimum, $200^{\circ} \mathrm{C}$
5. Constant Acceleration-Method 2006 of MIL-STD-750, $10,000 \mathrm{~g}, \mathrm{Y}_{1}$ and Y_{2} axes
6. X-Ray
7. Record $\mathrm{I}_{\mathrm{CBO}}, \mathrm{h}_{\mathrm{FE}}$
8. Reverse Bias Age, $\mathrm{T}_{\mathrm{A}}=175^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}$, $\mathrm{t}=96$ hours
${ }^{d} 9$. Record $\mathrm{I}_{\mathrm{CBO}}, \mathrm{h}_{\mathrm{FE}}$.
9. Power Age, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}, \mathrm{t}=340$ hours, $\mathrm{P}_{\mathrm{T}}=1 \mathrm{~W}$, free air
${ }^{d}{ }_{11}$. Record $\mathrm{I}_{\mathrm{CBO}}, \mathrm{h}_{\mathrm{FE}}$ at 340 hours
10. Helium Leak, $1 \times 10^{-7} \mathrm{cc} / \mathrm{sec}$. max.
11. Gross Leak, MIL-STD-202, Method 112
12. Record Subgroups 2 and 3 of Group A Tests
${ }^{d}$ Delta criteria after 96 hours Reverse Bias Age and 340 hours Power Age.
$\Delta \mathrm{I}_{\mathrm{CBO}} \quad+100 \%$ or +5 nanoamperes whichever is greater Δh_{FE}
$\pm 20 \%$

Definitions

Delta (Δ) : Delta shall be determined by subtracting the parameter value measured before application of stress from the value measured after the application of stress.

Group A Tests

TEST METHOD PER MIL-STD-750	EXAMINATION OR TEST	CONDITIONS	LTPD	SYMBOL	LIMITS		UNITS
					Min.	Max.	
2071	Subgroup 1 Visual and Mechanical Examination	-	10	-	-	-	-
$\begin{array}{\|l} 3036 \mathrm{D} \\ 3001 \mathrm{D} \\ 3026 \mathrm{D} \\ 3011 \mathrm{D} \\ \\ 3076 \\ \hline \end{array}$	Subgroup 2 Collector-Cutoff Current Collector-to-Emitter Breakdown Voltage Emitter-to-Base Breakdown Voltage Collector-to-Emitter Breakdown Voltage DC Forward-Current Transfer Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}, \mathrm{IE}_{\mathrm{E}}=0 \\ & \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{BE}}=-1.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{IC}=0 \\ & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{B}}=0 \\ & \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{v}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	5	ICBO $\mathrm{BV}_{\mathrm{CEV}}$ $\mathrm{BV}_{\text {Ebo }}$ $\mathrm{V}_{\mathrm{CEO}}$ h_{FE}	$\begin{array}{\|c} - \\ 85^{9} \\ 4 \\ 60^{9} \\ 50 \\ \hline \end{array}$	$\begin{gathered} 10 \\ - \\ - \\ - \\ 275 \end{gathered}$	nA volts volts volts
3236 3306	Subgroup 3 Output Capacitance Power Output RF Power Output (Min. Eff. $=45 \%$) Small-Signal Forward-Current Transfer Ratio	$\begin{aligned} & \mathrm{f}=0.1 \text { to } 1.0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CB}}=28 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{f}=50 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V} \\ & \mathrm{Pin}=0.1 \mathrm{~W} \\ & \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=0.1 \mathrm{~W} \\ & \mathrm{f}=150 \mathrm{MHz} \\ & \\ & \mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V} \\ & \mathrm{f}=50 \mathrm{MHz} \end{aligned}$	5	Cob $P_{\text {OUT }}$ Pout $h_{f e}$	1.0 0.4	$\begin{gathered} 6.0 \\ - \\ - \\ 5.0 \end{gathered}$	pF watts watts
$\begin{aligned} & 3036 \mathrm{D} \\ & 3201 \\ & 3231 \end{aligned}$	Subgroup 4 Collector-Cutoff Current Input Impedance Output Admittance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{CE}}=28 \mathrm{~V}, \mathrm{I} \mathrm{C}=25 \mathrm{~mA} \\ & \mathrm{f}=50 \mathrm{MHz} \\ & \mathrm{v}_{\mathrm{CE}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} \\ & \mathrm{f}=50 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 15 \\ - \\ - \\ - \end{gathered}$	$\begin{aligned} & \text { ICBO } \\ & \mathrm{h}_{\mathrm{ie}} \\ & \mathrm{Y}_{22} \\ & \hline \end{aligned}$	25 1	$\begin{gathered} 5 \\ 75 \\ 2 \end{gathered}$	

${ }^{f}$ Pulsed through an inductor ($25 \mu \mathrm{H}$); duty factor $=50 \%$.
${ }^{\mathbf{g}}$ Measured at a current where the breakdown voltage is a minimum.

General Reliability Specifications that are applicable to all rf power transistors are given in booklet RFT-701 and must be used in conjunction with the specific Preconditioning, Group A Tests, and Group B Tests shown below.

Group B Tests ${ }^{\text {h }}$

TEST METHOD PER MIL-STD-750	EXAMINATION OR TEST	CONDITIONS
2066	Physical Dimensions 1	$\begin{gathered} \text { (13 Samples) } \\ \text { JEDEC TO-5 Pkg. } \end{gathered}$
$\begin{gathered} 2026 \\ 1051 \\ 1056 \\ 1021 \end{gathered}$	Subgroup 2 Solderability Thermal Shock (Temp. Cycling) Thermal Shock (Glass Strain) Seal (Leak Rate) Moisture Resistance	(13 Samples) Omit aging, Dwell time $=$ $10 \mathrm{~s} \pm 1 \mathrm{~s}$ Test Condition C Test Condition B Method 112 of MIL-STD-202 Test Cond. C, procedure III; Test Cond. A for gross leaks
$\begin{aligned} & 2016 \\ & 2046 \\ & 2056 \\ & 2006 \end{aligned}$	Shock Vibration Fatigue Vibration Var. Freq. Constant Acceleration	(13 Samples) $1,500 \mathrm{~g}, 0.5 \mathrm{~ms}, 5$ blows each orientation: $\mathrm{x}_{1}, \mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Z}_{1}$ Nonoperating $20,000 \mathrm{G}^{2} \quad \mathrm{Y}_{1}, \mathrm{Y}_{2}$
2036	Subgroup 4 Terminal Strength (Lead Fatique)	(13 Samples) Test Cond. E
1041	Subgroup 5 Salt Atmosphere	(13 Samples)
1031	Subgroup 6 High Temperature Life (Non-operating)	$\begin{aligned} & \text { (25 Samples) } \\ & \mathrm{T}_{\text {storage }}=200^{\circ} \mathrm{C} \\ & \mathrm{t}=1000 \mathrm{hrs} . \end{aligned}$
1026	Subgroup 7 Steady-State Operation	$\begin{gathered} (25 \text { Samples) } \\ \mathrm{P}_{\mathrm{T}}=1.5 \mathrm{~W}, \mathrm{~T}_{\mathrm{C}}^{=}=100^{\circ} \mathrm{C} \\ \mathrm{t}=1000 \mathrm{hrs} . \mathrm{v}_{\mathrm{CB}}=40 \mathrm{~V} \end{gathered}$

TEST METHOD	EXAMINATION OR TEST	CONDITIONS	SYMBEL	LImits		UNITS
MIL-STD. 750				Min.	Max.	
	End Points Subgroups (2, 3, 5, 6)					
3036D	Collector Base Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	$\mathrm{I}_{\mathrm{CBO}}$		1.0	$\mu \mathrm{A}$
3001 D	Collector Base Breakdown Voltage	$\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	$\mathrm{BV}_{\text {CEV }}$	80		
3076	DC Forward-Current Transfer Ratio	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	h_{FE}	35	325	-

[^29]i Pulsed through an inductor (25 mH); duty factor $=50 \%$.
${ }^{\mathrm{k}}$ Measured at a current where the breakdown voltage is a minimum.

DIMENSIONAL OUTLINE
 JEDEC No.TO-5

Note Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated.

TERMINAL CONNECTIONS

Lead 1 - Emitter
Lead 2 - Base
Lead 3 - Collector, Case

に®O
Solid State Division

HIGH-RELIABILITY TRANSISTOR

RCA-40578* is a high-reliability variant of the RCA-2N3866, an epitaxial n-p-n planar transistor of "overlay" emitter electrode construction. It is especially processed for high reliability. It is intended for Class A, B, and C amplifier, frequency multiplier, or oscillator operation in high-reliability, driver or predriver stages, VHF-UHF applications in Space, Military, and Industrial communications equipment.

High reliability is assured by eight preconditioning steps, including drift temperature measurements after the High Temperature Reverse Bias and Power Age tests. The 40578 also features complete qualification and lot acceptance testing.

RATINGS
* Formerly RCA-Dev. No. TA7080

Maximum Ratings, Absolute-Maximum Values:

High-Gain Device for Class A,B, or C Operation in VHF-UHF Circuits

©8 Preconditioning Steps

OComplete Qualification and Lot Acceptance Testing
OHigh Power Gain, Unneutralized Class C Amplifier
At $400 \mathrm{MHz}, 1$ W output with 10 dB gain (min.)
$250 \mathrm{MHz}, 1 \mathrm{~W}$ output with 15 dB gain (typ.)
$175 \mathrm{MHz}, 1$ W output with 17 dB gain (typ.) $100 \mathrm{MHz}, 1$ W output with 20 dB gain (typ.)

DISSIPATION DERATING CURVE

Fig. 1

92CS-10446R3

ELECTRICAL CHARACTERISTICS
 Case Temperature $=25^{\circ} \mathrm{C}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristic} \& \multirow{3}{*}{Symbol} \& \multicolumn{6}{|c|}{TEST CONDITIONS} \& \multicolumn{2}{|r|}{\multirow[b]{2}{*}{LIMITS}} \& \multirow{3}{*}{Units}

\hline \& \& \multicolumn{2}{|l|}{DC Collector Volts} \& $$
\begin{aligned}
& \text { DC } \\
& \text { Base } \\
& \text { Volts }
\end{aligned}
$$ \& \multicolumn{3}{|c|}{DC Current (mA)} \& \& \&

\hline \& \& $\mathrm{V}_{\text {CB }}$ \& VCE \& $\mathrm{V}_{\text {BE }}$ \& I_{E} \& 1 B \& ${ }^{1} \mathrm{C}$ \& Min. \& Max. \&

\hline Collector-Cutoff Current \& ICEO \& \& 28 \& \& \& 0 \& \& - \& 100 \& nA

\hline Collector-to-Base Breakdown Voltage \& $\mathrm{BV}_{\text {Cbo }}$ \& \& \& \& 0 \& \& 0.1 \& 55 \& - \& V

\hline \multirow[t]{2}{*}{Collector-to-Emitter
Voltage (Sustaining)} \& $\mathrm{v}_{\text {CER }}{ }^{\text {(sus) }}{ }^{\mathrm{a}}$ \& \& \& \& \& \& 5 \& 55 \& - \& V

\hline \& $\mathrm{V}_{\text {CEO }}{ }^{\text {(8us) }}$ \& \& \& \& \& 0 \& 5 \& 30 \& - \& V

\hline Emitter-to-Base Breakdown Voltage \& BV ${ }_{\text {EBO }}$ \& \& \& \& 0.1 \& \& 0 \& 3.5 \& $-$ \& V

\hline Collector-to-Emitter Saturation Voltage \& $\mathrm{V}_{\mathbf{C E}}{ }^{\text {(sat) }}$ \& \& \& \& \& 20 \& 100 \& - \& 1.0 \& V

\hline Collector-to-Base Capacitance (Measured at 1 MHz) \& Cob \& 30 \& \& \& 0 \& \& \& - \& 3.0 \& pF

\hline ```
RF Power Output
Class-C Amplifier,Unneutralized
At 100 MHz
At 250 MHz
At 400 MHz

``` & \(\mathrm{P}_{\text {OUT }}\) & & 28
28
28
28 & & & & & 1.8
1.5
1.0

e & \[
\text { p. }_{(\text {p. })^{\mathrm{d}}}^{\mathrm{d}}
\] & w \\
\hline Gain-Bandwidth Product & \(\mathrm{f}_{\mathrm{T}}\) & & 15 & & & & 50 & 800 & & MHz \\
\hline
\end{tabular}
\({ }^{{ }^{\text {With }}}{ }\) external base-emitter resistance \(\left(\mathrm{R}_{\mathrm{BE}}\right)=10 \Omega\).
\({ }^{\mathrm{b}} \mathrm{V}_{\mathrm{CC}}\) value.
\({ }^{\mathrm{c}}\) For \(\mathrm{P}_{\mathrm{IN}}=0.05 \mathrm{~W}\); minimum efficiency \(=60 \%\).
\({ }^{d}\) For \(P_{\text {IN }}=0.1 \mathrm{~W}\); minimum efficiency \(=50 \%\).
\({ }^{e}\) For \(\mathrm{P}_{\mathrm{IN}}=0.1 \mathrm{~W}\); minimum efficiency \(=45 \%\).


\section*{RELIABILITY SPECIFICATIONS}

In addition to Preconditioning and Group A tests; a Qualification Approval test series (Group B tests) is
performed on each lot.

\section*{Preconditioning ( 100 Per Cent Testing of Each Transistor)}
1. Serialization
2. Record \(\mathrm{I}_{\mathrm{CEO}}, \mathrm{h}_{\mathrm{FE}}\)
3. Temperature Cycling-Method 107B Cond. C of MIL-STD-202, 5 cycles, \(-65^{\circ} \mathrm{C}\) to \(200^{\circ} \mathrm{C}\)
4. Bake, 72 hours minimum, \(200^{\circ} \mathrm{C}\).
5. Constant Acceleration-Method 2006 of MIL-STD-750, \(10,000 \mathrm{~g}, \mathrm{Y}_{1}\) and \(\mathrm{Y}_{2}\) axes
6. X-Ray
7. Record \(\mathrm{I}_{\mathrm{CEO}}, \mathrm{h}_{\mathrm{FE}}\)
8. Reverse Bias Age, \(\mathrm{T}_{\mathrm{A}}=200^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}\), \(\mathrm{t}=96\) hours
d9. Record \(\mathrm{I}_{\mathrm{CEO}}, \mathrm{h}_{\mathrm{FE}}\)
10. Power Age, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}, \mathrm{t}=340\) hours, \(\mathrm{P}_{\mathrm{T}}=1 \mathrm{~W}\), free air
\({ }^{d} 11\). Record \(\mathrm{I}_{\mathrm{CEO}}, \mathrm{h}_{\mathrm{FE}}, \mathrm{V}_{\mathrm{CE}}\) at 340 hours
12. Helium Leak, \(1 \times 10^{-7} \mathrm{cc} / \mathrm{sec}\). max.
13. Gross Leak, MIL-STD-202, Method 112
14. Record Subgroups 2 and 3 of Group A Tests
\({ }^{\text {d }}\) Delta criteria after 96 hours Reverse Bias Age and 340 hours Power Age
\[
\begin{array}{ll}
\Delta \mathrm{I}_{\mathrm{CEO}} & +100 \% \text { or }+20 \text { nanoamperes whichever is greater } \\
\Delta \mathrm{h}_{\mathrm{FE}} & \pm 20 \%
\end{array}
\]

\section*{Definitions}

Delta \((\Delta)\) : Delta shall be determined by subtracting the parameter value measured before application of stress from the value measured after the application of stress.

Group A Tests


\footnotetext{
\({ }^{\dagger}\) Pulsed through an inductor \((25 \mu \mathrm{H})\); duty factor \(=50 \%\).
\(\mathbf{9}^{\text {Measured at a current where the breakdown voltage is a minimum. }}\)
}

General Reliability Specifications that are applicable to all rf power transistors are given in booklet RFT-701 and must be used in conjunction with the specific Preconditioning, Group A Tests, and Group B Tests shown below.

\section*{Group B Tests}
\begin{tabular}{|c|c|c|}
\hline TEST METHOD PER MIL-STD-750 & EXAMINATION OR TEST & CONDITIONS \\
\hline 2066 & \begin{tabular}{l}
Subgroup 1 \\
Physical Dimensions
\end{tabular} & (13 Samples) \\
\hline \[
\begin{aligned}
& 2026 \\
& 1051 \\
& 1056 \\
& 2036 \\
& \\
& \\
& \\
& \\
&
\end{aligned}
\] & \begin{tabular}{l}
Subgroup 2 \\
Solderability \\
Thermal Shock (Temp. Cycling) \\
Thermal Shock (Glass Strain) \\
Terminal Strength (Tension) \\
Seal (Leak Rate) \\
Moisture Resistance
\end{tabular} & \begin{tabular}{l}
(13 Samples) \\
Test Condition C \\
Test Condition B \\
Test Condition A, weight \(=\) \\
5 lbs. time \(=15 \mathrm{~s}\) each terminal \\
Method 112 of MIL-STD-202 \\
Test Cond. C, procedure IIIa, Test Cond. A for gross leaks \(10-8 \mathrm{cc} / \mathrm{s}\)
\end{tabular} \\
\hline \[
\begin{aligned}
& 2016 \\
& \\
& 2046 \\
& 2056 \\
& 2006
\end{aligned}
\] & \begin{tabular}{l}
Subgroup 3 \\
Shock \\
Vibration Fatigue Vibration Var. Freq. Constant Acceleration
\end{tabular} & \begin{tabular}{l}
(13 Samples) \\
\(1,500 \mathrm{~g}, 0.5 \mathrm{~ms}, 5\) blows each orientation: \\
\(\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1},(15\) blows total) Nonoperating
\[
20,000 \mathrm{G} \mathrm{Y}_{1}, \overline{\mathrm{Y}}_{2}
\]
\end{tabular} \\
\hline 2036E & Subgroup 4 Terminal Strength (Lead Fatigue) & (13 Samples) \\
\hline 1041 & \begin{tabular}{l}
Subgroup 5 \\
Salt Atmosphere
\end{tabular} & (13 Samples) \\
\hline 1031 & \begin{tabular}{l}
Subgroup 6 \\
High Temperature Life (Nonoperating)
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { (25 Samples) } \\
\mathrm{T}_{\text {storage }}
\end{array}=200^{\circ} \mathrm{C}
\] \\
\hline 1026 & \begin{tabular}{l}
Subgroup 7 \\
Steady-State Operation
\end{tabular} & \begin{tabular}{l}
(25 Samples)
\[
\begin{aligned}
& \mathrm{T}_{\mathrm{FA}}=25^{\circ} \mathrm{C} \mathrm{t}=1000 \mathrm{hrs} . \\
& \mathrm{P}_{\mathrm{T}}=1 \mathrm{~W}, \mathrm{~V}_{\mathrm{CB}}=28 \mathrm{~V}
\end{aligned}
\] \\
free air, no heat sink
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TEST METHOD } \\
& \text { PER } \\
& \text { MIL-STD-750 }
\end{aligned}
\]} & \multirow[t]{2}{*}{EXAMINATION OR TEST} & \multirow[t]{2}{*}{CONDITIONS} & \multirow[t]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{LIMITS} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & & Min. & Max. & \\
\hline \multirow{7}{*}{\[
\begin{aligned}
& 3041 \mathrm{D} \\
& 3011 \mathrm{~B}
\end{aligned}
\]} & End Points & \multirow[b]{6}{*}{\[
\begin{aligned}
& \mathrm{v}_{\mathrm{CE}}=28 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA} \text { (Inductive) } \\
& \mathrm{R}_{\mathrm{BE}}=10
\end{aligned}
\]} & \multirow{4}{*}{\({ }^{\text {I CEO }}\)} & \multirow{4}{*}{-} & \multirow{5}{*}{1.0} & \multirow{4}{*}{\(\mu \mathrm{A}\)} \\
\hline & Subgroups ( \(2,3,5,6,7)\) & & & & & \\
\hline & Collector-to-Emitter Cutoff Current & & & & & \\
\hline & \multirow[t]{3}{*}{Collector-to-Emitter Breakdown Voltage} & & & & & \\
\hline & & & & & & \\
\hline & & & \(\mathrm{BV}_{\text {CER }}\) & \(50^{k}\) & - & volts \\
\hline & RF Power Output (Min. Eff. \(=45 \%\) ) & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{CE}}=28 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=0.1 \mathrm{~W}, \\
& =400 \mathrm{MHz}
\end{aligned}
\] & Pout & 0.95 & - & wàts \\
\hline 3076 & DC Forward-Current Transfer Ratio & \(\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\) & \({ }^{\text {h }}\) FE & 9 & - & - \\
\hline 3026D & Emitter-to-Base Breakdown Voltage & \(\mathrm{I}_{\mathrm{E}}=100 \mathrm{~mA}\) & \(\mathrm{BV}_{\text {EBO }}\) & 3.0 & - & volts \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {h}}\) Acceptance/Rejection Criteria of Group B tests: For an LTPD plan of \(7 \%\) the total sample size is 115 for which the maximum number of rejects allowed is 4. Acceptance is also subject to a maximum of one (1) reject per Sub-group. Group B tests are performed on each lot for Qualification or Lot Acceptance.

\({ }^{k_{\text {Measured }}}\) at a current where the breakdown voltage is a minimum.
}

File No. 389


\section*{Solid State} Division

RCA-40605* is an epitaxial silicon n-p-n planar transistor featuring "overlay" emitter electrode construction. It is intended for class-A, -B , or -C amplifier, frequency multiplier, and oscillator service in VHF/ UHF equipment.

Premium high-reliability type 40605 is identical to RCA-2N3553 but is preconditioned and tested for use in critical aerospace and industrial equipment.
*Formerly RCA Dev. Type No. TA7361.

\footnotetext{
Maximum Ratings, Absolute-Maximum Values:
COLLECTOR-TO-BASE VOLTAGE . . . . V \({ }_{\text {CBO }}\) 65 V COLLECTOR-TO-EMITTER VOLTAGE:

With- 1.5 volts ( \(\mathrm{V}_{\mathrm{BE}}\) ) of reverse bias \& external base-to-emitter resistance \(\left(R_{B E}\right)=33 \Omega \ldots . . . . . . . . V_{C E X}\)
With base open. . . . . . . . . . . . . . . . . \(V_{\text {CEO }} 40 \mathrm{~V}\)
EMITTER-TO-BASE VOLTAGE . . . . . . . V VBO 4 V
CONTINUOUS COLLECTOR CURREN'T . . \(\mathrm{I}_{\mathrm{C}} \quad 0.33 \mathrm{~A}\)
PEAK COLLECTOR CURRENT......... \(I_{C p k ~} 1\) A
TRANSISTOR DISSIPATION: . . . . . . . . . \(P_{T}\)
At case temperatures up to \(25^{\circ} \mathrm{C}\). . . . 7 W
At case temperatures above \(25^{\circ} \mathrm{C}\)
derate linearly at . . . . . . . . . . . . . \(0.04 \mathrm{~W} /{ }^{\circ} \mathrm{C}\)
At ambient temperatures up to \(25^{\circ} \mathrm{C} . . . \quad 1 \mathrm{~W}\)
At ambient temperatures above \(25^{\circ} \mathrm{C}\)
derate linearly at
\(5.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
TEMPERATURE RANGE:
Storage \& Operating (Junction) . . . . . . -65 to \(+200^{\circ} \mathrm{C}\)
LEAD TEMPERATURE (During Soldering):
At distances \(\geq 1 / 32 \mathrm{in} .(0.8 \mathrm{~mm})\) from
seating plane for 10 s max. . . . . . . . . \(230^{\circ} \mathrm{C}\)
}

\section*{SLLICON N.P.N "overlay" TRANSISTOR}
"Premium"

High-Reliability Type

\author{
For Class-A,-B, or -C
} Service in VHF/UHF Military, Industrial, and Commercial Equipment


JEDEC TO-39

FEATURES:
- High Power Output

Class - C Amplifier . . .
2.5-W (min.) at 175 MHz

Oscillator . . .
1.5-W (typ.) at 500 MHz


Fig. 1 - Typical power output vs. frequency.

ELECTRICAL CHARACTERISTICS, Case Temperature ( \(\mathrm{T}_{\mathrm{C}}\) ) \(=25^{\circ} \mathrm{C}\) STATIC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{5}{|c|}{TEST CONDITIONS} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{LIMITS}} & \multirow{3}{*}{UNITS} \\
\hline & & DC
Collector Volts & \[
\begin{aligned}
& \hline D C \\
& \text { Base } \\
& \text { Volts }
\end{aligned}
\] & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { Current } \\
\mathrm{mA}
\end{gathered}
\]} & & & \\
\hline & & \(V_{C E}\) & \(V_{\text {BE }}\) & \({ }_{\text {I }}\) & \({ }^{\prime} \mathrm{B}\) & \({ }^{1} \mathrm{C}\) & MIN. & MAX. & \\
\hline Collector-Cutoff Current & ICEO & 30 & & & 0 & & - & 0.1 & \(\mu \mathrm{A}\) \\
\hline Collector-to-Base Breakdown Voltage & \(V_{\text {(BR)CBO }}\) & & & 0 & & 0.3 & 65 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage: (See Fig. 2.) With base open & \(V_{\text {(BR)CEO }}\) & & & & 0 & \(200{ }^{\circ}\) & \(40^{\text {b }}\) & - & \\
\hline With base-emitter junction reverse biased \& external base-to-emitter resistance \(\left(R_{B E}\right)=33 \Omega\) & \(V_{\text {(BR)CEX }}\) & & -1.5 & & & 200 \({ }^{\circ}\) & 65 \({ }^{6}\) & - & \\
\hline Emitter-to-Base Breakdown Voltage & \(V_{\text {(BR)EB0 }}\) & & & 0.1 & & 0 & 4 & - & V \\
\hline Collector-to-Emitter Saturation Voltage & \(V_{\text {CE (sat) }}\) & & & & 50 & 250 & - & 1 & V \\
\hline
\end{tabular}
a Pulsed through a \(25-\mathrm{mH}\) inductor; duty factor \(=50 \%\)
\({ }^{\mathrm{b}}\) Measured at a current where the breakdown voltage is a minimum.
DYNAMIC
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{3}{|c|}{TEST CONDITIONS} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{LIMITS}} & \multirow{3}{*}{UNITS} \\
\hline & & \multirow[t]{2}{*}{DC Collector Supply ( \(V_{\text {CC }}\) ) - V} & \multirow[t]{2}{*}{Input Power
\[
\left(P_{\mathrm{IE}}\right)-W
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Frequency } \\
& \text { (f) }-M H z
\end{aligned}
\]} & & & \\
\hline & & & & & MIN. & TYP. & \\
\hline Power Output & \(\mathrm{P}_{\text {OE }}\) & 28 & 0.25 & 175 & 2.5 c & - & W \\
\hline Collector-toBase Capacitance & \(\mathrm{C}_{\text {obo }}\) & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V} \\
\mathrm{I}_{\mathrm{C}}=0
\end{gathered}
\] & - & 1 & - & 10 & pF \\
\hline Gain-Bandwidth Product & \({ }^{\text {f }}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA}
\end{aligned}
\] & - & - & 350 & - & MHz \\
\hline
\end{tabular}
c Minimum efficiency \(=50 \%\)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{L: 25 mH at 100 mA} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{BB1} 1} 150 \Omega\)} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{S}}: 1 \Omega\)} \\
\hline \multicolumn{2}{|l|}{S: Clare Mercury Relay or equivalent} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}\) : 20 v} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{v}_{\text {BB1 }}: 20 \mathrm{v}\)} \\
\hline \(\mathrm{v}_{\text {(BR)CEO Measurement }}\) & \(\mathrm{v}_{(\mathrm{BR}) \mathrm{CEX}}\) Measurement \\
\hline \(\mathrm{R}_{\mathrm{BB} 2}=\infty\) & \(\mathrm{R}_{\mathrm{BB} 2}=33 \Omega\) \\
\hline \(\mathrm{v}_{\text {BB2 } 2}=0\) & \(\mathrm{v}_{\mathrm{BB} 2}=-1.5 \mathrm{v}\) \\
\hline
\end{tabular}

R of inductance \(=83 \Omega\)

Fig.2-Circuit used to measure voltages \(\mathrm{V}_{(B R) C E O}\) and \(\mathrm{V}_{(B R) C E X}\) (unclamped).

\section*{RELIABILITY SPECIFICATIONS . . .}

General Reliability Specifications that are applicable to all rf power transistors are given in booklet RFT-701 and must be used in conjunction with the specific lot screening, Group A Tests, and Group B Tests shown below.

\section*{Lot Acceptance Data}

Conditioning Screens ( \(100 \%\) Testing, see Table I)
a) Attributes Data on Burn-In
b) Attributes Data on Radiographic Inspection
c) Variables Data on Burn-In

Group A (Lot Sampling, see Table II)
a) Variables Data

Group B (Lot Sampling, see Table III)
a) Attributes Data (From a member of the family)

Table 1. Description of Total Lot Screening - \(\mathbf{1 0 0 \%}\) Testing
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{TEST} & \multirow[t]{2}{*}{CONDITIONS} & \multicolumn{2}{|c|}{MIL-STD-750} & \multicolumn{2}{|c|}{MIL-STD-202} \\
\hline & & METHOD & CONDITIONS & METHOD & CONDITIONS \\
\hline 1. Lot identification & - & - & - & - & - \\
\hline 2. Pre-seal visual inspection & In accordance with RCA's RFT-701 (See note 1) & - & - & - & - \\
\hline 3. Temp. cycling & 5 cycles & 1051 & C & - & - \\
\hline 4. High Temp. storage & 72 hrs. min. at
\[
T_{A}=200^{\circ} \mathrm{C}
\] & - & - & - & - \\
\hline 5. Acceleration & 20,000 g min.; \(Y_{1}\) direction only & 2006 & - & - & - \\
\hline 6. Fine jeak & - & - & - & 112 & C \\
\hline 7. Gross leak & Fluorocarbon bubble test (See note 2) & - & - & - & - \\
\hline 8. Serialize & - & - & - & - & - \\
\hline 9. Pre burn-in electrical & See Table 1 A & - & - & - & - \\
\hline 10. Burn-in & (See note 3) & - & - & - & - \\
\hline 11. Post burn-in electrical & Delta requirements See table 1 A & - & - & - & - \\
\hline 12. Radiographic inspection & - & - & - & - & - \\
\hline
\end{tabular}

Note 1: Complete title of RFT-701 is: "General Reliability Specifications of RCA RF Power Transistors".
Note 2: Immersed in fluorochemical FC 78 at 65 psig for 4 hrs, unit is than placed in fluorochemical FC 48 at \(80^{\circ} \mathrm{C}\) (nominal) and observed for bubbles.
Note 3: Burn-in tests:
Reverse bias age - all transistors shall be operated for 96 hrs
\[
\text { at } T_{A}=150^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CB}}=50 \mathrm{~V}
\]

Power age - all transistors shall be operated for 340 hrs
\[
\text { at } T_{A}=25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CB}}=30 \mathrm{~V}, \mathrm{P}_{\mathrm{T}}=1 \mathrm{~W} .
\]

Table 1 A. Pre Burn-In \& Post Burn-In Tests and Delta ( \(\Delta\) ) Limits
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ TEST } & \multirow{2}{*}{ SYMBOL } & \multicolumn{3}{c|}{ MIL-STD-750 } & \multicolumn{2}{c|}{ LIMITS } \\
\cline { 3 - 6 } & METHOD & CONDITIONS & MIN. & MAX. & \\
\hline Collector-Cutoff Current & ICEO & 3041 & \(V_{C E}=30 \mathrm{~V}\), bias cond. D & - & 0.1 & \(\mu \mathrm{~A}\) \\
\hline \begin{tabular}{l} 
DC Forward-Current \\
Transfer Ratio
\end{tabular} & hFE & 3076 & \(V_{\text {CE }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}\) pulsed & 15 & 150 & - \\
\hline
\end{tabular}

Delta ( \(\Delta\) ) Limits:
\({ }^{\prime}\) CEO and \(h_{\text {FE }}\) of Table 1A shall be retested after each burn-in test and the data recorded for all devices in the lot.
The tests measured shall not have changed during each burn-in test from the initial value by more than the specified amount as follows:
\[
\begin{aligned}
& \Delta_{\mathrm{I}} \mathrm{CEO}= \pm 100 \% \text { or } 10 \mathrm{nA} \text {, whichever is greater } \\
& \Delta \mathrm{h}_{\text {FE }}= \pm 20 \%
\end{aligned}
\]

All transistors that exceed the delta \((\Delta)\) limits or the limits of Table 1 A after each burn-in test shall be removed from the lot and the quantity removed shall be recorded in the lot history.

Table II. Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{EXAMINATION OR TEST} & \multicolumn{2}{|r|}{MIL-STD-750} & \multirow{2}{*}{LTPD} & \multirow{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & METHOD & CONDITIONS & & & MIN. & MAX. & \\
\hline \begin{tabular}{l}
Subgroup 1 \\
Visual and Mechanical Examination
\end{tabular} & 2071 & - & \[
10
\] & - & - & - & - \\
\hline \begin{tabular}{l}
Subgroup 2 \\
Collector-Cutoff Current \\
Collector-to-Base Breakdown Voltage Emitter-to-Base Breakdown Voltage \\
Collector-to-Emitter Breakdown Voltage \\
Collector-to-Emitter Breakdown Voltage \\
Collector-to-Emitter Saturation Voltage DC Forward-Current Transfer Ratio
\end{tabular} & \begin{tabular}{l}
3041D \\
3001D \\
3026D \\
3011D \\
See Fig. 2. \\
3011B \\
See Fig. 2. \\
3071 \\
3076
\end{tabular} & \[
\begin{aligned}
& V_{C E}=30 \mathrm{~V}, I_{B}=0 \\
& I_{C}=0.3 \mathrm{~mA} \\
& I_{E}=0.1 \mathrm{~mA} \\
& I_{C}=200 \mathrm{~mA} \\
& I_{C}=200 \mathrm{~mA}, V_{B E}=-1.5 \mathrm{~V}, \\
& R_{B E}=33 \Omega \\
& I_{C}=250 \mathrm{~mA}, I_{B}=50 \mathrm{~mA} \\
& I_{C}=150 \mathrm{~mA}, V_{C E}=5 \mathrm{~V}
\end{aligned}
\] & 5 & \[
\begin{gathered}
\mathrm{I}_{\mathrm{CEO}} \\
\mathrm{v}_{(\mathrm{BR}) \mathrm{CBO}} \\
\mathrm{v}_{(\mathrm{BR}) \mathrm{EBO}} \\
\mathrm{v}_{(\mathrm{BR}) \mathrm{CEO}} \\
\\
v_{(B R) C E X} \\
v_{C E} \text { (sat) } \\
\mathrm{h}_{\mathrm{FE}}
\end{gathered}
\] & \[
\begin{gathered}
65 \\
4 \\
40^{b} \\
65^{b} \\
- \\
15
\end{gathered}
\] & \[
\begin{gathered}
100 \\
- \\
- \\
- \\
- \\
1 \\
150
\end{gathered}
\] & \begin{tabular}{l}
nA \\
V \\
v \\
V \\
V \\
V
\end{tabular} \\
\hline \begin{tabular}{l}
Subgroup 3 \\
Output Capacitance \\
Extrapolated Unity Gain Frequency \\
RF Power Output (Min. Eff. \(=50 \%\) )
\end{tabular} & \begin{tabular}{l}
3236 \\
3261 \\
See Fig. 3.
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0 \\
& \mathrm{I}_{\mathrm{C}}=125 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V}, \\
& \mathrm{f}=100 \mathrm{MHz} \\
& \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V}, \mathrm{P}_{1 \mathrm{E}}=0.25 \mathrm{w}, \\
& \mathrm{f}=175 \mathrm{MHz}
\end{aligned}
\] & \[
5
\] & \[
\begin{aligned}
& \mathrm{C}_{\text {obo }} \\
& \mathrm{f}_{\mathrm{T}} \\
& \mathrm{P}_{\text {OE }}
\end{aligned}
\] & -
350
2.5 & 10 & \[
\begin{gathered}
\mathrm{pF} \\
\mathrm{MHz} \\
\mathrm{~W}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Subgroup 4 \\
Collector-Cutoff Current \\
DC Forward-Current Transfer Ratio
\end{tabular} & 3036 D
3076 & \[
\begin{aligned}
T_{A} & =150^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, \\
\mathrm{~V}_{C B} & =30 \mathrm{~V} \\
T_{A} & =-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, \\
\mathrm{I}_{\mathrm{C}} & =150 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}
\end{aligned}
\] & \[
15
\] & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{CBO}} \\
& \mathrm{~h}_{\mathrm{FE}}
\end{aligned}
\] & -
10 & 100
- & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\footnotetext{
a Pulsed through a 25 mH inductor; duty factor \(=50 \%\)
\({ }^{\mathrm{b}}\) Measured at a current where the breakdown voltage is a minimum
}

Table III. Group B Environmental Sampling Inspection


\footnotetext{
a Pulsed through a \(25 \mu \mathrm{H}\) inductor; duty factor \(=50 \%\)
}

\section*{DIMENSIONAL OUTLINE}

\section*{JEDEC No.TO-39}


Note 1: This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed .010 in (. 254 mm ).

Note 2: (Three leads) \(\phi \mathrm{b}_{2}\) applies between \(\mathrm{I}_{1}\) and \(\mathrm{I}_{2} . \phi \mathrm{b}\) applies between \(I_{2}\) and .5 in ( 12.70 mm ) from seating plane. Diameter is uncontrolled in \(I_{1}\) and beyond \(.5 \mathrm{in}(12.70 \mathrm{~mm})\) from seating plane.
Note 3: Measured from maximum diameter of the actual device.
Note 4: Details of outline in this zone optional.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMB0L} & \multicolumn{2}{|c|}{INCHES} & \multicolumn{2}{|l|}{MILLIMETERS} & \multirow[b]{2}{*}{NOTES} \\
\hline & MIN. & MAX. & MIN. & MAX. & \\
\hline \(\phi \mathrm{a}\) & . 190 & . 210 & 4.83 & 5.33 & \\
\hline A & . 240 & . 260 & 6.10 & 6.60 & \\
\hline ¢b & . 016 & . 021 & . 406 & . 533 & 2 \\
\hline \(\phi_{\text {¢ }}{ }^{\text {2 }}\) & . 016 & . 019 & . 406 & . 483 & 2 \\
\hline \(\phi\) D & . 350 & . 370 & 8.89 & 9.40 & \\
\hline \(\phi \mathrm{D}_{1}\) & . 315 & . 335 & 8.00 & 8.51 & \\
\hline h & . 009 & . 125 & . 229 & 3.18 & \\
\hline j & . 028 & . 034 & . 711 & . 864 & \\
\hline k & . 029 & . 040 & . 737 & 1.02 & 3 \\
\hline 1 & . 500 & & 12.70 & & 2 \\
\hline 11 & & . 050 & & 1.27 & 2 \\
\hline 12 & . 250 & & 6.35 & & 2 \\
\hline P & . 100 & & 2.54 & & 1 \\
\hline Q & & & & & 4 \\
\hline \(\alpha\) & \(45^{0}\) & NAL & & & \\
\hline \(\beta\) & \(90^{\circ}\) & NAL & & & \\
\hline
\end{tabular}

TERMINAL DIAGRAM


LEAD 1 - EMITTER
LEAD 2 - BASE
CASE, LEAD 3 - COLLECTOR

RF Power Transistors
Solid State Division

40606


\title{
High-Reliability \\ Silicon N-P-N Overlay Transistor
}

For Large-Signal, High-Power VHF/UHF
Applications in Military and Industrial
Communications Equipment
Features:
- High power output, unneutralized class \(C\) amplifier
- High voltage ratings
- 100 per cent tested to assure freedom from second breakdown for operation in class A applications
- All three electrodes electrically isolated from case for design flexibility

RCA-40606 is an epitaxial silicon n-p-n planar transistor. This device is intended for class A, B, C amplifier, frequency multiplier, or oscillator operation. The device was developed for vhf/uhf applications.
The transistor employs the overlay concept in emitterelectrode design - an emitter electrode consisting of
many microscopic areas connected together through the use of a diffused-grid structure and an overlay of metal which is applied on the silicon wafer by means of a photo-etching technique. This arrangement provides the very high emitter periphery-to-emitter area ratio required for high efficiency at high frequencies.

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|c|c|}
\hline COLLECTOR-TO-BASE VOLTAGE & \(\mathrm{V}_{\mathrm{CBO}}\) & 65 & V \\
\hline \multicolumn{4}{|l|}{COLLECTOR-TO-EMITTER VOLTAGE:} \\
\hline With base-emitter junction reverse-biased ( \(\left.\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}\right)\) & \(\mathrm{V}_{\text {CEV }}\) & 65 & V \\
\hline With base open & \(V_{\text {CEO }}\) & 40 & V \\
\hline EMITTER-TO-BASE VOLTAGE & VEBO & 4 & V \\
\hline COLLECTOR CURRENT & \({ }^{1} \mathrm{C}\) & 3 & A \\
\hline TRANSISTOR DISSIPATION & \(\mathrm{P}_{\mathrm{T}}\) & & \\
\hline At case temperatures up to \(25^{\circ} \mathrm{C}\) & & 23 & w \\
\hline At case temperatures above \(25^{\circ} \mathrm{C}\) & & Derate linearly to 0 watts at \(200^{\circ} \mathrm{C}\) & \\
\hline \multicolumn{4}{|l|}{TEMPERATURE RANGE:} \\
\hline Storage and operating (junction) & & -65 to 200 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{4}{|l|}{TEMPERATURE (During soldering):} \\
\hline At distances \(\geqslant 1 / 32 \mathrm{in}\). \((0.8 \mathrm{~mm})\) from insulating wafer fo & & 230 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS, At Case Temperature \(\left(T_{C}\right)=\mathbf{2 5}^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristic} & \multirow{3}{*}{Symbol} & \multicolumn{6}{|c|}{TEST CONDITIONS} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{LIMITS}} & \multirow{3}{*}{Units} \\
\hline & & \multicolumn{2}{|l|}{} & \[
\begin{gathered}
\text { DC } \\
\text { Base } \\
\text { Volts } \\
\hline
\end{gathered}
\] & \multicolumn{3}{|r|}{DC
Current
(Milliamperes)} & & & \\
\hline & & \(\mathrm{V}_{\text {CB }}\) & \({ }^{\text {V }}\) CE & \(\mathrm{V}_{\text {BE }}\) & \(I_{E}\) & \({ }^{\prime}\) B & \({ }^{\prime} \mathrm{C}\) & Min. & Max. & \\
\hline Collector-Cutoff Current & \({ }^{\text {I }}\) CEO & & 30 & & & 0 & & - & 0.25 & mA \\
\hline Collector-to-Base Breakdown Voltage & \(\mathrm{BV}_{\mathrm{CBO}}\) & & & & 0 & & 0.5 & 65 & - & volts \\
\hline Collector-to-Emitter & \(B V_{\text {CEO }}\) & & & & & 0 & 0 to 200* & 40** & - & volts \\
\hline Breakdown Voltage & \(\mathrm{BV}_{\text {CEV }}\) & & & -1.5 & & & 0 to 200* & 65** & - & volts \\
\hline Emitter-to-Base Breakdown Voltage & \(B V_{\text {EBO }}\) & & & & 0.25 & & 0 & 4 & - & volts \\
\hline Collector-to-Emitter Saturation Voltage & \(\mathrm{V}_{\mathrm{CE}}\) (sat) & & & & & 100 & 500 & - & 1 & volt \\
\hline Collector-to-Base Capacitance Measured at 1 MHz & \(\mathrm{C}_{\text {ob }}\) & 30 & & & 0 & & & - & 20 & pF \\
\hline \begin{tabular}{l}
RF Power Output \\
Amplifier, Unneutralized \\
At 260 MHz \\
400 MHz
\end{tabular} & \(\mathrm{P}_{\text {OE }}\) & & \[
\begin{gathered}
\mathrm{v}_{\mathrm{CC}}= \\
28 \\
28
\end{gathered}
\] & & & & & \multicolumn{2}{|l|}{\[
\begin{array}{l|l}
14.50 \\
10{ }^{\circ} \text { (typ.) } \\
\hline
\end{array}
\]} & watts \\
\hline Gain-Bandwidth Product & \(\mathrm{f}_{\mathrm{T}}\) & & 28 & & & & 150 & \multicolumn{2}{|l|}{400 (ryp.)} & MHz \\
\hline Base-Spreading Resistance Measured at 200 MHz & rbb' & & 28 & & & & 250 & \multicolumn{2}{|l|}{6.5 (typ.)} & ohms \\
\hline Collector-to-Case Capacitance & \(\mathrm{C}_{\text {s }}\) & & & & & & & - & 6 & pF \\
\hline DC Forward-Current Transfer Ratio & \({ }^{\text {h }}\) FE & & 5 & & & & 300 & 10 & - & \\
\hline Second-Breakdown Collector Current \({ }^{a}\) (Base forward-biased) & \({ }^{\text {I }}\) S/b & & 28 & & & & & 0.33 & - & A \\
\hline
\end{tabular}
* Pulsed through an inductor ( 25 mh ); duty factor \(=50 \%\).
** Measured at a current where the breakdown voltage is a minimum.
- For \(P_{\text {IE }}=4.0 \mathrm{w}\); minimum efficiency \(=60 \%\).
\(\triangle\) For \(\mathrm{P}_{\text {IE }}=4.0 \mathrm{w}\); minimum efficiency \(=45 \%\).
a Pulse duration \(=1 \mathrm{~s}\).


Fig.1-Power output vs. frequency.


Fig.2-RF amplifier circuit for power-output test at 400 MHz .

\section*{RELIABILITY SPECIFICATIONS:}

Lot Acceptance Data
Conditioning Screens (100\% Testing, see Table I)
(a) Attributes Data on Burn-In
(b) Attributes Data on Radiographic Inspection
(c) Variables Data on Burn-In

Group A (Lot Sampling, see Table II)
Group 8 (Lot Sampling, see Table III)
(a) Variables Data
(a) Attributes Data (From a member of the family)

Table 1. Description of Total Lot Screening - 100\% Testing
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TEST} & \multirow[t]{2}{*}{CONDITIONS} & \multicolumn{2}{|c|}{MIL-STD-750} & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & METHOD & CONDITIONS & MIN. & MAX. & \\
\hline \begin{tabular}{l}
1. Read: \\
Collector-to- \\
Emitter Current DC Forward-Current Transfer Ratio
\end{tabular} & \[
\begin{aligned}
& V_{C E}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\
& \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}
\end{aligned}
\] &  &  & \[
\begin{aligned}
& - \\
& 10
\end{aligned}
\] & \[
\begin{gathered}
250 \\
-
\end{gathered}
\] & \(n \mathrm{~A}\) \\
\hline 2. Temp. Cycling & 5 cycles, \(-65^{\circ} \mathrm{C}\) to \(+200^{\circ} \mathrm{C}\) & 1051C & - & - & - & \\
\hline 3. High-Temp. Storage & \(\mathrm{T}_{\mathrm{A}}=200^{\circ} \mathrm{C}, \mathrm{t}=72 \mathrm{hrs}\). & - & - & - & - & \\
\hline 4. Acceleration & \(20,000 \mathrm{~g} ; \mathrm{Y}_{1}, \mathrm{Y}_{2}\) & 2006 & - & - & - & \\
\hline 5. Helium Leak & & - & - & - & - & \\
\hline 6. Gross Leak & \[
\begin{aligned}
& \text { Ethylene Glycol, } \\
& \text { Temp. }=150^{\circ} \mathrm{C}, \\
& t=15 \mathrm{~s} \text { min. }
\end{aligned}
\] & - & - & - & - & \\
\hline 7. Serialization & & . - & - & - & - & \\
\hline 8. Radiographic Inspection & & - & - & - & - & \\
\hline 9. Read and Record: Collector-toEmitter Current DC Forward-Current Transfer Ratio & \[
\begin{aligned}
& V_{C E}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\
& \mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}
\end{aligned}
\] & - &  & 10 & \[
250
\] & \(n A\) \\
\hline 10. Reverse-Bias Age & \[
\begin{aligned}
& T_{A}=150^{\circ} \mathrm{C}, V_{C B}=50 \mathrm{~V}, \\
& t=96 \text { hrs. }
\end{aligned}
\] & - & - & - & - & \\
\hline 11. Read and Record Reverse-Bias End Points & See Table 1A. & - & - & - & - & \\
\hline 12. Power Age & \[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{C B}=30 \mathrm{~V} \\
& t=340 \mathrm{hrs} . P_{D}=2.6 \mathrm{~W} \text { free air } \\
& \text { Interim down period }=168 \mathrm{hrs} .
\end{aligned}
\] & - & - & - & - & \\
\hline 13. Read and Record Power-Age End Points & See Table 1A. & - & - & - & - & \\
\hline 14. Read and Record Subgroups 2, 3 of Group A; Sample Subgroup 4 of Group A & & - & - & - & - & \\
\hline
\end{tabular}

Table 1A. Power Age and Reverse-Bias Age
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{TEST} & \multirow{2}{*}{SYMBOL} & \multicolumn{2}{|r|}{MLL-STD-750} & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & METHOD & CONDITIONS & MIN. & MAX. & \\
\hline Collector-Cutoff Current & ICEO & 3041 & \(\mathrm{V}_{\text {CE }}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & 250 & nA \\
\hline DC Forward-Current Transfer Ratio & \(h_{\text {fe }}\) & 3076 & \(\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{IC}=300 \mathrm{~mA}\) pulsed & 10 & - & - \\
\hline
\end{tabular}

Delta ( \(\Delta\) ) Limits:
\({ }^{\prime}\) CEO and \(h_{\text {FE }}\) of Table 1A shall be retested after each burn-in test and the data recorded for all devices in the lot. The tests measured shall not have changed during each burn-in test from the initial value by more than the specified amount as follows:
\[
\begin{aligned}
& \Delta l_{\text {CEO }}= \pm 100 \% \text { or } 25 \mathrm{nA}, \text { whichever is greater } \\
& \Delta \mathrm{h}_{\text {FE }}= \pm 20 \%
\end{aligned}
\]

All transistors that exceed the delta \((\Delta)\) limits or the limits of Table \(1 A\) after each burn-in test shall be removed from the lot and the quantity removed shall be recorded in the lot history.

Table II. Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{EXAMINATION OR TEST} & \multicolumn{2}{|r|}{MIL-STD-750} & \multirow{2}{*}{LTPD} & \multirow{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & METHOD & CONDITIONS & & & MIN. & MAX. & \\
\hline \begin{tabular}{l}
Subgroup 1 \\
Visual and Mechanical Examination
\end{tabular} & 2071 & - & \[
10
\] & - & - & - & - \\
\hline \begin{tabular}{l}
Subgroup 2 \\
Collector-Cutoff Current \\
Collector-to-Base Breakdown Voltage \\
Emitter-to-Base Breakdown Voltage \\
Collector-to-Emitter Breakdown Voltage \\
Collector-to-Emitter Breakdown Voltage \\
Collector-to-Emitter Saturation Voltage DC Forward-Current Transfer Ratio \\
Second Breakdown Collector Current
\end{tabular} & \[
\begin{aligned}
& 3041 \mathrm{D} \\
& 3001 \mathrm{D} \\
& 3026 \mathrm{D} \\
& 3011 \mathrm{D} \\
& \\
& 3011 \mathrm{~A} \\
& \\
& 3071 \\
& 3076
\end{aligned}
\] & \[
\begin{aligned}
& V_{C E}=30 \mathrm{~V}, I_{B}=0 \\
& I_{C}=0.5 \mathrm{~mA}, I_{E}=0 \\
& I_{E}=0.25 \mathrm{~mA}, I_{C}=0 \\
& I_{C}=200 \mathrm{~mA}, I_{B}=0 \\
& I_{C}=200 \mathrm{~mA}, V_{B E}=-1.5 \mathrm{~V}, \\
& R_{B E}=33 \Omega \\
& I_{C}=500 \mathrm{~mA}, I_{B}=100 \mathrm{~mA} \\
& I_{C}=300 \mathrm{~mA}, V_{C E}=5 \mathrm{~V} \\
& V_{C E}=28 \mathrm{~V}, \mathrm{t}=1 \mathrm{~s} \text { pulse }
\end{aligned}
\] & \begin{tabular}{l}
5 \\
- \\
- \\
- \\
- \\
- \\
- \\
-
\end{tabular} &  & \begin{tabular}{l}
65 \\
4 \\
40 b \\
\(65^{b}\) \\
- \\
10 \\
0.33
\end{tabular} & 250
-
-
-
-
1
- & \begin{tabular}{l}
nA \\
V \\
V \\
V \\
V \\
V
\(\qquad\) \\
A
\end{tabular} \\
\hline \begin{tabular}{l}
Subgroup 3 \\
Output Capacitance \\
Common-Emitter, Small-Signal Short Circuit Forward Current Transfer Ratio \\
RF Power Output (Min. Eff. \(=\mathbf{4 5 \%}\) )
\end{tabular} & \begin{tabular}{l}
\[
3236
\] \\
See Fig. 3.
\end{tabular} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0 \\
& \mathrm{I}_{\mathrm{C}}=250 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V}, \\
& \mathrm{f}=100 \mathrm{MHz} \\
& \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V}, \mathrm{P}_{I E}=4 \mathrm{~W}, \\
& \mathrm{f}=400 \mathrm{MHz}
\end{aligned}
\] & \begin{tabular}{l}
5 \\
- \\
- \\
-
\end{tabular} & \begin{tabular}{l}
\(C_{\text {obo }}\) \\
\(h_{\text {fe }}\) \\
\(P_{\text {OE }}\)
\end{tabular} & \begin{tabular}{l}
\[
2.4
\] \\
10
\end{tabular} & \[
20
\] & \begin{tabular}{l}
pF - \\
W
\end{tabular} \\
\hline \begin{tabular}{l}
Subgroup 4 \\
Collector-Cutoff Current \\
DC Fniward-Current Transfer Ratio
\end{tabular} & 3036 D
3076 & \[
\begin{aligned}
T_{A} & =150^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, \\
V_{C E} & =30 \mathrm{~V} \\
T_{A} & =-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, \\
\mathrm{I}_{\mathrm{C}} & =300 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}
\end{aligned}
\] & 15 & \[
\begin{aligned}
& \text { 'CBO } \\
& \mathrm{h}_{\mathrm{FE}}
\end{aligned}
\] & \[
10
\] & 250
- & \(\mu \mathrm{A}\)
-
- \\
\hline
\end{tabular}

\footnotetext{
a Pulsed through a 25 mH inductor; duty factor \(=50 \%\)
\({ }^{\mathrm{b}}\) Measured at a current where the breakdown voltage is a minimum
}

File No. 600

Table III. Group B Environmental Sampling Inspection

- Pulsed through a \(25 \mu \mathrm{H}\) inductor; duty factor \(=50 \%\)

\section*{DIMENSIONAL OUTLINE JEDEC TO-60}


\section*{TERMINAL CONNECTIONS}

Mounting Stud, Case, Pin No. 1 - Emitter Pin No. 2 - Base Pin No. 3 - Collector
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ INCHES } & \multicolumn{2}{c|}{ MILLIMETERS } & \multirow{2}{*|}{ NOTES } \\
SYMBOL & MIN. & MAX. & MIN. & MAX. & \\
\hline A & 0.215 & 0.320 & 5.46 & 8.13 & \\
A \(_{1}\) & - & 0.165 & - & 4.19 & 2 \\
ob & 0.030 & 0.046 & 0.762 & 1.17 & 4 \\
oD & 0.360 & 0.437 & 9.14 & 11.10 & 2 \\
oD \(_{1}\) & 0.320 & 0.360 & 8.13 & 9.14 & \\
E & 0.424 & 0.437 & 10.77 & 11.10 & \\
e & 0.185 & 0.215 & 4.70 & 5.46 & \\
e \(_{1}\) & 0.090 & 0.110 & 2.29 & 2.79 & \\
F & 0.090 & 0.135 & 2.29 & 3.43 & 1 \\
J & 0.355 & 0.480 & 9.02 & 12.19 & \\
OM & 0.163 & 0.189 & 4.14 & 4.80 & \\
N & 0.375 & 0.455 & 9.53 & 11.56 & \\
\(\mathrm{~N}_{1}\) & - & 0.078 & - & 1.98 & \\
oW & 0.1658 & 0.1697 & 4.212 & 4.310 & 3.5 \\
\hline
\end{tabular}

NOTES:
1. Dimension does not include sealing flanges
2. Package contour optional within dimensions specified
3. Pitch diameter - 10-32 UNF 2A thread (coated)
4. Pin spacing perimts insertion in any socket having a pin-circle diameter of 0.200 in . \((5.08 \mathrm{~mm}\) ) and contacts which will accommodate pins with a diameter of 0.030 in . \((0.762 \mathrm{~mm}) \mathrm{min}\)., 0.046 in . \((1.17 \mathrm{~mm})\) max.
5. The torque applied to a \(10-32\) hex nut assembled on the thread during installation should not exceed 12 inchpounds.

\title{
Microwave Power-Transistor Reliability as a Function of Current Density and Junction Temperature
}

\author{
by S. Gottesfeld
}

Questions concerning the effect of electromigration-related failure modes on the life of microwave power transistors using an aluminum metallization system are frequently asked. This Note answers these questions as they pertain to RCA microwave power transistors. First, the design aspects of these transistors which aid in reducing the incidence of electromigration failure to a negligible level under normal operating conditions are discussed. Second, supporting life-test data on commercial-level RCA microwave power transistors is presented. The lifetime of the products in this line can be predicted from the data as a function of current density and junction temperature - the two main factors involved in electromigration failure modes.

\section*{Electromigration}

Electromigration of the aluminum in the presence of highcurrent densities and elevated temperatures is well known \({ }^{1}\) and results from the mass transport of metal by momentum exchange between thermally activated metal ions and conducting electrons. As a consequence, the original uniform aluminum film reconstructs to form thin conductor regions and ex-truded-appearing hillocks that may cause device degradation.
The electromigration process can be accompanied by the dissolution of silicon into the aluminum. This dissolution usually occurs during heat treatments employed in transistor manufacturing until the aluminum-silicon saturation point is reached. Therefore, little silicon can dissolve when the device is in normal operation. At high-current densities and elevated temperatures, however, the silicon ions which were diffused into the aluminum during the manufacturing process can be transported along with the aluminum ions undergoing electromigration away from the silicon-aluminum interface and into the aluminum. This situation allows further diffusion of silicon into the aluminum and leads to the eventual failure of the transistor junctions \({ }^{2}\).

\section*{RELIABILITY DESIGN FEATURES}

\section*{Overlay-Transistor Construction}

The basic transistor construction used by RCA for rf power transistors is the "overlay" design. The emitters in this type
of device are separated into many discrete sites which are paralleled for high-power performance. The overlay configuration provides the high ratio of effective emitter periphery to base area \({ }^{3}\) needed for high-power generation at microwave frequencies. In addition, this structure has the advantage of permitting lower current densities in the emitter metallizing stripes than other high-frequency structures. This advantage results from the relatively broad emitter-metal stripes which interconnect the discrete emitters. These stripes are typically 35 microns wide compared to 3 to 5 microns for other interdigitated or matrix designs. Furthermore, the separation of the emitter- and base-metal fingers is 3 to 4 times greater in the overlay structure than competitive. structures. This separation permits the deposition of thicker metal layers with greater cross-sectional areas; and further reduces current densities.

\section*{Polycrystalline Silicon Layer (PSL)}

Another advantage of the overlay transistor structure with its broad emitter fingers and non-critical metal-definition is that it is readily adaptable to the introduction of additional conducting and insulating layers between the aluminum metallization and the shallow diffused emitter sites required for microwave performance. RCA has developed a polycrystalline silicon layer (PSL), shown in Fig.1, which is deposited over the emitter sites and under the aluminum metallization. The PSL forms a barrier between the aluminum emitter finger and the oxide insulating layer over the base; the barrier minimizes failures caused by the interaction of aluminum with silicon dioxide. In addition, the PSL layer helps to minimize thermally induced failure modes by providing a barrier between the aluminum and the shallow-emitter diffused region to prevent "alloy spike" failures; PSL also increases the distance that the silicon ions must travel from emitter-site region to metallization, Fig.1. Therefore, the amount of silicon that can be diffused into the aluminum is limited, and the possibility of device failure as a result of the electromigration of the silicon in the aluminum is reduced.


92CS-22313
Fig. 1 - Cross section of an overlay transistor showing the polysilicon layer (PSL) between the metallization and emitter sites, and how emitter ballasting may be placed in series with each emitter site by controlling the doping and contacting geometry of the PSL.

\section*{Emitter-Site Ballasting}

RCA has utilized the PSL technology as a medium to introduce emitter-site ballasting into its microwave power transistors. Emitter-site ballasting permits more uniform injection across the transistor chips by reducing hot-spotting. By controlling the resistivity of the PSL and restricting the contacting geometry of the aluminum to the PSL layer, a ballast resistor is placed in series with each emitter site, as shown in Fig.1. These resistors function as negative-feedback elements to control that portion of the transistor that is drawing excessive current. Since the overlay construction results in an emitter that is segmented into many sites which are connected in parallel, each hot-spot may be isolated and controlled. Furthermore, the large number of resistors in parallel minimize the effects of excessive emitter resistance on input impedance and gain. In fact, one microwave transistor, the type 2N5921, which had low levels of emitter-site ballasting added to its structure, exhibited a 35 -percent improvement in power output for the same drive level. At the same time, the measurement of the dc safe-operating area, as defined by a \(200^{\circ} \mathrm{C}\) hot-spot junction temperature (infrared measurement), indicated an approximate doubling of the allowable current at 15 volts (see Fig.2).

It is also known that hot-spotting under rf conditions increases as the VSWR increases \({ }^{4}\). Device failures which occur under high VSWR conditions at the output are often related to a forward-bias second-breakdown failure mechanism which is characterized by extremely high localized currents. Thus, it could be expected that an emitter-ballasted transistor would have greater resistance to failure under high VSWR conditions, such as those encountered in some broadband amplifiers. In fact, the 2 -gigahertz power transistors which are site-ballasted, types 2N6265 and 2N6266, have been characterized for their ability to withstand \(\infty: 1\) VSWR at all phases at rated power; the 2 N 6267 has been characterized at a \(10: 1\) VSWR. The 3 -
gigahertz chain of microwave power devices are also siteballasted, and are also rated at a \(10: 1\) VSWR capacity.

\section*{Glass-Passivated-Aluminum Metallization}

The standard metallization system used on all commercial RCA microwave power transistors consists of an evaporated aluminum-silicon film which is defined by means of photolithographic and chemical-etching techniques. The addition of silicon to the aluminum brings the state of the metallization closer to the aluminum-silicon saturation point and retards the electromigration of silicon into the aluminum. Aluminum electromigration is also significantly retarded by the deposition of a glass passivation layer over the aluminum film subsequent to the definition procedures. It has been shown \({ }^{1}\) that the use of glass passivation results in a 40 -percent increase in the activation energy required before electromigration can begin. The silicon-dioxide layer also protects the aluminum from contamination and from scratches or smears that may occur during device assembly.

\section*{OPERATING-LIFE-TEST PROGRAM}

\section*{Test Conditions}

An accelerated operating-life-test program was undertaken to study the effects of electromigration at various current densities on the lifetime of RCA microwave power transistors. DC current-voltage conditions were used since electromigration is responsive to the dc components of the total waveform used in rf applications, i.e., electromigration is effected by the unidirectional components of the field. Tests were run at three different emitter-stripe current densities ( \(\mathrm{J}_{\mathrm{E}}\) ) with each current density in turn run at three different peak junction temperatures \(\left(\mathrm{T}_{\mathrm{j}}\right)\); all tests represented stress levels above normal-


92cs-22571

Fig. 2 - DC infrared safe-area for ballasted and unballasted microwave transistor (2N5921 coaxial packaged).
use conditions. Peak junction temperature was determined by infrared scanning of the transistor pellet at each life-test condition. Table I shows the matrix of test conditions. The sample size per test condition ranged between 10 and 15 units. A total of 114 units were tested.

\section*{TABLE I - ACCELERATED LIFE.TEST CONDITIONS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Collector Current & Emitter Current & Emitter Stripe Current Density & \multicolumn{3}{|l|}{Peak Junction Temperature*
\[
\left({ }^{\circ} \mathrm{C}\right)
\]} \\
\hline (Amperes) & (Amperes) & ( \(\mathrm{A} / \mathrm{cm}^{2}\) ) & \(\mathrm{T}_{\mathrm{j}} \mathbf{1}\) & \(\mathrm{T}_{\mathrm{j}} 2\) & \(\mathrm{T}_{\mathrm{j}} 3\) \\
\hline 1 & 1.02 & \(8.5 \times 10^{4}\) & 300 & 280 & 254 \\
\hline 2 & 2.07 & \(1.7 \times 10^{5}\) & 283 & 258 & 230 \\
\hline 3 & 3.22 & \(2.7 \times 10^{5}\) & 300 & 273 & 240 \\
\hline
\end{tabular}
* Represents peak temperature as averaged over several devices at each life-test condition. External heat-sink size was adjusted to achieve the differences in junction temperature on the life test.

\section*{Test Vehicle}

A type 2N6267 device manufactured by RCA was used as the test vehicle because it operates at one of the highest current densities in the microwave family. This device incorporates all the design features described in the prior sections of this Note, and is considered representitive of the microwave family. All the transistors used on test were commerciallevel devices, i.e., they were not subjected to conventional hi-rel screening prior to life testing.

\section*{Failure Mode}

The accelerated test conditions produced failures due to electromigration of aluminum and silicon as described in the introductory section. The failure indicator was degraded or shorted transistor junctions. RF power output measured at frequent life-test down-periods prior to device junction failure exhibited only slight degradation (typically 8 percent); this performance is excellent considering the severity of the test conditions.

\section*{Data.}

An Arrhenius plot ( \(1 / \mathrm{T}, \log\) scale) of the log-normal median-time-to-failure (MTF) obtained from each test is shown in Fig.3. The curves are extrapolated down from the data points to enable prediction of MTF at operating junction temperatures below the maximum rated \(200^{\circ} \mathrm{C}\). An estimated MTF of \(9.5 \times 10^{5}\) hours (or greater than 100 years) is predicted for the 2N6267 device under test at its typicalapplication current density of \(8.5 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}\) and junction temperature of \(150^{\circ} \mathrm{C}\).


Fig. 3 - Arrhenius plot showing extrapolation to lower temperatures from the life-test MTF points for the 2N6267.


Fig. \(4-M T F\) as a function of current density and junction tem. perature. In applying this chart, it is recommended that no device be used above its maximum ratings as specified in the published data sheet.

Points from each curve in the Arrhenius plot were taken in the temperature range of \(200^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\) and replotted on a log-log scale, Fig.4, for extrapolation over various current densities. Fig. 4 shows the general plot of MTF as a function of emitter-current density and peak-junction temperature. This chart can be used to estimate the MTF for each microwave transistor at its typical operating-current density. Table II lists the transistor types currently in the microwave family, and shows the predicted MTF for typical-application values of emitter current, emitter-stripe current density, and peak junction temperature.


\section*{CONCLUSIONS}

The life-test data presented in this Note shows that the design features of RCA microwave-power transistors assure reliable operation at the current densities and junction temperatures normally encountered in typical applications. Under these operating conditions, the lifetime of these devices in terms of failure due to electromigration is estimated at approximately 100 years.

\section*{ACKNOWLEDGMENT}

The author acknowledges the assistance of D. S. Jacobson in providing information concerning the transistor design descriptions, C. B. Leuthauser in providing microwave-transistor application information, and L. J. Gallace for his comments regarding the reliability aspects of this Application Note.

\section*{REFERENCES}
1. J. R. Black, "Electromigration Failure Modes in Aluminum Metallization for Semiconductor Devices," Proc. IEEE, Vol. 57, pp. 1587-1594, September 1969.
2. J. R. Black,"RF Power Transistor Metallization Failure," IEEE Trans. Electron Devices, Vol. ED-17, No. 9, pp. 800803, September 1970.
3. D. S. Jacobson, "What are the Trade-Offs in RF Transistor Design?," Microwaves, Vol. 11, No.7, July 1972.
4. C. B. Leuthauser,"Hotspotting in RF Power Transistors," RCA Application Note AN-4774.


Solid State Division


\section*{High-Reliability Multi-Purpose 7-Ampere Operational Amplifier}

\author{
For Aerospace, Military, and Critical Industrial Applications
}

\section*{Features:}
- \(30-\mathrm{kHz}\) bandwidth at 60 W
\(\pm\) High output power: up to 100 W (rms)
- High output current: 7 A (peak)
- Built-in load-line limiting to protect amplifier from short-circuit at output terminals
- Stability with resistive or reactive loads
- Reactive-load fault protection

\author{
- Single or split power supply ( 30 to 75 V , total) \\ - Provision for feedback control \\ - Direct coupling to load \\ - Class B output stage \\ - Rugged package with heavy leads \\ - Light weight: 100 grams \\ - Low crossover distortion
}

The RCA-HC2000H "Slash" (/) Series types are complete solid-state hybrid operational amplifiers in metal hermetic packages, especially designed for critical applications in aerospace, military, and industrial equipment. These types are electrically and mechanically interchangeable with the RCAHC 2000 H , but are specially processed and tested to meet the aerospace and military electrical, environmental, and physical test methods and procedures established for microelectronic devices in MIL-STD-883.

These units can be supplied to four screening levels; the number following the slash (/) mark in the type designation, e.g. \(\mathrm{HC} 2000 \mathrm{H} / 1\), indicates the screening level employed by

RCA to achieve the quality and reliability commensurate with the intended application. A description of these levels (/1, /2, \(/ 3\), and /4) is given in Table 1.

Types HC2000H/. . . employ a quasi-complementary-symmetry class B output circuit with built-in load-fault protection and hometaxial output transistors. They can be operated from single or split power supplies.
These amplifiers are recommended for the following applications: servo amplifiers (ac, dc, PWM); deflection amplifiers; power operational amplifiers; audio amplifiers; voltage regulators; and driven inverters.
- Examinations and tests performed in accordance with MIL-STD-883, "Test Methods and Procedures for Microelectronics"
- Total Lot Screening ( \(\mathbf{1 0 0 \%}\) testing) "Group A" (electrical) and "Group \(B^{\prime \prime}\) (environmental) sampling test program
- Choice of 4 distinct screening levels
- Internal visual (precap) inspection performed on all 4 screening levels in accordance with Method 2017 of MIL-STD-883


Fig. 1-Schematic diagram of type HC2000H/. . . power hybrid circuit operational amplifier.
```

MAXIMUM RATINGS, Absolute-Maximum Values:
SUPPLY VOLTAGE:

```

Between leads 1 \& 10
75 V
OUTPUT CURRENT (PEAK)
7 A
TOTAL DISSIPATION:
Per Output Device
See Fig. 2 \& 3
TEMPERATURE RANGE:

Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 to \(+125^{\circ} \mathrm{C}\)
Output-Transistor Junction . . . . . . . . . . . . . . . . . . . -55 to \(+150^{\circ} \mathrm{C}\)
LEAD TEMPERATURE (DURING SOLDERING):
At distance \(\geqslant 1 / 8 \mathrm{in} .(3.17 \mathrm{~mm})\)
from case for 10 s max. . . . . . . . . . . . . . . . . . . . . . . . . . . \(235^{\circ} \mathrm{C}\)
LEAD-BENDING RADIUS (MIN.)
At distance \(\geqslant 0.075\) ( 1.91 mm ) from case . . . . . . . . . . . . . . . . . . . . . . . \(0.04 \mathrm{in} .(1.02 \mathrm{~mm})\)

Table 1 - Descriptions of RCA Screening Levels
\begin{tabular}{|c|c|c|c|}
\hline RCA Level & Approximates MIL-STD-883 & Application & Description \\
\hline /1 & Class A with Condition B Precap Visual Inspection & Aerospace and Missiles & For devices intended for use where maintenance and replacement are impossible and reliability is imperative \\
\hline /2 & Class A with Condition B Precap Visual Inspection. Centrifuge and Radiographic Inspection Omitted & Aerospace and Missiles & For devices intended for use where maintenance and replacement are extremely difficult or impossible and reliability is imperative \\
\hline /3 & Class B & Military and Industrial; For example, in Airborne Electronics & For devices intended for use where maintenance and replacement can be performed but are difficult and expensive \\
\hline 14 & Class C & Military and Industrial; For example, in GroundBased Electronics & For devices intended for use where replacement can readily be accomplished \\
\hline
\end{tabular}

Total Lot Screening Flow Chart


Table 2 - Lot Acceptance Data
\begin{tabular}{|c|c|c|c|}
\hline & Levels & Included With Order & On Request \\
\hline \multicolumn{4}{|l|}{Conditioning Screens (100\% Testing; see Table 3)} \\
\hline a) Final electrical test data & /1, /2, /3, /4 & \(\checkmark\) & - \\
\hline b) Radiographic inspection & 11 & \(\sqrt{ }\) & - \\
\hline c) Pre-burn-in electrical test data & /1, /2 & - & \(\checkmark\) \\
\hline d) Precap visual by customer's inspector & /1. \(/ 2\) & - & \(\checkmark\) \\
\hline Group A (Lot Sampling; see Table 7) & /1, \(12, / 3\) & - & \(\checkmark\) \\
\hline Group B (Lot Sampling; see Table 8) & /1, 2,13 & - & \(\sqrt{ }\) \\
\hline
\end{tabular}

Note: If several shipments are made from a specific production lot, Group \(A\) and \(B\) data will be supplied for only the first shipment.

Table 3 - Description of Total Lot Screening (X indicates 100-per-cent testing)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Test} & \multirow{2}{*}{Conditions} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{4}{|l|}{Screening Levels} \\
\hline & & Method & Conditions & 11 & 12 & /3 & 14 \\
\hline 1. Serialize & - & - & - & X & X & x & X \\
\hline 2. Precap Visual & - & 2017 & - & X & X & X & X \\
\hline & Semiconductor Die & 2010 & - & X & X & X & X \\
\hline 3. Preseal Bake & \(2 \mathrm{hrs} . \mathrm{min}\). at \(150^{\circ} \mathrm{C} \mathrm{min}\). & & & X & \(x\) & X & X \\
\hline 4. Seal & - & - & - & X & \(x\) & X & \(x\) \\
\hline 5. Stabilization Bake & 16 hrs . at \(150^{\circ} \mathrm{C}\) min. & 1008 & C & X & \(x\) & X & \(x\) \\
\hline 6. Temperature Cycling & 10 cycles & 1010 & C & X & X & X & X \\
\hline 7. Mechanical Shock & 5 pulses, Y1 direction & 2002 & B & X & X & & \\
\hline 8. Centrifuge & Y1 direction only & 2001 & 1500 g & X & & & \\
\hline 9. Fine Leak & - & 1014 & A & X & X & X & X \\
\hline 10. Gross Leak & - & 1014 & C & X & X & X & X \\
\hline 11. Pre-Burn-In Electrical & See Table 4 & - & - & X & X & X & \\
\hline 12. Burn-In (Accelerated thermal fatigue) & 4 hrs. See Fig. 17 & - & - & X & X & X & \(x\) \\
\hline 13. Final Electrical \(25^{\circ} \mathrm{C}\) & See Table 6 & - & - & X & X & X & X \\
\hline -55 and \(+125^{\circ} \mathrm{C}\) & See Table 6 & - & - & X & x & & \\
\hline 14. Radiographic Inspection & X2, Y2, Z 1 & 2012 & - & X & & & \\
\hline 15. External Visual & - & 2009 & - & X & X & X & X \\
\hline
\end{tabular}

Table 4 - Pre-Burn-In Electrical Tests at case temperature \(\left(T_{C}\right)=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multicolumn{5}{|c|}{Test Conditions} & \multicolumn{2}{|l|}{Limits} & \multirow[b]{2}{*}{Units} \\
\hline & & Supply Voltage \(\left(V_{S}\right) \cdot V\) & Freq.
\[
(f)-\mathrm{kHz}
\] & \begin{tabular}{l}
Output \\
Power ( \(\mathrm{P}_{\mathrm{O}}\) )-W
\end{tabular} & Load Resist. \(\left(R_{L}\right) \cdot \Omega\) & Test Circuit (Fig.) & Min. & Max. & \\
\hline Open-Loop Voltage Gain & \(\frac{V_{\text {OUT }}}{V_{\text {IN }}}\) & \(\pm 37.5\) & 1 & 25 & 4 & 16 & 2400 & - & V/V \\
\hline Bandwidth & \(\mathrm{f}_{\mathrm{H}}\) & \(\pm 37.5\) & - & 1 & 4 & 19 & 43 & - & kHz \\
\hline Quiescent Current & \({ }^{1} \mathrm{O}\) & \(\pm 37.5\) & - & - & - & 18 & - & \(\pm 30\) & mA \\
\hline Offset Voltage & \(V_{\text {offset }}\) & \(\pm 37.5\) & - & - & 4 & 18 & - & \(\pm 250\) & mV \\
\hline Maximum Voltage Swing & V OUT & \(\pm 26\) & 1 & 100 & 4 & 19 & \(\pm 28\) & - & V \\
\hline Short-Circuit Current & \({ }^{\prime}\) S & \(\pm 37.5\) & 1 & - & 0.5 & 19 & - & \(\pm 3.5\) & A \\
\hline
\end{tabular}

Table 5 - Characteristics not Measured in Screening Procedures
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & Test Condition & \multicolumn{2}{|r|}{Limits} & \multirow[b]{2}{*}{Units} \\
\hline & & Supply Voltage
\[
\left(V_{S}\right) \cdot V
\] & Max. & Typical & \\
\hline Signal-to-Noise Ratio (Source impedance \(600 \Omega\) ) & S/N & \(\pm 37.5\) & - & +78 & dB \\
\hline Thermal Resistance per output device (junction-to-case) & \(\mathrm{R}_{\theta \mathrm{JC}}\) & - & 2 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline Common-Mode Input Voltage Range & & - & - & \[
\begin{aligned}
& +V_{S}-5 V \\
& -V_{S}+5 V
\end{aligned}
\] & V \\
\hline
\end{tabular}

Table 6 - Final Electrical Tests (Post-Burn-in)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristic} & \multirow{3}{*}{Symbol} & \multicolumn{5}{|c|}{Test Conditions} & \multicolumn{6}{|c|}{Limits At Indicated Temperatures} & \multirow{3}{*}{Units} \\
\hline & & \multirow[t]{2}{*}{Supply Voltage ( \(V_{S}\) )-V} & \multirow[b]{2}{*}{Freq.
(f)-kHz} & \multirow[t]{2}{*}{Output Power ( \(\mathrm{P}_{\mathrm{O}}\) )-W} & \multirow[t]{2}{*}{Load Resist. ( \(\mathrm{R}_{\mathrm{L}}\) ) \(\Omega\)} & \multirow[t]{2}{*}{Test Circuit (Fig.)} & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & & & & & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \\
\hline \begin{tabular}{l}
Open-Loop \\
Voltage Gain
\end{tabular} & \(\frac{v_{\text {OUT }}}{v_{\text {IN }}}\) & \(\pm 37.5\) & 1 & 25 & 4 & 16 & 2000 & 2400 & 2000* & - & - & - & V/V \\
\hline Closed-Loop Voltage Gain & \(\frac{\mathrm{v}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\) & \(\pm 37.5\) & 1 & 1 & 4 & 19 & 26 & 26 & 26 & - & - & - & V/V \\
\hline Bandwidth & \({ }^{\mathrm{f}} \mathrm{H}\) & \(\pm 37.5\) & - & 1 & 4 & 19 & - & 43 & - & - & - & - & kHz \\
\hline Quiescent Current & Io & \(\pm 37.5\) & - & - & - & 18 & - & - & - & - & \(\pm 30\) & - & mA \\
\hline Offset Voltage & \(V_{\text {offset }}\) & \(\pm 37.5\) & - & - & 4 & 18 & - & - & - & \(\pm 350\) & \(\pm 250\) & \(\pm 350\) & mV \\
\hline Total Harmonic Distortion & THD & \(\pm 37.5\) & 1 & 60 & 4 & 19 & - & - & - & - & 0.5 & - & \% \\
\hline Maximum Voltage Swing & \(V_{\text {OUT }}\) & \(\pm 37.5\) & 1 & 100 & 4 & 19 & 24 & 28 & 24* & - & - & - & V \\
\hline Short-Circuit Current & 's & \(\pm 26\) & 1 & - & 0.5 & 19 & - & - & - & - & 3.5 & - & A \\
\hline Input Impedance & \(z_{\text {IN }}\) & \(\pm 37.5\) & - & - & - & 15 & - & 16 & - & - & - & - & \(\mathrm{k} \Omega\) \\
\hline Slew Rate & SR & \(\pm 37.5\) & 1 & 100 & 4 & 19 & - & 5 & - & - & - & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Maximum Power & \(\mathrm{P}_{\text {max }}\) & \(\pm 37.5\) & \(\cdot 1\). & 100 & 4 & 19 & 72 & 100 & 72* & - & - & - & W \\
\hline
\end{tabular}

\footnotetext{
* Pulse test; duration \(<500 \mathrm{~ms}\).
}
\(\qquad\)

Table 7 - Group A Electrical Sampling Inspection MIL-M-38510 A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{LTPD \({ }^{\bullet}\)} & \multirow{5}{*}{Characteristic} & \multirow{5}{*}{Symbol} & \multirow[b]{5}{*}{Test Circuit (Fig.)} & \multicolumn{6}{|c|}{\multirow[b]{3}{*}{Limits At Indicated Temperatures}} & \multirow{5}{*}{Units} \\
\hline \multicolumn{6}{|c|}{Screening Level} & & & & & & & & & & \\
\hline \multicolumn{3}{|c|}{11, 12} & \multicolumn{3}{|c|}{/3, \(/ 4\)} & & & & & & & & & & \\
\hline \multicolumn{6}{|c|}{Temp \({ }^{\circ} \mathrm{C}\)} & & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline -55 & +25 & +125 & -55 & +25 & +125 & & & & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) & \(+25^{\circ} \mathrm{C}\) & \(+125^{\circ} \mathrm{C}\) & \\
\hline \multirow{11}{*}{\[
7 \%
\]} & \multirow[t]{11}{*}{\[
\begin{aligned}
& \text { i } \\
& \text { 5\% } \\
& \text { | }
\end{aligned}
\]} & \multirow[t]{11}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{11}{*}{}} & \multirow[t]{11}{*}{} & Open-Loop Voltage Gain & \(\frac{V_{\text {OUT }}}{V_{\text {IN }}}\) & 16 & 2000 & 2400 & 2000* & - & - & - & V/V \\
\hline & & & & & & Closed-Loop Voltage Gain & \(\frac{V_{\text {OUT }}}{V_{\text {IN }}}\) & 19 & 26 & 26 & 26 & - & - & - & V/V \\
\hline & & & & & & Bandwidth & \({ }^{\mathrm{f}} \mathrm{H}\) & 19 & - & 43 & - & - & - & - & kHz \\
\hline & & & & & & Quiescent Current & \({ }^{1} 0\) & 18 & - & - & - & - & \(\pm 30\) & - & mA \\
\hline & & & & & & Offset Voltage. & \(V_{\text {offset }}\) & 18 & - & - & - & \(\pm 350\) & \(\pm 250\) & \(\pm 350\) & mV \\
\hline & & & & & & Total Harmonic Distortion & THD & 19 & - & - & - & - & 0.5 & - & \% \\
\hline & & & & & & Maximum Voltage Swing & VOUT & 19 & 24 & 28 & 24* & - & - & - & V \\
\hline & & & & & & Short-Circuit Current & I's & 19 & - & - & - & - & 3.5 & - & A \\
\hline & & & & & & Input Impedance & \(Z_{\text {IN }}\) & 15 & - & 16 & - & - & - & - & \(k \Omega\) \\
\hline & & & & & & Slew Rate & SR & 19 & - & 5 & - & - & - & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & & & & & & Maximum Power & \(P_{\text {max }}\) & 19 & 72 & 100 & 72* & - & - & - & W \\
\hline - L & ole & P & t & efective & & & & * Pu & ; d & \(n<5\) & 500 ms & & & & \\
\hline
\end{tabular}

Table 8 - Group B Environmental Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Subgroup} & \multirow{2}{*}{Test} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{2}{|r|}{Lot Tolerance \% Defectives} \\
\hline & & Reference & Conditions & \[
\begin{aligned}
& \text { Levels } \\
& \text { 1,/2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Levels } \\
& / 3, / 4
\end{aligned}
\] \\
\hline 1 & Visual and Mechanical and Marking Permanency Physical Dimensions & 2008
2008 & \begin{tabular}{l}
Test Cond. B 10X mag. \\
Test Cond. A per Dimen. Outline
\end{tabular} & 10 & 15 \\
\hline 2 & Solderability & 2003 & Temperature \(230 \pm 5^{\circ} \mathrm{C}\) & 10 & 15 \\
\hline 3 & Temperature Cycling & 1010 & Test Cond. C, 25 cycles & & \\
\hline 4 & Mechanical Shock & 2002 & Test Cond. B, \(0.5 \mathrm{~ms}, 5\) blows Y1 direction only & 10 & 15 \\
\hline & Constant Acceleration & 2001 & Test Level 1500 g Y1 direction only & & \\
\hline 5 & \begin{tabular}{l}
Lead Fatigue \\
Fine Leak \\
Gross Leak
\end{tabular} & \[
\begin{aligned}
& 2004 \\
& 1014 \\
& 1014
\end{aligned}
\] & Test Cond. B, per Fig. 20 Test Cond. A, \(5 \times 10^{-7} \mathrm{~min}\). Test Cond. C & 10 & 15 \\
\hline 6 & High Temp. Storage & 1008 & Test Cond. C, 1000 hrs . & 7 & 15 \\
\hline 7 & Operating Life & 1005 & \begin{tabular}{l}
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 1000 \mathrm{hrs}\). \\
Test Circuit-see Fig. 17
\end{tabular} & 7 & 10 \\
\hline 8 & Bond Strength & 2011 & Test Cond. D & \[
\begin{aligned}
& 10 \text { devices } \\
& \leqslant 1 \% \text { def. }
\end{aligned}
\] & \[
\begin{aligned}
& 10 \text { devices } \\
& \leqslant 1 \% \text { def. }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 9 - Group B Electrical Test Limits
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Characteristic} & \multirow{2}{*}{Symbol} & \multirow[t]{2}{*}{Test Circuit (Fig.)} & \multicolumn{2}{|c|}{Limits} & \multirow{2}{*}{Units} \\
\hline & & & Min. & Max. & \\
\hline Offset Voltage & \(V_{\text {offset }}\) & 18 & -275 & +275 & mV \\
\hline Maximum Power & \(P_{\text {max }}\) & 19 & 90 & - & W \\
\hline Voltage Gain (Open Loop) & \(\frac{V_{\text {out }}}{V_{\text {in }}}\) & 16 & 2000 & - & V/V \\
\hline Total Harmonic Distortion & THD & 19 & - & 0.6 & \% \\
\hline Short-Circuit Current & \({ }^{\prime} \mathrm{S}\) & 19 & \(\pm 1.5\) & \(\pm 4.0\) & A \\
\hline
\end{tabular}

\section*{TYPICAL CURVES}


Fig. 2-Dissipation (average) derating curve for each output transistor (for symmetrical waveforms with \(f>40 \mathrm{~Hz}\) ).


Fig. 3-Dissipation (dc) derating curve for each output transistor.

\section*{TEST ARRANGEMENTS AND PROCEDURES}


Fig. 4-Circuit for measurement of common-mode input impedance.

PROCEDURE FOR MEASUREMENT OF COMMON-MODE INPUT IMPEDANCE
a) Insert unit
b) Apply \(\pm 37.5 \mathrm{~V}\)
c) Close S1
d) Adjust signal generator for 1 V on voltmeter V 1
e) Open S1
f) Read voltmeter V1
g) Input impedance \(=(10 \mathrm{k}) \times \frac{\mathrm{V} 1}{1-\mathrm{V} 1}\)

Note: Circuit under test must have a heat sink so that \(\mathrm{T}_{\mathrm{C}} \approx 25^{\circ} \mathrm{C}\), unless otherwise noted.


Fig. 5-Circuit for measurement of open-loop gain.

\section*{PROCEDURE FOR MEASUREMENT OF OPEN-LOOP GAIN}
a) Insert unit
b) Apply \(\pm 37.5 \mathrm{~V}\)
c) Set generator at 1 kHz and adjust until
\(\mathrm{V} 1=10 \mathrm{~V} \mathrm{rms}\)
d) Read V2
e) Open-loop gain \(=V 1 / \vee 2\)


Fig. 6- Circuit for burn-in and life test.
1. BURN-IN (ACCELERATED THERMAL FATIGUE) PROCEDURE
a) Set R1 = 0, close S1
b) Insert unit
c) Apply \(\pm 27.5 \mathrm{~V}\)
d) Adjust R1 for 13.0 V AC across load
e) Monitor flange temperature and adjust R1 (if necessary) so that flange temperature stabilizes at \(135^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\)
f) Total power dissipation \(\approx 35 \mathrm{~W}\)
g) Cycle switch S 1 ; time on \(=2.5 \mathrm{~min} .\), time off \(=2.5 \mathrm{~min}\).
h) Cool flange during off-cycle to \(45^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) in moving air.
2. LIFE-TEST PROCEDURE
a) Set R1 = 0, close S1
b) Insert unit
c) Apply \(\pm 27.5 \mathrm{~V}\)
d) Adjust R 1 so that flange temperature stabilizes at \(75^{\circ} \mathrm{C}\) max.
e) Cycle switch S1: time on \(=2.5 \mathrm{~min}\)., time off \(=2.5 \mathrm{~min}\).
f) Cool flange during off-cycle to \(45^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}\) in moving air.


Fig. 7-Circuit for measurement of offset voltage and quiescent current.

PROCEDURE FOR MEASUREMENT OF OFFSET VOLTAGE AND QUIESCENT CURRENT
\(A=D C\) ammeter 100 mA range
\(V=D C\) voltmeter \(\pm 250 \mathrm{mV}\) range
a) Close S1
b) Insert unit
c) Apply \(\pm 37.5 \mathrm{~V}\)
d) Read offset voltage on voltmeter. Change polarity if required.
e) Open S1
f) Read positive and negative quiescent current on ammeter.


Fig. 8- Circuit for measurement of closed-loop voltage gain, total harmonic distortion, maximum voltage swing, maximum power, short-circuit current, bandwidth, and slew-rate.
1. PROCEDURE FOR MEASUREMENT OF CLOSED-LOOP VOLTAGE GAIN
a) Insert unit
b) Adjust signal generator to \(1 \mathrm{kHz}, \mathrm{V} 2=0\)
c) Apply \(\pm 37.5 \mathrm{~V}\)
d) Adjust signal generator for 2 V rms on voltmeter V 1
e) Read voltmeter V2
f) Voltage gain \(=\frac{V 1}{V 2}\)

\section*{2. PROCEDURE FOR MEASUREMENT OF TOTAL HARMONIC DISTORTION}
a) Adjust signal generator for 15.5 V rms on V 1
b) Adjust distortion analyzer. Record the meter reading as Total Harmonic Distortion (THD).
3. PROCEDURE FOR MEASUREMENT OF MAXIMUM VOLTAGE SWING AND MAXIMUM POWER
a) Adjust signal generato for maximum output on scope No. 1 with no clipping. Read peak voltage as maximum voltage swing.
b) Read V1 ( Maximum power \(=\frac{\mathrm{V}_{1}{ }^{2}}{4}\)
4. PROCEDURE FOR MEASUREMENT OF SHORT-CIRCUIT CURRENT
a) Lower power supply to \(\pm 26 \mathrm{~V}\)
b) Momentarily replace 4 -ohm load with 0.5 -ohm load
c) Scope No. 1 must show symmetrical square wave of less than \(\pm 1.75 \mathrm{~V}\)
5. PROCEDURE FOR MEASUREMENT OF BANDWIDTH
a) Raise power supply to \(\pm 37.5 \mathrm{~V}\)
b) Adjust signal generator at 43 kHz to 2 V rms on V1
c) Adjust distortion analyzer and verify that THD \(<0.5 \%\)
6. PROCEDURE FOR MEASUREMENT OF SLEW RATE
a) Replace signal generator with square-wave generator
b) Adjust generator for 500 Hz and V1 \(=40 \mathrm{~V}\) peak-to-peak.
c) Read time required for swing from peak to peak.
d) Slew rate \(=\frac{40 \mathrm{~V}}{\text { Measured time }}\)


DIMENSIONAL OUTLINE
 (MILLIMETERS)


92CS-18037R2

\section*{TERMINAL CONNECTIONS}

\section*{Pin No.}

\section*{Connection}
\begin{tabular}{lll}
1 & \(-V_{S}\) & Negative supply voltage \\
2 & \(\mathrm{~V}_{\text {FB }}\) & Feedback voltage \\
3 & VOUT \(^{\text {OUT }}\) & Output voltage \\
4 & PC & Phase compensation \\
5 & GND & Ground \\
6 & BP & Base plate (internal \\
& & connection) \\
7 & \(+V_{\text {IN }}\) & Non-inverting input \\
8 & GND & Ground \\
9 & \(-V_{\text {IN }}\) & Inverting input \\
10 & \(+V_{S}\) & Positive supply voltage
\end{tabular}

\section*{High-Reliability Thyristors}

\section*{High-Reliability Thyristors}

RCA offers, on a custom basis, high-reliability versions of a variety of standard-product thyristors (triacs and SCR's). These devices may be processed and screened to any of four different reliability levels that are approximately equivalent to, or exceed, the reliability classes (JAN, JANTX and JANTXV) defined by MIL-S-19500. They are supplied in hermetic packages that meet the stringent mechanical and environmental requirements of military, aerospace, and critical industrial applications. Fig. 4-1 shows the package options available for RCA high reliability triacs and SCR's.

\section*{Basic Reliability Considerations}

RCA high-reliability thyristors are the result of careful design and screening and of careful adherence to basic reliability-assurance techniques.

A good basic design is essential for devices for which an assured high degree of reliability is a prime requirement. Any standard-product RCA triac or SCR selected to undergo high-reliability processing, therefore, is subjected to extensive design evaluations. RCA assesses the inherent reliability of each device type under conditions that simulate the types of service for which the device may be employed in recommended applications.

Testing to failure is one method that RCA uses for device reliability evaluations. The natural boundaries of any life-test program used to evaluate device reliability, however, are time and the number of available samples. Accelerated testing is an accepted technique used to obtain meaningful information in a reasonable time from a limited number of samples. In this testing, the sample devices are subjected to stresses that exceed rated or normal operating conditions for relatively short periods in order to generate failures that would normally occur under typical conditions over longer stress periods. If true acceleration exists, the results can be extrapolated to predict the mean time to failure under typical operating conditions. A device that survives the abnormal stresses of accelerated life tests is presumed to be very reliable when subjected to the less stringent conditions encountered in actual use. RCA uses accelerated life tests in evaluation of high-reliability thyristors.

The operating conditions that a device is subjected to in an actual system application have an important bearing on its reliability. A numerical expression of reliability is meaningless unless the prevailing electrical, mechanical, and environmental conditions under which the reliability was assessed are also specified, because if these conditions are altered, the numerical value may also be changed. Reliability specifications, therefore, must define limit values for the electrical, mechanical, and environmental conditions that affect the life or behavior of a device.

RCA defines the limiting operating conditions and requirements of the system and of the circuit in which a device is to be used and specifies in detail the necessary device parameters.

The equipment manufacturer must select devices tor his system that can safely withstand the mechanical and environmental conditions they may be expected to encounter in the application. In addition, he must design his circuits so that the system does not impose any excess electrical strains that may adversely affect the life or performance of the devices and thereby reduce over-all system reliability. Special care must be taken to assure that no maximum rating of a device is exceeded under any condition of equipment operation. The equipment designer should also realize that the maximum and minimum ratings specified for the devices are worst-case limits. A reliable equipment design should be conservative so that devices are not operated at or near maximum ratings.
In the design of equipment and circuits that use RCA high-reliability triacs and SCR's, the designer should adhere strictly to the specifications that govern the use of such devices.

\section*{Failure Analysis}

The various problems encountered with thyristors may be categorized in two large groups, as indicated in the following listings:
1. Manufacturing defects
2. Application faults
a. Overvoltage, surface or bulk
b. di/dt, overvoltage turn-on
(1) di/dt turn-on
(2) Gated turn-on
(3) Gate noise turn-on
c. Gate dissipation, forward-reverse interchanged cathode
d. Surge
e. Overload
f. Hermeticity

Manufacturing defects, and the required corrective actions, are clearly the responsibility of the device manufacturer. In application defects, the user and the manufacturer have a joint responsibility. Experience has shown that, in general, application defects outnumber design or manufacturing defects by at least an order of magnitude. Such problems can usually be solved, however, through careful analysis and close communication between manufacturer and user.

Applications faults fall into several general categories. The first and most prevalent is that arising from overvoltage. Overvoltage damage can be either in the bulk of the device, at defects in the crystal, at diffusion irregularities, or at localized spots on the surface. The concentration of power dissipation at these small areas causes material degradation in either the silicon or the encapsulating materials at the edge. Closely associated with overvoltage turn-on, is a di/dt stress that results from turn-on initiated by the overvoltage. If overvoltage turn-on is accomplished without damage within the chip, a danger is still present in that the current


Fig. 4-1-Packages used for RCA high-reliability triacs and SCR's.
resulting from the thyristor turn-on is concentrated in the small area within which turn-on began. Such localized current conduction can result in over-temperature in a small area. In turn-on initiated from overvoltage, the mechanism to cause spreading of the current is not present. The di/dt capability for a thyristor turned on from overvoltage is much lower than the di/dt capability of the thyristor turned on by a gate signal. As a result, even though the di/dt in a circuit might be at a very comfortable level for gated turn-on, it may exceed the overvoltage turn-on di/dt capability. Often, during an examination of the damaged area of the chip, it is difficult to determine whether the failure is caused by the initial overvoltage or the initial rise of current. Both types of faults result in small burnt areas through the chip bulk or at the edge.

The di/dt capability for gated turn-on is high but it can still be exceeded, particularly with very low values of gate drive. A gated di/dt failure in RCA devices always occurs at the inside edge of the n-type emitter, which is the area at which conduction begins. This type of failure results in a small area of molten silicon. Such a failure mechanism is easily seen in the chip. Most users today are conscious of the fact that adequate gate signal must be provided, particularly in applications involving fast rising pulses of large magnitude. Frequently, analyses are made of devices from such circuits in which adequate gate signal is provided and yet di/dt failures that stem from inadequate gate signal are found. The conclusion is that turn-on is initiated by noise in the gate circuit somewhere, and the designer of the equipment must correct these unwanted signals.

Failure may also result because of gate overdissipation. RCA thyristors have relatively large gates and robust gate leads, so that a good deal of dissipation is acceptable. The dissipation limit, however, can be exceeded. A triac will operate as a triac when the gate lead is inadvertently interchanged with the Main Terminal No. 1. The gate area is much smaller than the Main Terminal No. 1 area, and if full current flows, the gate will be damaged. Triac gate damage often destroys blocking voltage in the first quadrant without damage to the blocking voltage in the third quadrant. A consistent failure of first quadrant blocking voltage, therefore, suggests gate damage.

Short-time surge failure generally results from a gross melting of silicon over much of the cathode or main terminal areas. In some RCA packages for lower-current devices, the internal leads fuse at several hundred amperes of short-circuit current. Consequently if a device fails because the internal leads of a device are fused, it may be assumed that a momentarily shorted load condition existed. Overload results from a long duration of current in excess of the steady-state rated current which causes a gradual heat build up. The first area to be attacked is the ohmic contact system. In an overload failure, the high-temperature solder used on the chip melts and flows out from under the chip. This flow, which occurs prior to a resulting gross degradation of the ohmic contact system and pellet, characterizes overload failure.

Hermeticity failures on hermetic devices generally lead to the presence of ionizable material in the encapsulated resin next to the surface. This condition leads to surface current, surface inversion layers, a reduction in a device blocking-voltage capability, and increased blocking leakage current because of the high surface current. Therefore, it is particularly important to maintain hermeticity on hermetically sealed devices. For device failure because of degraded blocking characteristic, a gross and time leak check is performed before any inspection for other possible defects.

The most significant factor in the control failures is careful process control in the factory and communication between users and manufacturers in application defects.

\section*{Basic Reliability Testing}

The most important factors in the control of manufacturing defects arise through knowledge of the device design and tight process control in manufacture. Nothing that can be done in terms of statistics or testing comes close to the importance of good process control in manufacture. This control is complemented by reliability testing to monitor product capability. During the development phase, various reliability tests are conducted by the product development group. During the early production phase, the device capability is monitored by an engineering reliability group. During normal production, the manufacturing-plant quality-control department regularly performs various mechanical, environmental, and life tests. Fig. 4-2 outlines the basic tests and analyses performed in reliability evaluations of RCA thyristors.

The high-temperature blocking test exposes the device to the maximum blocking voltage and the maximum operating temperature. The blocking test is followed by thermal-fatigue testing during which the rated current is passed through the thyristor, and the resulting power dissipation is used to heat the device to the maximum junction temperature. The current is then interrupted, and the thyristor is cooled rapidly. Thousands of thermal cycles are accumulated to verify the mechanical soundness of the pellet and its mounting system.

During the operating life tests, synthetic switching circuits simultaneously apply maximum current and maximum voltage to the device at the normal line frequency and maximum rated case temperature. This type of testing simulates actual operating conditions. Hightemperature storage is used to accentuate instability that may exist at the surface of the device. Temperature cycling, surge, vibration, and shock are the familiar environmental tests used to assess the mechanical robustness of the package, the pellet, and the leadattachment system. Surge testing stresses the ohmic contact system of the device to assure that low thermal resistance and an even distribution is maintained under the surge condition.

During the development phase, these tests are generally performed on a step-stress basis. During the quality control phase, they are conducted at rated conditions.


Fig. 4-2--Outline of reliability evaluations performed on RCA thyristors.

The data obtained from life testing can provide some statistical representation of failure rate. Fig. 4-3 shows an example of a method used to represent failure rate in the United States Military Handbook on "Reliability of Electronic Components." The curves shown present


Fig. 4-3-Failure rates (in failures per \(10^{6}\) hours) for MIL-S-19500 transistors, (for power transistors, 1 watt or greater at \(T_{A}=25^{\circ} \mathrm{C}\) multiply values shown by two) and for the RCA-2N5442 40-ampere triac (dashed line).
failure rates for transistors as a function of temperature. However, because the blocking junctions in thyristors typically form a p-n-p transistor structure, use of these derating curves for thyristors is justified when sufficient test data are available. Different failure rates have been projected from the statistical summing of experimental data. A derating curve that describes the failure rate of an RCA-2N5442 40-ampere triac is superimposed (dashed line) on the family of transistor derating curves shown in Fig. 4-3. As indicated by this curve, the failure rate of the 2N5442 triac (and of other thyristors that have been studied) is similar to that for other silicon power devices.

\section*{Processing and Screening}

RCA high-reliability thyristors that are subjected to high-reliability preconditioning and screening in accordance with the Group A, B, and C Sampling Tests as specified in MIL-STD-750 or special customer requirements can be obtained on a custom basis. These thyristors can be supplied to four basic reliability levels that are approximately equivalent to, or exceed, the reliability classes (JAN, JANTX, JANTXV) defined by MIL-S-19500.

Fig. 4-4 shows the basic processing steps required for RCA high-reliability thyristors for each reliability level, and Table 4-1 lists the screening tests to which these devices are subjected. Tables 4-2, 4-3, and 4-4 list the Groups A, B, and C Sampling Tests and the test methods specified by MIL-STD-750.

LEVEL


Fig. 4-4-Basic processing and screening required for RCA high-reliability triacs and SCR's.

Table 4-1- Screening Tests for High-Reliability Thyristors
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{MIL-STD-750} & \multicolumn{4}{|l|}{Screening Levels} \\
\hline Test & Condition & Method & Conditions & 1 & 2 & 3 & 4 \\
\hline 1. Precap visual & 20 power & & & X & & & \\
\hline 2. Seal and lot identification & & & & X & X & X & X \\
\hline 3. High-temperature Storage & 24 hrs . at \(150^{\circ} \mathrm{C}\) & 1031 & & X & X & & \\
\hline 4. Temperature cycling & Low temperature per device & 1051 & F & X & X & & \\
\hline 5. Acceleration & \(\mathrm{Y}_{1}\) direction & 2006 & & X & X & & \\
\hline 6. Hermeticity-fine leak & & 1071 & H & X & X & X & \\
\hline 7. Hermeticity-gross leak & & 1071 & D & X & X & & \\
\hline 8. Serialize & & & & X & & & \\
\hline 9. Preburn-in electricalrecord & & & & X & & & \\
\hline 10. Preburn-in electrical & & & & & X & X & X \\
\hline 11. Burn-in & 24 to 168 hrs.; \(100^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & & & X & X & X & X \\
\hline 12. Post burn-in electrical & & & & & X & X & X \\
\hline 13. Post burn-in electricalrecord \(\Delta\) 's & & & & X & & & \\
\hline 14. Final electrical & & & & X & X & & \\
\hline 15. Hermeticity-fine leak & & & & X & X & & \\
\hline 16. Hermeticity-gross leak & & & & X & & & \\
\hline 17. Radiographic & & 2076 & & X & & & \\
\hline 18. External visual & & 2071 & & X & & & \\
\hline
\end{tabular}

\section*{Table 4-2- Group A Tests}
\begin{tabular}{|c|c|c|}
\hline Subgroup & Test MIL & \begin{tabular}{l}
MIL-STD-750 \\
Method
\end{tabular} \\
\hline 1 & Visual & 2071 \\
\hline 2 & Forward blocking current & 4206.1 \\
\hline 2 & Reverse blocking current & 4211.1 \\
\hline 3 & \multicolumn{2}{|l|}{High-temp. forward blocking current} \\
\hline 3 & \multicolumn{2}{|l|}{High-temp. reverse blocking current} \\
\hline 3 & High-temp. gate-trigger voltage or gate-trigger current & 4221.1 \\
\hline 3 & Exponential rate of voltage rise & 4231.2 \\
\hline 4 & Gate-trigger voltage or gate-trigger current at \(25^{\circ} \mathrm{C}\) & \\
\hline 4 & Gate-controlled turn-on time & 4223 \\
\hline 4 & Circuit-commutated turn-off time & 4224 \\
\hline 4 & Gate-controlled turn-off time & 4225 \\
\hline 4 & Forward "on" voltage & 4226.1 \\
\hline 4 & Holding current & 4201.2 \\
\hline
\end{tabular}

\section*{Technical Data}

Electrical ratings and gate or turn-off-time characteristics for RCA triacs and SCR's for which high-reliability versions can be obtained are shown in the data charts on the following pages.

Table 4-3- Group B Tests
\begin{tabular}{lc} 
Test & \begin{tabular}{c} 
MIL-STD-750 \\
Method
\end{tabular} \\
Reverse gate current & 4219 \\
Surge current & 4066 \\
Temperature cycling & 1051 \\
Thermal shock (glass strain) & 1056 \\
Terminal strength & 2036 \\
Moisture resistance & 1021 \\
AC blocking voltage & - \\
\hline
\end{tabular}

Table 4-4- Group C Tests
\begin{tabular}{clc} 
Subgroup & \multicolumn{1}{c}{ Test } & \begin{tabular}{c} 
MIL-STD-750 \\
Method
\end{tabular} \\
1 & Physical dimensions & 2066 \\
2 & Shock & 2016 \\
2 & Vibration, variable-frequency & 2056 \\
2 & Constant acceleration & 2006 \\
3 & Barometric pressure & 1001 \\
4 & Salt atmosphere & 1041 \\
5 & Solderability & 2026 \\
6 & Intermittent life & -
\end{tabular}

Thyristors
Solid State Division

\section*{40-A Silicon Triacs}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{GATE CHARACTERISTICS} & SYMBOL & TYP. & MAX. & UNITS \\
\hline DC Gate-Trigger Current:
\[
\begin{aligned}
\text { For } \mathrm{v}_{\mathrm{D}} & =12 \mathrm{~V}(\mathrm{dc}) \\
R_{\mathrm{L}} & =30 \Omega \\
T_{C} & =25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{gathered}
\text { Mode } \\
\mathrm{I}^{+} \\
\mathrm{II}^{-} \\
\mathrm{I}^{-} \\
\mathrm{II}^{+}
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{MT} 2}\) \\
positive \\
negative \\
positive \\
negative
\end{tabular} & \begin{tabular}{l}
\[
\overline{v_{G}}
\] \\
positive negative negative positive
\end{tabular} & \({ }^{\prime} \mathrm{GT}\) & \[
\begin{aligned}
& 15 \\
& 20 \\
& 30 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50 \\
& 80 \\
& 80
\end{aligned}
\] & mA \\
\hline \multicolumn{4}{|l|}{DC Gate-Trigger Voltage:
\[
\text { For } \begin{aligned}
\mathrm{v}_{\mathrm{D}} & =12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \\
T_{\mathrm{C}} & =25^{\circ} \mathrm{C}
\end{aligned}
\]} & \(\mathrm{V}_{\mathrm{GT}}\) & 1.35 & 2.5 & V \\
\hline
\end{tabular}

\section*{PACKAGE: Press-Fit (2N5441-2N5443, T6400N) \\ Stud (2N5444-2N5446, T6401N) \\ Isolated-Stud (T6420 Series)}

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 593.
- For either polarity of main terminal 2 voltage ( \(\mathrm{V}_{\mathrm{M} T 2}\) ) with reference to main terminal 1.

E For either polarity of gate voltage \(\left(\mathrm{V}_{\mathrm{G}}\right)\) with reference to main terminal 1.
* In accordance with JEDEC registration data format (JS-14, RDF2) filed for the JEDEC (2N-Series) types.


Solid State Division

Thyristors
2N5567-2N5570
T4101 T4111 T4121 Series

\section*{10-A Silicon Triacs}
\begin{tabular}{|c|c|c|c|c|c|}
\hline BASIC RATINGS: & & 2N5567 & 2N5568 & T4101M & \\
\hline For Operation with Sinusoidal Supply Voltage at Frequencies & & 2N5569 & 2N5570 & T4111M & \\
\hline up to \(50 / 60 \mathrm{~Hz}\) and with Resistive or Inductive Load. & & T4121B & T4121D & T4121M & \\
\hline \begin{tabular}{l}
*REPETITIVE PEAK OFF-STATE VOLTAGE: \\
Gate open, \(\mathrm{T}_{\mathrm{J}}=-65\) to \(100^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{V}_{\text {DROM }}\) & 200 & 400 & 600 & V \\
\hline *RMS ON-STATE CURRENT (Conduction angle \(=360^{\circ}\) ): Case temperature ( \(T_{C}\) ) \(=85^{\circ} \mathrm{C}\) & \({ }^{\text {T }}\) (RMS) & & 10 & & A \\
\hline \begin{tabular}{l}
PEAK SURGE (NON-REPETITIVE) ON-STATE CURRENT: \\
For one cycle of applied prinicpal voltage
\end{tabular} & \({ }^{1}\) TSM & & & & \\
\hline \begin{tabular}{l}
60 Hz (sinusoidal) \\
50 Hz (sinusoidal)
\end{tabular} & & & \[
\begin{aligned}
& 100 \\
& 85
\end{aligned}
\] & & A \\
\hline RATE-OF-CHANGE OF ON-STATE CURRENT:
\[
\mathrm{V}_{\mathrm{DM}}=\mathrm{V}_{\mathrm{DROM}}, \mathrm{I}_{\mathrm{GT}}=160 \mathrm{~mA}, \mathrm{t}_{\mathrm{r}}=0.1 \mu \mathrm{~s} .
\] & di/dt & & 150 & & A/ \(/ \mathrm{s}\) \\
\hline \begin{tabular}{l}
FUSING CURRENT (for Triac Protection): \\
\(T_{J}=-65\) to \(100^{\circ} \mathrm{C}, \mathrm{t}=1.25\) to 10 ms
\end{tabular} & \(\mathrm{I}^{2} \mathrm{t}\) & & 50 & & \(A^{2} \mathrm{~s}\) \\
\hline PEAK GATE-TRIGGER CURRENT:For \(1 \mu \mathrm{~s}\) max. & \({ }^{\text {G GTM }}\) & & 4 & & A \\
\hline \begin{tabular}{l}
*GATE POWER DISSIPATION: \\
PEAK (For \(1 \mu \mathrm{~s}\) max., \(\mathrm{I}_{\mathrm{GTM}} \leqslant 4 \mathrm{~A}\)
\end{tabular} & \({ }^{\text {P }}\) GM & & 16 & & w \\
\hline *TEMPERATURE RANGE: & & & & & \\
\hline Storage ... & \(\mathrm{T}_{\text {stg }}\) & & -65 to 150 & & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{GATE CHARACTERISTICS} & SYMBOL & TYP. & MAX. & UNITS \\
\hline DC Gate-Trigger Current:
\[
\text { For } \begin{aligned}
V_{D} & =12 \mathrm{~V}(\mathrm{dc}), \\
R_{\mathrm{L}} & =30 \Omega, \\
T_{\mathrm{C}} & =25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{gathered}
\text { Mode } \\
\mathrm{I}^{+} \\
\mathrm{III}^{-} \\
\mathrm{I}^{-} \\
\mathrm{III}^{+}
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{MT} 2}\) \\
positive negative positive negative
\end{tabular} & \begin{tabular}{l}
\[
v_{G}
\] \\
positive negative negative positive
\end{tabular} & \({ }^{\text {GT }}\) & \[
\begin{aligned}
& 10 \\
& 10 \\
& 20 \\
& 20 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 25 \\
& 40 \\
& 40
\end{aligned}
\] & mA \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
DC Gate-Trigger Voltage: \\
For \(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\)
\end{tabular}} & \(\mathrm{V}_{\mathrm{GT}}\) & 1 & 2.5 & V \\
\hline
\end{tabular}

PACKAGE: \(\quad\) Press-Fit (2N5567, 2N5568, T4101M)
Stud (2N5569, 2N5570, T4111M)
Isolated-Stud (T4121B, D, M)

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 457.

\footnotetext{
* In accordance with JEDEC registration data format (JS-14, RDF 2) filed for the JEDEC (2N Series) types.
- For either polarity of main terminal 2 voltage ( \(\mathrm{V}_{\mathrm{MT}}\) ) with reference to main terminal 1.
- For either polarity of gate voltage \(\left(\mathrm{V}_{\mathrm{G}}\right)\) with reference to main terminal 1.
}

\title{
2N5571-2N5574 T4100 T4110 T4120 Series
}

\section*{15-A Silicon Triacs}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
BASIC RATINGS: \\
For Operation with Sinusoidal Supply Voltage at Frequencies up to \(50 / 60 \mathrm{~Hz}\) and with Resistive or Inductive Load.
\end{tabular} & & \[
\begin{aligned}
& \text { 2N55711 } \\
& \text { 2N5573 } \\
& \text { T4120B }
\end{aligned}
\] & \begin{tabular}{l}
2N5572 \\
2N5574 \\
T4120D
\end{tabular} & T4100M T4110M T4120M & \\
\hline \begin{tabular}{l}
*REPETITIVE PEAK OFF-STATE VOLTAGE: \(\bullet\) \\
Gate open, \(\mathrm{T}_{\mathrm{J}}=-65\) to \(100^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{V}_{\text {DROM }}\) & 200 & 400 & 600 & v \\
\hline \begin{tabular}{l}
*RMS ON-STATE CURRENT (Conduction angle \(=360^{\circ}\) ): \\
Case temperature
\end{tabular} & \({ }^{\text {IT(RMS }}\) ) & & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & & A \\
\hline \begin{tabular}{l}
PEAK SURGE (NON-REPETITIVE) ON-STATE CURRENT: \\
For one cycle of applied prinicpal voltage \\
60 Hz (sinusoidal). \\
50 Hz (sinusoidal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
\end{tabular} & \({ }^{\text {ITSM }}\) & & \[
\begin{gathered}
100 \\
85
\end{gathered}
\] & & \[
\begin{aligned}
& \text { A } \\
& \text { A }
\end{aligned}
\] \\
\hline RATE OF CHANGE OF ON-STATE CURRENT:
\[
\mathrm{V}_{\mathrm{DM}}=\mathrm{V}_{\mathrm{DROM}} \cdot \mathrm{I}_{\mathrm{GT}}=160 \mathrm{~mA}, \mathrm{t}_{\mathrm{r}}=0.1 \mu \mathrm{~s}
\] & di/dt & & 150 & & A/ \(/ \mathrm{s}\) \\
\hline \begin{tabular}{l}
FUSING CURRENT (for Triac Protection): \\
\(\mathrm{T}_{\mathrm{J}}=-65\) to \(100^{\circ} \mathrm{C}, \mathrm{t}=1.25\) to 10 ms
\end{tabular} & \(\mathrm{I}^{2} \mathrm{t}\) & & 50 & & \(A^{2} \mathrm{~s}\) \\
\hline PEAK GATE-TRIGGER CURRENT:For \(1 \mu \mathrm{~s}\) max. & \({ }^{\text {G GTM }}\) & & 4 & & A \\
\hline \begin{tabular}{l}
*GATE POWER DISSIPATION: \\
Peak (For \(1 \mu \mathrm{~s}\) max., \(\mathrm{I}_{\text {GTM }} \leqslant 4 \mathrm{~A}\)
\end{tabular} & \(\mathrm{P}_{\mathrm{GM}}\) & & 16 & & w \\
\hline *TEMPERATURE RANGE: & & & & & \\
\hline Storage ............. & \[
\stackrel{T}{\mathrm{stg}}_{\mathrm{T}_{\mathrm{C}}}
\] & & \[
\begin{aligned}
& -65 \text { to } 150 \\
& -65 \text { to } 100
\end{aligned}
\] & & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{GATE CHARACTERISTICS} & SYMBOL & TYP. & MAX. & UNITS \\
\hline DC Gate-Trigger Current:
\[
\begin{aligned}
\text { For } V_{D} & =12 \mathrm{~V}(\mathrm{dc}), \\
R_{\mathrm{L}} & =30 \Omega, \\
T_{C} & =25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{gathered}
\text { Mode } \\
1^{+} \\
111^{-} \\
1- \\
111^{+}
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{MT} 2}\) \\
positive \\
negative \\
positive \\
negative
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{G}}\) \\
positive \\
negative \\
negative \\
positive
\end{tabular} & 'GT & \[
\begin{aligned}
& 20 \\
& 20 \\
& 35 \\
& 35
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50 \\
& 80 \\
& 80
\end{aligned}
\] & mA \\
\hline DC Gate-Trigger Voltage: \({ }^{\bullet}\) For \(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}\) (dc), \(\mathrm{R}_{\mathrm{L}}=\) & \[
T_{C}=2
\] & & & \(\mathrm{V}_{\mathrm{GT}}\) & 1 & 2.5 & V \\
\hline
\end{tabular}

\section*{PACKAGE: Press-Fit (2N5571, 2N5572, T4100M) \\ Stud (2N5573, 2N5574, T4110M) \\ Isolated-Stud (T4120B, D, M)}

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 458.
* In accordance with JEDEC registration data format (JS-14, RDF2) filed for the JEDEC (2N-Series) Types.
- For either polarity of main terminal 2 voltage ( \(\mathrm{V}_{\mathrm{MT}}\) ) with reference to main terminal 1.
- For either polarity of gate voltage \(\left(\mathrm{V}_{\mathrm{G}}\right)\) with reference to main terminal 1.

\section*{T2303 T2313 Series}

\section*{2.5-A Silicon Triacs}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{GATE CHARACTERISTICS} & SYMBOL & TYP. & max. & UNITS \\
\hline DC Gate-Trigger Current: \({ }^{\text {a }}\) & Mode & \(\mathrm{V}_{\text {MT2 }}\) & \(\mathrm{V}_{\mathrm{G}}\) & \multirow{5}{*}{'GT} & & & \multirow{5}{*}{mA} \\
\hline For \(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}\) (dc) & \(1+\) & positive & positive & & 5 & 25 & \\
\hline \(\mathrm{R}_{\mathrm{L}}=30 \Omega\) & III- & negative & negative & & 5 & 25 & \\
\hline \(\mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C}\) & \(1-\) & positive & negative & & 10 & 40 & \\
\hline & \(11{ }^{+}\) & negative & positive & & 10 & 40 & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
DC Gate-Trigger Voltage: \\
For \(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\)
\end{tabular}} & \(\mathrm{V}_{\mathrm{GT}}\) & 0.9 & 2.2 & V \\
\hline
\end{tabular}

PACKAGE: Modified JEDEC TO-5 (2N5754-2N5757)
Modified JEDEC TO-5 with Heat Radiator (T2313 Series)

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 414.

\footnotetext{
* In accordance with JEDEC registration data format (JS-14, RDF-2 filed for the JEDEC (2N Series) types.
- For either polarity of main terminal 2 voltage ( \(\mathrm{V}_{\mathrm{MT}}\) ) with reference to main terminal 1.
- For either polarity of gate voltage ( \(\mathrm{V}_{\mathrm{G}}\) ) with reference to main terminal 1.
}

\section*{2.5-Ampere Sensitive-Gate Silicon Triacs}

\section*{BASIC RATINGS}

For Operation with 50/60-Hz, Sinusoidal Supply Voltage and Resistive or Inductive Load


T2302B, T2312B ............................ 200
T2302D, T2312D . . . . . . . . . . . . . . . . . . . . . . . 400

\(\begin{array}{ll}\text { PEAK SURGE (NON-REPETITIVE) ON-STATE CURRENT: } & \text { ITSM } \\ \text { For one full cycle of applied principal voltage }\end{array}\)
60 Hz sinusoidal ................................................... . . 25

50 Hz sinusoidal
21
PEAK GATE-TRIGGER CURRENTㅍ:
For \(1 \mu\) s max. . . . . . . . . . .
GATE POWER DISSIPATI
Peak (For \(1 \mu \mathrm{~s}\) max.).
Average: \(\quad \mathrm{T}_{\mathrm{C}} \mathrm{C}=60^{\circ} \mathrm{C}\)
TEMPERATURE RANGE:
TEMPERATURE RANGE:

-40 to +150
-40 to +90
-40 to +100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{GATE CHARACTERISTICS} & SYMBOL & TYP. & MAX. & UNITS \\
\hline \begin{tabular}{l}
DC Gate-Trigger Current: \\
For
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}(\mathrm{DC}), \\
& \mathrm{R}_{\mathrm{L}}=30 \Omega, \text { and } \\
& \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{MT} 2}\) \\
positive negative positive negative
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{v}_{\mathrm{G}}
\] \\
positive negative negative positive
\end{tabular} & \({ }^{\prime} \mathrm{GT}\) & \[
\begin{gathered}
3.5 \\
3.5 \\
7 \\
7
\end{gathered}
\] & \[
\begin{aligned}
& 10 \\
& 10 \\
& 10 \\
& 10
\end{aligned}
\] & mA \\
\hline \[
\begin{gathered}
\text { DC Gate-Trigger Voltage: } 0 \text { an } \\
\text { For } \mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}(\mathrm{DC}) \text { and } \mathrm{R}_{\mathrm{L}}=30 \Omega \\
\text { At } T_{\mathrm{C}}=25^{\circ} \mathrm{C}
\end{gathered}
\] & & & \(\mathrm{V}_{\mathrm{GT}}\) & 1 & 2.2 & V \\
\hline
\end{tabular}

\footnotetext{
PACKAGES: Modified JEDEC TO-5 (T2300, T2302 Series)
Modified JEDEC TO-5 with Heat Radiator (T2310, T2312 Series)
}

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 470.

\footnotetext{
- For either polarity of main terminal 2 voltage ( \(\mathrm{V}_{\mathrm{MT}}\) ) with reference to main terminal 1.
- For either polarity of gate voltage ( \(\mathrm{V}_{\mathrm{G}}\) ) with reference to main terminal 1.
}

\section*{400-Hz, 0.5-A Sensitive-Gate Silicon Triacs}
BASIC RATINGS:

\(\begin{array}{ll}\text { PEAK SURGE (NON-REPETITIVE) ON-STATE CURRENT: } \\ \text { For one cycle of applied prinicpal voltage } & I_{T S M}\end{array}\)
400 Hz (Sinusoidal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PEAK GATE-TRIGGER CURRENT: \({ }^{\text {® }}\)
For \(1 \mu\) s max. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \({ }^{\text {IGTM }}\) I 1


10 \(\begin{gathered}A \\ W\end{gathered}\)
GATE POWER DISSIPATION:
Peak (For \(1 \mu \mathrm{~s}\) max.)........................................................\(~\)\(P_{G}\)
TEMPERATURE RANGE:
Storage
\(T_{c}^{T_{s t g}}\)



PACKAGE: Modified JEDEC TO-5

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 441.

\footnotetext{
- For either polarity of main terminal 2 voltage ( \(\mathrm{V}_{\mathrm{MT}}\) ) with reference to main terminal 1.
- For either polarity of gate voltage \(\left(\mathrm{V}_{\mathrm{G}}\right)\) with reference to main terminal 1.
}

\section*{6-Ampere Silicon Triacs}


\footnotetext{
PACKAGE: JEDEC TO-66 (T2700 Series)
JEDEC TO-66 with Heat Radiator (T2710 Series)
}

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 351.

\footnotetext{
- For either polarity of main terminal 2 voltage \(\left(\mathrm{V}_{\mathrm{MT}}\right)\) with reference to main terminal 1.
- For either polarity of gate voltage ( \(\mathrm{V}_{\mathrm{GT}}\) ) with reference to main terminal 1.
}

\section*{400－Hz，6，10，\＆15－A Silicon Triacs}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{GATE CHARACTERISTICS} & SYMBOL & TYP． & MAX． & UNITS \\
\hline DC Gate－Trigger Current：
\[
\begin{aligned}
\text { For } V_{D} & =12 \mathrm{~V}(\mathrm{dc}), \\
R_{\mathrm{L}} & =30 \Omega, \\
T_{C} & =25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{gathered}
\text { Mode } \\
\mathrm{I}^{+} \\
\mathrm{III}^{-} \\
\mathrm{II}^{-} \\
\mathrm{III}^{+}
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{MT} 2}\) \\
positive negative positive negative
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{v}_{\mathrm{G}}
\] \\
positive negative negative positive
\end{tabular} & \({ }^{\prime} \mathrm{GT}\) & \[
\begin{aligned}
& 20 \\
& 20 \\
& 35 \\
& 35
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50 \\
& 80 \\
& 80 \\
& \hline
\end{aligned}
\] & mA \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
DC Gate－Trigger Voltage： \\
For \(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\)
\end{tabular}} & \(\mathrm{V}_{\mathrm{GT}}\) & 1 & 2.5 & V \\
\hline
\end{tabular}

\section*{PACKAGE：Press－Fit（T4103，T4104，T4105 Series）}

Stud（T4113，T4114，T4115 Series）
The basic electrical－characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No． 443.

\footnotetext{
－For either polarity of main terminal 2 voltage \(\left(\mathrm{V}_{\mathrm{MT}}\right.\) ）with reference to main terminal 1.
- For either polarity of gate voltage（ \(\mathrm{V}_{\mathrm{G}}\) ）with reference to main terminal 1.
}

\section*{30－A Silicon Triacs}

\section*{BASIC RATINGS：}

For Operation with Sinusoidal Supply Voltage at Frequencies up to \(50 / 60 \mathrm{~Hz}\) and with Resistive or Inductive Load．
\begin{tabular}{lll} 
T6411B & T6411D & T6411M \\
T6421B & T6421D & T6421M
\end{tabular}


Case temperature
\(\begin{aligned} \mathrm{T}_{\mathrm{C}} & =65^{\circ} \mathrm{C} \text {（T6401 Series）} \\ & =60^{\circ} \mathrm{C} \text {（T6411 Series）}\end{aligned}\)
T（RMS）

\(\begin{array}{ll}\text { PEAK SURGE（NON－REPETITIVE）ON－STATE CURRENT：} & { }^{\text {ITSM }} \\ & \text { For one cycle of applied principal voltage }\end{array}\)
60 Hz （Sinusoidal）
50 Hz （Sinusoidal）


RATE OF CHANGE OF ON－STATE CURRENT：di／dt
\(V_{D M}=V_{D R O M} I_{G T}=200 \mathrm{~mA}, \mathrm{t}_{\mathrm{r}}=0.1 \mu \mathrm{~s}\) \(\longrightarrow 100 \ldots \mathrm{~A} / \mu \mathrm{s}\)
FUSING CURRENT（for triac protection）：\(\quad \mathrm{I}^{2} \mathrm{t}\)
\(T_{J}=-40\) to \(100^{\circ} \mathrm{C}, \mathrm{t}=1.25\) to 10 ms


PEAK GATE－TRIGGER CURRENT：■
\(\quad\) For \(1 \mu\) max．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\({ }^{\text {IGTM }}\) I

200
\(400 \quad 600\)
V

TEMPERATURE RANGE：
Storage ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Ts \(_{\text {stg }}\)
Operating（Case）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(T_{C}^{T_{C}^{s t g}}\)
stg

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{GATE CHARACTERISTICS} & SYMBOL & TYP． & MAX． & UNITS \\
\hline DC Gate－Trigger Current：
\[
\text { For } \begin{aligned}
V_{D} & =12 \mathrm{~V}(\mathrm{dc}), \\
R_{\mathrm{L}} & =30 \Omega, \\
T_{\mathrm{C}} & =25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{array}{r}
\text { Mode } \\
1^{+} \\
\mathrm{III}^{-} \\
\mathrm{I}^{-} \\
\mathrm{III}^{+}
\end{array}
\] & \(V_{\text {MT2 }}\) positive negative positive negative & \begin{tabular}{l}
\[
v_{G}
\] \\
positive negative negative positive
\end{tabular} & \({ }^{\prime} \mathrm{GT}\) & \[
\begin{aligned}
& 15 \\
& 20 \\
& 30 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 50 \\
& 80 \\
& 80 \\
& \hline
\end{aligned}
\] & mA \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
DC Gate－Trigger Voltage： \\
For \(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\)
\end{tabular}} & \(\mathrm{V}_{\mathrm{GT}}\) & 1.35 & 2.5 & V \\
\hline
\end{tabular}

\section*{PACKAGES：Press－Fit（T6401 Series）}

Stud（T6411 Series）
Isolated－Stud（T6421 Series）

The basic electrical－characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No． 459.
－For either polarity of main terminal 2 voltage（ \(\mathrm{V}_{\mathrm{MT}}\) ）with reference to main terminal 1.
－For either polarity of gate voltage \(\left(\mathrm{V}_{\mathrm{G}}\right)\) with reference to main terminal 1.

\section*{400-Hz, 25 \& 40-A Silicon Triacs}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{GATE CHARACTERISTICS} & SYMBOL & TYP. & MAX. & UNITS \\
\hline DC Gate-Trigger Current:
\[
\begin{aligned}
\text { For } V_{D} & =12 \mathrm{~V}(\mathrm{dc}), \\
R_{L} & =30 \Omega, \\
T_{C} & =25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{gathered}
\text { Mode } \\
1^{+} \\
\mathrm{III}^{-} \\
1- \\
\mathrm{III}^{+}
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\text {MT2 }}\) \\
positive negative positive negative
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{V}_{\mathrm{G}}
\] \\
positive negative negative positive
\end{tabular} & \({ }^{\prime} \mathrm{GT}\) & \[
\begin{aligned}
& 20 \\
& 50 \\
& 80 \\
& 80
\end{aligned}
\] & \[
\begin{array}{r}
80 \\
80 \\
120 \\
120
\end{array}
\] & mA \\
\hline DC Gate-Trigger Voltage:
\[
\text { For } \mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=
\] & \[
T_{C}=2
\] & & & \(\mathrm{V}_{\text {GT }}\) & 2 & 3 & V \\
\hline
\end{tabular}

\section*{PACKAGE: Press-Fit (T6404, T6405 Series)}

Stud (T6414, T6415 Series)

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 487.

\footnotetext{
- For either polarity of main terminal 2 voltage ( \(\mathrm{V}_{\mathrm{MT}}\) ) with reference to main terminal 1.
m For either polarity of gate voltage \(\left(\mathrm{V}_{\mathrm{G}}\right)\) with reference to main terminal 1.
}


Solid State Division

Thyristors
\begin{tabular}{lll} 
T8401B & T8411B & T8421B \\
T8401D & T8411D & T8421D \\
T8401M & T8411M & T8421M
\end{tabular}

\section*{60-A Silicon Triacs}

BASIC RATINGS
For Operation with Sinusoidal Supply Voltage at Frequencies up to \(50 / 60 \mathrm{~Hz}\) and with Resistive or Inductive Load.


\section*{Case Temperature}
\(\begin{aligned} \mathrm{T}^{\mathrm{C}} \mathrm{C} & =85^{\circ} \mathrm{C} \text { (T8401 Series) } \\ & =80^{\circ} \mathrm{C} \text { (T8411 Series) } \\ & =75^{\circ} \mathrm{C} \text { (T8421 Series) }\end{aligned}\)
\(\begin{aligned} \mathrm{T}_{\mathrm{C}} & =85^{\circ} \mathrm{C} \text { (T8401 Series) } \\ & =80^{\circ} \mathrm{C} \text { (T8411 Series) } \\ & =75^{\circ} \mathrm{C} \text { (T8421 Series) }\end{aligned}\)
PEAK SURGE (NON-REPETITIVE) ON-STATE CURRENT:
For one cycle of applied principal voltage
60 Hz (sinusoidal)
50 Hz (sinusoidal)
\({ }^{I} \mathrm{~T}\) (RMS)

E OF CHANGE OF ON-STATE CURRENT:
\(V_{D M}=V_{\text {DROM }}{ }^{\prime} I_{G T}=300 \mathrm{~mA}, \mathrm{t}_{\mathrm{r}}=0.1 \mu \mathrm{~s} \ldots \ldots \ldots \ldots \ldots .\).
FUSING CURRENT (for Triac Protection):

PEAK GATE-TRIGGER CURRENT:"
For \(10 \mu\) s max. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IGTM \(^{\text {I }}\)
GATE POWER DISSIPATION
Peak (For \(10 \mu\) s max., \(I_{G T M} \leqslant 7\) A (peak) . . . . . . . . . . . . . . . . . . . . . . \(P_{\text {GM }}\)
TEMPERATURE RANGE:
Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T \(_{\text {stg }}\)
Operating (Case)
................................................. \(T_{C}^{T}\)
\(T_{C}\)
\begin{tabular}{lll} 
T8401B & T8401D & T8401M \\
T8411B & T8411D & T8411M \\
T8421B & T8421D & T8421M
\end{tabular}

200
\(400-600\)

V


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{GATE CHARACTERISTICS} & SYMBOL & TYP. & MAX. & UNITS \\
\hline DC Gate-Trigger Current:
\[
\begin{aligned}
\text { For } v_{D} & =12 \mathrm{~V}(\mathrm{dc}) \\
R_{L} & =30 \Omega \\
T_{C} & =25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{array}{r}
\text { Mode } \\
\mathrm{I}^{+} \\
11 \mathrm{I}^{-} \\
\mathrm{I}^{-} \\
1 \mathrm{II}^{+}
\end{array}
\] & \(V_{M T 2}\) positive negative positive negative & \(\mathrm{V}_{\mathrm{G}}\) positive negative negative positive & IGT & \[
\begin{array}{r}
20 \\
40 \\
40 \\
100
\end{array}
\] & \[
\begin{array}{r}
75 \\
75 \\
150 \\
150
\end{array}
\] & mA \\
\hline DC Gate-Trigger Voltage:
\[
\begin{aligned}
\text { For } v_{D} & =12 \mathrm{~V}(\mathrm{dc}), R_{\mathrm{L}}=30 \Omega, \\
T_{C} & =25^{\circ} \mathrm{C}
\end{aligned}
\] & & & & \(\mathrm{V}_{\mathrm{GT}}\) & 1.35 & 2.8 & V \\
\hline
\end{tabular}

PACKAGE: Press-Fit with Flexible Leads (T8401 Series)
Stud with Flexible Leads (T8411 Series)
Isolates-Stud with Flexible Leads (T8421 Series)
The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 725.
- For either polarity of main terminal 2 voltage ( \(\mathrm{V}_{\mathrm{MT}}\) ) with reference to main terminal 1.

E For either polarity of gate voltage \(\left(\mathrm{V}_{\mathrm{G}}\right)\) with reference to main terminal 1.

\title{
T8430 T8440 T8450 \\ Series
}

\section*{80-A Silicon Triacs}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{GATE CHARACTERISTICS} & SYMBOL & TYP. & MAX. & UNITS \\
\hline DC Gate-Trigger Current:
\[
\text { For } \begin{aligned}
\mathrm{v}_{\mathrm{D}} & =12 \mathrm{~V}(\mathrm{dc}) \\
\mathrm{R}_{\mathrm{L}} & =30 \Omega \\
\mathrm{~T}_{\mathrm{C}} & =25^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{gathered}
\text { Mode } \\
\mathrm{II}^{+} \\
\mathrm{II}^{-} \\
\mathrm{III}^{+}
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{MT} 2}\) \\
positive negative positive negative
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{v}_{\mathrm{G}}
\] \\
positive negative negative positive
\end{tabular} & \({ }^{\prime} \mathrm{GT}\) & \[
\begin{array}{r}
20 \\
40 \\
40 \\
100
\end{array}
\] & \[
\begin{array}{r}
75 \\
75 \\
150 \\
150
\end{array}
\] & mA \\
\hline DC Gate-Trigger Voltage:
\[
\begin{aligned}
\text { For } \mathrm{v}_{\mathrm{D}} & =12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \\
T_{\mathrm{C}} & =25^{\circ} \mathrm{C}
\end{aligned}
\] & & & & \(\mathrm{V}_{\mathrm{GT}}\) & 1.35 & 2.5 & V \\
\hline
\end{tabular}

PACKAGE: Press-Fit (T8430 Series)
Stud (T8440 Series)
Isolated-Stud (T8450 Series)

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 549.

\footnotetext{
- For either polarity of main terminal 2 voltage ( \(\mathrm{V}_{\mathrm{M}}\) 2) with reference to main terminal 1.
- For either polarity of gate voltage \(\left(\mathrm{V}_{\mathrm{G}}\right)\) with reference to main terminal 1.
}

\section*{Solid State Division}

\author{
2N681－2N690
}

\section*{25－A Silicon Controled Rectifiers}

BASIC RATINGS：


ON－STATE CURRENT：
\(\mathrm{T}_{\mathrm{C}}=65^{\circ} \mathrm{C}\) ，conduction angle \(=180^{\circ}\) ：
RMS

＊Average \(\ldots \ldots \ldots\)
For one full cycle of applied principal voltage
RATE OF CHANGE OF ON－STATE CURRENT：
\(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DROM}}, \mathrm{I}_{\mathrm{GT}}=\mathrm{mA}, \mathrm{t}_{\mathrm{r}}=0.5 \mu \mathrm{~s} \ldots \ldots . \ldots . . . . \mathrm{di} / \mathrm{dt}\)
FUSING CURRENT（for SCR protection）：
\(\mathrm{T}_{\mathrm{J}}=-65\) to \(125^{\circ} \mathrm{C}, \mathrm{t}=1\) to 8.3 ms
.\(I^{2} t\)
＊GATE POWER DISSIPATION：＂
Peak Forward（for \(10 \mu \mathrm{~s}\) max．）．．．．．．．．．．．．．．．．．．．．．．．．．．．
\(\mathrm{P}_{\mathrm{GM}} \longrightarrow\)
Average（averaging time \(=10 \mathrm{~ms}\) max．）\(\ldots \ldots \ldots \ldots \ldots \mathrm{P}_{\mathrm{G}}(\mathrm{AV})\)
＊TEMPERATURE RANGE：■

\begin{tabular}{|c|c|c|c|c|c|}
\hline GATE CHARACTERISTICS & SYMBOL & MIN． & TYP． & MAX． & UNITS \\
\hline DC Gate Trigger Current：
\[
\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}
\] & ＇GT & － & － & 25 & mA \\
\hline DC Gate Trigger Voltage：
\[
\begin{aligned}
V_{D}=12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}} & =125^{\circ} \mathrm{C} \\
& =-65 \text { to } 125^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{GT}}\) & 0.25 & － & － & v \\
\hline
\end{tabular}

PACKAGE：JEDEC TO－48

The basic electrical－characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No． 96.
＊In accordance with JEDEC registration data format filed for the JEDEC（2N Series）types．
－These values do not apply if there is a positive gate signal．Gate must be open or negatively biased．
－Any product of gate current and gate voltage which results in a gate power less than the maximum is permitted．

\section*{5-A Silicon Controlled Rectifiers}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline BASIC RATINGS: & & 2N3228 & 2N3525 & 2N4101 & 2N3528 & 2N3529 & 2N410 & \\
\hline NON-REPETITIVE PEAK REVERSE VOLTAGE & \(\mathrm{V}_{\text {RSOM }}\) & 330 & 660 & 700 & 330 & 660 & 700 & V \\
\hline REPETITIVE PEAK REVERSE VOLTAGE & \(V_{\text {RROM }}\) & 200 & 400 & 600 & 200 & 400 & 600 & V \\
\hline REPETITIVE PEAK OFF-STATE VOLTAGE & \(V_{\text {DROM }}\) & 200 & 400 & 600 & 200 & 400 & 600 & V \\
\hline \begin{tabular}{l}
ON-STATE CURRENT: \\
For case temperature ( \(\mathrm{T}_{\mathrm{C}}\) ) of \(+75^{\circ} \mathrm{C}\), and unit mounted on heat sink
\end{tabular} & & & & & & & & \\
\hline Average dc value at a conduction angle of \(180^{\circ}\) RMS Value & \[
\begin{aligned}
& { }^{1} \mathrm{~T}(\mathrm{AV}) \\
& { }^{\mathrm{T}(\mathrm{RMS})}
\end{aligned}
\] & & & & - & - & - & A \\
\hline \begin{tabular}{l}
For free-air temperature ( \(T_{F A}\) ) of \(25^{\circ} \mathrm{C}\), and with no heat sink employed \\
Average dc value at a conduction angle of \(180^{\circ}\) RMS Value \(\qquad\)
\end{tabular} & \[
\begin{aligned}
& I_{T(A V)} \\
& I_{T(R M S)}
\end{aligned}
\] & & & & & 1.3
2.0 & & A \\
\hline \begin{tabular}{l}
PEAK SURGE CURRENT: \\
For one cycle of applied voltage .
\end{tabular} & \({ }^{\text {ITSM }}\) & & & - 60 & & & & \\
\hline \begin{tabular}{l}
FUSING CURRENT (For SCR protection) \\
For a period of 1 ms to \(8.3 \mathrm{~ms} . . .\). ..
\end{tabular} & & & & - 1 & & & & \\
\hline \begin{tabular}{l}
RATE OF CHANGE OF ON-STATE CURRENT \\
\(V_{F B}=V_{B O O}\) (Min. value) \\
\(\mathrm{I}_{\mathrm{GT}}=200 \mathrm{~mA}, 0.5 \mu \mathrm{~s}\) rise time
\end{tabular} & di/dt & & & & & & & A/ \(/ \mathrm{s}\) \\
\hline \begin{tabular}{l}
GATE POWER:* \\
Peak, Forward or Reverse, for \(10 \mu \mathrm{~s}\) duration . . .
\end{tabular} & \(\mathrm{P}_{\mathrm{GM}}\) & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|c|}
\hline GATE CHARACTERISTICS & SYMBOL & TYP. & MAX. & UNITS \\
\hline DC Gate-Trigger Current At \(\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}\) & \(\mathrm{I}_{\mathrm{GT}}\) & 8 & 15 & \(\mathrm{~mA}(\mathrm{dc})\) \\
\hline DC Gate-Trigger Voltage At \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{GT}}\) & 1.2 & 2.0 & V (dc) \\
\hline
\end{tabular}

PACKAGE: JEDEC TO-66 (2N3228, 2N3525, 2N4101)
JEDEC TO-8 (2N3528, 2N3529, 2N4102)
The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in RCA data bulletin No. 114.

\footnotetext{
*In accordance with JEDEC registration data format (JS-14, RDF-1) filed for the JEDEC (2N series) types.
-These values do not apply if there is a positive gate signal. Gate must be open or negatively biased.
- Any product of gate current and gate voltage which results in a gate power less than the maximum is permitted.
}

Thyristors

\section*{Solid State Division}

2N3650-2N3653, S7430M

\section*{35-A Silicon Controlled Rectifiers}


\section*{PACKAGE: JEDEC TO-48}

\footnotetext{
The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 408.
}

\footnotetext{
* In accordance with JEDEC registration data format (JS-14, RDF 1)-applies to the JEDEC (2N Series) types only.
}

\author{
2N3654-2N3658, S7432M
}

\section*{35-A Silicon Controlled Rectifiers}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline BASIC RATINGS: & & 2N3654 & 2N3655 & 2N3656 & 2N3657 & 2N3658 & S7432M & \\
\hline \begin{tabular}{l}
*NON-REPETITIVE PEAK REVERSE VOLTAGE:• \\
Gate open
\end{tabular} & \(\mathrm{V}_{\text {RSOM }}\) & 75 & 150 & 300 & 400 & 500 & 700 & V \\
\hline \begin{tabular}{l}
NON-REPETITIVE PEAK OFF-STATE VOLTAGE: \(\bullet\) \\
Gate open
\end{tabular} & \(V_{\text {DSOM }}\) & 75 & 150 & 300 & 400 & 500 & 700 & \(v\) \\
\hline *REPETITIVE PEAK REVERSE VOLTAGE: & \(V_{\text {RROM }}\) & & & & & & & \\
\hline Gate open & & 50 & 100 & 200 & 300 & 400 & 600 & V \\
\hline *REPETITIVE PEAK OFF-STATE VOLTAGE:
Gate open ................................... & \(V_{\text {DROM }}\) & 50 & 100 & 200 & 300 & 400 & 600 & V \\
\hline \begin{tabular}{l}
ON-STATE CURRENT: \\
\(\mathrm{T}_{\mathrm{C}}=40^{\circ} \mathrm{C}\), conduction angle \(=180^{\circ}\) :
\end{tabular} & & & & & & & & \\
\hline RMS & \({ }_{\text {It(RMS })}\) & & & & 35 & & & A \\
\hline Average & \({ }^{\text {T }}\) (AV) & & & & 25 & & & A \\
\hline *PEAK SURGE (NON-REPETITIVE) ON-STATE & & & & & & & & \\
\hline CURRENT: & \({ }^{\text {ITSM }}\) & & & & & & & \\
\hline For one full cycle of applied principal voltage 60 Hz (sinusoidal) & & & & & 80 & & & A \\
\hline *RATE OF CHANGE OF ON-STATE CURRENT:
\[
V_{D}=V_{D R O M}, I_{G T}=200 \mathrm{~mA}, \mathrm{t}_{\mathrm{r}}=0.1 \mu \mathrm{~s} \ldots \ldots .
\] & di/dt & & & & 00 & & & A/ \(/ \mathrm{s}\) \\
\hline FUSING CURRENT (for SCR protection):
\[
\mathrm{T}_{\mathrm{J}}=-65 \text { to } 120^{\circ} \mathrm{C}, \mathrm{t}=1 \text { to } 8.3 \mathrm{~ms} \ldots
\] & \(1^{2} \mathrm{t}\) & & & & 65 & & & \(A^{2} \mathrm{~s}\) \\
\hline *GATE POWER DISSIPATION:- & \(\mathrm{P}_{\mathrm{GM}}\) & & & & & & & \\
\hline Peak Forward (for \(10 \mu \mathrm{~s}\) max.) & & & & & 40 & & & w \\
\hline EMPERATURE RANGE & & & & -65 & to 150 & & & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating (Case) & \(\mathrm{T}_{\mathrm{C}}^{\text {stg }}\) & & & -65 & to 120 & & & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline TURN-OFF TIME CHARACTERISTICS & SYMBOL & MIN. & TYP. & MAX. & UNITS \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Circuit Commutated Turn-Off Time: \\
(Sinusoidal Pulse)
\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DX}}=\mathrm{V}_{\mathrm{DROM}}, \mathrm{I}_{\mathrm{T}}=100 \mathrm{~A}, \text { pulse duration }=1.5 \mu \mathrm{~s}, \\
& \mathrm{dv} / \mathrm{dt}=200 \mathrm{~V} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{RX}}=30 \mathrm{~V} \text { min., } \mathrm{V}_{\mathrm{GK}}=0 \mathrm{~V} \text { (at } \\
& \text { turn-off), } \mathrm{T}_{\mathrm{C}}=115^{\circ} \mathrm{C} .
\end{aligned}
\]
\end{tabular}} & & & & & \\
\hline & \(t_{q}\) & - & - & 10 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{PACKAGE: JEDEC TO-48}

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 724.
* In accordance with JEDEC registration data format (JS-14, RDF-1) filed for the JEDEC (2N Series) types.
- These values do not apply if there is a positive gate signal. Gate must be open or negatively biased.
- Any product of gate current and gate voltage which results in a gate power less than the maximum is permitted.

\section*{Solid State \\ Division}

\section*{2N3668-2N3670 2N4103}

\section*{12.5-A Silicon Controlled Rectifiers}
\(\left.\begin{array}{lllllllll}\text { BASIC RATINGS: } & & \text { 2N3668 } & \text { 2N3669 } & \text { 2N3670 } & \text { 2N4103 }\end{array}\right]\)
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ GATE CHARACTERISTICS } & SYMBOL & MIN. & TYP. & MAX. & UNITS \\
\hline \begin{tabular}{l} 
DC Gate-Trigger Current \\
At \(T_{C}=+25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{I}_{\mathrm{GT}}\) & 1 & 20 & 40 & mA (dc) \\
\hline \begin{tabular}{l} 
Gate-Trigger VoItage \\
At \(T_{\mathrm{C}}=+25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{V}_{\mathrm{GT}}\) & - & 1.5 & 2 & V (dc) \\
\hline
\end{tabular}

\section*{PACKAGE: JEDEC TO-3}

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in RCA data bulletin File No. 116.

\footnotetext{
*Any values of peak gate current or peak gate voltage to give the maximum gate power is permissible.
}

\section*{Solid State Division}

\section*{2N3870-2N3873 2N3896-2N3899 S6400 S6410 S6420 Series}

\section*{35-A Silicon Controlled Rectifiers}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline basic ratings & & 2N3870 2N3896 S6420A & 2N3871 2N3897 S6420B & \[
\begin{aligned}
& \text { 2N3872 } \\
& \text { 2N3898 } \\
& \text { S6420D }
\end{aligned}
\] & \begin{tabular}{l}
2N3873 \\
2N3899 \\
S6420M
\end{tabular} & S6400
S6410
S6420 \\
\hline \begin{tabular}{l}
*NON-REPETITIVE PEAK REVERSE VOLTAGE:A \\
Gate Open .
\end{tabular} & \(\mathrm{V}_{\text {RSOM }}\) & 150 & 330 & 660 & 700 & 900 \\
\hline \begin{tabular}{l}
NON-REPETITIVE PEAK OFF. STATE VOLTAGE: \\
Gate Open
\end{tabular} & \(\mathrm{V}_{\text {DSOM }}\) & 150 & 330 & 660 & 700 & 900 \\
\hline *REPETITIVE PEAK REVERSE VOLTAGE: & \(\mathrm{V}_{\text {RROM }}\) & & & & 600 & 800 \\
\hline  & & 100 & 200 & 400 & 600 & 800 \\
\hline Gate Open & & 100 & 200 & 400 & 600 & 800 \\
\hline \begin{tabular}{l}
ON-STATE CURRENT: \\
\(\mathrm{T}_{\mathrm{C}}=65^{\circ} \mathrm{C} \star\), conduction angle \(=180^{\circ}\) : \\
RMS \\
* Average
\end{tabular} & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{T}(\mathrm{RMS})} \\
& \mathrm{I}_{\mathrm{T}(\mathrm{AV})}
\end{aligned}
\] & & & \[
\begin{aligned}
& 35 \\
& 22
\end{aligned}
\] & & \\
\hline \begin{tabular}{l}
PEAK SURGE (NON-REPETITIVE) ON-STATE CURRENT \\
For one full cycle of applied principal voltage 60 Hz (sinusoidal) \\
50 Hz (sinusoidal)
\end{tabular} & \({ }^{\text {ITSM }}\) & & & \[
\begin{array}{r}
350 \\
-300 \\
-\quad .
\end{array}
\] &  & \\
\hline \begin{tabular}{l}
RATE OF CHANGE OF ON-STATE CURRENT: \\
\(\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DROM}}, \mathrm{I}_{\mathrm{GT}}=200 \mathrm{~mA}, \mathrm{t}_{\mathrm{r}}=0.5 \mu \mathrm{~s}\) FUSING CURRENT (for SCR protection): \(\mathrm{T}_{\mathrm{J}}=-40\) to \(100^{\circ} \mathrm{C}, \mathrm{t}=1\) to 8.3 ms .
\end{tabular} & di/dt
\(\mathrm{I}^{2} \mathrm{t}\) & & & 200
300 & & \\
\hline \begin{tabular}{l}
GATE POWER DISSIPATION: \({ }^{\bullet}\) \\
Peak Forward (for \(10 \mu \mathrm{~s}\) Max.) \\
*TEMPERATURE RANGE:
\end{tabular} & \(\mathrm{P}_{\mathrm{GM}}\) & & & & & \\
\hline Storage .............................................. & \[
\stackrel{\mathrm{T}_{\mathrm{Ctg}}}{\mathrm{ctg}}
\] & & & \[
\begin{aligned}
& -40 \text { to } \\
& -40 \text { to }
\end{aligned}
\] & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline GATE CHARACTERISTICS & SYMBOL & MIN. & TYP. & MAX. & UNITS \\
\hline DC Gate Trigger Voltage:
\[
\begin{aligned}
& V_{D}=12 \mathrm{~V}(\mathrm{dc}), R_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \\
& V_{D}=12 \mathrm{~V}(\mathrm{dc}), R_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & \(\mathrm{V}_{\mathrm{GT}}\) & - & \[
\begin{aligned}
& 1.5 \\
& 1.1
\end{aligned}
\] & \[
\begin{gathered}
3^{*} \\
2
\end{gathered}
\] & V \\
\hline \[
\begin{aligned}
& \text { DC Gate Trigger Current: } \\
& V_{D}=12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}}=-40^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{D}}=12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & IGT & \(\bigcirc\) & \[
\begin{aligned}
& 46 \\
& 25
\end{aligned}
\] & \[
\begin{gathered}
80^{*} \\
40
\end{gathered}
\] & mA \\
\hline
\end{tabular}

\section*{PACKAGE: Press-Fit (2N3870-2N3873, T6400N)}

Stud (2N3896-2N3899, T6410N) Isolated-Stud (S6420A, B, D, M, N)

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 578.

\footnotetext{
* In accordance with JEDEC registration data filed for the JEDEC ( 2 N -series) types.
\(\Delta\) These values do not apply if there is a positive gate signal. Gate must be open or negatively biased.
\({ }^{-} \mathrm{T}_{\mathrm{C}}=60^{\circ}\) for isolated-stud package types.
- Any product of gate current and gate voltage which results in a gate power less than the maximum is permitted.
}

\section*{Solid State Division}

\section*{4.5-A Silicon Controlled Rectifiers For Capacitive-Discharge Systems}

\begin{tabular}{|c|c|c|c|c|}
\hline GATE CHARACTERISTICS & SYMBOL & TYP. & MAX. & UNITS \\
\hline \begin{tabular}{c} 
DC Gate-Trigger Voltage: \\
\(V_{D}=12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{V}_{\mathrm{GT}}\) & 1.1 & 2 & V \\
\hline \begin{tabular}{c} 
DC Gate-Trigger Current: \\
\(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}(\mathrm{dc}), \mathrm{R}_{\mathrm{L}}=30 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{I}_{\mathrm{GT}}\) & 8 & 15 & mA \\
\hline
\end{tabular}

\section*{PACKAGE: JEDEC TO-8}

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 567.

\footnotetext{
4These values do not apply if there is a positive gate signal. Gate must be open or negatively biased.
- Any product of gate current and gate voltage which results in a gate power less than the maximum is permitted.
- Temperature measurement point is shown on the DIMENSIONAL OUTLINE.
}

\section*{Solid State}

Division

\section*{S2600 S2610 S2620 Series}

\section*{7-Ampere "Low-Profile" Silicon Controlled Rectifiers}
\begin{tabular}{|c|c|c|c|c|c|}
\hline bASIC RATINGS & & \[
\begin{aligned}
& \text { S2600B } \\
& \text { S2610B } \\
& \text { S2620B }
\end{aligned}
\] & \[
\begin{aligned}
& \text { S2600D } \\
& \text { S2610D } \\
& \text { S2620D }
\end{aligned}
\] & \[
\begin{aligned}
& \text { S2600M } \\
& \text { S2610M } \\
& \text { S2620M }
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
NON-REPETITIVE PEAK REVERSE VOLTAGE: \\
Gate open \(\qquad\)
\end{tabular} & \(\mathrm{V}_{\text {RSOM }}\) & 250 & 500 & 700 & V \\
\hline NON-REPETITIVE PEAK FORWARD VOLTAGE: & \(\mathrm{V}_{\text {DSOM }}\) & 250 & 500 & 700 & V \\
\hline REPETITIVE PEAK REVERSE VOLTAGE: \({ }^{\circ}\) & \(V_{\text {RROM }}\) & 200 & 400 & 600 & V \\
\hline \begin{tabular}{l}
REPETITIVE PEAK OFF-STATE VOLTAGE: \({ }^{\bullet}\) \\
Gate open
\end{tabular} & \(V_{\text {DROM }}\) & 200 & 400 & 600 & v \\
\hline \begin{tabular}{l}
PEAK SURGE (NON-REPETITIVE) ON-STATE CURRENT: \\
For one cycle of applied principal voltage
\end{tabular} & \({ }^{\text {ITSM }}\) & & & & \\
\hline 60 Hz (sinusoidal) & & 100 & 100 & 100 & A \\
\hline 50 Hz (sinusoidal) & & 85 & 85 & 85 & A \\
\hline PEAK REPETITIVE ON-STATE CURRENT: \(\dagger\) Duty factor \(=0.1 \%, \mathrm{~T}_{\mathrm{C}}=75^{\circ} \mathrm{C}\) & & & & & \\
\hline \begin{tabular}{l}
Pulse duration \(=5 \mu \mathrm{~s}(\) min. \(), 20 \mu \mathrm{~s}\) (max.) RATE OF CHANGE OF ON-STATE CURRENT: \\
\(\mathrm{V}_{\mathrm{DM}}=\mathrm{V}_{\mathrm{DROM}} \cdot \mathrm{I}_{\mathrm{GT}}=200 \mathrm{~mA}, \mathrm{t}_{\mathrm{r}}=0.5 \mu \mathrm{~s}\)
\end{tabular} & di/dt & 100 & 100
-200 & 100 & A
A/ \(/ \mathrm{s}\) \\
\hline \begin{tabular}{l}
FUSING CURRENT (for SCR protection): \\
\(\mathrm{T}_{\mathrm{J}}=-65\) to \(100^{\circ} \mathrm{C}, \mathrm{t}=1\) to \(8.3 \mathrm{~ms} \ldots \ldots \ldots \ldots .\).
\end{tabular} & \(\mathrm{I}^{2} \mathrm{t}\) & & 40 & & \(\mathrm{A}^{2} \mathrm{~s}\) \\
\hline \begin{tabular}{l}
GATE POWER DISSIPATION: \({ }^{\mathbf{A}}\) \\
Peak Forward (for \(1 \mu \mathrm{~s}\) max.)
\end{tabular} & \(\mathrm{P}_{\mathrm{GM}}\) & 40 & 40 & 40 & W \\
\hline \begin{tabular}{l}
Storage \\
Operating (Case) .....
\end{tabular} & \[
\stackrel{\mathrm{T}}{\mathrm{Ctg}}_{\mathrm{stg}}
\] & & \[
\begin{aligned}
& -65 \text { to }+1 \\
& --65 \text { to }+1
\end{aligned}
\] & & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{GATE CHARACTERISTICS} & \multirow{2}{*}{SYMBOLS} & \multicolumn{2}{|l|}{S2600 Series} & \multicolumn{2}{|l|}{S2610 Series S2620 Series} & \multirow{2}{*}{UNITS} \\
\hline & & TYP. & MAX. & TYP. & MAX. & \\
\hline \multicolumn{7}{|l|}{DC GATE TRIGGER CURRENT:} \\
\hline \(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}\) (DC) & \multirow{3}{*}{IGT} & & & & & \\
\hline \(\mathrm{R}_{\mathrm{L}}=30 \Omega\) & & & & & & \\
\hline \(\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}\) & & 6 & 15 & 6 & 15 & mA \\
\hline \multicolumn{7}{|l|}{DC GATE TRIGGER VOLTAGE:} \\
\hline \(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}\) (DC) & \multirow{3}{*}{VGT} & & & & & \\
\hline \(\mathrm{R}_{\mathrm{L}}=30 \Omega\) & & & & & & \\
\hline \(\mathrm{T}^{\mathrm{C}}=+25^{\circ} \mathrm{C}\) & & 0.65 & 1.5 & 0.65 & 1.5 & V \\
\hline
\end{tabular}

PACKAGE: Low-Profile TO-5 (S2600 Series)
Low-Profile TO-5 with Heat Radiator (S2610 Series)
Low-Profile TO-5 with Heat Spreader (S2620 Series)
The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 496.
\(\dagger\) When rms current exceeds 4 amperes (maximum rating for the anode lead), connection must be made to the case.
- These values do not apply if there is a positive gate signal. Gate must be open, terminated, or have negative bias.
\(\mathbf{\Delta}\) Any values of peak gate current or peak gate voltage that yeild the maximum gate power are permissible.

Thyristors

\section*{Solid State}

Division

\section*{S3700 Series}

\section*{5-Ampere All-Diffused Silicon Controlled Rectifiers for Inverter Applications}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline BASIC RATINGS & & & & \multicolumn{2}{|r|}{S3700B} & S37000 & \multicolumn{3}{|l|}{S3700M} \\
\hline \multicolumn{3}{|l|}{NON-REPETITIVE PEAK REVERSE Voltage:} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {RSOM }}\)} & 330 & 660 & \multicolumn{2}{|c|}{700} & V \\
\hline REPETITIVE PEAK REVERSE VOLTAGE:
Gate Open . . . . . . . . . . . . . . . . & & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {RROM }}\)} & 200 & 400 & \multicolumn{2}{|r|}{600} & V \\
\hline \multicolumn{3}{|l|}{REPETITIVE PEAK OFF-STATE VOLTAGE:} & \multicolumn{2}{|l|}{\(V_{\text {DROM }}\)} & 200 & 400 & \multicolumn{2}{|c|}{600} & v \\
\hline \multicolumn{3}{|l|}{ON-STATE CURRENT:} & \multicolumn{2}{|l|}{} & \multirow[t]{2}{*}{} & & & & \\
\hline \multicolumn{3}{|l|}{For case temperature of \(+60^{\circ} \mathrm{C}\) and 60 Hz :} & \multicolumn{2}{|l|}{} & & & \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{Average DC value at a conduction angle of \(180^{\circ}\)} & \multicolumn{2}{|l|}{\[
{ }^{\mathrm{I}} \mathrm{~T}(\mathrm{AV})
\]} & 3.2 & 3.2 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{3.2}} & A \\
\hline \multicolumn{3}{|l|}{RMS value} & \multicolumn{2}{|l|}{\({ }^{\text {T }}\) (RMS )} & 5 & 5 & & & A \\
\hline \multicolumn{3}{|l|}{PEAK SURGE (NON-REPETITIVE) ON-STATE CURRENT: TEMPERATURE RANGE:} & \multicolumn{3}{|l|}{\({ }^{\text {ITSM }}\)} & & & & \\
\hline \multicolumn{3}{|l|}{Storage} & \multicolumn{3}{|l|}{\(T_{\text {stg }}\)} & \multicolumn{3}{|l|}{-40 to +150} & \\
\hline \multicolumn{3}{|l|}{Operating (Case)} & \multicolumn{3}{|l|}{\({ }^{\top} \mathrm{C}\)} & \multicolumn{3}{|l|}{-40 to +100} & \\
\hline \multirow[t]{2}{*}{TURN-OFF TIME CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOLS} & \multicolumn{2}{|l|}{S3700B} & \multicolumn{2}{|r|}{S3700D} & \multicolumn{2}{|r|}{S3700M} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{UNITS}} \\
\hline & & Typ. & Max. & Typ. & Max. & Typ. & Max. & & \\
\hline \multirow[t]{8}{*}{```
Circuit-Commutated Turn-Off Time,
    (Reverse Recovery Time + Gate Recovery Time)
    \(\mathrm{V}_{\mathrm{DX}}=\mathrm{V}_{(\mathrm{BO})} \mathrm{O}\) rated value,
    \(I_{T M}=2 \mathrm{~A}, 50 \mu \mathrm{~s}\) min. pulse width,
    \(\mathrm{V}_{\mathrm{RX}}=80 \mathrm{~V}\) min., rise time \(=0.1 \mu \mathrm{~s}\),
    \(\mathrm{dv} / \mathrm{dt}=100 \mathrm{~V} / \mu \mathrm{s}, \mathrm{di}_{\mathrm{R}} / \mathrm{dt}=10 \mathrm{~A} / \mu \mathrm{s}\),
    \(\mathrm{I}_{\mathrm{GT}}=100 \mathrm{~mA}\) at turn-on,
    \(\mathrm{V}_{\mathrm{GT}}=0 \mathrm{~V}\) at turn-off, and
    \(\mathrm{T}_{\mathrm{C}}=+80^{\circ} \mathrm{C}\)
```} & \(\mathrm{t}_{\mathrm{q}}\) & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & 4 & 6 & 4 & 6 & 4 & 6 & \(\mu\) & \\
\hline
\end{tabular}

\section*{PACKAGE: JEDEC TO-66}

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 306.

\section*{Solid State} Division

\section*{5-Ampere Silicom Controlled Rectifier}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{BASIC RATINGS:} \\
\hline REPETITIVE PEAK OFF-STATE VOLTAGE: & \(V_{\text {DROM }}\) & 600 & V \\
\hline RMS ON-STATE CURRENT (Conduction angle \(=180^{\circ}\)): & \({ }_{\text {T }}\) (RMS) & 5 & A \\
\hline REPETITIVE PEAK ON-STATE CURRENT (\(0.2 \mu \mathrm{~s}\) Pulse Width) : & \(\mathrm{I}_{\text {PM }}\) & & \\
\hline Free-air cooling, \(\mathrm{f}=500 \mathrm{~Hz}\) & & 75 & A \\
\hline Free-air cooling, \(\mathrm{f}=5000 \mathrm{~Hz}\) & & 40 & A \\
\hline Infinite heat sink, f-10,000 Hz & & 40 & A \\
\hline Infinite heat sink, \(\mathrm{f}=1,000 \mathrm{~Hz}\) & & 75 & A \\
\hline GATE POWER DISSIPATION: & \(\mathrm{P}_{\mathrm{GM}}\) & & \\
\hline Peak (for \(10 \mu \mathrm{~s}\) pulse) & & 25 & w \\
\hline \multicolumn{4}{|l|}{TEMPERATURE RANGE:} \\
\hline Storage & \(\mathrm{T}_{\text {stg }}\) & -40 to 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating (Case) & \(\mathrm{T}_{\mathrm{C}}\) & -40 to 100 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline GATE CHARACTERISTICS & SYMBOL & MAX. & UNITS \\
\hline DC Gate-Trigger Current: \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) & \(\mathrm{I}_{\mathrm{GT}}\) & 35 & mA \\
\hline DC Gate-Trigger Voltage: \(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{GT}}\) & 4 & V \\
\hline
\end{tabular}

PACKAGE: JEDEC TO-66

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 476.

\author{
Solid State \\ Division
}

\section*{S3704 S3714 Series}

\section*{5-A Silicon Controlled Rectifiers}

\begin{tabular}{|c|c|c|c|c|}
\hline TURN-OFF TIME CHARACTERISTIC & SYMBOL & TYP. & MAX. & UNITS \\
\hline \begin{tabular}{c}
Circuit Commutated Turn-Off Time: \\
\(V_{D X}=V_{D R O M}, I_{T}=2 \mathrm{~A}\), pulse duration \(=50 \mu \mathrm{~s}, \mathrm{dv} / \mathrm{dt}=\) \\
\(100 \mathrm{~V} / \mu \mathrm{s},-\mathrm{di} / \mathrm{dt}=-10 \mathrm{~A} / \mu \mathrm{s}, \mathrm{I}_{\mathrm{GT}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GT}}=0 \mathrm{~V}\) (at \\
turn-off), \(\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}\)
\end{tabular} & & & & \\
\hline
\end{tabular}

\section*{PACKAGE: JEDEC TO-66 (S3704 Series)}

JEDEC TO-66 with Heat Radiator (S3714 Series)

\footnotetext{
The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 690.
}

\footnotetext{
- These values do not apply if there is a positive gate signal. Gate must be open or negatively biased.
- Any product of gate current and gate voltage which results in a gate power less than the maximum is permitted.
}

Solid State
Division

\section*{20-Ampere Silicon Controlled Rectifiers}

\begin{tabular}{|c|c|c|c|c|}
\hline GATE CHARACTERISTICS & SYMBOL & TYP. & MAX. & UNITS \\
\hline \begin{tabular}{c}
DC Gate-Trigger Current: \\
\(V_{D}=12 V(d c), R_{L}=30 \Omega, T_{C}=25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{I}_{\mathrm{GT}}\) & 8 & 15 & mA \\
\hline \begin{tabular}{c}
DC Gate-Trigger Voltage: \\
\(V_{D}=12 \mathrm{~V}(\mathrm{dc}), R_{\mathrm{L}}=30 \Omega, T_{\mathrm{C}}=25^{\circ} \mathrm{C}\)
\end{tabular} & \(\mathrm{V}_{\mathrm{GT}}\) & 1.1 & 2 & V \\
\hline
\end{tabular}

\footnotetext{
PACKAGE: Press-Fit (S6200)
Stud (S6210)
Isolated-Stud (S6220)
}

\footnotetext{
The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in the RCA data bulletin File No. 418.
}

\section*{Solid State \\ Division}

\section*{35-A Silicon Controlled Rectifiers}

\begin{tabular}{|c|c|c|c|c|}
\hline GATE CHARACTERISTICS & SYMBOL & TYP. & MAX. & UNITS \\
\hline DC Gate-Trigger Current At \(\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}\) & \(\mathrm{I}_{\mathrm{GT}}\) & 25 & 80 & mA (dc) \\
\hline DC Gate-Trigger Voltage At \(\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}\) & \(\mathrm{V}_{\mathrm{GT}}\) & 1.1 & 2 & V (dc) \\
\hline
\end{tabular}

\section*{PACKAGE: JEDEC TO-48}

The basic electrical-characteristics curves and test conditions and the mechanical details for these devices are given in RCA data bulletin No. 247.

\footnotetext{
*Any values of peak gate current or peak gate voltage to give the maximum gate power is permissible.
}

\title{
High-Reliability Integrated Circuits
}

\section*{High-Reliability Integrated Circuits}

RCA offers high-reliability versions of a broad range of standard COS/MOS and linear integrated circuits that are processed in accordance with MIL-STD-883 (Military Standard for Test Methods, Microelectronics). In addition, twenty-seven COS/MOS integrated circuits are currently being "qualified" to meet the requirements of MIL-M-38510 (Military Standard for Microelectronics or Integrated Circuits). RCA plans to qualify a number of its more than 100 standard linear integrated circuits in accordance with MIL-M-38510 in the future.

RCA also offers a broad line of high-reliability integrated-circuit chips for use in hybrid circuits. Standard chips are normally inspected to MIL-STD-883, Method 2010.1, Condition B Visual. Chips subjected to the more critical Condition A Visual inspections and to SEM (scanning-electron-microscope) inspections are also available.

\section*{General Considerations}

RCA high-reliability integrated circuits are supplied in hermetically sealed packages that are specially engineered and developed to meet the requirements of military, aerospace, and critical industrial applications. Most COS/MOS devices are supplied in either the dual-in-line package shown in Fig. 5-1(a) or the flat pack shown in Fig. 5-1(b). These packages feature a ceramic body with a welded cap. They are light in weight and can safely withstand the thermal shock levels specified by MIL-STD-883, Method 1011, Condition C. The flat pack and dual-in-line package have been in use since 1964, and the excellent reliability exhibited by these packages has been firmly established. Many currently

Fig. 5-1-Packages used for RCA highreliability integrated circuits: (a) dual-in-line ceramic package; (b) ceramic flat pack; (c) TO-5-style package.
available RCA high-reliability linear integrated circuits are supplied in the TO-5 style package shown in Fig. 5-1(c).
For all COS/MOS and many linear integrated circuits, the package in which a particular type is supplied is identified by the letter " \(D\) " (dual-in-line ceramic), " \(K\) "' (ceramic flat pack), or "T" (TO-5 style in the device type-number designation. The charts shown in Figs. 5-2 and 5-3 illustrate how the device type number may be used to define the basic device, the reliability class, the type of package, and the lead finish for RCA highreliability integrated circuits processed in accordance with MIL-STD-883 or MIL-M-38510, respectively.
RCA high-reliability integrated-circuit products are currently being used for a broad variety of functions in military, aerospace, and critical industrial applications. Table 5-1 lists a few typical examples of the use of RCA high-reliability COS/MOS and linear integrated circuits in satellite and military systems.

\section*{Manufacturing Controls}

RCA high-reliability integrated circuits are processed in accordance with the Product Assurance Program defined in Appendix A of MIL-M-38510. The program includes the following items:
1. A clearly defined procedure for the conversion of a customer specification into an RCA internal specification with built-in safeguards to assure the customer that the delivered parts meet or exceed his specification requirements.
2. A formalized personnel training and testing program which assures that each operation is performed correctly.
3. A complete inspection of incoming materials, utilities, and work in process using on-site facilities such as scanning-electron-microscope, gas-chromatography, atomic-absorption, and X-ray equipment.
4. Maintenance of cleanliness in work areas, e.g., all critical operations are performed in a Class 100 environment.
5. Rigorous control over changes in design, materials, and processes with documentation kept in active files for a minimum of three years and in inactive files for a minimum of 20 years.
6. Tool and test equipment maintenance and calibration in strict accordance with MIL-C-45662, "Calibration System Requirements".
7. A quality-assurance program in accordance with MIL-Q-9858, "Quality Program Requirements".
Detailed processing and screening requirements for RCA high-reliability integrated circuits are defined subsequently in the discussions of MIL-STD-883 and MIL-M-38510 Requirements.

1. Contact window that has less than 50 per cent of its area covered by the metallization.
2. Contact which has less than 75 per cent of the length of two adjacent sides covered by the metallization.
3. A metallization path not intended to cover a contact window which is separated from the window by less than 0.25 mil.
4. Any exposure of the gate oxide.
(a) COS/MOS Integrated Circuits

Class A, B, \& C is referenced to MIL-STD-883 Method 5004.
Refer to section on MIL-STD-883 Slash-Series Types for detailed information covering the RCA Slash-Series Programs to MIL-STD-883 for COS/MOS and Linear Integrated Circuits.
(b) Linear Integrated Circuits

Fig. 5-2- Guide to the reliability class, package, and lead finish of RCA high-reliability (slash-number series) integrated circuits processed in accordance with MIL-STD-883.
 processing.

Fig. 5-3-Guide to the reliability class, package, and lead finish of RCA high-reliability COS/MOS integrated circuits processed in accordance with MIL-M-38510.

Table 5-1- A Few Typical Examples of Satellite and Military Applications of RCA High-Reliability Integrated Circuits.

RCA High Reliability COS/MOS integrated circuits are now being used in, or are being designed into the following systems:

Satellites
Pioneer F Experimental
ATS - Series F and G
NIMBUS
HELIOS
ITOS
HEOS
APOLLO-15
Atmospheric Explorer, AE
(Experimenters and Flight-
Hardware Usage, Several
Thousand)
Classified Satellites
UK 4 (British/American)
IMP Satellites
Earth Resources Technical Satellite, ERTS
Dual Air-Density Satellite (DADS)
AIRS Program
Tenley Program
SATCOM
Space Shuttle
LANS Program

Military Equipment
Airborne Control
Data Buoy Platform
Atmospheric Digital Equipment
F-15 Aircraft Equipment
Ground Digital Equipment (Tanks)

Oceanographic Digital Equipment
Army Digital Equipment
Navy Digital Equipment
Fuze and Arming
Equipment
AWAC Program
Navy Sonobuoy
TAC Fire-Control System PRC-85

Aircraft Ground Control

RCA High-Reliability Linear Integrated Circuits are now used in, or are being designed into, the following systems:

Military Communications
ARC-150
ARC-164
PRC-85
PRC-25
PRC-77
F-15 Aircraft Equipment

\section*{AEGIS Program}

B-1 Bomber

AFGIS Radar (Navy)
Missiles
SAM-D
BULL-DOG
CONDOR
NIKE-X
Other Classified
Equipments

\section*{MIL-STD-833 Requirements}

RCA Solid State Division offers a broad range of COS/MOS and linear integrated circuits processed and screened in accordance with MIL-STD-883, Method 5004 , Class A, B, or C requirements. These devices are used in satellities and other aerospace, military, and critical industrial applications in which maintenance
is extremely difficult. .RCA high-reliability integrated circuits are provided in four basic screening levels (/1, \(/ 2, / 3\), and \(/ 4\)), as shown in Table 5-2. The basic \(/ 1\) level has been subdivided to include two higher screening levels (\(/ 1 \mathrm{~N}\) and \(/ 1 \mathrm{R}\)) as indicated in the table. These levels, which are marked on the device package following the type-number designation, meet the mechanical and electrical screening requirements of MIL-STD-883, imposed before the devices are sealed, and the screening tests required on packaged parts. RCA offers a \(/ 2\) part which meets Class A requirements of MIL-STD-883 less radiographic inspection since the aluminum metallization and bonding wires do not show up under this inspection.

The product flow for RCA high-reliability integrated circuits processed in accordance with MIL-STD-883 is shown in Fig. 5-4. After wafer processing, special visual inspections are performed to MIL-STD-883, Method 2010.1, Condition B or A at both chip and pre-seal inspections to assure a packaged chip of high reliability. In the case of Class A product (RCA levels /1 and \(/ 2\)), parts are tested functionally, and then receive a dc parameter test; significant parameters are recorded.

A 240 -hour burn-in at \(125^{\circ} \mathrm{C}\) is performed on all parts. All readings are repeated, and delta shifts calculated. The customer is provided with print-outs of these parameters identified by the serial number on the part. The parts then go through 100 -per-cent high- and lowtemperature testing under functional and dc operating conditions. Next, 100-per-cent ac testing is accomplished followed by Group A sampling of all test conditions. The Class A product is branded, visually inspected, and retested both functionally and to dc parameters prior to packaging and shipment to the customer. The screening tests for Class B (RCA level /3) and Class C (RCA level/4) devices are reduced as shown in Table 5-3 in which X designates that a test is performed 100 per cent and S indicates that the test is a screen. For Class-B devices, the main difference is- that burn-in is for 168 hours with GO-NO/GO parameter readings made before and after burn-in. Temperature testing is done on a sampling basis, and visual inspection prior to sealing is not as critical. Class-C devices are tested similarly to Class-B devices less the burn-in, temperature, and ac tests.

COS/MOS Integrated Circuits-All RCA highreliability COS/MOS products are subjected to \(100-\) per-cent production electrical tests after group A, quality testing and branding. Table \(5-4\) shows the test criteria for all product series. At a temperature of \(25^{\circ} \mathrm{C}\), all product series are 100 -per-cent functionally tested at voltage extremes to guarantee 3 - and 15 -volt operation. Parametric tests are performed at 5 and 10 volts. High and low temperature plus dynamic (ac) testing is performed on high-reliability products.
Table 5-5 presents the group A electrical sampling criteria which are used to retest a portion of the product to assure that the 100 -per-cent or other test parameters

Table 5-2- RCA Integrated-Circuit Screening Levels
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Screening Levels \({ }^{\text {A }}\)} & \multirow[b]{2}{*}{Application} & \multirow[b]{2}{*}{Description} \\
\hline RCA Levels & Equivalent to MIL-STD-883, Method 5004.1 & & \\
\hline \multicolumn{4}{|l|}{For Packaged Devices} \\
\hline /1N & Class A with SEM* Inspection and Condition A Precap Visual Inspection & \multirow{3}{*}{Aerospace and Missiles} & \multirow[t]{3}{*}{For devices intended for use where maintenance and replacement are impossible and reliability is imperative} \\
\hline /1R & Class A with SEM* Inspection and Condition B Precap Visual Inspection & & \\
\hline /1. & Class A with Condition B Precap Visual Inspection & & \\
\hline /2 & Class A with Condition B Precap Visual Inspection. Radiographic Inspection Omitted & Aerospace and Missiles & For devices intended for use where maintenance and replacement are extremely difficult or impossible and reliability is imperative \\
\hline /3 & Class B & Military and Industrial For example, in Airborne Electronics & For devices intended for use where maintenance and replacement can be performed but are difficult and expensive \\
\hline 14 & Class C & Military and Industrial For example, in GroundBased Electronics & For devices intended for use where replacement can readily be accomplished \\
\hline \begin{tabular}{l}
/5 \\
Standard commercial plus burn-in
\end{tabular} & - & Commercial and Industrial & For devices intended for use where a higher level of reliability is required than can be provided by product without a burn-in \\
\hline \multicolumn{4}{|l|}{For Chips \({ }^{\text { }}\)} \\
\hline /N & SEM* Inspection and Condition A Precap Visual Inspection & \multirow{2}{*}{Aerospace and Missiles} & \multirow[t]{2}{*}{For hybrid applications where maintenance and replacement are extremely difficult and reliability is imperative} \\
\hline /R & SEM* Inspection and Condition B Precap Visual Inspection & & \\
\hline /M & Condition B Precap Visual Inspection & Military and Industrial & For general applications \\
\hline
\end{tabular}
*SEM - Scanning Electron Microscope Inspection per NASA Specification GSFC-S-311-P-12
AFor details on Condition A and Condition B Precap Visual Inspection, refer to MIL-STD-883 Method 2010.1
- Lot acceptance testing for chips is available on a custom basis
meet guaranteed limits. The prime factor is LTPD (Lot-Tolerance-Per Cent-Defective); the referenced numbers specify the required sample size. Again, for special tests of temperature extremes and dynamic (ac) tests, either small quantities are tested, or high-reliability test data are used as judgment information.
Table 5-6 lists pre-burn-in and post-burn-in tests and delta limits for critical device parameters.

Group B and C testing is similar to that of NHL-STD-883 for all COS/MOS product series. The purpose of Group B and C tests is to show quality conformance of the product being manufactured over specific periods of time. Tables 5-7 and 5-8 present the ten subgroup tests referenced to MIL-STD-883, the test conditions, and acceptance criteria for all high-reliability COS/MOS products.

Table 5-2- Description of RCA Integrated-Circuit Screening Levels
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Test} & \multirow[t]{2}{*}{Conditions} & \multicolumn{2}{|l|}{MIL-STD-883} & \multicolumn{6}{|c|}{RCA Screening Levels*} \\
\hline & & Method & Conditions & /1N & /1R & 11 & 12 & 13 & 14 \\
\hline SEM Inspection & NASA Per GSFC-S-311-P-12 & - & - & X & X & - & - & - & - \\
\hline Precap Visual & - & 2010.1 & A & X & - & - & - & - & - \\
\hline Precap Visual & - & 2010.1 & B & - & x & x & \(x\) & x & \(x\) \\
\hline Preseal Bake & 16 to 32 hrs at \(200^{\circ} \mathrm{C}\) & - & - & \(x\) & \(x\) & \(x\) & \(x\) & \(x\) & \(x\) \\
\hline Seal \& Lot Identification & - & - & - & \(x\) & \(x\) & \(x\) & \(x\) & \(x\) & \(x\) \\
\hline Stabilization Bake & 48 hrs . at \(150^{\circ} \mathrm{C}\) & 1008 & C & \(x\) & \(x\) & \(x\) & x & x & x \\
\hline Thermal Shock & 15 cycles & 1011 & C & \(x\) & \(x\) & \(x\) & \(x\) & - & - \\
\hline Temperature Cycling & 10 cycles & 1010 & C & X & \(x\) & x & x & x & x \\
\hline Mechanical Shock & 5 pulses, \(Y_{1}\) direction & 2002 & B & X & x & \(x\) & \(x\) & - & - \\
\hline Centrifuge & \(Y_{2}, Y_{1}\) direction & 2001 & E & X & \(\times\) & \(x\) & x & - & - \\
\hline & \(\mathrm{Y}_{1}\) direction only & 2001 & E & - & - & - & - & \(x\) & \(x\) \\
\hline Fine Leak & - & 1014 & A & \(x\) & X & x & x & x & \(x\) \\
\hline Gross Leak & - & 1014 & C & X & \(x\) & \(x\) & \(x\) & \(x\) & x \\
\hline Electrical Tests & See Note 1 & - & - & \(x\) & x & x & \(x\) & x & - \\
\hline Serialize & - & - & - & \(x\) & \(x\) & \(x\) & \(x\) & - & - \\
\hline Pre Burn-in Electrical & See Note 2 & - & - & \(x\) & \(x\) & \(x\) & x & - & - \\
\hline Burn-in & 240 hours & 1015 & B, D or E & \(x\) & \(x\) & x & x & - & - \\
\hline & 168 hours & 1015 & \(B, D\) or \(E\) & - & - & - & - & \(x\) & - \\
\hline Post Burn-in Electrical & Delta Requirements & - & - & x & x & x & x & - & - \\
\hline
\end{tabular}

Table 5-3- Description of Total Lot Screening (X=100\% Testing) (cont'd)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Test} & \multirow[t]{2}{*}{Conditions} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{6}{|c|}{RCA Screening Levels*} \\
\hline & & Method & Conditions & 11N & /1R & 11 & 12 & 13 & 14 \\
\hline Final Electrical & - & - & - & - & - & - & - & - & - \\
\hline a) \(25^{\circ} \mathrm{C}\) & see Table 4 & - & - & \(x\) & \(x\) & \(x\) & \(x\) & x & X \\
\hline b) -55 and \(+125^{\circ} \mathrm{C}\) & see Table 4 & - & - & \(x\) & \(x\) & \(x\) & X & \(x\) & S \\
\hline Radiographic Inspection & 1 view & 2012 & - & \(x\) & \(x\) & \(x\) & - & - & - \\
\hline External Visual & - & 2009 & - & X & x & X & X & X & X \\
\hline
\end{tabular}

Note 1: See specific type Slash (/) Series type data bulletin for test conditions and limits
* RCA screening level \(/ 5\) consists of a 168 -hour burn-in screen performed on standard commercial product. The ambient test temperature is the maximum possible without exceeding device thermal ratings. After burn-in, \(/ 5\) devices meet all of the electrical requirements specified in the appropriate commercial data bulletin, Reference: RCA DATABOOK SSD-201.

Table 5-4- Final Electrical Tests
\begin{tabular}{|c|l|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{c}
TEMPERATURE \\
\(\left(T_{A}\right)\)
\end{tabular}} & \multicolumn{2}{|c|}{ TEST } & \multicolumn{3}{|c|}{ TEST CRITERIA } \\
\cline { 3 - 5 } & & LEVELS & LEVEL & LEVEL \\
\hline\(+25^{\circ} \mathrm{C}\) & Selected Static Parameters & \(100 \%\) & \(100 \%\) & \(100 \%\) \\
\(+125^{\circ} \mathrm{C}\) & Selected Static Parameters & \(100 \%\) & \(100 \%\) & - \\
\(-55^{\circ} \mathrm{C}\) & Selected Static Parameters & \(100 \%\) & \(100 \%\) & - \\
\(+25^{\circ} \mathrm{C}\) & Selected Dynamic Parameters & \(100 \%\) & \(100 \%\) & - \\
\hline
\end{tabular}

Table 5-5- Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SUBGROUP} & \multirow[b]{2}{*}{TEST} & \multirow[b]{2}{*}{CONDITION} & \multicolumn{3}{|c|}{LTPD} \\
\hline & & & \[
\begin{gathered}
\text { LEVELS } \\
\text { /1N, /1R, /1, /2 } \\
\hline
\end{gathered}
\] & LEVEL /3 & \begin{tabular}{l}
LEVEL \\
/4
\end{tabular} \\
\hline 1 & Selected Static Parameters & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & 5 & 5 & 5 \\
\hline 2 & Selected Static Parameters & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & 5 & 7 & 10 \\
\hline 3 & Selected Static Parameters & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 5 & 7 & 10 \\
\hline 4 & Selected Dynamic Parameters & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & 5 & 5 & 5 \\
\hline
\end{tabular}

Table 5-6- Pre and Post Burn-In Electrical Tests and Delta Limits (\(\mathrm{TA}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline CRITICAL PARAMETERS (at \(\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}\)) & SYMBOLS & \multicolumn{9}{|l|}{LIMIT VALUES: For specific CD4000A Series Types and corresponding \(\Delta\) limits for High-Reliability Versions *} \\
\hline & \[
\begin{gathered}
\text { Total } \\
\mathrm{I}_{\mathrm{L}}(\max)
\end{gathered}
\] & \begin{tabular}{l|l|l|}
0.1 & 0.5
\end{tabular} & 1 & 2 & 5 & 10 & 15 & 25 & 50 & Unit \(\mu \mathrm{A}\) \\
\hline & \(\Delta I_{L}\) & 0.05 0.2 & 0.3 & 0.5 & 1.0 & 1.3 & 1.5 & 2.5 & 5.0 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
THRESHOLD VOLTAGE: \\
" \(N\) " Channel
\end{tabular} & \(\Delta V_{\text {TH }}{ }^{\prime \prime} \mathrm{N}^{\prime \prime}\) & \multicolumn{8}{|l|}{\[
- \pm 0.3
\]} & V \\
\hline " \(\mathrm{P}^{\prime}\) Channel & \(\Delta V_{\text {TH }}{ }^{\prime \prime}{ }^{\prime \prime}\) & \multicolumn{8}{|l|}{\(\longrightarrow \pm 0.3 \longrightarrow\)} & V \\
\hline \begin{tabular}{l}
DEVICE DRAIN CURRENT: \\
Total
\end{tabular} & \[
\begin{gathered}
\text { Total } \\
\text { IDS }(\mathrm{min}) \\
\hline
\end{gathered}
\] & -0.1-0.5 & 0.5-2 & 2-5 & & 5-10 & 10-25 & \multicolumn{2}{|r|}{25-50} & mA \\
\hline " N " Channel & \(\triangle{ }^{\text {DS }}\) " \({ }^{\text {" }}\) & \(\pm 0.1\) & \(\pm 0.5\) & \multicolumn{2}{|l|}{\(\pm 0.75\)} & \(\pm 1\) & \multirow[t]{2}{*}{\(\pm 2\)} & \multicolumn{2}{|r|}{\(\pm 5\)} & mA \\
\hline " \({ }^{\text {" }}\) " Channel & \(\mathrm{II}_{\text {DS }}{ }^{\prime \prime} \mathrm{P}^{\prime \prime}\) & \(\pm 0.1\) & \(\pm 0.5\) & \multicolumn{2}{|l|}{\(\pm 0.75\)} & \(\pm 1\) & & \multicolumn{2}{|r|}{\(\pm 5\)} & mA \\
\hline
\end{tabular}

\footnotetext{
* For example, if a specific CD4000A Series type has a maximum quiescent device current of \(0.5 \mu \mathrm{~A}\) at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), RCA will test to a \(\Delta\) limit of \(0.2 \mu \mathrm{~A}\) for the high-reliability version of that type. In a similar manner, if a type has a quiescent device current rating of \(5 \mu \mathrm{~A}\), RCA will test to a \(\Delta\) limit of \(1.0 \mu \mathrm{~A}\).
}

Table 5-7- Group B Environmental Sampling Inspection (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SUBGROUP} & \multirow[b]{2}{*}{TEST} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{3}{|c|}{LTPD} \\
\hline & & REFERENCE & CONDITIONS & \begin{tabular}{l}
LEVELS \\
/1N, /1R, \\
/1, /2
\end{tabular} & \[
\begin{aligned}
& \text { LEVEL } \\
& / 3
\end{aligned}
\] & \[
\begin{gathered}
\text { LEVEL } \\
14
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{1
2} & Physical Dimensions & 2008 & Test Cond. A per applicable data sheet & 10 & 15 & 20 \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Marking Permanency \\
Visual and Mechanical
\end{tabular}} & 2008 & Test Cond. B per Par. 3.2.1 & \multicolumn{3}{|c|}{4 devices (no failures)} \\
\hline & & 2008 & \multirow[t]{2}{*}{\begin{tabular}{l}
Test Cond. B \(10 \times\) mag. \\
Test Cond. D 10 Devices minimum
\end{tabular}} & \multicolumn{3}{|c|}{1 device (no failure)} \\
\hline & Bond Strength & 2011 & & 5 & 15 & 20 \\
\hline \multirow[t]{4}{*}{3
\(-\quad 4\)} & Solderability & 2003 & & 10 & 15 & 15 \\
\hline & Lead Fatigue & 2004 & Test Cond. B2 any 5 leads & 10 & 15 & 15 \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak & 1014 & Test Cond. C & & & \\
\hline
\end{tabular}

Note 1: Group B tests are performed on each inspection lot per requirements of MIL-M-38510.
Note 2: Operating life circuits are included in specific type high-reliability data bulletins.

Table 5-8- Group C Environmental Sampling Inspection (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SUBGROUP} & \multirow[b]{2}{*}{TEST} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{3}{|c|}{LTPD} \\
\hline & & REFERENCE & CONDITIONS & LEVELS /1N, /1R, /1, /2 & \[
\begin{aligned}
& \text { LEVEL } \\
& 13
\end{aligned}
\] & LEVEL /4 \\
\hline \multirow[t]{5}{*}{1} & Thermal Shock & 1011 & Test Cond. C & 10 & 15 & 15 \\
\hline & Temperature Cycling & 1010 & Test Cond. C & & & \\
\hline & Moisture Resistance & 1004 & No Voltage Applied & & & \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak Critical Post Tests - Note 3 & 1014 & Test Cond. C & & & \\
\hline \multirow[t]{5}{*}{2} & Mechanical Shock & 2002 & Test Cond. B, 0.5 ms & 10 & 15 & 15 \\
\hline & Vibration, Var. Freq. & 2007 & Test Cond. A & & & \\
\hline & Constant Acceloration & 2001 & Test Cond. E & & & \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak Critical Post Test - Note 3 & 1014 & Test Cond. C- & & & \\
\hline \multirow[t]{2}{*}{3} & Salt Atmosphere & 1009 & Test Cond. A & 10 & 15 & 15 \\
\hline & & & Omit Initial Conditioning & & & \\
\hline \multirow[t]{2}{*}{4} & High Temp. Storage & 1008 & Test Cond. C & 7 & 7 & 7 \\
\hline & Critical Post Tests - Note 3 & & 1000 hours & & & \\
\hline \multirow[t]{2}{*}{5} & Operating Life & 1005 & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}\). & 5 & 5 & 5 \\
\hline & Critical Post Tests - Notes 2 & & Test Circuit (Note 2) & & & \\
\hline \multirow[t]{2}{*}{6} & Steady State Bias and 3 & 1015 & Test Cond. A, 72 hrs . & 7 & - & - \\
\hline & Critical Post Tests - Note 3 & & \[
\text { At } \mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \text { (Note 3) }
\] & & & \\
\hline
\end{tabular}

Note 1: Group C tests are performed at 3-month intervals for reliability history.
Note 2: Operating life circuits are included in specific type highreliability data bulletins.
Note 3: Static parameters and limits are shown in High-Reliability Devices DATABOOK SSD-207, and in specific type highreliability data bulletins.

Linear Integrated Circuits-Table 5-9 is a general guide to parameters that are tested for broad classifications of RCA high-reliability linear integrated circuits.

For RCA levels 1 and 2 (Class A) devices, the Table indicates the typical parameters that are recorded before and after burn-in. A device is rejected for failure to comply with these limits. The column headed MAX \(\Delta\) shows the maximum change permitted in selected device parameters during burn-in. In installations where re-
placement is difficult or impossible, any readjustment to components for drifting is equally difficult or impossible.

For RCA level 3 (Class B) devices, only the minimum and/or maximum limits apply for burn-in. No values are recorded, and the tests are go/no-go.

RCA level 4 (Class C) devices are not subjected to burn-in.

Table 5-9- Pre- and Post-Burn-In Electrical-Test and Delta Limits for RCA High-
Reliability Linear Integrated Circuits* (Typical Parameters)
OPERATIONAL AMPLIFIERS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Characteristics} & \multirow[b]{3}{*}{Symbol} & \multirow[b]{3}{*}{\begin{tabular}{l}
Test \\
Conditions
\end{tabular}} & \multicolumn{5}{|c|}{Limits} & \multirow[b]{3}{*}{Units} \\
\hline & & & \multicolumn{2}{|r|}{Standard} & \multicolumn{3}{|c|}{Premium} & \\
\hline & & & Min. & Max. & Min. & Max. & Max \(\triangle\) & \\
\hline \multicolumn{9}{|l|}{Operational Transconductance Amplifiers (Example: CA3080A)} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & \[
\begin{aligned}
& { }^{\prime} \mathrm{ABC}= \\
& 500 \mathrm{~mA}^{* *}
\end{aligned}
\] & - & 5 & - & 2 & \(\pm 2\) & mV \\
\hline Input Offset Current & \({ }^{10}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{ABC}}= \\
& 500 \mathrm{~mA}^{* *}
\end{aligned}
\] & - & 0.5 & - & 0.5 & \(\pm 0.05\) & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 11 & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{ABC}}= \\
& 500 \mathrm{~mA}^{* *}
\end{aligned}
\] & - & 5 & - & 5 & \(\pm 0.25\) & \(\mu \mathrm{A}\) \\
\hline Transconductance & gm & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{ABC}}= \\
& 500 \mathrm{~mA}^{* *}
\end{aligned}
\] & 6700 & 13000 & 7700 & 12000 & \(\pm 3000\) & \(\mu \mathrm{mho}\) \\
\hline \multicolumn{9}{|l|}{Operational Voltage Amplifiers (Example: CA3015A)} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & - & - & 5 & - & 2 & \(\pm 1\) & mV \\
\hline Input Offset Current & \({ }_{10}\) & - & - & 5 & - & 1.6 & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 11 & - & - & 24 & - & 6 & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline Device Dissipation & \({ }^{\text {D }}\) & No Load & 110 & 240 & 110 & 240 & \(\pm 25\) & mW \\
\hline & & Output Shorted & 320 & 600 & 320 & 600 & \(\pm 50\) & \\
\hline
\end{tabular}

DIFFERENTIAL AMPLIFIERS (Example: CA3028B)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{Limits} & \multirow[b]{2}{*}{Units} \\
\hline & & Min. & Max. & Max \(\triangle\) & \\
\hline Input Bias Current & \(I_{1}\) & - & 80 & \(\pm 8\) & \(\mu \mathrm{A}\) \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & - & 5 & \(\pm 2\) & mV \\
\hline Quiescent Operating Current (\({ }^{2}\)) & \({ }_{6}\) or \(^{\prime} 8\) & 2.5 & 4 & \(\pm 0.4\) & mA \\
\hline Input Current (term. 7) & \(1_{7}\) & 1 & 2.1 & \(\pm 0.2\) & mA \\
\hline Device Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & 120 & 220 & \(\pm 24\) & mW \\
\hline
\end{tabular}

Table 4-9 - Pre- and Post-Burn-In Electrical-Test and Delta Limits for RCA High-
Reliability Linear Integrated Circuits* (Typical Parameters) (Continued)
DEVICE ARRAYS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multirow[t]{2}{*}{Test Conditions} & \multicolumn{3}{|c|}{Limits} & \multirow[b]{2}{*}{Units} \\
\hline & & & Min. & Max. & Max \(\triangle\) & \\
\hline \multicolumn{7}{|l|}{Diode Arrays (Example: CA3039)} \\
\hline Forward Voltage Drop & \[
\begin{aligned}
& V_{F} \\
& \text { (Any Diode) }
\end{aligned}
\] & \[
\mathrm{I}_{\mathrm{F}}=0.2 \mathrm{ma}
\] & & 720 & \(\pm 10\) & mV \\
\hline Forward Voltage Drop & \[
\begin{aligned}
& \mathbf{V}_{F} \\
& \text { (Any Diode) }
\end{aligned}
\] & \[
I_{F}=1 \mathrm{ma}
\] & & 780 & \(\pm 10\) & mV \\
\hline Forward Voltage Drop & \[
\begin{aligned}
& V_{F} \\
& \text { (Any Diode) }
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{F}}=20 \mathrm{ma}\) & & 950 & \(\pm 10\) & mV \\
\hline \multicolumn{7}{|l|}{Transistor Arrays (Example: CA3018A)} \\
\hline \begin{tabular}{l}
Emitter-to-Base \\
Breakdown Voltage
\end{tabular} & \(V_{(B R) E B O}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{a} \\
& \mathrm{I}_{\mathrm{C}}=0
\end{aligned}
\] & 5 & & \(\pm 0.5\) & V \\
\hline Collector-Cutoff Current & \({ }^{\text {CEEO }}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{B}}=0
\end{aligned}
\] & & 0.5 & \(\pm 0.15\) & \(\mu \mathrm{A}\) \\
\hline Input Current & \(1 /\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{ma} \\
& \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}
\end{aligned}
\] & 5 & 25 & \(\pm 3\) & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Base-to-Emitter \\
Voltage
\end{tabular} & \(V_{B E}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{ma} \\
& \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}
\end{aligned}
\] & 0.6 & 0.8 & \(\pm 0.10\) & V \\
\hline
\end{tabular}
* Levels \(/ 1\) and \(/ 2\) require pre burn-in electrical and post burn-in electrical tests and delta limits. Level \%3 requires pre-burn-in electrical tests only.
** Programming Current

\section*{MIL-M-38510 Requirements for High-Reliability COS/MOS Integrated Circuits}

Since 1970, RCA has been working closely with various aerospace and military agencies to qualify and provide COS/MOS devices to MIL-M-38510 specifications. Among these agencies are the NASA Goddard Space Flight Center, NASA Marshall Space Flight Center, NASA Headquarters Center in Washington, Rome Air Development Center, and the Defense Electronic Supply Center (DESC) at Dayton, a branch of the Defense Supply Agency.

MIL-M-38510 is the general specification for integrated circuits and the top document for MIL-STD-883. This general specification, introduced a year after MIL-STD-883 was in existence, adds a number of quality constraints not included in MIL-STD-883, which is a specification of test methods, procedures, and screening tests. Parts are provided to MIL-M-38510 under a series of / 050 numbers of which nine are in existence. These nine numbers cover twenty-seven COS/MOS types. Parts meet requirements similar to those of Classes A, B, and C of MIL-STD-883, Method 5004 screening, except that additional requirements, including more test conditions and tightened limits, are imposed. The additional criteria for each class of product are designated by an X in Table 5-10. Also provided
in MIL-M-38510 tests are PDA's (Per-Cent Defective Allowed) of 10 per cent for the three burn-in operations performed on Class-A product, and 10 per cent for the one burn-in of Class-B product. Table 5-11 provides a list of the COS/MOS devices for which MIL-M-38510 /050-number specification sheets have been written.

Table 5-10 - MIL-M-38510 requirements in addition to those of MIL-STD-883
\begin{tabular}{|l|c|c|c|}
\hline Requirements & \begin{tabular}{c}
Class \\
A
\end{tabular} & \begin{tabular}{c}
Class \\
B
\end{tabular} & \begin{tabular}{c}
Class \\
C
\end{tabular} \\
\hline \begin{tabular}{l}
Product assurance plan \\
Manufacturing \\
Certification \\
Line certification
\end{tabular} & X & X & X \\
SEM inspection & X & X & X \\
\(\quad \mathrm{XSFC-S}-311-\mathrm{P}-12\) & X & & \\
Radiographic & & & \\
\(\quad\) NHB5300.4(3E) & X & & \\
Two bias burn-in 36 hrs & X & & X \\
Tighter DC electrical & X & X & X \\
Tighter AC electrical & X & X & X \\
\hline
\end{tabular}

Table 5-11 - COS/MOS devices for which specification sheets have been written.

Fig. 5-5 shows a product-flow diagram for RCA COS/MOS integrated circuits processed in accordance with MIL-M-38510.

Table 5-12 compares the general processing requirements for COS/MOS integrated circuits of MILSTD -883 and MIL-M-38510, and Table 5-13 compares

Fig. 5-5- Product flow diagram for RCA high-reliability COS/MOS integrated circuits processed in accordance with MIL-M-38510.

Table 5-12 - Comparison of MIL-STD-883 and MIL-M-38510 Processing and Screening Requirements for RCA High-Reliability COS/MOS Integrated Circuits.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{MIL-STD-883 METHOD} & \multicolumn{6}{|c|}{\[
\begin{gathered}
\text { RCA } \\
\text { MIL-STD-883 } \\
\text { LEVEL }
\end{gathered}
\]} & \multicolumn{3}{|r|}{MI L-M-38510 CLASS} \\
\hline & & 1N & 1R & 1 & 2 & 3 & 4 & A & B & C \\
\hline - Wafer SEM Inspection & GSFC-S-311-P-12* & X & X & - & - & - & - & X & - & - \\
\hline - Assembly & & & & & & & & & & \\
\hline Precap Visual (Cond. A) & 2010.1A & X & - & - & - & - & - & X & - & - \\
\hline Precap Visual (Cond. B) & 2010.1B & - & \(x\) & \(x\) & X & X & X & - & \(x\) & \(x\) \\
\hline - Preconditioning & & & & & & & & & & \\
\hline Thermal Shock & 1011C & X & \(x\) & X & X & - & - & x & - & - \\
\hline Temperature Cycle & 1010C & x & \(x\) & X & \(x\) & X & x & x & X & x \\
\hline Mechanical Shock & 2002B & X & X & X & X & - & - & x & - & - \\
\hline Centrifuge Y 1 & 2001E & - & - & - & - & X & X & - & X & X \\
\hline Centrifuge Y1 \& Y2 & 2001E & X & X & X & X & - & - & X & - & - \\
\hline Fine Leak & 1014A & X & X & X & X & X & X & X & X & X \\
\hline Gross Leak & 1014C & x & x & X & X & x & X & X & X & x \\
\hline - Test and Burn-In & & & & & & & & & & \\
\hline Initial Test & & X & \(x\) & X & x & X & - & X & X & - \\
\hline Serialize & & X & X & X & X & - & - & X & - & - \\
\hline Bias Burn-In, & & - & - & - & - & - & - & x & - & - \\
\hline Operating Burn-In, 240-Hr. Deltas & 1015D, E & X & X & X & X & - & - & X & - & - \\
\hline Operating Burn-In 168 Hrs. & 1015D, E & - & - & - & - & X & - & - & X & - \\
\hline Final Electrical DC \(25^{\circ} \mathrm{C}\) & & X & X & X & X & X & X & X & X & x \\
\hline Final Electrical AC \(25^{\circ} \mathrm{C}\) & & X & X & X & X & \(x\) & S & x & X & S \\
\hline Final Electrical DC \(-55^{\circ} \mathrm{C}\) & & X & X & x & \(x\) & X & S & X & X & S \\
\hline Final Electrical AC \(-55^{\circ} \mathrm{C}\) & & - & - & - & - & - & - & S & S & S \\
\hline Final Electrical DC \(+125^{\circ} \mathrm{C}\) & & X & X & X & X & X & S & X & X & S \\
\hline Final Electrical AC \(+125^{\circ} \mathrm{C}\) & & - & - & - & - & - & - & S & S & S \\
\hline - X-ray Inspection & & & & & & & & & & \\
\hline One View & 2012 & X & X & X & - & - & - & - & - & - \\
\hline Two Views & NHB53004(3E)* & - & - & - & - & - & - & X & - & - \\
\hline
\end{tabular}
\(S=\) Sample \(\quad X=100 \%\) Testing \(\quad-=\) Not Performed
*These specifications, developed by NASA, are required by MIL-M-38510.
the detailed screening requirements of these specifications for Class A COS/MOS integrated circuits.

In the processing of high-reliability COS/MOS integrated circuits, the wafer processing and metallization steps, the wafer finishing operations, and the wafer testing are the same as for standard-product COS/MOS devices. The major difference is that, for Class A parts,
an SEM inspection step is inserted after the wafer processing and metallization, as shown in Fig. 5-6. After these four basic operations are completed, the tested wafer is subjected to the special high-reliability processing. As shown in Fig. 5-7, thirty-five additional processing and screening operations are required for Class A COS/MOS parts.

92CL-24952

Fig. 5-7-COS/MOS High-Reliability Flow Chart for Flat Pack MIL-M-38510 Class A Devices.

Table 5-13- Comparison of MIL-STD-883 and MIL-M-38510 Detailed Screening Requirements for RCA Level /1N COS/MOS Devices
\begin{tabular}{|l|l|l|}
\hline SCREENING PROCEDURES & \multicolumn{1}{|c|}{\begin{tabular}{c}
RCA LEVEL /1N \\
(PER MIL-STD-883)
\end{tabular}} & \multicolumn{1}{c|}{ CLASS A MIL-M-38510 } \\
\hline 1. SEM Inspection & Yes & Yes \\
2. Visual, Precap & 2010.1 Cond. A & 2010.1 Cond. A \\
3. Pre-conditioning & MIL-STD-883 & MIL-STD-883 \\
4. Bias Burn-in High & None & 36 hrs @ \(150^{\circ} \mathrm{C}, \Delta^{(2)}\) PDA (1) \\
5. Bias Burn-in Low & None & 36 hrs @ \(150^{\circ} \mathrm{C}, \Delta^{(2)} 5 \%\) \\
6. Operating Burn-in 240 hrs @ & Cirteria 10\% Lot Reject Max; If & PDA 5\% Max; if over 5\% Reject \\
125 \({ }^{\circ} \mathrm{C}\) & Exceeded, Repeat Allowed & Entire Lot \(\Delta^{(2)}\) \\
7. DC Elect. Tests & Measurements on Selected Inputs & Measurements on all Inputs and \\
& and Outputs & Outputs \\
8. DC Test-Limit Resolution & 50 nA Minimum; 10 mV Minimum & 1 nA Minimum; 1 mV Minimum \\
9. AC Dynamic Tests & Measurements on Selected Inputs & Measurements on all Inputs and \\
10. AC Test Limits & and Outputs & Outputs \\
11. Radiographic & At 15-pF Load & AT 50-pF Load \\
12. Parts Qualification & View in One Dimension & View in Two Dimensions \\
Requirement & & 9 Detailed Electrical Specifications \\
13. Group B and C Qualification & 10 Generic Families for 50 & 9 Generic Families for 27 COS/MOS \\
Conformance & COS/MOS Types & Types \\
\hline
\end{tabular}

\section*{\({ }^{(1)}{ }_{\text {PDA }}=\) Per-Cent Defective Allowable}

\section*{COS/MOS Life-Test Data}

Table 5-14 provides a summary of Group B \(125^{\circ} \mathrm{C}\) operating-life data for 1972 on RCA high-reliability COS/MOS integrated circuits processed in accordance with MIL-STD-883. These high-reliability COS/MOS devices were processed to meet RCA level \(/ 2\) require-

Table 5-14- Operating-Life Data on RCA High-Reliability COS/MOS Integrated Čircuits.
\begin{tabular}{|c|c|}
\hline Device Tested: & 1,122 from the CD4000A Family \\
\hline Specification: & High-reliability per RCA COS/MOS Reliability Report RIC-102 (MIL-STD-883, METHOD 5004) \\
\hline Test Hours: & 1,000 hours each device** \\
\hline Total Device Hours: & 1,055,372 hours \\
\hline Inoperable Failures: & Zero \\
\hline \(125^{\circ} \mathrm{C}\) Failure Rate \(=\) & 0.086\%/1000 hours At 60\% \\
\hline MTTF = & 1,150,000 hours \(\}\) confidence \\
\hline \(55^{\circ} \mathrm{C}\) Failure Rate \({ }^{*}=\) & 0.0126\%/1000 hours At 60\% \\
\hline MTTF = & 7,900,000 hours \(\quad\) confidence \\
\hline \(25^{\circ} \mathrm{C}\) Failure Rate \(=\) & 0.0037\%/1000 hours At 60\% \\
\hline MTTF = & 26,800,000 hours \(\}\) confidence \\
\hline
\end{tabular}

\footnotetext{
*Actual tests conducted at \(125^{\circ} \mathrm{C}\). Failure rates derived for a \(55^{\circ} \mathrm{C}\) operating temperature were obtained using acceleration factors of 6.8 and 23 for the \(25^{\circ} \mathrm{C}\) operating temperature.

Acceleration factors were obtained from Report AD 614103,
"Reliability of Integrated Circuits used in Missile Systems", Clearing House for Federal Scientific and Technical Information.
**231 units had less than 1000 hours.
}
(2) \(\Delta=\) Delta Variables, Data Required

Table 5-15 shows long-life reliability data for RCA of the life capability of 1972 shipments of RCA highreliability COS/MOS integrated circuits.

Table \(4-15\) shows long-life reliability data for RCA high-reliability COS/MOS integrated circuits that have
Table 5-15- Long Life Reliability Data on RCA COS/MOS integrated Circuits (Data obtained from 75 CD4001A integrated circuits tested at \(125^{\circ} \mathrm{C}\) in a ring-counter application.)
\begin{tabular}{|c|c|}
\hline Specification: & RCA commercial, full militarytemperature range \(\left(-55^{\circ} \mathrm{C}\right.\) to \(+125^{\circ} \mathrm{C}\)) per RCA COS/MOS Reliability Report RIC-101A \\
\hline Test Hours: & 24,000 hours (AS OF MAY 1973) \\
\hline Total Device Hours: & 1,784,000 hours** \\
\hline Inoperable Failures: & Zero \\
\hline \(125^{\circ} \mathrm{C}\) Failure Rate \(=\) & 0.051\%/1000 hours At 60\% \\
\hline MTTF = & 1,940,000 hours \(\}\) confidence \\
\hline \(55^{\circ} \mathrm{C}\) Failure Rate \({ }^{*}=\) & 0.0075\%/1000 hours (At 60\% \\
\hline MTTF = & 13,300,000 hours \(\}\) confidence \\
\hline \(25^{\circ} \mathrm{C}\) Failure Rate \({ }^{*}=\) & 0.0022\%/1000 hours At 60\% \\
\hline MTTF = & 46,000,000 hours \(\}\) confidence \\
\hline
\end{tabular}

\section*{Notes:}
*Actual tests conducted at \(125^{\circ} \mathrm{C}\). Failure rates derived for a \(55^{\circ} \mathrm{C}\) operating temperature were obtained using acceleration factors of 6.8 and 23 for the \(25^{\circ} \mathrm{C}\) operating temperature.

Acceleration factors were obtained from Report AD 614103,
"Reliability of Integrated Circuits used in Missile Systems", Clearing House for Federal Scientific and Technical Information.
**Two parts were destroyed at the 16,000 -hour point as a result of operator error. Only 73 parts, therefore, were operated to \(\mathbf{2 4 , 0 0 0}\) hours.
been operating continuously since 1970 in a ring-counter application that exercises the circuits in a functional mode. The data obtained from this test, which is still underway, indicate the long-term reliability of RCA COS/MOS integrated circuits.

\section*{High-Reliability Terms and Definitions}

MIL-STD-883 Military Standard for Test Methods, Microelectronics. This standard defines the best methods used to achieve three classes of reliability: Class A, Class B, and Class C. This specification defines standard test methods and procedures for highreliability testing and processing.

Class A The highest reliability category or (MIL-STD883)

Class B
(MIL-STD-
883)

Class C
(MIL-STD-
883)

MIL-M-38510 Military Standard for Microelectronics or Integrated Circuits, first issued in 1969. MIL-M-38510 also defines three classes of reliability, Class A, Class B, and Class C, which are patterned after the MIL-STD-883 format. The MIL-M-38510 requirements differ from the MIL-STD-883 requirements in two significant ways.

MIL-M-38510 has detailed electrical specifications, or "slash sheets".

MIL-M-38510 requires Manufacturer's Certification for Class B and \(C\) devices and both Manufacturer's and Line Certification for Class A devices. Although the general specification has been available since 1969, the detailed electrical specifications have just recently been issued for various technologies, including COS/MOS.

The general specification includes basic material, such as definition of
classes and general requirements common to all slash sheets.

Slash Sheets Detailed electrical specifications that define exact test conditions and limits. Approved parts are shipped against exact nomenclature specified in the specification. The term slash sheet is derived from the fact that the part number is MIL-M-38510/XXXXX, or "MIL-M-38510 SLASH XXXXX".

Slash sheets must have a governmental sponsor. The COS/MOS sponsor is NASA, who has developed the detailed specifications for nine generic families that include \(27 \mathrm{COS} / \mathrm{MOS}\) circuits.

Manufactur-
ing Certifica-
tion (Appen-
dix \(A\))

Line
Certification

QPL
(General Definition)

Interim \(\quad\) Before any supplier is fully qualified to Qualification or Part-II Qual for
MIL-M-39510
MIL-M-38510 specification requires that the supplier's Product-Assurance Program Requirements are being adhered to. This certification is conducted by DESC (Defense Electronic Supply Center) and is one of the prerequisites for qualification approval.

This certification is conducted by NASA to insure that the requirements of NHB 5300.4 (3C) "Line Certification Requirements for Microcircuits" are being adhered to. Line certification is one of the prerequisites for obtaining Class A qualification approval.

Qualified Parts List. High-reliability users often develop a QPL which tells designers within the company which parts are qualified and can be used. supply a part, it is possible to obtain Interim Qualifications. Interim, or Part-II, Qualification is obtained by receiving Manufacturing Certification (and Line Certification for Class A parts) and submitting a sample of tested parts with data. It is not necessary to go through the entire processing and burn-in cycle to obtain Interim Qualification. (RCA has received Part II Qualification for a number of COS/MOS circuits.) When any supplier receives Final Qualification (i.e., submits approved parts that have received the complete processing and testing per the slash sheet), Interim, Part II, Qualification
Final
Qualification
or QPL I for
MIL-M-38510
SEM

SEM
Specification GSFC-S-311-P12

Condition B Visual

Condition A Visual

Group A Tests

Group B Tests
for that part is withdrawn, and only fully qualified parts can be supplied against the specification.

Final Qualification is obtained when all requirements of both the general and detailed specifications are met.

Scanning Electron Microscope. SEM inspection is a requirement for MIL-M-38510 Class A parts. (RCA has SEM facilities at both the Somerville, N.J., and Findlay, Ohio, locations.)

SEM inspection procedure including accept-reject criteria. This specification was written by NASA Goddard Space Flight Center and is the industry standard.

Per-Cent Defective Allowed. If this per cent is exceeded, a lot fails. This term usually applies to burn-in.

Refers to MIL-STD-883, Method 2010.1, Precap Inspection. Used for RCA \(883 / 1,2,3,4\) and MIL-M-38510 Class B and C parts.

Used for MIL-M-38510, Class A parts. The criteria for metallization, foreign matter, oxide and diffusion faults, and bonding is considerably tighter than Condition B. Condition A

Visual is a requirement for MIL-M-38510 Class A parts.

Quality audit of test parameters prior to shipment to the warehouse, in accordance with MIL-STD-883, Method 5005.

These tests are designed to test the mechanical quality of the packaged devices in accordance with

MIL-STD-883, Method 5005. The tests include:

\author{
Physical dimensions \\ Marking permanency \\ Visual and mechanical \\ Bond strength \\ Solderability \\ Lead fatigue \\ Hermeticity
}

Group C Tests These tests are designed to test both the mechanical and electrical characteristics of the packaged device as an indicator of long-term stability. The tests, which are conducted in accordance with MIL-STD-883, Method 5005, include:

Thermal shock
Temperature cycling
Moisture resistance
Mechanical shock
Vibration, variable-frequency
Constant acceleration
Salt atmosphere
High-temperature storage
Operating life test
Steady-state reverse bias
Delta Tests or Limits

MTTF or MTBF

\section*{LTPD}

Refers to specifications that define the maximum shift of key parameters during burn-in.

MTTF - Mean Time to Failure MTBF - Mean Time between Failure
Both terms are interchangeable and define reliability. Reciprocal of failure rate. Expressed in hours.

Lot Tolerance Per Cent Defective- -sampling-plan term. An LTPD of 5 means that a lot 5 -per-cent bad will pass incoming inspection only \(10 \%\) of the time.

Solid State Division

\section*{Linear Integrated Circuits \\ Monolithic Silicon High-Reliability Slash (/) Series CA101/ . . ., CA101A/ . . .}

\section*{High-Reliability Operational Amplifiers}

For Applications in Aerospace, Military and Critical Industrial Equipment
Features:
- Short-circuit protection and latch-free operation
- Unity-gain phase compensation with a single 30-pF capacitor
\begin{tabular}{|c|c|c|c|}
\hline & CA101 & CA101A & \\
\hline & \[
\begin{array}{r}
5 \\
200 \\
50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2 \\
10 \\
50
\end{array}
\] & \[
\begin{array}{r}
\mathrm{mV} \\
\mathrm{nA} \\
\mathrm{~V} / \mathrm{mV} \\
\hline
\end{array}
\] \\
\hline TA Range (Operating) & \[
\begin{aligned}
& -55 \text { to } \\
& +125
\end{aligned}
\] & \[
\begin{aligned}
& -55 \text { to } \\
& +125
\end{aligned}
\] & \({ }^{\circ} \mathrm{C}\) \\
\hline Slew Rate (Summing ampl.) & - & 10 & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline
\end{tabular}

The RCA-CA101, CA101A, "Slash" (/) Series are highreliability general-purpose, high-gain operational amplifiers intended for applications in aerospace, military and industrial equipment. They are electrically and mechanically identical with the standard types CA101, CA101A described in Data Bulletin File No. 786 but are specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

These types, which are externally phase compensated, permit a choice of operation for optimum high-frequency performance at a selected gain; unity-gain compensation can be obtained with a single \(30-\mathrm{pF}\) capacitor.

Type CA101A has all the desirable features and characteristics of the CA101 plus superior input-offset characteristics, and improved noise performance

The packaged types can be supplied to screening levels \(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\), and \(/ 4\) - which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).

These screening levels and detailed information on test methods, procedures and test sequence are given in Reliability Report RIC-202A "High-Reliability CA3000 Slash (/) Series Types Screened to MIL-STD-883".

The CA101 and CA101A are supplied in either the standard 8 -lead TO-5 package (T suffix), in the 8 -lead TO-5 dual-in-line formed-lead "DIL-CAN" package (S suffix), or in chip form (H suffix).

The CA101T, S, and CA101AT, AS are direct replacements for industry types 101 and 101A in packages with similar terminal arrangements.

Applications:
- Long-interval integrator
- Timers
- Sample and hold circuits
- Summing amplifiers
- Multivibrators
- Comparators
- Instrumentation
- AC/DC converters
- Inverting amplifiers
- Sine- \& square-wave generators
- Capacitance multipliers \& simulated inductors

NOTE: PIN 4 IS CONNECTED TO CASE
TOP VIEW
92CS-23998

Fig. 1-Functional diagram.

\section*{Maximum Ratings, Absolute-Maximum Values at \(T_{A}=25^{\circ} \mathrm{C}\)}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{DC SUPPLY VOLTAGE (between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)terminals):} \\
\hline CA101, CA101A & 44 & v \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
DC INPUT VOLTAGE \\
(For supply voltage less than \(\pm 15 \mathrm{~V}\), the
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Input Voltage rating is equal to the DC Supply Voltage)} \\
\hline DIFFERENTIAL INPUT VOLTAGE. & \(\pm 30\) & v \\
\hline \multicolumn{3}{|l|}{OUTPUT SHORT-CIRCUIT DURATION . Indefinite*} \\
\hline \multicolumn{3}{|l|}{DEVICE DISSIPATION:} \\
\hline \multicolumn{3}{|l|}{Up to \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\). 500 mw} \\
\hline \multicolumn{3}{|l|}{Above \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\). derate linearly at \(6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{3}{|l|}{AMBIENT TEMPERATURE RANGE:} \\
\hline \multicolumn{3}{|l|}{Operating-} \\
\hline \multicolumn{3}{|l|}{CA101, CA101A . -55 to +125 \({ }^{\circ} \mathrm{C}\)} \\
\hline Storage (All types) & -65 & \\
\hline \multicolumn{3}{|l|}{} \\
\hline from case for 10 seconds max. & & \\
\hline
\end{tabular}
* At \(T_{A} \leqslant 70^{\circ} \mathrm{C}\) and \(\mathrm{T}_{\mathrm{C}} \leqslant 125^{\circ} \mathrm{C}\) (CA101); \(T_{A} \leqslant 75^{\circ} \mathrm{C}\) and \(\mathrm{T}_{\mathrm{C}} \leqslant 125^{\circ} \mathrm{C}\) (CA101A)

Fig. 2-Schematic diagram.

\section*{ELECTRICAL CHARACTERISTICS}

For Design Guidance Only
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TEST CONDITIONS } \\
& \begin{array}{c}
\text { Supply Voltage (} \mathrm{V} \pm \text {) } \\
=5 \text { to } 15 \mathrm{~V}
\end{array}
\end{aligned}
\]}} & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & CA101 Typ. & CA101A Typ. & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{10}\)} & \multirow[t]{2}{*}{\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} & \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega\) & 1 & - & \multirow[t]{2}{*}{mV} \\
\hline & & & \(\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega\) & - & 0.7 & \\
\hline \multirow[t]{3}{*}{Average Temperature Coefficient of Input Offset Voltage} & \multirow{3}{*}{\(\alpha \mathrm{V}_{10}\)} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=-55 \text { to } \\
+125^{\circ} \mathrm{C}
\end{gathered}
\]} & \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega\) & 6 & - & \multirow{3}{*}{\(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\)} \\
\hline & & & \(\mathrm{R}_{\mathrm{S}} \leqslant 50 \Omega\) & 3 & - & \\
\hline & & & & - & 3 & \\
\hline \multirow[t]{2}{*}{Average Temperature Coefficient of Input Offset Current} & \multirow[t]{2}{*}{\(\alpha 110\)} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\) to \(+25^{\circ} \mathrm{C}\)} & - & 0.02 & \multirow[t]{2}{*}{\(n \mathrm{~A} /{ }^{\circ} \mathrm{C}\)} \\
\hline & & \multicolumn{2}{|l|}{\(+25^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)} & - & 0.01 & \\
\hline Input Offset Current & 110 & \multicolumn{2}{|l|}{\(\mathrm{TA}^{\prime}=25^{\circ} \mathrm{C}\)} & 40 & 1.5 & nA \\
\hline Input Bias Current & \(1 / \mathrm{B}\) & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} & 0.12 & 0.03 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Supply Current} & \multirow[t]{2}{*}{I} & \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\) & \(\mathrm{V} \pm=20 \mathrm{~V}\) & 1.8 & 1.8 & \multirow[t]{2}{*}{mA} \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & \(\mathrm{V} \pm=20 \mathrm{~V}\) & 1.2 & 1.2 & \\
\hline Open-Loop Differential Voltage Gain & AOL & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}^{ \pm}=15 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega
\end{aligned}
\] & 160 & 160 & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Input Resistance & R1 & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} & 0.8 & 4 & \(\mathrm{M} \Omega\) \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \multirow[b]{2}{*}{VOPP} & \(\mathrm{V} \pm=15 \mathrm{~V}\) & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & \(\pm 14\) & \(\pm 14\) & \multirow[t]{2}{*}{V} \\
\hline & & \(\mathrm{V} \pm=15 \mathrm{~V}\) & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & \(\pm 13\) & \(\pm 13\) & \\
\hline \multirow[t]{2}{*}{Common-Mode Rejection Ratio} & \multirow[t]{2}{*}{CMRR} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=-55 \text { to } \\
+125^{\circ} \mathrm{C}
\end{gathered}
\]} & \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\) & 90 & - & \multirow[t]{2}{*}{dB} \\
\hline & & & \(\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega\) & - & 96 & \\
\hline \multirow[t]{2}{*}{Supply-Voltage Rejection Ratio} & \multirow[t]{2}{*}{PSRR} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=-55 \text { to } \\
+125^{\circ} \mathrm{C}
\end{gathered}
\]} & \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega\) & 90 & - & \multirow[t]{2}{*}{dB} \\
\hline & & & \(\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega\) & - & 96 & \\
\hline
\end{tabular}

Table I. Pre Burn-In and Post Burn-In Electrical Tests and Delta Limits*
ELECTRICAL CHARACTERISTICS, At \(T_{A}=25^{\circ} \mathrm{C}, V^{+}=+15 \mathrm{~V}, V^{-}=-15 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[b]{2}{*}{V10} & \(R_{S} \leqslant 10 \mathrm{k} \Omega\) & CA101 & - & 5 & \(\pm 1\) & \multirow[b]{2}{*}{mV} \\
\hline & & \(\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega\) & CA101A & - & 2 & \(\pm 0.5\) & \\
\hline \multirow[t]{2}{*}{Input Offset Current} & \multirow[b]{2}{*}{110} & & CA101 & - & 200 & \(\pm 20\) & \multirow[b]{2}{*}{nA} \\
\hline & & & CA101A & - & 10 & \(\pm 2\) & \\
\hline \multirow[t]{2}{*}{Input Bias Current} & \multirow[b]{2}{*}{11} & & CA101 & - & 500 & \(\pm 50\) & \multirow[b]{2}{*}{nA} \\
\hline & & & CA101A & - & 75 & \(\pm 8\) & \\
\hline
\end{tabular}

\footnotetext{
* Levels \(/ 1\) and \(/ 2\) require pre burn-in electrical and post burn-in electrical tests, and delta limits

Level / 3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 19.
}

Table II. Final Electrical Tests and Group A Sampling Inspection

\footnotetext{
\({ }^{4}\) Ambient temperature range \(T_{A}=-55\) to \(+125^{\circ} \mathrm{C}\) unless otherwise specified.
}

Table III. Group C Electrical Characteristics Sampling Tests
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \quad \mathrm{V}^{+}=+\) & V- & 15 V & & & & \\
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SPECIAL TEST CONDITIONS}} & & & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN. & MAX. & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[b]{2}{*}{V10} & \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega\) & CA101 & - & 5 & \multirow[b]{2}{*}{mV} \\
\hline & & \(\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega\) & CA101A & - & 2 & \\
\hline \multirow[t]{2}{*}{Input Offset Current} & \multirow[t]{2}{*}{110} & & CA101 & - & 200 & \multirow[b]{2}{*}{nA} \\
\hline & & & CA101A & - & 10 & \\
\hline \multirow[t]{2}{*}{Input Bias Current} & \multirow[t]{2}{*}{11} & & CA101 & - & 500 & \multirow[t]{2}{*}{nA} \\
\hline & & & CA101A & - & 75 & \\
\hline Large-Signal Voltage Gain & AOL & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=\geqslant 2 \mathrm{k} \Omega
\end{aligned}
\]} & 50 & - & V/mV \\
\hline
\end{tabular}

TYPICAL STATIC CHARACTERISTICS

Fig. 3-Input bias current vs. supply voltage for CA101.

92Cs-24019
Fig. 5-Test circuit employing feedforward compensation.

Fig. 7-Inverter pulse response.

Fig. 4-Output characteristics for CA101, CA101A.

Fig. 6-Voltage gain and phase lag vs. frequency.

Fig. 8-Output voltage swing vs. frequency.

TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS FOR TYPE CA101A
Single-Pole Compensation

Fig. 9-Common-mode rejection ratio vs. frequency for CA101A.

Fig. 11-Test circuit employing single-pole compensation.

Fig. 10-Voltage gain and phase lag vs. frequency.

Fig. 12-Output voltage swing vs. frequency.

Fig. 14-Supply voltage rejection ratio vs. frequency.

TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS FOR TYPE CA101A
Two-Pole Compensation

Fig. 15-Test circuit employing two-pole compensation.

Fig. 17-Voltage follower pulse response.

Fig. 16-Voltage gain and phase lag vs. frequency.

Fig. 18-Output voltage swing vs. frequency.

92CS-24694

Fig. 19-Burn-in and operating life test circuit for CA101 and CA101A.

TYPICAL DYNAMIC CHARACTERISTICS
FOR TYPE CA101

Fig. 20-Voltage gain vs. frequency.

Fig. 21-Output voltage swing vs. frequency.

Fig. 22-Voltage follower pulse response.
Lead Finish:
In accordance with MIL-M-38510, paragraph 3.6.2.5, lead finish " \(A\) ".

Solid State Division

Linear Integrated Circuits
Monolithic Silicon
High-Reliability Slash (/) Series
CA107/ . . .

High-Reliability
Operational Amplifiers
For Applications in Aerospace, Military, and Critical Industrial Equipment
- Low input current over temperature range (100 mA max)
- 30-pF on-chip capacitor provides internal frequency compensation
\begin{tabular}{|l|c|c|c|c|}
\hline Type & Feature & \begin{tabular}{c}
Max. \(V_{\text {IO }}\) \\
\((\mathrm{mV})\)
\end{tabular} & \begin{tabular}{c}
Max. IIO \\
\((\mathrm{nA})\)
\end{tabular} & \begin{tabular}{c}
Max. IIB \\
\((\mathrm{nA})\)
\end{tabular} \\
\hline CA107 & 3 & 20 & 100 & \begin{tabular}{c}
Temp. \\
Range \(\left(T_{A}\right)\) \\
\({ }^{\prime} \mathrm{C}\)
\end{tabular} \\
\hline
\end{tabular}

The RCA-CA107 "Slash" (/) Series type is a high-reliability linear integrated circuit operational amplifier intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA107A described in Data Bulletin File No. 785 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The CA107 features a \(30-\mathrm{pF}\) on-chip capacitor to provide internal frequency compensation. Low input current over temperature range (100 nA max.) for the CA107 make this type especially well suited for applications such as long interval timers and sample-and-hold circuits.

The packaged type can be supplied to six screening levels /1N, /1R, /1, /2, /3, and /4 - which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and /R.

These screening levels and detailed information on test methods, procedures and test sequence are given in Reliability Report RIC202A "High-Reliability CA3000 Slash (/) Series Types Screened to MIL-STD-883".

The CA107 is supplied in the standard 8-lead TO-5 style package (" \(T\) " suffix), the 8 -lead TO-5 style with dual-in-line formed leads (" S " suffix), and in chip form ('" H " suffix). It is a direct replacement for industry type 107 in packages with similar terminal arrangements.

\section*{Applications:}
- Long-interval integrators
- Timers
a Sample-and-hold circuits
- Summing amplifiers
- Multivibrators

NOTE: PIN 4 IS CONNECTED TO CASE TOP VIEW

92Cs-23982

\footnotetext{
Functional diagram for TO-5 style packages
}

\section*{Maximum Ratings，Absolute－Maximum Values at \(\boldsymbol{T}_{A}=25^{\circ} \mathrm{C}\) ：}
```

DC SUPPLY VOLTAGE (Between V+}\mathrm{ [ and V- Terminals):

```

```

    4 4 ~ V ~
    ```

```

v
(For supply voltages less than }\pm15\textrm{V}\mathrm{ , the absolute maximum input voltage is equal to the supply voltage)
DIFFERENTIAL INPUT VOLTAGE
\pm30 V
OUTPUT SHORT-CIRCUIT DURATION
Indefinite

```


```

AMBIENT TEMPERATURE RANGE:
Operating.
-55%}\textrm{C}\mathrm{ to +125}\mp@subsup{}{}{\circ}\textrm{C
Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65年 C to +150年年
LEAD TEMPERATURE (During Soldering):

```


Fig．1－Schematic diagram of CA107．

ELECTRICAL CHARACTERISTICS For Design Guidance Only
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS & \multirow[b]{2}{*}{TYPICAL VALUES} & \multirow[b]{2}{*}{UNITS} \\
\hline & & Supply Voltage (\(\mathrm{V}^{ \pm}\)) \(=\) 5 V to 15 V & & \\
\hline Input Offset Voltage & V10 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega\) & 0.7 & mV \\
\hline Average Temperature Coefficient of Input Offset Voltage & V10 & -55 to \(+125^{\circ} \mathrm{C}\) & 3 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & 110 & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 1.5 & nA \\
\hline \multirow[t]{2}{*}{Average Temperature Coefficient of Input Offset Current} & \multirow[b]{2}{*}{110} & +25 to \(+125^{\circ} \mathrm{C}\) & 0.01 & \multirow[b]{2}{*}{\(n A /{ }^{\circ} \mathrm{C}\)} \\
\hline & & -55 to \(+25^{\circ} \mathrm{C}\) & 0.02 & \\
\hline Input Bias Current & IIB & \(\mathrm{TA}^{\prime}=25^{\circ} \mathrm{C}\) & 30 & nA \\
\hline \multirow[t]{2}{*}{Supply Current} & \multirow[t]{2}{*}{\(1 \pm\)} & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}^{ \pm}=20 \mathrm{~V}\) & 1.2 & \multirow[t]{2}{*}{mA} \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{ \pm}=20 \mathrm{~V}\), & 1.8 & \\
\hline Open-Loop Differential Voltage Gain & AOL & \[
\begin{aligned}
& \mathrm{V}^{ \pm}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 160 & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Input Resistance & \(\mathrm{R}_{1}\) & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 4 & \(\mathrm{M} \Omega\) \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \multirow[t]{2}{*}{VOPP} & \(\mathrm{V}^{ \pm}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & \(\pm 14\) & \multirow[t]{2}{*}{V} \\
\hline & & \(\mathrm{V}^{ \pm}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & \(\pm 13\) & \\
\hline Common-Mode Rejection Ratio & CMRR & \(\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega\) & 96 & dB \\
\hline Supply-Voltage Rejection Ratio & PSRR & \(\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega\) & 96 & dB \\
\hline
\end{tabular}

Table I. Pre Burn-in Electrical and Post Burn-in Electrical Tests, and Delta Limits*
ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \({ }^{\text {- }}\) & \\
\hline Input Offset Voltage & V 10 & & - & 2 & \(\pm 0.5\) & mV \\
\hline Input Offset Current & 110 & & - & 10 & \(\pm 2\) & nA \\
\hline Input Bias Current & 11 & & - & 75 & \(\pm 8\) & nA \\
\hline
\end{tabular}
* Levels \(/ 1\) and \(/ 2\) require pre burn-in electrical and post burn-in electrical tests, and delta limits.

Level /3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 4.

Table II Final Electrical Tests and Group A Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[t]{3}{*}{\begin{tabular}{l}
TEST CONDITIONS \\
Supply Voltage (\(\mathbf{V} \pm\)) \\
\(=5 \mathrm{~V}\) to 15 V
\end{tabular}} & \multicolumn{6}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{minimum} & \multicolumn{3}{|c|}{maximum} & \\
\hline & & & -55 & +25 & +125 & - 55 & +25 & +125 & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega\) & - & - & - & 3 & 2 & 3 & mV \\
\hline Average Temperature Coefficient of Input Offset Voltage & \(a V_{10}\) & & - & - & - & 15 & 15 & 15 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & 10 & & - & - & - & 20 & 10 & 20 & nA \\
\hline Average Temperature Coefficient of Input Offset Current & \({ }^{\text {a }} 10\) & & - & - & - & 0.2 & - & 0.1 & \(n \mathrm{n} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current & \({ }^{\text {IB }}\) & & - & - & - & 100 & 75 & 100 & nA \\
\hline Supply Current & \(1 \pm\) & & - & - & - & 4 & 3 & 2.5 & mA \\
\hline Open-Loop Differential Voltage Gain & \({ }^{\text {AOL }}\) & \[
\begin{aligned}
& \mathrm{V}^{ \pm}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{aligned}
\] & 25 & 50 & 25 & - & - & - & V/mV \\
\hline Input Resistance & \(\mathrm{R}_{1}\) & & - & 1.5 & - & - & - & - & M \(\Omega\) \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OPP }}\)} & \(\mathrm{V}^{ \pm}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & \(\pm 12\) & \(\pm 12\) & \(\pm 12\) & - & - & - & \multirow[t]{2}{*}{V} \\
\hline & & \(\mathrm{V}^{ \pm}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & \(\pm 10\) & \(\pm 10\) & \(\pm 10\) & - & - & - & \\
\hline Input Voltage Range & \(\mathrm{V}_{\text {ICR }}\) & \(\mathrm{V}^{ \pm}=20 \mathrm{~V}\) & \(\pm 15\) & \(\pm 15\) & \(\pm 15\) & - & - & - & V \\
\hline Common-Mode Rejection Ratio & CMRR & \(\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega\) & 80 & 80 & 80 & - & - & - & dB \\
\hline Supply-Voltage Rejection Ratio & PSRR & \(\mathrm{R}_{\mathrm{S}} \leqslant 50 \mathrm{k} \Omega\) & 80 & 80 & 80 & - & - & - & dB \\
\hline
\end{tabular}

Table III. Group C Electrical Characteristics Sampling Tests
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\(T_{A}=+25^{\circ} \mathrm{C}\)} \\
\hline
\end{tabular}\(V^{+}=+15 \mathrm{~V}\)

File No. 827

TYPICAL CHARACTERISTICS

Fig. 2-Open-loop differential voltage gain vs. frequency.

Fig. 3-Output voltage swing vs. output current.

92CS-23996

Fig. 3-Output voltage swing vs. frequency.

Fig. 4-Burn-in and operating life test circuit.

Solid State Division

Linear Integrated Circuits
Monolithic Silicon
High-Reliability Slash (/) Series
CA108/ . . ., CA108A/ . . .

The RCA-CA108 and CA108A Slash (/) Series types are uncompensated precision operational amplifiers using superbeta transistors and feature very low offset parameters, high input impedance, and defined drift rates with temperature change. They are intended for applications in aerospace, military, and industrial equipment. They are electrically and mechanically identical with the standard type CA108 Series described in Data Bulletin File No. 621 but are specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged type can be supplied to six screening levels \(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\), and \(/ 4\) - which correspond to MIL-STD-883 Classes A, B, and C. the chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures and test sequence are given in Reliability Report RIC-202A "High-Reliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

The " A " versions have all the desirable features and characteristics of their prototypes plus exceptionally low input offset voltage characteristics. The CA108, CA 108A, are direct replacements for industry types 108 and 108A in packages with similar terminal arrangements. The CA108 and CA108A are supplied in standard 8 -lead TO-5 packages, 8 -lead TO-5 packages with dual-in-line formed leads ("DILCAN"), or in chip form (H suffix).

\section*{Applications:}

NOTE: PIN 4 IS CONNECTED TO CASE
92cs-22020
Fig. 1-Functional Diagram
\begin{tabular}{|c|c|c|}
\hline ELECTRICAL CHARACTERISTICS, MAXIMUM VALUES AT \(T_{A}=25^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \text { CA108T } \\
& \text { CA108S }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CA108AT } \\
& \text { CA108AS }
\end{aligned}
\] \\
\hline Input Offset Voltage (\(\mathrm{V}_{10}\)) & 2 mV & 0.5 mV \\
\hline Input Offset Current (\({ }_{10}\)) & \multicolumn{2}{|c|}{0.2 nA} \\
\hline Input Bias Current (\(\mathrm{I}_{1 \mathrm{~B}}\)) & \multicolumn{2}{|c|}{2 nA} \\
\hline Average Temperature Coefficient of Input Offset Voltage
\[
\left(\Delta V_{1 O^{\prime}} / \Delta T\right)
\] & \(15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) & \(5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
\hline Ambient OperatingTemperature Range & \multicolumn{2}{|l|}{-55 to \(+125^{\circ} \mathrm{C}\)} \\
\hline
\end{tabular}

Maximum Ratings, Absolute-Maximum Values at \(T_{A}=25^{\circ} \mathrm{C}\)

Fig. 2-Schematic diagram for CA108 and CA 108A.

ELECTRICAL CHARACTERISTICS For Design Guidance Only
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & TEST CONDITIONS & & & \multirow{3}{*}{UNITS} \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
Supply Voltage (V) \(= \pm 5 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\) \\
Ambient Temperature \(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\)
\end{tabular}} & CA108 & CA108A & \\
\hline & & & Typ. & Typ. & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & & 0.7 & 0.7 & mV \\
\hline Average Temperature Coefficient of Input Offset Voltage & \[
\frac{\Delta V_{10}}{\Delta T}
\] & & 3 & 1 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & \({ }_{1} 10\) & & 0.05 & 0.05 & nA \\
\hline Average Temperature Coefficient of Input Offset Current & \[
\frac{\Delta I_{1 O}}{\Delta T}
\] & & 0.5 & 0.5 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current & \({ }_{\text {IB }}\) & & 0.8 & 0.8 & nA \\
\hline \multirow[t]{2}{*}{Supply Current} & \multirow[t]{2}{*}{\({ }^{1} \mathrm{Q}\)} & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & 0.15 & 0.15 & \multirow[t]{2}{*}{mA} \\
\hline & & \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\) & 0.3 & 0.3 & \\
\hline Large-Signal Voltage Gain & \({ }^{\text {A }}\) V & \[
\begin{aligned}
& V= \pm 15 \mathrm{~V}, \\
& V_{\mathrm{O}}= \pm 10 \mathrm{~V}, R_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega
\end{aligned}
\] & 300 & 300 & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Input Resistance \(\mathrm{R}_{1}\) & & & 70 & 70 & \(\mathrm{M} \Omega\) \\
\hline Output Voltage & \(\mathrm{V}_{\mathrm{O}}\) & \(\mathrm{V}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & \(\pm 14\) & \(\pm 14\) & V \\
\hline Common-Mode Rejection Ratio & CMRR & & 100 & 110 & dB \\
\hline Supply-Voltage Rejection Ratio & \(\mathrm{V}_{\mathrm{RR}}\) & & 96 & 110 & dB \\
\hline
\end{tabular}

TABLE I Pre Burn-In Electrical and Post Burn-In Electrical Tests and Delta Limits*
ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{\(V_{10}\)} & CA108 & - & 2 & \(\pm 1\) & \multirow[t]{2}{*}{mV} \\
\hline & & CA108A & - & 0.5 & \(\pm 0.25\) & \\
\hline Input Offset Current & \({ }_{1} 10\) & & - & 0.2 & \(\pm 0.05\) & nA \\
\hline Input Bias Current & 11 & & - & 2 & \(\pm 0.2\) & nA \\
\hline
\end{tabular}

\footnotetext{
* Levels / 1 and /2 require pre burn-in electrical and post burn-in electrical tests and delta limits.

Level \(/ 3\) requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 8.
}

File No. 828

Table II Final Electrical Tests and Group A Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multirow[t]{4}{*}{\[
\begin{array}{|c|}
\text { Test Conditions } \\
\hline \text { Supply Voltage (V) } \\
\pm 15 \text { Volts }
\end{array}
\]} & \multicolumn{11}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} \\
\hline & & & \multicolumn{5}{|c|}{CA108} & \multicolumn{6}{|c|}{CA108A} & \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{2}{|l|}{MAXIMUM} & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|l|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 +125 & - 55 & +25 & +125 & - 55 & +25 & +125 & \\
\hline Input Offset Voltage & \(V_{10}\) & & - & - & - & 3 & 23 & - & - & - & 1 & 0.5 & 1 & mV \\
\hline Average Temperature Coefficient of Input Offset Voltage & \[
\frac{\Delta V_{10}}{\Delta T}
\] & & - & - & - & 15 & \(15 \quad 15\) & - & - & - & 5 & 5 & 5 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current & 110 & & - & - & - & 0.4 & 0.20 .4 & - & - & - & 0.4 & 0.2 & 0.4 & nA \\
\hline Average Temperature Coefficient of Input Offset Current & \[
\frac{\Delta \mathrm{I} 10}{\Delta T}
\] & & - & - & - & 2.5 & \(2.5 \quad 2.5\) & - & - & - & 2.5 & 2.5 & 2.5 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current & \(1_{18}\) & & - & - & - & 3 & 23 & - & - & - & 3 & 2 & 3 & nA \\
\hline Supply Current & \({ }^{1} \mathrm{Q}\) & & - & - & - & 0.8 & 0.60 .4 & - & - & - & 0.8 & 0.6 & 0.4 & mA \\
\hline Large-Signal Voltage Gain & \({ }^{\text {A }}\) V & \[
\begin{aligned}
& \mathrm{V}= \pm 15 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\
& \mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega
\end{aligned}
\] & 25 & 50 & 25 & - & - - & 48 & 80 & 40 & - & - & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Input Resistance & \(\mathrm{R}_{1}\) & & - & 30 & - & - & - - & - & 30 & - & - & - & - & \(\mathrm{M} \Omega\) \\
\hline Output Voltage & \(\mathrm{v}_{\mathrm{O}}\) & \[
\begin{aligned}
& \mathrm{V}= \pm 15 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega
\end{aligned}
\] & \(\pm 13\) & \(\pm 13\) & \(\pm 13\) & - & - - & \(\pm 13\) & \(\pm 13\) & \(\pm 13\) & - & - & - & V \\
\hline Input Voltage Range & \(V_{1}\) & \(\mathrm{V}= \pm 15 \mathrm{~V}\) & \(\pm 13.5\) & \(\pm 13.5\) & \(\pm 13.5\) & - & - - & \(\pm 13.5\) & \(\pm 13.5\) & \(\pm 13.5\) & - & - & - & V \\
\hline Common-Mode Rejection Ratio & CMRR & & 85 & 85 & 85 & - & - - & 96 & 96 & 96 & - & - & - & dB \\
\hline Supply-Voltage Rejection Ratio & \(\dot{V}_{R R}\) & & 80 & 80 & 80 & - & - - & 96 & 96 & 96 & - & - & - & dB \\
\hline
\end{tabular}

Table III Group C Electrical Characteristics Sampling Tests
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \quad \mathrm{V}^{+}=+15 \mathrm{~V} \quad \mathrm{~V}-=-15 \mathrm{~V}\)} \\
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
SPECIAL \\
TEST CONDITIONS
\end{tabular}}} & \multicolumn{2}{|r|}{LIMITS} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & & MIN. & MAX. & \\
\hline Input Offset Voltage & \(V_{10}\) & & \[
\frac{\text { CA108 }}{\text { CA108A }}
\] & - & \[
\frac{3}{1}
\] & mV \\
\hline Input Offset Current & \({ }_{1} 10\) & & & - & 0.4 & nA \\
\hline Output Voltage & \(\mathrm{v}_{0}\) & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & & - & \(\pm 13\) & V \\
\hline Large-Signal Voltage Gain & \({ }^{\text {OLL }}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=10 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega
\end{aligned}
\] & CA108 & 40
70 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS FOR TYPES CA108 AND CA108A

Fig. 3-Input offset voltage vs. input resistance.

Fig. 5-Output voltage vs. output current for CA108 and CA108A.

Fig. 7-Large-signal frequency response.

Fig. 4-Voltage gain vs. supply voltage.

Fig. 6-Open-loop frequency response.

92CS-24741

Fig. 8-Burn-in and operating life test circuit.

\section*{Solid State Division}

\title{
High-Reliability Voltage Comparators
}

\author{
For Applications In Aerospace, Military and Critical Industrial Equipment
}

\section*{Features:}
- Single- or dual-supply operation
- Power consumption - \(\mathbf{1 3 5} \mathbf{~ m W}\) at \(\pm 15 \mathrm{~V}\)
- Strobe capability
- Low input-offset current - 4 nA (typ.)
- Differential input-voltage range - \(\pm 30 \mathrm{~V}\)

\section*{Applications:}
- Multivibrators
- Positive and negative peak detectors
- Crystal oscillators
- Zero-crossing detectors
- Solenoid, relay, and lamp drivers

The RCA-CA111 "Slash" (/) Series type is a high-reliability linear-integrated-circuit voltage comparator intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA111 described in Data Bulletin File No. 797 but is specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels/1N, /1R, /1, /2, /3, and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

NOTE: PIN 4 IS CONNECTED TO CASE
92CS-24379

Functional Diagram

The CA111 Slash (/) Series types are supplied in 8-lead TO-5 style packages ("T" suffix), and in "DIL-CAN" packages, 8 -lead TO-5 style packages with dual-in-line formed leads (" S " suffix). The CA111 is also supplied in chip form (" H " suffix).
MAXIMUM RATINGS, Absolute-Maximum Values at \(T_{A}=25^{\circ} \mathrm{C}\)
DC SUPPLY VOLTAGE (Between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)terminals) 36 V
DC INPUT VOLTAGE* \(\pm 15 \mathrm{~V}\)
DIFFERENTIAL INPUT VOLTAGE \(\pm 30 \mathrm{~V}\)
OUTPUT TO NEGATIVE SUPPLY VOLTAGE (\(V_{7-4}\)) 50 V
GROUND TO NEGATIVE SUPPLY VOLTAGE (\(V_{1-4}\)) 30 V
OUTPUT SHORT-CIRCUIT DURATION 10 s
DEVICE DISSIPATION:
Up to \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) 500 mW
Above \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\)

\(\qquad\) \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\)
AMBIENT TEMPERATURE RANGE:
Operating -55 to \(+125^{\circ} \mathrm{C}\)
Storage -65 to \(+150^{\circ} \mathrm{C}\)
LEAD TEMPERATURE (DURING SOLDERING):At distance \(1 / 16 \pm 1 / 32 \mathrm{in}\). \((1.59 \pm 0.79 \mathrm{~mm})\)from case for 10 seconds max.\(+265^{\circ} \mathrm{C}\)

\footnotetext{
*This rating applies for \(\pm 15 \mathrm{~V}\) supplies. The positive input-voltage limit is 30 V above the negative supply. The negative input-voltage limit is equal to the negative supply voltage or 30 V below the positive supply. The negative input-voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
}

ELECTRICAL CHARACTERISTICS For Design Guidance Only
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS & \multirow[b]{2}{*}{TYPICAL VALUES} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \begin{tabular}{l}
SUPPLY VOLTAGE \(\left(V^{ \pm}\right)=15 \mathrm{~V}\) \\
AMBIENT TEMPERATURE \(\left(T_{A}\right)=25^{\circ} \mathrm{C}\) \\
Unless Otherwise Specified
\end{tabular} & & \\
\hline Input Offset Voltage* & \(\mathrm{V}_{10}\) & \(\mathrm{R}_{\mathrm{S}} \leqslant 5 \mathrm{k} \Omega\) & 0.7 & mV \\
\hline Saturation Voltage & & \(\mathrm{V}_{1}=-5 \mathrm{mV}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}\) & 0.75 & V \\
\hline Input Voltage Range & \(V_{\text {IPP }}\) & \(\mathrm{T}_{\mathrm{A}}=-55\) to \(+125^{\circ} \mathrm{C}\) & \(\pm 14\) & V \\
\hline Input Offset Current* & 110 & & 4 & nA \\
\hline Input Bias Current* & \(I_{\text {IB }}\) & & 60 & nA \\
\hline Positive Supply Current & \(1^{+}\) & & 5.1 & mA \\
\hline Negative Supply Current & \(1^{-}\) & & 4.1 & mA \\
\hline Output Leakage Current & & \(\mathrm{V}_{1} \geqslant 5 \mathrm{mV}, \mathrm{V}_{0}=35 \mathrm{~V}\) & 0.2 & nA \\
\hline Strobe On Current & & & 3 & mA \\
\hline Voltage Gain & A & & 200 & \(\mathrm{V} / \mathrm{mV}\) \\
\hline Response Time & & 100 mV Input Step with 5 mV Overdrive Voltage & 200 & ns \\
\hline
\end{tabular}

Final Electrical Tests and Group A Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & TEST CONDITIONS & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{MAXIMUM LIMITS}} & \multirow{3}{*}{UNITS} \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
SUPPLY VOLTAGE \(\left(\mathrm{V}^{ \pm}\right)=15 \mathrm{~V}\) \\
Unless Otherwise Specified
\end{tabular}} & & & & \\
\hline & & & -55 & +25 & +125 & \\
\hline Input Offset Voltage* & \(\mathrm{V}_{10}\) & \(\mathrm{R}_{\mathrm{S}} \leqslant 5 \mathrm{k} \Omega\) & 4 & 3 & 4 & mV \\
\hline \multirow[b]{2}{*}{Saturation Voltage} & & \(\mathrm{V}_{\mathrm{I}}=-5 \mathrm{mV}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}\) & - & 1.5 & - & \multirow{2}{*}{V} \\
\hline & & \[
\begin{aligned}
& \mathrm{V}^{+} \geqslant 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0, \mathrm{~V}_{\mathrm{I}} \leqslant-6 \mathrm{mV} \\
& \mathrm{I}_{\text {SINK }} \leqslant 8 \mathrm{~mA}
\end{aligned}
\] & 0.4 & 0.4 & 0.4 & \\
\hline Input Offset Current* & 110 & & 20 & 10 & 20 & nA \\
\hline Input Bias Current* & IIB & & 150 & 100 & 150 & nA \\
\hline Positive Supply Current & \(1^{+}\) & & - & 6 & - & mA \\
\hline Negative Supply Current & \(1^{-}\) & & - & 5 & - & mA \\
\hline Output Leakage Current & & \(\mathrm{V}_{1} \geqslant 5 \mathrm{mV}, \mathrm{V}_{\mathrm{O}}=35 \mathrm{~V}\) & 500 & 10 & 500 & nA \\
\hline
\end{tabular}
* The input offset characteristics given are the values required to drive the output to within 1 V of either supply with a 1-mA load. These characteristics define an error band which takes into account the worst-case effects of voltage gain and input impedance. The input offset voltage, input offset current, and input bias current specifications apply for any supply voltage from a 5 V single supply up to a \(\pm 15 \mathrm{~V}\) dual supply.

File No. 832 \(\qquad\)

Table III. Pre Burn-in Electrical and Post Burn-in Electrical Tests, and Deita Limits* For All Types
ELECTRICAL CHARACTERISTICS AT \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & \(\mathrm{R}_{\mathrm{S}} \leqslant 5 \mathrm{k} \Omega\) & - & 3 & \(\pm 1\) & mV \\
\hline Input Offset Current & 110 & & - & 10 & \(\pm 2\) & nA \\
\hline Input Bias Current & \(1 /\) & & - & 100 & \(\pm 10\) & nA \\
\hline
\end{tabular}
* Levels /1 and /2 require pre burn-in electrical and post burn-in electrical tests, and delta limits.

Level \(/ 3\) requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 9.

Table IV. Group C Electrical Characteristics Sampling Tests
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\mathrm{T}_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}^{ \pm}=15 \mathrm{~V}\)} \\
\hline CHARACTERISTIC & \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{SPECIAL
TEST CONDITIONS} & \multicolumn{2}{|l|}{LIMITS} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & \(\mathrm{R}_{\mathrm{S}} \leqslant 5 \mathrm{k} \Omega\) & - & 3 & mV \\
\hline Input Offset Current & 110 & & - & 14 & nA \\
\hline Input Bias Current & 1 & & - & 110 & nA \\
\hline
\end{tabular}

Fig. 1-Output limiting characteristics.

Fig. 2-Input characteristics.

Fig. 4-Input bias current vs. ambient temperature.

Fig. 5-Input offset current vs. ambient temperature.

Fig. 6-Transfer function.

Fig. 7-Output saturation voltage vs. output current.

Fig. 9-Burn-in and operating life test circuit.

\title{
Linear Integrated Circuits \\ Monolithic Silicon \\ High－Reliability Slash（／）Series CA723T／．．．
}

\title{
High－Reliability Voltage Regulators
}

For Regulated Output Voltages Adjustable from 2 V to 37 V at Currents up to 150 mA Without External Pass Transistors In Aerospace，Military，and Critical Industrial Equipment

\section*{Features：}
－Up to 150 mA output current
－Positive and negative voltage regulation
－Regulation in excess of 10 A with suitable pass transistors
－Input and output short－circuit protection
－Load and line regulation：0．03\％
－Direct replacement for 723 industry types
－Adjustable output voltage： 2 to 37 V

The RCA－CA723 Slash（／）Series types are high－reliability silicon monolithic integrated circuits designed for service as voltage regulators at output voltages ranging from 2 to 37 volts at currents up to 150 milliamperes．These devices are intended for applications in aerospace，military，and industrial equipment．They are electrically and mechanically identical with the standard type CA723 described in Data Bulletin File No． 788 but are specially processed and tested to meet the electrical，mechanical and environmental test methods and procedures established for microelectronic devices in MIL－STD－883．

Each type includes a temperature－compensated reference amplifier，an error amplifier，a power series pass transistor， and a current－limiting circuit．They also provide independently accessible inputs for adjustable current limiting and remote shutdown and，in addition，feature low standby current drain，low temperature drift，and high ripple rejection．

The CA723 may be used with positive and negative power supplies in a wide variety of series，shunt，switching，and floating regulator applications．They can provide regulation at load currents greater than 150 milliamperes and in excess of 10 amperes with the use of suitable \(n-p-n\) or \(p-n-p\) external pass transistors．

The packaged type can be supplied to six screening levels－ \(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\) ，and \(/ 4\)－which correspond to MIL－STD－883 Classes A，B，and C．The chip version can be supplied to three screening levels \(-/ M, / N, / R\) ．

These screening levels and detailed information on test methods，procedures and test sequence are given in Reliability Report RIC－202A＂High－Reliability CA3000 Slash （／）Series Types Screened to MIL－STD－883＂．

The CA723 is supplied in the 10 －Lead TO－5 style ceramic package（ \(T\) suffix），and is a direct replacement for industry type 723 in packages with similar terminal arrangements．It is also available in chip form（ H suffix）．

\section*{Applications}
－Series and shunt voltage regulator
－Floating regulator
－Switching voltage regulator
－High－current voltage regulator
－Temperature controller

Fig．1－Functional diagram of the CA723．

\section*{MAXIMUM RATINGS, Absolute Maximum Values}

DC SUPPLY VOLTAGE
\[
\text { (Between } \mathrm{V}^{+} \text {and } \mathrm{V}^{-} \text {Terminals) } 40
\]
PULSE VOLTAGE FOR \(50-\mathrm{ms}\) PULSE WIDTH (Between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)Terminals) 50DIFFERENTIAL INPUT-OUTPUT VOLTAGE40
DIFFERENTIAL INPUT VOLTAGE
Between Inverting and Non-Inverting Inputs \(\pm 5\)
Between Non-Inverting Input and V- 8 V
CURRENT FROM VOLTAGE REFERENCE
TERMINAL (\(V_{\text {REF }}\)) 15

\section*{DEVICE DISSIPATION:}

Up to \(T_{A}=25^{\circ} \mathrm{C}\)
CA723T
800 mW

Above \(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\)
CA723T Derate linearly \(6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

\section*{AMBIENT TEMPERATURE RANGE}

Operating . -55 to \(+125^{\circ} \mathrm{C}\)
Storage . -65 to \(+150^{\circ} \mathrm{C}\)
LEAD TEMPERATURE (During Soldering):
At a distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}(1.59 \pm 0.79 \mathrm{~mm})\)
from case for 10 seconds max

92CS-24157

Fig. 2-Terminal arrangement of the CA723T
in the TO-5 style package.

Fig. 3-Equivalent schematic diagram of the CA723.

ELECTRICAL CHARACTERISTICS For Design Guidance Only
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS (See Note) & CA723 & \multirow[b]{2}{*}{UNITS} \\
\hline & & \[
\begin{aligned}
& \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}^{+}=\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}, \mathrm{~V}^{-}=0, \\
& \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=100 \mathrm{pF}, \\
& \mathrm{Z}_{\mathrm{DIVID}} \mathrm{VIDER} \leqslant 10 \mathrm{k} \Omega \text { (into error } \\
& \text { amplifier as shown in Fig. 14) un- } \\
& \text { less otherwise indicated }
\end{aligned}
\] & Typ. & \\
\hline Quiescent Regulator Current & 10 & \(I_{L}=0, V_{1}=30 \mathrm{~V}\) & 2.3 & mA \\
\hline Reference Voltage & \(V_{\text {REF }}\) & & 7.15 & V \\
\hline \multirow[t]{2}{*}{Line Regulation} & & \(\mathrm{V}_{1}=12\) to 40 V & 0.02 & \multirow[t]{2}{*}{\% Vo} \\
\hline & & \(V_{1}=12\) to 15 V & 0.01 & \\
\hline Load Regulation & & \(\mathrm{I}_{\mathrm{L}}=1\) to 50 mA & 0.03 & \% \(\mathrm{V}_{0}\) \\
\hline Output-Voltage Temperature Coefficient & \(\Delta \mathrm{V}_{\mathrm{O}}\) & \(\mathrm{T}_{\mathrm{A}}=-55\) to \(+125^{\circ} \mathrm{C}\) & 0.002 & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline \multirow[b]{2}{*}{Ripple Rejection} & & \(\mathrm{f}=50 \mathrm{~Hz}\) to 10 kHz & 74 & \multirow[b]{2}{*}{dB} \\
\hline & & \(\mathrm{f}=50 \mathrm{~Hz}\) to \(10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=5 \mu \mathrm{~F}\) & 86 & \\
\hline Short-Circuit Limiting Current & ILIM & \(\mathrm{R}_{\text {SCP }}=10 \Omega \mathrm{~V}_{\mathrm{O}}=0\) & 65 & mA \\
\hline \multirow[t]{2}{*}{Equivalent Noise Output Voltage} & \multirow[t]{2}{*}{VNOISE} & \(B W=100\) to \(10 \mathrm{kHz}, \mathrm{C}_{\text {BEF }}=0\) & 20 & \multirow[b]{2}{*}{\(\mu \mathrm{V}_{\text {RMS }}\)} \\
\hline & & \(B W=100\) to \(10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=5 \mu \mathrm{~F}\) & 2.5 & \\
\hline
\end{tabular}

Note: Line and load regulation specifications are given for condition of a constant chip temperature for high dissipation conditions, temperature drifts must be separately taken into account.

Table I. Pre Burn-In Electrical Post Burn-In Electrical Tests, and Delta Limits*
ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline CHARACTERISTICS & SYMBOL & TEST CONDITIONS & \multicolumn{3}{|c|}{ LIMITS } & \multirow{2}{*}{ UNITS } \\
\hline \begin{tabular}{c}
Reference \\
Voltage
\end{tabular} & \(V_{\text {REF }}\) & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline \begin{tabular}{c}
Quiescent \\
Regulator Current
\end{tabular} & \(I_{0}\) & \(I_{L}=0 \quad V_{I}=30 \mathrm{~V}\) & - & 3.5 & \(\pm 0.05\) & V \\
\hline
\end{tabular}

\footnotetext{
* Levels \(/ 1\) and \(/ 2\) require pre burn-in electrical and post burn-in electrical tests, and delta limits

Level 3 requires pre burn-in test only. The burn-in and operating life test circuit is shown in Fig. 13
}

Table II. Final Electrical Tests and Group A Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multirow[t]{4}{*}{\begin{tabular}{l}
TEST CONDITIONS (See Note) \\
\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}^{+}=\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}, \mathrm{~V}-=0\), \\
\(\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=100 \mathrm{pF}\), \\
\(Z_{\text {DIVIDER }} \leqslant 10 \mathrm{k} \Omega\) (into error \\
amplifier as shown in Fig. 14) un- \\
less otherwise indicated
\end{tabular}} & \multicolumn{6}{|c|}{\multirow[b]{2}{*}{LIMITS}} & \multirow{4}{*}{UNITS} \\
\hline & & & & & & & & & \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|l|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline Quiescent Regulator Current & 10 & \(\mathrm{IL}_{\mathrm{L}}=0, \mathrm{~V}_{1}=30 \mathrm{~V}\) & - & - & - & - & 3.5 & - & mA \\
\hline Input Voltage Range & \(V_{1}\) & & - & 9.5 & - & - & 40 & - & V \\
\hline Output Voltage Range & \(\mathrm{V}_{\mathrm{O}}\) & & - & 2.0 & - & - & 37 & - & V \\
\hline Differential InputOutput Voltage & \(V_{1}-V_{0}\) & & - & 3.0 & - & - & 38 & - & V \\
\hline Reference Voltage & VREF & & - & 6.95 & - & - & 7.35 & - & V \\
\hline \multirow[b]{2}{*}{Line Regulation} & & \(\mathrm{V}_{1}=12\) to 40 V & - & - & - & - & 0.2 & - & \multirow[b]{2}{*}{\% \(\mathrm{V}_{0}\)} \\
\hline & & \(\mathrm{V}_{1}=12\) to 15 V & - & - & - & 0.3 & 0.1 & 0.3 & \\
\hline Load Regulation & & \(\mathrm{I}_{\mathrm{L}}=1\) to 50 mA & - & - & - & 0.6 & 0.15 & 0.6 & \% \(\mathrm{V}_{0}\) \\
\hline
\end{tabular}

Note: Line and load regulation specifications are given for condition of a constant chip temperature: for high dissipation conditions, temperature
drifts must be separately taken into account.

Table III. Group C Electrical Characteristics Sampling Tests
\(\left(T_{A}=25^{\circ} C, V_{C C}=+6 V, V_{E E}=-6 V\right)\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline CHARACTERISTIC & \multirow{2}{*|}{ SYMBOL } & \multirow{2}{|c|}{ TEST CONDITIONS } & \multicolumn{2}{|c|}{ LIMITS } & \multirow{2}{*}{ UNITS } \\
\hline \begin{tabular}{c}
Reference \\
Voltage
\end{tabular} & VREF & & 6.95 & 7.35 & V \\
\hline \begin{tabular}{c}
Line \\
Regulation
\end{tabular} & & \(\mathrm{V}_{\mathrm{I}}=12\) to 15 V & - & 0.15 & \(\% \mathrm{~V}_{\mathrm{O}}\) \\
\hline \begin{tabular}{c}
Load \\
Regùlation
\end{tabular} & \(\mathrm{I}_{\mathrm{Q}}\) & \(\mathrm{I}_{\mathrm{L}}=0 \mathrm{~V}_{\mathrm{I}}=30 \mathrm{~V}\) & - & 3.5 & mA \\
\hline \begin{tabular}{c}
Quiescent \\
Regulator Current
\end{tabular} & & \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS CURVES FOR TYPE CA723

Fig. 4-Max. load current vs. differential input-output voltage.

Fig. 6-Load regulation with current limiting.

Fig. 8-Current limiting characteristics.

Fig. 5-Load regulation without current limiting.

Fig. 7-Load regulation with current limiting.

92CS-24174

Fig. 9-Line transient response.

TYPICAL CHARACTERISTICS CURVES (Cont'd)

Fig. 10-Current limiting characteristics vs. junction temperature.

Fig. 11-Output impedance vs. frequency.

Fig. 12-Load transient response.

92CS-24744
Fig. 13-Burn-in and operating life test circuit.

CIRCUIT PERFORMANCE DATA:
REGULATED OUTPUT VOLTAGE . . . 5 V
LINE REGULATION \(\left(\Delta V_{1}=3 \mathrm{~V}\right)\). . . . 0.5 mV
LOAD REGULATION \(\left(\Delta I_{L}=50 \mathrm{~mA}\right)\). . . 1.5 mV
Note: \(\mathbf{R 3}=\frac{\mathbf{R 1} \mathbf{R} 2}{\mathbf{R 1}+\mathbf{R 2}}\) for minimum temperature drift
92CS-24178
Fig. 14-Low-voltage regulator circuit (\(V_{O}=2\) to 7 volts).

\title{
High-Reliability Operational Amplifiers
}

\author{
High-Gain Single and Dual Operational Amplifiers
}

For Applications in Aerospace, Military, and Critical Industrial Equipment

\section*{Features:}
- Input bias current (all types): \(\mathbf{5 0 0} \mathrm{nA}\) max.
- Input offset current (all types): 200 nA max.

RCA-CA741, CA747, CA748, and CA1558 "Slash" (/) Series types are high-reliability linear integrated circuit High-Gain Single and Dual Operational Amplifiers intended for applications in aerospace, military, and industrial equipment. They are electrically and mechanically identical with the standard types described in Data Bulletin File No. 531 but are specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels/1N, /1R, /1, /2, /3, and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

\section*{Applications:}
- Comparator
- DC amplifier
- Integrator or differentiator
- Multivibrator
- Narrow-band or band-pass filter
- Summing amplifier

The CA741, CA748, and CA1558 Slash (/) Series types are supplied in the 8 -lead TO- 5 style package (" T " suffix) and in the 8 -lead TO- 5 style package with dual-in-line formed leads, DIL-CAN (" S " suffix). The CA747 is supplied in the 10 -lead TO-5 style package (" \(T\) " suffix). All the types are also available in chip form ('" \(\mathrm{H}^{\prime \prime}\) suffix).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline RCA TYPE NO. & NO. OF AMPLI. & PHASE COMP. & PACKAGE TYPE & OFFSET VOLT. NULL & AOL
(MIN.) & \[
\begin{gathered}
V_{10}^{\circ} \\
\text { (MAX.) }
\end{gathered}
\] & TAOPERATING RANGE & COMPATIBLE WITH INDUSTRY TYPE(S) \\
\hline CA1558T & dual & internal & 8-lead TO-5 & no & 50,000 & 5 mV & -55 to \(125^{\circ} \mathrm{C}\) & MC1558; S5558 \\
\hline CA741 & single & internal & 8-lead TO-5 & yes & 50,000 & 5 mV & -55 to \(125^{\circ} \mathrm{C}\) & \(\mu \mathrm{A} 741\) \\
\hline CA747 & dual & internal & 10-lead TO-5 & no & 50,000 & 5 mV & -55 to \(125^{\circ} \mathrm{C}\) & \(\mu\) A747 \\
\hline CA748 & single & external & 8-lead TO-5 & yes & 50,000 & 5 mV & -55 to \(125^{\circ} \mathrm{C}\) & \(\mu \mathrm{A} 748\) \\
\hline
\end{tabular}

MAXIMUM RATINGS, Absolute-Maximum Values at \(T_{A}=25^{\circ} \mathrm{C}\)
DC SUPPLY VOLTAGE (between \(\mathrm{V}^{+}\)and V - terminals):
CA741T, CA747T, CA748T, CA1558T . 44 V
Differential Input Voltage . 30 V
DC Input Voltage* . 15 V
Output Short-Circuit Duration . Indefinite
DEVICE DISSIPATION:
Up to \(75^{\circ} \mathrm{C}\) (CA741T, CA748T) . 500 mW
Up to \(30^{\circ} \mathrm{C}\) (CA747T) . 800 mW
Up to \(30^{\circ} \mathrm{C}\) (CA1558T) . 680 mW

Above Indicated Temperatures . Derate linearly \(6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
Voltage between Offset Null and V-CA741T . \(\pm 0.5 \mathrm{~V}\)
TEMPERATURE RANGE:
Operating . 55 to \(+125^{\circ} \mathrm{C}\)
Storage . 65 to \(+150^{\circ} \mathrm{C}\)
LEAD TEMPERATURE (During Soldering)
At distance \(1 / 16 \pm 1 / 31\) inch (\(1.59 \pm 0.79 \mathrm{~mm}\)) from case for 10 seconds max . \(300^{\circ} \mathrm{C}\)

\footnotetext{
* If Supply voltage is less than \(\pm 15\) volts, the Absolute Maximum Input Voltage is equal to the Supply Voltage.
\(\Delta\) Voltage values apply for each of the dual operational amplifiers.
}

Fig. 1 - Schematic diagram of operational amplifier with external phase compensation for CA748T.

ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline CHARACTERISTICS & SYMBOLS & SUPPLY VOLTS
\[
\begin{aligned}
& v^{+}=+15 v \\
& v-=-15 V
\end{aligned}
\] & TYP. & UNITS \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\) & 1 & \(m \mathrm{~V}\) \\
\hline Input Offset Current & \({ }_{10}\) & & 20 & nA \\
\hline Input Bias Current & I'B & & 80 & nA \\
\hline Input Resistance & R1 & & 2 & \(\mathrm{M} \Omega\) \\
\hline Open-Loop Differential Voltage Gain & \({ }^{\text {A OL }}\) & \[
\begin{aligned}
& R_{L} \geq 2 \mathrm{k} \Omega \\
& V_{O}= \pm 10 \mathrm{~V}
\end{aligned}
\] & 200,000 & \\
\hline Common-Mode Input Voltage Range & \(V_{\text {ICR }}\) & & \(\pm 13\) & V \\
\hline Common-Mode Rejection Ratio & CMRR & \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\) & 90 & dB \\
\hline Supply Voltage Rejection Ratio & \(V_{R R}\) & \(\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega\) & 30 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline \multirow{2}{*}{Output Voltage Swing} & \multirow{2}{*}{\(V_{0}(P-P)\)} & \(R_{L} \geq 10 \mathrm{k} \Omega\) & \(\pm 14\) & \multirow{2}{*}{V} \\
\hline & & \(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\) & \(\pm 13\) & \\
\hline Supply Current & & & 1.7 & mA \\
\hline Device Dissipation & \(P_{\text {D }}\) & & 50 & mW \\
\hline Input Capacitance & \(C_{1}\) & & 1.4 & pF \\
\hline Offset Voltage Adjustment Range & & & \(\pm 15\) & mV \\
\hline Output Resistance & \(\mathrm{R}_{\mathbf{o}}\) & & 75 & \(\Omega\) \\
\hline Output Short-Circuit Current & & & 25 & mA \\
\hline Transient Response Risetime & \(t_{r}\) & Unity Gain
\[
V_{1}=20 \mathrm{mV}
\] & 0.3 & \(\mu \mathrm{s}\) \\
\hline Overshoot & & \[
\begin{aligned}
& R_{\mathrm{L}}=2 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}
\end{aligned}
\] & 5.0 & \% \\
\hline \begin{tabular}{l}
Slew Rate: \\
Closed Loop
\end{tabular} & \multirow[t]{2}{*}{SR} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega\)} & \[
0.5
\] & \multirow[t]{2}{*}{\(\mathrm{V} / \mu \mathrm{s}\)} \\
\hline Open Loop \({ }^{\text {4 }}\) & & & 40 & \\
\hline
\end{tabular}

\footnotetext{
- Values apply for each of the dual operational amplifiers.
}

92CS-19430
(a) - Functional diagram of CA1558T with internal phase compensation.

NOTE: PIN 4 IS CONNECTED TO CASE
(b) - Functional diagram of CA741T with internal phase compensation.

(c) - Functional diagram of CA747T with internal phase compensation.

NOTE : PIN 4 IS CONNECTED TO CASE
(d) - Functional diagram of CA748T with external phase compensation

Fig. 2-Functional diagrams of operational amplifiers.

Fig. 3 - Schematic diagram of operational amplifiers with internal phase compensation for CA741T and for each amplifier of the CA748T and CA1558T.

Table I - Pre Burn-In Electrical and Post Burn-In Electrical Tests, and Delta Limits* For All Types
ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LImits} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline Input Offset Voltage & \(V_{10}\) & & - & 5 & \(\pm 1\) & mV \\
\hline Input Offset Current & 110 & & - & 200 & \(\pm 24\) & nA \\
\hline Input Bias Current & \(1 /\) & & - & 500 & \(\pm 60\) & nA \\
\hline Device Dissipation & PD & & & 85 & \(\pm 18\) & mW \\
\hline
\end{tabular}

\footnotetext{
*Levels / 1 and \(/ 2\) require pre burn-in electrical and post burn-in electrical tests, and delta limits.
Level \(/ 3\) requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 5.
}

Table II - Final Electrical and Group A. Electrical Sampling Inspection for All Types
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[b]{3}{*}{TEST CONDITIONS
\[
v^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}
\]} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{STATIC} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & - & - & - & - & 6 & 5 & 6 & mV \\
\hline Input Offset Current & 110 & - & - & - & - & 500 & 200 & 200 & nA \\
\hline Input Bias Current & 11 & - & - & - & - & 1500 & 500 & 500 & nA \\
\hline Supply Current & & - & - & - & - & 3.8 & 3.3 & 2.8 & mA \\
\hline Device Dissipation & \(P_{\text {D }}\) & - & - & - & - & 100 & 85 & 75 & mW \\
\hline \multicolumn{10}{|l|}{DYNAMIC} \\
\hline Open-Loop Differential Voltage Gain & \({ }^{\text {a OL }}\) & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\) & 25000 & 50000 & 25000 & - & - & - & \\
\hline Common-Mode Rejection Ratio & CMRR & - & 70 & 70 & 70 & - & - & - & dB \\
\hline Maximum OutputVoltage Swing & \(V_{O}(P-P)\) & \[
\begin{aligned}
& R_{L} \geq 10 \mathrm{k} \Omega \\
& R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \pm 12 \\
& \pm 10
\end{aligned}
\] & \[
\begin{aligned}
& \pm 12 \\
& \pm 10
\end{aligned}
\] & \[
\begin{aligned}
& \pm 12 \\
& \pm 10
\end{aligned}
\] & - & - & - & V \\
\hline Input Resistance & RI & - & - & 0.3 & - & - & - & - & \(\mathrm{M} \Omega\) \\
\hline Common-Mode InputVoltage Range & \(V_{\text {ICR }}\) & \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega\) & \(\pm 12\) & \(\pm 12\) & \(\pm 12\) & - & - & - & V \\
\hline Supply Voltage Rejection Ratio & \(\mathrm{V}_{\text {RR }}\) & \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega\) & & & & 150 & 150 & 150 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline
\end{tabular}

Table III - Group C. Electrical Characteristics Sampling Tests
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \quad \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}\)} \\
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{\begin{tabular}{l}
SPECIAL \\
TEST CONDITIONS
\end{tabular}} & \multicolumn{2}{|r|}{LIMITS} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline Input Offset Voltage & \(V_{10}\) & - & - & 8 & mV \\
\hline Input Offset Current & 10 & - & - & 240 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & - & - & 800 & \(\mu \mathrm{A}\) \\
\hline Open-Loop Differential
Voltage Gain & \({ }^{\text {A }} \mathrm{OL}\) & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}\) & 33000 & - & \\
\hline Supply Current & & & - & 3 & mA \\
\hline
\end{tabular}

File No. 718

Fig. 4 - Open-loop voltage gain vs. frequency for all types.

© these resistors may be adjusted to give required DRIVE UNDER DIFFERENT LOAD CONDITIONS
\(92 \mathrm{CM}-\mathbf{2 2 8 3 7}\) TERMINAL NOS IN CIRCLES ARE FOR IN SQUARES ARE FOR UNIT NO. 2

Fig. 5 - Burn-in and operating life test circuit for CA741, CA747, CA748, CA1558.

Solid State Division

Linear Integrated Circuits
Monolithic Silicon
High-Reliability Slash(/) Series CA3000/.

\section*{High-Reliability DC Amplifier}

For Applications in Aerospace, Military and Critical Industrial Equipment

\section*{Features:}

■ Input Impedance 195 K \(\Omega\) typ.
- Voltage Gain . \(\quad 37\) dB typ.
- Common-Mode Rejection Ratio 98 dB typ.
- Input Offset Voltage \(\quad 1.4\) mV typ.
- Push-Pull Input and Output
- Frequency Capability

DC to \(\mathbf{3 0} \mathbf{M H z}\) (with external \(C\) and \(R\))
- Wide AGC Range 90 dB typ.

RCA-CA3000 "Slash" (/) Series type is a high-reliability linear integrated circuit DC Amplifier intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA3000 described in Data Bulletin File No. 121 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels\(/ 1 \mathrm{~N}, / 1 R, / 1, / 2, / 3\), and \(/ 4\)-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\); and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

The CA3000 Slash (/) Series type is supplied in the 10 -lead TO-5 style package (" \(T\) " suffix) or in chip form (" H " suffix).

\section*{Applications}
- Schmitt Trigger
- RC-Coupled Feedback Amplifier
- Mixer
- Comparator
- Modulator
- Crystal Oscillator
- Sense Amplifier
- See Companion Application Note ICAN-5030
"Applications of RCA-CA3000 IC DC Amplifier."

92CS-12979

Fig. 1 - Schematic diagram

\section*{Maximum Ratings, Absolute-Maximum Values}
OPERATING TEMPERATURE RANGE \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
STORAGE-TEMPERATURE RANGE. \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
LEAD TEMPERATURE (During Soldering):
 At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
 \((1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm})\)
 from case for 10 s max. \(265^{\circ} \mathrm{C}\)
MAXIMUM SINGLE-ENDED INPUT-SIGNAL VOLTAGE . . \(\pm 2 \mathrm{~V}\)
MAXIMUM COMMON-MODE INPUT-SIGNAL VOLTAGE . . \(\pm 2 \mathrm{~V}\)
MAXIMUM DEVICE DISSIPATION
300 mW

Absolute Maximum Voltage and Current Limits at \(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5} \mathrm{C}\)
The following chart gives the range of voltages which can be applied to the terminals listed vertically with respect to the terminals listed horizontally. For example, the voltage range of the vertical terminal 1 with respect to terminal 9 is \(\mathbf{0}\) to \(\mathbf{- 1 2}\) volts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Terminal No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1 & & * & \[
\begin{aligned}
& +16^{\mathbf{4}} \\
& 0
\end{aligned}
\] & * & * & +4
-4 & \multirow{7}{*}{} & * & 0
-12 & \[
\begin{gathered}
+1 \\
-12
\end{gathered}
\] \\
\hline 2 & & & +16
-5 & * & * & * & & * & 0
-16 & * \\
\hline 3 & & & & +5
-5 & +5
-10 & \[
\begin{gathered}
0 \\
-16
\end{gathered}
\] & & * & 0
.16 & * \\
\hline 4 & & & & & * & * & & * & 0
.16 & * \\
\hline 5 & & & & & & * & & * & 0
.16 & * \\
\hline 6 & & & & & & & & +1
-12 & 0
-12 & * \\
\hline 7 & \multicolumn{6}{|r|}{Internal Connection Do not use} & & & & \\
\hline 8 & & & & & & & & & 0
-16 & * \\
\hline 9 & & & & & & & & & & +16
0 \\
\hline 10 & & & & & & & & & & \\
\hline Case & \multicolumn{7}{|l|}{Connected to Terminal \#3 - Do Not Ground} & & & \\
\hline
\end{tabular}

Maximum Current Ratings
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Term- \\
inal \\
No.
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\mathrm{IN}}\) \\
mA
\end{tabular} & \begin{tabular}{c}
\(\mathrm{I}_{\text {OUT }}\) \\
mA
\end{tabular} \\
\hline 1 & 1 & 0.1 \\
\hline 2 & - & - \\
\hline 3 & - & - \\
\hline 4 & - & - \\
\hline 5 & 1 & 0.1 \\
\hline 6 & - & - \\
\hline 7 & - & - \\
\hline-8 & - & - \\
\hline 9 & - & - \\
\hline 10 & - & - \\
\hline
\end{tabular}
*Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe if the specified limits between all other terminals are not exceeded.
4 This rating applies to the more positive of Terminal \(\# 1\) or \#6.

ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} C, V^{+}=+6 V, V^{-}=-6 V\), unless otherwise specified
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow{3}{*}{SPECIAL TEST CONDITIONS Terminals No. 4 \& No. 5 Not Connected Unless Specified} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { LIMITS } \\
& \hline \text { TYPE } \\
& \text { CA3000 }
\end{aligned}
\]}} \\
\hline & & & & \\
\hline & & & Typ. & Units \\
\hline \multicolumn{5}{|l|}{STATIC CHARACTERISTICS} \\
\hline Input Offset Voltage & V IO & & 1.4 & mV \\
\hline Input Offset Current & IIO & & 1.2 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & II & & 23 & \(\mu \mathrm{A}\) \\
\hline \multirow{6}{*}{Quiescent Operating Voltage} & \multirow{6}{*}{V8 or VIO} & TERMINALS & & \\
\hline & & \begin{tabular}{l|l}
4 & 5 \\
\hline
\end{tabular} & & \\
\hline & & NC & 2.6 & V \\
\hline & & NC \(\quad\) V- & 4.2 & \(V\) \\
\hline & & V- & -1.5 & \(V\) \\
\hline & & \(\mathbf{V}^{-}\)- \(\mathbf{V}^{-}\) & 0.6 & \(V\) \\
\hline Device Dissipation & PT & NC & 30 & mW \\
\hline \multicolumn{5}{|l|}{DYNAMIC CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Differential Voltage Gain Single-Ended Input} & \multirow[t]{2}{*}{ADIFF} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\text { Single-Ended Output } f=1 \mathrm{kHz} \\
\hline \text { Double-Ended Output } f=1 \mathrm{kHz}
\end{array}
\]} & 32 & dB \\
\hline & & & 37 & dB \\
\hline Bandwidth at -3 dB Point & BW & & 650 & kHz \\
\hline Maximum Output Voltage Swing & \(\operatorname{VOUT}(\mathrm{P}-\mathrm{P})\) & \(f=1 \mathrm{kHz}\) & 6.4 & \(V(P-P)\) \\
\hline Common-Mode Rejection Ratio & CMRR & \(f=1 \mathrm{kHz}\) & 98 & dB \\
\hline Single-Ended Input Impedance & ZIN & \(f=1 \mathrm{kHz}\) & I95K & \(\Omega\) \\
\hline Single-Ended Output Impedance & ZOUT & \(f=1 \mathrm{kHz}\) & 8K & \(\Omega\) \\
\hline Total Harmonic Distortion & THD & \(f=1 \mathrm{kHz}\) & 0.2 & \% \\
\hline AGC Range (Maximum Voltage Gain to Complete Cutoff) & AGC & \(f=1 \mathrm{kHz}\) & 90 & dB \\
\hline
\end{tabular}

Table I - Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristics} & \multirow{3}{*}{\[
\underset{\substack{\text { Sym- } \\ \text { bol }}}{ }
\]} & \multicolumn{2}{|l|}{\multirow{3}{*}{\[
\begin{aligned}
& \text { Test Conditions } \\
& \mathrm{V}^{+}=+6 \mathrm{~V} \\
& \mathrm{~V}^{-}=-6 \mathrm{~V}
\end{aligned}
\]}} & \multicolumn{6}{|c|}{Limits for Indicated Temp. \(\left({ }^{(} \mathrm{C}\right)\)} & \multirow{3}{*}{Units} \\
\hline & & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{11}{|l|}{STATIC} \\
\hline Input Offset Voltage & \(V_{10}\) & & - & - & - & - & 6.5 & 5 & 6.5 & mV \\
\hline Input Offset Current & 110 & & - & - & - & - & 20 & 10 & 20 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & & - & - & - & - & 70 & 36 & 25 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Quiescent \\
Operating \\
Voltage
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
v_{8} \\
\text { or } \\
v_{10}
\end{gathered}
\]} & \[
\underset{4}{\text { Terminal }}
\] & \[
\underset{5}{\text { Terminal }}
\] & & & & & & & \\
\hline & & NC & NC & 1.5 & 1.5 & 1.5 & 3.2 & 3.2 & 3.2 & v \\
\hline \multirow{5}{*}{Device Dissipation} & \multirow{5}{*}{\(\mathrm{P}_{\mathrm{T}}\)} & \[
{\underset{4}{\text { Terminal }}}^{2}
\] & \[
\underset{5}{\text { Terminal }}
\] & \multirow[b]{2}{*}{30} & \multirow[b]{2}{*}{25} & \multirow[b]{2}{*}{20} & \multirow[b]{2}{*}{60} & \multirow[b]{2}{*}{60} & \multirow[b]{2}{*}{50} & \multirow[b]{2}{*}{mW} \\
\hline & & NC & NC & & & & & & & \\
\hline & & NC & -V & 25 & 20 & 15 & 55 & 55 & 50 & mW \\
\hline & & -V & NC & 55 & 50 & 45 & 105 & 105 & 90 & mW \\
\hline & & -V & -V & 35 & 35 & 25 & 70 & 70 & 65 & mW \\
\hline \multicolumn{11}{|l|}{DYNAMIC All tests at 1 kHz , except BW} \\
\hline Differential Voltage Gain & \(A_{\text {Diff }}\) & & SingleEnded Output & - & 28 & - & - & - & - & dB \\
\hline Maximum Output Voltage & \[
\left.\begin{gathered}
V_{O U T} \\
(p-p)
\end{gathered} \right\rvert\,
\] & \multicolumn{2}{|l|}{\(\mathrm{f}=1 \mathrm{kHz}\)} & - & 5 & - & - & - & - & \(v_{p-p}\) \\
\hline Bandwidth at -3 dB Point & BW & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega\)} & - & 600 & - & - & - & - & kHz \\
\hline Common-Mode Rejection Ratio & CMR & \multicolumn{2}{|l|}{\(\mathrm{f}=1 \mathrm{kHz}\)} & - & 70 & - & - & - & - & dB \\
\hline Single-Ended Input Impedance & ZIN & & & - & 70k & - & - & - & - & \(\Omega\) \\
\hline Single-Ended Output Impedance & \(\mathrm{Z}_{\text {OUT }}\) & & & - & 5.5k & - & - & 10.5 k & - & \(\Omega\) \\
\hline Total Harmonic Distortion & THD & & & - & - & - & - & 5 & - & \(\%\) \\
\hline AGC Range (Maximum Voltage Gain to Complete Cutoff) & AGC & \(\mathrm{f}=1 \mathrm{kHz}\) & & - & 80 & - & - & - & - & dB \\
\hline
\end{tabular}

Table II - Pre Burn-In Electrical and Post Burn-In Electrical Tests, and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Electrical Characteristics, at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+6 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V}\)} \\
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{Limits} & \multirow{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline Input Offset Current & \(1 /\) & - & - & 35 & \(\pm 4\) & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Quiescent \\
Operating Voltage
\end{tabular} & \[
\begin{aligned}
& V_{8} \text { or } \\
& v_{10}
\end{aligned}
\] & \begin{tabular}{l}
Terminal 4: NC \\
Terminal 5: NC
\end{tabular} & 1.5 & 3.2 & \(\pm 0.3\) & v \\
\hline Device Dissipation & \(\mathrm{P}^{\text {T }}\) & Terminal 4: NC Terminal 5: NC & 25 & 60 & \(\pm 6\) & mW \\
\hline
\end{tabular}
*Levels 1 and 2 require pre burn-in electrical and post burn-in electrical tests, and delta limits.
Level 3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 7.

Table III - Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{CHARACTERISTIC}} & \multirow{3}{*}{SYMBOL} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { TEST CONDITIONS } \\
\mathrm{V}^{+}=+6 \mathrm{~V}, \\
\mathrm{~V}^{-}=-6 \mathrm{~V}
\end{gathered}
\]} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES \(1^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multirow{5}{*}{\[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]} & Input Offset Voltage & V10 & - & - & - & - & 6.5 & 5 & 6.5 & mV \\
\hline & Input Offset Current & 110 & - & - & - & - & 20 & 10 & 20 & \(\mu \mathrm{A}\) \\
\hline & Input Bias Current & \(1 /\) & - & - & - & - & 70 & 36 & 25 & \(\mu \mathrm{A}\) \\
\hline & Quiescent Operating Voltage & \(\mathrm{V}_{8}\) or \(\mathrm{V}_{10}\) & Terminals 4 and 5 No connection & 1.5 & 1.5 & 1.5 & 3.2 & 3.2 & 3.2 & V \\
\hline & Device Dissipation & \(P_{T}\) & Terminals 4 and 5 No Connection & 30 & 25 & 20 & 60 & 60 & 50 & mW \\
\hline & Differential Voltage Gain Single Ended Output & ADiff & \(f=1 \mathrm{kHz}\) & - & 28 & - & - & - & - & dB \\
\hline
\end{tabular}

Table IV - Group C Electrical Characteristics Sampling Tests (\(T_{A}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multirow[t]{2}{*}{TEST CONDITIONS \(\mathrm{V}^{+}=+6 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V}\)} & \multicolumn{2}{|c|}{Limits} & \multirow{2}{*}{Units} \\
\hline & & & Min. & Max. & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & & - & 5 & mV \\
\hline Input Offset Current & 10 & & - & 10 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & & - & 36 & \(\mu \mathrm{A}\) \\
\hline Quiescent Operating Voltage & \(\mathrm{V}_{8}\) or \(\mathrm{V}_{10}\) & & 1.5 & 3.2 & V \\
\hline Device Dissipation & \(\mathrm{P}_{\mathrm{T}}\) & & 25 & 60 & mW \\
\hline Differential Voltage Gain Single-Ended Input & \({ }^{\text {difF }}\) & Single Ended Output \(\mathrm{f}=1 \mathrm{kHz}\) & 28 & - & dB \\
\hline
\end{tabular}

\section*{STATIC CHARACTERISTICS}

Fig.2- Differential voltage gain vs temperature

Fig.4-Common-mode rejection ratio vs temperature

Fig.6-Single-ended output impedance vs temperature

Fig.3-Bandwidth at \(\cdot 3 d B\) point vs temperature

Fig.5-Sing/t-ended input impedance vs temperature

Fig.7- Burn-in and operating
life test circuit

Solid State Division

\title{
Linear Integrated Circuits
}

Monolithic Silicon
High-Reliability Slash(/) Series
CA3001/. . .

\section*{High - Reliability Video Amplifier}

For Applications In Aerospace, Military and Critical Industrial Equipment
Features:
- Push-Pull Input \& Output
- AGC Range . 60 dB typ.
- Bandwidth . \(\quad 29 \mathrm{MHz}\)
- Input Resistance
\(150 \mathrm{k} \Omega\) typ.
- Output Resistance \(45 \Omega\) typ.
- Voltage Gain . 19 dB typ.
- Input Offset Voltage 1.5 mV typ:

RCA-CA3001 "Slash" (/) Series type is a high-reliability linear integrated circuit Video Amplifier intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA3001 described in Data Bulletin File No. 122 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels\(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\), and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

The CA3001 Slash (/) Series type is supplied in the 12-lead TO-5 style package (" T " suffix) or in chip form (" H " suffix).

\section*{Applications}
- DC, IF, \& Video Amplifier
- Schmitt Trigger
- Mixer
- Modulator
- See Companion Application Note ICAN-5038
"Applications of the RCA-CA3001 IC Video Amplifier"

Fig. 1 - Schematic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values
\begin{tabular}{|c|c|}
\hline OPERATING TEMPERATURE RANGE & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Storage temperature range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{LEAD TEMPERATURE (During Soldering):} \\
\hline \multicolumn{2}{|l|}{At distance 1/16" \(\pm 1 / 32^{\prime \prime}\)} \\
\hline \multicolumn{2}{|l|}{\((1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm})\)} \\
\hline from case for 10 s max. & \(265^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{MAXIMUM SINGLE-ENDED INPUT-} \\
\hline SIGNAL VOLTAGE & \(\pm 2.5 \mathrm{~V}\) \\
\hline \multicolumn{2}{|l|}{MAXIMUM COMMON-MODE INPUT.} \\
\hline SIGNAL VOLTAGE & \(\pm 2.5 \mathrm{~V}\) \\
\hline MAXIMUM DEVICE DISSIPATION & 300 mW \\
\hline
\end{tabular}

\section*{ABSOLUTE-MAXIMUM VOLTAGE AND CURRENT LIMITS at \(T_{A}=25^{\circ} \mathrm{C}\)}

Indicated voltage or current limits for each terminal can be applied under the specified conditions for other terminals. All Voltages are with respect to ground (common terminal of Positive and Negative DC Supplies).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{TERMINAL} & \multicolumn{2}{|l|}{VOLTAGE OR CURRENT LIMITS} & \multicolumn{2}{|l|}{CONDITIONS} \\
\hline & NEGATIVE & POSItIVE & TERMINAL & VOLTAGE \\
\hline 1 & -2.5 & +2.5 & \[
\begin{gathered}
\hline 2,6 \\
3,10 \\
9
\end{gathered}
\] & \[
\begin{gathered}
0 \\
-6 \\
+6
\end{gathered}
\] \\
\hline 2 & -8.5 & 0 & \[
\begin{gathered}
1,6 \\
3,10 \\
9
\end{gathered}
\] & \[
\begin{gathered}
\hline 0 \\
-8.5 \\
+6
\end{gathered}
\] \\
\hline 3 & -10 & 0 & \[
\begin{gathered}
1,2,6 \\
9 \\
10
\end{gathered}
\] & \[
\begin{array}{r}
0 \\
+6 \\
-6
\end{array}
\] \\
\hline 4 & -8.5 & 0 & \[
\begin{gathered}
1,2,6 \\
9 \\
10
\end{gathered}
\] & \[
\begin{gathered}
0 \\
+6 \\
-6
\end{gathered}
\] \\
\hline 5 & -6 & 0 & \[
\begin{gathered}
1,2,6 \\
3,10 \\
9 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0 \\
-6 \\
+6
\end{gathered}
\] \\
\hline 6 & -2.5 & +2.5 & \[
\begin{gathered}
1,2 \\
3,10 \\
9 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
0 \\
-6 \\
+6
\end{array}
\] \\
\hline 7 & \multicolumn{4}{|c|}{INTERNAL CONNECTION DO NOT USE} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{TERMINAL} & \multicolumn{2}{|l|}{VOLTAGE OR CURRENT LIMITS} & \multicolumn{2}{|l|}{CONDITIONS} \\
\hline & NEGATIVE & positive & TERMINAL & Voltage \\
\hline 8 & \multicolumn{2}{|l|}{25 mA} & \multicolumn{2}{|l|}{\begin{tabular}{l}
\(200-\Omega\) RESISTOR \\
CONNECTED BETWEEN \\
TERMINALSNO. 8 \& No. 10
\end{tabular}} \\
\hline 9 & 0 & +10 & \[
1,2,6,10
\] & \[
\begin{array}{r}
0 \\
-6
\end{array}
\] \\
\hline 10 & -10 & 0 & \[
\begin{gathered}
\hline 1,2,6 \\
3 \\
9 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0 \\
-6 \\
+6
\end{gathered}
\] \\
\hline 11 & \multicolumn{2}{|l|}{25 mA} & \begin{tabular}{l}
\[
\begin{gathered}
1,2,6,10 \\
3 \\
9 \\
200-\Omega \mathrm{RE}
\end{gathered}
\] \\
CONNECTED \\
TERMINALS
\end{tabular} & \begin{tabular}{l}
\(-6\) \\
\(-6\) \\
\(+6\) \\
SISTOR \\
BETWEEN \\
Na. 10\&No. 11
\end{tabular} \\
\hline 12 & \multicolumn{4}{|c|}{INTERNAL CONNECTION DO NOT USE} \\
\hline CASE & \multicolumn{4}{|l|}{INTERNALLY CONNECTED TO TERMINAL No. 3 (SUBSTRATE) DO NOT GROUND} \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS, AT \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {CC }}=+6 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=.6 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|}
\hline CHARACTERISTICS & SYMBOLS & \begin{tabular}{c}
SPECIAL TEST CONDITIONS \\
Terminals No.4 and No.5 \\
Not Connected \\
Unless Specified
\end{tabular} & \begin{tabular}{c}
LIMITS \\
\cline { 4 - 6 }
\end{tabular} & \begin{tabular}{c}
TYPE \\
CA3001
\end{tabular} \\
\cline { 4 - 6 } & & Typ. & Units \\
\hline
\end{tabular}

\section*{STATIC CHARACTERISTICS:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Input Offset Voltage & \(V_{10}\) & \multicolumn{3}{|l|}{} & 1.5 & mV \\
\hline Input Offset Current & 110 & & & & 1 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 11 & & & & 16 & \(\mu \mathrm{A}\) \\
\hline Output Offset Voltage & \(\mathrm{V}_{00}\) & & & & 54 & mV \\
\hline \multirow{5}{*}{Quiescent Operating Voltage} & \multirow{5}{*}{\[
\begin{gathered}
\mathrm{v}_{8} \\
{ }_{\mathrm{OR}} \\
\mathrm{v}_{11}
\end{gathered}
\]} & \[
\begin{aligned}
& \text { T } \\
& \text { MODE }
\end{aligned}
\] & RMW \({ }^{\text {N }}\) & 5 & & \\
\hline & & A & NC & NC & 4.4 & v \\
\hline & & B & NC & VEE & 4.8 & V \\
\hline & & C & \(V_{\text {EE }}\) & NC & 2.7 & V \\
\hline & & D & \(V_{\text {EE }}\) & \(V_{\text {EE }}\) & 4 & V \\
\hline \multirow{4}{*}{Device Dissipation} & \multirow{4}{*}{PT} & A & NC & NC & 78 & mW \\
\hline & & B & NC & \(V_{\text {EE }}\) & 71 & mW \\
\hline & & C & \(\mathrm{V}_{\mathrm{EE}}\) & NC & 110 & mW \\
\hline & & D & \(\mathrm{V}_{\mathrm{EE}}\) & \(\mathrm{V}_{\mathrm{EE}}\) & 86 & mW \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Differential Voltage Gain \\
(Single-ended input and output)
\end{tabular} & \(A_{\text {diff }}\) & \[
\begin{aligned}
& f=1.75 \mathrm{MHz} \\
& f=20 \mathrm{MHz}
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 14
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{dB} \\
& \mathrm{~dB}
\end{aligned}
\] \\
\hline Bandwidth at -3 dB Point & BW & & 29 & MHz \\
\hline Maximum Output Voltage Swing & \(\mathrm{V}_{\text {OUT }}(\mathrm{P}-\mathrm{P})\) & \(\mathrm{f}=1.75 \mathrm{MHz}\) & 5 & VP-P \\
\hline \multirow[b]{2}{*}{Noise Figure} & \multirow{2}{*}{NF} & \(\mathrm{f}=1.75 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{~K} \Omega\) & 5 & dB \\
\hline & & \(\mathrm{f}=11.7 \mathrm{MHz}, \mathrm{RS}^{\prime}=1 \mathrm{~K} \Omega\) & 7.7 & dB \\
\hline Common-Mode Rejection Ratio & CMR & \(f=1 \mathrm{KHz}\) & 88 & dB \\
\hline \multicolumn{5}{|l|}{Input Impedance Components:} \\
\hline Parallel Input Resistance & RIN & \(f=1.75 \mathrm{MHz}\) & 140 & \(k \Omega\) \\
\hline Parallel Input Capacitance & \(\mathrm{Cin}_{\text {IN }}\) & \(f=1.75 \mathrm{MHz}\) & 3.4 & pF \\
\hline Output Resistance & ROUT & \(\mathrm{f}=1.75 \mathrm{MHz}\) & 45 & \(\Omega\) \\
\hline AGC Range (Maximum voltage gain to complete cutoff) & AGC & \(\mathrm{f}=1.75 \mathrm{MHz}\) & 60 & dB \\
\hline
\end{tabular}

\section*{Table I. Group A Electrical Sampling Inspection}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristics} & \multirow{3}{*}{Symbol} & \multicolumn{2}{|l|}{\multirow{3}{*}{\[
\begin{gathered}
\text { Test Conditions } \\
V=+6 \mathrm{~V} \\
V_{E E}=-6 \mathrm{~V}
\end{gathered}
\]}} & \multicolumn{6}{|l|}{Limits for Indicated Temp. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multirow{3}{*}{Units} \\
\hline & & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{11}{|l|}{Static} \\
\hline Input Unbalance Current & \({ }^{16}\) & & - & - & - & - & 23 & 10 & 5 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & & - & - & - & - & 66 & 36 & 22 & \(\mu \mathrm{A}\) \\
\hline Output Offset Voltage & \(V_{00}\) & & - & - & - & - & 420 & 300 & 260 & mV \\
\hline \multirow[t]{2}{*}{Quiescent Operating Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{v}_{8}{ }^{\circ} \mathrm{r} \\
& \mathrm{v}_{11}
\end{aligned}
\]} & Terminal 4 & Terminal 5 & & & & & & & \\
\hline & & NC & NC & 3.8 & 3.8 & 3.8 & 4.8 & 4.8 & 4.8 & v \\
\hline \multirow{5}{*}{Device Dissipation} & \multirow{5}{*}{\(\mathrm{P}_{\mathrm{T}}\)} & Terminal 4 & Terminal 5 & & & & & & & \\
\hline & & NC & NC & 60 & 60 & 50 & 125 & 115 & 110 & mW \\
\hline & & NC & - \(\mathrm{V}_{\text {EE }}\) & 55 & 55 & 45 & 120 & 105 & 105 & mw \\
\hline & & - \(V_{\text {EE }}\) & NC & 80 & 80 & 70 & 175 & 160 & 155 & mW \\
\hline & & \(-V_{E E}\) & - \(V_{\text {EE }}\) & 60 & 60 & 50 & 135 & 125 & 125 & mw \\
\hline \multicolumn{11}{|l|}{Dynamic} \\
\hline \multirow[t]{2}{*}{Differential Voltage Gain (single-ended input and output)} & \multirow[b]{2}{*}{\({ }^{\text {Diff }}\)} & \multicolumn{2}{|l|}{\(\mathrm{f}=1.75 \mathrm{MHz}\)} & - & 16 & - & - & - & - & dB \\
\hline & & \multicolumn{2}{|r|}{\(f=20 \mathrm{MHz}\)} & - & 10 & - & - & - & - & dB \\
\hline Bandwidth at -3 dB Point & BW & & & - & 16 & - & - & - & - & MHz \\
\hline Maximum Output Voltage Swing & \[
\begin{gathered}
\mathrm{V}_{\mathrm{OUT}} \\
(\mathrm{p}-\mathrm{p})
\end{gathered}
\] & \multicolumn{2}{|r|}{\(f=1.75 \mathrm{MHz}\)} & - & 4 & - & - & - & - & \(V_{p-p}\) \\
\hline Noise Figute & NF & \(f=1.75 \mathrm{MH}\) & \(\mathrm{Lz}, \mathrm{R}_{\mathrm{s}}=1 \mathrm{k} \Omega\) & - & - & - & - & 8 & - & dB \\
\hline Commor-Mode Rejection Ratio & CMR & \multicolumn{2}{|r|}{\(f=1 \mathrm{kHz}\)} & - & 70 & - & - & - & - & dB \\
\hline Common Mode Input Voltage Range & \(V_{\text {CMR }}\) & \multicolumn{2}{|r|}{\(f=1 \mathrm{kHz}\)} & - & \[
\begin{gathered}
.35 \\
\text { to } \\
+2.5
\end{gathered}
\] & - & - & - & - & V \\
\hline Parallel Input R & \(\mathrm{R}_{\text {IN }}\) & \multicolumn{2}{|r|}{\(\mathrm{f}=1.75 \mathrm{MHz}\)} & - & 50 & - & - & - & - & \(\mathrm{k} \Omega\) \\
\hline Parallel Input C & \(\mathrm{C}_{\text {IN }}\) & \multicolumn{2}{|r|}{\(f=1.75 \mathrm{MHz}\)} & - & - & - & - & 7 & - & pF \\
\hline Output Resistance & \(\mathrm{R}_{\text {OUT }}\) & \multicolumn{2}{|r|}{\(\mathrm{f}=1.75 \mathrm{MHz}\)} & - & - & - & - & 70 & - & \(\Omega\) \\
\hline AGC Range (max. voltage gain to complete cutoff) & AGC & \multicolumn{2}{|r|}{\(\mathrm{f}=1.75 \mathrm{MHz}\)} & - & 55 & - & - & - & - & dB \\
\hline
\end{tabular}

Table II. Pre Burn-In Electrical and Post Burn-In Electrical Tests, and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Electrical Characteristics, at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+6 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V}\)} \\
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Test Conditions} & \multicolumn{3}{|c|}{Limits} & \multirow[b]{2}{*}{Units} \\
\hline & & & Min. & Max. & Max. \(\Delta\) & \\
\hline Input Offset Current & 110 & - & - & 10 & \(\pm 2\) & \(\mu \mathrm{A}\) \\
\hline Input-Bias Current & 1 & - & - & 36 & \(\pm 4\) & \(\mu \mathrm{A}\) \\
\hline Output Offset Voltage & \(V_{00}\) & - & - & 300 & \(\pm 100\) & mV \\
\hline Quiescent Operating Voltage & \[
\begin{aligned}
& \mathrm{V}_{8} \text { or } \\
& \mathrm{v}_{11}
\end{aligned}
\] & \begin{tabular}{l}
Terminal 4: NC \\
Terminal 5: NC
\end{tabular} & 3.8 & 4.8 & \(\pm 0.5\) & V \\
\hline Device Dissipation & \(\mathrm{P}_{\text {T }}\) & Terminal 4: NC Terminal 5: NC & 60 & 115 & \(\pm 12\) & mW \\
\hline
\end{tabular}
* Level / 1 and \(/ 2\) require pre burn-in electrical and post burn-in electrical tests, and delta limits

Level \(/ 3\) requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 5.

Table III. Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow{3}{*}{Characteristic}} & \multirow{3}{*}{Symbol} & \multirow[t]{3}{*}{Test Conditions
\[
\begin{aligned}
& \mathrm{v}^{+}=+6 \mathrm{~V} . \\
& \mathrm{v}^{-}=-6 \mathrm{~V}
\end{aligned}
\]} & \multicolumn{6}{|c|}{Limits for Indicated Temp. (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{Units} \\
\hline & & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline & Input Offset Current & 110 & - & - & - & - & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline & Input Bias Current & 1 & - & - & - & - & 66 & 36 & 22 & \(\mu \mathrm{A}\) \\
\hline \% & Output Offset Voltage & \(V_{00}\) & - & - & - & - & 420 & 300 & 260 & mV \\
\hline & Quiescent Operating Voltage & \[
\begin{array}{|l}
v_{8} \text { or } \\
v_{11} \\
\hline
\end{array}
\] & \begin{tabular}{l}
Terminal 4: NC \\
Terminal 5: NC
\end{tabular} & 3.8 & 3.8 & 3.8 & 4.8 & 4.8 & 4.8 & V \\
\hline O) & Device Dissipation & \(\mathrm{P}_{\mathrm{T}}\) & Terminal 4: NC Terminal 5: NC & - & 60 & - & - & 115 & - & mW \\
\hline \[
\left|\begin{array}{c}
\text { 馬 } \\
\vdots \\
\vdots \\
\vdots
\end{array}\right|
\] & Differential Voltage Gain (single-ended input \& output) & \({ }^{\text {A }}\) Diff & \(\mathrm{f}=1.75 \mathrm{MHz}\) & - & 16 & - & - & - & - & dB \\
\hline
\end{tabular}

Table IV. Group C Electrical Characteristics Sampling Tests \(\left(T_{A}=25^{\circ} \mathrm{C}, V_{C}=+6 \mathrm{~V}, V_{E E}=-6 \mathrm{~V}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Test Conditions} & \multicolumn{2}{|c|}{Limits} & \multirow{2}{*}{Units} \\
\hline & & & Min. & Max. & \\
\hline Input Bias Current & 11 & - & - & 36 & \(\mu \mathrm{A}\) \\
\hline Output Offset Voltage & V00 & - & - & 300 & mV \\
\hline Quiescent Operating Voltage & \[
\begin{aligned}
& V_{8} \text { or } \\
& V_{11}
\end{aligned}
\] & Terminal \(\frac{45}{\text { NC }}\) /NC & 3.8 & 4.8 & V \\
\hline Device Dissipation & \(\mathrm{P}_{\text {T }}\) & Terminal \(\frac{45}{N C / N C}\) & 60 & 115 & mW \\
\hline Voltage Gain & A Diff & \(f=1.75 \mathrm{MHz}\) & 16 & - & dB \\
\hline
\end{tabular}

\section*{TYPICAL DYNAMIC CHARACTERISTICS}

Fig. 2 - Differential voltage gain vs. temperature.

Fig. 3 - Differential voltage gain vs. frequency.

Fig. 4 - Noise figure vs. source resistance and frequency.

Fig. 5 - Burn-in and operating life test circuit.

Solid State Division

\section*{Linear Integrated Circuits}

Monolithic Silicon
High-Reliability Slash(/) Series
CA3002/. . .

\title{
High-Reliability IF Amplifier
}

For Applications in Aerospace, Military and Critical Industrial Equipment

\section*{Features:}
- Input Resistance - \(100 \mathrm{k} \Omega\) typ.
- Output Resistance - \(70 \Omega\) typ.
- Voltage Gain - 24 dB typ. @ 1.75 MHz
- Push-Pull Input, Single-Ended Output
- -3 dB Bandwidth - 11 MHz typ.
- AGC Range - \(\mathbf{8 0} \mathbf{d B}\) typ.
- Useful Frequency Range DC to - \(\mathbf{1 5} \mathbf{~ M H z}\)

RCA-CA3002 Slash (/) Series type is a high-reliability integrated-circuit IF Amplifier intended for applications in aerospace, military, and critical industrial equipment. It is electrically and mechanically identical with the standard type CA3002 described in Data Bulletin File No. 123 but is specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels\(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\), and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels-/M, \(/ N\), and /R. These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

The CA3002 Slash (/) Series type is supplied in the 10 -lead TO-5 style package (" \(T\) " suffix), or in chip form (" H " suffix).

- See Companion Application Note ICAN-5038
"Application of RCA-3002 IC IF Amplifier"

Fig. 1 Schematic Diagram

\author{
operating temperature range \\ \(.55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) STORAGE-TEMPERATURE RANGE \(65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) MAXIMUM INPUT-SIGNAL VOLTAGE \(\pm 3.5 \mathrm{~V}\) \\ MAXIMUM DEVICE DISSIPATION. \\ .300 mW
}

\section*{ABSOLUTE-MAXIMUM VOLTAGE AND CURRENT LIMITS, at} \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)

Indicated voltage or current limits for each terminal can be applied under the specified operating conditions for other terminals.

All voltages are with respect to ground (\(-\mathrm{V}_{\mathrm{CC}},+\mathrm{V}_{\mathrm{EE}}\)) or common terminal of Positive and Negative DC supplies).
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TERMINAL} & \multicolumn{2}{|l|}{VOLTAGE OR CURRENT LIMITS} & \multicolumn{2}{|r|}{CONDITIONS} \\
\hline & NEGATIVE & POSITIVE & TERMINAL & VOLTAGE \\
\hline 1 & -8 V & 0 V & \[
\begin{gathered}
2,7 \\
5,10 \\
9
\end{gathered}
\] & \[
\begin{gathered}
-8 \\
0 \\
+6
\end{gathered}
\] \\
\hline 2 & -10 V & 0 V & \(1,5,10\)
9 & \[
\begin{array}{r}
0 \\
+6
\end{array}
\] \\
\hline 3 & -8.5 V & 0 V & \[
\begin{gathered}
1,5,10 \\
7 \\
9
\end{gathered}
\] & \[
\begin{array}{r}
0 \\
-6 \\
+6
\end{array}
\] \\
\hline 4 & -8 V & 0 V & \[
\begin{gathered}
1,5,10 \\
2,7 \\
9
\end{gathered}
\] & \[
\begin{array}{r}
0 \\
-8 \\
+6 \\
\hline
\end{array}
\] \\
\hline 5 & -3.5 V & +3.5 V & \[
\begin{gathered}
1,10 \\
2,7 \\
9
\end{gathered}
\] & \[
\begin{array}{r}
0 \\
-6 \\
+6
\end{array}
\] \\
\hline CASE & \multicolumn{4}{|l|}{INTERNALLY CONNECTED TO TERMINAL No. 2 (SUBSTRATE) DO NOT GROUND} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TERMINAL} & \multicolumn{2}{|l|}{VOLTAGE OR CURRENT LIMITS} & \multicolumn{2}{|l|}{CONDITIONS} \\
\hline & NEGATIVE & POSITIVE & TERMINAL & VOLTAGE \\
\hline 6 & \multicolumn{4}{|c|}{INTERNAL CONNECTION DO NOT USE} \\
\hline 7 & -12 V & 0 V & \[
\begin{gathered}
1,5,10 \\
2 \\
9
\end{gathered}
\] & \[
\begin{array}{r}
0 \\
-6 \\
+6
\end{array}
\] \\
\hline 8 & \multicolumn{2}{|c|}{20 mA} & \[
\begin{gathered}
1,5,7,10 \\
2 \\
9 \\
200 \Omega \text { Resi } \\
T_{\text {Termin }}
\end{gathered}
\] & \begin{tabular}{l}
0 \\
\(-6\) \\
+6 \\
stor Between nals 7 \& 8
\end{tabular} \\
\hline 9 & 0 V & +10 V & \[
\begin{gathered}
1,5,10 \\
2,3,7
\end{gathered}
\] & \[
\begin{array}{r}
0 \\
-6
\end{array}
\] \\
\hline 10 & -3.5 V & +3.5 V & \[
\begin{gathered}
1,5 \\
2,7 \\
9
\end{gathered}
\] & \[
\begin{array}{r}
0 \\
-6 \\
+6
\end{array}
\] \\
\hline
\end{tabular}

Table 1 - Pre-Burn-In and Post Burn-In Electrical Tests and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS
\[
\begin{gathered}
A T T_{A}=25^{\circ} C, V^{+}=+6 V \\
V=6 V
\end{gathered}
\]} & \multicolumn{3}{|c|}{L.IMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline Input Bias Current & 1 & \begin{tabular}{l}
\(\mathrm{V}^{+}=+6 \mathrm{~V}\), Terminal No. \(2=-6 \mathrm{~V}\), \\
Terminal No. 1 to ground
\end{tabular} & - & 31 & \(\pm 10\) & \(\mu \mathrm{A}\) \\
\hline Total Drain Current & \({ }^{\prime}\) T & \(I_{2}=I^{\prime}=I^{\prime}\) & 5.0 & 15.8 & \(\pm 1.5\) & mA \\
\hline
\end{tabular}

\footnotetext{
Levels /1N, /1R,/1, and /2 require pre and post burn-in electrical tests and delta limits Level /3 requires pre burn-in electrical
test only. The burn-in clrcuit is shown in Fig. 7.
}

ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+6 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multicolumn{2}{|l|}{\multirow{3}{*}{\begin{tabular}{l}
SPECIAL TEST CONDiTIONS \\
TERMINALS No. 3 \& No. 4 \\
NOT CONNECTED \\
UNLESS OTHERWISE NOTED
\end{tabular}}} & \multicolumn{2}{|l|}{LIMITS} \\
\hline & & & & \multicolumn{2}{|l|}{CA3002} \\
\hline & & & & Тур. & Units \\
\hline \multicolumn{6}{|l|}{STATIC CHARACTERISTICS:} \\
\hline Input Unbalance Voltage & \(\mathrm{V}_{\mathrm{IU}}\) & & & 2.2 & mV \\
\hline Input Unbalance Current & IIU & & & 2.2 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & II & & & 20 & \(\mu \mathrm{A}\) \\
\hline \multirow{4}{*}{Quiescent Operating Voltage} & & MODE & & & \\
\hline & & 2 & 4 & & \\
\hline & & A \(V_{\text {EE }}\) & NC & 2.8 & V \\
\hline & & \(B \quad V_{E E}\) & VEE & 3.9 & V \\
\hline Device Dissipation & \(\mathrm{P}_{\mathrm{T}}\) & & & 55 & mW \\
\hline \multicolumn{6}{|l|}{DYNAMIC CHARACTERISTICS:} \\
\hline Differential Voltage Gain (Single-Ended Input and Output) & A Diff & \multicolumn{2}{|c|}{\(\mathrm{f}=1.75 \mathrm{MHz}\)} & 24 & dB \\
\hline Bandwidth at -3 dB Point & BW & \multicolumn{2}{|c|}{-} & 11 & MHz \\
\hline Maximum Output Voltage Swing & \(\mathrm{V}_{\text {OUT }}(\mathrm{P}-\mathrm{P})\) & \multicolumn{2}{|c|}{-} & 5.5 & \(V_{P-P}\) \\
\hline Noise Figure & NF & \multicolumn{2}{|l|}{\(\mathrm{f}=1.75 \mathrm{MHz} \mathrm{RS}=1 \mathrm{k} \Omega\)} & 4 & dB \\
\hline Input Impedance Components: Parallel Input Resistance & RIN & \multicolumn{2}{|c|}{\(f=1.75 \mathrm{MHz}\)} & 100k & \(\Omega\) \\
\hline Parallel Input Capacitance & CIN & \multicolumn{2}{|c|}{\(f=1.75 \mathrm{MHz}\)} & 4 & pF \\
\hline Output Resistance & ROUT & \multicolumn{2}{|c|}{\(f=1.75 \mathrm{MHz}\).} & 70 & \(\Omega\) \\
\hline 3rd Harmonic Intermodulation Distortion & IMD & \multicolumn{2}{|c|}{-} & -40 & dB \\
\hline AGC Range (Maximum Voltage Gain to Complete Cutoff & AGC & \multicolumn{2}{|c|}{\(f=1.75 \mathrm{MHz}\)} & 80 & dB \\
\hline
\end{tabular}

File No. 713

Table II - Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[t]{3}{*}{TEST CONDITIONS
\[
v^{+}=+6 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V}
\]} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES \(1^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline Input Unbalance Current & \({ }_{10}\) & \(110^{-1} 5=110\) & - & - & - & 35 & 10 & 10 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & & - & - & - & 85 & 35 & 30 & \(\mu \mathrm{A}\) \\
\hline Total Drain Current & \({ }^{\prime}\) T & \(I_{2}+I_{9}=I_{T}\) & - & - & - & 167 & 15.8 & 15.0 & mA \\
\hline
\end{tabular}

Table III - Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[t]{3}{*}{TEST CONDITIONS
\[
v^{+}=+6 V, v^{-}=-6 \mathrm{~V}
\]} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{Static} \\
\hline Input Unbalance Current & 1 IU & \(10^{-1} 1_{5}=I_{14}\) & - & - & - & 35 & 10 & 10 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & & - & - & - & 85 & 35 & 30 & \(\mu \mathrm{A}\) \\
\hline Total Drain Current & \({ }^{1}\) T & \(I_{2}+I_{9}=I_{T}\) & - & - & - & 16.7 & 15.8 & 15.0 & mA \\
\hline Max Output Voltage & \(+\mathrm{V}_{\mathrm{OM}}\) & & - & 4.6 & -. & - & 5.4 & - & V \\
\hline Min. Output Voltage & \({ }^{+V_{\text {OM }}}\) & Terminal No. 1 Ground & - & - & - & - & 0.05 & - & V \\
\hline \multicolumn{10}{|l|}{Dynamic} \\
\hline Noise Figure & NF & \(f=1.75 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega\) & - & - & - & - & 8 & - & dB \\
\hline Voltage Gain & A & \(f=1.75 \mathrm{MHz}\), single-ended input and otitput & - & 19 & - & - & - & - & dB \\
\hline AGC Range (Maximum Voltage gain to complete cutoff) & AGC & \(\mathrm{f}=1.75 \mathrm{MHz}\) & - & 60 & - & - & - & - & dB \\
\hline
\end{tabular}

Table IV - Group C Electrical Characteristics Sampling Tests \(\left(T_{A}=25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS \(\mathrm{v}^{+}=+6 \mathrm{~V}, \mathrm{~V}^{-}=-\mathbf{6} \mathrm{V}\)} & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline Input Unbalance Current & 1 I & \(110^{-1} 5=110\) & - & 10 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 11 & & - & 35 & \(\mu \mathrm{A}\) \\
\hline Total Drain Current & \({ }^{\prime}\) T & \(I_{2}+I_{9}=I_{T}\) & 5.0 & 15.8 & mA \\
\hline Voltage Gain & A & \(f=1.75 \mathrm{MHz}\), singleended input and output & 19 & - & dB \\
\hline
\end{tabular}

\section*{DYNAMIC CHARACTERISTICS}

Fig. 2 - Differential voltage gain vs temperature.

92C5-13382
Fig. 3 - Differential voltage gain vs frequency.

Fig. 4 - Bandwidth at -3dB point vs temperature.

Fig. 5 - Noise figure vs source resistance.

Fig. 6 - AGC range vs frequency.

Fig. 7 - Burn-in and operating life test circuit.

Solid State Division

\section*{High-Reliability RF Amplifier}

For Aerospace, Military and Critical Industrial Equipment

\section*{Features.}
- Operation from DC to 100 MHz
- RF, IF, and Video frequency capability
- Balanced differential amplifier configuration with controlled constant-current source

Applications:
- Detector
- Push-Pull Input and Output
- Wide and Narrow-Band Amplifier
- AGC
- Mixer
- Limiter
- Modulator
- Companion Application Note ICAN-5022 "Applications of RCS-CA3004, CA3005, and CA3006 IC RF Amplifiers"

Fig. 1 - Schematic Diagram

ABSOLUTE-MAXIMUM VOLTAGE LIMITS, at \(T_{A}=25^{\circ} \mathrm{C}\)
Voltage limits shown for each terminal can be applied under the indicated circuit conditions for other terminals.
All voltages are with respect to GROUND (common terminal of Positive and Negative DC Supplies)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{TERMINAL} & \multicolumn{2}{|l|}{VOLTAGE LIMITS} & \multicolumn{2}{|l|}{CONDITIONS} \\
\hline & NEGATIVE & POSITIVE & TERMINAL & VOLTAGE \\
\hline 1 & \multicolumn{4}{|c|}{NO CONNECTION} \\
\hline 2 & -9.5 & 0 & \[
\begin{array}{r}
6 \\
12 \\
3 \\
9 \\
10 \\
11
\end{array}
\] & \[
\begin{gathered}
0 \\
0 \\
0.5 \\
+6 \\
+6 \\
+6
\end{gathered}
\] \\
\hline 3 & - -12 & 0 & \[
\begin{array}{r}
2 \\
6 \\
6 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & \[
\begin{gathered}
\hline 0 \\
0 \\
+6 \\
+6 \\
+6 \\
0
\end{gathered}
\] \\
\hline 4 & -12 & 0 & \[
\begin{array}{r}
2 \\
6 \\
9 \\
10 \\
11 \\
12
\end{array}
\] & \[
\begin{gathered}
0 \\
0 \\
+6 \\
+6 \\
+6 \\
0
\end{gathered}
\] \\
\hline 5 & -6 & 0 & \[
\begin{gathered}
\hline 2,6,12 \\
3 \\
9 \\
10 \\
11 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0 \\
-6 \\
+6 \\
+6 \\
+6
\end{gathered}
\] \\
\hline 6 & -3.5 & +3.5 & \[
\begin{array}{r}
2 \\
3 \\
9 \\
10 \\
11 \\
12 \\
\hline
\end{array}
\] & \[
\begin{gathered}
0 \\
-6 \\
+6 \\
+6 \\
+6 \\
0
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{TERMINAL} & \multicolumn{2}{|l|}{VOLTAGE LIMITS} & \multicolumn{2}{|l|}{CONDITIONS} \\
\hline & NEGATIVE & POSITIVE & TERMINAL & VOLTAGE \\
\hline 7 & \multicolumn{4}{|c|}{NO CONNECTION} \\
\hline 8 & \multicolumn{4}{|c|}{NO CONNECTION} \\
\hline 9 & 0 & +12 & \[
\begin{array}{r}
2 \\
3 \\
6 \\
10 \\
11 \\
12
\end{array}
\] & \[
\begin{array}{r}
\hline 0 \\
-6 \\
0 \\
+6 \\
+6 \\
0
\end{array}
\] \\
\hline 10 & 0 & +12 & \[
\begin{array}{r}
2 \\
3 \\
6 \\
9 \\
11 \\
12
\end{array}
\] & \[
\begin{gathered}
0 \\
-6 \\
.0 \\
+6 \\
+6 \\
0
\end{gathered}
\] \\
\hline 11 & 0 & +12 & \[
\begin{array}{r}
2 \\
3 \\
6 \\
10 \\
11 \\
12
\end{array}
\] & \[
\begin{array}{r}
0 \\
-6 \\
0 \\
+6 \\
+6 \\
0
\end{array}
\] \\
\hline 12 & -3.5 & +3.5 & \[
\begin{array}{r}
2 \\
3 \\
6 \\
9 \\
10 \\
11
\end{array}
\] & \[
\begin{array}{r}
0 \\
-6 \\
0 \\
+6 \\
+6 \\
+6
\end{array}
\] \\
\hline CASE & \[
\begin{gathered}
\text { INTERN } \\
\text { NO. }
\end{gathered}
\] & LLY CONN SUBSTRATE & CTED TO T) DO NOT'G & \[
\begin{aligned}
& \text { RMINAL } \\
& \text { ROUND }
\end{aligned}
\] \\
\hline
\end{tabular}

MAXIMUM RATINGS, Absolute-Maximum Values.
MAXIMUM SINGLE-ENDED INPUT-
SIGNAL VOLTAGE \(\pm 3.5\) V
MAXIMUM COMMON-MODE INPUT.
SIGNAL VOLTAGE -2.5 V, +3.5 V
MAXIMUM DEVICE DISSIPATION 300 mW
OPERATING-TEMPERATURE RANGE . . . \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
STORAGE-TEMPERATURE RANGE \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)

LEAD TEMPERATURE (During Soldering):
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
\((1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm})\)
from case for 10 s max. \(265^{\circ} \mathrm{C}\)

ELECTRICAL CHARACTERISTICS, at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+6 \mathrm{~V}\), \(V^{-}=-6 \mathrm{~V}\) unless otherwise specified

Table I - Pre Burn-In and Post Burn-In Electrical Tests and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS
\[
\begin{gathered}
T_{A}=25^{\circ} C, V^{+}=+6 V \\
V-=-6 V
\end{gathered}
\]} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline Input Offset Voltage & \(v_{10}\) & & - & 5 & \(\pm 2\) & mV \\
\hline Input Bias Current & \(1 /\) & & - & 40 & \(\pm 4\) & \(\mu \mathrm{A}\) \\
\hline Device Dissipation & \(P_{\text {D }}\) & & - & 45 & \(\pm 5\) & mW \\
\hline
\end{tabular}
\({ }^{\bullet}\) Levels /1N, /1R, /1, and /2 require pre and post burn-in electrical tests and delta limits
Level \(/ 3\) requires pre burn-In electrical test only. The burn-in circuit is shown in Fig. 4.

Table II - Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[b]{3}{*}{TEST CONDITIONS
\[
V^{+}=+6 V, V-=-6 V
\]} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|l|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{STATIC} \\
\hline Device Dissipation & \(P_{\text {D }}\) & & - & 16 & - & - & 45 & - & mW \\
\hline Input Offset Current & 110 & & - & - & - & 9 & 5 & 7 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 11 & & - & - & - & 60 & 40 & 40 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{10}{|l|}{DYNAMIC} \\
\hline Power Gain & Gp & Diff. Amp., \(\mathrm{f}=100 \mathrm{MHz}\) & - & 10 & - & - & - & - & dB \\
\hline Noise Figure & NF & Diff. Amp., f=100 MHz & - & - & - & - & 9 & - & dB \\
\hline
\end{tabular}

Table III - Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[t]{3}{*}{TEST CONDITIONS
\[
\begin{gathered}
T_{A}=25^{\circ} C, V^{+}+6 \mathrm{~V} \\
V^{-}=-6 \mathrm{~V}
\end{gathered}
\]} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{STATIC} \\
\hline Input Offset Voltage & \(V_{10}\) & & - & - & - & 5 & ; & 5 & \(m V\) \\
\hline Input Offset Current & \({ }_{10}\) & & - & - & - & 9 & 5 & 7 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & \(1 /\) & & - & - & - & 60 & 40 & 40 & \(\mu \mathrm{A}\) \\
\hline Device Dissipation & \(P_{\text {D }}\) & Terminals 4 \& 5 NC & 16 & 16 & 14 & 50 & 45 & 45 & mW \\
\hline \multicolumn{10}{|l|}{DYNAMIC} \\
\hline Power Gain & \(\mathrm{G}_{\boldsymbol{p}}\) & \(f=100 \mathrm{MHz}\) & - & 10 & - & - & - & - & dB \\
\hline Noise Figure & NF & \(f=100 \mathrm{MHz}\) & - & - & - & - & 9 & - & dB \\
\hline AGC Range (Max. Voltage gain to Complete Cutoff) & AGC & & - & -60 & - & - & - & - & dB \\
\hline
\end{tabular}

Table IV - Group C Electrical Characteristics Sampling Tests (\(T_{A}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS
\[
\mathrm{V}^{+}=+6 \mathrm{~V}, \mathrm{~V}-=-6 \mathrm{~V}
\]} & \multicolumn{2}{|r|}{Limits} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. - & MAX. & \\
\hline Device Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & & - & 45 & mW \\
\hline Power Gain & \(\mathrm{G}_{\mathrm{p}}\) & \(f=100 \mathrm{MHz}\) & 10 & - & dB \\
\hline 'Input Bias Current & 1 & & - & 40 & \(\mu \mathrm{A}\) \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & & - & 5 & mV \\
\hline Input Offset Current & 110 & & - & 5 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{TYPICAL DYNAMIC CHARACTERISTICS FOR TYPE CA3004}

Fig. 2 - Power Gain Vs Frequency

Fig. 3 - Noise Figure Vs Frequency

Fig. 4 - Burn-In and Operating Life Test Circuit

\section*{Linear Integrated Circuits \\ Monolithic Silicon \\ High-Reliability Slash(/) Series CA3006/. . .}

\section*{High-Reliability RF Amplifier}

For Applications in Aerospace, Military and Critical Industrial Equipment

\section*{Features:}
- Input offset voltage (\(\mathrm{V}_{\mathrm{IO}}\)) \(=\mathbf{1 \mathrm { mV }}\) (max.)
- AGC range \(=\mathbf{6 0 ~ d B}(\mathbf{m i n}\).\() at 1.75 \mathrm{MHz}\)
- Cascode power gain = \(\mathbf{2 0} \mathrm{dB}\) (typ.) at 100 MHz
- Operation from dc to \(\mathbf{1 0 0} \mathbf{~ M H z}\)
- Sharp limiting characteristics
- Balanced input and output
- Uncommitted bases and collectors

RCA-CA3006 "Slash" (/) Series types are high-reliability linear integrated circuits intended for a wide variety of applications in aerospace, military, and critical industrial equipment operating at frequencies up to 100 MHz . They are electrically and mechanically identical with the standard type CA3006 described in Data Bulletin File No. 125 but are specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures estabiished for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels/1N, /1R, /1, /2, /3, and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

The CA3006 Slash (/) Series types are supplied in the 12-lead TO-5 style package (' \(T\) "' suffix), and in chip form (" \(\mathrm{H}^{\prime \prime}\) suffix).

MAXIMUM RATINGS, Absolute-Maximum Values at \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\) :

DEVICE DISSIPATION. 300

VOLTAGE \(\pm 3.5\)

VOLTAGE \(\mathbf{- 2 . 5}\) to +3.5

\section*{Applications:}
- Wide and narrow band amplifiers
- Detectors

Burn-in and operating life test circuit.
- Mixers
- Limiters
- Modulators
- Cascode Amplifiers

NOTE: Connect Terminal No. 9 to most positive de supply voltage used for circuit.
Fig. 1 - Schematic diagram of CA3006.

\section*{AMBIENT TEMPERATURE RANGE:}

File No. 763

\section*{Maximum Voltage Ratings at \(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}\)}

This chart gives the range of voltages which can be applied to the terminals listed vertically with respect to the terminals listed horizontally. For example, the voltage range of the vertical terminal 9 with respect to terminal 5 is 0 to +18 volts.

Maximum Current Ratings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \begin{tabular}{c}
8 \\
\hline
\end{tabular} & \(*\) & \(*\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
TERM \\
INAL \\
No.
\end{tabular} & \begin{tabular}{c}
IIN \\
mA
\end{tabular} & \begin{tabular}{c}
IOUT \\
mA
\end{tabular} \\
\hline 9 & - & - \\
\hline 10 & +20 & +0.1 \\
\hline 11 & +20 & +0.1 \\
\hline 12 & - & - \\
\hline 1 & +2 & +0.1 \\
\hline 2 & +20 & +20 \\
\hline 3 & - & - \\
\hline 4 & - & - \\
\hline 5 & - & - \\
\hline 6 & - & - \\
\hline 7 & +2 & +0.1 \\
\hline 8 & +0.1 & +20 \\
\hline
\end{tabular}
* Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe if the specified limits between all other terminals are not exceeded.

Fig. 3 - Power gain vs. frequency, differential amplifier configuration.
-ig. 2 - . Power gain vs. frequency, cascode configuration.

Table I - Pre Burn-In Electrical and Post Burn-In Electrical Tests, and Delta Limits* ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=6 \mathrm{~V}, \mathrm{~V}^{-}=6 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & Min. & Max. & Max. \(\triangle\) & \\
\hline Input-Bias Current & I/B & - & - & 40 & \(\pm 4\) & \(\mu \mathrm{A}\) \\
\hline Quiescent Operating Current & \(I_{10}\) or \(l_{11}\) & Terminal 4: NC Terminal 5: NC & 0.6 & 1.6 & \(\pm 0.2\) & mA \\
\hline Device Dissipation & \(P_{\text {D }}\) & \begin{tabular}{l}
Terminal 4: NC \\
Terminal 5: NC
\end{tabular} & 16 & 45 & \(\pm 5.4\) & mW \\
\hline
\end{tabular}

\footnotetext{
* Levels / 1 and \(/ 2\) require pre burn-in electrical and post burn-in electrical tests, and delta limits.

Level \(/ 3\) requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown on page 298.
}

ELECTRICAL CHARACTERISTICS, Typical Values Intended Only For Design Guidance
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
SPECIAL TEST CONDITIONS \\
Terminals No.3,4,5, and 6 Not Connected Except Where Noted
\end{tabular}}} & \[
\begin{aligned}
& \text { LIMITS } \\
& \text { TYPE } \\
& \text { CA3006 }
\end{aligned}
\] & \multirow[t]{2}{*}{UNITS} \\
\hline & & & & & Typ. & \\
\hline \multicolumn{7}{|l|}{STATIC} \\
\hline Input Offset Voltage & \(V_{10}\) & & & & 0.8 & mV \\
\hline Input Offset Current & 110 & & & & 1.4 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 IB & & & & 19 & \(\mu \mathrm{A}\) \\
\hline \multirow{6}{*}{Quiescent Operating Current} & \multirow{6}{*}{\[
\begin{aligned}
& I_{10} \\
& \text { or } \\
& I_{11}
\end{aligned}
\]} & \multicolumn{3}{|c|}{TERMINALS} & & \\
\hline & & & & & & \\
\hline & & & & NC & 1 & mA \\
\hline & & & NC & V- & 2.7 & mA \\
\hline & & & V - & NC & 0.45 & mA \\
\hline & & & V- & V & 1.25 & mA \\
\hline Quiescent Operating Current Ratio & \(\frac{I_{10}}{I_{11}}\) & & & & 1.05 & - \\
\hline Device Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & & & & 26 & mW \\
\hline \multicolumn{7}{|l|}{DYNAMIC} \\
\hline \multirow[b]{2}{*}{Power Gain} & \multirow[b]{2}{*}{\(\mathrm{G}_{\mathrm{p}}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{f}= \\
& 100 \\
& \mathrm{MHz}
\end{aligned}
\]} & \multicolumn{2}{|l|}{Cascode Configuration} & 20 & dB \\
\hline & & & \multicolumn{2}{|l|}{Differential-Ampl. Configuration} & 16 & dB \\
\hline \multirow[b]{2}{*}{Noise Figure} & \multirow[b]{2}{*}{NF} & \(\mathrm{f}=\) & \multicolumn{2}{|l|}{Cascode Configuration} & 7.8 & dB \\
\hline & & \[
\begin{aligned}
& 100 \\
& \mathrm{MHz}
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
Differential Ampl. \\
Configuration
\end{tabular}} & 7.8 & dB \\
\hline Common-Mode Rejection Ratio & CMRR & \multicolumn{3}{|l|}{\(\mathrm{f}=1 \mathrm{kHz}\)} & 101 & dB \\
\hline AGC Range (Max. Voltage Gain to Complete Cutoff) & AGC & \multicolumn{3}{|l|}{\(\mathrm{f}=1.75 \mathrm{MHz}\)} & - & dB \\
\hline
\end{tabular}

Table II - Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|r|}{\multirow{3}{*}{TEST CONDITIONS
\[
\mathrm{v}^{+}=6 \mathrm{~V}, \mathrm{v}^{-}=6 \mathrm{~V}
\]}} & \multicolumn{6}{|l|}{\begin{tabular}{l}
LIMITS \\
FOR INDICATED TEMPERATURE (\({ }^{\circ} \mathrm{C}\))
\end{tabular}} & \multirow{3}{*}{UNITS} \\
\hline & & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{11}{|l|}{STATIC} \\
\hline Input Offset Current & 110 & & & - & - & - & - & 2 & - & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 IB & & & - & - & - & 60 & 40 & 30 & \(\mu \mathrm{A}\) \\
\hline Quiescent Operating Current & \[
\begin{aligned}
& I_{10} \\
& I_{11} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { Terminal } 4 \\
\text { NC }
\end{gathered}
\] & \begin{tabular}{l}
Terminal 5 \\
NC
\end{tabular} & 0.6 & 0.6 & 0.5 & 1.7 & 1.6 & 1.4 & mA \\
\hline Device Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & \[
\begin{gathered}
\text { Terminal } 4 \\
\text { NC } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Terminal } 5 \\
\text { NC }
\end{gathered}
\] & - & 16 & - & - & 45 & - & mW \\
\hline \multicolumn{11}{|l|}{DYNAMIC} \\
\hline Power Gain & Gp & \(\mathrm{f}=100 \mathrm{MHz}\) & \multirow[t]{2}{*}{Diff. Amplifier Configuration} & - & 14 & - & - & - & - & dB \\
\hline Noise Figure & NF & \(\mathrm{f}=100 \mathrm{MHz}\) & & - & - & - & - & 9 & - & dB \\
\hline
\end{tabular}

File No. 763

Table III - Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow{3}{*}{TEST CONDITIONS
\[
v^{+}=6 \mathrm{~V}, \mathrm{~V}-=6 \mathrm{~V}
\]}} & \multicolumn{6}{|c|}{Limits for Indicated Temp. \(1^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{11}{|l|}{STATIC} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & \multicolumn{2}{|r|}{-} & - & - & - & 2 & 1 & 1.5 & mV \\
\hline Input Offset Current & 10 & \multicolumn{2}{|r|}{-} & - & - & - & 4 & 2 & 1 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & IB & \multicolumn{2}{|r|}{-} & - & - & - & 60 & 40 & 30 & \(\mu \mathrm{A}\) \\
\hline \multirow{5}{*}{Quiescent Operating Current} & \multirow{5}{*}{\[
\begin{aligned}
& I_{10} \\
& t_{11}
\end{aligned}
\]} & Terminal 4 & Terminal 5 & \multirow[b]{2}{*}{0.6} & \multirow[b]{2}{*}{0.6} & \multirow[b]{2}{*}{0.5} & \multirow[b]{2}{*}{1.7} & \multirow[b]{2}{*}{1.6} & \multirow[b]{2}{*}{14} & \multirow[b]{2}{*}{mA} \\
\hline & & NC & NC & & & & & & & \\
\hline & & NC & V- & 1.6 & 1.6 & 1.4 & 4.5 & 4.4 & 4 & mA \\
\hline & & V- & NC & 0.25 & 0.25 & 0.25 & 0.8 & 0.75 & 0.85 & mA \\
\hline & & v- & v- & 0.7 & 0.8 & 0.75 & 2.3 & 2.4 & 2.2 & mA \\
\hline \multirow{5}{*}{Device Dissipation} & \multirow{5}{*}{\(P_{\text {D }}\)} & Terminal 4 & Terminal 5 & \multirow[b]{2}{*}{16} & \multirow[b]{2}{*}{16} & \multirow[b]{2}{*}{14} & \multirow[b]{2}{*}{50} & \multirow[b]{2}{*}{45} & \multirow[b]{2}{*}{45} & \multirow[b]{2}{*}{mW} \\
\hline & & NC. & NC & & & & & & & \\
\hline & & NC & v- & 45 & 45 & 40 & 125 & 120 & 110 & mW \\
\hline & & V- & NC & 10 & 10 & 9 & 30 & 30 & 30 & mW \\
\hline & & v- & V - & 20 & 25 & 20 & 70 & 70 & 70 & mW \\
\hline \multicolumn{11}{|l|}{DYNAMIC} \\
\hline \multirow[b]{2}{*}{Power Gain} & \multirow[b]{2}{*}{\(\mathrm{G}_{\mathrm{p}}\)} & \multirow[b]{2}{*}{\(\mathrm{f}=100 \mathrm{MHz}\)} & \begin{tabular}{l}
Cascode \\
Configuration
\end{tabular} & - & 16 & - & - & - & - & dB \\
\hline & & & Differential Amplifier Configuration & - & 14 & - & - & - & - & dB \\
\hline \multirow[t]{2}{*}{Noise Figure} & \multirow[t]{2}{*}{NF} & \multirow[t]{2}{*}{\(\mathrm{f}=100 \mathrm{MHz}\)} & \begin{tabular}{l}
Cascode \\
Configuration
\end{tabular} & - & - & - & - & 9 & - & dB \\
\hline & & & \begin{tabular}{l}
Differential \\
Amplifier Configuration
\end{tabular} & - & - & - & - & 9 & - & dB \\
\hline AGC Range (Max. Voltage Gain to Complete Cutoff) & AGC & \multicolumn{2}{|c|}{\(\mathrm{f}=1.75 \mathrm{MHz}\)} & - & -60 & - & - & - & - & dB \\
\hline
\end{tabular}

Table IV - Group C Electrical Characteristics Sampling Tests (\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=6 \mathrm{~V}, \mathrm{~V}^{-}=6 \mathrm{~V}\))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & Min. & Max. & Max. \(\triangle\) & \\
\hline Input Bias Current & I/B & - & - & 40 & \(\pm 4\) & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Quiescent \\
Operating Current
\end{tabular} & \[
\begin{aligned}
& \mathrm{I}_{10} \text { or } \\
& \mathrm{I}_{11}
\end{aligned}
\] & Terminal & 0.6 & 1.6 & \(\pm 0.2\) & mA \\
\hline Device Dissipation & \(P_{\text {D }}\) & Terminal & 16 & 45 & \(\pm 5.4\) & mW \\
\hline Power Gain (Differential) & Gp & \(f=100 \mathrm{MHz}\) & 14 & - & \(\pm 2\) & dB \\
\hline
\end{tabular}

\section*{High-Reliability Operational Amplifier}

For Applications In Aerospace, Military and Critical Industrial Equipment Features:
\begin{tabular}{|c|c|}
\hline Open-loop voltage gain & 70 dB \\
\hline - Common-mode rejection ratio & 103 dB \\
\hline Input impedance & \(10 \mathrm{k} \Omega\) \\
\hline Input offset voltage & 1 mV \\
\hline Input offset current & \(0.5 \mu \mathrm{~A}\) \\
\hline Input bias current & \(4.7 \mu \mathrm{~A}\) \\
\hline atic power drain at \(\pm 12 \mathrm{~V}\) & 175 m \\
\hline
\end{tabular}

MAXIMUM RATINGS, Absolute-Maximum Values:

MAXIMUM DEVICE DISSIPATION:

Burn-in and operating life test circuit.

\section*{Applications:}
\(\begin{array}{ll}\text { - Narrow-band and band- } & \text { - Oscillator } \\ \quad \text { pass amplifier } & \text { - } \text { Comparator } \\ \text { - Operational functions } & \text { - } \text { Servo driver } \\ \text { - Feedback amplifier } & \text { ■ } \text { Scaling adder } \\ \text { - DC and video amplifier } & \text { - Balanced } \\ \text { - Multivibrator } & \text { modulator-driver }\end{array}\)

RCA-CA3015A "Slash" (/) Series type is a high-reliability linear integrated circuit operational amplifier intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA3015A described in Data Bulletin File No. 310 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels/1N, /1R, /1, /2, /3, and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

The CA3015A Slash (/) Series type is supplied in the 12-lead TO-5 style package (" \(T\) " suffix) or in chip form (" \(H\) " suffix).

File No. 715

Maximum Voltage Ratings at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
The following chart gives the range of voltages wnich can be applied to the terminals listed vertically with respect to the terminals listed horizontally. For example, the voltage range of the vertical terminal 12 with respect to terminal 10 is 0 to -15 volts.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TERMINAL No. & 12 & 1 & 2 & 3 & \(4^{\text {A }}\) & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 12 & & * & +15
-1 & * & * & * & +5
-5 & * & * & * & - 15 & +1
-15 \\
\hline 1 & & & * & * & +20
+5 & * & * & * & * & * & * & * \\
\hline 2 & & & & +5
+5 & \[
\begin{gathered}
+18 \\
+5 \\
\text { Note } 2
\end{gathered}
\] & * & * & * & * & * & * & * \\
\hline 3 & & & & & \[
\begin{gathered}
+18 \\
+5 \\
\text { Note } 2
\end{gathered}
\] & * & \[
\begin{array}{r}
+1 \\
-15
\end{array}
\] & * & * & * & * & * \\
\hline \(4^{\text {4 }}\) & & & & & & \[
\begin{gathered}
0 \\
-30 \\
\text { Note } 3
\end{gathered}
\] & * & * & -30 & 0
-30 & 0
-32 & * \\
\hline 5 & & & & & & & * & * & * & * & -30 & * \\
\hline 6 & & & & & & & & +1
-15 & * & * & - \({ }^{0}\) & * \\
\hline 7 & & & & & & & & & \[
\begin{array}{r}
+20 \\
+-5
\end{array}
\] & * & - 20 & * \\
\hline 8 & & & & & & & & & & +1
-5 & - \({ }^{0}\) & * \\
\hline 9 & & & & & & & & & & & - \({ }^{0} 2\) & * \\
\hline 10 & & & & & & & & & & & & +20 \\
\hline 11 & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Current Ratings}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
TERM- \\
INAL \\
NO.
\end{tabular} & \begin{tabular}{c}
IIN \\
mA
\end{tabular} & \begin{tabular}{c}
OUUT \\
mA
\end{tabular} \\
\hline 12 & 1 & 1 \\
\hline 1 & - & - \\
\hline 2 & 1 & 0.1 \\
\hline 3 & 1 & 0.1 \\
\hline 4 & - & - \\
\hline 5 & - & - \\
\hline 6 & 1 & 1 \\
\hline 7 & 3 & 3 \\
\hline 8 & 3 & 3 \\
\hline 9 & 30 & 30 \\
\hline 10 & - & - \\
\hline 11 & 3 & 3 \\
\hline
\end{tabular}
© CA3015A Case is internally connected to the substrate (Terminal Lead \#4), DO NOT GROUND.

Note 1: For normal circuit operation, external voltages should not be applied to terminals \(5,6,8\), and 12.
Note 2: This rating applies only to the more positive terminal of terminals 2 or 3 .

Note 3: Carefully observe maximum dissipation ratings.
* Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe if the specified limits between all other terminals are not exceeded.

Fig. 1 - Schematic diagram.

Fig. 2-Open loop voltage gain vs. frequency

Fig. 3 - Common-mode rejection ratio vs. frequency

ELECTRICAL CHARACTERISTICS AT TA \(=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline CHARACTERISTICS & SYMBOLS & TEST CONDITIONS \(\mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}=-12 \mathrm{~V}\) TERMINAL NO. 5 NOT CONNECTED UNLESS OTHERWISE SPECIFIED & CA3015A & UNITS \\
\hline
\end{tabular}

STATIC CHARACTERISTICS:
\begin{tabular}{|c|c|c|c|c|}
\hline Input Offset Voltage & \(V_{10}\) & & 1 & mV \\
\hline Input Offset Current & \(\mathrm{I}_{\mathrm{I}}\) & & 0.5 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & & 4.7 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{5}{|l|}{Input Offset Voltage} \\
\hline Sensitivity: Positive Negative & \begin{tabular}{l}
\(\Delta V_{10} / \Delta V_{c c}\) \\
\(\Delta V_{I O} / \Delta V_{E E}\)
\end{tabular} & & \[
\begin{aligned}
& 0.096 \\
& 0.156
\end{aligned}
\] & \(\mathrm{mV} / \mathrm{V}\) \\
\hline Device Dissipation & \(\mathrm{P}^{\text {T }}\) & Terminal 8 shorted to Terminal 12 & \[
\begin{aligned}
& 175 \\
& 500
\end{aligned}
\] & mV \\
\hline
\end{tabular}

\section*{DYNAMIC CHARACTERISTICS:}
\begin{tabular}{|c|c|c|c|c|}
\hline Open-Loop Differential Voltage Gain & AOL & & 70 & dB \\
\hline Open-Loop Bandwidth at -3 dB Point & BWOL & & 320 & kHz \\
\hline Slew Rate & SR & \(\mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega\) & 7 & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Common-Mode Rejection Ratio & CMRR & & 103 & dB \\
\hline Maximum Output-Voltage Swing & \(V_{O}(P-P)\) & & 14 & VP-P \\
\hline Input Impedance & ZIN & & 10 & k \(\Omega\) \\
\hline Output Impedance & ZOUT & & 85 & \(\Omega\) \\
\hline Common-Mode Input-Voltage Range & \(V_{\text {CMR }}\) & & \[
\begin{gathered}
+0.65 \\
-8
\end{gathered}
\] & V \\
\hline Noise Figure & NF & \(\mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega\) & 11 & dB \\
\hline
\end{tabular}

Fig. 4 - Maximum peak-to-peak output voltage vs. load resistance.

Table I
Pre Burn-In and Post Burn-In Electrical Tests, and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & Min. & Max. & Max. \(\Delta\) & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & & - & 2 & \(\pm 1\) & mV \\
\hline Input Offset Current & 10 & & - & 1.6 & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & - 1 & & - & 6 & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{Device Dissipation} & \multirow[b]{2}{*}{\(\mathrm{P}_{\mathrm{T}}\)} & & 110 & 240 & \(\pm 25\) & \multirow[b]{2}{*}{mW} \\
\hline & & 5 shorted to 9 & 320 & 600 & \(\pm 50\) & \\
\hline
\end{tabular}
*Levels /1 and /2 require pre burn-in electrical and post burn-in electrical tests, and delta limits.
Level /3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown on page 302 .
Table II
Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOL} & \multirow[t]{3}{*}{TEST CONDITIONS
\[
V^{+}=+12 \mathrm{~V}, \mathrm{~V}^{-}=-12 \mathrm{~V}
\]} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMP, \({ }^{\circ}{ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{STATIC} \\
\hline Input Offset Voltage & \(V_{10}\) & - & - & - & - & 3 & 2 & 3 & mV \\
\hline Input Offset Current & 10 & - & - & - & - & 3 & 1.6 & 2 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & - & - & - & - & 14 & 6 & 8 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Device Dissipation} & \multirow[b]{2}{*}{\(\mathrm{P}_{\mathrm{T}}\)} & & 115 & 110 & 95 & 280 & 240 & 235 & mW \\
\hline & & 5 shorted to 9 & 330 & 320 & - & 700 & 600 & - & mW \\
\hline \multicolumn{10}{|l|}{DYNAMIC} \\
\hline Open-Loop Differential Voltage Gain & \({ }^{\text {A OL }}\) & \(\mathrm{f}=1 \mathrm{kHz}\) & - & 66 & - & - & - & - & dB \\
\hline
\end{tabular}

Table III
Group C Electrical Sampling Tests
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \quad \mathrm{V}^{+}=+12 \mathrm{VV}^{-}=-12 \mathrm{~V}\)} \\
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{SPECIAL TEST CONDITIONS} & \multicolumn{2}{|r|}{LIMITS} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline Input. Offset Voltage & \(V_{10}\) & - . & - & 2 & mV \\
\hline Input Offset Current & 10 & - & - & 1.6 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & - & - & 6 & \(\mu \mathrm{A}\) \\
\hline Input Offset Voltage Sensitivity: Positive & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{V}_{\text {ce }}\) & - & - & 0.5 & \(\mathrm{mV} / \mathrm{V}\) \\
\hline Negative & \(\Delta V_{10} / \Delta V_{E E}\) & - & - & 0.5 & \(\mathrm{mV} / \mathrm{V}\) \\
\hline \multirow[b]{2}{*}{Device Dissipation} & \multirow[b]{2}{*}{\(\mathrm{P}_{\mathrm{T}}\)} & - & 110 & 240 & mW \\
\hline & & Terminal 5 shorted to 9 & 320 & 600 & mW \\
\hline Open-Loop Differential Voltage Gain & \({ }^{\text {O }} \mathrm{L}\) & \(f=1 \mathrm{kHz}\) & 66 & - & dB \\
\hline Common-Mode Rejection Ratio & CMR & \(f=1 \mathrm{kHz}\) & 80 & - & dB \\
\hline
\end{tabular}
\(\qquad\) CA3015A Slash (/) Series

Table IV

\section*{Group A Electrical Sampling Inspection}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristics} & \multirow{3}{*}{Symbol} & \multirow[t]{3}{*}{Test Conditions
\[
\mathrm{V}^{+}=+12 \mathrm{~V},
\]
\[
\mathrm{V}-=-12 \mathrm{~V}
\]} & \multicolumn{6}{|c|}{\begin{tabular}{l}
Limits for Indicated \\
Temperature \({ }^{\circ}{ }^{\circ} \mathrm{C}\))
\end{tabular}} & \multirow{3}{*}{Units} \\
\hline & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|r|}{Maximum} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{STATIC} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & - & - & - & - & 3 & 2 & 3 & mV \\
\hline Input Offset Current & \({ }_{10}\) & - & - & - & - & 3 & 1.6 & 2 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & - & - & - & - & 14 & 6 & 8 & \(\mu \mathrm{A}\) \\
\hline Input Offset Voltage Sensitivity Positive & \[
\frac{\Delta \mathrm{V}_{10}}{\Delta \mathrm{~V}^{+}}
\] & - & - & - & - & - & 0.5 & - & mV/V \\
\hline Negative & \(\frac{\Delta V_{10}}{\Delta V^{-}}\) & - & - & - & - & - & 0.5 & - & mV/V \\
\hline \multirow[b]{2}{*}{Device Dissipation} & \multirow[b]{2}{*}{\(\mathrm{P}_{\mathrm{T}}\)} & - & 115 & 110 & 95 & 280 & 240 & 235 & mW \\
\hline & & 5 shorted to 9 & 330 & 320 & - & 700 & 600 & - & mW \\
\hline \multicolumn{10}{|l|}{DYNAMIC All tests are at 1 kHz except BWOL} \\
\hline Open-Loop Differential Voltage Gain & \(A_{0 L}\) & - & - & 66 & - & - & - & - & dB \\
\hline Open-Loop Bandwidth at -3 dB Point & \(\mathrm{BW}_{\mathrm{OL}}\) & - & - & 200 & - & - & - & - & kHz \\
\hline Common-Mode Rejection Ratio & CMR & - & - & 80 & - & - & - & - & dB \\
\hline Maximum OutputVoltage Swing & \(V_{0}(P-P)\) & - & - & 12 & - & - & - & - & \(V_{\text {P. }}\) P \\
\hline Input Impedance & \(\mathrm{Z}_{\text {IN }}\) & - & - & 7.5 & - & - & - & - & k, \(\Omega\) \\
\hline Output Impedance & \(\mathrm{z}_{\text {OUT }}\) & - & - & - & - & - & 120 & - & \(\Omega\) \\
\hline Common-Mode InputVoltage Range & \(\mathrm{V}_{\text {CMR }}\) & - & - & \[
\left.\begin{gathered}
+0.35 \\
\text { to } 0-8
\end{gathered} \right\rvert\,
\] & - & - & - & - & V \\
\hline Noise Figure & NF & \(\mathrm{R}_{\mathrm{S}}=1 \mathrm{~K}\) & - & - & - & - & 16 & - & dB \\
\hline
\end{tabular}

12-Lead TO-5 Package

\section*{High-Reliability \\ General-Purpose Transistor Array}

For Applications in Aerospace, Military and Critical Industrial Equipment Features:
- Matched monolithic general-purpose transistors
- \(\mathrm{H}_{\text {FE }}\) matched \(\pm 10 \%\)
- \(V_{B E}\) matched \(\pm 2 \mathrm{mV}\)
- Operation from DC to 120 MHz
- Wide operating current range
- CA3018A performance characteristics controlled from \(10 \mu \mathrm{~A}\) to 10 mA
- Low noise figure - - \(\mathbf{3 . 2} \mathbf{d B}\) typical at \(\mathbf{1 k H z}\)

RCA-CA3018A "Slash" (/) Series types are high-reliability linear integrated circuits intended for a wide variety of applications in aerospace, military, and critical industrial equipment. It consists of four general-purpose silicon n-p-n transistors on a common monolithic substrate. Two of the four transistors are connected in the Darlington configuration, and the substrate is connected to a separate terminal for maximum flexibility. The CA3018A is electrically and mechanically identical with the standard type CA3018A described in Data Bulletin File No. 338 but is specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic device in MIL-STD-883.

The packaged types can be supplied to six screening levels/1N, /1R, /1, /2, /3, and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL. STD-883."

The CA3018A Slash (/) Series types are supplied in the 12-lead TO-5 style package (' \(T\) '" suffix), and in chip form (' \(H\) " suffix).

\section*{Applications:}
- General use in signal processing systems in DC through VHF range
- Custom designed differential amplifiers
- Temperature compensated amplifiers

92CS-14244RI

Fig. 1 - Schematic diagram for CA3018A.

MAXIMUM RATINGS, Absolute Maximum Values at \(T_{A}=25^{\circ} \mathrm{C}\) DEVICE DISSIPATION:

AMBIENT TEMPERATURE RANGE:
Operating
-55 to \(+125^{\circ} \mathrm{C}\)
Storage . -65 to \(+150^{\circ} \mathrm{C}\)
* The collector of each transistor of the CA3018A/ is isolated from the substrate by an integral diode. The substrate (terminal 10) must be connected to the most negative point in the external circuit to main-

The following ratings apply for each transistor in the device:
Collector-to-Emitter Voltage, \(V_{\text {CEO }}\)................. 15 V
Collector-to-Base Voltage, \(\mathrm{V}_{\mathrm{CBO}} \ldots\).
Collector-to-Substrate Voltage, \(\mathrm{V}_{\mathrm{ClO}}\) * 40 V
Emitter-to-Base Voltage, \(\mathrm{V}_{\text {EBO }} \ldots \ldots\).
Collector Current, \({ }^{\text {C }}\). 50 mA
LEAD TEMPERATURE (DURING SOLDERING):
At distance \(1 / 16 \pm 1 / 32 \mathrm{in}\). \((1.59 \pm 0.79 \mathrm{~mm})\)
from case for 10 s max. +300
tain isolation between transistors and to provide for normal transistor action.

ELECTRICAL CHARACTERISTICS (For Each Transistor) Intended For Design Guidance
\begin{tabular}{|c|c|c|c|c|}
\hline CHARACTERISTICS
\[
\text { AT } T_{A}=25^{\circ} \mathrm{C}
\] & SYMBOL & SPECIAL TEST CONDITIONS & \[
\begin{gathered}
\text { CA3018A } \\
\text { LIMITS } \\
\hline \text { Typ. }
\end{gathered}
\] & UNITS \\
\hline \multicolumn{5}{|l|}{STATIC CHARACTERISTICS} \\
\hline Collector-Cutoff Current & 'С8O & \(\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & 0.002 & nA \\
\hline Collector-Cutoff Current & 'ceo & \(\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & See Curve & \(\mu \mathrm{A}\) \\
\hline Collector-to-Emitter Breakdown Voltage & \(V_{\text {(BR)CEO }}\) & \(\mathrm{I}_{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & 24 & V \\
\hline Collector-to-Base Breakdown Voltage & \(V_{\text {(BR) }}\) CBO & \(\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\) & 60 & V \\
\hline Emitter-to-Base Breakdown Voltage & \(V_{\text {(BR)EBO }}\) & \(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & 7 & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(V_{\text {(BR) }}\) CIO & \({ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}^{\prime} \mathrm{CI}=0\) & 60 & V \\
\hline Collector-to-Emitter Saturation Voltage & \(\mathrm{v}_{\text {CES }}\) & \(\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & 0.23 & V \\
\hline Static Forward Current Transfer Ratio & \(h_{\text {FE }}\) & \(V_{C E}=3 \mathrm{~V}, \quad\left\{\begin{array}{l}{ }^{\prime} \mathrm{C}=10 \mathrm{~mA} \\ { }^{\prime} \mathrm{C}=1 \mathrm{~mA} \\ { }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}\end{array}\right.\) & \[
\begin{array}{r}
100 \\
100 \\
54
\end{array}
\] & -
-
- \\
\hline Magnitude of Static-Beta Ratio (Isolated Transistors \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\)) & & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{C} 2}=1 \mathrm{~mA}\) & 0.97 & - \\
\hline Static Forward Current Transfer Ratio Darlington Pair \(\left(\mathrm{O}_{3}\right.\) and \(\left.\mathrm{Q}_{4}\right)\) & \(\mathrm{h}_{\text {FED }}\) & \(v_{C E}=3 \mathrm{~V} \quad\left\{\begin{array}{l}I_{C}=1 \mathrm{~mA} \\ I_{C}=100 \mu \mathrm{~A}\end{array}\right.\) & \[
\begin{aligned}
& 5400 \\
& 2800
\end{aligned}
\] & - \\
\hline Base-to-Emitter Voltage & \(V_{B E}\) & \(V_{C E}=3 \mathrm{~V} \quad\left\{\begin{array}{l}\mathrm{I}_{E}=1 \mathrm{~mA} \\ \mathrm{I}_{E}=10 \mathrm{~mA}\end{array}\right.\) & \[
\begin{aligned}
& 0.715 \\
& 0.800
\end{aligned}
\] & V \\
\hline Input Offset Voltage & \(\left|\begin{array}{l}v_{B E_{1}} \\ -v_{B E_{2}}\end{array}\right|\) & \(V_{C E}=3 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & 0.48 & mV \\
\hline \begin{tabular}{l}
Temperature Coefficient: \\
Base-to-Emitter Voltage \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\)
\end{tabular} & \(\frac{\Delta V_{B E} \mid}{\Delta T}\) & \(V_{C E}=3 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & -1.9 & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Base \(\left(\mathrm{O}_{3}\right)\)-to Emitter \(\left(\mathrm{O}_{4}\right)\) Voltage Darlington Pair & \[
\begin{aligned}
& v_{\text {BED }} \\
& \left(v_{9-1}\right)
\end{aligned}
\] & & \[
\begin{aligned}
& 1.46 \\
& 1.32 \\
& \hline
\end{aligned}
\] & v \\
\hline \begin{tabular}{l}
Temperature Coefficient: \\
Base-to-Emitter Voltage Darlington \\
Pair- \(\mathrm{Q}_{3}, \mathrm{O}_{4}\)
\end{tabular} & \(\left.\frac{\mid \Delta V^{\text {BED }}}{} \right\rvert\,\) & \(V_{C E}=3 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & 4.4 & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Temperature Coefficient: \\
Magnitude of Input-Offset Voltage
\end{tabular} & \(\frac{\left|V_{B E_{1}}-V_{B E_{2}}\right|}{\Delta T}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}, \mathrm{~V}^{-}=6 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}_{1}}=\mathrm{I}_{\mathrm{C}_{2}}=1 \mathrm{~mA}
\end{aligned}
\] & 10 & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{TYPICAL CHARACTERISTICS, (Cont'd)}

\section*{STATIC CHARACTERISTICS}

Fig. 2 - Typical collector-to-base cutoff current vs. ambient temperature for each transistor.

Fig. 3 - Typical collector-to-emitter cutoff current vs. ambient tempera ture for each transistor.

TABLE I -PRE BURN-IN ELECTRICAL AND POST BURN-IN ELECTRICAL TESTS, AND DELTA LIMITS* ELECTRICAL CHARACTERISTICS, at \(\mathbf{T}_{A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & Min. & Max. & Max. \(\Delta\) & \\
\hline Emitter-to-Base Breakdown Volts, \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\) & \(V_{\text {(BR) EBO }}\) & \(I_{E}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & 5 & - & \(\pm 0.5\) & \(V\) \\
\hline Collector Cutoff Current, \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\) & \({ }^{\text {I CeO }}\) & \(V_{C E}=10 \mathrm{~V}, \mathrm{I}_{B}=0\) & - & 0.5 & \(\pm 0.15\) & \(\mu \mathrm{A}\) \\
\hline Collector Cutoff Current, \(\mathrm{Q}_{3}, \mathrm{O}_{4}\) & \({ }^{1}\) CEO(D) & \(V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & 5 & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline Input Current \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\) & IIN & \({ }^{\prime} \mathrm{C}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\) & - & 16.7 & \(\pm 2\) & \(\mu \mathrm{A}\) \\
\hline Input Current Darlington Pair, \(\mathrm{Q}_{3}, \mathrm{Q}_{4}\) & IIN(D) & \({ }^{\prime} \mathrm{C}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\) & - & 0.5 & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline Base-to-Emitter Voltage, \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\) - & \(V_{\text {BE }}\) & \(\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\) & 0.6 & 0.8 & \(\pm 0.1\) & V \\
\hline \begin{tabular}{l}
Base-to-Emitter Voltage, Darlington \\
Pair, \(Q_{3}, Q_{4}\)
\end{tabular} & \[
\begin{aligned}
& V_{B E(D)} \\
& \left(V_{9-1}\right)
\end{aligned}
\] & \(\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\) & 1.1 & 1.5 & \(\pm 0.1\) & V \\
\hline
\end{tabular}
* Levels/1 and/2 require pre burn-in electrical and post burn-in electrical tests, and delta limits.

Level/3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 12.
TABLE II - FINAL ELECTRICAL TESTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[b]{3}{*}{TEST
CONDITIONS} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURE (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \begin{tabular}{l}
Collector Cutoff \\
Current, \(\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}\)
\end{tabular} & 'cbo & \(V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & - & - & - & - & 40 & - & nA \\
\hline Collector-to-Base Breakdown Voltage & \(V_{\text {(BR)CBO }}\) & \({ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\) & - & 30 & - & - & - & - & v \\
\hline Emitter-to-Base Breakdown Voltage & \(V_{\text {(BR)EBO }}\) & \(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I} \mathrm{C}=0\) & - & 5 & - & - & - & - & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(V_{\text {(BR)CIO }}\) & \({ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}^{\mathrm{Cl}}=0\) & - & 40 & - & - & - & - & v \\
\hline Collector-to-Emitter Breakdown Voltage & V(BR)CEO & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & - & 15 & - & - & - & - & \(v\) \\
\hline Collector Cutoff Current
\[
a_{1}, a_{2}
\] & Iceo & \(V_{C E}=10 \mathrm{~V}, \mathrm{t}_{\mathrm{B}}=0\) & - & - & - & - & 0.5 & 100 & \(\mu \mathrm{A}\) \\
\hline Collector Cutoff Current
\[
\alpha_{3} \cdot o_{4}
\] & \({ }^{\prime}\) CEOS(D) & \(V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & - & - & - & 5 & 2000 & \(\mu \mathrm{A}\) \\
\hline Static Forward Current Transfer Ratio, \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\) & \({ }^{h_{\text {FE }}}\) & \[
V_{C E}=3 V \cdot\left\{\begin{array}{l}
I_{C}=1 \mathrm{~mA} \\
I_{C}=10 \mathrm{~mA} \\
I_{C}=10 \mu \mathrm{~A}
\end{array}\right.
\] & 29 & \[
\begin{aligned}
& 60 \\
& 50 \\
& 30
\end{aligned}
\] & 70
-
- & - & - & - & - \\
\hline Static Forward Current Transfer Ratio, \(\mathbf{Q}_{3}, \mathbf{Q}_{\mathbf{4}}\) & \(h_{\text {FE(D) }}\) & \(v_{C E}=3 \mathrm{~V},\left\{\begin{array}{l}\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}\end{array}\right.\) & \[
1000
\] & \[
\begin{aligned}
& 2000 \\
& 1000
\end{aligned}
\] & \[
{ }_{2}^{2300} \begin{gathered}
\\
-
\end{gathered}
\] & & - & - & - \\
\hline Base-to-Emitter Voltage,
\[
\mathrm{a}_{1}, \mathrm{o}_{2}
\] & \(V_{B E}\) & \[
V_{C E}=3 V,\left\{\begin{array}{l}
I_{E}=1 \mathrm{~mA} \\
I_{E}=10 \mathrm{~mA}
\end{array}\right.
\] & \[
0.7
\] & \[
0.6
\] & \[
0.4
\] & \[
1
\] & \[
\begin{aligned}
& 0.8 \\
& 0.9
\end{aligned}
\] & \[
\begin{aligned}
& 0.7 \\
& -
\end{aligned}
\] & v \\
\hline Input Offset Voltage & \(\left|\begin{array}{l}v_{B E 1} \\ v_{B E 2}\end{array}\right|\) & \(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & - & - & - & - & 2 & - & mV \\
\hline Base-to-Emitter Voltage,
\[
a_{3}, a_{4}
\] & \(V_{B E(D)}\) & \[
V_{C E}=3 V,\left\{\begin{array}{l}
I_{E}=1 \mathrm{~mA} \\
I_{E}=10 \mathrm{~mA}
\end{array}\right.
\] & - & \[
1.1
\] & - & & \[
\begin{aligned}
& 1.5 \\
& 1.6
\end{aligned}
\] & \[
-
\] & v \\
\hline Collector-to-Emitter Saturation Voltage \(a_{1}, a_{2}\) & \(\mathrm{V}_{\text {ces }}\) & \(\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \quad \mathrm{I}^{\prime}=10 \mathrm{~mA}\) & - & - & - & - & 0.5 & - & v \\
\hline
\end{tabular}

TABLE III-GROUP A ELECTRICAL SAMPLING INSPECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow{3}{*}{TEST CONDITIONS} & \multicolumn{6}{|c|}{LIMITS FOR INDICATED TEMP. \({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{STATIC} \\
\hline Collector Cutoff Current,
\[
\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{o}_{3}, \mathrm{o}_{4}
\] & 'CBO & \(\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & - & - & - & - & 40 & - & nA \\
\hline \begin{tabular}{l}
Collector-to-Base Breakdown \\
Voltage, \(Q_{1}, Q_{2}, Q_{3}, Q_{4}\)
\end{tabular} & \(V_{\text {(BR) }}\) CBO & \({ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\) & - & 30 & - & - & - & - & V \\
\hline Emitter-to-Base Breakdown Voltage, \(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\) & \(V_{\text {(BR) }}\) Ebo & \({ }^{\prime} E=10 \mu \mathrm{~A}, \mathrm{I}^{\prime}=0\) & - & 5 & - & - & - & - & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(V_{\text {(BR)CIO }}\) & \({ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C} 1}=0\) & - & 40 & - & - & - & - & v \\
\hline Collector-to-Emitter Breakdown Voltage, \(\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}\) & \(V_{(B R) C E O}\) & \({ }^{\prime} \mathrm{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & - & 15 & - & - & - & - & v \\
\hline Collector Cutoff Current,
\[
a_{1}, a_{2}
\] & \({ }^{\text {'ceo }}\) & \(\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & - & - & - & 0.5 & 100 & \(\mu \mathrm{A}\) \\
\hline Collector Cutoff Current,
\[
a_{3}, a_{4}
\] & \({ }^{\text {I CEO (D) }}\) & \(\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & - & - & - & 5 & 2000 & \(\mu \mathrm{A}\) \\
\hline Static Forward Current Transfer Ratio, \(\mathrm{a}_{1}, \mathrm{Q}_{2}\) & \(h_{\text {FE }}\) & \({ }^{\prime} \mathrm{C}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\) & 29 & 60 & 70 & - & - & - & - \\
\hline Static Forward Current Transistor Ratio, Darlington Pair & \(\left.\mathrm{h}_{\text {FE(}} \mathrm{D}\right)\) & \(\mathrm{I}^{\prime}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\) & 1000 & 2000 & 2300 & - & - & - & - \\
\hline Base-to-Emitter Voltage Voltage, \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\) & \(V_{B E}\) & \(\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\) & 0.7 & 0.6 & 0.4 & 1.0 & 0.8 & 0.7 & v \\
\hline Static Forward Current Transfer Ratio, \(\mathrm{a}_{1}, \mathrm{Q}_{2}\) & \(h_{\text {FE }}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}
\end{aligned}
\] & - & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & - & - & - & - & - \\
\hline Static Forward Current Transfer Ratio, Darlington Pair & \(\mathrm{h}_{\text {FE }}(\mathrm{D})\) & \(\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{C E}=3 \mathrm{~V}\) & - & 1000 & - & - & - & - & - \\
\hline Base-to-Emitter Voltage,
\[
Q_{1}, Q_{2}
\] & \(V_{B E}\) & \(\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\) & - & - & - & - & 0.9 & - & V \\
\hline Input Offset Voitage & \[
\left|\begin{array}{c}
v_{\mathrm{BE}_{1}-} \\
v_{\mathrm{BE}_{2}}
\end{array}\right|
\] & \(\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\) & - & - & - & - & 2 & - & mV \\
\hline Base-to-Emitter Voltage, Darlington Pair & \(\mathrm{V}_{\mathrm{BE}(\mathrm{D})}\)
\(\left[\mathrm{V}_{9.1}\right]\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}
\end{aligned}
\] & - & \[
1.1
\] & - & - & \begin{tabular}{l}
1.6 \\
1.5 \\
\hline
\end{tabular} & - & v \\
\hline Magnitude of Static Beta Ratio, \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\) & & \[
\begin{gathered}
\mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{C} 2}=1 \mathrm{~mA} \\
\mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}
\end{gathered}
\] & - & 0.9 & - & - & 1.11 & - & - \\
\hline Collector-to-Emitter Saturation Voltage,
\[
\mathrm{a}_{1}, \mathrm{Q}_{2}
\] & \(\mathrm{V}_{\text {ces }}\) & \(\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & - & - & - & - & 0.5 & - & v \\
\hline Static Forward Current Ratio, Darlington Pair & \(h_{\text {FE (}}\) (\()\) & \(\mathrm{I}^{\prime}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\) & - & 3000 & - & - & - & - & - \\
\hline \multicolumn{10}{|l|}{DYNAMIC} \\
\hline Gain Bandwidth Product & \({ }^{\text {f }}\) T & \[
\begin{aligned}
V_{C E} & =3 \mathrm{~V}, I_{C}=3 \mathrm{~mA} \\
f & =100 \mathrm{MHz}
\end{aligned}
\] & - & 300 & - & - & - & - & MHz \\
\hline
\end{tabular}

TABLE IV- GROUP C ELECTRICAL CHARACTERISTICS SAMPLING TESTS (T \(\mathbf{A}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|r|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & Min. & Max. & \\
\hline Emitter-to-Base Breakdown Volts,
\[
\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{o}_{3}, \mathrm{a}_{4}
\] & \(V_{\text {(BR)EBO }}\) & \(\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0\) & 5 & - & V \\
\hline Collector-to-Emitter Breakdown Volts,
\[
a_{1}, a_{2}, a_{3}, a_{4}
\] & \(V_{\text {(BR)CEO }}\) & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & 15 & - & V \\
\hline Collector Cutoff Current, \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\) & 'ceo & \(\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & 0.5 & \(\mu \mathrm{A}\) \\
\hline Collector Cutoff Current, \(\mathrm{Q}_{3}, \mathrm{Q}_{4}\) & 'CEO(D) & \(\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & 5 & \(\mu \mathrm{A}\) \\
\hline Input Current, \(\mathrm{O}_{1}, \mathrm{O}_{2}\) & In & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\) & - & 25 & \(\mu \mathrm{A}\) \\
\hline Input Current, Darlington Pair,
\[
\mathrm{o}_{3}, \mathrm{o}_{4}
\] & IIN(D) & \({ }^{\prime} \mathrm{C}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\) & - & 1 & \(\mu \mathrm{A}\) \\
\hline Base-to-Emitter Voltage, \(\mathrm{O}_{1}, \mathrm{O}_{2}\) & \(V_{B E}\) & \(\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\) & 0.6 & 0.8 & V \\
\hline Base-to-Emitter Voltage, Darlington Pair, \(Q_{3}, Q_{4}\) & \(V_{B E(D)}\) & \(\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\) & 1.1 & 1.5 & V \\
\hline
\end{tabular}

Fig. 4 - Typical static forward-current transfer ratio and beta ratio for transistors \(Q\), and \(Q_{2}\) vs. emitter current.

Fig. 5 - Typical static forward-current transfer ratio for Darlingtonconnected transistors \(Q_{3}\) and \(Q_{4}\) vs. emitter current.

Fig. 6 - Typical static base-to-emitter voltage characteristic and input offset voltage for \(Q_{1}\) and \(Q_{2}\) vs. emitter current.

Fig. 8 - Typical offset voltage characteristics vs. ambient temperature.

Fig. 7 - Typical base-to-emitter voltage characteristics for each transistor vs. ambient temperature.

Fig. 9 - Typical static input voltage characteristics for Darlington pair \(\left(Q_{3}\right.\) and \(\left.Q_{4}\right)\) vs. emitter current.

Fig. 10 - Typical static input voltage characteristics for Darlington pair \(\left(Q_{3}\right.\) and \(\left.Q_{4}\right)\) vs. ambient temperature.

Fig. 11 - Typical gain-bandwidth product (\(f_{T}\)) vs. collector current.

Fig. 12 - Burn-in and operating life test circuit.

Solid State
Division

Linear Integrated Circuits
Monolithic Silicon
High-Reliability Slash(/) Series CA3019/...

\title{
High-Reliability Diode Array Diode Quad and Two Individual Diodes
}

\author{
For Applications In Aerospace, Military and Critical Industrial Equipment
}

Features:
- Excellent diode match
- Low leakage current
- Low pedestal voltage when gating

RCA-CA3019 "Slash" (/) Series type is a high-reliability linear integrated circuit Diode Array consisting of a diode quad and two individual diodes. It is intended for telemetry, data processing, instrumentation and communications applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA3019 described in Data Bulletin File No. 236 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels\(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\), and \(/ 4\)-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence, are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL. STD-883."

The CA3019 Slash (/) Series type is supplied in the 10 -lead TO-5 style package (" T " suffix) or in chip form (" H " suffix).

Applications:
- Modulator
- Mixer
- Balanced modulator
- Analog switch
- Diode gate for choppermodulator applications
- See companion application note ICAN-52911 application of the RCA CA3019 IC Diode Array

* Connect to most negative circuit potential.

Fig. 1 - Schematic diagram.

File No. 722

Table I - Pre Burn-In and Post Burn:In Electrical Tests and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\Delta\) & \\
\hline \multirow[t]{3}{*}{Each Diode: DC Forward Voltage Drop} & \multirow{3}{*}{\(V_{F}\)} & \(I_{F}=1 \mathrm{~mA}\) & - & 0.78 & \(\pm 0.010\) & V \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=0.2 \mathrm{~mA}\) & - & 0.72 & \(\pm 0.010\) & V \\
\hline & & \(I_{F}=20 \mathrm{~mA}\) & - & 0.95 & \(\pm 0.010\) & \(V\) \\
\hline
\end{tabular}
*Levels \(/ 1 N, / 1 R, / 1\), and \(/ 2\) require pre and post burn-in electrical tests and delta limits
Leval \(/ 3\) requires pre burn-in electrical test only. The burn-in circuit is shown in Fig. 5.

\section*{TYPICAL CHARACTERISTICS}

Fig. 2 - DC Forward Voltage Drop (any Diode) vs Temperature for CA3019.

Fig. 3 - Reverse (Leakage) Current (any Diode) vs Temperature for CA3019.

\section*{ABSOLUTE-MAXIMUM RATINGS:}

Absolute-Maximum Voltage Limits at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ TERMINAL } & \multicolumn{2}{|c|}{ VOLTAGE LIMITS } & \multicolumn{2}{c|}{ CONDITIONS } \\
\cline { 2 - 5 } & NEGATIVE & POSITIVE & TERMINAL & VOLTAGE \\
\hline 1 & -3 & +12 & 7 & -6 \\
\hline 2 & -3 & +12 & 7 & -6 \\
\hline 3 & -3 & +12 & 7 & -6 \\
\hline 4 & -3 & +12 & 7 & -6 \\
\hline 5 & -3 & +12 & 7 & -6 \\
\hline 6 & -3 & +12 & 7 & -6 \\
\hline 7 & -18 & 0 & \begin{tabular}{c}
1,2, \\
3
\end{tabular} & 6 \\
\hline 8 & -3 & +12 & 7 & 0 \\
\hline 9 & -3 & +12 & 7 & -6 \\
\hline 10 & \multicolumn{4}{|c|}{\begin{tabular}{c}
NO CONNECTION \\
\hline CASE \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS, at an Ambient Temperature, \(\mathbf{T}_{A^{\prime}}\) of \(\mathbf{2 5}{ }^{\circ} \mathbf{C}\) CHARACTERISTICS APPLY FOR EACH DIODE UNIT, UNLESS OTHERWISE SPECIFIED.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow{3}{*}{SPECIAL TEST CONDITIONS} & \multicolumn{2}{|r|}{LIMITS} \\
\hline & & & \multicolumn{2}{|l|}{TYPE CA3019} \\
\hline & & & Typ. & Units \\
\hline DC Forward Voltage Drop & \(V_{F}\) & DC Forward Current (1 F) \(=1 \mathrm{~mA}\) & 0.73 & V \\
\hline DC Reverse Breakdown Voltage & \(V_{(B R) R}\) & DC Reverse Current (IR) \(=-10 \mu \mathrm{~A}\) & 6 & V \\
\hline DC Reverse Breakdown Voltage Between any Diode Unit and Substrate & \(V_{(B R) R}\) & DC Reverse Current (\(\mathrm{l}_{\mathrm{R}}\)) \(=-10 \mu \mathrm{~A}\) & 80 & V \\
\hline DC Reverse (Leakage) Current & IR & DC Reverse Voltage (\(\mathrm{V}_{\mathrm{R}}\)) \(=-4 \mathrm{~V}\) & 0.0055 & \(\mu \mathrm{A}\) \\
\hline DC Reverse (Leakage) Current Between any Diode Unit and Substrate & \({ }_{\text {IR }}\) & DC Reverse Voltage \(\left(\mathrm{V}_{\mathrm{R}}\right)=-4 \mathrm{~V}\) & 0.010 & \(\mu \mathrm{A}\) \\
\hline Magnitude of Diode Offset Voltage (Difference in DC Forward Voltage Drops of any Two Diode Units) & \(\left|V_{F_{1}}-V_{F_{2}}\right|\) & DC Forward Current (IF) \(=1 \mathrm{~mA}\) & 1 & mV \\
\hline Single Diode Capacitance & \(C_{D}\) & \[
\begin{aligned}
& \hline \text { Frequency }(f)=1 \mathrm{MHz} \\
& \text { DC Reverse Voltage }\left(V_{R}\right)=-2 \mathrm{~V} \\
& \hline
\end{aligned}
\] & 1.8 & pF \\
\hline \multirow[t]{3}{*}{Diode Quad-to-Substrate Capacitance} & \multirow[t]{3}{*}{\(\mathrm{C}_{\mathrm{DQ}-1}\)} & Frequency (f) \(=1 \mathrm{MHz}\) OC Reverse Voltage (\(\mathrm{V}_{\mathrm{R}}\)) between Terminal \(2,5,6\), or 8 of Diode Quad and Terminal 7 (Substrate) \(=-2 \mathrm{~V}\) & & \\
\hline & & Terminal 2 or 6 to Terminal 7 & 4.4 & pF \\
\hline & & Terminal 5 or 8 to Terminal 7 & 2.7 & pF \\
\hline Series Gate Switching Pedestal Voltage & \(v_{S}\) & & 10 & mV \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS

92cs-14252

Fig. 4 - Diode capacitance (any diode) vs reverse voltage for CA3019.

92CS-22934
Fig. 5 - Burn-In and operating life test circuit

File No. 722

Table II - Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[t]{3}{*}{TEST CONDITIONS} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{Each Diode:} \\
\hline \multirow{3}{*}{DC Forward Voltage Drop} & \multirow{3}{*}{\(V_{F}\)} & \(I_{F}=0.2 \mathrm{~mA}\) & - & - & - & - & 0.72 & - & V \\
\hline & & \(i_{F}=1 \mathrm{~mA}\) & 0.76 & - & 0.41 & 0.97 & 0.79 & 0.60 & V \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}\) & - & - & - & - & 0.95 & - & V \\
\hline DC Reverse Leakage Current & IR & \(\mathrm{V}_{\mathrm{R}}=-4 \mathrm{~V}\) & - & - & - & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline DC Reverse Leakage Current To Substrate & IR & \(V_{R}=-4 \mathrm{~V}\) & - & - & - & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline Between Any Two Diodes: Diode Offset Voltage & \(\mathrm{IV}_{\mathbf{F} 1}-\mathrm{V}_{\mathrm{F} 2}{ }^{\prime}\) & \(\mathrm{If}_{\mathrm{F}}=1 \mathrm{~mA}\) & - & - & - & - & 5 & - & mV \\
\hline Isolation-to-Substrate Breakdown Voltage & & -50 V through a \(25 \mathrm{~K} \Omega\) to terminal 7. Ground terminal 1 through 6, 8 and 9. Measure voltage at terminal 7 & - & 50 & - & -25 & -25 & -25 & v \\
\hline
\end{tabular}

Table III - Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[t]{3}{*}{TEST CONDITIONS} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{Each Diode:} \\
\hline \multirow{3}{*}{DC Forward Voltage Drop} & \multirow{3}{*}{\(V_{F}\)} & \(\mathrm{I}_{\mathrm{F}}=0.2 \mathrm{~mA}\) & - & - & - & - & 0.72 & - & V \\
\hline & & \(I_{F}=1 \mathrm{~mA}\) & 0.76 & - & 0.41 & 0.97 & 0.78 & 0.60 & V \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}\) & - & - & - & - & 0.95 & - & V \\
\hline DC Reverse Leakage Current & 1 R & \(\mathrm{V}_{\mathrm{R}}=-4 \mathrm{~V}\) & - & - & - & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline DC Reverse Leakage Current To Substrate & \(I_{R}\) & \(\mathrm{V}_{\mathrm{R}}=-4 \mathrm{~V}\) & - & - & - & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline Between Any Two Diodes: Diode Offset Voltage & \(\mathrm{IV}_{\mathrm{F} 1}=\mathrm{V}_{\mathrm{F} 2} \mid\) & \(\mathrm{IF}_{\mathrm{F}}=1 \mathrm{~mA}\) & - & - & - & - & 5 & - & mV \\
\hline Isolation-to-Substrate Breakdown Voltage & & -50 V through a \(25 \mathrm{~K} \Omega\) to terminal 7. Ground terminal 1 through 6, 8 and 9. Measure voltage at terminal 7 & - & 50 & - & -25 & -25 & -25 & V \\
\hline
\end{tabular}

Table IV - Group C Electrical Characteristics Sampling Tests \(\left(T_{A}=25^{\circ} C\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{test conditions} & \multicolumn{2}{|c|}{LImits} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & MAX & \\
\hline \multicolumn{6}{|l|}{Each Diode:} \\
\hline \multirow{3}{*}{DC Forward Voltage Drop} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{F}}\)} & \(\mathrm{I}_{\mathrm{F}}=0.2 \mathrm{~mA}\) & 0.39 & 0.73 & V \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\) & 0.49 & 0.79 & V \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}\) & 0.59 & 0.96 & V \\
\hline DC Reverse Leakage Current & \({ }^{\prime} \mathrm{R}\) & \(\mathrm{V}_{\mathrm{R}-4 \mathrm{~V}}\) & - & 10 & \(\mu \mathrm{A}\) \\
\hline DC Reverse Leakage Current To Substrate & IR & \(\mathrm{V}_{\mathrm{R}}=-4 \mathrm{~V}\) & - & 10 & \(\mu \mathrm{A}\) \\
\hline Between Any Two Diodes: Diode Offset Voltage & \(V_{F 1}-V_{F 2}\) & \(I_{F}=1 \mathrm{~mA}\) & - & 5 & mV \\
\hline Isolation-to-Substrate Breakdown Voltage & & \begin{tabular}{l}
-50 V through a \(25 \mathrm{~K} \Omega\) to terminal \\
7.Ground terminal 1 through 6, 8 and \\
9. Measure voltage at terminal 7
\end{tabular} & - & -25 & V \\
\hline
\end{tabular}

\title{
Linear Integrated Circuits \\ Monolithic Silicon \\ High-Reliability Slash (/) Series CA3020A/...
}

RCA-CA3020A "Slash" (/) Series types are high-reliability linear integrated circuits intended for a wide variety of applications in aerospace, military, and critical industrial equipment. They employ a highly versatile and stable direct-coupled circuit configuration featuring wide frequency range (dc to 8 MHz), high voltage and power gain, and high power output. These features plus inherent stability over a wide temperature range make the CA3020A extremely useful for a wide variety of applications, particularly as class B power amplifiers. It can provide a maximum power output of 1 watt from a 12 -volt dc supply with a typical power gain of 75 db .

The CA3020A is electrically and mechanically identical with the standard type CA3020A described in Data Bulletin File No. 339 but is specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types ean be supplied to six screening levels/1N, /1R, /1, /2, /3, and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels-/M, /N, and /R. These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL. STD-883."

The CA3020A Slash (/) Series types are supplied in the 12 lead TO-5 style package (" \(T\) " suffix), and in chip form ("H" suffix).

\title{
High-Reliability Multipurpose Wide-Band Power Amplifier
}

For Applications in Aerospace, Military and Critical Industrial Equipment

\section*{Features:}
- High power output - class B amplifier. . .
- Single power supply for class B operation with transformer. . .
1.0 W typ. at \(\mathrm{V}^{+}=+12 \mathrm{~V}\)

Wide frequency range. . .
Up to 8 MHz with resistive loads
- High power gain. . 75 dB typ.

\section*{3 to 12 V}
- Built-in temperature-tracking voltage regulator provides stable operation over \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) temperature range

\section*{Applications:}
- AF power amplifiers for portable and fixeu sound and communications systems
- Servo-control amplifiers
- Wide-band linear mixers
- Video power amplifiers
- Transmission-line driver amplifiers (balanced and unbalanced)
- Fan-in and fan-out amplifiers for computer logic circuits
- Lamp-control amplifiers
- Motor-control amplifiers
m Power multivibrators
- Power switches
- Companion Application Note, ICAN-5766, "'Application of CA3020 and CA3020A Integrated Circuit Multipurpose Wide-Band Power Amplifiers"

Fig. 1 - Schematic diagram.

MAXIMUM RATINGS, Absolute Maximum Values
at \(T_{A}=25^{\circ} \mathrm{C}\) :
Without Heat Sink

DEVICE DISSIPATION:
\(\begin{aligned} & \text { At } T_{A}=25^{\circ} \mathrm{C} \\ & \text { Above } T_{A}=25^{\circ} \mathrm{C}\end{aligned} . \quad 1 \mathrm{~W}\)
AMBIENT TEMPERATURE RANGE:
At TC \(=25^{\circ} \mathrm{C}\). 2 W
At \(T_{C}=25^{\circ} \mathrm{C}\) to \(\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C}\). 2 W
Above \(T_{C}=55^{\circ} \mathrm{C}\). derate linearly \(16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)
Operating
\[
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\]

Storage .
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
LEAD TEMPERATURE (During Soldering):
At distance \(1 / 16 \pm 1 / 32 \mathrm{in}\).
\((1.59 \pm 0.79 \mathrm{~mm})\) from case for
10 s max. \(+300{ }^{\circ} \mathrm{C}\)

\section*{Maximum Voltage Ratings at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}

The following chart gives the range of voltages which can be applied to the terminals listed vertically with respect to the terminals listed horizontally. For example, the voltage range of the vertical terminal 1 with respect to terminal 12 is 0 to +10 volts.

Maximum Current Ratings
\(\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Term- } \\ \text { inal } \\ \text { No. }\end{array} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 1 & & * & * & * & * & * & * & * & \begin{array}{c}0 \\ -12\end{array} & \begin{array}{c}+3 \\ \text { Note } 1\end{array} & & \begin{array}{c}+10 \\ 0\end{array} \\ \hline 2 & & & * & * & * & * & * & * & * & * & * & +2 \\ \hline-2\end{array}\right]\)
\begin{tabular}{|c|c|c|}
\hline Terminal No. & \[
\begin{aligned}
& \mathrm{In} \\
& \mathrm{~mA}
\end{aligned}
\] & \begin{tabular}{l}
IOut \\
mA
\end{tabular} \\
\hline 1 & - & 20 \\
\hline 2 & - & - \\
\hline 3 & - & - \\
\hline 4 & 300 & - \\
\hline 5 & - & 300 \\
\hline 6 & - & 300 \\
\hline 7 & 300 & - \\
\hline 8 & - & - \\
\hline 9 & 20 & - \\
\hline 10 & 1 & - \\
\hline 11 & 20 & - \\
\hline 12 & - & - \\
\hline
\end{tabular}

Note 1: This voltage is established by the maximum current rating. Note 2: The emitters of \(\mathrm{Q}_{6}\) and \(\mathrm{Q}_{7}\) may be returned to a negative voltage supply through emitter resistors. Current into terminal No. 9 should not be exceeded and the total device dissipation should not be exceeded.

Note 3: Terminal No. 8 may be connected to terminals Nos.9, 11, or 12.
* Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe if the specified limits between all other terminals are not exceeded.

Fig. 2 - Typical transfer characteristics with \(R_{10}\) shorted out.

Fig. 4 - "Minimum drive" typ. current-voltage saturation curve.

Fig. 3 - Typical transfer characteristics with \(R_{10}\) in circuit.

92LS-2842
Fig. 5 - Burn-in and operating life test circuit.

TABLE I - PRE BURN-IN ELECTRICAL AND POST BURN-IN ELECTRICAL TESTS, AND DELTA LIMITS*
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Electrical Characteristics at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} \\
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & V \({ }_{1}{ }^{\mathbf{4}}\) & \(\mathrm{V}^{+} 2^{\mathbf{4}}\) & Min. & Max. & Max. \(\triangle\) & \\
\hline Peak Output Currents, \(\mathrm{Q}_{6}\) \& \(\mathrm{Q}_{7}\) & \(\mathrm{I}_{4} \mathrm{PK},{ }_{7} \mathrm{PK}\) & 9 V & 2 V & 180 & - & \(\pm 15\) & mA \\
\hline Cutoff Currents, \(\mathrm{Q}_{6}\) \& \(\mathrm{O}_{7}\) & 14 Cutoff 17 Cutoff & 9 V & 2 V & - & 1 & \(\pm 0.1\) & mA \\
\hline Differential Amplifier Current Drain & \(1+1\) & 9 V & 9 V & 6.3 & 12.5 & \(\pm 1.3\) & mA \\
\hline Total Current Drain & \(\mathrm{I}^{+}{ }_{1}+{ }^{+}{ }_{2}\) & 9 V & 9 V & 14 & 30 & \(\pm 3\) & mA \\
\hline
\end{tabular}

\footnotetext{
* Levels / 1 and \(/ 2\) require pre burn-in electrical and post burn-in electrical tests, and delta limits.
} Level / 3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 5.
^ \(\mathrm{V}^{+}{ }_{1}\) is the collector voltage applied to \(\mathrm{Q}_{1}\) through \(\mathrm{Q}_{5}\)
\(\mathrm{V}^{+} 2\) is the collector voltage applied to \(\mathrm{O}_{6}\) and \(\mathrm{Q}_{7}\)

File No. 767

ELECTRICAL CHARACTERISTICS AT \(T_{A}=25^{\circ} \mathrm{C}\)
Intended Only For Design Guidance
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{LIMITS CA3020A}} & \multirow{3}{*}{UNITS} \\
\hline & & \multicolumn{2}{|l|}{DC SUPPLY VOLTAGE} & & & & \\
\hline & & \(\mathrm{V}^{+}{ }^{\mathbf{4}}\) & \(\mathrm{V}^{+}{ }^{\mathbf{4}}\) & MIN. & TYP. & MAX. & \\
\hline Idle Currents, \(\mathrm{O}_{6} \& \mathrm{O}_{7}\) & \[
\begin{aligned}
& I_{4} \text { IDLE } \\
& I_{7} \text { IDLE }
\end{aligned}
\] & 9 & 2 & - & 5.5 & - & mA \\
\hline Differential Amplifier Current Drain & \({ }^{+}{ }_{1}\) & 9 & 9 & 6.3 & 9.4 & 12.5 & mA \\
\hline Total Current Drain & \(\mathrm{I}_{1}+\mathrm{I}_{2}\) & 9 & 9 & 14 & 21.5 & 30 & mA \\
\hline Differential Amplifier Input Terminal Voltages & \[
\begin{aligned}
& v_{2} \\
& v_{3} \\
& \hline
\end{aligned}
\] & 9 & 2 & - & 1.11 & - & V \\
\hline Regulator Terminal Voltage & \(\mathrm{V}_{11}\) & 9 & 2 & - & 2.35 & - & V \\
\hline Forward Current Transfer Ratio, \(\mathrm{Q}_{1}\) at 3 mA & \(h_{\text {FE1 }}\) & 6 & - & 30 & 75 & - & \\
\hline Bandwidth at -3 dB Point & BW & 6 & 6 & - & 8 & - & MHz \\
\hline Maximum Power Output & \(\mathrm{P}_{\mathrm{O}}(\mathrm{MAX})\) & \[
\begin{aligned}
& 6 \\
& 9 \\
& 9
\end{aligned}
\] & \[
\begin{gathered}
6 \\
9 \\
12
\end{gathered}
\] & \[
\begin{array}{r}
200 \\
400 \\
800 \\
\hline
\end{array}
\] & \[
\begin{gathered}
300^{a} \\
550^{a} \\
1000^{b}
\end{gathered}
\] & & mW \\
\hline Sensitivity for POUT \(=800 \mathrm{~mW}\) & \({ }^{\text {e }}\) IN & 9 & 12 & - & \(50^{\text {b }}\) & 100 & mV \\
\hline Input Resistance - Terminal 3 to Ground & RIN3 & 6 & 6 & - & 1000 & - & \(\Omega\) \\
\hline
\end{tabular}
\({ }^{a} \mathrm{R}_{\mathrm{CC}}=130 \Omega\)
b \(R_{C C}=200 \Omega\)

TABLE II - FINAL ELECTRICAL TESTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TEST CONDITIONS}} & \multicolumn{6}{|c|}{LIMITS FOR INDICATED TEMP. \(\left.{ }^{\circ}{ }^{\circ} \mathrm{C}\right)\)} & \multirow{3}{*}{UNITS} \\
\hline & & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & \(\mathrm{V}^{+}{ }^{\text {4 }}\) & \(\mathrm{V}^{+}{ }^{\text {4 }}\) & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \begin{tabular}{l}
static \\
Peak Output Currents, \(\mathrm{O}_{6} \& \mathrm{O}_{7}\)
\end{tabular} & \(14 \mathrm{PK}, \mathrm{I} 7 \mathrm{PK}\) & 9 V & 2 V & - & 180 & - & - & - & - & mA \\
\hline Cutoff Currents, \(\mathrm{O}_{6} \& \mathrm{O}_{7}\) & \(1_{4} \mathrm{Cut}, \mathrm{I}_{7} \mathrm{Cut}\) & 9 V & 2 V & , - & - & - & - & 1 & - & mA \\
\hline Differential Amplifier Current Drain & \(1^{+} 1\) & 9 V & 9 V & 5.5 & 6.3 & 3.5 & 16.5 & 12.5 & 10 & mA \\
\hline \begin{tabular}{l}
DYNAMIC \\
Total Current Drain
\end{tabular} & \(1^{+}{ }^{+1+}{ }^{+}\) & 9 V & 9 V & 6 & 14 & 8 & 51 & '30 & 25 & mA \\
\hline Sensitivity for POUT \(=800 \mathrm{~mW}\) & \({ }^{1} \mathrm{In}\) & 9 V & 12 V & - & - & - & - & 100 & - & mV \\
\hline
\end{tabular}
\(\triangle \mathrm{V}^{+} 1\) is the collector voltage applied to \(\mathrm{Q}_{1}\) through \(\mathrm{Q}_{5}\) \(V^{+}{ }_{2}\) is the collector voltage applied to \(Q_{6}\) and \(Q_{7}\)

TABLE III - GROUP A ELECTRICAL SAMPLING INSPECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{c}
TEST \\
CONDITIONS \\
\hline DC SUPPLY \\
VOLTAGE
\end{tabular}}} & \multicolumn{3}{|r|}{\multirow[b]{3}{*}{LIMITS FOR IN
MINIMUM}} & \multirow[b]{2}{*}{ATED} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)}} & \multirow{4}{*}{UNITS} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & \(\mathrm{V}^{+}{ }^{\text {4 }}\) & \(\mathrm{V}^{+}{ }^{\text {4 }}\) & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{11}{|l|}{STATIC} \\
\hline \multirow[t]{2}{*}{Collector-to-Emitter Breakdown Voltage, \(\mathrm{O}_{6} \& \mathrm{Q}_{7}\) at 10 mA} & \(V\) (BR)CER & - & - & - & 25 & - & - & - & - & \multirow[b]{2}{*}{V} \\
\hline & \(V\) (BR)CEO & - & - & - & 21 & - & - & - & - & \\
\hline Collector-to-Emitter Breakdown Voltage, \(\mathrm{O}_{1}\) at 0.1 mA & \(V\) (BR)CEO & - & - & - & 10 & - & - & - & - & V \\
\hline Peak Output Currents, \(\mathrm{Q}_{6}\) \& \(\mathrm{O}_{7}\) & \[
\begin{aligned}
& \mathrm{I}_{4} \mathrm{PK} \\
& \mathrm{I}_{7} \mathrm{PK}
\end{aligned}
\] & 9 V & 2 V & - & 180 & - & - & - & - & mA \\
\hline Cutoff Currents, \(\mathrm{O}_{6}\) \& \(\mathrm{C}_{7}\) & \(1_{4}\) Cutoff 17 Cutoff & 9 V & 2 V & - & - & - & - & 1 & - & mA \\
\hline Differential Amplifier Current Drain & \(1+1\) & 9 V & 9 V & 5.5 & 6.3 & 3.5 & 16.5 & 12.5 & 10 & mA \\
\hline Total Current Drain & \(\mathrm{I}^{+}{ }^{+}+\mathrm{I}_{2}\) & 9 V & 9 V & 6 & 14 & 8 & 51 & 30 & 25 & mA \\
\hline \(\mathrm{Q}_{1}\) Cutoff (Leakage) Currents: Collector-to-Emitter & ICEO & 10 V & - & - & - & - & - & 100 & - & \(\mu \mathrm{A}\) \\
\hline Emitter-to-Base & IEBO & 3 V & - & - & - & - & - & 0.1 & - & \(\mu \mathrm{A}\) \\
\hline Collector-to-Base & \({ }^{1} \mathrm{CBO}\) & 3 V & - & - & - & - & - & 0.1 & - & \(\mu \mathrm{A}\) \\
\hline Forward Current Transfer Ratio, \(\mathrm{Q}_{1}\) at 3 mA & hFE1 & 6 V & - & - & 30 & - & - & - & - & \\
\hline \multicolumn{11}{|l|}{DYNAMIC} \\
\hline Maximum Power Output, \(R_{C C}=200 \Omega\) & PO(Max.) & 9 V & 12 V & - & 800 & - & - & - & - & mW \\
\hline Sensitivity for POUT \(=800 \mathrm{~mW}\) & \(e_{\text {In }}\) & 9 V & 12 V & - & - & - & - & 100 & - & mV \\
\hline
\end{tabular}

TABLE IV - GROUP C ELECTRICAL CHARACTERISTICS SAMPLING TESTS at \(\mathrm{T}_{\mathrm{A}} \mathbf{= 2 5 ^ { \circ }} \mathbf{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \(\mathrm{V}^{+}{ }^{\mathbf{4}}\) & \(\mathrm{v}^{+}{ }^{\mathbf{4}}\) & MIN. & MAX. & \\
\hline Peak Output Currents,
\[
a_{6} \& a_{7}
\] & \[
\begin{aligned}
& \mathrm{I}_{4} \mathrm{PK} \\
& { }_{7} \mathrm{PK}
\end{aligned}
\] & 9 V & 2 V & 180 & - & mA \\
\hline Cutoff Currents,
\[
a_{6} \& a_{7}
\] & \({ }_{1}{ }_{4}\) Cutoff \({ }^{17}\) Cutoff & 9 V & 2 V & - & 1 & mA \\
\hline Differential Amplifier Current Drain & \({ }^{+}{ }_{1}\) & 9 V & 9 V & 6.3 & 12.5 & mA \\
\hline Total Current Drain & \(\mathrm{I}_{1}+\mathrm{I}^{+}{ }_{2}\) & 9 V & 9 V & 14 & 30 & mA \\
\hline Sensitivity for POUT \(=800 \mathrm{~mW}\) & \({ }^{\text {e }}\) IN & 9 V & 12 V & - & 100 & mV \\
\hline
\end{tabular}

\footnotetext{
\(\Delta \mathrm{V}^{+}{ }_{1}\) is the collector voltage applied to \(\mathrm{Q}_{1}\) through \(\mathrm{Q}_{5}\) \(\mathrm{V}^{+}{ }_{2}\) is the collector voltage applied to \(\mathrm{Q}_{6}\) and \(\mathrm{Q}_{7}\)
}

\section*{Linear Integrated Circuits}

Monolithic Silicon

RCA-CA3026 "Slash" (/) Series type is a high-reliability linear integrated circuit Dual Independent and Differential Amplifier is intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA3026 described in Data Bulletin File No. 388 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD883.

The packaged types ean be supplied to six screening levels/1N, /1R, /1, /2, /3, and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL• STD-883."

The CA3026 Slash (/) Series type is supplied in the 12 -lead TO-5 style package (" T " suffix) or in chip form (" H " suffix).

\section*{Applications:}
- Dual sense amplifiers
- Dual Schmitt triggers
- Multifunction combinations - RF/Mixer/Oscillator; Converter/IF
- IF amplifiers (differential and/or cascode)
- Product detectors
- Doubly balanced modulators and demodulators
- Balanced quadrature detectors
- Cascade limiters
- Synchronous detectors
- Pairs of balanced mixers
- Synthesizer mixers
- Balanced (push-pull) cascodeamplifiers

Fig. 1 - Schematic Diagram

CAUTION: Substrate MUST be maintained negative with respect to all collector terminals of this device. See Maximum Voltage Ratings chart.

MAXIMUM RATINGS, Absolute-Maximum Values, at \(T_{A}=25^{\circ} \mathrm{C}\)

POWER DISSIPATION,
\begin{tabular}{|c|c|}
\hline Any one transistor & 300 \\
\hline Total package & 600 \\
\hline For \(\mathrm{T}_{\mathrm{A}}>55^{\circ} \mathrm{C}\) & Derate at 5 \\
\hline \multicolumn{2}{|l|}{TEMPERATURE RANGE:} \\
\hline Operating & -55 to +125 \\
\hline Storage & -65 to +200 \\
\hline
\end{tabular}

LEAD TEMPERATURE (During Soldering):
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
\((1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm}\))
from case for 10 s max. 265 \({ }^{\circ} \mathrm{C}\)

The following ratings apply for each transistor in the device:
Collector-to-Emitter Voltage, VCEO 15
Collector-to-Base Voltage, VCBO 20
Collector-to-Substrate Voltage, \(\mathrm{V}_{\mathrm{CIO}}{ }^{*}\). 20
Emitter-to-Base Voltage, VEBO 5
Collector Current, IC 50
*The collector of each transistor of the CA3026 is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide for normal transistor action. The substrate should be maintained at signal (AC) ground by means of a suitable grounding capacitor, to avoid undesired coupling between transistors.

\section*{MAXIMUM VOLTAGE RATINGS}

The following chart gives the range of voltages which can be applied to the terminals listed vertically with respect to the terminals listed horizontally. For example, the voltage range between vertical terminal 1 and horizontal terminal 3 is +15 to -5 volts.
\(\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline \begin{array}{l}\text { CA3026 } \\
\text { TERMINAL } \\
\text { No. }\end{array} & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \begin{array}{c}\text { Note 1 } \\
9\end{array} \\
\hline 10 & & \begin{array}{c}0 \\
-20\end{array} & * & \begin{array}{c}+5 \\
-5\end{array} & * & \begin{array}{c}+15 \\
-5\end{array} & * & * & * & * & * & * \\
\hline 11 & & & * & * & * & +20 \\
0\end{array}\right) *\)\begin{tabular}{c}
\(*\) \\
\hline 12
\end{tabular}
Maximum
Cur rent Ratings
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
CA3026 \\
TERMINAL \\
No.
\end{tabular} & \begin{tabular}{l}
IN \\
mA
\end{tabular} & \begin{tabular}{c}
IOUT \\
mA
\end{tabular} \\
\hline 10 & 5 & 0.1 \\
\hline 11 & 50 & 0.1 \\
\hline 12 & 50 & 0.1 \\
\hline 1 & 5 & 0.1 \\
\hline 2 & 5 & 0.1 \\
\hline 3 & 0.1 & -50 \\
\hline 4 & 5 & 0.1 \\
\hline 5 & 50 & 0.1 \\
\hline 6 & 50 & 0.1 \\
\hline 7 & 5 & 0.1 \\
\hline 9 & 0.1 & 50 \\
\hline
\end{tabular}
- Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe if the specified limits between all other terminals are not exceeded.

Note 1: In the CA3026 terminal No. 9 is connected to the emitter of Q4, the reference substrate, and the case; therefore, should not be grounded.

ELECTRICAL CHARACTERISTICS at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOLS} & \multirow[t]{2}{*}{TEST CONDITIONS} & CA3026 LIMITS & \multirow[t]{2}{*}{UNITS} \\
\hline & & & TYP. & \\
\hline \multicolumn{5}{|l|}{STATIC CHARACTERISTICS} \\
\hline \multicolumn{5}{|l|}{For Each Differential Amplifier} \\
\hline Input Offset Voltage & 10 & \multirow{5}{*}{\[
\begin{gathered}
\mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V} \\
\mathrm{I}_{\mathrm{E}(\mathrm{Q} 3)}=\mathrm{I}_{\mathrm{E}(\mathrm{Q} 4)}=2 \mathrm{~mA}
\end{gathered}
\]} & 0.45 & mV \\
\hline Input Offset Current & \({ }_{10}\) & & 0.3 & \({ }_{\mu} \mathrm{A}\) \\
\hline Input Bias Current & I & & 10 & \(\mu A\) \\
\hline Quiescent Operating Current Ratio & & & \[
\begin{gathered}
0.98 \text { to } \\
1.02 \\
\hline
\end{gathered}
\] & . \\
\hline Temperature Coefficient Magnitude of Input-Offset Voltage & \(\frac{\left|\Delta V_{\text {IO }}\right|}{\Delta T}\) & & 1.1 & \(\mu V^{\prime}{ }^{0} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{For Each Transistor}
\begin{tabular}{|c|c|c|c|c|}
\hline DC Forward Base-toEmitter Voltage & \(V_{B E}\) & \[
V_{C B}=3 \mathrm{~V}\left\{\begin{array}{r}
I_{C}=50 \mu \mathrm{~A} \\
1 \mathrm{~mA} \\
3 \mathrm{~mA} \\
10 \mathrm{~mA}
\end{array}\right.
\] & \[
\begin{aligned}
& \hline 0.630 \\
& 0.715 \\
& 0.750 \\
& 0.800
\end{aligned}
\] & V \\
\hline Temperature Coefficient of Base-to-Emitter Voltage & \(\frac{\Delta V_{B E}}{\Delta T}\) & \(V_{C B}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & -1.9 & mV . \({ }^{\circ} \mathrm{C}\) \\
\hline Collector-Cutoff Current & \(\mathrm{I}_{\mathrm{CBO}}\) & \(\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & 0.002 & nA \\
\hline Collector-to-Emitter Breakdown Voltage & \(V_{\text {(BR)CEO }}\) & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & 24 & V \\
\hline Collector-to-Base Breakdown Voltage & \(V_{(B R) C B O}\) & \(I_{C}=10 \mu A, I_{E}=0\) & 60 & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(V_{(\text {BR }) \text { CIO }}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{Cl}}=0\) & 60 & V \\
\hline Emitter-to-Base Breakdown Voltage & \(V_{(B R) E B O}\) & \(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & 7 & V \\
\hline
\end{tabular}

DYNAMIC CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|}
\hline Common-Mode Rejection Ratio For Each Amplifier & CMR & \multirow{5}{*}{\[
\begin{aligned}
& V_{C C}=12 \mathrm{~V} \\
& V_{E E}=-6 \mathrm{~V} \\
& V_{x}=-3.3 \mathrm{~V} \\
& f=1 \mathrm{kHz}
\end{aligned}
\]} & 100 & dB \\
\hline AGC Range, One Stage & AGC & & 75 & dB \\
\hline Voltage Gain, Single Stage Double-Ended Output & A & & 32 & dB \\
\hline AGC Range, Two Stage & AGC & & 105 & dB \\
\hline Voltage Gain, Two Stage Double-Ended Output & A & & 60 & dB \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS at \(\mathbf{T}_{\mathbf{A}}=\mathbf{2 5} \mathbf{5}^{\circ} \mathbf{C}\) - Cont'd.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOLS} & \multirow[t]{2}{*}{TEST CONDITIONS} & \begin{tabular}{l}
CA3026 \\
LIMITS
\end{tabular} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & TYP. & \\
\hline \multicolumn{5}{|l|}{DYNAMIC CHARACTERISTICS (Cont'd.)} \\
\hline Low-Frequency, Small-Signal Equivalent-Circuit Characteristics: (For Single Transistor) & & & & \\
\hline Forward Current-Transfer Ratio & \(\mathrm{hf}_{\text {fe }}\) & \multirow[b]{4}{*}{\[
\begin{aligned}
& \mathrm{f}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}
\end{aligned}
\]} & 110 & - \\
\hline Short-Circuit Input Impedance & \(\mathrm{h}_{\text {ie }}\) & & 3.5 & \(\mathrm{k} \Omega\) \\
\hline Open-Circuit Output Impedance & \(\mathrm{h}_{0 \mathrm{e}}\) & & 15.6 & \(\mu \mathrm{mho}\) \\
\hline Open-Circuit Reverse VoltageTransfer Ratio & \(\mathrm{h}_{\text {re }}\) & & \(1.8 \times 10^{-4}\) & - \\
\hline 1/f Noise Figure (For Single Transistor) & NF & \(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\text {CE }}=3 \mathrm{~V}\) & 3.25 & dB \\
\hline Gain-Bandwidth Product (For Single Transistor) & \({ }^{\mathrm{f}}\) T & \(\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\) & 550 & MHz \\
\hline \multicolumn{5}{|l|}{Admittance Characteristics; Differential Circuit Configuration: (For Each Amplifier)} \\
\hline Forward Transfer Admittance & \(\mathrm{y}_{21}\) & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V} \\
& \text { Each Collector } \\
& \mathrm{I}_{\mathrm{C}} \approx 1.25 \mathrm{~mA} \\
& \mathrm{f}=1 \mathrm{MHz}
\end{aligned}
\]} & -20+j0 & mmho \\
\hline Input Admittance & \(\mathrm{y}_{11}\) & & \(0.22+\mathrm{j} 0.1\) & mmho \\
\hline Output Admittance & \(\mathrm{y}_{22}\) & & \(0.01+\mathrm{j} 0\) & mmho \\
\hline Reverșe Transfer Admittance & \(y_{12}\) & & \(-0.003+\mathrm{j} 0\) & mmho \\
\hline Admittance Characteristics; Cascode Circuit Configuration: (For Each Amplifier) & & & & \\
\hline Forward Transfer Admittance & \(\mathrm{y}_{21}\) & \multirow[t]{4}{*}{\[
\begin{aligned}
& V_{C B}=3 \mathrm{~V} \\
& \text { Total Stage } \\
& \mathrm{I}_{\mathrm{C}} \approx 2.5 \mathrm{~mA} \\
& \mathrm{f}=1 \mathrm{MHz}
\end{aligned}
\]} & 68-j0 & mmho \\
\hline Input Admittance & \(\mathrm{y}_{11}\) & & 0.55+j0 & mmho \\
\hline Output Admittance & \(\mathrm{y}_{22}\) & & 0+j0.02 & mmho \\
\hline Reverse Transfer Admittance & \(\mathrm{y}_{12}\) & & 0.004-j0.005 & \(\mu \mathrm{mho}\) \\
\hline Noise Figure & NF & \(\mathrm{f}=100 \mathrm{MHz}\) & 8 & dB \\
\hline
\end{tabular}

Table 1. Pre Burn-In and Post Burn-In Electrical Tests and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline Input Bias Current For Each Transistor Q1, Q2, Q5, and Q6 & 11 & \(V_{C E}=3 V, I_{E}=2 \mathrm{~mA}\) & - & 24 & \(\pm 6.0\) & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Base-to-Emitter Voltage \\
For Each Transistor Q3 and Q4
\end{tabular} & \(V_{B E}\) & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & 0.7 & 0.8 & \(\pm 0.1\) & V \\
\hline Input Offset Voltage For Each Differential Amplifier & V10 & \(V_{C E}=3 V_{, ~} I_{E}=2 \mathrm{~mA}\) & - & 5 & \(\pm 2\) & mV \\
\hline
\end{tabular}
-Levels /1N, /1R, /1, and /2 require pre and post burn-in electrical tests and delta limits.
Level /3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown on page 329.

Table II. Group A Electrical Sampling Inspection Tests and Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow{3}{*}{TEST CONDITIONS} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{For Each Transistor :} \\
\hline Collector Cutoff Current & \({ }^{\text {I }}\) CBO & \(V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & - & - & - & 0.1 & 0.1 & 20 & \(\mu \mathrm{A}\) \\
\hline Collector To-Base Breakdown Voltage & \(V_{(B R) C B O}\) & \({ }^{\prime} C=10 \mu A, I_{E}=0\) & - & 20 & - & - & - & - & V \\
\hline Emitter-To-Base Breakdown Voltage & \(V_{(B R) E B O}\) & \(I_{E}=10 \mu A, I_{C}=0\) & - & 5 & - & - & - & - & V \\
\hline Collector-To-Substrate Breakdown Voltage & \(V\) (BR)CIO & \({ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C} 1}=0\) & - & 20 & - & - & - & - & V \\
\hline Collector-To-Emitter Breakdown Voltage & \(V_{\text {(BR) }}\) CEO & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & - & 15 & - & - & - & - & V \\
\hline ```
Input Bias Current
 For Transistors Q3
 and Q4
``` & 11 & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=2 \mathrm{~mA}\) & - & - & - & 50 & 25 & 20 & \(\mu \mathrm{A}\) \\
\hline ```
Input Bias Current
    For Transistors Q1,
        Q2, Q5, and Q6
``` & 11 & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=2 \mathrm{~mA}\) & - & - & - & 50 & 25 & 20 & \(\mu \mathrm{A}\) \\
\hline ```
Base-To-Emitter Volt-
 age For Transistors
 Q3 and Q4
``` & \(V_{B E}\) & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & 0.7 & 0.7 & 0.4 & 1.05 & 0.8 & 0.75 & V \\
\hline \multicolumn{10}{|l|}{For Each Differential Amplifier} \\
\hline Input Offset Current & 110 & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{E}=2 \mathrm{~mA}\) & - & - & - & - & 2 & - & \(\mu \mathrm{A}\) \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=2 \mathrm{~mA}\) & - & - & - & - & 5 & - & mV \\
\hline
\end{tabular}

Table III. Group C Electical Characteristics Sampling Tests ( \(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline For Each Transistor: Collector Cutoff Current & \({ }^{\prime} \mathrm{CBO}\) & \(V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & - & 0.2 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Input Bias Current \\
For Transistors Q1, Q2, Q5, \& Q6
\end{tabular} & 11 & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=2 \mathrm{~mA}\) & - & 28 & \(\mu \mathrm{A}\) \\
\hline Base-to-Emitter Voltage For Transistors Q3 and Q4 & \(V_{\text {BE }}\) & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & 0.65 & 0.85 & V \\
\hline For Each Differential Amplifier : Input Offset Voltage & \(V_{10}\) & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{E}=2 \mathrm{~mA}\) & - & 6 & mV \\
\hline
\end{tabular}


Burn-in and operating life test circuit.


Fig. 2 - Base-to-emitter voltage characteristic for each transistor vs ambient temperature.


Fig. 4 - Input offset current for matched differential pairs vs collector current.


Fig. 6 - Two-stage voltage gain.


Fig. 3 - Offset voltage characteristic vs ambient temperature for differential pairs.


DC BIAS VOLTS ON TERMINAL 8
92CS-I5254R1

Fig. 5-Single-stage voltage gain


Fig. 7 - Forward current-transfer ratio ( \(h_{f e}\) ), short-circuit input impedance ( \(h_{i e}\) ), open-circuit output impedance ( \(h_{o e}\) ), and open-circuit reverse voltagetransfer ratio ( \(h_{r e}\) ) vs collector current for each transistor.


Solid State Division

Linear Integrated Circuits
Monolithic Silicon High-Reliability Slash(/) Series CA3028B/. . .


\section*{High-Reliability Differential/Cascode Amplifier}

For Applications In Aerospace, Military and Critical Industrial Equipment Features:
- Controlled for input offset voltage, input offset current, and input bias current
- Balanced differential amplifier configuration with controlled constant-current source to provide unexcelled versatility
- Single- and dual-ended operation
- Operation from DC to 120 MHz
- Balanced-AGC capability
- Wide operating-current range


Fig. 1 - Schematic diagram.


92CS-15831

Applications:
- RF and IF amplifiers (differential or cascode)
- DC, audio, and sense amplifiers
- Converter in the Commerical FM Band
- Oscillator m Mixer - Limiter
- See Application Note, ICAN 5337 "Application of the RCA CA3028 integrated circuit amplifier in the HF and VHF ranges."

RCA-CA3028B "Slash" (/) Series type is a high-reliability linear integrated circuit Differential/Cascode Amplifier intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA3028B described in Data Bulletin File No. 382 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels/1N, /1R , /1, /2, /3, and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL. STD-883."

The CA3028B Slash (/) Series type is supplied in the 8-lead TO-5 style package (" T " suffix), in the 8 -lead TO- 5 style package with dual-in-line formed leads, DIL-CAN, ("S" suffix), or in chip form ("H" suffix).

Fig. 2- Burn-in and operating life test circuit.

ABSOLUTE-MAXIMUM RATINGS at \(\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\) :
DISSIPATION:
At \(T_{A}\) up to \(85^{\circ} \mathrm{C}\). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 mW
At TA \(>85^{\circ} \mathrm{C}\) derate linearly . . . . . . . . . . . . . . . . . . . . . . . . . . . \(5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

AMBIENT TEMPERATURE RANGE:
Operating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(-\mathbf{5 5}\) to \(\mathbf{+ 1 2 5 5 ^ { \circ } \mathrm { C }}\)
Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65 to \(+150^{\circ} \mathrm{C}\)
LEAD TEMPERATURE (During Soldering):
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
( \(1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm}\) )
from case for 10 s max. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(265^{\circ} \mathrm{C}\)

MAXIMUM VOLTAGE RATINGS at \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \text { TERM- } \\
\text { INAL } \\
\text { No. }
\end{array}
\] & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1 & & 0
to
to
.15 & \begin{tabular}{c} 
\\
0 \\
to \\
to \\
\hline 15
\end{tabular} & \begin{tabular}{c} 
\\
0 \\
to \\
to \\
\hline 15
\end{tabular} & +5
to

5 & * & * & \begin{tabular}{c}
+20 \\
to \\
0 \\
\hline
\end{tabular} \\
\hline 2 & & & +5
to
-11 & +5
to
-1 & +15
to
0
0 & * & +15
to
0 & * \\
\hline \(3 \ddagger\) & & & & \[
\begin{array}{r}
+10 \\
\text { to } \\
0
\end{array}
\] & \[
\begin{gathered}
+15^{\circ} \\
\text { to } \\
0
\end{gathered}
\] & \[
\begin{gathered}
+300 \\
10 \\
0
\end{gathered}
\] & \[
\begin{gathered}
+15 \\
\text { to } \\
0
\end{gathered}
\] & \[
\begin{gathered}
+30^{\circ} \\
\text { to } \\
0 \\
\hline
\end{gathered}
\] \\
\hline 4 & & & & & +15
to
0 & * & * & * \\
\hline 5 & & & & & & \[
\begin{gathered}
+20 \oplus \\
\text { to } \\
0
\end{gathered}
\] & * & * \\
\hline 6 & & & & & & & * & * \\
\hline 7 & & & & & & & & * \\
\hline 8 & & & & & & & & \\
\hline
\end{tabular}

\section*{MAXIMUM CURRENT RATINGS}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
TERM \\
INAL \\
No.
\end{tabular} & \begin{tabular}{c} 
IIN \\
mA
\end{tabular} & \begin{tabular}{c} 
IOUT \\
mA
\end{tabular} \\
\hline 1 & 0.6 & 0.1 \\
\hline 2 & 4 & 0.1 \\
\hline 3 & 0.1 & 23 \\
\hline 4 & 20 & 0.1 \\
\hline 5 & 0.6 & 0.1 \\
\hline 6 & 20 & 0.1 \\
\hline 7 & 4 & 0.1 \\
\hline 8 & 20 & 0.1 \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS at \(\mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TEST CONDITIONS}} & LIMITS & \multirow[t]{2}{*}{UNITS} \\
\hline & & & & TYP. & \\
\hline \multicolumn{6}{|l|}{STATIC CHARACTERISTICS} \\
\hline & & \(\mathrm{V}^{+}\) & V- & & \\
\hline Input Offset Voltage & V10 & \[
\begin{aligned}
& 6 \mathrm{~V} \\
& 12 \mathrm{~V}
\end{aligned}
\] & \[
\begin{gathered}
6 \mathrm{~V} \\
12 \mathrm{~V}
\end{gathered}
\] & \[
\begin{aligned}
& 0.98 \\
& 0.89
\end{aligned}
\] & mV \\
\hline Input Offset Current & 110 & \[
\begin{gathered}
6 \mathrm{~V} \\
12 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
6 \mathrm{~V} \\
12 \mathrm{~V}
\end{gathered}
\] & \[
\begin{aligned}
& 0.56 \\
& 1.06
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 11 & \[
\begin{gathered}
6 . V \\
12 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
6 \mathrm{~V} \\
12 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
16.6 \\
36
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Quiescent Operating Current & 16 or 18 & \[
\begin{gathered}
6 \mathrm{~V} \\
12 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
6 \mathrm{~V} \\
12 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
1.25 \\
3.3
\end{gathered}
\] & mA \\
\hline Input Current (Terminal No. 7) & 17 & \[
\begin{gathered}
6 \mathrm{~V} \\
12 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
6 \mathrm{~V} \\
12 \mathrm{~V}
\end{gathered}
\] & \[
\begin{aligned}
& 0.85 \\
& 1.65
\end{aligned}
\] & mA \\
\hline Device Dissipation & \(\mathrm{P}_{\text {T }}\) & \[
\begin{gathered}
6 \mathrm{~V} \\
12 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
6 \mathrm{~V} \\
12 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
36 \\
175
\end{gathered}
\] & mW \\
\hline
\end{tabular}

File No. 711

ELECTRICAL CHARACTERISTICS AT TA \(=\mathbf{2 5}{ }^{\circ} \mathrm{C}\) - Cont'd.


TABLE I. GROUP A ELECTRICAL SAMPLING INSPECTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristics} & \multirow{3}{*}{Symbol} & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{Test Conditions}} & \multicolumn{6}{|l|}{Limits for Indicated Temp. ( \({ }^{\circ} \mathrm{C}\) )} & \multirow{3}{*}{Units} \\
\hline & & & & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & \multicolumn{2}{|r|}{\(\mathrm{V}_{\mathrm{CC}}\)} & \multicolumn{2}{|l|}{\(V_{E E}\)} & - 55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{13}{|l|}{Static} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[b]{2}{*}{\(V_{10}\)} & +6 & & -6 & & - & - & - & 7 & 5 & 7.5 & \multirow{2}{*}{mV} \\
\hline & & +1 & & -12 & & - & - & - & 5 & 5 & 6 & \\
\hline \multirow[t]{2}{*}{Input Offset Current} & \multirow{2}{*}{\({ }_{10}\)} & \(+6\) & & -6 & & - & - & - & 10 & 5 & 7.5 & \multirow{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & +1 & & -12 & & - & - & - & 12 & 6 & 9 & \\
\hline \multirow[t]{2}{*}{Input Bias Current} & \multirow{2}{*}{1} & \(+6\) & & -6 & & - & - & - & 70 & 40 & 35 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & + & & -12 & & - & - & - & 130 & 80 & 55 & \\
\hline \multirow[t]{2}{*}{Quiescent Oper. Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \mathrm{I}_{6} \\
& \text { or } \\
& \mathrm{I}_{8} \\
& \hline
\end{aligned}
\]} & \(+6\) & & -6 & & 0.5 & 1.0 & 0.5 & 2.0 & 1.5 & 2.0 & \multirow[t]{2}{*}{mA} \\
\hline & & +1 & & -12 & & 2.0 & 2.5 & 1.5 & 4.5 & 4.0 & 4.0 & \\
\hline \multirow[t]{2}{*}{Input Current (terminal 7)} & \multirow{2}{*}{\(\mathrm{I}_{7}\)} & +6 & & -6 & & 0.5 & 0.5 & 0.35 & 1.5 & 1.0 & 1.2 & \multirow{2}{*}{mA} \\
\hline & & +1 & & -12 & & 1.0 & 1.0 & 0.75 & 2.5 & 2.1 & 2.0 & \\
\hline \multirow[t]{2}{*}{Device Dissipation} & \multirow{2}{*}{\(\mathrm{P}_{\mathrm{T}}\)} & +6 & & -6 & & 20 & 24 & 20 & 45 & 42 & 45 & \multirow{2}{*}{mW} \\
\hline & & + 1 & & -12 & & 120 & 120 & 105 & 230 & 220 & 210 & \\
\hline \multicolumn{13}{|l|}{Dynamic} \\
\hline \multirow{4}{*}{Power Gain} & \multirow{4}{*}{\({ }^{6} P\)} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=+9 V\left\{\begin{array}{l}
\text { Cascode } \\
f=10.7 \mathrm{MHz}\{\text { Diff-Ampl }
\end{array}\right.
\end{aligned}
\]}} & - & 35 & - & - & - & - & \multirow{4}{*}{dB} \\
\hline & & & & & & - & 28 & - & - & - & - & \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=+9 V \\
& f=100 \mathrm{MHz}
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\text { Cascode } \\
\text { Diff-Ampl }
\end{array}\right.
\]}} & - & 16 & - & - & - & - & \\
\hline & & & & & & - & 14 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{Noise Figure} & \multirow[t]{2}{*}{NF} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=+9 V \\
& f=100 \mathrm{MHz}
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\left\{\begin{array}{l}
\text { Cascode } \\
\text { Diff-Ampl }
\end{array}\right.
\]}} & - & - & - & - & 9 & - & \multirow[t]{2}{*}{dB} \\
\hline & & & & & & - & - & - & - & 9 & - & \\
\hline \multirow{3}{*}{Voltage Gain (Differential)} & \multirow{3}{*}{A} & \(\mathrm{V}_{\mathrm{CC}}\) & \(V_{E E}\) & Freq. kHz & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}} \\
& \mathrm{k} \mathrm{~S}_{\mathrm{L}} \\
& \hline
\end{aligned}
\] & & & & & & & \\
\hline & & +6 & -6 & \multirow{2}{*}{1} & 2 & - & 35 & - & - & 42 & - & \multirow{2}{*}{dB} \\
\hline & & +12 & -12 & & 1.6 & - & 40 & - & - & 45 & - & \\
\hline \multirow[t]{2}{*}{Max. Peak-toPeak Output Voltage} & \multirow[t]{2}{*}{\(V_{0(P+P)}\)} & +6 & -6 & \multirow[t]{2}{*}{1} & 2 & - & 7 & - & - & - & - & \multirow[t]{2}{*}{\(V(P-P)\)} \\
\hline & & + 12 & - 12 & & 1.6 & - & 15 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{Common-Mode Input-Voltage Range} & \multirow{2}{*}{\(V_{\text {CMR }}\)} & +6 & -6 & & & - & [ \(\begin{array}{r}-2.5 \\ \text { to }+4\end{array}\) & - & - & - & - & \multirow[t]{2}{*}{V} \\
\hline & & + 12 & -12 & & & - & to \(\begin{array}{r}-5 \\ +7\end{array}\) & - & - & - & - & \\
\hline \multirow[t]{2}{*}{Common-Mode Rejection Ratio} & \multirow[t]{2}{*}{CMRR} & +6 & -6 & & & - & 60 & - & - & - & - & \multirow[t]{2}{*}{dB} \\
\hline & & +12 & -12 & & & - & 60 & - & - & - & - & \\
\hline
\end{tabular}

Table II. PRE BURN-IN ELECTRICAL AND POST BURN-IN ELECTRICAL TESTS, AND DELTA LIMITS*
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ CHARACTERISTIC } & SYMBOL & TEST CONDITIONS & \multicolumn{3}{|c|}{ LIMITS } & UNITS \\
\cline { 4 - 8 } & & & & Min. & Max. & Max \(\triangle\) \\
\\
\hline Input Bias Current & \(\mathrm{I}_{1}\) & & - & 80 & \(\pm 8\) & \(\mu \mathrm{~A}\) \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & & \(\cdot\) & 5 & \(\pm 2\) & mV \\
\hline Quiescent Oper. Current & \(\mathrm{I}_{6}\) or \(\mathrm{I}_{8}\) & & 2.5 & 4 & \(\pm 0.4\) & mA \\
\hline Input Current (term. 7) & \(\mathrm{I}_{7}\) & & 1.0 & 2.1 & \(\pm 0.2\) & mA \\
\hline Device Dissipation & \(\mathrm{P}_{\mathrm{T}}\) & & 120 & 220 & \(\pm 24\) & mW \\
\hline
\end{tabular}
*Levels /1 and \(/ 2\) require pre burn-in electrical and post burn-in electrical tests, and delta limits.
Level /3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 2.
Table III. FINAL ELECTRICAL TESTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { SYM- } \\
& \text { BOLS }
\end{aligned}
\]} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURE ( \({ }^{\circ} \mathrm{C}\) )} & \multirow{3}{*}{UNITS} \\
\hline & & \multirow[t]{2}{*}{\(\mathrm{V}^{+}\)} & \multirow[t]{2}{*}{V-} & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & & . 55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{11}{|l|}{STATIC} \\
\hline Input Offset Voltage & \(V_{10}\) & \[
\begin{aligned}
& +6 \\
& +12
\end{aligned}
\] & \[
\begin{aligned}
& \hline-6 \\
& -12 \\
& \hline
\end{aligned}
\] & - & - & - & 5 & \[
\begin{aligned}
& 5 \\
& 5
\end{aligned}
\] & 6 & mV \\
\hline Input Offset Current & 10 & \[
\begin{aligned}
& +6 \\
& +12 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -6 \\
& -12
\end{aligned}
\] & . & - & . & \[
12
\] & \[
\begin{aligned}
& 5 \\
& 6
\end{aligned}
\] & \[
9
\] & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & \[
\begin{aligned}
& +6 \\
& +12 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& -6 \\
& -12 \\
& \hline
\end{aligned}
\] & - & . & . & \[
130
\] & \[
\begin{aligned}
& 40 \\
& 80 \\
& \hline
\end{aligned}
\] & \[
55
\] & \(\mu \mathrm{A}\) \\
\hline Quiescent Oper. Current & \[
\begin{array}{|l|l} 
& I_{6} \\
\hline \text { or } & 1_{8} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& +6 \\
& +12
\end{aligned}
\] & \[
\begin{aligned}
& -6 \\
& -12
\end{aligned}
\] & \[
2.0
\] & \[
\begin{gathered}
1 \\
2.5
\end{gathered}
\] & \[
1.5
\] & 4.5 & \[
\begin{aligned}
& 1.5 \\
& 4.0
\end{aligned}
\] & \[
4.0
\] & mA \\
\hline Input Current (terminal 7) & 17 & \[
\begin{aligned}
& +6 \\
& +12
\end{aligned}
\] & \[
\begin{aligned}
& \hline-6 \\
& -12
\end{aligned}
\] & 1.0 & \[
\begin{aligned}
& 0.5 \\
& 1.0
\end{aligned}
\] & \[
0.75
\] & 2.5 & \[
\begin{aligned}
& 1.0 \\
& 2.1
\end{aligned}
\] & \[
2.0
\] & mA \\
\hline Device Dissipation & \(\mathrm{P}_{\mathrm{T}}\) & \[
\begin{aligned}
& \hline+6 \\
& +12 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline-6 \\
& -12 \\
& \hline
\end{aligned}
\] & \[
120
\] & \[
\begin{aligned}
& 24 \\
& 120 \\
& \hline
\end{aligned}
\] & \[
105
\] & \[
230
\] & \[
\begin{aligned}
& 42 \\
& 220 \\
& \hline
\end{aligned}
\] & \[
210
\] & mW \\
\hline \multicolumn{11}{|l|}{DYNAMIC} \\
\hline \multirow[b]{2}{*}{Power Gain} & \multirow[b]{2}{*}{\(G_{p}\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=+9 \mathrm{~V}, \mathrm{f}=10.7 \mathrm{MHz} \\
& \text { Diff.-Ampl. Config. }
\end{aligned}
\]} & - & 28 & - & - & - & - & dB \\
\hline & & \multicolumn{2}{|l|}{\[
V_{C C}=+9 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}
\]
Cascode Ampl. Config.} & - & 16 & - & - & - & - & dB \\
\hline Noise Figure & NF & \multicolumn{2}{|l|}{\[
V_{C C}=+9 \mathrm{~V}, \mathrm{f}=100 \mathrm{MHz}
\]
Cascode Ampl. Config.} & - & - & - & - & 9 & - & dB \\
\hline Voltage Gain (Diff.) & A & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\
& \mathrm{R}_{\mathrm{L}}=1.6 \mathrm{kS}
\end{aligned}
\]} & - & 40 & \(\cdot\) & - & 45 & \(\cdot\) & dB \\
\hline
\end{tabular}

Table IV. GROUP C ELECTRICAL CHARACTERISTICS SAMPLING TESTS (TA \(=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}^{+}=+\mathbf{1 2 V}, \mathrm{V}^{-}=\mathbf{- 1 2 V}\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|r|}{LIMITS} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & Min. & Max. & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & & - & 5 & mV \\
\hline Input Bias Current & 11 & & - & 80 & \(\mu \mathrm{A}\) \\
\hline Quiescent Oper. Current & \(\mathrm{I}_{6}\) or \(\mathrm{I}_{8}\) & & 2.5 & 4.0 & mA \\
\hline Input Current (term. 7) & 17 & & 1.0 & 2.1 & mA \\
\hline Device Dissipation & \(\mathrm{P}_{\text {T }}\) & & 120 & 220 & mW \\
\hline Power Gain & \(G_{p}\) & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=+9 \mathrm{~V}, \mathrm{f}=10.7 \mathrm{MHz} \\
\text { Diff.-Ampl. Config. }
\end{gathered}
\] & 28 & - & dB \\
\hline
\end{tabular}


Solid State Division


\title{
High-Reliability Diode Array Six Ultra - Fast Low Capacitance Matched Diodes
}

For Applications in Communications and Switching Systems of Aerospace, Military and Critical Industrial Equipment

RCA-CA3039 "Slash" (/) Series type is a high-reliability linear integrated circuit Diode Array intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA3039 described in Data Bulletin File No. 343 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

Features:
- Excellent reverse recovery time - 1 ns typ.
- Matched monolithic construction -
\(\mathrm{V}_{\mathrm{F}}\) matched within 5 m V
- Low diode capacitance -
\(C_{D}=0.65 \mathrm{pF}\) typical at \(\mathrm{V}_{\mathrm{R}}=-2 \mathrm{~V}\)

The packaged types can be supplied to six screening levels\(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\), and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

\section*{Applications:}
- Balanced modulators or demodulators
- Ring modulators
- High speed diode gates
- Analog switches

The CA3039 Slash (/) Series type is supplied in the 12-lead TO- 5 style package (" \(T\) " suffix) or in chip form (" H " suffix).

\section*{ABSOLUTE MAXIMUM RATINGS at \(\mathrm{T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}\)}


Peak Inverse Voltage, PIV for: \(\mathrm{D}_{1}-\mathrm{D}_{5} \ldots \mathrm{~F}\)
\(\mathrm{D}_{6} \ldots \ldots . . . \mathrm{V}^{2}\)
Peak Diode-to-Substrate Voltage, \(\mathrm{V}_{\mathrm{DI}}\)
for \(D_{1}-D_{5}\) (term. 1,4,5,8 or 12 to term. 10 ) \(+20,-1 \mathrm{~V}\)
DC Forward Current, IF . . . . . . . . . . . . . . 25 mA
Peak Recurrent Forward Current, If . . . . . . 100 mA
Peak Forward Surge Current, If (surge). . . . . . 100 mA
LEAD TEMPERATURE (During Soldering): At distance \(1 / 6^{\prime \prime} \pm 1 / 32^{\prime \prime}(1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm}\) ) from case for 10 s max \(\ldots \ldots . .\).

ELECTRICAL CHARACTERISTICS, at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
Characteristics apply for each diode unit, unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOLS} & \multirow[t]{2}{*}{TEST CONDITIONS} & LIMITS & \multirow[t]{2}{*}{UNITS} \\
\hline & & & TYP. & \\
\hline \multirow{4}{*}{DC Forward Voltage Drop} & \multirow{4}{*}{\(V_{F}\)} & \(\mathrm{I}_{\mathrm{F}}=50 \mu \mathrm{~A}\) & - 0.65 & V \\
\hline & & 1 mA & 0.73 & V \\
\hline & & 3 mA & 0.76 & V \\
\hline & & 10 mA & 0.81 & V \\
\hline DC Reverse Breakdown Voltage & \(V_{(B R) R}\) & \(\mathrm{I}_{\mathrm{R}}=40 \mu \mathrm{~A}\) & 7 & V \\
\hline DC Reverse Breakdown Voltage Between any Diode Unit and Substrate & \(V_{(B R) R}\) & \(\mathrm{I}_{\mathrm{R}}=-10 \mu \mathrm{~A}\) & - & V \\
\hline DC Reverse (Leakage) Current & \(\mathrm{I}_{\mathrm{R}}\) & \(V_{R}=-4 \mathrm{~V}\) & 0.016 & nA \\
\hline DC Reverse (Leakage) Current Between any Diode Unit and Substrate & \(I_{R}\) & \(V_{R}=-10 \mathrm{~V}\) & 0.022 & nA \\
\hline Magnitude of Diode Offset Voltage (Difference in DC Forward Voltage Drops of any Two Diode Units) & \(\left|V_{F_{1}}-V_{F_{2}}\right|\) & \(I_{F}=1 \mathrm{~mA}\) & 0.5 & mV \\
\hline Temperature Coefficient of \(\left|V_{F_{1}}-V_{F_{2}}\right|\) & \(\frac{\Delta\left|V_{F_{1}}-V_{F_{2}}\right|}{\Delta T}\) & \(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\) & 1 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Temperature Coefficient of Forward Drop & \(\frac{\Delta V_{F}}{\Delta T}\) & \(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\) & -1.9 & mV/ \({ }^{\circ} \mathrm{C}\) \\
\hline DC Forward Voltage Drop for Anode-to-Substrate Diode (DS) & \(V_{F}\) & \(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\) & 0.65 & V \\
\hline Reverse Recovery Time & \(\mathrm{t}_{\mathrm{rr}}\) & \(I_{F}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}\) & 1 & ns \\
\hline Diode Resistance & \(\mathrm{R}_{\mathrm{D}}\) & \(f=1 \mathrm{kHz}, \mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\) & 30 & \(\Omega\) \\
\hline Diode Capacitance & \(C_{D}\) & \(\mathrm{V}_{\mathrm{R}}=-2 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0\) & 0.65 & pF \\
\hline Diode-to-Substrate Capacitance & \(C_{\text {DI }}\) & \(V_{D I}=+4 V, I_{F}=0\) & 3.2 & pF \\
\hline
\end{tabular}

Table 1 - Pre Burn-In and Post Burn-In Electrical Tests and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS AT \(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline Each Diode DC Forward Voltage Drop & \(V_{F}\) & \(I_{F}=3 \mathrm{~mA}\) & 0.69 & 0.81 & \(\pm 0.010\) & V \\
\hline
\end{tabular}
*Levels /1N, /1R, /1, and /2 require pre and post burn-in electrical tests and delta limits
Level / 3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 7.

Table II - Final Electrical Tests and Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow{3}{*}{TEST CONDITIONS} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES ( \({ }^{\circ} \mathrm{C}\) )} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline Each Diode: DC Forward Voltage Drop & \(V_{F}\) & \(\prime^{\prime}=3 \mathrm{~mA}\) & 0.82 & 0.69 & 0.47 & 1.0 & 0.86 & 0.63 & V \\
\hline DC Reverse Leakage Current & \(I_{R}\) & \(V_{R}=-4 \mathrm{~V}\) & - & - & - & - & 100 & - & nA \\
\hline DC Reverse Breakdown Voltage & \(V_{(B R) R}\) & \(\mathrm{I}_{\mathrm{R}}=40 \mu \mathrm{~A}\) & - & 5 & - & - & - & - & V \\
\hline ```
Between Any Two
Diodes:
    Diode Offset Voltage
``` & \(\left|v_{F 1}-v_{F 2}\right|\) & \(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\) & - & - & - & - & 8 & - & mV \\
\hline Breakdown Voltage Isolation-to-Substrate & & -50 V through a \(25 \mathrm{k} \Omega\) resistor to terminal 10 . Ground terminals 1 through 9, 11 and 12. Measure voltage at terminal 10. & - & - & - & -25 & -25 & -25 & V \\
\hline
\end{tabular}

Table III-Group C Electrical Characteristics Sampling Tests (\(T_{A}=25^{\circ}\) C)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|c|}{Limits} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline Each Diode: DC Forward Voltage Drop & \(V_{F}\) & \(\mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}\) & 0.69 & 0.81 & V \\
\hline DC Reverse Leakage Current & \(\mathrm{I}_{\mathrm{R}}\) & \(\mathrm{V}_{\mathrm{R}}=-4 \mathrm{~V}\) & - & 100 & nA \\
\hline DC Reverse Breakdown Voltage & \(V_{\text {(BR) }}\) & \(\mathrm{I}_{\mathrm{R}}=40 \mu \mathrm{~A}\) & 5 & - & V \\
\hline Between Any Two Diodes: Diode Offset Voltage & \(\left|V_{F 1}-V_{F 2}\right|\) & \(\mathrm{I}=1 \mathrm{~mA}\) & - & 8 & mV \\
\hline
\end{tabular}

Fig. 2 - DC forward voltage drop (any diode) and diode offset voltage vs DC forward current.

Fig. \(4-\) DC reverse (leakage) current between diodes (1,2,3,4,5) and substrate vs temperature.

Fig. 3-DC reverse (leakage) current (diodes 1,2,3,4,5) vs temperature.

Fig. 5 - Diode offset voltage (any diode) vs temperature.

Fig. 6 - Diode resistance (any diode) vs DC forward current.

Fig. 7 - Burn-in and operating life test circuit.

\title{
High-Reliability General-Purpose Transistor Array
}

Three Isolated Transistors and One Differentially-Connected Transistor Pair
For Low-Power Applications at Frequencies Through the VHF Range In Aerospace, Military, and Critical Industrial Equipment

\section*{Features:}
- Two matched pairs of transistors
\(V_{\text {BE }}\) matched \(\pm 5 \mathrm{mV}\)
Input offset current \(2 \mu \mathrm{~A}\) max. at \(\mathrm{IC}=1 \mathrm{~mA}\)
- 5 general purpose monolithic transistors
- Operation from DC to 120 MHz

RCA-CA-3045 "Slash" (/) Series type is a high-reliability linear integrated circuit general-purpose transistor array intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA3045 described in Data Bulletin File No. 341 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels/1N, /1R , /1, /2, /3, and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RiC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL. STD-883."

The CA3045 Slash (/) Series type is supplied in the 14 -lead dual-in-line ceramic package (" \(D\) " suffix) or in chip form ("H" suffix).
- Wide operating current range
- Low noise figure - \(\mathbf{3 . 2} \mathbf{~ d B}\) typ. at \(1 \mathbf{k H z}\)
- Full military temperature range for CA3045 -55 to \(+125^{\circ} \mathrm{C}\)

\section*{Applications:}
- General use in all types of signal processing systems operating anywhere in the frequency range from DC to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers
- See RCA Application Note, ICAN-5296 "Application of the RCA-CA3018 Integrated-Circuit Transistor Array" for suggested applications.

Fig. 1 - Schematic diagram.

ABSOLUTE MAXIMUM RATINGS AT \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) :
\begin{tabular}{cc}
EACH & TOTAL \\
TRANSISTOR PACKAGE
\end{tabular}

POWER DISSIPATION:
\begin{tabular}{|c|c|c|}
\hline At \(T_{A}\) up to \(75^{\circ} \mathrm{C}\) At \(T_{A}>75^{\circ} \mathrm{C}\). & 300 & Derate at \(8 \mathrm{mmW} /{ }^{\circ} \mathrm{C}\) \\
\hline Collector-to-Emitter Voltage, \(\mathrm{V}_{\text {CEO }}\) & 15 & - \\
\hline Collector-to-Base Voltage, \(\mathrm{V}_{\text {CBO }}\) & 20 & - \\
\hline Collector-to-Substrate Voltage, \(\mathrm{V}_{\mathrm{CIO}}{ }^{*}\) & 20 & - \\
\hline Emitter-to-Base Voltage, \(\mathrm{V}_{\text {EBO }}\) & 5 & - \\
\hline Collector Current, IC & 50 & - \\
\hline
\end{tabular}

TEMPERATURE RANGE:
\begin{tabular}{|c|c|}
\hline Operating & -55 to +125 \\
\hline Storage & -65 to +150 \\
\hline
\end{tabular}

LEAD TEMPERATURE (During Soldering):
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}(1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm})\) from case for 10 s max. \(265^{\circ} \mathrm{C}\)
*The collector of each transistor of the CA3045 is isolated from the substrate by an integral diode. The substrate (terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow{3}{*}{SPECIAL TEST CONDITIONS} & LIMITS & \multirow{3}{*}{UNITS} & \multirow[t]{2}{*}{CHARACTERISTIC CURVES} \\
\hline & & & Type CA3045 & & \\
\hline & & & TYP. & & FIG. \\
\hline \multicolumn{6}{|l|}{STATIC CHARACTERISTICS} \\
\hline Collector-to-Base Breakdown Voltage & \(V_{\text {(BR)CBO }}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\) & 60 & V & - \\
\hline Collector-to-Emitter Breakdown Voltage & \(V_{\text {(BR)CEO }}\) & \(\mathrm{I}_{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & 24 & V & - \\
\hline Collector-to-Substrate Breakdown Voltage & \(V_{\text {(BR)ClO }}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{Cl}}=0\) & 60 & V & - \\
\hline Emitter-to-Base Breakdown Voltage & \(V_{\text {(BR)EBO }}\) & \(\mathrm{I}_{E}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & 7 & V & - \\
\hline Collector-Cutoff Current & \(\mathrm{I}_{\text {CBO }}\) & \(V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & 0.002 & nA & 2 \\
\hline Collector-Cutoff Current & ICEO & \(V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & See curve & \(\mu \mathrm{A}\) & 3 \\
\hline Static Forward Current-Transfer Ratio (Static Beta) & \({ }^{\text {h FE }}\) & \[
V_{C E}=3 V\left\{\begin{array}{l}
I \\
C=10 \mathrm{~mA} \\
C=1 \mathrm{~mA} \\
C=10 \mu \mathrm{~A}
\end{array}\right.
\] & \[
\begin{array}{r}
100 \\
100 \\
54
\end{array}
\] & - & 4 \\
\hline Input Offset Current for Matched Pair \(\mathrm{Q}_{1}\) and \(\mathrm{O}_{2} \cdot\left|\mathrm{I}_{\mathrm{IO}_{1}}-\mathrm{I}_{\mathrm{IO}_{2}}\right|\) & & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 0.3 & \(\mu \mathrm{A}\) & 5 \\
\hline Base-to-Emitter Voltage & \(V_{B E}\) & \(V_{C E}=3 \mathrm{~V}\left\{\begin{array}{l}\mathrm{I}_{E}=1 \mathrm{~mA} \\ \mathrm{I}_{E}=10 \mathrm{~mA}\end{array}\right.\) & \[
\begin{aligned}
& 0.715 \\
& 0.800
\end{aligned}
\] & V & 6 \\
\hline Magnitude of Input Offset Voltage for Differential Pair \(\left|V_{B E_{1}}-V_{B_{2}}\right|\) & & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 0.45 & mV & 6,8 \\
\hline \[
\begin{aligned}
& \text { Magnitude of Input Offset Voltage for Iso- } \\
& \text { lated Transistors }\left|V_{B E_{3}}-V_{B E_{4}}\right| \\
& \left|V_{B_{E}}-V_{B_{5}}\right|,\left|V_{B E_{5}}-V_{B E_{3}}\right|
\end{aligned}
\] & & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 0.45 & mV & 6,8 \\
\hline Temperature Coefficient of Base-to-Emitter Voltage & \(\frac{\Delta V_{B E}}{\Delta T}\) & \(V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & -1.9 & \(m \mathrm{~V}{ }^{0} \mathrm{C}\) & 7 \\
\hline Collector-to-Emitter Saturation Voltage & \(V_{\text {CES }}\) & \(\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{C}=10 \mathrm{~mA}\) & 0.23 & V & - \\
\hline Temperature Coefficient: Magnitude of Input-Offset Voltage & \(\frac{\left|\Delta V_{10}\right|}{\Delta T}\) & \(\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 1.1 & \(\mu \mathrm{V}{ }^{0} \mathrm{C}\) & 8 \\
\hline
\end{tabular}
electrical characteristics (Cont'd)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow{3}{*}{SPECIAL TEST CONDITIONS} & LIMITS & \multirow{3}{*}{UNITS} & \multirow[t]{2}{*}{ChARAC. TERISTIC CURVES} \\
\hline & & & Type CA3045 & & \\
\hline & & & TYP. & & FIG. \\
\hline \multicolumn{6}{|l|}{DYNAMIC CHARACTERISTICS} \\
\hline Low-Frequency Noise Figure & NF & \[
\begin{aligned}
& \mathrm{f}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I} \mathrm{C}=100 \mathrm{\mu A} \\
& \text { Source Resistance }=1 \mathrm{k} \Omega
\end{aligned}
\] & 3.25 & dB & 10(b) \\
\hline \multicolumn{6}{|l|}{Low-Frequency, Small-Signal Equivalent-Circuit Characteristics:} \\
\hline Forward Current-Transfer Ratio & \(h_{\text {fe }}\) & & 110 & - & \\
\hline Short-Circuit Input Impedance & \(\mathrm{h}_{\text {je }}\) & & 3.5 & \(\mathrm{k} \Omega\) & \\
\hline Open-Circuit Output Impedance & \({ }^{\text {of }}\) & \(f=1 \mathrm{kHz}, \mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 15.6 & \(\mu \mathrm{mho}\) & 11 \\
\hline Open-Circuit Reverse Voltage-Transfer Ratio & \(h_{\text {re }}\) & & \(1.8 \times 10^{-4}\) & - & \\
\hline \multicolumn{6}{|l|}{Admittance Characteristics:} \\
\hline Forward Transter Admittance & \(\mathrm{Y}_{\text {fe }}\) & & \(31 . \mathrm{j} 1.5\) & - & \\
\hline Input Admittance & \(\mathrm{Y}_{\text {ie }}\) & & \(0.3+j 0.04\) & - & \\
\hline Output Admittance & \(Y_{0 e}\) & \(\mathrm{F}=1 \mathrm{MHz}, \mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1\) & \(0.001+j 0.03\) & - & \\
\hline Reverse Transfer Admittance & \(Y_{\text {re }}\) & & See curve & - & \\
\hline Gain-Bandwidth Product & \(\mathrm{f}_{\text {T }}\) & \(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\) & 550 & \(\cdot\) & 9 \\
\hline Emitter-10-Base Capacitance & \(\mathrm{C}_{\text {EB }}\) & \(V_{E B}=3 V_{, ~ I_{E}}=0\) & 0.6 & pF & - \\
\hline Collector-10-Base Capacitance & \(\mathrm{C}_{C B}\) & \(V_{C B}=3 \mathrm{~V}, \mathrm{I}_{C}=0\) & 0.58 & pF & \(\cdot\) \\
\hline Collector-to-Substrate Capacitance & \({ }^{\text {Cl }}\) & \(\mathrm{V}_{C S}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\) & 2.8 & pF & - \\
\hline
\end{tabular}

Table 1 - Pre Burn-In Electrical and Post Burn-In Electrical Tests, and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Electrical Characteristics, at \(T_{A}=25^{\circ} \mathrm{C}\) For Each Transistor (Except where otherwise indicated)} \\
\hline \multirow[b]{2}{*}{Characteristics} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Test Conditions} & \multicolumn{3}{|c|}{Limits} & \multirow[b]{2}{*}{Units} \\
\hline & & & Min. & Max. & Max. \(\triangle\) & \\
\hline Emitter-to-Base Breakdown Voltage & \(V_{(B R) E B O}\) & \[
\begin{aligned}
& I_{E}=10 \mu A, I_{C}=0 \\
& \left(\text { Except } Q_{5}\right)
\end{aligned}
\] & 5 & - & \(\pm 0.5\) & V \\
\hline Collector-Cutoff Current & \({ }^{\text {I CEO }}\) & \(V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & 0.5 & \(\pm 0.15\) & \(\mu \mathrm{A}\) \\
\hline Input Current & 1 & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\) & 5 & 25 & \(\pm 3\) & \(\mu \mathrm{A}\) \\
\hline Base-to-Emitter Voltage & \(V_{\text {BE }}\) & \({ }^{C}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\) & 0.6 & 0.8 & \(\pm 0.10\) & V \\
\hline
\end{tabular}
*Levels \(/ 1\) and \(/ 2\) require pre burn-in electrical and post burn-in electrical tests, and delta limits. Level 3 requires pre burn-in test only. The burn-in and operating life test circuit is shown in Fig. 6.

Fig. 2-Typical static base-to-emitter voltage characteristic and input offset voltage for differential pair and paired isolated transistors vs emitter current.

Fig. 3-Typical input offset voltage characteristics for differential pair and paired isolated transistors vs ambient temperature.

File No. 710

Table II.- Final Electrical Tests (For each transistor unless otherwise indicated)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristics} & \multirow{3}{*}{Symbol} & \multirow{3}{*}{Test Conditions} & \multicolumn{6}{|r|}{Limits For Indicated Temperature (\({ }^{0} \mathrm{C}\))} & \multirow{3}{*}{Units} \\
\hline & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|l|}{Maximum} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{STATIC} \\
\hline Collector-to-Base Breakdown Voltage & \(V_{(B R) C B O}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\) & - & 20 & - & - & & - & V \\
\hline Collector-to-Emitter Breakdown Voltage & \(V_{\text {(BR)CEO }}\) & \(I_{C}=1 m A, I_{B}=0\) & - & 15 & - & - & - & - & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(V_{(B R) C 10}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{Cl}}=0\) & - & 20 & - & - & - & - & V \\
\hline \begin{tabular}{l}
Emitter-to-Base \\
Breakdown Voltage
\end{tabular} & \(V_{\text {(BR)EBO }}\) & \[
\begin{array}{r}
I_{E}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0 \\
\text { (Except } \left.\mathrm{Q}^{2}\right)
\end{array}
\] & - & 5 & - & - & - & - & V \\
\hline Collector-Cutoff Current & \({ }^{\text {cbo }}\) & \(V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & - & - & - & - & 40 & - & nA \\
\hline Collector-Cutoff Current & \({ }^{\text {ICEO }}\) & \(V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & - & - & - & 0.5 & 100 & \(\mu \mathrm{A}\) \\
\hline Static Forward Current-Transfer & \({ }^{\text {h Fe }}\) & \[
V_{C E}=3 V\left\{\begin{array}{l}
I C=10 \mathrm{~mA} \\
C=1 \mathrm{~mA} \\
C
\end{array}\right.
\] & 18 & 30 & 45 & - & \(\cdots\) & \(-\) & - \\
\hline Ratio & & \(L_{C}=10 \mu \mathrm{~A}\) & - & 15 & - & - & - & - & \\
\hline Input Offset Current for Differential Pair & \[
\left|\begin{array}{l|l|}
\hline 10_{1}^{-} \\
110_{2}
\end{array}\right|
\] & \(V_{C E}=3 V_{,} I_{C}=1 \mathrm{~mA}\) & - & - & - & - & 2 & - & \(\mu \mathrm{A}\) \\
\hline Base-to-Emitter Voltage & \(V_{B E}\) & \[
V_{C E}=3 V\left\{\begin{array}{l}
I_{C}=10 \mathrm{~mA} \\
I_{C}=1 \mathrm{~mA}
\end{array}\right.
\] & 0.7 & 0.6 & 0.4 & 1.0 & 1.0 & 0.7 & V \\
\hline Input Offset Voltage for Differential Pair & \[
\left\lvert\, \begin{array}{|l|}
\hline \mathrm{V}_{\mathrm{BE}_{1}}^{-} \\
\mathrm{V}_{\mathrm{BE}_{2}} \mid
\end{array}\right.
\] & \(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & - & - & - & 5 & - & mV \\
\hline Input Offset Voltage for Isolated Transistors & \(V_{10}\) & \(V_{C E}=3 V_{,} I_{C}=1 \mathrm{~mA}\) & - & - & - & - & 5 & - & mV \\
\hline Collector-to-Emitter Saturation Voltage & \(V_{\text {CES }}\) & \(\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & - & - & - & - & 0.5 & - & V \\
\hline
\end{tabular}

Fig. 4 - Typical gain-bandwidth product vs collector current.

Fig. 5 - Typical normalized forward current-transfer ratio, short-circuit input impedance, opencircuit output impedance, and open-circuit reverse voltage-transfer ratio vs collector current.

Table III-Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristics} & \multirow{3}{*}{Symbol} & \multirow{3}{*}{Test Conditions} & \multicolumn{6}{|l|}{Limits for Indicated Temperature (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{Units} \\
\hline & & & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{STATIC} \\
\hline Collector-to-Base Breakdown Voltage & \(v_{\text {(BR) } ⿻ \mathrm{CBO}}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{AA}, \mathrm{I}_{\mathrm{E}}=0\) & - & 20 & - & - & - & - & v \\
\hline Collector-to-Emitter Breakdown Voltage & \(V_{\text {(BR)CEO }}\) & \(I_{C}=1 \mathrm{~mA}, I_{B}=0\) & - & 15 & - & - & - & - & \(v\) \\
\hline Collector-to-Substrate Breakdown Voltage & \(V_{\text {(BR)CIO }}\) & \({ }^{I_{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{Cl}}=0\) & . & 20 & - & - & - & - & \(v\) \\
\hline Emitter-to-Base Breakdown Voltage & \(v_{\text {(BR)EBO }}\) & \(I_{E}=10 \mu \mathrm{~A}, I_{C}=0\left(\right.\) Except \(\left.Q_{5}\right)\) & . & 5 & - & - & - & - & v \\
\hline Collector-Cutoff Current & 'CBO & \(V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & . & - & - & - & 40 & - & nA \\
\hline Collector-Cutoff Current & \({ }^{\text {C CeO }}\) & \(\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & - & - & - & 0.5 & 100 & \({ }_{4} \mathrm{~A}\) \\
\hline \multirow{3}{*}{Static Forward Current-Transfer Ratio} & \multirow{3}{*}{\({ }^{\text {h FE }}\)} & \multirow[t]{3}{*}{\[
\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}\left[\begin{array}{l}
\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}
\end{array}\right.
\]} & - & 30 & - & - & - & - & - \\
\hline & & & 18 & 40 & 45 & - & - & 200 & - \\
\hline & & & - & 15 & - & - & - & - & - \\
\hline Input Offset Current for Differential Pair, \(\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)\) & \(\left|1_{10} 1_{1}^{-1} 10_{2}\right|\) & \(\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & - & - & - & - & 2 & \({ }_{\mu} \mathrm{A}\) \\
\hline \multirow[b]{2}{*}{Base-to-Emitter Voltage} & \multirow[b]{2}{*}{\(V_{\text {BE }}\)} & \(\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 0.7 & 0.6 & 0.4 & 1.0 & 0.8 & 0.70 & V \\
\hline & & \(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & - & - & - & - & 1.0 & - & v \\
\hline Input Offset Voltage for Differential Pair, (\(\left.\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)\) & \(\mid \mathrm{V}_{\mathrm{BE}}^{1}\) - \(\mathrm{V}_{\mathrm{BE}}{ }_{2} \mid\) & \(\mathrm{v}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & - & - & - & 5 & - & mV \\
\hline Input Offset Voltage for Isolated Transistors
\[
\left|Q_{3}-Q_{4}\right| \cdot\left|Q_{4}-Q_{5}\right| \cdot\left|Q_{5}-Q_{3}\right|
\] & \(\mathrm{V}_{10}\) & \(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & - & - & - & 5 & - & mV \\
\hline Collector-to-Emitter Saturation Voltage & \(\mathrm{v}_{\text {CES }}\) & \(\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & - & - & - & - & 0.5 & - & \(v\) \\
\hline \multicolumn{10}{|l|}{DYNAMIC} \\
\hline Gain-Bandwidth Product (\(\mathrm{Q}_{3}\)) & \({ }^{\text {f }}\) T & \(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}\) & - & 300 & - & - & - & - & MHz \\
\hline
\end{tabular}

Table IV - Group C Electrical Characteristics Sampling Tests
\(\left(T_{A}=25^{\circ} C, V_{C C}=+6 V, V_{E E}=-6 \mathrm{~V}\right)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Test Conditions} & \multicolumn{2}{|c|}{Limits} & \multirow[b]{2}{*}{Units} \\
\hline & & & Min. & Max. & \\
\hline Emitter-to-Base Breakdown Voltage & \(V_{(B R) E B 0}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}= 10 \mu \mathrm{~A} \\
& \mathrm{I} \mathrm{C}=0 \\
& \text { (Except O5) }
\end{aligned}
\] & 5 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage & \(V_{(B R) C E O}\) & \[
\begin{aligned}
& I_{C}=1 \mathrm{~mA} \\
& I_{B}=0
\end{aligned}
\] & 15 & - & V \\
\hline Collector-Cutoff Current & I'ESO & \[
\begin{aligned}
& V_{C E}=10 \mathrm{~V} \\
& I_{B}=0
\end{aligned}
\] & \(\cdot\) & 0.5 & \(\mu \mathrm{A}\) \\
\hline Input Current & . 11 & \[
\begin{aligned}
& V_{C E}=3 \mathrm{~V} \\
& I_{C}=1 \mathrm{~mA}
\end{aligned}
\] & 5 & 25 & \(\mu \mathrm{A}\) \\
\hline Base-to-Emitter Voltage & \(V_{B E}\) & \[
\begin{aligned}
& V_{C E}=3 \mathrm{~V} \\
& I_{C}=1 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & 0.6 & 0.8 & V \\
\hline
\end{tabular}

92cs-15823
Fig. 6 - Burn-in and operating life test circuit.

Solid State Division

\section*{Linear Integrated Circuits}

Monolithic Silicon

\title{
High-Reliability Dual High-Frequency Differential Amplifier
}

For Low-Power Applications at Frequencies up to 500 MHz in Aerospace, Military and Critical Industrial Equipment

\section*{Features:}
- Power Gain 23 dB (typ.) at 200 MHz
- Noise Figure 4.6 dB (typ.) at 200 MHz
- Two differential amplifiers on a common substrate
- Independently accessible inputs and outputs

RCA-CA3049 "Slash" (/) Series type is a high-reliability linear integrated circuit dual high-frequency differential amplifier intended for low-power applications at frequencies up to 500 MHz in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA3049 described in Data Bulletin File No. 611 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels\(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\), and \(/ 4\)-which correspond to MIL-STD-883 Classes \(A, B\), and \(C\). The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

The CA3049 Slash (/) Series type is supplied in the 12-lead TO-5 style package (" T "' suffix) or in chip form (" H " suffix).

\section*{Applications}
- VHF amplifers
- VHF mixers
- Multifunction combinations - RF/Mixer/Oscillator; Converter/IF
- IF amplifiers (differential and/or cascode)
- Product detectors
- Doubly balanced modulators and demodulators
- Balanced quadrature detectors
- Cascade limiters
- Synchronous detectors
- Balanced mixers
- Synthesizers
- Balanced (push-pull) cascode amplifiers
- Sense amplifiers

Fig. 1-Schematic Diagram

MAXIMUM RATINGS, Absolute-Maximum Values at \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{POWER DISSIPATION, P:} \\
\hline Any one transistor & 300 \\
\hline Total package & 600 \\
\hline For \(\mathrm{T}_{A}>55^{\circ} \mathrm{C}\) Derate at: & \(5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{TEMPERATURE RANGE:} \\
\hline Operating & to \(+125^{\circ} \mathrm{C}\) \\
\hline Storage & to \(+150^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

LEAD TEMPERATURE (During Soldering):
At distance \(1 / 16 \pm 1 / 32^{\prime \prime}\)
\((1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm})\)
from case for 10 s max.
\(265^{\circ} \mathrm{C}\)
The following ratings apply for each transistor in the devices
Collector-to-Emitter Voltage, VCEO 15
Collector-to-Base Voltage, \(\mathrm{V}_{\text {CBO }}\). 20
Collector-to-Substrate Voltage, \(\mathrm{V}_{\mathrm{CIO}}{ }^{*}\). 20
Emitter-to-Base Voltage, VEBO 5
Collector Current, IC 50
*The collector of each transistor of the CA3049T is
isolated from the substrate by an integral diode. The substrate (terminal 9) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

9205-20793
\(\mathrm{L}_{1}, \mathrm{~L}_{2}\) - Approx. 1/2 Turn \#18 Tinned Copper Wire, 5/8" Dia.
\(\mathrm{C}_{1}, \mathrm{C}_{2}-15 \mathrm{pF}\) Variable Capacitors (Hammarlund, MAC-15; or Equivalent)
All Capacitors in \(\mu \mathrm{F}\) Unless Otherwise Indicated
All Resistors in Ohms Unless Otherwise Indicated
Fig. 3-200 MHz cascode power gain and noise figure test circuit.

Fig. 2 - Static characteristics test circuit

Table I-Pre Burn-In and Post Burn-In Electrical Tests and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS at \(\mathrm{T}_{A}=2 \mathbf{5}^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline Input Bias Current Q1, Q2, Q5, Q6 & \(1 /\) & \[
\begin{aligned}
& I_{3}=I_{9}=2 \mathrm{~mA} \\
& V^{+}=+6 V
\end{aligned}
\] & - & 25.2 & \(\pm 6\) & \(\mu \mathrm{A}\) \\
\hline Input Bias Current 03, 04 & 1 & \[
\begin{aligned}
& I_{3}=I_{9}=2 \mathrm{~mA} \\
& \mathrm{~V}^{+}=+6 \mathrm{~V}
\end{aligned}
\] & - & 50.4 & \(\pm 12\) & \(\mu \mathrm{A}\) \\
\hline Emitter-to Base Breakdown Voltage Q3, Q4 & \(V_{\text {EBO }}\) & \[
\begin{aligned}
& I_{E}=10 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{C}}=0
\end{aligned}
\] & -5.3 & - & \(\pm 1.0\) & V \\
\hline Collector Cutoff Current Q1 to Q6 & \({ }^{1} \mathrm{CBO}\) & \[
\begin{aligned}
& v_{C B}=10 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{E}}=0
\end{aligned}
\] & - & 95 & \(\pm 50\) & nA \\
\hline
\end{tabular}
*Levels /1N, /1R, /1, and /2 require pre and post burn-in electrical tests and delta IImits
Level /3 requires pre burn-in electrical test only. The burn-in circuit is shown in Fig. 9.

\section*{ELECTRICAL CHARACTERISTICS at TA \(_{\text {A }}=\mathbf{2 5}^{\circ} \mathrm{C}\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOLS} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TEST CONDITIONS}} & LIMITS CA3049T & \multirow[t]{2}{*}{UNITS} \\
\hline & & & & TYP. & \\
\hline \multicolumn{6}{|l|}{STATIC CHARACTERISTICS} \\
\hline \multicolumn{6}{|l|}{For Each Differential Amplifier} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & & & 0.25 & mV \\
\hline Input Offset Current & 110 & \(\mathrm{I}_{3}=\mathrm{I}_{9}=2 \mathrm{~mA}\) & & 0.3 & \(\mu \mathrm{A}\) \\
\hline Input Blas Current & IIB & & & 13.5 & \(\mu \mathrm{A}\) \\
\hline Temperature Coefficlent Magnitude of Input-Offset Voltage & \[
\begin{gathered}
\left|\Delta V_{10}\right| \\
\Delta T
\end{gathered}
\] & & & 1.1 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{6}{|l|}{For Each Transistor} \\
\hline DC Forward Baseto Emitter Voltage & \(V_{B E}\) & \[
\begin{aligned}
& \mathrm{V}_{C E}=6 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}
\end{aligned}
\] & & 774 & mV \\
\hline Temperature Coefficient of Base-to-Emitter Voltage & \[
\begin{gathered}
\Delta V_{B E} \\
\Delta T \\
\hline
\end{gathered}
\] & \(V_{C E}=6 \mathrm{~V}, 1_{C}\) & 1 mA & -0.9 & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Collector-Cutoff Current & \({ }^{1} \mathrm{CBO}\) & \(\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}\) & 0 & 0.0013 & nA \\
\hline Collector-to-Emitter Breakdown Voltage & \(V_{\text {(BR) }}\) CEO & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=\) & & 24 & V \\
\hline Collector-to-Base Breakdown Voltage & \(V\) (BR) CBO & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}\) & & 60 & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(V_{\text {(BR) }}\) CIO & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=\) & \(0, I_{E}=0\) & 60 & V \\
\hline Emitter-to-Base Breakdown Voltage & \(V\) (BR)EBO & \({ }^{\prime} E=10 \mu \mathrm{~A},{ }^{\prime} \mathrm{C}\) & & 7 & V \\
\hline \multicolumn{6}{|l|}{DYNAMIC CHARACTERISTICS} \\
\hline 1/f Noise Figure (For Single Transistor) & NF & \[
\begin{aligned}
& \mathrm{f}=100 \mathrm{KHz}, \mathrm{R}_{S} \\
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}
\end{aligned}
\] & \[
S=500 \Omega
\] & 1.5 & dB \\
\hline Gain-Bandwidth Product (For Single Transistor) & \({ }^{\dagger}\) T & \(V_{C E}=6 \mathrm{~V}, \mathrm{I}^{\prime}=\) & 5 mA & 1.35 & GHz \\
\hline Collector-Base Capacitance & \(\mathrm{C}_{\text {CB }}\) & \({ }^{1} \mathrm{C}=0\) & \(V_{C B}=5 \mathrm{~V}\) & \[
\begin{aligned}
& 0.28 \\
& 0.28
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline Collector-Substrate Capacitance & \(\mathrm{C}_{\mathrm{Cl}}\) & \({ }^{1} \mathrm{C}=0\) & \(\mathrm{V}_{\mathrm{Cl}}=5 \mathrm{~V}\) & 1.65 & pF \\
\hline \multicolumn{6}{|l|}{For Each Differential Amplifier} \\
\hline Common-Mode Rejection Ratio & CMR & \multicolumn{2}{|l|}{\(\mathrm{I}_{3}=\mathrm{I}_{9}=2 \mathrm{~mA}\)} & 100 & dB. \\
\hline AGC Range, One Stage & AGC & \multicolumn{2}{|l|}{Bias Voltage \(=-6 \mathrm{~V}\)} & 75 & dB \\
\hline Voltage Gain, Single-Ended Output & A & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Bias Voltage }=-4.2 \mathrm{~V} \\
& f=10 \mathrm{MHz}
\end{aligned}
\]} & 22 & dB \\
\hline Insertion Power Gain & \(\mathrm{G}_{\mathrm{p}}\) & \(f=200 \mathrm{MHz}\) & Cascode & 23 & dB \\
\hline Noise Figure & NF & \(\mathrm{V}_{C C}=12 \mathrm{~V}\) & Cascode & 4.6 & dB \\
\hline \multirow[b]{2}{*}{Input Admittance} & \multirow[b]{2}{*}{\(Y_{11}\)} & \multirow[t]{2}{*}{For Cascode Configuration \(I_{3}=I_{9}=2 \mathrm{~mA}\)} & Cascode & \(1.5+\) j 2.45 & \multirow[b]{2}{*}{mmho} \\
\hline & & & Diff.Amp. & \(0.878+\) j 1.3 & \\
\hline \multirow[t]{2}{*}{Reverse Transfer Admittance} & \multirow[t]{2}{*}{\(Y_{12}\)} & \multirow[t]{6}{*}{For Diff. Amplifier Configuration \(1_{3}=I_{9}=4 \mathrm{~mA}\) (each collector \({ }^{\prime} \mathrm{C} \simeq 2 \mathrm{~mA}\))} & Cascode & 0-j 0.008 & mmho \\
\hline & & & Diff.Amp. & 0-j 0.013 & \\
\hline \multirow[t]{2}{*}{Forward Transfer Admittance} & \multirow[t]{2}{*}{\(Y_{21}\)} & & Cascode & 17.9-j 30.7 & \multirow[t]{2}{*}{mmho} \\
\hline & & & Diff. Amp. & \(-10.5+\) j 13 & \\
\hline \multirow[t]{2}{*}{Output Admittance} & \multirow[t]{2}{*}{\(\mathrm{Y}_{22}\)} & & Cascode & -0.503-j 15 & \multirow[t]{2}{*}{mmho} \\
\hline & & & Diff.Amp. & \(0.071+\mathrm{j} 0.62\) & \\
\hline
\end{tabular}

Table // - Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow{3}{*}{TEST CONDITIONS} & \multicolumn{6}{|l|}{LIMITS FOR INDICATEDTEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|l|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{STATIC (Each Differential Amplifer)} \\
\hline Input Offset Voltage & \(V_{10}\) & & - & - & - & 7 & 5 & 7.5 & \(m V\) \\
\hline Input Offset Current & 110 & \(I_{3}=I_{9}=2 \mathrm{~mA} \quad \mathrm{~V}^{+}=+6 \mathrm{~V}\) & - & - & - & 9 & 3 & 3 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & \(1 /\) & \(I_{3}=I_{9}=2 \mathrm{~mA} \quad \mathrm{~V}^{+}=+6 \mathrm{~V}\) & - & - & - & 41 & 25.2 & 18 & \(\mu \mathrm{A}\) \\
\hline Collector Cutoff Current & \({ }^{1} \mathrm{CBO}\) & \(\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{E}}=0\) & -- & - & - & - & 100 & - & nA \\
\hline Forward Base-toEmitter Voltage & \(V_{\text {BE }}\) & \(V_{C E}=6 \mathrm{~V}, \mathrm{I}_{C}=1 \mathrm{~mA}\) & - & - & - & - & 874 & - & mV \\
\hline Collector-to-Emitter Breakdown Voltage & \(V_{\text {(BR)CEO }}\) & \(I_{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & - & 15 & - & - & - & - & V \\
\hline Collector-to-Base Breakdown Voltage & \(V_{\text {(BR)CBO }}\) & \({ }^{\prime} C=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\) & - & 20 & - & - & - & - & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(V_{(B R) C I O}\) & \(I_{C}=10 \mu \mathrm{~A}, I_{B}=I_{E}=0\) & - & 20 & - & - & - & - & V \\
\hline \begin{tabular}{l}
Emitter-to-Base \\
Breakdown Voltage
\end{tabular} & \(V_{\text {(BR)EBO }}\) & \(I_{E}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & - & 5 & - & - & - & - & V \\
\hline
\end{tabular}

Table III-Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow{3}{*}{TEST CONDITIONS} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{These tests are the same as the Final Electrical Tests except for the addition of the Dynamic test shown balow} \\
\hline \multirow[t]{2}{*}{Dynamic Voltage gain (SingleEnded Output)} & & & & & & & & & \\
\hline & A & Bias Voltage \(=4.2 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}\) & - & 18 & - & - & - & - & dB \\
\hline
\end{tabular}

Table IV - Group C Electrical Characteristics Sampling Tests (\(T_{A}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline Input Offset Voltage & VIO & & - & 5 & mV \\
\hline Input Bias Current
\[
\mathrm{a}_{1}, \mathrm{Q}_{2}, \mathrm{a}_{5}, \mathrm{Q}_{6}
\] & 11 & \(\mathrm{I}_{3}=19=2 \mathrm{~mA}, \mathrm{~V}+=+6 \mathrm{~V}\) & - & 25.2 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current \(\mathrm{O}_{3}, \mathrm{Q}_{4}\) & 11 & \(\mathrm{I}_{3}=19=2 \mathrm{~mA}, \mathrm{~V}+=+6 \mathrm{~V}\) & - & 50.4 & \(\mu \mathrm{A}\) \\
\hline Power Gain & PG & & 19 & 26 & dB \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS

Fig. 4 - Input offset voltage vs. emitter current.

Fig. 6 - Valtage gain vs. dc bias voltage.

Fig. 5 -Input bias current vs. emitter current.

Fig. 7 - Voltage gain vs. frequency.

Fig. 8 - Gain-bandwidth product vs. collector current.

Fig. 9 - Burn-in and operating life test circuit.

\section*{Linear Integrated Circuits}

Monolithic Silicon High-Reliability Slash(/) Series CA3058/. . .

\section*{High-Reliability Zero - Voltage Switch}

\author{
For 50/60 and \(400-\mathrm{Hz}\) Thyristor Control Applications In Aerospace, Military and Critical Industrial Equipment
}

\section*{Features:}
- \(24 \mathrm{~V}, 120 \mathrm{~V}, 208 / 230 \mathrm{~V}, 277 \mathrm{~V}\) at 5060 , or 400 Hz operation
- Differential input
- Low balance input current (max.) \(1 \mu \mathrm{~A}\)
- Built-in protection circuit
for opened or shorted sensor (term. 14)
- Sensor range (\(\mathrm{RX}_{\mathrm{X}}\) - 2 to \(100 \mathrm{k} \Omega\)
- DC mode (term 12)
- External trigger (term. 6)
- External inhibit (term. 1)
- DC supply volts (max.) 14

RCA-CA3058 "Slash" (/) Series type is a high-reliability linear integrated circuit Zero-Voltage Switch designed to control a thyristor in a variety of ac power switching applications for ac input voltages of \(24 \mathrm{~V}, 120 \mathrm{~V}, 208 / 230\) V , and 277 V at \(50 / 60\) and 400 Hz . It is intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA3058 described in Data Bulletin File No. 490 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels/1N, /1R, /1, /2, /3, and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL. STD-883."

The CA3058 Slash (/) Series type is supplied in the 14-Lead dual-in-line ceramic package (" \(D\) " suffix), or in chip form ("H"Suffix).
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
AC Input Voltage \\
\((50 / 60\) to 400 Hz\()\) \\
\(V ~ A C\)
\end{tabular} & \begin{tabular}{c}
Input Series \\
Resistor (RTS \\
\(\mathrm{k} \Omega\)
\end{tabular} & \begin{tabular}{c}
Dissipation Rating \\
for \(\mathrm{R}_{\mathbf{S}}\) \\
W
\end{tabular} \\
\hline 24 & 2 & 0.5 \\
120 & 10 & 2 \\
\(208 / 230\) & 20 & 4 \\
277 & 25 & 5 \\
\hline
\end{tabular}

\section*{Applications}
- Relay control ■ Heater control m Photosensitive control
- Valve control ■ Lamp control ■ Power one-shot control
- Synchronous switching of flashing lights
- On-off motor switching
- Differential comparator with self-contained power supply for industrial applications
- For detailed application information, see application note 1CAN-6182 "Applications of RCA Integrated Circuit Zero-Votlage Switches (CA3058, CA3059, CA3079)"

* NEGATIVE TEMPERATURE COEFFICIENT SEE CHART

92CS. 25156
Fig. 1-Functional block diagram.
\begin{tabular}{|c|c|c|}
\hline DC Supply Voltage (between Terms. 2 and 7) & & \(\checkmark\) \\
\hline DC Supply Voltage (between Terms. 2 and 8) & & \(\checkmark\) \\
\hline Peak Supply Current (Terms. 5 and 7) & & A \\
\hline Output Pulse Current (Term. 4) & & mA \\
\hline \multicolumn{3}{|l|}{Power Dissipation:} \\
\hline Up to \(T_{A}=75^{\circ} \mathrm{C}\). & & W \\
\hline Above \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C} \cdot \cdots \cdot . . .\). Der & & \\
\hline
\end{tabular}

Ambient Temperature Range:
Operating
-55 to \(+125^{\circ} \mathrm{C}\)
Storage 65 to \(+150^{\circ} \mathrm{C}\)

Lead Temperature (During soldering)
At distance \(1 / 16 \pm 1 / 32\) inch (\(1.59 \pm 0.79 \mathrm{~mm}\)) from case for 10 seconds max. \(265{ }^{\circ} \mathrm{C}\)

MAXIMUM VOLTAGE RATINGS atT \(A_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TERMINAL NO. & \[
\begin{gathered}
1 \\
\text { Note } \\
3 \\
\hline
\end{gathered}
\] & 2 & 3 & 4 & \[
\begin{array}{|c}
5 \\
\text { Note } \\
1
\end{array}
\] & \[
\begin{gathered}
6 \\
\text { Note } \\
3
\end{gathered}
\] & 7 & 8 & 9 & 10 & 11 & \[
\begin{array}{|c|}
12 \\
\text { Note } \\
3 \\
\hline
\end{array}
\] & 13 & \begin{tabular}{|c}
14 \\
Note \\
2,3
\end{tabular} \\
\hline \[
\begin{gathered}
1 \\
\text { Note } 3
\end{gathered}
\] & & * & * & * & * & \({ }^{15}\) & 10
-2 & * & * & * & * & * & * & * \\
\hline 2 & & & \[
\left[\begin{array}{l}
0 \\
-15
\end{array}\right.
\] & \[
\left\lvert\, \begin{aligned}
& 0 \\
& -15
\end{aligned}\right.
\] & \[
\begin{array}{|l|}
\hline 2 \\
-14 \\
\hline
\end{array}
\] & \[
\left\lvert\, \begin{aligned}
& 0 \\
& -14 \\
& \hline
\end{aligned}\right.
\] & \[
\begin{aligned}
& 0 \\
& -14 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& -14
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 0 \\
& -14
\end{aligned}\right.
\] & \[
\begin{array}{|l|}
\hline 0 \\
-14 \\
\hline
\end{array}
\] & \[
\left|\begin{array}{c}
0 \\
-14
\end{array}\right|
\] & * & \[
\left\lvert\, \begin{aligned}
& 0 \\
& -14
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& 0 \\
& -14
\end{aligned}\right.
\] \\
\hline 3 & & & & \[
\left\lvert\, \begin{aligned}
& 0 \\
& -15
\end{aligned}\right.
\] & * & * & * & * & * & * & * & * & * & * \\
\hline 4 & & & & & & \[
\begin{array}{|c}
2 \\
-10 \\
\hline
\end{array}
\] & * & * & * & * & * & * & * & * \\
\hline \[
\begin{gathered}
5 \\
\text { Note } 1 \\
\hline
\end{gathered}
\] & & & & & & & 7
-7 & * & * & * & * & * & * & * \\
\hline \[
\begin{gathered}
6 \\
\text { Note } 3 \\
\hline
\end{gathered}
\] & & & & & & & 14 & * & * & * & * & * & * & * \\
\hline 7 & & & & & & & & * & \[
\begin{gathered}
14 \\
0
\end{gathered}
\] & * & \[
\begin{aligned}
& 20 \\
& 0
\end{aligned}
\] & \[
\begin{array}{r}
2.5 \\
-2.5
\end{array}
\] & \begin{tabular}{|l|l|}
14 \\
0
\end{tabular} & - \(\begin{array}{r}6 \\ -6\end{array}\) \\
\hline 8 & & & & & & & & & 10 & * & * & * & * & * \\
\hline 9 & & & & & & & & & & * & * & * & * & * \\
\hline 10 & & & & & & & & & & & * & * & * & * \\
\hline 11 & & & & & & & & & & & & * & * & * \\
\hline \[
\begin{gathered}
12 \\
\text { Note } 3
\end{gathered}
\] & & & & & & & & & & & & & * & * \\
\hline 13 & & & & & & & & & & & & & & * \\
\hline \[
\begin{gathered}
14 \\
\text { Note } 3 \\
\hline
\end{gathered}
\] & & & & & & & & & & & & & & \\
\hline
\end{tabular}

This chart gives the range of voltages which can be applied to the terminals listed horizontally with respect to the terminals listed vertically. For example, the voltage range of horizontal Terminal 6 to vertical Terminal 4 is 2 to -10 volts.

Note 1 - Resistance should be inserted between Term. 5 and external supply or line voltage for limiting current into Term. 5 to less than 50 mA .

Note 2 - Resistance should be inserted between Term. 14 and external supply for limiting current into Term. 14 to less than 2 mA .

NOTE 3: For the CA3079 indicated terminal is internally connected and therefore, should not be used.
*Voltages are not normally applied between these terminals; however, voltages appear ing between these terminals are safe, if the specified voltage limits between all other terminals are not exceeded.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
IN \\
mA
\end{tabular} & \begin{tabular}{c}
IOUT \\
mA
\end{tabular} \\
\hline 10 & 0.1 \\
\hline 150 & 10 \\
\hline\(*\) & \(*\) \\
\hline 0.1 & 150 \\
\hline 50 & 10 \\
\hline\(*\) & \(*\) \\
\hline\(*\) & \(*\) \\
\hline 0.1 & 2 \\
\hline\(*\) & \(*\) \\
\hline\(*\) & \(*\) \\
\hline\(*\) & \(*\) \\
\hline 50 & 50 \\
\hline\(*\) & \(*\) \\
\hline 2 & 2 \\
\hline
\end{tabular}

Table I - Pre Burn-In and Post Burn-In Electrical Tests and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS
\[
\text { at } T_{A}=25^{\circ} \mathrm{C}
\]} & \multicolumn{3}{|c|}{Limits} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline DC Supply Voltage & \(\mathrm{v}_{\mathrm{s}}\) & \(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0\) & 6.0 & 7.0 & \(\pm 0.2\) & v \\
\hline Output Leakage Current (Inhibit Mode) & 14 & & - & 10 & \(\pm 0.5\) & \(\mu \mathrm{A}\) \\
\hline Peak Output Current (Pulsed) With Internal Power Supply & IOM(4) & Terminal 3 Open, \(\mathrm{V}_{\mathrm{GT}}=0\) & 50 & - & \(\pm 10\) & mA \\
\hline Input Bias Current & 1 & & - & 1.0 & \(\pm 0.2\) & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
*Levels \(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1\), and \(/ 2\) require pre and post burn-In electrical tests and delta limits
Level \(/ 3\) requires pre burn-in electrical test only. The burn-in circuit is shown in Fig. 8.

ELECTRICAL CHARACTERISTICS (For all types, unless indicated otherwise)
All voltages are measured with respect to Terminal 7.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & TEST CONDITIONS & & \multirow{3}{*}{UNITS} \\
\hline & & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \\
\text { (Unless Indicated Otherwise) }
\end{gathered}
\]} & LIMITS & \\
\hline & & & Typ. & \\
\hline \multicolumn{5}{|l|}{For Operating at 120 V rms, \(50.60 \mathrm{~Hz}\left(\mathrm{AC}\right.\) Line Voltage) \({ }^{\bullet}\)} \\
\hline DC Supply Voltage: Inhibit Mode At \(50 / 60 \mathrm{~Hz}\) & \multirow[b]{7}{*}{VS
IGT (4)} & \(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0\) & 6.5 & V \\
\hline At 400 Hz & & \(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0\) & 6.8 & V \\
\hline At \(50 / 60 \mathrm{~Hz}\) & & \(\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=2 \mathrm{~mA}\) & 6.4 & V \\
\hline \begin{tabular}{l}
Pulse Mode \\
At \(50 / 60 \mathrm{~Hz}\)
\end{tabular} & & \(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0\) & 6.4 & V \\
\hline At 400 Hz & & \(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0\) & 6.7 & V \\
\hline At 50/60 Hz & & \(\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=2 \mathrm{~mA}\) & 6.3 & V \\
\hline Gate Trigger Current & & Terms 3 and 2 connected, \(\mathrm{V}_{\mathrm{GT}}=1 \mathrm{~V}\) & 105 & mA \\
\hline \multirow[t]{2}{*}{Peak Output Current (Pulsed): With Internal Power Supply} & \multirow[b]{2}{*}{IOM(4)} & Term. 3 open, Gate Trigger Voltage
\[
\left(V_{\mathrm{GT}}\right)=0
\] & 84 & mA \\
\hline & & Terms. 3 and 2 connected, Gate Trigger Voltage \(\left(\mathrm{V}_{\mathrm{GT}}\right)=0\) & 124 & mA \\
\hline \multirow[t]{2}{*}{With External Power Supply} & \multirow[b]{2}{*}{IOM(4)} & Term. 3 open, \(\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GT}}=0\) & 170 & mA \\
\hline & & \[
\begin{aligned}
& \text { Terms } 3 \text { and } 2 \text { connected } \mathrm{V}^{+}=12 \mathrm{~V} . \\
& \mathrm{V}_{\mathrm{GT}}=0
\end{aligned}
\] & 240 & mA \\
\hline Inhibit Input Ratio: & \(\mathrm{V}_{9} / \mathrm{V}_{2}\) & Voltage Ratio of Term. 9 to 2 & 0.485
- & - \\
\hline Total Gate Pulse Duration: For positive dv/dt 50.60 Hz & tp & \(\mathrm{C}_{\text {EXT }}=0\) & 100 & \(\mu \mathrm{s}\) \\
\hline 400 Hz & tp & \(\mathrm{CEXT}^{\text {e }}=0, \mathrm{R}_{\text {EXT }}=\infty\) & 12 & \(\mu \mathrm{s}\) \\
\hline For negative dv/dt 50.60 Hz & \({ }^{\mathrm{N}}\) & \(\mathrm{C}_{\text {EXT }}=0\) & 100 & \(\mu \mathrm{s}\) \\
\hline 400 Hz & \({ }^{\mathrm{N}}\) & \(\mathrm{C}_{E X T}=0, \mathrm{R}_{\text {EXT }}=\infty\) & 10 & \(\mu \mathrm{s}\) \\
\hline \begin{tabular}{l}
Pulse Duration After Zero \\
Crossing (50.60 Hz): \\
For positive \(\mathrm{dv} / \mathrm{dt}\) \\
For negative dv/dt
\end{tabular} & \({ }_{\text {tP1 }}\) & \multirow[t]{2}{*}{\[
\begin{aligned}
& C_{E X T}=0 \\
& \text { REXT }=\infty
\end{aligned}
\]} & 50 & \(\mu \mathrm{s}\) \\
\hline For negative dv/dt & \({ }^{\text {t }} 1\) & & 60 & \(\mu \mathrm{s}\) \\
\hline Output Leakage Current Inhibit Mode: & 14 & & 0.001 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current: & 11 & & 220 & nA \\
\hline Common-Mode Input Voltage Range & VCMR & Terms. 9 and 13 connected & \[
\begin{gathered}
1.5 \text { to } \\
5 \\
\hline
\end{gathered}
\] & V \\
\hline Sensitivity \(\neq\) (Pulse Mode) & \(\Delta V_{13}\) & Term. 12 open & 6 & mV \\
\hline
\end{tabular}

\footnotetext{
\(\neq\) Required voltage change at Term. 13 to either turn OFF the triac when ON or turn ON the triac when OFF.
\({ }^{-}\)The values given in the Electrical Characteristics Chart at 120 V also apply for operation at input voltages of \(24 \mathrm{~V}, 208 / 230 \mathrm{~V}\), and 277 V . except for Pulse Duration. However, the series reistor \(\left(R_{S}\right)\) must have the indicated value, shown in the chart in Fig. 1, for the specified input voltage.
}

Fig. 2-Schematic diagram of CA3058 zero-voltage switch. For functional block diagram see Fig. 1.

Table II - Final Electrical Tests and Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[b]{3}{*}{TEST CONDITIONS
\(\mathbf{f}=50 / 60 \mathrm{~Hz}\)} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{minimum} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline DC Supply Voltage & \(\mathrm{v}_{\text {s }}\) & \(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0\) & 5.5 & 6.0 & 5.5 & 7.5 & 7.0 & 7.5 & V \\
\hline Output Leakage Current (Inhibit Mode) & 14 & & - & - & - & 20 & 10 & 20 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 11 & & - & - & - & 1.0 & 1.0 & 1.0 & \(\mu \mathrm{A}\) \\
\hline Inhibit Input Ratio & \(\mathrm{V}_{\mathrm{G}} / \mathrm{V}_{\mathrm{Z}}\) & Voltage ratio of terminal 9 to terminal 2. & 0.450 & 0.465 & 0.450 & 0.520 & 0.520 & 0.520 & \\
\hline Peak Output Current & & Terminal 3 open, \(\mathrm{V}_{\mathrm{GT}}=0\) & - & 50 & - & - & - & - & mA \\
\hline (Pulsed) With Internal Power Supply & IOM (4) & Terminals 2 and 3 shorted, \(\mathrm{V}_{\mathrm{GT}}=0\) & - & 90 & - & - & - & - & mA \\
\hline
\end{tabular}

Table III - Group C Electrical Characteristics Sampling Tests (\(T_{A}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS \(f=50 / 60 \mathrm{~Hz}\)} & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline DC Supply Voltage & \(\mathrm{V}_{\text {S }}\) & \(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0\) & 5.9 & 7.1 & V \\
\hline Output Leakage Current (Inhibit Mode) & 14 & & - & 11 & \(\mu \mathrm{A}\) \\
\hline Peak Output Current (Pulsed) With Internal Power Supply & IOM (4) & Terminal 3 Open, \(\mathrm{V}_{\mathrm{GT}}=0\) & 45 & - & mA \\
\hline Input Bias Current & 11 & & - & 1.2 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Fig. 3a-DC supply voltage test circuit

Fig. 3c-DC supply voltage vs. external load current

all resistance values are in ohms

Fig. \(3 b-D C\) supply voltage vs. \(T_{A}\)

Fig. 4-Gate trigger current vs. gate trigger voltage

92CS-18066
Fig. \(5 b-\) IOM vs. \(T_{A}\)

Fig. 5a-Peak output (pulsed) and gate trigger current with internal power supply test circuit

Fig. Ga-Peak output current (pulsed) with external power supply test circuit

Fig. \(6 b-{ }^{\prime}\) OM vs. external power supply voltage

Fig. 7-Operating regions for built-in protection circuit

Fig. \(6 c-1\) OM with external power supply vs. \(T_{A}\)

Fig. 8-Burn-in and operating life test circuit.

Solid State Division

\section*{Linear Integrated Circuits}

Monolithic Silicon

\title{
High-Reliability \\ Micropower Operational Amplifier
}

For Applications in Aerospace, Military, and Critical Industrial Equipment Features:
- Low standby power: as low as 700 nW
- Wide supply voltage range: \(\pm 0.75\) to \(\pm 15 \mathrm{~V}\)
- High peak output current: \(6.5 \mathrm{~mA} \mathbf{~ m i n}\).
- Adjustable quiescent current
- Output short-circuit protection

\section*{Applications:}
- Portable electronics
- Medical electronics
- Instrumentation
- Telemetry

The CA3078A "Slash" (/) Series types are high-reliability linear integrated circuit operational amplifiers intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type CA3078A described in Data Bulletin File No. 535 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels \(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\), and \(/ 4\) - which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures and test sequence are given in Reliability Report RIC-202A "'High-Reliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

The CA3078AS and CA3078AT can deliver milliamperes of current yet only consume microwatts of standby power. Their operating points are externally adjustable and frequency compensation may be accomplished with one external capacitor. The CA3078AS and CA3078AT provide the designer with the opportunity to tailor the frequency response and improve the slew rate without sacrificing power. Operation with a single 1.5 -volt battery is a practical reality with these devices.

The CA3078A is supplied in the standard 8-lead TO-5 package (" \(T\) " suffix), the 8 -lead dual-in-line formed-lead "DIL-CAN" package ('S' \({ }^{\prime}\) suffix), or in chip form ("H" suffix).

NOTE: PIN 8 IS INDICATED BY THE CASE INDEX TAB 92CS-17552R1

Fig. 1-Functional diagram of the CA3078AS and CA3078AT.

\section*{MAXIMUM RATINGS,}

Absolute Maximum Values at \(T_{A}=25^{\circ} \mathrm{C}\)
DC SUPPLY VOLTAGE
(Between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)terminal)...... . 36 V
DIFFERENTIAL INPUT VOLTAGE \(\pm 6 \mathrm{~V}\)
DC INPUT VOLTAGE............... . \(\mathrm{V}^{+}\)to \(\mathrm{V}^{-}\)
INPUT SIGNAL CURRENT 0.1 mA
OUTPUT SHORT-CIRCUIT DURATION* No Limitation
DEVICE DISSIPATION 250 mW (up to \(125^{\circ} \mathrm{C}\))
TEMPERATURE RANGE:
\begin{tabular}{|c|c|}
\hline Operating & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline Storage & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

LEAD TEMPERATURE (During Soldering):
At distance \(1 / 16 \pm 1 / 32 \mathrm{in}\).
\((1.59 \pm 0.79 \mathrm{~mm})\) from case
for 10s max.
\(+300^{\circ} \mathrm{C}\)
*Short circuit may be applied to ground or to either supply.

File No. 831 CA3078A Slash (/) Series
ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}\)
Typical Values Intended Only for Design Guidance
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{CHARACTERISTIC SYMBOLS} & \multicolumn{2}{|c|}{TYPICAL VALUES} & \multirow[b]{3}{*}{CHARACTERISTICS CURVES Fig.} & \multirow[b]{3}{*}{UNITS} \\
\hline & \multicolumn{2}{|c|}{CA3078A} & & \\
\hline & \[
\begin{array}{r}
\mathrm{V}^{+}=+1.3 \mathrm{~V} \\
\mathrm{~V}-=-1.3 \mathrm{~V} \\
\mathrm{R}_{\mathrm{SET}}=2 \mathrm{M} \Omega \\
\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}
\end{array}
\] & \[
\begin{gathered}
\mathrm{V}^{+}=+0.75 \mathrm{~V} \\
\mathrm{~V}-=-0.75 \mathrm{~V} \\
\mathrm{RSET}=10 \mathrm{M} \Omega \\
\mathrm{IQ}=1 \mu \mathrm{~A} \\
\hline
\end{gathered}
\] & & \\
\hline V10 & 0.7 & 0.9 & - & mV \\
\hline 110 & 0.3 & 0.054 & - & nA \\
\hline IIB & 3.7 & 0.45 & 4,10 & nA \\
\hline AOL & 84 & 65 & - & dB \\
\hline 10 & 10 & 1 & - & \(\mu \mathrm{A}\) \\
\hline PD & 26 & 1.5 & - & \(\mu \mathrm{W}\) \\
\hline VOPP & 1.4 & 0.3 & - & V \\
\hline VICR & \[
\begin{array}{r}
-0.8 \\
+1.1 \\
+1.1
\end{array}
\] & \[
\begin{gathered}
-0.2 \\
\text { to } \\
+0.5
\end{gathered}
\] & - & V \\
\hline CMRR & 100 & 90 & - & dB \\
\hline IOM \({ }^{ \pm}\) & 12 & 0.5 & 7 & mA \\
\hline \(\Delta V_{10} / \Delta V^{ \pm}\) & 20 & 50 & - & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline
\end{tabular}

Typical Values Intended Only for Design Guidance, at \(T_{A}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}^{+}=+6 \mathrm{~V}, \mathrm{~V}-=-6 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOLS} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|c|}{CA3078A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & \[
\begin{gathered}
\text { RSET }=5.1 \mathrm{M} \Omega \\
\mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{R}_{\text {SET }}=1 \mathrm{M} \Omega \\
\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}
\end{array}
\] & \\
\hline Input Offset Voitage Drift & \(\Delta V_{1 O} / \Delta T_{A}\) & \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{~K} \Omega\) & 5 & 6 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Input Offset Current Drift & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{T}_{\mathrm{A}}\) & \(\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{~K} \Omega\) & 6.3 & 70 & \(\mathrm{pA} /{ }^{\circ} \mathrm{C}\) \\
\hline Open-Loop Bandwidth & BWOL & 3 dB pt. & 0.3 & 2 & kHz \\
\hline Slew Rate:
\[
\frac{\text { Unity Gain }}{\text { Comparator }}
\] & SR & See Fig. 11 & 0.027
0.5 & 0.04
1.5 & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Transient Response & - & \begin{tabular}{l}
\[
10 \% \text { to } 90 \%
\] \\
Rise Time
\end{tabular} & 3 & 2.5 & \(\mu \mathrm{s}\) \\
\hline Input Resistance & R1 & & 7.4 & 1.7 & \(\mathrm{M} \Omega\) \\
\hline Output Resistance & Ro & & 1 & 0.8 & K \(\Omega\) \\
\hline Equiv. Input Noise Voltage & \(\mathrm{e}^{(}(10 \mathrm{~Hz})\) & \(\mathrm{R}_{\mathrm{S}}=0\) & 40 & - & \(\mathrm{nV} / \sqrt{ } \mathrm{Hz}\) \\
\hline Equiv. Input Noise Current & iN(10 Hz) & \(\mathrm{R}_{S}=1 \mathrm{M} \Omega\) & 0.25 & - & \(\mathrm{pA} / \sqrt{ } \mathrm{Hz}\) \\
\hline
\end{tabular}

Table I. Pre Burn-In Electrical and Post Burn-In Electrical Tests, and Delta Limits-
ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+6 \mathrm{~V}, \mathrm{~V}-=-6 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline Input Offset Voltage & \(V_{10}\) & \(\mathrm{R}_{\mathrm{S}}=\leqslant 10 \mathrm{~K}\) & - & 3.5 & \(\pm 1\) & mV \\
\hline Input Offset Current & 110 & & - & 2.5 & \(\pm 0.4\) & nA \\
\hline Input Bias Current & 11 & & - & 12 & \(\pm 1.5\) & \(n \mathrm{~A}\) \\
\hline Maximum Output Current & \(1 \mathrm{OM}^{+}\)or \(\mathrm{IOM}^{-}\) & & 6.5 & - & \(\pm 1\) & mA \\
\hline
\end{tabular}

\footnotetext{
- Levels / 1 and / 2 require pre burn-in electrical post burn-in electrical tests, and delta limits.

Level / 3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 18.
}

Table II Final Electrical Tests and Group A Sampling Inspection

File No. 831

Fig. 2-Schematic diagram of the CA3078A.
Table III. Group C Electrical Characteristics Sampling Tests at \(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{CHARACTERISTIC} & \multirow[b]{3}{*}{SYMBOL} & \multicolumn{3}{|l|}{TEST CONDITIONS} & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & & \multirow[t]{2}{*}{V+ and V-} & \multirow[b]{2}{*}{RS} & \multirow[b]{2}{*}{\(\mathrm{R}_{\mathrm{L}}\)} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { RSET }=5.1 \mathrm{M} \Omega \\
\mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}
\end{gathered}
\]} & \\
\hline & & & & & MIN. & MAX. & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & \multirow[b]{5}{*}{} & \(\leqslant 10 \mathrm{~K} \Omega\) & & - & 4.5 & mV \\
\hline Input Offset Current & 110 & & & & - & 4 & nA \\
\hline Input Bias Current & 11 & & & & - & 28 & nA \\
\hline Open-Loop Differential Voltage Gain & AOL & & & \(\geqslant 10 \mathrm{~K} \Omega\) & 84 & - & dB \\
\hline Maximum Output Voltage & \(V_{\text {OM }}\) & & & \(\geqslant 10 \mathrm{~K} \Omega\) & \(\pm 4.0\) & - & V \\
\hline & & \multicolumn{6}{|c|}{\(\mathrm{R}_{\text {SET }}=13 \mathrm{~ms} \quad \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}\)} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & \multirow[t]{3}{*}{} & \(\leqslant 10 \mathrm{~K} \Omega\) & & - & 4.5 & mV \\
\hline Large-Signal Voltage Gain & AOL & & & \(\geqslant 10 \mathrm{~K} \Omega\) & 84 & - & dB \\
\hline Maximum Output Voltage & \(\mathrm{V}_{\text {OM }}\) & & & \(\geqslant 10 \mathrm{~K} \Omega\) & \(\pm 10\) & - & V \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS

Fig. 3-Input offset voltage vs. total quiescent current.

TOTAL QUIESCENT MICROAMPERES (\(I_{Q}\)) 92cs-24746
Fig. 4-Input bias current vs. total quiescent current.

TYPICAL CHARACTERISTICS (Cont'd)

Fig. 5-Open-loop voltage gain vs. total quiescent current.

Fig. 6-Bias-setting resistance vs. total quiescent current.

Fig. 8-Output voltage swing vs. total quiescent current.

Fig. 10-Input bias current vs. temperature.

TYPICAL CHARACTERISTICS (Cont'd)

Fig. 11-Slew rate vs. closed-loop gain for \(I_{Q}=20 \mu A-C A 3078 A\).

\section*{OPERATING CONSIDERATIONS}

\section*{Compensation Techniques}

The CA3078A can be phase-compensated with one or two external components depending upon the closed-loop gain, power consumption, and speed desired. The recommended compensation is a resistor in series with a capacitor connected from terminal 1 to terminal 8 . Values of the resistor and capacitor required for compensation as a function of closed loop gain are shown in Fig. 12. These curves represent the compensation necessary at quiescent non-inverting

Value of \(\mathrm{R}_{\mathrm{B}}\) required to have a null adjustment range of \(: 7.5 \mathrm{mV}\)
\(R_{B}=\frac{B_{I} V+}{75 \times}+\)
\(\mathrm{R}_{\mathrm{B}}=\frac{1}{7.5 \times 1} \overline{\mathrm{i}-3}\)
assuming \(R_{B} \gg R_{I}\)
92CS-25165

Fig. 14-Inverting 20-dB amplifier circuit.

Fig. 15-Non inverting 20-dB amplifier circuit.
currents of \(20 \mu \mathrm{~A}\) and \(100 \mu \mathrm{~A}\), respectively, for a transient response with \(10 \%\) overshoot. Fig. 11 shows the slew rates that can be obtained with the two different compensation techniques. Higher speeds can be achieved with input compensation, but this increases noise output.

Compensation can also be accomplished with a single capacitor connected from terminal 1 to terminal 8 , with capacitor connected from terminal 1 to terminal 8 , with
speed being sacrificed for simplicity. Table 4 gives an indication of slew rates that can be obtained with various compensation techniques at quiescent currents of \(20 \mu \mathrm{~A}\) and \(100 \mu \mathrm{~A}\).

Fig. 12-Phase compensation capacitance vs. closed-loop gain - CA3078AT.

92CS-25168

Fig. 16-Transient response and slew-rate, unity gain (inverting) test circuit.

92cs-25169

Fig. 17-Slew-rate, unity gain (non-inverting) test circuit.

Table IV. Unity-gain slew rate vs. compensation - CA3078A

Fig. 18-Burn-in and operating life test circuit.

Solid State Division

\section*{Linear Integrated Circuits}

Monolithic Silicon
High-Reliability Slash(/) Series
CA3080/. . ., CA3080A/. . .

\section*{High-Reliability Operational Transconductance Amplifiers Gateable-Gain Blocks}

For Applications In Aerospace, Military and Critical Industrial Equipment Features:
- Slew rate (unity gain, compensated): \(\mathbf{5 0 \mathrm { V } / \mu \mathrm { s }}\)
- Adjustable power consumption: \(10 \mu \mathrm{~W}\) to \(\mathbf{3 0} \mathrm{mW}\)
- Flexible supply voltage range: \(\pm 2 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\)
- Fully adjustable gain: \(\mathbf{0}\) to \(g_{m} R_{L}\) limit
- Tight \(\mathrm{g}_{\mathrm{m}}\) spread: CA3080 (2:1), CA3080A (1.6:1)
- Extended \(g_{m}\) linearity: 3 decades
- Hermetic package: 8 -lead TO-5 style

RCA-CA3080 and CA3080A "Slash" (/) Series types are hightreliability linear integrated circuit Operational Transconductance Amplifiers. These gateable-gain blocks, which utilize the same unique OTA (Operational Transconductance Amplifier) concept first introduced in the RCA-CA3060, are intended for applications in aerospace, military, and industrial equipment. They are electrically and mechanically identical with the standard types CA3080 and CA3080A described in Data Bulletin File No. 475 but are specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels/1N, /1R, /1, /2, /3, and /4-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels-/M, \(/ \mathrm{N}\), and \(/ \mathrm{R}\). These screening levels and detailed information on test methods, procedures, and test

MAXIMUM RATINGS, Absolute-Maximum Values at \(T_{A}=25^{\circ} \mathrm{C}\)

\begin{tabular}{ll}
Applications: & a Voltage follower \\
- Sample and hold & a Multiplier \\
- Multiplex & a Comparator
\end{tabular}

Applications:
- Multiplex
- Voltage follower
a Multiplier
a Comparator
sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

The CA3080 and CA3080A Slash (/) Series types are supplied in the 8 -lead TO-5 style package ("T" suffix), in the 8 -lead TO-5 style package with dual-in-line formed leads, DIL-CAN, ("S" suffix), or in chip form ("H" suffix).

Fig. 1 - Schematic diagram for CA3080 and CA3080A.

ELECTRICAL CHARACTERISTICS
For Equipment Design
CA3080
\begin{tabular}{|c|c|c|c|c|}
\hline & & TEST CONDITIONS & & \\
\hline CHARACTERISTICS & SYMBOLS & \[
\begin{aligned}
& \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A} \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \text { (unless indicated } \\
& \text { otherwise) }
\end{aligned}
\] & \begin{tabular}{l}
LIMITS \\
TYP.
\end{tabular} & UNITS \\
\hline Input Offset Voltage & \(V_{10}\) & & 0.4 & mV \\
\hline Input Offset Current & 110 & & 0.12 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & & 2 & \(\mu \mathrm{A}\) \\
\hline Forward Transconductance (large signal) & 9 m & & 9600 & \(\mu \mathrm{mho}\) \\
\hline Peak Output Current & \(|\mathrm{Om}|\) & \(R_{L}=0\) & 500 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
Peak Output Voltage: \\
Positive \\
Negative
\end{tabular} & \[
\frac{v_{\mathrm{OM}}^{+}}{\mathrm{v}_{\mathrm{OM}}^{-}}
\] & \(R_{L}=\infty\) & 13.5 & V \\
\hline Amplifier Supply Current & \({ }^{\prime}\) A & & 1 & mA \\
\hline Device Dissipation & \({ }^{\text {P }}\) & & 30 & mW \\
\hline Common-Mode Rejection Ratio & CMRR & & 110 & dB \\
\hline Common-Mode Input-Voltage Range & \(v_{\text {CMR }}\) & & \[
\begin{gathered}
13.6 \text { to } \\
-14.6 \\
\hline
\end{gathered}
\] & V \\
\hline Input Resistance & \(\mathrm{R}_{1}\) & & 26 & \(k \Omega\) \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS}

Typical Values Intended Only For Design Guidance
CA3080
\begin{tabular}{|c|c|c|c|c|}
\hline Input Offset Voltage & \(V_{10}\) & \({ }^{1} \mathrm{ABC}=5 \mu \mathrm{~A}\) & 0.3 & mV \\
\hline Input Offset Voltage Change & \(\left|\Delta v_{10}\right|\) & Change in \(V_{1 O}\) between \({ }^{\prime} A B C=500 \mu \mathrm{~A}\) and \({ }_{A B C}=5 \mu \mathrm{~A}\) & 0.2 & mV \\
\hline Peak Output Current & \({ }^{\text {O OM }}\) & \({ }^{1} \mathrm{ABC}=5 \mu \mathrm{~A}\) & 5 & \(\mu \mathrm{A}\) \\
\hline Peak Output Voltage: Positive & \[
\mathrm{v}_{\mathrm{OM}}^{+}
\] & \multirow[b]{2}{*}{\({ }^{\prime} A B C=5 \mu \mathrm{~A}\)} & 13.8 & \multirow[t]{2}{*}{V} \\
\hline Negative & \(\mathrm{v}^{-} \mathrm{OM}\) & & -14.5 & \\
\hline \multirow[b]{2}{*}{Magnitude of Leakage Current} & & \({ }^{\prime}{ }_{A B C}=0, V_{T P}=0\) & 0.08 & \multirow[t]{2}{*}{nA} \\
\hline & & \({ }^{1}{ }^{\prime} B C=0, V_{T P}=36 \mathrm{~V}\) & 0.3 & \\
\hline Differential Input Current & & \({ }^{\text {ABC }}\) = \(0, V_{\text {DIFF }}=4 \mathrm{~V}\) & 0.008 & nA \\
\hline Amplifier Bias Voltage & \(\mathrm{V}_{\text {ABC }}\) & & 0.71 & \(\checkmark\) \\
\hline \begin{tabular}{l}
Slew Rate: \\
Maximum (uncompensated)
\end{tabular} & \multirow[t]{2}{*}{SR} & \multirow[t]{2}{*}{-} & 75 & \multirow[t]{2}{*}{\(\mathrm{V} / \mathrm{\mu s}\)} \\
\hline Unity Gain (compensated) & & & 50 & \\
\hline Open-Loop Bandwidth & \(\mathrm{BW}_{\mathrm{OL}}\) & - & 2 & MHz \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & \(f=1 \mathrm{MHz}\) & 3.6 & pF \\
\hline Output Capacitance & \(\mathrm{C}_{0}\) & \(\mathrm{f}=1 \mathrm{MHz}\) & 5.6 & pF \\
\hline Qutput Resistance & \(\mathrm{R}_{0}\) & & 15 & \(\mathrm{M} \Omega\) \\
\hline Input-to-Output Capacitance & \(\mathrm{C}_{1.0}\) & \(f=1 \mathrm{MHz}\) & 0.024 & pF \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
For Equipment Design
CA3080A
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTICS} & \multirow[b]{2}{*}{SYMBOLS} & TEST CONDITIONS & \multirow[b]{2}{*}{\begin{tabular}{l}
LIMITS \\
Typ.
\end{tabular}} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \[
\begin{aligned}
& \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A} \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \text { (unless indicated } \\
& \text { otherwise) }
\end{aligned}
\] & & \\
\hline \multirow{2}{*}{Input Offset Voltage} & \multirow[b]{2}{*}{\(\mathrm{V}_{10}\)} & \multirow[b]{2}{*}{\({ }^{\prime} \mathrm{ABC}=5 \mu \mathrm{~A}\)} & 0.3 & \multirow{2}{*}{mV} \\
\hline & & & 0.4 & \\
\hline Input Offset Voltage Change & \(\left|\Delta v_{10}\right|\) & \begin{tabular}{l}
Change in \(V_{10}\) \\
between I \(\mathrm{ABC}=500 \mu \mathrm{~A}\) \\
and \(\mathrm{I}_{\mathrm{ABC}}=5 \mu \mathrm{~A}\)
\end{tabular} & 0.1 & mV \\
\hline Input Offset Current & 110 & & 0.12 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 1 & & 2 & \(\mu \mathrm{A}\) \\
\hline Forward Transconductance (large signal) & 9 m & & 9600 & \(\mu \mathrm{mho}\) \\
\hline \multirow{2}{*}{Peak Output Current} & \multirow[t]{2}{*}{\(|\mathrm{Om}|\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{ABC}}=5 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=0 \\
& \mathrm{R}_{\mathrm{L}}=0
\end{aligned}
\]} & 5 & \multirow{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & 500 & \\
\hline Peak Output Voltage: Positive & \(\mathrm{v}_{\text {OM }}^{+}\) & \({ }^{\prime}{ }_{\text {ABC }}=5 \mu \mathrm{~A}\) & 13.8 & \\
\hline Negative & \(\mathrm{v}_{\text {OM }}^{-}\) & \(\mathrm{R}_{\mathrm{L}}=\infty\) & -14.5 & \multirow[t]{2}{*}{\(\checkmark\)} \\
\hline Positive & \(\mathrm{v}_{\text {OM }}^{+}\) & \multirow[b]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=\infty\)} & 13.5 & \\
\hline Negative & \(\mathrm{V}_{\text {OM }}^{-}\) & & -14.4 & \\
\hline Amplifier Supply Current & \({ }^{\prime}\) A & & 1 & mA \\
\hline Device Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & & 30 & mW \\
\hline \begin{tabular}{l}
Input Offset Voltage Sensitivity: \\
Positive
\end{tabular} & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{V}^{+}\) & & - & \multirow[b]{2}{*}{\(\mu \mathrm{V} / \mathrm{V}\)} \\
\hline Negative & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{V}^{-}\) & & - & \\
\hline \multirow[t]{2}{*}{Magnitude of Leakage Current} & & \({ }^{\prime}{ }_{\text {ABC }}=0, V_{T P}=0\), & 0.08 & \multirow[b]{2}{*}{nA} \\
\hline & & \({ }^{1} \mathrm{ABC}=0, \mathrm{~V}_{T P}=36 \mathrm{~V}\) & 0.3 & \\
\hline Differential Input Current & & \({ }^{\prime}{ }_{\text {ABC }}=0, \mathrm{~V}_{\text {DIFF }}=4 \mathrm{~V}\) & 0.008 & nA \\
\hline Common-Mode Rejection Ratio & CMRR & & 110 & dB \\
\hline Common-Mode Input-Voltage Range & \(V_{\text {CMR }}\) & & \[
\begin{gathered}
13.6 \text { to } \\
-14.6
\end{gathered}
\] & V \\
\hline Input Resistance & \(\mathrm{R}_{1}\) & & 26 & k \(\Omega\) \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS
Typical Values Intended Ony For Design Guidance
CA3080A
\begin{tabular}{|c|c|c|c|c|}
\hline Amplifier Bias Voltage & \(\mathrm{V}_{\text {ABC }}\) & & 0.71 & V \\
\hline \begin{tabular}{l}
Slew Rate: \\
Maximum (uncompensated)
\end{tabular} & \multirow[b]{2}{*}{SR} & & 75 & \multirow[b]{2}{*}{V/us} \\
\hline Unity Gain (compensated) & & - & 50 & \\
\hline Open-Loop Bandwidth & BWOL & - & 2 & MHz \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & \(f=1 \mathrm{MHz}\) & 3.6 & pF \\
\hline Output Capacitance & \(\mathrm{C}_{0}\) & \(\mathrm{f}=1 \mathrm{MHz}\) & 5.6 & pF \\
\hline Output Resistance & \({ }^{R} \mathrm{O}\) & & 15 & M \(\Omega\) \\
\hline Input-to-Output Capacitance & \(\mathrm{Cl}_{1} \mathrm{O}\) & \(\mathrm{f}=1 \mathrm{MHz}\) & 0.024 & pF \\
\hline
\end{tabular}

Table 1-Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{CHARACTERISTIC}} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{TEST CONDITIONS
\[
\begin{gathered}
\mathrm{v}^{+}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=0.5 \mathrm{~mA} \\
\mathrm{~V}^{-}=-15 \mathrm{~V}
\end{gathered}
\]}} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Input Offset Voltage}} & \multirow[b]{2}{*}{\(\mathrm{V}_{10}\)} & & CA3080 & - & - & - & 6 & 5 & 6 & \multirow[b]{2}{*}{mV} \\
\hline & & & & CA3080A & - & - & - & 5 & 2 & 5 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Input Offset Current}} & \multirow[t]{2}{*}{110} & & CA3080 & - & - & - & 1.2 & 0.6 & 0.7 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & & CA3080A & - & - & - & 1.2 & 0.6 & 0.7 & \\
\hline \multicolumn{2}{|l|}{Input Bias Current} & 1 & & CA3080 & - & - & - & 8 & 5 & 8 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Forward Transconductance}} & \multirow[b]{2}{*}{\(\mathrm{gm}_{\mathrm{m}}\)} & & CA3080 & 5400 & 6700 & 5400 & & & & \multirow[b]{2}{*}{umho} \\
\hline & & & & CA3080A & 4000 & 7700 & 4000 & 9000 & 12000 & 18000 & \\
\hline \multirow[t]{2}{*}{Peak Output Voltage} & Positive & \({ }^{+} \mathrm{VOM}^{\text {O }}\) & \multirow[b]{2}{*}{\(R_{L}=\infty\)} & \[
\begin{array}{|l|}
\hline \text { CA3080 } \\
\text { CA3080A } \\
\hline
\end{array}
\] & 11.6 & 12 & 12 & - & - & - & \multirow[t]{2}{*}{V} \\
\hline & Negative & - \(\mathrm{V}_{\mathrm{OM}}\) & & \[
\begin{array}{|l|}
\hline \text { CA3080 } \\
\text { CA3080A } \\
\hline
\end{array}
\] & 11.8 & 12 & 12 & - & - & - & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Peak Output Current}} & \multirow[t]{2}{*}{\(\mid{ }^{\prime}\) ом|} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=0\)} & CA3080 & 350 & 350 & 320 & 750 & 650 & 750 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & & CA3080A & 350 & 350 & 320 & 750 & 650 & 750 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Amplifier Supply Current}} & \multirow[t]{2}{*}{\({ }^{\prime} \mathrm{A}\)} & & CA3080 & 0.7 , & 0.8 & 0.7 & 1.4 & 1.2 & 1.4 & \multirow[t]{2}{*}{mA} \\
\hline & & & & CA3080A & 0.7 & 0.8 & 0.7 & 1.4 & 1.2 & 1.4 & \\
\hline \multicolumn{2}{|l|}{Common-Mode Rejection Ratio} & \(\mathrm{C}_{\text {MRR }}\) & & \[
\begin{aligned}
& \text { CA3080 } \\
& \text { CA3080A }
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & - & - & - & dB \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Supply Voltage Rejection Ratio}} & \multirow[b]{2}{*}{\(V_{\text {RR }}\)} & & CA3080 & - & - & - & 150 & 150 & 150 & \multirow[b]{2}{*}{\(\mu \mathrm{V} / \mathrm{V}\)} \\
\hline & & & & CA3080A & - & - & - & 150 & 150 & 150 & \\
\hline
\end{tabular}

Table I/-Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{TEST CONDITIONS
\[
\begin{gathered}
\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~V}^{+}=+15 \mathrm{~V}, \\
\mathrm{I}_{\mathrm{ABC}}=0.5 \mathrm{~mA}
\end{gathered}
\]}} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{UNITS} \\
\hline & & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multirow[b]{2}{*}{Input Offset Voltage} & \multirow[b]{2}{*}{\(V_{10}\)} & & CA3080 & - & - & - & 6 & 5 & 6 & \multirow[b]{2}{*}{mV} \\
\hline & & & CA3080A & - & - & - & 5 & 2 & 5 & \\
\hline \multirow[b]{2}{*}{Input Offset Current} & \multirow[b]{2}{*}{110} & & CA3080 & - & - & - & 1.2 & 0.6 & 0.7 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & CA3080A & - & - & - & 1.2 & 0.6 & 0.7 & \\
\hline Input Bias Current & 1 & & CA3080 & - & - & - & 8 & 5 & 8 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Forward Transconductance} & \multirow[b]{2}{*}{9 m} & & CA3080 & 5400 & 6700 & 5400 & 13000 & 13000 & 20000 & \multirow[b]{2}{*}{umho} \\
\hline & & & CA3080A & 4000 & 7700 & 4000 & 9000 & 12000 & 18000 & \\
\hline \multirow[t]{2}{*}{Peak
Output
Voltage} & \(+\mathrm{V}_{\text {OM }}\) & \multirow[b]{2}{*}{\(R_{L}=\infty\)} & \[
\begin{array}{|l|}
\hline \text { CA3080 } \\
\text { CA3080A } \\
\hline
\end{array}
\] & 11.6 & 12 & 12 & - & - & - & \multirow[t]{2}{*}{\(v\)} \\
\hline & - \(\mathrm{V}_{\mathrm{OM}}\) & & \[
\begin{aligned}
& \hline \text { CA3080 } \\
& \text { CA3080A } \\
& \hline
\end{aligned}
\] & 11.8 & 12 & 12 & - & - & - & \\
\hline \multirow[t]{2}{*}{Peak Output Current} & \multirow[b]{2}{*}{| 'ом |} & \multirow[b]{2}{*}{\(R_{L}=0\)} & CA3080 & 350 & 350 & 320 & 750 & 650 & 750 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & CA3080A & 350 & 350 & 320 & 750 & 650 & 750 & \\
\hline \multirow[t]{2}{*}{Amplifier Supply Current} & \multirow[t]{2}{*}{\({ }^{\prime} \mathrm{A}\)} & & CA3080 & 0.7 & 0.8 & 0.7 & 1.4 & 1.2 & 1.4 & \multirow[t]{2}{*}{mA} \\
\hline & & & CA3080A & 0.7 & 0.8 & 0.7 & 1.4 & 1.2 & 1.4 & \\
\hline Common-Mode Rejection Ratio & \(\mathrm{C}_{\text {MRR }}\) & & \[
\begin{aligned}
& \hline \text { CA3080 } \\
& \text { CA3080A }
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 80
\end{aligned}
\] & - & - & - & dB \\
\hline \multirow[t]{2}{*}{Supply Voltage Rejection Ratio} & \multirow[b]{2}{*}{\(V_{\text {RR }}\)} & & CA3080 & - & - & - & 150 & 150 & 150 & \multirow[t]{2}{*}{\(\mu \mathrm{V} / \mathrm{V}\)} \\
\hline & & & CA3080A & - & - & - & 150 & 150 & 150 & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Differential Input } \\
& \text { Current } \\
& \hline
\end{aligned}
\]} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{ABC}}=10 \mathrm{~mA}, \\
& \mathrm{~V}_{\text {DIFF }}=4 \mathrm{~V}
\end{aligned}
\]} & CA3080 & - & - & - & - & 7 & - & \multirow[t]{2}{*}{nA} \\
\hline & & & CA3080A & - & - & - & - & 5 & - & \\
\hline \multirow{4}{*}{Magnitude of Leakage Current} & & \multirow[t]{2}{*}{\(I^{\prime} A B C=0, V_{T P}=0\)} & CA3080 & - & - & - & - & 7 & - & \multirow[t]{2}{*}{nA} \\
\hline & & & CA3080A & - & - & - & - & 5 & - & \\
\hline & & \multirow[t]{2}{*}{\({ }^{\prime} A B C=0, V_{T P}=36\)} & CA3080 & - & - & - & - & 7 & - & \multirow[t]{2}{*}{nA} \\
\hline & & & CA3080a & - & & - & - & 5 & - & \\
\hline
\end{tabular}

File No. 709

Table I/I-Pre Burn-In and Post Burn-In Electrical Tests and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { TEST CONDITIONS } \\
\text { AT } T_{A}=25^{\circ} \mathrm{C} \\
\mathrm{~V}^{+}=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V} \\
\mathrm{I}_{\mathrm{ABC}}=0.5 \mathrm{~mA}
\end{gathered}
\]} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \(\triangle\) & \\
\hline \multirow[b]{2}{*}{Input Offset Voltage} & \multirow[b]{2}{*}{\(V_{10}\)} & CA3080 & - & 5 & \(\pm 0.2\) & \multirow[b]{2}{*}{mV} \\
\hline & & CA3080A & - & 2 & \(\pm 0.15\) & \\
\hline \multirow[t]{2}{*}{Input Offset Current} & \multirow[t]{2}{*}{110} & CA3080 & - & 0.6 & \(\pm 0.05\) & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & CA3080A & - & 0.6 & \(\pm 0.05\) & \\
\hline \multirow[t]{2}{*}{Input Bias Current} & \multirow[t]{2}{*}{11} & CA3080 & - & 5 & \(\pm 0.25\) & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & CA3080A & - & 5 & \(\pm 0.25\) & \\
\hline \multirow[t]{2}{*}{Forward Transconductance} & \multirow[b]{2}{*}{\(\mathrm{gm}_{\mathrm{m}}\)} & CA3080 & 6700 & 13000 & \(\pm 3000\) & \multirow[t]{2}{*}{umho} \\
\hline & & CA3080A & 7700 & 12000 & \(\pm 3000\) & \\
\hline
\end{tabular}
*Levels /1N, /1R, /1, and /2 require pre and post burn-in electrical tests and delta limits
Level \(/ 3\) requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 12.

Table IV-Group C Electrical Characteristics Sampling Tests (\(T_{A}=25^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS
\[
\mathrm{v}^{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}
\]} & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline Input Offset Voltage & \(V_{10}\) & \[
\frac{\text { CA3080 }}{\text { CA3080A }}
\] & - & \[
\frac{6.5}{5.5}
\] & mV \\
\hline Input Offset Current & \({ }^{10}\) & \[
\frac{\text { CA3080 }}{\text { CA3080A }}
\] & - & \[
\frac{1.2}{1.2}
\] & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 11 & \[
\frac{\text { CA3080 }}{\text { CA3080A }}
\] & - & 10 & \(\mu \mathrm{A}\) \\
\hline Forward Transconductance to Terminal No. 1 & 9 m & \[
\frac{\text { CA3080 }}{\text { CA3080A }}
\] & 6500 & 14000 & umho \\
\hline Peak Output Current & \(|' \mathrm{OM}|\) & \[
\frac{\text { CA3080 }}{\text { CA3080A }}
\] & 300 & 700 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Peak Output Voltage} & \(+\mathrm{V}_{\mathrm{OM}}\) & CA3080 & 11 & - & \multirow[t]{2}{*}{V} \\
\hline & \(-V_{O M}\) & CA3080 & -11
-11 & - & \\
\hline
\end{tabular}

Typical Characteristics Curves for the CA3080 and CA3080A

TOP VIEW

NOTE: PIN 8 IS INDICATED BY THE CASE INDEX TAE 92CS-17660

Fig. 2 - Functional diagram of CA3080 and CA3080A.

Fig. 3 - Input offset voltage vs. amplifier bias current.

Typical Characteristics Curves for the CA3080 and CA3080A (Cont'd.)

Fig. 4 - Input offset current vs. amplifier bias current.

Fig. 6 - Peak output current vs. amplifier bias current.

Fig. 5 - Input bias current vs. amplifier bias current.

Fig. 7-Peak output voltage vs. amplifier bias current.

Fig. 9 - Total power dissipation vs. amplifier bias current.

Typical Characteristics Curves for CA3080 and CA3080A - Cont'd.

Fig. 10 - Input current vs. input differential voltage.

Fig. 11 - Transconductance vs. amplifier bias current.

Fig. 12 - Burn-in and operating life test circuit.

Solid State Division

\title{
High-Reliability \\ Positive Voltage Regulators
}

For Regulated Voltages from 1.7 V to 46 V at Currents up to 100 mA
For Application in Aerospace, Military and Critical Industrial Equipment

\section*{Features}
- Up to 100 mA output current
- Input and output short-circuit protection
- Load and line regulation: 0.025\%
- Pin compatible with LM100 Series
- Adjustable output voltage

\section*{Applications}
- Shunt voltage regulator
- Current regulator
- Switching voltage regulator
- High-current voltage regulator
- Combination positive and negative voltage regulator
- Dual tracking regulator

RCA-CA3085, CA3085A, and CA3085B "Slash" (/) Series types are high-reliability linear integrated circuits designed specifically for voltage service as voltage regulators at output voltages ranging from 17 to 46 volts at currents up to 100 milliamperes. They are intended for applications in aerospace, military, and industrial equipment. They are electrically and mechanically identical with the standard types CA3085, CA3085A and CA3085B described in Data Bulletin File No. 491 but are specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels\(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\), and \(/ 4\)-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A "HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

The CA3085, CA3085A, and CA3085B Slash (/) Series type are supplied in the 8 -lead TO-5 style package (" \(T\) " suffix) in the 8 -lead TO- 5 style package with dual-in-line formed leads, DIL-CAN, ('S'S suffix), or in chip form ("H" suffix).
\begin{tabular}{|c|c|c|c|l|}
\hline \multicolumn{1}{|c|}{ Type } & \begin{tabular}{c}
VIN \\
Range \\
V
\end{tabular} & \begin{tabular}{c}
VOUT \\
Range \\
V
\end{tabular} & \begin{tabular}{l}
Max. \\
IOUT \\
mA
\end{tabular} & \begin{tabular}{l}
Max. Load \\
Regulation \\
\(\%\) VOUT
\end{tabular} \\
\hline CA3085 & 7.5 to 30 & 1.8 to 26 & \(12^{*}\) & 0.1 \\
CA3085A & 7.5 to 40 & 1.7 to 36 & 100 & 0.15 \\
CA3085B & 7.5 to 50 & 1.7 to 46 & 100 & 0.15 \\
\hline
\end{tabular}
*. This value may be extended to 100 mA ; however, regulation is not specified beyond 12 mA .

Fig.1-Block diagram of CA3085 Series. For schematic diagram see Fig.2.

\section*{MAXIMUM RATINGS, ABSOLUTE-MAXIMUM VALUES at \(\mathbf{T A}_{\mathbf{A}}=\mathbf{2 5}^{\boldsymbol{\circ}} \mathbf{C}\)}
\begin{tabular}{|c|c|}
\hline Power Dissipation: Without Heat Sink & With Heat Sink \\
\hline up to \(\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \cdots \cdots6 .630 \mathrm{~mW}\) & up to \(\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C} \ldots 1.6 \mathrm{~W}\) \\
\hline above \(\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}\) derate linearly @6.67 mW/ \({ }^{\circ} \mathrm{C}\) & above \(T_{C}=55^{\circ} \mathrm{C} . . .2\) derate linearly at \\
\hline Unregulated Input Voltage: & 16.7 mW/ C \\
\hline CA3085 30 V & \\
\hline CA3085A 40 V & \\
\hline CA3085B 50 V & \\
\hline Maximum Voltage Ratings & \\
\hline The following chart gives the range of volt & which can be applied to the terminals \\
\hline listed vertically with respect to the termina & isted horizontally. For example, the \\
\hline voltage range between vertical Terminal & and horizontal Terminal No. 1 is +3 to -10 \\
\hline
\end{tabular}

TEMPERATURE RANGE
Operating -55 to \(+125^{\circ} \mathrm{C}\)
Storage -65 to \(+150^{\circ} \mathrm{C}\)
LEAD TEMPERATURE (During Soldering):
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
\((1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm})\)
from case for 10 s max. . . . \(265^{\circ} \mathrm{C}\)

MAXIMUM VOLTAGE RATINGS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline TERMINAL No. & 5 & 6 & 7 & 8 & 1 & 2 & 3 & 4 & \multirow{9}{*}{\begin{tabular}{l}
*Voltages are not normally applied between these terminals; however, voltages appearing between these terminals are safe, if the specified voltage limits between all other terminals are not exceeded. \\
\(\ddagger 30 \mathrm{~V}\) for CA3085 \\
40 V for CA3085A \\
50 V for CA3085B
\end{tabular}} \\
\hline 5 & - & \[
\begin{aligned}
& +5 \\
& -5
\end{aligned}
\] & * & * & * & - & * & \[
\begin{gathered}
+10 \\
0
\end{gathered}
\] & \\
\hline 6 & - & - & * & - & * & * & * & * & \\
\hline 7 & - & - & - & \[
\begin{aligned}
& +3 \\
& -10
\end{aligned}
\] & \[
\begin{aligned}
& +3 \\
& -10
\end{aligned}
\] & * & - & \[
\begin{array}{r}
+\ddagger \\
0
\end{array}
\] & \\
\hline 8 & - & - & - & - & \[
\begin{aligned}
& +5 \\
& -1 \\
& \hline
\end{aligned}
\] & - & * & * & \\
\hline 1 & - & - & - & - & - & \[
\begin{aligned}
& +10 \\
& -+ \\
& \hline+
\end{aligned}
\] & \[
\begin{array}{r}
0 \\
-亡
\end{array}
\] & \[
\begin{array}{r}
+\ddagger \\
0
\end{array}
\] & \\
\hline 2 & - & - & - & - & - & - & O & \[
\begin{array}{r}
+\ddagger \\
0
\end{array}
\] & \\
\hline 3 & - & - & - & - & - & - & - & \[
\begin{array}{r}
+1 \\
0 \\
\hline
\end{array}
\] & \\
\hline 4 & - & - & - & - & - & - & - & Substrate \& Case & \\
\hline
\end{tabular}

MAXIMUM
CURRENT RATINGS
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
TERM \\
INAL \\
No.
\end{tabular} & \begin{tabular}{c}
IIN \\
mA
\end{tabular} & \begin{tabular}{c}
IOUT \\
mA
\end{tabular} \\
\hline 5 & 10 & 1.0 \\
\hline 6 & 1.0 & -0.1 \\
\hline 7 & 1.0 & -1.0 \\
\hline 8 & 0.1 & 10 \\
\hline 1 & 20 & 150 \\
\hline 2 & 150 & 60 \\
\hline 3 & 150 & 60 \\
\hline 4 & - & - \\
\hline
\end{tabular}

Fig.2-Schematic diagram of CA3085 Series.

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{CHARACTERISTICS} & \multirow[b]{3}{*}{SYMBOL} & \multicolumn{2}{|r|}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{3}{*}{UNITS} \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\[
T_{A}=25^{\circ} \mathrm{C}
\] \\
[Unless indicated otherwise]
\end{tabular}}} & \multicolumn{3}{|l|}{CA3085 CA3085A CA3085B} & \\
\hline & & & & TYP. & TYP. & TYP. & \\
\hline Reference Voltage & \(\mathrm{V}_{\text {REF }}\) & \(\mathrm{V}^{+} \mathrm{IN}=15 \mathrm{~V}\) & & 1.6 & 1.6 & 1.6 & V \\
\hline \multirow{3}{*}{Quiescent Regulator Current} & \multirow{3}{*}{Iquiescent} & \(\mathrm{V}^{+} \mathrm{IN}=30 \mathrm{~V}\) & & 3.3 & - & - & \multirow{3}{*}{mA} \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}^{+} \mathrm{IN}^{+}=40 \mathrm{~V}\)} & - & 3.65 & - & \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}^{+} \mathrm{IN}=50 \mathrm{~V}\)} & - & - & 4.05 & \\
\hline Input Voltage Range & VIN(range) & \multicolumn{2}{|r|}{-} & - & - & - & V \\
\hline Maximum Output Voltage & VO(max.) & \multicolumn{2}{|l|}{\begin{tabular}{l}
\[
\mathrm{V}^{+} I \mathrm{~N}=30,40,50 \mathrm{~V} \# ; \mathrm{R}_{\mathrm{L}}=365 \Omega
\] \\
Term. No. 6 to Gnd.
\end{tabular}} & 27 & 37 & 47 & V \\
\hline Minimum Output Voltage & Vo(min.) & \multicolumn{2}{|l|}{\(\mathrm{V}^{+} \mathrm{IN}=30 \mathrm{~V}\)} & 1.6 & 1.6 & 1.6 & V \\
\hline Input-Output Voltage Differential & VIN-VOUT & & - & - & - & - & V \\
\hline Limiting Current & 'LIM & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}^{+} I N=16 \mathrm{~V}, \mathrm{~V}^{+} \text {OUT }=10 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{SCP}}{ }^{*}=6 \Omega
\end{aligned}
\]} & 96 & 96 & 96 & mA \\
\hline \multirow{3}{*}{Load Regulation \({ }^{\text {© }}\)} & \multirow{3}{*}{-} & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{L}}=1\) to \(100 \mathrm{~mA}, \mathrm{R}_{\text {SCP }}=0\)} & - & 0.025 & 0.025 & \multirow{3}{*}{\%VOUT} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{I}_{\mathrm{L}}=1 \text { to } 100 \mathrm{~mA}, \mathrm{RSCP}=0 \\
\mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{gathered}
\]} & - & 0.035 & 0.035 & \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{L}}=1\) to \(12 \mathrm{~mA}, \mathrm{R}_{\text {SCP }}=0\)} & 0.003 & - & - & \\
\hline \multirow[b]{2}{*}{Line Regulation \({ }^{\text {A }}\)} & \multirow[b]{2}{*}{-} & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{R}_{\text {SCP }}=0\)} & 0.025 & 0.025 & 0.025 & \multirow[b]{2}{*}{\%/V} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{R} S C P=0 \\
& T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{aligned}
\]} & 0.04 & 0.04 & 0.04 & \\
\hline \multirow[t]{2}{*}{Equivalent Noise Output Voltage} & \multirow[b]{2}{*}{\(\mathrm{V}_{\text {NOISE }}\)} & \multirow[b]{2}{*}{\(\mathrm{V}^{+} \mathrm{IN}=25 \mathrm{~V}\)} & \(\mathrm{C}_{\text {REF }}=0\) & 0.5 & 0.5 & 0.5 & \multirow[b]{2}{*}{\(\mathrm{mV} \mathrm{p} \cdot \mathrm{p}\)} \\
\hline & & & \(\mathrm{C}_{\text {REF }}=0.22 \mu \mathrm{~F}\) & 0.3 & 0.3 & 0.3 & \\
\hline \multirow[b]{2}{*}{Ripple Rejection} & \multirow[b]{2}{*}{-} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V^{+} I N=25 \mathrm{~V} \\
& \mathrm{f}=1 \mathrm{kHz}
\end{aligned}
\]} & \(\mathrm{C}_{\text {REF }}=0\) & 50 & 50 & 50 & \multirow[t]{2}{*}{dB} \\
\hline & & & \(\mathrm{C}_{\text {REF }}=2 \mu \mathrm{~F}\) & 56 & 56 & 56 & \\
\hline Output Resistance & ro & \multicolumn{2}{|l|}{\(\mathrm{V}^{+} \mathrm{IN}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}\)} & 0.075 & 0.075 & 0.075 & \(\Omega\) \\
\hline Temperature Coefficient of Reference and Output Voltages & \begin{tabular}{l}
\(\Delta V_{\text {REF }}\). \\
\(\Delta V_{0}\)
\end{tabular} & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{L}}=0, \mathrm{~V}_{\text {REF }}=1.6 \mathrm{~V}\)} & 0.0035 & 0.0035 & 0.0035 & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Load Transient Recovery Time: Turn On & ton & \multicolumn{2}{|l|}{\(V^{+}\)IN \(=25 \mathrm{~V},+50 \mathrm{~mA}\) Step} & 1 & 1 & 1 & \(\mu \mathrm{s}\) \\
\hline Turn Off & \({ }^{\text {toff }}\) & \multicolumn{2}{|l|}{\(\mathrm{V}^{+} \mathrm{IN}=25 \mathrm{~V},-50 \mathrm{~mA}\) Step} & 3 & 3 & 3 & \(\mu \mathrm{s}\) \\
\hline Line Transient Recovery Time: Turn On & ton & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathrm{V}^{+} \mathrm{IN}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, 2 \mathrm{~V}\) Step}} & 0.8 & 0.8 & 0.8 & \(\mu \mathrm{s}\) \\
\hline Turn Off & toff & & & 0.4 & 0.4 & 0.4 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\footnotetext{
\# 30 (CA3085), 40V(CA3085A), 50V(CA3085B)
- \(\mathrm{R}_{\text {SCP }}\) : Short-circuit protection resistance
- Load Regulation \(=\frac{\Delta \mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {OUT }}{ }^{(\text {initial) })}} \times 100 \%\)
\(\Delta\) Line Regulation \(=\frac{\left(\Delta \mathrm{V}_{\text {OUT }}\right)}{\left(\mathrm{V}_{\text {OUT(initiall }}\right)\left(\Delta \mathrm{V}_{\text {IN }}\right)} \times 100 \%\)
}

File No. 708 CA3085, CA3085A, CA3085B Slash (/) Series

Table I - Pre Burn-In and Post Burn-In Electrical Test and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\]} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. & \\
\hline \multirow[t]{2}{*}{Reference Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {REF }}\)} & CA3085A, B & 1.5 & 1.7 & \(\pm 0.05\) & V \\
\hline & & CA3085 & 1.4 & 1.8 & \(\pm 0.05\) & V \\
\hline \multirow{6}{*}{Output Voltage} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{O}(\mathrm{min} .)}\)} & \(\mathrm{V}_{\text {IN }}+7.5 \mathrm{~V}\) or +50 CA3085B & - & 1.7 & \(\pm 0.1\) & V \\
\hline & & \(\mathrm{V}_{\text {IN }}+7.5 \mathrm{~V}\) or +40 V CA3085A & - & 1.7 & \(\pm 0.1\) & V \\
\hline & & \(\mathrm{V}_{\text {IN }}+7.5 \mathrm{~V}\) or +30 V CA3085 & - & 1.8 & \(\pm 0.1\) & V \\
\hline & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{O} \text { (max.) }}\)} & \(\mathrm{V}_{\text {IN }}=50 \mathrm{~V}\) CA3085/B & 46 & - & \(\pm 0.5\) & V \\
\hline & & \(\mathrm{V}_{\text {IN }}=40 \mathrm{VCA3085/A}\) & 36 & - & \(\pm 0.5\) & V \\
\hline & & \(\mathrm{V}_{\text {IN }}=30 \mathrm{~V}\) CA3085 & 26 & - & \(\pm 0.5\) & V \\
\hline Limiting Current & 'LIM & \(\mathrm{V}_{\text {IN }}=7.5 \mathrm{~V} \mathrm{R}_{\text {SCP }}=7 \Omega, \mathrm{R}_{\mathrm{L}}=10 \Omega\) & - & 115 & \(\pm 10\) & mA \\
\hline
\end{tabular}
* Levels \(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1\), and/2 require pre and post burn-in electrical tests and delta limits

Level/3 requires pre burn-in electrical test only. The burn-in circuit is shown in Fig. 7.

Table II - Final Electrical Tests and Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow{3}{*}{TEST CONDITIONS}} & \multicolumn{6}{|l|}{LIMITS FOR INDICATED TEMPERATURES \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multirow{3}{*}{UNITS} \\
\hline & & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline Reference Voltage & \(V_{\text {REF }}\) & & & 1.4 & 1.4 & 1.3 & 1.9 & 1.8 & 1.8 & V \\
\hline \multirow[t]{3}{*}{Output Voltage Minimum Value} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{O}(\text { min.) }}\)} & \(\mathrm{V}_{1 \mathrm{~N}}=7.5 \mathrm{~V}\) or 50 & CA3085/B & - & - & - & 1.8 & 1.7 & 1.7 & V \\
\hline & & \(\mathrm{V}_{\text {IN }}=7.5 \mathrm{~V}\) or 40 & CA3085/A & - & - & - & 1.8 & 1.7 & 1.7 & V \\
\hline & & \(\mathrm{V}_{\text {IN }}=7.5 \mathrm{~V}\) or 30 & CA3085 & - & - & - & 1.9 & 1.8 & 1.8 & V \\
\hline \multirow{3}{*}{Maximum Value} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{O} \text { (max.) }}\)} & \(\mathrm{V}^{+}{ }_{\text {IN }}=30 \mathrm{~V}, \mathrm{CA}\) & & 25 & 26 & 24 & - & - & - & \\
\hline & & \(\mathrm{V}^{+} \mathrm{IN}^{+}=40 \mathrm{~V}, \mathrm{CA}\) & 85A & 35 & 36 & \(34^{\prime}\) & - & - & - & V \\
\hline & & \(\mathrm{V}^{+}\)IN \(=50 \mathrm{~V}, \mathrm{CA} 3\) & 85B & 45 & 46 & 44 & - & - & - & \\
\hline \multirow{3}{*}{Load Regulation} & & \(\mathrm{I}_{\mathrm{L}}=1\) to 100 mA & CA3085A & - & - & - & 0.75 & 0.15 & 0.75 & \%/V \({ }_{\text {OUT }}\) \\
\hline & & \(\mathrm{R}_{\text {SCP }}=0\) & CA3085B & - & - & - & 0.75 & 0.15 & 0.75 & \%/V \({ }_{\text {OUT }}\) \\
\hline & & \(\mathrm{I}_{\mathrm{L}}=1\) to 12 mA & CA3085 & -. & - & - & 0.15 & 0.10 & 0.15 & \(\% / \mathrm{V}_{\text {OUT }}\) \\
\hline \multirow{3}{*}{Line Rgulation} & \multirow[t]{3}{*}{} & \(\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}\) & CA3085 & - & - & - & 0.2 & 0.1 & 0.2 & \%/V \\
\hline & & \[
R_{S C P}=0
\] & CA3085A & - & - & - & 0.15 & 0.075 & 0.15 & \%/V \\
\hline & & & CA3085B & - & - & - & 0.12 & 0.04 & 0.12 & \%/V \\
\hline
\end{tabular}

Table III-Group C Electrical Characteristics Sampling Tests \(\left(T_{A}=25^{\circ} \mathrm{C}\right.\))

Fig. 3- \(\boldsymbol{I}_{\text {LIM }}\) vs. \(\boldsymbol{T}_{\boldsymbol{A}}\).

Fig. 5- Line regulation temperature characteristics.

Fig. 4- Load regulation characteristics.

Fig. 6- Temperature coefficient of \(V_{\text {REF }}\) and VOUT.

Fig. 7- Burn-in and operating life test circuit.

Solid State Division

\section*{Linear Integrated Circuits}

\title{
Monolithic Silicon High-Reliability Slash (/) Series CA3094/... CA3094A/... CA3094B/...
}

\title{
High-Reliability Programmable Power Switch/Amplifiers
}

\author{
For Control \& General-Purpose Applications In Aerospace, Military, and Critical Industrial Equipment \\ Features: \\ - Designed for single or dual power supply \\ - Programmable: strobing, gating, squelching, AGC capabilities \\ - Can deliver 3 watts (avg.) or 10 W (peak) to external load (in switching mode) \\ - High-power, single-ended class \(A\) amplifier will deliver power output of 0.6 watt (1.6 W device dissipation) \\ - Total harmonic distortion (THD) @ 0.6 W in class A operation - \(1.4 \%\) typ. \\ - High current-handling capability - 100 mA (avg.), \(\mathbf{3 0 0} \mathrm{mA}\) (peak)
}

RCA-CA3094, CA3094A, and CA3094B "Slash" (/) Series are high-reliability linear integrated circuit differential-input powercontrol switch amplifiers with auxiliary circuit features for ease of programmability. They are intended for use in a variety of control and general-purpose applications for aerospace, military and industrial equipment. These devices are electrically and mechanically identical with standard types CA3094, CA3094A and CA3094B described in Data Bulletin File No. 598, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. The CA3094 is intended for operation up to 24 volts. The CA3094A and CA3094B are like the CA3094 but are intended for operation up to 36 and 44 volts, respectively (single or dual supply).

The packaged types can be supplied to six screening levels\(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\), and \(/ 4\)-which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures, and test sequence are given in Reliability Report RIC-202A 'HighReliability CA3000 Slash (/) Series Types Screened to MIL-STD-883."

The CA3094, CA3094A, and CA3094B "Slash" (/) Series types are supplied in the 8 -lead TO-5 style ceramic package ("T" Suffix), in 8-lead TO-5 style ceramic package with, dual-in-line formed leads - ("S" Suffix DIL-CAN) - or in chip form ("H" Suffix).
- Sensitivity controlled by varying bias current
- Output: "sink" or "drive" capability

\section*{Applications:}
- Error-signal detector: temperature control with thermistor sensor; speed control for shunt wound dc motor
- Over-current, over-voltage, over-temperature protectors
- Dual-tracking power supply with RCA-CA3085
- Wide-frequency-range oscillator \(\quad\) Analog timer
- Level detector a Alarm systems a Voltage follower
- Ramp-voltage generator a High-power comparator
- Ground-fault interrupter (GFI) circuits

Terminal Connections (Bottom View, Terminal End)

Fig. 1 - Schematic diagram of CA3094, CA3094A, and CA3094B Slash (/) Series Types.

MAXIMUM RATINGS, Abso/ute-Maximum Values:
\begin{tabular}{|c|c|c|c|}
\hline & CA3094/Series & CA3094A/Series & CA3094B/Series \\
\hline \multicolumn{4}{|l|}{DC Supply Voltage:} \\
\hline Dual Supply & \(\pm 12 \mathrm{~V}\) & \(\pm 18 \mathrm{~V}\) & \(\pm 22 \mathrm{~V}\) \\
\hline Single Supply & 24 V & 36 V & 44 V \\
\hline \begin{tabular}{l}
DC Differential Input Voltage \\
(Terminals 2 and 3)
\end{tabular} & - & \(\pm 5^{*}\) & \\
\hline DC Common-Mode Input Voltage & \multicolumn{3}{|c|}{Pin \(4 \leq\) Pins \(2 \& 3 \leq\) Pin 7} \\
\hline \multicolumn{4}{|l|}{Peak Input Signal Current (Terminals 2 and 3) .} \\
\hline \multicolumn{4}{|l|}{Peak Amplifier Bias Current (Terminal 5)} \\
\hline \multicolumn{4}{|l|}{Output Current:} \\
\hline \multicolumn{4}{|l|}{Peak . 30 - 300} \\
\hline Average & & -100 & \\
\hline \multicolumn{4}{|l|}{Device Dissipation:} \\
\hline \multicolumn{4}{|l|}{Up to \(\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}\) :} \\
\hline \multicolumn{4}{|l|}{Without heat sink . 630} \\
\hline With heat sink & & 1.6 & \\
\hline \multicolumn{4}{|l|}{Above \(\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}\) :} \\
\hline \multicolumn{4}{|l|}{Without heat sink derate linearly - 6.67} \\
\hline \multicolumn{4}{|l|}{With heat sink derate linearly 16.7} \\
\hline \multicolumn{4}{|l|}{Thermal Resistance} \\
\hline Ambient Temperature Range: Operating Storage & & \[
\begin{aligned}
& -55 \text { to }+125- \\
& -65 \text { to }+150
\end{aligned}
\] & \\
\hline Lead Temperature (During Soldering) : & & & \\
\hline At distance \(1 / 16 \pm 1 / 32 \mathrm{in}\). \((1.59 \pm 0.79 \mathrm{~mm})\) from case for 10 s max. & & - 300 & \\
\hline
\end{tabular}
*Exceeding this voltage rating will not damage the device unless the peak input signal current (1 mA) is also exceeded.

File No. 692 \(\qquad\) CA3094, CA3094A, CA3094B Slash (/) Series

\section*{ELECTRICAL CHARACTERISTICS \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}

Typical Values Intended Only for Design Guidance
\begin{tabular}{|c|c|c|c|c|}
\hline & & TEST CONDITIONS & LIMITS & \\
\hline CHARACTERISTIC & SYMBOL & \begin{tabular}{l}
Single Supply \(\mathrm{V}^{+}=30 \mathrm{~V}\) \\
Dual Supply \(\mathrm{V}^{+}=15 \mathrm{~V}\),
\[
\begin{aligned}
\mathrm{V}- & =15 \mathrm{~V} \\
\mathrm{I}_{\mathrm{ABC}} & =100 \mu \mathrm{~A}
\end{aligned}
\] \\
Unless Otherwise Specified
\end{tabular} & Typ. & UNITS \\
\hline \multicolumn{5}{|l|}{INPUT PARAMETERS} \\
\hline Input Offset Voltage & V10 & & 0.4 & mV \\
\hline Input-Offset-Voltage Change & \(\left|\Delta V_{10}\right|\) & \begin{tabular}{l}
Change in \(\mathrm{V}_{10}\) \\
Between IABC \(=100 \mu \mathrm{~A}\) \\
and \(I A B C=5 \mu \mathrm{~A}\)
\end{tabular} & 1 & mV \\
\hline Input Offset Current & 110 & & 0.02 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & 11 & & 0.2 & \(\mu \mathrm{A}\) \\
\hline Device Dissipation & PD & \(\mathrm{l}_{\text {out }}=0\) & 10 & mW \\
\hline Common-Mode Rejection Ratio & CMRR & & 110 & dB \\
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
Common-Mode Input- \\
Voltage Range
\end{tabular}} & \multirow[b]{3}{*}{\(V_{\text {CMR }}\)} & \multirow[t]{2}{*}{\(\mathrm{V}^{+}=30 \mathrm{~V} \frac{\mathrm{High}}{\text { Low }}\)} & 28.8 & V \\
\hline & & & 0.5 & V \\
\hline & & \[
\begin{aligned}
& \mathrm{V}^{+}=15 \mathrm{~V} \\
& \mathrm{~V}-=15 \mathrm{~V}
\end{aligned}
\] & \[
\begin{array}{r}
+13.8 \\
-14.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& V \\
& v
\end{aligned}
\] \\
\hline Unity Gain-Bandwidth & & \[
\begin{aligned}
& \mathrm{I} \mathrm{C}=7.5 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CE}}=15 \mathrm{~V} \\
& \mathrm{I}^{\mathrm{ABC}}=500 \mu \mathrm{~A}
\end{aligned}
\] & 30 & MHz \\
\hline Open-Loop Bandwidth At -3 dB Point & BWOL & \[
\begin{aligned}
& \mathrm{I} C=7.5 \mathrm{~mA} \\
& \mathrm{~V}_{C E}=15 \mathrm{~V} \\
& I_{A B C}=500 \mu \mathrm{~A}
\end{aligned}
\] & 4 & kHz \\
\hline Total Harmonic Distortion (Class A Operation) & THD & \[
\begin{aligned}
P_{D} & =220 \mathrm{~mW} \\
\mathrm{P}_{\mathrm{D}} & =600 \mathrm{~mW}
\end{aligned}
\] & \[
\begin{gathered}
0.4 \\
1.4
\end{gathered}
\] & \% \\
\hline \begin{tabular}{l}
Amplifier Bias Voltage \\
(Terminal (No. 5 to Terminal No.4)
\end{tabular} & \(V_{\text {ABC }}\) & & 0.68 & V \\
\hline \begin{tabular}{l}
Input Offset Voltage \\
Temperature Coefficient
\end{tabular} & \(\Delta V_{10} / \Delta T\) & & 4 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Power-Supply Rejection & \(\Delta v_{10} / \Delta v\) & & 15 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline 1/F Noise Voltage & \(\mathrm{E}_{\mathrm{N}}\) & \[
\begin{aligned}
& f=10 \mathrm{~Hz} \\
& \mathrm{I} A B C=50 \mu \mathrm{~A}
\end{aligned}
\] & 18 & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline 1/F Noise Current & \(\mathrm{I}_{\mathrm{N}}\) & \[
\begin{aligned}
& \mathrm{f}=10 \mathrm{~Hz} \\
& \mathrm{IABC}=50 \mu \mathrm{~A}
\end{aligned}
\] & 1.8 & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Differential Input Resistance & \(\mathrm{R}_{1}\) & \(\mathrm{I}^{\prime} \mathrm{ABC}=20 \mu \mathrm{~A}\) & 1 & \(\mathrm{M} \Omega\) \\
\hline Differential Input Capacitance & \(C_{1}\) & \[
\begin{aligned}
& f=1 \mathrm{MHz} \\
& V^{+}=30 \mathrm{~V}
\end{aligned}
\] & 2.6. & pF \\
\hline
\end{tabular}

\section*{ELECTRICAL CHARACTERISTICS \(T_{A}=\mathbf{2 5}^{\circ} \mathrm{C}\)}

Typical Values Intended Only for Design Guidance
\begin{tabular}{|c|c|c|c|c|}
\hline & & TEST CONDITIONS & LIMITS & \\
\hline CHARACTERISTIC & SYMBOL & \begin{tabular}{l}
Single Supply \(\mathrm{V}^{+}=30 \mathrm{~V}\) \\
Dual Supply \(\mathrm{V}^{+}=15 \mathrm{~V}\),
\[
\mathrm{V}-=15 \mathrm{~V}
\] \\
\({ }^{\prime} \mathrm{ABC}=100 \mu \mathrm{~A}\) \\
Unless Otherwise Specified
\end{tabular} & Typ. & UNITS \\
\hline \multicolumn{5}{|l|}{OUTPUT PARAMETERS (Differential Input Voltage \(=1 \mathrm{~V}\))} \\
\hline Peak Output Voltage: (Terminal No. 6) With Q13 "ON" With Q13 "OFF" & \[
\begin{aligned}
& +V_{O M} \\
& -V_{O M} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}^{+}=30 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to ground }
\end{aligned}
\] & \[
\begin{gathered}
27 \\
0.01 \\
\hline
\end{gathered}
\] & V \\
\hline \begin{tabular}{l}
Peak Output Voltage: \\
(Terminal No. 6) \\
Positive \\
Negative
\end{tabular} & \[
\begin{aligned}
& +\mathrm{V}_{\mathrm{OM}} \\
& -\mathrm{V}_{\mathrm{OM}}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{kS} \text { to }-15 \mathrm{~V}
\end{aligned}
\] & \[
\begin{gathered}
+12 \\
-14.99 \\
\hline
\end{gathered}
\] & V
V \\
\hline Peak Output Voltage: (Terminal No. 8) With 013 "ON" With Q13 "OFF" & \[
\begin{aligned}
& +V_{O M} \\
& -V_{O M}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}^{+}=30 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{ks} \text { to } 30 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 29.99 \\
& 0.040 \\
& \hline
\end{aligned}
\] & V \\
\hline \begin{tabular}{l}
Peak Output Voltage: \\
(Terminal No. 8) \\
Positive \\
Negative
\end{tabular} & \[
\begin{aligned}
& +\mathrm{V}_{\mathrm{OM}} \\
& -\mathrm{V}_{\mathrm{OM}}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{kS} \text { to }+15 \mathrm{~V}
\end{aligned}
\] & \[
\begin{array}{r}
+14.99 \\
14.96 \\
\hline
\end{array}
\] & V
V \\
\hline Collector-to-Emitter Saturation Voltage (Terminal No. 8) & \(V_{C E}\) (sat) & \[
\begin{aligned}
& \hline \mathrm{V}^{+}=30 \mathrm{~V} \\
& \mathrm{I} \mathrm{C}=50 \mathrm{~mA} \\
& \text { Terminal No. } 6 \text { grounded } \\
& \hline
\end{aligned}
\] & 0.17 & V \\
\hline Output Leakage Current (Terminal No. 6 to Terminal No. 4) & & \(\mathrm{V}^{+}=30 \mathrm{~V}\) & 2 & \(\mu \mathrm{A}\) \\
\hline Composite Small-Signal Current Transfer Ratio (Beta) (\(\mathrm{Q}_{12}\) and \(\mathrm{Q}_{13}\)) & \(\mathrm{h}_{\mathrm{fe}}\) & \[
\begin{aligned}
& \mathrm{V}^{+}=30 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\
& \mathrm{I}^{2}=50 \mathrm{~mA}
\end{aligned}
\] & 100,000 & \\
\hline \begin{tabular}{l}
Output Capacitance: \\
Terminal No. 6 \\
Terminal No. 8
\end{tabular} & \(\mathrm{Co}_{0}\) & \begin{tabular}{l}
\(f=1 \mathrm{MHz}\) \\
All Remaining \\
Terminals Tied to \\
Terminal No. 4
\end{tabular} & \[
\begin{array}{r}
5.5 \\
17
\end{array}
\] & \[
\begin{aligned}
& \mathrm{pF} \\
& \mathrm{pF}
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{TRANSFER PARAMETERS} \\
\hline Voltage Gain & A & \[
\begin{aligned}
& \mathrm{V}^{+}=30 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{ABC}}=100 \mu \mathrm{~A} \\
& \triangle \mathrm{~V}_{\text {out }}=20 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
100,000 \\
100
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V} / \mathrm{V} \\
\mathrm{~dB}
\end{gathered}
\] \\
\hline Forward Transconductance To Terminal No. 1 & \(\mathrm{g}_{\mathrm{m}}\) & & 2200 & \(\mu \mathrm{mhos}\) \\
\hline Slew Rate: Open Loop: Positive Slope Negative Slope & SR & \[
\begin{aligned}
& \mathrm{I} A B C=500 \mu \mathrm{~A} \\
& R_{\mathrm{L}}=2 \mathrm{k} \Omega
\end{aligned}
\] & \[
\begin{gathered}
500 \\
50 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
\(\mathrm{V} / \mu \mathrm{s}\) \\
\(\mathrm{V} / \mu \mathrm{s}\)
\end{tabular} \\
\hline Unity Gain (Non-Inverting, Compensated) & & \[
\begin{aligned}
& { }^{\prime} A B C=500 \mu \mathrm{~A} \\
& R_{\mathrm{L}}=2 \mathrm{k} \Omega
\end{aligned}
\] & 0.7 & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline
\end{tabular}

Table 1 - Pre Burn-In Electrical and Post Burn-In Electrical Tests, and Delta Limits*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & Test Conditions & \multicolumn{3}{|c|}{Limits} & \multirow[b]{2}{*}{Units} \\
\hline & & \[
\begin{gathered}
\mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{IABC}=100 \mu \mathrm{~A} \\
\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\end{gathered}
\] & Min. & Max. & Max. & \\
\hline Input Offset Voltage & \(\mathrm{V}_{\text {IO }}\) & & - & 5 & \(\pm 1\) & mV \\
\hline Input Offset Current & IIO & & - & 0.2 & \(\pm 0.02\) & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & II & & 0.04 & 0.5 & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline Forward Transconductance To Terminal No. 1 & 9 m & & 1650 & 2750 & \(\pm 660\) & \(\mu \mathrm{mho}\) \\
\hline Collector-to-Emitter Saturation Voltage (Terminal No.8) & \(V_{C E}\) (sat) & \begin{tabular}{l}
\[
I_{C}=50 \mathrm{~mA}
\] \\
Terminal No. 6 grounded
\end{tabular} & - & 0.8 & \(\pm 0.02\) & V \\
\hline
\end{tabular}
* Levels /IN, /IR, /1, and /2 require pre and post burn-in electrical tests and delta limits. Level /3 requires pre-burn in electrical test only. The burn-in circuit is shown in Fig. 13.

Table II - Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristic} & \multirow{3}{*}{Symbol} & Test Conditions & \multicolumn{6}{|l|}{Limits For Indicated Temperatures (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{Units} \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=100 \mu \mathrm{~A}
\] \\
Unless Otherwise Specified
\end{tabular}} & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & & - & - & - & 7 & 5 & 7 & mV \\
\hline Input Offset Current & 110 & & - & - & - & 0.85 & 0.2 & 0.22 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & \(\mathrm{I}_{1}\) & & - & - & - & 3.2 & 0.5 & 1.1 & \(\mu \mathrm{A}\) \\
\hline Forward Transconductance To Terminal No. 1 & 9 m & & 910 & 1650 & 1850 & 2100 & 2750 & 4000 & \(\mu \mathrm{mho}\) \\
\hline \multirow[b]{2}{*}{Input Offset Voltage Change} & \multirow[b]{2}{*}{\[
\left|\wedge v_{\mathrm{IO}}\right|
\]} & Change in \(\mathrm{V}_{10}\) between \(I_{A B C}=100 \mu \mathrm{~A}\) and \(I_{A B C}=5 \mu \mathrm{~A}\) & - & - & - & - & 8 & - & mV \\
\hline & & Change in \(\mathrm{V}_{10}\) between \(\mathrm{I}_{\mathrm{ABC}}=100 \mu \mathrm{~A}\) and \(\mathrm{I}_{\mathrm{ABC}}=15 \mu \mathrm{~A}\) & - & - & - & 3.2 & - & 3.2 & mV \\
\hline Peak Output Voltage (Terminal No.6) with \(\mathrm{Q}_{13}\) "ON" & \(\mathrm{V}^{+} \mathrm{OM}\) & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) to ground & 26 & 26 & 26 & - & - & - & V \\
\hline Common Mode Rejection Ratio & CMRR & & 70 & 70 & 70 & - & - & - & dB \\
\hline Supply Current & \({ }^{+}\)Supply & & - & - & - & 400 & 400 & 400 & \(\mu \mathrm{A}\) \\
\hline Power Supply Rejection & \(\wedge \mathrm{V}_{\text {IO }} / \wedge \mathrm{V}\) & & - & - & - & 150 & 150 & 150 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Power Dissipation & PD & \(\mathrm{IOM}=0\) & - & 8 & - & - & 12 & - & mW \\
\hline Collector-to-Emitter Saturation Voltage (Terminal No. 8) & \(V_{C E}\) (sat) & \[
\begin{gathered}
\text { IC }=50 \mathrm{~mA} \\
\text { Terminal No. } 6 \text { Grounded }
\end{gathered}
\] & - & - & - & 0.8 & 0.8 & 1.0 & V \\
\hline
\end{tabular}

\section*{OPERATING CONSIDERATIONS}

The "Sink" Output (terminal No. 8) and the "Drive" Output (terminal No. 6) of the CA3094T are not inherently current (or power) limited. Therefore, if a load is connected between terminal No. 6 and terminal No. 4 (\(\mathrm{V}^{-}\)or ground), it is important to connect a current-limiting resistor between terminal 8 and terminal No. \(7\left(\mathrm{~V}^{+}\right)\)to protect transistor \(\mathrm{Q}_{13}\) under shorted load conditions. Similarly, if a load is
connected between terminal No. 8 and terminal No. 7, the current-limiting resistor should be connected between terminal 6 and terminal No. 4 or ground. In circuit applications where the emitter of the output transistor is not connected to the most negative potential in the system, it is recommended that a 100 -ohm current-limiting resistor be inserted between terminal No. 7 and the \(\mathrm{V}^{+}\)supply.

Table III - Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Characteristic} & \multirow{3}{*}{Symbol} & Test Conditions & \multicolumn{6}{|l|}{Limits For Indicated Temperatures (\({ }^{\circ} \mathrm{C}\))} & \multirow{3}{*}{Units} \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=100 \mu \mathrm{~A} \\
& \text { Unless Otherwise Specified }
\end{aligned}
\]} & \multicolumn{3}{|c|}{Minimum} & \multicolumn{3}{|c|}{Maximum} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & & - & - & - & 7 & 5 & 7 & mV \\
\hline Input Offset Current & \(\mathrm{I}_{10}\) & & - & - & - & 0.85 & 0.2 & 0.22 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current & II & & - & - & - & 3.2 & 0.5 & 1.1 & \(\mu \mathrm{A}\) \\
\hline Forward Transconductance To Terminal No. 1 & 9 m & & 910 & 1650 & 1850 & 2100 & 2750 & 4000 & \(\mu \mathrm{mho}\) \\
\hline \multirow[b]{2}{*}{Input Offset Voltage Change} & \multirow[b]{2}{*}{\(\left|\triangle \mathrm{V}_{\mathrm{IO}}\right|\)} & Change in \(\mathrm{V}_{10}\) between \(I_{A B C}=100 \mu \mathrm{~A}\) and \(I_{A B C}=5 \mu \mathrm{~A}\) & - & - & - & - & 8 & - & mV \\
\hline & & \begin{tabular}{l}
Change in \(V_{I O}\) \\
between \(I_{A B C}=100 \mu \mathrm{~A}\) \\
and \(\mathrm{I}_{\mathrm{ABC}}=15 \mu \mathrm{~A}\)
\end{tabular} & - & - & - & 3.2 & - & 3.2 & mV \\
\hline Peak Output Voltage (Terminal No.6) with \(\mathrm{Q}_{13}\) "ON" & \(\mathrm{V}^{+} \mathrm{OM}\) & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) to ground & 26 & 26 & 26 & - & - & - & V \\
\hline Common Mode Rejection Ratio & CMRR & & 70 & 70 & 70 & - & - & - & dB \\
\hline Supply Current & \({ }^{+}\)Supply & & - & - & - & 400 & 400 & 400 & \(\mu \mathrm{A}\) \\
\hline Power Supply Rejection & \(\wedge \mathrm{V}_{10} / \wedge \mathrm{V}\) & & - & - & - & 150 & 150 & 150 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Collector-to-Emitter Saturation Voltage (Terminal No. 8) & \(V_{\text {CE }}\) (sat) & IC \(=50 \mathrm{~mA}\)
Terminal No. 6 Grounded & - & - & - & 0.8 & 0.8 & 1.0 & V \\
\hline Output Leakage Current \(\mathrm{Q}_{13}\) "OFF" & -IOL & \(\mathrm{V}^{+}=25 \mathrm{~V}\) & -10 & -10 & -10 & 0.1 & 0.1 & 0.1 & \(\mu \mathrm{A}\) \\
\hline Max. Output Current \(\mathrm{Q}_{13}\) "ON" & -IOM & \(\mathrm{I}_{\text {ABC }}=15 \mu \mathrm{~A}\) & -140 & -140 & -140 & -98 & -98 & -98 & mA \\
\hline
\end{tabular}

Table IV - Group C Electrical Characteristics Sampling Tests (\(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\mathbf{\circ}} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Characteristic} & \multirow[b]{2}{*}{Symbol} & TEST CONDITIONS & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{Units} \\
\hline & & \begin{tabular}{l}
\[
\mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{IABC}^{2}=100 \mu \mathrm{~A}
\] \\
Unless Otherwise Specified
\end{tabular} & Min. & Max. & \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & & - & 5 & mV \\
\hline Input Offset Current & IIO & & - & 0.25 & \(\mu \mathrm{A}\) \\
\hline Forward Transconductance to Terminal No. 1 & \(\mathrm{g}_{\mathrm{m}}\) & & 1420 & 3350 & \(\mu \mathrm{mho}\) \\
\hline Peak Output Voltage (Terminal No.6) with \(\mathrm{Q}_{13}\) "ON" & +VOM & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) to ground & 25 & - & V \\
\hline Supply Current & \(\mathrm{I}^{+}\)Supply & & - & 400 & \(\mu \mathrm{A}\) \\
\hline Output Leakage Current \(\mathrm{Q}_{13}\) "OFF" & \(-\mathrm{I}_{\mathrm{OL}}\) & \(\mathrm{V}^{+}=25 \mathrm{~V}\) & -15 & - & \(\mu \mathrm{A}\) \\
\hline Max. Output Current \(\mathrm{Q}_{13}\) "ON" & \({ }^{-1} \mathrm{OM}\) & \(I_{A B C}=3 \mu \mathrm{~A}\) & - & -45 & mA \\
\hline
\end{tabular}

Fig. 2 - Input offset voltage vs. amplifier bias current (\({ }_{A B C}\), terminal No.5).

Fig. 4 - Input bias current vs. amplifier bias current (\({ }^{\prime} A B C\), terminal No.5).

Fig. 6 - Amplifier supply current vs. amplifier bias current (IABC, terminal No.5).

Fig. 3 - Input offset current vs. amplifier bias current ('ABC, terminal No.5).

Fig. 5 - Device dissipation vs. amplifier bias current ('ABC, terminal No.5).

Fig. 7 - Common mode input voltage vs. amplifier bias current (IABC, terminal No.5).

Fig. 8 - Open-loop voltage gain vs. frequency.

Fig. 10 - Slew rate vs. amplifier bias current.

Fig. 12 - Phase compensation capacitance and resistance vs. closed-loop voltage gain.

Fig. 9 - Forward transconductance vs. amplifier bias current.

Fig. 11 - Slew rate vs. closed-loop voltage gain.

Fig. 13 - Burn-in and life-test circuit.

Monolithic Silicon
Solid State Division

\title{
High-Reliability Wideband Operational Amplifiers
}

For Applications in Aerospace, Military, and Critical Industrial Equipment Features:
- High unity-gain crossover frequency (f) -38 MHz typ.
- Wide power Bandwidth \(-\mathrm{V}_{\mathrm{O}}=18 \mathrm{~V} \mathrm{p}\)-p typ. at 1.2 MHz
- High slew rate - \(\mathbf{7 0} \mathrm{V} / \mu \mathrm{s}\) (typ.) in 20 dB amplifier
\(25 \mathrm{~V} / \mu \mathrm{s}\) (typ.) in unity-gain amplifier
- Fast settling time \(-0.6 \mu \mathrm{~s}\) typ.
a High open-loop gain at video frequencies -42 dB typ. at 1 MHz
- High output current \(- \pm 15 \mathrm{~mA}\) min. घ Single capacitor compensation
- LM118, 748/LM101 pin compatibility Offset null terminals

The RCA-CA3100S, CA3100T Slash (/) Series types are high-reliability large-signal wideband, high-speed operational amplifiers intended for applications in aerospace, military, and industrial equipment. They are electrically and mechanically identical with the standard type CA3100 described in Data Bulletin File No. 625 but are specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged type can be supplied to six screening levels \(1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3\), and \(/ 4\) - which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on tests methods, procedures and test sequence are given in Reliability Report RIC-202A "High-Reliability CA3000 Slash (/) Series Types Screened to MIL-STD-883".

The CA3100S and CA3100T have a unity gain crossover frequency (fT) of approximately 38 MHz and an open-loop, 3 dB corner frequency of approximately 110 kHz . They can operate at a total supply voltage of from 14 to 36 volts (\(\pm 7\) to \(\pm 18\) volts when using split supplies) and can provide at least \(18 \mathrm{~V} \mathrm{p}-\mathrm{p}\) and \(30 \mathrm{~mA} \mathrm{p-p}\) at the output when operating from \(\pm 15\) volt supplies. The CA3100 can be compensated with a single external capacitor and has dc offset adjust terminals for those applications requiring offset null.

The CA3100 circuit contains both bipolar and P-MOS transistors on a single monolithic chip.

The CA3100 is supplied in either the standard 8-lead TO-5 package (\(T\) suffix), in the 8 -lead TO-5 dual-in-line formedlead "DIL-CAN" package (S suffix), or in chip form (H suffix).

\section*{Applications:}
- Video amplifiers
- Fast peak detectors
- Meter-driver amplifiers
- Video pre-drivers
- Oscillators
- Multivibrators
- High-frequency feedback amplifiers

Fig. 1-Functional diagram of CA3100S, CA3100T.

Maximum Ratings, Absolute-Maximum Values at \(T_{A}=25^{\circ} \mathrm{C}\) :
\begin{tabular}{|c|c|c|}
\hline Supply Voltage (between \(\mathrm{V}^{+}\)and \(\mathrm{V}^{-}\)terminals). & 36 & \\
\hline Differential Input Voltage & \(\pm 12\) & v \\
\hline Input Voltage to Ground* & \(\pm 15\) & V \\
\hline Offset Terminal to \(\mathbf{V}^{-}\)Terminal Voltage & \(\pm 0.5\) & \(v\) \\
\hline Output Current & 50 & \(m A^{\bullet}\) \\
\hline \multicolumn{3}{|l|}{Device Dissipation:} \\
\hline Up to \(\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}\) & 630 & mW \\
\hline Above \(\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}\) Derate Linearly at & 6.67 & \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Ambient Temperature Range:
Operating. -55 to \(+125^{\circ} \mathrm{C}\) Storage . -65 to \(+150^{\circ} \mathrm{C}\)
Lead Temperature (During Soldering): At distance \(1 / 16 \pm 1 / 32\) inch (\(1.59 \pm 0.79 \mathrm{~mm}\))
 * If supply voltage is less than \(\pm 15\) volts, the maximum input voltage to ground is equal to the supply voltage
- CA3100S, CA3100T does not contain circuitry to protect against short circuits in the output.

\section*{ELECTRICAL CHARACTERISTICS, At \(T_{A}=25^{\circ} \mathrm{C}\) : For Design Guidance}
\begin{tabular}{|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & \[
\begin{aligned}
& \text { TEST CONDITIONS } \\
& \text { SUPPLY VOLTAGE }\left(\mathrm{V}^{+}, \mathrm{v}-\right)=15 \mathrm{~V} \\
& \text { UNLESS OTHERWISE SPECIFIED }
\end{aligned}
\] & TYP. & UNITS \\
\hline \multicolumn{5}{|l|}{STATIC} \\
\hline Input Offset Voltage & V10 & \(\mathrm{V}_{\mathrm{O}}=0 \pm 0.1 \mathrm{~V}\) & \(\pm 1\) & mV \\
\hline Input Bias Current & IIB & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{O}}=0 \pm 1 \mathrm{~V}\)} & 0.7 & \(\mu \mathrm{A}\) \\
\hline Input Offset Current & 110 & & \(\pm 0.05\) & \(\mu \mathrm{A}\) \\
\hline Low-Frequency Open-Loop Voltage Gain & \(\mathrm{AOL}^{\text {l }}\) & \(V_{O}= \pm 1 \mathrm{~V}\) Peak, \(f=1 \mathrm{kHz}\) & 61 & dB \\
\hline Common-Mode Input Voltage Range & VICR & \(\mathrm{CMRR} \geqslant 76 \mathrm{~dB}\) & \[
\begin{array}{r}
+14 \\
-13 \\
\hline
\end{array}
\] & V \\
\hline \begin{tabular}{l}
Common-Mode \\
Rejection Ratio
\end{tabular} & CMRR & \(\mathrm{V}_{1}\) Common Mode \(= \pm 12 \mathrm{~V}\) & 90 & dB \\
\hline Maximum Output Voltage Positive & \(\mathrm{VOM}^{+}\) & \multirow[t]{2}{*}{Differential Input Voltage \(=0 \pm 0.1 \mathrm{~V}\)
\[
\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega
\]} & +11 & \multirow[t]{2}{*}{V} \\
\hline Negative & \(\mathrm{VOM}^{-}\) & & -11 & \\
\hline Maximum Output Current Positive & \(\mathrm{IOM}^{+}\) & Differential Input Voltage \(=0 \pm 0.1 \mathrm{~V}\) & \(+30\) & \multirow[t]{2}{*}{mA} \\
\hline Negative & \(\mathrm{IOM}^{-}\) & \(\mathrm{R}_{\mathrm{L}}=250 \Omega\) & -30 & \\
\hline Supply Current & \(1^{+}\) & \(\mathrm{V}_{\mathrm{O}}=0 \pm 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{~K} \Omega\) & 8.5 & mA \\
\hline Power-Supply Rejection Ratio & PSRR & \(\Delta \mathrm{V}^{+}= \pm 1 \mathrm{~V}, \Delta \mathrm{~V}^{-}= \pm 1 \mathrm{~V}\) & 70 & dB \\
\hline \multicolumn{5}{|l|}{DYNAMIC} \\
\hline Unit-Gain Crossover Frequency & f & \(\mathrm{C}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{O}}=0.3 \mathrm{~V}(\mathrm{P}-\mathrm{P})\) & 38 & MHz \\
\hline 1-MHz Open-Loop Voltage Gain & AOL & \(f=1 \mathrm{MHz}, \mathrm{C}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{O}}=10 \mathrm{~V}(\mathrm{P}-\mathrm{P})\) & 42 & dB \\
\hline Slew Rate: 20-dB Amplifier & \multirow[t]{2}{*}{SR} & \(A_{V}=10, C_{C}=0, V_{1}=1 \mathrm{~V}\) (Pulse) & 70 & \multirow[t]{2}{*}{\(\mathrm{V} / \mu \mathrm{s}\)} \\
\hline Follower Mode & & \(A_{V}=1, C_{C}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}\) (Pulse) & 25 & \\
\hline \begin{tabular}{l}
Pdwer Bandwidth4: \\
20-dB Amplifier
\end{tabular} & \multirow[t]{2}{*}{PBW} & \(A_{V}=10, C_{C}=0, \mathrm{~V}_{O}=18 \mathrm{~V}(P-P)\) & 1.2 & \multirow[t]{2}{*}{MHz} \\
\hline Follower Mode & & \(A_{V}=1, C_{C}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=18 \mathrm{~V}(\mathrm{P}-\mathrm{P})\) & 0.4 & \\
\hline Open-Loop Differential Input Impedance & \(Z_{1}\) & \(\mathrm{f}=1 \mathrm{MHz}\) & 30 & K \(\Omega\) \\
\hline Open-Loop Output Impedance & Zo & \(f=1 \mathrm{MHz}\) & 110 & \(\Omega\) \\
\hline Wideband Noise Voltage Referred to Input & eN(Total) & \(B W=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{~K} \Omega\) & 8 & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline \[
\begin{aligned}
& \text { Settling Time } \\
& {\left[\begin{array}{l}
\text { To Within } \pm 50 \mathrm{mV} \text { of } 9 \mathrm{~V} \\
\text { Output Swing }
\end{array}\right]}
\end{aligned}
\] & \(\mathrm{t}_{\text {s }}\) & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}\) & 0.6 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}
\(\Delta\) Power Bandwidth \(=\frac{\text { Slew Rate }}{\pi V_{O}(P-P)}\)
- Low-frequency dynamic characteristic

File No. 825

Fig. 2-Schematic diagram for CA3100.

Table I. Pre Burn-in Electrical and Post Burn-in Electrical Tests, and Delta Limits. \({ }^{\circ}\)
ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}, V^{+}=15 \mathrm{~V}, V^{-}=-15 \mathrm{~V}\)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ CHARACTERISTIC } & \multirow{2}{*}{ SYMBOL } & \multirow{2}{*}{ TEST CONDITIONS } & \multicolumn{3}{|c|}{ LIMITS } & \multirow{2}{*}{} \\
\cline { 4 - 6 } & & & MIN. & MAX. & MAX. \(\Delta\) & UNITS \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & \(\mathrm{~V}_{\mathrm{O}}=0 \pm 0.1 \mathrm{~V}\) & - & 5 & \(\pm 1\) & mV \\
\hline Input Offset Current & \(\mathrm{I}_{10}\) & \(\mathrm{~V}_{\mathrm{O}}=0 \pm 1 \mathrm{~V}\) & - & 400 & \(\pm 40\) & nA \\
\hline Input Bias Current & \(\mathrm{I}_{\mathrm{IB}}\) & \(\mathrm{V}_{\mathrm{O}}=0 \pm 1 \mathrm{~V}\) & - & 2 & \(\pm 0.5\) & \(\mu \mathrm{~A}\) \\
\hline Supply Current & \(\mathrm{I}^{+}\) & \(\mathrm{V}_{\mathrm{O}}=0 \pm 1 \mathrm{~V}\) & - & 10.5 & \(\pm 1.5\) & mA \\
\hline
\end{tabular}
- Levels /1 and /2 require pre burn-in electrical and post burn-in electrical tests and delta limits.

Level / 3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 9

Table II. Final Electrical Tests and Group A Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[t]{3}{*}{\begin{tabular}{l}
TEST CONDITIONS \\
SUPPLY VOLTAGE (\(\mathrm{V}^{+}, \mathrm{V}^{-}\)) \(=15 \mathrm{~V}\) \\
UNLESS OTHERWISE SPECIFIED
\end{tabular}} & \multicolumn{6}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|l|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{10}{|l|}{STATIC} \\
\hline Input Offset Voltage & \(\mathrm{V}_{10}\) & \(\mathrm{V}_{\mathrm{O}}=0 \pm 0.1 \mathrm{~V}\) & - & - & - & 6 & 5 & 6 & mV \\
\hline Input Bias Current & IIB & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{O}}=0 \pm 1 \mathrm{~V}\)} & - & - & - & 4 & 2 & 2 & \(\mu \mathrm{A}\) \\
\hline Input Offset Current & 110 & & - & - & - & 1000 & 400 & 600 & nA \\
\hline Low-Frequency Open-Loop Voltage Gaine & AOL & \(\mathrm{V}_{\mathrm{O}}= \pm 1 \mathrm{~V}\) Peak & 50 & 56 & 50 & - & - & - & dB \\
\hline Common-Mode Input Voltage Range & VICR & \(\mathrm{CMRR} \geqslant 76 \mathrm{~dB}\) & - & \(\pm 12\) & - & - & - & - & V \\
\hline Common-Mode Rejection Radio & CMRR & V , Common Mode \(= \pm 12 \mathrm{~V}\) & - & 76 & - & - & - & - & dB \\
\hline Maximum Output Voltage Positive Negative & \[
\frac{\mathrm{VOM}^{+}}{\mathrm{VOM}^{-}}
\] & Differential Input Voltage \(=0 \pm 0.1 \mathrm{~V}\)
\[
R_{L}=2 K \Omega
\] & +9
-9 & +9
-9 & +9
-9 & - & - & - & V \\
\hline Maximum Output Current Positive & \({ }^{1} \mathrm{OM}^{+}\) & \multirow[t]{2}{*}{Differential Input Voltage \(=0 \pm 0.1 \mathrm{~V}\)
\[
R_{L}=250 \Omega
\]} & +15 & +15 & +12 & - & - & - & \multirow[t]{2}{*}{mA} \\
\hline Negative & \(\mathrm{IOM}^{-}\) & & -15 & -15 & -12 & - & - & - & \\
\hline Supply Current & \(1^{+}\) & \(\mathrm{V}_{\mathrm{O}}=0 \pm 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{~K} \Omega\) & - & - & - & 10.5 & 10.5 & 10.5 & mA \\
\hline Power Supply Rejection Ratio & PSRR & \(\Delta \mathrm{V}^{+}= \pm 1 \mathrm{~V}, \Delta \mathrm{~V}^{-}= \pm 1 \mathrm{~V}\) & 60 & 60 & 60 & - & - & - & dB \\
\hline \multicolumn{10}{|l|}{DYNAMIC} \\
\hline 1-MHz Open-Loop Voltage Gain & AOL & \(f=1 \mathrm{MHz}, \mathrm{C}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{O}}=10 \mathrm{~V}(\mathrm{P}-\mathrm{P})\) & - & 36 & - & - & - & - & dB \\
\hline Slew Rate: 20-dB Amplifier & SR & \(A_{V}=10, C_{C}=0, V_{1}=1 \mathrm{~V}\) (Pulse) & - & 50 & - & - & - & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Power Bandwidth 4: 20-dB Amplifier & PBW & \(A V=10, C_{C}=0, V_{O}=18 \mathrm{~V}(P-P)\) & - & 0.8 & - & - & - & - & MHz \\
\hline \[
\text { - Power Bandwidth }=\frac{\text { Slew Rate }}{\pi V_{O}(P-P)}
\] & \multicolumn{2}{|l|}{- Low-frequency dynamic characteristic} & & & & & & & \\
\hline
\end{tabular}

Table III. Group C Electrical Characteristics Sampling Tests
\(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \quad \mathrm{V}^{+}=+15 \mathrm{~V} \quad \mathrm{~V}-=-15 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{\begin{tabular}{l}
SPECIAL \\
TEST CONDITIONS
\end{tabular}} & \multicolumn{2}{|c|}{LIMITS} & \multirow[t]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline Input Offset Voltage & V10 & \(\mathrm{V}_{\mathrm{O}}=0 \pm 0.1 \mathrm{~V}\) & - & 5 & mV \\
\hline Input Offset Current & 110 & \(\mathrm{V}_{\mathrm{O}}=0 \pm 0.1 \mathrm{~V}\) & - & 400 & nA \\
\hline Input Bias Current & 11 & \(\mathrm{V}_{\mathrm{O}}=0 \pm 0.1 \mathrm{~V}\) & - & 2 & \(\mu \mathrm{A}\) \\
\hline Large-Signal Voltage Gain & \(\mathrm{AOL}^{\text {a }}\) & \(\mathrm{V}_{\mathrm{O}}= \pm 1 \mathrm{~V}\) Peak & 56 & - & dB \\
\hline Supply Current & \(1+\) & \(\mathrm{V}_{\mathrm{O}}=0 \pm 0.1 \mathrm{~V}\) & - & 10.5 & mA \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS CURVES

Fig. 3-Open-loop gain, open-loop phase shift vs. frequency.

Fig. 5-Open-loop gain vs. frequency and temperature.

COMPENSATION CAPACITANCE (\(C_{C}\)) PINS I TO 8 - pF 92CS-21574
Fig. 7-Slew rate vs. compensation capacitance.

Fig. 4-Open-loop gain vs. frequency and supply voltage.

Fig. 6-Required compensation capacitance vs. closed-loop gain.

Fig. 8-Maximum output voltage swing vs. frequency.

Fig. 9-Life test and burn-in circuit.

\section*{Solid State Division}

\author{
Linear Integrated Circuits \\ Monolithic Silicon High-Reliability Slash (/) Series CA3118/ . . ., CA3118A/
}

\title{
High-Reliability High-Voltage Transistor Arrays
}

For Applications in Aerospace, Military, and Critical Industrial Equipment Applications:
- General use in signal processing systems in DC through VHF range
- Custom designed differential amplifiers
- Temperature compensated amplifiers

Features:
- Matched general-purpose transistors
- \(V_{B E}\) matched \(\pm 5 \mathrm{mV}\) max.
- Operation from DC to 120 MHz (CA3118AT, T).

■ Low-noise figure: 3.2 dB typ. at 1 kHz (CA3118AT, T).

The CA3118T and CA3118AT Slash (/) Series types are high-reliability, general-purpose silicon n-p-n transistor arrays on a common monolithic substrate. They are intended for applications in aerospace, military and industrial equipment. They are electrically and mechanically identical with the standard type CA3118 described in Data Bulletin File No. 532 but are specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged type can be supplied to six screening levels /1N, /1R, /1, /2, /3, and /4 - which correspond to MIL-STD-883 Classes A, B, and C. The chip version can be supplied to three screening levels \(-/ M, / N\), and \(/ R\). These screening levels and detailed information on test methods, procedures and test sequence are given in Reliability Report RIC-202A "High-Reliability CA3000 Slash (/) Series Types Screened to MIL-STD-883".

Types CA3118AT and CA3118T consist of four transistors with two of the transistors connected in a Darlington configuration. These types are well suited for a wide variety of applications in low-power systems in the DC through VHF range. Both types are supplied in a hermetically sealed 12-lead TO-5 type package, (" \(T\) " suffix), and in chip form (" H " suffix), and operate over the full military temperature range. (CA3118AT and CA3118T are high-voltage versions of the popular predecessor type CA3018.)

The types with an " \(A\) " suffix are premium versions of their non-" \(A\) " counterparts and feature tighter control of breakdown voltages making them more suitable for higher voltage applications.

For detailed application information, see companion Application Note, ICAN-5296 "Application of the RCA CA3018 Integrated Circuit Transistor Array."

Fig. 1-Schematic diagram.
MAXIMUM RATINGS, Absolute-Maximum Values at \(T_{A}=25^{\circ} \mathrm{C}\)
POWER DISSIPATION:
Any one transistor -
CA3118AT, CA3118T 300
mW
Total package -
Up to \(85^{\circ} \mathrm{C}\) (CA3118AT, CA3118T) 450 mW
Above \(85^{\circ} \mathrm{C}\) (CA3118AT, CA3118T)derate linearly 5
\(\mathrm{mW} /{ }^{\circ} \mathrm{C}\)
AMBIENT TEMPERATURE RANGE
Operating -
CA3118AT, CA3118T . -55 to +125 \({ }^{\circ} \mathrm{C}\)
Storage (all types) -65 to +150 \({ }^{\circ} \mathrm{C}\)
THE FOLLOWING RATINGS APPLY FOR EACH TRANSISTOR IN THE DEVICE:
Collector-to-Emitter Voltage (\(\mathrm{V}_{\mathrm{CEO}}\)):
CA3118AT 40v
CA3118T 30 V
Collector-to-Base Voltage (\(\mathrm{V}_{\mathrm{CBO}}\)):
CA3118AT 50
V
V
CA3118T 40 v
Collector-to-Substrate Voltage (\(\mathrm{V}_{\mathrm{CIO}}\)):CA3118AT50v
CA3118T 40v
EMITTER-TO-BASE VOLTAGE (\(V_{E B O}\)) all types v
Collector Current -
CA3118AT, CA3118T 50
-The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.

STATIC ELECTRICAL CHARACTERISTICS For Design Guidance Only
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{3}{|c|}{TEST CONDITIONS} & \multirow[b]{2}{*}{Typ. Values} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \multicolumn{2}{|r|}{\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} & Typ. Char. Curve Fig. No. & & \\
\hline \multicolumn{7}{|l|}{For Each Transistor:} \\
\hline Collector-to-Base Breakdown Voltage & \(V_{\text {(BR)CBO }}\) & \multicolumn{2}{|l|}{\(\mathrm{IC}=10 \mu \mathrm{~A}, \mathrm{IE}=0\)} & - & 72 & v \\
\hline Collector-to-Emitter Breakdown Voltage & \(V_{\text {(BR)CEO }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\)} & - & 56 & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(V_{(B R) C I O}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{CI}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0 \\
& \mathrm{I}_{\mathrm{E}}=0
\end{aligned}
\]} & - & 72 & V \\
\hline Emitter-to-Base Breakdown Voltage & \(V_{\text {(BR) }}\) Ebo & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{l} C=0\)} & - & 7 & V \\
\hline Collector-Cutoff Current & ICEO & \multicolumn{2}{|l|}{\(\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\)} & 2 & see
curve & \(\mu \mathrm{A}\) \\
\hline Collector-Cutoff Current & ICBO & \multicolumn{2}{|l|}{\(\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\)} & 3 & 0.002 & nA \\
\hline \multirow[t]{3}{*}{DC Forward-Current Transfer Ratio} & \multirow{3}{*}{hfe} & \multirow{3}{*}{\(\mathrm{V}_{\text {CE }}=5 \mathrm{~V}\)} & \(1 \mathrm{C}=10 \mathrm{~mA}\) & 4 & 85 & \\
\hline & & & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 4 & 100 & \\
\hline & & & \(\mathrm{IC}=10 \mu \mathrm{~A}\) & 4 & 90 & \\
\hline Base-to-Emitter Voltage & \(\mathrm{V}_{\mathrm{BE}}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}\)} & - & 0.73 & v \\
\hline Collector-to-Emitter Saturation Voltage & \(\mathrm{V}_{\text {CEsat }}\) & \multicolumn{2}{|l|}{\(\mathrm{IC}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\)} & 5 & 0.33 & V \\
\hline \multicolumn{7}{|l|}{For transistors \(\mathrm{O3}\) and 04 (Darlington Configuration):} \\
\hline Collector-Cutoff Current & Iceo & \multicolumn{2}{|l|}{\(V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\)} & - & - & \(\mu \mathrm{A}\) \\
\hline DC Forward-Current Transfer Ratio & hFE & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}\)} & 6 & 9000 & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Base-to-Emitter } \\
& \text { (03 to 04) } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\(V_{B E}\)} & \multirow[t]{2}{*}{\(V_{C E}=5 \mathrm{~V}\)} & \(\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}\) & 7 & 1.46 & V \\
\hline & & & \(1 \mathrm{E}=1 \mathrm{~mA}\) & 7 & 1.32 & \(v\) \\
\hline Magnitude of Base-toEmitter Temperature Coefficient & \(\left|\frac{\Delta V_{B E}}{\Delta T}\right|\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{IE}=1 \mathrm{~mA}\)} & - & 4.4 & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{7}{|l|}{For transistors \(\mathbf{0 1}\) and \(\mathbf{0 2}\) (As a Differential Amplifier):} \\
\hline Magnitude of Input Offset Voltage \(\left|V_{B E 1}-V_{B E 2}\right|\) & \(\left|V_{10}\right|\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\)} & - & 0.48 & mV \\
\hline Magnitude of hfe & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{C E}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{C} 2}=1 \mathrm{~mA}
\end{aligned}
\]} & - & 1 & \\
\hline Magnitude of Base-toEmitter Temprature Coefficient & \(\left|\frac{\Delta V_{B E}}{\Delta T}\right|\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C E}=5 \mathrm{~V}, \\
& I_{E}=1 \mathrm{~mA}
\end{aligned}
\]} & - & 1.9 & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Magnitude of \(\mathrm{V}_{10}\) (\(\mathrm{V}_{\mathrm{BE}} 1\) - \(\mathrm{V}_{\mathrm{BE}}\)) Temperature Coefficient & \(\left|\frac{\Delta V_{10}}{\Delta T}\right|\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C E}=5 \mathrm{~V}, \\
& I_{C 1}=I_{C 2}=1 \mathrm{~mA}
\end{aligned}
\]} & - & 1.1 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

DYNAMIC ELECTRICAL CHARACTERISTICS For Design Guidance Only
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multirow[b]{2}{*}{CA3118T} & \multirow[b]{2}{*}{CA3118AT} & \multirow{3}{*}{UNITS} \\
\hline & & \multirow[t]{2}{*}{\(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} & \multirow[t]{2}{*}{Typ. Char. Curve Fig. No.} & & & \\
\hline & & & & Typ. & Typ. & \\
\hline Low Frequency Noise Figure & NF & \[
\begin{aligned}
& f=1 \mathrm{kHz}, V_{C E}=5 \mathrm{~V}, \\
& \mathrm{IC}=100 \mu \mathrm{~A} \text {, Source } \\
& \text { resistance }=\mathrm{k} \Omega
\end{aligned}
\] & & 3.25 & 3.25 & dB \\
\hline Low-Frequency, Small-Signal Equivalent-Circuit Characteristics: Forward-Current Transfer Ratio & \(\mathrm{h}_{\mathrm{fe}}\) & \multirow{4}{*}{\[
\begin{aligned}
& f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\
& \mathrm{I} C=1 \mathrm{~mA}
\end{aligned}
\]} & 8 & 100 & 100 & \\
\hline Short-Circuit Input Impedance & \(h_{\text {ie }}\) & & 8 & 3.5 & 2.7 & \(k \Omega\) \\
\hline Open-circuit Output Impedance & \(h_{\text {oe }}\) & & 8 & 15.6 & 15.6 & \(\mu \mathrm{mho}\) \\
\hline Open-Circuit Reverse Voltage Transfer Ratio & \(h_{\text {re }}\) & & 8 & \(1.8 \times 10^{-4}\) & \(1.8 \times 10^{-4}\) & \\
\hline \begin{tabular}{l}
Admittance Characteristics: \\
Forward Transfer Admittance
\end{tabular} & \(Y_{\text {fe }}\) & \multirow{4}{*}{\[
\begin{aligned}
& f=1 \mathrm{MHz}, V_{C E}=5 \mathrm{~V}, \\
& I_{C}=1 \mathrm{~mA}
\end{aligned}
\]} & 9 & 31-j1.5 & 31-j1.5 & mmho \\
\hline Input Admittance & \(Y_{\text {ie }}\) & & 10 & \(0.3+\mathrm{j} 0.04\) & \(0.35+\mathrm{j} 0.04\) & mmho \\
\hline Output Admittance & \(\mathrm{Y}_{\mathrm{oe}}\) & & 11 & \(0.001+\mathrm{j} 0.03\) & \(0.001+\mathrm{j} 0.03\) & mmhó \\
\hline Reverse Transfer Admittance & Yre & & 12 & See curve & See curve & mmho \\
\hline Gain-Bandwidth Product & \(\mathrm{f}^{\text {T }}\) & \(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\) & 13 & 500 & 500 & MHz \\
\hline Emitter-to-Base Capacitance & CEB & \(V_{E B}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & 14 & 0.70 & 0.70 & pF \\
\hline Collector-to-Base Capacitance & \(\mathrm{C}_{\text {CB }}\) & \(\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}, \mathrm{IC}=0\) & 14 & 0.37 & 0.37 & pF \\
\hline Collector-to-Substrate Capacitance & \(\mathrm{ClO}_{\mathrm{Cl}}\) & \(\mathrm{V}_{\mathrm{Cl}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\) & 14 & 2.2 & 2.2 & pF \\
\hline
\end{tabular}

Table I. Pre Burn-In Electrical and Post Burn-In Electrical Tests and Delta Limits*
ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & MAX. \({ }^{\text {a }}\) & \\
\hline Emitter-to-Base Breakdown Volts Q1, Q2 & \(V(B R) E B O\) & \(\mathrm{IE}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{IC}=0\) & 5 & - & \(\pm 0.5\) & V \\
\hline Collector Cutoff Current Q1, 02 & ICEO & \(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & 5 & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline Collector Cutoff Current 03, Q4 & ICEO(D) & \(V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & 5 & \(\pm 1\) & \(\mu \mathrm{A}\) \\
\hline Input Current Q1, Q2 & 11 & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & - & 33 & \(\pm 3\) & \(\mu \mathrm{A}\) \\
\hline Input Current 03, Q4 & If(D) & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & - & 0.66 & \(\pm 0.1\) & \(\mu \mathrm{A}\) \\
\hline Base to Emitter Voltage Q1, 02 & \(V_{B E}\) & \(\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\) & 0.63 & 0.83 & \(\pm 0.1\) & V \\
\hline
\end{tabular}

\footnotetext{
* Levels /1 and / 2 require pre burn-in electrical and post burn-in electrical tests, and delta limits.

Level /3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 15.
}

Table II Final Electrical Tests and Group A Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{TEST CONDITIONS NOTE - Unless otherwise specified, limits apply to both CA3118 and CA3118A}} & \multicolumn{6}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} \\
\hline & & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multicolumn{11}{|l|}{For Each Transistor:} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Collector-to-Base \\
Breakdown Voltage
\end{tabular}} & \multirow[t]{2}{*}{\(V_{(B R) C B O}\)} & \({ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}\) & CA3118 & - & 40 & - & - & - & - & \multirow[t]{2}{*}{V} \\
\hline & & \(\mathrm{I}_{\mathrm{E}}=0\) & CA3118A & - & 50 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{Collector-to-Emitter Breakdown Voltage} & \multirow[t]{2}{*}{\(V_{\text {(BR)CEO }}\)} & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & CA3118 & - & 30 & - & - & - & - & \multirow[t]{2}{*}{V} \\
\hline & & \(\mathrm{I}_{\mathrm{B}}=0\) & CA3118A & - & 40 & - & - & - & - & \\
\hline \multirow[t]{2}{*}{Collector-to-Substrate Breakdown Voltage} & \multirow[t]{2}{*}{\(V_{\text {(BR) }}\) CIO} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{Cl}}=10 \mu \mathrm{~A} \\
& \mathrm{I}_{\mathrm{B}}=0 \\
& \mathrm{I}_{\mathrm{E}}=0
\end{aligned}
\]} & CA3118 & - & 40 & - & - & - & - & \multirow[t]{2}{*}{V} \\
\hline & & & CA3118A & - & 50 & - & - & - & - & \\
\hline Emitter-to-Base Breakdown Voltage & \(V_{\text {(BR)EBO }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{E}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\)} & - & 5 & - & - & - & - & V \\
\hline Collector-Cutoff Current & \({ }^{\text {I CEO }}\) & \multicolumn{2}{|l|}{\(V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\)} & - & - & - & - & 5 & 100 & \(\mu \mathrm{A}\) \\
\hline Collector-Cutoff Current & \({ }^{\text {CBO }}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\)} & - & - & - & - & 100 & - & mA \\
\hline DC Forward-Current Transfer Ratio & \({ }^{\text {hFE }}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & 15 & 30 & 40 & - & - & - & - \\
\hline Base-to-Emitter Voltage & \(V_{B E}\) & \(\mathrm{V}_{\text {CE }}=3 \mathrm{~V}\), & \(\mathrm{C}=1 \mathrm{~mA}\) & . 7 & 0.63 & 0.43 & 1.3 & 0.83 & 0.73 & V \\
\hline
\end{tabular}

For transistors \(\mathbf{Q 3}\) and \(\mathbf{Q 4}\) (Darlington Configuration):
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline Collector-Cutoff Current & \(\mathrm{I}_{\mathrm{CEO}}\) & \(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & - & - & - & 5 & 2000 & \(\mu \mathrm{~A}\) \\
\hline \begin{tabular}{c}
DC Forward-Current \\
Transfer Ratio
\end{tabular} & \(\mathrm{h}_{\mathrm{FE}}\) & \(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 750 & 1500 & 2000 & - & - & - & \\
\hline
\end{tabular}

For transistors Q1 and Q2 (As a Differential Amplifier):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Magnitude of Input Offset Voltage \(\left|V_{B E 1}-V_{B E 2}\right|\) & \(\left|V_{10}\right|\) & \(\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & - & - & - & - & 5 & - & mV \\
\hline Magnitude of \(\mathrm{h}_{\text {FE }}\) & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{C} 2}=1 \mathrm{~mA}
\end{aligned}
\] & - & 0.9 & - & & 1.1 & - & \\
\hline \multicolumn{10}{|l|}{Dynamic Characteristics:} \\
\hline Gain Bandwidth Product & \({ }^{\text {T }}\) & \(\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\) & - & 300 & - & - & - & - & MHz \\
\hline
\end{tabular}

Table III. Group C Electrical Characteristics Sampling Tests (\(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline Emitter-to-Base Breakdown Volts,
\[
\mathrm{a}_{1}, \mathrm{o}_{2}, \mathrm{o}_{3}, \mathrm{a}_{4}
\] & \(V_{\text {(BR)EBO }}\) & \(I_{E}=10 \mu \mathrm{~A}, I_{C}=0\) & 4 & - & V \\
\hline Collector-to-Emitter Breakdown Volts, \(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\) & \(V_{\text {(BR)CEO }}\) & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & 28 & - & V \\
\hline Input Current, \(\mathrm{O}_{1}, \mathrm{O}_{2}\) & IIN & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\) & - & 50 & \(\mu \mathrm{A}\) \\
\hline Input Current, Darlington Pair, \(\mathrm{O}_{3}, \mathrm{O}_{4}\) & IIN(D) & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{VCE}^{\text {a }}=5 \mathrm{~V}\) & - & 1 & \(\mu \mathrm{A}\) \\
\hline Base-to-Emitter Voltage, \(\mathrm{Q}_{1}, \mathrm{Q}_{2}\) & \(V_{B E}\) & \(I_{E}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\) & 0.63 & 0.83 & V \\
\hline
\end{tabular}

STATIC CHARACTERISTICS CURVES

Fig. 2-1 CEO vs. \(\mathbf{T}_{A}\) for any transistor.

Fig. 4-hFE vs. IC for any transistor.

Fig. \({ }^{3-1}\) CBO vs. \(T_{A}\) for any transistor.

STATIC CHARACTERISTICS CURVES (Cont'd)

Fig. 6-h FE vs. IC for Darlington pair
(Q3 and Q4) for types CA3118AT
and CA3118T.

Fig. 7- \(V_{B E}\) vs. \(I_{E}\) for Darlington pair (Q3 and Q4).

TYPICAL DYNAMIC CHARACTERISTICS CURVES (For Any Transistor)

Fig. 8-h \(h_{f e}, h_{i e}, h_{o e}, h_{r e}\) vs. \(I_{C}\).

Fig. 10-vie vs. f.

Fig. 9-yfe vs. \(f\).

Fig. 11-Voe vs. \(f\).

TYPICAL DYNAMIC CHARACTERISTICS CURVES (Cont'd)

Fig. 12-Yre vs. \(f\).

Fig. \({ }^{14-} C_{E B}, C_{C B}, C_{C I}\) vs. bias vò/tage.

Fig. \({ }^{13-f}{ }^{T}\) vs. \(I^{\prime}\).

92CS-24748
Fig. 15-Burn-in and operating life test circuit.

Solid State Division

\section*{Linear Integrated Circuits Monolithic Silicon High-Reliability Slash (/) Series CA3130A/ . . ., CA3130B/ . . .}

High-Reliability
COS/MOS Operational Amplifiers
With MOS/FET Input
For Aerospace, Military, and Critical Industrial Applications
Features:
- MOS/FET input stage provides:
very high \(Z_{I}=1.5 \mathrm{~T} \Omega\left(1.5 \times 10^{12} \Omega\right)\) typ. very low \(I_{1}=5 \mathrm{pA}\) typ. at 15 V operation

2 pA typ. at 5 V operation
- Common-mode input-voltage range includes negative supply rail; input terminals can be swung 0.5 V below negative supply rail
- COS/MOS output stage permits signal swing to either (or both) supply rails

Ideal for
single-supply applications
- Low \(\mathrm{V}_{10}: 2 \mathrm{mV}\) max. (CA3130B)
- Wide BW: 15 MHz typ. (unity-gain crossover)
- High SR: \(10 \mathrm{~V} / \mu \mathrm{s}\) typ. (unity-gain follower)
- High output current (\(I_{0}\)): 20 mA typ.
- High \(A_{O L}\) : 320,000 (110 dB) typ.
- Compensation with single external capacitor

\section*{Applications:}
- Ground-referenced single-supply amplifiers
- Fast sample-hold amplifiers
- Long-duration timers/monostables
- High-input-impedance comparators
(ideal interface with digital COS/MOS)
- High-input-impedance wideband amplifiers
m Voltage followers
(e.g., follower for single-supply D/A converter)
- Voltage regulators
(permits control of output voltage down to zero volts)
- Peak detectors
- Single-supply full-wave precision rectifiers
- Photo-diode sensor amplifiers

Fig. 1-Functional diagram of the CA3130 Series.

\section*{MAXIMUM RATINGS, Absolute-Maximum Values}
```

DC SUPPLY VOLTAGE
(BETWEEN V }\mp@subsup{}{}{+}\mathrm{ AND V }\mp@subsup{}{}{-}\mathrm{ TERMINALS) . . . . . . . . . . . . . . . . 16 V
DIFFERENTIAL-MODE INPUT VOLTAGE . . . . . . . . . . . . . . . . \pm8 \
COMMON-MODE DC INPUT VOLTAGE . . . . . . . . V V ' to (V
INPUT-TERMINAL CURRENT . . ........................... 1 mA
DEVICE DISSIPATION
WITHOUT HEAT SINK-
UP TO 55'%
630 mW
ABOVE 55*'C
Derate linearly 6.67 mW/' C
DC SUPPLY VOLTAGE

```
\(\qquad\)
DIFFERENTIAL-MODE INPUT VOLTAGE \(\pm 8 \mathrm{~V}\)
COMMON-MODE DC INPUT VOLTAGE \(\mathrm{V}^{+}\)to (\(\mathrm{V}^{-}-0.5 \mathrm{~V}\))
INPUT-TERMINAL CURRENT
DEVICE DISSIPATION:

UP TO \(55^{\circ} \mathrm{C}\)
630 mW
ABOVE \(55^{\circ} \mathrm{C}\). Derate linearly \(6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)

WITH HEAT SINK-
\[
\begin{aligned}
& \text { AT } 125^{\circ} \mathrm{C} \\
& \text { BELOW } 125^{\circ} \mathrm{C} \text {. Increase linearly at } 16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}
\end{aligned}
\]

TEMPERATURE RANGE:

OPERATING -55 to \(+125^{\circ} \mathrm{C}\)

STORAGE -65 to \(+150^{\circ} \mathrm{C}\)
OUTPUT SHORT-CIRCUIT DURATION* INDEFINITE
LEAD TEMPERATURE (DURING SOLDERING)
AT DISTANCE \(1 / 16 \pm 1 / 32\) INCH (\(1.59 \pm 0.79 \mathrm{MM}\))
FROM CASE FOR 10 SECONDS MAX. +265 \({ }^{\circ} \mathrm{C}\)
*Short circuit may be applied to ground or to either supply.

NOTE:
dIodes dS through di provide gate-oxide protection FOR MOS/FETS INPUT STAGE.

Fig. 2-Schematic diagram of the CA3130 Series.

ELECTRICAL CHARACTERISTICS
Typical Values Intended Only for Design Guidance
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & \begin{tabular}{l}
TEST \\
CONDITIONS
\[
\begin{aligned}
& \mathrm{V}^{+}=15 \mathrm{~V} \\
& \mathrm{~V}=0 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
& \text { (Unless } \\
& \text { Specified } \\
& \text { Otherwise) }
\end{aligned}
\]
\end{tabular} & CA3130A & CA3130B & UNITS \\
\hline Input Offset Voltage & \(\left|V_{10}\right|\) & \(\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}\) & 2 & 0.8 & mV \\
\hline Input Offset Current & \(\mid 1 \mathrm{l} \mathrm{I}^{\prime}\) & \(\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}\) & 0.5 & 0.5 & pA \\
\hline Input Current & 1 & \(\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}\) & 5 & 5 & pA \\
\hline \multirow[t]{2}{*}{Large-Signal Voltage Gain} & \multirow[t]{2}{*}{\({ }^{\text {A OL }}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{O}=10 V_{p \cdot p} \\
& R_{L}=2 \mathrm{k} \Omega
\end{aligned}
\]} & 320 k & 320 k & V/V \\
\hline & & & 110 & 110 & dB \\
\hline \begin{tabular}{l}
Common-Mode \\
Rejection Ratio
\end{tabular} & CMRR & & 90 & 100 & dB \\
\hline Common-Mode Input-Voltage Range & VICR & & \[
\begin{gathered}
\hline-0.5 \\
\text { to } \\
12 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
-0.5 \\
\text { to } \\
12 \\
\hline
\end{gathered}
\] & V \\
\hline \multirow[t]{2}{*}{Power-Supply Rejection Ratio} & \(\Delta v_{10} / \Delta v^{+}\) & \multirow[t]{2}{*}{\(\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}\)} & 32 & 32 & \multirow[b]{2}{*}{\(\mu \mathrm{V} / \mathrm{V}\)} \\
\hline & \(\Delta V_{10} / \Delta V^{-}\) & & 32 & 32 & \\
\hline \multirow{4}{*}{Maximum Output Voltage} & \(\mathrm{V}_{\mathrm{OM}}{ }^{+}\) & \multirow[b]{2}{*}{\(R_{L}=2 \mathrm{k} \Omega\)} & 13.3 & 13.3 & \multirow{4}{*}{V} \\
\hline & \(\mathrm{V}_{\mathrm{OM}^{-}}\) & & 0.002 & 0.002 & \\
\hline & \(\left|\mathrm{V}_{\mathrm{OM}}{ }^{+}\right|\) & \multirow[b]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=\infty\)} & 15 & 15 & \\
\hline & \(\mid \mathrm{VOM}^{-1}\) & & 0 & 0 & \\
\hline Maximum Output Current: Source & \(\mathrm{IOM}^{+}\) & \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) & 22 & 22 & \multirow{2}{*}{mA} \\
\hline Sink & \(\mathrm{OM}^{-}\) & \(\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}\) & 20 & 20 & \\
\hline \multirow[b]{2}{*}{Supply Current} & \multirow[t]{2}{*}{\(1^{+}\)} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=\infty
\end{aligned}
\] & 10 & 10 & \multirow[t]{2}{*}{mA} \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{L}}=\infty
\end{aligned}
\] & 2 & 2 & \\
\hline Input Offset Voltage Temperature Drift & \(\Delta V_{10} / \Delta T\) & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=-55 \\
& \text { to } 125^{\circ} \mathrm{C} \\
& \mathrm{~V}^{ \pm}= \pm 7.5 \mathrm{~V}
\end{aligned}
\] & 10 & 5 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Large-Signal Voltage Gain} & \multirow[b]{2}{*}{\({ }^{\text {A OL }}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{D} \cdot \mathrm{p}}^{*} \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega
\end{aligned}
\]} & 320 k & 320 k & V/V \\
\hline & & & 110 & 110 & dB \\
\hline
\end{tabular}
* Applies only to \(\mathrm{A}_{\mathrm{OL}}\).
\(\Delta\) Applies only to \(\Delta V_{10} / \Delta T\).

TYPICAL VALUES INTENDED ONLY FOR DESIGN GUIDANCE
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & \begin{tabular}{l}
TEST \\
CONDITIONS
\[
\begin{gathered}
\mathrm{V}^{+}=+7.5 \mathrm{~V} \\
\mathrm{~V}^{-}=-7.5 \mathrm{~V} \\
\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\text { (Unless } \\
\text { Specified } \\
\text { Otherwise) } \\
\hline
\end{gathered}
\]
\end{tabular} & CA3130A & CA3130B & UNITS \\
\hline Input Offset Vọltage Adjustment Range & & \(10 \mathrm{k} \Omega\) across Terms. 4 and 5 or 4 and 1 & \(\pm 22\) & \(\pm 22\) & mV \\
\hline Input Resistance & \(\mathrm{R}_{1}\) & & 1.5 & 1.5 & \(T \Omega\) \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & \(\mathrm{f}=1 \mathrm{MHz}\) & 4.3 & 4.3 & pF \\
\hline Equivalent Input Noise & \(\mathrm{e}_{\mathrm{n}}\) & \[
\begin{aligned}
& \mathrm{BW}=0.2 \mathrm{MHz} \\
& \mathrm{R}_{\mathrm{S}}=1 \mathrm{M} \Omega^{*}
\end{aligned}
\] & 23 & 23 & \(\mu \mathrm{V}\) \\
\hline \multirow[t]{2}{*}{Unity Gain Crossover Frequency} & \multirow[b]{2}{*}{\({ }^{\mathrm{f}}\) T} & \(\mathrm{C}_{\mathrm{C}}=0\) & 15 & 15 & \multirow[t]{2}{*}{MHz} \\
\hline & & \(\mathrm{C}_{\mathrm{C}}=47 \mathrm{pF}\) & 4 & 4 & \\
\hline \multirow[t]{2}{*}{Slew Rate: Open Loop Closed Loop} & \multirow[t]{2}{*}{SR} & \(\mathrm{C}_{\mathrm{C}}=0\) & 30 & 30 & \multirow[t]{2}{*}{\(\mathrm{V} / \mu \mathrm{s}\)} \\
\hline & & \(\mathrm{C}_{\mathrm{C}}=56 \mathrm{pF}\) & 10 & 10 & \\
\hline Transient Response: Rise Time & \multirow[t]{3}{*}{\(\mathrm{t}_{\mathrm{r}}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
\[
\begin{aligned}
& C_{C}=56 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega
\end{aligned}
\] \\
(Voltage \\
Follower)
\end{tabular}} & 0.09 & 0.09 & \(\mu \mathrm{s}\) \\
\hline Overshoot & & & 10 & 10 & \% \\
\hline Settling Time (4 Vp-p Input to \(<0.1 \%\)) & & & 1.2 & 1.2 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}
\({ }^{*}\) Although a \(1-\mathrm{M} \Omega\) source is used for this test, the equivalent input noise remains constant for sources of \(\mathrm{R}_{\mathrm{S}}\) up to \(10 \mathrm{M} \Omega\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline CHARACTERISTIC & SYMBOL & TEST & CA3130A & CA3130B & UNITS \\
\hline Input Offset Voltage & \(V_{10}\) & & 2 & 1 & mV \\
\hline Input Offset Current & 110 & & 0.1 & 0.1 & pA \\
\hline Input Current & 11 & & 2 & 2 & pA \\
\hline Common-Mode Rejection Ratio & CMRR & & 90 & 100 & dB \\
\hline \multirow[t]{2}{*}{Large-Signal Voltage Gain} & \multirow[b]{2}{*}{\(\mathrm{A}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=4 \mathrm{Vp}-\mathrm{p} \\
& \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega
\end{aligned}
\]} & 100 k & 100 k & V/V \\
\hline & & & 100 & 100 & dB \\
\hline Common-Mode Input Voltage Range & \(V_{\text {ICR }}\) & & 0 to 2.8 & 0 to 2.8 & V \\
\hline \multirow[b]{2}{*}{Supply Current} & \multirow[t]{2}{*}{\(1+\)} & \(\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\) & 300 & 300 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & \(\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\) & 500 & 500 & \\
\hline Power Supply Rejection Ratio & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{V}^{+}\) & & 200 & 200 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline
\end{tabular}

Table I. Pre Burn-In and Post Burn-In Electrical Tests and Delta Limits*
ELECTRICAL CHARACTERISTICS At \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+7.5 \mathrm{~V}, \mathrm{~V}-=-7.5 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CHARACTERISTIC}} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|r|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MAX. & MAX. \(\triangle\) & \\
\hline \multirow[b]{2}{*}{Input Offset Voltage} & CA3130A & \multirow[b]{2}{*}{\(V_{10}\)} & & 5 & \(\pm 1\) & \multirow[b]{2}{*}{mV} \\
\hline & CA3130B & & & 2 & \(\pm 0.5\) & \\
\hline \multirow[b]{2}{*}{Input Offset Current} & CA3130A & \multirow[b]{2}{*}{110} & & 20 & \(\pm 2\) & \multirow[b]{2}{*}{nA} \\
\hline & CA3130B & & & 10 & \(\pm 1\) & \\
\hline \multirow[b]{2}{*}{Input Bias Current} & CA3130A & \multirow[b]{2}{*}{1} & & 30 & \(\pm 3\) & \multirow[b]{2}{*}{nA} \\
\hline & CA3130B & & & 20 & \(\pm 2\) & \\
\hline
\end{tabular}
* Levels \(/ 1\) and \(/ 2\) require pre burn-in electrical and post burn-in electrical tests, and delta limits.

Level / 3 requires pre burn-in electrical test only. The burn-in and operating life test circuit is shown in Fig. 6.

Table II. Final Electrical Tests and Group A Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{CHARACTERISTIC}} & \multirow{3}{*}{SYMBOL} & \multirow[t]{3}{*}{TEST CONDITIONS \(\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}\) Unless Otherwise Specified} & \multicolumn{6}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} \\
\hline & & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|r|}{MAXIMUM} & \\
\hline & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multirow[b]{2}{*}{Input Offset Voltage} & CA3130A & \multirow[b]{2}{*}{\(\mathrm{V}_{10}\)} & \multirow{2}{*}{\(\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}\)} & - & - & - & 7 & 5 & 7 & \multirow[b]{2}{*}{mV} \\
\hline & CA3130B & & & - & - & - & 3.5 & 2 & 3.5 & \\
\hline \multirow[b]{2}{*}{Input Offset Current} & CA3130A & \multirow[b]{2}{*}{\({ }_{10}\)} & \multirow[b]{2}{*}{\(\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}\)} & - & - & - & 30 & 20 & 30 & \multirow{2}{*}{pA} \\
\hline & CA3130B & & & - & - & - & 20 & 10 & 20 & \\
\hline \multirow[b]{2}{*}{Input Current} & CA3130A & \multirow[b]{2}{*}{1} & \multirow[t]{2}{*}{\(\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}\)} & - & - & - & 15 & 0.03 & 15 & \multirow[t]{2}{*}{nA} \\
\hline & CA3130B & & & - & - & - & 15 & 0.03 & 15 & \\
\hline \multirow[t]{2}{*}{Large Signal Voltage Gain} & CA3130A & \multirow[b]{2}{*}{\(\mathrm{A}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega
\end{aligned}
\]} & 88 & 94 & 88 & - & - & - & \multirow[t]{2}{*}{dB} \\
\hline & CA3130B & & & 94 & 100 & 94 & - & - & - & \\
\hline \multirow[t]{2}{*}{Common-Mode Rejection Ratio} & CA3130A & \multirow[b]{2}{*}{CMRR} & & 80 & 80 & 80 & - & - & - & \multirow[b]{2}{*}{dB} \\
\hline & CA3130B & & & 86 & 86 & 86 & - & - & - & \\
\hline Common-Mode Input Voltage Range & & VICR & & 0 & 0 & 0 & 10 & 10 & 10 & V \\
\hline \multirow[t]{2}{*}{Power Supply Rejection Ratio} & CA3130A & \multirow[b]{2}{*}{PSRR} & \multirow[b]{2}{*}{\(\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}\)} & 150 & 150 & 150 & - & - & - & \multirow[t]{2}{*}{\(\mu \mathrm{V} / \mathrm{V}\)} \\
\hline & CA3130B & & & 100 & 100 & 100 & - & - & - & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Maximum Output Voltage}} & \(\mathrm{V}_{\mathrm{OM}}{ }^{+}\) & \multirow[b]{2}{*}{\(R_{L}=2 \mathrm{k} \Omega\)} & 10 & 12 & 10 & - & - & - & \multirow[t]{2}{*}{V} \\
\hline & & \(\mathrm{V}_{\mathrm{OM}^{-}}\) & & - & - & - & 0.05 & 0.01 & 0.05 & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Maximum Output Voltage}} & \(\mathrm{V}_{\mathrm{OM}}{ }^{+}\) & \multirow[b]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=\infty\)} & 14.95 & 14.99 & 14.95 & - & - & - & \multirow[t]{2}{*}{V} \\
\hline & & \(\mathrm{V}_{\mathrm{OM}}{ }^{-}\) & & - & - & - & 0.05 & 0.01 & 0.05 & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Maximum Output Current}} & \({ }^{1} \mathrm{OM}^{+}\) & \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\) & - & 12 & - & - & 45 & - & \multirow[t]{2}{*}{mA} \\
\hline & & \({ }^{1} \mathrm{OM}^{-}\) & \(\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}\) & - & 12 & - & - & 45 & - & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Supply Current}} & \multirow[t]{2}{*}{\(1^{+}\)} & \(\mathrm{V}_{\mathrm{O}}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\) & - & - & - & - & 15 & - & \multirow[t]{2}{*}{mA} \\
\hline & & & \(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\) & - & - & - & - & 3 & - & \\
\hline Input Offset Voltage Temperature Coefficient & & \(\Delta \mathrm{V}_{10} / \Delta \mathrm{T}\) & CA3130B Only & - & - & - & 15 & 15 & 15 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Table III. Group C Electrical Characteristics Sampling Tests
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS
\[
\begin{gathered}
\mathrm{AT} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\
\mathrm{~V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}
\end{gathered}
\]} & \multicolumn{2}{|r|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & MIN. & MAX. & \\
\hline \multirow[b]{2}{*}{Input Offset Voltage} & \multirow[b]{2}{*}{\(V_{10}\)} & CA3130A & - & 5 & \multirow{2}{*}{mV} \\
\hline & & CA3130B & - & 2 & \\
\hline \multirow[b]{2}{*}{Input Offset Current} & \multirow[b]{2}{*}{110} & CA3130A & - & 20 & \multirow[b]{2}{*}{pA} \\
\hline & & CA3130B & - & 10 & \\
\hline \multirow[t]{2}{*}{Input Bias Current} & \multirow[t]{2}{*}{11} & CA3130A & - & 30 & \multirow[t]{2}{*}{pA} \\
\hline & & CA3130B & - & 20 & \\
\hline \multirow[t]{2}{*}{Large Signal Voltage Gain} & \multirow[t]{2}{*}{\(A_{\text {OL }}\)} & CA3130A & 91 & - & \multirow{2}{*}{dB} \\
\hline & & CA3130B & 97 & - & \\
\hline
\end{tabular}

TOTAL SUPPLY VOLTAGE (FOR INDICATED VOLTAGE GAINS) = 15 V
* WITH INPUT TERMINALS BIASED SO THAT TERM. 6 POTENTIAL IS +7.5V ABOVE TERM. 4.
* With output terminal driven to either supply rail.

Fig. 3-Block diagram of the CA3130 Series.

Fig. 4-Open-loop voltage gain and phase shift vs. frequency for various values of \(C_{L}, C_{C}\), and \(R_{L}\).

Fig. 5-Voltage transfer characteristics of COSMOS output stage.

Fig. 6-Burn-in and life test circuit.

Solid State Division

N-Channel Depletion Types
High-Reliability Type HR3N187

\title{
High-Reliability \\ Silicon Dual Insulated-Gate Field-Effect Transistor
}

\author{
With Integrated Gate-Protection Circuits
}

For Applications in Aerospace, Military, and Critical Industrial Equipment up to 300 MHz

\section*{Device Features:}
- Back-to-back diodes to protect each gate against handling and in-circuit transients
- High forward transconductance - gFS \(=12,000 \mu\) mho (typ.)
- High unneutralized RF power gain - \(\mathrm{G}_{\mathrm{ps}}=\mathbf{1 8} \mathrm{dB}\) (typ.) at 200 MHz
- Low VHF noise figure - \(\mathbf{3 . 5 \mathrm { dB } \text { (typ.) at } 2 0 0 \mathrm { MHz } , ~ (t)}\)

The RCA-HR3N187 is a high-reliability n-channel silicon, depletion type, dual insulated-gate field-effect transistor. It is intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type 3N187 described in Data Bulletin File No. 436 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The excellent over-all performance characteristics of HR3N187 make it useful for a wide variety of rf-amplifier applications at frequencies up to 300 MHz . The two serially-connected channels with independent control gates make possible a greater dynamic range and lower crossmodulation than is normally achieved using devices having only a single control element. The HR3N187 is hermetically sealed in the metal JEDEC TO-72 package.

LEAD 1-DRAIN
LEAD 2-GATE No. 2
LEAD 3-GATE No. 1
LEAD 4 - SOURCE, SUBSTRATE
AND CASE

\section*{Applications}
- RF amplifier amplifier, mixer, and IF amplifier in military, and industrial communications equipment
- Aircraft and marine vehicular receivers
- CATV and MATV equipment
- Telemetry and multiplex equipment

\section*{Performance Features}
- Superior cross-modulation performance and greater dynamic range than bipolar or single-gate FET's
- Wide dynamic range permits large-signal handling before overload
- Virtually no age power required
- Greatly reduces spurious responses in FM receivers

Maximum Ratings, Absolute-Maximum Values, at \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|}
\hline DRAIN-TO-SOURCE VOLTAGE, VDS & -0.2 to +20 & V \\
\hline \multicolumn{3}{|l|}{GATE No. 1-TO-SOURCE VOLTAGE, \(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}\) :} \\
\hline Continuous (dc) & -6 to +3 & V \\
\hline Peak ac & -6 to +6 & V \\
\hline \multicolumn{3}{|l|}{GATE No. 2-TO-SOURCE VOLTAGE, VG2S:} \\
\hline Continuous (dc) & -6 to 30\% of VDS & \(v\) \\
\hline Peak ac & -6 to +6 & V \\
\hline \multicolumn{3}{|l|}{*DRAIN-TO-GATE VOLTAGE,} \\
\hline \(V_{\text {DG1 }}\) OR V \({ }^{\text {DG }}\) & +20 & \(V\) \\
\hline *DRAIN CURRENT, ID & 50 & \(m A\) \\
\hline \multicolumn{3}{|l|}{*TRANSISTOR DISSIPATION PT:} \\
\hline At ambient \(\}\) up to \(25^{\circ} \mathrm{C}\) & 330 & mW \\
\hline temperatures \(\}\) above \(25^{\circ} \mathrm{C}\) & derate linearly at \(2.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) & \\
\hline \multicolumn{3}{|l|}{*AMBIENT TEMPERATURE RANGE:} \\
\hline Storage and Operating & -65 to +175 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{3}{|l|}{*LEAD TEMPERATURE (During Soldering):} \\
\hline At distances \(\geqslant 1 / 32\) inch from & & \({ }^{\circ} \mathrm{C}\) \\
\hline seating surface for 10 seconds max. . . . & 265 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\footnotetext{
*In accordance with JEDEC Registration Data Format JS-9 RDF-19A
}

Fig. 1-Terminal diagram.

Electrical Characteristics, at \(T_{A}=250 \mathrm{C}\) Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN. & TYP. & MAX. & \\
\hline Gate No. 1-to-Source Cutoff Voltage & \(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S} \text { (off) }}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=50 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\]} & -0.5 & -2 & -4 & V \\
\hline * Gate No. 2-to-Source Cutoff Voltage & \(\mathrm{V}_{\mathrm{G} 2}(\mathrm{off})\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0
\end{aligned}
\]} & -0.5 & -2 & -4 & V \\
\hline \multirow[t]{2}{*}{Gate No. 1-Terminal Forward Current} & \multirow[t]{2}{*}{IG1SSF} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=+1 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0
\end{aligned}
\]} & \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\) & - & - & 50 & nA \\
\hline & & & \(\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}\) & - & - & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Gate No. 1-Terminal Reverse Current} & \multirow[t]{2}{*}{IG1SSR} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=-6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0
\end{aligned}
\]} & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & - & - & 50 & nA \\
\hline & & & \(\mathrm{T}^{\text {A }}=100^{\circ} \mathrm{C}\) & - & - & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Gate No. 2-Terminal Forward Current} & \multirow[t]{2}{*}{IG2SSF} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=+6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0 \\
& \hline
\end{aligned}
\]} & \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\) & - & - & 50 & nA \\
\hline & & & \(\mathrm{T}^{\prime}{ }^{\text {a }}=100^{\circ} \mathrm{C}\) & - & - & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Gate No. 2-Terminal Reverse Current} & \multirow[t]{2}{*}{IG2SSR} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=-6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0
\end{aligned}
\]} & \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\) & - & - & 50 & nA \\
\hline & & & \(\mathrm{T}^{\mathrm{T}} \mathrm{A}=100^{\circ} \mathrm{C}\) & - & - & 5 & \(\mu \mathrm{A}\) \\
\hline Zero-Bias Drain Current & IDS & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0
\end{aligned}
\]} & 5 & 15 & 30 & mA \\
\hline Forward Transconductance (Gate No. 1-to-Drain) & 9fs & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{D S}=+15 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=10 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}
\end{aligned}
\]} & 7000 & 12000 & 18,00 & \(\mu \mathrm{mho}\) \\
\hline Small-Signal, Short-Circuit Input Capacitancet & Ciss & \multicolumn{2}{|l|}{\multirow{3}{*}{\[
\begin{aligned}
& V_{D S}=+15 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}
\end{aligned}
\]}} & 4.0 & 6.0 & 8.5 & pF \\
\hline Small-Signal, Short-Circuit, Reverse Transfer Capacitance (Drain-to-Gate No. 1) & \(\mathrm{Crss}^{\text {r }}\) & & & 0.005 & 0.02 & 0.08 & pF \\
\hline Small-Signal, Short-Circuit Output Capacitance & Coss & & & - & 2.0 & - & pF \\
\hline Power Gain (see Fig. 1) & GpS & \multicolumn{2}{|l|}{\multirow[t]{10}{*}{\[
\begin{aligned}
& V_{D S}=+15 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}, \mathrm{f}=200 \mathrm{MHz}
\end{aligned}
\]}} & 15 & 18 & 22 & dB \\
\hline Maximum Available Power Gain & MAG & & & - & 20 & - & dB \\
\hline Maximum Usable Power Gain (unneutralized) & MUG & & & - & 204 & - & dB \\
\hline Noise Figure (see Fig. 1) & NF & & & - & 3.5 & 4.5 & dB \\
\hline Magnitude of Forward Transadmittance & \(\mathrm{Y}_{\mathrm{fs}}\) & & & - & 12000 & - & \(\mu\) mho \\
\hline * Phase Angle of Forward Transadmittance & & & & - & -35 & - & Degrees \\
\hline Magnitude of Reverse Transadmittance & \(\mathrm{Y}_{\mathrm{rs}}\) & & & - & 25 & - & \(\mu \mathrm{mho}\) \\
\hline Angle of Reverse Transadmittance & \(\theta_{\text {rs }}\) & & & - & -25 & - & Degrees \\
\hline - Input Resistance & \(r_{\text {iss }}\) & & & - & 1.0 & - & \(\mathrm{k} \Omega\) \\
\hline Output Resistance & ross & & & - & 2.8 & - & k \(\Omega\) \\
\hline \begin{tabular}{l}
Gate-to-Source \\
Forward Breakdown Voltage:
\end{tabular} & \(V_{\text {(BR) }}\) G1SSF & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{IG1SSF \(=\mathrm{I}\) G2SSF \(=100 \mu \mathrm{~A}\)}} & \multirow[t]{2}{*}{6.5} & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{v} \\
\hline Gate No. 2 & \(V_{\text {(BR) }}\) G2SSF & & & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Gate-to-Source \\
Reverse Breakdown Voltage: \\
Gate No. 1
\end{tabular}} & \multirow[b]{3}{*}{\(\frac{V_{\text {(BR }) \text { G1SSR }}}{V_{\text {(BR) }} \text { S2SSR }}\)} & \multicolumn{2}{|l|}{\multirow{3}{*}{IG 1SSR \(=\) IG2SSR \(=-100 \mu \mathrm{~A}\)}} & \multirow{3}{*}{-6.5} & \multirow{3}{*}{-10} & \multirow{3}{*}{-} & \multirow{3}{*}{v} \\
\hline & & & & & & & \\
\hline Gate No. 2 & & & & & & & \\
\hline
\end{tabular}

A Limited only by practical design considerations.
\(t\) Capacitance between Gate No. 1 and all other terminals.
* Three-terminal measurement with Gate No. 2 and Source return to ground terminal.
* In accordance with JEDEC Registration Data Format JS-9 RDF-19A.

Table I-Pre Burn-In and Post Burn-In Electrical Go/No-Go Tests, at \(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|r|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & Min. & Max. & \\
\hline Gate No. 1-Terminal Forward Current & \({ }^{\prime}\) G1SSF & \(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0\) & - & 50 & nA \\
\hline Gate No. 1-Terminal Reverse Current & \({ }^{\prime} \mathrm{G} 1 \mathrm{SSSR}\) & \(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0\) & - & 50 & nA \\
\hline Gate No. 2-Terminal Forward Current & \({ }^{\text {G }}\) S 2 SSF & \(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0\) & - & 50 & nA \\
\hline Gate No. 2-Terminal Reverse Current & \(\mathrm{I}_{\text {G2SSR }}\) & \(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0\) & - & 50 & nA \\
\hline Zero-Bias Drain Current & \({ }^{\text {DS }}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0
\end{aligned}
\] & 5 & 30 & mA \\
\hline Gate-to-Source Forward Breakdown Voltage: Gate No. 1 & \(V_{\text {(BR)G1SSF }}\) & \multirow[t]{2}{*}{\({ }^{\text {G1SSF }}{ }{ }^{\prime} \mathrm{I}_{\mathrm{G} 2 \text { SSF }}=100 \mu \mathrm{~A}\)} & \multirow[t]{2}{*}{6.5} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{V} \\
\hline Gate No. 2 & \(V_{\text {(BR)G2SSF }}\) & & & & \\
\hline Gate-to-Source Reverse Breakdown Voltage: Gate No. 1 & \(V_{\text {(BR) }}\) G1SSR & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{G} 1 \mathrm{SSR}}=\mathrm{I}_{\mathrm{G} 2 \mathrm{SSR}}=100 \mu \mathrm{~A}\)} & \multirow[t]{2}{*}{-6.5} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{V} \\
\hline Gate No. 2 & \(V_{\text {(BR)G2SSR }}\) & & & & \\
\hline
\end{tabular}

Table II-Final Electrical Tests, at \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multirow{2}{*}{TEST CONDITIONS} & \multicolumn{2}{|r|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & Min. & Max. & \\
\hline Gate No. 1-to-Source Cutoff Voltage & \(\mathrm{V}_{\mathrm{G1S} \text { (off) }}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\] & -0.5 & -4 & V \\
\hline Gate No. 2-to-Source Cutoff Voltage & \(\mathrm{V}_{\text {G2S }}\) (off) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0
\end{aligned}
\] & -0.5 & -4 & V \\
\hline Gate No. 1-Terminal Forward Current & \({ }^{\prime} \mathrm{G} 1 \mathrm{SSF}\) & \(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0\) & - & 50 & nA \\
\hline Gate No. 1-Terminal Reverse Current & \({ }^{\prime} \mathrm{G} 1 \mathrm{SSR}\) & \(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=-6 \mathrm{~V} ; \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0\) & - & 50 & nA \\
\hline Gate No. 2-Terminal Forward Current & \({ }^{\prime}\) G2SSF & \(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0\) & - & 50 & nA \\
\hline Gate No. 2-Terminal Reverse Current & \({ }^{\text {G }}\) S \({ }^{\text {SSR }}\) & \(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=-6 \mathrm{~V}_{,} \mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0\) & - & 50 & nA \\
\hline Zero-Bias Drain Current & \({ }^{\text {DS }}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0
\end{aligned}
\] & 5 & 30 & mA \\
\hline \begin{tabular}{l}
Gate-to-Source \\
Forward Breakdown Voltage: \\
Gate No. 1 \\
Gate No. 2
\end{tabular} & \[
\frac{v_{\text {(BR)G1SSF }}}{V_{\text {(BR)G2SSF }}}
\] & \(\mathrm{I}_{\mathrm{G} 1 \mathrm{SSF}}=\mathrm{I}_{\mathrm{G} 2 \mathrm{SSF}}=100 \mu \mathrm{~A}\) & 6.5 & - & V \\
\hline \begin{tabular}{l}
Gate-to-Source Reverse Breakdown Voltage: Gate No. 1 \\
Gate No. 2
\end{tabular} & \[
\frac{V_{(B R) G 1 S S R}}{V_{(B R) G 2 S S R}}
\] & \(\mathrm{I}_{\mathrm{G} 1 \mathrm{SSR}}=_{\mathrm{I}_{\mathrm{G} 2 \mathrm{SSR}}}=100 \mu \mathrm{~A}\) & -6.5 & - & V \\
\hline
\end{tabular}

Table III-Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow{3}{*}{TEST CONDITIONS} & \multicolumn{6}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|r|}{MAXIMUM} & \\
\hline & & & -55 & +25 & +125 & -55 & +25 & +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Gate No. 1-to-Source Cutoff Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S} \text { (off) }}\)} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\] & -0.5 & -0.5 & - & -4 & - 4 & - & \multirow[t]{2}{*}{v} \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\] & - & - & 0.5 & - & - & -4 & \\
\hline \multirow[t]{2}{*}{Gate No. 2-to-Source Cutoff Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S} \text { (off) }}\)} & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\] & -0.5 & -0.5 & - & -4 & -4 & - & \multirow[t]{2}{*}{v} \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\] & - & - & -0.5 & - & - & -4 & \\
\hline Gate No. 1-Terminal Forward Current & \({ }^{\prime} \mathrm{G} 1 \mathrm{SSF}\) & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{G} 1 \mathrm{~S}}=+6 \mathrm{~V} \\
& \mathrm{v}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{v}_{\mathrm{DS}}=0
\end{aligned}
\] & - & - & - & - & 50 & - & nA \\
\hline Gate No. 1-Terminal Reverse Current & \({ }^{\text {G G 1 SSR }}\) & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{G1S}}=-6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{GSS}}=\mathrm{V}_{\mathrm{DS}}=0
\end{aligned}
\] & - & - & - & - & 50 & - & nA \\
\hline Gate No. 2-Terminal Forward Current & 'G2SSF & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{G} 2 \mathrm{~S}}=+6 \mathrm{~V} \\
& \mathrm{v}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0
\end{aligned}
\] & - & - & - & - & 50 & - & nA \\
\hline Gate No. 2-Terminal Reverse Current & 'G2SSR & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=-6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{GIS}}=\mathrm{V}_{\mathrm{DS}}=0
\end{aligned}
\] & - & - & - & - & 50 & - & nA \\
\hline Zero-Bias Drain Current & \({ }^{1}\) DS & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0
\end{aligned}
\] & 5 & 5 & 3.5 & 30 & 30 & 21 & mA \\
\hline Forward Transconductance (Gate No. 1-to-Drain) & \(\mathrm{g}_{\mathrm{fs}}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz} \\
& \hline
\end{aligned}
\] & - & 7000 & - & - & 18,000 & - & \(\mu \mathrm{mho}\) \\
\hline Small-Signal, Short-Circuit Input Capacitance & \(\mathrm{c}_{\text {iss }}\) & & - & 4.0 & - & - & 8.5 & - & pF \\
\hline Small-Signal, Short-Circuit, Reverse Transfer Capacitance (Drain-to-Gate No. 1) & \(\mathrm{C}_{\text {rss }}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{GSS}}=+4 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}
\end{aligned}
\] & - & 0.05 & - & - & 0.03 & - & pF \\
\hline \begin{tabular}{l}
Gate-to-Source \\
Forward Breakdown Voltage: Gate No. 1
\end{tabular} & \(V_{\text {(BR) }}\) 1SSF & \multirow[t]{2}{*}{\({ }^{\prime} \mathrm{G1SSF}^{=} \mathrm{I}_{\mathrm{G} 2 \mathrm{SSF}}=100 \mu \mathrm{~A}\)} & \multirow[t]{2}{*}{6.5} & \multirow[t]{2}{*}{6.5} & \multirow[t]{2}{*}{4.5} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{v} \\
\hline Gate No. 2 & \(\mathrm{V}_{\text {(BR) G2SSF }}\) & & & & & & & & \\
\hline Reverse Breakdown Voltage: Gate No. 1 & \(\mathrm{V}_{\text {(BR)G 1SSR }}\) & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{G1SSR}}=\mathrm{I}_{\mathrm{G} 2 \mathrm{SSR}}=100 \mu \mathrm{~A}\)} & \multirow[t]{2}{*}{-6.5} & \multirow[t]{2}{*}{-6.5} & \multirow[t]{2}{*}{-4.5} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{v} \\
\hline Gate No. 2 & \(\mathrm{V}_{\text {(BR) G2SSR }}\) & & & & & & & & \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS
For Y Parameters, see 3N187 Data Bulletin File No. 436
High-Reliability Processing Flow Chart

Fig. 2-GPS vs. \(V_{\text {G2S. }}\)

Fig. \(\mathbf{4 - I}_{\mathrm{D}}\) vs. \(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}\).

Fig. 3-MAG vs. \(f\).

Fig. \({ }^{5-1}\) D vs. \(V_{G 2 S}\).

Fig. \(6-g_{f}\) and \(I_{D}\) vs. \(V_{G 2 S}\).

Fig. \(7-g_{f s}\) vs. \(V_{G 1 S}\).

Fig. \(8-g_{f s} 2\) vs. \(V_{G 2 s}\).

Fig. 9-Burn-In and operating life-test circuit.

Dimensions in Inches and Millimeters
Note 1: Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated.
Note 2; The specitied lead diameter applies in the fone between \(0.050^{\prime \prime}(1.27 \mathrm{~mm})\) and \(0.250^{\prime \prime}(6.35 \mathrm{~mm})\) from the seating plane. From \(0.250^{\circ}\) (6.35 mm) to the end of the lead.a maximum diameter of \(0.021^{\prime \prime}(0.533 \mathrm{~mm})\) is held. Outside of these zones, the lead diameter is not controlled.

Note 3: Leads having a maximum diametar of \(0 \times 19^{3} \in\{482 \mathrm{~mm})\) at a guagang-plane of \(0.054^{\prime \prime}\) (\(1.372 \mathrm{mml}+0.001^{26}(0.025 \mathrm{~mm}\)) \(-0.000^{\prime \prime} \cdot(0.000 \mathrm{~mm})\) below seating plane sbiall be within \(0,007^{\prime \prime}\) \((0.177 \mathrm{~mm})\) at their true position (location) relative to a maximum width of tab.

Note 4: Measured from actual maximum drameter.

Solid State Division

RCA HR3N200 is a high-reliability \(n\)-channel silicon, depletion type, dual insulated-gate field-effect transistor. It is intended for applications in aerospace, military, and industrial equipment. It is electrically and mechanically identical with the standard type 3N200 described in Data Bulletin File No. 437 but is specially processed and tested to meet the electrical, mechanical and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.
The excellent over-all performance characteristics of the HR3N200 make it useful for a wide variety of rf-amplifier applications at frequencies up to 500 MHz . The two serially-connected channels with independent control gates make possible a greater dynamic range and lower crossmodulation than is normally achieved using devices having only a single control element.
The HR3N200 is hermetically sealed in the metal JEDEC TO-72 package.
Maximum Ratings, Absolute-Maximum Values, at \(T_{A}=250 \mathrm{C}\)
DRAIN-TO-SOURCE VOLTAGE, VDS \(\ldots \quad-0.2\) to \(+20 \quad V\) GATE No. 1-TO-SOURCE VOLTAGE, \(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}\) :
\begin{tabular}{|c|c|}
\hline Continuous (dc) & -6 to +3 \\
\hline Peak ac & -6 to +6 \\
\hline
\end{tabular}

GATE No. 2 -TO-SOURCE VOLTAGE, VG2S:
Continuous (dc) \(\ldots\). . 6 to \(30 \%\) of \(V_{D S} \quad V\)
Peak ac \(. \ldots \ldots\).
*DRAIN-TO-GATE VOLTAGE,
V DG1 OR \(_{\text {VG2 }} \ldots \ldots\).
*DRAIN CURRENT, ID 50 mA
*TRANSISTOR DISSIPATION, \(\mathrm{P}_{\mathrm{T}}\) :
At ambient
up to \(25^{\circ} \mathrm{C} \ldots . .\). . 330 mW
temperatures \(\}\) above \(25^{\circ} \mathrm{C} \ldots \ldots .\). derate linearly at
*AMBIENT TEMPERATURE RANGE: \(\quad \mathbf{2 . 2} \mathrm{mW} /{ }^{\circ} \mathrm{C}\)
Storage and Operating \(\ldots\). . -65 to \(+175{ }^{\circ} \mathrm{C}\)
*LEAD TEMPERATURE (During soldering):
At distances \(\geqslant 1 / 32\) inch from
seating surface for 10 seconds max. ... 265 oc
*In accordance with JEDEC registration data format (JS-9 RDF-19A)
Applications:

\title{
High-Reliability \\ Silicon Dual Insulated-Gate Field-Effect Transistor
}

With Integrated Gate-Protection Circuits
For Applications in Aerospace, Military, and Critical Industrial Equipment Up to 500 MHz .
- RF amplifier, mixer, and IF amplifier in military and industrial communications equipment
- Aircraft and marine vehicular receivers
- CATV and MATV equipment
- Telemetry and multiplex equipment

\section*{Performance Features:}
- Superior cross-modulation performance and greater dynamic range than bipolar and single-gate FET's
- Wide dynamic range permits large-signal handling before overload
- Dual gate permits simplified agc circuitry
- Virtually no age power required
- Greatly reduces spurious responses in FM receivers

Device Features:
- Back-to-back diodes protect each gate against handling and in-circuit transients
- High forward transconductance - \(\mathrm{g}_{\mathrm{fs}}=\mathbf{1 5 , 0 0 0}\) \(\mu\) mho (typ.)
- High unneutralized RF power gain \(\mathrm{G}_{\mathrm{ps}}=\mathbf{1 2 . 5 \mathrm { dB }}\) (typ.) at \(\mathbf{4 0 0} \mathrm{MHz}\) \(=19 \mathrm{~dB}\) (typ.) at 200 MHz
- Low VHF noise figure - 4.5 dB (typ.) at \(\mathbf{4 0 0} \mathbf{~ M H z}\) 3.0 dB (typ.) at 200 MHz

LEAD I-DRAIN
LEAD 2-GATE No. 2
LEAD 3-GATE No. 1
LEAD 4 -SOURCE, SUBSTRATE AND CASE
Fig. 1-Terminal diagram.

Electrical Characteristics for Design Guidance Only

tCapacitance between Gate No. 1 and all other terminals.
©Three-terminal measurement with Gate No. 2 and Source
returned to guard terminal.
*In accordance with JEDEC registration data format (JS-9 RDF-19A).

The flexible leads of the 3 N200 are usually soldered to the circuit elements. As in the case of any high-frequency semiconductor device, the tips of soldering irons MUST be grounded.

File No. 824
HR3N200
Table I-Pre Burn-In and Post Burn-In Electrical Go/No-Go Tests
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\) \\
unless otherwise specified
\end{tabular}} & \multirow{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow{2}{*}{TEST CONDITIONS}} & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & & Min. & Max. & \\
\hline Gate No. 1-Terminal Forward Current & \({ }^{\prime} \mathrm{G} 1 \mathrm{SSF}\) & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{G} 1 \mathrm{~S}}=+6 \\
& \mathrm{v}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{v}_{\mathrm{D}}
\end{aligned}
\] & \[
S=0
\] & - & 50 & nA \\
\hline Gate No. 1-Terminal Reverse Current & \({ }^{\prime} \mathrm{G} 1\) SSR & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}= \\
& \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=
\end{aligned}
\] & \[
=0
\] & - & 50 & nA \\
\hline Gate No. 2-Terminal Forward Current & \({ }^{\prime}\) G2SSF & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{G} 2 \mathrm{~S}}=+1 \\
& \mathrm{v}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{v} \\
& \hline
\end{aligned}
\] & \[
=0
\] & - & 50 & nA \\
\hline Gate No. 2-Terminal Reverse Current & 'G2SSR & \[
\begin{array}{|l}
\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}= \\
\mathrm{V}_{\mathrm{GIS}}=1
\end{array}
\] & \[
=0
\] & - & 50 & nA \\
\hline Zero-Bias Drain Current & 'DS & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4
\end{aligned}
\] & \[
\mathrm{v}, \mathrm{v}_{\mathrm{G} 1 \mathrm{~S}}=0
\] & 0.5 & 12 & mA \\
\hline \begin{tabular}{l}
Gate-to-Source \\
Forward Breakdown Voltage
\[
\frac{\text { Gate No. } 1}{\text { Gate No. } 2}
\]
\end{tabular} & \[
\frac{v_{(B R) G 1 S S F}}{v_{(B R) G 2 S S F}}
\] & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{G} 1 \mathrm{SSF}}= \\
& \mathrm{I}_{\mathrm{G} 2 \mathrm{SSF}}= \\
& 100 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{v}_{\mathrm{DS}}=0 \\
& \mathrm{v}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{v}_{\mathrm{DS}}=0
\end{aligned}
\] & 6.5 & 13 & v \\
\hline ```
Gate-to-Source
 Reverse Breakdown Voltage
 Gate No. 1
Gate No. 2
``` & \[
\frac{V_{\text {(BR)G1SSR }}}{V_{(\text {BR }) \text { G2SSR }}}
\] & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{G} 1 \mathrm{SSR}}= \\
& \mathrm{I}_{\mathrm{G} 2 \mathrm{SSR}}= \\
& 100 \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{array}{|l}
\mathrm{v}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{v}_{\mathrm{DS}}=0 \\
\mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0
\end{array}
\] & -6.5 & -13 & V \\
\hline
\end{tabular}

Table II-Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\) \\
unless otherwise specified
\end{tabular}} & \multirow{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow{2}{*}{TEST CONDITIONS}} & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & & & Min. & Max. & \\
\hline Gate No. 1-to-Source Cutoff Voltage & \(\mathrm{V}_{\mathrm{G1S} \text { (off) }}\) & \[
\begin{aligned}
& V_{D S}=+15 \\
& V_{G 2 S}=+4
\end{aligned}
\] & \[
\mathrm{V}, I_{D}=50 \mu \mathrm{~A}
\] & -0.1 & -3 & v \\
\hline Gate No. 2-to-Source Cutoff Voltage & \(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S} \text { (off) }}\) & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{DS}}=+15 \\
& \mathrm{v}_{\mathrm{G} 1 \mathrm{~S}}=0
\end{aligned}
\] & \[
\mathrm{V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}
\] & -0.1 & -3 & v \\
\hline Gate No. 1-Terminal Forward Current & \({ }^{\prime} \mathrm{G} 1 \mathrm{SSF}\) & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{G} 1 \mathrm{~S}}=+1 \\
& \mathrm{v}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{v}_{\mathrm{D}}
\end{aligned}
\] & \[
s=0
\] & - & 50 & nA \\
\hline Gate No. 1-Terminal Reverse Current & \({ }^{\prime} \mathrm{G} 1 \mathrm{SSR}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=-6 \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{D}}
\end{aligned}
\] & \[
S^{2}=0
\] & - & 50 & nA \\
\hline Gate No. 2-Terminal Forward Current & \({ }^{\prime}\) G2SSF & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=+6 \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{v}_{\mathrm{D}}
\end{aligned}
\] & \[
\begin{aligned}
& v \\
& =0
\end{aligned}
\] & - & 50 & nA \\
\hline Gate No. 2-Terminal Reverse Current & \({ }^{\text {G G2SSR }}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=-6 \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{D}}
\end{aligned}
\] & \[
s=0
\] & - & 50 & nA \\
\hline Zero-Bias Drain Current & \({ }^{\text {D }}\) S & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4
\end{aligned}
\] & \[
v_{\mathrm{V}, \mathrm{v}_{\mathrm{G1S}}=0}
\] & 0.5 & 12 & mA \\
\hline \begin{tabular}{l}
Gate-to-Source \\
Forward Breakdown Voltage
\[
\begin{aligned}
& \text { Gate No. } 1 \\
& \hline \text { Gate No. } 2
\end{aligned}
\]
\end{tabular} & \[
\begin{array}{|l}
\hline V_{(B R) G 1 S S F} \\
\hline V_{(B R) G 2 S S F} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{G} 1 \mathrm{SSF}}= \\
& \mathrm{I}_{\mathrm{G} 2 \mathrm{SSF}}= \\
& 100 \mu \mathrm{~A} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l}
\mathrm{v}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{v}_{\mathrm{DS}}=0 \\
\hline \mathrm{v}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{v}_{\mathrm{DS}}=0 \\
\hline
\end{array}
\] & 6.5 & 13 & v \\
\hline \begin{tabular}{l}
Gate-to-Source \\
Reverse Breakdown Voltage
\[
\begin{aligned}
& \text { Gate No. } 1 \\
& \hline \text { Gate No. } 2
\end{aligned}
\]
\end{tabular} & \[
\frac{v_{(B R) G 1 S S R}}{v_{(B R) G 2 S S R}}
\] &  & \(\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0\)
\(\mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0\) & -6.5 & -13 & v \\
\hline
\end{tabular}

Table III-
Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{l}
ELECTRICAL \\
CHARACTERISTICS
\end{tabular}} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow{3}{*}{TEST CONDITIONS}} & \multicolumn{6}{|c|}{LIMITS} & \multirow[b]{3}{*}{\begin{tabular}{|c} 
UNITS \\
\hline\({ }^{\circ} \mathbf{C}\)
\end{tabular}} \\
\hline & & & & \multicolumn{3}{|c|}{MINIMUM} & \multicolumn{3}{|c|}{MAXIMUM} & \\
\hline & & & & -55 & +25 & +125 & -55 & +25 & +125 & \\
\hline \multirow[t]{2}{*}{Gate No. 1-to-Source Cutoff Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{G} 1 \mathrm{~S} \text { (off) }}\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\]} & -0.1 & -0.1 & - & -3 & -3 & - & V \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\] & \[
\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A} \text {, }
\] & - & - & -0.1 & - & - & -3 & \\
\hline \multirow[t]{2}{*}{Gate No. 2-to-Source Cutoff Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {G2S(off) }}\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}, \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\]} & -0.1 & -0.1 & - & -3 & -3 & - & V \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\]} & - & - & -0.1 & - & & -3 & \\
\hline Gate No. 1-Terminal Forward Current & 'G1SSF & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=+6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0
\end{aligned}
\]} & - & - & - & - & 50 & - & nA \\
\hline Gate No. 1-Terminal Reverse Current & \({ }^{\prime} \mathrm{G} 1 \mathrm{SSR}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}=-6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0
\end{aligned}
\]} & - & - & - & - & 50 & - & nA \\
\hline Gate No. 2-Terminal Forward Current & 'G2SSF & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=+6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0
\end{aligned}
\]} & - & - & - & - & 50 & - & nA \\
\hline Gate No. 2-Terminal Reverse Current & 'G2SSR & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=-6 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{v}_{\mathrm{DS}}=0
\end{aligned}
\]} & - & - & - & - & 50 & - & nA \\
\hline Zero-Bias Drain Current & \({ }^{\text {D }}\) D & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DS}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0 \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\]} & 0.5 & 0.5 & 0.3 & 12 & 12 & 8.5 & mA \\
\hline Forward Transconductance Gate No. 1-to-Drain) & \(\mathrm{g}_{\mathrm{fs}}\) & \multirow{6}{*}{\[
\begin{aligned}
& V_{D S}=+15 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=+4 \mathrm{~V}
\end{aligned}
\]} & \(f=1 \mathrm{MHz}\) & - & 10,000 & - & - & 20,000 & - & \(\mu \mathrm{mho}\) \\
\hline Small-Signal, Short-Circuit Input Capacitance \({ }^{\dagger}\) & \(\mathrm{C}_{\text {iss }}\) & & & - & 4.0 & - & - & 8.5 & - & pF \\
\hline Small-Signal, Short-Circuit Reverse Transfer Capacitance (Drain-to-Gate-No. 1) & \(\mathrm{C}_{\text {rss }}\) & & \(\mathrm{f}=1 \mathrm{MHz}\) & - & 0.005 & - & - & 0.03 & - & pF \\
\hline Power Gain & \(\mathrm{G}_{\text {PS }}\) & & \multirow{3}{*}{\(\mathrm{f}=400 \mathrm{MHz}\)} & - & 10 & - & - & - & - & dB \\
\hline Noise Figure & NF & & & - & - & - & - & 6.0 & - & dB \\
\hline Bandwidth & BW & & & - & 28 & - & - & 38 & - & MHz \\
\hline \begin{tabular}{l}
Gate-to-Source \\
Forward Breakdown Voltage \\
Gate No. 1 \\
Gate No. 2
\end{tabular} & \[
\begin{array}{|l|}
\hline V_{\text {(BR)G1SSF }} \\
\hline V_{\text {(BR)G2SSF }} \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{G} 1 \mathrm{SSF}}= \\
& \mathrm{I}_{\mathrm{G} 2 \mathrm{SSF}}=\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0 \\
& 100 \mu \mathrm{~A}
\end{aligned}
\]} & 6.5 & 6.5 & 4.5 & 13 & 13 & 14.5 & V \\
\hline Gate-to-Source Reverse Breakdown Voltage Gate No. 1 Gate No. 2 & \[
\begin{array}{|l|}
\hline V_{\text {(BR)G1SSR }} \\
\hline V_{\text {(BR)G2SSR }} \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{G} 1 \mathrm{SSR}}= \\
& \mathrm{I}_{\mathrm{G} 2 \mathrm{SSR}}=\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0 \\
& 100 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=\mathrm{V}_{\mathrm{DS}}=0 \\
& \hline
\end{aligned}
\]} & -6.5 & -6.5 & -4.5 & -13 & -13 & -14.5 & V \\
\hline
\end{tabular}

TYPICAL CHARACTERISTICS
For Y Parameters, see 3N200 Data Bulletin File No. 437


Fig. 2-ID vs. VG1S.


Fig. \(4^{-I_{D}}\) vs. \(V_{D S}\).


Fig. \(3^{3-I_{D}}\) vs. \(V_{G 2 S}\).


Fig. \(5-V_{A G C}\) vs. \(V_{G 1 S}\).

High-Reliability Processing Flow Chart



Fig. \(6-g_{f s 2}\) vs. \(V_{G 2 s}\).


Fig. 7-gfs v. VGis.

\(9255-4596\)


Fig. 9-Burn-In and operating life-test circuit.
DIMENSIONAL OUTLINE
JEDEC TO-72


Dimensions in Inches and Millimeters
Lead Finish:
In accordance with MIL-M-38510, Paragraph 3.6.2.5, Lead Finish " \(A\) ".
Note 1: Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated.
Note 2: The specified lead diameter applies in the zone between \(0.050^{\prime \prime}(1.27 \mathrm{~mm})\) and \(0.250^{\prime \prime}(6.35 \mathrm{~mm})\) from the seating plane. From \(0.250^{\prime \prime}(6.35 \mathrm{~mm})\) to the end of the lead a maximum diameter of \(0.021^{\prime \prime}(0.533 \mathrm{~mm})\) is held. Outside of these zones, the lead diameter is not controlled.
Note 3: Leads having a maximum diameter of \(0.019^{\prime \prime}(0.482 \mathrm{~mm})\) at a guaging plane of \(0.054^{\prime \prime}(1.372 \mathrm{~mm})+0.001^{\prime \prime}(0.025 \mathrm{~mm})\) \(-0.000^{\prime \prime}(0.000 \mathrm{~mm})\) below seating plane shall be within \(0.007^{\prime \prime}\) \((0.177 \mathrm{~mm})\) at their true position (location) relative to a maximum width of tab.
Note 4: Measured from actual maximum diameter.

Fig. 8-Noise figure vs. generator source admittance.

\section*{Linear Integrated Circuits} High-Reliability CA3000 Slash//ISeries Types

Screened to MIL-STD-883

RCA linear high-reliability slash (/) series integrated circuits are available for applications in aerospace, military, and industrial equipment. These circuits are supplied to six screening levels (/1N, /1R, /1, /2, /3, /4) which meet the electrical, mechanical, and environmental test methods and procedures established for micro-electronic devices in MIL-STD-883. These six screening levels are equivalent to MIL-STD-883 Classes A, B, C and are summarized in Table 1.

RCA also offers standard commercial product with a 168 -hour burn-in, designated level /5.

This bulletin defines the test procedures employed with linear IC devices to meet the reliability standards required by

MIL-STD-883. The level /1N part includes SEM (Scanning Electron Microscope) Inspection to NASA-Goddard Specification GSFC-S-311-P-12 of MIL-M-38510, and Precap Visual Inspection, Condition A, Method 2010-1, MIL-STD-883. The level/R part includes the SEM inspection in addition to the requirements of level /1 part.

The Product Flow Diagram shown in Fig. 1 lists a summary of processing, screening tests, and sampling procedures followed in the manufacture of high-reliability linear integrated circuits.

Table 2 gives detailed information for the screening tests included in the Product Flow Diagram. Tables 3 and 4 give test criteria for Final Electrical and Group A Electrical Tests. Tables 5 and 6 describe Group B and C Environmental Sampling Inspection Tests.


Fig. 1 - Product flow diagram. See Tables 2, 3, 4, 5, and 6 for details.

Table 1 - Description of RCA Integrated-Circuit Screening Levels
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Screening Levels \({ }^{\text {A }}\)} & \multirow[b]{2}{*}{Application} & \multirow[b]{2}{*}{Description} \\
\hline RCA Levels & Equivalent to MIL-STD-883, Method 5004.1 & & \\
\hline \multicolumn{4}{|l|}{For Packaged Devices} \\
\hline /1N & Class A with SEM* Inspection and Condition A Precap Visual Inspection & \multirow{3}{*}{Aerospace and Missiles} & \multirow[t]{3}{*}{For devices intended for use where maintenance and replacement are impossible and reliability is imperative} \\
\hline /1R & Class A with SEM* Inspection and Condition B Precap Visual Inspection & & \\
\hline /1 & Class A with Condition B Precap Visual Inspection & & \\
\hline /2 & Class A with Condition B Precap Visual Inspection. Radiographic Inspection Omitted & Aerospace and Missiles & For devices intended for use where maintenance and replacement are extremely difficult or impossible and reliability is imperative \\
\hline 13 & Class B & Military and Industrial For example, in Airborne Electronics & For devices intended for use where maintenance and replacement can be performed but are difficult and expensive \\
\hline 14 & Class C & Military and Industrial For example, in GroundBased Electronics & For devices intended for use where replacement can readily be accomplished \\
\hline \begin{tabular}{l}
/5 \\
Standard commercial plus burn-in
\end{tabular} & - & Commercial and Industrial & For devices intended for use where a higher level of reliability is required than can be provided by product without a burn-in \\
\hline \multicolumn{4}{|l|}{For Chips \({ }^{\text {® }}\)} \\
\hline /N & SEM* Inspection and Condition A Precap Visual Inspection & \multirow{2}{*}{Aerospace and Missiles} & \multirow[t]{2}{*}{For hybrid applications where maintenance and replacement are extremely difficult and reliability is imperative} \\
\hline /R & \begin{tabular}{l}
SEM* Inspection and Condition B \\
Precap Visual Inspection
\end{tabular} & & \\
\hline /M & Condition B Precap Visual Inspection & Military and Industrial & For general applications \\
\hline
\end{tabular}
*SEM - Scanning Electron Microscope Inspection per NASA Specification GSFC-S-311-P-12
AFor details on Condition A and Condition B Precap Visual Inspection, refer to MIL-STD-883 Method 2010.1
- Lot acceptance testing for chips is available on a custom basis

\section*{Ordering Information}
1. Packaged Device and Chip Type Number Identification

When ordering a packaged device or a chip, it is important that the desired Screening Level and Package Designation for the Packaged Device, and the desired Screening Level for the Chip Version indicated by the appropriate suffix letters be added to the Part Number as shown below. For example, a CA3094A in an 8-lead TO-5 package and
processed to meet MIL-STD-883 Class A requirements with SEM Inspection plus Condition A Precap Visual would be identified as the CA3094AT/1N. In similar manner, a CA3094 Chip having SEM inspection plus Condition A Precap Visual would be identified as the CA3094H/N.

\section*{2. Data Supplied With Order for Packaged Devices}
a) Product Screening Data

For the Following
Certificate of Compliance Signed by RCA Representative -
Provides lot identity, customer order identity, lists and certifies tests, methods and
conditions of required processing per MIL-STD-883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . All except /5
Group A Subgroup - Test Summary Attributes Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . All except /5
Variables Data, Pre Burn-In and Post Burn-In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ./1N, /1R, /1, /2
Radiographic Inspection Film and Film Inspection Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ./1N, /1R, /1
SEM Inspection Certificate of Compliance to NASA Specification GSFC-S-311-P-12
Includes lot identification and one worst-case photograph
. ./1N, /1R
b) Lot Quality Conformance Data -

Group B and Group C Subgroups
Attributes Data Summary of the Latest Group B and/or Group C Subgroup can be ordered at a nominal charge.
Special Group B and/or Group C quality conformance tests on samples from the specific lot of parts ordered will be considered on a custom basis only.

\section*{Description of RCA Linear IC High-Reliability Part Numbers}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Packaged Device CA3094AT/1N} & \multicolumn{2}{|l|}{Chip Version, CA3094H/N} & \multirow[b]{2}{*}{/ N} \\
\hline \(\underbrace{\text { CA3094A }}\) & \(\underbrace{T}\) & /1N & \(\underbrace{\text { CA3094 }}\) & \(\underbrace{\mathbf{H}}\) & \\
\hline & Package Suffix Letter & Screening Level & & Package Suffix Letter & Screening Level \\
\hline \begin{tabular}{l}
Type \\
Designation
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{T}=\mathrm{TO}-5
\] \\
Style Package D = Dual-in-Line Weld-Seal Ceramic \(F=\) Dual-in-Line Frit-Seal Ceramic
\end{tabular} & \begin{tabular}{l}
/1N \(/ 2\) \\
/1R \(/ 3\) \\
\(11 \quad / 4 \quad / 5\) \\
For Description, See Table 1
\end{tabular} & Type Designation & \begin{tabular}{l}
\[
\mathrm{H}=\text { Chip }
\] \\
Version
\end{tabular} & /N /R /M For Description, See Table 1 \\
\hline
\end{tabular}

Table 2 - Description of Total Lot Screening ( \(X=100 \%\) Testing)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Test} & \multirow[t]{2}{*}{Conditions} & \multicolumn{2}{|l|}{MIL-STD-883} & \multicolumn{6}{|c|}{RCA Screening Levels*} \\
\hline & & Method & Conditions & /1N & /1R & 11 & 12 & /3 & 14 \\
\hline SEM Inspection & NASA Per GSFC-S-311-P-12 & - & - & \(x\) & X & - & - & - & - \\
\hline Precap Visual & - & 2010.1 & A & \(x\) & - & - & - & - & - \\
\hline Precap Visual & - & 2010.1 & B & - & \(x\) & X & X & \(x\) & x \\
\hline Preseal Bake & 16 to 32 hrs at \(200^{\circ} \mathrm{C}\) & - & - - & \(x\) & \(x\) & \(x\) & x & \(x\) & X \\
\hline Seal \& Lot Identification & - & - & - & \(x\) & \(x\) & x & \(x\) & \(x\) & x \\
\hline Stabilization Bake & 48 hrs . at \(150^{\circ} \mathrm{C}\) & 1008 & C & \(x\) & X & X & X & X & X \\
\hline Thermal Shock & 15 cycles & 1011 & C & \(x\) & \(x\) & \(x\) & x & - & - \\
\hline Temperature Cycling & 10 cycles & 1010 & C & \(x\) & \(x\) & \(x\) & x & X & X \\
\hline Mechanical Shock & 5 pulses, \(Y_{1}\) direction & 2002 & B & \(x\) & x & X & X & - & - \\
\hline Centrifuge & \(\mathrm{Y}_{2}, \mathrm{Y}_{1}\) direction & 2001 & E & X & X & \(x\) & x & - & - \\
\hline & \(\mathrm{Y}_{1}\) direction only & 2001 & E & - & - & - & - & \(x\) & x \\
\hline Fine Leak & - & 1014 & A & \(x\) & X & x & x & \(x\) & \(x\) \\
\hline Gross Leak & - & 1014 & C & \(x\) & \(x\) & x & x & \(x\) & X \\
\hline Electrical Tests & See Note 1 & - & - & X & X & X & X & x & - \\
\hline Serialize & - & - & - & \(x\) & X & X & X & - & - \\
\hline Pre Burn-in Electrical & See Note 2 & - & - & \(x\) & x & \(x\) & \(x\) & - & - \\
\hline Burn-in & 240 hours & 1015 & B, D or E & X & \(x\) & X & X & - & - \\
\hline & 168 hours & 1015 & \(B, D\) or \(E\) & - & - & - & - & X & - \\
\hline Post Burn-in Electrical & Delta Requirements (See Note 2) & - & - & \(x\) & x & x & X & - & - \\
\hline Final Electrical & - & - & - & - & - & - & - & - & - \\
\hline a) \(25^{\circ} \mathrm{C}\) & see Table 4 & - & - & \(x\) & \(x\) & x & \(x\) & \(x\) & X \\
\hline b) -55 and \(+125^{\circ} \mathrm{C}\) & see Table 4 & - & - & \(x\) & x & x & X & X & S \\
\hline Radiographic Inspection & 1 view & 2012 & - & \(x\) & \(x\) & \(x\) & - & - & - \\
\hline External Visual & - & 2009 & - & X & X & X & X & X & x \\
\hline
\end{tabular}

Note 1: See specific type Slash (/) Series type data bulletin for test conditions and limits
Note 2: For requirements, see specific Slash (/) Series type data bulletin

\footnotetext{
* RCA screening level \(/ 5\) consists of a 168 -hour burn-in screen performed on standard commercial product. The ambient test temperature is the maximum possible without exceeding device thermal ratings. After burn-in, \(/ 5\) devices meet all of the electrical requirements specified in the appropriate commercial data bulletin, Reference: RCA DATABOOK SSD-201.
}

Table 3 - Final Electrical Tests
\begin{tabular}{|c|l|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{c} 
TEMPERATURE \\
\((T A)\)
\end{tabular}} & \multicolumn{3}{|c|}{ TEST } & \multicolumn{3}{|c|}{ TEST CRITERIA } \\
\cline { 3 - 5 } & & \begin{tabular}{c} 
LEVELS \\
LIN, \(/ 1 \mathrm{R}, / 1, / 2\)
\end{tabular} & \begin{tabular}{c} 
LEVEL \\
\hline
\end{tabular} & 13
\end{tabular}

Table 4 - Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ SUBGROUP } & \multicolumn{2}{|c|}{ TEST } & \multirow{3}{|c|}{ LTPD } \\
\cline { 4 - 6 } & & \multirow{2}{*}{ CONDITION } & \begin{tabular}{c} 
LEVELS \\
\(/ 1 N, / 1 R, / 1, / 2\)
\end{tabular} & \begin{tabular}{c} 
LEVEL \\
\(/ 3\)
\end{tabular} & \begin{tabular}{c} 
LEVEL \\
\(/ 4\)
\end{tabular} \\
\hline 1 & & & 5 & 5 & 5 \\
2 & Selected Static Parameters & \(T_{A}=+25^{\circ} \mathrm{C}\) & 7 & 7 & 10 \\
3 & Selected Static Parameters & \(T_{A}=+125^{\circ} \mathrm{C}\) & 5 & 7 & 10 \\
4 & Selected Static Parameters & \(T_{A}=-55^{\circ} \mathrm{C}\) & 5 & 5 & 5 \\
\hline
\end{tabular}

Table 5 - Group B Environmental Sampling Inspection (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SUBGROUP} & \multirow[b]{2}{*}{TEST} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{3}{|c|}{LTPD} \\
\hline & & REFERENCE & CONDITIONS & LEVELS /1N, /1R, /1, \(/ 2\) & \[
\begin{aligned}
& \text { LEVEL } \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& \text { LEVEL } \\
& / 4
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{1
2} & Physical Dimensions & 2003 & \multirow[t]{2}{*}{Test Cond. A per applicable data sheet Test Cond. B per Par. 3.2.1} & 10 & 15 & 20 \\
\hline & Marking Permanency & 2008 & & & \begin{tabular}{l}
devices \\
o failures)
\end{tabular} & \\
\hline & Visual and Mechanical & 2008 & \multirow[t]{2}{*}{\begin{tabular}{l}
Test Cond. B \(10 \times \mathrm{mag}\). \\
Test Cond. D 10 Devices minimum
\end{tabular}} & - & \begin{tabular}{l}
1 device \\
o failure)
\end{tabular} & \\
\hline & Bond Strength & 2011 & & 5 & 15 & 20 \\
\hline 3 & Solderability & 2003 & & 10 & \multirow[t]{2}{*}{15
15} & 15 \\
\hline 4 & Lead Fatigue & 2004 & Test Cond. B2 any 5 leads & \multirow[t]{3}{*}{10} & & \multirow[t]{3}{*}{15} \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak & 1014 & Test Cond. C & & & \\
\hline
\end{tabular}

Note 1: Group B tests are performed on each inspection lot per requirements of MIL-M-38510
Note 2: Operating life circuits are included in specific type high-reliability data bulletins

Table 6 - Group C Environmental Sampling Inspection (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SUBGROUP} & \multirow[b]{2}{*}{TEST} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{3}{|c|}{LTPD} \\
\hline & & REFERENCE & CONDITIONS & \begin{tabular}{l}
LEVELS \\
/1N, /1R, \\
/1, /2
\end{tabular} & \[
\begin{aligned}
& \text { LEVEL } \\
& / 3
\end{aligned}
\] & \[
\begin{aligned}
& \text { LEVEL } \\
& \hline / 4
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{1} & Thermal Shock & 1011 & Test Cond. C & 10 & 15 & 15 \\
\hline & Temperature Cycling & 1010 & Test Cond. C & & & \\
\hline & Moisture Resistance & 1004 & No Voltage Applied & & & \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak Critical Post Tests - Note 3 & 1014 & Test Cond. C & & & \\
\hline \multirow[t]{5}{*}{2} & Mechanical Shock & 2002 & Test Cond. B, 0.5 ms & 10 & 15 & 15 \\
\hline & Vibration, Var. Freq. & 2007 & Test Cond. A & & & \\
\hline & Constant Acceleration & 2001 & Test Cond. E & & & \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak Critical Post Tests - Note 3 & 1014 & Test Cond. C & & & \\
\hline \multirow[t]{2}{*}{3} & Salt Atmosphere & 1009 & Test Cond. A & 10 & 15 & 15 \\
\hline & & & Omit Initial Conditioning & & & \\
\hline 4 & High Temp. Storage Critical Post Tests - Note 3 & 1008 & Test Cond. C 1000 hours & 7 & 7 & 7 \\
\hline \multirow[b]{2}{*}{5} & Critical Post Tests - Note 3 & & 1000 hours & & & \\
\hline & Operating Life Critical Post Tests - Note 3 & 1005 & \begin{tabular}{l}
\(\mathrm{T}_{\mathrm{A}} \cdot 125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}\). \\
Test Circuit (Note 2)
\end{tabular} & 5 & 5 & 5 \\
\hline 6 & Steady State Bias Critical Post Tests - Note 3 & 1015 & Test Cond. A, 72 hrs. At \(\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\) (Note 3) & 7 & - & - \\
\hline
\end{tabular}

Note 1: Group C tests are performed at 3-month intervals for reliability history.
Note 2: Operating life circuits are included in specific type high-reliability data bulletins.
Note 3: Static parameters and limits are shown in High-Reliability Devices DATABOOK SSD-207, and in specific type high-reliability data bulletins.

\section*{Linear Integrated Circuits}

\section*{MIL－M－38510 CA3000－Series Types}

RCA high－reliability linear integrated circuits are available for applications in aerospace，military，and industrial equipment where screening requirements of MIL－M－38510 are specified． Linear circuits are supplied to two screening classes of MIL－M－38510 as specified in MIL－STD－883 Method 5004 Classes B and C．Table 1 describes the screening levels．

This bulletin defines the procedures employed to manufac－ ture linear devices to meet the reliability requirements of MIL－M－38510．These linear devices are available in TO－5 packages．

MIL－M－38510 is the general specification for integrated circuits and is more comprehensive than MIL－STD－883．This general specification was introduced a year after MIL－STD－ 883．It adds a number of quality constraints not included in MIL－STD－883，which is a specification of test methods， procedures，and screening tests．Linear parts are provided to MIL－M－38510 under a series of／100 numbers，of which six are in existence．Parts meet requirements similar to those of Classes B and C of MIL－STD－883 Method 5004 screening， except that additional requirements，including more test conditions and tightened limits，are imposed．The Product Flow Diagram shown in Fig． 1 summarizes the processing， screening tests，and sampling procedures followed in the manufacture of high－reliability linear integrated circuits．The
additional criteria for each class of product are indicated by an X in Table 2．Also provided in the MIL－M－38510 test is a PDA（Per－Cent Defective Allowed）of 10 per cent for the one burn－in of Class B product．Tables 3 and 4 give test criteria for Final Electrical and Group A Electrical Tests．Tables 5 and 6 describe Group B and C Environmental Sampling Inspection tests．Table 7 describes the product assurance program that RCA implements in the performance of MIL－M－38510．Table 8 provides a classification guide for linear integrated circuits．
The basic processing operations for high－reliability linear integrated circuits are shown in Fig．2；details of the high－ reliability processing are shown in Fig．3．The wafer processing and metallization steps，the wafer finishing operations，and the wafer testing are the same as for standard－product linear integrated circuits．After these three basic operations are completed，the tested wafer is subjected to the special high－ reliability processing．As shown in Fig．3，twenty－eight addi－ tional processing and screening operations are required for Class B linear parts．

\section*{Ordering Information}

Order linear MIL－M－38510 Series types by giving the appropriate reliability screen as shown in Fig．4．For example，the CA741 processed to Class B requirements should be marked MIL－M－38510／10101BGA．

Table 1 －Description of MIL－M－38510 Screening Levels for RCA Integrated Circuits．
\begin{tabular}{|c|c|l|}
\hline MIL－M－38510 & Application & \multicolumn{1}{c|}{ Description } \\
\hline Class B & \begin{tabular}{c} 
Military \＆Industrial \\
For example，in Airborne \\
Electronics
\end{tabular} & \begin{tabular}{l} 
For devices intended for use where maintenance and replace－ \\
ment are difficult and expensive．
\end{tabular} \\
\hline Class C & \begin{tabular}{c} 
Military \＆Industrial \\
For example，in Ground－ \\
Based Electronics
\end{tabular} & \begin{tabular}{l} 
For devices intended for use where replacement can readily be \\
accomplished．
\end{tabular} \\
\hline
\end{tabular}


Fig． 1 －Product flow diagram for RCA high－reliability linear integrated circuits processed in accordance with MIL－M－38510．

Table 2 - MIL-M-38510 Processing and Screening Requirements for RCA High-Reliability Linear Integrated Circuits
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MIL-M-38510 Processing} & \multirow[t]{2}{*}{MIL-STD-883
METHOD} & \multirow[t]{2}{*}{Condition} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { MIL-M-38510 } \\
& \text { CLASS }
\end{aligned}
\]} \\
\hline & & & B & C \\
\hline - Assembly Precap Visual & 2010.1 & B & X & X \\
\hline \begin{tabular}{l}
- Preconditioning Stabilization Bake \\
Temperature Cycle \\
Centrifuge Y 1 Fine Leak Gross Leak
\end{tabular} & \[
\begin{aligned}
& 1008 \\
& 1010 \\
& 2001 \\
& 1014 \\
& 1014
\end{aligned}
\] & \begin{tabular}{l}
C, 48 hours at \(150^{\circ} \mathrm{C}\) \\
C, 10 cycles, \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
E, 30000 G 's \\
A \\
C
\end{tabular} & x
x
x
x
x
x & X
x
x
x
x
x \\
\hline - Test and Burn-In Initial Test Operating Burn-In 168 Hrs. Final Electrical DC \(+25^{\circ} \mathrm{C}\) Final Electrical AC \(+25^{\circ} \mathrm{C}\) Final Electrical DC \(-55^{\circ} \mathrm{C}\) Final Electrical \(\mathrm{AC}-55^{\circ} \mathrm{C}\) Final Electrical DC \(+125^{\circ} \mathrm{C}\) Final Electrical \(\mathrm{AC}+125^{\circ} \mathrm{C}\) & \[
1015
\] & \begin{tabular}{l}
MIL-M-38510/100 Series B \\
MIL-M-38510/100 Series MIL-M-38510/100 Series MIL-M-38510/100 Series MIL-M-38510/100 Series MIL-M-38510/100 Series MIL-M-38510/100 Series
\end{tabular} & X
X
X
X
X
s
X
s & -
S
S
S
S
S
S \\
\hline
\end{tabular}

Table 3 - Final Electrical Tests
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{TEMPERATURE ( \(T_{A}\) )} & \multirow[b]{2}{*}{TESTS TO MIL-M-38510 SPECIFICATIONS} & \multicolumn{2}{|r|}{TEST CRITERIA} \\
\hline & & Class B & Class C \\
\hline \(+25^{\circ} \mathrm{C}\) & DC \& Functional Parameters & 100\% & 100\% \\
\hline \(+125^{\circ} \mathrm{C}\) & DC \& Functional Parameters & 100\% & - \\
\hline \(-55^{\circ} \mathrm{C}\) & DC \& Functional Parameters & 100\% & - \\
\hline \(+25^{\circ} \mathrm{C}\) & AC Parameters & 100\% & - \\
\hline
\end{tabular}

Table 4 - Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { SUBGROUP OF } \\
\text { MIL-STD-883 } \\
5005.1
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
TESTS TO \\
MIL-M-38510 SPECIFICATIONS
\end{tabular}} & \multirow{2}{*}{CONDITION} & \multicolumn{2}{|c|}{LTPD} \\
\hline & & & Class B & Class C \\
\hline 1,7 & DC \& Functional Parameters & \(\mathrm{T}^{\text {A }}=+25^{\circ} \mathrm{C}\) & 5 & 5 \\
\hline 2,8 & DC \& Functional Parameters & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & 7 & 10 \\
\hline 3, 8 & DC \& Functional Parameters & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 7 & 10 \\
\hline 4,9 & AC Parameters & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & 5 & 5 \\
\hline 10 & AC Parameters & \(\mathrm{T}^{\prime}=+125^{\circ} \mathrm{C}\) & 5 & - \\
\hline 11 & AC Parameters & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 7 & - \\
\hline
\end{tabular}

Details of static, functional, and dynamic tests, conditions, and limits appear in the specific MIL-M-38510/ specifications.

Table 5 - Group B Environmental Sampling Inspection to MIL-M-38510 (Note 1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SUBGROUP} & \multirow{2}{*}{TEST} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{2}{|c|}{LTPD} \\
\hline & & REFERENCE & CONDITIONS & Class B & Class C \\
\hline \multirow[t]{4}{*}{1
2} & Physical Dimensions & 2008 & Test Cond. A per applicable data sheet & 15 & 20 \\
\hline & Marking Permanency & 2008 & Test Cond. B per Par. 3.2.1 & \multicolumn{2}{|r|}{4 devices (no failures)
\(\qquad\)} \\
\hline & Visual and Mechanical & 2008 & Test Cond. B, \(10 \times\) mag. & \multicolumn{2}{|l|}{1 device \(\qquad\) (no failures)} \\
\hline & Bond Strength & 2011 & \multirow[t]{2}{*}{Test Cond. D, 10 devices minimum} & 15 & 20 \\
\hline 3 & Solderability & 2003 & & 15 & 15 \\
\hline 4 & Lead Fatigue & 2004 & Test Cond. B2, any 5 leads & \multirow[t]{3}{*}{15} & \multirow[t]{3}{*}{15} \\
\hline & Fine Leak & 1014 & Test Cond. A & & \\
\hline & Gross Leak & 1014 & Test Cond. C & & \\
\hline
\end{tabular}

Note 1: Group B tests are performed on each inspection lot.
Note 2: Operating life circuits are included in specific type bulletins.

Table 6 - Group C Environmental Sampling Inspection to MIL-M-38510 (Note 1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{SUBGROUP} & \multirow{2}{*}{TEST} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{2}{|c|}{LTPD} \\
\hline & & REFERENCE & CONDITIONS & Class B & Class C \\
\hline \multirow[t]{5}{*}{1} & Thermal Shock & 1011 & Test Cond. C & 15 & 15 \\
\hline & Temperature Cycling & 1010 & Test Cond. C & & \\
\hline & Moisture Resistance & 1004 & No Voltage Applied & & \\
\hline & Fine Leak & 1014 & Test Cond. A & & \\
\hline & Gross Leak Critical Post Tests-Note 3 & 1014 & Test Cond. C & & \\
\hline \multirow[t]{5}{*}{2} & Mechanical Shock & 2002 & Test Cond. B, 0.5 ms & 15 & 15 \\
\hline & Vibration, Var. Freq. & 2007 & Test Cond. A & & \\
\hline & Constant Acceleration & 2001 & Test Cond. E & & \\
\hline & Fine Leak & 1014 & Test Cond. A & & \\
\hline & Gross Leak Critical Post Test-Note 3 & 1014 & Test Cond. C & & \\
\hline \multirow[t]{2}{*}{3} & Salt Atmosphere & 1009 & Test Cond. A & 15 & 15 \\
\hline & & & Omit Initial Conditioning & & \\
\hline 4 & High Temp. Storage Critical Post Tests-Note 3 & 1008 & Test Cond. C 1000 hours & 7 & 7 \\
\hline 5 & Operating Life Critical Post Tests-Notes 2 and 3 & 1005 & \begin{tabular}{l}
\[
\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, 1000 \mathrm{hrs} .
\] \\
Test Circuit (Note 2)
\end{tabular} & 5 & 5 \\
\hline
\end{tabular}

Note 1: Group C tests performed at 3-month intervals.
Note 2: Operating life circuits are included in specific type bulletins.
Note 3: Static parameters and limits are shown in High-Reliability Devices DATABOOK SSD-207, and in specific type high-reliability integratedcircuit data bulletin.

Table 7 - MIL-M-38510 Product-Assurance Program Requirements

\section*{In-House Documentation Covering These Areas}
a. Conversion of customer requirements into manufacturer's internal instructions
b. Personnel training and testing
c. Inspection of incoming materials, utilities and work in process
d. Quality-control operations
e. Quality-assurance operations
f. Design, processing, tool and materials standards and instructions
g. Cleanliness and atmospheres in work areas
h. Design, material, and process change control
i. Tool and test equipment maintenance and calibration
j. Failure and defect analysis and data feedback
k. Corrective action and evaluation
I. Incoming, in process, and outgoing inventory control

\section*{In-House Records Covering These Areas A Program Plan Covering These Areas}
a. Personnel training and testing
b. Inspection operations
c. Failure reports and analyses
d. Changes in design, materials, or processing
e. Equipment calibrations
f. Process utility and material controls
g. Product lot identification
a. Functional block organization chart
b. Manufacturing flow chart
c. Proprietary-document listing
d. Examples of design, material, equipment, and processing instructions
e. Examples of records
f. Examples of design, material and process change control documents
g. Examples of failure and defect analysis and feedback documents
h. Examples of corrective action and evaluation documents

Table 8 - Product Classification Guide
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Linear Types (MIL-STD-883 Slash Sheets and MIL-M-38510 Series) } \\
\hline \multirow{3}{*}{ Standard Product Type No. } & Descriptive Title & MIL-M-38510/100 Series Type \\
\cline { 3 - 3 } & & Detailed Electrical Specification No. \\
\hline CA101A & Operational Amplifier & MIL-M-38510/10103 \\
\hline CA108A & Operational Amplifier & MIL-M-38510/10104 \\
\hline CA741 & Operational Amplifier & MIL-M-38510/10101 \\
\hline CA747 & Operational Amplifier & MIL-M-38510/10102 \\
\hline CA723 & Voltage Regulator & MIL-M-38510/10201 \\
\hline CA111 & Voltage Comparator & MIL-M-38510/10304 \\
\hline CA3018A & Transistor Arrays & In Process \\
\hline CA3045 & & \\
\hline
\end{tabular}


Fig. 2 - Basic processing operations for high-reliability linear integrated circuits as described in MIL-M-38510.


Fig. 3-Flow Chart for Linear High-Reliability TO-5 MIL-M-38510 Class B Integrated Circuits.


92CM-24953

Fig. 4 - Guide to the reliability, class, package, and lead finish of RCA high-reliability linear integrated circuits processed in accordance with MIL-M-38510.


CD4000A
RCA CD4000A, CD4001A, CD4002A, and CD4025A "Slash" (/) Series are high-reliability COS/MOS integrated circuit NOR Gates (Positive Logic). They are intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The combination of these devices and the RCA NAND Positive Logic Gate Series CD4011A, CD4012A, and CD4023A can contribute to appreciable package count savings in many of these logic function configurations. These devices are electrically and mechanically identical with standard COS/MOS types CD4000A, CD4001A, CD4002A, and CD4025A described in data Bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA highreliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510 as described in RIC-104, "MIL-M38510 COS/MOS CD4000A Series Types".

RCA Designation
CD4000A
CD4001A
CD4002A
CD4025A

MIL-M-38510 Designatior
MIL-M=38510/05201
MIL-M-38510/05202
MIL-M-38510/05203
MIL-M-38510/05204

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " A ", " B ", and " C ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

\section*{High-Reliability COS/MOS NOR Gates}

For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment
Dual 3 Input plus Inverter - - CD4000A/...
Quad 2 Input \(\quad-\quad-----\) CD4001A/...
Dual 4 Input \(\quad--------C D 4002 A / \ldots\)
Triple 3 Input \(--------C D 4025 A / \cdots\)

\section*{Special Features:}
- Medium speed operation \(\ldots\) t \(_{\text {PHL }}=\) t PLH \(^{\text {a }} \mathbf{2 5}\) ns (typ.) at \(C_{L}=15 \mathrm{pF}\)
- Low "high"- and "low" -level output impedance . . . \(500 \Omega\) and \(200 \Omega\) (typ.), respectively, at \(V_{D D}-V_{S S}=10 \mathrm{~V}\)
- Low power 10 nW typ. for gates
- Logic compatibility \(\mathrm{T}^{2} \mathrm{~L}\) and DTL interfacing (see ICAN-6602)
a High fanout
m Excellent temperature stability \(- \pm 1.5 \%\) shift in transfer characteristics over -55 to \(+125^{\circ} \mathrm{C}\)
- Inputs fully protected

The CD4000A, CD4001A, CD4002A, and CD4025A "Slash" (/) Series types are supplied in 14-lead dual-in-line ceramic packages ("D" suffix), in 14 -lead ceramic flat packages ("K" suffix), or in chip form (" H " suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline \(\left(\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}\right)\) & -0.5 to +15 \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline Recommended & \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\) ) & 3 to 15 V \\
\hline Recommended & \\
\hline Input-Voltage Swing & \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{S S}\) \\
\hline Lead Temperature (During Soldering) & \\
\hline At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\) \((1.59 \pm 0.79 \mathrm{~mm})\) from case & \\
\hline for 10 s max. & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

STATIC ELECTRICAL CHARACTERISTICS (All Inputs ... \(\mathrm{V}_{\mathbf{S S}} \leq \mathrm{V}_{\mathbf{I}} \leq \mathrm{V}_{\text {DD }}\) )
Recommended DC Supply Voltage 3 to 15 V


Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types', Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Nore 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.
\({ }^{4}\) Maximum noise-free saturated Bipolar output voltage. \(\quad{ }^{\dagger}\) Minimum noise-free saturated Bipolar output voltage.
For Noise Immunity Test Circuits, Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits, and for Operating Considerations see Appendix.


CD4001A


CD4002A


CD4025A


Fig. 1-Schematic diagram for type CD4000A.


Fig. 2-Schematic diagram for type CD4001A.


Fig. 3-Schematic diagram for type CD4002A.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\), and input rise and fall times \(=\mathbf{2 0} \mathrm{ns}\) Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{6}{*}{CHARACTERISTIC} & \multirow{6}{*}{SYMBOL} & \multirow[b]{5}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{6}{*}{UNITS} & \multirow[t]{6}{*}{\begin{tabular}{l} 
N \\
\hline \\
\hline \\
\hline
\end{tabular}} \\
\hline & & & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\[
\begin{aligned}
& \hline \text { CD4000AD,CD4000AK } \\
& \text { CD4001AD,CD4001AK } \\
& \text { CD4002AD,CD4002AK } \\
& \text { CD4025AD,CD4025AK } \\
& \hline
\end{aligned}
\]}} & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & \begin{tabular}{l}
\(V_{\text {DD }}\) \\
(Volts)
\end{tabular} & Min. & Typ. & Max. & & \\
\hline Propagation Delay Time: & \multirow[b]{2}{*}{\({ }^{\text {tPHL }}\)} & 5 & - & 35 & 50 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline High-to-Low Level & & 10 & - & 25 & \(40^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Low-to-High Level} & \multirow[b]{2}{*}{tPLH} & 5 & - & 35 & 95 & \multirow[b]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & 10 & - & 25 & \(45^{\circ}\) & & \\
\hline Transition Time: & \multirow[b]{2}{*}{\({ }^{\text {t }}\) HL} & 5 & - & 65 & 125 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline High-to-Low Level & & 10 & - & 35 & \(70^{\bullet}\) & & \\
\hline \multirow[t]{2}{*}{Low-to-High Level} & \multirow[b]{2}{*}{\({ }^{\text {t }}\) TLH} & 5 & - & 65 & 175 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 35 & \(75^{\circ}\) & & \\
\hline Input Capacitance & \(C_{1}\) & Any Input & - & 5 & - & pF & 1 \\
\hline
\end{tabular}

Limits with black dot (*) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing. Note 1: Test is a one input one output only.



Fig. 5- Min. and max. voltage transfer characteristics.


Fig. 6- Typ. voltage transfer characteristics as a function of temperature.


Fig. 7- Typ. current and voltage transfer characteristics.

92CS-22743R
Fig. 9 - Min. p-channel drain characteristics.


Fig. 11 -Typ. propagation delay time vs. \(C_{L}\).


Fig. 8 - Min. n-channel drain characteristics.


Fig. 10 - Typ. propagation delay time vs. \(V_{D D}\).


Fig. 12 - Typ. transition time vs. \(C_{L}\).


Fig. 13 - Typ. dissipation characteristics.

\section*{TEST CIRCUITS}


Fig. 14 - Quiescent device current Fig. 15 - Quiescent device current test circuit for CD4000A. test circuit for CD4001A.


Fig. 16 - Quiescent device current test circuit for CD4002A.


Fig. 17 - Quiescent device current test circuit for CD4025A.


Fig. 18 - Noise immunity test circuit for CD4000A.


Fig. 19 - Noise immunity test circuit for CD4001A.


Fig. 20 - Noise immunity test circuit for CD4002A.


Fig. 21 - Noise immunity test circuit for CD4025A.


Solid State Division

Digital Integrated Circuits
Monolithic Silicon
High-Reliability Slash(/) Series CD4006A/...


\title{
High-Reliability COS/MOS 18-Stage Static Shift Register
}

\author{
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment Special Features:
}
- Fully static operation
- Up to 5 MHz shifting rates
- Permanent register storage with clock line "high" or "low" no information recirculation required Applications:
- Serial shift registers
- Time delay circuits Frequency division

RCA CD4006A "Slash" (/) Series are high-reliability COS/MOS integrated circuits intended for a wide variety of uses in aerospace, military, and critical industrial equipment. CD4006A types are comprised of 4 separate "shift register" sections; two sections of four stages and two sections of five stages with an output tap at the fourth stage. Each section has an independent "single rail" data path.
A common clock signal is used for all stages. Data is shifted to the next stage on negative-going transitions of the clock. Through appropriate connections of inputs and outputs, multiple register sections of \(4,5,8\), and 9 stages or single register sections of \(10,12,13,14,16,17\), and 18 can be implemented using one CD4006A package. Longer shift register sections can be assembled by using more than one CD4006A.

These devices are electrically and mechanically identical with standard COS/MOS CD4006A types described in data bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.


TRUTH TABLE FOR SHIFT REGISTER STAGE
\begin{tabular}{c|c|c}
\(D\) & \(C L^{\Delta}\) & \(D+1\) \\
\hline 0 & \(\square\) & 0 \\
\hline 1 & \(\square\) & 1 \\
\hline\(X\) & \(\square\) & \(N C\)
\end{tabular}

Fig. 1-Logic diagram and truth table (one register stage) for type CD4006A.

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Operating-Temperature Range . . . . . . . . . . -55 to \(+125{ }^{\circ} \mathrm{C}\)} \\
\hline DC Supply-Voltage Range: & \\
\hline \(\left(V_{\text {DD }}-V_{\text {SS }}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Packag & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline
\end{tabular}

Recommended
DC Supply-Voltage \(\left(V_{D D}-V_{S S}\right) \ldots . \quad 3\) to \(15 \quad V\)
Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . . \(V_{D D}\) to \(V_{S S}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
( \(1.59 \pm 0.79 \mathrm{~mm}\) ) from case
for 10 s max.
\(+265{ }^{\circ} \mathrm{C}\)

STATIC ELECTRICAL CHARACTERISTICS (All Inputs... \(\mathbf{V}_{\text {SS }} \leq \mathrm{V}_{\mathbf{I}} \leq \mathrm{V}_{\mathrm{DD}}\) )
Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathbf{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathbf{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & & \multicolumn{7}{|c|}{CD4006AD, CD 4006AK} & & \\
\hline & & \multirow[t]{2}{*}{\(v_{0}\) Volts} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(V_{D D}\) \\
Volts
\end{tabular}} & \multicolumn{2}{|r|}{\(-55^{\circ}{ }^{-}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{1} \mathrm{~L}\)} & & 5 & - & 0.5 & - & 0.01 & 0.5 & - & 30 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & \(1^{\circ}\) & - & 0.01 & \(1^{\bullet}\) & - & 20* & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow{2}{*}{\({ }^{P}{ }_{D}\)} & & 5 & - & 2.5 & - & 0.05 & 2.5 & - & 150 & \multirow{2}{*}{\(\mu \mathrm{W}\)} & \multirow{2}{*}{-} \\
\hline & & & 10 & - & 10 & - & 0.1 & 10 & - & 200 & & \\
\hline \multirow[t]{4}{*}{Output Voltage Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & \(0.55{ }^{\bullet}\) & - & - & \(0.5{ }^{\bullet}\) & - & - & \multirow{4}{*}{v} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 15 & - & - & - & - & \(0.5{ }^{\circ}\) & - & \(0.55{ }^{\circ}\) & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25 *\) & - & \(2.3{ }^{\circ}\) & - & - & - & - & \multirow{4}{*}{\(v\)} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & 10 & 999 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & 15 & - & - & 14.5 * & - & - & \(14.45{ }^{\circ}\) & - & & \\
\hline Threshold Voltage: N -Channel & \(V_{T H}{ }^{\text {N }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{D}}=20 \mu \mathrm{~A}\)} & \(-0.7{ }^{\circ}\) & \(-3^{\bullet}\) & \(-0.7{ }^{\circ}\) & -1.5 & \(-3^{\bullet}\) & -0.3 \({ }^{\circ}\) & \(-3^{*}\) & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{2} \\
\hline P.Channel & \(V_{T H^{P}}\) & \multicolumn{2}{|l|}{\({ }^{\prime}{ }^{\prime}=20 \mu \mathrm{~A}\)} & \(0.7{ }^{\circ}\) & \(3{ }^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3^{\circ}\) & \(0.3{ }^{\circ}\) & \(3{ }^{\circ}\) & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Noise Immunity (Any Input) \\
For Definition, See Appendix SSD-207
\end{tabular}} & \multirow[b]{2}{*}{\(V_{N L}\)} & 0.5 & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & 0.5 & 10 & \(3^{\bullet}\) & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.5 & 5 & 1.4 & \(\cdots\) & \(1.5^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{V} & \\
\hline & & 9.5 & 10 & \(2.9{ }^{\text {® }}\) & \(\cdots\) & \(3^{\circ}\) & 4.5 & - & \(3^{\circ}\) & -- & & \\
\hline \multirow[t]{2}{*}{Output Drive Current: N-Channel} & \multirow[t]{2}{*}{\({ }_{1}{ }^{N}\)} & 0.5 & 5 & 0.155 & - & \(0.125^{\bullet}\) & 0.25 & - & 0.085 & - & \multirow[t]{2}{*}{mA} & \multirow[t]{2}{*}{2} \\
\hline & & 0.5 & 10 & 0.31 & . & \(0.25{ }^{\circ}\) & 0.5 & - & 0.175 & -- & & \\
\hline \multirow[t]{2}{*}{P.Channel} & \multirow[t]{2}{*}{\({ }^{1} D^{P}\)} & 4.5 & 5 & -0.125 & - & \(-0.1^{\bullet}\) & 0.15 & - & -0.07 & - & \multirow[t]{2}{*}{mA} & \multirow[t]{2}{*}{2} \\
\hline & & 9.5 & 10 & -0.25 & - & \(-0.2{ }^{\circ}\) & -0.3 & -- & -0.14 & - & & \\
\hline Diode Test, \(100 \mu \mathrm{~A}\) Test Pin & \(\mathrm{V}_{\text {DF }}\) & & & - & \(1.5{ }^{\circ}\) & -. & - & \(1.5{ }^{\bullet}\) & -- & \(1.5 *\) & V & 3 \\
\hline Input Current & 1 & & & . & - & - & 10 & - & -- & - & pA & - \\
\hline
\end{tabular}

Limits with black dot ( 0 ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.
For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circlits,
and for Operating Considerations, see Appendix.


Fig. 2- Schematic diagram (one register stage) for type CD4006A.


Fig. 3- Minimum n-channel drain characteristics.


92Cs-22746
Fig. 4-Minimum p-channel drain characteristics.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\), and input rise and fall times \(=20 \mathrm{~ns}\) except \(\mathrm{t}_{\mathrm{r}} \mathrm{CL}, \mathrm{t}_{\mathrm{f}} \mathrm{CL}\) Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}\) (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow[b]{2}{*}{TEST CONDITIONS} & & LIMIT & & \multirow{3}{*}{UNITS} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathrm{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & \multicolumn{3}{|l|}{CD4006AD,CD4006AK} & & \\
\hline & & \(V_{D D}\) (Volts) & Min. & Typ. & Max. & & \\
\hline \multirow[b]{2}{*}{Propagation Delay Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\text {tpHL}}\). \\
\({ }^{\text {tPLH}}\)
\end{tabular}} & 5 & - & 250 & 400 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 125 & \(200^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Transition Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\text {t }}\) THL, \\
\({ }^{t}\) TLH
\end{tabular}} & 5 & - & 250 & 400 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & & 10 & - & 125 & \(200{ }^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) WL. \\
\({ }^{t}\) WH
\end{tabular}} & 5 & - & 200 & 500 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & 10 & - & 100 & 200 & & \\
\hline Clock & \(\mathrm{t}_{\mathrm{rcL}}\). & 5 & - & - & 15 & \multirow[t]{2}{*}{\(\mu \mathrm{s}\)} & \multirow[t]{2}{*}{1} \\
\hline Rise \& Fall Time & \(\mathrm{t}_{\mathrm{f} C L}{ }^{*}\) & 10 & - & - & \(5^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Set-Up Time} & & 5 & - & 50 & 80 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & 10 & - & 25 & 40 & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[t]{2}{*}{\({ }^{\mathrm{f}} \mathrm{CL}\)} & 5 & 1 & 2.5 & - & \multirow[t]{2}{*}{MHz} & \multirow[t]{2}{*}{1} \\
\hline & & 10 & \(2.5^{\circ}\) & 5 & - & & \\
\hline Input Capacitance & \(C_{1}\) & Data Input Clock Input & - & \[
\begin{aligned}
& 5 \\
& 30
\end{aligned}
\] & - & pF & - \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Test is a one input one output only.
* If more than one unit is cascaded \(\mathrm{t}_{\mathrm{f}} \mathrm{CL}\) should be made less than or equal to the sum of the fixed propagation delay at 15 pF and the transition time of the output driving stage for the estimated capacitive load.


Fig. 5- Typical propagation delay time vs. \(C_{L}\).


Fig. 6- Typical transition time vs. \(C_{L}\).


Fig. 7- Typical dissipation characteristics.


Fig. 8- Typical clock frequency vs. \(V_{D D}\).


With \(\mathrm{S}_{1}\) at ground, clock unit 18 times by connecting \(S_{2}\) to pulse generator.
Return \(S_{2}\) to ground and measure leakage current. Repeat with \(S_{2}\) at \(V_{D D}\).

Fig. 9- Quiescent device current test circuit.


Fig. 10- Noise immunity test circuit.


Fig. 11- Device dissipation test setup.

\author{
Digital Integrated Circuits \\ Monolithic Silicon \\ High－Reliability Slash（／）Series CD4007A／．．．
}


\section*{High－Reliability COS／MOS Dual Complementary Pair Plus Inverter}

\author{
For Logic Systems Applications in Aerospace， Military，and Critical Industrial Equipment \\ \section*{Special Features：} \\ －Medium speed operation \(\ldots\) t \(_{\text {PHL }}=\) t \(_{\text {PLH }}=20 \mathrm{~ns}\)（typ．）at \(\mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathrm{pF}\) \\ －Low＂high＂－and＂low＂－output impedance ．．． \(500 \Omega\)（typ．） \\ at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\) \\ Applications： \\ －Extremely high－input impedance amplifiers，inverters，shapers，linear amplifiers，threshold detectors
}

RCA CD4007A＂Slash＂（／）Series high－reliability COS／MOS integrated circuits are comprised of three \(n\)－channel and three p－channel enhancement－type MOS transistors．The transistor elements are accessible through the package terminals to pro－ vide a convenient means for constructing the various typical circuits shown in Fig．1．More complex functions are possible using multiple packages．Numbers shown in parentheses indi－ cate terminals that are connected together to form the various configurations listed．For proper operation \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) must be satisfied．
The CD4007A＂Slash＂（／）Series are electrically and mechani－ cally identical to the standard COS／MOS CD4007A types described in data bulletin 479 and DATABOOK SSD－203 Series，but are specially processed and tested to meet the electrical，mechanical，and environmental test methods and procedures established for microelectronic devices in MIL． STD－883．In addition to the RCA high－reliability＂Slash＂（／） Series，RCA will offer these circuits screened to MIL－M－38510 as shown in RIC－104，＂MIL－M－38510 COS／MOS CD4000A Series Types＂．
RCA Designation

\section*{CD4007A}

MIL－M－38510 Designation
MIL－M－38510／05301
The packaged types can be supplied to six screening levels－ ／1N，／1R，／1，／2，／3，／4－which correspond to MIL－STD－883 Classes＂\(A\)＂，＂\(B\)＂，and＂\(C\)＂．The chip versions of these types can be supplied to three screening levels \(-/ M, / N\) ，and／R．

For a description of these screening levels and for detailed information on test methods，procedures，and test sequence employed with high－reliability \(\operatorname{COS} /\) MOS devices refer to High－Reliability Report RIC－102C，＂High－Reliability cos／ mOS CD4000A＂Slash＂（／）Series Types＂．

The CD4007A＂Slash＂（／）Series types are supplied in 14－lead dual－in－line ceramic packages（＂\(D\)＂suffix），in 14－lead ceramic flat packages（＂K＂suffix），or in chip form（＂ H ＂suffix）．

\section*{MAXIMUM RATINGS，Absolute－Maximum Values：}

Storage－Temperature Range ．．．．．．．．．．．-65 to \(+150^{\circ} \mathrm{C}\)
Operating－Temperature Range \(. \ldots \ldots . . . . . \quad-55\) to \(+125{ }^{\circ} \mathrm{C}\)
DC Supply－Voltage Range：

Device Dissipation（Per Package）．．．．．．．．．． 200 mW

Recommended
DC Supply－Voltage（ \(V_{D D}-V_{S S}\) ）．．．．． 3 to 15 V
Recommended
Input－Voltage Swing ．．．．．．．．．．．．．．．．．．\(V_{D D}\) to \(V_{S S}\)
Lead Temperature（During Soldering）
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
（ \(1.59 \pm 0.79 \mathrm{~mm}\) ）from case
for 10 s max．．．．．．．．．．．．．．．．．．．．．．．．．\(+265{ }^{\circ} \mathrm{C}\)
a) Triple Inverters
(14,2,11); (8,13); (1,5); (7,4,9)



92Cs-15350
b) 3-Input NOR Gate
\((13,2) ;(1,11) ;(12,5,8) ;(7,4,9)\)

92Cs-15349
c) 3-Input NAND Gate
(1,12,13); \((2,14,11) ;(4,8) ;(5,9)\)

e) High Sink-Current Driver
\((6,3,10) ;(8,5,12)\);
(11,14); \((7,4,9)\)

\(92 \mathrm{CS}-15348\)

\section*{d) Tree (Relay) Logic}
( \(13,12,5\) ); (4,9,8);
f) Dual Bi-Directional Transmission Gating
(1,5,12); (2,9);
\((11,4) ;(8,13,10)\);
\((6,3)\)

g) High Sink. and Source-Current Driver
\[
(6,3,10) ;(14,2,11)
\]
(7,4,9); \((13,8,1,5,12)\)
h) High Source-Current Driver
\((6,3,10) ;(13,1,12)\);
( \(14,2,11\) ); \((7,9)\)


92CS-15327

Fig. 1-Sample COS/MOS logic circuit arrangements using type CD4007A.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathrm{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & & & \multicolumn{7}{|c|}{CD4007.AD, CD4007AK} & & \\
\hline & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(V_{0}\) Volts}} & \[
v_{D D}
\] & \multicolumn{2}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & Volts & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }_{L}\)} & & & 5 & - & 0.05 & - & 0.001 & 0.05 & - & 3 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{1} \\
\hline & & & & 10 & - & \(0.1^{\bullet}\) & - & 0.001 & \(0.1{ }^{\bullet}\) & - & \(2 *\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\({ }^{P}{ }_{\text {D }}\).} & & & 5 & - & 0.25 & - & 0.005 & 0.25 & - & 15 & \multirow[t]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[b]{2}{*}{-} \\
\hline & & & & 10 & - & 1 & - & 0.01 & 1 & - & 200 & & \\
\hline \multirow[t]{3}{*}{Output Voltage Low-Level} & \multirow{3}{*}{\({ }^{\text {OLL }}\)} & & , & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \multirow{3}{*}{V} & \multirow{6}{*}{1} \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & & 15 & - & - & - & - & \(0.6{ }^{\circ}\) & - & \(0.7{ }^{\bullet}\) & & \\
\hline \multirow[t]{3}{*}{High-Level} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & \multirow{3}{*}{V} & \\
\hline & & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & & 15 & - & - & \(14.4{ }^{\bullet}\) & - & - & \(14.3{ }^{\circ}\) & - & & \\
\hline Threshold Voltage: N-Channel & \(\mathrm{V}_{\text {TH }} \mathrm{N}\) & \multicolumn{3}{|l|}{\({ }^{1} D=-10 \mu \mathrm{~A}\)} & \(-0.7^{\bullet}\) & \(-3^{\bullet}\) & \(-0.7^{*}\) & -1.5 & \(-3^{*}\) & \(-0.3^{\bullet}\) & \(-3^{*}\) & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(V_{\text {TH }}{ }^{P}\) & \multicolumn{3}{|l|}{\({ }^{1} D^{\prime}=10 \mu \mathrm{~A}\)} & \(0.7{ }^{\circ}\) & \(3^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3^{\circ}\) & \(0.3{ }^{\circ}\) & \(3^{\bullet}\) & & \\
\hline \multirow[t]{4}{*}{Noise Immunity (Any Input)} & \multirow[b]{2}{*}{\(V_{\text {NL }}\)} & & 3.6 & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 7.2 & 10 & \(3{ }^{\bullet}\) & - & \(3^{\bullet}\) & 4.5 & - & \(2.9{ }^{\bullet}\) & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & & 0.95 & 5 & 1.4 & - & \(1.5^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{V} & \\
\hline & & & 2.9 & 10 & \(2.9{ }^{\text {e }}\) & - & \(3^{\bullet}\) & 4.5 & - & \(3{ }^{\bullet}\) & - & & \\
\hline \multirow[t]{3}{*}{Output Drive Current: N-Channel} & \multirow{3}{*}{\({ }^{1} \mathrm{D} N\)} & \multirow{3}{*}{\(V_{1}=V_{\text {DD }}\)} & 0 & 3 & \(0.04{ }^{\bullet}\) & - & \(0.05{ }^{\text {* }}\) & - & - & - & - & \multirow{3}{*}{mA} & \multirow{3}{*}{2} \\
\hline & & & 0.4 & 5 & 0.75 & - & \(0.6{ }^{\bullet}\) & 1 & - & 0.4 & - & & \\
\hline & & & 0.5 & 10 & 1.6 & - & \(1.5{ }^{\bullet}\) & 2.5 & - & 0.95 & - & & \\
\hline \multirow{3}{*}{P-Channel} & \multirow{3}{*}{\({ }_{1}{ }^{P}\)} & \multirow{3}{*}{\(V_{1}=V_{\text {SS }}\)} & 3 & 3 & \(-0.04{ }^{\circ}\) & - & \(-0.05^{\bullet}\) & - & - & - & - & \multirow{3}{*}{mA} & \multirow{3}{*}{2} \\
\hline & & & \(2.5{ }^{\text {t }}\) & 5 & \(-1.75\) & - & \(-1.4{ }^{\bullet}\) & -4 & - & - -1. & - & & \\
\hline & & & 9.5 & 10 & -1.35 & - & \(-1.1^{\bullet}\) & -2.5 & - & -0.75 & - & & \\
\hline Diode Test, \(100 \mu \mathrm{~A}\) Test Pin & \(V_{\text {DF }}\) & & & & & \(1.5{ }^{\circ}\) & . & . & \(1.5{ }^{\text {* }}\) & .-. & \(1.5{ }^{\bullet}\) & V & 3 \\
\hline Input Current & 11 & & & & & ... & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot (e) designate 100\% testing. Refer to RIC-1028 "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only
4Maximum noise•free saturated Bipolar output voltage. \(\quad{ }^{\dagger}\) Minimum noise-free saturated Bipolar output voltage. For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits, and for Operating Considerations, see Appendix

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\), and input rise and fall times \(=\mathbf{2 0} \mathrm{ns}\) Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}\) (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & & IMIT & & \multirow{3}{*}{UNITS} & \multirow[t]{3}{*}{N
O
T
E
S} \\
\hline & & & \multicolumn{3}{|l|}{CD4007AD,CD4007AK} & & \\
\hline & & \begin{tabular}{l}
\(V_{D D}\) \\
(Volts)
\end{tabular} & Min. & Typ. & Max. & & \\
\hline Propagation Delay Time: & \multirow[b]{2}{*}{\({ }^{\text {tPHL }}\)} & 5 & - & 35 & 60 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline High-to-Low Level & & 10 & - & 20 & \(40^{\bullet}\) & & \\
\hline \multirow[b]{2}{*}{Low-to-High Level} & \multirow[b]{2}{*}{\({ }^{\text {t PLH }}\)} & 5 & - & 35 & 60 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 20 & \(40^{\bullet}\) & & \\
\hline Transition Time: & \multirow[b]{2}{*}{\({ }^{\text {t }}\) HL} & 5 & - & 50 & 75 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline High-to-Low Level & & 10 & - & 30 & \(40^{\bullet}\) & & \\
\hline \multirow[b]{2}{*}{Low-to-High Level} & \multirow[b]{2}{*}{\({ }^{\text {t }}\) TLH} & 5 & - & 50 & 75 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 30 & \(40^{\bullet}\) & & \\
\hline Input Capacitance & \(C_{1}\) & Any Input & - & 5 & - & pF & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing. Note 1: Test is a one input one output only.


Fig. 2- Noise immunity test circuit.


Fig. 4- Min. and max. voltage transfer characteristics for inverter.


Fig. 3- Quiescent device current test circuit.


Fig. 5- Typ. voltage transfer characteristics for NOR gate.


Fig. 6- Typ. voltage transfer characteristics for NAND gate.


Fig. 8- Typ. current and voltage transfer characteristics for inverter.


Fig. 7- Typ. voltage transfer characteristics as a function of temp.


Fig. 9- Minimum n-channel drain characteristics.


92CS-22784


Fig. 11- Typical propagation delay time vs. \(C_{L}\).


Fig. 12- Typical transition time vs. \(C_{L}\).


Fig. 13- Maximum propagation delay time vs. \(V_{D D}\)


Fig. 14- Typical dissipation characteristics.

\author{
Digital Integrated Circuits \\ Monolithic Silicon \\ High-Reliability Slash(/) Series CD4008A/...
}


\title{
High-Reliability COS/MOS Four-Bit Full Adder With Parallel Carry-Out
}

\author{
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment
}

\section*{Special Features:}
- MSI complexity on a single chip plus parallel Carry Output
- High speed operation . . . Carry-In to Carry-Out delay, \(\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}=45 \mathrm{~ns}\) at \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)

RCA CD4008A "Slash" (/) Series are high-reliability COS/MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4008A types consist of four full-adder stages with fast look-ahead carry provision from stage to stage. Circuitry is included to provide a fast "parallel-carry-out" bit to permit high-speed operation in arithmetic sections using several CD4008A's. CD4008A inputs include the four sets of bits to be added, \(A_{1}\) to \(A_{4}\) and \(B_{1}\) to \(B_{4}\), in addition to the "carry-in" bit from a previous section. CD4008A outputs include the four sum bits, \(\mathrm{S}_{1}\) to \(\mathrm{S}_{4}\), in addition to the highspeed "parallel-carry-out" which may be utilized at a succeeding CD4008A section.


TERMINAL No. \(16=V_{\text {DD }}\). TERMINAL NO. \(8=V_{S S}\)

Fig. 1- Logic diagram for type CD4008A.

These devices are electrically and mechanically identical to the standard COS/MOS CD4008A described in data bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510 as described in RIC-104, "MIL-M38510 COS/MOS CD4000A Series Types".

RCA Designation
CD4008A
The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " A ", " B ", and " C ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4008A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages (" \(D\) " suffix), in 16 -lead ceramic flat packages (" \(K\) " suffix), or in chip form (" \(H\) " suffix).
\begin{tabular}{|c|c|c||c|c|}
\hline\(A_{i}\) & \(B_{i}\) & \(C_{i}\) & \(C_{0}\) & SUM \\
\hline 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

File No. 696

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{DC Supply-Voltage Range:} \\
\hline \(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline
\end{tabular}

Recommended
DC Supply-Voltage ( \(V_{D D}-V_{S S}\) ) .... 3 to \(15 \quad V\)
Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . . \(V_{D D}\) to \(V_{S S}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
\((1.59 \pm 0.79 \mathrm{~mm})\) from case
for 10 s max.
\(+265{ }^{\circ} \mathrm{C}\)

STATIC ELECTRICAL CHARACTERISTICS (All Inputs... \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathbf{1}} \leq \mathrm{V}_{\mathrm{DD}}\) )
Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBEL} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathbf{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathbf{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & & & \multicolumn{7}{|c|}{CD4008AD,CD4008AK} & & \\
\hline & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& v_{\mathbf{O}} \\
& \mathrm{V}_{\text {olts }}
\end{aligned}\right.
\]}} & \[
v_{\mathrm{DD}}
\] & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & Volts & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{\prime} \mathrm{L}\)} & & & 5 & - & 5 & - & 0.3 & 5 & - & 300 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & & 10 & - & \(10^{\bullet}\) & - & 0.5 & \(10^{\circ}\) & - & 200* & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\({ }^{P}\) D} & & & 5 & - & 25 & - & 1.5 & 25 & - & 1500 & \multirow[t]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[b]{2}{*}{-} \\
\hline & & & & 10 & \(-\) & 100 & - & 5 & 100 & - & 2000 & & \\
\hline \multirow[t]{4}{*}{Output Voltage Low-Leve!} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & & 3 & - & \(0.55^{\bullet}\) & - & - & \(0.5{ }^{\bullet}\) & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & & 15 & - & - & - & - & \(0.5{ }^{\circ}\) & - & \(0.55^{\circ}\) & & \\
\hline \multirow[t]{4}{*}{High-Level} & \multirow{4}{*}{\({ }^{\mathrm{OHH}}\)} & & & 3 & 2.25 * & - & \(2.3{ }^{\bullet}\) & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & & 10 & 999 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & & 15 & - & - & 145 & - & - & \(14.45^{\circ}\) & - & & \\
\hline Threshold Voltage: N-Channel & \(V_{T H} \mathrm{~N}\) & \multicolumn{3}{|l|}{\({ }^{1} \mathrm{D}-20 \mu \mathrm{~A}\)} & \(-0.7{ }^{\circ}\) & \(-3^{*}\) & \(-0.7{ }^{*}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3{ }^{\text {e }}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{2} \\
\hline P.Channel & \(\mathrm{V}_{\mathrm{TH}}{ }^{P}\) & \multicolumn{3}{|l|}{\({ }^{1} \mathrm{D}=20 \mu \mathrm{~A}\)} & \(0.7{ }^{\circ}\) & \(3{ }^{\bullet}\) & \(0.7^{\circ}\) & 1.5 & \(3{ }^{\circ}\) & \(0.3{ }^{\circ}\) & \(3 \times\) & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Noise Immunity \\
(Any Input) \\
For Defintion, \\
See Appendix \\
SSD-207
\end{tabular}} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {NL }}\)} & & 0.95 & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{2} \\
\hline & & & 2.9 & 10 & \(3^{\bullet}\) & - & \(3{ }^{\bullet}\) & 4.5 & - & \(2.9{ }^{\text {e }}\) & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & & 3.6 & 5 & 1.4 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{V} & \\
\hline & & & 7.2 & 10 & \(2.9{ }^{\bullet}\) & - & \(3^{\bullet}\) & 4.5 & - & \(3^{\circ}\) & - & & \\
\hline \multirow[t]{4}{*}{Output Drive Current N.Channel} & \multirow[t]{4}{*}{\({ }^{1} \mathrm{D} N\)} & \multirow[t]{2}{*}{Carry Output} & 0.5 & 5 & 0.31 & - & \(0.25{ }^{\circ}\) & 0.5 & - & 0.175 & - & \multirow{4}{*}{mA} & \multirow{8}{*}{2} \\
\hline & & & 0.5 & 10 & 0.93 & & \(0.75{ }^{\circ}\) & 1.5 & - & 0.53 & - & & \\
\hline & & \multirow[t]{2}{*}{} & 3 & 5 & 0.12. & - & \(0.1{ }^{\circ}\) & 0.2 & - & 0.07 & - & & \\
\hline & & & 3 & 10 & 0.31 & - & \(0.25{ }^{\circ}\) & 0.5 & - & 0.175 & - & & \\
\hline \multirow[t]{4}{*}{P.Channel} & \multirow[t]{4}{*}{\({ }_{1} D^{P}\)} & \multirow[t]{2}{*}{Carry Output} & 4.5 & 5 & -0.31 & - & \(-0.25^{\circ}\) & -0.5 & - & -0.:75 & - & \multirow{4}{*}{mA} & \\
\hline & & & 9.5 & 10 & -0.93 & - & -0.75 & -1.5 & - & -0.53 & - & & \\
\hline & & \multirow[t]{2}{*}{Sum Output} & 2 & 5 & -0.06 & - & -0.05 & -0.06 & - & 0.035 & - & & \\
\hline & & & 7 & 10 & -0.185 & - & -0.15 \({ }^{\circ}\) & -0.3 & - & -0.105 & - & & \\
\hline Diode Test, \(100 \mu \mathrm{~A}\) Test Pin & \(V_{\text {DF }}\) & & & & - & \(1.5{ }^{\bullet}\) & - & - & \(1.5{ }^{\bullet}\) & - & \(1.5{ }^{*}\) & V & 3 \\
\hline Input Current & 1 & & & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) test.
Note 1: Complete functional test. all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.
For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits,
and for Operating Considerations, see Appendix

DYNAMIC ELECTRICAL CHARACTERISTICS at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) and input rise and fall times \(=20 \mathrm{~ns}\)
Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}\). (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow[b]{2}{*}{TEST CONDITIONS} & & LIMITS & & \multirow{3}{*}{UNITS} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathrm{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & \multicolumn{3}{|l|}{CD4008AD,CD4008AK} & & \\
\hline & & (Volts) & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: At Sum Outputs;
\(\qquad\) From Sum Input} & \multirow{7}{*}{\({ }^{\text {tpHL }}\), tpLH} & 5 & - & 900 & 1300 & \multirow{2}{*}{ns} & \multirow{4}{*}{1} \\
\hline & & 10 & - & 325 & \(500^{\circ}\) & & \\
\hline \multirow[b]{2}{*}{From Carry Input} & & 5 & - & 900 & 1300 & \multirow[b]{2}{*}{ns} & \\
\hline & & 10 & - & 325 & 500 & & \\
\hline \multirow[t]{2}{*}{At Carry Output; From Sum Input} & & 5 & - & 320 & 600 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & 10 & - & 120 & 200 & & \\
\hline From Carry Input & & 5 & - & 100 & 175 & ns & 1 \\
\hline \multirow[t]{2}{*}{Transition Time: At Sum Outputs} & \multirow[b]{4}{*}{\begin{tabular}{l}
\({ }^{\text {t THL }}\). \\
\({ }^{\text {t }}\) TLH
\end{tabular}} & 5 & - & 1250 & 2200 & & \\
\hline & & 10 & - & 550 & 900 & ns & - \\
\hline \multirow[b]{2}{*}{At Carry Output} & & 5 & - & 125 & 225 & \multirow[t]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 45 & 75 & & \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & Any Input & - & 10 & - & pF & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables: through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Test is a one input one output only.


Fig. 2- Typical speed characteristics of a 16-bit adder.
Fig. 3- Sum-in to carry-out propagation delay time vs. \(C_{L}\).


Fig. 4-Sum-in or carry-in to sum-out pronagation delay time vs. \(C_{L}\).


Fig. 6- Max. propagation delay time vs. \(V_{D D}\) for carry-in to carry-out.


Fig. 5- Carry-in to carry-out propagation delay time vs. \(C_{L}\).


Fig. 7- Typical dissipation characteristics.


92CS -17904R2
Fig. 9-Noise immunity test circuit.


File No. 696


Solid State Division

Digital Integrated Circuits
Monolithic Silicon
High-Reliability Slash(/) Series CD4009A/..., CD4010A/...


\section*{High-Reliability COS/MOS Hex Buffers/Converters}

For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment
Inverting Type: CD4009AD, CD4009AK
Non-Inverting Type: CD4010AD, CD4010AK
Special Features (Each Buffer):
- High current sinking capability \(\ldots 8 \mathrm{~mA}\left(\mathrm{~min}\right.\). at \(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{DD}}=+10 \mathrm{~V}\)
Applications:
- COS/MOS to DTL/TTL hex converter © COS/MOS hex inverter
- COS/MOS current "sink" or "source" driver
- COS/MOS logic-level converter Multiplexer - 1 to 6 or 6 to 1

\section*{CAUTION: \\ \(V_{C C}\) VOLTAGE LEVEL MUST bE EQUAL TO OR LESS THAN \(V_{\text {DD }}\) FOR 10.5- TO 15-VOLT SUPPLIES, CLOAD MUST BE EQUAL TO OR LESS THAN 5000 pF .}

RCA CD4009A and CD4010A "Slash" (/) Series are highreliability integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. CD4009A types may be used as a hex COS/MOS inverter, a COS/MOS to DTL or TTL logiclevel converter, or a COS/MOS current driver. CD4010A types may be used as a COS/MOS to DTL or TTL hex converter or a COS/MOS current driver.
Conversion ranges are from COS/MOS logic operating at +3 V to +15 V supply levels to DTL or TTL logic operating at +3 V to +6 V supply levels. Conversion to logic output levels greater than +6 V is permitted providing \(\mathrm{V}_{\mathrm{CC}}(\mathrm{DTL} / \mathrm{TTL}) \leq\) \(V_{D D}(C O S / M O S)\).

These devices are electrically and mechanically identical with standard COS/MOS types CD4009A and CD4010A described in data bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" Series, RCA will offer these

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Operating-Temperature Range . . . . . . . . . . . . . -55 to \(+125^{\circ} \mathrm{C}\) DC Supply-Voltage Range:}} \\
\hline & \\
\hline \(\left(V_{D D}-V_{S S}\right)\) & -0.5 to +15 \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{r}}\) \\
\hline
\end{tabular}
circuits screened to MIL-M-38510 as described in RIC-104, "MIL-M-38510 COS/MOS CD4000A Series Types".
\begin{tabular}{ll} 
RCA Designation & \\
CD4009A & MIL-M-38510 Designation \\
CD4010A & MIL-M-38510/05501 \\
&
\end{tabular}

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4009A and CD4010A "Slash" (/) Series types are supplied in 16 -lead dual-in-line ceramic packages ("D" suffix), in 16 -lead ceramic flat packages (" \(K\) "' suffix), or in chip form (" \(\mathrm{H}^{\prime \prime}\) suffix).

\section*{Recommended}

DC Supply-Voltage ( \(V_{D D}-V_{S S}\) ) \(\ldots\). . 3 to \(15 \quad V\)
Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\mathrm{SS}}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
( \(1.59 \pm 0.79 \mathrm{~mm}\) ) from case
for 10 s max.
\(+265{ }^{\circ} \mathrm{C}\)

File No. 719




nc \(\mathrm{O}^{13}\)
\(v_{c c} \mathrm{O}^{-1}\)
GNOO-
vod - 16




GNDO-8
\(v_{D D}-16\)


92SS-4142R2

Fig. 1- Logic diagrams for types CD4009A and CD4010A.


Fig. 2- Schematic diagram for types CD4009A
(one of 6 identical stages).

Fig. 4- Min. and max. voltage transfer characteristics - CD4009A.


Fig. 3- Schematic diagram for types CD4010A (one of 6 identical stages).


Fig. 5- Typical voltage transfer characteristics as function of temp. - CD4009A.

STATIC ELECTRICAL CHARACTERISTICS (All inputs \(\left.. \mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\mathbf{1}}<\mathrm{V}_{\mathrm{DD}}\right)\)
(Recommended DC Supply Voltage \(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) \ldots \ldots . . .3\) to 15 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[b]{4}{*}{N
O
T
E
S} \\
\hline & & & & & \multicolumn{7}{|l|}{CD4009AD,CD4009AK,CD4010AD,CD4010AK} & & \\
\hline & & & \(\mathrm{V}_{0}\) & \(\mathrm{V}_{\mathrm{DD}}\) & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & Volts & Volts & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current:} & \multirow[b]{2}{*}{\({ }^{1} \mathrm{~L}\)} & & & 5 & - & 0.3 & - & 0.01 & 0.3 & - & 20 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & & 10 & - & \(0.5^{\circ}\) & - & 0.01 & \(0.5{ }^{\bullet}\) & - & \(10^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\({ }^{P}\) D} & & & 5 & - & 1.5 & - & 0.05 & 1.5 & - & 100 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \multirow{2}{*}{-} \\
\hline & & & & 10 & - & 5 & - & 0.1 & 5 & - & 100 & & \\
\hline \multirow{3}{*}{Output Voltage: Low-Level} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \multirow{3}{*}{V} & 1 \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \multirow{5}{*}{1} \\
\hline & & & & 15 & - & - & - & - & \(0.6{ }^{\circ}\) & - & \(0.7{ }^{\bullet}\) & & \\
\hline \multirow{3}{*}{High-Level} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & \multirow{3}{*}{v} & \\
\hline & & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & & 15 & - & - & \(14.4{ }^{\bullet}\) & - & - & \(14.3{ }^{\circ}\). & - & & \\
\hline Threshold Voltage: N -Channel & \(V_{\text {TH }} \mathrm{N}\) & \({ }^{\prime} \mathrm{D}^{\prime}=-10 \mu \mathrm{~A}\) & & & \(-0.7^{\bullet}\) & \(-3^{\bullet}\) & \(-0.7^{\bullet}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3^{\bullet}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{T H^{P}}\) & \({ }^{\prime} D^{\prime}=10 \mu \mathrm{~A}\) & & & \(0.7{ }^{\circ}\) & \(3^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3^{\circ}\) & \(0.3{ }^{\circ}\) & \(3^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Noise Immunity (Any Input) CD4009A} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & \(\mathrm{V}_{\mathrm{OH}}=3.6 \mathrm{~V}\) & & 5 & 1 & - & \(1{ }^{\text {- }}\) & 2.25 & - & 0.9 & - & \multirow{4}{*}{v} & \multirow{8}{*}{1} \\
\hline & & \(\mathrm{V}_{\mathrm{OH}}=7.2 \mathrm{~V}\) & & 10 & \(2{ }^{\text {- }}\) & - & \(2{ }^{\bullet}\) & 4.5 & - & \(1.9{ }^{\bullet}\) & - & & \\
\hline \multirow[t]{2}{*}{CD4010A} & & \(\mathrm{V}_{\mathrm{OL}}=0.95 \mathrm{~V}\) & & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & & \\
\hline & & \(\mathrm{v}_{\mathrm{OL}}=2.9 \mathrm{~V}\) & & 10 & \(3^{\bullet}\) & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & & \\
\hline \multirow[b]{2}{*}{CD 4009A} & \multirow{4}{*}{\(\mathrm{V}_{\text {NH }}\)} & \(\mathrm{V}_{\mathrm{OL}}=0.95 \mathrm{~V}\) & & 5 & 1.4 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.5 & - & \multirow{4}{*}{v} & \\
\hline & & \(\mathrm{V}_{\mathrm{OL}}=2.0 \mathrm{~V}\) & & 10 & \(2.9{ }^{\circ}\) & - & \(3^{\bullet}\) & 4.5 & - & \(3^{\bullet}\) & - & & \\
\hline \multirow[t]{2}{*}{CD4010A} & & \(\mathrm{V}_{\mathrm{OH}}=3.6 \mathrm{~V}\) & & 5 & 1.4 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.5 & - & & \\
\hline & & \(\mathrm{V}_{\mathrm{OH}}=7.2 \mathrm{~V}\) & & 10 & \(2.9{ }^{\circ}\) & - & \(3^{\bullet}\) & 4.5 & - & \(3{ }^{\bullet}\) & - & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Output Drive Current: \\
N-Channel
\end{tabular}} & \multirow{4}{*}{\({ }^{1} \mathrm{D} N\)} & CD4009A & 0.4 & 5 & 3.75 & - & \(3^{\circ}\) & 4 & - & 2.1 & - & \multirow{8}{*}{mA} & \multirow[t]{4}{*}{2} \\
\hline & & CD4010A & 0.5 & 10 & 10 & - & \(8^{\bullet}\) & 10 & - & 5.6 & - & & \\
\hline & & CD4009A & 0 & 3 & \(0.4{ }^{\bullet}\) & - & \(0.5{ }^{\bullet}\) & - & - & - & - & & \\
\hline & & CD4010A & 0 & 3 & \(0.02{ }^{\bullet}\) & - & \(0.025^{\circ}\) & - & - & - & - & & \\
\hline \multirow{4}{*}{P-Channel} & \multirow{4}{*}{\({ }^{1} D^{P}\)} & CD4009A & 2.5 & 5 & -1.85 & - & \(-1.25^{\circ}\) & -1.75 & - & -0.9 & - & & \multirow[t]{4}{*}{2} \\
\hline & & CD4010A & 9.5 & 10 & -0.9 & - & \(-0.6^{\bullet}\) & -0.8 & - & -0.4 & - & & \\
\hline & & CD4009A & 3 & 3 & \(-0.04{ }^{\bullet}\) & - & \(-0.05^{\bullet}\) & - & - & - & - & & \\
\hline & & CD4010A & 3 & 3 & -0.02 \({ }^{\circ}\) & - & \(-0.025^{\circ}\) & - & - & - & - & & \\
\hline Diode Test & \(V_{\text {DF }}\) & \multicolumn{3}{|l|}{\(100 \mu \mathrm{~A}\) Test Pin} & - & \(1.5^{\circ}\) & - & - & \(1.5{ }^{\circ}\) & - & \(1.5^{\bullet}\) & V & 3 \\
\hline Input Current & 1 & & & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.
For Threshold Voltage Test Gircuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits, and for Operating Considerations, see Appendix.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\), and input rise and fall times \(=\mathbf{2 0} \mathrm{ns}\)
Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}\). (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & & LIMIT & & \multirow{3}{*}{UNITS} & \multirow[b]{3}{*}{\begin{tabular}{l} 
N \\
O \\
T \\
E \\
S \\
\hline
\end{tabular}} \\
\hline & & & & \multicolumn{3}{|l|}{CD4009AD,CD4009AK CD4010AD,CD4010AK} & & \\
\hline & &  & \begin{tabular}{l}
\(V_{\text {DD }}\) \\
(Volts)
\end{tabular} & Min. & Typ. & Max. & & \\
\hline \multirow[t]{3}{*}{Propagation Delay Time: High-to-Low Level} & \multirow{3}{*}{\({ }^{\text {tPHL}}\)} & & 5 & - & 15 & 55 & \multirow{3}{*}{ns} & \multirow{3}{*}{1} \\
\hline & & \(V_{C C}=V_{\text {DD }}\) & 10 & - & 10 & \(30^{\bullet}\) & & \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}
\end{aligned}
\] & & - & 10 & 25 & & \\
\hline \multirow{3}{*}{Low-to-High Level} & \multirow{3}{*}{\({ }^{\text {tPLH }}\)} & \multirow[b]{2}{*}{\(V_{C C}=V_{D D}\)} & 5 & - & 50 & 80 & \multirow{3}{*}{ns} & \multirow{3}{*}{1} \\
\hline & & & 10 & - & 25 & \(55^{\bullet}\) & & \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}
\end{aligned}
\] & & - & 15 & 30 & & \\
\hline \multirow[t]{2}{*}{Transition Time: High-to-Low Level} & \multirow[b]{2}{*}{\({ }^{\text {t }}\) THL} & \multirow[b]{2}{*}{\(V_{C C}=V_{D D}\)} & 5 & - & 20 & 45 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & 16 & \(40^{\bullet}\) & & \\
\hline \multirow[b]{2}{*}{Low-to-High Level} & \multirow[b]{2}{*}{\({ }^{\text {t }}\) TLH} & \multirow[b]{2}{*}{\(V_{C C}=V_{D D}\)} & 5 & - & 80 & 125 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & 50 & \(100^{\bullet}\) & & \\
\hline \multirow[t]{2}{*}{Input Capacitance (Any Input)} & \multirow[b]{2}{*}{\(C_{1}\)} & CD4009A & & - & 15 & - & \multirow[b]{2}{*}{pF} & \multirow{2}{*}{-} \\
\hline & & CD4010A & & - & 5 & - & & \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Test is a one input one output only.

92CS-19955
Fig. 6- Min. and max. voltage transfer characteristics
\(\left(V_{D D}=5\right)-C D 4010 A\).


Fig. 7-Min. and max. voltage transfer characteristics
\(\left(V_{D D}=10\right)-C D 4010 A\).

\begin{abstract}

\end{abstract}

Fig. 8-Min. and max. voltage transfer characteristics \(\left(V_{D D}=15\right)-C D 4010 A\).


Fig. 10-Maximum propagation delay time vs. \(V_{D D}-C D 4010 A\).


Fig. 12- Typical high-to-low level propagation delay time vs. \(C_{L}-\) CD4009A, CD4010A.


Fig. 9- Typical voltage transfer characteristics as a function of temp. - CD4010A.

Fig. 11-Minimum n-channel drain characteristics.


Fig. 13- Typical low-to-high level propagation delay time vs. \(C_{L}-\) CD4009A, CD4010A.


Fig. 14- Typical high-to-low level transition time vs. \(C_{L}-\) CD4009A, CD4010A.


Fig. 15- Typical low-to-high level transition time vs. \(C_{L}-C D 4009 A, C D 4010 A\).


Fig. 16- Maximum propagation delay time vs. \(V_{D D}-C D 4009 A\).


Fig. 17- Typical dissipation characteristics - CD4009A, CD4010A.



Fig. 19- Noise immunity test circuit for CD4009A.


Fig. 20-Noise immunity test circuit for CD4010A.


Solid State Division


CD4011A

\title{
High-Reliability COS/MOS NAND Gates
}

\author{
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment \\ Quad 2 Input - - CD4011AD, CD4011AK \\ Dual 4 Input - - - CD4012AD, CD4012AK \\ Triple 3 Input - - CD4023AD, CD4023AK
}

\section*{Special Features:}
- Medium speed operation... t \(_{\text {PHL }}=\) t \(_{\text {PLH }}=25 \mathrm{~ns}\) (typ.) at \(\mathrm{C}_{\mathrm{L}}=\mathbf{1 5 \mathrm { pF }}\)
- Low "high"- and "low"-level output impedance . . . 400 and \(800 \Omega\) (typ.), respectively, at \(V_{D D}-V_{S S}=10 \mathrm{~V}\)

RCA CD4011A, CD4012A, and CD4023A "Slash" (/) Series are high-reliability COS/MOS integrated circuits intended for a wide variety of uses in aerospace, military, and critical industrial equipment. The combination of these devices and the RCA NOR positive logic gate types CD4000A, CD4001A, CD4002A, and CD4025A can account for appreciable package count savings in various logic function configurations. These devices are electrically and mechanically identical with standard COS/MOS types CD4011A, CD4012A, and CD4023A described in data bulletin 479 and DATABOOK SSD- 203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510 as described in RIC-104, "MIL-M- 38510 COS/MOS CD4000A Series Types".

RCA Designation
CD4011A
CD4012A
CD4023A

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels -/M, / N , and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".
For a listing of the Screening Level Options available for both packaged devices and chips, and for a description of the COS/MOS high-reliability integrated circuit part numbers, see the following page.

The CD4011A, CD4012A, and CD4023A "Slash" (/) Series types are supplied in 14 -lead dual-in-line ceramic packages ("D" suffix), in 14 -lead ceramic flat packages (" \(K\) " suffix), or in chip form ('" H " suffix).


CD4012A


CD4023A

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Storage-Temperature Range . . . . . . . . . . -65 to \(+150{ }^{\circ} \mathrm{C}\)
Operating-Temperature Range . . . . . . . . . . -55 to \(+125{ }^{\circ} \mathrm{C}\)
DC Supply-Voltage Range:
\[
\left(V_{D D}-V_{S S}\right) \ldots \ldots \ldots \ldots . . .
\]

Device Dissipation (Per Package) . . . . . . . . . 200 mW

Recommended
DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) \(\ldots\). 3 to 15 V
Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . . \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\mathrm{SS}}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
\((1.59 \pm \dot{0} .79 \mathrm{~mm})\) from case
for 10 s max.
\(+265{ }^{\circ} \mathrm{C}\)

File No. 717


Fig. 2- Schematic diagram for type CD4011A.


Fig. 3- Schematic diagram for type CD4023A.

STATIC ELECTRICAL CHARACTERISTICS (All Inputs ... \(\mathrm{V}_{\mathbf{S S}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}\) )
Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|r|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{aligned}
& N \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathbf{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & & & \multicolumn{7}{|c|}{CD4011AD,CD4012AD,CD4023AD, CD4011AK,CD4012AK,CD4023AK} & & \\
\hline & & & \multirow[t]{2}{*}{\(V_{0}\) Volts} & \multirow[t]{2}{*}{\begin{tabular}{l}
VDD \\
Volts
\end{tabular}} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline Quiescent Device & \multirow[b]{2}{*}{\(I_{L}\)} & & & 5 & - & 0.05 & - & 0.001 & 0.05 & - & 3 & \multirow{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{1} \\
\hline Current & & & & 10 & - & \(0.1{ }^{\text {® }}\) & - & 0.001 & \(0.1{ }^{\text {® }}\) & - & \(2^{\bullet}\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\({ }^{P}\) D} & & & 5 & - & 0.25 & - & 0.005 & 0.25 & - & 15 & \multirow{2}{*}{\(\mu \mathrm{W}\)} & \multirow{2}{*}{-} \\
\hline & & & & 10 & - & 1 & - & 0.01 & 1 & - & 20 & & \\
\hline \multirow[t]{3}{*}{Output Voltage Low-Lével} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \multirow{3}{*}{V} & \multirow{3}{*}{1} \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & & 15 & - & - & - & - & \(0.6{ }^{\circ}\) & - & \(0.7^{\circ}\) & & \\
\hline \multirow{3}{*}{High-Level} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & \multirow{3}{*}{V} & \multirow{3}{*}{1} \\
\hline & & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & \(\cdots\) & & \\
\hline & & & & 15 & - & - & \(14.4{ }^{\text {® }}\) & - & - & \(14.3{ }^{\circ}\) & - & & \\
\hline \begin{tabular}{l}
Threshold Voltage: \\
N-Channel
\end{tabular} & \(V_{\text {TH }}{ }^{\text {N }}\) & \multicolumn{3}{|l|}{\({ }^{\prime} D^{\prime}=-10 \mu \mathrm{~A}\)} & \(-0.7{ }^{\bullet}\) & \(-3^{\bullet}\) & \(-0.7^{\bullet}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3{ }^{\bullet}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(V_{\text {TH }}{ }^{P}\) & \multicolumn{3}{|l|}{\({ }^{\prime} D^{\prime}=10 \mu \mathrm{~A}\)} & \(0.7{ }^{\circ}\) & \(3^{\bullet}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3^{\circ}\) & \(0.3{ }^{\circ}\) & \(3^{\circ}\) & & \\
\hline Noise Immunity & \multirow[t]{2}{*}{\(V_{N L}\)} & & 3.6 & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{2} \\
\hline Any Input & & & 7.2 & 10 & \(3{ }^{\bullet}\) & - & \(3^{\bullet}\) & 4.5 & - & \(2.9{ }^{\bullet}\) & - & & \\
\hline For Definition, & \multirow{2}{*}{\(\mathrm{V}_{\text {NH }}\)} & & 0.95 & 5 & 1.4 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{2} \\
\hline See Appendix & & & 2.9 & 10 & \(2.9{ }^{\circ}\) & -- & \(3^{\bullet}\) & 4.5 & - & \(3{ }^{\bullet}\) & - & & \\
\hline \multirow{6}{*}{\begin{tabular}{l}
Output Drive Current: \\
N-Channel
\end{tabular}} & \multirow{6}{*}{\({ }^{1} \mathrm{D}^{N}\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { CD4011A } \\
& \text { CD4023A } \\
& \text { Series }
\end{aligned}
\]} & 0 & 3 & \(0.02{ }^{\text {® }}\) & - & \(0.025^{\circ}\) & - & - & - & - & \multirow{3}{*}{mA} & \multirow{3}{*}{2} \\
\hline & & & 0.5 & 5 & 0.31 & - & \(0.25^{\circ}\) & 0.5 & - & 0.175 & - & & \\
\hline & & & 0.5 & 10 & 0.62 & - & \(0.5{ }^{\bullet}\) & 0.6 & - & 0.35 & - & & \\
\hline & & \multirow{3}{*}{\[
\left|\begin{array}{l}
\text { CD4012A } \\
\text { Series }
\end{array}\right|
\]} & 0 & 3 & \(0.02{ }^{\circ}\) & - & \(0.025^{\circ}\) & - & - & - & - & \multirow{3}{*}{mA} & \multirow{3}{*}{2} \\
\hline & & & 0.5 & 5 & 0.15 & - & \(0.12{ }^{\circ}\) & 0.25 & - & 0.085 & - & & \\
\hline & & & 0.5 & 10 & 3.1 & - & \(0.25{ }^{\text {- }}\) & 0.6 & - & 0.175 & - & & \\
\hline \multirow{3}{*}{P-Channel} & \multirow{3}{*}{\({ }_{1}{ }^{P}\)} & & 3 & 3 & \(-0.02^{\bullet}\) & - & \(-0.025^{\circ}\) & - & \(\cdots\) & - & - & \multirow{3}{*}{mA} & \multirow{3}{*}{2} \\
\hline & & & 4.5 & 5 & -0.31 & - & \(-0.25^{\bullet}\) & -0.5 & - & -0.175 & - & & \\
\hline & & & 9.5 & 10 & -0.75 & - & \(-0.6{ }^{\circ}\) & -1.2 & - & -0.4 & - & & \\
\hline Diode Test & \(V_{\text {DF }}\) & \multicolumn{3}{|l|}{\(100 \mu \mathrm{~A}\) Test Pin} & - & \(1.5 *\) & -- & - & \(1.5{ }^{\bullet}\) & - & \(1.5{ }^{\bullet}\) & V & 3 \\
\hline Input Current & \(1 /\) & & & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathrm{pF}\), and input rise and fall times \(=\mathbf{2 0} \mathrm{ns}\)
Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C} \quad\) (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOLS} & TEST CONDITIONS & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { CD4011AD, AK } \\
& \text { CD4012AD, AK } \\
& \text { CD4023AD, AK } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{UNITS} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathrm{O} \\
& \mathrm{~T} \\
& \mathrm{E} \\
& \mathrm{~S} \\
& \hline
\end{aligned}
\]} \\
\hline & & VDD (Volts) & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: Low-to-High Level} & \multirow[b]{2}{*}{\({ }^{\text {tPLH }}\)} & 5 & - & 50 & 75 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 25 & \(40^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{High-to-Low Level CD4011A and CD4023A Series} & \multirow{4}{*}{\({ }^{\text {tPHL }}\)} & 5 & - & 50 & 75 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 25 & \(40^{\bullet}\) & & \\
\hline \multirow[b]{2}{*}{CD4012A Series} & & 5 & - & 100 & 150 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 50 & \(75^{\bullet}\) & & \\
\hline Transition Time: & \multirow[b]{2}{*}{\({ }^{\text {t }}\) TLH} & 5 & - & 75 & 100 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline Low-to-High Level & & 10 & - & 40 & \(60^{\bullet}\) & & \\
\hline High-to-Low Level CD4011A and & \multirow{4}{*}{\({ }^{\text {t }}\) THL} & 5 & - & 75 & 125 & \multirow[b]{2}{*}{ns} & \multirow{2}{*}{1} \\
\hline CD4023A Series & & 10 & - & 50 & \(75^{\bullet}\) & & \\
\hline \multirow[b]{2}{*}{CD4012A Series} & & 5 & - & 250 & 375 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 125 & \(200^{\bullet}\) & & \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & Any Input & - & 5 & - & pF & - \\
\hline
\end{tabular}

Limits with black dot ( 0 ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Test is a one input one output only.


Fig. 4-Min. and max. voltage transfer characteristics.


Fig. 5- Typical voltage transfer characteristics as a function of temperature.


Fig. 6- Typical multiple input switching transter characteristics for CD4012A.


Fig. 8-Minimum n-channel drain characteristics - CD4011A and CD4023A.


92Cs-22773
Fig. 10- Minimum p-channel drain characteristics.


Fig. 7- Typical current and voltage transfer characteristics.

Fig. 9- Minimum n-channel drain characteristics - CD4012A.


Fig. 11-Typical low-to-high level propagation delay time vs. \(C_{L}\).


Fig. 12- Typical high-to-low level propagation delay time vs. \(C_{L}-\) CD4011A. and CD4023A.


Fig. 14- Typical low-to-high transition time vs. \(C_{L}\).


Fig. 16- Typical high-to-low level transition time vs. \(C_{L}-\) CD4012A.


Fig. 13- Typical high-to-low level propagation delay time vs. \(C_{L}-\) CD4012A.


Fig. 15- Typical high-to-low level transition time vs. \(C_{L}\) CD4011A and CD4023A.


Fig. 17-Minimum propagation delay time vs. \(V_{D D}\).


Fig. 18-Typical dissipation characteristics.


Fig. 20- Quiescent device current test circuit for CD4012A.


Fig. 19- Quiescent device current test circuit for CD4011A.


Fig. 21- Quiescent device current test circuit for CD4023A.


Fig. 22-Noise-immunity test circuit for CD4011A.


Fig. 23.-Noise-immunity test circuit for CD4012A


Fig. 24-Noise-immunity test circuit for CD4023A.


Solid State Division


\title{
High-Reliability Dual "D"-Type Flip-Flop With Set-Reset Capability
}

\section*{For Logic Systems Applications in Aerospace,} Military, and Critical Industrial Equipment

\section*{Special Features:}
- Static flip-flop operation . . . retains state indefinitely with clock level either "high" or "low"
- Medium speed operation . . 10 MHz (typ.) clock toggle rate at
\[
v_{D D}-v_{S S}=10 \mathrm{~V}
\]

■ Low "high"- and "low"-output impedance . . \(400 \Omega\) and \(200 \Omega\),
respectively, at \(V_{D D}-V_{S S}=10 \mathrm{~V}\)

\section*{Applications:}
- Register, counters, control circuits

RCA CD4013A "Slash" (/) Series are high-reliability COS/MOS integrated circuits intended for a wide variety of uses in aerospace, military, and critical industrial equipment. CD4013A types consist of two identical, independent data-type flip-flops. Each flip-flop has independent data, set, reset, and clock inputs and " Q " and " \(\overline{\mathrm{Q}}\) " outputs. These devices can be used for shift register applications, and, by connecting " \(\overline{\mathrm{Q}}\) " output to the data input, for counter and toggle applications. The logic level present at the " \(D\) " input is transferred to the " \(Q\) " output during the positive-going transition of the clock pulse. Setting or resetting is independent of the clock and is accomplished by a high level on the set or reset line, respectively.

This device is electrically and mechanically identical with standard COS/MOS CD4013A types described in data bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510 as described in RIC-104, "MIL-M38510 COS/MOS CD4000A Series Types".
RCA Designation
CD4013A
MIL-M-38510/05101

TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|}
\hline CL & D & R & S & Q & \(\overline{\mathrm{Q}}\) \\
\hline \(\mathrm{C}^{-}\) & 0 & 0 & 0 & 0 & 1 \\
\hline\(\Gamma\) & 1 & 0 & 0 & 1 & 0 \\
\hline\(\times\) & \(\times\) & 0 & 0 & 0 & \(\overline{\mathrm{a}}\) \\
\hline X & \(\times\) & 1 & 0 & 0 & 1 \\
\hline\(\times\) & \(\times\) & 0 & 1 & 1 & 0 \\
\hline\(\times\) & \(\times\) & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

I = Level change
\(X=\) don't Care case
** = FFI/FF2 TERMINAL ASSIGNments


buFFERED OUTPUTS

TERMINAL \(14=v_{\text {DD }}\)
TERMINAL \(7=\) GND
Fig. 1- Logic diagram and truth table (one of two identical flip-flops).

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4013A "Slash" (/) Series types are supplied in 14-lead dual-in-line ceramic packages (" \(D\) " suffix), in 14-lead ceramic flat packages ("K" suffix), or in chip form (" \(\mathrm{H}^{\prime \prime}\) suffix).


Fig. 2- Minimum n-channel drain characteristics.

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125{ }^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline \(\left(\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}\right.\) ) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline Recommended & \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) & 3 to 15 V \\
\hline Recommended & \\
\hline Input-Voltage Swing & \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\text {SS }}\) \\
\hline Lead Temperature (During Soldering) & \\
\hline At distance 1/16" \(\pm 1 / 32^{\prime \prime}\) & \\
\hline ( \(1.59 \pm 0.79 \mathrm{~mm}\) ) from case & \\
\hline for 10 s max. & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


Fig. 3- Minimum p-channel drain characteristics.


Fig. 4- Typical dissipation characteristics.


Fig. 5- Typical clock frequency vs. \(V_{D D}\).

File No. 697

\section*{STATIC ELECTRICAL CHARACTERISTICS (All Inputs... \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathbf{1}} \leq \mathrm{V}_{\mathrm{DD}}\) )}

Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\begin{tabular}{l}
CHARAC. \\
TERISTIC CURVES \& TEST CIRCUITS Fig. No.
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathrm{O} \\
& \mathrm{~T} \\
& \mathrm{E} \\
& \mathrm{~S}
\end{aligned}
\]} \\
\hline & & & & \multicolumn{7}{|c|}{CD 4013AD,CD4013AK} & & & \\
\hline & & \[
v_{0}
\] & \[
v_{\mathrm{DD}}
\] & \multicolumn{2}{|r|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & & \\
\hline & & Volts & Volts & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\(I_{L}\)} & & 5 & - & 1 & - & 0.005 & 1 & - & 60 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{10} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & \(2^{\circ}\) & - & 0.005 & \(2^{\bullet}\) & - & \(40^{\circ}\) & & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[t]{2}{*}{\(P_{D}\)} & & 5 & - & 5 & - & 0.025 & 5 & - & 300 & \multirow[t]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[t]{2}{*}{6} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 20 & - & 0.05 & 20 & - & 400 & & & \\
\hline \multirow[t]{4}{*}{Output Voltage Low-Level} & \multirow[t]{4}{*}{\(V_{\text {OL }}\)} & & 3 & \(-\) & \(0.55^{*}\) & - & - & \(0.5{ }^{\bullet}\) & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{-} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & & \\
\hline & & & 15 & - & - & - & - & \(0.5^{\bullet}\) & - & \(0.55^{\circ}\) & & & \\
\hline \multirow[t]{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\text {® }}\) & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{-} & \multirow{4}{*}{1} \\
\hline & & & 5 & 499 & - & 4.99 & 5 & - & 4.95 & - & & & \\
\hline & & & 10 & 990 & - & 9.99 & 10 & - & 9.95 & - & & & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & \(14.45^{\circ}\) & - & & & \\
\hline \multirow[t]{2}{*}{Threshold Voltage:} & \(V_{T H}\) & \multicolumn{2}{|l|}{\({ }^{1} D^{\prime}=20 \mu \mathrm{~A}\)} & \(-0.7{ }^{\circ}\) & \(-3^{\bullet}\) & \(-0.7{ }^{*}\) & -1.5 & \(-3^{\text {e }}\) & \(-0.3^{\circ}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{V} & \multirow[b]{2}{*}{-} & \multirow[t]{2}{*}{2} \\
\hline & \(V_{T H}{ }^{P}\) & \multicolumn{2}{|l|}{\({ }^{1} D=20 \mu \mathrm{~A}\)} & \(0.7^{\text {e }}\) & \(3^{\bullet}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3^{\circ}\) & \(0.3^{\circ}\) & \(3^{\bullet}\) & & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Noise Immunity \\
(All Inputs) \\
For Definition. \\
See Appendix
\end{tabular}} & \multirow[t]{2}{*}{\(V_{N L}\)} & 00.8 & 5 & 1.5 & - & \(1.5^{\circ}\) & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{11} & \multirow{4}{*}{1} \\
\hline & & 1 & 10 & \(3^{\bullet}\) & - & \(3^{\bullet}\) & 4.5 & - & \(2.9^{\circ}\) & - & & & \\
\hline & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.2 & 5 & 1.4 & - & \(1.5^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{V} & & \\
\hline & & 9 & 10 & \(2.9{ }^{*}\) & - & \(3^{\circ}\) & 4.5 & - & \(3{ }^{\bullet}\) & - & & & \\
\hline \multirow[t]{2}{*}{Output Drive Current N-Channel} & \multirow[t]{2}{*}{\({ }^{1} \mathrm{D} N\)} & 0.5 & 5 & 0.65 & - & \(0.5{ }^{\bullet}\) & 1 & - & 0.35 & - & \multirow[t]{2}{*}{mA} & \multirow[t]{2}{*}{2,4} & \multirow[t]{2}{*}{2} \\
\hline & & 0.5 & 10 & 1.25 & - & \(1^{\circ}\) & 2.5 & - & 0.75 & - & & & \\
\hline \multirow[t]{2}{*}{P.Channel} & \multirow[t]{2}{*}{\({ }^{1} D^{P}\)} & 4.5 & 5 & \(-0.31\) & - & \(-0.25^{\bullet}\) & \(-0.5\) & - & -0.175 & - & \multirow[t]{2}{*}{\(m A\)} & \multirow[t]{2}{*}{3. 5} & \multirow[t]{2}{*}{2} \\
\hline & & 9.5 & 10 & \(-0.8\) & - & \(-0.65^{\circ}\) & \(-1.3\) & - & -0.45 & - & & & \\
\hline Diode Test, \(100 \mu \mathrm{~A}\) Test Pin & \(V_{\text {DF }}\) & \multicolumn{2}{|l|}{} & - & \(1.5^{\circ}\) & - & - & \(1.5{ }^{\bullet}\) & - & \(1.5 *\) & \(V\) & - & 3 \\
\hline Input Current & 11 & & & - & - & - & 10 & - & - & - & pA & - & - \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.
For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits,
and for Operating Considerations, see Appendix.


Fig. 6-Typical propagation delay time vs. \(C_{L}\).


Fig. 7- Typical transition time vs. \(C_{L}\).

DYNAMIC ELECTRICAL CHARACTERISTICS at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\), and input rise an times \(=20\) ns except \(t_{r} C L, t_{f} C L\)
Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow[b]{3}{*}{\begin{tabular}{l}
TEST CONDITIONS \\
\(V_{D D}\) \\
(Volts)
\end{tabular}} & & LIMIT & & \multirow{3}{*}{UNITS} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathrm{O} \\
& \mathrm{~T} \\
& \mathrm{E} \\
& \mathrm{~S}
\end{aligned}
\]} \\
\hline & & & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { CD4013AD, } \\
& \text { CD4013AK }
\end{aligned}
\]} & & \\
\hline & & & Min. & Typ. & Max. & & \\
\hline \multicolumn{8}{|l|}{CLOCKED OPERATION} \\
\hline \multirow[b]{2}{*}{Propagation Delay Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{PH}\), \\
\({ }^{t}\) PLH
\end{tabular}} & 5 & - & 150 & 300 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 75 & \(110^{\circ}\) & & \\
\hline \multirow{2}{*}{Transition Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}}\) THL. \\
\({ }^{t}\) TLH
\end{tabular}} & 5 & - & 75 & 125 & \multirow{2}{*}{ns} & \multirow{2}{*}{-} \\
\hline & & 10 & - & 50 & 70 & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) WL. \\
\({ }^{t}\) WH
\end{tabular}} & 5 & - & 125 & 200 & \multirow{2}{*}{ns} & \multirow{2}{*}{-} \\
\hline & & 10 & - & 50 & 80 & & \\
\hline \multirow[t]{2}{*}{Clock Rise \& Fall Time} & \multirow[t]{2}{*}{\[
\begin{gathered}
{ }^{*} \mathrm{t}_{\mathrm{r}} \mathrm{CL}, \\
\mathrm{t}_{\mathrm{f}} \mathrm{CL}
\end{gathered}
\]} & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu \mathrm{s}\)} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & - & \(5^{\bullet}\) & & \\
\hline \multirow[b]{2}{*}{Set-Up Time} & & 5 & - & 20 & 40 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 10 & 20 & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[b]{2}{*}{\({ }^{f} \mathrm{CL}\)} & 5 & 2.5 & 4 & - & \multirow[b]{2}{*}{MHz} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & \(7^{\bullet}\) & 10 & - & & \\
\hline Input Capacitance & \(C_{1}\) & Any Input & - & 5 & - & pF & - \\
\hline \multicolumn{8}{|l|}{SET \& RESET OPERATION} \\
\hline \multirow{2}{*}{Propagation Delay Time:} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{PH} \mathrm{L}(\mathrm{R})\), \\
\({ }^{t}{ }^{\prime} L^{\prime} H_{(R)}\)
\end{tabular}} & 5 & - & 175 & 300 & \multirow{2}{*}{ns} & \multirow{2}{*}{-} \\
\hline & & 10 & - & 75 & 110 & & \\
\hline \multirow[t]{2}{*}{Minimum Set and Reset Pulse Widths} & \multirow[t]{2}{*}{\[
\begin{aligned}
& { }^{t} W H(S) \\
& { }^{t} W H(R)
\end{aligned}
\]} & 5 & - & 125 & 250 & \multirow{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 50 & 100 & & \\
\hline
\end{tabular}

Limits with black dot (*) designate 100\% testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2
through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Test is a one input one output only.
* If more than one unit is cascaded in a parallel clocked operation, \(\mathrm{t}_{\mathrm{f}} \mathrm{CL}\) should be made less than or equal to the sum of the fixed propagation delay at 15 pF and the transition time of the output driving stage for the estimated capacitive load.



Fig. 9-Noise immunity test circuit.

Fig. 8-Quiescent device current test circuit.

File No. 697


Fig. 11- Schematic diagram (one of two identical flip-flops).

\section*{Digital Integrated Circuits}

Monolithic Silicon
High-Reliability Slash(/) Series CD4014A/...


High-Reliability
COS/MOS 8-Stage
Static Shift Register
Synchronous Parallel or Serial Input/Serial Output
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment
Special Features:
■ Medium speed operation. . . . . 5 MHz (typ.) clock rate at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\)
- Fully static operation
- MSI complexity on a single chip. . . . . 8 master-slave flip-flops plus output

Applications:
buffering and control gating
- Synchronous parallel input/serial output data queueing

RCA CD4014A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. CD4014A types are 8 -stage parallelinput/serial output registers having common Clock and Parallel/Serial Control inputs, a single Serial Data input, and individual parallel "Jam" inputs to each register stage. Each register stage is a D-type, master-slave flip-flop. In addition to an output from stage 8 , " Q " outputs are also available from stages 6 and 7.
Parallel as well as serial entry is made into the register synchronous with the positive clock line transition and under control of the Parallel/Serial Control input. When the Parallel/Serial Control input is "low", data is serially shifted into the 8 -stage register synchronously with the positive transition of the clock line. When the Parallel/Serial Control input is "high", data is jammed into the 8 -stage register via the parallel input lines and synchronous with the positive transition of the clock line. Register expansion using multiple CD4014A packages is permitted.

These types are electrically and mechanically identical to standard COS/MOS CD4014A types described in data bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510 as described in RIC-104, "MIL-M-38510 COS/MOS CD4000A Series Types".

RCA Designation
CD4014A
MIL-M-38510 Designation
MIL-M-38510/05702
- Parallel to serial data conversion
- General purpose register

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels -/M, /N, and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4014A "Slash" (/) Series types are supplied in 16lead dual-in-line ceramic packages (" \(D\) " suffix), in 16-lead ceramic flat packages (" K " suffix), or in chip form (" H " suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\) ) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{S S} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline Recommended & \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\) ) & 3 to 15 V \\
\hline Recommended & \\
\hline Input-Voltage Swing & \(V_{D D}\) to \(V_{S S}\) \\
\hline Lead Temperature (During Soldering) & \\
\hline At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\) & \\
\hline \((1.59 \pm 0.79 \mathrm{~mm})\) from case & \\
\hline for 10 s max. . . . . . & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


Fig. 1-Logic block diagram and truth table.


Fig. 2-Typ. dissipation characteristics.


Fig. 3-Typ. clock frequency vs. \(V_{D D}\)

STATIC ELECTRICAL CHARACTERISTICS (All Inputs ... \(v_{S S} \leqslant v_{1} \leqslant V_{D D}\) ) Recommended DC Supply Voltage 3 to \(15 v\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathbf{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathbf{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & & \multicolumn{7}{|c|}{CD4014AD, CD4014AK} & & \\
\hline & & \(v_{0}\) & \multirow[b]{2}{*}{VDD Volts} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & Volts & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{\prime}\)} & & 5 & - & 5 & - & 0.5 & 5 & - & 300 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & \(10^{\circ}\) & - & 1 & \(10^{\circ}\) & - & \(300^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{\text {D }}\)} & & 5 & - & 25 & - & 2.5 & 25 & - & 1500 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 100 & - & 10 & 100 & - & 2000 & & \\
\hline \multirow[t]{4}{*}{Output Voltage Low Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & \(0.55^{\circ}\) & - & - & \(0.5{ }^{\bullet}\) & - & - & \multirow[t]{4}{*}{V} & \multirow[t]{4}{*}{1} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 15 & - & - & - & - & \(0.5{ }^{\circ}\) & - & \(0.55{ }^{\circ}\) & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\bullet}\) & - & - & - & - & \multirow{4}{*}{V} & \multirow[t]{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & 14.45 & - & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Threshoid Voltage: N -Channel \\
P.Channel
\end{tabular}} & \(V_{\text {TH }}\) & \multicolumn{2}{|l|}{\(I_{D}=-20 \mu \mathrm{~A}\)} & \(-0.7{ }^{\bullet}\) & \(-3^{\bullet}\) & \(-0.7{ }^{\bullet}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3^{\bullet}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{2} \\
\hline & \(V_{T H}{ }^{P}\) & \multicolumn{2}{|l|}{\(\mathrm{I}^{\prime} \mathrm{D}=20 \mu \mathrm{~A}\)} & \(0.7{ }^{\bullet}\) & \(3{ }^{\circ}\) & \(0.7^{\bullet}\) & 1.5 & \(3^{\circ}\) & \(0.3{ }^{\text {® }}\) & \(3^{\circ}\) & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Noise Immunity (Any Input) \\
For Definition, See Appendix SSD-207
\end{tabular}} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & 0.8 & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & \multirow[b]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & 0.5 & 10 & \(3^{\bullet}\) & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.2 & 5 & 1.4 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[b]{2}{*}{V} & \\
\hline & & 9.5 & 10 & \(2.9{ }^{\circ}\) & - & \(3^{6}\) & 4.5 & - & \(3^{\circ}\) & - & & \\
\hline \multirow[t]{2}{*}{Output Drive Current: N -Channel} & \multirow[b]{2}{*}{\({ }^{1} \mathrm{~N}\)} & 0.5 & 5 & 0.15 & - & \(0.12^{\bullet}\) & 0.3 & - & 0.085 & - & \multirow[t]{2}{*}{mA} & \multirow[b]{2}{*}{2} \\
\hline & & 0.5 & 10 & 0.31 & - & \(0.25{ }^{\circ}\) & 0.5 & - & 0.175 & - & & \\
\hline \multirow[b]{2}{*}{P-Channel} & \multirow[b]{2}{*}{\({ }_{1}{ }^{P}\)} & 4.5 & 5 & -0.1 & - & -0.08 \({ }^{\circ}\) & -0.16 & - & -0.055 & - & \multirow[b]{2}{*}{mA} & \multirow[t]{2}{*}{2} \\
\hline & & 9.5 & 10 & -0.25 & - & \(-0.2^{\circ}\) & -0.44 & - & -0.14 & - & & \\
\hline \[
\begin{aligned}
& \text { Diode Test, } 100 \mu \mathrm{~A} \\
& \text { Test Pin }
\end{aligned}
\] & \(\mathrm{V}_{\text {DF }}\) & & & - & \(1.5{ }^{\circ}\) & - & - & \(1.5{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & V & 3 \\
\hline Input Current & 11 & & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.
For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits. Output Drive Current Test Circuits, and for Operating Considerations, see Appendix.


Fig. 4-Typ. propagation delay time vs. \(C_{L}\).


Fig. 5-Typ. transition time vs. \(C_{L}\).

File No. 720

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, C_{L}=15 \mathrm{pF}\), and input rise and fall times \(=20\) ns except \(t_{r} C L, t_{f} C L\) Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% \rho \mathrm{C}\) (See Appendix for Waveforms).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow[b]{2}{*}{TEST CONDITIONS} & & LIMIT & & \multirow{3}{*}{UNITS} & \multirow[b]{3}{*}{N
O
T
E
S} \\
\hline & & & \multicolumn{3}{|l|}{CD 4014AD, CD4014AK} & & \\
\hline & & \(\mathrm{V}_{\mathrm{DD}}\) (Volts) & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{pHL}}, \\
& \mathrm{t}_{\mathrm{PLH}}
\end{aligned}
\]} & 5 & - & 300 & 750 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & & 10 & - & 100 & \(225^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Transition Time} & \multirow[t]{2}{*}{\[
{ }^{\mathrm{t}} \mathrm{THL},
\]
\[
{ }^{\text {tTLH }}
\]} & 5 & - & 150 & 300 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & 10 & - & 75 & 125 & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[t]{2}{*}{\[
\begin{aligned}
& { }^{{ }^{\mathrm{W} W \mathrm{~L}}} \\
& { }^{\mathrm{t} W \mathrm{H}} \\
& \hline
\end{aligned}
\]} & 5 & - & 200 & 500 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & 10 & - & 100 & 175 & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Clock \\
Rise \& Fall Time
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{r} C L} \\
& \mathrm{t}_{\mathrm{f} C L^{*}}
\end{aligned}
\]} & 5 & - & - & 15 & \multirow[t]{2}{*}{\(\mu \mathrm{s}\)} & \multirow[t]{2}{*}{1} \\
\hline & & 10 & - & - & \(15^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Set-Up Time} & & 5 & - & 100 & 350 & & - \\
\hline & & 10 & - & 50 & 80 & ns & - \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[t]{2}{*}{\({ }^{\text {f }} \mathrm{CL}\)} & 5 & 1 & 2.5 & - & \multirow[t]{2}{*}{MHz} & \multirow[t]{2}{*}{1} \\
\hline & & 10 & \(3^{\circ}\) & 5 & - & & \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & Any Input & - & 5 & - & pF & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Test is a one input one output only.
* If more than one unit is cascaded \(t_{f} C L\) should be made less than or equal to the sum of the fixed propagation delay at 15 pF and the transition time of the output driving stage for the estimated capacitive load.


Test performed with the following sequence of " 1 ' \(s\) " and " 0 ' \(s\) "


Fig. 7-Noise immunity test circuit.
\begin{tabular}{lccccc} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{4}\) & \(\mathrm{~S}_{5}\) \\
Don't & 0 & 1 & 1 & 0 & 0 \\
Test & 0 & & & \\
Test & 0 & 1 & 1 & 1 & 0 \\
Test & 1 & 0 & 0 & 0 & 0 \\
Test & 1 & 0 & 1 & 1 & 1 \\
Test & 1 & 0 & 0 & 0 & 1
\end{tabular}

Fig. 6-Quiescent device current test circuit.
\(\qquad\)


Fig. 8 -Schematic diagram - CD4014A.


Solid State Division

Digital Integrated Circuits
Monolithic Silicon High-Reliability Slash(/) Series CD4015A/...


\author{
High-Reliability COS/MOS Dual 4-Stage Static Shift Register \\ With Serial Input/Parallel Output \\ For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment \\ \section*{Special Features} \\ - Medium speed operation. .....5 5 MHz (typ.) clock rate at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\) \\ - Fully static operation \\ - MSI complexity on a single chip. . . . . . 8 master-slave flip-flops plus output buffering \\ Applications \\ - Serial to parallel data conversion \\ - Serial-input/parallel-output data queueing \\ - General purpose register
}

RCA CD4015A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of uses in aerospace, military, and critical industrial equipment. CD4015A types consist of two identical, independent, 4-stage serial input/parallel-output registers. Each register has independent "Clock" and "Reset" inputs as well as a single serial "Data" input. " \(Q\) " outputs are available from each of the four stages on both registers. All register stages are Dtype, master-slave flip-flops. The logic level present at the data input is transferred into the first register stage and shifted over one stage at each positive-going clock transition. Resetting of all stages is accomplished by a high level on the reset line. Register expansion to 8 stages using one CD4015A package, or to more than 8 stages using additional CD4015A packages is possible.
These devices are electrically and mechanically identical with standard COS/MOS CD4015A types described in data bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510 as described in RIC-104, "MIL-M- 38510 COS/MOS CD4000A Series Types".

RCA Designation
MIL-M-38510 Designation
CD4015A
MIL-M-38510/05703
The packaged types can be supplied to six screening levels \(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3, / 4\) - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4015A "Slash" (/) Series types are supplied in 16lead dual-in-line ceramic packages (" \(D\) " suffix), in 16-lead ceramic flat packages ("K" suffix), or in chip form (" H " suffix!.

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline \(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{S S} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline Recommended & \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) & 3 to 15 V \\
\hline Recommended & \\
\hline Input-Voltage Swing & \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\text {SS }}\) \\
\hline Lead Temperature (During Soldering) & \\
\hline At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\) & \\
\hline \((1.59 \pm 0.79 \mathrm{~mm})\) from case & \\
\hline for 10 s max. & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


File No. 721

STATIC ELECTRICAL CHARACTERISTICS (All Inputs . . . \(V_{S S} \leqslant V_{I} \leqslant V_{D D}\) )
Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathbf{O} \\
& \mathrm{~T} \\
& \mathrm{E} \\
& \mathrm{~S}
\end{aligned}
\]} \\
\hline & & & & \multicolumn{7}{|c|}{CD4015AD, CD4015AK} & & \\
\hline & & \multirow[t]{2}{*}{\(v_{0}\) Volts} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(\mathrm{V}_{\mathrm{DD}}\) \\
Volts
\end{tabular}} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{1} \mathrm{~L}\)} & & 5 & - & 5 & - & 0.5 & 5 & - & 300 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & \(0.5{ }^{\circ}\) & - & 1 & \(0.5{ }^{\circ}\) & - & \(10^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{\text {D }}\)} & & 5 & -- & 25 & - & 2.5 & 2.5 & - & 1500 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 5 & - & 10 & 5 & - & 100 & & \\
\hline \multirow[t]{4}{*}{Output Voltage Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & \(0.55^{\bullet}\) & - & - & \(0.5{ }^{\circ}\) & - & - & \multirow{4}{*}{v} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 15 & - & -- & - & - & \(0.5{ }^{\circ}\) & - & \(0.55{ }^{\circ}\) & & \\
\hline \multirow[t]{4}{*}{High-Level} & \multirow[t]{4}{*}{\(\mathrm{v}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\bullet}\) & - & \(2.3{ }^{\bullet}\) & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & \(14.45^{\circ}\) & - & & \\
\hline Threshold Voltage: N-Channel & \(\mathrm{V}_{\text {TH }} \mathrm{N}\) & \(\mathrm{I}_{\mathrm{D}}=-20 \mu \mathrm{~A}\) & & - \(0.3{ }^{\bullet}\) & \(-3^{\bullet}\) & \(-0.7^{\bullet}\) & -1.5 & \(-3^{0}\) & -0.7 \({ }^{\circ}\) & \(-3^{0}\) & & 2 \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \(\mathrm{I}_{\mathrm{D}}=20 \mu \mathrm{~A}\) & & \(0.3{ }^{\bullet}\) & \(3{ }^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3^{\circ}\) & \(0.7{ }^{\circ}\) & \(3{ }^{\bullet}\) & \(v\) & 2 \\
\hline Noise Immunity & \(\mathrm{V}_{\mathrm{NL}}\) & 0.8 & 5 & 1.5 & - & \(1.5^{\circ}\) & 2.25 & - & 1.4 & - & & \\
\hline (Any Input) & \({ }_{\text {NL }}\) & 1 & 10 & \(3^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & V & \\
\hline For Definition, & \(\mathrm{V}_{\mathrm{NH}}\) & 4.2 & 5 & 1.4 & - & \(1.5^{\circ}\) & 2.25 & - & 1.5 & - & & 1 \\
\hline \[
\begin{aligned}
& \text { See Appendix } \\
& \text { SSD-207 } \\
& \hline
\end{aligned}
\] & & 9 & 10 & \(2.9{ }^{\bullet}\) & - & \(3^{\circ}\) & 4.5 & - & \(3^{\circ}\) & - & \(v\) & \\
\hline Output Drive Current: & \(\mathrm{I}_{\mathrm{D}}\) & 0.5 & 5 & 0.15 & - & \(0.125^{\circ}\) & 0.3 & - & 0.085 & - & & \\
\hline N-Channel & & 0.5 & 10 & 0.31 & - & \(0.25{ }^{\circ}\) & 0.5 & - & 0.175 & - & mA & 2 \\
\hline P.Channel & \({ }_{D}{ }^{P}\) & 4.5 & 5 & -0.1 & - & \(-0.08{ }^{\circ}\) & -0.16 & - & -0.055 & - & & \\
\hline & & 9.5 & 10 & -0.25 & - & \(-0.2^{\text {® }}\) & -0.44 & - & -0.14 & - & mA & 2 \\
\hline Diode Test, \(100 \mu \mathrm{~A}\)
Test Pin & \(V_{\text {DF }}\) & & & - & \(1.5{ }^{\circ}\) & - & - & \(1.5{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & v & 3 \\
\hline Input Current & 11 & & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.
For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits, and for Operating Considerations, see Appendix.

CD4015A Slash (/) Series \(\qquad\) File No. 721

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\) and \(C_{L}=15 \mathrm{pF}\)
Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% \rho \mathrm{C}\). (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{Limits} & \multirow{3}{*}{UNITS} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \mathbf{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathbf{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & \multicolumn{3}{|c|}{CD4015AD, CD4015AK} & & \\
\hline & & \[
\begin{array}{|l|}
\hline V_{D D} \\
\text { (Volts) } \\
\hline
\end{array}
\] & Min. & Typ. & Max. & & \\
\hline \multicolumn{8}{|l|}{CLOCKED OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \begin{array}{l}
\mathrm{t}_{\text {PHL' }} \\
\mathrm{t}_{\text {PLH }}
\end{array}
\end{aligned}
\]} & 5 & - & 300 & 750 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & & 10 & - & 100 & 225. & & \\
\hline \multirow[t]{2}{*}{Transition Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{THL}^{\prime}\). \\
\({ }^{t}\) TLH
\end{tabular}} & 5 & - & 150 & 300 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & 10 & - & 75 & 125 & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[t]{2}{*}{\[
\begin{aligned}
& { }^{\text {twL }} \\
& { }^{\text {twh }}
\end{aligned}
\]} & 5 & - & 200 & 500 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 100 & 175 & & \\
\hline \multirow[t]{2}{*}{Clock Rise \& Fall Time} & \multirow[t]{2}{*}{\[
{ }^{*} \mathrm{t}_{\mathrm{r} C L} .
\]
\[
t_{f C L}
\]} & 5 & - & - & 15 & \multirow[t]{2}{*}{\(\mu_{\text {s }}\)} & \multirow[t]{2}{*}{1} \\
\hline & & 10 & - & - & 15 • & & \\
\hline \multirow[t]{2}{*}{Set-Up Time} & & 5 & - & 100 & 350 & ns & - \\
\hline & & 10 & - & 50 & 80 & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[b]{2}{*}{\({ }^{\text {f }} \mathrm{CL}\)} & 5 & 1 & 2.5 & - & \multirow[b]{2}{*}{MHz} & \multirow{2}{*}{1} \\
\hline & & 10 & \(3 \cdot\) & 5 & - & & \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & & - & 5 & - & pF & - \\
\hline \multicolumn{8}{|l|}{RESET OPERATION} \\
\hline \multirow[b]{2}{*}{Propagation Delay Time} & \multirow[b]{2}{*}{\({ }^{\text {P PHLIR }}\) )} & 5 & - & 300 & 750 & \multirow{2}{*}{ns} & \multirow{2}{*}{-} \\
\hline & & 10 & - & 100 & 225 & & \\
\hline \multirow[t]{2}{*}{Minimum Set and Reset Pulse Widths} & \multirow[b]{2}{*}{\({ }^{\text {t }} \mathrm{WH}(\mathrm{R})\)} & 5 & - & 200 & 500 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & 10 & - & 100 & 175 & & \\
\hline
\end{tabular}
* If more than one unit is cascaded in a parallel clocked operation, \(t_{r} C L\) should be made less than or equal to the sum of the fixed propagation delay time at 15 pF and the transition time of the output driving stage for the estimated capacitive load.

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
NOTE 1. Test is a one input one output only.


Fig. 4-Typ. transition time vs. \(C_{L}\).


Fig. 5-Typ. dissipation characteristics.


Test performed with the following
sequence of " 1 ' \(s\) " and " 0 ' \(s\) "
\begin{tabular}{rccc} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~s}_{3}\) \\
Test & 0 & 1 & 0 \\
Don't Test & 0 & 0 & 1 \\
Don't Test & 1 & 0 & 1 \\
Don't Test & 0 & 0 & 0 \\
Don't Test & 1 & 0 & 0 \\
Don't Test & 0 & 0 & 1 \\
Test & 1 & 0 & 1 \\
Don't Test & 0 & 0 & 0 \\
Test & 1 & 0 & 0
\end{tabular}

Fig. 6-Quiescent device current
test circuit.


Fig. 7-Noise immunity test circuit.


Fig. 8-Schematic diagram.


High-Reliability COS/MOS Quad Bilateral Switch
For Transmission or Multiplexing of Analog or Digital Signals
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment

\section*{Special Features}
- Wide range of digital and analog signal levels Digital or analog signal to 15 V peak Analog signal \(\pm 7.5 \mathrm{~V}\) peak
- Low "ON" resistance\(300 \Omega\) typ. over \(15 \mathrm{~V}_{\mathrm{p} \text {-p }}\) signal input range, for \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=15 \mathrm{~V}\)
- Matched switch characteristics \(40 \Omega\) typ. difference between \(\mathrm{R}_{\mathrm{ON}}\) values at a fixed bias point over \(15 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\) signal input range \(V_{D D}-V_{S S}=15 \mathrm{~V}\)
- High "On/Off" output voltage ratio - 65 dB type@ \(\mathrm{f}_{\mathrm{is}}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\)
- High degree of linearity \(-<\mathbf{0 . 5 \%}\) distortion typ. @ \(f_{\text {is }}=\mathbf{1 k H z}\), \(\mathrm{V}_{\text {is }}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} \geqslant 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\).

RCA CD4016A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. These devices are electrically and mechanically identical with standard COS/MOS CD4016A types described in data bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M38510 as described in RIC-104, "MIL-M-38510 COS/MOS CD4000A Series Types".

RCA Designation
CD4016A

MIL-M-38510 Designation
MIL-M-38510/05801

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

\section*{Applications}
- Analog signal switching/multiplexing
\begin{tabular}{ll} 
Signal gating & Modulator \\
Squelch control & Demodulator \\
Chopper & Commutating switch
\end{tabular}
- Digital signal switching/Multiplexing
- COS/MOS logic implementation
- Analog-to-digital \& digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain
- Extremely low "OFF" switch leakage resulting in very low offset current and high effective "OFF" resistance 10 pA typ. @ \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
- Extremely high control input impedance (control circuit isolated from signal circuit) - \(10^{12} \Omega\) typ.
- Low crosstalk between switches -
-50 dB typ. @ \(\mathrm{f}_{\text {is }}=0.9 \mathrm{MHz}, R_{\mathrm{L}}=1 \mathrm{k} \Omega\)
- Matched control-input to signal-output capacitances Reduces output signal transients
- Transmits frequencies up to 10 MHz

The CD4016A "Slash" (/) Series types are supplied in 14lead dual-in-line ceramic packages ("D" suffix), in 14-lead ceramic flat packages (" K " suffix), or in chip form (' H " suffix).


NOTE: All switch P-channel substrates are internally connected to terminal No. 14 All :with \(N\)-channel substrates are internally connected to terminal No. 7.
Caution:
If \(V_{i,}\), uxceecd. \(V_{D D}\), input currents
must not be allowed to exceed 5 mA .
Fig. 1-Schematic diagram.

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Storage-Temperature Range
Operating-Temperature Range
-65 to \(+150^{\circ} \mathrm{C}\)
-55 to \(+125^{\circ} \mathrm{C}\)
DC' Supply-Voltage Range:
\(\left(V_{D D}-V_{S S}\right)\)
Device Dissipation (Per Package)
All Input:

\section*{Recommended}

DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) \(\ldots\). . 3 to 15 V
Recommended
Input-Voltage Swing
\(V_{D D}\) to \(V_{S S}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
\((1.59 \pm 0.79 \mathrm{~mm})\) from case
for 10 s max.

ELECTRICAL CHARACTERISTICS (All inputs.
\(V_{S S} \leqslant V_{1} \leqslant V_{D D}\) (Recommended DC Supply Voltage ( \(V_{D D^{-}} V_{S S}\) ) .....3tolsV)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{3}{|c|}{\multirow{3}{*}{test Conditions}} & \multicolumn{6}{|c|}{Limits} & \multirow{3}{*}{UNITS} & \multirow[b]{3}{*}{N
O
T
E
S} \\
\hline & & & & & \multicolumn{2}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & & Min. & Max. & Min. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Dissipation per Package} & \multirow[b]{2}{*}{\(P_{\text {D }}\)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& v_{D D} \\
& v_{S S}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\frac{\text { TERMINALS }}{14}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { VOLTS } \\
& \frac{\text { APPLIED }}{+10} \\
& \text { GND }
\end{aligned}
\]} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{\(5^{\circ}\)} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{5} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{300} & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \multirow{5}{*}{1} \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
All Switches \\
Ouiescent \\
Device Current
\end{tabular}} & \multirow{3}{*}{\({ }^{\prime}\) L} & \multirow[t]{3}{*}{\(v_{C}\)
\(v_{\text {Is }}\)
\(v_{\text {OS }}\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 5,6,12,13 \\
& 1,4,8,11 \\
& 2,3,9,10 \\
& \hline
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
GND \\
\(\leqslant+10\) \\
\(\leqslant+10\)
\end{tabular}} & \multirow{3}{*}{-} & \multirow{3}{*}{\(0.5{ }^{\bullet}\)} & \multirow{3}{*}{-} & \multirow{3}{*}{\(0.5{ }^{\text {e }}\)} & \multirow{3}{*}{-} & \multirow{3}{*}{\(10^{\bullet}\)} & \multirow{3}{*}{\(\mu \mathrm{A}\)} & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Quiescent Dissipation per Package} & \multirow{3}{*}{\(P_{0}\)} & \multirow{3}{*}{\[
\begin{aligned}
& \mathrm{v}_{\mathrm{DD}} \\
& \mathrm{v}_{\mathrm{SS}}
\end{aligned}
\]} & TERMINALS & \[
\begin{aligned}
& \text { VOLTS } \\
& \text { APPLIED } \\
& \hline
\end{aligned}
\] & \multirow{3}{*}{-} & \multirow{3}{*}{5} & \multirow{3}{*}{-} & \multirow{3}{*}{5} & \multirow{3}{*}{-} & \multirow{3}{*}{300} & \multirow{3}{*}{\(\mu \mathrm{W}\)} & \multirow{4}{*}{1} \\
\hline & & & \[
\begin{aligned}
& 14 \\
& 7
\end{aligned}
\] & \[
\begin{aligned}
& +10 \\
& \text { GND } \\
& +10 \\
& \leqslant+10
\end{aligned}
\] & & & & & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
All Switches "ON" \\
Quiescent \\
Device Current
\end{tabular}} & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& +10 \\
& \leqslant+10
\end{aligned}
\]} & & & & & & & & \\
\hline & 'L & \multicolumn{2}{|l|}{\[
\begin{aligned}
& v_{\mathrm{C}} \quad 5,6,12,13 \\
& v_{\text {is }}=v_{\text {os }} 1 \cdot 4,8 \cdot 11 \\
& \hline
\end{aligned}
\]} & & - & \(0.5^{\bullet}\) & - & \(0.5 *\) & - & \(10^{\circ}\) & \(\mu \mathrm{A}\) & \\
\hline Output Voltage & \multirow[b]{3}{*}{\(\mathrm{v}_{\mathrm{OL}}\)} & & & \(\mathrm{V}_{\text {DD }}\) & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{\(0.55^{\circ}\)} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{\(0.5{ }^{\circ}\)} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} & \multirow{5}{*}{v} & \\
\hline \multirow[t]{2}{*}{Low-Level} & & & & 3 & & & & & & & & \multirow{4}{*}{1} \\
\hline & & & & 15 & - & - & - & \(1{ }^{\circ}\) & - & 2 * & & \\
\hline \multirow[t]{2}{*}{High-Level} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\circ}\) & - & - & - & & \\
\hline & & & & 15 & - & - & \(14^{\circ}\) & - & \(13^{\circ}\) & - & & \\
\hline Threshold Voltage N -Channel & \(V_{T H} \mathrm{~N}\) & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \mathrm{IDS}^{=}=-10 \mu \mathrm{~A} \text { Terminal } 13=\mathrm{GND} \\
& \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, 10 \mathrm{~V}
\end{aligned}
\]} & \(-0.7{ }^{\bullet}\) & \(-3^{\bullet}\) & -0.7* & \(-3^{\circ}\) & \(-0.3^{\bullet}\) & \(-3^{*}\) & V & 2 \\
\hline P.Chanrel & \(V_{T H}{ }^{P}\) & \multicolumn{3}{|l|}{\[
\begin{aligned}
& I_{D S}=10 \mu \mathrm{~A} \text { Terminal } 13=\mathrm{GND} \\
& V_{D D}=5 \mathrm{~V} .10 \mathrm{~V}
\end{aligned}
\]} & \(0.7{ }^{\circ}\) & \(3{ }^{\circ}\) & \(0.7{ }^{\circ}\) & \(3^{\bullet}\) & \(0.3{ }^{\circ}\) & \(3^{*}\) & v & 2 \\
\hline Diode Test & \(V_{\text {DF }}\) & \multicolumn{3}{|l|}{\(100 \mu \mathrm{~A}\) Test pin} & - & \(1.5{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & V & 3 \\
\hline
\end{tabular}

Limits with black dot ( \((\bullet)\) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs
Note 2: Test is either a one input or a one output only.
\(\bullet \pm 10 \times 10^{-3} \quad \Delta\) Symmetrical about 0 volts

ELECTRICAL CHARACTERISTICS (Cont'd)


Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.
\(\cdot \pm 10 \times 10^{-3} \quad\) ASymmetrical about 0 volts

File No. 744

ELECTRICAL CHARACTERISTICS (AII Inputs
\[
v_{S S} \leqslant v_{1} \leqslant v_{D D^{\prime}}
\]
(Recommended DC Supply Voltage ( \(V_{D D}-V_{S S}\) ).......... 3 to 15 V)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|r|}{\multirow{4}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathrm{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & & \multicolumn{7}{|c|}{CD4016AD, CD4016AK} & & \\
\hline & & & & \multicolumn{2}{|r|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multicolumn{13}{|l|}{CONTROL ( \(\mathrm{V}_{\mathbf{C}}\) )} \\
\hline Switch Threshold Voltage & \(V_{T M^{\prime}}\) & & \[
\begin{aligned}
& V_{D D}-V_{S S}=15 \mathrm{~V}, 10 \mathrm{~V}, 5 \mathrm{~V}, \\
& I_{I S}=10 \mu \mathrm{~A}
\end{aligned}
\] & 0.7 & 2.9 & 0.5 & 1.5 & 2.7 & 0.2 & 2.4 & & - \\
\hline Input Current & \({ }^{\prime} \mathrm{C}\) & \(\mathrm{V}_{\text {IS }} \leqslant \mathrm{V}_{\text {DD }}\) & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{DD}}-\mathrm{v}_{\mathrm{SS}}=10 \mathrm{~V} \\
& \mathrm{v}_{\mathrm{C}} \leqslant \mathrm{v}_{\mathrm{DD}}-\mathrm{v}_{\mathrm{SS}}
\end{aligned}
\] & - & - & - & \(\pm 10\) & - & - & - & pA & - \\
\hline Nolise Immunity (Control Inputs) & \(V_{\text {NL }}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(V_{D D}=10 \mathrm{~V}\)}} & \(0.5{ }^{\text {® }}\) & - & \(0.7{ }^{*}\) & - & - & \(0.5{ }^{\circ}\) & - & \multirow[b]{2}{*}{V} & \multirow[b]{2}{*}{1} \\
\hline For Definition, See Appendix SSD-207 & \(\mathrm{V}_{\mathrm{NH}}\) & & & - & \(3^{\circ}\) & - & - & \(2.7{ }^{\circ}\) & - & \(3^{\circ}\) & & \\
\hline Average Input Capacitance & \(\mathrm{C}_{\mathrm{C}}\) & & & - & - & - & -5 & - & - & - & pF & - \\
\hline Crosstalk Control Input to Signal Output & & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
\begin{aligned}
& V_{D D}-V_{S S} \\
& =10 \mathrm{~V}, \\
& V_{C}=10 \mathrm{~V}
\end{aligned}
\] \\
(square wave)
\[
\begin{aligned}
& \mathrm{t}_{\mathrm{rc}}=\mathrm{t}_{\mathrm{fc}}= \\
& 20 \mathrm{~ns}
\end{aligned}
\]
\end{tabular}} & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & - & - & - & 50 & - & - & - & mV & - \\
\hline Turn "ON" Propagation Delay & \({ }^{t}{ }_{p d} \mathrm{C}\) & & \(\mathrm{V}_{\text {is }} \leqslant 10 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & - & - & - & 20 & \(50^{\circ}\) & - & -- & ns & 2 \\
\hline Maximum Allowable Control Input Repetition Rate & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{S S}=G N D, R_{L}=1 \mathrm{k} \Omega \\
& C_{L}=15 \mathrm{pF} \\
& V_{\mathrm{C}}=10 \mathrm{~V} \text { (square wave) } \\
& \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}
\end{aligned}
\]} & - & - & - & 10 & - & - & - & MHz & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

NOTE 1: Test is all inputs

TYPICAL "ON" RESISTANCE CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{CHARACTERISTIC*} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SUPPLY CONDITIONS}} & \multicolumn{6}{|c|}{LOAD
CONDITIONS} \\
\hline & & & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\)} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=10 \mathrm{kS}\) 2} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega 2\)} \\
\hline & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OD}} \\
& (\mathrm{~V})
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{\mathbf{S S}} \\
& \text { (V) }
\end{aligned}
\] & VALUE
(S2) & \[
\begin{aligned}
& V_{\text {is }} \\
& \text { (V) }
\end{aligned}
\] & \[
\begin{array}{|c}
\hline \text { VALUE } \\
\text { (S2) }
\end{array}
\] & \[
\begin{aligned}
& \mathrm{V}_{\text {is }} \\
& \text { (V) }
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline \text { VALUE } \\
(S 2)
\end{array}
\] & \[
\begin{aligned}
& \mathrm{V}_{\text {is }} \\
& \text { (V) }
\end{aligned}
\] \\
\hline \multirow[b]{2}{*}{\(\mathrm{R}_{\mathrm{ON}}\)} & \multirow[b]{2}{*}{+15} & \multirow[b]{2}{*}{0} & 200 & +15 & 200 & +15 & 180 & +15 \\
\hline & & & 200 & 0 & 200 & 0 & 200 & 0 \\
\hline \(\mathrm{R}_{\mathrm{ON}}(\) max.) & +15 & 0 & 300 & +11 & 300 & +9.3 & 320 & +9.2 \\
\hline \multirow[b]{2}{*}{\(\mathrm{R}_{\mathrm{ON}}\)} & \multirow{2}{*}{+10} & \multirow{2}{*}{0} & 290 & +10 & 250 & +10 & 240 & +10 \\
\hline & & & 290 & 0 & 250 & 0 & 300 & 0 \\
\hline \(\mathrm{R}_{\mathrm{ON}}{ }^{\text {(max. }}\) ) & +10 & 0 & 500 & +7.4 & 560 & +5.6 & 610 & +5.5 \\
\hline \multirow[b]{2}{*}{\(\mathrm{R}_{\mathrm{ON}}\)} & \multirow[b]{2}{*}{+ 5} & \multirow{2}{*}{0} & 860 & + 5 & 470 & + 5 & 450 & + 5 \\
\hline & & & 600 & 0 & 580 & 0 & 800 & 0 \\
\hline \(\mathrm{R}_{\mathrm{ON}}{ }^{\text {(max.) }}\) & \(+5\) & 0 & 1.7k & +4.2 & 7k & +2.9 & 33k & +2.7 \\
\hline \multirow[b]{2}{*}{\(\mathrm{R}_{\mathrm{ON}}\)} & \multirow[b]{2}{*}{+7.5} & \multirow[b]{2}{*}{-7.5} & 200 & +7.5 & 200 & +7.5 & 180 & +7.5 \\
\hline & & & 200 & -7.5 & 200 & -7.5 & 180 & -7.5 \\
\hline \(\mathrm{R}_{\mathrm{ON}}{ }^{\text {(max. })}\) & +7.5 & -7.5 & 290 & \(\pm 0.25\) & 280 & \(\pm 25\) & 400 & \(\pm 0.25\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{R}_{\mathrm{ON}}\)} & \multirow[b]{2}{*}{\(+5\)} & \multirow[b]{2}{*}{- 5} & 260 & + 5 & 250 & + 5 & 240 & + 5 \\
\hline & & & 310 & - 5 & 250 & -5 & 240 & -5 \\
\hline \(\mathrm{R}_{\mathrm{ON}}{ }^{\text {(max.) }}\) & \(+5\) & - 5 & 600 & \(\pm 0.25\) & 580 & \(\pm 0.25\) & 760 & \(\pm 0.25\) \\
\hline \multirow[b]{2}{*}{\(\mathrm{R}_{\mathrm{ON}}\)} & \multirow[b]{2}{*}{+2.5} & \multirow[b]{2}{*}{-2.5} & 590 & +2.5 & 450 & +2.5 & 490 & +2.5 \\
\hline & & & 720 & -2.5 & 520 & -2.5 & 520 & -2.5 \\
\hline \(\mathrm{R}_{\mathrm{ON}}{ }^{\text {(max. })}\) & +2.5 & -2.5 & 232k & \(\pm 0.25\) & 300k & \(\pm 0.25\) & 870k & \(\pm 0.25\) \\
\hline
\end{tabular}
- Variation from a perfect switch; RON \(=0 \Omega 2\).


Fig. 2-Typ. "ON" characteristics for 1 of 4 switches with \(v_{D D}=+15 \mathrm{~V}, v_{S S}=O V\).


Fig. 4-Typ. "ON" characteristics for 1 of 4 switches with \(V_{D D}=+5 \mathrm{~V}, V_{S S}=O V\).


Fig. 6-Typ. "ON" characteristics for 1 of 4 switches with \(V_{D D}=+5 \mathrm{~V}, V_{S S}=-5 \mathrm{~V}\).


Fig. 3-Typ. "ON" characteristics for 1 of 4 switches with \(V_{D D}=+10 \mathrm{~V}\). \(V_{S S}=O V\).


Fig. 5-Typ. "ON" characteristics for 1 of 4 switches with \(V_{D D}=+7.5 \mathrm{~V}\), \(V_{S S}=-7.5 \mathrm{~V}\).


Fig. 7-Typ. "Ofi" characteristics for 1 of 4 switches with \(V_{D D}=+2.5 \mathrm{~V}\),
\(v_{S S}=-2.5 \mathrm{~V}\).


Fig. 8-Typ. "ON" characteristics as a
function of temp. for 1 of 4
switches with \(V_{D D}=+5 \mathrm{~V}\),
\(V_{S S}=-5 V\).


Fig. 10-Typ. crosstalk between switch circuits in the same package.


ALL UNUSED TERMINALS ARE CONNECTED TO \(V_{S S}\)


Fig. 9-Typ. feedthru vs. freq. - switch "OFF".


Fig. 11-Typ. switch frequency response -switch "ON".

\[
\begin{aligned}
& \text { ALL UNUSED TERMINALS } \\
& \text { ARE CONNECTED TO V }{ }^{\text {SS }} \\
& 92 C S-16089
\end{aligned}
\]

Fig. 13-Max. allowable control-input repetition rate.


Solid State Division

Digital Integrated Circuits Monolithic Silicon High-Reliability Slash(/) Series CD4017A/...


RCA CD4017A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. CD4017A types consist of a 5 -stage Johnson decade counter and an output decoder which converts the Johnson binary code to a decimal number: Inputs include a "Clock", a "Reset", and a "Clock Enable" signal.

The decade counter is advanced one count at the positive clock signal transition if the clock enable signal is "low". Counter advancement via the clock line is inhibited when the clock enable signal is "high". A "high" reset signal clears the decade counter to its zero count. Use of the

\section*{High-Reliability COS/MOS Decade Counter/Divider}

Plus 10 Decoded Decimal Outputs
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment

\section*{Special Features:}
- Medium speed operation. . . . . 5 MHz (typ.) at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\)
- Fully static operation
- MSI complexity on a single chip. . . . . . decade counter plus 10 decoded outputs Applications:
- Decade counter/decimal decode display applications
- Frequency division
- Counter control/timers
- Divide by \(\mathbf{N}\) counting
\(\mathrm{N}=2-10\) with one CD4017A and one CD4001A
\(\mathrm{N}>10\) with multiple CD4017A's
- For further application information, see ICAN6166
"COS/MOS MSI Counter and Register Design \&
Applications"
Johnson decade counter configuration permits high speed operation, 2 -input decimal decode gating, and spike-free decoded outputs. Anti-lock gating is provided, thus assuring proper counting sequence. The 10 decoded outputs are normally "low" and go "high" for one full clock cycle. A carry-out (COUT) signal completes one cycle every 10

clock input cycles and is used to directly clock th succeeding decade in a multi-decade counting chain.

These devices are electrically and mechanically identical with standard COS/MOS CD4017A types described in data bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510 as described in RIC-104, "MIL-M-38510 COS/MOS CD4000A Series Types".

RCA Designation CD4017A

MIL-M-38510 Designation MI L-M-38510/05601

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD: 883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4017A "Slash" (/) Series types are supplied in 16lead dual-in-line ceramic packages (" \(D\) " suffix), in 16 -lead ceramic flat packages (" K " suffix), or in chip form (" H " suffix).


Fig. 2-Timing diagram.


Fig. 3- Divide by \(N\) counter \((N \leqslant 10)\) with \(N\) decoded outputs.

When the \(N^{\text {th }}\) decoded output is reached ( \(N^{\text {th }}\) clock pulse) the S-R flip flop (constructed from two NOR gates of the CD4001A) generates a reset pulse which clears the CD4017A to its zero count. At this time, if the \(N^{\text {th }}\) decoded output is greater than or equal to 6 , the COUT line goes "high" to clock the next CD4017A counter section. The " 0 " decoded output also goes high at this time. Coincidence of the clock "low" and decoded " 0 " output "low" resets the S-R flip flop to enable the CD4017A. If the \(\mathrm{N}^{\text {th }}\) decoded output is less than 6, the COUT line will not go "high" and, therefore, cannot be used. In this case " 0 " decoded output may be used to perform the clocking function for the next counter.

STATIC ELECTRICAL CHARACTERISTICS (AII Inputs ... \(V_{S S} \leqslant V_{1} \leqslant V_{D D}\) ) Recommended DC Supply Voltage 3 to \(15 v\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \mathbf{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathbf{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & & & \multicolumn{7}{|c|}{CD4017AD, CD4017AK} & & \\
\hline & & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{\(v_{0}\) Volts}} & \multirow[b]{2}{*}{\(V_{D D}\) Volts} & \multicolumn{2}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{1} \mathrm{~L}\)} & & & 5 & - & 5 & - & 0.3 & 5 & - & 300 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & & 10 & - & \(10^{\circ}\) & - & 0.5 & \(10^{\circ}\) & - & \(200{ }^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{\text {D }}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & 5 & - & 25 & - & 1.5 & 25 & - & 1500 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[b]{2}{*}{-} \\
\hline & & & & 10 & - & 100 & - & 5 & 100 & - & 2000 & & \\
\hline \multirow[t]{4}{*}{Output Voltage Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\text {OL }}\)} & & & 3 & - & \(0.55{ }^{\circ}\) & - & - & \(0.5^{\circ}\) & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & & 15 & - & - & - & - & \(0.5{ }^{\circ}\) & - & \(0.55^{\circ}\) & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\circ}\) & - & - & - & - & \multirow{4}{*}{v} & \multirow{4}{*}{1} \\
\hline & & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & \(14.45^{\circ}\) & - & & \\
\hline \begin{tabular}{l}
Threshold Voltage: \\
N-Channel
\end{tabular} & \(\mathrm{V}_{\text {TH }} \mathrm{N}\) & \multicolumn{3}{|c|}{\(I_{D}=-20 \mu \mathrm{~A}\)} & \(-0.7^{\circ}\) & \(-3^{\circ}\) & \(-0.7^{\bullet}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3{ }^{\circ}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{v} & \multirow[t]{2}{*}{2} \\
\hline P.Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \multicolumn{3}{|c|}{\(\mathrm{I}_{\mathrm{D}}=20 \mu \mathrm{~A}\)} & \(0.7{ }^{\circ}\) & \(3^{\circ}\) & 0.7 \({ }^{\circ}\) & 1.5 & \(3^{\circ}\) & \(0.3{ }^{\circ}\) & \(3{ }^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Noise Immunity (Any Input)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & & 0.8 & 5 & 1.5 & - & \(1.5^{\circ}\) & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 1 & 10 & \(3^{\bullet}\) & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & & \\
\hline \multirow[t]{2}{*}{For Definition, See Appendix SSD-207} & \multirow[b]{2}{*}{\(\mathrm{V}_{\text {NH }}\)} & & 4.2 & 5 & 1.4 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{V} & \\
\hline & & & 9 & 10 & \(2.9{ }^{\bullet}\) & - & \(3^{\circ}\) & 4.5 & - & \(3{ }^{\bullet}\) & - & & \\
\hline \multirow[t]{4}{*}{Output Drive Current N-Channel} & \multirow{4}{*}{\({ }_{1}{ }^{N}\)} & \multirow[t]{2}{*}{Decoded Outputs} & 0.5 & 5 & 0.06 & - & \(0.05{ }^{\circ}\) & 0.1 & - & 0.035 & - & \multirow[b]{4}{*}{mA} & \multirow[b]{4}{*}{2} \\
\hline & & & 0.5 & 10 & 0.12 & - & \(0.1^{\circ}\) & 0.4 & - & 0.07 & - & & \\
\hline & & \multirow[t]{2}{*}{Carry Output} & 0.5 & 5 & 0.185 & & \(0.15{ }^{\circ}\) & 0.4 & & 0.105 & & & \\
\hline & & & 0.5 & 10 & 0.45 & & \(0.35^{\circ}\) & 1 & & 0.25 & & & \\
\hline \multirow{4}{*}{P-Channel} & \multirow{4}{*}{\({ }_{10}{ }^{P}\)} & \multirow[t]{2}{*}{Decoded Outputs} & 4.5 & 5 & -0.0375 & - & \(-0.03{ }^{\circ}\) & -0.075 & - & -0.021 & - & \multirow{4}{*}{mA} & \multirow{4}{*}{2} \\
\hline & & & 9.5 & 10 & -0.12 & - & \(-0.1^{\circ}\) & -0.2 & - & -0.07 & - & & \\
\hline & & \multirow[t]{2}{*}{Carry Output} & 4.5 & 5 & -0.185 & & \(-0.15^{\circ}\) & -0.4 & & -0.105 & & & \\
\hline & & & 9.5 & 10 & -0.45 & & -0.35 \({ }^{\circ}\) & -1 & & -0.25 & & & \\
\hline \[
\begin{aligned}
& \text { Diode Test, } 100 \mu \mathrm{~A} \\
& \text { Test Pin }
\end{aligned}
\] & \(V_{\text {DF }}\) & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & - & \(1.5{ }^{\circ}\) & - & - & \(1.5{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & V & 3 \\
\hline Input Current & 1 & & & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{DC Supply-Voltage Range:} \\
\hline ( \(\mathrm{V}_{\text {DD }}\) - \(\mathrm{V}_{\text {SS }}\) ) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline \multicolumn{2}{|l|}{Recommended} \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\) ) & 3 to 15 \\
\hline
\end{tabular}

Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . . \(V_{D D}\) to \(V_{S S}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
\((1.59 \pm 0.79 \mathrm{~mm})\) from case
for 10 s max
\(+265{ }^{\circ} \mathrm{C}\)

File No. 741

DYNAMIC ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}, C_{L}=15 \mathrm{pF}\), and input rise and fall times \(=20\) ns except \(t_{r} C L, t_{f} C L\)
Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} & \multirow[b]{3}{*}{\[
\begin{aligned}
& N \\
& \mathbf{N} \\
& \mathbf{T} \\
& \mathrm{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { CD4017AD, } \\
& \text { CD4017AK }
\end{aligned}
\]} & & \\
\hline & & VDD (Volts) & Min. & Typ. & Max. & & \\
\hline \multicolumn{8}{|l|}{CLOCKED OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: Carry Out Line} & \multirow{4}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHL}}{ }^{\prime} \\
& \mathrm{t}_{\mathrm{PLL}}
\end{aligned}
\]} & 5 & - & 350 & 1000 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 125 & 250 & & \\
\hline \multirow{2}{*}{Decode Out Lines} & & 5 & - & 500 & 1200 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 200 & 400 & & \\
\hline \multirow[t]{2}{*}{Transition Time: Carry Out Line} & \multirow{4}{*}{} & 5 & - & 100 & 300 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 50 & 150 & & \\
\hline \multirow[t]{2}{*}{Decode Out Lines} & & 5 & - & 300 & 900 & \multirow{2}{*}{ns} & \multirow{2}{*}{1} \\
\hline & & 10 & - & 125 & 350 & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Minimum Clock * \\
Pulse Width
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) WL. \\
\({ }^{t}\) WH
\end{tabular}} & 5 & - & 200 & 500 & \multirow{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 100 & 170 & & \\
\hline \multirow[t]{2}{*}{Clock Rise \& Fall Time} & \({ }^{\text {r }}\) CL \({ }^{\text {d }}\) & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu s\)} & \multirow[b]{2}{*}{1} \\
\hline & \(\mathrm{t}_{\mathrm{f}} \mathrm{CL}\) & 10 & - & - & 15. & & \\
\hline \multirow[t]{2}{*}{Clock Enable Set-Up Time} & & 5 & - & 175 & 500 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 75 & 200 & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[b]{2}{*}{\({ }^{f} \mathrm{CL}\)} & 5 & 1 & 2.5 & - & \multirow[b]{2}{*}{MHz} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & 3. & 5 & - & & \\
\hline Input Capacitance & \(c_{1}\) & Any Input & - & 5 & - & pF & - \\
\hline \multicolumn{8}{|l|}{RESET OPERATION} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Propagation Delay Time: \\
To Carry Out Line
\end{tabular}} & \multirow{4}{*}{\({ }^{\text {tPHLIR }}\) )} & 5 & - & 350 & 1000 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 125 & 250 & & \\
\hline \multirow{2}{*}{To Decode Out Lines} & & 5 & - & 450 & 1200 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 200 & 400 & & \\
\hline \multirow[t]{2}{*}{Reset Pulse Width} & \multirow[b]{2}{*}{\({ }^{\text {t W }}\) W (R)} & 5 & - & 200 & 500 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 100 & 165 & & \\
\hline \multirow[t]{2}{*}{Reset Removal Time} & & 5 & - & 300 & 750 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 100 & 225 & & \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2
through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Test is a one input one output only.
* Measured with respect to carry output line


Fig. 4 -Quiescent device current test circuit.


Fig. 5 - Noise immunity test circuit.


Fig. 6 - Typ. propagation delay time vs. \(C_{L}\) for decoded outputs.


Fig. 8 - Typ. transition time vs. \(C_{L}\) for decoded outputs.


Fig. 10 - Typ. clock frequency vs. \(V_{D D}\)


Fig. 7 - Typ. propagation delay time vs. \(C_{L}\) for carry output.


Fig. 9 - Typ. transition time vs. \(C_{L}\) for carry output.


Fig. 11 - Typ. dissipation characteristics.


Solid State Division


\section*{High-Reliabilty COS/MOS Presettable Divide-By-'N' Counter}

For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment Special Features
- Medium speed operation. . . . . 5 MHz (typ.) at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\)
- Fully static operation
a MSI complexity on a single chip
Applications
- Fixed and programmable divide-by-10, 9, 8, 7, 6, 5, 4, 3, 2 counters
- Fixed and programmable counters greater than 10
- Programmable decade counters
- Frequency division
- Divide-by-" \(\mathbf{N}^{\prime \prime}\) counters/frequency synthesizers
- Counter control/timers

RCA CD4018A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of uses in aerospace, military, and critical industrial equipment. CD4018A types consist of 5 Johnson-Counter stages, buffered \(\overline{\mathrm{Q}}\) outputs from each stage, and counter preset control gating. "Clock", "Reset", "Data", "Preset Enable", and 5 individual "jam" inputs are provided. Divide by \(10,8,6,4\), or 2 counter configurations can be implemented by feeding
the \(\overline{\mathrm{Q}} 5, \overline{\mathrm{O}} 4, \overline{\mathrm{Q}} 3, \overline{\mathrm{Q}} 2, \overline{\mathrm{Q}} 1\) signals, respectively, back to the Data input. Divide-by-9, 7, 5, or 3 counter configurations can be implemented by the use of a CD4011A gate package to properly gate the feedback connection to the Data input. Divide-by functions greater than 10 can be achieved by use of multiple CD4018A units. The counter is advanced one count at the positive clock-signal transition. A "high" Reset signal clears the counter to an "all-zero" condition. A "high"


Fig. 1-Logic Diagram.

Preset-Enable signal allows information on the Jam inputs to preset the counter. Anti-lock gating is provided to assure the proper counting sequence.

These devices are electrically and mechanically identical with standard CD4018A types described in data bulletin 479 and DATABOOK SSD- 203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510 as described in RIC-104, "MIL-M-38510 COS/MOS CD4000A Series Types".

RCA Designation

\section*{MIL-M-38510 Designation}

CD4018A
MIL-M-38510/05602

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

CD4018A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages (" \(D\) " suffix), in 16-lead ceramic flat packages (" K " suffix), or in chip form (" H " suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline \(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{S S} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {DD }}\) \\
\hline Recommended & \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) & 3 to 15 \\
\hline Recommended & \\
\hline Input-Voltage Swing & \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\text {SS }}\) \\
\hline Lead Temperature (During Soldering) & \\
\hline At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\) & \\
\hline \((1.59 \pm 0.79 \mathrm{~mm})\) from case & \\
\hline for 10 s max. . . . & +263 co \\
\hline
\end{tabular}


Fig. 2-Timing diagram.


Fig. 3-Typ. propagation delay time vs. \(C_{L}\) for decoded outputs.


Fig. 4-Typ. propagation delay time vs. \(C_{L}\) for \(\bar{Q}_{5}\) output.

DYNAMIC ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}, C_{L}=15 \mathrm{pF}\), and input rise and fall times \(=20\) ns except \(t_{r} C L, t_{f} C L\) Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}\) (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} & \multirow[b]{3}{*}{\[
\begin{aligned}
& N \\
& O \\
& T \\
& E \\
& S
\end{aligned}
\]} \\
\hline & & & & \multicolumn{3}{|c|}{CD4018AD, CD4018AK} & & \\
\hline & & & (Volts) & Min. & Typ. & Max. & & \\
\hline \multicolumn{9}{|l|}{CLOCKED OPERATION} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Propagation Delay Time: \\
To \(\overline{\mathrm{O}}_{5}\) Output
\end{tabular}} & \multirow{4}{*}{\({ }^{\text {tPHL}}\).} & & 5 & - & 350 & 1000 & \multirow{2}{*}{ns} & \multirow{2}{*}{1} \\
\hline & & & 10 & - & 125 & 250* & & \\
\hline \multirow[b]{2}{*}{To Other Outputs} & & & 5 & - & 500 & 1200 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & 200 & 400 & & \\
\hline \multirow[t]{2}{*}{Transition Time:
\[
\text { To } \overline{\mathbf{Q}}_{5} \text { Output }
\]} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { t'THL. } \\
& \text { t'TLH }
\end{aligned}
\]} & & 5 & - & 100 & 300 & \multirow[b]{2}{*}{ns} & \multirow{2}{*}{1} \\
\hline & & & 10 & - & 50 & 150 & & \\
\hline \multirow[b]{2}{*}{To Other Outputs} & & & 5 & - & 300 & 900 & \multirow{2}{*}{ns} & \multirow{2}{*}{1} \\
\hline & & & 10 & - & 125 & 350 & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) WL. \\
\({ }^{t}\) WH
\end{tabular}} & & 5 & - & 200 & 500 & \multirow{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 100 & 170 & & \\
\hline \multirow[t]{2}{*}{Clock Rise \& Fall Time} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{r} C L} \\
& \mathrm{t}_{\mathrm{fCL}}
\end{aligned}
\]} & & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu_{s}\)} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & - & 15 & & \\
\hline \multirow[t]{2}{*}{Data Input Set-Up Time} & & & 5 & - & 175 & 500 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 75 & 200 & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Maximum Clock \\
Frequency
\end{tabular}} & \multirow[b]{2}{*}{\({ }^{f} \mathrm{CL}\)} & & 5 & 1 & 2.5 & - & \multirow[t]{2}{*}{MHz} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & \(3 \cdot\) & 5 & - & & \\
\hline Input Capacitance & \(C_{1}\) & \multicolumn{2}{|l|}{Any Input} & - & 5 & - & pF & - \\
\hline \multicolumn{9}{|l|}{PRESET* OR RESET OPERATION} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Propagation Delay Time: \\
To \(\overline{\mathrm{Q}}_{5}\) Output
\end{tabular}} & \multirow[b]{2}{*}{\({ }^{\text {P PLH }}\) (R) .} & & 5 & - & 350 & 1000 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 125 & 250 & & \\
\hline \multirow{2}{*}{To Other Outputs} & \multirow[t]{2}{*}{\[
\begin{aligned}
& { }^{t} \mathrm{PHL}(\mathrm{PR}) \\
& \\
& { }^{\mathrm{t}} \mathrm{PLH}(\mathrm{PR})
\end{aligned}
\]} & & 5 & - & 500 & 1200 & \multirow{2}{*}{ns} & \multirow{2}{*}{-} \\
\hline & & & 10 & - & 200 & 400 & & \\
\hline \multirow[t]{2}{*}{Preset or Reset Pulse Width} & \multirow[t]{2}{*}{\({ }^{t}\) WH(R) \({ }^{t}\) WH(PR)} & & 5 & - & 200 & 500 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 100 & 165 & & \\
\hline \multirow[t]{2}{*}{Preset or Reset Removal Time} & & & +5 & - & 300 & 750 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 100 & 225 & & \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Test is a one input one output only
- At Preset Enable or Jam Inputs.


STATIC ELECTRICAL CHARACTERISTICS (All Inputs... \(V_{S S} \leqslant V_{1} \leqslant V_{D D}\) ) Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|r|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathbf{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathbf{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & & & \multicolumn{7}{|c|}{CD4018AD, CD4018AK} & & \\
\hline & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{O}}\) Volts}} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{DD}}\) Volts} & \multicolumn{2}{|r|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{\prime}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & 5 & - & 5 & - & 0.3 & 5 & - & 300 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & & 10 & - & \(10^{\circ}\) & - & 0.5 & \(10^{\circ}\) & - & \(200^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{\text {D }}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & 5 & - & 25 & - & 1.5 & 25 & - & 1500 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[t]{2}{*}{-} \\
\hline & & & & 10 & - & 100 & - & 5 & 100 & - & 2000 & & \\
\hline \multirow[t]{4}{*}{Output Voltage Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & 3 & - & \(0.55{ }^{\bullet}\) & - & - & \(0.5^{\circ}\) & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & & 15 & - & - & - & - & \(0.5{ }^{\circ}\) & - & \(0.55{ }^{\circ}\) & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & 3 & \(2.25{ }^{\bullet}\) & - & \(2.3{ }^{\circ}\) & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & & 10. & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & \(14.45^{\circ}\) & - & & \\
\hline Threshold Voltage N-Channel & \(\mathrm{V}_{\text {TH }} \mathrm{N}\) & \(I_{D}=\) & \(20 \mu \mathrm{~A}\) & & \(-0.7^{\bullet}\) & \(-3^{\bullet}\) & -0.7* & -1.5 & \(-3^{\circ}\) & -0.3 \({ }^{\text {® }}\) & \(-3^{\bullet}\) & & 2 \\
\hline P.Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \(\mathrm{I}_{\mathrm{D}}=\) & \(0 \mu \mathrm{~A}\) & & \(0.7{ }^{\circ}\) & \(3^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3^{\bullet}\) & \(0.3{ }^{\circ}\) & \(3^{\circ}\) & \(\checkmark\) & 2 \\
\hline Noise Immunity & & & 0.8 & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & & \\
\hline (Any Input) & \(\mathrm{V}_{\mathrm{NL}}\) & & 1 & 10 & \(3^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & \(v\) & \\
\hline For Definition, & & & 4.2 & 5 & 1.4 & - & \(1.5^{\circ}\) & 2.25 & - & 1.5 & - & & \\
\hline See Appendix SSD-207 & \(\mathrm{V}_{\mathrm{NH}}\) & & 9 & 10 & \(2.9{ }^{\bullet}\) & - & \(3^{\circ}\) & 4.5 & - & \(3^{\circ}\) & - & \(v\) & \\
\hline Output Drive Current: & & & 0.5 & 5 & 0.18 & - & 0.15 & 0.4 & - & 0.105 & - & & \\
\hline N -Channel & N & \({ }_{5}\) & 0.5 & 10 & 0.45 & - & \(0.4{ }^{\bullet}\) & 1 & - & 0.25 & - & mA & \\
\hline & & \(\overline{\mathrm{a}}_{1} \overline{\mathrm{a}}_{2}\) & 0.5 & 5 & 0.06 & - & \(0.12{ }^{\bullet}\) & 0.1 & - & 0.035 & - & & \\
\hline & & \(\overline{\mathrm{a}}_{3} \overline{\mathrm{a}}_{4}\) & 0.5 & 10 & 0.25 & - & \(0.23{ }^{\circ}\) & 0.4 & - & 0.14 & - & & 2 \\
\hline P.Channel & & & 4.5 & 5 & -0.185 & - & -0.15* & -0.4 & - & -0.105 & - & & \\
\hline & \({ }^{1}{ }^{P}\) & \({ }_{5}\) & 9.5 & 10 & -0.45 & - & \(-0.4{ }^{\bullet}\) & -1 & - & -0.25 & - & & \\
\hline & & \(\overline{\mathrm{a}}_{1} \overline{\mathrm{O}}_{2}\) & 4.5 & 5 & -0.075 & - & -0.065 \({ }^{\text {® }}\) & -0.15 & - & -0.04 & - & mA & \\
\hline & & \(\overline{\mathrm{a}}_{3} \overline{\mathrm{a}}_{4}\) & 9.5 & 10 & -0.25 & - & \(-0.2^{\bullet}\) & -0.4 & - & -0.14 & - & & \\
\hline Diode Test, \(1000 \mu \mathrm{~A}\) Test Pin & \(V_{\text {DF }}\) & & & & - & \(1.5^{\circ}\) & - & - & \(1.5{ }^{\bullet}\) & - & \(1.5{ }^{\circ}\) & v & 3 \\
\hline Input Current & 1 & & & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.


Fig. 7-Typ. clock frequency vs. \(V_{D D}\).


Fig. 9-Quiescent device current test circuit.


Fig. 8-Typ. dissipation characteristics.


Fig. 10-Noise immunity test circuit.


Solid State
Division

\title{
Digital Integrated Circuits \\ Monolithic Silicon
} High-Reliability Slash(/) Series CD4019A/...


\section*{High-Reliability COS/MOS Quad AND-OR Select Gate}

For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment
Special Features:
- Medium speed operation ...t \({ }^{\text {PHL }}={ }^{\text {t }}\) PLH \(=50 \mathrm{~ns}\) (typ.) at \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)

\section*{Applications}
- AND-OR select gating ■ True/complement selection
- Shift-right/shift-left registers ■ AND/OR/Exclusive-OR selection

RCA CD4019A "Slash" (/) Series are high-reliability COS/ MOS integrated circuit Quad AND-OR Select Gates intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. CD4019A types are comprised of four AND-OR-Select gate configurations, each consisting of two 2 -input AND gates driving a single 2-input OR gate. Selection is accomplished by control bits \(\mathrm{K}_{\mathrm{a}}\) and \(\mathrm{K}_{\mathrm{b}}\). In addition to selection of either channel A or channel B information. the control bits can be applied simultaneously to accomplish the logical \(A+B\) function.
These devices are electrically and mechanically identical with standard COS/MOS CD4019A types described in data bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510 as described in RIC-104, "MIL-M-38510 COS/MOS CD4000A Series Types".

RCA Designation
MIL-M-38510 Designation
CD4019A MIL-M-38510/05302

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4019A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages (" \(D\) " suffix), in 16 -lead ceramic flat packages (" \(K\) " suffix), or in chip form ('" \(H\) " suffix).


Fig. 1 - Schematic diagram for 1 of 4 identical stages.

\section*{STATIC ELECTRICAL CHARACTERISTICS (All inputs}
(Recommended DC Supply Voltage ( \(V_{D D}-V_{S S}\) ).
\(v_{S S} \leq V_{1} \leq V_{D D^{\prime}}\)
㲘
. . . . 3 to 15 V)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& 0 \\
& \mathbf{T} \\
& \mathrm{E} \\
& \mathrm{~S}
\end{aligned}
\]} \\
\hline & & & & \multicolumn{7}{|c|}{CD4019AD, CD4019AK} & & \\
\hline & & \multirow[t]{2}{*}{\[
\left|\begin{array}{l}
v_{0} \\
\text { volts }
\end{array}\right|
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& v_{\mathrm{DD}} \\
& \mathrm{Volts}^{2}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{\prime} \mathrm{L}\)} & & 5 & - & 5 & - & 0.03 & 5 & - & 300 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & \(10^{\circ}\) & - & 0.05 & \(10^{\circ}\) & - & \(200{ }^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\({ }^{P}\) D} & & 5 & - & 25 & - & 0.15 & 25 & - & 1500 & \multirow[t]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 100 & - & 0.5 & 100 & - & 2000 & & \\
\hline \multirow{4}{*}{Output Voltage Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & \(0.55^{\bullet}\) & - & - & \(0.5{ }^{\bullet}\) & - & - & \multirow{4}{*}{v} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 15 & - & - & - & - & \(0.5{ }^{\circ}\) & - & \(0.55^{\circ}\) & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\text {® }}\) & - & \(2.3{ }^{\bullet}\) & - & - & 4.95 & - & \multirow{4}{*}{v} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & 15 & - & -- & \(14.45^{\circ}\) & - & - & 14.45 & - & & \\
\hline Threshold Voltage: N-Channel & \(V_{T H}{ }^{\text {N }}\) & \multicolumn{2}{|l|}{\({ }^{1} D^{\prime}=-20 \mu \mathrm{~A}\)} & -0.7* & \(-3^{\bullet}\) & -0.7* & -1.5 & \(-3^{\bullet}\) & \(-0.3{ }^{\circ}\) & \(-3^{\circ}\) & \multirow[t]{2}{*}{\(v\)} & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{T H}{ }^{\text {P }}\) & \({ }^{1} D=20 \mu \mathrm{~A}\) & & \(0.7{ }^{\circ}\) & \(3^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3^{\circ}\) & \(0.3{ }^{\circ}\) & \(3^{\circ}\) & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l} 
Noise Immunity \\
(Any Inputs) \\
For Definition, \\
See Appendix \\
SSD. 207 \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\(V_{N L}\)} & 0.95 & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{\(\checkmark\)} & \multirow{4}{*}{1} \\
\hline & & 2.9 & 10 & \(3{ }^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 3.6 & 5 & 1.4 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{v} & \\
\hline & & 7.2 & 10 & \(2.9{ }^{\bullet}\) & - & \(3^{\bullet}\) & 4.5 & - & \(3^{\circ}\) & - & & \\
\hline \multirow[t]{2}{*}{Output Drive Current N.Channel} & \multirow[t]{2}{*}{\({ }^{1} \mathrm{~N} \times\)} & 0.5 & 5 & 0.6 & - & \(0.7{ }^{\circ}\) & 0.9 & - & 0.3 & - & \multirow[t]{2}{*}{mA} & \multirow[t]{2}{*}{2} \\
\hline & & 0.5 & 10 & 0.9 & - & \(1.2{ }^{\circ}\) & 1.5 & - & 0.55 & - & & \\
\hline \multirow[t]{2}{*}{P.Channel} & \multirow[t]{2}{*}{\({ }_{1}{ }^{P}\)} & 4.5 & 5 & -0.31 & - & -0.25 \({ }^{\circ}\) & -0.5 & - & -0.175 & - & \multirow[t]{2}{*}{mA} & \multirow[t]{2}{*}{2} \\
\hline & & 9.5 & 10 & -0.95 & - & \(-0.7^{\circ}\) & -1.5 & - & -0.5 & - & & \\
\hline \[
\begin{aligned}
& \hline \text { Diode Test, } 100 \mu \mathrm{~A} \\
& \text { Test Pin } \\
& \hline
\end{aligned}
\] & \(V_{\text {DF }}\) & & & - & \(1.5{ }^{\bullet}\) & - & - & \(1.5{ }^{\bullet}\) & - & \(1.5{ }^{\circ}\) & V & 3 \\
\hline Input Current & 1 & & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output onlv.
For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits,
and for Operating Considerations, see Appendix

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Storage-Temperature Range -65 to \(+150{ }^{\circ} \mathrm{C}\)
Operating-Temperature Range -55 to \(+125^{\circ} \mathrm{C}\)
DC Supply-Voltage Range:
\[
\left(V_{D D}-v_{S S}\right)
\]

Device Dissipation (Per Package) -0.5 to +15 V

All Inputs
Recommended
DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) )
3 to 15
Recommended Input-Voltage Swing \(\qquad\) \(V_{D D}\) to \(V_{S S}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
\((1.59 \pm 0.79 \mathrm{~mm})\) from case
for 10 s max.
\(+265{ }^{\circ} \mathrm{C}\)


Fig.6-Typ. propagation delay time vs \(C_{L}\).

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathrm{pF}\), and input rise and fall times \(=\mathbf{2 0} \mathbf{n s}\)
Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}\) (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow[b]{2}{*}{TEST CONDITIONS} & & LIMIT & & \multirow{3}{*}{UNITS} & \multirow{3}{*}{NOTES} \\
\hline & & & \multicolumn{3}{|l|}{CD4019AD, CD4019AK} & & \\
\hline & & \[
\begin{aligned}
& V_{\text {DD }} \\
& \text { (Volts) }
\end{aligned}
\] & Min. & Typ. & Max. & & \\
\hline \multirow[b]{2}{*}{Propagation Delay Time:} & \({ }^{\text {t }} \mathrm{PH} \mathrm{L}\), & 5 & - & 100 & 225 & \multirow[b]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & tpLH & 10 & - & 50 & \(10{ }^{\circ}\) & & \\
\hline \multirow[b]{2}{*}{Transition Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\text {tTHL. }}\) \\
\({ }^{t} \mathrm{~T}\) LH
\end{tabular}} & 5 & - & 100 & 200 & \multirow[b]{2}{*}{ns} & \multirow{2}{*}{1} \\
\hline & & 10 & - & 40 & \(65^{\circ}\) & & \\
\hline \multirow{2}{*}{Input Capacitance} & \multirow[b]{2}{*}{\(C_{1}\)} & All \(A\) and B Inputs & - & 5 & - & \multirow{2}{*}{pF} & \multirow{2}{*}{-} \\
\hline & & \(K_{A}\) and \(K_{B}\) Inputs & - & 12 & - & & \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate 100\% testing: Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing. NOTE 1: Test is a one input one output only.


Fig. 3-Typ. transition time vs \(C_{L}\).


Fig. 5-Typ. dissipation characteristics (per output).


Fig. 4-Max. propagation delay time vs \(V_{D D}\).


Fig. 6-Quiescent device current test circuit. 3.5 V OR 7 OV


Fig. 7-Noise immunity test circuit.


Solid State Division

\section*{Digital Integrated Circuits \\ Monolithic Silicon}

High-Reliability Slash(/) Series CD4020A/...


High-Reliability COS/MOS 14-Stage Ripple-Carry Binary Counter/Divider
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment

\section*{Special Features}
- Medium speed operation. . . . 7 MHz (typ.) at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\)
- Low "high" - and "low" -level output impedance. . . . . . \(1000 \Omega\) (typ.) at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\)
- MSI complexity on a single chip. ..... 14 fully static, master-slave stages

RCA CD4020A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. CD4020A types consist of a pulse input shaping circuit, reset line driver circuitry, and 14 ripple-carry binary counter stages. Buffered outputs are externally available from stages 1, and 4 through 14. The counter is reset to its "all zeroes" state by a high level on the reset inverter input line. Each counter stage is a static master-slave flip-flop. The counter is advanced one count on the negative-going transition of each input pulse. These devices are electrically and mechanically identical with standard COS/MOS types CD4020A described in data bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to
- COS/MOS gate-input loading at both Reset and Input-pulse lines

\section*{Applıcations}
- Frequency-dividing circuits
- Counter control
- Time-delay circuits
- Counting functions

RCA Designation
MIL-M-38510 Designation
CD4020A
MIL-M-38510/05603
meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA highreliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510.


Fig. 1-Logic diagram for 1 to 4 binary stages.

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "S/ash" (/) Series Types".

The CD4020A "Slash" (/) Series types are supplied in 16lead dual-in-line ceramic packages (" \(D\) " suffix), in 16 -lead ceramic flat packages (" K " suffix), or in chip form (" \(\mathrm{H}^{\prime \prime}\) suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{DC Supply-Voltage Range:} \\
\hline \(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline \multicolumn{2}{|l|}{Recommended} \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\) ) & 3 to 15 V \\
\hline \multicolumn{2}{|l|}{Recommended} \\
\hline Input-Voltage Swing & \(V_{D D}\) to \(V_{S S}\) \\
\hline \multicolumn{2}{|l|}{Lead Temperature (During Soldering)} \\
\hline At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\) & \\
\hline (1.59 \(\pm 0.79 \mathrm{~mm}\) ) from case & \\
\hline for 10 s max. & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


Fig. 2-Schematic diagram of pulse shapers and 1 of 14 binary stages.

File No. 750

STATIC ELECTRICAL CHARACTERISTICS (All Inputs . . . \(V_{S S}<V_{1}<V_{D D}\) ) Recommended DC Supply Voltoge 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{test CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathbf{N} \\
\mathbf{O} \\
\mathbf{T} \\
\mathbf{E} \\
\mathbf{S}
\end{gathered}
\]} \\
\hline & & & & \multicolumn{7}{|c|}{CD4020AD, CD4020AK} & & \\
\hline & & \(\mathrm{V}_{\mathrm{O}}\) & \(V_{\text {DD }}\) & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & Volts & Volts & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Ouiescent Device Current} & \multirow[b]{2}{*}{\(I_{L}\)} & & 5 & - & 15 & - & 0.5 & 15 & - & 900 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & \(25^{\circ}\) & - & 1 & \(25^{\circ}\) & - & \(500^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\({ }^{\text {P }}\) D} & & 5 & - & 75 & - & 2.5 & 75 & - & 4500 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 250 & - & 10 & 250 & - & 5000 & & \\
\hline \multirow[t]{4}{*}{Output Voltage Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & \(0.55{ }^{\circ}\) & - & - & \(0.5{ }^{\circ}\) & - & - & \multirow{4}{*}{v} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 15 & - & - & - & - & \(0.5{ }^{\circ}\) & - & \(0.55{ }^{\circ}\) & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\circ}\) & - & - & - & - & \multirow{4}{*}{v} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & \(14.45{ }^{\circ}\) & - & & \\
\hline ThresholdVoltage: N-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {N }}\) & \multicolumn{2}{|l|}{\({ }^{\prime}{ }_{\text {D }}=-20 \mu \mathrm{~A}\)} & \(-0.7{ }^{\circ}\) & \(-3^{\circ}\) & -0.7 \({ }^{\circ}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3^{\bullet}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{v} & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{T H^{P}}\) & \multicolumn{2}{|l|}{\({ }^{\prime} \mathrm{D}^{\prime}=20 \mu \mathrm{~A}\)} & \(0.7{ }^{\bullet}\) & \(3^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3^{\circ}\) & \(0.3^{\circ}\) & \(3^{\bullet}\) & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Noise Immunity (Any Input) \\
For Definition, See Appendix SSD-207
\end{tabular}} & \multirow[t]{2}{*}{\(V_{N L}\)} & 0.8 & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & 1 & 10 & \(3^{\bullet}\) & - & \(3{ }^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.2 & 5 & 1.4 & - & \(1.5^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{v} & \\
\hline & & 9 & 10 & \(2.9{ }^{\bullet}\) & - & \(3{ }^{\circ}\) & 4.5 & - & \(3^{\circ}\) & - & & \\
\hline \multirow[t]{2}{*}{Output Drive Current: N -Channel} & \multirow[b]{2}{*}{\({ }_{10}{ }^{\text {N }}\)} & 0.5 & 5 & 0.9 & - & \(0.15{ }^{\circ}\) & 0.2 & - & 0.05 & - & \multirow[t]{2}{*}{mA} & \multirow[t]{2}{*}{2} \\
\hline & & 0.5 & 10 & 0.185 & - & \(0.3{ }^{\circ}\) & 0.4 & - & 0.105 & - & & \\
\hline \multirow[t]{2}{*}{P.Channel} & \multirow[b]{2}{*}{\({ }^{1}{ }^{P}\)} & 4.5 & 5 & -0.11 & - & -0.090 & -0.25 & - & -0.065 & - & \multirow[t]{2}{*}{mA} & \multirow[b]{2}{*}{2} \\
\hline & & 9.5 & 10 & -0.25 & - & \(-0.2{ }^{\circ}\) & -0.5 & - & -0.14 & - & & \\
\hline Diode Test, \(100 \mu \mathrm{~A}\) Test Pin & \(\mathrm{V}_{\text {DF }}\) & & & - & \(1.5{ }^{\circ}\) & - & - & \(1.5{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & V & 3 \\
\hline Input Current & 1 & & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through \(\mathbf{7}\) for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} C, C_{L}=15 p F\), and input rise and fall times \(=20\) ns except \(t_{r} C L, t_{f} C L\) Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}\). (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOLS} & TEST CONDITIONS & \multicolumn{3}{|c|}{LIMITS CD4020AD, CD4020AK} & \multirow[t]{2}{*}{UNITS} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathbf{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathbf{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & \[
\begin{aligned}
& \begin{array}{l}
\text { VDD } \\
\text { (Volts) }
\end{array} \\
& \hline
\end{aligned}
\] & Min. & Typ. & Max. & & \\
\hline \multicolumn{8}{|l|}{CLOCKED OPERATION} \\
\hline \multirow{2}{*}{Propagation Delay Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{PHL}\). \\
\({ }^{\text {t PLH }}\)
\end{tabular}} & * 5 & - & 450 & 600 & \multirow[b]{2}{*}{ns} & \multirow{2}{*}{1} \\
\hline & & 10 & - & 150 & 225 & & \\
\hline \multirow[t]{2}{*}{Transition Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\text {t }}\) THL, \\
tTLH
\end{tabular}} & 5 & - & 450 & 600 & \multirow{2}{*}{ns} & \multirow{2}{*}{1} \\
\hline & & 10 & - & 200 & 300 & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) WL. \\
tWH
\end{tabular}} & 5 & - & 200 & 335 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 70 & 125 & & \\
\hline \multirow[t]{2}{*}{Clock Rise \& Fall Time} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{r} C L} \\
& \mathrm{t}_{\mathrm{f} C \mathrm{CL}}
\end{aligned}
\]} & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu_{s}\)} & \multirow[t]{2}{*}{1} \\
\hline & & 10 & - & - & \(15^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[b]{2}{*}{\({ }^{\mathbf{f}} \mathrm{CL}\)} & 5 & 1.5 & 2.5 & - & \multirow[t]{2}{*}{MHz} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & 4. & 7 & - & & \\
\hline Input Capacitance & \(C_{1}\) & Any Input & - & 5 & - & pF & - \\
\hline \multicolumn{8}{|l|}{RESET OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time:} & \multirow[b]{2}{*}{\({ }^{\text {tPHL }}\) (R)} & 5 & - & 2000 & 3000 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 500 & 775 & & \\
\hline \multirow[t]{2}{*}{Minimum Reset P:! co Midth} & \multirow[t]{2}{*}{\({ }^{\text {t WH (R) }}\)} & 5 & - & 1800 & 2500 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 300 & 475 & & \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Test is a one input one output only.
*Propagation Delay is from clock input to \(Q_{1}\) output.


92Cs-22755

Fig. 3-Min. n-channel drain characteristics.


92CS-22756
Fig. 4-Min. p-channel drain characteristics.


Fig. 5 -Ty. oropogastion detavy time vs. \(C_{L}\).


Fig. \(6-T y p\). transition time vs. \(C_{L}\).

Fig. 7-Typ. clock frequency vs. \(V_{D D}\)



Fig. 8-Typ. dissipation characteristics.


Fig. 10-Noise immunity test circuit.

Fig. 9-Quiescent device dissipation test circuit.

\author{
Digital Integrated Circuits \\ Monolithic Silicon
}


> High-Reliability COS/MOS 8-Stage Static Shift Register

\section*{Asynchronous Parallel Input/Serial Output, Synchronous Serial Input/Serial Output For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment Special Features:}
- Asynchronous parallel or synchronous serial operation under control of parallel/serial control-input
- Individual "jam" inputs to each register stage
- Master-slave flip-flop register stages
- Fully static operation. . . . . .DC to \(5 \mathbf{M H z}\)

RCA CD4021A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. CD4021A types are 8 -stage parallel or serial-input/serial-output shift registers having common Clock and Parallel/Serial Control inputs, a single Serial Data input, and individual parallel "Jam" inputs to each register stage. Each register stage is a D-type, master-slave flip-flop. " \(Q^{\prime \prime}\) outputs are available from the sixth, seventh, and eighth stages.

When the parallel/Serial Control input is "low", data is -serially shifted into the 8 -stage register synchronously with the positive-going transition of the Clock pulse. When the Parallel/Serial Control input is "high", data is Jammed into the 8 -stage register via the parallel input lines asychronously with the clock line. Register expansion is possible using additional CD4021A packages.

These devices are electrically and mechanically identical with standard COS/MOS CD4021A types described in data bulletin 479 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510 as shown in RIC-104, "MIL-M-38510' COS/MOS CD4000A Series types."
RCA Designation
CD4021A
MIL-M-38510 Designation MIL-M-38510/05704

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883

Applications:
- Asynchronous parallel input/serial output data queueing
- Parallel to serial data conversion
- General purpose register

Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with nigh-reiiabiiity COS/ivíOS vievites lefer io High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4021A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages ("D" suffix), in 16 -lead ceramic flat packages (" K " suffix), or in chip form (" H " suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Storage-Temperature Range . . . . . . . . . . 65 to \(+150{ }^{\circ} \mathrm{C}\)
Operating-Temperature Range \(\cdot . . . . . . . . . . . \quad-55\) to \(+125{ }^{\circ} \mathrm{C}\)
DC Supply-Voltage Range:
( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) . . . . . . . . . . . . . . . . . . . . . -0.5 to +15 V
Device Dissipation (Per Package) . . . . . . . . . 200 mW
All Inputs ................................ \(V_{S S} \leq V_{I} \leq V_{D D}\)
Recommended
DC Supply-Voltage ( \(V_{D D}-V_{S S}\) ) . . . . 3 to \(15 \quad V\)
Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . \(V_{\text {DD }}\) to \(V_{S S}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
\((1.59 \pm 0.79 \mathrm{~mm}\) ) from case
for 10 s max.
+265
\({ }^{\circ} \mathrm{C}\)

File No. 730


Fig. 1-Logic diagram and truth table.


92CM-17139RI
Fig. 2-One typical stage and its equivalent detailed circuit.


Fig. 3-Schematic diagram-CD4021A.


Fig. 4-Typ. clock frequency vs. \(V_{D D}\).


Fig. 5-Typ. propagation delay time vs. \(C_{L}\).

(Recommended DC Supply Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) ........ 3 to 15 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{9}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow{4}{*}{NOTES} \\
\hline & & & & \multicolumn{9}{|c|}{CD4021AD, CD4021AK} & & \\
\hline & & \(\mathrm{V}_{\mathbf{O}}\) & VDD & \multicolumn{3}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & Volts & Volts & Min. & Typ. & Max. & Min. & Typ. & Max. & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[t]{2}{*}{\({ }_{\text {IL }}\)} & & 5 & - & - & 5 & - & 0.5 & 5 & - & - & 300 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & - & 10. & - & 1 & 10. & - & - & 200. & & \\
\hline \multirow[t]{2}{*}{Quiescent Deivce Dissipation/Package} & \multirow[t]{2}{*}{\(P_{D}\)} & & 5 & - & - & 25 & - & 2.5 & 25 & - & - & 1500 & \multirow[t]{2}{*}{\(\mu \mathrm{N}\)} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & - & 100 & - & 10 & 100 & - & - & 2000 & & \\
\hline \multirow{4}{*}{Output Voltage: Low-Level} & \multirow{4}{*}{VOL} & & 3 & - & - & 0.55. & - & - & 0.5. & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & & 10 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & & 15 & - & - & - & - & - & 0.5 & - & - & 0.55. & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{VOH} & & 3 & 2.25. & - & - & 2.3. & - & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & - & 4.99 & 5 & - & 4.95 & - & - & & \\
\hline & & & 10 & 9.99 & - & - & 9.99 & 10 & - & 9.95 & - & - & & \\
\hline & & & 15 & - & - & - & 14.5. & - & - & 14.45. & - & - & & \\
\hline Threshold Voltage: N -Channel & \(V_{\text {TH }} \mathrm{N}\) & \multicolumn{2}{|l|}{\(I_{D}=-20 \mu \mathrm{~A}\)} & -0.7. & -1.7 & -3. & -0.7. & -1.5 & -3. & -0.3. & -1.3 & -3. & V & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{D}}=20 \mu \mathrm{~A}\)} & 0.7. & 1.7 & 3. & 0.7. & 1.5 & 3. & 0.3. & 1.3 & 3. & V & \\
\hline \multirow[t]{4}{*}{Noise Immunity (All Inputs) For Definition, See Appendix in SSD-207} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & 0.8 & 5 & 1.5 & - & - & 1.5. & 2.25 & - & 1.4 & - & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & 1.0 & 10 & 3. & - & - & 3. & 4.5 & - & 2.9. & - & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.2 & 5 & 1.4 & - & - & 1.5. & 2.25 & - & 1.5 & - & - & \multirow[t]{2}{*}{V} & \\
\hline & & 9.0 & 10 & 2.9. & - & - & 3. & 4.5 & - & 3. & - & - & & \\
\hline \multirow[t]{2}{*}{Output Drive Current: N -Channel} & \multirow[b]{2}{*}{\({ }_{1}{ }^{N}\)} & 0.5 & 5 & 0.15 & - & - & 0.15. & 0.3 & - & 0.085 & - & - & \multirow[t]{2}{*}{mA} & \multirow{4}{*}{2} \\
\hline & & 0.5 & 10 & 0.31 & - & - & 0.25. & 0.5 & - & 0.175 & - & - & & \\
\hline \multirow[t]{2}{*}{P-Channel} & \multirow[t]{2}{*}{\({ }_{10}{ }^{\text {P }}\)} & 4.5 & 5 & -0.1 & - & - & -0.08. & -0.16 & - & -0.055 & - & - & \multirow[t]{2}{*}{mA} & \\
\hline & & 9.5 & 10 & -0.25 & - & - & -0.20. & -0.44 & - & -0.14 & - & - & & \\
\hline \[
\begin{aligned}
& \text { Diode Test } 100 \mu \mathrm{~A} \\
& \text { Test Pin }
\end{aligned}
\] & \(V_{\text {DF }}\) & & - & - & - & 1.5. & - & - & 1.5. & - & - & 1.5. & v & 3 \\
\hline Input Current & 1 & & & - & - & - & - & 10 & - & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output onlv.
For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits,
and for Operating Considerations, see Appendix.


Fig. 6-Typ. transition time vs. \(C_{L}\).


Fig. 7-Typ. dissipation characteristics.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathrm{pF}\) and input rise and fall times \(=\mathbf{2 0} \mathrm{ns}\) except \(t_{r} C L, t_{f} C L\) Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}\). (See Appendix for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & & LIMIT & & \multirow{3}{*}{UNITS} & \multirow{3}{*}{NOTES} \\
\hline & & & & \multicolumn{3}{|l|}{CD4021AD, CD4021AK} & & \\
\hline & & & (Volts) & Min. & Typ. & Max. & & \\
\hline \multirow[b]{2}{*}{Propagation Delay Time**} & \multirow[t]{2}{*}{tPHL, tPLH} & & 5 & - & 300 & 750 & \multirow[b]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & 100 & 225. & & \\
\hline \multirow[b]{2}{*}{Transition Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{THL}\), \\
\({ }^{t}\) TLLH
\end{tabular}} & & 5 & - & 150 & 300 & \multirow[b]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 75 & 125. & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[t]{2}{*}{\[
\begin{aligned}
& t^{t} W L= \\
& t_{W H}
\end{aligned}
\]} & & 5 & - & 200 & 500 & \multirow{4}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 100 & 175 & & \\
\hline \multirow[t]{2}{*}{Minimum High-Level Parallel/Serial Control Pulse Width} & \multirow[b]{2}{*}{\({ }^{\text {t }} \mathrm{WH}\) (P/S)} & & 5 & - & 200 & 500 & & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 100 & 175 & & \\
\hline \multirow[t]{2}{*}{Clock Rise \& Fall Time} & \multirow[t]{2}{*}{\[
\begin{gathered}
{ }^{*} \mathrm{t}_{\mathrm{r}} \mathrm{CL}= \\
\mathrm{t}_{\mathrm{f} C L}
\end{gathered}
\]} & & 5 & - & - & 15 & \multirow[t]{2}{*}{\(\mu_{s}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & - & 15. & & \\
\hline \multirow[b]{2}{*}{Set-Up Time} & & & 5 & - & 100 & 350 & ns & \\
\hline & & & 10 & - & 50 & 80 & ns & - \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[b]{2}{*}{\({ }^{\mathrm{f}} \mathrm{CL}\)} & & 5 & 1 & 2.5 & - & \multirow{2}{*}{MHz} & \multirow{2}{*}{1} \\
\hline & & & 10 & 3. & 5 & - & & \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & \multicolumn{2}{|l|}{Any Input} & - & 5 & - & pF & - \\
\hline
\end{tabular}

Limits with black dot (0) designate 100\% testing. Refer to RIC-1028 "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.
* *From Clock or Parallel/Serial Control Input

NOTE 1: Test is a one input one output only
* If more than one unit is cascaded in a parallel clocked operation \(\mathrm{t}_{\mathbf{r}} \mathrm{CL}\) should be made less than or equal to the sum oi tine fixed propagation delay time at 15 pF and the transition time of the output driving stage for the estimated capacitive load.


Fig. 8-Quiescent device current test circuit.

\title{
Digital Integrated Circuits \\ Monolithic Silicon \\ High-Reliability Slash(/) Series
}

CD4022A/...


\title{
High Reliability COS/MOS Divide-By-8 Counter/Divider with 8 Decoded Outputs
}

\author{
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment \\ Special Features: \\ - Medium speed operation. .... 5 MHz (typ.) at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\) \\ - MSI complexity on a single chip \\ - Divide by N counting; \(\mathrm{N}=2\) to 8 with one CD4022A plus one CD4001A, package
}

Applications:
- Binary frequency division
- Binary counting/decoding
- Binary counter control/timers

RCA CD4022A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. CD4022A types consist of a 4 -stage divide-by- 8 Johnson counter, associated decode output gating, and a carry-out bit. The counter is cleared to its zero count by a "high" reset signal. The counter is advanced on the positive clock-signal transition provided the clock enable signal is "low".

Use of the Johnson divide-by-8 counter configuration permits high-speed operation, 2 -input decode gating, and spike-free decoder outputs. Anti-lock gating is provided, thus assuring proper counting sequence. The 8 decode gating outputs are normally "low" and go "high" only at their


Fig. 1-Logic diagram.
respective decoded time slot. Each decode gate output remains "high" for one full clock cycle. The carry-out signal completes one cycle every 8 clock-input cycles and is used as a ripple-carry signal to directly clock a succeeding counter package in a multi-package counting system. These devices are electrically and mechanically identical to standard COS/MOS CD4022A types described in data bulletin 479 and DATABOOK SSD- 203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510.
\(\frac{\text { RCA Designation }}{\text { CD4022A }} \quad \frac{\text { MIL-M-38510 Designation }}{\text { MIL-M-38510/05604 }}\)


Fig. 2-Timing diagram.

The packaged types can be supplied to six screening levels \(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3, / 4\) - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The .CD4022A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages (" \(D\) " suffix), in 16-lead ceramic flat packages (" K " suffix), or in chip form (" H " suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\) ) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline Recommended & \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) & 3 to 15 V \\
\hline Recommended & \\
\hline Input-Voltage Swing & \(V_{D D}\) to \(V_{S S}\) \\
\hline Lead Temperature (During Soldering) & \\
\hline At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\) & \\
\hline \((1.59 \pm 0.79 \mathrm{~mm})\) from case & \\
\hline for 10 s max. . & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


Fig. 3-Typ. propagation delay time vs. \(C_{L}\) for decoded outputs.


Fig. 4-Typ. propagation delay time vs. \(C_{L}\) for carry output.


Fig. 5-Typ. transition time vs. \(C_{L}\) for decoded outputs.
(Recommended DC Supply Voltage (VDD \(-V_{S S}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow{4}{*}{NOTES} \\
\hline & & & & & \multicolumn{7}{|c|}{CD4022AD, CD4022AK} & & \\
\hline & & & \(\mathrm{V}_{\mathbf{O}}\) & VDD & -55 & \({ }^{\circ} \mathrm{C}\) & & \(25^{\circ} \mathrm{C}\) & & 125 & \({ }^{\circ} \mathrm{C}\) & & \\
\hline & & & Volts & Volts & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{1} \mathrm{~L}\)} & & & 5 & - & 5 & - & 0.5 & 5 & - & 300 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{2} \\
\hline & & & & 10 & - & 10. & - & 1 & 10. & - & 200. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{D}\)} & & & 5 & - & 25 & - & 2.5 & 25 & - & 1500 & \multirow[t]{2}{*}{\(\mu \mathrm{W}\)} & \\
\hline & & & & 10 & - & 100 & - & 10 & 100 & - & 2000 & & \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Output Voltage: \\
Low-Level
\end{tabular}} & \multirow{4}{*}{\(\mathrm{V}_{\text {OL }}\)} & & & 3 & - & 0.55 . & - & - & 0.5. & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & & 15 & - & - & - & - & 0.5 & - & 0.55. & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & 3 & 2.25. & - & 2.3. & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & & 15 & - & - & 14.5. & - & - & 14.45. & - & & \\
\hline Threshold Voltage: N-Channel & \(\mathrm{V}_{\text {THN }}\) & \multicolumn{3}{|l|}{\(I_{D}=-20 \mu \mathrm{~A}\)} & -0.7. & -3. & -0.7. & -1.5 & -3. & -0.3. & -3. & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \multicolumn{3}{|l|}{\(I_{D}=20 \mu \mathrm{~A}\)} & 0.7 & 3. & 0.7. & 1.5 & 3. & 0.3. & 3. & & \\
\hline \multirow[t]{4}{*}{Noise immunity (All Inputs)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\text {NL }}\)} & & 0.8 & 5 & 1.5 & - & 1.5. & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 1.0 & 10 & 3. & - & 3 & 4.5 & - & 2.9 & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & & 4.2 & 5 & 1.4 & - & 1.5. & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{v} & \\
\hline & & & 9.0 & 10 & 2.9 & - & 3. & 4.5 & - & 3. & - & & \\
\hline \multirow[t]{4}{*}{Output Drive Current N-Channel} & \multirow{4}{*}{\({ }^{1} \mathrm{DN}\)} & \multirow[t]{2}{*}{Decoded Outputs} & 0.5 & 5 & 0.062 & - & 0.05. & 0.15 & - & 0.035 & - & \multirow{4}{*}{mA} & \multirow{8}{*}{2} \\
\hline & & & 0.5 & 10 & 0.12 & - & 0.1. & 0.3 & - & 0.07 & - & & \\
\hline & & Carry & 0.5 & 5 & 0.185 & - & 0.15 . & 0.5 & - & 0.105 & - & & \\
\hline & & Outputs & 0.5 & 10 & 0.375 & - & 0.3 . & 1 & - & 0.21 & - & & \\
\hline \multirow{4}{*}{P-Channel} & \multirow{4}{*}{\({ }_{1}{ }^{P}\)} & Decoded & 4.5 & 5 & -0.038 & - & -0.03 & -0.075 & - & -0.021 & - & \multirow{4}{*}{mA} & \\
\hline & & Outputs & 9.5 & 10. & -0.12 & - & -0.1. & -0.15 & - & -0.035 & - & & \\
\hline & & \multirow[t]{2}{*}{Carry Outputs} & 4.5 & 5 & -0.185 & - & -0.15. & -0.4 & - & -0.105 & - & & \\
\hline & & & 9.5 & 10 & -0.375 & - & -0.3. & -0.8 & - & -0.21 & - & & \\
\hline Diode Test \(100 \mu \mathrm{~A}\) Test Pin & - & & & - & - & 1.5. & - & - & 1.5. & - & 1.5. & V & 3 \\
\hline Input Current & 11 & & & & - & - & - & 10 & - & - & - & pA & \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD400CA Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathrm{pF}\), and input rise and fall times \(\mathbf{2 0} \mathrm{ns}\) except \(\mathbf{t}_{\mathbf{r}} \mathrm{CL}, \mathrm{tf}_{\mathrm{f}} \mathrm{CL}\)
Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & CD40 & IMITS & 2AK & \multirow[t]{2}{*}{UNITS} & \multirow[t]{2}{*}{NOTES} \\
\hline & & & \[
\begin{aligned}
& \text { VDD } \\
& \text { (Volts) }
\end{aligned}
\] & Min. & Typ. & Max. & & \\
\hline \multicolumn{9}{|l|}{CLOCKED OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: Carry-Out Line} & \multirow[b]{2}{*}{\({ }^{\text {tPHL }}=\)} & & 5 & - & 325 & 1000 & \multirow[t]{2}{*}{ns} & \multirow{4}{*}{1} \\
\hline & & & 10 & - & 125 & 250. & & \\
\hline \multirow[b]{2}{*}{Decode Out Lines} & \multirow[t]{2}{*}{} & & 5 & - & 400 & 1200 & \multirow[b]{2}{*}{ns} & \\
\hline & & & 10 & - & 200 & 400 & & \\
\hline \multirow[t]{2}{*}{Transition Time: Carry-Out Line} & \multirow{4}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{THL}}= \\
& \mathrm{t}_{\mathrm{TLH}}
\end{aligned}
\]} & & 5 & - & 85 & 300 & \multirow[t]{2}{*}{ns} & \\
\hline & & & 10 & - & 50 & 100 & & \\
\hline \multirow[b]{2}{*}{Decode-Out Lines} & & & 5 & - & 300 & 900 & \multirow[b]{2}{*}{ns} & \\
\hline & & & 10 & - & 125 & 250 & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { tWL }= \\
& { }^{\text {tWH }}
\end{aligned}
\]} & & 5 & - & 250 & 500 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{} \\
\hline & & & 10 & - & 85 & 170 & & \\
\hline Clock & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{r} C L}= \\
& \mathrm{t}_{\mathrm{fCL}}
\end{aligned}
\]} & & 5 & - & - & 15 & \multirow[t]{2}{*}{\(\mu s\)} & \multirow[t]{2}{*}{1} \\
\hline Rise \& Fall Time & & & 10 & - & - & 15. & & \\
\hline \multirow[t]{2}{*}{Clock Enable Set-Up Time} & & & 5 & 350 & 175 & - & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{} \\
\hline & & & 10 & 150 & 75 & - & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[b]{2}{*}{\({ }^{\mathrm{f}} \mathrm{CL}\)} & & 5 & 1 & 2.5 & - & \multirow[t]{2}{*}{MHz} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & 3. & 5 & - & & \\
\hline Input Capacitance & \(C_{1}\) & Any Input & & - & 5 & - & pF & \\
\hline \multicolumn{9}{|l|}{RESET OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: Carry-Out Line} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { tPHL }= \\
& \text { tPLH }
\end{aligned}
\]} & & 5 & - & 300 & 900 & \multirow[t]{2}{*}{ns} & \\
\hline & & & 10 & - & 125 & 250 & & \\
\hline \multirow[b]{2}{*}{- Decade-Out Line} & & & 5 & - & 500 & 1250 & \multirow[t]{2}{*}{ns} & \\
\hline & & & 10 & - & 200 & 400 & & \\
\hline \multirow[t]{2}{*}{Minimum Reset Pulse Width} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { t }_{\text {WL }}= \\
& \text { tWH }
\end{aligned}
\]} & & 5 & - & 150 & 300 & \multirow[b]{2}{*}{ns} & \\
\hline & & & 10 & - & 75 & 150 & & \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent 100\% testing.
NOTE 1: Test is a one-input, one-output only.


Fig. 6-Typ. transition time vs. \(C_{L}\) for carry output.


Fig. 7-Typical clock frequency vs. VDD.


Fig. 8-Typical dissipation characteristics.


Fig. 10-Noise immunity test circuit.


Fig. 12-Clock enable and set-up time test circuit.


Fig. 9-Quiescent device current test circuit.


Fig. 11-Clock line test set-up.


Fig. 13-Reset propagation delay time and minimum reset pulse duration.


Solid State Division

Digital Integrated Circuits
Monolithic Silicon
High-Reliability Slash(/) Series CD4024A/...


\title{
High-Reliability COS/MOS 7-Stage Binary Counter
}

\section*{For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment Special Features:}
- Medium speed operation. . . . . 7 MHz (typ.) input pulse rate at \(V_{D D}-V_{S S}=10 \mathrm{~V}\)
- Low "high" and "low" level output impedance. . . . . . \(700 \Omega\) and \(500 \Omega\) (typ.), respectively at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}=10 \mathrm{~V}\)
- Logic block complexity on a single chip. ..... each output accessible and resettable
- Static counter operation-counter retains state indefinitely with input pulse level "low" or "high"
- COS/MOS gate input loading on both reset and input-pulse lines

RCA CD4024A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4024A types consist of an input-pulse-shaping circuit, reset-line driver circuitry, and seven binary counter stages. The counter is reset to "zero" by a high level on the reset input. Each counter stage is a
 one count on the negative-going transition of each input pulse. These devices are electrically and mechanically identical to standard COS/MOS CD4024A types described in data bulletin 503 and DATABOOK SSD- 203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510.

\section*{RCA Designation \\ CD4024A}
\(\frac{\text { MIL-M-38510 Designation }}{\text { MIL-M-38510/05605 }}\)

\section*{Applications:}
- Frequency-dividing circuits.
- Time-delay circuits
- Counter control
- D/A counter and switch on one chip

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4024A "Slash (/) Series types are supplied in 14-lead dual-in-line ceramic packages (" \(D\) " suffix), 14-lead ceramic flat packages (" \(K\) " suffix), or in chip form (" \(H\) " suffix).


Fig. 1-Functional diagram for CD4024AD, AK.

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline \(\left(\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}\right)\) & -0.5 to +15 \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DC}}\) \\
\hline
\end{tabular}

\section*{Recommended}

DCC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) ..... 3 to 15 V
Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . . \(V_{D D}\) to \(V_{S S}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
\((1.59 \pm 0.79 \mathrm{~mm})\) from case
for 10 s max. . . . . . . . . . . . . . . . . . . . . \(+265{ }^{\circ} \mathrm{C}\)


Fig. 2-Schematic diagram (pulse shaper and 1 binary stage).


Fig. 3-Min. N-channel drain characteristics.


Fig. 4-Min. P-channel drain characteristics.


Fig.5-Logic block diagram (pulse shaper and 1 binary stage).


Fig. 6- propagation delay time vs. \(C_{L}\).


Fig. 7-Typ. transition time vs. \(C_{L}\).


Fig. 8- Typ. dissipation characteristics.


Fig. 9-Typ. input pulse frequency vs. VDD.

STATIC ELECTRICAL CHARACTERISTICS (All inputs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{CHARACTERISTIC} & \multirow[t]{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{9}{|c|}{LIMITS CD4024AD, CD4024AK} & \multirow[t]{3}{*}{UNITS} & \multirow[t]{3}{*}{NOTES} \\
\hline & & \[
V_{0}
\] & \[
V_{D D}
\] & \multicolumn{3}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & Volts & Volts & Min. & Typ. & Max. & Min. & Typ. & Max. & Min. & Typ. & Max. & & \\
\hline Quiescent Device & \multirow[t]{2}{*}{\(I_{L}\)} & & 5 & - & - & 5 & - & 0.5 & 5 & - & - & 300 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{2} \\
\hline & & & 10 & - & - & 10. & - & 1 & 10. & - & - & 200. & & \\
\hline Quiescent Device & \multirow[b]{2}{*}{\(P_{\text {D }}\)} & & 5 & - & - & 25 & - & 2.5 & 25 & - & - & 1500 & \multirow[b]{2}{*}{\(\mu W\)} & \\
\hline Dissipation/Package & & & 10 & - & - & 100 & - & 10 & 100 & - & - & 2000 & & \\
\hline \multirow{4}{*}{Output Voltage: Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{0} & 3 & - & - & 0.55. & - & - & 0.5. & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & & 10 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & 0 & 15 & - & - & - & - & - & - & - & - & 0.55 . & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{VOH} & \multirow[t]{2}{*}{3} & 3 & 2.25. & - & - & 2.3. & - & - & - & - & - & \multirow{4}{*}{\(V\)} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & - & 4.99 & 5 & - & 4.95 & - & - & & \\
\hline & & \multirow[b]{2}{*}{15} & 10 & 9.99 & - & - & 9.99 & 10 & - & 9.95 & - & - & & \\
\hline & & & 15 & - & - & - & 14.5. & - & - & 14.45. & - & - & & \\
\hline Threshold Voltage: N-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {N }}\) & \(I_{D}=-20 \mu \mathrm{~A}\) & & -0.7 \({ }^{\circ}\) & -1.7 & -3 & -0.7* & -1.5 & \(-3^{\bullet}\) & -0.3* & -1.3 & -3 & V & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \(I_{D}=20 \mu \mathrm{~A}\) & & 0.7 • & 1.7 & \(3{ }^{\circ}\) & \(0.7{ }^{\bullet}\) & 1.5 & \(3^{\circ}\) & \(0.3 \cdot\) & 1.3 & 3 • & V & \\
\hline \multirow[t]{4}{*}{Noise Immunity (All Inputs)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & 0.8 & 5 & 1.5 & - & - & 1.5. & 2.25 & - & 1.4. & - & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & 1.0 & 10 & 3. & - & - & 3. & 4.5 & - & 2.9 . & - & - & & \\
\hline & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.2 & 5 & 1.4 & - & - & 1.5. & 2.25 & - & 1.5. & - & - & \multirow[t]{2}{*}{V} & \\
\hline & & 9.0 & 10 & 2.9 & - & - & 3. & 4.5 & - & 3. & - & - & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Output Drive Current: \\
N-Channel
\end{tabular}} & \multirow[b]{2}{*}{\({ }_{1}{ }^{N}\)} & 0.5 & 5 & 0.31 & \multirow[t]{2}{*}{-} & - & 0.25. & \multirow[t]{2}{*}{0.5} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{0.175} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{mA} & \multirow{4}{*}{2} \\
\hline & & 0.5 & 10 & 0.62 & & - & 0.5 . & & & & & & & \\
\hline \multirow[t]{2}{*}{P-Channel} & \multirow[b]{2}{*}{\({ }_{10}{ }^{P}\)} & 4.5 & 5 & -0.19 & - & - & -0.15. & 0.3 & - & -0.105 & - & - & \multirow[b]{2}{*}{mA} & \\
\hline & & 9.5 & 10 & -0.45 & - & - & -0.35. & -0.7 & - & -0.25 & - & - & & \\
\hline Diode Test \(100 \mu \mathrm{~A}\) Test Pin & - & & & - & - & 1.5. & - & - & 1.5. & - & - & 1.5 & V & 3 \\
\hline Input Current & 11 & & & - & - & - & - & 10 & - & - & - & - & pA & \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through \(\mathbf{7}\) for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table.
Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.


Fig. 10-Quiescent device current test circuit.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S S}=O \mathrm{O}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\), and input rise and fall times \(=20 \mathrm{~ns}\), except \(t_{\boldsymbol{r}} \phi\) and \(t_{t} \phi\). Typical Temperature Coefficient for all values of \(V_{D D}=\mathbf{0 . 3 \%} /{ }^{\circ} \mathbf{C}\). (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & & IMITS & & \multirow{3}{*}{UNITS} & \multirow{3}{*}{NOTES} \\
\hline & & & & \multicolumn{3}{|l|}{CD4024AD, CD4024AK} & & \\
\hline & & & (Volts) & Min. & Typ. & Max. & & \\
\hline \multicolumn{9}{|l|}{\(\phi\) INPUT OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time*.} & \({ }^{\text {tPHL}}\), & & 5 & - & 175 & 350 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & tPLH & & 10 & - & 80 & \(150^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Transition Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{THL}\), \\
\({ }^{\text {t TLH }}\)
\end{tabular}} & & 5 & - & 175 & 225 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & 80 & \(150^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Minimum InputPulse Width} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) WL , \\
\({ }^{t}\) WH
\end{tabular}} & & 5 & - & 200 & 330 & \multirow[t]{2}{*}{ns} & \multirow[b]{4}{*}{1} \\
\hline & & & 10 & - & 140 & 125 & & \\
\hline \multirow[t]{2}{*}{Input Pulse Rise \& Fall Time} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathbf{t}_{\mathbf{r}} \phi \\
& \mathbf{t}_{\boldsymbol{f}} \phi
\end{aligned}
\]} & & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu_{\mathrm{s}}\)} & \\
\hline & & & 10 & - & - & 10 . & & \\
\hline \multirow[t]{2}{*}{Maximum Input Pulse Frequency} & \multirow[t]{2}{*}{\({ }_{\text {f }}\) ¢} & & 5 & 1.5 & 2.5 & - & \multirow[t]{2}{*}{MHz} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & \(4{ }^{\circ}\) & 7 & - & & \\
\hline Input Capacitance & \(C_{1}\) & \multicolumn{2}{|l|}{Any Input} & - & 5 & - & pF & \\
\hline \multicolumn{9}{|l|}{RESET OPERATION} \\
\hline \multirow[b]{2}{*}{Propagation Delay Time} & \multirow[b]{2}{*}{\({ }^{\text {tPHL }}\) (R)} & & 5 & - & 500 & 700 & \multirow[b]{2}{*}{ns} & \\
\hline & & & 10 & - & 250 & 350 & & \\
\hline \multirow[t]{2}{*}{Minimum Reset Pulse Width} & \multirow[b]{2}{*}{\({ }^{\mathbf{T}} \mathrm{WH}(\mathrm{R})\)} & & 5 & - & 375 & 500 & \multirow[b]{2}{*}{ns} & \\
\hline & & & 10 & - & 200 & 300 & & \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing. NOTE 1: Test is a one-input, one-output only. \(\quad *\) Propagation delay time is from clock input to \(Q_{1}\) output.


Fig. 11-Noise Immunity test circuit.


Fig. 12- Reset noise immunity test circuit.


\section*{High-Reliability COS/MOS Decade Counters/Dividers}

With Decoded 7-Segment Display Outputs and: Display Enable - CD4026A
Ripple Blanking - CD4033A
Ripple Blanking - CD4033A

\section*{Special Features:}
- Counter and 7-segment decoding in one package
- Ideal for low-power displays
- Easily interfaced with 7-segment display types
- Fully static counter operation: DC to 2.5 MHz (typ.)
- Display Enable Output (CD4026A)
- "Ripple Blanking" and Lamp Test (CD4033A)


CD4033A

RCA CD4026A and CD4033A "Slash" (/) Series are high-reliability COS/MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4026A and CD4033A each consists of a 5 -stage Johnson decade counter and an output decoder which converts the Johnson code to a 7 -segment decoded output for driving each stage in a numerical display.

These devices are particularly advantageous in display applications where low power dissipation and/or low package counter are important.

Inputs common to both types are Clock, Reset, and Clock Enable; common outputs are carry out and seven decoded outputs (a, b, c, d, e, f, g). Additional inputs and outputs for the CD4026A include Display Enable input and Display Enable and Ungated "C-segment" outputs. Signals peculiar to the CD4033A are Ripple-Blanking and Lamp Test inputs and a Ripple-Blanking output.

A "high" Reset signal clears the decade counter to its zero count. The counter is advanced one count at the positive clock signal transition if the Clock Enable signal is "low". Counter advancement via the clock line is inhibited when the Clock Enable signal is "high". Antilock gating is provided on the Johnson counter, thus assuring proper counting sequence. The Carry-Out ( \(\mathrm{C}_{\text {out }}\) ) Signal completes one cycle every ten clock input cycles and is used to directly clock the succeeding decade in a multidecade counting chain.

The seven decoded outputs ( \(a, b, c, d, e, f, g\) ) illuminate the proper segments in a seven segment display device used for

\section*{Applications:}
- Decade counting/7-segment decimal display
- Frequency division/7-segment decimal displays
- Clock/watches/timers (e.g. \(\div 60, \div 60\), \(\div 12\) counter/display)
- Counter/display driver for meter applications
representing the decimal number 0 to 9 . The 7 -segment outputs go "high" on selection in the CD4033A; in the CD4026A these outputs go "high" only when the Display Enable IN is "high".

\section*{CD4026A}

When the Display Enable IN is "low" the seven decoded outputs are forced "low" regardless of the state of the counter. Activation of the display only when required results in significant power savings. This system also facilitates implementation of display-character multiplexing.

The Carry Out and ungated "C-segment" signals are not gated by the Display Enable and therefore are available continuously. This feature is a requirement in implementation of cettain divider functions such as divide-by- 60 and divide-by-12.
CD4033A
The CD4033A has provisions for automatic blanking of the non-significant zeros in a multi-digit decimal number which results in an easily readable display, consistent with normal writing practice. For example, the number 0050.07000 in an eight digit display would be displayed as 50.07 . Zero
suppression on the integer side is obtained by connecting the RB1 terminal of the CD4033A associated with the most significant digit in the display to a "low-level" voltage and connecting the RB0 terminal of that stage to the RB1 of the CD4033A in the next-lower significant position in the display. This procedure is continued for each succeeding CD4033A on the integer side of the display.

On the fraction side of the display the RB1 of the CD4033A associated with the least significant bit is connected to a "low level" voltage and the RBO of the CD4033A is connected to the RB1 terminal of the CD4033A in the next more-significant-bit position. Again, this procedure is continued for all CD4033A's on the fraction side of the display.

In a purely fractional number the zero immediately preceding the decimal point can be displayed by connecting the RB1 of that stage to a "high level" voltage (instead of the RBO of the next more-significant-stage). For Example: optional zero \(\boldsymbol{\rightarrow} \mathbf{0 . 7 3 4 6}\).

Likewise, the zero in a number such as 763.0 can be displayed by connecting the RB1 of the CD4033A associated with it to a "high level" voltage.

Ripple blanking of non-significant zeroes provides an appreciable savings in display power.

The CD4033A has a "Lamp Test" input which, when connected to a "high level" voltage, overrides normal decoder operation and enables a check to be made on possible display malfunctions by putting the seven outputs in the "high" state.

These devices are electrically and mechanically identical with standard COS/MOS CD4026A and CD4033A types described in data bulletin 503 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.
The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4026A and CD4033A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages ("D" suffix), in 16 -lead ceramic flat packages (" \(K\) " suffix), or in chip form (' \({ }^{H \prime}\) 'suffix).



Fig. 2 - CD4033A logic diagram.


Fig. 3 - CD4026A timing diagram.



Fig. 4 - CD4033A timing diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{DC Supply-Voltage Range:} \\
\hline \(\left(V_{\text {DD }}-V_{S S}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline \multicolumn{2}{|l|}{Recommended} \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) & 3 to 15 V \\
\hline \multicolumn{2}{|l|}{Recommended} \\
\hline Input-Voltage Swing & \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\text {SS }}\) \\
\hline \multicolumn{2}{|l|}{Lead Temperature (During Soldering)} \\
\hline \multicolumn{2}{|l|}{At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)} \\
\hline \((1.59 \pm 0.79 \mathrm{~mm}\) ) from case & \\
\hline for 10 s max. & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


Fig. 5-Min. \& typ. P-channel segment drain characteristics @. \(V_{D D}=3.5 \& 5 V\).


Fig. 7-Typ. P-channel drain characteristics at a function of temp.


Fig. 6-Min. \& typ. P-channel segment drain characteristics @ \(V_{D D}=10 \& 15 \mathrm{~V}\).


Fig. 8-Typ. propagation delay time vs. \(C_{L}\) for decoded outputs.

File No. 733

(Recommended DC Supply Voltage ( \(V_{D D}-V_{S S}\) ) ............ 3 to 15 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{9}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow{4}{*}{NOTES} \\
\hline & & & & & \multicolumn{9}{|c|}{CD4026AD, CD4026AK CD4033AD, CD4033AK} & & \\
\hline & & & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
V_{O} \\
\text { Volts }
\end{array}
\]} & \multirow[t]{2}{*}{VDD Volts} & \multicolumn{3}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & & Min. & Typ. & Max. & Min. & Typ. & Max. & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{L}}\)} & & & 5 & - & - & 5 & - & 0.5 & 5 & - & - & 300 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{1} \\
\hline & & & & 10 & - & - & 10. & - & 1 & 10. & - & - & 200. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{D}\)} & & & 5 & - & - & 25 & - & 2.5 & 25 & - & - & 1500 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \\
\hline & & & & 10 & - & - & 100 & - & 10 & 100 & - & - & 2000 & & \\
\hline \multirow{4}{*}{Output Voltage: Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\text {OL }}\)} & & & 3 & - & - & 0.55. & - & - & 0.5. & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 5 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & & & 10 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & & & 15 & - & - & - & - & - & 0.5 & - & - & 0.55 & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{VOH}^{\text {O }}\)} & & & 3 & 2.25. & - & - & 2.3. & - & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 5 & 4.99 & - & - & 4.99 & 5 & - & 4.95 & - & - & & \\
\hline & & & & 10 & 9.99 & - & - & 9.99 & 10 & - & 9.95 & - & - & & \\
\hline & & & & 15 & - & - & - & 14.5 & - & - & 14.45. & - & - & & \\
\hline \multirow[t]{2}{*}{Threshold Voltage: N-Channel P-Channel} & \(\mathrm{V}_{\text {TH }} \mathrm{N}\) & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{\[
\begin{aligned}
& I_{D}=-10 \mu \mathrm{~A} \\
& I_{D}=10 \mu \mathrm{~A}
\end{aligned}
\]}} & -0.7. & -1.7 & -3. & -0.7. & -1.5 & -3. & -0.3. & -1.3 & -3. & V & \multirow[t]{2}{*}{2} \\
\hline & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & & & & 0.7. & 1.7 & 3. & 0.7. & 1.5 & 3. & 0.3. & 1.3 & 3. & V & \\
\hline \multirow[t]{4}{*}{Noise Immunity (All Inputs) For Definition, See Appendix in SSD-207} & \multirow{4}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{NL}} \\
& \mathrm{v}_{\mathrm{NH}}
\end{aligned}
\]} & & 0.8 & 5 & 1.5 & - & - & 1.5. & 2.25 & - & 1.4 & - & - & \multirow[t]{2}{*}{V} & \multirow[b]{4}{*}{1} \\
\hline & & & 1.0 & 10 & 3. & - & - & 3. & 4.5 & - & 2.9. & - & - & & \\
\hline & & & 4.2 & 5 & 1.4 & - & - & 1.5. & 2.25 & - & 1.5 & - & - & \multirow[t]{2}{*}{V} & \\
\hline & & & 9.0 & 10 & 2.9. & - & - & 3. & 4.5 & - & 3. & - & - & & \\
\hline \multirow[t]{4}{*}{Output Drive Current : N-Channel} & \multirow{4}{*}{\({ }_{1}{ }^{\text {N }}\)} & Decoded & 0.5 & 5 & 0.15 & - & - & 0.12. & 0.24 & - & 0.09 & - & - & \multirow{4}{*}{mA} & \multirow[t]{4}{*}{2} \\
\hline & & Outputs & 0.5 & 10 & 0.32 & - & - & 0.25. & 0.5 & - & 0.18 & - & - & & \\
\hline & & \multirow[t]{2}{*}{Carry Output} & 0.5 & 5 & 0.12 & - & - & 0.15 & 0.4 & - & 0.1 & - & - & & \\
\hline & & & 0.5 & 10 & 0.45 & - & - & 0.35 & 1 & - & 0.25 & - & - & & \\
\hline \multirow{4}{*}{P-Channel} & \multirow{4}{*}{\(I_{D}{ }^{P}\)} & Decoded & 4.5 & 5 & -0.21 & - & - & -0.14. & 0.28 & - & -0.1 & - & - & \multirow{4}{*}{mA} & \multirow[t]{4}{*}{2} \\
\hline & & Outputs & 9.5 & 10 & -0.45 & - & - & -0.3. & -0.6 & - & -0.22. & - & - & & \\
\hline & & Carry & 4.5 & 5 & -0.12 & - & - & -0.15 & -0.4 & - & -0.1 & - & - & & \\
\hline & & Output & 9.5 & 10 & -0.45 & - & - & -0.35 & -1 & - & -0.25 & - & - & & \\
\hline Diode Test \(100 \mu \mathrm{~A}\) & - & \multicolumn{3}{|r|}{-} & - & - & 1.5. & - & - & 1.5. & - & - & 1.5. & V & 3 \\
\hline Input Current & 11 & & & & - & - & - & - & 10 & - & - & - & - & pA & \\
\hline
\end{tabular}

Limits with black dot (o) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table.
Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output oniv.


Fig. 9-Typ. propagation delay time vs. \(C_{L}\) for carry outputs.


Fig. 10-Typ. transition time vs. \(C_{L}\) for decoded outputs.

DYNAMIC ELECTRICAL CHARACTERISTICS AT \(T_{A}=25^{\circ} C, V_{S S}=O V, C_{L}=15 p F\), and input rise and fall times -20 ns , except \(\mathrm{t}_{\mathbf{r}} \mathrm{CL}\) and \(\mathrm{t}_{\mathrm{f}} \mathrm{CL}\). Typical Temperatuer Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=\mathbf{0 . 3 \%} /{ }^{\circ} \mathbf{C}\). (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} & \multirow{3}{*}{NOTES} \\
\hline & & & & \multicolumn{3}{|l|}{CD4026AD, CD4025AK CD4033AD, CE4033AK} & & \\
\hline & & & (Volts) & Min. & Typ. & Max. & & \\
\hline \multicolumn{9}{|l|}{CLOCKED OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: Carry Out Line} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { tPHL } \\
& \text { tPLH }
\end{aligned}
\]} & & 5 & - & 350 & 1000 & & \multirow{4}{*}{1} \\
\hline & & & 10 & - & 125 & 250. & ns & \\
\hline \multirow[t]{2}{*}{Decode Out Lines} & & & 5 & - & 600 & 1700 & \multirow[t]{2}{*}{ns} & \\
\hline & & & 10 & - & 250 & 500 & & \\
\hline \multirow[t]{2}{*}{Transition Time: Carry Out Line} & \multirow[b]{4}{*}{\begin{tabular}{l}
\({ }^{t}\) THL \\
\({ }^{t}\) TLH
\end{tabular}} & & 5 & - & 100 & 300 & \multirow[b]{2}{*}{ns} & \\
\hline & & & 10 & - & 50 & 150 & & \\
\hline \multirow[t]{2}{*}{Decode Out Lines} & & & 5 & - & 300 & 900 & \multirow[b]{2}{*}{ns} & \\
\hline & & & 10 & - & 125 & 350 & & \\
\hline Minimum Clock & \({ }^{\text {t W L }}\) & & 5 & - & 200 & 300 & \multirow[b]{2}{*}{ns} & \\
\hline Pulse Width & \({ }^{\text {tWH}}\) & & 10 & - & 100 & 170 & & \\
\hline \multirow[t]{2}{*}{Clock Rise \& Fall Time} & \multirow[t]{2}{*}{\[
\mathrm{t}_{\mathrm{r} C L}
\]
\[
t_{\mathrm{fCL}}
\]} & & 5 & - & - & 15 & \multirow[t]{2}{*}{\(\mu_{s}\)} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & - & 15. & & \\
\hline \multirow[t]{2}{*}{Clock Enable Set-Up Time} & & & 5 & - & 175 & 500 & \multirow[b]{2}{*}{ns} & \multirow[b]{4}{*}{1} \\
\hline & & & 10 & - & 75 & 200 & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[b]{2}{*}{\({ }^{\mathrm{f}} \mathrm{CL}\)} & \multirow[t]{2}{*}{Measured with Respect to Carry Out Line} & 5 & 1.5 & 2.5 & - & \multirow[b]{2}{*}{MHz} & \\
\hline & & & 10 & 3. & 5 & - & & \\
\hline Input Capacitance & \(C_{1}\) & Any Input & & - & 5 & - & pF & \\
\hline \multicolumn{9}{|l|}{RESET OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: To Carry Out Line} & \multirow[b]{3}{*}{tPHL(R)} & & 5 & - & 350 & 1000 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & 125 & 125 & & \\
\hline To Decode Out Lines & & & \[
\begin{array}{r}
5 \\
10
\end{array}
\] & - & \[
\begin{aligned}
& 550 \\
& 240
\end{aligned}
\] & \[
\begin{array}{r}
1400 \\
500
\end{array}
\] & ns & \\
\hline \multirow[t]{2}{*}{Reset Pulse Width} & \multirow[b]{2}{*}{\({ }^{\text {t W }}\) W (R)} & & 5 & - & 200 & 330 & \multirow[t]{2}{*}{ns} & \\
\hline & & & 10 & - & 100 & 165 & & \\
\hline \multirow[t]{2}{*}{Reset Removal Time} & & & 5 & - & 300 & 750 & \multirow[b]{2}{*}{ns} & \\
\hline & & & 10 & - & 100 & 225 & & \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do nut represent \(100 \%\) testing.

Note 1: Test is a one input, one output only.


Fig. 11-Typ. transition time vs. \(C_{L}\) for carry output


Fig. 12-Max. input clock frequency vs. \(V_{D D}\).

File No. 733 \(\qquad\)


Fig. 13-Typ. dissipation characteristics.


Fig. 14-Quiescent device current test circuit.


Fig. 15-Noise immunity test circuit.

\section*{Digital Integrated Circuits \\ Monolithic Silicon}

\section*{High-Reliability Slash(/) Series CD4027A/...}


\title{
High-Reliability COS/MOS Dual J-K Master-Slave Flip Flop
}

With Set/Reset Capability
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment
Special Features:
- Static flip-flop operation. . . . . .retains state indefinitely with clock level either "high" or low"
- Medium speed operation. ..... 8 MHz (typ.) clock toggle rate at \(V_{D D}-V_{S S}=10 \mathrm{~V}\)
■ Low "high"-and "low" output impedance. ..... \(700 \Omega\) and \(300 \Omega\), respectively, at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}=10 \mathrm{~V}\)

\section*{Applications:}
- Registers, counters, control circuits

RCA CD4027A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4027A is a single monolithic chip integrated circuit containing two identical comple-
mentary-symmetry "J-K" master-slave flip-flops. Each flipflop has provisions for individual " J " " K ", "Set", "Reset", and "Clock" input signals. Buffered " Q " and " Q " signals are provided as outputs. This input-output arrangement provides for compatible operation with the RCA CD4013A dual "D" type flip-flop.

- - level change
X - don'tcare
* - invalid condition
Fig. 1-Logic diagram \& truth table for one of two identical J-K flip flops.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{PRESENT STATE} & \multirow{3}{*}{CL *} & & & EXT STATE \\
\hline \multicolumn{4}{|c|}{INPUTS} & \multirow[t]{2}{*}{\[
\begin{array}{||c|}
\hline \text { OUTPUT } \\
\hline Q \\
\hline
\end{array}
\]} & & & & OUTPUTS \\
\hline \(J\) & K & S & R & & & 0 & \(\bar{Q}\) & \\
\hline 1 & X & 0 & 0 & 0 & \(\Gamma\) & 1 & 0 & \\
\hline \(\times\) & 0 & 0 & 0 & 1 &  & 1 & 0 & \\
\hline 0 & X & 0 & 0 & 0 & \[
5
\] & 0 & 1 & \\
\hline x & 1 & 0 & 0 & 1 &  & 0 & 1 & \\
\hline X & X & 0 & 0 & \(x\) & \[
5
\] & & & «- NO CHANGE \\
\hline x & X & 1 & 0 & \(x\) & X & 1 & 0 & \\
\hline \(x\) & x & 0 & 1 & X & \(x\) & 0 & 1 & \\
\hline x & X & 1 & 1 & X & X & * & * & \\
\hline \multicolumn{5}{|l|}{\[
\begin{aligned}
\text { WHERE } 1 & =\text { HIGH LEVEL } \\
0 & =\text { LOW LEVEL }
\end{aligned}
\]} & & & & 92CM-17188R2 \\
\hline
\end{tabular}

The CD4027A is useful in performing control, register, and toggle functions. Logic levels present at the " J " and " \(K\) " inputs along with internal self-steering control the state of each flip-flop; changes in the flip-flop state are synchronous with the positive-going transition of the "clock" pulse. Set and reset functions are independent of the clock and are initiated when a "high"-level signal is present at either the "Set" or "Reset" input.

These devices are electrically and mechanically identical to standard COS/MOS CD4027A types described in data bulletin 503 and DATABOOK SSD- 203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA High-Reliability "Slash" (/) series, RCA will offer these circuits screened to MIL-M-38510 as described in RIC-104, "MIL-M-38510 COS/MOS CD4000A Series types."

\section*{RCA Designation CD4027A}

\section*{MIL-M-38510 Designation MIL-M-38510/05102}

The packaged types can be supplied to six screening levels \(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3, / 4\) - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4027A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages ("D" suffix), in 16-lead ceramic flat packages (" K " suffix), or in chip form (" H " suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Storage-Temperature Range . . . . . . . . . . . -65 to \(+150{ }^{\circ} \mathrm{C}\)
Operating-Temperature Range . . . . . . . . . . . -55 to \(+125{ }^{\circ} \mathrm{C}\)
DC Supply-Voltage Range:
( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) . . . . . . . . . . . . . . . . . . . . . -0.5 to +15 V
Device Dissipation (Per Package) . . . . . . . . 200 mW
All Inputs .............................. . . \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}\)
Recommended
DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) ..... 3 to 15 V
Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . \(V_{D D}\) to \(V_{S S}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
( \(1.59 \pm 0.79 \mathrm{~mm}\) ) from case
for 10 s max. . . . . . . . . . . . . . . . . . . . . \(\quad+265{ }^{\circ} \mathrm{C}\)


Fig. 2-Schematic diagram for one of two identical J-K flip flops.

STATIC ELECTRICAL CHARACTERISTICS (All inputs
\(\mathrm{v}_{\mathrm{SS}} \leqslant \mathrm{V}_{1} \leqslant \mathrm{~V}_{\mathrm{DD}}\) )
(Recommended DC Supply Voltage ( \(\mathbf{V D D}^{\mathbf{D}} \mathbf{V}_{\mathbf{S S}}\) )
........... 3 to 15 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\begin{gathered}
\text { TEST } \\
\text { CONDITIONS } \\
\hline
\end{gathered}
\]}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow{4}{*}{NOTES} \\
\hline & & & & \multicolumn{7}{|c|}{CD4027AD, CD4027AK} & & \\
\hline & & \(\mathrm{V}_{0}\) & \(\mathrm{V}_{\mathrm{DD}}\) & \multicolumn{2}{|r|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & Volts & Volts & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{IL} & & 5 & - & 1 & - & 0.005 & 1 & - & 60 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & 2. & - & 0.005 & 2. & - & 40. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{D}\)} & & 5 & - & 5 & - & 0.025 & 5 & - & 300 & \multirow[t]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 20 & - & 0.05 & 20 & - & 400 & & \\
\hline \multirow{4}{*}{Output Voltage Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & 0.55 & - & - & 0.5 & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 15 & - & - & - & - & 0.5 & - & 0.55. & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{VOH}^{\text {O }}\)} & & 3 & 2.25 & - & 2.3 & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & 15 & - & - & 14.5 & - & - & 1445. & - & & \\
\hline Threshold Voltage: N-Channel & \(V_{T H} \mathrm{~N}\) & \multicolumn{2}{|l|}{\(I_{D}=-10 \mu \mathrm{~A}\)} & -0.7• & -30 & -0.7- & -1.5 & -30 & -0.3. & -3. & V & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \multicolumn{2}{|l|}{\(I_{D}=10 \mu \mathrm{~A}\)} & 0.7 • & 3. & 0.7 . & 1.5 & 3. & 0.3 & 3. & V & \\
\hline \multirow[t]{4}{*}{Noise Immunity (All Inputs) For Definition, See Appendix} & \multirow[b]{2}{*}{\(V_{\text {NL }}\)} & 0.8 & 5 & 1.5 & - & 1.5 & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & 1.0 & 10 & 3. & - & 3. & 4.5 & - & 2.9 & - & & \\
\hline & & 4.2 & 5 & 1.4 & - & 1.5. & 2.25 & - & 1.5 & 二 & \multirow[t]{2}{*}{V} & \\
\hline & VNH & 9.0 & 10 & 2.9• & - & 3. & - & - & 3. & - & & \\
\hline \multirow[t]{2}{*}{Output Drive Current: N -Channel} & \multirow[t]{2}{*}{1 DN} & 0.5 & 5 & 0.63 & - & 0.5 . & 1 & - & 0.33 & - & \multirow[t]{2}{*}{mA} & \multirow{4}{*}{2} \\
\hline & & 0.5 & 10 & 1.25 & - & \(1.0{ }^{\circ}\) & 2.5 & - & 0.7 & - & & \\
\hline \multirow[t]{2}{*}{P-Channel} & \multirow[b]{2}{*}{\({ }^{1} D^{P}\)} & 4.5 & 5 & -0.31 & - & -0.25 & -0.5 & - & -0.175 & - & \multirow[t]{2}{*}{mA} & \\
\hline & & 9.5 & 10 & -0.8 & - & -0.65 & -1.3 & - & -0.45 & - & & \\
\hline Diode Test \(100 \mu \mathrm{~A}\) Test Pin & - & & & - & 1.5• & - & - & 1.5 & - & \(1.5 \bullet\) & v & 3 \\
\hline Input Current & 11 & & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through \(\mathbf{7}\) for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.


Fig. 3-Min. N-channel drain characteristics.


92Cs-22782
Fig. 4-Min. P-channel drain characteristics.

Dynamic Electrical Characteristics at \(T_{A}=25^{\circ} C, V_{S S}=O V, C_{L}=15 \mathrm{pF}\), and input rise and fall times \(=20 \mathrm{~ns}\), except \(t_{r} C L\) and \(t_{f} C L\). Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}\). (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} & \multirow{3}{*}{NOTES} \\
\hline & & & \multicolumn{3}{|l|}{CD4027AD, CD4027AK} & & \\
\hline & & (Volts) & Min. & Typ. & Max. & & \\
\hline \multirow[b]{2}{*}{Propagation Delay Time} & \({ }^{\text {tPHL, }}\) & 5 & - & 150 & 300 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & tPLH & 10 & - & 75 & 110. & & \\
\hline \multirow[t]{2}{*}{Transition Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) THL, \\
tTLH
\end{tabular}} & 5 & - & 75 & 125 & \multirow[b]{2}{*}{ns} & \multirow{4}{*}{-} \\
\hline & & 10 & - & 50 & 70 & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) WL. \\
twh
\end{tabular}} & 5 & - & 165 & 330 & \multirow[b]{2}{*}{ns} & \\
\hline & & 10 & - & 65 & 110 & & \\
\hline \multirow[t]{2}{*}{Clock Rise \& Fall Time} & \multirow[t]{2}{*}{\[
\begin{gathered}
{ }^{*} \mathrm{trCL}_{\mathrm{f} C L} \\
\mathrm{t}_{\mathrm{fCL}}
\end{gathered}
\]} & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu_{s}\)} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - . & - & 5. & & \\
\hline \multirow[t]{2}{*}{Set-Up Time} & & 5 & - & 70 & 150 & \multirow[t]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 25 & 50 & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency (toggle mode)} & \multirow[b]{2}{*}{fCL} & 5 & 1.5 & 3 & - & \multirow[b]{2}{*}{MHz} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & 4.5. & 8 & - & & \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & - & - & 5. & - & pF & - \\
\hline \multicolumn{8}{|l|}{SET \& RESET OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
tPHL(R), \\
tPLH(S)
\end{tabular}} & 5 & - & 175 & 225 & \multirow[t]{2}{*}{ns} & \multirow{4}{*}{-} \\
\hline & & 10 & - & 75 & 110 & & \\
\hline \multirow[t]{2}{*}{Minimum Set and Reset Pulse Widths} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) WH(S), \\
tWL(R)
\end{tabular}} & 5 & - & 125 & 200 & \multirow[b]{2}{*}{ns} & \\
\hline & & 10 & - & 50 & 80 & & \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing. NOTE 1: Test is a one input one output only.
- If more than one unit is cascaded in a paraltel clocked operation, \(t_{r} C L\) should be made less than or equal to the sum of the fixed propagation delay time at 15 pF and the transition time of the output driving stage for the estimated capacitive load.


Fig. 5-Typ. propagation delay time vs. \(C_{L}\).


Fig. 6- Typ. transition time vs. \(C_{L}\).


Fig. 7-Max. clock frequency vs. supply voltage.


Fig. 9-Dissipation test circuit.


Fig. 11-Noise-immunity test circuit.


Fig. 8- Typ. dissipation characteristics.


Fig. 10-Quiescent device current test circuit.

凡®B/
Solid State Division

Digital Integrated Circuits
Monolithic Silicon


\section*{High-Reliability}

COS/MOS BCD-to-Decimal Decoder
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment

\section*{Special Features:}
- BCD to decimal decoding or binary to octal decoding
- High decoded output drive capability. . . . . 8 mA (typ.) sink or source
- "Positive Logic" inputs and outputs. ..... decoded outputs go "high" on selection
- Medium speed operation. . . . . .tTHL, \(\mathbf{t}\) LLH \(=\mathbf{3 0}\) ns (typ.) @ \(\mathrm{V}_{\mathrm{DD}}=\mathbf{1 0} \mathrm{V}\)

Applications:
- Code conversion - Indicator-tube decoder
- Address decoding-memory selection control

RCA CD4028A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4028A types are BCD-todecimal or binary-to-octal decoders consisting of pulse shaping circuits on all 4 inputs, decoding-logic gates, and 10 output buffers. A BCD code applied to the four inputs, A to D , results in a "high" level at the selected one of 10 decimal

TABLE I - TRUTH TABLE
\begin{tabular}{|llll|llllllllll|}
\hline\(D\) & \(C\) & \(B\) & \(A\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}
decoded outputs. Similarly, a 3-bit binary code applied to inputs \(A\) through \(C\) is decoded in octal code at output 0 to 7 . A "high"-level signal at the \(D\) input inhibits octal decoding and causes inputs 0 through 7 to go "low". If unused, the D input must be connected to VSS. High drive capability is provided at all outputs to enhance dc and dynamic performance in high fan-out applications. All inputs and outputs are protected against electrostatic effects.
These devices are electrically and mechanically identical with standard COS/MOS CD4028A types described in data bulletin 503 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical,

mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.
The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / \(M, / N\), and / R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".
The CD4028A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages (" \(D\) " suffix), in 16-lead ceramic flat packages (" K " suffix), or in chip form (" H " suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Storage-Temperature Range . . . . . . . . . . . -65 to \(+150{ }^{\circ} \mathrm{C}\)
Operating-Temperature Range . . . . . . . . . . -55 to \(+125{ }^{\circ} \mathrm{C}\)
DC Supply-Voltage Range:
\begin{tabular}{|c|c|}
\hline \(\left(V_{D D}-V_{S S}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline \multicolumn{2}{|l|}{Recommended} \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\) ) & 3 to 15 V \\
\hline \multicolumn{2}{|l|}{Recommended} \\
\hline Input-Voltage Swing & \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\mathrm{SS}}\) \\
\hline \multicolumn{2}{|l|}{Lead Temperature (During Soldering)} \\
\hline At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\) & \\
\hline ( \(1.59 \pm 0.79 \mathrm{~mm}\) ) from case & \\
\hline for 10 s max. & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

STATIC ELECTRICAL CHARACTERISTICS (All inputs \(\left.\mathbf{V}_{\mathbf{S S}} \leqslant \mathrm{V}_{\mathbf{I}} \leqslant \mathrm{V}_{\mathrm{DD}}\right)\)
(Recommended DC Supply Voltage ( \(V_{D D}-V_{S S}\) ) 3 to 15 V )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{9}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow{4}{*}{NOTES} \\
\hline & & & & \multicolumn{9}{|c|}{CD4028AD, CD4028AK} & & \\
\hline & & \(\mathrm{V}_{0}\) & \(V_{\text {DD }}\) & \multicolumn{3}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & Volts & Volts & Min. & Typ. & Max. & Min. & Typ. & Max. & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{1}\)} & & 5 & - & - & 5 & - & 0.5 & 5 & - & - & 300 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & - & 10. & - & 1 & 10. & - & - & 200. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{D}\)} & & 5 & - & - & 25 & - & 2.5 & 25 & - & - & 1500 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \\
\hline & & & 10 & - & - & 100 & - & 10 & 100 & - & - & 2000 & & \\
\hline \multirow{4}{*}{Output Voltage: Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & - & 0.55. & - & - & 0.5. & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & & 10 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & & 15 & - & - & - & - & - & 0.5 & - & - & 0.55 . & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & 2.25. & - & - & 2.3. & - & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & - & 4.99 & 5 & - & 4.95 & - & - & & \\
\hline & & & 10 & 9.99 & - & - & 9.99 & 10 & - & 9.95 & - & - & & \\
\hline & & & 15 & - & - & - & 14.5. & - & - & 14.45 & - & - & & \\
\hline Threshold Voltage: N -Channel & \(\mathrm{V}_{\text {TH }} \mathrm{N}\) & \multicolumn{2}{|l|}{\(1 D_{D}=-20 \mu \mathrm{~A}\)} & -0.7. & -1.7 & -3. & -0.7. & -1.5 & -3. & -0.3. & -1.3 & -3. & V & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{\mathrm{TH}}{ }^{P}\) & \({ }^{1} \mathrm{D}=20 \mu \mathrm{~A}\) & & 0.7 . & 1.7 & 3. & 0.7 . & 1.5 & 3. & 0.3 . & -1.3 & 3. & V & \\
\hline \multirow[t]{4}{*}{Noise Immunity (All mputs)} & \multirow[b]{4}{*}{\begin{tabular}{l}
\(V_{N L}\) \\
\(\mathrm{V}_{\mathrm{NH}}\)
\end{tabular}} & 0.8 & 5 & 1.5 & - & - & 1.5. & 2.25 & - & 1.4 & - & - & \multirow[t]{2}{*}{V} & \multirow[b]{4}{*}{1} \\
\hline & & 1.0 & 10 & 3. & - & - & 3. & 4.5 & - & 2.9. & - & - & & \\
\hline & & 4.2 & 5 & 1.4 & - & - & 1.5. & 2.25 & - & 1.5 & - & - & \multirow[t]{2}{*}{V} & \\
\hline & & 9.0 & 10 & 2.9. & - & - & 3. & 4.5 & - & 3. & - & - & & \\
\hline \multirow[t]{2}{*}{Output Drive Current N-Channel} & \multirow[b]{2}{*}{\({ }_{1}{ }^{N}\)} & 0.5 & 5 & 0.75 & - & - & 0.6. & 1.2 & - & 0.45 & - & - & \multirow[b]{2}{*}{mA} & \multirow{3}{*}{2} \\
\hline & & 0.5 & 10 & 1.5 & - & - & 1.2. & 2.4 & - & 0.9 & - & - & & \\
\hline P-Channel & \({ }^{1} D^{P}\) & \[
\begin{aligned}
& 4.5 \\
& 9.5
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
10
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.7 \\
-1.4 \\
\hline
\end{array}
\] & - & - & \[
\begin{aligned}
& -0.37 \\
& -0.9
\end{aligned}
\] & \[
\begin{aligned}
& -0.9 \\
& -1.9
\end{aligned}
\] & - & \[
\begin{array}{|l|}
\hline-0.32 \\
-0.65 \\
\hline
\end{array}
\] & - & - & mA & \\
\hline \[
\begin{aligned}
& \text { Diode Test } 100 \mu \mathrm{~A} \\
& \text { Test Pin }
\end{aligned}
\] & - & & - & - & - & 1.5. & - & - & 1.5. & - & - & 1.5. & V & 3 \\
\hline Input Current & \(1 /\) & & - & - & - & - & - & 10 & - & - & - & - & pA & \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S S}=O V, C_{I}=15 \mathrm{pF}\), and all input rise and fall times \(=20 \mathrm{~ns}\) Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=\mathbf{0 . 3 \%} /{ }^{\circ} \mathbf{C}\) (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOL} & & & \multicolumn{3}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} & \multirow{3}{*}{NOTES} \\
\hline & & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{3}{|l|}{CD4028AD, CD4028AK} & & \\
\hline & & & \begin{tabular}{l}
VDD \\
(Volts)
\end{tabular} & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
tPHL, \\
tPLH
\end{tabular}} & & 5 & - & 250 & 480 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & 100 & 180. & & \\
\hline \multirow[t]{2}{*}{Transition Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
tTHL, \\
tTLH
\end{tabular}} & & 5 & - & 60 & 150 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & 30 & 75. & & \\
\hline Input Capacitance & \(C_{1}\) & \multicolumn{2}{|l|}{Any Input} & - & 5 & - & pF & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 ,through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing. NOTE 1: Test is a one-input, one output only.


Fig. 2-Typ. N-channel drain characteristics.


92cs-19100
Fig.4-Typ. propagation delay time vs. \(C_{L}\).


Fig. 3-Typ. P-channel drain characteristics.


Fig. 5-Typ. transition time vs. \(C_{L}\).


Fig. 6-Max. propagation delay time vs. VDD.


Fig. 8-Quiescent device current test circuit.


Fig. 7-Dissipation vs, input frequency.

Fig. 9 - Noise-immunity test circuit.


\title{
High-Reliability COS/MOS Presettable Up/Down Counter
}

\author{
Binary or BCD-Decade
}

\author{
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment \\ Special Features: \\ - Medium speed operation. . . 5 MHz (typ.) @ \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) and \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\) \\ - Multi-package parallel clocking for synchronous high speed output response of ripple clocking for slow clock input rise and fall times \\ - "Preset Enable" and individual "Jam" inputs provided \\ - Binary or docade up/down counting \\ - BCD outputs in decade mode \\ Applications:
}
- Programmable binary and decade counting/frequency synthesizers-BCD output
- Analog to digital and digital to analog conversion

RCA CD4029A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4029A types consist of a four-stage binary or BCD decade up/down counter with provisions for "look-ahead" carry in both counting modes. The inputs consist of a single Clock, Carry-in (Clock Enable), Binary/Decade, Up/Down, Preset Enable, and four individual Jam signals. Four separate buffered Q signals and a Carry-Out signal are provided as outputs.

A "high" Preset Enable signal allows information on the Jam inputs to preset the counter to any state asynchronously with the clock. A "low" on each Jam line, when the PresetEnable signal is "high", resets the counter to its zero count. The counter is advanced one count at the positive transition of the clock when the Carry-In and Preset-Enable signals are "low". Advancement is inhibited when the Carry-In or Preset-Enable signals are "high". The Carry-Out signal is normally "high" and goes "low" when the counter reaches its maximum count in the "Up" mode or the minimum count in the "Down" mode provided the Carry-In signal is "low". The Carry-In signal in the "low" state can thus be considered a Clock Enable. The Carry-In terminal must be connected to \(V_{\text {SS }}\) when not in use.
Binary counting is accomplished when the Binary/Decade input is "high"; the counter counts in the Decade mode when the Binary/Decade input is "low". The counter counts "Up" when the Up/Down input is "high", and "Down" when the Up/Down input is "low". Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement as shown in Fig. 10. Parallel clocking provides synchronous control and hence faster response from all counting outputs. Ripple-clocking allows for longer clock input rise and fall times.

These devices are electrically and mechanically identical with standard COS/MOS CD4029A types described in data bulletin 503 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical,
- Up/Down binary counting
- Magnitude and sign generation
- Up/Down decade counting

The packaged types can be supplied to six screening levels \(/ 1 \mathrm{~N}, / 1\) R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4029A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages ("D" suffix), in 16-lead ceramic flat packages (" K " suffix), or in chip form (" H " suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Storage-Temperature Range
-65 to \(+150^{\circ} \mathrm{C}\)
Operating-Temperature Range . . . . . . . . . . . -55 to \(+125{ }^{\circ} \mathrm{C}\)
DC Supply-Voltage Range:
\begin{tabular}{|c|c|}
\hline \(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline
\end{tabular}

All Inputs
\(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}\)
Recommended
DC Supply-Voltage ( \(V_{D D}-V_{S S}\) ) .... 3 to \(15 \quad V\)
Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . \(V_{D D}\) to \(V_{S S}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
( \(1.59 \pm 0.79 \mathrm{~mm}\) ) from case
for 10 s max. . . . . . . . . . . . . . . . . . . . . \(+265{ }^{\circ} \mathrm{C}\)
Fig. 1-Logic diagram.
\begin{tabular}{|c|c|l|}
\hline \begin{tabular}{c} 
CONTROL \\
INPUT
\end{tabular} & \begin{tabular}{c} 
LOGIC \\
LEVEL
\end{tabular} & \multicolumn{1}{|c|}{ ACTION } \\
\hline \begin{tabular}{c} 
BIN/DEC. \\
(B/D)
\end{tabular} & 1 & \begin{tabular}{l} 
BINARY COUNT \\
DECADE COUNT
\end{tabular} \\
\hline \begin{tabular}{c} 
UP/DOWN \\
(U/D)
\end{tabular} & 1 & \begin{tabular}{l} 
UP COUNT \\
DOWN COUNT
\end{tabular} \\
\hline \begin{tabular}{c} 
PRESET ENABLE \\
(PE)
\end{tabular} & 1 & \begin{tabular}{l} 
JAM IN \\
NO JAM
\end{tabular} \\
\hline & 0 & \begin{tabular}{l} 
NO COUNTER \\
ADVANCE AT POS. \\
CLOCK TRANSITION
\end{tabular} \\
\begin{tabular}{ll} 
CARRY IN (CI) \\
(CLOCK ENABLE)
\end{tabular} & 1 & \begin{tabular}{l} 
ADVANCE COUNTER \\
AT POS. CLOCK
\end{tabular} \\
& 0 & \begin{tabular}{l} 
ARANSITION
\end{tabular} \\
\hline
\end{tabular}


Fig. 2-Timing diagram-binary mode.


Fig. 3-Timing diagram-decade mode.


Fig. 4-Tvp. propagation delay time vs. \(C_{L}\) for \(Q\) outputs.


Fig. 5-Typ. propagation delay time vs. \(C_{L}\) for carry output.


92CS-19108
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow{4}{*}{NOTES} \\
\hline & & & & & \multicolumn{7}{|c|}{CD4029AD, CD4029AK} & & \\
\hline & & & & V & \multicolumn{2}{|l|}{\(\underline{-55}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & Volts & Volts & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline Quiescent Device Current & IL & & & \[
\begin{array}{r}
5 \\
10
\end{array}
\] & - & \[
\begin{array}{r}
5 \\
10 .
\end{array}
\] & - & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & 5
10. & - & \[
\begin{aligned}
& 300 \\
& 200
\end{aligned}
\] & \(\mu \mathrm{A}\) & 1 \\
\hline Quiescent Device Dissipation/Package & \(P_{\text {D }}\) & & & \[
\begin{array}{r}
5 \\
10
\end{array}
\] & - & \[
\begin{aligned}
& 25 \\
& 100
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.5 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& 25 \\
& 100
\end{aligned}
\] & - & \[
\begin{aligned}
& 1500 \\
& 2000
\end{aligned}
\] & \(\mu \mathrm{W}\) & \\
\hline Output Voltage: Low-Level & \(\mathrm{V}_{\mathrm{OL}}\) & & & \[
\begin{array}{r}
3 \\
5 \\
10 \\
15
\end{array}
\] & - & \[
\begin{gathered}
0.55 \\
0.01 \\
0.01 \\
-
\end{gathered}
\] & -
-
- & \[
\begin{gathered}
- \\
0 \\
0 \\
-
\end{gathered}
\] & \[
\left\lvert\, \begin{aligned}
& 0.5 . \\
& 0.01 \\
& 0.01 \\
& 0.5 .
\end{aligned}\right.
\] & -
-
- & \[
\begin{aligned}
& - \\
& 0.05 \\
& 0.05 \\
& 0.55
\end{aligned}
\] & V & 1 \\
\hline High-Level & \(\mathrm{V}_{\mathrm{OH}}\) & & & \[
\begin{array}{r}
3 \\
5 \\
10 . \\
15
\end{array}
\] & \[
\begin{aligned}
& 2.25 \\
& 4.99 \\
& 9.99 \\
& -
\end{aligned}
\] & - & \[
\begin{aligned}
& 2.3 . \\
& 4.99 \\
& 9.99 \\
& 14.5 .
\end{aligned}
\] & -
5
10
- & - & \[
\begin{aligned}
& 4.95 \\
& 9.95 \\
& 14.45
\end{aligned}
\] & -
-
-
- & V & 1 \\
\hline Threshold Voltage:
\[
\frac{\mathrm{N} \text {-Channel }}{\text { P-Channel }}
\] & \[
\frac{V_{T H} N}{V_{T H^{P}}}
\] & \(\frac{10}{}=-2\) & \(20 \mu \mathrm{~A}\) & & -0.7. & -3. & -0.7. & -1.5 & -3. & -0.3. & -3. & v & 2 \\
\hline Noise Immunity (All Inputs) For Definition, See Appendix & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{NL}} \\
& \mathrm{v}_{\mathrm{NH}}
\end{aligned}
\] & & \[
\begin{aligned}
& 0.8 \\
& 1 . n \\
& 4.2 \\
& 9.0
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
10 \\
5 \\
10
\end{array}
\] & \[
\begin{aligned}
& 1.5 \\
& 3 . \\
& 1.4 \\
& 2.9
\end{aligned}
\] & -
-
-
- & \[
\begin{aligned}
& 1.5 . \\
& 3 . \\
& 1.5 . \\
& 3 .
\end{aligned}
\] & \[
\begin{aligned}
& 2.25 \\
& 4.5 \\
& 2.25 \\
& 4.5
\end{aligned}
\] &  & \[
\begin{aligned}
& 1.4 \\
& 2.9 . \\
& 1.5 \\
& 3 .
\end{aligned}
\] &  & v & 1 \\
\hline \begin{tabular}{l}
Output Drive Current \\
N -Channel
\end{tabular} & \(I^{1} N\) &  & \[
\begin{aligned}
& \hline 0.5 \\
& 0.5 \\
& 0.5 \\
& 0.5
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
10 \\
b \\
10
\end{array}
\] & \[
\begin{array}{|l|}
\hline 0.5 \\
0.74 \\
\\
0.1 \\
0.4
\end{array}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 0.4 . \\
0.6 . \\
\text { û.̄̄̄. } \\
0.32 .
\end{array}
\] & \[
\left[\begin{array}{c}
0.15 \\
0.3 \\
0.5 \\
1
\end{array}\right.
\] &  & \[
\begin{aligned}
& 0.28 \\
& 0.42 \\
& \\
& 0.06 \\
& 0.22
\end{aligned}
\] &  & mA & 1 \\
\hline P-Channel & \({ }_{10}{ }^{P}\) & 0 Output Carry Output & \[
\begin{array}{|l}
\hline 4.5 \\
9.5 \\
4.5 \\
9.5
\end{array}
\] & \[
\begin{array}{r}
5 \\
10 \\
5 \\
10
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.18 \\
-0.3 \\
\\
-0.09 \\
-0.15
\end{array}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline-0.12 . \\
-0.2 . \\
\\
-0.06 . \\
-0.1 .
\end{array}
\] & \[
\begin{array}{|l|}
\hline-0.075 \\
-0.15 \\
\\
-0.4 \\
-0.8
\end{array}
\] & \[
\left[\begin{array}{l}
- \\
- \\
- \\
-
\end{array}\right.
\] & \[
\begin{array}{|l|}
\hline-0.08 \\
-0.14 \\
\\
-0.04 \\
-0.01
\end{array}
\] & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & mA & \\
\hline \[
\begin{aligned}
& \text { Diode Test } 100 \mu \mathrm{~A} \\
& \text { Test Pin } \\
& \hline
\end{aligned}
\] & - & & & & - & 1.5. & - & - & 1.5. & - & 1.5. & V & 3 \\
\hline Input Current & 11 & & & & - & - & - & 10 & - & - & - & pA & \\
\hline
\end{tabular}

\footnotetext{
Limits with black dot ( 0 ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through \(\mathbf{7}\) for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.
}

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: - Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.

File No. 736
DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S S}=O V, C_{L}=15 \mathrm{pF}\), and input rise and fall times \(=20 \mathrm{~ns}\), except \(t_{r} C L\) and \(t_{f} C L\) Tvpical Temperature Coefficient for all values of \(V_{D D}=0.3 \% /{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{TEST CONDITIONS
\begin{tabular}{|c} 
VDD \\
(Volts)
\end{tabular}}} & \multicolumn{3}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} & \multirow{3}{*}{NOTES} \\
\hline & & & & \multicolumn{3}{|l|}{CD4029AD, CD4029AK} & & \\
\hline & & & & Min. & Typ. & Max. & & \\
\hline \multicolumn{9}{|l|}{CLOCKED OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: Q Outputs} & \multirow{4}{*}{tPHL. tPLH} & & 5 & - & 325 & 650 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & 115 & 230* & & \\
\hline \multirow[b]{2}{*}{Carry Output} & & & 5 & - & 425 & 850 & \multirow[b]{2}{*}{ns} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & 150 & 300• & & \\
\hline \multirow[t]{2}{*}{Transition Time: Q Outputs} & \multirow[b]{4}{*}{\begin{tabular}{l}
\({ }^{\text {tTHL, }}\) \\
\({ }^{\text {tTLH }}\)
\end{tabular}} & & 5 & - & 100 & 200 & \multirow[b]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 50 & 100 & & \\
\hline \multirow[t]{2}{*}{Carry Output} & & & 5 & - & 200 & 400 & \multirow[b]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 100 & 200 & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[t]{2}{*}{\({ }^{t}\) WL. twh} & & 5 & - & 200 & 340 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 100 & 170 & & \\
\hline \multirow[b]{2}{*}{Clock Rise \& Fall Time} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \mathrm{CL}, \Delta \\
& \mathrm{t}_{\mathrm{f}} \mathrm{CL}
\end{aligned}
\]} & & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu \mathrm{s}\)} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & - & \(15{ }^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Set-Up Times *} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { t'SHL. } \\
& \text { 'SLH }
\end{aligned}
\]} & & 5 & - & 325 & 650 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 115 & 230 & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency.} & \multirow[b]{2}{*}{\({ }^{f} \mathrm{CL}\)} & & 5 & 1.5 & 2.5 & - & \multirow[t]{2}{*}{MHz} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & 3 & 5 & - & & \\
\hline Input Capacitance & \(C_{1}\) & Any Input & & - & 5 & - & pF & - \\
\hline \multicolumn{9}{|l|}{PRESET ENABLE} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: Q Outputs} & \multirow{4}{*}{tPHL, tPLH} & & 5 & - & 325 & 650 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 115 & 230 & & \\
\hline \multirow[t]{2}{*}{Carry Output} & & & 5 & - & 425 & 850 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 150 & 300 & & \\
\hline \multirow[t]{2}{*}{Reset Enable Pulse Width} & \multirow[b]{2}{*}{\({ }^{\text {t WH }}\)} & & 5 & - & 115 & 330 & \multirow[t]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 80 & 160 & & \\
\hline \multirow[t]{2}{*}{Preset Enable Removal Time} & \multirow[b]{2}{*}{\({ }^{\text {trem }}\)} & & 5 & - & 325 & 650 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 115 & 230 & & \\
\hline \multicolumn{9}{|l|}{CARRY INPUT} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: Carry Output} & \multirow[t]{2}{*}{tPHL. tPLH} & & 5 & - & 175 & 350 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 50 & 100 & & \\
\hline
\end{tabular}
* From Up/Down, Binary/Decade or Carry Input Control Inputs to Clock Input.
\(\Delta\) If more than one unit is cascaded in the parallel clocked application, \(\mathrm{t}_{\mathrm{r}} \mathrm{CL}\) should be made less than or equal to the sum of the fixed propagation delay at 15 pF and the transition time of the carry output driving stage for the estimate capacitive load. NOTE 1: Test is a one-input, one-output only.

Limits with black dot ( 0 ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.


Fig. 8-Max. clock frequency vs. VDD.


Fig. 9-Typ. dissipation characteristics.

Fig. 11- Noise-immunity test circuit.


Solid State Division

Digital Integrated Circuits
Monolithic Silicon High-Reliability Slash(/) Series CD4030A/...


\section*{High-Reliability COS/MOS Quad Exclusive-OR Gate}
(Positive Logic)

\section*{For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment \\ Special Features:}
- Medium speed operation \(\ldots . .\). tpHL \(=\) tpLH \(=40\) ns (typ.) @ \(C_{L}=15 \mathrm{pF}\) and \(V_{D D}-V_{S S}=10 \mathrm{~V}\)
- Low output impedance ........500 (typ.) @ \(V_{D D}-V_{S S}=10 \mathrm{~V}\)

Applications:
m Even and odd-parity generators and checkers
- Logical comparators
- Adders/subtractors
- General logic functions

RCA CD4030A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4030A types each contain four independent Exclusive-OR gates integrated on a single monolithic silicon chip. Each Exclusive-OR gate consists of four N -channel and four P -channel enhancement-type transistors. All inputs and outputs are protected against electrostatic effects.

These devices are electrically and mechanically identical with standard COS/MOS CD4030A types described in data bulletin 503 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4030A "Slash" (/) Series types are supplied in 14 -lead dual-in-line ceramic packages ("D" suffix), in 14 lead ceramic flat packages ("K" suffix), or in chip form (" H " suffix).


Fig. 1-Schematic diagram for 1 of 4 identical exclusive-OR gates.

TRUTH TABLE FOR ONE OF FOUR IDENTICAL GATES
\begin{tabular}{|c|c||c|}
\hline\(A\) & \(B\) & \(J\) \\
\hline 0 & 0 & 0 \\
\hline 1 & 0 & 1 \\
\hline 0 & 1 & 1 \\
\hline 1 & 1 & 0 \\
\hline
\end{tabular}

WHERE " 1 " = HIGH LEVEL
" 0 " = LOW LEVEL

\section*{STATIC ELECTRICAL CHARACTERISTICS (All inputs \(\mathbf{V}_{\mathbf{S S}} \leqslant \mathbf{V}_{\mathbf{1}} \geqslant \mathbf{V}_{\mathbf{D D}}\) \\ (Recommended DC Supply Voltage (VDD - VSS) 3 to 15 V)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{9}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow{4}{*}{NOTES} \\
\hline & & & & \multicolumn{9}{|c|}{CD4030AD, CD4030AK} & & \\
\hline & & \[
\mathrm{v}_{0}
\] & \(\mathrm{V}_{\mathrm{DD}}\) & \multicolumn{3}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & Volts & Volts & Min. & Typ. & Max. & Min. & Typ. & Max. & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{'L} & & 5 & - & - & 0.5 & - & 0.005 & 0.5 & - & - & 30 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & - & 0.5 - & - & 0.01 & 0.5 • & - & - & 10. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[t]{2}{*}{\({ }^{\text {P }}\) D} & & 5 & - & - & 2.5 & - & 0.025 & 1.5 & - & - & 150 & \multirow[t]{2}{*}{\(\mu \mathrm{W}\)} & \\
\hline & & & 10 & - & - & 10 & - & 0.1 & 10 & - & - & 100 & & \\
\hline \multirow{4}{*}{Output Voltage: Low-Level} & \multirow{4}{*}{VOL} & & 3 & - & - & 0.55. & - & - & 0.5 . & - & - & - & \multirow{4}{*}{\(v\)} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & & 10 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & & 15 & - & - & - & - & - & 0.5. & - & - & 0.55. & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{VOH} & & 3 & 2.25. & - & - & 2.3. & - & - & - & - & - & \multirow{4}{*}{v} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & - & 4.99 & 5 & - & 4.95 & - & - & & \\
\hline & & & 10 & 9.99 & - & - & 9.99 & 10 & - & 9.95 & - & - & & \\
\hline & & & 15 & - & - & - & 14.5• & - & - & 14.45* & - & - & & \\
\hline Threshold Voltage: N-Channel & \(V_{\text {TH }}{ }^{\text {N }}\) & \multicolumn{2}{|l|}{\(I^{\prime}=-10 \mu \mathrm{~A}\)} & -0.70 & -1.7 & -3• & -0.7- & -1.5 & -3. & -0.3. & -1.3 & -30. & V & \multirow[t]{2}{*}{2} \\
\hline & \(V_{T H}{ }^{\text {P }}\) & \({ }^{\prime} \mathrm{D}=10 \mu \mathrm{~A}\) & & 0.7 & 1.7 & \(3 \cdot\) & -0.70 & 1.5 & 3. & 0.3- & 1.3 & 3. & V & \\
\hline \multirow[t]{4}{*}{Noise Immunity (All inputs) For Definition, See Appendix in SSD-207 .} & \multirow[b]{2}{*}{\(\mathrm{V}_{\text {NL }}\)} & 0.95 & 5 & 1.5 & - & - & 1.5. & 2.25 & - & 1.40 & - & - & \multirow[t]{2}{*}{v} & \multirow[b]{4}{*}{1} \\
\hline & & 2.9 & 10 & 3. & - & - & 3. & 4.5 & - & 2.9 & - & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 3.6 & 5 & 1.4 & - & - & 1.5 & 2.25 & - & 1.5* & - & - & \multirow[t]{2}{*}{v} & \\
\hline & & 7.2 & 10 & 2.9• & - & - & 3. & 4.5 & - & 3 & - & - & & \\
\hline \multirow[t]{2}{*}{Output Drive Current: N-Channel} & \multirow[b]{2}{*}{\({ }_{10}{ }^{\text {N }}\)} & 0.5 & 5 & 0.75 & - & - & 0.6. & 1.2 & - & 0.45 & - & - & \multirow[t]{2}{*}{mA} & \multirow{4}{*}{2} \\
\hline & & 0.5 & 10 & 1.5 & - & - & 1.2. & 2.4 & - & 0.9 & - & - & & \\
\hline \multirow[t]{2}{*}{P-Channel} & \multirow[t]{2}{*}{\({ }_{1}{ }^{\text {P }}\)} & 4.5 & 5 & -0.45 & - & - & -0.25. & -0.6 & - & -0.21 & - & - & \multirow[t]{2}{*}{mA} & \\
\hline & & 9.5 & 10 & -0.95 & - & - & -0.6• & -1.3 & - & -0.45 & - & - & & \\
\hline \[
\begin{array}{|l|}
\hline \text { Diode Test } 100 \mu \mathrm{~A} \\
\text { Test Pin } \\
\hline
\end{array}
\] & - & & & - & - & 1.5. & - & - & 1.5• & - & - & 1.5. & V & 3 \\
\hline Input Current & 11 & \multicolumn{2}{|l|}{\(\mathrm{V}_{1}=0\) or \(\mathrm{V}_{\mathrm{DD}}\)} & - & - & - & - & 10 & - & - & - & - & pA & \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output onlv.
For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits,
and for Operating Considerations, see Appendix

MAXIMUM RATINGS, Absolute-Maximum Values:
```

Storage-Temperature Range
Operating-Temperature Range
DC Supply-Voltage Range:
(V VD - V SSS -0.5 to +15 V
Device Dissipation (Per Package) }200\mathrm{ mW
All Inputs
Recommended
DC Supply-Voltage (}\mp@subsup{V}{DD}{}-\mp@subsup{V}{SS}{}\mathrm{) 3 to 15 V
\mp@subsup{V}{SS}{}\leq\mp@subsup{V}{1}{}\leq\mp@subsup{V}{\textrm{DD}}{}
Recommended
Input-Voltage Swing V VDD to V VSS
Lead Temperature (During Soldering)
At distance 1/16" }\pm1/3\mp@subsup{2}{}{\prime\prime
(1.59 \pm0.79 mm) from case
for 10 s max.
+265
O

```


Fig. 2-Typ. N-channel drain characteristics.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathrm{OV}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\), and all input rise and fall times \(=20 \mathrm{~ns}\)
Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}\). (See Appendix for Waveforms)


Limits with black dot ( 0 ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. Alt other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing. NOTE 1: Test is a one input one output only.


Fig. 3-Typ. P-channel drain chacteristics.


Fig. 4-Typ. propagation delay time vs. \(C_{L}\).


Fig. 5- Typ. transition time vs. \(C_{L}\).
Fig. 6-Max. propagation delay time vs. \(V_{D D}\).


Fig. 7-Dissipation vs, input frequency.


Fig. 8-Quiescent device current test circuit.


Fig. 9- Noise-immunity test circuit.


\title{
High-Reliability COS/MOS 64-stage Static Shift Register
}

\author{
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment
}

\section*{Applications:}

For use in digital equipment where low-power dissipation, low package count, and/or high noise immunity are primary design requirements.
- Serial shift registers
- Time delay circuits

RCA CD4031A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4031A is a 64 -stage static shift register in which each stage is a D-type, master-slave flip-flop.

The logic level present at the data input is transferred into the first stage and shifted one stage at each positive-going clock transition. Maximum clock frequencies up to 2 Megahertz can be obtained. Because fully static operation is allowed, information can be permanently stored with the clock line in either the "low" or "high" state. the CD4031A has a mode control input that, when in the "high" state, allows operation in the recirculating mode. Register packages can be cascaded and the clock lines driven directly for high-speed operation. Alternatively, a delayed clock output (CLD) is provided that enables cascading register packages while allowing reduced clock drive fan-out and transitiontime requirements.

Data (Q) and \(\overline{\text { Data }}(\overline{\mathrm{Q}})\) outputs are provided from the 64th register stage. The Data (Q) output is capable of driving one TTL or DTL load. These devices are electrically and mechanically identical with standard COS/MOS CD4031A types described in data bulletin 569 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA HighReliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510.

\section*{Features:}

■ Fully static operation: DC to \(4 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{S S}=10 \mathrm{~V}\)
- Operation from a single 3 to 15 V positive or negative power supply
- High noise immunity
- Microwatt quiescent power dissipation: \(10 \mu \mathrm{~W}\) (typ.)
- Full military operating temperature range: \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
- Single-phase clocking requirements
- Protection against electrostatic effects on all inputs
- Data compatible with TTL-DTL
- Recirculation capability
- Two cascading modes:

Direct clocking for high-speed operation Delayed clocking for reduced clock drive requirements


92CS-19745RI

Fig. 1-Functional diagram.

\section*{RCA Designation CD4031A}

MIL-M-38510 Designation MIL-M-38510/05705

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4031A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages ("D" suffix), in 16 -lead ceramic flat packages (" \(K\) " suffix), or in chip form (" \(\mathrm{H}^{\prime \prime}\) suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range : & -55 to \(+125{ }^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline \(\left(V_{\text {DD }}-V_{S S}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline Recommended & \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) & 3 to 15 V \\
\hline Recommended & \\
\hline Input-Voltage Swing & \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\text {SS }}\) \\
\hline Lead Temperature (During Soldering) & \\
\hline At distance 1/16" \(\pm 1 / 32^{\prime \prime}\) & \\
\hline (1.59 \(\pm 0.79 \mathrm{~mm}\) ) from case & \\
\hline for 10 s max. & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}



INPUT CONTROL CIRCUIT TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline DATA & RECIRC. & MODE & \begin{tabular}{c} 
EIT INTO \\
STAGE
\end{tabular} \\
\hline 1 & \(x\) & 0 & 1 \\
\hline 0 & \(x\) & 0 & 0 \\
\hline\(x\) & 1 & 1 & 1 \\
\hline\(x\) & 0 & 1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline\(D\) & \(C L^{\Delta}\) & \(D+1\) \\
\hline 0 & \(\Gamma\) & 0 \\
1 & \(\Gamma\) & 1 \\
\(x\) & \(\sim\) & \(N C\) \\
\hline
\end{tabular}

NC

NC = NO CHANGE
\(\mathrm{X}=\mathrm{DONT}\) CARE
\(\triangle\) : LEVEL CHANGE
* TG. = TRANSMISSION GATE


Input to Output is:
(a) A Bidirectional Short Circuit when Control Input 1 is "Low" and Control Input 2 is "High"
(b) An Open Circuit when Control Input 1 is "High" and Control Input 2 is "Low"


Fig. 2-CD4031A logic diagram and truth tables.


Fig. 3-Quiescent device current.


Fig. 4-Noise immunity.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{9}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow{4}{*}{NOTES} \\
\hline & & & & & \multicolumn{9}{|c|}{CD4031AD, CD4031AK} & & \\
\hline & & & \(V_{0}\) & VDD & \multicolumn{3}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & Volts & Volts & Min. & Typ. & Max. & Min. & Typ. & Max. & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{1}\) L} & & & 5 & - & - & 10 & - & 0.5 & 10 & - & - & 600 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{1} \\
\hline & & & & 10 & - & - & 25. & - & 1 & 25. & - & - & 500 & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{\text {D }}\)} & & & 5 & - & - & 50 & - & 2.5 & 50 & - & - & 3000 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[b]{2}{*}{-} \\
\hline & & & & 10 & - & - & 250 & - & 10 & 250 & - & - & 5000 & & \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Output Voltage: \\
Low-Level
\end{tabular}} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & & 3 & - & - & 0.55. & - & - & 0.5 & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 5 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & & & 10 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & \\
\hline & & & & 15 & - & - & - & - & - & 0.5. & - & - & 0.550 & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{NOH} & & & 3 & 2.25• & - & - & 2.3. & - & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 5 & 4.99 & - & - & 4.99 & 5 & - & 4.95 & - & - & & \\
\hline & & & & 10 & 9.99 & - & - & 9.99 & 10 & - & 9.95 & - & - & & \\
\hline & & & & 15 & - & - & - & 14.5. & - & - & 14.45 & - & - & & \\
\hline Threshold Voltage: N -Channel & \(\mathrm{V}_{\text {TH }} \mathrm{N}\) & \multicolumn{3}{|l|}{\(I_{D}=-20 \mu \mathrm{~A}\)} & -0.7 & -1.7 & -3. & -0.7. & -1.5 & -3. & -0.3 & -1.3 & -3. & V & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(V_{\text {TH }}{ }^{P}\) & \multicolumn{3}{|l|}{\(I_{D}=20 \mu \mathrm{~A}\)} & 0.7 。 & 1.7 & 3. & 0.7. & 1.5 & 3. & 0.3 • & 1.3 & 3 • & V & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Noise Immunity \\
(All Inputs) For Definition, See Appendix in SSD-207
\end{tabular}} & \multirow{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & & 0.8 & 5 & 1.5 & - & - & 1.5. & 2.25 & - & 1.4 & - & - & \multirow[t]{2}{*}{V} & \multirow[b]{4}{*}{1} \\
\hline & & & 1.0 & 10 & 3. & - & - & 3. & 4.5 & - & 2.9. & - & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & & 4.2 & 5 & 1.4 & - & - & 1.5. & 2.25 & - & 1.5 & - & - & \multirow[b]{2}{*}{V} & \\
\hline & & & 9.0 & 10 & 2.9 & - & - & 3. & 4.5 & - & 3. & - & - & & \\
\hline \multirow[t]{6}{*}{Output Drive Current: N-Channel} & \multirow{6}{*}{\({ }^{1} \mathrm{D} N\)} & \multirow[t]{2}{*}{Q} & 0.4 & 4.5 & 1.6 & - & - & 1.3 & 2.6 & - & 0.91 & - & - & \multirow{6}{*}{mA} & \multirow{6}{*}{2} \\
\hline & & & 0.5 & 10 & - & 9.6 & - & - & 8 & - & - & 5.6 & - & & \\
\hline & & \multirow[t]{2}{*}{\(\overline{\mathrm{a}}\)} & 0.5 & 5 & 0.11 & - & - & 0.09 & 0.18 & - & 0.06 & - & - & & \\
\hline & & & 0.5 & 10 & 0.24 & - & - & 0.2. & 0.4 & - & 0.14 & - & - & & \\
\hline & & \multirow[b]{2}{*}{CLD} & 0.5 & 5 & 0.48 & - & - & 0.4 。 & 0.8 & - & 0.28 & - & - & & \\
\hline & & & 0.5 & 10 & 1.5 & - & - & 1.2. & 2.4 & - & 0.84 & - & - & & \\
\hline \multirow{6}{*}{P-Channel} & \multirow{6}{*}{\({ }_{10}{ }^{P}\)} & \multirow[t]{2}{*}{Q} & 4.5 & 5 & -0.4 & - & - & -0.32. & -0.64 & - & -0.22 & - & - & \multirow{6}{*}{mA} & \multirow{6}{*}{2} \\
\hline & & & 9.5 & 10 & -0.85e & - & - & -0.70. & -1.4 & - & -0.49 & - & - & & \\
\hline & & \multirow[t]{2}{*}{\(\overline{\mathrm{Q}}\)} & 4.5 & 5 & -0.11 & - & - & -0.09 & -0.18 & - & -0.06 & - & - & & \\
\hline & & & 9.5 & 10 & -0.24 & - & - & -0.20 & -0.4 & - & -0.14 & - & - & & \\
\hline & & \multirow[b]{2}{*}{CLD} & 4.5 & 5 & -0.48 & - & - & -0.40. & -0.8 & - & -0.28 & - & - & & \\
\hline & & & 9.5 & 10 & -1.0 & - & - & -0.80. & -1.6 & - & -0.56 & - & - & & \\
\hline Diode Test \(100 \mu \mathrm{~A}\) Test Pin & - & & & & - & - & 1.5. & - & - & 1.5. & - & - & 1.5 & \(v\) & 3 \\
\hline Input Current & 11 & & & & - & - & - & - & 10 & - & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.
Note 1: Complete.functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S S}=\mathrm{OV}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) (unless otherwise specified), and input rise and fall times \(=\mathbf{2 0} \mathbf{n s}\), except \(\mathrm{t}_{\mathrm{r}} \mathrm{CL}\) and \(\mathrm{t}_{\mathrm{f}} \mathrm{CL}\).
Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}\). (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TEST CONDITIONS}} & & Mits & & \multirow{3}{*}{UNITS} & \multirow{3}{*}{NOTES} \\
\hline & & & & \multicolumn{3}{|l|}{CD4031AD, CD4031AK} & & \\
\hline & & & VDD (Volts) & Min. & Typ. & Max. & & \\
\hline \multirow[t]{4}{*}{Propagation Delay Clock to Data Output Q \& \(\mathbf{Z}^{*}\) Clock to \(C L_{D}\)} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { tPHL } \\
& \text { tPLH }
\end{aligned}
\]} & \multirow[b]{4}{*}{\(C_{L}=60 \mathrm{pF}\)} & 5 & - & 400 & 800 & \multirow{4}{*}{ns} & \multirow{4}{*}{1} \\
\hline & & & 10 & - & 200 & 400 & & \\
\hline & & & 5 & - & 400 & 800 & & \\
\hline & & & 10 & - & 200 & 400 & & \\
\hline \multirow[t]{4}{*}{Transition Time:
\[
\begin{aligned}
& \text { Q Output } \\
& \hline \overline{\text { 区 Output }}
\end{aligned}
\]} & \multirow{6}{*}{\begin{tabular}{l}
\({ }^{\text {t THL }}\), \\
\({ }^{\text {t TLH }}\)
\end{tabular}} & \multirow[b]{6}{*}{\(C_{L}=60 p F\)} & 5 & - & 75 & 150 & \multirow{6}{*}{ns} & \multirow{6}{*}{-} \\
\hline & & & 10 & - & 30 & 60 & & \\
\hline & & & 5 & - & 300 & 600 & & \\
\hline & & & 10 & - & 150 & 300 & & \\
\hline \multirow[t]{2}{*}{\(C L_{\text {D }}\) Output} & & & 5 & - & 200 & 400 & & \\
\hline & & & 10 & - & 100 & 200 & & \\
\hline \multirow[t]{2}{*}{Clock Rise \& Fall Time**} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \mathrm{CL}, \\
& \mathrm{t}_{\mathrm{f}} \mathrm{CL}
\end{aligned}
\]} & & 5 & - & - & 2 & \multirow[b]{2}{*}{\(\mu_{s}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & - & 1 & & \\
\hline \multirow[t]{2}{*}{Set-Up Time} & \multirow[t]{2}{*}{\({ }^{\text {t SHL }}\). \({ }^{\text {t }}\) SLH} & & 5 & - & 200 & 400 & \multirow[b]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 50 & 100 & & \\
\hline \multirow[t]{2}{*}{Data Overhang Time} & \multirow[b]{2}{*}{\({ }^{\text {t }} \mathrm{DO}\)} & & 5 & - & 0 & & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 20 & 50 & & \\
\hline \multirow[t]{2}{*}{Maximum Clock*** Frequency} & \multirow[b]{2}{*}{\({ }^{6} \mathrm{CL}\)} & & 5 & 0.8 & 2 & - & \multirow[b]{2}{*}{MHz} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & 2. & 4 & - & & \\
\hline Input Capacitance Clock & \multirow[b]{2}{*}{\(C_{1}\)} & & & - & 60 & - & \multirow[t]{2}{*}{pF} & \multirow[t]{2}{*}{-} \\
\hline All Others & & & & - & 5 & - & & \\
\hline
\end{tabular}
\({ }^{*}\) Capacitive loading on \(\overline{\mathbf{Q}}\) output affects propagation delay of \(\mathbf{Q}\) output. These limits apply for \(\overline{\mathrm{Q}}\) load \(\mathbf{C}_{\mathbf{L}} \leqslant \mathbf{1 5 p F}\).
- If more than one unit is cascaded in the parallel clocked application, \(\mathrm{t}_{\mathrm{r}} \mathrm{CL}\) should be made less than or equal to the sum of the propagation delay at 15 pF and the transition time of the output driving stage.
**Maximum Clock Frequency for Cascaded Units;


Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through \(\mathbf{7}\) for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.


Fig. 5-Typical \& minimum \(\mathbf{N}\)-channel drain characteristics for \(\mathbf{Q}\) output.


Fig. 6-Typical P-channel drain characteristics for \(Q\) output.

File No. 738

* LOAD CAPACITANCE OF \(\sigma \geq 15 \mathrm{pF}\)

Fig. 7-Typical propagation delay time vs. \(C_{L}\) for data outputs.



Fig. 9-Typical transition time vs. \(C_{L}\) for data outputs.


Fig. 11-Maximum clock frequency vs. \(V_{D D}\).


Fig. 8-Typical propagation delay vs. \(C_{L}\) for delayed clock output.


Fig. 10-Typical transition time vs. \(C_{L}\) for delayed clock output.


CLOCK FREQUENCY (fCL)- Hz
92Cs-19752

Fig. 12-Typical power dissipation vs. frequency.


\title{
High－Reliability \\ COS／MOS Triple Serial Adder
}

\author{
Positive Logic Adder－CD4032A \\ Negative Logic Adder－CD4038A \\ For Logic Systems Applications in Aerospace， Military，and Critical Industrial Equipment
}

\section*{Special Features：}
－Invert inputs on all adders for sum complementing applications
－Fully static operation．．．．．dc to 5 MHz （typ．）
－Buffered outputs
－Single－phase clocking
－Microwatt quiescent power dissipation．．．．． \(5 \mu \mathrm{~W}\)（typ．）

RCA CD4032A and CD4038A＂Slash＂（／）Series are high－ reliability COS／MOS integrated circuits intended for a wide variety of logic function configurations in aerospace，military， and critical industrial equipment．The CD4032A and CD4038A types consist of three serial－adder circuits with common clock and carry－reset inputs．Each adder has provisions for two serial－ data input signals and an invert command signal which（when a logical＂ 1 ＂）complements the sum．Data words enter the adder with the least significant bit first；the sign bit trails． The output is the MOD 2 sum of the input bits plus the carry from the previous bit position．The carry is only added at the positive－going clock transition for the CD4032A or at the negative－going clock for the CD4038A．For spike－free oper－ ation the input data transitions should occur as soon as possi－ ble after the triggering edge．
The carry is reset to a logical＂ 0 ＂at the end of each word by applying a logical＂ 1 ＂signal to a carry－reset input one bit－

92Cs－1766IR1
Fig． 1 －CD4032A logic diagram of one of three serial adders．


Applications：
－Serial arithmetic units
－Digital correlators
－Digital datalink computers
－Flight control computers
m Digital servo control systems
position before the application of the first bit of the next word．Figs． 2 and 4 show definitive waveforms for all input and output signals．
These devices are electrically and mechanically identical with standard COS／MOS CD4032A and CD4038A types described in data bulletin 503 and DATABOOK SSD－ 203 Series，but are specially processed and tested to meet the electrical，mechani－ cal，and environmental test methods and procedures established for microelectronic devices in MIL－STD－883．


Fig． 2 －CD4032A timing diagram．

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4032A and CD4038A "Slash" (/) Series types are supplied in 16 -lead dual-in-line ceramic packages ("D" suffix), in 16 -lead ceramic flat packages (" \(K\) " suffix), or in chip form (" \(\mathrm{H}^{\prime \prime}\) suffix).


Fig. 3 - CD4038A logic diagram of one of three serial adders.


Fig. 5 - Typ. propagation delay time vs. \(C_{L}\) for \(A, B\), or invert inputs to sum outputs.

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range:. & -55 to \(+125{ }^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline \(\left(V_{D D}-V_{S S}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline Recommended & \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\) ) & 3 to \(15 \quad \mathrm{~V}\) \\
\hline Recommended & \\
\hline Input-Voltage Swing & \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\mathrm{SS}}\) \\
\hline Lead Temperature (During Soldering) & \\
\hline At distance 1/16" \(\pm 1 / 32^{\prime \prime}\) & \\
\hline ( \(1.59 \pm 0.79 \mathrm{~mm}\) ) from case & \\
\hline for 10 s max. & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


Fig. 4 - CD4038A timing diagram.


Fig. 6 - Typ. transition time vs. \(C_{L}\) for sum outputs.

STATIC ELECTRICAL CHARACTERISTICS (All Inputs... \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}\) )
Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathbf{N} \\
\mathbf{O} \\
\mathbf{T} \\
\mathbf{E} \\
\mathbf{S}
\end{gathered}
\]} \\
\hline & & & & \multicolumn{7}{|c|}{CD4032AD, CD4032AK CD4038AD, CD4038AK} & & \\
\hline & & \multirow[t]{2}{*}{\[
\left|\begin{array}{l}
v_{0} \\
v_{o l t s}
\end{array}\right|
\]} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& v_{D D} \\
& v_{\text {olts }}
\end{aligned}\right.
\]} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[t]{2}{*}{'L} & & 5 & - & 5 & - & 0.5 & 5 & - & 300 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & \(10^{\circ}\) & - & 1 & \(10^{\bullet}\) & - & \(200^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[t]{2}{*}{\(P_{\text {D }}\)} & & 5 & - & 25 & - & 2.5 & 25 & - & 1500 & \multirow[t]{2}{*}{\(\mu \mathrm{W}\)} & \\
\hline & & & 10 & - & 100 & - & 10 & 100 & - & 2000 & & \\
\hline \multirow{4}{*}{Output Voltage: Low Level} & \multirow{4}{*}{- VOL} & & 3 & - & \(0.55{ }^{\circ}\) & - & - & \(0.5^{\bullet}\) & - & - & \multirow{4}{*}{v} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 15 & - & - & - & - & \(0.5^{\bullet}\) & - & \(0.55{ }^{\circ}\) & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\bullet}\) & - & - & - & - & \multirow{4}{*}{v} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & 14.45 & - & & \\
\hline Threshold Voltage: N -Channel & \(V_{T H}{ }^{P}\) & \multicolumn{2}{|l|}{\({ }^{\prime} \mathrm{D}=-20 \mu \mathrm{~A}\)} & -0.7 & \({ }^{-3}\) & \(-0.7\) & -1.5 & \({ }^{-3}\) & \(-0.3\) & \({ }^{-3}\) & V & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{T H}{ }^{\text {P }}\) & \multicolumn{2}{|l|}{\({ }^{1} \mathrm{D}=20 \mu \mathrm{~A}\)} & \(0.7{ }^{\circ}\). & \({ }^{3}\). & 0.7 & 1.5 & \({ }^{3}\) & 0.3 & 3 。 & V & \\
\hline \multirow[t]{4}{*}{Noise Immunity (All Inputs) For Definition, See Appendix in SSD-207} & \multirow[b]{2}{*}{\(V_{\text {NL }}\)} & 0.8 & 5 & 1.5 & - & \(1.5{ }^{\bullet}\) & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & 1.0 & 10 & \(3 \cdot\) & -- & \(3^{\circ}\) & 4.5 & - & 2.96 & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.2 & 5 & \(1.4{ }^{\text {- }}\) & - & \(1.5^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{v} & \\
\hline & & 9.0 & - 10 & \(2.9{ }^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & \(3 \cdot\) & - & & \\
\hline \multirow[t]{2}{*}{Output Drive Current: N-Channel} & \multirow[t]{2}{*}{\({ }^{\prime} \mathrm{DN}\)} & 0.5 & 5 & 0.6 & - & \(0.5{ }^{\circ}\) & 0.9 & - & 0.3 & - & \multirow[t]{2}{*}{mA} & \multirow{4}{*}{2} \\
\hline & & 0.5 & 10 & 0.75 & - & \(0.7^{\circ}\) & 2.4 & - & 0.6 & - & & \\
\hline \multirow[t]{2}{*}{P.Channel} & \multirow[b]{2}{*}{\({ }_{10}{ }^{P}\)} & 4.5 & 5 & -0.21 & -- & -0.23 \({ }^{\circ}\) & -0.4 & - & -0.079 & - & \multirow[t]{2}{*}{mA} & \\
\hline & & 9.5 & 10 & -0.7 & - & \(-0.55^{\circ}\) & -1.2 & - & -0.35 & - & & \\
\hline \[
\begin{aligned}
& \text { Diode Test } \\
& 100 \mu \mathrm{~A} \text { test pin }
\end{aligned}
\] & \(\mathrm{V}_{\text {DF }}\) & & & & \(1.5{ }^{\bullet}\) & & & \(1.5{ }^{\bullet}\) & & \(1.5^{\bullet}\) & V & 3 \\
\hline Input Current & \(1 /\) & & & - & - & - & 10 & - & - & - & pA & \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.


DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathrm{OV}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\), and input rise and fall times \(=20 \mathrm{~ns}\), except Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=\mathbf{0 . 3 \%} /{ }^{\circ} \mathrm{C}\). (See Appendix for Waveforms)
\({ }_{\mathbf{t}} \mathbf{C L}\) and \(\mathbf{t}_{\mathbf{4}} \mathrm{CL}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & & LIMITS & & \multirow{3}{*}{UNITS} & \multirow{3}{*}{NOTES} \\
\hline & & & & \multicolumn{3}{|l|}{CD4032AD, CD4032AK CD4038AD, CD4038AK} & & \\
\hline & & & (Volts) & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: A, B, or Invert Inputs to Sum Outputs} & \multirow{4}{*}{\[
\left\{\begin{array}{l}
{ }^{\mathrm{t} P \mathrm{PHL}}, \\
{ }^{\mathrm{t}} \mathrm{PLH}
\end{array}\right.
\]} & & 5 & - & 400 & 1100 & & \\
\hline & & & 10 & - & 125 & \({ }^{250}\) 。 & & 1 \\
\hline \multirow[t]{2}{*}{Clock Input to Sum Outputs} & & & 5 & - & 800 & 2200 & \multirow{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & 250 & 500 • & & \\
\hline \multirow[t]{2}{*}{Transition Time (Sum Outputs)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& { }^{\mathrm{t}} \mathrm{THL}, \\
& { }^{\mathrm{t}} \mathrm{l} \text {, }
\end{aligned}
\]} & & 5 & - & 125 & 375 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & 50 & 150。 & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Clock \\
Rise \& Fall.Time
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
* * \\
\mathrm{t}_{\mathrm{r}} \mathrm{CL} \\
\mathrm{t}_{\mathrm{f}} \mathrm{CL}
\end{array}
\]} & & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu \mathrm{s}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & - & \({ }^{15}\). & & \\
\hline \multirow[t]{2}{*}{Input Set Up Times *} & & & 5 & \multirow[b]{2}{*}{\(\mathrm{t}_{\mathrm{r}} \mathrm{CL}\)} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{} \\
\hline & & & 10 & & & & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[t]{2}{*}{\({ }^{\mathrm{f}} \mathrm{CL}\)} & & 5 & 1.5 & 2.5 & - & \multirow{2}{*}{MHz} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & 3. & 5 & - & & \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & \multicolumn{2}{|l|}{Any Input} & - & 5 & - & pF & \\
\hline
\end{tabular}
* This characteristic refers to the minimum time required for the A, B, or Reset Inputs to change state following a positive clock transition (CD4032A) or negative transition (CD4038A).
** If more than one unit is cascaded \(t_{r} C L\) should be made less than or equal to the sum of the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.
Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are desiqner's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Test is a one-input, one-output only.


Fig. 10 - Quiescent device current test circuit CD4038A.


92CS-19126
Fig. 9 - Noise-immunity test circuit CD4032A.


Fig. 11 - Noise-immunity test circuit CD4038A.


Solid State Division


\title{
High-Reliability COS/MOS MSI 8-Stage Static Bidirectional Parallel/Serial Input/Output Bus Register
}

\author{
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment
}

\section*{Special Features:}
- Bidirectional parallel data input
- Parallel or serial inputs/parallel outputs
- Asynchronous or synchronous parallel data loading
- Parallel data-input enable on " \(A\) " data lines

- Data recirculation for register storage
- Multipackage register expansion
- Fully static operation DC-to-5 MHz (typ.) at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\) Applications:
- Parallel Input/Parallel Output,

Parallel Input/Serial Output,
Serial Input/Parallel Output,
Serial Input/Serial Output Register
- Shift right/shift left register
- Shift right/shift left with parallel loading
- Address register
- Buffer register
- Bus system register with enable paraliel lines at bus side
- Double bus register system
- Up-Down Johnson or ring counter
- Pseudo-random code generators
- Sample and hold register (storage, counting, display)
- Frequency and phase comparator


Fig.1-Functional diagram.

These devices are electrically and mechanically identical with standard COS/MOS CD4034A types described in data bulletin 575 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.
The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " A ", " B ", and " C ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".
The CD4034A "Slash" (/) Series types are supplied in 24-lead dual-in-line ceramic packages (" \(D\) " suffix), in 24 -lead ceramic flat packages ("K" suffix), or in chip form (" \(\mathrm{H}^{\prime \prime}\) suffix)

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Storage-Temperature Range . . . . . . . . . . . -65 to \(+150{ }^{\circ} \mathrm{C}\)
Operating-Temperature Range . . . . . . . . . . . -55 to \(+125^{\circ} \mathrm{C}\)
DC Supply-Voltage Range:

Device Dissipation (Per Package) . . . . . . . . . 200 mW
All Inputs
\(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\)
Recommended
DC Supply-Voltage ( \(V_{D D}-V_{S S}\) ) \(\ldots\). 3 to \(15 \quad V\)
Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . \(V_{D D}\) to \(V_{S S}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
( \(1.59 \pm 0.79 \mathrm{~mm}\) ) from case
for 10 s max. . . . . . . . . . . . . . . . . . . . . \(\quad+265{ }^{\circ} \mathrm{C}\)

STATIC ELECTRICAL CHARACTERISTICS (All Inputs . . \(\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\mathbf{I}} \leq \mathrm{V}_{\mathrm{DD}}\) )
Recommended DC Supply Voltage 3 to 15 V


Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)
Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}\) (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOLS} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{3}{|l|}{CD4034AD,CD4034AK} & \multirow[t]{2}{*}{UNITS} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \mathrm{N} \\
\mathrm{O} \\
\mathrm{~T} \\
\mathrm{E} \\
\mathrm{~S} \\
\hline
\end{gathered}
\]} \\
\hline & & & \begin{tabular}{l}
\(V_{D D}\) \\
Volts
\end{tabular} & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time} & \multirow[t]{2}{*}{\[
\begin{aligned}
& t_{\mathrm{PHL}} \\
& \mathrm{t}_{\mathrm{PL}} \mathrm{H}
\end{aligned}
\]} & & 5 & - & 600 & 1200 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & 240 & \(480^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Transition Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}}\) THL, \\
\({ }^{t}\) TLH
\end{tabular}} & & 5 & - & 250 & 750 & \multirow{2}{*}{ns} & \multirow{2}{*}{-} \\
\hline & & & 10 & - & 100 & 300 & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[t]{2}{*}{\({ }^{t}\) WL.
\[
{ }^{\mathrm{t}} \mathrm{WH}
\]} & & 5 & - & 200 & 400 & \multirow{2}{*}{ns} & \multirow{2}{*}{-} \\
\hline & & & 10 & - & 100 & 175 & & \\
\hline \multirow[t]{2}{*}{Minimum High-Level AE, P/S, A/S Pulse Width} & \multirow[b]{2}{*}{\({ }^{\text {t }}\) WH} & & 5 & - & 240 & 480 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 85 & 195 & & \\
\hline \multirow[t]{2}{*}{Clock Rise and Fall Time} & \multirow[t]{2}{*}{\[
\begin{aligned}
& { }^{*} \mathrm{t}_{\mathrm{r}} \mathrm{CL} \\
& \mathrm{t}_{\mathrm{f}} \mathrm{CL}
\end{aligned}
\]} & & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu \mathrm{s}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & - & \(15^{\circ}\) & & \\
\hline \multirow[b]{2}{*}{Set-Up Time} & \multirow[b]{2}{*}{-} & \multirow[t]{2}{*}{} & 5 & - & 250 & 500 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 100 & 200 & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Maximum Clock \\
Frequency
\end{tabular}} & \multirow[b]{2}{*}{\({ }^{\text {f }} \mathrm{CL}\)} & & 5 & 1.5 & 2.5 & - & \multirow[b]{2}{*}{MHz} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & \(3.0^{\bullet}\) & 5 & - & & \\
\hline Input Capacitance & \(c_{1}\) & Any Input & & - & 5 & - & pF & - \\
\hline
\end{tabular}
* If more than one unit is cascaded, \(\mathrm{t}_{\mathrm{r}} \mathrm{CL}\) should be made less than or equal to the sum of the fixed propagation delay at 15 pF (see chart above) and the transition time of the output driving stage for the estimated capacitvie load.


Fig. 2- Logic diagram.
92CM-19200


Fig. 3-Timing diagram.


Fig. 4-Typical propagation delay time vs. \(C_{L}\).


Fig. 5-Typical transition time vs. \(C_{L}\).


Fig. 6- Typical input frequency vs. \(V_{D D}\).


Fig. 7-Typical dissipation characteristics.


Fig. 8-Quiescent device current test circuit.


Fig. 9- Noise immunity test circuit.



Fig. 10-Synchronous operation propagation

Fig. 11-Asynchronous operation propagation delay time.


\author{
with J-K Serial Inputs and True/ Complement Outputs \\ High-Reliability COS/MOS 4-Stage Parallel In/Parallel Out Shift Register
}


TERMINAL ASSIGNMENT
CD4035AD
CD4035AK
92CS-22905

RCA CD4035A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4035A is a four-stage clocked serial register having provisions for synchronous parallel inputs to each stage and serial inputs to the first stage via JK logic. Register stages 2, 3, and 4 are coupled in a serial "D" flip-flop configuration when the register is in the serial mode (Parallel/Serial control low).

Parallel entry via the " \(D\) " line of each register stage is permitted only when the Parallel/Serial control is "high". In the parallel or serial mode information is transferred on positive clock transitions.
When the True/Complement control is "high", the True contents of the register are available at the output terminals. When the True/Complement control is "low", the outputs are the complements of the data in the register. The True/ Complement control functions asynchronously with respect to the clock signal.
\(\overline{J K}\) input logic is provided on the first stage serial input to minimize logic requirements particularly in counting and sequence-generation applications. With JK inputs connected together, the first stage becomes a "D" flip-flop. An asynchronous common reset is also provided.

These devices are electrically and mechanically identical with standard COS/MOS CD4035A types described in data bulletin 568 and DATABOOK SSD- 203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

\section*{Applications:}
- Sequence generation, control circuits, code conversion
- Counters, Registers, Arithmetic-Unit Registers, Shift Left - Shift Right Registers, Serial-to-Parallel/Parallel-toSerial conversions.

\section*{Features:}
- 4-Stage clocked shift operation
- Synchronous parallel entry on all 4 stages
- \(\overline{\mathrm{J} K}\) inputs on first stage
- Asynchronous True/Complement control on all outputs
- Reset control
- Static flip-flop operation; Master-slave configuration
- Buffered outputs
- Low-Power Dissipation-5 \(\mu \mathrm{W}\) typ. (ceramic)
- High speed - to 5 MHz

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4035A "Slash" (/) Series types are supplied in 16 lead dual-in-line ceramic packages (" \(D\) " suffix), in 16 -lead ceramic flat packages (" K " suffix), or in chip form (" H " suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline \(\left(\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline
\end{tabular}

Recommended
DC Supply-Voltage ( \(V_{D D}-V_{S S}\) ) ..... 3 to \(15 \quad V\)
Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . . \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\mathrm{SS}}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
( \(1.59 \pm 0.79 \mathrm{~mm}\) ) from case
for 10 s max.
\(+265{ }^{\circ} \mathrm{C}\)

STATIC ELECTRICAL CHARACTERISTICS (All Inputs . . \(V_{S S} \leqslant V_{1} \leqslant V_{D D}\) ) Recommended DC Supply Voltage 3 to \(15 V\)


Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.
For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits, and for Operating

Considerations, see Appendix.


Fig. 1-Noise immunity test circuit.


Fig. 2-Quiescent device current test circuit.



Fig. 4-Typical Propagation Delay Time vs. Load Capacitance.


Fig. 5-Typical Transition Time vs. Load Capacitance.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\) and \(C_{L}=15 \mathrm{pF}\)
Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \%{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow[b]{3}{*}{} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{LIMITS
CD4035AD,
CD4035AK}} & \multirow{3}{*}{UNITS} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \mathbf{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathbf{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & Min. & Typ. & Max. & & \\
\hline \multicolumn{8}{|l|}{CLOCKED OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time:} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\text {tPLH }}\), \\
\({ }^{t}\) PHL
\end{tabular}} & 5 & - & 250 & 500 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 100 & 200. & & \\
\hline \multirow[t]{2}{*}{Transition Time:} & \multirow[t]{2}{*}{\[
\overline{t^{t} \mathrm{THL}}
\]
\[
{ }^{\text {t}} \text { TLH }
\]} & 5 & - & 100 & 200 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & - & 50 & 100. & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Duration} & \multirow[t]{2}{*}{\[
{ }^{\text {twL }}
\]
\[
{ }^{t} \text { WH }
\]} & 5 & - & 200 & 335 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 100 & 165 & & \\
\hline \multirow[t]{2}{*}{Clock Rise \& Fall Time} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{f} C L}{ }^{*}, \\
& \mathrm{t}_{\mathrm{fCL}} \\
& \hline
\end{aligned}
\]} & 5 & & - & 15 & \multirow[b]{2}{*}{\(\mu \mathrm{s}\)} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & & - & 5 & & \\
\hline \multirow[t]{2}{*}{Setup Time: \(\overline{J / K}\) Lines} & & 5 & - & 250 & 500 & \multirow{4}{*}{ns} & \multirow{4}{*}{-} \\
\hline & & 10 & - & 100 & 200 & & \\
\hline \multirow[t]{2}{*}{Parallel-In Lines} & & 5 & - & 100 & 350 & & \\
\hline & & 10 & - & 50 & 80 & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[b]{2}{*}{\({ }^{\text {f }} \mathrm{CL}\)} & 5 & 1.5 & 2.5 & - & \multirow[b]{2}{*}{MHz} & \multirow[b]{2}{*}{1} \\
\hline & & 10 & 3 - & 5 & - & & \\
\hline Input Capacitance & \(c_{1}\) & Any Input & - & 5 & - & pF & - \\
\hline \multicolumn{8}{|l|}{RESET OPERATION} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time:} & \multirow[t]{2}{*}{\({ }^{t}{ }^{\text {PHL }}\) 。 \({ }^{t}\) PLH} & 5 & - & 250 & 500 & \multirow[t]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 100 & 200 & & \\
\hline \multirow[t]{2}{*}{Minimum Reset Pulse Duration} & \multirow[t]{2}{*}{\({ }^{t}\) WL. tWH} & 5 & - & 200 & 400 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & 10 & - & 100 & 175 & & \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Test is either a one input or a one output only.
*'If more than one unit is cascaded \(t_{r C L}\) should be made less than or equal to the sum of the fixed propagation delay time at 15 pF and the transition time of the output driving stage for the estimated capacitive load.


Fig. 6-Typical clock input frequency vs. \(V_{D D}\)


Fig. 7-Typical dissipation characteristics.


Solid State Division

\section*{Digital Integrated Circuits}

Monolithic Silicon
High-Reliability Slash(/) Series CD4036A/..., CD4039A/...


\section*{High-Reliability COS/MOS 4-Word by 8-Bit Random-Access NDRO Memory}

For Logic Systems Applications on Aerospace, Military, and Critical Industrial Equipment

\author{
Binary Addressing \\ CD4036AD, CD4036AK \\ Direct Word-Line Addressing \\ CD4039AD, CD4039AK \\ Special Features: \\ - COS/MOS logic compatibility at all input and output terminals \\ - Memory bit expansion \\ - Memory word expansion via Wire-OR capability at the 8 INPUT-BIT and 8 OUTPUT-BIT lines
}

RCA CD4036A and CD4039A "Slash" (/) Series are highreliability COS/MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4036A is a single monolithic integrated circuit containing a 4 -word \(x\) 8 -bit Random Access NDRO Memory. Inputs include 8 INPUT-BIT lines, CHIP INHIBIT, WRITE, READ INHIBIT, MEMORY BYPASS, and 2 ADDRESS inputs. 8 OUTPUT. BIT lines are provided.
All input and output lines utilize standard COS/MOS inverter configurations and hence can be directly interfaced with COS/MOS logic devices.
CHIP INHIBIT allows memory word expansion by WIREORing of multiple CD4036A packages at either the 8 -bit input and/or output lines (See Fig. 1). With CHIP INHIBIT "high", both READ and WRITE operations are inhibited on the CD4036A. With CHIP INHIBIT "low", information can be written into and/or read continuously from one of the


Fig. 1-CD4036A - Logic block diagram.
- Memory bypass capability for all bits
- Buffering on all outputs
- CD4036A- on-chip binary address decoding, separate READ INHIBIT and WRITE controls
- CD4039A-Direct word-line addressing
a Access Time-200 ns(Typ) at \(V_{D D}=10 \mathrm{~V}\)

\section*{Applications}

Digital equipment where low power dissipation and/or high noise immunity are primary design requirements.
- Channel Preset Memory in digital frequency-synthesizer circuits
- General-purpose and scratch-pad memory in COS/MOS and other low-power systems.


Fig. 2-CD4039A -- Logic block diagram.
four words selected by the binary code on the two address lines. With CHIP INHIBIT "low", a "high" WRITE signal and a "low" READ INHIBIT signal activate WRITE and READ operations, respectively, at the addressed word location (See Fig. 9).
The MEMORY BYPASS signal, when "high", allows shunting of information from the 8 INPUT-BIT lines directly to the 8 OUTPUT-BIT lines without disturbing the state of the 4 words. During the bypass operation input information may also be written into a selected word location, provided the CHIP INHIBIT is "low" and the WRITE is "high". The READ operation is deactivated during the BYPASS operation because information is fed directly from the 8 INPUT. BIT lines to the 8 OUTPUT-BIT lines.

RCA type CD4039A is identical to the CD4036A with the exception that individual address-line inputs have been provided for each memory word in place of the binary ADDRESS, CHIP INHIBIT, and READ INHIBIT inputs. When Wire-Oring multiple CD4039A packages for memory word expansion, an individual CD4039A is selected by addressing one of its word locations. The READ operation is activated whenever a word location is addressed (via a "high" signal-see Fig. 10).
These devices are electrically and mechanically identical with standard COS/MOS CD4036A and CD4039A types described in data bulletin 613 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4036A and CD4039A "Slash" (/) Series types are supplied in 24 -lead dual-in-line ceramic packages (" \(D\) " suffix), in 24 -lead ceramic flat packages (" \(K\) " suffix), or in chip form (' H " suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125{ }^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\) ) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{DD}}\) \\
\hline Recommended & \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\) ) & 3 to 15 V \\
\hline Recommended & \\
\hline Input-Voltage Swing & \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\text {SS }}\) \\
\hline Lead Temperature (During Soldering) & \\
\hline At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\) & \\
\hline ( \(1.59 \pm 0.79 \mathrm{~mm}\) ) from case & \\
\hline for 10 s max. & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


Fig. 3-Quiescent current (CD4036A).


Fig. 4-Quiescent current (CD4039A).


Fig. 5-Noise immunity.

STATIC ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{CHARACTERISTIC} & \multirow[t]{3}{*}{SYMBOL} & \multicolumn{3}{|l|}{TEST CONDITIONS} & \multicolumn{7}{|c|}{CD4036AD, CD4036AK
CD4039AD, CD4039AK} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathbf{N} \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathbf{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& v_{0} \\
& \text { Volts }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}} \\
& \text { Volts }
\end{aligned}
\]} & \multicolumn{2}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(125^{\circ} \mathrm{C}\)} & \\
\hline & & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{\prime} \mathrm{L}\)} & & & 5 & - & 5 & - & 0.5 & 5 & - & 300 & \multirow[b]{2}{*}{1} \\
\hline & & & & 10 & - & \(10^{\circ}\) & - & 1 & \(10^{\circ}\) & - & \(200^{\circ}\) & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{\text {D }}\)} & & & 5 & - & 25 & - & 2.5 & 25 & - & 1500 & \multirow[t]{2}{*}{} \\
\hline & & & & 10 & - & 100 & - & 10 & 100 & - & 2000 & \\
\hline \multirow{4}{*}{Output Voltage: Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & & 3 & - & \(0.55^{\circ}\) & - & - & \(0.5{ }^{\circ}\) & - & - & \multirow{4}{*}{1} \\
\hline & & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & & 15 & - & - & - & - & \(0.5{ }^{\circ}\) & - & \(0.5{ }^{\circ}\) & \\
\hline \multirow{4}{*}{High Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & 3 & \(1.45{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & - & - & - & - & \multirow{4}{*}{1} \\
\hline & & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & \\
\hline & & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & \\
\hline & & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & \(14.45^{\circ}\) & - & \\
\hline Threshold Voltage: N-Channel & \(\mathrm{V}_{\mathrm{TH}}{ }^{\text {N }}\) & & \(-20 \mu\) & & \(-0.7^{\bullet}\) & \(-3^{\bullet}\) & \(-0.7^{\bullet}\) & \(-1.5^{\bullet}\) & \(-3^{0}\) & \(-0.3{ }^{\bullet}\) & \(-3^{\bullet}\) & 2 \\
\hline P.Channel & \(\mathrm{V}_{T H}{ }^{\text {P }}\) & \(\mathrm{I}_{\mathrm{D}}\) & \(20 \mu \mathrm{~A}\) & & \(0.7^{\circ}\) & \(3^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3^{\bullet}\) & \(0.3{ }^{\circ}\) & \(3^{\circ}\) & 2 \\
\hline Noise Immunity & & & 0.8 & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & \\
\hline (All inputs except & \(v_{\text {NL }}\) & & 1 & 10 & \(3^{\circ}\) & - & \(3^{\bullet}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & \\
\hline bit inputs when in memory by. & & & 4.2 & 5 & 1.4 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.5 & - & 1 \\
\hline pass mode.) & \(\mathrm{v}_{\text {NH }}\) & & 9 & 10 & 2.9• & - & \(3^{\circ}\) & 4.5 & - & \(3^{\circ}\) & - & \\
\hline Output Drive Current: & & & 0.5 & 5 & 0.12 & - & \(0.10^{\circ}\) & 0.2 & - & 0.07 & - & \\
\hline N.Channel & \({ }^{1} \mathrm{~N}\) & mal & 0.5 & 10 & 0.3 & - & \(0.25^{\circ}\) & 0.5 & - & 0.17 & - & 2 \\
\hline P.Channel & & Read & 4.5 & 5 & -0.12 & - & \(-0.10^{\circ}\) & -0.2 & - & -0.07 & - & \\
\hline & \({ }^{\prime}{ }^{P}\) & & 9.5 & 10 & -0.3 & - & -0.25 \({ }^{\circ}\) & -0.5 & - & -0.17 & - & 2 \\
\hline Output Drive Current & & & 0.5 & 5 & 0.04 & - & \(0.03{ }^{\circ}\) & 0.06 & - & 0.02 & - & \\
\hline \(N\)-Channel & \({ }^{1} \mathrm{~N}\) & ory & 0.5 & 10 & 0.09 & - & \(0.075^{\circ}\) & 0.15 & - & 0.05 & - & 2 \\
\hline P.Channel & & By . & 4.5 & 5 & -0.04 & - & -0.03 \({ }^{\circ}\) & -0.06 & - & -0.02 & - & 2 \\
\hline & \({ }^{1}\) & pass Mode + & 9.5 & 10 & -0.09 & - & -0.075 \({ }^{\circ}\) & -0.15 & - & -0.05 & - & 2 \\
\hline Diode Test & \(\mathrm{V}_{\text {DF }}\) & \(100 \mu \mathrm{~A}\) & Test Pin & & - & \(1.5{ }^{\bullet}\) & - & - & \(1.5{ }^{\bullet}\) & - & \(1.5{ }^{\bullet}\) & 3 \\
\hline Input Current & 1 & & - & - & - & - & - & 10 & - & - & - & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-1028 "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do nut represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.
\({ }^{+}\)Bit inputs driven from low-impedance driver.
For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits, and for Operating Considerations, see Appendix.


Fig. 6a)-CD4036AD and CD4036AK terminal assignments.

b)-CD4039AD and CD4039AK terminal assignments.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\) and \(C_{L}=15 \mathrm{pF}\) Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \%{ }^{\circ} C\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOLS} & \multirow[t]{2}{*}{TEST CONDITIONS} & & \multicolumn{3}{|l|}{CD4036AD, CD4036AK CD4039AD, CD4039AK} & \multirow[t]{2}{*}{UNITS} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \mathbf{N} \\
\mathbf{O} \\
\mathbf{T} \\
\mathbf{E} \\
\mathbf{S} \\
\hline
\end{gathered}
\]} \\
\hline & & & \begin{tabular}{l}
\(V_{D D}\) \\
Volts
\end{tabular} & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Read Delay Time: (Access time) Read Inhibit (RI)} & \multirow{7}{*}{trd} & \multirow{7}{*}{\begin{tabular}{l}
OUTPUT TIED \\
THROUGH \(100 \mathrm{k} \Omega\) \\
TO \(V_{S S}\) FOR DATA OUTPUT "HIGH" AND TO VDD FOR DATA OUTPUT "LOW"
\end{tabular}} & 5 & - & 375 & 750 & \multirow[b]{2}{*}{ns} & \multirow[t]{2}{*}{4} \\
\hline & & & 10 & - & 150 & \(300^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Chip Inhibit (CI)} & & & 5 & - & 500 & 1000 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{4,7} \\
\hline & & & 10 & - & 200 & \(400^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Memory Bypass
(MB)} & & & 5 & - & 375 & 750 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{7} \\
\hline & & & 10 & - & 150 & \(300^{\circ}\) & & \\
\hline Address (ADD) & & & 5 & - & 500 & 1000 & ns & 1,7 \\
\hline Write Set-up Time & twS & & 10 & \(100^{\circ}\) & 50 & - & \(\mu \mathrm{s}\) & 2,7 \\
\hline \multirow[t]{2}{*}{Write Removal Time} & \multirow[t]{2}{*}{tWR} & & 5 & 0 & 0 & - & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{3,7} \\
\hline & & & 10 & \(30^{\circ}\) & 0 & - & & \\
\hline Write Pulse Duration & tw & & 5 & 150 & 75 & - & ns & 7 \\
\hline \multirow[b]{2}{*}{Data Set-up Time} & \multirow[b]{2}{*}{tDS} & & 5 & - & 0 & 0* & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{5} \\
\hline & & & 10 & - & 0 & 0* & & \\
\hline \multirow[t]{2}{*}{Data Overlap Time} & \multirow[t]{2}{*}{tDo} & & 5 & 1004 & 50 & - & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{6} \\
\hline & & & 10 & 404 & 20 & - & & \\
\hline Output Transition Time & tTHL, & & 5 & - & 200 & 400 & ns & - \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & Any Input & & - & 5 & - & pF & - \\
\hline
\end{tabular}
1. For CD4036A only, remove \(100 \cdot \mathrm{k} \Omega\) test condition and write all 1 's in word one, and all 0 's in word two, or vice-versa.
2. Delay from change of ADDRESS or CHIP-INHIBIT signals to application of WRITE pulse.
- For footnote, see Page 563.
3. Delay from removal of WRITE pulse to change of ADDRESS or CHIP-INHIBIT signals.
4. Values for CD4036AD \& 4036AK only.
5. The time that DATA signal must be present before the WRITE pulse removal.
6. The time that DATA signal must remain present after the WRITE pulse removal.
7. Test is a one input one output only.

A Min. indicates satisfactory operation if \(t_{D O}\) equals or exceeds this value.
- Max. indicates satisfactory operation if \(\mathrm{t}_{\mathrm{DS}}\) equals or exceeds this value.


Fig. 7-Typical n-channel drain characteristics.


92Cs-20677
Fig. 8-Typical p-channel drain characteristics.

File No. 749


Fig. 9-Typical read delay time vs \(C_{L}\).


Fig. 10-Typical transition time vs. \(C_{L}\).


Fig. 11- Typical power dissipation vs. frequency.


Fig. 12-CD4036A Timing Diagram.


Fig. 13-CD4039A Timing Diagram.

\title{
Digital Integrated Circuits \\ Monolithic Silicon
}


\section*{High－Reliability COS／MOS 12－Stage Ripple－Carry Binary Counter／Divider}

\section*{For Logic Systems Applications in Aerospace， Military，and Critical Industrial Equipment}

Features：
－Medium－speed operation ．．．．．5－MHz（typ．）input pulse rate at \(V_{D D}-V_{S S}=10 \mathrm{~V}\)
－Low＂high＂－and＂low＂＇level output impedance \(.750 \Omega\) （typ．）at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}\)
－Common reset
－Fully static operation
－All 12 buffered outputs available
－Low－power TTL compatible

RCA CD4040A＂Slash＂（／）Series are high－reliability COS／ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace，military，and critical industrial equipment．The CD4040A consists of an input－ pulse－shaping circuit and 12 ripple－carry binary counter stages．Resetting the counter to the all－0＇s state is accom－ plished by a high－level on the reset line．A master－slave flip－ flop configuration is utilized for each counter stage．The state of the counter is advanced one step in binary order on the negative－going transition of the input pulse．All inputs and outputs are fully buffered．

These devices are electrically and mechanically identical with standard COS／MOS CD4040A types described in data bulle－ tin 624 and DATABOOK SSD－203 Series，but are specially processed and tested to meet the electrical，mechanical，and environmental test methods and procedures established for microelectronic devices in MIL－STD－883．

The packaged types can be supplied to six screening levels－ ／1N，／1R，／1，／2，／3，／4－which correspond to MIL－STD－883 Classes＂\(A\)＂，＂\(B\)＂，and＂\(C\)＂．The chip versions of these types can be supplied to three screening levels \(-/ M, / N\) ，and \(/ R\) ．

For a description of these screening levels and for detailed information on test methods，procedures，and test sequence employed with high－reliability COS／MOS devices refer to High－Reliability Report RIC－102C，＂High－Reliability COS／ MOS CD4000A＂Slash＂（／）Series Types＂．

For a listing of the Screening Level Options available for both packaged devices and chips，and for a description of the CD4040A＂Slash＂（／）Series types are supplied in 16－ lead dual－in－line ceramic packages（＂\(D\)＂suffix），in 16－lead ceramic packages（＂ K ＂suffix），or in chip form（＇ H ＂ suffix）．

\section*{Applications：}
－Frequency－dividing circuits
－Time－delay circuits
－Control counters


CD4040AD
92CS－22901

－R＝HIGH DOMINATES（RESETS ALL STAGES）
- ACTION OCCURS ON NEGATIVE GOING

TRANSITION OF INPUT PULSE．COUNTER
ADVANCES ONE BINARY COUNT ON EACH
NEGATIVE \(\phi\) TRANSITION（4096 TOTAL BINARY COUNTS）．

92CM－20748RI
Fig．1－Logic diagram of CD4040A input pulse shaper and 1 of 12 stages．
MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline \(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{DD}}\) \\
\hline Recommended & \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}\) ) & 3 to 15 V \\
\hline Recommended & \\
\hline Input-Voltage Swing & \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\text {SS }}\) \\
\hline Lead Temperature (During Soldering) & \\
\hline At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\) & \\
\hline \((1.59 \pm 0.79 \mathrm{~mm})\) from case & \\
\hline for 10 s max. & +265 \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


Fig. 3-Minimum n-channel drain characteristics.

STATIC ELECTRICAL CHARACTERISTICS (All Inputs... \(V_{S S} \leqslant V_{1} \leqslant V_{D D}\) ) Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{\[
\begin{aligned}
& N \\
& \mathbf{O} \\
& \mathbf{T} \\
& \mathbf{E} \\
& \mathbf{S}
\end{aligned}
\]} \\
\hline & & & & & & & 4040AD & , CD404 & OAK & & & \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
\(V_{0}\) \\
Volts
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(V_{D D}\) \\
Volts
\end{tabular}} & \multicolumn{2}{|r|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Ouiescent Device Current} & \multirow[b]{2}{*}{\({ }_{L}\)} & & 5 & - & 15 & - & 0.5 & 15 & - & 900 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & \(25^{\circ}\) & - & 1 & \(25^{\circ}\) & - & \(500{ }^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[t]{2}{*}{\({ }^{\text {P }}\)} & & 5 & - & 75 & - & 2.5 & 75 & - & 4500 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 250 & - & 10 & 250 & - & 5000 & & \\
\hline \multirow[t]{4}{*}{Output Voltage Lów-Level} & \multirow{4}{*}{\[
v_{\mathrm{OL}}
\]} & \multirow{8}{*}{Fanout of 50 cos/MOS Inputs} & 3 & - & \(0.55^{\bullet}\) & - & - & \(0.5{ }^{\circ}\) & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 15 & - & - & - & - & \(0.5{ }^{\circ}\) & - & \(0.55{ }^{\circ}\) & & \\
\hline \multirow[t]{4}{*}{High-Level} & \multirow[t]{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\circ}\) & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & \(14.45{ }^{\circ}\) & - & & \\
\hline Threshold Voltage: N-Channel & \(\mathrm{V}_{\mathbf{T H}} \mathrm{N}\) & \multicolumn{2}{|l|}{\({ }^{1} D=-20 \mu \mathrm{~A}\)} & -0.7 & \(-3^{\circ}\) & \(-0.7{ }^{\circ}\) & -1.5 & \(-3^{\circ}\) & -0.3 \({ }^{\circ}\) & \(-3^{\circ}\) & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(V_{\text {TH }}{ }^{P}\) & \multicolumn{2}{|l|}{\({ }^{\prime} \mathrm{D}^{\prime}=20 \mu \mathrm{~A}\)} & \(0.7{ }^{\circ}\) & \(3{ }^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & 3 & \(0.3{ }^{\circ}\) & \(3{ }^{6}\) & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Noise Immunity (Any Input) \\
For Definition, See Appendix SSD-207
\end{tabular}} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & 0.8 & 5 & 1.5 & - & \(1.5{ }^{\text {²}}\) & 2.25 & - & 1.4 & - & \multirow[b]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & 1 & 10 & \(3^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathbf{V}_{\text {NH }}\)} & 4.2 & 5 & 1.4 & - & \(1.5^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{V} & \\
\hline & & 9 & 10 & \(2.9{ }^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & \(3{ }^{\circ}\) & - & & \\
\hline \multirow[t]{2}{*}{Output Drive Current: N -Channel} & \multirow[b]{2}{*}{\({ }_{1}{ }^{N}\)} & 0.5 & 5 & 0.22 & - & \(0.145^{\circ}\) & 0.36 & - & 0.125 & - & \multirow[b]{2}{*}{mA} & \multirow[t]{2}{*}{2} \\
\hline & & 0.5 & 10 & 0.44 & - & \(0.4{ }^{\bullet}\) & 0.75 & - & 0.25 & - & & \\
\hline \multirow[t]{2}{*}{P-Channel} & \multirow[t]{2}{*}{\({ }_{1}{ }^{P}\)} & 4.5 & 5 & -0.15 & - & \(0.1^{\circ}\) & -0.25 & - & -0.085 & - & \multirow[b]{2}{*}{mA} & \multirow[t]{2}{*}{2} \\
\hline & & 9.5 & 10 & -0.3 & - & \(-0.25{ }^{\circ}\) & -0.5 & - & -0.175 & - & & \\
\hline Diode Test, \(100 \mu \mathrm{~A}\) Test Pin & \(V_{\text {DF }}\) & & & - & \(1.5^{\circ}\) & - & - & \(1.5{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & V & 3 \\
\hline Input Current & 1 & & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliwoility COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.
For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits, and for Operating Considerations, see Appendix.

File No. 748 \(\qquad\)

DYNAMIC ELECTRICAL CHARACTERISTICS, At \(T_{A}=25^{\circ} \mathrm{C}, V_{S S}=O V, C_{L}=15 p F\) (unless otherwise specified), and input rise and fall times \(=20 \mathrm{~ns}\), except \(t_{r} C L\) and \(t_{f} C L\). Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \% / \mathrm{C}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{3}{|c|}{CD4040AK, AD} & \multirow[t]{2}{*}{UNITS} & \multirow[t]{2}{*}{NOTE} \\
\hline & & & VDD & Min. & Typ. & Max. & & \\
\hline \multicolumn{9}{|l|}{Input-Pulse Operation} \\
\hline Propagation Delay Time & \begin{tabular}{l}
\({ }^{\text {t }}\) PHL, \\
\({ }^{t}\) PLH
\end{tabular} & & \[
\begin{array}{r}
5 \\
10
\end{array}
\] & - & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 200^{\circ}
\end{aligned}
\] & ns & 1,4 \\
\hline Transition Time & \[
\begin{aligned}
& { }^{\mathrm{t}} \mathrm{THL} \\
& { }^{\mathrm{t}} \text { ' } \mathrm{ILH}
\end{aligned}
\] & & \[
\begin{array}{|r|}
\hline 5 \\
10
\end{array}
\] & - & \[
\begin{array}{r}
150 \\
75 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 300 \\
& 150
\end{aligned}
\] & ns & 4 \\
\hline Min. Input-Pulse Width & \({ }^{t}\) WL. \({ }^{\text {tw }}\) WH & \(f=100 \mathrm{KHz}\) & \[
\begin{array}{|r|}
\hline 5 \\
10
\end{array}
\] & - & \[
\begin{array}{r}
200 \\
75 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 400 \\
& 110
\end{aligned}
\] & ns & - \\
\hline \begin{tabular}{l}
Input-Pulse \\
Rise \& Fall Time
\end{tabular} & \[
\begin{aligned}
& { }^{\mathrm{t}} \mathrm{t}_{\mathrm{f} \phi} \\
& { }^{\prime} \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{|r|}
\hline 5 \\
10
\end{array}
\] & - & - & \[
\begin{gathered}
15 \\
7.5^{\bullet} \\
\hline
\end{gathered}
\] & \(\mu s\) & 2,4 \\
\hline Max. Input-Pulse Frequency & \({ }^{\prime}{ }_{\phi}\) & & \[
\begin{array}{|r}
\hline 5 \\
10 \\
\hline
\end{array}
\] & \[
\begin{gathered}
1.5 \\
5
\end{gathered}
\] & \[
\begin{gathered}
\hline 1.75 \\
6 \\
\hline
\end{gathered}
\] & - & MHz & 4 \\
\hline Input Capacitance & \(c_{1}\) & Any input & & - & 5 & - & pF & \\
\hline \multicolumn{9}{|l|}{Reset Operation} \\
\hline Propagation Delay Time & \({ }^{\text {tPHL }}\) & & \[
\begin{array}{r}
5 \\
10
\end{array}
\] & - & \[
\begin{aligned}
& 500 \\
& 250
\end{aligned}
\] & \[
\begin{array}{r}
1000 \\
500
\end{array}
\] & ns & 3 \\
\hline Minimum Reset Pulse Width & \({ }^{t}\) WH & & 5
10 & - & \[
\begin{aligned}
& 500 \\
& 250
\end{aligned}
\] & \[
\begin{array}{r}
1000 \\
500
\end{array}
\] & ns & - \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

NOTES:
1. Measured from the \(50 \%\) level of the negative clock edge to the \(50 \%\) level of either the positive or negative edge of the Q1 output (pin 9); or measured from the negative edge of Q1 through Q11 outputs to the positive or negative edge of the next higher output.
2. Maximum input rise or fall time for functional operation.
3. Measured from the positive edge of the reset pulse to the negative edge of any output (Q1 to Q12).
4. Test is a one input one output only.

DRAIN - TO-SOURCE VOLTAGE \(\left(V_{D S}\right)-V\)


Fig. 4-Minimum p-channel drain ; characteristics.


Fig. 5-Typical propagation delay time vs. load capacitance (per stage).


Fig. 6-Typical transition time vs. load capacitance.


Fig. 8-Maximum input-pulse frequency vs. supply voltage.


92CS-17918RI


Fig. 7- Typical dissipation characteristics.


Fig. 9- Reset-noise-immunity test circuit.


Fig. 10-Input-pulse noise-immunity test circuit.
Fig. 11-Quiescent-device-current test circuit.


Solid State Division

\title{
Digital Integrated Circuits \\ Monolithic Silicon \\ High-Reliability Slash(/) Series CD4041A/...
}


\section*{High-Reliability COS/MOS Quad True/Complement Buffer}

\section*{For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment}

\section*{Features:}

True Output
- High current source and sink capability 8 mA (typ.) @ \(\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}\) 3.2 mA (typ.) @ \(\mathrm{V}_{\mathrm{DS}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\) (two TTL loads)
Complement Output
- Medium current source and sink capability 3.6 mA (typ) @ \(\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}\)
1.6 mA (typ.) @ \(\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\)


TERMINAL ASSIGNMENT CD4041AD CD404IAK

RCA CD4041A "Slash" (/) Series types are high-reliability COS/MOS integrated circuit Quad T.rue/Complement Buffers designed for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4041A consists of \(n\)-and \(p\)-channel units having low channel resistance and high current (source and sink) capability. It is intended for use as a buffer, line driver, or COS/MOS-to-TTL driver. It can also be used as an ultra-low power resistornetwork driver, and in other applications where high noise immunity and low power dissipation are primary design requirements.
These devices are electrically and mechanically identical with standard COS/MOS CD4041A types described in data bulletin 572 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels \(/ 1 N, / 1 R, / 1, / 2, / 3, / 4\) - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4041A "Slash" (/) Series types are supplied in 14-lead dual-in-line ceramic packages (" \(D\) " suffix), in the 14-lead ceramic flat package (" K " suffix), or in chip form (" H " suffix).

\section*{Applications:}
- High current source/sink driver
- COS/MOS-to-DTL/TTL converter
- Display driver
- MOS clock driver
- Resistor network driver
(Ladder or weighted R)
- Buffer
- Transmission line driver


Fig. 1 - CD4041A schematic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:


STATIC ELECTRICAL CHARACTERISTICS (All Inputs... \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}\) ) Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[b]{3}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow{4}{*}{Notes} \\
\hline & & & & & \multicolumn{7}{|c|}{CD4041AD, CD4041AK} & & \\
\hline & & & & & \multicolumn{2}{|r|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & \[
\begin{array}{|c|}
\hline \mathrm{V}_{\mathbf{o}} \\
\text { Volts }
\end{array}
\] & \[
\begin{aligned}
& \text { VDD } \\
& \text { Volts }
\end{aligned}
\] & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline Quiescent Device & & \multirow[t]{4}{*}{\begin{tabular}{l}
Inputs \\
to \\
Ground \\
or \\
VDD
\end{tabular}} & & 5 & - & 1 & - & 0.005 & 1 & - & 60 & & \\
\hline Current & L & & & 10 & - & \(2{ }^{\bullet}\) & - & 0.005 & \(2 \bullet\) & - & \(40^{\circ}\) & \(\mu \mathrm{A}\) & 1 \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{PD} & & & 5 & - & 5 & - & 0.025 & 5 & , - & 300 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \\
\hline & & & & 10 & - & 20 & - & 0.05 & 20 & - & 400 & & \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
Output Voltage: Low-Level \\
High-Level
\end{tabular}} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow{8}{*}{Fan-out of 50 COS/MOS Inputs} & & 3 & & \(0.55^{\circ}\) & & & \(0.50^{\circ}\) & & & \multirow{4}{*}{v} & 1 \\
\hline & & & & 5 & - & 0.01 & - & 0 & 0.01 & & 0.05 & & \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & & 15 & & & & & \(0.50{ }^{\circ}\) & & \(0.55{ }^{\circ}\) & & 1 \\
\hline & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & 3 & \(2.25{ }^{\circ}\) & & \(2.3{ }^{\bullet}\) & & & & & \multirow{4}{*}{v} & 1 \\
\hline & & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & & 15 & & & \(14.40^{\circ}\) & & & \(14.45{ }^{\circ}\) & & & 1 \\
\hline Threshold Voltage: N -Channel & \(\mathrm{V}_{\text {TH }} \mathrm{N}\) & \multicolumn{3}{|c|}{\(I_{D}=-10 \mu \mathrm{~A}\)} & -0.7* & \(-3.0{ }^{\circ}\) & \(-0.7{ }^{\circ}\) & -1.5 & \(-3.0{ }^{\bullet}\) & -0.3 \({ }^{+}\) & \[
\begin{array}{r}
\bullet \\
-3.0 \\
\hline
\end{array}
\] & V & \multirow[b]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \multicolumn{3}{|c|}{\({ }^{\prime} \mathrm{D}=10 \mu \mathrm{~A}\)} & \(0.7{ }^{\bullet}\) & \(3.0{ }^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3.0^{\bullet}\) & \(0.3{ }^{6}\) & \(3.0{ }^{\circ}\) & V & \\
\hline \multirow[t]{4}{*}{Noise Immunity \({ }^{\wedge}\) (All Inputs)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & \multirow{4}{*}{True Output} & 0.95 & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & \multirow[b]{2}{*}{V} & \\
\hline & & & 2.9 & 10 & \(3^{\bullet}\) & - & \(3^{\bullet}\) & 4.5 & - & \(2.9{ }^{\bullet}\) & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\text {NH }}\)} & & 3.6 & 5 & 1.4 & - & \(1.5{ }^{\text {- }}\) & 2.25 & - & 1.5 & - & \multirow[t]{2}{*}{V} & \\
\hline & & & 7.2 & 10 & \(2.9{ }^{\bullet}\) & - & \(3^{\bullet}\) & 4.5 & - & \(3^{\bullet}\) & - & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Output Drive Current: \\
N -Channel
\end{tabular}} & \multirow{4}{*}{\(I_{\text {d }}\)} & \multirow[t]{2}{*}{True Output} & 0.4 & 5 & 2.1 & - & \(1.6{ }^{\bullet}\) & 3.2 & - & 1.2 & - & \multirow{4}{*}{mA} & \multirow[t]{2}{*}{2} \\
\hline & & & 0.5 & 10 & \(6.25{ }^{\prime \prime}\) & - & \(5{ }^{\circ}\) & 10 & - & 3.5 : & - & & \\
\hline & & \multirow[t]{2}{*}{Complement Output} & 0.5 & 5 & 1 & - & \(0.8{ }^{\bullet}\) & 1.6 & - & 0.55 & - & & \\
\hline & & & 0.5 & 10 & \(2.5{ }^{\text {² }}\) & - & \(2{ }^{\bullet}\) & 4 & - & 1.4 & - & & \\
\hline \multirow{4}{*}{P-Channel} & \multirow{4}{*}{\({ }_{10}{ }^{\text {P }}\)} & \multirow[t]{2}{*}{True Output} & 4.5 & 5 & -1.75 & - & \(-1.4{ }^{\circ}\) & -2.8 & - & -1 & - & \multirow{4}{*}{mA} & \multirow[t]{2}{*}{} \\
\hline & & & 9.5 & 10 & -5' & - & \(-4^{\bullet}\) & -8 & - & -2.8* & - & & \\
\hline & & \multirow[t]{2}{*}{Complement Output} & 4.5 & 5 & -0.75 & - & \(-0.6{ }^{\circ}\) & -1.2 & - & -0.4 & - & & \multirow[t]{2}{*}{} \\
\hline & & & 9.5 & 10 & -2.25 & - & \(-1.8{ }^{\circ}\) & -3.6 & - & -1.25. & - & & \\
\hline Diode Test & & \multicolumn{3}{|l|}{\(10 \mu \mathrm{~A}\) at any input or output} & & \(1.5^{\circ}\) & & & \(1.5^{\circ}\) & & \(1.5{ }^{\circ}\) & V & 3 \\
\hline Input Current & 1 & \multicolumn{3}{|l|}{Any Input} & - & - & - & 10 & - & - & - & pA & \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs. A Values shown are for True Output.
Note 2: Test is either a one input or a one output only.


92CS-22910
Fig. 2- Minimum n-channel drain characteristics-true output.


92Cs-22910
Fig. 4-Minimum n-channel drain characteristics-complement output.


Fig. 3-Minimum p-channel drain characteristics-true output.


Fig. 5- Minimum p-channel drain characteristics-complement output.


Fig. 6- Minimum and maximum transfer characteristics-true output.


Fig. 7-Minimum and maximum transfer characteristicscomplement output.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\) and \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)
Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \%{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} \\
\hline & & & & \multicolumn{3}{|r|}{CD4041AD, CD4041AK} & \\
\hline & & & \[
\begin{array}{|l|}
\hline \text { VDD } \\
\text { (Volts) }
\end{array}
\] & MIN. & TYP. & MAX. & \\
\hline \multirow[t]{4}{*}{Propagation Delay Time: High-to-Low Level} & \multirow{4}{*}{\({ }^{\text {tPHL }}\)} & True & 5 & - & 65 & 115 & \multirow[b]{2}{*}{ns} \\
\hline & & Output & 10 & - & 40 & \(75 \cdot\) & \\
\hline & & \multirow[t]{2}{*}{Complement Output} & 5 & & 55 & 100 & \multirow[b]{2}{*}{ns} \\
\hline & & & 10 & & 30 & \(45^{\circ}\) & \\
\hline \multirow[t]{4}{*}{Low-to-High Level} & \multirow{4}{*}{\({ }^{\text {P PLH }}\)} & True & 5 & - & 75 & 125 & \multirow[t]{2}{*}{ns} \\
\hline & & Output & 10 & - & 45 & \(75^{\circ}\) & \\
\hline & & \multirow[t]{2}{*}{Complement Output} & 5 & - & 45 & 100 & \multirow[b]{2}{*}{ns} \\
\hline & & & 10 & - & 25 & \(40{ }^{\circ}\) & \\
\hline \multirow[t]{4}{*}{Transition Time: High-to-Low Level} & \multirow{4}{*}{\({ }^{t}\) THL} & True & 5 & - & 20 & 40 & \multirow[b]{2}{*}{ns} \\
\hline & & Output & 10 & - & 13 & \(25 \cdot\) & \\
\hline & & \multirow[t]{2}{*}{Complement Output} & 5 & - & 40 & 60 & \multirow[b]{2}{*}{ns} \\
\hline & & & 10 & - & 25 & \(40^{\circ}\) & \\
\hline \multirow{4}{*}{Low-to-High Level} & \multirow{4}{*}{\({ }^{\text {t }}\) TLH} & True & 5 & - & 20 & 40 & \multirow[b]{2}{*}{ns} \\
\hline & & Output & 10 & - & 13 & \(25^{\circ}\) & \\
\hline & & \multirow[t]{2}{*}{Complement Output} & 5 & - & 35 & 55 & \multirow[t]{2}{*}{ns} \\
\hline & & & 10 & - & 25 & \(40^{\circ}\) & \\
\hline Tnput Capacitance & \(\mathrm{C}_{1}\) & Any Input & & - & 5 & - & pF \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Test is a one input one output only.
DYNAMIC ELECTRICÅL CHARACTERISTICS (Driving TTL,DTL) AT \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) (True Output)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} \\
\hline & & & \multirow[b]{2}{*}{Driving TTL,DTL} & \multicolumn{3}{|r|}{CD4041AD CD4041AK} & \\
\hline & & & & MIN. & TYP. & MAX. & \\
\hline Propagation Delay Time: & \multirow[b]{2}{*}{\({ }^{\text {tPHL }}\)} & \(\mathrm{R}_{\mathrm{L}}=2 k \Omega\) & \begin{tabular}{l}
Med. \\
Power
\end{tabular} & - & 75 & 150 & \\
\hline High.To-Low Level & & \(R_{L}=20 \mathrm{k} \Omega\) & \begin{tabular}{l}
Low \\
Power
\end{tabular} & - & 75 & 150 & \\
\hline \multirow[b]{2}{*}{Low-To-High Level} & \multirow[b]{2}{*}{\({ }^{\text {P PLH }}\)} & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & \begin{tabular}{l}
Med. \\
Power
\end{tabular} & - & 85 & 175 & ns \\
\hline & & \(R_{L}=20 k \Omega\) & \begin{tabular}{l}
Low \\
Power
\end{tabular} & - & 85 & 175 & \\
\hline \multirow[t]{2}{*}{Transition Time} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \mathrm{t} \mathrm{THL}= \\
& { }^{\mathrm{t}} \mathrm{TLH}
\end{aligned}
\]} & \(R_{L}=2 \mathrm{k} \Omega\) & \begin{tabular}{l}
Med. \\
Power
\end{tabular} & - & 20 & 50 & \multirow[b]{2}{*}{ns} \\
\hline & & \(R_{L}=20 k \Omega\) & Low Power & - & 20 & 50 & \\
\hline
\end{tabular}


Fig. 8- Typical transition time vs. \(C_{L}\)-true output.


Fig. 9- Typical high-to-low level transition time vs. \(C_{L}\)-complement output.


Fig. 10- Typical low-to-high level propagation delay time vs. \(C_{L}\)-true output.


Fig. 12- Typical power dissipation vs. frequency per output pair

Fig. 14- Quiescent device current test circuit.



Fig. 11-Typical low-to-high level propagation delay time vs. \(C_{L}\)-complement output.


Fig. 13- Typical power dissipation vs. input rise \& fall time per output pair.


Fig. 15- Noise immunity test circuit.


\section*{High-Reliability COS/MOS Quad Clocked "D" Latch}

\section*{For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment}

\section*{Features:}
- Medium Speed Operation... tPHL \(=\) tpLH \(=50 \mathrm{~ns}\) (typ) at \(\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}\) and \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)
- Clock Polarity Control
- \(Q_{\text {and }} \overline{\mathrm{O}}\) Outputs
- Common Clock
- Low Power TTL Compatible

Applications:
- Buffer Storage
- Holding Register
- General Digital Logic

TERMINAL ASSIGNMENT CD4042AD
CD4042AK


RCA CD4042A "Slash" (/) Series are high-reliability COS/MOS integrated circuit Quad Clocked "D" Latches intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4042A types contain four latch circuits, each strobed by a common clock. Complementary buffered outputs are available from each circuit. The impedance of the \(n\) - and \(p\)-channel output devices is balanced and all outputs are electrically identical.
Information present at the data input is transferred to outputs Q and \(\overline{\mathrm{Q}}\) during the CLOCK level which is programmed by the POLARITY input. For POLARITY \(=0\) the transfer occurs during the 0 CLOCK level and for POLARITY \(=1\) the transfer occurs during the 1 CLOCK level. The outputs follow the data input providing the CLOCK and POLARITY levels defined above are present. When a CLOCK transition occurs (positive for POLARITY \(=0\) and negative for POLARITY \(=1\) ) in information present at the input during the CLOCK transition is retained at the outputs until an opposite CLOCK transition occurs.
These devices are electrically and mechanically identical with standard COS/MOS CD4042A types described in data bulletin 589 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types

\begin{tabular}{|c|c|c|}
\hline CLOCK & POLARITY & 0 \\
\hline 0 & 0 & \(D\) \\
\hline\(\Gamma\) & 0 & LATCH \\
\hline 1 & -1 & \(D\) \\
\hline\(L\) & 1 & LATCH \\
\hline
\end{tabular}

Fig. 1 - Logic block diagram and truth table.
can be supplied to three screening levels - / \(M, / N\), and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4042A "Slash" (/) Series types are supplied in 16-lead welded-seal dual-in-line ceramic packages ("D" suffix), in the 16-lead ceramic flat packages (" \(K\) " suffix), or in chip form ("H" suffix).

STATIC ELECTRICAL CHARACTERISTICS (AII Inputs ... \(\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\text {DD }}\) )
Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[b]{3}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow{4}{*}{Notes} \\
\hline & & & & & \multicolumn{7}{|c|}{CD4042AD, CD4042AK} & & \\
\hline & & & & & \multicolumn{2}{|r|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & \[
\begin{array}{|c|}
\hline \mathrm{V}_{\mathbf{O}} \\
\text { Volts }
\end{array}
\] & \[
\begin{aligned}
& \text { VDD } \\
& \text { Volts }
\end{aligned}
\] & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{'L} & \multirow[t]{4}{*}{\begin{tabular}{l}
Inputs \\
to \\
Ground \\
or \\
\(V_{D D}\)
\end{tabular}} & & 5 & - & 1 & - & 0.005 & 1 & - & 60 & & 1 \\
\hline & & & & 10 & \(\checkmark\) & \(2^{\circ}\) & - & 0.005 & \(2^{\circ}\) & - & \(40^{\circ}\) & \(\mu \mathrm{A}\) & 1 \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{\text {D }}\)} & & & 5 & - & 5 & - & 0.025 & 5 & - & 300 & \(\mu \mathrm{W}\) & - \\
\hline & & & & 10 & - & 20 & - & 0.05 & 20 & - & 400 & \(\mu\) & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Output Voltage: \\
Low-Level
\end{tabular}} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow{8}{*}{Fan-out of 50 COS/MOS Inputs} & & 3 & & \(0.55^{\circ}\) & & & \(0.50{ }^{\circ}\) & & & \multirow{4}{*}{V} & 1 \\
\hline & & & & 5 & - & 0.01 & - & 0 & 0.01 & & 0.05 & & - \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & - \\
\hline & & & & 15 & & & & & \(0.50^{\circ}\) & & \(0.55^{\circ}\) & & 1 \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & 3 & \(2.25{ }^{\circ}\) & & \(2.3{ }^{\circ}\) & & & & & & 1 \\
\hline & & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & - \\
\hline & & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & - \\
\hline & & & & 15 & & & \(14.5^{\circ}\) & & & \(14.45^{\circ}\) & & & 1 \\
\hline \begin{tabular}{l}
Threshold Voltage: \\
N-Channe!
\end{tabular} & \(V_{\text {TH }} \mathrm{N}\) & \multicolumn{3}{|c|}{\(\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}\)} & \(-0.7^{\circ}\) & \(-3.0^{\circ}\) & \(-0.7^{\circ}\) & -1.5 & \(-3.0^{\circ}\) & \(-0.3{ }^{\circ}\) & \(-3.0^{\circ}\) & V & \multirow[b]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \multicolumn{3}{|c|}{\(\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}\)} & \(0.7{ }^{\circ}\) & \(3.0^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3.0^{\circ}\) & \(0.3{ }^{\circ}\) & \(3.0^{\circ}\) & V & \\
\hline \multirow[t]{4}{*}{Noise Immunity (All Inputs)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & & 0.95 & 5 & 1.5 & - & \(1.5^{\circ}\) & 2.25 & - & 1.4 & - & \multirow[t]{2}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 2.9 & 10 & \(3^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & \(2.9^{\circ}\) & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & & 3.6 & 5 & 1.4 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.5 & - & \multirow[b]{2}{*}{V} & \\
\hline & & & 7.2 & 10 & \(2.9{ }^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & \(3^{\circ}\) & - & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Output Drive Current: \\
N -Channel
\end{tabular}} & \multirow{2}{*}{\(I_{0} \mathrm{~N}\)} & & 0.5 & 5 & 0.5 & - & \(0.4{ }^{\circ}\) & 1 & - & 0.27 & - & mA & \multirow{2}{*}{2} \\
\hline & & & 0.5 & 10 & 1.25 & - & \(1{ }^{\circ}\) & 2 & - & 0.7 & - & mA & \\
\hline \multirow{2}{*}{P-Channel} & \multirow{2}{*}{\({ }_{10}{ }^{P}\)} & & 4.5 & 5 & -0.45 & - & \(-0.35{ }^{\circ}\) & -1 & - & -0.25 & - & & \multirow{2}{*}{2} \\
\hline & & & 9.5 & 10 & -1.15 & - & \(-0.9^{\circ}\) & -2 & - & -0.6 & - & & \\
\hline Diode Test & \(V_{D F}\) & \multicolumn{2}{|l|}{\(10 \mu \mathrm{~A}\) at any input or output} & & - & \(1.5^{\circ}\) & - & - & \(1.5^{\circ}\) & - & \(1.5{ }^{\circ}\) & - & 3 \\
\hline Input Current & 1 & \multicolumn{2}{|l|}{Any Input} & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

\footnotetext{
Limits with black dot (o) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2
}
through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.
For/Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits, jand for Operating Considerations, see Appendix :

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S S}=O V, C_{L}=15 \mathrm{pF}\), and input rise and fall times \(=\mathbf{2 0} \mathbf{n s}\), except \(t_{r} C L\) and \(t_{f} C L\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow[b]{2}{*}{TEST CONDITIONS} & & LIMITS & & \multirow{3}{*}{UNITS} & \multirow[b]{3}{*}{NOTES} \\
\hline & & & \multicolumn{3}{|l|}{CD4042AD, CD4042AK} & & \\
\hline & & VDD (Volts) & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time} & tPHL, & 5 & - & 150 & 300 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & tPLH & 10 & - & 75 & \(125^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Transition Time} & tTHL, & 5 & - & 100 & 200 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & tTLH & 10 & - & 50 & \(100^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \({ }^{\text {tWL. }}\) & 5 & - & 175 & 250 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & tWH & 10 & - & 50 & 75 & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Clock \\
Rise \& Fall Time
\end{tabular}} & \({ }_{\text {treL }}\), & 5 & & - & 15 & \multirow[b]{2}{*}{\(\mu \mathrm{s}\)} & \multirow[b]{2}{*}{1} \\
\hline & \[
t_{\mathrm{f} C L}
\] & 10 & & - & \(5^{\bullet}\) & & \\
\hline \multirow[t]{2}{*}{Set-Up Time} & & 5 & - & 50 & 100 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & \(\checkmark\) & 10 & - & 25 & 50 & & \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & - & - & 5 & - & pF & - \\
\hline
\end{tabular}

Limits with black dot (•) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through \(\mathbf{7}\) for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Test is a one input, one output only.

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Storage-Temperature Range . . . . . . . . -65 to \(+150{ }^{\circ} \mathrm{C}\)} \\
\hline Operating-Temperature Range & -55 to \(+125{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{DC Supply-Voltage Range:} \\
\hline \(\left(\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline \multicolumn{2}{|l|}{Recommended} \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) ) & 3 to 15 V \\
\hline \multicolumn{2}{|l|}{Recommended} \\
\hline Input-Voltage Swing & \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{\mathrm{SS}}\) \\
\hline \multicolumn{2}{|l|}{Lead Temperature (During Soldering)} \\
\hline \multicolumn{2}{|l|}{At distance 1/16" \(\pm 1 / 32^{\prime \prime}\)} \\
\hline \multicolumn{2}{|l|}{(1.59 \(\pm 0.79 \mathrm{~mm}\) ) from case} \\
\hline for 10 s max. . . & \(+265{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


92CS-22848
Fig. 2- Min. n-channel drain characteristics.

DRAIN - TO - SOURCE VOLTAGE (VDS \()\)-V


Fig. 3- Min. p-channel drain characteristics.


Fig. 4- Typical propagation delay time vs. \(V_{D D}\).


Fig. 5- Typical dissipation characteristics.


Fig. 7-Noise immunity.


Solid State Division

\section*{Digital Integrated Circuits}

Monolithic Silicon High-Reliability Slash(/) Series CD4043A/..., CD4044A/...


\title{
High-Reliability COS/MOS Quad 3-State R/S Latches
}

For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment
Quad NOR R/S Latch - CD4043A
Quad NAND R/S Latch - CD4044A
Special Features:
- Medium Speed Operation
- 3-Level Outputs with Common Output Enable
- Separate Set and Reset Inputs for Each Latch
- Low Power TTL Compatible
- NOR and NAND Configurations

\section*{Applications:}
- Holding Register in MultiRegister System
- Four Bits of Independent Storage with Output Enable
- Strobed Register
- General Digital Logic

RCA-CD4043A and CD4044A "Slash" (/) Series are highreliability COS/MOS integrated circuit Quad 3-State R/S Latches intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4043A types are quad cross-coupled 3-State NOR latches; the CD4044A types, quad cross-coupled 3-State NAND latches. Each latch has a separate \(\mathbf{Q}\) output and individual SET and RESET inputs. The Qoutputs are gated through transmission gates controlled by a common ENABLE input. A logic " 1 " or "high" on the ENABLE input connects the latch states to the Q outputs. A logic " O " or "low" on the ENABLE input disconnects the latch states from the: \(Q\) outputs, resulting in an open circuit condition on the \(Q\) outputs. The open circuit feature allows common busing of the outputs. The logic operation of the latches is summarized in the truth table on the following page.
These devices are electrically and mechanically identical with standard COS/MOS CD4043A and CD4044A types described in data bulletin 590 and DATABOOK SSD-203B Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4043A and CD4044A "Slash" (/) Series types are supplied in 16 -lead dual-in-line ceramic packages ("D" suffix), in 16 -lead ceramic flat packages (" \(K\) " suffix), or in chip form ("H" suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Storage-Temperature Range -65 to \(+150{ }^{\circ} \mathrm{C}\)
Operating-Temperature Range -55 to \(+125^{\circ} \mathrm{C}\)
DC Supply-Voltage Range:
( \(V_{\text {DD }}-V_{S S}\) ) . . . . . . . . . . . . . . . . . . . . -0.5 to +15 V
Device Dissipation (Per Package)
200 mW
All Inputs
\(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\)
Recommended
DC Supply-Voltage ( \(V_{D D}-V_{S S}\) ) \(\ldots\). 3 to \(15 \quad V\)
Recommended
Input-Voltage Swing . . . . . . . . . . . . . . . \(V_{D D}\) to \(V_{S S}\)
Lead Temperature (During Soldering)
At distance \(1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}\)
\((1.59 \pm 0.79 \mathrm{~mm})\) from case
for 10 s max. . . . . . . . . . . . . . . . . . . . . \(+265{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow{4}{*}{Notes} \\
\hline & & & & \multicolumn{7}{|l|}{CD4043AD, CD4043AK, CD4044AD, CD4044AK} & & \\
\hline & & & & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & \[
\begin{array}{|l}
\hline \mathrm{V}_{\mathrm{DD}} \\
\text { Volts }
\end{array}
\] & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{IL} & \multirow[t]{4}{*}{\begin{tabular}{l}
Inputs \\
to \\
Ground or \(V_{D D}\)
\end{tabular}} & 5 & - & 1 & - & 0.005 & 1 & - & 60 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{1} \\
\hline & & & 10 & - & \({ }^{\bullet}\) & - & 0.005 & \({ }^{\bullet}\) & - & \(40^{\bullet}\) & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{\text {D }}\)} & & 5 & - & 5 & - & 0.025 & 5 & - & 300 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 20 & - & 0.05 & 20 & - & 400 & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Output Voltage: \\
Low-Level
\end{tabular}} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow{8}{*}{Fan-out of 50 COS/MOS Inputs} & 3 & - & \(0.55{ }^{\circ}\) & - & - & \(0.5{ }^{\circ}\) & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & \\
\hline & & & 15 & - & - & - & - & \(0.5{ }^{\bullet}\) & - & \(0.55{ }^{\circ}\) & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\bullet}\) & - & - & - & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & \(14.45^{\circ}\) & - & & \\
\hline Threshold Voltage: N -Channel & \(\mathrm{V}_{\text {TH }} \mathrm{N}\) & \(I^{\prime}=-10\) & & \(-0.7^{\circ}\) & \(-3.0{ }^{\bullet}\) & \(-0.7^{\circ}\) & -1.5 & \(-3.0{ }^{\bullet}\) & \(-0.3{ }^{\circ}\) & \(-3.0{ }^{\circ}\) & V & \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \({ }^{\prime} \mathrm{D}=10 \mu\) & & \(0.7{ }^{\bullet}\) & \(3.0^{\bullet}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3.0^{\bullet}\) & \(0.3{ }^{\circ}\) & \(3.0{ }^{\circ}\) & V & 2 \\
\hline & \(\mathrm{V}_{\mathrm{NL}}\) & \(\mathrm{v}_{\mathrm{O}}=0.95 \mathrm{~V}\) & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & v & \\
\hline (All Inputs) & & \(\mathrm{v}_{\mathrm{O}}=2.9 \mathrm{~V}\) & 10 & \(3^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & & 1 \\
\hline & & \(\mathrm{V}_{0}=3.6 \mathrm{~V}\) & 5 & 1.4 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.5 & - & v & \\
\hline & \(\mathrm{V}_{\mathrm{NH}}\) & \(\mathrm{V}_{\mathrm{O}}=7.2 \mathrm{~V}\) & 10 & \(2.9{ }^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & \(3^{\circ}\) & - & \(\checkmark\) & \\
\hline Output Drive Current: & & & 5 & 0.25 & - & \(0.2{ }^{\circ}\) & 0.5 & - & 0.14 & - & & \\
\hline & & & 10 & 0.61 & - & \(0.5{ }^{\text {® }}\) & 1 & - & 0.35 & - & & \\
\hline P-Channel & IDP & \(v_{0}=4.5 \mathrm{~V}\) & 5 & -0.22 & - & \(-0.175^{\circ}\) & -0.5 & - & -0.12 & - & mA & 2 \\
\hline & & \(v_{0}=9.5 \mathrm{~V}\) & 10 & -0.5 & - & \(-0.4{ }^{\circ}\) & -1 & - & -0.28 & - & & \\
\hline Diode Test & \(V_{\text {DF }}\) & \(100 \mu \mathrm{~A}\) at any input or outpu & & - & \(1.5^{\circ}\) & - & - & \(1.5{ }^{\bullet}\) & - & \(1.5^{\circ}\) & V & 3 \\
\hline Input Current & 1 & Any Input & & - & - & - & 10 & - & - & - & pA & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through \(\mathbf{7}\) for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.


Fig. 1-Quiescent current.


Fig. 2- Noise immunity.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, V_{S S}=O V, C_{L}=15 \mathrm{pF}\), and input rise and fall times \(=20 \mathrm{~ns}\), except \(t_{r} C L\) and \(t_{f} C L\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOLS} & \multirow[b]{2}{*}{TEST CONDITIONS} & & IMITS & & \multirow{3}{*}{UNITS} & \multirow{3}{*}{NOTES} \\
\hline & & & \multicolumn{3}{|l|}{CD4043AD, CD4043AK CD4044AD,CD4044AK} & & \\
\hline & & (Volts) & Min. & Typ. & Max. & & \\
\hline \multirow[b]{2}{*}{Propagation Delay Time} & tPHL, & 5 & - & 175 & 350 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & \({ }^{\text {tPLH }}\) & 10 & - & 75 & \(175^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Transition Time} & 'THL, & 5 & - & 100 & 200 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & t TLH & 10 & - & 50 & \(100^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{Minimum Set and Reset Pulse Width} & \({ }^{\text {t W }}\) W (S) , & 5 & - & 80 & 200 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & tWH(R) & 10 & - & 40 & \(100^{\circ}\) & & \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & - & - & 5 & - & pF & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through \(\mathbf{7}\) for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.

Note 1: Test is one input or a one output only.


*OPEN CIRCUIT
+ NO CHANGE
\(\triangle\) DOMINATED BY \(S=I\) INPUT

* OPEN CIRCUIT
+ NO CHANGE
\(\triangle \triangle\) DOMINATED BY \(R=O\) INPUT


92cs-20222
CD4044A Terminal Diagram

Fig. 3-Logic diagrams \& truth tables.


Fig. 4-Schematic diagram-CD4043A.


Fig. 5-Schematic diagram-CD4044A.


Fig.6-Min. n-channel drain characteristics.


92Cs-22932
Fig.7-Min. p-channel drain characteristics.


Fig.8-Typ. propagation delay time vs. \(C_{L}\).


Fig.9-Typ. transistion time vs. \(C_{L}\).


Fig. 10-Typ. dissipation characteristics.

\title{
Digital Integrated Circuits \\ Monolithic Silicon \\ High-Reliability Slash(/) Series CD4045A/...
}


\section*{High-Reliability COS/MOS 21-Stage Counter}

For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment
Applications:
- Digital equipment in which ultra-low dissipation and/or operation using a battery source are primary design requirements.
a Accurate timing from a crystal oscillator for timing applications such as wall clocks, table clocks, automobile clocks, and digital timing references in any circuit requiring accurately timed outputs at various intervals in the counting sequence.
- Driving miniature synchronous motors, stepping motors, or external bipolar transistors in push-pull fashion.

RCA CD4045A "Slash" (/) Sẹries types are high-reliability COS/MOS integrated circuit 21-Stage Counters intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4045A is a timing circuit consisting of 21 counter stages, two ouṭputshaping flip-flops, two inverter output drivers, three 5.5 V zener diodes (providing transient protection at 16.5 V ), and input inverters for use in a crystal oscillator. This device may be operated over a 3 -to- 15 V supply voltage range. The CD4045A configuration provides 21 flip-flop counting stages, and two flip-flops for shaping the output waveform for a \(3.125 \%\) duty cycle. Push-pull operation is provided by the inverter output drivers.
The first inverter is intended for use as a crystal oscillator/ amplifier. However, it may be used as a normal logic inverter if desired.
A crystal oscillator circuit can be made less sensitive to voltage supply variations by the use of source resistors. In this device, the sources of the \(p\) and \(n\) transistors have been brought out to package terminals. If external resistors are not required, the sources must be shorted to their respective substrates ( \(\mathrm{S}_{\mathrm{P}}\) to \(\mathrm{V}_{\mathrm{DD}}, \mathrm{S}_{\mathrm{N}}\) to \(\mathrm{V}_{\mathrm{SS}}\) ). See Fig. 1.
These devices are electrically and mechanically identical with standard COS/MOS CD4045A types described in data bulletin 614 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

\section*{Features:}
- Operation from 3 to 15 volts
- Microwatt quiescent dissipation. . .
\(2.5 \mu \mathrm{~W}\) (typ.) @ \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; 10 \mu \mathrm{~W}\) (typ.) @ \(\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}\)
- Very-low operating dissipation...

1 mW (typ.); @ \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{f} \phi=1 \mathrm{MHz}\)
- Output drivers with sink or source capability .

7 mA (typ.) \(@ \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\) (sink)
5 mA (typ.) @ \(\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\) (source)
- Medium speed (typ.) ... f \(\phi=5 \mathrm{MHz} @ V_{D D}=5 \mathrm{~V}\)
\[
\mathrm{f} \phi=10 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}
\]
- 16.5 V zener diode transient protection on chip for automotive use

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4045A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages ("D" suffix), in 16-lead ceramic flat packages ("K" suffix), or in chip form ("H" suffix).


Fig. 1-CD4045A and outboard components in a typical 21-stage counter application.

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Storage-Temperature Range . . . . . . . -65 to \(+150{ }^{\circ} \mathrm{C}\)
Operating-Temperature Range:
Ceramic packages ................. \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Plastic package . . . . . . . . . . . . . . . . \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
DC Supply-Voltage Range:
\[
\left(V_{D D}-V_{S S}\right) \ldots \ldots \ldots \ldots . . . .
\]

Device Dissipation:
(Per package, including zener diodes) ... 200 mW
All Inputs
Recommended
DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\) )
\(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\)

Recommended
Input-Voltage Swing . . . . . . . . . . . . \(\quad V_{D D}\) to \(V_{S S}\)
Peak Zener Diode Current
(Decay \(\tau=80 \mathrm{~ms}\) ) 150 mA

Note 1: To minimize power dissipation in the zener diodes, and to ensure device dissipation less than 200 mW , a 150 s 2 cur -rent-limiting resistor must be placed in series with the power supply for \(V_{D D}>13 \mathrm{~V}\).

Note 2: Observe power supply terminal connections, \(V_{D D}\) is terminal No. 3 and \(\mathrm{V}_{\text {SS }}\) is terminal No. 14 (not 16 and 8 respectively, as in all other CD4000A Series 16 -lead devices).


Fig. 2- Typical dissipation vs. input frequency (21 counting stages).

STATIC ELECTRICAL CHARACTERISTICS (All Inputs \(\ldots \mathrm{V}_{S S} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) )
Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[b]{4}{*}{\[
\begin{aligned}
& N \\
& O \\
& T \\
& E \\
& S \\
& \hline
\end{aligned}
\]} \\
\hline & & & & & \multicolumn{7}{|c|}{CD4045AD,CD4045AK} & & \\
\hline & & & \multirow[b]{2}{*}{\(\mathrm{V}_{0}\) Volts} & \multirow[b]{2}{*}{\begin{tabular}{l}
\(V_{D D}\) \\
Volts
\end{tabular}} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & \\
\hline Quiescent Device \({ }^{\text {s }}\) & \multirow[b]{2}{*}{\({ }^{1} \mathrm{~L}\)} & & & 5 & - & 15 & - & 0.5 & 15 & - & 900 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{1} \\
\hline Current & & & & 10 & - & \(25^{\bullet}\) & - & 1 & \(25^{\bullet}\) & - & \(500^{\circ}\) & & \\
\hline Quiescent Device^ & \multirow[b]{2}{*}{\({ }^{P}\)} & & & 5 & - & 0.075 & - & 0.0025 & 0.075 & - & 4.5 & \multirow[b]{2}{*}{mW} & \multirow[b]{2}{*}{-} \\
\hline Dissipation/Package & & & & 10 & - & 0.25 & - & 0.01 & 0.25 & - & 5 & & \\
\hline \multirow{4}{*}{Output Voltage Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow{8}{*}{Driving cos/mos} & & 3 & - & \(0.55{ }^{\bullet}\) & - & - & \(0.5{ }^{\bullet}\) & - & - & \multirow{4}{*}{V} & 1 \\
\hline & & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & - \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & - \\
\hline & & & & 15 & - & - & - & - & \(0.50{ }^{\circ}\) & - & \(0.55{ }^{\circ}\) & & 1 \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & 3 & \(2.25{ }^{\bullet}\) & - & \(2.3{ }^{\circ}\) & - & - & - & - & \multirow{4}{*}{V} & 1 \\
\hline & & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & - \\
\hline & & & & 10 & 9.99 & -- & 9.99 & 10 & - & 9.95 & - & & - \\
\hline & & & & 15 & .-. & - & \(14.5{ }^{\circ}\) & - & - & \(14.45{ }^{\circ}\) & - & & 1 \\
\hline Threshold Voltage: N -Channel & \(V_{\text {TH }}{ }^{\text {N }}\) & \({ }^{1} \mathrm{D}=-10 \mu \mathrm{~A}\) & & & \(-0.3{ }^{\bullet}\) & \(-3^{\bullet}\) & \(-0.3^{\circ}\) & \(-1.5\) & \(-2.8{ }^{\circ}\) & \(-0.3^{\bullet}\) & \(-2.8\) & \multirow[t]{2}{*}{V} & \multirow[b]{2}{*}{2} \\
\hline P-Channel & \(V_{T H}{ }^{\text {P }}\) & \({ }^{\prime} D=10 \mu \mathrm{~A}\) & & & \(0.3{ }^{\text {e }}\) & \(3^{\circ}\) & \(0.3{ }^{\circ}\) & 1.5 & \(2.8{ }^{\circ}\) & \(0.3{ }^{\circ}\) & \(2.8{ }^{\circ}\) & & \\
\hline Sum & \(\mathrm{V}_{\mathrm{TH}} \mathrm{S}\) & & & & - & 3.7 & - & - & 3.6 & - & 3.7 & & 2 \\
\hline \multirow[b]{4}{*}{Noise Immunity (Any Input)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & & & 5 & 1.5 & - & \(1.5^{\bullet}\) & 2.25 & - & 1.4 & - & \multirow{4}{*}{V} & \multirow{4}{*}{1} \\
\hline & & & & 10 & 3 - & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\bullet}\) & - & & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & & & 5 & 1.4 & . & \(1.5{ }^{\bullet}\) & 2.25 & - & 1.5 & - & & \\
\hline & & & & 10 & \(2.9{ }^{\bullet}\) & - & 3 - & 4.5 & - & 3 * & - & & \\
\hline Output Drive Current & \multirow[b]{2}{*}{\({ }^{1} \mathrm{D} N\)} & & 0.5 & 5 & 4.4 & - & \(3.5{ }^{\bullet}\) & 7 & - & 2.5 & - & \multirow[b]{2}{*}{mA} & \multirow{4}{*}{2} \\
\hline N-Channel & & & 0.5 & 10 & 6.9 & - & \(5.5^{\bullet}\) & 11 & - & 3.9 & - & & \\
\hline \multirow[b]{2}{*}{P-Channel} & \multirow[b]{2}{*}{\({ }^{1} D^{P}\)} & & 4.5 & 5 & 3.1 & \(\cdots\) & \(-2.5{ }^{\text {e }}\) & -5 & - & -1.8 & - & \multirow[b]{2}{*}{mA} & \\
\hline & & & 9.5 & 10 & - 5.6 & - & \(-4.5{ }^{\bullet}\) & -9 & - & -3.2 & - & & \\
\hline Input Current & \(1 /\) & & & & \(\cdot\) & - & -- & 10 & - & - & - & pA & 3 \\
\hline Diode Test & \(V_{\text {DF }}\) & \multicolumn{3}{|l|}{\(100 \mu \mathrm{~A}\) at each input or output} & - & \(1.5{ }^{\circ}\) & - & - & \(1.5{ }^{\circ}\) & - & \(1.5^{\circ}\) & V & - \\
\hline \begin{tabular}{l}
Zener Breakdown \\
Voltage
\end{tabular} & \(V_{(B R) Z}\) & \multicolumn{3}{|c|}{\(1=100 \mu \mathrm{~A}\)} & 13.3 & 17.8 & 13.5 & 16.5 & 18 & 13.7 & 18.2 & V & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A/Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.
\({ }^{\mathbf{4}}\) Maximum noise-free saturated Bipolar output voltage. \(\quad{ }^{\dagger}\) Minimum noise-free saturated Bipolar output voltage.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\), and input rise and fall times \(=20 \mathrm{~ns}\), except \(\mathrm{t}_{\mathbf{r}} \phi\) and \(\mathrm{t}_{\mathrm{f}} \phi\).
Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow[b]{3}{*}{TEST CONDITIONS \(V_{D D}\) (Volts)} & \multicolumn{3}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} & \multirow[t]{3}{*}{N
O
T
E
S} \\
\hline & & & \multicolumn{3}{|l|}{CD4045AD, CD4045AK} & & \\
\hline & & & Min. & Typ. & Max. & & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time \(\phi_{1}\) to \(y\) or \(y+d\) out} & tPHL. & 5 & - & 2.2 & 4.4 & \multirow[b]{2}{*}{\(\mu \mathrm{s}\)} & \multirow[b]{2}{*}{-} \\
\hline & \({ }^{\text {tPLH }}\) & 10 & - & 1.2 & 2.4 & & \\
\hline \multirow[t]{2}{*}{Transition Time} & \({ }^{\text {t }}\) HL, & 5 & - & 450 & 800 & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & \({ }^{\text {t }}\) LLH & 10 & - & 375 & 650 & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Minimum Input- \\
Pulse Width
\end{tabular}} & \({ }^{\text {t W W }}\), & 5 & - & 100 & 115 & \multirow{2}{*}{ns} & \multirow{2}{*}{-} \\
\hline & \({ }^{\text {twh }}\) & 10 & - & 50 & 60 & & \\
\hline \multirow[t]{2}{*}{Input Pulse Rise \& Fall Time} & \(\mathrm{t}_{\mathrm{r}} \phi\), & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu \mathrm{s}\)} & \multirow[t]{2}{*}{-} \\
\hline & \(\mathrm{t}_{\mathrm{f}} \phi\) & 10 & - & - & 10 & & \\
\hline \multirow{4}{*}{Maximum Input-Pulse Frequency} & \(\mathrm{f} \phi\) & 3 & \(50^{\bullet}\) & - & - & kHz & 1 \\
\hline & \(\mathrm{f}_{\mathrm{m}}\) ¢ & 5 & 4.4 & 5 & - & \multirow[t]{2}{*}{MHz} & \multirow[t]{2}{*}{-} \\
\hline & \(\mathrm{f}_{\mathrm{m}}{ }^{\phi}\) & 10 & 8.5 & 10 & - & & \\
\hline & \(f \phi\) & 15 & \(2^{\circ}\) & - & - & MHz & 1 \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & Any Input & - & 5 & - & pF & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional tests, all inputs/outputs to truth table.



Fig. 5 - Typical zener diode characteristics.


Fig. 7 - Typical transition time vs. \(C_{L}\).


Fig. 6 - Typical propagation delay ( \(\phi_{1}\) to \(y\) or \(y+d\) out) vs. \(V_{D D}\).


92Cs-20903

Fig. 8 - Minimum \(f_{m} \phi\) vs. \(V_{D D}\)

\section*{TEST CIRCUITS}


Fig. 9 - Quiescent current.


Fig. 10 - Noise immunity.


\section*{High-Reliability COS/MOS Micropower Phase-Locked Loop}

\author{
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment \\ Features: \\ - Very low power consumption . . . . \(70 \mu \mathrm{~W}\) (typ.) at \(\mathrm{VCO}_{\mathrm{o}}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\) \\ - Operating frequency range \(\ldots \ldots . \ldots\). . . . . up to 1.2 MHz (typ.) at \(\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}\) \\ ■ Wide supply-voltage range \(\ldots \ldots \ldots \ldots \ldots \ldots . . . . . . V_{D D}-V_{S S}=5\) to 15 V \\  \\ - Choice of two phase \\ 1. Exclusive-OR network
comparators \\ - High VCO linearity \\ 2. Edge-controlled memory network with phase-pulse output for lock indication \\ 1\% (typ.)
}
- VCO inhibit control for ON-OFF keying and ultra-low standby power consumption
\(\square\) Zener diode to assist supply regulation
\(凶\) Source-follower output of VCO control input (Demod. output)
Applications:
- FM demodulator and modulator
- Frequency synthesis and multiplication
\(\pm\) Frequency discriminator a Tone decoding
\(\square\) Data synchronization a FSK - Modems
- Voltage-to-frequency conversion \(\quad\) Signal conditioning
- (See companion application note ICAN-6101 for application information and circuit details)


Fig. 1 - COS/MOS phase-locked loop block diagram.
common signal-input amplifier and a common comparator input. A \(5.2-\mathrm{V}\) zener diode is provided for supply regulation if necessary. The CD4046A is supplied in a 16 -lead dual-in-line ceramic package (CD4046AD), It is also available in chip form (CD4046AH).

\section*{VCO Section}

The VCO requires one external capacitor C 1 and one or two external resistors (R1 or R1 and R2). Resistor R1 and capacitor C 1 determine the frequency range of the VCO and resistor R2 enables the VCO to have a frequency offset if required. The high input impedance ( \(10^{12} \Omega\) ) of the VCO simplifies the design of low-pass filters by permitting the designer a wide choice of resistor-to-capacitor ratios. In order not to load the low-pass filter, a source-follower output of the VCO input voltage is provided at terminal 10 (DEMODULATED OUTPUT). If this terminal is used, a load resistor (RS) of \(10 \mathrm{k} \Omega\) or more should be connected from this terminal to \(\mathrm{V}_{\mathrm{SS}}\). If unused this terminal should be left open. The VCO can be connected either directly or through frequency dividers to the comparator input of the phase comparators. A full COS/MOS logic swing is available at the output of the VCO and allows direct coupling to COS/MOS frequency dividers such as the RCA-CD4024A,CD4018A,CD4020A,CD4022A, or CD4029A. One or more CD4018A (Presettable Divide-by-N Counter) or CD4029A (Presettable Up/Down Counter), together with the CD4046A (Phase-Locked Loop) can be used to build a micropower low-frequency synthesizer. A logic 0 on the INHIBIT input "enables" the VCO and the source follower, while a logic 1 "turns off" both to minimize stand-by power consumption.

\section*{Phase Comparators}

The phase-comparator signal input (terminal 14) can be directcoupled provided the signal swing is within COS/MOS logic levels [logic " 0 " \(\leqslant 30 \%\) (VDD-V \({ }_{\text {SS }}\) ), logic " 1 " \(\geqslant 70 \%\) \(\left.\left(V_{D D}-V_{S S}\right)\right]\). For smaller swings the signal must be capacitively coupled to the self-biasing amplifier at the signal input.
Phase comparator I is an exclusive-OR network; it operates analagously to an over-driven balanced mixer. To maximize the lock range, the signal- and comparator-input frequencies must have a \(50 \%\) duty cycle. With no signal or noise on the signal input, this phase comparator has an average output voltage equal to \(V_{D D} / 2\). The low-pass filter connected to the output of phase comparator I supplies the averaged voltage to the VCO input, and causes the VCO to oscillate at the center frequency ( \(\mathrm{f}_{\mathrm{o}}\) ).
The frequency range of input signals on which the PLL will lock if it was initially out of lock is defined as the frequency capture range ( \(2 \mathrm{ff}_{\mathrm{c}}\) ).
The frequency range of input signals on which the loop will stay locked if it was initially in lock is defined as the frequency lock range ( \(2 \mathrm{f}_{\mathrm{L}}\) ). The capture range is \(\leqslant\) the lock range.
With phase comparator I the range of frequencies over which the PLL can acquire lock (capture range) is dependent on the low-pass-filter characteristics, and can be made as large as the lock range. Phase-comparator I enables a PLL system to remain in lock in spite of high amounts of noise in the input signal.

One characteristic of this type of phase comparator is that it may lock onto input frequencies that are close to harmonics of the VCO center-frequency. A second characteristic is that the phase angle between the signal and the comparator input varies between \(0^{\circ}\) and \(180^{\circ}\), and is \(90^{\circ}\) at the center frequency. Fig. 2 shows the typical, triangular, phase-to-output response charac-


Fig. 2 - Phase-comparator 1 characteristics at low-pass filter output.
teristic of phase-comparator I. Typical waveforms for a COS/ MOS phase-locked-loop employing phase comparator I in locked condition of \(f_{0}\) is shown in Fig. 3.
Phase-comparator II is an edge-controlled digital memory network. It consists of four flip-flop stages, control gating, and a three-state output circuit comprising p - and n -type drivers having a common output node. When the p-MOS or n-MOS drivers are ON they pull the output up to \(V_{D D}\) or down to \(\mathrm{V}_{\mathrm{SS}}\), respectively. This type of phase comparator acts only on the positive edges of the signal and comparator inputs. The


Fig. 3 - Typical waveforms for COS/MOS phase-locked loop employing phase comparator \(/\) in locked condition of \(f_{0}\).
duty cycles of the signal and comparator inputs are not important since positive transitions control the PLL system utilizing this type of comparator. If the signal-input frequency is higher than the comparator-input frequency, the p-type output driver is maintained ON continuously. If the signal-input frequency is lower than the comparator-input frequency, the n-type output driver is maintained ON continuously. If the signal- and comparator-input frequencies are the same, but the signal input lags the comparator input in phase, the \(n\)-type output driver is maintained ON for a time corresponding to the phase difference. If the signal- and comparator-input frequencies are the same, but the comparator input lags the signal in phase, the p-type output driver is maintained ON for a time corresponding to the phase difference. Subsequently, the capacitor voltage of the low-pass filter connected to this phase comparator is adjusted until the signal and comparator inputs
are equal in both phase and frequency. At this stable point both p- and n-type output drivers remain OFF and thus the phase comparator output becomes an open circuit and holds the voltage on the capacitor of the low-pass filter constant. Moreover the signal at the "phase pulses" output is a high leve! which can be used for indicating a locked condition. Thus, for phase comparator II, no phase difference exists between signal and comparator input over the full VCO frequency range. Moreover, the power dissipation due to the low-pass filter is reduced when this type of phase comparator is used because both the p - and n-type output drivers are OFF for most of the signal input cycle. It should be noted that the PLL lock range for this type of phase comparator is equal to the capture range, independent of the low-pass filter. With no signal present at the signal input, the VCO is adjusted to its lowest frequency for phase comparator II. Fig. 4 shows typical wave-

forms for a COS/MOS PLL employing phase comparator II in a locked condition.

SIGNAL INPUT (TERM. 14)
VCO OUTPUT (TERM 4) =
COMPARATOR INPUT
(TERM 3)
PHASE COMPARATOR II OUTPUT (TERM. 13)

VCO INPUT (TERM. 9) =
- LOW-PASS FILTER OUT PUT
PHASE PULSE (TERM. 1 )


NOTE: DASHED LINE IS AN OPEN-CIRCUIT CONDITION

Fig. 4 - Typical waveforms for COS/MOS phase-locked loop employing phase comparator /I in locked condition.


Fig. 5 (a) - Typical VCO power dissipation at center frequency vs R1.


Fig. 5(c) Typical source follower power dissipation vs. \(R_{S}\).


92Cs-21887
Fig. 5 (b) - Typical VCO power dissipation at \(f_{\text {min }}\) vs \(R 2\).

NOTE: To obtain approximate total power dissipation of PLL system for no-signal input
\(P_{D}(\) Total \()=P_{D}\left(f_{o}\right)+P_{D}\left(f_{\text {MIN }}\right)+P_{D}\left(\mathbf{R}_{S}\right)\) - Phase Comparator \(I\)
\(P_{D}(\) Total \()=P_{D}\left({ }^{(f}{ }_{\text {MIN }}\right)\) - Phase Comparator II

\section*{DESIGN INFORMATION}

This information is a guide for approximating the values of external components for the CD4046A in a Phase-LockedLoop system. The selected external components must be within the following ranges:
\[
\begin{aligned}
& 10 \mathrm{k} \Omega \leqslant \mathrm{R} 1, \mathrm{R} 2, \mathrm{R}_{\mathrm{S}} \leqslant 1 \mathrm{M} \Omega \\
& \mathrm{C} 1 \geqslant 100 \mathrm{pF} \text { at } \mathrm{V}_{\mathrm{DD}} \geqslant 5 \mathrm{~V} ; \\
& \mathrm{C} 1 \geqslant 50 \mathrm{pF} \text { at } \mathrm{V}_{\mathrm{DD}} \geqslant 10 \mathrm{~V}
\end{aligned}
\]

In addition to the given design information refer to Fig. 5 for R1, R2, and C1 component selections.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTICS} & \multicolumn{2}{|r|}{USING PHASE COMPARATOR I} & \multicolumn{2}{|l|}{USING PHASE COMPARATOR II} \\
\hline & VCO WITHOUT OFFSET \(R_{2}=\infty\) & VCO WITH OFFSET & VCO WITHOUT OFFSET
\[
\mathbf{R}_{\mathbf{2}}=\infty
\] & VCO WITH OFFSET \\
\hline VCO Frequency & \begin{tabular}{l}
 \\
VCO INPUT VOLTAGE
\end{tabular} & \begin{tabular}{l}
 \\
VCO INPUT VOLTAGE
\end{tabular} & \begin{tabular}{l}
 \\
VCO INPUT VOLTAGE
\end{tabular} & \begin{tabular}{l}
 \\
VCO INPUT VOLTAGE 92Cs-20012a1
\end{tabular} \\
\hline For No Signal Input & \multicolumn{2}{|l|}{VCO in PLL system will adjust to center frequency, \(\mathrm{f}_{0}\)} & \multicolumn{2}{|r|}{VCO in PLL system will adjust to lowest operating frequency, \(f_{m i n}\)} \\
\hline Frequency Lock Range, \(\mathbf{2 f}_{\text {L }}\) & \multicolumn{4}{|c|}{\[
\begin{aligned}
& 2 f_{L}=\text { full VCO frequency range } \\
& 2 f_{L}=f_{\max -f_{\min }}
\end{aligned}
\]} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Frequency Capture Range, \(\mathbf{2 f}_{\mathrm{C}}\) \\
Loop Filter Component Selection
\end{tabular}} & \multicolumn{2}{|l|}{(1),(2)
\[
2 \mathrm{f}_{\mathrm{C}} \approx \frac{1}{\pi} \sqrt{\frac{2 \pi \mathrm{f}_{\mathrm{L}}}{\tau 1}}
\]} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{\(f_{C}=f_{L}\)}} \\
\hline & \multicolumn{2}{|l|}{} & & \\
\hline Phase Angle between Signal and Comparator & \multicolumn{2}{|l|}{\(90^{\circ}\) at center frequency ( \(\mathrm{f}_{\mathrm{O}}\) ), approximating \(0^{\circ}\) and \(180^{\circ}\) at ends of lock range ( \(2 f_{L}\) )} & \multicolumn{2}{|c|}{Always \(0^{\circ}\) in lock} \\
\hline Locks on Harmonics of Center Frequency & \multicolumn{2}{|c|}{Yes} & \multicolumn{2}{|c|}{No} \\
\hline Signal Input Noise Rejection & \multicolumn{2}{|c|}{High} & \multicolumn{2}{|r|}{Low} \\
\hline \begin{tabular}{l}
vco \\
Component Selection
\end{tabular} & \begin{tabular}{l}
- Given: \(f_{o}\) \\
- Use fo with Fig.5a to determine R1 and C1
\end{tabular} & \begin{tabular}{l}
- Given: \(f_{o}\) and \(f_{L}\) \\
- Calculate \(f_{\text {min }}\) from the equation \(f_{\text {min }}=f_{0}-f_{L}\) \\
- Use \(f_{\min }\) withFig. 5b to determine R2 and C1 \\
- Calculate \(\frac{f_{\text {max }}}{f_{\text {min }}}\) from the equation \(\frac{f_{\text {max }}}{f_{\text {min }}}=\frac{f_{0}+f_{L}}{f_{0}-f_{L}}\) \\
\(-U s e \frac{f_{\text {max }}}{f_{\min }}\) with \\
Fig.5c to determine ratio R2/R1 to obtain R1
\end{tabular} & \begin{tabular}{l}
- Given: \(f_{\text {max }}\) \\
- Calculate \(f_{0}\) from the equation
\[
f_{0}=\frac{f_{\max }}{2}
\] \\
- Use \(f_{o}\) with Fig.5a to determine R1 and C1
\end{tabular} & \begin{tabular}{l}
- Given: \(f_{\text {min }}\) \& \(f_{\text {max }}\) \\
- Use \(f_{\min }\) with Fig. 5 b to determine R2andC1 \\
- Calculate \(\frac{f_{\text {max }}}{f_{\min }}\) \\
- Use \(\frac{f_{\text {max }}}{f_{\text {min }}}\) with Fig.5c \\
to determine ratio R2/R1 to obtain R1
\end{tabular} \\
\hline
\end{tabular}

For further information, see
(1) F. Gardner,"Phase-Lock Techniques", John Wiley and Sons, New York, 1966
(2) G. S. Moschytz, "Miniaturized RC Filters Using Phase-Locked Loop", BSTJ, May, 1965.

ELECTRICAL CHARACTERISTICS AT TA \(=25^{\circ} \mathrm{C}\)


ELECTRICAL CHARACTERISTICS AT TA \(=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multirow{3}{*}{TEST CONDITIONS} & \multirow[b]{3}{*}{\[
\begin{gathered}
V_{O} \\
\text { VOLTS }
\end{gathered}
\]} & \multirow[b]{3}{*}{VDD VOLTS} & & LIMITS & & \multirow{3}{*}{UNITS} & \multirow[t]{3}{*}{CHARACTERISTIC CURVES \& TEST CIRCUITS FIG. NO.} \\
\hline & & & & & \multicolumn{3}{|l|}{CD4046AD, CD4046AK} & & \\
\hline & & & & & MIN. & TYP. & MAX. & & \\
\hline \multicolumn{10}{|l|}{PHASE COMPARATOR Section} \\
\hline \multirow[b]{2}{*}{Operating Supply Voltage} & \multirow[b]{2}{*}{\(V_{\text {DD }}-V_{\text {SS }}\)} & \multicolumn{2}{|l|}{Amplifier Operation} & - & 5 & - & 15 & \multirow[b]{2}{*}{V} & - \\
\hline & & \multicolumn{2}{|l|}{Comparators only} & - & 3 & - & 15 & & - \\
\hline \begin{tabular}{l}
Total Quiescent Device Current: \\
Term. 14 Open
\end{tabular} & \multirow[b]{2}{*}{\(I_{L}\)} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{l}
Term. 15 open \\
Term. 5 at VDD \\
Terms. 3 \& 9 at \(V_{S S}\)
\end{tabular}}} & \[
\begin{gathered}
5 \\
10
\end{gathered}
\] & - & \[
\begin{aligned}
& 25 \\
& 200
\end{aligned}
\] & \[
\begin{gathered}
55 \\
410
\end{gathered}
\] & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[b]{2}{*}{-} \\
\hline Term. 14 at \(\mathrm{V}_{\text {SS }}\) or \(\mathrm{V}_{\text {DD }}\) & & & & \[
\begin{gathered}
5 \\
10
\end{gathered}
\] & - & \[
\begin{gathered}
5 \\
25
\end{gathered}
\] & \[
\begin{aligned}
& 15 \\
& 60
\end{aligned}
\] & & \\
\hline Term. 14 (SIGNAL IN) Input Impedance & \(Z_{14}\) & & & \[
\begin{gathered}
5 \\
10 \\
15 \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
1 \\
0.2 \\
-
\end{tabular} & \[
\begin{gathered}
2 \\
0.4 \\
0.2 \\
\hline
\end{gathered}
\] & -
-
- & \(M \Omega\) & - \\
\hline AC-Coupled Signal Input Voltage Sensitivity & & & & \[
\begin{gathered}
5 \\
10 \\
15
\end{gathered}
\] & -
-
- & \[
\begin{aligned}
& 200 \\
& 400 \\
& 700
\end{aligned}
\] & \[
\begin{gathered}
400 \\
800 \\
-
\end{gathered}
\] & mV & 8 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
DC-Coupled Signal Input and Comparator Input Voltage Sensitivity: Low Level \\
High Level
\end{tabular}} & & & & \[
\begin{gathered}
5 \\
10 \\
15
\end{gathered}
\] & \[
\begin{gathered}
1.5 \\
3 \\
4.5
\end{gathered}
\] & \[
\begin{gathered}
2.25 \\
4.5 \\
6.75
\end{gathered}
\] & -
-
- & \multirow[t]{2}{*}{V} & - \\
\hline & & & \[
\begin{gathered}
\mathrm{VO}_{\mathrm{O}} \\
\text { VOLTS }
\end{gathered}
\] & \[
\begin{gathered}
5 \\
10 \\
15
\end{gathered}
\] & -
-
- & \[
\begin{gathered}
2.75 \\
5.5 \\
8.25
\end{gathered}
\] & \[
\begin{gathered}
3.5 \\
7
\end{gathered}
\] & & - \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Output Drive Current: \\
n-Channel (Sink)
\end{tabular}} & \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{D}} \mathrm{N}\)} & Phase Comparator I\& II Term. 2 \& 13 & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & \[
\begin{array}{r}
5 \\
10
\end{array}
\] & \[
\begin{gathered}
0.43 \\
1.3
\end{gathered}
\] & \[
\begin{gathered}
0.86 \\
2.5
\end{gathered}
\] & - & \multirow{4}{*}{mA} & - \\
\hline & & Phase Pulses & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & \[
\begin{gathered}
5 \\
10
\end{gathered}
\] & \[
\begin{gathered}
0.23 \\
0.7
\end{gathered}
\] & \[
\begin{gathered}
0.47 \\
1.4
\end{gathered}
\] & - & & - \\
\hline \multirow[b]{2}{*}{p-Channel (Source)} & \multirow[b]{2}{*}{\(\mathrm{I}_{\mathrm{D}}{ }^{\mathbf{P}}\)} & Phase Comparator I \& II Term. 2 \& 13 & \[
\begin{aligned}
& 4.5 \\
& 9.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
5 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& -0.3 \\
& -0.9
\end{aligned}
\] & \[
\begin{aligned}
& -0.6 \\
& -1.8
\end{aligned}
\] & - & & - \\
\hline & & Phase Pulses & \[
\begin{aligned}
& 4.5 \\
& 9.5
\end{aligned}
\] & \[
\begin{gathered}
5 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& -0.08 \\
& -0.25
\end{aligned}
\] & \[
\begin{aligned}
& -0.16 \\
& -0.5
\end{aligned}
\] & - & & - \\
\hline
\end{tabular}


Fig. 6(a) - Typical center frequency vs. C1 for \(R 1=10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega\), and \(1 \mathrm{M} \Omega\). Lower frequency values are obtainable if larger values of C1 are used.


Fig. 6(b) - Typical frequency offset vs. \(C 1\) for \(R 2=10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega\), and \(1 \mathrm{M} \Omega\). Lower frequency values are obtainable if larger values of C1 are used.

File No. 752

ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow{3}{*}{CHARACTERISTIC}} & \multirow{3}{*}{SYMBEL} & \multicolumn{2}{|r|}{\multirow{3}{*}{TEST CONDITIONS}} & \multirow[b]{3}{*}{\begin{tabular}{l}
\(v_{0}\) \\
Volts
\end{tabular}} & \multirow[b]{3}{*}{\begin{tabular}{l}
\(\mathrm{V}_{\mathrm{DD}}\) \\
Volts
\end{tabular}} & \multicolumn{6}{|c|}{LIMITS AT INDICATED TEMPERATURES CD4046AD. CD4046AK} & \multirow{3}{*}{UNITS} & \multirow{3}{*}{NOTES} \\
\hline & & & & & & & & & \multicolumn{2}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(+25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(+125^{\circ} \mathrm{C}\)} & & \\
\hline & & & & & & & & & MIN. & MAX. & MIN. & MAX. & MIN. & MAX. & & \\
\hline \multicolumn{17}{|l|}{Static} \\
\hline \multicolumn{4}{|l|}{Total Quiescent Device Current (Term 16 at \(V_{D D}\) )} & \({ }^{1} \mathrm{~L}\) & & & & 10 & - & \(10^{*}\) & - & \(10^{*}\) & - & \(200^{*}\) & \(\mu \mathrm{A}\) & 1 \\
\hline \multicolumn{4}{|l|}{Quiescent Device Dissipation Per Package (Term 16 at \(V_{D D}\) )} & \(P_{\text {D }}\) & & & & 10 & - & 100 & - & 100 & - & 2000 & \(\mu \mathrm{W}\) & - \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{vco Oscillator Current}} & \multirow[b]{2}{*}{'vco} & \multirow[t]{2}{*}{\begin{tabular}{l}
Adjust \(\mathrm{R}_{2}\) on \\
Term 12 For:
\end{tabular}} & \(-10 \mu \mathrm{~A}\) & & 10 & -21 & -31 & \(-20^{\circ}\) & \(-30^{\circ}\) & -19 & -29 & \(\mu \mathrm{A}\) & 2 \\
\hline & & & & & & \(-100 \mu \mathrm{~A}\) & & 10 & -210 & -270 & \(-200^{\circ}\) & \(-260^{\circ}\) & -190 & -250 & \(\mu \mathrm{A}\) & 2 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Output Voltage: Low Level}} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & 4.5 & - & \(0.55{ }^{\circ}\) & - & \(0.5{ }^{\circ}\) & - & \({ }^{\circ}{ }^{\circ}\) & \multirow[t]{2}{*}{V} & \multirow[t]{2}{*}{1} \\
\hline & & & & & & & & 15 & - & - & - & \(0.5{ }^{\circ}\) & - & \(0.25^{\circ}\) & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Migh-Level}} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & & 45 & \(396^{\circ}\) & - & \(4.0{ }^{\circ}\) & - & - \({ }^{-1} 7^{\circ}\) & - & \multirow[t]{2}{*}{v} & \multirow[t]{2}{*}{1} \\
\hline & & & & & & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & \(14.7{ }^{\circ}\) & - & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Threshold Voltage: n-Channel}} & & & & & & & & & & & & & \\
\hline & & & & \(V_{T H}{ }^{\text {N }}\) & \(\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}\) & & & 10 & \(-7.5^{\circ}\) & - & \(-7.8^{\circ}\) & - & \(-7.8^{\circ}\) & & \multirow[t]{2}{*}{\(\checkmark\)} & \multirow[t]{2}{*}{2} \\
\hline \multicolumn{4}{|l|}{p-Channel} & \(\mathrm{V}_{\text {TH }} \mathrm{P}\) & \(\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}\) & & & 10 & \(7.5^{\circ}\) & - & \(7.8^{\circ}\) & - & \(7.8{ }^{\circ}\) & & & \\
\hline \multicolumn{4}{|l|}{Output Drive Current: n-Channel:} & \multirow[t]{8}{*}{} & & & \multirow[t]{8}{*}{} & \multirow[t]{8}{*}{} & & & & & & & \multirow{8}{*}{mA} & \multirow{8}{*}{2} \\
\hline \multirow[t]{4}{*}{} & \multicolumn{3}{|l|}{Out (Term 4)} & & & & & & - & - & \(1.3^{\circ}\) & - & - & - & & \\
\hline & C1 (Term & n6) & & & & & & & - & - & \(1.9{ }^{\circ}\) & - & - & - & & \\
\hline & C1 1 Term & 7) &  & & & & & & - & - & \(1.9{ }^{\circ}\) & - & - & - & & \\
\hline & \(\mathrm{R}_{2}\) to \(\mathrm{V}_{\text {S }}\) & \(\mathrm{SS}^{\text {T }}\) & Term 12 & & & & & & - & - & \(5.0^{\circ}\) & - & - & - & & \\
\hline \multicolumn{4}{|l|}{Phase Comp. 1 Out (Term 2)} & & & & & & - & - & \(1.3{ }^{\circ}\) & - & - & - & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Phase Comp.II}} & & (Term 13) & & & & & & \(1.6{ }^{\circ}\) & - & \(1.3{ }^{\circ}\) & - & \(1.1^{\circ}\) & - & & \\
\hline & & \[
\begin{array}{|l}
\hline \text { Phas } \\
\text { Puls }
\end{array}
\] & \[
\begin{aligned}
& \text { ase } \\
& \text { alses }
\end{aligned} \text { Term } 1 \text { ). }
\] & & & & & & - & - & \(0.7{ }^{*}\) & - & - & - & & \\
\hline \multicolumn{4}{|l|}{p-Channel:} & \multirow[t]{5}{*}{} & & & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & & & & & & & \multirow{5}{*}{mA} & \multirow{5}{*}{2} \\
\hline \multicolumn{4}{|l|}{VCO Out (Term 4)} & & & & & & - & - & \(-0.9{ }^{\circ}\) & - & - & - & & \\
\hline \multicolumn{4}{|r|}{Phase Comp. 1 Out (Term 2)} & & & & & & - & - & -0.9 \({ }^{\circ}\) & - & - & - & & \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{Phase Comp.II}} & Out (Term 13) & & & & & & \(-1.1^{\circ}\) & - & \(-0.9{ }^{\circ}\) & - & \(0.7{ }^{\circ}\) & - & & \\
\hline & & & Phase
Pulses & & & & & & - & - & -0.65* & - & - & - & & \\
\hline \multicolumn{4}{|l|}{Zener Diode Voltage} & \(v_{Z}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {SS }}=\) Ground, \(50 \mu \mathrm{~A}\) into Term 15} & - & - & - & - & \(4.7{ }^{\circ}\) & \(5.7^{\bullet}\) & - & - & V & 2 \\
\hline \multicolumn{4}{|l|}{Diode Test} & \(V_{F}\) & \multicolumn{2}{|l|}{\(100 \mu \mathrm{~A}\) at each input or output} & - & - & - & \(1.5{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & - & \(1.5 *\) & v & \\
\hline \multicolumn{17}{|l|}{Dynamic} \\
\hline \multicolumn{4}{|l|}{Phase Comp. No. 1 Output Voltage} & & \multicolumn{2}{|l|}{Input Signal Voltage (Term 14) \(=400 \mathrm{mV}\) \(f=10 \mathrm{kHz}\), See Fig. 7} & - & 5 & - & - & \(2.4{ }^{\circ}\) & \(2.6{ }^{\circ}\) & - & - & v & 2 \\
\hline \multicolumn{4}{|l|}{Phase Comp. No. 1 Output Voltage} & & \multicolumn{2}{|l|}{Input Signal Voltage (Term 14) \(=800 \mathrm{mV}\) \(f=10 \mathrm{kHz}\), See Fig. 7} & - & 10 & - & - & \(4.8{ }^{\circ}\) & \(5.2 *\) & - & - & v & 2 \\
\hline
\end{tabular}

Limits with black dot (o) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.


Fig. 7 - Test circuit for Phase Comparator I Output voltage.


\title{
High-Reliability COS/MOS Low-Power Monostable/Astable Multivibrator
}

\author{
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment \\ Special Features: \\ - Low power consumption: special COS/MOS oscillator configuration \\ - Monostable (one-shot) or astable (free-running) operation \\ - True and complemented buffered outputs \\ - Only one external R and C required \\ Monostable Multivibrator Features: \\ - Positive- or negative-edge trigger \\ - Output pulse width independent of trigger pulse duration
}

RCA CD4047A "Slash" (/) Series are high-reliability COS/MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment.

RCA CD4047A consists of a gatable astable multivibrator with logic techniques incorporated to permit positive or negative edge-triggered monostable multivibrator action having retriggering and external counting options.
Inputs include +Trigger, -Trigger, Astable, \(\overline{\text { Astable, Retrigger, }}\) and External Reset. Buffered outputs are \(\mathrm{Q}, \overline{\mathrm{Q}}\), and Oscillator. In all modes of operation an external capacitor must be connected between C-Timing and RC-Common terminals, and an external resistor must be connected between the R-Timing and RC-Common terminals.

Astable operation is enabled by a high level on the Astable input. The period of the square wave at the Q and \(\overline{\mathrm{Q}}\) outputs in this mode of operation is a function of the external components employed. "True" input pulses on the Astable input or "Complement" pulses on the Astable input allow the circuit to be used as a gatable multivibrator. An output whose period is half of that which appears at the Q terminal is available at the Oscillator Output terminal. However, a \(50 \%\) duty cycle is not guaranteed at this output. A high level should be applied to the external reset whenever \(\mathrm{V}_{\text {DD }}\) power is applied or removed.
In the monostable mode positive-edge triggering is accomplished by application of a leading-edge pulse to the "+Trigger" input and a low level to the "-Trigger" input. For negative-edge triggering a trailing-edge pulse is applied to the "-Trigger" and a high level is applied to the " + Trigger". Input pulses may be of any duration relative to the output pulse. The multivibrator can be retriggered (on the leading edge only) by applying a common pulse to both the "Retrigger" and "+Trigger" inputs. In this mode the output
- Retriggerable option for pulse width expansion
- Long pulse widths possible using small RC components by means of external counter provision
- Fast recovery time essentially independent of pulse width
- Pulse-width accuracy maintained at duty cycles approaching 100\%
Astable Multivibrator Features:
- Free-running or gatable operating modes
- 50\% duty cycle
- Oscillator output available
- Good astable frequency stability:
frequency deviation \(= \pm 2 \%+0.03 \% /{ }^{\circ} \mathrm{C} @ 100 \mathrm{kHz} *\)
\(= \pm 0.5 \%+0.015 \% /{ }^{\circ} \mathrm{C} @ 10 \mathrm{kHz}{ }^{*}\)

\section*{COS/MOS Features:}
- Microwatt quiescent power dissipation: \(0.5 \mu \mathrm{~W}\) (typ.)
- High noise immunity: \(45 \%\) of supply voltage (typ.)
- Wide operating-temperature range: \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

Applications:
Digital equipment where low-power dissipation and/or high noise immunity are primary design requirements:
- Frequency discriminators Envelope detection
- Timing circuits - Frequency multiplication
- Time-delay applications - Frequency division
* Circuits "trimmed" to frequency; \(\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V} \pm 10 \%\).
pulse remains "high" as long as the input pulse period is shorter than the period determined by the RC components.
An external countdown option can be implemented by coupling " Q " to an external " \(N\) " counter (e.g. CD4017A) and resetting the counter with the trigger pulse. The counter output pulse is fed back to the \(\overline{\text { Astable input and has a dura- }}\) tion equal to \(N\) times the period of the multivibrator.

A high level on the External Reset input assures no output pulse during an "ON" power condition. This input can also be activated to terminate the output pulse at any time.

These devices are electrically and mechanically identical with standard COS/MOS CD4047A types described in data bulletin 623 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and /R.

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4047A "Slash" (/) Series types are supplied in 14-lead dual-in-line ceramic packages ("D" suffix), in 14-lead ceramic flat packages ("K" suffix), or in chip form ("H" suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125{ }^{\circ} \mathrm{C}\) \\
\hline DC Supply-Voltage Range: & \\
\hline \(\left(\mathrm{V}_{\text {DD }}-\mathrm{V}_{S S}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs \(\dagger\) & \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) \\
\hline Recommended & \\
\hline DC Supply-Voltage ( \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\) ) & 3 to 15 V \\
\hline Recommended & \\
\hline Input-Voltage Swing & \(V_{D D}\) to \(V_{S S}\) \\
\hline \(\dagger\) Special input protection circuit permits \(V_{D D}\) or \(V_{S S}\) by as much as 15 volts. & 3 voltage to exceed \\
\hline
\end{tabular}


CD4047A FUNCTIONAL TERMINAL CONNECTIONS
NOTE: IN ALL CASES EXTERNAL RESISTOR BETWEEN TERMINALS 2 AND 3^ EXTERNAL CAPACITOR BETWEEN TERMINALS 1 AND 3A
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{FUNCTION} & \multicolumn{3}{|l|}{TERMINAL CONNECTIONS} & \multirow[b]{2}{*}{OUTPUT PULSE FROM} & \multirow[t]{2}{*}{OUTPUT PERIOD OR PULSE WIDTH} \\
\hline & TO VDD & TO VSS & \[
\begin{gathered}
\hline \text { INPUT PULSE } \\
\text { TO } \\
\hline
\end{gathered}
\] & & \\
\hline \begin{tabular}{l}
Astable Multivibrator: \\
Free Running \\
True Gating \\
Complement Gating
\end{tabular} & \[
\begin{array}{|c|}
\hline 4,5,6,14 \\
4,6,14 \\
6,14 \\
\hline
\end{array}
\] & \[
\begin{gathered}
7,8,9,12 \\
7,8,9,12 \\
5,7,8,9,12 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 5 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 10,11,13 \\
& 10,11,13 \\
& 10,11,13 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
t_{A}(10,11)=4.40 R C \\
t_{A}(13)=2.20 R C
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Monostable Multivibrator: \\
Positive-Edge Trigger Negative-Edge Trigger Retriggerable External Countdown*
\end{tabular} & \[
\begin{gathered}
4,14 \\
4,8,14 \\
4,14 \\
14
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
5,6,7,9,12 \\
5,7,9,12 \\
5,6,7,9 \\
5,6,7,8,9,12
\end{gathered}\right.
\] & \[
\begin{gathered}
8 \\
6 \\
8,12
\end{gathered}
\] & \[
\begin{aligned}
& 10,11 \\
& 10,11 \\
& 10,11 \\
& 10,11
\end{aligned}
\] & \(\mathrm{t}_{\mathrm{M}}(10,11)=2.48 \mathrm{RC}\) \\
\hline
\end{tabular}
* Input Pulse to Reset of External Counting Chip

External Counting Chip Output To Terminal 4
© See Text.


Fig. 2 - CD4047A logic diagram.

File No. 745

STATIC ELECTRICAL CHARACTERISTICS (All Inputs... \(\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) )
Recommended DC Supply Voltage 3 to 15 V
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{9}{|c|}{LIMITS} & \multirow{4}{*}{units} & \multirow[t]{4}{*}{CHARACteristic CURVES \& TEST CIRCUITS Fig. No.} & \multirow[b]{4}{*}{N
O
T
E
S} \\
\hline & & & & \multicolumn{9}{|c|}{CD4047AD,CD4047AK} & & & \\
\hline & & \(\mathrm{V}_{0}\) & VDD & & \(-55^{\circ} \mathrm{C}\) & & & \(25^{\circ} \mathrm{C}\) & & & \(125^{\circ} \mathrm{C}\) & & & & \\
\hline & & Volts & Volts & Min. & Typ. & Max. & Min. & Typ. & Max. & Min. & Typ. & Max. & & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }_{L}\)} & & 5 & - & - & 5 & - & 0.5 & 5 & - & - & 300 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{20} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & - & \(10^{\circ}\) & - & 1 & \(10^{\circ}\) & - & - & \(200^{\circ}\) & & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\({ }^{P}\) D} & & 5 & - & - & 25 & - & 2.5 & 25 & - & - & 1500 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & - & 100 & - & 10 & 100 & - & - & 2000 & & & \\
\hline \multirow{4}{*}{Output Voltage: Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & - & \(0.55^{\bullet}\) & - & - & \(0.5{ }^{\circ}\) & - & - & - & \multirow{4}{*}{v} & \multirow{4}{*}{-} & \multirow{4}{*}{1} \\
\hline & & & 5 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & & \\
\hline & & & 10 & - & - & 0.01 & - & 0 & 0.01 & - & - & 0.05 & & & \\
\hline & & & 15 & - & - & - & - & - & \(0.5^{\circ}\) & - & - & \(0.55^{\circ}\) & & & \\
\hline \multirow{4}{*}{High,Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\circ}\) & - & - & \(2.3{ }^{\bullet}\) & - & - & - & - & - & \multirow{4}{*}{v} & \multirow{4}{*}{-} & \multirow{4}{*}{1} \\
\hline & & & 5 & 4.99 & - & - & 4.99 & 5 & - & 4.95 & - & - & & & \\
\hline & & & 10 & 9.99 & - & - & 9.99 & 10 & - & 9.95 & - & - & & & \\
\hline & & & 15 & - & - & - & \(14.5{ }^{\circ}\) & - & - & \(14.45^{\circ}\) & - & - & & & \\
\hline Threshold Voltage: N -Channel & \(\mathrm{V}_{\text {TH }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{D}}=-10 \mu \mathrm{~A}\)} & -0.7* & -1.7 & \(-3^{\bullet}\) & -0.70 & -1.5 & \(-3^{\bullet}\) & -0.3* & -1.3 & \(-3 \cdot\) & \multirow[t]{2}{*}{v} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{T H^{P}}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}\)} & \(0.7 *\) & 1.7 & 3 • & 0.7* & 1.5 & \(3{ }^{\circ}\) & \(0.3^{\bullet}\) & 1.3 & \(3^{\bullet}\) & & & \\
\hline \multirow[t]{2}{*}{Noise Immunity (Any input)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & 0.8 & 5 & 1.5 & - & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & - & \multirow[b]{2}{*}{v} & \multirow{4}{*}{21} & \multirow{4}{*}{1} \\
\hline & & 1.0 & 10 & \(3^{\bullet}\) & - & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\bullet}\) & - & - & & & \\
\hline \multirow[t]{2}{*}{For Definition, see Appendix in SSD-207} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.2 & 5 & 1.4 & - & - & \(1.5^{\bullet}\) & 2.25 & - & 1.5 & - & - & \multirow[b]{2}{*}{v} & & \\
\hline & & 9.0 & 10 & \(2.9{ }^{\bullet}\) & - & - & \(3^{\circ}\) & 4.5 & - & \(3^{\circ}\) & - & - & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Output Drive Current: ( Q and \(\overline{\mathrm{Q}}\) ) \\
N -Channel
\end{tabular}} & \multirow[b]{2}{*}{\({ }^{1} \mathrm{D} N\)} & 0.5 & 5 & 0.5 & - & - & \(0.4{ }^{\circ}\) & 0.8 & - & 0.28 & - & - & \multirow[b]{2}{*}{mA} & \multirow[b]{2}{*}{3,4} & \multirow{4}{*}{2} \\
\hline & & 0.5 & 10 & 1.25 & - & - & \(1^{\bullet}\) & 2 & - & 0.7 & - & - & & & \\
\hline \multirow[b]{2}{*}{P-Channel} & \multirow[b]{2}{*}{\({ }_{1}{ }^{P}\)} & 4.5 & 5 & -0.5 & - & - & \(-0.4{ }^{\circ}\) & -0.8 & - & -0.28 & - & - & \multirow[b]{2}{*}{mA} & \multirow[b]{2}{*}{5,6} & \\
\hline & & 9.5 & 10 & -1.25 & - & - & \(-1^{\circ}\) & -2 & \(\stackrel{-}{-}\) & -0.7 & - & - & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
(OSCILLATOR) \\
N -Channel
\end{tabular}} & \multirow[b]{2}{*}{\({ }_{1} \mathrm{~N}\)} & 0.5 & 5 & - & - & - & 0.8 & - & - & - & - & - & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} & \multirow{4}{*}{-} \\
\hline & & 0.5 & 10 & - & - & - & 2 & - & - & - & - & - & & & \\
\hline \multirow[b]{2}{*}{P-Channel} & \multirow[b]{2}{*}{\({ }^{1}{ }^{P}\)} & 4.5 & 5 & - & - & - & -0.8 & - & - & - & - & - & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} & \\
\hline & & 9.5 & 10 & - & - & - & -2 & - & - & - & - & - & & & \\
\hline Diode Test \(100 \mu \mathrm{~A}\) Test Pin & .\(^{\text {V }}\) DF & & & - & - & \(1.5{ }^{\bullet}\) & - & - & \(1.5{ }^{\circ}\) & - & - & \(1.5^{\circ}\) & V & - & 3 \\
\hline Input Current & \(1 /\) & & & - & - & - & - & 10 & - & - & - & - & pA & - & - \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102C'High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or one output only.

For Threshold Voltage Test Circuits, Operating and Biased Life Test Circuits, Output Drive Current Test Circuits, and for Operating Considerations, see Appendix
\(\qquad\)

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)
Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} & \multirow[t]{3}{*}{CHARACTERISTIC CURVES \& TEST CIRCUITS Fig. No.} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \mathrm{N} \\
& \mathrm{O} \\
& \mathbf{T} \\
& \mathrm{E} \\
& \mathrm{~S} \\
& \hline
\end{aligned}
\]} \\
\hline & & & & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { CD4047AK } \\
& \text { CD4047AD }
\end{aligned}
\]} & & & \\
\hline & & & (Volts) & Min. & Typ. & Max. & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Propagation Delay Time: \\
Astable, Astable to Osc. Out
\end{tabular}} & \multirow{10}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHL}} \\
& \mathrm{t}_{\mathrm{PLH}}
\end{aligned}
\]} & \multirow[t]{2}{*}{.} & 5 & - & 200 & 400 & \multirow{10}{*}{ns} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & - & 100 & 200 & & & \\
\hline \multirow[t]{2}{*}{Astable, Astable to \(\mathrm{Q}, \overline{\mathrm{Q}}\)} & & & 5 & - & 550 & 900 & & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & 250 & \(500^{\circ}\) & & & \\
\hline \multirow[t]{2}{*}{+Trigger, -Trigger to \(\mathrm{Q}, \overline{\mathrm{Q}}\)} & & & 5 & - & 700 & 1200 & & \multirow[b]{2}{*}{7} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & 300 & \(600^{\circ}\) & & & \\
\hline \multirow[t]{2}{*}{+Trigger, Retrigger
\[
\text { to } \mathrm{Q}, \overline{\mathrm{Q}}
\]} & & & 5 & - & 300 & 600 & & \multirow[b]{2}{*}{- •} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 175 & 300 & & & \\
\hline \multirow[t]{2}{*}{External Reset
\[
\text { to } \mathrm{Q}, \overline{\mathrm{Q}}
\]} & & & 5 & - & 300 & 600 & & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 125 & 250 & & & \\
\hline \multirow[t]{2}{*}{Transition Time:
\[
\mathrm{Q}, \overline{\mathrm{o}}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}}\) THL, \\
\({ }^{t}\) TLH
\end{tabular}} & & 5 & - & 75 & 125 & \multirow{4}{*}{ns} & \multirow[b]{2}{*}{8} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 45 & 75 & & & \\
\hline \multirow[b]{2}{*}{Osc. Out} & & & 5 & - & 75 & 150 & & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 45 & 100 & & & \\
\hline \multirow[t]{2}{*}{Minimum Input Pulse Duration (Any input)} & \({ }^{\text {t W W }}\), & & 5 & - & 500 & 1000 & \multirow[b]{2}{*}{ns} & \multirow{2}{*}{-} & \multirow[b]{2}{*}{-} \\
\hline & \[
{ }^{\mathrm{t}} \mathrm{WH}
\] & & 10 & - & 200 & 400 & & & \\
\hline \multirow[t]{2}{*}{+Trigger, Retrigger Rise \& Fall Time} & \multirow[t]{2}{*}{\(\mathrm{t}_{\mathrm{r}}\),
\(\mathrm{t}_{\mathrm{f}}\)} & & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu \mathrm{s}\)} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & - & 5 & & & \\
\hline Average Input Capacitance & \(C_{1}\) & Any input & - & - & 5 & - & pF & - & - \\
\hline
\end{tabular}

Note 1: Test is a one input, one output only.
Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.


Fig. 3 - Typical n-channel drain characteristics for \(Q\) and \(\bar{Q}\) buffers.


Fig. 4 - Minimum n-channel drain characteristics for \(Q\) and \(\bar{Q}\) buffers.


Fig. 5 - Typical p-channel drain characteristics for \(Q\) and \(\bar{Q}\) buffers.


Fig. 7 - Typical low-to-high level propagation delay time vs. load capacitance for \(Q\) and \(\bar{Q}\) buffers.


Fig. 8 - Typical transition time vs. load capacitance for \(Q\) and \(\vec{Q}\) buffers.


Fig. 6 - Minimum p-channel drain characteristics 92cs-22897 for \(Q\) and \(\bar{Q}\) buffers.
I. Astable Mode Design Information
A. Unit-to-Unit Transfer-Voltage Variations

The following analysis presents worst-case variations from unit-to-unit as a function of transfer-voltage ( \(V_{T R}\) ) shift ( \(33 \%-67 \%\) VDD) for free-running (astable) operation.


Fig. 9 - Astable mode waveforms.
\[
\begin{aligned}
t_{1} & =-R C \ln \frac{V_{T R}}{V_{D D}+V_{T R}} \\
t_{2} & =-R C \ln \frac{V_{D D}-V_{T R}}{2 V_{D D}-V_{T R}} \\
t_{A} & =2\left(t_{1}+t_{2}\right) \\
& =-2 R C \ln \frac{\left(V_{T R}\right)\left(V_{D D}-V_{T R}\right)}{\left(V_{D D}+V_{T R}\right)\left(2 V_{D D}-V_{T R}\right)}
\end{aligned}
\]

Typ: \(\quad V_{T R}=0.5 V_{D D}\)
\({ }^{t} A=4.40 \mathrm{RC}\)
Min: \(V_{T R}=0.33 V_{D D}\)
\({ }^{t} A=4.62 R C\)
Max: \(V_{T R}=0.67 V_{D D}\)
\(t^{t}=4.62 R C\)
thus if \(t A=4.40 R C\) is used, the maximum variation will be (+5.0\%, -0.0\%).
B. Variations Due to VDD and Temperature Changes In addition to variations from unit-to-unit, the astable period may vary as a function of frequency with respect to VDD and temperature. Typical variations are presented in graphical form in Figs. 10 to 20 with 10 V as reference for voltage variation curves and \(25^{\circ} \mathrm{C}\) as reference for temperature variation curves.

\section*{II. Monostable Mode Design Information}

The following analysis presents worst-case variations from unit-to-unit as a function of transfer-voltage (VTR) shift \(\left(33 \%-67 \% V_{D D}\right)\) for one-shot (monostable) operation.


Fig. 21 - Monostable waveforms.
\[
\begin{aligned}
& t_{1}^{\prime}=-R C \ln \frac{V_{T R}}{2 V_{D D}} \\
& t_{M}=\left(t_{1}{ }^{\prime}+t_{2}\right) \\
& t_{M}=-R C \ln \frac{\left(V_{T R}\right)\left(V_{D D}-V_{T R}\right)}{\left(2 V_{D D}-V_{T R}\right)\left(2 V_{D D}\right)}
\end{aligned}
\]
where \(\mathrm{t}_{\mathrm{M}}=\) Monostable mode pulse width. Values for \(\mathrm{t}_{\mathrm{M}}\) are as follows:

Typ: \(V_{T R}=0.5 V_{D D}\)
\(t_{M}=2.48 R C\)
Min: \(V_{T R}=0.33 V_{D D}\)
\(\mathrm{t}_{\mathrm{M}}=2.71 \mathrm{RC}\)
Max. \(V_{T R}=0.67 V_{D D}\)
\(\mathrm{t}_{\mathrm{M}}=2.48 \mathrm{RC}\)
Thus if \({ }^{t_{M}=2.48 ~ R C ~ i s ~ u s e d, ~ t h e ~ m a x i m u m ~ v a r i a t i o n ~ w i l l ~ b e ~}\) ( \(+9.3 \%,-0.0 \%\) ).

\section*{Note:}

In the astable mode, the first positive half cycle has a duration of \(T_{M}\); succeeding durations are \(t_{A} / 2\).

In addition to variations from unit to unit, the monostable pulse width may vary as a function of frequency with respect to \(V_{D D}\) and temperature. These variations are presented in graphical form in Figs. 10 to 14 with 10 V as reference for voltage variation curves and \(25^{\circ} \mathrm{C}\) as reference for temperature variation curves. .


Fig. 10 - Typical Q-and- \(\bar{C}\)-pulse-width accuracy vs. \(Q\) and \(\bar{Q}\) pulse width for a variation of \(\pm 10 \%\) from value indicated.


Fig. 11 - Typical Q-and- \(\bar{Q}\)-pulse-width accuracy vs. supply voltage \(\left(t_{M}=15,60,120 \mu s\right)\).


Fig. 12 - Typical Q-and- \(\overline{\text {-pulse-width accuracy vs. }}\) supply voltage \(\left(t_{M} \geqslant 100 \mathrm{~ms}\right)\).


Fig. 13 - Typical Q-and- \(\bar{Q}\)-pulse-width accuracy vs. temperature (high frequency).


Fig. 14 - Typical Q-and- \(\bar{Q}\)-pulse-width accuracy range vs, temperature.

\section*{III. Retrigger Mode Operation}

The CD4047A can be used in the retrigger mode to extend the output-pulse duration, or to compare the frequency of an input signal with that of the internal oscillator. In the retrigger mode the input pulse is applied to terminals 8 and 12, and the output is taken from terminal 10 or 11. As shown in Fig.15, normal monostable action is obtained when one retrigger pulse is applied. Extended pulse duration is obtained when more than one pulse is applied. For two input pulses, \(t_{R E}=t_{1}{ }^{\prime}+t_{1}+2 t_{2}\). For more than two pulses, tre (Q OUTPUT) terminates at some variable time tD


Fig. 15 - Retrigger-mode waveforms.
after the termination of the last retrigger pulse. tD is variable because tRE (Q OUTPUT) terminates after the second positive edge of the oscillator output appears at flip-flop 4 (see Fig.2).

\section*{IV. External Counter Option}

Time \(\mathrm{t}_{\mathrm{M}}\) can be extended by any amount with the use of external counting circuitry. Advantages include digitally controlled pulse duration, small timing capacitors for long time periods, and extremely fast recovery time. A typical implementation is shown in Fig.29. The pulse duration at the output is
\[
t_{e x t}=(N-1)\left(t_{A}\right)+\left(t_{M}+t_{A} / 2\right)
\]
where \(t_{\text {ext }}=\) pulse duration of the circuitry, and \(N\) is the number of counts used.


Fig. 16 - Implementation of external counter option.
V. Timing-Component Limitations

The capacitor used in the circuit should be non-polarized and have low leakage (i. e. the parallel resistance of the capacitor should be an order of magnitude greater than the external resistor used). There is no upper or lower limit for either \(\mathbf{R}\) or \(\mathbf{C}\) value to maintain oscillation.

However, in consideration of accuracy, C must be much larger than the inherent stray capacitance in the system (unless this capacitance can be measured and taken into account). R must be much larger than the COS/MOS "ON" resistance in series with it, which typically is hundreds of ohms. In addition, with very large values of \(R\), some short-term instability with respect to time may be noted.

The recommended values for these components to maintain agreement with previously calculated formulas without trimming should be:
\(\mathrm{C} \geq 100 \mathrm{pF}\), up to any practical value, for astable modes;
\(C \geq 1000 \mathrm{pF}\), up to any practical value for monostable modes.
\[
10 \mathrm{~K} \Omega \leq R \leq 1 \mathrm{M} \Omega
\]

\section*{VI. Power Consumption}

In the standby mode (Monostable or Astable), power dissipation will be a function of leakage current in the circuit, as shown in the static electrical characteristics. For dynamic operation, the power needed to charge the external timing capacitor C is given by the following formulae:

Astable Mode: \(\mathrm{P}=\mathbf{2 C V} \mathbf{2 f}\). (Output at terminal No. 13)
\(\mathrm{P}=4 \mathrm{CV} 2 \mathrm{f}\). (Output at terminal Nos. 10 and 11)

Monostable Mode: \(\mathrm{P}=\frac{\left(2.9 \mathrm{CV}^{2}\right) \text { (Duty Cycle) }}{\mathrm{T}}\)
(Output at terminal
Nos. 10 and 11)
\(\qquad\)

The circuit is designed so that most of the total power is consumed in the external components. In practice, the lower the values of frequency and voltage used, the closer the actual power dissipation will be to the calculated value.

Because the power dissipation does not depend on R, a design for minimum power dissipation would be a smal! value of C . The value of R would depend on the desired period (within the limitations discussed above). See Figs. 30-32 for typical power consumption in astable mode.


Fig. 18 - Power dissipation vs. output frequency \(\left(V_{D D}=10 \mathrm{~V}\right)\).

\begin{tabular}{c|ccccccc} 
TEST & \multicolumn{7}{|c}{ TERMINAL Nos. } \\
& 3 & 4 & 5 & 6 & 8 & 9 & 12 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
2 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
3 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
4 & NC & 1 & 0 & 0 & 0 & 0 & 0 \\
& & & & & \(92 C S-21321\)
\end{tabular}

Fig. 20 - Quiescent device current.

\(92 \mathrm{CS}-21415\)
Fig. 17 - Power dissipation vs. output frequency \(\left(V_{D D}=5 V\right)\).


Fig. 19 - Power dissipation vs. output frequency \(\left(V_{D D}=15 \mathrm{~V}\right)\).


Fig. 21 - Noise immunity.


Solid State Division

Digital Integrated Circuits
Monolithic Silicon


\section*{High-Reliability COS/MOS Multi-Function Expandable 8-Input Gate}

For Logic Systems Applications in Aerospace,
Military, and Critical Industrial Equipment

Special Features
- Medium-power TTL drive capability
- Three-state output
- High-current source and sink capability 9 mA (typ.) @ \(\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}\)
- Many logic functions available in one package

\section*{Applications:}
- Selection of up to 8 logic functions
- Digital control of logic
a General-purpose gating logic
-Decoding
-Encoding

RCA CD4048A "Slash" (/) Series are high-reliability COS/ MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment. The CD4048A is an 8 -input gate having four control inputs. Three binary control inputs \(\mathrm{Ka}, \mathrm{Kb}\), and Kc - provide the implementation of eight different logic functions. These functions are OR, NOR, AND, NAND, OR/AND, OR/NAND, AND/OR, and AND/NOR.
A fourth control input - Kd - provides the user with 3 -state outputs. When control input Kd is "high" the output is either a logic 1 or a logic 0 depending on the input states. When control input Kd is "low", the output is an open circuit. This feature enables the user to connect this device to a common bus line. In addition to the eight input lines, an EXPAND input is provided that permits the user to increase
the number of inputs to one CD4048A, (see Fig. 2). For example, two CD4048A's can be cascaded to provide a 16 input multifunction gate. When the EXPAND input is not used, it should be connected to \(\mathrm{V}_{\mathrm{SS}}\).

These devices are electrically and mechanically identical with standard COS/MOS CD4048A types described in data bulletin 636 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).


Fig. 1-Basic logic configurations.

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4048A "Slash" (/) Series types are supplied in 16lead dual-in-line ceramic packages (" \(D\) " suffix), in 16 -lead ceramic flat packages (" K " suffix), or in chip form (" H " suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
\begin{tabular}{|c|c|}
\hline Storage-Temperature Range & -65 to \(+150{ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to \(+125{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{DC Supply-Voltage Range:} \\
\hline \(\left(V_{D D}-V_{S S}\right)\) & -0.5 to +15 V \\
\hline Device Dissipation (Per Package) & 200 mW \\
\hline All Inputs & \(\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{DD}}\) \\
\hline Recommended & \\
\hline
\end{tabular}


FUNCTION TRUTH TABLE
\begin{tabular}{|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
OUTPUT \\
FUNCTION
\end{tabular} & BOOLEAN EXPRESSION & \(K_{d}\) & \(K_{b}\) & \(K_{c}\) & \begin{tabular}{l} 
UNUSED \\
INPUT
\end{tabular} \\
\hline NOR & \(J=A+B+C+D+E+F+G+H\) & 0 & 0 & 0 & \(V_{S S}\) \\
OR & \(J=A+B+C+D+E+F+G+H\) & 0 & 0 & 1 & \(V_{S S}\) \\
OR/AND & \(J=(A+B+C+D) \cdot(E+F+G+H)\) & 0 & 1 & 0 & \(V_{S S}\) \\
OR/NAND & \(J=(A+B+C+D) \cdot(E+F+G+H)\) & 0 & 1 & 1 & \(V_{S S}\) \\
AND & \(J=A B C D E F G H\) & 1 & 0 & 0 & \(V_{D D}\) \\
NAND & \(J=\overline{A B C D E F G H}\) & 1 & 0 & 1 & \(V_{D D}\) \\
AND/NOR & \(J=A B C D+E F G H\) & 1 & 1 & 0 & \(V_{D D}\) \\
AND/OR & \(J=A B C D+E F G H\) & 1 & 1 & 1 & \(V_{D D}\) \\
\hline\(K_{d}=1\) Normal Inverter Action & See Figs. 1 and 5. \\
\(K_{d}=0\) High Impedance Output
\end{tabular}
EXPAND Input=0



Tranamission Gate Definition
TG = Transmission Gate
Input to Output is:
a) A bidirectional low impedance when control input 1 is "low" and control input 2 is "high".
b) An open circuit when control input 1 is "high"
 and control input 2 is "low".

Fig. 2-Logic diagram and truth table.

File No. 747

STATIC ELECTRICAL CHARACTERISTICS (All Inputs... \(V_{S S} \leqslant V_{1} \leqslant V_{D D}\) ) Recommended DC Supply Voltage 3 to 15 V


Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table. Note 3: Test on alt inputs and outputs.
Note 2: Test is either a one input or one output only.


Fig. 3-Quiescent device current.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\) and \(C_{L}=15 p F\) and \(50 p F\)
Typical Temperature Coefficient for all values of \(V_{D D}=0.3 \%{ }^{\circ} C\)
\(C_{L}=15 \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & & \[
\begin{aligned}
& \text { LIMI7 } \\
& 4048 \\
& 4048
\end{aligned}
\] & & \multirow[t]{2}{*}{UNITS} & \multirow[t]{2}{*}{\[
\begin{aligned}
& N \\
& \mathrm{O} \\
& \mathrm{~T} \\
& \mathrm{E} \\
& \mathrm{~S}
\end{aligned}
\]} \\
\hline & & & VD (Volts) & Min. & Typ. & Max.* & & \\
\hline \multirow[b]{2}{*}{Propagation Delay Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) PLH. \\
\({ }^{t} \mathrm{PHL}\)
\end{tabular}} & & 5 & - & 750 & 1300 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & 225 & \(400^{\circ}\) & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Transition Time: \\
High-to-Low Level
\end{tabular}} & \multirow[b]{2}{*}{\({ }^{\text {t }}\) THL} & & 5 & - & 90 & 140 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & 30 & \(50^{\circ}\) & & \\
\hline \multirow[b]{2}{*}{Low-to-High Level} & \multirow[b]{2}{*}{\({ }^{\text {t }}\) TLH} & & 5 & - & 130 & 250 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{1} \\
\hline & & & 10 & - & 40 & \(60^{\circ}\) & & \\
\hline Input Capacitance & \(C_{1}\) & Any Input & & - & 5 & - & pF & - \\
\hline
\end{tabular}
\(C_{L}=50 \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Propagation Delay Time} & \multirow[t]{2}{*}{\[
\begin{aligned}
& { }^{t_{P L H}} \\
& { }^{t^{P} P H L}
\end{aligned}
\]} & & 5 & - & 775 & 1350 & \multirow{2}{*}{ns} & \multirow{2}{*}{-} \\
\hline & & & 10 & - & 240 & 430 & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Transition Time: \\
High-to-Low Level
\end{tabular}} & \multirow[b]{2}{*}{\({ }^{\text {t }}\) THL} & & 5 & - & 105 & 170 & \multirow{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 40 & 70 & & \\
\hline \multirow[b]{2}{*}{Low-to-High Level} & \multirow[b]{2}{*}{\({ }^{\text {t }}\) TLH} & & 5 & - & 145 & 280 & \multirow[b]{2}{*}{ns} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & - & 50 & 80 & & \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & Any Input & & - & 5 & - & pF & - \\
\hline
\end{tabular}
*Max. Limits represent worst-case limits for worst-case modes of operation shown in test circuits in Appendix.
Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
NOTE 1: Test is a one input one output only.


Fig. 4-Typical power dissipation as a function of input frequency.


Fig. 5-Minimum n-channel drain characteristics.


92CS-22899

Fig. 6-Minimum p-channel drain characteristics.


Fig. 7- Typical propagation delay time as a function of load capacitance.


Fig. 8-Typical low-to-high level transition time as a function of load capacitance.


Fig. 9-Typical high-to-low level transition time as a function of load capacitance.


Fig. 10-Noise immunity test circuit.

\section*{Digital Integrated Circuits \\ Monolithic Silicon \\ High-Reliability Slash(/) Series CD4049A/... CD4050A/...}


RCA CD4049A and CD4050A "Slash" (/) Series are high-reliability COS/MOS integrated circuits intended for a wide variety of logic function configurations in aerospace, military, and critical industrial equipment.

The CD4049A and CD4050A are inverting and non-inverting hex buffers, respectively, and feature logic-level conversion using only one supply voltage ( \(\mathrm{V}_{\mathrm{C}}\) ). The input-signal high level \(\left(V_{\mid H}\right)\) can exceed the \(V_{C C}\) supply voltage when these devices are used for logic-level conversions. These devices are intended for use as COS/MOS to DTL/TTL converters and can drive directly two DTL/TTL loads. ( \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}} \leqslant\) 0.4 V , and \(\mathrm{I}_{\mathrm{D}} \mathrm{N} \geqslant 3 \mathrm{~mA}\).)

Table 1 shows the range of voltage-supply levels that can be utilized for such logic level conversions. Conversion to logic-levels greater than +6 V is permitted provided that \(\mathrm{V}_{\mathrm{C}}\) \(\leqslant \mathrm{V}_{\text {IH }}\). At 15 V the maximum allowable load capacitance is 5000 pF.
The CD4049A and CD4050A are designated as replacements for CD4009A and CD4010A, respectively. Because the CD4049A and CD4050A require only one power supply, they are preferred over the CD4009A and CD4010A and should be used in place of the CD4009A and CD4010A in all inverter, current driver, or logic-level conversion applications. In these applications the CD4049A and CD4050A are pin compatible with the CD4009A and CD4010A respectively, and can be substituted for these devices in existing as well as in new designs. Terminal No. 16 is not connected internally on the CD4049A or CD4050A, therefore, connection to this terminal is of no consequence to circuit operation.
For simple logic-inversion applications it is more economical to use the CD4069B Hex Inverter scheduled for announcement in early 1974.

\title{
High-Reliability COS/MOS Hex Buffer/Converters
}

\section*{CD4049A-INVERTING TYPE CD4050A-NON-INVERTING TYPE}

\section*{For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment}

\section*{Features:}
- Direct Drive to 2 TTL Loads at 5 V , \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}} \leqslant 0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{D}} \mathrm{N} \geqslant 3 \mathrm{~mA}\)
- High Source and Sink Current Capability
- General COS/MOS Characteristics

\section*{Applications:}
- COS/MOS to DTL/TTL Hex Converter - COS/MOS Current "Sink" or "Source" Driver
- COS/MOS High-to-Low Logic-Level Converter

These devices are electrically and mechanically identical with standard COS/MOS CD4049A and CD4050A types described in data bulletin 599 and DATABOOK SSD-203 Series, but

TABLE I
\begin{tabular}{|l|c|c|c|}
\hline FUNCTION & \begin{tabular}{l} 
COS/MOS \\
VOLTAGE \\
RANGE \\
(INPUT)
\end{tabular} & \begin{tabular}{l} 
DTL/TTL \\
VOLTAGE \\
RANGE \\
(OUTPUT)
\end{tabular} & \begin{tabular}{l} 
POWER \\
SUPPLY \\
RANGE \\
(VCC)
\end{tabular} \\
\hline HEX LEVELSHIFTER & \(3-15 \mathrm{~V}\) & \(3-6 \mathrm{~V}\) & \(3-6 \mathrm{~V}\) \\
\hline \begin{tabular}{l} 
HEX INVERTER \\
HEX BUFFER
\end{tabular} & \(3-15 \mathrm{~V}\) & \(3-15 \mathrm{~V}\) & \(3-15 \mathrm{~V}\) \\
\hline
\end{tabular}


Fig. 1-a) Schematic diagram of CD4049A, 1 of 6 identical units, b) Schematic diagram of CD4050A, 1 of 6 identical units.
are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. In addition to the RCA high-reliability "Slash" (/) Series, RCA will offer these circuits screened to MIL-M-38510.
\begin{tabular}{ll} 
RCA Designation \\
\begin{tabular}{ll} 
CD4049A \\
CD4050A
\end{tabular} & \begin{tabular}{l} 
MIL-M-38510 Designation \\
MIL-M-38510/05503 \\
\end{tabular} \\
MIL-M-38510/05504
\end{tabular}

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4049A and CD4050A "Slash" (/) Series types are supplied in 16 -lead dual-in-line ceramic packages (" \(D\) " suffix), in 16 -lead ceramic flat packages (" \(K\) " suffix), or in chip form (" H " suffix).
\begin{tabular}{|c|c|c|}
\hline Storaye-Temperature Range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Operating-Temperature Range & -55 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline DC Supply Voltage Range ( \(\mathrm{CCC}^{-} \mathrm{V}_{\text {SS }}\) ) & -0.5 to +15 & V \\
\hline \multicolumn{3}{|l|}{Dissipation:} \\
\hline Per Package & 200 & mW \\
\hline Per Buffer. & 100 & mW \\
\hline All Inputs . . . . . . . . . & \(\mathrm{v}_{\mathrm{SS}} \leq \mathrm{v}_{1} \leq 15\) & \\
\hline Recommended Minimum DC Supply Voltage ( \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{SS}}\) ). & 3 & v \\
\hline \multicolumn{3}{|l|}{Lead Temperature (During soldering):} \\
\hline At distance \(1 / 16 \pm 1 / 32\) inch \((1.59 \pm 0.79\) from case for 10 seconds max. & mm) 265 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular} \({ }^{\circ} \mathrm{C}\)

Fig. 3-Min. \& max. voltage transfer characteristics of CD4050A.


Fig. 2-Min. \& max. voltage transfer characteristics of CD4049A.


Fig. 4-Min. \& max. voltage transfer characteristics for CD4049A.

\section*{STATIC ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{CHARACTERISTIC} & \multirow{4}{*}{SYMBOL} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{7}{|c|}{LIMITS} & \multirow{4}{*}{UNITS} & \multirow[t]{4}{*}{CHARACTERISTIC CURVES \& TEST CIRCUITS Fig. No.} & \multirow{4}{*}{NOTES} \\
\hline & & & & & \multicolumn{7}{|c|}{CD4049AD, CD4049AK CD4050AD, CD4050AK} & & & \\
\hline & & & & \(\mathrm{V}_{\mathrm{cc}}\) & -5 & \(5^{\circ} \mathrm{C}\) & & \(25^{\circ} \mathrm{C}\) & & 125 & \(5^{\circ} \mathrm{C}\) & & & \\
\hline & & & Volts & Volts & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & & & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{\prime}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{v}_{1 H}= \\
& \mathrm{v}_{\mathrm{CC}}
\end{aligned}
\]} & & 5 & - & 0.3 & - & 0.01 & 0.3 & - & 20 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} & \multirow[t]{2}{*}{17} & \multirow[t]{2}{*}{1} \\
\hline & & & & 15 & - & \(0.5{ }^{\circ}\) & - & 0.01 & 0.5* & - & \(10^{\circ}\) & & & \\
\hline Quiescent Device & & \(V_{1 H}=\) & & 5 & - & 1.5 & - & 0.05 & 1.5 & - & 100 & \multirow[b]{2}{*}{\(\mu \mathrm{W}\)} & & \\
\hline Dissipation Package & \({ }_{\text {D }}\) & \(\mathrm{V}_{\text {cc }}\) & & 15 & - & 5 & - & 0.1 & 5 & - & 100 & & & \\
\hline \multirow{4}{*}{Output Voltage Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\text {OL }}\)} & & & 3 & - & 0.2 . & - & - & 0.6 & - & - & \multirow[b]{3}{*}{V} & \multirow{8}{*}{2-7} & \\
\hline & & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & & \\
\hline & & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & & & \\
\hline & & & & 15 & - & - & - & - & 0.6 . & - & 0.7 . & \multirow{5}{*}{V} & & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & & 3 & 2.8 & - & 2.2 . & - & - & - & - & & & \\
\hline & & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & & & \\
\hline & & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & & & \\
\hline & & & & 15 & - & - & 14.4. & - & - & 14.3. & - & & & \\
\hline Threshold Voltage N-Channel & \(\mathrm{V}_{\text {THN }}\) & \multicolumn{2}{|l|}{\(I_{D}=-10 \mu \mathrm{~A}\)} & & -0.7. & -3. & -0.7. & -1.5 & -3. & -0.3. & -3. & \multirow[t]{2}{*}{V} & & \multirow[b]{2}{*}{2} \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \({ }^{\prime} D^{\prime}=10\) & j A & & 0.7. & 3. & 0.7 • & 1.5 & 3. & 0.3. & 3. & & & \\
\hline \multirow[t]{2}{*}{Noise Immunity (All Inputs) CD4049A} & \multirow[b]{3}{*}{VNL} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{VOH}_{\mathrm{OH}}= \\
& 3.6 \mathrm{~V}
\end{aligned}
\]} & 5 & 1 & - & 1. & 2.25 & - & 0.9 & - & \multirow{8}{*}{v} & \multirow{8}{*}{18} & \multirow{8}{*}{1} \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}}= \\
& 7.2 \mathrm{~V}
\end{aligned}
\] & & 10 & 2. & - & 2. & 4.5 & - & 1.9 . & - & & & \\
\hline \multirow[t]{2}{*}{CD4050A} & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline \mathrm{VOL}= \\
& 0.95 \mathrm{~V} \\
& \hline
\end{aligned}
\]} & 5 & 1.5 & - & 1.5. & 2.25 & - & 1.4 & - & & & \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{OL}}= \\
& 2.9 \mathrm{~V}
\end{aligned}
\]} & 10 & 3. & - & 3. & 4.5 & - & 2.9 • & - & & & \\
\hline CD4050A & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}}= \\
& 7.2 \mathrm{~V}
\end{aligned}
\]} & 10 & 2.9. & - & 3. & 4.5 & - & 3. & - & & & \\
\hline & & \[
\begin{aligned}
& \overline{\mathrm{VOH}}= \\
& 3.6 \mathrm{~V}
\end{aligned}
\] & & 5 & 1.4 & - & 1.5. & 2.25 & - & 1.5 & - & & & \\
\hline CD4049A & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OH}}= \\
& 2.9 \mathrm{~V}
\end{aligned}
\] & & 10 & 2.9• & - & 3. & 4.5 & - & 3. & - & & & \\
\hline For Definition, See Appendix SSD-207 & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{OL}}= \\
& 0.95 \mathrm{~V}
\end{aligned}
\] & & 5 & 1.4 & - & 1.5. & 2.25 & - & 1.5 & - & & & \\
\hline \multirow[t]{3}{*}{Output Drive Current N -Channel} & \multirow{3}{*}{\({ }_{1}{ }^{N}\)} & & 0.4 & 4.5 & 3.3 & - & 2.6. & 5.2 & - & 1.8 & - & \multirow{6}{*}{mA} & \multirow{6}{*}{8,9} & \multirow{6}{*}{2} \\
\hline & & & 0.4 & 5 & 3.75 & - & 3.0• & 6 & - & 2.1 & - & & & \\
\hline & & & 0.5 & 10 & 10 & - & \(8{ }^{\circ}\) & 16 & - & 5.6 & - & & & \\
\hline \multirow[t]{3}{*}{P-Channel} & \multirow{3}{*}{\(I_{D} P\)} & & 4.5 & 5 & -0.62 & - & -0.5. & -1 & - & -0.35 & - & & & \\
\hline & & & 2.5 & 5 & -1.85 & - & -1.25. & -2.5 & - & -0.9 & - & & & \\
\hline & & & 9.5 & 10 & -1.85 & - & -1.25. & -2.5 & - & -0.9 & - & & & \\
\hline Diode Test \(100 \mu \mathrm{~A}\)
Test Pin & \(V_{\text {DF }}\) & & & & - & 1.5. & - & - & 1.5. & - & 1.5. & & & \\
\hline Input Current & 11 & \[
\begin{aligned}
& \mathrm{V}_{1 \mathrm{H}}= \\
& \mathrm{v}_{\mathrm{CC}}
\end{aligned}
\] & & & - & - & - & 10 & - & - & - & pA & & \\
\hline
\end{tabular}

Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

\footnotetext{
Note 1: Complete functional test, all inputs and outputs to truth table
Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.
}

File No. 746

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\), and input rise and fall times \(=\mathbf{2 0} \mathbf{n s}\)
Typical Temperature Coefficient for all values of \(\mathrm{V}_{\mathbf{C C}}=\mathbf{0 . 3} \% /{ }^{\circ} \mathrm{C}\). (See Appendix for Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTICS} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{6}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} & \multirow[t]{3}{*}{CHARAC. TERISTIC CURVES \& TEST CIRCUITS Fig. No.} & \multirow{3}{*}{NOTES} \\
\hline & & & & \multicolumn{3}{|l|}{CD4049AD CD4049AK} & \multicolumn{3}{|l|}{CD4050AD CD4050AK} & & & \\
\hline & & & \[
\begin{aligned}
& \text { VCC } \\
& \text { (Volts) }
\end{aligned}
\] & Min. & Typ. & Max. & Min. & Typ. & Max. & & & \\
\hline Propagation Delay Time: High-to-Low Level & \multirow[t]{2}{*}{\begin{tabular}{l}
tPHL \\
tPLH
\end{tabular}} & \(V_{\text {IH }}=V_{\text {CC }}\) & \[
\begin{array}{r}
5 \\
10 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& 15 \\
& 10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55 \\
& 30^{\bullet} \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 55 \\
& 25 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
110 \\
55^{\circ} \\
\hline
\end{array}
\] & ns & 10,11 & \multirow[b]{2}{*}{1} \\
\hline Low-to-High Level & & \(\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}\) & 5
10 & - & 50
25 & \[
\begin{aligned}
& 80 \\
& 55^{\circ}
\end{aligned}
\] & - & 90
40 & \[
\begin{gathered}
140 \\
85^{\circ}
\end{gathered}
\] & ns & 12,13 & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Transition Time: \\
High-to-Low Level \\
Low-to-High Level
\end{tabular}} & \({ }^{\text {t }}\) THL & \(\mathrm{V}_{\text {IH }}=\mathrm{V}_{\text {CC }}\) & \[
\begin{array}{r}
5 \\
10 \\
\hline
\end{array}
\] & - & \[
\begin{aligned}
& 20 \\
& 16 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45 \\
& 40^{\bullet} \\
& \hline
\end{aligned}
\] & - & \[
\begin{aligned}
& 20 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& 45 \\
& 40^{\circ}
\end{aligned}
\] & ns & 14 & \multirow{2}{*}{1} \\
\hline & \({ }^{\text {t }}\) L H & \(\mathrm{V}_{1 H}=\mathrm{V}_{\mathrm{CC}}\) & 5 & - & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & \[
\begin{gathered}
100 \\
60 .
\end{gathered}
\] & - & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & \[
\begin{array}{c|}
\hline 100 \\
60^{\circ}
\end{array}
\] & ns & 15 & \\
\hline Input Capacitance & \(C_{1}\) & Any Input & & - & 5 & - & - & 5 & - & pF & - & - \\
\hline
\end{tabular}

NOTE 1: Test is a one-input, one-output only.
Limits with black dot ( \(\bullet\) ) designate \(100 \%\) testing. Refer to RIC-102B "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testina.


Fig. 5-Min. \& max. voltage transfer characteristics for CD4050A.


Fig. 7-Typ. voltage transfer characteristics as a function of temperature for CD4050A.


92CS-20483
Fig. 6-Typ. voltage transfer characteristics as a function of temperature for CD4049A.


Fig. 8-Typ. \& min. n-channel drain characteristics as a function of gate-to-source voltage ( \(V_{G S}\) ) for CD4049A, CD4050A.


Fig. 9-Typ. \& min. P-channel drain characteristics as a function of gate-to-source voltage ( \(V_{G S}\) ) for CD4049A, CD4050A.


Fig. 11-Typ. high-to-low level propagation delay time vs. \(C_{L}\) for CD4050A.


92CS-20488
Fig. 13-Typ. low-to-high level propagation delay time vs. \(C_{L}\) for CD4050A.


Fig. 10-Typ. high-to-low level propagation delay time vs. \(C_{L}\) for CD4049A.


Fig. 12-Typ. low-to-high level propagation delay time vs. \(C_{L}\) for CD4049A.


Fig. 14-Typ. high-to-low level transition time vs. \(C_{L}\) for CD4049A CD4050A.


Fig. 15-Typ. low-to-high level transistion time vs \(C_{L}\) for CD4049A, CD4050A.


Fig. 16-Typ. dissipation characteristics for CD4049A, CD4050A.


Fig. 17-Quiescent device current test circuit.


Fig. 18-Noise immunity test circuits.


Fig. 19-Typ. power dissipation vs. transition time per inverter CD4049A.


Fig. 20-Typ. power dissipation vs. transition time per inverter CD4050A.

Monolithic Silicon

High-Reliability COS/MOS LSI 4-Bit Arithmetic Logic Unit
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment

\section*{Features:}
- LSI Complexity on a Single Chip
- Bidirectional Data Busses
- 16-Instruction Capability
- Instruction Decoding on Chip
-Add, Subtract, Count
- Fully Static Operation
-AND, OR, Exclusive-OR
- Single-Phase Clocking
-Right, Left, or Cyclic Shifts

RCA-CD4057A Slash (/) Series is a low-power arithmetic logic unit (ALU) designed for use in LSI computers. An arithmetic system of virtually any size can be constructed by wiring together a number of CD4057A ALU's. The CD4057A provides 4-bit arithmetic operations, time sharing of data terminals, and full functional decoding for all control lines. The distributed control system of this device provides great flexibility in system designs by allowing hard-wired connection of N units in 4 N unique combinations. Four control lines provide 16 instructions which include Addition, Subtraction, Bidirectional and Cycle Shifts, Up-Down Counting, AND, OR, and Exclusive-OR logic operations.

Two mode control lines allow the CD4057A to function as any 4 -bit section of a larger arithmetic unit by controlling the bidirectional serial transfer of data to adjacent arithmetic arrays. By means of three "Conditional Control" lines Overflow, All Zeros, and Negative State conditions may be detected and used to establish a conditional operation. Predetermined operation of the CD4057A on a conditional basis allows greater ALU flexibility. Although especially applicable as a parallel arithmetic unit, the CD4057A also finds use in virtually any application requiring one or more of its 16 basic instructions. The CD4057A is supplied in a hermetically sealed 28 -lead dual-in-line ceramic package (CD4057AD), in a flat-pack (CD4057AK), and in chip form (CD4057AH).

These devices are electrically and mechanically identical with standard COS/MOS CD4057A types described in data bulletin 635 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.
- Easily Expandable to 8, 12, 16, . . . Bit Operation
- Conditional-Operation Controls on Chip
- Low Quiescent Device Dissipation . . . \(10 \mu \mathrm{~W}\) (typ) at \(V_{D D}=10 \mathrm{~V}\)
- Add Time (Data In-To Sum Out) = \(\mathbf{3 7 5} \mathrm{ns}\) (typ) at 10V
- All Terminals Protected Against Static Discharge
- High Noise Immunity . . . 45\% of \(\mathrm{V}_{\mathrm{DD}}\) (typ) Over Full Temperature Range
- Operation from Single Positive or Negative

Power Supply . . 3 V to 15 V
- Full Military Temperature Range . . . \(-\mathbf{5 5}{ }^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

\section*{Applications:}
\(\begin{array}{ll}\text { - Parallel Arithmetic Units } & \text { Remote Data Sets } \\ \text { - Process Controllers } & \text { - Graphic Display Terminals }\end{array}\)


Fig. 1 - Block diagram - CD4057A.

The packaged types in the CD4057A "Slash" (/) Series can be supplied to five screening levels \(-1 R, / 1, / 2, / 3, / 4-\) which correspond to MIL-STD-883 Classes " A ", " B ", and " C ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

\section*{MAXIMUM RATINGS, Absolute Maximum Values:}

Storage-temperature range. ........... -65 to \(+150{ }^{\circ} \mathrm{C}\) OPERATING-TEMPERATURE RANGE ........ -55 to \(+125^{\circ} \mathrm{C}\) DISSIPATION PER PACKAGE............................ 200 mW DC SUPPLY-VOLTAGE RANGE \(\left(V_{D D}-V_{S S}\right) \ldots . .-0.5\) to +15 V
ALL INPUTS ................................. \(\mathrm{v}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\)
Lead Temperature (During soldering)
At distance \(1 / 16 \pm 1 / 32\) inch ( \(1.59 \pm 0.79 \mathrm{~mm}\) ) from case for 10 seconds max. \(265{ }^{\circ} \mathrm{C}\) MINIMUM RECOMMENDED DC SUPPLY VOLTAGE (VD \({ }^{-} \mathrm{V}_{\mathrm{SS}}\) ) \(3 v\)


Fig. 2 - Simplified logic diagram.

\section*{STATIC ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{7}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
\(V_{0}\) \\
Volts
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
VDD \\
Volts
\end{tabular}} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|r|}{\(125^{\circ} \mathrm{C}\)} & \\
\hline & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current} & \multirow[b]{2}{*}{\({ }^{\prime} \mathrm{L}\)} & & 5 & - & 3.7 & - & 0.5 & 5 & - & 150 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & 10 & - & \(7.5^{\bullet}\) & - & 1 & \(10{ }^{\circ}\) & - & 2000 & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[t]{2}{*}{\(P_{\text {D }}\)} & & 5 & - & - & - & 2.5 & 2.5 & - & 750 & \multirow[t]{2}{*}{\(\mu \mathrm{W}\)} \\
\hline & & & 10 & - & - & - & 10 & 100 & - & 2000 & \\
\hline \multirow{4}{*}{Output Voltage: \({ }^{1}\) Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & 0.55 & - & - & 0.5 & - & - & \multirow{8}{*}{V} \\
\hline & & & 5 & - & 0.01 & - & - & 0.01 & - & 0.05 & \\
\hline & & & 10 & - & 0.01 & - & - & 0.01 & - & 0.05 & \\
\hline & & & 15 & - & - & - & - & 0.5 & - & 0.55 & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{VOH} & & 3 & 2.25 & - & 2.3 & - & - & - & - & \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & \\
\hline & & & 15 & - & - & 14.5 & - & - & 14.95 & - & \\
\hline Threshold Voltage \({ }^{2}\) N -Channel & \(\mathrm{V}_{\text {THN }}\) & \multicolumn{2}{|l|}{\(1 \mathrm{D}=-20 \mu \mathrm{~A}\)} & -0.7* & \(-3^{\bullet}\) & \(-0.7{ }^{\bullet}\) & -1.5 & \(-3^{\bullet}\) & -0.3 \({ }^{\circ}\) & \(-3^{\bullet}\) & \multirow[b]{2}{*}{V} \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \multicolumn{2}{|l|}{\(1 \mathrm{D}=20 \mu \mathrm{~A}\)} & \(0.7{ }^{\circ}\) & \(3{ }^{\circ}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3{ }^{\circ}\) & \(0.3{ }^{\circ}\) & \(3{ }^{\circ}\) & \\
\hline \multirow[t]{4}{*}{Noise Immunity \({ }^{1}\) (All Inputs)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\text {NIL }}\)} & 0.8 & 5 & \(1.5{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & 2.25 & - & \(1.4{ }^{\bullet}\) & - & \multirow{4}{*}{V} \\
\hline & & 1 & 10 & \(3 \bullet\) & - & \(3{ }^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\text {NIH }}\)} & 4.2 & 5 & \(1.4{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & 2.25 & - & \(1.5{ }^{\circ}\) & - & \\
\hline & & 9 & 10 & \(2.9{ }^{\bullet}\) & - & \(3 \cdot\) & 4.5 & - & \(3{ }^{\circ}\) & - & \\
\hline \multirow[t]{3}{*}{Output Drive Current \({ }^{2}\) Zero Indicator N-Channel} & \multirow{3}{*}{\({ }^{1} \mathrm{~N}\)} & & & & & & & & & & \multirow{19}{*}{mA} \\
\hline & & 0.5 & 5 & 0.11 & - & \(0.09 \bullet\) & 0.16 & - & 0.06 & - & \\
\hline & & 0.5 & 10 & 0.12 & - & \(0.10{ }^{\circ}\) & 0.16 & - & 0.07 & - & \\
\hline \multirow[t]{2}{*}{P-Channel} & \multirow[t]{2}{*}{\({ }_{1}{ }^{P}\)} & 3 & 5 & -0.04 & - & -0.03 & -0.06 & - & -0.02 & - & \\
\hline & & 7 & 10 & -0.08 & - & -0.07 & -0.13 & - & -0.05 & - & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Negative Indicator \\
N -Channel
\end{tabular}} & \multirow[b]{2}{*}{IDN} & 0.5 & 5 & 0.11 & - & 0.09 & 0.30 & - & 0.06 & - & \\
\hline & & 0.5 & 10 & 0.12 & - & \(0.10{ }^{\circ}\) & 0.40 & - & 0.07 & - & \\
\hline \multirow[b]{2}{*}{P-Channel} & \multirow[b]{2}{*}{\({ }_{1}{ }^{P}\)} & 4.5 & 5 & -0.07 & - & -0.06 & -0.19 & - & -0.04 & - & \\
\hline & & 9.5 & 10 & -0.12 & - & -0.10 & -0.30 & - & -0.07 & - & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Overflow Indicator \\
N -Channel
\end{tabular}} & \multirow[b]{3}{*}{\(I_{\text {d }}\)} & & & & & & & & & & \\
\hline & & 0.5 & 5 & 0.25 & - & 0.20 & 0.50 & - & 0.14 & - & \\
\hline & & 0.5 & 10 & 0.37 & - & \(0.30{ }^{\circ}\) & 0.90 & - & 0.21 & - & \\
\hline \multirow[b]{2}{*}{P-Channel} & \multirow[b]{2}{*}{\({ }^{\prime}{ }^{P}\)} & 4.5 & 5 & -0.08 & - & -0.07 & -0.21 & - & -0.05 & - & \\
\hline & & 9.5 & 10 & -0.12 & - & \(-0.10^{\bullet}\) & -0.38 & - & -0.07 & - & \\
\hline \multirow[t]{3}{*}{All Other Outputs N -Channel} & \multirow[b]{3}{*}{\(I_{\text {d }}\)} & & & & & & & & & & \\
\hline & & 0.5 & 5 & 0.11 & - & 0.09 & 0.10 & - & 0.06 & - & \\
\hline & & 0.5 & 10 & 0.06 & - & \(0.05{ }^{\circ}\) & 0.12 & - & 0.03 & - & \\
\hline \multirow[t]{2}{*}{P-Channel} & \multirow[b]{2}{*}{\(I_{D}{ }^{\text {P }}\)} & 4.5 & 5 & -0.02 & - & -0.02 & -0.05 & - & -0.01 & - & \\
\hline & & 9.5 & 10 & -0.06 & - & \(-0.05^{\bullet}\) & -0.08 & - & -0.03 & - & \\
\hline \[
\begin{aligned}
& \text { Diode Test }{ }^{3} \\
& 100 \mu \mathrm{~A} \text { Test Pin }
\end{aligned}
\] & \(V_{\text {DF }}\) & & & - & \(1.5{ }^{\circ}\) & - & - & \(1.5{ }^{\circ}\) & - & \(1.5{ }^{\circ}\) & V \\
\hline
\end{tabular}

Limits with black dot ( \({ }^{(\Theta)}\) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables
2 through \(\mathbf{7}\) for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.
Note 3: Test on all inputs and outputs.

File No. 849

DYNAMIC ELECTRICAL CHARACTERISTICS, at \(T_{A}=25^{\circ} \mathrm{C}\) and \(C_{L}=15 \mathrm{pF}\)
Typical Temperature Coefficient at all values of \(V_{D D}=0.3 \% /^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTICS} & \multirow[t]{2}{*}{SYMBOLS} & TEST CONDITIONS * & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { LIMITS } \\
\text { CD4057AD, CD4057AK }
\end{gathered}
\]} & \multirow[t]{2}{*}{UNITS} \\
\hline & & Volts & Min. & Typ. & Max. & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time: DATA IN-toSUM OUT} & \multirow{8}{*}{\[
\begin{aligned}
& { }^{\text {tPLH, }} \\
& { }^{\text {tPHL }}
\end{aligned}
\]} & 5 & - & 1430 & 3900 & \multirow{12}{*}{ns} \\
\hline & & 10 & - & 375 & 720 & \\
\hline \multirow[t]{2}{*}{CARRY IN-toSUM OUT} & & 5 & - & 915 & 2550 & \\
\hline & & 10 & - & 310 & 840 & \\
\hline \multirow[t]{2}{*}{DATA IN-toCARRY OUT} & & 5 & - & 950 & 2580 & \\
\hline & & 10 & - & 265 & 720 & \\
\hline \multirow[t]{2}{*}{CARRY IN-toCARRY OUT} & & 5 & - & 485 & 1320 & \\
\hline & & 10 & - & 175 & 480 & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
ZI Input \\
-toZI Output
\end{tabular}} & \multirow[b]{2}{*}{\({ }^{\text {tPLH }}\)} & 5 & - & 1980 & 5400 & \\
\hline & & 10 & - & 750 & 2040 & \\
\hline & \({ }^{\text {tPHL }}\) & 5 & - & 265 & 720 & \\
\hline & & 10 & - & 110 & 300 & \\
\hline Transition Time: & \multirow[b]{3}{*}{\({ }^{\text {t }}\) LLH} & & & & & \multirow{9}{*}{ns} \\
\hline \multirow{4}{*}{ZI Output} & & 5 & - & 3700 & 10350 & \\
\hline & & 10 & - & 1650 & 4500 & \\
\hline & t \({ }^{\text {HI }}\) & 5 & - & 420 & 1140 & \\
\hline & \({ }^{\text {THL }}\) & 10 & - & 220 & 600 & \\
\hline \multirow[t]{2}{*}{Negative Indicator and Overflow Indicator} & \multirow{4}{*}{\({ }^{t}\) TLH, \({ }^{\mathrm{t}} \mathrm{THL}\).} & 5 & - & 300 & 825 & \\
\hline & & 10 & - & 165 & 450 & \\
\hline All Other & & 5 & - & 1000 & 2775 & \\
\hline Outputs & & 10 & - & 475 & 1275 & \\
\hline \multirow[t]{2}{*}{Minimum Clock Pulse Width} & \multirow[b]{2}{*}{\({ }^{\text {W }}\) WL,\({ }^{\text {t }}\) WH} & 5 & - & 400 & 1200 & \\
\hline & & 10 & - & 125 & 375 & ns \\
\hline \multirow[b]{2}{*}{Clock Rise and Fall Time} & \multirow[b]{2}{*}{\(\mathrm{tr}_{\mathrm{r}} \mathrm{CL}, \mathrm{t}_{\mathrm{f}} \mathrm{CL}\)} & 5 & - & - & 15 & \\
\hline & & 10 & - & - & 15 & \(\mu \mathrm{s}\) \\
\hline Set Up Time: & \multirow{5}{*}{\({ }^{\text {t }}\) SLH, \({ }^{\text {S }}\) SHL} & & & & & \multirow[b]{3}{*}{ns} \\
\hline \multirow[t]{2}{*}{DATA} & & 5 & - & 20 & 40 & \\
\hline & & 10 & - & 10 & 20 & \\
\hline \multirow[t]{2}{*}{OP CODE} & & 5 & - & 1675 & 4590 & \multirow[t]{2}{*}{ns} \\
\hline & & 10 & - & 485 & 1320 & \\
\hline \multirow[t]{2}{*}{Data Hold Time} & \multirow[b]{2}{*}{\({ }^{\text {t }}\) ' \(h\)} & 5 & - & 20 & 40 & \multirow[t]{2}{*}{ns} \\
\hline & & 10 & - & 10 & 20 & \\
\hline Maximum Clock Frequency: & \multirow[b]{3}{*}{\({ }^{\mathrm{f}} \mathrm{CL}\)} & & & & & \multirow{5}{*}{MHz} \\
\hline \multirow[t]{2}{*}{} & & 5 & 0.13 & 0.36 & - & \\
\hline & & 10 & \(0.46 \bullet\) & 1.35 & - & \\
\hline \multirow[t]{2}{*}{Shift Mode} & \multirow[t]{2}{*}{\({ }^{\mathrm{f}} \mathrm{CL}\)} & 5 & 0.33 & 0.90 & - & \\
\hline & & 10 & 1.4 & 3.8 & - & \\
\hline Input Capacitance & \(\mathrm{C}_{1}\) & ANY INPUT & - & 5 & - & pF \\
\hline
\end{tabular}

Limits with black dot ( \({ }^{(\ominus)}\) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
* Tests are either several inputs or several outputs.

\section*{LOGIC DESCRIPTION}

\section*{OPERATIONAL MODES}

The CD4057A arithmetic logic unit operates in one of four possible modes. These modes control the transfer of information, either serial data or arithmetic operation carries, to and from the serial-data lines. Fig. 3 shows the manner in which the four modes control the data on the serial-data lines.


Fig. 3 - Schematic of "Mode" concept.
In MODE 0, data can enter or leave from either the left or the right serial-data line.

In MODE 1, data can enter or leave only on the left serialdata line;

In MODE 2, data can enter or leave only on the right serial data line.

In MODE 3, serial data can neither enter nor leave the register, regardless of the nature of the operation. Furthermore, the register is by-passed electrically, i.e., there is an electrical bidirectional path between the right and left serial data terminals.

The two input lines labeled C 1 and C 2 in the terminal assignment diagram define one of four possible modes shown in Table I.
Through the use of mode control, individual arithmetic arrays can be cascaded to form one large processor or many processors of various lengths.

\section*{TABLE I - MODE DEFINITION}
\begin{tabular}{|c|c|c|}
\hline C2 & C1 & MODE \\
\hline 0 & 0 & 0 \\
\hline 0 & 1 & 1 \\
\hline 1 & 0 & 2 \\
\hline 1 & 1 & 3 \\
\hline
\end{tabular}

Examples of how one "hard-wired" combination of three ALU's can form (a) a 12 -bit parallel processor, (b) one 8 -bit and one 4-bit parallel processor, or (c) three 4-bit parallel processors, merely by changes in the modes of each ALU are shown in Fig. 4.


Fig. 4 - "Mode" connections for parallel processor:
(a) 12-bit unit,
(b) one 8-bit and one 4-bit unit
(c) three 4-bit units.

Data-flow interruptions are shown by shaded areas. With these three 'ALU's and the four available modes, 61 more system combinations can be formed. If 4 ALU's are used, \(4^{4}\) combinations (256) are possible.

NOTE: The BYPASS terminal of the "most significant" CD4057A is connected to the bypass terminal of the "least significant" CD4057A. The bypass terminals on all other CD4057A's are left floating. This interconnection is performed whenever more than one CD4057A are used to form a processor.

\section*{INSTRUCTION REPERTOIRE}

Four encoded lines are used to represent 16 instructions. Encoded instructions are as follows:
abcd
0000 NO-OP (Operational Inhibit)
0001 AND
0010 Count down
0011 Count up
0100 Subtract Stored number from zero (SMZ)
0101 Subtract from parallel data lines (SM) (stored number from parallel data lines)
0110 Add (AD)
0111 Subtract (SUB) (Parallel data lines from stored number)
1000 Set to all ones (SET)
1001 Clear to all zeroes (CLEAR)
1010 Exclusive-OR
1011 OR
1100 Input Data (From parallel data lines)
1101 Left shift
1110 Right shift
1111 Rotate (cycle) right
All instructions ar executed on the positive edge of the clock.

\section*{CONDITIONAL OPERATION}

Inhibition of the clock pulse can be accomplished with a programmed NO-OP instruction or through conditional input terminals A, B, and C. In a system of many CD4057A's, each CD4057A can be made to automatically control its own operation or the operation of any other CD4057A in the system in conjunction with the Overflow, Zero, or Negative (Number) indicators. Table II, the conditional-inputs truth table, defines the interactions among A, B, and C.

TABLE II - CONDITIONAL-INPUTS TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline\(A\) & \(B\) & \(C\) & \begin{tabular}{c} 
OPERATION \\
PERMITTED
\end{tabular} \\
\hline 0 & X & X & Yes \\
\hline 1 & 0 & 0 & Yes \\
\hline 1 & 0 & 1 & No \\
\hline 1 & 1 & 0 & No \\
\hline 1 & 1 & 1 & Yes \\
\hline
\end{tabular}
\[
X=\text { don't care }
\]

Two examples of how the conditional operation can be used are as follows:
1) For the Multiplication Algorithm
\(A=1\), for step 7 (1)
\(A=0\), for step 7 (2)
\(B=1\)
\(C=\) negative Indicator
2) For the Division Algorithm
\(A=1\), for \(\operatorname{step} 7\) (1)
\(A=0\), for \(\operatorname{step} 7\) (2)
\(B=1\)
\(C=C_{o}\) (left data line)

\section*{OVERFLOW DETECTION}

The CD4057A is capable of detecting and indicating the presence or absence of an arithmetic two's-complement overflow. A two's-complement overflow is defined as having occurred if the signs of the two initial words are the same and the sign of the result is different while performing a carry-generating instruction.
\[
0.011
\]

For example: \(\quad(+) \frac{0.110}{1.001}\)
Overflows can be detected and indicated only during operation in Mode 2 or Mode 3 and can occur for only four instructions (AD, SMZ, SM, and SUB). If an overflow is detected and stored in the overflow flip-flop, any one of the five instructions \(A D, S M Z, S M, S U B\), or \(I N\) can change the overflow indicator.
When any of the three subtraction instructions is used, the sign bit of the data being subtracted is complemented and this value is used as one of the two initial signs to detect overflows. If an overflow has occurred, the final sign of the
sum or difference is one's complemented and stored in the most-significant-bit position of the register.
The overflow flip-flop is updated at the same time the new result is stored in the CD4057A. Whenever data on the parallel-data lines are loaded into the CD4057A, whatever is on the Overflow I/O line is loaded into the overflow flip-flop. Also, whenever data are dumped on the parallel data lines from the CD4057A, the contents of the overflow flip-flop are dumped on the Overflow I/O line. Thus overflows may be stored elsewhere and then fed into the CD4057A at another time.

\section*{OPERATIONAL SEQUENCE AND WAVEFORMS FOR PROPAGATION-DELAY MEASUREMENTS}

\section*{1. DATA IN-to-CARRY OUT and DATA IN-to-SUM OUT}
A. Apply Word A and IN instruction
B. Apply Clock to load word A into register
C. Apply AD instruction
D. Apply Word B (data in)
E. Apply Clock to load result (zum out)
F. Apply DATA OUT CONTROL to look at result


Fig. 5 - DATA IN-to-CARRY OUT and DATA IN-to-SUM OUT.
2. CARRY IN-to-CARRY OUT and CARRY IN-to-SUM OUT
A. Apply Word A and IN instruction
B. Apply Clock to load word A into register
C. Apply AD instruction
D. Apply Word B
E. Apply CARRY IN (carry in)
F. Apply Clock to load result (sum out)
G. Apply DATA OUT CONTROL to look at result


Fig. 6 - CARRY IN-to-CARRY OUT and CARRY IN-to-SUM OUT.


Fig. 7 - Max. counting frequency vs. supply voltage for a typical CD4057A.


Fig. 8-Transition time vs. load capacitance for Data Outputs (D1-D4).

CLOCK PULSE RISE AND FALL TIMES


92CS-21872

Fig. 9-Clock Pulse Rise and Fall Times.


Fig. 10 - Data setup time.


92CS-21874
Fig. 11:- Data hold time.


Fig. 12 - Dynamic test'circuit and waveforms (maximum frequency).

\section*{TYPICAL APPLICATION}

The CD4057A has been designed for use as a parallel processor in flexible, programmable, easily expandable, special or general purpose computers, where minimization of external connections and data busing are primary design goals. The block diagram of Fig. 15 is an example of a computer that processes 8 bits in parallel.


Fig. 13 - Typical speed characteristics of a 16 -bit \(A L U\) at \(V_{D D}=10 \mathrm{~V}\).

* NOTE: NON - STANDARD iERMINAL LOCATIONS FOR
\(V_{S S}\) AND \(V_{D D}\). MOST OTHER COS/MOS TYPES
USE CORNER TERMINALS FOR POWER-
SUPPLY CONNECTIONS
92Cs-20253

Fig. 14- Terminal assignments.


Fig. 15-Example of Computer Organization Using CD4057A.


\title{
High－Reliability \\ COS／MOS 14－Stage Ripple－Carry Binary Counter／Divider and Oscillator
}

\author{
For Logic Systems Applications in Aerospace， Military，and Critical Industrial Equipment \\ Features： \\ －4－MHz operating frequency（typ．）at \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}\) \\ a Common reset \\ －Fully static operation \\ － 10 buffered outputs available
}

The RCA－CD4060A Slash（／）Series consists of an oscillator section and 14 ripple－carry binary counter stages．The oscil－ lator configuration allows design of either RC or crystal oscillator circuits．A RESET input is provided which resets the counter to the all－0＇s state and disables the oscillator． A high level on the RESET line accomplishes the reset function．All counter stages are master－slave flip－flops．The state of the counter is advanced one step in binary order on the negative transition of \(\phi_{\mathrm{I}}\left(\phi_{\mathrm{O}}\right)\) ．All inputs and outputs are fully buffered．

These devices are electrically and mechanically identical with standard COS／MOS CD4060A types described in data bulletin 813 and DATABOOK SSD－203 Series，but are specially pro－ cessed and tested to meet the electrical，mechanical，and environmental test methods and procedures established for microelectronic devices in MIL－STD－883．

The packaged types in the CD4060A＂Slash＂（／）Series can be supplied to six screening levels \(-/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3, / 4-\) which correspond to MIL－STD－883 Classes＂\(A\)＂，＂\(B\)＂，and ＂ C ＂．The chip versions of these types can be supplied to three screening levels \(-/ M, / N\) ，and \(/ R\) ．

For a description of these screening levels and for detailed information on test methods，procedures，and test sequence employed with high－reliability COS／MOS devices refer to High－Reliability Report RIC－102C，＂High－Reliability COS／ MOS CD4000A＂Slash＂（／）Series Types＂．

The CD4060A＂Slash＂（／）Series types are supplied in 16－lead dual－in－line ceramic packages（＂\(D\)＂suffix），in 16 －lead ceramic flat packages（＇K＇\(K\)＂suffix），or in chip form（＇＂ H ＂suffix）．

\section*{Oscillator Features：}
－All active components on chip
－RC or erystal oscillator configuration

\section*{Applications：}
－Timers
－Frequency dividers


Fig．1－Logic diagram of CD4060A oscillator，pulse shaper， and 1 of 14 counter stages．


Fig. 2-Schematic diagram of input pulse shapers, reset buffers, and 1 of 14 binary counter stages of the CD4060A.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{CHARACTERISTIC} & \multirow[t]{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{7}{|c|}{LIMITS} & \multirow[t]{3}{*}{UNITS} \\
\hline & & \multirow[t]{2}{*}{\[
\begin{gathered}
v_{0} \\
v
\end{gathered}
\]} & VDD & \multicolumn{2}{|r|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & \\
\hline & & & V & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & \\
\hline \multirow[t]{2}{*}{Quiescent Device \({ }^{1}\) Current} & \multirow[b]{2}{*}{\({ }^{\prime} \mathrm{L}\)} & & 5 & - & 15 & - & 0.5 & 15 & - & 900 & \multirow[b]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & 10 & - & \(25^{\circ}\) & - & \(1{ }^{\circ}\) & 25 & - & \(500^{\circ}\) & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Quiescent Device \\
Dissipation/Package
\end{tabular}} & \multirow[b]{2}{*}{PD} & & 5 & - & 75 & - & 2.5 & 75 & - & 4500 & \multirow[t]{2}{*}{\(\mu \mathrm{W}\)} \\
\hline & & & 10 & - & 250 & - & 10 & 250 & - & 15000 & \\
\hline \multirow[t]{4}{*}{Output Voltage: 1 Low-Level} & \multirow{4}{*}{VOL} & \multirow{4}{*}{\[
\begin{aligned}
& \text { Fan } \\
& \text { Out } \\
& =50
\end{aligned}
\]} & 3 & - & \(0.55{ }^{\circ}\) & - & - & \(0.5{ }^{\bullet}\) & - & - & \multirow{8}{*}{V} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 15 & - & - & - & - & \(0.5^{\circ}\) & - & \(0.55^{\circ}\) & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multirow{4}{*}{\[
\begin{aligned}
& \text { Fan } \\
& \text { Out } \\
& =50
\end{aligned}
\]} & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\bullet}\) & - & - & - & - & \\
\hline & & & 5 & 4.99 & - & 4,99 & 5 & - & 4.95 & - & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & \(14.45{ }^{\circ}\) & - & \\
\hline Threshold Voltage: \({ }^{2}\) N -Channel & \(\mathrm{V}_{\text {THN }}\) & \multicolumn{2}{|l|}{\(I_{\text {d }}=-20 \mu \mathrm{~A}\)} & \(-0.7^{\bullet}\) & \(-3^{\bullet}\) & -0.7 \({ }^{\bullet}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3^{\bullet}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{V} \\
\hline P-Channel & \(V_{\text {TH }}{ }^{P}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{D}}=20 \mu \mathrm{~A}\)} & \(0.7{ }^{\bullet}\) & \(3^{\bullet}\) & \(0.7{ }^{\bullet}\) & 1.5 & \(3 \bullet\) & \(0.3^{\bullet}\) & \(3^{\circ}\) & \\
\hline \multirow{4}{*}{Noise Immunity \({ }^{1}\) (Any Input)} & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & 0.8 & 5 & 1.5 & - & \(1.5{ }^{\circ}\) & 2.25 & - & 1.4 & - & \multirow{4}{*}{V} \\
\hline & & 1 & 10 & \(3^{\bullet}\) & - & \(3^{\bullet}\) & 4.5 & - & \(2.9{ }^{\bullet}\) & - & \\
\hline & \multirow[b]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.2 & 5 & 1.4 & - & \(1.5^{\bullet}\) & 2.25 & - & 1.5 & - & \\
\hline & & 9 & 10 & \(2.9{ }^{\bullet}\) & - & \(3{ }^{\circ}\) & 4.5 & - & \(3{ }^{\circ}\) & - & \\
\hline \multirow[t]{3}{*}{```
Output Drive Current }\mp@subsup{}{}{2}
    N-Channel (Sink)
```} & \multirow[b]{3}{*}{IDN} & & & & & & & & & & \multirow[b]{3}{*}{mA} \\
\hline & & 0.5 & 5 & 0.22 & - & \(0.18{ }^{\bullet}\) & 0.36 & - & 0.125 & - & \\
\hline & & 0.5 & 10 & 0.44 & - & \(0.36{ }^{\bullet}\) & 0.75 & - & 0.25 & - & \\
\hline \multirow[t]{2}{*}{P-Channel (Source)} & \multirow[t]{2}{*}{\(I_{\text {d }}\)} & 4.5 & 5 & -0.15 & - & \(-0.125^{\circ}\) & -0.25 & - & -0.085 & - & \multirow[t]{2}{*}{mA} \\
\hline & & 9.5 & 10 & -0.3 & - & \(-0.25^{\circ}\) & -0.5 & - & -0.175 & - & \\
\hline \[
\begin{array}{|l|}
\hline \text { Diode Test }{ }^{3} \\
100 \mu \mathrm{~A} \text { Test Pin } \\
\hline
\end{array}
\] & VDF & & & - & \(1.5{ }^{\bullet}\) & - & - & \(1.5{ }^{\bullet}\) & - & \(1.5^{\bullet}\) & V \\
\hline Input Current & \(1 /\) & \multicolumn{2}{|l|}{Any Input} & - & - & - & \(\pm 10^{-5}\) & \(\pm 1\) & - & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
© Data does not apply to terminals 9 or 10.
Limits with black dot (\({ }^{(\bullet)}\) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.
\(\qquad\)

DYNAMIC ELECTRICAL CHARACTERISTICS AT \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=\mathbf{1 5} \mathrm{pF}\) (unless otherwise specified), Input \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS*} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & \(\mathrm{V}_{\text {DD }}\) & MIN. & TYP. & MAX. & \\
\hline \multicolumn{8}{|l|}{Input-Pulse Operation} \\
\hline \multirow[t]{2}{*}{Propagation Delay Time \(\phi_{I}\) to Q4 Out} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHL}} \\
& \mathrm{t}_{\mathrm{PLH}}
\end{aligned}
\]} & & 5 & - & 900 & \(1800^{\circ}\) & \multirow[b]{2}{*}{ns} \\
\hline & & & 10 & - & 450 & \(900^{\circ}\) & \\
\hline \multirow[t]{2}{*}{Propagation Delay Time, \(\mathrm{O}_{\mathrm{n}}\) to \(\mathrm{O}_{\mathrm{n}+1}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{PHL}\). \\
\({ }^{\text {tPLH }}\)
\end{tabular}} & & 5 & - & 450 & \(900^{\circ}\) & \multirow[b]{2}{*}{ns} \\
\hline & & & 10 & - & 225 & \(450{ }^{\circ}\) & \\
\hline \multirow{2}{*}{Transition Time} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{THL}\). \\
\({ }^{t}\) TLH
\end{tabular}} & & 5 & - & 150 & \(300^{\circ}\) & \multirow{2}{*}{ns} \\
\hline & & & 10 & - & 75 & \(150{ }^{\circ}\) & \\
\hline \multirow{2}{*}{Min. Input-Pulse Width} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) WL. \\
\({ }^{t}\) WH
\end{tabular}} & \multirow[t]{2}{*}{\(\mathrm{f}=100 \mathrm{kHz}\)} & 5 & - & 200 & 400 & \multirow{2}{*}{ns} \\
\hline & & & 10 & - & 75 & 110 & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Input-Pulse \\
Rise \& Fall Time
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \mathrm{t}_{\mathrm{r} \phi} \\
& \mathrm{t}_{\mathrm{f} \phi}
\end{aligned}
\]} & & 5 & - & - & 15 & \multirow[b]{2}{*}{\(\mu \mathrm{s}\)} \\
\hline & & & 10 & - & - & 7.5 & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Max. Input-Pulse \\
Frequency
\end{tabular}} & \multirow[b]{2}{*}{\(\mathrm{f}_{\phi}\)} & & 5 & \(1{ }^{\circ}\) & 1.75 & - & \multirow[b]{2}{*}{MHz} \\
\hline & & & 10 & 39 & 4 & - & \\
\hline Input Capacitance & 11 & & & - & 5 & - & pF \\
\hline \multicolumn{8}{|l|}{Reset Operation} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Propagation Delay \\
Time
\end{tabular}} & \multirow[b]{2}{*}{\({ }^{\text {tPHL }}\)} & & 5 & - & 500 & \(1000{ }^{\circ}\) & \multirow[b]{2}{*}{ns} \\
\hline & & & 10 & - & 250 & \(500^{\circ}\) & \\
\hline \multirow[t]{2}{*}{Minimum Reset Pulse Width} & \multirow[b]{2}{*}{\({ }^{t}\) WH} & & 5 & - & 500 & \(1000^{\circ}\) & \multirow[b]{2}{*}{ns} \\
\hline & & & 10 & - & 250 & \(50{ }^{\bullet}\) & \\
\hline
\end{tabular}

Limits with black dot (0) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
* Tests are either several inputs or several outputs.

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
\begin{tabular}{|c|c|}
\hline Storage-temperature range & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline OPERATING-TEMPERATURE RANGE & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DC SUPPLY-VOLTAGE RANGE: & \\
\hline (\(\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}\)). & -0.5 to +15 V \\
\hline DEVICE DISSIPATION (PER PACKAGE) & 200 mW \\
\hline ALL INPUTS & \(\mathrm{v}_{\text {SS }} \leqslant \mathrm{v}_{1} \leqslant \mathrm{v}_{\text {DD }}\) \\
\hline
\end{tabular}

LEAD TEMPERATURE (DURING SOLDERING):
At distance \(1 / 16 \pm 1 / 32\) inch (\(1.59 \pm 0.79 \mathrm{~mm}\)) from case for 10 seconds max. \(\quad 265^{\circ} \mathrm{C}\)
RECOMMENDED OPERATING CONDITIONS:
DC Supply-Voltage Range
(\(V_{D D}\) V \(_{\text {SS }}\)) . 3 to 15 V
Input Voltage Swing . \(V_{S S}\) to \(V_{D D}\)

Fig. 3-Minimum n-channel drain characteristics.

Fig. 5 -Typical propagation delay time vs. Ioad capacitance (\(\phi_{\mathrm{I}}\) to Q4 output).

Fig. 7 -Typical output transition time vs. load capacitance.

Fig.4-Minimum p-channel drain characteristics.

Fig. 6-Typical propagation delay time vs.
load capacitance \(\left(Q_{n}\right.\) to \(\left.Q_{n+1}\right)\).

Fig. 8 -Typical maximum-input-pulse frequency vs. supply voltage.

Fig. 9 -Typical dynamic power dissipation characteristics.

TEST PERFORMED
WITH UNIT IN ALL
"O's" STATE AND AND INPUTS AT 10 V
AND GROUND AND GROUND

Fig. 11 -Quiescent device current test circuit.

Fig. 10 -Output drive current test circuit.

Fig. 12 -Input-pulse noise immunity test circuit.

Fig. 13-Reset-pulse noise immunity test circuit.

TERMINAL ASSIGNMENT CD4060A

\title{
High－Reliability \\ COS／MOS 256－Word by 1－Bit Static Random－Access Memory
}

For Logic Systems Applications in Aerospace， Military，and Critical Industrial Equipment

\section*{Features：}
－Low standby power： \(\mathbf{1 0}\) Nanowatts／bit（typ．）＠\(V_{D D}=10 \mathrm{~V}\)
－Access time： \(\mathbf{3 8 0} \mathrm{ns}\)（max．）＠ \(\mathrm{V}_{\mathrm{DD}}=\mathbf{1 0} \mathrm{V}\)－Noise immunity： \(\mathbf{4 5 \%}\) of \(\mathrm{V}_{\mathrm{DD}}\)（typ．）
－Single 3－to－15 V power supply－Fully decoded addressing
－COS／MOS input／output logic compatibility－Single write／read control line
－TTL output drive capability

The RCA－CD4061A＂Slash＂（／）Series are single monolithic integrated circuits containing a 256 －word by 1 －bit fully static， random－access，NDRO memory．The memory is fully decoded and requires 8 address input lines（ \(A_{0}-A_{7}\) ）to select one of 256 storage locations．Additional connections are provided for a WRITE／READ command CHIP ENABLE，DATA IN，and DATA OUT and DATA OUT lines．

To perform READ and WRITE operations the CHIP－ENABLE signal must be low．When the CHIP－ENABLE signal is high， read and write operations are inhibited and the output is a high impedance．To change addresses，the CHIP－ENABLE signal must be returned to a high level，regardless of the logic level of the WRITE／READ input．In a multiple package application，the CHIP－ENABLE signal may be used to permit the selection of individual packages．
Output－voltage levels appear on the outputs only when the CHIP－ENABLE and WRITE／READ signals are both low． Separate data inputs and outputs are provided；they may be tied together；or，to eliminate interaction between READ and WRITE functions，may be used separately．The circuit ar－ rangement permits the outputs from many arrays to be tied to a common bus．

All input and output lines are buffered．The CD4061A output buffers are capable of direct interfacing with TTL devices．
These devices are electrically and mechanically identical with standard COS／MOS CD4061A types described in data bulletin 768 and DATABOOK SSD－203 Series，but are specially pro－ cessed and tested to meet the electrical，mechanical，and environmental test methods and procedures established for microelectronic devices in MIL－STD－883．
－Three－state data outputs for bus－oriented systems
－1101－type pin designations＊
－Separate data output and data input lines
The packaged types can be supplied to five screening levels ／1R，／1，／2，／3，／4－which correspond to MIL－STD－883 Classes． ＂\(A\)＂，＂\(B\)＂，and＂\(C\)＂．The chip versions of these types can be supplied to two screening levels \(-/ M\) and \(/ R\) ．

For a description of these screening levels and for detailed information on test methods，procedures，and test sequence employed with high－reliability COS／MOS devices refer to High－Reliability Report RIC－102C，＂High－Reliability COS／ MOS CD4000A＂Slash＂（／）Series Types＂．

The CD4061A＂Slash＂（／）Series types are supplied in 16－lead dual－in－line side－brazed ceramic packages（＂D＂suffix）or in chip form（＂ H ＂suffix）．

MAXIMUM RATINGS，Absolute－Maximum Values：
Storage－temperature range \(\ldots \ldots \ldots . . .-65\) to \(+150^{\circ} \mathrm{C}\)
OPERATING－TEMPERATURE RANGE \(\ldots \ldots \ldots . .-55\) to \(+125{ }^{\circ} \mathrm{C}\) DC SUPPLY－VOLTAGE RANGE
 DEVICE DISSIPATION（PER PKG．）．．．．．．．．．．．．．．．．．． 200 mW ALL INPUTS．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(v_{S S} \leqslant v_{1} \leqslant v_{D D}\) RECOMMENDED DC SUPPLY VOLTAGE
（ \(\mathrm{V}_{\text {DD }}-\mathrm{v}_{\text {SS }}\) ）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3 to 15 V LEAD TEMPERATURE（DURING SOLDERING）

At distance \(1 / 16 \pm 1 / 32\) inch（ \(1.59 \pm 0.79 \mathrm{~mm}\) ） from case for 10 seconds max．
\(265^{\circ} \mathrm{C}\)

\footnotetext{
＊The pin designations are compatible with other static 256－Bit memories and are，therefore，not compatible with standard COS／MOS CD4000A－series devices；i．e． \(\mathrm{V}_{\text {DD }}\) is pin 5 and \(\mathrm{V}_{\mathrm{SS}}\) is pin 4.
}

FOR SINGLE \(n\) AND p devices \(\begin{cases}\text { ALL } & p \text {-SUBSTRATES TIED TO VDD. } \\ \text { ALL } n \text {-SUBSTRATES TIED TO } V_{S S} .\end{cases}\)
92CL-23852

Fig. 1 - CD4061A logic diagram.

CD4061A OPERATIONAL MODES
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ OPERATION } & ADDRESS LINES & CHIP-ENABLE & WRITE/READ & DATA IN & DATA OUTPUTS \\
\hline Write " 0 " & Stable & 0 & 1 & 0 & High-Impedance \\
Write " 1 " & Stable & 0 & 1 & 1 & High-Impedance \\
Read & Stable & 0 & 0 & X & Valid 1 or 0 \\
*Read/Write & Stable & 0 & \(0 / 1\) & X & Valid 1 or 0/High- \\
Impedance \\
Address Change & & & & X & X \\
High-Impedance \\
\hline
\end{tabular}

\section*{X = Don't Care}
* For a READ/WRITE operation on the same address, chip-enable may be held to a logic 0 for both successive operations.
\(\qquad\)

STATIC ELECTRICAL CHARACTERISTICS (All inputs
(Recommended DC Supply Voltage (\(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\)) 3 to 15 V)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{CHARACTERISTIC} & \multirow[t]{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{7}{|c|}{LIMITS} & \multirow[t]{3}{*}{UNITS} \\
\hline & & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \mathrm{V}_{\mathrm{O}} \\
\text { Volts }
\end{array}
\]} & \multirow[t]{2}{*}{\(V_{\text {DD }}\) Volts} & \multicolumn{2}{|r|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & \\
\hline & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & \\
\hline \multirow[t]{2}{*}{Quiescent Device Current \({ }^{1}\)} & \multirow[b]{2}{*}{\({ }^{1} \mathrm{~L}\)} & & 5 & - & 5 & - & 0.12 & 5 & - & 150 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & 10 & - & \(10^{\bullet}\) & - & 0.25 & \(10^{\bullet}\) & - & \(200^{\circ}\) & \\
\hline \multirow[t]{2}{*}{Quiescent Device Dissipation/Package} & \multirow[b]{2}{*}{\(P_{D}\)} & & 5 & - & - & - & 0.6 & 25 & - & 750 & \multirow[t]{2}{*}{\(\mu \mathrm{W}\)} \\
\hline & & & 10 & - & - & - & 2.5 & 100 & - & 2000 & \\
\hline \multirow{4}{*}{Output Voltage 5 ,6 Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & \(0.55{ }^{\bullet}\) & - & - & \(0.5^{\bullet}\) & - & - & \multirow{8}{*}{V} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 15 & - & - & - & 0 & \(0.5^{\bullet}\) & - & \(0.55{ }^{\circ}\) & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\text {® }}\) & - & - & - & - & \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & - & - & \(14.45{ }^{\circ}\) & - & \\
\hline Threshold Voltage \({ }^{2}\) N -Channel & \(\mathrm{V}_{\mathrm{TH}} \mathrm{N}\) & \multicolumn{2}{|l|}{\({ }^{1} \mathrm{D}=-20 \mu \mathrm{~A}\)} & \(-0.7^{\bullet}\) & \(-3^{\bullet}\) & \(-0.7^{\bullet}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3{ }^{\text {® }}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{V} \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \({ }^{\prime} D=2\) & \(\mu \mathrm{A}\) & \(0.7{ }^{\circ}\) & \(3^{\bullet}\) & \(0.7{ }^{\circ}\) & 1.5 & \(3^{\bullet}\) & \(0.3^{\bullet}\) & \(3^{\bullet}\) & \\
\hline \multirow{4}{*}{Noise Immunity \({ }^{3}\) (All Inputs)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & 0.8 & 5 & 1.5 & - & \(1.5^{\circ}\) & 2.25 & - & 1.4 & - & \multirow{4}{*}{V} \\
\hline & & 1 & 10 & \(3^{\bullet}\) & - & \(3^{\bullet}\) & 4.5 & - & \(2.9^{\circ}\) & - & \\
\hline & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.2 & 5 & 1.4 & - & \(1.5^{\bullet}\) & 2.25 & - & 1.5 & - & \\
\hline & & 9 & 10 & \(2.9{ }^{\circ}\) & - & \(3^{\bullet}\) & 4.5 & - & \(3^{\bullet}\) & - & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Output Drive Current: \({ }^{4}\) \\
(Data Out, Data Out) \\
N-Channel (Sink)
\end{tabular}} & \multirow[t]{2}{*}{\({ }_{1}{ }^{\text {N }}\)} & 0.4 & 4.5 & 2 & - & \(1.6{ }^{\text {® }}\) & 2.5 & - & 1.1 & - & \multirow[t]{2}{*}{mA} \\
\hline & & 0.5 & 10 & 4.3 & - & \(3.5^{\circ}\) & 5 & - & 2.4 & - & \\
\hline \multirow{3}{*}{P-Channel (Source)} & \multirow{3}{*}{\({ }_{1}{ }^{P}\)} & 2.5 & 5 & -1.1 & - & \(-0.9{ }^{\text {® }}\) & -1.8 & - & -0.65 & - & \multirow{3}{*}{mA} \\
\hline & & 4.6 & 5 & -0.5 & - & -0.4 \({ }^{\bullet}\) & -0.8 & - & -0.3 & - & \\
\hline & & 9.5 & 10 & -1.1 & - & \(-0.9{ }^{\bullet}\) & -1.8 & - & -0.65 & - & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Output Off Resistance \({ }^{4}\) \\
(High-Impedance State)
\end{tabular}} & \multirow[t]{2}{*}{\(\mathrm{R}_{0}\) (Off)} & & 5 & 10 & - & \(10^{\circ}\) & - & - & 10 & - & \multirow[t]{2}{*}{\(\mathrm{M} \Omega\)} \\
\hline & & & 10 & 10 & - & \(10^{\bullet}\) & - & - & 10 & - & \\
\hline \[
\begin{aligned}
& \text { Diode Test }{ }^{3} \\
& 100 \mu \mathrm{~A} \text { Test Pin }
\end{aligned}
\] & \(V_{\text {DF }}\) & & & - & \(1.5{ }^{\circ}\) & - & - & \(1.5^{\bullet}\) & - & \(1.5{ }^{\bullet}\) & V \\
\hline
\end{tabular}

Limits with black dot (\({ }^{(\oplus)}\) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Functional test, all inputs and outputs.
Note 2: Test is either a one input or a one output only.
Note 3: Test on all inputs and outputs.

\section*{Note 4: Tests on all outputs.}

Note 5: Functional GAL PAT test for 5 volts at 800 kHz and 10 volts at 2 MHz .
Note 6: Functional MARCH test for 3 volts at 250 kHz and 15 volts at 2 MHz .

File No. 842

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\), and \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\)

* See "Symbol Definitions"

Limits with black dot (\(\bullet\)) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (// Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
© Tests are on all inputs and outputs.

Fig. 2 - Typical write-read waveforms.

\section*{SYMBOL DEFINITIONS}

\section*{READ CYCLE}
trC - READ CYCLE TIME - Time required between address changes during a read cycle. Minimum read cycle time is equal to \({ }^{\mathbf{t}} \mathrm{CEH}\) (min.\()+\mathrm{t}_{\mathrm{CE}}(\mathrm{min})+.\mathrm{t}_{\mathrm{CES}}\) (min.). (See Definitions below).
\({ }^{\text {t}}\) CEH - CHIP-ENABLE HOLD TIME - Time required before chip-enable level can be lowered after an address transition.
\({ }^{\mathbf{t}} \mathbf{C E}\) - CHIP-ENABLE PULSE WIDTH - Time required for the chip to be active for valid reading of output data.
\({ }^{1}\) CES - CHIP-ENABLE SETUP TIME - Time required before ar address transition can take place after chip-enable level has been increased. \(\mathrm{t}_{\mathrm{CES}}(\mathrm{min})+.\mathrm{t}_{\mathrm{CEH}}(\mathrm{min}\).\() is the minimum time\) required to discharge internal nodes and allow settling of address decoders during an address transition. Chip-enable level must be raised during each address change, even if read cycles only or write cycles only are successively performed. However, if address is not changed, chip enable may remain in its active (low) state during successive read and write cycles.
trA - READ ACCESS TIME - Measured from chip-enable transition; time before output data is valid.

\section*{WRITE CYCLE}
\({ }^{\text {t}}\) WC - WRITE CYCLE TIME - Time required between address changes during a write cycle. This time sets the maximum
operating frequency for the memory, with minimum write cycle time equal to \({ }^{t_{C E H}}(\min)+.{ }^{\text {t }}\) CE \((\min)+.\mathrm{t}_{\mathrm{CES}}(\min\).\() .\)
\({ }^{\mathbf{t}}\) CEH - CHIP-ENABLE HOLD TIME - See Definition under read cycle.
\({ }^{\mathbf{t}}\) CE - CHIP-ENABLE PULSE WIDTH - See Definition under read cycle.
\({ }^{\text {t }}\) CES - CHIP-ENABLE SETUP TIME - See Definition under read read cycle.
tWH - WRITE HOLD TIME - Measured from chip-enable transition; time required before negative transition of write pulse can occur for successful write operation.
tw - WRITE PULSE WIDTH - Time required for W/R pulse to be high. Note that no specification for positive transition of this pulse is made - it may occur before or after the chipenable transition. In many applications, the W/R control is normally low and is strobed high during a write cycle.
tDS - DATA SETUP TIME - Measured from write-pulse negative transition; time required for data input to be valid.
tDH - DATA HOLD TIME - Measured from write-pulse negative transition; time required for data input to be valid after W/R is returned to a low level. The minimum data pulse width is equal to \(\mathrm{t}_{\mathrm{DS}}(\min)+.\mathrm{t}_{\mathrm{DH}}(\min\).\() .\)

Fig. 3 - Minimum n-channel drain characteristics.

Fig. 5 - Typical low-to-high transition time \(\left(t_{T L H}\right)\) vs \(C_{L}\)

92CS-23861
Fig. 7-Typical read access time (\(\boldsymbol{t}_{\text {RA }}\)) vs temperature.

DRAIN-TO-SOURCE VOLTAGE (VDS)-V

92cs-23857
Figl 4 - Minimum p-cinannel drain characteristics.

Fig. 6 - Typical high-to-low transition time (\(\boldsymbol{t}_{\text {THL }}\)) vs \(C_{L}\).

92Cs-23860
Fig. 8 - Typical read access time (\(\boldsymbol{t}_{R A}\)) vs \(C_{L}\).

92cs-23862

\section*{TEST CIRCUITS}

Description of Test:
Functional test run with random data input. All inputs toggle betweem \(30 \%\) and \(70 \%\) of VDD.

Fig. 10 - Noise immunity.

Fig. 9 - Typical power dissipation vs cycle time.

\section*{Note:}

Power dissipation measured using random data pattern. Input pulse delays and widths set to minimum values specified on data sheet with the exception of cycle time, 15 V setups identical to 10 V data sheet values, with the exception of \({ }^{t} C E=400 \mathrm{~ns}\).

Fig. 11 - Quiescent device current.

Solid State Division

\section*{Digital Integrated Circuits}

Monolithic Silicon High-Reliability Slash(/) Series CD4062A/ ...

\section*{High-Reliability COS/MOS 200-Stage Dynamic Shift Register}

\author{
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment \\ Applications: \\ - Serial shift registers a CRT refresh memory a Time-delay circuits \(\approx\) Long serial memory Special Features: \\ ■ Operation from a single \(3-\mathrm{V}\) to \(15-\mathrm{V}\) positive or negative power supply \\ \(\pm\) Minimum shift rates over full temperature range - \\ Single phase clock: \(3 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 10 \mathrm{~V}\); Two-phase clock: \(3 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}} \leqslant 15 \mathrm{~V}\); \(f_{\min }=10 \mathrm{kHz} ;-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C} \quad \mathrm{f}_{\min }=10 \mathrm{kHz} ;-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A}+125^{\circ} \mathrm{C}\) (\(f_{\min }=1 \mathrm{kHz}\) up to \(\mathrm{T}_{A} \leqslant 75^{\circ} \mathrm{C}\)) (\(\mathrm{f}_{\min }=1 \mathrm{kHz}\) up to \(\mathrm{T}_{\mathrm{A}} \leqslant 75^{\circ} \mathrm{C}\))
}

The RCA-CD4062A Slash (/) Series is a 200 -stage dynamic shift register with provision for either single- or two-phase clock input signals. Single-phase-clocked operation is intended for low-power low clock-line capacitance requirements. Single-phase clocking is specified for medium-speed operation (\(<1 \mathrm{MHz}\)) at supply voltages up to 10 volts. Clock input capacitance is extremely low (\(<5 \mathrm{pF}\)), and clock rise and fall times are non-critical. The clock-mode signal (CM) must be low for single-phase operation.
Two-phase clock-input signals may be used for high-speed operation (up to 5 MHz) or to further reduce clock rise and fall time requirements at low speeds. Two-phase operation is specified for supply voltages up to 15 volts. Clock input capacitance is only \(50 \mathrm{pF} /\) phase. The clock-mode signal (CM) must be high for two-phase operation. The single-phase-clock input has an internal pull-down device which is activated when CM is high and may be left unconnected in two-phase operation.

The logic level present at the data input is transferred into the first stage and shifted one stage at each positive-going clock transition for single-phase operation, and at the positive-going transition of \(\mathrm{CL}_{1}\) for two-phase operation.

These devices are electrically and mechanically identical with standard COS/MOS CD4062A types described in data bulletin 816 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types in the CD4062A "Slash" (/) Series can be supplied to six screening levels \(-/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3, / 4-\) which correspond to MIL-STD-883 Classes " A ", " B ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).
- Low power dissipation \(0.3 \mathrm{~mW} / \mathrm{bit}\) at 1 MHz and 10 V \(0.04 \mathrm{~mW} / \mathrm{bit}\) at 0.5 MHz and 5 V (alternating 1-0 data pattern)
- Data output TTL-DTL compatible
- Recirculating capability
- Delayed two-phase clock outputs available for cascading registers
- Asynchronous ripple-type presettable to all 1's or 0's
- Ultra-low-power-dissipation standby operation

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Sories Types".

The CD4062A "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages ("D" suffix), in 16-lead ceramic flat packages ("K" suffix), or in chip form ("H" suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

Storage-temperature range. -65 to \(+150^{\circ} \mathrm{C}\)
OPERATING-TEMPERATURE RANGE. -55 to \(+125^{\circ} \mathrm{C}\)
DC SUPPLY-VOLTAGE RANGE (VD \(\left.V_{\text {SS }}\right) \ldots .\).
DEVICE DISSIPATION (PER PACKAGE) 200 mW

LEAD TEMPERATURE (DURING SOLDERING):
AT DISTANCE \(1 / 16 \pm 1 / 32 \mathrm{IN}\). (\(1.59 \pm 0.79 \mathrm{MM}\)) FROM CASE FOR 10 S MAX.
\(265^{\circ} \mathrm{C}\)

\section*{RECOMMENDED OPERATING CONDITIONS}

DC SUPPLY VOLTAGE (\(V_{D D}{ }^{-V_{S S}}\)): SINGLE-PHASE CLOCK
3 to 10 V
TWO-PHASE CLOCK
3 to 15 V
INPUT VOLTAGE SWING \(\ldots \ldots . \ldots V_{D D}\) to \(V_{S S}\)

Fig. 2-Clock circuit logic diagram.

STATIC ELECTRICAL CHARACTERISTICS, All Inputs.
Recommended DC Supply Voltage (\(\mathbf{V D D}^{-V_{S S}}\). 3 to 15 V

\footnotetext{
* Maximum power dissipation rating \(\leqslant 200 \mathrm{~mW}\).

Limits with black dot (\({ }^{(}\)) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.
Note 3: Test on all inputs and outputs.
}

DYNAMIC CHARACTERISTICS AT \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\), Input \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}\), except \(\mathrm{t}_{\mathrm{t}} \mathrm{CL}\) and \(\mathrm{t}_{\mathrm{f}} \mathrm{CL}\)
Single-Phase-Clock Operation; Clock Mode (CM) = Low; \(\mathbf{3 V} \leqslant \mathrm{V}_{\mathrm{DD}} \leqslant 10 \mathrm{~V}\) (See Figure 3)

\footnotetext{
** If more than one unit is cascaded in single-phase parallel clocked application, \(\mathrm{t}_{\mathrm{r}} \mathrm{CL}\) should be made less than or equal to the sum of the propagation delay at 15 pF , and the transition time of the output driving stage. (See Figs. 5 and 7 for cascading options.)
4 Use of delayed clock permits high-speed logic to precede CD4062A register (see cascade register operation).
NOTE: Test is either several inputs or several outputs. .
}

File No. 851

Two-Phase Clock Operation \(\left(C L_{1}, C L_{2}\right)\); Clock Mode \((C M)=\) High; \(3 V \leqslant V_{D D} \leqslant 15 V\). See Figure 4.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{CHARACTERISTIC} & \multirow{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} & \multirow[t]{2}{*}{\begin{tabular}{l}
FIG. \\
NO.
\end{tabular}} \\
\hline & & & \[
\underset{\mathbf{V}}{\mathrm{V}_{\mathrm{DD}}}
\] & MIN. & TYP. & MAX. & & \\
\hline \multirow[t]{2}{*}{Maximum Clock Frequency} & \multirow[b]{2}{*}{\({ }^{\mathrm{f}} \mathrm{CL}\)} & & 5 & 1.25 & 2.5 & - & \multirow[b]{2}{*}{MHz} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & 2.5 & 5 & - & & \\
\hline \multirow[t]{2}{*}{Minimum Clock Frequency} & \multirow[b]{2}{*}{\({ }^{\text {f }} \mathrm{CL}\)} & & 5 & 150 & 10 & - & \multirow[b]{2}{*}{Hz} & \multirow[b]{2}{*}{-} \\
\hline & & & 10 & 150 & 10 & - & & \\
\hline & & & & 40 & - & - & ns & - \\
\hline Average Input Capacitance
\[
\mathrm{CL}_{1}, \mathrm{CL}_{2}
\] & \(C_{1}\) & & & - & 50 & - & pF & - \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Propagation Delays } \\
& \mathrm{CL}_{1} \text { to } \mathrm{Q} \\
& \hline \mathrm{CL}_{1} \text { to } \mathrm{CL}_{1 \mathrm{D}} \\
& \mathrm{CL}_{2} \text { to } \mathrm{CL} \mathrm{~L}_{2 \mathrm{D}} \\
& \hline
\end{aligned}
\]} & \multirow{4}{*}{\[
\begin{aligned}
& t_{\mathrm{PHL}}, \\
& { }^{\mathrm{t} P L H}
\end{aligned}
\]} & & 5 & - & 250 & 500 & \multirow{4}{*}{ns} & \multirow{4}{*}{-} \\
\hline & & & 10 & - & 100 & 200 & & \\
\hline & & & 5 & - & 250 & 500 & & \\
\hline & & & 10 & - & 100 & 200 & & \\
\hline Data Set-Up Time
\[
\mathrm{CL}_{2}
\] & \multirow[b]{2}{*}{\({ }^{\text {t }} \mathrm{SU}\)} & & 5 & 300 & 150 & - & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & 100 & 50 & & & \\
\hline Data Hold Time & \multirow[b]{2}{*}{\({ }^{\text {tHOLD }}\)} & & 5 & 0 & - & - & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{-} \\
\hline & & & 10 & 0 & - & - & & \\
\hline Clock Rise and Fall Times & \[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}} \mathrm{CL}_{1}, \mathrm{CL}_{2} \\
& \mathrm{t}_{\mathrm{f}} \mathrm{CL}_{1}, \mathrm{CL}_{2}
\end{aligned}
\] & & \multicolumn{4}{|r|}{No Restrictions If Clock Overlap Requirement Is Met} & & \\
\hline
\end{tabular}

Fig. 3-Timing diagram-single-phase clock.

92CS-22703
Fig. 4-Timing diagram-two-phase clock.

Fig. 5 - Typical n-channel drain characteristics for \(Q\) output.

Fig. 7 - Typical transition time vs. \(C_{L}\) for data outputs.

Fig. 9 - Typical power dissipation vs. frequency.

Fig. 6 - Typical p-channel drain characteristics for \(Q\) output.

Fig. 8 - Typical transition time vs. \(C_{L}\) for delayed clock output.

92CS-24667
Fig. 10 - Minimum shift frequency vs. ambient temperature.

Fig. 11 - Quiescent device current.

Fig. 12 - Noise immunity.

\section*{CD4062AT \\ TERMINAL DIAGRAM}

92CS-22693

CD4062AK
TERMINAL DIAGRAM

CLI = PHASE 1 OF 2-PHASE CLOCK
CLID \(=\) DELAYED CLI
\(\mathrm{CL}_{2}\) = PHASE 2 OF 2-PHASE CLOCK
\(C L_{2 D}=\) DELAYED CL2
92CS-22694

Solid State Division

Digital Integrated Circuits
Monolithic Silicon High-Reliability Slash (/) Series CD4063B/. . .

\title{
High-Reliability COS/MOS 4-Bit Magnitude Comparator
}

For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment

\section*{Features:}
- Standard B-series output drive
- Expansion to 8, \(16 \ldots 4 \mathrm{~N}\) bits by cascading units
- Medium-speed operation: compares two 4-bit words in \(\mathbf{2 5 0} \mathrm{ns}\) (typ.) at 10 V Applications:
- Servo motor controls
- Process controllers

The RCA-CD4063B Slash (/) Series types are low-power 4-bit magnitude comparators designed for use in computer and logic applications that require the comparison of two 4 -bit words. This logic circuit determines whether one 4-bit word (Binary or BCD) is "less than", "equal to", or greater than" a second 4-bit word.

The CD4063B has eight comparing inputs (\(A 3, B 3\), through \(A 0, B 0)\), three outputs \((A<B, A=B, A>B)\) and three cascading inputs \((A<B, A=B, A>B)\) that permit systems designers to expand the comparator function to \(8,12,16 \ldots 4 \mathrm{~N}\) bits. When a single CD4063B is used, the cascading inputs are connected as follows: \((A<B)=\) low, \((A=B)=\) high, \((A>B)=\) low.

For words longer than 4 bits, CD4063B devices may be cascaded by connecting the outputs of the less-significant comparator to the corresponding cascading inputs of the moresignificant comparator. Cascading inputs \((A<B, A=B\), and \(A>B\)) on the least significant comparator are connected to a low, a high, and a low level, respectively.

All outputs have equal source- and sink-current capabilities and conform to standard B-series output drive (see Static Electrical Characteristics).

These devices are electrically and mechanically identical with standard COS/MOS CD4063B types described in data bulletin 805 and DATABOOK SSD-203 Series, but are specially pro-

TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{INPUTS} & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{OUTPUTS}} \\
\hline \multicolumn{4}{|c|}{COMPARING} & \multicolumn{3}{|c|}{CASCADING} & & & \\
\hline A3, B3 & A2, B2 & A1, B1 & A0, B0 & A<B & A \(=\mathrm{B}\) & A \(>\) B & A<B & \(A=B\) & A \(>\) B \\
\hline A3 \(>\) B3 & X & X & X & X & X & X & 0 & 0 & 1 \\
\hline \(A 3=B 3\) & \(A 2>B 2\) & X & \(x\) & X & X & \(x\) & 0 & 0 & 1 \\
\hline \(A 3=B 3\) & \(\mathrm{A} 2=\mathrm{B} 2\) & A1>B1 & \(x\) & X & \(x\) & X & 0 & 0 & 1 \\
\hline \(\mathrm{A} 3=\mathrm{B} 3\) & \(\mathrm{A} 2=\mathrm{B} 2\) & \(\mathrm{A} 1=\mathrm{B} 1\) & \(A 0>B 0\) & X & X & X & 0 & 0 & 1 \\
\hline \(\mathrm{A} 3=\mathrm{B} 3\) & \(\mathrm{A} 2=\mathrm{B} 2\) & \(\mathrm{A} 1=\mathrm{B} 1\) & \(A 0=B 0\) & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline \(A 3=B 3\) & \(\mathrm{A} 2=\mathrm{B} 2\) & \(A 1=B 1\) & \(A 0=B 0\) & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline \(\mathrm{A} 3=\mathrm{B} 3\) & \(\mathrm{A} 2=\mathrm{B} 2\) & \(\mathrm{A} 1=\mathrm{B} 1\) & \(A 0=B 0\) & 1 & 0 & 0 & 1 & 0 & 0 \\
\hline \(\mathrm{A} 3=\mathrm{B} 3\) & \(\mathrm{A} 2=\mathrm{B} 2\) & \(\mathrm{A} 1=\mathrm{B} 1\) & A0<B0 & X & X & X & 1 & 0 & 0 \\
\hline \(A 3=B 3\) & \(\mathrm{A} 2=\mathrm{B} 2\) & A \(1<B 1\) & X & \(x\) & \(x\) & \(x\) & 1 & 0 & 0 \\
\hline \(A 3=B 3\) & \(\mathrm{A} 2<\mathrm{B} 2\) & X & x & \(x\) & \(x\) & x & 1 & 0 & 0 \\
\hline A3< B3 & X & X & X & X & X & X & 1 & 0 & 0 \\
\hline
\end{tabular}

\footnotetext{
X = Don't Care
\(1 \equiv\) High State
\(0 \equiv\) Low State
}
cessed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD. 883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4063B "Slash" (/) Series types are supplied in 16-lead dual-in-line ceramic packages (" \(D\) " suffix), in 16-lead ceramic flat packages (" K " suffix), or in chip form (" H " suffix).

\section*{STATIC ELECTRICAL CHARACTERISTICS}

Limits with black dot (\({ }^{(\bullet)}\) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types". Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test all inputs and outputs to truth table.
Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\), Input \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}\), and \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS* & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \[
\begin{array}{|c}
V_{D D} \\
\text { Volts }
\end{array}
\] & Typ. & Max. & \\
\hline Propagation Delay Time: Comparing Inputs to Outputs & \[
\begin{aligned}
& \text { tPHL }^{\prime} \\
& \text { tpLL }^{\prime}
\end{aligned}
\] & 5
10
15 & \[
\begin{aligned}
& 625 \\
& 250 \\
& 175 \\
& \hline
\end{aligned}
\] & 1250
500
- & \multirow{2}{*}{ns} \\
\hline Cascading Inputs to Outputs & \({ }^{\text {tpHL. }}\) \({ }^{\text {tpLH}}\) & 5
10
15 & \[
\begin{aligned}
& 500 \\
& 200 \\
& 140
\end{aligned}
\] & \[
\begin{array}{r}
1000^{\circ} \\
400^{\circ}
\end{array}
\]
\[
-
\] & \\
\hline Transition Time & \begin{tabular}{l}
\({ }^{\mathrm{t}}\) THL \\
\({ }^{t}\) TLH
\end{tabular} & 5
10
15 & 100
50
40 & \[
\begin{gathered}
200^{\circ} \\
100^{\circ} \\
80
\end{gathered}
\] & ns \\
\hline Average Input Capacitance & \(\mathrm{C}_{1}\) & Any Input & 5 & - & pF \\
\hline
\end{tabular}

Limits with black dot (\({ }^{(\ominus)}\) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
* Tests are either several inputs or several outputs.

\section*{maximum ratings, absolute-Maximum Values:}

STORAGE-TEMPERATURE RANGE.
-65 to \(+150^{\circ} \mathrm{C}\)
OPERATING-TEMPERATURE RANGE -55 to \(+125^{\circ} \mathrm{C}\)
DC SUPPLY-VOLTAGE RANGE

DEVICE DISSIPATION (PER PACKAGE) 200 mW
LEAD TEMPERATURE (DURING SOLDERING):
At distance \(1 / 16 \pm 1 / 32\) inch (\(1.59 \pm 0.79 \mathrm{~mm}\))
from case for 10 seconds max. \(265^{\circ} \mathrm{C}\)
* All voltage values are referenced to \(\mathrm{V}_{\mathrm{SS}}\) terminal.

OPERATING CONDITIONS AT \(\mathbf{T}_{A}=\mathbf{2 5}^{\circ} \mathrm{C}\)
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & \(\mathrm{V}_{\mathrm{DD}}\) & Min. & Max. & Units & Fig. \\
\hline Supply Voltage Range & - & 3 & 18 & V & - \\
\hline Input Voltage Swing & - & \(0.2 \mathrm{~V}_{\mathrm{DD}}\) & -0.5 V & V & - \\
(Recommended \(\mathrm{V}_{\mathrm{SS}}\) to \(\mathrm{V}_{\mathrm{DD}}{ }^{\prime}\) & & \begin{tabular}{c}
to \\
\(0.8 \mathrm{~V}_{\mathrm{DD}}\) \\
(Any one \\
input)
\end{tabular} & \begin{tabular}{c}
DDD \\
0.5 V
\end{tabular} & & \\
\hline
\end{tabular}

Fig. 1-Minimum output-N-channel drain characteristics.
\(\left.\begin{array}{cc}B 3-10 & 16-V_{D D} \\ (A<B)_{I N}-2 & 15\end{array}\right)\)

TERMINAL ASSIGNMENT
CD4063B

DRAIN - TO-SOURCE VOLTAGE (\(\mathrm{V}_{\mathrm{DS}}\))-V

92C5-24321
Fig. 2-Minimum output-P-channel drain characteristics.

Fig. 3-Logic diagram CD4063B.

\(t_{\mathrm{P}}\) TOTAL \(=\mathrm{t}_{\mathrm{p}}\binom{\) COMPARE }{ INPUTS }\(+2 \times \mathrm{t}_{\mathrm{p}}\binom{\) CASCADE }{ INPUTS }, AT \(C_{\mathrm{L}}=15 \mathrm{pF}\) (each output), \(\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}\) (3 STAGES)
\[
=250+2 \times(200)=650 \mathrm{~ns}(\text { TYP. })
\]

Fig. 4-Typical speed characteristics of a 12-bit comparator.

Fig. 5-Typical propagation delay time vs. load capacitance.

Fig. 6-Typical propagation delay time vs. supply voltage ("comparing inputs" to outputs).

Fig. 7-Typical transition time vs. load capacitance.

Fig. 8-Typical dynamic power dissipation characteristics.

92CS-24520
Fig. 11-Dynamic power dissipation test circuit.

\title{
High-Reliability COS/MOS Quad Bilateral Switch
}

For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment

\section*{Special Features:}
- 15-V digital or \(\pm 7.5-\mathrm{V}\) peak-to-peak switching
- 80- \(\Omega\) typical ON resistance for \(15-\mathrm{V}\) operation
- Switch ON resistance matched to within \(5 \Omega\) over 15-V signal-input range
- ON resistance flat over full peak-to-peak signal range

The RCA-CD4066A Slash (/) Series is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with RCA-CD4016A, but exhibits much lower ON resistance. In addition, ON resistance is relatively constant over the full input-signal range.

The CD4066A consists of four independent bilateral switches. A single control signal is required per switch. Both the \(p\) and the n device in a given switch are biased ON or OFF simultaneously by the control signal. As shown in Fig. 1, the well of the \(n\)-channel device on each switch is either tied to the input when the switch is ON or to \(\mathrm{V}_{\mathrm{SS}}\) when the switch is OFF. This configuration minimizes the variation of the switchtransistor threshold voltage with input signal, and thus keeps the ON resistance low over the full operating-signal range.
The advantages over single-channel switches include peak input-signal voltage swings equal to the full supply voltage, and more constant ON impedance over the input-signal range. For sample-and-hold applications, however, the CD4016A is recommended.

Fig. 1-Schematic diagram of 1 of 4 identical switches and its associated control circuitry.
- High ON/OFF output-voltage ratio: 65 dB typ. \(@ f_{i s}=10 \mathrm{kHz}, R_{\mathrm{L}}=10 \mathrm{k} \Omega\)
- High degree of linearity: \(<0.5 \%\) distortion typ. @f \(\mathrm{fis}=1 \mathrm{kHz}\) \(V_{\text {is }}=5 V_{\text {p-p, }}, V_{D D}-V_{S S} \geqslant 10 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega\)
- Extremely low OFF switch leakage resulting in very low offset current and high effective OFF resistance:
\[
10 \mathrm{pA} \text { typ. } @ V_{D D}-V_{S S}=10 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}
\]
- Extremely high control input impedance (control circuit isolated from signal circuit): \(1012 \Omega\) typ.
- Low crosstalk between switches:
-50 dB typ. @ \(\mathrm{f}_{\text {is }}=0.9 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\)
- Matched control-input to signal-output capacitance:

Reduces output signal transients
- Frequency response, switch \(\mathrm{ON}=40 \mathrm{MHz}\) (typ.)

\section*{Applications:}
- Analog signal switching/multiplexing

Signal gating
Squelch control Chopper

Modulator
Demodulator Commutating switch
- Digital signal switching/Multiplexing
- Transmission-gate logic implementation
- Analog-to-digital \& digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain

These devices are electrically and mechanically identical with standard COS/MOS CD4066A types described in data bulletin 769 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.
The packaged types in the CD4066A "Slash" (/) Series can be supplied to six screening levels \(-/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3, / 4-\) which correspond to MIL.STD-883 Classes "A", "B", and " C ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and /R.

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to "High-Reliability Report RIC-102C "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4066A "Slash" (/) Series types are supplied in 14-lead dual-in-line ceramic packages ("D" suffix), in 14-lead ceramic flat packages (" K " suffix), or in chip form (' H " suffix).

STATIC ELECTRICAL CHARACTERISTICS, All Inputs.
\(\mathbf{V}_{\mathbf{S S}} \leqslant \mathrm{V}_{\mathbf{1}} \leqslant \mathrm{V}_{\mathrm{DD}}\)
Recommended DC Supply Voltage (VDD \(^{-V_{S S}}\)) 3 to 15 V

Limits with black dot (\(\bullet\)) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types.', Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test, all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.
Note 3: Test on all inputs and outputs.

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
 DC SUPPLY VOLTAGES:
\[
\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}} \text {. }-0.5 \text { to }+15 \mathrm{~V}
\]

ALL SIGNAL AND DIGITAL CONTROL INPUTS . \(\mathrm{V}_{S S} \leqslant \mathrm{~V}_{1} \leqslant \mathrm{~V}_{\mathrm{DD}}\)
MINIMUM RECOMMENDED POWER SUPPLY VOLTAGES
\(V_{D D}-V_{S S} ; V_{D D}-V_{E E}\).
LEAD TEMPERATURE (DURING SOLDERING) :

\section*{SPECIAL CONSIDERATIONS - CD4066A}
1. In applications wiere separate power sources are used to drive \(V_{D D}\) and the signal inputs, the \(V_{D D}\) current capability should exceed \(V_{D D} / R_{L}\) (\(R_{L}=\) effective external load of the 4 CD4066A bilateral switches). This provision avoids any permanent current flow or clamp action on the \(V_{D D}\) supply when power is applied or removed from CD4066A
2. In certain applications, the external load-resistor current may include both VDD and signal-line components. To avoid drawing \(V_{D D}\) current when switch current flows into terminals \(1,4,8\), or 11 , the voltage drop across the bidirectional switch must not exceed 0.8 volt (calculated from \(\mathrm{R}_{\mathrm{ON}}\) values shown).
No \(V_{D D}\) current will flow through \(R_{L}\) if the switch current flows into terminals \(2,3,9\), or 10 . Failure to observe this condition may result in distortion of the signal.

ELECTRICAL CHARACTERISTICS, All Inputs. V \(V_{S S} \leqslant V_{1} \leqslant V_{D D}\)
Recommended DC Supply Voltage (\(\mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{SS}}\)) 3 to 15 V

* Limit determined by minimum feasible leakage measurement for automatic testing.

A Symmetrical about 0 volts.
Limits with black dot (ब) designate 100\% testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

\section*{ELECTRICAL CHARACTERISTICS (All inputs . \(\left.\mathrm{V}_{\mathrm{SS}} \leqslant \mathrm{V}_{\mathrm{I}} \leqslant \mathrm{V}_{\mathrm{DD}}\right)\) \\ (Recommended DC Supply Voltage (VDD-VSS」 3 to 15 V)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|r|}{\multirow{3}{*}{TEST CONDITIONS}} & \multicolumn{5}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} \\
\hline & & & & \(-55^{\circ} \mathrm{C}\) & & \(25^{\circ} \mathrm{C}\) & & \(125^{\circ} \mathrm{C}\) & \\
\hline & & & & Min. & Min. & Typ. & Max. & Min. & \\
\hline Frequency ResponseSwitch ON (Sine Wave Input) & & \multirow[t]{2}{*}{\[
\begin{aligned}
& R_{L}=1 \mathrm{k} \Omega \\
& V_{i s}=5 \mathrm{~V}(p-p)
\end{aligned}
\]} & \[
\begin{gathered}
=V_{D D}=+5 \mathrm{~V} V_{S S}=-5 \mathrm{~V} \\
20 \log _{10} \frac{V_{\text {OS }}}{V_{\text {is }}}=-3 \mathrm{~dB}
\end{gathered}
\] & - & - & 40 & - & - & MHz \\
\hline Feedthrough Switch OFF & & & \[
\begin{gathered}
V_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=V_{S S}=-5 \mathrm{~V} \\
20 \log _{10} \frac{V_{O S}}{V_{\text {is }}}=-50 \mathrm{~dB}
\end{gathered}
\] & - & - & 1.25 & - & - & MHz \\
\hline Crosstalk Between any 2 of the 4 switches (Frequency at \(\mathbf{- 5 0 ~ d B}\) & & \[
\begin{gathered}
R_{L}=1 \mathrm{~K} \Omega \\
V_{\text {is }}(A)= \\
5 \vee(p-p)
\end{gathered}
\] & \[
\begin{gathered}
A)=V_{D D}=+5 \mathrm{~V} \\
V_{C}(B)=V_{S S}=-5 \mathrm{~V} \\
\mathrm{og}_{10} \quad \frac{V_{\text {OS }}(B)}{V_{\text {is }}(A)}=-50 \mathrm{~dB}
\end{gathered}
\] & - & - & 0.9 & - & - & MHz \\
\hline \multirow[t]{3}{*}{Capacitance \(\frac{\text { Input }}{\frac{\text { Output }}{\text { Feedthrough }}}\)} & \(\mathrm{c}_{\text {IS }}\) & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\text {SS }}=-5 \mathrm{~V}\)}} & - & - & 8 & - & - & \multirow{3}{*}{pF} \\
\hline & \(\mathrm{cos}^{\text {}}\) & & & - & - & 8 & - & - & \\
\hline & \(\mathrm{cios}^{\text {che }}\) & & & - & - & 0.5 & - & - & \\
\hline Propagation Delay* Signal Input to Signal Output & \({ }^{t} \mathrm{pd}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C}=V_{D D}=+10 \mathrm{~V}, V_{S S}=G N D, C_{L}=1.5 \mathrm{pF} \\
& V_{\text {is }}=10 \mathrm{~V} \text { (square wave) } \\
& t_{\mathrm{r}}=t_{\mathrm{f}}=20 \text { ns (input signal) }
\end{aligned}
\]} & - & - & 10 & \(20 \bullet\) & - & ns \\
\hline \multicolumn{10}{|l|}{Control (\(\mathrm{V}_{\mathbf{c}}\))} \\
\hline Noise Immunity & \(\mathrm{V}_{\mathrm{NL}}\) & \multirow[b]{2}{*}{\(v_{\text {is }} \leqslant v_{\text {DD }}\)} & \[
\begin{aligned}
& -V_{S S}=10 \mathrm{~V} \\
& \mathrm{I}_{\text {is }}=10 \mu \mathrm{~A}
\end{aligned}
\] & 2 & 2 & 4.5 & - & 2 & v \\
\hline Input Current & IC & & \[
\begin{aligned}
& -v_{S S}=10 \mathrm{~V} \\
& v_{D D}-v_{S S}
\end{aligned}
\] & - & - & \(\pm 10\) & - & - & pA \\
\hline Average Input Capacitance & \(\mathrm{C}_{\mathrm{C}}\) & & & - & - & 5 & - & - & pF \\
\hline \begin{tabular}{l}
Crosstalk \\
Control Input to Signal Output
\end{tabular} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{C}}=10 \mathrm{~V} \\
& \text { (square wave) } \\
& t_{\mathrm{rc}}=\mathrm{t}_{\mathrm{fc}}=20 \mathrm{~ns}
\end{aligned}
\]} & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & - & - & 50 & - & - & mV \\
\hline Propagation Delays* & \({ }^{\text {tpd }}\) C & & \[
\begin{aligned}
R_{L} & =300 \Omega \\
v_{i s} \leqslant 10 \mathrm{~V}, C_{L} & =15 \mathrm{pF}
\end{aligned}
\] & - & - & 35 & \(90 \bullet\) & - & ns \\
\hline \begin{tabular}{l}
Maximum Allowable \\
Control Input \\
Repetition Rate
\end{tabular} & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{L}}=15 \mathrm{pf} \\
& \mathrm{~V}_{\mathrm{C}}=10 \mathrm{~V} \text { (square wave) } \\
& \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}
\end{aligned}
\]} & - & - & 10 & - & - & MHz \\
\hline
\end{tabular}
* Test is a one input or one output only.

Limits with black dot \({ }^{(\ominus)}\) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Fig. 2 (a) - Typical channel ON resistance vs. signal voltage for three values of supply voltage (\(V_{D D}-V_{S S}\)).

Fig. 2 (b) - Typical channel ON resistance vs. signal voltage with supply voltage (\(V_{D D}-V_{S S}\)) \(=5 \mathrm{~V}\).

Fig. 2 (c) - Typical channel ON resistance vs. signal voltage with supply voltage \(\left(V_{D D}-V_{S S}\right)=10 \mathrm{~V}\).

92CS-22716
Fig. 3 - Channel ON resistance measurement circuit.

Fig. 2 (d) - Typical channel ON resistance vs. signal voltage with supply voltage \(\left(V_{D D}-V_{S S}\right)=15 \mathrm{~V}\).

Fig. 4 - Typical ON characteristics for 1 of 4 channels.

\section*{TEST CIRCUITS}

Fig. 5 - Capacitance.

ALL UNUSED TERMINALS
ARE CONNECTED TO VSS.

Fig. 6 - OFF switch input or output leakage

\section*{TEST CIRCUITS (Cont'd)}

ALL UNUSED INPUTS ARE CONNECTED TO VSS.
\[
92 \mathrm{CS}-23920
\]

Fig. 7 - Propagation delay time signal input (VIS) to signal output (VOS).

all unused terminals are connected to vss.
92Cs-23922

Fig. 9 - Propagation delay tPLH, tPHL control-signal output.

ALL UNUSED TERMINALS ARE CONNECTED TO VSS.

92Cs-23921

Fig. 8 - Crosstalk-control input to signal output.

Fig. 10 - Maximum allowable control input repetition rate.

Fig. 11 - Power dissipation per package vs switching frequency.

Fig. 12 - Bidirectional signal transmission via digital control logic.

\title{
High－Reliability COS／MOS 8－Input RAAD Gate
}

\author{
For Logic Systems Applications in Aerospace， Military，and Critical Industrial Equipment
}

\section*{Features：}
－Medium－Speed Operation－tpHL \(=130 \mathrm{~ns}, \mathrm{t}_{\mathrm{t}} \mathrm{CH}=100 \mathrm{~ns}\)（typ．）at 10 V
－Standard B－Series Output Drive

The RCA－CD4068B＂Slash＂（／）Series NAND gates provide the system designer with direct implementation of the positive－ logic 8 －input NAND function and supplement the existing family of COS／MOS gates．These devices have equal source－and sink－current capabilities and conform to standard B－series out－ put drive（see Static Electrical Characteristics）．

These devices are electrically and mechanically identical with standard COS／MOS CD4068B types described in data bulletin 809 and DATABOOK SSD－203 Series，but are specially pro－ cessed and tested to meet the electrical，mechanical，and environmental test methods and procedures established for microelectronic devices in MIL－STD－883．

The packaged types can be supplied to six screening levels－ ／1N，／1R，／1，／2，／3，／4－which correspond to MIL－STD－883 Classes＂\(A\)＂，＂\(B\)＂，and＂\(C\)＂．The chip versions of these types can be supplied to three screening levels \(-/ M, / N\) ，and \(/ R\) ．

For a description of these screening levels and for detailed information on test methods，procedures，and test sequence employed with high－reliability COS／MOS devices refer to High－Reliability Report RIC－102C，＂High－Reliability COS／ MOS CD4000A＂Slash＂（／）Series Types＂．

The CD4068B＂Slash＂（／）Series types are supplied in 14－lead dual－in－line ceramic packages（＂\(D\)＂suffix），in 14－lead ceramic flat packages（＂K＂suffix），or in chip form（＂H＂suffix）．

MAXIMUM RATINGS，Absolute－Maximum Values：
STORAGE－TEMPERATURE RANGE．．．．．．．．．．．．．-65 to \(+150^{\circ} \mathrm{C}\) OPERATING－TEMPERATURE RANGE．．．．．．．．．．．．．-55 to \(+125^{\circ} \mathrm{C}\) DC SUPPLY－VOLTAGE RANGE
\(V_{D D}\) ．．． 0.5 to +18 V
DEVICE DISSIPATION（PER PACKAGE）．．．．．．．．．．．．．．．．． 200 mW
LEAD TEMPERATURE（DURING SOLDERING）：
At distance \(1 / 16 \pm 1 / 32\) inch（ \(1.59 \pm 0.79 \mathrm{~mm}\) ） from case for 10 seconds max．
\(265^{\circ} \mathrm{C}\)
＊All voltage values are referenced to \(\mathrm{V}_{\text {SS }}\) terminal．

OPERATING CONDITIONS AT TA \(=25^{\circ} \mathrm{C}\)
For maximum reliability，nominal operating conditions should be selected so that operation is always within the following ranges．
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & \(\mathrm{V}_{\mathrm{DD}}\) & Min． & Max． & Units & Fig． \\
\hline Supply Voltage Range & － & 3 & 18 & V & － \\
\hline Input Voltage Swing （Recommended \(\mathrm{V}_{\mathrm{SS}}\) to \(\mathrm{V}_{\mathrm{DD}}\) ） & － & \[
\begin{gathered}
0.2 \mathrm{~V}_{\mathrm{DD}} \\
\text { to } \\
0.8 \mathrm{~V}_{\mathrm{DD}} \\
\text { (Any one } \\
\text { input) }
\end{gathered}
\] & \[
\begin{gathered}
-0.5 \mathrm{~V} \\
\text { to } \\
\mathrm{V}_{\mathrm{DD}}+ \\
0.5 \mathrm{~V}
\end{gathered}
\] & V & － \\
\hline
\end{tabular}

STATIC ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{CHARACTERISTIC} & \multirow[t]{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{7}{|c|}{LIMITS} & \multirow[t]{3}{*}{UNITS} \\
\hline & & \[
\mathrm{v}_{\mathrm{o}}
\] & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \mathrm{v}_{\mathrm{DD}} \\
\mathrm{v} \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & \\
\hline & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & \\
\hline \multirow[t]{3}{*}{Quiescent Device \({ }^{1}\) Current} & \multirow{3}{*}{\(I_{L}\)} & & 5 & - & 0.5 & - & 0.01 & 0.5 & - & 30 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & 10 & - & \(1{ }^{\circ}\) & - & 0.01 & \(1{ }^{\bullet}\) & - & \(20^{\circ}\) & \\
\hline & & & 15 & - & - & - & 0.01 & - & - & - & \\
\hline \multirow{4}{*}{Output Voltage: 1 Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & \(0.55{ }^{\bullet}\) & - & - & \(0.5{ }^{\circ}\) & - & - & \multirow{8}{*}{V} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 15 & - & - & - & 0 & \(0.5{ }^{\circ}\) & - & \(0.55^{\circ}\) & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multirow[t]{4}{*}{} & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\circ}\) & - & - & - & - & \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & 15 & - & \(14.45^{\circ}\) & - & \\
\hline Threshold Voltage \({ }^{2}\) N -Channel & \(\mathrm{V} \mathrm{H}^{\mathrm{N}}\) & \(\mathrm{I}_{\mathrm{D}}=-20 \mu \mathrm{~A}\) & & \(-0.7^{\bullet}\) & \(-3^{\bullet}\) & \(-0.7^{\bullet}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3{ }^{\bullet}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{V} \\
\hline P-Channel & \(\mathrm{V}_{\dot{\mathrm{j}} \mathrm{H}^{P}}\) & \({ }^{\prime} \mathrm{D}=20 \mu \mathrm{~A}\) & & \(0.7{ }^{\bullet}\) & \(3^{\bullet}\) & \(0.7{ }^{\bullet}\) & 1.5 & \(3^{\bullet}\) & \(0.3^{\bullet}\) & \(3^{\bullet}\) & \\
\hline \multirow{6}{*}{Noise Immunity \({ }^{1}\)} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & 4.2 & 5 & 1.5 & - & \(1.5{ }^{\bullet}\) & 2.25 & - & 1.4 & - & \multirow{6}{*}{V} \\
\hline & & 9 & 10 & \(3^{\circ}\) & - & \(3^{\bullet}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & \\
\hline & & 13.5 & 15 & - & - & - & 6.75 & - & - & - & \\
\hline & \multirow[t]{3}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 0.8 & 5 & 1.4 & - & \(1.5^{\bullet}\) & 2.25 & - & 1.5 & - & \\
\hline & & 1 & 10 & \(2.9{ }^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & \(3^{\circ}\) & - & \\
\hline & & 1.5 & 15 & - & - & - & 6.75 & - & - & - & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Output Drive Current: \({ }^{2}\) \\
N-Channel (Sink)
\end{tabular}} & \multirow{3}{*}{\({ }^{1} \mathrm{DN}\)} & 0.4 & 4.5 & 0.5 & - & \(0.4{ }^{\bullet}\) & 0.8 & - & 0.3 & - & \multirow{3}{*}{mA} \\
\hline & & 0.5 & 10 & 1.1 & - & \(0.9{ }^{\bullet}\) & 1.8 & - & 0.65 & - & \\
\hline & & 1.5 & 15 & - & - & 3 & 6 & - & - & - & \\
\hline \multirow[b]{4}{*}{P-Channel (Source)} & \multirow{4}{*}{\({ }_{1}{ }^{P}\)} & 2.5 & 5 & -2 & - & \(-1.6{ }^{\bullet}\) & -3.2 & - & -1.15 & - & \multirow{4}{*}{mA} \\
\hline & & 4.6 & 5 & -0.5 & - & \(-0.4{ }^{\bullet}\) & -0.8 & - & -0.3 & - & \\
\hline & & 9.5 & 10 & -1.1 & - & \(-0.9^{\bullet}\) & -1.8 & - & -0.65 & - & \\
\hline & & 13.5 & 15 & - & - & -3 & -6 & - & - & - & \\
\hline \[
\begin{aligned}
& \text { Diode Test }{ }^{3} \\
& \quad 100 \mu \mathrm{~A} \text { Test Pin }
\end{aligned}
\] & \(V_{\text {DF }}\) & & & - & \(1.5^{\circ}\) & - & - & \(1.5{ }^{\circ}\) & - & \(1.5^{\bullet}\) & V \\
\hline Input Current & \(1 /\) & - & 15 & - & - & - & \(\pm 10^{-5}\) & \(\pm 1\) & - & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\footnotetext{
Limits with black dot (\({ }^{(\bullet)}\) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
}

Note 1: Complete functional test.all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.
Note 3: Test on all inputs and outputs.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\), Input \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\), and \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS* & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \begin{tabular}{|c|}
\hline\(V_{D D}\) \\
Volts
\end{tabular} & Typ. & Max. & \\
\hline \begin{tabular}{l}
Propagation Delay Time: \\
High-to-Low Level
\end{tabular} & \({ }^{\text {tPHL}}\) & 5
10
15 & \[
\begin{aligned}
& \hline 325 \\
& 130 \\
& 100 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
650^{\circ} \\
260^{\circ} \\
- \\
\hline
\end{gathered}
\] & ns \\
\hline Low-to-High Level & \({ }^{\text {P PLH }}\) & \[
\begin{gathered}
5 \\
10 \\
15
\end{gathered}
\] & \[
\begin{array}{r}
250 \\
100 \\
75 \\
\hline
\end{array}
\] & \[
\begin{gathered}
500^{\circ} \\
200 \\
- \\
\hline
\end{gathered}
\] & ns \\
\hline Transition Time & \begin{tabular}{l}
\({ }^{t}\) THL \\
\({ }^{t}\) TLH
\end{tabular} & 5
10
15 & \[
\begin{array}{r}
100 \\
50 \\
40
\end{array}
\] & \[
\begin{gathered}
200^{\circ} \\
100^{\circ} \\
80
\end{gathered}
\] & ns \\
\hline Average Input Capacitance & \(\mathrm{C}_{1}\) & Any Input & 5 & - & pF \\
\hline
\end{tabular}

Limits with black dot (0) designate 100\% testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
* Tests are either several inputs or several outputs.

Fig. 1-CD4068B schematic diagram.

Fig.2-Min. and max. voltage transfer characteristics.

Fig.4-Minimum output- \(P\)-channel drain characteristics.

Fig.6-Typical low-to-high level propagation delay time vs. load capacitance.

Fig.3-Minimum output-N-channel drain characteristics.

Fig.5-Typical high-to-low level propagation delay time vs. load capacitance.

Fig.7. Typical propagation delay time vs. supply voltage.

Fig.8-Typical transition time vs. load capacitance.

Fig.9-Typical power dissipation vs. frequency.

Fig. 10-Quiescent device current test circuit.

Fig.11-Noise immunity test circuit.

TERMINAL ASSIGNMENT CD4068B

Digital Integrated Circuits
Solid State
Division

\section*{High－Reliability COS／MOS Hex Inverter}

For Logic Systems Applications in Aerospace， Military，and Critical Industrial Equipment
Features：
－Medium Speed Operation \(-\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}=40 \mathrm{~ns}\)（typ．）at 10 V
－Standard B－Series Output Drive
Applications：
－Logic inversion
－Pulse shaping
－Oscillators

The RCA－CD4069B Slash（／）Series consists of six COS／MOS inverter circuits．All outputs have equal source and sink current capabilities and conform to the standard B－series output drive（see Static Electrical Characteristics）．
This device is intended for all general－purpose inverter appli－ cations where the medium－power TTL－drive and logic－level－ conversion capabilities of circuits such as the CD4009A and CD4049A Hex Inverter／Buffers are not required．

These devices are electrically and mechanically identical with standard COS／MOS CD4069B types described in data bulletin 804 and DATABOOK SSD－ 203 Series，but are specially pro－ cessed and tested to meet the electrical，mechanical，and environmental test methods and procedures established for microelectronic devices in MIL－STD－883．

The packaged types in the CD4069B＂Slash＂（／）Series can be supplied to six screening levels－／1N，／1R，／1，／2，／3，／4－ which correspond to MIL－STD－883 Classes＂\(A\)＂，＂\(B\)＂，and ＂ C ＂．The chip versions of these types can be supplied to three screening levels－／M，\(/ N\) ，and／R．
For a description of these screening levels and for detailed information on test methods，procedures，and test sequence employed with high－reliability COS／MOS devices refer to High－Reliability Report RIC－102C，＂High－Reliability COS／MOS CD4000A＂Slash＂（／）Series Types＂．

The CD4069B＂Slash＂（／）Series types are supplied in 14－lead dual－in－line ceramic packages（＂\(D\)＂suffix），in 14－lead ceramic flat packages（＂ K ＂suffix），or in chip form（＂ H ＂suffix）．

MAXIMUM RATINGS，Absolute－Maximum Values：
STORAGE－TEMPERATURE RANGE．．．．．．．．．．．．．．-65 to \(+150^{\circ} \mathrm{C}\)
OPERATING－TEMPERATURE RANGE ．．．．．．．．．．．-55 to \(+125^{\circ} \mathrm{C}\)
DC SUPPLY－VOLTAGE RANGE
\(V_{D D}{ }^{*}\) ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．-0.5 to +18 V
DEVICE DISSIPATION（PER PACKAGE）．．．．．．．．．．．．．．．． 200 mW
ALL INPUTS．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(V_{S S} \leqslant V_{1} \leqslant V_{D D}\)
LEAD TEMPERATURE（DURING SOLDERING）：
At distance \(1 / 16 \pm 1 / 32\) inch（ \(1.59 \pm 0.79 \mathrm{~mm}\) ） from case for 10 seconds max．
＊All voltage values are referenced to \(V_{S S}\) terminal．
OPERATING CONDITIONS AT \(T_{A}=25^{\circ} \mathrm{C}\)
For maximum reliability，naminal operating conditions should be selected so that operation is always within the following ranges．
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & \(\mathrm{V}_{\text {OD }}\) & Min． & Max． & Units & Fig． \\
\hline Supply Voltage Range & － & 3 & 18 & V & － \\
\hline Input Voltage Swing （Recommended \(V_{S S}\) to \(V_{D D}\) ） & － & \(0.2 V_{\mathrm{DD}}\) to \(0.8 \mathrm{~V}_{\mathrm{DD}}\) （Any one input） & \[
\begin{gathered}
-0.5 \mathrm{~V} \\
\text { to } \\
\mathrm{v}_{\mathrm{DD}}+ \\
0.5 \mathrm{~V}
\end{gathered}
\] & v & － \\
\hline
\end{tabular}

92CS． 23738 Rt

Fig．1－Schematic diagram of one of six identical inverters．

STATIC ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{CHARACTERISTIC} & \multirow{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{7}{|c|}{LIMITS} & \multirow{3}{*}{UNITS} \\
\hline & & \multirow[t]{2}{*}{\[
\begin{gathered}
v_{\mathbf{O}} \\
\mathrm{v}
\end{gathered}
\]} & \multirow[t]{2}{*}{\(V_{D D}\) V} & \multicolumn{2}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|c|}{\(125^{\circ} \mathrm{C}\)} & \\
\hline & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & \\
\hline \multirow[t]{3}{*}{Quiescent Device \({ }^{1}\) Current} & \multirow{3}{*}{\(I_{L}\)} & & 5 & - & 0.5 & - & 0.01 & 0.5 & - & 30 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & 10 & - & \(1{ }^{\text {® }}\) & - & 0.01 & \(1{ }^{\bullet}\) & - & \(20^{\bullet}\) & \\
\hline & & & 15 & - & - & - & 0.01 & - & - & - & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Output Voltage \({ }^{1}\) \\
Low-Level
\end{tabular}} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & \(0.55^{\bullet}\) & - & - & \(0.5{ }^{\bullet}\) & - & - & \multirow{8}{*}{V} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 15 & - & - & - & 0 & \(0.5{ }^{\circ}\) & - & \(0.55^{\circ}\) & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\bullet}\) & - & - & - & - & \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & 15 & - & \(14.45{ }^{\circ}\) & - & \\
\hline Threshold Voltage N-Channel & \(\mathrm{V}_{\mathrm{TH}} \mathrm{N}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{D}}=-20 \mu \mathrm{~A}\)} & \(-0.7^{\circ}\) & \(-3^{\bullet}\) & \(-0.7^{\bullet}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3^{\bullet}\) & \(-3^{\bullet}\) & \multirow[b]{2}{*}{V} \\
\hline P-Channel & \(\mathrm{V}_{\text {TH }}{ }^{\text {P }}\) & \multicolumn{2}{|l|}{\({ }^{\prime} \mathrm{D}=20 \mu \mathrm{~A}\)} & \(0.7{ }^{\circ}\) & \(3^{\bullet}\) & \(0.7{ }^{\bullet}\) & 1.5 & \(3^{\bullet}\) & \(0.3{ }^{\text {® }}\) & \(3^{\bullet}\) & \\
\hline \multirow{6}{*}{Noise Immunity \({ }^{1}\)} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & 3.6 & 5 & 1.5 & - & \(1.5^{\circ}\) & 2.25 & - & 1.4 & - & \multirow{6}{*}{V} \\
\hline & & 7.2 & 10 & \(3^{\bullet}\) & - & \(3^{\bullet}\) & 4.5 & - & \(2.9{ }^{\bullet}\) & - & \\
\hline & & 10.8 & 15 & - & - & - & 6.75 & - & - & - & \\
\hline & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 1.4 & 5 & 1.4 & - & \(1.5{ }^{\bullet}\) & 2.25 & - & 1.5 & - & \\
\hline & & 2.8 & 10 & \(2.9{ }^{\circ}\) & - & \(3{ }^{\bullet}\) & 4.5 & - & \(3^{\circ}\) & - & \\
\hline & & 4.2 & 15 & - & - & - & 6.75 & - & - & - & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Output Drive \({ }^{2}\) Current: \\
N-Channel (Sink)
\end{tabular}} & \multirow{3}{*}{\({ }^{1} \mathrm{D} N\)} & 0.4 & 5 & 0.5 & - & \(0.4{ }^{\text {e }}\) & 0.8 & - & 0.3 & - & \multirow{7}{*}{mA} \\
\hline & & 0.5 & 10 & 1.1 & - & \(0.9{ }^{\bullet}\) & 1.8 & - & 0.65 & - & \\
\hline & & 1.5 & 15 & - & - & 3 & 6 & - & - & - & \\
\hline \multirow{4}{*}{P-Channel (Source)} & \multirow{4}{*}{\({ }_{1}{ }^{P}\)} & 2.5 & 5 & -2 & - & \(-1.6^{\circ}\) & -3.2 & - & -1.15 & - & \\
\hline & & 4.6 & 5 & -0.5 & - & \(-0.4^{\bullet}\) & -0.8 & - & -0.3 & - & \\
\hline & & 9.5 & 10 & -1.1 & - & \(-0.9^{\circ}\) & -1.8 & - & -0.65 & - & \\
\hline & & 13.5 & 15 & - & - & -3 & -6 & - & - & - & \\
\hline \[
\begin{array}{|l|}
\hline \text { Diode Test }{ }^{3} \\
\quad 100 \mu \mathrm{~A} \text { Test Pin } \\
\hline
\end{array}
\] & \(V_{D} F\) & & & - & \(1.5{ }^{\circ}\) & - & - & \(1.5^{\circ}\) & - & \(1.5^{\circ}\) & V \\
\hline Input Current & 1 & & 15 & - & - & - & \(\pm 10^{-5}\) & \(\pm 1\) & - & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Limits with black dot (\(\bullet\)) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash(/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test, all inputs and outputs to truth table.
Note 3: Test on all inputs and outputs.
Note 2: Test is either a one input or a one output only.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\), Input \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}\), and \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS* & \multicolumn{2}{|c|}{LIMITS} & \multirow{2}{*}{UNITS} \\
\hline & & \begin{tabular}{|l|}
\hline VDD \\
Volts
\end{tabular} & Typ. & Max. & \\
\hline Propagation Delay Time: & \begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{PHL}\), \\
tpLH
\end{tabular} & 5
10
15 & 65
40
30 & 125
\(80^{\bullet}\)
- & ns \\
\hline Transition Time & \begin{tabular}{l}
\({ }^{\mathrm{t}}\) THL, \\
\({ }^{t}\) TLH
\end{tabular} & 5
10
15 & 100
50
40 & \[
\begin{gathered}
200^{\circ} \\
100^{\circ} \\
80
\end{gathered}
\] & ns \\
\hline Average Input Capacitance & \(C_{1}\) & Any Input & 5 & - & pF \\
\hline
\end{tabular}

Limits with black dot (e) designate 100\% testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash(/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
*Note: Test is a one input, one output only.

Fig. 2-Min. and max. voltage transfer characteristics.

Fig. 4-Typical current and voltage transfer characteristics.

Fig. 3-Typical voltage transfer characteristics as a function of temperature.

92CS-24319
Fig. 5-Minimum output- \(N\)-channel drain characteristics.

Fig. 6-Minimum output-P-channel drain characteristics.

Fig. 8-Typical propagation delay time vs. supply voltage.

Fig. 7-Typical propagation delay time vs. load capacitance.

Fig. 9-Typical transition time vs. load capacitance.

Fig. 10-Typical dynamic power dissipation.
\(\qquad\)

\section*{TEST CIRCUITS}

Fig. 11-Quiescent device current.

Fig. 12-Noise immunity.

Fig. 13-Dynamic electrical characteristics test circuit and waveforms.

\section*{CD4069B}

TERMINAL ASSIGNMENT

\author{
Digital Integrated Circuits \\ Monolithic Silicon High-Reliability Slash (/) Series CD4071B/. . ., CD4072B/. . ., CD4075B/. . .
}

Solid State Division

\title{
High-Reliability COS/MOS OR Gates
}

For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment

CD4071B Quad 2-Input OR Gate
CD4072B Dual 4-Input OR Gate
CD4075B Triple 3-Input OR Gate

\section*{Features:}
- Medium-Speed Operation \(\mathrm{t}_{\mathrm{PLH}}=\mathbf{7 0} \mathrm{ns}\) (typ.); \(\mathrm{t}_{\mathrm{PHL}}=\mathbf{1 0 0} \mathrm{ns}(\) typ. \()\) at 10 V
- Standard B-Series Output Drive

The RCA-CD4071B, CD4072B, and CD4075B "Slash" (/) Series OR gates provide the system designer with direct implementation of the positive-logic OR function and supplement the existing family of COS/MOS gates. These devices have equal source- and sink-current capabilities and conform to standard B-Series output drive (see Static Electrical Characteristics).

These devices are electrically and mechanically identical with standard COS/MOS CD4071B, CD4072B, CD4075B types described in data bulletin 807 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " A ", " B ", and " C ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4071B, CD4072B, CD4075B "Slash" (/) Series types are supplied in 14 -lead dual-in-line ceramic packages (" \(D\) " suffix), in 14-lead ceramic flat packages ("K" suffix), or in chip form ('"H" suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:
Storage-temperature range. -65 to \(+150^{\circ} \mathrm{C}\)
OPERATING-TEMPERATURE RANGE -55 to \(+125^{\circ} \mathrm{C}\)
DC SUPPLY-VOLTAGE RANGE

DEVICE DISSIPATION (PER PACKAGE) 200 mW
LEAD TEMPERATURE (DURING SOLDERING):
At distance \(1 / 16 \pm 1 / 32\) inch (\(1.59 \pm 0.79 \mathrm{~mm}\)) from case for 10 seconds max.
\(265^{\circ} \mathrm{C}\)
* All voltage values are referenced to \(\mathrm{V}_{\mathrm{SS}}\) terminal.

\section*{OPERATING CONDITIONS AT \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & \(\mathrm{V}_{\text {DD }}\) & Min. & Max. & Units & Fig. \\
\hline Supply Voltage Range & - & 3 & 18 & \(V\) & - \\
\hline Input Voltage Swing (Recommended \(\mathrm{V}_{\mathrm{SS}}\) to \(\mathrm{V}_{\mathrm{DD}}\)) & - & \[
\begin{gathered}
0.2 \mathrm{~V}_{\mathrm{DD}} \\
\text { to } \\
0.8 \mathrm{~V}_{\mathrm{DD}} \\
\left(\begin{array}{c}
\text { Any one } \\
\text { input) }
\end{array}\right.
\end{gathered}
\] & \[
\begin{gathered}
-0.5 \mathrm{~V} \\
\text { to } \\
\mathrm{V}_{\mathrm{DD}}+ \\
0.5 \mathrm{~V}
\end{gathered}
\] & V & - \\
\hline
\end{tabular}

STATIC ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{CHARACTERISTIC} & \multirow[t]{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{7}{|c|}{LIMITS} & \multirow[t]{3}{*}{UNITS} \\
\hline & & \[
v_{0}
\] & \(V_{\text {DD }}\) & & & & \(25^{\circ} \mathrm{C}\) & & 125 & & \\
\hline & & V & V & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & \\
\hline \multirow[t]{3}{*}{Quiescent Device \({ }^{1}\) Current} & \multirow{3}{*}{\({ }_{L}\)} & & 5 & - & 0.5 & - & 0.01 & 0.5 & - & 30 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & 10 & - & \(1^{\circ}\) & - & 0.01 & \(1{ }^{\bullet}\) & - & \(20^{\circ}\) & \\
\hline & & & 15 & - & - & - & 0.01 & - & - & - & \\
\hline \multirow{4}{*}{Output Voltage: \({ }^{1}\) Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & \(0.55^{\bullet}\) & - & - & \(0.05{ }^{\circ}\) & - & - & \multirow{8}{*}{V} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 15 & - & - & - & 0 & \(0.5^{\circ}\) & - & \(0.55^{\circ}\) & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \multirow[t]{4}{*}{} & 3 & \(2.25{ }^{\circ}\) & - & \(2.3{ }^{\bullet}\) & - & - & - & - & \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & 15 & - & \(14.45{ }^{\circ}\) & - & \\
\hline Threshold Voltage \({ }^{2}\) N -Channel & \(\mathrm{V}_{\text {TH }} \mathrm{N}\) & \({ }^{1} \mathrm{D}=-20 \mu \mathrm{~A}\) & & \(-0.7{ }^{\bullet}\) & \(-3^{\bullet}\) & \(-0.7^{\bullet}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3^{\bullet}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{V} \\
\hline P-Channel & \(V_{T H}{ }^{P}\) & \({ }^{\prime} \mathrm{D}=20 \mu \mathrm{~A}\) & & \(0.7{ }^{\bullet}\) & \(3^{\bullet}\) & \(0.7{ }^{\bullet}\) & 1.5 & \(3^{\bullet}\) & \(0.3^{\bullet}\) & \(3^{\bullet}\) & \\
\hline \multirow{6}{*}{Noise Immunity \({ }^{1}\)} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & 0.8 & 5 & 1.5 & - & \(1.5{ }^{\bullet}\) & 2.25 & - & 1.4 & - & \multirow{6}{*}{V} \\
\hline & & 1 & 10 & \(3^{\bullet}\) & - & \(3^{\circ}\) & 4.5 & - & \(2.9{ }^{\circ}\) & - & \\
\hline & & 1.5 & 15 & - & - & - & 6.75 & - & - & - & \\
\hline & \multirow[t]{3}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.2 & 5 & 1.4 & - & \(1.5^{\bullet}\) & 2.25 & - & \(1.5{ }^{\circ}\) & - & \\
\hline & & 9 & 10 & \(2.9^{\circ}\) & - & \(3^{\circ}\) & 4.5 & - & 3 & - & \\
\hline & & 13.5 & 15 & - & - & - & 6.75 & - & - & - & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Output Drive Current: \({ }^{2}\) \\
N-Channel \\
(Sink)
\end{tabular}} & \multirow{3}{*}{\({ }_{1}{ }^{N}\)} & 0.4 & 4.5 & 0.5 & - & \(0.4{ }^{\bullet}\) & 0.8 & - & 0.3 & - & \multirow{3}{*}{mA} \\
\hline & & 0.5 & 10 & 1.1 & - & \(0.9{ }^{\circ}\) & 1.8 & - & 0.65 & - & \\
\hline & & 1.5 & 15 & - & - & 3 & 6 & - & - & - & \\
\hline \multirow[b]{4}{*}{P-Channel (Source)} & \multirow{4}{*}{\({ }^{1} D^{P}\)} & 2.5 & 5 & -2 & - & \(-1.6^{\circ}\) & -3.2 & - & \(-1.15\) & - & \multirow{4}{*}{mA} \\
\hline & & 4.6 & 5 & -0.5 & - & \(-0.4{ }^{\bullet}\) & -0.8 & - & -0.3 & - & \\
\hline & & 9.5 & 10 & -1.1 & - & \(-0.9^{\circ}\) & -1.8 & - & -0.65 & - & \\
\hline & & 13.5 & 15 & - & - & -3 & -6 & - & - & - & \\
\hline \[
\begin{array}{|l|}
\hline \text { Diode Test } \\
\\
100 \mu \mathrm{~A} \text { Test Pin }
\end{array}
\] & \(V_{\text {DF }}\) & & & - & \(1.5{ }^{\circ}\) & - & - & \(1.5^{\circ}\) & - & \(1.5^{\circ}\) & V \\
\hline Input Current & \(1 /\) & - & 15 & - & - & - & \(\pm 10^{-5}\) & \(\pm 1\) & - & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Limits with black dot (\({ }^{(\bullet)}\) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.
Note 3: Test on all inputs and outputs.
\(\qquad\) CD4071B, CD4072B, CD4075B Slash (/) Series

Limits with black dot (\(\boldsymbol{*}\)) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
* Tests are either several inputs or several outputs.

* ALL INPUTS PROTECTED BY STANDARD
COS/MOS PROTECTION CIRCUIT

92CS-23812RI
Fig. 1-CD4071B schematic diagram (1 of 4 identical OR gates).

Fig. 2- Typical voltage and current transfer characteristics.

Fig.3-Min. and max. voltage transfer characteristics.

Fig. 4 - CD4072B schematic diagram (1 of 2 identical OR gates).

92CS-23814R1
Fig. 5-CD4075B schematic diagram (1 of 3 identical OR gates).

Fig. 6-Minimum output-N-channel drain characteristics.

Fig. 7- Minimum output-P-channel drain characteristics.

Fig. 8 - Typical high-to-low level propagation delay time vs. load capacitance.

Fig. 10 - Typical propagation delays vs. supply voltage.

Fig. 9 - Typical low-to-high level propagation delay time vs. load capacitance.

Fig. 11-Typical transition time vs. load capacitance.

Fig. 12 -Typical dynamic power dissipation vs. frequency.

CD4075B - PUT METER IN SAME PLACE AS CD4071B
TIE PINS \(1,2,3,4,5,11,12,13\) TO SWITCH.

CD4072B - PUT METER IN SAME PLACE AS CD40718
TIE PINS 2, 3, 4, 5, 9, 10, 11,12 TO SWITCH.

Fig. 13 -Quiescent current test circuits.

Fig. 14 -Noise immunity test circuits.

\section*{TERMINAL ASSIGNMENTS}

\section*{(Top Views)}

\section*{Solid State} Division

\section*{Digital Integrated Circuits}

Monolithic Siliçon
High-Reliability Slash (/) Series
CD4081B/. . ., CD4082B/. . ., CD4073B/. . .

\title{
High-Reliability \\ COS/MOS AND Gates
}

For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment

CD4081B Quad 2-Input AND Gate
CD4082B Dual 4-Input AND Gate
CD4073B Triple 3-Input AND Gate
Features:
- Medium-Speed Operation \(-\mathrm{t}_{\text {PLH }}=85 \mathrm{~ns}\) (typ.); \(\mathrm{t}_{\mathrm{PHL}}=65 \mathrm{~ns}\) (typ.) at 10 V
- Standard B-Series Output Drive

The RCA-CD4081B, CD4082B, and CD4073B "Slash" (/) Series AND gates provide the system designer with direct implementation of the AND function and supplement the existing family of COS/MOS gates. These devices have equal source- and sink-current capabilities and conform to standard B-series output drive (see Electrical Characteristics).

These devices are electrically and mechanically identical with standard COS/MOS CD4081B, CD4082B, CD4073B types described in data bulletin 806 and DATABOOK SSD203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}
```

StORAGE-TEMPERATURE RANGE. . . . . . . . . . . . - -65 to +150
OPERATING-TEMPERATURE RANGE .......... - }55\mathrm{ to +125}\mp@subsup{}{}{\circ}\textrm{C
DC SUPPLY-VOLTAGE RANGE
VDD ..................................... - 0.5 to +18 V
DEVICE DISSIPATION (PER PACKAGE) ................ }200\textrm{mW
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm 1/32 inch (1.59 \pm0.79 mm)
from case for }10\mathrm{ seconds max.
265%

* All voltage values are referenced to }\mp@subsup{V}{SS}{}\mathrm{ terminal.

```

The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD•883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and /R.
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4081B, CD4082B, CD4073B "Slash" (/) Series types are supplied in 14 -lead dual-in-line ceramic packages ("D" suffix), in 14-lead ceramic flat packages ("K" suffix), or in chip form (" H " suffix).

\section*{OPERATING CONDITIONS AT \(T_{A}=25^{\circ} \mathrm{C}\)}

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & \(\mathrm{V}_{\text {DD }}\) & Min. & Max. & Units & Fig. \\
\hline Supply Voltage Range & - & 3 & 18 & V & - \\
\hline Input Voltage Swing (Recommended \(V_{S S}\) to \(V_{D D}\)) & - & \[
\begin{gathered}
0.2 \mathrm{~V}_{\mathrm{DD}} \\
\text { to } \\
0.8 \mathrm{~V}_{\mathrm{DD}} \\
\text { (Any one } \\
\text { input) }
\end{gathered}
\] & \[
\begin{gathered}
-0.5 \mathrm{~V} \\
\text { to } \\
V_{D D}+ \\
0.5 \mathrm{~V}
\end{gathered}
\] & V & - \\
\hline
\end{tabular}

STATIC ELECTRICAL CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{CHARACTERISTIC} & \multirow[t]{3}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{7}{|c|}{LIMITS} & \multirow[t]{3}{*}{UNITS} \\
\hline & & \[
v_{0}
\] & \multirow[t]{2}{*}{\begin{tabular}{l}
\(V_{D D}\) \\
V
\end{tabular}} & \multicolumn{2}{|c|}{\(-55^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{\(125^{\circ} \mathrm{C}\)} & \\
\hline & & & & Min. & Max. & Min. & Typ. & Max. & Min. & Max. & \\
\hline \multirow[t]{3}{*}{Quiescent Device \({ }^{1}\) Current} & \multirow{3}{*}{\({ }_{L}\)} & & 5 & - & 0.5 & - & 0.01 & 0.5 & - & 30 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & 10 & - & \(1^{\bullet}\) & - & 0.01 & \(1^{\bullet}\) & - & \(20^{\circ}\) & \\
\hline & & & 15 & - & - & - & 0.01 & - & - & - & \\
\hline \multirow{4}{*}{Output Voltage: \({ }^{1}\) Low-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & & 3 & - & \(0.55{ }^{\bullet}\) & - & - & \(0.05 \cdot\) & - & - & \multirow{8}{*}{V} \\
\hline & & & 5 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 10 & - & 0.01 & - & 0 & 0.01 & - & 0.05 & \\
\hline & & & 15 & - & - & - & 0 & \(0.5^{\circ}\) & - & \(0.55^{\circ}\) & \\
\hline \multirow{4}{*}{High-Level} & \multirow{4}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & & 3 & \(2.25{ }^{\text {® }}\) & - & \(2.3{ }^{\circ}\) & - & - & - & - & \\
\hline & & & 5 & 4.99 & - & 4.99 & 5 & - & 4.95 & - & \\
\hline & & & 10 & 9.99 & - & 9.99 & 10 & - & 9.95 & - & \\
\hline & & & 15 & - & - & \(14.5{ }^{\circ}\) & 15 & - & \(14.45^{\circ}\) & - & \\
\hline Threshold Voltage \({ }^{2}\) N-Channel & \(\mathrm{V}_{\mathrm{TH}} \mathrm{N}\) & \({ }^{1} \mathrm{D}=-20 \mu \mathrm{~A}\) & & \(-0.7{ }^{\bullet}\) & \(-3^{\bullet}\) & \(-0.7^{\bullet}\) & -1.5 & \(-3^{\bullet}\) & \(-0.3^{\bullet}\) & \(-3^{\bullet}\) & \multirow[t]{2}{*}{V} \\
\hline P-Channel & \(\mathrm{V}_{T H^{P}}\) & \({ }^{\prime} \mathrm{D}=20 \mu \mathrm{~A}\) & & \(0.7{ }^{\bullet}\) & \(3{ }^{\bullet}\) & \(0.7{ }^{\bullet}\) & 1.5 & \(3^{\bullet}\) & \(0.3{ }^{\bullet}\) & \(3^{\bullet}\) & \\
\hline \multirow{6}{*}{Noise Immunity \({ }^{1}\)} & \multirow{3}{*}{\(\mathrm{V}_{\mathrm{NL}}\)} & 0.8 & 5 & 1.5 & - & \(1.5{ }^{\bullet}\) & 2.25 & - & 1.4 & - & \multirow{6}{*}{V} \\
\hline & & 1 & 10 & \(3^{\bullet}\) & - & \(3^{\bullet}\) & 4.5 & - & \(2.9{ }^{\bullet}\) & - & \\
\hline & & 1.5 & 15 & - & - & - & 6.75 & - & - & - & \\
\hline & \multirow[t]{3}{*}{\(\mathrm{V}_{\mathrm{NH}}\)} & 4.2 & 5 & 1.4 & - & \(1.5{ }^{\bullet}\) & 2.25 & - & 1.5 & - & \\
\hline & & 9 & 10 & \(2.9{ }^{\circ}\) & - & \(3^{\bullet}\) & 4.5 & - & 3 & - & \\
\hline & & 13.5 & 15 & - & - & - & 6.75 & - & - & - & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Output Drive Current: \({ }^{2}\) \\
N-Channel (Sink)
\end{tabular}} & \multirow{3}{*}{\({ }_{1}{ }^{\prime} \mathrm{N}\)} & 0.4 & 5 & 0.5 & - & \(0.4{ }^{\bullet}\) & 0.8 & - & 0.3 & - & \multirow{3}{*}{mA} \\
\hline & & 0.5 & 10 & 1.1 & - & \(0.9{ }^{\bullet}\) & 1.8 & - & 0.65 & - & \\
\hline & & 1.5 & 15 & - & - & 3 & 6 & - & - & - & \\
\hline \multirow[b]{4}{*}{P-Channel (Source)} & \multirow{4}{*}{\({ }_{1}{ }^{P}\)} & 2.5 & 5 & -2 & - & \(-1.6^{\bullet}\) & -3.2 & - & -1.15 & - & \multirow{4}{*}{mA} \\
\hline & & 4.6 & 5 & -0.5 & - & \(-0.4{ }^{\bullet}\) & -0.8 & - & -0.3 & - & \\
\hline & & 9.5 & 10 & -1.1 & - & \(-0.9{ }^{\circ}\) & -1.8 & - & -0.65 & - & \\
\hline & & 13.5 & 15 & - & - & -3 & -6 & - & - & - & \\
\hline \[
\begin{aligned}
& \text { Diode Test }{ }^{3} \\
& \quad 100 \mu \mathrm{~A} \text { Test Pin }
\end{aligned}
\] & \(V_{\text {DF }}\) & & & - & \(1.5{ }^{\bullet}\) & - & - & \(1.5{ }^{\circ}\) & - & \(1.5^{\bullet}\) & V \\
\hline Input Current & 1 & - & 15 & - & - & - & \(\pm 10^{-5}\) & \(\pm 1\) & - & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\), Input \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\), and \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS* & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \begin{tabular}{|c|}
\hline\(V_{\text {DD }}\) \\
Volts
\end{tabular} & Typ. & Max. & \\
\hline \begin{tabular}{l}
Propagation Delay Time: \\
High-to-Low Level
\end{tabular} & \({ }^{\text {tPHL}}\) & 5
10
15 & \[
\begin{array}{r}
160 \\
65 \\
50 \\
\hline
\end{array}
\] & \[
\begin{gathered}
320 \bullet \\
1300 \\
- \\
\hline
\end{gathered}
\] & ns \\
\hline Low-to-High Level & \({ }^{\text {tPLH}}\) & 5
10
15 & \[
\begin{array}{r}
210 \\
85 \\
65 \\
\hline
\end{array}
\] & \[
\begin{gathered}
420^{\bullet} \\
170^{\circ}
\end{gathered}
\] & ns \\
\hline Transition Time & \begin{tabular}{l}
\({ }^{\text {tTHL }}\) \\
\({ }^{t}\) TLH
\end{tabular} & 5
10
15 & \[
\begin{array}{r}
100 \\
50 \\
40
\end{array}
\] & \[
\begin{gathered}
200 \\
100 \\
80
\end{gathered}
\] & ns \\
\hline Average Input Capacitance & \(\mathrm{C}_{1}\) & Any Input & 5 & - & pF \\
\hline
\end{tabular}

Limits with black dot (©) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
* Tests are either several inputs or several outputs.

Fig. 1-CD4081B schematic diagram (1 of 4 identical AND gates).

Fig. 2--Min. and max. voltage transfer characteristics.

Fig. 3-Minimum output-N-channel drain characteristics.
\(\qquad\)

Fig. 4-CD4082B Schematic diagram (1 of 2 identical AND gates).

Fig. 5-CD4073B schematic diagram (1 of 3 identical AND gates).

92CS-24321
Fig. 6- Minimum output-P-channel drain characteristics.

Fig. 7- Typical high-to-low level propagation delay vs. load capacitance.

Fig. 8-Typical low-to-high level propagation delay vs. load capacitance.

Fig. 10- Typical transition time vs. load capacitance.

Fig. 9 -Typical propagation delays vs. supply voltage.

Fig. 11-Typical dynamic power dissipation vs. frequency.

CD4073B - PUT METER IN SAME
PLACE AS CD408I
TIE PINS \(1,2,3,4,5,11,12,13\) TO SWITCH

CD4082B - PUT METER IN SAME
PLACE AS CD4081
TIE PINS 2,3,4,5,9,10,11,12
TO SWITCH.

Fig. 12-Quiescent current test circuits.

Fig. 13-Noise immunity test circuits.

TERMINAL ASSIGNMENTS

CD4081B

CD4082B

92Cs-24538
CD4073B

Solid State Division

\section*{High-Reliability COS/MOS 8-Input NOR Gate}

For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment

Features:
- Medium-speed operation \(-\mathrm{t}_{\mathrm{PHL}}=80 \mathrm{~ns}, \mathrm{t}_{\mathrm{PLH}}=170 \mathrm{~ns}\) (typ.) at 10 V
- Standard B-series output drive

The RCA-CD4078B Slash (/) Series NOR Gate provides the system designer with direct implementation of the positivelogic 8 -input NOR function and supplements the existing family of COS/MOS gates.
This device has equal source- and sink-current capability and conforms to standard B-series output drive (see Static Electrical Characteristics).

These devices are electrically and mechanically identical with standard COS/MOS CD4078B types described in data bulletin 810 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels \(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3, / 4\) - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4078B "Slash" (/) Series types are supplied in 14-lead dual-in-line ceramic packages (" \(D\) " suffix), in 14-lead ceramic flat packages ("K" suffix), or in chip form ("H" suffix).

MAXIMUM RATINGS, Absolute-Maximum Values:
\begin{tabular}{|c|c|}
\hline Storage-temperature range & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline OPERATING-TEMPERATURE RANGE & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline DC SUPPLY-VOLTAGE RANGE & \\
\hline \(V_{\text {DD }}\) * & -0.5 to +18 V \\
\hline DEVICE DISSIPATION (PER PACKAGE) & 200 mW \\
\hline LEAD TEMPERATURE (DURING SOLDERING) & \\
\hline At distance \(1 / 16 \pm 1 / 32\) inch \((1.59 \pm 0.79 \mathrm{~mm})\) from case for 10 seconds max. \(\qquad\) & \(265^{\circ} \mathrm{C}\) \\
\hline & \\
\hline
\end{tabular}

\section*{OPERATING CONDITIONS AT \(T_{A}=25^{\circ} \mathrm{C}\)}

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & \(\mathrm{V}_{\text {DD }}\) & Min. & Max. & Units & Fig. \\
\hline Supply Voltage Range & - & 3 & 18 & V & - \\
\hline Input Voltage Swing (Recommended \(\mathrm{V}_{\mathrm{SS}}\) to \(\mathrm{V}_{\mathrm{DD}}\)) & - & \[
\begin{gathered}
0.2 \mathrm{~V}_{\mathrm{DD}} \\
\text { to } \\
0.8 \mathrm{~V}_{\mathrm{DD}} \\
\text { (Any one } \\
\text { input) }
\end{gathered}
\] & \[
\left.\begin{gathered}
-0.5 \mathrm{~V} \\
\text { to } \\
\mathrm{V}_{D D}+ \\
0.5 \mathrm{~V}
\end{gathered} \right\rvert\,
\] & V & - \\
\hline
\end{tabular}

STATIC ELECTRICAL CHARACTERISTICS

\footnotetext{
Limits with black dot (\(\theta\)) designate \(100 \%\) testing. Refer to RIC-102C "High.Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2
} through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.

Note 1: Complete functional test all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.

Note 3: Test on all inputs and outputs.

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\), Input \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}\), and \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS* & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \[
\begin{array}{|c|}
\hline V_{D D} \\
\text { Volts }
\end{array}
\] & Typ. & Max. & \\
\hline \begin{tabular}{l}
Propagation Delay Time: \\
High-to-Low Level
\end{tabular} & \({ }^{\text {tPHL }}\) & 5
10
15 & 200
80
60 & \(400^{\circ}\)
160
- & ns \\
\hline Low-to-High Level & \({ }^{\text {tPLH }}\) & 5
10
15 & \[
\begin{aligned}
& \hline 425 \\
& 170 \\
& 120 \\
& \hline
\end{aligned}
\] & \(850^{\circ}\)
\(340^{\circ}\)
- & ns \\
\hline Transition Time & \begin{tabular}{l}
\({ }^{t}\) THL \\
\({ }^{t}\) TLH
\end{tabular} & 5
10
15 & 100
50
40 & \[
\begin{gathered}
200^{\circ} \\
100^{\circ} \\
80
\end{gathered}
\] & ns \\
\hline Average Input Capacitance & \(\mathrm{C}_{1}\) & Any Input & 5 & - & pF \\
\hline
\end{tabular}

Limits with black dot (\({ }^{(\boldsymbol{\theta}}\)) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
* Tests are either several inputs or several outputs.

Fig. 1-CD4078B schematic diagram.

Fig. 2-Min. and max. voltage transfer characteristics.

92CS-24321
Fig. 4-Minimum output p-channel drain characteristics.

Fig. 6-Typical low-to-high level propagation delay time vs. load capacitance.

Fig. 3-Minimum output n-channel drain characteristics.

Fig. 5- Typical high-to-low level propagation delay time vs. load capacitance.

Fig. 7-Typical propagation delay time vs. supply voltage.

Fig. 8-Typical transition time vs. load capacitance.

Fig. 10-Quiescent device current test circuit.

Fig. 9- Typical power dissipation vs. frequency.

Fig. 11-Noise immunity test circuit.

TERMINAL ASSIGNMENT CD4078B

\title{
High－Reliability COS／MOS Dual 2－Wide 2－Input AND－OR－INVERT Gate
}

\author{
For Logic Systems Applications in Aerospace， Military，and Critical Industrial Equipment
}

\section*{Features：}
－Medium－speed operation - t \(_{\text {PHL }}=\mathbf{9 0} \mathbf{n s}\) ； t \(_{\text {PLH }}=\mathbf{1 2 5} \mathbf{n s}\)（typ．）at 10 V
－Individual inhibit controls
－Standard B－series output drive

The RCA－CD4085B Slash（／）Series contains a pair of AND－ OR－INVERT gates，each consisting of two 2 －input AND gates driving a 3 －input OR gate followed by an inverter．Individual inhibit controls are provided for both A－O－I gates．This device has equal source－and sink－current capabilities and conforms to standard B－Series output drive（see Static Electrical Charac－ teristics）．

These devices are electrically and mechanically identical with standard COS／MOS CD4085B types described in data bulletin 811 and DATABOOK SSD－203 Series，but are specially pro－ cessed and tested to meet the electrical，mechanical，and environmental test methods and procedures established for microelectronic devices in MIL－STD－883．

The packaged types in the CD4085B＂Slash＂（／）Series can be supplied to six screening levels \(-/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3, / 4-\) which correspond to MIL－STD－883 Classes＂\(A\)＂，＂\(B\)＂，and ＂ C ＂．The chip versions of these types can be supplied to three screening levels \(-/ M, / N\) ，and \(/ R\) ．

For a description of these screening levels and for detailed information on test methods，procedures，and test sequence employed with high－reliability COS／MOS devices refer to High－Reliability Report RIC－102C，＂High－Reliability COS／ MOS CD4000A＂Slash＂（／）Series Types＂．

The CD4085B＂Slash＂（／）Series types are supplied in 14－lead dual－in－line ceramic packages（＂D＂suffix），in 14－lead ceramic flat packages（＂K＂suffix），or in chip form（＂H＂suffix）．

MAXIMUM RATINGS，Absolute－Maximum Values：
\begin{tabular}{|c|c|}
\hline GE & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline OPERATING－TEMPERATURE RANGE & 55 to +1250 \\
\hline DC SUPPLY－VOLTAGE RANGE & \\
\hline \(\mathrm{V}_{\text {DD }}{ }^{\text {• }}\) & －0．5 to＋18 V \\
\hline DEVICE DISSIPATION（PER PACKAGE） & 200 mW \\
\hline ALL InPUTS．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． & \(\leqslant v_{1} \leqslant v_{\text {DD }}\) \\
\hline LEAD TEMPERATURE（DURING SOLDERING）： & \\
\hline At distance \(1 / 16 \pm 1 / 32\) inch \((1.59 \pm 0.79 \mathrm{~mm})\) from case for 10 seconds max． & \(265^{\circ} \mathrm{C}\) \\
\hline All voltage values are referenced to \(\mathrm{V}_{\text {SS }}\) terminal． & \\
\hline
\end{tabular}

\section*{OPERATING CONDITIONS AT \(\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathrm{C}\)}

For maximum reliability，nominal operating conditions should be selected so that operation is always within the following ranges．
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & \(\mathrm{V}_{\mathrm{DD}}\) & Min． & Max． & Units & Fig． \\
\hline Supply Voltage Range & - & 3 & 18 & V & - \\
\hline \(\begin{array}{l}\text { Input Voltage Swing } \\
\left.\text {（Recommended } \mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}\right)\end{array}\) & - & \(0.2 \mathrm{~V}_{\mathrm{DD}}\) & -0.5 V & V & - \\
to & to & & \\
\(0.8 \mathrm{~V}_{\mathrm{DD}}\) & \(\mathrm{V}_{\mathrm{DD}}{ }^{+}\) & & \\
\((\)Any one \\
input \()\)
\end{tabular}\()\)

Fig. 1-CD4085B schematic diagram.

STATIC ELECTRICAL CHARACTERISTICS

Limits with black dot \((\ominus)\) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through \(\mathbf{7}\) for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.

Note 1: Complete functional test all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.

\footnotetext{
Note 3: Test on all inputs and outputs.
}

DYNAMIC ELECTRICAL CHARACTERISTICS AT TA \(=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\), Input \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS * & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \[
\underset{\mathrm{VD}}{\mathrm{v}_{\mathrm{VD}}}
\] & Typ. & Max. & \\
\hline \multirow[t]{3}{*}{Propagation Delay Time (Data): High-to-Low Level} & \multirow{3}{*}{\({ }^{\text {tPHL }}\)} & 5 & 225 & 450 • & \multirow{3}{*}{ns} \\
\hline & & 10 & 90 & \(180 \cdot\) & \\
\hline & & 15 & 65 & - & \\
\hline \multirow{3}{*}{Low-to-High Level} & \multirow{3}{*}{\({ }^{\text {tPLH }}\)} & 5 & 310 & 620 • & \multirow{3}{*}{ns} \\
\hline & & 10 & 125 & 250 - & \\
\hline & & 15 & 90 & - & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Propagation Delay \\
Time (Inhibit): \\
High-to-Low Level
\end{tabular}} & \multirow{3}{*}{\({ }^{\text {tPHL }}\) (INH)} & 5 & 150 & 300 & \multirow{3}{*}{ns} \\
\hline & & 10 & 60 & 120 • & \\
\hline & & 15 & 40 & - & \\
\hline \multirow{3}{*}{Low-to-High Level} & \multirow{3}{*}{\({ }^{\text {tPLH }}\) (INH)} & 5 & 250 & 500 • & \multirow{3}{*}{ns} \\
\hline & & 10 & 100 & \(200{ }^{\circ}\) & \\
\hline & & 15 & 70 & - & \\
\hline \multirow{3}{*}{Transition Time} & \multirow[b]{3}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}} \mathrm{THL}\). \\
\({ }^{t}\) TLH
\end{tabular}} & 5 & 100 & \(200 \cdot\) & \multirow{3}{*}{ns} \\
\hline & & 10 & 50 & \(100 \cdot\) & \\
\hline & & 15 & 40 & 80 & \\
\hline Average Input Capacitance & \(\mathrm{C}_{1}\) & Any Input & 5 & - & pF \\
\hline
\end{tabular}

Limits with black dot (\({ }^{(\ominus)}\) designate \(100 \%\) testing. Refer to KIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
* Tests are either several inputs or several outputs.

Fig. 2-Min. and max. voltage transfer characteristics.

Fig. 3-Minimum output n-channel drain characteristics.

92cs-24321
Fig. 4- Minimum output p-channel drain characteristics.

Fig. 6- Typical data low-to-high level propagation delay time vs. load capacitance.

Fig. 8-Typical transition time vs. load capacitance.

Fig. 5- Typical data high-to-low level propagation delay time vs. load capacitance.

Fig. 7- Typical data propagation delay time vs. supply voltage.

Fig. 9- Typical power dissipatıon vs. frequency.

Fig. 10-Quiescent device current test circuit.

Fig. 11-Noise immunity test circuit.

TERMINAL ASSIGNMENT (TOP VIEW)
CD4085B

92CS-23889RI

\title{
High-Reliability \\ COS/MOS Expandable 4-Wide 2-Input AND-OR-INVERT Gate
}

\author{
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment
}

\author{
Features: \\ - Medium-speed operation - \(\mathbf{t}_{\text {PHL }}=\mathbf{9 0} \mathbf{n s}\); tPLH \(=\mathbf{1 4 0} \mathbf{n s}\) (typ.) at \(\mathbf{1 0} \mathrm{V}\) \\ - INHIBIT and ENABLE inputs \\ - Standard B-series output drive
}

The RCA-CD4086B "Slash" (/) Series contains one 4-wide 2-input AND-OR-INVERT gate with an INHIBIT/ \(\overline{E X P}\) input and an ENABLE/EXP input. For a 4 -wide A-O-I function INHIBIT/ \(\overline{E X P}\) is tied to \(V_{S S}\) and ENABLE/EXP to \(V_{D D}\). See Fig. 2 and its associated explanation for applications where a capability greater than 4 -wide is required. This device has equal source- and sink-current capabilities and conforms to standard B-series output drive (see Static Electrical Characteristics).

These devices are electrically and mechanically identical with standard COS/MOS CD4086B types described in data bulletin 812 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.

The packaged types can be supplied to six screening levels \(/ 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2, / 3,14\) - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels \(-/ M, / N\), and \(/ R\).
For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C, "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".

The CD4086B "Slash" (/) Series types are supplied in 14-lead dual-in-line ceramic packages (" \(D\) " suffix), in 14-lead ceramic flat packages (" K " suffix), or in chip form (' H " suffix).

\section*{MAXIMUM RATINGS, Absolute-Maximum Values:}

STORAGE-TEMPERATURE RANGE. -65 to \(+150^{\circ} \mathrm{C}\)
OPERATING-TEMPERATURE RANGE \(\ldots \ldots \ldots . . .55\) to \(+125^{\circ} \mathrm{C}\)
DC SUPPLY-VOLTAGE RANGE
VDD * ... -0.5 to +18 V
DEVICE DISSIPATION (PER PACKAGE) 200 mW
LEAD TEMPERATURE (DURING SOLDERING):
At distance \(1 / 16 \pm 1 / 32\) inch \((1.59 \pm 0.79 \mathrm{~mm})\) from case for 10 seconds max.
\(265^{\circ} \mathrm{C}\)
* All voltage values are referenced to \(\mathrm{V}_{\mathrm{SS}}\) terminal.

\section*{OPERATING CONDITIONS AT \(\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}^{\mathbf{\circ}} \mathrm{C}\)}

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & \(\mathbf{V}_{\mathbf{D D}}\) & Min. & Max. & Units & Fig. \\
\hline Supply Voltage Range & - & 3 & 18 & v & - \\
\hline Input Voltage Swing (Recommended \(\mathbf{V}_{\text {SS }}\) to \(\mathbf{V}_{\text {DD }}\)) & - & \(0.2 \mathrm{~V}_{\text {DD }}\) to \(0.8 \mathrm{~V}_{\mathrm{DD}}\) (Any one input) & -0.5 V
to
\(\mathrm{v}_{\mathrm{DD}}{ }^{+}\)
0.5 V & v & - \\
\hline
\end{tabular}

Fig. 1-CD4086B schematic diagram.

Fig. 2-Two CD4086B's connected as an 8-wide 2-input A-O-I gate.

Fig. 2 above shows two CD4086B's utilized to obtain an 8 -wide 2 -input A-O-1 function. The output (J1) of one CD4086B is fed directly to the ENABLE/EXP2 line of the second CD4086B. In a similar fashion, any NAND gate
output can be fed directly into the ENABLE/ \(\overline{\operatorname{EXP}}\) input to obtain a 5 -wide A-O-I function. In addition, any AND gate output can be fed directly into the INHIBIT/EXP input with the same result.

STATIC ELECTRICAL CHARACTERISTICS

Limits with black dot (\(\theta\)) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
Note 1: Complete functional test.all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.
Note 3: Test on all inputs and outputs.

DYNAMIC ELECTRICAL CHARACTERISTICS AT TA \(=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\), Input \(\mathrm{t}_{\mathbf{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{CHARACTERISTIC} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS* & \multicolumn{2}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}} \\
& \text { Volts }
\end{aligned}
\] & TYP. & MAX. & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Propagation Delay \\
Time (Data): \\
High-to-Low Level
\end{tabular}} & \multirow{3}{*}{\({ }^{\text {tPHL }}\)} & 5 & 225 & \(450^{\circ}\) & \multirow{3}{*}{ns} \\
\hline & & 10 & 90 & \(180^{\circ}\) & \\
\hline & & 15 & 60 & - & \\
\hline \multirow{3}{*}{Low-to-High Level} & \multirow{3}{*}{tPLH} & 5 & 350 & \(700{ }^{\circ}\) & \multirow{3}{*}{ns} \\
\hline & & 10 & 140 & \(280^{\circ}\) & \\
\hline & & 15 & 100 & - & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Propagation Delay \\
Time (Inhibit): \\
High-to-Low Level
\end{tabular}} & \multirow{3}{*}{\({ }^{\text {tPHL (INH) }}\)} & 5 & 150 & \(300^{\bullet}\) & \multirow{3}{*}{ns} \\
\hline & & 10 & 60 & \(120^{\circ}\) & \\
\hline & & 15 & 40 & - & \\
\hline \multirow{3}{*}{Low-to-High Level} & \multirow{3}{*}{\({ }^{\text {t PLH }}\) (INH)} & 5 & 250 & \(500^{\circ}\) & \multirow{3}{*}{ns} \\
\hline & & 10 & 100 & \(200^{\circ}\) & \\
\hline & & 15 & 70 & - & \\
\hline \multirow{3}{*}{Transition Time} & \multirow[b]{3}{*}{\begin{tabular}{l}
\({ }^{\mathrm{t}}\) THL. \\
\({ }^{t}\) TLH
\end{tabular}} & 5 & 100 & \(200^{\circ}\) & \multirow{3}{*}{ns} \\
\hline & & 10 & 50 & \(100^{\circ}\) & \\
\hline & & 15 & 40 & 80 & \\
\hline Average Input Capacitance & \(C_{1}\) & Any Input & 5 & - & pF \\
\hline
\end{tabular}

Limits with black dot (•) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash(/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
* Tests are either several inputs or several outputs.

Fig.3-Min. and max. voltage transfer characteristics.

DRAIN - TO-SOURCE VOLTAGE \(\left(V_{D S}\right)-V\)
92Cs-24319
Fig.4-Minimum output n-channel drain characteristics.

92CS-24321
Fig.5-Minimum output p-channel drain characteristics.

Fig.7-Typical DATA or ENABLE low-to-high level propagation delay time vs. load capacitance.

Fig.9-Typical transition time vs. load capacitance.

Fig.6-Typical DATA or ENABLE high-to-low level propagation delay time vs. load capacitance.

92cs-24503

Fig.8-Typical DATA or ENABLE propagation delay time vs. supply voltage.

Fig. 10-Typical power dissipation vs. frequency.

CD4514B, CD4515B FUNCTIONAL DIAGRAM

High-Reliability COS/MOS 4-Bit Latch/4-to-16 Line Decoder
For Logic Systems Applications in Aerospace, Military, and Critical Industrial Equipment

CD4514B Output "High" on Select CD4515B Output "Low" on Select

Features:
- Strobed input latch
- Inhibit control

The RCA-CD4514B" and CD4515B4 "Slash" (/) Series are monolithic integrated circuits consisting of a 4-bit strobed latch and a 4-to-16 line decoder. The latches hold the last input data presented prior to the strobe transition from 1 to 0 . Inhibit control allows all outputs to be placed at 0 (CD4514B) or 1 (CD4515B) regardless of the state of the data or strobe inputs.

The decode truth table indicates all combinations of data inputs and appropriate selected outputs.
These devices are electrically and mechanically identical with standard COS/MOS CD4514B and CD4515B types described in data bulletin 814 and DATABOOK SSD-203 Series, but are specially processed and tested to meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883.
The packaged types can be supplied to six screening levels /1N, /1R, /1, /2, /3, /4 - which correspond to MIL-STD-883 Classes " \(A\) ", " \(B\) ", and " \(C\) ". The chip versions of these types can be supplied to three screening levels - / M, /N, and /R.

For a description of these screening levels and for detailed information on test methods, procedures, and test sequence employed with high-reliability COS/MOS devices refer to High-Reliability Report RIC-102C" "High-Reliability COS/ MOS CD4000A "Slash" (/) Series Types".
The CD4514B and CD4515B "Slash" (/) Series types are supplied in 24 -lead dual-in-line ceramic packages (" \(D\) " suffix), in 24 -lead ceramic flat packages (" \(K\) " suffix), or in chip form ('H" suffix).

\footnotetext{
A Formerly CD4064A and CD4065A, respectively.
}

\section*{Applications:}
- Digital multiplexing
- Address decoding

\section*{TERMINAL ASSIGNMENT}

CD4514B
CD4515B
- Hexadecimal/BCD decoding
- Program-counter decoding
- Control decoder

DECODE TRUTH TABLE (Strobe = 1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{INHIBIT} & \multicolumn{4}{|r|}{DATA INPUTS} & \multirow[t]{2}{*}{selected output CD4514B = Logic 1 (High) CD4515B = Logic 0 (Low)} \\
\hline & D & C & B & A & \\
\hline 0 & 0 & 0 & 0 & 0 & so \\
\hline 0 & 0 & 0 & 0 & 1 & S1 \\
\hline 0 & 0 & 0 & 1 & 0 & S2 \\
\hline 0 & 0 & 0 & 1 & 1 & S3 \\
\hline 0 & 0 & 1 & 0 & 0 & S4 \\
\hline 0 & 0 & 1 & 0 & 1 & S5 \\
\hline 0 & 0 & 1 & 1 & 0 & S6 \\
\hline 0 & 0 & 1 & 1 & 1 & S7 \\
\hline 0 & 1 & 0 & 0 & 0 & 58 \\
\hline 0 & 1 & 0 & 0 & 1 & S9 \\
\hline 0 & 1 & 0 & 1 & 0 & S10 \\
\hline 0 & 1 & 0 & 1 & 1 & S11 \\
\hline 0 & 1 & 1 & 0 & 0 & S12 \\
\hline 0 & 1 & 1 & 0 & 1 & S13 \\
\hline 0 & 1 & 1 & 1 & 0 & S14 \\
\hline 0 & 1 & 1 & 1 & 1 & S15 \\
\hline 1 & x & x & X & x & \[
\begin{aligned}
& \text { All Outputs }=0, \text { CD4514B } \\
& \text { All Outputs }=1, C D 4515 B
\end{aligned}
\] \\
\hline
\end{tabular}

X = Don't Care

MAXIMUM RATINGS, Absolute-Maximum Values:
STORAGE-TEMPERATURE RANGE.............. -65 to \(+150^{\circ} \mathrm{C}\)
OPERATING-TEMPERATURE RANGE -55 to \(+125^{\circ} \mathrm{C}\)
DC SUPPLY-VOLTAGE RANGE
\(V_{D D}{ }^{\bullet} . . .\). DEVICE DISSIPATION (PER PACKAGE) 200 mW
ALL INPUTS............................... \(v_{S S} \leqslant v_{1} \leqslant v_{D D}\)
LEAD TEMPERATURE (DURING SOLDERING):
At distance \(1 / 16 \pm 1 / 32\) inch (\(1.59 \pm 0.79 \mathrm{~mm}\)) from case for 10 seconds max
- All voltage values are referenced to \(\mathrm{V}_{\mathrm{SS}}\) terminal.

92CS-24598

\section*{OPERATING CONDITIONS AT \(\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}^{\mathbf{0}} \mathbf{C}\)}

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & \(\mathbf{V}_{\text {DD }}\) & Min. & Max. & Units & Fig. \\
\hline Supply Voltage Range & - & 3 & 18 & V & - \\
\hline Input Voltage Swing (Recommended \(\mathrm{V}_{\mathrm{SS}}\) to \(\mathrm{V}_{\mathrm{DD}}\)) & - & \[
\begin{array}{|c|}
\hline 0.2 \mathrm{~V}_{\mathrm{DD}} \\
\text { to } \\
0.8 \mathrm{~V}_{\mathrm{DD}} \\
\left(\begin{array}{c}
\text { Any one } \\
\text { in put })
\end{array}\right. \\
\hline
\end{array}
\] & \[
\left.\begin{gathered}
-0.5 \mathrm{~V} \\
\text { to } \\
\mathrm{V}_{\mathrm{DD}}+ \\
0.5 \mathrm{~V}
\end{gathered} \right\rvert\,
\] & V & - \\
\hline Setup Time & \[
\begin{gathered}
5 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& 250 \\
& 100
\end{aligned}
\] & None & ns & A \\
\hline Strobe Pulse Width & \[
\begin{gathered}
5 \\
10
\end{gathered}
\] & \[
\begin{aligned}
& 350 \\
& 100
\end{aligned}
\] & None & ns & A \\
\hline
\end{tabular}

Waveforms for setup time and strobe pulse width.

Fig. 1-Logic diagram for CD4514B and CD4515B.

\section*{STATIC ELECTRICAL CHARACTERISTICS}

Limits with-black dot (\({ }^{(}\)) designate \(100 \%\) testing. Refer to RIC 102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\),testing.

Note 1: Complete functional test, all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.
Note 3: Test on all inputs and outputs.

DYNAMIC ELECTRICAL CHARACTERISTICS AT \(T_{A}=25^{\circ} \mathrm{C}\); Input \(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & TEST CONDITIONS* & \multicolumn{2}{|c|}{LIMITS} & \multirow[t]{2}{*}{UNITS} \\
\hline & & \begin{tabular}{l}
VDD \\
Volts
\end{tabular} & TYP. & MAX. & \\
\hline Propagation Delay Time: & \multirow{6}{*}{\begin{tabular}{l}
\({ }^{\text {tpHL}}\), \\
\({ }^{\text {tpLH }}\)
\end{tabular}} & 5 & 550 & \(1100^{\circ}\) & \multirow{6}{*}{ns} \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Strobe or Data \\
\hline Inhibit
\end{tabular}} & & 10 & 225 & \(450^{\circ}\) & \\
\hline & & 15 & 150 & - & \\
\hline & & 5 & 400 & \(800^{\circ}\) & \\
\hline & & 10 & 150 & \(300^{\circ}\) & \\
\hline & & 15 & 100 & - & \\
\hline Transition Time: & \multirow{3}{*}{\({ }^{\text {t }}\) THL} & 5 & 100 & \(200^{\circ}\) & \multirow{6}{*}{ns} \\
\hline High-to-Low & & 10 & 50 & \(100^{\circ}\) & \\
\hline & & 15 & 40 & 80 & \\
\hline \multirow{3}{*}{Low-to-High} & \multirow{3}{*}{\({ }^{t}\) TLH} & \multirow[t]{3}{*}{5
10
15} & 200 & \(400^{\circ}\) & \\
\hline & & & 100 & \(200^{\circ}\) & \\
\hline & & & 60 & - & \\
\hline Average Input Capacitance & \(C_{1}\) & Any Input & 5 & - & pF \\
\hline
\end{tabular}

Limits with black dot (\(\odot\)) designate \(100 \%\) testing. Refer to RIC -102 C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent 100\% testing.
* Tests are either several inputs or several outputs.

Fig. 2-Noise immunity test circuit.

Fig. 3-Quiescent device current test circuit.

Fig. 4 -Dynamic power dissipation test circuit and waveform.

DRAIN-TO-SOURCE VOLTAGE (\(V_{\text {DS }}\))-V

92Cs-24547

Fig. 7 - Minimum output-P-channel drain characteristics.

File No. 847 CD4514B, CD4515B Slash (/) Series

Fig. 8 - Typical strobe or data propagation delay time vs. load capacitance.

Fig. 10 - Typical low-to-high transition time vs. load capacitance.

Fig. 12 - Typical strobe or data propagation delay time vs. supply voltage.

Fig. 9 - Typical inhibit propagation delay time vs. load capacitance.

Fig. 11 - Typical high-tolow transition time vs. load capacitance.

Fig. 13 - Typical power dissipation vs. frequency. Digital Integrated Circuits

Monolithic Silicon

\section*{Solid State Division}

\title{
High－Reliability COS／MOS Dual Up Counters
}

\author{
For Logic Systems Applications in Aerospace， Military，and Critical Industrial Equipment
}

\section*{CD4518B Dual BCD Up Counter \\ CD4520B Dual Binary Up Counter}

Features：
－Medium－speed operation－6－MHz typical clock frequency at 10 V
－Positive－or negative－edge triggering
－Standard B－series output drive
－Synchronous internal carry propagation

The RCA－CD4518B Slash（／）Series Dual BCD Up Counter and CD4520B Slash（／）Series Dual Binary Up Counter each con－ sist of two identical，internally synchronous 4 －stage counters． The counter stages are D－type flip－flops having interchangeable Clock and Enable lines for incrementing on either the positive－ going or negative－going transition．For single－unit operation the Enable input is maintained＂high＂and the counter advances on each positive－going transition of the Clock．The counters are cleared by high levels on their Reset lines．

The counter can be cascaded in the ripple mode by connecting 04 to the enable input of the subsequent counter while the clock input of the latter is held low．

All outputs have equal source－and sink－current capabilities and conform to standard B－Series output drive（see Static Electrical Characteristics）．

These devices are electrically and mechanically identical with standard COS／MOS CD4518B，CD4520B types described in data bulletin 808 and DATABOOK SSD－203 Series，but are specially processed and tested to meet the electrical，mechani－ cal，and environmental test methods and procedures estab－ lished for microelectronic devices in MIL－STD－883．

The packaged types can be supplied to six screening levels－ ／1N，／1R，／1，／2，／3，／4－which correspond to MIL－STD－883 Classes＂\(A\)＂，＂\(B\)＂，and＂\(C\)＂．The chip versions of these types can be supplied to three screening levels－／M，／N，and／R．

\section*{Applications：}
－Multistage synchronous counting
－Multistage ripple counting
－Synchronous frequency dividers

For a description of these screening levels and for detailed information on test methods，procedures，and test sequence employed with high－reliability COS／MOS devices refer to High－Reliability Report RIC－102C，＂High－Reliability COS／ MOS CD4000A＂Slash＂（／）Series Types＂．

The CD4518B，CD4520B＇Slash＂（／）Series types are supplied in 16 －lead dual－in－line ceramic packages（＂D＂suffix），in 16 － lead ceramic flat packages（＂\(K\)＂suffix），or in chip form （＂H＂suffix）．

TRUTH TABLE
\begin{tabular}{|c|c|c|c|}
\hline CLOCK & ENABLE & RESET & ACTION \\
\hline \[
\Gamma
\] & 1 & 0 & Increment Counter \\
\hline 0 & \(\underline{ }\) & 0 & Increment Counter \\
\hline － & X & 0 & No Change \\
\hline X & \(\square\) & 0 & No Change \\
\hline \(\square\) & 0 & 0 & No Change \\
\hline 1 & － & 0 & No Change \\
\hline X & X & 1 & Q1 thru Q4＝ 0 \\
\hline \multicolumn{2}{|l|}{X＝Don＇t Care} & High State & \(0 \equiv\) Low State \\
\hline
\end{tabular}

File No. 857

DYNAMIC ELECTRICAL CHARACTERISTICS at \(T_{A}=25^{\circ} \mathrm{C}\). Input \(\mathbf{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=\mathbf{2 0} \mathrm{ns}\), and \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{CHARACTERISTIC} & \multirow[t]{2}{*}{SYMBOL} & TEST CONDITIONS * & \multicolumn{2}{|l|}{ALL TYPES LIMITS} & \multirow[t]{2}{*}{UNITS} & \multirow[t]{2}{*}{CHARACTERISTIC CURVES \& TEST CIRCUITS FIG. NO.} \\
\hline & & \[
\begin{array}{|l}
\mathrm{V}_{\mathrm{DDD}} \\
\text { Volts }
\end{array}
\] & Typ. & Max. & & \\
\hline Propagation Delay Time: Clock or Enable to Output & \multirow[b]{2}{*}{\begin{tabular}{l}
\({ }^{t}\) PHL. \\
tPLH
\end{tabular}} & 5
10
15 & \[
\begin{array}{r}
280 \\
115 \\
80 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 560^{\bullet} \\
& 230^{\circ}
\end{aligned}
\] & ns & 8 \\
\hline Reset to Output & & 5
10
15 & \[
\begin{array}{r}
330 \\
130 \\
90 \\
\hline
\end{array}
\] & \[
\begin{gathered}
660^{\bullet} \\
260^{\bullet} \\
- \\
\hline
\end{gathered}
\] & ns & 8 \\
\hline Transition Time & \begin{tabular}{l}
\({ }^{t}\) THL. \\
tTLH
\end{tabular} & 5
10
15 & \[
\begin{array}{r}
100 \\
50 \\
40
\end{array}
\] & \[
\begin{gathered}
200^{\circ} \\
100^{\circ} \\
80
\end{gathered}
\] & ns & 9 \\
\hline Average Input Capacitance & \(C_{1}\) & Any Input & 5 & - & pF & - \\
\hline
\end{tabular}

Limits with black dot (e) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through \(\mathbf{7}\) for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(100 \%\) testing.
* Tests are either several inputs or several outputs.

MAXIMUM RATINGS, Absolute-Maximum Values:
```

STORAGE-TEMPERATURE RANGE
-65 to +150}\mp@subsup{}{}{\circ}\textrm{C
OPERATING-TEMPERATURE RANGE .......... -55 to +125 % C
DC SUPPLY-VOLTAGE RANGE
V VD ^ . . . . .............................. . 0.5 to +18 V
DEVICE DISSIPATION (PER PACKAGE) ............... }200\textrm{mW
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 \pm1/32 inch (1.59 \pm0.79 mm)
from case for 10 seconds max. . . . . . . . . . . . . . . . . 2650
${ }^{\wedge}$ All voltage values are referenced to $\mathrm{V}_{\mathrm{SS}}$ terminal.

```

OPERATING CONDITIONS AT TA \(=25^{\circ} \mathrm{C}\)
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & \(\mathbf{V}_{\text {DD }}\) & Min. & Max. & Units & Fig. \\
\hline Supply Voltage Range & - & 3 & 18 & V & - \\
\hline Input Voltage Swing (Recommended \(\mathrm{V}_{\text {SS }}\) to \(\mathrm{V}_{\mathrm{DD}}\)) & - & \[
\begin{array}{|c|}
\hline 0.2 \mathrm{~V}_{\mathrm{DD}} \\
\text { to } \\
0.8 \mathrm{~V}_{\mathrm{DD}} \\
\text { (Any one } \\
\text { input) } \\
\hline
\end{array}
\] & \[
\begin{gathered}
-0.5 \mathrm{~V} \\
\text { to } \\
\mathrm{V}_{\mathrm{DD}}+ \\
0.5 \mathrm{~V}
\end{gathered}
\] & v & - \\
\hline Enable Pulse Width & \[
\begin{gathered}
5 \\
10 \\
15
\end{gathered}
\] & \[
\begin{aligned}
& \hline 440 \\
& 200 \\
& 140 \\
& \hline
\end{aligned}
\] & None & ns & - \\
\hline Clock Pulse Width & 5
10
15 & \[
\begin{array}{r}
200 \\
100 \\
70
\end{array}
\] & None & ns & - \\
\hline Clock Input Frequency & 5
10
15 & DC & \[
\begin{aligned}
& 1.5 \\
& 3 \\
& 4
\end{aligned}
\] & MHz & - \\
\hline Clock or Enable Input Rise or Fall Time & 4.15 & None & 15 & \(\mu \mathrm{s}\) & - \\
\hline Reset Pulse Width & \[
\begin{gathered}
5 \\
10 \\
15
\end{gathered}
\] & \[
\begin{array}{r}
250 \\
110 \\
80
\end{array}
\] & None & ns & - \\
\hline
\end{tabular}

Fig. 1- Timing diagrams for CD4518B and CD4520B.

STATIC ELECTRICAL CHARACTERISTICS

Limits with black dot (\(\bullet\)) designate \(100 \%\) testing. Refer to RIC-102C "High-Reliability COS/MOS CD4000A Slash (/) Series Types", Tables 2 through 7 for testing sequence. All other limits are designer's parameters under given test conditions and do not represent \(\mathbf{1 0 0 \%}\) testing.
Note 1: Complete functional test all inputs and outputs to truth table.
Note 2: Test is either a one input or a one output only.

Fig. 2- Decade counter (CD4518B) logic diagram for one of two identical counters.

Fig. 3-Binary counter (CD4520B) logic diagram for one of two identical counters.

Fig. 4- Minimum output-N-channel drain characteristics.

Fig. 6-Typical propagation delay vs. load capacitance (clock or enable to output).

Fig. 8-Typical maximum-clock-frequency vs. supply voltage.

92CS-24321
Fig. 5-Minimum output-P-channel drain characteristics.

Fig. 7-Typical transition time vs. load capacitance

frequency (f) - kHz
92Cs-24509
Fig. 9- Typical power dissipation characteristics.

Fig. 10-Ripple cascading of four counters with positive-edge triggering.

Fig. 12-Synchronous cascading of four binary counters with negative-edge triggering.

92Cs-24513

Fig. 11-Noise immunity test circuit.

Fig. 13-Quiescent device current test circuit.

TERMINAL ASSIGNMENT CD4518B and CD4520B
\[
\left.\begin{array}{rl}
\text { CLOCK } A-10 & 16
\end{array}\right)-V_{D D}
\]

\title{
Handling and Operating Considerations for MOS Integrated Circuits
}

\author{
by S．Dansky \\ R．E．Funk
}

This Note describes practices for handling and operating MOS integrated circuits that will guard against device damage and assure optimum performance．

\section*{Handling Considerations}

The input protection networks incorporated in all RCA COS／MOS devices are effective in a wide variety of device handling situations．To be totally safe，however，it is desirable to restate the general conditions for eliminating all possibilities of device damage．

Because MOS devices have extremely high input resistance． they are susceptible to damage when exposed to extremely high static electrical charges．To avoid possible damage to the devices during handling，testing，or actual operation． therefore，the following procedures should be followed：

1．The leads of devices should be in contact with a conductive material，except when being tested or in actual operation，to avoid build－up of static charge．
2．Soldering－iron tips，metal parts of fixtures and tools， and handling facilities should be grounded．
3．Devices should not be inserted into or removed from circuits with the power on because transient voltages may cause permanent damage．
4．Signals should not be applied to the inputs while the device power supply is off．
5．All unused input leads must be connected to either \(\mathrm{V}_{\text {SS }}\)（ground）or VDD（device supply），whichever is appropriate for the logic circuit involved．
Table I indicates general handling procedures recommended to prevent damage from static electrical charges．

\section*{Handling of Unmounted Chips}

In handling of unmounted chips，care should be taken to avoid differences in voltage potential．A conductive carrier， or a carrier having a conductive overlay，should be used．

Another important consideration is the sequence in which bonds are made；the VDD（device supply）connection should always be made before the \(\mathrm{V}_{\mathrm{SS}}\)（ground）bond．

\section*{Handling of Subassembly Boards}

After COS／MOS units have been mounted on circuit boards，proper handling precautions should still be observed． Until these subassemblies are inserted into a complete system

Table I－General Handling Considerations
\begin{tabular}{|c|c|c|}
\hline & Should be conductive & Should be grounded to common point \\
\hline Handling Equipment & X & \\
\hline Metal Parts of Fixtures and Tools & & X \\
\hline Handling Trays & x & \(x\) \\
\hline Soldering Irons & & X \\
\hline Table Tops & X & X \\
\hline Transport Carts & & （Static Dis－ charge Straps） \\
\hline Manufacturing Operating Personnel & & －Utilize grounded metal wrist straps） \\
\hline General Handling of Devices & & （Utilize grounded metal wrist straps） \\
\hline
\end{tabular}

Total protection results when personnel and materials are all at the same or ground potential．
Dry weather（relative humidity less than \(30 \%\) ）tends to multiply the accumulation of static charges on any surface．Conversely， higher humidity levels tend to reduce the magnitude of the static voltage generated．In a low－humidity environment，the handling precautions listed above take on added importance and should be adhered to without exceptions．
－1－megohm series resistor．
in which the proper voltages are applied，the board is no more than an extension of the leads of the device mounted on the board．

It is good practice to put conductive clips or conductive tape \({ }^{1}\) on the circuit－board terminals．This precaution prevents static charges from being transmitted through the board wiring to the devices mounted on the board．

\section*{Automatic Handling Equipment}

When automatic handling equipment is used，static electricity may not always be eliminated through grounding

\footnotetext{
\({ }^{1}\) See Table II for sources of anti－static materials．
}
techniques alone. Automatic feed mechanisms must be insulated from the devices under test at the point where the devices are connected to the test set. The device-insulated part of the automatic handling mechanism (anvil transport) can generate very high levels of static electricity which are developed by the continuous flow of devices sliding over and then separating from the anvil. Total control of these static voltages is critical because of the high throughputs associated with automatic handling.

Fortunately, the resolution of this problem is simple, practical, and inexpensive. Ionized-air blowers, which supply large volumes of ionized air to objects that are to be charge neutralized, are commercially available from many supply sources. Field experience with ionized-air techniques reveals this method to be extremely effective in eliminating static electricity when grounding techniques cannot be used.

\section*{Lead Bending and Forming Considerations}

Other problems that can occur in handling COS/MOS devices relate to the proper handling of leads during mounting of devices. In any method of mounting integrated circuits that involves bending or forming of the device leads, it is extremely important that the leads be supported and clamped between the bend and the package seal, and that bends be made with extreme care to avoid damage to lead plating. In no case should the radius of the bend be less than the diameter of the lead, or in the case of rectangular leads, such as those used in RCA 14-lead flat-packaged integrated circuits, less than the lead thickness. It is also extremely important that the ends of the bent leads be perfectly straight and parallel to assure easy insertion through the holes in the printed-circuit board.

Bending, forming, and clinching of integrated-circuit leads produce stresses in the leads and can cause stresses in the seals if the above precautions are not taken. In addition, wide variations in temperature during normal use result in stresses in the device leads. Tests of 14 -lead flat-pack integrated circuits, conducted under worst-case conditions in which the packages were rigidly attached to posts extending from the printed-circuit board, showed that over a temperature swing of \(180^{\circ} \mathrm{C}\) (from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)) the stress developed in the leads, the tensile pull on the leads, the shear stress introduced on the seal, and the tensile stress developed in the seal were all well within the limits for these materials. The use of thermal-stress-relief bends is, therefore, not necessary.

\section*{Soldering Time and Temperature}

All device leads can withstand exposure to temperatures as high as \(265^{\circ} \mathrm{C}\) for as long as ten seconds, and as close as \(1 / 16 \pm 1 / 32\) inch from the body of the device.

\section*{Storing of COS/MOS Chips}

COS/MOS chips, unlike most packaged devices, are non-hermetic devices, fragile and small in physical size, and
therefore require the following special handling considerations:
1. Chips must be stored under proper conditions to assure that they are not subjected to a moist and/or contaminated atmosphere that could alter their electrical, physical, or mechanical characteristics. After the shipping container is opened, the storage temperature should not exceed \(40^{\circ} \mathrm{C}\) and the environment should be clean, dust-free, and less than \(50 \%\) relative humidity.
2. After mounting and bonding, these non-hermetic chips should not be subjected to moist or contaminated atmospheres that might cause the development of electrical conductive paths across the relatively small insulating surfaces. In addition, proper consideration must be given to the protection of these devices from other harmful environments which could conceivably adversely affect their proper performance.
For further information on COS/MOS chip handling, refer to File No. 517, "CD4000AH Series COS/MOS Chips".

\section*{Storing of Printed-Circuit Boards}

Excessive humidity (greater than \(60 \%\)) should be avoided during circuit-board check-out to prevent the false impression of excessive device internal leakage. High relative humidity may cause leakage paths between closely spaced elements of the circuit boards, such as the terminals and insulated metallized connection strips. Normally this added leakage is not significant in non-COS/MOS devices. However, when the nanoampere-leakage advantages of COS/MOS devices are desired, leakage currents on circuit boards or non-hermetic modules which are affected by high humidity become of major concern and must be controlled by coating, cleaning, or better environmental controls.

\section*{Effects of Humidity on Static Electricity}

Dry weather (relative humidity less than \(30 \%\)) tends to multiply the accumulation of static charges on any surface. Conversely, higher humidity levels tend to reduce the magnitude of the static voltage generated. In a low-humidity enviromment. the handling precautions listed in Table I take on added importance and should be adhered to without exceptions.

\section*{Electrical Failure Modes Due To Improper Handling}

When the possibilities exist for appreciable static-energy discharge, and proper handling techniques are not used, electrical damage can result as follows:
(a) shorted input protection diodes,
(b) shorted or open gates,
(c) opening in metal paths from the device input.

The presence of this type of device damage can be detected by curve-tracer checks of the input protection diodes of the gate-oxide protection circuits described on page 3 , and also by a check of the device characteristics, especially mutual transconductance (gm).

\section*{Operating Considerations}
\begin{tabular}{|c|c|}
\hline Maximum Ratings & CD4000A Series \\
\hline Storage-Temperature Range & -65 to \(+150^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Operating-Temperature Range:} \\
\hline Ceramic-Package Types & -55 to \(+125^{\circ} \mathrm{C}\) \\
\hline Plastic-Package Types & -40 to \(+85^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{DC Supply-Voltage Range:} \\
\hline \(\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}\) & -0.5 to +15 V \\
\hline \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {EE }}\) & -0.5 to +15 V \\
\hline \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {SS }}\) & -0.5 to +15 V \\
\hline DC Input-Voltage Range & \(\mathrm{v}_{S S} \leqslant \mathrm{v}_{1} \leqslant \mathrm{v}_{\text {D }}\) \\
\hline for CD4009A, CD4010A & \(\mathrm{v}_{\mathrm{SS}} \leqslant \mathrm{V}_{1} \leqslant \mathrm{~V}_{\mathrm{DD}} \geqslant \mathrm{v}_{\mathrm{CC}}\) \\
\hline for CD4049A, CD4050A & \(\mathrm{V}_{S S} \leqslant \mathrm{~V}_{1} \leqslant 15 \mathrm{~V}\) \\
\hline \multicolumn{2}{|l|}{for CD4051A, CD4052A, CD4053A:} \\
\hline Controls & \(\mathrm{v}_{S S} \leqslant \mathrm{~V}_{1} \leqslant \mathrm{~V}_{\text {D }}\) \\
\hline Signals & \(V_{E E} \leqslant V_{1} \leqslant V_{D D}\) \\
\hline Device Dissipation (per package) & 200 mW \\
\hline \multicolumn{2}{|l|}{Lead Temperature (during soldering)} \\
\hline at a distance \(1 / 16 \pm 1 / 32\) inch & \\
\hline (1.59 \(\pm 0.79 \mathrm{~mm}\)) from case for & \\
\hline 10 seconds maximum & \(+265^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Operating Voltage}

When operating near the maximum supply-voltage range of 15 volts, care should be taken to avoid or suppress power-supply turn-on or turn-off transients. power-supply ripple or regulation, and ground noise: any of the above conditions must not cause (\(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\)) to exceed the absolute maximum rating.

Power supplies should have a current compliance compatible with actual COS/MOS current drain.

Another good power-supply practice is to use a zener protection diode in parallel with the power bus. The zener value should be above the expected maximum regulation excursion, but should not exceed 15 volts. Fig. 1 illustrates a practical zener shunt circuit. A current-limiting resistor is included if the supply-current compliance is higher than the zener power-dissipation rating for a given zener voltage. The shunt capacitance value is chosen to supply required peak current switching transients.

Fig. 1 - Zener-diode shunt circuit.

\section*{Unused Inputs}

All unused input leads must be connected to either \(\mathrm{V}_{\mathrm{SS}}\) or \(\mathrm{V}_{\mathrm{DD}}\), whichever is appropriate for the logic circuit
involved. A floating input on a high-current type (such as the CD4009A. CD4010A. CD4041A, CD4049A, CD4050A) not only can result in faulty logic operation, but can cause the maximum power dissipation of 200 milliwatts to be exceeded and may result in damage to the device. Another consideration with these high-current types is that a pull-up resistor from their inputs to \(\mathrm{V}_{\mathrm{SS}}\) or \(\mathrm{V}_{\mathrm{DD}}\) should be used if there is any possibility that the device may become temporarily unterminated (e.g., if the printed circuit board driving the high-current types is removed from the chassis). A useful range of values for such resistors is from 0.2 to 1 megohm.

\section*{Input Signals}

Signals shall not be applied to the inputs while the device power supply is off unless the input current is limited to a steady-state value of typically less than 10 milliamperes. Input signal interfaces having the allowable 0.5 volt above \(\mathrm{V}_{\mathrm{DD}}\) or below \(\mathrm{V}_{\mathrm{SS}}\), respectively, should be current-limited to typically 10 milliamperes or less.

Whenever the possibility of exceeding 10 milliamperes of input current exists, a resistor in series with the input is recommended. The value of this resistor can be as high as 10 kilohms without affecting static electrical characteristics. Speed, however, will be reduced due to the added RC delay. Particular attention should be given to long input-signal lines where high inductance can increase the likelihood of large signal pickup in noisy environments. In these cases, series resistance with shunt capacitance at the IC input terminals is
recommended. The shunt capacitance should be made as large as possible consistent with the system speed requirements.

\section*{Interfacing with \(\mathrm{T}^{\mathbf{2}} \mathrm{L}\) Devices}

The COS/MOS hex buffers (CD4009A, CD4010A, CD4049A, and CD4050A) are designed to drive two normal-power \(\mathrm{T}^{2} \mathrm{~L}\) loads. Other device types (such as the CD4041A, CD4048A, and CD4031A) can also directly drive at least one \(\mathrm{T}^{2} \mathrm{~L}\) load. Always consult the published data on the particular COS/MOS type for this capability. Most gates and inverters and some MSI types can drive one or more low-power \(T^{2} L\) loads. To provide a good noise margin in the logic " 1 " state, T² \({ }^{2}\) devices that drive COS/MOS devices require a pull-up resistor at the COS/MOS input. The COS/MOS hex buffers can also convert COS/MOS logic levels (5 to 15 volts) to \(\mathrm{T}^{2} \mathrm{~L}\) logic levels (5 volts), i.e., down-level conversion.

Rules for safe system design when COS/MOS interfaces with \(\mathrm{T}^{2} \mathrm{~L}\) and both logic systems have independent power supplies of the same voltage level but possibly on at different times are as follows:
a) \(\mathrm{T}^{2} \mathrm{~L}\) driving COS/MOS -- use 1 kilohm in series with COS/MOS input
b) COS/MOS driving \(\mathrm{T}^{2} \mathrm{~L}\) - connect directly

\section*{Interfacing with p-MOS Devices}
\(\operatorname{COS} / \mathrm{MOS}\) devices can operate at \(\mathrm{V}_{\mathrm{DD}}=0\) and \(\mathrm{V}_{\mathrm{SS}}=-3\) to -15 volts to interface directly with p-MOS devices with no degradation in noise immunity or other characteristics.

\section*{Interfacing with \(\mathbf{n}\)-MOS Devices}

COS/MOS devices can be interfaced directly with n-MOS devices over the +3 to +15 volt range of power supplies.

\section*{Fan-Out - COS/MOS to COS/MOS}

All RCA COS/MOS devices have a de fan-out capability of 50. The reduction in COS/MOS switching speed caused by added capacitive loading should, however, be consistent with high-speed system design. The input capacitance is typically 5 pF for most types; the CD4009A and CD4049A buffers have an input capacitance of typically 15 pF .

\section*{Maximum Clock Rise and Fall Time}

All COS/MOS clocked devices show maximum clock riseand fall-time ratings (normally 5 to 15 microseconds). With longer rise or fall times, a device may not function properly.

\section*{Parallel Clocking}

When two or more different COS/MOS devices use a common clock, the clock rise time must be kept at a value less than the sum of the propagation delay time, the output transition time, and the setup time. Most flip-flop and shift-register types are included in this rule and are so noted in the indiv: fual data sheets.

\section*{Noise Immunity}

COS/MOS inputs normally switch at 30 to 70 per cent of the power-supply voltage. For example, for a 10 -volt supply,
a logic " 0 " is 0 to 3 volts, and a logic " 1 " is 7 to 10 volts. For 5 -volt operation, a logic " 0 " is 0 to 1.5 volts, and a logic " 1 " is 3.5 to 5 volts. COS/MOS noise immunity is 30 per cent of the supply voltage for the range from +3 to +15 volts.

The inherent 30 -per-cent noise immunity of COS/MOS also permits a 1 -volt noise margin when interfaced with \(\mathrm{T}^{2} \mathrm{~L}\) or DTL. For example, standard \(\mathrm{T}^{2} \mathrm{~L}\) and DTL interfacing with COS/MOS at a nominal \(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=5\) volts provides at least 1 -volt noise margin; i.e., \(\mathrm{V}_{\mathrm{OL}} \max \left(\mathrm{T}^{2} \mathrm{~L}\right)=0.4\) volt and \(\mathrm{V}_{\mathrm{OL}} \mathrm{min}(\mathrm{DTL})=0.45\) volt \(; 30 \%\) of 5 volts \(=1.5\) volts.

This example applies typically to the \(5400 / 7400\) series, the 9000 series, and the 8000 series. HI NIL (300 series) can interface with \(\operatorname{COS} / \mathrm{MOS}\) at a nominal \(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=12\) volts with a worst-case noise margin of 2.1 volts.

Because \(\operatorname{COS} /\) MOS voltage-transfer switching characteristics vary from 30 to 70 per cent of the supply voltage, system designers employing COS/MOS multivibrators, level detectors, and RC networks must consider this variation. Application Note ICAN-6267 illustrates an accurate multivibrator design technique which minimizes the switching-point variation.

\section*{Output Short Circuits}

Shorting of outputs to \(\mathrm{V}_{\mathrm{SS}}\) or \(\mathrm{V}_{\mathrm{DD}}\) can cause the device power dissipation to exceed the safe value of 200 milliwatts for high-output-current types such as the CD4007A, CD4009A, CD4010A, CD4041A, CD4049A, and CD4050A. In general, outputs of these types can all be safely shorted when operated with \(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} \leqslant 5\) volts, but may exceed the 200 -milliwatt dissipation rating at higher power-supply voltages. For cases in which a short-circuited load, such as the base of a p-n-p or n-p-n bipolar transistor, is directly driven, the device output characteristics given in the published data should be consulted to determine the requirements for safe operation below 200 milliwatts.

\section*{COS/MOS Characteristics}

Quiescent Device Leakage Current (\(\mathrm{I}_{\mathrm{L}}\)):
Quiescent device leakage is measured for inputs tied high \(\left(I_{\text {DD }}\right)\) and also for all inputs tied low (\(I_{S S}\)), as illustrated below:

Quiescent Device Dissipation (\(\mathrm{P}_{\mathrm{D}}\)): Quiescent device dissipation is given by \(P_{D}=\left(V_{D D}-V_{S S}\right) I_{L}\) where \(I_{L}=I_{D D}\) or \(I_{S S}\)

\section*{Output Voltage Levels (COS/MOS driving COS/MOS):}
\(\mathrm{V}_{\mathrm{OL}}=\) Low-Level(" \({ }^{\prime}\) ")Output \(=10 \mathrm{mV}^{*}\) at \(25^{\circ} \mathrm{C}\)
\(\mathrm{V}_{\mathrm{OH}}=\) High-Level("1")Output \(=\mathrm{V}_{\mathrm{DD}}-10 \mathrm{mV}^{*}\) at \(+25^{\circ} \mathrm{C}\)

Noise Immunity:
\(\mathrm{V}_{\mathrm{NL}}=\) the maximum noise voltage that can be applied to a logic " 0 " input (added to \(\mathrm{V}_{\mathrm{SS}}\)) before the output changes state.
\(\mathrm{V}_{\mathrm{NH}}=\) the maximum noise voltage that can be applied to a logic " 1 " input (subtracted from \(\mathrm{V}_{\mathrm{DD}}\)) before the output changes state.

\section*{Output Drive Current:}

Sink Current \(\left(I_{D} N\right)=\) the output sink current provided by the \(n\)-channel transistor without exceeding a given output voltage \(\left(\mathrm{V}_{\mathrm{o}}\right)\) as shown on each data sheet.
Source Current \(\left(I_{D} P\right)=\) the output source current provided by the p-channel transistor without dropping below a given output voltage (\(\mathrm{V}_{\mathrm{o}}\)) as shown on each data sheet.

Input Current (\(\mathrm{I}_{\mathrm{I}}\)):
Input current is typically 10 picoamperes (3 to 15 volts) at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\). Maximum input currents for COS/MOS devices are normally below 10 nanoamperes at 15 volts, and below 50 nanoamperes at \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\).

AC (Dynamic) Characteristics:
Test parameters shown in the published data are measured at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) with a \(15-\mathrm{pF}\) load and an input-signal rise or fall time of 20 nanoseconds. Actual system delays and transition times may be increased due to longer input rise and fall times. Graphs are included in the individual data sheets to illustrate typical variation of delays and transition times with capacitive loading. The designer should use a typical temperature coefficient of \(0.3 \% /{ }^{\circ} \mathrm{C}\) for estimating speeds at temperatures other than \(+25^{\circ} \mathrm{C}\). Propagation delays and transition times increase with rising temperature; maximum clock input frequencies decrease with rising temperatures.

Dynamic power dissipation for each device type is shown graphically in the published data as a function of device operating frequency.

\footnotetext{
* This voltage may be difficult to measure depending on accuracy, resolution, and offset voltage of test equipment used. Although device output " 1 " or " 0 " limits to which RCA tests in manufacture are 10 millivolts, a value of 50 millivolts may be used for customer measurements without compromise of device quality or system performance.
}

\section*{Gate-Oxide Protection Circuits}

Most COS/MOS gate inputs have the protection shown in Fig. 2. An exception to this statement is the input network for the CD4049A and CD4050A shown in Fig. 3. Figs. 4 and 5 illustrate the protection diodes inherently present at all transmission-gate input/output terminals and all inverter outputs. ICAN-6218 gives further information on protection circuits.

The protection networks can typically protect against \(1-2\) kilovolts of energy discharge from a \(250-\mathrm{pF}\) source.

Fig. 2 - Normal gate-input-protection circuit.

Fig. 3 - CD4049A/CD4050A gate-input-protection circuit.

Fig. 4 - Transmission gate-input-output protection.

Fig. 5 - Active (inverter) output protection.
* these diodes are INHERENTLY PART OF THE MANUFACTURING

Table II - Partial List of Materials and Equipment Available for the Control of Static Charge
\begin{tabular}{|c|c|c|c|c|c|}
\hline Company & Conductive Foam & Conductive Envelopes & Static Neutralizing Air Blowers & Anti-Static Sprays & Conductive Tape \\
\hline Custom Material Inc. Chelmsford, Mass. & Velofoam \#7672 & Velobags \#1798M & TEC Dynastat DS120 & & \begin{tabular}{l}
P.C. \\
Contab Shunt
\end{tabular} \\
\hline \begin{tabular}{l}
3M Company \\
St. Paul, Minn.
\end{tabular} & & & Ionized Air Blower \#905 & See Technical Bulletins & \begin{tabular}{l}
Scotch \\
Shielding Tapes
\end{tabular} \\
\hline Scientific Enterprises, Inc. Bloomfield, Colo. & & & Micro Stat 575 Portable Ionizer & & \\
\hline Emerson \& Cuming, Inc. Canton, Mass. & \[
\begin{aligned}
& \text { ECCOSORB } \\
& \text { LD26 }
\end{aligned}
\] & & & See Technical Bulletins & \\
\hline
\end{tabular}

\title{
Radiation Resistance of the COS／MOS CD4000A Series
}

\author{
by M．N．Vincoff
}

Complementary MOS（COS／MOS）integrated circuits possess many advantages which recommend their use in radiation－susceptible space and military environments． Several of the most significant of these advantages are： ultra－low standby－power consumption，high noise im－ munity，\({ }^{1}\) extremely high packaging density，and inherently high reliability．\({ }^{2}\) These advantages，along with the improved radiation resistance of the RCA CD4000A series over the CD4000 series described in earlier radiation studies，\({ }^{3}\) exhibit the maturity reached by the MOS technology since 1971.

A number of studies of the radiation resistance of complementary MOS devices by NASA，the Navy and various companies in the space industry have revealed two areas of prime concern．\({ }^{4-15}\) The first，permanent radiation exposure， as experienced in a space environment，causes a shift in threshold or switching voltage and a possible increase in leakage current， \(\mathrm{I}_{\mathrm{L}}\) ．The second，transient radiation exposure， as experienced in an atomic environment，causes the output－ voltage levels to respond to a pulse of ionizing radiation；this effect could change the state of the logic circuitry and require resetting of that circuitry for proper equipment or system operation．

\section*{Permanent－Radiation Resistance}

The CD4000 series was resistant to permanent radiation levels of \(2 \times 10^{4}\) rads（approximately \(10^{12} \mathrm{e} / \mathrm{cm}^{2}\) ）．Now， however，RCA CD4000A－series devices without special shielding have been found to be resistant to radiation levels up to \(2 \times 10^{5}\) rads（approximately \(10^{13} \mathrm{e} / \mathrm{cm}^{2}\) ），as shown in Fig．1．\({ }^{3}\) In this figure the change in switching voltage \(\Delta V_{S}\) is plotted as a function of dose．The value of \(\Delta V_{S}\) was calculated from the average value of \(\Delta V_{T N}\) and \(\Delta V_{T P}\) for the devices mentioned．The new radiation level of the CD4000A series represents a significant improvement over the CD4000 series．In addition，with minimal shielding（for example， \(1 / 16\)－inch of aluminum）the CD4000A series can be used in application with levels of radiation up to \(3 \times 10^{6}\) rads （approximately \(10^{14} \mathrm{e} / \mathrm{cm}^{2}\) ）．

Fig． 1 －Permanent radiation resistance of CD4000A－and CD4000－ series devices．

\section*{Transient－Radiation Resistance}

The resistance of the CD4000A series to transient radiation is expected to be ten times better than that of the CD4000 series，which can withstand pulses of radiation of approximately \(10^{10} \mathrm{rads} / \mathrm{s} .5\)

\section*{Design Considerations}

The resistance of the CD4000A－series devices to either permanent－or transient－radiation exposure can be increased by providing either minimal shielding through the design of the equipment enclosure containing the devices or by locating the devices deep within the equipment in which they are used．In any case，the action taken will depend on the constraints dictated by the radiation environment imposed by the system or program．Each application must be tested and the results analyzed with the data in this Note as criteria． Test items to be considered are radiation environment，which
will vary greatly depending on dosage rate; time of exposure; amount of normal shielding; distance of the device from the radiation source; shielding afforded by the atmosphere; power-supply voltage selection; and switching cycles used during exposure. For example, consider the effects of permanent radiation on two spacecraft in 90 -degree orbits at 600 and 1500 nautical miles from the earth, respectively. The dose-depth is determined as shown in the curves of Fig. 2. In these curves the dose in \(\operatorname{rads}(\mathrm{A} 1) /\) day is plotted as a function of the thickness of spacecraft aluminum required to shield the devices from trapped electrons and protons. \({ }^{4}\)

Fig. 2 - Dose-depth curves for trapped electrons and protons in spacecraft in orbit.

\section*{Conclusion}

The RCA COS/MOS CD4000A series exhibits improved radiation resistance over the CD4000 series, and is well suited for use in many applications in which permanent and transient radiation effects are factors. When stringent radiation requirements are imposed, additional shielding can be employed to increase the radiation life of COS/MOS CD4000A-series devices to any desired level, i.e., to make their radiation resistance equivalent to that of bipolar devices.

Custom COS/MOS devices that can resist a radiation level of \(10^{6}\) rads are now being developed by means of an aluminum implantation process which requires one additional masking step in the production line. 11-14

\section*{References}
1. Eaton, S. S., "Noise Immunity of RCA COS/MOS Integrated Circuit Logic Gates", RCA Application Note ICAN-6166.
2. Vincoff, M. N. and Schnable, G. L., "COS/MOS is a High-Reliability Technology", RCA Technical Publication ST-6112.
3. Ezzard, G., "Radiation Effects on COS/MOS Devices", RCA Application Note ICAN-6604 (covers CD4000 series).
4. Brucker, G. J., "COS/MOS Device Sensitivity in OuterSpace Radiation Environment", Report No. X72002, Oct. 17, 1973, RCA Astro Electronics Division.
5. Dennehy, W. J., et al., "Transient Radiation Response in Complementary-Symmetry MOS Integrated Circuits", RCA Technical Publication ST-4308.
6. Poch, W. J., and Holmes-Siedle, A. G., "Permanent Radiation Effects in COS/MOS Integrated Circuits", RCA Technical Publication ST-4174 (covers CD4000 series).
7. Schambeck, W., "Radiation Resistance and Typical Applications of RCA COS/MOS Circuits in Spacecrafts", Telemetry Journal, June/July 1970 (covers CD4000 series).
8. Schambeck, W., "Effects of Ionizing Radiation on Low-Threshold C-MOS Integrated Circuits", DFVLR Institute for Satellite Electronics, Oberpfaffen-hofen, W. Germany, April 1972 (covers CD4000A series).
9. Danchenko, V., "Radiation Damage in MOS Integrated Circuits, Part I", Sept. 1971, Goddard Space Flight Center, Report X-711-71-410 (covers CD4000A series).
10. Poch, W. J., and Holmes-Siedle, A. G., "The Long-Term Effects of Radiation on Complementary MOS Logic Networks", IEEE Transactions on Nuclear Science NS-17 (6), Dec. 1970 (covers CD4000 series).
11. Smith, J. M., and Murray, L. A., "Radiation Resistant COS/MOS Devices", RCA Technical Publication ST-4723.
12. King, E. E., Nelson, G. P., and Hughes, H. L., "The Effects of Ionizing Radiation on Various COS/MOS Integrated Circuit Structures", IEEE Transaction in Nuclear Science, No. 6, pg. 264, Dec. 1972, RCA Technical Publication ST-6161.
13. Peel, John L., et al., "Radiation-Hardened Complementary MOS Using \(\mathrm{SiO}_{2}\) Gate Insulators", IEEE Transactions on Nuclear Science, No. 6, pg. 271, Dec. 1972.
14. Schlesier, K. M., et al., "COS/MOS Hardening Techniques", IEEE Transactions on Nuclear Science, No. 6, pg. 275, Dec. 1972.

\title{
High-Reliability COS/MOS \\ CD4000A Slashl/JSeries Types \\ Screened to MIL-STD-883
}

RCA COS/MOS high-reliability slash (/) series digital integrated circuits are available for applications in aerospace, military, and industrial equipment. These COS/MOS circuits are supplied to six screening levels (/1N, /1R, \(/ 1, / 2, / 3, / 4\)) which meet the electrical, mechanical, and environmental test methods and procedures established for microelectronic devices in MIL-STD-883. These six screening levels are equivalent to MIL-STD-883 Classes A, B, and C and are summarized in Table 1.

RCA also offers standard commercial product with a 168 -hour burn-in, designated level /5.

This bulletin defines the test procedures employed with COS/MOS devices to meet the reliability standards required by MIL-STD-883. The level /1N part includes SEM (Scanning Electron Microscope) Inspection to NASA-Goddard Specification GSFC-S-311-P-12A of MIL-M-38510, and Precap Visual Inspection, Condition A, Method 2010-1, MIL-STD-
883. The level / \(R\) part includes the SEM inspection in addition to the requirements of level / 1 part. RCA also offers the CD4000A slash (/) series screened to MIL-M-38510 (Slash (/) 050-Series Types). For COS/MOS devices in this series, refer to RIC-104A, "High-Reliability COS/MOS MIL-M-38510 CD4000A-Series Types".

The Product Flow Diagram shown in Fig. 1 lists a summary of processing, screening tests, and sampling procedures followed in the manufacture of high-reliability COS/MOS devices.

Table 2 gives detailed information for the screening tests included in the Product Flow Diagram. Table 3 gives pre burn-in and post burn-in electrical tests and delta limits for critical test parameters. Tables 4 and 5 give test criteria for Final Electrical and Group A Electrical Tests. Tables 6 and 7 describe Group B and C Environmental Sampling Inspection tests.

Fig. 1 - Product flow diagram. See Tables 2, 4, 5, 6, and 7 for details.

Table 1 - Description of RCA Integrated-Circuit Screening Levels
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Screening Levels \({ }^{\text {A }}\)} & \multirow[b]{2}{*}{Application} & \multirow[b]{2}{*}{Description} \\
\hline RCA Levels & Equivalent to MIL-STD-883, Method 5004.1 & & \\
\hline \multicolumn{4}{|l|}{For Packaged Devices} \\
\hline /1N & Class A with SEM* Inspection and Condition A Precap Visual Inspection & \multirow{3}{*}{Aerospace and Missiles} & \multirow[t]{3}{*}{For devices intended for use where maintenance and replacement are impossible and reliability is imperative} \\
\hline /1R & Class A with SEM* Inspection and Condition B Precap Visual Inspection & & \\
\hline 11 & Class A with Condition B Precap Visual Inspection & & \\
\hline /2 & Class A with Condition B Precap Visual Inspection. Radiographic Inspection Omitted & Aerospace and Missiles & For devices intended for use where maintenance and replacement are extremely difficult or impossible and reliability is imperative \\
\hline 13 & Class B & Military and Industrial For example, in Airborne Electronics & For devices intended for use where maintenance and replacement can be performed but are difficult and expensive \\
\hline /4 & Class C & Military and Industrial For example, in GroundBased Electronics & For devices intended for use where replacement can readily be accomplished \\
\hline \begin{tabular}{l}
/5 \\
Standard commercial plus burn-in
\end{tabular} & - & Commercial and Industrial & For devices intended for use where a higher level of reliability is required than can be provided by product without a burn-in \\
\hline \multicolumn{4}{|l|}{For Chips \({ }^{\text {² }}\)} \\
\hline /N & SEM* Inspection and Condition A Precap Visual Inspection & \multirow{2}{*}{Aerospace and Missiles} & \multirow[t]{2}{*}{For hybrid applications where maintenance and replacement are extremely difficult and reliability is imperative} \\
\hline /R & SEM* Inspection and Condition B Precap Visual Inspection & & \\
\hline /M & Condition B Precap Visual Inspection & Military and Industrial & For general applications \\
\hline
\end{tabular}

\footnotetext{
*SEM - Scanning Electron Microscope Inspection per NASA Specification GSFC-S-311-P-12
© For details on Condition A and Condition B Precap Visual Inspection, refer to MIL-STD-883 Method 2010.1
■ Lot acceptance testing for chips is available on a custom basis
}

RIC-102C

\section*{Ordering Information}

\section*{1. Packaged Device and Chip Type Number Identification}

When ordering a packaged device or a chip, it is important that the desired Screening Level and Package Designation for the Packaged Device, and the desired Screening Level for the Chip Version indicated by the appropriate suffix letters be added to the Part Number as shown below. For example, a CD4024A in a 14 -lead dual-in-line ceramic
package and processed to meet MIL-STD-883 Class A requirements with SEM Inspection plus Condition A Precap Visual would be identified as the CD4024AD/1N. In similar manner, a CD4024A Chip having SEM inspection plus Condition A Precap Visual would be identified as the CD4024AH/N.

\section*{2. Data Supplied With Order for Packaged Devices}
a) Product Screening Data

\section*{For the Following}

Certificate of Compliance Signed by RCA Representative -
Provides lot identity, customer order identity, lists and certifies tests, methods and conditions of required processing per MIL-STD-883 All except /5
Group A Subgroup - Test Summary Attributes Data . All except /5
Variables Data, Pre Burn-In and Post Burn-In ./1N, /1R, /1, /2
Radiographic Inspection Film and Film Inspection Record ./1N, /1R, /1
SEM Inspection Certificate of Compliance to NASA Specification GSFC-S-311-P-12 Includes lot identification and one worst-case photograph ./1N, /1R
b) Lot Quality Conformance Data -

Group B and Group C Subgroups
Attributes Data Summary of the Latest Group B and/or Group C Subgroup can be ordered at a nominal charge.
Special Group B and/or Group C quality conformance tests on samples from the specific lot of parts ordered will be considered on a custom basis only.

Description of RCA COS/MOS IC High-Reliability Part Numbers

Packaged Device CD4000AD/1N
\begin{tabular}{|c|c|c|}
\hline \(\underbrace{\text { CD4000A }}\) & \[
\underbrace{D}
\] & /1N \\
\hline & Package Suffix Letter & Screening Level \\
\hline Type Designation & \begin{tabular}{l}
D = Dual-in-Line \\
Ceramic Weld-Seal \\
\(\mathrm{K}=\) Ceramic \\
Flat Pack \\
F = Dual-in-Line \\
Ceramic Frit-Seal
\end{tabular} & \begin{tabular}{l}
\[
\begin{array}{lll}
/ 1 N & / 2 & \\
/ 1 R & / 3 & \\
/ 1 & / 4 & / 5
\end{array}
\] \\
For Description, See Table 1
\end{tabular} \\
\hline
\end{tabular}

Chip Version, CD4000AH/N
\begin{tabular}{|c|c|c|}
\hline CD4000A & \[
\underbrace{\mathbf{H}}
\] & \[
\underbrace{/ N}
\] \\
\hline & Package Suffix Letter & Screening Level \\
\hline Type Designation & \[
\begin{aligned}
& H=\text { Chip } \\
& \text { Version }
\end{aligned}
\] & \begin{tabular}{l}
/N /R /M \\
For Description, See Table 1
\end{tabular} \\
\hline
\end{tabular}

Table 2 - Description of Total Lot Screening (\(X=100 \%\) Testing)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Test} & \multirow[t]{2}{*}{Conditions} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{6}{|c|}{RCA Screening Levels*} \\
\hline & & Method & Conditions & /1N & /1R & /1 & 12 & /3 & 14 \\
\hline SEM Inspection & NASA Per GSFC-S-311-P-12 & - & - & X & x & - & - & - & - \\
\hline Precap Visual & - & 2010.1 & A & X & - & - & - & - & - \\
\hline Precap Visual & - & 2010.1 & B & - & \(x\) & \(x\) & \(x\) & \(x\) & x \\
\hline Preseal Bake & 16 to 32 hrs at \(200^{\circ} \mathrm{C}\) & - & - & X & X & X & X & X & X \\
\hline Seal \& Lot Identification & - & - & - & X & x & x & X & X & X \\
\hline Stabilization Bake & 48 hrs . at \(150^{\circ} \mathrm{C}\) & 1008 & C & X & X & X & X & X & X \\
\hline Thermal Shock & 15 cycles & 1011 & C & \(x\) & \(x\) & \(x\) & x & - & - \\
\hline Temperature Cycling & 10 cycles & 1010 & C & \(x\) & x & \(x\) & x & x & x \\
\hline Mechanical Shock & 5 pulses, \(Y_{1}\) direction & 2002 & B & \(x\) & x & \(x\) & x & - & - \\
\hline Centrifuge & \(Y_{2}, Y_{1}\) direction & 2001 & E & X & x & x & X & - & - \\
\hline & \(\mathrm{Y}_{1}\) direction only & 2001 & E & - & - & - & - & x & x \\
\hline Fine Leak & - & 1014 & A & x & X & X & x & x & X \\
\hline Gross Leak & - & 1014 & C & X & X & X & X & x & X \\
\hline Electrical Tests & See Note 1 & - & - & X & \(x\) & X & \(x\) & X & - \\
\hline Serialize & - & - & - & \(x\) & X & X & x & - & - \\
\hline Pre Burn-in Electrical & see Table 3 & - & - & X & X & X & x & - & - \\
\hline Burn-in & 240 hours & 1015 & D or E & X & X & X & X & - & - \\
\hline & 168 hours & 1015 & D or E & - & - & - & - & X & - \\
\hline Post Burn-in Electrical & Delta Requirements (See Table 3) & - & - & \(x\) & x & X & x & - & - \\
\hline Final Electrical & - & - & - & - & - & - & - & - & - \\
\hline a) \(25^{\circ} \mathrm{C}\) & see Table 4 & - & - & \(x\) & x & x & x & x & x \\
\hline b) -55 and \(+125^{\circ} \mathrm{C}\) & see Table 4 & - & - & \(x\) & x & x & x & x & S \\
\hline Radiographic Inspection & 1 view & 2012 & - & X & X & X & - & - & - \\
\hline External Visual & - & 2009 & - & X & x & X & x & X & X \\
\hline
\end{tabular}

Note 1: See specific type data bulletin for test conditions and limits
* RCA screening level / 5 consists of a 168 -hour burn-in screen performed on standard commercial product. The ambient test temperature is the maximum possible without exceeding device thermal ratings. After burn-in, \(/ 5\) devices meet all of the electrical requirements specified in the appropriate commercial data bulletin. Reference: RCA DATABOOK SSD-203.

Table 3 - Pre and Post Burn-In Electrical Tests and Delta Limits (\(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline CRITICAL PARAMETERS
\[
\text { (at } V_{D D}=10 \mathrm{~V} \text {) }
\] & SYMBOLS & \multicolumn{9}{|l|}{LIMIT VALUES: For specific CD4000A Series Types and corresponding \(\Delta\) limits for High-Reliability Versions *} \\
\hline & \[
\begin{gathered}
\text { Total } \\
\mathrm{I}_{\mathrm{L}}(\max)
\end{gathered}
\] & 0.1 0.5 & 1 & 2 & 5 & 10 & 15 & 25 & 50 & Unit \(\mu \mathrm{A}\) \\
\hline & \(\Delta I_{L}\) & \begin{tabular}{l|l|}
0.05 & 0.2
\end{tabular} & 0.3 & 0.5 & 1.0 & 1.3 & 1.5 & 2.5 & 5.0 & \(\mu \mathrm{A}\) \\
\hline \begin{tabular}{l}
THRESHOLD VOLTAGE: \\
" N " Channel
\end{tabular} & \(\Delta V_{\text {TH }}{ }^{\prime \prime} N^{\prime \prime}\) & \multicolumn{8}{|l|}{\(\longrightarrow \longrightarrow\)} & V \\
\hline "P" Channel & \(\Delta \mathrm{V}_{\text {TH }}{ }^{\text {P }} \mathrm{P}^{\prime \prime}\) & \multicolumn{8}{|l|}{\(\longrightarrow\) -} & V \\
\hline \begin{tabular}{l}
DEVICE DRAIN CURRENT: \\
Total
\end{tabular} & Total IDS(min) & \(-0.1 \cdot 0.5\) & 0.5-2 & 2-5 & & 5.10 & 10-25 & \multicolumn{2}{|r|}{25.50} & mA \\
\hline "N" Channel & \(\triangle I_{\text {DS }}{ }^{\prime \prime} \mathrm{N}^{\prime \prime}\) & \(\pm 0.1\) & \(\pm 0.5\) & \(\pm 0.75\) & & \(\pm 1\) & \(\pm 2\) & \multicolumn{2}{|r|}{\(\pm 5\)} & mA \\
\hline "P" Channel & \(\triangle^{\prime}\) DS \(^{\prime \prime} \mathrm{P}^{\prime \prime}\) & \(\pm 0.1\) & \(\pm 0.5\) & \(\pm 0.75\) & & \(\pm 1\) & \(\pm 2\) & \multicolumn{2}{|r|}{\(\pm 5\)} & mA \\
\hline
\end{tabular}

\footnotetext{
* For example, if a specific CD4000A Series type has a maximum quiescent device current of \(0.5 \mu \mathrm{~A}\) at \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), RCA will test to a
\(\Delta\) limit of \(0.2 \mu \mathrm{~A}\) for the high-reliability version of that type. In a similar manner, if a type has a quiescent device current rating of
\(5 \mu \mathrm{~A}\), RCA will test to a \(\Delta\) limit of \(1.0 \mu \mathrm{~A}\).
}

Table 4 - Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { TEMPERATURE } \\
& \left(T_{A}\right) \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{TEST} & \multicolumn{3}{|c|}{TEST CRITERIA} \\
\hline & & \[
\begin{aligned}
& \text { LEVELS } \\
& / 1 \mathrm{~N}, / 1 \mathrm{R}, / 1, / 2
\end{aligned}
\] & \[
\begin{gathered}
\text { LEVEL } \\
13 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { LEVEL } \\
/ 4
\end{gathered}
\] \\
\hline \(+25^{\circ} \mathrm{C}\) & Selected Static Parameters & 100\% & 100\% & 100\% \\
\hline \(+125^{\circ} \mathrm{C}\) & Selected Static Parameters & 100\% & 100\% & - \\
\hline \(-55^{\circ} \mathrm{C}\) & Selected Static Parameters & 100\% & 100\% & - \\
\hline \(+25^{\circ} \mathrm{C}\) & Selected Dynamic Parameters & 100\% & 100\% & - \\
\hline
\end{tabular}

Table 5 - Group A Electrical Sampling Inspection
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ SUBGROUP } & \multicolumn{2}{|c|}{ TEST } & \multirow{3}{|c|}{ LTPD } \\
\cline { 4 - 6 } & & CONDITION & \begin{tabular}{c}
LEVELS \\
\(/ 1 N, / 1 R, / 1, / 2\)
\end{tabular} & \begin{tabular}{c}
LEVEL \\
\(/ 3\)
\end{tabular} & \begin{tabular}{c}
LEVEL \\
\(/ 4\)
\end{tabular} \\
\hline 1 & Selected Static Parameters & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & 5 & 5 & 5 \\
2 & Selected Static Parameters & \(\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}\) & 5 & 7 & 10 \\
3 & Selected Static Parameters & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 5 & 7 & 10 \\
4 & Selected Dynamic Parameters & \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) & 5 & 5 & 5 \\
\hline
\end{tabular}

Details of static and dynamic tests, conditions, and limits appear in the
High-Reliability Devices DATABOOK SSD-207. Tested static and dynamic characteristics are identified for each Slash (/) Series type by a dot (0)

Table 6 - Group B Environmental Sampling Inspection (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SUBGROUP} & \multirow[b]{2}{*}{TEST} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{3}{|c|}{LTPD} \\
\hline & & REFERENCE & CONDITIONS & LEVELS /1N, /1R, 11, /2 & \[
\begin{gathered}
\text { LEVEL } \\
\hline / 3
\end{gathered}
\] & \[
\begin{aligned}
& \text { LEVEL } \\
& \hline 14
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{1
2} & Physical Dimensions & 2008 & Test Cond. A per applicable data sheet & 10 & 15 & 20 \\
\hline & Marking Permanency & 2008 & Test Cond. B per Par. 3.2.1 & ـ & 4 devices o failures & \\
\hline & Visual and Mechanical & 2008 & Test Cond. B \(10 \times\) mag. & \[
-1
\] & 1 device o failure) & \\
\hline & Bond Strength & 2011 & \begin{tabular}{l}
Test Cond. D \\
10 Devices minimum
\end{tabular} & 5 & 15 & 20 \\
\hline \multirow[t]{4}{*}{3
4} & Solderability & 2003 & & 10 & 15 & 15 \\
\hline & Lead Fatigue & 2004 & Test Cond. B2 any 5 leads & 10 & 15 & 15 \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak & 1014 & Test Cond. C & & & \\
\hline
\end{tabular}

Note 1: Group B tests are performed on each inspection lot per requirements of MIL-M-38510.
Note 2: Operating life circuits are included in specific type high-reliability data bulletins.

Table 7 - Group C Environmental Sampling Inspection (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SUBGROUP} & \multirow[b]{2}{*}{TEST} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{3}{|c|}{LTPD} \\
\hline & & REFERENCE & CONDITIONS & LEVELS /1N, /1R, /1, /2 & \[
\begin{gathered}
\text { LEVEL } \\
13
\end{gathered}
\] & \[
\begin{gathered}
\text { LEVEL } \\
\hline / 4
\end{gathered}
\] \\
\hline \multirow[t]{5}{*}{1} & Thermal Shock & 1011 & Test Cond. C & 10 & 15 & 15 \\
\hline & Temperature Cycling & 1010 & Test Cond. C & & & \\
\hline & Moisture Resistance & 1004 & No Voltage Applied & & & \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak Critical Post Tests - Note 3 & 1014 & Test Cond. C & & & \\
\hline \multirow[t]{5}{*}{2} & Mechanical Shock & 2002 & Test Cond. B, 0.5 ms & 10 & 15 & 15 \\
\hline & Vibration, Var. Freq. & 2007 & Test Cond. A & & & \\
\hline & Constant Acceloration & 2001 & Test Cond. E & & & \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak Critical Post Test - Note 3 & 1014 & Test Cond. C & & & \\
\hline 3 & Salt Atmosphere & 1009 & Test Cond. A & 10 & 15 & 15 \\
\hline & & & Omit Initial Conditioning & & & \\
\hline 4 & \begin{tabular}{l}
High Temp. Storage \\
Critical Post Tests - Note 3
\end{tabular} & 1008 & Test Cond. C 1000 hours & 7 & 7 & 7 \\
\hline 5 & \begin{tabular}{l}
Operating Life \\
Critical Post Tests - Notes 2
\end{tabular} & 1005 & \begin{tabular}{l}
\[
T_{A}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}
\] \\
Test Circuit (Note 2)
\end{tabular} & 5 & 5 & 5 \\
\hline 6 & \[
\begin{aligned}
& \text { Steady State Bias and } 3 \\
& \text { Critical Post Tests }- \text { Note } 3
\end{aligned}
\] & 1015 & Test Cond. A, 72 hrs. At \(\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\) (Note 3) & 7 & - & - \\
\hline
\end{tabular}

Note 1: Group C tests are performed at 3-month intervals for reliability history.
Note 2: Operating life circuits are included in specific type highreliability data bulletins.
Note 3: Static parameters and limits are shown in High-Reliability Devices DATABOOK SSD-207, and in specific type highreliability data bulletins.

RCA COS/MOS high-reliability digital integrated circuits are available for applications in aerospace, military, and industrial equipment where screening requirements of MIL-M38510 are specified. COS/MOS circuits are supplied to the three screening classes of MIL-M-38510 as specified in MIL-STD-883 Method 5004 Classes A, B, and C. Table 1 describes the screening levels.

This bulletin defines the procedures employed to manufacture COS/MOS CD4000A Series devices to meet the reliability requirements of MIL-M-38510. These COS/MOS devices are available in flat pack and dual-in-line ceramic packages.

Since 1970, RCA has been working closely with various aerospace and military agencies to qualify and provide COS/MOS devices to MIL-M-38510 specifications. Among these agencies are the NASA Goddard Space Flight Center, NASA Marshall Space Flight Center, NASA Headquarters Center in Washington, Rome Air Development Cenier, and the Defense Electronic Supply Center (DESC) at Dayton, a branch of the Defense Supply Agency.

MIL-M-38510 is the general specification for integrated circuits and is more comprehensive than MIL-STD-883. This general specification, introduced a year after MIL-STD-883 was in existence, adds a number of quality constraints not included in MIL-STD-883, which is a specification of test methods, procedures, and screening tests. COS/MOS parts are provided to MIL-M-38510 under a series of \(/ 050\) numbers of which nine are in existence. These nine numbers cover twenty-seven COS/MOS types. Parts meet requirements similar to those of Classes A, B, and C of MIL-STD-883, Method 5004 screening, except that additional requirements, including more test conditions and tightened limits, are imposed. The Product Flow Diagram shown in Fig. 1 lists a summary of processing, screening tests, and sampling
procedures followed in the manufacture of high-reliability COS/MOS devices. The additional criteria for each class of product are indicated by an X in Table 2. Also provided in MIL-M-38510 tests are PDA's (Per-Cent Defective Allowable) of 10 per cent for the three burn-in operations performed on Class A product, and 10 percent for the one burn-in of Class B product. Table 3 provides a list of the COS/MOS devices for which MIL-M- 38510 /050-number specification sheets have been written. The \(/ 054\) (CD4008A) and \(/ 058\) (CD4016A) types are still in preliminary status and are available for custom screening. Table 4 compares the screening requirements for COS/MOS integrated circuits to Class A Parts of MIL-M-38510. Tables 5 and 6 give test criteria for Final Electrical and Group A Electrical Tests. Tables 7 and 8 describe Group B and C Environmental Sampling Inspection tests. Table 9 describes the product-assurance program RCA implements in the performance of MIL-M-38510. Table 10 provides a classification guide for \(\operatorname{COS} / \mathrm{MOS}\) circuits.

The processing of high-reliability COS/MOS integrated circuits is shown in Fig. 3. The wafer processing and metallization steps, the wafer finishing operations, and the wafer testing are the same as for standard-product COS/MOS devices. For Class A parts, an SEM inspection step is inserted after the wafer processing and metallization, as shown in Fig. 2. After these four basic operations are completed, the tested wafer is subjected to the special high-reliability processing. As shown in Fig. 3, thirty-five additional processing and screening operations are required for Class \(A \operatorname{COS} / \mathrm{MOS}\) parts.

\section*{Ordering Information}

Order COS/MOS MIL-M-38510 Series types by giving the appropriate reliability screen as shown in Fig. 4. For example, the CD4013AD processed to Class \(A\) requirements should be marked MIL-M-38510/05101ACA.

Table 1: Description of MIL-M-38510 Screening Levels for RCA Integrated Circuits
\begin{tabular}{|c|c|c|}
\hline MI L-M-38510 & Application & \multicolumn{1}{c|}{ Description } \\
\hline \begin{tabular}{c}
Class A \\
(See Note 1)
\end{tabular} & Aerospace \& Missiles & \begin{tabular}{l}
For devices intended for use where maintenance and replacement are \\
extremely difficult or impossible and Reliability is imperative
\end{tabular} \\
\hline Class B & \begin{tabular}{c}
Military \& Industrial \\
For example, in Airborne \\
Electronics
\end{tabular} & \begin{tabular}{l}
For devices intended for use where maintenance and replacement can \\
be performed but are difficult and expensive
\end{tabular} \\
\hline Class C & \begin{tabular}{c}
Military \& Industrial \\
For example, in Ground- \\
Based Electronics
\end{tabular} & \begin{tabular}{l}
For devices intended for use where replacement can readily be \\
accomplished
\end{tabular} \\
\hline
\end{tabular}

Note 1: In the Condition A Visual Inspection of COS/MOS devices, the specification for metallization alignment in section 3.1.1.7(a) of the general specification will be changed, to read as follows:

\section*{alignment:}
1. Contact window that has less than 50 per cent of its area covered by the metallization.
2. Contact which has less than 75 per cent of the length of two adjacent sides
covered by the metallization.
3. A metallization path not intended to cover a contact window which is separated from the window by less than 0.25 mil .
4. Any exposure of the gate oxide.

Fig. 1 - Product flow diagram for RCA high-reliability COS/MOS integrated circuits processed in accordance with MIL-M-38510.
Table 2 - MIL-M-38510 Processing and Screening Requirements for RCA High-Reliability COS/MOS Integrated Circuits
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MIL-M-38510
Processing} & \multirow[t]{2}{*}{MIL-STD-883 METHOD} & \multirow[t]{2}{*}{Condition} & \multicolumn{3}{|l|}{MIL-M-38510 CLASS} \\
\hline & & & A & B & C \\
\hline - Wafer SEM Inspection & GSFC-S-311-P-12 & Photographs Available & X & - & - \\
\hline - Assembly Precap Visual Precap Visual & \[
\begin{aligned}
& 2010.1 \\
& 2010.1
\end{aligned}
\] & \[
\begin{aligned}
& \text { A } \\
& \text { B }
\end{aligned}
\] & X & - & - \\
\hline - Preconditioning Stabilization Bake Thermal Shock Temperature Cycle Mechanical Shock Centrifuge Y 1 Centrifuge Y 1 \& Y 2 Fine Leak Gross Leak & \[
\begin{aligned}
& 1008 \\
& 1011 \\
& 1010 \\
& 2002 \\
& 2001 \\
& 2001 \\
& 1014 \\
& 1014
\end{aligned}
\] & \begin{tabular}{l}
C, 48 hours at \(150^{\circ} \mathrm{C}\) \\
C, 15 cycles, \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
C, 10 cycles, \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
B, 5 pulses \\
E, 30000 G's \\
E, 30000 G's \\
A \\
C
\end{tabular} & & \[
\begin{gathered}
x \\
- \\
x \\
- \\
x \\
- \\
x \\
x
\end{gathered}
\] & \begin{tabular}{c}
\(x\) \\
- \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
- Test and Burn-In \\
Initial Test \\
Serialize \\
Bias Burn-In, Two 36-Hr. Deltas \\
Operating Burn-In, \(240-\mathrm{Hr}\). Deltas \\
Operating Burn-In 168 Hrs. \\
Final Electrical DC \(+25^{\circ} \mathrm{C}\) \\
Final Electrical AC \(+25^{\circ} \mathrm{C}\) \\
Final Electrical DC \(-55^{\circ} \mathrm{C}\) \\
Final Electrical AC \(-55^{\circ} \mathrm{C}\) \\
Final Electrical DC \(+125^{\circ} \mathrm{C}\) \\
Final Electrical \(\mathrm{AC}+125^{\circ} \mathrm{C}\)
\end{tabular} & & \begin{tabular}{l}
MIL-M-38510/50 Series \\
A, Bias at \(150^{\circ} \mathrm{C}\) \\
A, Bias at \(150^{\circ} \mathrm{C}\) \\
D, Dynamic at \(+125^{\circ} \mathrm{C}\) MIL-M-38510/50 Series MIL-M-38510/50 Series MIL-M-38510/50 Series MIL-M-38510/50 Series MIL-M-38510/50 Series MIL-M-38510/50 Series
\end{tabular} & & & -
-
-
-
-
-
S
S
S
S \\
\hline - X-ray Inspection & NH853004(3E) & Two views & X & - & - \\
\hline
\end{tabular}

Fig. 3-Flow Chart for COS/MOS High-Reliability Flat-Pack MIL-M-38510 Class A Device.

Table 3 - COS/MOS Devices For Which MIL-M-38510/50 Specifications Have Been Written
\begin{tabular}{|c|c|c|c|}
\hline Detailed Electrical Specification, MIL-M-38510 & Device Covered & Detailed Electrical Specification, MIL-M-38510 & Device Covered \\
\hline MIL-M-38510/050 & & MIL-M-38510/055 & \\
\hline 01 & CD4011A & 01 & CD4009A \\
\hline 02 & CD4012A & 02 & CD4010A \\
\hline 03 & CD4023A & 03 & CD4049A \\
\hline MIL-M-38510/051 & & 04 & CD4050A \\
\hline 01 & CD4013A & MIL-M-38510/056 & \\
\hline 02 & CD4027A & 01 & CD4017A \\
\hline MIL-M-38510/052 & & 02 & CD4018A \\
\hline 01 & CD4000A & 03 & CD4020A \\
\hline 02 & CD4001A & 04 & CD4022A \\
\hline 03 & CD4002A & 05 & CD4024A \\
\hline 04 & CD4025A & MIL-M-38510/057 & \\
\hline MIL-M-38510/053 & & 01 & CD4006A \\
\hline 01 & CD4007A & 02 & CD4014A \\
\hline 02 & CD4019A & 03 & CD4015A \\
\hline MIL-M-38510/054 & & 04 & CD4021A \\
\hline 01 & CD4008A & 05 & CD4031A \\
\hline & & MIL-M-38510/058
01 & CD4016A \\
\hline
\end{tabular}

Table 4 - Comparison of Screening Requirements for RCA Level /1N COS/MOS Devices and MIL-M-38510 Class A COS/MOS Devices
\begin{tabular}{|c|c|c|}
\hline SCREENING PROCEDURES & RCA LEVEL /1N (PER MIL-STD-883) & CLASS A MIL-M-38510 \\
\hline 1. SEM Inspection & Yes & Yes \\
\hline 2. Visual, Precap & 2010.1 Cond. A & 2010.1 Cond. A \\
\hline 3. Pre-conditioning & MIL-STD-883 & MIL-STD-883 \\
\hline 4. Bias Burn-in High & None & 36 hrs @ \(150^{\circ} \mathrm{C}, \triangle^{(2)} \mathrm{PDA}{ }^{(1)}\) \\
\hline 5. Bias Burn-in Low & None & 36 hrs @ \(150^{\circ} \mathrm{C}, \Delta^{(2)} 5 \%\) \\
\hline 6. Operating Burn-in 240 hrs @
\[
125^{\circ} \mathrm{C}
\] & Cirteria 10\% Lot Reject Max; If Exceeded, Repeat Allowed & PDA 5\% Max; if over 5\% Reject Entire Lot \(\Delta^{(2)}\) \\
\hline 7. DC Elect. Tests & Measurements on Selected Inputs and Outputs & Measurements on all Inputs and Outputs \\
\hline 8. DC Test-Limit Resolution & 50 nA Minimum; 10 mV Minimum & 1 nA Minimum; 1 mV Minimum \\
\hline 9. AC Dynamic Tests & Measurements on Selected Inputs and Outputs & Measurements on all Inputs and Outputs \\
\hline 10. AC Test Limits & At 15-pF Load & AT 50.pF Load \\
\hline 11. Radiographic & View in One Dimension & View in Two Dimensions \\
\hline 12. Parts Qualification Requirement & & 9 Detailed Electrical Specifications \\
\hline 13. Group B and C Qualification Conformance & 10 Generic Families for 50 COS/MOS Types & 9 Generic Families for 27 COS/MOS Types \\
\hline
\end{tabular}

\footnotetext{
\({ }^{(1)}\) PDA \(=\) Per-Cent Defective Allowable
(2) \(\Delta=\) Delta Variables, Data Required
}

Table 5 - Final Electrical Tests
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{TEMPERATURE
\(\left(T_{A}\right)\)} & \multirow[b]{2}{*}{\begin{tabular}{l}
TESTS TO \\
MIL-M-38510 SPECIFICATIONS
\end{tabular}} & \multicolumn{3}{|c|}{TEST CRITERIA} \\
\hline & & Class A & Class B & Class C \\
\hline \(+25^{\circ} \mathrm{C}\) & DC \& Functional Parameters & 100\% & 100\% & 100\% \\
\hline \(+125^{\circ} \mathrm{C}\) & DC \& Functional Parameters & 100\% & 100\% & - \\
\hline \(-55^{\circ} \mathrm{C}\) & DC \& Functional Parameters & 100\% & 100\% & - \\
\hline \(+25^{\circ} \mathrm{C}\) & AC Parameters & 100\% & 100\% & - \\
\hline
\end{tabular}

Table 6 - Group A Electrical Sampling Inspection
\begin{tabular}{|c|l|l|l|c|c|}
\hline \begin{tabular}{c}
SUBGROUP OF \\
MIL-STD-883 \\
\(\mathbf{5 0 0 5 . 1}\)
\end{tabular} & MIL-M-38510 SPECIFICATIONS & CONDITION & CTPD \\
\cline { 3 - 6 } & Class A & Class B & Class C \\
\hline \(\mathbf{1 , 7}\) & DC \& Functional Parameters & \(T_{A}=+25^{\circ} \mathrm{C}\) & 5 & 5 & 5 \\
2,8 & DC \& Functional Parameters & \(T_{A}=+125^{\circ} \mathrm{C}\) & 5 & 7 & 10 \\
3,8 & DC \& Functional Parameters & \(T_{A}=-55^{\circ} \mathrm{C}\) & 5 & 7 & 10 \\
4,9 & AC Parameters & \(T_{A}=+25^{\circ} \mathrm{C}\) & 5 & 5 & 5 \\
10 & AC Parameters & \(T_{A}=+125^{\circ} \mathrm{C}\) & 5 & 5 & - \\
11 & AC Parameters & \(T_{A}=-55^{\circ} \mathrm{C}\) & 7 & 7 & - \\
\hline
\end{tabular}

Details of static, functional, and dynamic tests, conditions, and limits appear in the specific MIL-M-38510/050 series specifications.

Table 7 - Group B Environmental Sampling Inspection to MIL-M-38510 (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SUBGROUP} & \multirow[b]{2}{*}{TEST} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{3}{|c|}{LTPD} \\
\hline & & REFERENCE & CONDITIONS & \begin{tabular}{l}
CLASS \\
A
\end{tabular} & \begin{tabular}{l}
CLASS \\
B
\end{tabular} & CLASS
C \\
\hline \multirow[t]{4}{*}{1
2} & Physical Dimensions & 2008 & Test Cond. A per applicable data sheet & 10 & 15 & 20 \\
\hline & Marking Permanency & 2008 & Test Cond. B per Par. 3.2.1 & \multicolumn{3}{|c|}{4 devices (no failures)} \\
\hline & Visual and Mechanical & 2008 & \multirow[t]{2}{*}{\begin{tabular}{l}
Test Cond. B \(10 \times\) mag. \\
Test Cond. D 10 Devices minimum
\end{tabular}} & \multicolumn{3}{|c|}{1 device (no failure)} \\
\hline & Bond Strength & 2011 & & 5 & 15 & 20 \\
\hline 3 & Solderability & 2003 & & 10 & 15 & 15 \\
\hline 4 & Lead Fatigue & 2004 & Test Cond. B2 any 5 leads & \multirow[t]{3}{*}{10} & \multirow[t]{3}{*}{15} & \multirow[t]{3}{*}{15} \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak & 1014 & Test Cond. C & & & \\
\hline
\end{tabular}

Note 1: Group B tests are performed on each inspection lot per requirements of MIL-M-38510.
Note 2: Operating life circuits are included in MIL-M-38510 detailed specifications (/ sheets).

Table 8 - Group C Environmental Sampling Inspection to MIL-M- 38510 (Note 1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SUBGROUP} & \multirow[b]{2}{*}{TEST} & \multicolumn{2}{|r|}{MIL-STD-883} & \multicolumn{3}{|c|}{LTPD} \\
\hline & & REFERENCE & CONDITIONS & \[
\begin{gathered}
\text { CLASS } \\
\text { A } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { CLASS } \\
\mathrm{B} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
CLASS \\
C
\end{tabular} \\
\hline \multirow[t]{5}{*}{1} & Thermal Shock & 1011 & Test Cond. C & 10 & 15 & 15 \\
\hline & Temperature Cycling & 1010 & Test Cond. C & & & \\
\hline & Moisture Resistance & 1004 & No Voltage Applied & & & \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak Critical Post Tests - Note 3 & 1014 & Test Cond. C & & & \\
\hline \multirow[t]{5}{*}{2} & Mechanical Shock & 2002 & Test Cond. B, 0.5 ms & 10 & 15 & 15 \\
\hline & Vibration, Var. Freq. & 2007 & Test Cond. A & & & \\
\hline & Constant Acceleration & 2001 & Test Cond. E & & & \\
\hline & Fine Leak & 1014 & Test Cond. A & & & \\
\hline & Gross Leak Critical Post Test - Note 3 & 1014 & Test Cond. C & & & \\
\hline \multirow[t]{2}{*}{3} & Salt Atmosphere & 1009 & Test Cond. A & 10 & 15 & 15 \\
\hline & & & Omit Initial Conditioning & & & \\
\hline 4 & High Temp. Storage Critical Post Tests - Note 3 & 1008 & Test Cond. C 1000 hours & 7 & 7 & 7 \\
\hline 5 & \begin{tabular}{l}
Operating Life \\
Critical Post Tests - Notes 2
\end{tabular} & 1005 & \begin{tabular}{l}
\(T_{A}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}\). \\
Test Circuit (Note 2)
\end{tabular} & 5 & 5 & 5 \\
\hline 6 & \[
\begin{aligned}
& \text { Steady State Bias and } 3 \\
& \quad \text { Critical Post Tests }- \text { Note } 3
\end{aligned}
\] & 1015 & Test Cond. A, 72 hrs. At \(\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}\) (Note 3) & 7 & - & - \\
\hline
\end{tabular}

Note 1: Group C tests are performed at 3-month intervals.
Note 2: Operating life circuits are included in MIL-M-38510 detailed specifications (/ sheets).
Note 3: Static parameters and limits are shown in MIL-M-38510 detailed specifications (/ sheets).
Table 9 - MIL-M-38510 Product-Assurance Program Requirements

\section*{In-House Documentation Covering These Areas}
a. Conversion of customer requirements into manufacturer's internal instructions
b. Personnel training and testing
c. Inspection of incoming materials, utilities and work in process
d. Quality-control operations
e. Quality-assurance operations
f. Design, processing, tool and materials standards and instructions
g. Cleanliness and atmospheres in work areas
h. Design, material, and process change control
i. Tool and test equipment maintenance and calibration
j. Failure and defect analysis and data feedback
\(k\). Corrective action and evaluation
l. Incoming, in process, and outgoing inventory
control

\section*{In-House Records Covering These Areas}
a. Personnel training and testing
b. Inspection operations
c. Failure reports and analyses
d. Changes in design, materials, or processing
e. Equipment calibrations
f. Process utility and material controls
g. Product lot identification

A Program Plan Covering These Areas
a. Functional block organization chart
b. Manufacturing flow chart
c. Proprietary-document listing
d. Examples of design, material, equipment, and processing instructions
e. Examples of records
f. Examples of design, material and process change control documents
g. Examples of failure and defect analysis and feedback documents
h. Examples of corrective action and evaluation documents

Fig. 4-Guide to the reliability, class, package, and lead finish of RCA high-reliability COS/MOS integrated circuits processed in accordance with MIL-M-38510.

\section*{Appendix}

DRIVE CURRENT TEST CIRCUIT CONNECTIONS To be used as an example of test method.

Example:
CD4000A IDP

\section*{Example:}

16-Lead Types

\begin{tabular}{|c|c|c|c|c|}
\hline Type & M & Ground & VDD & Vo. \\
\hline \multirow[t]{2}{*}{CD4000A} & \(I_{0 N}\) & 1-4,7,8,11,13 & 5,14 & \multirow[t]{2}{*}{6} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 1-5,7,8,11-13 & 14 & \\
\hline \multirow[t]{2}{*}{CD4001A} & \(I_{0} \mathrm{~N}\) & 2,5-9,12,13 & 1,14 & \multirow[t]{2}{*}{3} \\
\hline & \(I_{D}{ }^{\text {P }}\) & 1,2,5-9,12,13 & 14 & \\
\hline \multirow[t]{2}{*}{CD4002A} & \(I_{\text {IN }}\) & 3-5,7,9-12 & 2,14 & \multirow[t]{2}{*}{1} \\
\hline & \(I_{D} P\) & 2-5,7,9-12 & 14 & \\
\hline \multirow[t]{2}{*}{CD4006A*} & 1 DN & 1,4-7 & 14 & \multirow[t]{2}{*}{13} \\
\hline & \(I_{D} P\) & 4.7 & 1,14 & \\
\hline \multirow[t]{2}{*}{CD4007A} & \(I_{\text {dN }}\) & 3,7,10 & 6,14 & 8 \\
\hline & \(I_{D} P\) & 3,6,7,10 & 14 & 13 \\
\hline \multirow[t]{2}{*}{CD4008A} & \(1 \mathrm{I}^{\prime}\) & 1-9,15 & 16 & \multirow[t]{2}{*}{14} \\
\hline & \(I_{D} P\) & 8 & 1-7,9,15,16 & \\
\hline \multirow[t]{2}{*}{CD4009A} & \(I_{D N}\) & 5,7-9,11,14 & 1,3,16 & \multirow[t]{2}{*}{2} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 3,5,7-9,11,14 & 1,16 & \\
\hline \multirow[t]{2}{*}{CD4010A} & \(I_{0 N}\) & 3,5,7-9,11,14 & 1,16 & \multirow[t]{2}{*}{2} \\
\hline & \(I_{D} P\) & 5,7-9,11,14 & 1,3,16 & \\
\hline \multirow[t]{2}{*}{CD4011A} & \(I_{\text {I }} \mathrm{N}\) & 5-9,12,13 & 1,2,14 & \multirow[t]{2}{*}{3} \\
\hline & \(I_{D}{ }^{\text {P }}\) & 1,5-9,12,13 & 2,14 & \\
\hline \multirow[t]{2}{*}{CD4012A} & IDN & 7,9-12 & 2-5,14 & \multirow[t]{2}{*}{1} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 2,7,9-12 & 3-5,14 & \\
\hline \multirow[t]{2}{*}{CD4013A} & 10 N & 3,5-11 & 4.14 & \multirow[t]{2}{*}{1} \\
\hline & \(I_{D}{ }^{\text {P }}\) & 3-5,7-11 & 6,14 & \\
\hline \multirow[t]{2}{*}{CD4014A*} & \({ }^{1} \mathrm{D}^{\mathrm{N}}\) & 1,4-8,11,13-15 & 9,16 & \multirow[t]{2}{*}{3} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 4-8,11,13-15 & 1,9,16 & \\
\hline \multirow[t]{2}{*}{CD4015A*} & \(1_{0} \mathrm{~N}\) & 1,6-8,14,15 & 16 & \multirow[t]{2}{*}{5} \\
\hline & \(I_{0}{ }^{\text {P }}\) & 1,6,8,14,15 & 7,16 & \\
\hline \multirow[t]{2}{*}{CD4017A} & \(I_{0} \mathrm{~N}\) & 8 & 13-16 & 3 \\
\hline & \(I_{D}{ }^{\text {P }}\) & 8 & 13-16 & 2 \\
\hline \multirow[t]{2}{*}{CD4018A} & \({ }^{1} \mathrm{D}^{\text {N }}\) & 1-3,7-10,12 & 14-16 & \multirow[t]{2}{*}{11} \\
\hline & \({ }_{10} D^{P}\) & 1-3,7,8,10 & 9,12,14-16 & \\
\hline \multirow[t]{2}{*}{CD4019A} & \(I_{0} \mathrm{~N}\) & 1-9 & 14-16 & \multirow[t]{2}{*}{13} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 1-8 & 9,14-16 & \\
\hline \multirow[t]{2}{*}{CD4020A*} & \({ }_{10} \mathrm{~N}\) & 8,11 & 16 & \multirow[t]{2}{*}{9} \\
\hline & \({ }_{10}{ }^{P}\) & 8,11 & 16 & \\
\hline \multirow[t]{2}{*}{CD4021A} & \({ }^{1} \mathrm{DN}\) & \[
\begin{aligned}
& 1,4-8,10,11, \\
& 13-15
\end{aligned}
\] & 9,16 & \multirow[t]{2}{*}{3} \\
\hline & \({ }_{10}{ }^{P}\) & 4-8,10,11,13-15 & 1,9,16 & \\
\hline \multirow[t]{2}{*}{CD4022A*} & \(I_{0}{ }^{\text {N }}\) & 8,13,15 & 16 & \multirow[t]{2}{*}{2} \\
\hline & \(I_{D}{ }^{\text {P }}\) & 8,13,15 & 16 & \\
\hline \multirow[t]{2}{*}{CD4023A} & \(I_{0}{ }^{\text {N }}\) & 1,2,7,8,11-13 & 3-5,14 & \multirow[t]{2}{*}{6} \\
\hline & \(I_{D}{ }^{P}\) & 1-3,7,8,11-13 & 4,5,14 & \\
\hline
\end{tabular}

Refer to applicable data sheet for \(\mathrm{V}_{\mathrm{O}}\) values.
Voltage outputs shall be supplied by an external power supply.
\begin{tabular}{|c|c|c|c|c|}
\hline Type & M \({ }^{*}\) & Ground & VDD & \(\mathrm{V}_{0}\) \\
\hline \multirow[t]{2}{*}{\[
\underset{(K, D)}{C D 4024 A *}
\]} & IdN & 1,7 & 2,14 & \multirow[t]{2}{*}{12} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 2,7 & 14 & \\
\hline \multirow[t]{2}{*}{\[
\underset{(T)}{C D 4024 A^{*}}
\]} & IdN & 1,12 & 2,3 & \multirow[t]{2}{*}{11} \\
\hline & \({ }_{1}{ }^{\text {P }}\) & 3.12 & 2 & \\
\hline \multirow[t]{2}{*}{CD4025A} & IDN & 1-4,7,8,11-13 & 5,14 & \multirow[t]{2}{*}{6} \\
\hline & \(I_{D}{ }^{\text {P }}\) & 1-5,7,8,11-13 & 14 & \\
\hline \multirow[t]{2}{*}{CD4026A} & \(I_{\text {d }}\) & 1-3,8,15 & 16 & \multirow[t]{2}{*}{10} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 1,2,8 & 3,15,16 & \\
\hline \multirow[t]{2}{*}{CD4027A} & \(I_{\text {d }} \mathrm{N}\) & 3,5-13 & 4,16 & \multirow[t]{2}{*}{1} \\
\hline & \(\mathrm{I}^{\text {P }}\) & 3-6,8-13 & 7,16 & \\
\hline \multirow[t]{2}{*}{CD4028A} & \(I_{\text {dN }}\) & 8,10-13 & 16 & 2 \\
\hline & \(I_{D} P\) & 8,10-13 & 16 & 3 \\
\hline \multirow[t]{2}{*}{CD4029A} & \(I_{\text {d }}\) N & \[
\begin{aligned}
& 3,4,8,10,12, \\
& 13,15
\end{aligned}
\] & 1,5,9,16 & \multirow[t]{2}{*}{6} \\
\hline & \({ }^{1} \mathrm{DP}\) & 5,8,15 & \[
\begin{aligned}
& 1,3,4,9,10,12, \\
& 13,16
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{CD4030A} & \(\mathrm{I}_{\mathrm{D}} \mathrm{N}\) & 1,2,5-9,12,13 & 14 & \multirow[t]{2}{*}{3} \\
\hline & \(I_{0}{ }^{\text {P }}\) & 2,5-9,12,13 & 1,14 & \\
\hline \multirow[t]{2}{*}{CD4031A} & \(I_{0 N}\) & 1,2,8,10,15 & 7,16 & \multirow[t]{2}{*}{6} \\
\hline & \(I_{\text {d }}{ }^{\text {P }}\) & 1,2,7,8,10,15 & 16 & \\
\hline \multirow[t]{2}{*}{CD4032A} & \(I_{\text {dN }}\) & 2,3,5-8,10-15 & 16 & \multirow[t]{2}{*}{9} \\
\hline & \(1_{0}{ }^{P}\) & 2,3,5,6,8,10-15 & 7,16 & \\
\hline \multirow[t]{2}{*}{CD4033A} & IdN & 1-3,8,14 & 15,16 & \multirow[t]{2}{*}{10} \\
\hline & \(1 \mathrm{D}^{P}\) & 1-3,8,15 & 14,16 & \\
\hline \multirow[t]{2}{*}{CD4034A} & IDN & 1-8,10-12,15 & 9,13,14,24 & \multirow[t]{2}{*}{16} \\
\hline & \(I_{1}{ }^{\text {P }}\) & 10-12,15 & 1-9,13,14,24 & \\
\hline \multirow[t]{2}{*}{CD4035A} & \(1 \mathrm{INN}^{\text {d }}\) & 2-4,6-12 & 2,5,16 & \multirow[t]{2}{*}{1} \\
\hline & \(I_{0}{ }^{\text {P }}\) & 2-4,6-12 & 5,16 & \\
\hline \multirow[t]{2}{*}{CD4036A} & \(I_{\text {d }}\) & 3-12,21-23 & 1,2,24 & \multirow[t]{2}{*}{13} \\
\hline & \(1^{1} P\) & 11,12,21-23 & 1-10,24 & \\
\hline \multirow[t]{2}{*}{CD4037A} & IdN & 7 & 1-5,14 & \multirow[t]{2}{*}{10} \\
\hline & \(I_{D}{ }^{\text {P }}\) & 2-7 & 14 & \\
\hline \multirow[t]{2}{*}{CD4038A} & IdN & 2,3,5-8,10-15 & 10,11,16 & \multirow[t]{2}{*}{9} \\
\hline & \(I_{D}{ }^{\text {P }}\) & 2,3,5,6,8,12-15 & 7,10,11,16 & \\
\hline \multirow[t]{2}{*}{CD4039A} & \({ }_{1}{ }^{\text {N }}\) & 3-12,21-23 & 1,2,24 & \multirow[t]{2}{*}{13} \\
\hline & \(I_{D}{ }^{\text {P }}\) & 11,12,21-23 & 1-10,24 & \\
\hline \multirow[t]{2}{*}{CD4040A*} & \(\mathrm{I}^{\text {d }}\) & 8,10 & 11,16 & \multirow[t]{2}{*}{9} \\
\hline & \(\mathrm{IdN}^{\text {N }}\) & 8,11 & 16 & \\
\hline \multirow[t]{2}{*}{CD4041A (TRUE)} & \(I_{\text {d }}\) & 3,6,7,10,13 & 14 & \multirow[t]{2}{*}{1} \\
\hline & \({ }^{1} D^{P}\) & 6,7,10,13 & 3,14 & \\
\hline \multirow[t]{2}{*}{CD4041A
(COMP)} & \(I_{D} N\) & 6,7,10,13 & 3,14 & \multirow[t]{2}{*}{2} \\
\hline & \({ }_{1}{ }^{\text {P }}\) & 3,6,7,10,13 & 14 & \\
\hline
\end{tabular}
- \(M=\) Measurement
* These types must be clocked into the proper state.

\section*{DRIVE-CURRENT TEST-CIRCUIT CONNECTIONS (Cont'd)}
\begin{tabular}{|c|c|c|c|c|}
\hline Type & M \({ }^{*}\) & Graund & VDD & \(v_{0}\) \\
\hline \multirow[t]{2}{*}{CD4042A} & \(I_{\text {d }}\) & 4,7,8,13,14 & 5,6,16 & \multirow[t]{2}{*}{2} \\
\hline & \(1_{0}{ }^{\text {P }}\) & 7,8,13,14 & 46,16 & \\
\hline \multirow[t]{2}{*}{CD4043A} & \({ }_{1} \mathrm{DN}^{\text {N }}\) & \[
\begin{array}{|l}
\hline 4,6-8,11,12 \\
14,15
\end{array}
\] & 3,5,16 & \multirow[t]{2}{*}{2} \\
\hline & \(\mathrm{I}^{\text {P }}\) & \[
\begin{array}{|l}
3,6-8,11,12 \\
14,15
\end{array}
\] & 4,5,16 & \\
\hline \multirow[t]{2}{*}{CD4044A} & \(I_{\text {dN }}\) & 4,8 & \[
\begin{aligned}
& 3,5-7,11,12, \\
& 14-16
\end{aligned}
\] & \multirow[t]{2}{*}{13} \\
\hline & \({ }_{10}{ }^{P}\) & 3,8 & \[
\begin{aligned}
& 4.7,11,12, \\
& 14.16
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{|c}
\hline \text { CD4045A } \\
(\phi \text { to } 16)
\end{array}
\]} & \(I_{\text {d }}\) N & 2,14 & 1,3 & \multirow[t]{2}{*}{8} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 2,14 & 1,3 & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CD4046A } \\
\text { COMP } 1
\end{gathered}
\]} & \(I_{\text {dN }}\) & 5,8,9 & 3,14,16 & \multirow[t]{2}{*}{2} \\
\hline & \({ }_{1}{ }^{\text {P }}\) & 5,8,9,14 & 3,16 & \\
\hline \multirow[b]{2}{*}{\[
\text { COMP } 2
\]} & \(I_{\text {I N }}\) & 5,8,9,14 & 3,16 & \multirow[t]{2}{*}{13} \\
\hline & \(I_{\text {d }}{ }^{\text {P }}\) & 5,8,9 & 3,14,16 & \\
\hline \multirow[t]{2}{*}{CD4047A} & \(I_{\text {I N }}\) & 5,7,12 & 4,6,8,9,14 & \multirow[t]{2}{*}{10} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 7,9 & 3-6,8,12,14 & \\
\hline \multirow[t]{2}{*}{CD4048A} & \(I_{0 N}\) & 3-14 & 2,15,16 & \multirow[t]{2}{*}{1} \\
\hline & \(1_{0}{ }^{\text {P }}\) & 2-14 & 15,16 & \\
\hline \multirow[t]{2}{*}{CD4049A} & \(I_{\text {dN }}\) & 5,7-9,11,14 & 1,3 & \multirow[t]{2}{*}{2} \\
\hline & \(1_{D}{ }^{\text {P }}\) & 5,7-9,11,14 & 1 & \\
\hline \multirow[t]{2}{*}{CD4050A} & \(I_{\text {dN }}\) & 3,5,7-9,11,14 & 1 & \multirow[t]{2}{*}{2} \\
\hline & \({ }_{1} \mathrm{D}^{\text {P }}\) & 5,7-9,11,14 & 1,3 & \\
\hline \multirow[t]{2}{*}{CD4054A} & \(I_{0}{ }^{\text {N }}\) & 2,7-15 & 1,16 & \multirow[t]{2}{*}{3} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 2,7-14 & 1,15,16 & \\
\hline \multirow[t]{2}{*}{CD4055A} & \(i_{\text {d }}\) & 2-4,6-8 & 5,16 & \multirow[t]{2}{*}{9} \\
\hline & \({ }_{10}{ }^{P}\) & 2-8 & 16 & \\
\hline \multirow[t]{2}{*}{CD4056A} & \(I_{\text {d }}\) & 2-4,6-8 & 1,5,16 & \multirow[t]{2}{*}{9} \\
\hline & \({ }_{1}{ }^{\text {P }}\) & 2-8 & 1,16 & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
CD4057A \\
ZEROIND
\end{tabular}} & \({ }_{1} \mathrm{DN}^{\text {N }}\) & \[
\begin{aligned}
& 1-3,6,7,14,21 \\
& 23,25,27,28 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8,9,13,15,19, \\
& 22,26
\end{aligned}
\] & \multirow[t]{2}{*}{24} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & \[
\begin{aligned}
& 6,14,21,23 \\
& 25,28 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1-3,7-9,13,15, \\
& 19,20,22,26,27 \\
& \hline
\end{aligned}
\] & \\
\hline \multirow[b]{2}{*}{NEG IND} & \(I_{\text {dN }}\) & \[
\begin{aligned}
& 1-3,6,14,21,23, \\
& 25,27,28
\end{aligned}
\] & \[
\begin{aligned}
& 7-9,13,15,19 \\
& 20,22,26 \\
& \hline
\end{aligned}
\] & \multirow[t]{2}{*}{4} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & \[
\begin{aligned}
& 1-3,6,7,14,21, \\
& 23,25,27,28 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8,9,13,15,19, \\
& 20,22,26 \\
& \hline
\end{aligned}
\] & \\
\hline \multirow[b]{2}{*}{OVERFLOW IND} & \(\mathrm{I}^{\prime} \mathrm{N}\) & \[
\begin{aligned}
& 1 \cdot 3,5,7 \cdot 9,14,19 \\
& 22,23,25,27,28
\end{aligned}
\] & \[
\begin{aligned}
& 6,13,15,20, \\
& 21,26
\end{aligned}
\] & \multirow[t]{2}{*}{17} \\
\hline & \({ }_{1}{ }^{\text {P }}\) & \[
\begin{aligned}
& 5,7-9,14,19,22, \\
& 23,25,28
\end{aligned}
\] & \[
\begin{aligned}
& 1-3,6,13,15,20, \\
& 21,26,27 \\
& \hline
\end{aligned}
\] & \\
\hline \multirow[t]{2}{*}{OTHER OUTPUTS DATA OUT 1 \& 3} & \(\mathrm{I}_{\mathrm{DN}}\) & 6,7,21,25 & \[
\begin{aligned}
& 8,9,13,15,19,20, \\
& 22,23,26
\end{aligned}
\] & 1 \\
\hline & \({ }_{1}{ }^{P}\) & 6,7,21,22,25 & \[
\begin{aligned}
& 8,9,13,15,19,20, \\
& 23,26
\end{aligned}
\] & 27 \\
\hline \multirow[t]{2}{*}{CD4060A*} & \({ }_{1}{ }^{\text {N }}\) & 8,11 & 12,16 & \multirow[t]{2}{*}{7} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 8,12 & 16 & \\
\hline \multirow[t]{2}{*}{CD4061A*} & \({ }_{1} \mathrm{DN}^{\text {N }}\) & \[
\begin{aligned}
& 1-4,6,7,9-12, \\
& 15,16 \\
& \hline
\end{aligned}
\] & 5 & \multirow[t]{2}{*}{13} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & \[
\begin{aligned}
& 1-4,6,7,9-11, \\
& 15,16
\end{aligned}
\] & 5,12 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Type & M \({ }^{*}\) & Ground & VDD & Vo \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CD4062AK } \\
& \text { CLD }
\end{aligned}
\]} & \(I_{\text {d }} N\) & 2-5,8 & 11,13,16 & \multirow[t]{2}{*}{7} \\
\hline & \(I_{D} P\) & 3-5,8 & 2,11,13,16 & \\
\hline \multirow[b]{2}{*}{Q} & \(I_{D} \mathrm{~N}\) & 2-5,8 & 11,13,16 & \multirow[t]{2}{*}{12} \\
\hline & \(1_{D} P\) & 3-5,8 & 2,11,13,16 & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CD4062AT* } \\
& \text { CLD }
\end{aligned}
\]} & \({ }_{10} \mathrm{~N}\) & 2-5,7 & 9,11,12 & \multirow[t]{2}{*}{6} \\
\hline & \(1_{D P}\) & 3-5,7 & 2,9,11,12 & \\
\hline \multirow[b]{2}{*}{Q} & \(I_{D N}\) & 2-5,7 & 9,11,12 & \multirow[t]{2}{*}{10} \\
\hline & \(I_{D}{ }^{P}\) & 3-5,7 & 2,9,11,12 & \\
\hline \multirow[t]{2}{*}{CD4063B} & \(I_{0 N}\) & 1,3,4,8-15 & 3,16 & \multirow[t]{2}{*}{5} \\
\hline & \({ }_{10}{ }^{\text {P }}\) & 1-3,8-15 & 4,16 & \\
\hline \multirow[t]{2}{*}{CD4066A} & \(i_{0} \mathrm{~N}\) & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{NO \(I_{D} N, I_{D} P\)}} & \\
\hline & \(I_{D} P\) & & & \\
\hline \multirow[t]{2}{*}{CD4068B} & \({ }_{10}{ }^{1}\) & 7 & 2-5,9-12,14 & \multirow[t]{2}{*}{13} \\
\hline & \(I_{D}{ }^{\text {P }}\) & 2-5,7,9-12 & 14 & \\
\hline \multirow[t]{2}{*}{CD4069B} & \(I_{\text {d }} \mathrm{N}\) & 7 & 1,3,5,9,11,13,14 & \multirow[t]{2}{*}{2} \\
\hline & \(I_{D} P\) & 1,3,5,7,9,11,13 & 14 & \\
\hline \multirow[t]{2}{*}{CD4071B} & \(I_{D} N\) & 1,2,5-9,12,13 & 14 & \multirow[t]{2}{*}{10} \\
\hline & \(1 D^{P}\) & 7 & 1,2,5-9,12,13,14 & \\
\hline \multirow[t]{2}{*}{CD4072B} & \(I_{1} N\) & 2-5,7,9-12 & 14 & \multirow[t]{2}{*}{1} \\
\hline & \(I_{D} P\) & 7 & 2-5,9-12,14 & \\
\hline \multirow[t]{2}{*}{CD4073B} & \(I_{\text {IN }}\) & 1-5,7,8,11-13 & 14 & \multirow[t]{2}{*}{6} \\
\hline & \(I_{D}{ }^{\text {P }}\) & 7 & 1-5,8,11-14 & \\
\hline \multirow[t]{2}{*}{CD4075B} & \(I_{D} N\) & 1-5,7,8,11-13 & 14 & \multirow[t]{2}{*}{6} \\
\hline & \(1_{D}{ }^{P}\) & 7 & 1-5,8,11-14 & \\
\hline \multirow[t]{2}{*}{CD4078B} & \(I_{0} N\) & 7 & 2-5,9-12,14 & \multirow[t]{2}{*}{13} \\
\hline & \(I_{D}{ }^{P}\) & 2-5,7,9-12 & 14 & \\
\hline \multirow[t]{2}{*}{CD4081B} & \(I_{D} N\) & 1,2,5-9,12,13 & 14 & \multirow[t]{2}{*}{3} \\
\hline & \({ }^{1} \mathrm{D} P\) & 7 & \[
\begin{array}{|l}
\hline 1,2,5,6,8,9 \\
12-14 \\
\hline
\end{array}
\] & \\
\hline \multirow[t]{2}{*}{CD4082A} & \(I_{D N}\) & 2-5,7,9-12 & 14 & \multirow[t]{2}{*}{1} \\
\hline & \(I_{D}{ }^{P}\) & 7 & 2-5,9-12,14 & \\
\hline \multirow[t]{2}{*}{CD4085B} & \(I_{D} N\) & 1,2,5-9,11-13 & 10-14 & \multirow[t]{2}{*}{3} \\
\hline & \(I_{D} P\) & 1,2,5-13 & 14 & \\
\hline \multirow[t]{2}{*}{CD4086B} & \(I_{D} N\) & 1,2,5-9,11,13 & 11,14 & \multirow[t]{2}{*}{3} \\
\hline & 1 DP & 1,2,5-10,12,13 & 11,14 & \\
\hline \multirow[t]{2}{*}{CD4514B} & \(I_{D}{ }^{\text {N }}\) & 2,3,12,21,22 & 1,2,3,24 & \multirow[t]{2}{*}{11} \\
\hline & \(I_{D} P\) & 2,3,12,21-23 & 1,24 & \\
\hline \multirow[t]{2}{*}{CD4515B} & \(I_{D} N\) & 2,3,12,21-23 & 1,24 & \multirow[t]{2}{*}{11} \\
\hline & \(1 \mathrm{D}^{\text {P }}\) & 2,3,12,21,22 & 1,23,24 & \\
\hline \multirow[t]{2}{*}{CD4518B*} & \(I_{D} N\) & 1,2,7-10 & 15,16 & \multirow[t]{2}{*}{14} \\
\hline & \(I_{D}{ }^{P}\) & 1,2,7,8,10,15 & 16 & \\
\hline \multirow[t]{2}{*}{CD4520B} & IDN & 1,2,7-10 & 15,16 & \multirow[t]{2}{*}{14} \\
\hline & \(I^{\prime}{ }^{P}\) & 1,2,7,8,10,15 & 16 & \\
\hline
\end{tabular}

THRESHOLD-VOLTAGE TEST-CIRCUIT CONNECTIONS

\section*{THRESHOLD-VOLTAGE TEST-CIRCUIT CONNECTIONS (CONT'D)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{N-Channel Tests} & \multicolumn{4}{|c|}{P-Channel Tests} \\
\hline \multirow[b]{2}{*}{Type} & \multirow[b]{2}{*}{Ground} & \multirow[b]{2}{*}{10 V} & \multicolumn{2}{|l|}{VTHN measured at} & \multirow[b]{2}{*}{Ground} & \multirow[b]{2}{*}{-10V} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{TH}}{ }^{\mathrm{P}}\) measured at} \\
\hline & & & -20 \(\mu \mathrm{A}\) Supply & -10 \(\mu \mathrm{A}\) Supply & & & \(20 \mu \mathrm{~A}\) Supply & \(10 \mu \mathrm{~A}\) Supply \\
\hline CD4034A & 10 & 9,11,13-24 & & 12 & 10 & 1.9,11-15 & & 24 \\
\hline CD4035A & 6 & 16 & 2-5,7-12 & & 6 & 2.5,7-12 & 16 & \\
\hline CD4036A & 23 & 1-11,21,22,14 & 12 & & 23 & 1-12,21,22 & 24 & \\
\hline CD4038A & 3 & 2,5,6,10-16 & & 8 & 3 & 2,5-8,10-15 & & 16 \\
\hline CD4039A & 23 & 1-11,21,22,24 & 12 & & 23 & 1-12,21,22 & 24 & \\
\hline CD4040A & 10,11 & 16 & 8 & & 10 & 8,11 & 16 & \\
\hline CD4041A & 3 & 14 & & 6,7,10,13 & 3 & 6,7,10,13 & & 14 \\
\hline CD4042A & 6 & 16 & & 4,5,7,8,13,14 & 6 & 4,5,7,8,13,14 & & 16 \\
\hline CD4043A & 5 & 16 & & \[
\begin{aligned}
& 3,4,6-8,11,12 \\
& 14,15
\end{aligned}
\] & 5 & \[
\begin{aligned}
& 3,4,6 \cdot 8,11,12, \\
& 14,15
\end{aligned}
\] & & 16 \\
\hline CD4044A & 5 & 16 & & \[
\begin{aligned}
& 3,4,6-8,11,12 \\
& 14,15
\end{aligned}
\] & 5 & \[
\begin{aligned}
& 3,4,6 \cdot 8,11,12 \\
& 14,15
\end{aligned}
\] & & 16 \\
\hline CD4045A & 16 & 1,3 \({ }^{\circ}\) & & 2,14,15 & 16 & 2,14,15 \({ }^{\circ}\) & & 1,3 \\
\hline CD4046A & 3,5-8,14 & 9,11,12,16 & & 10 & 3,5-9,11,14 & 16 & & 12 \\
\hline CD4047A & 4,8,12 & 3,5,6,14 & & 7 & 4,8,12 & 3,5-7,9 & & 14 \\
\hline CD4048A & 10 & 16 & 2.9,11-15 & & 10 & 2-9,11-15 & 16 & \\
\hline CD4049A & 3 & 1 & & 5,7-9,11,14 & 3 & 5,7-9,11,14 & & 1 \\
\hline CD4050A & 3 & 1 & & 5,7-9,11,14 & 3 & 5,7-9,11,14 & & 1 \\
\hline \multicolumn{9}{|l|}{CD4057A A special detailed test set-up is reuired} \\
\hline CD4060A & 12 & 16 & & 9-11 & 12 & 9,10,11 & & 16 \\
\hline CD4061A & 1 & \[
\begin{aligned}
& 2,3,5,6,7,9,10 \\
& 11,15,16 \\
& \hline
\end{aligned}
\] & 4 & & 1 & \[
\begin{aligned}
& 2-4,6,7,9 \cdot 12 \\
& 15,16
\end{aligned}
\] & 5 & \\
\hline CD4062AK & 5 & 10,13,16 & 2-4,8 & & 10 & 2-5,8 & 13,16 & \\
\hline CD4062AT & 5 & 8,11,12 & 2-4,7 & & 8 & 2-5,7 & 11,12 & \\
\hline CD4063B & 1 & 16 & 2-4,8-15 & & 1 & 2-4,8-15 & 16 & \\
\hline CD4066A & 13 & 5,6,12,14 & & 7 & 13 & 5-7,12 & & 14 \\
\hline CD4068B & 2 & 3-5,14 & & 7,9-12 & 2 & 7,9-12 & & 3-5,14 \\
\hline CD4069B & 1 & 14 & & 3,5,7,9,11,13 & 1 & 3,5,7,9,11,13 & & 14 \\
\hline CD4071B & 1 & 14 & & 2,5-9,12,13 & 1 & 2,5-9,12,13 & & 14 \\
\hline CD4072B & 2 & 14 & & 3-5,7,9-12 & 2 & 3-5,7,9-12 & & 14 \\
\hline CD4073B & 3 & 4,5,14 & & 1,2,7,8,11-13 & 3 & 1,2,7,8,11-13 & & 4,5,14 \\
\hline CD4075B & 3 & 14 & & \[
\begin{aligned}
& 1,2,4,5,7,8 \\
& 11,12,13
\end{aligned}
\] & 3 & \[
\begin{aligned}
& 1,2,4,5,7,8 \\
& 11-13
\end{aligned}
\] & & 14 \\
\hline CD4078B & 2 & 14 & & 3-5,7,9-12 & 2 & 3-5,7,9-12 & & 14 \\
\hline CD4081B & 2 & 1,14 & & 5-9,12,13 & 2 & 5-9,12,13 & & 1,14 \\
\hline CD4082B & 2 & 3-5,14 & & 7,9-12 & 2 & 7.9-12 & & 3-5,14 \\
\hline CD4085B & 1 & 2,14 & & 5-13 & 1 & \(5 \cdot 13\) & & 2,14 \\
\hline CD4086B & 1 & 2,14 & & 5-13 & 1 & 5-13 & & 2,14 \\
\hline CD4514B & 1 & 24 & & 2,3,12,21-23 & 1 & 2,3,12,21-23 & & 24 \\
\hline CD4515B & 1 & 24 & & 2,3,12,21-23 & 1 & 2,3,12,21-23 & & 24 \\
\hline CD4518B & 15 & 16 & 1,2,7-10 & & 15 & 1,2,7-10 & 16 & \\
\hline CD4520B & 15 & 16 & 1,2,7-10 & & 15 & 1,2,7-10 & 16 & \\
\hline
\end{tabular}
* Use 5V for n-channel test, -5 V for p -channel test.
- Use 4V for \(n\)-channel test, -4 V for p -channel test.

\section*{LIFE-TEST CIRCUIT CONNECTIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Operating & \begin{tabular}{l}
Life Tests \\
CONNECTIONS TO ALL MADE THROUGH 47 \\
CONNECTIONS TO AL MADE THROUGH 47 k
\end{tabular} & \begin{tabular}{l}
\(\left.\begin{array}{ll}-1 & 16 \\ 2 & 15 \\ 3 & 14 \\ 4 & 13 \\ 5 & 12 \\ 6 & 11 \\ 7 & 10 \\ 8 & 9\end{array}\right)\) \\
L TERMINALS (EXCE k』 RESISTORS \\
TERMINALS TEXCEP RESISTORS
\end{tabular} & \begin{tabular}{l}
\(=-\xrightarrow{-02}\) \\
PT B A I6) ARE
\[
\begin{gathered}
\text { SV } \\
\text { S2CS-22941 } \\
78.141 \text { ARE }
\end{gathered}
\]
\end{tabular} & & & Biased & \begin{tabular}{l}
fe Tests \\
ONNECTIONS TO ALL EXCEPT Bal6) ARE HROUGH \(47 \mathrm{k} \Omega\) RESI \\
ONNECTIONS TO ALL EXCEPT 7 Q14) ARE HROUGH \(47 \mathrm{k} \mathrm{\Omega}\) RESI
\end{tabular} & \begin{tabular}{l}
92Cs-22942 \\
TERMINALS MADE stors \\
\begin{tabular}{|c}
10 V \\
\hline
\end{tabular}
\[
\rightarrow_{-0}^{5 V}
\] \\
92CS-22943 \\
TERMINALS MADE STORS
\end{tabular} \\
\hline Type & Open & Ground & 5 V & 10V & \[
\begin{array}{|c}
\text { Oscilla } \\
\hline 50-\mathrm{KHz} \\
\hline
\end{array}
\] & \[
\frac{\text { or }}{25-K H z}
\] & Open & Ground & 10 V \\
\hline CD4000A & & 1,2,4,5,7,12,13 & 6,9,10 & 14 & 3,8.11 & & 6,9,10 & 1-5,7,8 & 11-14 \\
\hline CD4001A & & 2,6,7,9,13 & 3,4,10,11 & 14 & 1,5,8,12 & & 3,4,10,11 & 1,2,5-7 & 8,9,12-14 \\
\hline CD4002A & 6,8 & 3-5,7,10-12 & 1,13 & 14 & 2,9 & & 1,6,8,13 & 2-5,7 & 9-12,14 \\
\hline CD4006A & 2 & 7 & 8-13 & 14 & 3 & 1,4-6 & 2,8-13 & 5.7 & 1,3,4,14 \\
\hline CD4007A & & 1,4,7,9,13 & 12 & 2,5,11,14 & 3,6,10 & & 1,5,8,12,13 & 4,6,7,9 & 2,3,10,11,14 \\
\hline CD4008A & & 8 & 10.14 & 16 & 2,4,6,15 & 1,3,5,7,9 & 10.14 & 4.9 & 1-3,15,16 \\
\hline CD4009A & 13 & 8 & 2,4,6,10,12,15 & 1,16 & 7,9,11,14 & 3,5 & \[
\begin{aligned}
& 2,4,6,10,12 \\
& 13,15
\end{aligned}
\] & 3,5,7,8 & 1,9,11,14,16 \\
\hline CD4010A & 13 & 8 & 2,4,6,10,12,15 & 1,16 & 7,9,11,14 & 3,5 & \[
\begin{aligned}
& 2,4,6,10,12, \\
& 13,15 \\
& \hline
\end{aligned}
\] & 3,5,7,8 & 1,9,11,14,16 \\
\hline CD4011A & & 7 & 3,4,10,11 & 2,6,9,13,14 & 1,5,8,12 & & 3,4,10,11 & 1,2,5-7 & 8,9,12-14 \\
\hline CD4012A & 6,8 & 7 & 1,13 & 3-5,10-12,14 & 2,9 & & 1,6,8,13 & 2-5,7 & 9-12,14 \\
\hline CD4013A & & 4,6-8,10 & 1,2,12,13 & 14 & 3.11 & 5,9 & 1,2,12,13 & 6,7,9-11 & 3-5,8,14 \\
\hline CD4014A & & 1,4-9,13-15 & 2,3,12 & 16 & 10 & 11 & 2,3,12 & 1,4,6,8,14 & \[
\begin{aligned}
& 5,7,9 \cdot 11,13, \\
& 15,16
\end{aligned}
\] \\
\hline CD4015A & & 6,8,14 & 2-5,10-13 & 16 & 1,9 & 7,15 & 2-5,10-13 & 1.6,8,15 & 7,9,14,16 \\
\hline CD4016A & & 7 & 2,3,9,10 & 14 & 5,6,12,13 & 1,4,8,11 & 2,3,9,10 & 1,6-8,12 & 4,5,11,13,14 \\
\hline CD4017A & & 8,13,15 & 1-7,9-12 & 16 & 14 & & 1-7,9-12 & 8,13,15 & 14,16 \\
\hline CD4018A & & 2,8,9,15 & 4-6,11,13 & 1,3,12,16 & 7,14 & 10 & 4-6,11,13 & 2,7,8,12,15 & 1,3,9,10,14,16 \\
\hline CD4019A & & 2,4,6,8,9,15 & 10.13 & 14,16 & 1,3,5,7 & & 10.13 & 4.9 & 1-3,14-16 \\
\hline CD4020A & & 8,11 & 1-7,9,12-15 & 16 & 10 & & 1-7,9,12.15 & 8.11 & 10,16 \\
\hline CD4021A & & 1,4.9,13-15 & 2,3,12 & 16 & 10 & 11 & 2,3,12 & 1,4,6,8,14 & \[
\begin{array}{|l|}
\hline 5,7,9 \cdot 11,13 \\
15,16 \\
\hline
\end{array}
\] \\
\hline CD4022A & 6,9 & 8,13,15 & 1-5,7,10-12 & 16 & 14 & & 1-7,9-12 & 8,13,15 & 14,16 \\
\hline CD4023A & & 7 & 6,9,10 & 1,2,4,5,12-14 & & 3,8,11 & 6,9,10 & 1-5,7,8 & 11-14 \\
\hline \[
\begin{array}{|l}
\hline \text { CD4024A } \\
(K, D) \\
\hline
\end{array}
\] & 8,10,13 & 2,7 & 3-6,9,11,12 & 14 & 1 & & 3-6,8-13 & 2,7 & 1,14 \\
\hline \[
\begin{aligned}
& \hline \text { CD4024A } \\
& (T) \\
& \hline
\end{aligned}
\] & 8 & 3,12 & 4-7,9-11 & 2 & 1 & & 4.11 & 3,12 & 1,2 \\
\hline CD4025A & & 1,2,4,5,7,12,13 & 6,9,10 & 14 & 3,8,11 & & 6,9,10 & 1-5,7,8 & 11.14 \\
\hline CD4026A & 4,6,7,9-14 & 2,3,8,15 & 5 & 16 & 1 & & 4-7,9-14 & 8 & 1,2,3,15,16 \\
\hline CD4027A & & 4,7-9,12 & 1,2,14,15 & 5,6,10,11,16 & 3,13 & & 1,2,14,15 & 8.13 & 3-7,16 \\
\hline CD4028A & 1-3,6,7,9,14,15 & 8 & 4.5 & 10,12,13,16 & & 11 & 1-7,9,14,15 & 8,10,11 & 12,13,16 \\
\hline CD4029A & & 1,3-5,8,12,13 & 2,6,7,11,14 & 9,10,16 & 15 & & 2,6,7,11,14 & \[
\begin{aligned}
& \text { 1,3-5,8-10, } \\
& 12,13,15 \\
& \hline
\end{aligned}
\] & 16 \\
\hline CD4030A & & 2,6,7 & 3,4,10,11 & 9,13,14 & 1,5,8,12 & & 3,4,10,11 & 2,5-8 & 1,9,12-14 \\
\hline CD4031A & 3-5,7,9,11-14 & 1,8,10 & 6 & 16 & 2 & 15 & 3-7,9,11-14 & 1,2,8,10 & 15,16 \\
\hline CD4032A & & 2,5-8 & 1,4,9 & 10 & 3,11,13,15 & 10,12,14 & 1,4,9 & 2,3,5-8,10-13 & 14,16 \\
\hline CD4033A & 4,6,7,9-13 & 2,3,8,14,15 & 5 & 16 & 1 & & 4-7.9-14 & 8 & 1-3,15,16 \\
\hline CD4034A & 16-23 & 9,12-14 & 1.8 & 11,24 & 15 & 10 & \(1-8\) & \[
\begin{aligned}
& 10,12,15,17, \\
& 19,21,23 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 9,11,13,14, \\
16,18,20,22,24 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{LIFE-TEST CIRCUIT CONNECTIONS (CONT'D)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|l|}{Operating Life Tests} & \multicolumn{3}{|l|}{Biased Life Tests} \\
\hline & & & & & Oscillato & & & & \\
\hline Type & Open & Ground & 5 V & 10V & \(50-\mathrm{KHz}\) & \(25 \cdot \mathrm{KHz}\) & Open & Ground & 10 V \\
\hline CD4035A & \[
\begin{aligned}
& \text { Jumpered } \\
& 1,3,4 \\
& \hline
\end{aligned}
\] & 2,5,7-12,14,15 & 13 & 16 & 6 & & 1,13-15 & 4.10 & 2,3,11,12,16 \\
\hline CD4036A & & 11,12,21,22 & 13-20 & 2,24 & 1,23 & 3-10 & 1,13-20 & 3-12,21,22 & 2,23,24 \\
\hline CD4038A & & 2,5-8 & 1,4,9 & 16 & 3,11,13,15 & 10,12,14 & 1,4,9 & 2,3,5-8,10-13 & 14-16 \\
\hline CD4039A & & 11,12 & 13.20 & 24 & 1,2,21-23 & 3 -10 & 1,13-20 & 3-12,21,22 & 2,23,24 \\
\hline CD4040A & & 8,11 & 1-7,9,12-15 & 16 & 10 & & 1-7,9,13-15 & 8,11 & 10,16 \\
\hline CD4041A & & 7 & \[
\begin{array}{|l|}
\hline 1,2,4,5,8 \\
9,11,12 \\
\hline
\end{array}
\] & 14 & 3,6,10,13 & & \[
\begin{aligned}
& 1,2,4,5 \\
& 8,9,11,12
\end{aligned}
\] & 3,6,7 & 10,13,14 \\
\hline CD4042A & & 8 & 1,2,3,9-12,15 & 6,16 & 5 & 4,7,13,14 & 1-3,9-12,15 & 6,8,13,14 & 4,5,7,16 \\
\hline CD4043A & 13 & 8 & 1,2,9,10 & 5,16 & 4,6,12,14 & 3,7,11,15 & 1,2,9,10,13 & 3,7,8,12,14 & 4,5,6,11,15,16 \\
\hline CD4044A & 2 & 8 & 1,9,10,13 & 5,16 & 4,6,12,14 & 3,7,11,15 & 1,2,9,10,13 & 4,6,8,11,15 & 3,5,7,12,14,16 \\
\hline CD4045A & 4-6,9-13,15 & 2,14 \({ }^{\text {¢ }}\) & & 1,3¢,7,8 & 16 & & 4-6,9-13,15 & 2,14 \({ }^{\text {¢ }}\) & 1,3\({ }^{\bullet}, 7,8,16\) \\
\hline CD4046A & \[
\begin{array}{|l}
\hline 1,4,6,7 \\
10,11,13,15 \\
\hline
\end{array}
\] & 8,9 & 2 & 3,5,12,16 & 14 & & \[
\begin{aligned}
& 1,2,4,6,7 \\
& 10,11,13,15 \\
& \hline
\end{aligned}
\] & 3,8,9,14 & 5,12,16 \\
\hline CD4047A & & 7,9,12 & 1,2,10,11,13 & 4,5,14 & 6,8 & 3 & 1,2,10,11,13 & 4,7,12 & 3,5,6,8,9,14 \\
\hline CD4048A & & 8,15 & 1 & 2,16 & 9.14 & 3.7 & 1 & 3-6,8,15 & 2,7,9-14,16 \\
\hline CD4049A & 13 & 8 & \[
\begin{array}{|l}
\hline 2,4,6,10 \\
12,15 \\
\hline
\end{array}
\] & 1,16 & \[
\begin{aligned}
& \hline 7,9 \\
& 11,14 \\
& \hline
\end{aligned}
\] & 3,5 & \[
\begin{aligned}
& \hline 2,4,6,10 \\
& 12,13,15 \\
& \hline
\end{aligned}
\] & 3,5,7,8 & 1,9,11,14,16 \\
\hline CD4050A & 13 & 8 & \[
\begin{array}{|l}
\hline 2,4,6,10 \\
12,15 \\
\hline
\end{array}
\] & 1,16 & \[
\begin{aligned}
& 3,5,7,9 \\
& 11,14 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 2,4,6,10 \\
& 12,13,15 \\
& \hline
\end{aligned}
\] & 3,5,7,8 & 1,9,11,14,16 \\
\hline CD4057A & & \[
\begin{aligned}
& 1,8-10,18,19, \\
& 21-23,25
\end{aligned}
\] & 4,16,17,24 & 2,3,5,6,26 & 2 & 29 & & \[
\begin{array}{|l|}
\hline 1-3,8-10 \\
13,21,22,25 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 6,7,15,18, \\
& 20,23,26,27
\end{aligned}
\] \\
\hline CD 4060A & & 8,12 & 1-7,9,10,13-15 & 16 & 11 & & 1-7,9,10, 13-15 & 8,11 & 12,16 \\
\hline CD4061A & 8 & 4,15 & 13,14 & 5,12 & 16 & 1-3,6,7,9-11 & 8,13,14 & 4,15,16 & 1-3,5-7,9-12 \\
\hline CD4062AK & 5-7,9-11,14,15 & 3,4,8,13 & 12 & 16 & 1 & 2 & \[
\begin{aligned}
& 1,6,7,9,10 \\
& 12,14,15 \\
& \hline
\end{aligned}
\] & 2-5, 8 & 11,13,16 \\
\hline CD4062AT & 5,6,8,9 & 3,4,7,11 & 10 & 12 & 1 & 2 & 1,6,8,10 & 2-5,7 & 9,11,12 \\
\hline CD4063B & & \[
\begin{array}{|l}
\hline 1,2,4,8,10, \\
11,13 \\
\hline
\end{array}
\] & 5.7 & 3,16 & 12.15 & 9,14 & & 1,2,4,8-12 & 3,13-16 \\
\hline CD4066A & & 7 & 2,3,9,10 & 14 & 5,6,12,13 & 1,4,8,11 & 2,3,9,10 & 1,6•8,12 & 4,5,11,13,14 \\
\hline CD4068B & 1,6,8 & 7 & 13 & 14 & 2-5,10-12 & & 1,6,8,13 & 2-5,7 & 9-12,14 \\
\hline CD4069B & & 7 & 2,4,6,8,10,12 & 14 & 1,3,5,9,11,13 & 2,4,6,8,10,12 & 1,3,5,7 & 9,11,13,14 & \\
\hline CD4071B & & 2,6,7,9,13 & 3,4,10,11 & 14 & 1,5,8,12 & & 3,4,10,11 & 1,2,5,7 & 8,9,12,14 \\
\hline CD4072B & 6,8 & 3,5,7,10,12 & 1,13 & 14 & 2,9 & & 1,6,8,13 & 2,5,7 & 9,12,14 \\
\hline CD4073B & & 7 & 6,9,10 & 1,2,4,5,12-14 & & 3,8,11 & 6,9,10 & 1,5,7,8 & 11-14 \\
\hline CD4075B & & 1,2,4,5,7,12,13 & 6,9,10 & 14 & 3,8,11 & & 3,4,10,11 & 1,5,7,8 & 11,14 \\
\hline CD4078B & 1,6,8 & 7 & 13 & 14 & 3,5,9,11 & 2,4,10,12 & 1,6,8,13 & 2-5,7 & 9-12,14 \\
\hline CD4081B & & 7 & 3,4,10,11 & 2,6,9,13,14 & 1,5,8,12 & & 3,4,10,11 & 1,2,5-7 & 8,9,12-14 \\
\hline CD4082B & 6,8 & 7 & 1,13 & 3-5,10-12,14 & 2,9 & & 1,6,8,14 & 2-5,7 & 9-12,14 \\
\hline CD4085B & & 7,10,11 & 3,4 & 2,6,9,13,14 & 1,5,8,12 & & 3,4 & 2,6,9-11,13 & 1,5,8,12,14 \\
\hline CD4086B & & 7,10 & 3 & 1,5,8,11,12,14 & 2,6,9,13 & & 3 & 1,5,7,8,10,12 & 2,6,9,11,14 \\
\hline CD4514B & & 2,3,12 & 4-11,13-20 & 21,22,24 & 1 & 23 & 4-11,13-20 & 12,21-23 & 1-3,24 \\
\hline CD4515B & & 2,3,12 & 4-11,13-20 & 21,22,24 & 1 & 23 & 4-11,13-20 & 12,21-23 & 1-3,24 \\
\hline CD4518B & & 7,8,15 & 3-6,11-14 & 16 & 1,9 & 2,10 & & 1,2,7,8 & 9,10,15,16 \\
\hline CD4520B & & 7,8,15 & 3-6,11-14 & 16 & 1,9 & 2,10 & & 1,2,7,8 & 9,10,15,16 \\
\hline
\end{tabular}

\footnotetext{
- No 47.K \(\Omega\) resistor.
}

DIMENSIONAL OUTLINES FOR INTEGRATED CIRCUITS
Ceramic Flat Packs

\section*{14-LEAD CERAMIC FLAT PACKAGE MIL-M-38510 CASE OUTLINE F-2}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ SYMBQL } & \multicolumn{2}{|c|}{ INCHES } & \multirow{2}{*}{ NOTE } & \multicolumn{2}{|c|}{ MILLIMETERS } \\
\cline { 2 - 4 } & MIN. & MAX. & & MIN. & MAX. \\
\hline A & 0.045 & 0.085 & & 1.14 & 2.16 \\
\hline\(b\) & 0.010 & 0.019 & 5 & 0.25 & 0.48 \\
\hline c & 0.003 & 0.006 & 5 & 0.08 & 0.15 \\
\hline D & & 0.390 & 3 & & 9.91 \\
\hline E & 0.235 & 0.280 & 3 & 5.97 & 7.11 \\
\hline\(E_{1}\) & 0.125 & & & 3.18 & \\
\hline\(E_{2}\) & 0.030 & & & 0.76 & \\
\hline e & \multicolumn{2}{|c|}{0.050} & BSC & 4,6 & \multicolumn{2}{|c|}{1.27 BSC } \\
\hline L & 0.250 & 0.370 & & 6.35 & 9.40 \\
\hline\(L_{1}\) & 0.735 & & & 18.67 & \\
\hline Q & 0.010 & 0.040 & 2 & 0.25 & 1.02 \\
\hline S & 0.005 & & 7.8 & 0.13 & \\
\hline\(S_{1}\) & & 0.045 & 7 & & 1.14 \\
\hline
\end{tabular}

\section*{NOTES:}
1. Index area; a notch or a pin one identification mark shall be located adjacent to pin one and shall be within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. Dimension \(\mathbf{Q}\) shall be measured at the point of exit of the lead from the body.
3. This dimension allows for off-center lid, meniscus, and glass overrun.
4. The basic pin spacing is 0.050 in . \((1.25 \mathrm{~mm})\) between centerlines. Each pin centerline shall be located within \(\pm 0.005 \mathrm{in} .(0.13 \mathrm{~mm})\) of its exact longitudinal position relative to pins 1 and 14.
5. All leads.
6. Twelve spaces.
7. Applies to all four corners (lead numbers 1, 7, 8, and 14).
8. Dimension \(S\) may be 0.000 in . \((0.00 \mathrm{~mm})\) if lead numbers \(\mathbf{1}, 7,8\), and 14 bend toward the cavity of the package within one lead width from the point of entry of the lead into the body or if the leads are brazed to the metallized ceramic body.

16-LEAD CERAMIC FLAT PACKAGE
MIL-M-38510 CASE OUTLINE F-5
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multicolumn{2}{|c|}{ INCHES } & \multirow{2}{*}{ NOTE } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 3 } & MIN. & MAX. & & \multicolumn{2}{|c|}{ MIN. } \\
\hline MAX. \\
\hline A & 0.045 & 0.085 & & 1.14 & 2.16 \\
\hline b & 0.015 & 0.019 & 5 & 0.38 & 0.48 \\
\hline c & 0.003 & 0.006 & 5 & 0.08 & 0.15 \\
\hline D & & 0.440 & 3 & & 11.18 \\
\hline E & 0.245 & 0.305 & 3 & 6.22 & 7.75 \\
\hline E \(_{1}\) & 0.130 & & & 3.30 & \\
\hline E \(_{2}\) & 0.030 & & & 0.76 & \\
\hline e & 0.050 & BSC & 4,6 & \multicolumn{2}{|c|}{1.27} \\
\hline L BSC \\
\hline L1 & 0.250 & 0.370 & & 6.35 & 9.40 \\
\hline Q & 0.745 & & & 18.92 & \\
\hline S & 0.010 & 0.040 & 2 & 0.25 & 1.02 \\
\hline \(\mathrm{~S}_{1}\) & & & 7.8 & 0.13 & \\
\hline
\end{tabular}

\section*{NOTES:}
1. Index area; a notch or a pin one identification mark shall be located adjacent to pin one and shall be within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. Dimension \(\mathbf{Q}\) shall be measured at the point of exit of the lead from the body.
3. This dimension allows for off-center lid, meniscus, and glass overrun.
4. The basic pin spacing is 0.050 in . \((\mathbf{1 . 2 5 ~ m m})\) between centerlines. Each pin centerline shall be located within \(\pm 0.005 \mathrm{in}\). \((0.13 \mathrm{~mm})\) of its exact longitudinal position relative to pins 1 and 16.
5. All leads.
6. Fourteen spaces.
7. Applies to all four corners (lead numbers 1, 8, 9, and 16).
8. Dimension \(S\) may be 0.000 in . \((0.00 \mathrm{~mm})\) if lead numbers \(1,8,9\), and 16 bend toward the cavity of the package within one lead width from the point of entry of the lead into the body or if the leads are brazed to the metallized ceramic body.

92CS-24786

The lead finish for the packaged types is in accordance with MIL-M-38510, Paragraph 3.6.2.5, Lead Finish " A ".
When these devices are supplied solder-dipped, the maximum lead thickness (narrow portion) will not exceed 0.013".

\section*{Ceramic Flat Packs (Cont'd)}

\section*{24-LEAD CERAMIC FLAT PACK}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multicolumn{2}{|c|}{ INCHES } & \multirow{2}{*}{ NOTE } & \multicolumn{2}{|c|}{ MILLIMETERS } \\
\cline { 2 - 5 } & MIN. & MAX. & & & MIN. & MAX. \\
\hline A & 0.075 & 0.120 & & 1.91 & 3.04 \\
\hline B & 0.018 & 0.022 & 1 & 0.458 & 0.558 \\
\hline C & 0.004 & 0.007 & 1 & 0.102 & 0.177 \\
\hline e & \(0.050 ~ T P\) & 2 & \multicolumn{2}{|c|}{\(1.27 ~ T P\)} \\
\hline E & 0.600 & 0.700 & & 15.24 & 17.78 \\
\hline H & 1.150 & 1.350 & & 29.21 & 34.29 \\
\hline L & 0.225 & 0.325 & & \multicolumn{2}{|c|}{5.72} & 8.25 \\
\hline N & \multicolumn{2}{|c|}{24} & 3 & \multicolumn{2}{|c|}{24} \\
\hline Q & 0.035 & 0.070 & & 0.89 & 1.77 \\
\hline S & 0.060 & 0.110 & 1 & 1.53 & 2.79 \\
\hline\(Z\) & \multicolumn{2}{|c|}{0.700} & 4 & \multicolumn{2}{|c|}{17.78} \\
\hline\(Z_{1}\) & \multicolumn{2}{|c|}{0.750} & 4 & \multicolumn{2}{|c|}{19.05} \\
\hline
\end{tabular}

92CS-19949

28-LEAD CERAMIC FLAT PACK
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multicolumn{2}{|c|}{ INCHES } & \multirow{2}{*}{ NOTE } & \multicolumn{2}{c|}{ MILLIMETERS } \\
\cline { 2 - 5 } & \multicolumn{2}{|c|}{ MIN. } & MAX. & & & MIN. \\
\hline & MAX. \\
\hline A & 0.075 & 0.120 & & 1.91 & 3.04 \\
\hline B & 0.018 & 0.022 & & 1 & 0.458 & 0.558 \\
\hline C & 0.004 & 0.007 & 1 & 0.102 & 0.177 \\
\hline E & \multicolumn{2}{|c|}{0.050 TP } & 2 & \multicolumn{2}{|c|}{1.27 TP } \\
\hline E & 0.600 & 0.700 & & 15.24 & 17.78 \\
\hline H & 1.150 & 1.350 & & 29.21 & 34.29 \\
\hline L & 0.225 & 0.325 & & 5.72 & 8.25 \\
\hline N & \multicolumn{2}{|c|}{28} & 3 & \multicolumn{2}{|c|}{28} \\
\hline Q & 0.035 & 0.070 & & 0.89 & 1.77 \\
\hline S & \multicolumn{2}{|c|}{0} & 0.060 & 1 & 0 & 1.53 \\
\hline\(Z\) & \multicolumn{2}{|c|}{0.700} & 4 & \multicolumn{2}{|c|}{17.78} \\
\(Z_{1}\) & \multicolumn{2}{|c|}{0.750} & 4 & \multicolumn{2}{|c|}{19.05} \\
\hline
\end{tabular}

NOTES:
1. Refer to JEDEC Publication No. 13 for Rules for Dimensioning Peripheral Lead Outlines.
2. Leads within \(0.005^{\prime \prime}(0.12 \mathrm{~mm})\) radius of True Position (TP) at maximum material condition.
3. \(\mathbf{N}\) is the maximum quantity of lead positions.
4. \(Z\) and \(Z_{1}\) determine a zone within which all body and lead irregularities lie.

The lead finish for the packaged types is in accordance with MIL- M-38510, Paragraph 3.6.2.5, Lead Finish " \(A\) ". When these devices are supplied solder-dipped, the maximum lead thickness (narrow portion) will not exceed \(0.013^{\prime \prime}\).

\section*{Ceramic Dual-in-Line Packages}

14-LEAD DUAL-IN-LINE CERAMIC PACKAGE
MIL-M- 38510 CASE OUTLINE D-1
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ SYMBOL } & \multicolumn{2}{|c|}{ INCHES } & \multirow{2}{*}{ NOTE } & \multicolumn{2}{|c|}{ MILLIMETERS } \\
\cline { 2 - 5 } & MIN. & MAX. & & MIN. & MAX. \\
\hline A & & 0.200 & & & 5.08 \\
\hline\(b\) & 0.014 & 0.023 & 8 & 0.36 & 0.58 \\
\hline \(\mathrm{~b}_{1}\) & 0.030 & 0.070 & 2,8 & 1.02 & 1.78 \\
\hline c & 0.008 & 0.015 & 8 & 0.20 & 0.38 \\
\hline D & & 0.796 & 4 & & 20.22 \\
\hline E & 0.220 & 0.310 & 4 & 5.59 & 7.87 \\
\hline \(\mathrm{E}_{1}\) & 0.290 & 0.320 & 7 & 7.37 & 8.13 \\
\hline \(\mathrm{E}_{2}\) & 0.100 & & & 2.54 & \\
\hline \(\mathrm{E}_{3}\) & 0.045 & & & 1.14 & \\
\hline e & 0.100 BSC & 5,9 & 2.54 BSC \\
\hline L & 0.125 & 0.200 & & 3.18 & 5.08 \\
\hline \(\mathrm{~L}_{1}\) & 0.150 & & & 3.81 & \\
\hline Q & 0.015 & 0.060 & 3 & 0.38 & 1.52 \\
\hline \(\mathrm{a}_{1}\) & 0.020 & & & 0.51 & \\
\hline S & 0.005 & & 6 & 0.13 & \\
\hline \(\mathrm{~S}_{1}\) & & 0.098 & 6 & & 2.49 \\
\hline\(a\) & 00 & \(15^{0}\) & & 00 & \(15^{\circ}\) \\
\hline
\end{tabular}

NOTES:
1. Index area; a notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The minimum limit for dimension \(b_{1}\) may be 0.020 in . \((0.51 \mathrm{~mm})\) for lead numbers \(1,7,8\), and 14 only.
3. Dimension \(\mathbf{Q}\) shall be measured from the seating plane to the base plane.
4. The dimension allows for off-center lid, meniscus, and glass overrun.
5. The basic pin spacing is 0.100 in . \((2.54 \mathrm{~mm})\) between centerlines. Each
 longitudinal position relative to pins 1 and 14.
6. Applies to all four corners (lead numbers 1, 7, 8, and 14).
7. Lead center when \(a\) is \(0^{\circ}\). \(E_{1}\) shall be measured at the centerline of the leads.
8. All leads.
9. Twelve spaces.

92CS-24773

16-LEAD DUAL-IN-LINE CERAMIC PACKAGE MIL-M-38510 CASE OUTLINE D-2
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|c|}{INCHES} & \multirow[b]{2}{*}{NOTE} & \multicolumn{2}{|l|}{MILLIMETERS} \\
\hline & MIN. & MAX. & & MIN. & MAX. \\
\hline A & & 0.200 & & & 5.08 \\
\hline b & 0.014 & 0.023 & 8 & 0.36 & 0.58 \\
\hline \(\mathrm{b}_{1}\) & 0.030 & 0.070 & 2, 8 & 1.02 & 1.78 \\
\hline c & 0.008 & 0.015 & 8 & 0.20 & 0.38 \\
\hline D & & 0.896 & 4 & & 22.76 \\
\hline E & 0.220 & 0.310 & 4 & 5.59 & 7.87 \\
\hline \(\mathrm{E}_{1}\) & 0.290 & 0.320 & 7 & 7.37 & 8.13 \\
\hline \(E_{2}\) & 0.100 & & & 2.54 & \\
\hline \(\mathrm{E}_{3}\) & 0.045 & & & 1.14 & \\
\hline e & & & 5,9 & 2.5 & \\
\hline L & \(\dot{0} .125\) & 0.200 & & 3.18 & 5.08 \\
\hline \(L_{1}\) & 0.150 & & & 3.81 & \\
\hline Q & 0.015 & 0.060 & 3 & 0.38 & 1.52 \\
\hline \(\mathrm{O}_{1}\) & 0.020 & & & 0.51 & \\
\hline S & 0.005 & & 6 & 0.13 & \\
\hline \(\mathrm{S}_{1}\) & & 0.098 & 6 & & 2.49 \\
\hline \(a\) & \(0^{\circ}\) & \(15^{\circ}\) & & 00 & \(15^{\circ}\) \\
\hline
\end{tabular}

NOTES:
1. Index area; a notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The minimum limit for dimension \(b_{1}\) may be 0.020 in . \((0.51 \mathrm{~mm})\) for lead numbers \(1,8,9\), and 16 only.
3. Dimension \(\mathbf{Q}\) shall be measured from the seating plane to the base plane.
4. The dimension allows for off-center lid, meniscus, and glass overrun.
5. The basic pin spacing is \(0.100 \mathrm{in} .(2.54 \mathrm{~mm})\) between centerlines. Each pin centerline shall be located within \(\pm 0.010 \mathrm{in}\). \((0.25 \mathrm{~mm})\) of its exact longitudinal position relative to pins 1 and 16.
6. Applies to all four corners (lead numbers 1, 8, 9, and 16).
7. Lead 'center when \(a\) is \(0^{\circ}\). \(E_{1}\) shall be measured at the centerline of the leads.
8. All leads.
9. Fourteen spaces.

92CS-24787

The lead finish for the packaged types is in accordance with MIL- M-38510, Paragraph 3.6.2.5, Lead Finish " \(A\) ". When these devices are supplied solder-dipped, the maximum lead thickness (narrow portion) will not exceed 0.013".

\section*{Ceramic Dual-in-Line Packages (Cont'd)}

14-LEAD DUAL-IN-LINE CERAMIC (FRIT-SEAL) PACKAGE
JEDEC MO-001-AB
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|c|}{INCHES} & \multirow[b]{2}{*}{NOTE} & \multicolumn{2}{|l|}{MILLIMETERS} \\
\hline & MIN. & MAX. & & MIN. & MAX. \\
\hline A & 0.155 & 0.200 & & 3.94 & 5.08 \\
\hline \(A_{1}\) & 0.020 & 0.050 & & 0.51 & 1.27 \\
\hline B & 0.014 & 0.020 & & 0.356 & 0.508 \\
\hline \(\mathrm{B}_{1}\) & 0.050 & 0.065 & & 1.27 & 1.65 \\
\hline C & 0.008 & 0.012 & & 0.204 & 0.304 \\
\hline D & 0.745 & 0.770 & & 18.93 & 19.55 \\
\hline E & 0.300 & 0.325 & & 7.62 & 8.25 \\
\hline E1 & 0.240 & 0.260 & & 6.10 & 6.60 \\
\hline e1 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 0.100 \mathrm{TP} \\
& 0.300 \mathrm{TP}
\end{aligned}
\]}} & 2 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 2.54 \mathrm{TP} \\
& 7.62 \mathrm{TP}
\end{aligned}
\]}} \\
\hline eA & & & 2,3 & & \\
\hline \(L\) & 0.125 & 0.150 & & 3.18 & 3.81 \\
\hline L2 & 0.000 & 0.030 & & 0.000 & 0.76 \\
\hline \(a\) & 00 & 150 & 4 & 00 & 150 \\
\hline N & \multicolumn{2}{|c|}{14} & 5 & \multicolumn{2}{|c|}{14} \\
\hline \(\mathrm{N}_{1}\) & \multicolumn{2}{|c|}{0} & 6 & \multicolumn{2}{|r|}{0} \\
\hline \(\mathrm{Q}_{1}\) & 0.040 & 0.075 & & 1.02 & 1.90 \\
\hline S & 0.065 & 0.090 & & 1.66 & 2.28 \\
\hline
\end{tabular}

16-LEAD DUAL-IN-LINE CERAMIC (FRIT-SEAL) PACKAGE
JEDEC MO-001-AC
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{INCHES} & \multirow[b]{2}{*}{NOTE} & \multicolumn{2}{|l|}{MILLIMETERS} \\
\hline & MIN. & MAX. & & MIN. & MAX. \\
\hline A & 0.155 & 0.200 & & 3.94 & 5.08 \\
\hline \(\mathrm{A}_{1}\) & 0.020 & 0.050 & & 0.51 & 1.27 \\
\hline B & 0.014 & 0.020 & & 0.356 & 0.508 \\
\hline \(\mathrm{B}_{1}\) & 0.035 & 0.065 & & 0.89 & 1.65 \\
\hline C & 0.008 & 0.0612 & & 0.204 & 0.304 \\
\hline D & 0.745 & 0.785 & & 18.93 & 19.93 \\
\hline E & 0.300 & 0.325 & & 7.62 & 8.25 \\
\hline \(E_{1}\) & 0.240 & 0.260 & & 6.10 & 6.60 \\
\hline \(\mathrm{e}_{1}\) & \multicolumn{2}{|r|}{0.100 TP} & 2 & \multicolumn{2}{|c|}{2.54 TP} \\
\hline \(\mathrm{e}_{\mathrm{A}}\) & \multicolumn{2}{|r|}{0.300 TP} & 2, 3 & \multicolumn{2}{|c|}{7.62 TP} \\
\hline L & 0.125 & 0.150 & & 3.18 & 3.81 \\
\hline \(\mathrm{L}_{2}\) & 0.000 & 0.030 & & 0.000 & 0.76 \\
\hline \(a\) & \(0{ }^{0}\) & \(15^{\circ}\) & 4 & \(0^{\circ}\) & \(15^{\circ}\) \\
\hline N & \multicolumn{2}{|c|}{16} & 5 & \multicolumn{2}{|c|}{16} \\
\hline \(\mathrm{N}_{1}\) & \multicolumn{2}{|r|}{0} & 6 & \multicolumn{2}{|r|}{0} \\
\hline \(\mathrm{Q}_{1}\) & 0.040 & 0.075 & & 1.02 & 1.90 \\
\hline S & 0.015 & 0.060 & & 0.39 & 1.52 \\
\hline
\end{tabular}

NOTES:
1. Refer to Rules for Dimensioning (JEDEC Publication No. 13) for Axial Lead Product Outlines.
2. Leads within \(0.005^{\prime \prime}(0.12 \mathrm{~mm})\) radius of True Position (TP) at guage plane with maximum material condition and unit installed.
3. \(e_{A}\) applies in zone \(L_{2}\) when unit installed.
4. \(a\) applies to spread leads prior to installation.
5. \(N\) is the maximum quantity of lead positions.
6. \(N_{1}\) is the quantity of allowable missing leads.

The lead finish for the packaged types is in accordance with MIL-M- 38510, Paragraph 3.6.2.5, Lead Finish " \(A\) ". When these devices are supplied solder-dipped, the maximum lead thickness (narrow portion) will not exceed 0.013".

\section*{notes}
1. Refer to Rules for Dimensioning (JEDEC Publication No. 13) for Axial Lead Product Outlines.

\section*{16-LEAD DUAL-IN-LINE CERAMIC (FRIT-SEAL) PACKAGE \\ JEDEC MO-001-AG}
(CD4026AF, CD4029AF, CD4031AF, CD4033AF ONLY)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|r|}{INCHES} & \multirow[b]{2}{*}{NOTE} & \multicolumn{2}{|l|}{MILLIMETERS} \\
\hline & MIN. & MAX. & & MIN. & MAX. \\
\hline A & 0.165 & 0.210 & & 4.20 & 5.33 \\
\hline \(A_{1}\) & 0.015 & 0.045 & & 0.381 & 1.14 \\
\hline B & 0.015 & 0.020 & & 0.381 & 0.508 \\
\hline \(\mathrm{B}_{1}\) & 0.045 & 0.070 & 7 & 1.15 & 1.77 \\
\hline C & 0.009 & 0.011 & & 0.229 & 0.279 \\
\hline D & 0.750 & 0.795 & & 19.05 & 20.19 \\
\hline E & 0.295 & 0.325 & & 7.50 & 8.25 \\
\hline \(\mathrm{E}_{1}\) & 0.245 & 0.300 & & 6.23 & 7.62 \\
\hline \({ }^{1} 1\) & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 0.100 \mathrm{TP} \\
& 0.300 \mathrm{TP} \\
& \hline
\end{aligned}
\]}} & 2 & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 2.54 \mathrm{TP} \\
& 7.62 \mathrm{TP}
\end{aligned}
\]}} \\
\hline \(\mathrm{e}_{\text {A }}\) & & & 2,3 & & \\
\hline L & 0.120 & 0.160 & & 3.05 & 4.06 \\
\hline \(L_{2}\) & 0.000 & 0.030 & & 0.000 & 0.76 \\
\hline \(a\) & 20 & 150 & 4 & 20 & 150 \\
\hline N & \multicolumn{2}{|r|}{16} & 5 & \multicolumn{2}{|c|}{16} \\
\hline \(\mathrm{N}_{1}\) & \multicolumn{2}{|r|}{0} & 6 & \multicolumn{2}{|c|}{0} \\
\hline \(\mathrm{Q}_{1}\) & 0.050 & 0.080 & & 1.27 & 2.03 \\
\hline S & 0.010 & 0.060 & & 0.254 & 1.52 \\
\hline
\end{tabular}
2. Leads within \(\mathbf{0 . 0 0 5}{ }^{\prime \prime}(\mathbf{0 . 1 2} \mathrm{mm})\) radius of True Position (TP) at gauge plane with maximum material condition and unit
is maximum quantity of lead positions. installed.
3. ed applies in zone \(L_{2}\) when unit installed.
4. \(a\) applies to spread leads prior to installation.
6. \(N_{1}\) is the quantity of allowable missing leads.
7. \(B_{1}\) applies to all leads except the four end leads which have one-half the normal width \(\left(\mathrm{B}_{1} \mathrm{~min} .=0.025 \mathrm{in}.\right)\)

\section*{16-LEAD DUAL-IN-LINE SIDE-BRAZED CERAMIC PACKAGE}

* WHEN THIS DEVICE IS SUPPLIED SOLDER-DIPPED, THE MAX. LEAD THICKNESS (NARROW PORTION) WILL NOT EXCEED 0.013 (0.33 mm)
NOTE: DIMENSIONS IN PARENTHESES ARE IN MILLIMETERS AND ARE DERIVED FROM THE BASIC INCH DIMENSIONS

The lead finish for the packaged types is in accordance with MIL-M-38510, Paragraph 3.6.2.5, Lead Finish " \(A\) ".
When these devices are supplied solder-dipped, the maximum lead thickness (narrow portion) will not exceed 0.013".

24-LEAD CERAMIC DUAL-IN-LINE PACKAGE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|r|}{INCHES} & \multirow[b]{2}{*}{NOTE,} & \multicolumn{2}{|l|}{MILLIMETERS} \\
\hline & MIN. & MAX. & & MIN. & MAX. \\
\hline A & 0.090 & 0.150 & & 2.29 & 3.81 \\
\hline \(A_{1}\) & 0.020 & 0.065 & 2 & 0.51 & 1.65 \\
\hline B & 0.015 & 0.020 & & 0.381 & 0.508 \\
\hline B1 & 0.045 & 0.055 & & 1.143 & 1.397 \\
\hline C & 0.008 & 0.012 & & 0.204 & 0.304 \\
\hline D & 1.15 & 1.22 & & 29.21 & 30.98 \\
\hline E & 0.600 & 0.625 & & 15.24 & 15.87 \\
\hline \(E_{1}\) & 0.480 & 0.520 & & 12.20 & 13.20 \\
\hline \({ }^{1} 1\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 0.100 \mathrm{TP} \\
& 0.600 \mathrm{TP} \\
& \hline
\end{aligned}
\]}} & 3 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
2.54 \mathrm{TP} \\
15.24 \mathrm{TP} \\
\hline
\end{gathered}
\]}} \\
\hline eA & & & 3 & & \\
\hline L & 0.100 & 0.180 & & 2.54 & 4.57 \\
\hline L2 & 0.000 & 0.030 & 3 & 0.00 & 0.76 \\
\hline \(a\) & \(0{ }^{\circ}\) & \(15^{\circ}\) & 4 & \(0{ }^{\circ}\) & \(15^{\circ}\) \\
\hline N & \multicolumn{2}{|c|}{24} & 5 & \multicolumn{2}{|c|}{24} \\
\hline \(\mathrm{N}_{1}\) & \multicolumn{2}{|c|}{0} & 6 & \multicolumn{2}{|r|}{0} \\
\hline \(\mathrm{O}_{1}\) & 0.020 & 0.080 & & 0.51 & 2.03 \\
\hline S & 0.020 & 0.060 & & 0.51 & 1.52 \\
\hline
\end{tabular}

92Cs-19948

28-LEAD CERAMIC DUAL-IN-LINE PACKAGE JEDEC MO-O15-AH
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|c|}{INCHES} & \multicolumn{2}{|l|}{MILLIMETERS} & \multirow[b]{2}{*}{NOTES} \\
\hline & MIN. & MAX. & MIN. & MAX. & \\
\hline \[
\begin{gathered}
A \\
A_{1} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& .100 \\
& .000
\end{aligned}
\] & \[
\begin{aligned}
& .200 \\
& .070
\end{aligned}
\] & \[
\begin{gathered}
2.6 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& 5.0 \\
& 1.77
\end{aligned}
\] & 2 \\
\hline \[
\begin{aligned}
& \mathrm{B} \\
& \mathrm{~B}_{1}
\end{aligned}
\] & \[
\begin{aligned}
& .015 \\
& .015
\end{aligned}
\] & \[
\begin{aligned}
& \hline .020 \\
& .055
\end{aligned}
\] & \[
\begin{gathered}
.381 \\
.39
\end{gathered}
\] & \[
\begin{aligned}
& .508 \\
& 1.39
\end{aligned}
\] & \\
\hline \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{D}
\end{aligned}
\] & \[
\begin{gathered}
.008 \\
1.380 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
.012 \\
1.420 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
.204 \\
35.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.304 \\
36.06 \\
\hline
\end{array}
\] & \\
\hline \[
\begin{gathered}
E \\
E_{1}
\end{gathered}
\] & \[
\begin{array}{r}
.600 \\
.485
\end{array}
\] & \[
\begin{aligned}
& .625 \\
& .515
\end{aligned}
\] & \[
\begin{aligned}
& 15.24 \\
& 12.32
\end{aligned}
\] & \[
\begin{aligned}
& 15.87 \\
& 13.08
\end{aligned}
\] & \\
\hline \[
\begin{aligned}
& \mathbf{e}_{1} \\
& \mathbf{e}_{A}
\end{aligned}
\] & \multicolumn{2}{|r|}{\[
\begin{aligned}
& .100 \mathrm{TP} \\
& .600 \mathrm{TP}
\end{aligned}
\]} & \multicolumn{2}{|c|}{\[
\begin{aligned}
& 2.54 \mathrm{TP} \\
& 15.24 \mathrm{TP} \\
& \hline
\end{aligned}
\]} & \[
\begin{aligned}
& 3 \\
& 3
\end{aligned}
\] \\
\hline \[
\begin{gathered}
\mathrm{L} \\
\mathrm{~L}_{2}
\end{gathered}
\] & \[
\begin{aligned}
& .100 \\
& .000
\end{aligned}
\] & \[
.200
\] & \[
\begin{gathered}
2.6 \\
0
\end{gathered}
\] & \[
\begin{aligned}
& 5.0 \\
& .76
\end{aligned}
\] & \\
\hline a & 0 & 15 & \(0{ }^{\circ}\) & 150 & 4 \\
\hline N & \multicolumn{2}{|c|}{28} & \multicolumn{2}{|c|}{28} & 5 \\
\hline \(\mathrm{N}_{1}\) & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & 6 \\
\hline \[
\begin{gathered}
\mathrm{Q}_{1} \\
\mathrm{~S}
\end{gathered}
\] & \[
\begin{aligned}
& .020 \\
& .040 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.070 \\
.070 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\hline .51 \\
1.02 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 1.77 \\
& 1.77 \\
& \hline
\end{aligned}
\] & \\
\hline See Note & \multicolumn{2}{|l|}{1} & & & \\
\hline
\end{tabular}

92CM-20250

NOTES:
1. REFER TO RULES FOR DIMENSIONING (JEDEC PUBLICATION No. 13) AXIAL LEAD PRODUCT OUTLINES.
2. WHEN BASE OF BODY IS TO BE ATTACHED TO HEAT SINK, TERMINAL LEAD STAND. OFFS ARE NOT REQUIRED AND \(A_{1}=0\). WHEN \(A_{1}=0\), THE LEADS EMERGE FROM THE BODY WITH THE B 1 DIMENSION AND REDUCE TO THE B DIMENSION ABOVE THE SEATING PLANE.
3. \(e_{1}\) AND e \(A_{A}\) APPLY IN ZONE \(L_{2}\) WHEN UNIT INSTALLED. LEADS WITHIN . 005 " RADIUS OF TRUE POSITION (TP) AT GAUGE PLANE WITH MAXIMUM MATERIAL CONDITION.
4. APPLIES TO SPREAD LEADS PRIOR TO INSTALLATION.
5. N IS THE MAXIMUM QUANTITY OF LEAD POSITIONS.
6. \(N_{1}\) IS THE QUANTITY OF ALLOWABLE MISSING LEADS.

The lead finish for the packaged types is in accordance with MIL-M-38510, Paragraph 3.6.2.5, Lead Finish " \(A\) ". When these devices are supplied solder-dipped, the maximum lead thickness (narrow portion) will not exceed \(0.013^{\prime \prime}\).

8-LEAD TO-5 WITH DUAL-IN-LINE FORMED LEADS

8-LEAD TO-5 STYLE PACKAGE MIL-M-38510 CASE OUTLINE A-1

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|c|}{INCHES} & \multirow[b]{2}{*}{NOTE} & \multicolumn{2}{|l|}{MILLIMETERS} \\
\hline & MIN. & MAX. & & MIN. & MAX. \\
\hline A & 0.165 & 0.185 & & 4.19 . & 4.70 \\
\hline \(\phi\) b & 0.016 & 0.019 & 1 & 0.41 & 0.48 \\
\hline \(\phi \mathrm{b}_{1}\) & 0.016 & 0.021 & 1 & 0.41 & 0.53 \\
\hline \(\phi \mathrm{D}\) & 0.335 & 0.370 & & 8.51 & 9.40 \\
\hline \(\phi \mathrm{D}_{1}\) & 0.305 & 0.335 & & 7.75 & 8.51 \\
\hline \(\phi \mathrm{D}_{2}\) & 0.120 & 0.160 & & 3.05 & 4.06 \\
\hline e & 0.2 & BSC & 3 & 5.08 & \\
\hline \({ }_{1}\) & 0.10 & SC & 3 & 2.54 & \\
\hline F & & 0.040 & & & 1.02 \\
\hline k & 0.027 & 0.034 & & 0.69 & 0.86 \\
\hline \(\mathrm{k}_{1}\) & 0.027 & 0.045 & 2 & 0.69 & 1.14 \\
\hline L & 0.500 & 0.750 & 1 & 12.70 & 19.05 \\
\hline \(L_{1}\) & 0.000 & 0.050 & 1 & 0.00 & 1.27 \\
\hline \(\mathrm{L}_{2}\) & 0.250 & & 1 & 6.35 & \\
\hline 0 & 0.010 & 0.045 & & 0.25 & 1.14 \\
\hline \(a\) & \multicolumn{2}{|c|}{\(45^{\circ} \mathrm{BSC}\)} & 3 & \multicolumn{2}{|l|}{\(45^{\circ} \mathrm{BSC}\)} \\
\hline
\end{tabular}

\section*{NOTES:}
1. (All leads) \(\phi \mathbf{b}\) applies between \(\mathrm{L}_{1}\) and \(\mathrm{L}_{2} . \phi \mathrm{b}_{1}\) applies between \(\mathrm{L}_{2}\) and \(0.500 \mathrm{in} .(12.70 \mathrm{~mm})\) from the reference plane. Diameter is uncontrolled in \(\mathrm{L}_{1}\) and beyond 0.500 in . (12.70 mm) from the reference plane.
2. Measured from the maximum diameter of the product.
3. Leads having a maximum diameter 0.019 in . \((0.48 \mathrm{~mm})\) measured in gaging plane \(0.054 \mathrm{in} .(1.37 \mathrm{~mm})+0.001 \mathrm{in} .(0.03 \mathrm{~mm})-0.000 \mathrm{in}\). \((0.00 \mathrm{~mm})\) below the base plane of the product shall be within 0.007 in . \((0.18 \mathrm{~mm})\) of their true position relative to a maximum width tab.
4. The product may be measured by direct methods or by gage.

10-LEAD TO-5 STYLE PACKAGE JEDEC MO-006-AF
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|c|}{INCHES} & \multirow[b]{2}{*}{NOTE} & \multicolumn{2}{|l|}{MILLIMETERS} \\
\hline & MIN. & MAX. & & MIN. & MAX. \\
\hline a & \multicolumn{2}{|r|}{0.230 TP} & 2 & \multicolumn{2}{|c|}{5.84 TP} \\
\hline \(\mathrm{A}_{1}\) & 0 & 10 & & 0 & 0 \\
\hline \(\mathrm{A}_{2}\) & 0.165 & 0.185 & & 4.19 & 4.70 \\
\hline \(\phi\) B & 0.016 & 0.019 & 3 & 0.407 & 0.482 \\
\hline ¢B1 & 0 & 0 & & 0 & 0 \\
\hline ¢B2 & 0.016 & 0.021 & 3 & 0.407 & 0.533 \\
\hline \(\phi\) D & 0.335 & 0.370 & & 8.51 & 9.39 \\
\hline \(\phi \mathrm{D}_{1}\) & 0.305 & 0.335 & & 7.75 & 8.50 \\
\hline F1 & 0.020 & 0.040 & & 0.51 & 1.01 \\
\hline j & 0.028 & 0.034 & & 0.712 & 0.863 \\
\hline k & 0.029 & 0.045 & 4 & 0.74 & 1.14 \\
\hline L1 & 0.000 & 0.050 & 3 & 0.00 & 1.27 \\
\hline L2 & 0.250 & 0.500 & 3 & 6.4 & 12.7 \\
\hline L3 & 0.500 & 0.562 & 3 & 12.7 & 14.27 \\
\hline \(\alpha\) & \multicolumn{2}{|c|}{360 TP} & & \multicolumn{2}{|c|}{360 TP} \\
\hline N & \multicolumn{2}{|c|}{10} & 6 & \multicolumn{2}{|c|}{10} \\
\hline \(\mathrm{N}_{1}\) & \multicolumn{2}{|c|}{1} & 5 & \multicolumn{2}{|c|}{1} \\
\hline
\end{tabular}

12-LEAD TO-5 PACKAGE JEDEC MO-006-AG
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|r|}{INCHES} & \multirow[b]{2}{*}{NOTE} & \multicolumn{2}{|l|}{MILLIMETERS} \\
\hline & MIN. & MAX. & & MIN. & MAX. \\
\hline a & \multicolumn{2}{|c|}{0.230} & 2 & \multicolumn{2}{|c|}{5.84 TP} \\
\hline \(\mathrm{A}_{1}\) & 0 & 0 & & 0 & 0 \\
\hline \(\mathrm{A}_{2}\) & 0.165 & 0.185 & & 4.19 & 4.70 \\
\hline \(\phi_{B}\) & 0.016 & 0.019 & 3 & 0.407 & 0.482 \\
\hline \(\phi \mathrm{B}_{1}\) & 0 & 0 & & 0 & 0 \\
\hline \(\phi \mathrm{B}_{2}\) & 0.016 & 0.021 & 3 & 0.407 & 0.533 \\
\hline \(\phi \mathrm{D}\) & 0.335 & 0.370 & & 8.51 & 9.39 \\
\hline \(\phi \mathrm{D}_{1}\) & 0.305 & 0.335 & & 7.75 & 8.50 \\
\hline \(\mathrm{F}_{1}\) & 0.020 & 0.040 & & 0.51 & 1.01 \\
\hline j & 0.028 & 0.034 & & 0.712 & 0.863 \\
\hline k & 0.029 & 0.045 & 4 & 0.74 & 1.14 \\
\hline \(\mathrm{L}_{1}\) & 0.000 & 0.050 & 3 & 0.00 & 1.27 \\
\hline L2 & 0.250 & 0.500 & 3 & 6.4 & 12.7 \\
\hline L3 & 0.500 & 0.562 & 3 & 12.7 & 14.27 \\
\hline \(\alpha\) & \multicolumn{2}{|c|}{\(30^{\circ} \mathrm{TP}\)} & & \multicolumn{2}{|c|}{\(30^{\circ}\) TP} \\
\hline N & \multicolumn{2}{|c|}{12} & 6 & \multicolumn{2}{|c|}{12} \\
\hline \(\mathrm{N}_{1}\) & \multicolumn{2}{|c|}{1} & 5 & \multicolumn{2}{|c|}{1} \\
\hline
\end{tabular}

92CS-19774

NOTES:
1. Refer to Rules for Dimensioning Axial Lead Product Outlines.
2. Leads at gauge plane within \(0.007^{\prime \prime}(0.178 \mathrm{~mm})\) radius of True Position (TP) at maximum material condition.
3. \(\phi \mathrm{B}\) applies between \(\mathrm{L}_{1}\) and \(\mathrm{L}_{2}\). \(\phi \mathrm{B}_{2}\) applies between \(\mathrm{L}_{2}\) and \(0.500^{\prime \prime}(12.70 \mathrm{~mm})\) from seating plane. Diameter is uncontrolled in \(\mathrm{L}_{1}\) and beyond \(0.500^{\prime \prime}\) (12.70 mm).
4. Measure from Max. \(\phi \mathrm{D}\).
5. \(N_{1}\) is the quantity of allowable missing leads.
6. \(N\) is the maximum quantity of lead positions.

The lead finish for the packaged types is in accordance with MIL-M-38510, Paragraph 3.6.2.5, Lead Finish " A ".

\section*{Operating Considerations for RCA Solid State Devices}

Solid state devices are being designed into an increasing variety of electronic equipment because of their high standards of reliability and performance．However，it is essential that equipment designers be mindful of good engineering practices in the use of these devices to achieve the desired performance．

This Note summarizes important operating recommen－ dations and precautions which should be followed in the interest of maintaining the high standards of performance of solid state devices．

The ratings included in RCA Solid State Devices data bulletins are based on the Absolute Maximum Rating System，which is defined by the following Industry Standard （JEDEC）statement：

Absolute－Maximum Ratings are limiting values of opera－ ting and environmental conditions applicable to any electron device of a specified type as defined by its published data， and should not be exceeded under the worst probable conditions．

The device manufacturer chooses these values to provide acceptable serviceability of the device，taking no responsi－ bility for equipment variations，environmental variations，and the effects of changes in operating conditions due to variations in device characteristics．

The equipment manufacturer should design so that initially and throughout life no absolute－maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply－ voltage variation，equipment component variation，equip－ ment control adjustment，load variation，signal variation， environmental conditions，and variations in device charac－ teristics．

It is recommended that equipment manufacturers consult RCA whenever device applications involve unusual electrical， mechanical or environmental operating conditions．

\section*{GENERAL CONSIDERATIONS}

The design flexibility provided by these devices makes possible their use in a broad range of applications and under
many different operating conditions．When incorporating these devices in equipment，therefore，designers should anticipate the rare possibility of device failure and make certain that no safety hazard would result from such an occurrence．

The small size of most solid state products provides obvious advantages to the designers of electronic equipment． However，it should be recognized that these compact devices usually provide only relatively small insulation area between adjacent leads and the metal envelope．When these devices are used in moist or contaminated atmospheres，therefore， supplemental protection must be provided to prevent the development of electrical conductive paths across the relatively small insulating surfaces．For specific information on voltage creepage，the user should consult references such as the JEDEC Standard No． 7 ＂Suggested Standard on Thyristors，＂and JEDEC Standard RS282＂Standards for Silicon Rectifier Diodes and Stacks＂．

The metal shells of some solid state devices operate at the collector voltage and for some rectifiers and thyristors at the anode voltage．Therefore，consideration should be given to the possibility of shock hazard if the shells are to operate at voltages appreciably above or below ground potential．In general，in any application in which devices are operated at voltages which may be dangerous to personnel，suitable precautionary measures should be taken to prevent direct contact with these devices．

Devices should not be connected into or disconnected from circuits with the power on because high transient voltages may cause permanent damage to the devices．

\section*{TESTING PRECAUTIONS}

In common with many electronic components，solid－state devices should be operated and tested in circuits which have reasonable values of current limiting resistance，or other forms of effective current overload protection．Failure to observe these precautions can cause excessive internal heating of the device resulting in destruction and／or possible shattering of the enclosure．

\section*{TRANSISTORS AND THYRISTORS WITH FLEXIBLE LEADS}

Flexible leads are usually soldered to the circuit elements. It is desirable in all soldering operatings to provide some slack or an expansion elbow in each lead to prevent excessive tension on the leads. It is important during the soldering operation to avoid excessive heat in order to prevent possible damage to the devices. Some of the heat can be absorbed if the flexible lead of the device is grasped between the case and the soldering point with a pair of pliers.

\section*{TRANSISTORS AND THYRISTORS WITH MOUNTING FLANGES}

The mounting flanges of JEDEC-type packages such as the TO-3 or TO-66 often serve as the collector or anode terminal. In such cases, it is essential that the mounting flange be securely fastened to the heat sink, which may be the equipment chassis. Under no circumstances, however, should the mounting flange of a transistor be soldered directly to the heat sink or chassis because the heat of the soldering operation could permanently damage the device. Soldering is the preferred method for mounting thyristors; see "Rectifiers and Thyristors," below. Devices which cannot be soldered can be installed in commercially available sockets. Electrical connections may also be made by soldering directly to the terminal pins. Such connections may be soldered to the pins close to the pin seals provided care is taken to conduct excessive heat away from the seals; otherwise the heat of the soldering operation could crack the pin seals and damage the device.

During operation, the mounting-flange temperature is higher than the ambient temperature by an amount which depends on the heat sink used. The heat sink must have sufficient thermal capacity to assure that the heat dissipated in the heat sink itself does not raise the device mountingflange temperature above the rated value. The heat sink or chassis may be connected to either the positive or negative supply.

In many applications the chassis is connected to the voltage-supply terminal. If the recommended mounting hardware shown in the data bulletin for the specific solid-state device is not available, it is necessary to use either an anodized aluminum insulator having high thermal conductivity or a mica insulator between the mounting-flange and the chassis. If an insulating aluminum washer is required, it should be drilled or punched to provide the two mounting holes for the terminal pins. The burrs should then be removed from the washer and the washer anodized. To insure that the anodized insulating layer is not destroyed during mounting, it is necessary to remove the burrs from the holes in the chassis.

It is also important that an insulating bushing, such as glass-filled nylon, be used between each mounting bolt and the chassis to prevent a short circuit. However, the insulating bushing should not exhibit shrinkage or softening under the operating temperatures encountered. Otherwise the thermal resistance at the interface between device and heat sink may increase as a result of decreasing pressure.

\section*{PLASTIC POWER TRANSISTORS AND THYRISTORS}

RCA power transistors and thyristors (SCR's and triacs) in molded-silicone-plastic packages are available in a wide range of power-dissipation ratings and a variety of package configurations. The following paragraphs provide guidelines for handling and mounting of these plastic-package devices, recommend forming of leads to meet specific mounting requirements, and describe various mounting arrangements, thermal considerations, and cleaning methods. This information is intended to augment the data on electrical characteristics, safe operating area, and performance capabilities in the technical bulletin for each type of plastic-package transistor or thyristor.

\section*{Lead-Forming Techniques}

The leads of the RCA VERSAWATT in-line plastic packages can be formed to a custom shape, provided they are not indiscriminately twisted or bent. Although these leads can be formed, they are not flexible in the general sense, nor are they sufficiently rigid for unrestrained wire wrapping

Before an attempt is made to form the leads of an in-line package to meet the requirements of a specific application, the desired lead configuration should be determined, and a lead-bending fixture should be designed and constructed. The use of a properly designed fixture for this operation eliminates the need for repeated lead bending. When the use of a special bending fixture is not practical, a pair of long-nosed pliers may be used. The pliers should hold the lead firmly between the bending point and the case, but should not touch the case.

When the leads of an in-line plastic package are to be formed, whether by use of long-nosed pliers or a special bending fixture, the following precautions must be observed to avoid internal damage to the device:
1. Restrain the lead between the bending point and the plastic case to prevent relative movement between the lead and the case.
2. When the bend is made in the plane of the lead (spreading), bend only the narrow part of the lead.
3. When the bend is made in the plane perpendicular to that of the leads, make the bend at least \(1 / 8\) inch from the plastic case.
4. Do not use a lead-bend radius of less than \(1 / 16\) inch.
5. Avoid repeated bending of leads.

The leads of the TO-220AB VERSAWATT in-line package are not designed to withstand excessive axial pull. Force in this direction greater than 4 pounds may result in permanent damage to the device. If the mounting arrangement tends to impose axial stress on the leads, some method of strain relief should be devised.

Wire wrapping of the leads is permissible, provided that the lead is restrained between the plastic case and the point of the wrapping. Soldering to the leads is also allowed. The maximum soldering temperature, however, must not exceed \(275^{\circ} \mathrm{C}\) and must be applied for not more than 5 seconds at a distance not less than \(1 / 8\) inch from the plastic case. When
wires are used for connections, care should be exercised to assure that movement of the wire does not cause movement of the lead at the lead-to-plastic junctions.

The leads of RCA molded-plastic high-power packages are not designed to be reshaped. However, simple bending of the leads is permitted to change them from a standard vertical to a standard horizontal configuration, or conversely. Bending of the leads in this manner is restricted to three 90 -degree bends; repeated bendings should be avoided.

\section*{Mounting}

Recommended mounting arrangements and suggested hardward for the VERSAWATT package are given in the data bulletins for specific devices and in RCA Application Note AN-4142. When the package is fastened to a heat sink, a rectangular washer (RCA Part No. NR231A) is recommended to minimize distortion of the mounting flange. Excessive distortion of the flange could cause damage to the package. The washer is particularly important when the size of the mounting hole exceeds 0.140 inch (\(6-32\) clearance). Larger holes are needed to accommodate insulating bushings; however, the holes should not be larger than necessary to provide hardware clearance and, in any case, should not exceed a diameter of 0.250 inch.

Flange distortion is also possible if excessive torque is used during mounting. A maximum torque of 8 inch-pounds is specified. Care should be exercised to assure that the tool used to drive the mounting screw never comes in contact with the plastic body during the driving operation. Such contact can result in damage to the plastic body and internal device connections. An excellent method of avoiding this problem is to use a spacer or combination spacer-isolating bushing which raises the screw head or nut above the top surface of the plastic body. The material used for such a spacer or spacer-isolating bushing should, of course, be carefully selected to avoid "cold flow" and consequent reduction in mounting force. Suggested materials for these bushings are diallphtalate, fiberglass-filled nylon, or fiberglass-filled polycarbonate. Unfilled nylon should be avoided.

Modification of the flange can also result in flange distortion and should not be attempted. The package should not be soldered to the heat sink by use of lead-tin solder because the heat required with this type of solder will cause the junction temperature of the device to become excessively high.

The TO-220AA plastic package can be mounted in commercially available TO-66 sockets, such as UID Electronics Corp. Socket No. PTS-4 or equivalent. For testing purposes, the TO-220AB in-line package can be mounted in a Jetron Socket No. DC74-104 or equivalent. Regardless of the mounting method, the following precautions should be taken:
1. Use appropriate hardware.
2. Always fasten the package to the heat sink before the leads are soldered to fixed terminals.
3. Never allow the mounting tool to come in contact with the plastic case.
4. Never exceed a torque of 8 inch-pounds.
5. Avoid oversize mounting holes.
6. Provide strain relief if there is any probability that axial stress will be applied to the leads.
7. Use insulating bushings to prevent hot-creep problems. Such bushings should be made of diallphthalate, fiber-glass-filled nylon, or fiberglass-filled polycarbonate.
The maximum allowable power dissipation in a solid state device is limited by the junction temperature. An important factor in assuring that the junction temperature remains below the specified maximum value is the ability of the associated thermal circuit to conduct heat away from the device.

When a solid state device is operated in free air, without a heat sink, the steady-state thermal circuit is defined by the junction-to-free-air thermal resistance given in the published data for the device. Thermal considerations require that a free flow of air around the device is always present and that the power dissipation be maintained below the level which would cause the junction temperature to rise above the maximum rating. However, when the device is mounted on a heat sink, care must be taken to assure that all portions of the thermal circuit are considered.

To assure efficient heat transfer from case to heat sink when mounting RCA molded-plastic solid state power devices, the following special precautions should be observed:
1. Mounting torque should be between 4 and 8 inchpounds.
2. The mounting holes should be kept as small as possible.
3. Holes should be drilled or punched clean with no burrs or ridges, and chamfered to a maximum radius of 0.010 inch.
4. The mounting surface should be flat within 0.002 inch/inch.
5. Thermal grease (Dow Corning 340 or equivalent) should always be used on both sides of the insulating washer if one is employed.
6. Thin insulating washers should be used. (Thickness of factory-supplied mica washers range from 2 to 4 mils).
7. A lock washer or torque washer, made of material having sufficient creep strength, should be used to prevent degradation of heat sink efficiency during life.

A wide variety of solvents is available for degreasing and flux removal. The usual practice is to submerge components in a solvent bath for a specified time. However, from a reliability stand point it is extremely important that the solvent, together with other chemicals in the solder-cleaning system (such as flux and solder covers), do not adversely affect the life of the component. This consideration applies to all non-hermetic and molded-plastic components.

It is, of course, impractical to evaluate the effect on long-term device life of all cleaning solvents, which are marketed with numerous additives under a variety of brand names. These solvents can, however, be classified with
respect to their component parts as either acceptable or unacceptable. Chlorinated solvents tend to dissolve the outer package and, therefore, make operation in a humid atmosphere unreliable. Gasoline and other hydrocarbons cause the inner encapsulant to swell and damage the transistor. Alcohol is an acceptable solvent. Examples of specific, acceptable alchols are isopropanol, methanol, and special denatured alcohols, such as SDA1, SDA30, SDA34, and SDA44.

Care must also be used in the selection of fluxes for lead soldering. Rosin or activated rosin fluxes are recommended, while organic or acid fluxes are not. Examples of acceptable fluxes are:
1. Alpha Reliaros No. 320-33
2. Alpha Reliaros No. 346
3. Alpha Reliaros No. 711
4. Alpha Reliafoam No. 807
5. Alpha Reliafoam No. 809
6. Alpha Reliafoam No. 811-13
7. Alpha Reliafoam No. 815-35
8. Kester No. 44

If the completed assembly is to be encapsulated, the effect on the molded-plastic transistor must be studied from both a chemical and a physical standpoint.

\section*{RECTIFIERS AND THYRISTORS}

A surge-limiting impedance should always be used in series with silicon rectifiers and thyristors. The impedance value must be sufficient to limit the surge current to the value specified under the maximum ratings. This impedance may be provided by the power transformer winding, or by an external resistor or choke.

A very efficient method for mounting thyristors utilizing the "modified TO-5" package is to provide intimate contact between the heat sink and at least one half of the base of the device opposite the leads. This package can be mounted to the heat sink mechanically with glue or an expoxy adhesive, or by soldering, the most efficient method.

The use of a "self-jigging" arrangement and a solder preform is recommended. If each unit is soldered individually, the heat source should be held on the heat sink and the solder on the unit. Heat should be applied only long enough to permit solder to flow freely. For more detailed thyristor mounting considerations, refer to Application Note AN3822, "Thermal Considerations in Mounting of RCA Thyristors".

\section*{MOS FIELD-EFFECT TRANSISTORS}

Insulated-Gate Metal Oxide-Semiconductor Field-Effect Transistors (MOS FETs), like bipolar high-frequency transistors, are susceptible to gate insulation damage by the electrostatic discharge of energy through the devices. Electrostatic discharges can occur in an MOS FET if a type with an unprotected gate is picked up and the static charge, built in the handler's body capacitance, is discharged through the device. With proper handling and applications procedures, however, MOS transistors are currently being extensively used in production by numerous equipment manufacturers in military, industrial, and consumer applica-
tions, with virtually no problems of damage due to electrostatic discharge.

In some MOS FETs, diodes are electrically connected between each insulated gate and the transistor's source. These diodes offer protection against static discharge and in-circuit transients without the need for external shorting mechanisms. MOS FETs which do not include gateprotection diodes can be handled safely if the following basic precautions are taken:
1. Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs attached to the device by the vendor, or by the insertion into conductive material such as "ECCOSORB" LD26" or equivalent.
(NOTE: Polystyrene insulating "SNOW" is not sufficiently conductive and should not be used.)
2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means, for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from circuits with power on.

\section*{RF POWER TRANSISTORS}

\section*{Mounting and Handling}

Stripline rf devices should be mounted so that the leads are not bent or pulled away from the stud (heat sink) side of the device. When leads are formed, they should be supported to avoid transmitting the bending or cutting stress to the ceramic portion of the device. Excessive stresses may destroy the hermeticity of the package without displaying visible damage.

Devices employing silver leads are susceptible to tarnishing; these parts should not be removed from the original tarnish-preventive containers and wrappings until ready for use. Lead solderability is retarded by the presence of silver tarnish; the tarnish can be removed with a silver cleaning solution, such as thiourea:

The ceramic bodies of many rf devices contain beryllium oxide as a major ingredient. These portions of the transistors should not be crushed, ground, or abraded in any way because the dust created could be hazardous if inhaled.

\section*{Operating}

Forward-Biased Operation. For Class A or AB operation, the allowable quiescent bias point is determined by reference to the infrared safe-area curve in the appropriate data bulletin. This curve depicts the safe current/voltage combinations for extended continuous operation.

Load VSWR. Excessive collector load or tuning mismatch can cause device destruction by over-dissipation or secondary breakdown. Mismatch capability is generally included on the data bulletins for the more recent rf transistors.

See RCA RF Power Transitor Manual, Technical Series RMF-430, pp 39-41, for additional information concerning the handling and mounting of rf power transistors.

\footnotetext{
*Trade Mark: Emerson and Cumming, Inc.
}

\section*{INTEGRATED CIRCUITS}

\section*{Handing}

All COS/MOS gate inputs have a resistor/diode gate protection network. All transmission gate inputs and all outputs have diode protection provided by inherent p-n junction diodes. These diode networks at input and output interfaces protect COS/MOS devices from gate-oxide failure in handling environments where static discharge is not excessive. In low-temperature, low-humidity environments, improper handling may result in device damage. See ICAN-6000, "Handling and Operating Considerations for MOS Integrated Circuits", for proper handling procedures.

\section*{Mounting}

Integrated circuits are normally supplied with lead-tin plated leads to facilitate soldering into circuit boards. In those relatively few applications requiring welding of the device leads, rather than soldering, the devices may be obtained with gold or nickel plated Kovar leads.* It should be recognized that this type of plating will not provide complete protection against lead corrosion in the presence of high humidity and mechanical stress. The aluminum-foil-lined cardboard "sandwich pack" employed for static protection of the flat-pack also provides some additional protection against lead corrosion, and it is recommended that the devices be stored in this package until used.

When integrated circuits are welded onto printed circuit boards or equipment, the presence of moisture between the closely spaced terminals can result in conductive paths that may impair deyice performance in high-impedance applications. It is therefore recommended that conformal coatings or potting be provided as an added measure of protection against moisture penetration.

In any method of mounting integrated circuits which involves bending or forming of the device leads, it is extremely important that the lead be supported and clamped between the bend and the package seal, and that bending be done with care to avoid damage to lead plating. In no case should the radius of the bend be less than the diameter of the lead, or in the case of rectangular leads, such as those used in RCA 14 -lead and 16-lead flat-packages, less than the lead thickness. It is also extremely important that the ends of the bent leads be straight to assure proper insertion through the holes in the printed-circuit board.

\section*{Operating}

\section*{Unused Inputs}

All unused input leads must be connected to either \(\mathrm{V}_{\mathrm{SS}}\) or \(\mathrm{V}_{\mathrm{DD}}\), whichever is appropriate for the logic circuit involved. A floating input on a high-current type, such as the CD4049 or CD4050, not only can result in faulty logic operation, but can cause the maximum power dissipation of 200 milliwatts to be exceeded and may result in damage to the device. Inputs to these types, which are mounted on printed-circuit boards that may temporarily become unterminated, should have a pull-up resistor to \(\mathrm{V}_{\mathrm{SS}}\) or \(\mathrm{V}_{\mathrm{DD}}\). A useful range of values for such resistors is from 10 kilohms to 1 megohm.

\section*{Input Signals}

Signals shall not be applied to the inputs while the device power supply is off unless the input current is limited to a steady state value of less than 10 milliamperes. Input currents of less than 10 milliamperes prevent device damage; however, proper operation may be impaired as a result of current flow through structural diode junctions.

\section*{Output Short Circuits}

Shorting of outputs to \(\mathrm{V}_{\text {SS }}\) or \(\mathrm{V}_{\text {DD }}\) can damage many of the higher-output-current COS/MOS types, such as the CD4007, CD4041, CD4049, and CD4050. In general, these types can all be safely shorted for supplies up to 5 volts, but will be damaged (depending on type) at higher power-supply voltages. For cases in which a short-circuit load, such as the base of a p-n-p or an n-p-n bipolar transistor, is directly driven, the device output characteristics given in the published data should be consulted to determine the requirements for a safe operation below 200 milliwatts.

For detailed COS/MOS IC operating and handling considerations, refer to Application Note ICAN-6000 "Handling and Operating Considerations for MOS Integrated Circuits".

\section*{SOLID STATE CHIPS}

Solid state chips, unlike packaged devices, are nonhermetic devices, normally fragile and small in physical size, and therefore, require special handling considerations as follows:
1. Chips must be stored under proper conditions to insure that they are not subjected to a moist and/or contaminated atmosphere that could alter their electrical, physical, or mechanical characteristics. After the shipping container is opened, the chip must be stored under the following conditions:
A. Storage temperature \(40^{\circ} \mathrm{C}\) max.
B. Relative humidity, \(50 \%\) max.
C. Clean, dust-free environment.
2. The user must exercise proper care when handling chips to prevent even the slightest physical damage to the chip.
3. During mounting and lead bonding of chips the user must use proper assembly techniques to obtain proper electrical, thermal, and mechanical performance.
4. After the chip has been mounted and bonded, any necessary procedure must be followed by the user to insure that these non-hermetic chips are not subjected to moist or contaminated atmosphere which might cause the development of electrical conductive paths across the relatively small insulating surfaces. In addition, proper consideration must be given to the protection of these devices from other harmful environments which could conceivably adversely affect their proper performance.

\footnotetext{
*Mil-M-38510A, paragraph 3.5.6.1 (a), lead material.
}
\begin{tabular}{|c|c|c|c|}
\hline & Page Nos. & & \begin{tabular}{l}
Page \\
Nos.
\end{tabular} \\
\hline \multirow[t]{2}{*}{4} & & Consumer's risk & 13 \\
\hline & & Control chart, quality & 13 \\
\hline Acceptance criteria & 12 & Control limits, quality & 13 \\
\hline Acceptable quality level (AQL) & 12 & Controlled solder process & 23 \\
\hline Acceptable reliability level & 12 & COS/MOS chips: & \\
\hline Aerospace high-reliability requirements & 11 & Handling of (ICAN-6000) & 706 \\
\hline Alpha (a) risk & 14 & Storing of (ICAN-6000) & 707 \\
\hline Aluminum, glass-passivated & . 69 & COS/MOS CD4000A slash-series types & \\
\hline \multicolumn{2}{|l|}{Aluminum TO-3 packages, hermeticity evaluation of} & screened to MIL-STD-883 (RIC-102C) & 714 \\
\hline (AN-6071) & 51 & Electrical-test and delta limits (RIC-102C) & 718 \\
\hline Engineering problem (AN-6071) & 52 & Environmental sampling inspections (RIC-102C) & 718 \\
\hline Failure analysis (AN-6071) & 51 & Final electrical tests (RIC-102C) & 718 \\
\hline Failure data (AN-6071) & 51 & Ordering information (RIC-102C) & 716 \\
\hline Thermal-cycling test results (AN-6071) & 52 & Part-number code (RIC-102C) & 716 \\
\hline AND gates, high-relaibility COS/MOS & & Product-flow diagram (RIC-102C) & 719 \\
\hline (technical data, File No. 844) & 671 & Screening levels, description of (RIC-102C) & 717 \\
\hline \multirow[t]{2}{*}{Arrays, high-reliability integrated-circuit (technical data):} & & Total lot screening, description of (RIC-102C) & 717 \\
\hline & & COS/MOS integrated circuits, high-reliability 228 & 427-731 \\
\hline Diode (File Nos. 722, 704) & 316, 336 & COS/MOS life-test data & 238 \\
\hline Transistor (File No. 762) & . 308 & COS/MOS MIL-M-38510 CD4000A series types & \\
\hline Assignable causes of variation & 12 & (RIC-104A) & 720 \\
\hline Average & 12 & Electrical sampling inspection (RIC-104A) & 723 \\
\hline Average outgoing quality (AOQ) & 12 & Environmental sampling inspection (RIC-104A) & 724 \\
\hline \multirow[t]{3}{*}{Average outgoing quality limit (AOQL)} & 13 & Final electrical tests (RIC-104A) & 723 \\
\hline & & Processing and screening reqüirements (RIC-104A) & 721 \\
\hline & & Product flow diagram (RIC-104A) & 720 \\
\hline \multirow[t]{2}{*}{B} & & Product-number code (RIC-104A) & 725 \\
\hline & & Screening levels (RIC-104A) & 720 \\
\hline Ballasting, emitter-site & 68,71 & Specification numbers (RIC-104A) & 724 \\
\hline Ballasting resistors & 68 & Counters, high-reliability COS/MOS & \\
\hline Beta (\(\beta\)) risk & 13 & (technical data, 733, 736, 755) 517, & 533, 584 \\
\hline Bulk leakages & 21 & Current density, effect on reliability & 74, 179 \\
\hline \multirow[t]{2}{*}{Burn-in} & 13 & Current gain & 20 \\
\hline & & Currents, collector leakage & 20 \\
\hline \multicolumn{4}{|l|}{C} \\
\hline & & D & \\
\hline Case-temperature effects & 72 & & \\
\hline Catastrophic failure & 13 & Darlington power transistor & \\
\hline Chance failure & 13 & (technical data) & 46,48 \\
\hline Characteristic & 13 & DC safe area & 69 \\
\hline Collector current, reverse & 20 & Defect & 13 \\
\hline Collector-to-emitter saturation voltage & 20 & Defective & 13 \\
\hline Collector leakage currents & 20 & Degradation failure & 13 \\
\hline Bulk leakages & 21 & Delta tests or limits & 233 \\
\hline Surface leakage & 21 & Derating curve, power-transistor & 20 \\
\hline Collector mismatch & 72 & Differential amplifiers, integrated-circuit & \\
\hline Commercial reliability requirements & 13 & high-relaibility types (technical data, & \\
\hline Comparator, high-relability COS/MOS (technical data, File No. 852) & 644 & File Nos. 705, 706, 711, 707) 325 & \[
\begin{aligned}
& 276-287, \\
& 335,345
\end{aligned}
\] \\
\hline Comparator, high reliability bipolar integrated & & Diffusion current & 20 \\
\hline circuit (technical data, File 832) & 259 & Dimensional outlines (for integrated circuits) & 732 \\
\hline Confidence interval & 13 & Diode array (technical data, File No. 722, 704) & 316, 336 \\
\hline Confidence level & 13 & Dissipated-limited region & 20 \\
\hline
\end{tabular}

\section*{Subject Index}

\section*{E}

Effect of temperature on silicon transistors
Electrical considerations power-transistor
Electromigration
Emitter-finger structure
Emitter-site ballasting
Energy-handling capability, power-transistor
Environment
Excess-phase factor

\section*{F}

Failure analysis 194
Failure, catastrophic
Failure, chance or random
13
Failure, degradation
13
Failure mechanism 13
Failure mode 13
Failure rate 13
Final Qualification 240
Forward-bias second breakdown 17

G

Gain, current 15
General-purpose transistor 42-44
Glass-passivated aluminum
Group A inspections, power-transistor

H

Hermetic rf transistor packages
Heterogeneity
High-power transistors (technical data)
High-reliability COS/MOS CD4000A slash-series types (RIC-102C)

714
High-reliability integrated circuits
225
Applications 228
Device nomenclature 227
General considerations 226
Life-test data, COS/MOS 238
Manufacturing controls 226
MIL-M-38510 requirements 234
MIL-STD-883 requirements 228
Packages 226
Technical data, COS/MOS types
427-705
Technical data, DMOS types
Technical data, linear types

403-414
241-402
\begin{tabular}{|c|c|}
\hline & Pagr
Nos \\
\hline High-reliability power transistors & 15 \\
\hline Application notes on & 51 \\
\hline Electrical considerations & 16 \\
\hline JAN, JANTX, and JANTXV types & 25, 30-37 \\
\hline Processing and screening & 25 \\
\hline Reliability considerations & 16 \\
\hline Special rating considerations & 16 \\
\hline Technical data on RCA types & 30-50 \\
\hline High-reliability power transistors (technical data) & 30-50 \\
\hline High-reliability rf power transistors & 67 \\
\hline Application note on & 179 \\
\hline Design features & 68 \\
\hline JAN, JANTX, and JANTXV types & 75, 74-84 \\
\hline HR-series types & 75, 85-134 \\
\hline Premium and ultra-high-reliability types & 77, 135-182 \\
\hline Special rating concepts & 70 \\
\hline Technical data & 79.178 \\
\hline High-reliability solid-state devices & \\
\hline Commercial requirements & 11 \\
\hline Index to RCA types & 6 \\
\hline Introduction to & 11 \\
\hline Military and aerospace requirements & 11 \\
\hline Military specifications for & 11 \\
\hline High-reliability terms and definitions & 12, 239 \\
\hline High-reliability thyristors & 193 \\
\hline Basic reliabilty considerations & 194 \\
\hline Basic reliabilty testing & 196 \\
\hline Failure analysis & 196 \\
\hline Processing and screening & 197 \\
\hline Technical data & 200-224 \\
\hline High-speed power transistors (technical data) & 39-42, 45 \\
\hline High-voltage power transistors (technical data) & 42, 46 \\
\hline Homogeniety & 13 \\
\hline Hometaxial-base power transistors (technical data) & 30-32, 38, 40, 43 \\
\hline Hot-spot thermal resistance & 71 \\
\hline HR-series rf power transistors & 75, 85-134 \\
\hline Burn-in test measurements & 77 \\
\hline Product-flow diagram & 77 \\
\hline Processing and screening & 75 \\
\hline Reliability levels & 76 \\
\hline Technical data & 85-134 \\
\hline 1 & \\
\hline Inductive voltage-breakdown tesing, power-transistor & 19 \\
\hline Inherent reliability & 13 \\
\hline Inspection: & \\
\hline By attributes & 13 \\
\hline By variables & 13 \\
\hline
\end{tabular}

Nos
\(\begin{array}{ll}\text { Processing and screening } & 25 \\ \text { Reliability considerations } & 16\end{array}\)
Special rating considerations 16
Technical data on RCA types 30-50
High-reliability power transistors (technical data) 30-50
High-reliability rf power transistors 67
Application note on 179
Design features 68
75, 74-84
75, 85-134
77, 135-182
70
Technical data \(\quad\) 79-178
High-reliability solid-state devices
Commercial requirements 11
Index to RCA types 6
Introduction to 11
Military and aerospace requirements 11
Military specifications for 11
12, 239
193
Basic reliabilty considerations 194
Basic reliabilty testing 196
Failure analysis 196
Processing and screening 197
Technical data
High-speed power transistors
High-voltage power transistors
(technical data)
42, 46
Homogeniety
13
Hometaxial-base power transistors
(technical data)
HR-series rf power transistors 75, 85-134
Burn-in test measurements 77
Product-flow diagram 77
Processing and screening 75
Reliability levels 76
Technical data 85-134

\section*{1}

Inductive voltage-breakdown tesing,
power-transistor

Inspection:

By variables
13
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
Page \\
Nos.
\end{tabular} & & Page
Nos. \\
\hline nspection act & 13 & Lot tolerance per cent defective & \\
\hline Inspection, final & 13 & (LTPD) & 13,229 \\
\hline Inspection item & 13 & LTPD sampling plans & 28 \\
\hline Inspection lot & 14 & & \\
\hline Inspection point & 14 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{M}} \\
\hline Inspection process & 14 & & \\
\hline Inspection, sampling & 14 & & \\
\hline Integrated circuit, high-reliability & 188 & Manufacturing Certification & 186 \\
\hline Integrated circuits (1CE-402): & & Mathematical reliability & 14 \\
\hline Handling and mounting & 744 & Mean time between failure & 14 \\
\hline Input signals (for COS/MOS types) & 744 & Medium power transistor & \\
\hline Operating considerations & 744 & (technical data) & 38, 41, 45 \\
\hline Output short circuits (in COS/MOS types) & 744 & Microwave power-transistor reliability & \\
\hline Unused inputs (for COS/MOS types) & 744 & (AN-6229) & 179 \\
\hline Interim Qualification & 187 & Microwave power transistors & \\
\hline lonizing electromagnetic pulse (AN-6320) & 58 & (technical data) & 113-130 \\
\hline \multirow[t]{3}{*}{Irradiated power-transistor switches (AN-6320)} & \multirow[t]{3}{*}{59} & Military high-reliability requirements & 11 \\
\hline & & Military specifications & 12 \\
\hline & & MIL-M-38510 & 12 \\
\hline \multirow[t]{2}{*}{J} & & MIL-S-19500 & 12, 26 \\
\hline & & MIL-STD-750 & 26 \\
\hline JAN, JANTX, and JANTXV power transistors & 25 & MIL-STD-883 requirements & 228 \\
\hline RCA types & 26 & COS/MOS integrated circuits & 228 \\
\hline Processing and screening & 25 & Linear integrated circuits & 233 \\
\hline Technical data & \multirow[t]{2}{*}{30-37} & Mismatch, collector & 72 \\
\hline JAN, JANTX, JANTXV rf power transistors: & & MOS field-effect transistors, handling & \\
\hline RCA types & 75 & and mounting (1CE-402) & 743 \\
\hline Technical data & 79-84 & MOS integrated circuit, & \\
\hline \multirow[t]{2}{*}{Junction temperature, effect on reliability} & \multirow[t]{2}{*}{74} & handling considerations (ICAN-6000) & 706 \\
\hline & & MTTF or MTBF & 240 \\
\hline \multicolumn{4}{|l|}{L} \\
\hline Lambda & 13 & & \\
\hline Layer, polycrystalline silicon & 69 & \multicolumn{2}{|l|}{N} \\
\hline Lead-forming techniques (1CE-402) & - & & \\
\hline Life-test conditions (for rf power transistors) & 74 & \multicolumn{2}{|l|}{Neutron-damage coefficeint,} \\
\hline Life-test failure rate & 14 & derivation of (AN-6320) & 65 \\
\hline Life, useful & 14 & Neutron testing (AN-6320) & 59 \\
\hline Line Certification & 339 & Neclear radiation, effects of & 24 \\
\hline \multicolumn{4}{|l|}{Linear integrated circuits, CA3000} \\
\hline MIL-M-38510 series types (RIC-204) & \multirow[t]{2}{*}{421} & & \\
\hline Linear integrated circuits (CA3000 slash-series types) & & \multicolumn{2}{|l|}{0} \\
\hline screened to MIL-STD-883 (RIC-202A) & 415 & & \\
\hline Electrical sampling inspection (RIC-202A) & 419 & Operating time & 14 \\
\hline Environmental sampling inspection (RIC-202A) & 420 & Operational amplifiers, high-reliability & \\
\hline Final electrical tests (RIC-202A) & 419 & COS/MOS-bipolar (technical data, File No. 823) & 397 \\
\hline Ordering information (RIC-202A) & 420 & Operational amplifiers, high-reliability integrated- & \\
\hline Part-number code (RIC-202A) & 420 & circuit general-purpose types (technical data, & \\
\hline Product flow diagram (RIC-202A) & 415 & File Nos. 826, 827, 832, 829, 718, 715) & 241-275, 302 \\
\hline Screening levels (RIC-202A) & 416 & Operation amplifier, high-reliability micro power & \\
\hline Total lot screening (RIC-202A) & 418 & (technical data, File No. 831) & 356 \\
\hline
\end{tabular}

\section*{Subject Index}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Page
Nos.}} & & \begin{tabular}{l}
Page \\
Nos.
\end{tabular} \\
\hline & & V & \\
\hline ;afe-area systems, plused & 21 & Variables testing & 14 \\
\hline jafe-operating-area chart & 21 & Video amplifier, high-reliability & \\
\hline jample & 14 & integrated-circuit (technical data, & \\
\hline jampling inspection & 14 & File No. 714) & 282 \\
\hline Jampling plan & 14 & Voltage: & \\
\hline Sampling plans, LTPD & 28 & Base-to-emitter & 20 \\
\hline Sampling plans, single, for normal inspection & 29 & Collector-to-emitter saturation & 20 \\
\hline Sample size code letters & 29 & Voltage regulator, positive, & \\
\hline Saturation current & 20 & high-reliability integrated-circuit & \\
\hline Screening tests, power-transistor & 27 & (technical data, File No. 708) & 370 \\
\hline Second breakdown & 16 & & \\
\hline SEM specification & 240 & & \\
\hline Shelf life & 14 & W & \\
\hline Shift registers, high-reliability COS/MOS (technical data, File Nos. 689, 720, 730, 738, 740, 751) & \[
\begin{array}{r}
433,468,502, \\
543,552,557
\end{array}
\] & Wide-band operational amplifier, high-relaibility intergrated-circuit (technical data, File No. 825) & 383 \\
\hline "Slash" sheets & 186 & & \\
\hline Solid-state chips, handling considerations & - & & \\
\hline Specification & 14 & Z & \\
\hline Specification, military & 13 & & \\
\hline Stralified sample & 14 & Zero-voltage switch, high-reliability & \\
\hline Surface leakage & 20 & integrated-circuit (technical data, File No. 703) & 350 \\
\hline
\end{tabular}```

[^0]: * Early design.
 ** Test still operating.
 *** Test terminated-dess than 10% failure.

[^1]: Specific test conditions and limits determined by each type of transistor.

[^2]: For characteristics curves and test conditions, refer to published data for basic type in File No. 12.

[^3]: For characteristics curves and test conditions, refer to published data for basic type in File No. 64.

[^4]: For characteristics curves and test conditions, refer to published data for basic type in File No. 525.

[^5]: For characteristics curves and test conditions, refer to published data for basic type in File No. 336.

[^6]: For characteristics curves and test conditions, refer to published data for basic type in File No. 410.

[^7]: For characteristics curves and test conditions, refer to published data for basic type in File No. 54.

[^8]: For characteristics curves and test conditions, refer to published data for basic type in File No. 299.

[^9]: For characteristics curves and test conditions, refer to published data for basic type in File No. 321.

[^10]: For characteristics curves and test conditions, refer to published data for basic type in File No. 359.

[^11]: For characteristics curves and test conditions, refer to published data for basic type in File No. 413.

[^12]: For characteristics curves and test conditions, refer to published data for basic type in File No. 462.

[^13]: For characteristics curves and test conditions, refer to published data for basic type in File No. 492.

[^14]: * In accordance with JEDEC registration data format JS-6 RDF-1.
 a Pulsed; pulse duration $\leq 350 \mu \mathrm{~s}$, duty factor $\leq 2 \%$.
 c $\mathrm{I}_{\mathrm{B}_{1}}=\mathrm{I}_{\mathrm{B}_{2}}$

[^15]: $\frac{1 /}{}$ Derate linearly $1.71 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$.
 2/ Derate linearly $1.14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$.

[^16]: For characteristic curves and test conditions, refer to data on basic type in File No. 10.

[^17]: $1 /$ Derate linearly at $15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C} \quad 2 /$ Derate linearly at $400 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$

[^18]: For characteristic curves and test conditions, refer to data on basic type in File No. 269.

[^19]: ${ }^{1 / 1}$ Derate linearly $13.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$
 ${ }^{2 /}$ Derate linearly $80 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>75^{\circ} \mathrm{C}$

[^20]: For characteristic curves and test conditions, refer to data on basic type in File No. 448.

[^21]: For characteristic curves and test conditions, refer to data on basic type in File No. 505.

[^22]: - Radial leads for microstripline circuits
 - All electrodes isolated from the stud

[^23]: * Measured at center of seating surface.

[^24]: * Pulse Test
 Δ Lead No. 4 (Case) Grounded

[^25]: * Measured at center of seating surface.

[^26]: \triangle Secondary breakdown considerations limit maximum DC operating conditions - contact your RCA representative for specific data.

[^27]: ${ }^{\text {a }}$ Pulsed through an inductor (25 mh); duty factor $=50 \%$.
 ${ }^{\mathrm{b}}$ Measured at a current where the breakdown voltage is a minimum.

[^28]: * Measured at center of seating surface.

[^29]: ${ }^{h}$ Acceptance/Rejection Criteria of Group B tests: For an LTPD plan of 7% the total sample size is 115 for which the maximum number of rejects allowed is 4. Acceptance is also subject to a maximum of one (1) reject per Sub-group. Group B tests are performed on each lot for Qualification or Lot Acceptance.

