THE SINGLE SHOT MULTIVIBRATOR

by

R. J. Bosselaers

Semiconductor Division
Raytheon Company

THE SINGLE SHOT MULTIVIBRATOR

This application note offers an effective design guide for a widely used transistor circuit - The Single Shot Multivibrator. The circuit utilizes the unique advantages of the Raytheon 2N 440 Germanium fusion alloy NPN transistor. Results indicate high reliability under operating conditions of -50 C to +70 C , and extremely short rise and fall times were obtained using this circuit.

A. CIRCUIT DESCRIPTION:

A conventional circuit for a mono-stable flip-flop or single-shot is shown in Figure 1.

FIGURE I
The stable state for this circuit is: T_{2} conducting and T_{1} cutoff. Capacitor C is then charged to ($E_{1}-V_{b}$) volts, if V_{b} is the base-emitter voltage of T_{2} 。

When the circuit is triggered into its alternate state, C will discharge through R until the base of T_{2} is again forward biased and the circuit flips back to its stable state.

Thereby the voltage across R will drop exponentially from $E_{1}+\left(E_{1}-V_{b}\right)=\left(2 E_{1}-V_{b}\right)$ to ($\mathrm{E}_{1}-\mathrm{V}_{\mathrm{b}}$). If collector-emitter voltage of a saturated transistor and the effects of storage charge are neglected in these calculations, the pulse width can be shown to be:

$$
\mathrm{T}=\mathrm{RC} \ln \left(\frac{2 \mathrm{E}_{1}-\mathrm{V}_{\mathrm{b}}}{\mathrm{E}_{1}-\mathrm{V}_{\mathrm{b}}}\right)
$$

B. DESIGN CONDITIONS:

Limiting values for the resistors R, R_{1} and R_{2} can easily be found from the conditions for saturation and cutoff of the transistors.

The condition is:

$$
\frac{-R_{1}}{R_{1}+R_{2}} E_{2}+\frac{R_{2}}{R_{1}+R_{2}} V_{s}+\frac{R_{1} R_{2}}{R_{1}+R_{2}} I_{c o}<0
$$

dividing by:
gives:

$$
\begin{aligned}
& \frac{R_{1} R_{2}}{R_{1}+R_{2}} \\
&- \frac{E_{2}}{R_{2}}+\frac{V_{s}}{R_{1}}+I_{c o}<0
\end{aligned}
$$

If we neglect the collector-emitter saturation voltage V_{s}, the condition becomes:

$$
\begin{equation*}
-\frac{\mathrm{E}_{2}}{\mathrm{R}_{2}}+\mathrm{I}_{\mathrm{co}}<0 \tag{2}
\end{equation*}
$$

$$
\text { or } \quad R_{2}<\frac{E_{2}}{I_{c o}}
$$

We have to take for $I_{\text {co }}$ the max. value at the highest temperature and make the estimate on the high side to compensate for the neglection of V_{s}.

T1 Saturated
The condition required for T_{1} to be saturated is: $\quad \mathrm{I}_{\mathrm{b} 1}>\frac{\mathrm{I}_{\mathrm{c} 1}}{\mathrm{~h}_{\mathrm{FE}}}$
where $h_{F E}$ is the DC current gain at $I_{c 1}$.
and

$$
\begin{aligned}
& I_{c 1}=\frac{E_{1}-V_{s}}{R_{L}}=\frac{E_{1}}{R_{L}} \text { if we neglect } V_{s} \\
& I_{b 1}=\frac{E_{1}-V_{b}}{R_{1}+R_{L}}-\frac{E_{2}+V_{b}}{R_{2}}
\end{aligned}
$$

Substituting the values of $\mathrm{I}_{\mathrm{c} 1}$ and $\mathrm{I}_{\mathrm{b} 1}$, the condition becomes

$$
\frac{E_{1}-V_{b}}{R_{1}+R_{L}}-\frac{E_{2}+V_{b}}{R_{2}}>\frac{E_{1}}{R_{L} h_{F E}}
$$

Solving for R_{1} yields:

$$
\begin{equation*}
R_{1}<R_{L}\left[\frac{h F E}{1+\frac{V_{b}}{E_{1}-V_{b}}+\frac{h F E R_{L}}{R_{2}}\left(\frac{E_{2}+V_{b}}{E_{1}-V_{b}}\right)}-1\right] \tag{3}
\end{equation*}
$$

T_{2} Cutoff

In deriving the formula for the pulse width, $\mathrm{I}_{\text {co }}$ has been neglected. The effect of $\mathrm{I}_{\text {co }}$ is the same as of a voltage $I_{c o} R$ in series with R. The voltage across R will then drop exponentially from ($2 \mathrm{E}_{1}-\mathrm{V}_{\mathrm{b}}-\mathrm{I}_{\mathrm{co}} \mathrm{R}$) to ($\mathrm{E}_{1}-\mathrm{V}_{\mathrm{b}}$) and the pulse width will be:

$$
\begin{equation*}
\mathrm{T}^{1}=R C \ln \left(\frac{2 \mathrm{E}_{1}-\mathrm{V}_{\mathrm{b}}-\mathrm{I}_{\mathrm{co}} \mathrm{R}}{\mathrm{E}_{1}-\mathrm{V}_{\mathrm{b}}}\right) \tag{4}
\end{equation*}
$$

At room temperature the influence of $I_{c o}$ can usually be neglected. But if the circuit is to operate at temperatures up to $+70^{\circ} \mathrm{C}$, the influence of I_{co} may be severe, and the circuit will even cease to operate if $I_{c o} R=E_{1}$.

This sets an absolute maximum for R

$$
\mathrm{R}<\frac{\mathrm{E}_{1}}{\mathrm{I}_{\mathrm{co}}}
$$

$\underline{T_{2} \text { Saturated }}$
The condition is the same as for T_{1} with $\mathrm{R}_{2} \rightarrow \infty$ so that:

$$
R<R_{L}\left[\begin{array}{ll}
\frac{\mathrm{hFE}}{1+\frac{V_{b}}{E_{1}-V_{b}}} & -1 \tag{5}
\end{array}\right]
$$

C. EXAMPLE: (See attachment)

D. MEASUREMENTS:

The actual circuit used for the measurements is that of Figure 2.

FIGURE 3

The measured pulse width vs. capacitance curve is a straight line through the origin.

$$
\begin{aligned}
& \mathrm{T}=10400 \mathrm{C} \text { sec. at }+25^{\circ} \mathrm{C} \quad \mathrm{C} \text { in farads } \\
& \mathrm{T}=9300 \mathrm{C} \text { sec. at }+70^{\circ} \mathrm{C}
\end{aligned}
$$

The calculated curve for this circuit is:

$$
\mathrm{T}=10740 \mathrm{C} \mathrm{sec} .
$$

The difference with the measured curve is only 3.3%. At $+70^{\circ} \mathrm{C}$ the pulse width is $12 \frac{1}{2} \%$ down, which is within the predicted range.

FIGURE 3

TRIGGER AMPLITUDE

The required trigger amplitude varies with the pulse width (see graph) and also slightly with the repetition rate. In the graph, the minimum required trigger amplitude is plotted as a percentage of the pulse amplitude vs. the pulse width.

DRIVER STAGE

The trigger pulses can also be applied via a driver stage instead of the diode network as in Figure 2.

The advantages are:

- minimum pulse width $0.5 \mu \mathrm{sec}$ compared with $2 \mu \mathrm{sec}$ for the diode network
- shorter rise time, ($0.08 \mu \mathrm{sec}$); the fall time does not change
- higher repetition rates (up to 750 kcs),

Example:

$$
\left.\begin{array}{lll}
\mathrm{E}_{1}=4.5 \mathrm{~V} & \mathrm{R}_{\mathrm{L}}+470 \Omega & \mathrm{~T}_{1} \\
\mathrm{E}_{2}=1.5 \mathrm{~V} & & \mathrm{~T}_{2}
\end{array}\right\} \quad \begin{aligned}
& \text { Raytheon NPN units (such as } 2 \mathrm{~N} 440 \text {) } \\
& \mathrm{V} \mathrm{hFE}=100 @ 1 \mathrm{~mA}
\end{aligned}
$$

1) First a maximum value for R_{2} is found with (2). Here we have to use the maximum value for I_{co} at the highest temperature. Let this be $+70^{\circ} \mathrm{C}$.

At $25^{\circ} \mathrm{C} \quad \mathrm{I}_{\text {co }} \max .=4 \mu \mathrm{~A}$ for the units in question, and $\mathrm{I}_{\text {co }}$ doubles for every $12^{\circ} \mathrm{C}$. This gives for I_{co} at $70^{\circ} \mathrm{C}$:

$$
\mathrm{I}_{\text {co }}\left(70^{\circ} \mathrm{C}\right)=54 \mu \mathrm{~A}
$$

As pointed out, the estimate has to be made on the high side and we will take $60 \mu \mathrm{~A}$ 。
Substitute in: $(2) \longrightarrow \mathrm{R}_{2}<\frac{1.5}{60 \times 10^{-6}}=25000 \Omega$
The nearest lower standard value is: $R_{2}=22 \mathrm{k} \Omega \pm 10 \%$
2) The next step is to calculate R_{1} with (3). Here we have to take the minimum value for $h_{F E}$ at the lowest temperature. Let this be $-50^{\circ} \mathrm{C}$. At this temperature $h_{F E}$ will drop roughly a factor of 2 compared with the value at room temperature.

With $\mathrm{h}_{\mathrm{FE}}=40$ we find:

$$
\begin{aligned}
\mathrm{R}_{1} & <28 \mathrm{R}_{\mathrm{L}}=13.2 \mathrm{k} \Omega \\
\text { Let } \mathrm{R}_{1} & =12 \mathrm{k} \Omega \pm 10 \%
\end{aligned}
$$

3) A minimum value for R is found with (5). Again we take $h F E=40$ which gives:

$$
\mathrm{R}<17.5 \mathrm{k} \Omega
$$

The nearest lower standard value would be:

$$
\mathrm{R}=15 \mathrm{k} \Omega \pm 10 \%
$$

4) We have to check, however, whether the influence of $I_{\text {co }}$ is not too severe at $70^{\circ} \mathrm{C}$.

The pulse width will be narrowed by a factor

$$
\begin{equation*}
\frac{\mathrm{T}^{\prime}}{\mathrm{T}}=\frac{\ln \left(\frac{2 \mathrm{E}_{1}-\mathrm{V}_{\mathrm{b}}-\mathrm{I}_{\mathrm{co}} \mathrm{R}}{2 \mathrm{E}_{1}-\mathrm{V}_{\mathrm{b}}}\right)}{\ln \left(\frac{2 \mathrm{E}_{1}-\mathrm{V}_{\mathrm{b}}}{\mathrm{E}_{1}-\mathrm{V}_{\mathrm{b}}}\right)} \tag{6}
\end{equation*}
$$

With $\mathrm{I}_{\mathrm{co}}=60 \mu \mathrm{~A}$ at $70^{\circ} \mathrm{C}$ the factor is 85% for $\mathrm{R}=15 \mathrm{k} \Omega$, which means a reduction of maximum 15%.

| | | | | | | | | | | | | | | | | | | |
| :--- |

100
60
40

