[2C Peripherals

てしગ

L661
Data Handbook IC12

Let's make things better.

${ }^{12} \mathrm{C}$ Peripherals

CONTENTS

PREFACE 3
INDEX 5
SELECTION GUIDE 9
GENERAL 33
$I^{2} \mathrm{C}$ SPECIFIC INFORMATION 41
DEVICE DATA 91
PACKAGE INFORMATION 699
DATA HANDBOOK SYSTEM 725

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Short-form specification	The data in this specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS ${ }^{2}$ ² COMPONENTS

PREFACE

Since Philips first invented it almost 18 years ago, the two-wire $\mathrm{I}^{2} \mathrm{C}$-bus has grown far beyond our initial expectations. $I^{2} \mathrm{C}$ it is now firmly established worldwide as the 'King of Serial Buses' for embedded applications.

Since its birth as a serial bus for consumer electronics, the $\mathrm{I}^{2} \mathrm{C}$-bus is now used extensively in PCs and workstations as a diagnostics and power management bus, in mobile phones it's used to control Synthesizers, LCD and Realtime clocks, in wired phones for access to DTMF and EEPROM ICs. It's also used as a de-facto standard in Plug-in Video cards for PCs due to Philips' extensive range of video processing ICs with $I^{2} \mathrm{C}$. And when you see an LCD display in a car dashboard or car radio, odds are it's got $\mathrm{I}^{2} \mathrm{C}$ running behind the glass.

For simple tasks such as monitoring a keypad, driving an LED or LCD, storing crucial non-volatile data, measuring a temperature, driving a reed-relay, tracking the time-of-day, to all sorts of complex functions for video, audio, and closed-loop control applications, $\mathrm{I}^{2} \mathrm{C}$ is the serial bus of choice.

In this 1997 edition of our $\mathrm{I}^{2} \mathrm{C}$ Peripherals Handbook, we have compiled an ever-growing list of Philips' ${ }^{2} \mathrm{C}$ Peripheral ICs for general purpose. Specialized $I^{2} \mathrm{C}$ peripherals for specific applications (i.e. video/audio processors, synthesizers) can be found in Philips application-specific data handbooks.

Philips also provides a large palette of microcontrollers with dedicated $I^{2} \mathrm{C}$ interface. Contact your local Philips Semiconductors representative for further details about $\mathrm{I}^{2} \mathrm{C}$-bus microcontrollers, specialized peripherals, demoboards, emulators, evaluation tools, and application notes. They will be happy to assist you with your $I^{2} \mathrm{C}$ bus designs!

Types added to the range since the last issue of data handbook IC12 (1996 issue) are shown in bold print

		PAGE
$82 \mathrm{B715}$	${ }^{1} \mathrm{C} C$ bus extender	92
OM4085	Universal LCD driver for low multiplex rates	97
PCA8581; PCA8581C	128×8-bit EEPROM with ${ }^{2} \mathrm{C}$-bus interface	127
PCB2421	1 K dual mode serial EEPROM	139
PCD3311C; PCD3312C	DTMF/modem/musical-tone generators	154
PCF2113x	LCD controller/drivers	174
PCF2116 family	LCD controller/drivers	229
PCF21xxC family	LCD drivers	287
PCF85116-3 family	2048×8-bit CMOS EEPROMS with $\mathrm{I}^{2} \mathrm{C}$-bus interface	303
PCF8558	Universal LCD driver for small graphic panels	315
PCF8566	Universal LCD driver for low multiplex rates	335
PCF8570C	256×8-bit static low-voltage RAM with 12${ }^{2} \mathrm{C}$-bus interface	366
PCF8573	Clock/calendar with serial I/O	378
PCF8574	Remote 8-bit I/O expander for $\mathrm{I}^{2} \mathrm{C}$-bus	395
PCF8576C	Universal LCD driver for low multiplex rates	409
PCF8577C	LCD direct/duplex driver with $\mathrm{I}^{2} \mathrm{C}$-bus interface	443
PCF8578	LCD row/column driver for dot matrix graphic displays	462
PCF8579	LCD column driver for dot matrix graphic displays	500
PCF8583	Clock calendar with 256×8-bit static RAM	533
PCF8584	$\mathrm{I}^{2} \mathrm{C}$-bus controller	554
PCF8591	8-bit A/D and D/A converter	587
PCF8593	Low power clock calendar	607
PCF85xxC-2 family	256 to 1024×8-bit CMOS EEPROMS with $\mathrm{I}^{2} \mathrm{C}$-bus interface	629
SAA1064	4-digit LED driver with $\mathrm{I}^{2} \mathrm{C}$-bus interface	643
SAA1300	Tuner switching circuit	657
TDA8005	Low-power smart card coupler	660
TDA8442	$1^{2} \mathrm{C}$-bus interface for color decoders	685
TDA8444	Octuple 6-bit DAC with ${ }^{2} \mathrm{C}$-bus	692

SELECTION GUIDES

Page
Functional index 10
Assigned $\mathrm{I}^{2} \mathrm{C}$-bus addresses 12
$I^{2} \mathrm{C}$ address allocation table 16
Microcontroller bulletin board 20
Philips Fax-on-demand system 22
Internet WWW home page 23
80C51 microcontroller family features guide 24
CMOS and NMOS 8-bit microcontroller family 28
CMOS 16-bit microcontroller family 32

Types added to the range since the last issue of dat handbook IC12 (1996 issue) are shown in bold print
PAGE

MEMORIES

PCA8581; PCA8581C
PCB2421
PCF8570C
PCF8583
PCF85xxC-2 family
PCF85116-3 family

DATA CONVERTERS

PCF8591

8 -bit A/D and D/A converter 587
TDA8442
${ }^{2} \mathrm{C}$-bus interface for color decoders
685
TDA8444

LCD DRIVERS

OM4085 Universal LCD driver for low multiplex rates 97
PCF2113x
PCF2116 family
PCF21xxC family
PCF8558
PCF8566
PCF8576C
PCF8577C
PCF8578
PCF8579

INPUT/OUTPUT PORTS

82B715

$1^{2} \mathrm{C}$ bus extender92
PCF8574 Remote 8-bit I/O expander for $\mathrm{I}^{2} \mathrm{C}$-bus 395
128×8-bit EEPROM with $I^{2} \mathrm{C}$-bus interface127
1 K dual mode serial EEPROM 139
256×8-bit static low-voltage RAM with $I^{2} \mathrm{C}$-bus interface 366
Clock calendar with 256×8-bit static RAM 533
256 to 1024×8-bit CMOS EEPROMS with ${ }^{2} \mathrm{C}$-bus interface 629
2048×8-bit CMOS EEPROMS with $1^{2} \mathrm{C}$-bus interface 303
Octuple 6-bit DAC with $\mathrm{I}^{2} \mathrm{C}$-bus 692
LCD controller/drivers 174
LCD controller/drivers 229
LCD drivers 287
Universal LCD driver for small graphic panels 315
Universal LCD driver for low multiplex rates 335
Universal LCD driver for low multiplex rates 409
LCD direct/duplex driver with $\mathrm{I}^{2} \mathrm{C}$-bus interface 443
LCD row/column driver for dot matrix graphic displays 462
LCD column driver for dot matrix graphic displays 500
$1^{2} \mathrm{C}$-bus controller 554
4 -digit LED driver with $\mathrm{I}^{2} \mathrm{C}$-bus interface 643
Tuner switching circuit 657

CLOCK/CALENDAR CIRCUITS

PCF8573 Clock/calendar with serial I/O 378
PCF8583 Clock calendar with 256×8-bit static RAM 533
PCF8593 Low power clock calendar 607
DTMF/TONE GENERATORS
PCD3311C; PCD3312C DTMF/modem/musical-tone generators 154
MISCELLANEOUS
TDA8005 Low-power smart card coupler 660

ASSIGNED I²C-BUS ADDRESSES (IN ALPHANUMERIC ORDER OF TYPE NUMBER)

TYPE NUMBER	DESCRIPTION	$1^{2} \mathrm{C}$ SLAVE ADDRESSES ${ }^{(1)}$						
		A6	A5	A4	A3	A2	A1	A0
-	General call address	0	0	0	0	0	0	0
-	Reserved addresses	0	0	0	0	X	X	X
-	Reserved addresses	1	1	1	1	X	X	X
CCR921	RDS/RBDS decoder	0	0	1	0	0	A	A
NE5751	Audio processor for RF communication	1	0	0	0	0	0	A
PCA1070	Programmable speech transmission IC	0	1	0	0	0	0	A
PCA8516	Stand-alone OSD IC	1	0	1	1	1	0	1
PCA8581/C	128×8-bit EEPROM	1	0	1	0	A	A	A
PCB2421	1 K dual mode serial EEPROM	1	0	1	0	0	0	0
PCD3311C	DTMF/modem/musical tone generator	0	1	0	0	1	0	A
PCD3312C	DTMF/modem/musical tone generator	0	1	0	0	1	0	A
PCD4440	Voice scrambler/descrambler for mobile telephones	1	1	0	1	1	1	A
PCD5002	Pager decoder	0	1	0	0	1	1	1
PCD5096	Universal codec	0	0	1	1	0	A	A
PCE84C467/8	8-bit CMOS auto-sync monitor controller	0	1	1	0	0	1	1
PCE84C882	8-bit microcontroller for monitor applications	0	1	1	0	0	1	1
PCE84C886	8-bit microcontroller for monitor applications	0	1	1	0	0	1	1
PCF2116	LCD controller/driver	0	1	1	1	0	1	A
PCF8522/4	512×8-bit CMOS EEPROM	1	0	1	0	A	A	A
PCF8566	96-segment LCD driver 1:1-1:4 Mux rates	0	1	1	1	1	1	A
PCF8568	LCD row driver for dot matrix displays	0	1	1	1	1	0	A
PCF8569	LCD column driver for dot matrix displays	0	1	1	1	1	0	A
PCF8570	$256 \times$ 8-bit static RAM	1	0	1	0	A	A	A
PCF8573	Clock/calendar	1	1	0	1	0	A	A
PCF8574	8-bit remote I/O port (122 ${ }^{2}$-bus to parallel converter)	0	1	0	0	A	A	A
PCF8574A	8-bit remote I/O port ($\mathrm{I}^{2} \mathrm{C}$-bus to parallel converter)	0	1	1	1	A	A	A
PCF8576C	16-segment LCD driver 1:1-1:4 Mux rates	0	1	1	1	0	0	A
PCF8577C	32/64-segment LCD display driver	0	1	1	1	0	1	0
PCF8578/9	Row/column LCD dot matrix driver/display	0	1	1	1	1	0	A
PCF8582/A	256×8-bit EEPROM	1	0	1	0	A	A	A
PCF8583	256×8-bit RAM/clock/calendar	1	0	1	0	0	0	A
PCF8584	$\mathrm{I}^{2} \mathrm{C}$-bus controller	X	X	X	X	X	X	X
PCF8591	4-channel, 8-bit Mux ADC and one DAC	1	0	0	1	A	A	A
PCF8593	Low-power clock calender	1	0	1	0	0	0	1
PCX8594	512×8-bit CMOS EEPROM	1	0	1	0	A	A	P
PCX8598	1024×8-bit CMOS EEPROM	1	0	1	0	A	P	P
PDIUSB11	Universal serial bus	0	0	1	1	0	1	1
SAA1064	4-digit LED driver	0	1	1	1	0	A	A

General
Assigned $\mathrm{I}^{2} \mathrm{C}$-bus addresses

TYPE NUMBER	DESCRIPTION	$1^{2} \mathrm{C}$ SLAVE ADDRESSES ${ }^{(1)}$						
		A6	A5	A4	A3	A2	A1	A0
SAA1300	Tuner switch circuit	0	1	0	0	0	A	A
SAA1770	D2MAC decoder for satellite and cable TV	0	0	1	1	1	1	A
SAA2502	MPEG audio source decoder	0	0	1	1	1	0	1
SAA2510	Video-CD MPEG-audio/video decoder	0	0	1	1	0	1	A
SAA2530	ADR/DMX digital receiver	0	0	0	1	1	A	A
SAA4700/T	VPS dataline processor	0	0	1	0	0	0	A
SAA5233	Dual standard PDC decoder	0	0	1	0	0	0	A
SAA5243	Computer controlled teletext circuit	0	0	1	0	0	0	1
SAA5244	Integrated VIP and teletext	0	0	1	0	0	0	1
SAA5245	525-line teletext decoder/controller	0	0	1	0	0	0	1
SAA5246A	Integrated VIP and teletext	0	0	1	0	0	0	1
SAA5249	VIP and teletext controller	0	0	1	0	0	0	1
SAA5252	Line 21 decoder	0	0	1	0	1	0	0
SAA5301	MOJI processor for Japan/China	0	1	1	0	0	0	0
SAA6750	MPEG2 encoder for Desk Top Video (=SAA7137)	0	1	0	0	0	0	0
SAA7110A	Digital multistandard decoder	1	0	0	1	1	1	A
SAA7140B	High performance video scaler	0	1	1	1	0	0	A
SAA7151B	8-bit digital multistandard TV decoder	1	0	0	0	1	A	1
SAA7165	Video enhancement D/A processor	1	0	1	1	1	1	1
SAA7186	Digital video scaler	1	0	1	1	1	A	0
SAA7191B	Digital multistandard TV decoder	1	0	0	0	1	A	1
SAA7192	Digital colour space-converter	1	1	1	0	0	0	A
SAA7199B	Digital multistandard encoder	1	0	1	1	0	0	A
SAA7370	CD-decoder plus digital servo processor	0	0	1	1	0	0	A
SAA9056	Digital SCAM colour decoder	1	0	0	0	1	A	1
SAA9065	Video enhancement and D/A processor	1	0	1	1	1	1	1
SAB9075H	PIP controller for NTSC	0	0	1	0	1	1	A
SAF1135	Dataline 16 decoder for VPS (call array)	0	0	1	0	0	A	A
TDA1551Q	2×22 W BTL audio power amplifier	1	1	0	1	1	0	0
TDA4670/1/2	Picture signal improvement (PSI) circuit	1	0	0	0	1	0	0
TDA4680/5/7/8	Video processor	1	0	0	0	1	0	0
TDA4780	Video control with gamma control	1	0	0	0	1	0	0
TDA4845	Vector processor for TV-pictures tubes	1	1	0	1	1	A	A
TDA4885	150 MHz video controller	1	0	0	0	1	0	0
TDA8043	QPSK demodulator and decoder	1	1	0	1	0	0	A
TDA8045	QAM-64 demodulator	0	0	0	1	1	A	A
TDA4853/4	Autosync deflection processor	1	0	0	0	1	1	0
TDA8366	Multistandard one-chip video processor	1	0	0	0	1	0	1
TDA8373	NTSC one-chip video processor	1	0	0	0	1	0	1

TYPE NUMBER	DESCRIPTION	$1^{2} \mathrm{C}$ SLAVE ADDRESSES ${ }^{(1)}$						
		A6	A5	A4	A3	A2	A1	A0
TDA8374	Multistandard one-chip video processor	1	0	0	0	1	0	1
TDA8375/A	Multistandard one-chip video processor	1	0	0	0	1	0	1
TDA8376/A	Multistandard one-chip video processor	1	0	0	0	1	0	1
TDA8415	TV/VCR stereo/dual sound processor	1	0	0	0	0	1	0
TDA8416	TV/VCR stereo/dual sound processor	1	0	1	1	0	1	0
TDA8417	TV/VCR stereo/dual sound processor	1	0	0	0	0	1	0
TDA8421	Audio processor	1	0	0	0	0	0	A
TDA8424/5/6	Audio processor	1	0	0	0	0	0	1
TDA8433	TV deflection processor	1	0	0	0	1	1	A
TDA8440	Video/audio switch	1	0	0	1	A	A	A
TDA8442	Interface for colour decoder	1	0	0	0	1	0	0
TDA8443A	YUV/RGB matrix switch	1	1	0	1	A	A	A
TDA8444	Octuple 6-bit DAC	0	1	0	0	A	A	A
TDA8480T	RGB gamma-correction processor	1	0	0	0	0	1	A
TDA8540	4×4 video switch matrix	1	0	0	1	A	A	A
TDA8722	Negative video modulator with FM sound	1	1	0	0	1	0	0
TDA8735	150 MHz PLL frequency synthesiser	1	1	0	0	0	1	A
TDA8745	Satellite sound decoder	1	1	0	1	0	1	A
TDA8752	Triple fast ADC for LCD	1	0	0	1	1	A	A
TDA9141/3/4	Alignment-free multistandard decoder	1	0	0	0	1	A	1
TDA9150B	Deflection processor	1	0	0	0	1	1	0
TDA9151B	Programmable deflection processor	1	0	0	0	1	1	0
TDA9160	Multistandard decoder/sync. processor	1	0	0	0	1	A	1
TDA9161A	Bus-controlled decoder/sync. processor	1	0	0	0	1	0	1
TDA9162	Multistandard decoder/sync. processor	1	0	0	0	1	A	1
TDA9170	YUV processor with picture improvement	1	1	0	1	0	0	A
TDA9177	2nd address for LTI (1st is '40')	1	1	1	0	0	0	0
TDA9177	YUV transient improvement processor	0	1	0	0	0	0	0
TDA9178	2nd address for LTI (1st is '40')	1	1	1	0	0	0	0
TDA9178	YUV transient improvement processor	0	1	0	0	0	0	0
TDA9610	Audio FM processor for VHS	1	0	1	1	1	0	0
TDA9614H	Audio processor for VHS	1	0	1	1	1	0	0
TDA9840	TV stereo/dual sound processor	1	0	0	0	0	1	0
TDA9850	BTSC stereo/SAP decoder	1	0	1	1	0	1	A
TDA9852	BTSC stereo/SAP decoder	1	0	1	1	0	1	1
TDA9855	BTSC stereo/SAP decoder	1	0	1	1	0	1	A
TDA9860	Hi-fi audio processor	1	0	0	0	0	0	A
TEA6100	FM/IF for computer-controlled radio	1	1	0	0	0	0	1
TEA6300	Sound fader control and preamplifier/source selector	1	0	0	0	0	0	0

General
Assigned $\mathrm{I}^{2} \mathrm{C}$-bus addresses

| TYPE
 NUMBER | | I 2 C SLAVE ADDRESSES | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Note

1. $X=$ Don't care, $\mathrm{A}=$ Programmable address bit, $\mathrm{P}=$ Page selection bit.

$I^{2} \mathrm{C}$-BUS ALLOCATION TABLE (IN GROUP ORDER)

The group number represents the hexadecimal equivalent of the four most significant bits of the slave address (A6-A3).

GROUP(1)			TYPE NUMBER	DESCRIPTION
Group 0 (0000)				
0	0	0	-	General call address
X	X	X	-	Reserved addresses
Group 1 (0001)				
1	A1	A0	SAA2530	ADR/DMX digital receiver
1	A1	A0	TDA8045	QAM-64 demodulator
Grospp 2 (0010)				
0	0	A0	SAA4700/T	VPS dataline processor
0	0	A0	SAA5233	Dual standard PDC decoder
0	0	1	SAA5243	Computer controlled teletext circuit
0	0	1	SAA5244	Integrated VIP and teletext
0	0	1	SAA5245	525-line teletext decoder/controller
0	0	1	SAA5246A	Integrated VIP and teletext
0	0	1	SAA5249	VIP and teletext controller
0	A1	A0	CCR921	RDS/RBDS decoder
0	A1	A0	SAF1135	Dataline 16 decoder for VPS (call array)
1	0	0	SAA5252	Line 21 decoder
1	1	A0	SAB9075H	PIP controller for NTSC
Group 3 (0011)				
0	0	A0	SAA7370	CD-decoder plus digital servo processor
0	A1	A0	PCD5096	Universal codec
0	1	A0	SAA2510	Video-CD MPEG-audio/video decoder
0	1	1	PDIUSB11	Universal serial bus
1	0	1	SAA2502	MPEG audio source decoder
1	1	A0	SAA1770	D2MAC decoder for satellite and cable TV
Group 4 (0100)				
0	0	0	SAA6750	MPEG2 encoder for Desk Top Video (=SAA7137)
0	0	0	TDA9177	YUV transient improvement processor
0	0	0	TDA9178	YUV transient improvement processor
0	0	A0	PCA1070	Programmable speech transmission IC
0	A1	A0	SAA1300	Tuner switch circuit
A2	A1	A0	TDA8444	Octuple 6-bit DAC
A2	A1	A0	PCF8574	8-bit remote l/O port (12C-bus to parallel converter)
1	0	A0	PCD3311C	DTMF/modem/musical tone generator
1	0	A0	PCD3312C	DTMF/modem/musical tone generator
1	1	1	PCD5002	Pager decoder

GROUP(1)			TYPE NUMBER	DESCRIPTION
Group 6 (0110)				
0	0	0	SAA5301	MOJI processor for Japan/China
0	1	1	PCE84C467/8	8 -bit CMOS auto-sync monitor controller
0	1	1	PCE84C882	8 -bit microcontroller for monitor applications
0	1	1	PCE84C886	8 -bit microcontroller for monitor applications
Group 7 (0111)				
0	0	A0	SAA7140B	High performance video scaler
0	0	A0	PCF8576C	16-segment LCD driver 1:1-1:4 Mux rates
0	A1	A0	SAA1064	4-digit LED driver
A2	A1	A0	PCF8574A	8 -bit remote I/O port (${ }^{2} \mathrm{C}$-bus to parallel converter)
0	1	0	PCF8577C	32/64-segment LCD display driver
0	1	A0	SAA2116	LCD controller/driver
1	0	A0	PCF8578/9	Row/column LCD dot matrix driver/display
1	0	A0	PCF8568	LCD row driver for dot matrix displays
1	0	A0	PCF8569	LCD column driver for dot matrix displays
1	1	A0	PCF8566	96-segment LCD driver 1:1-1:4 Mux rates
Group 8 (1000)				
0	0	0	TEA6300	Sound fader control and preamplifier/source selector
0	0	0	TEA6320/1/2/3	Sound fader control circuit
0	0	0	TEA6330	Tone/volume controller
0	0	A0	NE5751	Audio processor for RF communication
0	0	A0	TDA8421	Audio processor
0	0	A0	TDA9860	Hi-fi audio processor
0	0	1	TDA8424/5/6	Audio processor
0	1	0	TDA8415	TV/VCR stereo/dual sound processor
0	1	0	TDA8417	TV/VCR stereo/dual sound processor
0	1	0	TDA9840	TV stereo/dual sound processor
0	1	A0	TDA8480T	RGB gamma-correction processor
1	0	0	TDA4670/1/2	Picture signal improvement (PSI) circuit
1	0	0	TDA4680/5/7/8	Video processor
1	0	0	TDA4780	Video control with gamma control
1	0	0	TDA4885	150 MHz video controller
1	0	0	TDA8442	Interface for colour decoder
1	0	1	TDA8366	Multistandard one-chip video processor
1	0	1	TDA8373	NTSC one-chip video processor
1	0	1	TDA8374	Multistandard one-chip video processor
1	0	1	TDA8375/A	Multistandard one-chip video processor
1	0	1	TDA8376/A	Multistandard one-chip video processor
1	0	1	TDA9161A	Bus-controlled decoder/sync. processor
1	A1	1	SAA7151B	8 -bit digital multistandard TV decoder

GROUP $^{(1)}$			TYPE NUMBER	DESCRIPTION
1	A1	1	SAA7191B	Digital multistandard TV decoder
1	A1	1	SAA9056	Digital SCAM colour decoder
1	A1	1	TDA9141/3/4	Alignment-free multistandard decoder
1	A1	1	TDA9160	Multistandard decoder/sync. processor
1	A1	1	TDA9162	Multistandard decoder/sync. processor
1	1	0	TDA4853/4	Autosync deflection processor
1	1	0	TDA9150B	Deflection processor
1	1	0	TDA9151B	Programmable deflection processor
1	1	A0	TEA6360	5-band equalizer
1	1	A0	TDA8433	TV deflection processor

Group 9 (1001)

A2	A1	A0	PCF8591	4-channel, 8-bit Mux ADC and one DAC
A2	A1	A0	TDA8440	Video/audio switch
A2	A1	A0	TDA8540	4×4 video switch matrix
1	A1	A0	TDA8752	Triple fast ADC for LCD
1	1	A0	SAA7110A	Digital multistandard decoder
Group A (1010)				

0	0	0	PCB2421	1 K dual mode serial EEPROM
0	0	A0	PCF8583	256×8-bit RAM/clock/calendar
0	0	1	PCF8593	Low-power clock calender
A2	A1	A0	PCF8570	256×8-bit static RAM
A2	A1	A0	PCF8522/4	512×8-bit CMOS EEPROM
A2	A1	A0	PCA8581/C	128×8-bit EEPROM
A2	A1	A0	PCF8582/A	256×8-bit EEPROM
A2	A1	P0	PCX8594	512×8-bit CMOS EEPROM
A2	P1	P0	PCX8598	1024×8-bit CMOS EEPROM
Group B (1011)				
0	0	A0	SAA7199B	Digital multistandard encoder
0	1	0	TDA8416	TV/VCR stereo/dual sound processor
0	1	A0	TDA9850	BTSC stereo/SAP decoder
0	1	A0	TDA9855	BTSC stereo/SAP decoder
0	1	1	TDA9852	BTSC stereo/SAP decoder
1	0	0	TDA9610	Audio FM processor for VHS
1	0	0	TDA9614H	Audio processor for VHS
1	A1	0	SAA7186	Digital video scaler
1	0	1	PCA8516	Stand-alone OSD IC
1	1	1	SAA7165	Video enhancement D/A processor
1	1	1	SAA9065	Video enhancement and D/A processor
Group C (1100)				
0	0	1	TEA6100	FM/IF for computer-controlled radio

General
$\mathrm{I}^{2} \mathrm{C}$-bus allocation table

GROUP(1)			TYPE NUMBER	DESCRIPTION
0	1	0	TEA6821/2	Car radio AM
0	1	0	TEA6824T	Car radio IF IC
0	A1	A0	TSA5511/2/4	1.3 GHz PLL frequency synthesizer for TV
0	A1	A0	TSA5522/3M	1.4 GHz PLL frequency synthesizer for TV
0	1	A0	TDA8735	150 MHz PLL frequency synthesizer
0	1	A0	TSA6057	Radio tuning PLL frequency synthesizer
0	1	A0	TSA6060	Radio tuning PLL frequency synthesizer
0	1	A0	UMA1014	Frequency synthesizer for mobile telephones
1	0	0	TDA8722	Negative video modulator with FM sound
Group D (1101)				
0	0	A0	TDA8043	QPSK demodulator and decoder
0	0	AO	TDA9170	YUV processor with picture improvement
0	A1	AO	PCF8573	Clock/calendar
A2	A1	AO	TDA8443A	YUV/RGB matrix switch
0	1	A0	TDA8745	Satellite sound decoder
1	0	0	TDA1551Q	2×22 W BTL audio power amplifier
1	A1	A0	TDA4845	Vector processor for TV-pictures tubes
1	A1	A0	UMA1000T	Data processor for mobile telephones
1	1	AO	PCD4440	Voice scrambler/descrambler for mobile telephones
Group E (1110)				
0	0	0	TDA9177	2nd address for LTI (1st is '40')
0	0	0	TDA9178	2nd address for LTI (1st is '40')
0	0	A0	SAA7192	Digital colour space-converter
Group F (1111)				
X	X	X	-	Reserved addresses
X	X	X	PCF8584	$1^{2} \mathrm{C}$-bus controller

Note

1. $\mathrm{X}=$ Don't care, $\mathrm{A}=$ Programmable address bit, $\mathrm{P}=$ Page selection bit

INTERNET ACCESS

Philips Semiconductors World Wide Web:
 http://www.semiconductors.philips.com

Internet 80C51 Applications Support Address:
 80C51_help@scs.philips.com
 Send us your questions and we will respond quickly.

Microcontroller FTP Site:

ftp://ftp.PhilipsMCU.com

Internet Microcontroller Newsletter:

To subscribe, send email to:
News-Request@PhilipsMCU.com

Internet 80C51 Discussion Forum:
Forum-Request@PhilipsMCU.com

Internet XA 16-bit 80C51 Support Address:
XA_help@scs.philips.com

Microcontroller internet and

 bulletin board access
BULLETIN BOARDS

To better serve our customers, Philips maintains two microcontroller bulletin boards. These computer bulletin board systems feature microcontroller newsletters, application and demonstration programs for download, and the ability to send messages to microcontroller application engineers.
The telephone numbers are:

> North American Bulletin Board MAX 14.400 baud 8-N-1
> (800) 451-6644 (in the U.S.)
> or
> (408) $991-2406$
> European Bulletin Board MAX 14.400 baud
> Standards V32/V42/V42.bis/HST
> +3140 2721102

Sunnyvale ROMcode Bulletin Board

We also have a ROM code bulletin board through which you can submit ROM codes. This is a closed bulletin board for security reasons. To get an ID, contact your local sales office. The system can be accessed with a 2400 , 1200 , or 300 baud modem, and is available 24 hours a day.

The telephone number is:
(408) 991-3459

All code for application notes in this databook are available on the Philips BBS, as well as on the world-wide web.

FAX-on-DEMAND System

What is it?

The FAX-on-DEMAND system is a computer facsimile system that allows customers to receive selected documents by fax automatically.

How does it work?

To order a document, you simply enter the document number. This number can be obtained by asking for an index of available documents to be faxed to you the first time you call the system.

Our system has a selection of the latest product data sheets from Philips with varying page counts. As you know, it takes approximately one minute to FAX one page. This isn't bad if the number of pages is less than 10. But if the document is 37 pages long, be ready for a long transmission!

Philips Semiconductors also maintains product information on the World-Wide Web. Our home page can be located at:
http://www.semiconductors.philips.com

Who do I contact if I have a question about FAX-on-DEMAND?

Contact your local Philips sales office.

FAX-on-DEMAND phone numbers:
England
44-181-730-5020
(United Kingdom, Ireland)

France	$33-1-40-99-60-60$
Italy	$39-167-295502$
North America	$1-800-282-2000$

Locations soon to be in operation: Hong Kong
Japan
The Netherlands

Internet World Wide Web Home Page

WHAT IS IT?

Welcome to our place in cyberspace.

Explore our Web pages and take a look at our product offering of advance High-performance Applications and Products.

In addition we offer you the latest information on Products, News, Support, Employment and Offices.

HOW TO REACH US

For access to the Philips Semiconductors Home Page go to the World Wide Web location:
http://www.semiconductors.philips.com/

80 C 51 microcontroller family features guide

Part Number (ROMless)		Memory			Counter Timers	$\begin{aligned} & \text { I/O } \\ & \text { Port } \end{aligned}$	Serial Interfaces	External Interrupt	Comments/ Special Features
		ROM	EPRM	RAM					
P	83C750	1K		64	1 (16-bit)	2-3/8	-	2	40 MHz , Lowest cost, SSOP
P	87C750		1K	64	1 (16-bit)	2-3/8	-	2	40 MHz , Lowest cost, SSOP
P	$83 C 748$	2K		64	1 (16-bit)	2-3/8	-	2	8XC751 w/o ${ }^{2} \mathrm{C}$, SSOP
P	87 C 748		2K	64	1 (16-bit)	2-3/8	-	2	$8 \mathrm{XC751}$ w/o ${ }^{2} \mathrm{C}$, SSOP
S	$83 \mathrm{C751}$	2K		64	1 (16-bit)	2-3/8	${ }^{2} \mathrm{C}$ ((bit)	2	24-pin Skinny DIP, SSOP
S	$87 \mathrm{C751}$		2 K	64	1 (16-bit)	2-3/8	${ }^{2} \mathrm{C}$ (bit)	2	24-pin Skinny DIP, SSOP
P	$83 C 749$	2K		64	1 (16-bit)	2-5/8	-	2	$8 \mathrm{XC752} \mathrm{w/o}{ }^{2} \mathrm{C}$, SSOP
P	87C749		2K	64	1 (16-bit)	2-5/8	-	2	$8 \mathrm{XC752} \mathrm{w/o} \mathrm{12} \mathrm{C}$, SSOP
S	$83 C 752$	2K		64	1 (16-bit)	2-5/8	$1^{2} \mathrm{C}$ (bit)	2	5 Channel 8-bit A/D, PWM Output, SSOP
S	87 C 752		2 K	64	1 (16-bit)	2-5/8	$1^{2} \mathrm{C}$ (bit)	2	5 Channel 8-bit A/D, PWM Output, SSOP
SC	80C51 (80C31)	4K		128	2	4	UART	2	CMOS (Sunnyvale)
PCx	80 C 51 (80C31)	4K		128	2	4	UART	2	CMOS (Hamburg)
SC	87C51		4K	128	2	4	UART	2	CMOS
P	80CL51 (80CL31)	4K		128	2	4	UART	10	Low Voltage (1.8V to 6V), Low Power
P	83CL410 (80CL410)	4K		128	2	4	${ }^{2} \mathrm{C}$	10	Low Voltage (1.8V to 6V), Low Power
SC	$83 \mathrm{C451}$ (80C451)	4K		128	2	7	UART	2	Extended I/O, Processor Bus Interface
SC	87C451		4K	128	2	7	UART	2	Extended I/O, Processor Bus Interface
P	83 C 550 (80C550)	4K		128	$2+$ Watchdog	4	UART	2	8 Channel 8-bit A/D
P	87C550		4K	128	$2+$ Watchdog	4	UART	2	8 Channel 8-bit A/D
P	83 C 851 (80C851)	4K		128	2	4	UART	2	256B EEPROM, 80C51 Pin compatible
P	83C852	6K		256	2 (16-bit)	2/8	-	1	Smartcard Controller with 2K EEPROM (Data, Code) Cryptographic Calc Unit
P	83CL580 (80CL580)	6K		256	$3+$ Watchdog	5	UART, ${ }^{2} \mathrm{C}$	9	4 Channel 8-bit A/D, PWM Output, Low Voltage (2.5 V to 6 V), Low Power
P	80C52 (80C32)	8K		256	3	4	UART	2	80C51 Pin Compatible
P	87C52		8K	256	3	4	UART	2	(see above)
P	83 C 652 (80C652)	8K		256	2	4	UART, ${ }^{2} \mathrm{C}$	2	80C51 Pin Compatible
S	87C652		8K	256	2	4	UART, ${ }^{2} \mathrm{C}$	2	(see above)
P	$83 C 453$ (80C453)	8K		256	2	7	UART	2	Extended I/O, Processor Bus Interface
P	87C453		8K	256	2	7	UART	2	Extended I/O, Processor Bus Interface
S	83C51FA (80C51FA)	8K		256	$3+$ PCA	4	UART	2	Enhanced UART, 3 timers + PCA
S	87C51FA		8K	256	$3+$ PCA	4	UART	2	Enhanced UART, 3 timers + PCA
S	83L51FA	8K		256	$3+$ PCA	4	UART	2	Low Voltage 83C51FA (3V @ 20MHz)
S	87L51FA		8K	256	$3+$ PCA	4	UART	2	Low Voltage OTP 87C51FA (3V @ 20MHz)
P	83C575 (80C575)	8K		256	$3+\mathrm{PCA}+$ Watchdog	4	UART	2	High Reliability, with Low Voltage Detect, OSC Fail Detect, Analog Comparators, PCA
P	87C575		8K	256	(see above)	4	UART	2	(see above)
P	83C576 (80C576)	8K		256	$\begin{aligned} & 3+\text { PCA+ } \\ & \text { Watchdog } \end{aligned}$	4	UART	2	Same as 8XC575 plus UPI and 10-bit A/D
P	87C576		8K	256	(see above)	4	UART	2	(see above)
PC	83 C 562 (80C562)	8K		256	$3+$ Watchdog	6	UART	2	8 Channel 8 -bit A/D, 2 PWM Outputs, Capture/Compare Timer
PCx	83 C 552 (80C552)	8K		256	$3+$ Watchdog	6	UART, ${ }^{2} \mathrm{C}$	2	8 Channel 10-bit A/D, 2 PWM Outputs, Capture/Compare Timer
S	87C552		8K	256	$3+$ Watchdog	6	UART, ${ }^{2} \mathrm{C}$	2	(see above)

Notes: Part number prefixes are noted in the first column.
All combinations of part type, speed, temperature and package may not be available.

80C51 microcontroller family features guide

Part Number (ROMIess)		Program Security?	Clock Freq (MHz)	Temperature Ranges (${ }^{\circ} \mathrm{C}$)			Package					
		0 to 70		-40 to +85	-55 to +125	PDIP	CDIP	PLCC	CLCC	PQFP/SSOP		
83C750	S		N	3.5 to 40	X	X		N24	F24	A28		DB24 (0-70F)
87C750	S	Y	3.5 to 40	X	X		N24	F24	A28		DB24 (0-70F)	
83C748	S	N	3.5 to16	X	X		N24		A28		DB24 (0-70F)	
87C748	S	Y	3.5 to16	X	X		N24	F24	A28		DB24 (0-70F)	
$83 C 751$	S	N	3.5 to16	X	X		N24		A28		DB24 (0-70F)	
87C751	S	Y	3.5 to16	X	X		N24	F24	A28		DB24 (0-70F)	
$83 C 749$	S	N	3.5 to 16	X	X		N28		A28		DB28 (0-70F)	
87C749	S	Y	3.5 to 16	X	X		N28	F28	A28		DB28 (0-70F)	
$83 C 752$	S	N	3.5 to 16	X	X	X	N28		A28		DB28 (0-70F)	
87C752	S	Y	3.5 to 16	X	X	X	N28	F28	A28		DB28 (0-70F)	
SC80C51 (80C31)	S	Y	3.5 to 33	X	X	$\bar{\chi}$	N40		A44		B44 (5)	
PCx80C51 (80C31)	H	N	1.2 to 30	X	X	X	$\mathrm{P}(40)$		WP (44)		H (44)	
87C51	S	Y	3.5 to 33	X	X	X	N40	F40	A44	K44	B44 (5)	
80CL51 (80CL31)	Z	N	0 to 16 (1)		X		N40 (2)				B44	
83CL410(80CL410)	Z	N	0 to 12 (1)		X		N40 (2)				B44	
83 C 451 (80C451)	S	N	3.5 to 16	X	X	X	N64 (4)		A68			
87C451	S	Y	3.5 to16	X	X	X	N64 (4)		A68			
83 C 50 (80C550)	S	Y	3.5 to 16	X	X		N40		A44			
87C550	S	Y	3.5 to 16	X	X	-40 to +125	N40	F40	A44	K44		
$83 \mathrm{C851}$ (80C851)	H	Y	1.2 to 16	X	X		N40		A44		B44	
83C852	H	\bar{Y}	1 to 12	$\bar{\chi}$			SO28 or die					
83CL580 (80CL580)	Z	N	0 to 12 (1)		X		(3)				B64	
80C52 (80C32)	S	Y	3.5 to 24	$\bar{\chi}$	X		N40		A44		B44 (5)	
87C52	S	Y	3.5 to 24	X	X	X	N40	F40	A44	K44	B44 (5)	
$83 \mathrm{C652}$ (80C652)	H	Y	1.2 to 24	X	X	-40 to +125	N40		A44		B44	
87C652	S	Y	1.2 to 20	X	X	X	N40	F40	A44	K44		
83 C 453 (80C453)	S	N	3.5 to 16	X	X				A68			
87C453	S	Y	3.5 to16	X	X				A68			
83C51FA (80C51FA)	S	Y	3.5 to 24	X	X		N40		A44		B44	
87C51FA	S	Y	3.5 to 24	X	X		N40	F40	A44	K44	B44	
83L51FA	S	Y	3.5 to 20	X	X		N40		A44		B44	
87L51FA	S	Y	3.5 to 20	X	X		N40	F40	A44	K44	B44	
83 C 575 (80C575)	S	Y	4 to 16	X		X	N40		A44		B44	
87C575	S	Y	4 to 16	X		X	N40	F40	A44	K44	B44	
83 C 576 (80C576)	S	Y	4 to 16	X		X	N40		A44		B44	
87C576	S	Y	4 to 16	X		X	N40	F40	A44	K44	B44	
83 C 562 (80C562)	H	N	1.2 to 16	X	X	-40 to +125			A68		B80	
83C552 (80C552)	H	N	1.2 to 30	X	X	-40 to +125			A68		B80	
87C552	S	Y	1.2 to 16	X					A68	K68		

Notes: Production Centers are indicated in the second column: H - Hamburg, S - Sunnyvale, Z - Zurich.
All combinations of part type, speed, temperature and package may not be available.

1) Oscillator options start from 32 kHz .
2) Also available in VSO40 package.
3) Also available in VSO56 Package.
4) Not recommended for new design.
5) Package available up to 16 MHz only.

80C51 microcontroller family features guide

Part Number (ROMless)		Memory			Counter Timers	$\begin{aligned} & \text { I/O } \\ & \text { Port } \end{aligned}$	Serial Interfaces	External Interrupt	Comments/ Special Features
		ROM	EPRM	RAM					
P	83 C 055	16K		256	2 (16-bit)	$31 / 2$	-	2	On-Screen Display, 9 PWM Outputs, 3 Software A/D Inputs
P	87C055		16K	256	2 (16-bit)	$31 / 2$	-	2	(see above)
P	80C54	16K		256	3	4	UART	2	Standard; 80C51 compatible
P	87C54		16K	256	3	4	UART	2	Standard; 87C51 compatible
P	83 C 654	16K		256	2	4	UART, ${ }^{2} \mathrm{C}$	2	80C51 Pin Compatible
S	87C654		16K.	256	2	4	UART, ${ }^{2} \mathrm{C}$	2	(see above)
P	83CE654	16K		256	2	4	UART, ${ }^{2} \mathrm{C}$	2	83C654 with Reduced EMI
P	83CL781	16K		256	3	4	UART, ${ }^{2} \mathrm{C}$	10	Low Voltage (1.8V to 6V), Low Power
P	83CL782	16K		256	3	4	UART, ${ }^{2} \mathrm{C}$	10	83 CL 781 Optimized 12MHz @ 3.1V
S	83C51FB	16K		256	$3+$ PCA	4	UART	2	Enhanced UART, 3 timers + PCA
S	87C51FB		16K	256	$3+$ PCA	4	UART	2	Enhanced UART, 3 timers + PCA
S	83L51FB	16K		256	$3+$ PCA	4	UART	2	Low Voltage 83C51FB (3V @ 20MHz)
S	87L51FB		16K	256	$3+$ PCA	4	UART	2	Low Voltage OTP 87C51FB (3V @ 20MHz)
P	83C524	16K		512	$3+$ Watchdog	4	UART, ${ }^{2} \mathrm{C}$-bit	2	512 RAM
P	87C524		16K	512	$3+$ Watchdog	4	UART, ${ }^{2} \mathrm{C}$-bit	2	512 RAM
P	83 C 592 (80C592)	16K		512	$3+$ Watchdog	6	UART, CAN	6	CAN Bus Controller with 8×10-bit A/D, 2 PWM outputs, Capture/Compare Timer
P	87C592		16K	512	$3+$ Watchdog	6	UART, CAN	6	(see above)
P	80C58	32 K		256	3	4	UART	2	Standard; 80C51 compatible
P	87C58		32 K	256	3	4	UART	2	Standard; 87C51 compatible
S	83C51FC	32 K		256	$3+$ PCA	4	UART	2	Enhanced UART, 3 timers + PCA
S	87C51FC		32 K	256	$3+$ PCA	4	UART	2	Enhanced UART, 3 timers + PCA
P	83 C 528 (80C528)	32K		512	$3+$ Watchdog	4	UART, ${ }^{2} \mathrm{C}$-bit	2	Large Memory for High Level Languages
P	87C528		32 K	512	$3+$ Watchdog	4	UART, ${ }^{2} \mathrm{C}$-bit	2	Large Memory for High Level Languages
P	83CE528 (80CE528)	32 K		512	$3+$ Watchdog	4	UART, ${ }^{2} \mathrm{C}$ - bit	2	8XC528 with Reduced EMI
P	83CE598 (80CE598)	32 K		512	$3+$ Watchdog	6	UART, CAN	6	CAN Bus Controller, 8×10-bit A/D, 2 PWM outputs, WD, T2, Reduced EMI
P	87CE598		32K	512	$3+$ Watchdog	6	UART, CAN	6	(see above)
P	83CE558(80CE558)	32 K		1024	$3+$ Watchdog	6	UART, ${ }^{2} \mathrm{C}$	2	Low EMI, 8 Channel 10-bit A/D, 2 PWM Outputs, Capture/Compare Timer
P	89CE558		32K	1024	$3+$ Watchdog	6	UART, ${ }^{2} \mathrm{C}$	2	32K FLash EEPROM plus above

Notes: Part number prefixes are noted in the first column.
All combinations of part type, speed, temperature and package may not be available.

80C51 microcontroller family features guide

Part Number (ROMless)		Program Security?	Clock Freq (MHz)	Temperature Ranges (${ }^{\circ} \mathrm{C}$)			Package					
		0 to 70		-40 to +85	-55 to +125	PDIP	CDIP	PLCC	CLCC	PQFP/SSOP		
$83 C 055$	S		N	3.5 to 20	X			NB42				
87C055	S	N	3.5 to 20	X			NB42					
80C54	S	Y	3.5 to 24	X	X		N40		A44		B44	
87C54	S	Y	3.5 to 24	X	X		N40	F40	A44	K44	B44	
$83 \mathrm{C654}$ (80C654)	H	Y	1.2 to 24	X	X	-40 to +125	$\begin{aligned} & \text { R42, } \\ & \text { N40 } \end{aligned}$		A44		B44	
87C654	S	Y	1.2 to 20	X	X	X	N40	F40	A44	K44	B44	
83CE654	H	Y	1.2 to 16	X	X						B44	
83CL781	Z	N	0 to 12 (1)		X		N40				B44	
83CL782	Z	N	0 to 12 (1)		-25 to +55		N40				B44	
83C51FB	S	Y	3.5 to 24	X	X		N40		A44		B44	
87C51FB	S	Y	3.5 to 24	X	X		N40	F40	A44	K44	B44	
83L51FB	S	Y	3.5 to 20	X			N40		A44		B44	
87L51FB	S	Y	3.5 to 20	X			N40	F40	A44	K44	B44	
$83 C 524$	H	Y	1.2 to 16	X	X		N40		A44		B44	
87C524	S	Y	3.5 to 20	X	X	-	N40	F40	A44	K44	B44	
83C592 (80C592)	H	Y	1.2 to 16		X	-40 to +125			A68	K68		
87C592	H	Y	1.2 to 16	X			R42		A68	K68		
80C58	S	\bar{Y}	3.5 to 16	X	X		N40		A44		B44	
87C58	S	Y	3.5 to 16	X	X		N40	F40	A44	K44	B44	
83C51FC	S	Y	3.5 to 24	X	X		N40		A44		B44	
87C51FC	S	Y	3.5 to 24	X	X		N40	F40	A44	K44	B44	
83 C 528 (80C528)	H	Y	1.2 to 16	X	X	-40 to +125	N40		A44		B44	
87C528	S	Y	3.5 to 20	X	X		N40	F40	A44	K44	B44	
83CE528 (80CE528)	H	Y	1.2 to 16	X	X	-40 to +125			A44		B44	
83CE598 (80CE598)	H	Y	1.2 to 16		X	-40 to +125					B80	
87CE598	H	Y	3.5 to 16	X	X						B80	
83CE558 80CE558	H	Y	1.2 to 16	X	X	-40 to +125					B80	
89CE558	H	Y	1.2 to 16	X	X					Q80	B80	

Notes: Production Centers are indicated in the second column: H - Hamburg, S - Sunnyvale, Z - Zurich.
All combinations of part type, speed, temperature and package may not be available.

1) Oscillator options start from 32 kHz .
2) Also available in VSO40 package.
3) Also available in VSO56 Package.
4) Not recommended for new design.
5) Package available up to 16 MHz only.

CMOS and NMOS 8-bit microcontroller family

8400 FAMILY CMOS

TYPE	ROM	RAM	$\begin{aligned} & \text { SPEED } \\ & \text { (MHz) } \end{aligned}$	PACKAGE	FUNCTIONS	REMARKS	$\begin{gathered} \text { PROBE } \\ \text { SDS } \end{gathered}$	REMARKS
84C21A 84C41A 84C81A	$\begin{aligned} & 2 k \\ & 4 k \\ & 8 k \end{aligned}$	$\begin{array}{\|c\|} \hline 64 \\ 128 \\ 256 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	DIL28/SO28 DIL28/SO28 DIL28/SO28	20 I/O lines 8-bit timer Byte $1^{2} \mathrm{C}$		OM1083	$\begin{aligned} & \text { OM1025 } \\ & \text { (LSDS) } \end{aligned}$
$\begin{aligned} & 84 \mathrm{C} 22 \mathrm{~A} \\ & 84 \mathrm{C} 42 \mathrm{~A} \\ & 84 \mathrm{C} 12 \mathrm{a} \end{aligned}$	$\begin{aligned} & 2 k \\ & 4 k \\ & 1 k \end{aligned}$	$\begin{aligned} & 64 \\ & 64 \\ & 64 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 16 \end{aligned}$	DIL20/SO20 DIL20/SO20 DIL20/SO20 DIL20/SO20	13 I/O lines 8-bit timer		OM1083 + Adapter_1	$\begin{aligned} & \hline \text { OM1025 } \\ & \text { (LSDS) } \end{aligned}$
$\begin{aligned} & 84 \mathrm{COOB} \\ & 84 \mathrm{C} 00 \mathrm{~T} \end{aligned}$	0 0	$\begin{aligned} & 256 \\ & 256 \end{aligned}$	10 10	28 pins VSO-56	20 I/O lines 8-bit timer Byte $1^{2} \mathrm{C}$	Piggyback ROMIess	OM1080 OM1080	
$84 \mathrm{C} 121$ 84C121B	1 k 0	64 64	10 10	DIL20/SO20	13 I/O lines 28 -bit timers 8 bytes EEPROM	Piggyback	OM1073	OM1025(LEDS) OM1027
$\begin{aligned} & 84 C 122 A \\ & 84 C 122 B \\ & 84 C 422 A \\ & 84 C 422 B \\ & 84 C 822 A \\ & 84 C 822 B \\ & 84 C 822 C \end{aligned}$	1k 4K 8K	$\begin{aligned} & 32 \\ & 32 \\ & 32 \end{aligned}$	10	A: SO20 B: SO24 C: SO28	Controller for remote control A: 12 I/O B: 16 I/O C: 20 I/O		OM4830	
84C230	21	64	10	DIL40/VSO40	12 I/O lines 8-bit timer 16*4 LCD drive		OM1072	
$84 C 430$ 84C430BH	$4 k$ 0	128 128	10 10	QFP64	24 I/O lines 8-bit timer Byte ${ }^{2} \mathrm{C}$ 24*4 LCD drive	Piggyback for C230 and C430	OM1072	
84C633 84C633B	6 k 0	256 256	16 16	VSO56	28 I/O lines 8-bit timer 16-bit up/down counter 16-bit timer with compare and capture 16*4 LCD drive		OM1086	
84 C 440 84 C 441 84 C 443 84 C 444 84 C 640 84 C 641 84 C 643 84 C 644 84 C 840 84 C 841 84 C 843 84 C 844	4k 4k 4k 4k 6k 6k 6k 6k 8k 8k 8k 8k	$\begin{aligned} & 128 \\ & 128 \\ & 128 \\ & 128 \\ & 128 \\ & 128 \\ & 128 \\ & 128 \\ & 192 \\ & 192 \\ & 192 \\ & 192 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	DIP42 shrunk	RC: 29 I/O lines LC: 28 I/O lines 8 -bit timer 1 14-bit PWM 5 6-bit PWM 3-bit ADC OSD 2L-16		OM1074	For emulation of LC versions, use OM1074 + adapter_3 + 2 adapter_5

CMOS and NMOS 8-bit microcontroller family

8400 FAMILY CMOS (Continued)

TYPE	ROM	RAM	SPEED (MHz)	PACKAGE	FUNCTIONS	REMARKS	$\begin{gathered} \text { PROBE } \\ \text { SDS } \\ \hline \end{gathered}$	REMARKS
$\begin{aligned} & 84 \mathrm{C} 646 \\ & 84 \mathrm{C} 466 \end{aligned}$	$\begin{aligned} & 6 \mathrm{k} \\ & 8 \mathrm{k} \end{aligned}$	$\begin{aligned} & 192 \\ & 192 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	DIP42 shrunk	30 I/O lines DOS clock = PLL 8 bit timer 1-14 bit PWM 4-6 bit PWM 4-7 bit PWM 3-4 bit ADC DOS: 64 disp. RAM 62 char. fonts Char. blinking Shadow modes 8 foreground colors/char. 8 background colors/word DOS: clock: 8 . . 20MHz	$\begin{array}{ll} \mathrm{R}^{2} \mathrm{C}, & \mathrm{RC} \\ \mathrm{I}^{2} \mathrm{C}, & \mathrm{RC} \end{array}$	$\begin{aligned} & \text { OM4829 + } \\ & \text { OM4832 } \end{aligned}$	OM4833 for LCD584
$\begin{aligned} & 84 \mathrm{C} 85 \\ & 84 \mathrm{C} 85 \mathrm{~B} \end{aligned}$	8k 0	$\begin{aligned} & 256 \\ & 256 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	DIL40/VSO40	32 I/O lines 8-bit timer Byte $1^{2} \mathrm{C}$	Piggyback for C85	OM1070	
84C853 84C853B	8 k	256 256	16 16	DIL40/VSO40	33 I/O lines 8-bit timer 16-bit up/down counter 16-bit timer with compare and capture	Piggyback for C853	OM1081	
$\begin{aligned} & 84 \mathrm{C} 270 \\ & 84 \mathrm{C} 470 \\ & 84 \mathrm{C} 270 \mathrm{~B} \\ & 84 \mathrm{C} 470 \mathrm{~B} \end{aligned}$	2k 4k 0 0	128 128 128 128	10 10 10 10	DIL40/VSO40 DIL40/VSO40	8 I/O lines 16*8 capture keyboard matrix 8-bit timer 470 also handles mech. keys	Piggyback for C270 Piggyback for C470	OM1077	
84 C 271	2k	128	10	DIL40	8 I/O lines 16*8 mech. keyboard matrix 8-bit timer		OM1078	

8400 FAMILY NMOS

TYPE	ROM	RAM	$\begin{aligned} & \text { SPEED } \\ & (\mathrm{MHz}) \end{aligned}$	PACKAGE	FUNCTIONS	REMARKS	EMULATOR TOOLS	REMARKS
8411 8421 8441 846	$\begin{aligned} & \text { 1k } \\ & 2 k \\ & 4 k \end{aligned}$ $6 \mathrm{k}$	$\begin{array}{r} 64 \\ 64 \\ 128 \\ 128 \\ \hline \end{array}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & \hline \end{aligned}$	DIL28/SO28 DIL28/SO28 DIL28/SO28 DIL28/SO28	20 I/O lines 8 -bit timer Byte $\mathrm{I}^{2} \mathrm{C}$			OM1025 (LCDS) + OM1026
$\begin{array}{\|l\|} \hline 8422 \\ 8442 \end{array}$	$\begin{aligned} & 2 k \\ & 4 k \end{aligned}$	$\begin{gathered} 64 \\ 128 \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{array}{\|l\|} \text { DIL20 } \\ \text { DILL20 } \end{array}$	13 I/O lines 8-bit timer Bit ${ }^{2} \mathrm{C}$			
8401B	0	128	6	28-pin		Piggyback for 84X1		

CMOS and NMOS 8-bit microcontroller family

3300 FAMILY CMOS

TYPE	ROM	RAM	$\begin{array}{\|c} \hline \text { SPEED } \\ (\mathrm{MHz}) \end{array}$	PACKAGE	FUNCTIONS	REMARKS	$\begin{gathered} \text { PROBE } \\ \text { SDS } \end{gathered}$	REMARKS
3315A	1.5k	160	10	DIL28/SO28	20 I/O lines 8 -bit timer $V_{D D}>1.8 \mathrm{~V}$		OM1083	OM1025(LCDS)
3343	3 k	224	10	DIL28/SO28	$20 \mathrm{I} / \mathrm{O}$ lines 8-bit timer $V_{D D}>1.8 \mathrm{~V}$ Byte $I^{2} \mathrm{C}$		OM1083	OM1025(LCDS)
3344A	2 k	224	3.58	DIL28/SO28	20 I/O lines 8-bit timer DTMF generator		OM1071	$\begin{aligned} & \text { OM1025(LCDS) } \\ & \text { + OM1028 } \end{aligned}$
3346A	4k	128	10	DIL28/SO28	20 I/O lines 8-bit timer Byte $\mathrm{I}^{2} \mathrm{C}$ 256 bytes EEPROM $\mathrm{V}_{\mathrm{DD}}<1.8 \mathrm{~V}$		OM1076	
3347	1.5k	64	3.58	DIL20/SO20	$12 \mathrm{I} / \mathrm{O}$ lines 8-bit timer DTMF generator		OM1071 + Adapter_2	$\begin{aligned} & \text { OM1025(LCDS) } \\ & \text { + OM1028 } \end{aligned}$
3348A	8k	256	10	DIL28/SO28	20 I/O lines 8-bit timer Byte $\mathrm{I}^{2} \mathrm{C}$ $\mathrm{V}_{\mathrm{DD}}<1.8 \mathrm{~V}$		OM1083	OM1025(LCDS)
3349A	4k	224	3.58	DIL28/SO28	$20 \mathrm{I} / \mathrm{O}$ lines 8-bit timer DTMF generator		OM1071	$\begin{aligned} & \text { OM1025(LCDS) } \\ & + \text { OM1028 } \end{aligned}$
3350A	8k	128	3.58	VSO64	30 I/O lines 8-bit timer DTMF generator 256 bytes EEPROM			
3351A	2k	64	3.58	DIL28/SO28	20 I/O lines 8-bit timer DTMF generator 128 bytes EEPROM		OM5000	
3352A	6 k	128	3.58	DIL28/SO28	20 I/O lines 8-bit timer DTMF generator 128 byte EEPROM		OM5000	
3353A	6k	128	16	DIL28/SO28	20 I/O lines 8-bit timer DTMF generator Ringer out 128 bytes EEPROM	March '92	OM5000	.
3354A	8k	256	16	QFP64	36 I/O lines 8-bit timer DTMF generator Ringer out 256 bytes EEPROM	June '92	$\begin{aligned} & \text { OM4829 + } \\ & \text { OM5003 } \end{aligned}$	OM4829: Probe base
8755A	0	128	16	DIL28/SO28	8k OTP 20 I/O lines 8-bit timer DTMF generator Melody output 128 bytes EEPROM	In Development		
3301B						Piggyback for 3315, 3343, 3348	OM1083	
3344B						$\begin{aligned} & \text { Piggyback for } 3344, \\ & 3347,3349 \end{aligned}$	OM1071	
3346B						Piggyback for 3346	OM1076	

CMOS and NMOS 8-bit microcontroller family

3300 FAMILY CMOS (Continued)

TYPE	ROM	RAM	SPEED $(\mathbf{M H z})$	PACKAGE	FUNCTIONS	REMARKS	PROBE SDS	REMARKS
3350 B						Piggyback for 3350A	OM4829+ OM5003	
3351 B						Piggyback for $3351 \mathrm{~A}, 3352 \mathrm{~A}$, 3353 A	OM5000	
3354 B					Piggyback for 3354A	OM4829+ OM5010		

CMOS 16-bit microcontroller family

16-BIT CONTROLLERS (XA ARCHITECTURE)

TYPE	(EP)ROM	RAM	SPEED (MHz)	FUNCTIONS	REMARKS	DEVELOPMENT TOOLS
XA-G1	8 k	512	30	3 timers, watchdog, 2 UARTs	-40 to $+125^{\circ} \mathrm{C}$	Nohau Ceibo MacCraigor Systems
XA-G2	16 k	512	30	3 timers, watchdog, 2 UARTs	-40 to $+125^{\circ} \mathrm{C}$	Nohau Ceibo MacCraigor Systems
XA-G3	32 k	512	30	3 timers, watchdog, 2 UARTs	-40 to $+125^{\circ} \mathrm{C}$	Nohau Ceibo MacCraigor Systems

16-BIT CONTROLLERS (68000 ARCHITECTURE)

TYPE	(EP)ROM	RAM	$\begin{aligned} & \text { SPEED } \\ & \text { (MHz) } \end{aligned}$	FUNCTIONS	REMARKS	PHILIPS TOOLS	THIRD-PARTY TOOLS
68070	-	-	17.5	2 DMA channels, MMU, UART, 16 -bit timer, $1^{2} \mathrm{C}$, 68000 bus interface, 16 Mb address range		OM4160 Microcore 1 OM4160/2 Microcore 2 OM4161 (SBE68070) OM4767/2 XRAY68070SBE high level symbolic debugger OM4222 68070DS development system OM4226 XRAY68070DS high level symbolic debugger	TRACE32-ICE68070 (Lauterbach)
93C101	34k	512	15	Derivative with low power modes	Not for new design		
90CE201	16MB external ROM	16MB external RAM	24	UART, fast $I^{2} \mathrm{C}$, 3 timers (16 bit), Watchdog timer. 68000 software compatible, EMC, QFP64	$\begin{aligned} & -25 \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	OM4162 Microcore 4	TRACE32 (Lauterbach)

Page
Quality 34
Pro Electron type numbering system for Integrated Circuits 35
Rating systems 37
Handling MOS devices 39

General

TOTAL QUALITY MANAGEMENT

Philips Semiconductors is a Quality Company, renowned for the high quality of our products and service. We keep alive this tradition by constantly aiming towards one ultimate standard, that of zero defects. This aim is guided by our Total Quality Management (TQM) system, the basis of which is described in the following paragraphs.

Quality assurance

Based on ISO 9000 standards, customer standards such as Ford TQE and IBM MDQ. Our factories are certified to ISO 9000 by external inspectorates.

Partnerships with customers

PPM co-operations, design-in agreements, ship-to-stock, just-in-time and self-qualification programmes, and application support.

Partnerships with suppliers

Ship-to-stock, statistical process control and ISO 9000 audits.

Quality improvement programme

Continuous process and system improvement, design improvement, complete use of statistical process control, realization of our final objective of zero defects, and logistics improvement by ship-to-stock and just-in-time agreements.

ADVANCED QUALITY PLANNING

During the design and development of new products and processes, quality is built-in by advanced quality planning. Through failure-mode-and-effect analysis the critical parameters are detected and measures taken to ensure good performance on these parameters. The capability of process steps is also planned in this phase.

PRODUCT CONFORMANCE

The assurance of product conformance is an integral part of our quality assurance (QA) practice. This is achieved by:

- Incoming material management through partnerships with suppliers.
- In-line quality assurance to monitor process reproducibility during manufacture and initiate any necessary corrective action. Critical process steps are 100% under statistical process control.
- Acceptance tests on finished products to verify conformance with the device specification. The test results are used for quality feedback and corrective actions. The inspection and test requirements are detailed in the general quality specifications.
- Periodic inspections to monitor and measure the conformance of products.

PRODUCT RELIABILITY

With the increasing complexity of Original Equipment Manufacturer (OEM) equipment, component reliability must be extremely high. Our research laboratories and development departments study the failure mechanisms of semiconductors. Their studies result in design rules and process optimization for the highest built-in product reliability. Highly accelerated tests are applied to the products reliability evaluation. Rejects from reliability tests and from customer complaints are submitted to failure analysis, to result in corrective action.

CUSTOMER RESPONSES

Our quality improvement depends on joint action with our customer. We need our customer's inputs and we invite constructive comments on all aspects of our performance. Please contact our local sales representative.

RECOGNITION

The high quality of our products and services is demonstrated by many Quality Awards granted by major customers and international organizations.

General

Pro electron type numbering
 of integrated circuits

BASIC TYPE NUMBER

This type designation code applies to semiconductor monolithic, semiconductor multi-chip, thin film, thick film and hybrid integrated circuits. The basic type number comprises three letters followed by a serial number.

First and second letters

DIGITAL FAMILY CIRCUITS
The first two letters identify the family. ${ }^{(1)}$

Solitary circuits

The first letter divides solitary circuits into:
S Solitary digital circuits
T Analog circuits
U Mixed analog/digital circuits.
The second letter is a serial letter without any further significance except ' H ' which stands for hybrid circuits. ${ }^{(2)}$

Microprocessors

The first two letters identify microprocessors and related circuits:

MA Microcomputer or central processing unit
MB Slice processor (functional slice of microprocessor)
MD Related memories
ME Other related circuits such as interfaces, clocks, peripheral controllers, etc.

CHARGE-TRANSFER DEVICES AND SWITCHED CAPACITORS
The first two letters identify:
NH Hybrid circuits
NL Logic circuits
NM Memories
NS Analog signal processing using switched capacitors
NT Analog signal processing using charge-transfer devices
NX Imaging devices
NY Other related circuits.
(1) A logic family is an assembly of digital circuits designed to be interconnected and defined by its base electrical characteristics, such as supply voltage, power consumption, propagation delay, noise immunity.
(2) The first letter ' S ' should be used for all solitary memories, to which, in the event of hybrids, the second letter ' H ' should be added, for example, SH for bubble memories.

Third letter

The third letter indicates the operating ambient temperature range:

A temperature range not specified below
B $\quad 0$ to $+70^{\circ} \mathrm{C}$
C -55 to $+125^{\circ} \mathrm{C}$
D -25 to $+70^{\circ} \mathrm{C}$
E -25 to $+85^{\circ} \mathrm{C}$
F $\quad-40$ to $+85^{\circ} \mathrm{C}$
G -55 to $+85^{\circ} \mathrm{C}$.
If a device has another temperature range, the letter ' A ' or a letter indicating a narrower temperature may be used, for example, the range of 0 to $+75^{\circ} \mathrm{C}$ can be indicated by ' A ' or ' B '. Should two devices with the same basic type number both have temperature ranges other than those specified, one would use the letter ' A ' and the other the letter ' X '.

SERIAL NUMBER

This may be a four-digit number assigned by Pro Electron, or the serial number (which may be a combination of figures and letters) of an existing company type designation of the manufacturer.

VERSION LETTER

A single version letter may be added to the basic type number. This indicates a minor variant of the basic type or the package. The version letter has no fixed meaning except for ' Z ' which means customized wiring. The following letters are recommended for package variants:
C Cylindrical
D Ceramic dual in-line (CERDIL, CERDIP)
F Flat pack (two leads)
G Flat pack (four leads)
H Quad flat pack (QFP)
L Chip on tape (foil)
P Plastic dual in-line (DIL)
Q Quad in-line (QUIL)
T Mini pack (SOL, SO, VSO)
U Uncased chip.

General

TWO-LETTER SUFFIX

A two-letter suffix may be used instead of a single package version letter to give more information. To avoid confusion with serial numbers that end with a letter, a hyphen should precede the suffix.

First letter (general shape)

C Cylindrical
D Dual in-line (DIL)
E Power DIL (with external heatsink)
F Flat pack (leads on two sides)
G Flat pack (leads on four sides)
H Quad flat pack (QFP)
K Diamond (TO-3 family)
M Multiple in-line (except dual, triple and quad)
Q Quad in-line (QUIL)
R Power QUIL (with external heatsink)
S Single in-line (SIL)
T Triple in-line
W Leaded chip carrier (LCC)
X Leadless chip carrier (LLCC)
Y Pin grid array (PGA).

Second letter (material)

C Metal-ceramic
G Glass-ceramic
M Metal
P Plastic.

EXAMPLES

PCF1105WP: digital IC; PC family; operating temperature range -40 to $+85^{\circ} \mathrm{C}$; serial number 1105 ; plastic leaded chip carrier.

[^0]
Rating systems

RATING SYSTEMS

The rating systems described are those recommended by the IEC in its publication number 134.

Definitions of terms used

ELECTRONIC DEVICE

An electronic tube or valve, transistor or other semiconductor device. This definition excludes inductors, capacitors, resistors and similar components.

Characteristic

A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device

An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics that are directly related to the application.

Rating

A value that establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms. Limiting conditions may be either maxima or minima.

RATING SYSTEM

The set of principles upon which ratings are established and which determine their interpretation. The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

Absolute maximum rating system

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type, as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout the life of the device, no absolute maximum value for the intended service is exceeded with any device, under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

Design maximum rating system

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout the life of the device, no design maximum value for the intended service is exceeded with a bogey electronic device, under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

Design centre rating system

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

General

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

ELECTROSTATIC CHARGES

Electrostatic charges can exist in many things; for example, man-made-fibre clothing, moving machinery, objects with air blowing across them, plastic storage bins, sheets of paper stored in plastic envelopes, paper from electrostatic copying machines, and people. The charges are caused by friction between two surfaces, at least one of which is non-conductive. The magnitude and polarity of the charges depend on the different affinities for electrons of the two materials rubbing together, the friction force and the humidity of the surrounding air.

Electrostatic discharge is the transfer of an electrostatic charge between bodies at different potentials and occurs with direct contact or when induced by an electrostatic field. All of our MOS devices are internally protected against electrostatic discharge but they can be damaged if the following precautions are not taken.

WORK STATION

Figure 1 shows a working area suitable for safely handling electrostatic sensitive devices. It has a work bench, the surface of which is conductive or covered by an antistatic sheet. Typical resistivity for the bench surface is between 1 and $500 \mathrm{k} \Omega$ per cm^{2}. The floor should also be covered with antistatic material. The following precautions should be observed:

- Persons at a work bench should be earthed via a wrist strap and a resistor.
- All mains-powered electrical equipment should be connected via an earth leakage switch.
- Equipment cases should be earthed.
- Relative humidity should be maintained between 50 and 65\%.
- An ionizer should be used to neutralize objects with immobile static charges.

RECEIPT AND STORAGE

MOS devices are packed for dispatch in antistatic/conductive containers, usually boxes, tubes or blister tape. The fact that the contents are sensitive to electrostatic discharge is shown by warning labels on both primary and secondary packing.

The devices should be kept in their original packing whilst in storage. If a bulk container is partially unpacked, the unpacking should be performed at a protected work station. Any MOS devices that are stored temporarily should be packed in conductive or antistatic packing or carriers.

ASSEMBLY

MOS devices must be removed from their protective packing with earthed component pincers or short-circuit clips. Short-circuit clips must remain in place during mounting, soldering and cleansing/drying processes. Do not remove more devices from the storage packing than are needed at any one time. Production/assembly documents should state that the product contains electrostatic sensitive devices and that special precautions need to be taken.

During assembly, ensure that the MOS devices are the last of the components to be mounted and that this is done at a protected work station.

All tools used during assembly, including soldering tools and solder baths, must be earthed. All hand tools should be of conductive or antistatic material and, where possible, should not be insulated.

Measuring and testing of completed circuit boards must be done at a protected work station. Place the soldered side of the circuit board on conductive or antistatic foam and remove the short-circuit clips. Remove the circuit board from the foam, holding the board only at the edges. Make sure the circuit board does not touch the conductive surface of the work bench. After testing, replace the circuit board on the conductive foam to await packing.
Assembled circuit boards containing MOS devices should be handled in the same way as unmounted MOS devices. They should also carry warning labels and be packed in conductive or antistatic packing.

General

(1) Earthing rail.
(2) Resistor ($500 \mathrm{k} \Omega \pm 10 \%, 0.5 \mathrm{~W}$).
(3) Ionizer.
(4) Work bench.
(5) Chair.
(6) Wrist strap.
(7) Electrical equipment.
(8) Conductive surface/antistatic sheet.
(9) Antistatic floor.

Fig. 1 Protected work station.

$I^{2} \mathrm{C}$ SPECIFIC INFORMATION

Page
Application notes 42
The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it 44
$I^{2} \mathrm{C}$-bus peripheral selection guide 68
Programming the $\mathrm{I}^{2} \mathrm{C}$ interface 70
Exploring $\mathrm{I}^{2} \mathrm{C}$ 74
Bit-banging serial ports 78
Development tools 82
OM1022/OM4777, Multi-master and single-master $1^{2} \mathrm{C}$-bus controller kits 85
OM5027, $\mathrm{I}^{2} \mathrm{C}$-bus evaluation board for low-voltage, low-power ICs \& software 86
OM5500, Demo kit for the PCF2116 LCD driver and PCD3756A telecom microcontroller 88
Addresses of $\mathrm{I}^{2} \mathrm{C}$-bus hardware manufacturers 89

APPLICATION NOTES

The following abstracts are of the application notes that can be found printed in-full in Philips Semiconductor's Data Handbook IC20 80C51-based 8-bit microcontrollers, ordering code 939775000963.

AN422 - Using the 8XC751 microcontroller as an $\mathbf{I}^{2} \mathrm{C}$-bus master

The 83C751/87C751 combines the benefits of a high-performance microcontroller with on-board hardware supporting the $\mathrm{I}^{2} \mathrm{C}$-bus interface, and thus allows systems to be completely software defined. This article shows how best to connect the microcontroller to an $\mathrm{I}^{2} \mathrm{C}$-bus configuration, describes the $8 \times C 751 \mathrm{I}^{2} \mathrm{C}$ hardware and gives a programming example demonstrating a bus-master code.

AN425 - Interfacing the PCF8584 I²C-bus controller to 80C51 family microcontrollers

This application note describes how to use the PCF8584 ${ }^{2} \mathrm{C}$-bus controller with the 80C51 family of microcontrollers. A typical way of connecting the PCF8584 to an 80C31 is given, and some basic software routines are described showing how to transmit and receive bytes in a single master system. There is also an example of how to use these routines in an application that uses the $I^{2} \mathrm{C}$ circuits on an $\mathrm{I}^{2} \mathrm{C}$ demonstration board.

AN95068-C routines for the PCF8584

This application note demonstrates how to write a driver in C for the Philips PCF8584 $\mathrm{I}^{2} \mathrm{C}$-bus controller IC and includes a set of application interface routines to quickly implement a complete PC multimaster system application.

The driver supports polled or interrupt driver message handling, slave message transfers and multimaster system applications. Furthermore, it is suitable for use in conjunction with real-time operating systems like OS-9 or pSOS+.

AN430 - Using the 8XC751/752 in multimaster $\mathrm{I}^{2} \mathrm{C}$ applications

This article discusses the most important technical features of the $\mathrm{I}^{2} \mathrm{C}$-bus and describes the special $\mathrm{I}^{2} \mathrm{C}$ hardware interface of the 8XC751/752. The author gives an example of how the microcontroller can be programmed for a multimaster environment along with
details of the software interface for the communications routes.

AN433-1² \mathbf{C} slave routines for the 83 C 751

The 8XC751 microcontroller can be programmed as an $\mathrm{I}^{2} \mathrm{C}$-bus master, slave, or both. This article focuses on its use as a slave and gives a programming example demonstrating the communications routes of the 8XC751 as a slave on the $\mathrm{I}^{2} \mathrm{C}$-bus. This example complements the program given in article AN422.

AN434-Connecting a PC keyboard to the $I^{2} \mathrm{C}$-bus

This application note illustrates the use of the 8XC751 microcontroller to interface a standard PC/AT keyboard to the $I^{2} C$ bus. The application software example easily fits within the 2 K -bytes code and 64-bytes data memory provided on the 8XC751.

AN438- ${ }^{2}$ ² routines for 8XC528

This article presents a set of software routines to drive the $\mathrm{I}^{2} \mathrm{C}$ interface in 8XC528-type microcontrollers. A description of the $\mathrm{I}^{2} \mathrm{C}$ interface is given along with examples of how to use these routines in PL/M-51, C and assembly source code.

AN444- Using the P82B715 $I^{2} \mathrm{C}$ extender on long cables

The P82B715 $I^{2} \mathrm{C}$ buffer was designed to extend the range of the logical ${ }^{2}$ C-bus out to 50 m . This application note describes the results of testing the buffer on several different types of cables to determine the maximum operating distance possible. The results are summarized in a table for easy reference.

ETV/AN89004 - PLM51 I ${ }^{2}$ C software interface IIC51 (version 0.5)

This document is a user manual for the $I^{2} \mathrm{C}$ software module IIC51, and is intended for Intel PLM51 users who need to control an $I^{2} \mathrm{C}$-bus. There is a general description on the IIC51 software module, although some basic knowledge about I ${ }^{2} \mathrm{C}$ and Intel PLM51 is assumed.

EIE/AN91007-I²C driver routines for 8XC751/1 microcontrollers

This report described the $\mathrm{I}^{2} \mathrm{C}$ drivers that are written for the 8XC751/2 and explains the structure of the software and
how to use the routines. The software is written around a set of basic routines and a message handler. The message handles contain no specific $8 \times C 751$ code so, by rewriting a set of basic routines, the software example can easily be modified for any other bit level $\mathrm{I}^{2} \mathrm{C}$ interface.

Programming the $I^{2} C$ interface

This article is taken from Dr. Dobb's
Journal and gives a good overview of $I^{2} \mathrm{C}$-bus basics. It describes hardware requirements, building a framework and how to connect to the $\mathrm{I}^{2} \mathrm{C}$-bus.

The following application note is printed separately. The full version can be ordered from Philips Semiconductors.

AN94078-P90CL301 I^{2} C driver routines

This application note demonstrates how to write an $1^{2} \mathrm{C}$-bus driver for the Philips P90CL301 microcontroller and includes a set of application interface software routines to quickly implement a complete $\mathrm{I}^{2} \mathrm{C}$ multimaster system application.

The driver allows you to link modules to your application software and includes a head-file into the application source programs. A programming example on how to use the driver is also listed in the article.

The driver supports polled or interrupt driven message handling, slave message transfer and multimaster system applications. Furthermore, it is suitable for use in conjunction with real-time operating systems such as pSOS+.

The $I^{2} \mathrm{C}$-bus from theory to practice

This 300-page book covers the $\mathrm{I}^{2} \mathrm{C}$-bus history, protocol, applications and development tools, and is intended both for engineering students and professional electronics engineers. The book, and its accompanying software disk, may be ordered directly from the publisher, John Wiley \& Son Ltd UK, telephone number +44 (0) 1243770216 , ISDN: 0471962686.

CONTENTS

1.0 THE I ${ }^{2} \mathrm{C}$-BUS BENEFITS DESIGNERSAND MANUFACTURERS1.1 Designer benefits1.2 Manufacturer benefits
1.3 The ACCESS.bus ${ }^{\text {™ }}$
2.0 INTRODUCTION TO THE I²C-BUS SPECIFICATION
3.0 THE $I^{2} C$-BUS CONCEPT
4.0 GENERAL CHARACTERISTICS
5.0 BIT TRANSFER
5.1 Data validity 5
5.2 START and STOP conditions 5
6.0 TRANSFERRING DATA 5
6.1 Byte format5
6.2 Acknowledge6
7.0 ARBITRATION AND CLOCK GENERATION
7.1 Synchronization6
7.2 Arbitration7.3 Use of clock synchronizing mechanismas a handshake
8.0 FORMATS WITH 7-BIT ADDRESSES
9.0 7-BIT ADDRESSING
9.1 Definition of bits in the first byte
9.1.1 General call address10
9.1.2 START byte 11
9.1.3 CBUS compatibility 12
10.0 ELECTRICAL CHARACTERISTICS FOR $I^{2} \mathbf{C}$-BUS DEVICES 13
10.1 Maximum and minimum values of resistors R_{p} and R_{s} 13
Page Page
11.0 EXTENSIONS TO THE I²C-BUS SPECIFICATION 15
12.0 FAST-MODE 15
13.0 10-BIT ADDRESSING 15
13.1 Definition of bits in the first two bytes 16
13.2 Formats with 10-bit addresses 16
14.0 GENERAL CALL ADDRESS AND START BYTE 17
15.0 ELECTRICAL SPECIFICATIONS AND TIMING FOR I/O STAGES AND BUS LINES 18
16.0 APPLICATION INFORMATION 20
16.1 Slope-controlled output stages of fast- mode $\mathrm{I}^{2} \mathrm{C}$-bus devices 20
16.2 Switched pull-up circuit for fast-mode $I^{2} \mathrm{C}$-bus devices 20
16.3 Wiring pattern of the bus lines 21
16.4 Maximum and minimum values of resistors R_{p} and R_{s} for fast-mode $I^{2} C$-bus devices 21
17.0 DEVELOPMENT TOOLS 21
17.1 Development tools for 8048- and 8051-based systems 21
17.2 Development tools for 68000-based systems 21
17.3 Development tools for all systems 22
18.0 SUPPORT LITERATURE 22
19.0 APPLICATION OF THE I ${ }^{2} \mathrm{C}$-BUS IN THE ACCESS.bus ${ }^{\text {TM }}$ SYSTEM 23

[^1]

ACCESS.bus is a trademark of Digital Equipment Corporation.

The $I^{2} C$-bus and how to use it (including specifications)

1.0 THE I ${ }^{2}$ C-BUS BENEFITS DESIGNERS AND MANUFACTURERS

In consumer electronics, telecommunications and industrial electronics, there are often many similarities between seemingly. unrelated designs. For example, nearly every system includes:

- Some intelligent control, usually a single-chip microcontroller
- General-purpose circuits like LCD drivers, remote I/O ports, RAM, EEPROM, or data converters
- Application-oriented circuits such as digital tuning and signal processing circuits for radio and video systems, or DTMF generators for telephones with tone dialling.

To exploit these similarities to the benefit of both systems designers and equipment manufacturers, as well as to maximize hardware efficiency and circuit simplicity, Philips developed a simple bidirectional 2-wire bus for efficient inter-IC control. This bus is called the Inter IC or $I^{2} \mathrm{C}$-bus. At present, Philips' IC range includes more than 150 CMOS and bipolar $I^{2} \mathrm{C}$ bus compatible types for performing functions in all three of the previously mentioned categories. All I ${ }^{2} \mathrm{C}$-bus compatible devices incorporate an on-chip interface which allows them to communicate directly with each other via the $I^{2} \mathrm{C}$-bus. This design concept solves the many interfacing problems encountered when designing digital control circuits.

Here are some of the features of the $I^{2} \mathrm{C}$-bus:

- Only two bus lines are required; a serial data line (SDA) and a serial clock line (SCL)
- Each device connected to the bus is software addressable by a unique address and simple master/ slave relationships exist at all times; masters can operate as master-transmitters or as master-receivers
- It's a true multi-master bus including collision detection and arbitration to prevent data corruption if two or more masters simultaneously initiate data transfer
- Serial, 8 -bit oriented, bidirectional data transfers can be made at up to $100 \mathrm{kbit} / \mathrm{s}$ in the standard mode or up to 400 kbit/s in the fast mode
- On-chip filtering rejects spikes on the bus data line to preserve data integrity
- The number of ICs that can be connected to the same bus is limited only by a maximum bus capacitance of 400 pF .

Figure 1 shows two examples of $I^{2} \mathrm{C}$-bus applications.

1.1 Designer benefits

$I^{2} \mathrm{C}$-bus compatible ICs allow a system design to rapidly progress directly from a functional block diagram to a prototype. Moreover, since they 'clip' directly onto the $\mathrm{I}^{2} \mathrm{C}$-bus without any additional external interfacing, they allow a prototype system to be modified or upgraded simply by 'clipping' or 'unclipping' ICs to or
from the bus.
Here are some of the features
of $I^{2} \mathrm{C}$-bus compatible ICs which
are particularly attractive to designers:

- Functional blocks on the block diagram correspond with the actual ICs; designs proceed rapidly from block diagram to final schematic
- No need to design bus interfaces because the $I^{2} \mathrm{C}$-bus interface is already integrated on-chip
- Integrated addressing and datatransfer protocol allow systems to be completely softwaredefined
- The same IC types can often be used in many different applications
- Design-time reduces as designers quickly become familiar with the frequently used functional blocks represented by ${ }^{2} \mathrm{C}$-bus compatible ICs
- ICs can be added to or removed from a system without affecting any other circuits on the bus
- Fault diagnosis and debugging are simple; malfunctions can be immediately traced
- Software development time can be reduced by assembling a library of reusable software modules.

In addition to these advantages, the CMOS ICs in the $I^{2} \mathrm{C}$-bus compatible range offer designers special features which are particularly attractive for portable equipment and batterybacked systems.

$I^{2} \mathrm{C}$ Peripherals

$\mathrm{I}^{2} \mathrm{C}$-bus and how to use it

need for address decoders and other 'glue logic'

- The multi-master capability of the $I^{2} C$-bus allows rapid testing and alignment of end-user equipment via external connections to an assemblyline computer
- The availability of $\mathrm{I}^{2} \mathrm{C}$-bus compatible ICs in SO (small outline), VSO (very small outline) as well as DIL packages reduces space requirements even more.

These are just some of the benefits. In addition, $\mathrm{I}^{2} \mathrm{C}$-bus compatible ICs increase system design flexibility by allowing simple construction of equipment variants and easy upgrading to keep designs up-to-date. In this way, an entire family of equipment can be developed around a basic model. Upgrades for new equipment, or enhanced-feature models (i.e. extended memory, remote control, etc.) can then be produced simply by clipping the appropriate ICs onto the bus. If a larger ROM is needed, it's simply a matter of selecting a microcontroller with a larger ROM from our comprehensive range. As new ICs supersede older ones, it's easy to add new features to equipment or to increase its performance by simply unclipping the outdated IC from the bus and clipping on its successor.

1.3 The ACCESS.bus

Another attractive feature of the $1^{2} \mathrm{C}$-bus for designers and manufacturers is that its simple 2wire nature and capability of software addressing make it an ideal platform for the ACCESS.bus (Fig.2). This is a lower-cost alternative for an RS-232C interface for connecting peripherals to a host computer via a simple 4-pin connector (see Section 19).

Fig. 2 The ACCESS.bus - a low-cost alternative to an RS-232C interface

2.0 INTRODUCTION TO THE 1^{2} C-BUS SPECIFICATION

For 8-bit digital control applications, such as those requiring microcontrollers, certain design criteria can be established:

- A complete system usually consists of at least one microcontroller and other peripheral devices such as memories and I/O expanders
- The cost of connecting the various devices within the system must be minimized
- A system that performs a control function doesn't require high-speed data transfer
- Overall efficiency depends on the devices chosen and the nature of the interconnecting bus structure.

In order to produce a system to satisfy these criteria, a serial bus structure is needed. Although serial buses don't have the throughput capability of parallel buses, they do require less wiring and fewer IC connecting pins. However, a bus is not merely an interconnecting wire, it embodies all the formats and procedures for communication within the system.

Devices communicating with each other on a serial bus must have some form of protocol which avoids all possibilities of confusion, data loss and blockage of information. Fast devices must
be able to communicate with slow devices. The system must not be dependent on the devices connected to it, otherwise modifications or improvements would be impossible. A procedure has also to be devised to decide which device will be in control of the bus and when. And, if different devices with different clock speeds are connected to the bus, the bus clock source must be defined. All these criteria are involved in the specification of the $\mathrm{I}^{2} \mathrm{C}$-bus.

3.0 THE I ${ }^{2} \mathrm{C}$-BUS CONCEPT

The $I^{2} C$-bus supports any IC fabrication process (NMOS, CMOS, bipolar). Two wires, serial data (SDA) and serial clock (SCL), carry information between the

Table 1 Definition of $l^{2} \mathrm{C}$-bus terminology
devices connected to the bus. Each device is recognised by a unique address - whether it's a microcontroller, LCD driver, memory or keyboard interface and can operate as either a transmitter or receiver, depending on the function of the device. Obviously an LCD driver is only a receiver, whereas a memory can both receive and transmit data. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers (see Table 1). A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave.

The $\mathrm{I}^{2} \mathrm{C}$-bus is a multi-master bus. This means that more than one device capable of controlling the bus can be connected to it. As masters are usually microcontrollers, let's consider the case of a data transfer between two microcontrollers connected to the $1^{2} \mathrm{C}$-bus (Fig.3). This highlights the master-slave and receivertransmitter relationships to be found on the $I^{2} \mathrm{C}$-bus. It should be noted that these relationships are not permanent, but only depend

Term	Description
Transmitter	The device which sends the data to the bus
Receiver	The device which receives the data from the bus signals and terminates a transfer
Master	The device addressed by a master
Slave	More than one master can attempt to control the bus at the same time without corrupting the message
Multi-master	Procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
Arbitration	Procedure to synchronize the clock signals of two or more devices
Synchronization	

${ }^{2}{ }^{2} \mathrm{C}$ Peripherals

Fig. 3 Example of an $I^{2} C$-bus configuration using two microcontrollers
on the direction of data transfer at that time. The transfer of data would proceed as follows:

1) Suppose microcontroller A wants to send information to microcontroller B :

- microcontroller A (master), addresses microcontroller B (slave)
- microcontroller A (mastertransmitter), sends data to microcontroller B (slavereceiver)
- microcontroller A terminates the transfer.

2) If microcontroller A wants to receive information from microcontroller B:

- microcontroller A (master) addresses microcontroller B (slave)
- microcontroller A (masterreceiver) receives data from microcontroller B (slavetransmitter)
- microcontroller A terminates the transfer.

Even in this case, the master (microcontroller A) generates the timing and terminates the transfer.

The possibility of connecting more than one microcontroller to the $I^{2} \mathrm{C}$-bus means that more than one master could try to initiate a
data transfer at the same time. To avoid the chaos that might ensue from such an event - an arbitration procedure has been developed. This procedure relies on the wired-AND connection of all $1^{2} \mathrm{C}$ interfaces to the $\mathrm{I}^{2} \mathrm{C}$-bus.

If two or more masters try to put information onto the bus, the first to produce a 'one' when the other produces a 'zero' will lose the arbitration. The clock signals during arbitration are a synchronized combination of the clocks generated by the masters using the wired-AND connection to the SCL line (for more detailed information concerning arbitration see Section 7.0).

Generation of clock signals on the $I^{2} \mathrm{C}$-bus is always the responsibility of master devices;
each master generates its own clock signals when transferring data on the bus. Bus clock signals from a master can only be altered when they are stretched by a slow-slave device holding-down the clock line, or by another master when arbitration occurs.

4.0 GENERAL

CHARACTERISTICS

Both SDA and SCL are bidirectional lines, connected to a positive supply voltage via a pull-up resistor (see Fig.4). When the bus is free, both lines are HIGH. The output stages of devices connected to the bus must have an open-drain or opencollector in order to perform the wired-AND function. Data on the $\mathrm{I}^{2} \mathrm{C}$-bus can be transferred at a rate up to $100 \mathrm{kbit} / \mathrm{s}$ in the standard-mode, or up to $400 \mathrm{kbit} / \mathrm{s}$ in the fast-mode. The number of interfaces connected to the bus is solely dependent on the bus capacitance limit of 400 pF .

5.0 BIT TRANSFER

Due to the variety of different technology devices (CMOS, NMOS, bipolar) which can be connected to the $I^{2} \mathrm{C}$-bus, the levels of the logical ' 0 ' (LOW) and ' 1 ' (HIGH) are not fixed and depend on the associated level of $V_{D D}$ (see Section 15.0 for Electrical Specifications). One

clock pulse is generated for each data bit transferred.

5.1 Data validity

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW (see Fig.5).

5.2 START and STOP conditions

Within the procedure of the $I^{2} C$ bus, unique situations arise which are defined as START and STOP conditions (see Fig.6).

A HIGH to LOW transition on the SDA line while SCL is HIGH is one such unique case. This situation indicates a START condition.

A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition. This bus free situation is specified in Section 15.0.

Detection of START and STOP conditions by devices connected to the bus is easy if they incorporate the necessary interfacing hardware. However,

Fig. 6 START and STOP conditions
microcontrollers with no such interface have to sample the SDA line at least twice per clock period in order to sense the transition.

6.0 TRANSFERRING DATA

6.1 Byte format

Every byte put on the SDA line must be 8 -bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first (Fig.7). If a receiver can't receive another complete byte of data until it has performed some other function, for
example servicing an internal interrupt, it can hold the clock line SCL LOW to force the transmitter into a wait state. Data transfer then continues when the receiver is ready for another byte of data and releases clock line SCL.

In some cases, it's permitted to use a different format from the $1^{2} \mathrm{C}$-bus format (for CBUS compatible devices for example). A message which starts with such an address can be terminated by generation of a STOP condition, even during the transmission of a byte. In this case, no acknowledge is generated (see Section 9.1.3).

6.2 Acknowledge

Data transfer with acknowledge is obligatory. The acknowledgerelated clock pulse is generated by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse.

The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse (Fig.8). Of course, set-up and hold times (specified in Section 15) must also be taken into account.

Usually, a receiver which has been addressed is obliged to generate an acknowledge after each byte has been received, except when the message starts with a CBUS address (see Section 9.1.3).

When a slave-receiver doesn't acknowledge the slave address
(for example, it's unable to receive because it's performing some real-time function), the data line must be left HIGH by the slave. The master can then generate a STOP condition to abort the transfer.
If a slave-receiver does acknowledge the slave address but, some time later in the transfer cannot receive any more data bytes, the master must again abort the transfer. This is indicated by the slave generating the not acknowledge on the first byte to follow. The slave leaves the data line HIGH and the master generates the STOP condition.

If a master-receiver is involved in a transfer, it must signal the end of data to the slavetransmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave-transmitter must release the

Fig. 9 Clock synchronization during the arbitration procedure
data line to allow the master to generate a STOP or repeated START condition.

7.0 ARBITRATION AND CLOCK GENERATION

7.1 Synchronization

All masters generate their own clock on the SCL line to transfer messages on the $I^{2} \mathrm{C}$-bus. Data is only valid during the HIGH period of the clock. A defined clock is therefore needed for the bit-by-bit arbitration procedure to take place.

Clock synchronization is performed using the wired-AND connection of $I^{2} \mathrm{C}$ interfaces to the SCL line. This means that a HIGH to LOW transition on the SCL line will cause the devices concerned to start counting off their LOW period and, once a device clock has gone LOW, it will hold the SCL line in that state until the clock HIGH state is reached (Fig.9). However, the LOW to HIGH transition of this clock may not change the state of the SCL line if another clock is still within its LOW period. The SCL line will therefore be held LOW by the device with the longest LOW period. Devices with shorter LOW periods enter a HIGH wait-state during this time.

When all devices concerned have counted off their LOW period, the clock line will be released and go HIGH. There will then be no difference between the device clocks and the state of the SCL line, and all the devices will start counting their HIGH periods. The first device to complete its HIGH period will again pull the SCL line LOW.

In this way, a synchronized SCL clock is generated with its LOW period determined by the device with the longest clock LOW period, and its HIGH period determined by the one with the shortest clock HIGH period.

7.2 Arbitration

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition within the minimum hold time ($\mathrm{t}_{\mathrm{HD} ; \mathrm{STA}}$) of the START condition which results in a defined START condition to the bus.

Arbitration takes place on the SDA line, while the SCL line is at the HIGH level, in such a way that the master which transmits a HIGH level, while another master is transmitting a LOW level will switch off its DATA output stage because the level on the bus doesn't correspond to its own level.

Arbitration can continue for many bits. Its first stage is comparison of the address bits (addressing information is in Sections 9.0 and 13.0). If the masters are each trying to address the same device, arbitration continues with comparison of the data. Because address and data information on the $I^{2} \mathrm{C}$-bus is used for arbitration, no information is lost during this process.

A master which loses the arbitration can generate clock pulses until the end of the byte in which it loses the arbitration.

If a master also incorporates a slave function and it loses
arbitration during the addressing stage, it's possible that the winning master is trying to address it. The losing master must therefore switch over immediately to its slave-receiver mode.

Figure 10 shows the arbitration procedure for two masters. Of course, more may be involved (depending on how many masters are connected to the bus). The moment there is a difference between the internal data level of the master generating DATA 1 and the actual level on the SDA line, its data output is switched off, which means that a HIGH output level is then connected to the bus. This will not affect the data transfer initiated by the winning master.

Since control of the $1^{2} C$-bus is decided solely on the address and data sent by competing masters, there is no central master, nor any order of priority on the bus.

Special attention must be paid if, during a serial transfer, the arbitration procedure is still in progress at the moment when a repeated START condition or a STOP condition is transmitted to the $I^{2} \mathrm{C}$-bus. If it's possible for such a situation to occur, the masters involved must send this repeated START condition or STOP condition at the same position in the format frame. In
other words, arbitration isn't allowed between:

- A repeated START condition and a data bit
- A STOP condition and a data bit
- A repeated START condition and a STOP condition.

7.3 Use of the clock synchronizing mechanism as a handshake

In addition to being used during the arbitration procedure, the clock synchronization mechanism can be used to enable receivers to cope with fast data transfers, on either a byte level or a bit level.

On the byte level, a device may be able to receive bytes of data at a fast rate, but needs more time to store a received byte or prepare another byte to be transmitted. Slaves can then hold the SCL line LOW after reception and acknowledgement of a byte to force the master into a wait state until the slave is ready for the next byte transfer in a type of handshake procedure.

On the bit level, a device such as a microcontroller without, or with only a limited hardware $I^{2} \mathrm{C}$ interface on-chip can slow down the bus clock by extending each clock LOW period. The speed of any master is thereby adapted to the internal operating rate of this device.

8.0 FORMATS WITH 7-BIT ADDRESSES

Data transfers follow the format shown in Fig.11. After the START condition (S), a slave address is sent. This address is 7 bits long followed by an eighth bit which is a data direction bit (R / \bar{W}) - a 'zero' indicates a transmission (WRITE), a 'one' indicates a request for data (READ). A data transfer is always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated START condition (Sr) and address another slave without first generating a STOP condition. Various combinations of read/write formats are then possible within such a transfer.

Possible data transfer formats are:

- Master-transmitter transmits to slave-receiver. The transfer direction is not changed
(Fig.12)
- Master reads slave immediately after first byte (Fig.13). At the moment of the first acknowledge, the mastertransmitter becomes a masterreceiver and the slave-receiver becomes a slave-transmitter. This acknowledge is still generated by the slave. The STOP condition is generated by the master
- Combined format (Fig.14). During a change of direction within a transfer, the START condition and the slave address are both repeated, but with the R / \bar{W} bit reversed. If a master receiver sends a repeated START condition, it has previously sent a not acknowledge ($\overline{\mathrm{A}}$).

Fig. 12 A master-transmitter addresses a slave receiver with a 7-bit address. The transfer direction is not changed

Fig.13 A master reads a slave immediately after the first byte

Fig. 14 Combined format

NOTES:

1) Combined formats can be used, for example, to control a serial memory. During the first data byte, the internal memory location has to be written. After the START condition and slave address is repeated, data can be transferred.
2) All decisions on auto-increment or decrement of previously accessed memory locations etc. are taken by the designer of the device.
3) Each byte is followed by an acknowledgement bit as indicated by the A or $\overline{\mathrm{A}}$ blocks in the sequence.
4) $I^{2} \mathrm{C}$-bus compatible devices must reset their bus logic on receipt of a START or repeated START condition such that they all anticipate the sending of a slave address.

9.0 7-BIT ADDRESSING (see Section 13 for 10-bit addressing)

The addressing procedure for the $I^{2} \mathrm{C}$-bus is such that the first byte after the START condition usually determines which slave will be selected by the master. The exception is the 'general call' address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge. However, devices can be made to ignore this address. The second byte of the general call address then defines the action to be taken. This procedure is explained in more detail in Section 9.1.1.

9.1 Definition of bits in the first byte

The first seven bits of the first byte make up the slave address (Fig.15). The eighth bit is the LSB (least significant bit). It determines the direction of the message. A 'zero' in the least significant position of the first byte means that the master will write information to a selected slave. A 'one' in this position means that the master will read information from the slave.

When an address is sent, each device in a system compares the first seven bits after the START condition with its address. If they match, the device considers itself addressed by the master as a slave-receiver or slave-transmitter, depending on the R/W bit.

A slave address can be madeup of a fixed and a programmable part. Since it's likely that there will be several identical devices in a system, the programmable part of the slave address enables the maximum possible number of such devices to be connected to the $\mathrm{I}^{2} \mathrm{C}$-bus. The number of programmable address bits of a device depends on the number of pins available. For example, if a
device has 4 fixed and 3 programmable address bits, a total of 8 identical devices can be connected to the same bus.

The $I^{2} \mathrm{C}$-bus committee coordinates allocation of $\mathrm{I}^{2} \mathrm{C}$ addresses. Further information can be obtained from the Philips
representatives listed on the back cover. Two groups of eight addresses (0000XXX and 1111XXX) are reserved for the purposes shown in Table 2. The bit combination 11110XX of the slave address is reserved for 10bit addressing (see Section 13).

Table 2 Definition of bits in the first byte

Slave address	R \bar{W} bit	Description
0000000	0	General call address
0000000	1	START byte
0000001	X	CBUS address
0000010	X	Address reserved for different bus format
0000011	X	
00001 XX	X	Reserved for future purposes
1111 XX	X	
11110 XX	X	10-bit slave addressing

NOTES:

1) No device is allowed to acknowledge at the reception of the START byte.
2) The CBUS address has been reserved to enable the inter-mixing of CBUS compatible and $I^{2} C$-bus compatible devices in the same system. $1^{2} \mathrm{C}$-bus compatible devices are not allowed to respond on reception of this address.
3) The address reserved for a different bus format is included to enable $1^{2} \mathrm{C}$ and other protocols to be mixed. Only $I^{2} \mathrm{C}$-bus compatible devices that can work with such formats and protocols are allowed to respond to this address.

Fig. 15 The first byte after the START procedure

9.1.1 General call address

The general call address is for addressing every device connected to the $I^{2} \mathrm{C}$-bus. However, if a device doesn't need any of the data supplied within the general call structure, it can ignore this address by not issuing an acknowledgement. If a device does require data from a general call address, it will acknowledge this address and behave as a slave- receiver. The second and following bytes will be acknowledged by every slavereceiver capable of handling this data. A slave which cannot process one of these bytes must ignore it by not acknowledging. The meaning of the general call address is always specified in the second byte (Fig.16).

There are two cases to consider:

- When the least significant bit B is a 'zero'
- When the least significant bit B is a 'one'.

When bit B is a 'zero'; the second byte has the following definition:

- 00000110 ($\mathrm{H}^{\prime} 06^{\prime}$). Reset and
write programmable part of slave address by hardware. On receiving this 2 -byte sequence, all devices designed to respond to the general call address will reset and take in the programmable part of their address. Precautions have to be taken to ensure that a device is not pulling down the SDA or SCL line after applying the supply voltage, since these low levels would block the bus
- 00000100 ($\mathrm{H}^{\prime} 04$ '). Write programmable part of slave address by hardware. All devices which define the programmable part of their address by hardware (and which respond to the general call address) will latch this programmable part at the reception of this two byte sequence. The device will not reset.
- $00000000\left(\mathrm{H}^{\prime} 00^{\prime}\right)$. This code is not allowed to be used as the second byte.

Sequences of programming procedure are published in the appropriate device data sheets.

The remaining codes have not
been fixed and devices must ignore them.

When bit B is a 'one'; the 2byte sequence is a 'hardware general call'. This means that the sequence is transmitted by a hardware master device, such as a keyboard scanner, which cannot be programmed to transmit a desired slave address. Since a hardware master doesn't know in advance to which device the message has to be transferred, it can only generate this hardware general call and its own address identifying itself to the system (Fig.17).

The seven bits remaining in the second byte contain the address of the hardware master. This address is recognised by an intelligent device (e.g. a microcontroller) connected to the bus which will then direct the information from the hardware master. If the hardware master can also act as a slave, the slave address is identical to the master address.

In some systems, an alternative could be that the hardware master transmitter is set in the slave-

Fig. 16 General call address format

Fig. 17 Data transfer from a hardware master-transmitter

receiver mode after the system reset. In this way, a system configuring master can tell the hardware master-transmitter (which is now in slave-receiver mode) to which address data must be sent (Fig.18). After this programming procedure, the hardware master remains in the master-transmitter mode.

9.1.2 START byte

Microcontrollers can be connected to the $I^{2} \mathrm{C}$-bus in two ways. A microcontroller with an on-chip hardware $\mathrm{I}^{2} \mathrm{C}$-bus interface can be programmed to be only interrupted by requests from the bus. When the device doesn't have such an interface, it must constantly monitor the bus via software. Obviously, the more times the microcontroller monitors, or polls the bus, the less time it can spend carrying out its intended function.

There is therefore a speed difference between fast hardware devices and a relatively slow microcontroller which relies on software polling.

In this case, data transfer can be preceded by a start procedure which is much longer than normal (Fig.19). The start procedure consists of:

- A START condition (S)
- A START byte (00000001)
- An acknowledge clock pulse (ACK)
- A repeated START condition (Sr).

After the START condition S has been transmitted by a master which requires bus access, the START byte (00000001) is transmitted. Another microcontroller can therefore sample the SDA line at a low sampling rate until one of the
seven zeros in the START byte is detected. After detection of this LOW level on the SDA line, the microcontroller can switch to a higher sampling rate to find the repeated START condition Sr which is then used for synchronization.

A hardware receiver will reset on receipt of the repeated START condition Sr and will therefore ignore the START byte.

An acknowledge-related clock pulse is generated after the START byte. This is present only to conform with the byte handling format used on the bus. No device is allowed to acknowledge the START byte.

Fig. 19 START byte procedure

$1^{2} \mathrm{C}$ Peripherals

$\mathrm{I}^{2} \mathrm{C}$-bus and how to use it

9.1.3 CBUS compatibility

CBUS receivers can be connected to the $I^{2} \mathrm{C}$-bus. However, a third bus line called DLEN must then be connected and the acknowledge bit omitted. Normally, $I^{2} \mathrm{C}$ transmissions are sequences of 8 -bit bytes; CBUS compatible devices have different formats.

In a mixed bus structure, $\mathrm{I}^{2} \mathrm{C}$ bus devices must not respond to
the CBUS message. For this reason, a special CBUS address (0000001 X) to which no $\mathrm{I}^{2} \mathrm{C}$-bus compatible device will respond, has been reserved. After transmission of the CBUS address, the DLEN line can be made active and a CBUS-format transmission (Fig.20) sent. After the STOP condition, all devices are again ready to accept data.

Master-transmitters can send CBUS formats after sending the CBUS address. The transmission is ended by a STOP condition, recognised by all devices.

NOTE: If the CBUS configuration is known, and expansion with CBUS compatible devices isn't foreseen, the designer is allowed to adapt the hold time to the specific requirements of the device(s) used.

10.0 ELECTRICAL CHARACTERISTICS FOR $I^{2} C$ bUS DEVICES

The electrical specifications for the I / Os of $\mathrm{I}^{2} \mathrm{C}$-bus devices and the characteristics of the bus lines connected to them are given in Tables 3 and 4 in Section 15.
$1^{2} \mathrm{C}$-bus devices with fixed input levels of 1.5 V and 3 V can each have their own appropriate supply voltage. Pull-up resistors must be connected to a $5 \mathrm{~V} \pm 10 \%$ supply (Fig.21). $1^{2} \mathrm{C}$-bus devices with input levels related to $V_{D D}$ must have one common supply line to which the pull-up resistor is also connected (Fig.22).

When devices with fixed input levels are mixed with devices with input levels related to $V_{D D}$, the latter devices must be connected to one common supply line of 5 V $\pm 10 \%$ and must have pull-up resistors connected to their SDA and SCL pins as shown in Fig.23. Input levels are defined in such a way that:

- The noise margin on the LOW level is $0.1 \mathrm{~V}_{\mathrm{DD}}$
- The noise margin on the HIGH level is $0.2 \mathrm{~V}_{\mathrm{DD}}$
- As shown in Fig.24, series resistors (R_{S}) of e.g. 300Ω can be used for protection against high-voltage spikes on the SDA and SCL lines (due to flash-over of a TV picture tube, for example).
10.1 Maximum and minimum values of resistors R_{p} and R_{s} For standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus devices, the values of resistors R_{p} and R_{s} in Fig. 24 depend on the following parameters:
- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current).

The supply voltage limits the minimum value of resistor R_{p} due

Fig. 21 Fixed input level devices connected to the $I^{2} C$-bus

Fig. 22 Devices with wide supply voltage range connected to the $I^{2} C$-bus

Fig. 23 Devices with input levels related to $V_{D D}$ (supply $V_{D D 1}$) mixed with fixed input level devices (supply $V_{D D 2,3}$) on the $I^{2} C$-bus

Fig. 24 Series resistors $\left(R_{s}\right)$ for protection against high-voltage spikes
to the specified minimum sink current of 3 mA at $\mathrm{V}_{\text {OLmax }}=0.4 \mathrm{~V}$ for the output stages. $V_{D D}$ as a function of $R_{p \text { min }}$ is shown in Fig.25. The desired noise margin of $0.1 V_{D D}$ for the LOW level, limits the maximum value of $R_{s} . R_{s \text { max }}$ as a function of R_{p} is shown in Fig. 26.

The bus capacitance is the total capacitance of wire, connections and pins. This capacitance limits the maximum value of R_{p} due to the specified rise time. Fig. 27 shows $R_{p \text { max }}$ as a function of bus capacitance.

The maximum HIGH level input current of each input/output connection has a specified maximum value of $10 \mu \mathrm{~A}$. Due to the desired noise margin of $0.2 \mathrm{~V}_{\mathrm{DD}}$ for the HIGH level, this input current limits the maximum value of R_{p}. This limit depends on $V_{D D}$. The total HIGH level input current is shown as a function of $R_{p \text { max }}$ in Fig. 28.

Fig. 25 Minimum value of R_{ρ} as a function of supply voltage with the value of R_{s} as a parameter

Fig. 26 Maximum value of R_{s} as a function of the value of R_{p} with supply voltage as a parameter

Fig. 27 Maximum value of R_{p} as a function of bus capacitance for a standard-mode $I^{2} C$-bus

Fig. 28 Total HIGH level input current as a function of the maximum value of R_{p} with supply voltage as a parameter

11.0 EXTENSIONS TO THE $1^{2} C$-BUS SPECIFICATION

The $I^{2} \mathrm{C}$-bus with a data transfer rate of up to $100 \mathrm{kbit} / \mathrm{s}$ and 7-bit addressing has now been in existence for more than ten years with an unchanged specification. The concept is accepted worldwide as a de facto standard and hundreds of different types of $I^{2} C$ bus compatible ICs are available from Philips and other suppliers. The $I^{2} \mathrm{C}$-bus specification is now extended with the following two features:

- A fast-mode which allows a fourfold increase of the bit rate to 0 to $400 \mathrm{kbit} / \mathrm{s}$
- 10-bit addressing which allows the use of up to 1024 additional addresses.

There are two reasons for these extensions to the $1^{2} \mathrm{C}$-bus specification:

- New applications will need to transfer a larger amount of serial data and will therefore demand a higher bit rate than 100 kbit/s. Improved IC manufacturing technology now allows a fourfold speed increase without increasing the manufacturing cost of the interface circuitry
- Most of the 112 addresses available with the 7 -bit addressing scheme have been issued more than once. To prevent problems with the allocation of slave addresses for new devices, it is desirable to have more address combinations. About a tenfold increase of the number of available addresses is obtained with the new 10 -bit addressing.

All new devices with an $I^{2} \mathrm{C}$-bus interface are provided with the fast-mode. Preferably, they should be able to receive and/or transmit at $400 \mathrm{kbit} / \mathrm{s}$. The minimum requirement is that they can
synchronize with a $400 \mathrm{kbit} / \mathrm{s}$ transfer; they can then prolong the LOW period of the SCL signal to slow down the transfer. Fast-mode devices must be downwardcompatible which means that they must still be able to communicate with 0 to $100 \mathrm{kbit} / \mathrm{s}$ devices in a 0 to $100 \mathrm{kbit} / \mathrm{s} \mathrm{I}^{2} \mathrm{C}$-bus system.

Obviously, devices with a 0 to $100 \mathrm{kbit} / \mathrm{s}^{2} \mathrm{C}$-bus interface cannot be incorporated in a fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus system because, since they cannot follow the higher transfer rate, unpredictable states of these devices would occur.

Slave devices with a fast-mode $1^{2} \mathrm{C}$-bus interface can have a 7 -bit or a 10 -bit slave address.
However, a 7 -bit address is preferred because it is the cheapest solution in hardware and it results in the shortest message length. Devices with 7-bit and 10bit addresses can be mixed in the same $I^{2} \mathrm{C}$-bus system regardless of whether it is a 0 to $100 \mathrm{kbit} / \mathrm{s}$ standard-mode system or a 0 to $400 \mathrm{kbit} / \mathrm{s}$ fast-mode system. Both existing and future masters can generate either 7-bit or 10-bit addresses.

12.0 FAST-MODE

In the fast-mode of the $I^{2} \mathrm{C}$-bus, the protocol, format, logic levels and maximum capacitive load for the SDA and SCL lines quoted in the previous $I^{2} C$-bus specification are unchanged. Changes to the previous $\mathrm{I}^{2} \mathrm{C}$-bus specification are:

- The maximum bit rate is increased to $400 \mathrm{kbit} / \mathrm{s}$
- Timing of the serial data (SDA) and serial clock (SCL) signals has been adapted. There is no need for compatibility with other bus systems such as CBUS because they cannot operate at the increased bit rate
- The inputs of fast-mode devices must incorporate spike suppression and a Schmitt trigger at the SDA and SCL
inputs
- The output buffers of fast-mode devices must incorporate slope control of the falling edges of the SDA and SCL signals
- If the power supply to a fastmode device is switched off, the SDA and SCL I/O pins must be floating so that they don't obstruct the bus lines
- The external pull-up devices connected to the bus lines must be adapted to accommodate the shorter maximum permissible rise time for the fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus. For bus loads up to 200 pF , the pull-up device for each bus line can be a resistor; for bus loads between 200 pF and 400 pF , the pull-up device can be a current source (3 mA max.) or a switched resistor circuit as shown in Fig. 37.

13.0 10-BIT ADDRESSING

The 10-bit addressing does not change the format in the $\mathrm{I}^{2} \mathrm{C}$-bus specification. Using 10 bits for addressing exploits the reserved combination 1111XXX for the first seven bits of the first byte following a START (S) or repeated START (Sr) condition as explained in Section 9.1. The 10 -bit addressing does not affect the existing 7 -bit addressing. Devices with 7 -bit and 10 -bit addresses can be connected to the same $I^{2} \mathrm{C}$-bus, and both 7 -bit and 10 -bit addressing can be used in a standard-mode system (up to $100 \mathrm{kbit} / \mathrm{s}$) or a fast-mode system (up to $400 \mathrm{kbit} / \mathrm{s}$).

Although there are eight possible combinations of the reserved address bits 1111XXX, only the four combinations 11110XX are used for 10-bit addressing. The remaining four combinations 11111XX are reserved for future $I^{2} \mathrm{C}$-bus enhancements.

13.1 Definition of bits in the first two bytes

The 10-bit slave address is formed from the first two bytes following a START condition (S) or a repeated START condition (Sr).

The first seven bits of the first byte are the combination 11110XX of which the last two bits (XX) are the two most-significant bits (MSBs) of the 10-bit address; the eighth bit of the first byte is the R / \bar{W} bit that determines the direction of the message. A 'zero' in the least significant position of the first byte means that the master will write information to a selected slave. A 'one' in this position means that the master will read information from the slave.

If the R / \bar{W} bit is 'zero', then the second byte contains the remaining 8 bits (XXXXXXXX) of the 10 -bit address. If the R/W bit is 'one', then the next byte contains data transmitted from a slave to a master.

13.2 Formats with 10-bit addresses

Various combinations of read/write formats are possible within a transfer that includes 10-bit addressing. Possible data transfer formats are:

- Master-transmitter transmits to slave-receiver with a 10-bit slave address. The transfer direction is not changed (Fig.29). When a 10 -bit address follows a START condition, each slave compares the first seven bits of the first byte of the slave address (11110XX) with its own address and tests if the eighth bit (R / \bar{W} direction bit) is 0 . It is possible that more than one device will find a match and generate an acknowledge (A1). All slaves that found a match will compare the eight bits of the second byte of the slave address ($\mathrm{XXXXXXXX)} \mathrm{with} \mathrm{their}$

Fig.30 A master-receiver addresses a slave-transmitter with a 10-bit address

Fig. 31 Combined format. A master addresses a slave with a 10-bit address, then transmits data to this slave and reads data from this slave
own addresses, but only one slave will find a match and generate an acknowledge (A2). The matching slave will remain addressed by the master until it receives a STOP condition (P) or a repeated START condition (Sr) followed by a different slave address

- Master-receiver reads slavetransmitter with a 10-bit slave address. The transfer direction is changed after the second R/W bit (Fig.30). Up to and including acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a

Fig. 32 Combined format. A master transmits data to two slaves, both with 10-bit addresses

Fig. 33 Combined format. A master transmits data to two slaves, one with a 7-bit address, and one with a 10-bit address
slave-receiver. After the repeated START condition (Sr), a matching slave remembers that it was addressed before. This slave then checks if the first seven bits of the first byte of the slave address following Sr are the same as they were after the START condition (S), and tests if the eighth (R / \bar{W}) bit is 1 . If there is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3.

The slave-transmitter remains addressed until it receives a STOP condition (P) or until it receives another repeated START condition (Sr) followed by a different slave address. After a repeated START condition (Sr), all the other slave devices will also compare the first seven bits of the first byte of the slave address (11110XX) with their own addresses and test the eighth (R / \bar{W}) bit. However, none of them will be addressed because $\mathrm{R} / \overline{\mathrm{W}}=1$ (for 10-bit
devices), or the 11110XX slave address (for 7-bit devices) does not match)

- Combined format. A master transmits data to a slave and then reads data from the same slave (Fig.31). The same master occupies the bus all the time. The transfer direction is changed after the second R/W bit
- Combined format. A master transmits data to one slave and then transmits data to another slave (Fig.32). The same master occupies the bus all the time
- Combined format. 10-bit and 7-bit addressing combined in one serial transfer (Fig.33). After each START condition (S), or each repeated START condition (Sr), a 10-bit or 7-bit slave address can be transmitted. Figure 33 shows how a master-transmits data to a slave with a 7-bit address and then transmits data to a second slave with a 10-bit address. The same master
occupies the bus all the time.

NOTES:

1) Combined formats can be used, for example, to control a serial memory. During the first data byte, the internal memory location has to be written. After the START condition and slave address is repeated, data can be transferred.
2) All decisions on auto-increment or decrement of previously accessed memory locations etc. are taken by the designer of the device.
3) Each byte is followed by an acknowledgement bit as indicated by the A or $\overline{\mathrm{A}}$ blocks in the sequence.
4) $I^{2} \mathrm{C}$-bus compatible devices must reset their bus logic on receipt of a START or repeated START condition such that they all anticipate the sending of a slave address.

14.0 GENERAL CALL ADDRESS AND START BYTE

The 10-bit addressing procedure for the $I^{2} \mathrm{C}$-bus is such that the first two bytes after the START condition (S) usually determine which slave will be selected by the master. The exception is the 'general call' address 00000000 ($\mathrm{H}^{\prime} 00^{\prime}$). Slave devices with 10 -bit addressing will react to a 'general call' in the same way as slave devices with 7 -bit addressing (see Section 9.1.1).

Hardware masters can transmit their 10-bit address after a 'general call'. In this case, the 'general call' address byte is followed by two successive bytes containing the 10 -bit address of the master-transmitter. The format is as shown in Fig. 17 where the first DATA byte contains the eight least-significant bits of the master address.

The START byte 00000001 ($\mathrm{H}^{\prime} 01^{\prime}$) can precede the 10 -bit addressing in the same way as for 7 -bit addressing (see Section 9.1.2).

15.0 ELECTRICAL SPECIFICATIONS AND TIMING FOR I/O STAGES AND BUS LINES

The I/O levels, I/O current, spike suppression, output slope control and pin capacitance for $\mathrm{I}^{2} \mathrm{C}$-bus devices are given in Table 3. The $1^{2} \mathrm{C}$-bus timing is given in Table 4. Figure 34 shows the timing definitions for the $I^{2} \mathrm{C}$-bus.

The noise margin for HIGH and

LOW levels on the bus lines for fast-mode devices are the same as those specified in Section 10.0 for standard-mode $I^{2} \mathrm{C}$-bus devices.

The minimum HIGH and LOW periods of the SCL clock specified in Table 4 determine the maximum bit transfer rates of 100 kbit/s for standard-mode devices and $400 \mathrm{kbit} / \mathrm{s}$ for fast mode devices. Standard-mode
and fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus devices must be able to follow transfers at their own maximum bit rates, either by being able to transmit or receive at that speed or by applying the clock synchronization procedure described in Section 7 which will force the master into a wait state and stretch the LOW period of the SCL signal. Of course, in the latter case the bit transfer rate is reduced.

Table 3 Characteristics of the SDA and SCL I/O stages for $1^{2} \mathrm{C}$-bus devices

Parameter	Symbol	standard-mode devices		fast-mode devices		Unit
		Min.	Max.	Min.	Max.	
LOW level input voltage: fixed input levels V_{DD}-related input levels	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & -0.5 \\ & -0.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 0.3 V_{D D} \\ \hline \end{gathered}$	$\begin{aligned} & -0.5 \\ & -0.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 0.3 V_{D D} \end{gathered}$	v
HIGH level input voltage: fixed input levels V_{DD}-related input levels	V_{IH}	$\begin{gathered} 3.0 \\ 0.7 V_{D D} \end{gathered}$	$\begin{aligned} & * 1) \\ & * 1) \end{aligned}$	$\begin{gathered} 3.0 \\ 0.7 \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	$\begin{aligned} & \star 1) \\ & \star+1) \end{aligned}$	v
Hysteresis of Schmitt trigger inputs: fixed input levels V_{DD}-related input levels	$\mathrm{V}_{\text {hys }}$	$\begin{aligned} & \text { n/a } \\ & \text { n/a } \end{aligned}$	$\begin{aligned} & \text { n/a } \\ & \text { n/a } \end{aligned}$	$\begin{gathered} 0.2 \\ 0.05 \mathrm{~V}_{\mathrm{DD}} \end{gathered}$		v
Pulse width of spikes which must be suppressed by the input filter	$t_{\text {SP }}$	n/a	n/a	0	50	ns
LOW level output voltage (open drain or open collector): at 3 mA sink current at 6 mA sink current	$\begin{aligned} & \mathrm{v}_{\mathrm{OL1}} \\ & \mathrm{v}_{\mathrm{OLL}} \end{aligned}$	$\begin{gathered} 0 \\ \text { n/a } \end{gathered}$	$\begin{aligned} & 0.4 \\ & \mathrm{n} / \mathrm{a} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	v
Output fall time from $\mathrm{V}_{1 \mathrm{H}_{\text {min }}}$ to $\mathrm{V}_{\mathrm{IL} \max }$ with a bus capacitance from 10 pF to 400 pF : with up to 3 mA sink current at $\mathrm{V}_{\mathrm{OL} 1}$ with up to 6 mA sink current at $\mathrm{V}_{\mathrm{OL} 2}$	$\mathrm{t}_{\text {of }}$	n/a	$\begin{gathered} 250^{3)} \\ \text { n/a } \end{gathered}$	$\begin{aligned} & 20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{2)} \\ & 20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{2)} \end{aligned}$	$\begin{aligned} & 250 \\ & 250^{3} \end{aligned}$	ns
Input current each $1 / O$ pin with an input voltage between 0.4 V and $0.9 \mathrm{~V}_{\text {DDmax }}$	I_{i}	-10	10	-10^{4}	$10^{4)}$	$\mu \mathrm{A}$
Capacitance for each I/O pin	C_{i}	-	10	-	10	pF

$n / a=$ not applicable

1) maximum $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD} \max }+0.5 \mathrm{~V}$
2) $\mathrm{C}_{\mathrm{b}}=$ capacitance of one bus line in pF .
3) The maximum t_{f} for the SDA and SCL bus lines quoted in Table 4 (300 ns) is longer than the specified maximum $t_{\text {of }}$ for the output stages (250 ns). This allows series protection resistors $\left(R_{s}\right)$ to be connected between the SDA/SCL pins and the SDA/SCL bus lines as shown in Fig. 37 without exceeding the maximum specified $t_{\text {. }}$.
${ }^{4}$) I / O pins of fast-mode devices must not obstruct the SDA and SCL lines if $V_{D D}$ is switched off.

Table 4 Characteristics of the SDA and SCL bus lines for I^{2} C-bus devices

Parameter	Symbol	Standard-mode $1^{2} \mathrm{C}$-bus		Fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus		Unit
		Min.	Max.	Min.	Max.	
SCL clock frequency	$\mathrm{f}_{\mathrm{SCL}}$	0	100	0	400	kHz
Bus free time between a STOP and START condition	$\mathrm{t}_{\text {BUF }}$	4.7	-	1.3	-	$\mu \mathrm{s}$
Hold time (repeated) START condition. After this period, the first clock pulse is generated	$\mathrm{t}_{\text {HD } ; \text { STA }}$	4.0	-	0.6	-	$\mu \mathrm{s}$
LOW period of the SCL clock	tow	4.7	-	1.3	-	$\mu \mathrm{s}$
HIGH period of the SCL clock	$t_{\text {HIGH }}$	4.0	-	0.6	-	$\mu \mathrm{s}$
Set-up time for a repeated START condition	$t_{\text {SU; STA }}$	4.7	-	0.6	-	$\mu \mathrm{s}$
Data hold time: for CBUS compatible masters (see NOTE, Section 9.1.3) for $1^{2} C$-bus devices	$\mathrm{t}_{\text {HD; DAT }}$	$\begin{aligned} & 5.0 \\ & 0^{1)} \end{aligned}$	-	0^{-1}	$0.9^{2)}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
Data set-up time	$\mathrm{t}_{\text {SU;DAT }}$	250	-	$100^{3)}$	-	ns
Rise time of both SDA and SCL signals	t_{r}	-	1000	$\begin{gathered} 20+ \\ 0.1 \mathrm{C}_{\mathrm{b}}{ }^{4)} \end{gathered}$	300	ns
Fall time of both SDA and SCL signals	t_{4}	-	300	$\begin{gathered} 20+ \\ 0.1 \mathrm{C}_{\mathrm{b}}{ }^{4)} \\ \hline \end{gathered}$	300	ns
Set-up time for STOP condition	$\mathrm{t}_{\text {SU; }}$ STO	4.0	-	0.6	-	$\mu \mathrm{s}$
Capacitive load for each bus line	C_{b}	-	400	-	400	pF

All values referred to $\mathrm{V}_{\text {IHmin }}$ and $\mathrm{V}_{\text {ILmax }}$ levels (see Table 3).
${ }^{1)}$ A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the $\mathrm{V}_{1 H \min }$ of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.
2) The maximum $t_{H D ; D A T}$ has only to be met if the device does not stretch the LOW period ($t_{\text {LOW }}$) of the SCL signal.
${ }^{3)}$ A fast-mode $I^{2} \mathrm{C}$-bus device can be used in a standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus system, but the requirement $\mathrm{t}_{\text {Su;DAT }} \geq 250$ ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{r \text { max }}+t_{\text {SU;DAT }}=$ $1000+250=1250 \mathrm{~ns}$ (according to the standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus specification) before the SCL line is released.
4) $\mathrm{C}_{\mathrm{b}}=$ total capacitance of one bus line in pF .

Fig. 34 Definition of timing on the $I^{2} C$-bus

16.0 APPLICATION INFORMATION

16.1 Slope-controlled output stages of fast-mode $I^{2} \mathrm{C}$-bus devices
The electrical specifications for the I / Os of $\mathrm{I}^{2} \mathrm{C}$-bus devices and the characteristics of the bus lines connected to them are given in Tables 3 and 4 in Section 15.

Figures 35 and 36 show examples of output stages with slope control in CMOS and bipolar technology. The slope of the falling edge is defined by a Miller capacitor (C1) and a resistor (R1). The typical values for C1 and R1 are indicated on the diagrams. The wide tolerance for output fall time $t_{\text {of }}$ given in Table 3 means that the design is not critical. The fall time is only slightly influenced by the external bus load $\left(C_{b}\right)$ and external pull-up resistor $\left(R_{p}\right)$. However, the rise time (t_{r}) specified in Table 4 is mainly determined by the bus load capacitance and the value of the pull-up resistor.
16.2 Switched pull-up circuit for fast-mode $I^{2} \mathrm{C}$-bus devices The supply voltage (V_{DD}) and the maximum output LOW level determine the minimum value of pull-up resistor R_{p} (see Section 10.1). For example, with a supply voltage of $V_{D D}=5 \mathrm{~V} \pm 10 \%$ and $\mathrm{V}_{\text {OLmax }}=0.4 \mathrm{~V}$ at $3 \mathrm{~mA}, \mathrm{R}_{\mathrm{p} \text { min }}=$ $(5.5-0.4) / 0.003=1.7 \mathrm{k} \Omega$. As shown in Fig.38, this value of R_{p} limits the maximum bus capacitance to about 200 pF to meet the maximum t_{r} requirement of 300 ns . If the bus has a higher capacitance than this, a switched pull-up circuit as shown in Fig. 37 can be used.

The switched pull-up circuit in Fig. 37 is for a supply voltage of $V_{D D}=5 \mathrm{~V} \pm 10 \%$ and a maximum capacitive load of 400 pF . Since it is controlled by the bus levels, it needs no

FAST - MODE $I^{2} \mathrm{C}$ BUS DEVICES
Fig. 37 Switched pull-up circuit

Fig. 38 Maximum value of R_{p} as a function of bus capacitance for meeting the $t_{r \text { max }}$ requirement for a fast-mode $I^{2} C$-bus
-additional switching control signals. During the rising/falling edges, the bilateral switch in the HCT4066 switches pull-up resistor $R_{p 2}$ on/off at bus levels between 0.8 V and 2.0 V . Combined resistors $R_{p 1}$ and $R_{p 2}$ can pull-up the bus line within the maximum specified rise time $\left(\mathrm{t}_{\mathrm{r}}\right)$ of 300 ns . The maximum sink current for the driving $I^{2} \mathrm{C}$-bus device will not exceed 6 mA at $\mathrm{V}_{\mathrm{OL2} 2}=0.6 \mathrm{~V}$, or 3 mA at $\mathrm{V}_{\mathrm{OL} 1}=0.4 \mathrm{~V}$.

Series resistors R_{s} are optional. They protect the I/O stages of the $1^{2} \mathrm{C}$-bus devices from high-voltage spikes on the bus lines, and minimize crosstalk and undershoot of the bus line signals. The maximum value of R_{s} is determined by the maximum permitted voltage drop across this resistor when the bus line is switched to the LOW level in order to switch off $R_{p 2}$.

16.3 Wiring pattern of the bus lines

In general, the wiring must be so chosen that crosstalk and interference to/from the bus lines is minimized. The bus lines are most susceptible to crosstalk and
interference at the HIGH level because of the relatively high impedance of the pull-up devices.

If the length of the bus lines on a PCB or ribbon cable exceeds 10 cm and includes the $V_{D D}$ and $V_{\text {SS }}$ lines, the wiring pattern must be:

SDA
$V_{D D}$
V_{sS}
SCL
If only the V_{SS} line is included, the wiring pattern must be:

SDA
$V_{\text {ss }}$
SCL \qquad
These wiring patterns also result in identical capacitive loads for the SDA and SCL lines. The $V_{S S}$ and $V_{D D}$ lines can be omitted if a PCB with a $V_{S S}$ and/or $V_{D D}$ layer is used.

If the bus lines are twistedpairs, each bus line must be twisted with a V_{SS} return. Alternatively, the SCL line can be twisted with a $V_{S S}$ return, and the SDA line twisted with a $V_{D D}$
return. In the latter case, capacitors must be used to decouple the $V_{D D}$ line to the $V_{S S}$ line at both ends of the twisted pairs.

If the bus lines are shielded (shield connected to V_{SS}), interference will be minimized. However, the shielded cable must have low capacitive coupling between the SDA and SCL lines to minimize crosstalk.
16.4 Maximum and minimum values of resistors R_{p} and R_{s} for fast-mode $I^{2} C$-bus devices The maximum and minimum values for resistors R_{p} and R_{s} connected to a fast-mode $I^{2} C$-bus can be determined from Fig.25, 26 and 28 in Section 10.1. Because a fast-mode $I^{2} \mathrm{C}$-bus has faster rise times (t_{r}) the maximum value of R_{p} as a function of bus capacitance is less than that shown in Fig. 27 The replacement graph for Fig. 27 showing the maximum value of R_{p} as a function of bus capacitance (C_{b}) for a fast mode $I^{2} \mathrm{C}$-bus is given in Fig. 38.

17.0 DEVELOPMENT TOOLS AVAILABLE FROM PHILIPS

17.1 $1^{2} C$ evaluation boards

Product	Description			
OM4151/	I 2 C-bus evaluation board with microcontroller, LCD, LED, Par. I/O, SRAM, EEPROM, Clock, DTMF			
S87C00KSD				
generator, AD/DA conversion.			OM5027	I^{2} C-bus evaluation board for low-voltage, low-power ICs \& software
:---:	:---			

17.2 Development tools for 80C51-based systems

Product	Description
PDS51 A	board-level, full featured, in-circuit emulator: RS232 interface to PC, universal motherboard, controlled via terminal emulation
17.3 Development tools for 68000-based systems	
Product	Description
OM4160	Microcore-1 demonstration/evaluation board: SCC68070, 128K EPROM, 512K DRAM, I ${ }^{2}$ C, RS-232C, VSC SCC66470, resident monitor
OM4160/3	Microcore-3 demonstration/evaluation board: 128 K EPROM, 64 K SRAM, $\mathrm{I}^{2} \mathrm{C}$, RS-232C, $40 \mathrm{I} / \mathrm{O}$ (inc. 8051 -compatible bus), resident monitor
OM4160/3QFP	Microcore-3 demonstration/evaluation board for 9XC101 (QFP80 package)

17.4 PC controlled $\mathrm{I}^{2} \mathrm{C}$ analyzers

Product	Description
OM1022	PC I ${ }^{2} \mathrm{C}$-bus analyzer with multi-master capability. Hardware and software (runs on IBM or compatible PC) to experiment with and analyze the behaviour of the $1^{2} \mathrm{C}$-bus (includes documentation)
OM4777	Similar to OM1022 but for single-master systems only.

18.0 SUPPORT LITERATURE

Data handbooks	Ordering code
Semiconductors for radio and audio systems IC01 1997	939775001121
Semiconductors for television and video systems $\begin{aligned} & \text { IC02a } 1995 \\ & \text { IC02b } 1995 \\ & \text { IC02c } 1995 \end{aligned}$	939865263011 939865264011 939865265011
Semiconductors for wired telecom systems $\begin{aligned} & \text { IC03a } 1997 \\ & \text { IC03b } 1997 \end{aligned}$	939775000839 939775000811
8048-based 8-bit microcontrollers IC14 1994	939865240011
Semiconductors for wireless communications IC17 1997	939775001002
Semiconductors for in-car electronics IC18 1996	939775000418
ICs for data communications $\text { IC19 } 1995$	939775000138
80C51-based 8-bit microcontroilers IC20 1997	939775000963
Multimedia ICs IC22 1997	939775001061
Brochures/leaflets/lab. reports/books etc.	
$1^{2} \mathrm{C}$-bus: can you make the distance	93977500008
$1^{2} \mathrm{C}$-bus multi-master \& single-master controller kits	939775000953
Desktop video (CD-ROM)	939775000644
80 C 51 core instructions quick reference	939851076011
80C51 microcontroller selection guide	939775001587
OM5027 $\mathrm{I}^{2} \mathrm{C}$-bus evaluation board for low-voltage, low-power ICs \& software	939870698011
P90CL301 $\mathrm{I}^{2} \mathrm{C}$ driver routines	AN94078
User manual of Microsoft Pascal I ${ }^{2} \mathrm{C}$-bus driver (MICDRV4.OBJ)	ETV/IR8833
C routines for the PCF8584	AN95068
Using the PCF8584 with non-specified timings and other frequently asked questions	AN96040
User's guide to $1^{2} \mathrm{C}$-bus control programs	ETV8835
The $\mathrm{I}^{2} \mathrm{C}$-bus from theory to practice (book and disk)	Author: D. Paret Published by: John Wiley \& Son ISBN: 0471962686

19.0 APPLICATION OF THE $\mathrm{I}^{2} \mathrm{C}$-BUS IN THE ACCESS.bus SYSTEM

The ACCESS.bus (bus for connecting ACCESSory devices to a host system) is an $I^{2} \mathrm{C}$-bus based open-standard serial interconnect system jointly developed and defined by Philips and Digital Equipment Corporation. It is a lower-cost alternative to an RS-232C interface for connecting up to 14 inputs/outputs from peripheral equipment to a desk-top computer or workstation over a distance of up to eight metres. The peripheral equipment can be relatively low speed items such as keyboards, hand-held image scanners, cursor positioners, bar-code readers, digitizing tablets, card readers or modems.

All that's required to implement an ACCESS.bus is an 8051-family microcontroller with an $I^{2} \mathrm{C}$-bus interface, and a 4-wire cable
carrying a serial data (SDA) line, a serial clock (SCL) line, a ground wire and a 12 V supply line (500 mA max.) for powering the peripherals.

Important features of the ACCESS.bus are that the bit rate is only about 20% less than the maximum bit rate of the $I^{2} \mathrm{C}$-bus, and the peripherals don't need separate device drivers. Also, the protocol allows the peripherals to be changed by 'hot-plugging' without re-booting.

As shown in Fig.39, the ACCESS.bus protocol comprises three levels: the $I^{2} \mathrm{C}$-bus protocol, the base protocol, and the application protocol.

The base protocol is common to all ACCESS.bus devices and defines the format of the ACCESS.bus message. Unlike the $1^{2} \mathrm{C}$-bus protocol, it restricts masters to sending and slaves to receiving data. One item of appended information is a
checksum for reliability control. The base protocol also specifies seven types of control and status messages which are used in the system configuration which assigns unique addresses to the peripherals without the need for setting jumpers or switches on the devices.

The application protocol defines the message semantics that are specific to the three categories of peripheral device (keyboards, cursor locators, and text devices which generate character streams e.g. card readers) which are at present envisaged.

Philips offers computer peripheral equipment manufacturers technical support, a wide range of $\mathrm{I}^{2} \mathrm{C}$-bus devices and development kits for the ACCESS.bus. Hardware, software and marketing support is also offered by DEC.

Fig. 39 ACCESS.bus protocol hierarchy

$I^{2} \mathrm{C}$ peripheral selection guide

GENERAL PURPOSE ICs

LCD Drivers

OM4085	Universal LCD driver for low multiplex rates
PCF211XC family LCD drivers	
PCF2113	LCD controller/drivers
PCF2114X/16X	LCD controller/drivers
PCF2116	LCD controller/driver; 2 line $\times 24$ character,
	4 line $\times 12$ character display
PCF8558	Universal LCD driver for small graphic panels
PCF8566	96-segment LCD driver; 1:1-1:4 Mux rates
PCF8568	LCD row driver for dot matrix displays
PCF8569	LCD Column driver for dot matrix displays
PCF8576	160-segment LCD driver 1:1-1:4 Mux rates
PCF8577C	64-segment LCD driver; $1: 1-1: 2$ Mux Rates
PCF8578/79	Row/column LCD dot-matrix driver/display
	$1: 8-1: 32$ Mux rates

LED Drivers

SAA1064 4-digit LED driver

I/O Expanders

P82B715	$1^{2} \mathrm{C}$ bus extender
PCF8574/A	8 -bit remote $1 / O$ port $\left(1^{2} \mathrm{C}\right.$-bus to parallel converter)
PCF8584	8 -bit parallel to $\mathrm{I}^{2} \mathrm{C}$ converter
SAA1064	4-digit LED driver with $\mathrm{I}^{2} \mathrm{C}$-bus interface
SAA1300	5-bit high-current driver

Data Converters

PCF8591	4-channel, 8-bit Mux ADC + one DAC
TDA8442	Quad 6-bit DAC Octal 6-bit DAC
TDA8444	
Memory	
PCA8581	128-byte EEPROM PCB2421
1K dual mode serial EEPROM	
PCF85116-3	2048×8-bit CMOS EEPROMs with I^{2} C-bus interface
PCF8522E	256×8-bit CMOS EEPROM with I^{2} C-bus interface
PCF8524	512×8-bit CMOS EEPROM with I^{2} C-bus interface
PCF8570C	256 -byte static RAM PCF8582
256-byte EEPROM	
PCF8583	256 -byte RAM/clock/calendar
PCF8594	512 -byte EEPROM
PCF8598	1K-byte EEPROM

Clocks/Calendars

PCF8573 Clock/calendar
PCF8583 Clock/calendar/256-byte RAM
PCF8593 Low power clock calendar

[^2]| 68000-Based CMOS Microcontrollers | |
| :---: | :---: |
| 68070 | 68000 CPU/MMU/UART/DMA/timer |
| 93CXXX | UST/120/34k ROM/512 RAM |
| 80C51-Based CMOS Microcontrollers* | |
| 83CL267/167 | 12k ROM, 256 RAM OSD |
| 83CL268/168 | 12k ROM, 256 RAM OSD |
| $8 \times C L 410$ | 4k ROM/128 RAM, low power |
| 8XC528 | 32k ROM/512 RAM, T2, WD |
| 8XC542 | 4k ROM/128 RAM, ACCESS.bus |
| $8 \mathrm{XC552}$ | 256-byte RAM/8k ROM/ADC/UART/PWM |
| 8XCL580 | 6k ROM, 256 RAM, low power |
| 8XC652 | 256-byte RAM/8k ROM, UART |
| 8XC654 | 256-byte RAM/16kROM, UART |
| $8 \mathrm{XC751}$ | 64-byte RAM/2k ROM |
| 8XC752 | 64-byte RAM/2k ROM, ADC/PWM |

8048 Instruction-Set Based CMOS Microcontrollers

PCD3311C/12C DTMF/modem/musical-tone generators
PCF84C00 256-byte RAM/bond-out version for prototype development
PCF84C21
PCF84C41
PCF84C81
PCF84C85
64-byte RAM/2k ROM
128-byte RAM/2k ROM
256-byte RAM/8k ROM
256-byte RAM/8k ROM/Extended I/O

MULTIMEDIA ICs

Desktop Videos

SAA7151B	8-bit digital multistandard TV decoder
SAA7152	Digital comb filter
SAA7157	Clock signal generation circuit for digital video systems; for use with SAA71xx
SAA7165	Video enhancement and D/A processor including digital CTI
SAA7186	Digital video scaler
SAA7191	Digital multistandard TV decoder, square pixel
SAA7191B	SAA7191 variant
SAA7192A	Digital colour space converter with independent
SAA7199B	LHT digital multistandard encoder
SAA9051	Digital multistandard (PAL/NTSC) colour decoder
SAA9056	Digital SECAM colour decoder
SAA9057B	Clock signal generation circuit for digital video systems; for use with SAA90xx
SAA9065	Video enhancement and D/A processor
TDA4680	Video processor
TDA8440	Video/audio switch

$I^{2} \mathrm{C}$ peripheral selection guide

Video/Radio/	Audio
SAA4700	VPS dataline processor
SA5751	Audio Processor/Filter Controller
SAA5243	Computer controlled text circuit
SAA5246	Computer controlled text circuit
SAA5248	Integrated teletext decoder and VPS slicer
SAA5252	Closed caption
SAA7158	Line frequency processor and DAC circuit
SAA7194	Digital video decoder/scaler
SAA9042	Digital video teletext (DVTB) processor
SAB3035/36/37	Digital tuning circuits for computer-controlled TV
TDA1551	$2 \times 22 \mathrm{~W}$ BTL audio power amp
TDA1551Q	2 X 22 W BTL audio power amp with diagnostic
TDA4670	Picture signal improvement circuit
TDA4671	Picture signal improvement circuit
TDA4681	Video processor with automatic cut-off and white level control
TDA4685	Video processor
TDA4686	Video processor (100 Hz)
TDA4687	Video processor
TDA8415	TV/VCR stereo/dual sound processor
TDA8416	TV/VCR stereo/dual sound processor
TDA8417	TV/VCR stereo/dual sound processor
TDA8421	Audio processor with a loudspeaker channel and a headphone channel
TDA8425	Audio processor with a loudspeaker channel only
TDA8426	Hi-fi stereo audio processor
TDA8433	TV deflection processor
TDA8540	4×4 video switch matrix

TDA9140	Alignment-free multistandard decoder
TEA6320	4 input Tone/volume controller with fader control
TEA6330	Tone/volume controller
TSA6060	A/M Frequency Synthesizer for RDS.
TDA8433	Deflection processor
TDA8442	Interface for color decoders
TDA8443/A	YUV/RGB matrix switch
TDA8461	PAL/NTSC color decoder and RGB processor
TDA8466	PAL/NTSC color decoder and RGB processor
TDA9150	Deflection processor
TDA9860	Sound controller w/ 4 inputs
TEA6100	FM/IF and digital tuning IC for computer-controlled radio
TEA6300	Sound fader control and preamplifier/source selector for car radio
TSA5511/12/14	PLL frequency synthesizer for TV
TSA6057	PLL frequency synthesizer for radio
Telecom	
NE5750/51	Audio processor pair
NE5752	3 V 5750 variant (samples Q4 92)
NE5753	3 V 5751 variant (samples Q4 92)
PCD3311/12	Tone generator (DTMF/modem/musical)
PCD3341	Advanced 10 to 110-number repertory dialer with LCD control
PCD4440	Analog voice scrambler/descrambler
UMA1000T	Data processor for mobile telephones
UMA1014T	1 GHz frequency synthesizer for mobile telephones
UMF1009	Frequency synthesizer

Programming the I^{2} C Interface

When intelligent devices need to communicate

Mitchell Kahn

The Inter-Integrated Circuit Bus ("I ${ }^{2} \mathrm{C}$ Bus" for short) is a twowire, synchronous, serial interface designed primarily for communication between intelligent IC devices. The $I^{2} \mathrm{C}$ bus offers several advantages over "traditional" serial interfaces such as Microwire and RS-232. Among the advanced features of $I^{2} \mathrm{C}$ are multimaster operation, automatic baud-rate adjustment, and "plug-and-play" network extensions.
Mention the $I^{2} \mathrm{C}$ bus to a group of American engineers and you'll likely get hit with an abundance of blank stares. I say American engineers because until recently the $I^{2} \mathrm{C}$ bus was primarily a European phenomenon. Within the last year, however, interest in $I^{2} \mathrm{C}$ in the United States has risen dramatically. Embedded systems designers are realizing the cost, space, and power savings afforded by robust serial interchip protocols.
The idea of serial interconnect between integrated circuits is not new. Many semiconductor vendors offer devices designed to "talk" via serial links with other processors. Current examples include Microwire (National Semiconductor), SPI (Motorola), and most recently Echelon's Neuron chips. In all cases, the goal is the same: to reduce the wiring and pincount necessary for a parallel data bus. It simply does not make

Mitch is a senior strategic development engineer for Intel and can be contacted at 5000 W. Chandler Blvd.. Chandler, AZ 85226 or at mkabn(1)sedona. intel.com.

economic sense to route a full-speed parallel bus to a slow peripheral.

Unfortunately for most serial-buscapable devices, the choice of a bus protocol will dictate the CPU architecture. For example, only two CPU architectures implement an on-chip $I^{2} \mathrm{C}$ port. If your choice of architecture precludes use of these architectures, then your only option is to implement the protocol in software.
The software implementation of the $I^{2} \mathrm{C}$ protocol discussed in this article came about as a result of an implicit challenge during a staff meeting. One of our managers proposed that we hire a consultant to write a software $\mathrm{I}^{2} \mathrm{C}$ driver for the Intel 80 C 186 EB embedded processor. Being somewhat new to the
group, I took exception (although not verbally!) to his suggestion. A weekend of intense hacking later, I presented the first prototype of the driver. My reward? I got to write a generic version of the driver for general distribution.

Design Trade-offs

Three distinct tasks are involved in implementing the $\mathrm{I}^{2} \mathrm{C}$ protocol: watching the bus, waiting for a specific amount of time, and driving the bus. This became apparent when I flowcharted 1 byte of a typical bus transaction: see Figure 1. The time delays associated with creating the bus waveforms would normally have been relegated to the 80C186EB's on-chip timers. I could not, however, assume that the end users of my code would be able to spare a timer for the software $I^{2} \mathrm{C}$ port. I had to forego the elegance (and to some extent accuracy) of the on-chip timers for the sledgehammer approach of software timing loops. Luckily, the $I^{2} \mathrm{C}$ protocol is extremely forgiving with regard to timing accuracy. The decision to use assembly instead of a high-level language stemmed directly from the need to control program-execution time. I had neither the time nor the inclination to handtune high-level code.

Having made the decision to use assembly language, I faced my next problem: Could I make the code portable? Intel offers a plethora of CPU and em-bedded-controller architectures. Would it be possible to make the code somewhat portable between disparate assembly languages? I found my answer in the use of macros.
\longrightarrow

All the basic building blocks of the $I^{2} \mathrm{C}$ protocol (watching, waiting, and doing) can be compartmentalized into distinct macros. The algorithms that make up the $I^{2} \mathrm{C}$ driver are written with these macros as the framework. You don't need to understand the intricacies of the $I^{2} \mathrm{C}$ protocol to port these routinesyou just need to know how to make your CPU watch, wait, and do.

For example, a 4.7_uS delay is a common event during a transfer. The macro \%Wait_4_7_uS implements just such a delay by using the 8086 LOOP instruction with a couple of NOPs for tuning; see Example 1(a). Total execution time is readily calculated from instruction timing tables. The same macro is ported to the i960 architecture in Example 1(b). Although I am a neophyte when it

Figure 1: Flowchart of process for transmission of a single bit.
comes to i960 programming, I had no problems porting the core macros.

Hardware Dependencies

A few words about the target hardware are in order before I discuss the code. Any implementation of the $I^{2} \mathrm{C}$ protocol requires two open-drain (or open-collector), bidirectional port pins for the Serial Clock (SCL) and Serial Data (SDA) lines. The code in this article was designed for the 80 C 186 EB embedded processor, which has two open-drain ports on-chip. The two pins, P2.6 (SCL) and P2.7 (SDA), are part of a larger 8-bit port. Processors without open-drain I/O ports can easily implement $I^{2} \mathrm{C}$ with the addition of an external open-collector latch.
Two special-function registers, P2PIN and P2LTCH. are used to read and write the state of the port pins. The 80C186EB allows the special-function registers to be located anywhere in either memory or I/O space. For this implementation, I chose to leave the registers in I/O space, even though this limited my choice of instructions. The 80186 architecture does not provide for read-modify-write instructions in I/O space (an AND to I/O, for example); it can only load and store (IN and OUT). So why did I limit myself? Again, I had to assume the lowest common denominator for our customers when designing my code.

Building the Framework

Early on in development. I decided to partition my code macros according to physical processes invoived in the $\mathrm{I}^{2} \mathrm{C}$
protocol. Code not directly involved in mimicking the actions of a hardware $I^{2} \mathrm{C}$ port was not written as macros. For example, the code necessary to access the stack frame is not written as a macro. whereas the code needed to toggle the clock line is. This was done to isolate architecture-dependent code sequences from the more generic $I^{2} \mathrm{C}$ functions. Macros were also not used for "gray areas" such as the shifting of serial data, which is both architecture dependent and physical in nature. The $I^{2} \mathrm{C}$ functions that passed the litmus test fell into the three aforementioned categories of watching, waiting, and doing.

The "waiting" macros provide a fixedminimum time delay. They are implemented using a simple LOOP \$ delay. The LOOP instruction decrements the CX register, then branches to the target (in this case itself) if the result is nonzero. The delay is $(\mathrm{n}-1) * 15+5$ clocks, where n is the starting value in the CX register. All the delays were calculated assuming a $16-\mathrm{MHz}$ clock rate (62.5 nanoseconds per clock). The code still works at lower CPU speeds because the $\mathrm{I}^{2} \mathrm{C}$ protocol only specifies minimum timings. In fact, the delay macros are only "accurate enough." providing timings as close as I could get to the specified minimum without undue tuning.
The "watching" macros are "spin-onbit" polling loops. These pieces of code wait for a transition on the appropriate $\mathrm{I}^{2} \mathrm{C}$ line to occur before allowing execution to continue. There are two polling macros for each of the two $I^{2} C$ signal lines; one for high-to-low transitions and one for low-to-high transitions. The

Example 1: (a) 80C186 implementation of 4.7_uS wait macro; (b) 80960CA implementation of 4.7_uS wait macro.
polling of the SCL line that gives rise to an important feature of $\mathrm{I}^{2} \mathrm{C}$: automatic, bit-by-bit baud-rate adjustment. Any device on the $I^{2} \mathrm{C}$ bus may hold the clock line low in order to stall the bus for more time (a serial wait state). The other devices on the bus are then forced to poll the SCL line until the slow device releases control of the clock.
The \%Get_SDA_Bit macro also falls under the category of "watching." Its function is simply to return the state of the SDA line without waiting for a transition. \%Get_SDA_Bit is used primarily to pull the serial data off the bus when the clock is valid.
The "doing" macros control the state of the clock and data lines. As with the polling macros, there are four types one for each transition of the SCL or SDA lines. The "doing" macros are named to reflect the physical operations they perform. For example, $\%$ Drive_ SCL_Low always drives the SCL line to a low state. \%Release_SCL_High, on the other hand, relinquishes control of the SCL line, which may then be pulled high or driven low by another device on the bus. A read-modify-write operation is used for the bit manipulation so that the other 6 bits of Port 2 are not affected by the $I^{2} C$ operations.

Getting on the Bus

Three procedures were created using the macro framework. I'll describe only the master transmit (Listing One, page

Figure 2: Flowchart for $I^{2} C$ transmit procedure.
106) and master receive functions (Listing Two, page 108), as they represent the needs of most $I^{2} \mathrm{C}$ users. The slave procedure is long and intricate and will not be described here.

An $I^{2} \mathrm{C}$ master transmission proceeds as follows:

1. The master polls the bus to see if it is in use.
2. The master generates a start condition on the bus.
3. The master broadcasts the slave address and expects an acknowledge (ACK) from the addressed slave.
4. The master transmits 0 or more bytes of data, expecting an ACK following each byte.
5 . The master generates a stop condition and releases the bus.

The stack frame for the master transmit procedure, I2CXA.A86, includes a far pointer to the message for transmission, the byte count for the message, and the slave address. Far pointers and far procedure calls are used in all the procedures. No attempt was made to conform to a specific high-level language calling convention, although such a conversion would be trivial. The procedures save only the state of the modified segment registers.
The master transmit procedure performs error checking on the passed parameters before attempting to send the message. The maximum message length is set at 64 Kbytes by the segmentation of the 80186 memory space. This restriction could be removed by including code to handle segment boundaries. The transmit procedure also checks the direction bit in the slave address to ensure that a reception was not erroneously indicated. Errors are reported back to the calling procedure through the AX register. (The exact code is in Listing One.)
The first step in sending a message is getting on the $I^{2} \mathrm{C}$ bus. The macro \%Check_For_Bus_Free simply polls the bus to determine if any transactions are in progress. If so, the transmit procedure aborts with the appropriate error code. If the bus is free, a start condition is generated. The start condition is defined as a high-to-low transition of SDA with SCL high followed by a 4.7_uS pause. These waveforms are easily generated with the \%Drive_SDA_Low and $\%$ Wait_4_7_uS macros.
All communication on the $I^{2} \mathrm{C}$ bus between the stop and start conditions, including addressing and data, takes place as an 8-bit data value followed by an acknowledge bit. This lead to the natural nested loop structure for the body of the procedure; see Figure 2.

The inner loop is responsible for transmitting the 8 bits of each data byte. Each transmitted bit generates the appropriate data (SDA) and clock (SCL) waveforms while checking for both serial wait states and potential bus collisions. A bus collision occurs when two masters attempt to gain control of the

> Three distinct tasks are involved in implementing the I^{2} C protocol: watching the bus, waiting for a specific amount of time, and driving the bus

bus simultaneously. The $\mathrm{I}^{2} \mathrm{C}$ protocol handles collisions with the simple rule: "He who transmits the first 0 on the SDA line wins the bus." To ensure that we (the master transmit procedure) own the bus, the SDA line is checked whenever transmitting a 1 . If a 0 is present, then a collision has occurred (because another master is pulling the line low), and the transfer must be aborted.

Control is turned over to the outer loop after the 8 bits of data (or address) have been transmitted. The outer loop immediately checks for an acknowledge from the addressed slave. The transfer is aborted if an acknowledge is not received. At the end of the ACK bit the message length counter is decremented. Control is returned to the inner loop if more data remains, otherwise stop condition is generated and the master transmit procedure terminates.

Registers are used for intermediate result storage throughout the body of the procedure. For example, the AH register is used to hold the current value (either address or data) being shifted onto the SDA line. This eliminates the need for local data storage within the procedure.

On the Receiving End

The steps involved in an $I^{2} \mathrm{C}$ master receive transaction are almost identical to those in transmission:

1. The master polls the bus to see if it is in use.
2. The master generates a start condi-
tion on the bus.
3. The master broadcasts the slave address and expects an ACK from the addressed slave.

+ . The master receives 0 or more bytes of data and sends an ACK to the slave after each byte. The master signals the last byte by not sending an ACK.

5. The master generates a stop condition and releases the bus.

A far pointer to the receive buffer is passed on the stack to the master receive procedure. The remainder of the parameters-slave address and message count - are identical between the two procedures. The received message length is fixed at 64 Kbvtes, again because of segmentation. The error-checking, bus-availability sensing, and startcondition generation sections of the receive procedure are lifted verbatim from the transmit code.

The structure of the receive procedure differs slightly once the start con-

Figure 3: Flowchart for I2C receive procedure.
dition has been generated: see Figure 3. The slave address is transmitted using one iteration of the transmit procedure's outer loop. Control is passed to the receive loop once the slave acknowledges its address.

The receive loop structure is patterned after that of the transmit procedure. The inner loop controls the clocking of the SCL line and the shifting of the serial data off the SDA line into the CPU. Eight iterations of the inner loop are performed to receive each byte. The outer loop stores the received byte in the buffer, decrements the byte count. then sends an ACK to the slave. The last data bute is signalled by not sending an ACK.

Using the Procedures

Listing Three (page 110) shows a short program that uses both the master transmit and master receive procedures. The call to procedure I2C_XMIT displays the word "bUS-" on a four-character, sev-en-segment display controlled by the SAA $1064 I^{2} \mathrm{C}$ compatible display driver. The time of day is read from the PCF8583 real-time clock by the call to procedure I2C_RECV.

Please note that interrupts must be disabled during the execution of both procedures. An interruption at an inopportune time (when the master is not in control of the clock) could cause the bus to hang. If you need to service interrupts periodically, then enable them only when the clock is driven low.

These procedures have been tested on a wide array of $I^{2} \mathrm{C}$ devices ranging from serial EEPROMs to voice synthesizers. No compatibility problems have been seen to date.

Enhancing the Code

I've kicked around many ideas for enhancing the $I^{2} C$ procedures. You could,

> All the basic building blocks of the $I^{2} C$ protocol (watching, waiting, and doing) can be compartmentalized into distinct macros
for example, replace the timing loops with timed interrupts. That way, the CPU could perform useful work during the pauses. Along the same lines, the pauses could be scheduled using a realtime kernel. again improving CPU throughput. Finally, you could add a high-level language calling structure.

The use of timed interrupts adds an order of magnitude to the complexity of the code, but would be worth it for high-performance, real-time systems.

Conclusion

$I^{2} \mathrm{C}$ is not the only game in town when in comes to serial protocols. Hopefully, some of the techniques presented here will carry over into the development of other "simulated" serial protocols, such as those targeted at the home-automation market. Who knows, maybe someday a snippet of my code may find its way into a truly intelligent dishwasher. I'll be waiting....

References

$I^{2} C$ Bus Specification, Philips Corporation (undated).

DDJ

Reprinted with permission of Dr.

 Dobb's Journal, 1992Entire contents copyright 01992 by M\&T Publishing, Inc.
Unless otherwise noted on specific articles. All rights reserved.

ABP

American Business Press

[^3]
Exp

10
S
erial data buses are a wellproven tool in embedded systems. When you are communicating with slow peripheral devices, serial buses are often often more convenient and less expensive than parallel buses. Additionally, a serial interface featuring a UART or similar intermediary chip can also serve to isolate the CPU from noise and line glitches that might bring down the house if they were to occur on the processor bus. Peripherals can usually be controlled over a much greater distance by a serial bus. The serial approach offers greater resilience and noise immunity.

The price you pay for the convenience is a slower transmission rate and, possibly, the need for added interface circuitry at higher voltages. Many peripheral devices, however, are not in constant communication with the CPU and are not greatly affected by a slower bus. On the hardware side, any added interface circuitry required for serial-bus support is frequently compensated for by the resulting simplicity and tighter pinout of the serial peripherals.

CHOOSING THE PROPER ROUTE

Having decided that a serial bus makes sense for your application, your next task is to select the most appropriate bus and protocol. Here, as with rapid transit, your choice should be determined by your destination. Contrary to what some people may tell you, the choice of bus and protocol depends at least as much on the nature of the system's software as it does on the manufacturer's data sheets.

Consider, for example, the serial-peripheral interface (SPI) and multidrop
> \square
> The choice of bus and protocol depends at least as much on the system's software as it does on the manufacturer's data sheets.

serial buses. Both buses are popular, but each exhibits severly constrained performance in large networks. SPI, as embodied in the Motorola 6800 family, was designed primarily for one-on-one exchanges between two devices. Similarly, the multidrop approach used in various 8051 family members as well as in the $68 \mathrm{HCl1}$ and various UART chips finds its broadest expression in RS485/422 half-duplex transmissions. Multidrop has no deterministic arbitration scheme between multiple masters, leaving it mainly suitable for singlemaster multiple-slave situations. (For more on multidrop, see Jack Woehr's article, "Multidrop Processing," Embedded Systems Programming, March 1990, pp 58-67-ed.) A different approach is to use a three-wire protocol called MicroWire, available from National Semiconductor in Santa Clara, Calif., which is fine for use with addressable peripherals, but requires an individual chip select for each device ad-

Exploring
 $I^{2} \mathrm{C}$

dressed. The added wiring offers no advantage to developers, and the bus offers nothing towards achieving multi-ple-mastering capabilities.

One of the more versatile options available to developers is the $I^{2} \mathrm{C}$ bus promulgated by Philips/Signetics in Sunnyvale. Calif. $\mathrm{I}^{2} \mathrm{C}$ allows you to set

Figure 1
Generation of acknowiedge.
up a multiple-master, multiple-slave communications bus with conflict arbitration. using only twisted-pair wiring to connect the processors and peripherals. Philips/Signetics has moved to support this protocol (which is quite popular in Europe) with a large assortment of interesting doodads, and is actively

Open-collector

 configuration means that the output stage can only pull the node to ground.encouraging other manufacturers to join in the fun. If your next design features a microprocessor that supports $I^{2} \mathrm{C}$ or you are prepared to implement $\left[^{2} \mathrm{C}\right.$ in software using a PIA as this article illustrates, your reward could be a decreased chip count and lower power consumption-along with a comfortable distributed-programming model for peripheral devices.
$I^{2} \mathrm{C}$ is more flexible than the protocols noted above, since only two wires are required to service a large network of addressable masters and addressable slaves. A third wire may be added if interrupt service is required, though Philips/Signetics microprocessors featuring $I^{2} \mathrm{C}$ support feature on-chip circuitry and are capable of interrupting the processor upon receipt of a valid address.

HOW I'C WORKS

The $I^{2} \mathrm{C}$ bus consists of two lines: serial clock (SCL) and serial data (SDA). The beauty of the $I^{2} \mathrm{C}$ bus is that each of these lines is bidirectional. Bidirectional means that everything on the bus is equal, unlike most other serial-peripheral busses such as SPI or MicroWire, which have dedicated inputs and outputs. Each $I^{2} \mathrm{C}$ transaction line (SCL and SDA) is an open collector of output and input. The
pullup resistor is external.
Open-collector (actually, they are CMOS, so "open drain" is more appropriate) configuration means that the output stage can only pull the node to ground. A passive resistor pulls the node high, which means that any number of open collector outputs can be connected together with no deliterious results, because it is impossible to pull more current through the resistor than any one output will produce. Tying outputs together will produce disastrous results if the same procedure is tried with standard TTL outputs. If some of the outputs go high and some are low, the current is unlimited and the logic level of the output will be in an indeterminate state. Tying open-collector outputs together is also known as "wire ORing" because if either A or B goes low, so does the single-output line.

The $I^{2} C$ bus speed is specified at a maximum SCL rate of 100 kHz SCL , which, admittedly, is not blazingly fast. The speed limit stems from the meager ability of a pullup resistor to source current to a long distributed line of peripherals. The 10 -microsecond period allows plenty of time to charge the parasitic capacitance of the wires. (The maximum specified wire capacitance is 400 pF .)

PUTtING It TOGETHER

AIthough $I^{2} \mathrm{C}$ supports multi-ple-master operation, here we use single-master, single-slave transactions to keep the example code simple. The master, as you might imagine, is defined as the unit that initiates the data transfer and generates the SCL signal. (In a multimaster system, each master would be responsible for generating its own SCL signal.) In our example, based strongly on the design of one of our company's single-board computers, the processor doesn't directly support [${ }^{2} \mathrm{C}$. Instead, we've implement-
ed the $I^{2} \mathrm{C}$ bus using a couple of the pins on an 8255 peripheral I/O chip. Consequently, the bulk of the example application code is simple setup and housekeeping routines. |Steven R. Wheeler's example application listing was a bit too long to run in this issue. Interested readers may download it from the library 12 of CLMFORUM on CompuServe or from the Embedded Systems

Programming bulletin board service at (415) 905-2689-ed.)

By definition, a slave can be any processor or peripheral that responds to the master. Slaves all have unique, 7-bit addresses that are based on the device type and the wiring of address pins on the chip. All $I^{2} \mathrm{C}$ peripherals have the top nibble of an address built in. For the PCF8574 I/O-port expanders we're us-

Figure 2 Start and stop conditions.

$1^{2} \mathrm{C}$ Specific information

Exploring ${ }^{2} \mathrm{C}$

ing as examples, the address is $0100 x x x$. The $x x x$ indicates the address selected by the state of the three address pins on the peripheral.
$\mathrm{I}^{2} \mathrm{C}$ serial transactions are always eight bits of data from the transmitter followed by a ninth ACX bit from the receiver. The first step in any I ${ }^{2} \mathrm{C}$ data transfer is to send the address of the slave on the SDA line. This act might seem confusing, since we seem to be mixing 7 -bit addresses with 8 -bit data. In practice, it's quite easy to work with: addresses are always seven bits long, and the eighth bit is used to determine whether the operation is a read or a write. For example, upon transmitting 01000001 to the PCF8574, the slave, assuming it exists on the bus and is strapped to address 000 , will respond with a low on the SDA line after the master has finished with its last (eighth) data bit. The master leaves the line high. If it doesn't find a slave with address 10000 , the data line will remain high and a failed communication attempt can be detected.

If a slave is connected, it begins putting data on the SDA line as soon as it has detected that the eighth bit is set (which is a read request). The SDA line is driven to the data level when the SCL line is low. Data is read when SCL is high, so SDA must not change when SCL is high. This protocol leads to a
simple definition of the start of an $\mathrm{I}^{2} \mathrm{C}$ transaction-SDA goes from high to low when the clock is high.

The end of a transaction is equally simple to detect: SDA goes from low to high when SCL is high. This cycle leaves SDA and SCL in the high state, which is necessary if any other opencollector $I^{2} \mathrm{C}$ peripheral wants access to the bus. Figure 2 illustrates the start and stop conditions of an $I^{2} \mathrm{C}$ bus transaction.

ADDITIONAL DESIGN ROUTES

As you've seen, the $I^{2} \mathrm{C}$ protocol is easy to work with and relatively simple to implement, even if you're not using a processor that directly implements it. If you're not planning to use Philips/Signetics microprocessors with onboard $I^{2} \mathrm{C}$ support (such as the 68070 or various members of the 8051 family), you can still use the wide variety of available peripheral chips.

The number of integrated circuits using the $\mathrm{I}^{2} \mathrm{C}$ serial bus is increasing all the time. Application-oriented integrated circuits that support $I^{2} \mathrm{C}$ include a voice sythesizer, a transcoder for IR remote control, several digital tuning circuits for computer-controlled television, several audio processors, PLL frequency synthesizers, tone generators, and frequency synthesizers. General-
purpose integrated circuits using $I^{2} \mathrm{C}$ include LCD drivers, digital-to-analog converters, SRAMs, EEPROMs, and a RAM clock/calender.
$I^{2} \mathrm{C}$ is very popular in Europe, where Philips has been aggressively marketing this flexible method of extending peripheral support to control projects, and it is currently catching fire on this side of the Atlantic. It seems reasonable to expect that, given the burden of printedwire requirements for embedded systems based on increasingly wider chip buses, more and more designers seeking economy of means will be attracted to the economy of $\mathrm{I}^{2} \mathrm{C}$.

> Steven Sarns is the president of Vesta Technology in Wheat Ridge, Colo. He is a member of Mensa, Intertel, and the Michigan Society of Professional Engineers. Sarns is also a founding member of the Denver chapter of the Forth Interest Group.

Jack Woehr is a senior project manager at Vesta Technology Inc. in Wheat Ridge, Colo. He is a Chapter Coordinator for the Forth Interest Group and is currently a member of the X3J14 Technical committee for ANS Forth. He can be reached by E-mail as jax@well.sf ca.us or as VESTA on GEnie.

BY MARKGARDNER

Bit-Banging Serial Ports

They say that necessity is the mother of invention, and it certainly seems to be the case in embedded systems work. No sooner do you accomplish the impossible in one project than your boss or customer asks you to do it again, only faster and cheaper this time. Even when you're working with low-cost microcontrollers, there's still that incentive to make things cheaper through magic software.

Performing miracles through software trickery is a skill that all embedded developers must cultivate. An opportunity for me to practice such tricks came in the form of a project using the Signetics 8×751 microcontroller. The 8×751 is an 8051 derivative that has no internal serial port-no attachment of SBUF shift registers to RxD and TxD, no diversion of timers to baud rate pacing, no serial interrupts. But the chip is low-priced and offers a small-footprint, and hence is desirable in many applications. Where the price or size outweighs the need for a simple serial port, one must be built out of firmware by appropriately controlling a single bit in a port. The practice is affectionately known as "bit-banging."

The approach I'll describe here has the advantages of being simple and fast. There is no transmit state-machine, no special provision for start and stop bits, and it takes less than two dozen machine cycles for each bit. It has a further advantage that the data doesn't need to be specially organized for transmitting. That is, the bits that are adjacent in the transmit data stream don't need to be adjacent when they are stored in memory. This solution is for a transmitter only, but I have used a similar procedure for receiving.

The shift (or rotate) operation is the first thing that comes to mind when you're designing code to provide a serial

data output.

My project was required to operate at 9600 baud. This rate gives a per-bit time of 104 microseconds, or 104 cycles if you're using a $12-\mathrm{MHz}$ part. The application in question had plenty of other activities as well as a serial port (such as reading a serial analog-to-digital converter, performing averages, and so on), so it was imperative that the serial port handling take an absolute minimum of time. Since I chose to execute in a fixedtime loop (to avoid interrupt overhead), it was also a goal that the code take a fixed amount of time regardless of the current transmit state.

THE STRUCTURE POINTER SOLUTION

Generally, the shift (or rotate) operation is the first thing that comes to mind when you're designing code to provide a serial data out-put-the format of the data suggests such a scheme. With this approach, however, special states and a counter are needed to provide the start and stop bits and to sequence through the set of bytes
to be transmitted.
The method presented here provides an array of structures (in the code or PROM space) that defines the transmit sequence bit by bit and uses a pointer to this array as the only controlling element. This means that only two bytes of scarce internal RAM is used.

$1^{2} \mathrm{C}$ Specific information

Bit-Banging Serial Ports

The structures are referenced consecutively. Each gives the source of a bit to be transmitted and a flag to indicate whether the pointer should be increased to point to a new bit. The transmission is terminated by having a structure that refers to an "idle" bit and does not increase the pointer. Transmission is initi-
ated by changing the pointer to point to the first structure. Start and stop bits are not distinguished from data bits. The bit update portion of the code is constant-time, and the pointer update can be easily padded if necessary to achieve this part of the goal.

Franklin's C51 compiler was used

for the work described here. The 8×751 does not support external RAM, so the small model is used. (If the transmit data resided in external RAM, the algorithm could be applied, but would be expected to take a little longer to execute.)

THE DECLARATIONS

The structure that provides individual bit definitions is:
// transmit bit-reference structure
struct 8 R \{
unsigned char index :
unsigned char mask ;
unsigned char bump ;
\}:
No memory is allocated by this defini-tion-it is essentially a typedef. The actual allocation and initialization are provided by the definition (in a header file, send__seq.h, in this case) of the BitRef array:
code struct BR BitRef[41] $=\{\ldots\}$;
where the details will be given in a moment. The pointer is defined as:
// pointer to BitRef structure array data struct $B R$ code *BR_ptr ;

In Franklin's C51, the declaration tokens are interpreted as follows. In the struct BR declaration, the token code assigns the BitRef array to program memory (which is then accessed with the movc instruction). In the *BR_ptr declaration, the token code implies that BR_ptr is exclusively a pointer to the program space, so it requires only two bytes to be completely defined. The token data causes the compiler to store the pointer value in
internal RAM. (Since I was using the small model, this would have been the default storage anyway.)

The index entry in each structure allows the serial bit to be selected from an array of bytes called transmit[4] in my case. The transmit array can, if desired. be set up to literally overlay all of the internal memory, so that the maximum "random access" can be achieved. This was not necessary in my case.

The physical port pin to be exercised is defined:
/* transmit is on P3.3 */
sbit $\operatorname{TransBit}=0 \times B 3$;

THE STRUCTURE INITIALIZATION

Each bit to be transmitted is defined by an index and mask. These are initialized in the BitRef structure so that characters can be formed as desired in the output bit stream. The index is the offset within the transmit array. The initialization in my case, for a sequence of 40 bits making up four characters, was:

(The "masks" are given in binary notation. [See "A Binary Upgrade for C," pp. 60-62.-Ed.] Because of my assembler and hardware background, this no-

The "bump" is a flag that continues the transmission. When it finally

reaches 0 , the serial output sequence will stop.
tation is natural for me in bit mask references.)

The "index" refers, as mentioned, to the element of "transmit" in which the bit resides. Some initialization code has guaranteed that the upper two bits of transmit [3] will be 10 , so that they can be referred to for start and stop bits and for any fixed-value bits that happen to be in the data stream (in my case, the fixed bits are used to indicate data byte order).

The "bump" is a flag that continues the transmission. When it is finally 0 , the serial output sequence will stop.

THE CODE

he code fragment that accomplishes the transmission is:
(a) TransBit =
(bit)(transmit[BR_ptr-)index]
\& BR_ptr-)mask) ;
(b) if (BR_ptr-)bump)

BR_ptr++ ;
The program sequence for section (a) looks like this:

BR_ptr-)index

-- looks up current index. then used in transmit[index]
-- to get byte with desired bit. then ANDed with mask
8R_ptr-)mask
-- to get zero/nonzero value. which (bit)(value \& value)
-- is then cast to a bit for output TransBit = bit
-- to port pin, the ultimate goal.
The pointer is increased in (b), depending on the value of BR_ptr->bump. As indicated earlier, this is always one except in the last structure, so the serial transmission always proceeds to the defined end. The statement:

BR_ptr $=8 B i t R e f[40]$;
in initialization will keep the transmitter off during startup, and:

BR_ptr $=$ BitRef :
is used to initiate a transmission sequence.

Bit-Banging Serial Ports

The previous transmitting code compiles, with only a little manual assistance, to:

: TransBit = (bit) (transmit[
BR_ptr	ndex $]$ \& 8R_ptr-)mask) :
MOV	DPL.BR_ptr+01H
MOV	DPH.BR_ptr
CLR	A
MOVC	A.@A+DPTR
ADD	A.atransmit
MOV	RO. A
MOV	A.@RO
MOV	R7. A
INC	DPTR
CLR	A
MOVC	A.@A+DPTR
ANL	A.R7
ADD	A. \#OFFH
MOV	TransBit.C
: if (BR_ptr->bump)	
INC	DPTR
CLR	A
MOVC	A.@A+DPTR
JZ	? $C 0011$
BR_ptr++ :	
MOV	A. $\# 03 \mathrm{H}$
ADO	A.BR_ptr+01H
MOV	BR_ptr+014. A
CLR	A
ADOC	A.BR_ptr
MOV	BR_ptr.A
?C0011:	

The assembly language code reveals that the mechanism is pretty efficient. This method is in use in one of my clients' products and has proved effective.

BIT-BANGING WORKS

\squarehis bit-banging solution serves to provide serial transmission in an embedded system that has no hardware specifically dedicated to the function. Although alternate and more traditional solutions would have worked. the need for speed encouraged development of a code-pointer-based solution that works fast enough in this case and takes up only two internal RAM bytes for operation. I hope that this presentation will prove to be useful for you.

Mark Gardner is a consultant based in Acton. CA. He has been designing hardware and writing firmware for embedded systems for over 15 years. He has an MS in electronic engineering from the University of Illinois.

For more information, contact:
Philips Semiconductors
811 E. Arques Avenue
P.O. Box 3409

Sunnyvale, CA 94088-3409
(408) 991-3552

$I^{2} \mathrm{C}$-BUS DEVELOPMENT TOOLS FOR ALL SYSTEMS

OM1022

This Philips Semiconductors support tool, called the $\mathrm{I}^{2} \mathrm{C}$-analyzer (or in the US, Port MSC) is a PC board that can be connected with a cable to the Centronics printer port via a $25-$ pin sub-D connector. The $I^{2} \mathrm{C}$ has a 4 -stake connector for convenient use in the laboratory. There are several flavours to this board, with the latest version supporting multimaster operation. A Philips 8400-series microcontroller executes the low-level $\mathrm{I}^{2} \mathrm{C}$ tasks on this board, and the Centronics port is used for two-way communications between the PC software and the microcontroller. Control programs for the Philips interface will run on any IBM-compatible PC. The software is mainly intended for interactive control of devices on the ${ }^{2} \mathrm{C}$-bus. The user can interactively construct, send and receive $\mathrm{I}^{2} \mathrm{C}$ messages. A database, which comes with the software, contains information about many specific devices, thus making operation is even easier for many Philips devices. The user is prompted to enter control data for the specific registers that are relevant to the device, and the software takes care of the routines by checking the validity of the input data and constructing the correct $\mathrm{I}^{2} \mathrm{C}$ message. An illustrated description of the internals of the controlled device and its status is available for some devices.

Currently, four programs are supplied with the OM1022 that provide various control options for specific and general purpose $\mathrm{I}^{2} \mathrm{C}$ devices.
${ }^{2}$ ² TV \quad version 3.5
$I^{2} \mathrm{C}$ radio \quad version 2.6
I^{2} C PLL \quad version 2.3
$\mathrm{I}^{2} \mathrm{C}$ CELL \quad version 1.5
The Users Guide to $I^{2} C$-bus Control Programs and The $1^{2} C$-bus and how to use it brochures are also included with each OM1022. The ordering code for the OM1022 is 9339 93110112.

I²C/ACCESS.bus Monitor MIIC-101

The MIIC-101 is a stand-alone trouble shooting tool for the $\mathrm{I}^{2} \mathrm{C}$ and ACCESS.bus. When connected to an $\mathrm{I}^{2} \mathrm{C}$-bus or ACCESS.bus network, the 101 bus monitor can collect, display or upload information on all bus activity. Its key features are:

- $I^{2} \mathrm{C}$ and ACCESS.bus compatible
- operating modes: line status, forward/backward trace, view and remote
- monitoring of all or selected bus addresses
- trace buffer stores up to 2700 messages
- easy to read alphanumeric đisplay (byte, message and buffer scrolling)
- hand-held portable unit (battery, external supply or bus-powered)
- RS-232 port supports remote data capture and uploading.

The MIIC-101 is manufactured by:

Micro Computer Control Corporation

PO Box 275
17 Model Avenue, Hopewell
New Jersey 08525
USA
Tel.+1 6094661751
Fax+1 6094664116

PF8681 ${ }^{2}$ ²C-bus and ACCESS.bus Analysis Support Package

The PF8681 has been designed for use with the PM3580 family of logic analyzers. It provides facilities for analyzing and troubleshooting data streams on the $\mathrm{I}^{2} \mathrm{C}$-bus and ACCESS.bus.

Captured data from either bus can be displayed on a logical analyzer screen in various number systems. The PF8681 includes a disassembler for both the ${ }^{2} \mathrm{C}$-bus and ACCESS.bus. The adapter allows simultaneous measurements in the timing and state domain without any reconnection or multiple probing of the $\mathrm{I}^{2} \mathrm{C}$ signal lines. This single probing approach avoids additional DC and AC loading of the $\mathrm{I}^{2} \mathrm{C}$ and ACCESS .bus signal lines.

The $1^{2} \mathrm{C}$-bus disassembler supports all present day features of the $1^{2} \mathrm{C}$-bus system including 10 -bit and fast-mode. The ACCESS.bus disassembler supports the BASE-protocol specifications as mentioned in the ACCESS.bus specifications version 2.0.

The PF8681 $\mathrm{I}^{2} \mathrm{C} /$ ACCESS.bus package includes an adaptor, disassembler and special ACCESS. bus interface cable. Pricing and delivery is available from Fluke.

Calibre ICA-90 plug-in, half length IBM-PC compatible $1^{2} \mathrm{C}$ adapter card

This PC card interfaces to the $I^{2} \mathrm{C}$-bus via a 9 -pin D-connector. It is based on Philip's PCF8584 $\mathrm{I}^{2} \mathrm{C}$-bus controller IC, which can interface the bus at high speeds. Calibre supplies the board with a library of $\mathrm{I}^{2} \mathrm{C}$-control routines in both C and Turbo BASIC, which can be retrieved by the user's application software. These routines support both master and slave operation. The software is not interactive (i.e. users must write and compile their own programs) but the interface to the library routines is straightforward, and examples are supplied. They also supply a stand-alone monitor program with the ICA-90. This allows non-intrusive, real-time tracing of $1^{2} \mathrm{C}$-bus activity. Captured data is stored in PC memory and until the buffer is full, when the trace stops and the data is formatted and moved onto a disk file. Data presentation includes occurrences of Start, Stop and Acknowledge conditions. Users can display and analyze the data with any word processor or browsing program. The monitor program requires at least a 6 MHz 286 -based PC or faster. This board is recommended for speed-critical or complex $\mathrm{I}^{2} \mathrm{C}$-systems (i.e. Multimaster) due to its real-time monitor capability.

You can purchase the ICA-90 from:
Calibre Electronics Ltd.
Cornwall House
Cornwall Terrace
Bradford West Yorkshire
England BD8 7JS
Tel. +44 1274394125
Fax +44 1274730960
or

Saelig Co.
1193 Moseley Rd.
Victor
New York 14564
USA
Tel. +17164253753
Fax +17164253835

$1^{2} \mathrm{C}$ control and analysis tools

AET in Germany supply a variety of $\mathrm{I}^{2} \mathrm{C}$-bus and analysis tools, such as:

- PC-RIC RS232 to $\mathrm{I}^{2} \mathrm{C}$-bus convertor
- IDB I2 ${ }^{2}$ demonstration board for the PC (eight $\mathrm{I}^{2} \mathrm{C}$ peripherals plus software driver source-code in Pascal, Borland C++ and Microsoft-C)
- MAB $I^{2} C$ 100: an $I^{2} C$ magnetic card reader
- ITM I ${ }^{2} \mathrm{C}$ PC monitor and $\mathrm{I}^{2} \mathrm{C}$ controller (PC plug-in card)
- SIMON ${ }^{2} \mathrm{C}$ PC monitor software for the ITM ${ }^{2} \mathrm{C}$ controller card.
For more information on these products, contact:
ART Automatisierung \& Rechnertechnik GmbH Johann-Kraus Strasse 8a
88662 Uberlingen
Germany
Tel. +4975514056
Fax +4975514058

$I^{2} \mathrm{C}$-BUS EVALUATION BOARDS

OM4151/S87C00KSD

${ }^{2} \mathrm{C}$-bus evaluation board with microcontroller, LCD, LED, Par. I/O, SRAM, EEPROM, clock, DTMF generator, AD/DA conversion. This board is available from Philips Semiconductors.

OM5027

$\mathrm{I}^{2} \mathrm{C}$-bus evaluation board for low-voltage, low-power ICs \& software. (A fuller description of the OM527 evaluation board is included in this Data Handbook. See relevant section for details). This board is available from Philips Semiconductors.

1^{2} C-BUS DEVELOPMENT TOOLS FOR 80C51-BASED SYSTEMS

PDS51

A board-level, full featured, 12 MHz in-circuit emulator, providing complete access to the internal registers and full execution control without consuming chip resources. This means that the microcontroller in the target system can be replaced with the PDS51, enabling the target system to be easily run, monitored and debugged without any changes to code or hardware.

1^{2} C-BUS DEVELOPMENT TOOLS FOR 68000-BASED SYSTEMS

OM4160

Microcore-1 demonstration/evaluation board: SCC68070, 128 K EPROM, 512K DRAM, $\mathrm{I}^{2} \mathrm{C}$, RS-232C, VSC SCC66470, resident monitor.

OM4160/3
Microcore-3 demonstration/evaluation board: 128 K EPROM, 64 K SRAM, ${ }^{2} \mathrm{C}, ~ R S-232 \mathrm{C}, 40 \mathrm{I} / \mathrm{O}$ (inc. 8051-compatible bus), resident monitor.

OM4160/3QFP

Microcore-3 demonstration/evaluation board for 9XC101 (QFP80 package).

${ }^{2}{ }^{2} \mathrm{C}$ Peripherals

The OMIO22 multi-master and the OM4777 single-master $1^{2} C$-bus controller kits offer an easy-to-use and inexpensive interface from a $P C$ to the $I^{2} C$-bus via a Centronics printer port adaptor. The only hardware required to use the kits is a PC with I.5 MB of free hard-disk space and a free parallel port.

OMIO22 and OM4777

Multi-master and single-master $I^{2} C$ bus controller kits

Description

The $I^{2} \mathrm{C}$-bus controller kits are very simple to use in conjunction with a PC and the control programs provided. The kits are ideal for:

- learning and evaluating $\mathrm{I}^{2} \mathrm{C}$-bus systems
- getting familiar with the $\mathrm{I}^{2} \mathrm{C}$-bus and new $\mathrm{I}^{2} \mathrm{C}$-bus ICs
- hardware debugging
- software development
- interfacing between demoboards and PC with demo software.

Using the universal receiver/transmitter, it is possible to test software concepts and monitor ongoing $\mathrm{I}^{2} \mathrm{C}$ traffic, either for all addresses or on a
selected address. The kits comprise:

- the OM1022 multi-master kit; Philips ordering code: 933993100112
- the OM4777 single-master kit; Philips ordering code: 935202160112
- hardware, software and documentation for both kits:
- a fully tested printer port adapter and an $I^{2} C$-bus cable
- a floppy disk with control programs including documentation
- a user manual.

Related Materials

- Data Handbook IC12, 1996 - " $I^{2} \mathrm{C}$ Peripherals"; ordering code: 939775000306
- Technical publication - "The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it (including specifications)"; ordering code: 939839340011
- OM5027 I ${ }^{2} \mathrm{C}$ demonstration board; ordering code: 935152290112.

This demoboard is based on the P83CL580 microcontroller and includes eleven $I^{2} \mathrm{C}$ peripherals

- $\mathrm{S} 87 \mathrm{C} 00 \mathrm{KSD} \mathrm{I}^{2} \mathrm{C}$ demonstration board; ordering code: 935010750112 . This demoboard is based on an 87 C 751 and includes eight $I^{2} C$ peripherals.

Introduction to the $I^{2} C$-bus

Most of today's electronic products contain at least one microcontroller plus a number of standard and dedicated circuits for storing and displaying data, or for performing digital and analog control functions. This is particularly true of products providing human-interfacing (push-button / keypad input, LCD and LCD display, tone generation, channel selection, user data storage, etc.).

There are, of course, many ways of interfacing peripheral ICs with the microcontroller(s), but it is of great benefit to system designers and manufacturers if the control interface is simple, standardized, and facilitates product upgrading, conversion, manufacturability, as well as production line testing and field servicing. This is why Philips Semiconductors developed the Inter IC $\left(I^{2} C\right)$ bus, and has developed a wide range of microcontrollers and peripheral ICs with an $I^{2} C$ hardware interface built-in.

What is the $I^{2} \mathrm{C}$-bus?

The $I^{2} C$-bus is a worldwide electronics standard for chip-to-chip and board-toboard communication. It is a bidirectional, two-wire, serial control bus incorporating a data (SDA) and clock (SCL) line, supporting speeds up to 100 kbits per second
($400 \mathrm{kbits} / \mathrm{s}$ in 'fast mode'). All control, address and data information is transmitted serially over the two-wire bus; the $I^{2} C$-bus allows for bidirectional data transfer without extra lines. It can be a multi-master system with automatic arbitration. Each IC has a unique 7 -bit or 10 -bit address eliminating the need for separate address or selection lines.

Only the IC addressed generates an acknowledge signal, allowing for software detection of hardware configuration, and extension of the bus at any time without software modification. Every byte transferred is acknowledged by the receiver. The protocol is standard for a wide range of speeds, functions and applications.

Advantages of the $I^{2} C$-bus

- simplifies system architecture:
- requires only two wires, for all data and addressing
- reduces pin-count, allowing smaller ICs and smaller PCB area
- reduces the number of digital signal traces required on the PCB , resulting in less digital noise
- eliminates glue logic for address decode, chip-select, etc.
- transmits bidirectional data with built-in protocol
- offers simple and cheaper single-plane PCB wiring
- allows easy upgrade for additional functions
- has multi-master capability supporting multi-controller applications - simplifies testing and circuit alignment
- supports modular hardware and software concept.
$I^{2} \mathrm{C}$-bus based systems let you innovate The $I^{2} C$ concept enables the system designer to enter the field of microprocessor control with all the fundamental hardware (including PCB layout) predefined. With the OM5027 evaluation board as a prototyping aid, designers can concentrate on the software to satisfy their requirements. If a project should need be changed, stock no longer becomes obsolete, and circuits and PCBs do not have to be redesigned - simply change the software, add or subtract standard modules, and the system will be automatically adjusted for new features such as expanded memory or I/O, enhanced display, multi-board communication, interface to parallel bus, etc. With the $I^{2} \mathrm{C}$-bus, your design horizons are unlimited!

NOTE

Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} C$ patent to use the components in the I^{2} C system, provided the system conforms to the $I^{2} C$ specifications defined by Philips.

EuS

The OM5027 $1^{2} \mathrm{C}$-bus evaluation board

The OM5027 evaluation board provides a working $\mathrm{I}^{2} \mathrm{C}$-bus system which may be used for familiarization with and design of $\mathrm{I}^{2} \mathrm{C}$ bus hardware and software. The board includes the 8 -bit 80CL580 (a low-voltage (1.8 V) 80C51 derivative microcontroller) and allows connection of a 40 pin 80C51 derivative or external emulator. In addition to the central $\mathrm{I}^{2} \mathrm{C}$-bus, there is provision to control the OM5027 via the built-in RS232 interface circuit. The OM5027 also features eleven $I^{2} C$ peripheral circuits which may be switched onto a central bus as required, via DIP switches. The modular construction and central bus allow the board to be used as a quick prototyping aid, and provide for extension to other circuits as required.

The board requires a 7 to 12 V DC power supply (50 mA max) and comes with demonstration software programmed into the EPROM. The board consists of the following modules:

- Microcontroller 80 CL 580 (or 83CL580) with demo software in 27 C 256 EPROM
- Socket for emulator control Compatible with 80C51 derivative or external development system
- $L C D$ (segment display)

Philips LPH3802-1 (7 segment, starburst, etc.) with PCF8578 LCD driver IC mounted on the glass (chip-on-glass module)

- LCD (dot-matrix display)

Philips LPH3827-1 (3 line $\times 10$ characters, 5×7 dot matrix) with LCD driver IC PCF2116A mounted on the glass (chip-on-glass module)

- $I^{2} C$ to parallel I / O

PCF8574P, 8-bit remote I/O port with edge connector

- $I^{2} C$ to parallel I/O

PCF8574AP, 8-bit remote I/O port with alternate $\mathrm{I}^{2} \mathrm{C}$ slave address used in an 8 -multiplexed push-button/2 LED drive application example

- RAM

PCF8570P, low-voltage 256 byte static RAM

- EEPROM

PCA8581CP low-voltage EEPROM, 128 byte

- Clock/Calendar

PCF8593 low-power clock/calendar with crystal and battery backup

- DTMF/Tone generator PCD3312P with TDA1070 audio amp, and piezo sounder
- $A / D, D / A$

PCF8591 8-bit, 4 channel multiplexed A / D, plus 1 channel D/A

- Parallel bus to $I^{2} C$ interface MCP584P Motorola/Intel parallel bus to $\mathrm{I}^{2} \mathrm{C}$ bus interface IC
- $I^{2} C$ extender/booster 82B715 $\mathrm{I}^{2} \mathrm{C}$ extender/booster allowing $10 \times$ bus capacity
- Power supply board Plug pack socket, variable 2.5 to 5.0 V voltage regulator, LED indicator
- RS232 interface

MAX232 and 9 Pin RS232 D connector and cable

- complete documentation and commented source code on floppy disk.

Ordering information

The OM5027 can be ordered via your local Philips Semiconductors' sales representative (see back cover), ordering code: 9351522 90112.

For more information on the $\mathrm{I}^{2} \mathrm{C}$-bus, ask for Philips Semiconductors' publication "The $I^{2} \mathrm{C}$-bus and how to use it", ordering code: 939839340011.

The OM5500 kit demonstrates the features of the PCF2 I 16 LCD driver when used with one of our low-voltage, low-power PCD33xx family of telecom microcontrollers. The kit includes a batteryoperated demoboard, two I.5-V batteries, a user manual and a floppy disk containing demo software.

OM5500

蛙

Demo kit for the PCF2II6 LCD driver and PCD3756A telecom microcontrolle

- Includes 2-line, 24 character, 5×8 dot matrix, super twisted nematic LCD with 7.5 to 8.5 V operating voltage
- Includes PCD3756A microcontroller with:
- 8 -bit CPU, 8 K OTP ROM, 128 byte RAM, 128 byte EEPROM and 20 quasi-bidirectional I/O port lines; in a 28 lead package
- over 100 instructions based on 8048 ; all of 1 or 2 cycles
- 8 bit programmable timer/event counter, 8-bit reloadable timer, 3 single-level vectored interrupts
- wakeup via external or Port 0 interrupt, on-chip power-on reset, and stop and idle modes
- DTMF tone generator \& melody output for ringer application
- 1.8 to 6 V supply (DTMF tone output and EEPROM erase/write from $2.5-6 \mathrm{~V}$) and 1 to 16 MHz clock.

Description

The OM5500 provides an easy way to familiarize with the PCF2116, the $I^{2} \mathrm{C}$-bus and the PCD33xx family of microcontrollers. The demoboard's battery-operated PCD3756A controls the PCF2116 LCD driver via the 8 -bit parallel bus or via the $\mathrm{I}^{2} \mathrm{C}$-bus. The demo software makes extensive use of the PCF2116's character-generator RAM to show various effects on the display, and shows how to control the PCF2116 using software and the $\mathrm{I}^{2} \mathrm{C}$-bus. Philips ordering code: 935212470112.

Added Value

The demoboard uses the on-board PCD3756A (an OTP version of the PCD33xx family of microcontrollers) or any external $I^{2} \mathrm{C}$-bus controller. The floppy disk contains the demo program's source code which can be used as an example for writing PCD33xx software.

Reference Publications

- Data Handbook IC12 - "I ${ }^{2} \mathrm{C}$ Peripherals"; Philips ordering code: 939775000306.
- Technical publication - "The $\mathrm{I}^{2} \mathrm{C}$ bus and how to use it (including specifications)"; Philips ordering code: 939839340011.

$I^{2} \mathrm{C}$ Specific information

ADDRESSES OF ${ }^{2}$ ²-BUS HARDWARE MANUFACTURES

In Germany:
ART Automatisierung \& Rechnertechnik GmbH
Johann-Kraus Strasse 8a
88662 Ueberlingen
Germany
Tel. +4975514056
Fax +49 75514058

In United Kingdom:
Calibre Electronics Ltd.
Cornwall House
Cornwall Terrace
Bradford West Yorkshire
England BD8 7JS
Tel. +44 1274394125
Fax +44 1274730960
In France:
COGEMA
B.P. 1515-87020 Limoges CEDEX

France
Tel. +3355383184
Fax +33 55371639

In USA:
Saelig Co.
1193 Moseley Rd.
Victor
New York 14564
USA
Tel. +1 7164253753
Fax +1 7164253835

Micro Computer Control Corporation
PO Box 275
17 Model Avenue, Hopewell
New Jersey 08525
USA
Tel.+1 6094661751
Fax+1 6094664116

DEVICE DATA
(in alphanumeric sequence)

DESCRIPTION

The $82 B 715$ is a bipolar integrated circuit intended for application in $1^{2} \mathrm{C}$ bus systems.

While retaining all the operating modes and features of the $\mathrm{I}^{2} \mathrm{C}$ system it permits extension of the practical separation distance between components on the $\mathrm{I}^{2} \mathrm{C}$ bus by buffering both the data (SDA) and the clock (SCL) lines.

The $\mathrm{I}^{2} \mathrm{C}$ bus capacitance limit of 400 pF restricts practical communication distances to a few meters. Using one 82B715 at each end of longer cables reduces the cable loading capacitance on the $\mathrm{I}^{2} \mathrm{C}$ bus by a factor of 10 times and may allow the use of low cost general purpose wiring to extend bus lengths.

FEATURES

- Dual, bi-directional, unity voltage gain buffer
- ${ }^{2} \mathrm{C}$ bus compatible
- Logic signal levels may include both supply and ground
- X10 impedance transformation
- Wide supply voltage range

PIN CONFIGURATIONS

PINNING

PIN	SYMBOL	FUNCTION
1	N.C.	
2	L $_{X}$	Buffered Bus, LDA or LCL
3	S_{X}	I2 C Bus, SDA or SCL
4	GND	Negative Supply
5	N.C.	
6	S_{Y}	I2 C Bus, SCL or SDA
7	L $_{Y}$	Buffered Bus, LCL or LDA
8	$V_{\text {CC }}$	Positive Supply

QUICK REFERENCE DATA

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN.	TYP.	MAX.	
$\mathrm{V}_{\text {CC }}$	Supply voltage	4.5		12	V
Icc	Quiescent current		16		mA
$\mathrm{l}_{\text {line }}$	Output sink capability	30			mA
$\mathrm{V}_{\text {in }}$	Input voltage range	0		V_{CC}	V
$V_{\text {out }}$	Output voltage range	0		V_{CC}	V
$\mathrm{Z}_{\text {in }} / \mathrm{Z}_{\text {out }}$	Impedance transformation	8	10	13	
$\mathrm{T}_{\text {amb }}$	Temperature range	-40		+85	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	DRAWING NUMBER
8-pin plastic dual In-line package	P82B715P N	SOT97-1
8-pin plastic small outline package	P82B715T D	SOT96-1

FUNCTIONAL DESCRIPTION

The 82B715 bipolar integrated circuit contains two identical buffer circuits which enable $I^{2} \mathrm{C}$ and similar bus systems to be extended over long distances without degradation of system performance or requiring the use of special cables.
The buffer has an effective current gain of ten from $1^{2} \mathrm{C}$ bus to Buffered bus. Whatever current is flowing out of the $\mathrm{I}^{2} \mathrm{C}$ bus side, ten times that current will be flowing into the Buffered bus side (see Figure 2).

As a consequence of this amplification the system is able to drive capacitive loads up to ten times the standard limit on the Buffered bus side. This current based buffering approach preserves the bi-directional, open-collector/open-drain characteristic of the $\mathrm{I}^{2} \mathrm{C}$ SDA/SCL lines.
To minimize interference and ensure stability, current rise and fall rates are internally controlled.

APPLICATION NOTES

By using two (or more) 82 B715 ICs, a sub-system can be built which retains the interface characteristics of an $I^{2} \mathrm{C}$ device so that it may be included in, or optionally added to, any $\mathrm{I}^{2} \mathrm{C}$ or related system.

The sub-system features a low impedance or "Buffered" bus, capable of driving large wiring capacities (see Figure 3).

$1^{2} \mathrm{C}$ Systems

As with the standard $\mathrm{I}^{2} \mathrm{C}$ system, pull-up resistors are required to aprovide the logic HIGH levels on the Buffered bus. (Standard open-collector configuration of the $\mathrm{I}^{2} \mathrm{C}$ bus). The size and number of these pull-up resistors depends on the system.
If the buffer is to be permanently connected into the system, the circuit should be configured with only one pull-up resistor on the Buffered bus and none on the $\mathrm{I}^{2} \mathrm{C}$ bus.

Alternatively a buffer may be connected to an existing $\mathrm{I}^{2} \mathrm{C}$ system. In this case the Buffered bus pull-up will act in parallel with the $\mathrm{I}^{2} \mathrm{C}$ bus pull-up.

Figure 1. Block Diagram: 82B715

Figure 2. Equivalent Circuit: One Half 82B715

${ }^{2} \mathrm{C}$ bus extender

Figure 3. Minimum Sub-System with 82B715

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).
Voltages with respect to pin GND (DIL-8 pin 4).

SYMBOL	PARAMETER	LIMITS		UNIT
		MIN.	MAX.	
$\mathrm{V}_{\text {CC }}$ to GND	Supply voltage range $\mathrm{V}_{\text {CC }}$	-0.3	+12	V
$\mathrm{V}_{\text {bus }}$	Voltage range ${ }^{2} \mathrm{C}$ Bus, SCL or SDA	0	V_{CC}	V
$\mathrm{V}_{\text {buff }}$	Voltage range Buffered Bus	0	V_{CC}	V
1	DC current (any pin)		60	mA
$\mathrm{P}_{\text {tot }}$	Power dissipation		300	mW
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	Operating ambient temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

At $T_{\text {amb }}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5$ Volts, unless otherwise specified.

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN.	TYP.	MAX.	
Power Supply					
$\mathrm{V}_{\text {CC }}$	Supply voltage (operating)	4.5	-	12	V
I_{CC}	Supply current	-	16	-	mA
I_{CC}	Supply current at $\mathrm{V}_{C C}=12 \mathrm{~V}$	-	22	-	mA
$I_{\text {CC }}$	Supply current, both $\mathrm{I}^{2} \mathrm{C}$ inputs LOW, both buffered outputs sinking 30 mA .	-	28	-	mA
Drive Currents					
$\mathrm{I}_{\mathrm{Sx}}, \mathrm{I}_{\text {Sy }}$	Output sink on $\mathrm{I}^{2} \mathrm{C}$ bus $V_{S x}, V_{S y}$ LOW $=0.4 \mathrm{~V}$ $\mathrm{V}_{\mathrm{Lx}}, \mathrm{V}_{\text {Ly }}$ LOW on Buffered bus $=0.3 \mathrm{~V}$	3	-	-	mA
$\mathrm{L}_{\text {Lx, }}$ LLy	Output sink on Buffered bus $V_{L x}, V_{\text {Ly }}$ LOW $=0.4 \mathrm{~V}$ $\mathrm{V}_{\mathrm{Sx}}, \mathrm{V}_{\mathrm{Sy}}$ LOW on $\mathrm{I}^{2} \mathrm{C}$ bus $=0.3 \mathrm{~V}$	30	-	-	mA
Input Currents					
$\mathrm{I}_{\text {Sx }}, \mathrm{I}_{\text {Sy }}$	Input current from ${ }^{2} \mathrm{C}$ bus when $L_{\text {Lx, }}, I_{\text {Ly }}$ sink on Buffered bus $=30 \mathrm{~mA}$	-	-	3	mA
$\mathrm{I}_{\text {Lx, }}$ ILy	Input current from Buffered bus when $\mathrm{I}_{\mathrm{Sx}}, \mathrm{I}_{\mathrm{Sy}}$ sink on $\mathrm{I}^{2} \mathrm{C}$ bus $=3 \mathrm{~mA}$	-	-	3	mA
Ltx, Lly	Leakage current on Buffered bus $V_{L x}, V_{L y}=V_{C C}, \text { and } V_{S x}, V_{S y}=V_{C C}$	-	-	200	$\mu \mathrm{A}$
Impedance Transformation					
$Z_{\text {in }} / Z_{\text {out }}$	Input/Output impedance	8	10	13	

Pull-Up Resistance Calculation

In calculating the pull-up resistance values, the gain of the buffer introduces scaling factors which must be applied to the system components. Viewing the system from the Buffered bus, all $\mathrm{I}^{2} \mathrm{C}$ bus capacitances have effectively 10 times their $\mathrm{I}^{2} \mathrm{C}$ bus value.

In practical systems the pull-up resistance is determined by the rise time limit for $I^{2} \mathrm{C}$ systems. As an approximation this limit will be satisfied if the time constant (product of the net resistance and net capacitance) of the total system is set to 1 microsecond.

The total time constant may either be set by considering each bus node individually (i.e., the $\mathrm{I}^{2} \mathrm{C}$ nodes, and the Buffered bus node) and choosing pull-up resistors to give time constants of 1 microsecond for each node; or by combining the capacitances into an equivalent capacitive loading on the Buffered bus, and calculating the Buffered bus pull-up resistor required by this equivalent capacitance.

For each separate bus the pull-up resistor may be calculated as follows:

$$
R=\frac{1 \mu \mathrm{sec}}{C_{\text {device }}+C_{\text {wiring }}}
$$

Where: $\mathrm{C}_{\text {device }}=$ sum of device capacitances connected to each bus,
and $\mathrm{C}_{\text {wiring }}=$ total wiring and stray capacitance on each bus.
If these capacitances are not known then a good approximation is to assume that each device presents 10 pF of load capacitance and 10 pF of wiring capacitance.
The capacitance figures for one or more individual $\mathrm{I}^{2} \mathrm{C}$ bus nodes should be multiplied by a factor of 10 times, and then added to the Buffered bus capacitance. Calculation of a new Buffered bus pull-up resistor will allow this single pull-up resistor to act for both the included $\mathrm{I}^{2} \mathrm{C}$ bus nodes and the Buffered bus. Thus it is possible to
combine some or all of these separate pull-up resistors into a single resistor on the Buffered bus (the value of which is calculated from the sum of the scaled capacitances on the Buffered bus). If the buffer is to be permanently connected into the system then all the separate pull-up resistors should be combined. But if it is to be connected by adding it onto an existing system, then only those on the additional $\mathrm{I}^{2} \mathrm{C}$ bus system can be combined onto the Buffered bus if the original system is required to be able to still operate on a stand-alone basis.
A further restriction is that the maximum pull-up current, with the bus LOW, should not exceed the $I^{2} \mathrm{C}$ bus specification maximum of 3 mA , or 30 mA on the Buffered bus. The following formula applies:

$$
30 \mathrm{~mA}>\frac{V_{C C}-0.4}{R_{P}}
$$

Where: $R_{P}=$ scaled parallel combination of all pull-up resistors.
If this condition is met, the fall time specifications will also be met.
Figure 4 shows typical loading calculations for the expanded $\mathrm{I}^{2} \mathrm{C}$ bus.

Sx, Sy, $I^{2} \mathbf{C}$ Bus, SDA or SCL

Because the two buffer circuits in the 82B715 are identical either input pin can be used as the $I^{2} \mathrm{C}$ Bus SDA data line, or the SCL clock line.

Lx, Ly, Buffered Bus, LDA or LCL

On the buffered low impedance line side, the corresponding output becomes LDA and LCL.

VCc, GND - Positive and Negative Supply Pins
In normal use the power supply voltages at each end of the low impedance line should be comparable. If these differ by a significant amount, noise margin is sacrificed.

EFFECTIVE CAPACITANCE
NEAR ${ }^{2}{ }^{2}$ C DEVICES

$2 \times \mathrm{I}^{2} \mathrm{C}$ Devices	20 pF
Strays	20 pF
82 B 715 Buffer	10 pF
TOTAL CAP.	$\overline{50 \mathrm{pF}}$

$1^{2} \mathrm{C}$ pull-up
$\mathrm{R} 1=\frac{1 \mu \mathrm{sec}}{50 \mathrm{pF}}=20 \mathrm{~K} \Omega$

EFFECTIVE CAPACITANCE BUFFERED LINE

Buffered Bus pull-up
$\mathrm{R} 2=\frac{1 \mu \mathrm{sec}}{3000 \mathrm{pF}}=333 \Omega$

EFFECTIVE CAPACITANCE REMOTE I²C DEVICES

$1 \times \mathrm{I}^{2} \mathrm{C}$ Devices	10 pF
Strays	10 pF
82 B 715 Buffer	10 pF
TOTAL CAP.	30 pF

$\mathrm{I}^{2} \mathrm{C}$ pull-up
$\mathrm{R} 3=\frac{1 \mu \mathrm{sec}}{30 \mathrm{pF}}=33 \mathrm{~K} \Omega$

AS AN ADDITION TO AN EXISTING SYSTEM *:

$$
\mathrm{R} 1=20 \mathrm{~K} \Omega
$$

$$
R 2^{\prime}=\frac{R 2 \times 0.1 R 3}{R 2+0.1 R 3}=300 \Omega
$$

R3 not required since buffer always connected

FOR A PERMANENT SYSTEM * :

R1 not required since buffer always connected

$$
R 2^{\prime}=\frac{1}{\frac{1}{0.1 R 1}+\frac{1}{0.1 R 2}+\frac{1}{0.1 R 3}}=262 \Omega
$$

R3 not required since buffer always connected

* NOTE:

R1, R2 and R3 are calculated from the capacitive loading and a $1 \mu \mathrm{sec}$ time constant on each bus node. For an addition to an existing system, R2' (the new value for R2) is shown as being calculated from the parallel combination of R2 and the scaled value of R3; while for a permanent system R2, and scaled values of R1 and R3 have been used. Note that this example has used scaled resistor values and combined the node and cable capacitances.

CHECK FOR MAXIMUM PULL-UP CURRENT:

$$
\frac{(5-0.4) \mathrm{V}}{260 \Omega}=17.6 \mathrm{~mA}<30 \mathrm{~mA}
$$

Figure 4. Typical Loading Calculation: $I^{2} C$ Bus with $82 B 715$

Universal LCD driver for low multiplex rates

FEATURES

- Single-chip LCD controller/driver
- Selectable backplane drive configuration: static or 2,3 or 4 backplane multiplexing
- Selectable display bias configuration: static, $1 / 2$ or $1 / 3$
- Internal LCD bias generation with voltage-follower buffers
- 24 segment drives: up to twelve 8-segment numeric characters; up to six 15-segment alphanumeric characters; or any graphics of up to 96 elements
- 24×4-bit RAM for display data storage
- Auto-incremented display data loading across device subaddress boundaries
- Display memory bank switching in static and duplex drive modes
- Versatile blinking modes
- LCD and logic supplies may be separated
- 2.0 to 6 V power supply range
- Low power consumption
- Power saving mode for extremely low power consumption in battery-operated and telephone applications
- $1^{2} \mathrm{C}$-bus interface
- TTL/CMOS compatible
- Compatible with any 4-bit, 8-bit or 16-bit microprocessors/microcontrollers
- May be cascaded for large LCD applications (up to 1536 segments possible)
- Cascadable with the 40 segment LCD driver PCF8576C
- Optimized pinning for single plane wiring in both single and multiple OM4085 applications
- Space-saving 40 lead plastic very small outline package (VSO40; SOT158-1)
- No external components required (even in multiple device applications)
- Manufactured in silicon gate CMOS process.

GENERAL DESCRIPTION

The OM4085 is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD) having low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 24 segments and can easily be cascaded for larger LCD applications. The OM4085 is compatible with most microprocessors/microcontrollers and communicates via a two-line bidirectional $\mathrm{I}^{2} \mathrm{C}$-bus. Communication overheads are minimized by a display RAM with auto-incremented addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes).

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
OM4085T	VSO40	plastic very small outline package; 40 leads	SOT158-1

Universal LCD driver for low multiplex rates	OM4085

Fig. 1 Block diagram.

Universal LCD driver for low multiplex rates

PINNING

SYMBOL	PIN	DESCRIPTION
SDA	1	$1^{2} \mathrm{C}$-bus data input/output
SCL	2	$1^{2} \mathrm{C}$-bus clock input/output
SYNC	3	cascade synchronization input/output
CLK	4	external clock input/output
$V_{D D}$	5	positive supply voltage
OSC	6	oscillator input
A0	7	${ }^{1} 2 \mathrm{C}$-bus subaddress inputs
A1	8	
A2	9	
SA0	10	$1^{2} \mathrm{C}$-bus slave address bit 0 input
$\mathrm{V}_{\text {SS }}$	11	logic ground
$\mathrm{V}_{\text {LCD }}$	12	LCD supply voltage
BP0	13	LCD backplane outputs
BP2	14	
BP1	15	
BP3	16	
S0 to S23	17 to 40	LCD segment outputs

Fig. 2 Pin configuration.

Universal LCD driver for low multiplex rates

OM4085

FUNCTIONAL DESCRIPTION

The OM4085 is a versatile peripheral device designed to interface any microprocessor to a wide variety of LCDs. It can directly drive any static or multiplexed LCD containing up to 4 backplanes and up to 24 segments. The display configurations possible with the OM4085 depend on the number of active backplane outputs required; a selection of display configurations is given in Table 1.

All of the display configurations given in Table 1 can be implemented in the typical system shown in Fig.3.
The host microprocessor/microcontroller maintains the two-line $\mathrm{I}^{2} \mathrm{C}$-bus communication channel with the OM4085. The internal oscillator is selected by tying OSC (pin 6) to $\mathrm{V}_{\text {Ss }}$. The appropriate biasing voltages for the multiplexed LCD waveforms are generated internally. The only other connections required to complete the system are to the power supplies ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ and $\mathrm{V}_{\mathrm{LCD}}$) and to the LCD panel chosen for the application.

Table 1 Selection of display configurations

ACTIVE BACKPLANE OUTPUTS	NUMBER OF SEGMENTS	7-SEGMENT NUMERIC	14-SEGMENT ALPHANUMERIC	DOT MATRIX
4	96	12 digits +12 indicator symbols	6 characters + 12 indicator symbols	96 dots (4 $\times 24)$
3	72	9 digits +9 indicator symbols	4 characters +16 indicator symbols	72 dots ($3 \times 24)$
2	48	6 digits +6 indicator symbols	3 characters +6 indicator symbols	48 dots ($2 \times 24)$
1	24	3 digits +3 indicator symbols	1 character +10 indicator symbols	24 dots

Fig. 3 Typical system configuration.

Universal LCD driver for low multiplex rates

Power-on reset

At power-on the OM4085 resets to a defined starting condition as follows:

1. All backplane outputs are set to $V_{D D}$
2. All segment outputs are set to $V_{D D}$
3. The drive mode ' $1: 4$ multiplex with $1 / 3$ bias' is selected
4. Blinking is switched off
5. Input and output bank selectors are reset (as defined in Table 5)
6. The $\mathrm{I}^{2} \mathrm{C}$-bus interface is initialized
7. The data pointer and the subaddress counter are cleared.

Data transfers on the $\mathrm{I}^{2} \mathrm{C}$-bus should be avoided for 1 ms following power-on to allow completion of the reset action.

LCD bias generator

The full-scale LCD voltage $\left(\mathrm{V}_{\mathrm{op}}\right)$ is obtained from $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$. The LCD voltage may be temperature compensated externally through the $\mathrm{V}_{\mathrm{LCD}}$ supply to pin 12. Fractional LCD biasing voltages are obtained from an internal voltage divider of three series resistors connected between V_{DD} and $\mathrm{V}_{\mathrm{LCD}}$. The centre resistor can be switched out of circuit to provide a $1 / 2$ bias voltage level for the $1: 2$ multiplex configuration.

LCD voltage selector

The LCD voltage selector coordinates the multiplexing of the LCD according to the selected LCD drive configuration. The operation of the voltage selector is controlled by MODE SET commands from the command decoder. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of $\mathrm{V}_{\mathrm{Op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$ and the resulting discrimination ratios (D), are given in Table 2.

A practical value of $\mathrm{V}_{\text {op }}$ is determined by equating $\mathrm{V}_{\text {off }}(\mathrm{ms})$ with a defined LCD threshold voltage ($\mathrm{V}_{\text {th }}$), typically when the LCD exhibits approximately 10% contrast. In the static drive mode a suitable choice is $\mathrm{V}_{\mathrm{op}} \geq 3 \mathrm{~V}_{\mathrm{th}}$. Multiplex drive ratios of $1: 3$ and $1: 4$ with $1 / 2$ bias are possible but the discrimination and hence the contrast ratios are smaller ($\sqrt{3}=1.732$ for $1: 3$ multiplex or $\sqrt{21} / 3=1.528$ for $1: 4$ multiplex). The advantage of these modes is a reduction of the LCD full scale voltage V_{op} as follows:
$1: 3$ multiplex (1⁄2bias):
$\mathrm{V}_{\text {op }}=\sqrt{6} \mathrm{~V}_{\text {op(mrs) }}=2.449 \mathrm{~V}_{\text {off }(\mathrm{rms})}$
$1: 4$ multiplex ($1 / 2$ bias):
$\mathrm{V}_{\text {op }}=\sqrt[4]{3} / 3 \mathrm{~V}_{\text {off }(\mathrm{rms})}=2.309 \mathrm{~V}_{\text {off }(\mathrm{rms})}$
These compare with $\mathrm{V}_{\mathrm{op}}=3 \mathrm{~V}_{\text {off(}(\mathrm{ms})}$ when $1 / 3$ bias is used.

Table 2 Preferred LCD drive modes: summary of characteristics

LCD DRIVE MODE	LCD BIAS CONFIGURATION	$\frac{V_{\text {off }(\mathrm{rms})}}{V_{\text {op }}}$	$\frac{\mathrm{V}_{\text {on }(\mathrm{rms})}}{V_{\text {op }}}$	$\mathrm{D}=\frac{\mathrm{V}_{\text {on }(\mathrm{rms})}}{\mathrm{V}_{\text {off }(\mathrm{rms})}}$
Static (1 BP)	static (2 levels)	0	∞	
$1: 2$ MUX (2 BP)	$1 / 2$ (3 levels)	$\sqrt{2} / 4=0.354$	$\sqrt{10} / 4=0.791$	$\sqrt{5}=2.236$
$1: 2$ MUX (2 BP)	$1 / 3$ (4 levels)	$1 / 3=0.333$	$\sqrt{5} / 3=0.745$	$\sqrt{5}=2.236$
$1: 3$ MUX (3 BP)	$1 / 3(4$ levels $)$	$1 / 3=0.333$	$\sqrt{33} / 9=0.638$	$\sqrt{33} / 3=1.915$
$1: 4$ MUX (4 BP)	$1 / 3(4$ levels $)$	$1 / 3=0.333$	$\sqrt{3} / 3=0.577$	$\sqrt{3}=1.732$

Universal LCD driver for low multiplex rates

LCD drive mode waveforms

The static LCD drive mode is used when a single backplane is provided in the LCD. Backplane and segment drive waveforms for this mode are shown in Fig. 4.

When two backplanes are provided in the LCD the $1: 2$ multiplex drive mode applies. The OM4085 allows use of $1 / 2$ or $1 / 3$ bias in this mode as shown in Figs 5 and 6.

The backplane and segment drive waveforms for the $1: 3$ multiplex drive mode (three LCD backplanes) and for the $1: 4$ multiplex drive mode (four LCD backplanes) are shown in Figs 7 and 8 respectively.

Fig. 4 Static drive mode waveforms: $\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

Universal LCD driver for low multiplex
\qquad

(a) waveforms at driver

At any instant (t) :
$V_{\text {state } 1}(t)=V_{S_{n}}(t)-V_{B P 0}(t)$
$V_{\text {On }(r m s)}=\underline{V_{O p}} \sqrt{10}=0.791 V_{O p}$
$\mathrm{V}_{\mathrm{on}(\mathrm{rms})}=\frac{\mathrm{V}_{\mathrm{op}}}{4} \sqrt{ } 10=0.791 \mathrm{~V}_{\mathrm{op}}$
$V_{\text {state } 2}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{\mathrm{n}}}(\mathrm{t})-\mathrm{V}_{\mathrm{BP} 1}(\mathrm{t})$
$\mathrm{V}_{\text {off }(\mathrm{rms})}=\frac{\mathrm{V}_{\mathrm{op}}}{4} \sqrt{ } 2=0.354 \mathrm{~V}_{\text {op }}$
state 2
$v_{o p}$

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{op}} / 2 \\
& -\mathrm{V}_{\mathrm{op}}
\end{aligned}
$$

(b) resultant waveforms

MGG394

Fig. 5 Waveforms for $1: 2$ multiplex drive mode with $1 / 2$ bias: $V_{o p}=V_{D D}-V_{L C D}$.

(a) waveforms at driver
state 1

At any instant (t):
$V_{\text {state } 1}(t)=V_{S_{n}}(t)-V_{B P}(t)$
$V_{\mathrm{On}(\mathrm{rms})}=\frac{V_{\mathrm{Op}} \sqrt{5}=0.745 \mathrm{~V}_{\mathrm{op}}}{3}$
$V_{\text {state } 2}(t)=V_{S_{n}}(t)-V_{B P 1}(t)$
$V_{\text {off }(r m s)}=\frac{V_{\text {op }}}{3}=0.333 V_{\text {op }}$
state 2

(b) resultant waveforms

MGG393 at LCD segment

Fig. 6 Waveforms for $1: 2$ multiplex drive mode with $1 / 3$ bias: $\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

Universal LCD driver for low multiplex

Fig. 7 Waveforms for $1: 3$ multiplex drive mode: $\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

Universal LCD driver for low multiplex

BP3

$\left.\mathrm{Sn}+2 \mathrm{l}, \begin{array}{l}\mathrm{V}_{\mathrm{DD}}- \\ \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{Op}} / 3- \\ \mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}_{\mathrm{Op}} / 3- \\ \mathrm{V}_{\mathrm{LCD}}\end{array}\right] \quad \square \square \square \square \square \square \square \square \square \square$

(a) waveforms at driver
state 1

At any instant (t):
$V_{\text {state } 1}(t)=V_{S_{n}}(t)-V_{B P 0}(t)$
$V_{\text {on }(\mathrm{rms})}=\frac{V_{\mathrm{op}}}{3} \sqrt{3}=0.577 \mathrm{~V}_{\mathrm{op}}$
$V_{\text {state }} 2^{(t)}=V_{S_{n}}(t)-V_{B P 1}(t)$
$\mathrm{V}_{\mathrm{off}(\mathrm{rms})}=\frac{\mathrm{V}_{\mathrm{op}}}{3}=0.333 \mathrm{~V}_{\mathrm{op}}$
(b) resultant waveforms at LCD segment

Fig. 8 Waveforms for 1:4 multiplex drive mode: $\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

Oscillator

The internal logic and the LCD drive signals of the OM4085 or PCF8576 are timed either by the built-in oscillator or from an external clock.

The clock frequency (fclk) determines the LCD frame frequency and the maximum rate for data reception from the $\mathrm{I}^{2} \mathrm{C}$-bus. To allow $\mathrm{I}^{2} \mathrm{C}$-bus transmissions at their maximum data rate of 100 kHz , fCLK should be chosen to be above 125 kHz .

A clock signal must always be supplied to the device; removing the clock may freeze the LCD in a DC state.

Internal clock

When the internal oscillator is used, OSC (pin 6) should be tied to V_{SS}. In this case, the output from CLK (pin 4) provides the clock signal for cascaded OM4085s and PCF8576s in the system.

External clock

The condition for external clock is made by tying OSC (pin 6) to V_{DD}; CLK (pin 4) then becomes the external clock input.

Timing

The timing of the OM4085 organizes the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. In cascaded applications, the synchronization signal SYNC maintains the correct timing relationship between the OM4085s in the system. The timing also generates the LCD frame frequency which it derives as an integer multiple of the clock frequency (Table 3). The frame frequency is set by MODE SET commands when internal clock is used, or by the frequency applied to pin 4 when external clock is used.

Table 3 LCD frame frequencies

OM4085 MODE	$f_{\text {frame }}$	NOMINAL $f_{\text {frame }}(\mathbf{H z})$
Normal mode	$\mathrm{f}_{\mathrm{CLK}} / 2880$	64
Power saving mode	$\mathrm{f}_{\mathrm{CLK}} / 480$	64

The ratio between the clock frequency and the LCD frame frequency depends on the mode in which the device is operating. In the power saving mode the reduction ratio is six times smaller; this allows the clock frequency to be reduced by a factor of six. The reduced clock frequency results in a significant reduction in power dissipation.

The lower clock frequency has the disadvantage of increasing the response time when large amounts of display data are transmitted on the $I^{2} \mathrm{C}$-bus. When a device is unable to 'digest' a display data byte before the next one arrives, it holds the SCL line LOW until the first display data byte is stored. This slows down the transmission rate of the $\mathrm{I}^{2} \mathrm{C}$-bus but no data loss occurs.

Display latch

The display latch holds the display data while the corresponding multiplex signals are generated. There is a one-to-one relationship between the data in the display latch, the LCD segment outputs and one column of the display RAM.

Shift register

The shift register serves to transfer display information from the display RAM to the display latch while previous data are displayed.

Segment outputs

The LCD drive section includes 24 segment outputs S0 to S23 (pins 17 to 40) which should be connected directly to the LCD. The segment output signals are generated in accordance with the multiplexed backplane signals and with the data resident in the display latch. When less than 24 segment outputs are required the unused segment outputs should be left open-circuit.

Backplane outputs

The LCD drive section includes four backplane outputs BPO to BP3 which should be connected directly to the LCD. The backplane output signals are generated in accordance with the selected LCD drive mode. If less than four backplane outputs are required the unused outputs can be left open. In the 1:3 multiplex drive mode BP3 carries the same signal as BP 1 , therefore these two adjacent outputs can be tied together to give enhanced drive capabilities. In the 1:2 multiplex drive mode BP 0 and $\mathrm{BP} 2, \mathrm{BP} 1$ and BP 3 respectively carry the same signals and may also be paired to increase the drive capabilities. In the static drive mode the same signal is carried by all four backplane outputs and they can be connected in parallel for very high drive requirements.

Display RAM

The display RAM is a static 24×4-bit RAM which stores LCD data. A logic 1 in the RAM bit-map indicates the 'on' state of the corresponding LCD segment; similarly, a logic 0 indicates the 'off' state.

There is a one-to-one correspondence between the RAM addresses and the segment outputs, and between the individual bits of a RAM word and the backplane outputs. The first RAM column corresponds to the 24 segments operated with respect to backplane BP0 (see Fig.9). In multiplexed LCD applications the segment data of the second, third and fourth column of the display RAM are time-multiplexed with BP1, BP2 and BP3 respectively.

When display data are transmitted to the OM4085 the display bytes received are stored in the display RAM according to the selected LCD drive mode. To illustrate the filling order, an example of a 7 -segment numeric display showing all drive modes is given in Fig.10; the RAM filling organization depicted applies equally to other LCD types.

With reference to Fig.10, in the static drive mode the eight transmitted data bits are placed in bit 0 of eight successive display RAM addresses. In the 1:2 multiplex drive mode the eight transmitted data bits are placed in bits 0 and 1 of four successive display RAM addresses. In the 1:3 multiplex drive mode these bits are placed in bits 0,1 and 2 of three successive addresses, with bit 2 of the third address left unchanged. This last bit may, if necessary, be controlled by an additional transfer to this address but care should be taken to avoid overriding adjacent data because full bytes are always transmitted. In the 1:4 multiplex drive mode the eight transmitted data bits are placed in bits $0,1,2$ and 3 of two successive display RAM addresses.

Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM.

The sequence commences with the initialization of the data pointer by the LOAD DATA POINTER command. Following this, an arriving data byte is stored starting at the display RAM address indicated by the data pointer thereby observing the filling order shown in Fig.10. The data pointer is automatically incremented according to the LCD configuration chosen. That is, after each byte is stored, the contents of the data pointer are incremented by eight (static drive mode), by four (1:2 multiplex drive mode), by three ($1: 3$ multiplex drive mode) or by two ($1: 4$ multiplex drive mode).

Subaddress counter

The storage of display data is conditioned by the contents of the subaddress counter. Storage is allowed to take place only when the contents of the subaddress counter agree with the hardware subaddress applied to A0, A1 and A2 (pins 7, 8, and 9). A0, A1 and A2 should be tied to V_{SS} or V_{DD}. The subaddress counter value is defined by the DEVICE SELECT command. If the contents of the subaddress counter and the hardware subaddress do not agree then data storage is inhibited but the data pointer is incremented as if data storage had taken place. The subaddress counter is also incremented when the data pointer overflows.
The storage arrangements described lead to extremely efficient data loading in cascaded applications. When a series of display bytes are being sent to the display RAM, automatic wrap-over to the next OM4085 occurs when the last RAM address is exceeded. Subaddressing across device boundaries is successful even if the change to the next device in the cascade occurs within a transmitted character.

Fig. 9 Display RAM bit-map showing direct relationship between display RAM addresses and segment outputs, and between bits in a RAM word and backplane outputs.

	sәıед

Fig. 10 Relationships between LCD layout, drive mode, display RAM filling order and display data transmitted over the $\mathrm{I}^{2} \mathrm{C}$-bus ($\mathrm{X}=$ data bit unchanged).

Universal LCD driver for low multiplex rates

Output bank selector

This selects one of the four bits per display RAM address for transfer to the display latch. The actual bit chosen depends on the particular LCD drive mode in operation and on the instant in the multiplex sequence. In 1:4 multiplex, all RAM addresses of bit 0 are the first to be selected, these are followed by the contents of bit 1, bit 2 and then bit 3 . Similarly in $1: 3$ multiplex, bits 0,1 and 2 are selected sequentially. In $1: 2$ multiplex, bits 0 then 1 are selected and, in the static mode, bit 0 is selected.

The OM4085 includes a RAM bank switching feature in the static and 1:2 multiplex drive modes. In the static drive mode, the BANK SELECT command may request the contents of bit 2 to be selected for display instead of bit 0 contents. In the 1:2 drive mode, the contents of bits 2 and 3 may be selected instead of bits 0 and 1 . This gives the provision for preparing display information in an alternative bank and to be able to switch to it once it is assembled.

Input bank selector

The input bank selector loads display data into the display RAM according to the selected LCD drive configuration. Display data can be loaded in bit 2 in static drive mode or in bits 2 and 3 in 1:2 drive mode by using the BANK SELECT command. The input bank selector functions independently of the output bank selector.

Blinker

The display blinking capabilities of the OM4085 are very versatile. The whole display can be blinked at frequencies selected by the BLINK command. The blinking frequencies are integer multiples of the clock frequency; the ratios between the clock and blinking frequencies depend on the mode in which the device is operating, as shown in Table 4.

An additional feature is for an arbitrary selection of LCD segments to be blinked. This applies to the static and 1:2 LCD drive modes and can be implemented without any communication overheads. By means of the output bank selector, the displayed RAM banks are exchanged with alternate RAM banks at the blinking frequency. This mode can also be specified by the BLINK command.

In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of LCD segments can be blinked by selectively changing the display RAM data at fixed time intervals.

If the entire display is to be blinked at a frequency other than the nominal blinking frequency, this can be effectively performed by resetting and setting the display enable bit E at the required rate using the MODE SET command.

Table 4 Blinking frequencies

BLINKING MODE	NORMAL OPERATING MODE RATIO	POWER-SAVING MODE RATIO	NOMINAL BLINKING FREQUENCY $\mathrm{f}_{\text {blink }}$ (Hz)
Off	-	-	blinking off
2 Hz	$\mathrm{f}_{\mathrm{CLK}} / 92160$	$\mathrm{f}_{\mathrm{CLK}} / 15360$	2
1 Hz	$\mathrm{f}_{\text {CLK }} / 184320$	$\mathrm{f}_{\mathrm{CLK}} / 30720$	1
0.5 Hz	$\mathrm{f}_{\mathrm{CLK}} / 368640$	$\mathrm{f}_{\mathrm{CLK}} / 61440$	0.5

Universal LCD driver for low multiplex rates

$I^{2} \mathrm{C}-\mathrm{BUS}$ DESCRIPTION

The $\mathrm{I}^{2} \mathrm{C}$-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition (S).
A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P).

System configuration

A device generating a message is a 'transmitter', a device receiving a message is a 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

Acknowledge

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is not limited. Each byte is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

Fig. 11 Bit transfer.

Universal LCD driver for low multiplex

 ratesSCL

Fig. 12 Definition of START and STOP conditions.

Fig. 13 System configuration.

Fig. 14 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

OM4085 ${ }^{\text {I2}}{ }^{2}$ C-bus controller

The OM4085 acts as an ${ }^{12} \mathrm{C}$-bus slave receiver. It does not initiate $\mathrm{I}^{2} \mathrm{C}$-bus transfers or transmit data to an $\mathrm{I}^{2} \mathrm{C}$-bus master receiver. The only data output from the OM4085 are the acknowledge signals of the selected devices. Device selection depends on the $I^{2} \mathrm{C}$-bus slave address, on the transferred command data and on the hardware subaddress.

In single device applications, the hardware subaddress inputs A0, A1 and A2 are normally left open-circuit or tied to V_{SS} which defines the hardware subaddress 0 . In multiple device applications A0, A1 and A2 are left open-circuit or tied to V_{SS} or V_{DD} according to a binary coding scheme such that no two devices with a common $1^{2} \mathrm{C}$-bus slave address have the same hardware subaddress.

In the power-saving mode it is possible that the OM4085 is not able to keep up with the highest transmission rates when large amounts of display data are transmitted. If this situation occurs, the OM4085 forces the SCL line LOW until its internal operations are completed. This is known as the 'clock synchronization feature' of the $\mathrm{I}^{2} \mathrm{C}$-bus and serves to slow down fast transmitters. Data loss does not occur.

Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

$1^{2} \mathrm{C}$-bus protocol

Two ${ }^{2}$ C-bus slave addresses (0111110 and 0111111) are reserved for OM4085. The least-significant bit of the slave address that a OM4085 will respond to is defined by the level tied at its input SAO (pin 10). Therefore, two types of OM4085 can be distinguished on the same $\mathrm{I}^{2} \mathrm{C}$-bus which allows:

1. Up to 16 OM 4085 s on the same $\mathrm{I}^{2} \mathrm{C}$-bus for very large LCD applications
2. The use of two types of LCD multiplex on the same $1^{2} \mathrm{C}$-bus.

The $\mathrm{I}^{2} \mathrm{C}$-bus protocol is shown in Fig.15. The sequence is initiated with a START condition (S) from the ${ }^{2} \mathrm{C}$-bus master which is followed by one of the two OM4085 slave addresses available. All OM4085s with the corresponding SAO level acknowledge in parallel the slave address but all OM4085s with the alternative SAO level ignore the whole $\mathrm{I}^{2} \mathrm{C}$-bus transfer. After acknowledgement, one or more command bytes (m) follow which define the status of the addressed OM4085s. The last command byte is tagged with a cleared most-significant bit, the continuation bit C . The command bytes are also acknowledged by all addressed OM4085s on the bus.

After the last command byte, a series of display data bytes (n) may follow. These display data bytes are stored in the display RAM at the address specified by the data pointer and the subaddress counter. Both data pointer and subaddress counter are automatically updated and the data are directed to the intended OM4085 device. The acknowledgement after each byte is made only by the (A0, A1, A2) addressed OM4085. After the last display byte, the $\mathrm{I}^{2} \mathrm{C}$-bus master issues a STOP condition (P).

Command decoder

The command decoder identifies command bytes that arrive on the $\mathrm{I}^{2} \mathrm{C}$-bus. All available commands carry a continuation bit C in their most-significant bit position (see Fig.16). When this bit is set, it indicates that the next byte of the transfer to arrive will also represent a command.
If the bit is reset, it indicates the last command byte of the transfer. Further bytes will be regarded as display data.
The five commands available to the OM4085 are defined in Table 5.

Universal LCD driver for low multiplex rates

Fig. $15 \mathrm{I}^{2} \mathrm{C}$-bus protocol.

Fig. 16 General format of command byte.

Universal LCD driver for low multiplex
rates
OM4085

Table 5 Definition of OM4085 commands

COMMAND/OPCODE								OPTIONS	DESCRIPTION
Mode set									
C	1	0	LP	E	B	M1	M0	see Table 6	defines LCD drive mode
								see Table 7	defines LCD bias configuration
								see Table 8	defines display status; the possibility to disable the display allows implementation of blinking under external control
								see Table 9	defines power dissipation mode

Load data pointer

C	0	0	P4	P3	P2	P1	P0	see Table 10	five bits of immediate data, bits P4 to P0, are transterred to the data pointer to define one of twenty-four display RAM addresses
Device select									
C	1	1	0	0	A2	A1	A0	see Table 11	three bits of immediate data, bits A0 to A2, are transferred to the subaddress counter to define one of eight hardware subaddresses

Bank select

C	1	1	1	1	0	1	O	see Table 12	defines input bank selection (storage of arriving display data)

Table 6 LCD drive mode

LCD DRIVE MODE	BIT M1	BIT M0
Static (1 BP)	0	1
$1: 2 \mathrm{MUX}(2 \mathrm{BP})$	1	0
$1: 3 \mathrm{MUX}(3 \mathrm{BP})$	1	1
$1: 4 \mathrm{MUX}(4 \mathrm{BP})$	0	0

Universal LCD driver for low multiplex rates

Table 7 LCD bias configuration

LCD BIAS	BIT B
$1 / 3$ bias	0
$1 / 2$ bias	1

Table 8 Display status

DISPLAY STATUS	BIT E
Disabled (blank)	0
Enabled	1

Table 9 Power dissipation mode

MODE	BIT LP
Normal mode	0
Power-saving mode	1

Table 10 Load data pointer

BITS	P4	P3	P2	P1	P0
5-bit binary value of 0 to 23					

Table 11 Device select

BITS	A0	A1	A2
3-bit binary value of 0 to 7			

Table 12 Input bank selection

STATIC	$\mathbf{1}: \mathbf{2}$ MUX	BIT 1
RAM bit 0	RAM bits 0,1	0
RAM bit 2	RAM bits 2,3	1

Table 13 Output bank selection

STATIC	$\mathbf{1}: \mathbf{2}$ MUX	BIT 0
RAM bit 0	RAM bits 0,1	0
RAM bit 2	RAM bits 2,3	1

Table 14 Blinking frequency

BLINK FREQUENCY	BIT BF1	BIT BF0
Off	0	0
2 Hz	0	1
1 Hz	1	0
0.5 Hz	1	1

Table 15 Blink mode selection

BLINK MODE	BIT A
Normal blinking	0
Alternation blinking	1

Display controller

The display controller executes the commands identified by the command decoder. It contains the status registers of the OM4085 and coordinates their effects.

The controller is also responsible for loading display data into the display RAM as required by the filling order.

Cascaded operation

In large display configurations, up to 16 OM4085s can be distinguished on the same $I^{2} \mathrm{C}$-bus by using the 3-bit hardware subaddress (A0, A1 and A2) and the programmable $\mathrm{I}^{2} \mathrm{C}$-bus slave address (SA0). It is also possible to cascade up to 16 OM4085s. When cascaded, several OM4085s are synchronized so that they can share the backplane signals from one of the devices in the cascade. Such an arrangement is cost-effective in large LCD applications since the outputs of only one device need to be through-plated to the backplane electrodes of the display. The other OM4085s of the cascade contribute additional segment outputs but their backplane outputs are left open-circuit (Fig.17).

The $\overline{\text { SYNC }}$ line is provided to maintain the correct synchronization between all cascaded OM4085s. This synchronization is guaranteed after the power-on reset. The only time that $\overline{\text { SYNC }}$ is likely to be needed is if synchronization is accidentally lost (e.g. by noise in adverse electrical environments; or by the definition of a multiplex mode when OM4085s with differing SAO levels are cascaded). $\overline{\text { SYNC }}$ is organized as an input/output pin; the output section being realized as an open-drain driver with an internal pull-up resistor. A OM4085 asserts the $\overline{\text { SYNC }}$ line at the onset of its last active backplane signal and monitors the $\overline{\text { SYNC }}$ line at all other times.
Should synchronization in the cascade be lost, it will be restored by the first OM4085 to assert SYNC. The timing relationships between the backplane waveforms and the $\overline{\text { SYNC signal for the various drive modes of the PCF8576 }}$ are shown in Fig.18. The waveforms are identical with the parent device PCF8576. Cascade ability between OM4085s and PCF8576s is possible, giving cost effective LCD applications.

Universal LCD driver for low multiplex

Fig. 17 Cascaded OM4085 configuration.

Universal LCD driver for low multiplex rates

(a) static drive mode.

(b) $1: 2$ multiplex drive mode.

(c) 1:3 multiplex drive mode.

(d) $1: 4$ multiplex drive mode.

Fig. 18 Synchronization of the cascade for the various OM4085 drive modes.

For single plane wiring of OM4085s, see Chapter "Application information".

Universal LCD driver for low multiplex

rates

OM4085

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.5	+7	V
$\mathrm{~V}_{\mathrm{LCD}}$	LCD supply voltage	$\mathrm{V}_{\mathrm{DD}}-7$	$\mathrm{~V}_{\mathrm{DD}}$	V
V_{I}	input voltage (SCL, SDA, A0 to A2, OSC, CLK, $\overline{\text { SYNC }}$ and SAO)	$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage (SO to S23 and BPO to BP3)	$\mathrm{V}_{\mathrm{LCD}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC input current	-	± 20	mA
I_{O}	DC output current	-	± 25	mA
$\mathrm{I}_{\mathrm{DD}}, \mathrm{I}_{\text {SS }}, \mathrm{I}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {LCD }}$ current	-	± 50	mA
$\mathrm{P}_{\text {tot }}$	power dissipation per package	-	400	mW
P_{O}	power dissipation per output	-	100	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is advised to take handling precautions appropriate to handling MOS devices (see "Handling MOS devices").

Universal LCD driver for low multiplex

 ratesOM4085

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=2.0$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-2.0$ to $\mathrm{V}_{\mathrm{DD}}-6 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
$V_{\text {DD }}$	operating supply voltage		2.0	-	6	V
$\mathrm{V}_{\mathrm{LCD}}$	LCD supply voltage		$\mathrm{V}_{\mathrm{DD}}-6$	-	$\mathrm{V}_{\mathrm{DD}}-2.0$	V
I_{DD}	operating supply current (normal mode)	$\mathrm{f}_{\text {CLK }}=200 \mathrm{kHz}$; note 1	-	30	90	$\mu \mathrm{A}$
ILP	power saving mode supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V} ; \\ & \mathrm{f}_{\mathrm{LLK}}=35 \mathrm{kHz} ; \mathrm{AO}, \\ & \mathrm{~A} 1 \text { and } \mathrm{A} 2 \text { tied to } \mathrm{V}_{\mathrm{SS}} ; \\ & \text { note 1 } \end{aligned}$	-	15	40	$\mu \mathrm{A}$
Logic						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		$\mathrm{V}_{\text {SS }}$	-	$0.3 V_{\text {DD }}$	V
$\mathrm{V}_{1 \mathrm{H}}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\text {DD }}$	V
V_{OL}	LOW level output voltage	$\mathrm{I}_{0}=0 \mathrm{~mA}$	-	-	0.05	V
V_{OH}	HIGH level output voltage	$\mathrm{I}_{0}=0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.05$	-	-	V
$\mathrm{l}_{\text {OL1 }}$	LOW level output current (CLK and SYNC)	$\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1	-	-	mA
IOH	HIGH level output current (CLK)	$\mathrm{V}_{\mathrm{OH}}=4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	-	-1	mA
loL2	LOW level output current (SDA and SCL)	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3	-	-	mA
I_{LI}	leakage current (SA0, CLK, OSC, A0, A1, A2, SCL and SDA)	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$ or V_{DD}	-	-	± 1	$\mu \mathrm{A}$
I_{pd}	pull-down current (A0, A1, A2 and OSC)	$\mathrm{V}_{\mathrm{I}}=1 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	15	50	150	$\mu \mathrm{A}$
$\mathrm{R}_{\text {puSYNC }}$	pull-up resistor ($\overline{\text { SYNC }}$)		15	25	60	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {ref }}$	power-on reset level	note 2	-	1.3	2	V
t_{sw}	tolerable spike width on bus		-	-	100	ns
C_{i}	input capacitance	note 3	-	-	7	pF
LCD outputs						
V_{BP}	DC voltage component (BP0 to BP3)	$\mathrm{C}_{\mathrm{BP}}=35 \mathrm{nF}$	-	± 20	-	mV
V_{S}	DC voltage component (S0 to S23)	$\mathrm{C}_{\mathrm{S}}=5 \mathrm{nF}$	-	± 20	-	mV
$Z_{B P}$	output impedance (BP0 to BP3)	$V_{L C D}=V_{\text {DD }}-5 \mathrm{~V}$; note 4	-	1	5	$\mathrm{k} \Omega$
$\mathrm{Z}_{\text {S }}$	output impedance (S0 to S23)	$\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}$; note 4	-	3	7	$\mathrm{k} \Omega$

Notes

1. Outputs open; inputs at $\mathrm{V}_{S S}$ or V_{DD}; external clock with 50% duty factor; $\mathrm{I}^{2} \mathrm{C}$-bus inactive.
2. Resets all logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\text {ref }}$.
3. Periodically sampled, not 100% tested.
4. Outputs measured one at a time.

Universal LCD driver for low multiplex rates

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=2.0$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-2.0$ to $\mathrm{V}_{\mathrm{DD}}-6 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified; note 1 .

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$f_{\text {CLK }}$	Oscillator frequency (normal mode)	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ;$ note 2	125	200	315	kHz
$\mathrm{f}_{\text {CLKLP }}$	oscillator frequency (power saving mode)	$\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}$	21	31	48	kHz
$\mathrm{t}_{\text {CLKH }}$	CLK HIGH time		1	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {CLKL }}$	CLK LOW time		1	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PSYNC }}$	SYNC propagation delay		-	-	400	ns
$\mathrm{t}_{\text {SYNCL }}$	SYNC LOW time		1	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PLCD }}$	driver delays with test loads	$\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}$	-	-	30	$\mu \mathrm{~s}$

$\mathrm{I}^{2} \mathrm{C}$-bus

$\mathrm{t}_{\text {BUF }}$	bus free time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; }}$ STA	START condition hold time		4	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {LOW }}$	SCL LOW time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time		4	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STA	START (repeated start code only		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; }}$ DAT	data hold time			0	-	-
$\mathrm{t}_{\text {SU; }}$ DAT	data set-up time		250	-	-	ns
t_{r}	rise time		-	-	1	$\mu \mathrm{~s}$
t_{f}	fall time	-	-	300	ns	
$\mathrm{t}_{\text {SU; }}$ STO	STOP condition set-up time		4.7	-	-	$\mu \mathrm{s}$

Notes

1. All timing values referred to V_{IH} and V_{IL} levels with an input voltage swing of V_{SS} to V_{DD}.
2. At $\mathrm{f}_{\mathrm{CLK}}<125 \mathrm{kHz}, \mathrm{I}^{2} \mathrm{C}$-bus maximum transmission speed is derated.

Fig. 19 Test loads.

Universal LCD driver for low multiplex
rates
OM4085

Fig. 20 Driver timing waveforms.

Fig. $211^{2} \mathrm{C}$-bus timing waveforms.

Universal LCD driver for low multiplex rates

OM4085

a. Normal mode; $\mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V}$; external clock $=200 \mathrm{kHz}$.

b. Low power mode; $\mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V}$; external clock $=35 \mathrm{kHz}$.

Fig. 22 Typical supply current characteristics.

a. Backplane output impedance BP0 to BP3
$\left(R_{B P}\right) ; V_{D D}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$.

b. Segment output impedance $S 0$ to $S 23\left(R_{S}\right)$;

$$
\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}
$$

Fig. 23 Typical characteristics of LCD outputs.

Fig. 24 Single plane wiring of package OM4085s.

Universal LCD driver for low multiplex rates

CHIP DIMENSIONS AND BONDING PAD LOCATIONS

Fig. 25 Bonding pad locations.

Universal LCD driver for low multiplex rates

Table 16 Bonding pad locations (dimensions in mm)
All x / y coordinates are referenced to centre of chip, (see Fig.25)

PAD NUMBER	SYMBOL	\mathbf{x}	y	PIN
1	SDA	200	-1235	1
2	SCL	400	-1235	2
3	$\overline{\text { SYNC }}$	605	-1235	3
4	CLK	856	-1235	4
5	V_{DD}	1062	-1235	5
6	OSC	1080	-1025	6
7	A0	1080	-825	7
8	A1	1080	-625	8
9	A2	1080	-425	9
10	SA0	1080	-225	10
11	$V_{S S}$	1080	-25	11
12	V LCD	1080	347	12
13	BP0	1080	547	13
14	BP2	1080	747	14
15	BP1	1080	947	15
16	BP3	1074	1235	16
17	SO	674	1235	17
18	S1	674	1235	18
19	S2	474	1235	19
20	S3	274	1235	20
21	S4	-274	1235	21
22	S5	-474	1235	22
23	S6	-674	1235	23
24	S7	-874	1235	24
25	S8	-1074	1235	25
26	S9	-1080	765	26
27	S10	-1080	565	27
28	S11	-1080	365	28
29	S12	-1080	165	29
30	S13	-1080	-35	30
31	S14	-1080	-235	31
32	S15	-1080	-435	32
33	S16	-1080	-635	33
34	S17	-1080	-835	34
35	S18	-1080	-1035	35
36	S19	-1056	-1235	36
37	S20	-830	-1235	37
38	S21	-630	-1235	38
39	S22	-430	-1235	39
40	S23	-230	-1235	40

128×8-bit EEPROM with I ${ }^{2}$ C-bus interface

CONTENTS

1	FEATURES
2	GENERAL DESCRIPTION
3	QUICK REFERENCE DATA
4	ORDERING INFORMATION
5	BLOCK DIAGRAM
6	PINNING
7	CHARACTERISTICS OF THE I²C-BUS
7.1	Bit transfer
7.2	Start and stop conditions
7.3	System configuration
7.4	Acknowledge
7.5	I'C-bus protocol
8	LIMITING VALUES
9	HANDLING
10	DC CHARACTERISTICS
11	AC CHARACTERISTICS
12	APPLICATION INFORMATION
12.2	Application example
12.2	Slave address
12.3	Diode protection
13	PACKAGE OUTLINES
14	SOLDERING
14.1	Introduction
14.2	DIP
14.2 .1	Soldering by dipping or by wave
14.2 .2	Repairing soldered joints
14.3	SO
14.3 .1	Reflow soldering
14.3 .2	Wave soldering
14.3 .3	Repairing soldered joints
15	DEFINITIONS
16	LIFE SUPPORT APPLICATIONS
17	PURCHASE OF PHILIPS IC COMPONENTS
10	

1 FEATURES

- Operating supply voltage:
- 4.5 to 5.5 V (PCA8581)
- 2.5 to 6.0 V (PCA8581C)
- Integrated voltage multiplier and timer for writing (no external components required)
- Automatic erase before write
- Low standby current; maximum $10 \mu \mathrm{~A}$
- 8 -byte page write mode
- Serial input/output bus ($1^{2} \mathrm{C}$-bus)
- Address by 3 hardware address pins
- Automatic word address incrementing
- Designed for minimum 10000 write cycles per byte
- 10 years minimum non-volatile data retention
- Infinite number of read cycles
- Pin and address compatibility to PCF8570C and PCF8582
- Operating ambient temperature: -25 to $+85^{\circ} \mathrm{C}$.

2 GENERAL DESCRIPTION

The PCA8581 and PCA8581C are low power CMOS EEPROMs with standard and wide operating voltages:

4.5 to 5.5 V (PCA8581)
 2.5 to 6.0 V (PCA8581C).

In the following text, the generic term 'PCA8581' is used to refer to both types in all packages except when otherwise specified.
The PCA8581 is organized as 128 words of 8 -bytes.
Addresses and data are transferred serially via a two-line bidirectional bus ($I^{2} \mathrm{C}-$ bus). The built-in word address register is incremented automatically after each written or read data byte. All bytes can be read in a single operation. Up to 8 bytes can be written in one operation, reducing the total write time per byte. Three address pins, A0, A1 and A2 are used to define the hardware address, allowing the use of up to 8 devices connected to the bus without additional hardware.

3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage				
	PCA8581		4.5	5.5	V
	PCA8581C		2.5	6.0	V
I_{DD}	supply current (standby)	$\mathrm{f}_{\mathrm{SCL}}=0 \mathrm{~Hz}$	-	10	$\mu \mathrm{~A}$
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature		-25	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature	without EEPROM retention	-65	+150	${ }^{\circ} \mathrm{C}$
		with EEPROM retention	-65	+85	${ }^{\circ} \mathrm{C}$

4 ORDERING INFORMATION

TYPE 	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCA8581P	DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT97-1
PCA8581CP	DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT97-1
PCA8581T	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1
PCA8581CT	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1

5 BLOCK DIAGRAM

Fig. 1 Block diagram.

6 PINNING

SYMBOL	PIN	DESCRIPTION
A0	1	hardware address input 0
A1	2	hardware address input 1
A2	3	hardware address input 2
$\mathrm{~V}_{\text {SS }}$	4	negative supply
SDA	5	serial data input/output
SCL	6	serial clock input
TEST	7	test output can be connected to $V_{S S}, V_{D D}$ or left open-circuit
$V_{\text {DD }}$	8	positive supply

Fig. 2 Pin configuration.

7 CHARACTERISTICS OF THE I²C-BUS

The $\mathrm{I}^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

7.1 Bit transfer

One data bit is transferred during each clock pulse.
The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

Fig. 3 Bit transfer.

7.2 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 4 Definition of START and STOP conditions.

7.3 System configuration

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

Fig. 5 System configuration.

7.4 Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges must pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 6 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

$7.5 \quad \mathrm{I}^{2} \mathrm{C}$-bus protocol

Before any data is transmitted on the $I^{2} \mathrm{C}$-bus, the device which should respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure. The $\mathrm{I}^{2} \mathrm{C}$-bus configuration for the different PCA8581 WRITE and READ cycles is shown in Figs 7, 9 and 10.

Fig. 7 Master transmits to slave receiver (WRITE) mode.

After the word address, one-to-eight data bytes can be sent. The address is automatically incremented, but the four highest address bits (row) are internally latched. Therefore all bytes are written in the same row.

An example of writing eight bytes with word address $\times 0000000$ and six bytes with word address $\times 0010101$ is shown in Fig. 8.

(1) $X=$ don't care.

Fig. 8 Writing eight and six bytes with different word addresses.

128×8-bit EEPROM with ${ }^{2}$ ²-bus interface

To transmit eight bytes in sequential order, begin with the lowest address bits 000 . The data is written after a stop is detected. The data is only written if complete bytes have been received and acknowledged. Writing takes a time $t_{w R}$ (6 to 10 ms) during which the device will not respond to its slave address. Note that to write the next row, a new write operation is required (start, slave address, row address, data and stop).

Fig. 9 Master reads after setting word address (WRITE word address; READ data).

Fig. 10 Master reads slave immediately after first byte (READ mode).

An unlimited number of data bytes can be read in one operation. The address is automatically incremented. If a read without setting the word address is performed after a write operation, the address pointer may point at a byte in the row after the previously written row. This occurs if, during writing, the three lowest address bits (column) rolled over.

128×8-bit EEPROM with ${ }^{2}$ ²-bus interface

8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$V_{\text {DD }}$	supply voltage (pin 8)		-0.3	+7.0	V
$\mathrm{~V}_{1}$	input voltage (any input)	measured via a 500Ω resistor	-0.8	$\mathrm{~V}_{\mathrm{DD}}+0.8$	V
I_{I}	DC input current		-	± 10	mA
I_{O}	DC output current		-	± 10	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation per package		-	150	mW
P_{O}	power dissipation per output		-	50	mW
$\mathrm{~T}_{\text {amb }}$	operating ambient temperature		-25	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature	without EEPROM retention	-65	+150	${ }^{\circ} \mathrm{C}$
		with EEPROM retention	-65	+85	${ }^{\circ} \mathrm{C}$

9 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under "Handling MOS Devices".
128×8-bit EEPROM with ${ }^{2}$ ²-bus interface
PCA8581; PCA8581C

10 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6.0 V (PCA8581C); $\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V (PCA8581); $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=-25$ to $+85^{\circ} \mathrm{C}$; note 1 ; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{DD}	supply voltage PCA8581C PCA8581		$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	${ }_{-}^{-}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{DD}	supply current standby mode during read cycle during write cycle	$\begin{aligned} & \mathrm{f}_{\mathrm{SCL}}=0 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{f}_{\mathrm{SCL}}=100 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\left.\right\|_{-} ^{-}$	$\left.\right\|_{-} ^{-}$	$\begin{array}{\|l\|} 10 \\ 400 \\ 1000 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

Inputs A0, A1, A2, SDA and SCL

V_{IL}	LOW level input voltage		-	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	-	-	1	$\mu \mathrm{~A}$
C_{i}	input capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$	-	-	7	pF

Output SDA

| I_{OL} | LOW level output current | $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ | 3 | - | - | mA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Erase/write data | | | | | | |
| $\mathrm{t}_{\text {WR }}$ | write time | | - | 7 | 10 | ms |
| $\mathrm{t}_{\text {RET }}$ | data retention time | | 10 | - | - | years |

Note

1. The PCA8581C is guaranteed to be programmed with all locations 'FF' (hexadecimal) provided the device has been stored within the temperature limits -65 to $+85^{\circ} \mathrm{C}$.

11 AC CHARACTERISTICS

All timing values are valid within the operating supply voltage and ambient temperature range and reference to V_{IL} and
V_{IH} with an input voltage swing of V_{SS} to V_{DD}.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$\mathrm{I}^{2} \mathrm{C}$-bus timing (see Fig.11; note 1)					
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency	-	-	100	kHz
t_{SP}	tolerable spike width on bus	-	-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time	4.7	-	-	$\mu \mathrm{s}$
$t_{\text {SU; STA }}$	START condition set-up time	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; }}$ STA	START condition hold time	4.0	-	-	$\mu \mathrm{s}$
t LOW	SCL LOW time	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time	4.0	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time	-	-	1.0	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time	-	-	0.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; DAT }}$	data set-up time	250	-	-	ns
$\mathrm{t}_{\text {HD; }{ }^{\text {dat }} \text { (}}$	data hold time	0	-	-	ns
$\mathrm{t}_{\text {VD; }{ }^{\text {dat }} \text { }}$	SCL LOW to data out valid	-	-	3.4	$\mu \mathrm{s}$
tsu;STO	STOP condition set-up time	4.0	-	-	$\mu \mathrm{s}$

Note

1. A detailed description of the $\mathrm{I}^{2} \mathrm{C}$-bus specification, with applications, is given in brochure "The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it". This brochure may be ordered using the code 939839340011.

12 APPLICATION INFORMATION

12.1 Application example

Inputs $A 0, A 1$ and $A 2$ must be connected to $V_{D D}$ of $V_{S S}$ but not left open-circuit.
Fig. 12 Application diagram.

12.2 Slave address

The PCA8581 has a fixed combination 1010 as group 1, while group 2 is fully programmable (see Fig.13).

Fig. 13 Slave address.

12.3 Diode protection

There is no connection between SCL and V_{DD}, and SDA and V_{DD}; this allows powering down the device without affecting $\mathrm{I}^{2} \mathrm{C}$-bus operation.
Fig. 14 Device diode protection.

CONTENTS		7	LIMITING VALUES
1	FEATURES	8	DC CHARACTERISTICS
2	GENERAL DESCRIPTION	9	EEPROM CHARACTERISTICS
3	ORDERING INFORMATION	10	AC CHARACTERISTICS
4	BLOCK DIAGRAM	11	APPLICATION INFORMATION
5	PINNING	11.1	Diode protection
6	FUNCTIONAL DESCRIPTION	11.2	Functional compatibility with microchip 24CL21 dual mode EEPROM
6.1	Transmit-only mode (DDC1)	12	PACKAGE OUTLINES
6.2	Initialization procedure	13	SOLDERING
6.3	Bidirectional mode (DDC2B, $\mathrm{I}^{2} \mathrm{C}$-bus mode)	13	SOLDERING
6.3.1	Bidirectional mode bus characteristics	13.1	Introduction
6.3.2	Bus not busy (A)	13.2	DIP
6.3.3	Start condition (B)	13.2.1	Soldering by dipping or by wave
6.3.4	Stop condition (C)	13.2.2	Repairing soldered joints
6.3 .5	Data valid (D)	13.3	SO
6.3.6	Acknowledge	13.3.1	Reflow soldering
6.3.7	Slave address	13.3.2	Wave soldering
6.4	Write operation	13.3.3	Repairing soldered joints
6.4.1	Byte write	14	DEFINITIONS
6.4.2	Page write	15	LIFE SUPPORT APPLICATIONS
6.5	Acknowledge polling		
6.6	Write protection	16	PURCHASE OF PHILIPS I2C COMPONENTS
6.7	Read operation		
6.7.1	Current address read		
6.7.2	Random read		
6.7.3	Sequential read		
6.8	Pin description		
6.8.1	SDA		
6.8 .2	SCL		
6.8.3	VCLK		
6.8 .4	$\overline{W P}$		
6.8.5	Test		
6.8.6	n.c.		

1 K dual mode serial EEPROM

1 FEATURES

- Single supply with operation 4.5 to 5.5 V
- Completely implements DDC1/DDC2B interface for monitor identification
- Low power CMOS technology
- Two-wire $\mathrm{I}^{2} \mathrm{C}$-bus interface
- Self-timed write cycle (including auto-erase)
- Page-write buffer for up to 8 bytes
- Write-protect pin
- $100 \mathrm{kHz} \mathrm{I}^{2} \mathrm{C}$-bus compatibility
- Designed for 10000 erase/write cycles minimum
- Data retention greater than 10 years
- 8-pin DIP and SO package
- Temperature range 0 to $+70^{\circ} \mathrm{C}$.

2 GENERAL DESCRIPTION

The Philips PCB2421 is a 128×8-bit dual mode serial Electrically Erasable PROM (EEPROM).
This device is designed for use in applications requiring storage and serial transmission of configuration and control information. Two modes of operation have been implemented: transmit-only mode (DDC1 mode) and bidirectional mode (DDC2B, or $\mathrm{I}^{2} \mathrm{C}$-bus mode). Upon power-up, the device will be in the transmit-only mode, sending a serial bitstream of the entire memory array contents, clocked by the VCLK pin. A valid HIGH-to-LOW transition on the SCL pin will cause the device to enter the bidirectional mode, with byte selectable read/write capability of the memory array. The PCB2421 is available in a standard 8 -pin dual in-line and 8 -pin small outline package operating in a commercial temperature range.

3 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCB2421P	DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT97-1
PCB2421T	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1

1 K dual mode serial EEPROM

4 BLOCK DIAGRAM

(1) Factory use only.

Fig. 1 Block diagram.

5 PINNING

SYMBOL	PIN	DESCRIPTION
$\overline{\text { TEST }}$	1	factory use only: must be tied to $\mathrm{V}_{\mathrm{DD}} ;$ may not be left open-circuit
n.c.	2	may be tied to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}$, or left open-circuit
$\overline{\text { WP }}$	3	write protect input (LOW $=$ write protected, HIGH = not write protected); may not be left open-circuit
$\mathrm{V}_{\text {SS }}$	4	ground
SDA	5	serial data input/output
SCL	6	serial clock input/output (DDC2B)
VCLK	7	serial clock input (transmit-only mode, DDC1)
V_{DD}	8	supply voltage

6 FUNCTIONAL DESCRIPTION

The PCB2421 operates in two modes, the transmit-only mode (DDC1) and the bidirectional mode (DDC2, or $I^{2} \mathrm{C}$-bus mode). There is a separate two-wire protocol to support each mode, each having a separate clock input and sharing a common data line (SDA). The device enters the transmit-only mode (DDC1) upon power-up. In this mode the device transmits data bits on the SDA pin in response to a clock signal on the VCLK pin. The device will remain in this mode until a valid HIGH-to-LOW transition is placed on the SCL input. When a valid transition on SCL is recognized, the device will switch into the bidirectional mode (see Fig.3). The only way to switch the device back to the transmit-only mode (DDC1) is to remove power from the device.

6.1 Transmit-only mode (DDC1)

The device will power-up in the transmit-only mode. This mode supports a unidirectional two-wire protocol for transmission of the contents of the memory array (see Fig.12). The PCB2421 requires that it be initialized prior to valid data being sent in the transmit-only mode (see Section "Initialization procedure", and Fig.4).

In this mode, data is transmitted on the SDA pin in 8-bit bytes, each byte followed by a ninth clock pulse during which time SDA is left high-impedance. The clock source for the transmit-only mode is provided on the VCLK pin; a data bit is output on the rising edge on this pin. The 8 bits in each byte are transmitted most significant bit first. Each byte within the memory array will be output in sequence. When the last byte in the memory array is transmitted, the output will wrap around to the first location and continue. The bidirectional mode clock (SCL) pin must be held HIGH for the device to remain in the transmit-only mode.

6.2 Initialization procedure

At power-on, after V_{DD} has stabilized, the device will be in the transmit-only mode. Nine clock cycles on the VCLK pin must be given to the device for it to perform internal synchronization. During this period, the SDA pin will be in a high-impedance state. On the rising edge of the tenth clock cycle, the device will output the first valid data bit which will be the most significant bit of a byte. The device will power-up with address pointer at 00 H (see Fig.4).

6.3 Bidirectional mode (DDC2B, $\mathrm{I}^{2} \mathrm{C}$-bus mode)

The PCB2421 can be switched into the bidirectional mode (see Fig.3) by applying a valid HIGH-to-LOW transition on the bidirectional mode clock (SCL).

When the device has been switched into the bidirectional mode, the VCLK input is disregarded. This mode supports a two-wire bidirectional data transmission protocol (${ }^{2} \mathrm{C}$-bus protocol). In the $\mathrm{I}^{2} \mathrm{C}$-bus protocol, a device that sends data on the bus is defined to be the transmitter, and a device that receives data from the bus is defined to be the receiver. The bus must be controlled by a master device that generates the bidirectional mode clock, controls access to the bus, and generates the START and STOP conditions, while the PCB2421 acts as slave. Both master and slave can operate as transmitter or receiver, but the master device determines which mode is activated.

6.3.1 BIDIRECTIONAL MODE BUS CHARACTERISTICS

The following bus protocol has been defined:

- Data transfer may be initiated only when the bus is not busy
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as a START or STOP condition.

Accordingly, the following bus conditions have been defined (see Fig.6).

6.3.2 BUS NOT BUSY (A)

Both data (SDA) and clock (SCL) lines remain HIGH.

6.3.3 Start condition (B)

A HIGH-to-LOW transition of the SDA line while SCL is HIGH determines a START condition. All commands must be preceded by a START condition.

6.3.4 STOP CONDITION (C)

A LOW-to-HIGH transition of the SDA line while SCL is HIGH determines a STOP condition. All operations must be ended with a STOP condition.

6.3.5 DATA VALID (D)

The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data. Each data transfer is initiated with a START condition and terminated with a STOP condition. The maximum number of data bytes transferred between the START and STOP conditions during a write operation is 8 bytes (see Section "Page write" and Fig.5).

The maximum number of data bytes transferred between START and STOP conditions during a read operation is unlimited.

6.3.6 ACKNOWLEDGE

The PCB2421, when addressed in DDC2B mode, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra (9th) clock pulse which is associated with this acknowledge bit. The PCB2421 does not generate an acknowledge if an internal programming cycle is in progress (SDA line is left HIGH during the 9th clock pulse). The PCB2421 generates an acknowledge by pulling down the SDA line during the acknowledge pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Set-up and hold times must also be taken into account. The master receiver must signal an end of data to the PCB2421 by not generating an acknowledge bit on the last byte that has been clocked out of the slave transmitter. In this case, the slave transmitter PCB2421 must leave the data line HIGH to enable the master to generate the STOP condition.

6.3.7 SLAVE ADDRESS

After generating a START condition, the bus master transmits the slave address (MSB first) consisting of a 7-bit device address (1010000) for the PCB2421. The eighth bit of the slave address determines if the master device wants to read or write to the PCB2421 (R/W bit) (see Fig.7). The PCB2421 monitors the bus for its corresponding slave address all the time. It generates an acknowledge bit if the slave address was true and it is not in a programming mode.

Table 1 Slave address

OPERATION	SLAVE ADDRESS	R/ $\overline{\mathbf{W}}$
Read	1010000	1
Write	1010000	0

6.4 Write operation

6.4.1 BYTE WRITE

Following the START condition from the master, the device address (7 bits), and the R/W bit (logic LOW for write) is placed on the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore the next byte transmitted by the master is the word address
and will be written into the address pointer of the PCB2421. After receiving another acknowledge signal from the PCB2421, the master device will transmit the data word to be written into the addressed memory location. The PCB2421 acknowledges again and the master generates a STOP condition. This initiates the internal write cycle, and during this time the PCB2421 will not generate acknowledge signals.

6.4.2 Page write

For a page write, the write control byte, word address, and the first data byte are transmitted to the PCB2421 in the same way as in a single byte write. But instead of generating a STOP condition the master transmits up to eight data bytes to the PCB2421 which are temporarily stored in the on-chip page buffer and will be written into the memory after the master has transmitted a STOP condition. After the receipt of each word, the three lower order address pointer bits are internally incremented by one. The higher order four bits of the word address remain constant. A maximum of 8 bytes can be written in one operation. As with the byte write operation, once the STOP condition is received an internal write cycle will begin (see Figs 5 and 8).

6.5 Acknowledge polling

Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the STOP condition for a write command has been issued from the master, the device initiates the internally timed write cycle. Acknowledge (ACK) polling can be initiated immediately. This involves the master sending a START condition followed by the control byte for a write command $(R / \bar{W}=0)$. If the device is still busy with the write cycle, then no ACK will be returned. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next read or write command. See Fig. 9 for flow diagram.

6.6 Write protection

Pin 3 is a write protect input ($\overline{\mathrm{WP}})$. In the DDC1 mode, the PCB2421 can only be read according to the DDC1 protocol, hence the $\overline{W P}$ input has no effect in this mode. In the DDC2B mode, when $\overline{\mathrm{WP}}$ is connected to ground, the entire EEPROM is write-protected, regardless of other pin states. When connected to V_{DD}, write-protection is disabled and the EEPROM may be programmed. $\overline{\mathrm{WP}}$ may not be left open-circuit.

Table 2 Mode configurations

DDC	$\overline{\mathbf{W P}}$	MODE
DCC1	$\mathrm{X}^{(1)}$	R
DCC2	1	R / W
	0	R

Note

1. Where $X=$ don't care.

6.7 Read operation

Read operations are initiated in the same way as write operations with the exception that the $\mathrm{R} / \overline{\mathrm{W}}$ bit of the slave address is set to logic 1. There are three basic types of read operations: current address read, random read, and sequential read.

6.7.1 CURRENT ADDRESS READ

The PCB2421 contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous access (either a read or write operation) was to address ' n ', the next current address read operation would access data from address $n+1$. Upon receipt of the slave address with R/W set to logic 1, the PCB2421 issues an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a STOP condition and the PCB2421 discontinues transmission (see Fig.10).

6.7.2 RANDOM READ

Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, the word address must first be set. This is done by sending the word address to the PCB2421 as part of a normal write operation. After the word address is sent, the master generates a REPEATED START condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. The master then issues the control byte again but with the R/W bit set to logic 1 . The PCB2421 will then issue an acknowledge and transmits the 8-bit data word. The master will not acknowledge the transfer but does generate a STOP condition and the PCB2421 discontinues transmission (see Fig.11).

6.7.3 SEQUENTIAL READ

Sequential reads are initiated in the same way as a random read except that after the PCB2421 transmits the first data byte, the master issues an acknowledge as
opposed to a STOP condition in a random read. This directs the PCB2421 to transmit the next sequentially addressed 8-bit word. To provide sequential reads the PCB2421 contains an internal address pointer which is incremented by one at the completion of each operation. This address pointer allows the entire memory contents to be serially read during one operation.

6.8 Pin description

6.8.1 SDA

This pin is used to transfer addresses and data into and out of the device, when the device is in the bidirectional (${ }^{2}$ C-bus, DDC2B) mode. In the transmit-only mode (DDC1), which only allows data to be read from the device, data is also transferred on the SDA pin. This pin is an open-drain terminal, therefore the SDA bus requires a pull-up resistor connected to $V_{D D}$ (typically $10 \mathrm{k} \Omega$ for 100 kHz). See brochure "The $I^{2} C$-bus and how to use it" (order no. 9398393 40011) or "Data Handbook IC12".

6.8.2 SCL

This pin is the clock input for the bidirectional mode (${ }^{2} \mathrm{C}$-bus, DDC2B), and is used to synchronize data transfer to and from the device. It is also used as the signalling input to switch the device from the transmit-only mode to the bidirectional mode. It must remain HIGH for the chip to continue operation in the transmit-only mode (DDC1).

6.8.3 VCLK

This pin is the clock input for the transmit-only mode (DDC1). In the transmit-only mode, each bit is clocked out on the rising edge of this signal. In DDC2B mode, this input is a don't care.

6.8.4 $\overline{W P}$

This pin is used to inhibit writing of the EEPROM. When this pin is connected to ground, writing of the EEPROM is inhibited. When connected to $V_{D D}$ (and VCLK $=V_{D D}$), the EEPROM can be programmed. $\overline{W P}$ may not be left open-circuit. \bar{W} input is a 'don't care' in DDC1 mode.

6.8.5 TEST

Pins 1 is a TEST pin for factory use only. It must be connected to $V_{D D}$ in the application.

6.8.6 N.C.

This pin has no connection and may be tied to $V_{S S}, V_{D D}$ or left open-circuit.

1 K dual mode serial EEPROM

Fig. 3 Mode transition diagram.

Fig. 4 Device initialization diagram.

1 K dual mode serial EEPROM

$X=$ don't care.

Fig. 5 Example of writing 8 bytes with word address X0000000 and 6 bytes with word address X0010101.

Fig. 6 DDC2B data transfer sequence on the $\mathrm{I}^{2} \mathrm{C}$-bus.

1 K dual mode serial EEPROM

Fig. 7 Slave address.

Fig. $8 \mathrm{I}^{2} \mathrm{C}$-bus write protocol ($\mathrm{n}=$ maximum 8 bytes).

Fig. 9 Acknowledge polling.

Fig. 10 Current address read.

1 K dual mode serial EEPROM

Fig. 11 Random read.

1 K dual mode serial EEPROM

7 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage		-0.3	+7.0	V
$\mathrm{~V}_{\mathrm{n}}$	input voltage on any pin	measured via 500Ω resistor	-0.5	$\mathrm{~V}_{\mathrm{DD}(\mathrm{max})}+0.5$	V
I_{I}	DC input current		-10	+10	mA
I_{O}	DC output current		-10	+10	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation		-	150	mW
P_{o}	power dissipation per output		-	50	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature	without EEPROM retention	-65	+150	${ }^{\circ} \mathrm{C}$
		with EEPROM retention	-65	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature		0	+70	${ }^{\circ} \mathrm{C}$
V_{es}	electrostatic discharge	note 1	-2000	+2000	V

Note

1. Human body model: equivalent to discharging a 100 pF capacitor through a $1.5 \mathrm{k} \Omega$ series resistor.

8 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{D D}$	supply voltage		4.5	-	5.5	V
V_{IH}	HIGH level input voltage (pins 3, 5 and 6)		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
VIL	LOW level input voltage (pins 3, 5 and 6)		-	-	$0.3 V_{\text {DD }}$	V
$\mathrm{V}_{1 H}(7)$	HIGH level input voltage (pin 7)		2.0	-	-	V
$\mathrm{V}_{\text {IL(7) }}$	LOW level input voltage (pin 7)		-	-	0.8	V
V_{OL}	LOW level output voltage	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$	-	-	0.4	V
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{1}=0$ to 5.5 V	-10	-	+10	$\mu \mathrm{A}$
LLO	output leakage current	$\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V	-10	-	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DD} \text { (write) }}$	operating write current	$\mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	-	1000	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DD} \text { (read) }}$	operating read current	$\mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	-	400	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DD} \text { (st) }}$	standby current	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$; DDC2B mode; $V C L K=S D A=S C L=V_{D D}$	-	-	30	$\mu \mathrm{A}$

9 EEPROM CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$t_{\text {WR }}$	EEPROM write time	-	20	ms
$N_{\text {CYC }}$	EEPROM endurance	10000	-	E/W cycles
$t_{\text {RET }}$	EEPROM retention	10	-	years

10 AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DDC1 mode (transmit-only; unidirectional)						
$t_{\text {VAA }}$	output valid from VCLK	see Fig.12; note 1	-	1	-	$\mu \mathrm{s}$
$t_{\text {VHIGH }}$	VCLK HIGH time	see Fig. 12	20	-	-	$\mu \mathrm{s}$
tVLOW	VCLK LOW time	see Fig. 12	20	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{VHZ}}$	mode transition time	see Fig.3; note 1	-	500	-	ns
t_{SP}	input filter spike suppression time		-	-	100	ns
$\mathrm{t}_{\text {vpu }}$	DDC1 mode power-up time	see Fig. 4	-	5	-	$\mu \mathrm{s}$

DDC2B mode (bidirectional; I ${ }^{2}$ C-bus mode); see Fig. 13

$\mathrm{f}_{\text {SCL }}$	serial clock frequency		0	-	100	kHz
$\mathrm{t}_{\text {HIGH }}$	serial clock HIGH time		4	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {LOW }}$	serial clock LOW time		4.7	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time		-	-	1	$\mu \mathrm{~s}$
t_{f}	SCL and SDA fall time		-	-	0.3	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {HD } ; \text { STA }}$	START condition hold time		4	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU;STA }}$	START condition set-up time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; }}$ DAT	data input hold time		0	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU;DAT }}$	data input set-up time		250	-	-	ns
$\mathrm{t}_{\text {SU;STO }}$	STOP condition set-up time		4	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {BUF }}$	bus free time	note 2	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SP }}$	input filter spike suppression		-	-	100	ns

Notes

1. The rise time for SDA returning HIGH must be observed after this period.
2. This is the time that the bus must be free before a new transmission can start.

1 K dual mode serial EEPROM

SCL

Fig. 12 Transmit-only mode (DDC1).

Fig. 13 DDC2B (${ }^{2} \mathrm{C}$-bus timing)

11 APPLICATION INFORMATION

11.1 Diode protection

There is no diode connection between VCLK and $V_{D D}$, SCL and $V_{D D}$ and SDA and $V_{D D}$ (see Fig.14). This allows powering-down the device without affecting the $I^{2} \mathrm{C}$-bus operation or loading the VCLK driver.

11.2 Functional compatibility with microchip 24CL21 dual mode EEPROM

The Philips PCB2421 is pin and function compatible with the 24CL21 providing the following measures are taken in the application.

1. Pin 1 (TEST) must be tied to $V_{D D}$
2. Pin $3(\overline{\mathrm{WP}})$ must be tied to V_{DD}. This inhibits the write protection function which does not exist on the 24CL21 at this time
3. Maximum 100 kHz DDC2B clock frequency
4. Maximum 25 kHz DDC1 VCLK clock frequency
5. During EEPROM programming a maximum write time of 20 ms must be observed
6. 8-byte maximum during page write must be observed
7. During operation $V_{D D}$ must be between 4.5 and 5.5 V
8. An operating temperature between 0 and $+70^{\circ} \mathrm{C}$ must be observed
9. Output valid from VCLK (tvAA) typical $1 \mu s$ must be observed
10. DDC1 mode power-up time (t_{VPU}) typical 5μ s should be observed.

Remark: VCLK is 'don't care' in the DDC2B mode.

Fig. 14 PCB2421 diode protection.

CONTENTS

1 FEATURES 16
2 GENERAL DESCRIPTION
3 QUICK REFERENCE DATA
4 ORDERING INFORMATION
5 BLOCK DIAGRAM
6 PINNING INFORMATION
6.1 Pinning PCD3311CP
6.2 Pin description PCD3311CP
6.3 Pinning PCD3311CT
6.4 Pin description PCD3311CT
6.5 Pinning PCD3312C
6.6 Pin description PCD3312C
7 FUNCTIONAL DESCRIPTION
7.1 General
7.2 Clock/oscillator connection
7.3 Mode selection (PCD3311C)
7.4 Data inputs (PCD3311C)
7.5 Strobe input (PCD3311C)
$7.6 \quad \mathrm{I}^{2} \mathrm{C}$-bus clock and data inputs
7.7 Address input
$7.8 \quad \mathrm{I}^{2} \mathrm{C}$-bus data configuration
7.9 Tone output
$7.10 \quad$ Power-on reset
7.11 Tables of Input and output
$8 \quad{ }^{2} \mathrm{C}$-BUS INTERFACE
8.1 Bit transfer
8.2 Start and stop conditions
8.3 System configuration
8.4 Acknowledge
8.5 Timing specifications
8.5.1 Standard mode
8.5.2 Low-speed mode
9 HANDLING
10 LIMITING VALUES
11 CHARACTERISTICS
12 APPLICATION INFORMATION
13 PACKAGE OUTLINES
14 SOLDERING
14.1 Introduction
14.2 DIP
14.2.1 Soldering by dipping or by wave
14.2.2 Repairing soldered joints
14.3 SO
14.3.1 Reflow soldering
14.3.2 Wave soldering
14.3.3 Repairing soldered joints

DEFINITIONS

LIFE SUPPORT APPLICATIONS
PURCHASE OF PHILIPS $I^{2} \mathrm{C}$ COMPONENTS

1 FEATURES

- DTMF, modem and musical tone generation
- Stabilized output voltage level
- Low output distortion with on-chip filtering conforming to CEPT recommendations
- Latched inputs for data bus applications
- ${ }^{2} \mathrm{C}$-bus compatible
- Selection of parallel or serial (${ }^{2} \mathrm{C}$-bus) data input (PCD3311C).

2 GENERAL DESCRIPTION

The PCD3311C and PCD3312C are single-chip silicon gate CMOS integrated circuits. They are intended principally for use in telephone sets to provide the dual-tone multi-frequency (DTMF) combinations required for tone dialling systems. The various audio output frequencies are generated from an on-chip 3.58 MHz quartz crystal-controlled oscillator. A separate crystal is
used, and a separate microcontroller is required to control the devices.

Both the devices can interface to $\mathrm{I}^{2} \mathrm{C}$-bus compatible microcontrollers for serial input. The PCD3311C can also interface directly to all standard microcontrollers, accepting a binary coded parallel input.

With their on-chip voltage reference the PCD3311C and PCD3312C provide constant output amplitudes which are independent of the operating supply voltage and ambient temperature.

An on-chip filtering system assures a very low total harmonic distortion in accordance with CEPT recommendations.

In addition to the standard DTMF frequencies the devices can also provide:

- Twelve standard frequencies used in simplex modem applications for data rates from 300 to 1200 bits per second
- Two octaves of musical scales in steps of semitones.

3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V_{DD}	operating supply voltage	2.5	-	6.0	V
I_{DD}	operating supply current	-	-	0.9	mA
$\mathrm{I}_{\text {stb }}$	standby current	-	-	3	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{HG}(\mathrm{RMS})}$	DTMF HIGH group output voltage level (RMS value)	158	192	205	mV
$\mathrm{V}_{\mathrm{LG}(\mathrm{RMS})}$	DTMF LOW group output voltage level (RMS value)	125	150	160	mV
G_{v}	pre-emphasis (voltage gain) of group	1.85	2.10	2.35	dB
THD	total harmonic distortion	-	-25	-	dB
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	-25	-	+70	${ }^{\circ} \mathrm{C}$

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCD3311CP	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1
PCD3311CT	SO16	plastic small outline package; 16 leads; body width 7.5 mm	SOT162-1
PCD3312CP	DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT97-1
PCD3312CT	SO8	plastic small outline package; 8 leads; body width 7.5 mm	SOT176-1

5 BLOCK DIAGRAM

The un-parenthesised numbers are for the PCD3311CP, those in parenthesis for the PCD3312C.
Fig. 1 Block diagram.

6 PINNING INFORMATION

6.1 Pinning PCD3311CP

Fig. 2 Pin configuration PCD3311CP.

6.2 Pin description PCD3311CP

SYMBOL	PIN	TYPE	DESCRIPTION
OSCI	1	1	oscillator input
OSCO	2	0	oscillator output
MODE	3	I	mode select input (selects $I^{2} \mathrm{C}$ or parallel data input)
D5	4	1	parallel data input
STROBE	5	1	strobe input (for loading data in parallel mode)
TONE	6	0	frequency output (DTMF, modem, musical tones)
A0	7	1	slave address input (to be connected to V_{DD} or V_{SS})
D0/SCL	8	1	parallel data input or $1^{2} \mathrm{C}$-bus clock line
D1/SDA	9	1	parallel data input or $\mathrm{I}^{2} \mathrm{C}$-bus data line
D2-D4	10-12	1	parallel data inputs
$\mathrm{V}_{\text {SS }}$	13	P	negative supply
V_{DD}	14	P	positive supply

6.3 Pinning PCD3311CT

Fig. 3 Pin configuration PCD3311CT.

6.5 Pinning PCD3312C

Fig. 4 Pin configuration PCD3312C.

6.4 Pin description PCD3311CT

SYMBOL	PIN	TYPE	DESCRIPTION
OSCI	1	I	oscillator input
OSCO	2	0	oscillator output
MODE	3	1	mode select input (selects ${ }^{2} \mathrm{C}$ or parallel data input)
D5	4	1	parallel data input
n.c.	5	-	not connected
STROBE	6	1	strobe input (for loading data in parallel mode)
TONE	7	0	frequency output (DTMF, modem, musical tones)
A0	8	1	slave address input (to be connected to V_{DD} or V_{SS})
D0/SCL	9	1	parallel data input or $\mathrm{I}^{2} \mathrm{C}$-bus clock line
D1/SDA	10	1	parallel data input or ${ }^{2} \mathrm{C}$-bus data line
D2, D3	11, 12	1	parallel data inputs
n.c.	13	-	not connected
D4	14	1	parallel data input
$\mathrm{V}_{\text {S }}$	15	P	negative supply
$V_{\text {DD }}$	16	P	positive supply

6.6 Pin description PCD3312C

SYMBOL	PIN	TYPE	DESCRIPTION
$\mathrm{V}_{\text {SS }}$	1	P	negative supply
V_{DD}	2	P	positive supply
OSCI	3	I	oscillator input
OSCO	4	O	oscillator output
TONE	5	O	frequency output (DTMF, modem, musical tones)
AO	6	I	slave address input (to be connected to $V_{D D}$ or $\left.V_{S S}\right)$
SCL	7	I	I $^{2} \mathrm{C}$-bus clock line
SDA	8	I	I $^{2} \mathrm{C}$-bus data line

7 FUNCTIONAL DESCRIPTION

7.1 General (see Fig.1)

The Input Control Logic decodes the input data to determine whether DTMF, modem or musical tones are selected; and which particular tone or combination of tones is required.

A code representing the required tones is sent to the Divider Selection ROM which selects the correct division ratio in both of the Frequency Dividers (or in one divider, if only a single tone is required).

The Oscillator circuit provides a square wave of frequency 3.58 MHz . Each Frequency Divider divides the frequency of the Oscillator to give a serial digital square wave with a frequency simply related to that of the required tone.

The output from each Frequency Divider goes to a DAC, which is also fed by a clock derived from the oscillator. Using these two signals, the DAC produces an approximate sine wave of the required frequency, with an amplitude derived from the Voltage Reference.

The output from the DAC goes to an Adder where, for DTMF, it is combined with the output from the other DAC.

The output from the Adder goes through two stages of Low Pass Filters to give a smoothed tone (single or dual), and finally to the TONE output.

7.2 Clock/oscillator connection

The timebase for the PCD3311C and PCD3312C is a crystal-controlled oscillator, requiring a 3.58 MHz quartz crystal to be connected between OSCI and OSCO. Alternatively, the OSCI input can be driven from an external clock of 3.58 MHz .

7.3 Mode selection (PCD3311C)

The MODE input selects the data input mode for the PCD3311C. When MODE is connected to V_{DD} (HIGH), data can be received in the parallel mode. When connected to $\mathrm{V}_{\text {SS }}$ (LOW) or left open, data can be received via the serial $\mathrm{I}^{2} \mathrm{C}$-bus.

PCD 3312C has no MODE input as data input is via the $1^{2} \mathrm{C}$-bus only.

7.4 Data inputs (PCD3311C)

Inputs D0, D1, D2, D3, D4 and D5 are used in the parallel data input mode of the PCD3311C. Inputs D0 and D1 are also used in serial input mode when they act as the SCL and SDA inputs respectively. Inputs D0 and D1 have no internal pull-down or pull-up resistors and must not be left open in any application. Inputs D2, D3, D4 and D5 have internal pull-down.

D4 and D5 are used to select between DTMF dual, DTMF single, modem and musical tones (see Table 1). D0, D1, D2 and D3 select the tone combination or single tone within the selected application. They also, in combination with D4, select the standby mode. See Tables 2, 3, 4 and 5.

PCD 3312C has no parallel data pins as data input is via the $\mathrm{I}^{2} \mathrm{C}$-bus.

Table 1 Use of D5 and D4 to select application

D5	D4	APPLICATION
LOW	LOW	DTMF single tones; musical tones; standby
LOW	HIGH	DTMF dual tones (all 16 combinations)
HIGH	LOW	modem tones
HIGH	HIGH	musical tones

7.5 Strobe input (PCD3311C)

The STROBE input (with internal pull-down) allows the loading of parallel data into D0 to D5 when MODE is HIGH.

The data inputs must be stable preceding the positive-going edge of the strobe pulse (active HIGH). Input data are loaded at the negative-going edge of the strobe pulse and then the corresponding tone (or standby mode) is provided at the TONE output. The output remains unchanged until the negative-going edge of the next STROBE pulse (for new data) is received. Figure 5 is an example of the timing relationship between STROBE and the data inputs.

When MODE is LOW, data is received serially via the $\mathrm{I}^{2} \mathrm{C}$-bus.

Fig. 5 Timing of STROBE, parallel data inputs and TONE output ($770 \mathrm{~Hz}+1477 \mathrm{~Hz}$ in example) in the parallel mode (MODE $=\mathrm{HIGH})$.

7.6 $\quad I^{2} \mathrm{C}$-bus clock and data inputs

SCL and SDA are the serial clock and serial data inputs according to the $I^{2} \mathrm{C}$-bus specification, see Chapter 8. SCL and SDA must be pulled up externally to $V_{D D}$.
For the PCD3311C, SCL and SDA are combined with parallel inputs D0 and D1 respectively - D0/SCL and D1/SDA operate serially only when MODE is LOW.

7.7 Address input

Address input AO defines the least significant bit of the ${ }^{2}$ C-bus address of the device (see Fig.6). The first 6 bits of the address are fixed internally. By tying the AO of each device to V_{DD} (HIGH) and V_{SS} (LOW) respectively, two different PCD3311C or PCD3312C devices can be individually addressed on the bus.

Whether one or two devices are used, A0 must be connected to V_{DD} or V_{SS}.

$7.8 \quad I^{2} \mathrm{C}$-bus data configuration (see Fig.6)

The PCD3311C and PCD3312C are always slave receivers in the $R^{2} C$-bus configuration. The $R \bar{W}$ bit in is thus always LOW, indicating that the master (microcontroller) is writing.
The slave address in the serial mode consists of 7 bits: 6 bits internally fixed, 1 externally set via A0. in the serial mode, the same input data codes are used as in the parallel mode. See Tables 2, 3, 4 and 5.

7.9 Tone output

The single and dual tones provided at the TONE output are first filtered by an on-chip switched-capacitor filter, followed by an active RC low-pass filter. The filtered tones fulfil the CEPT recommendations for total harmonic distortion of DTMF tones. An on-chip reference voltage provides output tone levels independent of the supply voltage. Tables 3,4 and 5 give the frequency deviation of the output tones with respect to the standard DTMF, modem and music frequencies.

Fig. $6 I^{2} \mathrm{C}$-bus data format.

7.10 Power-on reset

In order to avoid an undefined state when the power is switched ON, the devices have an internal reset circuit which sets the standby mode (oscillator OFF).

7.11 TABLES OF INPUT AND OUTPUT

The specified output tones are obtained when a 3.579545 MHz crystal is used.
In each table, the logical states for the input data lines are related to voltage levels as follows:
$1=\mathrm{HIGH}=\mathrm{V}_{\mathrm{DD}}$
$0=$ LOW $=V_{S S}$
$\mathrm{X}=$ don't care
Table 2 Input data for no output tone, TONE in 3-state

D5	D4	D3	D2	D1	D0	HEX ${ }^{(1)}$	OSCILLATOR
X	0	0	0	0	0	00 or 20	ON
X	0	0	0	0	1	01 or 21	OFF
X	0	0	0	1	0	02 or 22	OFF
X	0	0	0	1	1	03 or 23	OFF

Note

1. The alternative HEX values depend on the value of D5.

DTMF/modem/musical-tone generators
PCD3311C; PCD3312C

Table 3 Input data and output for DTMF tones

D5	D4	D3	D2	D1	D0	HEX	SYMBOL	STANDARD FREQUENCY Hz	TONE OUTPUT FREQ. Hz	FREQUENCY DEVIATION	
										\%	Hz
0	0	1	0	0	0	08	-	697	697.90	+0.13	+0.90
0	0	1	0	0	1.	09	-	770	770.46	+0.06	+0.46
0	0	1	0	1	0	OA	-	852	850.45	-0.18	-1.55
0	0	1	0	1	1	OB	-	941	943.23	+0.24	+2.23
0	0	1	1	0	0	OC	-	1209	1206.45	-0.21	-2.55
0	0	1	1	0	1	OD	-	1336	1341.66	+0.42	+5.66
0	0	1	1	1	0	OE	-	1477	1482.21	+0.35	+5.21
0	0	1	1	1	1	OF	-	1633	1638.24	+0.32	+5.24
0	1	0	0	0	0	10	0	$941+1336$	-	-	-
0	1	0	0	0	1	11.	1	697+1209	-	-	-
0	1	0	0	1	0	12	2	$697+1336$	-	-	-
0	1	0	0	1	1	13	3	697+1477	-	-	-
0	1	0	1	0	0	14	4	$770+1209$	-	-	-
0	1	0	1	0	1	15	5	$770+1336$	-	-	-
0	1	0	1	1	0	16	6	$770+1477$	-	-	-
0	1	0	1	1	1	17	7	852+1209	-	-	-
0	1	1	0	0	0	18	8	852+1336	-	-	-
0	1	1	0	0	1	19	9	852+1477	-	-	-
0	1	1	0	1	0	1 A	A	697+1633	-	-	-
0	1	1	0	1	1	1B	B	770+1633	-	-	-
0	1	1	1	0	0	1C	C	852+1633	-	-	-
0	1	1	1	0	1	1D	D	$941+1633$	-	-	-
0	1	1	1	1	0	1E	*	$941+1209$	-	-	-
0	1	1	1	1	1	1F	\#	941+1477	-	-	-

Table 4 Input data and output for modem tones

D5	D4	D3	D2	D1	D0	HEX	STANDARD FREQUENCY Hz	TONE OUTPUT FREQ. Hz	FREQUENCY DEVIATION		TELECOM. STANDARD
									\%	Hz	
1	0	0	1	0	0	24	1300	1296.94	-0.24	-3.06	V. 23
1	0	0	1	0	1	25	2100	2103.14	+0.15	+3.14	
1	0	0	1	1	0	26	1200	1197.17	-0.24	-2.83	Bell 202
1	0	0	1	1	1	27	2200	2192.01	-0.36	-7.99	
1	0	1	0	0	0	28	980	978.82	-0.12	-1.18	V. 21
1	0	1	0	0	1	29	1180	1179.03	-0.08	-0.97	

D5	D4	D3	D2	D1	D0	HEX	STANDARD FREQUENCY Hz	TONE OUTPUT FREQ. Hz	FREQUENCY DEVIATION		TELECOM. STANDARD
									\%	Hz	
1	0	1	0	1	0	2A	1070	1073.33	+0.31	+3.33	Bell 103
1	0	1	0	1	1	2B	1270	1265.30	-0.37	-4.70	
1	0	1	1	0	0	2 C	1650	1655.66	+0.34	+5.66	V. 21
1	0	1	1	0	1	2D	1850	1852.77	+0.15	+2.77	
1	0	1	1	1	0	2E	2025	2021.20	-0.19	-3.80	Bell 103
1	0	1	1	1	1	2F	2225	2223.32	-0.08	-1.68	

Table 5 Input/output for musical tones

D5	D4	D3	D2	D1	D0	HEX	NOTE	STD. FREQ. BASED ON $\mathrm{A} 4=440 \mathrm{~Hz}$	TONE OUTPUT FREQUENCY
								Hz	Hz
1	1	0	0	0	0	30	D\#5	622.3	622.5
1	1	0	0	0	1	31	E5	659.3	659.5
1	1	0	0	1	0	32	F5	698.5	697.9
1	1	0	0	1	1	33	F\#5	740.0	741.1
1	1	0	1	0	0	34	G5	784.0	782.1
1	1	0	1	0	1	35	G\#5	830.6	832.3
1	1	0	1	1	0	36	A5	880.0	879.3
1	1	0	1	1	1	37	A\#5	932.3	931.9
1	1	1	0	0	0	38	B5	987.8	985.0
1	1	1	0	0	1	39	C6	1046.5	1044.5
1	1	1	0	1	0	3A	C\#6	1108.7	1111.7
1	0	1	0	0	1	29	D6	1174.7	1179.0
1	1	1	0	1	1	3B	D\#6	1244.5	1245.1
1	1	1	1	0	0	3C	E6	1318.5	1318.9
1	1	1	1	0	1	3D	F6	1396.9	1402.1
0	0	1	1	1	0	OE	F\#6	1480.0	1482.2
1	1	1	1	1	0	3E	G6	1568.0	1572.0
1	0	1	1	0	0	2C	G\#6	1661.2	1655.7
1	1	1	1	1	1	3F	A6	1760.0	1768.5
0	0	0	1	0	0	04	A\#6	1864.7	1875.1
0	0	0	1	0	1	05	B6	1975.5	1970.0
1	0	0	1	0	1	25	C7	2093.0	2103.1
1	0	1	1	1	1	2 F	C\#7	2217.5	2223.3
0	0	1	1	1	0	06	D7	2349.3	2358.1
0	0	0	1	1	1	07	D\#7	2489.0	2470.4

$8 \quad I^{2}$ C-BUS INTERFACE

The $\mathrm{I}^{2} \mathrm{C}$-bus is for two-way communication between different ICs or modules. It uses only two lines, a serial data line (SDA) and a serial clock line (SCL), both of which are bi-directional. Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

8.1 Bit transfer (see Fig.7)

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

8.2 Start and stop conditions (see Fig.8)

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

DTMF/modem/musical-tone generators

8.3 System configuration (see Fig.9)

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls message transfer is the 'master' and the devices that are controlled by the master are the 'slaves'.

Fig. 9 System configuration.

8.4 Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge after the reception of each byte. Also a master must generate an acknowledge after reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge-related clock pulse. Set-up and hold times must be taken into account to ensure that the SDA line is stable LOW during the whole HIGH period of the acknowledge-related clock pulse. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate the stop condition.

Fig. 10 Acknowledgment on the $\mathrm{I}^{2} \mathrm{C}$-bus.

8.5 Timing specifications

The PCD3311C and PCD3312C accept data input from a microcontroller and are 'slave receivers' when operating via the $\mathrm{I}^{2} \mathrm{C}$-bus. They support the 'standard' and 'low-speed' modes of the $\mathrm{I}^{2} \mathrm{C}$-bus, but not the 'fast' mode detailed in "The I^{2} C-bus and how to use it" document order no. 9398393 40011. The timing requirements for the devices are described in Sections 8.5.1 and 8.5.2.

8.5.1 STANDARD MODE

Masters generate a bus clock with a maximum frequency of 100 kHz . Detailed timing is shown in Fig.11, where the two signal levels are LOW $=\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{HIGH}=\mathrm{V}_{\mathrm{IH}}$, see Chapter 11. Figure 12 shows a complete data transfer in standard mode. The time symbols are explained in Table 6.

Fig. 11 Standard mode timing.

Clock LOW minimum $=4.7 \mu \mathrm{~s}$; clock HIGH minimum $=4 \mu \mathrm{~s}$.
The dashed line is the acknowledgment of the receiver.
Mark-to-space ratio =1:1(LOW-to-HIGH).
Maximum number of bytes is unrestricted.
Premature termination of transfer is allowed by generation of STOP condition.
Acknowledge clock bit must be provided by master.
Fig. 12 Complete data transfer in standard mode.

Table 6 Explanation of time symbols used in Fig. 11

SYMBOL	PARAMETER	REMARKS	MIN.	MAX.	UNIT
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		0	100	kHz
tsw	tolerable pulse spike width		-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time	The time that the bus is free (SDA is HIGH) before a new transmission is initiated by SDA going LOW.	4.7	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {Su; }}$ STA	set-up time repeated START	Only valid for repeated start code.	4.7	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD } ; \text { STA }}$	hold time START condition	The time between SDA going LOW and the first valid negative-going transition of SCL.	4.0	-	$\mu \mathrm{s}$
tow	SCL LOW time	The LOW period of the SCL clock.	4.7	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time	The HIGH period of the SCL clock.	4.0	-	$\mu \mathrm{s}$
tr_{r}	rise time SDA and SCL		-	1.0	$\mu \mathrm{s}$
t_{f}	fall time SDA and SCL		-	0.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {Su; }}$ DAT	data set-up time		250	-	ns
$\mathrm{t}_{\text {HD; DAT }}$	data hold time		0	-	ns
$\mathrm{t}_{\text {SU; }}$ STO	set-up time STOP condition		4.0	-	$\mu \mathrm{s}$

8.5.2 LOW-SPEED MODE

Masters generate a bus clock with a maximum frequency of 2 kHz ; a minimum LOW period of $105 \mu \mathrm{~s}$ and a minimum HIGH period of $365 \mu \mathrm{~s}$. The mark-to-space ratio is $1: 3 \mathrm{LOW}$-to-HIGH. Detailed timing is shown in Fig. 13, where the two signal levels are LOW $=\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{HIGH}=\mathrm{V}_{\mathrm{IH}}$, see Chapter 11. Figure 14 shows a complete data transfer in low-speed mode. The time symbols are explained in Table 7.

Fig. 13 Low-speed mode timing.

Clock LOW minimum $=130 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$; clock HIGH minimum $390 \mu \mathrm{~s} \pm 25 \mu \mathrm{~s}$.
Mark-to-space ratio $=1: 3$ (LOW-to-HIGH).
Start byte 00000001.
Maximum number of bytes $=6$.
Premature termination of transfer not allowed.
Acknowledge clock bit must be provided by master.
Fig. 14 Complete data transfer in low speed mode.

Table 7 Explanation of time symbols used in Fig. 13

SYMBOL	PARAMETER	REMARKS	MIN.	MAX.	UNIT
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		0	2	kHz
tsw	tolerable pulse spike width		-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time	The time that the bus is free (SDA is HIGH) before a new transmission is initiated by SDA going LOW.	105	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; STA }}$	set-up time repeated START	Only valid for repeated start code.	105	155	μs
$\mathrm{t}_{\text {HD; STA }}$	hold time START condition	The time between SDA going LOW and the first valid negative-going transition of SCL.	365	415	$\mu \mathrm{s}$
t Low	SCL LOW time	The LOW period of the SCL clock.	105	155	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time	The HIGH period of the SCL clock.	365	-	$\mu \mathrm{s}$
t_{r}	rise time SDA and SCL		-	1.0	$\mu \mathrm{s}$
t_{f}	fall time SDA and SCL		-	0.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; DAT }}$	data set-up time		250	-	ns
$\mathrm{t}_{\text {HD; }}$ DAT	data hold time		0	-	ns
$\mathrm{t}_{\text {SU; STO }}$	set-up time STOP condition		105	155	$\mu \mathrm{s}$

9 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, it is good practice to take normal precautions appropriate to handling MOS devices (see "Handbook IC03, Section: General, Handling MOS devices").

10 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.8	+8.0	V
$\mathrm{~V}_{\mathrm{I}}$	all input voltages	-0.8	$\mathrm{~V}_{\mathrm{DD}}+0.8$	V
I_{I}	DC input current	-10	+10	mA
I_{O}	DC output current	-10	+10	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	300	mW
P_{O}	power dissipation per output	-	50	mW
I_{DD}	supply current through pin V_{DD}	-50	+50	mA
I_{SS}	supply current through pin V_{SS}	-50	+50	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature	-25	+70	${ }^{\circ} \mathrm{C}$

11 CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6.0 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-25$ to $+70^{\circ} \mathrm{C}$; all voltages with respect to $\mathrm{V}_{\mathrm{SS}} ; \mathrm{f}_{\mathrm{xtal}}=3.58 \mathrm{MHz}\left(\mathrm{g}_{\mathrm{mL}}\right)$; maximum series resistance $=50 \Omega$; unless otherwise specified.

SYMBOL	PARAMETER	MIN.	TYP	MAX.	UNIT
V_{DD}	operating supply voltage	2.5	-	6.0	V
I_{DD}	operating supply current (note 1) no output tone	-	50	100	$\mu \mathrm{A}$
	single output tone	-	0.5	0.8	mA
	dual output tone	-	0.6	0.9	mA
$\mathrm{I}_{\text {stb }}$	static standby current (note 2)	-	-	3	$\mu \mathrm{A}$
Inputs/outputs (SDA)					
D0 To D5; MODE; STROBE					
V_{IL}	LOW level input voltage	0	-	$0.3 V_{\text {DD }}$	V
V_{IH}	HIGH level input voltage	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
D2 To D5 MODE; STROBE; A0					
IIL	pull-down input current; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$	-30	-150	-300	nA
SCL (D0); SDA (D1)					
l OL	LOW level output current (SDA); $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3	-	-	mA
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency	-	-	100	kHz
C_{i}	input capacitance; $\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	-	-	7	pF
t_{i}	allowable input spike pulse width	-	-	100	ns

DTMF/modem/musical-tone generators
PCD3311C; PCD3312C

SYMBOL	PARAMETER	MIN.	TYP	MAX.	UNIT
TONE output (see test circuit, Fig.15)					
$\mathrm{V}_{\text {HG(RMS }}$	DTMF output voltage (RMS), HIGH group	158	192	205	mV
$\mathrm{V}_{\text {LG(RMS }}$	DTMF output voltage (RMS), LOW group	125	150	160	mV
V_{DC}	DC voltage level	-	$1 / 2 V_{D D}$	-	V
G_{v}	voltage gain (pre-emphasis) of group	1.85	2.10	2.35	dB
THD	Total Harmonic Distortion; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ dual tone (note 3)	-	-25	-	dB
	modem tone (note 4)	-	-29	-	dB
$\left\|Z_{0}\right\|$	output impedance	-	0.1	0.5	$\mathrm{k} \Omega$
OSCI input					
$\mathrm{V}_{\text {Osc }}(p-p)$	maximum allowable amplitude at OSCl	-	-	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$	V
Timing ($\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$)					
tosc(on)	oscillator start-up time	-	3	-	ms
$\mathrm{t}_{\text {TONE(ON) }}$	TONE start-up time (note 5)	-	0.5	-	ms
$\mathrm{t}_{\text {SPW }}$	STROBE pulse width (note 6)	400	-	-	ns
t_{DS}	data set-up time (note 6)	150	-	-	ns
t_{DH}	data hold time (note 6)	100	-	-	ns

Notes

1. Oscillator $\mathrm{ON} ; \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$; crystal connected between OSCI and OSCO ; DO/SCL and D1/SDA connected via resistance of $5.6 \mathrm{k} \Omega$ to V_{DD}; all other pins left open.
2. As note 1 , but with oscillator OFF.
3. Related to the level of the LOW group frequency component, according to CEPT recommendations.
4. Related to the level of the fundamental frequency.
5. Oscillator must be running.
6. Values are referenced to the 10% and 90% levels of the relevant pulse amplitudes, with a total voltage swing from $V_{S S}$ to $V_{D D}$.

Fig. 15 TONE output test circuit.

DTMF/modem/musical-tone generators

Fig. 16 Standby supply current as a function of supply voltage; oscillator OFF.

Fig. 18 Operating supply current as a function of supply voltage; oscillator ON, dual tone at TONE.

Fig. 17 Operating supply current as a function of supply voltage; oscillator ON, no output at TONE.

Fig. 19 Pull-down input current as a function of input voltage; $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$.

DTMF/modem/musical-tone generators

Fig. 20 DTMF output voltage levels as a function of operating supply voltage; $\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega$.

Fig. 21 Dual tone output voltage level as a function of output load resistance.

Fig. 22 Typical frequency spectrum of a dual tone signal after flat-band amplification of 6 dB .

12 APPLICATION INFORMATION

Fig. 23 PCD3311C driven by microcontroller with parallel data bus.

Fig. 24 PCD3312C driven by microcontroller PCF84C21A. The PCF84C21A is a single-chip 8-bit microcontroller with 2 kbytes ROM and ${ }^{2} \mathrm{C}$-bus. The same application is possible with the PCD 3311 C with $\mathrm{MODE}=\mathrm{V}_{\mathrm{Ss}}$.

LCD controller/driver

CONTENTS		10.1
		10.2
1	FEATURES	10.3
2	APPLICATIONS	10.4
3	GENERAL DESCRIPTION	10.5
4	ORDERING INFORMATION	10.6
5	BLOCK DIAGRAM	10.8
6	PINNING	10.9
7	PIN FUNCTIONS	10.10
8	FUNCTIONAL DESCRIPTION	
8.1	LCD supply voltage generator	12
8.2	Programming ranges	12
8.3	LCD bias voltage generator	
8.4	Oscillator	12.1
8.5	External clock	12.2
8.6	Power-on reset	12.3
8.7	Power-down mode	13
8.8	Registers	14
8.9	Busy Flag	15
8.10	Address Counter (AC)	15
8.11	Display Data RAM (DDRAM)	16
8.12	Character Generator ROM (CGROM)	17
8.13	Character Generator RAM (CGRAM)	
8.14	Cursor control circuit	
8.15	Timing generator	18.1
8.16	LCD row and column drivers	
8.17	Reset function	18.2
9	INSTRUCTIONS	
9.1	Clear display	18.4
9.2	Return home	19
9.3	Entry mode set	19
9.3.1	I/D	20
9.3.2	S	21
9.4	Display control (and partial power-down mode)	21.1
9.4.1	D	21.2
9.4.2	C	21.2
9.4.3	B	21.4
9.5	Cursor/display shift	
9.6	Function set	22
9.6.1	DL (parallel mode only)	23
9.6.2	M	24
9.6.3	H	
9.7	Set CGRAM address	
9.8	Set DDRAM address	
9.9	Read busy flag and address	
9.10	Write data to CGRAM or DDRAM	
9.11	Read data from CGRAM or DDRAM	
10	EXTENDED FUNCTION SET INSTRUCTIONS AND FEATURES	

1 FEATURES

- Single-chip LCD controller/driver
- 2 -line display of up to 12 characters +120 icons, or 1 -line display of up to 24 characters +120 icons
- 5×7 character format plus cursor; 5×8 for kana (Japanese syllabary) and user defined symbols
- Icon mode: reduced current consumption while displaying icons only ${ }^{(1)}$
- Icon blink function
- On-chip:
- generation of LCD supply voltage, programmable by instruction (external supply also possible)
- temperature compensation of on-chip generated $V_{\text {LCD }}$: -8 to $-12 \mathrm{mV} / \mathrm{K}$ at 5.0 V (programmable by instruction)
- generation of intermediate LCD bias voltages
- oscillator requires no external components (external clock also possible)
- Display data RAM: 80 characters
- Character generator ROM: $240,5 \times 8$ characters
- Character generator RAM: $16,5 \times 8$ characters; 3 characters used to drive 120 icons, 6 characters used if icon-blink feature is used in application
- 4 or 8 -bit parallel bus and 2 -wire $\mathrm{I}^{2} \mathrm{C}$-bus interface
- CMOS compatible
- 18 row, 60 column outputs
(1) Icon mode is used to save current. When only icons are displayed, a much lower operating voltage $\mathrm{V}_{\mathrm{LCD}}$ can be used and the switching frequency of the LCD outputs is reduced. In most applications it is possible to use $V_{D D}$ as $V_{L C D}$. Never use the voltage generator in icon mode.
- MUX rates 1 : 18 (for normal operation) and $1: 2$ (for icon-only mode)
- Uses common 11 code instruction set (extended)
- Logic supply voltage range, $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=1.8$ to 4.0 V (up to 5.5 V if external $\mathrm{V}_{\text {LCD }}$ is used); chip may be driven with two battery cells
- Display supply voltage range, $\mathrm{V}_{\mathrm{LCD}}-\mathrm{V}_{\mathrm{SS}}=2.2$ to 6.5 V
- Very low current consumption (20 to $200 \mu \mathrm{~A}$):
- icon mode: <25 $\mu \mathrm{A}$
- power-down mode: <2.5 $\mu \mathrm{A}$.

2 APPLICATIONS

- Telecom equipment
- Portable instruments
- Point-of-sale terminals.

3 GENERAL DESCRIPTION

The PCF2113x is a low power CMOS LCD controller and driver, designed to drive a dot matrix LCD display of 2 line by 12 and 1 line by 24 characters with 5×8 dot format. All necessary functions for the display are provided in a single chip, including on-chip generation of LCD bias voltages, resulting in a minimum of external components and lower system current consumption. The PCF2113x interfaces to most microcontrollers via a 4 or 8 -bit bus or via the 2 -wire $\mathrm{I}^{2} \mathrm{C}$-bus. The chip contains a character generator and displays alphanumeric and kana (Japanese) characters. Three character sets (A, D and E) are currently available (see Figs 7, 8 and 9). Various other character sets can be manufactured on request.

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF2113AU/10/F2	-	chip on flexible film carrier	-
PCF2113DU/10/F2	-	chip on flexible film carrier	-
PCF2113DU/F2	-	chip in tray	-
PCF2113DH/F2	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4 \mathrm{~mm}$	SOT407-1
PCF2113EU/2/F2	-	chip with bumps in tray	-

5 BLOCK DIAGRAM

Fig. 1 Block diagram.

6 PINNING

SYMBOL	PIN	TYPE	DESCRIPTION
$\mathrm{V}_{\mathrm{DD} 1}$	1	P	supply voltage for all except high voltage generator
OSC	2	1	oscillator/external clock input
PD	3	1	power-down pad input
T1	4	1	test pad (connected to V_{SS})
$\mathrm{V}_{\text {SS1 }}$	5	P	ground for all except high voltage generator
$\mathrm{V}_{\text {SS2 }}$	6	P	ground for high voltage generator
VLCD2	7	0	$\mathrm{V}_{\text {LCD }}$ output; note 1
V ${ }_{\text {LCD1 }}$	8	1	$V_{\text {LCD }}$ input; note 2
R9 to R16	9 to 16	0	LCD row driver outputs 9 to 16
R18	17	0	LCD row driver output 18
C60 to C1	18 to 77	0	LCD column driver outputs 60 to 1
R8 to R1	78 to 85	0	LCD row driver outputs 8 to 1
R17	86	0	LCD row driver output 17
SCL	87	I	$\mathrm{I}^{2} \mathrm{C}$ serial clock input
SDA	88	1/O	$\mathrm{I}^{2} \mathrm{C}$ serial data input/output
E	89	1	data bus clock input
RS	90	I	register select input
$\mathrm{R} / \overline{\mathrm{W}}$	91	1	read/write input
DB7	92	I/O	1 bit of 8-bit bidirectional data bus
DB6	93	I/O	1 bit of 8-bit bidirectional data bus
DB5	94	I/O	1 bit of 8-bit bidirectional data bus
DB4	95	I/O	1 bit of 8-bit bidirectional data bus
DB3/SA0	96	I/O	1 bit of 8-bit bi-directional data bus $/{ }^{2} \mathrm{C}$ address pin
DB2	97	I/O	1 bit of 8-bit bidirectional data bus
DB1	98	I/O	1 bit of 8-bit bidirectional data bus
DB0	99	I/O	1 bit of 8-bit bidirectional data bus
$\mathrm{V}_{\mathrm{DD} 2}$	100	P	supply voltage for high voltage generator; note 3

Notes

1. This is the $\mathrm{V}_{\mathrm{LCD}}$ output pin, if $\mathrm{V}_{\mathrm{LCD}}$ is generated internally and has to be connected to $\mathrm{V}_{\mathrm{LCD} 1}$. If $\mathrm{V}_{\mathrm{LCD} 1}$ is generated externally, $\mathrm{V}_{\mathrm{LCD} 2}$ has to be left open or connected to ground.
2. This is the voltage used for the generation of LCD bias levels.
3. This is the supply for the high voltage generator. If $\mathrm{V}_{\mathrm{LCD}}$ is generated externally, connect $\mathrm{V}_{\mathrm{DD} 2}$ to V_{SS}.

Fig. 2 Pin configuration (LQFP100).

7 PIN FUNCTIONS

NAME	FUNCTION	DESCRIPTION
RS	register select	RS selects the register to be accessed for read and write when the device is controlled by the parallel interface. There is an internal pull-up on this pin. RS = logic 0 selects the instruction register for write and the Busy Flag and Address Counter for read. RS = logic 1 selects the data register for both read and write.
R/W	read/write	R / \bar{W} selects either the read ($R / \bar{W}=\operatorname{logic} 1$) or write ($R / \bar{W}=\operatorname{logic} 0$) operation when the device is controlled by the parallel interface. There is an internal pull-up on this pin.
E	data bus clock	The E pin is set HIGH to signal the start of a read or write operation when the device is controlled by the parallel interface. Data is clocked in or out of the chip on the negative edge of the clock. Note that this pin must be tied to logic $0\left(\mathrm{~V}_{\mathrm{SS}}\right)$ when $\mathrm{I}^{2} \mathrm{C}$-bus control is used.
DB7 to DB0	data bus	The parallel interface of the device. This bi-directional, 3-state data bus transfers data between the system controller and the PCF2113x. There is an internal pull-up on each of the data lines. DB7 to DB0 must be connected to $\mathrm{V}_{\text {DD }}$ or left open circuit when $\mathrm{I}^{2} \mathrm{C}$-bus control is used. Note that DB3 shares the same pin as SAO. In 4-bit operations only DB7 to DB4 are used, and DB3 to DB0 must be left open circuit. See note 1. DB7 may be used as the Busy Flag, signalling that internal operations are not yet completed.
C1 to C60	column driver outputs	These pins output the data for columns.
R1 to R18	row driver outputs	These pins output the row select waveforms to the display. R17 and R18 drive the icons.
$\mathrm{V}_{\text {LCD }}$	LCD power supply	Positive power supply for the liquid crystal display. This may be generated on-chip or supplied externally.
OSC	oscillator	When the on-chip oscillator is used this pin must be connected to $V_{D D}$. An external clock signal, if used, is input at this pin.
SCL	serial clock line	Input for the $\mathrm{I}^{2} \mathrm{C}$-bus clock signal. SCL must be connected to V_{SS} or V_{DD} when the parallel interface is used.
SDA	serial data line	I/O for the $\mathrm{I}^{2} \mathrm{C}$-bus data line. SDA must be connected to $V_{S S}$ or $V_{D D}$ when the parallel interface is used.
SAO	address pin	The hardware sub-address line is used to program the device sub-address for two different PCF2113xs on the same $I^{2} \mathrm{C}$ bus. Note that SAO shares the same pin as DB3.
T1	test pad	T1 must be connected to $\mathrm{V}_{\text {SS }}$ and is not user accessible.
PD	power-down pad	PD selects chip power-down mode. For normal operation $\mathrm{PD}=\operatorname{logic} 0$.

Note

1. If the 4-bit interface is used without reading out from the PCF2113x (i.e. R / \bar{W} is set permanently to logic 0), the unused ports DB0 to DB3 can either be set to $\mathrm{V}_{S S}$ or V_{DD} instead of leaving them open.

8 FUNCTIONAL DESCRIPTION (see Fig.1)

8.1 LCD supply voltage generator

The LCD supply voltage may be generated on-chip.
The voltage generator is controlled by two internal 6-bit registers, V_{A} and V_{B}. The nominal LCD operating voltage at room temperature is given by the relationships:
$\mathrm{V}_{\mathrm{OP}(\text { nom })}=[($ integer value of register $) \times 0.08+1.9] \mathrm{V}$

8.2 Programming ranges ($\mathrm{T}_{\text {ref }}=27^{\circ} \mathrm{C}$)

Programmed value range: 1 to 63.
Voltage range: 1.90 to 6.84 V .
Values producing more than 6.5 V at operating temperature are not allowed. Operation above this voltage may damage the device. When programming the operating voltage the $\mathrm{V}_{\text {LCD }}$ temperature coefficient must be taken into account.

Values below 2.2 V are below the specified operating range of the chip and are therefore not allowed.
Value 0 for V_{A} and V_{B} switches the generator off.

Usually register V_{A} is programmed with the voltage for character mode and register V_{B} with the voltage for icon mode. V_{B} must be programmed to FF in character mode and V_{A} must be programmed to 00 in icon mode.
When $V_{\text {LCD }}$ is generated on-chip the $V_{\text {LCD }}$ pins should be decoupled to $\mathrm{V}_{S S}$ with a suitable capacitor. The generated $V_{L C D}$ is independent of $V_{D D}$ and is temperature compensated. When the generator is switched off an external voltage may be supplied at connected pins $\mathrm{V}_{\mathrm{LCD1}, 2} \cdot \mathrm{~V}_{\mathrm{LCD1,2}}$ may be higher or lower than V_{DD} if external $V_{\text {LCD }}$ is used. If internally generated it must not be lower than V_{DD} and $\mathrm{V}_{\mathrm{DD}} \leq 4 \mathrm{~V}$.

8.3 LCD bias voltage generator

The intermediate bias voltages for the LCD display are also generated on-chip. This removes the need for an external resistive bias chain and significantly reduces the system current consumption. The optimum value of $V_{\text {LCD }}$ depends on the multiplex rate, the LCD threshold voltage $\left(\mathrm{V}_{\mathrm{th}}\right)$ and the number of bias levels and is given by the relationships given in Tables 1 and 2. Using a 5 -level bias scheme for 1 : 18 maximum rate allows $\mathrm{V}_{\text {LCD }}<5 \mathrm{~V}$ for most LCD liquids.

Table 1 Optimum/maximum values for V_{OP} (off pixels start darkening; $\mathrm{V}_{\text {off }}=\mathrm{V}_{\text {th }}$)

MUX RATE	NUMBER OF LEVELS	$\mathbf{V}_{\mathbf{o n}} / \mathbf{V}_{\text {th }}$	$\mathbf{V}_{\mathbf{O P}} / \mathbf{V}_{\mathbf{t h}}$	$\mathbf{V}_{\mathbf{O P}}$ (typical; for $\mathbf{V}_{\mathbf{t h}}=\mathbf{1 . 4} \mathbf{~ V}$)
$1: 18$	5	1.272	3.7	5.2 V
$1: 2$	3	2.236	2.283	3.9 V

Table 2 Minimum values for V_{OP} (on pixels clearly visible; $\mathrm{V}_{\text {on }}>\mathrm{V}_{\mathrm{th}}$)

MUX RATE	NUMBER OF LEVELS	$\mathbf{V}_{\text {on }} / \mathbf{V}_{\text {th }}$	$\mathbf{V}_{\text {OP }} / \mathbf{V}_{\text {th }}$	$\mathbf{V}_{\text {OP }}$ (typical; for $\mathbf{V}_{\text {th }}=\mathbf{1 . 4} \mathbf{V}$)
$1: 18$	5	1.12	3.2	4.6 V
$1: 2$	3	1.2	1.5	2.1 V

8.4 Oscillator

The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC pin must be connected to V_{DD}.

8.5 External clock

If an external clock is to be used this is input at the OSC pin. The resulting display frame frequency is given by
$\mathrm{f}_{\text {frame }}=\frac{\mathrm{f}_{\mathrm{OSC}}}{3072}$

Only in the power-down state is the clock allowed to be stopped (OSC connected to V_{ss}), otherwise the LCD is frozen in a DC state.

8.6 Power-on reset

The on-chip power-on reset block initializes the chip after power-on or power failure. This is a synchronous reset and requires 3 OSC cycles to be executed.

8.7 Power-down mode

The chip can be put into power-down mode where all static currents are switched off (no internal oscillator, no bias level generation, all LCD-outputs are internally connected to V_{SS}) when $\mathrm{PD}=$ logic 1 .

During power-down, the whole chip is reset and will restart with a clear display after power-down. Therefore, the whole chip has to be initialized after a power-down as after initial power- up.

The device should be put into 'display off' mode (instruction 'Display control') before putting the chip in power-down mode, otherwise the LCD output voltages are not defined.

8.8 Registers

The PCF2113x has two 8-bit registers, an Instruction Register (IR) and a Data Register (DR). The Register Select signal (RS) determines which register will be accessed. The instruction register stores instruction codes such as 'Display clear' and 'Cursor shift', and address information for the Display Data RAM (DDRAM) and Character Generator RAM (CGRAM). The instruction register can be written from but not read by the system controller. The data register temporarily stores data to be read from the DDRAM and CGRAM. When reading, data from the DDRAM or CGRAM corresponding to the address in the instruction register is written to the data register prior to being read by the 'Read data' instruction.

8.9 Busy Flag

The Busy Flag indicates the free/busy status of the PCF2113x. Logic 1 indicates that the chip is busy and further instructions will not be accepted. The Busy Flag is output to pin DB7 when $R S=\operatorname{logic} 0$ and $R / \bar{W}=\operatorname{logic} 1$. Instructions should only be written after checking that the Busy Flag is logic 0 or waiting for the required number of cycles.

8.10 Address Counter (AC)

The Address Counter assigns addresses to the DDRAM and CGRAM for reading and writing and is set by the instructions 'Set CGRAM address' and 'Set DDRAM address'. After a read/write operation the Address Counter is automatically incremented or decremented by 1. The Address Counter contents are output to the bus (DB6 to DB0) when RS = logic 0 and $R / \bar{W}=$ logic 1 .

8.11 Display Data RAM (DDRAM)

The DDRAM stores up to 80 characters of display data represented by 8-bit character codes. RAM locations which are not used for storing display data can be used as general purpose RAM. The basic DDRAM-to-display mapping is shown in Fig.3. With no display shift the characters represented by the codes in the first 24 RAM locations starting at address 00 in line 1 are displayed. Figures 4 and 5 show the display mapping for right and left shift respectively.
When data is written to or read from the DDRAM wrap-around occurs from the end of one line to the start of the next line. When the display is shifted each line wraps around within itself, independently of the others. Thus all lines are shifted and wrapped around together.
The address ranges and wrap- around operations for the various modes are shown in Table 3.

Table 3 Address space and wrap-around operation

MODE	$\mathbf{1} \times \mathbf{2 4}$	$\mathbf{2 \times 1 2}$
address space	00 to 4 F	00 to $27 ; 40$ to 67
read/write wrap-around (moves to next line)	4 F to 00	27 to $40 ; 67$ to 00
display shift wrap-around (stays within line)	4 F to 00	27 to $00 ; 67$ to 40

8.12 Character Generator ROM (CGROM)

The Character Generator ROM (CGROM) generates 240 character patterns in 5×8 dot format from 8-bit character codes. Figures 7, 8 and 9 show the character sets that are currently implemented.

8.13 Character Generator RAM (CGRAM)

Up to 16 user defined characters may be stored in the Character Generator RAM (CGRAM). Some CGRAM characters (see Fig.17) are also used to drive icons (6 if icons blink and both icon rows are used in application; 3 if no blink but both icon rows are used in application; 0 if no icons are driven by the icon rows). The CGROM and CGRAM use a common address space, of which the first column is reserved for the CGRAM (see Fig.7). Figure 10 shows the addressing principle for the CGRAM.

LCD controller/driver

8.14 Cursor control circuit

The cursor control circuit generates the cursor (underline and/or cursor blink as shown in Fig.6) at the DDRAM address contained in the Address Counter. When the Address Counter contains the CGRAM address the cursor will be inhibited.

8.15 Timing generator

The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not disturbed by operations on the data buses.

8.16 LCD row and column drivers

The PCF2113x contains 18 row and 60 column drivers, which connect the appropriate LCD bias voltages in sequence to the display in accordance with the data to be displayed. R17 and R18 drive the icon rows.
The bias voltages and the timing are selected automatically when the number of lines in the display is selected. Figures 11, 12 and 13 show typical waveforms. Unused outputs should be left unconnected.

Fig. 3 DDRAM-to-display mapping: no shift.

Fig. 4 DDRAM-to-display mapping: right shift.

Fig. 5 DDRAM-to-display mapping: left shift.

Fig. 6 Cursor and blink display examples.

LCD controller／driver

lower 4 bits		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
XXXX	0000	1							泪				－			E^{n}	
XXXX	0001	2										暗菏					
XXXX	0010	3		\cdots					蔀＂						!e!		
XXXX	0011	4						$\operatorname{man}_{\text {man }}^{\text {min }}$				－0					－＂．＂
XXXX	0100	5				＂：		man				\cdots		$\begin{aligned} & \text { E} \\ & \text { E. } \\ & \text { E. } \end{aligned}$			
XXXX	0101	6	＂：＂						－！			블			-ロッ	minmin	＂！
Xxxx	0110	7		$\begin{gathered} \text { "an } \\ \text { "an } \end{gathered}$		（Mnin											
XXXX	0111	8		\square					！！	"							
Xxxx	1000	9										＂シ＂				E．En	
Xxxx	1001	10	＂ジロ								$\underset{y m}{n}$	－＝\％		－		－－－	－Mn
XXXX	1010	11	$\underbrace{n}_{n=0}$					－			：			＂\％		－\％	
XXXX	1011	12	－${ }^{\text {－}}$!a!			－＝－				－	
Xxxx	1100	13		－				$\begin{gathered} \text { シ! } \\ \text { ! } \\ \text { ! } \\ \text { ! } \end{gathered}$	－		ジロ＂	－ －＂	－＝－			"En"	
Xxxx	1101	14	－	－80．0．			\square		$\begin{gathered} \square \\ ! \\ ! \\ ! \end{gathered}$	－				$=$	■■"		¢－\％
XXXX	1110	15		－		En		！！							－＂．	․․․․	
XxXX	1111	16		.$^{\text {－}}$			－4．0\％		=!			－！			Em		

Fig． 7 Character set＇A＇in CGROM：PCF2113A．

LCD controller／driver

lower 4 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	1			＂：＂			＂．	猎					"	－	＂：	\＃\＃\＃
xxxx	0001	2			－			－＂\＃\％			"ت口: 相	\＃－				\％	
xxxx	0010	3						：～＂	"		＂：＂				$!$	$1:$	\＃＂\＃\＃
xxxx	0011	4		E:		＂＂．＂			＂\＃\＃＂					魚		－	\＃＂\＃\＃
xxxx	0100	5				＂\＃＂		－＝－		＂：＂	＂\＃＂＂	\＃\＃	\％		，	:	\＃\＃\＃\＃
xxxx	0101	6			－＂\＃＂：	\＃＂－0＂			－	\＃\＃゙呂	:	\because	$\begin{aligned} & \text { Hin } \\ & \text { "Hina } \end{aligned}$			"E"	\＃＂\＃
xxxx	0110	7	＂缌			＂\＃＂n				＂ －			\＃\＃		En"	E"	－－＝
xxxx	0111	8		\because		＂～＂．	：		\％	":"		:"		\＃＂＂：		：	\％＂：
xxxx	1000	9	思	""		？								\＃＂\＃			－＂：
xxxx	1001	10	謂					E	\|"			-				＂！	＂\＃－
xxxx	1010	11	？		\＃\＃	＂：＂						4		㥜	\＃\＃＂		－＂\＃\＃
xxxx	1011	12	＂＂\＃＂	"E"			\square			＂：	"!			＂\＃\＃		＂．	－\＃\＃
xxxx	1100	13	－EFE	":	"	（1）	":":	"	！	"		＂！		＂${ }^{\text {－}}$		－\＃゙，	吅？
xxxx	1101	14		＂＊＊＊＊			＂			\＃！		：		＂\＃＂			－＂E＂
xxxx	1110	15	！	\＃			""."	:"							＂\＃\＃	＂\＃\＃	諰
xxxx	1111	16		""		＂．＂．	－＂．＂	"		\square					\＃\＃：		

Fig． 8 Character set＇D＇in CGROM：PCF2113D．

lower 4 bits	bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
XXXX	0000	1						言言						－			
XXXX	0001	2	－Emi	EmEM													
XXXX	0010	3		－Emig		－						－					－＂\％
XXXX	0011	4												＂프…n		＂ニッ＂	
XXXX	0100	5		（\％					$!$!":				
XXXX	0101	6	E＝E				E!	$\underbrace{m m}_{m}$!"								－＝－＝
XXXX	0110	7												（Mimen		－n＂	E.
Xxxx	0111	8					! ! !	$\begin{gathered} \text { man m } \\ m=m \\ m=m \end{gathered}$		－		ng					－E E
XXXX	1000	9							■!	Engen		m^{m}					－${ }_{\text {－}}^{\text {－}}$
XXXX	1001	10			\％	！	"!					"			シ＂	$\begin{gathered} ! \\ ! \\ ! \\ ! \end{gathered}$	
XXXX	1010	11		ジM H	HE\＃\＃\＃			\％＂！	\％＂	＂		"E!	$\begin{aligned} & \text { 틀 } \\ & \text { 틀 } \end{aligned}$	ジロ＂		－	
XXXX	1011	12		ジ												En	
XxxX	1100	13			 	\cdots			"nin"			"				$\begin{gathered} \text { EI } \\ \text { E. } \\ \text { E. } \end{gathered}$	
XXXX	1101	14	－\＃E\＃\＃	\square		ジシ			－．						Mmin		
XxXX	1110	15		\＃！		＂．E＂	\＃ロッロ	－	\cdots			－					＂．
XXXX	1111	16		－				！＝	$\operatorname{man}_{\mathrm{Em}}^{\mathrm{Em}}$.$^{\text {－＂}}$					

Fig． 9 Character set＇E＇in CGROM：PCF2113E．

Character code bits 0 to 3 correspond to CGRAM address bits 3 to 6 .
CGRAM address bits 0 to 2 designate the character pattern line position. The $8^{\text {th }}$ line is the cursor position and display is performed by logical OR with the cursor. Data in the $8^{\text {th }}$ position will appear in the cursor position.
Character pattern column positions correspond to CGRAM data bits 0 to 4, as shown in this figure.
CGRAM character patterns are selected when character code bits 4 to 7 are all logic 0 . CGRAM data $=$ logic 1 corresponds to selection for display.
Only bits 0 to 5 of the CGRAM address are set by the 'set CGRAM address' instruction. Bit 6 can be set using the 'set DDRAM address' instruction in the valid address range or by using the auto-increment feature during CGRAM write. All bits 0 to 6 can be read using the 'Read busy flag and address' instruction.

Fig. 10 Relationship between CGRAM addresses and data and display patterns.

LCD controller/driver

Fig. 11 Typical LCD waveforms; character mode.

LCD controller/driver

Fig. 12 MUX 1 : 2 LCD waveforms; icon-mode.

LCD controller/driver

Fig. 13 MUX 1:2 LCD waveforms; icon-mode.

LCD controller/driver

8.17 Reset function

The PCF2113x automatically initializes (resets) when power is turned on. The chip executes a reset sequence, requiring 165 OSC cycles. After the reset the chip's functions are in the states shown in Table 4.

Table 4 State after reset

STEP	FUNCTION	RESET STATE (BIT/REGISTER)	RESET STATE (DESCRIPTION)
1	clear display		
2	entry mode set	I/D $=1$	+1 (increment)
		S $=0$	no shift
3	display control	$\mathrm{D}=0$	display off
		$\mathrm{C}=0$	cursor off
		$\mathrm{B}=0$	cursor character blink off
4	function set	$\mathrm{DL}=1$	8 -bit interface
		$\mathrm{M}=0$	1 -line display
		$\mathrm{H}=0$	normal instruction set
5	default address pointer to DDRAM; the Busy Flag (BF) indicates the busy state ($\mathrm{BF}=\operatorname{logic} 1$) until initialization ends; the busy state lasts 2 ms ; the chip may also be initialized by software; see Tables 17 and 18		
6	icon control	$\mathrm{IM}, \mathrm{IB}=00$	icons/icon blink disabled
7	display/screen configuration	L, P, Q = 000	default configurations
8	$\mathrm{V}_{\text {LCD }}$ temperature coefficient	TC1, TC2 $=00$	default temperature coefficient
9	set $\mathrm{V}_{\text {LCD }}$	$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}=0$	$\mathrm{V}_{\text {LCD }}$ generator off
10	$1^{2} \mathrm{C}$-bus interface reset		

LCD controller/driver

9 INSTRUCTIONS

Only two PCF2113x registers, the Instruction Register (IR) and the Data Register (DR) can be directly controlled by the microcontroller. Before internal operation, control information is stored temporarily in these registers, to allow interface to various types of microcontrollers which operate at different speeds or to allow interface to peripheral control ICs.
The format for instructions when $\mathrm{I}^{2} \mathrm{C}$-bus control is used is shown in Table 5. The PCF2113x operation is controlled by the instructions shown in Table 6, which also gives execution times in clock cycles. Details are explained in subsequent sections.

Instructions are of 4 types, those that:

1. Designate PCF2113x functions such as display format, data length, etc.
2. Set internal RAM addresses
3. Perform data transfer with internal RAM
4. Others.

In normal use, category 3 instructions are used most frequently. However, automatic incrementing by 1 (or decrementing by 1) of internal RAM addresses after each data write lessens the microcontroller program load. The display shift in particular can be performed concurrently with display data write, enabling the designer to develop systems in minimum time with maximum programming efficiency.

During internal operation, no instruction other than the 'Read busy flag and address' instruction will be executed. Because the Busy Flag is set to logic 1 while an instruction is being executed, check to make sure it is on logic 0 before sending the next instruction or wait for the maximum instruction execution time, as given in Table 6. An instruction sent while the Busy Flag is logic 1 will not be executed.

Table 5 Instruction format for $1^{2} \mathrm{C}$-bus instructions

CONTROL BYTE ${ }^{(1)}$						COMMAND BYTE									
Co	RS	0	0	0	0	0	0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0

Note

1. R / \bar{W} is set together with the slave address.

INSTRUCTION	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DESCRIPTION	$\begin{gathered} \text { REQUIRED } \\ \text { CLOCK } \\ \text { CYCLES } \end{gathered}$
$\mathrm{H}=0$ or 1												
NOP	0	0	0	0	0	0	0	0	0	0	no operation	3
Function set	0	0	0	0	1	DL	0	M	0	H	sets interface Data Length (DL) and number of display lines (M); extended instruction set control (H)	3
Read busy flag and address	0	1	BF	A_{C}							reads the Busy Flag (BF) indicating internal operating is being performed and reads Address Counter contents	0
Read data	1	1	read data								reads data from CGRAM or DDRAM	3
Write data	1	0	write data								writes data from CGRAM or DDRAM	3
$\mathrm{H}=0$												
Clear display	0	0	0	0	0	0	0	0	0	1	clears entire display and sets DDRAM address 0 in Address Counter	165
Return home	0	0	0	0	0	0	0	0	1	0	sets DDRAM address 0 in Address Counter; also returns shifted display to original position; DDRAM contents remain unchanged	3
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	sets cursor move direction and specifies shift of display; these operations are performed during data write and read	3
Display control	0	0	0	0	0	0	1	D	C	B	sets entire display on/off (D), cursor on/off (C) and blink of cursor position character (B); D = 0 (display off) puts chip into power-down mode	3
Cursor/display shift	0	0	0	0	0	1	S/C	R/L	0	0	moves cursor and shifts display without changing DDRAM contents	3
Set CGRAM address	0	0	0	1	$A_{C G}$						sets CGRAM address; bit 6 is to be set by the instruction 'Set DDRAM address'; look at the description of the instructions	3
Set DDRAM address	0	0	1	$A_{D D}$							sets DDRAM address	3

INSTRUCTION	RS	R／W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DESCRIPTION	REQUIRED CLOCK CYCLES
H＝1												
Reserved	0	0	0	0	0	0	0	0	0	1	do not use	－
Screen configuration	0	0	0	0	0	0	0	0	1	L	set screen configuration	3
Display configuration	0	0	0	0	0	0	0	1	P	Q	set display configuration	3
Icon control	0	0	0	0	0	0	1	IM	IB	0	set icon mode（IM），icon blink（IB）	3
Temperature control	0	0	0	0	0	1	0	0	TC1	TC2	set temperature coefficient（TCx）	3
Reserved	0	0	0	1	$\mathrm{X}^{(1)}$	$X^{(1)}$	$\mathrm{X}^{(1)}$	$\mathrm{X}^{(1)}$	$X^{(1)}$	$\mathrm{X}^{(1)}$	do not use	－
Set $\mathrm{V}_{\text {LCD }}$	0	0	1	V	voltage						store $\mathrm{V}_{\text {LCD }}$ in register V_{A} or $\mathrm{V}_{\mathrm{B}}(\mathrm{V})$	3

Note
1． $\mathrm{X}=$ don＇t care．
$\stackrel{\perp}{\perp}$

LCD controller/driver

Table 7 Explanations of symbols used in Table 6

BIT	$\mathbf{0}$					
I/D	decrement	increment				
S	display freeze	display shift				
D	display off	display on				
C	cursor off	cursor on				
B	cursor character blink off: character at cursor position does not blink	cursor character blink on: character at cursor position blinks				
S/C	cursor move	display shift				
R/L	left shift	right shift	$	$	8	8its
:---	:---					
DL	4 bits		use extended instruction set			
:---						
H						

Table 8 Explanation of TC1 and TC2 used in Table 6

TC1	TC2	
0	0	$V_{\text {LCD }}$ temperature coefficient 0
1	0	V $_{\text {LCD }}$ temperature coefficient 1
0	1	V $_{\text {LCD }}$ temperature coefficient 2
1	1	$\mathrm{~V}_{\text {LCD }}$ temperature coefficient 3; for ranges for TC see Chapter 15

LCD controller/driver

Fig. 14 4-bit transfer example.

IR7, IR3: instruction $7^{\text {th }}$, $3^{\text {rd }}$ bit.
AC3: Address Counter $3^{\text {rd }}$ bit.
D7, D3: data $7^{\text {th }}, 3^{\text {rd }}$ bit
Fig. 15 An example of 4-bit data transfer timing sequence.

Fig. 16 Example of Busy Flag checking timing sequence.

9.1 Clear display

'Clear display’ writes character code 20 (hexadecimal) into all DDRAM addresses (the character pattern for character code 20 must be blank pattern), sets the DDRAM Address Counter to logic 0 and returns display to its original position if it was shifted. Thus, the display disappears and the cursor or blink position goes to the left edge of the display. Sets entry mode $I / D=$ logic 1 (increment mode). S of entry mode does not change.

The instruction 'Clear display' requires extra execution time. This may be allowed by checking the Busy Flag (BF) or by waiting until the 165 clock cycles have elapsed. The latter must be applied where no read-back options are foreseen, as in some Chip-On-Glass (COG) applications.

9.2 Return home

'Return home' sets the DDRAM Address Counter to logic 0 and returns display to its original position if it was shifted. DDRAM contents do not change. The cursor or blink position goes to the left of the first display line. I/D and S of entry mode do not change.

9.3 Entry mode set

9.3.1 I/D

When I/D = logic 1 (0) the DDRAM or CGRAM address increments (decrements) by 1 when data is written into or read from the DDRAM or CGRAM. The cursor or blink position moves to the right when incremented and to the left when decremented. The cursor underline and cursor character blink are inhibited when the CGRAM is accessed.

9.3.2 S

When $S=\operatorname{logic} 1$, the entire display shifts either to the right (I/D = logic 0) or to the left ($/ / D=$ logic 1) during a DDRAM write. Thus it looks as if the cursor stands still and the display moves. The display does not shift when reading from the DDRAM, or when writing into or reading out of the CGRAM. When $\mathrm{S}=$ logic 0 the display does not shift.

9.4 Display control (and partial power-down mode)

9.4.1 D

The display is on when $D=$ logic 1 and off when $\mathrm{D}=$ logic 0 . Display data in the DDRAM are not affected and can be displayed immediately by setting D to logic 1.

When the display is off $(D=\operatorname{logic} 0)$ the chip is in partial power-down mode:

- The LCD-outputs are connected to V_{SS}
- The LCD generator and bias generator are turned off.

3 OSC cycles are required after sending the 'Display off' instruction to ensure all outputs are at V_{SS}, afterwards OSC can be stopped. If the oscillator is running during partial power-down mode ('Display off') the chip can still execute instructions. Even lower current consumption is obtained by inhibiting the oscillator ($\mathrm{OSC}=\mathrm{V}_{\mathrm{SS}}$).

To ensure $\mathrm{I}_{\mathrm{DD}}<1 \mu \mathrm{~A}$ the parallel bus pins DB7 to DB0 should be connected to $V_{D D} ; R S, R / \bar{W}$, to $V_{D D}$ or left open and PD to $V_{D D}$. Recovery from power-down mode: PD back to logic 0 , if necessary OSC back to $V_{D D}$, send a 'Display control' instruction with $\mathrm{D}=$ logic 1.

9.4.2 C

The cursor is displayed when $\mathrm{C}=$ logic 1 and inhibited when $\mathrm{C}=\operatorname{logic} 0$. Even if the cursor disappears, the display functions I/D, etc. remain in operation during display data write. The cursor is displayed using 5 dots in the 8th line (see Fig.6).

9.4.3 B

The character indicated by the cursor blinks when $B=\operatorname{logic} 1$. The cursor character blink is displayed by switching between display characters and all dots on with a period of approximately 1 s , with $\mathrm{f}_{\mathrm{BLINK}}=\frac{f_{\mathrm{OSC}}}{52224}$
The cursor underline and the cursor character blink can be set to display simultaneously.

9.5 Cursor/display shift

'Cursor/display shift' moves the cursor position or the display to the right or left without writing or reading display data. This function is used to correct a character or move the cursor through the display. In 2-line displays, the cursor moves to the next line when it passes the last position (40) of the line. When the displayed data is shifted repeatedly all lines shift at the same time; displayed characters do not shift into the next line.

The Address Counter (AC) content does not change if the only action performed is shift display, but increments or decrements with the 'cursor shift'.

9.6 Function set

9.6.1 DL (PARALLEL MODE ONLY)

Sets interface data width. Data is sent or received in bytes (DB7 to DB0) when DL = logic 1 or in two nibbles (DB7 to DB4) when DL $=$ logic 0 . When 4-bit width is selected, data is transmitted in two cycles using the parallel bus. In a 4-bit application DB3 to DB0 should be left open (internal pull-ups). Hence in the first 'Function set' instruction after power-on N and H are set to logic 1. A second 'Function set' must then be sent (2 nibbles) to set N and H to their required values.
'Function set' from $\mathrm{I}^{2} \mathrm{C}$-interface sets the DL bit to logic 1.

9.6.2 M

Chooses either 1 -line by 24 display ($\mathrm{M}=0$) or 2 -line by 12 display ($\mathrm{M}=1$).

9.6.3 H

When $\mathrm{H}=\operatorname{logic} 0$ the chip can be programmed via the standard 11 instruction codes used in the PCF2116 and other LCD controllers.

When $\mathrm{H}=$ logic 1 the extended range of instructions will be used. These are mainly for controlling the display configuration and the icons.

9.7 Set CGRAM address

'Set CGRAM address' sets bits 5 to 0 of the CGRAM address ($A_{C G}$ in Table 6) into the Address Counter (binary $A[5]$ to $A[0]$).
Data can then be written to or read from the CGRAM.
Attention: the CGRAM address uses the same address register as the DDRAM address and consists of 7 bits (binary A[6] to A[0]). With the 'Set CGRAM address' instruction, only bits 5 down to 0 are set. Bit 6 can be set using the 'Set DDRAM address' instruction first, or by using the auto-increment feature during CGRAM write. All of bits 6 to 0 can be read using the 'Read busy flag and address' instruction.

When writing to the lower part of the CGRAM, make sure that bit 6 of the address is not set (e.g. by an earlier DDRAM write or read action).

9.8 Set DDRAM address

'Set DDRAM address' sets the DDRAM address ($A_{D D}$ in Table 6) into the Address Counter (binary A[6] to A[0]). Data can then be written to or read from the DDRAM.

9.9 Read busy flag and address

'Read busy flag and address' reads the Busy Flag (BF) and Address Counter (AC). $\mathrm{BF}=$ logic 1 indicates that an internal operation is in progress. The next instruction will not be executed until $B F=\operatorname{logic} 0$, so $B F$ should be checked before sending another instruction.

At the same time, the value of the Address Counter expressed in binary $A[6]$ to $A[0]$ is read out. The Address Counter is used by both CGRAM and DDRAM, and its value is determined by the previous instruction.

9.10 Write data to CGRAM or DDRAM

'Write data' writes binary 8 -bit data $D[7]$ to $D[0]$ to the CGRAM or the DDRAM.

Whether the CGRAM or DDRAM is to be written into is determined by the previous 'Set CGRAM address' or 'Set DDRAM address' instruction. After writing, the address automatically increments or decrements by 1 , in accordance with the entry mode. Only bits $D[4]$ to $D[0]$ of CGRAM data are valid, bits $D[7]$ to $D[5]$ are 'don't care'.

9.11 Read data from CGRAM or DDRAM

'Read data' reads binary 8 -bit data $D[7]$ to $D[0]$ from the CGRAM or DDRAM.

The most recent 'Set address' instruction determines whether the CGRAM or DDRAM is to be read.

The 'Read data' instruction gates the content of the Data Register (DR) to the bus while E is high. After E goes low again, internal operation increments (or decrements) the AC and stores RAM data corresponding to the new AC into the DR.

Note: the only three instructions that update the Data Register (DR) are:

- 'Set CGRAM address'
- 'Set DDRAM address’
- 'Read data' from CGRAM or DDRAM.

Other instructions (e.g. 'Write data', 'Cursor/display shift', 'Clear display', 'Return home') do not modify the data register content.

10 EXTENDED FUNCTION SET INSTRUCTIONS AND FEATURES

10.1 New instructions

$\mathrm{H}=$ logic 1 sets the chip into alternate instruction set mode.

10.2 Icon control

The PCF2113x can drive up to 120 icons. See Fig. 17 for CGRAM to icon mapping.

10.3 IM

When $\mathrm{IM}=$ logic 0 the chip is in character mode. In character mode characters and icons are driven (MUX $1: 18$). The $\mathrm{V}_{\mathrm{LCD}}$ generator, if used, produces the $\mathrm{V}_{\mathrm{LCD}}$ voltage programmed in register V_{A}.

When $\mathrm{IM}=$ logic 1 the chip is in icon mode. In icon mode only the icons are driven (MUX $1: 2$) and the $\mathrm{V}_{\mathrm{LCD}}$ voltage generator, if used, produces the $V_{\text {LCD }}$ voltage programmed in register V_{B}.

Remark: If internally generated $\mathrm{V}_{\mathrm{LCD}}$ must not be lower than $\mathrm{V}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{DD}} \leq 4 \mathrm{~V}\right)$

10.4 IB

Icon blink control is independent of the cursor/character blink function.

When IB $=\operatorname{logic} 0$ icon blink is disabled. Icon data is stored in CGRAM character 0 to $2(3 \times 8 \times 5=120$ bits for 120 icons).

When $\mathrm{IB}=\operatorname{logic} 1$ icon blink is enabled. In this case each icon is controlled by two bits. Blink consists of two half phases (corresponding to the cursor on and off phases called even and odd phases hereafter).

Icon states for the even phase are stored in CGRAM characters 0 to 2 ($3 \times 8 \times 5=120$ bits for 120 icons). These bits also define icon state when icon blink is not used.

Icon states for the odd phase are stored in CGRAM character 4 to 6 (another 120 bits for the 120 icons). When icon blink is disabled CGRAM characters 4 to 6 may be used as normal CGRAM characters.

LCD controller/driver

Table 9 Blink effect for icons and cursor character blink

PARAMETER	EVEN PHASE	ODD PHASE
Cursor underline	on	off
Cursor character blink	block (all on)	normal (display character)
Icons	state 1: CGRAM character 0 to 2	state 2: CGRAM character 4 to 6

CGRAM data bit = logic 1 turns the icon on, data bit = logic 0 turns the icon off.
Data in character codes 0 to 2 define the icon-states when icon blink is disabled or during the even phase when icon blink is enabled.
Data in character codes 4 to 6 define the icon-state during the odd phase when icon blink is enabled (not used for icons when icon blink is disabled).
Fig. 17 CGRAM to icon mapping.

10.5 Normal/Icon mode operation

IM	CONDITION	V $_{\text {LCD }}$
0	character mode	generates V_{A}
1	icon mode	generates V_{B}

10.6 Screen configuration

L : default is $\mathrm{L}=$ logic 0 .
$\mathrm{L}=$ logic 0 : the two halves of a split screen are connected in a standard way i.e. column 1/61, 2/62 to 60/120.
$\mathrm{L}=\operatorname{logic} 1$: the two halves of a split screen are connected in a mirrored way i.e. column 1/120, 2/119 to 60/61.
This allows single layer PCB or glass layout.

10.7 Display configuration

P, Q : default is $\mathrm{P}, \mathrm{Q}=\operatorname{logic} 0$.
$P=$ logic 1 mirrors the column data.
$Q=$ logic 1 mirrors the row data.

10.8 TC1, TC2

Default is TC1, TC2 $=$ logic 0 . This selects the default temperature coefficient for the internally generated $\mathrm{V}_{\text {LCD }}$. TC1, $\mathrm{TC} 2=10,01$ and 11 selects alternative temperature coefficients 1,2 and 3 respectively.

10.9 Set $V_{\text {LCD }}$

$V_{\text {LCD }}$ value is programmed by instruction. Two on-chip registers hold $V_{\text {LCD }}$ values for character mode and icon mode respectively (V_{A} and V_{B}). The generated $\mathrm{V}_{\mathrm{LCD}}$ value is independent of $V_{D D}$, allowing battery operation of the chip. V_{B} must be programmed to $F F$ in character mode (i.e. using V_{A}) and V_{A} must be programmed to 00 in icon mode.

Note: If internally generated $V_{\text {LCD }}$ must not be lower than V_{DD}.
Note: $\mathrm{V}_{\mathrm{DD}} \leq 4 \mathrm{~V}$
$\mathrm{V}_{\text {LCD }}$ programming:

1. send 'Function set' instruction with $\mathrm{H}=1$
2. send 'Set $\mathrm{V}_{\mathrm{LCD}}$ ' instruction to write to voltage register:
a) DB7, DB6 = 10: DB5 to DB0 are $\mathrm{V}_{\text {LCD }}$ of character $\operatorname{mode}\left(\mathrm{V}_{\mathrm{A}}\right)$
b) $\mathrm{DB} 7, \mathrm{DB6}=11$: DB 5 to DB 0 are $\mathrm{V}_{\mathrm{LCD}}$ of icon mode (V_{B})
c) DB5 to DB0 $=000000$ switches V LCD generator off (when selected)
d) During 'display off' and power-down $\mathrm{V}_{\mathrm{LCD}}$ generator is also disabled
3. send 'Function set' instruction with $\mathrm{H}=0$ to resume normal programming.

10.10 Reducing current consumption

Reducing current consumption can be achieved by one of the options mentioned in Table 10.

Table 10 Reducing current consumption

ORIGINAL MODE	ALTERNATIVE MODE
Character mode	icon mode (control bit IM)
Display on	display off (control bit D)

When $\mathrm{V}_{\mathrm{LCD}}$ lies outside the V_{DD} range and must be generated, it is usually more efficient to use the on-chip generator than an external regulator.

Table 11 Use of the V_{A} and V_{B} registers

MODE	$\mathbf{V}_{\mathbf{A}}$	$\mathbf{V}_{\mathbf{B}}$
Normal operation	$\mathrm{V}_{\text {LCD }}$ character mode	$\mathrm{V}_{\mathrm{LCD}}$ icon mode

11 INTERFACE TO MICROCONTROLLER (PARALLEL INTERFACE)

The PCF2113x can send data in either two 4-bit operations or one 8 -bit operation and can thus interface to 4 -bit or 8 -bit microcontrollers.

In 8-bit mode data is transferred as 8 -bit bytes using the 8 data lines DB7 to DB0. Three further control lines E, RS, and $R \bar{W}$ are required. See Chapter 7 .

In 4-bit mode data is transferred in two cycles of 4 bits each using pins DB7 to DB4 for transaction. The higher order bits (corresponding to DB7 to DB4 in 8-bit mode) are sent in the first cycle and the lower order bits (DB3 to DB0 in 8 -bit mode) in the second. Data transfer is complete after two 4-bit data transfers. Note that two cycles are also required for the Busy Flag check. 4-bit operation is selected by instruction. See Figs 14 to 17 for examples of bus protocol.

In 4-bit mode pins DB3 to DBO must be left open-circuit. They are pulled up to $V_{D D}$ internally.

12 INTERFACE TO MICROCONTROLLER (${ }^{2} \mathrm{C}$ - -BUS INTERFACE)

12.1 Characteristics of the $I^{2} \mathrm{C}$-bus

The $I^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a Serial Clock Line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

$12.2 \quad \mathrm{I}^{2} \mathrm{C}$-bus protocol

Before any data is transmitted on the $\mathrm{I}^{2} \mathrm{C}$-bus, the device which should respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure. The $\mathrm{I}^{2} \mathrm{C}$-bus configuration for the different PCF2113x read and write cycles is shown in
Figs 23 and 24 . The slow down feature of the $\mathrm{I}^{2} \mathrm{C}$-bus protocol (receiver holds SCL low during internal operations) is not used in the PCF2113x.

12.3 Definitions

- Transmitter: the device which sends the data to the bus
- Receiver: the device which receives the data from the bus
- Master: the device which initiates a transfer, generates clock signals and terminates a transfer
- Slave: the device addressed by a master
- Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message
- Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
- Synchronization: procedure to synchronize the clock signals of two or more devices.

Fig. 18 System configuration.

SDA

Fig. 19 Bit transfer.

SDA

SCL

Fig. 20 Definition of START and STOP conditions.

Fig. 21 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

MGG002

Fig． 22 Master transmits to slave receiver；write mode．

ィәлирр／גә｜｜одиоэ ロวา

MGGOOB
（1）Last data byte is a dummy byte（may be omitted）．
Fig． 23 Master reads after setting word address；write word address，set RS；＇read data＇．

Fig. 24 Master reads slave immediately after first byte; read mode (RS previously defined).

Fig. $25 \mathrm{I}^{2} \mathrm{C}$-bus timing diagram.

13 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.5	+6.5	V
$\mathrm{~V}_{\mathrm{LCD}}$	LCD supply voltage	-0.5	+7.5	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage OSC, RS, R/̄$\overline{\mathrm{W}}, \mathrm{E}$ and DB7 to DB0	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage R1 to R18, C1 to C60 and $\mathrm{V}_{\mathrm{LCD}}$	-0.5	$\mathrm{~V}_{\mathrm{LCD}}+0.5$	V
I_{I}	DC input current	-10	+10	mA
I_{O}	DC output current	-10	+10	mA
$\mathrm{I}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{SS}}, \mathrm{I}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{LCD}}$ current	-50	+50	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	400	mW
P_{O}	power dissipation per output	-	100	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

14 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS Devices").

15 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=1.8$ to 4.0 V (external $\mathrm{V}_{\mathrm{LCD}}: \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V); $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{LCD}}=2.2$ to $6.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V_{DD}	supply voltage	internal $\mathrm{V}_{\text {LCD }}$ generation	1.8	-	4.0	V
V_{DD}	supply voltage	external $\mathrm{V}_{\text {LCD }}$	1.8	-	5.5	V
$\mathrm{V}_{\text {LCD }}$	LCD supply voltage		2.2	-	6.5	V
Iss $\mathrm{I}_{\mathrm{SS} 1}$ Iss3 $I_{\text {SS4 }}$ $I_{\text {SS5 }}$	supply current, external $\mathrm{V}_{\mathrm{LCD}}$ supply current 1 supply current 3 supply current 4 (icon mode) supply current 5 (power-down mode)	note 1 $V_{D D}=3 V ; V_{L C D}=5 V$ note 2 $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=2.5 \mathrm{~V}$ note 2 $V_{D D}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=2.5 \mathrm{~V}$ $\text { DB7 to DBO, RS, R/W}=1 ;$ $O S C=0 ; P D=1$		$\begin{aligned} & 60 \\ & 45 \\ & 25 \\ & 0.5 \end{aligned}$	$\begin{array}{\|l} 120 \\ 80 \\ 45 \\ 5 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\begin{array}{\|l\|} \hline I_{\mathrm{ss}} \\ \mathrm{I}_{\mathrm{ss} 6} \\ \mathrm{I}_{\mathrm{ss} 8} \\ \\ \mathrm{I}_{\mathrm{ss} 9} \end{array}$	supply current, internal $\mathrm{V}_{\mathrm{LCD}}$ supply current 6 supply current 8 supply current 9 (icon mode)	notes 1, 3 $V_{D D}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=5 \mathrm{~V}$; note 2 $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=2.5 \mathrm{~V}$; note 2		$\begin{aligned} & 200 \\ & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & - \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	Power-on reset voltage level	note 4	-	1.3	1.6	V
Logic						
$\mathrm{V}_{\text {LL1 }}$	LOW level input voltage T1, E, RS, R/W, DB[7..0] and SAO		0	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\mathrm{H} 1}$	HIGH level input voltage T1, E, RS, $\mathrm{R} / \overline{\mathrm{W}}, \mathrm{DB}[7 . .0]$ and SA0		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
$\mathrm{V}_{\text {IL (PD) }}$	LOW level input voltage PD		0	-	$0.2 \mathrm{~V}_{\text {D }}$	V
$\mathrm{V}_{\mathrm{IH}(\mathrm{PD})}$	HIGH level input voltage PD		$0.8 \mathrm{~V}_{\text {D }}$	-	V_{DD}	V
$\mathrm{V}_{\text {LL(osc) }}$	LOW level input voltage OSC		0	-	$V_{D D}-1.5$	V
$\mathrm{V}^{1 \mathrm{HH}(\mathrm{OSC})}$	HIGH input voltage OSC		$\mathrm{V}_{\mathrm{DD}}-0.1$	-	V_{DD}	V
$\mathrm{I}_{\text {OL(DB) }}$	LOW level output current DB[7..0]	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1.6	4	-	mA
$\mathrm{I}^{\text {OH(DB) }}$	HIGH level output current DB[7..0]	$\mathrm{V}_{\mathrm{OH}}=4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-1.0	-	-	mA
I_{pu}	pull-up current DB[7..0]	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	0.04	0.15	1	$\mu \mathrm{A}$
$\mathrm{l}_{\text {L1 }}$	leakage current OSC, E, RS, R/ \bar{W}, DB[7..0] and SAO	$V_{1}=V_{D D}$ or $V_{S S}$	-1.0	-	+1.0	$\mu \mathrm{A}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$1^{2} \mathrm{C}$-bus						
SDA AND SCL						
$\mathrm{V}_{\text {IL2 }}$	LOW level input voltage		0	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{1 \mathrm{H} 2}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	5.5	V
$\mathrm{I}_{\text {L2 }}$	input leakage current	$V_{1}=V_{\text {DD }}$ or $V_{S S}$	-1	-	+1	$\mu \mathrm{A}$
C_{i}	input capacitance	note 5	-	-	10	pF
loL(SDA)	LOW level output current (SDA)	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3	-	-	mA
LCD outputs						
$\mathrm{R}_{\text {ROW }}$	row output resistance R1 to R18	note 6	-	10	30	$\mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{COL}}$	column output resistance C1 to C60	note 6	-	15	40	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {tol }}$	bias voltage tolerance R1 to R18 and C1 to C60	note 7	-	20	130	mV
$V_{\text {tol2a }}$	V ${ }_{\text {LCD }}$ tolerance	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{LCD}}<3 \mathrm{~V} ;$ note 3	-	-	200	mV
$V_{\text {tol2b }}$	$\mathrm{V}_{\text {LCD }}$ tolerance	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{LCD}}<4 \mathrm{~V} ;$ note 3	-	-	350	mV
$V_{\text {tol2c }}$	$\mathrm{V}_{\text {LCD }}$ tolerance	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{LCD}}<5 \mathrm{~V} ;$ note 3	-	-	400	mV
TC0	$\mathrm{V}_{\text {LCD }}$ temperature coefficient 0	note 8	-	-7.6	-	mV / K
TC1	$\mathrm{V}_{\text {LCD }}$ temperature coefficient 1	note 8	-	-8.4	-	mV / K
TC2	$\mathrm{V}_{\text {LCD }}$ temperature coefficient 2	note 8	-	-10.4	-	mV / K
TC3	$\mathrm{V}_{\mathrm{LCD}}$ temperature coefficient 3	note 8	-	-12.4	-	mV / K

Notes

1. LCD outputs are open-circuit; inputs at $V_{D D}$ or $V_{S S}$; bus inactive.
2. $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{OSC}}=200 \mathrm{kHz}$.
3. LCD outputs are open-circuit; HV generator is on; load current $\mathrm{I}_{\mathrm{VLCD}}$ (at $\left.\mathrm{V}_{\mathrm{LCD}}\right)=5 \mu \mathrm{~A}$.
4. Resets all logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}} ; 3$ OSC clock cycles required.
5. Tested on sample basis.
6. Resistance of output terminals (R1 to R18 and C1 to C60) with a load current of $20 \mu \mathrm{~A}$; outputs measured one at a time; external $\mathrm{V}_{\mathrm{LCD}}$.
7. LCD outputs open-circuit; external $V_{\text {LCD }}$.
8. Temperature coefficient at $\mathrm{V}_{\mathrm{OP}}=5.0 \mathrm{~V}$. Typical range $\pm 2 \mathrm{mV} / \mathrm{K}$.

LCD controller/driver

16 AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=1.8$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=2.2-6.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$f_{\text {FR }}$	LCD frame frequency (internal clock)	$V_{\text {DD }}=5.0 \mathrm{~V}$	45	81	147	Hz
$\mathrm{f}_{\text {OSC }}$	oscillator frequency (not available at any pin)		140	250	450	kHz
$\mathrm{f}_{\mathrm{OSC}}$	external clock frequency		140	-	450	kHz
$\mathrm{t}_{\text {OSCST }}$	oscillator start-up time after power-down		-	200	300	$\mu \mathrm{~s}$

Bus timing characteristics: parallel interface; note 1
WRITE OPERATION (WRITING DATA FROM MICROCONTROLLER TO PCF2113x)

T_{Cy}	enable cycle time		500	-	-	ns
PW EH	enable pulse width		220	-	-	ns
$\mathrm{t}_{\mathrm{ASU}}$	address set-up time		50	-	-	ns
$\mathrm{t}_{\text {AHD }}$	address hold time	25	-	-	ns	
$\mathrm{t}_{\mathrm{DSW}}$	data set-up time		60	-	-	ns
$\mathrm{t}_{\text {HD }}$	data hold time		25	-	-	ns

READ OPERATION (READING DATA FROM PCF2113x TO MICROCONTROLLER)

T_{Cy}	enable cycle time		500	-	-	ns
$\mathrm{PW} W_{\mathrm{EH}}$	enable pulse width		220	-	-	ns
$\mathrm{t}_{\text {ASU }}$	address set-up time		50	-	-	ns
t_{AH}	address hold time		25	-	-	ns
$\mathrm{t}_{\mathrm{DHD}}$	data delay time	-	-	150	ns	
t_{HD}	data hold time		20	-	100	ns

Timing characteristics: $1^{2} \mathrm{C}$-bus interface; note 1

$\mathrm{f}_{\text {SCL }}$	SCL clock frequency	-	-	400	kHz
t LOW	SCL clock low period	1.3	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL clock high period	0.6	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }{ }^{\text {dat }}}$	data set-up time	100	-	-	ns
$\mathrm{t}_{\text {HD; }}$ DAT	data hold time	0	-	-	ns
t_{r}	SCL, SDA rise time	-	-	300	ns
t_{f}	SCL, SDA fall time	-	-	300	ns
C_{B}	capacitive bus line load	-	-	400	pF
$\mathrm{t}_{\text {SU; STA }}$	set-up time for a repeated START condition	0.6	-	-	$\mu \mathrm{s}$
thd;STA	START condition hold time	0.6	-	-	μs
tsu;sto	set-up time for STOP condition	0.6	-	-	$\mu \mathrm{s}$
$t_{\text {SW }}$	tolerable spike width on bus	-	-	50	ns

Note

1. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD}.

LCD controller/driver

17 TIMING CHARACTERISTICS

Fig. 26 Parallel bus write operation sequence; writing data from microcontroller to PCF2113x.

Fig. 27 Parallel bus read operation sequence; reading data from PCF2113x to microcontroller.

18 APPLICATION INFORMATION

Fig. 28 Direct connection to 8-bit microcontroller; 8-bit bus.

Fig. 29 Direct connection to 8-bit microcontroller; 4-bit bus.

Fig. 30 Typical application using parallel interface.

Fig. 31 Application using $\mathrm{I}^{2} \mathrm{C}$-bus interface.

LCD controller/driver

18.1 8-bit operation, 1-line display using internal reset

Table 13 shows an example of a 1-line display in 8-bit operation. The PCF2113x functions must be set by the 'function set' instruction prior to display. Since the DDRAM can store data for 80 characters, the RAM can be used for advertising displays when combined with display shift operation. Since the display shift operation changes display position only and DDRAM contents remain unchanged, display data entered first can be displayed when the 'return home' operation is performed.

18.2 4-bit operation, 1-line display using internal reset

The program must set functions prior to 4-bit operation. Table 12 shows an example. When power is turned on, 8-bit operation is automatically selected and the PCF2113x attempts to perform the first write as an 8-bit operation. Since nothing is connected to DB0 to DB3, a rewrite is then required.

However, since one operation is completed in two accesses of 4-bit operation, a rewrite is required to set the functions (see Table 12 step 3).

Thus, DB4 to DB7 of the 'function set' are written twice.

18.3 8-bit operation, 2-line display

For a 2 -line display, the cursor automatically moves from the first to the second line after the $40^{\text {th }}$ digit of the first line has been written. Thus, if there are only 8 characters in the first line, the DDRAM address must be set after the eighth character is completed (see Table 5). Note that both lines of the display are always shifted together; data does not shift from one line to the other.

18.4 $\quad I^{2} \mathrm{C}$ operation, 1-line display

A control byte is required with most instructions (see Table 16).

Table 12 4-bit operation, 1-line display example; using internal reset

$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \mathbf{0} \\ & \text { D } \\ & \text { 0} \\ & \text { No } \end{aligned}$	STEP	INSTRUCTION										DISPLAY	OPERATION
	14		0	ad			0		0	0	0		sets the DDRAM address to the first position; DDRAM is selected
	15		da	o	RA	0		0			0	\mathbf{P}_{-}	writes ' P '; the cursor is incremented by 1 and shifted to the right
	16		da 0	o	1	0	0		0	0	0	PH_	writes 'H'
	17 to 20											I	
	21		0								0	PHILIPS	returns both display and cursor to the original position (address 0)

STEP	INSTRUCTION											DISPLAY	OPERATION
1	power supply on（PCF2113x is initialized by the internal reset function）												initialized；no display appears
2	function set												sets to 8－bit operation；selects 2－line display and voltage generator off
3	display on／off control											－	turns on display and cursor；entire display is blank after initialization
4	entry mode set											－	sets mode to increment the address by 1 and to shift the cursor to the right at the time of write to the CG／DDRAM； display is not shifted
5	＇write data＇to CGRAM／DDRAM											P_{-}	writes＇P＇；the DDRAM has already been selected by initialization at power－on；the cursor is incremented by 1 and shifted to the right
6 to 10	I I \|												
11	＇write data＇to CGRAM／DDRAM											PHILIPS	writes＇S＇
12	set DDRAM address											PHILIPS	sets DDRAM address to position the cursor at the head of the 2nd line
13									＇write data＇to CGRAM／DDRAM			$\begin{array}{\|l\|} \hline \text { PHILIPS } \\ \hline \mathbf{M}_{-} \\ \hline \end{array}$	writes＇ M ＇
14 to 19												$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	

$\stackrel{\square}{6}$	STEP	$\mathbf{I}^{2} \mathrm{C}$ BYTE	DISPLAY	OPERATION
－	23	$\begin{array}{\|lllllllll} \hline \text { 'read data': } 8 \times & 8 \times & \text { SCL }+ \text { master } & \text { cknowledge; } & \text { note } 2 \\ \text { DB7 } & \text { DB6 } & \text { DB5 } & \text { DB4 } & \text { DB3 } & \text { DB2 } & \text { DB1 } & \text { DB0 } & \text { Ack } \\ \text { X } & 0 \end{array}$	PHILIPS	$8 \times$ SCL；content loaded into interface during previous acknowledge cycle is shifted out over SDA；MSB is DB7；during master acknowledge content of DDRAM address 01 is loaded into the $\mathrm{I}^{2} \mathrm{C}$ interface
	24	＇read data＇： $8 \times$ SCL＋master acknowledge；note 2	PHILIPS	$8 \times$ SCL；code of letter＇ H ＇is read first；during master acknowledge code of＇ 1 ＇is loaded into the $\mathrm{I}^{2} \mathrm{C}$ interface
	25	＇read data＇： $8 \times$ SCL＋no master acknowledge；note 2	PHILIPS	no master acknowledge；after the content of the $\mathrm{I}^{2} \mathrm{C}$ interface register is shifted out no internal action is performed；no new data is loaded to the interface register，Data Register（DR）is not updated，Address Counter（AC）is not incremented and cursor is not shifted
	26	$1^{2} \mathrm{C}$ stop	PHILIPS	

1．$X=$ don＇t care．
2．SDA is left at high－impedance by the microcontroller during the read acknowledge．

Note

1．$X=$ don＇t care．

19 BONDING PAD LOCATIONS

Fig. 32 Bonding pad locations.

LCD controller/driver

Table 19 Bonding pad locations (dimensions in $\mu \mathrm{m}$)
All x / y coordinates are referenced to centre of chip (see Fig.32).

SYMBOL	PAD	X	Y
$\mathrm{V}_{\mathrm{DD} 1}$	1	1811.3	-1547.1
OSC	2	1811.3	-1416.5
PD	3	1811.3	-1285.9
T1	4	1811.3	-1155.3
$\mathrm{V}_{\text {SS } 1}$	5	1811.3	-1024.7
$\mathrm{V}_{\text {SS2 }}$	6	1811.3	-822.1
V ${ }_{\text {LCD2 }}$	7	1811.3	-633.9
V ${ }_{\text {LCD1 }}$	8	1811.3	-446.3
R9	9	1811.3	-264.0
R10	10	1811.3	-144.0
R11	11	1811.3	-24.0
R12	12	1811.3	96.0
R13	13	1811.3	216.0
R14	14	1811.3	336.0
R15	15	1811.3	456.0
R16	16	1811.3	576.0
R18	17	1811.3	696.0
C60	18	1811.3	889.4
C59	19	1811.3	1009.4
C58	20	1811.3	1129.4
C57	21	1811.3	1249.4
C56	22	1811.3	1369.4
C55	23	1811.3	1489.4
C54	24	1811.3	1609.4
C53	25	1536.5	1877.7
C52	26	1416.5	1877.7
C51	27	1296.5	1877.7
C50	28	1176.5	1877.7
C49	29	983.9	1877.7
C48	30	863.9	1877.7
C47	31	743.9	1877.7
C46	32	623.9	1877.7
C45	33	503.9	1877.7
C44	34	383.9	1877.7
C43	35	263.9	1877.7
C42	36	143.9	1877.7
C41	37	23.9	1877.7
C40	38	-96.1	1877.7L

SYMBOL	PAD	\mathbf{x}	\mathbf{Y}
C39	39	-216.1	1877.7
C38	40	-336.1	1877.7
C37	41	-456.1	1877.7
C36	42	-576.1	1877.7
C35	43	-696.1	1877.7
C34	44	-816.1	1877.7
C33	45	-936.1	1877.7
C32	46	-1056.1	1877.7
C31	47	-1176.1	1877.7
C30	48	-1296.1	1877.7
C29	49	-1488.7	1877.7
C28	50	-1811.3	1609.4
C27	51	-1811.3	1489.4
C26	52	-1811.3	1369.4
C25	53	-1811.3	1249.4
C24	54	-1811.3	1129.4
C23	55	-1811.3	1009.4
C22	56	-1811.3	889.4
C21	57	-1811.3	769.4
C20	58	-1811.3	649.4
C19	59	-1811.3	529.4
C18	60	-1811.3	409.4
C17	61	-1811.3	289.4
C16	62	-1811.3	169.4
C15	63	-1811.3	23.2
C14	64	-1811.3	-96.8
C13	65	-1811.3	-216.8
C12	66	-1811.3	-336.8
C11	67	-1811.3	-456.8
C10	68	-1811.3	-649.4
C9	69	-1811.3	-769.4
C8	70	-1811.3	-889.4
C7	71	-1811.3	-1009.4
C6	72	-1811.3	-1129.4
C5	73	-1811.3	-1249.4
C4	74	-1811.3	-1369.4
C3	75	-1811.3	-1489.4
C2	76	-1811.3	-1609.4

LCD controller/driver

SYMBOL	PAD	\mathbf{X}	\mathbf{Y}
C1	77	-1542.7	-1877.7
R8	78	-1422.4	-1877.7
R7	79	-1302.4	-1877.7
R6	80	-1182.4	-1877.7
R5	81	-1062.4	-1877.7
R4	82	-942.4	-1877.7
R3	83	-822.4	-1877.7
R2	84	-702.4	-1877.7
R1	85	-582.4	-1877.7
R17	86	-462.4	-1877.7
SCL	87	-271.2	-1877.7
SDA	88	-130.2	-1877.7
E	89	74.4	-1877.7
RS	90	205.1	-1877.7
RW	91	335.7	-1877.7
DB7	92	468.8	-1877.7
DB6	93	603.8	-1877.7
DB5	94	738.8	-1877.7
DB4	95	873.8	-1877.7
DB3	96	1008.8	-1877.7
DB2	97	1143.8	-1877.7
DB1	98	1278.8	-1877.7
DB0	99	1413.8	-1877.7
VDD2	100	1546.0	-1877.7
Sign C1		-1518.0	-1387.7
Sign C2		1405.0	1671.3
Sign f		-1491.0	1602.3

LCD controller/drivers

CONTENTS		9.3
		9.4
1	FEATURES	9.5
2	APPLICATIONS	9.6
3	GENERAL DESCRIPTION	9.7
3.1	Packages	9.9
4	ORDERING INFORMATION	9.10
5	BLOCK DIAGRAM	9.11
6	PINNING	10
7	PIN FUNCTIONS	
7.1	RS: register select (parallel control)	
7.2	R/W: read/write (parallel control)	
7.3	E : data bus clock	11.1
7.4	DB0 to DB7: data bus	11.2
7.5	C1 to C60: column driver outputs	11.3
7.6	R1 to R32: row driver outputs	11.4
7.7	VLCD: LCD power supply	11.5
7.8	V0: VLCD control input	11.6
7.9	OSC: oscillator	12
7.10	SCL: serial clock line	13
7.11	SDA: serial data line	
7.12	SAO: address pin	14
7.13	T1: test pad	15
8	FUNCTIONAL DESCRIPTION	16
8.1	LCD supply voltage generator, PCF2114x and	17
	PCF2116x	18
8.2	LCD supply voltage generator, PCF2116K	18.1
8.3	Character generator ROM (CGROM)	
8.4	LCD bias voltage generator	18.2
8.5	Oscillator	
8.6	External clock	
8.7	Power-on reset	18.4
8.8	Registers	18.4
8.9	Busy Flag	18.5
8.10	Address Counter (AC)	19
8.11	Display data RAM (DDRAM)	20
8.12	Character generator ROM (CGROM)	
8.13	Character generator RAM (CGRAM)	
8.14	Cursor control circuit	22
8.15	Timing generator	23
8.16	LCD row and column drivers	24
8.17	Programming MUX $1: 16$ displays with the PCF2114x	
8.18	Programming MUX $1: 32$ displays with the PCF2114x	
8.19	Reset function	
9	INSTRUCTIONS	
9.1	Clear display	
9.2	Return home	

Cursor/display shift
Function setSet CGRAM addressSet DDRAM address
Read busy flag and address
Write data to CGRAM or DDRAMRead data from CGRAM or DDRAMINTERFACE TO MICROCONTROLLER(PARALLEL INTERFACE)
INTERFACE TO MICROCONTROLLER(${ }^{2} \mathrm{C}$-BUS INTERFACE)
Characteristics of the $\mathrm{I}^{2} \mathrm{C}$-bus
Bit transfer
START and STOP conditions
System configuration
Acknowledge
${ }^{2}$ ²-bus protocol
LIMITING VALUES
HANDLING
DC CHARACTERISTICS
DC CHARACTERISTICS (PCF2116K)
AC CHARACTERISTICS
TIMING CHARACTERISTICS
APPLICATION INFORMATION
8 -bit operation, 1 -line display using internalreset
4-bit operation, 1 -line display using internal
reset
8-bit operation, 2-line display
$\mathrm{I}^{2} \mathrm{C}$ operation, 1 -line display
Initializing by instruction
BONDING PAD LOCATIONS
PACKAGE OUTLINE
SOLDERING
DEFINITIONS
LIFE SUPPORT APPLICATIONS
PURCHASE OF PHILIPS I²C COMPONENTS

1 FEATURES

- Single chip LCD controller/driver
- 1 or 2 -line display of up to 24 characters per line, or 2 or 4 lines of up to 12 characters per line
- 5×7 character format plus cursor; 5×8 for kana (Japanese syllabary) and user defined symbols
- On-chip:
- generation of LCD supply voltage (external supply also possible)
- generation of intermediate LCD bias voltages
- oscillator requires no external components (external clock also possible)
- Display data RAM: 80 characters
- Character generator ROM: 240 characters
- Character generator RAM: 16 characters
- 4 or 8 -bit parallel bus or 2 -wire $\mathrm{I}^{2} \mathrm{C}$-bus interface
- CMOS/TTL compatible
- 32 row, 60 column outputs
- MUX rates 1:32 and 1:16
- Uses common 11 code instruction set
- Logic supply voltage range, $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$: 2.5 to 6 V
- Display supply voltage range, $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}: 3.5$ to 9 V
- Low power consumption
- ${ }^{2} \mathrm{C}$-bus address: 011101 SAO.

2 APPLICATIONS

- Telecom equipment
- Portable instruments
- Point-of-sale terminals.

3 GENERAL DESCRIPTION

The PCF2116 family of LCD controller/drivers consists of the PCF2116x, the PCF2114x and the PCF2116K. The term 'PCF2116' is used to refer to all devices for common information. Specific information is given in separate paragraphs.

The ' x ' in 'PCF2116x' and 'PCF2114x' represents a specific letter code for a character set in the character generator ROM (CGROM). The different character sets currently available are specified by the letters A, C, and G (see Figs 8 to 10). Other character sets are available on request.

The PCF2116 is a low-power CMOS LCD controller and driver, designed to drive a split screen dot matrix LCD display of 1 or 2 lines by 24 characters or 2 or 4 lines by 12 characters with 5×8 dot format. All necessary functions for the display are provided in a single chip, including on-chip generation of LCD bias voltages, resulting in a minimum of external components and lower system power consumption. The chip contains a character generator and displays alphanumeric and kana (Japanese) characters. The PCF2116 interfaces to most microcontrollers via a 4 or 8-bit bus or via the 2 -wire $1^{2} \mathrm{C}$-bus. To allow partial V_{DD} shutdown the ESD protection system of the SCL and SDA pins does not use a diode connected to V_{DD}.

The PCF2116K differs from the other members of the family in that:

- $\mathrm{V}_{\mathrm{LCD}} / \mathrm{V}_{\mathrm{OP}}$ generation is different (see Section 8.1)
- It is available with character set C only (see Fig.9).

4 ORDERING INFORMATION

TYPE NUMBER ${ }^{(1)}$	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF2116xU/10	-	chip on flexible film carrier	-
PCF2114xU/10	-	chip on flexible film carrier	-
PCF2116xU/12	-	chip with bumps on flexible film carrier	-
PCF2114xU/12	-	chip with bumps on flexible film carrier	-
PCF2116xHZ	LQFP128	plastic low profile quad flat package; 128 leads; body $14 \times 20 \times 1.4 \mathrm{~mm}$	SOT425-1

Note

1. The letter ' x ' in the type number represents the letter of the required built-in character set: A, C or G.

5 BLOCK DIAGRAM

Fig. 1 Block diagram (pin numbers for LQFP128 package).

6 PINNING

SYMBOL	LQFP128	FFC PAD	TYPE	DESCRIPTION
R31	1	27	O	LCD row driver output
n.c.	2 and 3	-	-	not connected
R32	4	28	0	LCD row driver output
C60 to C30	5 to 35	29 to 59	0	LCD column driver outputs 60 to 30
n.c.	36 and 37	-	-	not connected
C29 to C2	38 to 65	60 to 87	0	LCD column driver outputs 29 to 2
n.c.	66 and 67	-	-	not connected
C1	68	88	0	LCD column driver output 1
R24 to R17	69 to 76	89 to 96	0	LCD row driver outputs
R8 to R1	77 to 84	97 to 104	0	LCD row driver outputs
n.c.	85 and 86	-	-	not connected
DB7	87	105	I/O	1 bit of 8-bit bidirectional data bus
SCL	88	106	1	$1^{2} \mathrm{C}$-bus serial clock input
DB6	89	107	I/O	1 bit of 8-bit bidirectional data bus
SDA	90	108	I/O	$1^{2} \mathrm{C}$-bus serial data input/output
DB5	91	109	I/O	1 bit of 8-bit bidirectional data bus
V_{0}	92	110	I	control input for $\mathrm{V}_{\mathrm{LCD}}$
$\mathrm{V}_{\text {LCD1 }}$	93	111	1/O	LCD supply voltage input/output 1
DB4	94	112	I/O	1 bit of 8-bit bidirectional data bus
$\mathrm{V}_{\text {LCD2 }}$	95	113	I/O	LCD supply voltage input/output 2
DB3	96	114	I/O	1 bit of 8-bit bidirectional data bus
VLCD3	97	115	I/O	LCD supply voltage input/output 3
DB2	98	116	I/O	1 bit of 8-bit bidirectional data bus
n.c.	99 to 101	-	-	not connected
OSC	102	1	I	oscillator/external clock input
DB1	103	2	I/O	1 bit of 8-bit bidirectional data bus
$\mathrm{V}_{\mathrm{DD} 2}$	104	3	P	supply voltage 2
DB0	105	4	I/O	1 bit of 8-bit bidirectional data bus
$\mathrm{V}_{\text {DD1 }}$	106	5	P	supply voltage 1
SA0	107	6	1	$1^{2} \mathrm{C}$-bus address pin
E	108	7	I	data bus clock input (parallel control)
$\mathrm{V}_{\text {SS } 1}$	109	8	P	ground (logic) 1
$\mathrm{R} / \overline{\mathrm{W}}$	110	9	I	read/write input (parallel control)
T1	111	10	1	test pad (connect to $\mathrm{V}_{\text {SS }}$)
$\mathrm{V}_{\text {SS2 }}$	112	11	P	ground (logic) 2
RS	113	12	1	register select input (parallel control)
n.c.	114	-	-	not connected
R9 to R16	115 to 122	13 to 20	0	LCD row driver outputs
R25 to R30	123 to 128	21 to 26	0	LCD row driver outputs

Fig. 2 Pin configuration (LQFP128).

7 PIN FUNCTIONS

7.1 RS: register select (parallel control)

RS selects the register to be accessed for read and write when the device is controlled by the parallel interface. RS = logic 0 selects the instruction register for write and the Busy Flag and Address Counter for read. RS = logic 1 selects the data register for both read and write. There is an internal pull-up on pin RS.

7.2 R/W: read/write (parallel control)

R / \bar{W} selects either the read $(R / \bar{W}=$ logic 1$)$ or write $(R / \bar{W}=$ logic 0$)$ operation when control is by the parallel interface. There is an internal pull-up on this pin.

7.3 E: data bus clock

The E pin is set HIGH to signal the start of a read or write operation when the device is controlled by the parallel interface. Data is clocked in or out of the chip on the negative edge of the clock. Note that this pin must be tied to logic $0\left(\mathrm{~V}_{\mathrm{SS}}\right)$ when $\mathrm{I}^{2} \mathrm{C}$-bus control is used.

7.4 DB0 to DB7: data bus

The bidirectional, 3-state data bus transfers data between the system controller and the PCF2116. DB7 may be used as the Busy Flag, signalling that internal operations are not yet completed. In 4-bit operations the 4 higher order lines DB4 to DB7 are used; DB0 to DB3 must be left open circuit. There is an internal pull-up on each of the data lines. Note that these pins must be left open circuit when $\mathrm{I}^{2} \mathrm{C}$-bus control is used.

7.5 C1 to C60: column driver outputs

These pins output the data for pairs of columns.
This arrangement permits optimized chip-on-glass (COG) layout for 4 -line by 12 characters.

7.6 R1 to R32: row driver outputs

These pins output the row select waveforms to the left and right halves of the display.

7.7 $\quad \mathrm{V}_{\mathrm{LCD}}$: LCD power supply

Negative power supply for the liquid crystal display.
This may be generated on-chip or supplied externally.

$7.8 \quad V_{0}: V_{\text {LCD }}$ control input

The input level at this pin determines the generated $V_{\text {LCD }}$ output voltage.

7.9 OSC: oscillator

When the on-chip oscillator is used this pin must be connected to V_{DD}. An external clock signal, if used, is input at this pin.

7.10 SCL: serial clock line

Input for the $\mathrm{I}^{2} \mathrm{C}$-bus clock signal.

7.11 SDA: serial data line

Input/output for the $\mathrm{I}^{2} \mathrm{C}$-bus data line.

7.12 SA0: address pin

The hardware sub-address line is used to program the device sub-address for 2 different PCF2116s on the same $\mathrm{I}^{2} \mathrm{C}$-bus.

7.13 T1: test pad

Must be connected to V_{SS}. Not user accessible.

8 FUNCTIONAL DESCRIPTION (see Fig.1)

8.1 LCD supply voltage generator, PCF2114x and PCF2116x

The on-chip voltage generator is controlled by bit G of the 'Function set' instruction and V_{0}.
V_{0} is a high-impedance input and draws no current from the system power supply. Its range is between $V_{S S}$ and $V_{D D}-1 \mathrm{~V}$. When V_{0} is connected to $V_{D D}$ the generator is switched off and an external voltage must be supplied to pin $\mathrm{V}_{\mathrm{LCD}}$. This may be more negative than V_{SS}.
When $G=$ logic 1 the generator produces a negative voltage at pin $V_{\text {LCD }}$, controlled by the input voltage at pin V_{0}. The LCD operating voltage is given by the relationship:

$$
V_{O P}=1.8 V_{D D}-V_{0}
$$

Where:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{OP}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}} \\
& \mathrm{~V}_{\mathrm{LCD}}=\mathrm{V}_{0}-\left(0.8 \mathrm{~V}_{\mathrm{DD}}\right)
\end{aligned}
$$

When $G=\operatorname{logic} 0$, the generated output voltage $V_{L C D}$ is equal to V_{0} (between $V_{S S}$ and $V_{D D}$). In this instance:

$$
\mathrm{V}_{\mathrm{OP}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{0}
$$

When $\mathrm{V}_{\mathrm{LCD}}$ is generated on-chip the $\mathrm{V}_{\mathrm{LCD}}$ pin should be decoupled to $V_{D D}$ with a suitable capacitor. $V_{D D}$ and V_{0} must be selected to limit the maximum value of V_{OP} to 9 V .

Figure 3 shows the two generator control characteristics.

8.2 LCD supply voltage generator, PCF2116K

In the PCF2116K version, V_{0} is connected through an on-chip resistor (R_{0}) to $\mathrm{V}_{\mathrm{LCD}}$. Resistor R_{0} has a nominal value of 1 MS 2 and draws a typical current of $4 \mu \mathrm{~A}$ from the pin V_{0}. A constant voltage (equal to $1.34 \mathrm{~V}_{\mathrm{DD}}$) is always present across R_{0}.
The voltage range of the PCF2116K is between $V_{S S}$ and $V_{D D}-0.5 \mathrm{~V}$ (see Fig.4). When V_{0} is connected to V_{DD} the generator is switched off and an external voltage must be supplied to pin $\mathrm{V}_{\mathrm{LCD}}$. This may be more negative than V_{SS}.

When $G=$ logic 1 the generator produces a negative voltage at pin $\mathrm{V}_{\text {LCD }}$, controlled by the input voltage at pin V_{0}. The LCD operating voltage is given by the relationship:

$$
\mathrm{V}_{\mathrm{OP}}=2.34 \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{0}
$$

Where:

$$
\begin{aligned}
& V_{\mathrm{OP}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}} \\
& \mathrm{~V}_{\mathrm{LCD}}=\mathrm{V}_{0}-\left(1.34 \mathrm{~V}_{\mathrm{DD}}\right)
\end{aligned}
$$

When $G=$ logic 0 , the generated output voltage $V_{L C D}$ is equal to V_{0} (between $V_{S S}$ and $V_{D D}$). In this instance:

$$
V_{O P}=V_{D D}-V_{0}
$$

8.3 Character generator ROM (CGROM)

The standard character sets A, C and G are available for the PCF2114x and PCF2116x. Standard character set C is available for the PCF2116K.

8.4 LCD bias voltage generator

The intermediate bias voltages for the LCD display are also generated on-chip. This removes the need for an external resistive bias chain and significantly reduces the system power consumption. The optimum levels depend on the multiplex rate and are selected automatically when the number of lines in the display is defined.

The optimum value of V_{OP} depends on the multiplex rate, the LCD threshold voltage $\left(\mathrm{V}_{\mathrm{th}}\right)$ and the number of bias levels and is given by the relationships in Table 1.Using a 5 -level bias scheme for 1:16 MUX rate allows $V_{O P}<5 \mathrm{~V}$ for most LCD liquids. The effect on the display contrast is negligible.

8.5 Oscillator

The on-chip oscillator provides the clock signal for the display system. No external components are required. Pin OSC must be connected to V_{DD}.

8.6 External clock

If an external clock is to be used, it must be input at pin OSC. The resulting display frame frequency is given by $f_{\text {frame }}=1 / 2304 f_{\text {osc }}$. A clock signal must always be present, otherwise the LCD may be frozen in a DC state.

8.7 Power-on reset

The power-on reset block initializes the chip after power-on or power failure.

8.8 Registers

The PCF2116 has two 8-bit registers, an Instruction Register (IR) and a Data Register (DR). The Register Select signal (RS) determines which register will be accessed.
The instruction register stores instruction codes such as 'Display clear' and 'Cursor shift', and address information for the Display Data RAM (DDRAM) and Character Generator RAM (CGRAM). The instruction register can be written to, but not read, by the system controller.
The data register temporarily stores data to be read from the DDRAM and CGRAM. When reading, data from the DDRAM or CGRAM corresponding to the address in the Address Counter is written to the data register prior to being read by the 'Read data' instruction.

8.9 Busy Flag

The Busy Flag indicates the free/busy status of the PCF2116. Logic 1 indicates that the chip is busy and further instructions will not be accepted. The Busy Flag is output to pin DB7 when RS $=$ logic 0 and $R \bar{W}=$ logic 1 . Instructions should only be written after checking that the Busy Flag is logic 0 or waiting for the required number of clock cycles.

Table 1 Optimum values for $V_{O P}$

MUX RATE	NUMBER OF BIAS LEVELS	$\mathbf{V}_{\text {op }} / \mathbf{V}_{\mathbf{t h}}$	DISCRIMINATION $\mathbf{V}_{\text {on }} / \mathbf{V}_{\text {off }}$
$1: 16$	5	3.67	1.277
$1: 32$	6	5.19	1.196

a. High-voltage mode $\mathrm{V}_{\mathrm{OP}}=1.8 \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{0}$.

b. Buffer mode $\mathrm{V}_{\mathrm{OP}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{0}$.

Fig. $3 \mathrm{~V}_{\mathrm{OP}}$ as a function of V_{0} control characteristics.

a. High-voltage mode $\mathrm{V}_{\mathrm{OP}}=2.34 \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{0}$.

b. Buffer mode $\mathrm{V}_{\mathrm{OP}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{0}$.

Fig. $4 \mathrm{~V}_{\mathrm{OP}}$ as a function of V_{0} control characteristics (PCF2116K).

8.10 Address Counter (AC)

The Address Counter assigns addresses to the DDRAM and CGRAM for reading and writing and is set by the instructions 'Set CGRAM address' and 'Set DDRAM address'. After a read/write operation the Address Counter is automatically incremented or decremented by 1.The Address Counter contents are output to the bus (DB0 to DB6) when RS = logic 0 and $R / \bar{W}=\operatorname{logic} 1$.

8.11 Display data RAM (DDRAM)

The display data RAM stores up to 80 characters of display data represented by 8-bit character codes. RAM locations not used for storing display data can be used as general purpose RAM. The basic DDRAM-to-display mapping scheme is shown in Fig.5. With no display shift the characters represented by the codes in the first 12 or 24 RAM locations starting at address 00 in line 1 are displayed. Subsequent lines display data starting at addresses 20,40 , or 60 Hex. Figs 6 and 7 show the DDRAM-to-display mapping principle when the display is shifted.

The address range for a 1 -line display is 00 to 4 F ; for a 2-line display from 00 to 27 (line 1) and 40 to 67 (line 2); for a 4-line display from 00 to 13,20 to 33,40 to 53 and 60 to 73 for lines 1,2,3 and 4 respectively.
For 2 and 4 -line displays the end address of one line and the start address of the next line are not consecutive. When the display is shifted each line wraps around independently of the others (Figs 6 and 7).

When data is written into the DDRAM wrap-around occurs from 4 F to 00 in 1-line mode and from 27 to 40 and 67 to 00 in 2 -line mode; from 13 to 20,33 to 40,53 to 60 and 73 to 00 in 4 -line mode.

8.12 Character generator ROM (CGROM)

The character generator ROM generates 240 character patterns in 5×8 dot format from 8 -bit character codes. Figures 8 to 10 show the character sets currently available.

8.13 Character generator RAM (CGRAM)

Up to 16 user-defined characters may be stored in the character generator RAM. The CGROM and CGRAM use a common address space, of which the first column is reserved for the CGRAM (see Fig.8). Figure 11 shows the addressing principle for the CGRAM.

8.14 Cursor control circuit

The cursor control circuit generates the cursor (underline and/or character blink as shown in Fig.12) at the DDRAM address contained in the Address Counter. When the Address Counter contains the CGRAM address the cursor will be inhibited.

8.15 Timing generator

The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not disturbed by operations on the data buses.

8.16 LCD row and column drivers

The PCF2116 contains 32 row and 60 column drivers, which connect the appropriate LCD bias voltages in sequence to the display, in accordance with the data to be displayed. The bias voltages and the timing are selected automatically when the number of lines in the display is selected. Figures 13 and 14 show typical waveforms.

In 1-line mode (1:16) the row outputs are driven in pairs: R1/R17, R2/R18 for example. This allows the output pairs to be connected in parallel, providing greater drive capability.

Unused outputs should be left unconnected.

Fig. 5 DDRAM-to-display mapping; no shift.

Fig. 6 DDRAM-to-display mappi7ng; right shift.

Display
Position

DDRAM
Address (hex)

Fig. 7 DDRAM-to-display mapping; left shift.

lower 6 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	1							"en"				－n＋＂		$\begin{gathered} \text { " " } \\ \text { " " } \end{gathered}$	": !	E＂\％
xxxx	0001	2	\square	！				＂\＃\＃				\＃\＃			"	＂\＃	＂：
xxxx	0010	3		I!				：＂：	"							＂－п＂：	＂－8＂：
xxxx	0011	4	- "	:		＂＂ت＂		":"	－＂\＃\＃		":	－			":	＂\＃＂	＂．＂\＃
xxxx	0100	5				＂＂			"!		＂＂	＂．					
xxxx	0101	6				＂\＃\＃＂	？	\＃＂\＃\＃	－			\＃			－＂：		＂！
xxxx	0110	7					：			\＃\＃！	"!			－＂			＂\＃＂\＃
xxxx	0111	8		"		＂\＃＂．			：	"en"	＂\％					＂＂－＂	＂：
xxxx	1000	9	""\#\#	:"								＂					＂\＃\＃＂
xxxx	1001	10	":	\because				:	: !			－\＃\＃＂	!"!	！		－！	＂\％
xxxx	1010	11	＂＂：＂	": "		＂：＂		＂．＂			＂：	"e"				＂	": "in"
xxxx	1011	12	＂＂\＃＊		\＃		"			"		－		？		－	
xxxx	1100	13		＊		（1）				E"	＂シ＂	\＃\＃\＃\＃	＂＂：			"!	
xxxx	1101	14		＂－＂\＃＂	－＂ロッ＂					－				＂．＂．		\#":	－\＃－
xxxx	1110	15		\＃：			""!		"			"eni			－．＂		
xxxx	1111	16						＂．＂	"ジ・"					"•"	\＃：		

Fig． 8 Character set＇A＇in CGROM：PCF2116A；PCF2114A．

Fig. 9 Character set ' C ' in CGROM: PCF2116C; PCF2114C.

lower 6 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	CG RAM 1						－＂	＂：－＝				－$=$－	＂\＃\＃	－＝＂		＂－＝
xxxx	0001	2		\％	＂				"."!			＂：			－＂．－	"."."	＂．＂．＂
xxxx	0010	3		！					品		＂！＂	an		＂	＂．＂		＂
xxxx	0011	4													-		－
xxxx	0100	5		":							": "	－＂	"				＂：\＃
xxxx	0101	6										\＃	"!				
xxxx	0110	7												＂\＃\＃＂		：－	
xxxx	0111	8		－										"."		＂\＃\＃\＃	－\＃
xxxx	1000	9							"』"		":	－	＂\＃．＂			!	
xxxx	1001	10			".".				""			＂－n＂	＂！	！	\％	－！	
xxxx	1010	11			\＃									：		－＂	
xxxx	1011	12		-!								"!					＂\＃\＃\＃
xxxx	1100	13		:								Ein					？
xXXX	1101	14		－＊＂．＂													－＂．＂
xxxx	1110	15		\＃						高		－＂\＃！	＂\＃\％	$:$			
xxxx	1111	16					－＂n＊＊	":				：＂：				＂：＂	

Fig． 10 Character set＇G＇in CGROM：PCF2116G；PCF2114G．

Character code bits 0 to 3 correspond to CGRAM address bits 3 to 6 .
CGRAM address bits 0 to 2 designate character pattern line position. The 8 th line is the cursor position and display is performed by logical OR with the cursor. Data in the 8th line will appear in the cursor position.
Character pattern column positions correspond to CGRAM data bits 0 to 4, as shown in Fig. 11 (bit 4 being at the left end).
As shown in Figs 8 and 11, CGRAM character patterns are selected when character code bits 4 to 7 are all logic 0 . CGRAM data $=\operatorname{logic} 1$ corresponds to selection for display.
Only bits 0 to 5 of the CGRAM address are set by the 'Set CGRAM address' instruction. Bit 6 can be set using the 'Set DDRAM address' instruction or by using the auto-increment feature during CGRAM write. All bits 0 to 6 can be read using the 'Read busy flag and address' instruction.

Fig. 11 Relationship between CGRAM addresses and data and display patterns.

Fig. 12 Cursor and blink display examples.

Fig. 13 Typical LCD waveforms; 1-line mode.

LCD controller/drivers

Fig. 14 Typical LCD waveforms; 2-line mode.

LCD controller/drivers

PCF2116 family

8.17 Programming MUX 1 : 16 displays with the PCF2114x

The PCF2114x can be used in:

- 1-line mode to drive a 2 -line display
- 2×12 characters with MUX rate $1: 16$, resulting in better contrast. The internal data flow of the chip is optimized for this purpose.

With the 'Function set' instruction M and N are set to 0,0 . Figures 15 to 17 show DDRAM addresses of the display characters. The second row of each table corresponds to either the right half of a 1-line display or to the second line of a 2-line display. Wrap around of data during display shift or when writing data is non-standard.

Fig. 15 DDRAM-to-display mapping; no shift (PCF2114x).

Fig. 16 DDRAM-to-display mapping; right shift (PCF2114x).

Fig. 17 DDRAM-to-display mapping; left shift (PCF2114x).

8.18 Programming MUX 1 : 32 displays with the PCF2114x

To drive a 2-line by 24 characters MUX 1: 32 display, use instruction 'Function set' M, N to 0,1 . Note that the right half of the display needs mirrored column connection compared to a display driven by a PCF2116x.
To drive a 4-line by 12 characters MUX $1: 32$ display the PCF2116x operating instructions apply. There is no functional difference between the PCF2114x and the PCF2116x in this mode. For such an application set M, N to 1,1 with the 'Function set' instruction.

8.19 Reset function

The PCF2116 automatically initializes (resets) when power is turned on. After reset the chip has the following state.

Table 2 State after reset

STEP	DESCRIPTION		
1	display clear		
2	function set	DL = 1	8-bit interface
		$\mathrm{M}, \mathrm{N}=0$	1-line display
		$\mathrm{G}=0$	voltage generator; $\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{0}$
3	display on/off control	$\mathrm{D}=0$	display off
		$\mathrm{C}=0$	cursor off
		$B=0$	blink off
4	entry mode set	$\mathrm{l} / \mathrm{D}=1$	+1 (increment)
		S = 0	no shift
5	Default address pointer to DDRAM. The Busy Flag (BF) indicates the busy state (BF = logic 1) until initialization ends. The busy state lasts 2 ms . The chip may also be initialized by software. See Figs 28 and 29.		
6	$1^{2} \mathrm{C}$-bus interface reset		

9 INSTRUCTIONS

Only two PCF2116 registers, the Instruction Register (IR) and the Data Register (DR) can be directly controlled by the microcontroller. Before internal operation, control information is stored temporarily in these registers to allow interface to various types of microcontrollers which operate at different speeds or to allow interface to peripheral control ICs.
The PCF2116 operation is controlled by the instructions shown in Table 3 together with their execution time. Details are explained in subsequent sections.

Instructions are of 4 categories, those that:

1. Designate PCF2116 functions such as display format, data length, etc.
2. Set internal RAM addresses
3. Perform data transfer with internal RAM
4. Others.

In normal use, category 3 instructions are used most frequently. However, automatic incrementing by 1 (or decrementing by 1) of internal RAM addresses after each data write lessens the microcontroller program load. The display shift in particular can be performed concurrently with display data write, enabling the designer to develop systems in minimum time with maximum programming efficiency.
During internal operation, no instruction other than 'Read busy flag and address' will be executed.

Because the Busy Flag is set to logic 1 while an instruction is being executed, check to make sure it is on logic 0 before sending the next instruction or wait for the maximum instruction execution time, as given in Table 3. An instruction sent while the Busy Flag is HIGH will not be executed.

INSTRUCTION	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DESCRIPTION	$\begin{aligned} & \text { REQUIRED } \\ & \text { CLOCK } \\ & \text { CYCLES }{ }^{(2)} \end{aligned}$
NOP	0	0	0	0	0	0	0	0	0	0	No operation.	0
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DDRAM address 0 in Address Counter.	165
Return Home	0	0	0	0	0	0	0	0	1	0	Sets DDRAM address 0 in Address Counter. Also returns shifted display to original position. DDRAM contents remain unchanged.	3
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies shift of display. These operations are performed during data write and read.	3
Display control	0	0	0	0	0	0	1	D	C	B	Sets entire display on/off (D), cursor on/off (C) and blink of cursor position character (B).	3
Cursor/display shift	0	0	0	0	0	1	S/C	R/L	0	0	Moves cursor and shifts display without changing DDRAM contents.	3
Function set	0	0	0	0	1	DL	N	M	G	0	Sets interface data length (DL), number of display lines (N, M) and voltage generator control (G).	3
Set CGRAM address	0	0	0	1	$\mathrm{A}_{C G}$						Sets CGRAM address.	3
Set DDRAM address	0	0	1	$A_{D D}$							Sets DDRAM address.	3
Read busy flag and address	0	1	BF	A_{C}							Reads Busy Flag (BF) indicating internal operation is being performed and reads Address Counter contents.	0
Read data	1	1	read data								Reads data from CGRAM or DDRAM.	3
Write data	1	0	write data								Writes data to CGRAM or DDRAM.	3

Notes

1. In the $\mathrm{I}^{2} \mathrm{C}$-bus mode the DL bit is don't care. 8 -bit mode is assumed.

In the $1^{2} C$-bus mode a control byte is required when $R S$ or R / \bar{W} is changed; control byte: Co, $R S, R / \bar{W}, 0,0,0,0,0$; command byte: $D B 7$ to $D B 0$.
2. Example: $\mathrm{f}_{\mathrm{osc}}=150 \mathrm{kHz}, \mathrm{T}_{\mathrm{cy}}=\frac{1}{\mathrm{f}_{\mathrm{osc}}}=6.67 \mu \mathrm{~s} ; 3$ cycles $=20 \mu \mathrm{~s}, 165$ cycles $=1.1 \mathrm{~ms}$.

LCD controller/drivers

PCF2116 family

Table 4 Command bit identities

BIT	0	1
I/D	decrement	increment
S	display freeze	display shift
D	display off	display on
C	cursor off	cursor on
B	character at cursor position does not blink	character at cursor position blinks
S/C	cursor move	display shift
R/L	left shift	right shift
DL	4 bits	8 bits
G	voltage generator: $\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{0}$	voltage generator; $\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{0}-0.8 \mathrm{~V}_{\mathrm{DD}}$
$\begin{aligned} & \hline N,(M=0) \\ & \text { PCF2116x } \\ & \text { PCF2114x } \end{aligned}$	1 line $\times 24$ characters; MUX 1: 16 2 line $\times 12$ characters; MUX 1: 16	2 lines $\times 24$ characters; MUX 1:32 2 lines $\times 24$ characters; MUX 1:32
$\mathrm{N},(\mathrm{M}=1)$	reserved	4 lines $\times 12$ characters; MUX 1:32
BF	end of internal operation	internal operation in progress
Co	last control byte, only data bytes to follow	next two bytes are a data byte and another control byte

Fig. 18 4-bit transfer example.

IR7, IR3: instruction $7^{\text {th }}$ bit, $3^{\text {rd }}$ bit.
AC3: Address Counter $3^{\text {rd }}$ bit.
Fig. 19 An example of 4-bit data transfer timing sequence.

Fig. 20 Example of Busy Flag check timing sequence.

9.1 Clear display

'Clear display' writes space code 20 (hexadecimal) into all DDRAM addresses (The character pattern for character code 20 must be blank pattern). Sets the DDRAM Address Counter to logic 0 . Returns display to its original position if it was shifted. Thus, the display disappears and the cursor or blink position goes to the left edge of the display (the first line if 2 or 4 lines are displayed). Sets entry mode I/D = logic 1 (increment mode). S of entry mode does not change.

The instruction 'Clear display' requires extra execution time. This may be allowed for by checking the busy-flag (BF) or by waiting until 2 ms has elapsed. The latter must be applied where no read-back options are foreseen, as in some chip-on-glass (COG) applications.

9.2 Return home

'Return home' sets the DDRAM Address Counter to logic 0 . Returns display to its original position if it was shifted. DDRAM contents do not change. The cursor or blink position goes to the left of the display (the first line if 2 or 4 lines are displayed). I/D and S of entry mode do not change.

9.3 Entry mode set

9.3.1 I/D

When I/D = logic 1 (0) the DDRAM or CGRAM address increments (decrements) by 1 when data is written into or read from the DDRAM or CGRAM. The cursor or blink position moves to the right when incremented and to the left when decremented. The cursor and blink are inhibited when the CGRAM is accessed.

9.3.2 S

When $S=\operatorname{logic} 1$, the entire display shifts either to the right (I/D = logic 0) or to the left (I/D = logic 1) during a DDRAM write. Thus it looks as if the cursor stands still and the display moves. The display does not shift when reading from the DDRAM, or when writing into or reading out of the CGRAM. When $S=$ logic 0 the display does not shift.

9.4 Display on/off control

9.4.1 D

The display is on when $D=$ logic 1 and off when $D=\operatorname{logic} 0$. Display data in the DDRAM are not affected and can be displayed immediately by setting D to logic 1.

9.4.2 C

The cursor is displayed when $C=\operatorname{logic} 1$ and inhibited when $\mathrm{C}=\operatorname{logic} 0$. Even if the cursor disappears, the display functions I/D, etc. remain in operation during display data write. The cursor is displayed using 5 dots in the $8^{\text {th }}$ line (see Fig.12).

9.4.3 B

The character indicated by the cursor blinks when $B=$ logic 1 . The blink is displayed by switching between display characters and all dots on with a period of 1 second when $f_{\text {osc }}=150 \mathrm{kHz}$ (see Fig.12). At other clock frequencies the blink period is equal to $150 \mathrm{kHz} / \mathrm{f}_{\text {osc }}$. The cursor and the blink can be set to display simultaneously.

9.5 Cursor/display shift

'Cursor/display shift' moves the cursor position or the display to the right or left without writing or reading display data. This function is used to correct a character or move the cursor through the display. In 2 or 4 -line displays, the cursor moves to the next line when it passes the last position (40 or 20 decimal) of the line. When the displayed data is shifted repeatedly all lines shift at the same time; displayed characters do not shift into the next line.
The Address Counter (AC) content does not change if the only action performed is shift display, but increments or decrements with the cursor shift.

9.6 Function set

9.6.1 DL (PARALLEL MODE ONLY)

Defines interface data width when the parallel data interface is used.

Data is sent or received in bytes (bits DB7 to DB0) when DL $=$ logic 1, or in two 4-bit nibbles (DB7 to DB4) when
$\mathrm{DL}=$ logic 0 . When 4-bit width is selected, data is transmitted in two cycles using the parallel bus ${ }^{(1)}$.
When using the $I^{2} \mathrm{C}$-bus interface the DL should not previously have been set to 0 using the parallel interface.

9.6.2 N, M

Sets number of display lines.
(1) In a 4-bit application DB3 to DB0 are left open (internal pull-ups). Hence in the first 'Function set' instruction after power-on, G and H are set to 1 . A second 'Function set' must then be sent (2 nibbles) to set G and H to their required values.

LCD controller/drivers

9.6.3 G

Controls the $\mathrm{V}_{\mathrm{LCD}}$ voltage generator characteristic.

9.7 Set CGRAM address

'Set CGRAM address' sets bit 0 to 5 of the CGRAM address (A_{CG} in Table 3) into the Address Counter (binary $A[5]$ to $A[0]$). Data can then be written to or read from the CGRAM.

Only bits 0 to 5 of the CGRAM address are set by the 'Set CGRAM address' instruction. Bit 6 can be set using the 'Set DDRAM address' instruction or by using the auto-increment feature during CGRAM write. All bits 0 to 6 can be read using the 'Read busy flag and address' instruction.

9.8 Set DDRAM address

'Set DDRAM address' sets the DDRAM address ($A_{D D}$ in Table 3) into the Address Counter (binary A[6] to A[0]). Data can then be written to or read from the DDRAM.

Hexadecimal address ranges.

ADDRESS	FUNCTION
00 to $4 F$	1-line by $24 ; 2114 x / 2116 \mathrm{x}$
00 to $0 B$ and 0 C to 4 F	2-line by $12 ; 2114 \mathrm{x}$
00 to 27 and 40 to 67	2-line by $24 ; 2114 \mathrm{x} / 2116 \mathrm{x}$
00 to 13,20 to 33,40 to 53 and 60 to 73	4-line by $12 ; 2114 \mathrm{x} / 2116 \mathrm{x}$

9.9 Read busy flag and address

'Read busy flag and address' reads the Busy Flag (BF). $\mathrm{BF}=$ logic 1 indicates that an internal operation is in progress. The next instruction will not be executed until $B F=\operatorname{logic} 0$, so $B F$ should be checked before sending another instruction.

At the same time, the value of the Address Counter (A_{C} in Table 3) expressed in binary $A[6]$ to $A[0]$ is read out. The Address Counter is used by both CGRAM and DDRAM, and its value is determined by the previous instruction.

9.10 Write data to CGRAM or DDRAM

Writes binary 8-bit data $D[7]$ to $D[0]$ to the CGRAM or the DDRAM.

Whether the CGRAM or DDRAM is to be written into is determined by the previous specification of CGRAM or DDRAM address setting.

After writing, the address automatically increments or decrements by 1 , in accordance with the entry mode. Only bits $D[4]$ to $D[0]$ of CGRAM data are valid, bits $\mathrm{D}[7]$ to $\mathrm{D}[5]$ are 'don't care'.

9.11 Read data from CGRAM or DDRAM

Reads binary 8-bit data $D[7]$ to $D[0]$ from the CGRAM or DDRAM.

The most recent 'Set address' instruction determines whether the CGRAM or DDRAM is to be read.

The 'Read data' instruction gates the content of the data register (DR) to the bus while $\mathrm{E}=\mathrm{HIGH}$. After E goes LOW again, internal operation increments (or decrements) the AC and stores RAM data corresponding to the new AC into the DR.

Remark: the only three instructions that update the data register (DR) are:

- 'Set CGRAM address'
- 'Set DDRAM address'
- 'Read data' from CGRAM or DDRAM.

Other instructions (e.g. 'Write data', 'Cursor/Display shift', 'Clear display', 'Return home') will not modify the data register content.

10 INTERFACE TO MICROCONTROLLER (PARALLEL INTERFACE)

The PCF2116 can send data in either two 4-bit operations or one 8-bit operation and can thus interface to 4-bit or 8 -bit microcontrollers.

In 8-bit mode data is transferred as 8-bit bytes using the 8 data lines DB0 to DB7. Three further control lines E, RS, and R / \bar{W} are required.

In 4-bit mode data is transferred in two cycles of 4-bits each. The higher order bits (corresponding to DB4 to DB7 in 8-bit mode) are sent in the first cycle and the lower order bits (DB0 to DB3 in 8-bit mode) in the second.
Data transfer is complete after two 4-bit data transfers. It should be noted that two cycles are also required for the Busy Flag check. 4-bit operation is selected by instruction. See Figs 18, 19 and 20 for examples of bus protocol.
In 4-bit mode pins DB3 to DB0 must be left open-circuit. They are pulled up to $V_{D D}$ internally.

11 INTERFACE TO MICROCONTROLLER (${ }^{2} \mathrm{C}$-BUS INTERFACE)

11.1 Characteristics of the $I^{2} \mathrm{C}$-bus

The $\mathrm{I}^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL).
Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

11.2 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

11.3 START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P).

11.4 System configuration

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

11.5 Acknowledge

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

$11.6 \quad \mathrm{I}^{2} \mathrm{C}$-bus protocol

Before any data is transmitted on the $\mathrm{I}^{2} \mathrm{C}$-bus, the device which should respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure. The $\mathrm{I}^{2} \mathrm{C}$-bus configuration for the different PCF2116 READ and WRITE cycles is shown in Figs 25 to 27.

Fig. 21 Bit transfer.

Fig. 23 System configuration.

Fig. 24 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

Fig． 25 Master transmits to slave receiver；WRITE mode．

LCD controller/drivers

Fig. 27 Master reads slave immediately after first byte; READ mode (RS previously defined).

Fig. $281^{2} \mathrm{C}$-bus timing diagram; rise and fall times refer to V_{IL} and V_{IH}.

LCD controller/drivers

12 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.5	+8.0	V
$\mathrm{~V}_{\mathrm{LCD}}$	LCD supply voltage	$\mathrm{V}_{\mathrm{DD}}-11$	$\mathrm{~V}_{\mathrm{DD}}$	V
V_{I}	input voltage OSC, $\mathrm{V}_{0}, \mathrm{RS}, \mathrm{R} \overline{\mathrm{W}}, \mathrm{E}$ and DB0 to DB 7	$\mathrm{~V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage R 1 to $\mathrm{R} 32, \mathrm{C} 1$ to C 60 and $\mathrm{V}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{LCD}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC input current	-10	+10	mA
I_{O}	DC output current	-10	+10	mA
$\mathrm{I}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{SS}}, \mathrm{I}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{LCD}}$ current	-50	+50	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	400	mW
P_{O}	power dissipation per output	-	100	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

13 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS Devices").

14 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V_{DD}	supply voltage		2.5	-	6.0	V
$\mathrm{V}_{\text {LCD }}$	LCD supply voltage		$\mathrm{V}_{\mathrm{DD}}-9$	-	$V_{D D}-3.5$	V
IDD $I_{D D 1}$ IDD2 IDD3	supply current external $\mathrm{V}_{\mathrm{LCD}}$ supply current 1 supply current 2 supply current 3	note 1 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{OP}}=9 \mathrm{~V} ; \\ & \mathrm{f}_{\mathrm{osc}}=150 \mathrm{kHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{OP}}=5 \mathrm{~V} ; \\ & \mathrm{f}_{\mathrm{osc}}=150 \mathrm{kHz} ; \\ & \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{gathered} 200 \\ 200 \\ 150 \end{gathered}$	$\begin{aligned} & 500 \\ & 300 \\ & 200 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
IDD IDD4 IDD5 IDD6	supply current internal $\mathrm{V}_{\text {LCD }}$ supply current 4 supply current 5 supply current 6	notes 1, 2 and 8 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{OP}}=9 \mathrm{~V} ; \\ & \mathrm{f}_{\mathrm{OSc}}=150 \mathrm{kHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{OP}}=5 \mathrm{~V} ; \\ & \mathrm{f}_{\mathrm{osc}}=150 \mathrm{kHz} ; \\ & T_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{\|c} 700 \\ 600 \\ 500 \end{array}$	$\begin{aligned} & 1100 \\ & 900 \\ & 800 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
LCCD	$\mathrm{V}_{\text {LCD }}$ input current	notes 1 and 7	-	50	100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	power-on reset voltage level	note 3	-	1.3	1.8	V
Logic						
$\mathrm{V}_{\text {IL1 }}$	LOW level input voltage E, RS, R \bar{W}, DB0 to DB7 and SA0		$\mathrm{V}_{\text {SS }}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\mathrm{H} 1}$	HIGH level input voltage $E, R S$, $\mathrm{R} / \overline{\mathrm{W}}$, DB0 to DB7 and SAO		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
$\mathrm{V}_{\text {LL(osc }}$	LOW level input voltage OSC		$\mathrm{V}_{\text {SS }}$	-	$V_{D D}-1.5$	V
$\mathrm{V}_{\mathrm{IH}(\text { OSC) }}$	HIGH level input voltage OSC		$V_{\text {DD }}-0.1$	-	$V_{D D}$	V
$\mathrm{V}_{\text {IL(V0) }}$	LOW level input voltage V_{0}		$\mathrm{V}_{\text {SS }}$	-	$V_{D D}-0.5$	V
$\mathrm{V}_{\mathrm{HH}(\mathrm{V} 0)}$	HIGH level input voltage V_{0}		$\mathrm{V}_{\mathrm{DD}}-0.05$	-	$V_{D D}$	V
I_{pu}	pull-up current at DB0 to DB7	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	0.04	0.15	1.00	$\mu \mathrm{A}$
$\mathrm{loL}(\mathrm{DB})$	LOW level output current DB0 to DB7	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1.6	-	-	mA
$\mathrm{IOH}_{(\mathrm{DB}}$	HIGH level output current DB0 to DB7	$\mathrm{V}_{\mathrm{OH}}=4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-1.0	-	-	mA
$L_{\text {L1 }}$	leakage current OSC, $\mathrm{V}_{0}, \mathrm{E}, \mathrm{RS}$, $R \bar{W}$, DB0 to DB7 and SAO	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	-1	-	+1	$\mu \mathrm{A}$

LCD controller/drivers
PCF2116 family

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
${ }^{2} \mathrm{C}$-bus						
SDA, SCL						
$\mathrm{V}_{\mathrm{LL} 2}$	LOW level input voltage	note 4	$\mathrm{V}_{\text {S }}$	-	$0.3 V_{\text {DD }}$	V
$\mathrm{V}_{\mathrm{IH} 2}$	HIGH level input voltage	note 4	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
$\mathrm{I}_{\mathrm{L} 2}$	leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	-1	-	+1	$\mu \mathrm{A}$
C_{i}	input capacitance	note 5	-	-	7	pF
IoL(SDA)	LOW level output current (SDA)	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3	-	-	mA
LCD outputs						
R ${ }_{\text {Row }}$	row output resistance R1 to R32	note 6	-	1.5	3	k Ω
$\mathrm{R}_{\mathrm{COL}}$	column output resistance C1 to C60	note 6	-	3	6	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {tol1 }}$	bias voltage tolerance R1 to R32 and C1 to C60	note 7	-	± 20	± 130	mV
$\mathrm{V}_{\text {tol2 }}$	LCD supply voltage (VLCD) tolerance	note 2	-	± 40	± 300	mV

Notes

1. LCD outputs are open-circuit; inputs at V_{DD} or $\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{0}=\mathrm{V}_{\mathrm{DD}}$; bus inactive; internal or external clock with duty cycle 50% (ldD1 only).
2. LCD outputs are open-circuit; LCD supply voltage generator is on; load current at $\mathrm{V}_{\mathrm{LCD}}=20 \mu \mathrm{~A}$.
3. Resets all logic when $V_{D D}<V_{P O R}$.
4. When the voltages are above or below the supply voltages V_{DD} or V_{SS}, an input current may flow; this current must not exceed $\pm 0.5 \mathrm{~mA}$.
5. Tested on sample basis.
6. Resistance of output terminals (R 1 to R 32 and C 1 to C 60) with load current $=150 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{OP}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=9 \mathrm{~V}$; outputs measured one at a time; (external $\mathrm{V}_{\mathrm{LCD}}$).
7. LCD outputs open-circuit; external $\mathrm{V}_{\text {LCD }}$.
8. Maximum value occurs at $85^{\circ} \mathrm{C}$.

15 DC CHARACTERISTICS (PCF2116K)

$V_{D D}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{DD}	supply voltage		2.5	-	6.0	V
$\mathrm{~V}_{\mathrm{LCD}}$	LCD supply voltage		$\mathrm{V}_{\mathrm{DD}}-9$	-	$\mathrm{V}_{\mathrm{DD}}-3.5$	V
$\mathrm{~V}_{0}$	voltage generator control input voltage		V_{SS}	-	$\mathrm{V}_{\mathrm{DD}}-0.5$	V
R_{0}	voltage generator control input resistance	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} ;$ note 1	700	1000	1300	$\mathrm{k} \Omega$

Note

1. R_{0} has a temperature coefficient of resistance of $+0.6 \% / \mathrm{K}$.

LCD controller/drivers

16 AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6.0 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$\mathrm{f}_{\text {FR }}$	LCD frame frequency (internal clock); note 1	40	65	100	Hz
$\mathrm{f}_{\text {osc }}$	external clock frequency	90	150	225	kHz

Bus timing characteristics: Parallel Interface; notes 1 and 2
WRITE OPERATION (WRITING DATA FROM MICROCONTROLLER TO PCF2116)

T_{cy}	enable cycle time	500	-	-	ns
$\mathrm{PW}_{\mathrm{EH}}$	enable pulse width	220	-	-	ns
$\mathrm{t}_{\mathrm{ASU}}$	address set-up time	50	-	-	ns
t_{AH}	address hold time	25	-	-	ns
$\mathrm{t}_{\mathrm{DSW}}$	data set-up time	60	-	-	ns
t_{HD}	data hold time	25	-	-	ns

READ OPERATION (READING DATA FROM PCF2116 TO MICROCONTROLLER)

T_{Cy}	enable cycle time	500	-	-	ns
$\mathrm{PW}_{\mathrm{EH}}$	enable pulse width	220	-	-	ns
$\mathrm{t}_{\mathrm{ASU}}$	address set-up time	50	-	-	ns
t_{AH}	address hold time	25	-	-	ns
$\mathrm{t}_{\mathrm{DHD}}$	data delay time	-	-	150	ns
t_{HD}	data hold time	20	-	100	ns

Timing characteristics: $1^{2} \mathbf{C}$-bus interface; note 2

$\mathrm{f}_{\text {SCL }}$	SCL clock frequency	-	-	100	kHz
$\mathrm{t}_{\text {SW }}$	tolerable spike width on bus	-	-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; STA }}$	set-up time for a repeated START condition	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{H} \text {; } ; \text { STA }}$	START condition hold time	4	-	-	$\mu \mathrm{s}$
tow	SCL LOW time	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time	4	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time	-	-	1	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time	-	-	0.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ DAT	data set-up time	250	-	-	ns
$\mathrm{t}_{\text {HD } ; \text { DAT }}$	data hold time	0	-	-	ns
$\mathrm{t}_{\text {SU; STO }}$	set-up time for STOP condition	4	-	-	$\mu \mathrm{s}$

Notes

1. $V_{D D}=5 \mathrm{~V}$.
2. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to $V_{I L}$ and $V_{I H}$ with an input voltage swing of $V_{S S}$ to $V_{D D}$.

17 TIMING CHARACTERISTICS

Fig. 29 Parallel bus write operation sequence; writing data from microcontroller to PCF2116.

LCD controller/drivers

18 APPLICATION INFORMATION

Fig. 31 Direct connection to 8-bit microcontroller; 8-bit bus.

Fig. 32 Direct connection to 8-bit microcontroller; 4-bit bus.

Fig. 33 Typical application using parallel interface.

Fig. 34 Application using $\mathrm{I}^{2} \mathrm{C}$-bus interface.

18.1 8-bit operation, 1-line display using internal reset

Table 6 shows an example of a 1 -line display in 8-bit operation. The PCF2116 functions must be set by the 'Function set' instruction prior to display. Since the display data RAM can store data for 80 characters, the RAM can be used for advertising displays when combined with display shift operation. Since the display shift operation changes display position only and DDRAM contents remain unchanged, display data entered first can be displayed when the Return Home operation is performed.

18.2 4-bit operation, 1-line display using internal reset

The program must set functions prior to 4 -bit operation. Table 5 shows an example. When power is turned on, 8 -bit operation is automatically selected and the PCF2116 attempts to perform the first write as an 8 -bit operation. Since nothing is connected to DB0 to DB3, a rewrite is then required. However, since one operation is completed in two accesses of 4-bit operation, a rewrite is required to set the functions (see Table 5 step 3).
Thus, DB4 to DB7 of the function set are written twice.

18.3 8-bit operation, 2-line display

For a 2 -line display, the cursor automatically moves from the first to the second line after the $40^{\text {th }}$ digit of the first line has been written. Thus, if there are only 8 characters in the first line, the DDRAM address must be set after the eighth character is completed (see Table 7). Note that both lines of the display are always shifted together; data does not shift from one line to the other.

$18.4 \quad \mathrm{I}^{2} \mathrm{C}$ operation, 1-line display

A control byte is required with most instructions (see Table 8).

18.5 Initializing by instruction

If the power supply conditions for correctly operating the internal reset circuit are not met, the PCF2116 must be initialized by instruction. Tables 9 and 10 show how this may be performed for 8 -bit and 4-bit operation.

Table 5 4-bit operation, 1-line display example; using internal reset

STEP	INSTRUCTION												DISPLAY	OPERATION
1	power supply on（PCF2116 is initialized by the internal reset function）													Initialized．No display appears．
2	function set													Sets to 8－bit operation，selects 2－line display and voltage generator off．
3	display on／off control$\begin{array}{llllllllll} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{array}$											－		Turns on display and cursor．Entire display is blank after initialization．
4	entry mode set											－		Sets mode to increment the address by 1 and to shift the cursor to the right at the time of write to the CG／DDRAM． Display is not shifted．
5	Write data to CGRAM／DDRAM w											P	－	Writes＇P＇．The DDRAM has already been selected by initialization at power－on．The cursor is incremented by 1 and shifted to the right．
6	I													
7					$\begin{array}{llllllllll} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \end{array}$								PHILIPS＿	Writes＇S＇．
8	set DDRAM address											P1	PHILIPS	Sets DDRAM address to position the cursor at the head of the 2nd line．
9	write data to CGRAM／DDRAM											Pr M	PHILIPS	Writes＇M＇．
10														

$\stackrel{\rightharpoonup}{\circ}$	STEP	$1^{2} \mathrm{C}$ C BYTE										DISPLAY		OPERATION
$\begin{aligned} & \text { D } \\ & \text { D } \\ & 0 \end{aligned}$	11		rite data B7 DB 0 1	$\begin{aligned} & \text { ta to } D \\ & B 6 D \\ & 1 \end{aligned}$	DDRAM DB5 DB4 00	DB3 1	$\begin{gathered} \text { DB2 } \\ 0 \end{gathered}$	$\begin{gathered} \text { DB1 } \\ 0 \end{gathered}$	DB0 0	$\begin{gathered} \text { Ack } \\ 1 \end{gathered}$	PH			Writes 'H'.
	12 to 15											1 1 1 1		
	16			$\begin{aligned} & \text { ta to } \mathrm{D} \\ & \mathrm{~B} 6 \mathrm{D} \\ & 1 \end{aligned}$	DDRAM DB5 DB4 $0 \quad 1$	$\begin{gathered} \text { DB3 } \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \text { DB2 } \\ 0 \end{gathered}$	$\begin{gathered} \text { DB1 } \\ 1 \end{gathered}$	DBO 1	$\begin{gathered} \text { Ack } \\ 1 \\ \hline \end{gathered}$		HILIPS_		Writes 'S'.
	17		optional as step	$\text { al }{ }^{2} \mathrm{C} \text { s }$ 8)	$\text { stop) } I^{2} \mathrm{C} \text { st }$	tart + sla	ave ad	ddress	for writ			HILIPS_		
	18		$\begin{array}{cc} \text { ontrol by } \\ \text { Co } & \text { s } \\ 1 & 0 \end{array}$		$\begin{array}{cc} \hline R / \bar{W} & \\ 0 & x \end{array}$				x	$\begin{gathered} \text { Ack } \\ 1 \\ \hline \end{gathered}$		HILIPS_		
ज	19			$\begin{aligned} & \text { Home } \\ & \text { B6 D } \\ & 0 \end{aligned}$	DB5 DB4 00	$\begin{gathered} \text { DB3 } \\ 0 \end{gathered}$	$\begin{gathered} \text { DB2 } \\ 0 \end{gathered}$	$\begin{gathered} \text { DB1 } \\ 1 \end{gathered}$	$\begin{gathered} \text { DBO } \\ 0 \end{gathered}$	$\begin{gathered} \text { Ack } \\ 1 \end{gathered}$		IILIPS		Sets DDRAM address 0 in Address Counter. (also returns shifted display to original position. DDRAM contents unchanged). This instruction does not update the Data Register
	20					x		x	x	$\begin{gathered} \text { Ack } \\ 1 \end{gathered}$		IILIPS		DDRAM content will be read from following instructions. The $\mathrm{R} / \overline{\mathrm{W}}$ has to be set to 1 while still in $\mathrm{I}^{2} \mathrm{C}$-write mode.
	21		C STAR									HILIPS		
	22			$\begin{aligned} & \text { ddress } \\ & \text { A5 S } \\ & 1 \end{aligned}$	s for read SA4 SA3 11	SA2 0	$\begin{gathered} \text { SA1 } \\ 1 \end{gathered}$	$\begin{gathered} \text { SAO } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} \bar{W} \\ 1 \end{gathered}$	$\begin{gathered} \text { Ack } \\ 1 \end{gathered}$		HILIPS		During the acknowledge cycle the content of the DR is loaded into the internal $I^{2} \mathrm{C}$ interface to be shifted out. In the previous instruction neither a 'Set address' nor a 'Read data' has been performed. Therefore the content of the DR was unknown.
	23			$\begin{aligned} & \text { ta: } 8 \times \\ & \text { B6 } \mathrm{D} \\ & \text { X } \end{aligned}$		$\begin{gathered} \text { aster acl } \\ \text { DB3 } \\ \text { x } \end{gathered}$	$\begin{aligned} & \text { cknowle } \\ & \text { DB2 } \\ & \text { X } \end{aligned}$	$\begin{gathered} \text { ledge; } \\ \text { DB1 } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { note } 2 \\ \text { DB0 } \\ \text { x } \end{gathered}$	Ack 0		HILIPS		$8 \times$ SCL; content loaded into interface during previous acknowledge cycle is shifted out over SDA. MSB is DB7. During master acknowledge content of DDRAM address 01 is loaded into the $\mathrm{I}^{2} \mathrm{C}$ interface.

STEP	$\mathrm{I}^{2} \mathrm{C}$ BYTE	DISPLAY	OPERATION
24	read data: $8 \times \mathrm{SCL}+$ master acknowledge; note 2	PHILIPS	$8 \times$ SCL; code of letter 'H' is read first. During master acknowledge code of ' 9 ' is loaded into the $\mathrm{I}^{2} \mathrm{C}$ interface.
25	read data: $8 \times \mathrm{SCL}+$ no master acknowledge; note 2	PHILIPS	No master acknowledge; After the content of the $\mathrm{I}^{2} \mathrm{C}$ interface register is shifted out no internal action is performed. No new data is loaded to the interface register, Data Register (DR) is not updated, Address Counter (AC) is not incremented and cursor is not shifted.
26	${ }^{2} \mathrm{C}$ STOP	PHILIPS	

Notes

1. $X=$ don't care.
2. SDA is left at high-impedance by the microcontroller during the READ acknowledge.

Note

1. $X=$ don't care.

Fig. 35 Example of 2×24 display layout (PCF2116x).

Fig. 36 Example of 4×12 display layout (PCF2114x/PCF2116x).

Fig. 37 Display example (PCF2114x); 1 -line by 24 characters.

Fig. 38 Display example (PCF2114x); 2-lines by 12 characters.

Fig. 39 Chip on glass application.

LCD controller/drivers

19 BONDING PAD LOCATIONS

Chip dimensions: approximately $5.64 \times 6.99 \mathrm{~mm}$.
Pad area: $0.0121 \mathrm{~mm}^{2}$.
Bonding pad dimensions: $110 \times 110 \mu \mathrm{~m}$.
Fig. 40 Bonding pad locations.

LCD controller/drivers

PCF2116 family

Table 11 Bonding pad locations (dimensions in $\mu \mathrm{m}$)
All x / y coordinates are referenced to centre of chip, see Fig. 40.

SYMBOL	PAD	\mathbf{x}	\mathbf{y}
OSC	1	-2445	-3300
DB1	2	-2211	-3300
V $_{\text {DD2 }}$	3	-2034	-3300
DB0	4	-1806	-3300
V $_{\text {DD1 }}$	5	-1627	-3300
SA0	6	-1437	-3300
E	7	-1245	-3300
V SS1	8	-1056	-3300
R/̄	9	-867	-3300
T1	10	-672	-3300
VSS2 $^{\text {RS }}$	11	-486	-3300
R9	12	-297	-3300
R10	13	77	-3300
R11	14	247	-3300
R12	15	417	-3300
R13	16	587	-3300
R14	17	757	-3300
R15	18	927	-3300
R16	20	1097	-3300
R25	21	1267	-3300
R26	22	1436	-3300
R27	23	1776	-3300
R28	24	1946	-3300
R29	25	2116	-3300
R30	26	2286	-3300
R31	27	2456	-3300
R32	28	2626	-3013
C60	29	2626	-2760
C59	30	2626	-2590
C58	31	2626	-2420
C57	32	2626	-2250
C56	33	2626	-2080
C55	34	2626	-1910
C54	35	2626	-1740
C53	36	2626	-1570
C52	37	2626	-1400
C51	38	2626	-1230
		10	

SYMBOL	PAD	\mathbf{x}	\mathbf{y}
C50	39	2626	-1060
C49	40	2626	-890
C48	41	2626	-720
C47	42	2626	-550
C46	43	2626	-380
C45	44	2626	582
C44	45	2626	752
C43	46	2626	922
C42	47	2626	1092
C41	48	2626	1262
C40	49	2626	1432
C39	50	2626	1602
C38	51	2626	1772
C37	52	2626	1942
C36	53	2626	2112
C35	54	2626	2282
C34	55	2626	2452
C33	56	2626	2622
C32	57	2626	2792
C31	58	2626	2962
C30	59	2626	3132
C29	60	2339	3302
C28	61	2169	3302
C27	62	1999	3302
C26	63	1829	3302
C25	64	1659	3302
C24	65	1489	3302
C23	66	1319	3302
C22	67	1149	3302
C21	68	979	3302
C20	69	809	3302
C19	70	639	3302
C18	71	469	3302
C17	72	299	3302
C16	73	129	3302
C15	74	-245	3302
C14	75	-415	3302
C13	76	-585	3302

LCD controller/drivers

SYMBOL	PAD	x	y
C12	77	-755	3302
C11	78	-925	3302
C10	79	-1095	3302
C9	80	-1265	3302
C8	81	-1435	3302
C7	82	-1605	3302
C6	83	-1775	3302
C5	84	-1945	3302
C4	85	-2115	3302
C3	86	-2285	3302
C2	87	-2455	3302
C1	88	-2625	3015
R24	89	-2625	2846
R23	90	-2625	2676
R22	91	-2625	2506
R21	92	-2625	2336
R20	93	-2625	2166
R19	94	-2625	1996
R18	95	-2625	1826
R17	96	-2625	1656
R8	97	-2625	1487
R7	98	-2625	1317
R6	99	-2625	1147
R5	100	-2625	977
R4	101	-2625	807
R3	102	-2625	637
R2	103	-2625	467
R1	104	-2625	297
DB7	105	-2625	-290
SCL	106	-2625	-479
DB6	107	-2625	-716
SDA	108	-2625	-976
DB5	109	-2625	-1202
V_{0}	110	-2625	-1388
VLCD1	111	-2625	-1580
DB4	112	-2625	-1808
V ${ }_{\text {LCD2 }}$	113	-2625	-1985
DB3	114	-2625	-2213
V ${ }_{\text {LCD3 }}$	115	-2625	-2390
DB2	116	-2625	-2621

CONTENTS

1 FEATURES

2 GENERAL DESCRIPTION
3 QUICK REFERENCE DATA
4 ORDERING INFORMATION
5 BLOCK DIAGRAMS
6 PINNING
6.1 PCF2100C
6.2 PCF2111C
6.3 PCF2112C

7 FUNCTIONAL DESCRIPTION
7.1 PCF2100C
7.2 PCF2111C
7.3 PCF2112C
7.4 Bus control logic
7.5 Timing
7.6 Input circuitry
7.7 Expansion

8 LIMITING VALUES
9 HANDLING
10 DC CHARACTERISTICS
11 AC CHARACTERISTICS
12 PACKAGE OUTLINES
13 SOLDERING
13.1 Plastic dual in-line packages
13.1.1 \quad By dip or wave
13.1.2 Repairing soldered joints
13.2 Plastic small outline packages
13.2.1 By wave
13.2.2 By solder paste reflow
13.2.3 Repairing soldered joints (by hand-held soldering iron or pulse-heated solder tool)
14 DEFINITIONS
15 LIFE SUPPORT APPLICATIONS

LCD drivers

1 FEATURES

- Supply voltage 2.25 to 6.0 V
- Low current consumption
- Serial data input
- CBUS control
- One-point built-in oscillator
- Stand-alone or expanded system
- Power-on reset clear
- LCD segments
- 40 (PCF2100C)
- 64 (PCF2111C)
- 32 (PCF2112C)
- Multiplex rate
- $1: 2$ (PCF2100C)
- 1:2 (PCF2111C)
- 1:1 (PCF2112C)
- Word length
- 22 bits (PCF2100C)
- 34 bits (PCF2111C)
- 34 bits (PCF2112C).

2 GENERAL DESCRIPTION

The PCF21xxC family are single-chip, silicon gate CMOS LCD driver circuits. A 3 -line bus (CBUS) structure enables serial data transfer with microcontrollers. All inputs are CMOS/NMOS compatible.

The devices have the same function and performance as those of the PCF21xx family, which they supersede.
The maximum operating voltage required is reduced from 6.5 to 6.0 V .

3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{DD}	supply voltage		2.25	-	6.0	V
$\mathrm{I}_{\mathrm{DD} 1}$	supply current 1	outputs open; CBUS inactive	-	20	50	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{DD} 2}$	supply current 2	outputs open; CBUS inactive; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	-	20	30	$\mu \mathrm{~A}$
P_{O}	power dissipation per output		-	-	100	mW
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature		-40	-	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	storage temperature		-65	-	+150	${ }^{\circ} \mathrm{C}$

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF2100CP	DIP28	plastic dual in-line package; 28 leads (600 mil)	SOT117-1
PCF2100CT	SO28	plastic small outline package; 28 leads; body width 7.5 mm	SOT136-1
PCF2111CP	DIP40	plastic dual in-line package; 40 leads (600 mil)	SOT129-1
PCF2111CT	VSO40	plastic very small outline package; 40 leads	SOT158-1
PCF2112CP	DIP40	plastic dual in-line package; 40 leads (600 mil)	SOT129-1
PCF2112CT	VSO40	plastic very small outline package; 40 leads	SOT158-1

5 BLOCK DIAGRAMS

Fig. 1 Block diagram; PCF2100C.

Fig. 2 Block diagram; PCF2111C.

Fig. 3 Block diagram; PCF2112C.

6 PINNING

6.1 PCF2100C

SYMBOL	PIN	DESCRIPTION
CLB	1	clock burst input (CBUS)
V $_{\text {DD }}$	2	supply voltage
OSC	3	oscillator input
V $_{\text {SS }}$	4	supply voltage ground
S20	5	LCD driver output 20
S19	6	LCD driver output 19
S18	7	LCD driver output 18
S17	8	LCD driver output 17
S16	9	LCD driver output 16
S15	10	LCD driver output 15
S14	11	LCD driver output 14
S13	12	LCD driver output 13
S12	13	LCD driver output 12
S11	14	LCD driver output 11
S10	15	LCD driver output 10
S9	16	LCD driver output 9
S8	17	LCD driver output 8
S7	18	LCD driver output 7
S6	19	LCD driver output 6
S5	20	LCD driver output 5
S4	21	LCD driver output 4
S3	22	LCD driver output 3
S2	23	LCD driver output 2
S1	24	LCD driver output 1
BP2	25	backplane driver output 2
BP1	26	backplane driver output 1
DATA	27	data input line (CBUS)
DLEN	28	data input line enable (CBUS)

Fig. 4 Pin configuration; SOT117-1 and SOT136-1.

LCD drivers

6.2 PCF2111C

SYMBOL	PIN	DESCRIPTION
CLB	1	clock burst input (CBUS)
V_{DD}	2	supply voltage
OSC	3	oscillator input
$\mathrm{V}_{\text {SS }}$	4	supply voltage ground
S32	5	LCD driver output 32
S31	6	LCD driver output 31
S30	7	LCD driver output 30
S29	8	LCD driver output 29
S28	9	LCD driver output 28
S27	10	LCD driver output 27
S26	11	LCD driver output 26
S25	12	LCD driver output 25
S24	13	LCD driver output 24
S23	14	LCD driver output 23
S22	15	LCD driver output 22
S21	16	LCD driver output 21
S20	17	LCD driver output 20
S19	18	LCD driver output 19
S18	19	LCD driver output 18
S17	20	LCD driver output 17
S16	21	LCD driver output 16
S15	22	LCD driver output 15
S14	23	LCD driver output 14
S13	24	LCD driver output 13
S12	25	LCD driver output 12
S11	26	LCD driver output 11
S10	27	LCD driver output 10
S9	28	LCD driver output 9
S8	29	LCD driver output 8
S7	30	LCD driver output 7
S6	31	LCD driver output 6
S5	32	LCD driver output 5
S4	33	LCD driver output 4
S3	34	LCD driver output 3
S2	35	LCD driver output 2
S1	36	LCD driver output 1
BP2	37	backplane driver output 2
BP1	38	backplane driver output 1
DATA	39	data input line (CBUS)
DLEN	40	data input line enable (CBUS)

6.3 PCF2112C

SYMBOL	PIN	DESCRIPTION
CLB	1	clock burst input (CBUS)
VDD	2	supply voltage
OSC	3	oscillator input
$\mathrm{V}_{\text {SS }}$	4	supply voltage ground
S32	5	LCD driver output 32
S31	6	LCD driver output 31
S30	7	LCD driver output 30
S29	8	LCD driver output 29
S28	9	LCD driver output 28
S27	10	LCD driver output 27
S26	11	LCD driver output 26
S25	12	LCD driver output 25
S24	13	LCD driver output 24
S23	14	LCD driver output 23
S22	15	LCD driver output 22
S21	16	LCD driver output 21
S20	17	LCD driver output 20
S19	18	LCD driver output 19
S18	19	LCD driver output 18
S17	20	LCD driver output 17
S16	21	LCD driver output 16
S15	22	LCD driver output 15
S14	23	LCD driver output 14
S13	24	LCD driver output 13
S12	25	LCD driver output 12
S11	26	LCD driver output 11
S10	27	LCD driver output 10
S9	28	LCD driver output 9
S8	29	LCD driver output 8
S7	30	LCD driver output 7
S6	31	LCD driver output 6
S5	32	LCD driver output 5
S4	33	LCD driver output 4
S3	34	LCD driver output 3
S2	35	LCD driver output 2
S1	36	LCD driver output 1
n.c.	37	not connected
BP	38	backplane driver output
DATA	39	data input line (CBUS)
DLEN	40	data input line enable (CBUS)

Fig. 6 Pin configuration; SOT129-1 and SOT158-1.

LCD drivers

7 FUNCTIONAL DESCRIPTION

An LCD segment or LED output is activated when the corresponding DATA bit is HIGH.

7.1 PCF2100C

When DATA bit 21 is HIGH, the A-latches (BP1) are loaded. With DATA bit 21 LOW, the B-latches (BP2) are loaded. CLB pulse 23 transfers data from the shift register to the selected latches.

7.2 PCF2111C

When DATA bit 33 is HIGH, the A-latches (BP1) are loaded. With DATA bit 33 LOW, the B-latches (BP2) are loaded. CLB pulse 35 transfers data from the shift register to the selected latches.

7.3 PCF2112C

When DATA bit 33 is HIGH, the latches are loaded. CLB pulse 35 transfers data from the shift register to the selected latches.

7.4 Bus control logic

The following tests are carried out by the bus control logic:

1. Test on leading zero
2. Test on number of DATA bits
3. Test of disturbed DLEN and DATA signals during transmission.

If one of the test conditions is not fulfilled, no action follows the load condition (load pulse with DLEN LOW) and the driver is ready to receive new data.

Fig. 7 CBUS data format.

LCD drivers

7.5 Timing

Fig. 8 Timing diagram for PCF2100C and PCF2111C.

Fig. 9 Timing diagram for PCF2112C.

LCD drivers

7.6 Input circuitry

V_{SS} line is common. In systems where it is expected that $\mathrm{V}_{\mathrm{DD} 2}>\mathrm{V}_{\mathrm{DD} 1}+0.5 \mathrm{~V}$, a resistor should be inserted to reduce the current flowing through the input protection. Maximum input current $\leq 40 \mu \mathrm{~A}$.

Fig. 10 Input circuitry.

7.7 Expansion

By connecting OSC to $\mathrm{V}_{\text {SS }}$ the BP pins become inputs and generate signals synchronized to the single oscillator frequency, thus allowing expansion of several members of the PCF21xxC family up to the BP drive capability of the master. The PCF2112C can only function as a master for other PCF2112Cs.

Fig. 11 Expansion possibility (using PCF2111C).

8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX	UNIT
$V_{D D}$	supply voltage		-0.5	+8.0	V
V_{1}	input voltage DLEN, CLB, DATA and OSC		$V_{S S}-0.5$	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
V_{0}	output voltage BP1, BP2 and S1 to S32		$\mathrm{V}_{S S}-0.5$	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{l}_{\mathrm{DD}}, \mathrm{I}_{\text {SS }}$	supply current		-50	+50	mA
I_{1}	DC input current		-20	+20	mA
I_{0}	DC outpu+ current		-25	+25	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation per package	note 1	-	500	mW
P_{0}	power dissipation per output		-	100	mW
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$

Note

1. Derate by $7.7 \mathrm{~mW} / \mathrm{K}$ when $\mathrm{T}_{\mathrm{amb}}>60^{\circ} \mathrm{C}$.

9 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate handling MOS devices. See "Handling MOS devices".

ESD in accordance with "MIL STD 883C, Method 3015".

10 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.25$ to $6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+80^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{O}}=1 \mathrm{M} \Omega ; \mathrm{C}_{\mathrm{O}}=680 \mathrm{pF}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{DD}	supply voltage		2.25	-	6.0	V
$\mathrm{IDD}^{\text {d }}$	supply current	note 1; see Fig. 13	-	20	50	$\mu \mathrm{A}$
		note 1; $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; see Fig. 13	-	20	30	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{POR}}$	power-on reset voltage level	note 2	-	1.0	1.6	V
Inputs CLB, DATA and DLEN						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-	-	0.8	V
V_{IH}	HIGH level input voltage		2.0	-	-	V
ILI	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$ or V_{DD}	-	-	± 1	$\mu \mathrm{A}$
C_{i}	input capacitance	note 3	-	-	10	pF
Input OSC						
losc	oscillator start-up current	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	0.5	1.2	5.0	$\mu \mathrm{A}$
LCD outputs						
V_{BP}	DC voltage of backplane drivers		-	± 20	-	mV
$\mathrm{Z}_{\text {(}{ }_{\text {(BP) }}}$	backplane driver output impedance	note 4; $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	0.5	5.0	$\mathrm{k} \Omega$
$\mathrm{Z}_{\mathrm{O}(\mathrm{S})}$	segment driver output impedance	note 4; $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	1	7	$\mathrm{k} \Omega$

Notes

1. Outputs open; CBUS inactive.
2. Resets all logic, when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}}$.
3. Periodically sampled (not 100% tested).
4. Outputs measured one at a time.

11 AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.25$ to $6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+80^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{O}}=1 \mathrm{M} \Omega ; \mathrm{C}_{\mathrm{O}}=680 \mathrm{pF}$; all timing values are referenced to V_{IH} and $V_{I L}$ levels with an input voltage swing of $V_{S S}$ to $V_{D D}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Inputs CLB, DATA and DLEN (see Fig.12)						
$\mathrm{t}_{\text {SUDA }}$	data set-up time		3	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HDDA }}$	data hold time		3	-	-	$\mu \mathrm{s}$
tsuen	enable set-up time		1	-	-	$\mu \mathrm{s}$
tsudi	disable set-up time		2	-	-	$\mu \mathrm{s}$
tsuLD	load pulse set-up time		2.5	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {BUSY }}$	busy time		3	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {WH }}$	CLB HIGH time		1	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {WL }}$	CLB LOW time		5	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {CLB }}$	CLB cycle time		10	-	-	$\mu \mathrm{s}$
t_{r}	rise time		-	-	10	$\mu \mathrm{s}$
t_{f}	fall time		-	-	10	$\mu \mathrm{s}$
LCD timing (see Figs. 12, 14, 15, 16 and 17)						
$\mathrm{f}_{\text {LCD }}$	LCD frame frequency PCF2100C, PCF2111C PCF2112C	$\mathrm{C}_{\mathrm{O}}=1.5 \mathrm{nF}$	$\begin{aligned} & 60 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 35 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
$t_{B S}$	transfer time with test loads	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	20	100	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PLCD }}$	driver delay time with test loads	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	20	100	$\mu \mathrm{s}$

(1) Load pulse 23 for PCF2100C (see Fig.7).
(2) Load pulse 35 for PCF2111C and PCF2112C (see Fig.7)
Fig. 12 CBUS timing.

(1) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=+85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$.

Fig. 13 Supply current as a function of supply voltage.

(1) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=+85^{\circ} \mathrm{C}$.

Fig. 15 Display frequency as a function of supply voltage; $\mathrm{C}_{\mathrm{O}}=1.5 \mathrm{nF}$ (only PCF2112C).

(1) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=+85^{\circ} \mathrm{C}$.

Fig. 14 Display frequency as a function of supply voltage; $\mathrm{C}_{\mathrm{O}}=680 \mathrm{pF}$ (except PCF2112C).

(1) $\mathrm{R}_{\mathrm{O}}=1 \mathrm{~m} \Omega$.
(2) $\mathrm{R}_{\mathrm{O}}=100 \mathrm{k} \Omega$.

Fig. 16 Display frequency as a function of R_{O} and $\mathrm{C}_{0} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.

MLD298

Fig. 17 Test loads.

(1) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=+85^{\circ} \mathrm{C}$.

Fig. 19 LOW level output current as a function of supply voltage (only PCF2112C).

(1) $\mathrm{T}_{\text {amb }}=+85^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig. 18 Output resistance of backplane and segments.

2048×8-bit CMOS EEPROM with I ${ }^{2}$ C-bus

interface

CONTENTS

1	FEATURES
2	DESCRIPTION
2.1	Remark
3	QUICK REFERENCE DATA
4	ORDERING INFORMATION
5	DEVICE SELECTION
6	BLOCK DIAGRAM
7	PINNING
8	FC-BUS PROTOCOL
8.1	Bus conditions
8.2	Data transfer
8.3	Device addressing
8.4	Write operations
8.4 .1	Byte/word write
8.4 .2	Page Write
8.4 .3	Remark
8.5	Read operations
8.5 .1	Remark

2048×8-bit CMOS EEPROM with $\mathrm{I}^{2} \mathrm{C}$-bus interface

1 FEATURES

- Low power CMOS:
- maximum operating current 1.0 mA
- maximum standby current $10 \mu \mathrm{~A}$ (at 5.5 V), typical $4 \mu \mathrm{~A}$
- Non-volatile storage of 16 kbits organized as eight blocks of 256×8-bit each
- Single supply with full operation down to 2.7 V
- On-chip voltage multiplier
- Serial input/output $\mathrm{I}^{2} \mathrm{C}$-bus ($100 \mathrm{kbits} / \mathrm{s}$ standard-mode and $400 \mathrm{kbits} / \mathrm{s}$ fast-mode)
- Write operations: multi byte write mode up to 32 bytes
- Write-protection input
- Read operations:
- sequential read
- random read
- Internal timer for writing (no external components)
- Power-on-reset
- High reliability by using redundant EEPROM cells
- Endurance: 1000000 Erase/Write (E/W) cycles at $\mathrm{T}_{\text {amb }}=22^{\circ} \mathrm{C}$
- 20 years non-volatile data retention time (minimum)
- Pin and address compatible to the PCx85xxC-2 family (see also Section 2.1)
- 2 kV ESD protection (Human Body model).

2 DESCRIPTION

The PCF85116-3 is an 16 kbits (2048×8-bit) floating gate Electrically Erasable Programmable Read Only Memory (EEPROM). By using redundant EEPROM cells it is fault tolerant to single bit errors. In most cases multi bit errors are also covered. This feature dramatically increases reliability compared to conventional EEPROM memories. Power consumption is low due to the full CMOS technology used. The programming voltage is generated on-chip, using a voltage multiplier.

As data bytes are received and transmitted via the serial $1^{2} \mathrm{C}$-bus, a package using eight pins is sufficient. Only one PCF85116-3 device is required to support all eight blocks of 256×8-bit each.

Timing of the E/W cycle is carried out internally, thus no external components are required. A write-protection input at pin 7 (WP) allows disabling of write-commands from the master by a hardware signal. When pin 7 is HIGH the data bytes received will not be acknowledged by the PCF85116-3 and the EEPROM contents are not changed.

2.1 Remark

The PCF85116-3 is pin and address compatible to the PCx85xxC-2 family. The PCF85116-3 covers the whole address space of 16 kbits; address inputs are no longer needed. Therefore, pins 1 to 3 are not connected. The write-protection input is at pin 7.

3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage		2.7	5.5	V
$\mathrm{I}_{\mathrm{DDR}}$	supply current read	$\mathrm{f}_{\mathrm{SCL}}=400 \mathrm{kHz} ; \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	1.0	mA
$\mathrm{I}_{\mathrm{DDW}}$	supply current E / W	$\mathrm{f}_{\mathrm{SCL}}=400 \mathrm{kHz} ; \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	1.0	mA
$\mathrm{I}_{\text {stb }}$	standby supply current	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$	-	6	$\mu \mathrm{~A}$
		$\mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	10	$\mu \mathrm{~A}$

2048×8-bit CMOS EEPROM with $\mathrm{I}^{2} \mathrm{C}$-bus interface

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF85116-3P	DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT97-1
PCF85116-3T	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1

5 DEVICE SELECTION

Table 1 Device selection code

SELECTION	DEVICE CODE				CHIP ENABLE			R/ \bar{W}
Bit	$\mathrm{b} 7^{(1)}$	b 6	b 5	b 4	b 3	b 2	b 1	b 0
Device	1	0	1	0	MEM SEL	MEM SEL	MEM SEL	$\mathrm{R} / \overline{\mathrm{W}}$

Note

1. The Most Significant Bit (MSB) 'b7' is sent first.
Fig. 1 Block diagram.

	әэセцәәи!
-198コJd	

7 PINNING

SYMBOL	PIN	DESCRIPTION
n.c.	1	not connected
n.c.	2	not connected
n.c.	3	not connected
$V_{\text {SS }}$	4	negative supply voltage
SDA	5	serial data input/output $\left(I^{2} \mathrm{C}\right.$-bus $)$
SCL	6	serial clock input $\left(I^{2} \mathrm{C}-\right.$ bus $)$
WP	7	write-protection input
$V_{D D}$	8	positive supply voltage

8 I2C-BUS PROTOCOL

The $\mathrm{I}^{2} \mathrm{C}$-bus is for 2-way, 2-line communication between different ICs or modules. The serial bus consists of two bidirectional lines: one for data signals (SDA), and one for clock signals (SCL).

Both the SDA and SCL lines must be connected to a positive supply voltage via a pull-up resistor.

The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

8.1 Bus conditions

The following bus conditions have been defined:

- Bus not busy: both data and clock lines remain HIGH.
- Start data transfer: a change in the state of the data line, from HIGH-to-LOW, while the clock is HIGH, defines the START condition
- Stop data transfer: a change in the state of the data line, from LOW-to-HIGH, while the clock is HIGH, defines the STOP condition
- Data valid: the state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock sigrial. There is one clock pulse per bit of data.

8.2 Data transfer

Each data transfer is initiated with a START condition and terminated with a STOP condition; the number of the data bytes, transferred between the START and STOP conditions is limited to 32 bytes in the E/W mode.

Fig. 2 Pin configuration.

Data transfer is unlimited in the read mode.
The information is transmitted in bytes and each receiver acknowledges with a ninth bit.

Within the $\mathrm{I}^{2} \mathrm{C}$-bus specifications a low-speed mode (2 kHz clock rate), a high speed mode (100 kHz clock rate) and a fast speed mode (400 kHz clock rate) are defined.
The PCF85116-3 operates in all three modes.
By definition a device that sends a signal is called a 'transmitter', and the device which receives the signal is called a 'receiver'. The device which controls the signal is called the 'master'. The devices that are controlled by the master are called 'slaves'.

Each byte is followed by one acknowledge bit.
This acknowledge bit is a HIGH level, put on the bus by the transmitter. The master generates an extra acknowledge related clock pulse. The slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte.

The master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse.

Set-up and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master generation of the STOP condition.

2048×8-bit CMOS EEPROM with I^{2} C-bus

 interface
8.3 Device addressing

Fig. 3 Slave address.

Following a START condition the bus master must output the address of the slave it is accessing. The 4 MSBs of the slave address are the device type identifier (see Fig.3). For the PCF85116-3 this is fixed to '1010'.

The next three significant bits of the slave address field are the block selection bits. It is used by the host to select one out of eight blocks (1 block = 256 bytes of memory). These are, in effect, the three most significant bits of the word address.

The last bit of the slave address defines the operation to be performed. When R / \bar{W} is set to logic 1 a read operation is selected.

8.4 Write operations

8.4.1 BYTE/WORD WRITE

For a write operation the PCF85116-3 requires a second address field. This address field is a word address providing access to any one of the eight blocks of memory. Upon receipt of the word address the PCF85116-3 responds with an acknowledge and awaits the next eight bits of data, again responding with an acknowledge. Word address is automatically incremented. The master terminates the transfer by generating a STOP condition.

After this stop condition the E/W cycle starts and the bus is free for another transmission. Its duration is maximum 10 ms .

During the E/W cycle the slave receiver does not send an acknowledge bit if addressed via the $\mathrm{I}^{2} \mathrm{C}$-bus.

8.4.2 Page Write

Fig. 4 Auto increment of memory address.

The PCF85116-3 is capable of an 32-byte page write operation. It is initiated in the same manner as the byte write operation. The master can transmit up to 32 data bytes within one transmission. After receipt of each byte the PCF85116-3 will respond with an acknowledge. The master terminates the transfer by generating a STOP condition. The maximum total E/W time in this mode is 10 ms .

After the receipt of each data byte the six high order bits of the memory address providing access to one of the 64 pages of the memory remain unchanged. The five low order bits of the memory address will be incremented only (see Fig.3). By these five bits a single byte within the page in access is selected. By an increment the memory address may change from 31 to 0 , from 63 to 32 , etc. If the master transmits more than 32 bytes prior to generating the STOP condition, data within the addressed page may be overwritten and unpredictable results may occur. As in the byte write operation, all inputs are disabled until completion of the internal write cycles.

8.4.3 REMARK

Write accesses to the EEPROM are enabled if the pin WP is LOW. When WP is HIGH the EEPROM is write-protected and no acknowledge will be given by the PCF85116-3 when data is sent. However, an acknowledge will be given after the slave address and the word address.

2048×8-bit CMOS EEPROM with $\mathrm{I}^{2} \mathrm{C}$-bus

Fig. 5 Auto increment memory address; two byte write.

Fig. 6 Page write operation; 32 bytes.

2048×8-bit CMOS EEPROM with $\mathrm{I}^{2} \mathrm{C}$-bus interface

8.5 Read operations

Read operations are initiated in the same manner as write operations with the exception that the LSB of the slave address (R / \bar{W}) is set to logic 1 . There are three basic read operations; current address read, random read and sequential read.

8.5.1 REMARK

During read operations all bits of the memory address are incremented after each transmission of a data byte.
Contrary to write operations an overflow of the memory address occurs from 2047 to 0 (see Fig.3).

Fig. 7 Master reads PCx85116-3 slave after setting word address (write word address; read data).

2048×8-bit CMOS EEPROM with $\mathrm{I}^{2} \mathrm{C}$-bus interface

9 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage		-0.3	+6.5	V
$\mathrm{~V}_{1}$	input voltage on any pin	$\left\|\mathrm{Z}_{\mathrm{i}}\right\|>500 \Omega$	$\mathrm{~V}_{\mathrm{SS}}-0.8$	+6.5	V
I_{1}	input current on any pin		-	1	mA
I_{O}	output current		-	10	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {esd }}$	electrostatic discharge voltage	note 1	2	-	kV

Note

1. ESD Human Body model Q22 at $\mathrm{T}_{\mathrm{amb}}=22^{\circ} \mathrm{C}$; discharge procedure according to MIL-STD-883C Method 3015.

10 CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Supplies					
$V_{\text {DD }}$	supply voltage		2.7	5.5	V
IDDR	supply current read	$\begin{aligned} & \mathrm{f}_{\mathrm{SCL}}=400 \mathrm{kHz} ; \\ & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$	-	1.0	mA
IDDW	supply current E/W	$\begin{aligned} & \mathrm{f}_{\mathrm{SCL}}=400 \mathrm{kHz} ; \\ & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$	-	1.0	mA
$\mathrm{I}_{\mathrm{DD}(\mathrm{stb})}$	standby supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$	-	$\begin{array}{\|l\|} \hline 6 \\ 10 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
SDA input/output (pin 5)					
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-0.8	$+0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\text {DD }}$	6.5	V
$\mathrm{V}_{\mathrm{OL} 1}$	LOW level output voltage	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}(\text { min })}$	-	0.4	V
$\mathrm{V}_{\text {OL2 }}$		$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}(\text { min })}$	-	0.6	V
lo	output leakage current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$	-	1	$\mu \mathrm{A}$
$\mathrm{t}_{\text {O(f) }}$	output fall time from $\mathrm{V}_{\text {IHmin }}$ to $\mathrm{V}_{\text {ILmax }}$ with up to 3 mA sink current at $\mathrm{V}_{\mathrm{OL} 1}$ with up to 6 mA sink current at $\mathrm{V}_{\mathrm{OL} 2}$	note 1	$\begin{aligned} & 20+0.1 C_{b} \\ & 20+0.1 C_{b} \end{aligned}$	$\begin{array}{\|l\|} 250 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {SP }}$	pulse width of spikes suppressed by filter		0	100	ns
C_{1}	input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	-	10	pF

2048×8-bit CMOS EEPROM with $\mathrm{I}^{2} \mathrm{C}$-bus interface

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
SCL input (pin 6)					
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-0.8	$+0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{1 \mathrm{H}}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	6.5	V
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{S S}$	-	± 1	$\mu \mathrm{A}$
$\mathrm{f}_{\text {SCL }}$	clock input frequency		0	400	kHz
$\mathrm{t}_{\text {SP }}$	pulse width of spikes suppressed by filter		0	100	ns
C_{1}	input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	-	7	pF
WP input (pin 7)					
V_{IL}	LOW level input voltage		-0.8	$+0.1 V_{\text {DD }}$	V
V_{IH}	HIGH level input voltage		$0.9 \mathrm{~V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}+0.8$	V
Data retention time					
t_{s}	data retention time	$\mathrm{T}_{\text {amb }}=55^{\circ} \mathrm{C}$	20	-	years

Note

1. The bus capacitance ranges from 10 to $400 \mathrm{pF}\left(\mathrm{C}_{\mathrm{b}}=\right.$ total capacitance of one bus line in pF$)$.

$11 \mathrm{I}^{2} \mathrm{C}$-BUS CHARACTERISTICS

All of the timing values are valid within the operating supply voltage and ambient temperature range and refer to V_{IL} and V_{IH} with an input voltage swing from V_{SS} to V_{DD}.

SYMBOL	PARAMETER	CONDITIONS	STANDARD MODE		FAST MODE		UNIT
			MIN.	MAX.	MIN.	MAX.	
$\mathrm{f}_{\mathrm{SCL}}$	clock frequency		0	100	0	400	kHz
$\mathrm{t}_{\text {BUF }}$	time the bus must be free before new transmission can start		4.7	-	1.3	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {H } ; \text { STA }}$	START condition hold time after which first clock pulse is generated		4.0	-	0.6	-	$\mu \mathrm{s}$
t Low	LOW level clock period		4.7	-	1.3	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	HIGH level clock period		4.0	-	0.6	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; STA }}$	set-up time for START condition	repeated start	4.7	-	0.6	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD }}$; DAT	data hold time for CBUS compatible masters for $\mathrm{I}^{2} \mathrm{C}$-bus devices	note 1	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\left.\right\|_{-} ^{-}$	$-$	$-$	$\mu \mathrm{s}$ ns
$\mathrm{t}_{\text {SU; DAT }}$	data set-up time		250	-	100	-	ns
tr_{r}	SDA and SCL rise time		-	1000	$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(2)}$	300	ns
t_{f}	SDA and SCL fall time		-	300	$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(2)}$	300	ns
tsu; STO	set-up time for STOP condition		4.0	-	0.6	-	$\mu \mathrm{s}$

Notes

1. The hold time required (not greater than 300 ns) to bridge the undefined region of the falling edge of SCL must be internally provided by a transmitter.
2. $\mathrm{C}_{\mathrm{b}}=$ total capacitance of one bus line in pF .

2048×8-bit CMOS EEPROM with $\mathrm{I}^{2} \mathrm{C}$-bus interface

2048×8-bit CMOS EEPROM with $I^{2} \mathrm{C}$-bus interface

12 WRITE CYCLE LIMITS

The Power-on-reset circuit resets the $\mathrm{I}^{2} \mathrm{C}$-bus logic with a set-up time of $\leq 10 \mu \mathrm{~s}$. Enabling the chip is achieved by connecting the WP input to V_{SS}.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
E/W cycle timing						
$\mathrm{t}_{\mathrm{E} / \mathrm{W}}$	E/W cycle time		-	-	10	ms
Endurance						
$\mathrm{N}_{\mathrm{E} / \mathrm{W}}$	E/W cycle per byte	$\mathrm{T}_{\mathrm{amb}}=-40$ to $+85{ }^{\circ} \mathrm{C}$	100000	-	-	cycles
		$\mathrm{T}_{\mathrm{amb}}=22^{\circ} \mathrm{C}$	1000000	-	-	cycles

Universal LCD driver for small graphic panels

FEATURES

- Single chip LCD controller/driver
- 40 row and 101 column outputs
- Display data RAM
40×101 bits $=505$ bytes $=4040$ bits
- On-chip:
- Generation of intermediate LCD bias voltages
- Oscillator requires no external components (external clock also possible)
- 400 kHz fast $\mathrm{I}^{2} \mathrm{C}$-bus interface
- CMOS compatible
- MUX rate 1: 40
- Logic supply voltage range $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=2.5$ to 6 V
- Display supply voltage range $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=3.5$ to 9 V
- Low power consumption, suitable for battery operated systems.

APPLICATIONS

- Telecom equipment
- Portable instruments
- Point of sale terminals
- Alarm systems.

GENERAL DESCRIPTION

The PCF8558 is a low power CMOS LCD controller driver, designed to drive a graphic display of 40 rows and 101 columns. All necessary functions for the display are provided in a single chip, including on-chip generation of LCD bias voltages, resulting in a minimum of external components and lower power consumption.

The PCF8558 interfaces to most microcontrollers via a $\mathrm{I}^{2} \mathrm{C}$-bus interface.

ORDERING INFORMATION

| TYPE
 NUMBER | PACKAGE ${ }^{(1)}$ | | |
| :--- | :---: | :--- | :---: | :---: |
| | NAME | DESCRIPTION | VERSION |
| PCF8558U/10 | - | chip on FFC | - |
| PCF8558U/12 | - | chip with bumps on FFC | - |

Note

1. For further details see Chapter "Bonding pad locations".

Universal LCD driver for small graphic panels

BLOCK DIAGRAM

Fig. 1 Block diagram.

Universal LCD driver for small graphic panels

PINNING

SYMBOL	PAD	DESCRIPTION
SCL	1	$1^{2} \mathrm{C}$-bus serial clock input
R20 to R1	2 to 21	LCD row driver data outputs
C101 to C1	22 to 122	LCD column driver data outputs
R21 to R40	123 to 142	LCD row driver data outputs
T2	143	test pad output, must be left unconnected (not user accessible)
SDA	144	$1^{2} \mathrm{C}$-bus serial data input/output
$\mathrm{V}_{\text {SS }}$	145	ground
T1	146	test pad input, must be connected to $\mathrm{V}_{\text {SS }}$ (not user accessible)
V LCD	147	negative supply voltage input for the LCD
SAO	148	the LSB bit of the $\mathrm{I}^{2} \mathrm{C}$-bus slave address input is set by connecting this pin to either $0\left(V_{S S}\right)$ or $1\left(V_{D D}\right)$
T3	149	test pad input, must be connected to V_{DD} (not user accessible)
OSC	150	when the on-chip oscillator is used this pin must be connected to $V_{D D}$; an external clock signal, if used, is input at this pin
V_{DD}	151	positive supply voltage

FUNCTIONAL DESCRIPTION

LCD bias voltage generator

The intermediate bias voltages for the LCD display are generated and buffered on-chip. This removes the need for an external resistor bias chain and significantly reduces the system power consumption.

Oscillator

The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC pin must be connected to V_{DD}.

External clock

If an external clock is to be used it is input at the OSC pin. The resulting display frame frequency is given by
$f_{\text {frame }}=\frac{\mathrm{f}_{\text {OSC }}}{3072}$.
Only in the power-down state is the clock allowed to be stopped (OSC connected to V_{SS}), otherwise the LCD will be frozen in a state where a DC voltage is applied to it.

Power-on reset

The on-chip power-on reset block initializes the chip after power-on or power failure. This is a synchronous reset and requires 2 oscillator cycles to execute. These oscillator cycles must be provided from the external clock source if the internal oscillator is not used. If this is not done, the device may not respond to command sequences transmitted via the $\mathrm{I}^{2} \mathrm{C}$-bus interface.

Power-down

The chip can be put into power-down mode where all static currents are switched off (no internal oscillator, no internal power-on reset, no bias level generation and all LCD outputs are internally connected to V_{DD}) when PD = logic 1 .

During power-down the information in the RAMs and the internal chip states are preserved. Instruction execution during power-down is possible if an externally clock signal is applied to pad OSC.

Registers

The PCF8558 has one 8-bit register, time shared as a Command Register (CR) and a Data Register (DR).
The command register stores the command code such as display on or display off and address information for the

Display Data RAM (DDRAM). Both registers can be written to but not read from by the system controller.

Address Counter (AC)

The address counter assigns addresses to the DDRAM for writing and is set by Y 2 to Y 0 in the command and X6 to X0 in the address. After a write operation the address counter is automatically incremented by 1 in accordance with the V flag.

Display Data RAM (DDRAM)

The PCF8558 contains a 40×101-bit static RAM which stores the display data. The RAM is divided into 5 banks of 101 bytes ($5 \times 8 \times 101$ bits). During RAM access, data is transferred to the RAM via the $\mathrm{I}^{2} \mathrm{C}$-bus. There is a direct correspondence between the X address and the column output number.

Timing generator

The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not disturbed by operations on the data buses.

Display control

The display is generated by continuously shifting rows of RAM data to the dot matrix LCD via the column outputs.

The display status (all dots on/off and normal/inverse video) is set by bits E and D in the command word.

LCD row and column drivers

The PCF8558 contains 40 row and 101 column drivers, which connect the appropriate LCD bias voltages in sequence to the display in accordance with the data to be displayed. Figure 3 illustrates typical waveforms. Unused outputs should be left unconnected.

The bias voltage levels, V2 to V5, are chosen to give optimum display contrast for a multiplex rate of $1: 40$.

Table 1 Voltage bias levels

LEVEL	VOLTAGE
V2	$0.8635 \times\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}\right)$
V 3	$0.7270 \times\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}\right)$
V 4	$0.2730 \times\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}\right)$
V 5	$0.1365 \times\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}\right)$

RAM

Fig. 2 DDRAM to display mapping.

Universal LCD driver for small graphic

 panels\longrightarrow

$\mathrm{V}_{\text {state1 }}{ }^{(\mathrm{t})}=\mathrm{C} 2^{(t)}-\mathrm{R} 1^{(t)} ; \mathrm{V}_{\text {state2 }}{ }^{(\mathrm{t})}=\mathrm{C} 2^{(t)}-\mathrm{R} 2^{(t)}$.
Fig. 3 Typical LCD driver waveforms (MUX rate 1:40).

Universal LCD driver for small graphic panels

ADDRESSING

The data is downloaded into the matrix of the PCF8558 as indicated in Figs 4 and 5.
The display RAM has a matrix of 40 by 101 bits (5 by 101 bytes). The columns are addressed by the address pointer. After writing one byte the pointer is set to the next byte. Control of address increment, horizontal or vertical, is by bit V in the command byte.

Fig. 4 RAM format, addressing.

DATA STRUCTURE

a. Order of writing data bytes into RAM $(V=1)$.

MGG562
b. Order of writing data bytes into RAM $(V=0)$.

Fig. 5 Order of writing data bytes into RAM.

${ }^{2}$ ²C-BUS PROTOCOL

Two 7-bit slave addresses (0111100 and 0111101) are reserved for both the PCF8558. The least-significant bit of the slave address is set by connecting input SA0 to either $0\left(\mathrm{~V}_{S S}\right)$ or $1\left(\mathrm{~V}_{\mathrm{DD}}\right)$. Therefore, two PCF8558 can be used on the same $\mathrm{I}^{2} \mathrm{C}$-bus allowing displays of up to 80×101 or 40×202 dots to be driven.

The $\mathrm{I}^{2} \mathrm{C}$-bus protocol is shown in Fig. 6.
All communications are initiated with a START condition (S) from the $\mathrm{I}^{2} \mathrm{C}$-bus master, which is followed by the desired slave address and write bit. All devices with this slave address acknowledge in parallel. All other devices ignore the bus transfer.

In write mode (indicated by setting the read/write bit LOW) one or more commands follow the slave address acknowledgement. The commands are also acknowledged by all addressed devices on the bus. The last command must clear the continuation bit C. After the last command a series of data bytes may follow. The acknowledgement after each byte is made only by the addressed device. After the last data byte has been acknowledged, the $\mathrm{I}^{2} \mathrm{C}$-bus master issues a STOP condition (P).

For PCF8558, no read mode is provided.
Display bytes are written into the RAM at the address specified by the data pointer and subaddress counter. Both the data pointer and subaddress counter are
automatically incremented, enabling a stream of data to be transferred to the DDRAM.

The instruction format is composed of $\mathrm{I}^{2} \mathrm{C}$-bus slave address followed by one command byte, one X address pointer, followed by any number of data bytes.

Command execution/storing of data takes place during the acknowledge cycle.

Definitions

- Transmitter: the device which sends the data to the bus
- Receiver: the device which receives the data from the bus
- Master: the device which initiates a transfer, generates clock signals and terminates a transfer
- Slave: the device addressed by a master
- Multi-master: more than one master can attempt to control the bus at the same time. The $\mathrm{I}^{2} \mathrm{C}$-bus can accommodate this without data los/contention.
- Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
- Synchronization: procedure to synchronize the clock signals of two or more devices.

Fig. $6 \mathrm{I}^{2} \mathrm{C}$-bus protocol.

Universal LCD driver for small graphic panels

COMMANDS

Display Control

BIT	LOGIC 0	LOGIC 1
PD	normal	power-down
V	horizontal addressing	vertical addressing

Table 2 Display status

DISPLAY STATUS	BITS	
	E	D
Blank	0	0
Normal	1	1
All segments on	1	0
Inverse video	0	1

PD: POWER-DOWN

- All LCD outputs at V_{DD} (display off)
- Bias generator off
- Power-on reset on, oscillator off (external clock still possible)
- $V_{\text {LCD }}$ can be disconnected
- ${ }^{2}{ }^{2}$-bus, RAM, commands, etc. still function in power-down mode.

Set Address

Table $3 \mathrm{Y} 0, \mathrm{Y} 1$ and Y 2 define the Y address vector address of the display RAM

Y2	Y1	Y0	LINE
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4

Set X address

The X address points to the columns. The range of X is 0 to $100(64 \mathrm{H})$.

Reset function

After power-on the chip has the following state:

- Power-down mode (PD = 1)
- RAM undefined
- RAM X and Y address undefined
- Display control bits (except PD) undefined
- ${ }^{2} \mathrm{C}$-bus interface reset.

Note

If the chip is used with an external clock source, after power-on, the chip requires at least 2 clock pulses to ensure that an internal synchronous reset is carried out. After the internal reset, the chip goes into power-down mode ($\mathrm{PD}=1$). If the clock pulses are not supplied, and the reset is not cleared, the chip cannot respond to commands in the $\mathrm{I}^{2} \mathrm{C}$ bus.

In applications where the internal oscillator is used (pin OSC = V_{DD}), the oscillator starts after power-on. As soon as the synchronous reset is cleared, the chip goes into power-down mode, and the oscillator is stopped.

Table 4 Instructions: control byte, address

INSTRUCTION	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DESCRIPTION
Display control	0	E	D	PD	V	Y2	Y1	Y0	Y address vector, display control
X address	0	X address							

CHARACTERISTICS OF THE I²C-BUS

The $\mathrm{I}^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL) which must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this moment will be interpreted as control signals.

START and STOP conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the START condition (S).
A LOW-to-HIGH transition of the data line while the clock is HIGH, is defined as the STOP condition (P).

System configuration

A device transmitting a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message flow is the 'master' and the devices which are controlled by the master are the 'slaves'.

Acknowledge

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited. Each data byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter, whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal the end of a data transmission to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Universal LCD driver for small graphic

 panels

Fig. 8 Definition of START and STOP condition.

Fig. 9 System configuration.

Universal LCD driver for small graphic panels

The general characteristics and detailed specification of the I^{2} C-bus are available on request (order number 9398393 40011).
Fig. 10 Acknowledgment on the $\mathrm{I}^{2} \mathrm{C}$-bus.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.5	+8.0	V
$\mathrm{~V}_{\mathrm{LCD}}$	LCD supply voltage	$\mathrm{V}_{\mathrm{DD}}-11$	$\mathrm{~V}_{\mathrm{DD}}$	V
V_{in}	input voltage T1, T3, SAO and OSC	$\mathrm{V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\mathrm{i} 2}$	input voltage SDA and SCL	$\mathrm{V}_{\mathrm{SS}}-0.5$	8.0	V
$\mathrm{~V}_{\mathrm{O} 1}$	output voltage T2 and SDA	$\mathrm{V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\mathrm{O} 2}$	output voltage R1 to R40 and C1 to C 101	$\mathrm{~V}_{\mathrm{LCD}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{1}	DC input current	-10	+10	mA
I_{O}	DC output current	-10	+10	mA
$\mathrm{I}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{SS}}, \mathrm{I}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{LCD}}$ current	-50	+50	mA
$\mathrm{P}_{\text {tot }}$	power dissipation per package	-	400	mW
P_{O}	power dissipation per output	-	100	mW
$\mathrm{~T}_{\mathrm{Stg}}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe it is desirable to take normal precautions appropriate to handling MOS devices.

Universal LCD driver for small graphic panels

PCF8558

DC CHARACTERISTICS

$V_{D D}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{S S}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified, note 1 .

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
$V_{\text {DD }}$	supply voltage		2.5	-	6.0	V
$\mathrm{V}_{\text {LCD }}$	LCD supply voltage		$V_{D D}-9$	-	$\mathrm{V}_{\mathrm{DD}}-3.5$	V
$\mathrm{IDD(PD)}$	supply current in power-down mode		-	5	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {DD1 }}$	supply current external clock		-	120	180	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DD2}}$	supply current internal clock		-	130	200	$\mu \mathrm{A}$
LCD	LCD input current		-	50	100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	power-on reset level	note 2	0.6	1.3	1.8	V
Logic						
$\mathrm{V}_{\text {IL1 }}$	LOW level input voltage (all inputs except OSC)		$\mathrm{V}_{\text {SS }}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\mathrm{IH} 1}$	HIGH level input voltage (all inputs except OSC)		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
$\mathrm{V}_{\mathrm{IL} 2}$	LOW level input voltage (pin OSC)		$\mathrm{V}_{\text {SS }}$	-	$\mathrm{V}_{\mathrm{DD}}-1.5$	V
$\mathrm{V}_{\mathrm{IH} 2}$	HIGH level input voltage (pin OSC)		$\mathrm{V}_{\mathrm{DD}}-0.1$	-	V_{DD}	V
$\mathrm{L}_{\mathrm{L} 1}$	leakage current at T1, T3 OSC and SA0	$V_{1}=V_{D D}$ or $V_{S S}$	-1	-	+1	mA
C_{11}	input capacitance at T1, T3 OSC and SAO	note 3	-	-	5	pF
LCD outputs						
$V_{D C}$	DC component of LCD drivers R1 to R40 and C1 to C101		-	± 20	-	mV
$\mathrm{R}_{\text {ROW }}$	output resistance R1 to R40	note 4	-	1.5	6	$\mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{COL}}$	output resistance C1 to C101	note 4	-	3	10	k Ω
I2C-bus; SDA and SCL						
$\mathrm{V}_{\text {IL3 }}$	LOW level input voltage	note 5	$\mathrm{V}_{\text {SS }}$	-	$0.3 \mathrm{~V}_{\text {DD }}$	V
$\mathrm{V}_{1 \mathrm{H} 3}$	HIGH level input voltage	note 5	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	6	V
$\mathrm{l}_{\mathrm{L} 2}$	leakage current	$V_{1}=V_{D D}$ or $V_{S S}$	-1	-	+1	mA
C_{12}	input capacitance	note 3	-	-	7	pF
loL	LOW level output current at SDA	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$	3.0	-	-	mA

Notes

1. Outputs are open-circuit; inputs at V_{DD} or $\mathrm{V}_{\mathrm{SS}} ;{ }^{2} \mathrm{C}$-bus inactive; external clock with 50% duty factor.
2. Resets all logic when $V_{D D}<V_{P O R}$.
3. Periodically sampled, not 100% tested.
4. Resistance of output terminals (R1 to $R 40$ and $C 1$ to $C 101$) with $\mathrm{I}_{\mathrm{L}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{OP}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=9 \mathrm{~V}$; outputs measured one at a time.
5. When the voltages are above or below the supply voltages $V_{D D}$ or $V_{S S}$, an input current may flow. This current must not exceed $\pm 0.5 \mathrm{~mA}$.

Universal LCD driver for small graphic panels

AC CHARACTERISTICS

All timing values are referenced to V_{IH} and V_{IL} levels with an input voltage swing of V_{SS} to V_{DD}. $\mathrm{V}_{\mathrm{DD}}=2.5$ to 6 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{f}_{\mathrm{FR} \text {) }}$	LCD frame frequency (internal oscillator)		37	62.5	94	Hz
$\mathrm{f}_{\mathrm{OSC}}$ (ext)	external clock frequency		90	150	225	kHz
$t_{\text {PLCD }}$	driver delays	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=9 \mathrm{~V} ;$ with test loads	-	-	100	$\mu \mathrm{S}$
I²C-bus (see Fig.12)						
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		-	-	400	kHz
$\mathrm{t}_{\text {CLKL }}$	SCL LOW time		1.3	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {CLKH }}$	SCL HIGH time		0.6	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {BUF }}$	bus free time	between successive STOP and START conditions	1.3	-	-	μs
tr_{r}	SCL and SDA rise time	note 1	-	-	300	ns
t_{f}	SCL and SDA fall time	note 1	$20+0.1 C_{b}$	-	300	ns
$\mathrm{t}_{\text {SU; }}$ STA	START condition set-up time	repeated start codes only	0.6	-	-	$\mu \mathrm{s}$
thd;STA	START condition hold time		0.6	-	-	$\mu \mathrm{s}$
	data set-up time		100	-	-	ns
$\mathrm{t}_{\text {HD; }}$ DAT	data hold time		0	-	-	ns
tsu;STO	STOP condition set-up time		0.6	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SW }}$	tolerable spike width on bus	note 2	-	-	50	ns
C_{b}	capacitive load per bus line		-	-	400	pF

Notes

1. The rise and fall times specified here refer to the driver device (i.e. not PCF8558) and are part of the general fast $1^{2} \mathrm{C}$-bus specification. However, when PCF8558 asserts an acknowledge on SDA, the fall time is given by parameter $\mathrm{t}_{\mathrm{f}} . \mathrm{C}_{\mathrm{b}}=$ capacitive load per bus line.
2. The device inputs SDA and SCL are filtered and will reject spikes on the bus lines of width <tsw(max).

Fig. 11 AC test loads.

Universal LCD driver for small graphic panels

Fig. $12 \mathrm{I}^{2} \mathrm{C}$-bus timing waveforms.

Universal LCD driver for small graphic panels

APPLICATION INFORMATION

The pinning of the PCF8558 is optimized for single plane wiring e.g. for Chip-on-glass display modules.

Fig. 13 Application using $\mathrm{I}^{2} \mathrm{C}$-bus interface.

Universal LCD driver for small graphic panels

Fig. 14 Application, display size 40×101 pixels.

Fig. 15 Bonding pads.

CHIP INFORMATION

The PCF8558 is manufactured in p-well CMOS technology. $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$ is positive. The chip substrate is connected to V_{DD}.

Bonding pads

Pad pitch	100	$\mu \mathrm{~m}$
Pad size, aluminium	80×120	$\mu \mathrm{~m}$
Bump diricisions	$59 \times 99 \times 15$	$\mu \mathrm{~m}$
Wafer thickness	381	$\mu \mathrm{~m}$

Universal LCD driver for small graphic panels

Fig. 16 Bonding pad locations.

Universal LCD driver for small graphic
PCF8558

panels

Table 5 Bonding pad locations (dimensions in $\mu \mathrm{m}$).
All x / y coordinates are referenced to the lower right corner of the chip, see Fig. 16.

SYMBOL	PAD	\mathbf{x}	\mathbf{y}
SCL	1	-4303.6	1280.0
R20	2	-4303.6	1005.8
R19	3	-4303.6	905.8
R18	4	-4303.6	805.8
R17	5	-4303.6	705.8
R16	6	-4303.6	605.8
R15	7	-4303.6	505.8
R14	8	-4303.6	405.8
R13	9	-4303.6	305.8
R12	10	-4303.6	205.8
R11	11	-4303.6	105.8
R10	12	-4303.6	5.8
R9	14	-4303.6	-94.3
R8	15	-4303.6	-194.3
R7	39	-4303.6	-383.3
R6	36	-4303.6	-483.3
R5	17	-4303.6	-583.3
R4	18	-4303.6	-683.3
R3	19	-4303.6	-783.3
R2	20	-4303.6	-883.3
R1	21	-4303.6	-983.3
C101	22	-4303.6	-1083.3
C100	23	-4303.6	-1183.3
C99	24	-4303.6	-1283.3
C98	25	-4303.6	-1383.3
C97	26	-4303.6	-1483.3
C96	27	-4303.6	-1583.3
C95	28	-3903.6	-1823.5
C94	29	-3803.6	-1823.5
C93	30	-3703.6	-1823.5
C92	31	-3603.6	-1823.5
C91	-3203.6	-1823.5	
C90	-3103.6	-1823.5	
C89	-3003.6	-1823.5	
C88	-2903.6	-1823.5	
-1323.5			
	-3503.6	-1823.5	
	-1823.5		
	-1823.5		

SYMBOL	PAD	X	y
C81	42	-2503.6	-1823.5
C80	43	-2403.6	-1823.5
C79	44	-2303.6	-1823.5
C78	45	-2203.6	-1823.5
C77	46	-2103.6	-1823.5
C76	47	-2003.6	-1823.5
O75	48	-1814.6	-1823.5
C74	49	-1714.6	-1823.5
C73	50	-1614.6	-1823.5
C72	51	-1514.6	-1823.5
C71	52	-1414.6	-1823.5
C70	53	-1314.6	-1823.5
C69	54	-1214.6	-1823.5
C68	55	-1114.6	-1823.5
C67	56	-1014.6	-1823.5
C66	57	-914.6	-1823.5
C65	58	-814.6	-1823.5
C64	59	-714.6	-1823.5
C63	60	-614.6	-1823.5
C62	61	-514.6	-1823.5
C61	62	-414.6	-1823.5
C60	63	-314.6	-1823.5
C59	64	-214.6	-1823.5
C58	65	-114.6	-1823.5
C57	66	-14.6	-1823.5
C56	67	85.4	-1823.5
C55	68	274.4	-1823.5
C54	69	374.4	-1823.5
C53	70	474.4	-1823.5
C52	71	574.4	-1823.5
C51	72	674.4	-1823.5
C50	73	774.4	-1823.5
C49	74	874.4	-1823.5
C48	75	974.4	-1823.5
C47	76	1074.4	-1823.5
C46	77	1174.4	-1823.5
C45	78	1274.4	-1823.5
C44	79	1374.4	-1823.5
C43	80	1474.4	-1823.5
C42	81	1574.4	-1823.5
C41	82	1674.4	-1823.5

Universal LCD driver for small graphic

SYMBOL	PAD	\mathbf{x}	\mathbf{y}
R25	127	4303.6	883
R26	128	4303.6	983
R27	129	4303.6	1083
R28	130	4303.6	1183
R29	131	4303.6	1283
R30	132	4303.6	1383
R31	133	4303.6	1483
R32	134	4303.6	1583
R33	135	4017.1	1823.5
R34	136	3917.1	1823.5
R35	137	3817.1	1823.5
R36	138	3717.1	1823.5
R37	139	3617.1	1823.5
R38	140	3517.1	1823.5
R39	141	3417.1	1823.5
R40	142	3317.1	1823.5
T2	143	-2695.6	1823.5
SDA	144	-3044.1	1823.5
VSS	145	-3190.6	1823.5
T1	146	-3362.1	1823.5
V LCD $^{\text {SA0 }}$	147	-3463.6	1823.5
T3	148	-3635.1	1823.5
OSC	149	-3735.1	1823.5
V $_{\text {DD }}$	150	-3839.1	1823.5
Dun	151	-3939.6	1823.5

Dummy pads

dummy 1	-	-257.1	1790.4
dummy 2	-	-155.6	1790.4
dummy 3	-	-54.1	1790.4
dummy 4	-	47.4	1790.4
dummy 5	-	148.9	1790.4
dummy 6	-	250.4	1790.4
dummy 7	-	-4223.6	1823.4
dummy 8	-	4303.5	1843.5
dummy 9	-	-4303.6	-1843.5
dummy 10	-	4323.6	-1843.5

Alignment marks

Sign C	-	-4082.6	-1782.5
Sign C	-	4147.4	1807.5
Sign F	-	-4262.6	1417.5

Universal LCD driver for low multiplex

rates

CONTENTS		8	LIMITING VALUES
1	FEATURES	9	HANDLING
2	GENERAL DESCRIPTION	10	DC CHARACTERISTICS
3	ORDERING INFORMATION	11	AC CHARACTERISTICS
4	BLOCK DIAGRAM	12	APPLICATION INFORMATION
5	PINNING	13	CHIP DIMENSIONS AND BONDING PAD LOCATIONS
6	FUNCTIONAL DESCRIPTION	14	PACKAGE OUTLINES
6.1	Power-on reset	15	SOLDERING
6.2 6.3	LCD bias generator	15.1	Introduction
6.4	LCD drive mode waveforms	15.2	DIP
6.5	Oscillator	15.2.1	Soldering by dipping or by wave
6.6	Internal clock	15.2.2	Repairing soldered joints
6.7	External clock	15.3	SO and VSO
6.8	Timing	15.3.1	Reflow soldering
6.9	Display latch	15.3.2	Wave soldering
6.10	Shift register	15.3.3	Repairing soldered joints
6.11	Segment outputs	16	DEFINITIONS
6.12	Backplane outputs	17	LIFE SUPPORT APPLICATIONS
6.13	Display RAM	18	PURCHASE OF PHILIPS $1^{2} \mathrm{C}$ COMPONENTS
6.14	Data pointer	18	PURCHASE OF PHILIPS ${ }^{2} \mathrm{C}$ C COMPONENTS
6.15	Subaddress counter		
6.16	Output bank selector		
6.17	Input bank selector		
6.18	Blinker		
7	$1^{2} \mathrm{C}-\mathrm{BUS}$ DESCRIPTION		
7.1	Bit transfer		
7.2	Start and stop conditions		
7.3	System configuration		
7.4	Acknowledge		
7.5	PCF8566 ${ }^{\text {2 }} \mathrm{C}$-bus controller		
7.6	Input filters		
7.7	$1^{2} \mathrm{C}$-bus protocol		
7.8	Command decoder		
7.9	Display controller		
7.10	Cascaded operation		

Universal LCD driver for low multiplex rates

1 FEATURES

- Single-chip LCD controller/driver
- Selectable backplane drive configuration: static or 2,3 or 4 backplane multiplexing
- Selectable display bias configuration: static, $1 / 2$ or $1 / 3$
- Internal LCD bias generation with voltage-follower buffers
- 24 segment drives: up to twelve 8 -segment numeric characters; up to six 15 -segment alphanumeric characters; or any graphics of up to 96 elements
- 24×4-bit RAM for display data storage
- Auto-incremented display data loading across device subaddress boundaries
- Display memory bank switching in static and duplex drive modes
- Versatile blinking modes
- LCD and logic supplies may be separated
- 2.5 to 6 V power supply range
- Low power consumption
- Power saving mode for extremely low power consumption in battery-operated and telephone applications
- ${ }^{2}$ C-bus interface
- TTL/CMOS compatible
- Compatible with any 4 -bit, 8 -bit or 16 -bit microprocessors/microcontrollers
- May be cascaded for large LCD applications (up to 1536 segments possible)
- Cascadable with the 40 segment LCD driver PCF8576C
- Optimized pinning for single plane wiring in both single and multiple PCF8566 applications
- Space-saving 40 lead plastic very small outline package (VSO40; SOT158-1)
- No external components required (even in multiple device applications)
- Manufactured in silicon gate CMOS process.

2 GENERAL DESCRIPTION

The PCF8566 is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD) having low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 24 segments and can easily be cascaded for larger LCD applications. The PCF8566 is compatible with most microprocessors/microcontrollers and communicates via a two-line bidirectional $I^{2} \mathrm{C}$-bus. Communication overheads are minimized by a display RAgmM with auto-incremented addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes).

3 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8566P	DIP40	plastic dual in-line package; 40 leads (600 mil)	SOT129-1
PCF8566T	VSO40	plastic very small outline package; 40 leads	SOT158-1

Fig. 1 Block diagram.

Universal LCD driver for low multiplex rates

5 PINNING

SYMBOL	PIN	DESCRIPTION
SDA	1	${ }^{2} \mathrm{C}$-bus data input/output
SCL	2	$1^{2} \mathrm{C}$-bus clock input/output
SYNC	3	cascade synchronization input/output
CLK	4	external clock input/output
V_{DD}	5	positive supply voltage
OSC	6	oscillator input
AO	7	
A1	8	$1^{2} \mathrm{C}$-bus subaddress inputs
A2	9	
SAO	10	$1^{2} \mathrm{C}$-bus slave address bit 0 input
$\mathrm{V}_{\text {SS }}$	11	logic ground
$\mathrm{V}_{\text {LCD }}$	12	LCD supply voltage
BPO	13	
BP2	14	backplane outputs
BP1	15	LCD backplane outputs
BP3	16	
S0 to S23	17 to 40	LCD segment outputs

Fig. 2 Pin configuration.

Universal LCD driver for low multiplex rates

PCF8566

6 FUNCTIONAL DESCRIPTION

The PCF8566 is a versatile peripheral device designed to interface any microprocessor to a wide variety of LCDs. It can directly drive any static or multiplexed LCD containing up to 4 backplanes and up to 24 segments. The display configurations possible with the PCF8566 depend on the number of active backplane outputs required; a selection of display configurations is given in Table 1.

All of the display configurations given in Table 1 can be implemented in the typical system shown in Fig.3. The host microprocessor/microcontroller maintains the two-line $\mathrm{I}^{2} \mathrm{C}$-bus communication channel with the PCF8566. The internal oscillator is selected by tying OSC (pin 6) to $\mathrm{V}_{\text {SS }}$. The appropriate biasing voltages for the multiplexed LCD waveforms are generated internally. The only other connections required to complete the system are to the power supplies ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ and $\mathrm{V}_{\mathrm{LCD}}$) and to the LCD panel chosen for the application.

Table 1 Selection of display configurations

ACTIVE BACKPLANE OUTPUTS	NUMBER OF SEGMENTS	7-SEGMENT NUMERIC	14-SEGMENT ALPHANUMERIC	DOT MATRIX
4	96	12 digits +12 indicator symbols	6 characters + 12 indicator symbols	96 dots (4×24)
3	72	9 digits +9 indicator symbols	4 characters + 16 indicator symbols	72 dots (3 $\times 24)$
2	48	6 digits +6 indicator symbols	3 characters +6 indicator symbols	48 dots ($2 \times 24)$
1	24	3 digits +3 indicator symbols	1 character + 10 indicator symbols	24 dots

Fig. 3 Typical system configuration.

Universal LCD driver for low multiplex

rates

6.1 Power-on reset

At power-on the PCF8566 resets to a defined starting condition as follows:

1. All backplane outputs are set to $V_{D D}$
2. All segment outputs are set to $V_{D D}$
3. The drive mode ' $1: 4$ multiplex with $1 / 3$ bias' is selected
4. Blinking is switched off
5. Input and output bank selectors are reset (as defined in Table 5)
6. The $\mathrm{I}^{2} \mathrm{C}$-bus interface is initialized
7. The data pointer and the subaddress counter are cleared.

Data transfers on the $I^{2} C$-bus should be avoided for 1 ms following power-on to allow completion of the reset action.

6.2 LCD bias generator

The full-scale LCD voltage $\left(V_{o p}\right)$ is obtained from $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$. The LCD voltage may be temperature compensated externally through the $\mathrm{V}_{\mathrm{LCD}}$ supply to pin 12. Fractional LCD biasing voltages are obtained from an internal voltage divider of three series resistors connected between V_{DD} and $\mathrm{V}_{\mathrm{LCD}}$. The centre resistor can be switched out of circuit to provide a $1 / 2$ bias voltage level for the $1: 2$ multiplex configuration.

6.3 LCD voltage selector

The LCD voltage selector coordinates the multiplexing of the LCD according to the selected LCD drive configuration. The operation of the voltage selector is controlled by MODE SET commands from the command decoder. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of $\mathrm{V}_{\mathrm{Op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$ and the resulting discrimination ratios (D), are given in Table 2.

A practical value of $\mathrm{V}_{\text {op }}$ is determined by equating $\mathrm{V}_{\text {off(rms) }}$ with a defined LCD threshold voltage (V_{th}), typically when the LCD exhibits approximately 10% contrast. In the static drive mode a suitable choice is $\mathrm{V}_{\mathrm{op}} \geq 3 \mathrm{~V}_{\mathrm{th}}$. Multiplex drive ratios of $1: 3$ and $1: 4$ with $1 / 2$ bias are possible but the discrimination and hence the contrast ratios are smaller
($\sqrt{3}=1.732$ for $1: 3$ multiplex or $\sqrt{21} / 3=1.528$ for $1: 4$ multiplex). The advantage of these modes is a reduction of the LCD full scale voltage V_{op} as follows:

1 : 3 multiplex ($1 / 2$ bias):
$\mathrm{V}_{\text {op }}=\sqrt{6} \mathrm{~V}_{\text {op(mrs) }}=2.449 \mathrm{~V}_{\text {off }(\mathrm{rms})}$
1:4 multiplex ($1 / 2$ bias):
$\mathrm{V}_{\text {op }}=\sqrt[4]{3} / 3 \mathrm{~V}_{\text {off }(\mathrm{rms})}=2.309 \mathrm{~V}_{\text {off }(\mathrm{rms})}$
These compare with $\mathrm{V}_{\text {op }}=3 \mathrm{~V}_{\text {off(rms) }}$ when $1 / 3$ bias is used.

Table 2 Preferred LCD drive modes: summary of characteristics

LCD DRIVE MODE	LCD BIAS CONFIGURATION	$\frac{V_{\text {off }(\mathrm{rms})}}{V_{\text {op }}}$	$\frac{V_{\text {on }(\mathrm{rms})}}{V_{\text {op }}}$	$D=\frac{V_{\text {on }(\mathrm{rms})}}{V_{\text {off }(\mathrm{rms})}}$
Static (1 BP)	static (2 levels)	0	∞	
$1: 2 \mathrm{MUX}(2 \mathrm{BP})$	$1 / 2$ (3 levels)	$\sqrt{2} / 4=0.354$	$\sqrt{10} / 4=0.791$	$\sqrt{5}=2.236$
$1: 2$ MUX (2 BP)	$1 / 3(4$ levels)	$1 / 3=0.333$	$\sqrt{5} / 3=0.745$	$\sqrt{5}=2.236$
$1: 3$ MUX (3 BP)	$1 / 3(4$ levels)	$1 / 3=0.333$	$\sqrt{33} / 9=0.638$	$\sqrt{33} / 3=1.915$
$1: 4$ MUX (4 BP)	$1 / 3(4$ levels)	$1 / 3=0.333$	$\sqrt{3} / 3=0.577$	$\sqrt{3}=1.732$

Universal LCD driver for low multiplex rates

6.4 LCD drive mode waveforms

The static LCD drive mode is used when a single backplane is provided in the LCD. Backplane and segment drive waveforms for this mode are shown in Fig.4.
When two backplanes are provided in the LCD the $1: 2$ multiplex drive mode applies. The PCF8566 allows use of $1 / 2$ or $1 / 3$ bias in this mode as shown in Figs 5 and 6 .
The backplane and segment drive waveforms for the $1: 3$ multiplex drive mode (three LCD backplanes) and for the $1: 4$ multiplex drive mode (four LCD backplanes) are shown in Figs 7 and 8 respectively.

(a) waveforms at driver

$-\mathrm{V}_{\mathrm{op}}-$ (b) resultant waveforms at LCD segment

Fig. 4 Static drive mode waveforms: $\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

Universal LCD driver for low multiplex

Fig. 5 Waveforms for $1: 2$ multiplex drive mode with $1 / 2$ bias: $\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

Universal LCD driver for low multiplex rates

(a) waveforms at driver

$$
2 \mathrm{v}_{\mathrm{op}} / 3
$$

state 1

$-2 v_{o p} / 3-$
V_{op}
$2 \mathrm{~V}_{\mathrm{op}} / 3 \quad \quad \mathrm{~V}_{\text {state } 2}(\mathrm{t})=\mathrm{V}_{\mathrm{Sn}_{\mathrm{n}}}(\mathrm{t})-\mathrm{V}_{\mathrm{BP} 1}(\mathrm{t})$
$\mathrm{V}_{\mathrm{op}} / 3$
0
$-\mathrm{V}_{\mathrm{op}} / 3$

$-2 \mathrm{~V}_{\mathrm{op}} / 3$
$-\mathrm{V}_{\mathrm{op}}$
(b) resultant waveforms MGG393
at LCD segment

Fig. 6 Waveforms for $1: 2$ multiplex drive mode with $1 / 3$ bias: $V_{o p}=V_{D D}-V_{L C D}$.

Universal LCD driver for low multiplex

BF1

BP2

(a) waveforms at driver

(b) resultant waveforms

MGG395

Fig. 7 Waveforms for $1: 3$ multiplex drive mode: $\mathrm{V}_{\mathrm{Op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

Universal LCD driver for low multiplex rates

(a) waveforms at driver
 at LCD segment

Fig. 8 Waveforms for $1: 4$ multiplex drive mode: $\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$.

Universal LCD driver for low multiplex rates

PCF8566

6.5 Oscillator

The internal logic and the LCD drive signals of the PCF8566 or PCF8576 are timed either by the built-in oscillator or from an external clock.

The clock frequency ($\mathrm{f}_{\mathrm{CLK}}$) determines the LCD frame frequency and the maximum rate for data reception from the $I^{2} \mathrm{C}$-bus. To allow $I^{2} \mathrm{C}$-bus transmissions at their maximum data rate of 100 kHz , f CLK should be chosen to be above 125 kHz .

A clock signal must always be supplied to the device; removing the clock may freeze the LCD in a DC state.

6.6 Internal clock

When the internal oscillator is used, OSC (pin 6) should be tied to V_{SS}. In this case, the output from CLK (pin 4) provides the clock signal for cascaded PCF8566s and PCF8576s in the system.

6.7 External clock

The condition for external clock is made by tying OSC (pin 6) to $V_{D D}$; CLK (pin 4) then becomes the external clock input.

6.8 Timing

The timing of the PCF8566 organizes the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. In cascaded applications, the synchronization signal $\overline{\text { SYNC }}$ maintains the correct timing relationship between the PCF8566s in the system. The timing also generates the LCD frame frequency which it derives as an integer multiple of the clock frequency (Table 3). The frame frequency is set by MODE SET commands when internal clock is used, or by the frequency applied to pin 4 when external clock is used.

Table 3 LCD frame frequencies

PCF8566 MODE	$f_{\text {frame }}$	NOMINAL $\mathbf{f}_{\text {frame }}(\mathbf{H z})$
Normal mode	$\mathrm{f}_{\mathrm{CLK}} / 2880$	64
Power saving mode	$\mathrm{f}_{\mathrm{CLK}} / 480$	64

The ratio between the clock frequency and the LCD frame frequency depends on the mode in which the device is operating. In the power saving mode the reduction ratio is six times smaller; this allows the clock frequency to be reduced by a factor of six. The reduced clock frequency results in a significant reduction in power dissipation.

The lower clock frequency has the disadvantage of increasing the response time when large amounts of display data are transmitted on the $\mathrm{I}^{2} \mathrm{C}$-bus. When a device is unable to 'digest' a display data byte before the next one arrives, it holds the SCL line LOW until the first display data byte is stored. This slows down the transmission rate of the $\mathrm{I}^{2} \mathrm{C}$-bus but no data loss occurs.

6.9 Display latch

The display latch holds the display data while the corresponding multiplex signals are generated. There is a one-to-one relationship between the data in the display latch, the LCD segment outputs and one column of the display RAM.

6.10 Shift register

The shift register serves to transfer display information from the display RAM to the display latch while previous data are displayed.

6.11 Segment outputs

The LCD drive section includes 24 segment outputs SO to S23 (pins 17 to 40) which should be connected directly to the LCD. The segment output signals are generated in accordance with the multiplexed backplane signals and with the data resident in the display latch. When less than 24 segment outputs are required the unused segment outputs should be left open-circuit.

6.12 Backplane outputs

The LCD drive section includes four backplane outputs BPO to BP3 which should be connected directly to the LCD. The backplane output signals are generated in accordance with the selected LCD drive mode. If less than four backplane outputs are required the unused outputs can be left open. In the 1:3 multiplex drive mode BP3 carries the same signal as BP1, therefore these two adjacent outputs can be tied together to give enhanced drive capabilities. In the 1:2 multiplex drive mode BP 0 and $\mathrm{BP} 2, \mathrm{BP} 1$ and BP 3 respectively carry the same signals and may also be paired to increase the drive capabilities. In the static drive mode the same signal is carried by all four backplane outputs and they can be connected in parallel for very high drive requirements.

6.13 Display RAM

The display RAM is a static 24×4-bit RAM which stores LCD data. A logic 1 in the RAM bit-map indicates the 'on' state of the corresponding LCD segment; similarly, a logic 0 indicates the 'off' state.

Universal LCD driver for low multiplex

There is a one-to-one correspondence between the RAM addresses and the segment outputs, and between the individual bits of a RAM word and the backplane outputs. The first RAM column corresponds to the 24 segments operated with respect to backplane BPO (see Fig.9). In multiplexed LCD applications the segment data of the second, third and fourth column of the display RAM are time-multiplexed with BP1, BP2 and BP3 respectively.

When display data are transmitted to the PCF8566 the display bytes received are stored in the display RAM according to the selected LCD drive mode. To illustrate the filling order, an example of a 7 -segment numeric display showing all drive modes is given in Fig.10; the RAM filling organization depicted applies equally to other LCD types.

With reference to Fig.10, in the static drive mode the eight transmitted data bits are placed in bit 0 of eight successive display RAM addresses. In the 1:2 multiplex drive mode the eight transmitted data bits are placed in bits 0 and 1 of four successive display RAM addresses. In the 1:3 multiplex drive mode these bits are placed in bits 0,1 and 2 of three successive addresses, with bit 2 of the third address left unchanged. This last bit may, if necessary, be controlled by an additional transfer to this address but care should be taken to avoid overriding adjacent data because full bytes are always transmitted. In the 1: 4 multiplex drive mode the eight transmitted data bits are placed in bits 0,1,2 and 3 of two successive display RAM addresses.

6.14 Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM.

The sequence commences with the initialization of the data pointer by the LOAD DATA POINTER command. Following this, an arriving data byte is stored starting at the display RAM address indicated by the data pointer thereby observing the filling order shown in Fig.10. The data pointer is automatically incremented according to the LCD configuration chosen. That is, after each byte is stored, the contents of the data pointer are incremented by eight (static drive mode), by four (1:2 multiplex drive mode), by three (1:3 multiplex drive mode) or by two (1:4 multiplex drive mode).

6.15 Subaddress counter

The storage of display data is conditioned by the contents of the subaddress counter. Storage is allowed to take place only when the contents of the subaddress counter agree with the hardware subaddress applied to A0, A1 and A2 (pins 7, 8, and 9). A0, A1 and A2 should be tied to V_{SS} or V_{DD}. The subaddress counter value is defined by the DEVICE SELECT command. If the contents of the subaddress counter and the hardware subaddress do not agree then data storage is inhibited but the data pointer is incremented as if data storage had taken place. The subaddress counter is also incremented when the data pointer overflows.

The storage arrangements described lead to extremely efficient data loading in cascaded applications. When a series of display bytes are being sent to the display RAM, automatic wrap-over to the next PCF8566 occurs when the last RAM address is exceeded. Subaddressing across device boundaries is successful even if the change to the next device in the cascade occurs within a transmitted character.

Fig. 9 Display RAM bit-map showing direct relationship between display RAM addresses and segment outputs, and between bits in a RAM word and backplane outputs.

Fig. 10 Relationships between LCD layout, drive mode, display RAM filling order and display data transmitted over the $\mathrm{I}^{2} \mathrm{C}$-bus ($\mathrm{X}=$ data bit unchanged).

Universal LCD driver for low multiplex

6.16 Output bank selector

This selects one of the four bits per display RAM address for transfer to the display latch. The actual bit chosen depends on the particular LCD drive mode in operation and on the instant in the multiplex sequence. In 1:4 multiplex, all RAM addresses of bit 0 are the first to be selected, these are followed by the contents of bit 1, bit 2 and then bit 3 . Similarly in $1: 3$ multiplex, bits 0,1 and 2 are selected sequentially. In 1:2 multiplex, bits 0 then 1 are selected and, in the static mode, bit 0 is selected.

The PCF8566 includes a RAM bank switching feature in the static and 1:2 multiplex drive modes. In the static drive mode, the BANK SELECT command may request the contents of bit 2 to be selected for display instead of bit 0 contents. In the 1:2 drive mode, the contents of bits 2 and 3 may be selected instead of bits 0 and 1 . This gives the provision for preparing display information in an alternative bank and to be able to switch to it once it is assembled.

6.17 Input bank selector

The input bank selector loads display data into the display RAM according to the selected LCD drive configuration. Display data can be loaded in bit 2 in static drive mode or in bits 2 and 3 in $1: 2$ drive mode by using the BANK SELECT command. The input bank selector functions independently of the output bank selector.

6.18 Blinker

The display blinking capabilities of the PCF8566 are very versatile. The whole display can be blinked at frequencies selected by the BLINK command. The blinking frequencies are integer multiples of the clock frequency; the ratios between the clock and blinking frequencies depend on the mode in which the device is operating, as shown in Table 4.

An additional feature is for an arbitrary selection of LCD segments to be blinked. This applies to the static and 1:2 LCD drive modes and can be implemented without any communication overheads. By means of the output bank selector, the displayed RAM banks are exchanged with alternate RAM banks at the blinking frequency. This mode can also be specified by the BLINK command.
In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of LCD segments can be blinked by selectively changing the display RAM data at fixed time intervals.

If the entire display is to be blinked at a frequency other than the nominal blinking frequency, this can be effectively performed by resetting and setting the display enable bit E at the required rate using the MODE SET command.

Table 4 Blinking frequencies

BLINKING MODE	NORMAL OPERATING MODE RATIO	POWER-SAVING MODE RATIO	NOMINAL BLINKING FREQUENCY $\mathrm{f}_{\text {blink }}(\mathrm{Hz})$
Off	-	-	blinking off
2 Hz	$\mathrm{f}_{\mathrm{CLK}} / 92160$	$\mathrm{f}_{\mathrm{CLK}} / 15360$	2
1 Hz	$\mathrm{f}_{\mathrm{CLK}} / 184320$	$\mathrm{f}_{\mathrm{CLL}} / 30720$	1
0.5 Hz	$\mathrm{f}_{\mathrm{CLK}} / 368640$	$\mathrm{f}_{\mathrm{CLK}} / 61440$	0.5

Universal LCD driver for low multiplex rates

$7 \quad{ }^{2} \mathbf{2}$ C-BUS DESCRIPTION

The $\mathrm{I}^{2} \mathrm{C}$-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

7.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

7.2 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START condition (S).
A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P).

7.3 System configuration

A device generating a message is a 'transmitter', a device receiving a message is a 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

7.4 Acknowledge

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is not limited. Each byte is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

Fig. 11 Bit transfer.

Universal LCD driver for low multiplex

 rates

Fig. 12 Definition of START and STOP conditions.

Fig. 13 System configuration.

Universal LCD driver for low multiplex

7.5 PCF8566 $\mathrm{I}^{2} \mathrm{C}$-bus controller

The PCF8566 acts as an $I^{2} \mathrm{C}$-bus slave receiver. It does not initiate $\mathrm{I}^{2} \mathrm{C}$-bus transfers or transmit data to an $\mathrm{I}^{2} \mathrm{C}$-bus master receiver. The only data output from the PCF8566 are the acknowledge signals of the selected devices. Device selection depends on the $\mathrm{I}^{2} \mathrm{C}$-bus slave address, on the transferred command data and on the hardware subaddress.

In single device applications, the hardware subaddress inputs A0, A1 and A2 are normally left open-circuit or tied to V_{SS} which defines the hardware subaddress 0 .
In multiple device applications A0, A1 and A2 are left open-circuit or tied to $V_{S S}$ or $V_{D D}$ according to a binary coding scheme such that no two devices with a common $1^{2} \mathrm{C}$-bus slave address have the same hardware subaddress.

In the power-saving mode it is possible that the PCF8566 is not able to keep up with the highest transmission rates when large amounts of display data are transmitted. If this situation occurs, the PCF8566 forces the SCL line LOW until its internal operations are completed. This is known as the 'clock synchronization feature' of the $\mathrm{I}^{2} \mathrm{C}$-bus and serves to slow down fast transmitters. Data loss does not occur.

7.6 Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

$7.7 \quad 1^{2} \mathrm{C}$-bus protocol

Two ${ }^{2} \mathrm{C}$-bus slave addresses (0111110 and 0111111) are reserved for PCF8566. The least-significant bit of the slave address that a PCF8566 will respond to is defined by the level tied at its input SAO (pin 10). Therefore, two types of PCF8566 can be distinguished on the same $I^{2} \mathrm{C}$-bus which allows:

1. Up to 16 PCF8566s on the same $\mathrm{I}^{2} \mathrm{C}$-bus for very large LCD applications
2. The use of two types of LCD multiplex on the same $\mathrm{I}^{2} \mathrm{C}$-bus.

The $\mathrm{I}^{2} \mathrm{C}$-bus protocol is shown in Fig.15. The sequence is initiated with a START condition (S) from the ${ }^{2} \mathrm{C}$-bus master which is followed by one of the two PCF8566 slave addresses available. All PCF8566s with the corresponding SAO level acknowledge in parallel the slave address but all PCF8566s with the alternative SAO level ignore the whole $\mathrm{I}^{2} \mathrm{C}$-bus transfer. After acknowledgement, one or more command bytes (m) follow which define the status of the addressed PCF8566s. The last command byte is tagged with a cleared most-significant bit, the continuation bit C . The command bytes are also acknowledged by all addressed PCF8566s on the bus.

After the last command byte, a series of display data bytes (n) may follow. These display data bytes are stored in the display RAM at the address specified by the data pointer and the subaddress counter. Both data pointer and subaddress counter are automatically updated and the data are directed to the intended PCF8566 device. The acknowledgement after each byte is made only by the (A0, A1, A2) addressed PCF8566. After the last display byte, the $\mathrm{I}^{2} \mathrm{C}$-bus master issues a STOP condition (P).

7.8 Command decoder

The command decoder identifies command bytes that arrive on the $\mathrm{I}^{2} \mathrm{C}$-bus. All available commands carry a continuation bit C in their most-significant bit position (see Fig.16). When this bit is set, it indicates that the next byte of the transfer to arrive will also represent a command.
If the bit is reset, it indicates the last command byte of the transfer. Further bytes will be regarded as display data.

The five commands available to the PCF8566 are defined in Table 5.

Universal LCD driver for low multiplex rates

Fig. $151^{12} \mathrm{C}$-bus protocol.

Fig. 16 General format of command byte.

Universal LCD driver for low multiplex

 ratesTable 5 Definition of PCF8566 commands

COMMAND/OPCODE										OPTIONS
Mode set										
C	1	0	LP	E	B	M1	M0	see Table 6	defines LCD drive mode	

C	1	1	0	0	A2	A1	AO	see Table 11	three bits of immediate data, bits AO to A2, are transferred to the subaddress counter to define one of eight hardware subaddresses

Bank select

C	1	1	1	1	0	1	O	see Table 12	defines input bank selection (storage of arriving display data)

Table 6 LCD drive mode

LCD DRIVE MODE	BIT M1	BIT M0
Static (1 BP)	0	1
$1: 2 \mathrm{MUX}(2 \mathrm{BP})$	1	0
$1: 3 \mathrm{MUX}(3 \mathrm{BP})$	1	1
$1: 4 \mathrm{MUX}(4 \mathrm{BP})$	0	0

Universal LCD driver for low multiplex

rates

Table 7 LCD bias configuration

LCD BIAS	BIT B
$1 / 3$ bias	0
$1 / 2$ bias	1

Table 8 Display status

DISPLAY STATUS	BIT E
Disabled (blank)	0
Enabled	1

Table 9 Power dissipation mode

MODE	BIT LP
Normal mode	0
Power-saving mode	1

Table 10 Load data pointer

BITS	P4	P3	P2	P1	P0
5-bit binary value of 0 to 23					

Table 11 Device select

BITS	A0	A1	A2
3-bit binary value of 0 to 7			

Table 12 Input bank selection

STATIC	1:2 MUX	BIT 1
RAM bit 0	RAM bits 0,1	0
RAM bit 2	RAM bits 2,3	1

Table 13 Output bank selection

STATIC	$\mathbf{1}: \mathbf{2}$ MUX	BIT 0
RAM bit 0	RAM bits 0,1	0
RAM bit 2	RAM bits 2,3	1

Table 14 Blinking frequency

BLINK FREQUENCY	BIT BF1	BIT BF0
Off	0	0
2 Hz	0	1
1 Hz	1	0
0.5 Hz	1	1

Table 15 Blink mode selection

BLINK MODE	BIT A
Normal blinking	0
Alternation blinking	1

7.9 Display controller

The display controller executes the commands identified by the command decoder. It contains the status registers of the PCF8566 and coordinates their effects.
The controller is also responsible for loading display data into the display RAM as required by the filling order.

7.10 Cascaded operation

In large display configurations, up to 16 PCF8566s can be distinguished on the same $\mathrm{I}^{2} \mathrm{C}$-bus by using the 3 -bit hardware subaddress (A0, A1 and A2) and the programmable $I^{2} \mathrm{C}$-bus slave address (SA0). It is also possible to cascade up to 16 PCF8566s. When cascaded, several PCF8566s are synchronized so that they can share the backplane signals from one of the devices in the cascade. Such an arrangement is cost-effective in large LCD applications since the outputs of only one device need to be through-plated to the backplane electrodes of the display. The other PCF8566s of the cascade contribute additional segment outputs but their backplane outputs are left open-circuit (Fig.17).
The $\overline{\text { SYNC }}$ line is provided to maintain the correct synchronization between all cascaded PCF8566s. This synchronization is guaranteed after the power-on reset. The only time that $\overline{\text { SYNC }}$ is likely to be needed is if synchronization is accidentally lost (e.g. by noise in adverse electrical environments; or by the definition of a multiplex mode when PCF8566s with differing SAO levels are cascaded). $\overline{\text { SYNC }}$ is organized as an input/output pin; the output section being realized as an open-drain driver with an internal pull-up resistor. A PCF8566 asserts the SYNC line at the onset of its last active backplane signal and monitors the $\overline{S Y N C}$ line at all other times.
Should synchronization in the cascade be lost, it will be restored by the first PCF8566 to assert SYNC. The timing relationships between the backplane waveforms and the $\overline{\text { SYNC signal for the various drive modes of the PCF8576 }}$ are shown in Fig.18. The waveforms are identical with the parent device PCF8576. Cascade ability between PCF8566s and PCF8576s is possible, giving cost effective LCD applications.

Fig. 17 Cascaded PCF8566 configuration.
\qquad

Fig. 18 Synchronization of the cascade for the various PCF8566 drive modes.

For single plane wiring of PCF8566s, see Chapter "Application information".

Universal LCD driver for low multiplex rates

8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$V_{\text {DD }}$	supply voltage	-0.5	+7	V
$\mathrm{V}_{\text {LCD }}$	LCD supply voltage	$\mathrm{V}_{\mathrm{DD}}-7$	$V_{\text {DD }}$	V
V_{1}	input voltage (SCL, SDA, A0 to A2, OSC, CLK, $\overline{\text { SYNC and SA0) }}$	$V_{S S}-0.5$	$V_{D D}+0.5$	V
V_{0}	output voltage (S0 to S23 and BP0 to BP3)	$\mathrm{V}_{\mathrm{LCD}}-0.5$	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
1	DC input current	-	± 20	mA
IO	DC output current	-	± 25	mA
$\mathrm{I}_{\mathrm{DD}}, \mathrm{I}_{S S}, \mathrm{I}_{\text {LCD }}$	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {LCD }}$ current	-	± 50	mA
$\mathrm{P}_{\text {tot }}$	power dissipation per package	-	400	mW
Po	power dissipation per output	-	100	mW
$\mathrm{T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

9 HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is advised to take handling precautions appropriate to handling MOS devices (see "Handling MOS devices").

Universal LCD driver for low multiplex

10 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-2.5$ to $\mathrm{V}_{\mathrm{DD}}-6 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V_{DD}	operating supply voltage		2.5	-	6	V
$\mathrm{V}_{\text {LCD }}$	LCD supply voltage		$\mathrm{V}_{\mathrm{DD}}-6$	-	$\mathrm{V}_{\mathrm{DD}}-2.5$	V
1 ld	operating supply current (normal mode)	$\mathrm{f}_{\text {cLK }}=200 \mathrm{kHz}$; note 1	-	30	90	$\mu \mathrm{A}$
ILP	power saving mode supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V} ; \\ & \mathrm{f}_{\mathrm{CLK}}=35 \mathrm{kHz} ; \mathrm{AO}, \\ & \mathrm{~A} 1 \text { and } \mathrm{A} 2 \text { tied to } \mathrm{V}_{\mathrm{SS}} ; \\ & \text { note 1 } \end{aligned}$	-	15	40	$\mu \mathrm{A}$

Logic

V_{IL}	LOW level input voltage		$\mathrm{V}_{\text {SS }}$	-	$0.3 V_{D D}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{\text {DD }}$	V
$\mathrm{V}_{\text {OL }}$	LOW level output voltage	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$	-	-	0.05	V
V_{OH}	HIGH level output voltage	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.05$	-	-	V
IoL1	LOW level output current (CLK and SYNC)	$\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1	-	-	mA
IOH	HIGH level output current (CLK)	$\mathrm{V}_{\mathrm{OH}}=4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	-	-1	mA
IOL2	LOW level output current (SDA and SCL)	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3	-	-	mA
I_{LI}	leakage current (SA0, CLK, OSC, A0, A1, A2, SCL and SDA)	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$ or V_{DD}	-	-	± 1	$\mu \mathrm{A}$
I_{pd}	pull-down current (A0, A1, A2 and OSC)	$\mathrm{V}_{1}=1 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	15	50	150	$\mu \mathrm{A}$
$\mathrm{R}_{\text {puSYNC }}$	pull-up resistor ($\overline{\text { SYNC }}$)		15	25	60	k Ω
$\mathrm{V}_{\text {ref }}$	power-on reset level	note 2	-	1.3	2	V
$\mathrm{t}_{\text {sw }}$	tolerable spike width on bus		-	-	100	ns
C_{i}	input capacitance	note 3	-	-	7	pF

LCD outputs

V_{BP}	DC voltage component (BPO to BP3)	$\mathrm{C}_{\mathrm{BP}}=35 \mathrm{nF}$	-	± 20	-	mV
V_{S}	DC voltage component (S0 to S23)	$\mathrm{C}_{\mathrm{S}}=5 \mathrm{nF}$	-	± 20	-	mV
Z_{BP}	output impedance (BP0 to BP3)	$\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V} ;$ note 4	-	1	5	$\mathrm{k} \Omega$
Z_{S}	output impedance (S0 to S23)	$\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V} ;$ note 4	-	3	7	$\mathrm{k} \Omega$

Notes

1. Outputs open; inputs at $\mathrm{V}_{S S}$ or V_{DD}; external clock with 50% duty factor; $\mathrm{I}^{2} \mathrm{C}$-bus inactive.
2. Resets all logic when $V_{D D}<V_{\text {ref }}$.
3. Periodically sampled, not 100% tested.
4. Outputs measured one at a time.

Universal LCD driver for low multiplex rates

11 AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-2.5$ to $\mathrm{V}_{\mathrm{DD}}-6 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified; note 1 .

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{f}_{\mathrm{CLK}}$	oscillator frequency (normal mode)	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$; note 2	125	200	315	kHz
$\mathrm{f}_{\text {CLKLP }}$	oscillator frequency (power saving mode)	$\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}$	21	31	48	kHz
tCLKH	CLK HIGH time		1	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {CLKL }}$	CLK LOW time		1	-	-	$\mu \mathrm{s}$
tPSYNC	$\overline{\text { SYNC propagation delay }}$		-	-	400	ns
$\mathrm{t}_{\text {SYNCL }}$	$\overline{\text { SYNC LOW time }}$		1	-	-	$\mu \mathrm{s}$
tPLCD	driver delays with test loads	$\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}$	-	-	30	$\mu \mathrm{s}$

$\mathrm{I}^{2} \mathrm{C}$-bus

$t_{\text {buF }}$	bus free time	4.7	-	-	us
$\mathrm{t}_{\mathrm{HD} ;}$ STA	START condition hold time	4	-	-	us
thow	SCL LOW time	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time	4	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STA	START condition set-up time (repeated start code only)	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; }}$ DAT	data hold time	0	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ DAT	data set-up time	250	-	-	ns
t_{r}	rise time	-	-	1	$\mu \mathrm{s}$
t_{f}	fall time	-	-	300	ns
$\mathrm{t}_{\text {SU; STO }}$	STOP condition set-up time	4.7	-	-	us

Notes

1. All timing values referred to $\mathrm{V}_{\mathbb{H}}$ and V_{IL} levels with an input voltage swing of V_{SS} to V_{DD}.
2. At $\mathrm{f}_{\mathrm{CLK}}<125 \mathrm{kHz}, \mathrm{I}^{2} \mathrm{C}$-bus maximum transmission speed is derated.

Fig. 19 Test loads.

Universal LCD driver for low multiplex rates

Fig. 20 Driver timing waveforms.

Fig. $21 \mathrm{I}^{2} \mathrm{C}$-bus timing waveforms.

a. Normal mode; $\mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V}$; external clock $=200 \mathrm{kHz}$.

b. Low power mode; $\mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V}$; external clock $=35 \mathrm{kHz}$.

Fig. 22 Typical supply current characteristics.

Fig. 23 Typical characteristics of LCD outputs.

12 APPLICATION INFORMATION

Universal LCD driver for low multiplex rates

13 CHIP DIMENSIONS AND BONDING PAD LOCATIONS

Fig. 25 Eonding pad locations.

Universal LCD driver for low multiplex rates

Table 16 Bonding pad locations (dimensions in mm)
All x/y coordinates are referenced to centre of chip, (see Fig.25).

PAD NUMBER	SYMBOL	\mathbf{x}	y	PIN
1	SDA	200	-1235	1
2	SCL	400	-1235	2
3	SYNC	605	-1235	3
4	CLK	856	-1235	4
5	V_{DD}	1062	-1235	5
6	OSC	1080	-1025	6
7	A0	1080	-825	7
8	A1	1080	-625	8
9	A2	1080	-425	9
10	SAO	1080	-225	10
11	$\mathrm{V}_{\text {SS }}$	1080	-25	11
12	$\mathrm{V}_{\mathrm{LCD}}$	1080	347	12
13	BP0	1080	547	13
14	BP2	1080	747	14
15	BP1	1080	947	15
16	BP3	1074	1235	16
17	S0	674	1235	17
18	S1	674	1235	18
19	S2	474	1235	19
20	S3	274	1235	20
21	S4	-274	1235	21
22	S5	-474	1235	22
23	S6	-674	1235	23
24	S7	-874	1235	24
25	S8	-1074	1235	25
26	S9	-1080	765	26
27	S10	-1080	565	27
28	S11	-1080	365	28
29	S12	-1080	165	29
30	S13	-1080	-35	30
31	S14	-1080	-235	31
32	S15	-1080	-435	32
33	S16	-1080	-635	33
34	S17	-1080	-835	34
35	S18	-1080	-1035	35
36	S19	-1056	-1235	36
37	S20	-830	-1235	37
38	S21	-630	-1235	38
39	S22	-430	-1235	39
40	S23	-230	-1235	40

256×8-bit static low-voltage RAM with

$\mathrm{I}^{2} \mathrm{C}$-bus interface

CONTENTS

1	FEATURES
2	APPLICATIONS
3	GENERAL DESCRIPTION
4	QUICK REFERENCE DATA
5	ORDERING INFORMATION
6	BLOCK DIAGRAM
7	PINNING
8	CHARACTERISTICS OF THE IC-BUS
8.1	Bit transfer
8.2	Start and stop conditions
8.3	System configuration
8.4	Acknowledge
8.5	RC-bus protocol
9	LIMITING VALUES
10	HANDLING
11	DC CHARACTERISTICS
12	AC CHARACTERISTICS
13	APPLICATION INFORMATION
13.1	Application example
13.2	Slave address
13.3	Power-saving mode
14	PACKAGE OUTLINES
15	SOLDERING
15.1	Introduction
15.2	DIP
15.2 .1	Soldering by dipping or by wave
15.2 .2	Repairing soldered joints
15.3	SO
15.3 .1	Reflow soldering
15.3 .2	Wave soldering
15.3 .3	Repairing soldered joints
16	DEFINITIONS
17	LIFE SUPPORT APPLICATIONS
18	PURCHASE OF PHILIPS ${ }^{2}$ C COMPONENTS

256×8-bit static low-voltage RAM with ${ }^{2}$ ²-bus interface

1 FEATURES

- Operating supply voltage 2.5 to 6.0 V
- Low data retention voltage; minimum 1.0 V
- Low standby current; maximum $15 \mu \mathrm{~A}$
- Power-saving mode; typical 50 nA
- Serial input/output bus ($I^{2} \mathrm{C}$-bus)
- Address by 3 hardware address pins
- Automatic word address incrementing
- Available in DIP8 and SO8 packages.

2 APPLICATIONS

- Telephony:
- RAM expansion for stored numbers in repertory dialling (e.g. PCD33xxA applications)
- General purpose RAM for applications requiring extremely low current and low-voltage RAM retention, such as battery or capacitor-backed.
- Radio, television and video cassette recorder:
- channel presets
- General purpose:
- RAM expansion for the microcontroller families PCD33xxA, PCF84CxxxA, P80CLxxx and most other microcontrollers.

3 GENERAL DESCRIPTION

The PCF8570C is a low power static CMOS RAM, organized as 256 words by 8 -bits.
Addresses and data are transferred serially via a two-line bidirectional bus ($I^{2} \mathrm{C}$-bus). The built-in word address register is incremented automatically after each written or read data byte. Three address pins, A0, A1 and A2 are used to define the hardware address, allowing the use of up to 8 devices connected to the bus without additional hardware.

4 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$V_{D D}$	supply voltage		2.5	6.0	
$I_{D D}$	supply current (standby)	$\mathrm{f}_{\mathrm{SCL}}=0 \mathrm{~Hz}$	-	15	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{DDR}}$	supply current (power-saving mode)	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	-	400	nA
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$

5 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8570CP	DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT97-1
PCF8570CT	SO8	plastic small outline package; 8 leads; body width 7.5 mm	SOT176-1

256×8-bit static low-voltage RAM with

 ${ }^{2}{ }^{2} \mathrm{C}$-bus interface
6 BLOCK DIAGRAM

Fig. 1 Block diagram.

7 PINNING

SYMBOL	PIN	DESCRIPTION
A0	1	hardware address input 0
A1	2	hardware address input 1
A2	3	hardware address input 2
$V_{\text {SS }}$	4	negative supply
SDA	5	serial data input/output
SCL	6	serial clock input
TEST	7	Input for power-saving mode (see section "Power-saving mode"). Also used as a test output during manufacture. TEST should be tied to $V_{S S}$ during normal operation.
$V_{\text {DD }}$	8	positive supply

Fig. 2 Pin configuration.

256×8-bit static low-voltage RAM with

${ }^{12} \mathrm{C}$-bus interface

8 CHARACTERISTICS OF THE ${ }^{2} \mathrm{C}$-BUS

The $\mathrm{I}^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

8.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

Fig. 3 Bit transfer.

8.2 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

8.3 System configuration

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

Fig. 5 System configuration.

8.4 Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges must pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 6 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

256×8-bit static low-voltage RAM with ${ }^{12} \mathrm{C}$-bus interface

8.5 $\quad I^{2} \mathrm{C}$-bus protocol

Before any data is transmitted on the $\mathrm{I}^{2} \mathrm{C}$-bus, the device which should respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure. The $\mathrm{I}^{2} \mathrm{C}$-bus configuration for the different PCF8570CC WRITE and READ cycles is shown in Figs 7, 8 and 9.

Fig. 7 Master transmits to slave receiver (WRITE) mode.

Fig. 8 Master reads after setting word address (WRITE word address; READ data).

Fig. 9 Master reads slave immediately after first byte (READ mode).

9 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage (pin 8)	-0.8	+8.0	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage (any input)	-0.8	$\mathrm{~V}_{\mathrm{DD}}+0.8$	V
I_{l}	DC input current	-	± 10	mA
I_{O}	DC output current	-	± 10	mA
I_{DD}	positive supply current	-	± 50	mA
$\mathrm{I}_{\text {SS }}$	negative supply current	-	± 50	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation per package	-	300	mW
P_{O}	power dissipation per output	-	50	mW
$\mathrm{~T}_{\text {amb }}$	operating ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

10 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under "Handling MOS Devices".

256×8-bit static low-voltage RAM with

 ${ }^{2}{ }^{2} \mathrm{C}$-bus interface
11 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{DD}	supply voltage		2.5	-	6.0	V
I_{DD}	supply current standby mode operating mode	$\begin{aligned} & V_{1}=V_{D D} \text { or } V_{S S} ; \\ & f_{S C L}=0 \mathrm{~Hz} ; \\ & T_{\text {amb }}=-25 \text { to }+70^{\circ} \mathrm{C} \\ & V_{1}=V_{D D} \text { or } V_{S S} ; \\ & f_{S C L}=100 \mathrm{~Hz} \end{aligned}$			5 200	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	Power-on reset voltage	note 1	1.5	1.9	2.3	V
Inputs, input/output SDA						
V IL	LOW level input voltage	note 2	-0.8	-	$0.3 V_{\text {DD }}$	V
V_{IH}	HIGH level input voltage	note 2	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}+0.8$	V
l_{OL}	LOW level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3	-	-	mA
ILI	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	-1	-	+1	$\mu \mathrm{A}$
Inputs A0, A1, A2 and TEST						
I_{LI}	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	-250	-	+250	nA
Inputs SCL and SDA						
C_{i}	input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	-	-	7	pF
Low V_{DD} data retention						
$\mathrm{V}_{\text {DDR }}$	supply voltage for data retention		1	-	6	V
IDDR	supply current	$\mathrm{V}_{\text {DDR }}=1 \mathrm{~V}$	-	-	5	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{DDR}}=1 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{amb}}=-25 \text { to }+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	-	-	2	$\mu \mathrm{A}$
Power-saving mode (see Figs 13 and 14)						
$\mathrm{I}_{\text {DDR }}$	supply current	TEST $=\mathrm{V}_{\mathrm{DD}} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	-	50	400	nA
$\mathrm{t}_{\mathrm{HD2}}$	recovery time		-	50	-	$\mu \mathrm{s}$

Notes

1. The Power-on reset circuit resets the $I^{2} \mathrm{C}$-bus logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{P O R}$. The status of the device after a Power-on reset condition can be tested by sending the slave address and testing the acknowledge bit.
2. If the input voltages are a diode voltage above or below the supply voltage $\mathrm{V}_{D D}$ or $\mathrm{V}_{S S}$ an input current will flow; this current must not exceed $\pm 0.5 \mathrm{~mA}$.

256×8-bit static low-voltage RAM with ${ }^{2}{ }^{2} \mathrm{C}$-bus interface

12 AC CHARACTERISTICS

All timing values are valid within the operating supply voltage and ambient temperature range and reference to V_{IL} and
V_{IH} with an input voltage swing of V_{SS} to V_{DD}.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$I^{2} \mathrm{C}$-bus timing (see Fig. 10; note 1)					
$\mathrm{f}_{\mathrm{SCL}}$	SCL clock frequency	-	-	100	kHz
t_{SP}	tolerable spike width on bus	-	-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time	4.7	-	-	$\mu \mathrm{s}$
tsu;STA	START condition set-up time	4.7	-	-	$\mu \mathrm{s}$
thd;STA	START condition hold time	4.0	-	-	$\mu \mathrm{s}$
tLow	SCL LOW time	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time	4.0	-	-	$\mu \mathrm{s}$
tr_{r}	SCL and SDA rise time	-	-	1.0	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time	-	-	0.3	$\mu \mathrm{s}$
t Su; ${ }^{\text {dat }}$	data set-up time	250	-	-	ns
$\mathrm{t}_{\text {HD; }}$ DAT	data hold time	0	-	-	ns
t ${ }_{\text {VD; }}$ DAT	SCL LOW-to-data out valid	-	-	3.4	$\mu \mathrm{s}$
tsu;STO	STOP condition set-up time	4.0	-	-	$\mu \mathrm{s}$

Note

1. A detailed description of the $I^{2} \mathrm{C}$-bus specification, with applications, is given in brochure "The $I^{2} C$-bus and how to use it". This brochure may be ordered using the code 939839340011.

256×8-bit static low-voltage RAM with ${ }^{2}{ }^{2} \mathrm{C}$-bus interface

13 APPLICATION INFORMATION

13.1 Application example

It is recommended that a $4.7 \mu \mathrm{~F} / 10 \mathrm{~V}$ solid aluminium capacitor (SAL) be connected between V_{DD} and V_{SS}.

Fig. 11 Application diagram.

256×8-bit static low-voltage RAM with

${ }^{2}{ }^{2} \mathrm{C}$-bus interface

13.2 Slave address

The PCF8570C has a fixed combination 1010 as group 1, while group 2 is fully programmable (see Fig.12).

Fig. 12 Slave address.

13.3 Power-saving mode

With the condition TEST $=\mathrm{V}_{D D}$ or $\mathrm{V}_{\text {DDR }}$ the PCF8570C goes into the power-saving mode and $\mathrm{I}^{2} \mathrm{C}$-bus logic is reset.

(1) Power-saving mode without 5 V supply voltage.
(2) Power-saving mode with 5 V supply voltage.
(3) $t_{s u}$ and $t_{H D 1} \geq 4 \mu \mathrm{~s}$ and $t_{H D 2} \geq 50 \mu \mathrm{~s}$.

Fig. 13 Timing for power-saving mode.

256×8-bit static low-voltage RAM with ${ }^{2}{ }^{2} \mathrm{C}$-bus interface

It is recommended that a $4.7 \mu \mathrm{~F} / 10 \mathrm{~V}$ solid aluminium capacitor (SAL) be connected between V_{DD} and V_{SS}.
(1) In the operating mode TEST $=0 \mathrm{~V}$; in the power-saving mode $\mathrm{TEST}=\mathrm{V}_{\text {DDR }}$.

Fig. 14 Application example for power-saving mode.
CONTENTS
FEATURES
2 GENERAL DESCRIPTION
3 QUICK REFERENCE DATA
4 ORDERING INFORMATION
5 BLOCK DIAGRAM
6 PINNING
7 FUNCTIONAL DESCRIPTION
$7.1 \quad$ Oscillator
$7.2 \quad$ Prescaler and time counter
7.3 Alarm register
7.4 Comparator
7.5 Power on/power fail detection
7.6 Interface level shifters
8 CHARACTERISTICS OF THE I²C-BUS
8.1 Bit transfer
8.2 Start and stop conditions
8.3 System configuration
8.4 Acknowledge
$9 \quad \mathrm{I}^{2} \mathrm{C}$-BUS PROTOCOL
9.1 Addressing
9.2 Clock/calendar READ/WRITE cycles
10 LIMITING VALUES
11 HANDLING
12 DC CHARACTERISTICS
13 AC CHARACTERISTICS
14 APPLICATION INFORMATION
15 PACKAGE OUTLINES
16 SOLDERING
16.1 Introduction
16.2 DIP
16.2.1 Soldering by dipping or by wave
16.2.2 Repairing soldered joints
16.3 SO
16.3.1 Reflow soldering
16.3.2 Wave soldering
16.3.3 Repairing soldered joints
17 DEFINITIONS
18 LIFE SUPPORT APPLICATIONS
19
PURCHASE OF PHILIPS ${ }^{2}$ ² COMPONENTS

Clock/calendar with Power Fail Detector

1 FEATURES

- Serial input/output $\mathrm{I}^{2} \mathrm{C}$-bus interface for minutes, hours, days and months
- Additional pulse outputs for seconds and minutes
- Alarm register for presetting a time for alarm or remote switching functions
- On-chip power fail detector
- Separate ground pin for the clock allows easy implementation of battery back-up during supply interruption
- Crystal oscillator control (32.768 kHz)
- Low power consumption.

2 GENERAL DESCRIPTION

The PCF8573 is a low threshold, CMOS circuit that functions as a real time clock/calendar. Addresses and data are transferred serially via the two-line bidirectional $\mathrm{I}^{2} \mathrm{C}$-bus.

The IC incorporates an addressable time counter and an addressable alarm register for minutes, hours, days and months. Three special control/status flags, COMP, POWF and NODA, are also available. Back-up for the clock during supply interruptions is provided by a 1.2 V nickel cadmium battery. The time base is generated from a 32.768 kHz crystal-controlled oscillator.

3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$	supply voltage, clock (pin 16 to pin 15)	1.1	-	6.0	V
$\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}$	supply voltage, ${ }^{2} \mathrm{C}-$ bus (pin 16 to pin 8)	2.5	-	6.0	V
$\mathrm{f}_{\mathrm{osc}}$	crystal oscillator frequency	-	32.768	-	kHz

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8573P	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-1
PCF8573T	SO16	plastic small outline package; 16 leads; body width 7.5 mm	SOT162-1

5 BLOCK DIAGRAM

Fig. 1 Block diagram.

6 PINNING

SYMBOL	PIN	DESCRIPTION
A0	1	address input
A1	2	address input
COMP	3	comparator output
SDA	4	serial data line; $\mathrm{I}^{2} \mathrm{C}$-bus
SCL	5	serial clock line; ${ }^{2} \mathrm{C}$-bus
EXTPF	6	enable power fail flag input
PFIN	7	power fail flag input
$\mathrm{V}_{\text {SS2 }}$	8	negative supply 2 ($1^{2} \mathrm{C}$ interface)
MIN	9	one pulse per minute output
SEC	10	one pulse per second output
FSET	11	oscillator tuning output
TEST	12	test input; connect to $\mathrm{V}_{\mathrm{SS} 2}$ if not in use
OSCl	13	oscillator input
OSCO	14	oscillator input/output
$\mathrm{V}_{\text {SS } 1}$	15	negative supply 1 (clock)
V_{DD}	16	common positive supply

Fig. 2 Pinning diagram.

7 FUNCTIONAL DESCRIPTION

7.1 Oscillator

The PCF8573 has an integrated crystal-controlled oscillator which provides the timebase for the prescaler. The frequency is determined by a single 32.76 kHz crystal connected between OSCl and OSCO. A trimmer is connected between OSCl and V_{DD}.

7.2 Prescaler and time counter

The prescaler provides a 128 Hz signal at the FSET output for fine adjustment of the crystal oscillator without loading it. The prescaler also generates a pulse once a second to advance the seconds counter. The carry of the prescaler and the seconds counter are available at the outputs SEC, MIN respectively, and are also readable via the $\mathrm{I}^{2} \mathrm{C}$-bus. The mark-to-space ratio of both signals is $1: 1$. The time counter is advanced one count by the falling edge of output signal MIN. A transition from HIGH-to-LOW of output signal SEC triggers MIN to change state. The time counter counts minutes, hours, days and months, and provides a full calendar function which needs to be corrected only once every four years - to allow for leap-year. Cycle lengths are shown in Table 1.

7.3 Alarm register

The alarm register is a 24 -bit memory. It stores the time-point for the next setting of the status flag COMP. Details of writing and reading of the alarm register are included in the description of the characteristics of the $\mathrm{I}^{2} \mathrm{C}$-bus.

7.4 Comparator

The comparator compares the contents of the alarm register and the time counter, each with a length of 24 bits. When these contents are equal the flag COMP will be set 4 ms after the falling edge of MIN. This set condition occurs once at the beginning of each minute. This information is latched, but can be cleared by an instruction via the $\mathrm{I}^{2} \mathrm{C}$-bus. A clear instruction may be transmitted immediately after the flag is set and will be executed. Flag COMP information is also available at the output COMP. The comparison may be based upon hours and minutes only if the internal flag NODA (no date) is set. Flag NODA can be set and cleared by separate instructions via the $\mathrm{I}^{2} \mathrm{C}$-bus, but it is undefined until the first set or clear instruction has been received. Both COMP and NODA flags are readable via the $I^{2} \mathrm{C}$-bus.

Table 1 Cycle length of the time counter

UNIT	NUMBER OF BITS	COUNTING CYCLE	CARRY FOR FOLLOWING UNIT	CONTENT OF MONTH COUNTER
minutes	7	00 to 59	$59 \rightarrow 00$	
hours	6	00 to 23	$23 \rightarrow 00$	
days $^{(1)}$	6	01 to 28	$28 \rightarrow 01$	2 (note 1)
		01 to 30	or $29 \rightarrow 01$	2 (note 1)
		01 to 31	$30 \rightarrow 01$	$4,6,9,11$
		01 to 12	$31 \rightarrow 01$	$1,3,5,7,8,10,12$
months	5	$12 \rightarrow 01$		

Note

1. During February of a leap-year the 'Time Counter Days' may be set to 29 by directly writing into it using the 'execute address' function. Leap-years must be tracked by the system software.

Clock/calendar with Power Fail Detector

PCF8573

7.5 Power on/power fail detection

If the voltage $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$ falls below a certain value the operation of the clock becomes undefined. Thus a warning signal is required to indicate that faultless operation of the clock is not guaranteed. This information is latched in a flag called POWF (Power Fail) and remains latched after restoration of the correct supply voltage until a write procedure with EXECUTE ADDRESS has been received. The flag POWF can be set by an internally generated power fail level-discriminator signal for application with ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$) greater than $\mathrm{V}_{\mathrm{TH} 1}$, or by an externally generated power fail signal for application with $\left(V_{D D}-V_{S S 1}\right)$ less than $V_{T H 1}$. The external signal must be applied to the input PFIN. The input stage operates with signals of slow rise and fall times. Internally or externally controlled POWF can be selected by input EXTPF as shown in Table 2.

Table 2 Power fail selection

EXTPF $^{(1)}$	PFIN $^{(1)}$	FUNCTION
0	0	power fail is sensed internally
0	1	test mode
1	0	power fail is sensed externally
1	1	no power fail sensed

Note

1. $0=V_{\mathrm{SS} 1}(\mathrm{LOW}) ; 1=\mathrm{V}_{\mathrm{DD}}(\mathrm{HIGH})$.

The external power fail control operates by absence of the $V_{D D}-V_{S S 2}$ supply. Therefore the input levels applied to PFIN and EXTPF must be within the range of $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$. A LOW level at PFIN indicates a power fail. POWF is readable via the $\mathrm{I}^{2} \mathrm{C}$-bus. A power-on reset for the $\mathrm{I}^{2} \mathrm{C}$-bus control is generated on-chip when the supply voltage $V_{D D}-V_{S S 2}$ is less than $V_{T H 2}$.

7.6 Interface level shifters

The level shifters adjust the 5 V operating voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}$) of the microcontroller to the internal supply voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$) of the clock/calendar. The oscillator and counter are not influenced by the $V_{D D}-V_{S S 2}$ supply voltage. If the voltage $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}$ is absent $\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{SS} 2}\right)$ the output signal of the level shifter is HIGH because $V_{D D}$ is the common node of the $V_{D D}-V_{S S 2}$ and the $V_{D D}-V_{S S 1}$ supplies. Because the level shifters invert the input signals, the internal circuit behaves as if a LOW signal is present on the inputs. FSET, SEC, MIN and COMP are CMOS push-pull output stages. The driving capability of these outputs is lost when the supply voltage
$V_{D D}-V_{S S 2}=0$.

Clock/calendar with Power Fail Detector

8 CHARACTERISTICS OF THE I²C-BUS

The $\mathrm{I}^{2} \mathrm{C}$-bus is for 2-way, 2 -line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

8.1 Bit transfer (see Fig.3)

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

Fig. 3 Bit transfer.

8.2 Start and stop conditions (see Fig.4)

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 4 Definition of start and stop conditions.

8.3 System configuration (see Fig.5)

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

Fig. 5 System configuration.

8.4 Acknowledge (see Fig.6)

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges must pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition, see Figs. 9 and 10.

Fig. 6 Acknowledgment on the $\mathrm{I}^{2} \mathrm{C}$-bus.

Clock/calendar with Power Fail Detector

$9 \quad I^{2} \mathrm{C}$-BUS PROTOCOL

9.1 Addressing

Before any data is transmitted on the $1^{2} \mathrm{C}$-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure.

The clock/calendar acts as a slave receiver or slave transmitter. Therefore the clock signal SCL is only an input signal, but the data signal SDA is a bidirectional line.

The clock/calendar slave address is shown in Fig.7. Bits A0 and A1 correspond to the two hardware address pins A0 and A1. Connecting these to V_{DD} or V_{SS} allows the device to have 1 of 4 different addresses.

Fig. 7 Slave address.

9.2 Clock/calendar READ/WRITE cycles

The $\mathrm{I}^{2} \mathrm{C}$-bus configuration for different clock/calendar READ and WRITE cycles is shown in Figs 8, 9 and 10.
The write cycle is used to set the time counter, the alarm register and the flags. The transmission of the clock/calendar address is followed by the MODE-POINTER-word which contains a CONTROL-nibble (Table 3) and an ADDRESS-nibble (Table 4). The ADDRESS-nibble is valid only if the preceding CONTROL-nibble is set to EXECUTE ADDRESS. The third transmitted word contains the data to be written into the time counter or alarm register.

Fig. 8 Master transmitter transmits to clock/calendar slave receiver.

Clock/calendar with Power Fail Detector

(1) The master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave.

Fig. 9 Master transmitter reads clock/calendar after setting mode pointer.

(1) The master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave.

Fig. 10 Master reads clock/calendar immediately after first byte.

Clock/calendar with Power Fail Detector

PCF8573

Table 3 MODE-POINTER-word, CONTROL-nibble (bits 8, 7, 6 and 5)

BIT 8	$\mathbf{C 2}$	$\mathbf{C 1}$	$\mathbf{C 0}$	FUNCTION
0	0	0	0	execute address
0	0	0	1	read control/status flags
0	0	1	0	reset prescaler, including seconds counter; without carry for minute counter
0	0	1	1	time adjust, with carry for minute counter (note 1)
0	1	0	0	reset NODA flag
0	1	0	1	set NODA flag
0	1	1	0	reset COMP flag

Note

1. If the seconds counter is below 30 there is no carry. This causes a time adjustment of max. -30 s . From the count 30 there is a carry which adjusts the time by max. +30 s .

Table 4 MODE-POINTER-word, ADDRESS-nibble (bits 4, 3, 2 and 1)

BIT 4	B2	B1	B0		ADDRESSED TO:
0	0	0	0	time counter hours	
0	0	0	1	time counter minutes	
0	0	1	0	time counter days	
0	0	1	1	time counter months	
0	1	0	0	alarm register hours	
0	1	0	1	alarm register minutes	
0	1	1	0	alarm register days	
0	1	1	1	alarm register months	

At the end of each data word the address bits $\mathrm{B} 1, \mathrm{~B} 0$ will be incremented automatically provided the preceding CONTROL-nibble is set to EXECUTE ADDRESS. There is no carry to B2.

Table 5 shows the placement of the BCD upper and lower digits in the DATA byte for writing into the addressed part of the time counter and alarm register respectively.

Table 6 shows the acknowledgement response of the clock calendar as a slave receiver.
Table 5 Placement of BCD digits in the DATA byte; note 1

MSB	DATA						LSB	
UPPER DIGIT				LOWER DIGIT				
UD	UC	UB	UA	LD	LC	LB	LA	ADDRESSED TO:
X	X	D	D	D	D	D	D	hours
X	D	D	D	D	D	D	D	minutes
X	X	D	D	D	D	D	D	days
X	X	X	D	D	D	D	D	months

Note

1. ' X ' is the don't care bit; ' D ' is the data bit.

Clock/calendar with Power Fail Detector

Acknowledgement response of the PCF8573 as slave-receiver is shown in Table 6. Note that data is only associated with the 'execute address' function where $\mathrm{C} 0, \mathrm{C} 1, \mathrm{C} 2=0,0,0$.

Table 6 Slave receiver acknowledgement; note 1

MODE POINTER								ACKNOWLEDGE ON BYTE:		
BIT 8	C2	C1	C0	BIT 4	B2	B1	B0	ADDRESS	MODE POINTER	DATA
0	0	0	0	0	X	X	X	yes	yes	yes
0	0	0	0	1	x	X	X	yes	no	no
0	0	0	1	X	X	X	X	yes	yes	no
0	0	1	0	X	X	X	X	yes	yes	no
0	0	1	1	X	X	X	X	yes	yes	no
0	1	0	0	X	X	X	X	yes	yes	no
0	1	0	1	X	X	x	X	yes	yes	no
0	1	1	0	X	x	x	X	yes	yes	no
0	1	1	1	X	x	x	X	yes	no	no
1	X	X	X	X	X	X	X	yes	no	no

Note

1. ' X ' is 'don't care'.

To read the addressed part of the time counter and alarm register, plus information from specified control/status flags, the BCD digits in the DATA byte are organized as shown in Table 7.
The status of the CONTROL-nibble of the MODE-POINTER-WORD ($C 2, \mathrm{C} 1, \mathrm{C} 0$) remains unchanged until re-written.
Table 7 Organization of the BCD digits in the DATA byte; note 1

MS	DATA						LSB	
UPPER DIGIT				LOWER DIGIT				
UD	UC	UB	UA	LD	LC	LB	LA	ADDRESSED TO:
0	0	D	D	D	D	D	D	hours
0	D	D	D	D	D	D	D	minutes
0	0	D	D	D	D	D	D	days
0	0	0	D	D	D	D	D	months
0	0	0	m	s	NODA	COMP	POWF	control/status flags

Note

1. ' D ' is the data bit; ' m ' = minutes; ' s ' = seconds.

10 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$	supply voltage (pin 16 to pin 15)	-0.3	+8.0	V
$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}$	supply voltage (pin 16 to pin 8)	-0.3	+8.0	V
V_{1}	input voltage pins 4 and 5 (with input impedance of minimum 500Ω) pins 6, 7, 13 and 14 any other pin			
		$\mathrm{V}_{\text {SS2 }}-0.8$	$V_{D D}+0.8$	V
		$\mathrm{V}_{\mathrm{SS} 1}-0.6$	$\mathrm{V}_{\mathrm{DD}}+0.6$	V
		$\mathrm{V}_{\mathrm{SS} 2}-0.6$	$\mathrm{V}_{\mathrm{DD}}+0.6$	V
1	DC input current	-	10	mA
I_{0}	DC output current	-	10	mA
$P_{\text {tot }}$	total power dissipation per package	-	200	mW
P_{0}	power dissipation per output	-	100	mW
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature	-55	+125	${ }^{\circ} \mathrm{C}$

11 HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under "Handling MOS Devices".

Clock/calendar with Power Fail Detector

12 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS} 2}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified. Typical values at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNI T

Supply

$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}$	supply voltage (22C interface)		2.5	5.0	6.0	V
$\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$	supply voltage (clock)	$\mathrm{t}_{\mathrm{HD} ; \mathrm{DAT}} \geq 300 \mathrm{~ns}$	1.1	1.5	$\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}$	V
$\mathrm{I}_{\mathrm{SS} 1}$	supply current at $\mathrm{V}_{\mathrm{SS} 1}$ (pin 15)	see Fig.11 $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}=1.5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}=5 \mathrm{~V}$	-	-	-3	-10

Input SCL, input/output SDA

$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-	-	$0.3 \mathrm{~V}_{\text {DD }}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
ILI	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS2 }}$ or V_{DD}	-1	-	+1	$\mu \mathrm{A}$
C_{i}	input capacitance		-	-	7	pF
Inputs A0, A1, TEST						
V_{IL}	LOW level input voltage		-	-	$0.2 V_{\text {DD }}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
ILI	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{SS} 2}$ or V_{DD}	-250	-	+250	nA

Inputs EXTPF, PFIN

V_{IL}	LOW level input voltage		0	-	$0.2 \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}$	-	-	V
I_{LI}	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{SS} 1}$ to V_{DD}	-1.0	-	+1.0	$\mu \mathrm{~A}$
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS} 1}$ to $\mathrm{V}_{\mathrm{DD}} ;$ $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	-0.1	-	+0.1	$\mu \mathrm{~A}$

Output SDA (n channel open-drain)

V_{OL}	LOW level output voltage	output $\mathrm{ON} ; \mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA} ;$ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}=2.5$ to 6 V	-	-	0.4	V
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}=6 \mathrm{~V} ;$ $\mathrm{V}_{\mathrm{O}}=6 \mathrm{~V}$	-1.0	-	+1.0	$\mu \mathrm{~A}$

Output SEC, MIN, COMP, FSET (normal buffer outputs)

$\mathrm{V}_{\text {OL }}$	LOW level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}=2.5 \mathrm{~V} ; \\ & \mathrm{l}_{\mathrm{O}}=0.3 \mathrm{~mA} \\ & \hline \end{aligned}$	-	-	0.4	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}=4 \text { to } 6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA} \end{aligned}$	-	-	0.4	V
$\mathrm{V}_{\text {OH }}$	HIGH level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 2}=2.5 \mathrm{~V} ; \\ & \mathrm{l}_{\mathrm{O}}=-0.1 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS2}}=4 \text { to } 6 \mathrm{~V} ; \\ & \mathrm{l}_{\mathrm{O}}=-0.5 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V

Clock/calendar with Power Fail Detector

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNI T
Internal threshold voltages						
$V_{T H 1}$	Power failure detection		1	1.2	1.4	V
$\mathrm{~V}_{\mathrm{TH} 2}$	Power-on reset					

Fig. 11 Typical supply current ($\mathrm{ISS1}_{1}$) as a function of clock supply voltage $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}\right)$ at $\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$.

13 AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS2}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified. Typical values at $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT

Rise and fall times of input signals

t_{r}	rise time	input EXTPF	-	-	1	$\mu \mathrm{s}$
		input PFIN	-	-	∞	$\mu \mathrm{s}$
		all other inputs (levels between V_{IL} and V_{H})	-	-	1	$\mu \mathrm{s}$
t_{f}	fall time	input EXTPF	-	-	1	$\mu \mathrm{s}$
		input PFIN	-	-	∞	$\mu \mathrm{s}$
		all other inputs (levels between V_{IL} and V_{IH})	-	-	0.3	$\mu \mathrm{s}$

Oscillator

$C_{\text {osc }}$	integrated oscillator capacitance		-	40	-	pF
R_{f}	oscillator feedback resistance		-	3	-	$\mathrm{M} \Omega$
$\Delta \mathrm{f}_{\text {osc }}$	oscillator stability	$\Delta\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S 1}\right)=100 \mathrm{mV} ;$ $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} ;$ $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS} 1}\right)=1.55 \mathrm{~V}$	-	2×10^{-7}	-	

Quartz crystal parameters ($\mathrm{f}=\mathbf{3 2 . 7 6 8} \mathbf{~ k H z}$)

$\mathrm{R}_{\mathbf{S}}$	series resistance		-	-	40	$\mathrm{k} \Omega$
C_{L}	parallel load capacitance		-	10	-	pF
C_{T}	trimmer capacitance		5	-	25	pF

${ }^{12}$ C-bus timing (see Fig.12; notes 1 and 2)

$\mathrm{f}_{\mathrm{SCL}}$	SCL clock frequency		-	-	100	kHz
t_{SP}	tolerable spike width on bus		-	-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STA	START condition set-up time		4.7	-	-	$\mu \mathrm{S}$
$\mathrm{t}_{\text {HD } ; \text { STA }}$	START condition hold time		4.0	-	-	$\mu \mathrm{s}$
t Low	SCL LOW time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time		4.0	-	-	$\mu \mathrm{s}$
tr_{r}	SCL and SDA rise time		-	-	1.0	$\mu \mathrm{S}$
t_{f}	SCL and SDA fall time		-	-	0.3	$\mu \mathrm{s}$
tsu;DAT	data set-up time		250	-	-	ns
$\mathrm{t}_{\text {HD; }}$ DAT	data hold time		0	-	-	ns
$\mathrm{t}_{\text {VD; }}$ DAT	SCL LOW to data out valid		-	-	3.4	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STO	STOP condition set-up time		4.0	-	-	$\mu \mathrm{s}$

Notes

1. All timing values are valid within the operating supply voltage and ambient temperature range and reference to V_{IL} and $V_{I H}$ with an input voltage swing of $V_{S S}$ to $V_{D D}$.
2. A detailed description of the $\mathrm{I}^{2} \mathrm{C}$-bus specification, with applications, is given in brochure "The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it". This brochure may be ordered using the code 939839340011.

Clock/calendar with Power Fail Detector

PROTOCOL

	START CONDITION (S)	BIT 7 MSB (A7)	BIT 6 (A6)	

BIT 0	ACKNOWLEDGE	STOP	
LSB	(A)	CONDITION	
(R / \bar{W})		(P)	

SCL

Fig. $12 \mathrm{I}^{2} \mathrm{C}$-bus timing diagram; rise and fall times refer to V_{IL} and V_{IH}.

14 APPLICATION INFORMATION

Fig. 13 Application example of the PCF8573 clock/calendar with battery backup.

Fig. 14 Application example of the PCF8573 with common $\mathrm{V}_{\mathrm{SS} 1}$ and $\mathrm{V}_{\mathrm{SS} 2}$ supply.

CONTENTS

1 FEATURES

2 GENERAL DESCRIPTION
3 ORDERING INFORMATION
4 BLOCK DIAGRAM
5 PINNING
6 CHARACTERISTICS OF THE I²C-BUS
6.1 Bit transfer
6.2 Start and stop conditions
6.3 System configuration
6.4 Acknowledge

7 FUNCTIONAL DESCRIPTION
7.1 Addressing
7.2 Interrupt
7.3 Quasi-bidirectional I/Os

8 LIMITING VALUES
9 HANDLING
10 DC CHARACTERISTICS
$11 \quad \mathrm{I}^{2} \mathrm{C}$-BUS TIMING CHARACTERISTICS
12 PACKAGE OUTLINES
13 SOLDERING
13.1 Introduction
13.2 DIP
13.2.1 Soldering by dipping or by wave
13.2.2 Repairing soldered joints
13.3 SO and SSOP
13.3.1 Reflow soldering
13.3.2 Wave soldering
13.3.3 Repairing soldered joints

14 DEFINITIONS
15 LIFE SUPPORT APPLICATIONS
16 PURCHASE OF PHILIPS I²C COMPONENTS

1 FEATURES

- Operating supply voltage 2.5 to 6 V
- Low standby current consumption of $10 \mu \mathrm{~A}$ maximum
- $I^{2} C$ to parallel port expander
- Open-drain interrupt output
- 8-bit remote I/O port for the $\mathrm{I}^{2} \mathrm{C}$-bus
- Compatible with most microcontrollers
- Latched outputs with high current drive capability for directly driving LEDs
- Address by 3 hardware address pins for use of up to 8 devices (up to 16 with PCF8574A)
- DIP.16, or space-saving SO16 or SSOP20 packages.

2 GENERAL DESCRIPTION

The PCF8574 is a silicon CMOS circuit. It provides general purpose remote I/O expansion for most microcontroller families via the two-line bidirectional bus $\left(I^{2} \mathrm{C}\right)$.

The device consists of an 8-bit quasi-bidirectional port and an $\mathrm{I}^{2} \mathrm{C}$-bus interface. The PCF8574 has a low current consumption and includes latched outputs with high current drive capability for directly driving LEDs. It also possesses an interrupt line (INT) which can be connected to the interrupt logic of the microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the $\mathrm{I}^{2} \mathrm{C}$-bus. This means that the PCF8574 can remain a simple slave device.
The PCF8574 and PCF8574A versions differ only in their slave address as shown in Fig.9.

3 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8574P; PCF8574AP	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-1
PCF8574T; PCF8574AT	SO16	plastic small outline package; 16 leads; body width 7.5 mm	SOT162-1
PCF8574TS	SSOP20	plastic shrink small outline package; 20 leads; body width 4.4 mm	SOT266-1

Remote 8-bit I/O expander for $\mathrm{I}^{2} \mathrm{C}$-bus

4 BLOCK DIAGRAM

Fig. 1 Block diagram (SOT38-1 and SOT162-1).

Remote 8-bit I/O expander for $\mathrm{I}^{2} \mathrm{C}$-bus

5 PINNING

SYMBOL	PIN		DESCRIPTION
	DIP16; SO16	SSOP20	
AO	1	6	address input 0
A1	2	7	address input 1
A2	3	9	address input 2
P0	4	10	quasi-bidirectional I/O 0
P1	5	11	quasi-bidirectional I/O 1
P2	6	12	quasi-bidirectional I/O 2
P3	7	14	quasi-bidirectional I/O 3
$V_{\text {SS }}$	8	15	supply ground
P4	9	16	quasi-bidirectional I/O 4
P5	10	17	quasi-bidirectional I/O 5
P6	11	19	quasi-bidirectional I/O 6
P7	12	20	quasi-bidirectional I/O 7
$\overline{\text { INT }}$	13	1	interrupt output (active LOW)
SCL	14	2	serial clock line
SDA	15	4	serial data line
V $_{\text {DD }}$	16	5	supply voltage
n.c.	-	3	not connected
n.c.	-	8	not connected
n.c.	-	13	not connected
n.c.	-	18	not connected

Fig. 2 Pin configuration (DIP16; SO16).

Fig. 3 Pin configuration (SSOP20).

6 CHARACTERISTICS OF THE I²C-BUS

The $\mathrm{I}^{2} \mathrm{C}$-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

6.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals (see Fig.4).

6.2 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S).
A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P) (see Fig.5).

6.3 System configuration

A device generating a message is a 'transmitter', a device receiving is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves' (see Fig.6).

Fig. 4 Bit transfer.

Fig. 5 Definition of start and stop conditions.

Fig. 6 System configuration.

6.4 Acknowledge

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse.

A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave
transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set-up and hold times must be taken into account.

A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 7 Acknowledgment on the $\mathrm{I}^{2} \mathrm{C}$-bus.

7 FUNCTIONAL DESCRIPTION

Fig. 8 Simplified schematic diagram of each I/O.

7.1 Addressing

For addressing see Figs 9, 10 and 11.

a.

b.
(a) PCF8574.
(b) PCF8574A.

Fig. 9 PCF8574 and PCF8574A slave addresses.

Each of the PCF8574's eight I/Os can be independently used as an input or output. Input data is transferred from the port to the microcontroller by the READ mode (see Fig.11). Output data is transmitted to the port by the WRITE mode (see Fig.10).

Fig. 10 WRITE mode (output).

A LOW-to-HIGH transition of SDA, while SCL is HIGH is defined as the stop condition (P). Transfer of data can be stopped at any moment by a stop condition. When this occurs, data present at the last acknowledge phase is valid (output mode). Input data is lost.
Fig. 11 READ mode (input).

7.2 Interrupt (see Figs 12 and 13)

The PCF8574 provides an open drain output ($\overline{(\mathrm{NT}}$) which can be fed to a corresponding input of the microcontroller. This gives these chips a type of master function which can initiate an action elsewhere in the system.
An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time $t_{i v}$ the signal $\overline{\mathrm{INT}}$ is valid.

Resetting and reactivating the interrupt circuit is achieved when data on the port is changed to the original setting or data is read from or written to the port which has generated the interrupt.

Resetting occurs as follows:

- In the READ mode at the acknowledge bit after the rising edge of the SCL signal
- In the WRITE mode at the acknowledge bit after the HIGH-to-LOW transition of the SCL signal
- Interrupts which occur during the acknowledge clock pulse may be lost (or very short) due to the resetting of the interrupt during this pulse.

Each change of the I/Os after resetting will be detected and, after the next rising clock edge, will be transmitted as INT. Reading from or writing to another device does not affect the interrupt circuit.

7.3 Quasi-bidirectional I/Os (see Fig.14)

A quasi-bidirectional I/O can be used as an input or output without the use of a control signal for data direction.
At power-on the I/Os are HIGH. In this mode only a current source to V_{DD} is active. An additional strong pull-up to V_{DD} allows fast rising edges into heavily loaded outputs. These devices turn on when an output is written HIGH, and are switched off by the negative edge of SCL. The I/Os should be HIGH before being used as inputs.

Fig. 13 Interrupt generated by a change of input to I/O P5.

Fig. 14 Transient pull-up current $\mathrm{I}_{\mathrm{OHt}}$ while P3 changes from LOW-to-HIGH and back to LOW.

8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$V_{D D}$	supply voltage	-0.5	+7.0	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage	$\mathrm{V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC input current	-	± 20	mA
I_{O}	DC output current	-	± 25	mA
I_{DD}	supply current	-	± 100	mA
I_{SS}	supply current	-	± 100	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	400	mW
P_{O}	power dissipation per output	-	100	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$

9 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under "Handling MOS Devices".

10 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{DD}	supply voltage		2.5	-	6.0	V
I_{DD}	supply current	$\begin{aligned} & \text { operating mode; } \mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V} \text {; } \\ & \text { no load; } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \text {; } \\ & \mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz} \end{aligned}$	-	40	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {stb }}$	standby current	standby mode; $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$; no load; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	-	2.5	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	Power-on reset voltage	$\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$; no load; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}; note 1	-	1.3	2.4	V
Input SCL; input/output SDA						
V IL	LOW level input voltage		-0.5	-	$+0.3 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
l_{OL}	LOW level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3	-	-	mA
I_{L}	leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	-1	-	+1	$\mu \mathrm{A}$
C_{i}	input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	-	-	7	pF

Remote 8-bit I/O expander for $\mathrm{I}^{2} \mathrm{C}$-bus

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I/Os						
V_{IL}	LOW level input voltage		-0.5	-	$+0.3 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\mathrm{HLL}(\text { max })}$	maximum allowed input current through protection diode	$\mathrm{V}_{1} \geq \mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{1} \leq \mathrm{V}_{\text {SS }}$	-	-	± 400	$\mu \mathrm{A}$
lOL	LOW level output current	$\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	10	25	-	mA
IOH	HIGH level output current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}$	30	-	300	$\mu \mathrm{A}$
l_{OH}	transient pull-up current	HIGH during acknowledge (see Fig.14); $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{SS}}$; $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	-	-1	-	mA
Ci_{i}	input capacitance		-	-	10	pF
C_{0}	output capacitance		-	-	10	pF

Port timing; $\mathrm{C}_{\mathrm{L}} \leq \mathbf{1 0 0} \mathrm{pF}$ (see Figs 10 and 11)

$t_{p v}$	output data valid		-	-	4	$\mu \mathrm{~s}$
$t_{\text {su }}$	input data set-up time		0	-	-	$\mu \mathrm{s}$
t_{h}	input data hold time		4	-	-	$\mu \mathrm{s}$

Interrupt $\overline{\text { INT }}$ (see Fig.13)

I_{OL}	LOW level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.6	-	-	mA
L_{L}	leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	-1	-	+1	$\mu \mathrm{~A}$

Timing; $\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{PF}$

t_{iv}	input data valid time		-	-	4	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {ir }}$	reset delay time		-	-	4	$\mu \mathrm{~s}$

Select inputs A0 to A2

V_{IL}	LOW level input voltage		-0.5	-	$+0.3 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
I	input leakage current	pin at V_{DD} or V_{SS}	-250	-	+250	nA

Note

1. The Power-on reset circuit resets the $\mathrm{I}^{2} \mathrm{C}$-bus logic with $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}}$ and sets all I/Os to logic 1 (with current source to V_{DD}).

Remote 8-bit I/O expander for $\mathrm{I}^{2} \mathrm{C}$-bus

11 I²2 C-BUS TIMING CHARACTERISTICS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
${ }^{2} \mathrm{C}$-bus timing (see Fig.15; note 1)					
$\mathrm{f}_{\mathrm{SCL}}$	SCL clock frequency	-	-	100	kHz
tsw	tolerable spike width on bus	-	-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; STA }}$	START condition set-up time	4.7	-	-	$\mu \mathrm{s}$
thd;STA	START condition hold time	4.0	-	-	$\mu \mathrm{s}$
t Low	SCL LOW time	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time	4.0	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time	-	-	1.0	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time	-	-	0.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ DAT	data set-up time	250	-	-	ns
$\mathrm{t}_{\text {HD } ; \text { DAT }}$	data hold time	0	-	-	ns
$\mathrm{t}_{\mathrm{VD} ; \text { DAT }}$	SCL LOW to data out valid	-	-	3.4	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STO	STOP condition set-up time	4.0	-	-	$\mu \mathrm{s}$

Note

1. All the timing values are valid within the operating supply voltage and ambient temperature range and refer to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD}.

FEATURES

- Single-chip LCD controller/driver
- Selectable backplane drive configuration: static or 2/3/4 backplane multiplexing
- Selectable display bias configuration: static, $1 / 2$ or $1 / 3$
- Internal LCD bias generation with voltage-follower buffers
- 40 segment drives: up to twenty 8 -segment numeric characters; up to ten 15-segment alphanumeric characters; or any graphics of up to 160 elements
- 40×4-bit RAM for display data storage
- Auto-incremented display data loading across device subaddress boundaries
- Display memory bank switching in static and duplex drive modes
- Versatile blinking modes
- LCD and logic supplies may be separated
- Wide power supply range: from 2 V for low-threshold LCDs and up to 6 V for guest-host LCDs and high-threshold (automobile) twisted nematic LCDs.
A 9 V version is also available on request.
- Low power consumption
- Power-saving mode for extremely low power consumption in battery-operated and telephone applications
- $1^{2} C$-bus interface
- TTL/CMOS compatible
- Compatible with any 4-bit, 8-bit or 16 -bit microprocessors/microcontrollers

- May be cascaded for large LCD applications (up to 2560 segments possible)
- Cascadable with 24-segment LCD driver PCF8566
- Optimized pinning for plane wiring in both and multiple PCF8576C applications
- Space-saving 56-lead plastic very small outline package (VSO56) or 64-lead low profile quad flat package (LQFP64)
- No external components
- Compatible with chip-on-glass technology
- Manufactured in silicon gate CMOS process.

GENERAL DESCRIPTION

The PCF8576C is a peripheral device which interfaces to almost any Liquid Crystal Display (LCD) with low multiplex rates. It generates the drive signals for any static or multiplexed LCD containing up to four backplanes and up to 40 segments and can easily be cascaded for larger LCD applications. The PCF8576C is compatible with most microprocessors/microcontrollers and communicates via a two-line bidirectional $I^{2} \mathrm{C}$-bus. Communication overheads are minimized by a display RAM with auto-incremented addressing, by hardware subaddressing and by display memory switching (static and duplex drive modes).

ORDERING INFORMATION

TYPE NUMBER	PACKAGE			VERSION
	NAME	DESCRIPTION	SOT190-1	
PCF8576CT	VSO56	plastic very small outline package; 56 leads	-	
PCF8576CU	-	chip in tray	-	
PCF8576CU/2	-	chip with bumps in tray	-	
PCF8576CU/7	-	chip with bumps on tape	-	
PCF8576CU/10	FFC	chip-on-film frame carrier	-	
PCF8576CU/12	FFC	chip with bumps on film frame carrier	SOT314-2	
PCF8576CH	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4 \mathrm{~mm}$	S 10	

Fig. 1 Block diagram; VSO56.

Universal LCD driver for low multiplex rates

PCF8576C

PINNING

SYMBOL	PIN		DESCRIPTION
	SOT190	SOT314	
SDA	1	10	I 2 C-bus serial data input/output
SCL	2	11	I 2 C-bus serial clock input
$\overline{\text { SYNC }}$	3	12	cascade synchronization input/output
CLK	4	13	external clock input
$V_{\text {DD }}$	5	14	supply voltage
OSC	6	15	oscillator input
A0 to A2	7 to 9	16 to 18	I 2 C-bus subaddress inputs
SAO	10	19	I 2 C-bus slave address input; bit 0
$V_{\text {SS }}$	11	20	logic ground
V $_{\text {LCD }}$	12	21	LCD supply voltage
BPO, BP2, BP1, BP3	13 to 16	25 to 28	LCD backplane outputs
S0 to S39	17 to 56	29 to 32,34 to 47,49 to 64,2 to 7	LCD segment outputs
n.c.	-	$1,8,9,22$ to 24,33 and 48	not connected

Fig. 2 Pin configuration; VSO56.

Universal LCD driver for low multiplex rates

Fig. 3 Pin configuration; LQFP64.

Universal LCD driver for low multiplex rates

FUNCTIONAL DESCRIPTION

The PCF8576C is a versatile peripheral device designed to interface to any microprocessor/microcontroller to a wide variety of LCDs. It can directly drive any static or multiplexed LCD containing up to four backplanes and up to 40 segments. The display configurations possible with the PCF8576C depend on the number of active backplane outputs required; a selection of display configurations is given in Table 1.

All of the display configurations given in Table 1 can be implemented in the typical system shown in Fig.4.

The host microprocessor/microcontroller maintains the 2-line $\mathrm{I}^{2} \mathrm{C}$-bus communication channel with the PCF8576C. The internal oscillator is selected by tying OSC (pin 6) to V_{SS} (pin 11). The appropriate biasing voltages for the multiplexed LCD waveforms are generated internally. The only other connections required to complete the system are to the power supplies ($V_{D D}$, $V_{S S}$ and $V_{L C D}$) and the LCD panel chosen for the application.

Table 1 Selection of display configurations

NUMBER OF		7-SEGMENTS NUMERIC		14-SEGMENTS ALPHANUMERIC		DOT MATRIX
BACKPLANES	SEGMENTS	DIGITS	INDICATOR SYMBOLS	CHARACTERS	INDICATOR SYMBOLS	
4	160	20	20	10	20	160 dots (4×40)
3	120	15	15	8	8	120 dots (3×40)
2	80	10	10	5	10	80 dots (2×40)
1	40	5	5	2	12	40 dots (1×40)

Fig. 4 Typical system configuration.

Power-on reset

At power-on the PCF8576C resets to a starting condition as follows:

1. All backplane outputs are set to $V_{D D}$.
2. All segment outputs are set to $V_{D D}$.
3. The drive mode ' $1: 4$ multiplex with $1 / 3$ bias' is selected.
4. Blinking is switched off.
5. Input and output bank selectors are reset (as defined in Table 5).
6. The $\mathrm{I}^{2} \mathrm{C}$-bus interface is initialized.
7. The data pointer and the subaddress counter are cleared.

Data transfers on the $\mathrm{I}^{2} \mathrm{C}$-bus should be avoided for 1 ms following power-on to allow completion of the reset action.

LCD bias generator

The full-scale LCD voltage $\left(V_{\text {op }}\right)$ is obtained from $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$. The LCD voltage may be temperature compensated externally through the $\mathrm{V}_{\mathrm{LCD}}$ supply to pin 12. Fractional LCD biasing voltages are obtained from an internal voltage divider of the three series resistors connected between V_{DD} and $\mathrm{V}_{\mathrm{LCD}}$. The centre resistor can be switched out of the circuit to provide a $1 / 2$ bias voltage level for the $1: 2$ multiplex configuration.

LCD voltage selector

The LCD voltage selector co-ordinates the multiplexing of the LCD in accordance with the selected LCD drive configuration. The operation of the voltage selector is controlled by MODE SET commands from the command decoder. The biasing configurations that apply to the preferred modes of operation, together with the biasing characteristics as functions of $\mathrm{V}_{\mathrm{Op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$ and the resulting discrimination ratios (D), are given in Table 2.

A practical value for V_{op} is determined by equating $\mathrm{V}_{\text {off }}(\mathrm{rms}$) with a defined LCD threshold voltage ($\mathrm{V}_{\text {th }}$), typically when the LCD exhibits approximately 10% contrast. In the static drive mode a suitable choice is $\mathrm{V}_{\mathrm{op}}>3 \mathrm{~V}_{\mathrm{th}}$ approximately.

Multiplex drive ratios of $1: 3$ and $1: 4$ with $1 / 2$ bias are possible but the discrimination and hence the contrast ratios are smaller ($\sqrt{3}=1.732$ for $1: 3$ multiplex or $\frac{\sqrt{21}}{3}=1.528$ for $1: 4$ multiplex).
The advantage of these modes is a reduction of the LCD full-scale voltage V_{op} as follows:

- $1: 3$ multiplex ($1 / 2$ bias):

$$
V_{\text {op }}=\sqrt{6} \times V_{\text {off }\langle r m s\rangle}=2.449 \mathrm{~V}_{\text {off }(\mathrm{rms})}
$$

- $1: 4$ multiplex ($1 / 2$ bias):

$$
\mathrm{V}_{\mathrm{op}}=\left[\frac{(4 \times \sqrt{3})}{3}\right]=2.309 \mathrm{~V}_{\mathrm{off}(\mathrm{rms})}
$$

These compare with $\mathrm{V}_{\mathrm{op}}=3 \mathrm{~V}_{\text {off(rms) }}$ when $1 / 3$ bias is used.

Table 2 Preferred LCD drive modes: summary of characteristics

LCD DRIVE MODE	NUMBER OF		LCD BIAS CONFIGURATION	$\frac{\mathbf{V}_{\text {off(rms) }}}{\mathbf{V}_{\text {op }}}$	$\frac{\mathbf{V}_{\text {on(rms) }}}{\mathbf{V}_{\text {op }}}$	$=\frac{\mathbf{V}_{\text {on(rms) }}}{\mathbf{V}_{\text {off(rms) }}}$
	BACKPLANES	LEVELS				
static	1	2	static	0	1	∞
$1: 2$	2	3	$1 / 2$	0.354	0.791	2.236
$1: 2$	2	4	$1 / 3$	0.333	0.745	2.236
$1: 3$	3	4	$1 / 3$	0.333	0.638	1.915
$1: 4$	4	4	$1 / 3$	0.333	0.577	1.732

Universal LCD driver for low multiplex rates

LCD drive mode waveforms

Static drive mode

The static LCD drive mode is used when a single backplane is provided in the LCD. Backplane and segment drive waveforms for this mode are shown in Fig. 5.

(a) waveforms at driver

$$
\mathrm{v}_{\mathrm{op}}-
$$

state 20
$-\mathrm{V}_{\mathrm{op}}-$
(b) resultant waveforms at LCD segment
$V_{\text {state } 1}(t)=V_{S_{n}}(t)-V_{B P 0}(t)$
$V_{o n(r m s)}=V_{o p}$
$\mathrm{V}_{\text {state2 }}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{\mathrm{n}+1}}(\mathrm{t})-\mathrm{V}_{\mathrm{BPO}}(\mathrm{t})$
$\mathrm{V}_{\text {off(rms) }}=0 \mathrm{~V}$

Fig. 5 Static drive mode waveforms $\left(\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}\right)$.

Universal LCD driver for low multiplex rates

1 : 2 MULTIPLEX DRIVE MODE

When two backplanes are provided in the LCD, the $1: 2$ multiplex mode applies. The PCF8576C allows use of $1 / 2$ bias or $1 / 3$ bias in this mode as shown in Figs 6 and 7.

Fig. 6 Waveforms for the $1: 2$ multiplex drive mode with $1 / 2$ bias $\left(V_{o p}=V_{D D}-V_{L C D}\right)$.

(a) waveforms at driver

$$
2 \mathrm{~V}_{\mathrm{op}} / 3
$$

state 1
state 2

$$
v_{\mathrm{op}}
$$

$$
\mathrm{v}_{\mathrm{op}}
$$

$$
2 \mathrm{~V}_{\mathrm{op}} / 3
$$

$$
\begin{gathered}
\mathrm{v}_{\mathrm{op}} / 3 \\
0 \\
\mathrm{v}_{\mathrm{op}} / 3
\end{gathered}
$$

$-2 \mathrm{~V}_{\mathrm{op}} / 3$
$-\mathrm{V}_{\mathrm{op}}$
(b) resultant waveforms MBE541 at LCD segment

$$
\begin{aligned}
& \mathrm{V}_{\text {state1 } 1}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{\mathrm{n}}}(\mathrm{t})-\mathrm{V}_{\mathrm{BPO} 0}(\mathrm{t}) \\
& \mathrm{V}_{\text {on(mss) }}=0.745 \mathrm{~V}_{\mathrm{op}} \\
& \mathrm{~V}_{\text {state2 }}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{\mathrm{n}}}(\mathrm{t})-\mathrm{V}_{\mathrm{BP} 1}(\mathrm{t}) \\
& \mathrm{V}_{\text {off(rms) }}=0.333 \mathrm{~V}_{\mathrm{op}}
\end{aligned}
$$

Fig. 7 Waveforms for the 1:2 multiplex drive mode with $1 / 3$ bias $\left(V_{o p}=V_{D D}-V_{L C D}\right)$.

Universal LCD driver for low multiplex rates

1 : 3 MULTIPLEX DRIVE MODE

When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies, as shown in Fig.8.

(a) waveforms at driver

$v_{\text {op }}$

$$
2 v_{o p} / 3
$$

\qquad
state 2

(b) resultant waveforms
at LCD segment
MBE542

$$
\begin{aligned}
& \mathrm{V}_{\text {state } 1}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{\mathrm{n}}}(\mathrm{t})-\mathrm{V}_{\mathrm{BP} 0}(\mathrm{t}) \\
& \mathrm{V}_{\text {on(rms })}=0.638 \mathrm{~V}_{\mathrm{op}} \\
& \mathrm{~V}_{\text {state } 2}(\mathrm{t})=\mathrm{V}_{\mathrm{S}_{\mathrm{n}}}(\mathrm{t})-\mathrm{V}_{\mathrm{BP} 1}(\mathrm{t}) \\
& \mathrm{V}_{\text {off(rms })}=0.333 \mathrm{~V}_{\mathrm{op}}
\end{aligned}
$$

Fig. 8 Waveforms for the 1:3 multiplex drive mode $\left(\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}\right)$.

Universal LCD driver for low multiplex rates

1: 4 MULTIPLEX DRIVE MODE

When four backplanes are provided in the LCD, the $1: 4$ multiplex drive mode applies, as shown in Fig.9.

Fig. 9 Waveforms for the 1:4 multiplex drive mode ($\left.\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}\right)$.

Oscillator

INTERNAL CLOCK

The internal logic and the LCD drive signals of the PCF8576C are timed either by the built-in oscillator or from an external clock. When the internal oscillator is used, OSC (pin 6) should be connected to $\mathrm{V}_{\text {SS }}$ (pin 11). In this event, the output from CLK (pin 4) provides the clock signal for cascaded PCF8566s or PCF8576Cs in the system.

Note that the PCF8576C is backwards compatible with the PCF8576. Where resistor $R_{\text {osc }}$ to $V_{S S}$ is present, the internal oscillator is selected.

External clock

The condition for external clock is made by tying OSC (pin 6) to V_{DD}; CLK (pin 4) then becomes the external clock input.
The clock frequency ($\mathrm{f}_{\mathrm{clk}}$) determines the LCD frame frequency and the maximum rate for data reception from the $I^{2} \mathrm{C}$-bus. To allow $I^{2} \mathrm{C}$-bus transmissions at their maximum data rate of 100 kHz , $\mathrm{f}_{\mathrm{clk}}$ should be chosen to be above 125 kHz .

A clock signal must always be supplied to the device; removing the clock may freeze the LCD in a DC state.

Timing

The timing of the PCF8576C organizes the internal data flow of the device. This includes the transfer of display data from the display RAM to the display segment outputs. In cascaded applications, the synchronization signal SYNC maintains the correct timing relationship between the PCF8576Cs in the system. The timing also generates the LCD frame frequency which it derives as an integer multiple of the clock frequency (see Table 3). The frame frequency is set by the MODE SET commands when internal clock is used, or by the frequency applied to pin 4 when external clock is used.

The ratio between the clock frequency and the LCD frame frequency depends on the mode in which the device is operating. In the power-saving mode the reduction ratio is six times smaller; this allows the clock frequency to be reduced by a factor of six. The reduced clock frequency results in a significant reduction in power dissipation. The lower clock frequency has the disadvantage of increasing the response time when large amounts of display data are transmitted on the $I^{2} \mathrm{C}$-bus.

When a device is unable to digest a display data byte before the next one arrives, it holds the SCL line LOW until the first display data byte is stored. This slows down the transmission rate of the $\mathrm{I}^{2} \mathrm{C}$-bus but no data loss occurs.

Display latch

The display latch holds the display data while the corresponding multiplex signals are generated. There is a one-to-one relationship between the data in the display latch, the LCD segment outputs and one column of the display RAM.

Shift register

The shift register serves to transfer display information from the display RAM to the display latch while previous data is displayed.

Segment outputs

The LCD drive section includes 40 segment outputs S0 to S39 (pins 17 to 56) which should be connected directly to the LCD. The segment output signals are generated in accordance with the multiplexed backplane signals and with data resident in the display latch. When less than 40 segment outputs are required the unused segment outputs should be left open-circuit.

Backplane outputs

The LCD drive section includes four backplane outputs BPO to BP3 which should be connected directly to the LCD. The backplane output signals are generated in accordance with the selected LCD drive mode. If less than four backplane outputs are required the unused outputs can be left open-circuit. In the 1:3 multiplex drive mode $B P 3$ carries the same signal as BP1, therefore these two adjacent outputs can be tied together to give enhanced drive capabilities. In the $1: 2$ multiplex drive mode BPO and $B P 2, B P 1$ and $B P 3$ respectively carry the same signals and may also be paired to increase the drive capabilities. In the static drive mode the same signal is carried by all four backplane outputs and they can be connected in parallel for very high drive requirements.

Universal LCD driver for low multiplex rates

Display RAM

The display RAM is a static 40×4-bit RAM which stores LCD data. A logic 1 in the RAM bit-map indicates the on state of the corresponding LCD segment; similarly, a logic 0 indicates the off state. There is a one-to-one correspondence between the RAM addresses and the segment outputs, and between the individual bits of a RAM word and the backplane outputs. The first RAM column corresponds to the 40 segments operated with respect to backplane BP0 (see Fig.10). In multiplexed LCD applications the segment data of the second, third and fourth column of the display RAM are time-multiplexed with BP1, BP2 and BP3 respectively.

When display data is transmitted to the PCF8576C the display bytes received are stored in the display RAM in accordance with the selected LCD drive mode. To illustrate the filling order, an example of a 7-segment numeric display showing all drive modes is given in Fig.11; the RAM filling organization depicted applies equally to other LCD types.

With reference to Fig.11, in the static drive mode the eight transmitted data bits are placed in bit 0 of eight successive display RAM addresses.

In the 1:2 multiplex drive mode the eight transmitted data bits are placed in bits 0 and 1 of four successive display RAM addresses. In the 1:3 multiplex drive mode these bits are placed in bits 0,1 and 2 of three successive addresses, with bit 2 of the third address left unchanged. This last bit may, if necessary, be controlled by an additional transfer to this address but care should be taken to avoid overriding adjacent data because full bytes are always transmitted. In the 1:4 multiplex drive mode the eight transmitted data bits are placed in bits $0,1,2$ and 3 of two successive display RAM addresses.

Table 3 LCD frame frequencies

PCF8576C MODE	FRAME FREQUENCY	NOMINAL FRAME FREQUENCY (Hz)
Normal mode	$\frac{\mathrm{f}_{\mathrm{clk}}}{2880}$	64
Power-saving mode	$\frac{\mathrm{f}_{\mathrm{clk}}}{480}$	64

Fig. 10 Display RAM bit-map showing direct relationship between display RAM addresses and segment outputs, and between bits in a RAM word and backplane outputs.

Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows the loading of an individual display data byte, or a series of display data bytes, into any location of the display RAM. The sequence commences with the initialization of the data pointer by the LOAD DATA POINTER command. Following this, an arriving data byte is stored starting at the display RAM address indicated by the data pointer thereby observing the filling order shown in Fig.11. The data pointer is automatically incremented in accordance with the chosen LCD configuration. That is, after each byte is stored, the contents of the data pointer are incremented by eight (static drive mode), by four ($1: 2$ multiplex drive mode) or by two ($1: 2$ multiplex drive mode).

Subaddress counter

The storage of display data is conditioned by the contents of the subaddress counter. Storage is allowed to take place only when the contents of the subaddress counter agree with the hardware subaddress applied to
AO, A1 and A2. The subaddress counter value is defined by the DEVICE SELECT command. If the contents of the subaddress counter and the hardware subaddress do not agree then data storage is inhibited but the data pointer is incremented as if data storage had taken place. The subaddress counter is also incremented when the data pointer overflows.

The storage arrangements described lead to extremely efficient data loading in cascaded applications. When a series of display bytes are sent to the display RAM, automatic wrap-over to the next PCF8576C occurs when the last RAM address is exceeded. Subaddressing across device boundaries is successful even if the change to the next device in the cascade occurs within a transmitted character (such as during the 14 th display data byte transmitted in $1: 3$ multiplex mode).

Output bank selector

This selects one of the four bits per display RAM address for transfer to the display latch. The actual bit chosen depends on the particular LCD drive mode in operation and on the instant in the multiplex sequence.
In 1: 4 multiplex, all RAM addresses of bit 0 are the first to be selected, these are followed by the contents of bit 1 , bit 2 and then bit 3 . Similarly in $1: 3$ multiplex, bits 0,1 and 2 are selected sequentially. In $1: 2$ multiplex, bits 0 and 1 are selected and, in the static mode, bit 0 is selected.

The PCF8576C includes a RAM bank switching feature in the static and 1:2 multiplex drive modes. In the static drive mode, the BANK SELECT command may request the contents of bit 2 to be selected for display instead of bit 0 contents. In the 1:2 drive mode, the contents of bits 2 and 3 may be selected instead of bits 0 and 1 . This gives the provision for preparing display information in an alternative bank and to be able to switch to it once it is assembled.

Input bank selector

The input bank selector loads display data into the display RAM in accordance with the selected LCD drive configuration. Display data can be loaded in bit 2 in static drive mode or in bits 2 and 3 in 1:2 drive mode by using the BANK SELECT command. The input bank selector functions independent of the output bank selector.

Universal LCD driver for low multiplex rates

Blinker

The display blinking capabilities of the PCF8576C are very versatile. The whole display can be blinked at frequencies selected by the BLINK command. The blinking frequencies are integer multiples of the clock frequency; the ratios between the clock and blinking frequencies depend on the mode in which the device is operating, as shown in Table 4.

An additional feature is for an arbitrary selection of LCD segments to be blinked. This applies to the static and 1 : 2 LCD drive modes and can be implemented without any communication overheads.

By means of the output bank selector, the displayed RAM banks are exchanged with alternate RAM banks at the blinking frequency. This mode can also be specified by the BLINK command.

In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of LCD segments can be blinked by selectively changing the display RAM data at fixed time intervals.

If the entire display is to be blinked at a frequency other than the nominal blinking frequency, this can be effectively performed by resetting and setting the display enable bit E at the required rate using the MODE SET command.

Table 4 Blinking frequencies

BLINKING MODE	NORMAL OPERATING MODE RATIO	POWER-SAVING MODE RATIO	NOMINAL BLINKING FREQUENCY
Off	-	-	blinking off
2 Hz	$\frac{\mathrm{f}_{\mathrm{clk}}}{92160}$	$\frac{\mathrm{f}_{\mathrm{clk}}}{15360}$	2 Hz
1 Hz	$\frac{\mathrm{f}_{\mathrm{clk}}}{184320}$	$\frac{\mathrm{f}_{\mathrm{clk}}}{30720}$	1 Hz
0.5 Hz	$\frac{\mathrm{f}_{\mathrm{clk}}}{368640}$	$\frac{\mathrm{f}_{\mathrm{clk}}}{61440}$	0.5 Hz

$x=$ data bit unchanged.

Fig. 11 Relationships between LCD layout, drive mode, display RAM filling order and display data transmitted over the $\mathrm{I}^{2} \mathrm{C}$-bus.

CHARACTERISTICS OF THE I²C-BUS

The $\mathrm{I}^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

Bit transfer (see Fig.12)

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

Start and stop conditions (see Fig.13)

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P).

System configuration (see Fig.14)

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

Acknowledge (see Fig.15)

The number of data bytes transferred between the START and STOP conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition.

PCF8576C ${ }^{2}$ ²C-bus controller

The PCF8576C acts as an $1^{2} \mathrm{C}$-bus slave receiver. It does not initiate $\mathrm{I}^{2} \mathrm{C}$-bus transfers or transmit data to an $\mathrm{I}^{2} \mathrm{C}$-bus master receiver. The only data output from the PCF8576C are the acknowledge signals of the selected devices. Device selection depends on the $\mathrm{I}^{2} \mathrm{C}$-bus slave address, on the transferred command data and on the hardware subaddress.

In single device application, the hardware subaddress inputs A0, A1 and A2 are normally tied to $V_{S S}$ which defines the hardware subaddress 0 . In multiple device applications $A 0, A 1$ and $A 2$ are tied to $V_{S S}$ or $V_{D D}$ in accordance with a binary coding scheme such that no two devices with a common $I^{2} \mathrm{C}$-bus slave address have the same hardware subaddress.

In the power-saving mode it is possible that the PCF8576C is not able to keep up with the highest transmission rates when large amounts of display data are transmitted. If this situation occurs, the PCF8576C forces the SCL line LOW until its internal operations are completed. This is known as the 'clock synchronization feature' of the $I^{2} \mathrm{C}$-bus and serves to slow down fast transmitters. Data loss does not occur.

Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

I^{2} C-bus protocol

Two ${ }^{2} \mathrm{C}$-bus slave addresses (0111000 and 0111001) are reserved for the PCF8576C. The least significant bit of the slave address that a PCF8576C will respond to is defined by the level tied at its input SA0 (pin 10). Therefore, two types of PCF8576C can be distinguished on the same ${ }^{2}{ }^{2}$ C-bus which allows:

1. Up to 16 PCF8576Cs on the same $I^{2} \mathrm{C}$-bus for very large LCD applications.
2. The use of two types of LCD multiplex on the same $\mathrm{I}^{2} \mathrm{C}$-bus.

The $\mathrm{I}^{2} \mathrm{C}$-bus protocol is shown in Fig.16. The sequence is initiated with a START condition (S) from the $I^{2} \mathrm{C}$-bus master which is followed by one of the two PCF8675C slave addresses available. All PCF8576Cs with the corresponding SAO level acknowledge in parallel with the slave address but all PCF8576Cs with the alternative SAO level ignore the whole $\mathrm{I}^{2} \mathrm{C}$-bus transfer.

Universal LCD driver for low multiplex rates

After acknowledgement, one or more command bytes (m) follow which define the status of the addressed PCF8576Cs.

The last command byte is tagged with a cleared most significant bit, the continuation bit C . The command bytes are also acknowledged by all addressed PCF8576Cs on the bus.

After the last command byte, a series of display data bytes (n) may follow. These display bytes are stored in the display RAM at the address specified by the data pointer and the subaddress counter. Both data pointer and subaddress counter are automatically updated and the data is directed to the intended PCF8576C device. The acknowledgement after each byte is made only by the (A0, A1 and A2) addressed PCF8576C. After the last display byte, the $\mathrm{I}^{2} \mathrm{C}$-bus master issues a STOP condition (P).

Command decoder

The command decoder identifies command bytes that arrive on the $\mathrm{I}^{2} \mathrm{C}$-bus. All available commands carry a continuation bit C in their most significant bit position (Fig.17). When this bit is set, it indicates that the next byte of the transfer to arrive will also represent a command. If this bit is reset, it indicates the last command byte of the transfer. Further bytes will be regarded as display data.

The five commands available to the PCF8576C are defined in Table 5.

Fig. 12 Bit transfer.

Fig. 14 System configuration.

Fig. 15 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

Fig. $161^{2} \mathrm{C}$-bus protocol.

[^4]Table 5 Definition of PCF8576C commands

COMMAND	OPCODE									OPTIONS	DESCRIPTION	
MODE SET	C		1	0	LP	E	B	M1	M0	Table 6	Defines LCD drive mode.	
			Table 7							Defines LCD bias configuration.		
			Table 8							Defines display status. The possibility to disable the display allows implementation of blinking under external control.		
			Table 9							Defines power dissipation mode.		
LOADDATA POINTER	C			0	P5	P4	P3	P2	P1	P0	Table 10	Six bits of immediate data, bits P5 to P0, are transferred to the data pointer to define one of forty display RAM addresses.
DEVICE SELECT		c		1	1	0	0	A2		A0	Table 11	Three bits of immediate data, bits A0 to A3, are transferred to the subaddress counter to define one of eight hardware subaddresses.
BANK SELECT	C			1	1	1	1	0	1	0	Table 12	Defines input bank selection (storage of arriving display data).
			Table 13								Defines output bank selection (retrieval of LCD display data). The BANK SELECT command has no effect in 1:3 and 1:4 multiplex drive modes.	
BLINK	C		1	1	1	0	A	BF1	BFO	Table 14	Defines the blinking frequency.	
			Table 15							Selects the blinking mode; normal operation with frequency set by BF1, BF0 or blinking by alternation of display RAM banks. Alternation blinking does not apply in $1: 3$ and $1: 4$ multiplex drive modes.		

Table 6 Mode set option 1

LCD DRIVE MODE		BITS	
DRIVE MODE	BACKPLANE	M1	M0
Static	1 BP	0	1
$1: 2$	MUX (2 BP)	1	0
$1: 3$	MUX (3 BP)	1	1
$1: 4$	MUX (4 BP)	0	0

Table 7 Mode set option 2

LCD BIAS	BIT B
$1 / 3$ bias	0
$1 / 2$ bias	1

Table 8 Mode set option 3

DISPLAY STATUS	BIT E
Disabled (blank)	0
Enabled	1

Table 9 Mode set option 4

MODE	BIT LP
Normal mode	0
Power-saving mode	1

Table 10 Load data pointer option 1

DESCRIPTION	BITS					
6 bit binary value of 0 to 39	P5	P4	P3	P2	P1	P0

Table 11 Device select option 1

DESCRIPTION	BITS		
3 bit binary value of 0 to 7	A0	A1	A2

Table 12 Bank select option 1

STATIC	1: 2 MUX	BIT I
RAM bit 0	RAM bits 0 and 1	0
RAM bit 2	RAM bits 2 and 3	1

Table 13 Bank select option 2

STATIC	$\mathbf{1}: \mathbf{2}$ MUX	BIT 0
RAM bit 0	RAM bits 0 and 1	0
RAM bit 2	RAM bits 2 and 3	1

Display controller

The display controller executes the commands identified by the command decoder. It contains the status registers of the PCF8576C and co-ordinates their effects. The controller is also responsible for loading display data into the display RAM as required by the filling order.

Cascaded operation

In large display configurations, up to 16 PCF8576Cs can be distinguished on the same $\mathrm{I}^{2} \mathrm{C}$-bus by using the 3 -bit hardware subaddress (A0, A1 and A2) and the programmable $\mathrm{I}^{2} \mathrm{C}$-bus slave address (SA0). When cascaded PCF8576Cs are synchronized so that they can share the backplane signals from one of the devices in the cascade. Such an arrangement is cost-effective in large LCD applications since the backplane outputs of only one device need to be through-plated to the backplane electrodes of the display. The other PCF8576Cs of the cascade contribute additional segment outputs but their backplane outputs are left open-circuit (Fig.18).

Table 14 Blink option 1

BLINK FREQUENCY	BITS	
	BF1	BF0
Off	0	0
2 Hz	0	1
1 Hz	1	0
0.5 Hz	1	1

Table 15 Blink option 2

BLINK MODE	BIT A
Normal blinking	0
Alternation blinking	1

The $\overline{\text { SYNC }}$ line is provided to maintain the correct synchronization between all cascaded PCF8576Cs. This synchronization is guaranteed after the power-on reset. The only time that SYNC is likely to be needed is if synchronization is accidentally lost (e.g. by noise in adverse electrical environments; or by the definition of a multiplex mode when PCF8576Cs with differing SA0 levels are cascaded). $\overline{\text { SYNC }}$ is organized as an input/output pin; the output selection being realized as an open-drain driver with an internal pull-up resistor. A PCF8576C asserts the $\overline{\text { SYNC }}$ line at the onset of its last active backplane signal and monitors the $\overline{\text { SYNC }}$ line at all other times. Should synchronization in the cascade be lost, it will be restored by the first PCF8675C to assert $\overline{\text { SYNC. The timing relationship between the backplane }}$ waveforms and the $\overline{\text { SYNC }}$ signal for the various drive modes of the PCF8576C are shown in Fig.19.

For single plane wiring of packaged PCF8576Cs and chip-on-glass cascading, see Chapter "Application information".

Fig. 18 Cascaded PCF8576C configuration.

Universal LCD driver for low multiplex rates

(b) $1: 2$ multiplex drive mode.

(c) 1:3 multiplex drive mode.

(d) $1: 4$ multiplex drive mode.

Excessive capacitive coupling between SCL or CLK and $\overline{\text { SYNC may cause erroneous synchronization. If this proves to be a problem, the capacitance of }}$ the SYNC line should be increased (e.g. by an external capacitor between SYNC and $V_{D D}$). Degradation of the positive edge of the SYNC pulse may be countered by an external pull-up resistor.
(a) static drive mode.
(b) 1:2 multiplex drive mode.
(c) 1:3 multiplex drive mode.
(d) $1: 4$ multiplex drive mode.

Fig. 19 Synchronization of the cascade for the various PCF8576C drive modes.

Universal LCD driver for low multiplex rates

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$V_{D D}$	supply voltage	-0.5	+8.0	V
$\mathrm{~V}_{\mathrm{LCD}}$	LCD supply voltage	$\mathrm{V}_{\mathrm{DD}}-8.0$	$\mathrm{~V}_{\mathrm{DD}}$	V
V_{I}	input voltage SDA, SCL, CLK, $\overline{\text { SYNC, SA0, OSC, A0 to A2 }}$	$\mathrm{V}_{\mathrm{SS}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage S0 to S39, BP0 to BP3	$\mathrm{V}_{\mathrm{LCD}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC input current	-20	+20	mA
I_{O}	DC output current	-25	+25	mA
$\mathrm{I}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{SS}}, \mathrm{I}_{\mathrm{LCD}}$	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{LCD}}$ current	-50	+50	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	400	mW
P_{O}	power dissipation per output	-	100	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS Devices").

Universal LCD driver for low multiplex rates

DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-6 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V_{DD}	supply voltage		2	-	6	V
$\mathrm{V}_{\mathrm{LCD}}$	LCD supply voltage	note 1	$\mathrm{V}_{\mathrm{DD}}-6$	-	$\mathrm{V}_{\mathrm{DD}}-2$	V
IDD	supply current normal mode power-saving mode	note 2 $\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=200 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{llk}}=35 \mathrm{kHz} ; \\ & \mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V} ; \\ & \mathrm{A} 0, \mathrm{~A} 1 \text { and } \mathrm{A} 2 \text { tied to } \mathrm{V}_{\mathrm{SS}} \end{aligned}$	-	-	$\begin{aligned} & 120 \\ & 60 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Logic

$\mathrm{V}_{\text {IL }}$	LOW level input voltage		$\mathrm{V}_{\text {SS }}$	-	$0.3 \mathrm{~V}_{\text {DD }}$	V
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{\text {DD }}$	V
V_{OL}	LOW level input voltage	$\mathrm{I}_{\mathrm{OL}}=0 \mathrm{~mA}$	-	-	0.05	V
V_{OH}	HIGH level input voltage	$\mathrm{l}_{\mathrm{OH}}=0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.05$	-	-	V
$\mathrm{l}_{\mathrm{OL} 1}$	LOW level output current CLK, $\overline{\text { SYNC }}$	$\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1	-	-	mA
$\mathrm{l}_{\mathrm{OH} 1}$	HIGH level output current CLK	$\mathrm{V}_{\mathrm{OH}}=4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-1	-	-	mA
$\mathrm{I}_{\mathrm{OL} 2}$	LOW level output current SDA, SCL	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3	-	-	mA
$\mathrm{l}_{\mathrm{L} 1}$	leakage current SA0, A0 to A2, CLK, SDA and SCL	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	-1	-	+1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{L} 2}$	leakage current OSC	$V_{1}=V_{D D}$	-1	-	+1	$\mu \mathrm{A}$
I_{pd}	A0, A1, A2 and OSC pull-down current	$\mathrm{V}_{1}=1 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	15	50	150	$\mu \mathrm{A}$
R $\overline{\text { SYNC }}$	pull-up resistor ($\overline{\text { SYNC }}$)		20	50	150	k ת
$\mathrm{V}_{\text {POR }}$	power-on reset voltage level	note 3	-	1.0	1.6	V
$\mathrm{t}_{\text {SW }}$	tolerable spike width on bus		-	-	100	ns
C_{1}	input capacitance	note 4	-	-	7	pF

LCD outputs

V_{BP}	DC voltage component BP0 to BP3	$\mathrm{C}_{\mathrm{BP}}=35 \mathrm{nF}$	-20	-	+20	mV
V_{S}	DC voltage component S0 to S39	$\mathrm{C}_{\mathrm{S}}=5 \mathrm{nF}$	-20	-	+20	mV
R_{BP}	output resistance BP0 to BP3	note 5; $\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}$	-	-	5	$\mathrm{k} \Omega$
R_{S}	output resistance S0 to S39	note 5; $\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}$	-	-	7.5	$\mathrm{k} \Omega$

Notes

1. $\mathrm{V}_{\mathrm{LCD}} \leq \mathrm{V}_{\mathrm{DD}}-3 \mathrm{~V}$ for $1 / 3$ bias.
2. LCD outputs are open-circuit; inputs at $V_{S S}$ or $V_{D D}$; external clock with 50% duty factor; $I^{2} C$-bus inactive.
3. Resets all logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}}$.
4. Periodically sampled, not 100% tested.
5. Outputs measured one at a time.

Universal LCD driver for low multiplex rates

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2$ to 6 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-6 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{f}_{\text {CIk }}$	$\begin{array}{l}\text { oscillator frequency } \\ \text { normal mode } \\ \text { power-saving mode }\end{array}$	$\begin{array}{l}V_{\mathrm{DD}}=5 \mathrm{~V} ; \text { note 1 } \\ \mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}\end{array}$	$\begin{array}{l}125 \\ 21\end{array}$	$\begin{array}{l}200 \\ 31\end{array}$	$\begin{array}{l}315 \\ 48\end{array}$	kHz
kHz						

Timing characteristics: $I^{2} \mathrm{C}$-bus; note 2

$\mathrm{t}_{\text {BUF }}$	bus free time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; }}$ STA	START condition hold time		4.0	-	-	$\mu \mathrm{s}$
tsu;STA	set-up time for a repeated START condition		4.7	-	-	$\mu \mathrm{s}$
t Low	SCL LOW time		4.7	-	-	μs
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time		4.0	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time		-	-	1	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time		-	-	0.3	$\mu \mathrm{s}$
C_{B}	capacitive bus line load		-	-	400	pF
$\mathrm{t}_{\text {SU; }}$ (${ }^{\text {det }}$	data set-up time		250	-	-	ns
$\mathrm{t}_{\text {HD; }}$ DAT	data hold time		0	-	-	ns
tsu;STO	set-up time for STOP condition		4.0	-	-	$\mu \mathrm{s}$

Notes

1. At $\mathrm{f}_{\mathrm{clk}}<125 \mathrm{kHz}, \mathrm{I}^{2} \mathrm{C}$-bus maximum transmission speed is derated.
2. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD}.

Fig. 20 Test loads.

Fig. 21 Driver timing waveforms.

Fig. $221^{2} \mathrm{C}$-bus timing waveforms.

Typical supply current characteristics

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Fig. $24-l_{\text {LCD }}$ as a function of $f_{\text {frame }}$.

$V_{\mathrm{LCD}}=0 \mathrm{~V}$; external clock; $\mathrm{f}_{\text {clk }}=$ nominal frequency.
Fig. $26 I_{\text {LCD }}$ as a function of $V_{D D}$.

Universal LCD driver for low multiplex rates

Typical characteristics of LC D outputs

$\mathrm{V}_{\mathrm{LCD}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Fig. $27 \mathrm{R}_{\mathrm{O}(\max)}$ as a function of V_{DD}.

Fig. $28 \mathrm{R}_{\mathrm{O}(\text { max })}$ as a function of $\mathrm{T}_{\text {amb }}$.

Chip-on-glass cascadability in single plane

In chip-on-glass technology, where driver devices are bonded directly onto glass of the LCD, it is important that the devices may be cascaded without the crossing of conductors, but the paths of conductors can be continued on the glass under the chip. All of this is facilitated by the PCF8576C bonding pad layout (Fig.30). Pads needing bus interconnection between all PCF8576Cs of the cascade are $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{LCD}}, ~ C L K, S C L, S D A$ and $\overline{\text { SYNC. These }}$ lines may be led to the corresponding pads of the next PCF8576C through the wide opening between $\mathrm{V}_{\text {LCD }}$ pad and the backplane output pads.

The only bussed line that does not require a second opening to lead through to the next PCF8576C is $\mathrm{V}_{\mathrm{LCD}}$, being the cascade centre. The placing of $V_{\text {LCD }}$ adjacent to $V_{S S}$ allows the two supplies to be tied together.

When an external clocking source is to be used, OSC of all devices should be tied to V_{DD}. The pads OSC, A0, A1, A2 and SAO have been placed between $V_{S S}$ and $V_{D D}$ to facilitate wiring of oscillator, hardware subaddress and slave address.

BONDING PAD LOCATIONS

Chip dimensions: approximately $2.92 \times 3.20 \mathrm{~mm}$.
Pad area: $0.0121 \mathrm{~mm}^{2}$.
Bonding pad dimensions: $110 \times 110 \mu \mathrm{~m}$.
Fig. 30 Bonding pad locations.

Table 16 Bonding pad locations (dimensions in $\mu \mathrm{m}$)
All x / y coordinates are referenced to left-hand bottom corner of chip (see Fig.30).

SYMBOL	PAD	\mathbf{x}	\mathbf{y}
SDA	1	-74	-1380
SCL	2	148	-1380
SYNC	3	355	-1380
CLK	4	534	-1380
V DD $^{\text {OSC }}$	5	742	-1380
A0	6	913	-1380
A1	7	1087	-1380
A2	8	1290	-1284
SA0	9	1290	-1116
V SS	11	1290	-945
VLCD $^{\text {BP0 }}$	12	1290	-751
BP1	13	1290	-485
BP2	14	1290	125
BP3	16	1290	285
S0	17	1290	458
S1	18	1290	618
S2	19	1290	791
S3	20	1290	951
S4	21	1074	1124
S5	22	914	1380
S6	23	741	1380
S7	24	581	1380
S8	25	408	1380
S9	26	248	1380
S10	27	75	1380
S11	28	-85	1380
S12	29	-258	1380
S13	30	-418	1380
S14	31	-591	1380

SYMBOL	PAD	\mathbf{x}	\mathbf{y}
S15	32	-751	1380
S16	33	-924	1380
S17	34	-1084	1380
S18	35	-1290	1243
S19	36	-1290	1083
S20	37	-1290	910
S21	38	-1290	750
S22	39	-1290	577
S23	40	-1290	417
S24	41	-1290	244
S25	42	-1290	84
S26	43	-1290	-89
S27	44	-1290	-249
S28	45	-1290	-422
S29	46	-1290	-582
S30	47	-1290	-755
S31	48	-1290	-915
S32	49	-1290	-1088
S33	50	-1290	-1248
S34	51	-1083	-1380
S35	52	-923	-1380
S36	53	-750	-1380
S37	54	-590	-1380
S38	55	-417	-1380
S39	56	-257	-1380
Alin			

Alignment marks

C1	-	-1290	1385
C2	-	-1295	-1385
F	-	1305	-1405

LCD direct/duplex driver with

$I^{2} \mathrm{C}$-bus interface

CONTENTS

1	FEATURES	
2	GENERAL DESCRIPTION	
3	ORDERING INFORMATION	
4	BLOCK DIAGRAM	
5	PINNING	
6	FUNCTIONAL DESCRIPTION	
6.1	Hardware subaddress A0, A1, A2	
6.2	Oscillator A0/OSC	
6.3	User-accessible registers	
6.4	Auto-incremented loading	
6.5	Direct drive mode	
6.6	Duplex mode	
6.7	Power-on reset	
6.8	Slave address	
6.9	${ }^{1} 2 \mathrm{C}$-bus protocol	
6.10	Display memory mapping	
7	CHARACTERISTICS OF THE I²C-BUS	
7.1	Bit transfer	
7.2	Start and stop conditions	
7.3	System configuration	
7.4	Acknowledge	
8	LIMITING VALUES	
9	HANDLING	
10	DC CHARACTERISTICS	
11	AC CHARACTERISTICS	
12	APPLICATION INFORMATION	
13	CHIP DIMENSIONS AND BONDING PAD LOCATIONS	
14	PACKAGE OUTLINES	
15	SOLDERING	
15.1	Plastic dual in-line packages	
15.1.1	By dip or wave	
15.1.2	Repairing soldered joints	
15.2	Plastic small outline packages	
15.2.1	By wave	
15.2.2	By solder paste reflow	
15.2.3	Repairing soldered joints (by hand-held soldering iron or pulse-heated solder tool)	
16	DEFINITIONS	
17	LIFE SUPPORT APPLICATIONS	
18	PURCHASE OF PHILIPS I²C COMPONENTS	
		[-1.

LCD direct/duplex driver with

1 FEATURES

- Direct/duplex drive modes with up to 32/64 LCD-segment drive capability per device
- Operating supply voltage: 2.5 to 6 V
- Low power consumption
- ${ }^{2} \mathrm{C}$-bus interface
- Optimized pinning for single plane wiring
- Single-pin built-in oscillator
- Auto-incremented loading across device subaddress boundaries
- Display memory switching in direct drive mode
- May be used as $\mathrm{I}^{2} \mathrm{C}$-bus output expander
- System expansion up to 256 segments
- Power-on reset blanks display
- ${ }^{2}$ C-bus address: 01110100.

2 GENERAL DESCRIPTION

The PCF8577C is a single chip, silicon gate CMOS circuit. It is designed to drive liquid crystal displays with up to 32 segments directly, or 64 segments in a duplex configuration.

The two-line $\mathrm{I}^{2} \mathrm{C}$-bus interface substantially reduces wiring overheads in remote display applications. ${ }^{2} \mathrm{C}$-bus traffic is minimized in multiple IC applications by automatic address incrementing, hardware subaddressing and display memory switching (direct drive mode). To allow partial $V_{D D}$ shutdown the ESD protection system of the SCL and SDA pins does not use a diode connected to V_{DD}.

3 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8577CP	DIP40	plastic dual in-line package; 40 leads (600 mil)	SOT129-1
PCF8577CT	VSO40	plastic very small outline package; 40 leads	SOT158A
PCF8577CT	-	VS040 in blister tape	-
PCF8577CU/10	-	chip on film-frame-carrier (FFC)	-

4 BLOCK DIAGRAM

Fig. 1 Block diagram.

LCD direct/duplex driver with ${ }^{2}{ }^{2} \mathrm{C}$-bus interface

5 PINNING

SYMBOL	PIN	DESCRIPTION
S32 to S1	1 to 32	segments outputs
BP1	33	cascade sync input/backplane output
A2/BP2	34	hardware address line and cascade sync input/backplane output
V	35	positive supply voltage
A1	36	hardware address line input
A0/OSC	37	hardware address line and oscillator pin input
VSS	38	negative supply voltage
SCL	39	I $^{2} \mathrm{C}$-bus clock line input
SDA	40	I $^{2} \mathrm{C}$-bus data line input/output

Fig. 2 Pin configuration.

LCD direct/duplex driver with $\mathrm{I}^{2} \mathrm{C}$-bus interface

6 FUNCTIONAL DESCRIPTION

6.1 Hardware subaddress A0, A1, A2

The hardware subaddress lines A0, A1 and A2 are used to program the device subaddress for each PCF8577C connected to the $\mathrm{I}^{2} \mathrm{C}$-bus. Lines A0 and A2 are shared with OSC and BP2 respectively to reduce pin-out requirements.

1. Line $A O$ is defined as LOW (logic 0) when this pin is used for the local oscillator or when connected to $\mathrm{V}_{\text {SS }}$. Line A0 is defined as HIGH (logic 1) when connected to $V_{D D}$.
2. Line A1 must be defined as LOW (logic 0) or as HIGH (logic 1) by connection to V_{SS} or V_{DD} respectively.
3. In the direct drive mode the second backplane signal BP 2 is not used and the A2/BP2 pin is exclusively the A2 input. Line A2 is defined as LOW (logic 0) when connected to V_{SS} or, if this is not possible, by leaving it unconnected (internal pull-down). Line A2 is defined as HIGH (logic 1) when connected to V_{DD}.
4. In the duplex drive mode the second backplane signal BP2 is required and the A2 signal is undefined. In this mode device selection is made exclusively from lines A0 and A1.

6.2 Oscillator A0/OSC

The PCF8577C has a single-pin built-in oscillator which provides the modulation for the LCD segment driver outputs. One external resistor and one external capacitor are connected to the A0/OSC pin to form the oscillator (see Figs 15 and 16). For correct start-up of the oscillator after power on, the resistor and capacitor must be connected to the same $\mathrm{V}_{\mathrm{SS}} / \mathrm{V}_{\mathrm{DD}}$ as the chip. In an expanded system containing more than one PCF8577C the backplane signals are usually common to all devices and only one oscillator is required. The devices which are not used for the oscillator are put into the cascade mode by connecting the A0/OSC pin to either V_{DD} or $\mathrm{V}_{S S}$ depending on the required state for A0. In the cascade mode each PCF8577C is synchronized from the backplane signal(s).

6.3 User-accessible registers

There are nine user-accessible 1-byte registers. The first is a control register which is used to control the loading of data into the segment byte registers and to select display options. The other eight are segment byte registers, split into two banks of storage, which store the segment data. The set of even numbered segment byte registers is called BANK A. Odd numbered segment byte registers are called BANK B.

There is one slave address for the PCF8577C (see Fig.6). All addressed devices load the second byte into the control register and each device maintains an identical copy of the control byte in the control register at all times (see $\mathrm{I}^{2} \mathrm{C}$-bus protocol, Fig.7), i.e. all addressed devices respond to control commands sent on the $\mathrm{I}^{2} \mathrm{C}$-bus.

The control register is shown in more detail in Fig.3. The least-significant bits select which device and which segment byte register is loaded next. This part of the register is therefore called the Segment Byte Vector (SBV).

The upper three bits of the SBV (V5 to V3) are compared with the hardware subaddress input signals A2, A1 and A0. If they are the same then the device is enabled for loading, if not the device ignores incoming data but remains active.

The three least-significant bits of the SBV (V2 to V0) address one of the segment byte registers within the enabled chip for loading segment data.

The control register also has two display control bits. These bits are named MODE and BANK. The MODE bit selects whether the display outputs are configured for direct or duplex drive displays. The BANK bit allows the user to display BANK A or BANK B.

6.4 Auto-incremented loading

After each segment byte is loaded the SBV is incremented automatically. Thus auto-incremented loading occurs if more than one segment byte is received in a data transfer.

Since the SBV addresses both device and segment registers in all addressed chips, auto-incremented loading may proceed across device boundaries provided that the hardware subaddresses are arranged contiguously.

LCD direct/duplex driver with ${ }^{2} \mathrm{C}$-bus interface

Fig. 3 PCF8577C register organization.
\square
Fig. 4 Direct drive mode display output waveforms.

LCD direct/duplex driver with

$\mathrm{I}^{2} \mathrm{C}$-bus interface

6.5 Direct drive mode

The PCF8577C is set to the direct drive mode by loading the MODE control bit with logic 0 . In this mode only four bytes are required to store the data for the 32 segment drivers. Setting the BANK bit to logic 0 selects even bytes (BANK A), setting the BANK bit to logic 1 selects odd bytes (BANK B).

In the direct drive mode the SBV is auto-incremented by two after the loading of each segment byte register. This means that auto-incremented loading of BANK A or BANK B is possible. Either bank may be completely or partially loaded irrespective of which bank is being displayed. Direct drive output waveforms are shown in Fig. 4.

6.6 Duplex mode

The PCF8577C is set to the duplex mode by loading the MODE bit with logic 1. In this mode a second backplane signal (BP2) is needed and pin A2/BP2 is used for this; therefore A 2 and its equivalent SBV bit V 5 are undefined. The SBV auto-increments by one between loaded bytes.

All of the segment bytes are required to store data for the 32 segment drivers and the BANK bit is ignored.

Duplex mode output waveforms are shown in Fig.5.

$V_{\text {on(rms })}=0.791\left(V_{D D}-V_{S S}\right) ; V_{\text {offirms }}=0.354\left(V_{D D}-V_{S S}\right)$.
$\frac{V_{\text {on }(\mathrm{rms})}}{V_{\text {off }(\mathrm{rms})}}=2.236$

Fig. 5 Duplex mode display output waveforms.

LCD direct/duplex driver with ${ }^{2}{ }^{2} \mathrm{C}$-bus interface

6.7 Power-on reset

At power-on reset the PCF8577C resets to a defined starting condition as follows:

1. Both backplane outputs are set to V_{SS} in master mode; to 3 -state in cascade mode
2. All segment outputs are set to $V_{S S}$
3. The segment byte registers and control register are cleared
4. The $\mathrm{I}^{2} \mathrm{C}$-bus interface is initialized.

6.8 Slave address

The PCF8577C slave address is shown in Fig.6.
Before any data is transmitted on the $I^{2} \mathrm{C}$-bus, the device which should respond is addressed first. The addressing is always done with the first byte transmitted after the start procedure.

$6.9 \quad \mathrm{I}^{2} \mathrm{C}$-bus protocol

The PCF8577C ${ }^{2} \mathrm{C}$-bus protocol is shown in Fig.7.
The PCF8577C is a slave receiver and has a fixed slave address (see Fig.6). All PCF8577Cs with the same slave address acknowledge the slave address in parallel. The second byte is always the control byte and is loaded into the control register of each PCF8577C connected to the $\mathrm{I}^{2} \mathrm{C}$-bus. All addressed devices acknowledge the control byte. Subsequent data bytes are loaded into the segment registers of the selected device. Any number of data bytes may be loaded in one transfer and in an expanded system rollover of the SBV from 111111 to 000000 is allowed. If a stop (P) condition is given after the control byte acknowledge the segment data will remain unchanged. This allows the BANK bit to be toggled without chariging the segment register contents. During loading of segment data only the selected PCF8577C gives an acknowledge. Loading is terminated by generating a stop (P) condition.

Fig. 6 PCF8577C slave address.

LCD direct/duplex driver with
$\mathrm{I}^{2} \mathrm{C}$-bus interface

6.10 Display memory mapping

The mapping between the eight segment registers and the segment outputs S 1 to S 32 is given in Tables 1 and 2 .
Since only one register bit per segment is needed in the direct drive mode, the BANK bit allows swapping of display information. If BANK is set to logic 0 even bytes (BANK A) are displayed; if BANK is set to logic 1 odd bytes (BANK B) are displayed. BP1 is always used for the backplane output in the direct drive mode. In duplex mode even bytes (BANK A) correspond to backplane 1 (BP1) and odd bytes (BANK B) correspond to backplane 2 (BP2).

Table 1 Segment byte-segment driver mapping in direct drive mode

MODE	BANK	\mathbf{V} $\mathbf{2}$	\mathbf{V} $\mathbf{1}$	\mathbf{V} $\mathbf{0}$	SEGMENT/ BIT/ REGISTER	MSB $\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	LSB $\mathbf{0}$	BACK- PLANE
0	0	0	0	0	0	S 8	S 7	S 6	S 5	S 4	S 3	S 2	S 1	BP 1
0	1	0	0	1	1	S 8	S 7	S 6	S 5	S 4	S 3	S 2	S 1	BP 1
0	0	0	1	0	2	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S 9	BP 1
0	1	0	1	1	3	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S 9	BP 1
0	0	1	0	0	4	S 24	S 23	S 22	S 21	S 20	S 19	S 18	S 17	BP 1
0	1	1	0	1	5	S 24	S 23	S 22	S 21	S 20	S 19	S 18	S 17	BP 1
0	0	1	1	0	6	S 32	S 31	S 30	S 29	S 28	S 27	S 26	S 25	BP 1
0	1	1	1	1	7	S 32	S 31	S 30	S 29	S 28	S 27	S 26	S 25	BP 1

Mapping example: bit 0 of register 7 controls the LCD segment S25 if BANK bit is a logic 1.
Table 2 Segment byte-segment driver mapping in duplex mode

MODE	BANK ${ }^{(1)}$	\mathbf{V}	$\mathbf{2}$	$\mathbf{1}$										
$\mathbf{1}$	\mathbf{V}													
$\mathbf{0}$	SEGMENT/ BIT/ REGISTER	MSB $\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	LSB $\mathbf{0}$	BACK- PLANE				
1	X	0	0	0	0	S 8	S 7	S 6	S 5	S 4	S 3	S 2	S 1	BP 1
1	X	0	0	1	1	S 8	S 7	S 6	S 5	S 4	S 3	S 2	S 1	BP 2
1	X	0	1	0	2	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S 9	BP 1
1	X	0	1	1	3	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S 9	BP 2
1	X	1	0	0	4	S 24	S 23	S 22	S 21	S 20	S 19	S 18	S 17	BP 1
1	X	1	0	1	5	S 24	S 23	S 22	S 21	S 20	S 19	S 18	S 17	BP 2
1	X	1	1	0	6	S 32	S 31	S 30	S 29	S 28	S 27	S 26	S 25	BP 1
1	X	1	1	1	7	S 32	S 31	S 30	S 29	S 28	S 27	S 26	S 25	BP 2

Note

1. Where $X=$ don't care.

Mapping example: bit 7 of register 5 controls the LCD segment S24/BP2.

LCD direct/duplex driver with ${ }^{12}$ ²-bus interface

PCF8577C

7 CHARACTERISTICS OF THE ${ }^{2} \mathrm{C}$-BUS

The $1^{2} \mathrm{C}$-bus is for 2 -way, 2 -line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the $\mathrm{I}^{2} \mathrm{C}$-bus is not busy.

7.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

7.2 Start and stop conditions

Both data and clock lines remain HIGH when the $\mathrm{I}^{2} \mathrm{C}$-bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

7.3 System configuration

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

7.4 Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the $\mathrm{I}^{2} \mathrm{C}$-bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, set-up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 8 Bit transfer.

LCD direct/duplex driver with

Fig. 9 Definition of the start and stop conditions.

Fig. 10 System configuration.

Fig. 11 Acknowledgement on the $1^{2} \mathrm{C}$-bus.

LCD direct/duplex driver with
${ }^{2}$ ² C-bus interface

8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage		-0.5	+8.0	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage on pin		-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\mathrm{DD}} ; \mathrm{I}_{\mathrm{SS}}$	V_{DD} or $\mathrm{V}_{\text {SS }}$ current		-50	+50	mA
I_{I}	DC input current		-20	+20	mA
I_{O}	DC output current		-25	+25	mA
$\mathrm{P}_{\text {tot }}$	power dissipation per package	note 1	-	500	mW
P_{O}	power dissipation per output		-	100	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$

Note

1. Reduce by $7.7 \mathrm{~mW} / \mathrm{K}$ when $\mathrm{T}_{\mathrm{amb}}>60^{\circ} \mathrm{C}$.

9 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe it is desirable to take normal precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under "Handling MOS Devices".

10 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
Supply						
V_{DD}	supply voltage		2.5	-	6	V
I_{DD}	supply current for non-specified inputs at $V_{D D}$ or V_{ss}	$\begin{aligned} & \text { no load; } \mathrm{fSCL}=100 \mathrm{kHz} ; \\ & \mathrm{R}_{\text {osc }}=1 \mathrm{M} \Omega ; \\ & \mathrm{C}_{\text {osc }}=680 \mathrm{pF} \\ & \hline \end{aligned}$		50	125	$\mu \mathrm{A}$
		$\begin{array}{\|l} \hline \text { no load; } f_{\mathrm{scL}}=0 ; \\ \mathrm{R}_{\mathrm{osc}}=1 \mathrm{M} \Omega ; \\ \mathrm{C}_{\mathrm{osc}}=680 \mathrm{pF} \\ \hline \end{array}$	-	25	75	$\mu \mathrm{A}$
		$\begin{aligned} & \text { no load; } f_{\mathrm{sCL}}=0 ; \\ & \mathrm{R}_{\mathrm{osc}}=1 \mathrm{M} \Omega ; \\ & \mathrm{C}_{\mathrm{osc}}=680 \mathrm{pF} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	-	25	40	$\mu \mathrm{A}$
		no load; $\mathrm{f}_{\mathrm{SCL}}=0$; direct mode; $\mathrm{AO} / \mathrm{OSC}=\mathrm{V}_{\mathrm{DD}}$; $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	-	10	20	$\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	power-on reset level	note 2	-	1.1	2.0	V
Input A0						
$\mathrm{V}_{\text {IL(AO) }}$	LOW level input voltage		0	-	0.05	V
$\mathrm{V}_{\mathrm{HH}(\mathrm{AO})}$	HIGH level input voltage		$\mathrm{V}_{\mathrm{DD}}-0.05$	-	V_{DD}	V

LCD direct/duplex driver with ${ }^{2}$ ²-bus interface

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
Input A1						
$\mathrm{V}_{\text {IL(A1) }}$	LOW level input voltage		0	-	$0.3 V_{\text {DD }}$	V
$\mathrm{V}_{\mathrm{IH}(\mathrm{A} 1)}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
Input A2						
$\mathrm{V}_{\text {IL(A2) }}$	LOW level input voltage		0	-	0.10	V
$\mathrm{V}_{\mathrm{IH}(\mathrm{A} 2)}$	HIGH level input voltage		$\mathrm{V}_{\mathrm{DD}}-0.10$	-	$\mathrm{V}_{\text {DD }}$	V
Input SCL; SDA						
$\mathrm{V}_{\text {IL }}(\mathrm{SCL}$; SDA)	LOW level input voltage		0	-	$0.3 \mathrm{~V}_{\text {DD }}$	V
$\mathrm{V}_{\text {IH(SCL; SDA }}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	6	V
C_{i}	input capacitance	note 3	-	-	7	pF
Output SDA						
l L	LOW level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3	-	-	mA
A1; SCL; SDA						
$\mathrm{L}_{\mathrm{L} 1}$	leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	-1	-	+1	$\mu \mathrm{A}$
A2/BP2; BP1						
LL2	leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	-5	-	+5	$\mu \mathrm{A}$
A2/BP2						
I_{pd}	pull-down current	$V_{1}=V_{D D}$	-5	-1.5	-	$\mu \mathrm{A}$
A0/OSC						
LL3	leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$	-1	-	-	$\mu \mathrm{A}$
Oscillator						
IOSC	start-up current	$V_{1}=V_{S S}$	-	1.2	5	$\mu \mathrm{A}$
LCD outputs						
V_{DC}	DC component of LCD driver		-	± 20	-	mV
lol1	LOW level segment output current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V} ; \\ & \text { note } 4 \end{aligned}$	0.3	-	-	mA
$\mathrm{I}_{\mathrm{OH} 1}$	HIGH level segment output current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.8 \mathrm{~V} ; \text { note } 4 \\ & \hline \end{aligned}$	-	-	-0.3	mA
R_{BP}	backplane output resistance (BP1; BP2)	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{SS}}$ or V_{DD} or $1 / 2\left(V_{S S}+V_{D D}\right)$; note 5	-	0.4	5	k ת

Notes

1. Typical conditions: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. Resets all logic when $V_{D D}<V_{P O R}$.
3. Periodically sampled, not 100% tested.
4. Outputs measured one at a time.
5. Outputs measured one at a time; $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{I}_{\text {oad }}=100 \mu \mathrm{~A}$.

LCD direct/duplex driver with

${ }^{2}$ ² C -bus interface

11 AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $85^{\circ} \mathrm{C}$; unless otherwise specified. All the timing values are valid within the operating supply voltage and ambient temperature range and refer to $\mathrm{V}_{\text {IL }}$ and V_{IH} with an input voltage swing of $\mathrm{V}_{\text {SS }}$ to V_{DD}.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
$\mathrm{f}_{\mathrm{LCD}}$	display frequency	$\mathrm{C}_{\mathrm{OSC}}=680 \mathrm{pF} ; \mathrm{R}_{\text {OSc }}=1 \mathrm{M} \Omega$	65	90	120	Hz
t_{BS}	driver delays with test loads	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	20	100	$\mu \mathrm{~S}$

$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		-	-	100	kHz
tsw	tolerable spike width on $\mathrm{I}^{2} \mathrm{C}$-bus	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	-	-	100	ns
$\mathrm{t}_{\text {BuF }}$	$1^{2} \mathrm{C}$-bus free time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STA	START condition set-up time		4.0	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD} ; \text { STA }}$	START condition hold time		4.0	-	-	$\mu \mathrm{s}$
tLow	SCL LOW time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time		4.0	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time		-	-	1.0	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time		-	-	0.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {Su; }}$ DAT	data set-up time		250	-	-	ns
${ }_{\text {thd; }}$ DAT	data hold time		0	-	-	ns
tsu;sto	STOP condition set-up time		4.0	-	-	$\mu \mathrm{s}$

Note

1. Typical conditions: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

MGA730

Fig. 12 Test loads.

LCD direct/duplex driver with
${ }^{2}$ ² C -bus interface

Fig. 13 Driver timing waveforms.

Fig. $14 I^{2} \mathrm{C}$-bus timing diagram; rise and fall times refer to V_{IL} and V_{IH}.

NOIL*WYOANI NOIIVOITdd ZL
Fig. 15 Direct display driver; expansion to 256 segments using eight PCF8577Cs
458

(1)

Fig. 16 Duplex display; expansion to 2×128 segments using four PCF8577Cs.

LCD direct/duplex driver with
 ${ }^{2}$ ²-bus interface

MODE bit must always be set to logic 0 (direct drive).
BANK switching is permitted.
BP1 must always be connected to $\mathrm{V}_{S S}$ and $A 0 / O S C$ must be connected to either V_{DD} or V_{SS} (no LCD modulation).
Fig. 17 Use of PCF8577C as a 32 -bit output expander in $\mathrm{I}^{2} \mathrm{C}$-bus application.

LCD direct/duplex driver with
 ${ }^{2}{ }^{2} \mathrm{C}$-bus interface

13 CHIP DIMENSIONS AND BONDING PAD LOCATIONS

Chip area $=4.62 \mathrm{~mm}^{2}$.
Thickness $=381 \pm 25 \mu \mathrm{~m}$.
n-substrate (back) connected to $V_{D D}$.
Bonding pad dimensions $=110 \mu \mathrm{~m} \times 110 \mu \mathrm{~m}$.

Fig. 18 Bonding pad locations.

Fig. 19 Reference marks.

LCD direct/duplex driver with

${ }^{2}$ ² C -bus interface

Table 3 Bonding pad locations (dimensions in $\mu \mathrm{m}$)
All x and y co-ordinates are referenced to bottom left corner, see Fig.18.

SIGNAL	PAD POSITION CENTRED	
	\mathbf{x}	\mathbf{y}
S32	-86	941
S31	-257	941
S30	-428	941
S29	-599	941
S28	-836	941
S27	-836	769
S26	-836	598
S25	-836	427
S24	-836	256
S23	-836	85
S22	-836	-86
S21	-836	-257
S20	-836	-428
S19	-836	-599
S18	-836	-770
S17	-836	-941
S16	-599	-941
S15	-428	-941
S14	-257	-941
S13	-86	-941
S12	85	-941
S11	256	-941

SIGNAL	PAD POSITION CENTRED	
	x	y
S10	427	-941
S9	598	-941
S8	836	-941
S7	836	-770
S6	836	-599
S5	836	-428
S4	836	-257
S3	836	-86
S2	836	85
S1	836	256
BP1	836	427
A2/BP2	836	598
$V_{D D}$	836	769
A1	836	941
A0/OSC	598	941
$\mathrm{V}_{\text {SS }}$	427	941
SCL	256	941
SDA	85	941
Recpats		
C	-586	-699
F	-580	663

LCD row/column driver for dot matrix graphic displays

CONTENTS

1 FEATURES
2 APPLICATIONS
3 GENERAL DESCRIPTION
4 ORDERING INFORMATION
5 BLOCK DIAGRAM
6 PINNING
7 FUNCTIONAL DESCRIPTION
7.1 Mixed mode
7.2 Row mode
7.3 Multiplexed LCD bias generation
7.4 Power-on reset
7.5 Internal clock
7.6 External clock
$7.7 \quad$ Timing generator
7.8 Row/column drivers
7.9 Display mode controller
7.10 Display RAM
7.11 Data pointer
7.12 Subaddress counter
$7.13 \quad I^{2} \mathrm{C}$-bus controller
7.14 Input filters
7.15 RAM access
7.16 Display control
7.17 TEST pin
$8 \quad \mathrm{I}^{2} \mathrm{C}$-BUS PROTOCOL
8.1 Command decoder

9 CHARACTERISTICS OF THE I²C-BUS
9.1 Bit transfer
9.2 Start and stop conditions
9.3 System configuration
9.4 Acknowledge

10 LIMITING VALUES
11 HANDLING
12 DC CHARACTERISTICS
13 AC CHARACTERISTICS
14 APPLICATION INFORMATION
15 CHIP DIMENSIONS AND BONDING PAD LOCATIONS

16
17 PACKAGE OUTLINE
18.1 Introduction
18.2 Reflow soldering
18.3 Wave soldering
18.3.1 LQFP
18.3.2 VSO
18.3.3 Method (LQFP and VSO)
18.4 Repairing soldered joints

19
20
21

SOLDERING

DEFINITIONS
LIFE SUPPORT APPLICATIONS

PURCHASE OF PHILIPS $I^{2} \mathrm{C}$ COMPONENTS

LCD row/column driver for dot matrix

graphic displays

1 FEATURES

- Single chip LCD controller/driver
- Stand-alone or may be used with up to 32 PCF8579s (40960 dots possible)
- 40 driver outputs, configurable as $32 / 8,24 / 16,16 / 24$ or $8 / 32$ rows/columns
- Selectable multiplex rates; $1: 8,1: 16,1: 24$ or $1: 32$
- Externally selectable bias configuration, 5 or 6 levels
- 1280-bit RAM for display data storage and scratch pad
- Display memory bank switching
- Auto-incremented data loading across hardware subaddress boundaries (with PCF8579)
- Provides display synchronization for PCF8579
- On-chip oscillator, requires only 1 external resistor
- Power-on reset blanks display
- Logic voltage supply range 2.5 to 6 V
- Maximum LCD supply voltage 9 V
- Low power consumption
- ${ }^{2} \mathrm{C}$-bus interface
- TTLCMOS compatible
- Compatible with most microcontrollers
- Optimized pinning for single plane wiring in multiple device applications (with PCF8579)
- Space saving 56 -lead plastic mini-pack and 64 pin quad flat pack
- Compatible with chip-on-glass technology.

2 APPLICATIONS

- Automotive information systems
- Telecommunication systems
- Point-of-sale terminals
- Computer terminals
- Instrumentation.

3 GENERAL DESCRIPTION

The PCF8578 is a low power CMOS LCD row/column driver, designed to drive dot matrix graphic displays at multiplex rates of $1: 8,1: 16,1: 24$ or $1: 32$. The device has 40 outputs, of which 24 are programmable, configurable as $32 / 8,24 / 16,16 / 24$ or $8 / 32$ rows/columns. The PCF8578 can function as a stand-alone LCD controller/driver for use in small systems, or for larger systems can be used in conjunction with up to 32 PCF8579s for which it has been optimized. Together these two devices form a general purpose LCD dot matrix driver chip set, capable of driving displays of up to 40960 dots. The PCF8578 is compatible with most microcontrollers and communicates via a two-line bidirectional bus ($1^{2} \mathrm{C}$-bus). Communication overheads are minimized by a display RAM with auto-incremented addressing and display bank switching.

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8578T	VSO56	plastic very small outline package; 56 leads	SOT190-1
PCF8578U7	-	chip with bumps on tape	-
PCF8578H	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4 \mathrm{~mm}$	SOT314-2

LCD row/column driver for dot matrix graphic displays

5 BLOCK DIAGRAM

(1) Operates at LCD voltage levels, all other blocks operate at logic levels.

The pin numbers given in parenthesis refer to the LQFP64 package.
Fig. 1 Block diagram.

LCD row/column driver for dot matrix graphic displays

6 PINNING

SYMBOL	PIN		DESCRIPTION
	VSO56	LQFP64	
SDA	1	7	$1^{2} \mathrm{C}$-bus serial data input/output
SCL	2	8	$1^{2} \mathrm{C}$-bus serial clock input
$\overline{\text { SYNC }}$	3	9	cascade synchronization output
CLK	4	10	external clock input/output
$\mathrm{V}_{\text {SS }}$	5	11	ground (logic)
TEST	6	12	test pin (connect to $\mathrm{V}_{\text {SS }}$)
SAO	7	13	$1^{2} \mathrm{C}$-bus slave address input (bit 0)
OSC	8	16	oscillator input
V_{DD}	9	20	positive supply voltage
V_{2} to V_{5}	10 to 13	21 to 24	LCD bias voltage inputs
V $\mathrm{V}_{\text {LCD }}$	14	25	LCD supply voltage
n.c.	15, 16	$\begin{aligned} & 14,15,17 \text { to } 19, \\ & 26 \text { to } 28,36,47 \end{aligned}$	not connected
C39 to C32	17 to 24	29 to 35, 37	LCD column driver outputs
R31/C31 to R8/C8	25 to 48	38 to 46, 48 to 62	LCD row/column driver outputs
R7 to R0	49 to 56	63, 64, 1 to 6	LCD row driver outputs

$\text { SDA } 1$	U	56 Ro
SCL 2		55 R 1
$\overline{\text { SYNC }} 3$		54 R2
CLK 4		53 R3
$\mathrm{v}_{\text {SS }} 5$		52 R 4
test 6		51 R5
SA0 7		50 R 6
Osc 8		49 R 7
$\mathrm{V}_{\mathrm{DD}} 9$		$48 \mathrm{R8} / \mathrm{C8}$
$\mathrm{v}_{2} 10$		$47 \mathrm{Rg} / \mathrm{C9}$
$\mathrm{v}_{3} 11$		46 R10/C10
$\mathrm{v}_{4} 12$		45 R11/C11
$v_{5} 13$		(44) R12/C12
$\mathrm{v}_{\text {LCD }} 14$		43 R13/C13
n.c. 15	PCF8578	42 R14/C14
n.c. 16		41 R15/C15
С39 17		40 R16/C16
С38 18		39 R17/C17
С37 19		$38 \mathrm{R18/C18}$
С36 20		$37 \mathrm{R} 19 / \mathrm{C} 19$
C35 21		$36 \mathrm{Rz0} / \mathrm{C} 20$
C34 22		$35 \mathrm{R} 21 / \mathrm{C} 21$
С33 23		(34) R22/C22
C32 24		$33 \mathrm{R23/C23}$
R31/C31 25		32 R24/C24
R30/C30 26		$31 \mathrm{R} 25 / \mathrm{C} 25$
R29/C29 27		30 R26/C26
R28/128 28		29 R27/C27

Fig. 2 Pin configuration (VSO56).

LCD row/column driver for dot matrix graphic displays

Fig. 3 Pin configuration (LQFP64).

LCD row/column driver for dot matrix graphic displays

PCF8578

7 FUNCTIONAL DESCRIPTION

The PCF8578 row/column driver is designed for use in one of three ways:

- Stand-alone row/column driver for small displays (mixed mode)
- Row/column driver with cascaded PCF8579s (mixed mode)
- Row driver with cascaded PCF8579s (mixed mode).

7.1 Mixed mode

In mixed mode, the device functions as both a row and column driver. It can be used in small stand-alone applications, or for larger displays with up to 15 PCF8579s (31 PCF8579s when two slave addresses are used). See Table 1 for common display configurations.

7.2 Row mode

In row mode, the device functions as a row driver with up to 32 row outputs and provides the clock and synchronization signals for the PCF8579. Up to 16
PCF8579s can normally be cascaded (32 when two slave addresses are used).

Timing signals are derived from the on-chip oscillator, whose frequency is determined by the value of the resistor connected between OSC and $\mathrm{V}_{\text {SS }}$.

Commands sent on the $I^{2} \mathrm{C}$-bus from the host microcontroller set the mode (row or mixed), configuration (multiplex rate and number of rows and columns) and control the operation of the device. The device may have one of two slave addresses. The only difference between these slave addresses is the least significant bit, which is set by the logic level applied to SAO. The PCF8578 and PCF8579 also have subaddresses. The subaddress of the PCF8578 is only defined in mixed mode and is fixed at 0. The RAM may only be accessed in mixed mode and data is loaded as described for the PCF8579.

Bias levels may be generated by an external potential divider with appropriate decoupling capacitors. For large displays, bias sources with high drive capability should be used. A typical mixed mode system operating with up to 15 PCF8579s is shown in Fig. 5 (a stand-alone system would be identical but without the PCF8579s).

Table 1 Possible displays configurations

APPLICATION	MULTIPLEX RATE	MIXED MODE		ROW MODE		TYPICAL APPLICATIONS
		ROWS	COLUMNS	ROWS	COLUMNS	
Stand alone	1:8	8	32	-	-	small digital or alphanumerical displays
	1:16	16	24	-	-	
	1:24	24	16	-	-	
	1:32	32	8	-	-	
With PCF8579	1:8	$8^{(1)}$	$632^{(1)}$	$8 \times 44^{(2)}$	$640^{(2)}$	alphanumeric displays and dot matrix graphic displays
	1:16	$16^{(1)}$	$624{ }^{(1)}$	$16 \times 2^{(2)}$	$640^{(2)}$	
	1:24	$24{ }^{(1)}$	$616{ }^{(1)}$	$24^{(2)}$	$640^{(2)}$	
	1:32	$32^{(1)}$	$608{ }^{(1)}$	$24^{(2)}$	$640^{(2)}$	

Notes

1. Using 15 PCF8579s.
2. Using 16 PCF8579s.

LCD row/column driver for dot matrix graphic displays

7.3 Multiplexed LCD bias generation

The bias levels required to produce maximum contrast depend on the multiplex rate and the LCD threshold voltage $\left(V_{t h}\right) . V_{\text {th }}$ is typically defined as the RMS voltage at which the LCD exhibits 10% contrast. Table 2 shows the optimum voltage bias levels for the PCF8578 as functions of $\mathrm{V}_{\mathrm{op}}\left(\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}\right)$, together with the discrimination ratios (D) for the different multiplex rates. A practical value for $\mathrm{V}_{\text {op }}$ is obtained by equating $\mathrm{V}_{\text {off(}(\mathrm{mss})}$ with $\mathrm{V}_{\text {th }}$. Figure 4 shows the first 4 rows of Table 2 as graphs. Table 3 shows the relative values of the resistors required in the configuration of Fig. 5 to produce the standard multiplex rates.

Table 2 Optimum LCD voltages

PARAMETER	MULTIPLEX RATE			
	$\mathbf{1 : 8}$	$\mathbf{1 : 1 6}$	$\mathbf{1 : 2 4}$	$\mathbf{1 : 3 2}$
$\frac{V_{2}}{V_{\text {op }}}$	0.739	0.800	0.830	0.850
$\frac{V_{3}}{V_{\text {op }}}$	0.522	0.600	0.661	0.700
$\frac{V_{4}}{V_{\text {op }}}$	0.478	0.400	0.339	0.300
$\frac{V_{5}}{V_{\text {op }}}$	0.261	0.200	0.170	0.150
$V_{\text {off }(\mathrm{rms})}$ $V_{\text {op }}$	0.297	0.245	0.214	0.193
$V_{\text {on }}(\mathrm{rms})$ $V_{\text {op }}$	0.430	0.316	0.263	0.230
$D=\frac{V_{\text {on }(r m s)}}{V_{\text {off }(\mathrm{rms})}}$	1.447	1.291	1.230	1.196
$V_{\text {op }}$ $V_{\text {th }}$	3.370	4.080	4.680	5.190

Table 3 Multiplex rates and resistor values for Fig. 5

RESISTORS	MULTIPLEX RATE (n)	
	$\mathbf{n}=\mathbf{8}$	$\mathbf{n}=\mathbf{1 6 , 2 4 , 3 2}$
$R 1$	R	R
$R 2$	$(\sqrt{n-2}) R$	R
$R 3$	$(3-\sqrt{n}) R$	$(\sqrt{n-3}) R$

7.4 Power-on reset

At power-on the PCF8578 resets to a defined starting condition as follows:

1. Display blank
2. 1:32 multiplex rate, row mode
3. Start bank, 0 selected
4. Data pointer is set to X, Y address 0,0
5. Character mode
6. Subaddress counter is set to 0
7. $I^{2} \mathrm{C}$-bus interface is initialized.

Data transfers on the $\mathrm{I}^{2} \mathrm{C}$-bus should be avoided for 1 ms following power-on, to allow completion of the reset action.

Fig. $4 \quad V_{\text {bias }} / V_{\text {op }}$ as a function of the multiplex rate.

Fig. 5 Typical mixed mode configuration.

LCD row/column driver for dot matrix graphic displays

Fig. 6 LCD row/column waveforms.

LCD row/column driver for dot matrix

Fig. 7 LCD drive mode waveforms for 1:8 multiplex rate.

LCD row/column driver for dot matrix graphic displays

Fig. 8 LCD drive mode waveforms for 1:16 multiplex rate.

LCD row/column driver for dot matrix graphic displays

7.5 Internal clock

The clock signal for the system may be generated by the internal oscillator and prescaler. The frequency is determined by the value of the resistor $\mathrm{R}_{\mathrm{Osc}}$, see Fig.9. For normal use a value of $330 \mathrm{k} \Omega$ is recommended. The clock signal, for cascaded PCF8579s, is output at CLK and has a frequency $1 / 6$ (multiplex rate $1: 8,1: 16$ and $1: 32$) or $1 / 8$ (multiplex rate $1: 24$) of the oscillator frequency.

To avoid capacitive coupling, which could adversely affect oscillator stability, R Rosc should be placed as closely as possible to the OSC pin. If this proves to be a problem, a filtering capacitor may be connected in parallel to R Rosc.

Fig. 9 Oscillator frequency as a function of external oscillator resistor, Rosc.

7.6 External clock

If an external clock is used, OSC must be connected to $V_{D D}$ and the external clock signal to CLK. Table 4 summarizes the nominal CLK and $\overline{\text { SYNC }}$ frequencies.

7.7 Timing generator

The timing generator of the PCF8578 organizes the internal data flow of the device and generates the LCD frame synchronization pulse $\overline{S Y N C}$, whose period is an integer multiple of the clock period. In cascaded applications, this signal maintains the correct timing relationship between the PCF8578 and PCF8579s in the system.

7.8 Row/column drivers

Outputs R0 to R7 and C32 to C39 are fixed as row and column drivers respectively. The remaining 24 outputs R8/C8 to R31/C31 are programmable and may be configured (in blocks of 8) to be either row or column drivers. The row select signal is produced sequentially at each output from R0 up to the number defined by the multiplex rate (see Table 1). In mixed mode the remaining outputs are configured as columns. In row mode all programmable outputs (R8/C8 to R31/C31) are defined as row drivers and the outputs C32 to C39 should be left open-circuit.
Using a 1: 16 multiplex rate, two sets of row outputs are driven, thus facilitating split-screen configurations, i.e. a row select pulse appears simultaneously at R0 and R16/C16, R1 and R17/C17 etc. Similarly, using a multiplex rate of $1: 8$, four sets of row outputs are driven simultaneously. Driver outputs must be connected directly to the LCD. Unused outputs should be left open-circuit. In 1:8R0 to R7 are rows; in 1:16 R0 to R15/C15 are rows; in 1:24 R0 to R23/C23 are rows; in 1:32 R0 to R31/C31 are rows.

Table 4 Signal frequencies required for nominal 64 Hz frame frequency; note 1.

OSCILLATOR FREQUENCY $\mathbf{f O S c}^{(2)}(\mathbf{H z})$	FRAME FREQUENCY $\mathbf{f S Y N C}^{(H z)}$	MULTIPLEX RATE (n)	DIVISION RATIO	CLOCK FREQUENCY $\mathbf{f}_{\mathbf{C L K}}(\mathrm{Hz})$
12288	64	$1: 8,1: 16,1: 32$	6	2048
12288	64	$1: 24$	8	1536

Nutes

1. A clock signal must always be present, otherwise the LCD may be frozen in a DC state.
2. $R_{\text {OSC }}=330 \mathrm{k} \Omega$.

LCD row/column driver for dot matrix graphic displays

7.9 Display mode controller

The configuration of the outputs (row or column) and the selection of the appropriate driver waveforms are controlled by the display mode controller.

7.10 Display RAM

The PCF8578 contains a 32×40-bit static RAM which stores the display data. The RAM is divided into 4 banks of 40 bytes ($4 \times 8 \times 40$ bits). During RAM access, data is transferred to/from the RAM via the $I^{2} \mathrm{C}$-bus. The first eight columns of data (0 to 7) cannot be displayed but are available for general data storage and provide compatibility with the PCF8579. There is a direct correspondence between X-address and column output number.

7.11 Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows an individual data byte or a series of data bytes to be written into, or read from, the display RAM, controlled by commands sent on the $\mathrm{I}^{2} \mathrm{C}$-bus.

7.12 Subaddress counter

The storage and retrieval of display data is dependent on the content of the subaddress counter. Storage takes place only when the contents of the subaddress counter agree with the hardware subaddress. The hardware subaddress of the PCF8578, valid in mixed mode only, is fixed at 0000.

$7.13 \quad I^{2} \mathrm{C}$-bus controller

The $\mathrm{I}^{2} \mathrm{C}$-bus controller detects the $\mathrm{I}^{2} \mathrm{C}$-bus protocol, slave address, commands and display data bytes. It performs the conversion of the data input (serial-to-parallel) and the data output (parallel-to-serial). The PCF8578 acts as an ${ }^{2}$ ²-bus slave transmitter/receiver in mixed mode, and as a slave receiver in row mode. A slave device cannot control bus communication.

7.14 Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

7.15 RAM access

RAM operations are only possible when the PCF8578 is in mixed mode.

In this event its hardware subaddress is internally fixed at 0000 and the hardware subaddresses of any PCF8579 used in conjunction with the PCF8578 must start at 0001.

There are three RAM ACCESS modes:

- Character
- Half-graphic
- Full-graphic.

These modes are specified by bits G1 to G0 of the RAM ACCESS command. The RAM ACCESS command controls the order in which data is written to or read from the RAM (see Fig.10).

To store RAM data, the user specifies the location into which the first byte will be loaded (see Fig.11):

- Device subaddress (specified by the DEVICE SELECT command)
- RAM X-address (specified by the LOAD X-ADDRESS command)
- RAM bank (specified by bits Y1 and Y0 of the RAM ACCESS command).

Subsequent data bytes will be written or read according to the chosen RAM ACCESS mode. Device subaddresses are automatically incremented between devices until the last device is reached. If the last device has subaddress 15 , further display data transfers will lead to a wrap-around of the subaddress to 0 .

7.16 Display control

The display is generated by continuously shifting rows of RAM data to the dot matrix LCD via the column outputs. The number of rows scanned depends on the multiplex rate set by bits M 1 and M 0 of the SET MODE command.

The display status (all dots on/off and normal/inverse video) is set by bits E1 and E0 of the SET MODE command. For bank switching, the RAM bank corresponding to the top of the display is set by bits B1 and B0 of the SET START BANK command. This is shown in Fig.12. This feature is useful when scrolling in alphanumeric applications.

7.17 TEST pin

The TEST pin must be connected to V_{SS}.

Fig. 10 RAM ACCESS mode.

Fig. 11 Example of commands specifying initial data byte RAM locations.

LCD row/column driver for dot matrix graphic displays

PCF8578

Fig. 12 Relationship between display and SET START BANK; 1:32 multiplex rate and start bank = 2 .

LCD row/column driver for dot matrix graphic displays

$8 \quad I^{2} C-B U S ~ P R O T O C O L$

Two 7-bit slave addresses (0111100 and 0111101) are reserved for both the PCF8578 and PCF8579. The least significant bit of the slave address is set by connecting input SA0 to either $0\left(\mathrm{~V}_{\mathrm{SS}}\right)$ or $1\left(\mathrm{~V}_{\mathrm{DD}}\right)$. Therefore, two types of PCF8578 or PCF8579 can be distinguished on the same $\mathrm{I}^{2} \mathrm{C}$-bus which allows:

1. One PCF8578 to operate with up to 32 PCF8579s on the same ${ }^{2} \mathrm{C}$-bus for very large applications
2. The use of two types of LCD multiplex schemes on the same $\mathrm{I}^{2} \mathrm{C}$-bus.

In most applications the PCF8578 will have the same slave address as the PCF8579.

The $1^{2} \mathrm{C}$-bus protocol is shown in Fig. 13.
All communications are initiated with a start condition (S) from the $\mathrm{I}^{2} \mathrm{C}$-bus master, which is followed by the desired slave address and read/write bit. All devices with this slave address acknowledge in parallel. All other devices ignore the bus transfer.

In WRITE mode (indicated by setting the read/write bit LOW) one or more commands follow the slave address acknowledgement. The commands are also acknowledged by all addressed devices on the bus. The last command must clear the continuation bit C . After the last command a series of data bytes may follow. The acknowledgement after each byte is made only by the (A0, A1, A2 and A3) addressed PCF8579 or PCF8578 with its implicit subaddress 0 . After the last data byte has been acknowledged, the $\mathrm{I}^{2} \mathrm{C}$-bus master issues a stop condition (P).

In READ mode, indicated by setting the read/write bit HIGH, data bytes may be read from the RAM following the slave address acknowledgement. After this acknowledgement the master transmitter becomes a master receiver and the PCF8578 becomes a slave transmitter. The master receiver must acknowledge the reception of each byte in turn. The master receiver must signal an end of data to the slave transmitter, by not generating an acknowledge on the last byte clocked out of the slave. The slave transmitter then leaves the data line HIGH, enabling the master to generate a stop condition (P).

Display bytes are written into, or read from, the RAM at the address specified by the data pointer and subaddress counter. Both the data pointer and subaddress counter are automatically incremented, enabling a stream of data to be transferred either to, or from, the intended devices.

In multiple device applications, the hardware subaddress pins of the PCF8579s (A0 to A3) are connected to V_{SS} or $V_{D D}$ to represent the desired hardware subaddress code. If two or more devices share the same slave address, then each device must be allocated a unique hardware subaddress.

LCD row/column driver for dot matrix graphic displays

(b)

Fig. 13 (a) Master transmits to slave receiver (WRITE mode); (b) Master reads after sending command string (WRITE commands; READ data); (c) Master reads slave immediately after sending slave address (READ mode).

LCD row/column driver for dot matrix graphic displays

8.1 Command decoder

The command decoder identifies command bytes that arrive on the $\mathrm{I}^{2} \mathrm{C}$-bus. The most-significant bit of a command is the continuation bit C (see Fig.14). When this bit is set, it indicates that the next byte to be transferred will also be a command. If the bit is reset, it indicates the conclusion of the command transfer. Further bytes will be regarded as display data. Commands are transferred in WRITE mode only.
The five commands available to the PCF8578 are defined in Tables 5 and 6.

C=0; last command.
$C=1$; commands continue.
Fig. 14 General information of command byte.

Table 5 Summary of commands

COMMAND	OPCODE $^{(1)}$						DESCRIPTION		
SET MODE	C	1	0	D	D	D	D	D	multiplex rate, display status, system type
SET START BANK	C	1	1	1	1	1	D	D	defines bank at top of LCD
DEVICE SELECT	C	1	1	0	D	D	D	D	defines device subaddress
RAM ACCESS	C	1	1	1	D	D	D	D	graphic mode, bank select (D D D D ≥ 12 is not allowed; see SET START BANK opcode)
LOAD X-ADDRESS	C	0	D	D	D	D	D	D	0 to 39

Note

1. $C=$ command continuation bit. $D=$ may be a logic 1 or 0 .

LCD row/column driver for dot matrix graphic displays

Table 6 Definition of PCF8578/PCF8579 commands

COMMAND	OPCODE									OPTIONS	DESCRIPTION
SET MODE	C		1	0	T	E	E 1	E0 M	M1 M0	see Table 7	defines LCD drive mode
										see Table 8	defines display status
										see Table 9	defines system type
SET START BANK	C		1	1	1			1 B	B1 B0	see Table 10	defines pointer to RAM bank corresponding to the top of the LCD; useful for scrolling, pseudo-motion and background preparation of new display
DEVICE SELECT	C		1	1	0	A	A3 A	A2 A	A1 A0	see Table 11	four bits of immediate data, bits A0 to A3, are transferred to the subaddress counter to define one of sixteen hardware subaddresses
RAM ACCESS	C		1	1	1	G	G1	GO Y	Y1 Y0	see Table 12	defines the auto-increment behaviour of the address for RAM access
										see Table 13	two bits of immediate data, bits YO to Y 1 , are transferred to the X -address pointer to define one of forty display RAM columns
LOAD X-ADDRESS	C		0	X5	X4		X	X2 \times	X1 X0	see Table 14	six bits of immediate data, bits X0 to X5, are transferred to the X-address pointer to define one of forty display RAM columns

LCD row/column driver for dot matrix graphic displays

Table 7 Set mode option 1

LCD DRIVE MODE		BITS	
		M0	
$1: 8$	MUX (8 rows)	0	1
$1: 16$	MUX (16 rows)	1	0
$1: 24$	MUX (24 rows)	1	1
$1: 32$	MUX (32 rows)	0	0

Table 8 Set mode option 2

DISPLAY STATUS	BITS	
	E1	E0
Blank	0	0
Normal	0	1
All segments on	1	0
Inverse video	1	1

Table 9 Set mode option 3

SYSTEM TYPE	BIT T
PCF8578 row only	0
PCF8578 mixed mode	1

Table 10 Set start bank option 1

START BANK POINTER	BITS	
	B1	B0
Bank 0	0	0
Bank 1	0	1
Bank 2	1	0
Bank 3	1	1

Table 11 Device select option 1

DESCRIPTION	BITS			
Decimal value 0 to 15	A3	A2	A1	A0

Table 12 RAM access option 1

RAM ACCESS MODE	BITS	
	G1	G0
Character	0	0
Half-graphic	0	1
Full-graphic	1	0
Not allowed (note 1)	1	1

Note

1. See opcode for SET START BANK in Table 6.

Table 13 Device select option 1

DESCRIPTION	BITS	
Decimal value 0 to 3	Y 1	Y 0

Table 14 Device select option 1

DESCRIPTION		BITS				
Decimal value 0 to 39	X 5	X 4	X 3	X 2	X 1	$\mathrm{X0}$

LCD row/column driver for dot matrix graphic displays

9 CHARACTERISTICS OF THE I ${ }^{2}$ C-BUS

The $\mathrm{I}^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL) which must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

9.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this moment will be interpreted as control signals.

9.2 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the START condition (S).
A LOW-to-HIGH transition of the data line while the clock is HIGH, is defined as the STOP condition (P).

9.3 System configuration

A device transmitting a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message flow is the 'master' and the devices which are controlled by the master are the 'slaves'.

9.4 Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each data byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter, whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal the end of a data transmission to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 15 Bit transfer.

LCD row/column driver for dot matrix graphic displays

SCL

Fig. 16 Definition of start and stop condition.

Fig. 17 System configuration.

Fig. 18 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

LCD row/column driver for dot matrix graphic displays

10 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.5	+8.0	V
$\mathrm{V}_{\text {LCD }}$	LCD supply voltage	$V_{D D}-11$	$V_{\text {DD }}$	V
V_{11}	input voltage SDA, SCL, CLK, TEST, SA0 and OSC	$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
V_{12}	input voltage V_{2} to V_{5}	$\mathrm{V}_{\text {LCD }}-0.5$	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
V_{01}	output voltage $\overline{\text { SYNC }}$ and CLK	$\mathrm{V}_{\text {SS }}-0.5$	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
V_{0}	output voltage R0 to R7, R8/C8 to R31/C31 and C32 to C39	$\mathrm{V}_{\text {LCD }}-0.5$	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
I_{1}	DC input current	-10	+10	mA
l_{0}	DC output current	-10	+10	mA
$\mathrm{I}_{\mathrm{DD}}, \mathrm{I}_{\text {SS }}, \mathrm{I}_{\text {LCD }}$	V_{DD}, $\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {LCD }}$ current	-50	+50	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation per package	-	400	mW
P_{0}	power dissipation per output	-	100	mW
$\mathrm{T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

11 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe it is desirable to take normal precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under "Handling MOS Devices".

LCD row/column driver for dot matrix graphic displays

PCF8578

12 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
$\mathrm{V}_{\text {DD }}$	supply voltage		2.5	-	6.0	V
V LCD	LCD supply voltage		$\mathrm{V}_{\mathrm{DD}}-9$	-	$\mathrm{V}_{\mathrm{DD}}-3.5$	V
$\mathrm{l}_{\mathrm{DD} 1}$	supply current external clock	$\mathrm{f}_{\text {CLK }}=2 \mathrm{kHz}$; note 1	-	6	15	$\mu \mathrm{A}$
$\mathrm{I}_{\text {DD2 }}$	supply current internal clock	R $\mathrm{OSC}=330 \mathrm{k} \Omega$	-	20	50	$\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	power-on reset level	note 2	0.8	1.3	1.8	V
Logic						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		$\mathrm{V}_{\text {SS }}$	-	$0.3 V_{\text {DD }}$	V
V_{1+}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
loL1	LOW level output current at $\overline{\text { SYNC }}$ and CLK	$\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	1	-	-	mA
${ }^{\text {OH1 }}$	HIGH level output current at SYNC and CLK	$\mathrm{V}_{\mathrm{OH}}=4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	-	-1	mA
loL2	LOW level output current at SDA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3	-	-	mA
$\mathrm{L}_{\text {L1 }}$	leakage current at SDA, SCL, $\overline{\text { SYNC, }}$ CLK, TEST and SAO	$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{S S}$	-	-	+1	mA
LL2	leakage current at OSC	$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{DD}}$	-	-	+1	$\mu \mathrm{A}$
C_{i}	input capacitance at SCL and SDA	note 3	-	-	5	pF
LCD outputs						
L/3	leakage current at V_{2} to V_{5}	$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{LCD}}$	-2	-	+2	$\mu \mathrm{A}$
$V_{D C}$	DC component of LCD drivers R0 to R7, R8/C8 to R31/C31 and C32 to C39		-	± 20	-	mV
R ${ }_{\text {Row }}$	output resistance R0 to R7 and R8/C8 to R31/C31	row mode; note 4	-	1.5	3	k Ω
R COL	output resistance R8/C8 to R31/C31 and C32 to C39	column mode; note 4	-	3	6	k Ω

Notes

1. Outputs are open; inputs at V_{DD} or $\mathrm{V}_{\mathrm{SS}} ;{ }^{2} \mathrm{C}$-bus inactive; external clock with 50% duty factor.
2. Resets all logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}}$.
3. Periodically sampled; not 100% tested.
4. Resistance measured between output terminal (R0 to R7, R8/C8 to R31/C31 and C32 to C39) and bias input (V_{2} to $\mathrm{V}_{5}, \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{LCD}}$) when the specified current flows through one output under the following conditions (see Table 2):
a) $V_{\mathrm{OP}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=9 \mathrm{~V}$.
b) Row mode, R0 to R 7 and $\mathrm{R} 8 / \mathrm{C} 8$ to $\mathrm{R} 31 / \mathrm{C} 31$: $\mathrm{V}_{2}-\mathrm{V}_{\mathrm{LCD}} \geq 6.65 \mathrm{~V} ; \mathrm{V}_{5}-\mathrm{V}_{\mathrm{LCD}} \leq 2.35 \mathrm{~V}$; $\mathrm{I}_{\mathrm{LOAD}}=150 \mu \mathrm{~A}$.
c) Column mode, R8/C8 to R31/C31 and C32 to C39: $\mathrm{V}_{3}-\mathrm{V}_{\mathrm{LCD}} \geq 4.70 \mathrm{~V} ; \mathrm{V}_{4}-\mathrm{V}_{\mathrm{LCD}} \leq 4.30 \mathrm{~V}$; $\mathrm{I}_{\mathrm{LOAD}}=100 \mu \mathrm{~A}$.

LCD row/column driver for dot matrix graphic displays

13 AC CHARACTERISTICS

All timing values are referenced to V_{H} and V_{IL} levels with an input voltage swing of V_{SS} to V_{DD}.
$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{f}_{\text {CLK1 }}$	clock frequency at multiplex rates of $1: 8,1: 16$ and $1: 32$	$\mathrm{R}_{\text {OSC }}=330 \mathrm{k}$; $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$	1.2	2.1	3.3	kHz
$\mathrm{f}_{\text {CLK2 }}$	clock frequency at multiplex rates of 1:24	$\mathrm{R}_{\mathrm{OSC}}=330 \mathrm{k}$; $\mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$	0.9	1.6	2.5	kHz
$\mathrm{t}_{\text {PSYNC }}$	$\overline{\text { SYNC }}$ propagation delay		-	-	500	ns
tplcd	driver delays	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=9 \mathrm{~V} ;$ with test loads	-	-	100	$\mu \mathrm{s}$
$1^{2} \mathrm{C}$-bus						
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		-	-	100	kHz
${ }_{\text {tsw }}$	tolerable spike width on bus		-	-	100	ns
$\mathrm{t}_{\text {buF }}$	bus free time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STA	start condition set-up time	repeated start codes only	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD; }}$ STA	start condition hold time		4.0	4.0	-	$\mu \mathrm{s}$
tow	SCL LOW time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time		4.0	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time		-	-	1	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time		-	-	0.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ DAT	data set-up time		250	-	-	ns
$\mathrm{t}_{\text {HD; DAT }}$	data hold time		0	-	-	ns
tsu;sto	stop condition set-up time		4.0	-	-	$\mu \mathrm{s}$

$\overline{\mathrm{SYNC}, \mathrm{CLK}} \mathrm{SDA}_{\mathrm{DD}}^{3.3 \mathrm{k} \Omega} 0.5 \mathrm{~V}_{\mathrm{DD}}$

C39 to C32, $\quad 1 \mathrm{nF}$
R31/C31 to R8/C8 -H1 and R7 to R0

MSA829

Fig. 19 AC test loads.

LCD row/column driver for dot matrix graphic displays

Fig. 20 Driver timing waveforms.

Fig. $211^{2} \mathrm{C}$-bus timing waveforms.

Fig. 22 Stand-alone application using 8 rows and 32 columns.

(1) Can be used for creating blinking characters.
Fig. 23 Segment driver application for up to 384 segments.

	sイejdsıp O！̧deı6
8298コつd	

Fig. 25 Split screen application with $1: 16$ multiplex rate for improved contrast.

Fig. 26 Split screen application with $1: 32$ multiplex rate.

8LG8JOd	sKe\|ds!p ग!чdeגถ

Fig. 27 Example of single plane wiring, single screen with $1: 32$ multiplex rate (PCF8578 in row driver mode).

LCD row/column driver for dot matrix graphic displays

15 CHIP DIMENSIONS AND BONDING PAD LOCATIONS

Chip area: $14.93 \mathrm{~mm}^{2}$.
Bonding pad dimensions: $120 \mu \mathrm{~m} \times 120 \mu \mathrm{~m}$.
The numbers given in the small squares refer to the pad numbers.
Fig. 28 Bonding pad locations.

LCD row/column driver for dot matrix

graphic displays

PCF8578

Table 15 Bonding pad locations (dimensions in $\mu \mathrm{m}$)
All x / y coordinates are referenced to centre of chip, see Fig.28.

PAD NUMBER	SYMBOL	x	y	PINS	
				vSO56	LQFP64
1	SDA	174	2241	1	7
2	SCL	-30	2241	2	8
3	SYNC	-234	2241	3	9
4	CLK	-468	2241	4	10
5	$\mathrm{V}_{S S}$	-726	2241	5	11
6	TEST	-1014	2241	6	12
7	SAO	-1308	2241	7	13
8	OSC	-1308	1917	8	16
9	V_{DD}	-1308	1113	9	20
10	V_{2}	-1308	873	10	21
11	V_{3}	-1308	663	11	22
12	V_{4}	-1308	459	12	23
13	V_{5}	-1308	255	13	24
14	$\mathrm{V}_{\text {LCD }}$	-1308	51	14	25
15	C39	-1308	-1149	17	29
16	C38	-1308	-1353	18	30
17	C37	-1308	-1557	19	31
18	C36	-1308	-1773	20	32
19	C35	-1308	-1995	21	33
20	C34	-1308	-2241	22	34
21	C33	-1014	-2241	23	35
22	C32	-726	-2241	24	37
23	R31/C31	-468	-2241	25	38
24	R30/C30	-234	-2241	26	39
25	R29/C29	-30	-2241	27	40
26	R28/C28	174	-2241	28	41
27	R27/C27	468	-2241	29	42
28	R26/C26	672	-2241	30	43
29	R25/C25	876	-2241	31	44
30	R24/C24	1080	-2241	32	45
31	R23/C23	1308	-2241	33	46
32	R22/C22	1308	-1977	34	48
33	R21/C21	1308	-1731	35	49
34	R20/C20	1308	-1515	36	50
35	R19/C19	1308	-1305	37	51
36	R18/C18	1308	-1101	38	52
37	R17/C17	1308	-897	39	53

LCD row/column driver for dot matrix graphic displays

PAD NUMBER	SYMBOL	\mathbf{x}	y	PINS	
				VSO56	LQFP64
38	R16/C16	1308	-693	40	54
39	R15/C15	1308	-489	41	55
40	R14/C14	1308	-285	42	56
41	R13/C13	1308	-81	43	57
42	R12/C12	1308	123	44	58
43	R11/C11	1308	351	45	59
44	R10/C10	1308	603	46	60
45	R9/C9	1308	1101	47	61
46	R8/C8	1308	1305	48	62
47	R7	1308	1515	49	63
48	R6	1308	1731	50	64
49	R5	1308	1977	51	1
50	R4	1308	2241	52	2
51	R3	1080	2241	53	3
52	R2	876	2241	54	4
53	R1	672	2241	55	5
54	R0	468	2241	56	6
-	n.c.	-	-	15, 16	$14,15,17$ to 19 , 26 to $28,36,47$

If inputs SAO and A0 to A3 are left unconnected they are internally pulled to $V_{D D}$
Fig． 29 Typical chip－on glass application（viewed from the underside of the chip）．

LCD column driver for dot matrix graphic displays

PCF8579

CONTENTS		10	LIMITING VALUES
1	FEATURES	11	HANDLING
2	APPLICATIONS	12	DC CHARACTERISTICS
3	GENERAL DESCRIPTION	13	AC CHARACTERISTICS
4	ORDERING INFORMATION	14	APPLICATION INFORMATION
5	BLOCK DIAGRAM	15	CHIP DIMENSIONS AND BONDING PAD LOCATIONS
6	PINNING	16	CHIP-ON GLASS INFORMATION
7	FUNCTIONAL DESCRIPTION	17	PACKAGE OUTLINES
7.1 7.2	Multiplexed LCD bias generation Power-on reset	18	SOLDERING
7.3	Timing generator	18.1	Introduction
7.4	Column drivers	18.2	Reflow soldering
7.5	Display RAM	18.3	Wave soldering
7.6	Data pointer	18.3.1	LQFP
7.7	Subaddress counter	18.3 .2	VSO
7.8	$1^{2} \mathrm{C}$-bus controller	18.3.3	Method (LQFP and VSO)
7.9	Input filters	18.4	Repairing soldered joints
7.10	RAM access	19	DEFINITIONS
7.11	Display control	20	LIFE SUPPORT APPLICATIONS
7.12	TEST pin	21	PURCHASE OF PHILIPS ${ }^{2} \mathrm{C}$ C COMPONENTS
8	$1^{2} \mathrm{C}$-BUS PROTOCOL		
8.1	Command decoder		
9	CHARACTERISTICS OF THE I²C-BUS		
9.1	Bit transfer		
9.2	Start and stop conditions		
9.3	System configuration		
9.4	Acknowledge		

1 FEATURES

- LCD column driver
- Used in conjunction with the PCF8578, this device forms part of a chip set capable of driving up to 40960 dots
- 40 column outputs
- Selectable multiplex rates; $1: 8,1: 16,1: 24$ or $1: 32$
- Externally selectable bias configuration, 5 or 6 levels
- Easily cascadable for large applications (up to 32 devices)
- 1280-bit RAM for display data storage
- Display memory bank switching
- Auto-incremented data loading across hardware subaddress boundaries (with PCF8578)
- Power-on reset blanks display
- Logic voltage supply range 2.5 to 6 V
- Maximum LCD supply voltage 9 V
- Low power consumption
- ${ }^{2} \mathrm{C}$-bus interface
- TTL/CMOS compatible
- Compatible with most microcontrollers
- Optimized pinning for single plane wiring in multiple device applications (with PCF8578)
- Space saving 56-lead plastic mini-pack and 64-pin plastic low profile quad flat package
- Compatible with chip-on-glass technology
- $I^{2} \mathrm{C}$-bus address: 011110 SAO.

2 APPLICATIONS

- Automotive information systems
- Telecommunication systems
- Point-of-sale terminals
- Computer terminals
- Instrumentation.

3 GENERAL DESCRIPTION

The PCF8579 is a low power CMOS LCD column driver, designed to drive dot matrix graphic displays at multiplex rates of $1: 8,1: 16,1: 24$ or $1: 32$. The device has 40 outputs and can drive 32×40 dots in a 32 row multiplexed LCD. Up to 16 PCF8579s can be cascaded and up to 32 devices may be used on the same $\mathrm{I}^{2} \mathrm{C}$-bus (using the two slave addresses). The device is optimized for use with the PCF8578 LCD row/column driver. Together these two devices form a general purpose LCD dot matrix driver chip set, capable of driving displays of up to 40960 dots. The PCF8579 is compatible with most microcontrollers and communicates via a two-line bidirectional bus (${ }^{2} \mathrm{C}$-bus). To allow partial V_{DD} shutdown the ESD protection system of the SCL and SDA pins does not use a diode connected to V_{DD}. Communication overheads are minimized by a display RAM with auto-incremented addressing and display bank switching.

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8579T	VSO56	plastic very small outline package; 56 leads	-
PCF8579U7	-	chip with bumps on tape	SOT190
PCF8579H	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4 \mathrm{~mm}$	SOT314-2

LCD column driver for dot matrix graphic displays

5 BLOCK DIAGRAM

(1) Operates at LCD voltage levels, all other blocks operate at logic levels.

The pin numbers given in parenthesis refer to the LQFP64 package.
Fig. 1 Block diagram.

LCD column driver for dot matrix graphic displays

PCF8579

6 PINNING

SYMBOL	PINS		DESCRIPTION
	VSO56	LQFP64	
SDA	1	7	$1^{2} \mathrm{C}$-bus serial data input/output
SCL	2	8	$1^{2} \mathrm{C}$-bus serial clock input
$\overline{\text { SYNC }}$	3	9	cascade synchronization input
CLK	4	10	external clock input
$\mathrm{V}_{\text {SS }}$	5	11	ground (logic)
TEST	6	12	test pin (connect to V_{SS})
SAO	7	13	$1^{2} \mathrm{C}$-bus slave address input (bit 0)
A3 to A0	8 to 11	14, 16 to 18	$1^{2} \mathrm{C}$-bus subaddress inputs
V_{DD}	12	20	supply voltage
n.c.	$13^{(1)}$	15, 19, 21,25 to 29, 34	not connected
$\mathrm{V}_{3}, \mathrm{~V}_{4}$	14 and 15	22 and 23	LCD bias voltage inputs
$\mathrm{V}_{\mathrm{LCD}}$	16	24	LCD supply voltage
C39 to C0	17 to 56	30 to 33,35 to 64 and 1 to 6	LCD column driver outputs

Note

1. Do not connect, this pin is reserved.

LCD column driver for dot matrix graphic

 displays

Fig. 2 Pin configuration (VSO56).

LCD column driver for dot matrix graphic displays

-

Fig. 3 Pin configuration (LQFP64).

LCD column driver for dot matrix graphic displays

7 FUNCTIONAL DESCRIPTION

The PCF8579 column driver is designed for use with the PCF8578. Together they form a general purpose LCD dot matrix chip set.

Typically up to 16 PCF8579s may be used with one PCF8578. Each of the PCF8579s is identified by a unique 4-bit hardware subaddress, set by pins AO to A3. The PCF8578 can operate with up to 32 PCF8579s when using two $I^{2} \mathrm{C}$-bus slave addresses. The two slave addresses are set by the logic level on input SAO.

7.1 Multiplexed LCD bias generation

The bias levels required to produce maximum contrast depend on the multiplex rate and the LCD threshold voltage $\left(V_{t h}\right)$. $\mathrm{V}_{\text {th }}$ is typically defined as the RMS voltage at which the LCD exhibits 10% contrast. Table 1 shows the optimum voltage bias levels for the PCF8578/PCF8579 chip set as functions of $\mathrm{V}_{\mathrm{op}}\left(\mathrm{V}_{\mathrm{op}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}\right)$, together with the discrimination ratios (D) for the different multiplex rates. A practical value for V_{op} is obtained by equating $\mathrm{V}_{\text {off }(\mathrm{ms})}$ with $\mathrm{V}_{\text {th }}$. Figure 4 shows the first 4 rows of Table 1 as graphs.

Table 1 Optimum LCD bias voltages

PARAMETER	MULTIPLEX RATE			
	$\mathbf{1 : 8}$	$\mathbf{1 : 1 6}$	$\mathbf{1 : 2 4}$	$\mathbf{1 : 3 2}$
$\frac{V_{2}}{V_{\text {op }}}$	0.739	0.800	0.830	0.850
$\frac{V_{3}}{V_{\text {op }}}$	0.522	0.600	0.661	0.700
$\frac{V_{4}}{V_{\text {op }}}$	0.478	0.400	0.339	0.300
$\frac{V_{5}}{V_{\text {op }}}$	0.261	0.200	0.170	0.150
$\frac{V_{\text {off }(\mathrm{rms})}}{V_{\text {op }}}$	0.297	0.245	0.214	0.193
$\frac{V_{\text {on }(\mathrm{rms})}}{V_{\text {op }}}$	0.430	0.316	0.263	0.230
$D=\frac{V_{\text {on }(\mathrm{rms})}}{V_{\text {off }(r m s)}}$	1.447	1.291	1.230	1.196
$\frac{V_{\text {op }}}{V_{\text {th }}}$	3.370	4.080	4.680	5.190

LCD column driver for dot matrix graphic displays

Fig. 5 LCD row/column waveforms.

LCD column driver for dot matrix graphic displays

Fig. 6 LCD drive mode waveforms for $1: 8$ multiplex rate.

LCD column driver for dot matrix graphic displays

Fig. 7 LCD drive mode waveforms for $1: 16$ multiplex rate.sa.

LCD column driver for dot matrix graphic displays

PCF8579

7.3 Timing generator

The timing generator of the PCF8579 organizes the internal data flow from the RAM to the display drivers. An external synchronization pulse $\overline{\text { SYNC }}$ is received from the PCF8578. This signal maintains the correct timing relationship between cascaded devices.

7.4 Column drivers

Outputs C0 to C39 are column drivers which must be connected to the LCD. Unused outputs should be left open-circuit.

7.5 Display RAM

The PCF8579 contains a 32×40-bit static RAM which stores the display data. The RAM is divided into 4 banks of 40 bytes ($4 \times 8 \times 40$ bits). During RAM access, data is transferred to/from the RAM via the $\mathrm{I}^{2} \mathrm{C}$-bus.

7.6 Data pointer

The addressing mechanism for the display RAM is realized using the data pointer. This allows an individual data byte or a series of data bytes to be written into, or read from, the display RAM, controlled by commands sent on the $\mathrm{I}^{2} \mathrm{C}$-bus.

7.7 Subaddress counter

The storage and retrieval of display data is dependent on the content of the subaddress counter. Storage and retrieval take place only when the contents of the subaddress counter agree with the hardware subaddress at pins A0, A1, A2 and A3.

$7.8 \quad \mathbf{I}^{2} \mathrm{C}$-bus controller

The $\mathrm{I}^{2} \mathrm{C}$-bus controller detects the $\mathrm{I}^{2} \mathrm{C}$-bus protocol, slave address, commands and display data bytes. It performs the conversion of the data input (serial-to-parallel) and the data output (parallel-to-serial). The PCF8579 acts as an $\mathrm{I}^{2} \mathrm{C}$-bus slave transmitter/receiver. Device selection depends on the $\mathrm{I}^{2} \mathrm{C}$-bus slave address, the hardware subaddress and the commands transmitted.

7.9 Input filters

To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.

7.10 RAM access

There are three RAM ACCESS modes:

- Character
- Half-graphic
- Full-graphic.

These modes are specified by bits G1 and G0 of the RAM ACCESS command. The RAM ACCESS command controls the order in which data is written to or read from the RAM (see Fig.8).

To store RAM data, the user specifies the location into which the first byte will be loaded (see Fig.9):

- Device subaddress (specified by the DEVICE SELECT command)
- RAM X-address (specified by the LOAD X-ADDRESS command)
- RAM bank (specified by bits Y1 and Y0 of the RAM ACCESS command).

Subsequent data bytes will be written or read according to the chosen RAM access mode. Device subaddresses are automatically incremented between devices until the last device is reached. If the last device has subaddress 15, further display data transfers will lead to a wrap-around of the subaddress to 0 .

7.11 Display control

The display is generated by continuously shifting rows of RAM data to the dot matrix LCD via the column outputs. The number of rows scanned depends on the multiplex rate set by bits M1 and M0 of the SET MODE command.

The display status (all dots on/off and normal/inverse video) is set by bits E1 and E0 of the SET MODE command. For bank switching, the RAM bank corresponding to the top of the display is set by bits B1 and B0 of the SET START BANK command. This is shown in Fig. 10 This feature is useful when scrolling in alphanumeric applications.

7.12 TEST pin

The TEST pin must be connected to V_{SS}.
PCF8579
PCF8579

Fig. 8 RAM access mode.

512
6L98」Od
Product specification
Fig. 9 Example of commands specifying initial data byte RAM locations

LCD column driver for dot matrix graphic displays

Fig. 10 Relationship between display and SET START BANK; 1:32 multiplex rate and start bank =2.

8 I2C-BUS PROTOCOL

Two 7-bit slave addresses (0111100 and 0111101) are reserved for both the PCF8578 and PCF8579. The least significant bit of the slave address is set by connecting input SA0 to either logic $0\left(\mathrm{~V}_{\mathrm{SS}}\right)$ or logic $1\left(\mathrm{~V}_{\mathrm{DD}}\right)$. Therefore, two types of PCF8578 or PCF8579 can be distinguished on the same $\mathrm{I}^{2} \mathrm{C}$-bus which allows:

1. One PCF8578 to operate with up to 32 PCF8579s on the same $I^{2} \mathrm{C}$-bus for very large applications.
2. The use of two types of LCD multiplex schemes on the same $\mathrm{I}^{2} \mathrm{C}$-bus.

In most applications the PCF8578 will have the same slave address as the PCF8579.

The $\mathrm{I}^{2} \mathrm{C}$-bus protocol is shown in Fig. 11.
All communications are initiated with a start condition (S) from the $\mathrm{I}^{2} \mathrm{C}$-bus master, which is followed by the desired slave address and read/write bit. All devices with this slave address acknowledge in parallel. All other devices ignore the bus transfer.

In WRITE mode (indicated by setting the read/write bit LOW) one or more commands follow the slave address acknowlegement. The commands are also acknowledged by all addressed devices on the bus.
The last command must clear the continuation bit C. After the last command a series of data bytes may follow. The acknowlegement after each byte is made only by the (A0, A1, A2 and A3) addressed PCF8579 or PCF8578 with its implicit subaddress 0 . After the last data byte has been acknowledged, the $\mathrm{I}^{2} \mathrm{C}$-bus master issues a stop condition (P).

In READ mode, indicated by setting the read/write bit HIGH, data bytes may be read from the RAM following the slave address acknowlegement. After this acknowlegement the master transmitter becomes a master receiver and the PCF8579 becomes a slave transmitter. The master receiver must acknowledge the reception of each byte in turn. The master receiver must signal an end of data to the slave transmitter, by not generating an acknowledge on the last byte clocked out of the slave. The slave transmitter then leaves the data line HIGH, enabling the master to generate a stop condition (P).

Display bytes are written into, or read from, the RAM at the address specified by the data pointer and subaddress counter. Both the data pointer and subaddress counter are automatically incremented, enabling a stream of data to be transferred either to, or from, the intended devices.

In multiple device applications, the hardware subaddress pins of the PCF8579s (A0 to A3) are connected to $V_{S S}$ or $V_{D D}$ to represent the desired hardware subaddress code. If two or more devices share the same slave address, then each device must be allocated a unique hardware subaddress.

LCD column driver for dot matrix graphic displays

Fig. 11 (a) Master transmits to slave receiver (WRITE mode); (b) Master reads after sending command string (WRITE commands; READ data); (c) Master reads slave immediately after sending slave address (READ mode).

LCD column driver for dot matrix graphic displays

8.1 Command decoder

The command decoder identifies command bytes that arrive on the $\mathrm{I}^{2} \mathrm{C}$-bus. The most significant bit of a command is the continuation bit C (see Fig.12). When this bit is set, it indicates that the next byte to be transferred will also be a command. If the bit is reset, it indicates the conclusion of the command transfer. Further bytes will be regarded as display data. Commands are transferred in WRITE mode only.

The five commands available to the PCF8579 are defined in Tables 2 and 3.

$C=0$; last command.
$C=1$; commands continue.

Fig. 12 General format of command byte.

Table 2 Summary of commands

COMMAND	OPCODE $^{(1)}$						DESCRIPTION		
SET MODE	C	1	0	D	D	D	D	D	multiplex rate, display status, system type
SET START BANK	C	1	1	1	1	1	D	D	defines bank at top of LCD
DEVICE SELECT	C	1	1	0	D	D	D	D	defines device subaddress
RAM ACCESS	C	1	1	1	D	D	D	D	graphic mode, bank select (D D D D ≥ 12 is not allowed; see SET START BANK opcode)
LOAD X-ADDRESS	C	0	D	D	D	D	D	D	0 to 39

Note

1. $\mathrm{C}=$ command continuation bit. $\mathrm{D}=$ may be a logic 1 or 0 .

LCD column driver for dot matrix graphic displays

Table 3 Definition of PCF8578/PCF8579 commands

COMMAND	OPCODE									OPTIONS	DESCRIPTION
SET MODE	C			1	0	T	E1	E0	M1 M0	see Table 4	defines LCD drive mode
										see Table 5	defines display status
										see Table 6	defines system type
SET START BANK		C		1	1	1	1	1	B1 B0	see Table 7	defines pointer to RAM bank corresponding to the top of the LCD; useful for scrolling, pseudo motion and background preparation of new display
DEVICE SELECT		C		1	1	0	A3	A2	A1 A0	see Table 8	four bits of immediate data, bits A0 to A3, are transferred to the subaddress counter to define one of sixteen hardware subaddresses
RAM ACCESS		C		1	1	1	G1	G0	Y1 Y0	see Table 9	defines the auto-increment behaviour of the address for RAM access
										see Table 10	two bits of immediate data, bits Y0 to Y1, are transferred to the X -address pointer to define one of forty display RAM columns
LOAD X-ADDRESS		C		0	X5	X4	X3	X2	X1 X0	see Table 11	six bits of immediate data, bits X0 to X5, are transferred to the X -address pointer to define one of forty display RAM columns

LCD column driver for dot matrix graphic displays

PCF8579

Table 4 Set mode option 1

LCD DRIVE MODE	BITS		
	M1	M0	
$1: 8$	MUX (8 rows)	0	1
$1: 16$	MUX (16 rows)	1	0
$1: 24$	MUX (24 rows)	1	1
$1: 32$	MUX (32 rows)	0	0

Table 5 Set mode option 2

DISPLAY STATUS	BITS	
	E1	E0
Blank	0	0
Normal	0	1
All segments on	1	0
Inverse video	1	1

Table 6 Set mode option 3

SYSTEM TYPE	BIT T
PCF8578 row only	0
PCF8578 mixed mode	1

Table 7 Set start bank option 1

START BANK POINTER	BITS	
	B1	B0
Bank 0	0	0
Bank 1	0	1
Bank 2	1	0
Bank 3	1	1

Table 8 Device select option 1

DESCRIPTION	BITS			
Decimal value of 0 to 15	A3	A2	A1	A0

Table 9 RAM access option 1

RAM ACCESS MODE	BITS	
	G1	G0
Character	0	0
Half-graphic	0	1
Full-graphic	1	0
Not allowed (note 1)	1	1

Note

1. See opcode for SET START BANK in Table 3.

Table 10 RAM access option 2

DESCRIPTION	BITS	
Decimal value of 0 to 3	Y 1	YO

Table 11 Load X-address option 1

DESCRIPTION	BITS					
Decimal value of 0 to 39	X 5	X 4	X 3	X 2	X 1	X 0

LCD column driver for dot matrix graphic displays

9 CHARACTERISTICS OF THE I²C-BUS

The $\mathrm{I}^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL) which must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

9.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this moment will be interpreted as control signals.

9.2 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the start condition (S).
A LOW-to-HIGH transition of the data line while the clock is HIGH, is defined as the stop condition (P).

9.4 Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each data byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter, whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal the end of a data transmission to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter been clocked out of the slave. In this event the transmit
must leave the data line HIGH to enable the master to generate a stop condition.

9.3 System configuration

A device transmitting a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message flow is the 'master' and the devices which are controlled by the master are the 'slaves'.

Fig. 13 Bit transfer.

LCD column driver for dot matrix graphic displays

Fig. 14 Definition of start and stop condition.

Fig. 15 System configuration.

The general characteristics and detailed specification of the $\mathrm{I}^{2} \mathrm{C}$-bus are available on request.
Fig. 16 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.

LCD column driver for dot matrix graphic

10 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.5	+8.0	V
$\mathrm{V}_{\text {LCD }}$	LCD supply voltage	$\mathrm{V}_{\mathrm{DD}}-11$	V_{DD}	V
V_{i1}	input voltage pins SDA, SCL, $\overline{\text { SYNC, CLK, TEST, SAO, AO, }}$ A1, A2 and A3	$\mathrm{V}_{S S}-0.5$	$V_{D D}+0.5$	V
$\mathrm{V}_{\mathrm{i} 2}$	input voltage pins V_{3} and V_{4}	$\mathrm{V}_{\mathrm{LCD}}-0.5$	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
V_{01}	output voltage pin SDA	$\mathrm{V}_{\text {SS }}-0.5$	$V_{D D}+0.5$	V
V_{02}	output voltage pins C0 to C39	$\mathrm{V}_{\text {LCD }}-0.5$	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
l_{1}	DC input current	-10	+10	mA
I_{0}	DC output current	-10	+10	mA
$\mathrm{I}_{\mathrm{DD}}, \mathrm{I}_{\text {SS }}, \mathrm{I}_{\text {LCD }}$	current at pins V_{DD}, $\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\mathrm{LCD}}$	-50	+50	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation per package	-	400	mW
$\mathrm{P}^{\text {o }}$	power dissipation per output	-	100	mW
$\mathrm{T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

11 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe it is desirable to take normal precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under "Handling MOS Devices".

LCD column driver for dot matrix graphic displays

12 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX	UNIT
Supplies						
$V_{\text {DD }}$	supply voltage	-	2.5	-	6.0	V
$\mathrm{V}_{\mathrm{LCD}}$	LCD supply voltage		$\mathrm{V}_{\mathrm{DD}}-9$	-	$\mathrm{V}_{\mathrm{DD}}-3.5$	V
IDD	supply current	$\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{kHz}$; note 1	-	9	20	$\mu \mathrm{A}$
$\mathrm{V}_{\text {POR }}$	power-on reset level	note 2	-	1.3	1.8	V
Logic						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		$\mathrm{V}_{\text {SS }}$	-	$0.3 V_{\text {DD }}$	V
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
$\mathrm{I}_{\mathrm{LI} 1}$	leakage current at pins SDA, SCL, SYNC, CLK, TEST, SA0, A0, A1, A2 and A3	$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{S S}$	-1	-	+1	$\mu \mathrm{A}$
IOL	LOW level output current at pin SDA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3	-	-	mA
C_{i}	input capacitance	note 3	-	-	5	pF
LCD outputs						
$\mathrm{I}_{\text {LI2 }}$	leakage current at pins V_{3} to V_{4}	$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{LCD}}$	-2	-	+2	$\mu \mathrm{A}$
V_{DC}	DC component of LCD drivers pins C0 to C39		-	± 20	-	mV
$\mathrm{R}_{\mathrm{COL}}$	output resistance at pins C0 to C39	note 4	-	3	6	$\mathrm{k} \Omega$

Notes

1. Outputs are open; inputs at $V_{D D}$ or $V_{S S} ; I^{2} C$-bus inactive; clock with 50% duty factor.
2. Resets all logic when $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{POR}}$.
3. Periodically sampled; not 100% tested.
4. Resistance measured between output terminal (C 0 to C 39) and bias input ($\mathrm{V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{LCD}}$) when the specified current flows through one output under the following conditions (see Table 1):
a) $-V_{\mathrm{OP}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=9 \mathrm{~V}$;
b) $-\mathrm{V}_{3}-\mathrm{V}_{\mathrm{LCD}} \geq 4.70 \mathrm{~V} ; \mathrm{V}_{4}-\mathrm{V}_{\mathrm{LCD}} \leq 4.30 \mathrm{~V} ; \mathrm{I}_{\mathrm{LOAD}}=100 \mu \mathrm{~A}$.

LCD column driver for dot matrix graphic

 displays
13 AC CHARACTERISTICS

All timing values are referred to $V_{I H}$ and $V_{I L}$ levels with an input voltage swing of $V_{S S}$ to $V_{D D}$.
$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-3.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-9 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{f}_{\mathrm{CIk}}$	clock frequency	50% duty factor	-	note 1	10	kHz
$\mathrm{t}_{\text {PLCD }}$	driver delays	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}=9 \mathrm{~V} ;$ with test loads	-	-	100	$\mu \mathrm{~s}$

$1^{2} \mathrm{C}$-bus

$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		-	-	100	kHz
tsw	tolerable spike width on bus		-	-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time		4.7	-	-	$\mu \mathrm{s}$
$t_{\text {SU; STA }}$	START condition set-up time	repeated start codes only	4.7	-	-	$\mu \mathrm{s}$
$t_{\text {HD } ; ~ S T A ~}$	START condition hold time		4.0	-	-	$\mu \mathrm{s}$
t Low	SCL LOW time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HIGH}}$	SCL HIGH time		4.0	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time		-	-	1.0	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time		-	-	0.3	$\mu \mathrm{s}$
tsu;DAT	data set-up time		250	-	-	ns
$\mathrm{t}_{\text {HD } ; \text { DAT }}$	data hold time		0	-	-	ns
$t_{\text {SU; STO }}$	STOP condition set-up time		4.0	-	-	$\mu \mathrm{s}$

Note

1. Typically 0.9 to 3.3 kHz .

C0 to C39
1 nF $-\mathrm{H}$

MSA916

Fig. 17 AC test loads.

LCD column driver for dot matrix graphic displays

Fig. 18 Driver timing waveforms.

Fig. $19 \mathrm{I}^{2} \mathrm{C}$-bus timing waveforms.

6298JOd
Fig. 21 Split screen application with 1 : 16 multiplex rate for improved contrast.

6298JOd	sKejds!p

Fig. 22 Split screen application with 1 : 32 multiplex rate

Fig. 23 Example of single plane wiring, single screen with 1:32 multiplex rate (PCF8578 in row driver mode).

LCD column driver for dot matrix graphic displays

15 CHIP DIMENSIONS AND BONDING PAD LOCATIONS

Chip area: $14.37 \mathrm{~mm}^{2}$.
Bonding pad dimensions: $120 \mu \mathrm{~m} \times 120 \mu \mathrm{~m}$.
Gold bump dimensions (if ordered): $94 \times 94 \times 25 \mu \mathrm{~m}$.
The numbers given in the square boxes refer to the pad number.
Fig. 24 Bonding pad locations.

LCD column driver for dot matrix graphic

 displaysTable 12 Bonding pad locations (dimensions in $\mu \mathrm{m}$)
All x / y coordinates are referenced to centre of chip, see Fig.24.

PAD NUMBER	SYMBOL	\mathbf{x}	y	PINS	
				VSO56	LQFP64
1	SDA	252	2142	1	7
2	SCL	48	2142	2	8
3	$\overline{\text { SYNC }}$	-156	2142	3	9
4	CLK	-360	2142	4	10
5	$V_{\text {SS }}$	-564	2142	5	11
6	TEST	-786	2142	6	12
7	SA0	-1032	2142	7	13
8	A3	-1314	2142	8	14
9	A2	-1314	1920	9	16
10	A1	-1314	1716	10	17
11	A0	-1314	1512	11	18
12	V_{DD}	-1314	708	12	20
13	n.c.	-1314	504	13	21
14	V_{3}	-1314	300	14	22
15	V_{4}	-1314	96	15	23
16	$\mathrm{V}_{\text {LCD }}$	-1314	-108	16	24
17	C39	-1314	-1308	17	30
18	C38	-1314	-1512	18	31
19	C37	-1314	-1716	19	32
20	C36	-1314	-1920	20	33
21	C35	-1314	-2142	21	35
22	C34	-1032	-2142	22	36
23	C33	-786	-2142	23	37
24	C32	-564	-2142	24	38
25	C31	-360	-2142	25	39
26	C30	-156	-2142	26	40
27	C29	48	-2142	27	41
28	C28	252	-2142	28	42
29	C27	498	-2142	29	43
30	C26	702	-2142	30	44
31	C25	906	-2142	31	45
32	C24	1110	-2142	32	46
33	C23	1314	-2142	33	47
34	C22	1314	-1830	34	48
35	C21	1314	-1570	35	49
36	C20	1314	-1326	36	50
37	C19	1314	-1122	37	51

LCD column driver for dot matrix graphic displays

PAD NUMBER	SYMBOL	\mathbf{x}	y	PINS	
				VSO56	LQFP64
38	C18	1314	-918	38	52
39	C17	1314	-714	39	53
40	C16	1314	-510	40	54
41	C15	1314	-306	41	55
42	C14	1314	-102	42	56
43	C13	1314	102	43	57
44	C12	1314	306	44	58
45	C11	1314	510	45	59
46	C10	1314	714	46	60
47	C9	1314	918	47	61
48	C8	1314	1122	48	62
49	C7	1314	1326	49	63
50	C6	1314	1566	50	64
51	C5	1314	1830	51	1
52	C4	1314	2142	52	2
53	C3	1110	2142	53	3
54	C2	906	2142	54	4
55	C1	702	2142	55	5
56	C0	498	2142	56	6
-	n.c.	-	-	-	$\begin{gathered} 15,19,21 \\ 25 \text { to } 29,34 \end{gathered}$

If inputs SAO and AO to A3 are left unconnected they are internally pulled-up to $V_{D D}$.
Fig. 25 Typical chip-on glass application (viewed from underside of chip).

	sKejds!p
6L98JOd	

uo!̣eo!!!eods łonpond

CONTENTS	10	LIMITING VALUES	
1	FEATURES	11	HANDLING
2	GENERAL DESCRIPTION	12	DC CHARACTERISTICS
3	QUICK REFERENCE DATA	13	AC CHARACTERISTICS
4	ORDERING INFORMATION	14	APPLICATION INFORMATION
5	BLOCK DIAGRAM	14.1	Quartz frequency adjustment
6	PINNING	14.1 .1	Method 1: fixed osci capacitor
7	FUNCTIONAL DESCRIPTION	14.1 .2	Method 2: OSCI Trimmer
7.1	Counter function modes	14.1 .3	Method 3:
7.2	Alarm function modes	15	PACKAGE OUTLINES
7.3	Control/status register	16	SOLDERING
7.4	Counter registers	16.1	Introduction
7.5	Alarm control register	16.2	DIP
7.6	Alarm registers	16.2 .1	Soldering by dipping or by wave
7.7	Timer	16.2 .2	Repairing soldered joints
7.8	Event counter mode	16.3	SO
7.9	Interrupt output	16.3 .1	Reflow soldering
7.10	Oscillator and divider	16.3 .2	Wave soldering
7.11	Initialization	16.3 .3	Repairing soldered joints
8	CHARACTERISTICS OF THE I²C-BUS	17	DEFINITIONS
8.1	Bit transfer	18	LIFE SUPPORT APPLICATIONS
8.2	Start and stop conditions	19	PURCHASE OF PHILIPS I²C COMPONENTS
8.3	System configuration		
8.4	Acknowledge		
9	${ }^{2}$ C-BUS PROTOCOL		
9.1	Addressing		

1 FEATURES

- $1^{2} \mathrm{C}$-bus interface operating supply voltage: 2.5 V to 6 V
- Clock operating supply voltage (0 to $+70^{\circ} \mathrm{C}$): 1.0 V to 6.0 V
- 240×8-bit low-voltage RAM
- Data retention voltage: 1.0 V to 6 V
- Operating current (at $\mathrm{f}_{\mathrm{SCL}}=0 \mathrm{~Hz}$): max. $50 \mu \mathrm{~A}$
- Clock function with four year calendar
- Universal timer with alarm and overflow indication
- 24 or 12 hour format
- 32.768 kHz or 50 Hz time base
- Serial input/output bus $\left(\mathrm{I}^{2} \mathrm{C}\right)$
- Automatic word address incrementing
- Programmable alarm, timer and interrupt function
- Slave address:
- READ: A1 or A3
- WRITE: A0 or A2.

2 GENERAL DESCRIPTION

The PCF8583 is a clock/calendar circuit based on a 2048-bit static CMOS RAM organized as 256 words by 8 bits. Addresses and data are transferred serially via the two-line bidirectional $\mathrm{I}^{2} \mathrm{C}$-bus. The built-in word address register is incremented automatically after each written or read data byte. Address pin AO is used for programming the hardware address, allowing the connection of two devices to the bus without additional hardware.

The built-in 32.768 kHz oscillator circuit and the first 8 bytes of the RAM are used for the clock/calendar and counter functions. The next 8 bytes may be programmed as alarm registers or used as free RAM space. The remaining 240 bytes are free RAM locations.

3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
$V_{D D}$	supply voltage operating mode	$1^{2} \mathrm{C}$-bus active	2.5	-	6.0	V
		$1^{2} \mathrm{C}$-bus inactive	1.0	-	6.0	V
I_{DD}	supply current operating mode	$\mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz}$	-	-	200	$\mu \mathrm{A}$
IDDO	supply current clock mode	$\begin{aligned} & \mathrm{f}_{\mathrm{SCL}}=0 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{f}_{\mathrm{SCL}}=0 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{DD}}=1 \mathrm{~V} \end{aligned}$	${ }^{-}$	$\begin{aligned} & 10 \\ & 2 \end{aligned}$	$\begin{aligned} & 50 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range		-40	-	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature range		-65	-	+150	${ }^{\circ} \mathrm{C}$

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8583P	DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT97-1
PCF8583T	SO8	plastic small outline package; 8 leads; body width 7.5 mm	SOT176-1

5 BLOCK DIAGRAM

Fig. 1 Block diagram.

6 PINNING

SYMBOL	PIN	DESCRIPTION
OSCI	1	oscillator input, 50 Hz or event-pulse input
OSCO	2	oscillator output
A0	3	address input
$V_{S S}$	4	negative supply
SDA	5	serial data line
SCL	6	serial clock line
$\overline{\text { INT }}$	7	open drain interrupt output (active LOW)
$V_{D D}$	8	positive supply

Fig. 2 Pinning diagram.

7 FUNCTIONAL DESCRIPTION

The PCF8583 contains a 256 by 8-bit RAM with an 8-bit auto-increment address register, an on-chip 32.768 kHz oscillator circuit, a frequency divider, a serial two-line bidirectional I ${ }^{2} \mathrm{C}$-bus interface and a power-on reset circuit.

The first 16 bytes of the RAM (memory addresses 00 to OF) are designed as addressable 8-bit parallel special function registers. The first register (memory address 00) is used as a control/status register. The memory addresses 01 to 07 are used as counters for the clock function. The memory addresses 08 to 0F may be programmed as alarm registers or used as free RAM locations, when the alarm is disabled.

7.1 Counter function modes

When the control/status register is programmed, a 32.768 kHz clock mode, a 50 Hz clock mode or an event-counter mode can be selected.

In the clock modes the hundredths of a second, seconds, minutes, hours, date, month (four year calendar) and weekday are stored in a BCD format. The timer register stores up to 99 days. The event counter mode is used to count pulses applied to the oscillator input (OSCO left open-circuit). The event counter stores up to 6 digits of data.

When one of the counters is read (memory locations 01 to 07), the contents of all counters are strobed into capture latches at the beginning of a read cycle. Therefore, faulty reading of the count during a carry condition is prevented.
When a counter is written, other counters are not affected.

7.2 Alarm function modes

By setting the alarm enable bit of the control/status register the alarm control register (address 08) is activated.

By setting the alarm control register a dated alarm, a daily alarm, a weekday alarm or a timer alarm may be programmed. In the clock modes, the timer register (address 07) may be programmed to count hundredths of a second, seconds, minutes, hours or days. Days are counted when an alarm is not programmed.

Whenever an alarm event occurs the alarm flag of the control/status register is set. A timer alarm event will set the alarm flag and an overflow condition of the timer will set the timer flag. The open drain interrupt output is switched on (active LOW) when the alarm or timer flag is set (enabled). The flags remain set until directly reset by a write operation.

When the alarm is disabled (Bit 2 of control/status register $=0$) the alarm registers at addresses 08 to $0 F$ may be used as free RAM.

7.3 Control/status register

The control/status register is defined as the memory location 00 with free access for reading and writing via the $\mathrm{I}^{2} \mathrm{C}$-bus. All functions and options are controlled by the contents of the control/status register (see Fig.3).

7.4 Counter registers

In the clock modes 24 h or 12 h format can be selected by setting the most significant bit of the hours counter register. The format of the hours counter is shown in Fig. 5.

The year and date are packed into memory location 05 (see Fig.6). The weekdays and months are packed into memory location 06 (see Fig.7). When reading these memory locations the year and weekdays are masked out when the mask flag of the control/status register is set. This allows the user to read the date and month count directly.

In the event-counter mode events are stored in BCD format. D5 is the most significant and D0 the least significant digit. The divider is by-passed.

In the different modes the counter registers are programmed and arranged as shown in Fig.4. Counter cycles are listed in Table 1.

Fig. 3 Control/status register.

hundredth of a second	
1/10 s	1/100 s
seconds	
10 s	1 s
minutes	
10 min	1 min
hours	
10 h	1 h
year/date	
10 day	1 day
weekday/month	
10 month	1 month
timer	
10 day	1 day
alarm control	
hundredth of a second	
1/10 s	$1 / 100 \mathrm{~s}$
alarm seconds	
alarm minutes	
alarm hours	
alarm date	
alarm month	
alarm timer	
free RAM	
CLOCK MODES	

CLOCK MODES

control/status		00
D1	D0	
D3	D2	02
D5	D4	03
free		
free		
free		
T1 timer T0		07
alarm control		
alarm D1	alarm D0	09
D3	D2	0 A
D5	D4	OB
free		00
free		OD
free		OE
alarm timer		OF
free RAM		

MRB015

Fig. 4 Register arrangement.

Fig. 5 Format of the hours counter.

MRBOO3

Fig. 6 Format of the year/date counter.

Fig. 7 Format of the weekdays/month counter.

Table 1 Cycle length of the time counters, clock modes

UNIT	COUNTING CYCLE	CARRY TO NEXT UNIT	CONTENTS OF THE MONTH COUNTER
Hundredths of a second	00 to 99	99 to 00	-
Seconds	00 to 59	59 to 00	-
Minutes	00 to 59	59 to 00	-
Hours (24 h)	00 to 23	23 to 00	-
Hours (12 h)	12 AM	-	-
	01 AM to 11 AM	-	-
	12 PM	-	-
	01 PM to 11 PM	11 PM to 12 AM	-
Date	01 to 31	31 to 01	1, 3, 5, 7, 8, 10 and 12
	01 to 30	30 to 01	4, 6, 9 and 11
	01 to 29	29 to 01	2 , year $=0$
	01 to 28	28 to 01	2 , year = 1, 2 and 3
Months	01 to 12	12 to 01	-
Year	0 to 3	-	-
Weekdays	0 to 6	6 to 0	-
Timer	00 to 99	no carry	-

7.5 Alarm control register

When the alarm enable bit of the control/status register is set (address 00, bit 2) the alarm control register (address 08) is activated. All alarm, timer, and interrupt output functions are controlled by the contents of the alarm control register (see Fig.8).

7.6 Alarm registers

All alarm registers are allocated with a constant address offset of hexadecimal 08 to the corresponding counter registers (see Fig.4, Register arrangement).

An alarm signal is generated when the contents of the alarm registers matches bit-by-bit the contents of the involved counter registers. The year and weekday bits are ignored in a dated alarm. A daily alarm ignores the month and date bits. When a weekday alarm is selected, the contents of the alarm weekday/month register will select the weekdays on which an alarm is activated (see Fig.9).

Remark: In the 12 h mode, bits 6 and 7 of the alarm hours register must be the same as the hours counter.

Fig. 8 Alarm control register; clock mode.

Clock/calendar with 240×8-bit RAM

Fig. 9 Selection of alarm weekdays.

7.7 Timer

The timer (location 07) is enabled by setting the control/status register = XX0X X1XX. The timer counts up from 0 (or a programmed value) to 99 . On overflow, the timer resets to 0 . The timer flag (LSB of control/status register) is set on overflow of the timer. This flag must be reset by software. The inverted value of this flag can be transferred to the external interrupt by setting bit 3 of the alarm control register.

Additionally, a timer alarm can be programmed by setting the timer alarm enable (bit 6 of the alarm control register). When the value of the timer equals a pre-programmed value in the alarm timer register (location OF), the alarm flag is set (bit 1 of the control/status register). The inverted value of the alarm flag can be transferred to the external interrupt by enabling the alarm interrupt (bit 6 of the alarm control register).

Resolution of the timer is programmed via the 3 LSBs of the alarm control register (see Fig.11, Alarm and timer Interrupt logic diagram).

7.8 Event counter mode

Event counter mode is selected by bits 4 and 5 which are logic 1, 0 in the control/status register. The event counter mode is used to count pulses externally applied to the oscillator input (OSCO left open-circuit).

The event counter stores up to 6 digits of data, which are stored as 6 hexadecimal values located in locations 1, 2, and 3 . Thus, up to 1 million events may be recorded.

An event counter alarm occurs when the event counter registers match the value programmed in locations $9, \mathrm{~A}$, and B, and the event alarm is enabled (bits 4 and 5 which are logic 0,1 in the alarm control register). In this event, the alarm flag (bit 1 of the control/status register) is set. The inverted value of this flag can be transferred to the interrupt pin (pin 7) by setting the alarm interrupt enable in the alarm control register. In this mode, the timer (location 07) increments once for every one, one-hundred, ten thousand, or 1 million events, depending on the value programmed in bits 0,1 and 2 of the alarm control register. In all other events, the timer functions are as in the clock mode.

7.9 Interrupt output

The conditions for activating the open-drain n-channel interrupt output INT (active LOW) are determined by appropriate programming of the alarm control register. These conditions are clock alarm, timer alarm, timer overflow, and event counter alarm. An interrupt occurs when the alarm flag or the timer flag is set, and the corresponding interrupt is enabled. In all events, the interrupt is cleared only by software resetting of the flag which initiated the interrupt.

Fig. 10 Alarm control register, event-counter mode.

In the clock mode, if the alarm enable is not activated (alarm enable bit of control/status register is logic 0), the interrupt output toggles at 1 Hz with a 50% duty cycle (may be used for calibration). This is the default power-on state of the device. The OFF voltage of the interrupt output may exceed the supply voltage, up to a maximum of 6.0 V . A logic diagram of the interrupt output is shown in Fig.11.

7.10 Oscillator and divider

A 32.768 kHz quartz crystal has to be connected to OSCl (pin 1) and OSCO (pin 2). A trimmer capacitor between $O S C I$ and $V_{D D}$ is used for tuning the oscillator (see quartz frequency adjustment). A 100 Hz clock signal is derived from the quartz oscillator for the clock counters.

In the 50 Hz clock mode or event-counter mode the oscillator is disabled and the oscillator input is switched to a high impedance state.

This allows the user to feed the 50 Hz reference frequency or an external high speed event signal into the input OSCI.

7.11 Initialization

When power-up occurs the $\mathrm{I}^{2} \mathrm{C}$-bus interface, the control/status register and all clock counters are reset. The device starts time-keeping in the 32.768 kHz clock mode with the 24 h format on the first of January at 0.00 .00: 00 . A 1 Hz square wave with 50% duty cycle appears at the interrupt output pin (starts HIGH).
It is recommended to set the stop counting flag of the control/status register before loading the actual time into the counters. Loading of illegal states may lead to a temporary clock malfunction.

(1) If the alarm enable bit of the control/status register is reset (logic 0); a 1 Hz signal can be observed on the interrupt pin $\overline{\mathrm{INT}}$.

Fig. 11 Alarm and timer interrupt logic diagram.

8 CHARACTERISTICS OF THE I ${ }^{2}$ C-BUS

The $\mathrm{I}^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

8.1 Bit transfer (see Fig.12)

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

8.2 Start and stop conditions (see Fig.13)

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 13 Definition of start and stop conditions.

Clock/calendar with 240×8-bit RAM

8.3 System configuration (see Fig.14)

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

Fig. 14 System configuration.

8.4 Acknowledge (see Fig.15)

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges must pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 15 Acknowledgment on the $\mathrm{I}^{2} \mathrm{C}$-bus.

Clock/calendar with 240×8-bit RAM

$9 \quad I^{2} \mathrm{C}-\mathrm{BUS}$ PROTOCOL

9.1 Addressing

Before any data is transmitted on the $\mathrm{I}^{2} \mathrm{C}$-bus, the device which should respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure.

The clock/calendar acts as a slave receiver or slave transmitter. Therefore the clock signal SCL is only an input signal, but the data signal SDA is a bidirectional line.

The clock/calendar slave address is shown in Fig.16. Bit A0 corresponds to hardware address pin A0. Connecting this pin to V_{DD} or V_{SS} allows the device to have one of two different addresses.

Fig. 16 Slave address.

9.2 Clock/calendar READ/WRITE cycles

The $\mathrm{I}^{2} \mathrm{C}$-bus configuration for the different PCF8583 READ and WRITE cycles is shown in Figs 17, 18 and 19.

Fig. 17 Master transmits to slave receiver (WRITE) mode.

Clock/calendar with 240×8-bit RAM

Fig. 18 Master reads after setting word address (write word address; READ data).

Fig. 19 Master reads slave immediately after first byte (READ mode).

10 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage (pin 8)	-0.8	+7.0	V
I_{DD}	supply current (pin 8)	-	50	mA
I_{SS}	supply current (pin 4)	-	50	mA
$\mathrm{~V}_{\mathrm{I}}$	input voltage	-0.8	$\mathrm{~V}_{\mathrm{DD}}+0.8$	V
I_{I}	DC input current	-	10	mA
I_{O}	DC output current	-	10	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation per package	-	300	mW
P_{O}	power dissipation per output	-	50	mW
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

11 HANDLING

Inputs and outputs are protected against electrostatic charge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under "Handling MOS Devices".

12 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
V_{DD}	supply voltage (operating mode)	$\mathrm{I}^{2} \mathrm{C}$-bus active	2.5	-	6.0	V
		$\mathrm{I}^{2} \mathrm{C}$-bus inactive	1.0	-	6.0	V
$\mathrm{V}_{\text {DDosc }}$	supply voltage (quartz oscillator)	$\mathrm{T}_{\text {amb }}=0$ to $70^{\circ} \mathrm{C}$; note 2	1.0	-	6.0	V
I_{DD}	supply current (operating mode)	$\mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz}$; clock mode; note 3	-	-	200	$\mu \mathrm{A}$
IDDO	supply current (clock mode)	$\begin{aligned} & \text { see Fig. } 20 \\ & f_{S C L}=0 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \end{aligned}$	-	10	50	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{SCL}}=0 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{DD}}=1 \mathrm{~V}$	-	2	10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DDR}}$	data retention	$\begin{aligned} & \mathrm{f}_{\mathrm{OSCI}}=0 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{DD}}=1 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	-	-	5	$\mu \mathrm{A}$
		$\mathrm{T}_{\text {amb }}=-25$ to $+70^{\circ} \mathrm{C}$	-	-	2	$\mu \mathrm{A}$
V_{EN}	$1^{2} \mathrm{C}$-bus enable level	note 4	1.5	1.9	2.3	V
SDA						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage	note 5	-0.8	-	$0.3 V_{\text {DD }}$	V
V_{IH}	HIGH level input voltage	note 5	$0.7 \mathrm{~V}_{\text {DD }}$	-	$\mathrm{V}_{\mathrm{DD}}+0.8$	V
l_{OL}	LOW level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3	-	-	mA
l_{LI}	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	-1	-	+1	$\mu \mathrm{A}$
C_{i}	input capacitance	note 6	-	-	7	pF

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
A0; OSCI						
$\mathrm{I}_{\text {LI }}$	input leakage current	$V_{1}=V_{\text {DD }}$ or $\mathrm{V}_{S S}$	-250	-	+250	nA
$\overline{\text { INT }}$						
loL	LOW level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3	-	-	mA
ILI	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{S S}$	-1	-	+1	$\mu \mathrm{A}$
SCL						
C_{i}	input capacitance	note 6	-	-	7	pF
ILI^{\prime}	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{S S}$	-1	-	+1	$\mu \mathrm{A}$

Notes

1. Typical values measured at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
2. When powering-up the device, V_{DD} must exceed 1.5 V until stable operation of the oscillator is established.
3. Event counter mode: supply current dependant upon input frequency.
4. The $R^{2} \mathrm{C}$-bus logic is disabled if $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{EN}}$.
5. When the voltages are above or below the supply voltages V_{DD} or V_{SS}, an input current may flow; this current must not exceed $\pm 0.5 \mathrm{~mA}$.
6. Tested on sample basis.

$f_{S C L}=32 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Fig. 20 Typical supply current in clock mode as a function of supply voltage.

13 AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6.0 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Oscillator						
$\mathrm{C}_{\text {osc }}$	integrated oscillator capacitance		-	40	-	pF
$\Delta \mathrm{f}_{\text {osc }}$	oscillator stability	$\begin{aligned} & \text { for } \Delta V_{D D}=100 \mathrm{mV} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} \end{aligned}$	-	2×10^{-7}	-	
f_{i}	input frequency	note 1	-	-	1	MHz

Quartz crystal parameters ($\mathbf{f}=\mathbf{3 2 . 7 6 8} \mathbf{~ k H z}$)

R_{S}	series resistance		-	-	40	$\mathrm{k} \Omega$
C_{L}	parallel load capacitance		-	10	-	pF
C_{T}	trimmer capacitance		5	-	25	pF

$\mathbf{I}^{2} \mathrm{C}$-bus timing (see Fig.21; notes 2 and 3)

$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		-	-	100	kHz
$\mathrm{t}_{\text {SP }}$	tolerable spike width on bus		-	-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time		4.7	-	-	$\mu \mathrm{s}$
tsu;STA	START condition set-up time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD } ; \text { STA }}$	START condition hold time		4.0	-	-	$\mu \mathrm{s}$
tLow	SCL LOW time		4.7	-	-	$\mu \mathrm{s}$
$t_{\text {HIGH }}$	SCL HIGH time		4.0	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time		-	-	1.0	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time		-	-	0.3	$\mu \mathrm{s}$
tsu;DAT	data set-up time		250	-	-	ns
$\mathrm{t}_{\text {HD; }{ }^{\text {DAT }} \text { (}}$	data hold time		0	-	-	ns
$\mathrm{t}_{\mathrm{VD} ; \text { DAT }}$	SCL LOW to data out valid		-	-	3.4	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STO	STOP condition set-up time		4.0	-	-	$\mu \mathrm{s}$

Notes

1. Event counter mode only.
2. All timing values are valid within the operating supply voltage and ambient temperature range and reference to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD}.
3. A detailed description of the ${ }^{2} \mathrm{C}$-bus specification, with applications, is given in brochure "The ${ }^{2} C$-bus and how to use it". This brochure may be ordered using the code 939839340011.
PROTOCOL

	START	BIT 7	BIT 6	
	CONDITION	MSB	(A6)	

BIT 0	ACKNOWLEDGE	STOP	
LSB	(A)	CONDITION	
$(\mathrm{R} \bar{W})$		(P)	

Fig. $21 \mathrm{I}^{2} \mathrm{C}$-bus timing diagram; rise and fall times refer to V_{IL} and V_{IH}.

14 APPLICATION INFORMATION

14.1 Quartz frequency adjustment

14.1.1 METHOD 1: FIXED OSCI CAPACITOR

By evaluating the average capacitance necessary for the application layout a fixed capacitor can be used. The frequency is best measured via the 1 Hz signal available after power-on at the interrupt output (pin 7). The frequency tolerance depends on the quartz crystal tolerance, the capacitor tolerance and the device-to-device tolerance (on average $\pm 5 \times 10^{-6}$). Average deviations of ± 5 minutes per year can be achieved.

14.1.2 Method 2: OSCI Trimmer

Using the alarm function (via the $\mathrm{I}^{2} \mathrm{C}$-bus) a signal faster than 1 Hz can be generated at the interrupt output for fast setting of a trimmer.

Procedure:

- Power-on
- Initialization (alarm functions).

Routine:

- Set clock to time T and set alarm to time $T+d T$
- At time $T+d T$ (interrupt) repeat routine.

14.1.3 Method 3:

Direct measurement of OSC out (accounting for test probe capacitance).

The PCF8583 slave address has a fixed combination 1010 as group 1.

Fig. 22 Application diagram.

CONTE		7	SOFTWARE FLOWCHART EXAMPLES
1	FEATURES	7.1	Initialization
	FEATURES	7.2	Implementation
2	GENERAL DESCRIPTION	8	${ }^{2} \mathrm{C}-\mathrm{BUS}$ TIMING DIAGRAMS
3	ORDERING INFORMATION	9	LIMITING VALUES
4	BLOCK DIAGRAM	10	HANDLING
5	PINNING	11	DC CHARACTERISTICS
6	FUNCTIONAL DESCRIPTION	12	$I^{2} \mathrm{C}-\mathrm{BUS}$ TIMING SPECIFICATIONS
6.1	General	13	PARALLEL INTERFACE TIMING
6.3	Set-up registers S0', S2 and S3	14	APPLICATION INFORMATION
6.4	Own address register SO^{\prime}	14.1	Application Notes
6.5	Clock register S 2	15	PACKAGE OUTLINES
6.6	Interrupt vector S3		
6.7	Data shift register/read buffer S0	16	SOLDERING
6.8	Control/status register S1	16.1	Introduction
6.8.1	Register S1 control section	16.2	DIP
6.8.1.1	PIN (Pending Interrupt Not)	16.2.1	Soldering by dipping or by wave
6.8.1.2	ESO (Enable Serial Output)	16.2.2	Repairing soldered joints
6.8.1.3	ES1 and ES2	16.3	SO
6.8.1.4	ENI	16.3.1	Reflow soldering
6.8.1.5	STA and STO	16.3.2	Wave soldering
6.8.1.6	ACK	16.3.3	Repairing soldered joints
6.8 .2	Register S1 status section	17	DEFINITIONS
6.8.2.1	PIN bit	18	LIFE SUPPORT APPLICATIONS
6.8.2.3	BER	19 PU	HASE OF PHILIPS ${ }^{2} \mathrm{C}$ C COMPONENTS
6.8.2.4	LRB/ADO		
6.8.2.5	AAS		
6.8.2.6	LAB		
6.8.2.7	$\overline{B B}$		
6.9	Multi-master operation		
6.10	Reset		
6.11	Comparison to the MAB8400 $\mathrm{I}^{2} \mathrm{C}$-bus interface		
6.11 .1	Deleted functions		
6.11 .2	added functions		
6.12	Special function modes		
6.12 .1	Strobe		
6.12 .2	Long-distance mode		
6.12 .3	Monitor mode		

1 FEATURES

- Parallel-bus to $\mathrm{I}^{2} \mathrm{C}$-bus protocol converter and interface
- Compatible with most parallel-bus microcontrollers/microprocessors including 8049, 8051, 6800, 68000 and Z80
- Both master and slave functions
- Automatic detection and adaption to bus interface type
- Programmable interrupt vector
- Multi-master capability
- $\mathrm{I}^{2} \mathrm{C}$-bus monitor mode
- Long-distance mode (4-wire)
- Operating supply voltage 4.5 to 5.5 V
- Operating temperature range: -40 to $+85^{\circ} \mathrm{C}$.

2 GENERAL DESCRIPTION

The PCF8584 is an integrated circuit designed in CMOS technology which serves as an interface between most standard parallel-bus microcontrollers/microprocessors and the serial I ${ }^{2}$ C-bus. The PCF8584 provides both master and slave functions.

Communication with the $\mathrm{I}^{2} \mathrm{C}$-bus is carried out on a byte-wise basis using interrupt or polled handshake. It controls all the $\mathrm{I}^{2} \mathrm{C}$-bus specific sequences, protocol, arbitration and timing. The PCF8584 allows parallel-bus systems to communicate bidirectionally with the $\mathrm{I}^{2} \mathrm{C}$-bus.

3 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8584P	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1
PCF8584T	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1

$\mathrm{I}^{2} \mathrm{C}$-bus controller

4 BLOCK DIAGRAM

Fig. 1 Block diagram.

5 PINNING

SYMBOL	PIN	I/O	DESCRIPTION
CLK	1	1	clock input from microcontroller clock generator (internal pull-up)
SDA or SDA OUT	2	I/O	$1^{2} \mathrm{C}$-bus serial data input/output (open-drain). Serial data output in long-distance mode.
SCL or SCL IN	3	1/O	$1^{2} \mathrm{C}$-serial clock input/output (open-drain). Serial clock input in long-distance mode.
$\overline{\overline{\text { IACK }} \text { or }}$ SDA IN	4	1	Interrupt acknowledge input (internal pull-up); when this signal is asserted the interrupt vector in register S3 will be available at the bus Port if the ENI flag is set. Serial data input in long-distance mode.
$\overline{\mathrm{INT}}$ or SCL OUT	5	0	Interrupt output (open-drain); this signal is enabled by the ENI flag in register S1. It is asserted when the PIN flag is reset. (PIN is reset after 1 byte is transmitted or received over the $\mathrm{I}^{2} \mathrm{C}$-bus). Serial clock output in long-distance mode.
A0	6	1	Register select input (internal pull-up); this input selects between the control/status register and the other registers. Logic 1 selects register S 1 , logic 0 selects one of the other registers depending on bits loaded in ESO, ES1 and ES2 of register S1.
DB0	7	1/O	bidirectional 8-bit bus Port 0
DB1	8	1/O	bidirectional 8-bit bus Port 1
DB2	9	1/O	bidirectional 8-bit bus Port 2
$\mathrm{V}_{\text {SS }}$	10	-	ground
DB3	11	I/O	bidirectional 8-bit bus Port 3
DB4	12	I/O	bidirectional 8-bit bus Port 4
DB5	13	I/O	bidirectional 8-bit bus Port 5
DB6	14	I/O	bidirectional 8-bit bus Port 6
DB7	15	1/O	bidirectional 8-bit bus Port 7
$\overline{\mathrm{RD}}$ ($\overline{\text { TTACK }}$)	16	1/(0)	$\overline{\mathrm{RD}}$ is the read control input for MAB8049, MAB8051 or Z80-types. $\overline{\text { DTACK }}$ is the data transfer control output for 68000-types (open-drain).
$\overline{\mathrm{CS}}$	17	1	chip select input (internal pull-up)
$\overline{\mathrm{WR}}(\mathrm{R} \overline{\mathrm{W}})$	18	1	$\overline{\mathrm{WR}}$ is the write control input for MAB8048, MAB8051, or Z80-types (internal pull-up). R/ \bar{W} control input for 68000-types.
$\frac{\overline{\text { RESET/ }}}{\text { STROBE }}$	19	I/O	Reset input (open-drain); this input forces the $\mathrm{I}^{2} \mathrm{C}$-bus controller into a predefined state; all flags are reset, except PIN, which is set. Also functions as strobe output.
V_{DD}	20	-	supply voltage

(1) Pin mnemonics between parenthesis indicate the 68000 mode pin designations.

Fig. 2 Pin configuration.

6 FUNCTIONAL DESCRIPTION

6.1 General

The PCF8584 acts as an interface device between standard high-speed parallel buses and the serial $\mathrm{I}^{2} \mathrm{C}$-bus. On the $\mathrm{I}^{2} \mathrm{C}$-bus, it can act either as master or slave. Bidirectional data transfer between the $I^{2} \mathrm{C}$-bus and the parallel-bus microcontroller is carried out on a byte-wise basis, using either an interrupt or polled handshake. Interface to either 80XX-type (e.g. 8048, 8051, Z80) or 68000-type buses is possible. Selection of bus type is automatically performed (see Section 6.2).

Table 1 Control signals utilized by the PCF8584 for microcontroller/microprocessor interfacing

TYPE	$\mathbf{R} / \overline{\mathbf{W}}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{R}}$	$\overline{\mathbf{D T A C K}}$	$\overline{\mathbf{I A C K}}$
8048/ 8051	no	yes	yes	no	no
68000	yes	no	no	yes	yes
Z80	no	yes	yes	no	yes

The structure of the PCF8584 is similar to that of the $I^{2} \mathrm{C}$-bus interface section of the Philips' MABXXXX/PCF84(C)XX-series of microcontrollers, but with a modified control structure. The PCF8584 has five internal register locations. Three of these (own address register S0', clock register S2 and interrupt vector S3) are used for initialization of the PCF8584. Normally they are only written once directly after resetting of the PCF8584.

The remaining two registers function as double registers (data buffer/shift register S0, and control/status register S 1) which are used during actual data transmission/reception. By using these double registers, which are separately write and read accessible, overhead for register access is reduced. Register SO is a combination of a shift register and data buffer.

Register SO performs all serial-to-parallel interfacing with the $\mathrm{I}^{2} \mathrm{C}$-bus.

Register S 1 contains $\mathrm{I}^{2} \mathrm{C}$-bus status information required for bus access and/or monitoring.

6.2 Interface Mode Control (IMC)

Selection of either an 80XX mode or 68000 mode interface is achieved by detection of the first $\overline{W R}-\overline{C S}$ signal sequence. The concept takes advantage of the fact that the write control input is common for both types of interfaces. An 80XX-type interface is default. If a HIGH-to-LOW transition of $\overline{W R}(R / \bar{W})$ is detected while $\overline{\mathrm{CS}}$ is HIGH, the 68000-type interface mode is selected and the $\overline{\text { DTACK }}$ output is enabled. Care must be taken that $\overline{W R}$ and $\overline{\mathrm{CS}}$ are stable after reset.

Fig. 3 68000/80XX timing sequence utilized by the Interface Mode Control (IMC).

6.3 Set-up registers S0', S2 and S3

Registers S0', S2 and S3 are used for initialization of the PCF8584 (see Fig. 5 'Initialization sequence' flowchart).

6.4 Own address register SO^{\prime}

When the PCF8584 is addressed as slave, this register must be loaded with the 7 -bit $\mathrm{l}^{2} \mathrm{C}$-bus address to which the PCF8584 is to respond. During initialization, the own address register S^{\prime} ' must be written to, regardless whether it is later used. The Addressed As Slave (AAS) bit in status register S 1 is set when this address is received (the value in SO is compared with the value in $\mathrm{SO} 0^{\prime}$). Note that the S0 and S0' registers are offset by one bit; hence, programming the own address register S0' with a value of 55 H will result in the value AAH being recognized as the PCF8584's slave address (see Fig.1).

Programming of SO^{\prime} is accomplished via the parallel-bus when A0 is LOW, with the appropriate bit combinations set in control status register S1 (S1 is written when pin A0 $=$ HIGH). Bit combinations for accessing all registers are given in Table 5. After reset, S0' has default address 00 H (PCF8584 is thus initially in monitor mode, see Section 6.12.3).

6.5 Clock register S2

Register S 2 provides control over chip clock frequency and SCL clock frequency. S20 and S21 provide a selection of 4 different $\mathrm{I}^{2} \mathrm{C}$-bus SCL frequencies which are shown in Table 2. Note that these SCL frequencies are only obtained when bits S24, S23 and S22 are programmed to the correct input clock frequency ($\mathrm{f}_{\mathrm{clk}}$).

Table 2 Register S2 selection of SCL frequency

BIT		APPROXIMATE SCL FREQUENCY $\mathbf{f}_{\mathbf{S C L}}$ (kHz)
$\mathbf{S 2 1}$	$\mathbf{S 2 0}$	
0	0	45
0	1	11
1	0	1.5
1	1	

S22, S23 and S24 are used for control of the internal clock prescaler. Due to the possibility of varying microcontroller clock signals, the prescaler can be programmed to adapt to 5 different clock rates, thus providing a constant internal clock. This is required to provide a stable time base for the SCL generator and the digital filters associated with the $I^{2} \mathrm{C}$-bus signals SCL and SDA. Selection for adaption to external clock rates is shown in Table 3.

Programming of S 2 is accomplished via the parallel-bus when A0 = LOW, with the appropriate bit combinations set in control status register S1 (S1 is written when $\mathrm{A} 0=\mathrm{HIGH}$). Bit combinations for accessing all registers are given in Table 5.

Table 3 Register S2 selection of clock frequency

INTERNAL CLOCK FREQUENCY			
$\mathbf{S 2 4}$	$\mathbf{S 2 3}$	$\mathbf{S 2 2}$	$\mathbf{f}_{\mathbf{c l k}}(\mathbf{M H z})$
0	$\mathrm{X}^{(1)}$	$\mathrm{X}^{(1)}$	3
1	0	0	4.43
1	0	1	6
1	1	0	8
1	1	1	12

Note

1. $X=$ don't care.

6.6 Interrupt vector S3

The interrupt vector register provides an 8-bit user-programmable vector for vectored-interrupt microcontrollers. The vector is sent to the bus port (DB7 to DB0) when an interrupt acknowledge signal is asserted and the ENI (enable interrupt) flag is set. Default vector values are:

- Vector is ' 00 H ' in 80 XX mode
- Vector is ' 0 FH' in 68000 mode.

On reset the PCF8584 is in the 80XX mode, thus the default interrupt vector is ' 00 H '.

6.7 Data shift register/read buffer S0

Register S0 acts as serial shift register and read buffer interfacing to the $\mathrm{I}^{2} \mathrm{C}$-bus. All read and write operations to/from the $\mathrm{I}^{2} \mathrm{C}$-bus are done via this register. SO is a combination of a shift register and a data buffer; parallel data is always written to the shift register, and read from the data buffer. $\mathrm{I}^{2} \mathrm{C}$-bus data is always shifted in or out of shift register SO .

Fig. 4 Data shift register/bus buffer S0.

In receiver mode the data from the shift register is copied to the read buffer during the acknowledge phase. Further reception of data is inhibited (SCL held LOW) until the SO read buffer is read (see Section 6.8.1.1).

In the transmitter mode data is transmitted to the $\mathrm{I}^{2} \mathrm{C}$-bus as soon as it is written to the SO shift register if the serial I/O is enabled ($E S O=1$).

Remarks:

1. A minimum of 6 clock cycles must elapse between consecutive parallel-bus accesses to the PCF8584 when the $\mathrm{I}^{2} \mathrm{C}$-bus controller operates at 8 or 12 MHz . This may be reduced to 3 clock cycles for lower operating frequencies.
2. To start a read operation immediately after a write, it is necessary to read the SO read buffer in order to invoke reception of the first byte ('dummy read' of the address). Immediately after the acknowledgement, this first byte will be transferred from the shift register to the read buffer. The next read will then transfer the correct value of the first byte to the microcontroller bus (see Fig.7).

6.8 Control/status register S1

Register S 1 controls $\mathrm{I}^{2} \mathrm{C}$-bus operation and provides $\mathrm{I}^{2} \mathrm{C}$-bus status information. Register S 1 is accessed by a HIGH signal on register select input A0. For more efficient communication between microcontroller/processor and the $\mathrm{I}^{2} \mathrm{C}$-bus, register S1 has separate read and write functions for all bit positions (see Fig.3). The write-only section provides register access control and control over $\mathrm{I}^{2} \mathrm{C}$-bus signals, while the read-only section provides $\mathrm{I}^{2} \mathrm{C}$-bus status information.

Table 4 Control/status register S1

CONTROLSTATUS	BITS								MODE
Control $^{(1)}$	PIN	ESO	ES1	ES2	ENI	STA	STO	ACK	write only
Status $^{(2)}$	PIN	$0^{(3)}$	STS	BER	AD0/LRB	AAS	LAB	$\overline{\text { BB }}$	read only

Notes

1. For further information see Section 6.8.1.
2. For further information see Section 6.8.2.
3. Logic 1 if not-initialized.

$\mathrm{I}^{2} \mathrm{C}$-bus controller

6.8.1 REGISTER S1 CONTROL SECTION

The write-only section of $S 1$ enables access to registers $\mathrm{S} 0, \mathrm{~S} 0^{\prime}, \mathrm{S} 1, \mathrm{~S} 2$ and S 3 , and controls $\mathrm{I}^{2} \mathrm{C}$-bus operation; see Table 4.

6.8.1.1 PIN (Pending Interrupt Not)

When the PIN bit is written with a logic 1, all status bits are reset to logic 0 . This may serve as a software reset function (see Figs 5 to 9). PIN is the only bit in S1 which may be both read and written to. PIN is mostly used as a status bit for synchronizing serial communication, see Section 6.8.2.

6.8.1.2 ESO (Enable Serial Output)

ESO enables or disables the serial $I^{2} \mathrm{C}$-bus I/O. When ESO is LOW, register access for initialization is possible. When ESO is HIGH, ${ }^{2} \mathrm{C}$-bus communication is enabled; communication with serial shift register S 0 is enabled and the S 1 bus status bits are made available for reading.

Table 5 Register access control; ESO $=0$ (serial interface off) and ESO $=1$ (serial interface on)

INTERNAL REGISTER ADDRESSING 2-WIRE MODE				
A0	ES1	ES2	$\overline{\text { IACK }}$	FUNCTION
ESO = 0; serial interface off (see note 1)				
1	0	X	$1^{(2)}$	R/W S1: control
0	0	0	$1^{(2)}$	R/W S0': (own address)
0	0	1	$1^{(2)}$	R/W S3: (interrupt vector)
0	1	0	$1^{(2)}$	R/W S2: (clock register)
ESO = 1; serial interface on				
1	0	X	1	W S1: control
1	0	X	1	R S1; status
0	0	0	1	R/W S0: (data)
0	0	1	1	R/W S3: (interrupt vector)
X	0	X	0	R S3: (interrupt vector ACK cycle))

Notes

1. With $E S O=0$, bits ENI, STA, STO and $A C K$ of $S 1$ can be read for test purposes.
2. ' X ' if $E N I=0$.

6.8.1.3 ES1 and ES2

ES1 and ES2 control selection of other registers for initialization and control of normal operation. After these bits are programmed for access to the desired register (shown in Table 5), the register is selected by a logic LOW level on register select pin AO.

6.8.1.4 ENI

This bit enables the external interrupt output $\overline{\mathrm{NT}}$, which is generated when the PIN bit is active (logic 0).
This bit must be set to logic 0 before entering the long-distance mode, and remain at logic 0 during operation in long-distance mode.

6.8.1.5 STA and STO

These bits control the generation of the $I^{2} \mathrm{C}$-bus START condition and transmission of slave address and $\mathrm{R} / \overline{\mathrm{W}}$ bit, generation of repeated START condition, and generation of the STOP condition (see Table 7).

Table 6 Register access control; ESO =1 (serial interface on) and ES1 = 1; long-distance (4-wire) mode; note 1

INTERNAL REGISTER ADDRESSING: LONG-DISTANCE (4-WIRE) MODE				
A0	ES1	ES2	$\overline{\text { IACK }}$	
1	1	X	1	FUNCTION
1	1	X	X : control	
0	1	X	X	R/W S0; (data)

Note

1. Trying to read from or write to registers other than S 0 and S 1 (setting $\mathrm{ESO}=0$) brings the PCF8584 out of the long-distance mode.

Table 7 Instruction table for serial bus control

STA	STO	PRESENT MODE	FUNCTION	OPERATION
1	0	SLV/REC	START	transmit START + address, remain MST/TRM if R/W $=0 ;$ go to MST/REC if R/W $=1$
1	0	MST/TRM	REPEAT START	same as for SLV/REC
0	1	MST/REC; MST/TRM	STOP READ; STOP WRITE	transmit STOP go to SLV/REC mode; note 1
1	1	MST	DATA CHAINING	send STOP, START and address after last master frame without STOP sent; note 2
0	0	ANY	NOP	no operation; note 3

Notes

1. In master receiver mode, the last byte must be terminated with ACK bit HIGH ('negative acknowledge').
2. If both STA and STO are set HIGH simultaneously in master mode, a STOP condition followed by a START condition + address will be generated. This allows 'chaining' of transmissions without relinquishing bus control.
3. All other STA and STO mode combinations not mentioned in Table 7 are NOPs.

6.8.1.6 ACK

This bit must be set normally to a logic 1 . This causes the $\mathrm{I}^{2} \mathrm{C}$-bus controller to send an acknowledge automatically after each byte (this occurs during the 9th clock pulse). The bit must be reset (to logic 0) when the $\mathrm{I}^{2} \mathrm{C}$-bus controller is operating in master/receiver mode and requires no further data to be sent from the slave transmitter. This causes a negative acknowledge on the $\mathrm{I}^{2} \mathrm{C}$-bus, which halts further transmission from the slave device.

6.8.2 REGISTER S1 status section

The read-only section of S 1 enables access to $\mathrm{I}^{2} \mathrm{C}$-bus status information; see Table 4.

6.8.2.1 PIN bit

'Pending Interrupt Not' (MSB of register S1) is a status flag which is used to synchronize serial communication and is set to logic 0 whenever the PCF8584 requires servicing. The PIN bit is normally read in polled applications to determine when an $\mathrm{I}^{2} \mathrm{C}$-bus byte transmission/reception is completed. The PIN bit may also be written, see Section 6.8.1.

Each time a serial data transmission is initiated (by setting the STA bit in the same register), the PIN bit will be set to logic 1 automatically (inactive). When acting as transmitter, PIN is also set to logic 1 (inactive) each time SO is written. In receiver mode, the PIN bit is automatically set to logic 1 (inactive) each time the data register SO is read.

After transmission or reception of one byte on the $\mathrm{I}^{2} \mathrm{C}$-bus (9 clock pulses, including acknowledge), the PIN bit will be automatically reset to logic 0 (active) indicating a complete byte transmission/reception. When the PIN bit is
subsequently set to logic 1 (inactive), all status bits will be reset to logic 0 . PIN is also set to zero on a BER (bus error) condition.

In polled applications, the PIN bit is tested to determine when a serial transmission/reception has been completed. When the ENI bit (bit 4 of write-only section of register S1) is also set to logic 1 the hardware interrupt is enabled. In this case, the PIN flag also triggers an external interrupt (active LOW) via the INT output each time PIN is reset to logic 0 (active).

When acting as slave transmitter or slave receiver, while PIN $=0$, the PCF8584 will suspend $\mathrm{I}^{2} \mathrm{C}$-bus transmission by holding the SCL line LOW until the PIN bit is set to logic 1 (inactive). This prevents further data from being transmitted or received until the current data byte in S0 has been read (when acting as slave receiver) or the next data byte is written to S 0 (when acting as slave transmitter).

PIN bit summary:

- The PIN bit can be used in polled applications to test when a serial transmission has been completed. When the ENI bit is also set, the PIN flag sets the external interrupt via the INT output.
- Setting the STA bit (start bit) will set PIN = 1 (inactive).
- In transmitter mode, after successful transmission of one byte on the $\mathrm{I}^{2} \mathrm{C}$-bus the PIN bit will be automatically reset to logic 0 (active) indicating a complete byte transmission.
- In transmitter mode, PIN is set to logic 1 (inactive) each time register SO is written.
- In receiver mode, PIN is set to logic 0 (active) on completion of each received byte. Subsequently, the SCL line will be held LOW until PIN is set to logic 1.
- In receiver mode, when register S0 is read, PIN is set to logic 1 (inactive).
- In slave receiver mode, an $\mathrm{I}^{2} \mathrm{C}$-bus STOP condition will set PIN = 0 (active).
- $\mathrm{PIN}=0$ if a bus error (BER) occurs.

6.8.2.2 STS

When in slave receiver mode, this flag is asserted when an externally generated STOP condition is detected (used only in slave receiver mode).

6.8.2.3 BER

Bus error; a misplaced START or STOP condition has been detected. Resets $\overline{\mathrm{BB}}$ (to logic 1 ; inactive), sets PIN = 0 (active).

6.8.2.4 LRB/ADO

'Last Received Bit' or 'Address 0 (General Call) bit'. This status bit serves a dual function, and is valid only while PIN $=0$:

1. LRB holds the value of the last received bit over the $\mathrm{I}^{2} \mathrm{C}$-bus while AAS $=0$ (not addressed as slave). Normally this will be the value of the slave acknowledgement; thus checking for slave acknowledgement is done via testing of the LRB.
2. ADO; when AAS = 1 ('Addressed As Slave' condition), the $\mathrm{I}^{2} \mathrm{C}$-bus controller has been addressed as a slave. Under this condition, this bit becomes the 'ADO' bit and will be set to logic 1 if the slave address received was the 'general call' $(00 \mathrm{H})$ address, or logic 0 if it was the $\mathrm{I}^{2} \mathrm{C}$-bus controller's own slave address.

6.8.2.5 AAS

'Addressed As Slave' bit. Valid only when PIN $=0$. When acting as slave receiver, this flag is set when an incoming address over the $\mathrm{I}^{2} \mathrm{C}$-bus matches the value in own address register S0' (shifted by one bit, see Section 6.4), or if the $\mathrm{I}^{2} \mathrm{C}$-bus 'General Call' address $(00 \mathrm{H})$ has been received ('General Call' is indicated when AD0 status bit is also set to logic 1, see Section 6.8.2.4).

6.8.2.6 LAB

'Lost Arbitration' Bit. This bit is set when, in multi-master operation, arbitration is lost to another master on the $\mathrm{I}^{2} \mathrm{C}$-bus.

6.8.2.7 $\overline{B B}$

'Bus Busy' bit. This is a read-only flag indicating when the $I^{2} \mathrm{C}$-bus is in use. A zero indicates that the bus is busy, and access is not possible. This bit is set/reset (logic 1/logic 0) by STOP/START conditions.

6.9 Multi-master operation

To avoid conflict between data and repeated START and STOP operations, multi-master systems have some limitations:

- When powering up multiple PCF8584s in multi-master systems, the possibility exists that one node may power up slightly after another node has already begun an $1^{2} \mathrm{C}$-bus transmission; the Bus Busy condition will thus not have been detected. To avoid this condition, a delay should be introduced in the initialization sequence of each PCF8584 equal to the longest I ${ }^{2} \mathrm{C}$-bus transmission, see flowchart 'PCF8584 initialization' (Fig.5).

6.10 Reset

A LOW level pulse on the RESET (CLK must run) input forces the $\mathrm{I}^{2} \mathrm{C}$-bus controller into a well-defined state. All flags in S1 are reset to logic 0, except the PIN flag, which is set to logic $1 . \mathrm{SO}$ and S 3 are set to 00 H .
The $\overline{\text { RESET }}$ pin is also used for the $\overline{\text { STROBE }}$ output signal. Both functions are separated on-chip by a digital filter. The reset input signal has to be sufficiently long (minimum 30 clock cycles) to pass through the filter. The STROBE output signal is sufficiently short (8 clock cycles) to be blocked by the filter. For more detailed information on the strobe function see Section 6.12.

6.11 Comparison to the MAB8400 $I^{2} \mathbf{C}$-bus interface

The structure of the PCF8584 is similar to that of the MAB8400 series of microcontrollers, but with a modified control structure. Access to all $I^{2} \mathrm{C}$-bus control and status registers is done via the parallel-bus port in conjunction with register select input A0, and control bits ESO, ES1 and ES2.

6.11.1 Deleted functions

The following functions are not available in the PCF8584:

- Always selected (ALS flag)
- Access to the bit counter (BC0 to BC2)
- Full SCL frequency selection (2 bits instead of 5 bits)
- The non-acknowledge mode (ACK flag)
- Asymmetrical clock (ASC flag).

6.11.2 ADDED FUNCTIONS

The following functions either replace the deleted functions or are completely new:

- Chip clock prescaler
- Assert acknowledge bit (ACK flag)
- Register selection bits (ES1 and ES2 flags)
- Additional status flags (BER, 'bus error')
- Automatic interface control between 80XX and 68000-type microcontrollers
- Programmable interrupt vector
- Strobe generator
- Bus monitor function
- Long-distance mode [non- ${ }^{2} \mathrm{C}$-bus mode (4-wire); only for communication between parallel-bus processors using the PCF8584 at each interface point].

6.12 Special function modes

6.12.1 Strobe

When the $\mathrm{I}^{2} \mathrm{C}$-bus controller receives its own address (or the ' 00 H ' general call address) followed immediately by a STOP condition (i.e. no further data transmitted after the address), a strobe output signal is generated at the RESET/STROBE pin (pin 19). The STROBE signal consists of a monostable output pulse (active LOW), 8 clock cycles long (see Fig.9). It is generated after the STOP condition is received, preceded by the correct slave address. This output can be used as a bus access controller for multi-master parallel-bus systems.

$\mathrm{I}^{2} \mathrm{C}$-bus controller

6.12.2 LONG-DISTANCE MODE

The long-distance mode provides the possibility of longer-distance serial communication between parallel processors via two $I^{2} \mathrm{C}$-bus controllers. This mode is selected by setting ES1 to logic 1 while the serial interface is enabled (ESO =1).

In this mode the $I^{2} \mathrm{C}$-bus protocol is transmitted over 4 unidirectional lines, SDA OUT, SCL IN, SDA IN and SCL IN (pins 2, 3, 4 and 5). These communication lines should be connected to line drivers/receivers (example: RS422) for long-distance applications. Hardware characteristics for long-distance transmission are then given by the chosen standard. Control of data transmission is the same as in normal $\mathrm{I}^{2} \mathrm{C}$-bus mode. After reading or writing data to shift register S 0 , long-distance mode must be initialized by setting ESO and ES1 to logic 1. Because the interrupt output INT is not available in this operating mode, synchronization of data transmission/reception must be polled via the PIN bit.

Remarks:

Before entering the long-distance mode, ENI must be set to logic 0.
When powering up an PCF8584-node in long-distance mode, the PCF8584 must be isolated from the 4-wire bus via 3-state line drivers/receivers until the PCF8584 is properly initialized for long-distance mode. Failure to implement this precaution will result in system malfunction.

6.12.3 MONITOR MODE

When the 7-bit own address register SO^{\prime} is loaded with all zeros, the $\mathrm{I}^{2} \mathrm{C}$-bus controller acts as a passive $\mathrm{I}^{2} \mathrm{C}$ monitor. The main features of the monitor mode are:

- The controller is always selected.
- The controller is always in the slave receiver mode.
- The controller never generates an acknowledge.
- The controller never generates an interrupt request.
- A pending interrupt condition does not force SCL LOW.
- $\overline{\mathrm{BB}}$ is set to logic 0 after detection of a START condition, and reset to logic 1 after a STOP condition.
- Received data is automatically transferred to the read buffer.
- Bus traffic is monitored by the PIN bit, which is reset to logic 0 after the acknowledge bit of an incoming byte has been received, and is set to logic 1 as soon as the first bit of the next incoming byte is detected. Reading the data buffer SO sets the PIN bit to logic 1. Data in the read buffer is valid from PIN $=0$ and during the next 8 clock pulses (until next acknowledge).
- AAS is set to logic 1 at every START condition, and reset at every 9th clock pulse.

7 SOFTWARE FLOWCHART EXAMPLES

7.1 Initialization

The flowchart of Fig. 5 gives an example of a proper initialization sequence of the PCF8584.

7.2 Implementation

The flowcharts (Figs 6 to 9) illustrate proper programming sequences for implementing master transmitter, master receive, and master transmitter, repeated start and master receiver modes in polled applications.

Fig. 5 PCF8584 initialization sequence.

Fig. 6 PCF8584 master transmitter mode.

(1) The first read of the SO register is a 'dummy read' of the slave address which should be discarded. The first read of the S0 register simultaneously reads the current value of S 0 and then transfers the first valid data byte from the $\mathrm{I}^{2} \mathrm{C}$-bus to S 0 .

Fig. 7 PCF8584 master receiver mode.

$\mathrm{I}^{2} \mathrm{C}$-bus controller

Fig. 8 Master transmitter followed by repeated START and becoming master receiver.

Fig. 9 Slave receiver/slave transmitter modes.

$8 \quad I^{2} \mathrm{C}$-BUS TIMING DIAGRAMS

The diagrams (Figs 10 to 13) illustrate typical timing diagrams for the PCF8584 in master/slave functions. For detailed description of the $I^{2} \mathrm{C}$-bus protocol, please refer to "The ${ }^{2} \mathrm{C}$-bus and how to use it"; Philips document ordering number 939839340011.

Fig. 12 Bus timing diagram; slave transmitter mode.

Slave PCF8584 is written to by external master transmitter.
Fig. 13 Bus timing diagram; slave receiver mode.

$\mathrm{I}^{2} \mathrm{C}$-bus controller

9 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage	-0.3	+7.0	V
$\mathrm{~V}_{\mathrm{I}}$	voltage range (any input)	-0.8	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC input current (any input)	-10	+10	mA
I_{O}	DC output current (any output)	-10	+10	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	300	mW
P_{O}	power dissipation per output	-	50	mW
$\mathrm{~T}_{\text {amb }}$	operating ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

10 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is good practice to take normal precautions appropriate to handling MOS devices (see "Handling MOS Devices").

$\mathrm{I}^{2} \mathrm{C}$-bus controller

11 DC CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{DD}	supply voltage		4.5	5.0	5.5	V
I_{DD}	supply current	standby; note 1	-	-	2.5	$\mu \mathrm{A}$
		operating; notes 1 and 2	-	-	1.5	mA
Inputs						
CLK, $\overline{\mathrm{IACK}}, \mathrm{AO}, \overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{RESET}}$ AND D0 to D7						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage	note 3	0	-	0.8	V
V_{1+}	HIGH level input voltage	note 3	2.0	-	V_{DD}	V
SDA AND SCL						
V_{IL}	LOW level input voltage	note 4	0	-	$0.3 V_{\text {DD }}$	V
V_{IH}	HIGH level input voltage	note 4	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
R_{i}	resistance to V_{DD}	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; note 5	25	-	100	k Ω
Outputs						
IOH	HIGH level output current	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$; note 6 and 7	-2.4	-	-	mA
loL	LOW level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$; note 6	3.0	-	-	mA
loL	leakage current	note 8	-1	-	+1	$\mu \mathrm{A}$

Notes

1. Test conditions: $22 \mathrm{k} \Omega$ pull-up resistors on DO to $\mathrm{D} 7 ; 10 \mathrm{k} \Omega$ pull-up resistors on SDA, SCL, $\overline{\mathrm{RD}} ; \overline{\mathrm{RESET}}$ connected to V_{SS}; remaining pins open-circuit.
2. CLK waveform of 12 MHz with 50% duty factor.
3. CLK, $\overline{\mathrm{IACK}}, \mathrm{AO}, \overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}, \overline{\mathrm{RESET}}$ and DO to D 7 are TTL level inputs.
4. SDA and SCL are CMOS level inputs.
5. CLK, $\overline{\mathrm{IACK}}, \mathrm{AO}, \overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$.
6. DO to D7.
7. $\overline{\mathrm{DTACK}}, \overline{\mathrm{STROBE}}$.
8. DO to D7 3-state, SDA, SCL, $\overline{\mathrm{INT}}, \overline{\mathrm{RD}}, \overline{\mathrm{RESET}}$.

$1^{2} \mathrm{C}$-bus controller

$12 I^{2} \mathrm{C}$-BUS TIMING SPECIFICATIONS

All the timing limits are valid within the operating supply voltage and ambient temperature range; $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$; $\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; and refer to V_{IL} and V_{IH} with an input voltage of V_{SS} to V_{DD}.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency	-	-	100	kHz
$\mathrm{t}_{\text {SW }}$	tolerable spike width on bus	-	-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time	4.7	-	-	$\mu \mathrm{s}$
tsu;STA	START condition set-up time	4.7	-	-	$\mu \mathrm{s}$
thd;STA	START condition hold time	4.0	-	-	$\mu \mathrm{s}$
tLow	SCL LOW time	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time	4.0	-	-	$\mu \mathrm{s}$
tr_{r}	SCL and SDA rise time	-	-	1.0	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time	-	-	0.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ DAT	data set-up time	250	-	-	ns
$\mathrm{t}_{\mathrm{HD} ; \mathrm{DAT}}$	data hold time	0	-	-	ns
$\mathrm{t}_{\mathrm{VD} ; \text { DAT }}$	SCL LOW to data out valid	-	-	3.4	$\mu \mathrm{s}$
tsu;STO	STOP condition set-up time	4.0	-	-	$\mu \mathrm{s}$

13 PARALLEL INTERFACE TIMING

All the timing limits are valid within the operating supply voltage and ambient temperature range: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$; $T_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$; and refer to V_{IL} and V_{IH} with an input voltage of V_{Ss} to $\mathrm{V}_{\mathrm{DD}} . \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega$ (connected to V_{DD}) for open-drain and high-impedance outputs, where applicable (for measurement purposes only).

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
tr_{r}	clock rise time	see Fig. 14	-	-	6	ns
t_{f}	clock fall time	see Fig. 14	-	-	6	ns
$\mathrm{t}_{\text {clk }}$	input clock period ($50 \% \pm 5 \%$ duty factor)	see Fig. 14	83	-	333	ns
$\mathrm{t}_{\text {CLRL }}$	$\overline{\mathrm{CS}}$ set-up to $\overline{\mathrm{RD}}$ LOW	see Fig. 16 and note 1	20	-	-	ns
$\mathrm{t}_{\text {CLWL }}$	$\overline{\mathrm{CS}}$ set-up to $\overline{\mathrm{WR}}$ LOW	see Fig. 15 and note 1	20	-	-	ns
$\mathrm{t}_{\mathrm{RHCH}}$	$\overline{\mathrm{CS}}$ hold from $\overline{\mathrm{RD}} \mathrm{HIGH}$	see Fig. 16	0	-	-	ns
$\mathrm{t}_{\mathrm{WHCH}}$	$\overline{\mathrm{CS}}$ hold from $\overline{\text { WR }}$ HIGH	see Fig. 15	0	-	-	ns
$\mathrm{t}_{\text {AVWL }}$	A0 set-up to $\overline{W R}$ LOW	see Fig. 15	10	-	-	ns
$\mathrm{t}_{\text {AVRL }}$	A0 set-up to $\overline{\text { RD }}$ LOW	see Fig. 16	10	-	-	ns
$\mathrm{t}_{\text {WHAI }}$	A0 hold from $\overline{W R}$ HIGH	see Fig. 15	20	-	-	ns
$\mathrm{t}_{\text {RHAI }}$	A0 hold from $\overline{\mathrm{RD}} \mathrm{HIGH}$	see Fig. 16	10	-	-	ns
$\mathrm{t}_{\text {WLWH }}$	$\overline{\text { WR }}$ pulse width	see Fig. 15	230	-	1000	ns
$\mathrm{t}_{\text {RLRH }}$	$\overline{\mathrm{RD}}$ pulse width	see Fig. 16	230	-	1000	ns
$t_{\text {dVW }}$	data set-up before $\overline{\text { WR }} \mathrm{HIGH}$	see Fig. 15	150	-	-	ns
$\mathrm{t}_{\text {RLDV }}$	data valid after $\overline{\mathrm{RD}}$ LOW	see Fig. 16	-	160	180	ns
$\mathrm{t}_{\text {WHDI }}$	data hold after $\overline{\mathrm{WR}} \mathrm{HIGH}$	see Fig. 15	20	-	-	ns
$\mathrm{t}_{\text {RHDF }}$	data bus floating after $\overline{\mathrm{RD}}$ HIGH	see Fig. 16	-	-	150	ns

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{t}_{\mathrm{AVCL}}$	A0 set-up to $\overline{\mathrm{CS}}$ LOW	see Figs 17 and 18	10	-	-	ns
twLCL	R/ $\overline{\mathrm{WR}}$ set-up to $\overline{\mathrm{CS}}$ LOW	see Fig. 17	10	-	-	ns
$\mathrm{t}_{\text {RHCL }}$	$\overline{\mathrm{R}} / \mathrm{WR}$ set-up to $\overline{\mathrm{CS}}$ LOW	see Fig. 18	10	-	-	ns
$\mathrm{t}_{\text {CLDV }}$	data valid after $\overline{\mathrm{CS}}$ LOW	see Fig. 18 and note 2	-	160	180	ns
$\mathrm{t}_{\text {cld }}$	$\overline{\text { DTACK }}$ LOW after $\overline{\mathrm{CS}}$ LOW	see Figs 17 and 18	-	$2 \mathrm{t}_{\text {CLK }}+75$	$3 \mathrm{t}_{\text {CLK }}+150$	ns
$\mathrm{t}_{\text {CHAI }}$	AO hold from $\overline{\mathrm{CS}}$ HIGH	see Fig. 18	0	-	-	ns
$\mathrm{t}_{\text {CHRL }}$	R/̄WR hold from $\overline{\mathrm{CS}}$ HIGH	see Fig. 18	0	-	-	ns
$\mathrm{t}_{\text {chwh }}$	$\overline{\mathrm{R}}$ WR hold from $\overline{\mathrm{CS}}$ HIGH	see Fig. 17	0	-	-	ns
$\mathrm{t}_{\text {CHDF }}$	data bus float after $\overline{\mathrm{CS}}$ HIGH	see Fig. 18	-	-	150	ns
$\mathrm{t}_{\text {CHDE }}$	$\overline{\text { DTACK }}$ HIGH from $\overline{\text { CS }}$ HIGH	see Figs 17 and 18	-	100	120	ns
$\mathrm{t}_{\text {CHDI }}$	data hold after $\overline{\mathrm{CS}}$ HIGH	see Fig. 17	0	-	-	ns
t DVCL	data set-up to $\overline{\mathrm{CS}}$ LOW	see Fig. 17	0	-	-	ns
$\mathrm{t}_{\text {ALIE }}$	$\overline{\text { INT }}$ HIGH from $\overline{\text { IACK }}$ LOW	see Figs 19 and 20	-	130	180	ns
$\mathrm{t}_{\text {ALDV }}$	data valid after $\overline{\mathrm{IACK}} \mathrm{LOW}$	see Figs 19 and 20	-	200	250	ns
$\mathrm{t}_{\text {ALAE }}$	İACK pulse width	see Fig. 20	230	-	-	ns
$\mathrm{t}_{\text {AHDI }}$	data hold after $\overline{\text { IACK }}$ HIGH	see Fig. 20	-	-	30	ns
$\mathrm{t}_{\text {ALDL }}$	$\overline{\text { DTACK }}$ LOW from $\overline{\text { IACK }}$ LOW	see Fig. 20	-	$2 \mathrm{t}_{\text {CLK }}+75$	$3 \mathrm{t}_{\text {CLK }}+150$	ns
$\mathrm{t}_{\text {AHDE }}$	$\overline{\text { DTACK }}$ HIGH from IACK HIGH	see Fig. 20	-	120	140	ns
t_{W}	$\overline{\text { RESET }}$ pulse width	see Fig. 21	$30 \mathrm{t}_{\text {CLK }}$	-	-	ns
tw5	STROBE pulse width	see Fig. 22	8tcLK	$8 \mathrm{t}_{\text {CLK }}+90$	-	ns
$\mathrm{t}_{\text {clel }}$	$\overline{\text { CS LOW }}$	see Figs 17 and 18	-	$\mathrm{t}_{\text {CLDL }}+\mathrm{t}_{\text {CHDE }}$	-	ns

Notes

1. A minimum of 6 clock cycles must elapse between consecutive parallel-bus accesses when the $\mathrm{I}^{2} \mathrm{C}$-bus controller operates at 8 or 12 MHz . This may be reduced to 3 clock cycles for lower operating frequencies.
2. Not for S1.

$\mathrm{I}^{2} \mathrm{C}$-bus controller

Fig. 14 Clock input timing.

Fig. 15 Bus timing (80XX mode); write cycle.

Fig. 16 Bus timing (80XX mode); read cycle.

Fig. 17 Bus timing (68000 mode); write cycle.

Fig. 18 Bus timing (68000 mode); read cycle.

Fig. 19 Interrupt timing (80XX mode).

Fig. 20 Interrupt timing (68000 mode).

«7

Fig. 21 Reset timing.

Fig. 22 Strobe timing.

14 APPLICATION INFORMATION

Fig. 23 Application diagram using the $8048 / 8051$.

Fig. 24 Application diagram using the 68000

Fig. 25 Application diagram using the 8088.

$\mathrm{I}^{2} \mathrm{C}$-bus controller

Maximum forward current: 5 mA ; maximum reverse voltage: 5 V .
Fig. 26 PCF8584 diode protection.

14.1 Application notes

Additional application notes are available from Philips Semiconductors:

1. AN95068: "C Routines for the PCF8584".
2. AN96040: "Using the PCF8584 with non-specified timings and other frequently asked questions".
3. AN90001: "Interfacing PCF8584 I^{2} C-bus controller to 80 (C) 51 family of microcontrollers".

CONTENTS

1 FEATURES

2 APPLICATIONS
3 GENERAL DESCRIPTION
4 ORDERING INFORMATION
5 BLOCK DIAGRAM
6 PINNING
7 FUNCTIONAL DESCRIPTION
7.1 Addressing
7.2 Control byte
7.3 D/A conversion
7.4 A/D conversion
7.5 Reference voltage
7.6 Oscillator

8 CHARACTERISTICS OF THE I²C-BUS
8.1 Bit transfer
8.2 Start and stop conditions
8.3 System configuration
8.4 Acknowledge
$8.5 \quad \mathrm{I}^{2} \mathrm{C}$-bus protocol
9 LIMITING VALUES
10 HANDLING
11 DC CHARACTERISTICS
12 D/A CHARACTERISTICS
13 A/D CHARACTERISTICS
14 AC CHARACTERISTICS
15 APPLICATION INFORMATION
16 PACKAGE OUTLINES
17 SOLDERING
17.1 Introduction
17.2 DIP
17.2.1 Soldering by dipping or by wave
17.2.2 Repairing soldered joints
17.3 SO
17.3.1 Reflow soldering
17.3.2 Wave soldering
17.3.3 Repairing soldered joints

18 DEFINITIONS
19 LIFE SUPPORT APPLICATIONS
20 PURCHASE OF PHILIPS ${ }^{2}$ ² COMPONENTS

1 FEATURES

- Single power supply
- Operating supply voltage 2.5 V to 6 V
- Low standby current
- Serial input/output via $I^{2} \mathrm{C}$-bus
- Address by 3 hardware address pins
- Sampling rate given by $\mathrm{I}^{2} \mathrm{C}$-bus speed
- 4 analog inputs programmable as single-ended or differential inputs
- Auto-incremented channel selection
- Analog voltage range from V_{SS} to V_{DD}
- On-chip track and hold circuit
- 8-bit successive approximation A/D conversion
- Multiplying DAC with one analog output.

2 APPLICATIONS

- Closed loop control systems
- Low power converter for remote data acquisition
- Battery operated equipment
- Acquisition of analog values in automotive, audio and TV applications.

3 GENERAL DESCRIPTION

The PCF8591 is a single-chip, single-supply low power 8 -bit CMOS data acquisition device with four analog inputs, one analog output and a serial ${ }^{2} \mathrm{C}$-bus interface. Three address pins A0, A1 and A2 are used for programming the hardware address, allowing the use of up to eight devices connected to the $\mathrm{I}^{2} \mathrm{C}$-bus without additional hardware. Address, control and data to and from the device are transferred serially via the two-line bidirectional $\mathrm{I}^{2} \mathrm{C}$-bus.

The functions of the device include analog input multiplexing, on-chip track and hold function, 8-bit analog-to-digital conversion and an 8-bit digital-to-analog conversion. The maximum conversion rate is given by the maximum speed of the $I^{2} \mathrm{C}$-bus.

4 ORDERING INFORMATION

| TYPE
 NUMBER | PACKAGE | | |
| :--- | :---: | :--- | :---: | :---: |
| | NAME | DESCRIPTION | VERSION |
| PCA8591P | DIP16 | plastic dual in-line package; 16 leads (300 mil); long body | SOT38-1 |
| PCA8591T | SO16 | plastic small outline package; 16 leads; body width 7.5 mm | SOT162-1 |

Fig. 1 Block diagram.

8-bit A/D and D/A converter

6 PINNING

SYMBOL	PIN	DESCRIPTION
AINO	1	analog inputs (A/D converter)
AIN1	2	
AIN2	3	
AIN3	4	
A0	5	hardware address
A1	6	
A2	7	
$\mathrm{V}_{\text {SS }}$	8	negative supply voltage
SDA	9	$1^{2} \mathrm{C}$-bus data input/output
SCL	10	$1^{2} \mathrm{C}$-bus clock input
OSC	11	oscillator input/output
EXT	12	external/internal switch for oscillator input
AGND	13	analog ground
$\mathrm{V}_{\text {REF }}$	14	voltage reference input
AOUT	15	analog output (D/A converter)
V_{DD}	16	positive supply voltage

Fig. 2 Pinning diagram.

7 FUNCTIONAL DESCRIPTION

7.1 Addressing

Each PCF8591 device in an $\mathrm{I}^{2} \mathrm{C}$-bus system is activated by sending a valid address to the device. The address consists of a fixed part and a programmable part. The programmable part must be set according to the address pins A0, A1 and A2. The address always has to be sent as the first byte after the start condition in the $\mathrm{I}^{2} \mathrm{C}$-bus protocol. The last bit of the address byte is the read/write-bit which sets the direction of the following data transfer (see Figs 3, 15 and 16).

7.2 Control byte

The second byte sent to a PCF8591 device will be stored in its control register and is required to control the device function.

The upper nibble of the control register is used for enabling the analog output, and for programming the analog inputs as single-ended or differential inputs. The lower nibble selects one of the analog input channels defined by the upper nibble (see Fig.4). If the auto-increment flag is set the channel number is incremented automatically after each A/D conversion.

If the auto-increment mode is desired in applications where the internal oscillator is used, the analog output enable flag in the control byte (bit 6) should be set. This allows the internal oscillator to run continuously, thereby preventing conversion errors resulting from oscillator start-up delay. The analog output enable flag may be reset at other times to reduce quiescent power consumption.

The selection of a non-existing input channel results in the highest available channel number being allocated. Therefore, if the auto-increment flag is set, the next selected channel will be always channel 0 . The most significant bits of both nibbles are reserved for future functions and have to be set to 0 . After a Power-on reset condition all bits of the control register are reset to 0 . The D/A converter and the oscillator are disabled for power saving. The analog output is switched to a high-impedance state.

Fig. 4 Control byte.

8-bit A/D and D/A converter

PCF8591

7.3 D/A conversion

The third byte sent to a PCF8591 device is stored in the DAC data register and is converted to the corresponding analog voltage using the on-chip D/A converter. This D/A converter consists of a resistor divider chain connected to the external reference voltage with 256 taps and selection switches. The tap-decoder switches one of these taps to the DAC output line (see Fig.5).

The analog output voltage is buffered by an auto-zeroed unity gain amplifier. This buffer amplifier may be switched on or off by setting the analog output enable flag of the control register. In the active state the output voltage is held until a further data byte is sent.

The on-chip D/A converter is also used for successive approximation A/D conversion. In order to release the DAC for an A/D conversion cycle the unity gain amplifier is equipped with a track and hold circuit. This circuit holds the output voltage while executing the A/D conversion.
The output voltage supplied to the analog output AOUT is given by the formula shown in Fig.6. The waveforms of a D/A conversion sequence are shown in Fig.7.

Fig. 5 DAC resistor divider chain.

8-bit A/D and D/A converter

MSB

D7	D6	D5	D4	D3	D2	D1	D0
DAC data							
register							

Fig. 6 DAC data and DC conversion characteristics.

Fig. 7 D/A conversion sequence.

8-bit A/D and D/A converter

PCF8591

7.4 A/D conversion

The A/D converter makes use of the successive approximation conversion technique. The on-chip D/A converter and a high-gain comparator are used temporarily during an A/D conversion cycle.
An A/D conversion cycle is always started after sending a valid read mode address to a PCF8591 device. The A/D conversion cycle is triggered at the trailing edge of the acknowledge clock pulse and is executed while transmitting the result of the previous conversion (see Fig.8).

Once a conversion cycle is triggered an input voltage sample of the selected channel is stored on the chip and is converted to the corresponding 8-bit binary code. Samples picked up from differential inputs are converted to an 8 -bit two's complement code (see Figs 9 and 10).

The conversion result is stored in the ADC data register and awaits transmission. If the auto-increment flag is set the next channel is selected.
The first byte transmitted in a read cycle contains the conversion result code of the previous read cycle. After a Power-on reset condition the first byte read is a hexadecimal 80 . The protocol of an $1^{2} \mathrm{C}$-bus read cycle is shown in Chapter 8, Figs 15 and 16.

The maximum A/D conversion rate is given by the actual speed of the $I^{2} \mathrm{C}$-bus.

Fig. 8 A/D conversion sequence.

Fig. 9 A/D conversion characteristics of single-ended inputs.

Fig. $10 \mathrm{~A} / \mathrm{D}$ conversion characteristics of differential inputs.

7.5 Reference voltage

For the D / A and A / D conversion either a stable external voltage reference or the supply voltage has to be applied to the resistor divider chain (pins $\mathrm{V}_{\text {REF }}$ and AGND). The AGND pin has to be connected to the system analog ground and may have a DC off-set with reference to V_{SS}.
A low frequency may be applied to the $V_{\text {REF }}$ and AGND pins. This allows the use of the D/A converter as a one-quadrant multiplier; see Chapter 15 and Fig.6.

The A/D converter may also be used as a one or two quadrant analog divider. The analog input voltage is divided by the reference voltage. The result is converted to a binary code. In this application the user has to keep the reference voltage stable during the conversion cycle.

7.6 Oscillator

An on-chip oscillator generates the clock signal required for the A/D conversion cycle and for refreshing the auto-zeroed buffer amplifier. When using this oscillator the EXT pin has to be connected to V_{SS}. At the OSC pin the oscillator frequency is available.

If the EXT pin is connected to $V_{D D}$ the oscillator output OSC is switched to a high-impedance state allowing the user to feed an external clock signal to OSC.

8-bit A/D and D/A converter

8 CHARACTERISTICS OF THE I2 ${ }^{2}$ C-BUS

The $I^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

8.1 Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

Fig. 11 Bit transfer.

8.2 Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH, is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH, is defined as the stop condition (P).

8.3 System configuration

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

Fig. 13 System configuration.

8.4 Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each data byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master also generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 14 Acknowledgement on the $I^{2} \mathrm{C}$-bus.

8-bit A/D and D/A converter

PCF8591

$8.5 \quad \mathrm{I}^{2} \mathrm{C}$-bus protocol

After a start condition a valid hardware address has to be sent to a PCF8591 device. The read/write bit defines the direction of the following single or multiple byte data transfer. For the format and the timing of the start condition (S), the stop condition (P) and the acknowledge bit (A) refer to the $I^{2} C$-bus characteristics. In the write mode a data transfer is terminated by sending either a stop condition or the start condition of the next data transfer.

Fig. 16 Bus protocol for read mode, A/D conversion.

8-bit A/D and D/A converter

9 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage (pin 16)	-0.5	+8.0	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage (any input)	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
I_{I}	DC input current	-	± 10	mA
I_{O}	DC output current	-	± 20	mA
$\mathrm{I}_{\mathrm{DD}}, \mathrm{I}_{\text {SS }}$	V_{DD} or $\mathrm{V}_{\text {SS }}$ current	-	± 50	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation per package	-	300	mW
P_{O}	power dissipation per output	-	100	mW
$\mathrm{~T}_{\text {amb }}$	operating ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

10 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under "Handling MOS Devices".

8-bit A/D and D/A converter

11 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $6 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified:

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
$V_{\text {DD }}$	supply voltage (operating)		2.5	-	6.0	V
IDD	supply current standby operating, AOUT off operating, AOUT active					
		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{SS}}$ or V_{DD}; no load	-	1	15	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz}$	-	125	250	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {SCL }}=100 \mathrm{kHz}$	-	0.45	1.0	mA
$\mathrm{V}_{\text {POR }}$	Power-on reset level	note 1	0.8	-	2.0	V
Digital inputs/output: SCL, SDA, A0, A1, A2						
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		0	-	$0.3 \times V_{D D}$	V
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		$0.7 \times V_{\text {DD }}$	-	V_{DD}	V
I_{L}	$\begin{array}{\|c} \text { leakage current } \\ \text { A0, A1, A2 } \\ \text { SCL, SDA } \end{array}$					
		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{SS}}$ to V_{DD}	-250	-	+250	nA
		$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$ to V_{DD}	-1	-	+1	$\mu \mathrm{A}$
Ci_{i}	input capacitance		-	-	5	pF
l_{OL}	LOW level SDA output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3.0	-	-	mA
Reference voltage inputs						
$V_{\text {REF }}$	reference voltage	$\mathrm{V}_{\text {REF }}>\mathrm{V}_{\text {AGND }}$; note 2	$V_{S S}+1.6$	-	V_{DD}	V
$\mathrm{V}_{\text {AGND }}$	analog ground voltage	$\mathrm{V}_{\text {REF }}>\mathrm{V}_{\text {AGND }}$; note 2	$\mathrm{V}_{\text {SS }}$	-	$\mathrm{V}_{\mathrm{DD}}-0.8$	V
$\mathrm{I}_{\text {LI }}$	input leakage current		-250	-	+250	nA
R REF	input resistance	pins $\mathrm{V}_{\text {REF }}$ and AGND	-	100	-	$\mathrm{k} \Omega$
Oscillator: OSC, EXT						
l ${ }_{\text {II }}$	input leakage current		-	-	250	nA
fosc	oscillator frequency		0.75	-	1.25	MHz

Notes

1. The power on reset circuit resets the $I^{2} \mathrm{C}$-bus logic when V_{DD} is less than $\mathrm{V}_{\mathrm{POR}}$.
2. A further extension of the range is possible, if the following conditions are fulfilled:
$\frac{\mathrm{V}_{\text {REF }}+\mathrm{V}_{\text {AGND }}}{2} \geq 0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}-\frac{\mathrm{V}_{\text {REF }}+\mathrm{V}_{\text {AGND }}}{2} \geq 0.4 \mathrm{~V}$

8-bit A / D and D / A converter

12 D/A CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AGND}}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Analog output						
$\mathrm{V}_{\text {OA }}$	output voltage	no resistive load	$V_{S S}$	-	V_{DD}	V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$V_{S S}$	-	$0.9 \times V_{\text {DD }}$	V
ILO	output leakage current	AOUT disabled	-	-	250	nA
Accuracy						
OS_{e}	offset error	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	-	-	50	mV
L_{e}	linearity error		-	-	± 1.5	LSB
G_{e}	gain error	no resistive load	-	-	1	\%
$\mathrm{t}_{\text {DAC }}$	settling time	to $1 / 2$ LSB full scale step	-	-	90	$\mu \mathrm{s}$
$\mathrm{f}_{\text {DAC }}$	conversion rate		-	-	11.1	kHz
SNRR	supply noise rejection ratio	$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz} ; \\ & \mathrm{V}_{\mathrm{DDN}}=0.1 \times \mathrm{V}_{\mathrm{PP}} \end{aligned}$	-	40	-	dB

13 A/D CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AGND}}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Analog inputs						
$\mathrm{V}_{\text {IA }}$	analog input voltage		$\mathrm{V}_{\text {SS }}$	-	V_{DD}	V
ILIA	analog input leakage current		-	-	100	nA
$\mathrm{C}_{\text {IA }}$	analog input capacitance		-	10	-	pF
$\mathrm{C}_{\text {ID }}$	differential input capacitance		-	10	-	pF
$\mathrm{V}_{\text {IS }}$	single-ended voltage	measuring range	$\mathrm{V}_{\text {AGND }}$	-	$V_{\text {REF }}$	V
$V_{\text {ID }}$	differential voltage	measuring range; $\mathrm{V}_{\mathrm{FS}}=\mathrm{V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{AGND}}$	$\frac{-V_{\mathrm{FS}}}{2}$	-	$\frac{+V_{\mathrm{FS}}}{2}$	V
Accuracy						
$\mathrm{OS}_{\text {e }}$	offset error	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	-	-	20	mV
$L_{\text {e }}$	linearity error		-	-	± 1.5	LSB
G_{e}	gain error		-	-	1	\%
$G S_{\text {e }}$	small-signal gain error	$\Delta \mathrm{V}_{\mathrm{i}}=16 \mathrm{LSB}$	-	-	5	\%
CMRR	common-mode rejection ratio		-	60	-	dB
SNRR	supply noise rejection ratio	$\begin{aligned} & \hline f=100 \mathrm{~Hz} ; \\ & \mathrm{V}_{\mathrm{DDN}}=0.1 \times \mathrm{V}_{\mathrm{PP}} \\ & \hline \end{aligned}$	-	40	-	dB
$\mathrm{t}_{\text {ADC }}$	conversion time		-	-	90	$\mu \mathrm{s}$
$\mathrm{f}_{\text {ADC }}$	sampling/conversion rate		-	-	11.1	kHz

8-bit A/D and D/A converter

(a) Internal oscillator; $\mathrm{T}_{\mathrm{amb}}=+27^{\circ} \mathrm{C}$.

(b) External oscillator.

Fig. 17 Operating supply current as a function of supply voltage (analog output disabled).

14 AC CHARACTERISTICS

All timing values are valid within the operating supply voltage and ambient temperature range and reference to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD}.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
\mathbf{I}^{2} C-bus timing (see Fig.19; note 1)					
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency	-	-	100	kHz
t_{SP}	tolerable spike width on bus	-	-	100	ns
$\mathrm{t}_{\text {BUF }}$	bus free time	4.7	-	-	$\mu \mathrm{s}$
t SU;STA	START condition set-up time	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD } ; \text { STA }}$	START condition hold time	4.0	-	-	$\mu \mathrm{s}$
tLow	SCL LOW time	4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time	4.0	-	-	$\mu \mathrm{s}$
t_{r}	SCL and SDA rise time	-	-	1.0	$\mu \mathrm{s}$
$\mathrm{t}_{\text {f }}$	SCL and SDA fall time	-	-	0.3	$\mu \mathrm{s}$
tSu;DAT	data set-up time	250	-	-	ns
$\mathrm{t}_{\text {HD; DAT }}$	data hold time	0	-	-	ns
$\mathrm{t}_{\mathrm{VD} ; \text { DAT }}$	SCL LOW-to-data out valid	-	-	3.4	μs
tsu;STO	STOP condition set-up time	4.0	-	-	$\mu \mathrm{s}$

Note

1. A detailed description of the ${ }^{2} \mathrm{C}$-bus specification, with applications, is given in brochure "The $\mathrm{I}^{2} \mathrm{C}$-bus and how to use it". This brochure may be ordered using the code 939839340011.
PROTOCOL

	START	BIT 7	BIT 6	
	CONDITION	MSB	(A6)	

BIT 0	ACKNOWLEDGE	STOP	
LSB	(A)	CONDITION	
(R / \bar{W})		(P)	

Fig. $19{ }^{1}{ }^{2} \mathrm{C}$-bus timing diagram; rise and fall times refer to V_{IL} and $\mathrm{V}_{\mathbb{I H}}$.

15 APPLICATION INFORMATION

Inputs must be connected to V_{SS} or V_{DD} when not in use. Analog inputs may also be connected to AGND or $\mathrm{V}_{\text {REF }}$.
In order to prevent excessive ground and supply noise and to minimize cross-talk of the digital to analog signal paths the user has to design the printed-circuit board layout very carefully. Supply lines common to a PCF8591 device and noisy digital circuits and ground loops should be avoided. Decoupling capacitors ($>10 \mu \mathrm{~F}$) are recommended for power supply and reference voltage inputs.

Fig. 20 Application diagram.

CONTENTS

1 FEATURES
2 GENERAL DESCRIPTION
3 QUICK REFERENCE DATA
4 ORDERING INFORMATION
5 BLOCK DIAGRAM
6 PINNING
7 FUNCTIONAL DESCRIPTION
7.1 Counter function modes
7.2 Alarm function modes
7.3 Control/status register
$7.4 \quad$ Counter registers
7.5 Alarm control register
7.6 Alarm registers
7.7 Timer
7.8 Event counter mode
7.9 Interrupt output
7.10 Oscillator and divider
7.10.1 Designing
7.11 Initialization (see Fig.12)

8 CHARACTERISTICS OF THE I²C-BUS
8.1 Bit transfer
8.2 Start and stop conditions
8.3 System configuration
8.4 Acknowledge
$9 \quad \mathrm{I}^{2} \mathrm{C}$-BUS PROTOCOL
9.1 Addressing
9.2 Clock/calendar READ/WRITE cycles

10 LIMITING VALUES
11 HANDLING
12
13
14
14.1 Quartz frequency adjustment
14.1.2 Method 2: OSCI Trimmer
14.1.3 Method 3: direct output

15 PACKAGE OUTLINES
16
16.1 Introduction
16.2 DIP
16.2.1 Soldering by dipping or by wave
16.2.2 Repairing soldered joints
16.3 SO
16.3.1 Reflow soldering
16.3.2 Wave soldering
16.3.3 Repairing soldered joints

17
18
19
14.1.1 Method 1: Fixed OSCl capacitor

DC CHARACTERISTICS

AC CHARACTERISTICS

APPLICATION INFORMATION

SOLDERING

DEFINITIONS
LIFE SUPPORT APPLICATIONS
PURCHASE OF PHILIPS $I^{2} \mathrm{C}$ COMPONENTS

1 FEATURES

- ${ }^{2} \mathrm{C}$-bus interface operating supply voltage: 2.5 to 6.0 V
- Clock operating supply voltage ($\mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$): 1.0 to 6.0 V
- 8 bytes scratchpad RAM (when alarm not used)
- Data retention voltage: 1.0 to 6.0 V
- External $\overline{\text { RESET input resets } I^{2} \mathrm{C} \text { interface (only) }}$
- Operating current ($f_{\text {scl }}=0 \mathrm{~Hz}, 32 \mathrm{kHz}$ time base, $V_{D D}=2.0 \mathrm{~V}$): typ. $1 \mu \mathrm{~A}$
- Clock function with four year calendar
- Universal timer with alarm and overflow indication
- 24 or 12 hour format
- 32.768 kHz or 50 Hz time base
- Serial input/output bus ($\left.1^{2} \mathrm{C}-b u s\right)$
- Automatic word address incrementing
- Programmable alarm, timer and interrupt function
- Space-saving SO8 package available
- Slave address:
- READ A3
- WRITE A2.

2 GENERAL DESCRIPTION

The PCF8593 is a CMOS clock/calendar circuit, optimized for low power consumption. Addresses and data are transferred serially via the two-line bidirectional $\mathrm{I}^{2} \mathrm{C}$-bus. The built-in word address register is incremented automatically after each written or read data byte. The built-in 32.768 kHz oscillator circuit and the first 8 bytes of RAM are used for the clock/calendar and counter functions. The next 8 bytes may be programmed as alarm registers or used as free RAM space.

3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{DD}	supply voltage operating mode	$\mathrm{I}^{2} \mathrm{C}-$ bus active	2.5	-	6.0	V
		$\mathrm{I}^{2} \mathrm{C}-$ bus inactive	1.0	-	6.0	V
I_{DD}	supply current operating mode	$\mathrm{f}_{\mathrm{scl}}=100 \mathrm{kHz}$	-	-	200	$\mu \mathrm{~A}$
I_{DD}	supply current clock mode	$\mathrm{f}_{\mathrm{scl}}=0 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	4.0	15.0	$\mu \mathrm{~A}$
		$\mathrm{f}_{\mathrm{scl}}=0 \mathrm{~Hz} ; \mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}$	-	1.0	8.0	$\mu \mathrm{~A}$
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature		-40	-	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	storage temperature		-65	-	+150	${ }^{\circ} \mathrm{C}$

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8593P	DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT97-1
PCF8593T	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1

5 BLOCK DIAGRAM

Fig. 1 Block diagram.

6 PINNING

SYMBOL	PIN	DESCRIPTION
OSCI	1	oscillator input, 50 Hz or event-pulse input
OSCO	2	oscillator output
$\overline{\text { RESET }}$	3	reset input (active LOW)
$V_{\text {SS }}$	4	negative supply
SDA	5	serial data input/output
SCL	6	serial clock input
$\overline{\text { NT }}$	7	open drain interrupt output (active LOW)
V_{DD}	8	positive supply

Fig. 2 Pin configuration.

7 FUNCTIONAL DESCRIPTION

The PCF8593 contains sixteen 8-bit registers with an 8-bit auto-incrementing address register, an on-chip 32.768 kHz oscillator circuit, a frequency divider and a serial two-line bidirectional $\mathrm{I}^{2} \mathrm{C}$-bus interface.

The first 8 registers (memory addresses 00 to 07) are designed as addressable 8-bit parallel registers. The first register (memory address 00) is used as a control/status register. The memory addresses 01 to 07 are used as counters for the clock function. The memory addresses 08 to OF may be programmed as alarm registers or used as free RAM locations.

7.1 Counter function modes

When the control/status register is programmed, a 32.768 kHz clock mode, a 50 Hz clock mode or an event-counter mode can be selected.

In the clock modes the hundredths of a second, seconds, minutes, hours, date, month (four year calendar) and weekday are stored in a BCD format. The timer register stores up to 99 days. The event counter mode is used to count pulses applied to the oscillator input (OSCO left open-circuit). The event counter stores up to 6 digits of data.

When one of the counters is read (memory locations 01 to 07), the contents of all counters are strobed into capture latches at the beginning of a read cycle. Therefore, faulty reading of the count during a carry condition is prevented.

When a counter is written, other counters are not affected.

7.2 Alarm function modes

By setting the alarm enable bit of the control/status register the alarm control register (address 08) is activated.

By setting the alarm control register a dated alarm, a daily alarm, a weekday alarm or a timer alarm may be programmed. In the clock modes, the timer register (address 07) may be programmed to count hundredths of
a second, seconds, minutes, hours or days. Days are counted when an alarm is not programmed.

Whenever an alarm event occurs the alarm flag of the control/status register is set. A timer alarm event will set the alarm flag and an overflow condition of the timer will set the timer flag. The open-drain interrupt output is switched on (active LOW) when the alarm or timer flag is set (enabled). The flags remain set until directly reset by a write operation.

When the alarm is disabled (Bit 2 of control/status register $=0$) the alarm registers at addresses 08 to 0F may be used as free RAM.

7.3 Control/status register

The control/status register is defined as the memory location 00 with free access for reading and writing via the ${ }^{2} \mathrm{C}$-bus. All functions and options are controlled by the contents of the control/status register (see Fig.3).

7.4 Counter registers

In the clock modes 24 h or 12 h format can be selected by setting the most significant bit of the hours counter register. The format of the hours counter is shown in Fig.5.

The year and date are packed into memory location 05 (see Fig 6). The weekdays and months are packed into memory location 06 (see Fig.7). When reading these memory locations the year and weekdays are masked out when the mask flag of the control/status register is set. This allows the user to read the date and month count directly.

In the event-counter mode events are stored in BCD format. D5 is the most significant and D0 the least significant digit. The divider is by-passed.

In the different modes the counter registers are programmed and arranged as shown in Fig.4. Counter cycles are listed in Table 1.

Fig. 3 Control/status register.

control/status	
hundredths of a second	
1/10 s	1/100 s
seconds	
10 s	1 s
minutes	
10 min	1 min
hours	
10 h	1 h
year/date	
10 day	1 day
weekday/month	
10 month \|	1 month
timer	
10 day	1 day
alarm control	
hundredths of a second	
alarm seconds	
alarm minutes	
alarm hours	
alarm date	
alarm month	
alarm timer	

CLOCK MODES

control/status		00
D1	D0	
D3	D2	02
D5	D4	03
free		
free		
free		
timer		
	T0	07
alarm control		08
alarm	alarm	
D3	D2	09
D5	D4	OB
free		OC
free		OD
free		OE
alarm timer		OF
EVENT COUNTER		

Fig. 4 Register arrangement.

Fig. 5 Format of the hours counter.

MBD813

Fig. 6 Format of the year/date counter.

Fig. 7 Format of the weekdays/months counter.

Low power clock/calendar

Table 1 Cycle length of the time counters, clock modes.

UNIT	COUNTING CYCLE	CARRY TO NEXT UNIT	CONTENTS OF THE MONTH COUNTER
Hundredths of a second	00 to 99	99 to 00	-
Seconds	00 to 59	59 to 00	-
Minutes	00 to 59	59 to 00	-
Hours (24 h)	00 to 23	23 to 00	-
Hours (12 h)	12 AM	-	-
	01 AM to 11 AM	-	-
	12 PM	-	-
	01 PM to 11 PM	11 PM to 12 AM	-
Date	01 to 31	31 to 01	1, 3, 5, 7, 8, 10 and 12
	01 to 30	30 to 01	4, 6, 9 and 11
	01 to 29	29 to 01	2 , year $=0$
	01 to 28	28 to 01	2 , year $=1,2$ and 3
Months	01 to 12	12 to 01	-
Year	0 to 3	-	-
Weekdays	0 to 6	6 to 0	-
Timer	00 to 99	no carry	-

7.5 Alarm control register

When the alarm enable bit of the control/status register is set (address 00, bit 2) the alarm control register (address 08) is activated. All alarm, timer, and interrupt output functions are controlled by the contents of the alarm control register (see Fig.8).

7.6 Alarm registers

All alarm registers are allocated with a constant address offset of hexadecimal 08 to the corresponding counter registers (see Fig.4,Register arrangement).

An alarm signal is generated when the contents of the alarm registers matches bit-by-bit the contents of the involved counter registers. The year and weekday bits are ignored in a dated alarm. A daily alarm ignores the month and date bits. When a weekday alarm is selected, the contents of the alarm weekday/month register will select the weekdays on which an alarm is activated (see Fig.9).

Remark: in the 12 h mode, bits 6 and 7 of the alarm hours register must be the same as the hours counter.

timer flag, no interrupt
1 timer flag, interrupt
clock alarm function :
no clock alarm
01 daily alarm
10 weekday alarm
11 dated alarm
timer alarm enable :
$0 \quad$ no timer alarm
$1 \quad$ timer alarm
alarm interrupt enable :
(valid only when 'alarm enable' in
control/status register is set)
0 alarm flag, no interrupt
1 alarm flag, interrupt

Fig. 8 Alarm control register, clock mode.

Fig. 9 Selection of alarm weekdays.

7.7 Timer

The timer (location 07) is enabled by setting the control/status register = XX0X X1XX. The timer counts up from 0 (or a programmed value) to 99 . On overflow, the timer resets to 0 . The timer flag (LSB of control/status register) is set on overflow of the timer. This flag must be reset by software. The inverted value of this flag can be transferred to the external interrupt by setting bit 3 of the alarm control register.

Additionally, a timer alarm can be programmed by setting the timer alarm enable (bit 6 of the alarm control register). When the value of the timer equals a pre-programmed value in the alarm timer register (location 0 F), the alarm flag is set (bit 1 of the control/status register). The inverted value of the alarm flag can be transferred to the external interrupt by enabling the alarm interrupt (bit 6 of the alarm control register).

Resolution of the timer is programmed via the 3 LSBs of the alarm control register (see Fig.11, Alarm and timer Interrupt logic diagram).

7.8 Event counter mode

Event counter mode is selected by bits 4 and 5 which are logic 1,0 in the control/status register. The event counter mode is used to count pulses externally applied to the oscillator input (OSCO left open-circuit). The event counter stores up to 6 digits of data, which are stored as 6 hexadecimal values located in locations 1,2, and 3. Thus, up to 1 million events may be recorded.

An event counter alarm occurs when the event counter registers match the value programmed in locations $9, \mathrm{~A}$, and B, and the event alarm is enabled (bits 4 and 5 which are logic 0,1 in the alarm control register). In this event, the alarm flag (bit 1 of the control/status register) is set. The inverted value of this flag can be transferred to the interrupt pin (pin 7) by setting the alarm interrupt enable in the alarm control register. In this mode, the timer (location 07) increments once for every one, one-hundred, ten thousand, or 1 million events, depending on the value programmed in bits 0,1 and 2 of the alarm control register. In all other events, the timer functions are as in the clock mode.

Low power clock/calendar

Fig. 10 Alarm control register, event-counter mode.

7.9 Interrupt output

The conditions for activating the open-drain n-channel interrupt output $\overline{\mathrm{INT}}$ (active LOW) are determined by appropriate programming of the alarm control register. These conditions are clock alarm, timer alarm, timer overflow, and event counter alarm. An interrupt occurs when the alarm flag or the timer flag is set, and the corresponding interrupt is enabled. In all events, the interrupt is cleared only by software resetting of the flag which initiated the interrupt.

In the clock mode, if the alarm enable is not activated (alarm enable bit of control/status register is logic 0), the interrupt output toggles at 1 Hz with a 50% duty cycle (may be used for calibration). The OFF voltage of the interrupt output may exceed the supply voltage, up to a maximum of 6.0 V . A logic diagram of the interrupt output is shown in Fig. 11.

(1) If the alarm enable bit of the control/status register is reset (logic 0), a 1 Hz signal can be observed on the interrupt pin $\overline{\mathbb{N T}}$.

Fig. 11 Alarm and timer interrupt logic diagram.

7.10 Oscillator and divider

A 32.768 kHz quartz crystal has to be connected to OSCI (pin 1) and OSCO (pin 2). A trimmer capacitor between OSCI and V_{DD} is used for tuning the oscillator (see Chapter 14, Section 14.1). A 100 Hz clock signal is derived from the quartz oscillator for the clock counters.

In the 50 Hz clock mode or event-counter mode the oscillator is disabled and the oscillator input is switched to a high-impedance state. This allows the user to feed the 50 Hz reference frequency or an external high-speed event signal into the input OSCI.

7.10.1 DESIGNING

When designing the printed-circuit board layout, keep the oscillator components as close to the IC package as possible, and keep all other signal lines as far away as possible. In applications involving tight packing of components, shielding of the oscillator may be necessary. AC coupling of extraneous signals can introduce oscillator inaccuracy.

7.11 Initialization (see Fig.12)

Note that immediately following power-on, all internal registers are undefined and, following a $\overline{\text { RESET }}$ pulse on pin 3, must be defined via software. Attention should be paid to the possibility that the device may be initially in event-counter mode, in which event the oscillator will not operate. Over-ride can be achieved via software.

Reset is accomplished by applying an external RESET pulse (active LOW) at pin 3. When reset occurs only the $\mathrm{I}^{2} \mathrm{C}$-bus interface is reset. The control/status register and all clock counters are not affected by $\overline{\text { RESET }}$. $\overline{\text { RESET }}$ must return HIGH during device operation.

To avoid overload of the internal diode by falling $V_{D D}$, an external diode should be added in parallel to R_{R} if $C_{R} \geq 0.2 \mu \mathrm{~F}$. Note that RC must be evaluated with the actual $V_{D D}$ of the application, as their value will be $V_{D D}$ rise-time dependent.

Fig. 12 RC reset.

An RC combination can also be utilized to provide a power-on $\overline{\text { RESET }}$ signal at pin 3. In this event, the values of the RC must fulfil the following relationship to guarantee power-on reset (see Fig.12).
$\overline{R E S E T}$ input must be $\leq 0.3 \mathrm{~V}_{\mathrm{DD}}$ when V_{DD} reaches $\mathrm{V}_{\mathrm{DD} \min }$ (or higher).

It is recommended to set the stop counting flag of the control/status register before loading the actual time into the counters. Loading of illegal states may lead to a temporary clock malfunction.

Low power clock/calendar

8 CHARACTERISTICS OF THE I²C-BUS

The $I^{2} \mathrm{C}$-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

8.1 Bit transfer (see Fig.13)

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

Fig. 13 Bit transfer.

8.2 Start and stop conditions (see Fig.14)

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

Fig. 14 Definition of start and stop conditions.

8.3 System configuration (see Fig.15)

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

Fig. 15 System configuration.

8.4 Acknowledge (see Fig.16)

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges must pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Fig. 16 Acknowledgment on the $\mathrm{I}^{2} \mathrm{C}$-bus.

Low power clock/calendar

$9 \quad 1^{2} \mathrm{C}$-BUS PROTOCOL

9.1 Addressing

Before any data is transmitted on the $\mathrm{I}^{2} \mathrm{C}$-bus, the device which should respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure.

The clock/calendar acts as a slave receiver or slave transmitter. Therefore the clock signal SCL is only an input signal, but the data signal SDA is a bidirectional line. The clock/calendar slave address is shown in Fig.17.

Fig. 17 Slave address.

9.2 Clock/calendar READ/WRITE cycles

The 1^{2} C-bus configuration for the different PCF8593 READ and WRITE cycles is shown in Figs 18, 19 and 20.

MBD822

Fig. 18 Master transmits to slave receiver (WRITE) mode.

Fig. 19 Master reads after setting word address (write word address, READ data).

MBD824

Fig. 20 Master reads slave immediately after first byte (READ mode).

Low power clock/calendar

PCF8593

10 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	supply voltage (pin 8)	-0.8	+7.0	V
I_{DD}	supply current (pin 8)	-	50	mA
I_{SS}	supply current (pin 4)	-	50	mA
$\mathrm{~V}_{\mathrm{I}}$	input voltage	-0.8	$\mathrm{~V}_{\mathrm{DD}}+0.8$	V
I_{I}	input current	-	10	mA
I_{O}	DC output current	-	10	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation per package	-	300	mW
P_{O}	power dissipation per output	-	50	mW
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

11 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take precautions appropriate to handling MOS devices Advice can be found in Data Handbook IC12 under "Handling MOS Devices".

12 DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to 6.0 V ; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; $\mathrm{f}_{\mathrm{osc}}=32 \mathrm{kHz}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
Supply						
V_{DD}	supply voltage (operating mode)	$1^{2} \mathrm{C}$-bus active	2.5	-	6.0	V
		$\mathrm{R}^{2} \mathrm{C}$-bus inactive	1.0	-	6.0	V
$\mathrm{V}_{\text {DDosc }}$	supply voltage (quartz oscillator)	note 2$\begin{aligned} & T_{\mathrm{amb}}=0 \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{amb}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$				
			1.0	-	6.0	V
			1.2	-	6.0	V
IDD	supply current (operating mode)	$\mathrm{f}_{\text {scl }}=100 \mathrm{kHz}$; clock mode; note 3	-	-	200	$\mu \mathrm{A}$
$I_{\text {dDO }}$	supply current (clock mode with $\mathrm{I}^{2} \mathrm{C}$-bus inactive)	$\mathrm{f}_{\text {scl }}=0 \mathrm{~Hz} ;$ inputs at $V_{D D}$ or $V_{S S}$				
		$\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}$	-	1.0	8.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	4.0	15	$\mu \mathrm{A}$
SDA, SCL, $\overline{\text { INT }}$ and RESET						
V_{IL}	LOW level input voltage		0	-	$0.3 V_{D D}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\text {DD }}$	-	$V_{D D}$	V
${ }_{\text {l }} \mathrm{L}$	LOW level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3	-	-	mA
$\mathrm{ILI}^{\text {l }}$	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	-1	-	+1	$\mu \mathrm{A}$

Low power clock/calendar

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
C_{i}	input capacitance	note 4	-	-	7	pF
OSCI and RESET						
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	-250	-	$+250$	nA
INT						
l_{OL}	LOW level output current	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1	-	-	mA
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}	-1	-	+1	$\mu \mathrm{A}$
SCL						
C_{i}	input capacitance	note 4	-	-	7	pF
$\mathrm{I}_{\text {LI }}$	input leakage current	$V_{1}=V_{D D}$ or $V_{S S}$	-1	-	+1	$\mu \mathrm{A}$

Notes

1. Typical values measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. When powering up the device, V_{DD} must exceed the specified minimum value by 300 mV to guarantee correct start-up of the oscillator.
3. Event counter mode: supply current dependent upon input frequency.
4. Tested on sample basis.

$\mathrm{f}_{\mathrm{SCL}}=32 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Fig. 21 Typical supply current in clock mode as a function of supply voltage.

Low power clock/calendar

13 AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Oscillator						
$\mathrm{C}_{\text {osc }}$	integrated oscillator capacitance		20	25	30	pF
$\Delta \mathrm{f}_{\text {osc }}$	oscillator stability	$\begin{aligned} & \text { for } \Delta V_{D D}=100 \mathrm{mV} ; \\ & T_{\text {amb }}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} \\ & \hline \end{aligned}$	-	2×10^{-7}	-	
f_{i}	input frequency	note 1	-	-	1	MHz
Quartz crystal parameters ($\mathbf{=} \mathbf{3 2 . 7 6 8} \mathbf{~ k H z}$)						
$\mathrm{R}_{\text {S }}$	series resistance		-	-	40	$\mathrm{k} \Omega$
C_{L}	parallel load capacitance		-	10	-	pF
$\mathrm{C}_{\text {T }}$	trimmer capacitance		5	-	25	pF

1^{2} C-bus timing (see Fig.22; notes 2 and 3)

$\mathrm{f}_{\text {SCL }}$	SCL clock frequency		-	-	100	kHz
tsp	tolerable spike width on bus		-	-	100	ns
$\mathrm{t}_{\text {BuF }}$	bus free time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STA	START condition set-up time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD} ; \text { STA }}$	START condition hold time		4.0	-	-	$\mu \mathrm{s}$
thow	SCL LOW time		4.7	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	SCL HIGH time		4.0	-	-	$\mu \mathrm{s}$
tr_{r}	SCL and SDA rise time		-	-	1.0	$\mu \mathrm{s}$
t_{f}	SCL and SDA fall time		-	-	0.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ DAT	data set-up time		250	-	-	ns
	data hold time		0	-	-	ns
$\mathrm{t}_{\mathrm{V} \text { D } ; \text { DAT }}$	SCL LOW to data out valid		-	-	3.4	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; }}$ STO	STOP condition set-up time		4.0	-	-	$\mu \mathrm{s}$

Notes

1. Event counter mode only.
2. All timing values are valid within the operating supply voltage and ambient temperature range and reference to V_{IL} and $V_{I H}$ with an input voltage swing of $V_{S S}$ to $V_{D D}$.
3. A detailed description of the $I^{2} \mathrm{C}$-bus specification, with applications, is given in brochure "The ${ }^{2} C$-bus and how to use it". This brochure may be ordered using the code 939839340011.

Low power clock/calendar

Fig:22 $\mathrm{I}^{2} \mathrm{C}$-bus timing diagram; rise and fall times refer to V_{IL} and V_{IH}.

14 APPLICATION INFORMATION

14.1 Quartz frequency adjustment

14.1.1 Method 1: Fixed OSCI capacitor

By evaluating the average capacitance necessary for the application layout a fixed capacitor can be used. The frequency is best measured via the 1 Hz signal which can be programmed to occur at the interrupt output (pin 7). The frequency tolerance depends on the quartz crystal tolerance, the capacitor tolerance and the device-to-device tolerance (on average $\pm 5 \times 10^{-6}$). Average deviations of ± 5 minutes per year can be achieved.

14.1.2 METHOD 2: OSCI TRIMMER

Using the alarm function (via the $\mathrm{I}^{2} \mathrm{C}$-bus) a signal faster than 1 Hz can be generated at the interrupt output for fast setting of a trimmer.

Procedure:

- Power-on
- Apply RESET
- Initialization (alarm functions).

Routine:

- Set clock to time T and set alarm to time $T+\Delta T$
- At time $T+\Delta T$ (interrupt) repeat routine.

14.1.3 METHOD 3: DIRECT OUTPUT

Direct measurement of oscillator output (accounting for test probe capacitance).

(1) Example Philips DLC 196 Double-Layer Capacitor family.

Fig. 23 Application diagram.

256 to 1024×8-bit CMOS EEPROMs with ${ }^{2}{ }^{2}$ C-bus interface

CONTENTS	9	LIMITING VALUES	
1	FEATURES	10	CHARACTERISTICS
2	GENERAL DESCRIPTION	11	I 2 C-BUS CHARACTERISTICS
3	QUICK REFERENCE DATA	12	WRITE CYCLE LIMITS
4	ORDERING INFORMATION	13	EXTERNAL CLOCK TIMING
5	DEVICE SELECTION	14	PACKAGE OUTLINES
6	BLOCK DIAGRAM	15	SOLDERING
7	PINNING	15.1	Introduction
7.1	Pin description PCF8582C-2	15.2	DIP
7.2	Pin description PCF8594C-2	15.2 .1	Soldering by dipping or by wave
7.3	Pin description PCF8598C-2	15.2 .2	Repairing soldered joints
8	I2C-BUS PROTOCOL	15.3	SO
8.1	Bus conditions	15.3 .1	Reflow soldering
8.2	Data transfer	15.3 .2	Wave soldering
8.3	Device addressing	15.3 .3	Repairing soldered joints
8.4	Write operations	16	DEFINITIONS
8.4 .1	Byte/word write	17	LIFE SUPPORT APPLICATIONS
8.4 .2	Page write	18	PURCHASE OF PHILIPS I²C COMPONENTS
8.4 .3	Remark		
8.5	Read operations		
8.5 .1	Remark		

1 FEATURES

- Low power CMOS:
- maximum operating current:
2.0 mA (PCF8582C-2)
2.5 mA (PCF8594C-2)
4.0 mA (PCF8598C-2)
- maximum standby current $10 \mu \mathrm{~A}$ (at 6.0 V), typical $4 \mu \mathrm{~A}$
- Non-volatile storage of:
- 2 kbits organized as 256×8-bit (PCF8582C-2)
- 4 kbits organized as 512×8-bit (PCF8594C-2)
- 8 kbits organized as 1024×8-bit (PCF8598C-2)
- Single supply with full operation down to 2.5 V
- On-chip voltage multiplier
- Serial input/output I ${ }^{2} \mathrm{C}$-bus
- Write operations:
- byte write mode
- 8-byte page write mode (minimizes total write time per byte)
- Read operations:
- sequential read
- random read
- Internal timer for writing (no external components)
- Power-on-reset
- High reliability by using a redundant storage code
- Endurance: 1000000 Erase/Write (E/W) cycles at $\mathrm{T}_{\mathrm{amb}}=22^{\circ} \mathrm{C}$
- 10 years non-volatile data retention time
- Pin and address compatible to: PCF8570, PCF8571, PCF8572 and PCF8581.

2 GENERAL DESCRIPTION

The PCF85xxC-2 is a family of floating gate Electrically Erasable Programmable Read Only Memories (EEPROMs) with 2, 4 and 8 kbits (256, 512 and 1024×8-bit). By using an internal redundant storage code it is fault tolerant to single bit errors. This feature dramatically increases the reliability compared to conventional EEPROMs. Power consumption is low due to the full CMOS technology used. The programming voltage is generated on-chip, using a voltage multiplier.

As data bytes are received and transmitted via the serial $\mathrm{I}^{2} \mathrm{C}$-bus, a package using eight pins is sufficient. Up to eight PCF85xxC-2 devices may be connected to the $\mathrm{I}^{2} \mathrm{C}$-bus. Chip select is accomplished by three address inputs (A0, A1 and A2).

Timing of the E/W cycle is carried out internally, thus no external components are required. Pin 7 (PTC) must be connected to either V_{DD} or left open-circuit. There is an option of using an external clock for timing the length of an E/W cycle.

3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage		2.5	6.0	V
IDDR	supply current read	$\begin{gathered} \mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=6 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{array}{\|l\|} \hline 60 \\ 200 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
IDDW	supply current E / W PCF8582C-2 PCF8594C-2 PCF8598C-2	$\begin{aligned} & \mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=6 \mathrm{~V} \end{aligned}$	[-	$\begin{array}{\|l} 0.6 \\ 2.0 \\ 0.8 \\ 2.5 \\ 1.0 \\ 4.0 \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\mathrm{D}(\text { (stb) }}$	standby supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=6 \mathrm{~V} \end{aligned}$	${ }_{-}^{-}$	$\begin{aligned} & 3.5 \\ & 10 \end{aligned}$	$\begin{array}{\|l} \hline \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \hline \end{array}$

256 to 1024×8-bit CMOS EEPROMs with ${ }^{2}$ ²-bus interface

PCF85xxC-2 family

4 ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
PCF8582C-2P	DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT97-1
PCF8594C-2P			
PCF8598C-2P			
PCF8582C-2T	SO8	plastic small outline package; 8 leads (straight); body width 3.9 mm	SOT96-1
PCF8594C-2T			
PCF8598C-2T	SO8	plastic small outline package; 8 leads; body width 7.5 mm	SOT176-1

5 DEVICE SELECTION

Table 1 Device selection code

SELECTION	DEVICE CODE				CHIP ENABLE			$\mathrm{R} / \overline{\mathrm{W}}$
Bit	$\mathrm{b} 7{ }^{(1)}$	b 6	b 5	b 4	b 3	b 2	b 1	b 0
Device	1	0	1	0	A 2	A 1	A 0	$\mathrm{R} / \overline{\mathrm{W}}$

Note

1. The Most Significant Bit (MSB) 'b7' is sent first.
Fig. 1 Block diagram.
WษษรvIa yכัาa 9
For PCF8594C-2 and PCF8598C-2 please see Chapter 7.

256 to 1024×8-bit CMOS EEPROMs with ${ }^{2}$ ² -bus interface

7 PINNING

7.1 Pin description PCF8582C-2

SYMBOL	PIN	DESCRIPTION
A0	1	address input 0
A1	2	address input 1
A2	3	address input 2
V $_{\text {S }}$	4	negative supply voltage
SDA	5	serial data input/output $\left(I^{2} \mathrm{C}\right.$-bus)
SCL	6	serial clock input $\left(I^{2} \mathrm{C}\right.$-bus $)$
PTC	7	programming time control output
V $_{\text {DD }}$	8	positive supply voltage

Fig. 2 Pin configuration PCF8582C-2.

7.2 Pin description PCF8594C-2

SYMBOL	PIN	DESCRIPTION
WP	1	write-protection input
A1	2	address input 1
A2	3	address input 2
V $_{\text {SS }}$	4	negative supply voltage
SDA	5	serial data input/output (I2C-bus)
SCL	6	serial clock input (I2C-bus)
PTC	7	programming time control output
V $_{\text {DD }}$	8	positive supply voltage

Fig. 3 Pin configuration PCF8594C-2.

7.3 Pin description PCF8598C-2

SYMBOL	PIN	DESCRIPTION
WP	1	write-protection input
n.c.	2	not connected
A2	3	address input 2
V $_{\text {SS }}$	4	negative supply voltage
SDA	5	serial data input/output (I2 C -bus)
SCL	6	serial clock input (${ }^{2} \mathrm{C}$-bus)
PTC	7	programming time control output
V $_{\text {DD }}$	8	positive supply voltage

Fig. 4 Pin configuration PCF8598C-2.

256 to 1024×8-bit CMOS EEPROMs with ${ }^{12} \mathrm{C}$-bus interface

$8 \quad 1^{2} \mathrm{C}$-BUS PROTOCOL

The $\mathrm{I}^{2} \mathrm{C}$-bus is for 2-way, 2-line communication between different ICs or modules. The serial bus consists of two bidirectional lines: one for data signals (SDA), and one for clock signals (SCL).

Both the SDA and SCL lines must be connected to a positive supply voltage via a pull-up resistor.

The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

8.1 Bus conditions

The following bus conditions have been defined:

- Bus not busy: both data and clock lines remain HIGH.
- Start data transfer: a change in the state of the data line, from HIGH-to-LOW, while the clock is HIGH, defines the START condition.
- Stop data transfer: a change in the state of the data line, from LOW-to-HIGH, while the clock is HIGH, defines the STOP condition.
- Data valid: the state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. There is one clock pulse per bit of data.

8.2 Data transfer

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of the data bytes, transferred between the START and STOP conditions is limited to 7 bytes in the E/W mode and 8 bytes in the page E/W mode.

Data transfer is unlimited in the read mode.
The information is transmitted in bytes and each receiver acknowledges with a ninth bit.

Within the $\mathrm{I}^{2} \mathrm{C}$-bus specifications a low-speed mode (2 kHz clock rate) and a high speed mode (100 kHz clock rate) are defined. The PCF85xxC-2 operates in both modes.

By definition a device that sends a signal is called a 'transmitter', and the device which receives the signal is called a 'receiver'. The device which controls the signal is called the 'master'. The devices that are controlled by the master are called 'slaves'.

Each byte is followed by one acknowledge bit. This acknowledge bit is a HIGH level, put on the bus by the transmitter. The master generates an extra acknowledge related clock pulse. The slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte.

The master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse.

Set-up and hold times must be taken into account.
A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master generation of the STOP condition.

8.3 Device addressing

Following a START condition the bus master must output the address of the slave it is accessing. The 4 MSBs of the slave address are the device type identifier (see Fig.5). For the PCF85xxC-2 this is fixed to '1010'.

The next three significant bits address a particular device or memory page (page = 256 bytes of memory). A system could have up to eight PCF8582C-2 (or four PCF8594C-2 containing two memory pages each or two PCF8598C-2 containing four memory pages each, respectively) devices on the bus. The eight addresses are defined by the state of the A0, A1 and A2 inputs.

The last bit of the slave address defines the operation to be performed. When set to logic 1 a read operation is selected.

Address bits must be connected to either V_{DD} or V_{SS}.

Fig. 5 Slave address.

8.4 Write operations

8.4.1 BYTE/WORD WRITE

For a write operation the PCF85xxC-2 requires a second address field. This address field is a word address providing access to the 256 words of memory. Upon receipt of the word address the PCF85xxC-2 responds with an acknowledge and awaits the next eight bits of data, again responding with an acknowledge. Word address is automatically incremented. The master can now terminate the transfer by generating a STOP condition or transmit up to six more bytes of data and then terminate by generating a STOP condition.

After this STOP condition the E/W cycle starts and the bus is free for another transmission. Its duration is 10 ms per byte.

During the E/W cycle the slave receiver does not send an acknowledge bit if addressed via the $\mathrm{I}^{2} \mathrm{C}$-bus.

8.4.2 Page write

The PCF85xxC-2 is capable of an eight-byte page write operation. It is initiated in the same manner as the byte write operation. The master can transmit eight data bytes within one transmission. After receipt of each byte the PCF85xxC-2 will respond with an acknowledge. The typical E / W time in this mode is $9 \times 3.5 \mathrm{~ms}=31.5 \mathrm{~ms}$. Erasing a block of 8 bytes in page mode takes typical 3.5 ms and sequential writing of these 8 bytes another typical 28 ms .

After the receipt of each data byte the three low order bits of the word address are internally incremented. The high order five bits of the address remain unchanged. The slave acknowledges the reception of each data byte with an ACK. The $I^{2} \mathrm{C}$-bus data transfer is terminated by the master after the 8th byte with a STOP condition. If the master transmits more than eight bytes prior to genorating the STOP condition, no acknowledge will be given on the ninth (and following) data bytes and the whole transmission will be ignored and no programming will be done. As in the byte write operation, all inputs are disabled until completion of the internal write cycles.

8.4.3 REMARK

A write to the EEPROM is always performed if the pin WP is LOW (not on PCF8582C-2). If WP is HIGH, then the upper half of the EEPROM is write-protected and no acknowledge will be given by the PCF85xxC-2 when one of the upper 256 EEPROM bytes (PCF8594C-2) or 512 EEPROM bytes (PCF8598C-2) is addressed. However, an acknowledge will be given after the slave address and the word address.

Fig. 6 Auto increment memory word address; two byte write.

Fig. 7 Page write operation; eight bytes.

8.5 Read operations

Read operations are initiated in the same manner as write operations with the exception that the LSB of the slave address is set to logic 1.

There are three basic read operations; current address read, random read and sequential read sequential read.

8.5.1 REMARK

The lower 8 bits of the word address are incremented after each transmission of a data byte (read or write). The MSB of the word address, which is defined in the slave address, is not changed when the word address count overflows. Thus, the word address overflows from 255 to 0 and from 511 to 256.

Fig. 8 Master reads PCF85xxC-2 slave after setting word address (write word address; read data).

Fig. 9 Master reads PCF85xxC-2 immediately after first byte (read mode).

256 to 1024×8-bit CMOS EEPROMs with ${ }^{2}{ }^{2} \mathrm{C}$-bus interface

9 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage		-0.3	+6.5	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage on any input pin	$\left\|\mathrm{Z}_{\mathrm{i}}\right\|>500 \Omega$	$\mathrm{~V}_{\mathrm{SS}}-0.8$	+6.5	V
I_{I}	input current on any input pin		-	1	mA
I_{O}	output current		-	10	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$

10 CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=2.5$ to $6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Supplies					
V_{DD}	supply voltage		2.5	6.0	V
IDDR	supply current read	$\begin{gathered} \mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=6.0 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{array}{\|l} 60 \\ 200 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
IDDW	suppiy current E / W PCF8582C-2 PCF8594C-2 PCF8598C-2	$\begin{gathered} \mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=6.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=6.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=6.0 \mathrm{~V} \end{gathered}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & 0.6 \\ & 2.0 \\ & 0.8 \\ & 2.5 \\ & 1.0 \\ & 4.0 \end{aligned}$	mA mA mA mA mA mA
$\mathrm{I}_{\mathrm{DD} \text { (stb) }}$	standby supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3.5 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
PTC output (pin 7)					
V_{IL}	LOW level input voltage		-0.8	$0.1 \mathrm{~V}_{\text {DD }}$	V
V_{IH}	HIGH level input voltage		$0.9 \mathrm{~V}_{\mathrm{DD}}$	$V_{D D}+0.8$	V
SCL input (pin 6)					
V_{IL}	LOW level input voltage		-0.8	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{1 \text { H }}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	+6.5	V
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{S S}$	-	± 1	$\mu \mathrm{A}$
$\mathrm{f}_{\text {SCL }}$	clock input frequency		0	100	kHz
C_{1}	input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	-	7	pF

256 to 1024×8-bit CMOS EEPROMs with

 ${ }^{2}{ }^{2} \mathrm{C}$-bus interface
PCF85xxC-2 family

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
SDA input/output (pin 5)					
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-0.8	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	+6.5	V
$\mathrm{V}_{\text {OL }}$	LOW level output voltage	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{DD}(\text { min })}$	-	0.4	V
Lo	output leakage current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}$	-	1	$\mu \mathrm{A}$
C_{1}	input capacitance	$\mathrm{V}_{1}=\mathrm{V}_{\text {SS }}$	-	7	pF
Data retention time					
ts_{5}	data retention time	$\mathrm{T}_{\text {amb }}=55^{\circ} \mathrm{C}$	10	-	years

$11 I^{2}$ C-BUS CHARACTERISTICS

All of the timing values are valid within the operating supply voltage and ambient temperature range and refer to V_{IL} and V_{IH} with an input voltage swing from V_{SS} to V_{DD}; see Fig. 10 .

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX	UNIT
$\mathrm{f}_{\text {SCL }}$	clock frequency		0	100	kHz
$\mathrm{t}_{\text {BUF }}$	bus free time between a STOP and START condition		4.7	-	$\mu \mathrm{S}$
$\mathrm{t}_{\text {HD } ; \text { STA }}$	START condition hold time after which first clock pulse is generated		4.0	-	$\mu \mathrm{s}$
thow	LOW level clock period		4.7	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HIGH }}$	HIGH level clock period		4.0	-	$\mu \mathrm{s}$
tsu;STA	set-up time for STARt condition	repeated start	4.7	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {HD } ; \text { DAT }}$	data hold time for bus compatible masters for bus devices	note 1	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\left.\right\|_{-} ^{-}$	$\mu \mathrm{s}$ ns
$\mathrm{t}_{\text {SU; DAT }}$	data set-up time		250	-	ns
t_{r}	SDA and SCL rise time		-	1	$\mu \mathrm{s}$
t_{f}	SDA and SCL fall time		-	300	ns
tsu;Sto	set-up time for STOP condition		4.0	-	$\mu \mathrm{s}$

Note

1. The hold time required (not greater than 300 ns) to bridge the undefined region of the falling edge of SCL must be internally provided by a transmitter.

256 to 1024×8-bit CMOS EEPROMs with $\mathrm{I}^{2} \mathrm{C}$-bus interface

正

[^5]
256 to 1024×8-bit CMOS EEPROMs with ${ }^{2}$ ² -bus interface

12 WRITE CYCLE LIMITS

Selection of the chip address is achieved by connecting the $A 0, A 1$ and $A 2$ inputs to either $V_{S S}$ or $V_{D D}$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
E/W cycle timing						
$\mathrm{t}_{\mathrm{E} / \mathrm{W}}$	E/W cycle time	internal oscillator	-	7	-	ms
		external clock	4	-	10	ms
Endurance						
$\mathrm{N}_{\mathrm{E} / \mathrm{W}}$	E/W cycle per byte	$\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$	100000	-	-	cycles
		$\mathrm{T}_{\mathrm{amb}}=22^{\circ} \mathrm{C}$	-	1000000	-	cycles

13 EXTERNAL CLOCK TIMING

Fig. 11 One byte E/W cycle.

Fig. 12 n bytes E/W cycle ($\mathrm{n}=2$ to 7).

256 to 1024×8-bit CMOS EEPROMs with

Fig. 13 Page mode.

(1) If an external clock is chosen, this information is latched internally by setting pin 7 (PTC) LOW after transmission of the eighth bits of the word address (negative edge of SCL). Thus the state of pin 7 may be previously undefined. Leaving pin 7 LOW causes a higher standby current.
(2) 1-byte programming.
(3) 2-byte programming.
(4) One page (8 bytes) programming.

Fig. 14 External clock.

4-digit LED-driver with I²C-Bus interface

GENERAL DESCRIPTION

The LED-driver is a bipolar integrated circuit made in an $I^{2} \mathrm{~L}$ compatible 18 volts process. The circuit is especially designed to drive four 7 -segment LED displays with decimal point by means of multiplexing between two pairs
 of digits. It features an $I^{2} C$-Bus slave transceiver interface with the possibility to program four different SLAVE ADDRESSES, a POWER RESET flag, 16 current sink OUTPUTS, controllable by software up to 21 mA , two multiplex drive outputs for common anode segments, an on-chip multiplex oscillator, control bits to select static, dynamic and blank mode, and one bit for segment test.

QUICK REFERENCE DATA

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	$\mathrm{V}_{\text {EE }}=0 \mathrm{~V}$	V_{CC}	4.5	5	15	V
Supply current all outputs OFF	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$	$\mathrm{ICC}^{(1)}$	7	9.5	14	mA
Total power dissipation						
24-lead DIL (SOT101B)		$\mathrm{P}_{\text {tot }}$	-	-	1000	mW
24-lead DIL SO (SOT137A)		$\mathrm{P}_{\text {tot }}$	-	-	500	mW
Operating ambient temperature range		$\mathrm{T}_{\text {amb }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$

Note

1. The positive current is defined as the conventional current flow into a device (sink current).

PACKAGE OUTLINE

SAA1064: 24-lead DIL; plastic with internal heat spreader (SOT101B); SOT101-1; 1996 August 30.
SAA1064T: 24-lead mini-pack; plastic (SO-24; SOT137A); SOT137-1; 1996 August 30.

4-digit LED-driver with $\mathrm{I}^{2} \mathrm{C}$-Bus interface

PINNING

SYMBOL	PIN	DESCRIPTION
ADR	1	${ }^{2}$ C-Bus slave address input
C $_{\text {EXT }}$	2	external control
P8 to P1	$3-10$	segment output
MX1	11	multiplex output
$\mathrm{V}_{\text {EE }}$	12	ground
$\mathrm{V}_{\text {CC }}$	13	positive supply
MX2	14	multiplex output
P9 to P16	$15-22$	segment output
SDA	23	1^{2} C-Bus serial data line
SCL	24	I 2 C-Bus serial clock line

Fig. 2 Pinning diagram.

4-digit LED-driver with $\mathrm{I}^{2} \mathrm{C}$-Bus interface

FUNCTIONAL DESCRIPTION

a. READ mode.

b. WRITE mode.
$S=$ start condition
$P=$ stop condition
$A=$ acknowledge
$X=$ don't care

A1, A0	$=$ programmable address bits
SC SB SA	$=$ subaddress bits
C6 to C0	$=$ control bits
PR	$=$ POWER RESET flag

Fig. $3 \mathrm{I}^{2} \mathrm{C}$-Bus format.

Address pin ADR

Four different slave addresses can be chosen by connecting ADR either to $\mathrm{V}_{\mathrm{EE}}, 3 / 8 \mathrm{~V}_{\mathrm{CC}}, 5 / 8 \mathrm{~V}_{\mathrm{CC}}$ or V_{CC}. This results in the corresponding valid addresses HEX $70,72,74$ and 76 for writing and $71,73,75$ and 77 for reading. All other addresses cannot be acknowledged by the circuit.

4-digit LED-driver with $\mathrm{I}^{2} \mathrm{C}$-Bus interface

Status byte

Only one bit is present in the status byte, the POWER RESET flag. A logic 1 indicates the occurence of a power failure since the last time it was read out. After completion of the READ action this flag will be set to logic 0 .

Subaddressing

The bits SC, SB and SA form a pointer and determine to which register the data byte following the instruction byte will be written. All other bytes will then be stored in the registers with consecutive subaddresses. This feature is called Auto-Increment (AI) of the subaddress and enables a quick initialization by the master.
The subaddress pointer will wrap around from 7 to 0 .
The subaddresses are given as follows:

SC	SB	SA	SUB-ADDRESS	FUNCTION
0	0	0	00	control register
0	0	1	01	digit 1
0	1	0	02	digit 2
0	1	1	03	digit 3
1	0	0	04	digit 4
1	0	1	05	reserved, not used
1	1	0	06	reserved, not used
1	1	1	07	reserved, not used

Control bits (see Fig.4)

The control bits C0 to C 6 have the following meaning:
$\mathrm{CO}=0 \quad$ static mode, i.e. continuous display of digits 1 and 2
$\mathrm{C0}=1 \quad$ dynamic mode, i.e. alternating display of digit $1+3$ and $2+4$
C1 $=0 / 1 \quad$ digits $1+3$ are blanked/not blanked
$\mathrm{C} 2=0 / 1 \quad$ digits $2+4$ are blanked/not blanked
C3 $=1 \quad$ all segment outputs are switched-on for segment test ${ }^{(1)}$
C4 $=1 \quad$ adds 3 mA to segment output current
$\mathrm{C} 5=1 \quad$ adds 6 mA to segment output current
C6 = $1 \quad$ adds 12 mA to segment output current

Note

1. At a current determined by $\mathrm{C} 4, \mathrm{C} 5$ and C 6 .

Data

A segment is switched ON if the corresponding data bit is logic 1. Data bits D17 to D10 correspond with digit 1, D27 to D20 with digit 2, D37 to D30 with digit 3 and D47 to D40 with digit 4.
The MSBs correspond with the outputs P8 and P16, the LSBs with P1 and P9. Digit numbers 1 to 4 are equal to their subaddresses (hex) 1 to 4 .

SDA, SCL

The SDA and SCL I/O meet the $\mathrm{I}^{2} \mathrm{C}$-Bus specification. For protection against positive voltage pulses on these inputs voltage regulator diodes are connected to V_{EE}. This means that normal line voltage should not exceed 5,5 volt. Data will be latched on the positive-going edge of the acknowledge related clock pulse.

Power-on reset

The power-on reset signal is generated internally and sets all bits to zero, resulting in a completely blanked display. Only the POWER RESET flag is set.

External Control ($\mathrm{Cext}_{\mathrm{Ex}}$)

With a capacitor connected to pin 2 the multiplex frequency can be set (see Fig.5). When static this pin can be connected to V_{EE} or V_{CC} or left floating since the oscillator will be switched off.

Segment outputs

The segment outputs P1 to P16 are controllable current-sink sources. They are switched on by the corresponding data bits and their current is adjusted by control bits $\mathrm{C} 4, \mathrm{C} 5$ and C 6 .

Multiplex outputs

The multiplex outputs MX1 and MX2 are switched alternately in dynamic mode with a frequency derived from the clock-oscillator. In static mode MX1 is switched on. The outputs consist of an emitter-follower, which can be used to drive the common anodes of two displays directly provided that the total power dissipation of the circuit is not exceeded. If this occurs external transistors should be connected to pins 11 and 14 as shown in Fig.5.

4-digit LED-driver with $\mathrm{I}^{2} \mathrm{C}$-Bus interface

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

PARAMETER	CONDITIONS	SYMBOL	MIN.	MAX.	UNIT	
Supply voltage (pin 13)	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	V_{CC}	-0.5	18	V	
Supply current (pin 13)		ICC	-50	200	mA	
Total power dissipation						
24-lead DIL (SOT101B)		$\mathrm{P}_{\text {tot }}$		1000	mW	
24-lead SO (SO137A)		$\mathrm{P}_{\text {tot }}$		500	mW	
SDA, SCL voltages		$V_{\text {EE }}=0 \mathrm{~V}$	$\mathrm{V}_{23,24}$	-0.5	5.9	V
Voltages ADR-MX1 and MX2-P16	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	$\mathrm{V}_{1-11}, \mathrm{~V}_{14-22}$	-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Input/output current all pins	outputs OFF	$\pm \mathrm{I}_{1 / \mathrm{O}}$	-		mA	
Operating ambient						
temperature range		$\mathrm{T}_{\text {amb }}$	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-55	+150	${ }^{\circ} \mathrm{C}$	

THERMAL RESISTANCE

From crystal to ambient

24-lead DIL	$R_{\text {th } j-a}$	35 KMW
24-lead SO (on ceramic substrate)	$R_{\text {th } j-a}$	$75 \mathrm{~K} / \mathrm{W}$
24-lead SO (on printed circuit board)	$\mathrm{R}_{\text {th j }-\mathrm{a}}$	$105 \mathrm{~K} / \mathrm{W}$

CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; voltages are referenced to ground ($\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$); unless otherwise specified

4-digit LED-driver with $\mathrm{I}^{2} \mathrm{C}$-Bus interface

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX	UNIT
Segment outputs						
(P8 to P1; pins 3 to 10)						
P9 to P16; pins 15 to 22)						
Output voltages	$\mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}$	V_{O}	-	-	0.5	V
Output leakage current HIGH	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$	lo	-	-	± 10	$\mu \mathrm{A}$
Output current LOW						
All control bits (C4, C5						
and C6) are HIGH	$\mathrm{V}_{\mathrm{OL}}=5 \mathrm{~V}$	I_{OL}	17.85	21	25.2	mA
Contribution of:						
control bit C4		I_{0}	2.55	3.0	3.6	mA
control bit C5		l_{0}	5.1	6.0	7.2	mA
control bit C6		10	10.2	12.0	14.4	mA
Relative segment output current accuracy						
with respect to highest value		Δl_{0}	-	-	7.5	\%
Multiplex 1 and 2 (pins 11 and 14)						
Maximum output voltage (when ON)	$-\mathrm{I}_{\mathrm{MPX}}=50 \mathrm{~mA}$	$\mathrm{V}_{\text {MPX }}$	$\mathrm{V}_{C C}-1.5$	-	-	V
Maximum output current HIGH (when ON)	$V_{M P X}=2 \mathrm{~V}$	$-\mathrm{I}_{\mathrm{MPX}}$	50	-	110	mA
Maximum output current LOW (when OFF)	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$	$+_{\text {MPX }}$	50	70	110	$\mu \mathrm{A}$
Multiplex output period	$\mathrm{C}_{\text {EXT }}=2.7 \mathrm{nF}$	$\mathrm{T}_{\text {MPX }}$	5	-	10	ms
Multiplexed duty factor			-	48.4	-	\%

* Value to be fixed.

4-digit LED-driver with $\mathrm{I}^{2} \mathrm{C}$-Bus interface

Fig. 4 Timing diagram.

4-digit LED-driver with $\mathrm{I}^{2} \mathrm{C}$-Bus interface

APPLICATION INFORMATION

Fig. 5 Dynamic mode application diagram.

4-digit LED-driver with $I^{2} \mathrm{C}$-Bus interface

Fig. 6 Static mode application diagram.

4-digit LED-driver with $\mathrm{I}^{2} \mathrm{C}$-Bus interface

POWER DISSIPATION

The total maximum power dissipation of the SAA1064 is made up by the following parts:

1. Maximum dissipation when none of the outputs are programmed (continuous line in Fig.7).
2. Maximum dissipation of each programmed output. The dashed line in Fig. 7 visualises the dissipation when all the segments are programmed (max. 16 in the static, and max. 32 in the dynamic mode). When less segments are programmed one should take a proportional part of the maximum value.
3. Maximum dissipation of the programmed segment drivers which can be expressed as:
$\mathrm{P}_{\mathrm{add}}=\mathrm{V}_{\mathrm{O}} \times \mathrm{I}_{\mathrm{O}} \times \mathrm{N}$.

Where: $\quad P_{\text {add }}=$ The additional power dissipation of the segment drivers
$\mathrm{V}_{\mathrm{O}}=$ The low state segment driver output voltage
$\mathrm{I}_{\mathrm{O}}=$ The programmed segment output current
$\mathrm{N}=$ The number of programmed segments in the static mode, or half the number of programmed segment drivers in the dynamic mode.

Under no conditions the total maximum dissipation (500 mW for the SO and 1000 mW for the DIL package) should be exceeded.

```
Example: \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\)
    \(\mathrm{V}_{\mathrm{O}}=0.25 \mathrm{~V}\)
    \(\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}\)
    24 programmed segments in dynamic mode
    \(P_{\text {tot }}=P_{1}+P_{2}+P_{3}\)
        \(=75 \mathrm{~mW}+(50 * 24 / 32) \mathrm{mW}+\left(0.25^{*} 12.10^{-3}\right.\) * 12\() \mathrm{mW}\)
        \(=148.5 \mathrm{~mW}\)
```


Fig. 7 SAA1064 power dissipation as a function of supply voltage.

Tuner switching circuit

The SAA1300 is for switching on and off the supply lines of various circuit parts via an $I^{2} \mathrm{C}$ bus signal. Furthermore, it can be used to supply current for switching diodes in radio and television tuners. It contains 5 output stages, which are capable of supplying up to 85 mA in the ON state or sinking up to $-100 \mu \mathrm{~A}$ in the OFF state.

Current limiting and short-circuit protection are included. The output stages are driven by a shift register/latch combination which is loaded via data from the $\mathrm{I}^{2} \mathrm{C}$ bus. A power-on reset of the latches ensures the OFF state of the output stages (OUT 2 to OUT 5) without data reception from the $I^{2} \mathrm{C}$ bus. A subaddressing system allows the connection of up to three circuits on the same $I^{2} \mathrm{C}$ bus lines; one of the outputs (OUT 1, pin 7) can also be used as an input to select the device via a simple internal A / D converter.

Fig. 1 Block diagram.

PACKAGE OUTLINE

9-lead SIL; plastic (SOT142); SOT142-1; 1996 September 05.

Tuner switching circuit

PINNING

PIN NO.	SYMBOL	FUNCTION	
1	GND	ground	
2	V_{P}	positive supply	
3	OUT 5	outputs	
4	OUT 4		
5	OUT 3		
6	OUT 2		
7	OUT 1	output and subaddressing input	
8	SDA	serial data line	$\mathrm{I}^{2} \mathrm{C}$ bus
9	SCL	serial clock line	

$I^{2} \mathrm{C}$ BUS INFORMATION

Address, first byte
01000 A B 0 where,

A	B	FUNCTION	CONDITION
0	0	general address	OUT $1=$ output
0	1	OUT $1=$ input	address accepted if $V_{\text {OUT } 1}=V_{\text {OUT }}$ (LOW)
1	0	OUT $1=$ input	address accepted if $V_{\text {OUT } 1}=V_{\text {OUT H }}$ (HIGH)
1	1	OUT $1=$ input	address accepted if $V_{\text {OUT } 1}=V_{\text {OUT M }}$ (MEDIUM)

Data, second byte
OUT 5, OUT 4, OUT 3, OUT 2, OUT 1, X, X, X
The I/O output stage (OUT 1) is switched as an input stage after a power-on reset. It depends on the contents of the first data transmission whether the output stage is switched as an output or remains as an input.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Input voltage range at SDA, SCL
Input voltage range at OUT 1
Output voltage range at OUT 1 to OUT 5
Input current at SDA, SCL
Input current at OUT 1
Total power dissipation
Storage temperature range
Operating ambient temperature ranges

V_{P}	max. 13,2	V
$\mathrm{~V}_{\mathrm{I}}$	$-0,5$ to $+6,0$	V
$\mathrm{~V}_{\mathrm{I}}$	$-0,5$ to $+12,5$	V
$\mathrm{~V}_{\mathrm{O}}$	$-0,5$ to $+12,5$	V
I_{I}	max. $\quad 20$	mA
I_{I}	max. 20	mA
$\mathrm{P}_{\text {tot }}$	max. 825	mW
$\mathrm{~T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-20 to +80	${ }^{\circ} \mathrm{C}$

Tuner switching circuit

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=8 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=24^{\circ} \mathrm{C}$; unless otherwise specified

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply (pin 2)					
Supply voltage range	V_{P}	4	8	12	V
Supply current					
5 outputs LOW	IPL	5	10	15	mA
5 outputs HIGH	I_{PH}	30	50	70	mA
Power on reset level output stage in "OFF" condition	$V_{P R}$	-	3,5	3,8	V
Maximum power dissipation ${ }^{(1)}$	$\mathrm{P}_{\text {max }}$	-	650	-	mW
Inputs SDA, SCL (pins 8 and 9)					
Input voltage HIGH	$\mathrm{V}_{1 \text { H }}$	3,0	-	5,5	V
Input voltage LOW	V_{IL}	0	-	1,5	V
Input current HIGH	$-I_{\text {IH }}$	-	-	10	$\mu \mathrm{A}$
Input current LOW	${ }_{\text {IH }}$	-	-	0,4	$\mu \mathrm{A}$
Acknowledge sink current	$\mathrm{I}_{\text {ACK }}$	2,5	-	-	mA
Maximum input frequency	$\mathrm{f}_{\mathrm{imax}}$	100	-	-	kHz
Outputs OUT 1 to OUT 5 (pins 3 to 7)					
Maximum output current; source: "ON"	Ioso	+85	-	+150	mA
Maximum output current; source: "ON" $\mathrm{T}_{\mathrm{amb}}=80^{\circ} \mathrm{C}$	Ioso	60	-	-	mA
Output voltage HIGH					
at $\mathrm{l}_{\text {oso }}=85 \mathrm{~mA}$	V_{OH}	$\mathrm{V}_{\mathrm{p}}-2$	-	-	V
Output current; sink "OFF"	losi	-100	-300	-	$\mu \mathrm{A}$
Output voltage LOW					
at $\mathrm{l}_{\text {osi }}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {OL }}$	-	-	100	mV
Output voltage MEDIUM					
at $\mathrm{l}_{0}=10 \mathrm{~mA}$	Vom	V_{P}-0,5	-	-	v
OUT 1 used as subaddressing input					
Input voltage HIGH (code 10)	Vout iH	0,72 VP	-	V_{P}	V
Input voltage MEDIUM (code 11)	Vout im	0,39 VP	-	0,61 VP	V
Input voltage LOW (code 0 1)	Vout iL	0	-	0,28 VP	V

Note

1. Outputs must not be driven simultaneously at maximum source current.

FEATURES

- V_{CC} generation ($5 \mathrm{~V} \pm 5 \%, 20 \mathrm{~mA}$ maximum with controlled rise and fall times)
- Clock generation (up to 8 MHz), with two times synchronous frequency doubling
- Clock STOP HIGH, clock STOP LOW or 1.25 MHz (from internal oscillator) for cards power-down mode
- Specific UART on I/O for automatic direct/inverse convention settings and error management at character level
- Automatic activation and deactivation sequences through an independent sequencer
- Supports the protocol $\mathrm{T}=0$ in accordance with ISO 7816, GSM11.11 requirements (Global System for Mobile communication); and EMV banking specification approved for Final GSM11.11 Test Approval (FTA)
- Several analog options are available for different applications (doubler or tripler DC/DC converter, card presence, active HIGH or LOW, threshold voltage supervisor, etc.
- Overloads and take-off protections
- Current limitations in the event of short-circuit
- Special circuitry for killing spikes during power-on or off
- Supply supervisor
- Step-up converter (supply voltage from 2.5 to 6 V)
- Power-down and sleep mode for low-power consumption
- Enhanced ESD protections on card side (6 kV minimum)
- Control and communication through a standard RS232 full duplex interface
- Optional additional I/O ports for:
- keyboard
- LEDs
- display
- etc.
- 80CL51 microcontroller core with 4 kbytes ROM and 256-byte RAM.

APPLICATIONS

- Portable smart card readers for protocol $\mathrm{T}=0$
- GSM mobile phones.

GENERAL DESCRIPTION

The TDA8005 is a low cost card interface for portable smart card readers. Controlled through a standard serial interface, it takes care of all ISO 7816 and GSM11-11 requirements. It gives the card and the set a very high level of security, due to its special hardware against ESD, short-circuiting, power failure, etc. Its integrated step-up converter allows operation within a supply voltage range of 2.5 to 6 V .

The very low-power consumption in Power-down and sleep modes saves battery power. A special version where the internal connections to the controller are fed outside through pins allows easy development and evaluation, together with a standard 80CL51 microcontroller.
Development tools, application report and support (hardware and software) are available.
The device can be supplied either as a masked chip with standard software handling all communication between smart card and a master controller in order to make the application easier, or as a maskable device.

Low-power smart card coupler

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{DD}	supply voltage	doubler and tripler option	2.5	-	6.0	V
$\mathrm{l}_{\mathrm{DD}(\mathrm{pd})}$	supply current in power-down mode	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$; card inactive	-	-	100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DD}(\mathrm{sm})}$	supply current in sleep mode doubler	card powered but clock stopped	-	-	500	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DD}(\mathrm{sm})}$	supply current in sleep mode tripler	card powered but clock stopped	-	-	500	$\mu \mathrm{A}$
ldD (om)	supply current in operating mode	$\begin{aligned} & \text { unloaded; } f_{x \text { tal }}=13 \mathrm{MHz} \text {; } \\ & f_{\mu \mathrm{C}}=6.5 \mathrm{MHz} ; \\ & \mathrm{f}_{\text {card }}=3.25 \mathrm{MHz} \\ & \hline \end{aligned}$	-	-	5.5	mA
$\mathrm{V}_{C C}$	card supply voltage	including static and dynamic loads on 100 nF capacitor	4.75	5.0	5.25	V
Icc	card supply current	operating	-	-	20	mA
		limitation	-	-	30	mA
SR	slew rate on $\mathrm{V}_{\text {CC }}$ (rise and fall)	maximum load capacitor 150 nF (including typical 100 nF decoupling)	0.05	0.1	0.15	V/us
$\mathrm{t}_{\text {de }}$	deactivation cycle duration		-	-	100	$\mu \mathrm{s}$
$\mathrm{t}_{\text {act }}$	activation cycle duration		-	-	100	$\mu \mathrm{s}$
$\mathrm{f}_{\text {xtal }}$	crystal frequency		2	-	16	MHz
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-25	-	+85	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA8005G	LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4 \mathrm{~mm}$	SOT314-2
TDA8005H	QFP44	plastic quad flat package; 44 leads (lead length 1.3 mm); body $10 \times 10 \times 1.75 \mathrm{~mm}$	SOT307-2

BLOCK DIAGRAM

(1) For details see Chapter "Pinning".

Fig. 1 Block diagram (LQFP64; SOT314-2).

Low-power smart card coupler

PINNING

SYMBOL	PIN		DESCRIPTION
	LQFP64 SOT314-2	$\begin{gathered} \text { QFP44 } \\ \text { SOT307-2 } \end{gathered}$	
n.c.	1	-	not connected
AGND	2	1	analog ground
S3	3	2	contact 3 for the step-up converter
K5	4	-	output port from port extension
P03	5	3	general purpose I/O port (connected to P03)
P02	6	4	general purpose I/O port (connected to P02)
P01	7	5	general purpose I/O port (connected to P01)
n.c.	8	-	not connected
P00	9	6	general purpose I/O port (connected to P00)
$\mathrm{V}_{\text {DDD }}$	10	7	digital supply voltage
n.c.	11	-	not connected
TEST1	12	8	test pin 1 (connected to P10; must be left open-circuit in the application)
P11	13	9	general purpose I/O port or interrupt (connected to P11)
P12	14	10	general purpose I/O port or interrupt (connected to P12)
P13	15	11	general purpose l/O port or interrupt (connected to P13)
P14	16	12	general purpose I/O port or interrupt (connected to P14)
n.c.	17	-	not connected
P15	18	13	general purpose I/O port or interrupt (connected to P15)
P16	19	14	general purpose I/O port or interrupt (connected to P16)
TEST2	20	15	test pin 2 (connected to PSEN; must be left open-circuit in the application)
P17	21	16	general purpose I/O port or interrupt (connected to P17)
RESET	22	17	input for resetting the microcontroller (active HIGH)
n.c.	23	-	not connected
n.c.	24	-	not connected
n.c.	25	-	not connected
n.c.	26	-	not connected
n.c.	27	-	not connected
RxD	28	18	serial interface receive line
TxD	29	19	serial interface transmit line
INT1	30	20	general purpose I/O port or interrupt (connected to P33)
T0	31	21	general purpose l/O port (connected to P34)
AUX1	32	22	push-pull auxiliary output ($\pm 5 \mathrm{~mA}$; connected to timer T1 e.g. P35)
AUX2	33	23	push-pull auxiliary output ($\pm 5 \mathrm{~mA}$; connected to timer P36)
P37	34	24	general purpose I/O port (connected to P37)
XTAL2	35	25	crystal connection
XTAL1	36	26	crystal connection or external clock input
DGND	37	27	digital ground
n.c.	38	-	not connected

SYMBOL	PIN		DESCRIPTION
	LQFP64 SOT314-2	QFP44 SOT307-2	
n.c.	39	-	not connected
P20	40	28	general purpose I/O port (connected to P20)
P21	41	-	general purpose I/O port (connected to P21)
P22	42	29	general purpose I/O port (connected to P22)
P23	43	30	general purpose I/O port (connected to P23)
ALARM	44	-	open-drain output for Power-On Reset (active HIGH or LOW by mask option)
n.c.	45	-	not connected
DELAY	46	31	external capacitor connection for delayed reset signal
PRES	47	32	card presence contact input (active HIGH or LOW by mask option)
TEST3	48	33	test pin 3 (must be left open-circuit in the application)
K4	49	-	output port from port extension
K3	50	-	output port from port extension
K2	51	-	output port from port extension
K1	52	-	output port from port extension
K0	53	-	output port from port extension
TEST4	54	34	test pin 4 (must be left open-circuit in the application)
1/O	55	35	data line to/from the card (ISO C7 contact)
RST	56	36	card reset output (ISO C2 contact)
CLK	57	37	clock output to the card (ISO C3 contact)
$\mathrm{V}_{\text {cc }}$	58	38	card supply output voltage (ISO C1 contact)
LIS	59	39	supply for low-impedance on cards contacts
S5	60	40	contact 5 for the step-up converter
S2	61	41	contact 2 for the step-up converter
S4	62	42	contact 4 for the step-up converter
$\mathrm{V}_{\text {DDA }}$	63	43	analog supply voltage
S1	64	44	contact 1 for the step-up converter

Fig. 2 Pin configuration (LQFP64; SOT314-2).

Fig. 3 Pin configuration (QFP44; SOT307-2).

FUNCTIONAL DESCRIPTION

Microcontroller

The microcontroller is an 80CL51 with 256 bytes of RAM instead of 128. The baud rate of the UART has been multiplied by four in modes 1, 2 and 3 (which means that the division factor of 32 in the formula is replaced by 8 in both reception and transmission, and that in the reception modes, only four samples per bit are taken with decision on the majority of samples 2, 3 and 4) and the delay counter has been reduced from 1536 to 24 .

Remark: this has an impact when getting out of PDOWN mode. It is recommended to switch to internal clock before entering PDOWN mode
 (see "application report').

All the other functions remain unchanged. Please, refer to the published specification of the 80CL51 for any further information. Pins INT0, P10, P04 to P07 and P24 to P27 are used internally for controlling the smart card interface.

Mode 0 is unchanged. The baud rate for modes 1 and 3 is: $\frac{2^{\mathrm{SMOD}}}{8} \times \frac{\mathrm{f}_{\mathrm{clk}}}{12 \times(256-\mathrm{TH} 1)}$

The baud rate for mode 2 is: $\frac{2^{S M O D}}{16} \times f_{c l k}$

Table 1 Mode 3 timing

BAUD RATE	$\begin{gathered} \mathrm{f}_{\mathrm{clk}}=6.5 \mathrm{MHz} ; \\ \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \mathrm{f}_{\mathrm{clk}}=3.25 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{DD}}=5 \text { or } 3 \mathrm{~V} \end{aligned}$	
	SMOD	TH1	SMOD	TH1
135416	1	255	-	-
67708	0	255	1	255
45139	1	253	-	-
33854	0	254	0	255
27083	1	251	-	-
22569	0	253	1	253
16927	-	-	0	254
13542	-	-	1	251
11285	0	250	0	253

Supply

The circuit operates within a supply voltage range of 2.5 to 6 V . The supply pins are $\mathrm{V}_{\mathrm{DDD}}$, DGND and AGND. Pins VDDA and AGND supply the analog drivers to the card and have to be externally decoupled because of the large current spikes that the card and the step-up coriverter can create. An integrated spike killer ensures the contacts to the card remain inactive during power-up or power-down. An internal voltage reference is generated which is used within the step-up converter, the voltage supervisor, and the V_{Cc} generator.

The voltage supervisor generates an alarm pulse, whose length is defined by an external capacitor tied to the DELAY pin, when $V_{D D D}$ is too low to ensure proper operation (1 ms per 1 nF typical). This pulse is used as a RESET pulse by the controller, in parallel with an external RESET input, which can be tied to the system controller.

It is also used in order to either block any spurious card contacts during controllers reset, or to force an automatic deactivation of the contacts in the event of supply drop-out [see Sections "Activation sequence" and "Deactivation sequence (see Fig.10)"].

In the 64 pin version, this reset pulse is output to the open drain ALARM pin, which may be selected active HIGH or active LOW by mask option and may be used as a reset pulse for other devices within the application.

Fig. 4 Supply supervisor.

Low impedance supply (pin LIS)

For some applications, it is mandatory that the contacts to the card (V_{CC}, RST, CLK and I/O) are low impedance while the card is inactive and also when the coupler is not powered. An auxiliary supply voltage on pin LIS ensures this condition where $\mathrm{I}_{\text {LIS }}=<5 \mu \mathrm{~A}$ for $\mathrm{V}_{\text {LIS }}=5 \mathrm{~V}$. This low impedance situation is disabled when V_{CC} starts rising during activation, and re-enabled when the step-up converter is stopped during deactivation. If this feature is not required, the LIS pin must be tied to $V_{D D}$.

Step-up converter

Except for the $V_{C C}$ generator, and the other cards contacts buffers, the whole circuit is powered by $V_{\text {DDD }}$ and $V_{\text {DDA. }}$. If the supply voltage is 3 V or 5 V , then a higher voltage is needed for the ISO contacts supply. When a card session is requested by the controller, the sequencer first starts the step-up converter, which is a switched capacitors type, clocked by an internal oscillator at a frequency approximately 2.5 MHz . The output voltage, V_{UP}, is regulated at approximately $6,5 \mathrm{~V}$ and then fed to the V_{CC} generator. $V_{C C}$ and GND are used as a reference for all other cards contacts. The step-up converter may be
chosen as a doubler or a tripler by mask option, depending on the voltage and the current needed on the card.

ISO 7816 security

The correct sequence during activation and deactivation of the card is ensured through a specific sequencer, clocked by a division ratio of the internal oscillator.

Activation (START signal P05) is only possible if the card is present (PRES HIGH or LOW according to mask option), and if the supply voltage is correct (ALARM signal inactive), CLK and RST are controlled by RSTIN (P04), allowing the correct count of CLK pulses during Answer-to-Reset from the card.

The presence of the card is signalled to the controller by the OFF signal (P10).

During a session, the sequencer performs an automatic emergency deactivation in the event of card take-off, supply voltage drop, or hardware problems. The OFF signal falls thereby warning the controller.

Clock circuitry

The clock to the microcontroller and the clock to the card are derived from the main clock signal (XTAL from 2 to 16 MHz , or an external clock signal).

Microcontroller clock ($\mathrm{f}_{\mathrm{clk}}$) after reset, and during power reduction modes, the microcontroller is clocked with $\mathrm{f}_{\mathrm{INT}} / 8$, which is always present because it is derived from the internal oscillator and gives the lowest power consumption. When required, (for card session, serial communication or anything else) the microcontroller may choose to clock itself with $1 / 2 f_{x \text { tal }}, 1 / 4 f_{x t a l}$ or $1 / 2 f_{\text {INT }}$.
All frequency changes are synchronous, thereby ensuring no hang-up due to short spikes etc.

Cards clock: the microcontroller may select to send the card $1 / 2 f_{x \text { xal }}, 1 / 4 f_{x \text { xal }}, 1 / 8 f_{x \text { xal }}$ or $1 / 2 f_{\text {INT }}(\approx 1.25 \mathrm{MHz}$), or to stop the clock HIGH or LOW. All transition are synchronous, ensuring correct pulse length during start or change in accordance with ISO 7816 .

After power on, CLK is set at STOP LOW, and $\mathrm{f}_{\mathrm{clk}}$ is set at $1 / 8 \mathrm{I}_{\mathrm{INT}}$.

Power-down and sleep modes

The TDA8005 offers a large flexibility for defining power reduction modes by software. Some configurations are described below.

In the power-down mode, the microcontroller is in power-down and the supply and the internal oscillator are
active. The card is not active; this is the smallest power consumption mode. Any change on P1 ports or on PRES will wake-up the circuit (for example, a key pressed on the keyboard, the card inserted or taken off).

In the sleep mode, the card is powered, but configured in the Idle or sleep mode. The step-up converter will only be active when it is necessary to reactivate $\mathrm{V}_{\text {Up }}$. When the microcontroller is in Power-down mode any change on P1 ports or on PRES will wake up the circuit.

In both power reduction modes the sequencer is active, allowing automatic emergency deactivation in the event of card take-off, hardware problems, or supply drop-out.
The TDA8005 is set into Power-down or sleep mode by software. There are several ways to return to normal mode, Introduction or extraction of the card, detection of a change on P1 (which can be a key pressed) or a command from the system microcontroller. For example, if the system monitors the clock on XTAL1, it may stop this clock after setting the device into power-down mode and then wake it up when sending the clock again. In this situation, the internal clock should have been chosen before the $\mathrm{f}_{\mathrm{clk}}$.

Peripheral interface

This block allows synchronous serial communication with the three peripherals (ISO UART, CLOCK CIRCUITRY and OUTPUT PORTS EXTENSION).

MBH635

Fig. 5 Peripheral interface diagram.

Table 2 Description of Fig. 5

BIT NAME	DESCRIPTION
REG0 $=0$, REG1 $=0$, R/W $=0$; CLOCK CONFIGURATION (Configuration after reset is cards clock STOP LOW, $\mathrm{f}_{\mathrm{clk}}=1 / \mathbf{f}_{\mathrm{fNT}}$)	
CC0	cards clock $=1 / 2 \mathrm{f}_{\text {xtal }}$
CC1	cards clock $=1 / 4 \mathrm{f}_{\text {xtal }}$
CC2	cards clock $=1 / 8 \mathrm{f}_{\text {xtal }}$
CC3	cards clock $=1 / 2 \mathrm{f}_{\text {INT }}$
CC4	cards clock = STOP HIGH
CC5	$\mathrm{f}_{\text {clk }}=1 / 2 \mathrm{f}_{\mathrm{x} \text { tal }}$
CC6	$\mathrm{f}_{\text {clk }}=1 / 4 \mathrm{f}_{\text {xtal }}$
CC7	$\mathrm{f}_{\text {clk }}=1 /{ }^{1} \mathrm{f}_{\mathrm{INT}}$
REG0 $=1$, REG1 $=0$, R/W $=0$; UART CONFIGURATION (after reset all bits are cleared)	
UC0	ISO UART RESET
UC1	START SESSION
UC2	LCT (Last Character to Transmit)
UC3	TRANSMIT/RECEIVE
UC4 to UC7	not used
REG0 $=0$, REG1 $=1$, R/W $=0$; UART TRANSMIT	
UT0 to UT7	LSB to MSB of the character to be transmitted to the card
REG0 $=1$, REG1 $=1$, R/W = 0; PORTS EXTENSION (after reset all bits are cleared)	
PE0 to PE5	PE0 to PE5 is the inverse of the value to be written on K0 to K5
PE6, PE7	not used
REG0 $=0$, REG1 $=0$, R/W $=1$; UART RECEIVE	
UR0 to UR7	LSB to MSB of the character received from the card
REG0 $=1$, REG1 $=0, R / W=1$; UART STATUS REGISTER (after reset all bits are cleared)	
US0	UART TRANSMIT buffer empty
US1	UART RECEIVE buffer full
US2	first start bit detected
US3	parity error detected during reception of a character (the UART has asked the card to repeat the character)
US4	parity error detected during transmission of a character. The controller must write the previous character in UART TRANSMIT, or abort the session.
US5 to US7	not used

Low-power smart card coupler

USE OF PERIPHERAL INTERFACE
Write operation:
Select the correct register with R/W, REG0, REG1.
Write the word in the peripheral shift register (PSR) with DATA and STROBE. DATA is shifted on the rising edge of STROBE. 8 shifts are necessary.
Give a negative pulse on ENABLE. The data is parallel loaded in the register on the falling edge of ENABLE.

Read operation:
Select the correct register with R/W, REG0 and REG1.
Give a first negative pulse on ENABLE. The word is parallel loaded in the peripheral shift register on the rising edge of ENABLE.
Give a second negative pulse on ENABLE for configuring the PSR in shift right mode.
Read the word from PSR with DATA and STROBE. DATA is shifted on the rising edge of STROBE. 7 shifts are necessary.

Table 3 Example of peripheral interface

CHANGE OF CLOCK CONFIGURATION ${ }^{(1)}$		READ CHARACTER ARRIVED IN UART RECEIVE	
	CLR REG0		CLR REG0
	CLR REG1		CLR REG1
	CLR R/W		SET R/W
	MOV R2, \#8		CLR ENABLE
	RRC A		SET ENABLE
	LOOP DATA C		CLR ENABLE
	CLR STROBE		SET ENABLE
	SET STROBE		MOV R2, \#8
	DJNZ R2, LOOP		MOOP C, DATA
	CLR ENABLE		RRC A
	SET ENABLE		CLR STROBE
	SET DATA		SET STROBE
	RET		DJNZ R2, LOOP
			SET DATA
			RET

Notes

1. The new configuration is supposed to be in the accumulator.
2. The character will be in the accumulator.

ISO UART

The ISO UART handles all the specific requirements defined in ISO T=0 protocol type. It is clocked with the cards clock, which gives the $\mathrm{f}_{\mathrm{clk}} / 31$ sampling rate for start bit detection (the start bit is detected at the first LOW level on I / O) and the $\mathrm{f}_{\mathrm{clk}} / 372$ frequency for ETU timing (in the reception mode the bit is sampled at $1 / 2 E T U$). It also allows the cards clock frequency changes without interfering with the baud rate.

This hardware UART allows operating of the microcontroller at low frequency, thus lowering EM radiations and power consumption. It also frees the microcontroller of fastidious conversions and real time jobs thereby allowing the control of higher level tasks.

The following occurs in the reception mode (see Fig.6):

- Detection of the inverse or direct convention at the begin of ATR.
- Automatic convention setting, so the microcontroller only receives characters in direct convention.
- Parity checking and automatic request for character repetition in case of error (reception is possible at 12 ETU).

In the transmission mode (see Fig.7):

- Transmission according to the convention detected during ATR, consequently the microcontroller only has to send characters in direct convention. Transmission of the next character may start at 12 ETU in the event of no error or 13 ETU in case of error.
- Parity calculation and detection of repetition request from the card in the event of error.
- The bit LCT (Last Character to Transmit) allows fast reconfiguration for receiving the answer 12 ETU after the start bit of the last transmitted character.

The ISO UART status register can inform which event has caused an interrupt. (Buffer full, buffer empty, parity error detected etc.) cf Peripheral Interface.

This register is reset when the microcontroller reads the status out of it.

The ISO UART configuration register enables the microcontroller to configure the ISO UART. cf Peripheral Interface.

After power-on, all ISO UART registers are reset.
The ISO UART is configured in the reception mode. When the microcontroller wants to start a session, it sets the bits START SESSION and RESET ISO UART in UART CONFIGURATION and then sets START LOW. When the first start bit on I/O is detected (sampling rate $f_{\text {clk }} / 31$), the UART sets the bit US2 (First Start Detect) in the status register which gives an interrupt on INTO one CLK pulse later.

The convention is recognized on the first character of the ATR and the UART configures itself in order to exchange direct data without parity processing with the microcontroller whatever the convention of the card is. The bit START SESSION must be reset by software. At the end of every character, the UART tests the parity and resets what is necessary for receiving another character.

If no parity error is detected, the UART sets the bit US1 (BUFFER FULL) in the STATUS REGISTER which warns the microcontroller it has to read the character before the reception of the next one has been completed. The STATUS REGISTER is reset when read from the controller.

If a parity error has been detected, the UART pulls the I/O line LOW between 10.5 and 12 ETU. It also sets the bits BUFFER FULL and US3 (parity error during reception) in the STATUS REGISTER which warns the microcontroller that an error has occurred. The card is supposed to repeat the previous character.

(1) The start session is reset by software.
(2) The software may load the received character in the peripheral control at any time without any action on the ISO UART.

Fig. 6 ISO UART reception flow chart.

When the controller needs to transmit data to the card, it first sets the bit UC3 in the UART CONFIGURATION which configures the UART in the transmission mode. As soon as a character has been written in the UART TRANSMIT register, the UART makes the conversion,
calculates the parity and starts the transmission on the rising edge of ENABLE. When the character has been transmitted, it surveys the I/O line at 11 ETU in order to know if an error has been detected by the card.

If no error has occurred, the UART sets the bit USO (BUFFER EMPTY) in the STATUS REGISTER and waits for the next character. If the next character has been written before 12 ETU, the transmission will start at 12 ETU. If it was written after 12 ETU it will start on the rising edge of ENABLE.

If an error has occurred, it sets the bits BUFFER EMPTY and US4 (parity error during transmission) which warns the microcontroller to rewrite the previous character in the UART TRANSMIT register. If the character has been rewritten before 13 ETU, the transmission will start at

13 ETU. If it has been written after 13 ETU it will start on the rising edge of ENABLE.

When the transmission is completed, the microcontroller may set the bit LCT (Last Character to Transmit) so that the UART will force the reception mode into ready to get the reply from the card at 12 ETU. This bit must be reset before the end of the first reception. The bit T/R must be reset to enable the reception of the following characters.

When the session is completed, the microcontroller re-initializes the whole UART by resetting the bit RESET ISO UART.

(1) The transmit register may be loaded just after reading from the status register.
(2) The software must reset the last character but before completion of the first received character.

Fig. 7 ISO UART transmission flow chart.

I/O buffer modes (see Fig.8)

The following are the I/O buffer modes:

1. I/O buffer disabled by ENIO.
2. I/O buffer in input, $20 \mathrm{k} \Omega$ pull-up resister connected between I/O and V_{CC}, I/O masked till 200 clock pulses.
3. I/O buffer in input, $20 \mathrm{k} \Omega$ pull-up resister connected between I/O and V_{CC}, I/O is sampled every 31 clock pulses.
4. I/O buffer in output, $20 \mathrm{k} \Omega$ pull-up resister connected between I/O and V_{CC}.
5. I/O buffer in output, I/O is pulled LOW by the N transistor of the buffer.
6. I/O buffer in output, I/O is strongly HIGH or LOW by the P or N transistor.

Output ports extension

In the LQFP64 version, 6 auxiliary output ports may be used for low frequency tasks (for example, keyboard scanning). These ports are push-pull output types (cf use in software document).

Activation sequence

When the card is inactive, V_{CC}, CLK, RST and I/O are LOW, with low impedance with respect to GND. The step-up converter is stopped. The I/O is configured in the reception mode with a high impedance path to the ISO UART, subsequently no spurious pulse from the card during power-up will be taken into account until I/O is enabled. When everything is satisfactory (voltage supply, card present, no hardware problems), the microcontroller may initiate an activation sequence by setting START LOW (t_{o}):

- The step-up converter is started $\left(\mathrm{t}_{1}\right)$
- LIS signal is disabled by ENLI, and V_{CC} starts rising from 0 to 5 V with a controlled rise time of $0.1 \mathrm{~V} / \mu \mathrm{s}$ typically (t_{2})
- I/O buffer is enabled (t_{3})
- Clock is sent to the card (t_{4})
- RST buffer is enabled $\left(t_{5}\right)$.

In order to allow a precise count of clock pulses during ATR, a defined time window $\left(t_{3} ; t_{5}\right)$ is opened where the clock may be sent to the card by means of RSTIN. Beyond this window, RSTIN has no more action on clock, and only monitors the cards RST contact (RST is the inverse of RSTIN).
The sequencer is clocked by $\mathrm{f}_{\mathrm{INT}} / 64$ which leads to a time interval T of 25μ s typical. Thus $t_{1}=0$ to $1 / 64 T$, $t_{2}=t_{1}+1 / 23 T, t_{3}=t_{1}+4 T, t_{4}=t_{3}$ to t_{5} and $t_{5}=t_{1}+7 T$ (see Fig.9).

Deactivation sequence (see Fig.10)

When the session is completed, the microcontroller sets START HIGH. The circuit then executes an automatic deactivation sequence:

- Card reset (RST falls LOW) at t_{10}
- Clock is stopped at t_{11}
- I/O becomes high impedance to the ISO UART (t_{12})
- V_{CC} falls to 0 V with typical $0.1 \mathrm{~V} / \mu$ s slew rate $\left(\mathrm{t}_{13}\right)$
- The step-up converter is stopped and CLK, RST, V_{CC} and I / O become low impedance to GND (t_{14}).
- $\mathrm{t}_{10}<1 / 64 \mathrm{~T} ; \mathrm{t}_{11}=\mathrm{t}_{10}+1 / 2 \mathrm{~T} ; \mathrm{t}_{12}=\mathrm{t}_{10}+\mathrm{T} ; \mathrm{t}_{13}=\mathrm{t}_{10}+1 / 23 \mathrm{~T}$; $t_{14}=t_{10}+5 T$.

Protections

Main hardware fault conditions are monitored by the circuit

- Overcurrent on $V_{C C}$
- Short circuits between $V_{C C}$ and other contacts
- Card take-off during transaction.

When one of these problems is detected, the security logic block pulls the interrupt line OFF LOW, in order to warn the microcontroller, and initiates an automatic deactivation of the contacts. When the deactivation has been completed, the OFF line returns HIGH, except if the problem was due to a card extraction in which case it remains LOW till a card is inserted.

Fig. 8 I/O buffer modes.

Fig. 9 Activation sequence.

Fig. 10 Emergency deactivation sequence after a card take-off.

Low-power smart card coupler

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V DDA	analog supply voltage		-0	6.5	V
$V_{\text {DDD }}$	digital supply voltage		-0	6.5	V
V_{n}	all input voltages		-0	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\mathrm{n} 1}$	DC current into XTAL1, XTAL2, RX, TX, RESET, INT1, P34, P37, P00 to P03, P11 to P17, P20 to P23 and TEST1 to TEST4		-	5	mA
$\mathrm{I}_{\mathrm{n} 2}$	DC current from or to AUX1, AUX2		-10	+10	mA
In	DC current from or to S1 to S5		-30	+30	mA
In_{4}	DC current into DELAY		-5	+10	mA
I 5	DC current from or to PRES		-5	+5	mA
$\ln 6$	DC current from and to K0 to K5		-5	+5	mA
$\ln 7$	DC current from or into ALARM (according to option choice)		-5	+5	mA
$\mathrm{P}_{\text {tot }}$	continuous total power dissipation	$\mathrm{T}_{\mathrm{amb}}=-20$ to $+85^{\circ} \mathrm{C}$	-	500	mW
$\mathrm{T}_{\text {stg }}$	IC storage temperature		-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {es }}$	electrostatic discharge	on pins I/O, V_{CC}, RST, CLK and PRES	-6	+6	kV
		on other pins	-2	+2	kV
T	Operating Junction Temp.	-	-	125	${ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
$R_{\text {th } j \text {-a }}$	from junction to ambient in free air		
	LQFP64	70	KWW
	QFP44	60	K/W

Low-power smart card coupler

CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; for general purpose I/O ports see 80 CL 51 data sheet; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
$V_{\text {DD }}$	supply voltage	Option dependant	2.5	-	6.0	V
$\mathrm{I}_{\mathrm{DD}(\mathrm{pd})}$	supply current power-down mode	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \text {; card inactive } \\ & \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \quad \text { " } \end{aligned}$	-	90	-	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DD}(\mathrm{sm})}$	supply current sleep mode	card powered, but with clock stopped	-	500	-	$\mu \mathrm{A}$
$\mathrm{I} D$ (om)	supply current operating mode	$\begin{aligned} & \text { unloaded; } f_{x \text { tal }}=13 \mathrm{MHz} ; \\ & \mathrm{f}_{\mathrm{clk}}=6.5 \mathrm{MHz} ; \mathrm{f}_{\text {card }}=3.25 \mathrm{MHz} \\ & \hline \end{aligned}$	-	5.5	-	mA
		$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} ; \mathrm{f}_{\mathrm{xtal}}=13 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{clk}}=3.25 \mathrm{MHz} ; \mathrm{f}_{\text {card }}=3.25 \mathrm{MHz} \end{array}$	-	3	-	mA
$\mathrm{V}_{\text {th1 }}$	threshold voltage on $V_{D D}$ (falling)	supervisor option	2	-	2.3	V
			2.45	-	3	V
			3.8	-	4.5	V
$\mathrm{V}_{\text {hys1 }}$	hysteresis on $\mathrm{V}_{\text {th1 }}$		40	-	350	mV
$\mathrm{V}_{\text {th2 }}$	threshold voltage on DELAY		-	1.38	-	V
$\mathrm{V}_{\text {DEL }}$	voltage on pin DELAY		4.6	-	V_{DD}	V
IdeL	output current at DELAY	pin grounded (charge)	-1.5	-1	-0.4	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DEL}}=\mathrm{V}_{\mathrm{DD}}$ (discharge)	4	6.8	10	mA
tw	ALARM pulse width	$\mathrm{C}_{\text {DEL }}=10 \mathrm{nF}$	-	10	-	ms

ALARM (open drain active HIGH or LOW output)

I_{OH}	HIGH level output current	active LOW option; $\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$	-	-	10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	LOW level output voltage	active LOW option; $\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	-	-	0.4	V
I_{OL}	LOW level output current	active HIGH option, $\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}$	-	-	-10	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OH}}$	HIGH level output voltage	active HIGH option, $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{DD}}-1$	-	-	V

Crystal oscillator (note 1)

$\mathrm{f}_{\text {xtal }}$	crystal frequency		2	-	16	MHz
$\mathrm{f}_{\text {EXT }}$	external frequency applied on XTAL1		0	-	16	MHz

Step-up converter

$\mathrm{f}_{\text {INT }}$	oscillation frequency		2	-	3	MHz
$\mathrm{V}_{\text {UP }}$	voltage on S5		-	6.5	-	V

Low impedance supply (LIS)

V LIS	voltage on LIS		0	-	$V_{\text {DD }}$	V
LIS	current at LIS		-	-	7	$\mu \mathrm{~A}$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Reset output to the card (RST)						
$\mathrm{V}_{\text {inactive }}$	output voltage	when inactive	-0.3	-	0.4	V
		when LIS is used; $l_{\text {inactive }}=1 \mathrm{~mA}$	-0.3	-	0.4	V
$\mathrm{l}_{\text {inactive }}$	current from RST when inactive and pin grounded		-	-	-1	mA
$\mathrm{V}_{\text {OL }}$	LOW level output voltage	$\mathrm{l}_{\mathrm{OL}}=200 \mu \mathrm{~A}$	-0.25	-	0.4	V
V_{OH}	HIGH level output voltage	$\mathrm{IOH}^{<-200 \mu \mathrm{~A}}$	4	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
t_{r}	rise time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	-	-	1	$\mu \mathrm{s}$
t_{f}	fall time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	-	-	1	$\mu \mathrm{s}$
Clock output to the card (CLK)						
$\mathrm{V}_{\text {inactive }}$	output voltage	when inactive	-0.3	-	0.4	V
		when LIS is used; $l_{\text {inactive }}=1 \mathrm{~mA}$	-0.3	-	0.4	V
$\mathrm{l}_{\text {inactive }}$	current from CLK when inactive and pin grounded		-	-	-1	mA
V_{OL}	LOW level output voltage	$\mathrm{l}_{\mathrm{OL}}=200 \mu \mathrm{~A}$	-0.25	-	0.4	V
V_{OH}	HIGH level output voltage	$\mathrm{IOH}^{<-200 \mu \mathrm{~A}}$	$\mathrm{V}_{\mathrm{CC}}-0.5$	-	$\mathrm{V}_{\mathrm{CC}}+0.25$	V
tr_{r}	rise time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	-	-	15	ns
t_{f}	fall time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	-	-	15	ns
$\mathrm{f}_{\text {clk }}$	clock frequency	1 MHz Idle configuration	1	-	1.5	MHz
		low operating speed	-	-	2	MHz
		middle operating speed	-	-	4	MHz
		high operating speed	-	-	8	MHz
δ	duty cycle	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	45	-	55	\%
Card supply voltage (V_{cc})						
$\mathrm{V}_{\text {inactive }}$	output voltage	when inactive	-0.3	-	0.4	V
		when LIS is used; $l_{\text {inactive }}=1 \mathrm{~mA}$	-0.3	-	0.4	V
$\mathrm{I}_{\text {inactive }}$	current from VCC when inactive and pin grounded		-	-	-1	mA
$\mathrm{V}_{\text {cc }}$	output voltage in active mode with 100 nF capacitor; static load (up to 20 mA) dynamic current of 40 nA	$\begin{aligned} & I_{\max }=200 \mathrm{~mA}, \mathrm{f}_{\max }=5 \mathrm{MHz} \text {, and } \\ & \text { duration }<400 \mathrm{~ns} \end{aligned}$	$\left\lvert\, \begin{aligned} & - \\ & 4.75 \\ & 4.5 \end{aligned}\right.$	-	$\begin{array}{\|l\|l} 5.25 \\ 5.5 \end{array}$	V
Icc	output current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	-	-	-20	mA
		$\mathrm{V}_{\text {CC }}$ shorted to GND	-	-	-40	mA
SR	slew rate	up or down (max capacitance is 150 nF)	0.04	0.1	0.16	V/us

Low-power smart card coupler
TDA8005

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data line (I/O)						
$\mathrm{V}_{\text {inactive }}$	output voltage	when inactive	-0.3	-	0.4	V
		when LIS is used; $\mathrm{l}_{\text {inactive }}=1 \mathrm{~mA}$	-0.3	-	0.4	V
linactive	current from I/O when inactive and pin grounded		-	-	-1	mA
V_{OL}	LOW level output voltage (I/O configured as an output)	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$	-0.25	-	0.3	V
V_{OH}	HIGH level output voltage (I/O configured as an output)	$\mathrm{I}_{\mathrm{OH}}<-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}+0.8$	-	$\mathrm{V}_{\mathrm{CC}}+0.25$	V
VIL	input voltage LOW (I/O configured as an input)	$\mathrm{I}_{\text {IL }}=1 \mathrm{~mA}$	0	-	0.5	V
V_{IH}	input voltage HIGH (I/O configured as an input)	$\mathrm{I}_{\mathrm{IL}}=100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}+0.6$	-	V_{CC}	V
t_{r}	rise time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	-	-	1	$\mu \mathrm{s}$
t_{f}	fall time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	-	-	1	$\mu \mathrm{s}$
R_{pu}	pull-up resistor connected to V_{CC} when I/O is input	see Table 4 for options	-	-	-	
Protections						
$\mathrm{I}_{\mathrm{CC}(\mathrm{sd})}$	shutdown current at V_{CC}		-	-30	-	mA
Timing						
$\mathrm{t}_{\mathrm{act}}$	activation sequence duration		-	-	225	$\mu \mathrm{s}$
$t_{\text {de }}$	deactivation sequence duration		-	-	150	$\mu \mathrm{s}$
$\mathrm{t}_{3 \text { (start) }}$	start of the window for sending clock to the card		-	-	130	$\mu \mathrm{s}$
$t_{5 \text { (end) }}$	end of the window for sending clock to the card		140	-	-	$\mu \mathrm{s}$

Auxiliary outputs (AUX1, AUX2)

V_{OL}	LOW level output voltage	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$	-	-	0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	HIGH level output voltage	$\mathrm{I}_{\mathrm{OH}}=-5 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{DD}}-1$	-	-	V

Output ports from extension (KO to Kn)

V_{OL}	LOW level output voltage	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$	-	-	0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	HIGH level output voltage	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{DD}}-1$	-	-	V

Card presence input (PRES)

$V_{I L}$	LOW level input voltage	$I_{I L}=-1 \mathrm{~mA}$	-	-	0.6	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH level input voltage	$\mathrm{I}_{\mathrm{IH}}=100 \mu \mathrm{~A}$	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
$I_{I H}$	HIGH level input current	$\mathrm{V}_{\mathrm{IH}}=+5 \mathrm{~V}$	0.2	-	3	$\mu \mathrm{~A}$

Note

1. The crystal oscillator is the same as OPTION 3 of the 80CL51.

APPLICATION INFORMATION
Low-power smart card coupler
Fig. 11 Possible GSM application.

Fig. 12 Possible stand-alone application.

Table 4 TDA8005 option choice form

FUNCTION	DESCRIPTION	OPTION
Ports		
P00		
P01		
P02		
P03		
P04	RSTIN (fixed)	35
P05	START (fixed)	3 S
P06	STR (fixed)	3 S
P07	EN (fixed)	3 S
P10	OFF (fixed)	2 S
P11		
P12		
P13		
P14		
P15		
P16		
P17		
P20		
P21		
P22		
P23		
P24	DATA (fixed)	1 S
P25	R/W (fixed)	3 S
P26	REG1 (fixed)	3 S
P27	REG0 (fixed)	3 S
P30		
P31		
P32	INT (fixed)	1 S
P33		
P34		
P35	AUXI (fixed)	3 S
P36	AUX2 (fixed)	35
P37		

FUNCTION	DESCRIPTION	OPTION
Analog options		
Step-up	doubler (updo) or tripler (uptri)	
Supervisor	2.3 (supervb, 3 (supervtr) or 4.5 (superVCI)	
I/O	low impedance (UARTI) or high impedance (UARTZ)	
I/O pull-up	10,20 or 30 k Ω	
R_CLK	$0,50,100,150$ or 200Ω	
R_RST	$0,50,80,130$ or 180Ω	
ALARM	active HIGH (alarmbufp) or active LOW (alarmbufn)	
PRES	active HIGH (prestopp) or active LOW (prestopn)	

GENERAL DESCRIPTION

The TDA8442 provides control of four analogue functions and has one high-current and two switching outputs.
Control of the IC is performed via the two-line, bidirectional $\mathrm{I}^{2} \mathrm{C}$-bus.

Features

- Four analogue control outputs
- One high-current output port (npn open emitter)
- Two switching output ports (npn collector with internal pull-up resistor)
- $1^{2} \mathrm{C}$-bus slave receiver
- Power-down reset.

QUICK REFERENCE DATA

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX	UNIT
Supply voltage (pin 9)		V_{P}	10.8	12.0	13.2	V
Supply current	no outputs loaded	I_{P}	8	13	18	mA
Total power dissipation Operating ambient temperature range	no outputs loaded	$\mathrm{P}_{\text {tot }}$	-	-	1	W

Fig. 1 Block diagram.

$1^{2} \mathrm{C}$-bus interface for colour decoders

PINNING

PIN	SYMBOL	DESCRIPTION
1	DAC1	analogue output 1
2	DAC2	analogue output 2
3	DAC3	analogue output 3
4	SDA	serial data line; I^{2} C-bus
5	SCL	serial clock line; I ${ }^{2}$ C-bus
6	P2	Port 2 npn collector output with internal pull-up resistor
7	n.c.	not connected
8	GND	supply return (ground)
9	V_{P}	positive supply voltage
10	n.c.	not connected
11	P1	Port 1 open npn emitter output
12	P2N	inverted P2 output
13	n.c.	not connected
14	n.c.	not connected
15	n.c.	not connected
16	DAC0	analogue output 0

FUNCTIONAL DESCRIPTION

Control

Analogue control is facilitated by four 6-bit digital-to-analogue converters (DAC0 to DAC3).
The values of the output voltages from the DACs are set via the $I^{2} \mathrm{C}$-bus.
The high-current output port (P 1) is suitable for switching between internal and external RGB signals.
It is an open npn emitter output capable of sourcing 14 mA (min.).
The two output ports (P2 and P2N) can be used for NTSC/PAL switching. These are npn collector outputs with internal pull-up resistors of $10 \mathrm{k} \Omega$ (typ.). Both outputs are capable of sinking up to 2 mA with a voltage drop of less than 400 mV . If one output is switched on (LOW), the other output is switched off, and vice versa.

Reset

The power-down-reset mode occurs whenever the positive supply voltage falls below 8.5 V (typ.) and resets all registers to a defined state.

OPERATION

Write

The TDA8442 is controlled via the $I^{2} \mathrm{C}$-bus (specifications for the $\mathrm{I}^{2} \mathrm{C}$-bus will be supplied on request).
Programming of the TDA8442 is performed using the format shown in Fig.3.

Acknowledge (A) is generated by the TDA8442 only when a valid address is received and the device is not in the power-down-reset mode ($\mathrm{V}_{\mathrm{P}}>8.5 \mathrm{~V}$ (typ.)).

Control

Control is implemented by the instruction bytes POD (port output data) and DACX (digital-to-analogue converter control) together with the corresponding data/control bytes (see Fig.4).

POD bit P1

If a logic 1 is programmed, the P1 output is switched on. If a logic 0 is programmed or after a power-down-reset, the P1 output is switched off (high-impedance state).

POD bit P2/P2N

If a logic 1 is programmed, the P2 output is switched off and the P2N output is switched on (LOW). If a logic 0 is programmed or after a power-down-reset, the P2 output is switched on (LOW) and the P2N output is switched off.

DAX bits AX5 to AXO

The digital-to-analogue converter selected corresponds to the decimal equivalent of the two bits X1 and XO. The output voltage of the selected DAC is programmed using bits AX5 to AX0, the lowest value being with all data AX5 to AXO at logic 0 or when power-down-reset has been activated.

$\mathrm{I}^{2} \mathrm{C}$-bus interface for colour decoders

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Supply voltage range (pin 9)	V_{P}	-0.3	+13.2	V
Input/output voltage ranges				
pin 4	$V_{\text {SDA }}$	-0.3	+13.2	v
pin 5	$V_{\text {SCL }}$	-0.3	+13.2	V
pin 6	$V_{P 2}$	-0.3	V_{p}; note 1	V
pin 11	$V_{P 1}$	-0.3	V_{p}; note 1	V
pin 12	$\mathrm{V}_{\text {P2N }}$	-0.3	V_{P}; note 1	V
pin 1 to 3 and pin 16	$\mathrm{V}_{\text {DAX }}$	-0.3	V_{p}; note 1	V
Total power dissipation	$\mathrm{P}_{\text {tot }}$	-	1	W
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	-20	+70	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55	+150	${ }^{\circ} \mathrm{C}$

Note

1. Pin voltage may exceed V_{P} if the current in that pin is limited to 10 mA .

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$; unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supplies						
Supply voltage (pin 9)		V_{P}	10.8	12.0	13.2	V
Supply current (pin 9)	no outputs loaded	Ip	8	13	18	mA
$1^{2} \mathrm{C}$-bus inputs						
SDA (pin 4); SCL (pin 5)						
Input voltage HIGH	note 1	V_{IH}	3.0	-	$\mathrm{V}_{\mathrm{P}}-1$	V
Input voltage LOW		V_{IL}	-0.3	-	1.5	V
Input current HIGH	note 1	${ }^{\prime} \mathrm{IH}^{\text {r }}$	-	-	10	$\mu \mathrm{A}$
Input current LOW	note 1	ILL	-	-	10	$\mu \mathrm{A}$
$\mathrm{I}^{2} \mathrm{C}$-bus output						
SDA (pin 4)	open coilector					
Output voltage LOW	$\mathrm{I}_{\mathrm{OL}}=3.0 \mathrm{~mA}$	V_{OL}	-	-	0.4	V
Maximum output sink current			3	5		mA

$I^{2} \mathrm{C}$-bus interface for colour decoders

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
DAC2 (pin 2)						
Maximum output voltage	unloaded; note 3	$\mathrm{V}_{\text {O max }}$	4.0	-	5.0	V
Minimum output voltage	unloaded; note 3	$\mathrm{V}_{\text {O } \text { min }}$	1.0	-	1.7	V
Positive value of smallest step	$\mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}(1 \mathrm{lsb})$; note 3	$\mathrm{V}_{\text {O }}$ Isb	18	-	86	mV
Deviation from linearity	$\mathrm{I}_{0}=2 \mathrm{~mA}$	$\Delta \mathrm{V}$	-	-	50	mV
Output impedance	$\mathrm{I}_{\mathrm{O}}=-2 \mathrm{to}+2 \mathrm{~mA}$	Z_{O}	-	-	30	Ω
Maximum output source current		${ }^{-1} \mathrm{OH}$	2	-	6	mA
Maximum output sink current DAC3 (pin 3)		l_{OL}	2	8	-	mA
Maximum output voltage	unloaded; note 3	$\mathrm{V}_{\text {O max }}$	10.0	-	11.2	V
Minimum output voltage	unloaded; note 3	$\mathrm{V}_{\text {O } \text { min }}$	0.1	-	1.0	V
Positive value of smallest step	$\mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}(1 \mathrm{lsb})$; note 3	$\mathrm{V}_{\text {O } 1 \text { ls }}$	70	-	250	mV
Deviation from linearity	$\mathrm{I}_{0}=2 \mathrm{~mA}$	$\Delta \mathrm{V}$	-	-	150	mV
Output impedance	$\mathrm{l}_{0}=-2 \mathrm{to}+2 \mathrm{~mA}$	Z_{O}	-	-	30	Ω
Maximum output source current		${ }^{-1} \mathrm{OH}$	2	-	6	mA
Maximum output sink current		${ }_{\mathrm{OL}}$	2	8	-	mA
Power-down reset						
Maximum value of V_{P} at which power-down reset is active		V_{PD}	6	-	10	V
Rise time of V_{P} during power-on	V_{P} rising from 0 V to V_{PD}	t_{r}	5	-	-	$\mu \mathrm{s}$

Notes to the Characteristics

1. If $\mathrm{V}_{\mathrm{P}}<1 \mathrm{~V}$, the input current is limited to $10 \mu \mathrm{~A}$ at input voltages up to 13.2 V .
2. Pure capacitive load should be avoided because of possible oscillations.
3. Values are proportional to V_{p}.

1^{2} C-BUS TIMING

Bus loading conditions: $4 \mathrm{k} \Omega$ pull-up resistor to +5 V ; 200 pF capacitor to GND.
All values are referred to $\mathrm{V}_{\mathrm{IH}}=3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=1.5 \mathrm{~V}$.

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Bus free before start	$\mathrm{t}_{\text {BUF }}$	4.0	-	-	$\mu \mathrm{s}$
Start condition set-up time	$\mathrm{t}_{\text {SU; STA }}$	4.0	-	-	$\mu \mathrm{s}$
Start condition hold time	$\mathrm{t}_{\text {HD; STA }}$	4.0	-	-	$\mu \mathrm{s}$
LOW period SCL, SDA	t Low	4.0	-	-	$\mu \mathrm{s}$
HIGH period SCL	$\mathrm{t}_{\text {HIGH }}$	4.0	-	-	$\mu \mathrm{s}$
Rise time SCL, SDA	tr_{r}	-	-	1.0	$\mu \mathrm{s}$
Fall time SCL, SDA	t_{f}	-	-	0.30	$\mu \mathrm{s}$
Data set-up time (write)	$\mathrm{t}_{\text {SU; DAT }}$	1	-	-	$\mu \mathrm{s}$
Data hold time (write)	$\mathrm{t}_{\text {HD; }}$ DAT	1	-	-	$\mu \mathrm{s}$
Acknowledge (from TDA8442) set-up time	tsu; ACK	-	-	3.5	$\mu \mathrm{s}$
Acknowledge (from TDA8442) hold time	$\mathrm{t}_{\text {HD } ; ~ A C K}$	0	-	-	$\mu \mathrm{s}$
Stop condition set-up time	tsu; STO	4.0	-	-	$\mu \mathrm{s}$

Reference levels are 10 and 90%.
Fig. $5 \mathrm{I}^{2} \mathrm{C}$-bus timing; TDA8442.

Octuple 6-bit DAC with $\mathbf{I}^{2} \mathrm{C}$-bus

GENERAL DESCRIPTION

The TDA8444 comprises eight digital-to-analogue converters (DACs) each controlled via the two-wire $I^{2} \mathrm{C}$-bus. The DACs are individually programmed using a 6 -bit word to select an output from one of 64 voltage steps. The maximum output voltage of all DACs is set by the input $\mathrm{V}_{\text {max }}$ and the resolution is approximately $\mathrm{V}_{\text {max }} / 64$.

At power-on all DAC outputs are set to their lowest value. The $\mathrm{I}^{2} \mathrm{C}$-bus slave receiver has a 7 -bit address of which 3 bits are programmable via pins A0, A1 and A2.

Features

- Eight discrete DACs
- $I^{2} \mathrm{C}$-bus slave receiver
- 16-pin DIL package.

QUICK REFERENCE DATA

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage		V_{P}	10.8	12.0	13.2	V
Supply current	no loads; $\mathrm{V}_{\text {max }}=\mathrm{V}_{\mathrm{P}}$;					
	all data $=00$	I_{CC}	8	12	15	mA
Total power dissipation	no loads; $\mathrm{V}_{\text {max }}=\mathrm{V}_{\mathrm{P}}$;					
	all data $=00$	$\mathrm{P}_{\text {tot }}$	-	150	-	mW
Effective range of $V_{\text {max }}$ input						
	$V_{P}=12 \mathrm{~V}$	$V_{\text {max }}$	1	-	10.5	V
DAC output voltage range		V_{O}	0.1	-	$V_{P}-0.5$	V
Step value of 1 LSB	$\mathrm{V}_{\text {max }}=\mathrm{V}_{\mathrm{P}}$;					
	$\mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA}$	$V_{\text {LSB }}$	70	160	250	mV

PACKAGE OUTLINE

16-lead DIL; plastic (SOT38); SOT38-1; 1996 July 23.

Octuple 6-bit DAC with $I^{2} \mathrm{C}$-bus

Fig. 1 Block diagram.

PINNING

PIN	SYMBOL	DESCRIPTION
1	$\mathrm{~V}_{\mathrm{P}}$	positive supply voltage
2	$\mathrm{~V}_{\max }$	control input for DAC maximum output voltage
3	SDA	$\mathrm{I}^{2} \mathrm{C}$-bus serial data input/output
4	SCL	I $^{2} \mathrm{C}$-bus serial data clock
5	A0	programmable address bits
6	A1	for I 2 C -bus slave receiver
7	A2	ground
8	GND	analogue voltage outputs
$9-16$	DAC0-7	

Fig. 2 Pinning diagram

Octuple 6-bit DAC with $I^{2} \mathrm{C}$-bus

FUNCTIONAL DESCRIPTION

$I^{2} \mathrm{C}$-bus

The TDA8444 I2C-bus interface is a receive-only slave. Data is accepted from the I2C-bus in the following format:

Where:

$$
\begin{array}{lll}
S=\text { start condition } & \mathrm{A} 2, \mathrm{~A} 1, \mathrm{AO} & =\text { programmable address bits } \\
\mathrm{P}=\text { stop condition } & \mathrm{I} 3, \mathrm{I}, \mathrm{I}, I 0 & =\text { instruction bits } \\
A=\text { acknowledge } & \mathrm{SD}, \mathrm{SC}, \mathrm{SB}, \mathrm{SA} & =\text { subaddress bits } \\
X=\text { don't care } & \mathrm{D} 5, \mathrm{D} 4, \mathrm{D} 3, \mathrm{D} 2, \mathrm{D} 1, \mathrm{DO}= & \text { data bits }
\end{array}
$$

Fig. 3 Data format.

Address byte

Valid addresses are $40,42,44,46,48,4 A, 4 C, 4 E$ (hexadec), depending on the programming of bits A2, A1 and A0. With these addresses, up to eight TDA8444 ICs can be operated independently from one ${ }^{2}$ C-bus. No other addresses are acknowledged by the TDA8444.

Instruction and data bytes

Valid instructions are 00 to $0 F$ and F0 to FF (hexadec); the TDA8444 will not respond to other instruction values.
Instructions 00 to OF cause auto-incrementing of the subaddress (bits SD to SA) when more than one data byte is sent within one transmission. With auto-incrementing, the first data byte is written into the DAC addressed by bits SD to SA and then the subaddress is automatically incremented by one position for the next data byte in the series.
Auto-incrementation does not occur with instructions F0 to FF. Other than auto-incrementation there is no difference between instructions 00 to $0 F$ and F0 to FF. When only one data byte per transmission is present, the DAC addressed by the subaddress will always receive the data.

Valid subaddresses (bits SD to SA) are 0 to 7 (hexadec) relating numerically to DAC0 to DAC7. When the auto-incrementing function is used, the subaddress will sequence through all possible values (0 to $F, 0$ to F, etc.).

$\mathbf{I}^{2} \mathrm{C}$-bus

Input SCL (pin 3) and input/output SDA (pin 4) conform to $I^{2} C$-bus specifications. Pins 3 and 4 are protected against positive voltage pulses by internal zener diodes connected to the ground plane and therefore the normal bus line voltage should not exceed 5.5 V.

The address inputs $A 0, A 1, A 2$ are programmed by a connection to $G N D$ for $A n=0$ or to V_{P} for $A n=1$. If the inputs are left floating, $A n=1$ will result.

Input $V_{\text {max }}$

Input $\mathrm{V}_{\text {max }}$ (pin 2) provides a means of compressing the output voltage swing of the DACs. The maximum DAC output voltage is restricted to approximately $V_{\max }$ while the 6-bit resolution is maintained, so giving a finer voltage resolution of smaller output swings.

Digital-to-analogue converters

Each DAC comprises a 6-bit data latch, current switches and an output driver. Current sources with values weighted by 2^{0} up to 2^{5} are switched according to the data input so that the sum of the selected currents gives the required analogue voltage from the output driver. The range of the output voltage is approximately 0.5 to 10.5 V when $\mathrm{V}_{\max }=\mathrm{V}_{\mathrm{P}}$.
The DAC outputs are protected against short-circuits to V_{P} and GND.
To avoid the possibility of oscillations, capacitive loading at the DAC outputs should not exceed 2 nF .

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Supply voltage	$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{1}$	-0.5	18	V
Supply current (source)	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{1}$	-	-10	mA
	$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{I}}$	-	40	mA
I2C-bus line voltage	$\mathrm{V}_{3,4}$	-0.5	5.9	V
Input voltage	V_{I}	-0.5	$\mathrm{~V}_{\mathrm{P}}+0.5$	V
Output voltage	V_{O}	-0.5	$\mathrm{~V}_{\mathrm{P}}+0.5$	V
Maximum current on any pin (except pins 1 and 8)	$\mathrm{I}_{\text {max }}$	-	10	mA
Total power dissipation	$\mathrm{P}_{\text {tot }}$	-	500	mW
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$	-20	+70	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55	+150	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient
$R_{\text {th j-a }} \quad 75$
K/W

CHARACTERISTICS

All voltages are with respect to GND; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}$ unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage		V_{P}	10.8	12.0	13.2	V
Voltage level for power-on reset		V_{1}	1	-	4.8	V
Supply current	$\begin{aligned} & \text { no loads; } V_{\max }=V_{P} ; \\ & \text { all data }=00 \end{aligned}$	$I_{P}=I_{1}$	8	12	15	mA
Total power dissipation	$\begin{aligned} & \text { no loads; } V_{\max }=V_{P} ; \\ & \text { all data }=00 \end{aligned}$	$P_{\text {tot }}$	-	150	-	mW
Effective range of $\mathrm{V}_{\text {max }}$ input (pin 2)	$\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}$	$\mathrm{V}_{\text {max }}=\mathrm{V}_{2}$	1.0	-	10.5	v
Pin 2 current	$\begin{aligned} & V_{2}=1 \mathrm{~V} \\ & V_{2}=V P \end{aligned}$	$\begin{aligned} & \mathrm{I}_{2} \\ & \mathrm{I}_{2} \end{aligned}$	-	-	$\begin{aligned} & -10 \\ & 10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
SDA, SCL inputs (pins 3 and 4)						
Input voltage range		v_{1}	0	-	5.5	V
Input voltage LOW		V_{IL}	-	-	1.5	V
Input voltage HIGH		V_{IH}	3.0	-	-	V
Input current LOW	$\mathrm{V}_{3 ; 4}=0.3 \mathrm{~V}$	$\mathrm{IIL}^{\text {L }}$	-	-	-10	$\mu \mathrm{A}$
Input current HIGH	$\mathrm{V}_{3 ; 4}=6 \mathrm{~V}$	I_{1+}	-	-	± 10	$\mu \mathrm{A}$
SDA output (pin 3)						
Output voltage LOW Sink current	$\mathrm{I}_{3}=3 \mathrm{~mA}$	$\left\lvert\, \begin{aligned} & v_{\mathrm{OL}} \\ & \mathrm{l}_{\mathrm{OL}} \end{aligned}\right.$	$\mid-$	-	0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$
Address inputs (pins 5 to 7)						
Input voltage range		v_{1}	0		5	v
Input voltage LOW		$\mathrm{V}_{\text {IL }}$	-	-	1	V
Input voltage HIGH		V_{IH}	2.1	-	-	V
Input current LOW		1 IL	-	-7	-12	$\mu \mathrm{A}$
Input current HIGH		$I_{1 H}$	-	-	1	$\mu \mathrm{A}$

Octuple 6-bit DAC with I ${ }^{2}$ C-bus

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
DAC outputs (pins 9 to 16)						
Output voltage range		V_{O}	0.1	-	$V_{P}-0.5$	V
Minimum output voltage	data $=00 ; \mathrm{I}_{0}=-2 \mathrm{~mA}$	VOmin	0.1	0.4	0.8	V
Maximum output voltage	data $=3 \mathrm{~F} ; \mathrm{l}_{\mathrm{O}}=-2 \mathrm{~mA}$					
at Vmax $=\mathrm{VP}$		$\mathrm{V}_{\text {Omax }}$	10	10.5	11.5	V
at $1<\mathrm{Vmax}<10.5 \mathrm{~V}$		$\mathrm{V}_{\text {Omax }}$		see note		V
Output sink current	$\mathrm{V}=\mathrm{V}_{\mathrm{P}} ;$ data $=1 \mathrm{~F}$	I_{0}	2	8	15	mA
Output source current	$\mathrm{V}=0 \mathrm{~V}$; data $=1 \mathrm{~F}$	I_{0}	-2	-	-6	mA
Output impedance	$\begin{aligned} & \text { data = 1F } \\ & -2<\mathrm{I}_{\mathrm{O}}<+2 \mathrm{~mA} \end{aligned}$	Z_{0}	-	4	50	Ω
Step value of 1 LSB	$\mathrm{V}_{\text {max }}=\mathrm{V}_{\mathrm{P}} ; \mathrm{l}_{\mathrm{O}}=-2 \mathrm{~mA}$	$\mathrm{V}_{\text {LSB }}$	70	160	250	mV
Deviation from linearity	$\mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA} ; \mathrm{N}=32$		0	-	50	mV
Deviation from linearity	$\mathrm{I}_{\mathrm{O}}=-2 \mathrm{~mA} ; \mathrm{N}=32$		0	-	70	mV

Note to the Characteristics

1. $\mathrm{V}_{\mathrm{O}}=0.95 \mathrm{~V}_{\text {max }}+\mathrm{V}_{\mathrm{Omin}}$.

Octuple 6-bit DAC with $\mathrm{I}^{2} \mathrm{C}$-bus

APPLICATION INFORMATION

Fig. 4 Graph showing output voltage as a function of the input data value for $\mathrm{V}_{\text {max }}$ values of $1,6,10$ and 12 V ; $V_{P}=12 \mathrm{~V}$.
Page
Index
DIP 701
LQFP 708
QFP 711
SIL 712
SO 713
SSOP 719
VSO 720
Soldering 722

INDEX

NAME	DESCRIPTION	VERSION	PAGE
DIP (dual in-line package)			
DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT97-1	701
DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1	702
DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-1	703
DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1	704
DIP24	plastic dual in-line package; 24 leads (600 mil)	SOT101-1	705
DIP28	plastic dual in-line package; 28 leads (600 mil)	SOT117-1	706
DIP40	plastic dual in-line package; 40 leads (600 mil)	SOT129-1	707
LQFP (low profile quad flat package)			
LQFP64	plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4 \mathrm{~mm}$	SOT314-2	708
LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4 \mathrm{~mm}$	SOT407-1	709
LQFP128	plastic low profile quad flat package; 128 leads; body $14 \times 20 \times 1.4 \mathrm{~mm}$	SOT425-1	710
QFP (quad flat package)			
QFP44	plastic quad flat package; 44 leads (lead length 1.3 mm); body $10 \times 10 \times 1.75 \mathrm{~mm}$	SOT307-2	711
SIL (single in-line)			
SIL9MP	plastic single in-line medium power package; 9 leads	SOT142-1	712
SO (small outline)			
SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1	713
SO8	plastic small outline package; 8 leads; body width 7.5 mm	SOT176-1	714
SO16	plastic small outline package; 16 leads; body width 7.5 mm	SOT162-1	715
SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1	716
SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1	717
SO28	plastic small outline package; 28 leads; body width 7.5 mm	SOT136-1	718
SSOP (shrink small outline package)			
SSOP20	plastic shrink small outline package; 20 leads; body width 4.4 mm	SOT266-1	719
VSO (very small outline)			
VSO40	plastic very small outline package; 40 leads	SOT158-1	720
VSO56	plastic very small outline package; 56 leads	SOT190-1	721

Package information

DIP

DIP8: plastic dual in-line package; $\mathbf{8}$ leads ($\mathbf{3 0 0}$ mil)
SOT97-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{\mathbf{A}}$	A_{1} min.	A_{2} max.	b	b_{1}	b_{2}	c	$D^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\underset{\max .}{\mathbf{Z}^{(1)}}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.07 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	1.15
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.042 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{array}{r} 0.39 \\ 0.33 \\ \hline \end{array}$	0.01	0.045

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT97-1	050G01	MO-001AN			-	

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{A}$	A_{1} min.	A_{2} max.	b	b_{1}	c	$D^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	M_{H}	w	$\underset{\max }{\mathbf{Z}^{(1)}}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.13 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.2
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.044 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 010 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE
 VERSION | REFERENCES | | | EUROPEAN | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | IEC | JEDEC | EIAJ | | |
| SOT27-1 | $050 G 04$ | MO-001AA | | | $-92-11-17$ |

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{\mathbf{A}}$	A_{1} min.	A_{2} max.	b	b_{1}	c	$D^{(1)}$	$E^{(1)}$	e	$\mathbf{e l}_{1}$	L	M_{E}	$\mathbf{M}_{\mathbf{H}}$	w	$\mathbf{Z a x}^{(1)}$
mm	4.7	0.51	3.7	$\begin{aligned} & 1.40 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 21.8 \\ & 21.4 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 780 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.3 \end{aligned}$	0.254	2.2
inches	0.19	0.020	0.15	$\begin{aligned} & 0.055 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.33 \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT38-1	050G09	MO-001AE			\square	$-92-10-02$ $95-01-19$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	$\begin{gathered} \mathbf{A}_{1} \\ \min . \end{gathered}$	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	$\mathrm{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	w	$\mathbf{Z a x}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.22 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.0
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT146-1			SC603	\square (¢)	$\begin{aligned} & 92-11-17 \\ & 95-05-24 \end{aligned}$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max }{A}$	A_{1} min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	$\mathbf{M}_{\mathbf{H}}$	w	$\underset{\max }{Z^{(1)}}$
mm	5.1	0.51	4.0	$\begin{aligned} & 1.7 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 32.0 \\ & 31.4 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.7 \end{aligned}$	2.54	15.24	$\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 15.80 \\ & 15.24 \end{aligned}$	$\begin{aligned} & 17.15 \\ & 15.90 \end{aligned}$	0.25	2.2
inches	0.20	0.020	0.16	$\begin{aligned} & 0.066 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 1.24 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.54 \end{aligned}$	0.10	0.60	$\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.63 \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT101-1	051 GO 02	MO-015AD			-	

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1} min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	M_{H}	w	$\mathrm{Z}_{\mathrm{max}}^{(1)}$
mm	5.1	0.51	4.0	$\begin{aligned} & 1.7 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 35.0 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.7 \end{aligned}$	2.54	15.24	$\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 15.80 \\ & 15.24 \end{aligned}$	$\begin{aligned} & 17.15 \\ & 15.90 \end{aligned}$	0.25	1.7
inches	0.20	0.020	0.16	$\begin{aligned} & 0.066 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.020 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.41 \\ & 1.34 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.54 \end{aligned}$	0.10	0.60	$\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 0.63 \end{aligned}$	0.01	0.067

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT117-1	051G05	MO-015AH		$\square \oplus$	$\begin{aligned} & -92-11-17 \\ & 95-01-14 \end{aligned}$

Package information
Package outlines

DIP40: plastic dual in-line package; $\mathbf{4 0}$ leads ($\mathbf{6 0 0} \mathbf{~ m i l}$)
SOT129-1
DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1} min.	A_{2} max.	b	b_{1}	c	$D^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	M_{H}	w	$z_{\text {max }}^{(1)}$
mm	4.7	0.51	4.0	$\begin{aligned} & 1.70 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 52.50 \\ & 51.50 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.7 \end{aligned}$	2.54	15.24	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 15.80 \\ & 15.24 \end{aligned}$	$\begin{aligned} & 17.42 \\ & 15.90 \end{aligned}$	0.254	2.25
inches	0.19	0.020	0.16	$\begin{aligned} & 0.067 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 2.067 \\ & 2.028 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.54 \end{aligned}$	0.10	0.60	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.69 \\ & 0.63 \end{aligned}$	0.01	0.089

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT129-1	$051 G 08$	MO-015AJ				

LQFP

LQFP64: plastic low profile quad flat package; 64 leads; body $10 \times 10 \times 1.4 \mathrm{~mm}$
SOT314-2

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	\mathbf{A}_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{D}	HE_{E}	L	L_{p}	Q	v	w	y	$Z_{D}{ }^{(1)}$	$Z_{E}{ }^{(1)}$	θ
mm	1.60	$\begin{aligned} & 0.20 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.35 \end{aligned}$	0.25	$\begin{aligned} & 0.27 \\ & 0.17 \end{aligned}$	$\begin{aligned} & 0.18 \\ & 0.12 \end{aligned}$	$\begin{gathered} 10.1 \\ 9.9 \end{gathered}$	$\begin{gathered} 10.1 \\ 9.9 \end{gathered}$	0.5	$\begin{array}{\|l\|} 12.15 \\ 11.85 \end{array}$	$\begin{aligned} & 12.15 \\ & 11.85 \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.69 \\ & 0.59 \end{aligned}$	0.2	0.12	0.1	$\begin{aligned} & 1.45 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 7^{\circ} \\ & 0^{\circ} \end{aligned}$

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE
 VERSION | REFERENCES | | | EUROPEAN | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | PRCOSECTION | EIAJ | | | |
| SOT314-2 | | JEDEC | | | $-94-04-07$ |

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}																			
max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{D}}$	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}_{\mathbf{D}}{ }^{(1)}$	$\mathbf{Z}_{\mathbf{E}}{ }^{(\mathbf{1})}$	$\boldsymbol{\theta}$	
mm	1.6	0.20	1.5	0.25	0.28	0.18	14.1	14.1	0.5	16.25	16.25	1.0	0.75	0.70	0.2	0.12	0.1	1.15	1.15	7°
0	0.05	1.3	0.25	0.16	0.12	13.9	13.9	0.5	15.75	15.75	1.0	0.45	0.57	0.2	0.85	0.85	0°			

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN	ISSUE DATE	
	PIEC	JEDEC	EIAJ			
SOT407-1						

DIMENSIONS (mm are the original dimensions)

| UNIT | \mathbf{A} |
| :---: |
| max. | | $\mathbf{A}_{\mathbf{1}}$

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT425-1				\bigcirc ¢	96-04-02

Package information

QFP

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{D}}$	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}_{\mathbf{D}}{ }^{(1)}$	$\mathbf{Z}_{\mathbf{E}}{ }^{(1)}$	$\boldsymbol{\theta}$
mm	2.10	0.25	1.85	0.25	0.40	0.25	10.1	10.1	0.8	12.9	12.9	1.3	0.95	0.85	0.15	0.15	0.1	1.2	1.2	10°
0.20	1.65	0.25	0.9	9.9	0.8	12.3	12.3	14	0.55	0.75	0.8	0.8								

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT307-2					-	

SIL

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{2}}$ max.	$\mathbf{A}_{\mathbf{3}}$	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	$\mathbf{b}_{\mathbf{2}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	\mathbf{L}	\mathbf{Q}	\mathbf{w}	$\mathbf{Z}^{(1)}$ $\mathbf{m a x}$.
mm	12	3.7	1.8	1.40	0.67	1.40	0.48	21.8	21.4	6.48	2.54	3.9	1.75	0.25	1.0

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT142-1					-	

Package information
Package outlines

SO
SO8: plastic small outline package; 8 leads; body width 3.9 mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{array}{l\|} \hline 0.0098 \\ 0.0039 \end{array}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0098 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.24 \\ & 0.23 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 7.65 \\ & 7.45 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.45	$\begin{gathered} 1.1 \\ 0.45 \end{gathered}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$	0.057	$\begin{aligned} & 0.043 \\ & 0.018 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.079 \\ & 0.071 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max }{A}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.1 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.41 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT162-1	$075 E 03$	MS-013AA			-	

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	HE_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013AC		\square ¢	$\begin{array}{r} -92-11-17 \\ 95-01-24 \end{array}$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{A}$	A_{1}	A_{2}	\boldsymbol{A}_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	1.1	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT137-1	$075 E 05$	MS-013AD			-	

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{A}$	A_{1}	A_{2}	\mathbf{A}_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	Lp	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 18.1 \\ & 17.7 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.71 \\ & 0.69 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

Package information

DIMENSIONS (mm are the original dimensions)

UNIT	$\underset{\max }{\mathrm{A}}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	1.5	$\begin{gathered} 0.15 \\ 0 \end{gathered}$	$\begin{aligned} & 1.4 \\ & 1.2 \end{aligned}$	0.25	$\begin{aligned} & 0.32 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & 6.6 \\ & 6.2 \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.65 \\ & 0.45 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.48 \\ & 0.18 \end{aligned}$	$\begin{gathered} 10^{\circ} \\ 0^{\circ} \end{gathered}$

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES					EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ				
SOT266-1							

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{\mathbf{A}}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	HE_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2.70	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.42 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.5 \end{aligned}$	0.762	$\begin{aligned} & 12.3 \\ & 11.8 \end{aligned}$	2.25	$\begin{aligned} & 1.7 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.05 \end{aligned}$	0.2	0.1	0.1	$\begin{aligned} & 0.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 7^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.11	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.010	$\begin{aligned} & 0.017 \\ & 0.012 \end{aligned}$	$\left.\begin{array}{\|l\|} 0.0087 \\ 0.0055 \end{array} \right\rvert\,$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.03	$\begin{aligned} & 0.48 \\ & 0.46 \end{aligned}$	0.089	$\begin{aligned} & 0.067 \\ & 0.059 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.041 \end{aligned}$	0.008	0.004	0.004	$\begin{aligned} & 0.024 \\ & 0.012 \end{aligned}$	

Notes

1. Plastic or metal protrusions of 0.4 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	3.3	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.8 \end{aligned}$	0.25	$\begin{aligned} & 0.42 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 21.65 \\ & 21.35 \end{aligned}$	$\begin{aligned} & 11.1 \\ & 11.0 \end{aligned}$	0.75	$\begin{aligned} & 15.8 \\ & 15.2 \end{aligned}$	2.25	$\begin{aligned} & 1.6 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.30 \end{aligned}$	0.2	0.1	0.1	$\begin{aligned} & 0.90 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 7^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.13	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.11 \end{aligned}$	0.01	$\begin{aligned} & 0.017 \\ & 0.012 \end{aligned}$	$\left\|\begin{array}{c} 0.0087 \\ 0.0055 \end{array}\right\|$	$\begin{aligned} & 0.85 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.43 \end{aligned}$	0.03	$\begin{aligned} & 0.62 \\ & 0.60 \end{aligned}$	0.089	$\begin{aligned} & 0.063 \\ & 0.055 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.051 \end{aligned}$	0.008	0.004	0.004	$\begin{aligned} & 0.035 \\ & 0.022 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.3 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE
 VERSION | REFERENCES | | | EUROPEAN
 PROJECTION | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | IEC | JEDEC | EIAJ | | |
| SOT190-1 | | | | | $-92-11-17$ |

Package information

INTRODUCTION

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9397750 90011).

THROUGH-HOLE MOUNTED PACKAGES

Table 1 Types of through-hole mounted packages

TYPE	DESCRIPTION
DIP	plastic dual in-line package
SDIP	plastic shrink dual in-line package
HDIP	plastic heat-dissipating dual in-line package
DBS	plastic dual in-line bent from a single in-line package
SIL	plastic single in-line package

Soldering by dipping or wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg max }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

SURFACE MOUNTED PACKAGES

Table 2 Types of surface mounted packages

TYPE	DESCRIPTION
SO	plastic small outline package
SSOP	plastic shrink small outline package
TSSOP	plastic thin shrink small outline package
VSO	plastic very small outline package
QFP	plastic quad flat package
LQFP	plastic low profile quad flat package
SQFP	plastic shrink quad flat package
TQFP	plastic thin quad flat package
PLCC	plastic leaded chip carrier

Reflow soldering

Reflow soldering techniques are suitable for all SMD packages, ease of soldering varies with the type of package as indicated in Table 3.

The choice of heating method may be influenced by larger plastic packages (QFP or PLCC with 44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information on moisture prevention, refer to the Drypack chapter in our "Quality Reference Handbook" (order code 9397750 00192).

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

Table 3 Suitability of surface mounted packages for various soldering methods: rating from 'a' to ' d ': ' a ' indicates most suitable (soldering is not difficult); 'd' indicates least suitable (soldering is achievable with difficulty).

PACKAGE TYPE	REFLOW METHOD					DOUBLE WAVE
	INFRARED	HOT BELT	HOT GAS	VAPOUR PHASE	RESISTANCE	
	a	a	a	a	d	a
SSOP	a	a	a	c	d	c
TSSOP	b	b	b	c	d	d
VSO	b	b	a	b	a	a
QFP	b	b	a	c	a	c
LQFP	b	b	a	c	d	c
SQFP	b	b	a	c	d	d
TQFP	b	b	a	c	d	d
PLCC	c	b	b	d	d	

Wave soldering

Wave soldering is not recommended for SSOP, TSSOP, QFP, LQFP, SQFP or TQFP packages, this is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- For SSOP, TSSOP and VSO packages, the longitudinal axis of the package footprint must be parallel to the solder flow and must incorporate solder thieves at the downstream end.
- For QFP, LQFP and TQFP packages, the footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

Even with these conditions, consider wave soldering only for the following package types:

- SO
- VSO
- PLCC
- SSOP only with body width 4.4 mm , e.g. SSOP16 (SOT369-1) or SSOP20 (SOT266-1).
- QFP except QFP52 (SOT379-1), QFP100 (SOT317-1, SOT317-2, SOT382-1) and QFP160 (SOT322-1); these are not suitable for wave soldering.
- LQFP except LQFP32 (SOT401-1), LQFP48 (SOT313-1, SOT313-2), LQFP64 (SOT314-2), LQFP80 (SOT315-1); these are not suitable for wave soldering.
- TQFP except TQFP64 (SOT357-1), TQFP80 (SOT375-1) and TQFP100 (SOT386-1); these are not suitable for wave soldering.
SQFP are not suitable for wave soldering.
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

DATA HANDBOOK SYSTEM

Philips Semiconductors data handbooks contain all pertinent data available at the time of publication and each is revised and reissued regularly.

Loose data sheets are sent to subscribers to keep them up-to-date on additions or alterations made during the lifetime of a data handbook.

Catalogues are available for selected product ranges (some catalogues are also on floppy discs).

Our data handbook titles are listed here.

Integrated circuits

Book Title
IC01 Semiconductors for Radio and Audio Systems
IC02 Semiconductors for Television and Video Systems
IC03 Semiconductors for Wired Telecom Systems
IC04 HE4000B Logic Family CMOS
IC05 Advanced Low-power Schottky (ALS) Logic
IC06 High-speed CMOS Logic Family
IC11 General-purpose/Linear ICs
IC12 I2 ${ }^{2}$ C Peripherals
IC13 Programmable Logic Devices (PLD)
IC14 8048-based 8-bit Microcontrollers
IC15 FAST TTL Logic Series
IC16 CMOS ICs for Clocks and Watches
IC17 Semiconductors for Wireless Communications
IC18 Semiconductors for In-Car Electronics
IC19 ICs for Data Communications
IC20 80C51-based 8-bit Microcontrollers
IC22 Multimedia ICs
IC23 BiCMOS Bus Interface Logic
IC24 Low Voltage CMOS \& BiCMOS Logic
IC25 16-bit 80C51XA Microcontrollers (eXtended Architecture)
IC26 IC Package Databook
IC27 Complex Programmable Logic Devices

Discrete semiconductors

Book Title
SC01 Small-signal and Medium-power Diodes
SC02 Power Diodes
SC03 Thyristors and Triacs
SC04 Small-signal Transistors
SC05 Video Transistors and Modules for Monitors
SC06 High-voltage and Switching NPN Power Transistors
SC07 Small-signal Field-effect Transistors
SC08a RF Power Transistors for HF and VHF
SC08b RF Power Transistors for UHF
SC09 RF Power Modules and Transistors for Mobile Phones
SC13a PowerMOS Transistors including TOPFETs and IGBTs
SC13b Small-signal and Medium-power MOS Transistors
SC14 RF Wideband Transistors
SC15 Microwave Transistors (new version planned)
SC16 Wideband Hybrid IC Modules
SC17 Semiconductor Sensors

Professional components

PC06 Circulators and Isolators
MORE INFORMATION FROM PHILIPS SEMICONDUCTORS?
For more information about Philips Semiconductors data handbooks, catalogues and subscriptions contact your nearest Philips Semiconductors national organization, select from the address list on the back cover of this handbook. Product specialists are at your service and enquiries are answered promptly.

OVERVIEW OF PHILIPS COMPONENTS DATA HANDBOOKS

Our sister product division, Philips Components, also has a comprehensive data handbook system to support their products. Their data handbook titles are listed here.

Display components

Book Title
DC01 Colour Television Tubes
DC02 Monochrome Monitor Tubes and Deflection Units
DC03 Television Tuners, Coaxial Aerial Input Assemblies
DC04 Colour Monitor Tubes
DC05 Flyback Transformers, Mains Transformers and General-purpose FXC Assemblies

Magnetic products

MA01 Soft Ferrites
MA03 Piezoelectric Ceramics
Specialty Ferrites
MA04 Dry-reed Switches
Passive components
PA01 Electrolytic Capacitors
PA02 Varistors, Thermistors and Sensors
PA03 Potentiometers
PA04 Variable Capacitors
PA05 Film Capacitors
PA06 Ceramic Capacitors
PA08 Fixed Resistors
PA10 Quartz Crystals
PA11 Quartz Oscillators

MORE INFORMATION FROM PHILIPS COMPONENTS?

For more information contact your nearest Philips Components national organization shown in the following list.

Argentina: BUENOS AIRES, Tel. (01) 786 7635, Fax. (01) 7869397.
Australia: NORTH RYDE, Tel. (02) 98054455 , Fax. (02) 98054466.
Austria: WIEN, Tel. (01) 60101 12 41, Fax. (01) 601011211.
Belarus: MINSK, Tel. (5172) 200 915, Fax. (5172) 200773.
Benelux: EINDHOVEN, Tel. (+31 40) 2783 749, Fax. (+31 40) 2788399.
Brazil: SÃO PAULO, Tel. (011) 821 2333, Fax. (011) 8291849.
Canada: SCARBOROUGH, Tel. (0416) 292 5161, Fax. (0416) 7546248.
China: SHANGHAI, Tel. (021) 6485 0600, Fax. (021) 64855615.
Colombia: BOGOTA, Tel. (01) 345 8713, Fax. (01) 3458712.
Denmark: COPENHAGEN, Tel. (32) 883 333, Fax. (31) 571949.
Finland: ESPOO, Tel. 9 (0)-615 800, Fax. 9 (0)-615 80510.
France: SURESNES, Tel. (01) 4099 6161, Fax. (01) 40996427.
Germany: HAMBURG, Tel. (040) 2489-0, Fax. (040) 24891400.
Greece: TAVROS, Tel. (01) 4894 339/(01) 4894 239, Fax. (01) 4814240.
Hong Kong: KOWLOON, Tel. 2784 3000, Fax. 27843003.
India: BOMBAY, Tel. (022) 4938 541, Fax. (022) 4938722.
Indonesia: JAKARTA, Tel. (021) 520 1122, Fax. (021) 5205189.
Ireland: DUBLIN, Tel. (01) 7640 203, Fax. (01) 7640210.
Israel: TEL AVIV, Tel. (03) 6450 444, Fax. (03) 6491007.
Italy: MILANO, Tel. (02) 6752 2531, Fax. (02) 67522557.
Japan: TOKYO,Tel. (03) 3740 5028, Fax. (03) 37400580.
Korea (Republic of): SEOUL, Tel. (02) 709 1472, Fax. (02) 7091480.
Malaysia: PULAU PINANG, Tel. (04) 657 0055, Fax. (04) 6565951.
Mexico: EL PASO, Tel. (915) 772 4020, Fax. (915) 7724332.
New Zealand: AUCKLAND, Tel. (09) 849 4160, Fax. (09) 8497811.
Norway: OSLO, TeI. (22) 74 8000, Fax. (22) 748341.
Pakistan: KARACHI, Tel. (021) 587 4641-49,
Fax. (021) 577 035/(021) 5874546.
Philippines: MANILA, Tel. (02) 816 6380, Fax. (02) 8173474.
Poland: WARSZAWA, Tel. (022) 612 2594, Fax. (022) 6122327.
Portugal: LINDA-A-VELHA, Tel. (01) 416 3160/416 3333,
Fax. (01) 416 3174/416 3366.
Russia: MOSCOW, Tel. (095) 247 9124, Fax. (095) 2479132.
Singapore: SINGAPORE, Tel. 350 2000, Fax. 3551758.
South Africa: JOHANNESBURG, Tel. (011) 470 5911, Fax. (011) 4705494.
Spain: BARCELONA, Tel. (93) 30163 12, Fax. (93) 3014243.
Sweden: STOCKHOLM, Tel. (+46) 8632 2000, Fax. (+46) 86322745.
Switzerland: ZÜRICH, Tel. (01) 48822 11, Fax. (01) 4817730.
Taiwan: TAIPEI, Tel. (02) 388 7666, Fax. (02) 3824382.
Thailand: BANGKOK, Tel. (02) 745 4090, Fax. (02) 3980793.
Turkey: ISTANBUL, Tel. (0212) 279 2770, Fax. (0212) 2826707.
Ukraine: KIEV, Tel. (044) 268 7327, Fax. (044) 2686323.
United Kingdom: DORKING, Tel. (01306) 512 000, Fax. (01306) 512345. United States:

- JUPITER, FL, Tel. (561) 745 3300, Fax. (561) 7453600.
- ANN ARBOR, MI,Tel. (313) 996 9400, Fax. (313) 7612776.
- SAUGERTIES, NY, Tel. (914) 246 2811, Fax. (914) 2460487.

Uruguay: MONTEVIDEO, Tel. (02) 704 044, Fax. (02) 920601.

For all other countries apply to:
Philips Components,
Marketing Communications,
P.O. Box 218,

5600 MD EINDHOVEN, The Netherlands
Fax. +31-40-2724547.

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 160 101, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +453288 2636, Fax. +4531570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 224938 541, Fax. +91 224938722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14 ,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +6037574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31402782785, Fax. +31402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7095755 6918, Fax +70957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +652516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +4686322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +662745 4090, Fax. +662398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax. +381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications,
Internet: http://www.semiconductors.philips.com
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1997
SCH54
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

[^0]: GMB74LS00A-DC: digital IC; GM family; operating temperature range 0 to $+70^{\circ} \mathrm{C}$; company number 74LS00A; ceramic DIL package.

 TDA1000P: analog IC; operating temperature range non-standard; serial number 1000; plastic DIL package.

 SAC2000: solitary digital circuit; operating temperature range -55 to $+125^{\circ} \mathrm{C}$; serial number 2000.

[^1]: NOTES
 Purchase of Philips $I^{2} C$ components conveys a license under the Philips $I^{2} C$ patent to use the components in the $I^{2} C$ system, provided the system conforms to the $I^{2} C$ specifications defined by Philips.

[^2]: *. Also available with extended temperature ranges.

[^3]: Philips Semiconductors
 a North American Philips Company
 811 E. Arques Avenue
 P.O. Box 3409

 Sunnyvale, California 94088-3409

[^4]: Fig. 17 General format of command byte.

[^5]: START

