INTEGRATED CIRCUITS

RF/Wireless Communications

QUALITY ASSURED

Our quality system focuses on the continuing high quality of our components and the best possible service for our customers. We have a three-sided quality strategy: we apply a system of total quality control and assurance; we operate customer-oriented dynamic improvement programmes; and we promote a partnering relationship with our customers and suppliers.

PRODUCT SAFETY

In striving for state-of-the-art perfection, we continuously improve components and processes with respect to environmental demands. Our components offer no hazard to the environment in normal use when operated or stored within the limits specified in the data sheet.

Some components unavoidably contain substances that, if exposed by accident or misuse, are potentially hazardous to health. Users of these components are informed of the danger by warning notices in the data sheets supporting the components. Where necessary the warning notices also indicate safety precautions to be taken and disposal instructions to be followed. Obviously users of these components, in general the set-making industry, assume responsibility towards the consumer with respect to safety matters and environmental demands.

All used or obsolete components should be disposed of according to the regulations applying at the disposal location. Depending on the location, electronic components are considered to be 'chemical', 'special' or sometimes 'industrial' waste. Disposal as domestic waste is usually not permitted.

RF/Wireless Communications

CONTENTS
page
Preface 3
Section 1 General Information 5
Section 2 Amplifiers 21
Section 3 Compandors 193
Section $4 \quad$ IF systems 259
Section $5 \quad$ Front-End Systems/RF Amplifiers/Mixers 525
Section 6 Baseband Processors: Audio and Data 627
Section $7 \quad$ Frequency Synthesizers, Pagers and Data Receivers 548
Section 8 Transmitters 1095
Section $9 \quad$ Package Outlines 1123
Section 10 Sales Offices, Representatives and Distributors 1153
Appendix A Data handbook system 1156

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and North American Philips Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors and Philips Electronics North America Corporation registers eligible circuits under the Semiconductor Chip Protection Act

Preface

Thank you for your interest in Radio Frequency (RF)Wireless products from Philips Semiconductors. As a leading supplier to the RF/Wireless market, we offer a wide range of discrete and semiconductor RF/Wireless components.

This RFWireless Communications handbook includes information on current RF/Wireless integrated circuits from Philips Semiconductors. The products are used in a wide range of RF/Wireless transmitter and receiver electronics. These applications include: Cellular radio, wireless cordless telephones, high performance receivers, two-way communications and LANs.

Selected products from this handbook can be used to build a complete cellular radio. The system diagrams located in the Cellular Section can help you determine which products are best suited for your application.

Philips Semiconductors also offers discrete RF/Wireless components through the Discrete Semiconductor Group. For information on this product line, please contact Philips Semiconductors-DSG at 401/762-3800.

RF/Wireless Communications
 Section 1 General Information

INDEX
RF/Wireless Communications Handbook Functional Index 7
Alphanumeric Product List 10
Ordering Information 12
Product Status 13
System Standard Selector Guide 14
RF Amplifier Selector Guide 15
Compandor Selector Guide 16
FM/IF Systems Selector Guide 17
Front-End Selector Guide 18
Baseband Processor Selector Guide 19
Frequency Synthesizer Selector Guide 20
Section 1 General Information 5
RF/Wireless Communications Handbook Functional Index 7
Alphanumeric Product List 10
Ordering Information 12
Product Status 13
System Standard Selector Guide 14
RF Amplifier Selector Guide 15
Compandor Selector Guide 16
FM/F Systems Selector Guide 17
Front-End Selector Guide 18
Baseband Processor Selector Guide 19
Frequency Synthesizer Selector Guide 20
Section 2 Amplifiers 21
RF Amplifier Selector Guide 22
NE/SA5200 RF dual gain-stage 23
NE/SA5204A Wide-band high-frequency amplifier 35
NE/SASE5205A Wide-band high-frequency amplifier 44
NE/SA5209 Wideband variable gain amplifier 54
NE/SA5219 Wideband variable gain amplifier 69
NE/SA5234 Matched quad high-performance low-voltage operational amplifier 82
AN1651 Using the NE/SA5234 amplifier 86
NE/SE5539 High frequency operational amplifier 100
NE5592 Video amplifier 108
NE592 Video amplifier 113
TDA1010A $\quad 6 \mathrm{~W}$ audio amplifier with preamplifier 121
TDA1011A 2 to 6 W audio power amplifier with preamplifier 139
TDA1013B 4 W amplifier with DC volume control 147
TDA1015 1 to 4 W audio amplifier with preamplifier 155
TDA7052 1 Watt low voltage audio power amplifier 165
TDA7052A/AT 1-Watt low voltage audio power amp with DC volume control 170
TDA7056A 3-Watt mono BTL audio output amplifier 177
TDA8781T True logarithmic amplifier 183
Section 3 Compandors 193
Compandor Selector Guide 194
NE570/571/SA571 Compandor 195
AN174 Applications for compandors NE570/571/SA571 202
AN176 Compandor cookbook 211
NE/SA572 Programmable analog compandor 217
AN175 Automatic level control using the NE572 225
NE/SA575 Low voltage compandor 226
NE/SA576 Low power compandor 236
NE/SA577 Unity gain level programmable low power compandor 239
NE/SA578 Unity gain level programmable low power compandor 243
AN1762 Companding with the NE577 and NE578 247
Section 4 IF Systems 259
FM/IF Systems Selector Guide 260
MC3361 Low-power FM IF 261
NE/SA604A High performance low power FM IF system 264
NE/SA614A Low power FM IF system 274
AN1991 Audio decibel level detector with meter driver 284
AN1993 High sensitivity applications of low-power RF/IF integrated circuits 286
NE/SA605 High performance low power mixer FM IF system 298
NE/SA615 High performance low power mixer FM IF system 306
AN1994 Reviewing key areas when designing with the NE605 314
AN1995 Evaluating the NE605 SO and SSOP demo-board 334
AN1996 Demodulating at 10.7MHz IF with the NE/SA605/625 344
SA606 Low-voltage high performance mixer FM IF system 355
Low-voltage high performance mixer FM IF system 371
SA607 Low voltage high performance mixer FM IF system 387
SA617 Low-voltage high performance mixer FM IF system 402
SA608 Low voltage high performance mixer FM IF system 416
NE/SA624 High performance low power FM IF system with high-speed RSSI 430
NE/SA625 High performance low power mixer FM IF system with high-speed RSSI 442
SA626 Low voltage high performance mixer FM IF system with high-speed RSSI 455
NE/SA627 High performance low power mixer FM IF system with high-speed RSSI 467
SA636 Low voltage high performance mixer FM IF system with high-speed RSSI 477
SA637 Low-voltage digital IF receiver 481
SA676 Low-voltage mixer FM IF system 492
TDA1576T FM/IF amplifier/demodulator circuit 501
TDA7000 Single-chip FM radio circuit 509
TDA7021T Single-chip FM radio circuit 516
Section 5 Front-End systems/RF amplifiers/Mixers 525
Front-End Selector Guide 526
MC1496/MC1596 Balanced modulator/demodulator 527
AN189 Balanced modulator/demodulator applications using the MC1496/1596 531
NE/SA600 1 GHz LNA and mixer 536
SA601 Low voltage LNA. and mixer-1GHz 552
NE/SA602A Double-balanced mixer and oscillator 557
NE/SA612A Double-balanced mixer and oscillator 565
AN1981 New low-power single sideband circuits 572
AN1982 Applying the oscillator of the NE602 in low-power mixer applications 580
SA620 Low voltage LNA, mixer and VCO - 1GHz 583
TDA1574 FM front-end IC 594
TDA1574T Integrated FM tuner for radio receivers 602
TDA5030A TV VHF mixer/oscillator UHF preamplifier 611
UAA2072M Image reject GSM front-end 617
Section 6 Baseband Processors:Audio and Data 627
Baseband Processor Selector Guide 628
NE/SA5750 Audio processor - companding and amplifier section 629
NE/SA5751 Audio processor - filter and control section 636
AN1741 Using the NE5750 and NE5751 for audio processing 646
SA5752 Audio processor - companding, VOX and amplifier section 666
SA5753 Audio processor - filter and control section 676
AN1742 Using the SA5752 and SA5753 for low voltage designs 687
PCA5075 Power amplifier controller for GSM systems 702
PCD5032 ADPCM codec for digital cordless telephone 715
PCD5040 DECT burst mode controller 737
PCD5071 GSM baseband interface 755
PCF5081/PCF5082 GSM baseband processors for digital mobile cellular radio 768
TEA6320 Sound fader control circuit 782
UMA1000LT Data processor for cellular radio (DPROC) 812
Section 7 Frequency Synthesizers, Pagers, and Data Receivers 548
Frequency Synthesizer Selector Guide 846
SA701 Divide by: 128/129-64/65 dual modulus low power ECL prescaler 847
SA702 Divide by: 64/65/72 triple modulus low power ECL prescaler 854
SA703 Divide by: 128/129/144 triple modulus low power ECL prescaler 861
SA7025 Low-voltage 1 GHz fractional-N synthesizer 868
SA8025 Low-voltage 2 GHz fractional- N synthesizer 882
PCF5001T POCSAG paging decoder with EEPROM storage 895
TDD1742T CMOS frequency synthesizer 897
TSA6057/T Radio tuning PLL frequency synthesizer 919
TSA5511 $\quad 1.3 \mathrm{GHz}$ bi-directional ${ }^{2} \mathrm{C}$ bus controlled synthesizer 928
UAA2080T Advanced pager receiver 939
UMA1005T Dual low-power frequency synthesizer 955
UMA1014T Frequency synthesizer for cellular radio communication 976
SCO/AN91004 Application report for the UMA1014T frequency synthesizer 990
UMA1015M Low-power dual frequency synthesizer for radio communications 1018
UMA1016xT Frequency synthesizer for radio communication equipment 1029
JCS/ML 92150 Application note: UMA1016XT frequency synthesizer 1041
UMA1017M Low-voltage frequency synthesizer for radiotelephones 1064
UMA1018M Low-voltage dual frequency synthesizer for radio telephones 1071
UMA1020M Low-voltage dual frequency synthesizer for radio telephones 1083
Section 8 Transmitters 1095
NE/SA630 Single pole double throw (SPDT) switch 1097
SA900 I/Q transmit modulator 1107
Section 9 Package Outlines 1123
Section 10 Sales Offices, Representatives and Distributors 1153
Appendix A: Data handbook system 1156

RF Communications Handbook Alphanumeric Product List

MC1496/MC1596 Balanced modulator/demodulator 527MC3361NE5592NE570/571/SA571NE592NE/SA5200NE/SA5204ANE/SA/SE5205ANE/SA5209NE/SA5219NE/SA5234NE/SA572NE/SA575NE/SA5750NE/SA5751NE/SA576NE/SA577NE/SA578NE/SA600NE/SA602A
NE/SA604A
NE/SA605
NE/SA612A
NE/SA614ANE/SA615NE/SA624NE/SA625NE/SA627NE/SA630NE/SE5539SA5752
SA5753SA601SA606SA607SA608SA616
SA617SA620SA626
SA636
SA637
SA676
SA900SA701
SA702SA7025
Low-power FM IF 261
Video amplifier 108
Compandor 195
Video amplifier 113
RF dual gain-stage 23
Wide-band high-frequency amplifier 35
Wide-band high-frequency amplifier 44
Wideband variable gain amplifier 54
Wideband variable gain amplifier 69
Matched quad high-performance low-voltage operational amplifier 82
Programmable analog compandor 217
Low voltage compandor 226
Audio processor - companding and amplifier section 629
Audio processor - filter and control section 636
Low power compandor 236
Unity gain level programmable low power compandor 239
Unity gain level programmable low power compandor 243
1 GHz LNA and mixer 536
Double-balanced mixer and oscillator 557
High performance low power FM IF system 264
High performance low power mixer FM IF system 298
Double-balanced mixer and oscillator 565
Low power FM IF system 274
High performance low power mixer FM IF system 306
High performance low power FM IF system with high-speed RSSI 430
High performance low power mixer FM IF system with high-speed RSSI 442
High performance low power mixer FM IF system with high-speed RSSI 467
Single pole double throw (SPDT) switch 1097
High frequency operational amplifier 100
Audio processor - companding, VOX and amplifier section 666
Audio processor - filter and control section 676
Low voltage LNA and mixer - 1 GHz 552
Low-voltage high performance mixer FM IF system 355
Low voltage high performance mixer FM IF system 387
Low voltage high performance mixer FM IF system 416
Low-voltage high performance mixer FM IF system 371
Low-voltage high performance mixer FM IF system 402
Low voltage LNA, mixer and VCO - 1 GHz 583
Low voltage high performance mixer FM IF system with high-speed RSSI 455
Low voltage high performance mixer FM IF system with high-speed RSSI 477
Low-voltage digital IF receiver 481
Low-voltage mixer FM IF system 492
I/Q transmit modulator 1107
Divide by: 128/129-64/65 dual modulus low power ECL prescaler 847
Divide by: 64/65/72 triple modulus low power ECL prescaler 854
Low-voltage 1 GHz fractional-N synthesizer 868
Divide by: 128/129/144 triple modulus low power ECL prescaler 861

Alphanumeric product list

SA8025 Low-voltage 2 GHz fractional- N synthesizer 882
PCA5075 Power amplifier controller for GSM systems 702
PCD5032 ADPCM codec for digital cordless telephone 715
PCD5040 DECT burst mode controller 737
PCD5071 GSM baseband interface 755
PCF5001T POCSAG paging decoder with EEPROM storage 895
PCF5081/PCF5082 GSM baseband processors for digital mobile cellular radio 768
TDA1010A 6 W audio amplifier with preamplifier 121
TDA1011A 2 to 6 W audio power amplifier with preamplifier 139
TDA1013B 4 W amplifier with DC volume control 147
TDA1015 1 to 4 W audio amplifier with preamplifier 155
TDA1574 FM front-end IC 594
TDA1574T Integrated FM tuner for radio receivers 602
TDA1576T FMIF amplifier/demodulator circuit 501
TDA5030A TV VHF mixer/oscillator UHF preamplifier 611
TDA7000 Single-chip FM radio circuit 509
TDA7021T Single-chip FM radio circuit 516
TDA7052 1 Watt low voltage audio power amplifier 165
TDA7052A/AT 1-Watt low voltage audio power amp with DC volume control 170
TDA7056A 3-Watt mono BTL audio output amplifier 177
TDA8781T True logarithmic amplifier 183
TDD1742T CMOS frequency synthesizer 897
TEA6320 Sound fader control circuit 782
TSA5511 1.3 GHz bi-directional $\mathrm{I}^{2} \mathrm{C}$ bus controlled synthesizer 928
TSA6057/T Radio tuning PLL frequency synthesizer 919
UAA2072M Image reject GSM front-end 617
UAA2080T Advanced pager receiver 939
UMA1000LT Data processor for cellular radio (DPROC) 812
UMA1005T Dual low-power frequency synthesizer 955
UMA1014T Frequency synthesizer for cellular radio communication 976
UMA1015M Low-power dual frequency synthesizer for radio communications 1018
UMA1016xT Frequency synthesizer for radio communication equipment 1029
UMA1017M Low-voltage frequency synthesizer for radiotelephones 1064
UMA1018M Low-voltage dual frequency synthesizer for radio telephones 1071
UMA1020M Low-voltage dual frequency synthesizer for radio telephones 1083

Ordering Information

LINEAR PRODUCTS PART NUMBERING SYSTEM

> Example: NE XXXX N
> Package Description:
> A = Plastic Leaded Chip Carriers (PLCC)
> $D=$ Plastic SO
> $F=$ Ceramic Dual In-Line
> $\mathrm{G}=$ Hermetic Chip Carriers - Leadless
> $H=H e a d e r s$
> $\mathbf{N}=$ Plastic Dual In-Line
> $P=$ Pin Grid Array - Hermetic
> W = Hermetic Cerpac
> $\mathbf{Y}=$ Ceramic Square Quad Flat Pack
> Device Number
> Device Family and Temperature Range Prefix
> $\mathrm{AU}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
> $\mathrm{NE}=0$ to $+70^{\circ} \mathrm{C}$
> SE $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
> $S A=-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$

PHILIPS PRODUCTS PART NUMBERING SYSTEM PREFIXES HE, PC, PN, SA, TD, TE, TS, UM

Product Status

DEFINITIONS

Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notic in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

PRODUCTS			TARGET SYSTEMS										
	Type	Description	Cellular		Cordless						Wireless Data		
Function			(N)AMPS /(E)TACS	IS-54/ TDMA	GSM	CTO	CT1	SS	DECT	PHP	SS	CDPD	PAGERS
RF Amplifiers	SA5200	Gain block - 1GHz	X	X	X		X	X			X	X	
RF Front-End	SA600	LNA/Mixer - 1GHz	X	X	X			X			X		
	SA601	LNA/Mixer - 1GHz	\bullet	\bullet	X		-					-	
	SA620	LNA/Mixer/VCO-1GHz			X			X			X		
	UAA2072M	Image reject - 1GHz			\bigcirc								
	SA630	RF switch - 1GHz	X										
	UAA2080T	Single chip low-voltage receiver											\bullet
Synthesizers \backslash Prescalers	UMA1014T	Synthesizer - BIP-1GHz	X				X					X	
	UMA1016T	Synthesizer - BIP-1GHz						X			X		
	UMA1005T	Synthesizer - CMOS		X	X								
	UMA1018M	Low-voltage, low noise - 1GHz			\bigcirc						X		
	UMA1020M	Low-voltage, low noise - 2.4GHz							\bullet	X			
	UMA1017M	Low-voltage, single loop-1GHz			X			X			X		
	UMA1015M	Low-voltage, dual - 1GHz	-				\bigcirc					-	
	SA7025	Low-voltage, Fractional-N - 1GHz		\bullet	X								
	SA8025	Low-voltage, Fractional-N - 2GHz							X	-			
Mixer / IF / Demod	SA605	High performance / wideband	X		X				X	X	X		
	SA606/7/8	Low power	\bigcirc			X	-					-	
	SA624/25/27	High performance/Wide BW/fast RSSI									\bullet		
	SA626	Low-voltage/Wide BW/fast RSSI								-			
	SA636	SA626 with Wideband data							-				
	SA637	SA626 with Digital IF		-									
Transmitter	SA900	1/Qtransmitter/Modulator		-									
Audio Processing	SA5752	Audio processor system - 3V	\bullet									-	
	SA5753	Audio processor system - 3V	-									-	
	NE577 Fam.	Compandor	X										
Data Processing	UMF1000T	Data processor	\bigcirc										
	UMA1000LT	Data processor-3V										-	
	PCD5032	ADPCM - codec											
	PCD5040/41	Burst Mode controiler											
	PCF5081/82	Digital signal processor			\bullet							-	
	PCD5071	Baseband interface			-							-	
	PCF5001T	POCSAG - decoder											\bigcirc
Control ${ }^{\text {Cr }}$	89CE558	Microcontroller with flash memory	\bigcirc									-	
	P90CL301	Low-voltage 16-bit microcontroller			\bullet				X				
	P80CL51	Low-voltage 8-bit microcontroller				X	X						X
	TDA8005	Smart card interface			\bullet								
	P83CL580	x xx	-										
	P83CL781/2	XxX				X	X						X
	P83CL410	XxX											X
Misc.	TDA8781	Log amplifier			\bigcirc								
	PCA5075*	RF PA controller			\bullet			1					

RF AMPLIFIER FAMILY OVERVIEW

	NE5200	NE5204	NE5205	NE5209	NE5219
$V_{\text {cc }}$	4-9V	$5-8 \mathrm{~V}$	5-8V	4.5-7.0V	4.5-7.0V
${ }^{\text {c }}$ c	$8 \mathrm{~mA} / 95 \mu \mathrm{~A}$	24mA	24 mA	43 mA	43 mA
Bandwidth (3dB)	1.2GHz	550 MHz	550 MHz	850 MHz	700 MHz
Noise Figure	3.6dB	$\begin{aligned} & 6.0 \mathrm{~dB} 50 \Omega \\ & 4.8 \mathrm{~dB} 75 \Omega \end{aligned}$	$\begin{aligned} & 6.0 \mathrm{~dB} 50 \Omega \\ & 4.8 \mathrm{~dB} 75 \Omega \end{aligned}$	9.3 dB	9.3 dB
1dB Compression (output)	-6dBm	+4dBm	+4dBm	-3dBm	-3dBm
3rd Order Intercept (output)	+4dBm	+17dBm	+17dBm	+13dBm	+13dBm
Input Impedance	50Ω	50Ω	50Ω	$1.2 \mathrm{k} \Omega$	$1.2 \mathrm{k} \Omega$
Output Impedance	50Ω	50Ω	50Ω	60Ω	60Ω
Gain (per amplifier)	$7.5 \mathrm{~dB} /-13 \mathrm{~dB}$	19dB	19dB	$25 \mathrm{~dB} *$	$25 \mathrm{~dB}{ }^{*}$
Package	SO8	$\begin{aligned} & \text { DIP8 } \\ & \text { SOO } \end{aligned}$	DIP8	DIP16 SO16	DIP16 SO16
Features	+Dual Gain Stage +Enable Pin +Good Noise Figure +Low current consumption	+Low-cost amp +Simple Implementation	+Low-cost amp + Simple Implementation	+Variable gain and attenuation +Excellent Linearity	+Variable gain and attentuation +Excellent Linearity

*Single in / Differential out

COMPANDOR FAMILY OVERVIEW

	NE570	NE571	NE572	NE575	NE576	NE577	NE578
$\mathrm{V}_{\text {cc }}$	6-24V	6-18V	6-22V	3-7V	2-7V	2-7V	2-7V
${ }^{\text {cce }}$	3.2 mA	3.2 mA	6 mA	$3-5.5 \mathrm{~mA}{ }^{*}$	1-3mA*	1-2mA*	1-2mA*
Number of Pins	16	16	16	20	14	14	16
Packages NE: 0 to +70 C SA: -40 to +85 C N : Plastic DIP D: Plastic SO F: CerDIP DJ: SSOP (Shrink Small Outline Package)	NE570F NE570N NE570D	NE571F NE571N NE571D SA571F SA571N SA571D	NE572N NE572D SA572F SA572N SA572D	NE575N NE575DK SA575N SA575D SA575DK	NE576N NE576D	NE577N NE577D SA577N SA577D	NE578N NE578D
ALC	Both Channels	Both Channels	Both Channels	Right Channel	Right Channel	Right Channel	Right Channel
Reference Voltage	Fixed 1.8V	Fixed 1.8V	Fixed 2.5V	$\mathrm{Vcc} / 2$	$\mathrm{Vcc} / 2$	Vcc/2	Vcc/2
Unity Gain	775 mVrms	775 mVrms	100 mVrms	100 mVrms	100 mVrms	10 mV to 1 V (rms)	10 mV to 1 V (rms)
Power Down	NO	NO	NO	NO	NO	NO	$\begin{gathered} \mathrm{YES} \\ (170 \mu \mathrm{~A}) \end{gathered}$
Key Features	- Excellent Unity Gain Tracking Error - Excellent THD	- Excellent Unity Gain Tracking Error - Excellent THD	- Independent Attack \& Release Time - Good THD - Needs an Ext. Summing Op Amp	$\begin{aligned} & \text { - } 2 \text { Uncommitted } \\ & \text { On-Chip } \\ & \text { Op Amps } \\ & \text { Available } \\ & \text { - Low Voltage } \end{aligned}$	- Low Power - Low External Component Count	- Low Power - Programmable Unity Gain	- Low Power - Programmable Unity Gain - Power Down - Mute Function - Summing Capability (DTMF) -600Ω Drive Capability
Applications Cordless Phones Cellular Phones Wireless Mics Modems Consumer Audio Two-way Communications	High Performance Audio Circuits "Hi-Fi Commercial Quality"	High Performance Audio Circuits "Hi-Fi Commercial Quality"	High Performance Audio Circuits "Hi-Fi Studio Quality"	Consumer Audio Circuits "Commercial Quality"	Battery Powered Systems "Commercial Quality"	Battery Powered Systems "Commercial Quality"	Battery Powered Systems "Commercial Quality"

NOTE: NE5750/5751 are also Excellent Audio Processor Components for High Performance Cordiess and Cellular Applications that Include the Companding Function *Icc varies with Vcc

FM IF SYSTEMS FAMILY OVERVIEW

	$V_{\text {cc }}$	$I_{\text {cc }}$	$\begin{gathered} \text { Pin } \\ \text { Count } \end{gathered}$	Package	Input Freq. (Max.)	IF Freq. (Max) (Max.)	$\mathrm{f}_{\mathrm{RF}}=45 \mathrm{MHz}$			RSSI Range	Fast RSSI	Output Op Amps	Features
							$\begin{aligned} & \text { Sensitivity } \\ & \text { Input Pin } \end{aligned}$	$\begin{gathered} \text { Mixer } \\ \text { Gain } \end{gathered}$	$\begin{aligned} & \text { Input } \\ & \text { 301 } \end{aligned}$				
High Performance Low Power FM IF System													
NE/SA604A	4.5-8V	3.3mA@6V	16	D, N	25MHz	25 MHz	$0.22 \mu \mathrm{~V}$	N/A	N/A	90dB	-	N/A	- High Sensitivity - High IF Frequency
NE/SA614A	$4.5-8 \mathrm{~V}$	3.3mA@6V	16	D, N	25 MHz	25 MHz	$0.22 \mu \mathrm{~V}$	N/A	N/A	80 dB	-	N/A	
NE/SA624	4.5-8V	3.3mA@6V	16	D, N	25MHz	25 MHz	$0.22 \mu \mathrm{~V}$	N/A	N/A	90 dB	-	N/A	
High Performance Low Power Mixer FM IF System													
NE/SA605	4.5-8V	5.7mA@6V	20	D, DK, N	500 MHz	25 MHz	$0.22 \mu \mathrm{~V}$	13dB	$+4 \mathrm{dBm}$	90dB	-	N/A	- High Sensitivity - High Input/RF Freq
NE/SA615	$4.5-8 \mathrm{~V}$	5.7mA@6V	20	D, DK, N	500 MHz	25MHz	$0.22 \mu \mathrm{~V}$	13dB	$+4 \mathrm{dBm}$	80dB	-	N/A	
High Performance Low Power Mixer FM IF System with High-Speed RSSI (NE/SA624 only includes FM IF)													
NE/SA624	4.5-8V	3.4mA@6V	16	D, N	25 MHz	25 MHz	$0.22 \mu \mathrm{~V}$	N/A	+4dBm	90dB	\checkmark	N/A	- High Sensitivity - High Input/RF Freq - Fast RSSI - Freq Check/Lim (-) (627)
NE/SA625	4.5-8V	5.8mA@6V	20	D, DK, N	500 MHz	25MHz	$0.22 \mu \mathrm{~V}$	13dB	+4dBm	90dB	\checkmark	N/A	
NE/SA627	4.5-8V	5.8mA@6V	20	D, DK, N	500 MHz	25MHz	$0.22 \mu \mathrm{~V}$	13dB	+4dBm	90dB	\checkmark	N/A	
Low Voltage High Performance Mixer FM IF System													
SA606	2.7-7V	3.5mA@3V	20	D, DK, N	150 MHz	2 MHz	$0.31 \mu \mathrm{~V}$	17dB	-9dBm	90dB	-	Audio Op Amp RSSI Op Amp	- Low Power - Audio/RSSI Op Amp
SA616	2.7-7V	3.5mA@3V	20	D, DK, N	150 MHz	2MHz	$0.31 \mu \mathrm{~V}$	17dB	-9dBm	80dB	-	Audio Op Amp RSSI Op Amp	
SA607	2.7-7V	3.5mA@3V	20	D, DK, N	150MHz	2MHz	$0.31 \mu \mathrm{~V}$	17dB	-9dBm	90dB	-	Audio Op Amp RSSI Buffered	- Low Power - Audio Op Amp (607/617) - Freq Check Function - RSSI Op Amp (608)
SA617	2.7-7V	3.5mA@3V	20	D, DK, N	150MHz	2MHz	$0.31 \mu \mathrm{~V}$	17dB	-9dBm	80 dB	-	Audio Op Amp RSSI Butfered	
SA608	2.7-7V	3.5mA@3V	20	D, DK, N	150MHz	2MHz	$0.31 \mu \mathrm{~V}$	17dB	-9dBm	90dB	-	Audio Buffered RSSI Op Amp	
Low Voltage High Performance Mixer FM IF System with High-Speed RSSI													
SA626	2.7-5.5V	6.5mA@3V	20	D, DK	500 MHz	25MHz	$0.54 \mu \mathrm{~V}^{* *}$	14dB	-11dBm	90dB	\checkmark	Audio Buffered RSSI Op Amp	- Low Power - Fast RSSI - Audio/RSSI Op Amp - Power Down Mode
 Source NE: 0 to $+70^{\circ} \mathrm{C}$ D: Small Outline-16, Small Outine Large -20 SA: -40 to $+85^{\circ} \mathrm{C}$ DK: SSOP 20 $\mathrm{~N}:$ Dual In-Line Plastic													

	INTEGRATED FRONT-END SYSTEMS$\mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}$			$\frac{\text { MIXER SYSTEMS }}{\mathrm{f}_{\mathrm{RF}}=45 \mathrm{MHz}}$	
	NE/SA600	SA601	SA620	NE/SA602A	NE/SA612A
Description	LNA + Mixer	LNA + Mixer	LNA + Mixer + VCO	Mixer + Osc	Mixer + Osc
$\mathrm{V}_{\mathbf{c c}}$	4.5-5.5V	$2.7-5.5 \mathrm{~V}$	$2.7-5.5 \mathrm{~V}$	4.5-8.0V	4.5-8.0V
$\mathrm{I}_{\mathbf{c c}}$	$13 \mathrm{~mA} / 4.2 \mathrm{~mA}^{*}$	7.4 mA	$10.4 \mathrm{~mA} / 7.2 \mathrm{~mA}^{*}$	2.4 mA	2.4 mA
Bandwidth	LNA: 900 MHz Mixer: 1 GHz	LNA: 900 MHz Mixer: 1GHz	LNA: 900 MHz Mixer: 1GHz	500 MHz	500 MHz
Noise Figure	LNA: 2.2dB Mxr: 14 dB	LNA: 1.6 dB Mxr: 10dB	LNA: 1.6dB Mxr: 9dB	5.0 dB	5.0 dB
$\begin{aligned} & \text { 1dB Compression } \\ & \text { (output) } \\ & \hline \end{aligned}$	LNA: -20dBm Mxr: -4 dBm	LNA: -16dBm Mxr: -13dBm	LNA: -16dBm Mxr: -13dBm	-10dBm	-10dBm
3rd Order Intercept (output)	LNA: -10/+26dBm* Mxr: +6 dBm	LNA: -3dBm Mxr: OdBm	LNA: $-3 /+25 \mathrm{dBm}^{*}$ Mxr: -6dBm	-13dBm	-13dBm
Input Impedance	LNA: 50Ω Mxr: 50Ω	LNA: 50Ω Mxr: 50Ω	$\begin{aligned} & \text { LNA: } 50 \Omega \\ & \text { Mxr: } 50 \Omega \\ & \hline \end{aligned}$	$1.5 \mathrm{k} \Omega$	$1.5 \mathrm{k} \Omega$
Output Impedance	$\begin{gathered} 50 \Omega \\ \text { High } \\ \hline \end{gathered}$	$\begin{gathered} \hline 50 \Omega \\ \text { High } \\ \hline \end{gathered}$	$\begin{gathered} 50 \Omega \\ \text { High } \\ \hline \end{gathered}$	$1.5 \mathrm{k} \Omega$	$1.5 \mathrm{k} \Omega$
Power Gain	LNA: 16/-7.5dB* Mxr: -2.6dB	LNA: 11.5 Mxr: 7dB	LNA: 11.5/-7dB* Mxr: +3 dB	17dB	17dB
Package	SO14	SSOP20	SSOP20	$\begin{aligned} & \hline \text { DIP8 } \\ & \text { SO8 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { DIP8 } \\ & \text { SO8 } \\ & \hline \end{aligned}$
Features	+LNA Overload Mode +Excellent Noise Figure	+Low voltage +Excellent Noise Figure	+Low voltage +Excellent Noise Figure +Internal VCO +LNA Overload Mode	+Excellent Noise Figure +High Gain	+Excellent Noise Figure +High Gain

Baseband Processors

PART TYPE		APPLICATION	$V_{\text {DD }}$	IDD	PACKAGE
PCD5032	ADPCM Codec	DECT	$\begin{aligned} & 2.7-6.0 \\ & 2.7-6.0 \end{aligned}$	7mA Typ. Active $20 \mu \mathrm{~A}$ Typ. Stdby	28-Pin SO28 44-Pin QFP
PCD5040	BMC (Burst Mode Controller)	DECT	2.7-6.0	15mA Typ. Active	64-Pin QFP
PCD5081	Signal Processor - Mobile	GSM	5.0	- -	80-Pin QFP
PCD5082	Signal Processor - Base	GSM	5.0	- -	160-Pin QFP
PCD5070	Baseband Interface	GSM	5.0	$31 m A$ Typ. Rx 7mA Typ. Tx	44-Pin QFP 44-Pin QFP
PCD5071	Baseband Interface	GSM	5.0	31 mA Typ. Rx 7mA Typ. Tx	44-Pin QFP 44-Pin QFP
NE/SA5750	Audio Companding Amplifier	AMPS TACS	5.0	8.4mA Typ. 1.8 mA Stdby	$\begin{aligned} & \text { 24-Pin DIP } \\ & \text { 28-Pin SOL } \end{aligned}$
NE/SA5751	Audio Filter and Control	AMPS TACS	5.0	2.7mA Typ. 0.9 mA Stdby	24-Pin DIP $28-\mathrm{Pin} \mathrm{SOL}$
NE/SA5752	Audio Companding VOX and Amplifier	AMPS TACS	2.7	3.1 mA Typ. $125 \mu \mathrm{~A}$ Stdby	$\begin{aligned} & 20-\mathrm{Pin} \mathrm{SOL} \\ & 20-\mathrm{Pin} \text { SSOP } \end{aligned}$
NE/SA5753	Audio Filter and Control	AMPS TACS	2.7	2.7mA Typ. $600 \mu \mathrm{~A}$ Stdby	$\begin{aligned} & 20-\mathrm{Pin} \text { SOL } \\ & 20-\mathrm{Pin} \text { SSOP } \end{aligned}$
PCF5001	POCSAG Decoder	PAGERS	1.5-6.0	$60 \mu \mathrm{~A}$ Typ.	28-Pin Mini-Pack 32-Pin QFP

Frequency Synthesizer Selector Guide

	Vcc	Icc	Pins	Pkg	Max RF/Input Frequency	Channel Spacing	Fractional-N Didvider	Auxiliary Synthesizer	Applications
Fractional-N Frequency Synthesizers									
SA7025	2.7 to 5.5 V	7mA@3V	20	DK	1.1 GHz (main) 90 MHz (aux) 30 MHz (aux)	$10-5000 \mathrm{kHz}$ (main) $40-20,000 \mathrm{kHz}$ (aux) 10-5000kHz (aux)	\checkmark	V	$\begin{aligned} & \text { NADC (IS-54), } \\ & \text { GSMM } \\ & \text { digital cellular } \end{aligned}$
SA8025	2.7 to 5.5 V	12mA@3V	20	DK	$\begin{aligned} & 2.0 \mathrm{GHz} \text { (main) } \\ & 90 \mathrm{MHz}(\text { aux }) \\ & 30 \mathrm{MHz} \text { (aux) } \end{aligned}$	$10-5000 \mathrm{kHz}$ (main) $40-20,000 \mathrm{kHz}$ (aux) 10-5000kHz (aux)	\checkmark	\checkmark	PHP digital cordless, PDC digital cellular
UMA1005T	2.9 to 5.5 V	5mA@3V	20	D, DK	$\begin{aligned} & 30 \mathrm{MHz} \text { (main) } \\ & 90 \mathrm{MHz} \text { (aux) } \\ & 30 \mathrm{MHz} \text { (aux) } \end{aligned}$	$\begin{aligned} & 10-5000 \mathrm{kHz} \text { (main) } \\ & 40-20,00 \mathrm{kHz}(\mathrm{aux}) \\ & 10-500 \mathrm{kHz} \text { (aux) } \end{aligned}$	\checkmark	\checkmark	NADC (IS-54), PDC, GSM digital cellular

Frequency Synthesizers

UMA1014T	4.5 to 5.5 V	13mA@5V	16	D	1.1 GHz	5-100kHz		AMPSTACS cellular, Cordless
UMA1015M	2.7 to 5.5V	9.6mA@3V	20	DK	1.1GHz	$8.5-375 \mathrm{kHz}$	\checkmark	CT1/CT1+ cordless AMPSTACS NMT cellular
UMA1016xT	4.5 to 5.5 V	10mA@5V	16	D	1.0GHz	100-1000kHz		Cordless Spread Spectrum
UMA1017M	2.7 to 5.5V	8.5mA@3V	20	DK	1200 MHz (main)	10-2000kHz (main)		GSM digital cellular, Spread Spectrum
UMA1018M	2.7 to 5.5V	8.5mA@3V	20	DK	$\begin{aligned} & 1200 \mathrm{MHz} \text { (main) } \\ & 300 \mathrm{MHz} \text { (aux) } \end{aligned}$	$\begin{gathered} 10-2000 \mathrm{kHz} \text { (main) } \\ 10-1000 \text { (aux) } \end{gathered}$	V	GSM digital cellular
UMA1020M	2.7 to 5.5 V	12mA@3V	20	DK	2400 MHz (main) 300 MHz (aux)	$10-2000 \mathrm{kHz}$ (main) $10-2000 \mathrm{kHz}$ (aux)	\checkmark	DECT, digital cordless, DCS1800

Prescalers

	Vcc	Icc	Pins	Pkg	Max Input Frequency	Max Compare Frequency	Input Sensitivity	Divide Ratio	\vdots
SA701	2.7 to 6 V	$4.5 \mathrm{mA@} @ \mathrm{~V}$	8	N, D	1.2 GHz	$65 \mathrm{kHz} / 270 \mathrm{kHz}$	-35 dBm	$128 / 129,64 / 65$	
SA702	2.7 to 6 V	$4.5 \mathrm{mA@} @ \mathrm{~V}$	8	N, D	1.1 GHz	1000 kHz	-35 dBm	$64 / 65 / 72$	
SA703	2.7 to 6 V	$4.5 \mathrm{mA@} @ \mathrm{~V}$	8	N, D	1.1 GHz	335 kHz	-35 dBm	$128 / 129 / 144$	

Section 2 Amplifiers

INDEX
RF Amplifier Selector Guide 22
NE/SA5200 RF dual gain-stage 23
NE/SA5204A Wide-band high-frequency amplifier 35
NE/SA/SE5205A
Wide-band high-frequency amplifier 44
NE/SA5209 Wideband variable gain amplifier 54
NE/SA5219 Wideband variable gain amplifier 69
NE/SA5234 Matched quad high-performance low-voltage operational amplifier 82
AN1651 Using the NE/SA5234 amplifier 86
NE/SE5539 High frequency operational amplifier 100
NE5592 Video amplifier 108
NE592 Video amplifier 113
TDA1010A 6 W audio amplifier with preamplifier 121
TDA1011A 2 to 6 W audio power amplifier with preamplifier 139
TDA1013B 4W amplifier with DC volume control 147
TDA1015 $\quad 1$ to 4W audio amplifier with preamplifier 155
TDA7052 1 Watt low voltage audio power amplifier 165
TDA7052A/AT 1-Watt low voltage audio power amp with DC volume control 170
TDA7056A 3-Watt mono BTL audio output amplifier 177
TDA8781T True logarithmic amplifier 183

RF AMPLIFIER FAMILY OVERVIEW

	NE/SA5200	NE/SA5204A	NE/SA5205A	NE/SA5209	NE/SA5219
Description	Dual Gain Stage	Wideband Amp	Wideband Amp	Variable Gain Amp	Variable Gain Amp
$\mathrm{V}_{\mathbf{c c}}$	4-9V	$5-8 \mathrm{~V}$	5-8V	4.5-7.0V	4.5-7.0V
${ }^{\text {cc }}$	$8 \mathrm{~mA} / 95 \mu \mathrm{~A}^{*}$	24 mA	24 mA	43 mA	43 mA
Bandwidth (3dB)	1.2 GHz	350 MHz	550 MHz	850 MHz	700 MHz
Noise Figure	3.6dB	$\begin{aligned} & \hline 6.0 \mathrm{~dB} 50 \Omega \\ & 4.8 \mathrm{~dB} 75 \Omega \end{aligned}$	$\begin{aligned} & 6.0 \mathrm{~dB} 50 \Omega \\ & 4.8 \mathrm{~dB} 75 \Omega \end{aligned}$	9.3 dB	9.3 dB
1dB Compression (output)	-6dBm	+4dBm	+4dBm	-3dBm	-3dBm
3rd Order Intercept (output)	+4dBm	+17dBm	+17dBm	+13dBm	+13dBm
Input Impedance	50Ω	50Ω	50Ω	1.2k Ω	1.2k Ω
Output Impedance	50Ω	50Ω	50Ω	60Ω	60Ω
Gain (per amplifier)	$7.5 \mathrm{~dB} /-11 \mathrm{~dB}{ }^{*}$	19dB	19dB	25dB	25dB
Package	SO8	$\begin{aligned} & \text { DIP8 } \\ & \text { SO8 } \end{aligned}$	$\begin{aligned} & \text { DIP8 } \\ & \text { SO8 } \end{aligned}$	$\begin{aligned} & \text { DIP16 } \\ & \text { SO16 } \end{aligned}$	$\begin{aligned} & \text { DIP16 } \\ & \text { SO16 } \end{aligned}$
Features	+DC to 1.2 GHz operation +Power-Down mode	+DC to 350 MHz operation	+DC to 550 MHz operation	$+D C$ to 850 MHz operation +Gain control pin	$+D C$ to 700 MHz operation +Gain control pin

*Amplifier: Enabled/Disabled

DESCRIPTION

The NE/SA5200 is a dual amplifier with DC to 1200 MHz response. Low noise ($\mathrm{NF}=3.6 \mathrm{~dB}$) makes this part ideal for RF front-ends, and a simple power-down mode saves current for battery operated equipment. Inputs and outputs are matched to 50Ω.

The enable pin allows the designer the ability to turn the amplifiers on or off, allowing the part to act as an amplifier as well as an attenuator. This is very useful for front-end buffering in receiver applications.

FEATURES

- Dual amplifiers
- DC - 1200MHz operation
- Low DC power consumption (4.2mA per amplifier @ $V_{C C}=5 \mathrm{~V}$)
- Power-Down Mode (lcc = 95 μ A typical)
- 3.6 dB noise figure at 900 MHz
- Unconditionally stable
- Fully ESD protected
- Low cost
- Supply voltage 4-9V
- Gain $\mathrm{S}_{21}=7 \mathrm{~dB}$ at $\mathrm{f}=1 \mathrm{GHz}$
- Input and output match S_{11}, S_{22} typically $<-14 d B$

PIN CONFIGURATION

APPLICATIONS

- Cellular radios
- RF IF strips
- Portable equipment

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
8-Pin Plastic Small Outline (Surface-mount)	$0-70^{\circ} \mathrm{C}$	NE5200D	0174
8-Pin Plastic Small Outline (Surface-mount)	$-40-+85^{\circ} \mathrm{C}$	SA5200D	0174

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	${\text { Supply voltage }{ }^{1}}^{-0.5 \text { to }+9}$	V	
P_{D}	Power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still air) 8-Pin Plastic SO	780	mW
$\mathrm{~T}_{\text {JMAX }}$	Maximum operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {MAX }}$	Maximum power input/output	+20	dBm
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Transients exceeding 10.5 V on V_{cc} pin may damage product.
2. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ_{JA} :

$$
8 \text {-Pin SO: } \quad \theta_{\mathrm{JA}}=158^{\circ} \mathrm{C} / \mathrm{W}
$$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Supply voltage	4.0 to 9.0	V
	Operating ambient temperature range NE Grade SA Grade	0 to +70 -40 to +85	${ }^{\circ}{ }^{\circ} \mathrm{C}$
T_{A}		Operating junction temperature NE Grade SA Grade	0 to +90 -40 to +105
$\mathrm{~T}_{\mathrm{J}}$	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$		

DC ELECTRICAL CHARACTERISTICS
$V_{C C}=+5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
V cc	Supply voltage	:	4	5.0	9.0	V
lcc	Total supply current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{ENABLE}=\mathrm{High}$	6.4	8.4	10.4	mA
		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{ENABLE}=$ Low		95	255	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{ENABLE}=\mathrm{High}$		17.8	22.2	mA
		$\mathrm{V}_{\text {CC }}=9 \mathrm{~V}, \mathrm{ENABLE}=$ Low		320	960	$\mu \mathrm{A}$
V_{T}	TTLCMOS logic threshold voltage ${ }^{1}$			1.25		V
V_{H}	Logic 1 level	Power-up mode	2.0		$\mathrm{V}_{\text {cc }}$	V
$\mathrm{V}_{\text {IL }}$	Logic 0 level	Power-down mode	-0.3		0.8	V
	Enable input current	Enable $=0.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
I_{H}	Enable input current	Enable $=2.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IDC, ODC }}$	Input and output DC levels		0.6	0.83	1.0	V

NOTE:

1. The ENABLE input must be connected to a valid logic level for proper operation of the NE/SA5200.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$

$V_{C C}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, either amplifier, enable $=5 \mathrm{~V}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
S21	Insertion gain	$\mathrm{f}=100 \mathrm{MHz}$	9.2	11	13.2	dB
		$\mathrm{f}=900 \mathrm{MHz}$	5.2	7.5		dB
S22	Output return loss	$\mathrm{f}=900 \mathrm{MHz}$		-14.3		dB
S12	Reverse isolation	$\mathrm{f}=900 \mathrm{MHz}$		-17.9		dB
S11	Input return loss	$f=900 \mathrm{MHz}$		-16.5		dB
P-1	Output 1dB compression point	$\mathrm{f}=900 \mathrm{MHz}$		-4.3		dBm
NF	Noise figure in 50Ω	$f=900 \mathrm{MHz}$		3.6		dB
IP_{2}	Input second-order intercept point	$f=900 \mathrm{MHz}$		+4.3		dBm
IP_{3}	Input third-order intercept point	$f=900 \mathrm{MHz}$		-1.8		dBm
ISOL	Amplifier-to-amplifier isolation ${ }^{2}$	$f=900 \mathrm{MHz}$		-25		dB
Pout	Saturated output power	$f=900 \mathrm{MHz}$		-1.7		dBm
S21	Insertion gain when disabled	$f=100 \mathrm{MHz}$		-13		dB
		$f=900 \mathrm{MHz}$		-13.5		dB

NOTE:

1. All measurements include the effects of the NE/SA5200 Evaluation Board (see Figure 2). Measurement system impedance is 50Ω.
2. Input applied to one amplifier, output taken at the other output. All ports terminated into 50Ω.

APPLICATIONS

NE/SA5200 is a user-friendly, wide-band, unconditionally stable, low power dual gain amplifier circuit. There are several advantages to using the NE/SA5200 as a high frequency gain block instead of a discrete implementation. First is the simplicity of use. The NE/SA5200 does not need any external biasing components. Due to the higher level of integration and small footprint (SO8) package it occupies less space on the printed circuit board and reduces the manufacturing cost of the system. Also the higher level of integration improves the reliability of the amplifier over a discrete implementation with several components. The power down mode in the NE/SA5200 helps reduce power consumption in applications where the amplifiers can be disabled. And last but not the least is the impedance matching at inputs and outputs. Only those who have toiled through discrete transistor implementations for 50Ω input and output impedance matching can truly appreciate the elegance and simplicity of the NE/SA5200 input and output impedance matching to 50Ω.
A simplified equivalent schematic is shown in 1. Each amplifier is composed of an NPN transistor with an Ft of 13 GHz in a classical series-shunt feedback configuration. The two wideband amplifiers are biased from the same bias generator. In normal operation each amplifier consumes about 4 mA of quiescent current (at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$). In the disable mode the device consumes about $90 \mu \mathrm{~A}$ of current, most of it is in the TTL enable buffer and the bias generator. The input impedance of the amplifiers is 50Ω. The amplifiers have typical gain of 11 dB at 100 MHz and 7 dB of gain at 1.2 GHz .

It can be seen from 1 that any inductance between Pin 7, 3 and the ground plane will reduce the gain of the amplifiers at higher frequencies. Thus proper grounding of Pins 7 and 3 is essential for maximum gain and increased frequency response. 2 shows the
printed circuit board layout and the component placement for the NE/SA5200 evaluation board. The AC coupling capacitors should be selected such that at they are shorts at the desired frequency of operation. Since most low-cost large value surface mount capacitors cease to be simply capacitors in the UHF range and exhibit an inductive behavior, it is recommended that high frequency chip capacitors be utilized in the circuit. A good power supply bypass is also essential for the performance of the amplifier and should be as close to the device as practical.
3 shows the typical frequency response of the two channels of NE/SA5200. The low frequency gain is about 11 dB at 100 MHz and slowly drops off to 10 dB at 500 MHz . The gain is about 8 dB at 900 MHz and 7 dB at 1.2 GHz which is typical of NE/SA5200 with a good printed circuit board layout. It can also be seen that both channels have a very well matched frequency response and matched gain to within 0.1 dB at 100 MHz and 0.2 dB at 900 MHz .

NE/SA5200 finds applications in many areas of RF communications. It is an ideal gain block for high performance, low cost, low power RF communications transceivers. A typical radio transceiver front-end is shown in 4. This could be the front-end of a cellular phone, a VHF/ UHF hand-held transceiver, UHF cordless telephone or a spread spectrum system. The NE/SA5200 can be used in the receiver path of most systems as an LNA and pre-amplifier. The bandpass filter between the two amplifiers also minimize the noise into the first mixer. In the transmitter path, NE/SA5200 can be used as a buffer to the VCO and isolate the VCO from any load variations due to the power level changes in the power amplifier. This improves the stability of the VCOs. The NE/SA5200 can also be used as a pre-driver to the power amplifier modules.
The two amplifiers in NE/SA5200 can be easily cascaded to have a 13 dB gain block at

900 MHz . At 100 MHz the gain will be 22 dB and a noise figure of about 5.5 dB . The NE/SA5200 can be operated at a higher voltage up to 9 V for much improved 1 dB output compression point and higher 3rd order intercept point.

Several stages of NE/SA5200 can also be cascaded and be used as an IF amplifier strip for DBS/TV/GPS receivers. 5 shows a 60dB gain IF strip at 180 MHz . The noise figure for the cascaded amplifier chain is given by equation 1.
NF (total) $=$ NF1 + NF2/G1 + NF3/G1*G2 + NF4/G1*G2*G3 + ... (Equation. 1)
NOTE: The noise figure and gain should not be in dB in the above equation.

Since the noise figure for each stage is about 3.6 dB and the gain is about 11 dB , the noise figure for the 60 dB gain IF strip will be about 6.4 dB .

In applications where a single amplifier is required with a 7.5 dB gain at 900 MHz and current consumption is of paramount importance (battery powered receivers), the amplifier A1 can be used and amplifier A2 can be disabled by leaving GND2 (Pin 3) unconnected. This will reduce the total current consumption for the IC to a meager 4 mA .

The ENABLE pin is useful for Time-Division-Duplex systems where the receiver can be disabled for a period of time. In this case the overall system supply current will be decreased by 8 mA .
The ENABLE pin can also be used to improve the system dynamic range. For input levels that are extremely high, the NE/SA5200 can be disabled. In this case the input signal is attenuated by 13 dB . This prevents the system from being overloaded as well as improves the system's overall dynamic range. In the disabled condition the NE/SA5200 IP_{3} increases to nearly +20 dBm .

Figure 1. Simplified Equivalent Schematic of NE/SA5200

Figure 2. Printed Circuit Board Layout of the NE/SA5200 Evaluation Board

Figure 3. Typical Frequency Response of NE/SA5200 in a 50Ω System

Figure 5. $\mathbf{6 0 d B}$ IF Gain Block for $\mathbf{1 0 0 - 3 0 0 M H z}$ IF for GPS/DBS Systems

Figure 6. Supply Current vs Supply Voltage and Temperature

Figure 7. Disabled Supply Current vs V_{cc} and Temperature

Figure 8. Input Match vs Frequency and V_{cc}

Figure 10. Insertion Gain vs
Frequency and $\mathrm{V}_{\mathbf{C C}}$

Figure 9. Input Match vs Frequency and Temperature

Figure 11. Insertion Gain vs Frequency and Vcc - Expanded Detail -

Figure 12. Insertion Gain vs Frequency and Temperature

Figure 14. Insertion Gain Matching (CH1 vs CH 2) vs Frequency

Figure 15. Reverse Insertion Gain vs Frequency and Temperature

Figure 16. Output Match vs Frequency and $V_{\text {cc }}$

Figure 18. S-parameters vs Frequency for Disabled Amplifier

Figure 17. Output Match vs Frequency and Temperature

Figure 19. Insertion Gain Matching Disabled (CH 1 vs CH 2) vs Frequency

RF dual gain-stage

Figure 20. CH 1 Input to CH 2 Output Isolation vs Frequency

Figure 22. 1dB Output Compression Point vs Frequency and $V_{c c}$

Figure 21. Noise Figure vs Frequency and $\mathrm{V}_{\mathbf{C c}}$ in a 50Ω System

Figure 23. Saturated Output Power vs Frequency and Vcc

Figure 24. Third-Order Output Intercept vs Frequency and $V_{c c}$

Figure 26. Second-Order Output Intercept vs Frequency and $V_{c c}$

Figure 25. Third-Order Input Intercept vs Frequency and V_{cc}

Figure 27. Second-Order Input Intercept vs Frequency and $V_{c c}$

Figure 28. Switching Speed; $\mathrm{f}_{\mathrm{N}}=10 \mathrm{MHz}$ at $-\mathbf{2 6 d B m}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, Coupling Capacitors Set to $0.01 \mu \mathrm{~F}$

Figure 29. Switching Speed; $\mathrm{f}_{\mathrm{I}}=50 \mathrm{MHz}$ at $-\mathbf{2 6 d B m}$, $V_{D D}=5 \mathrm{~V}$, Coupling Capacitors Set to 100pF

DESCRIPTION

The NE/SA5204A family of wideband amplifiers replaces the NE/SA5204 family. The ' A ' parts are fabricated on a rugged $2 \mu \mathrm{~m}$ bipolar process featuring excellent statistical process control. Electrical performance is nomically identical to the original parts.

The NE/SA5204A is a high-frequency amplifier with a fixed insertion gain of 20 dB . The gain is flat to $\pm 0.5 \mathrm{~dB}$ from DC to 200 MHz . The -3 dB bandwidth is greater than 350 MHz . This performance makes the amplifier ideal for cable TV applications. The NE/SA5204A operates with a single supply of 6 V , and only draws 25 mA of supply current, which is much less than comparable hybrid parts. The noise figure is 4.8 dB in a 75Ω system and 6 dB in a 50Ω system.

The NE/SA5204A is a relaxed version of the NE5205. Minimum guaranteed bandwidth is relaxed to 350 MHz and the " S " parameter Min/Max limits are specified as typicals only.

Until now, most RF or high-frequency designers had to settle for discrete or hybrid solutions to their amplification problems. Most of these solutions required trade-offs that the designer had to accept in order to use high-frequency gain stages. These include high power consumption, large component count, transformers, large packages with heat sinks, and high part cost. The NE/SA5204A solves these problems by incorporating a wideband amplifier on a single monolithic chip.
The part is well matched to 50 or 75Ω input and output impedances. The standing wave ratios in 50 and 75Ω systems do not exceed 1.5 on either the input or output over the entire DC to 350 MHz operating range.

Since the part is a small, monolithic IC die, problems such as stray capacitance are minimized. The die size is small enough to fit into a very cost-effective 8 -pin small-outline
(SO) package to further reduce parasitic effects.

No external components are needed other than AC-coupling capacitors because the NE/SA5204A is internally compensated and matched to 50 and 75Ω. The amplifier has very good distortion specifications, with second and third-order intermodulation intercepts of +24 dBm and +17 dBm , respectively, at 100 MHz .
The part is well matched for 50Ω test equipment such as signal generators, oscilloscopes, frequency counters, and all kinds of signal analyzers. Other applications at 50Ω include mobile radio, CB radio, and data/video transmission in fiber optics, as well as broadband LANs and telecom systems. A gain greater than 20 dB can be achieved by cascading additional NE/SA5204As in series as required, without any degradation in amplifier stability.

FEATURES

- Bandwidth (min.) $200 \mathrm{MHz}, \pm 0.5 \mathrm{~dB}$ $350 \mathrm{MHz},-3 \mathrm{~dB}$
- 20 dB insertion gain
- $4.8 \mathrm{~dB}(6 \mathrm{~dB})$ noise figure $Z_{0}=75 \Omega$ ($Z_{0}=50 \Omega$)
- No external components required
- Input and output impedances matched to 50/75 Ω systems
- Surface-mount package available
- Cascadable
- 2000 V ESD protection

PIN CONFIGURATION

APPLICATIONS

- Antenna amplifiers
- Amplified splitters
- Signal generators
- Frequency counters
- Oscilloscopes
- Signal analyzers
- Broadband LANs
- Networks
- Modems
- Mobile radio
- Security systems
- Telecommunications

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
8-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE5204AN	0404 B
8-Pin Plastic Small Outline (SO) package	0 to $+70^{\circ} \mathrm{C}$	NE5204AD	0174 C
8-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA5204AN	0404 B
8-Pin Plastic Small Outline (SO) package	-40 to $+85^{\circ} \mathrm{C}$	SA5204AD	0174 C

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {cc }}$	Supply voltage	9	V
V_{IN}	AC input voltage	5	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
T_{A}	Operating ambient temperature range NE grade SA grade	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ \hline \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Pdmax	Maximum power dissipation ${ }^{1,2}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still-air) N package D package	$\begin{aligned} & 1160 \\ & 780 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
T_{J}	Junction temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-55 to +150	${ }^{\circ} \mathrm{C}$
TSOLD	Lead temperature (soldering 60s)	300	${ }^{\circ} \mathrm{C}$

NOTES:

1. Derate above $25^{\circ} \mathrm{C}$, at the following rates

N package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D package at $6.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
2. See "Power Dissipation Considerations" section.

EQUIVALENT SCHEMATIC

DC ELECTRICAL CHARACTERISTICS
$V_{C C}=6 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{O}}=50 \Omega$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in all packages, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
$\mathrm{V}_{\text {cc }}$	Operating supply voltage range	Over temperature	5		8	V
lcc	Supply current	Over temperature	19	25	33	mA
S21	Insertion gain	$\mathrm{f}=100 \mathrm{MHz}$, over temperature	16	19	22	dB
S11	Input return loss	$\mathrm{f}=100 \mathrm{MHz}$		25		dB
		DC -550MHz		12		dB
S22	Output return loss	$f=100 \mathrm{MHz}$		27		dB
		DC -550 MHz		12		dB
S12	Isolation	$\mathrm{f}=100 \mathrm{MHz}$		-25		dB
		DC -550 MHz		-18		dB
BW	Bandwidth	$\pm 0.5 \mathrm{~dB}$	200	350		MHz
BW	Bandwidth	-3dB	350	550		MHz
	Noise figure (758)	$\mathrm{f}=100 \mathrm{MHz}$		4.8		dB
	Noise figure (50 ${ }^{\text {) }}$	$\mathrm{f}=100 \mathrm{MHz}$		6.0		dB
	Saturated output power	$\mathrm{f}=100 \mathrm{MHz}$		+7.0		dBm
	1 dB gain compression	$f=100 \mathrm{MHz}$		+4.0		dBm
	Third-order intermodulation intercept (output)	$f=100 \mathrm{MHz}$		+17		dBm
	Second-order intermodulation intercept (output)	$f=100 \mathrm{MHz}$		+24		dBm
t_{R}	Rise time			500		ps
tp	Propagation delay			500		ps

Figure 1. Supply Current vs Supply Voltage

Figure 2. Noise Figure vs Frequency

Figure 3. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

Figure 5. Saturated Output Power vs Frequency

Figure 7. Second-Order Output Intercept vs Supply Voltage

Figure 4. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

Figure 6. 1dB Gain Compression vs Frequency

Figure 8. Third-Order Intercept vs Supply Voltage

Figure 11. Input (S_{11}) and Output (S_{22}) Return Loss vs Frequency

Figure 13. Insertion Gain vs Frequency ($\mathrm{S}_{\mathbf{2 1}}$)

Figure 10. Output VSWR vs Frequency

Figure 12. Isolation vs Frequency (\mathbf{S}_{12})

Figure 14. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

THEORY OF OPERATION

The design is based on the use of multiple feedback loops to provide wide-band gain together with good noise figure and terminal impedance matches. Referring to the circuit schematic in Figure 15, the gain is set primarily by the equation:
$\frac{V_{\text {OUT }}}{V_{I N}}=\left(R_{F 1}+R_{E 1}\right) / R_{E 1}$
which is series-shunt feedback. There is also shunt-series feedback due to $\mathrm{R}_{\mathrm{F} 2}$ and $\mathrm{R}_{\mathrm{E} 2}$ which aids in producing wide-band terminal impedances without the need for low value input shunting resistors that would degrade the noise figure. For optimum noise performance, $\mathrm{R}_{\mathrm{E}_{1}}$ and the base resistance of Q_{1} are kept as low as possible, while $R_{F 2}$ is maximized.

The noise figure is given by the following equation:

$$
N F=10 \log \left(1+\frac{\left[r_{b}+R_{E 1}+\frac{K T}{2 q / C 1}\right]}{R_{O}}\right] d B
$$

where $\mathrm{I}_{\mathrm{C} 1}=5.5 \mathrm{~mA}, \mathrm{R}_{\mathrm{E} 1}=12 \Omega, \mathrm{r}_{\mathrm{b}}=130 \Omega$, $\mathrm{KT} / \mathrm{q}=26 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$ and $\mathrm{R}_{0}=50$ for a 50Ω system and 75 for a 75Ω system.

The $D C$ input voltage level V_{IN} can be determined by the equation:

$$
V_{I N}=V_{B E 1}+\left(I_{C_{1}}+l_{C 3}\right) R_{E 1}(3)
$$

where $R_{E 1}=12 \Omega, V_{B E}=0.8 \mathrm{~V}, I_{C_{1}=5 \mathrm{~mA}}$ and $\mathrm{I}_{\mathrm{C}}=7 \mathrm{~mA}$ (currents rated at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$).

Under the above conditions, $\mathrm{V}_{\mathbb{I}}$ is approximately equal to 1 V .

Level shitting is achieved by emitter-follower Q_{3} and diode Q_{4}, which provide shunt feedback to the emitter of Q_{1} via $R_{F 1}$. The use of an emitter-follower buffer in this feedback loop essentially eliminates problems of shunt-feedback loading on the output. The value of $\mathrm{R}_{\mathrm{F} 1}=140 \Omega$ is chosen to give the desired nominal gain. The DC output voltage $V_{\text {OUT }}$ can be determined by:

$$
\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}-\left(\mathrm{I}_{\mathrm{C} 2}+\mathrm{I}_{\mathrm{C}}\right)} \mathrm{R}_{2,(4)}
$$

where $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{R}_{2}=225 \Omega, \mathrm{I}_{\mathrm{C}}=8 \mathrm{~mA}$ and $I_{c 6}=5 \mathrm{~mA}$.

From here, it can be seen that the output voltage is approximately 3.1 V to give relatively equal positive and negative output swings. Diode Q_{5} is included for bias purposes to allow direct coupling of $\mathrm{R}_{\mathrm{F} 2}$ to the base of Q_{1}. The dual feedback loops stabilize the DC operating point of the amplifier.

The output stage is a Darlington pair (Q_{6} and Q_{2}) which increases the DC bias voltage on
the input stage $\left(Q_{1}\right)$ to a more desirable value, and also increases the feedback loop gain. Resistor R_{0} optimizes the output VSWR (Voltage Standing Wave Ratio). Inductors L_{1} and L_{2} are bondwire and lead inductances which are roughly 3 nH . These improve the high-frequency impedance matches at input and output by partially resonating with 0.5 pF of pad and package capacitance.

POWER DISSIPATION CONSIDERATIONS

When using the part at elevated temperature, the engineer should consider the power dissipation capabilities of each package.
At the nominal supply voltage of 6 V , the typical supply current is 25 mA (32 mA max). For operation at supply voltages other than 6 V , see Figure 1 for $\mathrm{Icc}_{\mathrm{cc}}$ versus V_{cc} curves. The supply current is inversely proportional to temperature and varies no more than 1 mA between $25^{\circ} \mathrm{C}$ and either temperature extreme. The change is 0.1% per ${ }^{\circ} \mathrm{C}$ over the range.
The recommended operating temperature ranges are air-mount specifications. Better heat-sinking benefits can be realized by mounting the SO and N package bodies against the PC board plane.

Figure 15. Schematic Diagram

PC BOARD MOUNTING

In order to realize satisfactory mounting of the NE5204A to a PC board, certain techniques need to be utilized. The board must be double-sided with copper and all pins must be soldered to their respective areas (i.e., all GND and V_{CC} pins on the package). The power supply should be decoupled with a capacitor as close to the V_{Cc} pins as possible, and an RF choke should be inserted between the supply and the device. Caution should be exercised in the connection of input and output pins. Standard microstrip should be observed wherever possible. There should be no solder bumps or burrs or any obstructions in the signal path to cause launching problems. The path should be as straight as possible and lead lengths as short as possible from the part to the cable connection. Another important consideration is that the input and output should be AC -coupled. This is because at $\mathrm{V}_{\mathrm{cc}}=6 \mathrm{~V}$, the input is approximately at 1 V while the output is at 3.1 V . The output must be decoupled into a low-impedance system, or the DC bias on the output of the amplifier will be loaded down, causing loss of output power. The easiest way to decouple the entire amplifier is by soldering a high-frequency chip capacitor directly to the input and output pins of the device. This circuit is shown in Figure 16. Follow these recommendations to get the best frequency response and noise immunity. The board design is as important as the integrated circuit design itself.
measurements of incident and reflected currents and voltages between the source,

Figure 16. Circuit Schematic for Coupling and Power Supply Decoupling
amplifier, and load as well as transmission losses. The parameters for a two-port network are defined in Figure 17.
Actual S-parameter measurements using an HP network analyzer (model 8505A) and an HP S-parameter tester (models 8503A/B) are shown in Figure 18.
Values for the figures below are measured and specified in the data sheet to ease adaptation and comparison of the NE/SA/SE5204A to other high-frequency amplifiers.
The most important parameter is S_{21}. It is defined as the square root of the power gain, and, in decibels, is equal to voltage gain as shown below:
$Z_{D}=Z_{I N}=Z_{\text {OUT }}$ for the NE/SA/SE5204A
$P_{I N}+\frac{V_{I N^{2}}}{Z_{D}} \circ \begin{gathered}\text { NE5204A } \\ Z_{D}\end{gathered} \overbrace{0}^{\circ} P_{\text {OUT }}+\frac{V_{\text {OUT }}{ }^{2}}{Z_{D}}$
$\therefore \frac{P_{\text {OUT }}}{P_{I N}}=\frac{\frac{V_{\text {OUT }}{ }^{2}}{Z_{D}}}{\frac{V_{I N}{ }^{2}}{Z_{D}}}=\frac{V_{\text {OUT }}{ }^{2}}{V_{I N^{2}}{ }^{2}}=P_{I}$
$P_{1}=V_{1}{ }^{2}$
$P_{1}=$ Insertion Power Gain
$\mathrm{V}_{1}=$ Insertion Voltage Gain
Measured value for the
NE/SASE5204A $=\left|S_{21}\right|^{2}=100$
$\therefore P_{1}=\frac{P_{\text {OUT }}}{P_{I N}}=\left|S_{21}\right|^{2}=100$
and $V_{1}=\frac{V_{O U T}}{V_{I N}}=\sqrt{P_{1}}=S_{21}=10$
In decibels:
$P_{\mid(\mathrm{dB})}=10 \log \left|S_{21}\right|^{2}=20 \mathrm{~dB}$
$V_{(d B)}=20 \log S_{21}=20 \mathrm{~dB}$
$\therefore \mathrm{P}_{1(\mathrm{~dB})}=\mathrm{V}_{1(\mathrm{~dB})}=\mathrm{S}_{21(\mathrm{~dB})}=20 \mathrm{~dB}$
Also measured on the same system are the respective voltage standing wave ratins. These are shown in Figure 19. The V3WR can be seen to be below 1.5 across the entire operational frequency range.

Relationships exist between the input and output return losses and the voltage standing wave ratios. These relationships are as follows:

SCATTERING PARAMETERS

The primary specifications for the NE5204A are listed as S-parameters. S-parameters are

Wide-band high-frequency amplifier

INPUT RETURN LOSS $=\mathrm{S}_{11} \mathrm{~dB}$

$S_{11} d B=20 \log \left|S_{11}\right|$
OUTPUT RETURN LOSS $=\mathrm{S}_{22} \mathrm{~dB}$ $\mathrm{S}_{22} \mathrm{~dB}=20 \log \left|\mathrm{~S}_{22}\right|$
INPUT VSWR $=\leq 1.5$
OUTPUT VSWR=క1.5

1DB GAIN COMPRESSION AND SATURATED OUTPUT POWER

The 1 dB gain compression is a measurement of the output power level where the small-signal insertion gain magnitude decreases 1 dB from its low power value. The decrease is due to nonlinearities in the
amplifier, an indication of the point of transition between small-signal operation and the large signal mode.
The saturated output power is a measure of the amplifier's ability to deliver power into an external load. It is the value of the amplifier's output power when the input is heavily

overdriven. This includes the sum of the

 power in all harmonics.
INTERMODULATION INTERCEPT TESTS

The intermodulation intercept is an expression of the low level linearity of the amplifier. The intermodulation ratio is the difference in dB between the fundamental output signal level and the generated distortion product level. The relationship between intercept and intermodulation ratio is illustrated in Figure 20, which shows product output levels plotted versus the level of the fundamental output for two equal strength output signals at different frequencies. The upper line shows the fundamental output plotted against itself with a 1 dB to 1 dB slope. The second and third order products lie below
the fundamentals and exhibit a $2: 1$ and $3: 1$ slope, respectively.

The intercept point for either product is the intersection of the extensions of the product curve with the fundamental output.
The intercept point is determined by measuring the intermodulation ratio at a single output level and projecting along the appropriate product slope to the point of intersection with the fundamental. When the intercept point is known, the intermodulation ratio can be determined by the reverse process. The second order IMR is equal to the difference between the second order intercept and the fundamental output level. The third order IMR is equal to twice the difference between the third order intercept and the fundamental output level. These are expressed as:

$$
\begin{aligned}
& \mathrm{IP}_{2}=\mathrm{Pout}+\mathrm{MR}_{2} \\
& \mathrm{IP}_{3}=\mathrm{Pout}_{\text {ot }} \mathrm{IMR}_{3} / 2
\end{aligned}
$$

where Pout is the power level in dBm of each of a pair of equal level fundamental output signals, IP_{2} and IP_{3} are the second and third order output intercepts in dBm , and IMR_{2} and IMR_{3} are the second and third order intermodulation ratios in dB. The intermodulation intercept is an indicator of intermodulation performance only in the small signal operating range of the amplifier. Above some output level which is below the 1 dB compression point, the active device moves into large-signal operation. At this point the intermodulation products no longer follow the straight line output slopes, and the intercept description is no longer valid. It is therefore important to measure IP_{2} and IP_{3} at output levels well below 1 dB compression. One

Figure 19. Input/Output VSWR vs Frequency
must be careful, however, not to select too low levels because the test equipment may not be able to recover the signal from the noise. For the NE/SA5204A we have chosen an output level of -10.5 dBm with fundamental frequencies of 100.000 and 100.01 MHz , respectively.

ADDITIONAL READING ON SCATTERING PARAMETERS

For more information regarding S-parameters, please refer to High-Frequency Amplifiers by Ralph S. Carson of the University of Missouri, Rolla, Copyright 1985; published by John Wiley \& Sons, Inc.
"S-Parameter Techniques for Faster, More Accurate Network Design", HP App Note 95-1, Richard W. Anderson, 1967, HP Journal.
"S-Parameter Design", HP App Note 154, 1972.

Figure 20.

DESCRIPTION

The NE/SA/SE5205A family of wideband amplifiers replace the NE/SA/SE5205 family. The ' A ' parts are fabricated on a rugged $2 \mu \mathrm{~m}$ bipolar process featuring excellent statistical process control. Electrical performance is nominally identical to the original parts.
The NE/SA/SE5205A is a high-frequency amplifier with a fixed insertion gain of 20 dB . The gain is flat to $\pm 0.5 \mathrm{~dB}$ from DC to 450 MHz , and the -3 dB bandwidth is greater than 600 MHz in the EC package. This performance makes the amplifier ideal for cable TV applications. For lower frequency applications, the part is also available in industrial standard dual in-line and small outline packages. The NE/SA/SE5205A operates with a single supply of 6 V , and only draws 24 mA of supply current, which is much less than comparable hybrid parts. The noise figure is 4.8 dB in a 75Ω system and 6 dB in a 50Ω system.

Until now, most RF or high-frequency designers had to settle for discrete or hybrid solutions to their amplification problems. Most of these solutions required trade-offs that the designer had to accept in order to use high-frequency gain stages. These include high-power consumption, large component count, transformers, large packages with heat sinks, and high part cost. The NE/SA/SE5205A solves these problems by incorporating a wide-band amplifier on a single monolithic chip.
The part is well matched to 50 or 75Ω input and output impedances. The Standing Wave Ratios in 50 and 75Ω systems do not exceed 1.5 on either the input or output from DC to the -3 dB bandwidth limit.

Since the part is a small monolithic IC die, problems such as stray capacitance are minimized. The die size is small enough to fit into a very cost-effective 8 -pin small-outline
(SO) package to further reduce parasitic effects.
No external components are needed other than AC coupling capacitors because the NE/SA/SE5205A is internally compensated and matched to 50 and 75Ω. The amplifier has very good distortion specifications, with second and third-order intermodulation intercepts of +24 dBm and +17 dBm respectively at 100 MHz .
The device is ideally suited for 75Ω cable television applications such as decoder boxes, satellite receiver/decoders, and front-end amplifiers for TV receivers. It is also useful for amplified splitters and antenna amplifiers.

The part is matched well for 50Ω test equipment such as signal generators, oscilloscopes, frequency counters and all kinds of signal analyzers. Other applications at 50Ω include mobile radio, CB radio and data/video transmission in fiber optics, as well as broad-band LANs and telecom systems. A gain greater than 20 dB can be achieved by cascading additional NE/SA/SE5205As in series as required, without any degradation in amplifier stability.

FEATURES

- 600MHz bandwidth
- 20 dB insertion gain
- $4.8 \mathrm{~dB}(6 \mathrm{~dB})$ noise figure $\mathrm{ZO}=75 \Omega$ ($\mathrm{ZO}=50 \Omega$)
- No external components required
- Input and output impedances matched to 50/75 Ω systems
- Surface mount package available
- MIL-STD processing available
- 2000 V ESD protection

PIN CONFIGURATIONS

APPLICATIONS

- 75 2 cable TV decoder boxes
- Antenna amplifiers
- Amplified splitters
- Signal generators
- Frequency counters
- Oscilloscopes
- Signal analyzers
- Broad-band LANs
- Fiber-optics
- Modems
- Mobile radio
- Security systems
- Telecommunications

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
8-Pin Plastic Small Outline (SO) package	0 to $+70^{\circ} \mathrm{C}$	NE5205AD	0174
8-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE5205AN	0404
8-Pin Plastic Small Outline (SO) package	-40 to $+85^{\circ} \mathrm{C}$	SA5205AD	0174
8-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA5205AN	0404
8-Pin Plastic Dual In-Line Package (DIP)	-55 to $+125^{\circ} \mathrm{C}$	SE5205AN	0404

EQUIVALENT SCHEMATIC

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	9	V
$\mathrm{~V}_{\mathrm{AC}}$	AC input voltage	5	$\mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
T_{A}	Operating ambient temperature range		
	NE grade	0 to +70	${ }^{\circ} \mathrm{C}$
	SA grade	-40 to +85	${ }^{\circ} \mathrm{C}$
	SE grade	-55 to +125	${ }^{\circ} \mathrm{C}$
PDMAX	Maximum power dissipation,		
	$T_{A}=25^{\circ} \mathrm{C}$ (still-air) ${ }^{1,2}$		
	N package	1160	mW
	D package	780	mW

NOTES:

1. Derate above $25^{\circ} \mathrm{C}$, at the following rates:

N package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D package at $6.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
2. See "Power Dissipation Considerations" section.

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{O}}=50 \Omega$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ in all packages, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	SE5205A			NE/SA5205A			UNIT
			Min	Typ	Max	Min	Typ	Max	
V_{cc}	Operating supply voltage range	Over temperature	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Icc	Supply current	Over temperature	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	$\begin{array}{r} 25 \\ 25 \end{array}$	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
S21	Insertion gain	$f=100 \mathrm{MHz}$ Over temperature	$\begin{gathered} 17 \\ 16.5 \end{gathered}$	19	$\begin{gathered} 21 \\ 21.5 \end{gathered}$	$\begin{gathered} 17 \\ 16.5 \end{gathered}$	19	$\begin{gathered} 21 \\ 21.5 \end{gathered}$	dB
S11	Input return loss	$f=100 \mathrm{MHz} \mathrm{D}$,		25			25		dB
		DC - fmax D, N	12			12			dB
S22	Output return loss	$f=100 \mathrm{MHz} \mathrm{D}$,		27			27		dB
		DC - $\mathrm{f}_{\text {max }}$	12			12			dB
S12	Isolation	$f=100 \mathrm{MHz}$		-25			-25		dB
		DC - $\mathrm{f}_{\text {MAX }}$	-18			-18			dB
t_{R}	Rise time			500			500		ps
tp	Propagation delay			500			500		ps
BW	Bandwidth	$\pm 0.5 \mathrm{~dB} \mathrm{D}, \mathrm{N}$		300			450		MHz
$\mathrm{f}_{\text {MAX }}$	Bandwidth	-3dB D, N				550			MHz
	Noise figure (758)	$f=100 \mathrm{MHz}$		4.8			4.8		dB
	Noise figure (50 2)	$f=100 \mathrm{MHz}$		6.0			6.0		dB
	Saturated output power	$f=100 \mathrm{MHz}$		+7.0			+7.0		dBm
	1dB gain compression	$\mathrm{f}=100 \mathrm{MHz}$		+4.0			+4.0		dBm
	Third-order intermodulation intercept (output)	$\mathrm{f}=100 \mathrm{MHz}$		+17			+17		dBm
	Second-order intermodulation intercept (output)	$f=100 \mathrm{MHz}$		+24			+24		dBm

Figure 5. Saturated Output Power vs Frequency

Figure 7. Second-Order Output Intercept vs Supply Voltage

Figure 2. Noise Figure vs Frequency

Figure 4. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

Figure 6. 1dB Gain Compression vs Frequency

Figure 8. Third-Order Intercept vs Supply Voltage

Figure 10. Output VSWR vs Frequency

Figure 11. Input (S_{11}) and Output (S_{22}) Return Loss vs Frequency

Figure 13. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

Figure 12. Isolation vs Frequency (S_{12})

Figure 14. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

THEORY OF OPERATION

The design is based on the use of multiple feedback loops to provide wide-band gain together with good noise figure and terminal impedance matches. Referring to the circuit schematic in Figure 15, the gain is set primarily by the equation:
$\frac{V_{O U T}}{V_{I N}}=\frac{\left(R_{F 1}+R_{E 1}\right)}{R_{E 1}}$
which is series-shunt feedback. There is also shunt-series feedback due to $\mathrm{R}_{\mathrm{F} 2}$ and $\mathrm{R}_{\mathrm{E} 2}$ which aids in producing wideband terminal impedances without the need for low value input shunting resistors that would degrade the noise figure. For optimum noise performance, $\mathrm{R}_{\mathrm{E} 1}$ and the base resistance of Q_{1} are kept as low as possible while $R_{F 2}$ is maximized.

The noise figure is given by the following equation:

$$
\begin{aligned}
& N F=\left(10 \log \left(1+\left[\frac{r_{b}+R_{E 1}+\frac{K T}{2 q l_{C 1}}}{R_{O}}\right]\right) d B\right.
\end{aligned}
$$

where $I_{C_{1}}=5.5 \mathrm{~mA}, R_{E 1}=12 \Omega, r_{b}=130 \Omega$, $\mathrm{KT} / \mathrm{q}=26 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$ and $\mathrm{R}_{0}=50$ for a 50Ω system and 75 for a 75Ω system.

The DC input voltage level V_{IN} can be determined by the equation:

$$
V_{I N}=V_{B E 1}+\left(l_{C 1}+l_{C 3}\right) R_{E 1}
$$

where $\mathrm{R}_{\mathrm{E} 1}=12 \Omega, \mathrm{~V}_{\mathrm{BE}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{C} 1}=5 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{C} 3}=7 \mathrm{~mA}$ (currents rated at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$).

Under the above conditions, $\mathrm{V}_{\mathbb{N}}$ is approximately equal to 1 V .
Level shifting is achieved by emitter-follower Q_{3} and diode Q_{4} which provide shunt feedback to the emitter of Q_{1} via $R_{F 1}$. The use of an emitter-follower buffer in this
feedback loop essentially eliminates problems of shunt feedback loading on the output. The value of $\mathrm{R}_{\mathrm{F}_{1}}=140 \Omega$ is chosen to give the desired nominal gain. The DC output voltage $V_{\text {OUT }}$ can be determined by:

$$
\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}}-\left(\mathrm{I}_{\mathrm{C} 2}+\mathrm{I}_{\mathrm{C}}\right) \mathrm{R}_{2},(4)
$$

where $\mathrm{V}_{\mathrm{cc}}=6 \mathrm{~V}, \mathrm{R}_{2}=225 \Omega, \mathrm{I}_{\mathrm{c} 2}=8 \mathrm{~mA}$ and $\mathrm{l}_{\mathrm{C} 6}=5 \mathrm{~mA}$.
From here it can be seen that the output voltage is approximately 3.1 V to give relatively equal positive and negative output swings. Diode Q_{5} is included for bias purposes to allow direct coupling of $\mathrm{R}_{\text {F2 }}$ to
the base of Q_{1}. The dual feedback loops stabilize the DC operating point of the amplifier.
The output stage is a Darlington pair (Q_{6} and Q_{2}) which increases the DC bias voltage on the input stage $\left(Q_{1}\right)$ to a more desirable value, and also increases the feedback loop gain. Resistor R_{0} optimizes the output VSWR (Voltage Standing Wave Ratio). Inductors L_{1} and L_{2} are bondwire and lead inductances which are roughly 3 nH . These improve the high-frequency impedance matches at input and output by partially resonating with 0.5 pF of pad and package capacitance.

Figure 15. Schematic Diagram

POWER DISSIPATION
 CONSIDERATIONS

When using the part at elevated temperature, the engineer should consider the power dissipation capabilities of each package.
At the nominal supply voltage of 6 V , the typical supply current is 25 mA (32 mA Max). For operation at supply voltages other than 6 V , see Figure 1 for I_{cc} versus V_{cc} curves. The supply current is inversely proportional to temperature and varies no more than 1 mA between $25^{\circ} \mathrm{C}$ and either temperature extreme. The change is 0.1% per over the range.

The recommended operating temperature ranges are air-mount specifications. Better heat sinking benefits can be realized by mounting the D package body against the $P C$ board plane.

PC BOARD MOUNTING

In order to realize satisfactory mounting of the NE5205A to a PC board, certain techniques need to be utilized. The board must be double-sided with copper and all pins must be soldered to their respective areas (i.e., all GND and V_{Cc} pins on the SO
package). The power supply should be decoupled with a capacitor as close to the $V_{c c}$ pins as possible and an RF choke should be inserted between the supply and the device. Caution should be exercised in the connection of input and output pins. Standard microstrip should be observed wherever possible. There should be no solder bumps or burrs or any obstructions in the signal path to cause launching problems. The path should be as straight as possible and lead lengths as short as possible from the part to the cable connection. Another important consideration is that the input and
output should be AC coupled. This is because at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, the input is approximately at 1 V while the output is at 3.1V. The output must be decoupled into a low impedance system or the DC bias on the output of the amplifier will be loaded down causing loss of output power. The easiest way to decouple the entire amplifier is by soldering a high frequency chip capacitor directly to the input and output pins of the device. This circuit is shown in Figure 16. Follow these recommendations to get the best frequency response and noise immunity. The board design is as important as the integrated circuit design itself.

S-parameters are measurements of incident and reflected currents and voltages between the source, amplifier and load as well as transmission losses. The parameters for a two-port network are defined in Figure 17.

Actual S-parameter measurements using an HP network analyzer (model 8505A) and an HP S-parameter tester (models 8503A/B) are shown in Figure 18.

Values for the figures below are measured and specified in the data sheet to ease adaptation and comparison of the NE/SA/SE5205A to other high-frequency amplifiers.

Figure 16. Circuit Schematic for Coupling and Power Supply Decoupling

SCATTERING PARAMETERS

The primary specifications for the NE/SA/SE5205A are listed as S-parameters.

| POWER REFLECTED |
| :--- | :--- | :--- |
| FROM INPUTPORT |

The most important parameter is S_{21}. It is defined as the square root of the power gain, and, in decibels, is equal to voltage gain as shown below:
$Z_{D}=Z_{\text {IN }}=Z_{\text {OUT }}$ for the NE/SA/SE5205A
$P_{I N}+\frac{V_{I N^{2}}}{Z_{D}} \circ-\begin{gathered}\begin{array}{c}\text { NE/SA/ } \\ \text { SE5205A } \\ Z_{D}\end{array} \overbrace{-}^{0} P_{O U T}+\frac{V_{O U T}{ }^{2}}{Z_{D}}) \\ Z_{D}\end{gathered}$
$\therefore \frac{P_{\text {OUT }}}{P_{I N}}=\frac{\frac{V_{O U T}{ }^{2}}{z_{D}}}{\frac{V_{I N^{2}}}{z_{D}}}=\frac{V_{O U T}{ }^{2}}{V_{I N^{2}}{ }^{2}}=P_{I}$
$P_{1}=V_{1}{ }^{2}$
$P_{1}=$ Insertion Power Gain
$\mathrm{V}_{1}=$ Insertion Voltage Gain
Measured value for the
NE/SA/SE5205A $=\left|\mathrm{S}_{21}\right|^{2}=100$
$\therefore P_{l}=\frac{P_{\text {OUT }}}{P_{\text {IN }}}=\left|S_{21}\right|^{2}=100$
and $V_{1}=\frac{V_{O U T}}{V_{I N}}=\sqrt{P_{1}}=S_{21}=10$

In decibels:

$$
\begin{aligned}
& P_{1(d B)}=10 \log \left|S_{21}\right|^{2}=20 \mathrm{~dB} \\
& V_{l(d B)}=20 \log _{21} S_{21}=20 \mathrm{~dB} \\
& \therefore P_{l(d B)}=V_{l(d B)}=S_{21(d B)}=20 \mathrm{~dB}
\end{aligned}
$$

Also measured on the same system are the respective voltage standing wave ratios.
These are shown in Figure 19. The VSWR can be seen to be below 1.5 across the entire operational frequency range.

Relationships exist between the input and output return losses and the voltage standing wave ratios. These relationships are as follows:

OUTPUT RETURN LOSS $=\mathrm{S}_{22} \mathrm{~dB}$ $\mathrm{S}_{22} \mathrm{~dB}=20 \log \left|\mathrm{~S}_{22}\right|$
INPUT VSWR=51.5
OUTPUT VSWR $=\leq 1.5$

1dB GAIN COMPRESSION AND SATURATED OUTPUT POWER

The 1dB gain compression is a measurement of the output power level where the small-signal insertion gain magnitude decreases 1 dB from its low power value. The decrease is due to nonlinearities in the amplifier, an indication of the point of transition between small-signal operation and the large signal mode.
The saturated output power is a measure of the amplifier's ability to deliver power into an external load. It is the value of the amplifier's output power when the input is heavily overdriven. This includes the sum of the power in all harmonics.

INTERMODULATION INTERCEPT TESTS

The intermodulation intercept is an expression of the low level linearity of the amplifier. The intermodulation ratio is the difference in dB between the fundamental output signal level and the generated distortion product level. The relationship between intercept and intermodulation ratio is illustrated in Figure 20, which shows product output levels plotted versus the level of the fundamental output for two equal strength output signals at different frequencies. The upper line shows the fundamental output plotted against itself with a 1 dB to 1 dB slope. The second and third order products lie below the fundamentals and exhibit a $2: 1$ and 3:1 slope, respectively.

The intercept point for either product is the intersection of the extensions of the product curve with the fundamental output.

The intercept point is determined by measuring the intermodulation ratio at a single output level and projecting along the appropriate product slope to the point of intersection with the fundamental. When the intercept point is known, the intermodulation ratio can be determined by the reverse process. The second order IMR is equal to the difference between the second order intercept and the fundamental output level. The third order IMR is equal to twice the difference between the third order intercept and the fundamental output level. These are expressed as:

$$
\begin{aligned}
& \mathrm{IP}_{2}=\mathrm{P}_{\mathrm{out}}+\mathrm{IMR}_{2} \\
& \mathrm{IP}_{3}=\mathrm{P}_{\text {out }}+\mathrm{IMR}_{3} / 2
\end{aligned}
$$

where Pout is the power level in dBm of each of a pair of equal level fundamental output signals, IP_{2} and IP_{3} are the second and third order output intercepts in dBm , and IMR_{2} and IMR_{3} are the second and third order intermodulation ratios in dB. The intermodulation intercept is an indicator of intermodulation performance only in the small signal operating range of the amplifier. Above some output level which is below the 1 dB compression point, the active device moves into large-signal operation. At this point the intermodulation products no longer follow the straight line output slopes, and the intercept description is no longer valid. It is therefore important to measure IP_{2} and IP_{3} at output levels well below 1 dB compression. One must be careful, however, not to select too low levels because the test equipment may not be able to recover the signal from the noise. For the NE/SA/SE5205A we have chosen an output level of -10.5 dBm with fundamental frequencies of 100.000 and 100.01 MHz , respectively.

```
INPUT RETURN LOSS=S
    S
```


a. Input VSWR vs Frequency

b. Output VSWR vs Frequency

Figure 19. Input/Output VSWR vs Frequency

ADDITIONAL READING ON

SCATTERING PARAMETERS

For more information regarding S-parameters, please refer to
High-Frequency Amplifiers by Ralph S. Carson of the University of Missouri, Rolla, Copyright 1985; published by John Wiley \& Sons, Inc.
"S-Parameter Techniques for Faster, More Accurate Network Design", HP App Note 95-1, Richard W. Anderson, 1967, HP Journal.
"S-Parameter Design", HP App Note 154, 1972.

Figure 20.

Wideband variable gain amplifier

DESCRIPTION

The NE5209 represents a breakthrough in monolithic amplifier design featuring several innovations. This unique design has combined the advantages of a high speed bipolar process with the proven Gilbert architecture.

The NE5209 is a linear broadband RF amplifier whose gain is controlled by a single DC voltage. The amplifier runs off a single 5 volt supply and consumes only 40 mA . The amplifier has high impedance ($1 \mathrm{k} \Omega$) differential inputs. The output is 50Ω differential. Therefore, the 5209 can simultaneously perform AGC, impedance transformation, and the balun functions.

The dynamic range is excellent over a wide range of gain setting. Furthermore, the noise performance degrades at a comparatively slow rate as the gain is reduced. This is an important feature when building linear AGC systems.

FEATURES

- Gain to 1.5 GHz
- 850MHz bandwidth
- High impedance differential input
- 50Ω differential output
- Single 5V power supply
- 0-1V gain control pin
- $>60 \mathrm{~dB}$ gain control range at 200 MHz
- 26dB maximum gain differential
- Exceptional $\mathrm{V}_{\text {Control }}$ / $\mathrm{V}_{\text {GAIN }}$ linearity
- 7 dB noise figure minimum
- Full ESD protection
- Easily cascadable

APPLICATIONS

- Linear AGC systems
- Very linear AM modulator
- RF balun
- Cable TV multi-purpose amplifier
- Fiber optic AGC
- Radar
- User programmable fixed gain block
- Video
- Satellite receivers
- Cellular communications

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
16 -Pin Plastic Small Outline (SO) package	0 to $+70^{\circ} \mathrm{C}$	NE5209D	0005
16 -Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE5209N	0406
16 -Pin Plastic Small Outline (SO) package	-40 to $+85^{\circ} \mathrm{C}$	SA5209D	0005
16 -Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA5209N	0406

Wideband variable gain amplifier

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Supply voltage	-0.5 to +8.0	V
P_{D}	Power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still air) ${ }^{1}$ 16-Pin Plastic DIP 16-Pin Plastic SO	1450	mW
$\mathrm{~T}_{\text {JMAX }}$	Maximum operating junction temperature	1100	mW
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ_{JA} :

16-Pin DIP: $\theta_{\mathrm{JA}}=85^{\circ} \mathrm{C} / \mathrm{W}$
16-Pin SO: $\theta_{J A}=110^{\circ} \mathrm{C} / \mathrm{W}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Supply voltage	$\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=4.5$ to 7.0 V	V
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range NE G Gade SA Grade	0 to +70 -40 to +85	${ }^{\circ} \mathrm{C}$
	$\mathrm{T}_{\mathrm{J}} \mathrm{C}$		
	Operating junction temperature range NE Grade	0 to +90 -40 to +105	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$			

DC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=1.0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
l lc	Supply current	DC tested	38	43	48	mA
		Over temperature ${ }^{1}$	30		55	mA
A_{V}	Voltage gain (single-ended in/single-ended out)	DC tested, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	17	19	21	dB
		Over temperature ${ }^{1}$	16		22	dB
A_{V}	Voltage gain (single-ended in/differential out)	DC tested, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	23	25	27	dB
		Over temperature ${ }^{1}$	22		28	dB
$\mathrm{R}_{\text {IN }}$	Input resistance (single-ended)	DC tested at $\pm 50 \mu \mathrm{~A}$	0.9	1.2	1.5	$\mathrm{k} \Omega$
		Over temperature ${ }^{1}$	0.8		1.7	$\mathrm{k} \Omega$
Rout	Output resistance (single-ended)	DC tested at $\pm 1 \mathrm{~mA}$	40	60	75	Ω
		Over temperature ${ }^{1}$	35		90	Ω
$\mathrm{V}_{\text {OS }}$	Output offset voltage (output referred)			± 20	± 100	mV
		Over temperature ${ }^{1}$			± 250	mV
$\mathrm{V}_{\text {IN }}$	DC level on inputs		1.6	2.0	2.4	V
		Over temperature ${ }^{1}$	1.4		2.6	V
V OUT	DC level on outputs		1.9	2.4	2.9	V
		Over temperature ${ }^{1}$	1.7		3.1	V
PSRR	Output offset supply rejection ratio (output referred)		20	45		dB
		Over temperature ${ }^{1}$	15			dB
$V_{B G}$	Bandgap reference voltage	$\begin{gathered} 4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{cc}}<7 \mathrm{~V} \\ \mathrm{R}_{\mathrm{BG}}=10 \mathrm{k} \Omega \end{gathered}$	1.2	1.32	1.45	V
		Over temperature ${ }^{1}$	1.1		1.55	V

DC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 2}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=1.0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
R_{BG}	Bandgap loading	Over temperature ${ }^{1}$	2	10		k Ω
$\mathrm{V}_{\text {AGC }}$	AGC DC control voltage range	Over temperature ${ }^{1}$		0-1.3		V
$\mathrm{I}_{\text {Bag }}$	AGC pin DC bias current	$0 \mathrm{~V}<\mathrm{V}_{\text {AGC }}<1.3 \mathrm{~V}$		-0.7	-6	$\mu \mathrm{A}$
		Over temperature ${ }^{1}$			-10	$\mu \mathrm{A}$

NOTES:

1. "Over Temperature Range" testing is as follows:

NE is 0 to $+70^{\circ} \mathrm{C}$
SA is -40 to $+85^{\circ} \mathrm{C}$
At the time of this data sheet release, the D package over-temperature data sheet limits are guaranteed via guardbanded room temperature testing only.

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=1.0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
BW	-3dB bandwidth		600	850		MHz
		Over temperature ${ }^{1}$	500			MHz
GF	Gain flatness	DC - 500 MHz		± 0.4		dB
		Over temperature ${ }^{1}$		± 0.6		dB
$V_{\text {Imax }}$	Maximum input voltage swing (single-ended) for linear operation ${ }^{2}$			200		mV P-p
$V_{\text {OMAX }}$	Maximum output voltage swing (single-ended) for linear operation ${ }^{2}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		400		$m \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		1.9		$\mathrm{V}_{\mathrm{P} \text { - } \mathrm{P}}$
NF	Noise figure (unmatched configuration)	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{f}=50 \mathrm{MHz}$		9.3		dB
$\mathrm{V}_{\text {IN-EQ }}$	Equivalent input noise voltage spectral density	$f=100 \mathrm{MHz}$		2.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
S12	Reverse isolation	$f=100 \mathrm{MHz}$		-60		dB
$\Delta \mathrm{G} / \Delta \mathrm{V}_{\mathrm{cc}}$	Gain supply sensitivity (single-ended)			0.3		dB / V
$\Delta \mathrm{G} / \Delta \mathrm{T}$	Gain temperature sensitivity	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		0.013		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {IN }}$	Input capacitance (single-ended)			2		pF
BW ${ }_{\text {AGC }}$	-3 dB bandwidth of gain control function			20		MHz
$\mathrm{P}_{\mathrm{O}-1 \mathrm{~dB}}$	1 dB gain compression point at output	$f=100 \mathrm{MHz}$		-3		dBm
$\mathrm{P}_{1-1 \mathrm{~dB}}$	1 dB gain compression point at input	$f=100 \mathrm{MHz}, V_{\text {AGC }}=0.1 \mathrm{~V}$		-10		dBm
$\mathrm{IP3}_{\text {OUT }}$	Third-order intercept point at output	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}>0.5 \mathrm{~V}$		+13		dBm
$\mathrm{IP3}_{3}{ }^{\text {N }}$	Third-order intercept point at input	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}<0.5 \mathrm{~V}$		+5		dBm
$\Delta \mathrm{G}_{\text {AB }}$	Gain match output A to output B	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}=1 \mathrm{~V}$		0.1		dB

NOTE:

1. "Over Temperature Range" testing is as follows:

NE is 0 to $+70^{\circ} \mathrm{C}$
SA is -40 to $+85^{\circ} \mathrm{C}$
At the time of this data sheet release, the D package over-temperature data sheet limits are guaranteed via guardbanded room temperature testing only.
2. With $R_{L}>1 \mathrm{k} \Omega$, overload occurs at input for single-ended gain $<13 \mathrm{~dB}$ and at output for single-ended gain $>13 \mathrm{~dB}$. With $R_{L}=50 \Omega$, overload occurs at input for single-ended gain $<6 \mathrm{~dB}$ and at output for single-ended gain $>6 \mathrm{~dB}$.

NE5209 APPLICATIONS

The NE5209 is a wideband variable gain amplifier (VGA) circuit which finds many applications in the RF, IF and video signal processing areas. This application note describes the operation of the circuit and several applications of the VGA. The simplified equivalent schematic of the VGA is shown in Figure 1. Transistors Q1-Q6 form the wideband Gilbert multiplier input stage which is biased by current source I1. The top differential pairs are biased from a buffered and level-shifted signal derived from the $\mathrm{V}_{\mathrm{AGC}}$ input and the RF input appears at the lower differential pair. The circuit topology and layout offer low input noise and wide bandwidth. The second stage is a differential transimpedance stage with current feedback which maintains the wide bandwidth of the input stage. The output stage is a pair of emitter followers with 50Ω output impedance. There is also an on-chip bandgap reference with buffered output at 1.3 V , which can be used to derive the gain control voltage.

Both the inputs and outputs should be capacitor coupled or DC isolated from the signal sources and loads. Furthermore, the two inputs should be DC isolated from each other and the two outputs should likewise be DC isolated from each other. The NE5209 was designed to provide optimum performance from a 5 V power source. However, there is some range around this value ($4.5-7 \mathrm{~V}$) that can be used.

The input impedance is about $1 \mathrm{k} \Omega$. The main advantage to a differential input configuration is to provide the balun function. Otherwise, there is an advantage to common mode rejection, a specification that is not normally important to RF designs. The source impedance can be chosen for two different performance characteristics: Gain, or noise performance. Gain optimization will be
realized if the input impedance is matched to about $1 \mathrm{k} \Omega$. A $4: 1$ balun will provide such a broadband match from a 50Ω source. Noise performance will be optimized if the input impedance is matched to about 200 2 . A 2:1 balun will provide such a broadband match from a 50Ω source. The minimum noise figure can then be expected to be about 7 dB . Maximum gain will be about 23 dB for a single-ended output. If the differential output is used and properly matched, nearly 30 dB can be realized. With gain optimization, the noise figure will degrade to about 8 dB . With no matching unit at the input, a 9 dB noise figure can be expected from a 50Ω source. If the source is terminated, the noise figure will increase to about 15 dB . All these noise figures will occur at maximum gain.
The NE5209 has an excellent noise figure vs gain relationship. With any VGA circuit, the noise performance will degrade with decreasing gain. The 5209 has about a 1.2 dB noise figure degradation for each 2 dB gain reduction. With the input matched for optimum gain, the 8 dB noise figure at 23 dB gain will degrade to about a 20 dB noise figure at 0 dB gain.
The NE5209 also displays excellent linearity between voltage gain and control voltage. Indeed, the relationship is of sufficient linearity that high fidelity AM modulation is possible using the NE5209. A maximum control voltage frequency of about 20 MHz permits video baseband sources for AM.

A stabilized bandgap reference voltage is made available on the NE5209 (Pin 7). For fixed gain applications this voltage can be resistor divided, and then fed to the gain control terminal (Pin 8). Using the bandgap voltage reference for gain control produces very stable gain characteristics over wide temperature ranges. The gain setting resistors are not part of the RF signal path,
and thus stray capacitance here is not important.
The wide bandwidth and excellent gain control linearity make the NE5209 VGA ideally suited for the automatic gain control (AGC) function in RF and IF processing in cellular radio base stations, Direct Broadcast Satellite (DBS) decoders, cable TV systems, fiber optic receivers for wideband data and video, and other radio communication applications. A typical AGC configuration using the NE5209 is shown in Figure 2. Three NE5209s are cascaded with appropriate AC coupling capacitors. The output of the final stage drives the full-wave rectifier composed of two UHF Schottky diodes BAT17 as shown. The diodes are biased by R1 and R2 to V_{cc} such that a quiescent current of about 2 mA in each leg is achieved. An NE5230 low voltage op amp is used as an integrator which drives the $\mathrm{V}_{\mathrm{AGC}}$ pin on all three NE5209s. R3 and C3 filter the high frequency ripple from the full-wave rectified signal. A voltage divider is used to generate the reference for the non-inverting input of the op amp at about 1.7 V . Keeping D3 the same type as D1 and D2 will provide a first order compensation for the change in Schottky voltage over the operating temperature range and improve the AGC performance. R6 is a variable resistor for adjustments to the op amp reference voltage. In low cost and large volume applications this could be replaced with a fixed resistor, which would result in a slight loss of the AGC dynamic range. Cascading three NE5209s will give a dynamic range in excess of 60 dB .

The NE5209 is a very user-friendly part and will not oscillate in most applications. However, in an application such as with gains in excess of 60 dB and bandwidth beyond 100 MHz , good PC board layout with proper supply decoupling is strongly recommended.

Figure 1. Equivalent Schematic of the VGA

Figure 2. AGC Configuration Using Cascaded NE5209s

Figure 3. VGA AC Evaluation Board

This circuit will exhibit about a 7 dB noise figure with approximately 22dB gain.

Figure 4. Broadband Noise Optimization

Figure 5. Narrowband Noise Optimization

Figure 6. Broadband Gain Optimization

Figure 7. Narrowband Gain Optimization

Figure 8. Simple Amplifier Configuration

Figure 9. Unterminated Configuration

Figure 10. User-Programmable Fixed Gain Block

Figure 11. AM Modulator

Figure 12. Receiver AGC IF Gain

Figure 13. Test Set-up 1 (Used for all Graphs)

Figure 14. Gain vs $\mathrm{V}_{\text {AGC }}$ and V_{CC}

Figure 16. Voltage Gain vs Temperature and $V_{C C}$

Figure 15. Insertion Gain vs $\mathrm{V}_{\mathrm{AGC}}$ and Temperature

Figure 17. Supply Current vs Temperature and V_{Cc}

Figure 18. Input Resistance vs Temperature

Figure 20. Output Bias Voltage vs Temperature and $\mathbf{V}_{\mathbf{c c}}$

Figure 19. Input Bias Voltage vs Temperature

Figure 21. DC Output Swing vs Temperature

Figure 22. Insertion Gain vs Frequency and $V_{\text {AGC }}$

Figure 24. Insertion Gain vs Temperature and $\mathbf{V}_{\mathbf{c c}}$

Figure 23. Insertion Gain vs Frequency and $\mathbf{V}_{\mathbf{c c}}$

Figure 25. Output Return Loss vs Frequency

Figure 28. Third-Order Intermodulation Intercept vs $V_{\text {AGC }}$

Figure 27. 1dB Gain Compression vs $V_{\text {AGC }}$

Figure 29. Noise Figure vs $V_{\text {AGC }}$

Figure 30. Noise Figure vs Frequency

Figure 32. Fixed Gain vs Temperature

Figure 31. Bandgap Voltage vs Temperature and $V_{C C}$

TOP VIEW - COMPONENT SIDE

TOP VIEW - SOLDER SIDE
AGC Configuration Using Cascaded NE5209s - Layout

TOP VIEW - COMPONENT SIDE

TOP VIEW - SOLDER SIDE

VGA AC Evaluation Board Layout (DIP Package)

DESCRIPTION

The NE5219 represents a breakthrough in monolithic amplifier design featuring several innovations. This unique design has combined the advantages of a high speed bipolar process with the proven Gilbert architecture.

The NE5219 is a linear broadband RF amplifier whose gain is controlled by a single DC voltage. The amplifier runs off a single 5 volt supply and consumes only 40 mA . The amplifier has high impedance ($1 \mathrm{k} \Omega$) differential inputs. The output is 50Ω differential. Therefore, the 5219 can simultaneously perform AGC, impedance transformation, and the balun functions.

The dynamic range is excellent over a wide range of gain setting. Furthermore, the noise performance degrades at a comparatively slow rate as the gain is reduced. This is an important feature when building linear AGC systems.

FEATURES

- 700 MHz bandwidth
- High impedance differential input
- 50Ω differential output
- Single 5V power supply
-0-1V gain control pin
- $>60 \mathrm{~dB}$ gain control range at 200 MHz
- 26dB maximum gain differential
- Exceptional $\mathrm{V}_{\text {control }}$ / $\mathrm{V}_{\text {GAIN }}$ linearity
- 7dB noise figure minimum
- Full ESD protection
- Easily cascadable

APPLICATIONS

- Linear AGC systems
- Very linear AM modulator
- RF balun
- Cable TV multi-purpose amplifier
- Fiber optic AGC
- Radar
- User programmable fixed gain block
- Video
- Satellite receivers
- Cellular communications

PIN CONFIGURATION

N, D PACKAGES

ORDERING INFORMATION

Description	Temperature Range	Order Code	DWG \#
16 -Pin Plastic Small Outline (SO) package	0 to $+70^{\circ} \mathrm{C}$	NE5219D	0005 D
16 -Pin Plastic Dual In-Line package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE5219N	0406 C
16 -Pin Plastic Small Outline (SO) package	-40 to $+85^{\circ} \mathrm{C}$	SA5219D	0005 D
16 -Pin Plastic Dual In-Line package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA5219N	0406 C

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{Cc}	Supply voltage	-0.5 to +8.0	V
$P_{\text {D }}$	Power dissipation, $T_{A}=25^{\circ} \mathrm{C}$ (still air) ${ }^{1}$ 16-Pin Plastic DIP 16-Pin Plastic SO	$\begin{aligned} & 1450 \\ & 1100 \end{aligned}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
TJMAX	Maximum operating junction temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ_{JA} :

16-Pin DIP: $\theta_{\mathrm{JA}}=85^{\circ} \mathrm{C} / \mathrm{W}$
$16-$ Pin SO: $\theta_{J A}=110^{\circ} \mathrm{C} / \mathrm{W}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS		
$\mathrm{V}_{\text {CC }}$	Supply voltage	$\mathrm{V}_{\text {CC } 1}=\mathrm{V}_{\text {CC2 }}=4.5$ to 7.0 V	V		
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range NE Grade SA Grade	0 to +70 -40 to +85	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ T_{J}Operating junction temperature range NE Grade SA Grade		0 to +90
:---:					
-40 to +105	\quad	${ }^{\circ} \mathrm{C}$			
:---:					
${ }^{\circ} \mathrm{C}$					

DC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=1.0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
$l_{\text {cc }}$	Supply current	DC tested	36	43	50	mA
A_{V}	Voltage gain (single-ended in/single-ended out)	DC tested, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	16	19	22	dB
A_{V}	Voltage gain (single-ended in/differential out)	DC tested, $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	22	25	28	dB
$\mathrm{R}_{\text {IN }}$	Input resistance (single-ended)	DC tested at $\pm 50 \mu \mathrm{~A}$	0.8	1.2	1.6	k Ω
Rout	Output resistance (single-ended)	DC tested at $\pm 1 \mathrm{~mA}$	35	60	80	Ω
$V_{\text {OS }}$	Output offset voltage (output referred)			± 20	± 150	mV
$\mathrm{V}_{\text {IN }}$	DC level on inputs		1.6	2.0	2.4	V
Vout	DC level on outputs		1.9	2.4	2.9	V
PSRR	Output offset supply rejection ratio		18	45		dB
$V_{B G}$	Bandgap reference voltage	$\begin{gathered} 4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{cc}}<7 \mathrm{~V} \\ \mathrm{R}_{\mathrm{BG}}=10 \mathrm{k} \Omega \end{gathered}$	1.2	1.32	1.45	V
R_{BG}	Bandgap loading		2	10		k Ω
$\mathrm{V}_{\text {AGC }}$	AGC DC control voltage range			0-1.3		V
$\mathrm{I}_{\text {BAGC }}$	AGC pin DC bias current	$0 \mathrm{~V}<\mathrm{V}_{\text {AGC }}<1.3 \mathrm{~V}$		-0.7	-6	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=1.0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
BW	-3dB bandwidth			700		MHz
GF	Gain flatness	DC - 500 MHz		± 0.4		dB
VImax	Maximum input voltage swing (single-ended) for linear operation ${ }^{1}$			200		$\mathrm{m} \mathrm{P}_{\text {P-P }}$
Vomax	Maximum output voltage swing (single-ended) for linear operation ${ }^{1}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		400		$\mathrm{m} \mathrm{V}_{\text {P-P }}$
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		1.9		V_{P-P}
NF	Noise figure (unmatched configuration)	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{f}=50 \mathrm{MHz}$		9.3		dB
$\mathrm{V}_{\text {IN-EQ }}$	Equivalent input noise voltage spectral density	$f=100 \mathrm{MHz}$		2.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
S12	Reverse isolation	$f=100 \mathrm{MHz}$		-60		dB
$\Delta \mathrm{G} / \Delta \mathrm{V}_{\mathrm{CC}}$	Gain supply sensitivity (single-ended)			0.3		dB / V
$\Delta \mathrm{G} / \Delta \mathrm{T}$	Gain temperature sensitivity	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		0.013		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {IN }}$	Input capacitance (single-ended)			2		pF
BW ${ }_{\text {AGc }}$	-3 dB bandwidth of gain control function			20		MHz
$\mathrm{P}_{\mathrm{O}-1 \mathrm{~dB}}$	1 dB gain compression point at output	$f=100 \mathrm{MHz}$		-3		dBm
$\mathrm{P}_{\text {1-1dB }}$	1 dB gain compression point at input	$f=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}=0.1 \mathrm{~V}$		-10		dBm
$\mathrm{IP}_{\text {OUT }}$	Third-order intercept point at output	$f=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}>0.5 \mathrm{~V}$		+13		dBm
$1 \mathrm{P} 3_{\text {IN }}$	Third-order intercept point at input	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}<0.5 \mathrm{~V}$		+5		dBm
$\Delta \mathrm{G}_{\text {AB }}$	Gain match output A to output B	$\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{\text {AGC }}=1 \mathrm{~V}$		0.1		dB

NOTE:

1. With $R_{L}>1 k \Omega$, overload occurs at input for single-ended gain $<13 \mathrm{~dB}$ and at output for single-ended gain $>13 \mathrm{~dB}$. With $R_{L}=50 \Omega$, overload occurs at input for single-ended gain $<6 \mathrm{~dB}$ and at output for single-ended gain $>6 \mathrm{~dB}$.

NE5219 APPLICATIONS

The NE5219 is a wideband variable gain amplifier (VGA) circuit which finds many applications in the RF, IF and video signal processing areas. This application note describes the operation of the circuit and several applications of the VGA. The simplified equivalent schematic of the VGA is shown in Figure 1. Transistors Q1-Q6 form the wideband Gilbert multiplier input stage which is biased by current source I1. The top differential pairs are biased from a buffered and level-shifted signal derived from the $\mathrm{V}_{\mathrm{AGC}}$ input and the RF input appears at the lower differential pair. The circuit topology and layout offer low input noise and wide bandwidth. The second stage is a differential transimpedance stage with current feedback which maintains the wide bandwidth of the input stage. The output stage is a pair of emitter followers with 50Ω output impedance. There is also an on-chip bandgap reference with buffered output at 1.3 V , which can be used to derive the gain control voltage.
Both the inputs and outputs should be capacitor coupled or DC isolated from the signal sources and loads. Furthermore, the two inputs should be DC isolated from each other and the two outputs should likewise be

DC isolated from each other. The NE5219 was designed to provide optimum performance from a 5 V power source. However, there is some range around this value (4.5-7V) that can be used.
The input impedance is about $1 \mathrm{k} \Omega$. The main advantage to a differential input configuration is to provide the balun function. Otherwise, there is an advantage to common mode rejection, a specification that is not normally important to RF designs. The source impedance can be chosen for two different performance characteristics: Gain, or noise performance. Gain optimization will be realized if the input impedance is matched to about $1 \mathrm{k} \Omega$. A $4: 1$ balun will provide such a broadband match from a 50Ω source. Noise performance will be optimized if the input impedance is matched to about 200 2 . A 2:1 balun will provide such a broadband match from a 50Ω source. The minimum noise figure can then be expected to be about 7dB. Maximum gain will be about 23 dB for a single-ended output. If the differential output is used and properly matched, nearly 30 dB can be realized. With gain optimization, the noise figure will degrade to about 8 dB . With no matching unit at the input, a 9 dB noise figure can be expected from a 50Ω source. If
the source is terminated, the noise figure will increase to about 15 dB . All these noise figures will occur at maximum gain.

The NE5219 has an excellent noise figure vs gain relationship. With any VGA circuit, the noise performance will degrade with decreasing gain. The 5219 has about a 1.2 dB noise figure degradation for each 2 dB gain reduction. With the input matched for optimum gain, the 8 dB noise figure at 23 dB gain will degrade to about a 20 dB noise figure at 0 dB gain.

The NE5219 also displays excellent linearity between voltage gain and control voltage. Indeed, the relationship is of sufficient linearity that high fidelity AM modulation is possible using the NE5219. A maximum control voltage frequency of about 20 MHz permits video baseband sources for AM.
A stabilized bandgap reference voltage is made available on the NE5219 (Pin 7). For fixed gain applications this voltage can be resistor divided, and then fed to the gain control terminal (Pin 8). Using the bandgap voltage reference for gain control produces very stable gain characteristics over wide temperature ranges. The gain setting resistors are not part of the RF signal path,
and thus stray capacitance here is not important.
The wide bandwidth and excellent gain control linearity make the NE5219 VGA ideally suited for the automatic gain control (AGC) function in RF and IF processing in cellular radio base stations, Direct Broadcast Satellite (DBS) decoders, cable TV systems, fiber optic receivers for wideband data and video, and other radio communication applications. A typical AGC configuration using the NE5219 is shown in Figure 2. Three NE5219s are cascaded with appropriate AC coupling capacitors. The output of the final stage drives the full-wave
rectifier composed of two UHF Schottky diodes BAT17 as shown. The diodes are biased by R1 and R2 to $V_{C C}$ such that a quiescent current of about 2 mA in each leg is achieved. An NE5230 low voltage op amp is used as an integrator which drives the $V_{\text {AGC }}$ pin on all three NE5219s. R3 and C3 filter the high frequency ripple from the full-wave rectified signal. A voltage divider is used to generate the reference for the non-inverting input of the op amp at about 1.7V. Keeping D3 the same type as D1 and D2 will provide a first order compensation for the change in Schottky voltage over the operating temperature range and improve the AGC
performance. R6 is a variable resistor for adjustments to the op amp reference voltage. In low cost and large volume applications this could be replaced with a fixed resistor, which would result in a slight loss of the AGC dynamic range. Cascading three NE5219s will give a dynamic range in excess of 60 dB .

The NE5219 is a very user-friendly part and will not oscillate in most applications.
However, in an application such as with gains in excess of 60 dB and bandwidth beyond 100 MHz , good PC board layout with proper supply decoupling is strongly recommended.

Figure 1. Equivalent Schematic of VGA

Figure 2. AGC Configuration Using Cascaded NE5219s

Figure 3. VGA AC Evaluation Board

This circuit will exhibit about a 7dB noise figure with approximately 22dB gain.

Figure 4. Broadband Noise Optimization

Figure 5. Narrowband Noise Optimization

Figure 6. Broadband Gain Optimization

Figure 7. Narrowband Gain Optimization

Figure 8. Simple Amplifier Configuration

Figure 9. Unterminated Configuration

Figure 10. User-Programmable Fixed Gain Block

Wideband variable gain amplifier

Figure 11. AM Modulator

Figure 13. Test Set-up 1 (Used for all Graphs)

Figure 14. Gain vs $V_{A G C}$ and $V_{C C}$

Figure 16. Voltage Gain vs Temperature and V_{cc}

Figure 15. Insertion Gain vs $\mathrm{V}_{\mathrm{AGC}}$ and Temperature

Figure 17. Supply Current vs Temperature and V_{CC}

Wideband variable gain amplifier

Figure 18. Input Resistance vs Temperature

Figure 20. Output Bias Voltage vs Temperature and $\mathrm{V}_{\mathbf{c c}}$

Figure 19. Input Bias Voltage vs Temperature

Figure 21. DC Output Swing vs Temperature

Figure 22. Insertion Gain vs Frequency and $\mathrm{V}_{\text {AGC }}$

Figure 24. Insertion Gain vs Temperature and $\mathbf{V}_{\mathbf{c c}}$

Figure 23. Insertion Gain vs Frequency and $\mathbf{V}_{\mathbf{C c}}$

Figure 25. Output Return Loss vs Frequency

Figure 27. 1dB Gain Compression vs $V_{A G C}$

Figure 29. Noise Figure vs $V_{\text {AGC }}$

Figure 31. Bandgap Voltage vs Temperature and $\mathbf{V}_{\mathbf{C c}}$

TOP VIEW - COMPONENT SIDE

TOP VIEW - SOLDER SIDE VGA AC Evaluation Board Layout (DIP Package)

POTOM VIEW D Pa
BOTTOM VIEW - D Package

TOP VIEW - D Package

VGA AC Evaluation Board Layout (SO Package)

DESCRIPTION

The NE/SA5234 is a matched, low voltage, high performance quad operational amplifier. Among its unique input and output characteristics is the capability for both input and output rail-to-rail operation, particularly critical in low voltage applications. The output swings to less than 50 mV of both rails across the entire power supply range. The NE/SA5234 is capable of delivering 5.5 V peak-to-peak across a 600Ω load and will typically draw only $700 \mu \mathrm{~A}$ per amplifier. The bandwidth is 2.5 MHz and the 1% settling time is $1.4 \mu \mathrm{~s}$.

FEATURES

- Wide common-mode input voltage range: 250 mV beyond both rails
- Output swing within 50 mV of both rails
- Functionality to 1.8 V typical
- Low current consumption: $700 \mu \mathrm{~A}$ per amplifier
- $\pm 15 \mathrm{~mA}$ output current capability
- Unity gain bandwidth: 2.5 MHz
- Slew rate: $0.8 \mathrm{~V} / \mu \mathrm{s}$
- Low noise: $25 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
- Electrostatic discharge protection
- Short-circuit protection
- Output inversion prevention

APPLICATIONS

- Automotive electronics
- Signal conditioning and sensing amplification
- Portable instrumentation
- Test and measurement
- Medical monitors and diagnostics
- Remote meters
- Audio equipment
- Security systems
- Communications
- Pagers
- Cellular telephone
- LAN
- 5V Datacom bus
- Error amplifier in motor drives
- Transducer buffer amplifier

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
$14-P i n ~ P l a s t i c ~ S m a l l ~ O u t l i n e ~(S O) ~ p a c k a g e ~$	0 to $+70^{\circ} \mathrm{C}$	NE5234D	0175 D
14 -Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE5234N	0405 B
14 -Pin Plastic Small Outline (SO) package	-40 to $+85^{\circ} \mathrm{C}$	SA5234D	
14 -Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	0175 D	

Matched quad high-performance low-voltage operational amplifier

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$V_{\text {CC }}$	Single supply voltage	7	V
$V_{\text {ESD }}$	ESD protection voltage at any pin ${ }^{5}$ human body model robot model	$\begin{gathered} 2000 \\ 200 \end{gathered}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
$\mathrm{V}_{\text {S }}$	Dual supply voltage	± 3.5	V
$V_{\text {DP }}$	Voltage at any device pin ${ }^{1}$	$\mathrm{V}_{\mathrm{S}} \pm 0.5$	V
$\mathrm{I}_{\text {DP }}$	Current into any device pin ${ }^{1}$	± 50	mA
$\mathrm{V}_{\text {IN }}$	Differential input voltage ${ }^{2}$	0.5	V
V_{CM}	Common-mode input voltage (positive)	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
V_{CM}	Common-mode input voltage (negative)	$\mathrm{V}_{\mathrm{EE}}-0.5$	V
PD	Power dissipation ${ }^{3}$	500	mW
TJ	Operating junction temperature ${ }^{3}$	+150	${ }^{\circ} \mathrm{C}$
$V_{s c}$	Supply voltage allowing indefinite output short circuit to either rail ${ }^{3,4}$	7	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOLD }}$	Lead soldering temperature (10sec max)	+300	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance 14 pin Plastic DIP 14 pin Plastic SO	$\begin{gathered} 80 \\ 115 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

NOTES:

1. Each pin is protected by ESD diodes. The voltage at any pin is limited by the ESD diodes.
2. The differential input of each amplifier is limited by two internal diodes, connected in parallel and opposite to each other. For more differential input range, use differential resistors in series with the input pins.
3. The maximum operating junction temperature is $+150^{\circ} \mathrm{C}$. At elevated temperatures, devices must be derated according to the package thermal resistance and device mounting conditions. Derates above $+25^{\circ} \mathrm{C}$: F package at $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C} ; \mathrm{N}$ package at $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$; D package at $6.25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Simultaneous short circuits of two or more amplifiers to the positive or negative rail can exceed the power dissipation ratings and cause eventual destruction of the device.
5. Guaranteed by design.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Single supply voltage	+2 to +5.5	V
$\mathrm{~V}_{\mathrm{S}}$	Dual supply voltage	± 1 to ± 2.75	V
$\mathrm{~V}_{\mathrm{CM}}$	Common-mode input voltage (positive)	$\mathrm{V}_{\mathrm{CC}}+0.25$	V
$\mathrm{~V}_{\mathrm{CM}}$	Common-mode input voltage (negative)	$\mathrm{V}_{\mathrm{EE}}-0.25$	V
$\mathrm{~T}_{\mathrm{A}}$	Temperature		
	NE	0 to +70	${ }^{\circ} \mathrm{C}$
	SA	-40 to +85	${ }^{\circ} \mathrm{C}$

Matched quad high-performance low-voltage operational amplifier

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=2$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{CC}}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE5234			SA5234			
			MIN	TYP	MAX	MIN	TYP	MAX	
Icc	Supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		2.8	4.0		2.8	4.0	mA
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ over full temperature range		3.0	4.6		3.2	4.8	mA
Vos	Offset voltage			± 0.2	± 4		± 0.2	± 4	mV
		Over full temperature range		± 0.4	± 5		± 0.6	± 5	mV
$\Delta V_{\text {OS }} / \Delta \mathrm{T}$	Offset voltage drift with temperature			4			4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\text {os }}$	Offset voltage difference between any amplifiers in the same package at the same common mode level ${ }^{1}$			0.4	3		0.4	3	mV
		Over full temperature range		0.8	4		1.2	4	mV
los	Offset current			± 3	± 20		± 3	± 30	nA
		Over full temperature range		± 4	± 30		± 6	± 60	nA
$\Delta \mathrm{los} / \Delta \mathrm{T}$	Offset current drift with temperature			0.02	$\pm .3$		0.03	$\pm .3$	$n \mathrm{~A}^{\circ} \mathrm{C}$
I_{B}	Input bias current ${ }^{1}$	$\mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\text {CM }}<\mathrm{V}_{\text {EE }}+0.5 \mathrm{~V}$	-200	-90		-200	-90		nA
		Over full temperature range	-225	-100		-250	-150		nA
		$\mathrm{V}_{\mathrm{EE}}+1 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{CC}}$		25	70		25	75	nA
		Over full temperature range		35	100		35	120	nA
$\Delta l_{B} / \Delta T$	Input bias current drift with temperature	-		0.5			0.5		$n A /^{\circ} \mathrm{C}$
ΔI_{B}	Input bias current difference between any amplifier in the same package at the same common mode level.	$\mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{EE}}+0.5 \mathrm{~V}$		10	30		10	30	nA
		Over full temperature range		25	50		50	70	nA
		$\mathrm{V}_{\mathrm{EE}}+1 \mathrm{~V}<\mathrm{V}_{\text {CM }}<\mathrm{V}_{\text {CC }}$		5	20		5	20	nA
		Over full temperature range		15	30		25	50	nA
$\mathrm{V}_{\text {cm }}$	Common-mode input range	$\mathrm{V}_{\text {OS }} \leq 6 \mathrm{mV}$	$\mathrm{V}_{\text {EE }}-0.25$		$\mathrm{V}_{\mathrm{CC}}+0.25$	$\mathrm{V}_{\text {EE }}-0.25$		$\mathrm{V}_{\text {cc }}+0.25$	V
		$V_{0 S} \leq 6 \mathrm{mV}$ over full temperature range	$\mathrm{V}_{\mathrm{EE}}-0.1$		$V_{\text {cc }}+0.1$	$V_{E E}-0.1$		$V_{c c}+0.1$	V
CMRR	Common-mode rejection ratio, small signal	$\begin{gathered} V_{E E}<V_{C M}<V_{E E}+0.5 V, \\ V_{E E}+1 V_{C M}<V_{C C} \end{gathered}$		100		90	100		dB
		Over full temperature range		100		80	90		dB
	Common-mode rejection ratio, large signal	$\mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{CC}}$		90			100		dB
		Over full temperature range		80			90		dB
PSRR	Power supply rejection ratio	$\mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{C C}$	80	100		80	100		dia
		Over full temperature range	80	90		80	90		dB

Matched quad high-performance low-voltage operational amplifier

DC ELECTRICAL CHARACTERISTICS (continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE5234			SA5234			
			MIN	TYP	MAX	MIN	TYP	MAX	
IL	Peak load current, sink and source		10	12		10	12		mA
		Over full temperature range	5	8		5	8		mA
Avol	Open-loop voltage gain		90	110		90	110		dB
		Over full temperature range		90			90		dB
$V_{\text {Out }}$	Output voltage swing	$\mathrm{I}_{\text {PEAK }}=0.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{EE}+}+0.05$		$V_{\text {cc- }} 0.05$	$\mathrm{V}_{\mathrm{EE}+}+0.1$		$\mathrm{V}_{\mathrm{cc}}-0.1$	V
		$\mathrm{IPEAK}=10 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{EE}}+0.25$		$\mathrm{V}_{\text {cc- }-0.25}$	$\mathrm{V}_{\mathrm{EEE}}+0.25$		$\mathrm{V}_{\mathrm{cc}}-0.25$	V
		$l_{\text {PEAK }}=5 \mathrm{~mA}$ over full temp range	$\mathrm{V}_{\mathrm{EE}}+0.22$		$\mathrm{V}_{\mathrm{cc}}-0.2$	$\mathrm{V}_{\text {EE }}+0.2$		$\mathrm{V}_{\mathrm{cc}}-0.2$	V
	Output voltage swing for $\mathrm{V}_{\mathrm{CC}}=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.75 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{EE}+0.2}$		$\mathrm{V}_{\mathrm{cc}}-0.2$	$\mathrm{V}_{\mathrm{EE}+}+0.2$		$\mathrm{V}_{\mathrm{CC}}-0.2$	V
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$,	$\mathrm{V}_{\mathrm{EE}}+0.25$		$\mathrm{V}_{\text {cc- }} 0.25$	$V_{E E}+0.25$		$V_{\text {cc }}-0.25$	V

NOTES:

1. These parameters are measured for $\mathrm{V}_{\mathrm{EE}}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{EE}}+.5 \mathrm{~V}$ and for $\mathrm{V}_{\mathrm{EE}}+1 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<\mathrm{V}_{\mathrm{CC}}$. By design these parameters are intermediate for common mode ranges between the measured regions.

AC ELECTRICAL CHARACTERISTICS

$T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=2$ to $5.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} ; \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE5234			SA/SE5234			
			MIN	TYP	MAX	MIN	TYP	MAX	
SR	Slew rate	Over full temperature range	. 5	0.8		. 5	0.8		$\mathrm{V} / \mu \mathrm{s}$
BW	Unity gain bandwidth: -3dB	Over full temperature range	2	2.5	4.0	2	2.5	4.0	MHz
θ_{M}	Phase Margin	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		55			55		deg
ts	1\% settling time	$A_{V}=1,1 \mathrm{~V}$ step		1.4			1.4		$\mu \mathrm{s}$
V_{N}	Input referred voltage noise	$A_{V}=1, R_{S \mathrm{SHz}}=0 \Omega, \text { at }$		25			25		$\begin{gathered} \mathrm{nV} / \\ \mathrm{Hz}^{1 / 2} \end{gathered}$
THD	Total harmonic distortion	$10 \mathrm{kHz}, 1 \mathrm{~V}_{\text {P-P, }}, A_{V}=1$		0.1			0.1		\%

OUTPUT INVERSION PREVENTION

Author: L. Hadley

I. SUMMARY

The NE/SA5234 is a unique low-voltage quad operational amplifier specifically designed to operate in a broadly diverse environment. It is an enhanced pin-for-pin replacement for the LM324 category of devices. Supply conditions can range from 1.8 V to 6.0 V with a resultant current drain of $2.8 \mathrm{~mA},-700 \mu \mathrm{~A}$ per op amp.

Most notable are the input and output dynamic range characteristics of the individual op amps. The common-mode input voltage can actually exceed the positive and negative supply rails by 250 mV with no danger of output latching or polarity reversal. In addition, the output of each op amp will swing to within 50 mV of the supply rails over the full supply range.

The frequency related characteristics are also above average for low voltage devices in this class. Internal unity gain compensation makes the NE5234 very resistant to any tendency to oscillate in low closed-loop gain configurations. Even so, a unity-gain bandwidth of 2.5 MHz is retained. Slew rate is $0.8 \mathrm{~V} / \mu \mathrm{s}$ and each op amp will settle to a 1% of nominal level within $1.4 \mu \mathrm{~s}$.

II. DETAILED DESCRIPTION

Input Stage

The input differential amplifier consists of a compound transistor structure of parallel NPN and PNP transistors which account for the unique over-drive characteristics of the NE5234. Referring to Figure 1 , it is seen that the NPN pair, Q1 and Q2, allow the input to operate in the common-mode input voltage range of 1 V above V_{EE}. This region is designated the N -mode region in Figure 3 a . Operation in the common-mode range below IV transfers the input stage into the P -mode of operation.

In the N -mode operating condition, collector current from Q1 and Q2 is summed in the output emitter node of Q10 and Q12
respectively. Q1's base is the non-inverting input and Q2's base the inverting input node for the amplifier.

Linear operation between the two modes is governed by a current steering circuit consisting of Q5,6 and 7 in conjunction with voltage reference VB1. Operation in the

Figure 1. NE5234 Input Stage
N -region of the common-mode range will automatically cause Q5 to transfer the IB1 current source to Q7 and the NPN transistor pair Q1 and Q2. Operation below the 1V level at the inputs allows the current from IB1 to be fed directly to Q3 and Q4 emitters giving them priority in processing the signal and linearizing their transfer function. (The sum of the NPN and PNP input pair currents remain constant.)

Operation in the common-mode range near the positive supply rail would normally cause the input stage NPN transistor's base collector junction to become forward biased (base current flow directly to the collector circuit) reversing the collector current flow direction. In a conventional op amp, this would have the adverse effect of reversing the output signal polarity as the operating region is traversed by the input signal. (see Figure 2)
To prevent this from occurring, large geometry diode-connected transistors are cross-connected to the opposite NPN collector, (Q1, Q2). This current, in turn, is summed at the emitter of Q12 pulling it above the V_{CC} rail voltage and preventing polarity reversal. The inverse condition occurs when Q2 is driven above the positive rail, with Q10 emitter being pulled up and signal polarity preserved. (See Figure 1)

Figure 2. Output Inversion Protection

Figure 3.
For negative going input signals, which drive the inputs toward the $V_{E E}$ rail and below, another set of diode-connected transistors come into operation. These steer the current from the input into Q8 or Q9 emitter circuits again preventing the reversal effect.
Figure 3 shows graphically how the N and P mode transitions relate to the common-mode input voltage and the offset voltage V_{OS}.

Intermediate Amplifier and Output Stage (Figure 4)

The intermediate stage is isolated from the input amplifier by emitter followers to prevent any adverse loading effect. This stage adds gain to the over all amplifier and translates levels for the following class-AB current-control driver. Note that l_{2} is the inverting input and l_{1} the non-inverting input. The output is taken from multiple collectors on the non-inverting side and provides matching for the following stage.
Class-AB control of the output stage is achieved by Q61 and Q62 with the associated output current regulators. These act to monitor the smallest current of the non-load supporting output transistor to keep it in conduction. Thus, neither Q71 or Q81 is allowed to cutoff but is forced to remain in the proper Class-AB region.
Overload protection is provided by monitor circuits consisting of R76-D2 for sinking and R86-D3 for sourcing condition at the output. When the output current, source or sink,
reaches 15 milliamperes, drive current to the stage is shunted away from current sources IB6 or IB9 reducing base current to driver transistors Q72 and Q82 respectively.

The prevention of saturation in the output stage is achieved by saturation detectors Q78 and Q88. When either Q71 or Q81 approaches saturation, current is shunted away from the driver transistors, Q72 or Q83 respectively.

III. CHARACTERISTICS

Internal Frequency

Compensation

The use of nested Miller capacitors C2 through $\mathbf{C 6}$, in the intermediate and output sections, provides the overall frequency compensation for the amplifier. The dominant pole setting capacitor, C 2 , provides a constant $6 \mathrm{~dB} /$ octave roll-off to below the unity gain frequency of 2.5 MHz . Figure 5 shows the measured frequency response plot for various values of closed-loop gains.

Figure 4.

Figure 5. NE5234 Closed Loop Gain vs Frequency

IV. NOISE REFERRED TO THE INPUT

The typical spectral voltage noise referred to each of the op amps in the NE/SA5234 is specified to be $25 \mathrm{nV} / \mathrm{JHz}$. Current noise is not specified. In the interest of providing a balance of information on the device parameters, a small sample of the standard NE5234s, were tested for input noise current. While this data does not represent a specification, it will give the designer a ball park figure to work with when beginning a particular design with the device. For completeness I have provided the corresponding spectral noise voltage data for the same sample. The data was taken using an HP3585A spectrum analyzer which has the capability of reading noise in $n \mathrm{~V} / \sqrt{\mathrm{Hz}}$.

The test circuit is shown in Figure 6. As is typical for such measurements the amplifier under test is terminated at its input first with a very low resistance, for the voltage noise reading, followed by the same test with a high value of resistance to register the effect of current noise. The amplifier is set to a non-inverting
closed-loop gain of 20 dB . Dual supply operation was chosen to allow direct termination of the input resistors to ground.
The measurements were made over the range from 200 Hz to 2 kHz . Each sample is measured at $200 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1 \mathrm{kHz}$ and 2 kHz . The data is averaged for each frequency and then the small sample distribution is derived statistically giving the standard deviation relative to the mean.

Referring to the graph in Figure 7a, the equivalent voltage noise is seen to average $18 \mathrm{nV} / \mathrm{JHz}$. The 95% confidence interval is determined to be approximately one $\mathrm{nV} / \mathrm{JHz}$. The majority of the errors which contribute to this measurement are due to the thermal noise of the parallel combination of the feedback resistor network, in addition to the 10Ω termination resistor on the non-inverting input. At 300° Kelvin a 10Ω rers tor generates $0.4 \mathrm{nV} / \mathrm{VHz}$ and the reedback network's equivalent resistance of 90Ω generates $1.2 \mathrm{nV} / \mathrm{JHz}$. Their order-of-magnitude difference from the main noise sources allows them to be neglected in the overall calculation of total stage noise.

Figure 7.
Noise current is measured across a $47 \mathrm{k} \Omega$ resistor and averaged in the same manner. The thermal noise generated by this large resistance is not insignificant. At room temperature it is $28 \mathrm{nV} / \mathrm{JHz}$ and must be subtracted from the total noise as measured at the output of the op amp in order to arrive at the equivalent current generated noise voltage. Figure 7 b shows the derived current noise distribution for the small sample of 10 NE5234 devices. The result shows that noise current in the 200 Hz to 2 kHz frequency is typically $0.2 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$. The $1 / f$ region was not determined for either current or voltage noise.

V. GUIDE LINES FOR MINIMIZING NOISE

When designing a circuit where noise must be kept to a minimum, the source resistances should be kept low to limit thermally generated degradation in the overall output response. Orders-of-magnitude should be kept in mind when evaluating noise performance of a particular circuit or in planning a new design. For instance, a transducer with a $10 \mathrm{k} \Omega$ source resistance will generate $2 \mu \mathrm{~V}$ of RMS noise over a 20 kHz bandwidth. Using the graphical data above, total noise from a gain stage may be calculated.-

Amplifier Noise Voltage

EQ 1.

$$
\begin{aligned}
25 n V / \sqrt{H z} \cdot \sqrt{B W} & =3.5 \mu V_{R M S} \\
B W & =10 \mathrm{kHz}
\end{aligned}
$$

Noise from source $10 \mathrm{k} \Omega$ Resistance-
Noise Voltage from source resistance EQ 2.

$$
14 n V / \sqrt{H z} \cdot \sqrt{B W}=20 \mu V_{R M S}
$$

Current generated noise EQ 3.

$$
0.2 p A / \sqrt{H z} \cdot 10^{3} \cdot \sqrt{B W}=0.28 \mu V_{R M S}
$$

The total noise is the root-of-the-sum-of-the-squares of the individual noise voltages-

$$
\begin{aligned}
E n & =\sqrt{(3.5)^{2}+(2.0)^{2}+(0.28)^{2}} \\
& =4.04 \mu V_{R M S}
\end{aligned}
$$

EQ 4.

To determine the signal-to-noise ratio of the stage we must first choose a stage gain, make it 40 dB , and a signal voltage magnitude from the transducer which we will set at 10 mV RMs. The resulting signal-to-noise ratio at the output of this stage is determined by first multiplying the gain times the signal which gives $1 \mathrm{~V}_{\text {RMS }}$ with a resultant noise of $400 \mu \mathrm{~V}_{\text {RMS }}$. The signal-to-noise ratio is calculated as

EQ 5.

$$
S / N \quad 20 \log _{10}\left(1.0 / 4 \times 10^{-4}\right)=68 d B
$$

This is quite adequate for good quality audio applications.

Next, assume that the bandwidth is cut to 3.0 kHz with an input of 1 mV RMs. The stage gain is kept at 40 dB . The total noise is calculated below. The RMS noise is modified by the ratio of the root of the noise channel bandwidths.

$$
\left[\frac{\sqrt{3 \times 10^{3}}}{\sqrt{20 \times 10^{3}}}\right] \cdot E n=1.6 \mu V_{R M S}
$$

EQ 6.
$100 \mathrm{mV}_{\text {RMS }}$ and a $56 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$, and an output noise of 0.16 mV . Following this with a 10 kHz band limited gain-of-10 second-stage, with a $100 \mathrm{k} \Omega$ noise source at the non-inverting input, the combined S / N is calculated as follows: (assume a 100Ω source resistance from amplifier \#1)
The Second stage output noise is:

$$
\begin{aligned}
& {\left[\sqrt{\left(0.163 \times 10^{-3}\right)^{2}+(\sqrt{4 K T \cdot 100 \cdot 10,000})^{2}}\right] \cdot 10 } \\
&=1.6 \mathrm{mV}
\end{aligned}
$$

$K=$ Boltzman'sConstant $=$

$$
\begin{array}{r}
1.38 \times 10^{-23} \frac{\text { Joule }}{\text { DegKelvin }} \\
T=300^{\circ} \mathrm{K} ; B W=10 \mathrm{kHz}
\end{array}
$$

The amplified output signal $=1 \mathrm{~V}_{\mathrm{RMS}}$
EQ 10.

$$
\begin{aligned}
S / N & =20 \log _{10}\left(\frac{1}{1.6 \times 10^{-3}}\right) \\
& =56 d B
\end{aligned}
$$

Note that there is no effect from the second-stage thermally generated resistor noise due to the dominating effect of the first-stage amplified noise being much greater than the input noise of the second-stage. In addition the equivalent noise resistance of the second-stage is essentially the output resistance of the first-stage plus any series resistance used in coupling the two. This is the parallel combination of source resistance with input terminating or biasing resistance.

VII. LOW HARMONIC DISTORTION

The NE/SA5234 is extremely well adapted to reducing harmonic distortion as it relates to signal level and head room in audio and instrumentation circuits. Its unique internal design limits overdrive induced distortion to a level much below that experienced with other low voltage devices. As will be shown, the device is capable of operating over a wide supply range without causing the typical clipping distortion prevalent in companion operational amplifiers of this class.
A series of tests are shown to allow you to see just how resistant this device is to generating clipping distortion. Two different gain configurations were chosen to demonstrate this particular feature: unity gain non-inverting and 40 dB non-inverting. The test set-up was as shown in Figure 9. The Harmonic Distortion analyzer used to make the measurements was a Storage

Figure 10.
Technology ST1700. The test frequency is 1 kHz . For single supply operation, as previously covered, the amplifier should be biased to half the supply voltage to minimize distortion. Operation with dual supplies is simpler from a parts count standpoint as isolation capacitors are not required. Also the time constants associated with charging and discharging these is eliminated.
Figure $10 \mathrm{a}, \mathrm{b}$ and c shows the total harmonic distortion in percent versus input voltage level at 1 kHz in $\mathrm{V}_{\mathrm{RMS}}$ for a non-inverting, unity gain NE5234. The load on the amplifier output is 10 k . Beginning with a supply voltage of 1.8 V and an input level of $0.1 \mathrm{~V}_{\text {RMs }}$, distortion is well below 0.2% ad remains there up to an input level just over $0.5 \mathrm{~V}_{\text {RMS }}$ ($1.4 \mathrm{~V}_{\text {P-P }}$) and increases to 0.4% for for $0.6 \mathrm{~V}_{\text {RMS }}$ (1.7V $\mathrm{V}_{\text {P-p }}$).

For a 2 V supply, the input levels increase to $0.65 \mathrm{~V}_{\mathrm{RMS}}$ and $0.7 \mathrm{~V}_{\mathrm{RMS}}$, respectively for similar levels of distortion. With a supply voltage of 3.0 V the input may be increased to $1 V_{\text {RMS }}$ before THD rises to 0.2% and 1.1 $\mathrm{V}_{\text {RMS }}$ for only 0.8% THD. Operation with a 600Ω load will only raise the THD figures slightly. By way of comparison, Figure 10 c shows the greatly reduced dynamic range experienced when an LM324 is plugged into the test socket in place of the NE5234. Note that The THD is completely off scale for the case of 1.8 and 2.0 V supply, then is barely usable for the low level end of the 3.0 V supply example. Figure 11a, b, and c demonstrates the effect on harmonic distortion when closed loop gain is increased to 40dB in the non-inverting mode. It is evident that little increase in THD levels result. The graphs for
the 2.0 and 3.0 V supply case also include additional information on the effect of a 600Ω load on distortion.

VIII. GAIN-BANDWIDTH VS CLOSED LOOP FREQUENCY RESPONSE

Figure 5 shows the small signal frequency response of the NE5234 versus closed-loop gain in dB. The test circuit is shown in Figure 6. The plot is taken from measured data and thus shows how each value of closed-loop gain coincides with the open-loop response curve. The NE/SA5234's open-loop gain response has a uniform $6 \mathrm{~dB} /$ octave roll-off which continues beyond 2.5 MHz . This factor guarantees each op amp in the IC a high stability in virtually any gain configuration. In making these measurements, dual supplies of $\pm 2.5 \mathrm{~V}$ were used in order to allow a grounded reference plane and no coupling capacitors which might cause frequency related errors.
A critical parameter which affects the reproduction quality of complex waveforms is the gain-bandwidth-product of the operational amplifier. Essentially, this is a measure of the maximum frequency handling characteristics of any operational amplifier for a given closed-loop gain. As is evident from the graph, the NE/SA5234 has a 2.5 MHz unity gain cross-over frequency...much higher than most other low voltage op amps. For comparison, the $\mu \mathrm{A} 741$ has a gain-bandwidth-product of 1 MHz , as do the LM324 and the MC3403.

IX. LOOP-GAIN

The dynamic signal response of any closed-loop amplifier stage is a function of the Loop-gain of that particular stage. Loop-gain is equal to the open-loop gain in dB , at a given frequency, minus the closed-loop gain of the stage. The greater the Loop-gain, the lower the transfer function error of the device. Essentially, any parametric error is reduced by the factor of the Loop-gain. This includes output resistance and output signal voltage accuracy. It is good practice then to maximize Loop-gain to the degree that stage gain may be sacrificed for bandwidth. In some cases it is actually better to use two stages of gain in order to preserve signal quality than to use one high gain stage. Of course, there is a trade-off between the aforementioned factors that affect the signal-to-noise ratio of the stage and
optimizing the Loop-gain. For example, a voice-band audio stage which requires 3 kHz bandwidth, should be limited to a closed-loop gain of 40 dB for lowest distortion in the output signal. For higher quality audio applications requiring a 20 kHz bandwidth, the closed-loop gain must be limited to 20 dB . This results in a Loop-gain of 20 dB at the highest signal frequency.

A second consideration in the list of frequency dependent parameters is the effect of amplifier slew rate. Not only is it frequency dependent but it is also a function of signal amplitude, as we shall see in the next section.

X. SLEW RATE RESPONSE

The slew rate of an operational amplifier determines how fast it can respond to a signal, and is measured in
volts-per-microsecond. The NE5234 has a typical slew rate of $0.8 \mathrm{~V} / \mu \mathrm{s}$. Let us see just what this means in terms of signal handling capability. If a sinusoidal input signal, V_{S}, is used as reference, it is specified by its frequency and peak amplitude, V_{P} as follows:
$V_{S}=V_{P} \sin (2 \pi f t)$
EQ. 13

Slew Rate (SR) is the time-rate-of-change of the signal voltage during any complete cycle, that is over the range of 0 to 2π. This amounts to taking the time derivative of the sine wave which results in multiplying the cosine by the factor ' $2 \pi f$ '.

An example of the trade off between signal amplitude and frequency is shown below for the NE5234 slew rate of $0.8 \mathrm{~V} / \mathrm{\mu s}$. As shown in Figure 13, the maximum allowable amplitude signal which can be reproduced is determined by the slew rate response line which gives peak output volts versus frequency in Hertz.

Mathematically, slew rate is determined, by the equation below, as the derivative of the sine wave signal. The resultant slew rate function changes with both frequency and amplitude.

Slew Rate $=V_{P}(2 \pi f) \cos (2 \pi f t)$

Note that maximum slew rate occurs where the input sine wave signal crosses the values of $0, \pi$, and 2π on the radian axis. To get a feel for what this means in regards to the typical low voltage circuit, let us consider a $1 \mathrm{~V}_{\text {RMS }}$ sinusoidal input to a unity gain amplifier. The peak voltage in the above equation is 1.414 V . One can then calculate the required slew rate to faithfully reproduce this signal for various signal frequencies. Or with a given slew rate and a required peak signal amplitude, the maximum frequency before slew rate limiting occurs may be determined. For example using the above amplitude of $1 \mathrm{~V}_{\text {RMS }}$, and the slew rate of the NE5234 which is $800,000 \mathrm{~V} / \mathrm{sec}$, one determines that the highest frequency component which may be reproduced before slew rate distortion occurs is:

Figure 14. Single Supply Blasing in Cascade
$800,000 \mathrm{~V} / \mathrm{sec} / 2 \pi \cdot 1.414$ volts peak $=$ $90,090 \mathrm{~Hz}$. A graphical representation of this relationship is shown in Figure 13. By using this graph along with the information in the preceding Figure 10 and Figure 11, which relate usable signal levels versus power supply voltage, the dynamic behavior of a particular design may be predicted. For instance, given a single supply configuration operating at 2.0 V , Figure 10 b shows an upper limit to input amplitude of $0.7 \mathrm{~V}_{\text {RMS }}$, or about 1V peak for 1% THD. Using this level with the data in Figure 13 leads to a figure of 116 kHz as an upper frequency limit for a unity gain amplifier stage operating at 2V DC.

$$
\begin{aligned}
\frac{d V_{S}}{d t} & =V_{P} \omega \cos \omega t \\
& =\text { Slew Rate }
\end{aligned}
$$

EQ 14.

XI. PROCEDURES

Single Supply Operation

When the NE/SA5234 is used in an application where a single supply is necessary, input common-mode biasing to half the supply is recommended for best signal reproduction. Referring to Figure 14, a simplified inverting amplifier input stage is shown with the simplest form of resistive divider biasing. The value of the divider resistance R is not critical and may be increased above the $10 \mathrm{k} \Omega$ value shown as long as the bias current does not interfere with accuracy due to DC loading error. However the divider junction must be kept at a low AC impedance This is the purpose of bypass capacitor C_{S}. Its use provides transient suppression for signais coming from the supply bus. A low cost $0.1 \mu \mathrm{~F}$ ceramic disk or chip capacitor is recommended for suppressing fast transients in the microsecond and sub-microsecond region.

Foil capacitors are simply too inductive for any high frequency bypass application and should be avoided. If low frequency noise such as 60 Hz or 120 Hz ripple is present on the supply bus, an electrolytic capacitor is added in parallel as shown. The common-mode input source resistance, R_{S}, should also be matched within a reasonable tolerance for maximizing the rejection of induced AC noise.
The output of the first stage is now fixed at the common mode bias voltage and the amplified AC signal is referenced to this constant value. Capacitive coupling to the inverting input is of course required to prevent the bias voltage from being multiplied by the stage gain. Second stage biasing may now be provided by the output voltage of the first stage if non-inverting operation is used in the former. For lowest noise in a high gain input stage, the magnitude of the input source resistance is critical; low values of resistance are preferred over high values to minimize thermally generated noise.

Non-Inverting Stage Biasing

Non-inverting operation of an amplifier stage with single supply is similar to the previous example but the bias resistor R_{S} must now be sufficiently high to allow the signal to pass without significant attenuation. The input source resistance reflects the output resistance of the preceding stage or other sourcing device such as a bridge circuit of relatively high impedance. A simple rule of thumb is to make the bias resistor an order of magnitude larger than the generator resistance. Again the feed back network must be terminated capacitively. In this case R1 and the generator resistance should be matched and then R_{S} is matched to the feedback resistance, R_{F}.

In all cases proper bypassing of the NE5234 supply leads (Pins 4 and 11) is very important particularly in a high noise environment. Bypass capacitors must be of ceramic construction with the shortest possible leads to keep inductance low. Chip capacitors are superior in this respect complimenting the increased use of surface mounted integrated devices. Note that both the NE5234D and the automotive grade SA5234D are available and are the surface mount versions of the device.

Figure 15. Non-Inverting Blasing

APPLICATIONS EXAMPLES

Instrumentation

Strain Gauge Bridge Amplifier

The circuit below shows a simple strain gauge circuit with a gain of $100(40 \mathrm{~dB})$ and operated from a single supply. The chart illustrates the transfer function of the circuit for a single order-of-magnitude signal differential range from the bridge beginning with 5 mV up to 50 mV . The circuit is operated from a single 5 V supply, but could equally as well be configured to use a dual balanced supply. It is immediately evident that the wide common-mode output range of the NE5234 is very advantageous in handling this wide range of signals with good linearity due to this feature.

A variation on this particular idea is the remote strain gauge circuit operating from a three wire line, one of which is the shield. This full-differential input circuit has balanced

Figure 16. A 4-20mA Current Loop

$\left\|\mathrm{V}_{2}-\mathrm{V}_{1}\right\|$	V_{0}
5.9 mV	0.5 V
25.6 mV	2.50 V
46.6 mV	4.63 V

S.G.: Matched Strain Gauge elements

Figure 17. Strain Gauge Amplifier

Figure 18. Remote Strain Gauge

input resistance to afford good common-mode noise rejection characteristics. Resistors are metal film or deposited carbon. Supply leads must be carefully bypassed close to the NE/SA5234 with ceramic or chip monolithic capacitors to give optimum noise performance. As shown, an auxiliary sub-regulator may be added to improve the overall DC stability of the bridge signal voltage. A regulator capable of providing the necessary few milliamperes at somewhat reduced voltage for the transducer is shown in one of the following examples. This makes use of one of the op amps in the same device package to provide the voltage regulation. Note that the use of multiple op amps within a single package minimizes the possibility of thermal drift and mismatched response from various DC parameters.

Multiple sets of transducers may be constructed from The NE/SA5234 or the NE5234D surface mount device to form a compact and stable instrumentation package. This is useful for transducer applications in the measurement of pressure, strain, position and temperature, which have similar circuit configurations. First order temperature compensation of the transducers such as semiconductor strain gauges, or resistive units may be achieved by using one of the gauges as a reference device only. It is thermally coupled to the same member as the active gauge, as shown in the example. (Figure 18)

A 4 to 20mA Current Loop

Some instrumentation installations require the $4-20 \mathrm{~mA}$ current loop. This addition to the above bridge transducer circuit examples is demonstrated in Figure 16.
This circuit makes use of the remote transducer bridge previously described and adds current loop signaling capability. The voltage-to-current converter consists of an additional op amp from the same NE/SA5234 package combined with a single transistor to drive the current loop. The sensitivity is actually in mAV , or transconductance, which is equal to $1 / R_{S H}$. This sensitivity in this particular example is set to $4 \mathrm{~mA} / \mathrm{V}$. Thus, with a bridge amplifier having a differential gain of 100 , an input of 10 mV will produce a 4 mA output current and 50 mV will produce a 20 mA output. Of course the line resistance plus receiver resistance must be within the voltage compliance range of the supply voltage to guarantee linear operation over the total range. A negative supply may be used if it is preferred to have the current loop referenced to ground.

DC Regulators and Servos

Closely related to DC and low frequency AC linear transducers are DC regulators and servo circuits. The proliferation of many battery, and solar powered remote instrumentation packages results in a need for adaptable circuits which may readily be made up from existing stock IC's. The examples given here are quite simple, but can be very useful to the designer when economy and size are at a premium.

Solar Regulator for 3-Volt CMOS

Working with small instrumentation packages which are to operate from solar photovoltaic cells may bring a need for simple sub-regulators for MOS circuits requiring only a few milliamperes of drain current.
Figure 19 shows a simple low voltage regulator making use of the particularly excellent DC characteristics of the

NE/SA5234. The regulator becomes an integral part of any functional analog signal processing package such as an environmental data instrumentation unit. The low current drain of the the typical 3 V or 5 V MOS digital IC allows one sub regulator to serve up to 10 or more such devices. If the instrument package is to be subjected to wide temperature variations, the SA5234 is recommended. A second op amp in the package may serve as a low battery alarm with tone modulator as in radio links, or simple logic level comparator. Overcurrent protection is easily added within the regulator loop to detect short circuit failures and automatically limit the current.

DC Servo-amps

Servo control systems for low voltage motor drives require high gain-accuracy and good

DC stability for many applications. Applications such as the position control of air flow vanes, servo valves, and optical lenses or apertures, are typical examples. Figure 20 demonstrates one simple DC motor servo application with position control feedback. The motor is a 3 V permanent magnet rotor type used in micro-position applications and is adaptable to battery supply environments.
Position information is received from a multi-turn potentiometer to give adequate resolution. The input voltage may be generated from another potentiometer which is remote from the motor drive unit proper, or from a D/A converter output for micro processor controlled systems. The input voltage range is 1.0 to 3.0 V and the supply voltage is 4.5 V .

Figure 20. Full Bridge Motor Drive

Active filters

The NE5234 is easily adapted to use in a variety of active filter applications. Its high open-loop gain and excellent unity gain stability make it ideal for high-pass, band-pass and low-pass configurations operated with low voltage single supplies. Its low output impedance also makes it capable of obtaining low noise operation without resorting to separate high current buffers.

Figure 21a shows the circuit for a VCVS low-pass filter with dual supply biasing and 600Ω output termination. Figure Figure 21b is a band-pass filter with AC coupled gain network for single supply operation.

Communications and Audio

Stereo Bridge Amplifier

Figure 22 shows two NE5234 ICs in a bridge amplifier application. The choice of split supplies allows DC coupling, both from the input signal source and to the load. The gain is set to a nominal 20 dB . Either inverting or non-inverting operation is available. The inverting input impedance is chosen as 600Ω in order to match standard audio impedance lines within a system. The use of two such amplifiers will provide stereo operation to +10 dBm for a 600Ω load.

Voice Operated Microphone

The processing of voice transmissions for communications channels is generally coupled with the need for keeping the signal-to-noise ratio high and the intelligibility optimized for a given channel bandwidth. In addition, when a circuit is battery operated and portable, the requirement to obtain maximum battery life becomes important. The circuit example shown here is aimed at filling the need for a portable voice operated transmitter, cordless phone, or tape recorder. It utilizes the Signetics NE5234 quad op amp in conjunction with the new low-voltage NE578 compandor to create an audio processor capable of operating in just such an environment. Both devices are operational to a low battery voltage of 2.0 V . In addition the design further conserves current by automatically shifting the NE578 compandor to standby during the period when no transmissions are being made. Total current consumption at 3.0 V is 2.8 mA for the NE5234. In the active mode the NE578 draws 1.4 mA and this drops to $170 \mu \mathrm{~A}$ in the standby mode. This amounts to reducing the supply current demand by approximately 25% in the 'listen mode'.

Figure 23 shows the VOX audio circuit example. A description of its operation for voice activated transmission follows.

Audio generated by the electret microphone is fed into the non-inverting input of preamp A 1 and the signal amplified by 12 dB . The biasing is accomplished by the resistive divider which provides a level of half the supply voltage which is connected through a 100 k resistor to the non-inverting terminal of A1. This automatically provides ratiometric common mode biasing set at $\mathrm{V}_{\mathrm{cc}} / 2$ for the device. This level is then transferred directly
to the following amplifier, $A 2$, setting its $D C$ operating point. The DC gain of both stage A1 and A2 are unity so the cumulative DC error is not multiplied by stage gain. The peak voice level is approximately 100 mV VMS at the input to $A 1$ from the microphone and this is boosted to 400 mV RMs. The feedback network gain has a low frequency corner at 160 Hz and is flat up to the intersection of the closed loop gain with the open loop gain curve at nearly 500 kHz . This would increase the noise bandwidth to an excessive degree unnecessary for voice channel communication. A band limiting network is, therefore, inserted across the feedback resistor to limit response to a nominal 5 kHz .
Amplifier stage A2 is used to provide high level audio to the rectifier-filter stage for the rapid generation of a DC control signal for operating the voice activated switch function. Stage A2 gain is set to 20 dB in order to allow activation of the voice channel on the rising edge of the first voice syllable. An attack time of 20 ms is implemented by adjusting the input charging impedance (R_{S}) between the rectifier and the A2 amplifier output. AC coupling must be used to isolate the DC common-mode voltage of the amplifier from the rectifier/storage capacitor and to allow only audio frequencies to drive the switching circuit. Amplifier A3 provides a high impedance unity gain buffer to allow a very slow decay rate to be applied to the time constant capacitor, C_{T}. The output of the storage capacitor reaches approximately 3.2 V for a 250 ms duration 600 Hz burst signal. Diode D1 (1N914) provides a negative clamp action

Figure 23. VOX Audio System
which forces the full peak-to-peak voltage from A2 to charge the storage capacitor. D2 then acts to charge the capacitor to the peak input voltage minus one diode drop, 0.7 V . Finally, the buffered DC control signal is fed to A4 which acts as a threshold comparator with extremely high gain and controlled hysteresis. This provides a positive going signal for releasing the NE578 from its inhibit mode when voice input is present. The NE578 is switched from standby mode when voice input is present. The NE578 is switched from standby mode to the active state by raising the voltage on Pin 8 of the device above 2 V . Shutting the audio channel off requires this pin to be driven below 100 mV . This demands the extremely wide output voltage swing of the NE5234 in order to reach this near to the negative rail voltage. The voltage threshold of the comparator, A4, is adjustable by use of the sensitivity control, $\mathrm{R}_{\mathbf{S}}$. It is used to allow the activation level to be raised or lowered depending upon the ambient audio level in the transmitter vicinity.
Other critical parameters in this type of circuit are the attack and decay times of the RC network which controls the operation of the voice operated switch. Attack time determines how quickly the circuit activates after a quiet period, and the decay time sets
how long the transmitter channel stays active between words. It is important to reach an optimum balance between the two time constants in order to allow unbroken transmissions of good quality and no lost syllables. A 100 to 1 attack/decay ratio is used in this particular application and this is primarily set by the value of R_{A} and R_{D}. A typical delay of two seconds is easily accomplished. Due to extremely high input impedance of the buffer stage $A 3, R_{D}$ may be in the 1 to $2 M \Omega$ range allowing a reasonable value of storage capacitor to be used.

The Audio Channel

Audio input from the preamplifier, A1, is fed directly to Pin 14 of the NE578 compandor. Referring to Figure 24, which shows the internal diagram of the device, it can be seen that this is the compressor portion of the NE578. There is the option in this system to operate either in a 2:1 compressor mode or an automatic level control mode, (ALC). The compressor mode simply makes a $2: 1$ reduction in the amplitude dynamic range of the input signal and brings it up to the chosen nominal 0 dB output level which is programmable from $10 \mathrm{mV}_{\text {RMS }}$ to $1 \mathrm{~V}_{\text {RMS. }}$. In this particular example it is programmed for a OdB level of $0.42 \mathrm{~V}_{\mathrm{RMS}}$ which is approximately $1 \mathrm{~V}_{\text {p.p. }}$. This allows for a standardized output
level with good characteristics for FM modulation where peak deviation must be controlled. Figure 25 shows the input-output characteristics of the compressor and ALC. The compressor also has an attack time determined by capacitor C6 on Pin 11. Attack time is 10 k * C 6 , decay time equals four times this value. An auxiliary amplifier stage is used following the NE578 in order to allow bandwidth and special forms of equalization to be implemented. Note that 2:1 compression in a transmission will enhance the channel dynamic range and may be used with no further processing at the receiver, but feeding the received signal through the complimentary 2:1 expandor will achieve even greater enhancement of the recovered audio. The NE578 contains both operations in the same package. Please refer to Signetics applications note AN1762 by Alvin K. Wong for complete information on these compandor circuits using the NE578.

Fiber Optic Receiver for Low
 Frequency Data (Figure 26)

This application makes use of the NE/SA5234 to detect photo-optic signals from either fiber or air transmitted IR (Infra-red) pulses. The signal is digitally encoded for the highest signal-to-noise ratio. The received
signal is sensed by an IR photo diode which has its cathode biased to half the supply voltage (2.5 V). The first gain stage is configured as a transimpedance amplifier to allow conversion from the microampere diode current signals to a voltage output of approximately 10 mV . .p. The second stage provides a gain-of-ten amplifier to raise this signal level to 1 V peak amplitude. This stage is directly coupled from the preamplifier stage in order to provide the necessary common-mode voltage of 2.5 V . Its gain control network is capacitively coupled to prevent DC gain as is required in single supply configurations. Since this is essentially a pulse gain stage, low frequency gain below the signal repetition rate is not needed. The third stage acts in a limiting amplifier configuration and its output is squared to swing approximately 5 V , the standard TTL level. Again common-mode
biasing is passed along from each of the stages up to the last in order minimize parts and simplify circuit layout. The final stage is a simple buffer amplifier to allow the receiver to drive a low impedance long wire line of 600Ω to 900Ω resistance. Some rise time response adjustment may be required. This is easily achieved following stage three by using $\mathrm{R}_{T}-\mathrm{C}_{T}$ to limit the rate of change of the signal voltage prior to the buffer. Note that the last stage acts as a zero-crossing detector. This maximizes noise immunity by allowing a transition only after the third stage output voltage has risen above $2 / 3 \mathrm{~V}_{c c}$. Phase inversion may be accomplished, if the logic level signals are polarity reversed, by making stage 3 inverting and AC coupling the input signal with a sufficiently large capacitor to reduce droop. Stage 3 must then be biased by connecting its non-inverting node to bias point ' A '. This provides a 2.5 V
threshold for the proper switching operation of the stage. However, care must be taken not allow the network's time constant to become code dependent as to the average low frequency signal components or errors will result in the output signal.

The advantage of this particular circuit is that it has the simplicity of single supply operation along with the capability of a large output swing making it fully TTL compatible

REFERENCES:

Signetics, a North American Philips Company. Linear Data Manual, Volume 2 : Industrial. Sunnyvale: 1988.

Wong, Alvin K. Companding with the NE577 and NE578..Signetics Applications Note AN1762: September 1990.

${ }^{*}$ R1, R2 and R3 are 1\% resistors.
Figure 24. Block Diagram of NE578 Test and Application Circuit

Figure 25. NE570/571/SA571 System Level

Figure 26. Fiber Optic Data Receiver

DESCRIPTION

The NE/SE5539 is a very wide bandwidth, high slew rate, monolithic operational amplifier for use in video amplifiers, RF amplifiers, and extremely high slew rate amplifiers.

Emitter-follower inputs provide a true differential input impedance device. Proper external compensation will allow design operation over a wide range of closed-loop gains, both inverting and non-inverting, to meet specific design requirements.

FEATURES

- Bandwidth
- Unity gain - 350MHz
- Full power - 48 MHz
- GBW - 1.2 GHz at 17 dB
- Slew rate: $600 / \mathrm{N} \mu \mathrm{s}$
- Avol: 52dB typical
- Low noise $-4 n \mathrm{~V} V \mathrm{~Hz}$ typical
- MIL-STD processing available

APPLICATIONS

- High speed datacom
- Video monitors \& TV
- Satellite communications
- Image processing
- RF instrumentation \& oscillators
- Magnetic storage
- Military communications

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
14-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE5539N	0405 B
14-Pin Plastic Small Outline (SO) package	0 to $+70^{\circ} \mathrm{C}$	NE5539D	0175 D
14-Pin Ceramic Dual In-Line Package	0 to $+70^{\circ} \mathrm{C}$	NE5539F	0581 B
14-Pin Ceramic Dual In-Line Package	-55 to $+125^{\circ} \mathrm{C}$	SE5539F	0581 B

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Supply voltage	± 12	V
PDMAX	Maximum power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still-air) ${ }^{2}$ F package N package D package	$\begin{aligned} & 1.17 \\ & 1.45 \\ & 0.99 \end{aligned}$	$\begin{aligned} & W \\ & W \\ & W \end{aligned}$
T_{A}	Operating temperature range NE SE	$\begin{gathered} 0 \text { to } 70 \\ -55 \text { to }+125 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
TJ	Max junction temperature	150	${ }^{\circ} \mathrm{C}$
TSOLD	Lead soldering temperature (10sec max)	+300	${ }^{\circ} \mathrm{C}$

NOTES:

1. Differential input voltage should not exceed 0.25 V to prevent excesive input bias current and common-mode voltage 2.5 V . These voltage limits may be exceeded if current is iimited to iess than 10 mA .
2. Derate above $25^{\circ} \mathrm{C}$, at the following rates:

F package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
N package at $11.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D package at $7.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

EQUIVALENT CIRCUIT

DC ELECTRICAL CHARACTERISTICS

$V_{C C}= \pm 8 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS		SE5539			NE5539			UNITS	
				MIN	TYP	MAX	MIN	TYP	MAX		
$\mathrm{V}_{\text {os }}$	Input offset voltage	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \Omega$	Over temp		2	5				mV	
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	3		2.5	5	mV	
	$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$				5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
los	Input offset current		Over temp		0.1	3				$\mu \mathrm{A}$	
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1	1			2	$\mu \mathrm{A}$	
	$\Delta \mathrm{los} / \Delta \mathrm{T}$				0.5			0.5		$n{ }^{\circ}{ }^{\circ} \mathrm{C}$	
I_{B}	Input bias current		Over temp		6	25				$\mu \mathrm{A}$	
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	13		5	20	$\mu \mathrm{A}$	
	$\Delta \\|_{B} / \Delta T$				10			10		$\mathrm{nA}^{\circ} \mathrm{C}$	
CMRR	Common mode rejection ratio	$\mathrm{F}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{~V}_{\text {CM }} \pm 1.7 \mathrm{~V}$		70	80		70	80		dB	
			Over temp	70	80					dB	
RIN	Input impedance				100			100		$\mathrm{k} \Omega$	
R OUT	Output impedance				10			10		Ω	

DC ELECTRICAL CHARACTERISTICS (Continued)

$V_{C C}= \pm 8 V, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS		SE5539			NE5539			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Vout	Output voltage swing	$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =150 \Omega \text { to } \mathrm{GND} \text { and } \\ & 470 \Omega \text { to }-V_{\mathrm{CC}} \end{aligned}$	+Swing -Swing				$\begin{aligned} & \hline+2.3 \\ & -1.7 \end{aligned}$	$\begin{aligned} & \hline+2.7 \\ & -2.2 \end{aligned}$		V
Vout	Output voltage swing	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=25 \Omega \text { to } \mathrm{GND} \\ \text { Over temp } \end{gathered}$	+Swing -Swing	$\begin{aligned} & \hline+2.3 \\ & -1.5 \end{aligned}$	$\begin{aligned} & +3.0 \\ & \hline-2.1 \end{aligned}$					V
		$\begin{gathered} \mathrm{R}_{\mathrm{L}}=25 \Omega \text { to } \mathrm{GND} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	+Swing -Swing	$\begin{aligned} & +2.5 \\ & -2.0 \end{aligned}$	$\begin{aligned} & +3.1 \\ & -2.7 \end{aligned}$					V
Icc_{+}	Positive supply current	$\mathrm{V}_{\mathrm{O}}=0, \mathrm{R}_{1}=\infty$, Over temp			14	18		2.8	3.5	mA
		$\mathrm{V}_{\mathrm{O}}=0, \mathrm{R}_{1}=\infty, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			14	17		14	18	mA
Icc.	Negative supply current	$\mathrm{V}_{0}=0, \mathrm{R}_{1}=\infty$, Over temp			11	15		2.8	3.5	mA
		$\mathrm{V}_{0}=0, R_{1}=\infty, T_{A}=25^{\circ} \mathrm{C}$			11	14		11	15	mA
PSRR	Power supply rejection ratio	$\Delta \mathrm{V}_{C C}= \pm 1 \mathrm{~V}$, Over temp			300	1000				$\mu \mathrm{V} / \mathrm{N}$
		$\Delta \mathrm{V}_{C C}= \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						200	1000	$\mu \mathrm{V} / \mathrm{N}$
Avol	Large signal voltage gain	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=+2.3 \mathrm{~V},-1.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \\ \mathrm{GND}, 470 \Omega \text { to }-\mathrm{V}_{\mathrm{CC}} \end{gathered}$					47	52	57	dB
Avol	Large signal voltage gain	$\mathrm{V}_{\mathrm{O}}=+2.3 \mathrm{~V},-1.7 \mathrm{~V}$	Over temp		\because					dB
		$\mathrm{R}_{\mathrm{L}}=2 \Omega$ to GND	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				47	52	57	
Avol	Large signal voltage gain	$\begin{gathered} V_{\mathrm{O}}=+2.5 \mathrm{~V},-2.0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=2 \Omega \text { to GND } \end{gathered}$	Over temp $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	46	53	60				dB

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}= \pm 6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS			SE5539			UNITS
					MIN	TYP	MAX	
$\mathrm{V}_{\text {os }}$	Input offset voltage			Over temp		2	5	mV
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	3	
los	Input offset current			Over temp		0.1	3	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1	1	
I_{B}	Input bias current			Over temp		5	20	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	10	
CMRR	Common-mode rejection ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 1.3 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \Omega$			70	85		dB
ICC_{+}	Positive supply current			Over temp		11	14	mA
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		11	13	
Icc.	Negative supply current			Over temp		8	11	mA
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{CmA}$		8	10	
PSRR	Power supply rejection ratio	$\Delta \mathrm{V}_{\mathrm{CC}}= \pm 1 \mathrm{~V}$		Over temp		300	1000	$\mu \mathrm{V} / \mathrm{V}$
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				
Vout	Output voltage swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=150 \Omega \text { to } \mathrm{GND} \\ & \text { and } 390 \Omega \text { to }-\mathrm{V}_{\mathrm{CC}} \end{aligned}$	Over	+Swing	+1.4	+2.0		V
			temp	-Swing	-1.1	-1.7		
			$\mathrm{T}_{\mathrm{A}}=$	+Swing	+1.5	+2.0		
			$25^{\circ} \mathrm{C}$	-Swing	-1.4	-1.8		

AC ELECTRICAL CHARACTERISTICS
$V_{C C}= \pm 8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $G N D$ and 470Ω to $-\mathrm{V}_{\mathrm{CC}}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	SE5539			NE5539			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
BW	Gain bandwidth product	$\mathrm{A}_{C L}=7, \mathrm{~V}_{0}=0.1 \mathrm{~V}_{\text {P-P }}$		1200			1200		MHz
	Small signal bandwidth	$\mathrm{A}_{\mathrm{CL}}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega^{1}$		110			110		MHz
ts	Settling time	$\mathrm{A}_{C L}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega^{1}$		15			15		ns
SR	Slew rate	$\mathrm{A}_{\mathrm{CL}}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega^{1}$		600			600		V/ $/ \mathrm{s}$
tpD	Propagation delay	$A_{C L}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega^{1}$		7			7		ns
	Full power response	$A_{C L}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega^{1}$		48			48		MHz
	Full power response	$A_{V}=7, R_{L}=150 \Omega^{1}$		20			20		MHz
	Input noise voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, 1 \mathrm{MHz}$		4			4		$\mathrm{nV} / \mathrm{NHz}$
	Input noise current	1 MHz		6			6		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

NOTES:

1. External compensation.

AC ELECTRICAL CHARACTERISTICS

$V_{C C}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND and 390Ω to $-\mathrm{V}_{\mathrm{CC}}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	SE5539			UNITS
			MIN	TYP	MAX	
BW	Gain bandwidth product	$A_{C L}=7$		700		MHz
	Small signal bandwidth	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		120		MHz
ts	Settling time	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		23		ns
SR	Slew rate	$A_{C L}=2^{1}$		330		$\mathrm{V} / \mu \mathrm{s}$
$t_{\text {PD }}$	Propagation delay	$\mathrm{A}_{\mathrm{CL}}=2^{1}$		4.5		ns
	Full power response	$A_{C L}=2^{1}$		20		MHz

NOTES:

1. External compensation.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES (Continued)

CIRCUIT LAYOUT CONSIDERATIONS
As may be expected for an ultra-high

physical circuit is extremely critical.
Bread-boarding is not recommended. A
double-sided copper-clad printed circuit board
will result in more favorable system operation. An example utilizing a 28 dB non-inverting amp is shown in Figure 1.

Figure 1. 28dB Non-Inverting Amp Sample PC Layout

High frequency operational amplifier

NE5539 COLOR VIDEO AMPLIFIER

The NE5539 wideband operational amplifier is easily adapted for use as a color video amplifier. A typical circuit is shown in Figure 2 along with vector-scope1 photographs showing the amplifier differential gain and
phase response to a standard five-step modulated staircase linearity signal (Figures 3, 4 and 5). As can be seen in Figure 4, the gain varies less than 0.5% from the bottom to the top of the staircase. The maximum differential phase shown in Figure 5 is approximately $+0.1^{\circ}$.

The amplifier circuit was optimized for a 75Ω input and output termionation impedance with a gain of approximately 10 (20dB).

NOTE:

1. The input signal was 200 mV and the output 2 V . V_{CC} was $\pm 8 \mathrm{~V}$.

Figure 2. NE5539 Video Amplifier

Figure 4. Differential Gain $\mathbf{< 0 . 5 \%}$

NOTE:

Instruments used for these measurements were Tektronix 146 NTSC test signal generator, 520A NTSC vectorscope, and 1480 waveform monitor.

Figure 5. Differential Gain $\boldsymbol{+ 0 . 1}{ }^{\circ}$

Figure 6. Non-Inverting Follower

Figure 7. Inverting Follower

DESCRIPTION

The NE5592 is a dual monolithic, two-stage, differential output, wideband video amplifier. It offers a fixed gain of 400 without external components and an adjustable gain from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers.

FEATURES

- 110MHz unity gain bandwidth
- Adjustable gain from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components

APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

PIN CONFIGURATION

D, N Packages

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
14-Pin Plastic Dual In-Line Package (DIP)	0 to $70^{\circ} \mathrm{C}$	NE5592N	0405B
14-Pin Small Outline (SO) package	0 to $70^{\circ} \mathrm{C}$	NE5592D	0175 D

EQUIVALENT CIRCUIT

ABSOLUTE MAXIMUM RATINGS

$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	± 8	V
$\mathrm{~V}_{\mathrm{IN}}$	Differential input voltage	± 5	V
$\mathrm{~V}_{\mathrm{CM}}$	Common mode Input voltage	± 6	V
louT	Output current	10	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	NE5592	Storage temperature range	-65 to +150
$\mathrm{P}_{\mathrm{D} \text { MAX }}$	Maximum power dissipation,		${ }^{\circ} \mathrm{C}$
	$\mathrm{T}_{\mathrm{A}=25^{\circ} \mathrm{C} \text { (still air) }}{ }^{1}$		
	D package	1.03	W
	N package	1.48	W

NOTES:

1. Derate above $25^{\circ} \mathrm{C}$ at the following rates:

D package $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
N package $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}= \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$, unless otherwise specified. Recommended operating supply voltage is $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$, and gain select pins are connected together.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			Min	Typ	Max	
Avol	Differential voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P.P }}$	400	480	600	VN
R_{IN}	Input resistance		3	14		$\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	Input capacitance			2.5		pF
los	Input offset current			0.3	3	$\mu \mathrm{A}$
IBIAS	Input bias current			5	20	$\mu \mathrm{A}$
	Input noise voltage	BW 1 kHz to 10 MHz		4		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
$\mathrm{V}_{\text {IN }}$	Input voltage range		± 1.0			V
CMRR	Common-mode rejection ratio	$\begin{gathered} V_{C M} \pm 1 V, f<100 \mathrm{kHz} \\ V_{C M} \pm 1 V, f=5 \mathrm{MHz} \end{gathered}$	60	$\begin{aligned} & 93 \\ & 87 \end{aligned}$		$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR	Supply voltage rejection ratio	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50	85		dB
	Channel separation	$\begin{gathered} V_{\text {OUT }}=1 V_{\text {P-p; }} f=100 \mathrm{kHz} \\ \text { (output referenced) } R_{L}=1 \mathrm{k} \Omega \end{gathered}$	65	70		dB
$\mathrm{V}_{\text {os }}$	Output offset voltage gain select pins open	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$		$\begin{gathered} 0.5 \\ 0.25 \end{gathered}$	$\begin{gathered} 1.5 \\ 0.75 \end{gathered}$	$\begin{aligned} & \hline v \\ & v \end{aligned}$
$\mathrm{V}_{\text {CM }}$	Output common-mode voltage	$\mathrm{R}_{\mathrm{L}}=\infty$	2.4	3.1	3.4	V
$\mathrm{V}_{\text {OUT }}$	Output differential voltage swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	3.0	4.0		V
R OUT	Output resistance			20		Ω
Icc	Power supply current (total for both sides)	$\mathrm{R}_{\mathrm{L}=\infty}$		35	44	mA

DC ELECTRICAL CHARACTERISTICS
$V_{S S}= \pm 6 \mathrm{~V}, \mathrm{~V}_{C M}=0,0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified. Recommended operating supply voltage is $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$, and gain select pins are connected together.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			Min	Typ	Max	
Avol	Differential voltage gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	350	430	600	V/V
$\mathrm{R}_{\text {IN }}$	Input resistance		1	11		$\mathrm{k} \Omega$
los	Input offset current		\cdots		5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BIAS }}$	Input bias current				30	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IN }}$	Input voltage range		± 1.0			V
CMRR	Common-mode rejection ratio	$\begin{gathered} \mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}<100 \mathrm{kHz} \\ \mathrm{R}_{\mathrm{S}}=\phi \end{gathered}$	55			dB
PSRR	Supply voltage rejection ratio	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50			dB
	Channel separation	$\begin{gathered} V_{\text {OUT }}=1 V_{\text {P-P; }} ; f=100 \mathrm{kHz} \\ \text { (output referenced) } R_{L}=1 \mathrm{k} \Omega \end{gathered}$		70		dB
Vos	Output offset voltage gain select pins connected together gain select pins open	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	V V
V OUT	Output differential voltage swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2.8			V
Icc	Power supply current (total for both sides)	$\mathrm{R}_{\mathrm{L}=\infty}$			47	mA

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \mathrm{V}_{S S}= \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$, unless otherwise specified. Recommended operating supply voltage $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$. Gain select pins connected together.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			Min	Typ	Max	
BW	Bandwidth	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		25		MHz
t_{R}	Rise time			15	20	ns
$t_{\text {PD }}$	Propagation delay	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P.P }}$		7.5	12	ns

TEST CIRCUITS $T_{A}=25^{\circ} \mathrm{C}$ unlèss otherwise specified.

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

DESCRIPTION

The NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8 -pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.

FEATURES

- 120MHz unity gain bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components
- MIL-STD processing available

APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

PIN CONFIGURATIONS

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
14-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE592N14	0405 B
14-Pin Ceramic Dual In-Line Package (Cerdip)	0 to $+70^{\circ} \mathrm{C}$	NE592F14	O581B
14-Pin Small Outline (SO) package	0 to $+70^{\circ} \mathrm{C}$	NE592D14	0175 D
8-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE592N8	0404B
8-Pin Small Outline (SO) package	0 to $+70^{\circ} \mathrm{C}$	NE592D8	0174 C

NOTES:

N8, N14, D8 and D14 package parts also available in "High" gain version by adding " H " before package designation, i.e., NE592HDB

ABSOLUTE MAXIMUM RATINGS

$T_{A=+25^{\circ}} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	± 8	V
$\mathrm{~V}_{\text {IN }}$	Differential input voltage	± 5	V
$\mathrm{~V}_{\mathrm{CM}}$	Common-mode input voltage	± 6	V
$\mathrm{I}_{\text {OUT }}$	Output current	10	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
P $_{\text {D MAX }}$	Maximum power dissipation,		
	$\mathrm{T}_{\mathrm{A}=25^{\circ} \mathrm{C} \text { (still air) }{ }^{1}}$		
	F-14 package	1.17	W
	$\mathrm{D}-14$ package	0.98	W
	$\mathrm{D}-8$ package	0.79	W
	$\mathrm{~N}-14$ package	1.44	W
	$\mathrm{~N}-8$ package	1.17	W

NOTES:

1. Derate above $25^{\circ} \mathrm{C}$ at the following rates:

F-14 package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D-14 package at $7.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D-8 package at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{N}-14$ package at $11.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{N}-8$ package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

$T_{A}=+25^{\circ} \mathrm{C} \mathrm{V}_{S S}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0$, unless otherwise specified. Recommended operating supply voltages $\mathrm{V}_{\mathrm{S}}=+6.0 \mathrm{~V}$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			UNIT
			Min	Typ	Max	
Avol	Differential voltage gain, standard part Gain 1^{1} Gain $2^{2,4}$ High gain part	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	$\begin{gathered} 250 \\ 80 \\ 400 \end{gathered}$	$\begin{aligned} & 400 \\ & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & 600 \\ & 120 \\ & 600 \end{aligned}$	$\begin{aligned} & \mathrm{V} N \\ & \mathrm{~V} N \\ & \mathrm{~V} N \end{aligned}$
$\mathrm{R}_{\text {IN }}$	```Input resistance Gain 11 Gain 2 2,4```		10	$\begin{aligned} & 4.0 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input capacitance ${ }^{2}$	Gain 2^{4}		2.0		pF
los	Input offset current			0.4	5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BIAS }}$	Input bias current			9.0	30	$\mu \mathrm{A}$
$\mathrm{V}_{\text {NOISE }}$	Input noise voltage	BW 1 kHz to 10 MHz		12		$\mu \mathrm{V}_{\text {RMS }}$
$\mathrm{V}_{\text {IN }}$	Input voltage range		± 1.0			V
CMRR	Common-mode rejection ratio Gain 2^{4} Gain 2^{4}	$\mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}<100 \mathrm{kHz}$ $V_{C M} \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$	60	$\begin{aligned} & 86 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR	Supply voltage rejection ratio Gain 2^{4}	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50	70		dB
Vos	$\begin{aligned} & \text { Output offset voltage } \\ & \text { Gain } 1 \\ & \text { Gain } 2^{4} \\ & \text { Gain } 3^{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$		0.35	$\begin{gathered} 1.5 \\ 1.5 \\ 0.75 \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \hline \end{array}$
$\mathrm{V}_{\text {CM }}$	Output common-mode voltage	$\mathrm{R}_{\mathrm{L}}=\infty$	2.4	2.9	3.4	V
V OUT	Output voltage swing differential	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	3.0	4.0		V
R OUT	Output resistance			20		Ω
Icc	Power supply current	$\mathrm{R}_{\mathrm{L}}=\infty$		18	24	mA

NOTES:

1. Gain select Pins $G_{1 A}$ and $G_{1 B}$ connected together.
2. Gain select Pins $G_{2 A}$ and $G_{2 B}$ connected together.
3. All gain select pins open.
4. Applies to 14 -pin version only.

Video amplifier

DC ELECTRICAL CHARACTERISTICS

$D C$ Electrical Characteristics $\mathrm{V}_{S S}= \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0,0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified. Recommended operating supply voltages $\mathrm{V}_{\mathrm{S}}=+6.0 \mathrm{~V}$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			UNIT
			Min	Typ	Max	
Avol	Differential voltage gain, standard part Gain 1^{1} Gain $2^{2,4}$ High gain part	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	$\begin{gathered} 250 \\ 80 \\ 400 \\ \hline \end{gathered}$	500	$\begin{aligned} & 600 \\ & 120 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} N \\ & \mathrm{~V} / \mathrm{N} \\ & \mathrm{~V} N \end{aligned}$
R_{IN}	Input resistance Gain $2^{2,4}$		8.0			k Ω
los	Input offset current				6.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BIAS }}$	Input bias current				40	$\mu \mathrm{A}$
V IN	Input voltage range		± 1.0		"	V
CMRR	Common-mode rejection ratio Gain 2^{4}	$\mathrm{V}_{\text {CM }} \pm 1 \mathrm{~V}, \mathrm{f}<100 \mathrm{kHz}$	50			dB
PSRR	Supply voltage rejection ratio Gain 2^{4}	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50		\%	dB
$\mathrm{V}_{\text {os }}$	Output offset voltage Gain 1 Gain 2^{4} Gain 3^{3}	$\mathrm{R}_{\mathrm{L}}=\infty$			$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	V
Vout	Output voltage swing differential	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2.8			V
ICC	Power supply current	$\mathrm{R}_{\mathrm{L}}=\infty$			27	mA

NOTES

1. Gain select Pins $G_{1 A}$ and $G_{1 B}$ connected together.
2. Gain select Pins $G_{2 A}$ and $G_{2 B}$ connected together.
3. All gain select pins open.
4. Applies to 10 -and 14 -pin versions only.

AC ELECTRICAL CHARACTERISTICS

$T_{A}=+25^{\circ} \mathrm{C} \mathrm{V}_{S S}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$, unless otherwise specified. Recommended operating supply voltages $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER		TEST CONDITIONS	NE/SA592			UNIT	
			Min	Typ	Max			
BW	Bandwidth	$\begin{aligned} & \text { Gain } 1^{1} \\ & \text { Gain } 2^{2,4} \end{aligned}$				$\begin{aligned} & 40 \\ & 90 \end{aligned}$		$\begin{array}{r} \mathrm{MHz} \\ \mathrm{MHz} \\ \hline \end{array}$
t_{R}	Rise time	Gain 1^{1} Gain $2^{2,4}$	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		$\begin{gathered} 10.5 \\ 4.5 \end{gathered}$	12	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
tPD	Propagation delay	$\begin{aligned} & \text { Gain } 1^{1} \\ & \text { Gain } 2^{2,4} \end{aligned}$	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	10	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	

NOTES:

1. Gain select Pins $G_{1 A}$ and $G_{1 B}$ connected together.
2. Gain select Pins $G_{2 A}$ and $G_{2 B}$ connected together.
3. All gain select pins open.
4. Applies to 10 -and 14 -pin versions only.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

TEST CIRCUITS $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

TYPICAL APPLICATIONS

FILTER NETWORKS

Z NETWORK	FILTER TYPE	V_{0} (s) TRANSFER V_{1} (s) FUNCTION
$0 \underbrace{\text { R }}_{0}$	LOW PASS	$\frac{1.4 \times 10^{4}}{L} \quad\left[\frac{1}{s+R / L}\right]$
	HIGH PASS	$\frac{1.4 \times 10^{4}}{R} \quad\left[\frac{s}{s+1 / R C}\right]$
-	BAND PASS	$\frac{1.4 \times 10^{4}}{L} \quad\left[\frac{s}{s^{2}+R / L s+1 / L C}\right]$
	BAND REJECT	$\frac{1.4 \times 10^{4}}{R} \quad\left[\frac{s^{2}+1 / L C}{s^{2}+1 / L C+s / R C}\right]$

NOTES:

In the networks above, the R value used is assumed to include $2 \mathrm{r}_{\mathrm{e}}$, or approximately 32Ω.
$S=j \omega$

The TDA 1010A is a monolithic integrated class-B audio amplifier circuit in a 9 -lead single in-line (SIL) plastic package. The device is primarily developed as a 6 W car radio amplifier for use with 4Ω and 2Ω load impedances. The wide supply voltage range and the flexibility of the IC make it an attractive proposition for record players and tape recorders with output powers up to 10 W .
Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- low-cost external components
- good ripple rejection
- thermal protection

QUICK REFERENCE DATA

Supply voltage range	V_{p}	6 to 24		
Repetitive peak output current	IORM	max.		A
Output power at pin 2; $\mathrm{d}_{\text {tot }}=10 \%$				
$\mathrm{V}_{\mathrm{P}}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \Omega$	P_{0}	typ.	6,4	
$\mathrm{V}_{\mathrm{P}}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	6,2	
$\mathrm{V}_{\mathrm{P}}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{0}	typ.	3,4	
$\mathrm{V}_{\mathrm{P}}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \Omega$; with additional bootstrap resistor of 220Ω between pins 3 and 4	P_{0}	typ.	9	W
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	$\mathrm{d}_{\text {tot }}$	typ.	0,2	\%
Input impedance preamplifier (pin 8) power amplifier (pin 6)	$\begin{aligned} & \mid z_{i} \\ & \left\|z_{i}\right\| \end{aligned}$	typ.	30	
Total quiescent current at $\mathrm{V}_{\mathrm{P}}=14,4 \mathrm{~V}$	$\mathrm{I}_{\text {tot }}$	typ.	31	
Sensitivity for $\mathrm{P}_{\mathrm{O}}=5,8 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	V_{i}	typ.	10	mV
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 t	150	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 t	150	${ }^{\circ} \mathrm{C}$

Z86ヶ 」еqயəлоN

Fig. 1 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage $\quad V_{P}$ max. 24 V

Peak output current
Repetitive peak output current
Total power dissipation
Storage temperature
Operating ambient temperature
A.C. short-circuit duration of load during sine-wave drive;
without heatsink at $V_{P}=14,4 \mathrm{~V} \quad \mathrm{t}_{\mathrm{sc}} \quad$ max. 100 hours

Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume $V_{P}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \Omega ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ maximum; thermal shut-down starts at $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$. The maximum sine-wave dissipation in a 2Ω load is about $5,2 \mathrm{~W}$. The maximum dissipation for music drive will be about 75% of the worst-case sine-wave dissipation, so this will be $3,9 \mathrm{~W}$. Consequently, the total resistance from junction to ambient
$R_{\text {th j-a }}=R_{\text {th j-tab }}+R_{\text {th tab-h }}+R_{\text {th h-a }}=\frac{150-60}{3,9}=23 \mathrm{~K} / \mathrm{W}$.
Since $R_{\text {th } j \text {-tab }}=10 \mathrm{~K} / \mathrm{W}$ and $R_{\text {th tab-h }}=1 \mathrm{~K} / \mathrm{W}$,
$R_{\text {th h-a }}=23-(10+1)=12 \mathrm{~K} / \mathrm{W}$.

D.C. CHARACTERISTICS

Supply voltage range	V_{P}	6 to 24 V
Repetitive peak output current	IORM	$<$
Total quiescent current at $V_{P}=14,4 \mathrm{~V}$	l $_{\text {tot }}$	typ. 31 mA

A.C. CHARACTERISTICS

$T_{a m b}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise specified; see also Fig. 3.
A.F. output power (see Fig. 4) at $d_{\text {tot }}=10 \%$; measured at pin 2; with bootstrap
$V_{P}=14,4 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \Omega$ (note 1)

P_{o}	typ.	$6,4 \mathrm{~W}$
P_{O}	$\left\{\begin{array}{cc}> & 5,9 \mathrm{~W} \\ \text { typ. } & 6,2 \mathrm{~W} \\ \mathrm{P}_{\mathrm{O}} & \text { typ. } \\ \mathrm{P}_{\mathrm{o}} & 3,4 \mathrm{~W} \\ & \text { typ. } \\ 5,7 \mathrm{~W}\end{array}\right.$	
P_{O}	typ.	9 W

Voltage gain
preamplifier (note 3)
G_{v}
typ. 24 dB 21 to 27 dB
power amplifier
total amplifier
$\mathrm{G}_{\mathrm{v} 2}$
typ. $\quad 30 \mathrm{~dB}$
27 to 33 dB
typ. $\quad 54 \mathrm{~dB}$
G_{v} tot
51 to 57 dB
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$
Efficiency at $\mathrm{P}_{\mathrm{O}}=6 \mathrm{~W}$
$d_{\text {tot }}$
η
Frequency response (-3 dB)
B
Input impedance
preamplifier (note 4)
typ. 0,2 \%
typ. $\quad 75$ \%
80 Hz to 15 kHz
typ. $30 \mathrm{k} \Omega$
20 to $40 \mathrm{k} \Omega$
power amplifier (note 5)

Output impedance of preamplifier; pin 7 (note 5)
typ. $20 \mathrm{k} \Omega$
14 to $26 \mathrm{k} \Omega$
Output voltage preamplifier (r.m.s. value)
$d_{\text {tot }}<1 \%$ (pin 7) (note 3)
Noise output voltage (r.m.s. value; note 6)

$$
\mathrm{R}_{\mathrm{S}}=0 \Omega
$$

$\mathrm{R}_{\mathrm{S}}=8,2 \mathrm{k} \Omega$
Ripple rejection at $\mathrm{f}=1 \mathrm{kHz}$ to 10 kHz (note 7)
at $\mathrm{f}=100 \mathrm{~Hz} ; \mathrm{C} 2=1 \mu \mathrm{~F}$
Sensitivity for $\mathrm{P}_{\mathrm{O}}=5,8 \mathrm{~W}$
Bootstrap current at onset of clipping; pin 4 (r.m.s. value)

	$>$	$0,7 \mathrm{~V}$
$V_{0}(\mathrm{rms})$		
$V_{n(r m s)}$	typ.	$0,3 \mathrm{mV}$
$V_{\mathrm{n} \text { (rms) }}$	typ.	$0,7 \mathrm{mV}$
$R R$	$>$	$1,4 \mathrm{mV}$
$R R$	$>$	32 dB
$\mathrm{~V}_{\mathrm{i}}$	typ.	10 mV
$\mathrm{I}_{4(\mathrm{rms})}$	typ.	30 mA

Notes

1. Measured with an ideal coupling capacitor to the speaker load.
2. Up to $P_{o} \leqslant 3 \mathrm{~W}: d_{\text {tot }} \leqslant 1 \%$.
3. Measured with a load impedance of $20 \mathrm{k} \Omega$.
4. Independent of load impedance of preamplifier.
5. Output impedance of preamplifier $\left(\left|Z_{0}\right|\right)$ is correlated (within 10%) with the input impedance $\left(\left|Z_{i}\right|\right)$ of the power amplifier.
6. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB /octave).
7. Ripple rejection measured with a source impedance between 0 and $2 \mathrm{k} \Omega$ (maximum ripple amplitude: 2 V).
8. The tab must be electrically floating or connected to the substrate (pin 9).

Fig. 3 Test circuit.

Fig. 4 Output power of the circuit of Fig. 3 as a function of the supply voltage with the load impedance as a parameter; typical values. Solid lines indicate the power across the load, dashed lines that available at pin 2 of the TDA1010. $R_{L}=2 \Omega(1)$ has been measured with an additional 220Ω bootstrap resistor between pins 3 and 4 . Measurements were made at $f=1 \mathrm{kHz}, \mathrm{d}_{\mathrm{tot}}=10 \%, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 5 See next page.
Total harmonic distortion in the circuit of Fig. 3 as a function of the output power with the load impedance as a parameter; typical values. Solid lines indicate the power across the load, dashed lines that available at pin 2 of the TDA1010. $\mathrm{R}_{\mathrm{L}}=2 \Omega(1)$ has been measured with an additional 220Ω bootstrap resistor between pins 3 and 4 . Measurements were made at $f=1 \mathrm{kHz}, \mathrm{V}_{P}=14,4 \mathrm{~V}$.

Fig. 5 For caption see preceding page.

Fig. 6 Frequency characteristics of the circuit of Fig. 3 for three values of load impedance; typical values. P_{0} relative to $0 d B=1 \mathrm{~W} ; \mathrm{V}_{\mathrm{P}}=14,4 \mathrm{~V}$.

Fig. 7 Total power dissipation (solid lines) and the efficiency (dashed lines) of the circuit of Fig. 3 as a function of the output power with the load impedance as a parameter (for $R_{L}=2 \Omega$ an external bootstrap resistor of 220Ω has been used); typical values. $V_{P}=14,4 \mathrm{~V} ; f=1 \mathrm{kHz}$.

Fig. 8 Thermal resistance from heatsink to ambient of a $1,5 \mathrm{~mm}$ thick bright aluminium heatsink as a function of the single-sided area of the heatsink with the total power dissipation as a parameter.

Fig. 9 Complete mono audio amplifier of a car radio.

Fig. 10 Track side of printed-circuit board used for the circuit of Fig. 9; p.c. board dimensions $92 \mathrm{~mm} \times 52 \mathrm{~mm}$.

Fig. 11 Component side of printed-circuit board showing component layout used for the circuit of Fig. 9.

Fig. 12 Complete stereo car radio amplifier.

Fig. 13 Track side of printed-circuit board used for the circuit of Fig. 12; p.c. board dimensions $83 \mathrm{~mm} \times 65 \mathrm{~mm}$.

Fig. 14 Component side of printed-circuit board showing component layout used for the circuit of Fig. 12 Balance control is not on the p.c. board.

Fig. 15 Channel separation of the circuit of Fig. 12 as a function of the frequency.

Fig. 16 Power supply of circuit of Fig. 17.

Fig. 17 Complete mains-fed ceramic stereo pick-up amplifier; for power supply see Fig. 16.

Fig. 18 Track side of printed-circuit board used for the circuit of Fig. 17 (Fig. 16 partly); p.c. board dimensions $169 \mathrm{~mm} \times 118 \mathrm{~mm}$.

Fig. 19 Component side of printed-circuit board showing component layout used for the circuit of Fig. 17 (Fig. 16 partly).

Fig. 20 Channel separation of the circuit of Fig. 17 as a function of frequency.

The TDA1011A is a monolithic integrated audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4Ω load impedance. The device can deliver up to 6 W into 4Ω at 16 V loaded supply in mains-fed applications. The maximum permissible supply voltage of 24 V makes this circuit very suitable for d.c. and a.c. apparatus, while the low applicable supply voltage of $5,4 \mathrm{~V}$ permits 9 V applications. The power amplifier has an inverted input/output which makes the circuit optimal for applications with active tone control and spatial stereo. Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- thermal protection
- high input impedance
- low current drain
- limited noise behaviour at radio frequencies

QUICK REFERENCE DATA

Supply voltage range	V_{P}	5,4 to 20 V		
Peak output current	IOM	max.		A
Output power at $\mathrm{d}_{\text {tot }}=10 \%$				
$V_{P}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.		
$\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	4,2	
$V_{P}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	2,3	
$V_{P}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	Po	typ.	1,0	
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	$\mathrm{d}_{\text {tot }}$	typ.	0,2	\%
Input impedance preamplifier (pin 8)	$\mid z_{i}$	>	100	
Total quiescent current	$I_{\text {tot }}$	typ.	14	
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-25 t	150	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 t	150	

January 1980
140

Fig. 1 Circuit diagram.
VLIOLVOL

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage $\quad V_{P} \max \quad 24 \mathrm{~V}$
Peak output current
Total power dissipation
Storage temperature
Operating ambient temperature

IOM max. 3 A
see derating curve Fig. 2
$\mathrm{T}_{\text {stg }} \quad-55$ to $+150{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}-25$ to $+150{ }^{\circ} \mathrm{C}$ $\mathrm{t}_{\text {sc }}$ max. 100 hours

Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ maximum; $\mathrm{P}_{\mathrm{O}}=3,8 \mathrm{~W}$.
The maximum sine-wave dissipation is $1,8 \mathrm{~W}$.
The derating of $10 \mathrm{~K} / \mathrm{W}$ of the package requires the following external heatsink (for sine-wave drive):
$R_{\text {th } j-a}=R_{\text {th } j-\operatorname{tab}}+R_{\text {th tab-h }}+R_{\text {th } h-a}=\frac{150-60}{1,8}=50 \mathrm{~K} / \mathrm{W}$.
Since $R_{\text {th } j-t a b}=10 \mathrm{~K} / \mathrm{W}$ and $R_{\text {th tab-h }}=1 \mathrm{~K} / \mathrm{W}, R_{\text {th h-a }}=50-(10+1)=39 \mathrm{~K} / \mathrm{W}$.

D.C. CHARACTERISTICS

Supply voltage range
Repetitive peak output current
Total quiescent current at $V_{P}=12 \mathrm{~V}$

V_{P}	5,4 to 20 V	
$\mathrm{I}_{\text {ORM }}$	$<$	2 A
$\mathrm{I}_{\text {tot }}$	typ.	14 mA
	$<$	22 mA

A.C. CHARACTERISTICS

$T_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise specified; see also Fig. 3.
A.F. output power at $d_{\text {tot }}=10 \%$ (note 1)
with bootstrap:

$\mathrm{V}_{\mathrm{P}}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	6,5 W
$V_{P}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	Po	typ.	$\begin{aligned} & 3,6 \mathrm{~W} \\ & 4,2 \mathrm{~W} \end{aligned}$
$V_{P}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	2,3 W
$V_{P}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	1,0 W
without bootstrap: $V_{P}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	3,5 W

Voltage gain:
preamplifier (note 2)
power amplifier (note 3)
total amplifier (note 3)
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1,5 \mathrm{~W}$
Frequency response; -3 dB (note 4)
Input impedance:
preamplifier (note 5)
Output impedance preamplifier
Output voltage preamplifier (r.m.s. value) $d_{\text {tot }}<1 \%$ (note 2)
Noise output voltage (r.m.s. value; note 6)
$R_{S}=0 \Omega$
$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$
Noise output voltage at $f=500 \mathrm{kHz}$ (r.m.s. value)
$B=5 \mathrm{kHz} ; \mathrm{R}_{\mathrm{S}}=0 \Omega$
Ripple rejection (note 6)
$f=1$ to 10 kHz
$\mathrm{f}=100 \mathrm{~Hz} ; \mathrm{C} 2=1 \mu \mathrm{~F}$
Bootstrap current at onset of clipping; pin 4 (r.m.s. value)
Stand-by current at maximum V_{p} (note 8)

P_{0}	typ.	3,5 W
		23 dB
Gv1	21 to 25 dB	
$\mathrm{G}_{\mathrm{v} 2}$	typ.	29 dB
$\mathrm{G}_{\mathrm{v} \text { tot}}$	typ.	52 dB
$\mathrm{d}_{\text {tot }}$	$\stackrel{\text { typ. }}{ }$	0,3\%
B	60 Hz to 15 kHz	
$z_{i 1}$	>	$100 \mathrm{k} \Omega$
	typ.	$200 \mathrm{k} \Omega$
$Z_{01} \mid$	typ.	$1 \mathrm{k} \Omega$
V_{o} (rms)	>	1,2 V
$V_{n}(\mathrm{rms})$	typ.	$0,5 \mathrm{mV}$
$V_{n}(\mathrm{rms})$	typ.	$0,8 \mathrm{mV}$
$\mathrm{V}_{\mathrm{n}}(\mathrm{rms})$	typ.	$8 \mu \mathrm{~V}$
RR	typ.	42 dB
RR	>	35 dB
14(rms)	typ.	35 mA
I_{sb}	<	$100 \mu \mathrm{~A}$

Notes

1. Measured with an ideal coupling capacitor to the speaker load.
2. Measured with a load resistor of $20 \mathrm{k} \Omega$.
3. Measured with R2 $=20 \mathrm{k} \Omega$.
4. Measured at $P_{0}=1 \mathrm{~W}$; the frequency response is mainly determined by C 1 and C 3 for the low frequencies and by C 4 for the high frequencies.
5. Independent of load impedance of preamplifier.
6. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz ($12 \mathrm{~dB} /$ octave).
7. Ripple rejection measured with a source impedance between 0 and $2 \mathrm{k} \Omega$ (maximum ripple amplitude: 2 V).
8. The total current when disconnecting pin 5 or short-circuited to ground (pin 9).
9. The tab must be electrically floating or connected to the substrate (pin 9).

Fig. 3 Test circuit.

2 to 6 W audio power amplifier with preamplifier
TDA1011A

APPLICATION INFORMATION

Fig. 4 Circuit diagram of a 4 W amplifier.

Fig. 5 Total quiescent current as a function of supply voltage.

2 to 6 W audio power amplifier with preamplifier

Fig. 6 Total harmonic distortion as a function of output power across R_{L}; —— with bootstrap; -- without bootstrap; $f=1 \mathrm{kHz}$; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C 10).

Fig. 7 Output power across R_{L} as a function of supply voltage with bootstrap; $d_{\text {tot }}=10 \%$; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C 1

Fig. 8 Noise output voltage as a function of frequency; curve a: total amplifier; curve b: power amplifier; $\mathrm{B}=5 \mathrm{kHz} ; \mathrm{R}_{\mathrm{S}}=0$; typical values.

GENERAL DESCRIPTION

The TDA 1013B is an integrated audio amplifier circuit with DC volume control, encapsulated in a 9 -lead single in-line (SIL) plastic package. The wide supply voltage range makes this circuit ideal for applications in mains and battery-fed apparatus such as television receivers and record players.

The DC volume control stage has a logarithmic control characteristic with a range of more than 80 dB ; control is by means of a DC voltage variable between 2 and 6.5 V .
The audio amplifier has a well defined open loop gain and a fixed integrated closed loop. This device requires only a few external components and offers stability and performance.

Features

- Few external components
- Wide supply voltage range
- Wide control range
- Pin compatible with TDA1013A
- Fixed gain
- High signal-to-noise ratio
- Thermal protection

QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage		V_{P}	10	18	40	V
Repetitive peak output current		IORM	-	-	1.5	A
Total sensitivity	$P_{0}=2.5 \mathrm{~W} ;$ DC control at max. gain	V_{i}	44	55	69	mV
Audio amplifier						
Output power	THD $=10 \% ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{0}	4.0	4.2	-	W
Total harmonic distortion	$\mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	THD	-	0.15	0.1	\%
Sensitivity	$\mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W}$	V_{i}	100	125	160	mV
DC volume control unit						
Gain control range		$\left\|\Delta G_{v}\right\|$	80	-	-	dB
Signal handling	$\begin{aligned} & \mathrm{THD}<1 \% ; \\ & \mathrm{DC} \text { control }=0 \mathrm{~dB} \end{aligned}$	V_{i}	1.2	1.7	-	V
Sensitivity (pin 6)	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=125 \mathrm{mV} ; \\ & \text { max. voltage gain } \end{aligned}$	V_{i}	39	45	55	mV
Input impedance (pin 8)		$\left\|z_{i}\right\|$	23	29	35	k Ω

Fig. 1 Block diagram.

PINNING

1 signal ground
2 amplifier output
3 supply voltage.
4 electronic filter
5 amplifier input
6 control unit output
7 control voltage
8 control unit input
9 power ground

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage	V_{P}	-	40	V
Non-repetitive peak output current	$\mathrm{I}_{\mathrm{OSM}}$	-	3	A
Repetitive peak output current	$\mathrm{I}_{\mathrm{ORM}}$	-	1.5	A
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	o_{C}
Crystal temperature	T_{C}	-	+150	o^{C}
Total power dissipation	$\mathrm{P}_{\text {tot }}$			

Fig. 2 Power derating curve.

HEATSINK DESIGN EXAMPLE

Assume $\mathrm{V}_{\mathrm{P}}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$ (max.); for a 4 W application, the maximum dissipation is approximately 2.5 W . The thermal resistance from junction to ambient can be expressed as:
$R_{\text {th } j-a}=R_{\text {th } j-t a b}+R_{\text {th tab-h }}+R_{\text {th } h-a}=$
$\frac{T_{j \max }-T_{a \operatorname{mb} \max }}{P_{\max }}=\frac{150-60}{2.5}=36 \mathrm{~K} / \mathrm{W}$
Since $R_{\text {th } j-t a b}=9 \mathrm{~K} / \mathrm{W}$ and $R_{\text {th tab-h }}=1 \mathrm{~K} / \mathrm{W}, R_{\text {th } h-a}=36-(9+1)=26 \mathrm{~K} / \mathrm{W}$.

CHARACTERISTICS

$V_{P}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; see Fig. 10 ; unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage range		V_{P}	10	18	40	V
Total quiescent current		$\mathrm{I}_{\text {tot }}$	-	25	60	mA
Noise output voltage	note 1					
at maximum gain	$\mathrm{R}_{S}=0 \Omega$	V_{n}	-	0.5	-	mV
at maximum gain	$\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$	V_{n}	-	0.6	1.4	mV
at minimum gain	$\mathrm{R}_{\mathrm{S}}=0 \Omega$	V_{n}	-	0.25	-	mV
Total sensitivity	$\mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W} ;$ DC control at max. gain	V_{i}	44	55	69	mV
Audio amplifier						
Repetitive peak output current		Iorm	-	-	1.5	A
Output power	THD $=10 \% ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{0}	4.0	4.2	-	W
Total harmonic distortion	$\mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	THD	-	0.15	1.0	\%
Sensitivity	$\mathrm{P}_{\mathrm{O}}=2.5 \mathrm{~W}$	V_{i}	100	125	160	mV
Input impedance (pin 5)		$\left\|z_{i}\right\|$	100	200	500	$\mathrm{k} \Omega$
Power bandwidth		Bp	-	$\begin{aligned} & 30 \text { to } \\ & 40000 \end{aligned}$	-	Hz
DC volume control unit						
Gain control range		$\left\|\Delta G_{v}\right\|$	80	90	-	dB
Signal handling	$\begin{aligned} & \mathrm{THD}<1 \% ; \\ & \mathrm{DC} \text { control }=0 \mathrm{~dB} \end{aligned}$	V_{i}	1.2	1.7	-	V
Sensitivity (pin 6)	$\begin{aligned} & V_{\mathrm{O}}=125 \mathrm{mV} ; \\ & \text { max. voltage gain } \end{aligned}$	V_{i}	39	44	55	mV
Input impedance (pin 8)		$\left\|Z_{i}\right\|$	23	29	35	$k \Omega$
Output impedance (pin 6)		$\left\|Z_{0}\right\|$	45	60	75	Ω

Note to the characteristics

1. Measured in a bandwidth in accordance with IEC 179, curve ' A '.

APPLICATION INFORMATION

Fig. 3 Output power as a function of supply voltage; $f=1 \mathrm{kHz}$; THD $=10 \%$ and control voltage $\left(\mathrm{V}_{7}\right)=6.5 \mathrm{~V}$.

Fig. 4 Power dissipation as a function of output power; $\mathrm{V}_{\mathrm{P}}=18 \mathrm{~V}$; $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$ and control voltage $\left(\mathrm{V}_{7}\right)=6.5 \mathrm{~V}$.

APPLICATION INFORMATION (continued)

Fig. $5 \cdot$ Power bandwidth; $V_{P}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$; THD $=10 \%$ and control voltage $\left(V_{7}\right)=6.5 \mathrm{~V}$.

Fig. 6 Total harmonic distortion as a function of frequency;
$V_{P}=18 \mathrm{~V} ; R_{L}=8 \Omega ; P_{\mathrm{O}}=2.5 \mathrm{~W}$ and control voltage $=6.5 \mathrm{~V}$.

Fig. 7 Total harmonic distortion as a function of output power; $\mathrm{V}_{\mathrm{P}}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$ and control voltage $=6.5 \mathrm{~V}$.

Fig. 8 Typical control curve.

APPLICATION INFORMATION (continued)

Fig. 9 Noise output voltage as a function of the control voltage; $\mathrm{V}_{\mathrm{p}}=18 \mathrm{~V}$; $R_{L}=8 \Omega$ (in accordance with IEC 179, curve ' A ').

(1) Belongs to power supply circuitry.

Fig. 10 Application diagram.

The TDA1015 is a monolithic integrated audio amplifier circuit in a 9 -lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4Ω load impedance. The very low applicable supply voltage of $3,6 \mathrm{~V}$ permits 6 V applications. Special features are:

- single in-line (SIL) construction for easy mounting
- separated preamplifier and power amplifier
- high output power
- thermal protection
- high input impedance
- low current drain
- limited noise behaviour at radio frequencies

QUICK REFERENCE DATA

Supply voltage range	V_{p}	3,6 to 18 V		
Peak output current	IOM	max.	2,5	
Output power at $\mathrm{d}_{\text {tot }}=10 \%$				
$\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	4,2	
$V_{P}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.		
$V_{P}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	1,0	
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	$\mathrm{d}_{\text {tot }}$	typ.	0,3	\%
Input impedance				
preamplifier (pin 8)	$\left\|z_{i}\right\|$	>	100	
power amplifier (pin 6)	$\left\|z_{i}\right\|$	typ.		
Total quiescent current	$I_{\text {tot }}$	typ.	14	
Operating ambient temperature	Tamb	-25 to	150	
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to	150	

Fig. 1 Circuit diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{P}	max.	18	
Peak output current	IOM	max.	2,5	A
Total power dissipation	see derating curve Fig. 2			
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to		
Operating ambient temperature	Tamb	-25 to	150	
A.C. short-circuit duration of load during sine-wave drive; $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}$	t_{sc}	max.		

Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{T}_{\mathrm{amb}}=45^{\circ} \mathrm{C}$ maximum.
The maximum sine-wave dissipation is $1,8 \mathrm{~W}$.
$R_{\text {th } j-a}=R_{\text {th } j-t a b}+R_{\text {th tab-h }}+R_{\text {th h-a }}=\frac{150-45}{1,8}=58 \mathrm{~K} / \mathrm{W}$.
Where $R_{\text {th } j-a}$ of the package is $45 \mathrm{~K} / \mathrm{W}$, so no external heatsink is required.

D.C. CHARACTERISTICS

Supply voltage range
Repetitive peak output current
Total quiescent current at $V_{P}=12 \mathrm{~V}$

V_{P}	3,6 to 18 V	
IORM	$<$	2 A
$I_{\text {tot }}$	typ.	14 mA
	$<$	25 mA

A.C. CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise specified; see also Fig. 3.
A.F. output power at $d_{\text {tot }}=10 \%$ (note 1)
with bootstrap:
$V_{P}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$

P_{O}	typ.	$4,2 \mathrm{~W}$
P_{O}	typ.	$2,3 \mathrm{~W}$
P_{o}	typ.	$1,0 \mathrm{~W}$
P_{O}	typ.	$3,0 \mathrm{~W}$

Voltage gain:
preamplifier (note 2) $\mathrm{G}_{\mathrm{v} 1}$ typ. 23 dB
power amplifier
total amplifier
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1,5 \mathrm{~W}$
Frequency response; -3 dB (note 3)
$\mathrm{G}_{\mathrm{v} 2}$ typ. 29 dB
$\mathrm{G}_{\mathrm{v} \text { tot }}$ typ. $\quad 52 \mathrm{~dB}$
$d_{\text {tot }} \quad$ typ. $\quad 0,3 \%$

Input impedance:
preamplifier (note 4)
power amplifier
Output impedance preamplifier
Output voltage preamplifier (r.m.s. value)
$d_{\text {tot }}<1 \%$ (note 2)
Noise output voltage (r.m.s. value; note 5)
$R_{S}=0 \Omega$
$R_{S}=10 \mathrm{k} \Omega$
Noise output voltage at $f=500 \mathrm{kHz}$ (r.m.s. value)
$B=5 \mathrm{kHz} ; \mathrm{R}_{\mathrm{S}}=0 \Omega$
Ripple rejection (note 6)
$\mathrm{f}=100 \mathrm{~Hz}$
RR typ. 38 dB

Notes

1. Measured with an ideal coupling capacitor to the speaker load.
2. Measured with a load resistor of $20 \mathrm{k} \Omega$.
3. Measured at $P_{\mathrm{O}}=1 \mathrm{~W}$; the frequency response is mainly determined by C 1 and C 3 for the low frequencies and by C 4 for the high frequencies.
4. Independent of load impedance of preamplifier.
5. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB /octave).
6. Ripple rejection measured with a source impedance between 0 and $2 \mathrm{k} \Omega$ (maximum ripple amplitude: 2 V).
7. The tab must be electrically floating or connected to the substrate (pin 9).

Fig. 3 Test circuit.

1 to 4 W audio amplifier with preamplifier

TDA1015

APPLICATION INFORMATION

Fig. 4 Circuit diagram of a 1 to 4 W amplifier.

Fig. 5 Total quiescent current as a function of supply voltage.

1 to 4 W audio amplifier with preamplifier

Fig. 6 Total harmonic distortion as a function of output power across R_{L}; _ with bootstrap; -- without bootstrap; $f=1 \mathrm{kHz}$; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C 10).

Fig. 7 Output power across R_{L} as a function of supply voltage with bootstrap; $d_{\text {tot }}=10 \%$; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of $C 10$).

1 to 4 W audio amplifier with preamplifier

Fig. 8 Voltage gain as a function of frequency; P_{0} relative to $0 d B=1 \mathrm{~W} ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$.

Fig. 9 Total harmonic distortion as a function of frequency; $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$.

1 to 4 W audio amplifier with preamplifier

Fig. 10 Ripple rejection as a function of R 2 (see Fig. 4); $\mathrm{R}_{\mathrm{S}}=0$; typical values.

Fig. 11 Noise output voltage as a function of R2 (see Fig. 4); measured according to A-curve; capacitor C5 is adapted for obtaining a constant bandwidth. 163

1 to 4W audio amplifier with preamplifier

Fig. 12 Noise output voltage as a function of frequency; curve a: total amplifier; curve b: power amplifier; $\mathrm{B}=5 \mathrm{kHz} ; \mathrm{R}_{\mathrm{S}}=0$; typical values.

	,	,		,	-									
60		-												$\xrightarrow{1}$
Gv														
(dB)														\square
									typ					
									$\xrightarrow{+}$					
											\pm			
40												\bigcirc	-	\checkmark
40														\rightarrow
20														
20														
								-		\cdots				
0														
	1							10	R2	(k Ω)				10^{2}

Fig. 13 Voltage gain as a function of R2 (see Fig. 4).

GENERAL DESCRIPTION

The TDA7052 is a mono output amplifier in a 8 -lead dual-in-line (DIL) plastic package. The device is designed for battery-fed portable audio applications.

Features:

- No external components
- No switch-on or switch-off clicks
- Good overall stability
- Low power consumption
- No external heatsink required
- Short-circuit pronf

QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage range		V_{P}	3	6	15	V
Total quiescent current	$\mathrm{R}_{\mathrm{L}}=\infty$	$\mathrm{I}_{\text {tot }}$	-	4	8	mA
Voltage gain		G_{V}	39	40	41	dB
Output power	$\mathrm{THD}=10 \% ; 8 \Omega$	P_{O}	-	1,2	-	W
Total harmonic distortion	$\mathrm{P}_{\mathrm{O}}=0,1 \mathrm{~W}$	THD	-	0,2	1,0	$\%$

Fig. 1 Block diagram.

PINNING

1	V_{P}	supply voltage
2	IN	input
3	GND1	ground (signal)
4	n.c.	not connected

FUNCTIONAL DESCRIPTION

The TDA7052 is a mono output amplifier designed for battery-fed portable audio applications, such as tape recorders and radios.
The gain is fixed internally at 40 dB . A large number of tape recorders and radios are still designed for mono sound, plus a space-saving trend by reduction of the number of battery cells. This means a decrease in supply voltage which results in an reduction of output power. To compensate for this reduction, the TDA7052 uses the Bridge-Tied-Load principle (BTL) which can deliver an output power of $1,2 \mathrm{~W}$ (THD $=10 \%$) into an 8Ω load with a power supply of 6 V . The load can be short-circuited at each signal excursion.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage	V_{P}	-	18	V
Non-repetitive peak output current	$\mathrm{I}_{\mathrm{OSM}}$	-	1,5	A
Total power dissipation	$\mathrm{P}_{\text {tot }}$	see Fig. 2		
Crystal temperature	T_{C}	-	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$

Fig. 2 Power derating curve.

POWER DISSIPATION

Assume $\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$ maximum.
The maximum sinewave dissipation is $0,9 \mathrm{~W}$.

$$
R_{\mathrm{th} j-\mathrm{a}}=\frac{150 \cdot 50}{0,9} \approx 110 \mathrm{~K} / \mathrm{W} .
$$

Where $R_{\text {th } j \text {-a }}$ of the package is $110 \mathrm{~K} / \mathrm{W}$, so no external heatsink is required.

CHARACTERISTICS

$V_{P}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

parameter	conditions	symbol	min.	typ.	max.	unit
Supply						
Supply voltage range		V_{P}	3	6	15	V
Total quiescent current	$\mathbf{R}_{\mathbf{L}}=\infty$	$I_{\text {tot }}$	-	4	8	mA
Voltage gain		G_{v}	39	40	41	dB
Output power	THD $=10 \%$	P_{0}	*	1,2	-	W
Noise output voltage (RMS value)						
	note 1	$\mathrm{V}_{\text {no }}$ (rms)	-	150	300	$\mu \mathrm{V}$
	note 2	$V_{\text {no }}$ (rms)	-	60	-	$\mu \mathrm{V}$
Frequency response		f_{r}	-	20 Hz to 20 kHz	-	Hz
Supply voltage ripple rejection	note 3	SVRR	40	50	-	dB
DC output offset voltage pin 5 to 8	$\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$	$\Delta \mathrm{V}_{5-8}$	-	-	100	mV
Total harmonic distortion	$\mathrm{P}_{\mathrm{O}}=0,1 \mathrm{~W}$	THD	-	0,2	1,0	\%
Input impedance		$\left\|Z_{1}\right\|$	-	100	-	k Ω
Input bias current		I bias	-	100	300	nA

Notes to the characteristics

1. The unweighted RMS noise output voltage is measured at a bandwidth of 60 Hz to 15 kHz with a source impedance (R_{S}) of $5 \mathrm{k} \Omega$.
2. The RMS noise output voltage is measured at a bandwidth of 5 kHz with a source impedance of 0Ω and a frequency of 500 kHz . With a practical load ($\mathrm{R}=8 \Omega ; \mathrm{L}=200 \mu \mathrm{H}$) the noise output current is only 100 nA .
3. Ripple rejection is measured at the output with a source impedance of 0Ω and a frequency between 100 Hz and 10 kHz . The ripple voltage $=200 \mathrm{mV}$ (RMS value) is applied to the positive supply rail.
1 Watt low voltage audio power amplifier

APPLICATION INFORMATION

Fig. 3 Application diagram.

FEATURES

- DC volume control
- Few external components
- Mute mode
- Thermal protection
- Short-circuit proof
- No switch on and off clicks
- Good overall stability
- Low power consumption
- Low HF radiation
- ESD protected on all pins

GENERAL DESCRIPTION

The TDA7052A/AT are mono BTL output amplifiers with DC volume control. They are designed for use in TV and monitors, but also suitable for battery-fed portable recorders and radios.

ORDERING INFORMATION

EXTENDED	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
TDA7052A	8	DIL	plastic	SOT97
TDA7052AT	8	mini-pack	plastic	SOT96A

QUICK REFERENCE DATA

SYMBOL	PARAMETERS	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage range		4.5	-	18	V
$\mathrm{P}_{\text {o }}$	output power in 8Ω (TDA7052A) in 16Ω (TDA7052AT)	$\begin{aligned} & V_{P}=6 \mathrm{~V} \\ & V_{P}=6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \\ & 0.5 \end{aligned}$	$\begin{array}{l\|l} 1.1 \\ 0.55 \end{array}$	$-$	$\begin{aligned} & W \\ & W \end{aligned}$
G	maximum total voltage gain		35	36	37	dB
ϕ	gain control range		75	80	-	dB
I_{p}	total quiescent current	$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty$	-	6	12	mA
THD	total harmonic distortion	$\mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$	-	0.2	1	\%

1-Watt low voltage audio power amp with DC volume control

FUNCTIONAL DESCRIPTION

The TDA7052A/AT are mono BTL nutput amplifiers with DC volume control, designed for use in TV and monitors but also suitable for battery fed portable recorders and radios. In conventional DC volume circuits the control or input stage is AC coupled to the output stage via external capacitors to keep the offset voltage low. In the TDA7052ANAT the DC volume control stage is integrated into the input stage so that no coupling capacitors are required and yet a low offset voltage is maintained. At the same time the minimum supply remains low.

The BTL principle offers the following advantages:

- Lower peak value of the supply current
- The frequency of the ripple on the supply voltage is twice the signal frequency.

Thus a reduced power supply with smaller capacitors can be used which results in cost savings.

For portable applications there is a trend to decrease the supply voltage, resulting in a reduction of output power at conventional output stages. Using the BTL principle increases the output power.

The maximum gain of the amplifier is fixed at 36 dB . The DC volume control stage has a logarithmic control characteristic.

The total gain can be controlled from 36 dB to -44 dB . If the DC volume control voltage is below 0.3 V , the device switches to the mute mode. The amplifier is short-circuit proof to ground and V_{p}. Also a thermal protection circuit is implemented. If the crystal temperature rises above $150^{\circ} \mathrm{C}$ the gain will be reduced, so the output power is reduced. Special attention is given to switch on and off clicks, low HF radiation and a good overall stability.

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{p}	supply voltage range		-	18	V
IoRM	repetitive peak output current		-	1	A
losm	non-repetitive peak output current		-	1.5	A
$\mathrm{P}_{\text {tot }}$	total power dissipation TDA7052A TDA7052AT	$\mathrm{T}_{\text {amb }} \leq 25 \%$	$\left.\right\|_{-} ^{-}$	$\begin{aligned} & 1.25 \\ & 0.64 \end{aligned}$	$\begin{aligned} & W \\ & w \end{aligned}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range		-40	85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature range		-55	150	${ }^{\circ} \mathrm{C}$
T T_{vj}	virtual junction temperature		-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sc }}$	short-circuit time		-	1	hr
V_{2}	input voltage pin 2		-	8	V
V_{4}	input voltage pin 4		-	8	V

1-Watt low voltage audio power amp with DC volume control

THERMAL RESISTANCE

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
$R_{\text {th } \text { j-a }}$	from junction to ambient in free air			
	TDA7052A	-	100	KWW
	TDA7052AT	-	155	KWW

Note

TDA7052A: $\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$.
The maximum sine-wave dissipation is 0.9 W .
Therefore $T_{\text {amb(max) }}=150-100 \times 0.9=60^{\circ} \mathrm{C}$.
TDA7052AT: $\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=16 \Omega$.
The maximum sine-wave dissipation is 0.46 W .
Therefore $\mathrm{T}_{\text {amb(max) }}=150-155 \times 0.46=78^{\circ} \mathrm{C}$.

1-Watt low voltage audio power amp with DC volume control

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; f=1 \mathrm{kHz}$; unless otherwise specified (see Fig.6).
TDA7052A: $R_{L}=8 \Omega$;
TDA7052AT: $\mathrm{R}_{\mathrm{L}}=16 \Omega$;

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{p}	supply voltage range		4.5	-	18	V
I_{p}	total quiescent current	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty \\ & \text { note } 1 \end{aligned}$	-	6	12	mA
Maximum gain; $\mathrm{V}_{4}=1.4 \mathrm{~V}$						
P_{0}	output power TDA7052A TDA7052AT	THD $=10 \%$	$\left\lvert\, \begin{aligned} & 1 \\ & 0.5 \end{aligned}\right.$	$\begin{array}{l\|l} 1.1 \\ 0.55 \end{array}$	$-$	$\begin{aligned} & w \\ & w \end{aligned}$
THD	total harmonic distortion TDA7052A TDA7052AT	$\begin{aligned} & P_{0}=0.5 \mathrm{~W} \\ & P_{0}=0.25 \mathrm{~W} \end{aligned}$	-	$\begin{aligned} & 0.2 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
Gv	voltage gain		35	36	37	dB
V_{1}	input signal handling	$\mathrm{V}_{4}=1 \mathrm{~V} ; \mathrm{THD}<1 \%$	0.6	-	-	V
$\mathrm{V}_{\text {no(ms) }}$	noise output voltage (RMS value)	$\begin{aligned} & \hline \mathrm{f}=500 \mathrm{kHz} ; \\ & \text { note } 2 \\ & \hline \end{aligned}$	-	tbf	-	$\mu \mathrm{V}$
B	bandwidth		-	$\begin{aligned} & 20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$	-	
RR	ripple rejection	note 3	40	-	-	dB
$\mathrm{V}_{\text {off }} \mathrm{I}$	DC output offset voltage		-	tbf	150	mV
Z_{1}	input impedance (pin 2)		15	20	25	k Ω
Minimum gain; $\mathrm{V}_{4}=0.5 \mathrm{~V}$						
G_{v}	voltage gain		-	-44	-	dB
$\mathrm{V}_{\text {no(ms) }}$	noise output voltage RMS value)	note 4	-	20	30	$\mu \mathrm{V}$
Mute position						
Vo	output voltage in mute position	$\mathrm{V}_{4} \leq 0.3 \mathrm{~V} ; \mathrm{V}_{1}=600 \mathrm{mV}$	-	-	30	$\mu \mathrm{V}$
DC volume control						
ϕ	gain control range		75	80	-	dB
I_{4}	control current	$\mathrm{V}_{4}=0.4 \mathrm{~V}$	tbi	65	tbf	$\mu \mathrm{A}$

Notes to the characteristics

1. With a load connected to the outputs the quiescent current will increase, the maximum value of this increase being equal to the DC output offset voltage dividend by R_{L}.
2. The noise output voltage (RMS value) at $f=500 \mathrm{kHz}$ is measured with $R_{S}=0 \Omega$ and bandwidth $=5 \mathrm{kHz}$.
3. The ripple rejection is measured with $R_{S}=0 \Omega$ and $f=100 \mathrm{~Hz}$ to 10 kHz . The ripple voltage of 200 mV , (RMS value) is applied to the positive supply rail.
4. The noise output voltage (RMS-value) is measured with $R_{S}=5 \mathrm{k} \Omega$ unweighted.

1-Watt low voltage audio power amp with DC volume control

Fig. 3 Gain control as a function of DC volume control.

Fig. 5 Control current as a function of DC volume control.

Fig.4 Noise output voltage as a function of DC volume control.

1-Watt low voltage audio power amp with DC volume control

APPLICATION INFORMATION

(1) This capacitor can be omitted if the $220 \mu \mathrm{~F}$ electrolytic capacitor is connected close to pin 1.

Fig. 6 Test and application diagram.

1-Watt low voltage audio power amp with DC volume control

Fig. 7 Application with potentiometer as volume control; maximum gain $=30 \mathrm{~dB}$.

FEATURES

- DC volume control
- Few external components
- Mute mode
- Thermal protection
- Short-circuit proof
- No switch-on and off clicks
- Good overall stability
- Low power consumption
- Low HF radiation
- ESD protected on all pins.

GENERAL DESCRIPTION

The TDA7056A is a mono BTL output amplifier with DC volume control. It is designed for use in TV and monitors, but also suitable for battery-fed portable recorders and radios.

ORDERING INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
TDA7056A	9	SIL	plastic	SOT110BE

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	Supply voltage range		4.5	-	18	V
P_{O}	output power in 16Ω		3	3.4	-	W
G_{V}	voltage gain		35	36	37	dB
ϕ	gain control range		75	80	-	dB
$\mathrm{I}_{\mathrm{P}}=12 \mathrm{~V}$		-	8	16	mA	
THD	total quiescent current	total harmonic distortion	$\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty$			

Fig. 1 Block diagram.

PINNING

SYMBOL	PIN	DESCRIPTION
n.c.	1	not connected
V $_{\mathbf{p}}$	2	positive supply voltage
V $_{\mathbf{I}}$	3	voltage input
GND1	4	signal ground
VC	5	DC volume control
OUT +	6	positive output
GND2	7	power ground
OUT-	8	negative output
n.c.	9	not connected

Fig. 2 Pinning diagram.

FUNCTIONAL DESCRIPTION

The TDA7056A is a mono BTL output amplifier with DC volume control, designed for use in TV and monitor but also suitable for battery-fed portable recorders and radios.
In conventional DC volume circuits the control or input stage is AC coupled to the output stage via external capacitor to keep the offset voltage low.
In the TDA7056A the DC volume stage is integrated into the input stage so that coupling capacitors are not required and a low offset voltage is maintained.
At the same time the minimum
supply voltage remains low. The BTL principle offers the following advantages:

- lower peak value of the supply current
- the frequency of the ripple on the supply voltage is twice the signal frequency
Thus, a reduced power supply and smaller capacitors can be used which results in cost savings. For portable applications there is a trend to decrease the supply voltage, resulting in a reduction of output power at conventional output stages. Using the BTL principle increases the output power.

The maximum gain of the amplifier is fixed at 36 dB . The DC volume control stage has a logarithmic control characteristic.
The total gain can be controlled from 36 dB to -44 dB .
If the DC volume control voltage is below 0.3 V , the device switches to the mute mode.
The amplifier is short-circuit proof to ground and V_{p}. Also a thermal protection circuit is implemented. If the crystal temperature rises above $150^{\circ} \mathrm{C}$ the gain will be reduced, so the output power is reduced. Special attention is given to switch-on and off clicks, low HF radiation and a good overall stability.

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{p}	supply voltage range		-	18	V
IORM	repetitive peak output current		-	1	A
Iosm	non repetitive peak output current		-	1.5	A
P_{101}	total power dissipation	$\mathrm{T}_{\text {case }}<60^{\circ} \mathrm{C}$	-	9	W
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range		-40	85	${ }^{\circ} \mathrm{C}$
$T_{\text {mg }}$	storage temperature range		-55	150	${ }^{\circ} \mathrm{C}$
$T_{\text {ri }}$	virtual junction temperature		-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {c }}$	short-circuit time		-	1	hr
V_{3}	input voltage pin 3		-	8	V
V_{5}	input voltage pin 5		-	8	V

THERMAL RESISTANCE

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
$R_{\text {ot ic }}$	from junction to case	-	10	KWW
$R_{\text {di je }}$	from junction to ambient in free air	-	55	KWW

Note

$V_{p}=12 \mathrm{~V} ; R_{L}=16 \Omega$; The maximum sine-wave dissipation is $=1.8 \mathrm{~W}$. The $R_{\text {th }}$ vie of the package is 55 KW ;
$T_{\text {ant (max) }}=150-55 \times 1.8=51^{\circ} \mathrm{C}$

CHARACTERISTICS

$V_{p}=12 \mathrm{~V} ; \mathrm{f}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=16 \Omega ; \mathrm{T}_{\text {emb }}=25^{\circ} \mathrm{C}$; unless otherwise specified (see Fig.6)

SYMBOL	PARAMETER	- CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{p}	supply voltage range		4.5	-	18	V
I_{p}	total quiescent current	$V_{P}=6 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty$; note 1	-	8	16	mA
Maximum gain ($\mathbf{V}_{5}=1.4 \mathrm{~V}$)						
P_{0}	output power	THD $=10 \%$	3	3.4	-	W
THD	total harmonic distortion	$\mathrm{P}_{0}=0.5 \mathrm{~W}$	-	0.2	1	\%
G	voltage gain		35	36	37	dB
V_{1}	input signal handling	$\mathrm{V}_{5}=1 \mathrm{~V}$; THD $<1 \%$	0.6	-	-	V
$V_{\text {norme }}$	noise output voltage (RMS value)	$f=500 \mathrm{kHz}$; note 2	-	tbf	-	$\mu \mathrm{V}$
B	bandwidth		-	$\begin{array}{l\|l\|} \hline 20 \mathrm{~Hz} \text { to } \\ 20 \mathrm{kHz} \\ \hline \end{array}$	-	
RR	ripple rejection	note 3	40	-	-	dB
$1 \mathrm{~V}_{\text {on }} \mathrm{I}$	DC output offset voltage		-	tbf	150	mV
Z_{1}	input impedance pin 3		15	20	25	$\mathrm{k} \Omega$
Minimum gain ($\mathrm{V}_{5}=0.5 \mathrm{~V}$)						
G	voltage gain		-	-44	-	dB
$\mathrm{V}_{\text {no(ms) }}$	noise output voltage (RMS value)	note 4	-	20	30	$\mu \mathrm{V}$
Mute position						
V_{0}	output voltage in mute position	$\mathrm{V}_{5} \leq 0.3 \mathrm{~V} ; \mathrm{V}_{1}=600 \mathrm{mV}$	-	-	30	$\mu \mathrm{V}$
DC volume control						
ϕ	gain control range		75	80	-	dB
I_{5}	control current	$\mathrm{V}_{5}=0 \mathrm{~V}$	tbi	65	tbf	$\mu \mathrm{A}$

Notes to the characteristics

1. With a load connected to the outputs the quiescent current will increase, the maximum value of this increase being equal to the $D C$ output offset voltage divided by R_{L}.
2. The noise output voltage (RMS value) at $f=500 \mathrm{kHz}$ is measured with $\mathrm{R}_{5}=0 \Omega$ and bandwidth $=5 \mathrm{kHz}$.
3. The ripple rejection is measured with $R_{s}=0 \Omega$ and $f=100 \mathrm{~Hz}$ to 10 kHz . The ripple voltage of 200 mV (RMS value) is applied to the positive supply rail.
4. The noise output voltage (RMS value) is measured with $R_{s}=5 \mathrm{k} \Omega$ unweighted.

Fig. 3 Gain as a function of DC volume control.

Fig. 5 Control current as a function of DC volume control.

Fig. 4 Noise output voltage as a function of DC volume control.

APPLICATION INFORMATION

(1) This capacitor can be omitted if the $220 \mu \mathrm{~F}$ electrolytic capacitor is connected close to pin 2.

Fig. 6 Test and application diagram.

FEATURES

- 55 dB true logarithmic dynamic range
- Small-signal gain-adjust facility
- Constant limiting output voltage
- Temperature and DC power supply voltage compensation
- Easy interfacing to TDA8703 analog-to-digital converter
- Output DC level shift facility
- Additional received signal-strength indication (RSSI) output.

APPLICATIONS

- Dynamic range compression
- IF signal dynamic range reduction in GSM900 and DCS1800 receivers
- Compressive receivers.

GENERAL DESCRIPTION

The TDA8781T is a true logarithmic amplifier intended for dynamic range reduction of IF signals at 10.7 MHz in GSM900 and DCS1800 receivers. It offers true logarithmic characteristics over a 55 dB input dynamic range and has a small-signal gain-adjust facility and a
constant limiting output voltage for large input levels. It is manufactured in an advanced BICMOS process which enables high performance to be obtained with low DC power supply consumption. The true logarithmic amplifier can be driven by single-ended or differential inputs and the DC operating point is set by overall on-chip feedback decoupled by two off-chip capacitors which define the low-frequency cut-off point. The performance of the true logarithmic amplifier is stabilized against temperature and DC power supply voltage variations. The differential output is converted internally to a single-ended output by an on-chip operational amplifier arrangement in which the DC output level is set by an externally-supplied reference voltage. An additional received signal-strength indication (RSSI) output is available and a power-down facility allows the circuit to be disabled from a TTL-level compatible control input.

The device can be used to compress IF signals prior to being digitized in digital radio systems. It allows the usage of low-cost, low-power 8-bit DACs instead of the 10 or 12-bit types. In GSM systems decompression is performed by the digital signal processor such as the PCD5080. The TDA8781T interfaces directly with the ADC which is integrated on the Base Band Interface PCD5070.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V_{CC}	DC power supply voltage	4.5	5.0	5.5	V
I_{CC}	DC power supply current	-	-	10	mA
$\mathrm{I}_{\text {OFF }}$	I_{CC} in power-down mode	-	250	400	$\mu \mathrm{~A}$
f_{i}	operating input frequency	0.1	10.7	15.0	MHz
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	-20	-	+75	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
TDA8781T	14	SO14	plastic	SOT108A

Fig. 1 Block diagram.

PINNING

SYMBOL	PIN	DESCRIPTION
V_{i}	1	signal input
C_{L}	2	low-frequency cut-off point setting capacitor connection
$\mathrm{V}_{\text {REF }}$	3	external reference voltage input
R_{g}	4	small-signal gain-setting resistor connection
\bar{R}_{g}	5	complementary small-signal gain-setting resistor connection
$\mathrm{C}_{\mathrm{d} 1}$	6	first control circuit decoupling capacitor and optional start-up capacitor connection
V_{EE}	7	ground
V_{CC}	8	DC power supply voltage
C_{d}	9	second control circuit decoupling capacitor and optional start-up capacitor connection
CE	10	TTL-level-compatible circuit enable input
$\mathrm{V}_{\text {RSS }}$	11	received signal-strength indication output (RSSI)
V_{0}	12	true logarithmic output
\bar{C}_{L}	13	complementary low-frequency cut-off point setting capacitor connection
$\overline{\mathrm{V}}_{\mathrm{i}}$	14	complementary signal input

Fig. 2 Pin configuration.

FUNCTIONAL DESCRIPTION

A true logarithmic amplifier can be realized from a cascade of similar stages each of which consists of a pair of amplifiers whose inputs and outputs are connected in parallel. One of these amplifiers can be formed by an undegenerated long-tailed pair which provides high gain but a limited linear input signal-handling capability. The other amplifier can be formed by a degenerated long-tailed pair which provides a gain of unity and a much larger linear input signal-handling capability. The overall cascade amplifies very small input signals linearly but, once these reach the level at which the undegenerated long-tailed pair in the last stage is at the limit of its linear input signal-handling capability, the output voltage becomes logarithmically dependent on the input signal level. This behavior continues until the input signal reaches the level at which the undegenerated long-tailed pair in the first stage is at the limit of its linear input signal-handling capability. The transfer characteristic beyond this point then depends on the exact configuration of the degenerated long-tailed pair in the first stage.
Three stages are used in the TDA8781T to provide a 55 dB true logarithmic dynamic range. The DC bias current in the undegenerated long-tailed pair in the first stage is made externally adjustable, by means of an off-chip resistor, to provide a small-signal gain-adjust facility. A high-level limiter is inserted between the first and second stages to provide a constant limiting output
voltage which is essentially independent of the value of the gain-setting resistor. These stages can be driven by single-ended or differential inputs and the DC operating point is set by overall on-chip feedback decoupled by two off-chip capacitors which define the low-frequency cut-off point. The performance of these stages is stabilized against temperature and DC power supply voltage variations. The input to the true logarithmic amplifier is protected against damage due to excessive differential input signals by diodes.

The differential output from the true logarithmic amplifier is converted internally to a single ended output by an on-chip operational amplifier arrangement in which the DC output level is set by an externally-supplied reference voltage. The output is capable of driving loads down to $10 \mathrm{k} \Omega$ in parallel with 20 pF . The limiting output voltage and this output drive capability have been chosen to facilitate interfacing to a TDA8703 analog-to-digital converter. A major proportion of the DC power supply current consumption of the device is associated with provision of this output drive capability. The DC power supply consumption is significantly less when the device is driving less-highly capacitive loads.
An additional received signal-strength indication (RSSI) output is available from the true logarithmic amplifier. This output is protected against damage due to excessive current being drawn by means of a series resistor. A power-down facility allows the circuit to be disabled from a TTL-level-compatible control input.
\square

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{CC}	DC power supply voltage	-0.3	+5.5	V
$\mathrm{~V}_{1}$	DC voltage at all other pins with respect to ground	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
$\mathrm{~T}_{\text {stg }}$	storage temperature	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	-20	+75	${ }^{\circ} \mathrm{C}$

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

CHARACTERISTICS
$V_{C C}=5.0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{i}}$ at $\mathrm{f}_{\mathrm{i}}=10.7 \mathrm{MHz} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; nominal small-signal gain setting resistor in use; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply (pin 8)						
V_{cc}	operating DC power supply voltage		4.5	5.0	5.5	V
l_{cc}	DC power supply current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{i}}=1 \mathrm{~V} \text { (peak) } \\ & \hline \end{aligned}$	-	8	10	mA
Ioff	DC power supply current in power-down mode	$10 \mu \mathrm{~s}$ after V_{CE} changes from $\mathrm{V}_{\mathrm{CE}(\mathrm{ON})}$ to $\mathrm{V}_{\text {CE(OFF }}$	-	250	400	$\mu \mathrm{A}$
Control: CE, $\mathrm{R}_{\mathrm{g}}, \overline{\mathrm{R}}_{\mathrm{g}}, \mathrm{C}_{\mathrm{d} 1}, \mathrm{C}_{\mathrm{d} 2}$ (pins 10, 4, 5, 6 and 9)						
$\mathrm{V}_{\text {CEION }}$	circuit enable input voltage		2.0	-	V_{cc}	V
$\mathrm{V}_{\text {CE(}}$ (ff)	circuit enable input voltage in power-down mode		0	-	0.8	V
R_{g}	small-signal gain-setting resistor	nominal small-signal gain setting	-	3.3	-	k Ω
		total adjustment range	0	-	-	k Ω
$\mathrm{C}_{\mathrm{d} 1}, \mathrm{C}_{\mathrm{d} 2}$	control circuit decoupling capacitors		-	560	-	pF

True logarithmic amplifier

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Inputs: $V_{i}, V_{\text {REF }}, C_{L}, \bar{C}_{L}$ (pins 1, 3, 2 and 13)						
f_{i}	operating input frequency		0.1	10.7	15	MHz
R_{i}	small-signal input resistance	differential input at $\begin{aligned} & \mathrm{f}_{\mathrm{i}}=10.7 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{i}}=10 \mathrm{mV} \text { (peak) } \end{aligned}$	-	10	-	k Ω
C_{i}	input capacitance	differential input at $\mathrm{f}_{\mathrm{i}}=10.7 \mathrm{MHz}$	-	3	-	pF
$V_{i(\text { min })}$	peak input voltage at start of true logarithmic characteristic		-	800	-	$\mu \mathrm{V}$
$V_{i(\text { max })}$	peak input at end of true logarithmic characteristic		-	450	-	mV
$\mathrm{V}_{\text {(limit) }}$	maximum peak input signal	input protection diodes not conducting	-	1	-	V
ΔV_{i}	spread in true logarithmic output amplitude transfer characteristic across true logarithmic range over whole temperature and DC power supply voltage range	input spread for fixed output	-	± 2.5	-	dB
$\Delta \mathrm{G}_{v}$	small-signal gain-adjustment range		± 6	-	-	dB
$\mathrm{C}_{\mathrm{L}}, \overline{\mathrm{C}}_{\mathrm{L}}$	low-frequency cut-off point setting capacitors	$f=100 \mathrm{kHz}$ at 3 dB	-	560	-	pF
$\mathrm{R}_{\text {REF }}$	external reference input resistance		-	40	-	k Ω
$\mathrm{V}_{\text {REF }}$	external reference voltage		2.0	2.5	$\mathrm{V}_{\mathrm{cc}}-2.0$	V
Outputs: $\mathrm{V}_{0}, \mathrm{~V}_{\text {RSSI }}$ (pins 12 and 13)						
$V_{o(\text { min })}$	peak true logarithmic output voltage relative to $\mathrm{V}_{\mathrm{REF}}$ at start of true logarithmic characteristic	$\mathrm{V}_{\mathrm{i}}=800 \mu \mathrm{~V}$ (peak)	-	90	-	mV
$\mathrm{V}_{\text {(max) }}$	peak true logarithmic output voltage relative to $\mathrm{V}_{\text {REF }}$ at end of true logarithmic characteristic	$\mathrm{V}_{\mathrm{i}}=450 \mathrm{mV}$ (peak)	-	900	-	mV
V 。	true logarithmic peak output voltage across true logarithmic range	$\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$ (peak)	55	100	145	mV
		$\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$ (peak)	340	410	480	mV
		$\mathrm{V}_{\mathrm{i}}=100 \mathrm{mV}$ (peak)	630	730	830	mV

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{\text {o(limin) }}$	limiting peak output voltage	$V_{i}=1 \mathrm{~V}$ (peak)	800	950	1100	mV
$V_{0}-V_{\text {REF }}$	DC offset voltage	$\mathrm{V}_{\mathrm{i}}=0 \mathrm{~V}$	-100	+35	+100	mV
$\Delta \mathrm{G}_{\mathrm{vo}}$	change in small-signal true logarithmic gain referred to V_{0} at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$ (peak);$R_{g}=3.3 \mathrm{k} \Omega$	$\begin{aligned} & \mathrm{V}_{i}=5 \mathrm{mV} \text { (peak); } \\ & \mathrm{R}_{\mathrm{g}}=0 \\ & \hline \end{aligned}$	0	-	+2	dB
		$\begin{aligned} & V_{i}=20 \mathrm{mV} \text { (peak); } \\ & R_{g}=\infty \\ & \hline \end{aligned}$	-2	-	0	dB
$\Delta \mathrm{V}$ 。	change in small-signal true logarithmic output voltage with frequency	$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=10 \mathrm{mV} \text { (peak); } \\ & \mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz} \text { and } \\ & 15 \mathrm{MHz} \text { referenced } \\ & \text { to } 1 \mathrm{MHz} \end{aligned}$	-	0.4	1.5	dB
$\Delta \phi$	spread in true logarithmic output phase transfer characteristic across true logarithmic range	*	-	15	-	deg
$\mathrm{V}_{\text {RSSI }}$	RSSI output across true logarithmic range	$V_{i}=1 \mathrm{mV}$ (peak)	1.85	2.0	2.15	V
		$V_{i}=10 \mathrm{mV}$ (peak)	2.05	2.2	2.35	V
		$\mathrm{V}_{\mathrm{i}}=100 \mathrm{mV}$ (peak)	2.25	2.4	2.55	V

APPLICATION INFORMATION

The circuit is connected as shown in the typical application circuit diagram (Fig.4). The single-ended 10.7 MHz input IF signal is applied (arbitrarily) to one of the two input pins via a ceramic filter. These inputs should not be DC coupled as this will disable the on-chip feedback which sets the DC operating point of the true logarithmic amplifier. The relatively high input impedance of these inputs facilitates correct termination of the ceramic filter by means of an off-chip resistor.
The low-frequency cut-off point is determined by the value of the capacitors which decouple the overall DC feedback as well as the value of the input coupling capacitors. The output is AC coupled to a TDA8703 analog-to-digital converter in order that the value of the voltage fed to the reference voltage input is not critical. It could be useful in other applications, where the output might be DC coupled to an alternative analog-to-digital converter, to derive this reference voltage from the centre of the input resistor chain of the analog-to-digital converter.
The additional RSSI output is required only in applications where this is not derived in subsequent digital signal processing stages. The capacitor connected to this output provides a simple peak-hold and averaging function. Excessively large values of capacitance may lead to distortion of the true logarithmic output.
It may be found advantageous to add two small capacitors to speed up the re-enabling of the circuit after it has been in power-down mode. These should be connected between the circuit enable input and the control circuit decoupling capacitors. The size of these capacitors will be related to the size of the control circuit decoupling capacitors which are required both for stability and to prevent degradation of the noise figure.

Fig. 4 Typical application diagram

RF/Wireless Communications
 Section 3 Compandors

INDEX
Compandor Selector Guide 194
NE570/571/SA571
Compandor 195
AN174 Applications for compandors NE570/571/SA571 202
AN176 Compandor cookbook 211
NE/SA572 Programmable analog compandor 217
AN175 Automatic level control using the NE572 225
NE/SA575 Low voltage compandor 226
NE/SA576 Low power compandor 236
NE/SA577 Unity gain level programmable low power compandor 239
NE/SA578 Unity gain level programmable low power compandor 243
AN1762 Companding with the NE577 and NE578 247

COMPANDOR FAMILY OVERVIEW

	NE570	NE571	NE572	NE575	NE576	NE577	NE578
$\mathrm{v}_{\text {cc }}$	6-24V	6-18V	6-22V	3-7V	2-7V	2-7V	2-7V
${ }^{\text {cce }}$	3.2 mA	3.2 mA	6 mA	$3-5.5 \mathrm{~mA}{ }^{*}$	1-3mA*	1-2mA*	1-2mA*
Number of Pins	16	16	16	20	14	14	16
Packages NE: 0 to +70 C SA: -40 to +85 C N : Plastic DIP D: Plastic SO F: CerDIP DJ: SSOP (Shrink Small Outline Package)	NE570F NE570N NE570D	$\begin{aligned} & \text { NE571F } \\ & \text { NE571N } \\ & \text { NE571D } \\ & \\ & \text { SA571F } \\ & \text { SA571N } \\ & \text { SA571D } \end{aligned}$	NE572N NE572D SA572F SA572N SA572D	NE575N NE575D NE575DK SA575N SA575D SA575DK	NE576N NE576D SA576N SA576D	NE577N NE577D SA577N SA577D	NE578N NE578D SA578N SA578D
ALC	Both Channels	Both Channels	Both Channels	Right Channel	Right Channel	Right Channel	Right Channel
Reference Voltage	Fixed 1.8V	Fixed 1.8V	Fixed 2.5V	$\mathrm{Vco} / 2$	$\mathrm{Vcc} / 2$	Vcc/2	$\mathrm{Vcc} / 2$
Unity Gain	775 mVrms	775 mV rms	100 mVrms	100 mV rms	100 mVrms	10 mV to 1V(rms)	10 mV to $\mathbf{1 V}(\mathrm{rms})$
Power Down	NO	NO	NO	NO	NO	NO	$\begin{gathered} \mathrm{YES} \\ (170 \mu \mathrm{~A}) \end{gathered}$
Key Features	- Excellent Unity Gain Tracking Error - Excellent THD	- Excellent Unity Gain Tracking Error - Excellent THD	- Independent Attack \& Release Time - Good THD - Needs an Ext. Summing Op Amp	$\begin{aligned} & \text { - } 2 \text { Uncommitted } \\ & \text { On-Chip } \\ & \text { Op Amps } \\ & \text { Available } \\ & \text { - Low Voltage } \end{aligned}$	- Low Power - Low External Component Count	- Low Power - Programmable Unity Gain	- Low Power - Programmable Unity Gain - Power Down - Mute Function - Summing Capability (DTMF) - 600Ω Drive Capability
Applications Cordless Phones Cellular Phones Wireless Mics Modems Consumer Audio Two-way Communications	High Performance Audio Circuits " $\mathrm{Hi}-\mathrm{Fi}$ Commercial Quality"	High Performance Audio Circuits " $\mathrm{Hi}-\mathrm{Fi}$ Commercial Quality"	High Performance Audio Circuits " $\mathrm{Hi}-\mathrm{Fi}$ Studio Quality"	Consumer Audio Circuits "Commercial Quality"	Battery Powered Systems "Commercial Quality"	Battery Powered Systems "Commercial Quality"	Battery Powered Systems "Commercial Quality"

NOTE: NE5751)/5751 are also Excellent Audio Processor Components for High Performance Cordless and Cellular Applications that Include the Companding Function *lcc varies with Vcc

DESCRIPTION

The NE570/571 is a versatile low cost dual gain control circuit in which either channel may be used as a dynamic range compressor or expandor. Each channel has a full-wave rectifier to detect the average value of the signal, a linerarized temperature-compensated variable gain cell, and an operational amplifier.
The NE570/571 is well suited for use in cellular radio and radio communications systems, modems, telephone, and satellite broadcast/receive audio systems.

FEATURES

- Complete compressor and expandor in one IChip
- Temperature compensated
- Greater than 110 dB dynamic range
- Operates down to 6VDC
- System levels adjustable with external components
- Distortion may be trimmed out
- Dynamic noise reduction systems
- Voltage-controlled amplifier

APPLICATIONS

- Cellular radio
- Telephone trunk compandor-570
- Telephone subscriber compandor-571
- High level limiter
- Low level expandor-noise gate
- Dynamic filters
- CD Player

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

$\left.\begin{array}{|c|c|c|c|}\hline \text { SYMBOL } & \text { PARAMETER } & \text { RATING } & \text { UNITS } \\ \hline \text { V } & \text { Maximum operating voltage } \\ 570 \\ 571\end{array}\right)$

AC ELECTRICAL CHARACTERISTICS

$V_{C C}=+6 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			LIMITS			UNITS
			NE570			NE/SA571 ${ }^{5}$			
			MIN	TYP	MAX	MIN	TYP	MAX	
V_{cc}	Supply voltage		6		24	6		18	V
Icc	Supply current	No signal		3.2	4.8		3.2	4.8	mA
lout	Output current capability		± 20			± 20			mA
SR	Output slew rate			$\pm .5$			$\pm .5$		V/us
	Gain cell distortion ${ }^{2}$	Untrimmed Trimmed		$\begin{gathered} \hline 0.3 \\ 0.05 \end{gathered}$	1.0		$\begin{aligned} & 0.5 \\ & 0.1 \end{aligned}$	2.0	\%
	Resistor tolerance			± 5	± 15		± 5	± 15	\%
	Internal reference voltage		1.7	1.8	1.9	1.65	1.8	1.95	V
	Output DC shift ${ }^{3}$	Untrimmed		± 20	± 100		± 30	± 150	mV
	Expandor output noise	No signal, 15Hz-20kHz ${ }^{1}$		20	45		20	60	$\mu \mathrm{V}$
	Unity gain level ${ }^{6}$	1 kHz	-1	0	+1	-1.5	0	+1.5	dBm
	Gain change ${ }^{2,4}$			± 0.1	± 0.2		± 0.1		dB
	Reference drift ${ }^{4}$			± 5	± 10		+2, -25	+20, -50	mV
	Resistor drift ${ }^{4}$			+1, -0			+8, -0		\%
	Tracking error (measured relative to value at unity gain) equals [$V_{O}-V_{O}$ (unity gain)] $d B-V_{2} d B m$	Rectifier input, $\begin{aligned} & V_{2}=+6 \mathrm{dBm}, \mathrm{~V}_{1}=0 \mathrm{~dB} \\ & \mathrm{~V}_{2}=-30 \mathrm{dBm}, \mathrm{~V}_{1}=0 \mathrm{~dB} \end{aligned}$		$\begin{aligned} & +0.2 \\ & +0.2 \end{aligned}$	-0.5, +1		$\begin{aligned} & +0.2 \\ & +0.2 \end{aligned}$	$-1,+1.5$	dB
	Channel separation			60	\cdots		60		dB

NOTES:

1. Input to V_{1} and V_{2} grounded.
2. Measured at $O \mathrm{dBm}, 1 \mathrm{kHz}$.
3. Expandor $A C$ input change from no signal to 0 dBm .
4. Relative to value at $T_{A}=25^{\circ} \mathrm{C}$.
5. Electrical characteristics for the SA571 only are specified over -40 to $+85^{\circ} \mathrm{C}$ temperature range.
6. $0 \mathrm{dBm}=775 \mathrm{mV}$ RMs.

CIRCUIT DESCRIPTION

The NE570/571 compandor building blocks, as shown in the block diagram, are a full-wave rectifier, a variable gain cell, an operational amplifier and a bias system. The arrangement of these blocks in the IC result in a circuit which can perform well with few external components, yet can be adapted to many diverse applications.
The full-wave rectifier rectifies the input current which flows from the rectifier input, to an internal summing node which is biased at $\mathrm{V}_{\text {REF }}$. The rectified current is averaged on an external filter capacitor tied to the $\mathrm{C}_{\text {RECT }}$ terminal, and the average value of the input current controls the gain of the variable gain cell. The gain will thus be proportional to the average value of the input signal for capacitively-coupled voltage inputs as shown in the following equation. Note that for capacitively-coupled inputs there is no offset voltage capable of producing a gain error. The only error will come from the bias current of the rectifier (supplied internally) which is less than $0.1 \mu \mathrm{~A}$.
$G \propto \frac{\left|V_{N}-V_{R E F}\right| a v g}{R_{1}}$
or
$G \propto \frac{\left|V_{I N}\right| \text { avg }}{R_{1}}$
The speed with which gain changes to follow changes in input signal levels is determined by the rectifier filter capacitor. A small capacitor will yield rapid response but will not fully filter low frequency signals. Any ripple on the gain control signal will modulate the signal passing through the variable gain cell.

In an expander or compressor application, this would lead to third harmonic distortion, so there is a trade-off to be made between fast attack and decay times and distortion. For step changes in amplitude, the change in gain with time is shown by this equation.
$G(t)=\left(G_{\text {initial }}-G_{\text {final }}\right)_{e}-t / \tau$
$+G_{\text {final }} ; \tau=10 k \times C_{\text {RECT }}$
The variable gain cell is a current-in, current-out device with the ratio lout $/ I_{\mathbb{N}}$ controlled by the rectifier. $I_{\mathbb{N}}$ is the current which flows from the ΔG input to an internal summing node biased at $\mathrm{V}_{\text {REF }}$. The following equation applies for capacitively-coupled inputs. The output current, lout, is fed to the summing node of the op amp.
$I_{I N}=\frac{V_{I N}-V_{\text {REF }}}{R_{2}}=\frac{V_{\mathbb{N}}}{R_{2}}$
A compensation scheme built into the ΔG cell compensates for temperature and cancels out odd harmonic distortion. The only distortion which remains is even harmonics, and they exist only because of internal offset voltages. The THD trim terminal provides a means for nulling the internal offsets for low distortion operation.
The operational amplifier (which is internally compensated) has the non-inverting input tied to $\mathrm{V}_{\text {REF }}$, and the inverting input connected to the $\Delta \mathrm{G}$ cell output as well as brought out externally. A resistor, R_{3}, is brought out from the summing node and allows compressor or expander gain to be determined only by internal components.
The output stage is capable of $\pm 20 \mathrm{~mA}$ output current. This allows a $+13 \mathrm{dBm}\left(3.5 \mathrm{~V}_{\text {RMS }}\right)$ output into a 300Ω load which, with a series
resistor and proper transformer, can result in +13 dBm with a 600Ω output impedance.
A bandgap reference provides the reference voltage for all summing nodes, a regulated supply voltage for the rectifier and ΔG cell, and a bias current for the $\Delta \mathrm{G}$ cell. The low tempco of this type of reference provides very stable biasing over a wide temperature range.

The typical performance characteristics illustration shows the basic input-output transfer curve for basic compressor or expander circuits.

TYPICAL TEST CIRCUIT

INTRODUCTION

Much interest has been expressed in high performance electronic gain control circuits. For non-critical applications, an integrated circuit operational transconductance amplifier can be used, but when high-performance is required, one has to resort to complex discrete circuitry with many expensive, well-matched components. This paper describes an inexpensive integrated circuit, the NE570 Compandor, which offers a pair of high performance gain control circuits featuring low distortion ($<0.1 \%$), high signal-to-noise ratio (90dB), and wide dynamic range (110 dB).

CIRCUIT BACKGROUND

The NE570 Compandor was originally designed to satisfy the requirements of the telephone system. When several telephone channels are multiplexed onto a common line, the resulting signal-to-noise ratio is poor and companding is used to allow a wider dynamic range to be passed through the channel. Figure 1 graphically shows what a compandor can do for the signal-to-noise ratio of a restricted dynamic range channel. The input level range of +20 to -80 dB is shown undergoing a 2-to-1 compression where a 2 dB input level change is compressed into a 1 dB output level change by the compressor. The original 100 dB of dynamic range is thus compressed to a 50 dB range for transmission through a restricted dynamic range channel. A complementary expansion on the receiving end restores the original signal levels and reduces the channel noise by as much as 45 dB .
The significant circuits in a compressor or expander are the rectifier and the gain control element. The phone system requires a simple full-wave averaging rectifier with good accuracy, since the rectifier accuracy determines the (input) output level tracking accuracy. The gain cell determines the distortion and noise characteristics, and the phone system specifications here are very loose. These specs could have been met with a simple operational transconductance multiplier, or OTA, but the gain of an OTA is proportional to temperature and this is very undesirable. Therefore, a linearized transconductance multiplier was designed which is insensitive to temperature and offers low noise and low distortion performance. These features make the circuit useful in audio and data sysiems as weii as in telecommunications systems.

BASIC CIRCUIT HOOK-UP AND OPERATION

Figure 2 shows the block diagram of one half of the chip, (there are two identical channels on the IC). The full-wave averaging rectifier provides a gain control current, I_{G}, for the variable gain (ΔG) cell. The output of the ΔG cell is a current which is fed to the summing node of the operational amplifier. Resistors are provided to establish circuit gain and set the output DC bias.

Figure 1. Restricted Dynamic Range Channel

The circuit is intended for use in single power supply systems, so the internal summing nodes must be biased at some voltage above ground. An internal band gap voltage reference provides a very stable, low noise 1.8 V reference denoted $\mathrm{V}_{\text {REF }}$. The non-inverting input of the op amp is tied to $V_{\text {REF }}$, and the summing nodes of the rectifier and ΔG cell (located at the right of R_{1} and R_{2}) have the same potential. The THD trim pin is also at the $\mathrm{V}_{\text {REF }}$ potential.
Figure 3 shows how the circuit is hooked up to realize an expandor. The input signal, V_{IN}, is applied to the inputs of both the rectifier and the ΔG cell. When the input signal drops by 6 dB , the gain control current will drop by a factor of 2 , and so the gain will drop 6 dB . The output level at $\mathrm{V}_{\text {out }}$ will thus drop 12dB, giving us the desired 2-to-1 expansion.

Figure 4 shows the hook-up for a compressor. This is essentially an expandor placed in the feedback loop of the op amp. The ΔG cell is setup to provide AC feedback only, so a separate DC feedback loop is provided by the two $R_{D C}$ and $C_{D C}$. The values of $R_{D C}$ will determine the DC bias at the output of the op amp. The output will bias to:

$$
\begin{aligned}
& V_{O U T} D C=1+\frac{R_{D C 1}+R_{D C 2}}{R_{4}} \\
& V_{R E F}=\left(1+\frac{R_{D C T O T}}{30 k}\right) 1.8 \mathrm{~V}
\end{aligned}
$$

$$
G A I N=\frac{2 R_{3} V_{I N}(\text { avg })}{R_{1} R_{2} I_{B}}
$$

$\mathrm{i}_{\mathrm{B}}=14 \mathrm{i}_{\mathrm{O}}^{\mu \mathrm{A}}$
*EXTERNAL COMPONENTS

Figure 3. Basic Expander

The output of the expander will bias up to:
$V_{\text {OUT }} D C=1+\frac{R_{3}}{R_{4}} V_{R E F}$
$V_{\text {REF }}=\left(1+\frac{20 \mathrm{k}}{30 k}\right) 1.8 \mathrm{~V}=3.0 \mathrm{~V}$
The output will bias to 3.0 V when the internal resistors are used. External resistors may be placed in series with R_{3}, (which will affect the gain), or in parallel with R_{4} to raise the $D C$ bias to any desired value.

$$
\begin{aligned}
& \text { NOTES: } \\
& \text { GAIN }=\left(\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{\text {INavg }}}\right)^{\frac{1}{2}} \\
& I_{B}=140 \mu \mathrm{~A}
\end{aligned}
$$

External components
Figure 4. Basic Compressor

Figure 5. Rectifier Concept

CIRCUIT DETAILS-RECTIFIER

Figure 5 shows the concept behind the full-wave averaging rectifier. The input current to the summing node of the op amp, $V_{\mathbb{N}} R_{1}$, is supplied by the output of the op amp. If we can mirror the op amp output current into a unipolar current, we will have an ideal rectifier. The output current is averaged by R_{5}, CR, which set the averaging time constant, and then mirrored with a gain of 2 to become I_{G}, the gain control current.

NOTE:
$I_{G}=2 \frac{V_{\text {IN }} \text { avg }}{R 1}$
Figure 6. Simplified Rectifier Schematic

Figure 6 shows the rectifier circuit in more detail. The op amp is a one-stage op amp, biased so that only one output device is on at a time. The non-inverting input, (the base of Q_{1}), which is shown grounded, is actually tied to the internal $1.8 \mathrm{~V} \mathrm{~V}_{\text {REF }}$. The inverting input is tied to the op amp output, (the emitters of Q_{5} and Q_{6}), and the input summing resistor R_{1}. The single diode between the bases of Q_{5} and Q_{6} assures that only one device is on at a time. To detect the output current of the op amp, we simply use the collector currents of the output devices Q_{5} and $Q_{6} . Q_{6}$ will conduct when the input swings positive and Q_{5} conducts when the input swings negative. The collector currents will be in error by the a of Q_{5} or Q_{6} on negative or positive signal swings, respectively. ICs such as this have typical NPN βs of 200 and PNP βs of 40 . The a's of 0.995 and 0.975 will produce errors of 0.5% on negative swings and 2.5% on positive swings. The 1.5% average of these errors yields a mere 0.13 dB gain error.
At very low input signal levels the bias current of Q_{2}, (typically 50 nA), will become significant as it must be supplied by Q_{5}. Another low level error can be caused by DC coupling into the rectifier. If an offset voltage exists between the $\mathrm{V}_{\mathrm{IN}^{N}}$ input pin and the base of Q_{2}, an error current of $\mathrm{V}_{0 S} / R_{1}$ will be generated. A mere 1 mV of offset will cause an input current of 100 nA which will produce twice the error of the input bias current. For highest accuracy, the rectifier should be coupled into capacitively. At high input levels the β of the $P N P Q_{6}$ will begin to suffer, and there will be an increasing error until the circuit saturates. Saturation can be avoided by limiting the current into the rectifier input to $250 \mu \mathrm{~A}$. If necessary, an external resistor may be
placed in series with R_{1} to limit the current to this value. Figure 7 shows the rectifier accuracy vs input level at a frequency of 1 kHz .

At very high frequencies, the response of the rectifier will fall off. The roll-off will be more pronounced at lower input levels due to the increasing amount of gain required to switch between Q_{5} or Q_{6} conducting. The rectifier frequency response for input levels of 0 dBm , -20 dBm , and -40 dBm is shown in Figure 8. The response at all three levels is flat to well above the audio range.

Figure 8. Rectifier Frequency Response vs Input Level

VARIABLE GAIN CELL

Figure 9 is a diagram of the variable gain cell. This is a linearized two-quadrant transconductance multiplier. Q_{1}, Q_{2} and the op amp provide a predistorted drive signal for the gain control pair, Q_{3} and Q_{4}. The gain is controlled by I_{G} and a current mirror provides the output current.
The op amp maintains the base and collector of Q_{1} at ground potential ($V_{\text {REF }}$) by controlling the base of Q_{2}. The input current $I_{\mathbb{N}}\left(=V_{\mathbb{N}} / R_{2}\right)$ is thus forced to flow through Q_{1} along with the current I_{1}, so $\mathrm{I}_{\mathrm{C}_{1}}=\mathrm{I}_{1}+\mathrm{I}_{\mathbb{N}}$. Since I_{2} has been set at twice the value of l_{1}, the current through Q_{2} is:
$l_{2}-\left(l_{1}+l_{\mathbb{N}}\right)=l_{1}-l_{N}=l_{C_{2}}$.
The op amp has thus forced a linear current swing between Q_{1} and Q_{2} by providing the proper drive to the base of Q_{2}. This drive signal will be linear for small signals, but very non-linear for large signals, since it is compensating for the non-linearity of the differential pair, Q_{1} and Q_{2}, under large signal conditions.
The key to the circuit is that this same predistorted drive signal is applied to the gain control pair, Q_{3} and Q_{4}. When two differential pairs of transistors have the same signal applied, their collector current ratios will be identical regardless of the magnitude of the currents. This gives us:
$\frac{I_{C 1}}{I_{C 2}}=\frac{I_{C A}}{I_{C 3}}=\frac{I_{1}+I_{N}}{I_{1}-I_{N}}$
plus the relationships $I_{G}=I_{C_{3}} I_{C_{4}}$ and $l_{\text {out }}=\mathrm{I}_{\mathrm{C} 4}-\mathrm{I}_{\mathrm{C} 3}$ will yield the multiplier transfer function,
$I_{\text {OUT }}=\frac{I_{G}}{I_{1}} I_{\mathbb{N}}=\frac{V_{\text {IN }}}{R_{2}} \frac{i_{G}}{l_{1}}$
This equation is linear and temperature-insensitive, but it assumes ideal transistors.

Figure 9. Simplified Δ G Cell Schematic

Figure 10. ΔG Cell Distortion vs Offset Voltage

If the transistors are not perfectly matched, a parabolic, non-linearity is generated, which results in second harmonic distortion. Figure 10 gives an indication of the magnitude of the distortion caused by a given input level and offset voltage. The distortion is linearly proportional to the magnitude of the offset and the input level. Saturation of the gain cell occurs at a +8 dBm level. At a nominal operating level of 0 dBm , a 1 mV offset will yield 0.34% of second harmonic distortion. Most circuits are somewhat better than this, which means our overall offsets are typically about mV . The distortion is not affected by the magnitude of the gain control current, and it does not increase as the gain is changed. This second harmonic distortion could be eliminated by making perfect transistors, but since that would be difficult, we have had to resort to other methods. A trim pin has been provided to allow trimming of the internal offsets to zero, which effectively eliminated
second harmonic distortion. Figure 11 shows the simple trim network required.
Figure 12 shows the noise performance of the $\Delta \mathrm{G}$ cell. The maximum output level before clipping occurs in the gain cell is plotted along with the output noise in a 20 kHz bandwidth. Note that the noise drops as the gain is reduced for the first 20 dB of gain reduction. At high gains, the signal to noise ratio is 90 dB , and the total dynamic range from maximum signal to minimum noise is 110 dB .

Figure 11. THD Trim Network
Control signal feedthrough is generated in the gain cell by imperfect device matching and mismatches in the current sources, I_{1} and I_{2}. When no input signal is present, changing l_{G} will cause a small output signal. The distortion trim is effective in nulling out any control signal feedthrough, but in general, the null for minimum feedthrough will be different than the null in distortion. The control signal feedthrough can be trimmed independently of distortion by tying a current source to the $\Delta \mathrm{G}$
input pin. This effectively trims $\left.\right|_{1}$. Figure 13 shows such a trim network.

Figure 12. Dynamic Range of NE570

Figure 13. Control Signal Feedthrough

OPERATIONAL AMPLIFIER

The main op amp shown in the chip block diagram is equivalent to a 741 with a 1 MHz bandwidth. Figure 14 shows the basic circuit. Split collectors are used in the input pair to reduce g_{M}, so that a small compensation capacitor of just 10 pF may be used. The output stage, although capable of output currents in excess of 20 mA , is biased for a low quiescent current to conserve power. When driving heavy loads, this leads to a small amount of crossover distortion.

RESISTORS

Inspection of the gain equations in Figures 3 and 4 will show that the basic compressor and expander circuit gains may be set entirely by resistor ratios and the internal voltage reference. Thus, any form of resistors that match well would suffice for these simple hook-ups, and absolute accuracy and temperature coefficient would be of no importance. However, as one starts to modify the gain equation with external resistors, the internal resistor accuracy and tempco become very significant. Figure 15 shows the effects of temperature on the diffused resistors which are normally used in integrated circuits, and the ion-implanted resistors which are used in this circuit. Over the critical $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range, there is a 10-to-1 improvement in drift from a 5% change for the diffused resistors, to a
0.5% change for the implemented resistors.
The implanted resistors have another advantage in that they can be made the size of the diffused resistors due to the higher resistivity. This saves a significant amount of chip area.

Figure 14. Operational Amplifier

Figure 15. Resistance vs Temperature

APPLICATIONS

The following circuits will illustrate some of the wide variety of applications for the NE570.

BASIC EXPANDOR

Figure 1 shows how the circuit would be hooked up for use as an expandor. Both the rectifier and ΔG cell inputs are tied to $V_{I N}$ so that the gain is proportional to the average value of $\left(\mathrm{V}_{\mathbb{N}}\right)$. Thus, when $\mathrm{V}_{\mathbb{N}}$ falls 6 dB , the gain drops 6 dB and the output drops 12 dB . The exact expression for the gain is
Gain exp. $=\left[\frac{2 R_{3} V_{I N}(a v g)}{R_{1} R_{2} I_{B}}\right]^{2}$
$\mathrm{I}_{\mathrm{B}}=140 \mu \mathrm{~A}$
The maximum input that can be handled by the circuit in Figure 1 is a peak of 3 V . The rectifier input current can be as large as $1=3 \mathrm{~V} / \mathrm{R}_{1}=3 \mathrm{~V} / 10 \mathrm{k}=300 \mu \mathrm{~A}$. The $\Delta \mathrm{G}$ cell input current should be limited to
$1=2.8 \mathrm{~V} / \mathrm{R}_{2}=2.8 \mathrm{~V} / 20 \mathrm{~K}=140 \mu \mathrm{~A}$. If it is necessary to handle larger input voltages than $0 \pm 2.8 \mathrm{~V}$ peak, external resistors should be placed in series with R_{1} and R_{2} to limit the input current to the above values.

Figure 1 shows a pair of input capacitors $\mathrm{C}_{\text {IN1 }}$ and $\mathrm{C}_{\mathrm{IN} 2}$. It is now necessary to use both capacitors if low level tracking accuracy is not important. If R_{1} and R_{2} are tied together and share a common capacitor, a small current will flow between the ΔG cell summing node and the rectifier summing node due to offset

The output of the expandor is biased up to 3 V by the DC gain provided by $\mathrm{R}_{3}, \mathrm{R}_{4}$. The output will bias up to
$V_{\text {OUTDC }}=1+\frac{R_{3}}{R_{4}} V_{\text {REF }}$

For supply voltages higher than $6 \mathrm{~V}, \mathrm{R}_{4}$ can be shunted with an external resistor to bias the output up to V_{cc}.

Note that it is possible to externally increase R_{1}, R_{2}, and R_{3}, and to decrease R_{3} and R_{4}. This allows a great deal of flexibility in setting up system levels. If larger input signals are to be handled, R_{1} and R_{2} may be increased; if a larger output is required, R_{3} may be
increased. To obtain the largest dynamic range out of this circuit, the rectifier input should always be as large as possible (subject to the $\pm 300 \mu \mathrm{~A}$ peak current restriction).

BASIC COMPRESSOR

Figure 2 shows how to use the NE570/571 as a compressor. It functions as an expandor in the feedback loop of an op amp. If the input rises 6 dB , the output can rise only 3 dB . The 3dB increase in output level produces a 3dB increase in gain in the ΔG cell, yielding a 6 dB increase in feedback current to the summing node. Exact expression for gain is
Gain comp. $=\left[\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{I N} \text { (avg) }}\right]^{\frac{1}{2}}$

Figure 1. Basic Expandor
voltages. This current will produce an error in the gain control signal at low levels, degrading tracking accuracy.

The same restrictions for the rectifier and $\Delta \mathrm{G}$ cell maximum input current still hold, which place a limit on the maximum compressor
output. As in the expandor, the rectifier and ΔG cell inputs could be made common to save a capacitor, but low level tracking accuracy would suffer. Since there is no DC feedback path around the op amp through the ΔG cell, one must be provided externally. The pair of resistors R_{DC} and the capacitor C_{DC} must be provided. The op amp output will bias up to
$V_{\text {OUTDC }}=\left(1+\frac{R_{D C}}{R_{4}}\right) V_{R E F}$
For the largest dynamic range, the compressor output should be as large as possible so that the rectifier input is as large as possible (subject to the $\pm 300 \mu \mathrm{~A}$ peak current restriction). If the input signal is small, a large output can be produced by reducing R_{3} with the attendant decrease in input impedance, or by increasing R_{1} or R_{2}. It would be best to increase R_{2} rather than R_{1} so that the rectifier input current is not reduced.

Figure 2. Basic Compressor

DISTORTION TRIM

Distortion can be produced by voltage offsets in the $\Delta \mathrm{G}$ cell. The distortion is mainly even harmonics, and drops with decreasing input signal (input signal meaning the current into the $\Delta \mathrm{G}$ cell). The THD trim terminal provides a means for trimming out the offset voltages and thus trimming out the distortion. The circuit shown in Figure 3 is suitable, as would be any other capable of delivering $\pm 30 \mu \mathrm{~A}$ into 100Ω resistor tied to 1.8 V .

LOW LEVEL MISTRACKING

The compandor will follow a 2-to-1 tracking ratio down to very low levels. The rectifier is responsible for errors in gain, and it is the rectifier input bias current of $<100 \mathrm{nA}$ that

Figure 4. Expandor With Low Level Mistracking
produces errors at low levels. The magnitude signal level drops to a $1 \mu \mathrm{~A}$ average, the bias current will produce a 10% or 1dB error in gain. This will occur at 42 dB below the maximum input level.

Figure 3. THD Trim Network
It is possible to deviate from the 2-to-1 transfer characteristic at low levels as shown in the circuit of Figure 4. Either R_{A} or R_{B}, (but not both), is required. The voltage on $\mathrm{C}_{\text {RECT }}$ is $2 \times V_{B E}$ plus $V_{I N}$ avg. For low level inputs $\mathrm{V}_{\text {IN }}$ avg is negligible, so we can assume 1.3 V as the bias on $\mathrm{C}_{\text {RECT }}$. If R_{A} is placed from $\mathrm{C}_{\text {RECT }}$ to AND we will bleed off a current $\mathrm{I}=1.3 \mathrm{~V} / \mathrm{R}_{\mathrm{A}}$. If the rectifier average input current is less than this value, there will be no gain control input to the ΔG cell so that its gain will be zero and the expandor output will be zero. As the input level is raised, the input current will exceed $1.3 \mathrm{~V} / \mathrm{R}_{\mathrm{A}}$ and the expandor output will become active. For large input signals, R_{A} will have little effect. The result of this is that we will deviate from the 2-to-1 expansion, present at high levels, to an infinite expansion at low levels where the output shuts off completely. Figure 5 shows some examples of tracking curves which can be obtained. Complementary curves would be obtained for a compressor, where at low level signals the result would be infinite
compression. The bleed current through R_{A} will be a function of temperature because of the two $\mathrm{V}_{B E}$ drops, so the low level tracking will drift with temperature. If a negative supply is available, if would be desirable to tie R_{A} to that, rather than ground, and to increase its value accordingly. The bleed current will then be less sensitive to the V_{BE} temperature drift.

R_{B} will supply an extra current to the rectifier equal to ($\mathrm{V}_{\mathrm{CC}}-1.3 \mathrm{~V}$) R_{B}. In this case, the expandor transfer characteristic will deviate towards 1-to-1 at low levels. At low levels the expandor gain will stop dropping and the expansion will cease. In a compressor, this would lead to a lack of compression at low levels. Figure 6 shows some typical transfer curves. An R_{B} value of approximately 2.5 M would trim the low level tracking so as to match the Bell system N2 trunk compandor characteristic.

Figure 6. Mistracking With R_{B}

Figure 7. Rectifier Bias Current Compensation

Figure 8. Rectifier Performance With Bias Current Compensation

Figure 9. Gain vs Time Input Steps of $\pm 10, \pm 20, \pm 30 \mathrm{~dB}$

Figure 10. Compressor Attack Envelope +12 dB Step

Figure 11. Compressor Release Envelope-12dB Step

RECTIFIER BIAS CURRENT CANCELLATION

The rectifier has an input bias current of between 50 and 100 nA . This limits the dynamic range of the rectifier to about 60 dB . It also limits the amount of attenuation of the $\Delta \mathrm{G}$ cell. The rectifier dynamic range may be increased by about 20 dB by the bias current trim network shown in Figure 7. Figure 8 shows the rectifier performance with and without bias current cancellation.

ATTACK AND DECAY TIME

The attack and decay times of the compandor are determined by the rectifier filter time constant $10 \mathrm{k} \times \mathrm{C}_{\text {RECT }}$. Figure 9 shows how the gain will change when the input signal undergoes a 10,20 , or 30 dB change in level.
The attack time is much faster than the decay, which is desirable in most applications. Figure 10 shows the compressor attack envelope for $\mathrm{a}+12 \mathrm{~dB}$ step in input level. The initial output level of 1 unit instantaneously rises to 4 units, and then starts to fall towards its final value of 2 units. The CCITT recommendation on attack and decay times for telephone system compandors defines the attack time as when the envelope has fallen to a level of 3 units, corresponding to $t=0.15$ in the figure. The CCITT recommends an attack time of 3 $\pm 2 \mathrm{~ms}$, which suggests an RC product of 20 ms . Figure 11 shows the compressor output envelope when the input level is suddenly reduced 12 dB . The output, initially at a level of 4 units, drops 12 dB to 1 unit and then rises to its final value of 2 units. The CCITT defines release time as when the output has risen to 1.5 units, and suggests a value of $13.5 \pm 9 \mathrm{~ms}$. This corresponds to $\mathrm{t}=0.675$ in the figure, which again suggests a 20 ms RC product. Since $\mathrm{R}_{1}=10 \mathrm{k}$, the CCITT recommendations will be met if $\mathrm{C}_{\mathrm{REC}}=2 \mu \mathrm{~F}$.
There is a trade-off between fast response and low distortion. If a small $\mathrm{C}_{\text {RECT }}$ is used to get very fast attack and decay, some ripple will appear on the gain control line and produce distortion. As a rule, a $1 \mu \mathrm{~F}_{\text {RECT }}$ will produce 0.2% distortion at 1 kHz . The distortion is inversely proportional to both frequency and capacitance. Thus, for telephone applications where $\mathrm{C}_{\text {RECT }}=2 \mu \mathrm{~F}$, the ripple would cause 0.1% distortion at 1 kHz and 0.33% at 800 Hz . The low frequency distortion generated by a compressor would be cancelled (or undistorted) by an expandor, providing that they have the same value of $\mathrm{C}_{\mathrm{RECT}}$.

FAST ATTACK, SLOW RELEASE HARD LIMITER

The NE570/571 can be easily used to make an excellent limiter. Figure 12 shows a typical circuit which requires of an NE570/571, of an LM339 quad comparator, and a PNP transistor. For small signals, the ΔG cell is nearly off, and the circuit runs at unity gain as set by $\mathrm{R}_{8}, \mathrm{R}_{7}$. When the output signal tries to exceed a + or -1 V peak, a comparator threshold is exceeded. The PNP is turned on and rapidly charges C_{4} which activates the ΔG cell. Negative feedback through the ΔG cell reduces the gain and the output signal level. The attack time is set by the RC product of R_{18} and C_{4}, and the release time is determined by C_{4} and the internal rectifier resistor, which is 10 k . The circuit shown attacks in less than 1 ms and has a release time constant of 100 ms . R_{9} trickles about $0.7 \mu \mathrm{~A}$ through the rectifier to prevent C_{4} from becoming completely discharged. The gain cell is activated when the voltage on Pin 1 or 16 exceeds two diode drops. If C_{4} were allowed to become completely discharged, there would be a slight delay before it recharged to $>1.2 \mathrm{~V}$ and activated limiting action.
A stereo limiter can be built out of 1 NE570/571, 1 LM339 and two PNP transistors. The resistor networks $\mathrm{R}_{12}, \mathrm{R}_{13}$ and R_{14}, R_{15}, which set the limiting thresholds, could be common between channels. To gang the stereo channels together (limiting in one channel will produce a corresponding gain change in the second channel to maintain the balance of the stereo image), then Pins 1 and 16 should be jumpered together. The outputs of all 4 comparators may then be tied together, and only one PNP transistor and one capacitor C_{4} need be used. The release time will then be the product $5 \mathrm{k} \times \mathrm{C}_{4}$ since two channels are being supplied current from C_{4}.

USE OF EXTERNAL OP AMP

The operational amplifiers in the NE570/571 are not adequate for some applications.

+15V Pin 13
GND Pin 4
$\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{\mathbf{4}}$ are internal to the NE570/571
Figure 12. Fast Attack, Slow Release Hard Limiter

Figure 13. Use of External Op Amp
The slew rate, bandwidth, noise, and output drive capability can limit performance in many systems. For best performance, an external op amp can be used. The external op amp may be powered by bipolar supplies for a larger output swing.
Figure 13 shows how an external op amp may be connected. The non-inverting input must be biased at about 1.8 V . This is easily accomplished by tying it to either Pin 8 or 9 , the THD trim pins, since these pins sit at 1.8V. An optional RC decoupling network is shown which will filter out the noise from the NE570/571 reference (typically about $10 \mu \mathrm{~V}$ in $20 \mathrm{kHz} \mathrm{BW})$. The inverting input of the external op amp is tied to the inverting input of the internal op amp. The output of the external op amp is then used, with the internal op amp output left to float. If the external op amp is used single supply $\left(+V_{C C}\right.$ and ground), it must have an input common-mode range down te less than 1.8 V .

N2 COMPANDOR

There are four primary considerations involved in the application of the NE570/571 in an N2 compandor. These are matching of input and output levels, accurate 600Ω input and output impedances, conformance to the Bell system low level tracking curve, and proper attack and release times.

Figure 14 shows the implementation of an N2 compressor. The input level of $0.245 \mathrm{~V}_{\text {RMS }}$ is
stepped up to $1.41 \mathrm{~V}_{\mathrm{RMS}}$ by the 600Ω : $20 \mathrm{k} \Omega$ matching transformer. The 20 k input resistor properly terminates the transformer. An internal $20 \mathrm{k} \Omega$ resistor $\left(R_{3}\right)$ is provided, but for accurate impedance termination an external resistor should be used. The output impedance is provided by the $4 \mathrm{k} \Omega$ output resistor and the $4 \mathrm{k} \Omega: 600 \Omega$ output transformer.

Figure 15. N2 Expandor

The $0.275 \mathrm{~V}_{\text {RMS }}$ output level requires a 1.4 V op amp output level. This can be provided by increasing the value of R_{2} with an external resistor, which can be selected to fine trim the gain. A rearrangement of the compressor gain equation (6) allows us to determine the value for R_{2}.

$$
\begin{aligned}
R_{2} & =\frac{\text { Gain }^{2} \times 2 R_{3} V_{I N} a v g}{R_{1} I_{B}} \\
& =\frac{1^{2} \times 2 \times 20 \mathrm{k} \times 1.27}{10 \mathrm{k} \times 140 \mu \mathrm{~A}} \\
& =36.3 \mathrm{k}
\end{aligned}
$$

The external resistance required will thus be $36.3 \mathrm{k}-20 \mathrm{k}=16.3 \mathrm{k}$.

The Bell-compatible low level tracking characteristic is provided by the low level trim resistor from $\mathrm{C}_{\text {RECT }}$ to V_{CC}. As shown in
Figure 6, this will skew the system to a $1: 1$ transfer characteristic at low levels. The $2 \mu \mathrm{~F}$ rectifier capacitor provides attack and release times of 3 ms and 13.5 ms , respectively, as shown in Figures 10 and 11. The R-C-R network around the op amp provides DC feedback to bias the output at DC.
An N2 expandor is shown in Figure 15. The input level of $3.27 \mathrm{~V}_{\mathrm{RMS}}$ is stepped down to 1.33 V by the $600 \Omega: 100 \Omega$ transformer, which is terminated with a 100Ω resistor for accurate impedance matching. The output impedance is accurately set by the 150Ω output resistor and the 150 $2: 600 \Omega$ output transformer. With this configuration, the 3.46 V transformer output requires a 3.46 V op amp output. To obtain this output level, it is necessary to increase the value of R_{3} with an
external trim resistor. The new value of R_{3} can be found with the expandor gain equation

$$
\begin{aligned}
R_{3} & =\frac{R_{1} R_{2} I_{B} \text { Gain }}{2 V_{I N} a v g} \\
& =\frac{10 k \times 20 k \times 140 \mu A \times 2.6}{2 \times 1.20} \\
& =30.3 \mathrm{k}
\end{aligned}
$$

An external addition to R_{3} of 10 k is required, and this value can be selected to accurately set the high level gain.

A low level trim resistor from $\mathrm{C}_{\text {RECT }}$ to V_{CC} of about 3M provides matching of the Bell low-level tracking curve, and the $2 \mu \mathrm{~F}$ value of $\mathrm{C}_{\text {RECT }}$ provides the proper attack and release times. A 16 k resistor from the summing node to ground biases the output to $7 V_{D C}$.

VOLTAGE-CONTROLLED ATTENUATOR

The variable gain cell in the NE570/571 may be used as the heart of a high quality voltage-controlled amplifier (VCA). Figure 16 shows a typical circuit which uses an external op amp for better performance, and an exponential converter to get a control characteristic of $-6 \mathrm{~dB} / \mathrm{N}$. Trim networks are shown to null out distortion and DC shift, and to fine trim gain to $O \mathrm{~dB}$ with OV of control voltage.
Op amp A_{2} and transistors Q_{i} and Q_{2} form the exponential converter generating an exponential gain control current, which is fed into the rectifier. A reference current of $150 \mu \mathrm{~A}$, (15 V and $\mathrm{R}_{20}=100 \mathrm{~K}$), is attenuated a
factor of two (6dB) for every volt increase in the control voltage. Capacitor C_{6} slows down gain changes to a 20 ms time constant $\left(C_{6} \times R_{1}\right)$ so that an abrupt change in the control voltage will produce a smooth sounding gain change. R_{18} assures that for large control voltages the circuit will go to full attenuation. The rectifier bias current would normally limit the gain reduction to about 70 dB . R_{18} draws excess current out of the rectifier. After approximately 50 dB of attenuation at a $-6 \mathrm{~dB} / \mathrm{V}$ slope, the slope steepens and attenuation becomes much more rapid until the circuit totally shuts off at about 9 V of control voltage. A_{1} should be a low noise high slew rate op amp. R_{13} and R_{14} establish approximately a $O V$ bias at A_{1} 's output.
With a OV control voltage, R_{19} should be adjusted for 0 dB gain. At 1 V (-6dB gain) Rg_{9} should be adjusted for minimum distortion with a large $(+10 \mathrm{dBm})$ input signal. The output DC bias (A_{1} output) should be measured at full attenuation (+10 V control voltage) and then R_{8} is adjusted to give the same value at 0 dB gain. Properly adjusted, the circuit will give typically less than 0.1% distortion at any gain with a DC output voltage variation of only a few millivolts. The clipping level $(140 \mu \mathrm{~A}$ into $\operatorname{Pin} 3,14)$ is $\pm 10 \mathrm{~V}$ peak. A signal-to-noise ratio of 90 dB can be obtained.

If several VCAs must track each other, a common exponentiai converter can be used. Transistors can simply be added in parallel with Q_{2} to control the other channels. The transistors should be maintained at the same temperature for best tracking.

Figure 16. Voltage-Controlled Attenuator

AUTOMATIC LEVEL CONTROL

The NE570 can be used to make a very high performance ALC as shown in Figure 17. This circuit hook-up is very similar to the basic compressor shown in Figure 2 except that the rectifier input is tied to the input rather than the output. This makes gain inversely proportional to input level so that a 20 dB drop in input level will produce a 20 dB increase in gain. The output will remain fixed at a constant level. As shown, the circuit will maintain an output level of $\pm 1 \mathrm{~dB}$ for an input range of +14 to -43 dB at 1 kHz . Additional external components will allow the output level to be adjusted. Some relevant design equations are:
Output level $=\frac{R_{1} R_{2} I_{B}}{2 R_{3}} \quad\left(\frac{V_{I N}}{} V_{I N}(\right.$ avg $\left.)\right)$

$$
I_{B}=140 \mu A
$$

Gain $=\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{I N} \text { (avg) }}$ where
$\frac{V_{I N}}{V_{I N}(\text { avg }}=\frac{\pi}{2 \sqrt{2}}=1.11$ (for sine wave)

If ALC action at very low input levels is not desired, the addition of resistor R_{X} will limit the maximum gain of the circuit.
Gain max $=\frac{\frac{R_{1}+R_{X}}{1.8 V} \times R_{2} \times I_{B}}{2 R_{3}}$
The time constant of the circuit is determined by the rectifier capacitor, $\mathrm{C}_{\text {RECT }}$, and an internal 10 k resistor.

$$
\tau=10 \mathrm{k} \mathrm{C}_{\mathrm{RECT}}
$$

Response time can be made faster at the expense of distortion. Distortion can be approximated by the equation:
$T H D=\left(\frac{1 \mu F}{C_{\text {RECT }}}\right)\left(\frac{1 \mathrm{kHz}}{\text { freq. }}\right) \times 0.2 \%$

VARIABLE SLOPE COMPRESSOR-EXPANDOR

Compression and expansion ratios other than 2:1 can be achieved by the circuit shown in Figure 18. Rotation of the dual potentiometer causes the circuit hook-up to change from a basic compressor to a basic expandor. In the
center of rotation, the circuit is $1: 1$, has neither compression nor expansion. The (input) output transfer characteristic is thus continuously variable from 2:1 compression, through 1:1 up to $1: 2$ expansion. If a fixed compression or expansion ratio is desired, proper selection of fixed resistors can be used instead of the potentiometer. The optional threshold resistor will make the compression or expansion ratio deviate towards $1: 1$ at low levels. A wide variety of (input) output characteristics can be created with this circuit, some of which are shown in Figure 18.

HI-FI COMPANDOR

The NE570 can be used to construct a high performance compandor suitable for use with music. This type of system can be used for noise reduction in tape recorders, transmission systems, bucket brigade delay lines, and digital audio systems. The circuits to be described contain features which improve performance, but are not required for all applications.
A major problem with the simple NE570 compressor (Figure 2) is the limited op amp gain at high frequencies.

Figure 17. Automatic Level Control

Figure 18. Variable Slope Compressor-Expandor

For weak input signals, the compressor circuit operates at high gain and the 570 op amp simply runs out of loop gain. Another problem with the 570 op amp is its limited slew rate of about $0.6 \mathrm{~V} / \mu \mathrm{s}$. This is a limitation of the expandor, since the expandor is more likely to produce large output signals than a compressor.

Figure 20 is a circuit for a high fidelity compressor which uses an external op amp and has a high gain and wide bandwidth. An input compensation network is required for stability.
Another feature of the circuitin Figure 20 is that the rectifier capacitor (C_{9}) is not grounded, but is tied to the output of an op amp circuit. This circuit, built around an LM324, speeds up the compressor attack time at low signal levels. The response times of the simple expandor and compressor (Figures 1 and 2) become longer at low signal levels. The time constant is not simply $10 \mathrm{k} \times \mathrm{C}_{\text {RECT }}$, but is really:

$$
\left(10 k+2\left(\frac{0.026 V}{I_{R E C T}}\right)\right) x C_{R E C T}
$$

When the rectifier input level drops from 0 dBm to -30 dBm , the time constant increases from $10.7 \mathrm{k} \times \mathrm{C}_{\text {RECT }}$ to $32.6 \mathrm{k} \times \mathrm{C}_{\text {RECT }}$. In systems where there is unity gain between the compressor and expandor, this will cause no overall error. Gain or loss between the
compressor and expandor will be a mistracking of low signal dynamics. The circuit with the LM324 will greatly reduce this problem for systems which cannot guarantee the unity gain.

Figure 19. Typical Input-Output Tracking Curves of Variable Ratio Compressor-Expandor

When a compressor is operating at high gain, (small input signal), and is suddenly hit with a signal, it will overload until it can reduce its gain. Overloaded, the output will attempt to swing rail to rail. This compressor is limited to approximately a $7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ output swing by the brute force clamp diodes D_{3} and D_{4}. The diodes cannot be placed in the feedback loop because their capacitance would limit high frequency gain. The purpose of limiting the output swing is to avoid overloading any succeeding circuit such as a tape recorder input.

The time it takes for the compressor to recover from overload is determined by the rectifier capacitor C_{9}. A smaller capacitor will allow faster response to transients, but will produce more low frequency third harmonic distortion due to gain modulation. A value of $1 \mu \mathrm{~F}$ seems to be a good compromise value and yields good subjective results. Of course, the expandor should have exactly the same value rectifier capacitor for proper transient response. Systems which have good low frequency amplitude and phase response can use compandors with smaller rectifier capacitors, since the third harmonic distortion which is generated by the compressor will be undistorted by the expandor.
Simple compandor systems are subject to a problem known as breathing. As the system is changing gain, the change in the background noise level can sometimes be heard.
The compressor in Figure 20 contains a high frequency pre-emphasis circuit (C_{2}, R_{5} and C_{8}, R_{14}), which helps solve this problem. Matching de-emphasis on the expandor is required. More complex designs could make the pre-emphasis variable and further reduce breathing.
The expandor to complement the compressor is shown in Figure 21. Here an external op amp is used for high slew rate. Both the compressor and expandor have unity gain levels of 0 dB . Trim networks are shown for distortion (THD) and DC shift. The distortion trim should be done first, with an input of 0 dB at 10 kHz . The DC shift should be adjusted for minimum envelope bounce with tone bursts. When applied to consumer tape recorders, the subjective performance of this system is excellent.

Figure 20. Hi-Fi Compressor With Pre-emphasls

Figure 21. Hi-Fi Expandor With De-emphasis

Compandors are versatile, low cost, dual-channel gain control devices for audio frequencies. They are used in tape decks, cordless telephones, and wireless microphones performing noise reduction. Electronic organs, modems and mobile telephone equipment use compandors for signal level control.
So what is companding? Why do it at all? What happens when we do it? Compandor is the contraction of the two words compressor and expandor. There is one basic reason to compress a signal before sending it through a telephone line or recording it on a cassette tape: to process that signal (music, speech, data) so that all parts of it are above the inherent noise floor of the transmission medium and yet not running into the max. dynamic range limits, causing clipping and distortion. The diagrams below demonstrate the idea; they are not totally correct because in the real world of electronics the 3 kHz tone is riding on the 1 kHz tone. They are shown separated for better explanation.
Figure 1 is the signal from the source. Figure 2 shows the noise always in the transmission medium. Figure 3 shows the max limits of the transmission medium and what happens when a signal larger than those limits is sent through it. Figure 4 is the result of compressing the signal (note that the larger signal would not be clipped when transmitted).
The received/playback signal is processed (expanded) in exactly the same - only inverted - ratio as the input signal was compressed. The end result

Figure 1. Original Signal Input

Figure 2. Wide-Band Noise Floor of Transmission Line

Figure 3.

Figure 4. Signal After Compression
is a clean, undistorted signal with a high sig-nal-to-noise ratio.

This document has been designed to give the reader a basic working knowledge of the Signetics Compandor family. The analyses of three primary applications will be accompanied by "recipes" describing how to select external components (for both proper operation and function modification).
Schematic and artwork for an application board are also provided. For comprehensive technical information consult the Compandor Product Guide or the Linear Data Manual.

The basic blocks in a compandor are the current-controlled variable gain cell ($\Delta \mathrm{G}$), voltage-to-current converter (rectifier), and operational amplifier. Each Signetics compandor package has two identical, independent channels with the following block diagrams (notice that the 570/71 is different from the 572).

The operational amplifier is the main signal path and output drive.

BLOCK DIAGRAMS

The full-wave averaging rectifier measures the AC amplitude of a signal and develops a control current for the variable gain cell.
The variable gain cell uses the rectifier control current to provide variable gain control for the operational amplifier gain block.

The compandor can function as a Compressor, Expandor, and Automatic Level Controller or as a complete compressor/expandor system as described in the following:

1) The COMPRESSOR function processes uncontrolled input signals into controlled output signals. The purpose of this is to avoid distortion caused by a narrow dynamic range medium, such as telephone lines, RF and satellite transmissions, and magnetic tape. The Compressor can also limit the level of a signal.
2) The EXPANDOR function allows a user to increase the dynamic range of an incoming compressed signal such as radio broadcasts.
3) The compressor/expandor system allows a user to retain dynamic range and reduce the effects of noise introduced by the transmission medium.
4) The AUTOMATIC LEVEL CONTROL (ALC) function (like the familiar automatic gain control) adjusts its gain proportionally with the input amplitude. This ALC circuit therefore transforms a wideiy varying input signal into a fixed amplitude output signal without clipping and distortion.

HOW TO DESIGN COMPANDOR CIRCUITS

The rest of the cookbook will provide you with basic compressor, expandor, and automatic level control application information. A NE570/571 has been used in all of the circuits. If high-fidelity audio or separately programmable attack and decay time are needed, the NE572 with a low noise op amp should be used.

The compressor (see Figure 5) utilizes all basic building blocks of the compandor. In this configuration, the variable gain cell is placed in the feedback loop of the standard inverting amplifier circuit. The gain equation is $A_{V}=-R_{F} / R_{\mathbb{I}}$. As shown above, the variable gain cell acts as a variable feedback resistor (R_{F}) (See Figure 5).
As the input signal increases above the crossover level of 0 dB , the variable resistor decreases in value. This causes the gain to decrease, thus limiting the output amplitude.
Below the crossover level of 0 dB , an increase in input signal causes the variable resistor to increase in value, thereby causing the output signal's amplitude to increase.
In the compressor configuration, the rectifier is connected to the output.
The complete equation for the compressor gain is:

Gain comp. $=\left[\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{I N} \text { (avg) }}\right]^{\frac{1}{2}}$
where: $R_{1}=10 k$

$$
\mathrm{R}_{2}=20 \mathrm{k}
$$

$\mathrm{R}_{3}=20 \mathrm{k}$

$$
\mathrm{I}_{\mathrm{B}}=140 \mu \mathrm{~A}
$$

$\mathrm{V}_{\mathrm{IN}}(\mathrm{avg})=0.9\left(\mathrm{~V}_{\operatorname{IN}(\mathrm{RMS}}\right)$

COMPRESSOR RECIPE

1) $D C$ bias the output half way between the supply and ground to get maximum headroom. The circuit in Figure 6 is designed around a system supply of 6 V , thus the output DC level should be 3 V .
$V_{\text {OUT DC }}=\left(1+\left(2 R_{D C} / R_{4}\right)\right) V_{\text {REF }}$
where: $\mathrm{R}_{4}=30 \mathrm{k}$
$V_{\text {REF }}=1.8 \mathrm{~V}$
R_{DC} is external
manipulating the equation, the result is. . .
$R_{D C}=\left(\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}\right)-1\right) \frac{R_{4}}{2}$
Note that the $\mathrm{C}_{(\mathrm{DC})}$ should be large enough to totally short out any AC in this feedback loop.
2) Analyze the OUTPUT signal's anticipated amplitude.

Compandor cookbook

a) if larger than 2.8 V peak, R_{2} needs to be increased. (see INGREDIENTS section)
b) if larger than 3.0 V peak, R_{1} will also need to be increased.

By limiting the peak input currents we avoid signal distortion.
3) The input and output coupling caps need to be large enough not to attenuate any desired frequencies ($X_{C}=1 /(6.28 x f)$).
4) The $\mathrm{C}_{\text {RECT }}$ should be $1 \mu \mathrm{~F}$ to $2 \mu \mathrm{~F}$ for initial setup. This directly affects Attack and Release times.
5) An input buffer may be necessary if the source's output impedance needs matching.
6) Pre-emphasis may be used to reduce noisepumping, breathing, etc., if present. See the NE570/571 data sheet for specific details.
7) Distortion (THD) trim pins are available if the already low distortion needs to be further reduced. Refer to data sheet for trimming network. Note that if notused, the THD trim pins should have 200 pF caps to ground.
8) At very low input signal levels, the rectifier's errors become significant and can be reduced with the Low Level Mistracking network. (This technique prevents infinite compression at low input levels.)

The EXPANDOR utilizes all the basic building blocks of the compandor (see Figure 7). In this configuration the variable gain cell is placed in the inverting input lead of the operational amplifier and acts as a variable input resistance, $\mathrm{R}_{\text {IN }}$. The basic gain equation for operational amplifiers in the standard inverting feedback loop is $A_{V}=-R_{F} / R_{I N}$.

As the input amplitude increases above the crossover level of 0 dBM , this variable resistor decreases in value, causing the gain to increase, thus forcing the output amplitude to increase (refer to Figure 10).
Below the crossover level, an increase in input amplitude causes the variable resistor to increase in value, thus forcing the output amplitude to decrease

The complete equation for the expandor gain is:

$$
\text { Gain expandor }=\left(2 R_{3} V_{\mathbb{N}}(\text { avg })\right) / R_{1} R_{2} I_{B}
$$

$$
\text { where: } \begin{aligned}
& R_{1}=10 \mathrm{k} \\
& \\
& R_{2}=20 \mathrm{k} \\
& \\
& R_{3}=20 \mathrm{k} \\
& \\
& I_{B}=140 \mu \mathrm{~A}
\end{aligned}
$$

$\mathrm{V}_{\operatorname{IN}}(\mathrm{avg})=0.9\left(\mathrm{~V}_{\operatorname{IN}(\mathrm{RMS})}\right)$
In the expandor configuration the rectifier is connected to the input.

Figure 6. Basic Compressor

EXPANDOR RECIPE

1) $D C$ bias the output halfway between the supply and ground to get maximum headroom. The circuit in Figure 8 is designed around a system supply of 6 V so the output DC level should be 3 V .

$$
\begin{aligned}
& \text { Vout DC }=\left(1+R_{3} / R_{4}\right) V_{\text {REF }} \\
& \text { where: } R_{3}=20 \mathrm{k} \\
& R_{4}=30 k \\
& V_{\text {REF }}=1.8 \mathrm{~V}
\end{aligned}
$$

Note that when using a supply voltage higher than 6 V the DC output level shouid be adjusted. To increase the DC output level, it is recommended that R_{4} be decreased by adding parallel resistance to it. (Changing R_{3} would also affect the expandor's AC gain and thus cause a mismatch in a companding system.)
2) Analyze the input signal's anticipated amplitude:
a) if larger than 2.8 V peak, R_{2} needs to be increased. (see INGREDIENTS section)
b) if larger than 3.0 V peak, R_{1} will also need to be increased. (see INGREDIENTS)

By limiting the peak input currents we avoid signal distortion.
3) The input and output decoupling caps need to be large enough not to attenuate any desired frequencies.
4) The $\mathrm{C}_{\text {RECT }}$ should be $1 \mu \mathrm{~F}$ to $2 \mu \mathrm{~F}$ for initial setup.
5) An input buffer may be necessary if the source's output impedance needs matching.
6) De-emphasis would be necessary if the complementary compressor circuit had been pre-emphasized (as in a tape deck application). See the Hi-Fi Expandor application in the Linear Data Manual.
7) Distortion (THD) trim pins are available if the already low distortion needs to be further reduced. See Linear Data Manual for trimming network. Note that if not used, the THD trim pins should have 200pF caps to ground.
8) At very low input signal levels, the rectifier's errors become significant and can be reduced with the Low Level Mistracking network (see Linear Data Manual). (This technique prevents infinite expansion at low input levels.)

In the ALC configuration, (Figure 9), the variable gain cell is placed in the feedback loop of the operational amplifier (as in the Compressor) and the rectifier is connected to the input.

As the input amplitude increases above the crossover point, the overall system gain decreases proportionally, holding the output amplitude constant.

As the input amplitude decreases below the crossover point, the overall system gain increases proportionally, holding the output amplitude at the same constant level.

Compandor cookbook

AN176

Figure 7. Basic Expandor

Figure 8. Basic Expandor

Figure 9. Automatic Level Control

The complete gain equation for the ALC is:
Gain $=\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{I N} \text { (avg) }}$
Output Level $=\frac{R_{1} R_{2} I_{B}}{2 R_{3}}\left(\frac{V_{I N}}{V_{I N}(\text { avg })}\right)$
where $\frac{V_{I N}}{V_{I N}(\text { avg })}=\frac{\pi}{2 \sqrt{2}}=1.11$ (for sine wave)
Note that for very low input levels, ALC may not be desired and to limit the maximum gain, resistor R_{X} has been added. The modified gain equation is:
Gain max. $=\frac{\left(R_{1}+R_{X}\right) \cdot R_{2} \cdot I_{B}}{2 R_{3}}$
$R_{X} \cong(($ desired max gain $) \times 26 k)-10 k$

INGREDIENTS

[Application guidelines for internal and external components (and input/output constraints) needed to tailor (cook) each of the three entrees (applications) to your taste.]
$R_{1}(10 \mathrm{k} \Omega)$ limits input current to the rectifier. This current should not exceed an AC peak value of $\pm 300 \mu \mathrm{~A}$. An external resistor may be placed in series with R_{1} if the input voltage to the rectifier will exceed $\pm 3.0 \mathrm{~V}$ peak (i.e., $10 \mathrm{k} \times 300 \mu \mathrm{~A}=3.0 \mathrm{~V}$).
R_{2} (20k Ω) limits input current to the variable gain cell. This current should not exceed an $A C$ peak value of $\pm 140 \mu \mathrm{~A}$. Again, an external resistor has to be placed in series with R_{2} if the input voltage to the variable gain cell exceeds $\pm 2.8 \mathrm{~V}$ (i.e., $20 \mathrm{k} \times 140 \mu \mathrm{~A}$).
$R_{3}(20 \mathrm{k} \Omega)$ acts in conjunction with R_{4} as the feedback resistor (R_{F}) (expandor configuration) in the equation. (R_{3} 's value can be either reduced or increased externally.) However, it is recommended that R_{4} be the
one to change when adjusting the output DC level.
R_{4} ($30 \mathrm{k} \Omega$) acts as the input resistor ($\mathrm{R}_{\mathbb{N}}$) in the standard non-inverting op amp circuit. (Its value can only be reduced.)

$$
\begin{aligned}
& V_{\text {OUT } D C}=\left(1+\left(R_{3} / R_{4}\right)\right) V_{\text {REF }} \\
& \text { (for the Expandor) } \\
& V_{\text {OUT } D C}=\left(1+\left(2 R_{D C} / R_{4}\right)\right) V_{\text {REF }} \\
& \text { (for the Compandor, ALC) }
\end{aligned}
$$

[The purpose of these DC biasing equations is to allow the designer to set the output halfway between the supply rails for largest headroom (usually some positive voltage and ground).]
$C_{D C}$ acts as an $A C$ shunt to ground to totally remove the DC biasing resistors from the $A C$ gain equation.
C_{F} caps are $A C$ signal coupling caps.
$\mathrm{C}_{\text {RECT }}$ acts as the rectifier's filter cap and directly affects the response time of the
circuit. There is a trade-off, though, between fast attack and decay times and distortion.
The time constant is: $10 \mathrm{k} \times \mathrm{C}_{\text {RECT }}$
The total harmonic distortion (THD) is approximated by:

THD $\cong\left(1 \mu F / C_{\text {RECT }}\right)(1 \mathrm{kHz} /$ freq. $) \times 0.2 \%$
NOTES:
The NE572 differs from the 570/571 in that:

1. There is no internal op amp.
2. The attack and release times are programmed separately.

SYSTEM LEVELS OF A

 COMPLETE COMPANDING
SYSTEM

Figure 10 demonstrates the compressing and expanding functions:
Point A represents a wide dynamic range signal with a maximum amplitude of +16 dB and minimum amplitude of -80 dB .

Point B represents the compressor output showing a $2: 1$ reduction in dynamic range (-40 dB is increased to -20 dB , for example). Point B can also be seen as the dynamic range of a transmission medium. Transmission noise is present at the -60 dB level from Point B to Point C.
Point C represents the input signal to the expandor.
Point D represents the output of the expandor. The signal transformation from Point C to D represents a $1: 2$ expansion.

APPLICATION BOARD

Shown below is the schematic (Figure 11) for Signetics' NE570/571 evaluation/demo board. This board provides one channel of Expansion and one channel of Compression (which can be switched to Automatic Level Control).

Figure 10. System Levels of a Complete Companding System

Compandor cookbook

Figure 11.

DESCRIPTION

The NE572 is a dual-channel,
high-performance gain control circuit in which either channel may be used for dynamic range compression or expansion. Each channel has a full-wave rectifier to detect the average value of input signal, a linearized, temperature-compensated variable gain cell (ΔG) and a dynamic time constant buffer. The buffer permits independent control of dynamic attack and recovery time with minimum external components and improved low frequency gain control ripple distortion over previous compandors.

The NE572 is intended for noise reduction in high-performance audio systems. It can also be used in a wide range of communication systems and video recording applications.

FEATURES

- Independent control of attack and recovery time
- Improved low frequency gain control ripple
- Complementary gain compression and expansion with external op amp
- Wide dynamic range-greater than 110 dB
- Temperature-compensated gain control
- Low distortion gain cell
- Low noise- $6 \mu \mathrm{~V}$ typical
- Wide supply voltage range-6V-22V
- System level adjustable with external components

PIN CONFIGURATION

D ${ }^{\mathbf{1}}$, N, F Packages		
TRACK TRIM A 1	16	$v_{C C}$
RECOV. CAP 2	15	TRACK TRIM B
RECT. INA 3	14	RECOV. CAP B
ATTACK CAP 4	13	RECT. In B
\triangle G OUT A 5	12	ACK CAP B
THD TRIM A	11	OUT
$\triangle G I N A$		THD TRIM B
GND 8	9	$\triangle G I N B$
NOTE: 1. D package released in large SO (SOL) package only.		

NOTE:

1. D package released in large SO (SOL) package only.

APPLICATIONS

- Dynamic noise reduction system
- Voltage control amplifier
- Stereo expandor
- Automatic level control
- High-level limiter
- Low-level noise gate
- State variable filter

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
16 -Pin Plastic Small Outline (SO)	0 to $+70^{\circ} \mathrm{C}$	NE572D	0005
16 -Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE572N	0406
16 -Pin Plastic Small Outline (SO)	-40 to $+85^{\circ} \mathrm{C}$	SA572D	0005
16 -Pin Ceramic Dual In-Line Package (Cerdip)	-40 to $+85^{\circ} \mathrm{C}$	SA572F	0582
16 -Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA572N	0406

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	22	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating temperature range NE572 SA572	0 to +70 -40 to +85	${ }^{\circ} \mathrm{C}$
P_{D}	Power dissipation	500	mW

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS
Standard test conditions (unless otherwise noted) $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; Expandor mode (see Test Circuit). Input signals at unity gain level (OdB) $=100 \mathrm{~m} \mathrm{~V}_{\text {RMS }}$ at $1 \mathrm{kHz} ; \mathrm{V}_{1}=\mathrm{V}_{2} ; \mathrm{R}_{2}=3.3 \mathrm{k} \Omega ; \mathrm{R}_{3}=17.3 \mathrm{k} \Omega$.

SYMBOL	PARAMETER	TEST CONDITIONS	NE572			SA572			UNIT
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		6		22	6		22	$V_{D C}$
ICC	Supply current	No signal			6			6.3	mA
V_{f}	Internal voltage reference		2.3	2.5	2.7	2.3	2.5	2.7	$V_{\text {DC }}$
THD	Total harmonic distortion (untrimmed)	$1 \mathrm{kHz} \mathrm{C}_{\mathrm{A}}=1.0 \mu \mathrm{~F}$		0.2	1.0		0.2	1.0	\%
THD	Total harmonic distortion (trimmed)	$1 \mathrm{kHz} \mathrm{C}_{\mathrm{R}}=10 \mu \mathrm{~F}$		0.05			0.05		\%
THD	Total harmonic distortion (trimmed)						0.25		\%
	No signal output noise	$\begin{gathered} \text { Input to } V_{1} \text { and } V_{2} \text { grounded } \\ (20-20 \mathrm{kHz}) \end{gathered}$		6	25		6	25	$\mu \mathrm{V}$
	DC level shift (untrimmed)	Input change from no signal to $100 \mathrm{mV} \mathrm{V}_{\text {RS }}$		± 20	± 50		± 20	± 50	mV
	Unity gain level		-1	0	+1	-1.5	0	+1.5	dB
	Large-signal distortion	$\mathrm{V}_{1}=\mathrm{V}_{2}=400 \mathrm{mV}$		0.7	3.0		0.7	3	\%
	Tracking error (measured relative to value at unity gain)= $\left[V_{0}-V_{0}\right.$ (unity gain)]dB $-V_{2} d B$	Rectifier input $\begin{array}{r} V_{2}=+6 \mathrm{~dB} \mathrm{~V}_{1}=0 \mathrm{~dB} \\ V_{2}=-30 \mathrm{~dB} \mathrm{~V}_{1}=0 \mathrm{~dB} \end{array}$		$\begin{aligned} & \pm 0.2 \\ & \pm 0.5 \end{aligned}$	$\begin{array}{r} -1.5 \\ +0.8 \end{array}$		$\begin{aligned} & \pm 0.2 \\ & \pm 0.5 \end{aligned}$	$\begin{array}{r} -2.5 \\ +1.6 \end{array}$	dB
	Channel crosstalk	$200 \mathrm{mV} \mathrm{V}_{\text {RS }}$ into channel A , measured output on channel B	60			60			dB
PSRR	Power supply rejection ratio	120 Hz		70			70		dB

TEST CIRCUIT

AUDIO SIGNAL PROCESSING IC COMBINES VCA AND FAST ATTACK/SLOW RECOVERY LEVEL SENSOR

In high-performance audio gain control applications, it is desirable to independently control the attack and recovery time of the gain control signal. This is true, for example, in compandor applications for noise reduction. In high end systems the input signal is usually split into two or more frequency bands to optimize the dynamic behavior for each band. This reduces low frequency distortion due to control signal ripple, phase distortion, high frequency channel overload and noise modulation. Because of the expense in hardware, multiple band signal processing up to now was limited to professional audio applications.
With the introduction of the Signetics NE572 this high-performance noise reduction concept becomes feasible for consumer hi fi applications. The NE572 is a dual channel gain control IC. Each channel has a linearized, temperature-compensated gain cell and an improved level sensor. In conjunction with an external low noise op amp for current-to-voltage conversion, the VCA features low distortion, low noise and wide dynamic range.
The novel level sensor which provides gain control current for the VCA gives lower gain control ripple and independent control of fast
attack, slow recovery dynamic response. An attack capacitor C_{A} with an internal 10k resistor R_{A} defines the attack time t_{A}. The recovery time t_{R} of a tone burst is defined by a recovery capacitor C_{R} and an internal 10k resistor R_{R}. Typical attack time of 4 ms for the high-frequency spectrum and 40 ms for the low frequency band can be obtained with $0.1 \mu \mathrm{~F}$ and $1.0 \mu \mathrm{~F}$ attack capacitors, respectively. Recovery time of 200 ms can be obtained with a $4.7 \mu \mathrm{~F}$ recovery capacitor for a 100 Hz signal, the third harmonic distortion is improved by more than 10 dB over the simple RC ripple filter with a single $1.0 \mu \mathrm{~F}$ attack and recovery capacitor, while the attack time remains the same.
The NE572 is assembled in a standard 16 -pin dual in-line plastic package and in oversized SOL package. It operates over a wide supply range from 6 V to 22 V . Supply current is less than 6 mA . The NE572 is designed for consumer application over a temperature range 0-70 The SA572 is intended for applications from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

NE572 BASIC APPLICATIONS

Description

The NE572 consists of two linearized, temperature-compensated gain cells ($\Delta \mathrm{G}$), each with a full-wave rectifier and a buffer amplifier as shown in the block diagram. The two channels share a 2.5 V common bias reference derived from the power supply but
otherwise operate independently. Because of inherent low distortion, low noise and the capability to linearize large signals, a wide dynamic range can be obtained. The buffer amplifiers are provided to permit control of attack time and recovery time independent of each other. Partitioned as shown in the block diagram, the IC allows flexibility in the design of system levels that optimize DC shift, ripple distortion, tracking accuracy and noise floor for a wide range of application requirements.

Gain Cell

Figure 1 shows the circuit configuration of the gain cell. Bases of the differential pairs $Q_{1}-Q_{2}$ and $Q_{3}-Q_{4}$ are both tied to the output and inputs of OPA A_{1}. The negative feedback through Q_{1} holds the $V_{B E}$ of $Q_{1}-Q_{2}$ and the $V_{B E}$ of $Q_{3}-Q_{4}$ equal. The following relationship can be derived from the transistor model equation in the forward active region.
$\Delta V_{B E_{C 3 Q 4}}=\Delta_{B E_{Q 1 Q 2}}$
$\left(V_{B E}=V_{T} I_{N} I C / I S\right)$
$V_{T} I_{n}\left(\frac{\frac{1}{2} I_{G}+\frac{1}{2} I_{O}}{I_{S}}\right)-V_{T} I_{n}\left(\frac{\frac{1}{2} I_{G}-\frac{1}{2} I_{0}}{I_{S}}\right)$
where $I_{\mathbb{I}}=\frac{V_{I N}}{R_{1}}$

$$
\begin{aligned}
& R_{1}=6.8 \mathrm{k} \Omega \\
& \mathrm{I}_{1}=140 \mu \mathrm{~A} \\
& \mathrm{I}_{2}=280 \mu \mathrm{~A}
\end{aligned}
$$

$V_{T I_{n}}\left(\frac{l_{1}+I_{N}}{l_{S}}\right)-V_{T I_{n}}\left(\frac{l_{2}-l_{1}-I_{\mathbb{N}}}{l_{S}}\right)$
where $I_{\mathbb{N}}=\frac{V_{\mathbb{N}}}{R_{1}}$

$$
\begin{aligned}
& \mathrm{R}_{1}=6.8 \mathrm{k} \Omega \\
& \mathrm{I}_{1}=140 \mu \mathrm{~A} \\
& \mathrm{I}_{2}=280 \mu \mathrm{~A}
\end{aligned}
$$

I_{0} is the differential output current of the gain cell and I_{G} is the gain control current of the gain cell.
If all transistors Q_{1} through Q_{4} are of the same size, equation (2) can be simplified to:
$I_{o}=\frac{2}{I_{2}} \cdot I_{I N} \cdot I_{G}-\frac{1}{I_{2}}\left(I_{2}-2 I_{1}\right) \cdot I_{G}$
The first term of Equation 3 shows the multiplier relationship of a linearized two quadrant transconductance amplifier. The second term is the gain control feedthrough due to the mismatch of devices. In the design, this has been minimized by large matched devices and careful layout. Offset voltage is caused by the device mismatch and it leads to even harmonic distortion. The offset voltage can be trimmed out by feeding a current source within $\pm 25 \mu \mathrm{~A}$ into the THD trim pin.
The residual distortion is third harmonic distortion and is caused by gain control ripple. In a compandor system, available control of fast attack and slow recovery improve ripple distortion significantly. At the unity gain level of 100 mV , the gain cell gives THD (total harmonic distortion) of 0.17% typ. Output noise with no input signals is only $6 \mu \mathrm{~V}$ in the audio spectrum ($10 \mathrm{~Hz}-20 \mathrm{kHz}$). The output current l_{0} must feed the virtual ground input of an operational amplifier with a resistor from output to inverting input. The non-inverting inpui of tine operational amplifier has to be biased at $V_{\text {REF }}$ if the output current l_{0} is $D C$ coupled.

Figure 1. Basic Gain Cell Schematic

Rectifier

The rectifier is a full-wave design as shown in Figure 2. The input voltage is converted to current through the input resistor R_{2} and turns on either Q_{5} or Q_{6} depending on the signal polarity. Deadband of the voltage to current converter is reduced by the loop gain of the gain block A_{2}. If $A C$ coupling is used, the rectifier error comes only from input bias current of gain block A_{2}. The input bias current is typically about $70 n A$. Frequency response of the gain block A_{2} also causes second-order error at high frequency. The collector current of Q_{6} is mirrored and summed at the collector of Q_{5} to form the full wave rectified output current I_{R}. The rectifier transfer function is
$I_{R}=\frac{V_{I N}-V_{\text {REF }}}{R_{2}}$
If $V_{\mathbb{I N}}$ is $A C$-coupled, then the equation will be reduced to:
$I_{R A C}=\frac{V_{I M}(A V G)}{R_{2}}$

The internal bias scheme limits the maximum output current I_{R} to be around $300 \mu \mathrm{~A}$. Within a $\pm 1 \mathrm{~dB}$ error band the input range of the rectifier is about 52 dB .

Figure 2. Simplified Rectifier Schematic

Figure 3. Buffer Amplifier Schematic

Buffer Amplifier

In audio systems, it is desirable to have fast attack time and slow recovery time for a tone burst input. The fast attack time reduces transient channel overload but also causes low-frequency ripple distortion. The low-frequency ripple distortion can be improved with the slow recovery time. If different attack times are implemented in corresponding frequency spectrums in a split band audio system, high quality performance can be achieved. The buffer amplifier is designed to make this feature available with minimum external components. Referring to Figure 3 , the rectifier output current is mirrored into the input and output of the unipolar buffer amplifier A_{3} through Q_{8}, Q_{9} and Q_{10}. Diodes D_{11} and D_{12} improve tracking accuracy and provide common-mode bias for $\mathbf{A}_{\mathbf{3}}$. For a positive-going input signal, the buffer amplifier acts like a voltage-follower. Therefore, the output impedance of A_{3} makes the contribution of capacitor CR to attack time insignificant. Neglecting diode impedance, the gain $\mathrm{Ga}(\mathrm{t})$ for ΔG can be expressed as follows:

$$
G a(t)=\left(G a_{I N T}-G a_{F N L} e^{\frac{t}{\tau_{A}}}+G a_{F N L}\right.
$$

$$
\begin{aligned}
& \mathrm{Ga}_{\mid \mathrm{NT}}=\text { Initial Gain } \\
& \mathrm{Ga}_{\mathrm{FNL}}=\text { Final Gain } \\
& \tau_{\mathrm{A}}=\mathrm{R}_{\mathrm{A}} \bullet \mathrm{CA}=10 \mathrm{k} \bullet \mathrm{CA}
\end{aligned}
$$

where τ_{A} is the attack time constant and R_{A} is a 10k internal resistor. Diode D_{15} opens the feedback loop of A_{3} for a negative-going signal if the value of capacitor CR is larger than capacitor CA. The recovery time depends only on $C R \bullet R_{R}$. If the diode impedance is assumed negligible, the dynamic gain $G_{R}(t)$ for ΔG is expressed as follows.

$$
\begin{aligned}
& G_{R}(t)=\left(G_{R I N T}-G_{R F N L} e^{\frac{-t}{\tau_{R}}}+G_{R F N L}\right. \\
& G_{R}(t)=\left(G_{R I N T}-G_{R F N L}\right) e+G_{R F N L} \\
& \tau R=R_{R} \cdot C R=10 k \cdot C R
\end{aligned}
$$

where τR is the recovery time constant and R_{R} is a 10 k internal resistor. The gain control current is mirrored to the gain cell through Q_{14}. The low level gain errors due to input bias current of A_{2} and A_{3} can be trimmed through the tracking trim pin into A_{3} with a current source of $\pm 3 \mu \mathrm{~A}$.

Basic Expandor

Figure 4 shows an application of the circuit as a simple expandor. The gain expression of the system is given by
$\frac{V_{O U T}}{V_{I N}}=\frac{2}{l_{1}} \cdot \frac{R_{3} \cdot V_{I I(A V G)}}{R_{2} \cdot R_{1}}$

$\left(l_{1}=140 \mu A\right)$

Both the resistors R_{1} and R_{2} are tied to internal summing nodes. R_{1} is a 6.8 k internal resistor. The maximum input current into the gain cell can be as large as $140 \mu \mathrm{~A}$. This corresponds to a voltage level of $140 \mu \mathrm{~A} \cdot$ $6.8 \mathrm{k}=952 \mathrm{mV}$ peak. The input peak current into the rectifier is limited to $300 \mu \mathrm{~A}$ by the internal bias system. Note that the value of R_{1} can be increased to accommodate higher input level. R_{2} and R_{3} are external resistors. It is easy to adjust the ratio of R_{3} / R_{2} for desirable system voltage and current levels. A small R_{2} results in higher gain control
current and smaller static and dynamic tracking error. However, an impedance buffer A_{1} may be necessary if the input is voltage drive with large source impedance.

The gain cell output current feeds the summing node of the external OPA A 2 . R_{3} and A_{2} convert the gain cell output current to the output voltage. In high-performance applications, A_{2} has to be low-noise, high-speed and wide band so that the high-performance output of the gain cell will not be degraded. The non-inverting input of A_{2} can be biased at the low noise internal reference Pin 6 or 10 . Resistor R_{4} is used to
bias up the output DC level of A_{2} for maximum swing. The output $D C$ level of A_{2} is given by
$V_{O D C}=V_{R E F}\left(1+\frac{R_{3}}{R_{4}}\right)-V_{B} \frac{R_{3}}{R_{4}}$
V_{B} can be tied to a regulated power supply for a dual supply system and be grounded for a single supply system. CA sets the attack time constant and CR sets the recovery time constant. *5COL

Figure 4. Basic Expandor Schematic

Basic Compressor

Figure 5 shows the hook-up of the circuit as a compressor. The IC is put in the feedback loop of the OPA A_{1}. The system gain expression is as follows:
$\frac{V_{O U T}}{V_{I N}}=\left(\frac{l_{1}}{2} \cdot \frac{R_{2} \cdot R_{1}}{R_{3} \cdot V_{I N(A V G)}}\right)^{\frac{1}{2}}$
$R_{D C 1}, R_{D C 2}$, and CDC form a DC feedback for A_{1}. The output $D C$ level of A_{1} is given by

$$
\begin{aligned}
V_{O D C}= & V_{R E F}\left(1+\frac{R_{D C 1}+R_{D C 2}}{R_{4}}\right) \\
& -V_{B} \cdot\left(\frac{R_{D C 1}+R_{D C 2}}{R_{4}}\right)
\end{aligned}
$$

The zener diodes D_{1} and D_{2} are used for channel overload protection.

Basic Compandor System

The above basic compressor and expandor can be applied to systems such as tape/disc noise reduction, digital audio, bucket brigade delay lines. Additional system design techniques such as bandlimiting, band splitting, pre-emphasis, de-emphasis and equalization are easy to incorporate. The IC is a versatile functional block to achieve a high performance audio system. Figure 6 shows the system level diagram for reference.

Figure 5. Basic Compressor Schematic

Figure 6. NE572 System Level

NE572 AUTOMATIC LEVEL CONTROL

$V_{O D C}=V_{R E F}\left(1+\frac{R_{D C 1}+R_{D C 2}}{R_{4}}\right)$
OUTPUT LEVEL $=\left(\frac{R_{1} R_{2} I_{B}}{2 R_{3}}\right)\left(\frac{V_{I N}}{V_{I N(\text { avg })}}\right)$
Gain $=\frac{R_{1} R_{2} I_{B}}{2 R_{3} V_{\text {IN }}(\text { avg })}$
ATTACK TIME $=(10 \mathrm{k}) \mathrm{C}_{\mathrm{A}}$
RECOVERY TIME $=(10 k) C_{R}$
TO LIMIT THE GAIN AT VERY LOW INPUT LEVELS, ADD Rx:
GAIN MAX. $=\frac{\frac{R_{1}+R_{X}}{2.5 V} \times R_{2} \times I_{B}}{2 R_{3}}$

WHERE: $\mathrm{R}_{4}=100 \mathrm{k}$
$R_{\mathrm{R}_{21}}=\mathrm{R}_{\mathrm{DC}}=9.1 \mathrm{k}$
$\mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V}$
$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$
WHERE: $\mathrm{R}_{1}=6.8 \mathrm{k}$ (Internal)
$\mathrm{R}_{2}=3.3 \mathrm{k}$
$\mathrm{R}_{3}=17.3 \mathrm{k}$ $\mathrm{I}_{\mathrm{B}}=140 \mu \mathrm{~A}$
$\frac{V_{I N}}{V_{I N(\text { avg })}}=\frac{\pi}{2 \sqrt{2}}=1.11$
(FOR SINE WAVES)

DESCRIPTION

The NE/SA575 is a precision dual gain control circuit designed for low voltage applications. The NE/SA575's channel 1 is an expandor, while channel 2 can be configured either for expandor, compressor, or automatic level controller (ALC) application.

FEATURES

- Operating voltage range from 3 V to 7 V
- Reference voltage of $100 \mathrm{mV}_{\text {RMS }}=0 \mathrm{~dB}$
- One dedicated summing op amp per channel and two extra uncommitted op amps
- 600Ω drive capability
- Single or split supply operation
- Wide input/output swing capability
- 3000 V ESD protection

APPLICATIONS

- Portable communications
- Cellular radio
- Cordless telephone
- Consumer audio
- Portable broadcast mixers
- Wireless microphones
- Modems
- Electric organs
- Hearing aids

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG
20-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE575N	0408
20-Pin Plastic Small Outline Large	0 to $+70^{\circ} \mathrm{C}$	NE575D	0172
20-Pin Plastic Shrink Small Outline Package (SSOP)	0 to $+70^{\circ} \mathrm{C}$	NE575DK	1563
20-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA575N	0408
20-Pin Plastic Small Outline Large	-40 to $+85^{\circ} \mathrm{C}$	SA575D	0172
20-Pin Plastic Shrink Small Outline Package (SSOP)	-40 to $+85^{\circ} \mathrm{C}$	SA575DK	1563

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING		UNITS
		NE575	SA575		
V_{CC}	Single supply voltage	-0.3 to 8	-0.3 to 8	V	
$\mathrm{~V}_{\mathrm{IN}}$	Voltage applied to any other pin	-0.3 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	-0.3 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	V	
T_{A}	Operating ambient temperature range	-40 to +85	-40 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range		-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance	DIP	68	68	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SOL	112	112	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			SSOP	117	117
${ }^{\circ} \mathrm{C} / \mathrm{W}$					

BLOCK DIAGRAM and TEST CIRCUIT

DC ELECTRICAL CHARACTERISTICS

Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Minimum and Maximum values are for the full operating temperature range: 0 to $70^{\circ} \mathrm{C}$ for NE575, -40 to $+85^{\circ} \mathrm{C}$ for SA575, except SSOP package is tested at $+25^{\circ} \mathrm{C}$ only. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise stated. Both channels are tested in the Expandor mode (see Test Circuit)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE575			SA575			
			MIN	TYP	MAX	MIN	TYP	MAX	
For compandor, including summing amplifier									
V_{CC}	Supply voltage ${ }^{1}$		3	5	7	3	5	7	V
Icc	Supply current	No signal	3	4.2	5.5	3	4.2	5.5	mA
$\mathrm{V}_{\text {REF }}$	Reference voltage ${ }^{2}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	2.4	2.5	2.6	2.4	2.5	2.6	V
R_{L}	Summing amp output load		10			10			$\mathrm{k} \Omega$
THD	Total harmonic distortion	$1 \mathrm{kHz}, 0 \mathrm{~dB} \mathrm{BW}=3.5 \mathrm{kHz}$		0.12	1.0		0.12	1.5	\%
E_{NO}	Output voltage noise	$\mathrm{BW}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0 \Omega$		6	20		6	30	$\mu \mathrm{V}$
OdB	Unity gain level	1kHz	-1.0		1.0	-1.5		1.5	dB
V_{OS}	Output voltage offset	No signal	-100		100	-150		150	mV
	Output DC shift	No signal to OdB	-50		50	-100		100	mV
	Tracking error relative to 0 dB	```Gain cell input = OdB, 1kHz Rectifier input = 6dB, 1kHz```	-0.5		0.5	-1.0		1.0	dB
		$\begin{aligned} & \text { Gain cell input }=0 \mathrm{~dB}, \\ & 1 \mathrm{kHz} \\ & \text { Rectifier input }=-30 \mathrm{~dB} \text {, } \\ & 1 \mathrm{kHz} \end{aligned}$	-0.5		0.5	-1.0		1.0	dB

DC ELECTRICAL CHARACTERISTICS (cont.)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE575			SA575			
			MIN	TYP	MAX	MIN	TYP	MAX	
	Crosstalk	$1 \mathrm{kHz}, 0 \mathrm{~dB}, \mathrm{C}_{\text {REF }}=220 \mu \mathrm{~F}$		-80	-65		-80	-65	dB
For operational amplifier									
V_{0}	Output swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{CC}}-0.4$	$\mathrm{V}_{\text {cc }}$		$\mathrm{V}_{\mathrm{cc}}-0.4$	V cc		V
R_{L}	Output load	1 kHz	600			600			Ω
CMR	Input common-mode range		0		V_{cc}	0		V_{cc}	V
CMRR	Common-mode rejection ratio		60	80		60	80		dB
I_{B}	Input bias current	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ to 4.5 V	-0.5		0.5	-1		1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OS }}$	Input offset voltage			3			3		mV
Avol	Open-loop gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		80			80		dB
SR	Slew rate	Unity gain		1			1		V/ $/ \mathrm{s}$
GBW	Bandwidth	Unity gain		3			3		MHz
E_{NI}	Input voltage noise	$\mathrm{BW}=20 \mathrm{kHz}$		2.5			2.5		$\mu \mathrm{V}$
PSRR	Power supply rejection ratio	$1 \mathrm{kHz}, 250 \mathrm{mV}$		60			60		dB

NOTES:

1. Operation down to $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ is possible, but performance is reduced. See curves in Figure 5 a and 5 b .
2. Reference voltage, $\mathrm{V}_{\text {REF }}$, is typically at $1 / 2 \mathrm{~V}_{\text {CC }}$.

FUNCTIONAL DESCRIPTION

This section describes the basic subsystems and applications of the NE/SA575 Compandor. More theory of operation on compandors can be found in AN174 and AN176. The typical applications of the NE/SA575 low voltage compandor in an Expandor (1:2), Compressor (2:1) and Automatic Level Control (ALC) function are explained. These three circuit configurations are shown in Figures 1, 2, 3 respectively.
The NE/SA575 has two channels for a complete companding system. The left channel, A, can be configured as a 1:2 Expandor while the right channel, B, can be configured as either a 2:1 Compressor, a 1:2 Expandor or an ALC. Each channel consists of the basic companding building blocks of rectifier cell, variable gain cell, summing amplifier and $V_{\text {REF }}$ cell. In addition, the NE/SA575 has two additional high performance uncommitted op amps which can be utilized for application such as filtering, pre-emphasis/de-emphasis or buffering.
Figure 4 shows the complete schematic for the applications demo board. Channel \mathbf{A} is configured as an expandor while channel B is configured so that it can be used either as a compressor or as an ALC circuit. The switch, S1, toggles the circuit between compressor and ALC mode. Jumpers J1 and J2 can be used to either include the additional op amps for signal conditioning or exclude them from the signal path. Bread boarding space is provided for R1, R2, C1, C2, R10, R11, C10 and C11 so that the response can be tailored
for each individual need. The components as specified are suitable for the complete audio spectrum from 20 Hz to 20 kHz .

The most common configuration is as a unity gain non-inverting buffer where R1, C1, C2, R10, C10 and C11 are eliminated and R2 and R11 are shorted. Capacitors C3, C5, C8, and C12 are for DC blocking. In systems where the inputs and outputs are AC coupled, these capacitors and resistors can be eliminated. Capacitors C4 and C9 are for setting the attack and release time constant.

C6 is for decoupling and stabilizing the voltage reference circuit. The value of C6 should be such that it will offer a very low impedance to the lowest frequencies of interest. Too small a capacitor will allow supply ripple to modulate the audio path. The better filtered the power supply, the smaller this capacitor can be. R12 provides DC reference voltage to the amplifier of channel B. R6 and R7 provide a DC feedback path for the summing amp of channel B, while $C 7$ is a short-circuit to ground for signals. C1.4 and C15 are for power supply decoupling. C14 can also be eliminated if the power supply is well regulated with very low noise and ripple.

DEMONSTRATED
 PERFORMANCE

The applications demo board was built and tested for a frequency range of 20 Hz to 20 kHz with the component values as shown in Figure 4 and $V_{C C}=5 \mathrm{~V}$. In the expandor mode, the typical input dynamic range was from -34 dB to +12 dB where 0 dB is equal to

100 mV RMs. The typical unity gain level measured at $0 \mathrm{~dB} @ 1 \mathrm{kHz}$ input was $\pm 0.5 \mathrm{~dB}$ and the typical tracking error was $\pm 0.1 \mathrm{~dB}$ for input range of -30 to +10 dB .
In the compressor mode, the typical input dynamic range was from -42 dB to $\pm 18 \mathrm{~dB}$ with a tracking error +0.1 dB and the typical unity gain level was $\pm 0.5 \mathrm{~dB}$.
In the ALC mode, the typical input dynamic range was from -42 dB to +8 dB with typical output deviation of $\pm 0.2 \mathrm{~dB}$ about the nominal output of 0 dB . For input greater than +9 dB in ALC configuration, the summing amplifier sometimes exhibits high frequency oscillations. There are several solutions to this problem. The first is to lower the values of R6 and R7 to 20k Ω each. The second is to add a current limiting resistor in series with C12 at Pin 13. The third is to add a compensating capacitor of about 22 to 30 pF between the input and output of summing amplifier (Pins 12 and 14). With any one of the above recommendations, the typical ALC mode input range increased to +18 dB yielding a dynamic range of over 60 dB .

EXPANDOR

The typical expandor configuration is shown in Figure 1. The variable gain cell and the rectifier cell are in the signal input path. The $V_{\text {KEF }}$ is atways $1 / 2 V_{C C}$ to provide the maximum headroom without clipping. The $O d B$ ref is $100 \mathrm{mV}_{\text {RMs }}$. The input is $A C$ coupled through C5, and the output is AC coupled through C3. If in a system the inputs and outputs are AC coupled, then C3 and C5 can be eliminated, thus requiring only one external component, C4. The variable gain
cell and rectifier cell are DC coupled so any offset voltage between Pins 4 and 9 will cause small offset error current in the rectifier cell. This will affect the accuracy of the gain cell. This can be improved by using an extra capacitor from the input to Pin 4 and eliminating the DC connection between Pins 4 and 9.
The expandor gain expression and the attack and release time constant is given by Equation 1 and Equation 2, respectively.

Equation 1.
Expandor gain $=\frac{4 \mathrm{~V}_{\mathrm{IN}}(\mathrm{avg})}{3.8 \mathrm{k} \times 100 \mu \mathrm{~A}}$

$$
\text { where } \mathrm{V}_{\text {IN }}(\mathrm{avg})=0.95 \mathrm{~V}_{\text {IN(RMS }}
$$

$$
\tau_{\mathrm{R}}=\tau_{\mathrm{A}}=10 \mathrm{k} \times \mathrm{C}_{\mathrm{RECT}}=10 \mathrm{k} \times \mathrm{C} 4
$$

COMPRESSOR

The typical compressor configuration is shown in Figure 2. In this mode, the rectifier cell and variable gain cell are in the feedback path. R6 and R7 provide the DC feedback to the summing amplifier. The input is AC coupled through C12 and output is AC
coupled through C8. In a system with inputs and outputs AC coupled, C8 and C12 could be eliminated and only R6, R7, C7, and C13 would be required. If the external components R6, R7 and C7 are eliminated, then the output of the summing amplifier will motor-boat in absence of signals or at extremely low signals. This is because there is no DC feedback path from the output to input. In the presence of an $A C$ signal this phenomenon is not observed and the circuit will appear to function properly.
The compressor gain expression and the attack and release time constant is given by Equation 3 and Equation 4, respectively.

Equation 3.
Compressor gain $=\left[\frac{3.8 \mathrm{k} \times 100 \mu \mathrm{~A}}{4 \mathrm{~V}_{\mathrm{IN}}(\mathrm{avg})}\right]^{1 / 2}$

$$
\text { where } \mathrm{V}_{\mathbb{N}}(\mathrm{avg})=0.95 \mathrm{~V}_{\mathbb{I N}(\mathrm{RMS})}
$$

Equation 4.
$\tau_{\mathrm{R}}=\tau_{\mathrm{A}}=10 \mathrm{k} \times \mathrm{C}_{\mathrm{RECT}}=10 \mathrm{k} \times \mathrm{C} 4$

AUTOMATIC LEVEL CONTROL

The typical Automatic Level Control circuit configuration is shown in Figure 3. It can be
seen that it is quite similar to the compressor schematic except that the input to the rectifier cell is from the input path and not from the feedback path. The input is AC coupled through C12 and C13 and the output is AC coupled through C8. Once again, as in the previous cases, if the system input and output signals are already AC coupled, then C12, C13 and C8 could be eliminated. Concerning the compressor, removing R6, R7 and C 7 will cause motor-boating in absence of signals. $\mathrm{C}_{\text {COMP }}$ is necessary to stabilize the summing amplifier at higher input levels. This circuit provides an input dynamic range greater than 60 dB with the output within $\pm 0.5 \mathrm{~dB}$ typical. The necessary design expressions are given by Equation 5 and Equation 6, respectively.

Equation 5.
ALC gain $=\frac{3.8 \mathrm{k} \times 100 \mu \mathrm{~A}}{4 \mathrm{~V}_{\text {IN }}(\mathrm{avg})}$
Equation 6.

$$
\tau_{R}=\tau_{A}=10 \mathrm{k} \times \mathrm{C}_{\mathrm{RECT}}=10 \mathrm{k} \times \mathrm{C} 9
$$

Figure 1. Typical Expandor Configuration

Figure 2. Typical Compressor Configuration

Figure 3. Typical ALC Configuration

Figure 4. NE/SA575 Low Voltage Expandor/Compressor/ALC Demo Board

a. Unity Gain Error vs Temperature and $\mathbf{V}_{\mathbf{c c}}$

b. \mathbf{I}_{cc} vs Temperature and $\mathrm{V}_{\mathbf{c c}}$

Figure 5. Temperature and V_{cc} Curves

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 7. Expandor Output Frequency Response

Low voltage compandor

Figure 8. The Companding Function

DESCRIPTION

The NE/SA576 is a unity gain level programmable compandor designed for low power applications. The NE576 is internally configured as an expandor and a compressor to minimize external component count.
The NE576 can operate at 1.8 V . During normal operations, the NE576 can operate from at least a 2 V battery. If the battery voltage drops to 1.8 V , this part will still continue to function, however, turning on the part at a V_{C} of 1.8 V requires two external resistors to bring $\mathrm{V}_{\text {REF }}$ to half V_{CC}. One resistor connects between $V_{C C}$ and $V_{\text {REF }}$; the other connects from $V_{\text {REF }}$ to ground. A typical value for these external resistors is approximately 20 k . A lower value can be used, but the power consumption will go up.
The NE576 is available in a 14 -pin plastic DIP and SO packages.

FEATURES

- Operating voltage range: 1.8 V to 7 V
- Low power consumption (1.4mA @ 3.6V)
- Over 80 dB of dynamic range
- Wide input/output swing capability (rail-to-rail)
- Low external component count
- ESD hardened

APPLICATIONS

- Cordless telephone
- Consumer audio
- Wireless microphones
- Modems
- Electric organs
- Hearing aids
- Automatic level control

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
14-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE576N	0405 B
14-Pin Plastic Small Outline (SO)	0 to $+70^{\circ} \mathrm{C}$	NE576D	0175 D
14-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA576N	0405 B
14-Pin Plastic Small Outline (SO)	-40 to $+85^{\circ} \mathrm{C}$	SA576D	0175 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING		UNITS
		NE576	SA576		
$\mathrm{V}_{\text {CC }}$	Supply voltage	8	8	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range	0 to +70	-40 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$	
$\theta_{\text {JA }}$	Thermal impedance	DIP	90	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SO	125	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

BLOCK DIAGRAM and TEST AND APPLICATION CIRCUIT

*R1, R2 and R3 are 1\% resistors.

ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=3.6 \mathrm{VDC}$, compandor OdB level $=-20 \mathrm{dBV}=100 \mathrm{mV}$ RMs, output load $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Freq $=1 \mathrm{kHz}$, unless otherwise specified. R 1 , R2 and R3 are 1% resistors.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA576			
			MIN	TYP	MAX	
V_{CC}	Supply voltage ${ }^{1}$		2	3.6	7	V
Icc	Supply current	No signal $\mathrm{R}_{2}=100 \mathrm{k} \Omega$		1.4	3	mA
$\mathrm{V}_{\text {REF }}$	Reference voltage ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$		1.8		V
R_{L}	Summing amp output load		10			$\mathrm{k} \Omega$
THD	Total harmonic distortion	$1 \mathrm{kHz}, \mathrm{OdB}, \mathrm{BW}=3.5 \mathrm{kHz}$		0.25	1.5	\%
E_{NO}	Expandor output noise voltage	$\mathrm{BW}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0 \Omega$		10	30	$\mu \mathrm{V}$
OdB	Unity gain level	OdB at 1kHz	-1.5	0.18	1.5	dB
$\mathrm{V}_{\text {os }}$	Output voltage offset	No signal	-150	1	150	mV
	Expandor output DC shift	No signal to OdB	-100	7	100	mV
	Tracking error relative to OdB output	-20dB expandor	-1.0	0.3	1.0	dB
	Crosstalk, COMP to EXP	$1 \mathrm{kHz}, 0 \mathrm{~dB}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}$		-80		dB
V_{0}	Output swing low			0.2		V
	Output swing high			$\mathrm{V}_{\mathrm{CC}}-0.2$		V

NOTE:

1. Operation down to $\mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V}$ is possible, see description on front page of NE 576 data sheet.
2. Reference voltage, $\mathrm{V}_{\mathrm{REF}}$, is typically at $1 / 2 \mathrm{~V}_{\mathrm{CC}}$.

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} 1=\mathrm{R} 3=7.15 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega$, 0 dB level $=100 \mathrm{mV}$, Freq. $=1 \mathrm{kHz}$

Unity gain level programmable low power compandor

DESCRIPTION

The NE/SA577 is a unity gain level programmable compandor designed for low power applications. The NE577 is internally configured as an expandor and a compressor to minimize external component count.

The NE577 is available in a 14 -pin plastic DIP and SO packages.

FEATURES

- Operating voltage range: 1.8 V to 7 V
- Low power consumption (1.4mA @ 3.6V)
- OdB level programmable $\left(10 \mathrm{mV}\right.$ RMS to $1.0 \mathrm{~V}_{\text {RMS }}$)
- Over 90dB of dynamic range
- Wide input/output swing capability (rail-to-rail)
- Low external component count
- SA577 meets cellular radio specifications
- ESD hardened

APPLICATIONS

- High performance portable communications
- Cellular radio
- Cordless telephone
- Consumer audio
- Wireless microphones
- Modems
- Electric organs
- Hearing aids
- Automatic level control (ALC)

PIN CONFIGURATION
D and N Packages

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
14 -Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE577N	0405 B
14 -Pin Plastic Small Outline (SO)	0 to $+70^{\circ} \mathrm{C}$	NE577D	0175 D
14 -Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA577N	0405 B
14 -Pin Plastic Small Outline (SO)	-40 to $+85^{\circ} \mathrm{C}$	SA577D	0175 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING	
		UNITS		
		NE577	SA577	
$\mathrm{V}_{\text {CC }}$	Supply voltage	8	8	V
$\mathrm{~T}_{\text {A }}$	Operating ambient temperature range	0 to +70	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance	DIP	90	90
		SO	125	125

ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=3.6 \mathrm{VDC}$, compandor OdB level $=-20 \mathrm{dBV}=100 \mathrm{mV} \mathrm{V}_{\mathrm{RMS}}$, output load $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Freq $=1 \mathrm{kHz}$, unless otherwise specified. R1, R2 and R3 are 1% resistors.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA577			
			MIN	TYP	MAX	
$V_{C c}$	Supply voltage ${ }^{1}$		2	3.6	7	V
Icc	Supply current	$\begin{gathered} \text { No signal } \\ R_{2}=100 \mathrm{k} \Omega \end{gathered}$		1.4	2	mA
$\mathrm{V}_{\text {REF }}$	Reference voltage ${ }^{2}$	$\mathrm{V}_{\text {cc }}=3.6 \mathrm{~V}$	1.7	1.8	1.9	V
R_{L}	Summing amp output load		10			k Ω
THD	Total harmonic distortion	$1 \mathrm{kHz}, 0 \mathrm{~dB}, \mathrm{BW}=3.5 \mathrm{kHz}$		0.25	1.5	\%
E_{NO}	Expandor output noise voltage	$B W=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0 \Omega$		10	25	$\mu \mathrm{V}$
OdB	Unity gain level	0 dB at 1 kHz	-1.5	0.18	1.5	dB
	Programmable range ${ }^{3}$	$\mathrm{R} 1=\mathrm{R} 3=18.7 \mathrm{k} \Omega, \mathrm{R} 2=24.3 \mathrm{k} \Omega$		0		dBV
		$\mathrm{R} 1=\mathrm{R} 3=22.6 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega$		-10		dBV
		$\mathrm{R1}=\mathrm{R} 3=7.15 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega$		-20		dBV
		$\mathrm{R} 1=\mathrm{R} 3=1.33 \mathrm{k} \Omega, \mathrm{R} 2=200 \mathrm{k} \Omega$		-40		dBV
V os	Output voltage offset	No signal	-150	1	150	mV
	Expandor output DC shift	No signal to OdB	-100	7	100	mV
	Tracking error relative to OdB output	-20dB expandor	-1.0	0.3	1.0	dB
	Crosstalk, COMP to EXP	$1 \mathrm{kHz}, 0 \mathrm{~dB}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}$		-80	-65	dB
Vo	Output swing low			0.2		V
	Output swing high			$\mathrm{V}_{\mathrm{cc}}-0.2$		V

NOTE:

1. Operation down to $\mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V}$ is possible, see application note AN1762.
. Reference voltage, $\mathrm{V}_{\text {REF }}$, is typically at $1 / 2 \mathrm{~V}_{\mathrm{CC}}$.
2. Unity gain level can be adjusted CONTINUOUSLY between $-40 \mathrm{dBV}=10 \mathrm{mV}$ RMS and $\mathrm{OdBV}=1.0 \mathrm{~V}_{\text {RMs }}$. For details see application note AN1762.

BLOCK DIAGRAM and TEST AND APPLICATION CIRCUIT

${ }^{*} \mathrm{R} 1, \mathrm{R} 2$ and R3 are 1% resistors.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} 1=\mathrm{R} 3=7.15 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega$, 0 dB level $=100 \mathrm{mV}$, Freq. $=1 \mathrm{kHz}$

DESCRIPTION

The NE/SA578 is a unity gain level programmable compandor designed for low power applications. The NE578 is internally configured as an expandor and a compressor to minimize external component count.

The summing amplifiers of the NE578 have 600Ω drive capability and the inverting input of the compressor amplifier is accessible through Pin 9 for summing multiple external signals. Power Down/Mute function is active low and requires an open collector output logic configuration at Pin 8. If Power Down/Mute is not needed, Pin 8 should be left open. When the part is muted, supply current drops to 170 mA at 3.6 V . The NE578 is available in a 16 -pin plastic DIP and SO packages.

FEATURES

- Operating voltage range: 1.8 V to 7 V
- Low power consumption (1.4mA @ 3.6V)
- OdB level programmable $\left(10 \mathrm{mV}\right.$ RMS to $1.0 \mathrm{~V}_{\text {RMS }}$)
- Over 90dB of dynamic range
- Wide input/output swing capability
- Low external component count
- SA578 meets cellular radio specifications
- ESD hardened
- Power Down mode
($\mathrm{Icc}=170 \mu \mathrm{~A} @ 3.6 \mathrm{~V}$)
- Mute function
- Multiple external summing capability
- 600Ω drive capability

APPLICATIONS

- High performance portable communications
- Cellular radio
- Cordless telephone
- Consumer audio

PIN CONFIGURATION

- Wireless microphones
- Modems
- Electric organs
- Hearing aids
- Automatic level control (ALC)

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
16 -Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE578N	0406 C
16 -Pin Plastic Small Outline (SO)	0 to $+70^{\circ} \mathrm{C}$	NE578D	0005 D
16 -Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA578N	0406 C
16 -Pin Plastic Small Outline (SO)	-40 to $+85^{\circ} \mathrm{C}$	SA578D	0005 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING		UNITS
			NE578	SA578	
V_{CC}	Supply voltage		8	8	V
$\mathrm{T}_{\text {A }}$	Operating ambient temperature range		0 to +70	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range		-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance	$\begin{aligned} & \text { DIP } \\ & \text { SO } \end{aligned}$	$\begin{gathered} 90 \\ 125 \end{gathered}$	$\begin{gathered} 90 \\ 125 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{w} \end{aligned}$

BLOCK DIAGRAM and TEST AND APPLICATION CIRCUIT

Unity gain level programmable low power compandor

ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=3.6 \mathrm{VDC}$, compandor OdB level $=-20 \mathrm{dBV}=100 \mathrm{mV} \mathrm{V}_{\mathrm{RSS}}$, output load $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Freq $=1 \mathrm{kHz}$, unless otherwise specified. R 1 , R2 and R3 are 1% resistors.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NESA578			
			MIN	TYP	MAX	
V_{cc}	Supply voltage ${ }^{1}$		2	3.6	7	V
Icc	Supply currentoperating power down	No signal, $\mathrm{R}_{\mathbf{2}}=100 \mathrm{k} \Omega$		$\begin{aligned} & 1.4 \\ & 170 \end{aligned}$	2	${\underset{\mu A}{m A}}^{2}$
$\mathrm{V}_{\text {REF }}$	Reference voltage ${ }^{2}$	$\mathrm{V} \mathrm{cc}=3.6 \mathrm{~V}$	1.7	1.8	1.9	V
R_{L}	Summing amp minimum output load			600		Ω
THD	Total harmonic distortion	$1 \mathrm{kHz}, 0 \mathrm{~dB}, \mathrm{BW}=3.5 \mathrm{kHz}$		0.25	1.0	\%
$\mathrm{E}_{\text {No }}$	Expandor output noise voltage	$\mathrm{BW}=20 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=0 \Omega$		10	20	$\mu \mathrm{V}$
OdB	Unity gain level	OdB at 1 kHz	-1.0	0.18	1.0	dB
	Programmable range ${ }^{3}$	$\mathrm{R} 1=\mathrm{R} 3=18.7 \mathrm{k} \Omega, \mathrm{R} 2=24.3 \mathrm{k} \Omega$		0		dBV
		$\mathrm{R} 1=\mathrm{R} 3=22.6 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega$		-10		dBV
		$\mathrm{R} 1=\mathrm{R} 3=7.15 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega$		-20		dBV
		$\mathrm{R} 1=\mathrm{R} 3=1.33 \mathrm{k} \Omega, \mathrm{R} 2=200 \mathrm{k} \Omega$		-40		dBV
Vos	Output voltage offset	No signal	-150	1	150	mV
	Expandor output DC shift	No signal to OdB	-100	7	100	mV
	Tracking error relative to OdB output	-20dB expandor	-1.0	0.3	1.0	dB
	Crosstalk, COMP to EXP	$1 \mathrm{kHz}, \mathrm{OdB}, \mathrm{C}_{\text {REF }}=10 \mu \mathrm{~F}$		-80	-65	dB
V_{0}	Output swing low			0.2		V
	Output swing high			$\mathrm{V}_{\mathrm{cc}}-0.2$		V
	Power Down/Mute low level		0		0.4	V
	Power Down/Mute input current	Pin 8 grounded		-65		$\mu \mathrm{A}$

NOTE:

1. Operation down to $\mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V}$ is possible, see application note AN1762.
2. Reference voltage, $\mathrm{V}_{\mathrm{REF}}$, is typically at $1 / 2 \mathrm{~V}_{C C}$.
3. Unity gain level can be adjusted CONTINUOUSLY between $-40 \mathrm{dBV}=10 \mathrm{mV}$ RMS and $O \mathrm{dBV}=1.0 \mathrm{~V}_{\text {RMs }}$. For details see application note AN1762.

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} 1=\mathrm{R} 3=7.15 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega$, 0 dB level $=100 \mathrm{mV}$, Freq. $=1 \mathrm{kHz}$

Author: Alvin K. Wong

INTRODUCTION

This application note is written for the designer who understands the basic functions of companding and wants to use the NE577 or NE578. If a designer is not familiar with the functionality of compandors, a good discussion can be found in the earlier Philips
Semiconductors compandor data sheets and applications notes.

Key topics discussed in this paper are:

- How to program the unity gain level (OdB)
- How to implement an automatic level control
- How to get the best companding performance under strict design requirements
- How to set the attack and recovery time
- How to operate at 1.8 V
- How to sum external signals using the NE578
- How to power-down the NE578
- How to mute the NE578
- How to use the NE577 and NE578 as a dual expandor
But before reviewing these areas, a summary of Philips ComponentsSignetics compandor family will be presented. A system designer can then determine which compandor is best for the design.

SUMMARY OF COMPANDOR FAMILY

In the past, Philips Semiconductors offered four different types of compandors: the NE570, NE571, NE572, and NE575. Each of the four compandors has its own 'claim to fame'. The NE570 and NE571 are known to work well in high performance audio applications. The only real difference between the two is that the NE570 has a slight edge in performance. However when separate attack and recovery times are needed, the NE572 is the compandor to choose. The NE575 becomes useful when there are low voltage requirements.

With the increasing demand for low current consumption, good flexibility, and ease of use in semiconductors,

Philips Semiconductors is offering three additional compandors to its family, the NE576, NE577 and NE578. These compandors typically require an I_{CC} of 1.4 mA at a V_{cc} of 3.6 V , but Philips Semiconductors has demonstrated that these new chips are functional down to 1.8 V .

In addition to having low power consumption, the NE578 has a power-down mode. In this mode, the chip consumes only 170μ A. This power-down mode is useful when the functionality of the chip is not needed at all times. In the power-down mode, the NE578 maintains all of its pin voltages at all their normal DC operating voltages. Because all of the capacitors remain charged in this mode, the power-up state will occur quickly. Powering down automatically mutes the NE578. Having the mute function internal to the NE578 audio section eliminates the need for an external switch. The NE578 is the only compandor in the family that has power-down and mute functions.

To allow for greater flexibility, the OdB level is now programmable for the NE577 and NE578. However, for the NE576, the OdB level is specified and set at 100 mV RMs. The earlier compandors also have a set unity gain (OdB) level. The NE570 and NE571 have a set OdB level at $775 \mathrm{mV}_{\text {RMs }}$. While the NE572 and the NE575 both have their 0 dB levels at $100 \mathrm{mV}_{\text {RMs }}$. If a designer wanted a different OdB level, two op amps would have to be implemented in the design. One of the op amps would connect to the input of the compandor, while the other op amp would connect to the output. But with the NE577 and NE578, these external op amps are no longer needed. The OdB level can be programmed from $10 \mathrm{mV} \mathrm{V}_{\text {RMS }}$ to $1 \mathrm{~V}_{\text {RMS }}$ with three external resistors.

Many of the external parts in the previous family of compandors are now internal to the device. Additionally, the left side of the chip is configured as an expandor, and the right side is configured as a compressor. This allows for minimum part count and fewer
variations in systems design. The external capacitors are also reduced in value which saves board space and cost. The only trade-off with using smaller capacitors is that there is less filtering. Because of this new approach, the NE576, NE577 and NE578 are easy to implement in any design.
Table 1 shows a brief summary of all the compandors. The seven different compandors offer a wide range of flexibility: different types of packages, power-down capability, programmable or fixed unity gain, different reference voltages, a wide range of operating voltages and currents, different pin outs, etc. From this information, a designer can quickly choose a compandor which best meets the design requirements.
After a compandor is chosen from the table, a designer can find additional help from data sheets and application notes.

Since power consumption is important in most designs, it is important to discuss them in this application note. The NE570, NE571, and NE572 have built in voltage regulators, therefore, the current consumption remains roughly the same over the specified supply voltages. This can be especially useful when the power supply is not regulated very well.
However with the NE575, NE576, NE577, and NE578, the current consumption will drop as the supply voltage decreases. For this, the power consumption will drop also. This means one can operate the part at a very low power level. This is a good feature for any design having strict power consumption guidelines.

INTRODUCING NE577 AND NE578

Figure 1 and 2 show block diagrams of the NE577 and NE578 respectively. The only substantial difference between the two is that the NE578 has a power-down capability, mute function and summing capabilities (for signals like DTMF tones). In addition the NE578 summing amplifiers are capable of driving 600Ω loads. Listed below are the basic functions of each external component for Figure 1 (NE577).

Table 1. Compandor Family Overview

	NE570	NE571	NE572	NE575	NE576	NE577	NE578
$V_{\mathbf{c c}}$	6-24V	6-18V	6-22V	3-7V	2-7V	2-7V	2-7V
Icc	3.2 mA	3.2 mA	6 mA	$3-5.5 \mathrm{~mA}^{*}$	1-3mA*	1-2mA*	$1-2 m{ }^{*}$
Number of Pins	16	16	16	20	14	14	16
Packages NE: 0 to $+70^{\circ} \mathrm{C}$ SA: -40 to $+85^{\circ} \mathrm{C}$ N: Plastic DIP D: Plastic SO F: Ceramic DIP DK: SSOP (Shrink Small Outine Package)	NE570F NE570N NE570D	NE571F NE571N NE571D SA571F SA571N SA571D	NE572N NE572D SA572F SA572N SA572D	NE575N NE575D NE575DJ SA575N SA575D SA575DK	$\begin{aligned} & \text { NE576N } \\ & \text { NE576D } \\ & \text { SA576N } \\ & \text { SA576D } \end{aligned}$	NE577N NE577D SA577N SA577D	NE578N NE578D SA578N SA578D
ALC (Automatic Level Control)	Both Channels	$\begin{gathered} \text { Both } \\ \text { Channels } \end{gathered}$	Both Channels	Right Channel	Right Channel	Right Channel	Right Channel
Reference Voltage	Fixed 1.8V	Fixed 1.8V	Fixed 2.5V	$\mathrm{V}_{\mathrm{cc}} / 2$	$\mathrm{V}_{\mathrm{cc}} / 2$	$\mathrm{V}_{\mathrm{cc}} / 2$	$\mathrm{V}_{\mathrm{cc}} / 2$
Unity Gain	775 mV RMS	775 mV RMS	100 mV RMS	100 mV RMS	100 mV RMS	10 mV to $1 \mathrm{~V}_{\text {RMS }}$	10 mV to 1 $\mathrm{V}_{\text {RMS }}$
Power-Down	NO	NO	NO	NO	NO	NO	YES ($170 \mu \mathrm{~A})$
Key Features	-Excellent Unity Gain Tracking Error -Excellent THD	-Excellent Unity Gain Tracking Error -Excellent THD	-Independent Attack \& Recovery Time -Good THD -Needs ext. summing op amp	-2 Uncommited on-chip op amps available -Low voltage	-Low power -Low external component count	-Low power -Programmable unity gain	-Low power -Programmable unity gain -Power down -Mute function -Summing capability (DTMF) -600Ω drive capability
Applications Cordless Phones Cellular Phones Wireless Mics Modems Consumer Audio Two-way Communications	High performance audio circuits "Hi-Fi Commercial Quality"	High performance audio circuits "Hi-Fi Commercial Quality"	High performance audio circuits "Hi-Fi Studio Quality ${ }^{n}$	Consumer audio circuits "Commercial Quality"	Battery powered systems "Commercial Quality"	Battery powered systems "Commercial Quality"	Battery powered systems "Commercial Quality"

NOTES: NE5750/5751 are also excellent audio processor components for high performance cordless and cellular applications that include the companding function..
${ }^{*} \mathrm{I}_{\mathrm{Cc}}$ varies with V_{cc}.

R1 - Determines the Unity Gain Level for the Expandor
R2 - Determines What Value the Reference Current (ligeF) will be for the Part (Also Affects Unity Gain Level)
R3 - Determines the Unity Gain Level for the Compressor

C1 - DC Blocking Capacitor
C2 - Determines the Attack and Recovery
Time for the Expandor
C3 - DC Blocking Capacitor
C4 - Used to AC Ground the V VEF Pin
C5 - Provides AC Path from Gain Cell to
Output of Summing Amp

C7-DC Blocking Capacitor
C8 - Provides AC Ground for the DC Feedback Path
C9-DC Blocking Capacitor
*C10 - Increases the Dynamic Range and limits the Frequency Response to less than 500 kHz

*R1, R2 and R3 are 1\% resistors.
Figure 2. NE578 Block Diagram

Listed below are the basic functions of each external component for Figure 2 (NE578).
R1 - Determines the Unity Gain Level for the Expandor
R2 - Determines What Value the Reference Current (likef) will be for the Part (Also Affects Unity Gain Level)
R3 - Determines the Unity Gain Level for the Compressor
R4 - Used to Set the Gain of an External Signal like DTMF Tones and Sum them with the Companded Signal
C1-DC Blocking Capacitor
C2 - Determines the Attack and Recovery Time for the Expandor
C3-DC Blocking Capacitor
C4 - Used to AC Ground the $\mathrm{V}_{\text {REF }}$ Pin
C5 - Provides AC Path from Gain Cell to Output of Summing Amp
C6 - Determines the Attack and Recovery Time for the Compressor
C7 - DC Blocking Capacitor
C8 - Provides AC Ground for the DC Feedback Path
C9-DC Blocking Capacitor
C10 - DC Blocking Capacitor
*C11 - Increases the Dynamic Range and limits the Frequency Response to less than 500 kHz
*Note: Bandwidth limiting is done to increase high frequency noise immunity and to make the performance of the part independent of layout or load capacitance.

HOW TO PROGRAM THE UNITY GAIN LEVEL (0dB)

Three external resistors R1, R2, and R3 define the unity gain level. Both the NE577 and the NE578 OdB levels can vary from 10 mV RMs to $1.0 \mathrm{~V}_{\text {RMS }}$. These limits are used in product characterization, but these parts can function over a wider 0 dB level range.
In most applications the OdB level is equal for both the compressor and expandor side. Therefore, R1 and R3 are equal in value. R3 sets the OdB level for the compressor side, and R1 sets the 0 dB level for the expandor side. However, there could be a situation where a design requires different 0 dB levels for compression and expansion. This will not be a problem with the NE577 or NE578, due to the separate OdB level programming.
Using the formulas below, a designer can calculate the resistor values for a desired unity gain level.

Formula 1: $\quad R_{2}=\frac{V_{B G}}{I_{R E F}}$
where $\mathrm{V}_{\mathrm{BG}}=$ Bandgap Voltage
$I_{\text {REF }}=$ Reference Current
(V_{BG} is brought out on Pin 6 and R2 determines the $I_{\text {REF }}$ value)

Formula 2: $\quad R_{1}=\frac{0.9 \cdot V_{I_{R M S}}}{I_{R E F}}$
where $V_{I N_{R M S}}$ is the $O d B$ level ($\mathrm{R}_{1}=\mathrm{R}_{3}$ in most cases)

Programming the Unity Gain Level for the NE577 also applies for the NE578.

Example:
Program the NE577 or NE578 for a OdB Level at $100 \mathrm{mV}_{\text {RMS }}$
Step 1: $\mathrm{V}_{\mathrm{BG}}=1.26 \mathrm{~V}$.......Typically $I_{\text {REF }}=12.6 \mu \mathrm{~A}$.....Good Starting Point

$$
R_{2}=\frac{1.26 \mathrm{~V}}{12.6} \mu \mathrm{~A}
$$

$$
R_{2}=100 k
$$

Step 2:

$$
\begin{aligned}
R_{1} & =R_{3}=\frac{0.9 V_{I N_{R M S}}}{I_{R E F}} \\
R_{1} & =R_{3}=\frac{(0.9 \mathrm{~V})\left(100 \mathrm{~m} V_{R M S}\right)}{12.6 \mu A} \\
\therefore R_{1} & =R_{3}=7.15 \mathrm{k}
\end{aligned}
$$

Step 3: $R_{1}=R_{3}=7.15 \mathrm{k}$ (1% value) $R_{2}=100 \mathrm{k}$ (1% value)
Step 4: Plug in these resistor values and measure for unity gain. Adjust accordingly for accuracy.
NOTE: Rough Limits for Resistors: $1 \mathrm{k} \leq \mathrm{R} 1 \leq 100 \mathrm{k}$ (1% values) $20 k \leq R 2 \leq 200 k$ (1% values) $1 \mathrm{k} \leq \mathrm{R} 3 \leq 100 \mathrm{k}$ (1% values)

Rough Limits for I ReF $6.3 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{REF}} \leq 63 \mu \mathrm{~A}$

The example above gives pretty close results. A designer should use 1% resistors to get the best performance. Below in Table 2 are some recommended values to get started:

Table 2. Recommended Resistor Values for Different OdB Levels

$\mathbf{0 d B}$ Level	$\mathbf{d B v}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}} \& \mathbf{R}_{\mathbf{3}}$
$1.0 \mathrm{~V}_{\text {RMS }}$	0	24.3 k	18.7 k
$316.2 \mathrm{~m} \mathrm{~V}_{\text {RMS }}$	-10	100 k	22.6 k
$100 \mathrm{mV}_{\text {RMS }}$	-20	100 k	7.15 k
10 mV RMS	-40	200 k	1.33 k

PARAMETERS THAT LIMIT THE DYNAMIC RANGE

The above example is a good place to start, but to get the optimum performance from the NE577 and NE578, a designer needs to understand certain key parameters. $I_{\text {REF }}$ is important because it determines the values for all three resistors (R1, R2, and R3). Since $I_{\text {ReF }}$ is directly related to lcc (see Figure 3), one should be careful in choosing a value. If one chooses a high $I_{\text {REF }}$ current, power consumption goes up. However the output signal will have excellent low level distortion (see Figures 4 and 5). If one chooses a low $I_{\text {REF }}$ value, distortion at the output will increase slightly. Conversely, the power consumption is reduced, which might be worth the trade-off in battery operated designs.

The dynamic range of the NE577 and NE578 is determined by supply voltage $\left(\mathrm{V}_{\mathrm{cc}}\right)$ and reference current (ligef). I ReF determines how well the compandor will perform with low level input signals. The supply voltage determines how high (in level) an input signal can be before clipping appears on the output (in some cases increasing I $\mathrm{I}_{\text {RFF }}$ also helps). A designer needs to estimate the input range going into the compandor so that an appropriate V_{CC} and $\mathrm{I}_{\text {REF }}$ can be chosen.
The bandgap voltage (V_{BG}) slightly varies over a wide range of $\mathrm{I}_{\text {REF }}$ currents (Figure 6). Figure 7 shows how I REF varies with R2. The higher R2 is, the lower IREF is. Figure 8 shows how the dynamic range varies over different values of $\mathrm{I}_{\text {REF }}$ (the higher the supply voltage the better the dynamic range). The graphs in Figures 3-8 were taken at $\mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V}, \mathrm{~F}=1 \mathrm{kHz}$ and 0 dB level $=100 \mathrm{mV}$ RMs. The $I_{\text {REF }}$ current was limited between $5 \mu \mathrm{~A}$ and $40 \mu \mathrm{~A}$.

It can be seen that Iref plays an important role in current consumption, THD, and dynamic range. With the aid of these figures, one can determine an I REF which meets the design goals.

Example:

Making use of the graphs in Figures 3-8 and formulas 1 and 2, design a compandor with a OdB level of 100 mV RMs. Try to achieve a THD of 0.1 on the compressor side with wide dynamic range. Operate at a supply voltage of 3.6 V but with the lowest possible current consumption.
Step 1: According to Figure 5, an $I_{\text {REF }}$ of $30 \mu \mathrm{~A}$ is required for approximately 0.1% distortion.

Figure 3. $I_{\text {REF }}$ vs $I_{C C}$

Figure 5. $\mathrm{I}_{\text {REF }}$ vs THD, Compressor Side

Figure 7. $\mathbf{I}_{\text {REF }}$ vs R2, R1

Figure 4. I REF vs THD, Expandor Side

Figure 6. $\mathbf{I}_{\text {REF }}$ vs $\mathbf{V B G}_{\mathbf{B G}}$

Figure 8. IReF vs Dynamic Range

Step 2: From Figure 8, the dynamic range is approximately 92 dB . So far the requirements have been met.
Step 3: Figure 3 shows us that $I_{C C}$ is at 1.9 mA with no input signal (that's not bad at all!).
Step 4: Calculating R1, R2, and R3
Graphical Method:
From Figure 7: For $\mathrm{I}_{\mathrm{REF}}=30 \mu \mathrm{~A}$ and $0 \mathrm{~dB}=100 \mathrm{mV}$ RMS $\mathrm{R} 1=\mathrm{R} 3=3 \mathrm{k} \mathrm{R} 2=40 \mathrm{k}$

Actual resistors available: $\mathrm{R} 1=\mathrm{R} 3=3.01 \mathrm{k}$ (1\%)
R2 $=40.2 \mathrm{k}$ (1\%)

Formula Method:

From Figure 6: $\mathrm{V}_{\mathrm{BG}}=1.21 \mathrm{~V}$ for $\mathrm{I}_{\mathrm{REF}}=30 \mu \mathrm{~A}$ therefore, using formula 1:

$$
\begin{aligned}
R_{2} & =\frac{V_{B G}}{I_{\text {REF }}} \\
R_{2} & =\frac{1.21 V}{30 \mu A} \\
\mathrm{R}_{2} & =40.33 \mathrm{k} \\
\mathrm{R}_{2} & =40.2 \mathrm{k} \text { (available in } 1 \% \text {) }
\end{aligned}
$$

Recall from formula 2:

$$
\begin{aligned}
R_{1} & =\frac{0.9 V_{I N_{R M S}}}{I_{R E F}} \\
R_{1} & =\frac{(0.9 V)\left(100 \mathrm{mV} V_{R M S}\right)}{30 \mu A} \\
\mathrm{R}_{1} & =3 \mathrm{k} \\
\mathrm{R}_{1} & =3.01 \mathrm{k} \text { (available in } 1 \% \text {) }
\end{aligned}
$$

Connect these external resistors with the determined values and adjust for optimum performance.

Bench results:

After completing the exercise above, the resistors were connected and the results are given below.
$\mathrm{I}_{\mathrm{CC}}=1.89 \mathrm{~mA}$ (with no input signal)
THD $=0.1$ (meausured on spectrum analyzer)
$\mathrm{OdB}=109 \mathrm{mV}$ RMS (off by $0.8 \mathrm{~dB} \ldots$ good!)
Dynamic Range $=92 \mathrm{~dB}$
These results are very close to what was predicted and by tweaking R1 and R3, the OdB error can be further reduced to zero.

BANDWIDTH OF COMPANDOR

Figure 9 shows the typical bandwidth for the NE577 and NE578. The graphs were taken with a $V_{c c}$ of 3.6 V and a 0 dB level of $100 \mathrm{mV}_{\mathrm{RMs}}$. The bandwidth of the expandor, the compressor, and the compandor (where a signal goes through the compressor and the expandor) is shown in this figure. Although the NE577 and NE578 are conservatively specified with a 20 kHz bandwidth, Figure 9 reveals that it is actually around 300 kHz .

Figure 9. Bandwidth of NE577 and NE578 Demo Board

HOW TO SET THE ATTACK AND RECOVERY TIMES

C2 and C6, from figures 1 and 2, set the attack and recovery times for the NE577 and NE578. Application Note 174 (AN174) defines A and R times and also describes how they are measured on the bench. Formula 3 shows how the A and R time can be calculated.

Formula 3:
Attack Time [ms] $=10 \mathrm{k} * \mathrm{C} 2$ or C6
Release Time [ms] = 4 * Attack Time
Although a fast attack time is desirable, one must remember that there is a trade-off with low distortion. As a general rule, a $1 \mu \mathrm{~F}$ capacitor for C 2 will produce 0.2% THD at 1 kHz . Since CCITT recommends an RC time constant of 20 ms for the attack time, a $2 \mu \mathrm{~F}$ capacitor is recommended for telephony applications because it has only 0.1% THD at 1 kHz and 0.33% at 800 Hz .

Note: AN174 can be found in the 1989 Linear Data Manual, Volume 1, or the RF Handbook.

IMPLEMENTING A PROGRAMMABLE AUTOMATIC LEVEL CONTROL

The function of an automatic level control (ALC) is to take a given range of input signals and provide a constant AC output level. This type of function is useful in many audio applications. One such application can be found in tape recorders. When a tape recorder with ALC is recording a conversation, a soft spoken person will be heard just as well as a loud spoken person during play back. Another useful application for ALC could be with telephony. A person who has difficulty hearing, will not have to ask the other party to speak up. If the phone already has a volume control, the user has to adjust the volume for different parties. But with the ALC, the volume only has to be set once.
Different constant AC output levels of an ALC can be 'programmed' with the NE577 and NE578. This allows the designer to choose the output level that is needed in the design, and eliminates the need for an external op amp.

The compressor side of the NE577 and NE578 can be configured to function as an automatic level control (ALC). Figure 10 and 11 show how this can be done. The circuit shown for the NE577/78 ALC is set up to provide a constant output level of 100 mV RMS with an input range from -34 dB to +20 dB at 1 kHz (see Figure 12).
Below are some design equations for the ALC:

Eq 1.
$A C$ output level $\left(V_{R M S}\right)=\left[\frac{R_{3} \cdot R_{2_{a}} \cdot I_{R E F}}{R_{1_{a}}}\right] \cdot 1.1$

$$
\text { where } R_{1_{a}}=R_{2_{a}}=10 k \text { (internal) }
$$

$$
I_{R E F}=\frac{V_{B G}}{R_{2}}
$$

Maximum Gain $=\frac{4\left(R_{3}+R_{X}\right) \cdot R_{2_{a}} \cdot I_{\text {REF }}}{R_{1_{a}} \cdot V_{C C}}$
Eq 2.

Gain $=\frac{R_{3} \cdot R_{2_{2}} \cdot I_{R E F}}{R_{1_{a}} \cdot V_{I N_{R M S}}}$

Figure 11. NE578 ALC Configuration

Example:

Design an ALC with a constant output level of 100 mV RMS with a maximum gain of 10 .
Step 1: From Eq 1
$A C$ output level $\left(V_{R M S}\right)=\left[\frac{R_{3} \cdot R_{2_{a}} \cdot I_{R E F}}{R_{1_{a}}}\right] \cdot 1.11$
where $R_{1_{a}}=R_{2_{a}}=10 k$ (internal)

$$
I_{R E F}=\frac{V_{B G}}{R_{2}}
$$

In terms of R_{3}

$$
R_{3}=\frac{\left[A C \text { output level }\left(V_{R M S}\right)\right] R_{1_{a}}}{(1.11)\left(R_{2_{a}}\right) I_{R E F}}
$$

assuming $R_{2}=100 \mathrm{k}$ and $\mathrm{V}_{\mathrm{BG}}=1.26 \mathrm{~V}$.

$$
\begin{aligned}
& R_{3}=\frac{100 m V_{R M S} \cdot 10 k}{1.11 \cdot 10 k \cdot 12.6 \mu A} \\
& R_{3}=7.15 k
\end{aligned}
$$

Step 2: From Eq 2
Maximum Gain $=\frac{4\left(R_{3}+R_{X}\right) \cdot R_{2_{a}} \cdot I_{R E F}}{R_{1_{a}} \cdot V_{C C}}$
In terms of R_{X}
$R_{X}=\frac{(\text { Max. Gain })\left(V_{C C}\right)\left(R_{1_{a}}\right)}{4 R_{2_{a}} \cdot I_{R E F}}-R_{3}$
$R_{X}=\frac{(10)(3.6 V)(10 k)}{4(10 k) 12.6 \mu A}-7.15 k$
$R_{X}=707.1 k$
$R_{X}=715 k$ (available)
Step 3:
-connect resistors to circuit
-measure AC output level and adjust R3 for best accuracy
-check maximum gain by applying a low input level and adjust Rx for best results

Figure 12 shows the characteristics of the NE577/578 ALC circuit without Rx. The output stays at a constant $100 \mathrm{mV} \mathrm{VMS}_{\text {R }}$ level for a wide range of different input AC voltages. Any AC input signal above the cross-over point (unity gain level) is attenuated while any signal below the cross-over point is amplified. The cross-over point is where the input signal is equal to the output signal, where $A_{V}=1$.
Figure 13 reveals the dynamic range of the NE577 ALC circuit using Rx. The input range of the ALC is reduced. Instead of a $2 m V_{\text {RMS }}$ input signal to get $100 \mathrm{~m} V_{\text {RMS }}$ on the output, a 10 mV RMS input signal is now required (for $R x=681 k$). The purpose of limiting the maximum gain of the circuit is to prevent amplification of background noise. To alleviate this problem, Rx is used. Since the ALC was designed with a maximum gain of

10, any input signal below 10 mV will not be amplified with a gain greater than 10 $\left(100 \mathrm{mv}_{\mathrm{RMS}} / 10=10 \mathrm{mv}_{\mathrm{RMS}}\right)$. Using Rx can be an advantage because the threshold of the ALC can be set.

Figure 14 shows that as Rx increases so does A_{V}. In some applications it might be useful to make Rx a potentiometer. This will allow the user to adjust the threshold for different environmental conditions.
Figures $15-18$ show the results of using the ALC for different constant output levels. $V_{c c}$ and $I_{\text {REF }}$ limit the dynamic range. The upper part of the range can be increased by either increasing V_{CC} and/or $\mathrm{I}_{\mathrm{REF}}$. The lower part of the range can be improved by increasing I Ref.

EXTRA FEATURES FOR NE578

The NE578 has three extra functions over the NE577. These are power-down, mute and summing capabilities. To implement the power-down/mute mode, Pin 8 should be active low (open collector configuration, see Figure 19). If the power-down/mute feature is not used, Pin 8 should be left open. The NE578 only consumes $170 \mu \mathrm{~A}$ of current at 3.6 V when Pin 8 is activated. The power-down/mute mode is useful in designs when the function of the chip is not utilized at all times. This feature is a necessity where power conservation is critical.

In cellular and cordless applications, it is common to mix DTMF tones with the audio signal. This usually requires another op amp
in which to mix the signals. With the NE578, however, the DTMF tones can be mixed internally on the compressor side. The DTMF signal is also compressed with the audio signal and ready for data transmission. Figure 2 shows that the summing of signals can be done at Pin 9 with R4 and C10. If amplification is not needed, then a 10 k resistor is a recommended value for R4. In addition the summing amplifiers are capable of driving 600Ω loads.

THE NE577 AND NE578 AS A DUAL EXPANDOR

The compressor side can actually be configured as an expandor for both the NE577 and NE578. Figure 20 shows how this can be done. Because Pin 9 of the NE578 is available to the designer, the compressor side can not only be configured as an expandor, but as an expandor with summing capabilities.

OPERATING AT 1.8 V

The NE577 and NE578 can operate at 1.8 V . However, turning on the part at a V_{CC} of 1.8 V requires two external resistors to bring $\mathrm{V}_{\text {REF }}$ to half $V_{c c}$. One resistor connects between V_{CC} and $\mathrm{V}_{\text {REF }}$; the other connects from $\mathrm{V}_{\text {REF }}$ to ground. A typical value for these external resistors is approximately 20k. A lower value can be used, but power consumption will increase.

There are two cases where the external resistors can be eliminated.

Case 1: NE578 only

With the power supply at 1.8 V and $\operatorname{Pin} 8$ active low (power-down/mute activated), turn on the part. Then disable Pin 8 to power up.

Case 2: NE577 or NE578

During normal operations, the NE577 and NE578 can operate from at least a 2 V battery. If the battery voltage drops to 1.8 V , these parts will still continue to function.

NE577 AND NE578 DEMO BOARDS

Figures 21 shows the DIP package layout for the NE577 and NE578 demo boards, respectively. Figures 22 shows the SO layout for the NE577 and NE578 demo boards, respectively. The layouts are configured such that R1, R2, R3, and Rx can be removed and replaced easily. A switch is also available to change the operating mode of the compressor to an ALC configuration and vice versa (position the switch to the right for ALC mode).
When the compressor side is being evaluated, disconnect $R x$ completely from the socket on the demo boards. Rx should only be used when the compandor is being used for ALC.

For the NE578 demo board, two extra post are available. One is for power-down; the other is for summing external signals. To power-down, simply ground this post. To sum signals, connect the external signal to the proper post.

Figure 14. Dynamic Range of NE577 ALC Demo Board with Different R_{X} Values

Figure 15. NE577 ALC: AC Output Level $=10 \mathrm{mV}$ RMS

Figure 17. NE577 ALC: AC Output Level $=316 \mathrm{~m} \mathrm{~V}_{\text {RMS }}$

Figure 20. Expandor Configuration for the Compressor Side

NE578 DIP Top Silk Screen

Top View

Bottom View

Bottom View
Figure 21. NE577 and NE578 DIP Application Board Layout

Top View

Bottom View

NE578 SO Top Silk Screen

Top View

Bottom View
INDEX
FMIF Systems Selector Guide 260
MC3361 Low-power FM IF 261
NE/SA604A High performance low power FM IF system 264
NE/SA614A Low power FM IF system 274
AN1991 Audio decibel level detector with meter driver 284
AN1993 High sensitivity applications of low-power RF/IF integrated circuits 286
NE/SA605 High performance low power mixer FM IF system 298
NE/SA615 High performance low power mixer FM IF system 306
AN1994 Reviewing key areas when designing with the NE605 314
AN1995 Evaluating the NE605 SO and SSOP demo-board 334
AN1996 Demodulating at 10.7 MHz IF with the NE/SA605/625 344
SA606 Low-voltage high performance mixer FM IF system 355
SA616 Low-voltage high performance mixer FM IF system 371
SA607 Low voltage high performance mixer FM IF system 387
SA617 Low-voltage high performance mixer FM IF system 402
SA608 Low voltage high performance mixer FM IF system 416
NE/SA624 High performance low power FM IF system with high-speed RSSI 430
NE/SA625 High performance low power mixer FM IF system with high-speed RSSI 442
SA626 Low voltage high performance mixer FM IF system with high-speed RSSI 455
NE/SA627 High performance low power mixer FM IF system with high-speed RSS| 467
SA636 Low voltage high performance mixer FM IF system with high-speed RSSI 477
SA637 Low-voltage digital IF receiver 481
SA676 Low-voltage mixer FM IF system 492
TDA1576T FMIF amplifier/demodulator circuit 501
TDA7000 Single-chip FM radio circuit 509
TDA7021T Single-chip FM radio circuit 516

FM IF SYSTEMS FAMILY OVERVIEW

$V_{c c}$	$I_{\text {cc }}$	Count	Package	Input Freq. (Max.)		$\mathrm{f}_{\mathrm{RF}}=45 \mathrm{MHz}$			RSSI Range	Fast	Output Op Amps	Features
						Sensitivity Input Pin	Mixer Gain	$\begin{aligned} & \text { Input } \\ & 30 I^{*} \end{aligned}$				

High Performance Low Power FM IF System

NE/SA604A	$4.5-8 \mathrm{~V}$	$3.3 \mathrm{mA@} @ \mathrm{~V}$	16	D, N	25 MHz	25 MHz	$0.22 \mu \mathrm{~V}$	$\mathrm{~N} / \mathrm{A}$	N / A	90 dB	-	N / A	- High Sensitivity
NE/SA614A	$4.5-8 \mathrm{~V}$	$3.3 \mathrm{mA@} @ \mathrm{~V}$	16	D, N	25 MHz	25 MHz	$0.22 \mu \mathrm{~V}$	$\mathrm{~N} / \mathrm{A}$	N / A	80 dB	-	N / A	-High IF Frequency
NE/SA624	$4.5-8 \mathrm{~V}$	$3.3 \mathrm{mA@} @ \mathrm{~V}$	16	D, N	25 MHz	25 MHz	$0.22 \mu \mathrm{~V}$	$\mathrm{~N} / \mathrm{A}$	N / A	90 dB	-	N / A	

High Performance Low Power Mixer FM IF System

NE/SA605	$4.5-8 \mathrm{~V}$	$5.7 \mathrm{mA@} @ \mathrm{~V}$	20	D, DK, N	500 MHz	25 MHz	$0.22 \mu \mathrm{~V}$	13 dB	+4 dBm	90 dB	-	N/A	- High Sensitivity
NE/SA615	$4.5-8 \mathrm{~V}$	$5.7 \mathrm{mA@} @ \mathrm{~V}$	20	D, DK, N	500 MHz	25 MHz	$0.22 \mu \mathrm{~V}$	13 dB	+4 dBm	80 dB	-	N/A	- High Input/RF Freq

(NE/SA624 only includes FM IF)

NE/SA624	4.5-8V	3.4mA@6V	16	D, N	25MHz	25MHz	$0.22 \mu \mathrm{~V}$	N/A	+4dBm	90 dB	\checkmark	N/A	- High Sensitivity - High Input/RF Freq - Fast RSSI - Freq CheckLLim (-) (627)
NE/SA625	4.5-8V	5.8mA@6V	20	D, DK, N	500 MHz	25 MHz	$0.22 \mu \mathrm{~V}$	13dB	+4dBm	90dB	\checkmark	N/A	
NE/SA627	4.5-8V	5.8mA@6V	20	D, DK, N	500MHz	25 MHz	$0.22 \mu \mathrm{~V}$	13dB	+4dBm	90dB	\checkmark	N/A	

Low Voltage High Performance Mixer FM IF System

SA606	2.7-7V	3.5mA@3V	20	D, DK, N	150MHz	2 MHz	$0.31 \mu \mathrm{~V}$	17dB	-9dBm	90dB	-	Audio Op Amp RSSIOp Amp	- Low Pow
SA616	2.7-7V	3.5mA@3V	20	D, DK, N	150MHz	2 MHz	$0.31 \mu \mathrm{~V}$	17dB	-9dBm	80dB	-	Audio Op Amp RSSI Op Amp	- Audio/RSSI Op Amp
SA607	2.7-7V	3.5mA@3V	20	D, DK, N	150MHz	2MHz	$0.31 \mu \mathrm{~V}$	17dB	$-9 \mathrm{dBm}$	90 dB	-	Audio Op Amp RSSI Buffered	- Low Power
SA617	2.7-7V	3.5mA@3V	20	D, DK, N	150MHz	2MHz	$0.31 \mu \mathrm{~V}$	17dB	-9dBm	80 dB	-	Audio Op Amp RSSI Buffered	$\begin{array}{\|l} \text { - Audio Op Amp } \\ (607 / 617) \end{array}$
SA608	2.7-7V	3.5mA@3V	20	D, DK, N	150MHz	2 MHz	$0.31 \mu \mathrm{~V}$	17dB	-9dBm	90 dB	-	Audio Buffered RSSI Op Amp	- Freq Check Function -RSSI Op Amp (608)

_ow Voltage High Performance Mixer FM IF System with High-Speed RSSI

SA626	2.7-5.5V	6.5mA@3V	20	D, DK	500 MHz	25MHz	$0.54 \mu \mathrm{~V}^{* *}$	14dB	-11dBm	90 dB	\checkmark	Audio Buffered RSSI Op Amp	- Low Power - Fast RSSI - Audio/RSSI Op Amp - Power Down Mode
$*$ Note -50Ω Source $*$ Measured at 240 MHz $\mathrm{NE}: 0$ to $+70^{\circ} \mathrm{C}$ $\mathrm{SA}:-40$ to $+85^{\circ} \mathrm{C}$													

DESCRIPTION

The MC3361 is a monolithic low-power FM IF signal processing system consisting of an oscillator, mixer, limiting amplifier, quadrature detector, filter amplifier, squelch, scan control and mute switch. It is intended for use in narrow band FM dual conversion communications equipment. The MC3361 is available in a 16-lead, dual-in-line plastic package and 16-lead SOL (surface-mounted miniature package).

FEATURES

-2.0V to 8.0 V operation

- Low current: 4.2 mA typ at $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}_{\mathrm{DC}}$
- Excellent sensitivity: $2.0 \mu \mathrm{~V}$ for -3 dB limiting typ
- Low external parts count
- Operation to 60 MHz

APPLICATIONS

- Cordless telephone
- Narrow band receivers
- Remote control

PIN CONFIGURATION

NOTE:

1. Available in 16 -pin SOL package.

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
16 -Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	MC3361N	0406 C
16-Pin Plastic Small Outline Large (SOL)	-40 to $+85^{\circ} \mathrm{C}$	MC3361D	0171 B

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

$T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

SYMBOL	PARAMETER	PIN	RATING	UNIT
V_{CC} (Max)	Power supply voltage	4	10	$\mathrm{~V}_{\mathrm{DC}}$
V_{CC}	Generating supply voltage range	4	2.0 to 8.0	$\mathrm{~V}_{\mathrm{DC}}$
	Detector input voltage	8	1.0	$\mathrm{~V}_{\text {P-P }}$
V_{16}	Input voltage $\left(\mathrm{V}_{\mathrm{CC}} \geq 4.0 \mathrm{~V}\right)$	16	1.0	$\mathrm{~V}_{\text {RMS }}$
V_{14}	Mute function	14	-0.5 to 5.0	$\mathrm{~V}_{\mathrm{PK}}$
T_{J}	Junction temperature		150	${ }^{\circ} \mathrm{C}$
T_{A}			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$	

AC AND DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}_{\mathrm{DC}}, f_{\mathrm{f}}=10.7 \mathrm{MHz}, \Delta \mathrm{f}=+3.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{MOD}}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

PARAMETER	PIN	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
Drain current (no signal) squelch off squelch on	4			$\begin{aligned} & 4.2 \\ & 5.4 \end{aligned}$	7.0	mA
Input limiting voltage	16	-3.0dB limiting		2.0	6.0	$\mu \mathrm{V}$
Detector output voltage	9			2.0		V_{DC}
Detector output impedance				450		Ω
Recovered audio output voltage	9	100	150	270		mV RMS
Filter gain (10kHz)		$\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{mV} \mathrm{V}_{\text {RMS }}$	40	46		dB
Filter output voltage	11			1.7		$V_{D C}$
Trigger hysteresis				50		mV
Mute function low	14			10		Ω
Mute function high	14			10		$\mathrm{M} \Omega$
Scan function low (mute off)	13			0.5		$V_{D C}$
Scan function high (mute on)	13	$\mathrm{V}_{12}=$ GND				$V_{D C}$
Mixer conversion gain	3			27		dB
Mixer input resistance	16			3.6		$\mathrm{k} \Omega$
Mixer input capacitance	16			2.2		pF

TEST CIRCUIT

High performance low power FM IF system

DESCRIPTION

The NE/SA604A is an improved monolithic low-power FM IF system incorporating two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator, and voltage regulator. The NE/SA604A features higher IF bandwidth (25 MHz) and temperature compensated RSSI and limiters permitting higher performance application compared with the NE/SA604. The NE/SA604A is available in a 16 -lead dual-in-line plastic and 16-lead SO (surface-mounted miniature) package.

APPLICATIONS

- Cellular radio FM IF
- High performance communications receivers
- Intermediate frequency amplification and detection up to $\mathbf{2 5 M H z}$
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers

PIN CONFIGURATION

FEATURES

- Low power consumption: 3.3mA typical
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Two audio outputs - muted and unmuted
- Low external component count; suitable for crystal/ceramic filters
- Excellent sensitivity: $1.5 \mu \mathrm{~V}$ across input pins ($0.22 \mu \mathrm{~V}$ into 50Ω matching network) for 12dB SINAD (Signal to Noise and Distortion ratio) at 455 kHz
- SA604A meets cellular radio specifications

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
16 -Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE604AN	O406C
16 -Pin Plastic Small Outline (SO) package (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE604AD	0005 D
16 -Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA604AN	0406 C
16 -Pin Plastic Small Outline (SO) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA604AD	0005 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$V_{\text {cc }}$	Single supply voltage	9	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range $\begin{aligned} & \text { NE604A } \\ & \text { SA604A }\end{aligned}$	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\theta_{\text {JA }}$	Thermal impedance $\begin{aligned} & \text { D package } \\ & \\ & \mathrm{N} \text { package }\end{aligned}$	$\begin{aligned} & 90 \\ & 75 \end{aligned}$	$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

High performance low power FM IF system

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS
$V_{C C}=+6 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS						UNITS	
			NE604A	SA604A							
			MIN	TYP	MAX	MIN	TYP	MAX			
V_{CC}	Power supply voltage range				4.5		8.0	4.5		8.0	V
lcc	DC current drain				2.5	3.3	4.0	2.5	3.3	4.0	mA
	Mute switch input threshold	$\begin{aligned} & \hline \text { (ON) } \\ & \text { (OFF) } \end{aligned}$		1.7		1.0	1.7		1.0	V	

AC ELECTRICAL CHARACTERISTICS

Typical reading at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{C C}= \pm 6 \mathrm{~V}$, unless otherwise stated. IF frequency $=455 \mathrm{kHz}$; IF level $=-47 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C-message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE604A			SA604A			
			MIN	TYP	MAX	MIN	TYP	MAX	
	Input limiting -3dB	Test at Pin 16		-92			-92		dBm/50 Ω
	AM rejection	80% AM 1kHz	30	34		30	34		dB
	Recovered audio level	15 nF de-emphasis	110	175	250	80	175	260	mV VMS
	Recovered audio level	150pF de-emphasis		530			530		mV RMS
THD	Total harmonic distortion		-35	-42		-34	-42		dB
S/N	Signal-to-noise ratio	No modulation for noise		73			73		dB
		RF level $=-118 \mathrm{dBm}$	0	160	550	0	160	650	mV
	RSSI output ${ }^{1}$	RF level $=-68 \mathrm{dBm}$	2.0	2.65	3.0	1.9	2.65	3.1	V
		RF level $=-18 \mathrm{dBm}$	4.1	4.85	5.5	4.0	4.85	5.6	V
	RSSI range	$\mathrm{R}_{4}=100 \mathrm{k}$ (Pin 5)		90			90		dB
	RSSI accuracy	$\mathrm{R}_{4}=100 \mathrm{k}$ (Pin 5)		± 1.5			± 1.5		dB
	IF input impedance		1.4	1.6		1.4	1.6		k Ω
	IF output impedance		0.85	1.0		0.85	1.0		$\mathrm{k} \Omega$
	Limiter input impedance		1.4	1.6		1.4	1.6		k Ω
	Unmuted audio output resistance			58			58		k Ω
	Muted audio output resistance			58			58		k Ω

NOTE:

1. NE604 data sheets refer to power at 50Ω input termination; about 21 dB less power actually enters the internal 1.5 k input.

NE604 (50)	NE604A $(1.5 \mathrm{k}) / \mathrm{NE} 605(1.5 \mathrm{k}$
-97 dBm	-18 dBm
-47 dBm	-68 dBm
+3 dBm	-18 dBm

The NE605 and NE604A are both derived from the same basic die. The NE605 performance plots are directly applicable to the NE604A.

C1	100nF + 80-20\% 63V K10000-25V Ceramic
C2	100nF +10\% 50V
C3	$100 n \mathrm{~F} \pm 10 \% 50 \mathrm{~V}$
C4	100nF +10\% 50V
C5	100nF $\pm 10 \% 50 \mathrm{~V}$
C6	$10 \mathrm{pF} \pm 2 \%$ 100V NPO Ceramic
C7	$100 n F \pm 10 \% 50 \mathrm{~V}$
C8	$100 n \mathrm{~F} \pm 10 \% 50 \mathrm{~V}$
C9	$15 \mathrm{nF} \pm 10 \% 50 \mathrm{~V}$
C10	150pF $\pm 2 \%$ 100V N1500 Ceramic
C11	1nF $\pm 10 \%$ 100V K2000-Y5P Ceramic
C12	$6.8 \mu \mathrm{~F} \pm 20 \% 25 \mathrm{~V}$ Tantalum
F1	455kHz Ceramic Filter Murata SFG455A3
F2	455kHz ($\mathrm{Ce}=180 \mathrm{pF}$) TOKO RMC 2A6597H
R1	$51 \Omega \pm 1 \%$ 1/4W Metal Film
R2	$1500 \Omega \pm 1 \%$ 1/4W Metal Film
R3	1500 ${ }^{ \pm} \pm \%$ 1/8W Carbon Composition
R4	$100 \mathrm{k} \Omega \pm 1 \%$ 1/4W Metal Film

Figure 1. NE/SA604A Test Circuit

Figure 2. Equivalent Circuit

Figure 3. Typical Application Cellular Radio (45MHz to 455 kHz)

CIRCUIT DESCRIPTION

The NE/SA604A is a very high gain, high frequency device. Correct operation is not possible if good RF layout and galn stage practices are not used. The NE/SA604A cannot be evaluated independent of circuit, components, and board layout. A physical layout which correlates to the electrical limits is shown in Figure 1. This configuration can be used as the basis for production layout.
The NE/SA604A is an IF signal processing system suitable for IF frequencies as high as 21.4 MHz . The device consists of two limiting amplifiers, quadrature detector, direct audio output, muted audio output, and signal strength indicator (with output characteristic). The sub-systems are shown in Figure 2. A typical application with 45 MHz input and 455 kHz IF is shown in Figure 3.

IF Amplifiers
The IF amplifier section consists of two log-limiting stages. The first consists of two differential amplifiers with 39 dB of gain and a small signal bandwidth of 41 MHz (when driven from a 50Ω source). The output of the first limiter is a low impedance emitter follower with $1 \mathrm{k} \Omega$ of equivalent series resistance. The second limiting stage consists of three differential amplifiers with a gain of 62 dB and a small signal $A C$ bandwidth of 28 MHz . The outputs of the final differential stage are buffered to the internal quadrature detector. One of the outputs is available at Pin 9 to drive an external quadrature capacitor and LC quadrature tank.

Both of the limiting amplifier stages are DC biased using feedback. The buffered output of the final differential amplifier is fed back to the input through $42 \mathrm{k} \Omega$ resistors. As shown in Figure 2, the input impedance is
established for each stage by tapping one of the feedback resistors $1.6 \mathrm{k} \Omega$ from the input. This requires one additional decoupling capacitor from the tap point to ground.

Figure 4. First Limiter Bias
Because of the very high gain, bandwidth and input impedance of the limiters, there is a very real potential for instability at IF frequencies above 455 kHz . The basic phenomenon is shown in Figure 6. Distributed feedback (capacitance, inductance and radiated fields)

Figure 5. Second Limiter and Quadrature Detector

Figure 6. Feedback Paths

7a. Terminating High Impedance Filters with Transformation to Low Impedance

7b. Low Impedance Termination and Gain Reduction
Figure 7. Practical Termination

Figure 8. Crystal Input Filter with Ceramic Interstage Filter
forms a divider from the output of the limiters back to the inputs (including RF input). If this feedback divider does not cause attenuation greater than the gain of the forward path, then oscillation or low level regeneration is likely. If regeneration occurs, two symptoms may be present: (1)The RSSI output will be high with no signal input (should nominally be 250 mV or lower), and (2) the demodulated
output will demonstrate a threshold. Above a certain input level, the limited signal will begin to dominate the regeneration, and the demodulator will begin to operate in a "normal" manner.

There are three primary ways to deal with regeneration: (1) Minimize the feedback by gain stage isolation, (2) lower the stage input
impedances, thus increasing the feedback attenuation factor, and (3) reduce the gain. Gain reduction can effectively be accomplished by adding attenuation between stages. This can also lower the input impedance if well planned. Examples of impedance/gain adjustment are shown in

Figure 7. Reduced gain will result in reduced limiting sensitivity.
A feature of the NE604A IF amplifiers, which is not specified, is low phase shift. The NE604A is fabricated with a 10 GHz process with very small collector capacitance. It is advantageous in some applications that the phase shift changes only a few degrees over a wide range of signal input amplitudes.

Stability Considerations

The high gain and bandwidth of the NE604A in combination with its very low currents permit circuit implementation with superior performance. However, stability must be maintained and, to do that, every possible feedback mechanism must be addressed.
These mechanisms are: 1) Supply lines and ground, 2) stray layout inductances and capacitances, 3) radiated fields, and 4) phase shift. As the system IF increases, so must the attention to fields and strays. However, ground and supply loops cannot be overlooked, especially at lower frequencies. Even at 455 kHz , using the test layout in Figure 1 , instability will occur if the supply line is not decoupled with two high quality RF capacitors, a $0.1 \mu \mathrm{~F}$ monolithic right at the V_{cc} pin, and a $6.8 \mu \mathrm{~F}$ tantalum on the supply line. An electrolytic is not an adequate substitute. At 10.7 MHz , a $1 \mu \mathrm{~F}$ tantalum has proven acceptable with this layout. Every layout must be evaluated on its own merit, but don't underestimate the importance of good supply bypass.
At 455 kHz , if the layout of Figure 1 or one substantially similar is used, it is possible to directly connect ceramic filters to the input and between limiter stages with no special consideration. At frequencies above 2 MHz , some input impedance reduction is usually necessary. Figure 7 demonstrates a practical means.

As illustrated in Figure 8, 430 2 external resistors are applied in parallel to the internal $1.6 \mathrm{k} \Omega$ load resistors, thus presenting approximately 330Ω to the filters. The input filter is a crystal type for narrowband selectivity. The filter is terminated with a tank which transforms to 330Ω. The interstage filter is a ceramic type which doesn't contribute to system selectivity, but does suppress wideband noise and stray signal pickup. In wideband 10.7 MHz IFs the input filter can also be ceramic, directly connected to Pin 16.

In some products it may be impractical to utilize shielding, but this mechanism may be appropriate to 10.7 MHz and 21.4 MHz IF. One of the benefits of low current is lower radiated field strength, but lower does not
mean non-existent. A spectrum analyzer with an active probe will clearly show IF energy with the probe held in the proximity of the second limiter output or quadrature coil. No specific recommendations are provided, but mechanical shielding should be considered if layout, bypass, and input impedance reduction do not solve a stubborn instability.
The final stability consideration is phase shift. The phase shift of the limiters is very low, but there is phase shift contribution from the quadrature tank and the filters. Most filters demonstrate a large phase shift across their passband (especially at the edges). If the quadrature detector is tuned to the edge of the filter passband, the combined filter and quadrature phase shift can aggravate stability. This is not usually a problem, but should be kept in mind.

Quadrature Detector

Figure 5 shows an equivalent circuit of the NE604A quadrature detector. It is a multiplier cell similar to a mixer stage. Instead of mixing two different frequencies, it mixes two signals of common frequency but different phase. Internal to the device, a constant amplitude (limited) signal is differentially applied to the lower port of the multiplier. The same signal is applied single-ended to an external capacitor at Pin 9 . There is a 90° phase shift across the plates of this capacitor, with the phase shifted signal applied to the upper port of the multiplier at Pin 8. A quadrature tank (parallel L/C network) permits frequency selective phase shifting at the IF frequency. This quadrature tank must be returned to ground through a DC blocking capacitor.
The loaded Q of the quadrature tank impacts three fundamental aspects of the detector: Distortion, maximum modulated peak deviation, and audio output amplitude. Typical quadrature curves are illustrated in Figure 10. The phase angle translates to a shift in the multiplier output voltage.

Thus a small deviation gives a large output with a high Q tank. However, as the deviation from resonance increases, the non-linearity of the curve increases (distortion), and, with too much deviation, the signal will be outside the quadrature region (limiting the peak deviation which can be demodulated). If the same peak deviation is applied to a lower Q tank, the deviation will remain in a region of the curve which is more linear (less distortion), but creates a smaller phase angle (smaller output amplitude). Thus the Q of the quadrature tank must be tailored to the design. Basic equations and an example for determining Q are shown
below. This explanation includes first-order effects only.

Frequency Discriminator Design Equations for NE604A

(1a)
$V_{O}=\frac{C_{S}}{C_{P}+C_{S}} \cdot \frac{1}{1+\frac{\omega_{1}}{Q_{1} S}+\left(\frac{\omega_{1}}{S}\right)^{2}} \cdot V_{\text {IN }}$
where $\omega_{1}=\frac{1}{\sqrt{L\left(C_{P}+C_{s}\right)}}$

$$
\begin{equation*}
Q_{1}=R\left(C_{p}+C_{S}\right) \omega_{1} \tag{1c}
\end{equation*}
$$

From the above equation, the phase shift between nodes 1 and 2, or the phase across C_{s} will be:
$\phi=\angle V_{O}-\angle V_{\mathbb{N}}=\operatorname{tg}^{-1}\left[\frac{\frac{\omega_{1}}{Q_{1} \omega}}{1-\left(\frac{\omega_{1}}{\omega}\right)^{2}}\right]$
Figure 10 is the plot of ϕ vs. $\left(\frac{\omega}{\omega_{1}}\right)$
It is notable that at $\omega=\omega_{1}$, the phase shift is
$\frac{\pi}{2}$ and the response is close to a straight
line with a slope of $\frac{\Delta \phi}{\Delta \omega}=\frac{2 Q_{1}}{\omega_{1}}$
The signal V_{0} would have a phase shift of $\left[\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right]$ with respect to the $V_{\mathbb{N}}$.

$$
\begin{align*}
& \text { If } V_{I N}=A \operatorname{Sin} \omega t \Rightarrow V_{O}=A \tag{3}\\
& \qquad \operatorname{Sin}\left[\omega t+\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right]
\end{align*}
$$

Multiplying the two signals in the mixer, and
low pass filtering yields:
$\mathrm{V}_{\mathrm{IN}} \bullet \mathrm{V}_{\mathrm{O}}=\mathrm{A}^{2} \operatorname{Sin} \omega \mathrm{t}$

$$
\begin{equation*}
\sin \left[\omega t+\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right] \tag{4}
\end{equation*}
$$

after low pass filtering

$$
\begin{align*}
\Rightarrow V_{\text {OUT }} & =\frac{1}{2} A^{2} \cos \left[\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right] \tag{5}\\
& =\frac{1}{2} A^{2} \sin \left(\frac{2 Q_{1}}{\omega_{1}}\right) \omega
\end{align*}
$$

Which is discriminated FM output. (Note that $\Delta \omega$ is the deviation frequency from the carrier ω_{1}.

Ref. Krauss, Raab, Bastian; Solid State Radio Eng.; Wiley, 1980, p. 311. Example: At 455 kHz IF, with $\pm 5 \mathrm{kHz}$ FM deviation. The maximum normalized frequency will be

$$
\frac{455 \pm 5 \mathrm{kHz}}{455}=1.010 \text { or } 0.990
$$

Go to the f vs. normalized frequency curves (Figure 10) and draw a vertical straight line at $\frac{\omega}{\omega_{1}}=1.01$.

The curves with $Q=100, Q=40$ are not linear, but $Q=20$ and less shows better linearity for this application. Too small Q decreases the amplitude of the discriminated FM signal. (Eq. 6) \Rightarrow Choose a $Q=20$

The internal R of the 604A is $40 k$. From Eq. $1 c$, and then $1 b$, it results that
$C_{P}+C_{S}=174 p F$ and $L=0.7 \mathrm{mH}$.
A more exact analysis including the source resistance of the previous stage shows that there is a series and a parallel resonance in the phase detector tank. To make the parallel and series resonances close, and to get maximum attenuation of higher harmonics at 455 kHz IF, we have found that a $\mathrm{C}_{\mathrm{S}}=10 \mathrm{pF}$ and $C_{P}=164 \mathrm{pF}$ (commercial values of 150 pF or 180 pF may be practical), will give the best results. A variable inductor which can be adjusted around 0.7 mH should be chosen and optimized for minimum distortion. (For 10.7 MHz , a value of $\mathrm{C}_{\mathrm{S}}=1 \mathrm{pF}$ is recommended.)

Audio Outputs

Two audio outputs are provided. Both are PNP current-to-voltage converters with $55 \mathrm{k} \Omega$ nominal internal loads. The unmuted output is always active to permit the use of signaling tones in systems such as cellular radio. The other output can be muted with 70dB typical
internal 180° phase difference.

The nominal frequency response of the audio outputs is 300 kHz . this response can be increased with the addition of external resistors from the output pins to ground in parallel with the internal 55 k resistors, thus lowering the output time constant. Singe the output structure is a current-to-voltage converter (current is driven into the resistance, creating a voltage drop), adding external parallel resistance also has the effect of lowering the output audio amplitude and DC level.

This technique of audio bandwidth expansion can be effective in many applications such as SCA receivers and data transceivers.
Because the two outputs have a 180° phase relationship, FSK demodulation can be accomplished by applying the two output differentially across the inputs of an op amp or comparator. Once the threshold of the reference frequency (or "no-signal" condition) has been established, the two outputs will shift in opposite directions (higher or lower output voltage) as the input frequency shifts. The output of the comparator will be logic output. The choice of op amp or comparator will depend on the data rate. With high IF frequency (10 MHz and above), and wide IF bandwidth (L/C filters) data rates in excess of 4Mbaud are possible.

RSSI

The "received signal strength indicator", or RSSI, of the NE604A demonstrates monotonic logarithmic output over a range of 90 dB . The signal strength output is derived from the summed stage currents in the limiting amplifiers. It is essentially independent of the IF frequency. Thus, unfiltered signals at the limiter inputs, spurious products, or regenerated signals will manifest themselves as RSSI outputs. An RSSI output of greater than 250 mV with no signal (or a very small signal) applied, is an indication of possible regeneration or oscillation.

In order to achieve optimum RSSI linearity, there must be a 12 dB insertion loss between the first and second limiting amplifiers. With a typical 455 kHz ceramic filter, there is a
nominal 4 dB insertion loss in the filter. An additional 6 dB is lost in the interface between the filter and the input of the second limiter. A small amount of additional loss must be introduced with a typical ceramic filter. In the test circuit used for cellular radio applications (Figure 3) the optimum linearity was achieved with a $5.1 \mathrm{k} \Omega$ resistor from the output of the first limiter (Pin 14) to the input of the interstage filter. With this resistor from Pin 14 to the filter, sensitivity of $0.25 \mu \mathrm{~V}$ for 12 dB SINAD was achieved. With the $3.6 \mathrm{k} \Omega$ resistor, sensitivity was optimized at $0.22 \mu \mathrm{~V}$ for 12dB SINAD with minor change in the RSSI linearity.

Any application which requires optimized RSSI linearity, such as spectrum analyzers, cellular radio, and certain types of telemetry, will require careful attention to limiter interstage component selection. This will be especially true with high IF frequencies which require insertion loss or impedance reduction for stability.

At low frequencies the RSSI makes an excellent logarithmic AC voltmeter.

For data applications the RSSI is effective as an amplitude shift keyed (ASK) data slicer. If a comparator is applied to the RSSI and the threshold set slightly above the no signal level, when an in-band signal is received the comparator will be sliced. Unlike FSK demodulation, the maximum data rate is somewhat limited. An internal capacitor limits the RSSI frequency response to about 100 kHz . At high data rates the rise and fall times will not be symmetrical.

The RSSI output is a current-to-voltage converter similar to the audio outputs. However, an external resistor is required. With a $91 \mathrm{k} \Omega$ resistor, the output characteristic is 0.5 V for a 10 dB change in the input amplitude.

Additional Circuitry

Internal to the NE604A are voltage and current regulators which have been temperature compensated to maintain the performance of the device over a wide temperature range. These regulators are not accessible to the user.

Figure 10. Phase vs Normalized IF Frequency $\frac{\omega}{\omega_{1}}=1+\frac{\Delta \omega}{\omega_{1}}$

DESCRIPTION

The NE/SA614A is an improved monolithic low-power FM IF system incorporating two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator, and voltage regulator. The NE/SA614A features higher IF bandwidth (25 MHz) and temperature compensated RSSI and limiters permitting higher performance application compared with the NE/SA604. The NE/SA614A is available in a 16 -lead dual-in-line plastic and 16-lead SO (surface-mounted miniature) package.

FEATURES

- Low power consumption: 3.3mA typical
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Two audio outputs - muted and unmuted
- Low external component count; suitable for crystal/ceramic filters
- Excellent sensitivity: $1.5 \mu \mathrm{~V}$ across input pins ($0.22 \mu \mathrm{~V}$ into 50Ω matching network) for 12dB SINAD (Signal to Noise and Distortion ratio) at 455 kHz
- SA614A meets cellular radio specifications

APPLICATIONS

- Cellular radio FM IF
- High performance communications receivers
- Intermediate frequency amplification and detection up to 25 MHz
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
16-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE614AN	0406 C
16-Pin Plastic Small Outline (SO) package (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE614AD	0005 D
16-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA614AN	0406 C
$16-$ Pin Plastic Small Outline (SO) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA614AD	0005 D

Low power FM IF system

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{Cc}	Single supply voltage	9	V
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range NE614A SA614A	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\theta_{\text {JA }}$	Thermal impedance $\begin{gathered}\text { D package } \\ \mathrm{N} \text { package }\end{gathered}$	$\begin{aligned} & 90 \\ & 75 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{w} \end{aligned}$

DC ELECTRICAL CHARACTERISTICS
$V_{C C}=+6 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE614A			SA614A			
			MIN	TYP	MAX	MIN	TYP	MAX	
V_{cc}	Power supply voltage range		4.5		8.0	4.5		8.0	V
Icc	DC current drain		2.5	3.3	4.0	2.5	3.3	4.0	mA
	$\begin{array}{ll}\text { Mute switch input threshold } & \text { (ON) } \\ & \text { (OFF) }\end{array}$		1.7		1.0	1.7		1.0	V

AC ELECTRICAL CHARACTERISTICS

Typical reading at $T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}= \pm 6 \mathrm{~V}$, unless otherwise stated. IF frequency $=455 \mathrm{kHz}$; IF level $=-47 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C-message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA614A			
			MIN	TYP	MAX	
	Input limiting -3dB	Test at Pin 16		-92		dBm/50 Ω
	AM rejection	80\% AM 1kHz	25	33		dB
	Recovered audio level	15 nF de-emphasis	60	175	260	$\mathrm{mV}_{\text {RMS }}$
	Recovered audio level	150pF de-emphasis		530		$\mathrm{mV} \mathrm{VMS}^{\text {d }}$
THD	Total harmonic distortion		-30	-42		dB
S/N	Signal-to-noise ratio	No modulation for noise		68		dB
RSSI output ${ }^{1}$		RF level $=-118 \mathrm{dBm}$	0	160	800	mV
		RF level $=-68 \mathrm{dBm}$	1.7	2.50	3.3	V
		RF level $=-18 \mathrm{dBm}$	3.6	4.80	5.8	V
	RSSI range	$\mathrm{R}_{4}=100 \mathrm{k}$ (Pin 5)		80		dB
	RSSI accuracy	$\mathrm{R}_{4}=100 \mathrm{k}$ (Pin 5)		± 2.0		dB
	IF input impedance		1.4	1.6		k Ω
	IF output impedance		0.85	1.0		k Ω
	Limiter input impedance		1.4	1.6		$\mathrm{k} \Omega$
	Unmuted audio output resistance			58		$\mathrm{k} \Omega$
	Muted audio output resistance			58		k Ω

NOTE:

1. NE614A data sheets refer to power at 50Ω input termination; about 21 dB less power actually enters the internal 1.5 k input.

NE614A (50)	NE614A $(1.5 \mathrm{k}) /$ NE $615(1.5 \mathrm{k}$
-97 dBm	-118 dBm
-47 dBm	-68 dBm
+3 dBm	-18 dBm

The NE615 and NE614A are both derived from the same basic die. The NE615 performance plots are directly applicable to the NE614A.

Figure 1. NE/SA614A Test Circuit

Figure 2. Equivalent Circuit

Figure 3. Typical Application Cellular Radio (45MHz to $\mathbf{4 5 5 k H z}$)

CIRCUIT DESCRIPTION

The NE/SA614A is a very high gain, high frequency device. Correct operation is not possible if good RF layout and gain stage practices are not used. The NE/SA614A cannot be evaluated independent of circuit, components, and board layout. A physical layout which correlates to the electrical limits is shown in Figure 1. This configuration can be used as the basis for production layout.
The NE/SA614A is an IF signal processing system suitable for IF frequencies as high as 21.4 MHz . The device consists of two limiting amplifiers, quadrature detector, direct audio output, muted audio output, and signal strength indicator (with log output characteristic). The sub-systems are shown in Figure 2. A typical application with 45 MHz input and 455 kHz IF is shown in Figure 3.

IF Amplifiers

The IF amplifier section consists of two log-limiting stages. The first consists of two differential amplifiers with 39 dB of gain and a small signal bandwidth of 41 MHz (when driven from a 50Ω source). The output of the first limiter is a low impedance emitter follower with $1 \mathrm{k} \Omega$ of equivalent series resistance. The second limiting stage consists of three differential amplifiers with a gain of 62 dB and a small signal AC bandwidth of 28 MHz . The outputs of the final differential stage are buffered to the internal quadrature detector. One of the outputs is available at $\operatorname{Pin} 9$ to drive an external quadrature capacitor and LC quadrature tank.

Both of the limiting amplifier stages are DC biased using feedback. The buffered output
of the final differential amplifier is fed back to the input through $42 \mathrm{k} \Omega$ resistors. As shown in Figure 2, the input impedance is established for each stage by tapping one of the feedback resistors $1.6 \mathrm{k} \Omega$ from the input. This requires one additional decoupling capacitor from the tap point to ground.

Figure 4. First Limiter Blas

Low power FM IF system

Figure 5. Second Limiter and Quadrature Detector

Figure 6. Feedback Paths

7a. Terminating High Impedance Filters with Transformation to Low Impedance

7b. Low Impedance Termination and Gain Reduction
Figure 7. Practical Termination

Figure 8. Crystal Input Filter with Ceramic Interstage Filter

Because of the very high gain, bandwidth and input impedance of the limiters, there is a very real potential for instability at IF frequencies above 455 kHz . The basic phenomenon is shown in Figure 6. Distributed feedback (capacitance, inductance and radiated fields) forms a divider from the output of the limiters back to the inputs (including RF input). If this
feedback divider does not cause attenuation greater than the gain of the forward path, then oscillation or low level regeneration is likely. If regeneration occurs, two symptoms may be present: (1)The RSSI output will be high with no signal input (should nominally be 250 mV or lower), and (2) the demodulated output will demonstrate a threshold. Above a certain input level, the limited signal will begin
to dominate the regeneration, and the demodulator will begin to operate in a "normal" manner.
There are three primary ways to deal with regeneration: (1) Minimize the feedback by gain stage isolation, (2) lower the stage input impedances, thus increasing the feedback attenuation factor, and (3) reduce the gain.

Gain reduction can effectively be accomplished by adding attenuation between stages. This can also lower the input impedance if well planned. Examples of impedance/gain adjustment are shown in Figure 7. Reduced gain will result in reduced limiting sensitivity.

A feature of the NE614A IF amplifiers, which is not specified, is low phase shift. The NE614A is fabricated with a 10 GHz process with very small collector capacitance. It is advantageous in some applications that the phase shift changes only a few degrees over a wide range of signal input amplitudes.

Stability Considerations

The high gain and bandwidth of the NE614A in combination with its very low currents permit circuit implementation with superior performance. However, stability must be maintained and, to do that, every possible feedback mechanism must be addressed. These mechanisms are: 1) Supply lines and ground, 2) stray layout inductances and capacitances, 3) radiated fields, and 4) phase shift. As the system IF increases, so must the attention to fields and strays. However, ground and supply loops cannot be overlooked, especially at lower frequencies. Even at 455 kHz , using the test layout in Figure 1, instability will occur if the supply line is not decoupled with two high quality RF capacitors, a $0.1 \mu \mathrm{~F}$ monolithic right at the V_{CC} pin, and a $6.8 \mu \mathrm{~F}$ tantalum on the supply line. An electrolytic is not an adequate substitute. At 10.7 MHz , a $1 \mu \mathrm{~F}$ tantalum has proven acceptable with this layout. Every layout must be evaluated on its own merit, but don't underestimate the importance of good supply bypass.

At 455 kHz , if the layout of Figure 1 or one substantially similar is used, it is possible to directly connect ceramic filters to the input and between limiter stages with no special consideration. At frequencies above 2 MHz , some input impedance reduction is usually necessary. Figure 7 demonstrates a practical means.

As illustrated in Figure 8, 430 Ω external resistors are applied in parallel to the internal $1.6 \mathrm{k} \Omega$ load resistors, thus presenting approximately 330Ω to the filters. The input filter is a crystal type for narrowband selectivity. The filter is terminated with a tank which transforms to 330Ω. The interstage filter is a ceramic type which doesn't contribute to system selectivity, but does suppress wideband noise and stray signal pickup. In wideband 10.7 MHz IFs the input filter can also be ceramic, directly connected to Pin 16.

In some products it may be impractical to utilize shielding, but this mechanism may be appropriate to 10.7 MHz and 21.4 MHz IF. One of the benefits of low current is lower radiated field strength, but lower does not mean non-existent. A spectrum analyzer with an active probe will clearly show IF energy with the probe held in the proximity of the second limiter output or quadrature coil. No specific recommendations are provided, but mechanical shielding should be considered if layout, bypass, and input impedance reduction do not solve a stubborn instability.
The final stability consideration is phase shift. The phase shift of the limiters is very low, but there is phase shift contribution from the quadrature tank and the filters. Most filters demonstrate a large phase shift across their passband (especially at the edges). If the quadrature detector is tuned to the edge of the filter passband, the combined filter and quadrature phase shift can aggravate stability. This is not usually a problem, but should be kept in mind.

Quadrature Detector

Figure 5 shows an equivalent circuit of the NE614A quadrature detector. It is a multiplier cell similar to a mixer stage. Instead of mixing two different frequencies, it mixes two signals of common frequency but different phase. Internal to the device, a constant amplitude (limited) signal is differentially applied to the lower port of the multiplier. The same signal is applied single-ended to an external capacitor at Pin 9 . There is a 90° phase shift across the plates of this capacitor, with the phase shifted signal applied to the upper port of the multiplier at Pin 8. A quadrature tank (parallel LC network) permits frequency selective phase shifting at the IF frequency. This quadrature tank must be returned to ground through a DC blocking capacitor.
The loaded Q of the quadrature tank impacts three fundamental aspects of the detector: Distortion, maximum modulated peak deviation, and audio output amplitude. Typical quadrature curves are illustrated in Figure 10. The phase angle translates to a shift in the multiplier output voltage.
Thus a small deviation gives a large output with a high Q tank. However, as the deviation from resonance increases, the non-linearity of the curve increases (distortion), and, with too much deviation, the signal will be outside the quadrature region (limiting the peak deviation which can be demodulated). If the same peak deviation is applied to a lower Q tank, the deviation will remain in a region of the curve which is more
linear (less distortion), but creates a smaller phase angle (smaller output amplitude).
Thus the Q of the quadrature tank must be tailored to the design. Basic equations and an example for determining Q are shown below. This explanation includes first-order effects only.

Frequency Discriminator Design Equations for NE614A

where $\omega_{1}=\frac{1}{\sqrt{L\left(C_{P}+C_{S}\right)}}$

$$
\begin{equation*}
Q_{1}=R\left(C_{P}+C_{S}\right) \omega_{1} \tag{1c}
\end{equation*}
$$

From the above equation, the phase shift between nodes 1 and 2, or the phase across C_{S} will be:

Figure 10 is the plot of ϕ vs. $\left(\frac{\omega}{\omega_{1}}\right)$
It is notable that at $\omega=\omega_{1}$, the phase shift is
$\frac{\pi}{2}$ and the response is close to a straight
line with a slope of $\frac{\Delta \phi}{\Delta \omega}=\frac{2 Q_{1}}{\omega_{1}}$
The signal V_{O} would have a phase shift of $\left[\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right]$ with respect to the $V_{\mathbb{N}}$.

$$
\begin{equation*}
\text { If } V_{I N}=A \operatorname{Sin} \omega t \Rightarrow V_{O}=A \tag{3}
\end{equation*}
$$

$$
\operatorname{Sin}\left[\omega \mathrm{t}+\frac{\pi}{2}-\frac{2 \mathrm{Q}_{1}}{\omega_{1}} \omega\right]
$$

Multiplying the two signals in the mixer, and low pass filtering yields:
$V_{\mathbb{N}} \bullet V_{O}=A^{2} \operatorname{Sin} \omega t$

$$
\begin{equation*}
\operatorname{Sin}\left[\omega t+\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right] \tag{4}
\end{equation*}
$$

after low pass filtering

$$
\left.\begin{array}{l}
\begin{array}{l}
\Rightarrow V_{\text {OUT }}=\frac{1}{2} A^{2} \operatorname{Cos}\left[\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right] \\
\\
=\frac{1}{2} A^{2} \sin \left(\frac{2 Q_{1}}{\omega_{1}}\right) \omega
\end{array} \\
\text { VOUT } \propto 2 Q_{1} \frac{\omega_{1}}{\omega}=\left[2 Q_{1}\left(\frac{\omega_{1}+\Delta \omega}{\omega_{1}}\right)\right]
\end{array}\right\}
$$

Which is discriminated FM output. (Note that $\Delta \omega$ is the deviation frequency from the carrier ω_{1}.

Ref. Krauss, Raab, Bastian; Solid State Radio Eng.; Wiley, 1980, p. 311. Example: At 455 kHz IF, with $\pm 5 \mathrm{kHz}$ FM deviation. The maximum normalized frequency will be

$$
\frac{455 \pm 5 \mathrm{kHz}}{455}=1.010 \text { or } 0.990
$$

Go to the f vs. normalized frequency curves (Figure 10) and draw a vertical straight line at $\frac{\omega}{\omega_{1}}=1.01$.

The curves with $Q=100, Q=40$ are not linear, but $Q=20$ and less shows better linearity for this application. Too small Q decreases the amplitude of the discriminated FM signal. (Eq. 6) \Rightarrow Choose a $Q=20$

The internal R of the 614A is $40 k$. From Eq. 1 c , and then 1 b , it results that
$C_{p}+C_{S}=174 p F$ and $L=0.7 \mathrm{mH}$.
A more exact analysis including the source resistance of the previous stage shows that there is a series and a parallel resonance in the phase detector tank. To make the parallel and series resonances close, and to get maximum attenuation of higher harmonics at 455 kHz IF, we have found that a $\mathrm{C}_{\mathrm{S}}=10 \mathrm{pF}$ and $C_{P}=164 \mathrm{pF}$ (commercial values of 150 pF or 180 pF may be practical), will give the best results. A variable inductor which can be adjusted around 0.7 mH should be chosen and optimized for minimum distortion. (For 10.7 MHz , a value of $\mathrm{C}_{S}=1 \mathrm{pF}$ is recommended.)

Audio Outputs

Two audio outputs are provided. Both are PNP current-to-voltage converters with $55 \mathrm{k} \Omega$ nominal internal loads. The unmuted output
is always active to permit the use of signaling tones in systems such as cellular radio. The other output can be muted with 70 dB typical attenuation. The two outputs have an internal 180° phase difference.

The nominal frequency response of the audio outputs is 300 kHz . this response can be increased with the addition of external resistors from the output pins to ground in parallel with the internal 55 k resistors, thus lowering the output time constant. Singe the output structure is a current-to-voltage converter (current is driven into the resistance, creating a voltage drop), adding external parallel resistance also has the effect of lowering the output audio amplitude and DC level.

This technique of audio bandwidth expansion can be effective in many applications such as SCA receivers and data transceivers.
Because the two outputs have a 180° phase relationship, FSK demodulation can be accomplished by applying the two output differentially across the inputs of an op amp or comparator. Once the threshold of the reference frequency (or "no-signal" condition) has been established, the two outputs will shift in opposite directions (higher or lower output voltage) as the input frequency shifts. The output of the comparator will be logic output. The choice of op amp or comparator will depend on the data rate. With high IF frequency (10 MHz and above), and wide IF bandwidth (L/C filters) data rates in excess of 4Mbaud are possible.

RSSI

The "received signal strength indicator", or RSSI, of the NE614A demonstrates monotonic logarithmic output over a range of 90 dB . The signal strength output is derived from the summed stage currents in the limiting amplifiers. It is essentially independent of the IF frequency. Thus, unfiltered signals at the limiter inputs, spurious products, or regenerated signals will manifest themselves as RSSI outputs. An RSSI output of greater than 250 mV with no signal (or a very small signal) applied, is an indication of possible regeneration or oscillation.
In order to achieve optimum RSSI linearity, there must be a 12 dB insertion loss between
the first and second limiting amplifiers. With a typical 455 kHz ceramic filter, there is a nominal 4 dB insertion loss in the filter. An additional 6 dB is lost in the interface between the filter and the input of the second limiter. A small amount of additional loss must be introduced with a typical ceramic filter. In the test circuit used for cellular radio applications (Figure 3) the optimum linearity was achieved with a $5.1 \mathrm{k} \Omega$ resistor from the output of the first limiter (Pin 14) to the input of the interstage filter. With this resistor from Pin 14 to the filter, sensitivity of $0.25 \mu \mathrm{~V}$ for 12 dB SINAD was achieved. With the $3.6 \mathrm{k} \Omega$ resistor, sensitivity was optimized at $0.22 \mu \mathrm{~V}$ for 12dB SINAD with minor change in the RSSI linearity.

Any application which requires optimized RSSI linearity, such as spectrum analyzers, cellular radio, and certain types of telemetry, will require careful attention to limiter interstage component selection. This will be especially true with high IF frequencies which require insertion loss or impedance reduction for stability.

At low frequencies the RSSI makes an excellent logarithmic AC voltmeter.

For data applications the RSSI is effective as an amplitude shift keyed (ASK) data slicer. If a comparator is applied to the RSSI and the threshold set slightly above the no signal level, when an in-band signal is received the comparator will be sliced. Unlike FSK demodulation, the maximum data rate is somewhat limited. An internal capacitor limits the RSSI frequency response to about 100 kHz . At high data rates the rise and fall times will not be symmetrical.

The RSSI output is a current-to-voltage converter similar to the audio outputs. However, an external resistor is required.
With a $91 \mathrm{k} \Omega$ resistor, the output characteristic is 0.5 V for a 10 dB change in the input amplitude.

Additional Circuitry

Internal to the NE614A are voltage and current regulators which have been temperature compensated to maintain the performance of the device over a wide temperature range. These regulators are not accessible to the user.

Figure 10. Phase vs Normalized IF Frequency $\frac{\omega}{\omega_{1}}=1+\frac{\Delta \omega}{\omega_{1}}$

Author: Robert J. Zavrel Jr.

DESCRIPTION

Although the NE604 was designed as an RF device intended for the cellular radio market, it has features which permit other design configurations. One of these features is the Received Signal Strength Indicator (RSSI). In a cellular radio, this function is necessary for continuous monitoring of the received signal strength by the radio's microcomputer. This circuit provides a logarithmic response proportional to the input signal level. The NE604 can provide this logarithmic response over an 80 dB range up to a 15 MHz operating frequency. This paper describes a technique which optimizes this useful function within the audio band.

A sensitive audio level indicator circuit can be constructed using two integrated circuits: the NE604 and NE532. This circuit draws very little power (less than 5 mA with a single 6 V power supply) making it ideal for portable battery operated equipment. The small size and low-power consumption belie the 80 dB dynamic range and $10.5 \mu \mathrm{~V}$ sensitivity.

The RSSI function requires a DC output voltage which is proportional to the $\log _{10}$ of the input signal level. Thus a standard 0-5
voltmeter can be linearly calibrated in decibels over a single 80 dB range. The entire circuit is composed of 9 capacitors and two resistors along with the two ICs. No tuning or calibration is required in a manufacturing setting.
The Audio Input vs Output Graph shows that the circuit is within 1.5 dB tolerance over the 80 dB range for audio frequencies from 100 Hz to 10 kHz . Higher audio levels can be measured by placing an attenuator ahead of the input capacitor. The input impedance is high (about 50k), so lower impedance terminations (50 or 600Ω) will not be affected by the input impedance. If very accurate tracking is required ($<0.5 \mathrm{~dB}$ accuracy), a 40 or 50 dB segment can be "selected". A range switch can then be added with appropriate attenuators if more than 40 or 50 dB dynamic range is required.

There are two amplifier sections in the 604 with 2 and 3 stages in the first and second sections respectively. Each stage outputs a sample current to a summing circuit. The summing circuit has a current mirror which appears at Pin 5. This current is proportional to the $\log _{10}$ of the input audio signal. A voltage is dropped across the 100k resistor by the current, and a $0.1 \mu \mathrm{~F}$ capacitor is used to bypass and filter the output signal. The 532
op amp is used as a buffer and meter driver, although a digital voltmeter could replace both the op amp and the meter shown. The rest of the capacitors are used for power supply and amplifier input bypassing.
The RC circuit between Pins 14 and 12 forms a low-pass filter which can be adjusted by changing the value of C1. Raising the capacitance will lower the cut-off frequency and also lower the zero signal output resting voltage (about 0.6 V). Lowering the capacitance value will have the opposite effect with some reduction in dynamic range, but will raise the frequency response. The $2 \mathrm{k} \Omega$ resistor value provides the near-ideal

Figure 1.
inter-stage loss for maximum RSSI linearity. C2 can also be changed. The trade-off here is between output damping and ripple. Most analog and digital metering methods will tend to cancel the effects of small or moderate
ripple voltages through integration, but high ripple voltages should be avoided.

A second op amp is used with an optional second filter. This filter has the advantage of
a low impedance signal source by virtue of the first op amp. Again, a trade-off exists between meter damping and ripple attenuation. If very low ripple and low

Audio decibel level detector with meter driver

damping are both required, a more complex active low-pass filter should be constructed.

Some applications of this circuit might include:

1. Portable acoustic analyzer
2. Microphone tester
3. Audio spectrum analyzer
4. VU meters
5. S-meter for direct conversion radio receiver
6. Audio dynamic range testers
7. Audio analyzers (THD, noise, separation, response, etc.)

ABSTRACT

This paper discusses four high sensitivity receivers and IF (Intermediate Frequency) strips which utilize intermediate frequencies of 10.7 MHz or greater. Each circuit utilizes a low-power VHF mixer and high-performance low-power IF strip. The circuit configurations are

1. 45 or 49 MHz to 10.7 MHz narrowband,
2. 90 MHz to 21.4 MHz narrowband,
3. 100 MHz to 10.7 MHz wideband, and
4. 152.2 MHz to 10.7 MHz narrowband.

Each circuit is presented with an explanation of component selection criteria, (to permit adaptation to other frequencies and bandwidths). Optional configurations for local oscillators and data demodulators are summarized.

INTRODUCTION

Traditionally, the use of 10.7 MHz as an intermediate frequency has been an attractive means to accomplish reasonable image
rejection in VHF/UHF receivers. However, applying significant gain at a high IF has required extensive gain stage isolation to avoid instability and very high current consumption to get adequate amplifier gain bandwidth. By enlightened application of two relatively new low power ICs, Signetics NE602 and NE604A, it is possible to build highly producible IF strips and receivers with input frequencies to several hundred megahertz, IF frequencies of 10.7 or 21.4 MHz , and sensitivity less than $2 \mu \mathrm{~V}$ (in many cases less than $1 \mu \mathrm{~V}$). The Signetics new NE605 combines the function of the

NE602 and the NE604A. All of the circuits described in this paper can also be implemented with the NE605. The NE602 andNE604A were utilized for this paper to permit optimum gain stage isolation and filter location.

THE BASICS

First let's look at why it is relevant to use a 10.7 or 21.4 MHz intermediate frequency. 455 kHz ceramic filters offer good selectivity and small size at a low price. Why use a higher IF? The fundamental premise for the answer to this question is that the receiver architecture is a hetrodyne type as shown in Figure 1.

Figure 1. Basic Hetrodyne Recelver

Figure 2. Effects of Preselection on Images

Figure 3. Dual Conversion

Figure 4. Feedback Paths

Figure 5. NE602 Equivalent Circuit

A pre-selector (bandpass in this case) precedes a mixer and local oscillator. An IF filter follows the mixer. The IF filter is only supposed to pass the difference (or sum) of the local oscillator (LO) frequency and the preselector frequency.

The reality is that there are always two frequencies which can combine with the LO: The pre-selector frequency and the "image" frequency. Figure 2 shows two hypothetical pre-selection curves. Both have 3dB bandwidths of 2 MHz . This type of pre-selection is typical of consumer products such as cordless telephone and FM radio. Figure 2A shows the attenuation of a low side image with 10.7 MHz . Figure 2 B shows the very limited attenuation of the low side 455 kHz image.
If the single conversion architecture of Figure 1 were implemented with a 455 kHz IF, any interfering image would be received almost as well as the desired frequency. For this reason, dual conversion, as shown in Figure 3, has been popular.

In the application of Figure 3, the first IF must be high enough to permit the pre-selector to reject the images of the first mixer and must have a narrow enough bandwidth that the second mixer images and the intermod products due to the first mixer can be attenuated. There's more to it than that, but those are the basics. The multiple conversion hetrodyne works well, but, as Figure 3 suggests, compared to Figure 2 it is more complicated. Why, then, don't we use the approach of Figure 2?

THE PROBLEM

Historically there has been a problem: Stability! Commercially available integrated IF amplifiers have been limited to about 60 dB of gain. Higher discrete gain was possible if each stage was carefully shielded and bypassed, but this can become a nightmare on a production line. With so little IF gain available, in order to receive signals of less than $10 \mu \mathrm{~V}$ it was necessary to add RF gain and this, in turn, meant that the mixer must have good large signal handling capability. The RF gain added expense, the high level mixer added expense, both added to the potential for instabilities, so the multiple conversion started looking good again.

But why is instability such a problem in a high gain high IF strip? There are three basic mechanisms. First, ground and the supply line are potentially feedback mechanisms from stage-to-stage in any amplifier. Second, output pins and external components create fields which radiate back to inputs. Third,

Figure 6. NE604A Equivalent Circuit

Figure 7. Symbolic Circuit
layout capacitances become feedback mechanisms. Figure 4 shows the fields and capacitances symbolically.
If Z_{F} represents the impedance associated with the circuit feedback mechanisms (stray capacitances, inductances and radiated fields), and $Z_{\mathbb{I}}$ is the equivalent input impedance, a divider is created. This divider must have an attenuation factor greater than the gain of the amplifier if the amplifier is to remain stable.

- If gain is increased, the input-to-output isolation factor must be increased.
- As the frequency of the signal or amplifier bandwidth increases, the impedance of the layout capacitance decreases thereby reducing the attenuation factor.

The layout capacitance is only part of the issue. In order for traditional 10.7 MHz IF amplifiers to operate with reasonable gain bandwidth, the amount of current in the
amplifiers needed to be quite high. The CA3089 operates with 25 mA of typical quiescent current. Any currents which are not perfectly differential must be carefully bypassed to ground. The higher the current, the more difficult the challenge. And limiter outputs and quadrature components make excellent field generators which add to the feedback scenario. The higher the current, the larger the field.

High sensitivity applications of low-power RF/IF integrated circuits

Figure 8. Circuit Board Layout

THE SOLUTION

The NE602 is a double balanced mixer suitable for input frequencies in excess of 500 MHz . It draws 2.5 mA of current. The NE604A is an IF strip with over 100 dB of gain and a 25 MHz small signal bandwidth. It draws 3.5 mA of current. The circuits in this paper will demonstrate ways to take advantage of this low current and 75 dB or more of the NE604A gain in receivers and IF strips that would not be possible with traditional integrated circuits. No special tricks are used, only good layout, impedance planning and gain distribution.

THE MIXER

The NE602 is a low power VHF mixer with built-in oscillator. The equivalent circuit is shown in Figure 5. The basic attributes of this mixer include conversion gain to frequencies greater than 500 MHz , a noise figure of 4.6 dB @ 45 MHz , and a built-in oscillator which can be used up to 200 MHz . LO can be injected.

For best performance with any mixer, the interface must be correct. The input impedance of the NE602 is high, typically $3 \mathrm{k} \Omega$ in parallel with 3 pF . This is not an easy
match from 50 . In each of the examples which follow, an equivalent $50: 1.5 \mathrm{k}$ match
was used. This compromise of noise, loss, and match yielded good results. It can be improved upon. Match to crystal filters will require special attention, but will not be given focus in this paper.

This oscillator is a single transistor with an internal emitter follower driving the mixer. For best mixer performance, the LO level needs to be approximately 220 mV RMS at the base of the oscillator transistor (Pin 6). A number of oscillator configurations are presented at the end of this paper. In each of the prototypes for this paper, the LO source was a signal generator. Thus, a 51Ω resistor was used to terminate the signal generator. The LO is then coupled to the mixer through a DC blocking capacitor. The signal generator is set for 0 dBm . The impedance at the LO input (Pin 6) is approximately $20 \mathrm{k} \Omega$. Thus, required power is very low, but 0 dBm across 51Ω does provide the necessary $220 \mathrm{mV} \mathrm{V}_{\text {RMS }}$.

The outputs of the NE602 are loaded with $1.5 \mathrm{k} \Omega$ internal resistors. This makes intorfaco to 455 kHz ceramic filters very easy. Othor filter types will be addressed in the examplos.

THE IF STRIP

The basic functions of the NE604A are ordinary at first glance: Limiting IF, quadrature detector, signal strength meter, and mute switch. However, the performance of each of these blocks is superb. The IF has 100 dB of gain and 25 MHz bandwidth. This feature will be exploited in the examples. The signal strength indicator has a 90 dB log output characteristic with very good linearity. There are two audio outputs with greater than 300 kHz bandwidth (one can be muted greater than 70 dB). The total supply current is typically 3.5 mA . This is the other factor which permits high gain and high IF.
Figure 6 shows an equivalent circuit of the NE604A. Each of the IF amplifiers has a $1.6 \mathrm{k} \Omega$ input impedance. The input impedance is achieved by splitting a DC feedback bias resistor. The input impedance will be manipulated in each of the examples to aid stability.

BASIC CONSIDERATIONS

In each of the circuits presented, a common layout and system methodology is used. The basic circuit is shown symbolically in Figure 7.

At the input, a frequency selective transformation from 50Ω to $1.5 \mathrm{k} \Omega$ permits analysis of the circuit with an RF signal generator. A second generator provides LO. This generator second generator provides LO. This generator is terminated with a 51Ω
resistor. The output of the mixer and the input of the first limiter are both high impedance (1.5Ω nominal). As indicated previously, the input impedance of the limiter must be low enough to attenuate feedback signals. So, the input impedance of the first limiter is modified with an external resistor. In most of the examples, a 430Ω external resistor was used to create a 330Ω input impedance ($430 / / 1.5 \mathrm{k} \Omega$). The first IF filter is thus designed to present $1.5 \mathrm{k} \Omega$ to the mixer and 330Ω to the first limiter.

The same basic treatment was used between the first and second limiters. However, in each of the 10.7 MHz examples, this interstage filter is not an L/C tank; it is a ceramic filter. This will be explained in the first example.
After the second limiter, a conventional quadrature detector demodulates the FM or FSK information from the carrier and a simple low pass filter completes the demodulation process at the audio outputs.

Figure 9. NE602/604A Demonstration Circuit with RF Input of $\mathbf{4 5 M H z}$ and IF of $\mathbf{2 1 . 4 M H z} \pm 7.5 \mathrm{kHz}$

Figure 10. Passband Relationship

As mentioned, a single layout was used for each of the examples. The board artwork is shown in Figure 8. Special attention was given to: (1) Creating a maximum amount of ground plane with connection of the component side and solder side ground at

Figure 11. VHF or UHF 2nd Conversion (Narrow Band)

locations all over the board; (2) careful attention was given to keeping a ground ring around each of the gain stages. The objective was to provide a shunt path to ground for any stray signal which might feed back to an input; (3) leads were kept short and relatively

Figure 12. NE602/604A Demonstration Circuit with RF Input of 90 MHz and IF of $21.4 \mathrm{MHz} \pm 7.5 \mathrm{kHz}$

Figure 13. UHF Second Conversion (Narrow Band) or VHF Single Conversion (Narrow Band)
wide to minimize the potential for them to radiate or pick up stray signals; finally (and very important), (4) RF bypass was done as close as possible to supply pins and inputs, with a good ($10 \mu \mathrm{~F}$) tantalum capacitor completing the system bypass.

EXAMPLE: 45MHZ TO 10.7MHZ NARROWBAND

As a first example, consider conversion from 45 MHz to 10.7 MHz . There are commercially available filters for both frequencies so this is a realistic combination for a second IF in a UHF receiver. This circuit can also be applied to cordless telephone or short range communications at 46 or 49 MHz . The circuit is shown in Figure 9.
The 10.7 MHz filter chosen is a type commonly available for 25 kHz channel spacing. It has a 3 dB bandwidth of 15 kHz and a termination requirement of $3 \mathrm{k} \Omega / 2 \mathrm{pF}$. To present $3 \mathrm{k} \Omega$ to the input side of the filter, a $1.5 \mathrm{k} \Omega$ resistor was used between the NE602 output (which has a $1.5 \mathrm{k} \Omega$ impedance) and the filter. Layout capacitance was close enough to 2 pF that no adjustment was necessary. This series-resistance approach introduces an insertion loss which degrades the sensitivity, but it has the benefit of simplicity.

Figure 14. NE602/604A Demonstration Circuit with RF Input of $\boldsymbol{\sim 1 0 0 M H z}$ and IF of $\mathbf{1 0 . 7 M H z} \pm \mathbf{1 4 0 k H z}$
The secondary side of the crystal filter is terminated with a 10.7 MHz tuned tank. The capacitor of the tank is tapped to create a transformer with the ratio for $3 \mathrm{k}: 330$. With the addition of the 430Ω resistor in parallel with the NE604A $1.6 \mathrm{k} \Omega$ internal input resistor, the correct component of resistive termination is presented to the crystal filter. The inductor of the tuned load is adjusted off resonance enough to provide the 2 pF capacitance needed. (Actual means of adjustment was for best audio during alignment).

If appropriate or necessary for sensitivity, the same type of tuned termination used for the secondary side of the crystal filter can also be used between the NE602 and the filter. If this is desired, the capacitors should be ratioed for $1.5 \mathrm{k}: 3 \mathrm{k}$. Alignment is more complex with tuned termination on both sides of the filter. This approach is demonstrated in the fourth example.

A ceramic filter is used between the first and second limiters. It is directly connected between the output of the first limiter and the input of the second limiter. Ceramic filters act much like ceramic capacitors, so direct connection between two circuit nodes with different DC levels is acceptable. At the input to the second limiter, the impedance is again reduced by the addition of a 430Ω external

Figure 16. NE602/604A Demonstration Circuit with RF Input of 152.2 MHz and IF of $10.7 \mathrm{MHz} \pm 7.5 \mathrm{kHz}$
resistor in parallel with the internal $1.6 \mathrm{k} \Omega$ input load resistor. This presents the 330Ω termination to the ceramic filter which the manufacturers recommend.

On the input side of the ceramic filter, no attempt was made to create a match. The output impedance of the first limiter is nominally $1 \mathrm{k} \Omega$. Crystal filters are tremendously sensitive to correct match. Ceramic filters are relatively forgiving. A review of the manufacturers' data shows that the attenuation factor in the passband is affected with improper match, but the degree of change is small and the passband stays centered. Since the principal selectivity for this application is from the crystal filter at the input of the first limiter, the interstage ceramic filter only has to suppress wideband noise. The first filter's passband is right in the center of the ceramic filter passband. (The crystal filter passband is less than 10% of the ceramic filter passband). This passband relationship is illustrated in Figure 10.
After the second limiter, demodulation is accomplished in the quadrature detector. Quadrature criteria is not the topic of this paper, but it is noteworthy that the choice of loaded Q will affect performance. The NE604A is specified at 455 kHz using a quadrature capacitor of 10 pF and a tuning capacitor of 180pF. (180pF gives a loaded Q of 20 at 455 kHz). A careful look at the

Figure 17. VHF Single Conversion (Narrow Band)
quadrature equations (Ref 3.) suggests that at 10.7 MHz a value of about 1 pF should be substituted for the 10 pF at 455 kHz .
The performance of this circuit is presented in Figure 11. The -12dB SINAD (ratio of Signal to Noise And Distortion) was achieved with a $0.6 \mu \mathrm{~V}$ input.

EXAMPLE: 90MHZ TO 21.4MHZ NARROWBAND

This second example, like the first, used two frequencies which could represent the intermediate frequencies of a UHF receiver. This circuit can also be applied to VHF single conversion receivers if the sensitivity is

High sensitivity applications of low-power RF/IF integrated circuits

appropriate. The circuit is shown in Figure 12.

Most of the fundamentals are the same as explained in the first example. The 21.4 MHz crystal filter has a $1.5 \mathrm{k} \Omega / 2 \mathrm{pF}$ termination requirement so direct connection to the output of the NE602 is possible. With strays there is probably more than 2 pF in this circuit, but the performance is good nonetheless. The output of the crystal filter is terminated with a tuned impedance-step-down transformer as in the previous example. Interstage filtering is accomplished with a $1 \mathrm{k} \Omega: 330$ step-down ratio. (Remember, the output of the first limiter is $1 \mathrm{k} \Omega$ and a 430Ω resistor has been added to make the second limiter input 330Ω). A DC blocking capacitor is needed from the output of the first limiter. The board was not laid out for an interstage transformer, so an "XACTO" knife was used to make some minor mods. Figure 13 shows the performance. The +12 dB SINAD was with $1.6 \mu \mathrm{~V}$ input.

EXAMPLE: 100MHZ TO 10.7MHZ WIDEBAND

This example represents three possible applications: (1) low cost, sensitive FM broadcast receivers, (2) SCA (Subsidiary Communications Authorization) receivers and (3) data receivers. The circuit schematic is shown in Figure 14. While this example has the greatest diversity of application, it is also the simplest. Two 10.7 MHz ceramic filters were used. The first was directly connected to the output of the NE602. The second was directly connected to the output of the first IF limiter. The secondary sides of both filters were terminated with 330Ω as in the two previous examples. While the filter bandpass skew of this simple single conversion receiver might not be tolerable in some applications, to a first order the results are excellent. (Please note that sensitivity is measured at +20 dB in this wideband example.) Performance is illustrated in Figure 15. +20 dB SINAD was measured with $1.8 \mu \mathrm{~V}$ input.

EXAMPLE: 152.2MHZ TO 10.7MHZ NARROWBAND

In this example (see Figure 16) a simple, effective, and relatively sensitive single conversion VHF receiver has been implemented. All of the circuit philosophy has

Figure 18. Oscillator Configurations
been described in previous examples. In this circuit, tuned-transformed termination was used on the input and output sides of the crystal filter. Performance is shown in Figure 17. The +12 dB SINAD sensitivity was $0.9 \mu \mathrm{~V}$.

OSCILLATORS

The NE602 contains an oscillator transistor which can be used to frequencies greater than 200 MHz . Some of the possible configurations are shown in Figures 18 and 19.

L/C

When using a synthesizer, the LO must be externally buffered. Perhaps the simplest approach is an emitter follower with the base connected to Pin 7 of the NE602. The use of a dual-gate MOSFET will improve performance because it presents a fairly constant capacitance at its gate and because it has very high reverse isolation.

CRYSTAL

With both of the Colpitts crystal configurations, the load capacitance must be specified. In the overtone mode, this can become a sensitive issue since the capacitance from the emitter to ground is actually the equivalent capacitive reactance
of the harmonic selection network. The Butler oscillator uses an overtone crystal specified for series mode operation (no parallel capacitance). It may require an extra inductor (L_{0}) to null out C_{0} of the crystal, but otherwise is fairly easy to implement (see references).
The oscillator transistor is biased with only $220 \mu \mathrm{~A}$. In order to assure oscillation in some configurations, it may be necessary to increase transconductance with an external resistor from the emitter to ground. $10 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$ are acceptable values. Too small a resistance can upset DC bias (see references).

DATA DEMODULATION

It is possible to change any of the examples from an audio receiver to an amplitude shift keyed (ASK) or frequency shift keyed (FSK) receiver or both with the addition of an external op amp(s) or comparator(s). A simple example is shown in Figure 20. ASK decoding is accomplished by applying a comparator across the received signal strength indicator (RSSI). The RSSI will track IF level down to below the limits of the demodulator (-120 dBm RF input in most of the examples). When an in-band signal is
above the comparator threshold, the output logic level will change.
FSK demodulation takes advantage of the two audio outputs of the NE604A. Each is a

PNP current source type output with 180° phase relationship. With no signal present, the quad tank tuned for the center of the IF
passband, and both outputs loaded with the same value of capacitance, if a signal is received which is frequency shifted from the

*PERMITS IMPEDANCE MATCH OF NE602 OUTPUT OF $1.8 \mathrm{k} / 8 \mathrm{pF}$ TO 3.0k FILTER IMPEDANCE ** CHOOSE FOR IMPEDANCE MATCH TO

Figure 19. Typical Varactor Tuned Application

IF passband, and both outputs loaded with the same value of capacitance, if a signal is received which is frequency shifted from the IF center, one output voltage will increase and the other will decrease by a corresponding absolute value. Thus, if a
comparator is differentially connected across the two outputs, a frequency shift in one direction will drive the comparator output to one supply rail, and a frequency shift in the opposite direction will cause the comparator
output to swing to the opposite rail. Using this technique, and UC filtering for a wide IF bandwidth, NRZ data at rates greater than 4 Mb have been processed with the new NE605.

Figure 20. Basic NE602/604A Data Receiver

SUMMARY

The NE602, NE604A and NE605 provide the RF system designer with the opportunity for excellent receiver or IF system sensitivity with very simple circuitry. IFs at $455 \mathrm{kHz}, 10.7 \mathrm{MHz}$ and 21.4 MHz with 75 to 90 dB gain are possible without special shielding. The flexible configuration of the built-in oscillator of the NE602/605 add to ease of implementation. Either data or audio can be recovered from the NE604A/605 outputs.

REFERENCES

1) Anderson, D.: "Low Power ICs for RF Data Communications", Machine Design , pp 126-128, July 23, 1987.
2) Krauss, Raab, Bastian: Solid State Radio Engineering, p. 311, Wiley, 1980.
3) Matthys, R.: "Survey of VHF Crystal Oscillator Circuits," RF Technology Expo Proceedings, pp 371-382, February, 1987.
4) Signetics: "NE/SA604A High Performance Low Power FM IF System", Linear Data and Applications Manual, Signetics, 1987.
5) Signetics; "NE/SA602 Double Balanced Mixer and Oscillator", Linear Data and Applications Manual, Signetics, 1985.
6) Signetics: "AN1982-Applying the Oscillator of the NE602 in Low Power Mixer Applications", Linear Data and Applications Manual, Signetics, 1985.

DESCRIPTION

The NE/SA605 is a high performance monolithic low-power FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator (RSSI), and voltage regulator. The NE/SA605 combines the functions of Signetics' NE602 and NE604A, but features a higher mixer input intercept point, higher IF bandwidth (25 MHz) and temperature compensated RSSI and limiters permitting higher performance application. The NE/SA605 is available in 20-lead dual-in-line plastic, 20 -lead SOL (surface-mounted miniature package) and 20-lead SSOP (shrink small outline package).

The NE/SA605 and NE/SA615 are functionally the same device types. The difference between the two devices lies in the guaranteed specifications. The NE/SA615 has a higher I $\mathrm{Icc}_{\text {, }}$ lower input third order intercept point, lower conversion mixer gain, lower limiter gain, lower AM rejection, lower SINAD, higher THD, and higher RSSI error than the NE/SA605. Both the NE/SA605 and NE/SA615 devices will meet the EIA specifications for AMPS and TACS cellular radio applications.
For additional technical information please refer to application notes AN1994, 1995 and 1996, which include example application diagrams, a complete overview of the product, and artwork for reference.

FEATURES

- Low power consumption: 5.7 mA typical at 6 V
- Mixer input to $>500 \mathrm{MHz}$
- Mixer conversion power gain of 13 dB at 45 MHz
- Mixer noise figure of 4.6 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator to 1 GHz local oscillator can be injected)
- 102dB of IF Amp/Limiter gain
- 25 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Two audio outputs - muted and unmuted
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.22 \mu \mathrm{~V}$ into 50Ω matching network for 12 dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
- SA605 meets cellular radio specifications
- ESD hardened

PIN CONFIGURATION

APPLICATIONS

- Cellular radio FM IF
- High performance communications receivers
- Single conversion VHF/UHF receivers
- SCA receivers
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Wideband low current amplification

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE605N	0408 B
20-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA605N	0408 B
20-Pin Plastic Small Outline Large (SOL) package	0 to $+70^{\circ} \mathrm{C}$	NE605D	0172D
20-Pin Plastic Small Outline Large (SOL) package	-40 to $+85^{\circ} \mathrm{C}$	SA605D	0172 D
20-Pin Plastic Shrink Small Outline Package (SSOP)	0 to $+70^{\circ} \mathrm{C}$	NE605DK	1563
20-Pin Plastic Shrink Small Outline Package (SSOP)	-40 to $+85^{\circ} \mathrm{C}$	SA605DK	1563

High performance low power mixer FM IF system

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$V_{C C}$	Single supply voltage	9	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range NE605	0 to +70	${ }^{\circ} \mathrm{C}$
	SA605	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	$\begin{array}{ll}\text { Thermal impedance } & \\ & \text { D package } \\ & \text { N package } \\ & \text { SSOP package }\end{array}$	$\begin{gathered} 90 \\ 75 \\ 117 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS
$V_{C C}=+6 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE605			SA605			
			MIN	TYP	MAX	MIN	TYP	MAX	
V cc	Power supply voltage range		4.5		8.0	4.5		8.0	V
Icc	DC current drain		5.1	5.7	6.5	4.55	5.7	6.55	mA
	Mute switch input threshold (ON)		1.7			1.7			V
	(OFF)				1.0			1.0	V

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=5.1 \mathrm{k}$; RF level $=-45 \mathrm{dBm} ; F M$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C -message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate pefformance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE605			SA605			
			MIN	TYP	MAX	MIN	TYP	MAX	
Mixer/Osc section (ext LO $=300 \mathrm{mV}$)									
$\mathrm{fin}^{\mathrm{IN}}$	Input signal frequency			500			500		MHz
fosc	Crystal oscillator frequency			150			150		MHz
	Noise figure at 45 MHz			5.0			5.0		dB
	Third-order input intercept point	$\mathrm{f} 1=45.0 ; \mathrm{f} 2=45.06 \mathrm{MHz}$		-10			-10		dBm
	Conversion power gain	Matched 14.5dBV step-up	10.5	13	14.5	10	13	15	dB
		50Ω source		-1.7			-1.7		dB
	RF input resistance	Single-ended input	3.5	4.7		3.0	4.7		$\mathrm{k} \Omega$
	RF input capacitance			3.5	4.0		3.5	4.0	pF
	Mixer output resistance	(Pin 20)	1.3	1.5		1.25	1.5		$\mathrm{k} \Omega$
IF section									
	IF amp gain	50Ω source		39.7			39.7		dB
	Limiter gain	50Ω source		62.5			62.5		dB
	Input limiting -3dB, $\mathrm{R}_{17}=5.1 \mathrm{k}$	Test at Pin 18		-113			-113		dBm
	AM rejection	80\% AM 1kHz	30	34	42	29	34	43	dB
	Audio level, $\mathrm{R}_{10}=100 \mathrm{k}$	15 nF de-emphasis	110	150	250	80	150	260	$\mathrm{mV}_{\text {RMS }}$
	$\begin{aligned} & \text { Unmuted audio level, } \mathrm{R}_{11}= \\ & 100 \mathrm{k} \end{aligned}$	150pF de-emphasis		480			480		mV
	SINAD sensitivity	RF level - 118 dB		16			16		dB
THD	Total harmonic distortion		-35	-42		-34	-42		dB
S/N	Signal-to-noise ratio	No modulation for noise		73			73		dB
	IF RSSI output, $\mathrm{R}_{9}=100 \mathrm{k} \mathbf{\Omega}^{1}$	IF level $=-118 \mathrm{dBm}$	0	160	550	0	160	650	mV
		\| 1 level $=-68 \mathrm{dBm}$	2.0	2.5	3.0	1.9	2.5	3.1	V
		IF level $=-18 \mathrm{dBm}$	4.1	4.8	5.5	4.0	4.8	5.6	V
	RSSI range	$\mathrm{R}_{9}=100 \mathrm{k} \Omega$ Pin 16		90			90		dB
	RSSI accuracy	$\mathrm{R}_{9}=100 \mathrm{k} \Omega$ Pin 16		± 1.5			± 1.5		dB
	IF input impedance		1.40	1.6		1.40	1.6		$\mathrm{k} \Omega$
	IF output impedance		0.85	1.0		0.85	1.0		$\mathrm{k} \Omega$
	Limiter input impedance		1.40	1.6		1.40	1.6		$\mathrm{k} \Omega$
	Unmuted audio output resistance			58			58		k Ω
	Muted audio output resistance			58			58		k Ω
RFIF section (int LO)									
	Unmuted audio level	$\begin{aligned} & 4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}, \text { RF level }= \\ & -27 \mathrm{dBm} \end{aligned}$		450			450		$\mathrm{mV}_{\text {RMS }}$
	System RSSI output	$\begin{aligned} & 4.5 \mathrm{~V}=\mathrm{V}_{\text {cc }}, \text { RF level }= \\ & -27 \mathrm{dBm} \end{aligned}$		4.3			4.3		V

NOTE:

1. The generator source impedance is 50Ω, but the NE/SA605 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA605 input (Pin 8) which is about 21 dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The NE/SA605 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz . The bandwidth of the IF amplifier is about 40 MHz , with $39.7 \mathrm{~dB}(\mathrm{v})$ of gain from a 50Ω source. The bandwidth of the limiter is about 28 MHz with about $62.5 \mathrm{~dB}(v)$ of gain from a 50Ω source. However, the gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.

The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 5 dB , conversion gain of 13 dB , and input third-order intercept of -10 dBm . The oscillator will operate in excess of 1 GHz in L C tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are
recommended for xtal configurations up to 150 MHz .
The output of the mixer is internally loaded with a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor can be added between the first IF output (Pin 16) and the interstage network.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network.

This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
Overall, the IF section has a gain of 90 dB . For operation at intermediate frequencies greater than 455 kHz , special care must be given to layout, termination, and interstage loss to avoid instability.

The demodulated output of the quadrature detector is available at two pins, one continuous and one with a mute switch. Signal attenuation with the mute activated is greater than 60 dB . The mute input is very high impedance and is compatible with CMOS or TTL levels.
A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone.
NOTE: $d B(v)=20 \log V_{\text {OUT }} V_{I N}$

Automatic Test Circuit Component List

C1	47 pF NPO Ceramic
C2	180 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22 pF NPO Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$6.8 \mu \mathrm{~F}$ Tantalum (minimum)
C11	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C12	$15 \mathrm{nF}_{ \pm} \mathbf{1 0 \%}$ Ceramic
C13	$150 \mathrm{pF} \pm 2 \%$ N1500 Ceramic
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	$10 \mathrm{pF} N P O$ Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C26	$390 \mathrm{pF} \pm 10 \%$ Monolithic Ceramic
FIt 1	Ceramic Filter Murata SFG455A3 or equiv
FIt 2	Ceramic Filter Murata SFG455A3 or equiv
IFT 1	$455 \mathrm{kHz} 270 \mu \mathrm{H}$ TOKO \#303LN-1129
L1	300 nH TOKO \#5CB-1055Z
L2	0.8 HH TOKO 292CNS-T1038Z
X1	$44.545 \mathrm{MHz} \mathrm{Crystal} \mathrm{ICM4712701}$
R9	$100 \mathrm{k} \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film
R17	$5.1 \mathrm{k} \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
R10	$100 \mathrm{k} \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film (optional)
R11	$100 \mathrm{k} \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film (optional)

* NOTE: This value can be reduced when a battery is the power source.

Figure 1. NE/SA605 45MHz Test Circuit (Relays as shown)

Application Component List

C1	47pF NPO Ceramic
C2	180 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22 pF NPO Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$6.8 \mu \mathrm{~F}$ Tantalum (minimum)
C11	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C12	$15 \mathrm{nF}_{ \pm 10} \%$ Ceramic
C13	$150 \mathrm{pF} \pm 2 \%$ N1500 Ceramic
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	$10 \mathrm{pF} \mathrm{NPO}^{2}$ Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

* NOTE: This value can be reduced when a battery is the power source.

Figure 2. NE/SA605 45MHz Application Circuit

Figure 3. NE/SA605 Application Circuit Test Set Up
NOTES:

1. C-message: The C-message filter has a peak gain of 100 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer.
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.22 \mu \mathrm{~V}$ or -120 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 250 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A 10-15 $\mu \mathrm{F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by $2-3 \mathrm{~dB}$.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

Figure 4. NE605 Application Board at $25^{\circ} \mathrm{C}$

DESCRIPTION

The NE/SA615 is a high performance monolithic low-power FM IF sysiem incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator (RSSI), and voltage regulator. The NE/SA615 combines the functions of Signetics' NE602 and NE604A, but features a higher mixer input intercept point, higher IF bandwidth (25 MHz) and temperature compensated RSSI and limiters permitting higher performance application. The NE/SA615 is available in 20 -lead dual-in-line plastic, 20 -lead SOL (surface-mounted miniature package) and 20 -lead SSOP (shrink small outline package).
The NE/SA605 and NE/SA615 are functionally the same device types. The difference between the two devices lies in the guaranteed specifications. The NE/SA615 has a higher I_{cc}, lower input third order intercept point, lower conversion mixer gain, lower limiter gain, lower AM rejection, lower SINAD, higher THD, and higher RSSI error than the NE/SA615. Both the NE/SA605 and NE/SA615 devices will meet the EIA specifications for AMPS and TACS cellular radio applications.
For additional technical information please refer to application notes AN1994, 1995 and 1996, which include example application diagrams, a complete overview of the product, and artwork for reference.

FEATURES

- Low power consumption: 5.7mA typical at 6V
- Mixer input to $>500 \mathrm{MHz}$
- Mixer conversion power gain of 13 dB at 45 MHz
- Mixer noise figure of 4.6 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator to 1 GHz local oscillator can be injected)
- 102dB of IF Amp/Limiter gain
- 25 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Two audio outputs - muted and unmuted
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.22 \mu \mathrm{~V}$ into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
- SA615 meets cellular radio specifications
- ESD hardened

PIN CONFIGURATION

NOTE:
See back page for package dimensions

APPLICATIONS

- Cellular radio FM IF
- High performance communications receivers
- Single conversion VHF/UHF receivers
- SCA receivers
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Wideband low current amplification

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE615N	0408 B
20-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA615N	0408 B
20-Pin Plastic Small Outline Large (SOL) package	0 to $+70^{\circ} \mathrm{C}$	NE615D	0175 D
20-Pin Plastic Small Outline Large (SOL) package	-40 to $+85^{\circ} \mathrm{C}$	SA615D	0175 D
20-Pin Plastic Shrink Small Outline Package (SSOP)	0 to $+70^{\circ} \mathrm{C}$	NE615DK	1563
20-Pin Plastic Shrink Small Outline Package (SSOP)	-40 to $+85^{\circ} \mathrm{C}$	SA615DK	1563

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{Cc}	Single supply voltage	9	V
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range NE615	0 to +70	${ }^{\circ} \mathrm{C}$
	SA615	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	 Thermal impedance D package N package SSOP package	$\begin{gathered} 90 \\ 75 \\ 117 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS
$V_{C C}=+6 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA615			
			MIN	TYP	MAX	
V_{cc}	Power supply voltage range		4.5		8.0	V
Icc	DC current drain			5.7	7.4	mA
	Mute switch input threshold (ON) (OFF)		1.7		1.0	v

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=5.1 \mathrm{k} ; \mathrm{RF}$ level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C -message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA615			
			MIN	TYP	MAX	
Mixer/Osc section (ext LO $=\mathbf{3 0 0 m V}$)						
$\mathrm{fin}^{\text {N }}$	Input signal frequency	*		500		MHz
fosc	Crystal oscillator frequency			150		MHz
	Noise figure at 45 MHz			5.0		dB
	Third-order input intercept point	$\mathrm{f1}=45.00 ; \mathrm{f} 2=45.06 \mathrm{MHz}$		-12		dBm
	Conversion power gain	Matched 14.5dBV step-up 50Ω source	8.0	13		dB
				-1.7		dB
	RF input resistance	Single-ended input	3.0	4.7		$\mathrm{k} \Omega$
	RF input capacitance			3.5	4.0	pF
	Mixer output resistance	(Pin 20)	1.25	1.50		$\mathrm{k} \Omega$
IF section						
	IF amp gain	50Ω source		39.7		dB
	Limiter gain	50Ω source		62.5		dB
	Input limiting -3dB, $\mathrm{R}_{17}=5.1 \mathrm{k}$	Test at Pin 18		-109		dBm
	AM rejection	80\% AM 1kHz	25	33	43	dB
	Audio level, $\mathrm{R}_{10}=100 \mathrm{k}$	15 nF de-emphasis	60	150	260	mV RMS
	Unmuted audio level, $\mathrm{R}_{11}=100 \mathrm{k}$	150 pF de-emphasis		530		mV
	SINAD sensitivity	RF level -118dB		12		dB
THD	Total harmonic distortion		-30	-42		dB
S/N	Signal-to-noise ratio	No modulation for noise		68		dB
	IF RSSI output, $\mathrm{R}_{9}=100 \mathrm{k} \mathbf{\Omega}^{1}$	IF level $=-118 \mathrm{dBm}$	0	160	800	mV
		IF level $=-68 \mathrm{dBm}$	1.7	2.5	3.3	V
		IF level $=-18 \mathrm{dBm}$	3.6	4.8	5.8	V
-	RSSI range	$\mathrm{R}_{9}=100 \mathrm{k} \Omega$ Pin 16		80		dB
	RSSI accuracy	$\mathrm{R}_{9}=100 \mathrm{k} \Omega$ Pin 16		± 2		dB
	IF input impedance		1.40	1.6		k Ω
	IF output impedance		0.85	1.0		k Ω
	Limiter intput impedance		1.40	1.6		$\mathrm{k} \Omega$
	Unmuted audio output resistance			58		$\mathrm{k} \Omega$
	Muted audio output resistance			58		k Ω
RF/IF section (int LO)						
\cdots	Unmuted audio level	$4.5 \mathrm{~V}=\mathrm{V}_{\text {CC }}, \mathrm{RF}$ level $=-27 \mathrm{dBm}$		450		$\mathrm{mV}_{\text {RMS }}$
	System RSSI output	$4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}, \mathrm{RF}$ level $=-27 \mathrm{dBm}$		4.3		V

NOTE:

1. The generator source impedance is 50Ω, but the NE/SA605 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA605 input (Pin 8) which is about 21dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The NE/SA615 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz . The bandwidth of the IF amplifier is about 40 MHz , with $39.7 \mathrm{~dB}(\mathrm{v})$ of gain from a 50Ω source. The bandwidth of the limiter is about 28 MHz with about
$62.5 \mathrm{~dB}(v)$ of gain from a 50Ω source. However, the gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.

The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 5 dB , conversion gain of 13 dB , and input third-order intercept of -10 dBm . The oscillator will operate in excess of 1 GHz in L / C tank configurations. Hartley or Colpitts circuits can be used up to

High performance low power mixer FM IF system

100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .
The output of the mixer is internally loaded with a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor can be added between the
first IF output (Pin 16) and the interstage network.

The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network. This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
Overall, the IF section has a gain of 90 dB . For operation at intermediate frequencies greater than 455 kHz , special care must be given to layout, termination, and interstage loss to avoid instability.

The demodulated output of the quadrature detector is available at two pins, one continuous and one with a mute switch. Signal attenuation with the mute activated is greater than 60 dB . The mute input is very high impedance and is compatible with CMOS or TTL levels.
A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone.

NOTE: $\mathrm{dB}(\mathrm{v})=20 \log \mathrm{~V}_{\text {OUT }} N_{\text {IN }}$

*NOTE: This value can be reduced when a battery lis the power source.
Figure 1. NE/SA615 45MHz Test Circuit (Relays as shown)

NE/SA615N
Application Component List

C1	47pF NPO Ceramic
C2	180pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22pF NPO Ceramic
C7	1nF Ceramic
C8	10.0pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	6.84F Tantalum (minimum) *
C11	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C12	$15 \mathrm{nF} \pm 10 \%$ Ceramic
C13	150pF $\pm 2 \%$ N1500 Ceramic
C14	100nF $\pm 10 \%$ Monolithic Ceramic
C15	10pF NPO Ceramic
C17	100nF $\pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF}_{ \pm} 10 \%$ Monolithic Ceramic

C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C26	$390 \mathrm{pF} \pm 10 \%$ Monolithic Ceramic
FIt 1	Ceramic Filter Murata SFG455A3 or equiv
Fit 2	Ceramic Filter Murata SFG455A3 or equiv
IFT 1	$455 \mathrm{kHz} 270 \mu \mathrm{H}$ TOKO \#303LN -1129
L1	300 nH TOKO \#5CB-1055Z
L2	0.8 HH TOKO $292 \mathrm{CNS}-\mathrm{T1038Z}$
X1	44.545 MHz Crystal ICM4712701
R9	$100 \mathrm{k} \pm 1 \% 1 / 4 W$ Metal Film
R17	$5.1 \mathrm{k} \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
R10	$100 \mathrm{k} \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film (optional)
R11	$100 \mathrm{k} \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film (optional)

*NOTE: This value can be reduced when a battery is the power source.

Figure 2. NE/SA615 45MHz Application Circuit

Figure 3. NE/SA615 Application Circuit Test Set Up

NOTES:

1. C-message: The C-message filter has a peak gain of 100 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer.
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.22 \mu \mathrm{~V}$ or -120 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 250 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A 10-15 F or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by 2-3dB.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

Figure 4. NE615 Application Board at $25^{\circ} \mathrm{C}$

Reviewing key areas when designing with the NE605

Author: Alvin K. Wong

INTRODUCTION

This application note addresses key information that is needed when designing with the NE605. Since the NE602 and the NE604 are closely related to the NE605, a brief overview of these chips will be helpful. Additionally, this application note will divide the NE605 into four main blocks where a brief thievily of operation, imporiant parameters, specifications, tables and graphs of performance will be given. A question \& answer section is included at the end. Below is an outline of this application note:

I. BACKGROUND

- History of the NE605
- Related app. notes

II. OVERVIEW OF THE NE605

- Mixer Section

RF section
Local osc. section
Output of mixer
Choosing the IF frequency
Performance graphs of mixer

- IF Section

IF amplifier
IF limiter
Function of IF section
Important parameters of IF section

1. Limiting
2. AM rejection
3. AM to PM conversion
4. Interstage loss

IF noise figure
Performance graphs of IF section

- Demodulator Section
- Output Section

Audio and unmuted audio
RSSI output
Performance graphs of output section

III.Question \& Answers

I. BACKGROUND

History of the NE605

Before the NE605 was made, the NE602 (double-balanced mixer and oscillator) and the NE604 (FM IF system) existed. The combination of these two chips make up a high performance low cost receiver. Soon
after the NE605 was created to be a one chip solution, using a newer manufacturing process and design. Since the newer process and design in the NE605 proved to be better in performance and reliability, it was decided to make the NE602 and the NE604 under this new process. The NE602A and the NE604A were created. To assist the cost-conscious customer, Signetics also offered an inexpensive line of the same RF products: the NE612, NE614, and NE615.
Because the newer process and design proved to be better in performance and reliability, the older chips are going to be discontinued. Therefore, only the NE602A, NE612A, NE604A, NE614A, NE605 and NE615 will be available.
Figure 1 shows a brief summary of the RF chips mentioned above. Under the newer process, minor changes were made to improve the performance. A designer, converting from the NE602 to the NE602A, should have no problem with a direct switch. However, switching from the NE604 to the NE604A, might require more attention. This will depend on how good the original design was in the system. In the "Questions \& Answers" section, the NE604 and NE604A are discussed in greater detail. This will help the designer, who used the NE604 in their original design, to switch to the " A " version. In general, a direct switch to the NE604A is simple.

Related Application Notes

There have been many application notes written on the NE602 and NE604A. Since the combination of those parts is very similar to the NE605, many of the ideas and applications still apply. In addition, many of the topics discussed here will also apply to the NE602A and NE604A.
Table 1 (see back of app note) shows the application notes available to the designer. They can be found in either the Signetics Linear Data Manual, Volume 1, or the Signetics RF Communications Handbook. Your local PhilipsComponents-Signetics sales representative can provide you with copies of these publications, or you can contact Signetics Publication Services.

NE/SAGOXX FAMILY GENEALOGY

Figure 1. Overview of Selected RF Chips

II. OVERVIEW OF THE NE605

In Figure 2, the NE605 is broken up into four main areas; the mixer section, the IF section, the demodulator section and the output section. The information contained in each of the four areas focuses on important data to assist you with the use of the NE605 in any receiver application.

Mixer Section

There are three areas of interest that should be addressed when working with the mixer section. The RF signal, LO signal and the output. The function of the mixer is to give the sum/difference of the RF and LO frequencies to get an IF frequency out. This mixing of frequencies is done by a Gilbert Cell four quadrant multiplier. The Gilbert Cell is a differential amplifier (Pins 1 and 2) which drives a balanced switching cell.

The RF input impedance of the mixer plays a vital role in determining the values of the matching network. Figure 3 shows the RF input impedance over a range of frequency. From this information, it can be determined that matching 50Ω at 45 MHz requires matching to a $4.5 \mathrm{k} \Omega$ resistor in parallel with a 2.5 pF capacitor. An equivalent model can be seen in Figure 4 with its component values given for selected frequencies. Since there are many questions from the designer on how to match the RF input, an example is given below.

MARKER 1:

Figure 3. Smith Chart of NE605's RF Input Impedance (Pin 1 or 2)

RF Section of Mixer
The mixer has two RF input pins (Pin 1 and
2), allowing the user to choose between a
balanced or unbalanced RF matching network. Table 2 (see back of app note) shows the advantages and disadvantages for
either type of matching. Obviously, the better the matching network, the better the sensitivity of the receiver.

Figure 4. Equivalent Model of RF Input Impedance

Example: Using a tapped-C network, match a 50Ω source to the RF input of the NE605 at 45 MHz . (refer to Figure 5)

Step 1. Choose an inductor value and its " Q " $L=0.22 \mu H Q_{P}=50$ (specified by manufacturer)
Step 2. Find the reactance of the inductor

$$
\begin{aligned}
X_{P} & =2 \pi \mathrm{FL} \\
& =2 \pi(45 \mathrm{MHz})(0.22 \mu \mathrm{H}) \\
\therefore \quad X_{P} & =62.2 \Omega
\end{aligned}
$$

Step 3. Then,

$$
\begin{aligned}
R_{P} & =Q_{P} X_{P} \\
& =(50)(62.2)
\end{aligned}
$$

$\therefore \mathrm{R}_{\mathrm{P}}=3.11 \mathrm{k} \Omega$ (the inductance resistance)

Step 4. $\quad Q=R_{\text {TOTAL }} / X_{P}$
$=\left(R_{S}{ }^{\prime} / / R_{L} / / R_{P}\right) / X_{P}$ where $\mathrm{R}_{\mathrm{S}}{ }^{\prime}=\mathrm{R}_{\mathrm{L}}$
$=4.5 \mathrm{k} / / 4.5 \mathrm{k} / / 3.11 \mathrm{k} / 62.2$
$=21.39$
$\therefore Q \cong 21$ (the Q of the matching network)
where:
$\mathrm{R}_{\mathrm{S}}=$ source resistance:
$R_{L}=$ load resistance;
$\mathrm{R}_{\mathrm{S}^{\prime}}=$ what the source resistance
should look like to match R_{L};
$R_{P}=$ inductance resistance
Step 5.

$$
\frac{C 1}{C 2}=\sqrt{\frac{R_{S^{\prime}}}{R_{S}}}-1=8.6
$$

Step 6.

$$
\begin{aligned}
C_{T} & =\frac{1}{X_{P} \omega}=\frac{1}{(62.2) 2 \pi 45 \mathrm{MHz}} \\
& =56.86 \mathrm{pF}
\end{aligned}
$$

Śtep 7.
using $C_{T}=\frac{C 1 C 2}{C 1+C 2}$
where $C_{T}=56.86 \mathrm{pF}, \frac{C 1}{C 2}=8.6$

$$
\begin{aligned}
c_{T} & =\frac{c 1}{\frac{C 1}{C 2}+1} \\
\therefore c_{1} & =c_{T}\left(\frac{c 1}{c 2}+1\right) \\
\text { and } C_{2} & =\frac{c 1}{8.6}
\end{aligned}
$$

thus...
$C 1=539 \mathrm{pF}$
$C 2=64 p F$
$L=0.22 \mu \mathrm{H}$ (value started with)
Step 8. Frequency check
$\omega=\frac{1}{\sqrt{L C}}$
$2 \pi F=\frac{1}{\sqrt{L C}}$
$F=45 \mathrm{MHz}$ (...so far so good)
Step 9. Taking care of the 2.5 pF capacitor that is present at the RF input at 45 MHz
$\frac{C 2_{A}}{C 1_{A}}=\frac{64 p F}{540 p F}$
Eq. 1.
$C_{T N}=\frac{C 1_{A} C 2_{A}}{C 1_{A}+C 2_{A}}$
Eq. 2.
where $\mathrm{C}_{\mathrm{TN}}=\mathrm{C}_{\mathrm{T}}-2.5 \mathrm{pF}$
(recall value of C_{T} from Step 6.)
Making use of Equations 1 and 2, the new values of C1 and C2 are:
$C 1_{A}=524 \mathrm{pF}$
$C 2_{\mathrm{A}}=60.6 \mathrm{pF}$
[NOTE: At this frequency the 2.5 pF capacitor could probably be ignored since its value at 45 MHz has little effect on C1 and C2.]

Step 10. Checking the bandwidth

$$
\begin{aligned}
& Q=\frac{F}{B W} \\
& B W=F U-F_{L} \\
& B W=\text { bandwidth } \\
& F_{U}=\text { upper } 3 \mathrm{~dB} \text { frequency } \\
& F_{L}=\text { lower } 3 \mathrm{~dB} \text { frequency }
\end{aligned}
$$

Using the ahove formulas results in
$\mathrm{F}_{\mathrm{u}}=46 \mathrm{MHz}$
$\mathrm{F}_{\mathrm{L}}=44 \mathrm{MHz}$
$\mathrm{BW}=2 \mathrm{MHz}$
The above shows the calculations for a single-ended match to the NE605. For a balanced matching network, a transformer can be used. The same type of calculations will still apply once the input impedance of the NE605 is converted to the primary side of the transformer (see Figure 6). But before we transform the input impedance to the primary side, we must first find the new input impedance of the NE605 for a balanced configuration. Because we have a balanced input, the $4.5 \mathrm{k} \Omega$ transforms to $9 \mathrm{k} \Omega(4.5 \mathrm{k}+$ $4.5 \mathrm{k}=9 \mathrm{k}$) while the capacitor changes from 2.5 pF to 1.3 pF (2.5 pF in series with 2.5 pF is 1.3 pF). Notice that the resistor values double while the capacitor values are halved. Now the $9 \mathrm{k} \Omega$ resistor in parallel with the 1.3 pF capacitor must be transformed to the primary side of the transformer (see Figure 6).

Procedure:

Step 1. $\frac{Z_{P}}{Z_{S}}=\left(\frac{N_{P}}{N_{S}}\right)^{2}$
where:
$Z_{P}=$ impedance of primary side
Z_{S} = impedance of secondary side
$N_{p}=$ number of turns on primary side
$\mathrm{N}_{\mathrm{S}}=$ number of turns on secondary side

Step 2. Recall,
$Z_{S}=R \| X_{C}$
$Z_{S}=9 k| | j 2.7 k$
where
R $=9 \mathrm{k}$
$X_{C}=\frac{1}{2 \pi F C}=2.7 k$ at $F=45 \mathrm{MHz}$
Step 3. Assume $1: \mathrm{N}$ turns ratio for the transformer
$Z_{P}=\frac{Z_{S}}{N^{2}}=2.25 k \| j 680$
(assuming $\mathrm{N}=2$)
Step 4.
$\therefore C=\frac{1}{2 \pi F X_{C}}=5.2 p F$
$R=2.25 \mathrm{k}$
(these are the new values to match using the formulas in tapped-C)
Step 5. Because the transformer has a magnetization inductance L_{M}, (inductance presented by the transformer), we can eliminate the inductor used in the previous example and tune the tapped-C network with the inductance presented by the transformer.
Lets assume $L_{M}=0.22 \mu H(Q=50)$
Therefore
C1 $=381 \mathrm{pF}$
$\mathrm{C} 2=66.8 \mathrm{pF}$
$\mathrm{F}_{\mathrm{U}}=46.7 \mathrm{MHz}$
$\mathrm{F}_{\mathrm{L}}=43.3 \mathrm{MHz}$
$\mathrm{BW}=3.4 \mathrm{MHz}$
taking the input capacitor into consideration
C1 $=347 \mathrm{pF}$
C2 $=61 \mathrm{pF}$
$\mathrm{L}=0.22 \mu \mathrm{H}(\mathrm{Q}=50)$
Because of leakage inductance, the transformer is far from ideal. All of these leakages affect the secondary voltage under load which will seem like the indicated turns ratio is wrong. The above calculations show one method of impedance matching. The values calculated for C1 and C2 do not take into account board parasitic capacitance, and are, therefore, only theoretical values. There are many ways to configure and calculate matching networks. One alternative is a tapped- L configuration. But the ratio of the tapped-C network is easier to implement than ordering a special inductor. The calculations of these networks can be done on the Smith Chart. Furthermore, there are many computer programs available which will help match the circuit for the designer.

Local Oscillator Section of Mixer

The NE605 provides an NPN transistor for the local oscillator where only external
components like capacitors, inductors, or resistors need to be added to achieve the LO frequency. The oscillator's transistor base and emitter (Pins 4 and 3 respectively) are available to be configured in Colpitts, Butler or varactor controlled LC forms. Referring to Figure 7, the collector is internally connected directly to $V_{C C}$, while the emitter is connected through a $25 \mathrm{k} \Omega$ resistor to ground. Base bias is also internally supplied through an $18 \mathrm{k} \Omega$ resistor. A buffer/divider reduces the oscillator level by a factor of three before it is applied across the upper tree of the Gilbert Cell. The divider de-sensitizes the mixer to oscillator level variations with temperature and voltage. A typical value for the LO input impedance is approximately $10 \mathrm{k} \Omega$.

The highest LO frequency that can be achieved is approximately 300 MHz with a $200 \mathrm{mV}_{\mathrm{RMS}}$ signal on the base (Pin 4). Although it is possible to exceed the 300 MHz LO frequency for the on-board oscillator, it is not really practical because the signal level drops too low for the Gillbert Cell. If an application requires a higher LO frequency, an external oscillator can be used with its $200 \mathrm{mV}_{\text {RMS }}$ signal injected at Pin 4 through a DC blocking capacitor. Table 3 (see back of app note) can be used as a guideline to determine which configuration is best for the required LO frequency.

Figure 7. On-board NPN Transistor for Local Oscillator

Because the Colpitts configuration is for parallel resonance mode, it is important to know, when ordering crystals, that the load capacitance of the NE605 is 10pF. However, for the Butler configuration, the load capacitance is unimportant since the crystal will be in the series mode. Figure 8 shows the different types of LO configurations used with NE605.

If a person decides to use the Colpitts configuration in their design, they will probably find that most crystal manufacturers have their own set of standards of load
capacitance. And in most cases, they are unwilling to build a special test jig for an individual's needs. If this occurs, the designer should tell them to go ahead with the design. But, the designer should also be ready to accept the crystal's frequency to be off by $200-300 \mathrm{~Hz}$ from the specified frequency. Then a test jig provided by the designer and a 2nd iteration will solve the problem.

Output of Mixer

Once the RF and LO inputs have been properly connected, the output of the mixer supplies the IF frequency. Knowing that the mixer's output has an impedance of $1.5 \mathrm{k} \Omega$, matching to an IF filter should be trivial.

Choosing the Appropriate IF Frequency Some of the standard IF frequencies used in industry are $455 \mathrm{kHz}, 10.7 \mathrm{MHz}$ and 21.4 MHz . Selection of other IF frequencies is possible. However, this approach could be expensive because the filter manufacturer will probably have to build the odd IF filter from scratch.

There are several advantages and disadvantages in choosing a low or high IF frequency. Choosing a low IF frequency like 455 kHz can provide good stability, high sensitivity and gain. Unfortunately, it can also present a problem with the image frequency (assuming single conversion). To improve the image rejection problem, a higher IF frequency can be used. However, sensitivity is decreased and the gain of the IF section must be reduced to prevent oscillations.
If the design requires a low IF frequency and good image rejection, it is best to use the double conversion method. This method allows the best of both worlds. Additionally, it is much easier to work with a lower IF frequency because the layout will not be as critical and will be more forgiving in production. The only drawback to this method is that it will require another mixer and LO. But, a transistor can be used for the first mixer stage (which is an inexpensive approach) and the NE605 can be used for the second mixer stage. The NE602A can also be used for the first conversion stage if the transistor approach does not meet the design requirements.

If the design requires a high IF frequency, good layout and RF techniques must be exercised. If the layout is sound and instability still occurs, refer to the "RSSI output" section which suggests solutions to these types of problems.

$\mathrm{C}_{\mathrm{BE}}=5.6 \mathrm{pF}$
Figure 9. NE605 Application Oscillator Level

Figure 10. Mixer Efficlency vs Normalized LO Level

Figure 11. 50Ω Conversion Gain

Figure 12. Single-Ended Matched Input Conversion Gain (50Ω to $1.5 \mathrm{k} \Omega, 14.5 \mathrm{~dB}$ Matching Step-up Network)

Performance Graphs of Mixer

Fig.	Description
9	Oscillator Levels vs. Temperature with Different Supply Voltages for the 44.545MHz Crystal Colpitts Applications
10	LO Efficiency vs. Normalized Peak Level at the Base of the Oscillator Transistor
11	50Ω Conversion Gain vs. Temperature with Different Supply Voltages Using an External LO
12	Mixer Matched Input Conversion Gain vs. Temperature with Different Supply Voltages
13	FF Output Power vs. RF Input Level (3rd-order Intercept Point) 1st mixer = diode mxr, 2nd mixer = 605 mxr
14	NE605 and Diode Mixer Test Set Up
15	NE605 LO Power Requirements vs. Diode Mixer
16	NE605 Conversion Gain vs. Diode Mixer
17	Comparing Intercept Points with Different Types of Mixers.

Another issue to consider when determining an IF frequency is the modulation. For example, a narrowband FM signal (30 kHz IF bandwidth) can be done with an IF of 455 kHz . But for a wideband FM signal (200 kHz IF bandwidth), a higher IF is required, such as 10.7 MHz or 21.4 MHz .

IF Section

The IF section consists of an IF amplifier and IF limiter. With the amplifier and limiter working together, 100 dB of gain with a

25MHz bandwidth can be achieved (see Figure 18). The linearity of the RSSI output is directly affected by the IF section and will be discussed in more detail later in this application note.

IF Amplifier

The IF amplifier is made up of two differential amplifiers with 40 dB of gain and a small signal bandwidth of 41 MHz (when driven by a 50Ω source). The output is a low impedance emitter follower with an output resistance of about 230Ω, and an internal series build out of 700Ω to give a total of 930Ω. One can expect a 6 dB loss in each amplifier's input since both of the differential amplifiers are single-ended.

Figure 13. Third-Order Intercept and Compression
The basic function of the IF amp is to boost the IF signal and to help handle impulse noise. The IF amp will not provide good limiting over a wide range of input signals, which is why the IF limiter is needed.

IF Limiter

The IF limiter is made up of three differential amplifiers with a gain of 63 dB and a small
signal AC bandwidth of 28 MHz . The outputs of the final differential stage are buffered to the internal quadrature detector. The IF limiter's output resistance is about 260Ω with no internal build-out. The limiter's output signal (Pin 9 onNE604A, Pin 11 on NE605) will vary from a good approximation of a square wave at lower IF frequencies like 455 kHz , to a distorted sinusoid at higher IF frequencies, like 21.4 MHz .
The basic function of the IF limiter is to apply a tremendous amount of gain to the IF frequency such that the top and bottom of the waveform are clipped. This helps in reducing AM and noise presented upon reception.

Function of IF Section

The main function of the IF section is to clean up the IF frequency from noise and amplitude modulation (AM) that might occur upon reception of the RF signal. If the IF section has too much gain, then one could run into instability problems. This is where crucial layout and insertion loss can help (also addressed later in this paper).

Important Parameters for the IF Section Limiting: The audio output level of an FM receiver normally does not change with the RF level due to the limiting action. But as the RF signal level continues to decrease, the limiter will eventually run out of gain and the audio level will finally start to drop. The point where the IF section runs out of gain and the audio level decreases by 3 dB with the RF input is referred to as the -3 dB limiting point.

In the application test circuit, with a $5.1 \mathrm{k} \Omega$ interstage resistor, audio suppression is dominated by noise capture down to about the -120 dBm RF level at which point the phase detector efficiency begins to drop (see Interstage Loss section below).

Figure 14. Test Circuits for NE605 Mixer vs Diode Mixer

Figure 15. LO Power Requirements (Matched Input)

Figure 16. NE605 Conversion Gain vs. Diode Mixer

The audio drop that occurs is a function of two types of limiting. The first type is as follows: As the input signal drops below a level which is sufficient to keep the phase
detector compressed, the efficiency of the detector drops, resulting in premature audio attenuation. We will call this "gain limiting". The second type of limiting occurs when there is sufficient amount of gain without destabilizing regeneration (i.e. keeping the phase detector fully limited), the audio level will eventually become suppressed as the noise captures the receiver. We will call this "limiting due to noise capture".

Figure 19 shows the 3dB drop in audio at about $0.26 \mu \mathrm{~V}_{\mathrm{RMS}}$, with $\mathrm{a}-118.7 \mathrm{dBm} / 50 \Omega$ RF level for the NE605. Note that the level has not improved by the 11 dB gain supplied by the mixer/filter since noise capture is expected to slightly dominate here.

Figure 17. Comparing Different Types of Mixers

AM rejection: The AM rejection provided by the NE605/604A is extremely good even for 80% modulation indices as depicted in Figures 20a through 20d. This performance results from the 370 mV peak signal levels set at the input of each IF amplifier and limiter stage. For this level of compression at the
inputs, even better performance could be expected except that finite AM to PM conversion coefficients limit ultimate performance for high level inputs as indicated in Figure 20b.

Low level AM rejection performance degrades as each stage comes out of limiting. In particular as the quadrature phase detector input drops below 100 mV peak, all limiting will be lost and AM modulation will be present at the input of the quad detector (See Figure 20d).

AM to PM conversion: Although AM rejection should continue to improve above -95 dBm IF inputs, higher order effects, lumped under the term AM to PM conversion, limit the application rejection to about 40 dB . In fact this value is proportional to the maximum frequency deviation. That is lower deviations producing lower audio outputs result directly in lower AM rejection. This is consistent with the fact that the interfering audio signal produced by the AM/PM conversion process is independent of deviation within the IF bandwidth and depends to a first estimate on the level of AM modulation present. As an example reducing the maximum frequency deviation to 4 kHz from 8 kHz , will result in 34 dB AM rejection. If the AM modulation is reduced from 80% to 40%, the AM rejection for higher level IFs will go back to 40 dB as expected. AM to PM conversion is also not a function of the quad tank Q, since an increase in Q increases both the audio and spurious AM to PM converted signal equally.

As seen above, these relationships and the measured results on the application board
(Figure 36) can be used to estimate high level IF AM rejection. For higher frequency IFs (such as 21.4 MHz), the limiter's output will start to deviate from a true square wave due to lack of bandwidth. This causes additional AM rejection degradation.
Interstage Loss: Figure 21 plots the simulated IF RSSI magnitude response for various interstage attenuation. The optimum interstage loss is 12 dB . This has been chosen to allow the use of various types of filters, without upsetting the RSSI's linearity. In most cases, the filter insertion loss is less than 12 dB from point A to point B. Therefore, some additional loss must be introduced externally. The easiest and simplest way is to use an external resistor in series with the internal build out resistor (Pin 14 in the NE604A, Pin 16 in the NE605).
Unfortunately, this method mismatches the filter which might be important depending on the design. To achieve the 12 dB insertion loss and good matching to the filter, an L-pad configuration can be used. Figure 22 shows the different set-ups.
Below is an example on how to calculate the resistors values for both Figures 22a and 22b.

Step 1.

$X_{d B}=20 \log \frac{\sqrt{\left(960+R_{E X T} R_{F L T}\right.}}{960+R_{E X T}+R_{F L T}}-F I L[d B]$
(just solve for R REXT)
where
$X=$ the insertions loss wanted in dB
$\mathrm{R}_{\mathrm{EXT}}=$ the external resistor
$\mathrm{R}_{\mathrm{FLT}}=$ the filter's input impedance
FIL = insertion loss of filter in dB
2. For our application board

X=12dB
$\mathrm{R}_{\mathrm{FLT}}=1.5 \mathrm{k}$
$\mathrm{FIL}=3 \mathrm{~dB}$
Therefore, using the above eq. gives
$\mathrm{R}_{\mathrm{EXT}}=5.1 \mathrm{~K}$

Step 2.
$R_{\text {SHUNT }}=\frac{R_{F L T}}{1-2 \times 10}\left(\frac{-x_{d B}}{20}\right) \quad$,
3. In this case, lets assume: $\mathrm{FIL}=-2 \mathrm{~dB}$ therefore, $\mathrm{X}_{\mathrm{dB}}=+10, \mathrm{R}_{\mathrm{FLT}}=1.5 \mathrm{k}$. The results are: $\mathrm{R}_{\text {EXT }}=1.41 \mathrm{k}, \mathrm{R}_{\text {SHUNT }}=4.08 \mathrm{k}$

IF noise figure

The IF noise figure of the receiver may be expected to provide at best a 7.7 dB noise figure in a $1.5 \mathrm{k} \Omega$ environment from about 25 kHz to 100 MHz . From a 25Ω source the noise figure can be expected to degrade to about 15.4 db .

Performance Graphs of IF Section

Fig.	Description
24	IF Amp Gain vs. Temperature with Various Supply Voltages
25	IF Limiter Gain vs. Temperature with Various Supply Voltages
26	IF Amp 20MHz Response vs. Temperature
27	IF Limiter 20MHz Response vs. Temperature

Figure 18. IF Section of NE604A [NE605]

Demodulator Section

Once the signal leaves the IF limiter, it must be demodulated so that the baseband signal can be separated from the IF signal. This is accomplished by the quadrature detector. The detector is made up of a phase comparator (internal to theNE605) and a quadrature tank (external to theNE605).

The phase comparator is a multiplier cell, similar to that of a mixer stage. Instead of mixing two different frequencies, it compares the phases of two signals of the same frequency. Because the phase comparator needs two input signals to extract the information, the IF limiter has a balanced output. One of the outputs is directly connected to the input of the phase comparator. The other signal from the limiter's output (Pin 11) is phase shifted 90 degrees (through external components) and frequency selected by the quadrature tank. This signal is then connected to the other input of the phase comparator (Pin 10 of the NE605). The signal coming out of the quadrature detector (phase detector) is then low-passed filtered to get the baseband signal. A mathematical derivation of this can be seen in the NE604A data sheet.

Figure 19. NE605 Application Board, -3dB Limiting (Drop in Audio)

The quadrature tank plays an important role in the quality of the baseband signal. It determines the distortion and the audio output amplitude. If the " Q " is high for the quadrature tank, the audio level will be high, but the distortion will also be high. If the " Q " is low, the distortion will be low, but the audio level will become low. One can conclude that there is a trade-off.

Output Section

The output section contains an RSSI, audio, and data (unmuted audio) outputs which can
be found on Pins 7, 8, and 9, respectively, on the NE605. However, amplitude shift keying (ASK), frequency shift keying (FSK), and a squelch control can be implemented from these pins. Information on ASK and FSK can be found in Philips Components-Signetics application note AN1993.

Although the squelch control can be implemented by using the RSSI output, it is not a good practice. A better way of implementing squelch control is by comparing the bandpassed audio signal to high frequency colored FM noise signal from the unmuted audio. When no baseband signal is present, the noise coming out of the unmuted audio output will be stronger, due to the nature of FM noise. Therefore, the output of the external comparator will go high (connected to Pin 5 of the NE605) which will mute the audio output. When a baseband signal is present, the bandpassed audio level will dominate and the audio output will now unmute the audio.

Audio and Unmuted Audio (Data)

The audio and unmuted audio outputs (Pin 8 and 9 , respectively, on the NE605) will be discussed in this section because they are
basically the same. The only difference between them is that the unmuted audio output is always "on" while the audio output can either be turned "on" or "off". The unmuted audio output (data out) is for signaling tones in systems such as cellular radio. This allows the tones to be processed by the system but remain silent to the user. Since these tones contain information for cellular operation, the unmuted audio output can also be referred to as the "data" output. Grounding Pin 5 on the NE605 mutes the audio on Pin 8 (connecting Pin 5 to V_{cc} unmutes it).

Both of these outputs are PNP current-to-voltage converters with a $55 \mathrm{k} \Omega$ nominal internal load. The nominal frequency response of the audio and data outputs are 300 kHz . However, this response can be increased with the addition of an external resistor ($<58 \mathrm{k} \Omega$) from the output pins to ground. This will affect the time constant and lower the audio's output amplitude. This technique can be applied to SCA receivers and data transceivers (as mentioned in the NE604A data sheet).

RSSI Output

RSSI (Received Signal Strength Indicator) determines how well the received signal is being captured by providing a voltage level on its output. The higher the voltage, the stronger the signal.

The RSSI output is a current-to-voltage converter, similar to the audio outputs. However, a $91 \mathrm{k} \Omega$ external resistor is needed to get an output characteristic of 0.5 V for every 20 dB change in the input amplitude.
As mentioned earlier, the linearity of the RSS curve depends on the 12 dB insertion loss between the IF amplifier and IF limiter. The reason the RSSI output is dependent on the IF section is because of the V/I converters. The amount of current in this section is monitored to produce the RSSI output signal. Thus, the IF amplifier's rectifier is internally calibrated under the assumption that the loss is 12 dB .

Because unfiltered signals at the limiter inputs, spurious products, or regenerated signals will affect the RSSI curve, the RSSI is a good indicator in determining the stability of the board's layout. With no signal applied to the front end of the NE605, the RSSI voltage level should read 250 mV RMs or less to be a good layout. If the voltage output is higher, then this could indicate oscillations or regeneration in the design.

Performance Graphs of Output Section

Fig.	Description
28	$51 \mathrm{k} \Omega$ Thermistor in Series with 100k Ω Resistor Across Quad Tank (Thermistor Quad Q Compensation)
29a	NE605 Application Board at $-55^{\circ} \mathrm{C}$
29b	NE605 Application Board at $-40^{\circ} \mathrm{C}$
29c	NE605 Application Board at $+25^{\circ} \mathrm{C}$
29d	NE605 Application Board at $+85^{\circ} \mathrm{C}$
29e	NE605 Application Board at $+125^{\circ} \mathrm{C}$
30a	NE604A for -68dBm RSSI Output vs. Temperature at Different Supply Voltages
30b	NE604A for -18dBm RSSI Output vs. Temperature at Different Supply Voltages
30c	NE605 for - 120 dBm RSSI Output vs. Temperature at Different Supply Voltages
30d	NE605 for -76dBm RSSI Output vs. Temperature at Different Supply Voltages
30e	NE605 for -28dBm RSSI Output vs. Temperature at different Supply Voltages
31	NE605 Audio level vs. Temperature and Supply Voltage
32	NE605 Data Output at -76 dBm vs. Temperature

Referring to the NE/SA604A data sheet, there are three primary ways to deal with regeneration: (1) Minimize the feedback by gain stage isolation, (2) lower the stage input impedances, thus increasing the feedback attenuation factor, and (3) reduce the gain. Gain reduction can be accomplished by adding attenuation between stages. More details on regeneration and stability considerations can be found in the NE/SA604A data sheet.

III. QUESTIONS \& ANSWERS:

 Q.-Bypass. How important is the effect of the power supply bypass on the receiver performance?A. While careful layout is extremely critical, one of the single most neglected components is the power supply bypass in applications of NE604A or NE605. Although increasing the value of the tantalum capacitor can solve the problem, more careful testing shows that it is actually the capacitor's ESR (Equivalent Series Resistance) that needs to be checked. The simplest way of screening the bypass capacitor is to test the capacitor's dissipation factor at a low frequency (a very easy test, because most of the low frequency capacitance meters display both C , and Dissipation factor).

Figure 20. AM Rejection Results at Different Input Levels

Figure 21. NE604A's RSSI Curve at Different Interstage Losses
Q.-On-chip oscillator. We cannot get the NE605 on-chip oscillator to work. What is the problem?
A. The on board oscillator is just one transistor with a collector that is connected to the supply, an emitter that goes to ground through a 25 k resistor, and a base that goes to the supply through an 18k resistor. The rest of the circuit is a buffer that follows the
oscillator from the transistor base (this buffer does not affect the performance of the oscillator).

Fundamental mode Colpitts crystal oscillators are good up to 30 MHz and can be made by a crystal and two external capacitors. At higher frequencies, up to about 90 MHz , overtone crystal oscillators (Colpitts) can be made like the one in the cellular application circuit. At higher frequencies, up to about 170 MHz ,
Butler type oscillators (the crystal is in series mode) have been successfully demonstrated. Because of the 8 GHz peak f_{T} of the transistors, LC Colpitts oscillators have been shown to work up to 900 MHz . The problem encountered above 400 MHz is that the onchip oscillator level is not sufficient for optimum conversion gain of the mixer. As a result, an external oscillator should be used at those frequencies.
Generally, about $220 \mathrm{mV}_{\text {RMS }}$ is the oscillator level needed on Pin 4 for maximum conversion gain of the mixer. An external
oscillator driving Pin 4 can be used throughout the band. Finally, since the NE605's oscillator is similar to the NE602, all of the available application notes on NE602 apply to this case (assuming the pin out differences are taken into account by the user).
Below are a couple of points to help in the oscillator design. The oscillator transistor is biased around $250 \mu \mathrm{~A}$ which makes it very hard to probe the base and emitter without disturbing the oscillator (a high impedance, low capacitance active FET probe is desirable). To solve these problems, an external 22 k resistor (as low as 10 k) can be used from Pin 3 to ground to double the bias current of the oscillator transistor. This external resistor is put there to ensure the start up of the crystal in the 80 MHz range, and to increase the f_{T} of the transistor for above $300-400 \mathrm{MHz}$ operation. Additionally, this resistor is required for operations above $80-90 \mathrm{MHz}$. When a 1 k resistor from Pin 1 to
ground is connected on the NE605, half of the mixer will shut off. This causes the mixer to act like an amplifier. As a result, Pin 20 (the mixer, now amplifier output) can be probed to measure the oscillator frequency. Furthermore, the signal at Pin 20 relates to the true oscillator level. This second resistor is just for optimizing the oscillator of course. Without the 1 k resistor, the signal at Pin 20 will be a LO feedthrough which is very small and frequency dependent.
Finally in some very early data sheets, the base and emitter pins of the oscillator were inadvertently interchanged. The base pin is Pin 4, and the emitter pin is Pin 3. Make sure that your circuit is connected correctly.
Q.-Sensitivity at higher input frequencies. We cannot get good sensitivity like the 45 MHz case at input frequencies above 70 MHz . Do you have any information on sensitivity vs. input frequency?
A. The noise figure and the gain of the mixer degrade by less than 0.5 dB , going from 50 to 100 MHz . Therefore, this does not explain the poor degradation in sensitivity. If other problems such as layout, supply bypass etc. are already accounted for, the source of the problem can be regeneration due to the 70 MHz oscillator. What is probably happening is that the oscillator signal is feeding through the IF, getting mixed with the 455 kHz signal, causing spurious regeneration. The solution is to reduce the overall gain to stop the regeneration.
This gain reduction can be done in a number of places. Two simple points are the attenuator network before the second filter and the LO level (see Figure 22). The second case will reduce the mixer's noise figure which is not desirable. Therefore, increasing the Interstage loss, despite
minimal effect on the RSSI linearity, is the correct solution. As the Interstage loss is increased, the regeneration problem is decreased, which improves sensitivity, despite lowering of the over-all gain (the lowest RSSI level will keep decreasing as the regeneration problem is decreased). For an 81 MHz circuit it was found that increasing the Interstage loss from 12dB to about 17dB produced the best results (-119 dBm sensitivity). Of course, adding any more Interstage loss will start degrading sensitivity.

Conversely, dealing with the oscillator design, low LO levels could greatly reduce the mixer conversion gain and cause degradation of the sensitivity. For the 81 MHz example, a 22 k parallel resistor from Pin 3 to ground is required for oscillator operation where a Colpitts oscillator like the one in the cellular application circuit is used. The LO level at Pin 4 should be around 220 mV RMs for good operation. Lowering the LO level to approximately 150 mV RMS may be a good way of achieving stability if increasing Interstage attenuation is not acceptable. In that case the 22 k resistor can be made a thermistor to adjust the LO level vs. temperature for maintaining sensitivity and ensuring crystal start-up vs. temperature. At higher IF frequencies (above 30 MHz), the interstage gain reduction is not needed. The bandwidth of the IF section will lower the overall gain. So, the possibility of regeneration decreases.
Q.-Mixer nolse figure. How do you measure the mixer noise figure in NE605, and NE602?
A. We use the test circuit shown in the NE602 data sheet. The noise figure tester is the HP8970A. The noise source we use is
the HP346B (ENR = 15.46dB). Note that the output is tuned for 10.7 MHz . From that test circuit the NF -meter measures a gain of approximately 15 dB and 5.5 dB noise figure.
More noise figure data is available in the paper titled "Gilbert-type Mixers vs. Diode Mixers" presented at RF Expo ' 89 in Santa Clara, California. (Reprints available through Signetics Publication Services.)
Q.- What is the value of the series resistor before the IF filter in the NE605 or NE604A applications?
A. A value of $5.1 \mathrm{k} \Omega$ has been used by us in our demo board. This results in a maximally straight RSSI curve. A lower value of about 1 k will match the filter better. A better solution is to use an L pad as discussed earlier in this application note.
Q.- What is the low frequency input resistance of the NE605?
A. The data sheets indicated a worst case absolute minimum of 1.5 k . The typical value is 4.7 k .
Q.- What are BE-BC capacitors in the NE605 oscillator transistor?
A. The oscillator is a transistor with the collector connected to the supply and the emitter connected to the ground through a 25 k resistor. The base goes to the supply through an 18 k resistor. The junction capacitors are roughly about 24 fF (fempto Farads) for CJE (Base-emitter capacitors), and 44fF for CJC (Collector-base capacitors). There is a 72fF capacitor for CJS (Collectorsubstrate capacitor). This is all on the chip itself. It should be apparent that the parasitic packaging capacitors ($1.5-2.5 \mathrm{pF}$) are the dominant values in the oscillator design.

22a. SERIES RESISTOR CONFIGURATION

22b. L-PAD CONFIGURATION

Figure 22. Implementing the 12dB Insertion Loss

Summary of Differences for NE/SA604/604A

	NE/SA604	NE/SA604A
RSSI	No temperature compensation	Internally temperature compensated
IF Bandwidth	15 MHz	25 MHz
IF Limiter Output	No buffer	Emitter follower buffer output with 8k in the emitter
Current Drain	2.7 mA	3.7 mA

Q.- What are the differences between the NIESO4 and NECOO4A? (SEe Tajule Deiow)

A. The NE/SA604A is an improved version of the NE/SA604. Customers, who have been using the NE604 in the past, should have no trouble doing the conversion.
The main differences are that the small signal IF bandwidth is 25 MHz instead of 15 MHz , and the RSSI is internally temperature compensated. If external temperature compensation was used for the NE604, the designer can now cut cost with the NE604A. The designer can either get rid of these extra parts completely or replace the thermistor (if used in original temperature compensated design) with a fixed resistor.

Those using the NE604 at 455 kHz should not see any change in performance. For 10.7 MHz , a couple of dB improvement in performance will be observed. However, there may be a few cases where instability will occur after using NE604A. This will be the case if the PC-board design was marginal for the NE604 in the first place. This problem, however, can be cured by using a larger than $10 \mu \mathrm{~F}$ tantalum bypass capacitor on the supply line, and screening the capacitors for their ESR (equivalent series resistance) as mentioned earlier. The ESR at 455 kHz should be less than 0.2Ω. Since ESR is a frequency dependent value, the designer can correlate good performance with a low frequency dissipation factor, or ESR measurement, and screen the tantalum capacitors in production. There are some minor differences as well. The NE/SA604A uses about 1 mA more current than the NE/SA604. An emitter follower has been added at the limiter output to present a lower and more stable output impedance at $\operatorname{Pin} 9$.
The DC voltage at the audio and data outputs is approximately 3 V instead of 2 V in the NE604, but that should not cause any problems. The recovered audio level, on the other hand, is slightly higher in the NE604A which should actually be desirable. Because of these changes, it is now possible to design 21.4 MHz IFs using the NE604A, which was not possible with the NE604.
The two chips are identical, otherwise. The customers are encouraged to switch to the NE604A because it is a more advanced
bipolar process than the previous generation used in theNE604. As a result we get much tighter specifications on the NE604A.
Q.- How does the NE605 mixer compare with a typical double balanced diode mixer?
A. Some data on the comparison of the conversion gain and LO power requirements are shown in this application note. These two parameters reveal the advantages in using the NE605 mixer.
The only drawback of the NE605 may seem to be its lower third-order intercept point in comparison to a diode mixer. But, this is inherent in the NE605 as a result of the low power consumption. If one compares the conversion gain of the NE605 with the conversion loss of a low cost diode mixer, it turns out that the third-order intercept point, referred to the output, is the same or better in the NE605. Another point to take into account is that a diode mixer cannot be used in the front end of a receiver without a preamp due to its poor noise figure. A third-order intercept analysis shows that the intercept point of the combination of the diode mixer and preamp will be degraded at least by the gain of the preamp. A preamp may not be needed with NE605 because of its superior noise figure.

For more detailed discussion of this topic please refer to the paper titled "Gilbert-type Mixers vs. Diode Mixers").
Q.- How can we use the NE605 for SCA FM reception?
A. The 10.7 MHz application circuit described in AN1993 can be used in this case. The LO frequency should be changed and the RF front-end should be tuned to the FM broadcast range. The normal FM signal, coming out of Pin 8 of the NE605, could be expected to have about $1.5 \mu \mathrm{~V}$ (into 50Ω) sensitivity for $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$. This signal should be band-pass filtered and amplified to recover the SCA sub-carrier. The output of that should then go to a PLL SCA decoder, shown on the data sheet of Signetics NE565 phase lock loop, to demodulate the base-band audio. The two outputs of the NE605 Pins 8 and 9 can be used to receive SCA data as well as voice, or features such as simultaneous reception of both normal FM,
and SCA. The RSSI output. with its 90 dB dynamic range, is useful for monitoring signal levels.
Q. - What is the power consumption of the NE605 or NE604A vs. temperature and $V_{c c}$?
A. The NE605 consumes about 5.6 mA of current at 6 V . This level is slightly temperature and voltage dependent as shown in Figure 33. Similar data for the NE604A is shown in Figure 34.
Q.- How can you minimize RF and LO feedthroughs
A. The RF and LO feedthroughs are due to offset voltages at the input of the mixer's differential amplifiers and the imbalance of the parasitic capacitors. A circuit, such as the one shown in Figure 35, can be used to adjust the balance of the differential amplifiers. The circuit connected to Pins 1 and 2 will minimize RF feedthrough while the circuit shown connected to Pin 6 will adjust the LO feedthrough. The only limitation is that if the RF and LO frequencies are in the 100 MHz range or higher, these circuits will probably be effective for a narrow frequency range.
Q.- Distortion vs. RF input level. We get a good undistorted demodulated signal at low RF levels, but severe distortion at high RF levels. What is happening?
A. This problem usually occurs at 10.7 MHz or at higher IF's. The IF filters have not been properly matched on both sides causing a sloping IF response. The resulting distortion can be minimized by adjusting the quad tank at the FM threshold where the IF is out of limiting. As the RF input increases, the IF stages will limit and make the IF response flat again. At this point, the effect of the bad setting of the quad tank will show itself as distortion. The solution is to always tune the quad tank for distortion at a medium RF level, to make sure that the IF is fully limited. Then, to avoid excessive distortion for low RF levels, one should make sure that the IF filters are properly matched.
Q.-The most commonly asked questions: "Why doesn't the receiver sensitivity meet the specifications?"; "Why is the RSSI dynamic range much less than expected?"; "Why
does the RSSI curve dip at 0.9 V and stay flat at 1 V as the RF input decreases?"; "Why does the audio output suddenly burst into oscillation, or output wideband noise as the RF input goes down, instead of dying down slowly?"; "When looking at the IF output with a spectrum analyzer, why do high amplitude spurs become visible near the edge of the IF band as the RF level drops?"
A. These are the most widely observed problems with the NE605. They are all symptoms of the same problem; instability. The instability is due to bad layout and grounding.
Regenerative instability occurs when the limiter's output signals are radiated and picked up by the high impedance inputs of the mixer and IF amp. This signal is amplified by both the IF amp and limiter. Positive feedback causes the signal to grow until the signal at the limiter's output becomes limited. Due to the nature of $F M$, this instability will dominate any low RF input levels and capture the receiver (see Figure 23).

Since the receiver behaves normally for high RF inputs, it misleads the designer into believing that the design is okay. Additionally the RSSI circuit cannot determine whether the signal being received is coming from the antenna or the result of regenerative instability. Therefore, RSSI will be a good instability indicator in this instance because the RSSI will stay at a high level when the received signal decreases. Looking at the IF spectrum (Pin 11 for 605, Pin 9 for 604A) with the RF carrier present (no modulation), the user will see a shape as shown below. When regenerative instability occurs, the receiver does not seem to have the ultimate sensitivity of which it is capable.

Make sure that a double sided layout with a good ground plane on both sides is used. This will have RF/IF loops on both sides of the board. Follow our layouts as faithfully as you can. The supply bypass should have a low ESR $10-15 \mu \mathrm{~F}$ tantalum capacitor as discussed earlier. The crystal package, the inductors, and the quad tank shields should be grounded. The RSSI output should be used as a progress monitor even if is not needed as an output. The lowest RSSI level should decrease as the circuit is made more stable. The overall gain should be reduced by lowering the input impedance of the IF amplifier and IF limiter, and adding attenuation after the IF amplifier, and before the 2nd filter. A circuit that shows an RSSI of 250 mV or less with no RF input should be considered close to the limit of the performance of the device. If the RSSI still remains above 250 mV , the recommendations mentioned above should be revisited.
Q.- Without the de-emphasis network at the audio output, the -3 dB bandwidth of the
audio output is limited to only 4.5 kHz . The maximum frequency deviation is 8 kHz , and the IF bandwidth is 25 kHz . What is the problem?
A. What is limiting the audio bandwidth in this case is not the output circuit, but the IF filters. Remember that Carson's rule for FM IF bandwidth requires the IF bandwidth to be at least:
2(Max frequency Dev. + Audio frequency)
With a 25 kHz IF bandwidth and 8 kHz frequency deviation, the maximum frequency that can pass without distortion is approximately $4.5 \mathrm{kHz} .2(8 \mathrm{kHz}+4.5 \mathrm{kHz})$ is 25 kHz as expected.

REFERENCES:
"High-Performance Low-Power FM IF System" (NE604A data sheet), Signetics Linear Data Manual, Signetics, 1988.
"AN199-Designing with the NE/SA604", Signetics Linear Data Manual, 1987.
"AN1981-New Low Power Single Sideband Circuits", Signetics Linear Data Manual, 1988.
"Applying the Oscillator of the NE602 in Low Power Mixer Applications", Signetics Linear Data Manual, 1988.
"AN1993-High Sensitivity Applications of Low-Power RF/IF Integrated Circuits", Signetics Linear Data Manual, 1988.
"RF Circuit Design", Bowick. C., Indiana: Howard W. Sams \& Company, 1982.
"The ARRL Handbook for the Radio Amateur", American Radio Relay League, 1986.
"Communications Receivers: Principles \& Design", Rohde, U., Bucher, T.T.N., McGraw Hill, 1988.
"Gilbert-type Mixers vs. Diode Mixers", proceedings of R.F. Expo 1989, Fotowat, A., Murthi, E., pp. 409-413.

Figure 24. IF Amplifier Gain

Figure 26. IF Amplifier Gain Drop, 20MHz Response

Figure 25. IF Limiter Gain

Figure 27. IF Limiter Drop, 20MHz Response

Figure 28. Audio Output: Compensated vs Uncompensated

29a. NE605 Application Board at $-55^{\circ} \mathrm{C}$

Figure 29. Performance of the NE605 Application Board at Different Temperatures

Reviewing key areas when designing with the NE605

Figure 30. RSSI Response for Different Inputs

Reviewing key areas when designing with the NE605

Figure 31. Audio Level vs Temperature and Supply Voltage

Figure 33. NE605 Icc vs Temperature

Figure 35. Minimizing RF and LO Feedthrough

Application Component List

C1	47pF NPO Ceramic
C2	$180 \mathrm{pF} N P O$ Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	$22 \mathrm{pF} N P O$ Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	6.8 FF Tantalum (minimum)
C11	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C12	$15 \mathrm{nF}_{ \pm 10 \%}$ Ceramic
C13	$150 \mathrm{pF} \pm 2 \%$ N1500 Ceramic
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	$10 \mathrm{pF} N P O$ Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
Fit 1	Ceramic Filter Murata SFG455A3 or equiv
Fit 2	Ceramic Filter Murata SFG455A3 or equiv
IFT 1	$455 \mathrm{kHz}(\mathrm{Ce}=180 \mathrm{pF})$ Toko RMC-2A6597H
L1	147-160nH Coilcraft UNI-10/142-04J08S
L2	3.3 $\mu \mathrm{H}$ nominal Toko 292CNS-T1046Z
X1	44.545MHz Crystal ICM4712701
R9	100k ${ }_{ \pm}$\% 1/4W Metal Film
R17	5.1k $\pm 5 \%$ 1/4W Carbon Composition
R5	Not Used In Application Board (see Note 8)
R10	100k $\pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film (optional)
R11	100k $\pm 1 \%$ 1/4W Metal Film (optional)

[^0]Figure 36. NE/SA605 45MHz Application Circuit

Table 1. Related Application Notes

App. Note	Date	Title	Main Topics
AN198	Feb. 1987	Designing with the NE/SA602	- Advantages/Disadvantages to single-ended or balanced matching
AN1981	Dec. 1988	New Low Power Single Sideband Circuits	- General discussion on SSB circuits - Audio processing - Phasing-filter technique
AN1982	Dec. 1988	Applying the Oscillator of the NE602 in Low Mixer Applications	- Oscillator configurations
AN199	Feb. 1987	Designing with the NE/SA604	Circuits of: - AM synchronous det. - Temp. compensated RSSI circuit - Field strength meter - Product detector
AN1991	Dec. 1988	Audio Decibel Level Detector with Meter Driver	-Uses of the 604 in application
AN1993	Dec. 1988	High Sensitivity Application Low-Power RF/IF Integrated Circuits	- An overview of the NE602 and NE604 in typical applications - Good information before getting started

Table 2. Comparing Balanced vs Unbalanced Matching

NE605 or NE602	Matching	Advantages	Disadvantages
Pins 1 and 2 (RF input)	Single-ended (unbalanced)	- Very simple circuit -No sacrifice in 3rd-order performance	- Increase in 2nd-order products
	Balanced	- Reduce 2nd-order products	- Impedance match difficult to achieve

Table 3. LO Configurations

LO (MHz)	Suggested Configuration Using On-board Oscillator
$0-30$	Fundamental mode, use Colpitts
$30-70$	3rd overtone mode, use Colpitts
$70-90$	3-5th overtone mode, use Colpitts. with 22k resistor connected from the emitter pin to ground
$90-170$	Use Butler, crystal in series mode, and a 22k resistor connected from the emitter pin to ground
$170-300$	LC configuration

Author: Alvin K. Wong

INTRODUCTION:

With the increasing demand for smaller and lighter equipment, designers are forced to reduce the physical size of their systems.
There are several approaches to solving the size problem. A designer needs to look for sophisticated integrated single chip solutions, chips that are smaller in size, and chips that require minimum external components.
Philips Semiconductors offers all of these solutions in their NE605. The NE605 single-chip receiver converts the RF signal to audio and is available in three packages: DIP,SO, and SSOP. This offers total flexibility for layout considerations. The SSOP package is the smallest 20 pin package available in the market today, and allows the designer the flexibility to reduce the overall size of a layout.

When working with a smaller and tighter layout in a receiver design, it becomes important to follow good RF techniques. This application note shows the techniques used in the SO and SSOP demo-board. It does not cover the basic functionality of the NE605
but instead focuses more on the layout constraints. This application note also has a trouble-shooting chart to aid the designer in evaluating the SO and SSOP demo-board. For a complete explanation of the NE605, please refer to application note AN1994 which describes the basic block diagrams, reviews the common problems encountered with the NE605, and suggests solutions to them. Reading AN1994 is highly recommended beiore aüempüng ïne SÛ and SSOP layout.

The recommended layout demonstrates how well the chip can perform. But it should be pointed out that the combination of external parts with their tolerances plays a role in achieving maximum sensitivity.
The minimum and maximum 12 dB SINAD measurement for both boards is -118 dBm and -119.7 dBm , respectively. A typical reading taken in the lab for both SO and SSOP demo-boards is -119 dBm .

There were two different design approaches for both layouts. For the SO layout, there are
inductive tuning elements (except for the LO section); for the SSOP layout there are capacitive tuning elements. This approach was taken to show the designer that both ways can be used to achieve the same 12 dB SINAD measurement. However, it is worth mentioning that capacitive tuning elements are less expensive than the inductive tuning elements.

Packayes Avallatle

As mentioned above, there are three packages available for the NE605. See the "Package Outline" section of the Philips Semiconductors 1992 RF Handbook for the physical dimensions of all three packages. Notice that the DIP package is the largest of the three in physical size; the SSOP is the smallest. The recommended layout and performance graphs for the DIP package are shown in the NE605 data sheet and AN1994. But the SO and SSOP recommended layout and performance graphs are shown in this application note.

Figure 1. NE605 Schematic for the SO Layout

SO LAYOUT:

Figure 1 shows the schematic for the SO layout. Listed below are the basic functions of each external component for Figure 1.
C1 - Part of the tapped-C network to match the front-end
C2 - Part of the tapped-C network to match the front-end
C5- Used as an AC short to Pin 2

C6 - Used to tune the LO for the Colpitts oscillator
C7 - Used as part of the Colpitts oscillator
C8 - Used as part of the Colpitts oscillator
C9 - Supply bypassing
C10-- Supply bypassing
C11 - Used as filter

C12- Used as filter
C13- Used as filter
C14-Used to AC ground the Quad tank
C15 - Used to provide the 90° phase shift to the phase detector
C17- IF limiter decoupling cap
C18 - IF limiter decoupling cap
C21 - IF amp decoupling cap
C23-IF amp decoupling cap
C26- Quad tank component
L1 - Part of tapped-C network to match the front-end TOKO 5CB-1320Z
L2 - Part of the Colpitts oscillator Coilcraft 1008CS-122
R9 - Used to convert the current into the RSSI voltage
R10 - Converts the audio current to a voltage
R11 - Converts the data current to a voltage
R17 - Used to achieve the - 12 dB insertion loss
IFT1 - Inductor for the Quad tank TOKO 303LN-1130
FILT1 - Murata SFG455A3 455kHz bandpass filter
FILT2 - Murata SFG455A3 455kHz bandpass filter
X1 - Standard 44.545 MHz crystal in QC38 package
The recommended SO layout can be found in Figure 2 and should be used as an example to help designers get started with their projects.
The SO NE605 board performance graphs can be found in Figure 3.

Figure 4. NE605 Schematic for the SSOP Layout

SSOP LAYOUT:

Figure 4 shows the schematic for the SSOP layout.
C1 - Part of the tapped-C network to match the front-end
C2 - Part of the tapped-C network to match the front-end
C3- Part of the tapped-C network to match the front-end
C5 - Used as an AC short to Pin 2
C6 - Used to tune the LO for the Colpitts oscillator
C7- Used as part of the Colpitts oscillator
C8 - Used as part of the Colpitts oscillator
C9 - Supply bypassing
C10 - Supply bypassing
C11 - Used as filter
C12 - Used as filter
C13 - Used as filter
C14 - Used to AC ground the Quad tank

C15 - Used to provide the 90° phase shift to the phase detector
C17 - IF limiter decoupling cap
C18 - IF limiter decoupling cap
C21 - IF amp decoupling cap
C23 - IF amp decoupling cap
C24 - Part of the Quad tank
C25 - Part of the Quad tank
C26 - Part of the Quad tank
L1 - Part of tapped-C network to match the front-end Coilcraft 1008CS-331
L2 - Part of the Colpitts oscillator Coilcraft 1008CS-122
R9 - Used to convert the current into the RSSI voltage

R10 - Converts the audio current to a voltage
R11 - Converts the data current to a voltage
R17 - Used to achieve the - 12 dB insertion loss

IFT1 - Inductor for the Quad tank Mouser ME435-2200

FILT1 - Murata SFGCC455BX 455kHz bandpass filter
FILT2 - Murata SFGCC455BX 455kHz bandpass filter
X1 - Standard 44.545 MHz crystal
The SSOP layout can be found in Figure 5. The SSOP NE605 board performance graphs can be found in Figure 7.

The main difference between the SO and SSOP demo-boards is that the SSOP demo-board incorporates the low profile 455 kHz Murata ceramic filter. It has an input and output impedance of $1.0 \mathrm{k} \Omega$. This presents a mismatch to our chips, but we have found that the overall performance is similar to that when we use the "blue" Murata filters that have the proper $1.5 \mathrm{k} \Omega$ input and output impedance.

Figure 5. NE605 SSOP Demo-board Layout (Not Actual Size)

HOW TO TUNE THE NE605 DEMO-BOARD

Figure 6 shows a trouble-shooting chart for the NE605. It can be used as a general guide to tune the DIP, SO, and SSOP
demo-boards. Below are some of the highlights from the trouble shooting chart that are explained in more detail.

Figure 6. Trouble-shooting Chart for the NE605 Demo-board

Evaluating the NE605 SO and SSOP demo-board

${ }^{*}$ NOTE: Refer to the appropriate text section of the app. note for further details.

Figure 7. NE605 SSOP Performance Graphs

How to tell when a part is damaged

Since most SO and SSOP sockets hinder the maximum performance of the NE605, it is advisable to solder the packages directly to the board. By this approach, one will be able to evaluate the part correctly. However, it can be a tedious chore to switch to another part using the same layout. Therefore, to be absolutely certain that the chip is damaged, one can measure the DC voltages on the NE605. Table 1 shows the DC voltages that each pin should roughly have to be a good part.

Table 1. Approximate DC Voltages for the NE605

Pin Number	DC Voltage (V)
1	1.37
2	1.37
3	5.16
4	5.94
5	N/A
6	$6.00\left(\mathrm{~V}_{\mathrm{Cc}}\right)$
7	$\mathrm{~N} / \mathrm{A}$
8	2.00
9	2.00
10	3.49
11	1.59
12	1.59
13	1.59
14	1.65
15	$0.00(\mathrm{GND})$
16	1.60
17	1.60
18	1.60
19	1.60
20	4.87

Note: The DC voltage on Pin 5 is not specified because it can either be V_{cc} or ground depending if the audio is muted or not (Connecting ground on Pin 5 mutes the audio on Pin 8, while V_{Cc} on $\operatorname{Pin} 5$ unmutes the audio).

The DC voltage on Pin 7 is not specified because its DC voltage depends on the strength of the RF signal getting to the input of the NE605. It also can be used as a stability indicator.

If any of the DC voltages are way off in value, and you have followed the trouble-shooting chart, the part needs to be changed.

RSSI Indicator

The next important highlight is using the RSSI pin as a stability indicator. With power connected to the part and no RF signal
applied to the input, the DC voltage should read 250 mV or less on Pin 7. Any reading higher than 250 mV , indicates a regeneration problem. To correct for the regeneration problem, one should check for poor layout, poor bypassing, and/or poor solder joints. Bypassing the NE605 supply line with a low equivalent series resistance (ESR) capacitor to reduce the RSSI reading can improve the 12 dB SINAD measurement by 8 dB , as found in the lab. If the regeneration problem still exists, read AN1994.

Quad tank and S-Curve

As briefly mentioned in the chart, it is important to measure the \mathbf{Q} of the quad tank if a distortion reading of 1.8% or less cannot be measured. Recall that if the Q of the quad tank is too high for the deviation, then premature distortion will occur. However, if the Q is too low for the deviation, the audio level will be too low. The audio level coming out of the audio pin should be $140 \mathrm{mV}_{\text {RMS }}$ to 190 mV RMS.

Figure 8. Test Set-up to Measure S-Curve of the Quad Tank

If the distortion reading is too high and/or the audio level is too low, then it is important to measure and plot the S-curve of the quad tank. The test set-up used in the lab can be seen in Figure 8.

The following steps were taken to measure the S-curve for the SO and SSOP demo-boards.

Step 1. Remove the second IF ceramic filter from the demo-board.

Step 2. Connect a signal generator to the limiters input through a DC blocking capacitor:
Step 3. Connect a DC voltmeter and an oscilloscope to the audio output pin.
Step 4. Set the signal generator to a 455 kHz signal and be sure that the modulation is on ($\mathrm{RF}=455 \mathrm{kHz}$ Mod Freq $=1 \mathrm{kHz}$ Mod Level $=8 \mathrm{kHz}$). Apply this 455 Khz signal to the limiter input such that there is a sinewave on the oscilloscope screen. Adjust the quad tank for maximum sinewave amplitude on the oscilloscope or for lowest distortion. Additionally, adjust the supply input signal to the NE605 such that the 1 kHz sinewave reaches its maximum amplitude.

Figure 9. s-Curve for NE605 SO Demo-board

Figure 10. S-Curve for NE605 SSOP Demo-board

Step 5. Turn off the modulation and start taking data. Measure the Frequency vs DC voltage. Vary the frequency incrementally and measure the DC voltage coming out of the audio pin. Remember that once the modulation is turned off, the sinewave will disappear from the oscilloscope screen.

Step 6. Plot the S-curve.
Figures 9 and 10 show the S-curve measurements for the SO and SSOP demo-boards. Notice that the center of the S-curve is at 455 kHz . The overall linearity determines how much deviation is allowed before premature distortion. Since our application requires $\pm 8 \mathrm{kHz}$ of deviation, our S-curve is good because it exceeds the linear range of 447 kHz to 463 kHz .

If the Q of the quad tank needs to be lowered, a designer should put a resistor in parallel with the inductor. The lower the resistor value, the more the Q will be lowered. If the Q needs to be increased, choose a higher Q component. More information on the Quad tank can be found in the NE604A data sheet.

If the linear section of the S-curve is not centered at 455 kHz , the quad tank component values need to be recalculated. The way to determine the component values
is by using $F=\frac{1}{2 \pi \sqrt{L C}}$ where F should be
the IF frequency. In the case of the
demo-boards, the $\mathrm{IF}=455 \mathrm{kHz}$.

Front End Tuning

The best way to tell if the front end of the NE605 is properly matched is to use a network analyzer in a S11 setting. The lower the dip, the greater the absorption of the wanted frequency. Figures 11 and 12 show the S11 dip for the front end matching of the SO and SSOP demo-boards, respectively.

We have found in the lab that a -8 dB to -10 dB dip is usually sufficient to get the maximum signal transfer such that a good 12dB SINAD reading is met. The front end circuit uses a tapped-C impedance transformation circuit which matches the 50Ω source with the input impedance of the mixer.

In the process of matching the front end, we have found that the ratio of the two capacitors play an important role in transferring the signal from the source to the mixer input. There should be approximately a 4:1 or $5: 1$ ratio.

Figure 11. S11 Front-End Response for SO Demo-board

Figure 12. S11 Front-End Response for SSOP Demo-board

Checking the Conversion Gain of the Mixer

Once the front end has been properly matched, a designer should check the conversion gain if there are problems with the SINAD measurement. Be sure to turn off the modulation when making this measurement.

The method of measuring conversion gain on the bench is fairly simple. For our demo-boards, measure the strength of the 455 kHz signal on the matching output network of the mixer with a FET probe. Then measure the 45 MHz RF input signal on the matching input network of the mixer. Subtract the two numbers and the measured conversion gain should be around 13 dB . Make sure that the input and output matching networks for the mixer have the same impedance since we are measuring voltage gain to get power gain ($\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$). Of course this conversion gain value will change if there is a different RF input. In AN1994, Figure 16 shows how the conversion gain varies with different RF input frequencies.

Checking the gains in the IF Section

If the IF section does not give 100 dB of gain, then the -118 dBm SINAD measurement cannot be achieved. In fact some symptoms
of low or no audio level can be due to the IF section.

One way of checking the function of the IF section is to check the gain of the IF amplifier and the IF limiter. The IF amplifier gain should be around 40 dB and the IF limiter gain should be around 60 dB .

To check this, connect a FET probe to the output of the amplifier. Apply a strong input signai with no moduiation and then siowiy lower the input signal and wait for the output of the amplifier to decrease. Measure the strength of the output signal in dB and then subtract from it the strength of the input signal in dB. This resulting number indicates the maximum gain of that section. (This method assumes matched input and output impedance.)
If a designer finds one of the sections with lower gain, then one area to check are the IF bypass capacitors. Be sure that the IF bypass capacitors have a good solid connection to the pad. It was also found in the lab that the RSSI stability reading improves when the IF bypass is properly installed.

QUESTION \& ANSWER SECTION

Q: When I measure the bandpass response of the IF filters on the SSOP demo-board, it appears to have a little hump compared to the SO demo-board which has a flat filter response. Why is there a difference in the bandpass response when the SO and SSOP 605 chips are similar?

A: The answer has to do with the ceramic filters and not the package of the NE605. The reason why the SO demo-board has a flat bandpass response is because it is matched properly with the filter. The SSOP demo board uses the new Murata low profile ceramic 455 kHz filter. Unfortunately, the input and output impedance is now $1 \mathrm{k} \Omega$ instead of $1.5 \mathrm{k} \Omega$. This presents an impedance mismatch which creates the hump to occur in the bandpass response. But one does not have to worry too much about this response because the situation does not affect the overall performance that much. Additionally, the 12 SINAD measurement is similar whether using the "blue" (1.5k Ω) or "white" (1.0k Ω) Murata filters.
If you are worried about this, then switch to the correct "blue" Murata filters. The SSOP package will work with those filters as well.

Evaluating the NE605 SO and SSOP demo-board

But if your design has strict height requirements, the white filters are a good solution.

Q: How much LO signal do you see at the RF port?

A: The worst LO leakage seen at the RF input on the SO and SSOP demo-board is $-40 \mathrm{dBm} / 441 \mathrm{mV}$. This seems to vary with the LO level into the base of the on board transistor. This measurement will also vary with different LO frequencies. The NE605 SO and SSOP demo-boards have a LO frequency of 44.545 MHz . Since there are so many variables, a designer needs to measure his/her own board for an accurate LO-RF isolation measurement.

There are several ways to improve the LO leakage from getting to the antenna. One can choose a higher IF frequency and tighten
up the bandwidth of the front-end filter. Another solution is to add a low noise amplifier between the antenna and the mixer, and/or design a double conversion receiver and make sure the 1st mixer has a LO-RF isolation which meets the system specifications.
Q: On the SO and SSOP demo-board, the LO oscillator circuit is tunable with a variable capacitor. Is this a requirement?
A: No. The variable capacitor is used to tune the LO freq., but one can use a fixed value. The advantage of going with a fixed value capacitor is that it is a cheaper component part and there is no need for tuning. The only advantage with a tunable LO is that a designer can optimize the performance of the receiver.

Q: I know that the IF bandwidth of the NE605 allows me to build an IF of 21.4 MHZ . Will the NE605 SSOP package perform just as good at 21.4 MHz IF as it does at 455 kHz ?
A: Although we have not worked with NE605 SSOP at 21.4 MHZ , we believe that it would be difficult to get a 12 dB SINAD measurement at -120 dBm . The wavelengths are much smaller at 21.4 MHz than 455 kHz . Since the wavelengths are smaller, there is a higher probability of regeneration occurring in the IF section. Therefore, a designer will probably have to reduce the gain in the IF section. Additionally, the SSOP package has pins that are physically closer together than with the normal type of packaged parts which can contribute to the unstable state with higher IF frequencies.

Author: Alvin K. Wong

INTRODUCTION

The need for high speed communications is increasing in the market place. To meet these needs, high performance receivers must demodulate at higher IF frequencies to accommodate for the wider deviations in FM systems.
The standard 455 kHz IF frequency, which is easier to work with, and thus more forgiving in production, no longer satisfies the high speed communication market. The next higher standard IF frequency is 10.7 MHz . This frequency offers more potential bandwidth than 455 kHz , allowing for faster communications.

Since the wavelength at 10.7 MHz is much smaller than 455 kHz , the demand for a good RF layout and good RF techniques increases. These demands aid in preventing regeneration from occuring in the IF section of the receiver. This application note will discuss some of the RF techniques used to obtain a stable receiver and reveal the excellent performance achieved in the lab.

BACKGROUND

If a designer is working with the NE/SA605 for the first time, it is highly recommended that he/she reads AN1994 and AN1995.

These two application notes discuss the NE/SA605 in great detail and provide a good starting point in designing with the chip.
Before starting a design, it is also important to choose the correct part. Philips Semiconductors offers an extensive receiver line to meet the growing demands of the wireless market. Table 2 (see end of app note) displays the different types of receivers and their key features. With the aid of this chart, a designer will get a good idea for choosing a chip that best fits their design needs.

If low voltage receiver parts are required in a design, a designer can choose between a
NE/SA606, SA607, SA608, or SA626. All of these low voltage receivers are designed to operate at 3 V while still providing high performance to meet the specifications for cellular radio. All of these parts can operate with an IF frequency as high as 2 MHz . However, the SA626 can operate with a standard IF frequency of 10.7 MHz and also provide fast RSSI speed. Additionally the SA626 has a power down mode to conserve battery power.
A close look at Table 2 will also show that there are subtle differences between the 3 V receivers. The main differences between the NE/SA606, SA607, and SA608 can be seen
in the audio and RSSI output structure. Additionally the SA607 and SA608 provide a frequency check pin which can aid in locking in the desired received frequency over temperature.

OBJECTIVE

The objective of this application note is to show that the NE/SA605 can perform well at an if írequency oí iú. $\overline{\mathrm{T}} \mathrm{iiHz}$. Since most Philips Semiconductors receiver demo-boards are characterized at RF = $45 \mathrm{MHz} / \mathrm{F}=455 \mathrm{kHz}$, we decided to continue to characterize at this frequency. This way we could compare how much degradation (for different IFs) there was with a RF $=45 \mathrm{MHz} / \mathrm{IF}$ $=455 \mathrm{kHz}$ vs $\mathrm{RF}=45 \mathrm{MHz} / \mathrm{IF}=10.7 \mathrm{MHz}$. As we will discuss later, there was minimal degradation in performance.
We also tested at RF $=240 \mathrm{MHz} / \mathrm{IF}=$ 10.7 MHz . The 240 MHz RF is sometimes referred to as the first IF for double conversion receivers. Testing the board at $R F=83.16 \mathrm{MHz}$ (which is also a common first IF for analog cellular radio) and $\mathrm{IF}=10.7 \mathrm{MHz}$ was not done because the conversion gain and noise figure does not change that much compared to 45 MHz input. Therefore, we can probably expect the same type of performance at 83.16 MHz .

Figure 2. NE/SA605/625 Schematic: RF $=45 \mathrm{MHz}, \mathrm{LO}=55.7 \mathrm{MHz}, \mathrm{IF}=10.7 \mathrm{MHz}$

The RF $=240 \mathrm{MHz} / \mathrm{IF}=10.7 \mathrm{MHz}$ demo-board is expected to perform less than the RF = $45 \mathrm{MHz} / \mathrm{F}=10.7 \mathrm{MHz}$ demo-board because the mixer conversion gain decreases while the noise figure increases. These two parameters will decrease the performance of the receiver as the RF frequency increases.
With the new demands for fast RSSI time, Philips Semiconductors has also designed receiver chips with fast RSSI speed: The NE/SA624, NE/SA625 and SA626. The NE/SA625 can also be used in this layout because it is pin-for-pin compatible with the NE/SA605. The RSSI circuitry was the only change done for the NE/SA625, so performance will be similar to the NE/SA605. Performance graphs shown in this application note will reveal the similarities.

For systems requiring low voltage operation, $\mathrm{IF}=10.7 \mathrm{MHz}$ and fast RSSI speed, the SA626 will be the correct choice, however, this application note does not address the performance of the SA626 because the SA626 was not available at this writing.

Board Set-Up and Performance Graphs

Figures 1 and 2 show the NE/SA605/625 schematics for the 240 MHz and 45 MHz boards, respectively. Listed below are the basic functions of each external components for both Figures 1 and 2.

SO Layout Schematic List

U1- NE/SA605 or NE/SA625
FLT1-10.7MHz ceramic filter Murata SFE10.7MA5-A (280 kHz BW)
FLT2-10.7MHz ceramic filter Murata SFE10.7MA5-A (280 kHz BW)
Note: If a designer wants to use different IF bandwidth filters than the ones used in this application note, the quad tank's S-curve may need to be adjusted to accommodate the new bandwidth.

C1- Part of the tapped-C network to match the front-end mixer
C2- Part of the tapped-C network to match the front-end mixer
C3- Used as an AC short to Pin 2 and to provide a DC block for L1 which prevents the upsetting of the DC biasing on Pin 1
C6- part of the tapped-C network to match the LO input
C7- part of the tapped-C network to match the LO input
C8- DC blocking capacitor
C9- Supply Bypassing
C10-Supply bypassing (this value can be reduced if the NE/SA605/625 is used with a battery)
C11-used as a filter, cap value can be adjusted when higher RSSI speed is preferred over lower RSSI ripple
C12-used as a filter

C13-used as a filter
C14-used to AC ground the quad tank C15-used to provide the 90° phase shift to the phase detector
C16-quad tank component to resonant at 10.7 MHz with IFT1 and C15

C17-IF limiter decoupling capacitor
C18-DC block for L3 which prevents the upsetting of the DC biasing on Pin 14 C19-part of the tapped-C network for FLT2 C20-part of the tapped-C network for FLT2 C21-IF amp decoupling cap
C22-DC blocking cap
C23-IF amp decoupling cap and DC block for L3 which prevents the upsetting of the DC biasing on Pin 14
C24-provides DC block for L5 which prevents the upsetting of the DC biasing on Pin 20
C25-IF limiter decoupling capacitor
C26-part of the tapped-C network for FLT1
C27-part of the tapped-C network for FLT1
C28-part of the tapped-C network for FLT1
C29-part of the tapped-C network for FLT1
R9- used to convert the current into the RSSI voltage
R10-converts the audio current to a voltage
R11-converts the data current to a voltage
R16-used to kill some of the IF signal for stability purposes
R17-used in conjunction with R16 for a matching network for FLT2

TOP SILK SCREEN

TOP VIEW

BOTTOM VIEW

Figure 3. NE/SA605/625 SO Demo-Board Layouts (Not Actual Size)

L1 - part of the tapped-C network to match the front-end mixer
L2 - part of the tapped-C network to match the front-end mixer
L3- part of the tapped-C network to match the input of FLT2
L4- part of the tapped-C network to match the input of FLT1
L5- part of the tapped-C network to match the input of FLT1

RSSI Extender Circuit

R18-provides bias regulation, the gain will stay constant over varying $V_{C C}$
R19-for biasing, buffer RF DC voltage
R20-provides the DC bias, RSSI gain (when R20 increases, RSSI gain decreases
C30-DC blocking capacitor which connects the ceramic filter's output to the PNP transistor's input
C31-decoupling capacitor, and should be removed for measuring RSSI systems speed
C32-peak detector charge capacitor
D1- diode to stabilize the bias current
Q1- Philips BF579 PNP transistor
IFT1-part of the quad tank circuit
There are minor differences between Figures 1 and 2. The RF and LO tapped-C component values are changed to accommodate for the different RF and LO test frequencies ($\mathrm{RF}=240 \mathrm{MHz}$ and 45 MHz and $\mathrm{LO}=229.3 \mathrm{MHz}$ and 55.7 MHz). The other difference is the value of R20. This resistor value was changed to optimize the RSSI curve's linearity (see RSSI extender section in this application note for further details).

The recommended NE/SA605/625 layout is shown in Figure 3. This layout can be integrated with other systems.

Figure 4. NE/SA625 SO Performance Graphs at 240 MHz

Figures 4 through 7 show the performance graphs for the NE/SA605 \& NE/SA625 at 240 MHz and 45 MHz RF inputs. There was no real noticeable difference in performance between a NE/SA605 or NE/SA625 except for AM rejection. The NE/SA605 appears to have a little better AM rejection, but from the end user's point of view, there is no difference between the receiver. All the other measurements were perfect, including SINAD.

RF Input

The NE/SA605/625 board is set up to receive an RF input of 240 MHz (see Figure 1). This is achieved by implementing a tapped-C network. The deviation should be set to $\pm 70 \mathrm{kHz}$ to achieve -110dBm to-112dBm for -12dB SINAD. However, the deviation can be increased to $\pm 100 \mathrm{kHz}$, depending on the bandwidth of the IF filter and the Q of the quad tank.

Figure 5. NE/SA625 SO Performance Graphs at 45MHz

Figure 6. NE/SA605SO Performance Graphs at 240 MHz

Because we wanted to test the board at 45 MHz , we changed the values of the tapped-C network for the RF and LO ports (see Figure 2). We found that a $\mathbf{- 1 1 6 d B m}$ to -118dBm for -12dB SINAD could be achieved. With these results, we were pretty
close to achieving performance similar to our standard 455 kHz IF board.
A designer can also make similar RF and LO component changes if he/she needs to evaluate the board at a different RF
frequency. It should be noted that if a designer purchases a stuffed NE/SA605/625 demo-board from Philips Semiconductors its set up will be for an RF input frequency of 240 MHz . AN1994 will aid the designer in calculating the tapped-C values for other desired frequencies, while AN1995 will be of value for making S 11 bench measurements. Just remember that the input impedance will differ for different RF frequencies.

LO Input

The LO frequency should be 229.3 MHz for the RF $=240 \mathrm{MHz}$ demo-board and have a drive level of -10 dBm to OdBm (this also applies for the $\mathrm{RF}=45 \mathrm{MHz}$ and $\mathrm{LO}=$ 55.7 MHz). The drive level is important to achieve maximum conversion gain. The LO input also has a matched tapped-C network for efficiency purposes which makes for good RF practices.
If a designer wanted to change the matching network to inject a different LO frequency, he/she could follow the steps in AN1994 and assume that the input impedance is around $10 \mathrm{k} \Omega$ for low frequency inputs. The main goal is to get maximum voltage transfer from the signal generator to the inductor.

An external oscillator circuit was used to provide greater flexibility in choosing different RF and LO frequencies; however, an on-board oscillator can be used with the NE/SA605/625. New high frequency fundamental crystals, now entering the market, can also be used for high LO frequency requirements. Most receiver systems, however, will use a synthesizer to drive the LO port.

10.7MHz Ceramic Filters

The input and output impedance of the 10.7 MHz ceramic IF filters are 330Ω. The NE/SA605/625's input and output impedances are roughly $1.5 \mathrm{~K} \Omega$. Therefore, a matching circuit had to be implemented to obtain maximum voltage transfer. Tapped-C networks were used to match the filters input and output impedance.

But in this case, we decided to go with non-tuning elements to reduce set-up time.
Figure 8 shows the values chosen for the network.

Although our total deviation is 140 kHz , we used 280 kHz IF bandwidth filters to maximize for fast RSSI speed. The SINAD performance difference between using 180 kHz BW filter versus 280 kHz BS filter was insignificant.

Figure 7. NE/SA605 SO Performance Graphs at 45MHz

Figure 8. Matching Configuration for FLT1 and FLT2

Stabilizing the IF Section From Regeneration

Because the gain in the IF section is 100 dB and the wavelength for 10.7 MHz is small, the hardest design phase of this project was to stabilize the IF section.

The steps below show the methods used to obtain a stable layout.

1. The total IF section (IF amp and limiter)
gain is 100 dB which makes it difficult to
stabilize the chip at 10.7 MHz . Therefore,
a 120Ω (R16 of Figure 1) resistor was used to kill some of the IF gain to obtain a stable system. (NOTE: Expect AM rejection performance to degrade as you decrease the IF gain externally.)
2. Since the tapped-C inductors for FLT1 and FLT2 are not shielded, it is important not to place them too close to one another. Magnetic coupling will occur and may increase the piotuability of regeneration.
3. It was also found that if the IF limiter bypass capacitors do not have the same physical ground, the stability worsens. Referring to Figure 1, the IF limiter bypass capacitors (C17, C25) are connected to assure a common ground.
4. The positioning of ground feedthroughs are vital. A designer should put feedthroughs near the IF bypass capacitors ground points. In addition, feedthroughs are needed underneath the chip. Other strategic locations are important for feedthroughs where insufficient grounding occurs.
5. Shielding should be used after the best possible stability is achieved. The NE/SA605/625 demo-board is stable, so shielding was not used. However, if put into a bigger system, shielding should be used to keep out unwanted RF frequencies. As a special note, if a good shield is used, it can increase the R16 resistor value such that there is less IF gain to kill to achieve stability. This means the RSSI dynamic range is improved. So if a designer does not want to implement the RSSI extender circuit, but is still concerned with SINAD and RSSI range, he/she can experiment with R16 and shielding because there is a correlation between them (see RSSI extender section in this application note for more information). In addition, AM rejection performance will improve due to the greater availability of the total IF gain.
The key to stabilizing the IF section is to kill the gain. This was done with a resistor (R16 in Figure 8) to ground. All the other methods mentioned above are secondary compared to this step. Lowering the value of this resistor reduces the gain and the increasing resistor value kills less gain. For our particular layout, 120Ω was chosen to obtain a stable board, but we were careful not to kill too much gain. One of the downfalls of killing too much gain is that the SINAD reading will become worse and the RSSI dynamic range is reduced.

RSSI Dynamic Range

There are two main factors which determine the RSSI dynamic range. These two factors are 1.) how stable is the board, and 2.) how much gain is killed externally. If the board is unstable, a high RSSI voltage reading will occur at the bottom end of the curve. If too much gain is taken away, the upper half of the curve is flattened. Thus the dynamic range can be affected. Figure 9 shows how the linear range can be decreased under the conditions mentioned above.

It is important to choose the appropriate resistor to kill enough gain to get stability but not too much gain to affect the upper RSSI curve dynamic range. Because we had to kill some IF gain to achieve good board stability and good SINAD readings, our RSSI overall
dynamic range was reduced on the upper end of the curve.

Because SINAD and the RSSI dynamic range are two important parameters for most of our customers, we decided to add an "RSSI extender" modification to the board to get the best of both worlds. Together with the RSSI external modification and the "stability resistor", we can now achieve excellent SINAD readings and maintain a wide RSSI dynamic range.

RSSI Extender Circuit

The RSSI extender circuit increases the upper dynamic range roughly about $20-30 \mathrm{~dB}$ for the 240 MHz demo-board. The NE/SA605/625 demo-board has $90-100 \mathrm{~dB}$ of
linear dynamic range when the RSSI modification is used.

Referring to Figure 10, one can see that one transistor is used with a few external components. The IF input signal to the PNP transistor is tapped after the ceramic filter to ensure a clean IF signal. The circuit then senses the strength of the signal and converts it to current, which is then summed together with the RSSI output of the chip.
The PNP transistor stage has to be biased as a class B amplifier. The circuit provides two functions. It is a DC amplifier and an RF detector. The gain of the RSSI extender can be controlled by R20 and R9 (Gain = R9/R20). Adjusting R20 is preferable because it controls the upper half of the RSSI curve, whereas adjusting R9 shifts the whole RSSI curve.
If a different RF frequency is supplied to the mixer input, it is important to set the external RSSI gain accordingly. When the RF input was changed from 240 MHz to 45 MHz , the conversion gain of the mixer increased. Therefore, the earlier gain settings for the RSSI extender was too much. A lower gain setting had to be implemented such that a smoother transition would occur.

Quad Tank

The quad tank is tuned for 10.7 MHz ($F=1 / 2 \pi \sqrt{L C}$). Figure 1 shows the values used (C14,C15, C16, IFT1) and Figure 11 shows the S-curve. The linear portion of the S -curve is roughly 200 kHz . Therefore, it is a good circuit for a total deviation of 140 kHz . It is possible to deviate at 200 kHz , but this does not leave much room for part tolerances.

If more deviation is needed, a designer can lower the S-curve with a parallel resistor connected to the quadrature tank. A designer should play with different value resistors and plot the S-curve to pick the best value for the design. To key in on the resistor value with minimum effort, a designer can put a potentiometer in parallel with the quad tank and tune it for best distortion. Then the designer can use fixed value resistors that are close to the potentiometer's value.
Fixed quad tank component values can be used to eliminate tuning, but a designer must allow for part tolerances and temperature considerations. For better performance over temperature, a resonator/discriminator can be used. Thus, no tuning is required for the quad tank section, which will save on production costs.

Figure 11. 10.7 MHz Quad Tank S-Curve

Figure 12. RSSI Cuve with Pulsed RF Levels

RSSI System Speed

The RSSI rise and fall times are important in applications that use pulsed RF in their design. The way we define the speed is how fast the RSSI voltage can travel up and down the RSSI curve. Figure 12 shows a representation of this. Five different pulsed RF levels were tested to get a good representation of the RSSI speed. One can predict that the stronger the pulsed signal, the higher the RSSI voltage and the longer it will take for the fall time to occur. Generally speaking, the rise time is determined by how long it takes to charge up an internal capacitor. The fall time depends on how long it takes to discharge this capacitor.
It is also important to understand that there are two types of RSSI speeds. The first type is the RSSI chip speed and the second is the RSSI system speed. The RSSI chip speed will be faster than the system speed. The bandwidth of the external filters and other

external parts can slow down the RSSI system speed dramatically.
Figure 13 shows the bench set up for the RSSI system speed measurements. The pulsed RF was set for 10 kHz and and the RSSI output was monitored with a digital oscilloscope. Figure 14 shows how the rise and fall times were measured on the oscilloscope.
The modifications done on the NE/SA625 board are shown in Figure 15. The RSSI caps C11 and C31 were eliminated, and the RSSI resistor values were changed. We wanted to see how much time was saved by using a smaller RSSI resistor value.
The RSSI system speed for the 240 MHz NE/SA625 demo board is shown in Figure 16. Again, the only modification was that the RSSI caps (C11 and C31) were taken out and the RSSI resistor value (R9) was varied. For different RF levels, the speed seems to vary slightly, but this is expected. The higher the RSSI voltage, the longer it will take to come back down the RSSI curve for the fall time.
Looking more closely at Figure 16, one can note that the 0 dBm input level has a faster fall time than the -20 dBm level. This occurs because of the limited dynamic range of the test equipment. The equipment does not have sufficient on/off range, so at 0 dBm the 'off' mode is actually still on. Therefore, you don't get a true reading.

At OdBm the RSSI voltage is lower than -20 dBm . The reason why this happens is because the RSSI linearity range stops at -10 dBm . When the RF input drive is too high (e.g., OdBm), the mixer conversion gain decreases, which causes the RSSI voltage to drop.

QUESTION AND ANSWER SECTION

Q. What should the audio level at Pin 8 be?
A. The audio level is at $580 \mathrm{~m} \mathrm{~V}_{\text {P-p }}$ looking directly at the audio output pin and does not include a C-message filter. However, the audio output level will depend on two factors: the " Q " of the quadrature tank and the deviation used. The higher the quad tanks " Q ", the larger the audio level. Additionally, the more deviation applied, the larger the audio output. But the audio output will be limited to a certain point.
Q. Am I required to use the $10 \mu \mathrm{~F}$ supply capacitor?
A. No, a smaller value can be used. The $10 \mu \mathrm{~F}$ capacitor is a suggested value for evaluation purposes. Most of the time a power supply is used to evaluate our demo boards. If the supply is noisy, it will degrade the receiver performance. We have found that a lower value capacitor can be used when the receiver is powered
by a battery. But it is probably safer to stay at a reasonable capacitor size.
Q. Can I use different IF filters for my required bandwidth specifications?
A. Yes, you can order different IF filters with different bandwidths. Some of the standard manufacturers have 180 kHz , 230 kHz , and 280 kHz bandwidths for 10.7 MHz ceramic filters. Just be sure that the quad tank " S -curve" is linear for your required bandwidth. The NE/SA605/625 demo-board has a 200 kHz linearity for the quad tank. So $\pm 70 \mathrm{kHz}$ deviation is perfect.
We have also found that even though the IF filter's bandwidth might be more than our requirements, it does not really degrade overall receiver performance.
But to follow good engineering practices, a designer should order filters that are closest to their requirements. Going with wider bandwidth filters will give you better RSSI system speed.
Q. I want to use part of your demo board for my digital receiver project. Can you recommend a good 10.7 MHz filter with accurate 10.7 MHz center frequency which can provide minimum phase delay?
A. At the present time, I only know of one manufacturer that is working on a filter to meet digital receiver requirements. Murata has a surface mount 10.7 MHz filter. The number is FX-6502 (SFECA 10.7). It was specifically designed for Japanese digital cordless phones. You
can adapt these filters to our NE/SA605/625 demo board.

We also used these filters in our layout and got similar SINAD and RSSI system speed performance compared to the standard 10.7 MHz filters (280 kHz BW). I believe the difference between the filters will be apparent for digital demodulation schemes.
Q. If the system RSSI time is dependent on the external components used, like the IF filters, then what is the difference in using the NE/SA605 vs the NE/SA625?
A. The difference comes in the fall time for high IF frequencies. You are correct that for IFs like 455 kHz , there is probably little delta difference because the filter's bandwidth prohibits the speed dramatically. However, for 10.7 MHz IFs, there will be a difference in the fall time between the chips because the bandwidths are much wider. Therefore, the chips will play a role in the RSSI system speed. The chip difference in RSSI speed will depend on your overall system configuration.
Q. Why does the AM rejection performance look better on the NE/SA $605,455 \mathrm{kHz}$ IF board than the NE/SA605/625 10.7MHz IF demo-board?
A. For the 455 kHz IF demo-board there is more IF gain available compared to the 10.7 MHz IF board. Recall that for the 10.7 MHz IF board, some of the IF gain was killed externally for stability reasons.

Since the IF gain helps improve AM rejection performance, by killing IF gain, AM rejection is decreased.
Q. The NE/SA605/625 10.7MHz IF demo-board is made for the SO package. Can I use your SSOP package and expect the same level of performance?
A. We have not done a SSOP layout yet. But if the same techniques are used, I am sure the SSOP package will work. The SA626 demo-board will be done in SSOP, and probably be available in the future.
Q. I tried to duplicate your RSSI system reading measurements using your demo-board and I get slower times. What am I doing wrong?
A. The RSSI system speed measurements are very tricky. Make sure your cable lengths are not too long. I have found that when making microsecond measurements, lab set-up is of utmost importance. Also, make sure the RSSI caps (C11 and C31) are removed from the circuit.
Also be sure that the bandwidth of your IF filters is not slowing down the RSSI system speed (Cf: section on RSSI system speed).
Q. I am going to use your design in my NTT cordless digital phone. Can you recommend a 240.05 MHz filter?
A. Murata SX-4896 (SAMAFC 240.05) is a filter you can use for your application.

Figure 14. Oscilloscope Display of RSSI System Rise and Fall Time

Figure 16. RSSI Systems Rise and Fall Time with Different RSSI Resistor Values
Table 1. FM/IF Family Overview

Table 1. FM/IF Family Overview												
			NE602A/604A		NE605	SA606	SA607	SA608	NE624	NE625	SA626	NE627
$\mathrm{v}_{\text {cc }}$			4.5-8V	4.5-8V	4.5-8V	2.7-7V	2.7-7V	2.7-7V	4.5-8.0V	4.5-8.0V	2.7-5.5V	4.5-8.0V
${ }^{1} \mathrm{cc}$			2.4mA@6V	3.3mA@ 6V	5.7mA@6V	3.5mA@3V	3.5mA@ 3V	3.5mA @ 3V	3.4mA@ 6V	$5.8 \mathrm{~mA} @ 6 \mathrm{~V}$	6.5 mA @ 3V	$5.8 \mathrm{~mA} @ 6 \mathrm{~V}$
Number of Pins			8	16	20	20	20	20	16	20	20	20
Packages $\mathrm{NE}: 0$ to $+70^{\circ} \mathrm{C}$ SA: -40 to $+85^{\circ} \mathrm{C}$ N: Plastic DIP D: Plastic SO FE: Ceramic DIP DK: SSOP			NEGO2AN NEG02AD NE602AFE SA602AN SA602AD SAG02AFE	NE604AN NE604AD	NE605N NE605D NE605DK SA605N SA605D SA605DK	SA606N SA606D SA606DK	SA607N SA607D SA607DK	SA608N SA608D SA608DK	NE624N NE624D SA624N SA624D	NE625N NE625D NE625DK SA625N SA625D SA625DK	SA626D SA626DK	NE627N NE627D NE627DK SA627N SA627D SA627DK
-12dB SINAD ($\mathrm{RF}=45 \mathrm{MHz}$), IF = 455kHz) 1kHz Tone, 8kHz Dev.			-120dBm/.22uV		-120dBm/.22uV	-117dBm/.31uV	$-117 \mathrm{dBm} / .31 \mathrm{UV}$	-117dBm/.31uV	-120dBm/.22uV	-120dBm/.22uV	$\begin{gathered} -112 \mathrm{dBm} / .54 \mathrm{uV} \\ (\mathrm{RF}=240 \mathrm{MHz}) \\ (\mathbb{F}=10.7 \mathrm{MHz}) \\ 1 \mathrm{kHz} \text { Tone, } \\ +/-70 \mathrm{kHz} \text { Dev. } \end{gathered}$	-120dBm/.22uV
Process f_{t}			8GHz		8GHz	8GHz	8GHz	8GHz	8GHz	8GHz	8 GHz	8GHz
For lower cost version and less performance			612A \& 614A		615	616	617	-	-	-	-	-
Features			-Audio \& Data pins - IF BW of $\mathbf{2 5 M H z}$ - No external matching required for standard 455 kHz IF filter		- Audio \& Data pins - IF BW of 25 MHz - No external matching required for standard 455 kHz IF filter	- Low voltage - Internal RSSI and audio op amps - No external matching required for standard 455 kHz IF filter - IF BW of 2 MHz	- Freq check pin - Low voltage - Internal RSSI and audio op amps - Unity gain RSSI - No external matching required for standard 455 kHz IF filter - IF BW of 2 MHz	- Freq check pin - Low voltage - Internal RSSI and audio op amps - Unity gain audio output - No external matching required for standard 455 kHz IF filter - IF BW of $\mathbf{2 M H z}$	- Fast RSSI Time - Pin-to-Pin compatble with 604A - No external matching required for standard 455 kHz IF filter	-Fast RSSI Time - Pin-to-Pin compatible with 605 - No external matching required for standard 455kHz IF filter	- Power down mode - Low voltage - Fast RSSI Time - IF BW of 25 MHz - Internal RSSI \& audio op amps - No external matching required for standard 10.7MHz IF filter	- Fast RSSI Time - Freq check pin - IF BW of 25 MHz - Internal RSSI \& audio op amps - No external matching required for standard 455 kHz IF filter
 \mathbf{R} \mathbf{S} \mathbf{S} \mathbf{S} $\mathbf{1}$ \mathbf{O} \mathbf{U} \mathbf{T} \mathbf{P} \mathbf{T} \mathbf{S} \mathbf{E} \mathbf{E} \mathbf{C} \mathbf{T} \mathbf{O} \mathbf{N}	Dynamic Range		90 dB		90 dB							
	Accuracy		+/-1.5dB		+/-1.5dB	+-1.5dB						
	$\underset{\mid F}{\text { 455kHz }}$	$\begin{aligned} & \text { Rise * } \\ & \text { Time } \\ & \hline \end{aligned}$	-	1.4us	-	-	-	-	1.1us	1.2us	-	1us
		$\begin{aligned} & \text { Fall ** } \\ & \text { Time } \end{aligned}$	-	21.3us	-	-	-	-	1.3us	2.1us	-	1.7us
	$\underset{\text { IF }}{10.7 \mathrm{MHZ}}$	Rise * Time	-	1.5us	-	-	-	-	1.2us	1.2us	1.2us	0.9us
		$\begin{aligned} & \text { Fall * } \\ & \text { Time } \end{aligned}$		19.4us	-	-	-	-	1.6 us	2us	2 s	1.4us

NOTE: *Not designed to drive a matched load
Demodulating at 10.7 MHz IF with the NE/SA605/625

DESCRIPTION

The SA606 is a low-voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), voltage regulator and audio and RSSI op amps. The SA606 is available in 20 -lead dual-in-line plastic, 20 -lead SOL (surface-mounted small outline large package) and 20 -lead SSOP (shrink small outline package).

The SA606 was designed for portable communication applications and will function down to 2.7 V . The RF section is similar to the famous NE605. The audio and RSSI outputs have amplifiers with access to the feedback path. This enables the designer to level adjust the outputs or add filtering.

FEATURES

- Low power consumption: 3.5mA typical at $3 V$
- Mixer input to $>150 \mathrm{MHz}$
- Mixer conversion power gain of 17 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator or external oscillator can be used at higher frequencies)
- 102dB of IF Amp/Limiter gain
- 2 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a 90dB dynamic range
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.31 \mu \mathrm{~V}$ into 50Ω matching network for 12 dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
- SA606 meets cellular radio specifications
- Audio output internal op amp
- RSSI output internal op amp
- Internal op amps with rail-to-rail outputs
- ESD protection: Human Body Model 2kV Robot Model 200V

APPLICATIONS

- Portable cellular radio FM IF
- Cordless phones
- Wireless systems
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Portable high performance communication receiver
- Single conversion VHF receivers

PIN CONFIGURATION

D, DK and N Packages	

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA606N	0408 B
20-Pin Plastic Small Outline Large (SOL) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA606D	0172 D
20-Pin Plastic Shrink Small Outline Package (SSOP) (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA606DK	1563

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$V_{\text {CC }}$	Single supply voltage	7	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathbf{A}}$	Operating ambient temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance	D package DK package N package	117
		75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS

$V_{C C}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$V_{C C}$	Power supply voltage range		2.7		7.0	V
lcc	DC current drain			3.5	4.2	mA

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+3 \mathrm{~V}$, unless otherwise stated. $\quad \mathrm{RF}$ frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=2.4 \mathrm{k} \Omega$ and R18 $=3.3 \mathrm{k} \Omega$; RF level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with de-emphasis filter and C-message weighted filter. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			
			MIN	TYP	MAX	
Mixer/Osc section (ext LO $=220 \mathrm{mV}$ RMS)						
$\mathrm{fin}^{\text {in }}$	Input signal frequency			150		MHz
fosc	Crystal oscillator frequency		'	150		MHz
	Noise figure at 45 MHz			6.2		dB
	Third-order input intercept point (50Ω source)	$\begin{aligned} & 11=45.0 ; f 2=45.06 \mathrm{MHz} \\ & \text { Input RF level }=-52 \mathrm{dBm} \end{aligned}$		-9		dBm
	Conversion voltage gain	Matched 14.5dBV step-up	13.5	17	19.5	dB
		50Ω source		+2.5		dB
	RF input resistance	Single-ended input		8		$\mathrm{k} \Omega$
	RF input capacitance			3.0	4.0	pF
	Mixer output resistance	(Pin 20)	1.25	1.5		k Ω
IF section						
	IF amp gain	50Ω source		44		dB
	Limiter gain	50Ω source		58		dB
	Input limiting -3dB, $\mathrm{R}_{17 \mathrm{a}}=2.4 \mathrm{k}, \mathrm{R}_{17 \mathrm{~b}}=3.3 \mathrm{k}$	Test at Pin 18		-109		dBm
	AM rejection	80\% AM 1kHz		45		dB
	Audio level	Gain of two (2kS AC load)	70	120	160	mV
	SINAD sensitivity	IF level-110dBm		17		dB

AC ELECTRICAL CHARACTERISTICS

CIRCUIT DESCRIPTION

The SA606 is an IF signal processing system suitable for second IF systems with input frequency as high as 150 MHz . The bandwidth of the IF amplifier and limiter is at least 2 MHz with 90 dB of gain. The gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 6.2 dB , conversion gain of 17 dB , and input third-order intercept of -9 dBm . The oscillator will operate in excess of 200 MHz in LCC tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .
The output impedance of the mixer is a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a

455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. The IF amplifier has 43dB of gain and 5.5 MHz bandwidth. The IF limiter has 60 dB of gain and 4.5 MHz bandwidth. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(\mathrm{v})$ insertion loss, a fixed or variable resistor or an L pad for simultaneous loss and impedance matching can be added between the first IF output (Pin 16) and the interstage network. The overall gain will then be 90 dB with 2 MHz bandwidth.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network.

This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
The demodulated output of the quadrature drives an internal op amp. This op amp can be configured as a unity gain buffer, or for simultaneous gain, filtering, and 2nd-order temperature compensation if needed. It can drive an AC load as low as $5 \mathrm{k} \Omega$ with a rail-to-rail output.
A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone. This signal drives an internal op amp. The op amp is capable of rail-to-rail output. It can be used for gain, filtering, or 2nd-order temperature compensation of the RSSI, if needed.

NOTE: $\mathrm{dB}(\mathrm{v})=20 \log \mathrm{~V}_{\mathrm{OUT}} \mathrm{V}_{\text {IN }}$

Automatic Test Circuit Component List

*NOTE: This value can be reduced when a battery is the power source.
Figure 1. SA606 45MHz Test Circuit (Relays as shown)

NE606D/DK Demo Board
Application Component List

C1	51 pF NPO Ceramic
C2	220 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	$5-30 \mathrm{pF}$ trim cap
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$10 \mu \mathrm{~F}$ Tantalum (minimum)
C12	$2.2 \mu \mathrm{~F} \pm 10 \%$ Tantalum
CC1	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
CC1	$10 \mathrm{pF} N P O$ Ceramic
CC17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
CC8	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
CC1	$390 \mathrm{pF} \pm 10 \%$ Monolitic Ceramic
C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C23 $100 \mathrm{nF}_{ \pm} \mathbf{1 0 \%}$ Monolithic Ceramic
C26 100 $\mathrm{nF}^{ \pm} \mathbf{1 0 \%}$ Monolithic Ceramic
C27 $2.2 \mu \mathrm{~F}$ Tantalum
FIt 1 Ceramic Filter Murata SFG455A3 or equiv
FIt 2 Ceramic Filter Murata SFG455A3 or equiv
IFT $1330_{\mu} \mathrm{H}$ TOKO 303LN-1130
L1 $.33 \mu$ H TOKO SCB-1320Z
L2 $\quad 1.2 \mu \mathrm{H}$
X1 $\quad \mathbf{4 4 . 5 4 5 M H z}$ Crystal ICM4712701
R5 Not Used in Application Board (see Note 8, pg 8)
R10 8.2k $\pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
R11 10k $\pm 5 \%$ 1/4W Carbon Composition
R17 $\quad 2.4 \mathrm{k} \pm 5 \%$ 1/4W Carbon Composition
R18 3.3k $\pm 5 \%$ 1/4W Carbon Composition
R19 11k $\pm 5 \% 1 / 4 W$ Carbon Composition

* NOTE: This value can be reduced when a battery is the power source.

Figure 2. SA606 45MHz Application Circuit

Figure 3. SA606 Application Circuit Test Set Up

NOTES:

1. C-message: The C-message and de-emphasis filter combination has a peak gain of 10 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer. The de-emphasis filter has a fixed -6dB/Octave slope between 300 Hz and 3 kHz .
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use $\mathbf{1 6 k H z}$ filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.35 \mu \mathrm{~V}$ or -116 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A 10-15 F or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by $2-3 \mathrm{~dB}$.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $10 \mathrm{k} \Omega$.

Figure 4. $I_{\text {cc }}$ vs Temperature

Figure 5. Third Order Intercept Point vs Supply Voltage

Figure 6. Mixer Nolse Figure vs Supply Voltage

Figure 7. Conversion Gain vs Supply Voltage

Figure 9. Sensitivity vs RF Level $\left(-40^{\circ} \mathrm{C}\right)$

Figure 10. Sensitivity vs RF Level ($+25^{\circ} \mathrm{C}$)

Figure 11. Sensitivity vs RF Level (Temperature $\mathbf{8 5}^{\circ} \mathrm{C}$)

Figure 12. Relative Audio Level, Distortion, AM Rejection and Noise vs Temperature

Figure 13. RSSI (455kHz IF @ 3V)

Figure 14. RSSI vs RF Level and Temperature $-V_{C C}=3 V$

Low-voltage high performance mixer FM IF system

Figure 16. SA606N DIP Product Board Layout (Actual Size* - For Reference Use Only)

Figure 17. SA606D SOL Product Board Layout (2X Actual Size* - For Reference Use Only)

Low-voltage high performance mixer FM IF system

DESCRIPTION

The SA616 is a low-voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), voltage regulator and audio and RSSI op amps. The SA616 is available in 20 -lead dual-in-line plastic, 20 -lead SOL (surface-mounted small outline large package) and 20 -lead SSOP (shrink small outline package).

The SA616 was designed for portable communication applications and will function down to 2.7 V . The RF section is similar to the famous NE615. The audio and RSSI outputs have amplifiers with access to the feedback path. This enables the designer to adjust the output levels or add filtering.

FEATURES

- Low power consumption: 3.5mA typical at $3 V$
- Mixer input to $>150 \mathrm{MHz}$
- Mixer conversion power gain of 17 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator or external oscillator can be used at higher frequencies)
- 102dB of IF Amp/Limiter gain
- 2MHz IF amp/limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a 80 dB dynamic range
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.31 \mu \mathrm{~V}$ into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
- SA616 meets cellular radio specifications
- Audio output internal op amp
- RSSI output internal op amp
- Internal op amps with rail-to-rail outputs
- ESD protection: Human Body Model 2kV Robot Model 200V

APPLICATIONS

- Portable cellular radio FM IF
- Cordless phones
- Wireless systems
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Portable high performance communication receiver
- Single conversion VHF receivers

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA616N	0408 B
20-Pin Plastic Small Outline Large (SOL) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA616D	0172 D
20-Pin Plastic Shrink Small Outline Package (SSOP) (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA616DK	1563

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING	UNITS
$\mathrm{V}_{\text {cc }}$	Single supply voltage		7	V
TSTG	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range		-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance	D package DK package N package	$\begin{aligned} & 90 \\ & 117 \\ & 75 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{C C}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
V_{cc}	Power supply voltage range		2.7		7.0	V
lcc	DC current drain			3.5	5.0	mA

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=2.4 \mathrm{k} \Omega$ and $\mathrm{R} 18=3.3 \mathrm{k} \Omega$; RF level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with de-emphasis filter and C-message weighted filter. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

AC ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
S/N	Signal-to-noise ratio	No modulation for noise		62		dB
	RF RSSI output, $\mathrm{R}_{\mathbf{9}}=2 \mathrm{k} \boldsymbol{\Omega}$	RF level $=-118 \mathrm{dBm}$		0.3	. 80	V
		RF level $=-68 \mathrm{dBm}$. 70	1.1	2	V
		RF level $=-23 \mathrm{dBm}$	1.0	1.8	2.50	V
	RSSI range			80		dB
	RSSI accuracy			± 2		dB
	IF input impedance	Pin 18	1.3	1.5		k Ω
	IF output impedance	Pin 16		0.3		$\mathrm{k} \Omega$
	Limiter input impedance	Pin 14	1.3	1.5		$\mathrm{k} \Omega$
	Limiter output impedance	Pin 11		0.3		$\mathrm{k} \Omega$
	Limiter output voltage	Pin 11		130		$\mathrm{mV}_{\text {RMS }}$
RF/IF section (int LO)						
	Audio level	$3 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}$, RF level $=-27 \mathrm{dBm}$		120		$\mathrm{mV}_{\text {RMS }}$
	System RSSI output	$3 \mathrm{~V}=\mathrm{V}_{\mathrm{Cc}}, \mathrm{RF}$ level $=-27 \mathrm{dBm}$		2.2		V
	System SINAD sensitivity	RF level $=-117 \mathrm{dBm}$		12		dB

CIRCUIT DESCRIPTION

The SA616 is an IF signal processing system suitable for second IF systems with input frequency as high as 150 MHz . The bandwidth of the IF amplifier and limiter is at least 2 MHz with 90 dB of gain. The gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 6.2 dB , conversion gain of 17 dB , and input third-order intercept of -9 dBm . The oscillator will operate in excess of 200 MHz in LC tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .

The output impedance of the mixer is a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a

455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. The IF amplifier has 43 dB of gain and 5.5 MHz bandwidth. The IF limiter has 60 dB of gain and 4.5 MHz bandwidth. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(\mathrm{v})$ insertion loss, a fixed or variable resistor or an L pad for simultaneous loss and impedance matching can be added between the first IF output (Pin 16) and the interstage network. The overall gain will then be 90 dB with 2 MHz bandwidth.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network.

This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
The demodulated output of the quadrature drives an internal op amp. This op amp can be configured as a unity gain buffer, or for simultaneous gain, filtering, and 2nd-order temperature compensation if needed. It can drive an AC load as low as $5 \mathrm{k} \Omega$ with a rail-to-rail output.

A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone. This signal drives an internal op amp. The op amp is capable of rail-to-rail output. It can be used for gain, filtering, or 2nd-order temperature compensation of the RSSI, if needed.

NOTE: $d B(v)=20 \log V_{O U T} / V_{\text {IN }}$

Figure 1. SA616 45MHz Test Circuit (Relays as shown)

NE616D/DK Demoboard
Application Component List

C1	51pF NPO Ceramic	C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C2	220pF NPO Ceramic	C26	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C5	100nF $\pm 10 \%$ Monolithic Ceramic	C27	$2.2 \mu \mathrm{~F}$ Tantalum
C6	30pF trim cap	Flt 1	Ceramic Filter Murata SFG455A3 or equiv
C7	1nF Ceramic	FIt 2	Ceramic Filter Murata SFG455A3 or equiv
C8	10.0pF NPO Ceramic	IFT 1	$330 \mu \mathrm{H}$ TOKO $303 \mathrm{LN}-1130$
C9	$100 n \mathrm{~F} \pm 10 \%$ Monolithic Ceramic	L1	. $33 \mu \mathrm{H}$ TOKO SCB-1320Z
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)	L2	$1.2 \mu \mathrm{H}$
C12	$2.2 \mu \mathrm{~F} \pm 10 \%$ Tantalum	X1	44.545MHz Crystal ICM4712701
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R5	Not Used in Application Board (see Note 8, pg 8)
C15	10pF NPO Ceramic	R10	8.2k $\pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
C17	100nF $\pm 10 \%$ Monolithic Ceramic	R11	10k ${ }^{5} \%$ 1/4W Carbon Composition
C18	$100 \mathrm{nF} \pm \mathbf{1 0 \%}$ Monolithic Ceramic	R17	2.4k $\pm 5 \%$ 1/4W Carbon Composition
C19	390 pF $\mathbf{1 0 0} \mathrm{nF}$ $\pm 10 \%$ Monolithic Ceramic	R18	3.3k $\pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R19	11k ${ }^{5} 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition

Figure 2. SA616 45MHz Application Circuit

Figure 3. SA616 Application CIrcult Test Set Up

NOTES:

1. C-message: The C-message and de-emphasis filter combination has a peak gain of 10 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer. The de-emphasis filter has a fixed -6dB/Octave slope between 300 Hz and 3 kHz .
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.35 \mu \mathrm{~V}$ or -116 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A 10-15 $\mu \mathrm{F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by $2-3 \mathrm{~dB}$.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

Low-voltage high performance mixer FM IF system

Figure 4. I_{cc} vs Temperature

Figure 5. Third Order Intercept Point vs Supply Voltage

Figure 6. Mixer Nolse Figure vs Supply Voltage

Figure 7. Conversion Gain vs Supply Voltage

Figure 8. Mixer Third Order Intercept and Compression

Figure 9. Sensitivity vs RF Level $\left(-40^{\circ} \mathrm{C}\right)$

Figure 10. Sensitivity vs RF Level $\left(+25^{\circ} \mathrm{C}\right)$

Figure 11. Sensitivity vs RF Level (Temperature $85^{\circ} \mathrm{C}$)

Figure 12. Relative Audio Level, Distortion, AM Rejection and Noise vs Temperature

Figure 13. RSSI (455kHz IF @ 3V)

Figure 14. RSSI vs RF Level and Temperature $-V_{C C}=3 V$

Low-voltage high performance mixer FM IF system

Figure 16. SA616N DIP Product Board Layout (Actual Size* - For Reference Use Only)

Figure 17. SA616D SOL Product Board Layout (2X Actual Size* - For Reference Use Only)

DESCRIPTION

The SA607 is a low voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), voltage regulator and audio and RSSI op amps. The SA607 is available in 20 -lead dual-in-line plastic, 20 -lead SOL
(surface-mounted miniature package) and 20-lead SSOP package.
The SA607 was designed for portable communication applications and will function down to 2.7 V . The RF section is similar to the famous NE605. The audio output has an internal amplifier with the feedback pin accessible. The RSSI output is buffered. The SA607 also has an extra limiter output. This signal is buffered from the output of the limiter and can be used to perform frequency check. This is accomplished by comparing a reference frequency with the frequency check signal using a comparator to a varactor or PLL at the oscillator inputs.

FEATURES

- Low power consumption: 3.5mA typical at 3V
- Mixer input to $>150 \mathrm{MHz}$
- Mixer conversion power gain of 17 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator or external oscillator can be used at higher frequencies)
- 102dB of IF Amp/Limiter gain
- 2 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a 90 dB dynamic range
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.31 \mu \mathrm{~V}$ into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone, 8 kHz deviation with RF at 45 MHz and IF at 455kHz
- SA607 meets cellular radio specifications
- Audio output internal op amp
- RSSI output internal op amp
- Buffered frequency check output
- Internal op amps with rail-to-rail outputs
- ESD protection: Human Body Model 2kV

Robot Model 200V

APPLICATIONS

- Portable cellular radio FM IF
- Cordless phones
- Narrow band cellular applications (NAMPS/NTACS)
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Portable high performance communication receivers
- Single conversion VHF receivers
- Wireless systems

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA607N	0408 B
20-Pin Plastic Small Outline Large (SOL) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA607D	0172 D
20-Pin Plastic Shirnk Small Outline Package (SSOP) (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA607DK	1563

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Single supply voltage	7	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range SA607	-40 to +85	${ }^{\circ}{ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance \quadD package DK package N package	90 117 75	${ }^{\circ}{ }^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS

$V_{C C}=+3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			SA607			
			MIN	TYP	MAX	
V cc	Power supply voltage range		2.7		7.0	V
Icc	DC current drain			3.5	4.2	mA

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=2.4 \mathrm{k} ; \mathrm{R} 18$ $=3.3 \mathrm{k}$; RF level $=-45 \mathrm{dBm} ;$ FM modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with de-emphasis filter and C-message weighted filter. Test circuit 1 . The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

NOTE:

1. The generator source impedance is 50Ω, but the $S A 607$ input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the SA607 input (Pin 18) which is about 21dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The SA607 is an IF signal processing system suitable for second IF systems with input frequency as high as 150 MHz . The bandwidth of the IF amplifier and limiter is at least 2 MHz with 90 dB of gain. The gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 6.2 dB , conversion gain of 17 dB , and input third-order intercept of -9 dBm . The oscillator will operate in excess of 200 MHz in UC tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .
The output impedance of the mixer is a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With
most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. The IF amplifier has 43 dB of gain and 5.5 MHz bandwidth. The IF limiter has 60 dB of gain and 4.5 MHz bandwidth. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor or an L pad for simultaneous loss and impedance matching can be added between the first IF output (Pin 16) and the interstage network. The overall gain will then be 90 dB with 2 MHz bandwidth.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network. This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.

The demodulated output of the quadrature drives an internal op amp. This op amp can
be configured as a unity gain buffer, or for simultaneous gain, filtering, and 2nd-order temperature compensation if needed. It can drive an AC load as low as $5 \mathrm{k} \Omega$ with a rail-to-rail output.
A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone. This signal is buffered through an internal unity gain op amp. The frequency check pin provides a buffered limiter output. This is useful for implementing an AFC (Automatic Frequency Check) function. This same output can also be used in conjunction with limiter output (Pin 11) for demodulating FSK (Frequency Shift Keying) data. Both pins are of the same amplitude, but 180° out of phase.
NOTE: Limiter output or Frequency Check output has drive capability of a load minimum of $2 \mathrm{k} \Omega$ or higher to obtain 115 mV output level.
NOTE: $d B(v)=20 \log V_{\text {OUT }} N_{\text {IN }}$

*NOTE: This value can be reduced when a battery is the power source.

Figure 1. SA607 45MHz Test Circuit (Relays as shown)

Low voltage high performance mixer FM IF system

C1	51 pF NPO Ceramic
C2	220 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	$5-30 \mathrm{pF}$ trim cap
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$10 \mu \mathrm{~F}$ Tantalum (minimum) ${ }^{\star}$
C12	$2.2 \mu \mathrm{~F} \pm 10 \%$ Tantalum
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	$10 \mathrm{pF} N P O$ Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C19	$390 \mathrm{pF} \pm 10 \%$ Monolithic Ceramic
C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C26	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C27	$2.2 \mu \mathrm{~F}$ Tantalum
FIt 1	Ceramic Filter Murata SFG455A3 or equiv
FIt 2	Ceramic Filter Murata SFG455A3 or equiv
IFT 1	$330 \mu \mathrm{H}$ TOKO 303LN-1130
L1	$.33 \mu \mathrm{H}$ TOKO SCB-1320Z
L2	$1.2 \mu \mathrm{H}$ Coilcraft 1008C S-122
X1	44.545 MHz Crystal Hy-Q
R5	Not Used in Application Board (see Note 8, pg 8)
R10	$8.2 \mathrm{k} \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
R11	$10 \mathrm{k} \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
R17	$2.4 \mathrm{k} \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
R18	$3.3 \mathrm{k} \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
R19	$11 \mathrm{k} \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition

*NOTE: This value can be reduced when a battery is the power source.

Figure 3. SA607 Application Circuit Test Set Up
NOTES:

1. C-message: The C-message and de-emphasis filter combination has a peak gain of 10 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer. The de-emphasis filter has a fixed -6dB/Octave slope between 300 Hz and 3 kHz .
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
 8 kHz if you use 30 kHz filters.
3. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.35 \mu \mathrm{~V}$ or -116 dBm at the RF input.
4. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
5. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
6. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A 10-15 μ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by 2-3dB.
7. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 k \Omega$.

Figure 4. Icc vs Temperature

Figure 5. Third Order Intercept Point vs Supply Voltage

Figure 6. Mixer Noise Figure vs Supply Voltage

Figure 7. Conversion Gain vs Supply Voltage
Figure 8. Mixer Third Order Intercept and Compression

Figure 9. Sensitivity vs RF Level $\left(-40^{\circ} \mathrm{C}\right)$

Figure 10. Sensitivity vs RF Level $\left(+25^{\circ} \mathrm{C}\right)$

Figure 11. Sensitivity vs RF Level (Temperature $85^{\circ} \mathrm{C}$)

Figure 12. Relative Audio Level, Distortion, AM Rejection and Noise vs Temperature

Figure 13. RSSI (455kHz IF @ 3V)

Figure 14. RSSI vs RF Level and Temperature - $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$

Low voltage high performance mixer FM IF system

DESCRIPTION

The SA617 is a low voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), voltage regulator and audio and RSSI op amps. The SA617 is available in 20 -lead dual-in-line plastic, 20 -lead SOL (surface-mounted miniature package) and 20-lead SSOP package.
The SA617 was designed for portable communication applications and will function down to 2.7 V . The RF section is similar to the famous NE605. The audio output has an internal amplifier with the feedback pin accessible. The RSSI output is buffered. The SA617 also has an extra limiter output. This signal is buffered from the output of the limiter and can be used to perform frequency check. This is accomplished by comparing a reference frequency with the frequency check signal using a comparator to a varactor or PLL at the oscillator inputs.

FEATURES

- Low power consumption: 3.5mA typical at 3V
- Mixer input to $>150 \mathrm{MHz}$
- Mixer conversion power gain of 17 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator or external oscillator can be used at higher frequencies)
- 102dB of IF Amp/Limiter gain
- 2 MHz IF amp/limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a 80 dB dynamic range
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.31 \mu \mathrm{~V}$ into 50Ω matching network for 12 dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone, 8 kHz deviation with RF at 45 MHz and IF at 455kHz
- SA617 meets cellular radio specifications
- Audio output internal op amp
- RSSI output internal op amp
- Buffered frequency check output
- Internal op amps with rail-to-rail outputs
- ESD protection: Human Body Model 2kV Robot Model 200V

APPLICATIONS

- Portable cellular radio FM IF
- Cordless phones
- Narrow band cellular applications (NAMPS/NTACS)
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Portable high performance communication receivers
- Single conversion VHF receivers
- Wireless systems

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
$20-$ Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA617N	0408 B
20 -Pin Plastic Small Outline Large (SOL) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA617D	0172 D
20-Pin Plastic Shrink Small Outline Package (SSOP) (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA617DK	1563

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Single supply voltage	7	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range SA617	-40 to +85	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance \quadD package DK package N package	90 117 75	${ }^{\circ} \mathrm{C} \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{C C}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			SA617			
			MIN	TYP	MAX	
V_{cc}	Power supply voltage range		2.7		7.0	V
Icc	DC current drain			3.5	5.0	mA

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=2.4 \mathrm{k}$; R18 $=3.3 \mathrm{k}$; RF level $=-45 \mathrm{dBm}$; FM modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with de-emphasis filter and C -message weighted filter. Test circuit 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			SA617			
			MIN	TYP	MAX	
Mixer/Osc section (ext LO $=220 \mathrm{mV}$ RMS)						
f_{IN}	Input signal frequency			150		MHz
fosc	Crystal oscillator frequency			150		MHz
	Noise figure at 45 MHz			6.8		dB
	Third-order input intercept point (50Ω source)	$\begin{aligned} & \mathrm{f1}=45.0 ; f 2=45.06 \mathrm{MHz} \\ & \text { Input RF Level }=-52 \mathrm{dBm} \end{aligned}$		-9		dBm
	Conversion power gain	Matched 14.5dBV step-up	11.0	17		dB
		50Ω source		+2.5		dB
	RF input resistance	Single-ended input		8		k Ω
	RF input capacitance			3.0	4.0	pF
	Mixer output resistance	(Pin 20)	1.25	1.5		k Ω
IF section						
	IF amp gain	50Ω source		44		dB
	Limiter gain	50Ω source		58		dB
	Input limiting -3dB, $\mathrm{R}_{17}=2.4 \mathrm{k}$	Test at Pin 18		-105		dBm
	AM rejection	80\% AM 1kHz		40		dB
	Audio level	Gain of two (2kS AC load)	60	114		mV
	SINAD sensitivity	RF level - 110dB		13		dB
THD	Total harmonic distortion		-30	-45		dB
S/N	Signal-to-noise ratio	No modulation for noise		62		dB
	IF RSSI output, $\mathrm{R}_{9}=2 \mathrm{k} \Omega^{1}$	IF level $=-118 \mathrm{dBm}$		0.3	0.8	V
		IF level $=-68 \mathrm{dBm}$. 70	1.1	2.0	V
		IF level $=-23 \mathrm{dBm}$	1.0	1.8	2.5	V
	RSSI range			80		dB
	RSSI accuracy			± 2.0		dB
	IF input impedance		1.3	1.5		k Ω
	IF output impedance			0.3		$\mathrm{k} \Omega$
	Limiter input impedance		1.30	1.5		k Ω
	Limiter output impedance	(Pin 11)		200		Ω
	Limiter output level	(Pin 11) No load $2.4 \mathrm{k} \Omega$ load		$\begin{aligned} & 130 \\ & 115 \end{aligned}$		mV RMS
	Frequency Check/limiter output impedance	(Pin 9)		200		Ω
	Frequency Checklimiter output level	(Pin 9) No load $2.4 \mathrm{k} \Omega$ load		$\begin{aligned} & 130 \\ & 115 \end{aligned}$		$m V_{\text {RMS }}$
RF/IF section (int LO)						
	Audio level	$3 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}$, RF level $=-27 \mathrm{dBm}$		240		$\mathrm{mV}_{\text {RMS }}$
	System RSSI output	$3 \mathrm{~V}=\mathrm{V}_{\mathrm{CC}}$, RF level $=-27 \mathrm{dBm}$		2.2		V
	System SINAD sensitivity	RF level $=-117 \mathrm{dBm}$		12		dB

NOTE:

1. The generator source impedance is 50Ω, but the SA617 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the SA617 input (Pin 18) which is about 21 dB less than the "available power" at the generator.

Low-voltage high performance mixer FM IF system

CIRCUIT DESCRIPTION

The SA617 is an IF signal processing system suitable for second IF systems with input frequency as high as 150 MHz . The bandwidth of the IF amplifier and limiter is at least 2 MHz with 90 dB of gain. The gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.

The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 6.2 dB , conversion gain of 17 dB , and input third-order intercept of -9 dBm . The oscillator will operate in excess of 200 MHz in LC tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .

The output impedance of the mixer is a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With
most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. The IF amplifier has 43 dB of gain and 5.5 MHz bandwidth. The IF limiter has 60 dB of gain and 4.5 MHz bandwidth. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(\mathrm{v})$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor or an L pad for simultaneous loss and impedance matching can be added between the first IF output (Pin 16) and the interstage network. The overall gain will then be 90 dB with 2 MHz bandwidth.

The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is $A C$-coupled to a tuned quadrature network. This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
The demodulated output of the quadrature drives an internal op amp. This op amp can
be configured as a unity gain buffer, or for simultaneous gain, filtering, and 2nd-order temperature compensation if needed. It can drive an AC load as low as $2 \mathrm{k} \Omega$ with a rail-to-rail output.

A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone. This signal is buffered through an internal unity gain op amp. The frequency check pin provides a buffered limiter output. This is useful for implementing an AFC (Automatic Frequency Check) function. This same output can also be used in conjunction with limiter output (Pin 11) for demodulating FSK (Frequency Shift Keying) data. Both pins are of the same amplitude, but 180° out of phase.

NOTE: Limiter output or Frequency Check output has drive capability of a load minimum of $2 \mathrm{k} \Omega$ or higher to obtain 115 mV output level.

NOTE: $d B(v)=20 \log V_{\text {Out }} V_{\text {IN }}$

Figure 1. SA617 45MHz Test Circuit (Relays as shown)

SA617DK
Application Component List

C1A	18pF NPO Ceramic	C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C1	33pF NPO Ceramic	C26	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C2	220pF NPO Ceramic	C27	2.2 $\mu \mathrm{F}$ Tantalum
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	FIt 1	Ceramic Filter Murata SFG455A3 or equiv
C6	30pF trim cap	FIt 2	Ceramic Filter Murata SFG455A3 or equiv
C7	1nF Ceramic	IFT 1	$330 \mu \mathrm{H}$ TOKO 303LN-1130
C8	10.0pF NPO Ceramic	L1	. $33 \mu \mathrm{H}$ TOKO SCB-1320Z
C9	$100 \mathrm{nF}_{ \pm} 10 \%$ Monolithic Ceramic	L2	$1.2 \mu \mathrm{H}$
C10	$15 \mu \mathrm{~F}$ Tantalum (minimum)	X1	44.545MHz Crystal ICM4712701
C12	$2.2 \mu \mathrm{~F}+10 \%$ Tantalum	R5	Not Used in Application Board (see Note 8, pg 8)
C14	$100 \mathrm{nF}_{ \pm} \mathbf{1 0 \%}$ Monolithic Ceramic	R10	8.2k $\pm 5 \%$ 1/4W Carbon Composition
C15	10pF NPO Ceramic	R11	10k $\pm 5 \%$ 1/4W Carbon Composition
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R17	2.4k ${ }^{\text {5 }}$ \% 1/4W Carbon Composition
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R18	3.3k $\pm 5 \%$ 1/4W Carbon Composition
$\begin{aligned} & \text { C19 } \\ & \mathbf{C 2 1} \end{aligned}$	$390 \mathrm{pF} \pm 10 \%$ Monolithic Ceramic $100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R19	11k $\pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition

Figure 2. SA617 45MHz Application Circuit

Figure 3. SA617 Application Circuit Test Set Up
NOTES:

1. C-message: The C-message and de-emphasis filter combination has a peak gain of 10 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer. The de-emphasis filter has a fixed -6dB/Octave slope between 300 Hz and 3 kHz .
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.35 \mu \mathrm{~V}$ or -116 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A $10-15 \mu \mathrm{~F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by 2-3dB.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

Figure 4. $I_{\text {cc }}$ vs Temperature

Figure 5. Third Order Intercept Point vs Supply Voltage

Figure 6. Mixer Noise Figure vs Supply Voltage

Figure 7. Conversion Gain vs Supply Voltage
*50 ${ }^{\circ}$ INPUT

Figure 8. Mixer Third Order Intercept and Compression

Figure 9. Sensitivity vs RF Level $\left(-40^{\circ} \mathrm{C}\right)$

Figure 10. Sensitivity vs RF Level $\left(+25^{\circ} \mathrm{C}\right)$

Figure 11. Sensitivity vs RF Level (Temperature $85^{\circ} \mathrm{C}$)

Figure 12. Relative Audio Level, Distortion, AM Rejection and Noise vs Temperature

Figure 13. RSSI (455kHz IF @ 3V)

Figure 14. RSSI vs RF Level and Temperature $-V_{C C}=3 V$

Low-voltage high performance mixer FM IF system

DESCRIPTION

The SA608 is a low voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), voltage regulator and audio and RSSI op amps. The SA608 is available in 20 -lead dual-in-line plastic, 20 -lead SOL
(surface-mounted miniature package) and 20-lead SSOP package.

The SA608 was designed for portable communication applications and will function down to 2.7V. The RF section is similar to the famous NE605. The audio output is buffered. The RSSI output has an internal amplifier with the feedback pin accessible. The SA608 also has an extra limiter output. This signal is buffered from the output of the limiter and can be used to perform frequency check. This is accomplished by comparing a reference frequency with the frequency check signal using a comparator to a varactor or PLL at the oscillator inputs.

FEATURES

- Low power consumption: 3.5mA typical at $3 V$
- Mixer input to $>150 \mathrm{MHz}$
- Mixer conversion power gain of 17 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator or external oscillator can be used at higher frequencies)
- 102dB of IF Amp/Limiter gain
- 2 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a 90 dB dynamic range
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.31 \mu \mathrm{~V}$ into 50Ω matching network for 12 dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone, 8 kHz deviation with RF at 45 MHz and IF at 455 kHz
- SA608 meets cellular radio specifications
- Audio output internal op amp
- RSSI output internal op amp
- Buffered frequency check output
- Internal op amps with rail-to-rail outputs
- ESD protection: Human Body Model 2kV

Robot Model 200V

APPLICATIONS

- Portable cellular radio FM IF
- Cordless phones
- Narrow band cellular applications (NAMPS/NTACS)
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Portable high performance communication receivers
- Single conversion VHF receivers
- Wireless systems

PIN CONFIGURATION

D, DK and N Packages	
RFIN+ \square	
OsCout ${ }^{3}$	
$\mathrm{OSCIN}_{1 / 4}{ }^{17}$	
RSSI 5 -16IF AN	
$v_{c c} 6$	
avoio 7	
FEEDBACK ${ }^{\text {RSS }}$	
FREOCHECK	
	LMMTER

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG\#
20-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA608N	0408 B
20-Pin Plastic Small Outline Large (SOL) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA608D	0172 D
20-Pin Plastic Shrink Small Outline Package (SSOP) (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA608DK	1563

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Single supply voltage	7	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range SA608	-40 to +85	${ }^{\circ}{ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance \quadD package DK package N package	90 117 75	${ }^{\circ} \mathrm{C} \mathrm{CW}$

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			SA608			
			MIN	TYP	MAX	
V_{cc}	Power supply voltage range		2.7		7.0	V
lcc	DC current drain			3.5	4.2	mA

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=2.4 \mathrm{k}$; R18 $=3.3 \mathrm{k}$; RF level $=-45 \mathrm{dBm} ;$ FM modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with de-emphasis filter and C -message weighted filter. Test circuit 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

NOTE:

1. The generator source impedance is 50Ω, but the SA608 input impedance at $\operatorname{Pin} 18$ is 1500Ω. As a result, IF level refers to the actual signal that enters the SA608 input (Pin 18) which is about 21 dB less than the "available power" at the generator
2. By using $45 \mathrm{k} \Omega$ load across the Quad detector coil, you will have Audio output at 115 mV with -42 dB distortion.

Low voltage high performance mixer FM IF system

CIRCUIT DESCRIPTION

The SA608 is an IF signal processing system suitable for second IF systems with input frequency as high as 150 MHz . The bandwidth of the IF amplifier and limiter is at least 2 MHz with 90 dB of gain. The gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.

The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 6.2 dB , conversion gain of 17 dB , and input third-order intercept of -9 dBm . The oscillator will operate in excess of 200 MHz in UC tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .
The output impedance of the mixer is a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of
the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. The IF amplifier has 43 dB of gain and 5.5 MHz bandwidth. The IF limiter has 60 dB of gain and 4.5 MHz bandwidth. To achieve optimum linearity of the log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor or an L pad for simultaneous loss and impedance matching can be added between the first IF output (Pin 16) and the interstage network. The overall gain will then be 90 dB with 2 MHz bandwidth.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network. This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.

The demodulated output of the quadrature drives an internal op amp. This op amp is configured as a unity gain buffer.
A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone. This signal is buffered through an internal unity gain op amp. The frequency check pin provides a buffered limiter output. This is useful for implementing an AFC (Automatic Frequency Check) function. This same output can also be used in conjunction with limiter output (Pin 11) for demodulating FSK (Frequency Shift Keying) data. Both pins are of the same amplitude, but 180° out of phase.

NOTE: Limiter or Frequency Check output has drive capability of a $5 \mathrm{k} \Omega$ minimum or higher in order to obtain $120 \mathrm{~m} \mathrm{~V}_{\text {RMS }}$ output level.

NOTE: $\mathrm{dB}(\mathrm{v})=20 \log \mathrm{~V}_{\mathrm{OUT}} / V_{\text {IN }}$

Automatic Test Circuit Component List

C1	100 pF NPO Ceramic
C2	390 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22 pF NPO Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$10 \mu \mathrm{~F}$ Tantalum (minimum) ${ }^{*}$
C12	2.2 F
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	10 pF NPO Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C23	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C26	$0.1 \mu \mathrm{~F} \pm 10 \%$ Monolithic Ceramic
C27	$2.2 \mu \mathrm{~F}$
FIt 1	Ceramic Filter Murata SFG455A3 or equiv
FIt 2	Ceramic Filter Murata SFG455A3 or equiv
IFT 1	455 kHz (Ce $=180 \mathrm{pF}$) Toko RMC-2A6597H
L1	$147-160 \mathrm{nH}$ Coilcraft UNI-10/142-04J08S
L2	$0.8 \mu \mathrm{H}$ nominal
	Toko 292CNS-T1038Z
X1	44.545 MHz Crystal ICM4712701
R9	$2 \mathrm{k} \Omega \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film
R10	$10 \mathrm{k} \Omega \pm \pm \%$
R11	$10 \mathrm{k} \Omega \pm 1 \%$
R14	$5 \mathrm{k} \Omega \pm 1 \%$
R17	$2.4 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
R18	$3.3 \mathrm{k} \Omega \pm 5 \% 114 W$ Carbon Composition
R19	$16 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition

*NOTE: This value can be reduced when a battery is the power source.
Figure 1. SA607 45MHz Test Circuit (Relays as shown)

Product Board SA608D/DK Component List

C1	51pF NPO Ceramic	C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C2	220pF NPO Ceramic	C26	$\mathbf{0 . 1 \mu \mathrm { F }} \pm 10 \%$ Monolithic Ceramic
C5	100nF $\pm 10 \%$ Monolithic Ceramic	C27	$2.2 \mu \mathrm{~F}$
C6	$5-30 \mathrm{pF}$ NPO Ceramic	Fit 1	Ceramic Filter Murata SFG455A3 or equiv
C7	1nF Ceramic	Fit 2	Ceramic Filter Murata SFG455A3 or equiv
C8	10.0pF NPO Ceramic	IFT 1	$330 \mu \mathrm{H}$ TOKO 303LN-1130
C9	100nF $\pm 10 \%$ Monolithic Ceramic	$L 1$	$0.33 \mu \mathrm{H}$ TOKO SCB-1320Z
C10	$10 \mu \mathrm{~F}$ Tantalum (minimum) *	L2	1.2 $\mu \mathrm{H}$ Coilcraft 1008CS-122
C12	$2.2 \mu \mathrm{~F}$	X1	44.545MHz Crystal Hy-Q
C14	100nF $\pm 10 \%$ Monolithic Ceramic	R9	2k $\mathrm{m}^{\text {a }}$ (\% 1/4W Metal Film
C15	10pF NPO Ceramic	R10	$8.2 \mathrm{k} \Omega \pm 1 \%$
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R11	$10 \mathrm{k} \Omega \pm 1 \%$
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R14 R17	$10 \mathrm{k} \Omega \pm 1 \%$ $2.4 \mathrm{k} \Omega+5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
C19	390pF $\pm \mathbf{1 0 \%}$ Monolithic Ceramic	R18	$3.3 \mathrm{k} \Omega+5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
C21	100nF $\pm 10 \%$ Monolithic Ceramic	R19	$16 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition

*NOTE: This value can be reduced when a battery is the power source.

Figure 2. SA608 45MHz Test Circuit (Relays as shown)

Figure 3. SA608 Application Circuit Test Set Up

NOTES:

1. C-message: The C-message and de-emphasis filter combination has a peak gain of 10 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer. The de-emphasis filter has a fixed -6dB/Octave slope between 300 Hz and 3 kHz .
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.35 \mu \mathrm{~V}$ or -116 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A 10-15 $\mu \mathrm{F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by $2-3 \mathrm{~dB}$.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

Low voltage high performance mixer FM IF system

Figure 4. I_{CC} vs Temperature

Figure 5. Third Order Intercept Point vs Supply Voltage

Figure 6. Mixer Noise Figure vs Supply Voltage

Figure 7. Conversion Gain vs Supply Voltage

Figure 8. Mixer Third Order Intercept and Compression

Figure 9. Sensitivity vs RF Level $\left(-40^{\circ} \mathrm{C}\right)$

Figure 10. Sensitivity vs RF Level $\left(+25^{\circ} \mathrm{C}\right)$

Figure 11. Sensitivity vs RF Level (Temperature $85^{\circ} \mathrm{C}$)

Figure 12. Relative Audio Level, Distortion, AM Rejection and Noise vs Temperature

Figure 13. RSSI (455kHz IF @ 3V)

Figure 14. RSSI vs RF Level and Temperature $-\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$

DESCRIPTION

The NE/SA624 is pin-to-pin compatible with the NE/SA604A, but has faster RSSI rise and fall time. The NE/SA624 is an improved monolithic low-power FM IF system incorporating two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator, and voltage regulator. The NE/SA624 features higher IF bandwidth (25 MHz) and temperature compensated RSSI and limiters permitting higher performance application compared with the NE/SA604. The NE/SA624 is available in a 16 -lead dual-in-line plastic and 16 -lead SO (surface-mounted miniature) package.

APPLICATIONS

- Digital cellular base station
- Cellular radio FM IF
- High performance communications receivers
- Intermediate frequency amplification and detection up to 25 MHz
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers

PIN CONFIGURATION

FEATURES

- Low power consumption: 3.4mA typical
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Fast RSSI rise and fall time
- Two audio outputs - muted and unmuted
- Low external component count; suitable for crystal/ceramic filters
- Excellent sensitivity: $1.5 \mu \mathrm{~V}$ across input pins ($0.22 \mu \mathrm{~V}$ into 50Ω matching network) for 12dB SINAD (Signal to Noise and Distortion ratio) at 455 kHz
- SA624 meets cellular radio specifications

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
$16-$ Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE624N	0406 C
16 -Pin Plastic Small Outline (SO) package (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE624D	0005 D
16 -Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA624N	0406 C
16 -Pin Plastic Small Outline (SO) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA624D	0005 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{Cc}	Single supply voltage	9	V
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}		$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\theta_{\text {JA }}$	$\begin{array}{ll}\text { Thermal impedance } & \\ & \text { D package } \\ \mathrm{N} \text { package }\end{array}$	$\begin{aligned} & 90 \\ & 75 \end{aligned}$	$\begin{aligned} & \circ{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS						UNITS	
			NE624	SA624							
			MIN	TYP	MAX	MIN	TYP	MAX			
V cc	Power supply voltage range				4.5		8.0	4.5		8.0	V
lcc	DC current drain				2.5	3.4	4.2	2.5	3.4	4.2	mA
	Mute switch input threshold	$\begin{aligned} & \text { (ON) } \\ & \text { (OFF) } \end{aligned}$		1.7		1.0	1.7		1.0	V	

High performance low power FM IF system with high-speed RSSI

AC ELECTRICAL CHARACTERISTICS

Typical reading at $T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}$, unless otherwise stated. IF frequency $=455 \mathrm{kHz}$; IF level $=-47 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C-message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE624			SA624			
			MIN	TYP	MAX	MIN	TYP	MAX	
	Input limiting -3dB	Test at Pin 16		-92			-92		dBm/50 Ω
	AM rejection	80\% AM 1kHz	30	34		30	34		dB
	Recovered audio level	15 nF de-emphasis	110	175	250	80	175	260	$\mathrm{mV} \mathrm{V}_{\text {MS }}$
	Recovered audio level	150pF de-emphasis	.	530			530		$\mathrm{mV} \mathrm{V}_{\text {RMS }}$
THD	Total harmonic distortion		-35	-42		-34	-42		dB
S/N	Signal-to-noise ratio	No modulation for noise		73			73		dB
		RF level $=-118 \mathrm{dBm}$	0	160	550	0	160	650	mV
	RSSI output ${ }^{1}$	RF level $=-68 \mathrm{dBm}$	2.0	2.65	3.0	1.9	2.65	3.1	V
		RF level $=-18 \mathrm{dBm}$	4.1	4.85	5.5	4.0	4.85	5.6	V
		$\text { IF freq. }=455 \mathrm{kHz}$							
		$\text { \|F level }=-44 \mathrm{dBm}$		1.1			1.1		$\mu \mathrm{s}$
	RSSI output rise time	IF level $=-16 \mathrm{dBm}$		1.2			1.2		$\mu \mathrm{s}$
	(10kHz pulse, no IF filter)	$\text { IF freq. }=10.7 \mathrm{MHz}$							
		$\text { IF level }=-44 \mathrm{dBm}$		1.2			1.2		$\mu \mathrm{s}$
		IF level $=-16 \mathrm{dBm}$		1.1			1.1		$\mu \mathrm{s}$
		$\text { IF freq. }=455 \mathrm{kHz}$							
		$\text { \|F level }=-44 \mathrm{dBm}$		1.3			1.3		$\mu \mathrm{s}$
	RSSI output fall time	IF level $=-16 \mathrm{dBm}$		4.7			4.7		$\mu \mathrm{s}$
	(10kHz pulse, no IF filter)	$\text { IF freq. }=10.7 \mathrm{MHz}$							
		$\text { IF level }=-44 \mathrm{dBm}$		1.6			1.6		$\mu \mathrm{s}$
				4.2			4.2		$\mu \mathrm{s}$
	RSSI range	$\mathrm{R}_{4}=100 \mathrm{k}$ (Pin 5)		90			90		dB
	RSSI accuracy	$\mathrm{R}_{4}=100 \mathrm{k}$ (Pin 5)		± 1.5			± 1.5		dB
	IF input impedance		1.4	1.6		1.4	1.6		$\mathrm{k} \Omega$
	IF output impedance		0.85	1.0		0.85	1.0		$\mathrm{k} \Omega$
	Limiter input impedance		1.4	1.6		1.4	1.6		$\mathrm{k} \Omega$
	Limiter output impedance			300			300		Ω
	Limiter output level no load			280			280		$\mathrm{mV}_{\text {RMS }}$
	Unmuted audio output resistance			58			58		k Ω
	Muted audio output resistance			58			58		k Ω

NOTE:

1. NE604 data sheets refer to power at 50Ω input termination; about 21 dB less power actually enters the internal 1.5 k input.

NE604 (50)	NE624 (1.5k)/NE605 (1.5k
-97 dBm	-118 dBm
-47 dBm	-68 dBm
+3 dBm	-18 dBm

High performance low power FM IF system with

Figure 1. NE/SA624 Test Circuit

High performance low power FM IF system with high-speed RSSI

Figure 3. Typical Application Cellular Radio (45 MHz to $\mathbf{4 5 5 k H z}$)

CIRCUIT DESCRIPTION

The NE/SA624 is a very high gain, high frequency device. Correct operation Is not possible if good RF layout and gain stage practices are not used. The NE/SA624 cannot be evaluated independent of circuit, components, and board layout. A physical layout which correlates to the electrical limits is shown in Figure 1. This configuration can be used as the basis for production layout.
The NE/SA624 is an IF signal processing system suitable for IF frequencies as high as 21.4 MHz . The device consists of two limiting amplifiers, quadrature detector, direct audio output, muted audio output, and signal strength indicator (with output characteristic). The sub-systems are shown in Figure 2. A typical application with 45 MHz input and 455 kHz IF is shown in Figure 3.

IF Amplifiers

The IF amplifier section consists of two loglimiting stages. The first consists of two differential amplifiers with 39 dB of gain and a small signal bandwidth of 41 MHz (when driven from a 50Ω source). The output of the first limiter is a low impedance emitter follower with $1 \mathrm{k} \Omega$ of equivalent series resistance. The second limiting stage consists of three differential amplifiers with a gain of 62 dB and a small signal $A C$
bandwidth of 28 MHz . The outputs of the final differential stage are buffered to the internal quadrature detector. One of the outputs is available at Pin 9 to drive an external quadrature capacitor and L/C quadrature tank.
Both of the limiting amplifier stages are DC biased using feedback. The buffered output of the final differential amplifier is fed back to the input through $42 \mathrm{k} \Omega$ resistors. As shown in Figure 2, the input impedance is
established for each stage by tapping one of the feedback resistors $1.6 \mathrm{k} \Omega$ from the input. This requires one additional decoupling capacitor from the tap point to ground.

Because of the very high gain, bandwidth and input impedance of the limiters, there is a very real potential for instability at IF frequencies above 455 kHz . The basic phenomenon is shown in Figure 6. Distributed feedback (capacitance, inductance and radiated fields)

Figure 5. Second Limiter and Quadrature Detector

Figure 6. Feedback Paths

a. Terminating High Impedance Filters with Transformation to Low Impedance

b. Low Impedance Termination and Gain Reduction

Figure 7. Practical Termination

Figure 8. Crystal Input Filter with Ceramic Interstage Filter
forms a divider from the output of the limiters back to the inputs (including RF input). If this feedback divider does not cause attenuation greater than the gain of the forward path, then oscillation or low level regeneration is likely. If regeneration occurs, two symptoms may be present: (1)The RSSI output will be high with no signal input (should nominally be 250 mV or lower), and (2) the demodulated
output will demonstrate a threshold. Above a certain input level, the limited signal will begin to dominate the regeneration, and the demodulator will begin to operate in a "normal" manner.
There are three primary ways to deal with regeneration: (1) Minimize the feedback by gain stage isolation, (2) lower the stage input
impedances, thus increasing the feedback attenuation factor, and (3) reduce the gain. Gain reduction can effectively be accomplished by adding attenuation between stages. This can also lower the input impedance if well planned. Examples of impedance/gain adjustment are shown in

High performance low power FM IF system with high-speed RSSI

Figure 7. Reduced gain will result in reduced limiting sensitivity.
A feature of the NE624 IF amplifiers, which is not specified, is low phase shift. The NE624 is fabricated with a 10 GHz process with very small collector capacitance. It is advantageous in some applications that the phase shift changes only a few degrees over a wide range of signal input amplitudes.
Additional information will be provided in the upcoming product specification (this is a preliminary specification) when characterization is complete.

Stabillty Considerations

The high gain and bandwidth of the NE624 in combination with its very low currents permit circuit implementation with superior performance. However, stability must be maintained and, to do that, every possible feedback mechanism must be addressed. These mechanisms are: 1) Supply lines and ground, 2) stray layout inductances and capacitances, 3) radiated fields, and 4) phase shift. As the system IF increases, so must the attention to fields and strays. However, ground and supply loops cannot be overlooked, especially at lower frequencies. Even at 455 kHz , using the test layout in Figure 1, instability will occur if the supply line is not decoupled with two high quality RF capacitors, a $0.1 \mu \mathrm{~F}$ monolithic right at the $V_{c c}$ pin, and a $6.8 \mu \mathrm{~F}$ tantalum on the supply line. An electrolytic is not an adequate substitute. At 10.7 MHz , a $1 \mu \mathrm{~F}$ tantalum has proven acceptable with this layout. Every layout must be evaluated on its own merit, but don't underestimate the importance of good supply bypass.

At 455 kHz , if the layout of Figure 1 or one substantially similar is used, it is possible to directly connect ceramic filters to the input and between limiter stages with no special consideration. At frequencies above 2 MHz , some input impedance reduction is usually necessary. Figure 7 demonstrates a practical means.

As illustrated in Figure 8, 430Ω external resistors are applied in parallel to the internal $1.6 \mathrm{k} \Omega$ load resistors, thus presenting approximately 330Ω to the filters. The input filter is a crystal type for narrowband selectivity. The filter is terminated with a tank which transforms to 330Ω. The interstage filter is a ceramic type which doesn't contribute to system selectivity, but does suppress wideband noise and stray signal pickup. In wideband 10.7 MHz IFs the input filter can also be ceramic, directly connected to $\operatorname{Pin} 16$.

In some products it may be impractical to utilize shielding, but this mechanism may be
appropriate to 10.7 MHz and 21.4 MHz IF. One of the benefits of low current is lower radiated field strength, but lower does not mean non-existent. A spectrum analyzer with an active probe will clearly show IF energy with the probe held in the proximity of the second limiter output or quadrature coil. No specific recommendations are provided, but mechanical shielding should be considered if layout, bypass, and input impedance reduction do not solve a stubborn instability.

The final stability consideration is phase shift. The phase shift of the limiters is very low, but there is phase shift contribution from the quadrature tank and the filters. Most filters demonstrate a large phase shift across their passband (especially at the edges). If the quadrature detector is tuned to the edge of the filter passband, the combined filter and quadrature phase shift can aggravate stability. This is not usually a problem, but should be kept in mind.

Quadrature Detector

Figure 5 shows an equivalent circuit of the NE624 quadrature detector. It is a multiplier cell similar to a mixer stage. Instead of mixing two different frequencies, it mixes two signals of common frequency but different phase. Internal to the device, a constant amplitude (limited) signal is differentially applied to the lower port of the multiplier. The same signal is applied single-ended to an external capacitor at Pin 9. There is a 90° phase shift across the plates of this capacitor, with the phase shifted signal applied to the upper port of the multiplier at Pin 8. A quadrature tank (parallel L/C network) permits frequency selective phase shifting at the IF frequency. This quadrature tank must be returned to ground through a DC blocking capacitor.
The loaded Q of the quadrature tank impacts three fundamental aspects of the detector: Distortion, maximum modulated peak deviation, and audio output amplitude. Typical quadrature curves are illustrated in Figure 10. The phase angle translates to a shift in the multiplier output voltage.
Thus a small deviation gives a large output with a high Q tank. However, as the deviation from resonance increases, the nonlinearity of the curve increases (distortion), and, with too much deviation, the signal will be outside the quadrature region (limiting the peak deviation which can be demodulated). If the same peak deviation is applied to a lower Q tank, the deviation will remain in a region of the curve which is more linear (less distortion), but creates a smaller phase angle (smaller output amplitude). Thus the Q of the quadrature tank must be tailored to the
design. Basic equations and an example for determining Q are shown below. This explanation includes first-order effects only.

Frequency Discriminator Design

 Equations for NE624

where $\omega_{1}=\frac{1}{\sqrt{L\left(C_{P}+C_{S}\right)}}$

$$
\begin{equation*}
Q_{1}=R\left(C_{P}+C_{s}\right) \omega_{1} \tag{1c}
\end{equation*}
$$

From the above equation, the phase shift between nodes 1 and 2, or the phase across C_{S} will be;

Figure 10 is the plot of ϕ vs. $\left(\frac{\omega}{\omega_{1}}\right)$
It is notable that at $\omega=\omega_{1}$, the phase shift is
$\frac{\pi}{2}$ and the response is close to a straight
line with a slope of $\frac{\Delta \phi}{\Delta \omega}=\frac{2 Q_{1}}{\omega_{1}}$
The signal V_{0} would have a phase shift of $\left[\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right]$ with respect to the $V_{\mathbb{N}}$.
If $V_{\mathbb{N}}=A \operatorname{Sin} \omega t \Rightarrow V_{O}=A$

$$
\begin{equation*}
\operatorname{Sin}\left[\omega t+\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right] \tag{3}
\end{equation*}
$$

Multiplying the two signals in the mixer, and low pass filtering yields:

$$
\begin{align*}
V_{\mathbb{N}} \bullet V_{\mathrm{O}} & =A^{2} \operatorname{Sin} \omega t \tag{4}\\
& \operatorname{Sin}\left[\omega t+\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right]
\end{align*}
$$

after low pass filtering

$$
\begin{align*}
\Rightarrow V_{\text {OUT }} & =\frac{1}{2} A^{2} \cos \left[\frac{\pi}{2}-\frac{2 Q_{1}}{\omega_{1}} \omega\right] \tag{5}\\
& =\frac{1}{2} A^{2} \sin \left(\frac{2 Q_{1}}{\omega_{1}}\right) \omega
\end{align*}
$$

$V_{\text {OUT }} \propto 2 Q_{1} \frac{\omega_{1}}{\omega}=\left[2 Q_{1}\left(\frac{\omega_{1}+\Delta \omega}{\omega_{1}}\right)\right]$
For $\frac{2 Q_{1} \omega}{\omega_{1}} \ll \frac{\pi}{2}$
Which is discriminated FM output. (Note that $\Delta \omega$ is the deviation frequency from the carrier ω_{1}.

Ref. Krauss, Raab, Bastian; Solid State Radio Eng.; Wiley, 1980, p. 311. Example: At 455 kHz IF, with $\pm 5 \mathrm{kHz}$ FM deviation. The maximum normalized frequency will be

$$
\frac{455 \pm 5 \mathrm{kHz}}{455}=1.010 \text { or } 0.990
$$

Go to the f vs. normalized frequency curves (Figure 10) and draw a vertical straight line at $\frac{\omega}{\omega_{1}}=1.01$.

The curves with $Q=100, Q=40$ are not linear, but $Q=20$ and less shows better linearity for this application. Too small Q decreases the amplitude of the discriminated FM signal. (Eq. 6) \Rightarrow Choose a $Q=20$
The internal R of the 624 is 40 k . From Eq. 1 c , and then 1b, it results that

$$
C_{P}+C_{S}=174 \mathrm{pF} \text { and } \mathrm{L}=0.7 \mathrm{mH}
$$

A more exact analysis including the source resistance of the previous stage shows that there is a series and a parallel resonance in the phase detector tank. To make the parallel and series resonances close, and to get maximum attenuation of higher harmonics at 455 kHz IF, we have found that a $\mathrm{C}_{\mathrm{S}}=10 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{P}}=164 \mathrm{pF}$ (commercial values of 150 pF or 180 pF may be practical), will give the best results. A variable inductor which can be adjusted around 0.7 mH should be chosen and optimized for minimum distortion. (For 10.7 MHz , a value of $\mathrm{C}_{\mathrm{s}}=1 \mathrm{pF}$ is recommended.)

Audio Outputs

Two audio outputs are provided. Both are PNP current-to-voltage converters with $55 \mathrm{k} \Omega$ nominal internal loads. The unmuted output is always active to permit the use of signaling tones in systems such as cellular radio. The other output can be muted with 70dB typical
uation. The two outputs have an internal 180° phase difference.
The nominal frequency response of the audio outputs is 300 kHz . this response can be increased with the addition of external resistors from the output pins to ground in parallel with the internal 55 k resistors, thus lowering the output time constant. Singe the output structure is a current-to-voltage converter (current is driven into the resistance, creating a voltage drop), adding external parallel resistance also has the effect of lowering the output audio amplitude and DC level.
This technique of audio bandwidth expansion can be effective in many applications such as SCA receivers and data transceivers.
Because the two outputs have a 180° phase relationship, FSK demodulation can be accomplished by applying the two output differentially across the inputs of an op amp or comparator. Once the threshold of the reference frequency (or "no-signal" condition) has been established, the two outputs will shift in opposite directions (higher or lower output voltage) as the input frequency shifts. The output of the comparator will be logic output. The choice of op amp or comparator will depend on the data rate. With high IF frequency (10 MHz and above), and wide IF bandwidth (LC filters) data rates in excess of 4 Mbaud are possible.

RSSI

The "received signal strength indicator", or RSSI, of the NE624 demonstrates monotonic logarithmic output over a range of 90 dB . The signal strength output is derived from the summed stage currents in the limiting amplifiers. It is essentially independent of the IF frequency. Thus, unfiltered signals at the limiter inputs, spurious products, or regenerated signals will manifest themselves as RSSI outputs. An RSSI output of greater than 250 mV with no signal (or a very small signal) applied, is an indication of possible regeneration or oscillation.
In order to achieve optimum RSSI linearity, there must be a 12 dB insertion loss between the first and second limiting amplifiers. With a typical 455 kHz ceramic filter, there is a
nominal 4 dB insertion loss in the filter. An additional 6 dB is lost in the interface between the filter and the input of the second limiter. A small amount of additional loss must be introduced with a typical ceramic filter. In the test circuit used for cellular radio applications (Figure 3) the optimum linearity was achieved with a $5.1 \mathrm{k} \Omega$ resistor from the output of the first limiter (Pin 14) to the input of the interstage filter. With this resistor from Pin 14 to the filter, sensitivity of $0.25 \mu \mathrm{~V}$ for 12 dB SINAD was achieved. With the $3.6 \mathrm{k} \Omega$ resistor, sensitivity was optimized at $0.22 \mu \mathrm{~V}$ for 12dB SINAD with minor change in the RSSI linearity.
Any application which requires optimized RSSI linearity, such as spectrum analyzers, cellular radio, and certain types of telemetry, will require careful attention to limiter interstage component selection. This will be especially true with high IF frequencies which require insertion loss or impedance reduction for stability.
At low frequencies the RSSI makes an excellent logarithmic AC voltmeter.
For data applications the RSSI is effective as an amplitude shift keyed (ASK) data slicer. If a comparator is applied to the RSSI and the threshold set slightly above the no signal level, when an in-band signal is received the comparator will be sliced. Unlike FSK demodulation, the maximum data rate is somewhat limited. An internal capacitor limits the RSSI frequency response to about 100 kHz . At high data rates the rise and fall times will not be symmetrical.
The RSSI output is a current-to-voltage converter similar to the audio outputs. However, an external resistor is required. With a $91 \mathrm{k} \Omega$ resistor, the output characteristic is 0.5 V for a 10 dB change in the input amplitude.

Additional Circuitry

Internal to the NE624 are voltage and current regulators which have been temperature compensated to maintain the performance of the device over a wide temperature range. These regulators are not accessible to the user.

High performance low power FM IF system with high-speed RSSI

Figure 10. Phase vs Normalized IF Frequency $\frac{\omega}{\omega_{1}}=1+\frac{\Delta \omega}{\omega_{1}}$

Figure 11. NE/SA624 Rise Time 455kHz IF Frequency

High performance low power FM IF system with high-speed RSSI

Figure 12. NE/SA624 Fall Time 455kHz IF Frequency

Figure 13. NE/SA624 Rise Time 10.7MHz IF Frequency
-

Figure 14. NE/SA624 Fall Time 10.7MHz IF Frequency

DESCRIPTION

The NE/SA625 is pin-to-pin compatible with the NE/SA605, but has faster RSSI rise and fall times. The NE/SA625 is a high performance monolithic low-power FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator (RSSI) with fast rise and fall time, and voltage regulator. The NE/SA625 combines the functions of Signetics' NE602A and NE624. The NE/SA625 is available in 20 -lead dual-in-line plastic and 20 -lead SOL (surface-mounted miniature package) and 20 -lead SSOP (shrink small outline package).
For additional technical information please refer to application notes AN1994, 1995 and 1996, which include example application diagrams, a complete overview of the product and artwork for reference.

FEATURES

- Fast RSSI rise and fall times
- Low power consumption: 5.8mA typical at 6V
- Mixer input to $>500 \mathrm{MHz}$
- Mixer conversion power gain of 13 dB at 45 MHz
- Mixer noise figure of 4.6 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator to 1 GHz local oscillator can be injected)
- 102dB of IF Amp/Limiter gain
- 25 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Two audio outputs - muted and unmuted
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.22 \mu \mathrm{~V}$ into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 45 MHz and IF at 455 kHz
- SA625 meets cellular radio specifications
- ESD hardened

PIN CONFIGURATION

APPLICATIONS

- Digital cellular base stations
- High performance communications receivers
- Single conversion VHF/UHF receivers
- SCA receivers
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Wideband low current amplification
- Digital cordless telephones

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE625N	0408 B
20-Pin Plastic Small Outline Large (SOL) package (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE625D	0172 D
20-Pin Plastic Shrink Small Outline Package (SSOP) (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE625DK	1563
20-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA625N	0408 B
20-Pin Plastic Small Outline Large (SOL) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA625D	0172 D
20-Pin Plastic Shrink Small Outline Package (SSOP) (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA625DK	1563

High performance low power mixer FM IF system

 with high-speed RSSI
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Single supply voltage	9	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range	NE625	0 to +70
	SA625	-40 to +85	${ }^{\circ} \mathrm{C}$
	${ }^{\circ} \mathrm{C}$		
θ_{JA}	Thermal impedance	D package	90
		N package	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DK package	117
			${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS

$V_{C C}=+6 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE625			SA625			
			MIN	TYP	MAX	MIN	TYP	MAX	
V cc	Power supply voltage range		4.5		8.0	4.5		8.0	V
Icc	DC current drain		5.1	5.8	6.7	4.55	5.8	6.75	mA
	Mute switch input threshold (ON)		1.7			1.7			V
	(OFF)				1.0			1.0	V

High performance low power mixer FM IF system with high-speed RSSI

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{C C}=+6 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R17}=5.1 \mathrm{k}$; RF level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C-message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

High performance low power mixer FM IF system with high-speed RSSI

AC ELECTRICAL CHARACTERISTICS(Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE625			SA625			
			MIN	TYP	MAX	MIN	TYP	MAX	
IF section (continued)									
	Unmuted audio output resistance			58	"		58		k Ω
	Muted audio output resistance			58			58		k Ω
RF/IF section (int LO)									
	Unmuted audio level	$\begin{aligned} & 4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}, \text { RF level }= \\ & -27 \mathrm{dBm} \end{aligned}$		450			450		$m V_{\text {RMS }}$
	System RSSI output	$\begin{aligned} & 4.5 \mathrm{~V}=\mathrm{V}_{\mathrm{cc}}, \text { RF level }= \\ & -27 \mathrm{dBm} \end{aligned}$		4.3			4.3		V

NOTE:

1. The generator source impedance is 50Ω, but the NE/SA625 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA625 input (Pin 8) which is about 21dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The NE/SA625 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz . The bandwidth of the IF amplifier is about 40 MHz , with $39.7 \mathrm{~dB}(\mathrm{v})$ of gain from a 50Ω source. The bandwidth of the limiter is about 28 MHz with about $62.5 \mathrm{~dB}(v)$ of gain from a 50Ω source. However, the gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is wellsuited to battery operation as well as high performance and high quality products of all types.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 5 dB , conversion gain of 13 dB , and input third-order intercept of -10 dBm . The oscillator will operate in excess of 1 GHz in LC tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are
recommended for xtal configurations up to 150 MHz .
The output of the mixer is internally loaded with a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. To achieve optimum linearity of the \log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor can be added between the first IF output (Pin 16) and the interstage network.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is ACcoupled to a tuned quadrature network. This
signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
Overall, the IF section has a gain of 90 dB . For operation at intermediate frequoncios greater than 455 kHz , special care must bo given to layout, termination, and interstage loss to avoid instability.
The demodulated output of the quadrature detector is available at two pins, one continuous and one with a mute switch. Signal attenuation with the mute activated is greater than 60 dB . The mute input is very high impedance and is compatible with CMOS or TTL levels.

A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone.
NOTE: $d B(v)=20 \log V_{\text {OUT }} / N_{\text {IN }}$

Automatic Test Circuit Component List

C1	100 pF NPO Ceramic
C2	390 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22 pF NPO Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$6.8 \mu \mathrm{~F}$ Tantalum (minimum)
CC1	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C12	$15 \mathrm{nF} \pm 10 \%$ Ceramic
CC3	$150 \mathrm{pF} \pm 2 \%$ N1500 Ceramic
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	$10 \mathrm{pF} \mathrm{NPO}^{2}$ Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C23	100nF $\pm 10 \%$ Monolithic Ceramic
C25	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
Fit 1	Ceramic Filter Murata SFG455A3 or equiv
Fit 2	Ceramic Filter Murata SFG455A3 or equiv
IFT 1	455kHz ($\mathrm{Ce}=180 \mathrm{pF}$) Toko RMC-2A6597H
L1	147-160nH Coilcraft UNI-10/142-04J08S
L2	$0.8_{\mu} \mathrm{H}$ nominal Toko 292CNS-T1038Z
X1	44.545MHz Crystal ICM4712701
R9	100k $\pm 1 \%$ 1/4W Metal Film
R17	5.1k $\pm 5 \%$ 1/4W Carbon Composition
R10	100k $\pm 1 \%$ 1/4W Metal Film (optional)
R11	100k $\pm 1 \%$ 1/4W Metal Film (optional)

*NOTE: This value can be reduced when a battery is the power source.
Figure 1. NE/SA625 45MHz Test Circuit (Relays as shown)

High performance low power mixer FM IF system with high-speed RSSI

Application Component List

C1	100pF NPO Ceramic	C21	$100 \mathrm{nF}_{ \pm} \pm 10 \%$ Monolithic Ceramic
C2	390pF NPO Ceramic	C23	$100 \mathrm{nF}_{ \pm} \mathbf{1 0 \%}$ Monolithic Ceramic
C5	$100 \mathrm{nF}_{ \pm} \mathbf{1 0 \%}$ Monolithic Ceramic	C25	$100 \mathrm{nF}_{ \pm} \mathbf{1 0 \%}$ Monolithic Ceramic
C6	22pF NPO Ceramic	Fit 1	Ceramic Filter Murata SFG455A3 or equiv
C7	1nF Ceramic	Fit 2	Ceramic Filter Murata SFG455A3 or equiv
C8	10.0pF NPO Ceramic	IFT 1	$455 \mathrm{kHz}(\mathrm{Ce}=180 \mathrm{pF})$ Toko RMC-2A6597H
C9	$100 \mathrm{nF}_{ \pm} 10 \%$ Monolithic Ceramic	L1	147-160nH Coilcraft UNL-10/142-04J08S
C10	6.84F Tantalum (minimum) *	L2	0.84 H nominal
C11	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic		Toko 292CNS-T1038Z
C12	$15 \mathrm{nF} \pm 10 \%$ Ceramic	X1	44.545MHz Crystal ICM4712701
C13	$150 \mathrm{pF}{ }_{ \pm} \mathbf{2}$ \% N1500 Ceramic	R9	100k $\pm 1 \%$ 1/4W Metal Film
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R17	5.1k $\pm 5 \% 1 / 4 \mathrm{~W}$ Carbon Composition
C15	10pF NPO Ceramic	R5	Not Used in Application Board (see Note 8)
C17	$100 n F \pm 10 \%$ Monolithic Ceramic	R10	100k $\pm 1 \%$ 1/4W Metal Film (optional)
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic	R11	100k $\pm 1 \%$ 1/4W Metal Film (optional)

*NOTE: This value can be reduced when a battery is the power source.

Figure 2. NE/SA625 45MHz Application Circuit

High performance low power mixer FM IF system with high-speed RSSI

Figure 3. NE/SA625 Application Circuit Test Set Up

NOTES:

1. C-message: The C-message filter has a peak gain of 100 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer.
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.22 \mu \mathrm{~V}$ or -120 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 250 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A $10-15 \mu \mathrm{~F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by $2-3 \mathrm{~dB}$.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 k \Omega$.

Figure 4. NE625 Application Board at $25^{\circ} \mathrm{C}$

High performance low power mixer FM IF system with high-speed RSSI

Figure 5. Component Placement for NE625 Application Circuit

High performance low power mixer FM IF system with high-speed RSSI

TOP VIEW

BOTTOM VIEW

Figure 6. Layout for NE/SA625 Application Board

High performance low power mixer FM IF system with high-speed RSSI

TOP SILK SCREEN

TOP VIEW

Figure 7. NE625 SO Demo-board Layout (Not Actual Size)

Figure 8. NE625 SSOP Demo-board Layout (Not Actual Size)

High performance low power mixer FM IF system with high-speed RSSI

Figure 9. NE/SA625 Rise Time 455kHz IF Frequency

Figure 10. NE/SA625 Fall Time 455kHz IF Frequency

High performance low power mixer FM IF system with high-speed RSSI

Figure 11. NE/SA625 Rise Time 10.7 MHz IF Frequency

Figure 12. NE/SA625 Fall Time 10.7MHz IF Frequency

Low voltage high performance mixer FM IF system with high-speed RSSI

DESCRIPTION

The SA626 is a low-voltage high performance monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, high speed logarithmic received signal strength indicator (RSSI), voltage regulator and audio and fast RSSI op amps. The SA626 is available in 20-lead SOL (surface-mounted small outline large package) and 20 -lead SSOP (shrink small outline package).

The SA626 was designed for high bandwidth portable communication applications and will function down to 2.7 V . The RF section is similar to the famous NE605. The audio and RSSI outputs have amplifiers. The RSSI output has access to the feedback pin. This enables the designer to level adjust the outputs or add filtering.
SA626 incorporates a power down mode which powers down the device when Pin 8 is low. Power down logic levels are CMOS and TTL compatible with high input impedance.

APPLICATIONS

- Digital cordless telephones
- Digital cellular telephones
- Digital cellular base stations
- Portable high performance communications receivers
- Single conversion VHF/UHF receivers
- SCA receivers
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Wideband low current amplification

FEATURES

- Fast RSSI rise and fall times
- Low power consumption: 6.5 mA typ at 3 V
- Power down mode ($\mathrm{l}_{\mathrm{cC}}=200 \mu \mathrm{~A}$)
- Mixer input to $>500 \mathrm{MHz}$
- Mixer conversion power gain of 11 dB at 240 MHz
- Mixer noise figure of 14 dB at 240 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator to 1 GHz , local oscillator can be injected)
- 92dB of IF Amp/Limiter power gain
- 25 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Audio output internal buffer
- RSSI output internal buffer
- Internal op amps with rail-to-rail outputs
- 10.7 MHz filter matching (330Ω) reduces external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.54 \mu \mathrm{~V}$ into 50Ω matching network for 12dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 240 MHz and IF at 10.7 MHz
- SA626 meets cellular radio specifications
- ESD hardened

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Small Outline Large (SOL) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA626D	0172 D
20-Pin Plastic Shrink Small Outline Package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA626DK	1563

Low voltage high performance mixer FM IF system

 with high-speed RSSI
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING	UNITS
$\mathrm{V}_{\text {cc }}$	Single supply voltage		0.3 to 7	V
$\mathrm{V}_{\text {IN }}$	Voltage applied to an		-0.3 to ($\mathrm{Vcc}^{+}+0.3$)	V
TSTG	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$
TA	Operating ambient te	e range SA626	-40 to +85	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal impedance	D package DK package	$\begin{gathered} 90 \\ 117 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			SA626			
			MIN	TYP	MAX	
$\mathrm{V}_{\text {cc }}$	Power supply voltage range		2.7	3.0	5.5	V
lcc	DC current drain	Pin $8=$ HIGH	5.5	6.5	7.5	mA
Icc	Standby	Pin 8 = LOW		0.2	0.5	mA
Input current		Pin 8 LOW	-10		10	$\mu \mathrm{A}$
		Pin 8 HIGH	-10		10	$\mu \mathrm{A}$
	Input level	Pin 8 LOW	0		$\mathrm{O}^{3} \mathrm{~V}$ cc	V
		Pin 8 HIGH	$0.7 \mathrm{~V}_{\mathrm{cc}}$		V_{Cc}	V
ton	Power up time	RSSI valid (10% to 90%)		10		$\mu \mathrm{s}$
toff	Power down time	RSSI invalid (90\% to 10\%)		5		$\mu \mathrm{s}$

Low voltage high performance mixer FM IF system with high-speed RSSI

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=240.05 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=10.7 \mathrm{MHz}$; RF level $=$ -68 dBm ; FM modulation $=1 \mathrm{kHz}$ with $\pm 125 \mathrm{kHz}$ peak deviation. Audio output with C -message weighted filter and de-emphasis filter. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characteristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

Supply Current vs Temperature and Supply Voltage

Mixer Power Gain vs Temperature and Supply Voltage

Audio Output Level vs. Temperature and Supply Voltage

Power Down Supply Current vs Temperature and Supply Voltage

Third Order Input Intercept Point vs Temperature and Supply Voltage

12dB SINAD and Relative Audio, THD, Nolse and $A M$ Rejection for VCC $=3 V$ vs Temperature RF $=\mathbf{2 4 0 M H z}$, Level $=-68 \mathrm{dBm}$, Deviation $=125 \mathrm{kHz}$

Low voltage high performance mixer FM IF system with high-speed RSSI

Receiver RF Performance - $\mathbf{T}=-40^{\circ} \mathrm{C}$, Audio Level $=118 \mathrm{mV}$ RMS

Mixer Third Order Intercept and Compression

Low voltage high performance mixer FM IF system with high-speed RSSI

SA626 IF Amplifier Gain vs Temperature vs Supply Voltage

SA626 Limiting Amplifier Gain vs Temperature vs Supply Voltage

CIRCUIT DESCRIPTION

The SA626 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz . The bandwidth of the IF amplifier is about 40 MHz , with 38 dB of power gain from a 50Ω source. The bandwidth of the limiter is about 28 MHz with about 54 dB of power gain from a 50Ω source. However, the gain/bandwidth distribution is optimized for $10.7 \mathrm{MHz}, 330 \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types, such as cordless and cellular hand-held phones.

The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 14 dB , conversion power gain of 11 dB , and input third-order intercept of -16 dBm . The oscillator will operate in excess of 1 GHz in L/C tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are
recommended for xtal configurations up to 150 MHz .

The output of the mixer is internally loaded with a 330Ω resistor permitting direct connection to a 10.7 MHz ceramic filter. The input resistance of the limiting IF amplifiers is also 330Ω. With most 10.7 MHz ceramic filters and many crystal filters, no impedance matching network is necessary. To achieve optimum linearity of the log signal strength indicator, there must be a 3dB insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause 3dB insertion loss, a fixed or variable resistor can be added between the first IF output (Pin 16) and the interstage network.

The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network. This signal, which now has a 90° phase
relationship to the internal signal, drives the other port of the multiplier cell.
Overall, the IF section has a power gain of 92 dB . For operation at intermediate frequency at 10.7 MHz . Special care must be given to layout, termination, and interstage loss to avoid instability.

The demodulated output of the quadrature drives an internal op amp. This op amp is configured as a unity gain buffer. It can drive an AC load as low as $5 \mathrm{k} \Omega$ with a rail-to-rail output.
A log signal strength indicator completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone, and RCR-28 cordless telephone. This signal drives an internal op amp. The op amp is capable of rail-to-rail output. It can be used for gain, filtering, or 2nd-order temperature compensation of the RSSI, if needed.

Low voltage high performance mixer FM IF system with high-speed RSSI

PIN FUNCTIONS

PIN No.	MNIN	DCV	EQUIVALENT CIRCUIT	PIN No.	$\begin{array}{\|c\|} \hline \text { PIN } \\ \text { MNEMONIC } \end{array}$	DC V	EQUIVALENT CIRCUIT
1	RF IN	+1.07		6	$\begin{gathered} \text { RSSI } \\ \text { FEEDBACK } \\ \hline \end{gathered}$	+0.20	
2	RF BYPASS	+1.07		7	$\begin{aligned} & \text { RSSI } \\ & \text { OUT } \end{aligned}$	+0.20	
3	$\begin{aligned} & \text { XTAL } \\ & \text { OSC } \end{aligned}$	+1.57		8	POWER DOWN	+2.75	
4	$\begin{gathered} \text { XTAL } \\ \text { OSC } \end{gathered}$	+2.32		9	AUDIO OUT	+1.09	
5	V_{cc}	+3.00		10	QUAD. IN	+3.00	

Low voltage high performance mixer FM IF system with high-speed RSSI

PIN FUNCTIONS (continued)

Automatic Test Circuit Component List

R1	$8.2 \mathrm{k} \Omega$ select	C1	$0.1 \mu \mathrm{~F}$	C12	160pF select	L1	150 nH select for input match
R2	$6.42 \mathrm{k} \Omega$	C2	1-5pF select for input match	C13	1000pF	L2	22nH select for input match
R3	347.8Ω	C3	$0.1 \mu \mathrm{~F}$	C14	$0.1 \mu \mathrm{~F}$	L3	47 nH select for input match
R4	49.9Ω	C4	$0.1 \mu \mathrm{~F}$	C15	1000pF	L4	$5.6 \mu \mathrm{H}$ select for input match
R5	$1 \mathrm{k} \Omega$	C5	1-5pF select for input match	C16	$0.1 \mu \mathrm{~F}$	L5	1.27-2.25 $\mu \mathrm{H}$ select for mixer
R6	49.9Ω	C6	100 pF	C17	$0.1 \mu \mathrm{~F}$		output match
R7	6.42k Ω	*C7	$6.8 \mu \mathrm{~F} \mathrm{10V}$	C18	1000pF	FLT1	
R8	347.8Ω	C8	$1 \mu \mathrm{~F}$	C19	1000pF	FLT2	10.7MHz (Murata SFE10.7MA5-A)
R9	49.9Ω	C9	39 pF select	C20	$0.1 \mu \mathrm{~F}$	FLT3	"C" message weighted
R10	$1 \mathrm{k} \Omega$	C10	$0.1 \mu \mathrm{~F}$	C21	1 pF	FLT4	Active de-emphasis
R11	49.9	C11	$0.1 \mu \mathrm{~F}$				

*NOTE: This value can be reduced when a battery is the power source.

Low voltage high performance mixer FM IF system with high-speed RSSI

NOTE: For SA626 C10 and R3 are not required.

Figure 2. SA626 240 MHz (RF) / 10.7MHz (IF) Application Circuit

Low voltage high performance mixer FM IF system with high-speed RSSI

Figure 3. SA626 Application Circuit Test Set Up

NOTES:

1. C-message: The C-message and de-emphasis filter combination has a peak gain of 10 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP8903A analyzer. The de-emphasis filter has a fixed-6dB/Octave slope between 300 Hz and 3 kHz .
2. Ceramic filters: The ceramic filter can be SFE10.7MA5-A made by Murata which has 280 kHz IF bandwidth.
3. RF generator: Set your RF generator at 240.000 MHz , use a. 1 kHz modulation frequency and a 125 kHz deviation.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.54 \mu \mathrm{~V}$ or -112 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin improves sensitivity.

Low voltage high performance mixer FM IF system with high-speed RSSI

Figure 4. SA626 Demoboard Layout (Not Actual Size)

High performance low power mixer FM IF system with high-speed RSSI

DESCRIPTION

The NE/SA627 has faster RSSI rise and fall times. The NE/SA627 is a high performance monolithic low-power FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic received signal strength indicator (RSSI) with fast rise and fall time, voltage regulator and frequency check/limiter out (-). The NE/SA627 also has an extra limiter output. This signal is buffered from the output of the limiter and provides a negative (-) limiter output. This can be used to provide a frequency check function. The NE/SA627 is available in 20 -lead dual-in-line plastic and 20 -lead SOL (surface-mounted miniature package) and 20-lead SSOP (shrink small outline package).

FEATURES

- Fast RSSI rise and fall times
- Low power consumption: 5.8 mA typical at 6 V
- Mixer input to $>500 \mathrm{MHz}$
- Mixer conversion power gain of 13 dB at 45 MHz
- Mixer noise figure of 4.6 dB at 45 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator to 1 GHz local oscillator can be injected)
- 102dB of IF Amp/Limiter gain
- 25MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Audio output - mutable
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.22 \mu \mathrm{~V}$ into 50Ω matching network for 12 dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone, 8 kHz deviation with RF at 45 MHz and IF at 455 kHz
- SA627 meets cellular radio specifications
- ESD hardened

PIN CONFIGURATION

APPLICATIONS

- Digital cellular base stations
- High performance communications receivers
- Single conversion VHF/UHF receivers
- SCA receivers
- RF level meter
- Spectrum analyzer
- Instrumentation
- FSK and ASK data receivers
- Log amps
- Wideband low current amplification
- Digital cordless telephones

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE627N	0408 B
20-Pin Plastic Small Outline Large (SOL) package (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE627D	0172 D
20-Pin Plastic SSOP (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE627DK	1563
20-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA627N	0408 B
20-Pin Plastic Small Outline Large (SOL) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA627D	0172 D
20-Pin Plastic Shrink Small Outline Package (SSOP) (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA627DK	1563

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER		RATING	UNITS
$\mathrm{V}_{\text {cc }}$	Single supply voltage		9	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Operating ambient temperature range NE627		0 to +70	${ }^{\circ} \mathrm{C}$
		SA627	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance	D package N package DK package	$\begin{gathered} 90 \\ 75 \\ 117 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{N}$ ${ }^{\circ} \mathrm{C} / \mathrm{N}$

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{C C}=+6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE627			SA627			
			MIN	TYP	MAX	MIN	TYP	MAX	
V cc	Power supply voltage range		4.5		8.0	4.5		8.0	V
Icc	DC current drain		5.1	5.8	6.7	4.55	5.8	6.75	mA
	Mute switch input threshold (ON)		1.7			1.7			V
	(OFF)				1.0			1.0	V

High performance low power mixer FM IF system with high-speed RSSI

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{cc}}=+6 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R17}=5.1 \mathrm{k} ; \mathrm{RF}$ level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 8 \mathrm{kHz}$ peak deviation. Audio output with C -message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

High performance low power mixer FM IF system with high-speed RSSI

AC ELECTRICAL CHARACTERISTICS(Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS						UNITS
			NE627			SA627			
			MIN	TYP	MAX	MIN	TYP	MAX	
IF section (continued)									
	Muted audio output resistance			58			58		k Ω
RF/IF section (int LO)									
	System RSSI output	$\begin{aligned} & 4.5 \mathrm{~V}=\mathrm{V} \mathrm{Vc}, \mathrm{RF} \text { level }= \\ & -27 \mathrm{dBm} \end{aligned}$		4.3			4.3		V

NOTE:

1. The generator source impedance is 50Ω, but the NE/SA627 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the NE/SA627 input (Pin 8) which is about 21dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The NE/SA627 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz . The bandwidth of the IF amplifier is about 40 MHz , with $39.7 \mathrm{~dB}(\mathrm{v})$ of gain from a 50Ω source. The bandwidth of the limiter is about 28 MHz with about $62.5 \mathrm{~dB}(\mathrm{v})$ of gain from a 50Ω source. However, the gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types.

The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 5 dB , conversion gain of 13 dB , and input third-order intercept of -10 dBm . The oscillator will operate in excess of 1 GHz in $L C$ tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are
recommended for xtal configurations up to 150 MHz .

The output of the mixer is internally loaded with a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a 455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. To achieve optimum linearity of the \log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor can be added between the first IF output (Pin 16) and the interstage network.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC -coupled to a tuned quadrature network.

This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
Overall, the IF section has a gain of 90 dB . For operation at intermediate frequencies greater than 455 kHz , special care must be given to layout, termination, and interstage loss to avoid instability.

The demodulated output of the quadrature detector is available at two pins, one continuous and one with a mute switch. Signal attenuation with the mute activated is greater than 60 dB . The mute input is very high impedance and is compatible with CMOS or TTL levels.
A log signal strength completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPs or TACs cellular telephone.

NOTE: $d B(v)=20 \log V_{\text {OUT }} / V_{\text {IN }}$

High performance low power mixer FM IF system with high-speed RSSI

*NOTE: This value can be reduced when a battery is the power source.
Figure 1. NE/SA627 45MHz Test Circuit (Relays as shown)

High performance low power mixer FM IF system with high-speed RSSI

Application Component List

C1	100 pF NPO Ceramic
C2	390 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	22 pF NPO Ceramic
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$10 \mu \mathrm{FF}$ Tantalum (minimum)
C11	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C12	$15 \mathrm{nF} \pm 10 \%$ Ceramic
C13	$150 \mathrm{pF} \pm 2 \%$ N1500 Ceramic
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	$10 \mathrm{pF} N P O$ Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C21 $100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C23 $100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C25 100 $\mathrm{nF} \pm 10 \%$ Monolithic Ceramic
Flt 1 Ceramic Filter Murata SFG455A3 or equiv
Fit 2 Ceramic Filter Murata SFG455A3 or equiv
IFT 1 455kHz (Ce = 180pF) Toko RMC-2A6597H
L1 147-160nH Coilcraft UNI-10/142-04J08S
L2 $0.8 \mu \mathrm{H}$ nominal
Toko 292CNS-T1038Z
44.545MHz Crystal ICM4712701

100k $\pm 1 \%$ 1/4W Metal Film
$5.1 \mathrm{k} \pm 5 \%$ 1/4W Carbon Composition Not Used in Application Board (see Note 8) $100 \mathrm{k} \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film (optional) $100 \mathrm{k} \pm 1 \% 1 / 4 \mathrm{~W}$ Metal Film (optional)
*NOTE: This value can be reduced when a battery is the power source.

Figure 2. NE/SA627 45MHz Application Circuit

Figure 3. NE/SA627 Application Circuit Test Set Up

NOTES:

1. C-message: The C-message filter has a peak gain of 100 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339 analyzer.
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All of our specifications and testing are done with the more wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.22 \mu \mathrm{~V}$ or -120 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 250 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A $10-15 \mu \mathrm{~F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by 2 -3dB.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

High performance low power mixer FM IF system with high-speed RSSI

High performance low power mixer FM IF system with high-speed RSSI

Figure 6. NE/SA627 Fall Time 455kHz IF Frequency

Figure 7. NE/SA627 Rise Time 10.7MHz IF Frequency

High performance low power mixer FM IF system with high-speed RSSI

Figure 8. NE/SA627 Fall Time 10.7MHz IF Frequency

DESCRIPTION

The SA636 is a low-voltage high performance monolithic FM IF system with high-speed RSSI incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), voltage regulator, wideband data output and fast RSSI op amps. The SA636 is available in 20-lead SOL (surface-mounted small outine large package) and 20 -lead SSOP (shrink samll outline package).
The SA636 was designed for high bandwidth portable communication applications and will function down to 2.7 V . The RF section is similar to the famous NE605. The data output is a current output with a minimum bandwidth of 600 kHz . This is designed to demodulate wideband data. The RSSI output is amplified. The RSSI output has access to the feedback pin. This enables the designer to level adjust the outputs or add filtering.

SA636 incorporates a power down mode which powers down the device when $\operatorname{Pin} 8$ is low. Power down logic levels are CMOS and TTL compatible with high input impedance.

APPLICATIONS

- DECT (Digital European Cordless Telephone)
- Digital cordless telephones
- Digital cellular telephones
- Portable high performance communications receivers
- Single conversion VHF/UHF receivers
- SCA receivers
- RF level meter
- Spectrum analyzer
- FSK and ASK data receivers
- Wideband low current amplification
- Wireless LANs

FEATURES

- Wideband data output (600 kHz min .)
- Fast RSSI rise and fall times
- Low power consumption: 6.5 mA typ at 3 V
- Mixer input to $>500 \mathrm{MHz}$
- Mixer conversion power gain of 13 dB at 240 MHz
- Mixer noise figure of 11 dB at 240 MHz
- XTAL oscillator effective to 150 MHz (L.C. oscillator to 1 GHz local oscillator can be injected)
- 102dB of IF Amp/Limiter gain
- 25 MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90dB
- RSSI output internal op amp
- Internal op amps with rail-to-rail outputs
- Low external component count; suitable for crystal/ceramic/LC filters
- Excellent sensitivity: $0.54 \mu \mathrm{~V}$ into 50Ω matching network for 12 dB SINAD (Signal to Noise and Distortion ratio) for 1 kHz tone with RF at 240 MHz and IF at 10.7 MHz
- SA636 meets cellular radio specifications
- ESD hardened
- 10.7 MHz filter matching (330Ω)
- Power down mode (IcC = $200 \mu \mathrm{~A}$)

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
$20-$ Pin Plastic Small Outline Large (SOL) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA636D	0172 D
$20-$ Pin Plastic Shrink Small Outline Package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA636DK	1563

Low voltage high performance mixer FM IF system with high-speed RSSI

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Single supply voltage	0.3 to 6	V
$\mathrm{~V}_{\text {IN }}$	Voltage applied to any other pin	-0.3 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	V
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range SA636	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance	D package	90
		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
		DK package	117

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{C C}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			SA636			
			MIN	TYP	MAX	
V_{cc}	Power supply voltage range		2.7	3.0	5.5	V
lcc	DC current drain	Pin $8=$ HIGH		6.5		mA
Icc	Standby	Pin $8=$ LOW		200		$\mu \mathrm{A}$
ton	Power up time	RSSI valid (10\% to 90\%)		10		$\mu \mathrm{s}$
toff	Power down time	RSSI invalid (90% to 10\%)		5		$\mu \mathrm{s}$

Low voltage high performance mixer FM IF system with high-speed RSSI

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=240.05 \mathrm{MHz}+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=10.7 \mathrm{MHz} ; \mathrm{RF}$ level $=$ $-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=1 \mathrm{kHz}$ with $\pm 125 \mathrm{kHz}$ peak deviation. Audio output with C -message weighted filter and de-emphasis capacitor. Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characterristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

CIRCUIT DESCRIPTION

The SA636 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz . The bandwidth of the IF amplifier is about 40 MHz , with $44 \mathrm{~dB}(v)$ of gain from a 50Ω source. The bandwidth of the limiter is about 28 MHz with about $58 \mathrm{~dB}(v)$ of gain from a 50Ω source. However, the gain/bandwidth distribution is optimized for $10.7 \mathrm{MHz}, 330 \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types, such as cordless and cellular hand-held phones.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 11 dB , conversion gain of 13 dB , and input third-order intercept of -11 dBm . The oscillator will operate in excess of 1 GHz in L/C tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .

The output of the mixer is internally loaded with a 330Ω resistor permitting direct connection to a 10.7 MHz ceramic filter. The input resistance of the limiting IF amplifiers is also 330Ω. With most 10.7 MHz ceramic filters and many crystal filters, no impedance matching network is necessary. To achieve optimum linearity of the \log signal strength indicator, there must be a $6 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $6 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor can be added between the first IF output (Pin 16) and the interstage network.

The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network. This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.

Overall, the IF section has a gain of 90 dB . For operation at intermediate frequency at 10.7 MHz . Special care must be given to layout, termination, and interstage loss to avoid instability.
The demodulated output (DATA) of the quadrature is a current output. This output is designed to handle a minimum bandwidth of 600 kHz . This is designed to demodulate wideband data, such as in DECT applications.
A Receive Signal Strength Indicator (RSSI) completes the circuitry. The output range is greater than 90 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for AMPS or TACS cellular telephone, DECT and RCR-28 cordless telephone. This signal drives an internal op amp. The op amp is capable of rail-to-rail output. It can be used for gain, filtering, or 2nd-order temperature compensation of the RSSI, if needed.
NOTE: $d B(v)=20 \log V_{\text {OUT }} / V_{I N}$

DESCRIPTION

The SA637 is a low-voltage high performance monolithic digital system with high-speed RSSI incorporating a mixer, oscillator with buffered output, two limiting intermediate frequency amplifiers, fast logarithmic received signal strength indicator (RSSI), voltage regulator, RSSI op amp and power down pin. The SA637 is available in SSOP (shrink small outline package).

The SA637 was designed for portable digital communication applications and will function down to 2.7 V . The limiter amplifier has differential outputs with 2 MHz small signal bandwidth. The RSSI output has access to the feedback pin. This enables the designer to level adjust the outputs or add filtering.

FEATURES

- $\mathrm{V}_{\text {CC }}=2.7$ to 5.5 V
- Low power receiver (3.8mA @ 3V)
- Power down mode (lcc = 110 $\mu \mathrm{A}$)
- Fast RSSI rise and fall times
- Extended RSSI range with temperature compensation
- RSSI op amp
- 2 MHz limiter small signal bandwidth
- 455 kHz filter matching ($1.5 \mathrm{k} \Omega$)
- Differential limiter output
- Oscillator buffer
- SSOP-20 package

APPLICATIONS

- ADC (American Digital Cellular)
- Digital receiver systems
- Cellular radio

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Shrink Small Outline Package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA637DK	1563

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Supply voltage	-0.3 to +6.0	V
$\mathrm{~V}_{\text {IN }}$	Voltage applied to any other pin	-0.3 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	V
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating ambient temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$

NOTE: Thermal impedance $\left(\theta_{\mathrm{JA}}\right)=117^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS

$V_{C C}=+3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
V_{CC}	Power supply voltage range		2.7		5.5	V
lce	DC current drain	Pin 9 = HIGH or OPEN		3.8	4.5	mA
		$\mathrm{V}_{\mathrm{CC}}=4.7 \mathrm{~V}$		4.4	5.5	mA
	Standby	Pin $9=$ LOW		0.11	0.5	mA
	Input current	Pin $9=$ LOW	-10		10	$\mu \mathrm{A}$
		Pin $9=$ HIGH	-10		10	$\mu \mathrm{A}$
	Input level	Pin $9=$ LOW	0		$0.3 \mathrm{~V}_{\mathrm{cc}}$	$\mu \mathrm{A}$
		Pin $9=$ HIGH	$0.7 \mathrm{~V}_{\mathrm{cc}}$		V_{CC}	$\mu \mathrm{A}$
ton	Power up time	RSSI valid (10% to 90%)		10		$\mu \mathrm{s}$
toff	Power down time	RSSI invalid (90\% to 10\%)		5		$\mu \mathrm{s}$

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=90 \mathrm{MHz}$; RF input step-up $=+14.5 \mathrm{dBV}$; IF frequency $=455 \mathrm{kHz} ; \mathrm{RF}$ level $=$ -68 dBm . Test circuit Figure 1. The parameters listed below are tested using automatic test equipment to assure consistent electrical characteristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
Mixer/Osc section						
fin^{1}	Input signal frequency			200		MHz
fosc	Crystal oscillator frequency			200		MHz
NF	Noise figure at 90 MHz	Matched input and output		6.2		dB
TOI	Third-order input intercept point	Input matched to 50Ω source		-17		dBm
P1dB	Input 1dB compression point			-27		dBm
	Conversion power gain	Matched 50 ${ }^{\text {a }}$		7		dB
$\mathrm{R}_{\text {IN }}$	Mixer input resistance			2.5		k Ω
$\mathrm{C}_{\text {IN }}$	Mixer input capacitance			2.2		pF
Rout	Mixer output resistance			1.87		$\mathrm{k} \Omega$
	Buffered LO output level	LO $=447 \mathrm{mV} \mathrm{P}_{\text {P.p, }} 1 \mathrm{k} \Omega \mathrm{AC}$ load	100	300	500	mV p . p
IF section						
	IF amp power gain	50Ω source		36		dB
	Limiter power gain	50Ω source		60		dB
$\mathrm{IF}_{\mathrm{BW}}$	IF amp bandwidth			2.5		MHz

AC ELECTRICAL CHARACTERISTICS (Continued)

CIRCUIT DESCRIPTION

Mixer

The mixer has a balanced input and is capable of being driven single-ended. The input impedance is $2.5 \mathrm{k} \Omega$ in parallel with a 2.2 pF cap at 90 MHz RF. The mixer output can drive a 1500Ω ceramic filter at 455 kHz or 600 kHz directly without any matching required. The mixer conversion power gain is 7 dB when both input and output are matched and optimum LO level is used to drive the internal mixer core.

Oscillator and Buffer

The on-board oscillator supplies the signal for the mixer down-conversion. The internally biased transistor can be configured as a Colpitts or Butler overtone crystal oscillator.
The transistor's bias current can be increased if desired by adding a shunt resistor from Pin 3 to ground. The oscillator's buffered output (Pin 5) can be used as a feedback signal to lock the oscillator to an appropriate reference.

IF Amplifier and IF Limiter

The IF strip provides more than 95 dB of power gain for the down converted signal. Its
overall bandwidth is limited to 2 MHz . The input and output impedance of the IF amplifier and the input impedance of the IF limiter are set to 1500Ω (match to 455 kHz filter). A second filter is connected between the IF amplifier and the limiter for improved channel selectivity and reduced instability. This ceramic filter provides 3 dB interstage insertion loss which results in optimal RSSI linearity. The overall gain can be reduced if desired by adding an external attenuator after the IF amplifier. The differential limiter outputs (Pins 10 and 11) are available for demodulator circuits.

RSSI

The received signal strength indicator provides a linear voltage indication of the received signal strength in dB for a range in excess of 90 dB . The response time to a change in input signal is less than a few microseconds and the delay is kept to a minimum because of the use of a minimum phase shift circuit. Because of the speed of the RSSI circuit, the RSSI rise and fall time may, in practice, be dominated by the
bandwidth of the external bandpass filter that is placed between the mixer and the IF, and the external filter placed between the IF amplifier and limiter. Since the RSSI function requires the signal to propagate through the whole IF strip, and the rise and fall time of the filters are inversely proportional to their bandwidth, there is a trade-off between channel selectivity and RSSI response. A possible solution is to use a second SA637 with wider band external filters for faster RSSI response.
The RSSI curve is temperature compensated and in addition is designed for improved consistency from unit to unit.
The RSSI circuit drives an on-chip low power op amp with rail-to-rail output which can be connected as a unity gain RSSI buffer or a gain stage or even a comparator.

DC Power Supply

The IC is designed for operation between 2.7 and 5.5 V . A power supply dependent biasing scheme is used in the mixers to benefit from the large headroom available at higher $\mathrm{V}_{\mathrm{CC}} s$.

PERFORMANCE CHARACTERISTICS

PERFORMANCE CHARACTERISTICS (cont.)

PIN FUNCTIONS

PIN FUNCTIONS (continued)

Automatic Test Circuit Component List

C1	10 nF
C2	91 pF
C3	620 pF
C4	100 nF
C5	100 nF
C6	10 nF
C11	100 nF
C20	100 nF
C21	100 nF
C26	100 nF

C27	100 nF
C28	100 nF
C29	100 nF
C30	100 nF
C31	100 nF
C32	100 nF
C33	100 nF
R1	249Ω
R2	60.4Ω
R3	60.4Ω

R4	49.9Ω	R32	49.9Ω
R13	$10 \mathrm{k} \Omega$	R33	$13.7 \mathrm{k} \Omega$
R14	$10 \mathrm{k} \Omega$	R34	$1.68 \mathrm{k} \Omega$
R16	$10 \mathrm{k} \Omega$	R35	49.9Ω
R17	$1 \mathrm{k} \Omega$	R38	$1 \mathrm{k} \Omega$
R20	$10 \mathrm{k} \Omega$	R39	$\mathbf{4 9 . 9 \Omega}$
R27	$13.7 \mathrm{k} \Omega$	R45	49.9Ω
R28	$1.68 \mathrm{k} \Omega$	R47	$2.43 \mathrm{k} \Omega$
R29	$\mathbf{4 9 . 9 \Omega}$	R48	$39.2 \mathrm{k} \Omega$
R31	$1 \mathrm{k} \Omega$	R49	$\mathbf{4 9 . 9 \Omega}$

R32	49.9Ω
R50	$1 \mathrm{k} \Omega$
R51	49.9Ω
L2	62 nH

Figure 1. SA637 Automatic Test Circuit

* NOTE: These components are optional and depend on user matching requirements.

Pads are provided on the demo board.
R2 and R9 set the RSSI buffer gain. For unity gain short R2 (Pin 7 to Pin 8) and leave R9 open.

Figure 2. SA637 Application Circuit

Figure 3. SA637 Application Circuit Test Set Up

NOTES:

1. Carrier-to-Noise (C/N): Connect a spectrum analyzer to Pin 10 or 11 ; set your RF generator to 83.16 MHz or 455 kHz above your LO frequency, modulation off; set the spectrum analyzer resolution bandwidth to 300 Hz ; and adjust your RF input level until the $\mathrm{C} / \mathrm{N}=26 \mathrm{~dB}$. Use video averaging. Assure that LIMOUT(+) and LIMOUT(-) are matched symetrically.
2. Ceramic filters: The ceramic filter can be SFGCC455BX-TC made by Murata which has 30 kHz IF bandwidth.
3. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.45 \mu \mathrm{~V}$ or -114 dBm at the RF input.
4. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
5. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
6. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin improves sensitivity.

DESCRIPTION

The SA676 is a low-voltage monolithic FM IF system incorporating a mixer/oscillator, two limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), voltage regulator and audio and RSSI op amps. The SA676 is available in a 20 -pin SSOP (shrink small outline package).
The SA676 was designed for cordless telephone applications in which efficient and economic integrated solutions are required and yet high performance is desirable. Although the product is not targeted to meet the stringent specifications of high performance cellular equipment, it will exceed the needs for analog cordless phones. The minimal amount of external components and absence of any external adjustments makes for a very economical solution.

FEATURES

- Low power consumption: 3.5mA typical at $3 V$
- Mixer input to $>100 \mathrm{MHz}$
- Mixer conversion power gain of 17 dB at 45MHz
- XTAL oscillator effective to 100 MHz (L.C. oscillator or external oscillator can be used at higher frequencies)
- 102dB of IF Amp/Limiter gain
- 2MHz IF amp/limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a 70 dB dynamic range
- Low external component count; suitable for crystal/ceramic/LC filters
- Audio output internal op amp
- RSSI output internal op amp
- Internal op amps with rail-to-rail outputs
- ESD protection: Human Body Model 2kV Robot Model 200 V

APPLICATION

- Cordless phones

PIN CONFIGURATION

DK Package

BLOCK DIAGRAM

DC ELECTRICAL CHARACTERISTICS

$V_{C C}=+3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			SA676			
			MIN	TYP	MAX	
$V_{C C}$	Power supply voltage range		2.7		7.0	V
lcc	DC current drain			3.5	5.0	mA

AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=45 \mathrm{MHz} ;+14.5 \mathrm{dBV}$ RF input step-up; IF frequency $=455 \mathrm{kHz} ; \mathrm{R} 17=2.4 \mathrm{k} \Omega$ and R18 $=3.3 \mathrm{k} \Omega$; RF level $=-45 \mathrm{dBm}$; FM modulation $=1 \mathrm{kHz}$ with $\pm 5 \mathrm{kHz}$ peak deviation. Audio output with de-emphasis filter and C-message weighted filter. Test circuit Figure NO TAG. The parameters listed below are tested using automatic test equipment to assure consistent electrical characteristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

AC ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
S/N	Signal-to-noise ratio	No modulation for noise		60		dB
	IF RSSI output, $\mathrm{R}_{9}=2 \mathrm{k} \Omega^{1}$	IF level $=-110 \mathrm{dBm}$		0.5	. 90	V
		IF level $=-50 \mathrm{dBm}$		1.7	2.2	V
	RSSI range			70		dB
	IF input impedance	Pin 18	1.3	1.5		k Ω
	IF output impedance	Pin 16		0.3		k Ω
	Limiter input impedance	Pin 14	1.3	1.5		$\mathrm{k} \Omega$
	Limiter output impedance	Pin 11		0.3		$\mathrm{k} \Omega$
	Limiter output voltage	Pin 11		130		mV RMS
RF/IF section (int LO)						
	System SINAD sensitivity	RF level $=-114 \mathrm{dBm}$		12		dB

NOTE:

1. The generator source impedance is 50Ω, but the SA676 input impedance at Pin 18 is 1500Ω. As a result, IF level refers to the actual signal that enters the SA676 input (Pin 18) which is about 21 dB less than the "available power" at the generator.

CIRCUIT DESCRIPTION

The SA676 is an IF signal processing system suitable for second IF systems with input frequency as high as 100 MHz . The bandwidth of the IF amplifier and limiter is at least 2 MHz with 90 dB of gain. The gain/bandwidth distribution is optimized for $455 \mathrm{kHz}, 1.5 \mathrm{k} \Omega$ source applications. The overall system is well-suited to battery operation as well as and high quality products of all types.
The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 7.0 dB , conversion gain of 17 dB , and input third-order intercept of -10 dBm . The oscillator will operate in excess of 100 MHz in L/C tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations.
The output impedance of the mixer is a $1.5 \mathrm{k} \Omega$ resistor permitting direct connection to a

455 kHz ceramic filter. The input resistance of the limiting IF amplifiers is also $1.5 \mathrm{k} \Omega$. With most 455 kHz ceramic filters and many crystal filters, no impedance matching network is necessary. The IF amplifier has 44dB of gain and 5.5 MHz bandwidth. The IF limiter has 58 dB of gain and 4.5 MHz bandwidth. To achieve optimum linearity of the \log signal strength indicator, there must be a $12 \mathrm{~dB}(v)$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause $12 \mathrm{~dB}(v)$ insertion loss, a fixed or variable resistor or an L pad for simultaneous loss and impedance matching can be added between the first IF output (Pin 16) and the interstage network. The overall gain will then be 90 dB with 2 MHz bandwidth.
The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is

AC-coupled to a tuned quadrature network. This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.
The demodulated output of the quadrature drives an internal op amp. This op amp can be configured as a unity gain buffer, or for simultaneous gain, filtering, and 2nd-order temperature compensation if needed. It can drive an AC load as low as $10 \mathrm{k} \Omega$ with a rail-to-rail output.
A log signal strength indicator completes the circuitry. The output range is greater than 70 dB and is temperature compensated. This signal drives an internal op amp. The op amp is capable of rail-to-rail output. It can be used for gain, filtering, or 2nd-order temperature compensation of the RSSI, if needed.

NOTE: $d B(v)=20 \log V_{\text {OUT }} V_{\text {IN }}$

SA676DK Demoboard
Application Component List

C1	51pF NPO Ceramic
C2	220 pF NPO Ceramic
C5	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C6	$5-30 \mathrm{pF}$ trim cap
C7	1 nF Ceramic
C8	10.0 pF NPO Ceramic
C9	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C10	$10 \mu \mathrm{~F}$ Tantalum (minimum)
C12	$2.2 \mu \mathrm{~F} \pm 10 \%$ Tantalum
C14	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C15	$10 \mathrm{pF} N P O$ Ceramic
C17	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C18	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic
C19	$390 \mathrm{pF} \pm 10 \%$ Monolithic Ceramic
C21	$100 \mathrm{nF} \pm 10 \%$ Monolithic Ceramic

C23 $100 \mathrm{nF} \pm \mathbf{1 0 \%}$ Monolithic Ceramic
C26 100nF $\pm 10 \%$ Monolithic Ceramic
C27 $2.2 \mu \mathrm{~F}$ Tantalum
FLT 1 Ceramic Filter Murata SFG455A3 or equiv
FLT 2 Ceramic Filter Murata SFG455A3 or equiv
IFT $1 \quad 330 \mu \mathrm{H}$ TOKO 303LN-1130
L1 330nH Coilcraft UNI-10/142-04J08S
L2 $0.8 \mu \mathrm{H}$ nominal TOKO 292CNS-T1038Z
X1 44.545MHz Crystal ICM4712701
R5 Not Used in Application Board (see Note 8, pg 8)
R10 8.2k $\pm 5 \%$ 1/4W Carbon Composition
R11 10k $\pm 5 \%$ 1/4W Carbon Composition
R17 2.4k $\pm 5 \%$ 1/4W Carbon Composition
R18 3.3k $\pm 5 \% 1 / 4 W$ Carbon Composition
R19 11k $\pm 5 \%$ 1/4W Carbon Composition

[^1]Figure 1. SA676 45MHz Application Circuit

Figure 2. SA676 Application Circuit Test Set Up

NOTES:

1. C-message: The C-message and de-emphasis filter combination has a peak gain of 10 for accurate measurements. Without the gain, the measurements may be affected by the noise of the scope and HP339A analyzer. The de-emphasis filter has a fixed -6dB/Octave slope between 300 Hz and 3 kHz .
2. Ceramic filters: The ceramic filters can be 30 kHz SFG455A3s made by Murata which have 30 kHz IF bandwidth (they come in blue), or 16 kHz CFU455Ds, also made by Murata (they come in black). All specifications and testing are done with the wideband filter.
3. RF generator: Set your RF generator at 45.000 MHz , use a 1 kHz modulation frequency and a 6 kHz deviation if you use 16 kHz filters, or 8 kHz if you use 30 kHz filters.
4. Sensitivity: The measured typical sensitivity for 12 dB SINAD should be $0.45 \mu \mathrm{~V}$ or -114 dBm at the RF input.
5. Layout: The layout is very critical in the performance of the receiver. We highly recommend our demo board layout.
6. RSSI: The smallest RSSI voltage (i.e., when no RF input is present and the input is terminated) is a measure of the quality of the layout and design. If the lowest RSSI voltage is 500 mV or higher, it means the receiver is in regenerative mode. In that case, the receiver sensitivity will be worse than expected.
7. Supply bypass and shielding: All of the inductors, the quad tank, and their shield must be grounded. A $10-15 \mu \mathrm{~F}$ or higher value tantalum capacitor on the supply line is essential. A low frequency ESR screening test on this capacitor will ensure consistent good sensitivity in production. A $0.1 \mu \mathrm{~F}$ bypass capacitor on the supply pin, and grounded near the 44.545 MHz oscillator improves sensitivity by 2-3dB.
8. R5 can be used to bias the oscillator transistor at a higher current for operation above 45 MHz . Recommended value is $22 \mathrm{k} \Omega$, but should not be below $10 \mathrm{k} \Omega$.

Figure 3. I_{cc} vs Temperature and Supply Voltage

Figure 4. Conversion Gain vs Temperature and Supply Voltage

Figure 5. Mixer Third Order Intercept and Compression

Figure 6. Sensitivity vs RF Level $\left(+25^{\circ} \mathrm{C}\right)$

Figure 7. RSSI vs RF Level and Temperature - $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$

Low-voltage mixer FM IF system

FEATURES

- Fully balanced 4-stage limiting IF amplifier
- Symmetrical quadrature demodulator
- Field-strengh indication output for 1 mA ammeter
- Detune detector for side response and noise attenuation
- Detune voltage output
- Internal muting circuit
- 0° and 180° AF output signals
- Reference voltage output
- Electronic smoothing of the supply voltage

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage range (pin 1)	7.5	8.5	15	V
l_{p}	supply current	10	16	23	mA
$\mathrm{V}_{\text {ilF }}$	input sensivity (RMS value) $-3 d B$ before limiting $\begin{aligned} & \mathrm{S} / \mathrm{N}=26 \mathrm{~dB} \\ & \mathrm{~S} / \mathrm{N}=46 \mathrm{~dB} \end{aligned}$	14	$\begin{aligned} & 22 \\ & 10 \\ & 55 \end{aligned}$	35	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
$V_{\text {OAF }}$	AF output signal (RMS value)	-	67	-	mV
THD	total harmonic distortion with double resonant circuits	-	0.02	-	\%
S/N	signal-to-noise ratio ($\mathrm{V}_{\mathrm{i}}>1 \mathrm{mV}$)	-	72	-	dB
$\alpha_{\text {AM }}$	AM suppression	-	50	-	dB
RR	ripple rejection ($f=100 \mathrm{~Hz}$)	43	48	-	dB
l_{15}	maximum indicator output current	-	-	2	mA
$\mathrm{T}_{\text {amb }}$	operating ambient temperature	-30	-	+80	${ }^{\circ} \mathrm{C}$

GENERAL DESCRIPTION
The TDA1576T is a monolithic integrated FM-IF amplifier circuit for use in mono and stereo FM-receivers of car radios or home sets.

ORDERING AND PACKAGE INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
TDA1576T	20	mini-pack	plastic	SOT163A

Fig. 1 Block diagram and application circuit.

FM/IF amplifier/demodulator circuit

PINNING

SYMBOL	PIN	DESCRIPTION
V_{P}	1	positive supply voltage
$\mathrm{C}_{\text {PS }}$	2	smoothing capacitor of power supply
IF1	3	IF signal to resonant circuit
RES1	4	resonant circuit
FMON	5	FM-ON, standby switch
RES2	6	resonant circuit
IF2	7	IF signal to resonant circuit
V_{0} AF1	8	AF output voltage (0° phase)
V_{0} AF2	9	AF output voltage (180° phase)
n.c.	10	not connected
n.c.	11	not connected
$V{ }_{\text {i det }}$	12	detune detector input for external audio reference
V_{0} det	13	detune detector output voltage
$V_{\text {ref }}$	14	reference voltage output
V_{F}	15	level output for field-strengh
$V_{\text {Fo }}$	16	zero adjust for field-strengh
$\mathrm{V}_{\text {i IF }}$	17	FM-IF input signal
IN2	18	input 2 of differential IF amplifier
IFLV	19	IF input level
GND	20	ground (0 V)

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{P}	supply voltage (pin 1)	0	15	V
$\mathrm{~V}_{2,5,16}$	voltage on pins 2,5 and 16	0	$\mathrm{~V}_{\mathrm{P}}$	V
$\mathrm{P}_{\text {tot }}$	total power dissipation	0	450	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature range	-55	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-30	+85	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$R_{\text {th } \mathrm{j} \text {-a }}$	from junction to ambient in free air		85	KW

PIN CONFIGURATION

Fig. 2 Pin configuration.

CHARACTERISTICS

$V_{P}=8.5 \mathrm{~V} ; \mathrm{f}_{\mathrm{i}} \mathrm{ZF}=10.7 \mathrm{MHz} ; \mathrm{R}_{\mathrm{S}}=60 \Omega ; \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}$ with $\Delta \mathrm{f}= \pm 22.5 \mathrm{kHz} ; 50 \mu \mathrm{~s}$ de-emphasis ($\mathrm{C} 8-9=6.8 \mathrm{nF}$);
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and measurements taken in Fig.1, unless otherwise specified. The demodulator circuit is adjusted at minimum second harmonic distortion for $\mathrm{V}_{\mathrm{i}} \mathrm{ZF}=1 \mathrm{mV}$ and a deviation $\Delta \mathrm{f}= \pm 75 \mathrm{kHz}$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{P}	supply voltage range (pin 1)		7.5	8.5	15	V
I_{P}	supply current	$V_{5}=V_{9}=V_{13}=0$	10	16	23	mA

Reference voltage

$\mathrm{V}_{\text {ref }}$	reference voltage (pin 14)	$\mathrm{I}_{14}=-1 \mathrm{~mA}$	-	4.9	-	V
$\Delta \mathrm{V}_{\text {ref }}$	reference voltage dependence on temperature	$\Delta \mathrm{V}_{14} / \mathrm{V}_{14} * \Delta \mathrm{~T}$	-	0.3	-	$\% / \mathrm{K}$
I_{14}	maximum output current	short-circuit current	4	6	7.5	mA
R_{14}	output resistor $\left(\Delta \mathrm{V}_{14} / \Delta \mathrm{I}_{14}\right)$	$\mathrm{I}_{14}<1.2 \mathrm{~mA}$	-	60	150	Ω

IF amplifier

$V_{i \text { IF }}$	input sensivity (RMS value, pin 17)	-3 dB before limiting	14	22	35	$\mu \mathrm{~V}$
R_{17-18}	input resistance	$\mathrm{V}_{\mathrm{i} \text { IF }}=200 \mathrm{mV}(\mathrm{RMS})$	10	-	-	$\mathrm{k} \Omega$
C_{17-18}	input capacitance	$\mathrm{V}_{\text {i IF }}=200 \mathrm{mV}(\mathrm{RMS})$	-	5	-	pF
$\mathrm{V}_{\text {O IF }}$	output signal at pins 3 and 7 (peak-to-peak value)	$Z_{3,7}=10 \mathrm{pF} / / 1 \mathrm{MS} \Omega$	610	680	750	mV
R_{3-7}	output impedance		200	250	300	Ω

Demodulator

R_{4-6}	input resistance		20	30	40	$\mathrm{k} \Omega$
C_{4-6}	input capacitance		-	1	2.5	pF
$\mathrm{R}_{8,9}$	output impedance		2.9	3.7	4.5	$\mathrm{k} \Omega$
$\mathrm{V}_{8,9}$	DC offset voltage on output pins at $\mathrm{V}_{4-6}=0$	$\mathrm{V}_{5}>3 \mathrm{~V}$ or $\mathrm{V}_{3-7}=0$ or $\mathrm{V}_{13}<0.3 \mathrm{~V}$	-	0	± 100	mV
$\Delta \mathrm{V} / \Delta \varphi$	demodulator efficiency demodulator efficiency dependent on supply voltage (note 1)	$\Delta \mathrm{V}_{8-9} / \Delta \varphi$	-	40	-	$\mathrm{mV} / 0$
$\mathrm{~V} / \mathrm{V}$	DC voltage ratio	K	-	6.2	-	mV / \circ
$\Delta \mathrm{V} / \Delta \mathrm{T}$	dependence on temperature	$\mathrm{V}_{8+} \mathrm{V}_{9} / 2 * \mathrm{~V}_{2}$	0.653	0.667	0.680	$\mathrm{~V} / \mathrm{V}$

Field-strengh output

V_{15}	output voltage (Fig.4)	$\mathrm{V}_{\text {i IF }}=0$	0	0.1	0.25	V
		$\mathrm{~V}_{\mathrm{i} \text { IF }}=1 \mathrm{mV}(\mathrm{RMS})$	1.1	1.5	1.9	V
		$\mathrm{~V}_{\mathrm{i} \text { IF }}=250 \mathrm{mV}$ (RMS)	3.2	3.6	4.1	V
S	control steepness	Fig.4	-	0.85	-	$\mathrm{V} / \mathrm{dec}$
R_{15}	output resistance		-	150	200	Ω
$\Delta \mathrm{~V} / \Delta \mathrm{T}$	dependence on temperature	$\mathrm{V}_{\mathrm{i} \text { IF }}=\Delta \mathrm{V}_{15} /\left(\Delta \mathrm{T} * \mathrm{~V}_{15}\right)$	-	0.3	-	$\% / \mathrm{K}$
I_{15}	stand-by operational cut-off current	$\mathrm{V}_{5} \geq 3 \mathrm{~V} ; \mathrm{V}_{15}=0$ to 5 V	-	-	10	$\mu \mathrm{~A}$

FM/IF amplifier/demodulator circuit

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zero level adjustment						
V_{16}	internal bias voltage		-	260	-	mV
R_{16}	input resistance		-	19	-	k Ω
S	control steepness	$\begin{aligned} & V_{i I F}=100 \mathrm{mV} ; \\ & A=\Delta V_{15} / \Delta V_{16} \end{aligned}$	0.87	1.0	1.2	VN
Detuning detector						
l_{12}	input bias current		-	20	100	nA
R_{12}	input resistance (Fig.5)	$5 \mathrm{~V} / \Delta \mathrm{l}_{12}$	6	30	-	M Ω
$\mathrm{V}_{13} / \mathrm{V}_{14}$	output voltage ratio for $\Delta \varphi=\varphi\left(\right.$ pins 3-7) $-\varphi\left(\right.$ pins 4-6) -90°; (Fig.6) $\begin{aligned} & \Delta \varphi=9.2^{\circ}(43 \mathrm{kHz}), \mathrm{Q}=20 \\ & \Delta \varphi=3.5^{\circ}(16 \mathrm{kHz}), \mathrm{Q}=20 \\ & \Delta \varphi=14^{\circ}(65 \mathrm{kHz}), \mathrm{Q}=20 \end{aligned}$	$V_{1}=V_{2}=7.5 \mathrm{~V}$ $\mathrm{R}_{13-14}=10 \mathrm{k} \Omega$; pins 9 and 12 short-circuit $V_{9,12}=334 \mathrm{mV}$ $V_{9,12}=138 \mathrm{mV}$ $V_{9,12}=501 \mathrm{mV}$	$\begin{aligned} & 0.45 \\ & 0.75 \\ & 0.335 \\ & \hline \end{aligned}$	0.5 0.8 0.345	$\begin{array}{\|l\|} \hline 0.55 \\ 0.85 \\ 0.355 \\ \hline \end{array}$	VN VN VN
I_{13}	maximum output current (Fig.7)	$\mathrm{V}_{13}=6 \mathrm{~V}$	0.4	0.5	0.6	mA
	cut-off current	$\mathrm{V}_{13}=2.5 \mathrm{~V} ; \mathrm{V}_{9,12}=0$	-	-	-100	nA
Internal audio attenuation						
$\mathrm{V}_{13} \mathrm{~N}_{14}$	output voltage ratio (Fig.8) for $\alpha=1 \mathrm{~dB}$ for $\alpha=7.2 \mathrm{~dB}$ for $\alpha \geq 40 \mathrm{~dB}$	$\alpha=$ attenuation factor	$\begin{aligned} & 0.11 \\ & 0.095 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.1 \\ & 0.06 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.105 \end{aligned}$	
l_{13}	input current	$\mathrm{V}_{13} / \mathrm{V}_{13} \leq 0.1$	-	-	-225	nA
Stand-by switch						
V_{5}	input voltage for $F M$-on input voltage for FM -off linear range (Fig 9)	$\begin{aligned} & \left.V_{3,7} / V_{3,7} 7 \text { max }\right)=0.9 \\ & V_{19}=0.3 \mathrm{~V} \end{aligned}$	2.4	$\begin{aligned} & 2.5 \\ & 2.9 \\ & 350 \end{aligned}$	3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{mV} \end{aligned}$
I_{5}	input current	$\begin{aligned} & V_{5}=0 \text { to } 2 \mathrm{~V} \\ & V_{5}=3.5 \text { to } 15 \mathrm{~V} \end{aligned}$			$\begin{aligned} & -100 \\ & 1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$V_{5} / \Delta \mathrm{T}$	temperature dependence	FM-on ($3.5 \mathrm{~V}_{\mathrm{BE}}$) FM-off (5V V_{BE})		$\begin{array}{\|l\|} \hline 7 \\ 10 \end{array}$		$\begin{aligned} & \mathrm{mV} / \mathrm{K} \\ & \mathrm{mV} / \mathrm{K} \end{aligned}$
Supply voltage smoothing						
V_{1-2}	internal voltage drop	proportional to $V_{1}-3 V_{B E}$	80	210	400	mV
R_{1-2}	internal resistor		5.8	8.3	10.8	k Ω

OPERATING CHARACTERISTICS

$V_{P}=8.5 \mathrm{~V} ; \mathrm{f}_{\mathrm{i}} \mathrm{ZF}=10.7 \mathrm{MHz} ; \mathrm{R}_{\mathrm{S}}=60 \Omega ; \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}$ with $\Delta \mathrm{f}= \pm 22.5 \mathrm{kHz} ; 50 \mu$ s de-emphasis $\left(\mathrm{C}_{8-9}=6.8 \mathrm{nF}\right)$;
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and measurements taken in Fig.1, unless otherwise specified. The demodulator circuit is adjusted at minimum second harmonic distortion with $\mathrm{V}_{\mathrm{i}} \mathrm{ZF}=1 \mathrm{mV}$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
IF amplifier and demodulator						
$V_{i, ~ I F}$	input sensivity (RMS value, pin 17) input signal for $\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$ input signal for $\mathrm{S} / \mathrm{N}=46 \mathrm{~dB}$	-3 dB before AF limiting $\begin{aligned} & f=250 \text { to } 15000 \mathrm{~Hz} \\ & f=250 \text { to } 15000 \mathrm{~Hz} \end{aligned}$	14	$\begin{aligned} & 22 \\ & 10 \\ & 55 \end{aligned}$	35	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \end{aligned}$
$V_{\text {O AF }}$	output signal at (RMS value, pins 8 and 9)		60	67	75	mV
Von	noise voltage for $V_{i \mid F}=0$ (RMS value, pins 8 and 9) weighted noise voltage according to	$\begin{aligned} & R_{S}=300 \Omega \\ & f=250 \text { to } 15000 \mathrm{~Hz} \\ & \text { DIN } 45405 \end{aligned}$	-	$\begin{aligned} & 900 \\ & 2 \end{aligned}$		$\begin{aligned} & \mu \mathrm{V} \\ & \mathrm{mV} \end{aligned}$
S/N	signal-to-noise ratio Fig. 3 (pin 8 and 9)	$\mathrm{V}_{\text {i IF }}=1 \mathrm{mV}$ (RMS)	-	72	-	dB
$\alpha_{A M}$	AM suppression	$\mathrm{V}_{\text {i IF }}=0.5$ to 200 mV FM: $70 \mathrm{~Hz}, \pm 15 \mathrm{kHz}$ AM: $1 \mathrm{kHz}, \mathrm{m}=30 \%$	-	50	-	dB
$\alpha_{\text {FM }}$	FM rejection for FM-off	$\mathrm{V}_{\text {IIF }}=500 \mathrm{mV} ; \mathrm{V}_{5}=3 \mathrm{~V}$	80	-	-	dB
$\Delta \mathrm{V}_{8,9}$	AFC shift in relation to minimum second harmonic distortion $\alpha_{2 H}$ DC offset at second harmonic distortion	$V_{\text {iIF }}=0.03 \text { to } 500 \mathrm{mV}$ operating mute or FM-off		$\begin{aligned} & 25 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm 100 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & m V \\ & m V \\ & m V \end{aligned}$
$\alpha_{3 H}$	distortion for third harmonic		-	0.65	-	\%
RR	ripple rejection $V_{\text {ripple }}=200 \mathrm{mV} \text { on } V_{p}$	$f=100 \mathrm{~Hz}$	43	48	-	dB

Note to the characteristics

1. $V_{8-9} / \Delta \varphi=K\left(V_{P}-3 V_{B E}\right)$

FM/IF amplifier/demodulator circuit

Fig.3 AF output voltage level on pins 8 and 9 as a function of $V_{\text {iIF }}$ at $V_{P}=8.5 \mathrm{~V}$; $f_{m}=1 \mathrm{kHz} ; \mathrm{Q}_{\mathrm{L}}=20$ and with de-emphasis. $\mathrm{S}=$ signal; $\mathrm{N}=$ noise.

Fig. 4 Field-strengh output ($1_{16}=0$).

FM/IF amplifier/demodulator circuit

Fig. 5 Detuning input impedance.

Fig. 6 Detuning curve.

Fig. 8 Internal audio attenuation.

GENERAL DESCRIPTION

The TDA7000 is a monolithic integrated circuit for mono FM portable radios, where a minimum on peripheral components is important (small dimensions and low costs).
The IC has an FLL (Frequency-Locked-Loop) system with an intermediate frequency of 70 kHz . The i.f. selectivity is obtained by active RC filters. The only function which needs alignment is the resonant circuit for the oscillator, thus selecting the reception frequency. Spurious reception is avoided by means of a mute circuit, which also eliminates too noisy input signals. Special precautions are taken to meet the radiation requirements.
The TDA7000 includes the following functions:

- R.F. input stage
- Mixer
- Local oscillator
- I.F. amplifier/limiter
- Phase demodulator
- Mute detector
- Mute switch

QUICK REFERENCE DATA

Supply voltage range (pin 5)	V_{P}	2,7 to 10 V
Supply current at $V_{P}=4,5 \mathrm{~V}$	I_{P}	typ.8 mA R.F. input frequency range
Sensitivity for -3 dB limiting (e.m.f. voltage) (source impedance: 75Ω; mute disabled) Signal handling (e.m.f. voltage) (source impedance: 75Ω) A.F. output voltage at $R_{L}=22 \mathrm{k} \Omega$	EMF	typ.

Fig. 1 Block diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 5)
Oscillator voltage (pin 6)
Total power dissipation
Storage temperature range
Operating ambient temperature range
V_{p} max.
12 V
$V_{6-5} \quad V_{p}-0,5$ to $V_{p}+0,5 V$ see derating curve Fig. 2

$T_{\text {stg }}$	-55 to $+150^{\circ} \mathrm{C}$
$T_{\text {amb }}$	0 to $+60^{\circ} \mathrm{C}$

Fig. 2 Power derating curve.

D.C. CHARACTERISTICS

$V_{p}=4,5 \mathrm{~V} ; T_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 4; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply voltage (pin 5)	V_{P}	2,7	4,5	10	V
Supply current					
at $V_{P}=4,5 \mathrm{~V}$	I_{P}	-	8	-	mA
Oscillator current (pin 6)	I_{6}	-	280	-	$\mu \mathrm{A}$
Voltage at pin 14	$\mathrm{~V}_{14-16}$	-	1,35	-	V
Output current at pin 2	I_{2}	-	60	-	$\mu \mathrm{A}$
Voltage at pin $2 ; \mathrm{R}_{\mathrm{L}}=22 \mathrm{k} \Omega$	V_{2-16}	-	1,3	-	V

A.C. CHARACTERISTICS

$V_{P}=4,5 \mathrm{~V} ; T_{a m b}=25^{\circ} \mathrm{C}$; measured in Fig. 4 (mute switch open, enabled); $f_{r f}=96 \mathrm{MHz}$ (tuned to max. signal at $5 \mu \mathrm{~V}$ e.m.f.) modulated with $\Delta f= \pm 22,5 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; E M F=0,2 \mathrm{mV}$ (e.m.f. voltage at a source impedance of 75Ω); r.m.s. noise voltage measured unweighted ($f=300 \mathrm{~Hz}$ to 20 kHz); unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Sensitivity (see Fig. 3) (e.m.f. voltage)					
for -3 dB limiting; muting disabled	EMF	-	1,5	-	$\mu \mathrm{V}$
for -3 dB muting	EMF	-	6	-	$\mu \mathrm{V}$
for $\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$	EMF	-	5,5	-	$\mu \mathrm{V}$
Signal handling (e.m.f. voltage) for THD $<10 \% ; \Delta f= \pm 75 \mathrm{kHz}$	EMF	-	200	-	mV
Signal-to-noise ratio	S / N	-	60	-	dB
Total harmonic distortion at $\Delta \mathrm{f}= \pm 22,5 \mathrm{kHz}$	THD	-	0,7	-	\%
at $\Delta \mathrm{f}= \pm 75 \mathrm{kHz}$	THD	-	2,3	-	\%
AM suppression of output voltage (ratio of the AM output signal referred to the FM output signal) FM signal: $f_{m}=1 \mathrm{kHz} ; \Delta \dot{T}= \pm 75 \mathrm{kHz}$ $A M$ signal: $f_{m}=1 \mathrm{kHz} ; m=80 \%$	AMS	-	50	-	dB
$\begin{aligned} & \text { Ripple rejection }\left(\Delta V_{P}=100 \mathrm{mV}\right. \text {; } \\ & f=1 \mathrm{kHz}) \end{aligned}$	RR	-	10	-	dB
Oscillator voltage (r.m.s. value) at pin 6	V_{6-5} (rms)	-	250	-	mV
Variation of oscillator frequency with supply voltage ($\Delta V_{p}=1 \mathrm{~V}$)	$\Delta \mathrm{f}_{\text {osc }}$	-	60	-	kHz/V
Selectivity	$\mathrm{S}_{+} 300$	-	45	-	dB
	S_{-300}	-	35	-	
A.F.C. range	$\Delta \mathrm{f}_{\mathrm{rf}}$	-	± 300	-	kHz
Audio bandwidth at $\Delta V_{O}=3 \mathrm{~dB}$ measured with pre-emphasis ($\mathrm{t}=50 \mu \mathrm{~s}$)	B	-	10	-	kHz
A.F. output voltage (r.m.s. value) at $R_{L}=22 \mathrm{k} \Omega$	$V_{\text {o(rms }}$	-	75	-	mV
Load resistance at $V_{P}=4,5 \mathrm{~V}$	R_{L}	-	-	22	$k \Omega$
at $V_{P}=9,0 \mathrm{~V}$	R_{L}	-	-	47	$k \Omega$

Fig. 3 A.F. output voltage (V_{O}) and total harmonic distortion (THD) as a function of the e.m.f. input voltage (EMF) with a source impedance (RR) of 75Ω : (1) muting system enabled; (2) muting system disabled.
Conditions: $0 \mathrm{~dB}=75 \mathrm{mV}$; $\mathrm{f}_{\mathrm{rf}}=96 \mathrm{MHz}$.

$$
\text { for } S+N \text { curve: } \Delta f= \pm 22,5 \mathrm{kHz} ; f_{m}=1 \mathrm{kHz} .
$$

$$
\text { for THD curve: } \Delta f= \pm 75 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} \text {. }
$$

Notes

1. The muting system can be disabled by feeding a current of about $20 \mu \mathrm{~A}$ into pin 1 .
2. The interstation noise level can be decreased by choosing a low-value capacitor at pin 3 . Silent tuning can be achieved by omitting this capacitor.

Fig. 4 Test circuit; for printed-circuit boards see Figs 5 and 6.

Fig. 5 Track side of printed-circuit board used for the circuit of Fig. 4.

Fig. 6 Component side of printed-circuit board showing component layout used for the circuit of Fig. 4.

GENERAL DESCRIPTION

The TDA7021T integrated radio receiver circuit is for portable radios, stereo as well as mono, where a minimum of periphery is important in terms of small dimensions and low cost. It is fully compatible for applications using the low-voltage micro tuning system (MTS). The IC has a frequency locked loop (FLL) system with an intermediate frequency of 76 kHz . The selectivity is obtained by active RC filters. The only function to be tuned is the resonant frequency of the oscillator. Interstation noise as well as noise from receiving weak signals is reduced by a correlation mute system.
Special precautions have been taken to meet local oscillator radiation requirements. Because of the low intermediate frequency, low pass filtering of the MUX signal is required to avoid noise when receiving stereo. 50 kHz roll-off compensation, needed because of the low pass characteristic of the FLL, is performed by the integrated LF amplifier. For mono application this amplifier can be used to directly drive an earphone. The field-strength detector enables field-strength dependent channel separation control.

Features

- RF input stage
- Mixer
- Local oscillator
- IF amplifier/limiter
- Frequency detector
- Mute circuit
- MTS compatible
- Loop amplifier
- Internal reference circuit
- LF amplifier for
- mono earphone amplifier or
- MUX filter
- Field-strength dependent channel separation control facility

QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage (pin 4)		$V_{P}=V_{4-3}$	1,8	-	6,0	V
Supply current	$\mathrm{VP}=3 \mathrm{~V}$	I_{rf}	-	6,3	-	mA
RF input frequency		1,5	-	110	MHz	
Sensitivity (e.m.f.) for	source impedance $=75 \Omega ;$					
-3 dB limiting	mute disabled	EMF	-	4	-	$\mu \mathrm{C}$
Signal handling (e.m.f.)	source impedance $=75 \Omega$	EMF	-	200	-	mV
AF output voltage		V_{0}	-	90	-	mV

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	conditions	symbol	\min.	\max.	unit
Supply voltage (pin 4)		$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{4-3}$	-	7,0	V
Oscillator voltage		V_{5-4}	$\mathrm{~V}_{\mathrm{P}}-0,5$	$\mathrm{~V}_{\mathrm{P}}+0,5$	V
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-55	+150	${ }^{\circ} \mathrm{C}$
Operating ambient temperature range		$\mathrm{T}_{\text {amb }}$	-10	+70	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient

$$
R_{\text {th } j \text { ja }} 300 \mathrm{~K} / \mathrm{W}
$$

DC CHARACTERISTICS

$V_{P}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, measured in circuit of Fig. 4, unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage (pin 4)		$V_{P}=V_{4-3}$	1,8	3,0	6,0	V
Supply current	$V_{P}=3 \mathrm{~V}$	14	-	6,3	-	mA
Oscillator current		15	-	250	-	$\mu \mathrm{A}$
Voltage at pin 13		V_{13-3}	-	0,9	-	V
Output voltage (pin 14)		V_{14-3}	-	1,3	-	V

Fig. 2 Supply current as a function of the supply voltage.

AC CHARACTERISTICS (MONO OPERATION)

$\mathrm{Vp}=3 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. $5 ; \mathrm{f}_{\mathrm{rf}}=96 \mathrm{MHz}$ modulated with $\Delta \mathrm{f}= \pm 22,5 \mathrm{kHz}$; $f_{m}=1 \mathrm{kHz} ; E M F=0,3 \mathrm{mV}$ (e.m.f. at a source impedance of 75Ω); r.m.s. noise voltage measured unweighted ($f=300 \mathrm{~Hz}$ to 20 kHz); unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
```Sensitivity (e.m.f.) for -3 dB limiting for -3 dB muting for (S+N)/N = 26 dB```	see Fig. 3 muting disabled	EMF EMF EMF	-	$\begin{aligned} & 4,0 \\ & 5,0 \\ & 7,0 \end{aligned}$	-	$\begin{aligned} & \mu \vee \\ & \mu \vee \\ & \mu \vee \end{aligned}$
Signal handling (e.m.f.)	$\begin{aligned} & \text { THD }<10 \% ; \\ & \Delta \mathrm{f}= \pm 75 \mathrm{kHz} \end{aligned}$	EMF	-	200	-	mV
Signal-to-noise ratio		(S+N)/N	-	60	-	dB
Total harmonic distortion	$\Delta f= \pm 22,5 \mathrm{kHz}$	THD	-	0,7	-	\%
	$\Delta f= \pm 75 \mathrm{kHz}$	THD	-	2,3	-	\%
AM suppression of output voltage	$\begin{aligned} & \text { ratio of } \mathrm{AM} \text { signal } \\ & \left(\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{m}=80 \%\right) \\ & \text { to } \mathrm{FM} \text { signal }\left(\mathrm{f}_{\mathrm{m}}=\right. \\ & 1 \mathrm{kHz} ; \Delta \mathrm{f}=75 \mathrm{kHz}) \end{aligned}$	AMS	-	50	-	dB
Ripple rejection	$\begin{aligned} & \Delta V P=100 \mathrm{mV} ; \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	RR	-	30	-	dB
Oscillator voltage (r.m.s. value)		$V_{5-4}$ (rms)	-	250	-	mV
Variation of oscillator frequency with temperature	$V_{P}=1 \mathrm{~V}$	$\frac{\Delta \mathrm{f}_{\mathrm{osc}}}{\Delta \mathrm{~T}_{\mathrm{amb}}}$	-	5	-	kHz/ ${ }^{\circ} \mathrm{C}$
Selectivity	see Fig. 9; no modulation	S+300	-	46	-	dB
		S-300	$=$	30	-	dB
AFC range		$\pm \Delta \mathrm{f}_{\mathrm{rf}}$	-	160	-	kHz
Mute range		$\pm \Delta \mathrm{frf}$	-	120	-	kHz
Audio bandwidth	$\Delta V_{0}=3 \mathrm{~dB} ;$   measured with $50 \mu \mathrm{~s}$ pre-emphasis	B	-	10	-	kHz
AF output voltage (r.m.s. value)	$R_{L}(\operatorname{pin} 14)=100 \Omega$	Vo(rms)	-	90	-	mV
AF output current max. d.c. load max. a.c. load (peak value)	THD $=10 \%$	Io(dc)   lo(ac)	$-100$	3	$+100$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$



Fig. 3 Field strength voltage $\left(\mathrm{V}_{\mathrm{g}-3}\right)$ at $\mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega ; f=96,75 \mathrm{MHz} ; \mathrm{V}_{\mathrm{p}}=3 \mathrm{~V}$.


Fig. 4 Mono operation: AF output voltage ( $\mathrm{V}_{0}$ ) and total harmonic distortion (THD) as functions of input e.m.f. (EMF); $R_{\text {source }}=75 \Omega ; f_{r f}=96 \mathrm{MHz} ; 0 \mathrm{~dB}=90 \mathrm{mV}$. For $\mathrm{S}+\mathrm{N}$ and noise curves ( 1 ) is with muting enabled and (2) is with muting disabled; signal $\Delta f= \pm 22,5 \mathrm{kHz}$ and $f_{m}=1 \mathrm{kHz}$. For THD curve, $\Delta f= \pm 75 \mathrm{kHz}$ and $\mathrm{f} \mathrm{m}=1 \mathrm{kHz}$.


1) The AF output can be decreased by disconnecting the 100 nF capacitor from pin 16 .

Fig. 5 Test circuit for mono operation.

## AC CHARACTERISTICS (STEREO OPERATION)

$V_{P}=3 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in Fig. 8; $\mathrm{f}_{\mathrm{rf}}=96 \mathrm{MHz}$ modulated with pilot $\Delta f= \pm 6,75 \mathrm{kHz}$ and AF signal $\Delta f= \pm 22,5 \mathrm{kHz} ; f_{m}=1 \mathrm{kHz} ; E M F=1 \mathrm{mV}$ (e.m.f. at a source impedance of $75 \Omega$ ); r.m.s. noise voltage measured unweighted ( $f=300 \mathrm{~Hz}$ to 20 kHz ); unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
$\begin{aligned} & \text { Sensitivity (e.m.f.) } \\ & \text { for }(S+N) / N=26 d B \end{aligned}$	see Fig. 8; pilot off	EMF	-	11	-	$\mu \mathrm{V}$
Selectivity	see Fig. 9; no modulation	S +300	-	40	-	dB
		S-300	-	22	-	dB
Signal-to-noise ratio		(S+N)/N	-	50	-	dB
Channel separation	$V_{i}=L \text {-signal; } f_{m}=1 \mathrm{kHz} ;$   pilot on:					
	at $\mathrm{f}_{\mathrm{rf}}=97 \mathrm{MHz}$   at $\mathrm{f}_{\mathrm{rf}}=87,5 \mathrm{MHz}$	$\alpha$	-	26	-	dB
	and 108 MHz	$\alpha$	-	14	-	dB

## Single-chip FM radio circuit



Fig. 6 Stereo operation: signal/noise and channel separation of TDA7021T when used in the circuit of Fig. 8.


Fig. 7 Stereo operation: channel separation as a function of audio frequency in the circuit of Fig. 8.


Fig. 8 Stereo application in combination with a low voltage PLL stereo decoder (TDA7040T) and a low voltage mono/stereo power amplifier (TDA7050T).


Fig. 9 Test set-up; $\mathrm{V}_{\mathrm{i}}=30 \mathrm{mV} ; \mathrm{f}_{\mathrm{i}}=76 \mathrm{kHz}$; selective voltmeter at output has $\mathrm{R}_{\mathrm{i}} \geqslant 1 \mathrm{M} \Omega$ and $\mathrm{C}_{\mathrm{i}} \leqslant 8 \mathrm{pF}$; $\mathrm{f}_{\mathrm{O}}=\mathrm{f}_{\mathrm{i}}$.

## Note to Fig. 9

This test set-up is to incorporate the circuit of Fig. 5 for mono operation or the circuit of Fig. 8 for stereo operation. For either circuit, replace the 100 nF capacitor at pin 6 with $\mathrm{R} 6(100 \mathrm{k} \Omega)$ as shown above.

## Selectivity

$$
S_{+300}=20 \log \frac{V_{0} \mid\left(300 \mathrm{kHz}-f_{i}\right)}{V_{o} \mid f_{i}}
$$

$$
S_{-300}=20 \log \frac{V_{0} \mid\left(300 k H z+f_{i}\right)}{V_{0} \mid f_{i}}
$$

## RF/Wireless Communications Section 5 Front-End systems/ RF amplifiers/ Mixers

INDEX
Front-End Selector Guide ..... 526
MC1496/MC1596
Balanced modulator/demodulator ..... 527
AN189 Balanced modulator/demodulator applications using the MC1496/1596 ..... 531
NE/SA600 1GHz LNA and mixer ..... 536
SA601 Low voltage LNA and mixer - 1 GHz ..... 552
NE/SA602A Double-balanced mixer and oscillator ..... 557
NE/SA612A Double-balanced mixer and oscillator ..... 565
AN1981 New low-power single sideband circuits ..... 572
AN1982 Applying the oscillator of the NE602 in low-power mixer applications ..... 580
SA620 Low voltage LNA, mixer and VCO - 1GHz ..... 583
TDA1574 FM front-end IC ..... 594
TDA1574T Integrated FM tuner for radio receivers ..... 602
TDA5030A TV VHF mixer/oscillator UHF preamplifier ..... 611
UAA2072M Image reject GSM front-end ..... 617

INTEGRATED FRONT-END SYSTEMS

				$\mathrm{f}_{\text {RF }}=45 \mathrm{MHz}$	
	$\mathbf{f}_{\text {RF }}=900 \mathrm{MHz}$				
	NE/SA600	SA601	SA620	NE/SA602A	NE/SA612A
Description	LNA + Mixer	LNA + Mixer	LNA + Mixer + VCO	Mixer + Osc	Mixer + Osc
$\mathrm{V}_{\text {cc }}$	4.5-5.5V	$2.7-5.5 \mathrm{~V}$	2.7-5.5V	4.5-8.0V	4.5-8.0V
$\mathrm{I}_{\text {cc }}$	$13 \mathrm{~mA} / 4.2 \mathrm{~mA}^{*}$	7.4 mA	$10.4 \mathrm{~mA} / 7.2 \mathrm{~mA}^{*}$	2.4 mA	2.4 mA
Bandwidth	LNA: 900 MHz Mixer: 1 GHz	LNA: 900 MHz Mixer: 1GHz	LNA: 900 MHz Mixer: 1 GHz	500 MHz	500 MHz
Noise Figure	LNA: 2.2dB   Mxr: 14dB	LNA: 1.6dB   Mxr: 10dB	LNA: 1.6dB Mxr: 9dB	5.0 dB	5.0 dB
1dB Compression (output)	LNA: -20dBm   Mxr: -4dBm	LNA: -16dBm   Mxr: -13dBm	LNA: -16dBm   Mxr: -13dBm	$-10 \mathrm{dBm}$	-10dBm
3rd Order Intercept (output)	$\begin{gathered} \text { LNA: }-10 /+26 \mathrm{dBm}^{*} \\ \text { Mxr: }+6 \mathrm{dBm} \end{gathered}$	LNA: -3dBm   Mxr: 0dBm	LNA: $-3 /+25 \mathrm{dBm}{ }^{*}$ Mxr: -6 dBm	-13dBm	-13dBm
Input Impedance	LNA: $50 \Omega$   Mxr: $50 \Omega$	LNA: $50 \Omega$   Mxr: $50 \Omega$	LNA: $50 \Omega$   Mxr: $50 \Omega$	$1.5 \mathrm{k} \Omega$	1.5k $\Omega$
Output Impedance	$50 \Omega$   High	$\begin{gathered} 50 \Omega \\ \text { High } \end{gathered}$	$50 \Omega$   High	$1.5 \mathrm{k} \Omega$	1.5k $\Omega$
Power Gain	LNA: 16/-7.5dB* Mxr: -2.6dB	LNA: 11.5   Mxr: 7dB	LNA: 11.5/-7dB*   Mxr: +3dB	17dB	17dB
Package	SO14	SSOP20	SSOP20	$\begin{aligned} & \hline \text { DIP8 } \\ & \text { SO8 } \end{aligned}$	$\begin{aligned} & \hline \text { DIP8 } \\ & \text { SO8 } \\ & \hline \end{aligned}$
Features	+LNA Overload   Mode   +Excellent Noise Figure	+Low voltage   +Excellent Noise Figure	+Low voltage   +Excellent Noise Figure   +Internal VCO   +LNA Overload Mode	+Excellent Noise Figure +High Gain	+Excellent Noise Figure +High Gain

## DESCRIPTION

The MC1496 is a monolithic double-balanced modulator/demodulator designed for use where the output voltage is a product of an input voltage (signal) and a switched function (carrier). The MC1596 will operate over the full military temperature range of -55 to $+125^{\circ} \mathrm{C}$. The MC1496 is intended for applications within the range of 0 to $+70^{\circ} \mathrm{C}$.

## FEATURES

- Excellent carrier suppression

$$
65 \mathrm{~dB} \text { typ @ 0.5MHz }
$$

50dB typ @ 10MHz

- Adjustable gain and signal handling
- Balanced inputs and outputs
- High common-mode rejection-85dB typ


## APPLICATIONS

- Suppressed carrier and amplitude modulation
- Synchronous detection
- FM detection
- Phase detection
- Sampling
- Single sideband
- Frequency doubling


## PIN CONFIGURATION

F, N Packages	
POSITIVE 1	
SIGNAL INPUT 1	14
GAIN ADJust 2	13 NC
GAIN ADJUSt 3	12 NEGAT
SINEGATIVE 4	${ }_{11} \mathrm{NC}$
BIAS 5	10 NEGATIVE
POSITVE ${ }^{\text {OUTPUT }}$	9 NC
NC 7	8 POSITIVE

## ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
14-Pin Ceramic Dual In-Line Package Cerdip)	0 to $+70^{\circ} \mathrm{C}$	MC1496F	0581 B
14-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	MC1496N	0405 B
14-Pin Ceramic Dual In-Line Package Cerdip)	-55 to $+125^{\circ} \mathrm{C}$	MC1596F	0581 B
14-Pin Plastic Dual In-Line Package (DIP)	-55 to $+125^{\circ} \mathrm{C}$	MC1596N	0405 B

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
	Applied voltage	30	V
$\mathrm{~V}_{8}-\mathrm{V}_{10}$	Differential input signal	$\pm 5.0$	V
$\mathrm{~V}_{4}-\mathrm{V}_{1}$	Differential input signal	$\left(5 \pm \mathrm{I}_{5} \mathrm{R}_{8}\right)$	V
$\mathrm{V}_{2}-\mathrm{V}_{1}$,			
$\mathrm{V}_{3}-\mathrm{V}_{4}$			

## NOTES:

1. Derate above $25^{\circ} \mathrm{C}$, at the following rates:

F package at $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
N package at $11.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

## EQUIVALENT SCHEMATIC



## DC ELECTRICAL CHARACTERISTICS

$V_{C C}=+12 V_{D C} ; V_{C C}=-8.0 V_{D C} ; 15=1.0 \mathrm{mADC} ; R_{L}=3.9 \mathrm{k} \Omega ; R_{E}=1.0 \mathrm{k} \Omega ; T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	MC1596			MC1496			UNIT
			Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \mathbf{R}_{\mathbb{P}} \\ & \mathbf{C}_{\mathbb{P}} \\ & \hline \end{aligned}$	Single-ended input impedance   Parallel input resistance Parallel input capacitance	Signal port, $f=5.0 \mathrm{MHz}$		$\begin{aligned} & 200 \\ & 2.0 \\ & \hline \end{aligned}$			$\begin{array}{r} 200 \\ 2.0 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{R}_{\mathrm{OP}} \\ & \mathrm{C}_{\mathrm{OP}} \end{aligned}$	Single-ended output impedance Parallel output resistance Parallel output capacitance	$f=10 \mathrm{MHz}$		$\begin{aligned} & 40 \\ & 5.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 40 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
$\begin{array}{\|l} \mathrm{I}_{\mathrm{BS}} \\ \mathrm{IBC}^{2} \\ \hline \end{array}$	Input bias current $l_{\mathrm{BS}}=$   $\mathrm{I}_{\mathrm{BC}}=$			$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$		$\begin{array}{r} 12 \\ 12 \\ \hline \end{array}$	$\begin{gathered} 30 \\ 30 \\ \hline \end{gathered}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
$\begin{aligned} & l_{10 s} \\ & l_{100} \\ & \hline \end{aligned}$	Input offset current $I_{1 O S}=I_{1}-I_{4}$ $I_{10 C}=I_{8}-I_{10}$			$\begin{aligned} & 0.7 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
$\begin{aligned} & \mathrm{T}_{\mathrm{c}}^{10} \mathrm{O} \\ & \mathrm{l}_{\mathrm{\infty}} \\ & \hline \end{aligned}$	Average temperature coefficient of input offset current Output offset current $\mathrm{I}_{6}-\mathrm{I}_{12}$			$\begin{aligned} & 2.0 \\ & 14 \end{aligned}$	50		$\begin{aligned} & 2.0 \\ & 15 \\ & \hline \end{aligned}$	80	$\begin{gathered} \mathrm{nA}{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~A} \\ \hline \end{gathered}$
$\begin{aligned} & \text { Tcloo } \\ & \mathrm{V}_{\mathrm{o}} \\ & \hline \end{aligned}$	Average temperature coefficient of output offset current Common-mode quiescent output voltage (Pin 6 or Pin 12)			90   8.0			90 $8.0$		$\overline{\mathrm{nA}} \mathrm{I}^{\circ} \mathrm{C}$ $V_{D C}$
$\begin{aligned} & \mathrm{l}_{\mathrm{D}+} \\ & \mathrm{I}_{\mathrm{D}} \\ & \hline \end{aligned}$	Power supply current $I_{6}+I_{12}$   $l_{14}$			$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	4.0   5.0	$m A_{D C}$
$\mathrm{P}_{\mathrm{D}}$	DC power dissipation			33			33		mW

## AC ELECTRICAL CHARACTERISTICS



SYMBOL	PARAMETER	TEST CONDITIONS	MC1596			MC1496			UNIT
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {cFT }}$	Carrier feedthrough	$\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV}_{\mathrm{RMS}}$ sinewave and offset adjusted to zero $\begin{aligned} & \mathrm{f}_{\mathrm{c}}=1.0 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{c}}=10 \mathrm{MHz} \end{aligned}$   $\mathrm{V}_{\mathrm{C}}=300 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ squarewave:   Offset adjusted to zero $\mathrm{f}=1.0 \mathrm{kHz}$   Offset not adjusted $\mathrm{f}_{\mathrm{C}}=1.0 \mathrm{kHz}$		$\begin{gathered} 40 \\ 140 \\ \\ 0.04 \\ 20 \\ \hline \end{gathered}$	$\begin{aligned} & 0.2 \\ & 100 \\ & \hline \end{aligned}$		$\begin{gathered} 40 \\ 140 \\ \\ 0.04 \\ 20 \end{gathered}$	$\begin{array}{r} 0.4 \\ 200 \\ \hline \end{array}$	$\mu V_{\text {RMS }}$   $m V_{\text {RMS }}$
$\mathrm{V}_{\text {cs }}$	Carrier suppressions	$\mathrm{f}_{\mathrm{S}}=10 \mathrm{kHz}, 300 \mathrm{mV}_{\mathrm{RMS}}$ sinewave $\mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}, 60 \mathrm{mV}$ RMS $\mathrm{f}_{\mathrm{C}}=10 \mathrm{MHz}, 60 \mathrm{mV}_{\mathrm{RMS}}$ sinewave	50	$\begin{aligned} & 65 \\ & 50 \\ & \hline \end{aligned}$		40	$\begin{aligned} & 65 \\ & 50 \end{aligned}$		dB
$\mathrm{BW}_{3 \mathrm{CB}}$	Transadmittance bandwidth (Magnitude) $\left(R_{L}=50 \Omega\right)$	Carrier input port, $\mathrm{V}_{\mathrm{C}}=60 \mathrm{mV}_{\mathrm{RMS}}$ sinewave $\mathrm{f}_{\mathrm{S}}=1.0 \mathrm{kHz}$, 300 mV RMS sinewave   Signal input port, $\mathrm{V}_{\mathrm{S}}=300 \mathrm{mV} \mathrm{V}_{\text {RM }}$ sinewave $\left\|V_{C}\right\|=0.5 \mathrm{~V}_{D C}$	$\because$	300 $80$			300   80		MHz   MHz
Avs	Signal gain	$\begin{gathered} V_{S}=100 \mathrm{~m} V_{\text {RMS }} ; f=1.0 \mathrm{kHz} \\ \left\|V_{C}\right\|=0.5 V_{D C} \end{gathered}$	2.5	3.5		2.5	3.5		V/N
$\begin{aligned} & \mathrm{CMV} \\ & \mathrm{~A}_{\mathrm{CM}} \end{aligned}$	Common-mode input swing Common-mode gain	Signal port, $\mathrm{f}_{\mathrm{S}}=1.0 \mathrm{kHz}$   Signal port, $\mathrm{f}_{\mathrm{S}}=1.0 \mathrm{kHz}$ $\left\|V_{C}\right\|=0.5 V_{D C}$		$\begin{gathered} 5.0 \\ -85 \end{gathered}$			$\begin{aligned} & 5.0 \\ & -85 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{P}-\mathrm{p}} \\ & \mathrm{~dB} \end{aligned}$
DV ${ }_{\text {OUT }}$	Differential output voltage swing capability			8.0			8.0		$\mathrm{V}_{\mathrm{P} \text {-P }}$

## TEST CIRCUITS




## BALANCED <br> MODULATOR/DEMODULATOR APPLICATIONS USING MC1496/MC1596

The MC1496 is a monolithic transistor array arranged as a balanced
modulator-demodulator. The device takes advantage of the excellent matching qualities of monolithic devices to provide superior carrier and signal rejection. Carrier suppressions of 50 dB at 10 MHz are typical with no external balancing networks required.
Applications include AM and suppressed carrier modulators, AM and FM demodulators, and phase detectors.

## THEORY OF OPERATION

As Figure 1 suggests, the topography includes three differential amplifiers. Internal connections are made such that the output becomes a product of the two input signals $V_{C}$ and $V_{s}$.
To accomplish this the differential pairs Q1-Q2 and Q3-Q4, with their cross-coupled collectors, are driven into saturation by the zero crossings of the carrier signal $\mathrm{V}_{\mathrm{c}}$. With a low level signal, $\mathrm{V}_{\mathrm{S}}$ driving the third differential amplifier Q5-Q6, the output voltage will be full wave multiplication of $\mathrm{V}_{\mathrm{C}}$ and $\mathrm{V}_{\mathrm{s}}$. Thus for sine wave signals, $\mathrm{V}_{\text {OUT }}$ becomes:
$V_{O U T}=E_{X} E_{Y}[\cos (\omega x+\omega y) t+\cos (\omega x-\omega y) t]$

As seen by equation (1) the output voltage will contain the sum and difference
frequencies of the two original signals. In addition, with the carrier input ports being driven into saturation, the output will contain the odd harmonics of the carrier signals. (See Figure 4.)
Internally provided with the device are two current sources driven by a temperature-compensated bias network. Since the transistor geometries are the same and since $V_{B E}$ matching in monolithic devices is excellent, the currents through $Q_{7}$ and $Q_{8}$ will be identical to the current set at Pin 5 . Figures 2 and 3 illustrate typical biasing arrangements from split and single-ended supplies, respectively.

Of primary interest in beginning the bias circuitry design is relating available power supplies and desired output voltages to device requirements with a minimum of external components.
The transistors are connected in a cascode fashion. Therefore, sufficient collector voltage must be supplied to avoid saturation if linear operation is to be achieved. Voltages greater than 2 V are sufficient in most applications.

Biasing is achieved with simple resistor divider networks as shown in Figure 3. This configuration assumes the presence of symmetrical supplies. Explaining the DC biasing technique is probably best accomplished by an example. Thus, the initial assumptions and criteria are set forth:

1. Output swing greater than $4 V_{p-p}$.
2. Positive and negative supplies of 6 V are available.


All resistor values are in ohms
Figure 1. Balanced Modulator Schematic
3. Collector current is 2 mA . It should be noted here that the collector output current is equal to the current set in the current sources.

As a matter of convenience, the carrier signal ports are referenced to ground. If desired, the modulation signal ports could be ground referenced with slight changes in the bias arrangement. With the carrier inputs at DC ground, the quiescent operating point of the outputs should be at one-half the total positive voltage or 3 V for this case. Thus, a collector load resistor is selected which drops 3 V at 2 mA or $1.5 \mathrm{k} \Omega$. A quick check at this point reveals that with these loads and current levels the peak-to-peak output swing will be greater than 4 V . It remains to set the current source level and proper biasing of the signal ports.

The voltage at Pin 5 is expressed by

$$
V_{B I A S}=V_{B E}=500 \cdot I_{S}
$$

where $I_{S}$ is the current set in the current sources.

## BIASING

Since the MC1496 was intended for a multitude of different functions as well as a myriad of supply voltages, the biasing techniques are specified by the individual application. This allows the user complete freedom to choose gain, current levels, and power supplies. The device can be operated with single-ended or dual supplies.


NOTE:
All resistor values are in ohms
Figure 2. Single-Supply Biasing

Balanced modulator/demodulator applications using the MC1496/1596


Figure 3. Dual Supply Blasing
mentioned, contains the sum and difference frequencies while attenuating the fundamentals. Upper and lower sideband signals are the strongest signals present with harmonic sidebands being of diminishing amplitudes as characterized by Figure 4.

Gain of the 1496 is set by including emitter degeneration resistance located as $\mathrm{R}_{\mathrm{E}}$ in Figure 5. Degeneration also allows the maximum signal level of the modulation to be increased. In general, linear response defines the maximum input signal as

$$
V_{s} \leq 15 \bullet R_{E}(\text { Peak })
$$

and the gain is given by

$$
\begin{equation*}
A_{v s}=\frac{R_{L}}{R_{E}+2 r_{\theta}} \tag{2}
\end{equation*}
$$

This approximation is good for high levels of carrier signals. Table 1 summarizes the gain for different carrier signals.

As seen from Table 1, the output spectrum suffers an amplitude increase of undesired sideband signals when either the modulation or carrier signals are high. Indeed, the modulation level can be increased if $R_{E}$ is


Figure 4. Modulator Frequency Spectrum
$V_{B I A S}=V_{B E}=500 \times I_{S}$
where $I_{S}$ is the current set in the current sources.

For the example $\mathrm{V}_{\mathrm{BE}}$ is 700 mV at room temperature and the bias voltage at Pin 5 becomes 1.7 V . Because of the cascode configuration, both the collectors of the current sources and the collectors of the signal transistors must have some voltage to operate properly. Hence, the remaining voltage of the negative supply $(-6 \mathrm{~V}+1.7 \mathrm{~V}=-4.3 \mathrm{~V})$ is split between these transistors by biasing the signal transistor
bases at -2.15 V . Countless other bias arrangements can be used with other power supply voltages. The important thing to remember is that sufficient DC voltage is applied to each bias point to avoid collector saturation over the expected signal wings.

## BALANCED MODULATOR

 In the primary application of balanced modulation, generation of double sideband suppressed carrier modulation is accomplished. Due to the balance of both modulation and carrier inputs, the output, asincreased without significant consequence. However, large carrier signals cause odd harmonic sidebands (Figure 4) to increase. At the same time, due to imperfections of the carrier waveforms and small imbalances of the device, the second harmonic rejection will be seriously degraded. Output filtering is often used with high carrier levels to remove all but the desired sideband. The filter removes unwanted signals while the high carrier level guards against amplitude variations and maximizes gain. Broadband modulators, without benefit of filters, are implemented using low carrier and

## Balanced modulator/demodulator applications using the MC1496/1596

modulation signals to maximize linearity and minimize spurious sidebands.

## AM MODULATOR

The basic current of Figure 5 allows no carrier to be present in the output. By adding offset to the carrier differential pairs, controlled amounts of carrier appear at the output whose amplitude becomes a function of the modulation signal or AM modulation. As shown, the carrier null circuit is changed from Figure 5 to have a wider range so that wider control is achieved. All connections are shown in Figure 6.

## AM DEMODULATION

As pointed out in Equation 1, the output of the balanced mixer is a cosine function of the angle between signal and carrier inputs. Further, if the carrier input is driven hard enough to provide a switching action, the output becomes a function of the input amplitude. Thus the output amplitude is maximum when there is $0^{\circ}$ phase difference as shown in Figure 7.

Amplifying and limiting of the AM carrier is accomplished by IF gain block providing 55 dB of gain or higher with limiting of $400 \mu \mathrm{~V}$. The limited carrier is then applied to the detector at the carrier ports to provide the desired switching function. The signal is then demodulated by the synchronous AM demodulator (1496) where the carrier frequency is attenuated due to the balanced nature of the device. Care must be taken not to overdrive the signal input so that distortion does not appear in the recovered audio. Maximum conversion gain is reached when the carrier signals are in phase as indicated by the phase-gain relationship drawn in Figure 7.

Output filtering will also be necessary to remove high frequency sum components of the carrier from the audio signal.

## PHASE DETECTOR

The versatility of the balanced modulator or multiplier also allows the device to be used as a phase detector. As mentioned, the output of the detector contains a term related to the cosine of the phase angle. Two signals of equal frequency are applied to the inputs as per Figure 8. The frequencies are multiplied together producing the sum and difference frequencies. Equal frequencies cause the difference component to become DC while the undesired sum component is filtered out. The DC component is related to the phase angle by the graph of Figure 9.


Figure 5. Double Suppressed Carrier Modulator

## Table 1. Voltage Gain and Output vs Input Signal

CARRIER INPUT   SIGNAL $\left(V_{\mathrm{C}}\right)$	APPROXIMATE   VOLTAGE GAIN	OUTPUT SIGNAL   FREQUENCY(S)
Low-level DC	$\frac{R_{L} V_{C}}{2\left(R_{E}+2 r_{E}\right)\left(\frac{K T}{q}\right)}$	$\mathrm{f}_{M}$
High-level DC	$\frac{R_{L}}{R+2 r_{e}}$	$\mathrm{f}_{M}$
Low-level AC	$\frac{R_{L} V_{C}(r m s)}{2 \sqrt{2}\left(\frac{K T}{q}\right)\left(R_{E}+2 r_{e}\right)}$	$\mathrm{f}_{\mathrm{C}} \pm \mathrm{f}_{\mathrm{M}}$
High-level AC	$\frac{0.637 R_{L}}{R_{E}+2 r_{e}}$	$\mathrm{f}_{\mathrm{C}} \pm \mathrm{f}_{M} 3 \mathrm{f}_{\mathrm{C}} \pm \mathrm{f}_{\mathrm{M}}$.
$5 \mathrm{f}_{\mathrm{C}} \pm \mathrm{f}_{\mathrm{M}} \ldots$		




Figure 7. AM Demodulator


At $90^{\circ}$ the cosine becomes zero, while being at maximum positive or maximum negative at $0^{\circ}$ and $180^{\circ}$, respectively.

The advantage of using the balanced modulator over other types of phase comparators is the excellent linearity of conversion. This configuration also provides a conversion gain rather than a loss for greater resolution. Used in conjunction with a phase-locked loop, for instance, the balanced modulator provides a very low distortion FM demodulator.

## FREQUENCY DOUBLER

Very similar to the phase detector of Figure 8, a frequency doubler schematic is shown in Figure 10. Departure from Figure 8 is primarily the removal of the low-pass filter. The output then contains the sum component which is twice the frequency of the input,
since both input signals are the same frequency.


## Balanced modulator/demodulator applications using the MC1496/1596



## 1GHz LNA and mixer

## DESCRIPTION

The NE/SA600 is a combined low noise amplifier (LNA) and mixer designed for high-performance low-power communication systems from $800-1200 \mathrm{MHz}$. The low-noise preamplifier has a 2 dB noise figure at 900 MHz with 16 dB gain and an $\mathrm{IM}_{3}$ intercept of -10 dBm at the input. Input and output impedances are $50 \Omega$ and the gain is stabilized by on-chip compensation to vary less than $\pm 0.5 \mathrm{~dB}$ over the -40 to $+85^{\circ} \mathrm{C}$ temperature range. The wide-dynamic-range mixer has a 14 dB noise figure and $\mathrm{IM}_{3}$ intercept of +6 dBm at the input at 900 MHz . Mixer input impedance is $50 \Omega$ with an open-collector output. The chip incorporates an option so the LNA can be disabled and replaced by a through connection. The amplifier $\mathrm{IM}_{3}$ intercept increases to +26 dBm in this mode; thus, large signals can be handled. The nominal current drawn from a single 5 V supply is 13 mA and 4.2 mA in the LNA thru mode.

## FEATURES

- Low current consumption: 13 mA nominal, 4.2 mA in the LNA thru mode
- Excellent noise figure: 2 dB for the amplifier and 14 dB for the mixer at 900 MHz
- Excellent gain stability versus temperature
- Switchable overload capability
- Amplifier matched to $50 \Omega$
- Mixer input matched to $50 \Omega$
- Oscillator input matched to $50 \Omega$


## APPLICATIONS

- 900MHz front end for GSM/AMPS/TACS/ hand-held units
- RF data links
- UHF frequency conversion
- Portable radio
- Spread spectrum receivers
- 900 MHz cordless phones


## PIN CONFIGURATION



ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
14-Pin Plastic Small Outline (SO) package (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE600D	0175 D
14-Pin Plastic Small Outline (SO) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA600D	0175 D

## BLOCK DIAGRAM



1GHz LNA and mixer

## ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
VCc,   $V_{\text {CCMX }}$	Supply voltage ${ }^{1}$	-0.3 to +6.0	V
$\mathrm{V}_{\text {IN }}$	Voltage applied to any other pin	-0.3 to ( $\left.\mathrm{V}_{\mathrm{CC}}+0.3\right)$	V
$\Delta \mathrm{V}$	$\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {CCM }}$	-0.3 to +0.3	V
$\Delta \mathrm{G}$	Any GND pin to any other GND pin	-0.3 to +0.3	V
$\mathrm{P}_{\mathrm{D}}$	Power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still air) ${ }^{2}$ 14-Pin Plastic SO	980	mW
TJMAX	Maximum operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {MAX }}$	Maximum power input/output	+20	dBm
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Transients exceeding 9 V on $\mathrm{V}_{\mathrm{cc}}$ pin may damage product.
2. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, $\theta_{\mathrm{JA}}$ :

$$
\text { 14-Pin SO: } \quad \theta_{\mathrm{JA}}=125^{\circ} \mathrm{C} / \mathrm{W}
$$

3. CAUTION: The NE/SA600 is built on a BiCMOS process and is sensitive to electrostatic discharge.

## RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
$V_{C C}$,   $V_{C C M X}$	Supply voltage	4.5 to 5.5	V
	Operating ambient temperature range   NE Grade   SA Grade	0 to +70   -40 to +85	${ }^{\circ}{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$		Operating junction temperature   NE Grade   SA Grade	0 to +90   -40 to +105
$\mathrm{~T}_{\mathrm{J}}$	${ }^{\circ} \mathrm{C}$   ${ }^{\circ} \mathrm{C}$		

## DC ELECTRICAL CHARACTERISTICS ${ }^{\mathbf{1 , 2}}$

$V_{C C}=V_{C C M X}=+5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; Test Figure 1, unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNITS
			MIN	-3\%	TYP	+3б	MAX	
Icc	Supply current (Pin 1, 13, 14)	Enable input high	10	11	13.0	15	16	mA
		Enable input low	3.2	3.6	4.2	4.8	5.2	mA
$\mathrm{V}_{T}$	Enable logic threshold voltage		1.12	1.17	1.27	1.37	1.42	V
$\mathrm{V}_{\mathrm{IH}}$	Logic 1 level: LNA gain mode		2.0				$\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL }}$	Logic 0 level: LNA thru mode		-0.3				0.8	V
ILI	Enable input current	Enable $=0.4 \mathrm{~V}$	-1		0		1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H}}$	Enable input current	Enable $=2.4 \mathrm{~V}$	-1		0		1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {LNA-IN }}$	LNA input bias voltage	Enable input high			0.78			V
$\mathrm{V}_{\text {LNA-OUT }}$	LNA output bias voltage	Enable input high			1.27			V
$\mathrm{V}_{\mathrm{BY}}$	LNA bypass bias voltage	Enable input high			1.05			V
$\mathrm{V}_{\mathrm{MX} \text {-IN }}$	Mixer RF input bias voltage				1.43			V
$\mathrm{V}_{\text {LO-IN }}$	Mixer LO input bias voltage				3.35			V

## NOTE:

1. The ENABLE input must be connected to a valid logic level for proper operation of the NE/SA600.
2. Standard deviations are estimated from design simulations to represent manufacturing variations over the life of the product.

AC ELECTRICAL CHARACTERISTICS ${ }^{1,2}$

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS			UNITS
				-3\%	TYP	+3\%	
LNA ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {cCMX }}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; Enable $=\mathrm{Hi}$, Test Figure 1, unless otherwise stated. )							
$\mathrm{S}_{21}$	Amplifier gain	900 MHz		14.9	16	17.1	dB
$\mathrm{S}_{21}$	Amplifier gain in thru mode	Enable $=$ LO, 900 MHz		-9.0	-7.5	-6.0	dB
$\Delta S_{21} / \Delta T$	Gain temperature sensitivity enabled	900 MHz			-0.008		$\mathrm{dB}^{\circ}{ }^{\circ} \mathrm{C}$
$\Delta S_{21} / \Delta T$	Gain temperature sensitivity in thru mode	Enable $=$ LO, 900 MHz			-0.014		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
$\Delta S_{21} / \Delta f$	Gain frequency variation	$800 \mathrm{MHz}-1.2 \mathrm{GHz}$			-0.014		dB/MHz
$\mathrm{S}_{12}$	Amplifier reverse isolation	900 MHz		-47	-42	-37	dB
$\mathrm{S}_{11}$	Amplifier input match ${ }^{3}$	900 MHz		-11	-10	-9	dB
$\mathrm{S}_{22}$	Amplifier output match	900 MHz		-16.8	-15	-13.2	dB
$\mathrm{P}_{-1 \mathrm{~dB}}$	Amplifier input 1dB gain compression	900 MHz		-21.2	-20	-18.8	dBm
$\mathrm{IP}_{3}$	Amp input 3rd-order intercept	Test Fig. 2, 900 MHz		-11.6	-10	-8.6	dBm
	Amp input 3rd-order intercept (thru mode)	Test Fig. 2, 900MHz, Enable $=$ LO			+26		dBm
NF	Amplifier noise figure	900 MHz		1.9	2.2	2.5	dB
	Amp noise figure w/shunt 15 nH inductor at input	900 MHz		1.7	2.0	2.3	dB
$\mathrm{t}_{\mathrm{on}}$	Amplifier turn-on time	Enable Lo $\rightarrow$ Hi	Coupling $=100 \mathrm{pF}$		30		$\mu \mathrm{s}$
			Coupling $=0.01 \mu \mathrm{~F}$		3		ms
toff	Amplifier turn-off time	Enable $\mathrm{Hi} \rightarrow$ Lo	Coupling $=100 \mathrm{pF}$		10		$\mu \mathrm{s}$
			Coupling $=0.01 \mu \mathrm{~F}$		1		ms

Mixer $\left(V_{C C}=V_{C C M X}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Enable $=\mathrm{Hi}, \mathrm{f}_{\mathrm{LO}}=1 \mathrm{GHz} @ 0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=100 \mathrm{MHz}$, Test Fig. 1, unless otherwise stated)

$\mathrm{VG}_{\mathrm{c}}$	Mixer voltage conversion gain	$\mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=1 \mathrm{k} \Omega$	9.5	10.4	11.3	dB
$\mathrm{PG}_{\mathrm{C}}$	Mixer power conversion gain	$\mathrm{R}_{\mathrm{L} 1}=\mathrm{R}_{\mathrm{L} 2}=1 \mathrm{k} \Omega$	-3.05	-2.6	-2.15	dB
$\mathrm{S}_{11 \mathrm{RF}}$	Mixer input match	900 MHz	-23	-20	-17	dB
$\mathrm{NF}_{\mathrm{M}}$	Mixer SSB noise figure	Test Fig. 3, 900 MHz , $\mathrm{f}_{\text {IF }}=80 \mathrm{MHz}$	12.2	14	15.8	dB
$\mathrm{P}_{-1 \mathrm{~dB}}$	Mixer input 1dB gain compression	900 MHz	-5.3	-4	-2.7	dBm
$\mathrm{IP}_{31 \mathrm{NT}}$	Mixer input third order intercept	900 MHz	+5	+6	+7	dBm
$\mathrm{IP}_{\text {2INT }}$	Mixer input second order intercept	900 MHz	+18	+20	+22	dBm
$\mathrm{G}_{\text {RFM-IF }}$	Mixer RF feedthrough	$900 \mathrm{MHz}, \mathrm{C}_{\text {IF }}=3 \mathrm{pF}$		-7		dB
GLo-IF	Mixer LO feedthrough	$900 \mathrm{MHz}, \mathrm{C}_{\text {IF }}=3 \mathrm{pF}$		-10		dB
GLO-RFM	Local oscillator to mixer input feedthrough	900 MHz		-33		dB
$\mathrm{S}_{111 \mathrm{O}}$	LO input match	900 MHz	-24	-20	-16	dB
GLo-RF	Local oscillator to RF input feedthrough	900 MHz		-46		dB
$\mathrm{G}_{\text {RFO-RFM }}$	Filter feedthrough	900 MHz		-39		dB

LNA + Mixer ( $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCMX}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Enable $=\mathrm{Hi}, \mathrm{f}_{\mathrm{LO}}=1 \mathrm{GHz} @ 0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=900 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=100 \mathrm{MHz}$, Test Fig. 1, unless otherwise stated)

$\mathrm{PG}_{\mathrm{C}}$	Overall power conversion gain			13.4		dB
NF	Overall noise figure			3.5		dB
$\mathrm{IP}_{3}$	Overall input 3rd-order intercept			-13		dBm

## NOTE:

1. All meausrements include the effects of the NE/SA600 Evaluation Board (see Figure) unless otherwise noted. Measurement system impedance is $50 \Omega$.
2. Standard deviations are estimated from design simulations to represent manufacturing variations over the life of the product.
3. With a shunt 15 nH inductor at the input of the LNA, the value of $\mathrm{S}_{11}$ is typically -15 dB .

1GHz LNA and mixer

## TYPICAL APPLICATION



TEST FIGURE 2


TEST FIGURE 1


## TEST FIGURE 3



NOTE: All performance curves include the effects of the NE/SA600 evaluation board.
LNA S21 CHARACTERISTICS $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCMx}} \leq 5.5 \mathrm{~V}$, Test Figure 1 , unless otherwise specified.


LNA S11/S12/S22 CHARACTERISTICS $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCMx}} \leq 5.5 \mathrm{~V}$, Test Figure 1 , unless otherwise specified.


Table 1. S-Parameters

Freq	S11		S12		S21		S22	
MHz	dB	deg.	dB	deg.	dB	deg.	dB	deg.
800	-9.5	-160	-46	8	17.9	125	-18.0	151
900	-9.5	-172	-43	19	16.4	105	-15.8	122
1000	-9.4	-173	-40	17	15.1	88	-14.0	98
1100	-9.1	-200	-37	12	13.8	70	-12.4	77
1200	-8.9	-216	-35	1	12.9	55	-11.1	58

LNA OVERLOAD/NOISE/DISTORTION CHARACTERISTICS $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCM}} \leq 5.5 \mathrm{~V}$, Test Fig. 1, unless otherwise specified.


MIXER GAIN/NOISE CHARACTERISTICS $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{mx} \leq 5.5 \mathrm{~V}$, Test Figure 1 , unless otherwise specified.


MIXER OVERLOAD/DISTORTION CHARACTERISTICS $4.5 \leq \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCMX}} \leq 5.5 \mathrm{~V}$, Test Fig. 1 , unless otherwise specified

Mixer Input 1dB Gain Compression Point vs LO Power


Mixer Input Third-Order Intercept Point vs LO Power


Mixer Input Third-Order Intercept Point vs RF Frequency


Mixer Input 1dB Gain Compression Point vs Temperature


Mixer Input Third-Order Intercept Point vs IF Frequency


Mixer Input Third-Order Intercept Point vs Temperature


MIXER S11/ISOLATION/INTERFERENCE CHARACTERISTICS $4.5 \leq \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{Cc}} \mathrm{xx} \leq 5.5 \mathrm{~V}$, Test Fig. 1, unless otherwise specified


OVERALL PERFORMANCE: ISOLATION CHARACTERISTICS $4.5 \leq \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCMX}} \leq 5.5 \mathrm{~V}$, Test Fig. 1 , unless otherwise specified


## SPECIFICATIONS

The goal of the Specifications section of the datasheet is to provide information on the NE/SA600 in such a way that the designer can estimate statistical variations, and can reproduce the measurements. To this end the high frequency measurements are specified with a particular PC board layout. Variations in board layout will cause parameter variations (sensitive parameters are discussed in the sections on the LNA and mixer below). For many RF parameters the $\pm 3$ sigma limits are specified. Statistically only $0.26 \%$ of the units will be outside these limits.

The LNA + mixer conversion gain is measured with an incident 900 MHz signal and a 83 MHZ SAW filter at the IF output. This measurement along with a gain measurement of the LNA ensure the correct operation of the chip and also allows a calculation of mixer conversion gain.

## PIN DESCRIPTIONS AND OPERATIONAL LIMITS

RF $_{\text {INA }}$
Input of LNA, AC coupling required, $D C=$ 0.78 V , frequency range from DC to 2 GHz , gain at low frequencies is 40 dB - so be careful of overload, impedance below $50 \Omega$, shunt $15-18 \mathrm{nH}$ inductor helps input match and noise figure.

## RFOUTA

Output of LNA, AC coupling required, $\mathrm{DC}=$ 1.27 V , frequency range from DC to 2 GHz , impedance above $50 \Omega$.

## BYPASS

Bypass capacitor should be 100 times larger than the largest signal coupling capacitor for the $\mathrm{LNA}, \mathrm{DC}=1.05 \mathrm{~V}$.

RFinmx
Mixer RF port, AC coupling required, $\mathrm{DC}=$ 1.43V, frequency range from 100 MHz to 2.5 GHz , impedance close to $50 \Omega$ resistive.

LOIN
Mixer LO port, AC coupling required,
$D C=3.35 \mathrm{~V}$, frequency range from 100 MHz to 2.5 GHz , impedance close to $50 \Omega$ resistive.

## IFout

Mixer IF port, open-collector output with 1.6 mADC , frequency range DC to 1 GHz , impedance approximately 1 pF capacitive.

## Enable

TTLCMOS compatible input. Bias current approximately zero.

## CONVERSION GAIN DEFINITIONS

Referring to the figure above, we define the ratio of $V_{A}$ (at the IF frequency) to $V_{1}$ (at the RF frequency) to be the Available Voltage Conversion Gain, or more simply Voltage Conversion Gain,


$$
V G_{C}=20 \log \left(\frac{V_{A}}{V_{1}}\right)
$$

where $V_{A}$ and $V_{I}$ are expressed in similar voltage units (such as peak-to-peak). The voltage output $\mathrm{V}_{\mathrm{A}}$ is decreased by the IF Filter loss (and any other matching required). Typically, $\mathrm{VG}_{\mathrm{c}}$ is 10.4 dB for the NE/SA600 mixer with the net IF impedance equal to $500 \Omega$.
It is more common to express the conversion gain in terms of power, so we have the Power

$$
\begin{aligned}
& \text { Conversion Gain, } \\
& \qquad P G_{C}=10 \log \left(\frac{P_{A}}{P_{I}}\right)-3 d B
\end{aligned}
$$

where $P_{A}=V_{A}{ }^{2} / R_{I F}$ and $P_{I}=V_{I}{ }^{2} / R_{R F}$. $R_{I F}$ is the net resistance at the IF frequency at the IF port, and $\mathrm{R}_{\text {RF }}$ is the input impedance at the mixer RF port. With a $500 \Omega$ IF impedance and a $50 \Omega$ RF input impedance,
the conversion gain works out to -2.6 dB typically. The power delivered to the load is down 3 dB with respect to the available power because of loss in $\mathrm{R}_{\mathrm{L} 1}$.

## THEORY OF OPERATION

The NE/SA600 is fabricated on the Philips Semiconductors advanced QUBiC technology that features $1 \mu \mathrm{~m}$ channel length MOSFETs and 13 GHz FT bipolar transistors.

## LNA

The Low Noise Amplifier (LNA) is a two stage design incorporating feedback to stablize the amplifier. An external bypass capacitor of (typically) $0.01 \mu \mathrm{~F}$ is used. The inputs and outputs are matched to $50 \Omega$. The amplifier has two gain states: when the ENABLE pin is taken high, the amplifier draws 9 mA of current and has 16 dB of gain at 900 MHz . When the ENABLE pin is low, the amplifier current goes to zero, and the amplifier is replaced by a thru. Typical loss for the thru is 7 dB . This dual-gain state approach can be used in bang-bang control systems to achieve a low gain, high overload front-end as well as the more usual high gain, low overload front-end.

The amplifier has gain to frequencies past 2 GHz , but a practical upper end is $1.6-1.7 \mathrm{GHz}$. Both the input match and the noise figure (NF) can be improved with a shunt $15-18 \mathrm{nH}$ inductor at the input. Typically, the gain increases 0.4 dB , the match improves to $13-16 \mathrm{~dB}$, and the noise figure drops to $1.95-2 \mathrm{~dB}$. Variations of any of the RF parameters with $\mathrm{V}_{\mathrm{CC}}$ is negliglible, and variation with temperature is minimal.

## Mixer

The mixer is a single-balanced topology designed to draw very low current, typically 4 mA , and provide a very high input third-order intermodulation intercept point, typically IP3=+6dBm. The RF and LO ports impedances are nearly $50 \Omega$ resistive, and the IF output is an open collector. The open-collector output allows direct interfacing with high impedance IF filters, such as surface acoustic wave (SAW) filters without the need for external step-up transformers (which are needed for $50 \Omega$ output mixers).
The basic mixer is functional from $D C$ to well over 2.5 GHz , but RF and LO return losses degrade below 100 MHz . The IF output can be used from DC to 500 MHz or more, although typically the intermediate frequency is in the range $45-120 \mathrm{MHz}$ in many 900 MHz receivers. To achieve the lowest noise, the LO drive level should be increased as high as possible, consistent with power dissipation limitations.

## POWER SUPPLY ISSUES

$V_{c c}$ bypassing is important, but not extremely critical because of the internal supply regulation of the NE/SA600. The Pin $1 \mathrm{~V}_{\mathrm{CC}}$ supplies the LNA and powers overhead circuitry. Typical current draw is 9.8 mA while enable is high ( 1 mA powered down). The Pin $14 \mathrm{~V}_{\text {CCMx }}$ powers the mixer and typically has 3.2 mA of current (assuming an inductor biasing the IFout back to $\mathrm{V}_{\text {ссмx }}$ ). Care must be taken to avoid bringing any IC pin above $\mathrm{V}_{\mathrm{CC}}$ by more than 0.3 V , or below any ground by more than 0.3 V . For example, this can occur if the enable pin is fed from a microcontroller that is powered up quicker than the NE/SA600. In this condition the internal electrostatic discharge (ESD) protection network may turn-on, possibly causing a part misfunction. Generally this condition is reversible, so long as the source creating the overstress is current limited to less than 100 mA . To avoid the problem, make sure both $V_{c c}$ pins are tied together near the $I C$, and install a $1 \mathrm{k} \Omega$ resistor in series with the enable pin if it is likely to go above $\mathrm{V}_{\mathrm{cc}}$.

## BOARD LAYOUT CONSIDERATIONS

The LNA is sensitive to mutual inductance from the input to ground. Therefore long narrow input traces will degrade the input match. Ideally, a top side ground-plane should be employed to maximize LNA gain and minimize stray coupling (such as LO to antenna). To avoid amplifier peaking, the output and input grounds should not be run together. Attach both grounds to a solid ground plane. A solid ground plane beneath the package will maximize gain. Top side to back side ground through holes are highly recommended.
The mixer is relatively insensitive to grounding. Care should be taken to minimize the capacitance on the RF port (Pin 11) for best noise figure. Also, the capacitance on the IFout pin must be kept small to avoid conversion gain rolloff when using high IF frequencies. The purpose of the inductor from IFout to $\mathrm{V}_{C C}$ is to set the midpoint of the IF swing to be $\mathrm{V}_{\mathrm{CC}}$. Without this inductor the part is sensitive to output overload under low $\mathrm{V}_{\mathrm{CC}}\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right)$ and hot temperature conditions. The $\mathrm{V}_{\text {ccmx }}$ pin must be kept at the same potential as the $\mathrm{V}_{\mathrm{CC}}$ pin.

## APPLICATIONS INFORMATION

 The NE/SA600 is a high performance, wide-band, low power, low noise amplifier (LNA) and mixer circuit integrated in aBiCMOS technology. It is ideally suited for RF receiver front-ends for both analog and digital communications systems.
There are several advantages to using the NE/SA600 as a high frequency front-end block instead of a discrete implementation. First is the simplicity of use. The NE/SA600 does not need any external biasing components. Due to the higher level of integration and small footprint (SO14) package it occupies less space on the printed circuit board and reduces the manufacturing cost of the system. Also the higher level of integration improves the reliability of the LNA and mixer over a discrete implementation with several components.

The LNA thru mode in NE/SA600 helps reduce power consumption in applications where the amplifiers can be disabled due to higher received signal strength (RSSI). Other advantages of this feature are described later in this section.

The mixer is an active mixer with excellent conversion gain at low LO input levels, so LO levels as low as -5 dBm to -10 dBm can be used depending on the applications requirement for mixer gain, mixer noise figure and mixer third order intercept point. This reduces the LO drive requirements from the VCO buffer, thus reducing its current consumption. Also, due to lower LO levels, the shielding requirements can be minimized or eliminated, resulting in substantial cost savings and weight and space reduction.
And last but not least, is the impedance matching at LNA inputs and outputs and mixer RF and LO input ports. Only those who have toiled through discrete transistor implementations for $50 \Omega$ input and output impedance matching can truly appreciate the elegance and simplicity of the NE/SA600 input and output impedance matching to $50 \Omega$. Also, the mixer output impedance is high, so matching to a crystal or SAW IF filter becomes extremely easy without the need for additional IF impedance transformers (tapped-C networks with inductors or baluns).
The NE/SA600 applications and demo board features standard low cost 62mil FR-4 board. A top-side ground plane is used and $50 \Omega$ coplanar transmission lines are used. LO and RFINA traces are perpendicular. Provisions for the image reject filter between RFouta and RFinmx are provided. A simple LC match for 80 MHz IF is used so that $50 \Omega$ measurements can be made on the demo board.

The NE/SA600 applications evaluation board schematic is shown in Figure 1. The VCc (Pin 1) and $\mathrm{V}_{\mathrm{CCMX}}$ (Pin 14) are tied together
and the power supply is bypassed with capacitors C5 and C6. These capacitors should be placed as close to the device as practically possible.
C1 is the DC blocking capacitor to the input of the LNA. L1 provides additional input matching to the LNA for an improved return loss (S11). This inductor can be a surface-mount component or can be easily drawn on the printed circuit board (small spiral or serpentine). This additional match improves the gain of the LNA by $0: 4 \mathrm{~dB}$ and lowers the noise figure to 2 dB or less. If the typical gain of the LNA of 16 dB is acceptable with 2.2 dB of noise figure, then L 1 can be eliminated. If the LNA input is fed from a duplexer or selectivity filter after the antenna, C1 can also be eliminated since the filter will also provide DC blocking. The LNA bypass capacitor C3 should be at least 100 times C1 or C9 for low frequency stability. Switch S1 toggles the LNA gain/through function. R1 is used only to limit the maximum current into the enable pin and only necessary if enable may power up before the $V_{C c}$.
C4 is a DC blocking capacitor for the LO input pin and may not be needed in actual applications if the VCO output is isolated and will not upset the internal DC biasing of the mixer. The image reject filter goes between the output of the LNA and the RF input to the mixer. Since the LO input, RF output and mixer input are all $50 \Omega$ matched impedances internally, there is no need for any external components. C8 and C9 are DC blocking capacitors to the connectors and will not be needed in an actual application.
R2 and L2 are the load to the mixer output which is typical of the IF crystal or SAW filters. C2 and L3 provide a match from the high impedance mixer output to a $50 \Omega$ test set-up (spectrum analyzer, etc.) and C7 is a DC blocking capacitor for the mixer output.
The printed circuit board layout for the schematic of Figure 1 is shown in Figure 3. It is a very simple printed circuit board layout with all the components on a single side. The layout also accomodates a two pole image reject filter between the LNA outupt and mixer input. All the input and output traces to the LNA and mixer should be $50 \Omega$ tracks with the exception of mixer output, which can be very narrow due to the higher impedances of the filter.

The NE/SA600 internal supply is very well regulated. This is seen from Figure 4 which shows the ICC vs. $V_{C C}$ for the NE/SA600. Table 1 shows the S11, S21, S22 and S21 for
the LNA from $800-1200 \mathrm{MHz}$. Typical measurements at 900 MHz for the critical parameters such as gain, noise figure, $\mathbb{I}_{3}$, 1 dB compression point, etc. as measured on an applications evaluation board are as follows:

LNA gain $=16.5 \mathrm{~dB}$
LNA through $=-7 \mathrm{~dB}$
Mixer gain $=-3 \mathrm{~dB}$ (into a $50 \Omega$ load)
LNA noise figure $=2 \mathrm{~dB}$
Mixer noise figure $=14 \mathrm{~dB}$
LNA $\mathrm{P}_{3}=-10 \mathrm{dBm}$ (in gain mode)
LNA $\mathrm{IP}_{3}=+26 \mathrm{dBm}$ (in through mode)
LNA 1dB compression point $=-20 \mathrm{dBm}$ Mixer 1 dB compression point $=-4 \mathrm{dBm}$

The shunt inductor $L 1$ for input match is optional. Figure 5 shows the effect of the inductor value from 8.2 nH to 15 nH on gain, noise figure and input match.

The total power gain for the LNA and mixer (excluding the image reject filter) in a system where the output of the mixer is loaded with $50 \Omega$ is about 14 dB . In an actual system the output impedance of the mixer is usually much higher than $50 \Omega$ (more like $1 \mathrm{k} \Omega$ or higher) and so it is more important to consider the voltage gain from the input at the LNA to the mixer output. The voltage gain in this case will be about $29.85 \mathrm{~V} / \mathrm{V}$. The total noise figure for the LNA and mixer combination is be about 3.27 dB . The input third order intercept point for the LNA and mixer is about - 11 dBm . In the LNA through mode, the intercept point for the combination is higher than +19 dBm . This LNA through feature provides an additional boost to the total dynamic range of the system.
The NE/SA600 finds applications in many areas of RF communications. It is an ideal down converter block for high performance, low cost, low power RF communications transceivers. The front-end of a typical AMPS/TACS/NMT/TDMAVCDMA cellular phone is shown in Figure 2. This could also be the front-end of a VHF/UHF handheld transceiver, UHF cordless telephone or a spread spectrum system.

The antenna is connected to the duplexer input. The receiver output of the duplexer is connected to the RF input of the LNA. If the additional improvement in noise figure and gain are not needed to meet the system specifications then L1 and C1 can be eliminated. In TDMA systems, the NE/SA600 can be totally powered down by Q1 and the two resistors. In this mode the current consumption will be zero.mA. Care should be taken in the software of the system to
insure that the enable pin on NE/SA600 tied to the LNA gain control port is held low while the device is in total power down mode. L2 and C 2 can be tuned to the IF frequency and to match to the IF filter impedance.
A complete analysis of the front-end shows that the total voltage gain from the antenna input to the mixer output is about $9.5 \mathrm{~V} / \mathrm{N}$. This value includes a 3.2dB loss for the duplexer and a 1.8 dB loss for the bandpass filter. The noise figure as referred to the antenna is 7 dB and the input third order intercept point is about -7.5 dBm . In LNA through mode the input third order intercept point increases to about +24 dBm .
During normal operation of a handheld RF receiver the received signal strength (RSSI) is nominally greater than -100 dBm . The signal only drops below this level due to severe multipath fading, shadow effect or when the receiver is at extreme fringes of cell coverage. The LNA through mode can be used here as a two step gain control such that when RSSI is below a certain threshold level (e.g. -90 dBm ), the LNA has a -7 dB loss and the total current consumption of the NE/SA600 is only 4.3 mA . The sensitivity of the system will not suffer because the received RF signal is much higher than the noise floor of the system. When the RSSI falls below a certain threshold (e.g. -95dBm) the LNA is enabled to give the full 16.5 dB of gain with 2 dB of noise figure. In this mode the current consumption is increased to 13 mA . But for hand-held equipment, the average current consumption will be closer to $5-6 \mathrm{~mA}$. The other advantage of the LNA through mode besides power savings is the input overload characteristics. Due to the much higher input third order intercept point of the LNA $(+26 \mathrm{dBm})$, the receiver is immune to strong adjacent channel interference. Implementing this feature with an FMIF device such as the NE625/7 with fast RSSI response and a window comparator toggling the LNA mode of NE/SA600, a fast two-step AGC with response time less than $10 \mu \mathrm{~s}$ can be achieved. This is a very useful feature to equalize multipath fading effects in a mobile radio system.
In conclusion, the NE/SA600 offers higher level of integration, higher reliability, higher level of performance, ease of use, simpler system design at a cost lower than the discrete multi-transistor implementations. In addition, the NE/SA600 provides unique features to enhance receiver performance which are almost unattainable with discrete implementations.


Figure 1.


Figure 2.

silkscreen	TOP
Figure 3. PC Board Layout	воттом   4 8   $(\cdot)^{\circ}$  




Figure 4.


Figure 5.

## DESCRIPTION

The SA601 is a combined RF amplifier and mixer designed for high-performance low-power communication systems from $800-1200 \mathrm{MHz}$. The low-noise preamplifier has a 1.6 dB noise figure at 900 MHz with 11.5 dB gain and an IP3 intercept of -3 dBm at the input. The gain is stabilized by on-chip compensation to vary less than $\pm 0.2 \mathrm{~dB}$ over -40 to $+85^{\circ} \mathrm{C}$ temperature range. The wide-dynamic-range mixer has a 10 dB noise figure and IP3 of 0 dBm at the input at 900 MHz . The nominal current drawn from a single 3 V supply is 7.4 mA . The Mixer can be powered down to further reduce the supply current to 4.4 mA .

## FEATURES

- Low current consumption: 7.4mA nominal, 4.4 mA with the mixer power-down
- Outstanding LNA noise figure: 1.6 dB at 900 MHz
- High system power gain: 18.5 dB (LNA + Mixer) at 900 MHz
- Excellent gain stability versus temperature and supply voltage
- External >-7dBm LO can be used to drive the mixer


## APPLICATIONS

- 900 MHz cellular front-end (NADC, GSM, AMPS, TACS)
- 900MHz cordless front-end (CT1, CT2)
- 900 MHz receivers


## PIN CONFIGURATION

DK Package	

## ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG\#
20-Pin Plastic Shrink Small Outline Package (Surface-mount, SSOP)	-40 to $+85^{\circ} \mathrm{C}$	SA601DK	1563

## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\mathrm{CC}}$	Supply voltage ${ }^{1}$	-0.3 to +6	V
$\mathrm{~V}_{\text {IN }}$	Voltage applied to any other pin	-0.3 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	V
$\mathrm{P}_{\mathrm{D}}$	Power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { still air })^{2}$   20-Pin Plastic SSOP	980	mW
$\mathrm{~T}_{\text {JMAX }}$	Maximum operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {MAX }}$	Maximum power input/output	+20	dBm
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Transients exceeding 8 V on $\mathrm{V}_{\mathrm{cc}}$ pin may damage product.
2. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance,

$$
\theta_{\mathrm{JA}}: 20-\mathrm{Pin} \mathrm{SSOP}=110^{\circ} \mathrm{C} / \mathrm{W}
$$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\mathrm{CC}}$	Supply voltage	2.7 to 5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}$	Operating junction temperature	-40 to +105	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{C C}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
lcc	Supply current			7.4		mA
		Mixer power-down input low		4.4		mA
$\mathrm{V}_{\text {LNA-IN }}$	LNA input bias voltage			0.78		V
V LNA-OUT	LNA output bias voltage			2.1		V
$\mathrm{V}_{\text {MX- }} \mathrm{N}$	Mixer RF input bias voltage			0.94		V

Low voltage LNA and mixer - 1GHz

## AC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; LOIN $=-7 \mathrm{dBm} @ 817 \mathrm{MHz}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			-3\%	TYP	+3\%	
$\mathrm{S}_{21}$	Amplifier gain	900 MHz	10	11.5	13	dB
$\Delta \mathrm{S}_{21} / \Delta \mathrm{T}$	Gain temperature sensitivity	900 MHz		0.003		dB/ ${ }^{\text {C }}$
$\Delta \mathrm{S}_{21} / \Delta \mathrm{f}$	Gain frequency variation	$800 \mathrm{MHz}-1.2 \mathrm{GHz}$		0.01		$\mathrm{dB} / \mathrm{MHz}$
$\mathrm{S}_{12}$	Amplifier reverse isolation	900 MHz		-20		dB
$\mathrm{S}_{11}$	Amplifier input match ${ }^{1}$	900 MHz		-10		dB
$\mathrm{S}_{22}$	Amplifier output match ${ }^{1}$	900 MHz		-10		dB
$\mathrm{P}_{-1 \mathrm{~dB}}$	Amplifier input 1dB gain compression	900 MHz		-16		dBm
IP3	Amplifier input third order intercept	900 MHz	-4.5	-3	-1.5	dBm
NF	Amplifier noise figure	900 MHz	1.3	1.6	1.9	dB
$\mathrm{VG}_{\mathrm{c}}$	Mixer voltage conversion gain: $\mathrm{R}_{\mathrm{P}}=\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$,	$\begin{gathered} \mathrm{f}_{\mathrm{S}}=0.9 \mathrm{GHz}, \mathrm{f}_{\mathrm{LO}}=0.8 \mathrm{GHz}, \\ \mathrm{f}_{\mathrm{F}}=100 \mathrm{MHz} \end{gathered}$	18	19.5	21	dB
$\mathrm{PG}_{\mathrm{c}}$	Mixer power conversion gain: $\mathrm{R}_{\mathrm{P}}=\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$,	$\begin{gathered} \mathrm{fs}_{\mathrm{S}}=0.9 \mathrm{GHz}, \mathrm{f}_{\mathrm{LO}}=0.8 \mathrm{GHz}, \\ \mathrm{f}_{\mathrm{IF}}=100 \mathrm{MHz} \end{gathered}$	5.5	7	8.5	dB
$\mathrm{S}_{11 \mathrm{M}}$	Mixer input match ${ }^{1}$	900 MHz		-10		dB
$\mathrm{NF}_{\mathrm{M}}$	Mixer SSB noise figure	900 MHz	8.5	10	11.5	dB
$\mathrm{P}_{-1 \mathrm{~dB}}$	Mixer input 1dB gain compression	900 MHz		-13		dBm
$\mathrm{IP}^{\text {M }}$	Mixer input third order intercept	$\mathrm{f}_{2}-\mathrm{f}_{1}=1 \mathrm{MHz}, 900 \mathrm{MHz}$	-1.5	0	1.5	dBm
$\mathrm{P}_{\text {2INT }}$	Mixer input second order intercept	900 MHz		12		dBm
$\mathrm{P}_{\text {RFM-IF }}$	Mixer RF feedthrough	900 MHz		-3		dB
PLO-IF	LO feedthrough to IF	900 MHz		-8		dBm
$P_{\text {LO-RFM }}$	LO to mixer input feedthrough	900 MHz		-39		dBm
$\mathrm{P}_{\text {Lo-rf }}$	LO to LNA input feedthrough	900 MHz		-45		dBm
Plna-rfm	LNA output to mixer input	900 MHz		-41		dBm
PrFM-LO	Mixer input to LO feedthrough	900 MHz		-27		dBm
LOIN	LO drive level	817 MHz		-7		dBm

## NOTE:

1. Simple L/C elements are needed to achieve specified return loss.


TYPICAL   PERFORMANCE   $@ 900 M H z$	PGC	NFM	$1 P 3 M$	LO-LNA Input   isolation	CCC
	7 dB	10 dB	0 dBm	-45 dBm	7.4 mA

Figure 1. Appilcation Circuit Using an External LO

## CIRCUIT TECHNOLOGY

## LNA

Impedance Match: Intrinsic return loss at the input and output ports is 7 dB and 9 dB , respectively. With no external matching, the associated LNA gain is $\approx 10 \mathrm{~dB}$ and the noise figure is $\approx 1.4 \mathrm{~dB}$. However, the return loss can be improved at 900 MHz using suggested UC elements (Figure 1 ) as the LNA is unconditionally stable.
Nolse Match: The LNA achieves 1.6 dB noise figure at 900 MHz when $\mathrm{S}_{11}=-10 \mathrm{~dB}$. Further improvements in $\mathrm{S}_{11}$ will slightly decrease the NF and increase $\mathrm{S}_{21}$.
Temperature Compensation: The LNA has a built-in temperature compensation scheme to reduce the gain drift to $0.003 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

## Supply Voltage Compensation: Unique

 circuitry provides gain stabilization over wide supply voltage range. The gain changes no more than 0.5 dB when $\mathrm{V}_{\mathrm{CC}}$ increases from 3 V to 5 V .
## Mixer

Noise Figure: Mixer noise performance can be improved to typically 8 dB by replacing R1 with an inductor of 4.7 nH and reducing C 3 to 1 pF . Actual values for both depend on the exact operating frequency and board layout. It is important to achieve a good return loss at the LO port. Under this condition, the drive level can be decreased to below -10dBm, although the IP3 will degrade by about 4 dB .
IP3 Performance: For 2dB better IP3, a shunt resistor of $1 \mathrm{k} \Omega$ can be connected between Pin 16 and ground.

Input Match: The mixer is configured for maximum gain and best noise figure. The user needs to supply LC elements to achieve this performance.
Power Down: The mixer can be disabled by connecting Pin 7 to ground. When the mixer is disabled, 3 mA is saved.

Power Combining: The mixer output circuit features passive power combining (patent pending) to optimize conversion gain and noise figure performance without using extra DC current or degrading the IP3. For IF frequencies significantly different than 83 MHz , the component values must be altered accordingly.

Test Port: The IF port of the mixer features dual outputs with different impedance levels (patent pending). The high impedance side is intended for the filter; the low impedance side is chosen to be $50 \Omega$ so that designers can evaluate the IC or monitor the gain on production units with external test equipment. So, the IC operates under identical conditions on the characterization board and the production units. This promotes design success with a minimum number of design cycles. If the filter impedance is substantially different from $1 \mathrm{k} \Omega$, component values must be altered accordingly.


Top View


Bottom View


Silk Screen


Via Layer

## DESCRIPTION

The NE/SA602A is a low-power VHF monolithic double-balanced mixer with input amplifier, on-board oscillator, and voltage regulator. It is intended for high performance, low power communication systems. The guaranteed parameters of the SA602A make this device particularly well suited for cellular radio applications. The mixer is a "Gilbert cell" multiplier configuration which typically provides 18 dB of gain at 45 MHz . The oscillator will operate to 200 MHz . It can be configured as a crystal oscillator, a tuned tank oscillator, or a buffer for an external LO. For higher frequencies the LO input may be externally driven. The noise figure at 45 MHz is typically less than 5 dB . The gain, intercept performance, low-power and noise characteristics make the NE/SA602A a superior choice for high-performance battery operated equipment. It is available in an 8 -lead dual in-line plastic package and an 8 -lead SO (surface-mount miniature package).

## FEATURES

- Low current consumption: 2.4 mA typical
- Excellent noise figure: $\mathbf{~ 4 . 7 d B}$ typical at 45 MHz
- High operating frequency
- Excellent gain, intercept and sensitivity
- Low external parts count; suitable for crystal/ceramic filters
- SA602A meets cellular radio specifications


## PIN CONFIGURATION

## APPLICATIONS

- Cellular radio mixer/oscillator
- Portable radio
- VHF transceivers
- RF data links
- HFNHF frequency conversion
- Instrumentation frequency conversion
- Broadband LANs



## ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
8-Pin Plastic Dual In-Line Plastic (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE602AN	0404B
8-Pin Plastic Small Outline (SO) package (Surface-mount)	0 to $+70^{\circ} \mathrm{C}$	NE602AD	0174 C
8-Pin Ceramic Dual In-Line Package (Cerdip)	0 to $+70^{\circ} \mathrm{C}$	NE602AFE	0580 A
8-Pin Plastic Dual In-Line Plastic (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA602AN	0404 B
8-Pin Plastic Small Outline (SO) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA602AD	0174 C
8-Pin Ceramic Dual In-Line Package (Cerdip)	-40 to $+85^{\circ} \mathrm{C}$	SA602AFE	0580 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\mathrm{cc}}$	Maximum operating voltage	9	V
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Operating ambient temperature range NE602A	0 to +70	${ }^{\circ} \mathrm{C}$
	SA602A	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance $\quad \begin{aligned} & \text { D package } \\ & \text { N package }\end{aligned}$	$90$	${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$

## BLOCK DIAGRAM



## AC/DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{C C}=+6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA602A			
			MIN	TYP	MAX	
$\mathrm{V}_{\mathrm{cc}}$	Power supply voltage range		4.5		8.0	V
	DC current drain			2.4	2.8	mA
$\mathrm{fiN}^{\text {I }}$	Input signal frequency			500		MHz
fosc	Oscillator frequency			200		MHz
	Noise figure at 45 MHz			5.0	5.5	dB
	Third-order intercept point	$\begin{aligned} & \mathrm{RF}_{\mathrm{IN}}=-45 \mathrm{dBm}: f_{1}=45.0 \mathrm{MHz} \\ & f_{2}=45.06 \mathrm{MHz} \end{aligned}$		-13	-15	dBm
	Conversion gain at 45 MHz		14	17		dB
$\mathrm{R}_{\text {IN }}$	RF input resistance		1.5			$\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	RF input capacitance			3	3.5	pF
	Mixer output resistance	(Pin 4 or 5)		1.5		k $\Omega$

## DESCRIPTION OF OPERATION

The NE/SA602A is a Gilbert cell, an oscillator/buffer, and a temperature compensated bias network as shown in the equivalent circuit. The Gilbert cell is a differential amplifier (Pins 1 and 2) which drives a balanced switching cell. The differential input stage provides gain and determines the noise figure and signal handling performance of the system.

The NE/SA602A is designed for optimum low power performance. When used with the SA604 as a 45 MHz cellular radio second IF and demodulator, the SA602A is capable of receiving -119dBm signals with a 12 dB S/N ratio. Third-order intercept is typically -13 dBm (that is approximately +5 dBm output intercept because of the RF gain). The system designer must be cognizant of this
large signal limitation. When designing LANs or other closed systems where transmission levels are high, and small-signal or signal-to-noise issues are not critical, the input to the NE602A should be appropriately scaled.
Besides excellent low power performance well into VHF, the NE/SA602A is designed to be flexible. The input, RF mixer output and oscillator ports can support a variety of configurations provided the designer understands certain constraints, which will be explained here.
The RF inputs (Pins 1 and 2) are biased internally. They are symmetrical. The equivalent $A C$ input impedance is approximately $1.5 \mathrm{k}|\mid 3 \mathrm{pF}$ through 50 MHz . Pins 1 and 2 can be used interchangeably,
but they should not be DC biased externally. Figure 3 shows three typical input configurations.
The mixer outputs (Pins 4 and 5) are also internally biased. Each output is connected to the internal positive supply by a $1.5 \mathrm{k} \Omega$ resistor. This permits direct output termination yet allows for balanced output as well. Figure 4 shows three single ended output configurations and a balanced output.
The oscillator is capable of sustaining oscillation beyond 200 MHz in crystal or tuned tank configurations. The upper limit of operation is determined by tank " Q " and required drive levels. The higher the " Q " of the tank or the smaller the required drive, the higher the permissible oscillation frequency. If the required LO is beyond oscillation limits,
or the system calls for an external LO, the external signal can be injected at Pin 6 through a DC blocking capacitor. External LO should be at least $200 \mathrm{mV} \mathrm{V}_{\text {p.p. }}$.
Figure 5 shows several proven oscillator circuits. Figure 5 a is appropriate for cellular radio. As shown, an overtone mode of operation is utilized. Capacitor C 3 and inductor L1 suppress oscillation at the crystal fundamental frequency. In the fundamental mode, the suppression network is omitted.
Figure 6 shows a Colpitts varactor tuned tank oscillator suitable for synthesizer-controlled
applications. It is important to buffer the output of this circuit to assure that switching spikes from the first counter or prescaler do not end up in the oscillator spectrum. The dual-gate MOSFET provides optimum isolation with low current. The FET offers good isolation, simplicity, and low current, while the bipolar transistors provide the simple solution for non-critical applications. The resistive divider in the emitter-follower circuit should be chosen to provide the minimum input signal which will assure correct system operation.

When operated above 100 MHz , the oscillator may not start if the $Q$ of the tank is too low. A $22 \mathrm{k} \Omega$ resistor from Pin 7 to ground will increase the DC bias current of the oscillator transistor. This improves the AC operating characteristic of the transistor and should help the oscillator to start. A $22 \mathrm{k} \Omega$ resistor will not upset the other DC biasing internal to the device, but smaller resistance values should be avoided.


Figure 1. Test Configuration

Double-balanced mixer and oscillator


Figure 2. Equivalent Circuit



Figure 4. Output Configuration


b. Colpitts LC Tank Oscillator

c. Hartey UC Tank Oscillator

Figure 5. Oscillator Circuits

Double-balanced mixer and oscillator


Figure 6. Colpitts Oscillator Suitable for Synthesizer Applications and Typical Buffers


Figure 7. Typical Application for Cellular Radio


Figure 8. ICc vs Supply Voltage


Figure 10. Third-Order Intercept Point



Figure 9. Conversion Gain vs Supply Voltage


Figure 11. Noise Figure


Figure 13. Input Third-Order Intermod Point vs $\mathrm{V}_{\mathrm{cc}}$

## DESCRIPTION

The NE/SA612A is a low-power VHF monolithic double-balanced mixer with on-board oscillator and voltage regulator. It is intended for low cost, low power communication systems with signal frequencies to 500 MHz and local oscillator frequencies as high as 200 MHz . The mixer is a "Gilbert cell" multiplier configuration which provides gain of 14 dB or more at 45 MHz .

The oscillator can be configured for a crystal, a tuned tank operation, or as a buffer for an external L.O. Noise figure at 45 MHz is typically below 6 dB and makes the device well suited for high performance cordless phone/cellular radio. The low power consumption makes the NE/SA612A excellent for battery operated equipment. Networking and other communications products can benefit from very low radiated energy levels within systems. The NE/SA612A is available in an 8-lead dual in-line plastic package and an 8-lead SO (surface mounted miniature package).

## FEATURES

- Low current consumption
- Low cost
- Operation to 500 MHz
- Low radiated energy
- Low external parts count; suitable for crystal/ceramic filter
- Excellent sensitivity, gain, and noise figure


## APPLICATIONS

- Cordless telephone
- Portable radio
- VHF transceivers
- RF data links
- Sonabuoys
- Communications receivers
- Broadband LANs
- HF and VHF frequency conversion
- Cellular radio mixer/oscillator


## PIN CONFIGURATION

## D, N Packages



## ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
8-Pin Plastic Dual In-Line Plastic (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE612AN	0404 B
8-Pin Plastic Small Outline (SO) package (Surface-Mount)	0 to $+70^{\circ} \mathrm{C}$	NE612AD	0174 C
8-Pin Plastic Dual In-Line Plastic (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA612AN	0404 B
8-Pin Plastic Small Outline (SO) package (Surface-Mount)	-40 to $+85^{\circ} \mathrm{C}$	SA612AD	0174 C

## BLOCK DIAGRAM



## ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {cc }}$	Maximum operating voltage	9	V
TSTG	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Operating ambient temperature range NE SA	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+85 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$

## AC/DC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, Figure 1

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ	Max	
$\mathrm{V}_{\mathrm{Cc}}$	Power supply voltage range		4.5		8.0	V
	DC current drain			2.4	3.0	mA
fiN	Input signal frequency			500		MHz
fosc	Oscillator frequency			200		MHz
	Noise figured at 45 MHz			5.0		dB
	Third-order intercept point at 45MHz	$R F_{\text {IN }}=-45 \mathrm{dBm}$		-13		dBm
	Conversion gain at 45 MHz		14	17		dB
$\mathrm{R}_{\text {IN }}$	RF input resistance		1.5			$\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	RF input capacitance			3		pF
	Mixer output resistance	(Pin 4 or 5)		1.5		$\mathrm{k} \Omega$

## DESCRIPTION OF OPERATION

The NE/SA612A is a Gilbert cell, an oscillator/buffer, and a temperature compensated bias network as shown in the equivalent circuit. The Gilbert cell is a differential amplifier (Pins 1 and 2) which drives a balanced switching cell. The differential input stage provides gain and determines the noise figure and signal handling performance of the system.

The NE/SA612A is designed for optimum low power performance. When used with the NE614A as a 45 MHz cordless phone/cellular radio 2nd IF and demodulator, the NE/SA612A is capable of receiving -119 dBm signals with a $12 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio. Third-order intercept is typically -15 dBm (that's approximately +5 dBm output intercept
because of the RF gain). The system designer must be cognizant of this large signal limitation. When designing LANs or other closed systems where transmission levels are high, and small-signal or signal-to-noise issues not critical, the input to the NE/SA612A should be appropriately scaled.

## TEST CONFIGURATION



Figure 1. Test Configuration


Figure 2. Equivalent Circuit

Besides excellent low power performance well into VHF, the NE/SA612A is designed to be flexible. The input, output, and oscillator ports can support a variety of configurations provided the designer understands certain constraints, which will be explained here.
The RF inputs (Pins 1 and 2) are biased internally. They are symmetrical. The equivalent $A C$ input impedance is approximately $1.5 \mathrm{k}|\mid 3 \mathrm{pF}$ through 50 MHz . Pins 1 and 2 can be used interchangeably, but they should not be DC biased externally. Figure 3 shows three typical input configurations.

The mixer outputs (Pins 4 and 5) are also internally biased. Each output is connected to the internal positive supply by a $1.5 \mathrm{k} \Omega$ resistor. This permits direct output termination yet allows for balanced output as well. Figure 4 shows three single-ended output configurations and a balanced output.
The oscillator is capable of sustaining oscillation beyond 200 MHz in crystal or tuned tank configurations. The upper limit of operation is determined by tank " Q " and required drive levels. The higher the $Q$ of the tank or the smaller the required drive, the higher the
permissible oscillation frequency. If the required L.O. is beyond oscillation limits, or the system calls for an external L.O., the external signal can be injected at Pin 6 through a DC blocking capacitor. External L.O. should be $200 \mathrm{mV} \mathrm{V}_{\text {p }}$ p minimum to 300 mV p-p maximum.
Figure 5 shows several proven oscillator circuits. Figure $5 a$ is appropriate for cordless phones/cellular radio. In this circuit a third overtone parallel-mode crystal with approximately 5 pF load capacitance should be specified. Capacitor C3 and inductor L1 act as a fundamental trap. In fundamental mode oscillation the trap is omitted.
Figure 6 shows a Colpitts varacter tuned tank oscillator suitable for synthesizer-controlled applications. It is important to buffer the output of this circuit to assure that switching spikes from the first counter or prescaler do not end up in the oscillator spectrum. The dual-gate MOSFET provides optimum isolation with low current. The FET offers good isolation, simplicity, and low current, while the bipolar circuits provide the simple solution for non-critical applications. The resistive divider in the emitter-follower circuit should be chosen to provide the minimum input signal which will assume correct system operation.


a. Colpitts Crystal Oscillator
(Overtone Mode)

b. Colpitts UC Tank Oscillator

c. Hartley LC Tank Oecillator

Figure 5. Oscillator Circuits


Figure 6. Colpitts Oscillator Suitable for Synthesizer Applications and Typlcal Buffers

## TEST CONFIGURATION



Figure 7. Typical Application for Cordiess/Cellular Radio


Figure 8. Icc vs Supply Voltage


Figure 10. Third-Order Intercept Point




Figure 11. Noise Figure


Figure 13. Input Third-Order Intermod Point vs $V_{\text {CC }}$

Author: Robert J. Zavrell Jr.

## INTRODUCTION

Several new integrated circuits now permit RF designers to resurrect old techniques of single-sideband generation and detection. The high cost of multi-pole crystal filters limits the use of the SSB mode to the most demanding applications, yet the advantages of SSB over full-carrier AM and FM are well documented (Ref $1 \& 2$ ). The use of multi-pole filters can now be circumvented by reviving some older techniques without sacrificing performance. This has been made possible by the availability of some new RF and digital integrated circuits.

## DESCRIPTION

Figure 1 shows the frequency spectrum of a 10 MHz full-carrier double-sideband AM signal using a 1 kHz modulating tone. This well-known type of signal is used by standard AM broadcast radio stations. Full-carrier AM's advantage is that envelope detection can be used in the receiver. Envelope detection is a simple and economical technique because it simplifies receiver circuitry. Figure 2 shows the time domain "envelope" of the same AM signal.

The 1 kHz tone example of Figures 1 and 2 serves as a simple illustration of an AM signal. Typically, the sidebands contain complex waveforms for voice or data communications. In the full-carrier double sideband mode (AM), all the modulation information is contained in both sidebands, while the carrier "rides along" without contributing to the transfer of intelligence. Only one sideband without the carrier is needed to effectively transmit the modulation information. This mode is called "single-sideband suppressed carrier". Because of its
reduced bandwidth, it has the advantages of improved spectrum utilization, better sig-nal-to-noise ratios at low signal levels, and improved transmitter efficiency when compared with either FM or full-carrier AM. A finite frequency allocation using SSB can support three times the number of channels when compared with comparable FM or AM full-carrier systems.


Figure 1. Frequency Domain Display of a 10 MHz Carrier AM Modulated by a 1kHz Tone (Spectrum Analyzer Display)


Figure 2. Time Domain Display of the Same Signal Shown in Figure 1. (Oscilloscope Display)

There are three basic methods of single-sideband generation. All three use a balanced modulator to produce a double-sideband suppressed carrier signal. The undesired sideband is then removed by phase and amplitude nulling (the phasing method), high Q multi-pole filters (the filter method), or a "third" method which is a derivation of the phasing technique called here the "Weaver" method for the apparent inventor. The reciprocal of the generator functions is
employed to produce sideband detectors. Generators start with audio and produce the SSB signal; detectors receive the SSB signal and reproduce the audio. Since the sideband signal is typically produced at radio frequencies, it can be amplified and applied to an antenna or used as a subcarrier.

Reproduction of the audio signal in a full-carrier AM receiver is simplified because the carrier is present. The signal envelope, which contains the carrier and the sidebands, is applied to a non-linear device (typically a diode). The effect of envelope detection is to multiply the sideband signal by the carrier; this results in the recovery of the audio waveform. The mathematical basis for this process can be understood by studying trigonometric identities.

Since the carrier is not present in the received SSB signal, the receiver must provide it for proper audio detection. This signal from the local oscillator (LO) is applied to a mixer (multiplier) together with the SSB signal and detection occurs. This technique is called product detection and is necessary in all SSB methods. A major problem in SSB receivers is the ability to maintain accurate LO frequencies to prevent spectral shifting of the audio signal. Errors in this frequency will result in a "Donald Duck" sound which can render the signal unintelligible for large frequency errors.

## Theory of Single-Sideband Detection

Figures 3 through 8 illustrate the three methods of SSB generation and detection. Since they are reciprocal operations, the circuitry for generation and detection is similar with all three methods. Duplication of critical circuitry is easy to accomplish in transceiver applications by using appropriate switching circuits.


Figure 3. Filter Method SSB Generator


Figure 4. Filter Method SSB Detector


Figure 5. Phasing Method Generator


Figure 6. Phasing Method Detector with Simplified Mathematical Model

Figures 3 and 4 show the generation and detection techniques employed in the filter method. In the generator a double sideband signal is produced while the carrier is eliminated with the balanced modulator. Then the undesired sideband is removed with a high Q crystal bandpass filter. A transmit mixer is usually employed to convert the SSB signal to the desired output frequency. The detection scheme is the reciprocal. A receive mixer is used to convert the selected input frequency to the IF frequency, where the filter removes the undesired SSB response. Then the signal is demodulated in the product detector. A major drawback to the filter method is the fact that the filter is fixed-tuned to one frequency. This necessitates the receive and transmit mixers for multi-frequency operation.

Figures 5 and 6 show block diagrams of a generator and demodulator which use the phase method. Figure 6 also includes a mathematical model. The input signal $(\operatorname{Cos}(\mathrm{Xt}))$ is fed in-phase to two RF mixers where " $X$ " is the frequency of the input signal: The other inputs to the mixers are fed from a local oscillator (LO) in quadrature ( $\operatorname{Cos}(\mathrm{Yt})$ and $\operatorname{Sin}(\mathrm{Yt})$ ), where " Y " is the frequency of the LO signal. By differentiating the output of one of the mixers and then summing with the other, a single sideband response is obtained. Switching the mixer output that is differentiated will change the selected sideband, upper (USB) or lower (LSB). In most cases the mixer outputs will be the audio passband ( 300 to 3000 Hz ). Differentiating the passband involves a 90 degree phase shift over more than three octaves. This is the most difficult aspect of using the phasing method for voice band SSB.
For voice systems, difficulty of maintaining accurate broadband phase shift is eliminated by the technique used in Figures 7 and 8 . The "Weaver" method is similar to the phasing method because both require two quadrature steps in the signal chain. The difference between the two methods is that the Weaver method uses a low frequency ( 1.8 kHz ) subcarrier in quadrature rather than the broad-band 90 degree audio phase shift. The desired sideband is thus "folded over" the 1.8 kHz subcarrier and its energy appears between 0 and 1.5 kHz . The undesired sideband appears 600 Hz farther away between 2.1 and 4.8 kHz . Consequently, sideband rejection is determined by a low-pass filter rather than by phase and amplitude balance. A very steep low-pass response in the Weaver method is easier to achieve than the very accurate phase and amplitude balance needed in the phasing


Figure 7. Weaver Method Generator


Figure 8. Weaver Method Detector

method. Therefore, better sideband rejection is possible with the Weaver method than with the phasing method.

## Quadrature Dual Mixer Circults

One of the two critical stages in the phasing method and both critical stages in the Weaver method require quadrature dual mixer circuits. Figures 9 and 10 show two methods of obtaining quadrature LO signals for dual mixer applications. Other methods exist for producing quadrature LO signals, particularly use of passive LC circuits. LC circuits will not maintain a quadrature phase relationship when the operating frequency is changed. The two illustrated circuits are inherently broad-banded; therefore, they are far more flexible and do not require adjustment. These circuits are very useful for SSB circuits, but also can be applied to FSK, PSK, and QPSK digital communications systems.

The NE602 is a low power, sensitive, active, double-balanced mixer which shows excellent phase characteristics up to 200 MHz . This makes it an ideal candidate for this and many other applications.

The circuit in Figure 9 uses a divide-by-four dual flip-flop that generates all four quadratures. Most of the popular dual flip-flops can be used in different situations. The HEF4013 CMOS device uses very little power and can maintain excellent phase integrity at clock rates up to several megahertz. Consequently, the HEF4013 can be used with the ubiquitous 455 kHz intermediate frequency with excellent power economy. For higher clock rates (up to 120 MHz for up to 30 MHz operation), the fast TTL 74F74 is a good choice. It has been tested to 30 MHz operating frequencies with good results ( $>30 \mathrm{~dB}$ SSB rejection). At lower frequencies $(5 \mathrm{MHz})$ sideband rejection increases to nearly 40 dB with the circuits shown. The ultimate low frequency rejection is mainly a function of the audio phase shifter. Better performance is possible by employing higher tolerance resistors and capacitors.

The circuit in Figure 10 shows another technique for producing a broadband quadrature phase shift for the LO. The advantage of this circuit over the flip-flops is that the clock frequency is identical to the operating frequency; however, phase accuracy is more difficult to achieve. A PLL will maintain a quadrature phase relationship when the loop is closed and the VCO voltage is zero. The DC amplifier will help the accuracy of the quadrature condition by presenting gain to the VCO control circuit. The other problem that can arise is that PLL circuits tend to be noisy. Sideband noise is troublesome in both SSB and FM systems,


Figure 11. FAST TTL Driver from Analog Signal Source Using NE5205


Figure 12. Interface Circuitry Between 74F74 and the NE602s
but SSB is less sensitive to phase noise problems in the LO.

Figure 11 shows a circuit that is effective for driving the 74F74, or other TTL gates, with a signal generator or analog LO. The NE5205 provides about 20 dB gain with $50 \Omega$ input and output impedances from $D C$ to 450 MHz . Minimum external components are required. The $1 \mathrm{k} \Omega$ resistor is about optimum for "pulling" the input voltage down near the logic threshold. A $50 \Omega$ output level of 0 dBm can be used to drive the NE5205 and 74F74 to 100 MHz . Two NE5205s can be cascaded for even more sensitivity while maintaining extremely wide bandwidth. An advantage of using digital sources for the LO is that low-frequency power supply ripple will not cause hum in the receiver front end. This is a common problem in direct conversion designs.
Figure 12 shows the interface circuitry between the 74F74 and the NE602 LO ports. The total resistance reflects conservative current drain from the 74F74 outputs, while the tap on the voltage divider is optimized for proper NE602 operation. The low signal source impedance further helps maintain phase accuracy, and the isolation capacitor is miniature ceramic for DC isolation.

## Audio Amplifiers and Switching

 Using active mixers (NE602) in these types of circuits gives conversion gain, typically 18 dB . More traditional applications use passivediode ring mixers which yield conversion loss, typically 7dB. Consequently, the detected audio level will be about 25 dB higher when using the NE602. This fact can greatly reduce the first audio stage noise and gain requirements and virtually eliminate the "microphonic" effect common to direct conversion receivers. Traditional direct conversion receivers use passive audio LC filters at the mixer output and low noise, discrete JFETs or bipolars in the first stages. The very high audio sensitivity required by these amplifiers makes them respond to mechanical vibration - thus the "microphonics" result. The conversion gain allows use of a simple op amp stage (Figure 13) set up as an integrator to eliminate ultra-sonic and RF instability. The NE5534 is well known for its low noise, high dynamic range, and excellent audio characteristics (Reference 12) and makes an ideal audio amp for the 602 detector.

The sideband select function is easily accomplished with an HEF4053 CMOS analog switch. This triple double-pole switch drives the phase network discussed in the next section and also chooses one of two amplitude balance potentiometers, one for each sideband. Figure 14 illustrates this circuit. A buffer op amp is used with the two sideband select sections to reduce THD, maintain amplitude integrity, and not change the filter network input resistance values. The gain distribution within both legs of the
receiver was found to be very consistent (within 1dB), thus the amplitude balance pots may be eliminated in less demanding applications. The NE602s have excellent gain as well as phase integrity.

## Audio Phase Shift Circuits

The two critical stages for the phasing method are a dual quadrature mixer and a broadband audio phase shifter (differentiator). There are several broadband, phase shift techniques available. Figure 15 shows an analog all-pass differential phase shift circuit. When the inputs are shorted and driven with a microphone circuit, the outputs will be 90 degrees out-of-phase over the 300 to 3000 Hz band. This "splitting" and phase shift is necessary for the phasing generator. For phasing demodulation the two audio detectors are fed to the two inputs. The outputs are then summed to affect the sideband rejection and audio output.

Standard 1\% values are shown for the resistors and capacitors, although better gain tolerances can be obtained with $0.1 \%$ laser-trimmed integrated resistors. Polystyrene capacitors are preferred for better value tolerance and audio performance. Two quad op amps fit nicely into this application. One op amp serves as a switch buffer and the other three form a phasing section. The NE5514 quad op amps perform well for this application. Careful attention to active filter configurations can yield highly linear and very high dynamic range circuits. Yet these characteristics are much easier to achieve at audio than the common IF RF frequencies. This fact, coupled with the lack of IF tuned circuits, shielding, and higher power requirements make audio IF systems attractive indeed.

Figure 16 shows a "tapped" analog delay circuit which uses weighted values of resistors to affect the phase shift: Excellent phase and amplitude balance are possible with this technique, but the price for components is high. It should be stressed that the audio phase shift accuracy and amplitude balance are the limiting factors for SSB rejection when using the phase method; thus the higher cost may be justified in some applications.

## Audio Processing

The summing amplifier is a conventional, inverting op amp circuit. It may be useful to configure a low-pass filter around this amplifier, and thus help the sharp audio filters which follow. Audio filters are necessary to shape the desired bandpass. Steep slope audio bandpass filters can be built from switched capacitor filters or from active filters


Figure 13. Phasing Method Detector for Direct Conversion Recelver
requiring more op amps. Switched capacitor filters have the disadvantage of requiring a clock frequency in the RF range. Harmonics can cause interference problems if careful design techniques are not used. Also, better dynamic range is obtained with active filter techniques using "real" resistors although much work is being done with SCF's and performance is improving.
Direct conversion receivers rely heavily on audio filters for selectivity. Active analog or switched capacitor filters can produce the high $Q$ and dynamic ranges necessary. Signal strength or "S-meters" can be constructed from the NE602's companion part, the NE604. The "RSSI" or "received signal strength indicator" function on the 604 provides a logarithmic response over a 90 dB dynamic range and is easy to use at audio frequencies. Finally, the AGC (automatic gain control) function can also be performed in the audio section. Attack and delay times can be independently set with excellent distortion specifications with the NE572 compandor IC. The audio-derived AGC eliminates the need
for gain controlling and RF stage, but relies on an excellent receiver front-end dynamic range. In ACSSB (Amplitude Compandored Single-Side Band) systems transmitter compression and receiver expansion are defined by individual system specifications.

## Phasing-Filter Technique

High quality SSB radio specifications call for greater than 70 dB sideband rejection. Using the circuits described in this paper for the phasing method, rejection levels of 35 dB are obtainable with good reliability. Coupled with an inexpensive two-pole crystal or ceramic filter, the 70 dB requirement is obtained. Also, the filtering ahead of the NE602 greatly improves the intermodulation performance of the receiver. Figure 17 shows a complete SSB receiver using the Phasing-Filter technique. The sensitivity of the NE602 allows low gain stages and low power consumption for the RF amplifier and first mixer. A new generation of low power CMOS frequency synthesizers is now available from several manufacturers including the

TDD1742 and dual chip HEF4750/51 solutions.

## Direct Conversion Receiver

The antenna can be connected directly to the input of the NE602 (via a bandpass filter) to form a direct conversion SSB receiver using the phasing method. 35 dB sideband rejection is adequate for many applications, particularly where low power and portable battery operation are required. Figure 13 shows a typical circuit for direct conversion applications.

There are many other applications which can make use of SSB technology. Cordless telephones use FM almost exclusively. Eavesdropping could be greatly reduced for systems which employ SSB rather than FM. Furthermore, the better signal-to-noise ratio will extend the range, and battery life will be extended because no carrier is needed.
SSB is also used for subcarriers on microwave links and coaxial lines. Telephone communications networks that use SSB are
called FDM or Frequency Domain Multiplex systems. The low power and high sensitivity of the NE602 can offer FDM designers new techniques for system configuration.

## Weaver Method Recelver Techniques

The same quadrature dual mixer can be used for the first stage in both the phasing and Weaver method receiver. The subcarrier stage in the Weaver method receiver can use CMOS analog switches (HEF4066) for great power economy. Figure 18 shows a circuit for the subcarrier stage. A 1.8 kHz subcarrier requires a 7.2 kHz clock frequency. If switched capacitor filters are used for the low-pass and audio filters, a single clock generator can be used for all circuits with appropriate dividers. Furthermore, if the receiver is used as an IF circuit, the fixed LO
signal could also be derived from the same clock. This has the added advantage that harmonics from the various circuits will not interfere with the received signal.

## Results

The circuit shown in Figures 13, 14, and 15 has a $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ sensitivity of $0.5 \mu \mathrm{~V}$ with a dynamic range of about 80 dB . Single-tone audio harmonic distortion is below $0.05 \%$ with two-tone intermodulation products below 55 dB at RF input levels only 5 dB below the 1 dB compression point. The sideband rejection is about 38 dB at a 9 MHz operating frequency. The good audio specifications are a side benefit to direct conversion receivers. When used with inexpensive ceramic or crystal filters, this circuit can provide these specifications with $>70 \mathrm{~dB}$ sideband rejection.

## Conclusions

Single sideband offers many advantages over FM and full-carrier double-sideband modulation. These advantages include: more efficient spectrum use, better signal-to-noise ratios at low signal levels, and better transmitter efficiency. Many of the disadvantages can now be overcome by using old techniques and new state-of-the-art integrated circuits. Effective and inexpensive circuits can use direct conversion techniques with good results. 35 dB sideband rejection with less than $1 \mu \mathrm{~V}$ sensitivity is obtained with the NE602 circuits. 70 dB sideband rejection and superior sensitivity are obtained by using phasing-filter techniques. Either the phasing or Weaver methods can be used in either the direct conversion or IF section applications. The filter and phase-filter methods can be used in only the IF application.


Figure 14. Sideband Select Switching Function


Figure 15


Figure 16. Broadband $90^{\circ}$ Audio Phase Shift Technique Using Tapped Delay Line (Reference 4)


New low-power single sideband circuits


Figure 18. Weaver Method Receiver Concept Example for $\leq \mathbf{3 0 M H z}$ Operation

## REFERENCES

1. Spectrum Scarcity Drives Land-mobile Technology, G. Stone, Microwaves and RF, May, 1983.
2. SSB Technology Fights its Way into the Land-mobile Market, B. Manz, Microwaves and RF, Aug., 1983.
3. A Third Method of Generation and Detection of Single-Sideband Signals, D. Weaver, Proceedings of the IRE, 1956.
4. Delay Lines Help Generate Quadrature Voice for SSB, Joseph A. Webb and M. W. Kelly, Electronics, April 13, 1978.
5. A Low Power Direct Conversion Sideband Receiver, Robert J. Zavrel Jr., ICCE Digest of Technical Papers, June, 1985.
6. Electronic Filter Design Handbook, Arthur B. Williams, McGraw-Hill, 1981.
7. Solid State Radio Engineering, Herbert L. Krauss, et al, Wiley, 1980.
8. ACSB-An Overview of Amplitude Compandored Sideband Technology, James Eagleson, Proceedings of RF Technology Expo 1985.
9. The ARRL Handbook for the Radio Amateur, American Radio Relay League, 1985.
10. Designing With the SA/NE602 (AN198), Signetics Corp., Robert J. Zavrel Jr., 1985.
11. RF IC's Thrive on Meager Battery-Supply Diet, Donald Anderson, Robert J. Zavrel Jr., EDN, May 16, 1985.
12. Audio IC Op Amp Applications, Walter Jung, Sams Publications, 1981.
13.2 Meter Transmitter Uses Weaver Modulation, Norm Bernstein, Ham Radio, July, 1985.

Author: Donald Anderson

## INTRODUCTION

For the designer of low power RF systems, the Philips Semiconductors NE602 mixer/oscillator provides mixer operation beyond 500 MHz , a versatile oscillator capable of operation to 200 MHz , and conversion gain, with only 2.5 mA total current consumption. With a proper understanding of the oscillator design considerations, the NE602 can be put to work quickly in many applications.

## DESCRIPTION

Figure 1 shows the equivalent circuit of the device. The chip is actually three subsystems: A Gilbert cell mixer (which provides differential input gain), a buffered emitter follower oscillator, and RF current and voltage regulation. Complete integration of the DC bias permits simple and compact application. The simplicity of the oscillator permits many configurations.
While the oscillator is simple, oscillator design isn't. This article will not address the rigors of oscillator design, but some practical guidelines will permit the designer to accomplish good performance with minimum difficulty.
Either crystal or LC tank circuitry can be employed effectively. Figure 2 shows the four most commonly used configurations in their most basic form.
In each case the $Q$ of the tank will affect the upper frequency limits of oscillation: the higher the $Q$ the higher the frequency. The NE602 is fabricated with a 6 GHz process, but the emitter resistor from Pin 7 to ground is nominally 20 k . With 0.25 mA typical bias current, 200 MHz oscillation can be achieved with high $Q$ and appropriate feedback.
The feedback, of course, depends on the $Q$ of the tank. It is generally accepted that a minimum amount of feedback should be used, so even if the choice is entirely empirical, a good trade-off between starting characteristics, distortion, and frequency stability can be quickly determined.

a. Fundamental Crystal
b. Overtone
Crystal Crystal

c. Colpitts LC Tank

d. Hartley

LC Tank

Figure 2

## Applying the oscillator of the NE602 in low-power mixer applications

Crystal CIrcuit Considerations
Crystal oscillators are relatively easy to implement since crystals exhibit higher Q's than LC tanks. Figure 3 shows a complete implementation of the SA602 (extended temperature version) for cellular radio with a 45 MHz first IF and 455 kHz second IF.

The crystal is a third overtone parallel mode with 5 pF of shunt capacitance and a trap to suppress the fundamental.

## LC Tank Circuits

LC tanks present a little greater challenge for the designer. If the $Q$ is too low, the oscillator won't start. A trick which will help if all else fails is to shunt Pin 7 to ground with a 22 k resistor. In actual applications this has been effective to 200 MHz with high $Q$ ceramic capacitors and a tank inductor of 0.08 mH and a Q of 90 . Smaller resistor value will upset DC bias because of inadequate base bias at the input of the oscillator. An external bias resistor could be added from VCC to Pin 6, but this will introduce power supply noise to the frequency spectrum.

The Hartley configuration (Figure 2D) offers simplicity. With a variable capacitor tuning the tank, the Hartley will tune a very large range since all of the capacitance is variable. Please note that the inductor must be coupled to Pin 7 with a low impedance capacitor. The Colpitts oscillator will exhibit a smaller tuning range since the fixed feedback capacitors limit variable capacitance range; however, the Colpitts has good frequency stability with proper components.

## Synthesized Frequency Control

The NE602 can be very effective with a synthesizer if proper precautions are taken to minimize loading of the tank and the introduction of digital switching transients into the spectrum. Figure 4 shows a circuit suitable for aircraft navigation frequencies $(108-118 \mathrm{MHz}$ ) with 10.7 MHz IF.

The dual gate MOSFET provides a high degree of isolation from prescaler switching spikes. As shown in Figure 4, the total current consumption of the NE602 and 3SK126 is typically 3 mA . The MOSFET input is from the emitter of the oscillator transistor to avoid loading the tank. The Gate 1 capacitance of the MOSFET in series with the 2 pF coupling capacitor adds slightly to the feedback capacitance ratio. Use of the 22 k resistor at Pin 7 helps assure oscillation without upsetting DC bias.
For applications where optimum buffering of the tank, or minimum current are not mandatory, or where circuit complexity must be minimized, the buffers shown in Figure 5 can be considered.


Figure 3. Cellular Radio Application

The effectiveness of the MRF931 (or other VHF bipolar transistors) will depend on frequency and required input level to the prescaler. A bipolar transistor will generally provide the least isolation. At low frequencies the transistor can be used as an emitter follower, but by VHF the base emitter junction will start to become a bidirectional capacitor and the buffer is lost.
The 2N5484 has an IDSS of 5mA max. and the 2SK126 has IDSS of 6mA max. making them suitable for low parts count, modest current buffers. The isolation is good.

## Injected LO

If the application calls for a separate local oscillator, it is acceptable to capacitively-couple 200 to 300 mV at Pin 6.

## Summary

The NE602 can be an effective low power mixer at frequencies to 500 MHz with oscillator operation to 200 MHz . All DC bias is provided internal to the device so very compact designs are possible. The internal bias sets the oscillator DC current at a relatively low level so the designer must choose frequency selective components which will not load the transistor. If the guidelines mentioned are followed, excellent results will be achieved.


## Figure 4



NOTES:

* $2 k$ or as necessary for current limits or prescaler impedance match.

Figure 5

## DESCRIPTION

The SA620 is a combined RF amplifier, VCO with tracking bandpass filter and mixer designed for high-performance low-power communication systems from $800-1200 \mathrm{MHz}$. The low-noise preamplifier has a 1.6 dB noise figure at 900 MHz with 11.5 dB gain and an IP3 intercept of -3dBm at the input. The gain is stabilized by on-chip compensation to vary less than $\pm 0.2 \mathrm{~dB}$ over -40 to $+85^{\circ} \mathrm{C}$ temperature range. The wide-dynamic-range mixer has an 9 dB noise figure and IP3 of -6 dBm at the input at 900 MHz . An external LO can be used in place of the internal VCO for improved mixer input IP3 and a 3 mA reduction in current. The chip incorporates a through-mode option so the RF amplifier can be disabled and replaced by an attenuator ( $\mathrm{S}_{21}=-7.5 \mathrm{~dB}$ ). This is useful for improving the overall dynamic range of the receiver when in an overload situation. The nominal current drawn from a single 3 V supply is 10.4 mA and 7.2 mA in the thru-mode. Additionally, the VCO and Mixer can be powered down to further reduce the supply current to 1.2 mA .

## FEATURES

- Low current consumption: 10.4mA nominal, 7.2 mA with thru-mode activated
- Outstanding noise figure: 1.6 dB for the amplifier and 9 dB for the mixer at 900 MHz
- Excellent gain stability versus temperature and supply voltage
- Switchable overload capability
- Independent LNA, mixer and VCO power down capability
- Internal VCO automatic leveling loop
- Monotonic VCO frequency vs control voltage


## APPLICATIONS

- 900 MHz cellular front-end
- 900 MHz cordless front-end
- Spread spectrum receivers
- RF data links
- UHF frequency conversion
- Portable radio

PIN CONFIGURATION




## ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
VCc	Supply voltage ${ }^{1}$	-0.3 to +6	V
$\mathrm{V}_{\text {IN }}$	Voltage applied to any other pin	-0.3 to (VCc +0.3$)$	V
$P_{\text {D }}$	Power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still air) ${ }^{2}$ 20-Pin Plastic SSOP	980	mW
$\mathrm{T}_{\text {JMAX }}$	Maximum operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {MAX }}$	Maximum power input/output	+20	dBm
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Transients exceeding 8 V on $\mathrm{V}_{\mathrm{cc}}$ pin may damage product.
2. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, $\theta_{\mathrm{JA}}: 20-\mathrm{Pin} \mathrm{SSOP}=110^{\circ} \mathrm{C} / \mathrm{W}$

## RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\mathrm{CC}}$	Supply voltage	2.7 to 5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}$	Operating junction temperature	-40 to +105	${ }^{\circ} \mathrm{C}$

## DC ELECTRICAL CHARACTERISTICS

$V_{C C}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
Icc	Supply current	LNA enable input high		10.4		mA
		LNA enable input low		7.2		mA
		VCO power-down input low		7.4	,	mA
		Mixer power-down input low		7.4		mA
		Full chip power-down		1.2		mA
$\mathrm{V}_{\mathrm{T}}$	Enable logic threshold voltage ${ }^{\text {NO }}$ TAG		1.2	1.5	1.8	V
$\mathrm{V}_{\mathrm{IH}}$	Logic 1 level	RF amp on	2.0		$\mathrm{V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	Logic 0 level	RF amp off	-0.3		0.8	V
$1 / 1$	Enable input current	Enable $=0.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H}}$	Enable input current	Enable $=2.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {LNA-IN }}$	LNA input bias voltage	Enable $=2.4 \mathrm{~V}$		0.78		V
V $\mathrm{V}_{\text {LNA-OUT }}$	LNA output bias voltage	Enable $=2.4 \mathrm{~V}$		2.1		V
$\mathrm{V}_{\mathrm{B}}$	LNA bias voltage	Enable $=2.4 \mathrm{~V}$		2.1		V
$\mathrm{V}_{\mathrm{MX} \text { - }} \mathrm{N}$	Mixer RF input bias voltage			0.94		V

## NOTE:

1. The ENABLE input must be connected to a valid logic level for proper operation of the SA620 LNA.

## AC ELECTRICAL CHARACTERISTICS

$V_{C C}=+3 V, T_{A}=25^{\circ} \mathrm{C}$; Enable $=+3 \mathrm{~V}$; unless otherwise stated.


NOTE:

1. Simple L/C elements are needed to achieve specified return loss.


Figure 1. A Complete LNA, Mixer and VCO

## CIRCUIT TECHNOLOGY

## LNA

Impedance Match: Intrinsic return loss at the
input and output ports is 7 dB and 9 dB , respectively. With no external matching, the associated LNA gain is $\approx 10 \mathrm{~dB}$ and the noise figure is $\approx 1.4 \mathrm{~dB}$. However, the return loss can be improved at 900 MHz using suggested L/C elements (Figure 1) as the LNA is unconditionally stable.
Noise Match: The LNA achieves 1.6 dB noise figure at 900 MHz when $\mathrm{S}_{11}=-10 \mathrm{~dB}$. Further improvements in $\mathrm{S}_{11}$ will slightly increase the NF and $\mathrm{S}_{21}$.
Thru-Mode: A series switch can be activated to feed RF signals from LNA input to output with an attenuator ( $\mathrm{S}_{21}=-7.5 \mathrm{~dB}$ ). As a result, the power handling is greatly improved and current consumption is decreased by 3.2 mA as well. However, if this mode is not required, C23 and R6 can be deleted.
Temperature Compensation: The LNA has a built-in temperature compensation scheme to reduce the gain drift to $0.003 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Supply Voltage Compensation: Unique circuitry provides gain stabilization over wide supply voltage range. The gain changes no more than 0.5 dB when $\mathrm{V}_{\mathrm{CC}}$ increases from 3 V to 5 V .

## Mixer

Input Match: The mixer is configured for maximum gain and best noise figure. The user needs to supply L/C elements to achieve this performance.
Mixer Bypass: To optimize the IP3 of the mixer input, one must adjust the value of C14 for the given board layout. The value typically lies between 1 and 5 pF . Once a value if selected, a fixed capacitor can be used. Further improvements in mixer IP3 can be achieved by inserting a resistive loss at the mixer input, at the expense of system gain and noise figure.
Tracking Bandpass Filter: At the LO input port of the mixer there is a second-order bandpass filter (approx. 50 MHz bandwidth) which will track the VCO center frequency. The result is the elimination of low frequency noise injected into the mixer LO port without the need for an external LO filter.
Power Down: The mixer can be disabled by connecting Pin 7 to ground. If a Schottky diode is connected between Pin 1 (cathode) and Pin 7 (anode), the LNA disable signal will control both LNA and mixer simultaneously When the mixer is disabled, 3 mA is saved. Test Port: Resistor R5 can be substituted with an external test port of $50 \Omega$ input impedance. Since R5 and MIXER OUT have
the same output power, the result is a direct power gain measurement.

## VCO

Automatic Leveling Loop: An on-chip detector and loop amplifier will adjust VCO bias current to regulate the VCO amplitude regardless of the $Q$-factor ( $>10$ ) of the resonator and varactor diode. However, the real current reduction will not occur until the VCO frequency falls below 500 MHz . For a typical resonator the steady-state current is 3 mA at 800 MHz .
Buffered VCO Output: The VCO OUT (Pin 11) signal can drive an external prescaler directly (see also the Philips SA7025 low voltage, fractional- N synthesizer). The extracted signal levels need to be limited to -16 dBm or less to maintain mixer IIP3.
Phase Noise: If close-in phase noise is not critical, or if an external synthesizer is used, C 4 ( Pin 8 ) can be decreased to a lower value.
Power-Down: The VCO can be disabled by connecting Pin 8 to ground. If a Schottky diode is connected between Pin 1 (cathode) and Pin 8 (anode), the LNA disable signal will control both LNA and VCO simultaneously. When the VCO is disabled, 3 mA is saved.


Figure 2. LNA Input and Output Match (at Device Pin)


Figure 3. LNA Transmission and Isolation Characteristics (at Device Pin)


Figure 4. Mixer RF Input Match (at Device Pin)

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)



Low voltage LNA, mixer and VCO - 1 GHz

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)



## GENERAL DESCRIPTION

The TDA1574 is a monolithic integrated FM tuner circuit designed for use in the r.f./i.f. section of car radios and home-receivers. The circuit comprises a mixer, oscillator and a linear i.f. amplifier for signal processing, plus the following additional features.

## Features

- Keyed automatic gain control (a.g.c.)
- Regulated reference voltage
- Buffered oscillator output
- Electronic standby switch
- Internal buffered mixer driving


## QUICK REFERENCE DATA

Supply voltage range (pin 15)	$V_{P}$		7 to 16 V
Mixer input bias voltage (pins 1 and 2) noise figure	$\begin{aligned} & V_{1,2-4} \\ & N F^{2} \end{aligned}$	typ.   typ.	$\begin{aligned} & 1 \mathrm{~V} \\ & 9 \mathrm{~dB} \end{aligned}$
Oscillator output voltage (pin 6) output admittance at pin 6 for $f=108,7 \mathrm{MHz}$	$\begin{aligned} & V_{6-4} \\ & Y 22 \end{aligned}$	typ.   typ.	$\begin{gathered} 2 \mathrm{~V} \\ 1,5+\mathrm{j} 2 \mathrm{mS} \end{gathered}$
Oscillator output buffer			
D.C. output voltage (pin 9)	$\mathrm{V}_{9-4}$	typ.	6 V
Total harmonic distortion	THD	typ.	-15 dBC
Linear i.f. amplifier output voltage (pin 10) noise figure at $\mathrm{R}_{\mathrm{S}}=300 \Omega$	$\begin{aligned} & V_{10-4} \\ & N F \end{aligned}$	typ. typ.	$\begin{aligned} & 4,5 \mathrm{~V} \\ & 6,5 \mathrm{~dB} \end{aligned}$
Keyed a.g.c. output voltage range (pin 18)	$\mathrm{V}_{18-4}$	+ 0,5 to $\mathrm{VP}_{\mathrm{P}}-0,3 \mathrm{~V}$	



## Coil data

L1: TOKO MC-108, 514HNE-150014S14; L $=0,078 \mu \mathrm{H}$
L2: TOKO MC-111, E516HNS-200057; L $=0,08 \mu \mathrm{H}$
L3: TOKO coil set $7 \mathrm{P}, \mathrm{N} 1=5,5+5,5$ turns, $\mathrm{N} 2=4$ turns
Fig. 1 Block diagram and test circuit.


## FM front-end IC

## FUNCTIONAL DESCRIPTION

## Mixer

The mixer circuit is a double balanced multiplier with a preamplifier (common base input) to obtain a large signal handling range and a low oscillator radiation.

## Oscillator

The oscillator circuit is an amplifier with a differential input. Voltage regulation is achieved by utilizing the symmetrical tanh-transfer-function to obtain low order 2nd harmonics.

## Linear IF amplifier

The IF amplifier is a one stage, differential input, wideband amplifier with an output buffer.

## Keyed AGC

The AGC processor combines narrow- and wideband information via an RF level detector, a comparator and an ANDing stage. The level dependent, current sinking output has an active load, which sets the AGC threshold.
The AGC function can either be controlled by a combination of wideband and narrowband information (keyed AGC), or by a wideband information only, or by narrowband information only. If only narrowband AGC is wanted pin 3 should be connected to pin 5 . If only wideband AGC is wanted pin 12 should be connected to pin 13.

## RATINGS

## Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 15)
Mixer output voltage (pins 16 and 17)
Standby switch input voltage (pin 11)
Reference voltage (pin 5)
Field strength input voltage (pin 12)
Total power dissipation
Storage temperature range
Operating ambient temperature range
THERMAL RESISTANCE
From junction to ambient (in free air)

## Note

All pins are short-circuit protected to groùnd.

## CHARACTERISTICS

$V_{P}=V_{15-4}=8,5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in test circuit Fig. 1 ; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply (pin 15)					
Supply voltage	$V_{P}=V_{15-4}$	7	-	16	V
Supply current (except mixer)	$l_{P}=l_{15}$	16	23	30	mA
Reference voltage (pin 5)	$\mathrm{V}_{5-4}$	3,9	4,1	4,4	V
MixerD.C. characteristics					
Input bias voltage (pins 1 and 2)	$\mathrm{V}_{1,2-4}$	-	1	-	V
Output voltage (pins 16 and 17)	$\mathrm{V}_{16,17-4}$	4	-	35	V
Output current (pin $16+$ pin 17)	$\mathrm{l}_{16}+\mathrm{l}_{17}$	-	4,0	-	mA
A.C. characteristics ( $\mathrm{f}_{\mathrm{i}}=98 \mathrm{MHz}$ )					
Noise figure	NF	-	9	-	dB
Noise figure including transforming network	NF	-	11	-	dB
3rd order intercept point	EMF1/P3	-	115	-	$\mathrm{dB} \mu \mathrm{V}$
Conversion power gain					
$10 \log \frac{4\left(V_{M(\text { out })} 10,7 \mathrm{MHz}\right)^{2}}{(\text { EMF1 } 98 \mathrm{MHz})^{2}} \times \frac{R_{S 1}}{R_{M L}}$	Gp	-	14	-	dB
Input resistance (pins 1 and 2)	$\mathrm{R}_{1,2-4}$	-	14	-	$\Omega$
Output capacitance (pins 16 and 17)	$\mathrm{C}_{16,17}$	-	13	-	pF
Oscillator					
D.C. characteristics					
Input voltage (pins 7 and 8)	$v_{7,8-4}$	-	1,3	-	V
Output voltage (pin 6)	$\mathrm{V}_{6-4}$	-	2	-	V
A.C. characteristics ( $\mathrm{f}_{\mathrm{Osc}}=108,7 \mathrm{MHz}$ )					
Residual FM (Bandwidth 300 Hz to 15 kHz ); de-emphasis $=50 \mu \mathrm{~s}$	$\Delta \mathrm{f}$	-	2,2	-	Hz


parameter	symbol	min.	typ.	max.	unit
Linear i.f. amplifier					
D.C. characteristics					
Input bias voltage (pin 13)	$\mathrm{V}_{13-4}$	-	1,2	-	V
Output voltage ( pin 10 )	$\mathrm{V}_{10-4}$	-	4,5	-	V
A.C. characteristics ( $\mathrm{f}_{\mathrm{i}}=10,7 \mathrm{MHz}$ )					
Input impedance					
	$\mathrm{R}_{14-13}$	240	300	360	$\Omega$
	$\mathrm{C}_{14-13}$	-	13	-	pF
Output impedance					
	R 10-4	240	300	360	$\Omega$
	$\mathrm{C}_{10-4}$	-	3	-	pF
Voltage gain					
$20 \log \frac{V_{10-4}}{V_{14-13}}$	GVIF	27	30	-	dB
$\mathrm{T}_{\mathrm{amb}}=-40$ to $+85^{\circ} \mathrm{C}$	$\Delta \mathrm{G}_{\text {VIF }}$	-	0	-	dB
1 dB compression point (r.m.s. value)					
at $V_{P}=8,5 \mathrm{~V}$	$V^{10-4 r m s}$	-	750	-	mV
at $V_{P}=7,5 \mathrm{~V}$	$\mathrm{V}_{10-4 \mathrm{rms}}$	-	550	-	mV
Noise figure					
Keyed a.g.c.					
D.C. characteristics					
Output voltage range (pin 18)	$\mathrm{V}_{18-4}$	0,5	-	$V_{P}-0,3$	V
A.G.C. output current at $\mathrm{I}_{3}=\phi$ or					
$\mathrm{V}_{12-4}=450 \mathrm{mV} ; \mathrm{V}_{18-4}=\mathrm{V}_{\mathrm{P}} / 2$	${ }^{-1} 18$	25	50	100	$\mu \mathrm{A}$
at $\mathrm{V}_{3-4}=2 \mathrm{~V}$ and					
$\mathrm{V}_{12-4}=1 \mathrm{~V}$; $\mathrm{V}_{18-4}=\mathrm{V}_{15-4}$	$\mathrm{I}_{18}$	2	-	5	mA

## CHARACTERISTICS (continued)




Fig. 2 Keyed a.g.c. output voltage $\mathrm{V}_{18-4}$ as a function of r.m.s. input voltage $\mathrm{V}_{3-4}$. Measured in test circuit Fig. 1 at $\mathrm{V}_{12-4}=0,7 \mathrm{~V} ; \mathrm{I}_{18}=\phi$.


Fig. 4 Keyed a.g.c. output current $\mathrm{I}_{18}$ as a function of r.m.s. input voltage $V_{3-4}$. Measured in test circuit Fig. 1 at $V_{12-4}=0,7 \mathrm{~V} ; V_{18-4}=8,5 \mathrm{~V}$.


Fig. 3 Keyed a.g.c. output voltage $\mathrm{V}_{18-4}$ as a function of input voltage $\mathrm{V}_{12-4}$. Measured in test circuit Fig. 1 at $\mathrm{V}_{3-4}=2 \mathrm{~V} ; \mathrm{I}_{18}=\phi$.


Fig. 5 Keyed a.g.c. output current I 18 as a function of input voltage $\mathrm{V}_{12-4}$. Measured in test circuit Fig. 1 at $\mathrm{V}_{3-4}=2 \mathrm{~V} ; \mathrm{V}_{18-4}=8,5 \mathrm{~V}$.

†LSVGOL

## GENERAL DESCRIPTION

The TDA1574T is an integrated FM tuner circuit designed for use in the RF/IF section of car radios and home-receivers. The circuit contains a mixer and an oscillator and a linear 1 F amplifier for signal processing. The circuit also incorporates the following features.

## Features

- Keyed Automatic Gain Control (AGC)
- Regulated reference voltage
- Buffered oscillator output
- Electronic standby switch
- Internal buffered mixer driving


## QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage range (pin 17)		$V_{p}$	7	-	14	V
Mixer input bias voltage (pins 1 and 2)		$V_{1,2-4}$	-	1	-	V
Noise factor		NF	-	9	-	dB
Oscillator output voltage (pin 6)		$\mathrm{V}_{6-4}$	-	2	-	V
Output admittance at pin 6	$\mathrm{f}=108.7 \mathrm{MHz}$	Y22	-			ms
Oscillator output buffer DC output voltage (pin 9)		V9-4	-	6	-	V
Total harmonic distortion		THD	-	-15	-	dB
Linear IF amplifier output voltage (pin 12)		$\mathrm{V}_{12-4}$	-	4.5	-	V
Noise factor	$\mathrm{R}_{\mathrm{S}}=300 \Omega$	NF	-	6.5	-	dB
Keyed AGC output voltage range (pin 20)		$\mathrm{V}_{20-4}$	0.5	-	$V_{P}-0.3$	V



## Coil data

L1: TOKO MC-108, 514HNE-150023S14; L $=0.078 \mu \mathrm{H}$
L2: TOKO MC-111, E516HNS-200057; L $=0.08 \mu \mathrm{H}$
L3: TOKO Coil set 7P, N1 = $5.5+5.5$ turns, N2 $=4$ turns
Fig. 1 Block diagram and test circuit.


Fig. 2 Pinning diagram.

## PINNING

1. Mixer input 1
2. Mixer input 2
3. Wideband information input
4. Ground
5. Voltage reference
6. Oscillator output
7. Oscillator input 1
8. Oscillator input 2
9. Buffered oscillator output
10. Not connected
11. Not connected
12. IF output
13. Standby switch
14. Narrowband information input
15. IF input 1
16. IF input 2
17. Supply voltage
18. Mixer output 1
19. Mixer output 2
20. AGC output

## FUNCTIONAL DESCRIPTION

## Mixer

The mixer circuit uses a double balanced multiplier with a preamplifier (common base input) in order to obtain a large signal handling range and low oscillator radiation.

## Oscillator

The oscillator circuit uses an amplifier with a differential input. Voltage regulation is achieved by utilizing the symmetrical tan h-transfer-function to obtain low order 2nd harmonics.

## Linear IF amplifier

The IF amplifier is a one stage, differential input, wideband amplifier with an output buffer.

## Keyed AGC

The AGC processor combines narrow and wideband information via an RF level detector, a comparator and an ANDing stage. The level dependent current sinking output has an active load which sets the AGC threshold.
The AGC function can either be controlled by a combination of wideband and narrowband information (keyed AGC) or by a wideband/narrowband information only. If narrowband AGC is required pin 3 should be connected to pin 5 . If wideband AGC is required pin 14 should be connected to pin 15.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	conditions	symbol	min.	max.	unit
Supply voltage (pin 17)   Mixer output voltage   (pins 18 and 19)   Standby switch input voltage   (pin 13)		$V_{17-4}$	-	14	V
Reference voltage (pin 5)		$\mathrm{V}_{18,19-4}$	-	35	V
Total power dissipation		$\mathrm{V}_{13-4}$	-	23	V
Storage temperature range		$\mathrm{V}_{5-4}$	-	7	V
Operating ambient temperature range		$\mathrm{P}_{\text {tot }}$	-	500	mW

## THERMAL RESISTANCE

From junction to ambient (in free air)

## CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{17-4}=8.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in test circuit Fig.1;
All measurements are with respect to ground (pin 4); unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply (pin 17)						
Supply voltage	$V_{P}=V_{17}$	$V_{17}$	7	-	14	V
Supply current (except mixer)	$I_{P}=I_{17}$	117	16	23	30	mA
Reference voltage (pin 5)		$\mathrm{V}_{5}$	4.0	4.2	4.4	V
Mixer						
DC characteristics						
Input bias voltage (pins 1 and 2)		$V_{1,2}$	-	1	-	V
Output voltage (pins 18 and 19)		$\mathrm{V}_{18,19}$	4	-	35	V
Output current (pins 18 and 19)		$118+19$	-	4.5	-	mA
AC characteristics	$\mathrm{f}_{\mathrm{i}}=98 \mathrm{MHz}$					
Noise figure		NF	-	9	-	dB
Noise figure including transforming network		NF	-	11	-	dB
3rd order intercept point		EMF $1_{1 / P 3}$	-	115	-	$\mathrm{dB} / \mu \mathrm{V}$
Conversion power gain	note 1	$\mathrm{G}_{\mathrm{CP}}$	-	14	-	dB
Input resistance (pins 1 and 2)		$\mathrm{R}_{1,2}$	-	14	-	$\Omega$
Output capacitance (pins 18 and 19)		$\mathrm{C}_{18,19}$	-	13	-	pF
Oscillator						
DC characteristics						
Input voltage (pins 7 and 8)		$V_{7,8}$	-	1.3	-	V
Output voltage (pin 6)		$\mathrm{V}_{6}$	-	2	-	V
AC characteristics						
Residual FM (bandwidth $=$ 300 Hz to 15 kHz )	de-emphasis $=50 \mu \mathrm{~s}$	$\Delta \mathrm{f}$	-	2.2	-	Hz
Linear IF amplifier						
DC characteristics						
Input bias voltage (pin 15)		$\mathrm{V}_{15}$	-	1.2	-	V

CHARACTERISTICS (continued)

parameter	conditions	symbol	min.	typ.	max.	unit
Output voltage (pin 12)		$V_{12}$	-	4.5	-	V
AC characteristics	$\mathrm{f}_{\mathrm{i}}=10.7 \mathrm{MHz}$					
Input impedance		R16-15	240	300	360	$\Omega$
Input impedance		$\mathrm{C}_{16-15}$	-	13	-	pF
Output impedance		$\mathrm{R}_{12}$	240	300	360	$\Omega$
Output impedance		$\mathrm{C}_{12}$	-	3	-	pF
Voltage gain	note 2	$\mathrm{G}_{\mathrm{v}}$	27	30	-	dB
Voltage gain with variation of temperature	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=-40 \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	$\Delta G_{T}$	-	0	-	dB
$\begin{aligned} & 1 \mathrm{~dB} \text { compression point } \\ & \text { ( } R M S \text { value) } \\ & \text { at } V_{P}=8.5 \mathrm{~V} \\ & \text { at } V_{P}=7.5 \mathrm{~V} \end{aligned}$		$\mathrm{V}_{12}$ (rms)   $\mathrm{V}_{12}$ (rms)	-	750 550	-	mV mV
Signal-to-noise ratio	$\mathrm{R}_{\mathrm{S}}=300 \Omega$	S/N	-	6.5	-	dB
Keyed AGC						
DC characteristics						
Output voltage range (pin 20)		$\Delta \mathrm{V}_{20}$	0.5	-	Vp-0.3	V
$\begin{aligned} & \text { AGC output current } \\ & \text { at } I_{3}=0 \text { or } \\ & V_{14}=450 \mathrm{mV} ; \end{aligned}$						
$\begin{aligned} & V_{20}=V_{p} / 2 \\ & \text { at } V_{3}=2 V \text { and } \end{aligned}$		$-120$	25	50	100	$\mu \mathrm{A}$
$\mathrm{V}_{14}=1 \mathrm{~V} ; \mathrm{V}_{20}=\mathrm{V}_{15}$		$\mathrm{I}_{20}$	2	-	5	mA
Narrowband threshold at $\mathrm{V}_{3}=2 \mathrm{~V} ; \mathrm{V}_{14}=550 \mathrm{mV}$ at $V_{3}=2 \mathrm{~V} ; \mathrm{V}_{14}=450 \mathrm{mV}$		$V_{20}$ $V_{20}$	$\bar{V}_{P}-0.3$	-	1	V
AC characteristics	$\mathrm{f}_{\mathrm{i}}=98 \mathrm{MHz}$					
Input impedance		$\begin{aligned} & R_{3} \\ & C_{3} \end{aligned}$	-	4	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$


parameter	conditions	symbol	min.	typ.	max.	unit
$\begin{aligned} & \text { Wideband threshold } \\ & \text { (RMS value) } \\ & \text { (see Figs } 3,4,5 \text { and } 6 \text { ) } \\ & \text { at } V_{14}=0.7 \mathrm{~V} ; \\ & V_{20}=V_{P} / 2 ; I_{20}=0 \end{aligned}$		$\mathrm{EMF}_{2}$ (rms)	-	17	-	mV
Oscillator output buffer (pin 9)						
DC output voltage		$\mathrm{V}_{9}$	-	6	-	V
Oscillator output voltage (RMS value)						
at $\mathrm{R}_{\mathrm{L}}=00 ; \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}$		$\mathrm{V}_{9}(\mathrm{rms})$	-	110	-	mV
at $\mathrm{R}_{\mathrm{L}}=75 \Omega$		$\mathrm{V}_{9}$ (rms)	30	50	-	mV
DC output resistance		$\mathrm{R}_{\mathrm{g}-17}$	-	2.5	-	$\mathrm{k} \Omega$
Signal purity						
Total harmonic distortion		THD	-	-15	-	dB
Spurious frequencies at EMF1 = $1 \mathrm{~V} ; \mathrm{R}_{\mathrm{S} 1}=50 \Omega$		$\mathrm{f}_{S}$	-	-35	-	dB
Electronic standby switch (pin 11)						
Oscillator; linear IF amplifier; AGC	$\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=-40 \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$					
Input switching voltage for threshold ON	$\mathrm{V}_{20}=>\mathrm{V}_{\mathrm{P}}-3 \mathrm{~V}$	$\mathrm{V}_{13}$	0	-	2.3	V
for threshold OFF	$V_{20}=<0.5 \mathrm{~V}$	$\mathrm{V}_{13}$	3.3	-	23	v
Input current at ON condition	$\mathrm{V}_{13}=0 \mathrm{~V}$		-	-		
at OFF condition	$\mathrm{v}_{13}=23 \mathrm{~V}$	-113	-	-		$\mu \mathrm{A}$
Input voltage	$\mathrm{I}_{13}=0$	$\mathrm{V}_{13}$	-	-	4.4	V

Notes to the characteristics

1. Power gain conversion is equated by the following equation:
$10 \log \frac{4\left(\mathrm{~V}_{\text {M(out) }} 10.7 \mathrm{MHz}\right)^{2}}{\left(\text { EMF1 }^{2} \mathrm{MHz}\right)^{2}} \times \frac{\mathrm{R}_{\mathrm{S} 1}}{\mathrm{R}_{\mathrm{ML}}}$
2. Voltage gain is equated by the following equation:
$20 \log \frac{V_{12}}{V_{16-15}}$


Fig. 3 Keyed AGC output voltage $\mathrm{V}_{20}$ as a function of RMS input voltage $V_{3}$.
Measured in test circuit Fig. 1 at $\mathrm{V}_{14}=0.7 \mathrm{~V}$; $I_{20}=0$.


Fig. 5 Keyed AGC output current $\mathrm{I}_{20}$ as a function of RMS input voltage $V_{3}$.
Measured in test circuit Fig. 1 at $\mathrm{V}_{14}=0.7 \mathrm{~V}$; $\mathrm{V}_{20}=8.5 \mathrm{~V}$.


Fig. 4 Keyed AGC output voltage $\mathrm{V}_{20}$ as a function of input voltage $V_{14}$. Measured in test circuit Fig. 1 at $\mathrm{V}_{3}=2 \mathrm{~V} ; \mathrm{I}_{20}=0$.


Fig. 6 Keyed AGC output voltage $\mathrm{I}_{20}$ as a function of input voltage $V_{14}$. Measured in test circuit Fig. 1 at $\mathrm{V}_{3}=2 \mathrm{~V} ; \mathrm{V}_{20}=8.5 \mathrm{~V}$.


## Coil data

L1: TOKO MC-108, N1 = 5.5 turns, N2 $=1$ turn
L2: L3: $^{\text {L }}$ see Fig. 1
(1) Field strength indication of main IF amplifier.

Fig. 7 TDA1574T application diagram.

## TV VHF mixer/oscillator UHF preamplifier

## GENERAL DESCRIPTION

The TDA5030A provides VHF local oscillator, VHF mixer and UHF IF preamplifier functions for VHF/UHF television receivers. It includes a buffered output from the VHF local oscillator, a VHF/UHF switching circuit and an IF amplifier stage for an external SAW filter.

## Features

- Balanced VHF mixer
- Voltage-controlled VHF local oscillator
- IF amplifier for SAW filter
- UHF IF preamplifier
- Local oscillator buffer output for external prescaler
- Voltage stabilizer
- UHF/VHF switching circuit
- Electrostatic discharge protection diodes at pins 10, 11, 12 and 13


## QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage	pin 15	$\mathrm{~V}_{\mathrm{P}}$	10	-	13,2	V
Supply current		Ip	-	42	-	mA
VHF mixer frequency range		f	50	-	470	MHz
Conversion gain			-	24,5	-	dB
Conversion noise						
Input signal for   1\% cross modulation   Storage temperature range   Operating ambient   temperature range				-	10	-
dB						



Fig. 1 Block diagram.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	conditions	symbol	min.	max.	unit
Supply voltage	pin 15	$V_{P}=V_{15-3}$	-	14	V
Input voltage	pins 1, 2, 4 and 5	$V_{i}$	0	5	V
VHF switching voltage	pin 12	$\mathrm{V}_{12}$	0	$\mathrm{V}_{15}+0,3$	V
Output current	pins 10, 11 or 13	-10, 11, 13	-	10	mA
Short-circuit time on outputs	pins 10 and 11	$\mathrm{t}_{\text {ss }}$	-	10	s
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-55	+ 125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature range		Tamb	-25	+ 85	${ }^{\circ} \mathrm{C}$
Junction temperature range		$\mathrm{T}_{\mathrm{j}}$	-	+ 125	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

From junction to ambient
$R_{\text {th } \mathrm{j}-\mathrm{a}} \quad 55 \mathrm{~K} / \mathrm{W}$

## CHARACTERISTICS

Measured in circuit of Fig. 2, $\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{15-3}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified

parameter	conditions	symbol	min .	typ.	max.	unit
Supply						
Supply voltage	pin 15	$\mathrm{V}_{15-3}$	10	-	13,2	V
Supply current		$\mathrm{l}_{15}$	-	42	55	mA
Switch voltage level for VHF	pin 12	$\mathrm{V}_{12}$	0	-	2,5	V
Switch voltage level for UHF	pin 12	$\mathrm{V}_{12}$	9,5	-	$\mathrm{V}_{15}+0,3$	V
Switch current	UHF selected	$\mathrm{l}_{12}$	-	-	0,7	mA
VHF mixer (including IF amplifier)						
Frequency range		f	50	-	470	MHz
Noise factor	$\begin{aligned} & \operatorname{pin} 2 \\ & \mathrm{f}=50 \mathrm{MHz} \end{aligned}$	F	-	75	9	dB
	$\mathrm{f}=225 \mathrm{MHz}$	F	-	9	10	dB
	$\mathrm{f}=300 \mathrm{MHz}$	F	-	10	12	dB
	$\mathrm{f}=470 \mathrm{MHz}$	F	-	11	13	dB
Optimum source conductance	pin 2					
	$\mathrm{f}=50 \mathrm{MHz}$	G	-	0,5	-	mS
	$\mathrm{f}=225 \mathrm{MHz}$	G	-	1,1	-	mS
	$\mathrm{f}=300 \mathrm{MHz}$	G	-	1,2	-	mS
Input conductance	$\begin{aligned} & \operatorname{pin} 2 \\ & f=50 \mathrm{MHz} \end{aligned}$	$\mathrm{G}_{i}$	-	0,23	-	mS
	$\mathrm{f}=225 \mathrm{MHz}$	$\mathrm{G}_{i}$	-	0,5	-	mS
	$\mathrm{f}=300 \mathrm{MHz}$	$\mathrm{G}_{\mathrm{i}}$	-	0,67	-	mS
Input capacitance	$\begin{aligned} & \operatorname{pin} 2 \\ & \mathrm{f}=50 \mathrm{MHz} \end{aligned}$	$\mathrm{C}_{i}$	-	2,5	-	pF
Input voltage for $1 \%$ cross-modulation (in channel)		$\mathrm{V}_{2-3}$	97	99	-	$\mathrm{dB} \mu \mathrm{V}$
Input voltage for 10 kHz pulling (in channel)	$\mathrm{f}<300 \mathrm{MHz}$	$\mathrm{V}_{2-14}$	100	-	-	$\mathrm{dB} \mu \mathrm{V}$
Voltage gain		$\mathrm{A}_{\mathrm{v}}$	22,5	24,5	26,5	dB

## CHARACTERISTICS (continued)

parameter	conditions	symbol	$\min$.	typ.	max.	unit
UHF preamplifier (including IF amplifier)						
Input conductance	pin 5	$\mathrm{G}_{i}$	-	0,3	-	mS
Input capacitance	pin 5	$\mathrm{C}_{i}$	-	3,0	-	pF
Noise factor	pin 5	F	-	5	6	dB
Optimum source conductance	pin 5	G	-	3,3	-	mS
Input voltage for $1 \%$ cross-modulation (in channel)		$V_{5-14}$	88	90	-	$\mathrm{dB} \mu \mathrm{V}$
Voltage gain		$\mathrm{A}_{\mathrm{V}}$	31,5	33,5	35,5	dB
VHF mixer						
Conversion transadmittance	pins 2 to 6,7	$\mathrm{Yc}_{2-6,7}$	-	5,7	-	mS
Output impedance	pins 6 and 7	$\mathrm{Z}_{0}$	-	1,6	-	$k \Omega$
VHF oscillator						
Frequency range		f	70	-	520	MHz
Frequency shift	$\begin{aligned} & \Delta V_{p}=10 \% ; \\ & f=70-330 \mathrm{MHz} \end{aligned}$	$\Delta \mathrm{f}$	-	-	200	kHz
Frequency drift	$\begin{aligned} & \Delta \mathrm{T}=15 \mathrm{~K} ; \\ & \mathrm{f}=70-330 \mathrm{MHz} \end{aligned}$	$\Delta \mathrm{f}$	-	-	250	kHz
Frequency drift	between 5 s and 15 min after switch-on	$\Delta \mathrm{f}$	-	-	200	kHz
SAW filter IF amplifier						
Input impedance	$\begin{aligned} & \mathrm{Z}_{10}, 11=2 \mathrm{k} \Omega ; \\ & \mathrm{f}=36 \mathrm{MHz} \end{aligned}$	$\mathrm{Z}_{8,9}$	-	$\begin{aligned} & 300+ \\ & \text { j100 } \end{aligned}$	-	$\Omega$
Transimpedance		$\mathrm{Z}_{8,9-10,11}$	-	2,2	-	k $\Omega$
Output reflection coefficient:	$\mathrm{f}=36 \mathrm{MHz}$					
modulus			0,45	0,37	0,41	
phase			-63	-112	-134	deg


parameter	conditions	symbol	min.	typ.	max.	unit
VHF local oscillator output buffer						
Output voltage	pin 13 $\begin{aligned} & R_{\mathrm{L}}=75 \Omega \\ & \mathrm{f}<100 \mathrm{MHz} \end{aligned}$	$V_{13}$	14	20	-	mV
	$\mathrm{f}>100 \mathrm{MHz}$	$\mathrm{V}_{13}$	10	20	-	mV
Output impedance	$\mathrm{f}=100 \mathrm{MHz}$	$z_{13}$	-	90	-	$\Omega$
RF signal on local oscillator output	$\mathrm{R}_{\mathrm{L}}=75 \Omega$					
	$\begin{aligned} & \mathrm{V}_{\mathrm{i}}=1 \mathrm{~V} ; \\ & \mathrm{f} \leqslant 225 \mathrm{MHz} \end{aligned}$	RF/(RF+LO)	-	-	10	dB
	$\begin{aligned} & V_{i}=0,3 \mathrm{~V} ; \\ & f=225-300 \mathrm{MHz} \end{aligned}$	$\mathrm{RF} /(\mathrm{RF}+\mathrm{LO})$	-	-	10	dB
IF signal on local oscillator output	$\begin{aligned} & \text { UHF selected; } \\ & R_{L}=75 \Omega ; \\ & V_{i}=350 \mathrm{mV} \end{aligned}$	IF/(IF+LO)	-	-	3	mV
Local oscillator harmonics w.r.t. local oscillator output signal	$\mathrm{R}_{\mathrm{L}}=75 \Omega$		-	-	-14	dB


(1) $\mathrm{C}=18 \mathrm{pF}, \mathrm{L}=2,2 \mu \mathrm{H}, \mathrm{f}_{\mathrm{CL}}=36,5 \mathrm{MHz}$.
(2) Turns ratio $=7: 1$, load $=50 \Omega$.

Fig. 2 Test circuit.

## DESCRIPTION

The UAA2072 is a low power front-end for use in hand-held transceivers complying with the GSM system

FEATURES

- Low noise amplifier
- Dual quadrature mixers for image rejection
- I and Q combining network at a fixed IF
- Down-conversion transmit mixer
- Serial interface for programming


## PIN CONFIGURATION



## QUICK REFERENCE DATA

Symbol	Parameter	Min	Typ	Max	Units
NF	Noise Figure receive on   demonstration board (includes   matching and board losses).		4.0	5.0	dB
$\mathrm{G}_{\mathrm{P}}$	Conversion power gain	23	26	29	dB
$\mathrm{IM}_{\text {REJ }}$	Image frequency rejection	30			dB
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage range	4.5	4.8	5.3	V
$\mathrm{I}_{\text {CCRX }}$	Supply current receive	26	31.5	38	mA
$\mathrm{I}_{\text {CCTX }}$	Supply current transmit	10	12	14	mA
$\mathrm{~T}_{\text {amb }}$	Operating temperature range	-30	25	85	${ }^{\circ} \mathrm{C}$

NOTE: For conditions, see following pages.

## ABSOLUTE MAXIMUM RATINGS

Limiting values in accordance with the absolute maximum system (IEC 134)

SYMBOL	PARAMETER	LIMITS		
		MIN	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage		9	V
Gnd Diff	Continuous voltage applied between GNDLNA   and GNDLO		0.6	V
$\mathrm{P}_{\text {MAX }}$	Maximum power input		+20	dBm
$\mathrm{T}_{\text {JMAX }}$	Maximum operating junction temperature		+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\mathrm{D}}$	Maximum power dissipation in quiet air		250	mW
$\mathrm{~T}_{\text {STG }}$	IC storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE: Every pin withstands the ESD test in accordance with MIL-STD-883C class 2 (method 3015.5).

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG\#
20-Pin Plastic Shrink Small Outline Package (Surface-mount, SSOP)	-40 to $+85^{\circ} \mathrm{C}$	UAA2072M	SOT266A



PIN DESCRIPTIONS

SYMBOL	PIN \#	DESCRIPTION
CLK	1	Bus CLOCK rail
DATA	2	Bus DATA rail
ENB	3	Bus ENABLE rail
$\mathrm{V}_{\text {ccl }}$ LNA	4	$\mathrm{V}_{\text {CC }}$ for LNA, IF parts, and TX MIXER
RFINA	5	RF balanced input
RFINB	6	RF balanced input
$\mathrm{GND}_{\text {LNA }}$	7	Ground for synth buffer and logic
TxINA	8	Transmit mixer input (balanced)
TxINB	9	Transmit mixer input (balanced)
TEST	10	reserved for test purposes; should be grounded
RxON	11	Hardware power on of Receive parts
TXON	12	Hardware power on of TX MIXER
TxOIFB	13	Transmit mixer IF output (balanced)
TxOIFA	14	Transmit mixer IF output (balanced)
$\mathrm{V}_{\text {cclo }}$	15	$\mathrm{V}_{\text {CC }}$ for LO parts
GND ${ }_{\text {LO }}$	16	Ground for LO parts
LOINB	17	LO input (balanced)
LOINA	18	LO input (balanced)
IFB	19	IF output (balanced with IFA (if IFA is ON))
IFA	20	IF output (balanced with IFB and switchable)

## Image reject GSM front-end

## DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
Pins: $\mathrm{V}_{\text {cC }}$ LNA, $\mathrm{V}_{\text {cC }}$ LO						
$V_{\text {cc }}$	Supply voltage	Over full temp range	4.5	4.8	5.3	V
${ }_{\text {ICC }} \mathrm{RxT}$	Supply current receive mode active	DC tested	26	31.5	38	mA
$\operatorname{lcc}$ Tx	Supply current transmit mode active	DC tested	10	12	14	mA
${ }_{\text {ICC }}$ PD	Supply current stand-by	DC tested			50	$\mu \mathrm{A}$
Pins: CLK, DATA, ENB, RxON, TxON, TEST						
$\mathrm{V}_{T}$	CMOS threshold voltage ${ }^{1}$			1.25		V
$\mathrm{V}_{\mathrm{IH}}$	Logic 1 level		3.0		$\mathrm{V}_{\text {cc }}$	V
$\mathrm{V}_{\mathrm{IH}}$	Logic 0 level		-0.3		0.8	V
$\mathrm{I}_{1 \mathrm{H}}$	Logic inputs static current	Apply $\mathrm{V}_{\mathrm{cc}}-0.4 \mathrm{~V}$	-1		1	$\mu \mathrm{A}$
LLH	Logic inputs static current	@ 0.4V	-1		1	$\mu \mathrm{A}$
Pins: RFINA, RFINB						
$\mathrm{V}_{\text {RFINA }}$	Input DC level	Receive mode enabled	1.7	2.1	2.4	V
Pins: IFA, IFB						
$\mathrm{V}_{\text {IF }}$	Output DC current	Receive section enabled	2	2.5	3.5	mA
Pins: LOINA, LOINB						
VLoin	Input DC level	Receive section enabled transmit section enabled	$\begin{aligned} & \hline 3.5 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4 \\ & \hline \end{aligned}$	V
Pins: TXINA, TXINB						
$\mathrm{V}_{\text {TXIN }}$	Input DC level	Transmit section enabled	1.8	2.2	2.5	V
Pins: TXoIFA, TXoIFB						
$\mathrm{V}_{\text {TXOIF }}$	Output DC level	Transmit section enabled	2.5	2.9	3.4	V

## NOTES:

1. The referenced inputs should be connected to a valid CMOS input level.

## AC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\text {CC }}=4.8 \mathrm{~V}$; receive section enabled; $\mathrm{T}_{\text {amb }}=-30$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
RFZ ${ }_{\text {IN }}$	RF input impedance, balanced			200		$\Omega$
RFFREQ	RF input frequency		935		960	MHz
$\mathrm{RF}_{\mathrm{FL}}$	Return loss on matched RFZ IN 1		15	20		dB
Gp	Conversion power gain, $\mathrm{RF}_{\text {ZIN }}$ to ONE IF output loaded with $500 \Omega$		20	23	26	dB
GPD	Conversion power gain, RFZIN to differential IF outputs loaded with $1 \mathrm{k} \Omega$ differential		23	26	29	dB
$\mathrm{G}_{\text {RIP }}$	Gain ripple vs RF frequency ${ }^{2}$			0.1	0.5	dB
$\mathrm{G}_{\text {TEMP }}$	Gain variation with temperature ${ }^{2}$		-20	-15	-10	$\mathrm{mdB} / \mathrm{k}$
CP1	1 dB input compression point ${ }^{1}$		-26	-24.5		dBm
IP2	2nd order intercept refered to the RF input (single-ended out) ${ }^{2}$		+15	+22		dBm
IP3	3rd order intercept point refered to the RF input ${ }^{2}$		-18	-15		dBm
NF	Overall NOISE figure: RF input to differential IF output2, 3			4	5	dB
IFZ ${ }_{\text {LOAD }}$	Typical application IF output load impedance (unbalanced)			500		$\Omega$
IFC ${ }_{\text {LOAD }}$	IF output load capacitance (unbalanced)				2	pF
$\mathrm{IF}_{\text {frea }}$	IF frequency range with RF<LO IF frequency range with RF>LO		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 71 \\ & 45 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \end{aligned}$	MHz
$1 M_{\text {REJ }}$	Image frequency rejection ${ }^{4}$		30			dB
$\mathrm{IM}_{\text {REJP }}$	Image rejection at preset (supradyne, $\mathrm{IF}=71 \mathrm{MHz}$ ) ${ }^{1}$		30	35		dB

## NOTES:

1. Measured and guaranteed only on Philips UAA2072 demonstration board at $25^{\circ} \mathrm{C}$.
2. Measured and guaranteed only on Philips UAA2072 demonstration board at $25^{\circ} \mathrm{C}$.
3. This value INCLUDES pcb and balun losses.
4. This value might be dependent upon control values sent by a microcontroller via serial bus. This performance is maintained over the RF band for a fixed phase rotation control word.

## CIRCUIT DESCRIPTION

UAA2072 contains both a receiver front end and a high frequency transmit mixer intended to be used in the GSM cellular telephone. Designed in an advanced BiCMOS process it combines high performance with low power consumption and a high degree of integration, thus reducing external component costs and total front end size.

Its first advantage is to provide 30 dB of image rejection. Thus the image filter between the LNA and the mixer is suppressed and the duplexer design is eased compared with a conventional front end design.

Image rejection is achieved in the internal architecture by two RF mixers in quadrature and two all-pass filters in I and Q IF channels that phase shift the IF by 45 and 135 degrees, respectively. The two phase shifted IFs are recombined and buffered to furnish the IF output signal. For instance, signals
presented at the RF input at LO+IF frequency are rejected through this signal processing, while signals at LO-IF frequency can form the IF signal. An internal switch allows the use of infradyne or supradyne reception. Precision needed for this signal processing is achieved by compensating for process spreads and trimming for the chosen IF frequency and the LO band center frequency via a three-wire bus interface.

The receiver section consists of a low noise amplifier that drives a quadrature mixer pair. The IF amplifier has on chip 45 and 135 degrees phase shifting and a combining networks for image rejection. The overall phase rotation is programmable for maximum image rejection at a given IF. The IF driver has differential outputs of open collector type.

The LO part consists of an internal all-pass type phase shifter to provide quadrature LO signals to the receive mixers. The center frequency of the phase shifter is adjustable
for maximum image rejection in a given band. The all-pass filters outputs are buffered before being fed to the receive mixers.

The transmit section consists of a down conversion mixer and a Tx IF driver stage. In the transmit mode an internal LO buffer is used to drive the transmit IF down conversion mixer.

All RF and IF inputs or outputs are balanced, and $200 \Omega$ is used as standard RF impedance.

A three pin uni-directional serial interface is used to program the circuits, using 16 -bit words. This data bus allows compensation of process spreads, and is used to adjust for maximum image rejection performance at a given IF. It also offers selection to reject the upper or lower image frequency and control over the different power down modes. Special care has been taken for fast power up switching.

## QUICK REFERENCE DATA: START-UP TIME

$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}$; receive section enabled; $\mathrm{T}_{\mathrm{amb}}=-30$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Min	Typ	Max	Units
Tup	Start-up time of each block	1	5	20	$\mu \mathrm{~s}$

## RX Section Block Description

The circuit contains a low noise amplifier followed by two high dynamic range mixers. These mixers are of the Gilbert-cell type and the whole internal architecture is fully differential. The local oscillator, shifted in phase to 45 and 135 degrees, mixes the amplified RF to create I and Q channels. The two $I$ and $Q$ channels are buffered, phase shifted by 45 and 135 degrees respectively,
amplified and recombined internally to realize the image rejection.

The serial bus interface is used for tuning to max image rejection at a given IF. The contents of registers 'ip5-ip0' and 'qp5-qp0' (named IF phase adjustment words) are Digital-to-Analog converted in the DACl and DACQ blocks. The obtained internal voltages control the phase shift in $I$ and $Q$; allowing
them to be trimmed precisely to 45 and 135 degrees at any given IF between 30 and 90 MHz . The gain in the I channel is slightly adjustable using the four bits 'ga3-ga0' to allow compensation of small gain mismatches between I and Q. One bit 'sbs' allows selection between infradyne or supradyne reception.

Balanced signal interfaces are used for minimizing cross-talks due to package parasitics. Impedance level at RF is $200 \Omega$, chosen to minimize current consumption at best noise performance.

The IF output is differential and of open-collector type ' $A$ '. Typical application will
load the output with a differential $1 \mathrm{k} \Omega$ load
The path to $\mathrm{V}_{\mathrm{Cc}}$ for the DC current is furnished via tuning inductors. Output voltage is limited to $\mathrm{V}_{\mathrm{Cc}}+3$ diode voltages.

In the event of only one output being used, a $1 \mathrm{k} \Omega$ resistive load in parallel with a tuning
inductor to $\mathrm{V}_{\mathrm{cc}}$, furnishes a matched $1 \mathrm{k} \Omega$ output to the external IF filter.

Fast switching ON/OFF of the receive section is controlled by the hardware input RxON or via the bus interface by changing the 'srx' bit in the internal register.


Figure 2. LO Section Block Dlagram

## Block Description

The LO input directly drives the two internal all-pass networks to provide quadrature LO to the receive mixers.
The center frequency of the receive band is adjustable by programming via the serial bus.

The word 'lo5-100' (named LO Quad Center Frequency Adjustment' word) is converted to an analog voltage in a Digital-to-Analog Converter (DACL on the block diagram). This voltage trims the all-pass network to the selected LO frequency range. To obtain the

30dB specified image rejection, the precision required on this trimming remains low. The LO input impedance is $100 \Omega$ differential. Switching from Rx to Tx or power-down mode has negligible influence on the LO input impedance.


Figure 3. TX Section Block Diagram

## Transmit Mixer Section

This mixer will be used for down conversion to the transmit IF. Its inputs are coupled to the transmit RF and down converted to a modulated transmit IF; this frequency is
phase locked with the baseband modulation. It provides differential input at $200 \Omega$ and a differential output driver buffer for a $1 \mathrm{k} \Omega$ load. The IF outputs are low impedance (common-collector type).

Fast switching ON/OFF of the transmit section is controlled by the hardware input TxON or via the bus interface by changing the 'stx' bit in the internal register.

## QUICK REFERENCE DATA: START-UP TIME

$\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}$; receive section enabled; $\mathrm{T}_{\mathrm{amb}}=-30$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Min	Typ	Max	Units
FCLK	Clock frequency			13	MHz



Figure 4. 3-Wire Bus Interface and Control Logic Section

## Serial Bus Interface Block Description

The 3 -line serial bus interface allows control over the selective powering up of Tx, Rx and Synthesizer Buffer circuit blocks, the tuning of Image Rejection and Rx Quadrature circuitry and selection of sideband rejection. The interface consists of a 16 -bit programming register, three working latches, and three D/A converters which provide the tuning voltages for the Image Rejection of the Rx Quadrature circuits.

## Bus Format

A 3-line uni-directional bus is used to
program the circuit; the 3 lines being: DATA, CLOCK (CLK), and ENABLE (ENB). The timing diagram is shown in Figure [6]. The data sent to the device is loaded in bursts framed by ENB. Programming clock edges and their corresponding data bits are ignored until ENB goes active low. The programmed information is loaded into the addressed working latch when ENB returns high. Only the last 16 bits clocked into the device are retained within the programming register. Additional leading bits are ignored, and no check is made on the number of clock pulses.

If ENB returns high while CLK is still low, the extra clock edge produced causes data shift. The bus interface will not output any address recognition.
Data is entered with the most significant bit first. The leading 12 bits make up the data field, while the trailing 4 bits comprise the address. The first bit entered is called p1, the last one p 16 . The bits in the programming registers and addresses are arranged as shown in the Table [6].

Table 1. Bit Allocation

first	REGISTER BIT ALLOCATIONS														last
p1	p2	p3	p4	p5	p6	p7	p8	p9	p10	p11	p12	p13	p14	p15	p16
DATA FIELD												ADDRESS			
dt11	dt10	dt9	dt8	dt7	dt6	dt5	dt4	dt3	dt2	$\mathrm{dt1}$	dt0	ad3	ad2	ad1	ad0
this register is reserved for test purposes and should never be programmed												0	0	0	0
x	x	x	x	sbs	$x$	x	$x$	x	hpn	stx	stx	0	0	0	1
ga3	ga2	ga1	ga0	x	x	105	104	103	102	101	100	0	0	1	0
ip5	ip4	ip3	ip2	ip1	ip0	qp5	qp4	qp3	qp2	qp1	qp0	0	0	1	1


					$\begin{gathered} \text { Preset } \\ 0 \end{gathered}$
stx	software transmit power on	1=Power-up 0=Power-down			
srx	software receive power on	1=Power-up 0=Power-down			0
hpn	hardware priority not(Select if power status of blocks controlled via hardware or software		1=Soft priority	$0=$ Hard priority	0
sbs	Side Band Select		1=Upper Side Band Selected	$0=$ Lower Side Band Selected	0


| first bit | REGISTER BIT ALLOCATIONS | last bit |
| :---: | :--- | :---: | :---: |
| ga3-ga0 | IF I channel Gain Adjustment | 0111 |
| lo5-lo0 | LO Quadrature Center Frequency Adjustment | 011111 |
| ip5 -ipO | IF I channel Phase Adjustment | 011111 |
| qp5 -qpO | IF Q channel Phase Adjustment | 011111 |
| $x$ | not used |  |

TIMING CHARACTERISTICS
Typical values measured at $\mathrm{V}_{\text {CCLO }}, \mathrm{V}_{\text {CCLNA }}=4.8 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN ${ }^{1}$	TYP	MAX ${ }^{1}$	
Serial programming clock (pin CLK)					
$\mathrm{T}_{\text {R }}$	Rise time		10	40	ns
$\mathrm{T}_{\mathrm{F}}$	Fall time		10	40	ns
Tcyc	Clock period	75			ns
Enable programming (pin ENB)					
T ${ }_{\text {Staft }}$	Delay to rising clock edge	30			ns
TEND	Delay from last clock edge	10			ns
T WIDTH	Minimum inactive pulse width	75			ns
T ${ }_{\text {NEW }}$	Delay from ENB inactive to new data	150			
Register Serial Input Data (pin DATA)					
Tsu	Input data to CLK set-up time	20			ns
$\mathrm{T}_{\mathrm{HL}}$	Input data to CLK hold time	20			ns

## NOTES:

1. Condition under maximum clock speed


Figure 5. Serial Bus Timing

The table below details the different power-up on the usage of the ' $h$ pn' bit. This bit enables modes of the circuit. Attention should be paid
the RxON, TxON pins to take any logic
position when software programming for powering-up is used.

Table 2. Control of Chip Power Status

Register Bit Status			External Pin Level		Circuit Parts Power Status	
hpn	stx	srx	TxON	RxON	Transmit Section	Receive Section
0	X	x	low	low	off	off
0	x	X	low	high	off	on
0	x	x	high	low	on	off
0	x	$x$	high	high	on (*)	on (*)
1	0	0	X	X	off	off
1	0	1	X	X	off	on
1	1	0	X	X	on	off
1	1	1	X	X	on (*)	on (*)
$\begin{array}{\|l\|} \hline \text { x: don't care } \\ \text { X: means high or low logic voltage level applied at designated pin } \\ \left({ }^{*}\right) \text { : circuit is operative in this mode but specification is NOT guaranteed } \\ \hline \end{array}$						

## Application Board Information

 The following figure shows the electrical diagram of the UAA2072 Philipsdemonstration board. This board will be described in depth in the UAA2072 Application Note (to be published). The
following values are only provisional at the date of publication.


Figure 6. UAA2072 Electrical Diagram

SMD and SolC - Solder Side
Fait a Caen le 20 Avril 93 RDP


Component Side Fait a Caen le 20 Avril 93 RDP


## Section 6 Baseband Processors:Audio and Data

## INDEX

Baseband Processor Selector Guide ..... 628
NE/SA5750 Audio processor - companding and amplifier section ..... 629
NE/SA5751 Audio processor - filter and control section ..... 636
AN1741 Using the NE5750 and NE5751 for audio processing ..... 646
SA5752 Audio processor - companding, VOX and amplifier section ..... 666
SA5753 Audio processor - filter and control section ..... 676
AN1742 Using the SA5752 and SA5753 for low voltage designs ..... 687
PCA5075 Power amplifier controller for GSM systems ..... 702
PCD5032 ADPCM codec for digital cordless telephone ..... 715
PCD5040 DECT burst mode controller ..... 737
PCD5071 GSM baseband interface ..... 755
PCF5081/PCF5082
GSM baseband processors for digital mobile cellular radio ..... 768
TEA6320 Sound fader control circuit ..... 782
UMA1000LT Data processor for cellular radio (DPROC) ..... 812

## Baseband Processors

PART TYPE		APPLICATION	$V_{\text {DD }}$	IDD	PACKAGE
PCD5032	ADPCM Codec	DECT	$\begin{aligned} & 2.7-6.0 \\ & 2.7-6.0 \end{aligned}$	7mA Typ. Active 20رA Typ. Stdby	$28-\mathrm{Pin} \mathrm{SO} 28$   44-Pin QFP
PCD5040	BMC (Burst Mode Controller)	DECT	2.7-6.0	15mA Typ. Active	64-Pin QFP
PCD5081	Signal Processor - Mobile	GSM	5.0	- -	80-Pin QFP
PCD5082	Signal Processor - Base	GSM	5.0	- -	160-Pin QFP
PCD5070	Baseband Interface	GSM	5.0	31 mA Typ. Rx 7mA Typ. Tx	44-Pin QFP   44-Pin QFP
PCD5071	Baseband Interface	GSM	5.0	$31 m A$ Typ. Rx 7mA Typ. Tx	44-Pin QFP   44-Pin QFP
NE/SA5750	Audio Companding Amplifier	AMPS TACS	5.0	8.4mA Typ.   1.8 mA Stdby	$\begin{aligned} & \text { 24-Pin DIP } \\ & 28 \text {-Pin SOL } \end{aligned}$
NE/SA5751	Audio Filter and Control	AMPS TACS	5.0	2.7 mA Typ.   0.9mA Stdby	$\begin{aligned} & \text { 24-Pin DIP } \\ & \text { 28-Pin SOL } \end{aligned}$
NE/SA5752	Audio Companding VOX and Amplifier	$\begin{aligned} & \text { AMPS } \\ & \text { TACS } \end{aligned}$	2.7	3.1mA Typ. $125 \mu \mathrm{~A}$ Stdby	$\begin{aligned} & 20-\mathrm{Pin} \text { SOL } \\ & 20-\mathrm{Pin} \text { SSOP } \end{aligned}$
NE/SA5753	Audio Filter and Control	AMPS   TACS	2.7	2.7mA Typ. 600 $\mu \mathrm{A}$ Stdby	$\begin{aligned} & \text { 20-Pin SOL } \\ & 20-\mathrm{Pin} \text { SSOP } \end{aligned}$
PCF5001	POCSAG Decoder	PAGERS	1.5-6.0	$60 \mu \mathrm{~A}$ Typ.	28-Pin Mini-Pack 32-Pin QFP

## Audio processor - companding and amplifier section

## DESCRIPTION

The NE/SA5750 is a high performance low power audio signal processing system. The NE/SA5750 subsystems include a low noise microphone preamplifier with adustable gain, a noise cancellation switching amplifier with adjustable threshold, a voice operated transmitter (VOX) switch, VOX control, an audio compressor with buffered input, audio expandor, a unity gain power amplifier to drive a speaker, a summing power amplifier for sidetone attenuation and headphone (earpiece) drive, and an internal bandgap voltage regulator with power down capability When used with Philips Semiconductors NE/SA5751, the complete audio processing function of an AMPS or TACS cellular telephone is easily implemented. The NE/SA5750 can also be used without the NE/SA5751 in a wide variety of radio communications applications.

## FEATURES

- High performance
- 5 V supply
- Adjustable VOX and noise cancellation threshold
- Adjustable gain preamplifier
- Audio companding
- ESD protected
- Open collector VOX output
- Logic inputs CMOS compatible
- Power down mode
- Built-in drivers for speaker and earpiece
- Few external components
- SOL and DIP packages


## BENEFITS

- Very compact applications
- Long battery life in portable equipment
- Complete cellular audio function with the SA5751


## APPLICATIONS

- Cellular radio
- Mobile communications
- High performance cordless telephones
- 2-way radio


## PIN CONFIGURATION



ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
24-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE5750N	0411 B
24-Pin Plastic Small Outline Large (SOL) package	0 to $+70^{\circ} \mathrm{C}$	NE5750D	0173D
24-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA5750N	0411B
24-Pin Plastic Small Outline Large (SOL) package	-40 to $+85^{\circ} \mathrm{C}$	SA5750D	0173 D

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$V_{C C}$	Power supply voltage   Voltage applied to any pin	6   -0.3 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	V   V
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Ambient operating temperature   NE5750   SA5750	0 to 70   -40 to +85	${ }^{\circ} \mathrm{C}$

PIN DESCRIPTIONS

PIN NO.	SYMBOL	
1	MIC $_{\text {IN }}$	MESCRIPTION
2	PREAMP $_{\text {GRES }}$	Preamplifier gain resistor
3	RECT $_{\text {GRES }}$	Reactifier gain resistor
4	NCAN $_{\text {CAP }}$	Noise cancellation timing capacitor
5	VOX $_{\text {OUT }}$	Voice operated transmission output
6	VOX $_{\text {CTL }}$	Voice operated transmission control
7	VOX $_{\text {TR }}$	Voice operated transmission threshold resistor
8	GND	Ground
9	V $_{\text {REF }}$	Reference voltage
10	HPDN	Hardware power down
11	SPKR $_{\text {OUT }}$	Speaker output
12	EAR $_{\text {OUT }}$	Earpiece output
13	EAR $_{\text {IN }}$	Earpiece input, side tone input
14	SPKR $_{\text {IN }}$	Speaker input
15	EXP $_{\text {CAp }}$	Expandor timing capacitor
16	EXP $_{\text {OUT }}$	Expandor output
17	EXP $_{\text {IN }}$	Expandor input
18	V $_{\text {CC }}$	Positive supply
19	COMP	
20	COMPAP2	Compressor timing capacitor 2
21	COMP $_{\text {CAP3 }}$	Compressor output
22	COMP $_{\text {CAP1 }}$	Compressor timing capacitor 3
23	COMP	
24	NCAN $_{\text {IN }}$	Compressor input

## BLOCK DIAGRAM



Audio processor - companding and amplifier section

## DC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, 0 \mathrm{~dB}=77.5 \mathrm{~m} \mathrm{~V}_{\text {RMS. }}$. See test circuit, Figure 4.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.75	5.0	5.25	V
Icc	Supply current	No signal Power down mode		$\begin{aligned} & \hline 8.4 \\ & 1.8 \end{aligned}$	$\begin{gathered} 12.0 \\ 3.0 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{Z}_{\mathrm{L}}$	Load impedance pins NCAN ${ }_{\text {out }}$ EXPout		50			k $\Omega$
	COMPout ${ }^{1}$		10			k $\Omega$
$\mathrm{Z}_{\mathrm{IN}}$	$\begin{aligned} & \text { Input impedance } \\ & \text { COMP }_{I N}, \text { MIC }_{\mathbb{N},}, \text { SPKR }_{\mathbb{N}} \end{aligned}$		40	50	60	k $\Omega$
	$\mathrm{EXP}_{\text {in }}{ }^{2}$		2.0	2.5		$\mathrm{k} \Omega$
	Noise cancellation current ${ }^{4}$	Pin 7, grounded	40	50	60	$\mu \mathrm{A}$
Vos	DC offset ${ }^{\text {NCAN }}$ OUT ${ }^{3}$		-50		50	mV

NOTES:

1. Compressor is tested in production with $50 \mathrm{k} \Omega$ load.
2. Not tested in production.
3. Offset values are identical for both gain states of noise reduction circuit.
4. VOX threshold resistor at Pin 7, R3, should be greater than $3 \mathrm{k} \Omega$.

AC ELECTRICAL CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, 0 \mathrm{~dB}$ level $=77.5 \mathrm{mV}$ RMS. See test circuit, Figure 4.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
	Preamplifier gain range Preamplifier voltage gain OdB Preamplifier voltage gain 40dB	Pin 2 open Pin $2 A C$ ground	$\begin{gathered} 0 \\ -1.0 \\ 39.0 \end{gathered}$	$\begin{gathered} 0 \\ 40 \end{gathered}$	$\begin{gathered} \hline 40 \\ 1.0 \\ 41.0 \end{gathered}$	dB dB dB
	Preamplifier noise density	Pin 2 AC grounded $\mathrm{RS}=0-50 \mathrm{k} \Omega$ unweighted $20 \mathrm{~Hz}-20 \mathrm{kHz}$		7		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
		weighted CCIR DIN45405 20-20kHz		8		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
	Switch amplifier gain		9	10	11	dB
	Sidetone attenuation range				30	dB
Compandor 1kHz, all tests ${ }^{1}$						
COMPout	Compressor error at -21dB output level	Input level $=-42 \mathrm{~dB}$		0.38		dB
COMPout	Compressor error at -10dB output level	Input level $=-20 \mathrm{~dB}$	-1.0		1.0	dB
COMPout	Compressor error at OdB output level	Input level = OdB	-1.5	0.12	1.5	dB
COMPOUT	Compressor error at +5 dB output level	Input level $=+10 \mathrm{~dB}$	-1.0		1.0	dB
COMPOUT	Compressor error at +12.3 dB output level	Input level $=+24.6 \mathrm{~dB}$	-1.0		1.0	dB
EXPout	Expandor error at -42dB output level	Input level $=-21 \mathrm{~dB}$		-0.41		dB
EXPout	Expandor error at -21dB output level	Input level $=-10.5 \mathrm{~dB}$	-1.0		1.0	dB
EXPout	Expandor error at -10dB output level	Input level $=-5 \mathrm{~dB}$	-1.0		1.0	dB
EXPout	Expandor error at OdB output level	Input level $=0 \mathrm{~dB}$	-1.5	-0.18	1.5	dB
EXPout	Expandor error at +10 dB output level	Input level $=+5 \mathrm{~dB}$	-1.0		1.0	dB
EXPout	Expandor error at +24.6 dB output level ${ }^{2}$	Input level $=+12.3 \mathrm{~dB}$	-1.5		1.5	dB
EXPout	Expandor V ${ }_{\text {os }}$	No signal	-50.0		50.0	mV
EXPout	Expandor output DC shift	No signal to OdB	-100		100	mV

AC ELECTRICAL CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$, odB level $=77.5 \mathrm{mV}$ RMS. See test circuit, Figure 4.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
	Timing capacitors compandor			2.2		$\mu \mathrm{F}$
THD	Total harmonic distortion Compressor	1 kHz , OdB		0.09	1	\%
	Expandor	1 kHz , OdB		0.09	1	\%
	NCANOUT	1kHz. Pin 2 open output level $=0 \mathrm{~dB}$		0.18	1	\%
		$\begin{aligned} & 1 \mathrm{kHz} \text {, Pin } 2 \text { open } \\ & \text { output level }=+25 \mathrm{~dB} \end{aligned}$		0.13	1	\%
	Speaker amplifier Drive capability				40	mAp.p
	Output swing (<1\% THD)	$50 \Omega$ load	2	3.2		$V_{\text {P-P }}$
		100 2 load	3	4.1		$V_{P-P}$
		No load	4	4.9		$\mathrm{V}_{\mathrm{P} \text { - } \mathrm{P}}$
	Ear amplifier Drive capability				10	mAp.p
	Output swing (<1\% THD)	$300 \Omega$ load	3	4.3		$\mathrm{V}_{\mathrm{P} \text { - }}$
		2000 2 load	4	4.9		$V_{P-p}$
		No load	4	4.9		$V_{\text {P.P }}$
VOXOUT	Sink current				0.5	mA
	Low level High level	Open collector $\mathrm{I}_{\mathrm{L}}=0.5 \mathrm{~mA}$	4	$\begin{gathered} 0.07 \\ 5 \end{gathered}$	0.4	V
$\mathrm{VOX}_{\text {ctL }}$	$\begin{array}{ll}\text { Input current } & \text { Low } \\ & \text { High }\end{array}$		$\begin{aligned} & -50 \\ & -10 \end{aligned}$	-21	$\begin{gathered} 0 \\ +10 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	$\begin{array}{ll}\text { Input level } & \text { Low } \\ \\ \text { High }\end{array}$		$\begin{gathered} 0 \\ 3.5 \end{gathered}$		$\begin{gathered} 1.5 \\ 5 \end{gathered}$	V
$H_{\text {PDN }}$	$\begin{array}{ll}\text { Input current } & \text { Low } \\ & \text { High }\end{array}$		$\begin{aligned} & -10 \\ & -10 \end{aligned}$		$\begin{aligned} & +10 \\ & +10 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	$\begin{array}{ll}\text { Input level } & \begin{array}{l}\text { Low } \\ \text { High }\end{array}\end{array}$		$\begin{gathered} 0 \\ 3.5 \end{gathered}$		$\begin{gathered} 1.5 \\ 5 \end{gathered}$	V
	Reference filter capacitor			10		$\mu \mathrm{F}$

## NOTE:

1. Measurements are relative to OdB output.
2. Measurement is absolute and indicative of the output dynamic range capability.



Figure 2. Cellular Radio System


Figure 3. APROC Application Diagram

## Audio processor - companding and amplifier section

NE/SA5750


Figure 4. NE/SA5750 Test and Application Circuit

## Audio processor - filter and control section

## DESCRIPTION

The NE/SA5751 is a high performance low power CMOS audio signal processing system. The NE/SA5751 subsystems include complementary transmit/receive voice band $(300-3000 \mathrm{~Hz})$, switched capacitor bandpass filters with pre-emphasis and de-emphasis respectively, a transmit low pass filter, peak deviation limiter for transmit, a digitally controlled volume control with 30 dB range (in 2 dB steps), audio path mute switches, a programmable DTMF generator, power- down circuitry for low current standby, power-on reset capability, and an $I^{2} \mathrm{C}$ interface. When the SA5751 is used with an SA5750 (companding function), the complete audio processing system of an AMPs or TACs cellular telephone is easily implemented.

## FEATURES

- Low power
- High performance
- 5 V supply
- Built-in programmable DTMF generator
- Built-in digitally controlled volume control
- Built-in peak-deviation limit
- $I^{2} C$ Bus controlled
- Power-on reset
- Power-down capability


## BENEFITS

- Very compact application
- Long battery life in portable equipment
- Complete cellular audio function with the SA5750


## APPLICATIONS

- Cellular radio
- Mobile communications
- High performance cordless telephones
- 2-way radio


## PIN CONFIGURATION

	N PACKA		
NC 1		24	nc
$\mathrm{V}_{\text {REF }} 2$		23	TXLFOUT
TXBFIN 3		22	txdtmfout
TXBFOUT 4		21	TXS ${ }_{\text {IN }}$
PREMPIN 5		20	TXSout
$\mathrm{V}_{\mathrm{DD}} 6$	NE5751	19	GND
dempout 7		18	CLKIN
$\mathrm{VG}_{\text {IN }}{ }^{8}$		17	SDA
$\mathrm{vc}_{\text {OUT1 }}{ }^{9}$		16	scL
vcout2 10		15	SA1
MUTET 11		14	RXBFin
MUTER 12		13	vox ${ }_{\text {ctL }}$

D1 Package


NOTE:

1. Available in SOL (large surface mount) package only

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
24-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE5751N	0411 B
28-Pin Plastic Small Outline Large (SOL) package	0 to $+70^{\circ} \mathrm{C}$	NE5751D	0006 C
24-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA5751N	0411 B
28-Pin Plastic Small Outline Large (SOL) package	-40 to $+85^{\circ} \mathrm{C}$	SA5751D	0006 C

## Audio processor - filter and control section

## PIN DESCRIPTIONS

		SYMBOL	DESCRIPTION
PIN NO.		NC	Not connected
2	(2)	NC	Not connected
	(3)	$\mathrm{V}_{\text {REF }}$	Reference voltage
3	(4)	TXBF ${ }_{\text {IN }}$	Transmit bandpass filter input
4	(5)	TXBFout	Transmit bandpass filter output
5	(6)	PREMPIN	Pre-emphasis input
6	(7)	$\mathrm{V}_{\mathrm{DD}}$	Positive supply
7	(8)	DEMPout	De-emphasis output
8	(9)	$\mathrm{VC}_{\text {IN }}$	Volume control input
9	(10)	VCout1	Volume control output 1
10	(11)	VCout2	Volume control output 2
	(12)	MUTET	TX analog voice path mute input
12	(13)	MUTER	RX analog voice path mute input
	(14)	NC	Not connected
	(15)	NC	Not connected
13	(16)	VOX ${ }_{\text {ctL }}$	Vox control output
14	(17)	RXBFin	Receive bandpass filter input
15	(18)	SA1	Serial bus address
16	(19)	SCL	Serial clock line
17	(20)	SDA	Serial data line
18	(21)	CLKK ${ }_{\text {IN }}$	Clock input
19	(22)	GND	Ground
20	(23)	TXSOUT	Transmit summer output
21	(24)	TXS ${ }_{\text {IN }}$	Transmit summer input
22	(25)	TXDTMFout	Transmit DTMF output
23	(26)	TXLFout	Transmit low-pass filter output
24	(27)	NC	Not connected
	(28)	NC	Not connected

NOTE:

1. Callouts are for $N$ package; those in parentheses are for the $D(S O L)$ package.

## BLOCK DIAGRAM



## NOTES:

1. T1 to T 10 represent the signal path switches.
2. M1 and M2 represent the mute switches.
3. PRE and DEE represent the bypass switches for pre-emphasis and de-emphasis, respectively.
4. B 1 to B 6 represent the output buffers.

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
	Power supply voltage 1	6	${ }^{1} \mathrm{~V}$
$\mathrm{~T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Ambient operating temperature	NE5751	0 to 70
		SA5751	-40 to +85

NOTE:

1. Voltage applied to any pin -0.3 to $V_{D D}+0.3 \mathrm{~V}$

DC ELECTRICAL CHARACTERISTICS $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{D D}=+5.0 \mathrm{~V}$, unless otherwise specified. See test circuit, Figure 4.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
$V_{D D}$	Power supply voltage range		4.75	5.0	5.25	V
ldD	Supply current	Operating Standby		$\begin{aligned} & 2.7 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

## AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V}$. See test circuit, Figure 4. Clock frequency $=1.2 \mathrm{MHz}$; test level $=0 \mathrm{dBV}=77.5 \mathrm{mV}$ RMS $=-20 \mathrm{dBm}$, unless othorwiso specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
	RX BPF anti alias rejection			40		dB
	RX BPF input impedance	$\mathrm{f}=1 \mathrm{kHz}$		500		k $\Omega$
	RX BPF gain with de-emphasis	$\mathrm{f}=1 \mathrm{kHz}$	-0.5	0	0.5	dB
	RX BPF gain with de-emphasis	$f=100 \mathrm{~Hz}$		-31	-29	dBm0
	RX BPF gain with de-emphasis	$\mathrm{f}=300 \mathrm{~Hz}$	9.0	9.6	11.0	dBm0
	RX BPF gain with de-emphasis	$\mathrm{f}=3 \mathrm{kHz}$	-11.0	-10.0	-9.0	dBm0
	RX BPF gain with de-emphasis	$\mathrm{f}=5.9 \mathrm{kHz}$		-68	-50	dBm0
	RX BPF noise with de-emphasis	$300 \mathrm{~Hz}-3 \mathrm{kHz}$		170		$\mu \mathrm{V}$ RMS
	RX dynamic range	with deemphasis		80		dB
	DEMPout output impedance	$\mathrm{f}=1 \mathrm{kHz}$		40		$\Omega$
,	DEMPout output swing (1\%)	$2.3 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {REF } ;} ; \mathrm{f}=1 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{DD}}{ }^{-3}$	3.5		$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
	VCout1 ouput swing (1\%)	$50 \mathrm{k} \Omega$ toV $\mathrm{VEF} \mathrm{f}=1 \mathrm{kHz}$	$V_{D D}-1$	4.5		$V_{\text {P-P }}$
	VCout2 output swing (1\%)	50 kS to $\mathrm{V}_{\text {REF } ;} \mathrm{f}=1 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{DD}}-1$	4.5		$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
	VCout1 noise	$\mathrm{VC}_{\mathbb{N}}$ grounded		25		$\mu \mathrm{V}_{\text {RMS }}$
	$\mathrm{VC}_{\text {out2 }}$ noise	$\begin{gathered} \mathrm{VC}_{\mathbb{N}} \text { grounded } \\ \mathrm{C} \text { - message } \end{gathered}$		25		$\mu \mathrm{V}_{\text {RMS }}$
	Mute threshold off		0		0.8	V
	Mute threshold on		2.0		5.0	V
	CLK1, 2 high		4.0		5.0	V
	CLK1, 2 low		0		1.0	V
	TX BPF anti alias rejection			40		dB
	TX BPF input impedance	$\mathrm{f}=3 \mathrm{kHz}$		500		$\mathrm{K} \Omega$

Audio processor - filter and control section
NE/SA5751

AC ELECTRICAL CHARACTERISTICS (continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
	TX BPF noise	$300-3000 \mathrm{kHz}$		90		$\mu \mathrm{V}_{\text {RMS }}$
	TX LPF gain	$\mathrm{f}=5.9 \mathrm{kHz}$		-39	-36	dB
	TX LPF gain with pre-emphasis	$\mathrm{f}=1 \mathrm{kHz}, 20 \mathrm{dBV}$		12.06		dB
	TX LPF gain with pre-emphasis	$f=100 \mathrm{~Hz}$		-19		dBm0
	TX LPF gain with pre-emphasis	$\mathrm{f}=300 \mathrm{~Hz}$		-10.45		dBm0
	TX LPF gain with pre-emphasis	$\mathrm{f}=3 \mathrm{kHz}$		9.14		dBm0
	TX LPF gain with pre-emphasis	$f=5900 \mathrm{~Hz}$		-39		dBm0
	TX LPF gain with pre-emphasis	$\mathrm{f}=9 \mathrm{kHz}$		-51		dBm0
	TX overall gain	1kHz	11.3	11.8	12.5	dB
	TX overall gain	100 Hz		-47	-45	dBm0
	TX overall gain	300 Hz	-11	-10.4	-9	dBm0
	TX overall gain	3 kHz	8	9	9.6	dBm0
	TX overall gain	5.9 kHz		-52	-45	dBm0
	TX BPF output impedance	$\mathrm{f}=1 \mathrm{kHz}$		360		$\Omega$
	TX BPF output swing ( $1 \%$ THD)	$\begin{gathered} 50 \mathrm{k} \Omega \text { to } V_{\text {REF }} \\ f=1 \mathrm{kHz} \end{gathered}$		4.5		$\mathrm{V}_{\mathrm{P} . \mathrm{P}}$
	TX BPF dynamic range			90		dB
	PREMP in input impedance	$\mathrm{f}=3 \mathrm{kHz}$		500		k $\Omega$
	Summing op amp   Slew rate   Output impedance   Output swing ( $1 \%$ THD)	$\begin{gathered} C_{L}=15 \mathrm{pF} \\ \text { Unity gain; } f=3 \mathrm{kHz} \\ 1 \mathrm{kHz}, 5 \mathrm{k} \Omega \text { load }\left(25^{\circ} \mathrm{C}\right) \end{gathered}$		$\begin{gathered} 0.75 \\ 40 \\ 4.3 \end{gathered}$		$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \Omega \\ \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{gathered}$
	Volume control accuracy	-30 dB to OdB	-1	0	+1	dB
,	Analog switches Insertion loss   On time transition   Off time transition	MUTET, MUTER $0.8 \mathrm{~V}->2.0 \mathrm{~V}$   MUTET, MUTER $2.0 \mathrm{~V}->0.8 \mathrm{~V}$		$\begin{gathered} 60 \\ 3 \\ 0.25 \end{gathered}$		dB $\mu \mathrm{s}$ $\mu \mathrm{s}$

## $I^{2} \mathrm{C}$ CHARACTERISTICS

The $I^{2} \mathrm{C}$ bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both SDA and SCL are bidirectional lines connected to a positive supply voltage via a pull-up resistor. When the bus is free, both lines are high. Data transfer may be initiated only when the bus is not busy.
The output devices, or stages, connected to the bus must have an open drain or open collector output in order to perform the wired-AND function.
Data at the $\mathrm{I}^{2} \mathrm{C}$ bus can be transferred at a rate up to $100 \mathrm{kbits} / \mathrm{s}$. The number of devices connected to the bus is solely dependent on
the maximum allowed bus capacitance of 400pF.
Due to the variety of different devices which can be connected to the $\mathrm{I}^{2} \mathrm{C}$ bus, the levels of the logical " 0 " and " 1 " are not fixed and depend on the appropriate level of $\mathrm{V}_{\mathrm{DD}}$. For the typical supply voltage of 5 V which is chosen here, logical " 1 " and logical " 0 " are, however, fixed respectively on maximum input LOW voltage, 1.5 V and minimum input HIGH voltage, 3.0 V .

## BIT TRANSFER

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock's cycle. If it does not remain HIGH, it may be interrupted as a control signal.

## START AND STOP CONDITIONS

Both data and clock lines remain HIGH when the bus is not busy. A HIGH to LOW transition of the data line while the clock line is HIGH is defined as a start condition S. A LOW to HIGH transition of the data line while the clock is HIGH is defined as a stop condition.

## SYSTEM CONFIGURATIONS

A device generating a message is a
"transmitter"; a device receiving a message is the "receiver". The device that controls the message is the "master"; and devices which are controlled by the master are the "slaves".

## ACKNOWLEDGE

The number of data bytes transferred between the start and the stop condition from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse; set up and hold times must be taken into account.

## $1^{2} \mathrm{C}$ BUS DATA CONFIGURATIONS

The NE5751 is always a slave receiver in the $1^{2} \mathrm{C}$ bus configuration (RW bit-0). The slave address consists of seven bits in the serial mode where the least significant bit is selectable by hardware on input AO and the other more significant bits are internally fixed.

## POWER ON RESET

In order to avoid undefined states of the NE5751 when the power is switched on, a power on reset is supplied. The reset is active when Pin $\mathrm{V}_{\mathrm{REF}}$ is held below 0.8 V . The reset is off when Pin $V_{\text {REF }}$ is above 2.0 V . Pin $\mathrm{V}_{\text {REF }}$ is normally at 2.5 V generated by a resistive divider from $\mathrm{V}_{\mathrm{DD}}$. Nominal impedance is $20 \mathrm{k} \Omega$. In a typical application a capacitor is connected to Pin V REF to improve power supply rejection. The time delay of the network resets the internal registers when power is first applied. The signal paths are off in the reset condition. The NE5751 must be programmed via the $I^{2} \mathrm{C}$ bus for normal operation. The Power Down mode is defined only when all register values are zero.
CONTROL REGISTERS

## Register Map

The address register is as follows:

MSB							LSB
A6	A5	A4	A3	A2	A1	A 0	RW
1	0	0	0	0	0	SA1	0

SA1 is controlled by serial bus address pin.

## Signal Path Register

MSB LSB

T10 T9 T8 T6 VOX ${ }_{\text {EN }}$ T4 T3T5 T2
T2 is the transmission gate between Pin PREEMPIn and the emphasis input.

T3T5 connects the output of the DTMF generator to the emphasis input and connects the output of the XMT LPF to Pin TXDTMFout.

T4 connects the output of the XMT LPF to Pin TXLFout.

VOX $_{\text {EN }}$ enables the VOX function of NE5750.
T6 connects $\mathrm{Pin}^{\mathrm{V}} \mathrm{VC}_{\mathbb{I}}$ to the volume control.

T8 connects the output of the DTMF generator to the volume control.
enables $\mathrm{VC}_{\text {OUT2 }}$
Volume Control and Test Register MSB

LSB PDW T1T7 DEE PRE V1 V2 V3 V4

V4 is volume control bit 4. This is the MSB. A zero is 16 dB attenuation.

V3
is volume control bit 3. A zero is 8 dB attenuation.
is volume control bit 2. A zero is 4 dB attenuation.
is volume control bit 1. A zero is 2 dB attenuation

DEE
is the bypass for the pre-emphasis.
is the bypass for the de-emphasis.

T1T7
is the bypass for the compressor and expandor.

## PDW

 is the control for power down mode.This mode is defined only when all register values are reset to zero.

## High Tone DTMF Register MSB <br> LSB <br> HD7 HD6 HD5 HD4 HD3 HD2 HD1 HDO <br> The eight bits determine the output frequency by the following formula.:

High Frequency =
1200kHz/6/HD
where HD is the value of
the register

## Low Tone DTMF Register <br> MSB <br> LSB <br> LD7 LD6 LD5 LD4 LD3 LD2 LD1 LD0

The eight bits determine the output frequency by the following formula.:

Low Frequency =
1200kHz/12/LD
where LD is the value of
the register.
The operation of the 96 ms DTMF timer is initiated by the loading of the low tone DTMF register. This timer terminates transmission of the tones as the generated tones cross the reference level after 96 ms . The on time of the tones can thus vary by up to one cycle of the tones.

Continuous tones can be obtained by again loading the two DTMF registers before 96 ms have elapsed.
Single tones can be obtained by loading 0,1 or 2 into one of the registers to silence it.
Phase continuous frequency modulation can be produced by loading a new value into a DTMF register during operation.

Audio processor - filter and control section


Figure 1. Typical Configuration of Audio Processor (APROC) System Chip Set


Figure 2. Cellular Radio System


## Audio processor - filter and control section



Figure 4. NE/SA5751 Test and Application Circuit

Audio processor - filter and control section

PERFORMANCE CHARACTERISTIC


## Author: Alvin K. Wong

## INTRODUCTION

The NE5750 and the NE5751 are two audio processor chips that can be used in RF communications. The chip-set processes a voice so that by the time it is transmitted and received, the quality is preserved. This is accomplished through the use of compression/expansion and pre-emphasis/ de-emphasis.

The audio processor chip-set (APROC) has a wide variety of high performance applications such as cellular phones, cordless voice microphones, cordless intercom systems, standard phones, and hand-held, base, or mobile two-way communications equipment.

Below is an outline of this application note:
I. WHAT IS AUDIO PROCESSING

- How the Voice is Processed by the NE5750 and NE5751
- More Detail on the Key Features
- Performance Graphs


## II. NE5750

- A Breakdown of the NE5750
-preamp
-noise canceller
-VOX
- VOX ${ }_{\text {OUT }}$ and VOX ${ }_{\text {CTRL }}$
- setting the threshold
-Compandor
-compressor
-expandor
-how to measure the attack and recovery time
-Amplifier Section
- speaker amplifier
-earphone amplifier
- How to Power Down
III. NE5751
- A closer look at the NE5751 -transmit path - limiter and all-pass circuit -receive path
- $1^{2} \mathrm{C}$ Bus Receiver


## IV. APROC DEMO-BOARD

- How to Power Down the Chip set
- Component list and layout


## V. NE5750 DEMO-BOARD <br> - Component list and layout



Figure 1. Key Functions of the NE5750 and NE5751 That Contribute to Improving the S/N Ratio and Sensitivity in the System.


Figure 2. S/N Ratio With Companding vs Without Companding

## VI. QUESTION AND ANSWER SECTION

## I. WHAT IS AUDIO PROCESSING

## HOW THE VOICE IS PROCESSED BY THE NE5750 and NE5751:

Audio processing begins when a person speaks into a microphone (see Figure 1). The signal is first amplified by the preamp, then screened by a bandpass filter. After the noise is filtered out, the voice signal is processed by the compressor. The function of the compressor is to attenuate loud voices and amplify soft ones. The upper voice frequencies are then amplified by pre-emphasis before their voltage amplitudes are restricted by the limiter and all-pass circuit. When this is completed, the processed voice is ready for transmission.
Since the voice signal was processed by the APROC before transmission, it must be unprocessed upon reception. The received signal is screened again so that the unwanted received noise is blocked before it goes
through de-emphasis. In de-emphasis, the upper voice frequencies are attenuated. Then the signal is expanded back to its primary dynamic range by the expandor. Because the voice is restored to its original state, it is ready for amplification by the power amp whose output can be connected to an external speaker. The receiving party will now be able to hear the transmitting party.

## MORE DETAIL ON THE KEY FEATURES:

During compression, low level signals are amplified to "jump" over the transmitter channel noise, while the high level signals are compressed to prevent distortion. In general, because we are dealing with a limited dynamic range transmission medium, it is desirable to compress the signal prior to transmission. However, in order to preserve the dynamic range of the original voice signal, the compressed signal is expanded at reception. Figure 2 shows a diagram of a cordless phone application using companding. Note the signal-to-noise ratio with and without companding.

## Using the NE5750 and NE5751 for audio processing

Another key function of the APROC is the pre-emphasis/de-emphasis capability which is used to overcome the "colored" noise, present in all FM receivers, generated by the FM demodulator. This noise worsens at the upper voice band as shown in Figure 3. Therefore, to keep the same signal-to-noise ratio in the lower and upper voice bands, pre-emphasis/de-emphasis is required. A person with a high-pitched voice will now be heard just as well as a person with a low, deep voice.


WHY PRE-EMPHASIS?
$(S /)_{1}=$ SIGNAL-TO-NOISE RATIO WITHOUT
$(\mathbf{S} / \mathbf{N})_{\mathbf{2}}=\mathbf{S I G N A L}-$ TO-NOISE RATIO WITH
Figure 3. Pre-emphasis Response
Another key stage of the APROC is the limiter with the all-pass circuit. Its main function is to limit the amplitude of the voice signal so that the maximum frequency deviation is limited to 12 kHz . Cellular radio specifications allow for a 30 kHz channel spacing with an audio bandwidth of 3 kHz . Therefore, by Carson's rule the maximum frequency deviation of the limiter must be 12 kHz as shown below.

1. Bandwidth $=2$ (Modulating Freq +
or

$$
\text { 2. Max Freq Dev } \begin{aligned}
= & \begin{array}{l}
\text { Bandwidth/2- } \\
\\
\text { (Mod Freq) }
\end{array} \\
= & 30 \mathrm{kHz} / 2-3 \mathrm{kHz} \\
= & 15 \mathrm{kHz}-3 \mathrm{kHz} \\
= & 12 \mathrm{kHz}
\end{aligned}
$$

## PERFORMANCE GRAPHS OF APROC DEMO-BOARD:

Figure 4 shows the general diagram of the audio processor chip set without the external components. External components for the chip set can be found in Figure 31, and the values were chosen for AMPS/TACS specs. To demonstrate the performance of the chip set, data was taken in the lab and resulted in the following figures.


Figure 4. Typical Configuration of Audio Processor (APROC) System Chip Set

## Figure 5 Description

Figure 5 reveals what the signal would look like on the bench with different input levels. Figures 5a, b, and c all use the same audio input signal. The audio signal $(0-6 \mathrm{kHz})$ varies from 20 dB to -30 dB in 10 dB steps.

## Figure 5a

This graph shows the Tx channel. Notice the signal's increase in amplitude as the frequency is increased due to pre-emphasis. Additionally, the slope of the signal decreases as the input increases.
The compressor function is readily shown where a 5 dB change in the output level occurs for every 10 dB change in the input.

## Figure 5b

The $2: 1$ expansion of audio ( 20 dB change for every 10 dB ), bandpass filtering and the de-emphasis filter response ( $300-3 \mathrm{kHz}$ ) are shown. The graph shows the Rx channel. Notice the signal's decrease in amplitude as the frequency increases due to de-emphasis.

## Figure 5c

This shows that a flat frequency response is achieved upon normal reception. Notice the 20 dB gap, although the input steps are for 10 dB . This is due to the noise canceller turning on. The decrease in amplitude for higher level, higher frequency tones is the result of the deviation limiter action.




Figure	Description
7	No noise gain is observed at   the output of the Tx channel   because of the noise canceller   circuit.
8	Shows why companding and   emphasis are needed to   improve the quality of the audio   signal when BASEBAND   NOISE is present in the system
9	Shows why companding and   emphasis are needed to   improve the quality of the audio   signal when RF NOISE is   present in the system.
10	Shows that the sensitivity and   the signal-to-noise ratio of a   receiver improved due to audio   processing.



Figure 8. Audio Output with Baseband Channel Noise


After studying these figures, a designer will have a graphical understanding of how the APROC processes a signal.

Figure 6 shows the test set-up using the APROC demo-board to simulate a real cellular phone call, Audio noise is added to the input of the microphone and RF noise is added to the receiver. The table for Figures 7-10 describes what the associated waveforms reveal when certain key stages of the APROC are activated or bypassed.
As seen from the following figures, there is a definite advantage in using the chip set in high performance communication systems.


SGGNAL TO BACKGROUND NOISE ( -100 dBm RF)


## II. NE5750

## A CLOSER LOOK AT THE NE5750:

Referring to Figure 11, the NE5750 has seven main features which make this chip unique: preamp, noise canceller, VOX, compressor, expandor, buffer, and power amplifiers. (NOTE: All component labels in this section are referenced to Figure 11, unless otherwise indicated.)

## Preamp:

The NE5750 provides a preamp with adjustable gain. This allows the designer to boost the low level audio signal coming out of the microphone. The microphone can be connected to Pin 1 through a DC blocking capacitor, C1 (see Figure 12). The input impedance at this Pin is $50 \mathrm{k} \Omega$.
The preamp gain of the NE5750 can be adjusted from 0 dB to 40 dB by an external resistor, R7, connected to Pin 2 through a capacitor C2. Below is a formula which allows the designer to determine the value of R7 for a certain value of gain.
If a designer wanted a preamp gain of 20 dB , a $5 \mathrm{k} \Omega$ resistor would be required (see Table 3).

$$
R 7=\left[\frac{50,000}{10^{\left(\frac{X(d B)}{20}\right)}-1}\right]-500
$$

Table 3. Calculated R7 Values for Different Preamp Gains

$X(d B)$	R7
0	Leave Pin 2 open
5	$64 k$
10	$22 k$
15	$10 k$
20	$5.1 k$
25	$2.5 k$
30	$1.1 k$
35	405
40	Pin 2 AC grounded

## Nolse Canceller:

The output of the preamp is connected to the input of the noise canceller circuit which is internal to the device. The function of the noise canceller is to automatically provide a set gain of either OdB when no signal is present, or 10 dB when a signal is present. With this feature, background noise is minimized from transmission.
This automatic gain setting can only be implemented when the noise canceller circuitry is used in conjunction with the VOX circuitry. The threshold and attack and release time can be set externally. This will be described in more detail in the "VOX" section.

Although the noise canceller circuit is really designed to be used with the VOX circuitry, it can be implemented without it. The noise canceller circuit can be set up to provide either 0 dB or 10 dB of gain at all times (regardless of the presence of a signal). Table 4 shows how to achieve either gain settings when the VOX function is bypassed.
Table 4. Setting Up the Gain of the Noise Canceller

Pin	Gain of Noise Canceller	
	0dB	10dB
3	Ground	Ground
4	Ground	V cc
7	10k to GND	Ground

The output of the noise canceller is accessible to the designer at Pin 24. C13 is used as a DC blocking capacitor.

1) VOX:

As mentioned earlier, the VOX circuitry works together with the noise canceller circuit. Pins $3,4,5,6$, and 7 all deal with the VOX's performance.
All of the resistor and capacitor values given in the NE5750 data sheet are chosen to meet AMPS/TACS specification for cellular radio. So any deviation from these values should be considered carefully if the application is in cellular radio.
Connected to Pin 3 is a resistor R2 and capacitor C15, as shown in Figure 13. These components set the gain of the VOX. The values here are for internal use only and have no direct relationship with the performance. So the values should be kept as shown. In some special applications, R2 may be adjusted such that the voltage on Pin 4 can be increased. By increasing this voltage, the voltage on Pin 7 can be set to a higher range (more details later).
Pin 4 has C3 and R1 connected to it which affects the attack and release time of the VOX circuit. In general the attack time should be faster than the release time.
The values given for C3 and R1 provide an approximate attack time of 12 ms and release time of 120 ms . These values should be kept as shown.
The timing of the VOX circuit is important because it controls the gain of the noise canceller, and can also turn the transmitter on and off.

- VOX ${ }_{\text {OUT }}$ and VOX ${ }_{\text {CTRL }}$

By using VOX ${ }_{\text {OUT }}$ and VOX ${ }_{C T R L}$, Pins 5 and 6 respectively, the NE5750 can control the status of the transmitter. The VOX OUT Pin should have a $10 \mathrm{k} \Omega$ pull-up resistor to $\mathrm{V}_{\mathrm{cc}}$. When probing Pin 5 , a logic ' 1 ' or ' 0 ' will be read. The VOX ${ }_{C T R L}$ pin should have a logic ' 1 ' or ' 0 ' connected to it. Table 5 shows how Pins 5 and 6 can be used:
Having a logic ' 0 ' on Pin 6 is sufficient in most applications. When voice is present, the noise canceller kicks on while the VOXout Pin supplies a logic ' 1 '; when voice is not present, VOXout Pin supplies a logic ' 0 '. In a cordless phone application this logic level could be used to turn the transmitter on and off, thereby conserving power for any battery operated applications.
Supplying a logic ' 1 ' on Pin 6 would cause the transmitter to stay on regardless of any signal input to Pin 1. However, the functionality of the noise canceller will still be signal dependent.



Figure 12. Setting Microphone Preamplifier Gain


This condition is mainly used if the battery consumption is not a problem. Such a condition would be for any car cellular radios.


Figure 15. Compandor Dynamic Range

## -setting the threshold

R3 at Pin 7 is used to set the threshold of the VOX. Setting the threshold determines the voltage level input at which the noise canceller and VOX will activate. Formula 4 shows how to calculate the VOX's threshold.
$V^{\text {VOX }}{ }_{\text {THRESH }}(\mathrm{mV})=50 \mu \mathrm{~A} \cdot \mathrm{RB}^{(\mathrm{KQ})}$
Where R3 > 3 K R )

If R3 $=5.6 \mathrm{k}$, the measured voltage at $\operatorname{Pin} 7$ should be approximately 280 mV .

The way to adjust the VOX is to first determine what signal level is desired at Pin 1 to activate the VOX noise canceller circuits. Once that level is applied to Pin 1, connect a voltmeter to $\operatorname{Pin} 4$. The voltage level measured here should be plugged into formula 4 to determine R3.

As mentioned earlier, the voltage at Pin 4 can be increased by R2. But one should only deviate from the R2 value if the voltage at Pin 7 cannot come down. In most cases, setting R2 to $43 \mathrm{k} \Omega$ and setting Pin 7 to the voltage at Pin 4 is sufficient.

Figure 14 shows graphically how R3 and R2 affect the location of the "box". The "box" is always 10 dB , which is due to the noise canceller circuit.

EXAMPLEI : Set the VOX threshold such that it "kicks on" when $30 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ is applied to Pin 1 of the NE5750 with a preamp gain of 0 dB .

Step 1: Make sure:
a. Pin 7 is left open.
b. The VOX attack and recovery components are in place at Pin 4.
c. R2 and C15 are connected to Pin 3.
d. If using the NE5750 alone, be sure to connect the preamp output (Pin 24) to the compressor input (Pin 23) with a DC blocking cap.
e. The preamp gain is already set (in this instance the preamp gain is OdB ).
f. Make sure that the compressor's components are also connected; compressor's attack time has to be functional

Step 2: Apply a constant 1 kHz sinewave signal to Pin 1 with the desired threshold. In this case, 30 mV P-p.

Step 3: Measure the DC voltage on Pin 4; V4 $=260 \mathrm{mV}$

Step 4: Calculate R3:

$$
\begin{aligned}
R 3 & =\mathrm{V} 4(\mathrm{~V}) /(50 \mu \mathrm{~A}) \\
& =0.260 / 50 \mu \mathrm{~A} \\
& =5.2 \mathrm{k}
\end{aligned}
$$

let's use a $5.3 \mathrm{k} \Omega$
Step 5: Connect R3 to Pin 7 and verify that VOX "kicks on" at the desired threshold.

- This set-up has the VOX kicking on at 30 mV p.p and kicking off at $11 \mathrm{~m} \mathrm{~V}_{\mathrm{p} . \mathrm{p} \text {. }}$

Referring to the above example, if a preamp gain of 10 dB was chosen before setting the threshold, the threshold will also change. So it is vital that the preamp gain be set before setting the VOX threshold.

Table 5. VOX Truth Table

Inputs		Outputs	
Voice(Pin 1)	VOX		
Notrl Present	Pin 6 of NE5750)	Noise Canceller Gain	VOX
Present	logic '0'	OdB	logic ' 0 '
Not Present	logic ' $0 '$	10dB	logic '1'
Present	logic '1'	OdB	logic '1'
logic '1'	10dB	logic '1'	

NOTE: To apply a logic ' 0 ' on Pin 6 by the $I^{2} \mathrm{C}$ evaluation program, be sure that the VOX ${ }_{E N}$ is high, and low for a logic ' 1 ' on Pin 6 . If the NE5750 is used alone, be sure that the output of the noise canceller is AC coupled to the input of the compressor. Also, make sure that all of the components for the compressor are connected.

## Compandor:

## - compressor

The compressor input at Pin 23 requires an external DC blocking capacitor (C12). The input impedance is roughly 50k $\Omega$. Unlike the older compandors, this input can be directly driven from CMOS circuits (e.g. NE5751).
The gain from the preamp should be adjusted such that there is enough signal getting to the compandor. However, one must be careful not to overdrive the inputs. Additionally, do not forget the extra 10 dB gain from the noise canceller (assuming it is being used).
Figure 15 shows the typical dynamic range of the compandor. The maximum input signal that the compressor can handle is 3.72 V P-p or 24.6 dB . The minimum input is approximately $1.74 \mathrm{mV} \mathrm{V}_{\text {-p }}$ or -42 dB . Knowing that the 0 dB point of the compandor is at 77.5 mV RMs, one can easily convert from volts to dB . Formula 5 shows the conversion from $V_{\text {RMS }}$ to dB .

$$
\begin{equation*}
X(d B)=20 \log \left(\frac{V_{R M S}}{77.5\left(m V_{R M S}\right)}\right) \tag{5}
\end{equation*}
$$

where
$X=$ value in $d B$
$V=$ voltage in RMS.
Usually it is easier to work in voltages, but in this case it is better to work in dB . If one knows the input signal in dB , the designer can predict the output of the compressor (also in dB) to be half or two times the input. For instance, if the input were 10 dB , we could expect the output to be 5 dB . On the other hand, if the input was -20 dB , we could expect the output to be -10 dB .
Capacitor C11 on Pin 22 controls both the attack and release time of the compressor. The attack time may be calculated by Formula 6.

$$
\begin{equation*}
\text { Attack time }=R \cdot C \tag{6}
\end{equation*}
$$

where $R=10 \mathrm{k} \Omega$

a. Input

b. Output

c. Attack time

d. Release time

Figure 16. Compressor Dynamic Response

NOTE: The release time is roughly 4 times slower than the attack time by design.

## Release time $=4 \cdot$ Attack time

Capacitor C10 on Pin 21 is used for AC bypassing. Capacitor C9 on Pins 19 and 20 is also for AC bypassing.

## - expandor

The expandor input at Pin 17 requires an external DC blocking capacitor (C8). The input impedance is around $2.5 \mathrm{k} \Omega$. Referring to Figure 15, the input range of the expandor is from $19.53 m V_{P-P}(-21 d B)$ to $903 m V_{P-P}$ ( 12.3 dB ). The output range is from $1.74 \mathrm{mV} \mathrm{P}_{\mathrm{P}}(-42 \mathrm{~dB})$ to $3.72 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}(24.6 \mathrm{~dB})$.
Capacitor C 7 is used to set the attack and release time of the expandor. Formula 6 can also be used to determine those values.

- how to measure attack and recovery time In this section we will briefly describe the bench procedure for measuring attack and recovery times. Additional information can be found in AN174 in the "Attack and Decay Time" section.
Let's assume that $\mathrm{C}_{\text {RECT }}=2 \mu \mathrm{~F}$ and $R_{\text {INTERNAL }}=10 \mathrm{k}$. Since $T=R \cdot C$, then $T=20 \mathrm{~ms}$. If we wanted a different "RC" time constant we would change the $C_{\text {RECT }}$ value ( $R_{\text {INTERNAL }}$ is a fixed value).
Using these component values let's measure the attack and recovery times to see if the CCITT and EIA specifications are met.
measurement at compressor:
EIA Specifications
Attack time is the time required for the transmitter deviation to settle to a value equal to " 1.5 " times the final steady state value, for a 12 dB step up.

Release time is the time required for the transmitter deviation to settle to a value equal to " 0.75 " times the final steady state value, for a 12 dB step down.

The compressor must have a nominal attack time of 3 ms and a nominal recovery time of 13.5 ms as defined by CCITT.

## Bench Procedure for Compressor Test

1. Apply a 1 kHz sinewave signal at OdB to the input of the compressor ( 0 dB is defined where the compandor passes the input signal through to the output - unity gain level for the APROC is 77.5 mV RMs.
2. Modulate the 1 kHz input signal with a $1 \mathrm{~Hz}-2 \mathrm{~Hz}$ square wave.
3. Connect an oscilloscope probe to the input of the compressor and adjust both the modulation and oscilloscope (uncalibrate it) so that a $1: 4$ ratio is achieved on the screen of the oscilloscope (see Figure 16a).
Adjusting for a $1: 4$ ratio produces a OdB to 12 dB step at the input. The unit "1" represents the OdB input level and the unit " 4 " represents the 12 dB input level ( $20 \log (4 / 1$ ) $=12 \mathrm{~dB}$ ).
4. Connect another oscilloscope probe to the output of the compressor and observe the waveform (see Figure 16b). The "final steady-state" value for the attack time is " 2 " units while the release time is " 1 " unit. These output values are expected because, for a compressor, the ratio is 2:1 unless the input is at OdB , in which case, the ratio is $1: 1$.
5. Now to measure the attack and release time, capture the beginning and end of the output waveform where the changes occur (see Figures 16c and 16d).
To measure the attack time $\left(T_{A}\right)$ :
-According to the EIA specifications:
$T_{A}=1.5 \cdot$ Final Steady - State Value
-therefore
$T_{A}=1.5 \cdot 2$ units $=3$ units
-Measure the time it takes for the output to drop to the 3rd unit. According to Figure 16c, our attack time is 3 ms . This indeed meets CCITT specs..
To measure the release time $\left(T_{R}\right)$ :
-According to the EIA specifications:
$T_{R}=0.75 \cdot$ Final Steady-State Value
-therefore

$T_{A}=0.75 \cdot 1$ unit $=0.75$ units
-Measure the amount of time it takes for the output to rise up to 0.75 units. According to Figure 16 d , our release time is 13 ms . Again the CCITT spec. is met.

## measurement at expandor:

EIA Specifications
Attack time is the time required for the transmitter deviation to settle to a value equal
to " 0.57 " times the final steady state value, for a 6 dB step up.
Release time is the time required for the transmitter deviation to settle to a value equal to " 1.5 " times the final steady state value, for a 6 dB step down.

The expandor must have a nominal attack time of 3 ms and a nominal recovery time of 13.5 ms as defined by CCITT.

## Bench Procedure for Expandor Test

1. Apply a 1 kHz sinewave signal at 0 dB to the input of the expandor ( 0 dB is defined where the compandor passes the input signal through to the output - unity gain level).
2. Modulate the 1 kHz input signal with a $1 \mathrm{~Hz}-2 \mathrm{~Hz}$ square wave.
3. Connect an oscilloscope probe to the input of the expandor and adjust both the modulation and oscilloscope (uncalibrate it) so that a $1: 2$ ratio is achieved on the screen of the oscilloscope (see Figure 17a).
Adjusting for a $1: 2$ ratio produces a 0 dB to 6 dB step at the input. The unit " 1 " represents the 0 dB input level and the unit " 2 " represents the 6 dB input level $(20 \log (2 / 1)=6 \mathrm{~dB})$.
4. Connect another oscilloscope probe to the output of the expandor and observe the waveform (see Figure 17b). The "final steady-state" value for the attack time is " 4 " units while the release time is " 1 " unit.
5. These output values are expected because for an expandor the ratio is $1: 2$ unless the input is at 0 dB , in which case, the ratio is $1: 1$.
6. Now to measure the attack and release time, capture the beginning and end of the output waveform where the changes occur (see Figures 17c and 17d).
To measure the attack time $\left(T_{A}\right)$ :
-According to the EIA specifications:
$T_{A}=0.57 \cdot$ Final Steady - State Value

## -therefore

$T_{A}=0.57 \cdot 4$ units $=2.28$ units
-Measure the time it takes for the output to reach 2.28 units. According to Figure 17c,
our attack time is 3 ms . This indeed meets CCITT specs..

To measure the release time ( $\mathrm{T}_{\mathrm{R}}$ ):
-According to the EIA specs.:
$T_{R}=1.5 \cdot$ Final Steady-State Value
-therefore
$T_{A}=1.5 \cdot 1$ unit $=1.5$ units
-Measure the amount of time it takes for the output to drop to 1.5 units. According to Figure 17d, our release time is 13 ms . Again the CCITT specification is met.
These results show that the release time is about 4 times slower than the attack time. All Signetics compandors are internally set up this way so that once the attack time is set by $\mathrm{C}_{\text {RECT }}$, the release time is automatically set.


Figure 18. Speaker Amplifier for the NE5750


Figure 19. Setting Gain for Earphone Amplifier

Special Note: In AN174, Figures 10 and 11 show the X -axis as being in fractions of the time constant. The way to clarify this is by multiplying 20 ms to these numbers to convert them to the measured attack and recovery time. The 20 ms comes from the "RC" time constant which can be varied by varying the $\mathrm{C}_{\text {RECT }}$ value. But again, once these numbers


Figure 20. NE5751 Tx Bandpass Filter
are converted, one can see that these figures show similar results as ours in the lab.

## Amplifier Section:

## -speaker amplifier

The speaker amplifier is a unity gain amplifier with a high input impedance. Located on Pin 11, the output of the amplifier, are two capacitors C5 and C16. Capacitor C5 is for DC blocking, while C16 is for high pass filtering.
Since the amplifier's input is not directly accessible to the designer (see Figure 18), it is impossible to exceed a gain of one. However, if external attenuation is desired, use formula 7 to determine the series resistor that would connect to Pin 14.

$$
\begin{align*}
A_{V} & =\frac{-R_{F}}{R_{I N}}  \tag{7}\\
& =\frac{-50 k}{\left(50 k+R_{S}\right)}
\end{align*}
$$

In most cases, the attenuation takes place in the NE5751 before the signal gets to the amplifier. Therefore, adding external attenuation is rare.

## -earphone amplifier:

Unlike the speaker amplifier, the gain of the earphone amplifier can be set by external resistors. In this case, the required output and input are directly accessible. Figure 19 is a diagram of the earphone amplifier with the required equations. Sidetone gain can also be implemented with an external resistor.

## How To Power Down

"Power down" or "power up" can be implemented by Pin 10 of the NE5750. When Pin 10 is connected to $\mathrm{V}_{\mathrm{Cc}}$, the chip is in the "power up" state. In this mode, the chip is fully functional. However, when Pin 10 is connected to ground, the chip is in the "power down" state where the current consumption drops dramatically (CMOS or TTL levels will suffice). In this mode, the chip is not expected to be functional, but all of the capacitors remain charged so that "power up" can occur quickly. Having this capability allows the system to conserve battery power

## III. NE5751

## A CLOSER LOOK AT THE NE5751:

Figure 24 shows a block diagram of the NE5751. Key functions for this chip include a TX bandpass filter, TX pre-emphasis filter, TX low pass filter, summing amplifier, RX bandpass filter, RX de-emphasis, programmable DTMF generator, programmable attenuator, and an $\mathrm{I}^{2} \mathrm{C}$ bus interface.

## -TX path

The input and output of the TX bandpass filter are located on Pins 3 and 4, respectively. The 4th-order Chebyshev bandpass filter is designed to pass 300 to 3000 Hz (voice band). (see Figure 20).
The input to the pre-emphasis circuit is accessible through Pin 5. This filter shapes
the spectrum with $a+6 \mathrm{~dB}$ per octave slope in the pass band (see Figure 21). The output is then connected internally to a low pass filter and limiter circuit (see Figure 22). The functions of the last two filters guarantee that the 12 kHz maximum frequency deviation for cellular radio is not violated.
The output of the limiter filter (Pin 23) and the output of the programmable DTMF generator (Pin 22) can be connected to the input of the summing amplifier. The gain of this amplifier can be controlled with external resistors. In Figure 24, the resistors are all $51 \mathrm{k} \Omega$ which creates a unity gain configuration. The output of the amp is then connected to the transmitter.


The Limiter and All-pass Circuit: An important aspect of the AMPS specification is concerned with the 12 kHz maximum frequency deviation. The output of the APROC should be less than 12 kHz regardless of the input signal. Figure 23 shows the equipment used for the test measurements and how the signal was processed. A 1 kHz signal was applied to the input of the demo-board until a 5\% distorted signal was measured at the limiter output. This waveform's peak-to-peak voltage was recorded as a reference, then, at various chosen frequencies, the input of the demo-board was overdriven so we could record the distorted peak-to-peak waveform. (See Figure 26)
Formula 8 was used to calculate maximum frequency deviation from the waveforms shown in Figure 26.

Max Freq Dev with All-Pass Ckt =

$$
\begin{equation*}
\frac{B W_{F}}{B W_{R}} \cdot 8 \mathrm{kHz} \tag{8}
\end{equation*}
$$

where


Figure 22. NE5751 Tx Low Pass Filter


Figure 23. Test Set-up and Tx Path of Signal
$B W_{F}=$ the bottom waveform's peak-to-peak voltage from one of the observed Figures.
$B W_{R}=$ the bottom waveform's peak-to-peak voltage from the reference Figure.
Table 6. Maximum Frequency Deviation Results for the 12 kHz Test

Frequency   $\mathbf{( H z )}$	With All-Pass   $\mathbf{( k H z )}$
300	5.91
500	9.04
800	10.09
1000	10.09
1200	10.09
2000	11.13
3000	10.78

Table 6 reveals the calculated results for maximum frequency deviation over the voice band. The test results show that the NE5750 and NE5751 will meet the 12 kHz AMPS specification. If a customer needs further
assurance that the 12 kHz specification will be satisfied, an Automatic Level Control (ALC) circuit can be placed after the summing amplifier output of the NE5751. Keep in mind, though, that this ALC will only provide attenuation.

- RX path

For the receive side of the NE5751, the signal goes to the input of the RX bandpass filter (Pin 13) which has the same characteristics as the TX bandpass filter. The only difference is that this filter also has a stop-band notch filter at 6 kHz to reject the Supervisory Audio Tone (SAT) signals as seen in Figure 27.

The output is then internally connected to the de-emphasis filter. This filter provides a $-6 \mathrm{~dB} /$ octave slope over the passband to compensate for the pre-emphasis function (see Figure 28).

The attenuator can be digitally programmed by $I^{2} \mathrm{C}$. The input signal level can be attenuated 16 steps in 2 dB increments. This


Figure 24. NE/SA5751 Test and Application Circuit

Table 7. Maximum Frequency Deviation Results for the 12 kHz Test

Number Dialed	High Freq.	Low Freq.	DTMF HI	DTMF LO
1	1209	697	A5	8F
2	1336	697	96	$8 F$
3	1477	697	87	$8 F$
4	1209	770	A5	
5	1336	770	96	82
6	1477	770	87	82
7	1209	852	85	75
8	1336	852	96	75
9	1447	941	97	75
	1336	941	95	64

gives a range from 0 dB to -30 dB . The attenuator error is shown in Figure 29.

## $1^{2} \mathrm{C}$ Bus Interface:

The NE5751 is controlled by a serial control bus comprised of a clock input, serial bus address, serial clock line, and serial data line.

A designer who is unfamiliar with $I^{2} \mathrm{C}$ can refer to the following documents for assistance: 1) $1^{2} \mathrm{C}$ Bus Specification and 2) Signetics AN168. Both of these documents can be found in the 1989 Signetics Linear Data Manual or the 1991 RF Communications Handbook.

The clock input requires an input frequency of 1.2MHz. This frequency is vital for the operation of the part because it effects the DTMF generator and the 3dB point of all the switch capacitor filters.
The output of the DTMF generator can be determined by Formula 8.

$$
\begin{equation*}
\text { Low Freq }=\frac{\frac{\text { Clock Input Freq }}{12}}{L D} \tag{8a}
\end{equation*}
$$

where $L D$ is the value of the register This translates to: DTMF LO REG $=100000 / \mathrm{LO}$ REG(Hz)

$$
\begin{equation*}
\text { High Freq }=\frac{\frac{\text { Clock Inout Freq }}{6}}{H D} \tag{8b}
\end{equation*}
$$

where $H D$ is the value of the register
This translates to: DTMF HI REG $=200000$ / HI REG (Hz)
Table 7 can be used to help the designer program the DTMF generator.
There are a few key points that should not be overlooked when programming the NE5751. The control registers consist of the

## 1. Register map

2. Signal path register
3. Volume control and test register
4. High tone DTMF register
5. Low tone DTMF register

To generate a single tone from the DTMF generator, use the appropriate registers (high or low DTMF) and load the other one with a ' 0 ', ' 1 ', or ' 2 ' to silence it.
The order of these registers is important. If the programmer wanted to turn down the volume, he/she would have to re-program the register map, signal path, and then give the new data to the volume control and test register.

## IV. APROC DEMO-BOARD

About the APROC demo-board:
The NE5750/51 demo-board layout can be seen in Figures 30, 31, and 32. It incorporates the use of DIP packages. However, an SO adapter could be made to test the SO APROC chips.

A separate board is used to interface the APROC demo-board with the computer's parallel port. This converter utilizes the 74LS05 as a buffer scheme.

An $I^{2} \mathrm{C}$ program for the APROC is provided so that a designer can easily program and evaluate the chip set. This eliminates the need to write an evaluation program. However, it does not eliminate the need for a final system program.
The evaluation program has a graphic display that shows the transmit and receive path of the APROC on the terminal, as seen in Figure 33 . By selecting a function, one can toggle the space bar on the key board to turn on or off any key features. The designer could also type in the codes for any registers to control the functions.

Figure 25 shows how the interface board and the demo-board can be used in conjunction with a computer. Once everything is connected properly, one can make his own evaluations on the chip set.


Figure 25. Interfacing the APROC Demo-board with the ${ }^{2} \mathrm{C}$ Evaluation Program

## Using the NE5750 and NE5751 for audio processing




Figure 27. NE5751 Rx Bandpass Filter


Figure 28. NE5751 Rx De-emphasis

## How to Power Down on the NE5750/51 Demo-Board:

In general, power down mode is a condition where a system has just enough power to "stay alive" and, therefore, is not expected to be fully operational. When called upon, the system can quickly get out of this mode and into the power up mode and be ready to perform its functions. This fast reaction time is possible because all of the capacitors have maintained their charges. This is because power was not cut-off completely. The power down function reduces overall current consumption when the system is not fully operational, and is especially helpful when the system is operating from a battery powered source.
There are three power down conditions when we refer to to the NE5750/51 demo-board. They are listed and described as follows:

## 1. NE5750 Power Down

## Purpose:

- to reduce current consumption
- to maintain all DC voltages on the device pin to keep the capacitors charged


## How To:

- use hardware switch on demo-board which forces Pin 10 to ground
- or use a CMOS logic output into Pin 10


## Benefits:

- reduces current consumption while maintaining readiness

- current drops from 8.4mA to 1.8 mA (typically)


## Mode of Operation:

- Everything is semi-functional, although performance is not, and will not be, guaranteed


## 2. NE5751 Power Down

## Purpose:

- to reduce current consumption
- to maintain all DC voltages on the device Pin to keep the capacitors charged up
- to open all voice paths so that no signals will flow

How To:

- program the $I^{2} \mathrm{C}$ bus under the condition that all registers are set to zero


## Benefits:

- all the registers are always at zero when powering up from the power down mode
- reduces current consumption while maintaining readiness
- current drops from 2.7mA to 1.1 mA (typically)


## Mode of Operation:

- Everything is semi-functional, although performance is not, and will not be, guaranteed

3. Chip-Set Power Down

## Definition:

-the NE5750 and NE5751 demo-board is in the power down mode when:

1. The transmitter and receiver are muted on the NE5751
2. The NE5751 is powered down (all registers are set to zero), and
3. The NE5750 is powered down

## How to Power Down the Chip-Set Properly

 (1st Choice):Please follow this recommended sequence;

1. Mute both the transmitter and receiver on the NE5751.
2. Program the following registers as follows:

Signal Path Register: 00000000
Volume Control Register: 00000000
High DTMF Register: 00
Low DTMF Register: 00

## 3. Power Down the NE5750.

How to Simulate the Power Down on the Chip-Set (2nd choice)* Please follow this recommended sequence;

1. Program the following registers as follows:

## Signal Path Register: 00010000

Volume Control Register: 01100000
High DTMF Register: 00
Low DTMF Register: 00

## 2. Power Down the NE5750

*NOTE: this method is only used when the NE5751 mute switches are not accessible, by design.

## Comments

1. Muting both the transmitter and receiver on the NE5751 can be done by the two "hardware" switches on the demo-board (forces Pins 11 and 12 to $\mathrm{V}_{\mathrm{cc}}$ ).
2. Powering down the NE5751 can be done by programming the correct assigned register to zero (For more details, consult the NE5751 data sheet).
3. Powering down the NE5750 can be done by the "hardware" switch on the demoboard (forces Pin 10 to ground).
4. When coming out of the power down mode to the power up mode, reverse the procedure given above.
5. If functions are activated while in the power down mode before power up occurs, the "chip-set power down" is no longer valid.
6. We recommend that a $2.2 \mu \mathrm{~F}$ capacitor be placed between the NE5751 de-emphasis output to the NE5750 expandor input. The purpose of this capacitor is to block any DC offset that might occur between the two chips while in the power down mode. If this capacitor is not used, an abnormal reaction might occur where white noise is generated.

## V. NE5750 DEMO-BOARD

Figure 34 shows the layout for the NE5750 demo-board. This board can be used to evaluate the NE5750, alone, and allows the designer to do extensive testing without having to worry about other external factors. Again, this board makes use of dip packages only. However, a SO adapter can be made to implement the SO version of the NE5750.

## VI. QUESTION AND ANSWER SECTION

## NE5750 and NE5751 (APROC):

Q: Is it OK to connect the $V_{\text {REF }}$ pins together for the NE5750 and NE5751? My circuit seems to be working properly.

A: No, this is not a good idea. Although both $\mathrm{V}_{\mathrm{REF}}$ are at $2.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}} / 2\right)$, there is no guarantee that they will be exactly equal over temperature. One of the $\mathrm{V}_{\text {REF }} \mathrm{S}$ might influence the function of the other chip which, in turn, might have a detrimental effect on the performance of the chips.

Q: Will the APROC chip set work for TACS, NMT or NAMPS specifications as it does for AMPS specification?

A: The APROC was designed to meet AMPS and TACS specifications, however, as it stands now, the chip set will also meet the NAMPs requirements. The chip set will not work for NMT specifications.

Q: In the power down mode, is it OK to program the DTMF registers before powering up?

A: No. This will break the rules of powering down. All the registers are set to zero in this mode. Please review the section on powering down the chip set properly.

## NE5750:

Q: Even though I have all the required external components in place on Pins 1,2,3,4,5,6 and 7, my VOX circuit does not work. What is wrong?

A: The VOX circuit is not a trivial connection. Even though all the components are connected, be sure that the output of the NE5750 noise canceller is $A C$ coupled to the input of the compressor to complete the VOX loop. This holds true if the NE5750 is used alone. However, if the NE5751 is used make sure that the signal is fed from the band-pass filter to the input of the NE5750 compressor input. For further advice, please read example 1 in the "setting the threshold" section of this application note.

Q: Do I have to use $\mathrm{I}^{2} \mathrm{C}$ if I use the NE5750 alone?

A: No, the NE5750 can be used by itself and does not require the use of $\mathrm{I}^{2} \mathrm{C}$.

Q: Can I speed up the release time of the compressor?

A: Not directly. The release time is dependent on the attack time setting. Once the attack time is set by C11 on Pin 22 of the NE5750, the release time is set internally to be four times slower. So to increase the release time requires that the attack time be increased. One should be careful because setting the
attack time too fast could cause more distortion on the output.

Q: The NE5750 compressor input impedance is around $50 \mathrm{k} \Omega$. Why is this impedance higher than that of others in your family of compandors?

A: The NE5750 was designed to be compatible with the NE5751. The NE5750 compressor input was modified to accept CMOS driven outputs like the NE5751. This internal modification eliminates the need for an external buffer.

## NE5751:

Q: Can I change the filter characteristics?

A: Yes, by changing the master clock input frequency the 3 dB points will be effected. For example, if $F=1.2 \mathrm{MHz}$, then $B P F 1=3 \mathrm{kHz}$. Now, if $F=600 \mathrm{kHz}$, BPF1 $=1.5 \mathrm{kHz}$; and if $F=2.4 \mathrm{MHz}$, $B P F 1=6 \mathrm{kHz}$. This type of application is not recommended because the part was not designed to be used this way and, therefore, performance will not be guaranteed. Additionally, the DTMF generator will be off in frequency from the calculated values because of the assumption of a 1.2 MHz clock, and the $1^{2} \mathrm{C}$ interface will not be functional.

Q: Besides $I^{2} \mathrm{C}$, can I communicate to the NE5751 with another type of operating scheme?

A: Yes, by bit banging. Instead of using the $1^{2} \mathrm{C}$ hardware one can supply the clock and data defined in the $I^{2} C$ protocol software. But this takes up a lot of memory, therefore, it is preferable to implement the $\mathrm{I}^{2} \mathrm{C}$ hardware.

Q: The limiter seems to work when I overdrive the input with a strong signal. However, when I try to pass DTMF tones, the limiter's level varies when switches T3/T5 and T4 are set to different settings Why is this? Isn't the output supposed to stay constant regardless of the input being overdriven or passing DTMF tones?

A: Yes, the limiter should hold the output constant when an overdriven signal is applied, but only when the switches are
used properly. When passing DTMF tones, $\mathrm{T} 1, \mathrm{~T} 2$, and T 4 should be left open, while T3/T5 are closed. The voice path should be disconnected when DTMF tones are being passed. Hence, T3/T5 should be left open when DTMF is not used.

Q: When I program a DTMF tone, it only stays on for 96 ms . How can I make it stay on longer?

A: The way to make it stay on longer than 96 ms is to re-load the DTMF registers (re-program the DTMF registers before 96 ms expires).

## REFERENCES:

"Audio Processing for Cellular Radio or High Performance Transceivers", proceedings of R.F. Expo 1989, A. Fotowat, S. Navid, L. Engh, pp. 195-203.
"Designing Cellular Radios with the Philips Components-Signetics Cellular Chip Set", Cellular Radio Chip Set Design Manual, Feb. 25, 1990.


Figure 30. Layout of the APROC Demo-board




Component Values			
c1	0.14F	R1	10ks
C2	10/F	R2	43k8
C4	0.22 $\mu \mathrm{F}$		
c5	4.7 4 F	R3	4.3k $\Omega$
C7	154F	R4	5.6k
cs	10 F	R5	51 k 2
c9	$10 \mu \mathrm{~F}$	R6	$270 \mathrm{k} \Omega$
C10	$0.22 \mu \mathrm{~F}$	R7	1kת
C12	$22 \mu \mathrm{~F}$	R8	51k 2
C13	$22 \mu \mathrm{~F}$	R9	100ks
${ }^{\text {c14 }}$	$22 \mu \mathrm{~F}$	R10	51kת
C16	100pF	R11	51k8
C17	$22 \mu \mathrm{~F}$	R12	51kR
${ }^{\text {C18 }}$	10, F	R13	51kR
C19	. 14 F	R14	optional
C20	$0.22 \mu \mathrm{~F}$	J1	Jumper
C21	10/F	J2	JUMPER
C22	. $022 \mu \mathrm{~F}$	Ic	NE5750 NARROW
C23	$22 \mu \mathrm{~F}$		24-PIN SOCKET
C24	10, F	16	NE5751 WIDE
			24-PIN SOCKET
		$\mathrm{P}^{\mathrm{P} 1}$	4 PRONG HEADER
			4 PRONG HEADER

## Component Functions

R1 Pull-up resistor for VOX ${ }_{\text {OUT }}$ logic levels
R2 Sets gain of VOX, but for intemal use only effects voltage on Pin 4
Used to set release time of VOX
Sets threehold level of VOX
Feedback resistor for ear amplifier
Sets gain of ear amplifier for the side tone input
Used in conjunction with C10 to filter out unwanted nolee. Optional Sets gain of ear amplifier
R9 Used to bias up Pin 14 to 2.5 V by connecting $\mathrm{V}_{\text {THRESH }}$ to $\mathrm{V}_{\text {REF }}$ without loading down $\mathbf{V}_{\text {REF }}$ source
R10 Input resistor for summing amp out. Can be used to set gain of signal
R11 Input resistor for summing amp out. Can be used to set the gain of the DTMF
R12 Input resistor for summing amp. Can be used to set gain of the side tone input
R13 Feedback resistor for summing amp. Can be used to set gain of all the inputs
R14 Used to set gain of the preamp of NE5750 (OPTIONAL)
J1 JUMPER
JUMPER

[^2]NOTE: The board is constructed in such a way as to allow a single power supply to power the chip set, or for each chip to be powered by a separate power supply. Using separate power supplies will permit monitoring of current consumption of each part when Jumpers 3 and 4 are removed.

Figure 32. Parts and Function List of APROC Demo-board

APROC NE5750/NE5751


Figure 33. Graphical Display of the $I^{2} C$ Evaluation Program


Figure 34. NE5750 Demo-board Layout


Figure 35.

## Audio processor - companding, VOX and amplifier section

## DESCRIPTION

The SA5752 is a high performance low power audio signal processing system especially designed to meet the requirements for small size and low voltage operation of hand-held equipment. The SA5752 subsystem includes a low noise microphone preamplifier with adustable gain, a noise cancellation switching amplifier with adjustable threshold, a voice operated transmitter (VOX) switch, VOX control, an audio compressor with buffered input, audio expandor, and an internal bandgap voltage regulator with power down capability. When used with Philips Semiconductors' SA5753, the complete audio processing function of an AMPS or TACS cellular telephone is easily implemented. The system also meets the requirements of the proposed NAMPS or NTACS specifications. The SA5752 can also be used without the SA5753 in a wide variety of radio communications applications.

## FEATURES

- Operating voltage range: 2 V to 5.5 V
- Miniature SSOP and SO packages
- High performance
- Adjustable VOX and noise cancellation threshold
- Adjustable gain preamplifier
- Audio companding
- ESD protected
- Open collector VOX output
- Logic inputs CMOS compatible
- Power down mode
- Few external components
- Meets AMPS/TACS/NAMPS/NTACS requirements


## BENEFITS

- Very compact applications
- Long battery life in portable equipment
- Complete cellular audio function with the SA5753


## APPLICATIONS

- Cellular radio
- Mobile communications
- High performance cordless telephones
- 2-way radio


## PIN CONFIGURATION



ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Small Outline Large (SOL) package	-40 to $+85^{\circ} \mathrm{C}$	SA5752D	0172 D
20-Pin Plastic Shrink Small Outline Package (SSOP)	-40 to $+85^{\circ} \mathrm{C}$	SA5752DK	1563

## Audio processor - companding, VOX and amplifier section

## PIN DESCRIPTIONS

PIN NO.	SYMBOL	DESCRIPTION
1	MIC $_{\text {IN }}$	Microphone input
2	PREAMPGRES	Preamplifier gain resistor
3	RECT $_{\text {GRES }}$	Rectifier gain resistor
4	NCAN $_{\text {CAP }}$	Noise cancellation timing capacitor
5	VOX $_{\text {OUT }}$	Voice operated transmission output
6	VOX $_{\text {TR }}$	Voice operated transmission threshold resistor
7	GND	Ground
8	V $_{\text {REF }}$	Reference voltage
9	V $_{\text {CC }}$	Positive supply
10	EXP $_{\text {CAP }}$	Expandor timing capacitor
11	EXPoUT	Expandor output
12	EXP IN	Expandor input
13	HPDN	Hardware power-down
14	VOX $_{\text {CTL }}$	Voice operated transmission control
15	COMPCAP2	Compressor capacitor 2 DC block
16	COMPOUT	Compressor output
17	COMPCAP1	Compressor timing capacitor 1
18	COMP ${ }_{\text {CAP3 }}$	Compressor capacitor 3 DC block
19	COMP	Compressor input
20	NCAN	

## BLOCK DIAGRAM



Audio processor - companding, VOX and amplifier section

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\mathrm{CC}}$	Power supply voltage range	-0.3 to 6	V
$\mathrm{~V}_{\text {IN }}$	Voltage applied to any other pin	-0.3 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	V
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Ambient operating temperature	-40 to +85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, 0 \mathrm{~dB}=77.5 \mathrm{~m} \mathrm{~V}_{\mathrm{RMS}}$. See test circuit, Figure 4.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
$\mathrm{V}_{\mathrm{cc}}$	Supply voltage		$2.7{ }^{4}$	3.0	5.5	V
Icc	Supply current	No signal Power down mode		$\begin{aligned} & \hline 3.1 \\ & 125 \end{aligned}$	4.0	${\underset{\mu A}{m A}}^{2}$
$\mathrm{Z}_{\mathrm{L}}$	Load impedance pins NCAN ${ }_{\text {out, }}$ EXPout		50	$\cdots$		k $\boldsymbol{\Omega}$
	COMPout ${ }^{1}$		10			k $\Omega$
$\mathrm{Z}_{\text {IN }}$	$\begin{aligned} & \text { Input impedance } \\ & \mathrm{COMP}_{\mathbb{N}}, \mathrm{MIC}_{\mathbb{N}} \end{aligned}$		40	50	60	$\mathrm{k} \Omega$
	$\mathrm{EXP}_{1 \mathrm{~N}^{2}}$		2.0			$\mathrm{k} \Omega$
	Noise cancellation current	Pin 6		25		$\mu \mathrm{A}$
$\mathrm{V}_{\text {OS }}$	DC offset ${ }^{\text {NCAN }}$ OUT ${ }^{3}$		-50	-3.0	50	mV

## NOTES:

1. Compressor is tested in production with $50 \mathrm{k} \Omega$ load.
2. Not tested in production.
3. Offset values are identical for both gain states of noise reduction circuit.
4. Operational down to $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$.

## AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, 0 \mathrm{~dB}$ level $=77.5 \mathrm{mV}$ RMs. See test circuit, Figure 4.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
	Preamplifier gain range Preamplifier voltage gain OdB Preamplifier voltage gain 40dB	Pin 2 open   Pin 2 AC ground	$\begin{gathered} \hline 0 \\ -1.0 \\ 39.0 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 40 \end{gathered}$	$\begin{gathered} \hline 40 \\ 1.0 \\ 41.0 \\ \hline \end{gathered}$	dB dB $d B$
	Preamplifier noise density	Pin 2 AC grounded RS $=50 \mathrm{k} \Omega$ unweighted $20 \mathrm{~Hz}-20 \mathrm{kHz}$		7		$\mathrm{nV} / \mathrm{NHz}$
		weighted CCIR DIN45405 20-20kHz		8		$\mathrm{nV} / \mathrm{NHz}$
	Switch amplifier gain		9	10	11	dB
Compandor 1kHz, all tests ${ }^{1}$						
COMPout	Compressor error at -21dB output level	Input level $=-42 \mathrm{~dB}$	-1.0	-0.16	1.0	dB
COMPout	Compressor error at -10dB output level	Input level $=-20 \mathrm{~dB}$	-1.0	-0.11	1.0	dB
COMPout	Compressor error at OdB output level	Input level = OdB	-1.5	+0.1	1.5	dB
COMPout	Compressor error at +5 dB output level	Input level $=+10 \mathrm{~dB}$	-1.0	+0.04	1.0	dB
COMPout	Compressor error at +10 dB output level	Input level $=+20 \mathrm{~dB}$	-1.0	+0.02	1.0	dB
EXPout	Expandor error at -42dB output level	Input level $=-21 \mathrm{~dB}$	-1.0	-0.12	1.0	dB
EXPout	Expandor error at -21dB output level	Input level $=-10.5 \mathrm{~dB}$	-1.0	+0.1	1.0	dB
EXPout	Expandor error at -10dB output level	Input level $=-5 \mathrm{~dB}$	-1.0	+0.03	1.0	dB

## AC ELECTRICAL CHARACTERISTICS (Contineud)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
EXPout	Expandor error at OdB output level	Input level = OdB	-1.5	-0.2	1.5	dB
EXPout	Expandor error at +10dB output level	Input level $=+5 \mathrm{~dB}$	-1.0	+0.03	1.0	dB
EXPout	Expandor error at +20dB output level ${ }^{2}$	Input level $=+10 \mathrm{~dB}$	-1.0	-0.1	1.0	dB
EXPout	Expandor $\mathrm{V}_{\text {Os }}$	No signal	-50.0	+3.0	50.0	mV
EXPout	Expandor output DC shift	No signal to OdB	-100	+2.0	100	mV
	Timing capacitors compandor			2200		nF
THD	Total harmonic distortion Compressor	$\begin{aligned} & 1 \mathrm{kHz}, 0 \mathrm{~dB} \\ & \mathrm{BW}=300-3 \mathrm{kHz} \end{aligned}$		0.2	1	\%
	Expandor	$\begin{array}{\|l\|} \hline 1 \mathrm{kHz}, 0 \mathrm{~dB} \\ \mathrm{BW}=300-3 \mathrm{kHz} \end{array}$		0.1	1	\%
	NCANOUT	1 kHz . Pin 2 open output level = OdB		0.02	1	\%
		1 kHz , Pin 2 open output level $=+20 \mathrm{~dB}$		0.06	1	\%
VOXOUT	Sink current				0.5	mA
	Low level High level	Open collector $\mathrm{L}_{\mathrm{L}}=0.5 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{cc}}$	0.4	V
$\mathrm{VOX}_{\text {ctL }}$	Input current Low    High		$\begin{aligned} & -50 \\ & -10 \end{aligned}$	$\begin{gathered} -6.6 \\ -0.02 \end{gathered}$	$\begin{gathered} 0 \\ +10 \end{gathered}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
	$\begin{array}{ll}\text { Input level } & \begin{array}{l}\text { Low } \\ \text { High }\end{array} \\ \end{array}$		$\frac{0}{0.7 \mathrm{~V}_{\mathrm{cc}}}$		$\begin{gathered} 0.3 \mathrm{~V}_{\mathrm{cc}} \\ \mathrm{~V}_{\mathrm{cc}} \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
HPDN	$\begin{array}{ll}\text { Input current } & \text { Low } \\ & \text { High }\end{array}$		$\begin{aligned} & \hline-10 \\ & -10 \end{aligned}$	$\begin{aligned} & -4.1 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +10 \\ & +10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	Input level $\begin{aligned} & \text { Low } \\ & \text { High }\end{aligned}$		$0.0$		$0.3 \mathrm{~V}_{\mathrm{cc}}$ $V_{c c}$	$\begin{aligned} & \bar{v} \\ & v \end{aligned}$
	Reference filter capacitor			10		$\mu \mathrm{F}$

NOTE:

1. Measurements are relative to 0 dB output.
2. Measurement is indicative of the output dynamic range capability.

Audio processor - companding, VOX and amplifier section


Figure 1. Typical Configuration of Audio Processor (APROC) System Chip Set


Figure 2. Cellular Radio System





## TYPICAL PERFORMANCE CHARACTERISTICS



## TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Noise Cancellation Switching Amplifier


Voice Activated Transmitter (VOX)


## DESCRIPTION

The SA5753 is a high performance low power CMOS audio signal processing system especially designed to meet the requirements for small size and low voltage operation of hand-held equipment. The SA5753 subsystem includes complementary transmit/receive voice band ( $300-3000 \mathrm{~Hz}$ ), switched capacitor bandpass filters with pre-emphasis and de-emphasis respectively, a transmit low pass filter, peak deviation limiter for transmit, digitally controlled attenuators for signal level and volume control, audio path mute switches, a programmable DTMF generator, power-down circuitry for low current standby, power-on reset capability, and an $I^{2} \mathrm{C}$ interface. When the SA5753 is used with an SA5752 (companding function), the complete audio processing system of an AMPS, TACS, NAMPS or NTACS cellular telephone is easily implemented.

The system also meets the requirements of the proposed NAMPS or NTACS specification, and can be used in cordless telephone applications.

The SA5753 can be operated without the $\mathrm{I}^{2} \mathrm{C}$ bus interface by pulling DFT (Pin 13) HIGH.

FEATURES

- Low 3V supply
- Miniature SSOP package
- Low power
- High performance
- Built-in programmable DTMF generator
- Built-in digitally controlled attenuators for modulation and volume control
- Built-in peak-deviation limiter
- ${ }^{2} \mathrm{C}$ Bus controlled
- Power-on reset
- Power down capability
- Programmable mute control
- Meets AMPS/TACS/NAMPS/NTACS requirements


## BENEFITS

- Very compact application
- Long battery life in portable equipment
- Complete cellular audio function with the SA5752


## APPLICATIONS

- Cellular radio
- Mobile communications
- High performance cordless telephones
- 2-way radio


## PIN CONFIGURATION

D and DK Packages			
TXBFIN 1		20	TXOUT
TXBFOUT 2		19	DATAIN
PREMPIN 3		18	TX MUTE
$V_{D D} 4$		17	SDA
$\mathrm{vOX}_{\text {cTL }} 5$		16	SCL
HPDN 6	SA5753	15	GND
DEMPOUT 7		14	CLLKIN
AUDIOIN 8		13	DFT
SPKROUT 9		12.	RX MUTE
EAROUT 10		11	RX DEMOD

## ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Small Outline Large (SOL) Package	-40 to $+85^{\circ} \mathrm{C}$	SA5753D	0172 D
20-Pin Plastic Shrink Small Outline Package (SSOP)	-40 to $+85^{\circ} \mathrm{C}$	SA5753DK	1563

## Audio processor - filter and control section

PIN DESCRIPTIONS

PIN NO.	SYMBOL	DESCRIPTION
1	TXBFin	Transmit bandpass filter input
2	TXBFOUT	Transmit bandpass filter output
3	PREMPIN	Pre-emphasis input
4	$\mathrm{V}_{\mathrm{DD}}$	Positive supply
5	VOX ${ }_{\text {cTL }}$	Vox control output
6	HPDN	Power-down I/O
7	DEMPout	De-emphasis output
8	AUDIO $_{\text {IN }}$	Audio input
9	SPKR ${ }_{\text {out }}$	Audio output to speaker
10	EARout	Audio output to earpiece
11	RX DEMODIN	Rx demodulated audio signal input
12	RX MUTE	RX audio signal mute input
13	DFT	Default input, non-1 ${ }^{2} \mathrm{C}$ or stand-alone operation
14	$\mathrm{CLK}_{\text {IN }}$	Clock input (1.2MHz)
15	GND	Ground
16	SCL	${ }^{2} \mathrm{C}$ c serial clock line
17	SDA	$1^{2} \mathrm{C}$ serial data line
18	TX MUTE	Tx audio signal mute input
19	DATA $_{\text {IN }}$	Data input
20	TX ${ }_{\text {OUT }}$	Transmit output

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\mathrm{DD}}$	Power supply voltage range	-0.3 to 6	V
$\mathrm{~V}_{\text {IN }}$	Voltage applied to any other pin	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Ambient operating temperature	-40 to +85	${ }^{\circ} \mathrm{C}$

## DC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}$, unless otherwise specified. See test circuit, Figure 1.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
$V_{\text {DD }}$	Power supply voltage		2.7	3.0	$5.5{ }^{1}$	V
IDD	Supply current	Operating IDLE Power Down (PWDN)		$\begin{aligned} & \hline 2.7 \\ & 600 \\ & 200 \\ & \hline \end{aligned}$		mA $\mu \mathrm{A}$
${ }_{1 / H}$	Input current high TX MUTE, RX MUTE, HPDN DFT	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	$\begin{gathered} -10 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ +10 \end{gathered}$	$\begin{array}{r} +10 \\ +30 \end{array}$	${\underset{\mu A}{\mu A}}^{\mu}$
$1 / 1$	Input current low TX MUTE, RX MUTE, HPDN, DFT	$\mathrm{V}_{\text {IN }}=$ GND	$\begin{array}{r} -30 \\ -10 \\ \hline \end{array}$	$\begin{gathered} -10 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ +10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{V}_{\mathrm{IH}}$	Input voltage high		$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V
$\mathrm{V}_{\text {IL }}$	Input voltage low		0		$0.3 \mathrm{~V}_{D D}$	V

## AC ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C}, V_{D D}=+3.0 \mathrm{~V}$. See test circuit, Figure 1. Clock frequency $=1.2 \mathrm{MHz}$; test level $=0 \mathrm{dBV}=77.5 \mathrm{mV}$ RMs $=-20 \mathrm{dBm}$, unless otherwise specified. All gain control blocks (Attenuators) $=0 \mathrm{~dB}$ gain, NAMPS and VCO bits set to 0 .

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
	RX BPF anti alias rejection			40		dB
	RX BPF input impedance	$\mathrm{f}=1 \mathrm{kHz}$		100		$\mathrm{k} \Omega$
	RX BPF gain with de-emphasis	$\mathrm{f}=1 \mathrm{kHz}$	-0.5	0	0.5	dB
	RX BPF gain with de-emphasis	$\mathrm{f}=100 \mathrm{~Hz}$		-30		dBm0
	RX BPF gain with de-emphasis	$\mathrm{f}=300 \mathrm{~Hz}$	9.0	9.6	11.0	dBm0
	RX BPF gain with de-emphasis	$\mathrm{f}=3 \mathrm{kHz}$	-11.0	-10.0	-9.0	dBm0
	RX BPF gain with de-emphasis	$\mathrm{f}=5.9 \mathrm{kHz}$		-58		dBm0
	RX BPF noise with de-emphasis	$300 \mathrm{~Hz}-3 \mathrm{kHz}$		200		$\mu \mathrm{V}_{\text {RMS }}$
	RX dynamic range	with deemphasis		80		dB
	DEMPout output impedance	$f=1 \mathrm{kHz}$			40	$\Omega$
	DEMPout output swing (1\%)	$2 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{DD} / 2} ; \mathrm{f}=1 \mathrm{kHz}$		2.4		$\mathrm{V}_{\mathrm{P} . \mathrm{P}}$
	SPKR ${ }_{\text {OUT }}$ ouput swing (1\%)	$50 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{DD} / 2} ; \mathrm{f}=1 \mathrm{kHz}$	$V_{D D}-1$	2.4		$V_{P-P}$
	EAROUT Output swing (1\%)	50 k 的 $\mathrm{V}_{\mathrm{DD} / 2 ;} \mathrm{f}=1 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{DD}}-1$	2.4		$V_{P-P}$
	SPKR ${ }_{\text {OUT }}$ noise / EAR ${ }_{\text {OUT }}$ noise			200		$\mu \mathrm{V}_{\text {RMS }}$
	CLK ${ }_{\text {IN }}$ high		2.1		3.0	V
	CLK ${ }_{\text {IN }}$ low		0		1.0	V
	TX BPF anti alias rejection	$f>50 \mathrm{kHz}$		40		dB
	TX BPF input impedance	$\mathrm{f}=3 \mathrm{kHz}$		100		K $\Omega$
	TX BPF noise	$300-3000 \mathrm{kHz}$		200		$\mu \mathrm{V}$ RMS
	TX LPF gain	$\mathrm{f}=5.9 \mathrm{kHz}$		-39	-36	$\mathrm{dBm0}$
	TX LPF gain with pre-emphasis	$f=1 \mathrm{kHz}$, OdBV		2.43		dB
	TX LPF gain with pre-emphasis	$\mathrm{f}=100 \mathrm{~Hz}$		-19		dBm0
	TX LPF gain with pre-emphasis	$\mathrm{f}=300 \mathrm{~Hz}$		-10.45		dBm0
	TX LPF gain with pre-emphasis	$\mathrm{f}=3 \mathrm{kHz}$		9.14		dBm0
	TX LPF gain with pre-emphasis	$f=5900 \mathrm{~Hz}$		-28		dBm0
	TX LPF gain with pre-emphasis	$\mathrm{f}=9 \mathrm{kHz}$		-48		dBm0
	TX overall gain	1 kHz		2.43		dB
	TX overall gain	100 Hz		-58	-45	dBm0
	TX overall gain	300 Hz	-11	-10.4	-9	dBm0

## NOTES:

1. Tx noise performance is optimized for operation with $\mathrm{V}_{\mathrm{CC}} \leq 4.2 \mathrm{~V}$.

## Audio processor - filter and control section

## AC ELECTRICAL CHARACTERISTICS (continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
	TX overall gain	3 kHz	8	9	9.6	dBm0
	TX overall gain	5.9 kHz		-52	-45	dBm0
	TX BPF dynamic range			TBD		dB
	PREMP ${ }_{\text {IN }}$ input impedance	$\mathrm{f}=3 \mathrm{kHz}$		100		k $\Omega$
	TX OUT Slew rate    Output impedance    Output swing (limiting)    Output swing (1\% THD)	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{f}=3 \mathrm{kHz} \end{gathered}$   $5 \mathrm{k} \Omega$ load $\left(25^{\circ} \mathrm{C}\right)$		$\begin{aligned} & 0.75 \\ & 1.2 \\ & 1.0 \end{aligned}$	40	$\begin{gathered} \hline \mathrm{V} / \mu \mathrm{s} \\ \Omega \\ \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{gathered}$
	Tx DTMF signal with TXLPF and pre-emphasis			0.45		V/kHz
	Rx DTMF sidetone		-0.8		5.2	dBm0
	Time delay to mute from RX MUTE or TX MUTE transition	$\begin{aligned} & V_{\text {IN }}=V_{\text {IL }} \text { to } V_{\text {IH }} \\ & V_{I N}=V_{I H} \text { to } V_{\text {IL }} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$

Table 1. Gain Control Blocks (BIt 0 is Least Significant Bit)

SYMBOL	Bits	TYPICAL STEP (dB)	TYPICAL GAIN (dB)		
			MIN	MAX	
A1	4	-0.8	-12.0	0	
A2a	5	$\pm 0.25$	-3.75	+3.75	
A2b	2	$-6,(-12$ on first)	-24.0	0	
A3	4	-1.0	-17.0	-2.0	
A4	4	$\pm 0.5$	-3.5	+3.5	
A6	4	-2.0	-30.0	0	
A7	4	$\pm 0.5$	-3.5	+3.5	
NAMPS	1		+1.9 in A2b		
VCO	1				
For A2a, A4 and A7:	MSB sets the sign of the gain   MSB   MSB $=1$ for gain				

## FUNCTIONAL DESCRIPTION

The SA5753 is an audio signal processor designed to meet the requirements of compact low voltage radio telephone equipment. It includes transmit and receive bandpass filters for voiceband $(300-3000 \mathrm{~Hz})$ with pre-emphasis and de-emphasis respectively, a transmit peak deviation limiter, voice channel mute switches and a data path which can be summed into the transmit channel. An $I^{2} \mathrm{C}$ interface is provided for software programmability of a DTMF generator, mute polarity, selection of different power down and operating modes and control of the gain in both the transmit and receive channels.

Software programmable gain control allows the device to be automatically optimized
during equipment production and offers flexibility during normal operation.

## Gain Blocks

The programmable gain blocks are shown in Table 1 and Figure 1. The purpose for each block is as follows:
a. A1 compensates for microphone gain variations in the transmit path.
b. A2a compensates for transmitter dynamic range variations due to manufacturing tolerances of the SA5753 and SA5752 compandor companion device. To meet AMPS requirements, the dynamic range between the zero crossing signal level of the compandor and the peak signal allowed by the deviation limiter is adjusted to 12.34 dB .
c. A2b allows coarse attenuation to be inserted in the transmit path to eliminate positive feedback effects in hands-free speaker applications. First step is 12 dB followed by two steps of 6 dB .
d. A3 sets the gain between the DATA ${ }_{\text {IN }}$ pin (Pin 19) and the TX OUT Pin (Pin 20) and should be adjusted after A2a and A4 have been previously optimized. The SA5753 will interface directly with the UMA1000T data processor (which produces a 2 Vpk data signal). For NAMPS applications an additional 10 to 14 dB resistive divider must be added at the DATA ${ }_{\text {IN }}$ pin (Pin 19) for a 2 V data signal.
e. A4 compensates for transmit gain variations due to manufacturing tolerances of the SA5753, SA5752 and VCO
connected to $\mathrm{TX}_{\text {Out }}$ (Pin 20). After A2a has been adjusted to set dynamic range then A4 is used to set the peak output voltage at TXOUT (Pin 20) such that a nominal $10 \mathrm{kHz} / \mathrm{V}$ VCO produces a peak deviation of 12 kHz to meet AMPS specifications.
f. A6 is the volume control for both the SPKRIOUT and EAR
g. A7 compensates for manufacturing tolerances in the SA5753 and preceeding demodulator. For AMPS requirements, a 1 kHz tone with 2.9 kHz deviation should produce an output signal at DEMPout (Pin 7) corresponding to the zero crossing signal level of the expandor.

## NAMPS and VCO Offsets

For NAMPS applications, a ' 1 ' programmed into R5B3 (register 5, bit 3) will offset the transmit gain for NAMPS applications. It is recommended that A2a and A4 be programmed after the NAMPS option is set to compensate for manufacturing tolerances in the NAMPS offset, itself.

When the VCO bit of R5B2 is a ' 1 ', an extra gain of 6 dB is provided at TX $X_{\text {OUT }}$ for direct interface to VCOs with a nominal gain of $5 \mathrm{kHz} / \mathrm{V}$.

## Operation Using the $\mathrm{I}^{2} \mathrm{C}$ Communications Bus

The SA5753 includes on-chip gain blocks and options which can be programmed through an $I^{2} \mathrm{C}$ interface bus. To use this capability, the DFT pin (Pin 13) must be pulled LOW. In this mode, all signal level adjustments can be made through software with no external potentiometers required.
With DFT pulled LOW, the HPDN pin (Pin 6) is an OUTPUT having the same value as the program bit in register 5 bit 1 (R5B1) of the control register bit map. The value at the VOX $_{\text {CTL }}$ output ( $\operatorname{Pin} 5$ ) is the same as the program bit in R8B7. The HPDN and VOX ${ }_{C T L}$ outputs can be used to control the state of the SA5752 companion device.

## Power On Reset and Power Down Modes

In order to avoid undefined states of the SA5753 when power is initially applied, a power-on-reset circuit is incorporated which defaults RxP and TxP such that the receive and transmit paths are muted if a 'high' voltage is applied to RX MUTE and TX MUTE (Pins 12 and 18). RX MUTE and TX MUTE include on-chip pull up resistors so, during power up, the user may apply a logic ' 1 ' to these pins or leave them floating. After power up, the registers can be programmed
and the mutes removed by a quick access write to RO.

Three software controlled low power modes are provided on the SA5753. These are POWER DOWN (PWDN), IDLE and DENA and can be selected by programming a ' 1 ' into R6B2, R6B1 or R6B0 as follows. In PWDN mode (R6B2=1) both the voice and data channels are powered down with the respective I/O pins at a high impedance. In DENA mode ( $\mathrm{R} 6 \mathrm{~B} 1=1$ ) the voice channels are powered down, but the data channel (from DATA ${ }_{I N}$ and TX $_{\text {OUT }}$ ) is fully active. In IDLE mode (R6B1=1, R6B0=1) both voice and data channels are powered down. (See Table on page 8.)
The difference between selecting IDLE and PWDN is that the former maintains the normal operational bias voltages at all voice and data I/O pins and provides a glitch-free transfer from power down to a fully active mode and vice-versa.
Although the POWER DOWN mode exhibits lower power consumption, glitches may occur when transferring to an active mode because of the previous high impedance of the I/O pins.

The VOX ${ }_{\text {CTL }}$ and HPDN pins (Pins 5 and 6) still have the same value as R8B7 and R5B1 in all low power modes.

## Operation Without Using the $I^{2} C$ Bus

The SA5753 can be operated in a default mode with the $I^{2} \mathrm{C}$ bus bypassed. To use this mode, the DFT pin (Pin 13) is pulled HIGH, then the $I^{2} \mathrm{C}$ bus is bypassed and the SA5753 operates as if all register bits in the $I^{2} \mathrm{C}$ address map table are set to ' 0 ' except R1B2 (S13), R0B0 (S10) and R0B1 (S9), which are set to ' 1 ' to enable the receiver output. R6B2 (PWDN), which is controlled by the state of the HPDN pin (Pin 6), which is an input in DEFAULT mode.
When HPDN is pulled HIGH, the R6B2 bit is set to ' 0 ' and the SA5753 is placed in it's normal operating mode with all Gain Control Blocks set to 0 dB except A 3 , which is set to -2dB.

When HPDN is pulled LOW, the R6B2 bit is set to ' 1 ' and the SA5753 enters POWER DOWN.
There is no on-chip pull-up or pull-down structure on the HPDN pin and so it must not be allowed to float in DEFAULT mode since the operating mode of the SA5753 will then be undetermined.

The Tx MUTE and Rx MUTE pins must be pulled LOW to enable the transmit and receive paths, respectively.
The VOXCTL pin (Pin 5) will follow the value of the control bit stored in R8B7 prior to pulling DFT HIGH.
The DTMF is disabled in the DEFAULT mode.

## Programming Without the $I^{2} \mathrm{C}$ Protocol

In the default mode, with DFT (Pin 13) and HPDN (Pin 6) pulled HIGH, the registers in the control register bit map are chained together so that bit 0 of a register is connected to bit 7 of the preceeding register with ROB6, ROB7, R1B6 and R1B7 bypassed, i.e., R0B5 is connected to R1B0, R1B5 is connected to R2BO, R2B7 is connected to R3BO, etc. Bits can then be loaded as a serial stream through the SDA pin of the $1^{2} \mathrm{C}$ bus by the negative edge of a shifting clock applied at the SCL pin of the $I^{2} \mathrm{C}$ bus. When a bit is loaded at SDA it will load first into ROB0 and then will be shifted to R8B7 after 68 clock edges.

A total of 68 clock pulses (applied at SCL) are therefore required to completely load the registers.
In this mode of operation the contents of the register map are also shifted out from the VOX $_{C T L}$ pin since it takes the same value as R8B7. After power up there is no reset within the registers so the first 68 bits clock out at the VOX ${ }_{\text {CTL }}$ pin will have an indeterminate value.

Summary: To use this capability, the DFT pin and the HPDN pin must be pulled HIGH, the serial bit stream loaded through SCL synchronous with the negative clock edge applied at SCL for 68 clock pulses, and then the DFT pin pulled LOW.

## Cordless Telephone Applications

For cordless telephone applications, a switch S 12 is provided (R5B0) to route data through the complete transmit path while inhibiting the voice channel. In the receive path, a quick access mode is provided through the $I^{2} C$ to disable both EAR Out $_{\text {and }}$ SPKR OUt $^{\text {, by }}$ setting ROB0 and ROB1, when data is detected at the DEMP OUT pin (Pin 7).

## $1^{2}$ C CHARACTERISTICS

The ${ }^{2} \mathrm{C}$ bus is for 2-way, 2 -line communication between different ICs or modules. The two lines are a serial data line
(SDA) and a serial clock line (SCL). Both SDA and SCL are bidirectional lines connected to a positive supply voltage via a pull-up resistor. When the bus is free, both lines are HIGH. Data transfer may be initiated only when the bus is not busy (both lines HIGH).
The output devices, or stages, connected to the bus must have an open drain or open collector output in order to perform the wired-AND function.
Data at the $I^{2} \mathrm{C}$ bus can be transferred at a rate up to $100 \mathrm{kbits} / \mathrm{s}$. The number of devices connected to the bus is solely dependent on the maximum allowed bus capacitance of 400pF.
For devices operating over a wide range of supply voltages, such as the SA5753, the following levels have been defined for a logical LOW and HIGH;
$V_{\text {ILMAX }}=0.3 \mathrm{~V}_{\mathrm{DD}}$ (max. input LOW voltage)
$\mathrm{V}_{\text {IHMIN }}=0.7 \mathrm{~V}_{\mathrm{DD}}$ (min. input HIGH voltage)

## Data Transfer

Data is transferred from a transmitting device to a receiving device with one data bit transferred during each clock pulse on the SCL line. The transmitter also generates the clock once arbitration has given it control of the SCL line. The data on the SDA line must remain stable during the HIGH period of the clock cycle, otherwise it may be interpreted as a control signal.

## Start and Stop Conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH to LOW transition of the data line while the clock line
is HIGH is defined as a start condition. A LOW to HIGH transition of the data line while the clock is HIGH is defined as a stop condition.

## Acknowledgement

Following each byte of data transfered, the receiver must acknowledge successful reception. To do this the transmitter releases the SDA line (allowing it to go HIGH) at the end of each transmitted byte, and it is pulled LOW by the receiver. If this condition is maintained during the next HIGH period of the clock pulse (called the acknowledge clock pulse) then data transfer is resumed. If the receiver does not pull the SDA line LOW, the transmitter will abort the transfer.

## $1^{2} \mathrm{C}$ Bus Data Configurations

The SA5753 is always a slave receiver in the $1^{2} \mathrm{C}$ bus configuration). The slave address consists of eight bits in the serial mode and is internally fixed.

## Control Registers

The control register bit map is shown below. Either a quick access or normal address mode can be used, determined by the two MSB bits in the first word following the SA5753 address word. If the quick access mode is used, the registers R0 or R1 can be updated by sending only two bytes of information (address plus update). If R0 or R1 are updated using the address mode, then B7 and B6 of the data word are ignored. In all access modes, incremental register addressing is supported with following words updating the next register until a 'stop' bit is sent.
High Tone DTMF Reglster
MSB
HD7 HD6 HD5 HD4 HD3 HD2 HD1 HDO

HD7 HD6 HD5 HD4 HD3 HD2 HD1 HD0
The eight bits determine the output frequency by the following formula.:

High Frequency $=1200 \mathrm{kHz} / 6 / \mathrm{HD}$ where HD is the value of the register.

## Low Tone DTMF Register MSB <br> LD7 LD6

The eight bits determine the output frequency by the following formula.:

> Low Frequency $=1200 \mathrm{kHz} / 14 / \mathrm{LD}$ where LD is the value of the register.

The operation of the 96 ms DTMF timer is initiated by the loading of the low tone DTMF register. This timer terminates transmission of the tones as the generated tones cross the reference level after 96 ms . The on time of the tones can thus vary by up to one cycle of the tones.

Continuous tones can be obtained by again loading DTC $=1$ in R1, bit 5 .

Single tones can be obtained by loading 2 into the unused tone register to silence it.

Loading a value of 1 or 0 into the registers will default the register value to 257 or 256 for high tone or low tone, respectively.
Phase continuous frequency modulation can be produced by loading a new value into a DTMF register during continuous operation (DTC=1).

$\mathrm{Y}=$ ignored in address mode.
For all bits TRUE = '1'
A1b3-0 $=$ program bits for gain block A1 $\quad$ TxP $=$ transmit mute polarity
A2ab4-0 $=$ program bits for gain block A2a
A2bb1-0 $=$ program bits for gain block A2b
АЗb3-0 $=$ program bits for gain block A3
A4b4-0 = program bits for gain block A4
A5b2-0 $=$ program bits for gain block A5
A6b3-0 $=$ program bits for gain block A6
A7b3-0 $=$ program bits for gain block A7
DTC = DTMF continuous

HD7-0 = high tone DTMF
LD7-0 = low tone DTMF
NAMPS $=$ program bit for NAMPS offset
S1 = bypass TXBPF
$\mathrm{VCO}=6 \mathrm{~dB}$ higher $\mathrm{TX}_{\text {OUT }}$
S2 = bypass compressor in TX path, inhibit pre-emph input
S3 $=$ bypass pre-emp and limiter in Tx path
S4 $=$ enable DTMF to TX path and inhibit PREMP in and $S 2$.
$55=$ bypass RXBPF
$\mathrm{VCO}=6 \mathrm{~dB}$ higher $\mathrm{TX}_{\text {OUT }}$
S6 = bypass de-emph in RX path

RxM $=$ receive mute
S7 = bypass expandor in RX path, inhibit audio input
$\mathrm{TXM}=$ transmit mute $\quad \mathrm{S} 12=$ cordless data option established
$\mathrm{RxP}=$ receive mute polarity $\quad \mathrm{S} 13=$ enable data path
VOX $_{\text {CTL }}=$ enable VOX of compandor/expander circuit. This bit appears at the VOX ${ }_{\text {CTL }}$ pin (Pin 5) of the SA5753.
HPDN = enable power down of compandor circuit. This bit appears at the HPDN pin (Pin 6) of the SA5753
PWDN, IDLE1, IDLEO see Table below
Low Power Modes (R6B0 - R6B2)

PWDN	IDLE1	IDLE0	
1	X	X	(PWDN) Complete power down except $\mathrm{I}^{2} \mathrm{C}, \mathrm{I} / \mathrm{Os}$ high impedance.
0	1	0	(DENA) Low power, I/Os at $\mathrm{V}_{\text {DD }} / 2$, DATA $^{\text {IN }}$ to $T X_{\text {OUT }}$ enabled.
0	1	1	(IDLE) Low power, I/Os at $\mathrm{V}_{\text {DD }} / 2, \mathrm{DATA}_{\text {IN }}$ to $\mathrm{TX}_{\text {Out }}$ disabled.
0	0	0	Normal operation.
0	0	1	DATA $_{\text {IN }}$ to TX ${ }_{\text {OUT }}$ disabled.

$$
\mathrm{X}=\text { don't care. }
$$



Figure 1. SA5753 Test and Application Circuit




Figure 4. APROC Application Diagram




## Using the SA5752 and SA5753 for low voltage designs

## Author: Alvin K. Wong

## INTRODUCTION

The SA5752 and the SA5753 are two audio processor chips that can be used in designs that require 3 volt operation. This chip set, known as the APROC II (SA5752 and SA5753), is functionally similar to the APROC I (SA5750 and SA5751), but with a number of enhancements which allow more design flexibility for the designer. Additionally, the APROC II offers the same high performance as the APROC I. The SA5752 is the low voltage version of the SA5750, and the SA5753 is the low voltage version of the SA5751. Figures 5 and 6 show the block diagrams of the APROC II and APROC I, respectively. Notice that the differences are subtle and pertain primarily to the amplifier section.

If a designer is not familiar with the APROC I chip set, he/she can refer to AN1741 which discusses the basics of audio processing and the key functions used to meet the strict requirements for cellular specifications. Additionally, it describes how to design with the chip set and how to measure attack and release times for the compandor section.

This application note should be used in conjunction with AN 1741 to fully understand audio processing. Experience with the APROC I will help aid the designer in learning the APROC II, but this is not a necessity. This application note will focus on the main differences between the APROCs and highlight key areas of the APROC II.

## I. KEY DIFFERENCES BETWEEN APROC I AND APROC II

- Comparing the SA5750 and SA5752
- Packaging
- External Amplifier
- Power Consumption
- Comparing the SA5751 and SA5753
- Packaging
- Power Consumption
- Programmable Gain Attenuators
- Power Down
- Programmable Transmit and Receive Mute Polarity Function
- Non- ${ }^{2} \mathrm{C}$ Operation (Default Mode)
- Cordless Application
- VCO Mode
- NAMPS Mode
II. SA5752
- Preamp
- vox
- Noise Canceller
- Compressor
- Power Down
III. SA5753
- Non- ${ }^{2} \mathrm{C}$ Operation (Default Mode)
- Programming Without the $\mathrm{I}^{2} \mathrm{C}$ Protocol
- DTMF
- The Limiter and All-Pass Circuit


## IV. EVALUATION SOFTWARE AND DEMOBOARD - DTMF

v. QUESTIONS AND ANSWERS


Figure 5. Block Diagram of Audio Processor (APROC II) System Chip Set

## I. KEY DIFFERENCES BETWEEN APROC I AND APROC II

Table 2 shows the main differences between the APROC I and II. One noticeable difference is the power consumption and power down currents. Moreover, the SA5753 has three power down modes which will be discussed in detail in the Power Down Mode section of this application note.

## Comparing the SA5750 and SA5752

The SA5750 and SA5752 differ in the following ways:

## Packaging

There are minimal differences between the SA5750 and the SA5752. Instead of a 24 pin package, the SA5752 is offered in a 20 pin package. This change allows the SA5752 to come in the SSOP package. The SSOP package is smaller in dimension than the standard SO package which saves space.

## External Amplifiers

Since many APROC I customers use their own external speaker and ear amplifiers, the SA5752 was designed without them (see Figures 5 and 6). However, the other key blocks are present, like the preamp, VOX, compressor, expandor, and noise canceller circuit.

Since the SA5752 does not supply the ear and speaker amplifiers internally, an external one can be used. The Philips TDA7050T is the recommended choice because of its low voltage operation and high performance capabilities.

## Power Consumption

The current consumption and power down mode has been improved in the SA5752. For normal operation, the SA5752 only draws an $\mathrm{I}_{\mathrm{CC}}$ of 3.1 mA for a 3 volt supply compared to the SA5750, where $\mathrm{I}_{\mathrm{CC}}=8.4 \mathrm{~mA}$ for $\mathrm{V}_{\mathrm{CC}}=$ 5 V . Additionally, in the power down mode, the SA5752 only draws 0.2 mA of current, compared to 1.8 mA for the SA5750. Recall that the power down mode is implemented when the chip is not being used to conserve battery life. The power down feature is preferred instead of completely turning off the power to the chip because the turn on time to normal operation is faster.

## Comparing the SA5751 and SA5753

The SA5751 and SA5753 differ in the following ways:

## Packaging

The SA5751 is available in a 24 pin DIP package or a 28 pin SO package.

Similar to the SA5752, the SA5753 is also offered in the 20 pin SSOP package. The combination of these packages allows all the audio processing functions to be done in a minimal amount of board space.

## Power Consumption

The current and voltage specification has also improved for the SA5753. This chip draws 2.1 mA at 3 V compared to 2.7 mA at 5 V for the SA5751. There is also additional current economy from the three different power-down modes, PWDN, DENA and IDLE (see Power-Down section). These power-down currents are $0.2 \mathrm{~mA}, 0.6 \mathrm{~mA}$ and 0.7 mA compared to 0.9 for the SA5751.

## Programmable gain attenuators

The SA5753 has the same key block functions as the SA5751, but there are additional features. The SA5753 has nine programmable gain attenuators throughout the transmit and receive path. This allows the designer the flexibility to tailor the signal level at different ports. The SA5751 has only one programmable gain attenuator in the receive path which can be used as the volume control. Table 3 shows the programmable gain attenuators' range for the SA5753.


## Using the SA5752 and SA5753 for low voltage designs

Table 2. Key Differences Between APROC I and APROC II (All values are Typical)

	APROC I		APROC II	
	SA5750	SA5751	SA5752	SA5753
$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	4.5-5.5	4.5-5.5	2.7-5.5	2.7-5.5
$\operatorname{lcc}(\mathrm{mA})$	8.4 @ 5V	2.7 @ 5V	3.1 @ 3V	2.1 @ 3V
Total Icc (mA)	11.10		5.4	
Power Down Modes	PWDN		PWDN, IDLE and DENA	
Power Down Icc (mA)	1.8	0.9	0.2	PWDN 0.2   IDLE 0.6   DENA 0.7
Packages: $N E: 0 \text { to }+70^{\circ} \mathrm{C}$	NE5750N   NE5750D	NE5751N   NE5751D		
SA: -40 to $+85^{\circ} \mathrm{C}$	SA5750N SA5750D	SA5751N   SA5751D	SA5752D   SA5752DK	SA5753D   SA5753DK
No. of Pins	24	24 or 28	20	20
Programmable Gain Attenuators	0	1	0	9
$1^{2} \mathrm{C}$ Protocol	Not required	Required	Not Required	Optional ${ }^{*}$

Package Codes:
N: Plastic Dual In-Line Package (DIP)
D: Plastic Small Outline (SO)
*Operating the SA5753 without the $\mathrm{I}^{2} \mathrm{C}$ protocol means
FE: Ceramic Dual In-Line Package
DTMF generator and gain attenuators are no longer
DK: Shrink Small Outline Package (SSOP)
functional. See SA5753 section for more details.

Table 3. Attenuator Gain Blocks (SA5753)

SYMBOL	Bits	TYPICAL STEP (dB)	TYPICAL GAIN (dB)	
			MIN	MAX
A1	4	-0.8	-12.0	0
A2a	5	$\pm 0.25$	-3.75	+3.75
A2b	2	-6. (-12 on first)	-24.0	0
A3	4	-1.0	-17.0	-2
A4	4	$\pm 0.5$	-3.5	+3.5
A6	4	$\pm 0.25$	-3.75	0
A7	4	-6, (-12 on first)	-24.0	+3.5
NAMPS	1			
VCO	1			
For A2a, A4 and A7:		MSB sets the sign of the gain MSB $=0$ for gain   MSB $=1$ for attenuation		
For all Gain Blocks:		All bits set to $0=0 \mathrm{~dB}$ gain   All bits set to $1=$ maximum gain or attenuation		

Table 4. Power-Down Modes (SA5753)

PWDN	IDLE1	IDLEO	
1	X	X	(PWDN) Complete power down except $\mathrm{I}^{2} \mathrm{C}$, $\mathrm{l} / \mathrm{O}$ s high impedance.
0	1	0	(DENA) Low power, I/Os at $\mathrm{V}_{\text {DD }} / 2$, DATA DiN $^{\text {to }} \mathrm{TX}_{\text {OUT }}$ enabled.
0	1	1	(IDLE) Low power, $1 / \mathrm{Os}$ at $\mathrm{V}_{\text {DD }} / 2$, DATA ${ }_{\text {IN }}$ to $T X_{\text {Out }}$ disabled.
0	0	0	Normal operation.
0	0	1	DATA ${ }_{\text {IN }}$ to $T X_{\text {OUT }}$ disabled.

$\mathrm{X}=$ don't care.

The benefit of having signal amplitude control throughout the signal path is that a designer will no longer have to add an external amplifier to boost signals. Additionally, external resistors are no longer needed to attenuate the signal. The SA5753 programmable gain attenuators make a design more flexible which saves cost and board space from external components.

## Power Down

The SA5753 has three different power down modes compared to only one for the SA5751. The three power down modes are PWDN, IDLE, and DENA (see Table 4). All three power down modes have different current consumptions and provide different options to the designer.
In the PWDN mode, the voice and data channels are powered down. This allows for maximum power conservation. In the IDLE mode, both the voice and data channels are also powered down, but are glitch free when going from power down to power up.
The IDLE mode trades a higher standby current against glitch-free power-up. Hence, the IDLE mode is used for power conservation, whereas PWDN mode is mainly used for absolute maximum power conservation.
For the DENA mode, the voice channels are powered down, but the data channel is still fully active. This allows the chip set to
transmit on reverse control channel without powering up the whole APROC II.

In the PWDN mode, the SA5753 transmit path from the Tx bandpass filter in to the Tx filter out pin has only 6 dB of attenuation. This means that, if a signal is present and a designer does not want this signal through, he/she should use the IDLE (or DENA) mode.

## Programmable Transmit and Receive Mute

 Polarity FunctionThe SA5753 also has programmable transmit and receive mute polarity functions (TxP and RxP). A designer can mute the transmit or receive path with a logic ' 1 ' or ' 0 ' on the TxMute or RxMute pin depending on how the SA5753 is programmed by $I^{2} \mathrm{C}$.

The benefit of having programmable transmit and receive mute polarity functions is that it eliminates the need for an inverter chip which saves on costs, power, and space. If the microcontroller or data processor (DPROC) can only provide a logic ' 1 ' to mute the Tx and Rx signal path, then to mute the chip-set the standard way, an inverter gate is needed because the logic ' 1 ' needs to be converted to a logic ' 0 '. This logic ' 0 ' is then applied to the TxMute and RxMute pin. But with the SA5753, a logic ' 1 ' applied to the TxMute and $R \times M u t e$ pins will mute the $T x$ and $R \times$ path if the SA5753 is programmed to mute for a logic ' 1 '.

Figure 7 shows a diagram of how the inverter gate chip is eliminated. Additionally, a logic ' 0 ' applied to the TxMute or RxMute pin can mute the signal path if the SA5753 is programmed to mute when a logic ' 0 ' is applied to the TxMute and RxMute pins. Because of this feature the APROC II can now interface directly with the Philips Semiconductors UMA1000 DPROC.

Since the TxMute and RxMute pins are separate, the $T x$ and $R x$ path can also be muted separately. For example, if a user wants to mute his/her side of the conversation (such that the other party cannot hear), but still wants to hear the other party, the Tx path needs to be muted while the Rx path is left on. Therefore, a designer can provide a mute button on the keypad to provide this function to the user.

Since there are separate pins to mute the Tx and Rx paths, a designer is also given full flexibility in programming these pins separately. He/she can define a logic ' 1 ' to have the Tx path mute while programming a logic ' 0 ' to have the Rx path mute, or vice versa (see Figure 8). However, in most designs a logic ' 0 ' is programmed to have the Tx and Rx path muted.


Figure 7. Benefit of Having Programmable Transmit and Recelve Mute Pins


- TxMute pin programmed to mute for a logic ' 1 ' input.
- RxMute pin programmed to mute for a logic '0' input. NOTE:
A 10k series resistor should be connected from the Logic signal to the TxMute/RxMute pin. This allows the APROC II to operate at 3 V , while safely accepting a 5 V logic signal to these inputs.

Figure 8. Muting the Tx and Rx Path for Separate Programmable Inputs

## Non $-1^{2} \mathbf{C}$ Operation (Default Mode)

The SA5753 can also be used without the $I^{2} \mathrm{C}$ protocol by pulling the DFT (default pin) and HPDN pin HIGH. This non $-1^{2} \mathrm{C}$ operation does not give the designer the flexibility to tailor the signal or use the internal DTMF generator. However, if the SA5753 is loaded serially, the SA5753 can be programmed. More information can be found in any $I^{2} \mathrm{C}$ documentation. See the SA5753 section for more detailed information.

## Cordiess Application

Unlike the SA5751, the SA5753 can be implemented more readily for cordless phone applications. The data path can be routed through the transmit path while inhibiting the voice channel. In the receive path, the EAR OUT and SPKR OUT $^{\text {can }}$ be disabled when the data is detected at the DEMPout pin.
To allow design flexibility, a designer can attenuate the data signal internally before it is passed through the TX OUT pin. This eliminates the need for external components and allows programmable attenuation steps
such that different data amplitude inputs can be tailored in real-time.

VCO Mode
If the VCO bit on the SA5753 is programmed correctly, the TX ${ }_{\text {OUT }}$ provides an extra 6dB of gain through Attenuator 4. Therefore, the new range is 2.5 dB to 9.5 dB . Normally the TX OUT signal is connected to a VCO (Voltage Controlled Oscillator) with a slope of $10 \mathrm{kHz} / \mathrm{V}$. The designer can implement the VCO bit to get a stronger output from the SA5753 to match $5 \mathrm{kHz} / \mathrm{V}$ VCOs.

## NAMPS Mode

Another key difference between the SA5753 and the SA5751 is that the SA5753 can be programmed for NAMPS mode by tailoring the gain attenuator settings.
There are two attenuators that receive the modified gain adjustments. Attenuator 4 is reduced by -7.6 dB and Attenuator 2 B is boosted by 1.9 dB . Therefore, the new ranges are -11.1 dB to -4.1 dB for Attenuator 4 and -22.1 dB to 1.9 dB for Attenuator 2 B .
The reason the gain settings are reduced is because the signal amplitude needs to be reduced before going to the transmitter. Recall that for the NAMPS mode the frequency deviation is less, so less amplitude is required.

## II. SA5752

Figure 9 shows the main blocks of the SA5752: preamp, noise canceller, VOX, compressor, and expandor. This part does not require any programming blocks and therefore, no ${ }^{2} \mathrm{C}$ is needed to operate this part. However, the SA5752 can be powered


Figure 9. SA5752 Block Diagram
down via the SA5753 HPDN bit, which is under $\mathrm{I}^{2} \mathrm{C}$ control.

## Preamp

The SA5752 provides a preamp which has an adjustable gain range from 0 to 40 dB . The gain may be adjusted with an external resistor which connects to Pin 2 (see Equation 1, below). Table 5 shows the resistor values needed to get the appropriate gain. If a designer wants to calculate for a different value, the equation below shows how to do so.

When a designer sets the preamp gain, be sure that the output signal does not clip due to the power supply rails. To prevent this, apply the predicted strongest signal to the preamp input and observe the output while setting the gain.
Additionally, if the VOX is implemented, be sure that the extra 10 dB of gain is on from the noise canceller circuit (see VOX section for more details).

$$
R 1=\left[\frac{50,000}{{ }_{10}\left(\frac{X(d B)}{20}\right)}\right]-500
$$

where $0<X d B<40 \mathrm{~dB}$

Table 5. Calculated R1 Values for Different Preamp Gains

$X(\mathrm{~dB})$	R1
0	Leave Pin 2 open ( $\infty$ )
5	64 k
10	22 k
15	10 k
20	5.1 k
25	2.5 k
30	1.1 k
35	405
40	Pin 2 AC grounded

The preamp input impedance is $50 \mathrm{k} \Omega$. The output of the preamp is connected to a noise canceller which can drive a minimum load impedance of $50 \mathrm{k} \Omega$.

When measuring the SA5752 preamp gain, be sure to measure the signal from Pin 20 to Pin 1. If the signal is measured from the SA5752 preamp input to the TX OUT of the SA5753, the signal's amplitude will not be the expected value due to the compressor, pre-emphasis, and attenuator settings. Therefore, remember to measure the preamp gain from the SA5752 preamp out to in.


Figure 10. VOX Threshold Points

## VOX

The SA5752 VOX circuitry operates like the SA5750 in that it works in conjunction with the noise canceller circuit. With the VOX activated, the noise canceller circuit will provide 10 dB of gain when the input signal surpasses the "on" threshold point. When the input signal drops below the "off" threshold point, the noise canceller provides OdB of gain. Figure 10 illustrates this function.
The VOX circuitry is useful for hands-free operation. This function is normally used in mobile conversation. Because there is road noise present in a moving vehicle, it is desirable to be able to prevent this noise from being heard. If the VOX threshold is set correctly, the noise canceller will provide 10 dB of gain when the user speaks and a gain of 0 dB when the user stops speaking. The other party will not hear the road noise in the background as loudly. Another feature of the VOX circuitry is that it can be used to save power. The transmitter can be switched off during non-speech periods if voice discontinuous mode (AMP) is enabled.
The VOX OUT and VOX ${ }_{\text {CTRL, }}$ Pins 5 and 14 respectively, can be used to determine the status of the noise canceller. Since the VOX ${ }_{\text {OUT }}$ pin is an open collector output, a designer should connect a 10 k pull up resistor to $\mathrm{V}_{\mathrm{cc}}$. This allows the output to read a high or low reading to determine the status of the noise canceller. Table 6 shows how Pins 5 and 14 can be used.
Having a logic ' 0 ' on Pin 14 (VOX CTRLL ) is sufficient in most applications. When the voice is present, the noise canceller kicks on while the VOX OUT pin supplies a logic ' 1 '. When voice is not present, VOX ${ }_{\text {OUT }}$ pin supplies a logic ' 0 '.

Supplying a logic ' 1 ' on Pin 14 would cause the VOX ${ }_{\text {OUT }}$ pin to stay as a logic ' 1 ' regardless of any signal input to the preamp

Table 6. VOX Truth Table

Inputs		Outputs	
Voice (Pin 1)	VOX ${ }_{\text {CTRL }}$ (Pin 14 of NE5752)	Noise Canceller Gain	VOX ${ }_{\text {Out }}$ (Pin 5 of NE5752)
Not Present	logic '0'	OdB	logic ' 0 '
Present	logic '0'	10dB	logic '1'
Not Present	logic '1'	OdB	logic '1'
Present	logic '1'	10dB	logic '1'

NOTE: If the NE5752 is used alone, be sure that the output of the noise canceller is AC coupled to the input of the compressor. Also, make sure that all of the components for the compressor are connected.
(Pin 1 of SA5752). However, the functionality of the noise canceller will still be signal dependent.
Pins $3,4,5,6$, and 14 all deal with the VOX's performance. Resistor R2 and capacitor C3 are connected to Pin 3. These components set the gain of the VOX. The values chosen here are for internal use only and should not be altered.
The following steps are the procedure for setting the VOX threshold. Remember that this setting can be set externally by the user using an external potentiometer or by a microprocessor which can sample the sound in the car and electronically set the "automatic environment VOX function" threshold. This can be done by implementing different resistor settings for different threshold points.
Step 1: Make sure:
a. Pin 6 is left open
b. The VOX attack and recovery components are in place at Pin 4.
c. R2 and C3 are connected to Pin 3 .
d. If using the SA5752 alone, be sure to connect the preamp output (Pin 20) to the compressor input (Pin 19) with a DC blocking capacitor.
e. The preamp gain is already set (in this instance the preamp gain is OdB )
f. Make sure that the compressor's components are also connected; compressor's attack time has to be functional.
Step 2. Apply a constant 1 kHz sinewave signal to Pin 1 through a DC blocking cap (if the Philips evaluation board is used, apply the signal to the MIC input pin) with the desired threshold. In this case, 30 mV P.p.
Step 3. Measure the DC voltage on Pin 4: V4 $=275 \mathrm{mV}$
Step 4. Calculate R5:

$$
\begin{equation*}
R 5=\frac{V 4(V}{25 \mu A}=\frac{275 m V}{25 \mu A}=11 k \tag{2}
\end{equation*}
$$

Step 5. Connect R5 to Pin 6 and verify that VOX kicks on at the desired threshold. This set-up has the VOX kicking on at $30 \mathrm{mV} \mathrm{V}_{\mathrm{P} \text {-p }}$ and kicking off at $11 \mathrm{~m} V_{\text {p.p }}$ (for better accuracy use a $1 \%$ resistor value for R5).

Referring to the above example, if a preamp gain of 10 dB was chosen before setting the threshold, the threshold will also change. So it is vital that the preamp gain be set before setting the VOX threshold.

## Noise Canceller

The output of the preamp is connected to the input of the noise canceller circuit which is internal to the device. The function of the noise canceller is to automatically provide a set gain of either 0 dB or 10 dB when a' voice is present or not present. The gain setting can be set by implementing the VOX functions.

Although the noise canceller circuit is really designed to be used with the VOX circuitry, it can be implemented without it. The noise canceller circuit can be set up to provide either 0 dB or 10 dB of gain at all times, regardless of the presence of a signal. Table 7 shows how to achieve either gain settings when the VOX function is bypassed.
Table 7. Setting Up the Gain of the Noise Canceller

Pin	Gain of Noise Canceller	
	OdB	10dB
3	Ground	Ground
4	Ground	V $_{\text {CC }}$
6	10 k to GND	Ground

The output of the noise canceller is accessible to the designer at Pin 20.

## Compressor

The SA5752 compandor operates with a unity gain level (OdB level) of 77.5 mV RMs. It operates like the rest of the Philips Compandor family where any signal above
the OdB level in the compressor mode is half in dB , and any signal below the OdB level is multiplied by 2 (assuming the unit is in dB )

As for the Expandor, the levels above and below the OdB level are modified by the opposite of what the compressor does. This allows the signal to be restored to its original level with reduction of noise.

To determine the amplitude, the following formula is used.
$X d B=20 \log \left(\frac{A C \text { level } m V_{R M S}}{77.5 m V_{\text {RMS }}}\right)$

## Example:

Determine the compressor's AC voltage output if a $200 \mathrm{mV}_{\mathrm{RMS}}$ signal is applied to the compressor's input.

1. Convert 200 mV VMs to dB as in Equation 3

$$
X d B=20 \log \left(\frac{200 \mathrm{~m} V_{\text {RMS }}}{77.5 m V_{\text {RMS }}}\right)=8.23 \mathrm{~dB}
$$

2. Because 8.23 dB is above the 0 dB level, by definition of the compressor the signal is halved to 4.12 dB
3. Now converting back to voltage using Equation 3 the output is $124.5 \mathrm{mV} \mathrm{V}_{\text {RS }}$.

Figure 11 shows the diagram with other numbers for practice.

## Power Down

The HPDN (Hardware Power Down) pin on the SA5752 can be left open or connected to $\mathrm{V}_{\mathrm{cc}}$ for normal operation. For power down, a designer needs to ground this pin.


Figure 11. Determining the AC Signal Level Through a Compandor

Table 8. Programmable Divide Ratio Number

Decimal Value	Binary Value	Hi DTMF Frequency	Lo DTMF Frequency
2	00000010	OFF	OFF
3	00000011	66.66 kHz	28.57 kHz
4	00000100	50 kHz	21.43 kHz
5	00000101	40 kHz	17.14 kHz
$\vdots$	$\vdots$	$\vdots$	$\vdots$
254	11111110	787.40 Hz	337.46 Hz
255	11111111	784.31 Hz	336.13 Hz
256	00000000	781.25 Hz	334.82 Hz
257	00000001	778.21 Hz	333.52 Hz

## III. SA5753

Figure 12 shows the main blocks of the SA5753; the Transmit and Receive Bandpass filters, the Transmit Low Pass Filter, Pre-emphasis and De-emphasis, DTMF generator, attenuators and $I^{2} \mathrm{C}$ controls.

## Non- ${ }^{2} \mathrm{C}$ C Operation (Default Mode)

The SA5753 can be used without the $I^{2} \mathrm{C}$ protocol. To implement this feature, the DFT pin (default, Pin 13) and HPDN (Pin 6) must be connected to $\mathrm{V}_{\mathrm{cc}}$. In the default mode, a designer has less flexibility in programming the SA5753. The only way to program the SA5753 without the I2C protocol is to load the register serially (see next section).
If a designer decides not to program the SA5753 registers, they can no longer bypass key functions or attenuate/gain the signal. Additionally, they can no longer make use of the DTMF generator. The TxMute and RxMute pins are also no longer programmable, but are controllable externally.
A designer does not have a choice of programming the mute polarity pins. Muting the transmit and receive path now requires a
designer to supply $\mathrm{V}_{\mathrm{cc}}$ to the TxMute pin (Pin 18) and RxMute pin (Pin 12). To unmute the paths, a ground connection on these pins is required.

Pin 6 must be grounded for powering down the SA5753 in the default mode. For normal operations without the $\mathrm{I}^{2} \mathrm{C}$ protocol, Pin 6 must be connected to $\mathrm{V}_{\mathrm{cc}}$. Although the SA5753 might be functional with Pin 6 left open, this is not advisable. This pin should either have $\mathrm{V}_{\mathrm{CC}}$ or ground connected for a defined state. See the SA5753 data sheet for more information on non- $1^{2} \mathrm{C}$ operation.
The following is a list of features when the Default Mode is implemented:

1. All previous settings in the registers are ignored except for R8B7 (VOX ${ }_{\text {CTL }}$ ).
2. VOX ${ }_{\text {CTL }}=$ the setting in R8B7 before DFT goes high.
3. All attenuators are set to 0 dB .
4. HPDN is now an input, LOW=PWDN Mode.
5. $D T M F=O F F$
6. $\mathrm{DEEMPH}=\mathrm{ON}$
7. $\operatorname{PREEMPH}=O N$
8. AMPS mode
9. Closed = S9, S10, S13
10. Open = S1, S2, S3, S4, S5, S6, S7, S8, S11, S12
11. RX is muted when RXMUTE $=\mathrm{HI}$
12. TX is muted when TXMUTE $=\mathrm{HI}$

NOTE: When the SA5753 is changed from DFT=HIGH (Default Mode) to DFT=LOW, the register settings will have an indeterminate value and all registers will need to be reloaded.

Programming Without the $I^{2} C$ Protocol In the default mode, with DFT (Pin 13) and HPDN (Pin 6) pulled HIGH, the registers in the control register bit map are chained together so that bit 0 of a register is connected to bit 7 of the preceding register with ROB6, ROB7, R1B6 and R1B7 bypassed, i.e., ROB5 is connected to R1BO, R1B5 is connected to R2B0, R2B7 is connected to R3B0, etc. Bits can then be loaded as a serial stream through the SDA pin of the $I^{2} \mathrm{C}$ bus by the negative edge of a shifting clock applied at the SCL pin of the $I^{2} \mathrm{C}$ bus. When a bit is loaded at SDA it will load first into ROB0 and then will be shifted to R8B7 after 68 clock edges.

A total of 68 clock pulses (applied at SCL) are, therefore, required to completely load the registers.
In this mode of operation the contents of the register map are also shifted out from the VOX $_{\text {CTL }}$ pin since it takes the same value as R8B7. After power up there is no reset within the registers so the first 68 bits clock out at the VOX ${ }_{\text {cTL }}$ pin will have an indeterminate value. Once the registers are loaded, the DFT pin can be pulled low to enable the interface between the control registers and the program functions.

Summary: To use this capability, the DFT pin and the HPDN pin must be pulled HIGH, the serial bit stream loaded through SCL synchronous with the negative clock edge applied at SCL for 68 clock pulses, and then the DFT pin pulled LOW.

## DTMF

The DTMF generator generates its tones by using the $1.2 \mathrm{MHz} \mathrm{I}^{2} \mathrm{C}$ clock and dividing it down to the desired frequency. There are high and low DTMF tones, so different divide ratios are used. To tailor the exact frequency, a programmable divide ratio number is provided to the designer. Figure 13 shows the basic scheme and the formulas to calculate the desired DTMF frequency.
The programmable divide ratio number ranges from 3 to 257 for both the high and low DTMF functions. This means that the high DTMF frequency range is from
778.21 Hz to 66.66 kHz . The low DTMF frequency range is from 333.52 Hz to 28.57 kHz .

The only caution in using the DTMF generator is when the programmable divide ratio decimal number is 256 or 257 . For the SA5753, decimal values 256 and 257 are defined as a binary ' 0 ' and ' 1 ', respectively (see Table 8). The reason the decimal values 256 and 257 were defined this way is because of the actual length of their binary numbers.

Decimal 256 is binary 100000000 and decimal 257 is binary 100000001 . These binary numbers exceed the 8 -bit register, so 256 and 257 were replaced with a decimal ' 0 ' and ' 1 ' since these values were not previously used.
Other decimal divide ratio numbers can be converted directly to a binary number which is then loaded into the 8-bit register. To turn off the high or low DTMF generator, a decimal 2, converted to a binary 00000010 , needs to be loaded into the register.
Below are two examples of loading the DTMF

## generator.

Step 1: Determine what frequency is desired for the High and Low frequencies.
Step 2: Use formulas in Figure 13 to calculate the programmable 'divide ratio number' for both High and Low tones.

Step 3: Convert the calculated 'divide ratio number' to a binary number and load into the proper register. NOTE: If the 'divide ratio number' is 256 or 257, load a binary 0000 0000 or 0000 0001, respectively. To turn off the high or low



Figure 13. DTMF Formula


Figure 14. . Test Set-up and Tx Path of Signal
tone DTMF generator, load a binary 2 or 00000010 to the register.

## Example 1

Program the SA5753 DTMF generator such that High DTMF $=4000 \mathrm{~Hz}$ and Low DTMF $=$ 3061.22 Hz .

1. Using the formula in Figure 13,

High DTMF 'divide ratio number' $=50$
Low DTMF 'divide ratio number' $=28$
2. Convert 'divide ratio number' into a binary number
High DTMF binary 'divide ratio number' = 00110010
Low DTMF binary 'divide ratio number' = 00011100.
3. Load binary numbers into proper registers and observe on a spectrum analyzer.

## Example 2

Program the SA5753 DTMF generator such that High DTMF $=778.21 \mathrm{~Hz}$ and Low DTMF = OFF

1. Calculate 'divide ratio number' using the formula in Figure 13,
High DTMF 'divide ratio number' $=257$
Low DTMF 'divide ratio number' $=2$, by definition for OFF see Table 8.
2. Converting 'divide ratio numbers' High DTMF binary 'divide ratio number' = 00000001 (remember the special case that applies here) Low DTMF binary 'divide ratio number' = 00000010.
3. Load binary numbers into proper registers and observe on a spectrum analyzer.

## Programmable Transmit and Receive Mute Polarity Function

 If a designer wants to operate the SA5753 at 3 V and wants to mute the TxMute and RxMute pins with a 5V logic ' 1 ' signal, a series 10k resistor should be used. If the 10k resistor is not used, the SA5753 will draw more current. To eliminate the 10k resistor the designer should make sure that the logic '1' signal never exceeds $\mathrm{V}_{\mathrm{cc}}$.
## The Limiter and All-Pass Circuit

 An important aspect of the AMPS specification is concerned with the 12 kHz maximum frequency deviation. The output of the APROC TX level which causes a maximum frequency deviation of 12 kHz for the transmitter, regardless of the amplitude of the input signal. Figure 14 shows the equipment usedfor the test measurements and how the signal was processed. A 1 kHz signal was applied to the input of the demo-board until a $5 \%$ distorted signal was measured at the limiter output. This waveform's peak-to-peak voltage was recorded as a reference. Then, at various chosen frequencies, the input of the demo-board was overdriven so we could record the distorted peak-to-peak waveform. (See Figure 15)

Formula 4 was used to calculate maximum frequency deviation from the waveforms shown in Figure 15.

Max Freq Dev with All-Pass Ckt = $\left(\frac{B W_{F}}{B W_{R}}\right) 8 k H z$
where
$\mathrm{BW}_{\mathrm{F}}=$ the bottom waveform's peak-to-peak voltage from one of the observed figures.
$\mathrm{BW}_{\mathrm{R}}=$ the bottom waveform's peak-to-peak voltage from the reference Figure 15.

Table 9. Maximum Frequency Deviation Results for the $\mathbf{1 2 k H z}$ Test

Frequency (Hz)	With All-Pass   (kHz)
300	3.58
500	5.61
800	10.13
1000	10.01
1200	9.21
2000	10.01
3000	9.61

## Using the SA5752 and SA5753 for low voltage designs



Figure 15. Results from the AMPS 12kHz Maximum Frequency Deviation Test


Table 9 reveals the calculated results for maximum frequency deviation over the voice band. The test results show that the NE5752 and NE5753 will meet the 12 kHz AMPS specification.
The same test set-up was used for the NAMPS measurements, however, the maximum frequency deviation formula changes. The following formula shows how to calculate the maximum frequency deviation for NAMPS:

Max Freq Dev with All-Pass Ckt =
(5)

$$
\left(\frac{B W_{F}}{B W_{R}}\right)^{2.9 k H z}
$$

where
$\mathrm{BW}_{\mathrm{F}}=$ the bottom waveform's peak-to-peak voltage from one of the observed figures.
$B W_{\mathrm{R}}=$ the bottom waveform's peak-to-peak voltage from the reference Figure 16.

Table 10. Maximum Frequency Deviation Results for the $\mathbf{5 k H z}$ Test

Frequency (Hz)	With All-Pass   $(\mathbf{k H z})$
300	1.48
500	2.11
800	3.27
1000	3.46
1200	3.42
2000	3.65
3000	3.56

Formula 5 was used to calculate the maximum frequency deviation in Table 10 from the waveforms shown in Figure 16. These test results show that the APROC II will meet the 5 kHz maximum frequency. deviation for NAMPS.

## IV. EVALUATION SOFTWARE AND DEMOBOARD

## The APROC II demoboard and evaluation

 software are for evaluation purposes only. It can help a designer understand the hardware and software functionality. The APROC II schematic and layout can be seen in Figures 17 and 18 , respectively. The function of each external component is briefly shown in Figure 17.In this software package, the screen (see Figure 19) only shows the signal path for the SA5753. Recall that for the audio processing chip, the signal is routed between the SA5752 and SA5753. The appropriate pin numbers are labeled to show where the signal enters and leaves the SA5753.
The upper half of the screen is the Tx path and the lower half of the window is the $R x$ path. To complete the signal path, a designer can use the computer's arrow keys to get to the area of interest. The space bar is used to toggle on and off path switches and key functions (like NAMPS, VCO, HPDN, $V^{\prime} X_{\text {CTRL }}$ etc).

The 'greater than' ( $>$ ) or 'less than' ( $<$ ) symbol keys on the key board are used to vary the value of the gain attenuator blocks. The way the gain attenuator blocks are programmed does not follow the logical way where the 'greater than' symbol key means going up in gain and the 'less than' symbol means decreases gain. Instead, the set up is programmed logically by the bits. So a user should use the 'greater than' and 'less than' symbol keys to vary the value, but continue to use the keys until the values stop changing. (See Table 11.)

To power down the chip set the following steps should be taken:

1. To power down the SA5752, move the marker to HPDN and hit the space bar to implement this function.
2. To implement one of the SA5753 three power down modes move the marker to the Power $=000 \mathrm{Bin}$ and program the appropriate mode.

- For PWDN, set Power=1xx Bin; X=don't care
- For IDLE, set Power = 011 Bin
- For the DENA mode, set Power= 010 Bin
- For normal operation, set Power=000 Bin
- For DATA in $_{\text {to }}$ TX OUt disabled, set Power= 001 Bin. This can be used for cordless applications

To power up the chip set, a designer needs to set the Power=000 Bin (for the SA5753) and toggle the HPDN section (for the SA5752).

## DTMF

To implement the DTMF tones, a user can program the high and low tones by typing in the frequencies or programming the $I^{2} C$ bits.

The high decimal value is from 2 to 257 where the frequency range is from off to $778.21 \mathrm{~Hz}-66.66 \mathrm{kHz}$. The low decimal value is from 2 to 257 where the frequency range is from off to 333.52 Hz up to 28.57 kHz .

The difference between the SA5753 DTMF generator and the SA5751 is that when the cycle is completed, the DC voltage goes back to OV, whereas the SA5751 might not return to OV. Therefore, upon switching back to the Tx voice path, a glitch may be heard from the SA5751, but not from the SA5753.

## V. QUESTIONS AND ANSWERS SECTION

Q: I connected your evaluation board and software program but I do not see any output signal on the Transmit path. My input signal is connected to the Mic input of the SA5752. What is the problem?

A: There are several issues to look at. Make sure that the TxMute and RxMute pins are defined. If the registers are programmed such that the TxMute and/or RxMute pins need to be grounded for a signal to flow, please be sure that those pins are grounded.

If the registers are defined such that the TxMute and RxMute pins need $V_{\text {cc }}$ connected to them for a completed signal path, please connect $V_{\text {cc }}$ to the pins. Although leaving these pins open may work, it defines an open state and is, therefore, not guaranteed.
Q: When I program a DTMF tone, it only stays on for 96 ms . How can I make it stay on longer?

A: The DTMF generator is designed to stay on for only 96 ms . If a longer tone is desired, the DTMF registers must be re-loaded before the 96 ms expires or set DTC $=1$. For the evaluation program, the DTMF register can be loaded up automatically to observe the DTMF tone. Just toggle the space bar on the "DTMF frequency DTC" section.

Q: On the evaluation program, there are ADD field and REG values. What are these?

A: These are the registers (ADD = Address field and REG = the register) that must be programmed when using the SA5753 in the $I^{2} \mathrm{C}$ mode. The address field defines which portion of the chip is being accessed (See SA5753 data sheet for a detail look). The register bits control the functions of the block.
If a designer toggles in/out functions, they can see the registers which control that function. The Evaluation software is meant as a learning tool to aid the designer in getting up to speed.

Q: The SA5753 seems to be consuming more current than usual. Is this part damaged?
A: One area to look at is the $1^{2} \mathrm{C}$ clock. If the $1^{2} \mathrm{C}$ clock goes below ground, the SA5753 will draw more current. Therefore, be sure that the $\mathrm{I}^{2} \mathrm{C}$ clock is set at 1.2 MHz square wave and it is from ground to $\mathrm{V}_{\mathrm{CC}}$.
Q: I have a Philips APROC II demoboard and a $5 \mathrm{~V} 1^{2} \mathrm{C}$ interface board. At the present moment, I use two supplies to run the APROC II board at 3 V and the interface board at 5 V . Is there a 3 V chip available that can be used for the interfacing between the computer's printer port to the $\mathrm{I}^{2} \mathrm{C}$ section of the chip?
A: Yes, there is a 3V interface chip; the Philips PC74HC4049T. When a customer purchases an APROC II demoboard, he/she should receive an interface board. Most likely it will be the 3 V version.
Q: The APROC II seems to draw more current than usual when I mute the TxMute and RxMute pins with a 5V logic ' 1 ' signal. The APROC II is operating at 3V. Is this normal, and if not, what can I do?
A: If you are going to operate the APROC II at 3 V and apply 5 V to the RxMute and TxMute pins, a series 10 k resistor should be used to allow for this configuration.
If the logic ' 1 ' input is 3 V and the APROC II is operating at 3 V , the 10 k resistor is not required. In general, it is safe to say that the logic ' 1 ' input should be no higher than $V_{C c}$ if the 10 k resistor is not used.
Q: I am evaluating your DTMF generator using the Philips evaluation program and demoboard. The frequency calculated and the frequency measured is correct but The evaluation screen, however, sometimes shows a different number, but the number shown is not too far off. Is there a bug in the program?
A: Yes, the program display is not correct. What you calculate and measure is fine. The program is incorrect at this time.
Q: I am evaluating the current consumption of the APROC II demoboard. I read a higher current than what is spec'd in the data sheet. What am I doing wrong?
A: Remember that the $I^{2} C$ interface card will draw some current away from the APROC Il board (if it's connected that way). To avoid this problem, operate the $I^{2} \mathrm{C}$ interface card with a separate power supply and then measure the APROC II current.
Q: I have your APROC II evaluation demoboard. I am applying an input signal
of 1 kHz at 100 mV RMs to the MIC input and I am not getting any signal output on the TX $X_{\text {OUT }}$ pin. Any suggestions?
A: Your transmit path is probably open. To close the path you can do one of two things: either ground the TxP Mute pin (Pin 18) or redefine TXP to mute for a different input. You should also make sure that the SA5752 and SA5753 are in the power up state.
Q: I have a very unique situation using the

SA5753. I would like to use the Default mode and ${ }^{2} \mathrm{C}$ mode in different situations. I know that the HPDN pin becomes an output when $\mathrm{I}^{2} \mathrm{C}$ mode is implemented; and I know that the HPDN pin becomes an input when the Default mode is implemented. In my application I do not care about current consumption, therefore, the HPDN pin is not important to me. What can I do so that I don't leave the HPDN undefined, but at the same time, I allow myself to switch back and
forth between the two modes?
A: For ease of use in the Default Mode without worrying about the function of the HPDN pin, the user can add an external pull-up resistor of $100 \mathrm{k} \Omega$ between HPDN (Pin 6) and VDD. This will put the SA5753 in Normal (active) Default operation when DFT (Pin 13) is pulled HIGH. For Power Down Mode the user will need to pull the HPDN pin LOW.


## Component Functions

DC blocking capacitor for MIC $\mathbb{N}$ pin
C2 DC blocking capacitor for Preamp gain
C3 Used for filtering, internal use only
C4 Used to set attack and release time of VOX
C5 VREF filter capacitor
C6 $V_{\text {CC }}$ bypass capacitor
C7 Sets attack and release time of expandor
C8 DC blocking cap for Expandor out
C9 DC blocking cap for De-emphasis out
C10 AC bypassing for compressor
C11 DC blocking cap for Pre-emphasis in
C12 Sets attack and release time for compressor
C13 Passes AC to GND

C14 DC blocking cap for compressor in
C15 DC blocking cap for TXBF in
C16 VCC bypass cap
C17 DC blocking cap for SPKR OUT
C18 DC blocking cap for EAR OUT
C19 DC blocking for Demodulation in pin
C20 DC blocking for Data in pin
C21 DC blocking cap for Tx OUT
R1 Sets microphone preamp gain
R2 Sets gain of VOX, but for internal use only. Effects voltage on Pin 4.
R3 Used to set the release time of VOX
R4 Pull-up resistor to get logic level out
R5 Sets threshold level of VOX


Figure 18. APROC II Evaluation Board Layouts


Figure 19. Graphical Display of SA5753 $I^{2} C$ Evaluation Program
Table 11. Gain Attenuator Steps

SYMBOL	Sequence of Gain Attenuator Steps
A1	$0,-0.8,-1.6,-2.4,-3.2,-4.0,-4.8,-5.6,-6.4,-7.2,-8.0,-8.8,-9.6,-10.4-11.2,-12$
A2a	$0,0.25,0.50,0.75,1.00,1.25,1.50,1.75,2.00,2.25,2.50,2.75,3.00,3.25,3.50,3.75,0,-0.25,-0.50,-0.75,-1.00$,
A2b	$-1.25,-1.50,-1.75,-2.00,-2.25,-2.50,-2.75,-3.00,-3.25,-3.50,-3.75$
A3	$0,-12,-18,-24$
A4	$-2,-3,-4,-5,-6,-7,-8,-9,-10,-11,-12,-13,-14,-15,-16,-17$
A6	$0.5,1.0,1.5,2.0,2.5,3.0,3.5,0,-0.5,-1.0,-1.5,-2.0,-2.5,-3.0,-3.5$
A7	$0,-2,-4,-6,-8,-10,-12,-14,-16,-18,-20,-22,-24,-26,-28,-30$

FEATURES
. CMOS low power
. General purpose controller for Power Amplifier modules in GSM systems.
.High speed serial interface.
Power down mode.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VDD	supply voltage	2.9	5.0	6.0	V
IDD	supply current		8.5		mA
Tamb	ambient temp.	-40		+70	C

. 1 Mhz bandwidth suppresses $A M$-distortion of the power amplifier.
. On-Chip rampgenerator for all
16 GSM mobile station Power levels.
.Suitable for base station applications.
. On-chip detection for Quick-Restart.
(base station applications only).
.Programmable analog output voltage limitation.
.Programmable integrator start condition.
. Ramp-up/timing related to the 13 Mhz
GSM system frequency clock.

ORDERING INEORMATION

EXTENDED	PACKAGE			
	PINE NUMBER	PIN POSITION	MATERIAI	CODE
PCA5075	20	SSOP20	Plastic	SOT266

## Power amplifier controller for GSM systems

Figure 1. : Blockdiagram PCA5075


## PIN CONEIGURATION.

SYMBOL	PIN	TYPE	DESCRIPTION
VS1	1	I	Sensor signal 1
VDDA	2	-	Analog positive supply
BVS 1	3	0	Buffered sensor signal 1
PD	4	I	Power Down
IBIAS	5	I	Current reference for external rectifier
VS2	6	I	Sensor signal 2
VSR	7	0	Bias voltage for sensor
VDDD	8	-	Digital Supply
DTX	9	I	Disable speech transmission
TRIG	10	I	Trigger signal
CL13	11	I	13 Mhz GSM clock
DF	12	0	Damping switch control signal. (only for base-station applications).
STROBE	13	I	Serial bus strobe signal
CLK	14	I	Serial bus clock signal
DATA	15	I	Serial bus data signal
VSSD	16	-	Digital negative supply
VSSA	17	-	Analog negative supply.
VIO	18	0	Integrator Output voltage
VIP	19	I	Integrator positive input voltage
VIN	20	I	Integrator negative input voltage.



## Functional description

This CMOS device integrates Opamps, a DA-Converter and a serial interface to implement an Integrating-Controller.
It is designed to control both the power level and the power up/down ramping of a GSM-transmitter.
All 16 GSM mobile station power up/down ramping curves (including sensor nonlinearity) are generated on chip.
This device is also suitable for base stations. The extra base station ramp curves are generated by using an external damping network in front of the (external) rectifier and by decreasing the value of R1. This extra damping network and the additional resistor in parallel with R1, are activated when the signal DF is high. This DF signal again, is directly controlled by the Damping factor register.

The device operates on an internal clock frequency of 2.166 Mhz , ( $\mathrm{T}_{\mathrm{x}}=1 / 2.166 \mathrm{uS}$ ) that is generated on Chip by dividing the external 13 Mhz clock by six.

Generally the power amplifier is ramped up after a rising edge on TRIG and ramped down after a falling edge.
When a quick restart is detected (Base-station applications only), the integrating controller is not totally turned off. This enables the controller to ramp-up faster after a ramp-down.
A quick restart is executed when TRIG is low for only a very short period of $T_{\text {QRS }}$. To detect a quick restart, all ramping is delayed wrt. TRIG by $2 * \mathrm{~T}_{\mathrm{x}}$.

To match the controller to different Power-amplifiers, the controller output VIO can be limited to $4 \mathrm{~V}, 4 \mathrm{~V}-\mathrm{V}_{\text {diode }}$ or $4 \mathrm{~V}-2 \mathrm{~V}_{\mathrm{diod}, \mathrm{r}}$ depending on the contents of the limiter register.

The contents of the power level register determines which of the 16 ramp-curves is taken during ramp-up/down.

When the integrator is inactive, the controller output VIO will have a (programmable) voltage of $0.3 \mathrm{~V}, 0.3 \mathrm{~V}+\mathrm{v}_{\text {dioder }} 2 \mathrm{~V}_{\text {diode }}-0.05 \mathrm{~V}$ or $2 \mathrm{~V}_{\text {diode }}+0.2 \mathrm{v}$, depending on the contents of the integrator start condition register.

When DTX becomes active during a ramp-up, ramping is immediately stopped and a down ramp is executed, turning the power amplifier off.

Separate power pins are provided to the analog and digital blocks.
The register information is written via a three wire serial bus.

## The analog Integrating-Controller.

The analog Integrating controller consists out of four Opamps. Opamp 1 and Opamp 2 are only used for buffering purposes. Opamp 4 is used to make a differential integrator, whereas Opamp 3 is used to limit the integrator output voltage, and to set the integrator start condition ("homeposition") when the integrator is inactive.

A two-diode external rectifier is connected to pins VSR, VS2, Ibias and VS1. The SC-Adder block, basically generates the voltage VSR $-2 U_{d}+U_{d a c}$. The differential integrator the integrates the difference of this voltage and the voltage VSR - $2 U_{d}+U_{s o n}$. The integrator output voltage is used to control the power amplifier module.

## Ramp generation.

Ramp-up.


Fig 2a (left) and 2b (right).

Figure 2a shows the timing of a typical ramp-up curve. Figure 2 b shows a measured ramp-up curve of a discrete controller implementation.

If no quick restart was detected during the last ramp-down, the controller was in "homeposition" before time B. The integrator output voltage is regulated to the value defined in the Integrator start condition register. The output of the adder and the slope generator is $U_{k i c k}+V S R-2 U_{d}$. ( $U_{\text {kick }}$ is typically 60 mV ).
The differential integrator input is $U_{\text {kick }}$.
On time $B$ the integrator start condition circuitry is turned off. Due to the positive differential input voltage, the integrator output will start to rise. If a quick restart was detected during the last ramp-down, the integrator start condition circuitry has already been turned off. In this case the output voltage of both adder and slope generator is VSR - $2 U_{d}$.

On time C the DAC generates a new output voltage $U_{\text {dac }}$. The output of the adder block is now: VSR $-2 U_{d}+U_{\text {dac }}$. The slope generator will generate a "smooth" curve between the former and the newer output value of the adder block. The power amplifier is ramped up via the integrator.

On time $D$ the new output value of the slope generator is reached.

Ramp-down.


Figure 3a (left) and Figure 3b (right).

In Figure 3a, the timing of a typical ramp-down curve is shown, figure 3 b shows again measurements on a discrete implementation of this controller.

On time $E$ the ramp-down is started.
If a quick restart was detected the adder output voltage after time $E$ will be: VSR - $2 U_{d}$ not, the adder output voltage after time $E$ will be: VSR - $2 U_{d}-U_{N Q}$ with $U_{N Q}$ typically 100 mv . The slope generator again generates a "smooth" curve between the new adder output voltage and the old adder output voltage.

On time $F$ the output of the slope generator has reached its final value.
If a quick restart was detected, a ramp up will be executed.
The adder output voltage will be VSR $-2 U_{d}+U_{\text {dac }}$.
If, however, no quick restart was detected, the integrator will be turned into its "homeposition". The integrator output voltage will be regulated again to the value defined in the integrator start condition register. Also the adder output voltage will be VSR $-2 U_{d}+U_{k i c k}$.

## Serial Programming bus

A simple 3 -line unidirectional serial bus is used to program the circuit. The 3 wires are: Data Clk and Strobe. The data sent to the device are loaded in bursts framed by Strobe. Programming clock edges and their appropriate data bits are ignored until Strobe goes active low. The programmed information is loaded into the addressed latch when Strobe returns inactive high. Only the last 18 bits serially clocked into the device are retained within the programming register. Additional leading bits are ignored, and no check is made on the number of clock pulses. If Strobe returns high wile clk is still low, the extra clock edge produced causes data shift. The fully static CMOS design uses virtually no current when the bus is inactive.

## Data Format

Data is entered with the most significant bit first. The leading bits make up the data field, whilst the trailing four bits are an address field. The PCA5075 uses only 1 of the available addresses. The format is shown below; the first entered bit is p 1 , the last one p 18.

PROGRAMMING REGISTER BIT USAGE									
p18	p17	p16	p15	p14	p13	p12	pxx	p2	p1
addo	add1	add2	add3	data0	datal	data2	datax	datal2	datal3
Latch address				LSB		data		MSB	

The trailing address bits are decoded upon the inactive Strobe edge. This produces an internal load pulse to store the data in one of the addressed latches. To avoid erroneous circuit operation, the pulse is not allowed during data reads by the rest of the circuit. This condition is guarantee by respecting a minimum Strobe pulse width after data transfer.
The correspondence between data fields and addresses is provided in the following table:

REGISTER BIT ALLOCATIONS																	
$p$ 1	p 2	p 3	p 4	p	p 6	p	p	p	p 10	$\underline{p} 11$	p 12	p 13	$1{ }_{1}$	${ }_{15}$	p 16	17	p 18
d13	d12	data field												address			
Power Level								DF1	DFO	L1	L0	IS1	IS0	1	0	1	0

$D F=$ Damping Factor .
DFO = data on DF output
DF1 = enable of this output.
$L=$ Limiter voltage.

L1	L0	Limiter voltage	
	1	1	$4-2 \mathrm{Vd}$
	1	0	$4-\mathrm{Vd}$
	0	x	4

IS $=$ Initial start condition.

IS1	ISO	Initial value of VIO
0	0	0.3 V
0	1	$0.3 \mathrm{~V}+\mathrm{Vd}$
1	0	$-0.05 \mathrm{~V}+2 \mathrm{Vd}$
1	1	$0.2 \mathrm{~V}+2 \mathrm{Vd}$

## Specifications of Opamp4.

Tamb $=-40$ to $70 \mathrm{C}, \mathrm{VDD}=$ VDDA $=$ VDDD unless otherwise specified.

SPEC	MIN .	TYP	MAX	UNIT	CONDITION
VDD	2.9		6.0	v	
additional peaking in integrator amplitude characteristic.			3	dB	Integrator Loop closed. $\mathrm{R} 2=8.2 \mathrm{Kohm}, \mathrm{Cl}=180 \mathrm{pF}$ $\mathrm{F}=7 \mathrm{Mhz}$
additional phase shift in integrator application			30	deg.	Integrator Loop closed. $\mathrm{R} 2=8.2 \mathrm{KOhm}, \mathrm{Cl}=180 \mathrm{pF}$ $\mathrm{F}=7 \mathrm{Mhz}$.
CMMR	?			dB	
PSRR+	?			dB	
PSRR-	?			dB	
SR+	1			v/us	
SR-	1			v/us	
Dynamic range common mode input signal	4.2			V	$\mathrm{Vdd}=5 \mathrm{~V}$
VIO Output voltage	0.3		4	V	$\mathrm{Vdd}=5 \mathrm{~V}$
Rin	?			Ohm	
Rout	?			Ohm	

Specifications of Opamp 1 and 2.
Tamb $=-40$ to $70 \mathrm{C}, \mathrm{VDD}=\mathrm{VDDA}=\mathrm{VDDD}=5 \mathrm{~V}$ unless otherwise specified.

SREC	MIN.	TYP	MAX	UNIT	CONDITION
VDD	2.9		6.0	V	
3-Db point	4			Mhz.	$\mathrm{zl}=1 /(\mathrm{s} * 62 \mathrm{pF})+8.2 \mathrm{Kohm}$
Gain peaking			3.0	dB	$"$
DYn. ranges comm.mode	4.2			V	$"$
SR+, SR-	$1 / 3$			$\mathrm{~V} / \mathrm{uS}$	$"$

Specifications of DAC8.
Tamb $=-40$ to $70 \mathrm{C}, \mathrm{VDD}=\mathrm{VDDA}=\mathrm{VDDD}=5 \mathrm{~V}$ unless otherwise specified.

SPEC	MIN.	TYP	MAX	UNIT	CONDITION
INL			$+/-1$	LSB	
DNL			$+/-1$	LSB	
FS	2.5			Mhz	Load $=4 \mathrm{pF}$
Output range	Ur			V	Reference $=$ Ur

## LIMITING VAIUES

In accordance with the Absolute Maximum System (IEC 134)
VDD $=$ VDDD $=$ VDDA, VSS $=$ VSSA $=$ VSSD

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
VDD	Supply voltage	.5	6.0	V
Vi	DC input voltage on all pins	-0.5	VDD	V
IDD	Supply current	-	11.5	mA
Ptot	Total power dissipation		tbf	mW
Tstg	Storage temperature range	-65	150	C
Tamb	Operating ambient temperature	-40	70	C

## DC CHARACTERISTICS

Tamb $=-40$ to $70 \mathrm{C}, \mathrm{VDD}=\mathrm{VDDA}=$ VDDD, VSS $=$ VSSA $=$ VSSD, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN .	TYP.	MAX	UNIT
VDD	Supply voltage range		2.9	5.0	6.0	V
IDD	Total operating current	CLK13 $=13 \mathrm{MHz}$		8.5		mA
IDDq	Total quiescent current	$P D=\mathrm{High}$			10	uA
Logic inputs ; Pin nrs. 5,8-13						
VIL	Input voltage low		$0.3 * V D D$			V
VIH	Input voltage high				$0.7 * \mathrm{VDD}$	v
IL	Input leakage current		-5		5	UA
Cin	Input capacitance			10		pF

## Analog Inputs

Tamb $=-40$ to 70 C , VDD $=\mathrm{VDDA}=\mathrm{VDDD}=5 \mathrm{~V}$, VSS $=\mathrm{VSSA}=\mathrm{VSSD}=0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VS1	Sensor signal 1		0.8		4.2	$V$
VS2	Sensor signal 2				VSR	V
IL	Input leakage current		-5		5	uA
Cin	Input capacitance				10	pF

Controller timing characteristics.
VDD $=$ VDDA $=$ VDDD $=5 \mathrm{~V}, \mathrm{VSS}=\mathrm{VSSA}=\mathrm{VSSD}, \mathrm{T}=-40$ to 70 C unless otherwise specified.
For signal explanation see Fig. 2 and 3. $T X=6 / 13$ uS.

SYMBOL	PARAMETER	MIN .	TYP.	MAX	UNIT.
TQRS	Negative pulse width on TRIG for quick restart recognition.	TX/3		$2 * T X$	S
TB	Delay from positive TRIG edge to point B. ( See Fig. 2 )		2 TX		S
TC	Delay from positive TRIG edge to point C. ( See Fig. 2 )		TB+18TX		S
TD	Delay from positive TRIG edge to point D. ( See Fig. 2 )		$\mathrm{TC}+22 \mathrm{TX}$		S
TF   no qrs	Delay from negative TRIG edge to point F. ( See Fig. 3 )		$2 \mathrm{TX}+22 \mathrm{TX}$		S
TF   w. qrs	Delay from negative TRIG edge		$3 T \mathrm{X}+22 \mathrm{TX}$		S

## Analog Output

$T a m b=25 C, V D D=V D D A=V D D D=5 V, V S S=V S S A=V S S D=0 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	TC	MIN.	TYP.	MAX.	UNIT
VSR	Bandgap $+/-4 \%$	$-0.175 \mathrm{mv} / \mathrm{C}$	1.2	1.25	1.3	V

Serial Bus Timing characteristics.

$V D D=V D D A=V D D D=5 \mathrm{~V}, \mathrm{VSS}=\mathrm{VSSA}=\mathrm{VSSD}=0 \mathrm{~V}, \mathrm{~T}=-40$ to 70 C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Serial programming Clock (Pin CLK)		10	40	ns		
Tr,Tf	Input rise and fall times	100			ns	
Tcyc	Clock period					
Enable programming (Pin Strobe)						
Tstart	Delay to rising clock edge	10			ns	
Tend	Delay from last clock edge			ns		
Twid	Minimum inactive pulse width					
Tnew	Delay from TRIG inactive to new data	200			ns	
Register serial input data (pin Data)						
Tsu	Input data to CLK setup time	20			ns	
Thl	Input data to CLK hold time	20				

[^3]
## Application Diagram



Application Diagram Base Station.

## ADPCM CODEC for Digital Cordless Telephone

The PCD5032 is a CMOS device designed for use in Digital European Cordless Telephone systems (DECT) but it is also suited for other cordless telephony applications (e.g. CT2). The PCD5032 performs A/D and D/A conversion, ADPCM encoding and decoding compliant to CCITT recommendation G. 721 (blue book 1988). The PCD5032 allows direct connection to external microphone and earpiece. The device can be used in both handset and base-station designs.

This objective specification contains advance information and is subject to change without notice.

## Featuress

- G. 721 compliant ADPCM encoding and decoding
- 'Bitstream' A/D and D/A conversion
- On-chip receive and transmit filter
- On-chip ringer and tone generator
- Programmable gain of receive and transmit path
- Serial ADPCM interface with independent timing for maximum flexibility
- Linear PCM data accessible for digital echo cancelling
- Programmable via I2C interface
- Fast receiver mute input via pin
- On-chip voltage reference
- On-chip symmetrical supply for electret microphone
- Few external components; direct connection to microphone and earpiece
- Low power consumption in standby mode
- Low supply voltage (single supply 2.7 V up to 5.5 V )
- CMOS technology
- Minimized EMC on digital outputs


## Applications

- Digital European Cordless Telephony (DECT)
- CT2 cordless
- Speech compression


## Package Outline

SO28 (SOT136A)
QFP44S14 (SOT205AG)

### 1.0 Block Diagram



Fig. 1 Block diagram.

### 2.0 Pinning



Fig. 2a Pinning diagram PCD5032 QFP44S14

RAS 1	$\square$	28	TAS
RAD 2		27	TAD
RFM 3		26	DCK
RES 4		25	CLK
RPE 5		24	BZ+
RPI 6		23	BZ-
PO 7	PCD5032	22	TST
TPI 8		21	VSS
TPE 9		20	VDD
SCL 10		19	RE+
SDA 11		18	RE-
A0 12		17	VG
TM +13		16	VR+
TM- 14		15	VR-

Fig. 2b Pinning diagram PCD5032 SO28

### 2.1 Pin Description

Pin Name VO Description

## General

26	$V_{D D}$	-	Positive power supply (2.7V-5.5V)
28	$V_{S S}$	-	Negative power supply (0V)
22	VG	0	Analog signal ground
20	VR+	0	Positive reference voltage
19	VR-	0	Negative reference voltage

## Digital

34	CLK	I	Clock input
36	DCK	I	Data clock (ADPCM)
41	RAS	Receiver ADPCM sync	
42	RAD	R	Receiver ADPCM data input
4	RPI	R	Receiver PCM input
3	RPE	O	Receiver PCM output enable
44	RFM	I	Receiver fast mute
39	TAS	I	Transmitter ADPCM sync
37	TAD	O	Transmitter ADPCM data output
8	TPI	I	Transmitter PCM input
9	TPE	O	Transmitter PCM output enable
6	PO	O	PCM data output
12	SDA	IO	I2C serial data input / acknowledge
11	SCL	I	I2C clock input
14	AO	I2	I2C address select pin
1	RES	I	Reset input (active high)
30	TST	I	Test mode

## Analog

$33 \quad \mathrm{BZ}+$

O Ringer output
31 BZ- O Ringer output

15 TM+ 1 Transmitter audio input (microphone)
17 TM- I Transmitter audio input (microphone)
25 RE $+\quad$ Receiver audio output (earpiece)
23 RE- O Receiver audio output (earpiece)
(1) Internally generated, intended for electret microphone supply.
(2) Definition: Receiver = direction from ADPCM interface to earpiece; Transmitter = direction from microphone to ADPCM interface.
(3) To be connected to $\mathrm{V}_{\mathrm{SS}}$ in normal application.

### 3.0 Functional description

### 3.1 Digital interfaces (see Fig. 1 Block diagram)

### 3.1.1 ADPCM interface

The ADPCM interface pins (RAD, TAD) carry 4 bits of serial data. Transmit and receiver data both are controlled by separate synchronisation pins (RAS, TAS).

Upon detection of a high RAS signal (with rising DCK edge), the receiver will read 4 ADPCM bits on the next 4 high-to-low transitions of the DCK data clock. Likewise, upon reception of a high TAS signal, the transmitter will output 4 ADPCM bits on the next 4 low-to-high transitions of DCK. Figure 5 shows the timing diagram. During the time that the ADPCM data output (TAD) is not activated, it will be in a high impedance state, enabling a bus structure to be used in multi-line base stations. Input RAD has an internal pull-down resistor.

The minimum frequency on the DCK input is fCLK / 54, the maximum value equals the clock frequency, and any frequency in between may be chosen. The RAS signal controls the start of each conversion in a frame at an 8 kHz rate. The master clock 'CLK' must be locked to the frequency of 'RAS', with a ratio $\mathrm{f}_{\mathrm{CLK}}=432 \times \mathrm{f}_{\text {RAS }}$.

### 3.1.2 PCM interface

To enable additional data processing in a base station both transmit and receive linear PCM data paths are accessible.

For the receive direction the PCM data is output on pin PO and read from pin RPI. For the transmit direction the PCM data is output on pin PO and read from pin TPI. To enable bus structures to be used in base stations the PCM output PO is in high impedance state when not active. Inputs TPI/RPI have internal pull-down.

In a typical (handset) application pin PO is directly connected to RPI and TPI.If additional data processing is required (e.g. echo cancellation in a base-station), then a data processing unit may be placed between PO and RPI or PO and TPI.

The data format is serial, 2's complement, MSB first. PO outputs 16 bits( 14 data bits followed by 2 zeroes). TPI/RPI read 14 data bits. The bit frequency is 3456 kHz (CLK). Data output PO changes on the falling edge of CLK. Data inputs TPI/RPI are read on the rising edge of CLK (Figures 7,8 ).

For interfacing to digital signal processors signals TPE and RPE (both active low) mark the position of the transmit and receive pcm data on pin PO (Figure 6).
TPE/RPE change on the rising edge of CLK.
Outputs RPE and TPE have low impedance only from half a CLK cycle before to half a CLK cycle after the active state. The rest of the time they are in high impedance state.
Thus a wired-OR configuration can be made when only one DSP serial input port is used for reading both transmit and receive data. An external pull-up is required.

### 3.1.3 ${ }^{12} \mathrm{C}$ interface

The Philips ${ }^{2} \mathrm{C}$ interface is used for programming gain and mode of operation.


Fig. 3 I2C address
With the address select pin AO it is possible to have 2 independently programmed ADPCM codecs in a base station (2 outside lines). If more codecs are used in one base station then the address pin can be used as a 'select' signal. For timing of the I2C bus, see Philips Semiconductors' brochure "The I2C-bus and How to Use It" dated January 1992, ordering code 939839340011.

Each function can be accessed by writing one 8 -bit data word to the ADPCM codec. For this reason the 8 -bit word is divided into 2 fields:
bit7, bit6 : function
bit5 to bit0 : value/setting.
Table 1: Overview of the ${ }^{2} \mathrm{C}$ programming possibilities.

Function	$b 7$	$b 6$	$b 5$	$b 4$	$b 3$	$b 2$	$b 1$	$b 0$
OPERATION MODE	0	0	-	-	TONE	PON	T1	TO
RECEIVER CONTROL	0	1	RV2	RV1	RVO	RG2	RG1	RG0
TRANSMITTER CONTROL	1	0	ST1	ST0	MUTE	TG2	TG1	TG0
RINGER	1	1	BF2	BF1	BF0	BV2	BV1	BVO


Definitions:	
TONE	: 'tone/ringer' selection for tone generator output;
tones can be sent to ringer or receiver DAC.	

Programming the ADPCM codec is possible in active mode as well as in standby mode. A reset clears all I2C registers.

### 3.1.4 Fast mute

The RFM (Receiver Fast Mute) pin enables fast muting of the received signal if erroneous data is present on the ADPCM interface.

Muting is done in the same manner as the receiver mute via I2C bus. The input data of the ADPCM decoder is blanked, so that the ADPCM decoder output signal goes to zero. To ensure immediate silence on the analog outputs RE+/RE-, the linear PCM input data of the receive filter is set to zero as well.

If the mute signal is switched off again, then the ADPCM decoder output settles gradually from zero to the appropriate PCM signal level. No audible clicks will occur.

The sidetone level is not affected by the mute function.

## ADPCM codec for digital cordless telephone

### 3.2 Analog parts and I2C programming

### 3.2.1 Input/Output

The analog input pins (TM+, TM-) can be connected directly to a microphone. For electret microphones capacitive coupling is required (Figure 11). The earpiece must be a low ohmic device ( $>100 \Omega$ differential).

The microphone and earpiece amplifiers have the possibility of gain control via the ${ }^{12} \mathrm{C}$ interface. Further the sending and receiving direction can be muted separately. Analog gain control for the receive path can be set in steps of 1 dB . Digital volume control can be set in 6 dB steps. The following table gives an overview of the programming possibilities.

Table 2: Overview of gain control options

Function Receiver gain (relative)	12C-code	description	note
	$01 \times x \times 101$	-3 dB	
	$01 \times x \times 110$	-2 dB	
	$01 \times x \times 111$	-1dB	
	$01 \times x \times 000$	0 dB	default
	$01 \times x \times 001$	$+1 \mathrm{~dB}$	
	$01 \times x \times 010$	$+2 \mathrm{~dB}$	
	$01 \times x \times 011$	$+3 \mathrm{~dB}$	
	$01 \times x \times 100$	+ 4 dB	
Receiver volume	01000xxx	0 dB	defaults
	01001xxx	-6dB	
	01010xxx	-12 dB	
	01011xxx	-18 dB	
	01100xxx	-24 dB	
	01101xxx	$-30 \mathrm{~dB}$	
	01110xxx	-36 dB	
	01111xxx	RX MUTE	
Transmitter gain (relative)	$10 \times x \times 101$	-3dB	
	$10 \times x \times 110$	-2dB	
	$10 x x \times 111$	$-1 \mathrm{~dB}$	
	$10 \times x \times 000$	0 dB	default
	10xxx001	$+1 \mathrm{~dB}$	
	$10 \times x \times 010$	$+2 \mathrm{~dB}$	
	$10 x x \times 011$	+ 3 dB	
	$10 x x x 100$	+ 4 dB	
Transmitter mute	$10 x \times 1$ xxx	TX MUTE	default off

## ADPCM codec for digital cordless telephone

### 3.2.2 Sidetone

With the I2C interface the (local) sidetone level can be set to $-12,-18,-24 \mathrm{~dB}$, or switched off. See table 3. The sidetone level is independent of the receiver volume control setting.
Table 3: Sidetone level options

Function	I2C-code	description	note
Sidetone	$1000 \times x x x$	no local sidetone	default
	$1001 \times x x x$	level $=-12 \mathrm{~dB}$	
	$1010 x x x x$	level $=-18 \mathrm{~dB}$	
	$1011 \times x \times x$	level $=-24 \mathrm{~dB}$	

### 3.2.3 Tone generator and Ringer

The PCD5032 contains a programmable tone generator which can be used for generating ringer tones ( $B Z+, B Z-)$ or local information tones in the receive path ( $R E+, R E-$ ).

By setting the TONE bit (b3) in the operation mode register the tone output will be directed to the receiver DAC, otherwise the tones will be sent to the ringer output stage. Table 4 shows the possible frequency and volume settings.

Table 4: Tone output frequency / volume options

Function   Volume (rel)	$12^{12}$-code	description	note
	$11 \times \times \times 000$	signal off	default
	$11 \times x \times 001$	-29 dB	sine wave
	$11 \times \times \times 010$	-23 dB	sine wave
	$11 \times x \times 011$	-17 dB	sine wave
	$11 \times \times \times 100$	$-11 \mathrm{~dB}$	sine wave
	$11 \times \times \times 101$	- 5 dB	sine wave
	$11 \times x \times 110$	0 dB	sine wave
	$11 \times x \times 111$	+4dB	squarewave
Frequency	11000xxx	400 Hz	
	11001xxx	421 Hz	
	11010xxx	444 Hz	
	11011xxx	800 Hz	
	11100xxx	1000 Hz	
	11101xxx	1067 Hz	
	11110xxx	1333 Hz	
	11111xxx	2000 Hz	

The ringer output (BZ) is differential and is intended for low ohmic devices. If the ringer is switched off then both outputs are low. The output signal is a pulse density modulated block wave (on a 32 kHz basic pulse rate) to generate a sinewave-like output signal, see figure 4. Volume is controlled by changing the pulse width of each pulse. In the square wave mode a full square wave is generated and results in the maximum volume. The volume settings (in dB ) are given for the first harmonic signal component.

One period of a 1 kHz signal ( 0 dB ) looks like this $(V(B Z+)-V(B Z-))$ :


Fig. 4 Tone output example

### 3.3 Modes of operation

The ADPCM codec has three modes of operation, a normal mode and two loop modes. See the table below for details on setting these modes. Also the standby and active mode are set via the ${ }^{12} \mathrm{C}$ bus.

Table 5: Modes of operation.

Function   Standby mode	I2C-code   $00 \times x \times 0 \times x$	description   power down	note   default
active mode	$00 \times x \times 1 \times x$	active	default
set Normal mode	$00 \times x \times x 00$	normal operation	
set Loop 1	$00 \times x \times x 01$	loopback on ADPCM side and   on PCM side without using   ADPCM transcoder.	
set Loop 2	$00 \times x \times x 10$	loopback of TM + /TM- to   RE $+/$ RE- through ADPCM   transcoder.	

### 3.3.1Standby mode

After a reset the ADPCM codec will by default be in standby mode. All I2C settings will be cleared. PON=0 sets the codec in standby mode. In standby mode all circuits are switched off, except for the I2C interface. Before going to standby mode the PCD5032 performs a reset of the ADPCM transcoder, digital filters and auxiliary logic functions. The I2C interface registers are not cleared.

### 3.3.2 Active mode

$\mathrm{PON}=1$ in the operation mode register sets the codec in active mode.
In active mode the ADPCM codec can be operated either in normal mode or one of the two test loops may be selected.

### 3.3.3 Test loops

Both test loops can be used for test or evaluation purposes.
Loop 1 is intended for testing the audio path and A/D, D/A converters, the ADPCM transcoder is not addressed in this mode.
The ADPCM data is directly looped back towards the radio interface. The PCM data is looped from transmit filter output to receive filter input.

Loop 2 is intended for testing the complete audio path including ADPCM encoding and decoding.

### 3.3.4 Reset (input RES)

Atter an external reset pulse the circuit will perform an internal reset procedure. The reset pulse must be active during at least 10 CLK cycles. 125 us (one 8 kHz period) atter RES has gone low, the internal reset is completed and the PCD5032 goes into standby mode. At that moment the ADPCM codec is ready to be programmed.

A reset clears all ${ }^{2} \mathrm{C}$ registers and resets the ADPCM transcoder, digital filters and auxiliary logic functions.

### 4.0 Characteristics

### 4.1 Maximum Ratings

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	min	max	unit
Supply voltage $\mathrm{V}_{\text {DD }}-\mathrm{V}_{S S}$	-0.5	+6,5	V
Voltage at any pin except $V_{D D}$	$\mathrm{V}_{\text {SS }}-0.5$	$V_{D D}+0.5$	V
DC current through pin:			
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {SS }}$	-	150	mA
BZ+, BZ-	-	150	mA
$R E+$ RE-		50	mA
other pins	-	10	mA
Total power dissipation		500	mW
Operating ambient temperature	-25	+70	${ }^{\circ} \mathrm{C}$
Storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

## Handling

Inputs and outputs are protected against electrostatic discharge in normal handling. ESD protection according to Human Body Model is guaranteed up to 800 V . However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see 'Handling MOS Devices').

### 4.2 Electrical Characteristics

Conditions: $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{CLK}=3456 \mathrm{kHz}$

Parameter min. typ. max. unitGENERAL					
Operating temperature	-25	25	70	${ }^{\circ} \mathrm{C}$	
Supply voltage	2.7	3.0	5.5	V	
Supply current					$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$
-active (no load)	-	7	14	mA	note 0
-standby		20	100	$\mu \mathrm{A}$	note 0
Leakage current inputs	-	-	1	$\mu \mathrm{A}$	
Analog ground	0.48	0.5	0.52	$\times V_{D D}$	
Reference voltage VR+	0.8	1.0	1.2	V	note 1
Reference voltage VR-	-0.8	-1.0	-1.2	$\checkmark$	note 1
DIGITAL I/O					
$\mathrm{V}_{\mathrm{IH}}$	0.7	-	1.0	$x V_{\text {DO }}$	note 2
$V_{\text {IL }}$	0	-	0.3	$x V_{\text {DD }}$	note 2
$\mathrm{V}_{\text {OL }}$	-	-	0.4	V	note 2
$\mathrm{V}_{\mathrm{OH}}$	$V_{D D}-0.4$	$\stackrel{-}{-}$	$V_{D D}$	$\checkmark$	note 2
Pull-down resistor	-	150	-	k $\Omega$	note 2
DCK frequency	$\mathrm{f}_{\text {CLK }} / 54=64$	-	fclk	kHz	note 3
RAS,TAS frequency	-	8	-	kHz	note 3


parameter	min	typ	$\max$	unit
12C Bus Timing 100 kHz				
SCL clock frequency	-	-	100	kHz
Tolerable spike width	-	-	50	ns
Bus free time	4.7	-	-	$\mu \mathrm{s}$
Start condition set-up time	4.7	-	-	$\mu s$
Start condition hold time	4.0	-	-	$\mu \mathrm{s}$
SCL LOW time	4.7	-	-	$\mu s$
SCL HIGH time	4.0	-	-	$\mu \mathrm{s}$
SCL and SDA rise time	-	-	1.0	$\mu s$
SCL and SDA fall time	-	-	0.3	$\mu s$
Data set-up time	250	-	-	ns
Data hold time	0	-	-	ns
Stop condition set-up time	4.0	-	-	$\mu \mathrm{s}$
ANALOG INPUTS				note 4
TM+ / TM- input impedance	-	125	-	$\mathrm{k} \Omega$ note 5
Nominal input level	-	12	-	mV rms note 6
Maximum input signal	-	56	-	mV rms note 7
Min. voltage gain	-4	-3	-2	dB
Max. voltage gain	+3	+4	+5	dB
Stepsize voltage gain	-	1	-	dB note
TX harmonic distortion	-	-	-40	dB note 8
ANALOG OUTPUTS				
Receiver audio output:				
- output impedance		10		
- signal level at $0 \mathrm{dBm} \mathrm{m}_{0}$		550		mV rms $\quad$ note 9
- signal level at $3.14 \mathrm{dBm}_{0}$		1250		mV rms note 10
- min. gain	-4	-3	-2	dB
- max. gain	+3	+4	+5	dB
- gain step size	-	1	$\overline{-}$	dB
- volume control range	-36	${ }^{-}$	0	dB
- volume stepsize	-	6.0	-	dB
- RX harmonic distortion	-	-	-40	dB note 11

## Electrical Characteristics (con't)

Parameter	min.	typ.	max.	unit	note
Ringer output:					note 4,12
-output impedance	-	14	29	$\Omega$	
-volume control range	-29		+4	dB	
FILTER				dB	
CHARACTERISTICS					
Transmitter:					
-Passband ripple			0.5	dB	$300-3000 \mathrm{~Hz}$
-Frequency response					
$f=50 \mathrm{~Hz}$	-35			dB	
$f=3400 \mathrm{~Hz}$			-2	dB	
$\mathrm{f}=4600 \mathrm{~Hz}$	-35			dB	
$\mathrm{f}=8000 \mathrm{~Hz}$	-55			dB	
Receiver:					
- Passband ripple			0.5	dB	$300-3000 \mathrm{~Hz}$
- Frequency response: $f=50 \mathrm{~Hz}$	-35			dB	
$\mathrm{f}=3400 \mathrm{~Hz}$			-2	dB	
$f=4600 \mathrm{~Hz}$	-35			dB	
$\mathrm{f}=8000 \mathrm{~Hz}$	-60			dB	
ANALOG TO DIGITAL					
CONVERTER					
Signal to noise ratio (Fig. 12)		35		dB	note 5,13
DIGITAL TO ANALOG					
CONVERTER					
Signal to noise ratio (Fig. 12)		35		dB	note 5,13
GROUP DELAY					
Transmitter			400	$\mu \mathrm{s}$	note 14
Receiver			525	$\mu \mathrm{s}$	note 14
GROUP DELAY					
DISTORTION					
See Fig. 9					

## Notes to the characteristics:

General: $\quad-+3.14 \mathrm{dBm0}$ is the maximum signal level on the PCM interface.

- Specifications are valid in active mode (except standby current).

0. IDD active measured with all inputs to $\mathrm{V}_{\text {ss }}$, except CLK, DCK connected to 3.456 MHz , and RAS, TAS connected to 8 KHz . IDD standby measured with all inputs connected to $\mathrm{V}_{\text {ss, }}$, except TMP, TMM left open. All outputs left open for both cases.
1. The ref. voltage is available on VR+ and VR- and is measured with respect to VG. The voltage outputs are intended for electret microphone supply, and can deliver $400 \mu \mathrm{~A}$.
2. Digital inputs and outputs are CMOS -levels compatible. The outputs can sink or source 1 mA . Pull-down resistors are present at pins RPI, TPI, TST, RAD.
3. Any frequency between min and max is allowed for DCK. The signals CLK and RAS/TAS must be frequency-locked, and will have a ratio $f_{c L K} / f_{\text {RAS }}=432$.
4. All analog input/output voltages and impedances are measured differentially. The circuit is designed for use with an electret microphone.
5. Frequency band is $300 \mathrm{~Hz}-3400 \mathrm{~Hz}$. Maximum load capacitance $=100 \mathrm{pF}$ differentially, or 200 pF each pin.
6. Nominal signal level gives -10 dBmO on the PCM interface (G.711/G.712). Value given for $T X$ gain setting 0 dB .
7. Maximum signal level gives $+3.14 \mathrm{dBm0}$ on the PCM interface, with larger input signals the digital output signal will be saturated. Value given for TX gain setting 0 dB .
8. TX gain setting $=0 \mathrm{~dB}$ and input signal level 40 mVrms (will generate 0 dBmO signal level on PCM interface according to G.711).
9. PCM signal level is $0 \mathrm{dBm0}$ and RX gain setting 0 dB . With a load of $300 \Omega$ between RE+ and RE- the given signal level results in an output power of 1 mW . The maximum output current is 10 mA .
10. $P C M$ signal level is $+3.14 \mathrm{dBm0}$ and $R X$ gain setting +4 dB . The maximum output current is 10 mA .
11. PCM signal level is $0 \mathrm{dBm0}$ (G.711).
12. For maximum output power the load resistance should equal the typical output impedance (specified at load $=20 \mathrm{~mA}$ ). The minimum load resistance is limited by the "Maximum Ratings".
13. Measured with psophometric filter (CCITT G.223).

Only fulfilled at $V_{D D}$ noise level smaller than $40 \mathrm{mVp}(0-20 \mathrm{kHz})$.
Measured on sample basis at $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, temperature $=25^{\circ} \mathrm{C}$, compliant with G .712 . Signal level is $-40 \mathrm{dBm0}$ on PCM interface ( 0.4 mVrms on analog input). Gain setting is 0 dB .
14. Group delay includes ADPCM / PCM conversion; signal frequency $=1.5 \mathrm{kHz}$. Figure is given for RAS/TAS signals at the same moment.

### 5.0 Timing Diagrams



Fig. 5 ADPCM timing


Fig. 6 PCM timing


Fig. 7 PCM output timing


Fig. 8 PCM input timing


Fig. 9 Group delay distortion transmit + receive (loop measurement)

### 6.0 Application Information



Fig. 10 Typical block diagram for a DECT handset.


Fig. 11 Typical handset application diagram for the PCD5032.


Figure 12 Typical performance of AD \& DA in cascade (Loop 1)

The PCD5040 DECT Burst Mode Controller (BMC) is a custom IC that performs the DECT Physical Layer and Medium Access Control Layer (MAC) time critical functions for application in DECT handset and base station products which comply to the following standards (+ updates):

- DECT CI part 2: Physical layer (DE/RES 3001-2)
- DECT CI part 3: Medium Access Control layer (DE/RES 3001-3)
- DECT CI part 7: Security features for DECT (DE/RES 3001-7)
- DECT CI part 9: Public Access Profile (DE/RES 3001-9)

The BMC is designed to be connected to a ADPCM codec (PCD5032) and a 8051-type microcontroller without glue logic. Other codec's and microcontrollers (e.g. 68000 -family) are also supported. Four versions of the BMC will become available. The PCD5040 will have a RAM memory containing the BMC firmware, while the PCD5041, 5042, 5043 have a ROM instead. All versions have the same pinning. ROM versions will also be available in SQFP-80.

## Features

- An embedded RISC controller (PCC) with 4 kbyte (RAM / ROM) program memory for implementation of Traffic Bearer Control (TBC), MAC message handling, scanning, and the general control of the BMC hardware.
- PP \& FP modes.
- TDMA frame (de)multiplexing.
- Encryption.
- Scrambling.
- CRC generation and checking.
- Beacon transmission control (P00 packets).
- Switches up to12 simultaneous active speech channels from speech interface to $1152 \mathrm{~kb} / \mathrm{s}$. radio interface, and vice versa.
- RSSI measurement with on-chip peak/hold detector and 6-bit AND converter.
- Local call switching for up to 6 intemal calls on RF side / bcal call switching on speech side.
- Quality control report.
- Digital Phase Locked Loop.
- Synchronisation (handset to active bearer, base station to cluster of RFP's).
- Seamless handover procedure.
- Fast (hardware) and slow (software) mute function.
- 1 kbyte extended RAM memory for the handset mode.
- On-chip crystal oscillator ( 13.824 MHz ).
- Programmable microcontroller clock frequency.
- Programmable interrupts.
- Watchdog with two programmable timeouts
- Low power consumption in standby mode.
- Low supply voltage (2.7V-6V).
- SACMOS technology.

Interfaces to:

- Up to 2 ADPCM codec's in a simple base station (with up to 2 analogue lines) and in the handset mode.
- $2048 \mathrm{~kb} / \mathrm{s}$ highway interface for systems requiring more than 2 connections to the network.
- A fully decoded radio interface including power down signals.
- 80C51-type microcontroller, or a 68000-type microcontroller.


### 1.0 BLOCK DIAGRAM



Fig. 1: Block diagram PCD5040 / 41 DECT Burst Mode Controller
2.0 PINNING


Fig 2: Pinning : QFP64REC (SOT319)

PIN	NAME	1/0	DESCRIPTION
14,40,57	$V_{\text {DO }}$	-	*
16,19,26,38,58	VSS	-	*
60	VDD_RAM	-	Power supply data RAM
48,49,51,52	TEST0.. 3	1	selects various test modes. Normal operation set to 0 .
17	XTAL1	1	crystal oscillator input
18	XTAL2	0	crystal oscillator output
32	CLK3	0	3.456 MHz clock (nominal value, used to adjust system timing)
31	DCK	I/O	simple base + handset; 1152 kHz data clock (output), otherwise 2048 kHz data clock (input) signal
28	FS1	I/O	8 kHz framing signal to ADPCM codec 1 output, for simple base + handset, otherwise 8 kHz framing input.
29	FS2	0	8 kHz framing signal to ADPCM codec 2 in the base station mode.
27	DO	0	tri-state data output on the speech interface
30	DI	1	data input on the speech interface
15	PROC_CLK	0	microcontroller clock. Programmable from Fclk/64..Fclk, where Fclk is the crystal oscillator frequency.
63	MEM_SEL	1	Selects PCC program memory at microcontroller interface
9	ALE	1	address latch enable
21	RDN	1	read (active low)


PIN	NAME	$1 / 0$	DESCRIPTION
22	WRN	1	write (active low)
$1 . .8$	AD0.. 7	I/O	Address/Data bus
$13 . .11$	A8.. 10	1	Address bus
10	CSN	1	Chip Select (active low)
24	INTN	0	Interrupt (active low)
23	RDYN	0	Ready signal (active low), to initiate wait states in the microcontroller
54	R_ENABLEN	0	Receiver Enable (active low)
55	R_POWER_DWN	0	Receiver Power Down
56	SLICE CTR	O	Slice Time Constant control
53	R_DATA	1	Receive Data
34	T_ENABLEN	0	Transmitter Enable (active low)
35	T_POWER_RMP	0	Transmitter Power Ramp control
47	T_DATA	0	Serial output data to transmitter
33	ANT_SW	O	Selects one of two antennas
44	S_POWER_DWN	0	Synthesizer Power Down control
46	1200_HZ	0	Control signal for dual synthesizer schemes
45	VCO_BND_SW	0	VCO bandswitch control signal
43	S_DATA	0	serial data to the synthesizer
42	S_CLK	0	clock signal, to be used with S_DATA.
41	S_ENABLE	0	Synthesizer enable
37	SYNTH_LOCK	1	Lock indication from synthesizer
39	REF_CLK	0	Reference Frequency for the synthesizer, ie. the crystal oscillator clock Fclk.
50	RSSI_IN	1	Analog signal (for basic DECT systems), peak signal strength measured after a low pass filter.
36	RMT_STAT	1	Serial 8 bit data can be read in for each slot. REMote radio STATus
59	VREF	1	Reference input for the AD converter
25	CLK100	0	100 Hz frame timer output
61	SYNCPORT	I/O	In the base station the signal is the SYNCPORT input/output. It is an output in a master base station, input in a slave base station, according to annex C, DECT CI specification part 2. The SYNCPORT signal is not active in the handset.
62	M_RESET	1	BMC master reset signal
64	EN_WATCHDOG	1	Enable watchdog input. When HI , the watchdog timer of the BMC is enabled
20	RESET_OUT	0	Watchdog timer output; intended to reset the external microcontroller when expired.

$\quad$ NOTE : $\quad$ ALL signals, which are input or I/O, and which can be floating, need to be pulled-up/down, in order to protect the BMC against cross-current. Exception are VREF and RSSI_AN, which do not have to be protected.

### 3.0 INTRODUCTION

The DECT Burst Mode Controller (BMC) is a custom IC, that performs the DECT Physical Layer and Medium Access Control Layer (MAC) time critical functions, for application in DECT handset and base station products, that comply to the following standards (+ updates):

- DECT CI part 2: Physical layer (DE/RES 3001-2)
- DECT CI part 3: Medium Access Control layer (DE/RES 3001-3)
- DECT CI part 7: Security features for DECT (DE/RES 3001-7)
- DECT CI part 9: Public Access Profile (DE/RES 3001-9)

The BMC is designed to be connected to the ADPCM codec (PCD5032) and a 8051-type microcontroller without glue logic. Also other codec's and microcontrollers (e.g. 68000-family) are supported.

Two versions of the BMC will become available. The PCD5040 will have a RAM memory, containing the BMC firmware, while the PCD504x have a ROM instead. All versions will have the same pinning. The firmware is used by the internal RISC processor, and is a part of the product. The product is described in two parts:

Part1: DECT Burst Mode Controller hardware (this document)
Part2: DECT Burst Mode Controller firmware


Figure 3: BMC document description

NOTE: This specification contains advance information and is subject to change without notice. Furthermore, this specification is valid for BMC versions from PCD5040-2 on.

### 4.0 FUNCTIONAL DESCRIPTION

The basic philosophy around the BMC implementation is to have a few dedicated hardware blocks containing logic for time critical functions (with bit/byte time accuracy); all other functions (with slot time accuracy) are contained in a small programmable core, the Programmable Communication Controller (PCC). This approach offers maximums flexibility during prototyping.

The block diagram of the BMC is shown below. In the following sections, the functional blocks and the internal bus are described.


Figure 4.1: Internal Bus with main Functional Blocks

### 4.1.Internal Bus

### 4.1.1. Function of the Internal Bus

The function of the Internal Bus is:

- $\quad$ to provide access for all functional blocks to the common Data Memory,
- $\quad$ to provide access for the $\mu$ C-Interface block and the Communication Controller (PCC) to all other functional blocks.

All functional blocks (speech, RF, cipher, $\mu$-Controller, PCC) can autonomously use the internal bus to communicate with the common data memory.

A bus controller is used to handle the bus priority mechanism. When several blocks request access simultaneously, the request with the highest priority is handled first.

### 4.1.2. Data Memory

A large part of the data memory is used for the bit rate adaptation between the DECT radio interface and the speech interface.

In a handset, the BMC uses only 1 kbyte of the common data memory. The remainder ( 1 kbyte ) can be used by the $\mu$-controller as an extended data memory for the higher layer software. The $\mu$-controller is not aware of the fact, that it is sharing the memory with the BMC; the $\mu$-controller interface plus the common data memory behave as a standard RAM device, from the $\mu$-controller point of view. In the base station, the BMC will use the full common data memory.

The data memory is also acting as the main communication interface between external micro-processor and PCC. The format of data structure is described in part 2 : 'DECT Burst Mode Controller Firmware'.

### 4.2. Clock Generation and Correction

The BMC has an on-chip 13.824 MHz crystal oscillator. From this source, a few frequencies are derived for internal and external use. Frequencies generated for external use are:

- 13.824 MHz for the synthesizer reference (pin REF_CLK), which is only running if the synthesizer is not in power down mode (pin S_POWER_DWN).
- 0.144-13.824 MHz for the $\mu$-controller clock (pin PROC_CLK).
- 3.456 MHz for the ADPCM codec (pin CLK3)
- 1200 Hz for dual synthesizer switching
- 100 Hz indicates start of frame

Nominally, the frequency on pin CLK3 is 3.456 Mhz . This frequency is divided from the crystal (divide-by-4). But sometimes, it will be divided by 3 or by 5 , to synchronise the combination of the ADPCM codec and the BMC to an extemal source. Applications in which the BMC can be synchronised are:

- handset : the incoming radio channel, using the slot synchronisation event of one active channel, so the handset is locked to one base station.
- master base station: The master base station is providing a 100 Hz signal to slave base stations on pin SYNCPORT. If the BMC is connected to a digital interface (32-slot mode speech interface), the external synchronisation will be done on the incoming 8 kHz signal. If it is connected to an analog line (12-slot mode speech interface), it will use its own crystal oscillator as reference.
- slave base station: The slave base station will use the incoming SYNCPORT signal as synchronisation reference.

Each of these three application area's define their own 'sync' event for adjusting the internal timing of the BMC (see section 5.5)


Figure 4.2: internal clocking scheme of the BMC

### 4.3. Programmable Communication Controller + Program Memory

### 4.3.1.PCC

The PCC is a RISC type controller and is used to control BMC functions, which are slot time accurate. It is well suited for bit manipulation, and runs at a clock frequency of 6.912 MHz ( 3.4 Mips ). After having finished execution of a task, it switches to a power saving state, from which it returns after a pre-programmed time.

### 4.3.2.Program memory (PCD5040 only)

The PCC will fetch its program from a RAM memory, which is downloaded by the microcontroller during initialisation of the BMC, to allow maximum flexibility, with respect to:

- application area of DECT.
- parts of the MAC specification which are still to be evaluated,
- future radio architectures (zero-IF),
- flexibility to control different synthesizers,

To start the download procedure, the $\mu$-Controller selects one of the two PCC program banks by writing the $\mu \mathrm{C}$ Interface Mode register. When MEM_SEL (pin 63) is made high, a memory bank is connected to the external address bus. The microcontroller will use the 2 kbyte BMC addressing range, to fill a Program Memory bank. Hereafter, MEM_SEL is made low, so the microcontroller can have normal access to the internal bus again. The same procedure is repeated for the second bank. The MEM_SEL pin must be kept HI during an internal bus transfer, because it is not latched internally.

## Memery organisation

PCC program memory is 4 kbytes, organised as 2 blocks of each $2 k b y t e$. The PCC can read them in parallel; in this way it reads one word at a time with the LO byte coming from Bank 0 and the HI byte coming from Bank 1. The $\mu \mathrm{C}$-interface can read and write only in bytes. If Bank 0 is selected, the least significant bytes are addressed. If Bank 1 is selected, the most significant bytes are selected. See figure 4.3.


Figure 4.3: organisation of the PCC memory

### 4.3.3.PCC functions

Most important functions of the PCC are to:

- perform the appropriate actions on received messages, such as: identity checks, $N_{T}$.check procedure, TBC-handling, and thus also to;
- prepare A-field messages for transmission,
- prepare the RF-interface for the coming slot,
- perform the procedures for RSSI and set-up scan, maintaining scan counters and timers, assembling the RSSI field in the common data memory.
- filter events, and indicate them to the microcontroller (interrupt).

A complete description of the functional behaviour of the PCC program can be found in part 2 : DECT Burst Mode Controller Firmware.

### 4.4. Speech interface

### 4.4.1. 12-Slot Mode

The 12 -slot mode is selected, if 1 or 2 ADPCM codec(s) are connected to the BMC, where the BMC is the master of these codec's. In the handset, this is always the case. Also in simple base stations, which are connected with 1 or 2 analogue lines to the public network. Each codec is connected with a separate framing reference signal (FS1,FS2) to the BMC. Only two framing signals of the 12 are decoded externally. No irterface logic is needed when using the PCD5032 ADPCM codec.

An indirection table is used, to determine (for reception and transmission) where to store/fetch speech data. The hardware speech-interface is capable to address the right speech buffer for the relevant speech slot, and will maintain a counter, carrying the offset to the fetched address.

### 4.4.2. 32-Slot Mode

The 32 -slot mode is used to connect the BMC to a digital interface, with a $2 \mathrm{Mb} /$ sec interface. Up to 12 of the possible 32 slots on this interface can be used. The same indirection table, which is used in the 12 -slot mode, is used for the 32-slot mode.

### 4.4.3. Muting

Due to various reasons the quality of the incoming speech data may be degraded significantly. By muting the speech data, these disturbances are not (or less) audible to the user. Two types of muting are distinguished by the BMC:

- fast muting
- slow muting

Fast muting, which is performed by the BMC automatically, is nothing more than a repetition of the previously received frame ( 80 speech samples) to the ADPCM codec. It is issued if no Sync word was detected.

Slow muting is issued by the $\mu$-controller, after having detected a degradation of quality. A slow mute is implemented as a continuous ${ }^{\prime} 0000^{\prime}$ nibble transmission to the ADPCM codec, until slow mute is released.

### 4.4.4. local call

A local call option is implemented, in order to loopback data from one codec to another codec, and vice versa, as illustrated below.


Figure 4.4 Local call switching on the speech-interface

### 4.5. RF interface

Most of the functions, performed by the RF interface, are under control of the PCC. Especially the processing of non-speech data, programming of functions and registers, is done via the PCC.

### 4.5.1. Serial Receiver

The serial receiver processes the data, which comes from the radio head, and which is already filtered by the synchronisation part. The data is latched, using the recovered data clock.

The serial receiver will collect the complete A-field and B-field, and store it in the common data memory. Before the A-field is received, the A-field start address is programmed by the PCC. Upon reception of A-field nibbles, the address is updated by the serial receiver. Meanwhile, the PCC will program the B-field start address.

In figure 4.5 the data flow in the serial receiver is shown. The state machine, controlling the events and the data flow is not shown. Note that almost no decoding of messages is required. Only the header of the A-field needs to be decoded to check if a Cs message is received or transmitted, which requires the ciphering to be switched on also in the A-field

### 4.5.2. Serial Transmitter

The serial transmitter structure performs the reverse functions, compared to the receiver. Several blocks, used in the receiver, are also used in the transmitter. Amongst these are the CRC-generators, the scrambler, and the address registers. Figure 4.6 shows the serial transmitter structure

By transmitting the X-CRC twice, the Z-field is transmitted. The handling of the address registers is the same for the transmitter. Transmission of the synchronisation sequence ( S -field) is done using the same method as the A-field and B-field. The S-field is stored in the common data memory, and will be fetched by the transmitter, just before transmission.

Not shown in the diagram, is that in the handset the data in the serial transmitter may be advanced by a programmable number of bit periods. This is done to compensate for the delay in the radio head.

Furthermore, the transmitted data can be inverted (using a switch in the BMC mode register), in order to connect the BMC to VCO's requiring a negative modulation.

### 4.5.3. Seamless Handover

Seamless handover guarantees that when the transfer of the speech information changes from one slot to an other, no speech samples are lost, added or displaced. Seamless handover is guaranteed by the following measures in the design of the Rx and Tx blocks in the RF interface:

- By using a lookup table, containing the correct start addresses of the B-fields in the data memory.
- The RF receive and transmit blocks will move and fetch data toffrom the data memory block in 4bit nibbles.


Figure 4.5 serial receiver structure


Figure 4.6 serial transmitter structure

### 4.5.4. RF Control Signals

The timing of the control signals to the radio head is fixed, but such that an RF delay between 1.5 and $7 \mu$ s can be tolerated (see section 5.3 .2 for details). Only the transmitter ramp signal and the synthesizer enable are programmable within certain limits.

### 4.5.5. Synthesizer Programming

To program a synthesizer, a 3-wire serial interface is used. The signals on this interface are:

- S_ENABLE	(enable)
- S_CLK	(clock)
- S_DATA	(data)

To program various types of synthesizers, a 3-byte shift register is present. Three data formats are supported: 8,16 or 24 bit words can be selected. The transfer of data from a frequency table in the common data memory to the shift register is under control of the PCC.

### 4.5.6. RSSI Measurement

The RSSI measurement in the BMC RF-interface block is done in 3 parts: a peak/hold detector, a 6-bit AND converter, and an RSSI control block, which controls the peak/hold detector and the AD converter. Once per slot time, a sample is fetched by the PCC, and saved in the appropriate area of the common data memory.

If the radio receiver is active in a particular time shot, the RSSI value will automatically be measured in that slot. Adjustment to the RSSI_AN input level can be made with VREF.


Figure 4.7 RSSI measurement path

## DECT burst mode controller

### 4.5.7. Local call switching

The BMC provides a local call switching function in the base station. It will store incoming speech nibbles in the common data memory, in the area reserved for that particular receive slot. Then, during the transmit phase, it will pass to the transmit block, the start pointer of the same data memory area. Thus, the speech data is echoed to the other user (see illustration below). To handle quality degradation during local calls, a mute can be performed at the RF side of the speech buffer.


Figure 4.8: Local call switching on the RF-side

### 4.5.8. Data synchronisation

The data synchronisation is done in 2 phases:

- bit synchronisation
- sync word detection

Bit synchronisation is done using a Digital PLL (DPLL), with an oversampling factor of 12 , i.e. the DPLL is running on a frequency, which is 12 times the data rate.

Sync word detection is achieved by checking the incoming data pattern with the expected synchronisation field pattern, using a correlator. The correlator has a programmable threshold, so it can accept bit errors in the sync field pattern up to the threshold level. Furthermore, the correlator window is programmable. This means, that only during a certain period (the time window), a 'SlotSync' can be detected, indicating the slot synchronisation event.

The flow of the signals in the synchronisation part is shown in figure 4.9. Note, that in the base station the inverted data bits are shifted into the register. This is done, because the synchronisation field pattern is inverted for the base station, compared to the handset.


Figure 4.9: schematic of the receiver synchronisation part

The 'DPLL_sync' indication should only be used, when 'StotSync' is active. It indicates that the last 4 bits of the preamble field (the training sequence) are received correctly, and thus indicates that the DPLL was in lock (synchronised) in time. If the 'SlotSync' is active, and the 'DPLL_sync' is not, then a sliding interferer might have been detected.

If 'SlotSync' is not detected, effectively no data is received in that slot. This implies a "fast mute" because speech data received in the previous frame is not destroyed.

### 4.5.9. Ciphering Machine

The description of the cipher machine is subject to confidentiality. The specification of its algorithms are delivered by ETSI after a Non Disclosure Agreement.

The cipher machine is under control of the TBC, which is implemented in the PCC. The cipher machine generates 2 fields of ciphering bits:

- A_cipher (40 bits) for A-field messages (Cs tail ONLY !!)
- B_cipher ( 320 bits) for speech in B-field

The transmitted ciphered bits are then:

- A_ciphered $:=A$ XOR A_cipher
- B_ciphered $:=B$ XOR B_cipher

On reception by the peered endpoint, deciphering consists of the same operation thanks to the synchronous generation of A_cipher and B_cipher.

The cipher machine is time-multiplexed on a slot basis. Initially, the Initialisation Vector (IV) and the key must be loaded into the cipher machine. Transfer of the IV and key from the common data area to the cipher machine is done automatically by the cipher machine. The contents of the memory space where IV and key are found, are the responsibility of the PCC, and the external $\mu \mathrm{C}$.


Figure 4.10: Cipher machine plus its sources

### 4.6. Microcontroller Interface

### 4.6.1. Function of the Microcontroller Interface.

The microcontroller Interface will provide the following services.

- Direct interface to processors which have an INTEL-8051 compatible interface.
- General interface to processors that can handle 'wait states' e.g. 68000 -family. In this case glue logic is required.
- Processor clock signal of which the frequency is programmable in order to adjust instantaneously processor performance to processor work load.
- A programmable interrupt register
- A watchdog timer with timeout periods of 1.25 or 82 seconds, depending on the programming.

The $\mu \mathrm{C}$ can address the BMC as any other RAM memory connected to the $\mu \mathrm{C}$ bus. By writing the Interface-Mode Register', the $\mu \mathrm{C}$ can select the interface mode and it's own clock frequency.

### 4.6.2. Microcontroller Interrupts.

The function of $\mu \mathrm{C}$ Interrupts is to make optimal use of the $\mu$-controllers processing power, and to achieve optimal cooperation between time-critical tasks and less time-critical tasks both executed in software. Three registers are available to handle interrupts. These are:

- Interrupt Event Register
- Interrupt Enable Register
- Interrupt Reset Register

These registers are to be regarded together. Corresponding bits in these registers relate to one and the same event. Bits in the Interrupt Event Register are set by the PCC and are to be reset by the external processor by writing ' 1 's in the correponding bits in the Interrupt Reset Register. The mask in the Interrupt Enable Register enables the interrupt if corresponding events do occur.

### 4.6.3. Watchdog

The BMC is equipped with a watchdog timer, which generates a reset towards an external device (e.g. a $\mu \mathrm{C}$ ) after timeout. Two (fixed) timeout periods can be programmed; 1.25 sec and 82 sec . The watchdog function can be disabled by using the EN_WATCHDOG input pin.

### 4.7. Power Down

The PCC may switch off the 6.912 MHz internal clock, to enter a power saving mode. All blocks, running on this clock are then switched off (i.e. RF-interface, cipher block, speech interface, PCC). This is called the power down state, and is only used in the handset mode.

The 13.824 MHz clock is never switched off. The Timing Control, $\mu \mathrm{C}$ interface, and Bus Controller keep running, in order to remain synchronous with a base station, and to keep the wake-up circuitry active. During power down the external $\mu \mathrm{C}$ has still access to the common data area.

## General Information

The baseband interface circuit pcd 5071 is a fully CMOS IC. The baseband interface modulates the incoming data bits at a rate of $270.833 \mathrm{~kb} / \mathrm{s}$ to Gaussian shaped Minimum Phase Shift Keying (GMSK), In phase (I) and Quadrature (Q) components. The $I$ and $Q$ components are derived using a digital filter. The filter uses four symbols and 8 times oversampling of each symbol. Two 10 bit DAC's and analog filters complete the signal path. A symmetrical buffer driver allows direct connection of the differential $I$ and $Q$ outputs to a mixer converter in the RF part, converting the generated I/Q baseband signals directly to 900 Mc frequency without additional filtering.

In the receiver part this pcd5071 demodulates the incoming 10.70 Mc IF data into 7 bits I and Q components. Sampling the incoming IF frequency in phase and with a 90 degrees phase shift makes it possible to regenerate digitally the $I$ and $Q$ components. The receive clock is derived from the 13 Mc master clock input by a PLL, which is partly integrated on chip. Optionally, the sampling scheme also allows to select between additional processing of I and Q , i.e. derotate on minus 90 degrees phase shift per symbol, derotate on plus 90 degrees phase shift per symbol or no derotate. When using derotate on it can be shown that the I and $Q$ output components are approximated by amplitude modulated signals, which eases the DSP equalizer taisks.

## Features

- GSM GMSK baseband modulator / demodulator
o Single interface circuit between Radio frontend and Baseband DSP
o Full CMOS, single 5 V supply
- Dissipation during active call in average less than 40 mW
o Power down mode
o Demodulates and derotates from a standard IF frequency; 10.70 Mc
o Programmable derotate function
o Auto-adjusting DC-offset to control carrier suppression
o Auxillary 10 bit D $\wedge$ C for VCXO control


## Quick reference data

Parameter

Vdd DC power supply	4.5 V	5 V	5.5	V
Idd max total power			38	mA
Transmitter			7.0	mA
Receiver		30	mA	
Standby mode		4	mA	
Power down mode	-25		10	uA
Tamb ambient temperature		1		+70
I/Q symmetrical outputs			10.70	Cpp
RFIN input frequency				MHz

## Ordering and package information

typenr	pins	package	material	code
pcd5071	44	QFP44SL plastic	SOT307B. 4	

## Application information

o Interface circuit between baseband processor and GSM RF frontend.


## pcd5071 Block Diagram

Clocks The transmit section (upper section in the block diagram) uses a $13 / 6 \mathrm{Mhz}$ clock. The receive section uses a 43 Mhz and a 4.3 Mhz clock. A PLL, part of which is implemented on the chip generates the 43 Mhz clock from the 13 Mhz system clock. An external loop-filter and VCO are needed to complete the PLL.

Transmit Blocks GMSK-mod and GMSK-rom generate digitally a GMSK modulation scheme with $\mathrm{BT}=0.3$, as specified in the GSM recommendations 5.04. The differential encoding of the data-bits is also included in this block. The codes from the ROM are converted in two 10bit DAC's and filtered in two 3rd order equiripple delay filters. Both $I$ and $Q$ values have differential outputs.

Receiver The IF-signal is sampled by a 7 bit analog to digital converter. The output values are then processed in a decimating filter consisting of a sign-converter, a 12 bit full adder and two 12 bit registers. The resulting values for $I$ and Q are serially transmitted to the outside world. Exact timing for ADC sampling, very important for the demodulation function, is supplied by the RX-cntrl block.

Offset control A three-wire serial bus is used to clock in two offset correction values, which will be fed into two 6 bits DAC's. The DAC's signal is fed into the filter to obtain a zero-offset output signal.

Auxdac The same serial bus is used to feed a 10bit DAC with its value. This analog signal is used to control the system's main 13 Mhz reference clock.

## ped5071 Pinning diagram:



All ground pins (Vss, Vssa \& Vssp) are comected on chip.
Package: , QFP44SL (SOT307B.4), 44-pin small quad flat pack.

pcd5071 Pin description	
1- AUXDAC	Voltage output of auxiliary dac.
2-RC1	External calibrating resistor for filter tuning. Nominally 20 K ohms.
3-MS1	Derotation mode select input.
4-MSO	Derotation mode select input.
5-RC2	Filter calibrating resistor: connect between RC1 and RC2.
6- VDDA	Analog power supply.
7-REFAD	ADC reference output, 2.5 V . Connect a 100 nF capacitor between REFAD and VSSA.
8-RFIN	Receiver input, comected to the IF output from the frontend.
9- CURAD	ADC Bias control input, nominally 100 uA . Use a 27 K pullup to VDDA.
10-VSSA	Analog ground.
11-TB_0	Bidirectional testbus. Used in scan, DAC and ADC tests.
12-TB_1	Bidirectional testbus.
13-TB_2	Bidirectional testbus.
14-TB_3	Bidirectional testbus.
15-TB_4	Bidirectional testbus.
16-TB_5	Bidirectional testbus.
17-TB_6	Bidirectional testbus.
18-TB_7	Bidirectional testbus.
19-CURPLL	Current control input for PLL, nominally $16 \mathrm{u} \Lambda$. Use a 190 K pulup to VDDP.
20-VSSP	PLL chargepump ground.
21-PH	PLL chargepump output.
22-VDDP	PLL chargepump power supply.
23-RCK	43 Mhz clock input, reduced swing.
24-RXEN	Receive burst enable, active low.
25-COX	Clock output for received data. ( $\mathrm{f}=\mathrm{MCK} / 3$ )
26-VSSD	Digital ground.
27-MCK	13 Mhz clock input, reduced swing.
28-VDDD	Digital power supply.
29-DO	Receiver data word output.
30-TXEN	Transmit burst enable. Active low.
31-DI	Transmitter data input.
32-DTX	Power amplifier control output. Used to suppress transmitting during speech pauses.
33-CIX	Clock output for transmitted data. This is a 271 kHz signal to the DSP.
34-STROBE	Scrial interface strobe, active low.
35-CLOCK	Serial interface clock, positive edge triggered.
36-DATA	Serial interface data input.
37-PD	Power down input. When high, chip will enter power-down state.
38-IM	In phase component of transmitted signal ( differential)
39-IP	In phase component of transmitted signal.
40-TM0	Test mode selection pin.
41-TM1	Test mode selection pin. Connect both to ground for normal operation.
42-QM	Quadrature component of tansmitted signal ( differential )
43-QP	Quadrature component of transmitted signal.
44-REFDA	DAC reference output, 2.35 V . Comect a 100 nF capacitor between REFDA and VSSA

All ground pins ( Vss, Vssa \& Vssp ) are comnected on chip.

Device operational modes.

Table 1: pcd5071 operation modes

$\operatorname{tm} 1$	tm0	pd	txen	rxen	ms 0	ms 1	Functionality
x	x	1	x	x	x	x	Power down state
0	0	0	1	1	x	x	Standby state
0	0	0	0	1	x	x	Transmitter active
0	0	0	0	0	0	0	Xmit \& receive, derot forward
0	0	0	0	0	0	1	Xmit \& receive, derot backward
0	0	0	0	0	1	0	Xmit \& receive, equidistant sampling
0	0	0	1	0	0	0	Receiver, derotate forward
0	0	0	1	0	0	1	Receive, derotate backward
For testing purposes only:							
0	1	0	1	0	0	0	ADC test mode, derotate forward
0	1	0	1	0	0	1	ADC test mode, derotate backward
0	1	0	1	0	1	1	ADC test mode, equidistant
0	1	0	0	1	x	x	Dac test mode
1	0	0	x	x	x	x	Scan test, normal mode
1	1	0	x	x	x	x	Scan test, scan input

This table lists all relevant modes of the ped5071. All modes will be explained in some more detail in the following pages.

## A) Power down mode.

On a PD input equals high the ped5071 will enter the powerdown state. In the this state all the clocks are switched off together with the power to the different opamps and resistor ladders. The PLL in the ped5071 will also be powered down. Current consumption in powerdown mode will be less then 10 uA .
Power up time after PD goes low again is a function of the PLL loopfilter and VCO characteristics.

## B) Standby mode.

In the standby mode neither the transmitter nor the receiver are activated. The PLL is active, thus generating the 43 Mhz secondary clock. This mode should also be used to initiate an offset auto-zeroing cycle on the filter \& output circuitry. ADC and DAC circuits are powered down in standby mode. State of the auxiliary DAC is controlled via the serial bus.

## C) Transmit mode.

A TXEN transition from high-to-low in standby mode initiates the transmit active mode. In this mode the ped5071 accepts a 270 Khz bitstream from the GSM DSP and converts them into modulation data for the GSM mixer. The first bit of each transmission burst will be latched and put onto the DTX pin, which in turns controls the power output module. This enables a rapid suppression of a transmit burst should the speecheoder have detected a speech pause.The GMSK modulated datastream has a 2.2 Mhz rate due to the 8 -fold oversampling that is used. On a Low to

High transition of the TXEN pin the ped5071 reenters the standby mode. Transmission of the current bit will be finished.

## D) Receive modes.

A RXEN transition from high-to-low in standby mode initiates the receiver active mode. In this mode the receiver samples the 10.70 MHz IF frequency delivered by the frontend to obtain 9 I and 8 Q samples for each bitperiod. These 7-bit samples will be averaged and transmitted serially to the DSP. Exact timing of the sampling moments is required to perforn the derotation function. Three possible derotation functions are implemented. Selection takes place with theMS0 \& MS1 pins:

Table 2: Derotation modes

ms 1	ms 2	Derotation mode
0	0	Derotate forward
1	0	Derotate backward
1	1	Equidistant sampling

The equidistant sample mode is for testing purposes only and should not be used in normal operation. A low-to-high transition of the RXEN pin will terminate the receive-active mode and the device will reenter the standby mode. Transmission of the last bit will NOT be completed, i.e. Whe DSP will receive an incomplete word for the last bit. Dumtion of the RXEN active period should be calculated so that no useful bits will be lost.

## E) DAC test mode.

The DAC test mode is used to access the DAC's directly. In this mode, the testbus is connected to the input of both DAC's and to the auxiliary DAC. Since the DAC's are 10 bits wide and the testbus is only 8 bits wide, 2 extra signals are needed for a fully parallel access: derotation select signals MS1 and MS0 will serve as inputs to bits 9 and 8 of the DAC resp. Data are latched into an internal buffer before being passed on to the main DAC's. No buffer is present for the auxiliary DAC. Offset adjust circuitry is active in this mode and herefore must be initialized before meaningful measurements can take place.

## F) ADC test mode.

The ADC test mode is used to access the ADC directly. In this mode, the testbus is connected to the output of the ADC. The derotation mode is also active, so derotation select signals MS1 and MSO must be used to ensure predictable operation. To facilitate ADC testing, the equidistant sampling mode ( $M S 1=1, \mathrm{MS} 0=1$ ) should be used. In this mode he ADC will gencrate one sample for each nine periods of the 43 MHz secondary clock i.e. 4.7 megasamples per second.

## G) Scan test normal mode.

Scan test normal mode is used to exercise the digital circuitry according to the ATPG patterns.

## H) Scan test shift mode.

Scan test shift mode is used to shift in the testpatterns generated by ATPG programs. The same mode is used to shift out the results of the scan lest nonnal mode.

## DSP interface

The interface to the DSP uses TCL level I/O's. The interface to the DSP can be split in a receive section and a transmit section where the transmit section comprises three lines:
o TXEN: transmit enable input which is low active
o CIX: Transinit clock output
o DI: Data input
When TXEN is low the first bit on DI is clocked in on a positive edge of CIX. CIX will change from high to low after TXEN is low. Cix will have an average period of 3.69 micro seconds. To power up the DAC's the first positive transition of Cix is delayed with half a bit period. The first I/Q samples are generated one bit period after TXEN becomes low. To send $N$ bits, the TXEN signal must be active for $N$ symbol periods. $N+1$ bits are read from the DSP processor, of which the last one will be discarded.

The receive section also comprises three lines:
o RXEN: Receive enable input which is low active o COX: Receive clock output o DO: Data output

Whenever RXEN changes from high to low the receive section will be activated. At the first transition of the COX clock from high to low the first bit is put on Do output. The format is shown below:
. I7 I6 I5 I4 I3 I2 I1 I0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0.
Where the MSB (I7) is transmitted first and the digital word is coded in two's complement notation. To power up the ADC and to fill the pipeline registers with enough data, the first negative transition of Cox clock is delayed with approx. one symbol period. Duration of RXEN is therefore $\mathrm{N}+1$ symbol periods. RXEN synchronizes the sampling scheme to the TDMA frume and the symbol timing.

## DSP interface

pcd5071


## DC adjustments/serial bus.

To adjust carrier suppression a DC offset adjustment is foreseen in the ped5071. This adjustment is either automatic or fixed by the GSM system microcontroller. The offset adjustment block is controlled via the GSM chipset's fast three wire serial bus. Instructions are send via this bus to several devices in the GSM chipset. These instructions are all 16 bits wide, with the four most significant bits being the device code. The device code for the pcd5071 is ' 1001 ', decimal 9 . The remaining 12 bits can be interpreted at will by the various devices. In case of the pcd5071, the 12 bits are formed by a 6 bit instruction and a 6 bit data word.

## Serial Programming bus

A simple 3-line unidirectional serial bus is used to program the automatic offset-adjusting loop. The 3 wires are: data, clk and strobe. The data sent to the device are loaded in bursts framed by strobe. Data bits are clocked in on a positive going edge of the clock, if the enable is low. The programmed information is loaded into the pcd5071 on the first positive edge of the clock after enable went high. Only the last 16 bits serially clocked into the device are retained within the programming register. Additional leading bits are ignored, and no check is made on the number of clock pulses. The fully static CMOS design uses virtually no current when the bus is inactive. Signals necessary to maintain proper operation of the serial bus are described in the AC characteristics section of this datasheet.

Table 1; Programming register bit usage

b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
i1	i0	d9	d8	d7	d6	d5	d4	d3	d2	d1	d0	a3	a2	al	a0
2 b instr.	10 bit data ficld														
INSTRUCTION															

## Data Format

Data is entered with the most significant bit first. The leading bits make up the data field, whilst the trailing four bits are an address field. The ped5071 uses only 1 of the available addresses.
The trailing address bits are decoded upon the inactive strobe cdge. This produces an internal load pulse to store the data in one of the addressed latches. To avoid erroncous circuit operation, the pulse is not allowed during data reads by the rest of the circuit. This condition is guaranteed by respecting a minimum strobe pulse width after data transfer The offset-adjust values at initial powerup are undefined, therefore an auto-adjust cycle should be started on boul I \& $Q$ channels should be performed before start of the first transmission burst. Offsct adjust values are maintained during powerdown and standby states.

In order to obtain proper operation of the device, at least three instructions must be carried out after device initialisation :

Firstly an instruction to define auxillary DAC and comperator status, then a load 100000 on boul I and Q offset DAC's, or an auto-adjust cycle on both I \& Q. Lastly, a value for the AUXDAC should be entered in order to obtain a clearly defined value at the auxdac output

Normal operation would be
instr.1) 1000000000001001 : AUX. DAC powered up, normal comperator operation
instr 2) 0001110000001001 : Perform autoadjust on I and $Q$
instr 3) 1110000000001001 : Put AUXDAC at middle value

Table 2: ncd5071 Instructions

15	14	13	12	11	10	Function
I1	I0	D9	D8	D7	D6	
0	0	0	0	0	1	Load I offsetregister
0	0	0	0	1	0	Load Q offsetregister
0	0	0	0	1	1	Load I and Q register
0	0	0	1	0	1	Autoadjust I-section offset
0	0	0	1	1	0	Autoadjust Q-section offset
0	0	0	1	1	1	Autoadjust I and Q sections
0	1	Identical to above		Filter inputs remain shortcircuited after instruction.*		
1	0	1	x	x	x	Auxiliary DAC powered down
1	0	0	x	x	x	Auxiliary DAC active
1	0	x	1	x	x	Invert operation of comperators
1	0	x	0	x	x	Normal operation of comparators
1	1	d9	d8	d7	d6	Load Auxiliary DAC with a 10b value

*) Use any other instruction to revert to normal operation.

## Transmit mixer interface.

A symmetrical buffer driver, driving 1 Vpp into a load impedance of typically $50 \mathrm{kohm} / / 10 \mathrm{pF}$, in both I and Q outputs, with a common mode DC offset of nominal 2.35 V which allows direct connection to the transmitter mixer circuit.

## Receiverinterface

Maximum input is $1.8 \mathrm{~V} p$ input swing and frequency is typically 10.70 Mc ; The input impedance is less than 20 pF and more than 10 kohm. Normally the RFIN input is AC coupled to the 10.70 Mc RF output. The DC level is maintained to 1 Volt with the aid of two resistors.

## Auxiliary DAC interface.

A 10 -bit DAC followed with a 2 buffer is used to genemte a voltage with range from 0.4 V to 4.5 V . This is used to control the system's main 13 Mhz clock. Output impedance is less than 25 K Ohms.

## Maximum ratings

Li	ximu	m (IEC	
Parameter Symbol	Min	Max	unit
Supply voltage VDDD, VDDA, VDDP	-0.5	$+6.5$	Volts
Maximum supply voltage offset		0.5	Volts
All input voltages	Vi -0.5	Vdd+0.5	Volts
DC current into any input or output Ii, Io		5	mA
Total power dissipation Ptot		tbf	mW
Storage temperature range Tstg	-65	150	C
Operating ambient temperature range Tamb	-25	70	C
Operating junction temperature Tj		85	C

## Operating currents



## DC characteristics

Digital interfaces: min typ max unit conditions
inputs : (MSO, MS1, DI, TXEN, RXEN, PD, DATA, STROBE, CLOCK )

input level low   input level high	2	0.8	V	(= TTL level)   (
outp level )				
outputs : ( COX, CIX, DO, DTX)		V		
output level low   output high	2.4	0.4	V	@ 1.6 mA



Unit

## Receiver specification

ADC resolution	7			bits	DC to 4.75 MHz
Differential non lin.			+/-1	LSB	
Integral non lin.			+/-1	LSB	
Group delay		3.69		us	RXEN to DO
RFIN					
input voltage range	0		2.0	V	AC coupled
DC offset		1		V	
frequency		10.70		MHz	
input impedance		60		kohm pF	at $\mathrm{Fs}=4.75 \mathrm{MHz}$
		15			
REF_AD					
Reference voltage output		2.0		V	With Cd= 100 nF
CUR_AD					
Bias current control input		tbf		UA	Use a 27 k pullup
RCK					
Input level impedance		600		mVpp kohm	Vdd/2 offset voltage at 43 MHz .
		5			
PLL charge pump specification					
CURPLL					
Pll current control input		16		u 1	Use a 190 K pullup
PH					
Absolute output current	400	512	600	uA	Positive or negative
Leakage current			100	nA	
Phase detector gain Kd		81.5		uA/rad	

## Auxiliary DAC specification

Dac resolution		10		bits
Integral nonlinearity		$+/-4$	LSB	
Differential nonlinearity			$+/-1$	LSB
			4.5	V
Useful output voltage range	0.4			
LSB		$4.5 / 1024$		V

## Serial interface timing diagram



Timing parameter
clock period L
min
$\max$
units
remarks
clock period H
tl
50
50
ns
th
ns
$\begin{array}{llll}\text { data setup time } & t 3 & \text { bd } & \text { ns } \\ \text { data hold time } & t 4 & & \text { ns }\end{array}$
strobe setup time t
$15 \quad \mathrm{tbd}$
bd
ns
stove hold time
to
bd
ns

Minimal strobe active time
$t 7$
1.85
us

## GSM Baseband Signal processors

The PCF5081 and the PCF5082 are integral parts of the complete chip-set provided by Philips for the pan-European digital mobile cellular telephone system. The PCF5081 and PCF5082 are key elements for GSM, each performing all the baseband signal processing tasks. Because of their high-level of architectural modularity, these processors can easily be adapted to market requirements in respect to both hardware and software.

The PCF5081 (with ROM) is intended for use in GSM handsets, the PCF5082 (ROM-less) for implementation in the base station. These processors are also considered as the first devices of an entire product line introduced as PCF508x. This family provides powerful computational capabilities which supports the highly sophisticated baseband signal processing required by GSM.


The different tasks performed in the baseband signal path of the GSM-system are carried out by means of software partitioned program modules in the signal processor. This implementation is supported by Application Specific Hardware (ASH) to speed up execution and overall performance.

This partitioning between software and hardware for the different processing tasks has been implemented as a trade-off between dedicated hardware and software to provide fast execution with an optimal level of flexibility.

## Main Features:

16-Bit fixed point double precision architecture40MHz master clock 20MHz internal clock (50ns instr.cycle)Fully pre-programmed modules for GSM baseband tasks.*Dedicated processor optimized for:

- Equalization function
- Channel Coder/Decoder
- Encryption/Decryption

Power-down mode with wake-up facility
Asynchronous serial I/O -X-Sophisticated serial I/O-Y- supporting both asynchronous and synchronous communication (i.e. GCI, PCM highway etc.)

Several levels of interruptsEvent counter
8-Bit parallel system controller interface supporting both request and acknowledge driven communication.
$\square$ Boundary scan facility
$\square$ Build-in self test (BIST)
$\square$ Self-Aligned-Contacts CMOS (SACMOS) technology with very high design density
$\square$ External memory interfaces for both data and program memory **
$\square$ Boot-strap facility***

* on PCF5081 only
*     * on PCF5082 only

GSM baseband processors for digital mobile cellular radio


## Signal Description

Mnemonic Type		Function	Mnemon	Type	Function
CLKI	1	Crystal or clock input. Input clock at twice the frequency of intemal cycle.	SIXCLK	O*	Serial input clock port X. Asynchronous.
CLKO	0	Crystal output	SIXD	1	Serial input data port $X$. Data are shifted into the input shift register $X$.
			SIXEn	1	Serial input enable port $X$. Active low.
CLKOUT	0	Synchronization clock. Output clock at half of the frquency of CLKI.	SIXRQn	O*	Serial input data request, port $X$. Handshake signal. Active low.
ECLK	1	Event clock to count external events. The frequency of this input signal is limited to $1 / 4$ of the CLKI if the duty cycle is $50 \%$.	SOXCLK	1	Serial output clock port X. Asynchronous.
HA[1:0]	1	Host address bus. The address signals are used to select the source or destination of the data on the data bus HD. These signals must be stable before the enable signal HCEn is asserted.	SOXD	$0 *$	Serial output data port $X$. Data are shifted out of the ouputt shift register $X$.
			SOXEn	1	Serial output enable port $X$. Active low.
			SOXRQn	$0{ }^{*}$	Serial output data request, port X. Handshake signal, active low.
PACK	0	Output signal to acknowledge data on the data bus HD if the acknowledge mode is enabled. Acitve low.	SIYCLK	1	Serial input clock port Y. Asynchronous clock.
HCEn	1	Global chip enable signal for the host interface. Active low.	SIYD	1	Serial input data port Y. Data are shifted into the input shift register Y .
HD[7:0]	B	Bidirectional host data bus, 8 bit wide. The high or low byte of the 16 bit I/O buffer registers are read or written via this port depending on the	SIYEn	1	Serial input enable port Y. Active low. Frame sync. signal in synchr. mode. Active high.
		signals at the address bus HA[1:0]	SIYRQn	O*	Serial input data request, port $Y$.   Handshake signal, active low. Not used ir
PIRQn	O**	Data input request signal. Active low. The signal requests data for input if the request mod is enabled. It is driven low if the infput buffer register is empty.			synchr. mode.
			SOYCLK	1	Serial output clock port Y. Asynchronous.
PORQn	O**	Data output request signal. Active low. The signal requests for data to be read by the	SOYD	O**	Serial output data port Y. Data are shifted out of the output shift register Y .
		external device if the request mode is enabled. It is driven low if the output buffer register is full.	SOYEn	1	Serial output enable port Y. Active low. Serial output data read back for collision detection in synchr. mode.
HWRn	1	Write signal. Active low. The signal controls the direction of the data transfer on the data bus HD [7:0]. When low, data are written by external device.	SOYRQn	O*	Serial output data request, port Y . Handshake signal, active low. Not used ir synchr. mode.
IACKn [2:1]	0	External interrupt request acknowledge signals. Active low. The signals are set low if the related	TCK	1	JTAG signal. Test clock. Free running clock active rising edge.
		request is serviced. It is set high if the related flag is cleared.	TDI	1	JTAG signal. Test data input. Shifted in with the rising edge of TCK
IRQn[2:1]	1	External interrupt request signals. Active low and edge triggered. If low, the related interrupt is requested. It will be acknowledged if the related interrupt is enabled.	TDO TMS	0 1	JTAG signal. Test data output. Shifted ou with the falling edge of TCK.   JTAG signal. Test mode select.
IO[4:1]	B**	General IO pins. They have open drain outputs and a pull-up resistor. The states of these pins are reflected by four bits in a control register. The pulse width of an input signal has to be at least two internal processor cycles until a change will be frecognized in the control register.	TRSTn	1	JTAG signal. Test interface reset. Active low. When setting low, the TAP controller will be reset independently from the processor.
RSTn	1	Reset signal, low active. A high-to-low transition causes entry into reset state. A low-to-high transition causes execution to begin at program memory location 0 or booting.			

## Signal Description

Mnemonic	Type	Function	Mnemonic	Type		Function
MA[15:0] ${ }^{1)}$	O*	Data address bus for addressing up to $64 \mathrm{k} \times 16$ bits.	PD[15:0] ${ }^{17}$	B	Data bus for external program memory. 16 bit wide.	
MD[15:0] ${ }^{1)}$	B	Bidirectional 16 bit data bus connection to external data memory.	$\begin{aligned} & \text { PDsn } \\ & \text { PWRn } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Data strobe signal for external program memory. Active low.	
MDSn ${ }^{1)}$	O*	Data strobe signal for external data memory. Active low.			Write signal for external program memory. Active low. When low, data is written. When high, data is read.	
MWRn ${ }^{1}$	O*	Write signal for external data memory. Active low. When low, data is written. When high, data is read.	PIVn ${ }^{1)}$	$0 *$	Output signal to support emulation. Active low.	
1)	O*	Address bus for external program memory address up to $64 \mathrm{k} \times 16$ locations.		:- 3-stat 0: Outpu 1: Input	during t signal signal	-*: Open drain output.   ${ }^{* *}$ : Open drain output and 3 -state during reset.   B : Bidirectional signal.   1) : PCF5082 only.

GSM baseband processors for digital mobile cellular radio

## Application of the PCF5081

This PCF5081 is designed to be used in the GSM mobile station. All the necessary baseband signal processing algorithms specified by the GSM-recommendations pertaining to the mobile station can be performed by means of this single chip.

The PCF5081 has on-chip memory (ROM) containing program modules for the different tasks implemented in firmware. A suitable amount of data-RAM/ROM is provided on-chip.

To allow flexible use of the different pre-programmed modules, the sequence of the baseband tasks is defined by the system controller by means of a circular tasks buffer. As soon as no task is left, the baseband processor enters a power-down mode to minimize current consumption.


Typical application of the PCD5081 in a GSM-Mobile Station

The main tasks to be performed by the baseband processor are the following:

- Equalization
- Channel encoder/decoder
- Speech encoder/decoder
- Encryption/Decryption
- Initial synchronization and monitoring of adjacent base station.

The architecture of the PCF5081 baseband processor was not designed for a single task within the baseband signal processing (eg. speech encoder/ decoder), but rather to optimally accomplish all the necessary processing tasks. Special attention was placed on the equalization function where viterbi algorithm (MLSE receiver) and soft decision output code ( 4 bit coding) contribute to an optimal receiver algorithm in contribution with the channel decoder.

To be able to face up to the most severe conditions (hilly environment) a 6T algorithm is in preparation. Moreover, the equalization coefficients are continually updated during a burst to allow use of the mobile radio in vehicules travelling at very high speed.

The channel coder/decoder is capable of handling the speech Traffic Channel (TCH), the Fast and the Slow Associated Control Channel (FACCH and SACCH), the Random Access Channel (RACH) the Broadcast Control Channel (BCCH), the Paging Channel (PCH), the Access Grand Channel (AGCH), the synchronization Channel (SCH) and data transfer at all rates according to GSM Rec. 5.03.

The channel decoder is performed by viterbi algorithm based on soft decision equalizer output and by use of large path memory (up to 32 bits) for the MLSE algorithm.

The speech encoder/decoder function includes voice activity detection, discontinous transmission as well as comfort noise insertion and generation.

The user-dataflow takes place via the serial interfaces $X$ and $Y$. The X-interface looks in the direction of the frontend to the baseband interface (e.g. the Philips PCD5071) and the Y -interface is connected to the handset of the mobile.

The control-dataflow is transmitted via the system controller interface, the general purpose I/O pins, and other I/O available as part of the processor's periphery. The control data and signals are normally provided by the system controller of the mobile.

The architecture of the PCF5081 can be split into two major sections. The processor core consists of all the arithmetic units necessary to carry out the calculations as well as access memories containing data and program information. The application specific hardware is also part of the core. The periphery consists of all the necessary interfaces as well as the interrupt and powerdown/wake-up facilities.

Internal data between these two sections is exchanged via a global data bus.


## Blockdiagram of the PCF5081

## Application of the PCF5082

This version is targetted for use in GSM base station systems (BSS) as well as for real-time emulation purposes during software development and debugging.

## ROM

As the baseband processing within a base station requires a certain degree of flexibility, the PCF5082 can externally address memory dedicated for the application program and user data.

The PCF5082 contains $1 \mathrm{k} \times 16$ bits or program-ROM used for Built-In Self Tests (BIST), boot-strap and emulation routines. External program memory (ROM/RAM) up to $63 k \times 16$ bits can be connected to run application programs.


Possible application of the
PCF5082 in a GSM-Base Taranceiver Station (BTS)

## GSM baseband processors fôr digital mobile cellular radio

## RAM

To keep the overall system costs low, $2 k \times 16$ bits of on-chip data RAM is provided. This range can be extended by external devices (RAM/ROM) up to the maximum value of 64 kx 16 bits of data memory.

## OTHERS

In the switching centre (MSC) the data streams of each of the eight channels are merged to a PCM-highway data-stream ( $2 \mathrm{Mb} / 2$ ) via a multiplexer (MUX) and vice versa via the BTS link interface (BLI). The serial interfaces $Y$ of each of the processors are used for this data flow. In the frontend of the radio terminal (RT), each channel can be connected to a common baseband interface PCD5070 via a multiplexer (MUX) and a demultiplexer (DEMUX), respectively. The serial interfaces $X$ of each of the processors are used for this data flow.
External memories containing user-data and application. programs are connected. As in the PCF5081, the same interfaces are used for control-data and control-signal flow.

The architecture of both the PCF5081 and the PCF5082 can be split into two sections: processor core and the periphery. The PCF5082 processor core contains on-chip boot-strap facility, no user-program-memory and its periphery has additional memory interfaces to connect external memories for both user-data and application programs.

These are the main differences between both the PCF5081 and the PCF5082.

The boot-strap facility is an additional functionality of the PCF5082 allowing for convenient downloading of application programs to the external program memory (RAM) under the control of a host. Several sources for such a download can be selected by the user.

Due to the fact that application programs are stored or downloaded into external program memory, a large degree of flexibility is offered to the base station system designer.

Similar to the PCF5081, the PCF5082 contains application specific hardware to speed up the execution of the baseband signal processing algorithms.

There are several partitionings possible with respect to the different tasks which have to be performed. For instance, the baseband processing can be done by separating receiver and transmitter functions and using one PCF5082 for multiple time-slots (channels) within a TDMA-frame. Alternatively, the receiver and transmitter functions can be kept together and one PCF5082 used for processing both directions simultaneously.

In a typical application the PCF5082 is used for the baseband signal processing in a radio-terminal (RT) of a GSM Base Transceiver Station (BTS). Since the RT must serve all eight time-slots (channels) within a TDMA-frame, eight separate baseband signal-paths have to be used in parallel.


## I/O-Port Descriptions

## Parallel Host Interface

The parallel port provides an 8 -bit bidirectional link to a host or other external device. It is designed as a passive port, i.e. the external device has to be active in order to access the registers of the port. The communication takes place via 16 -bit wide I/O registers with the aid of several control signals. The upper and lower bytes of these registers can be accessed independently.

Two flags are generated (input register full, output register empty) supporting efficient I/O-handling. Whether it is the high byte or the low byte which generates the flag setting is programmable.

By providing several control signals to the external controlling device, this parallel interface is very flexible and supports request-driven as well as acknowledge-driven communications. The selection is done by the external device by means of a status register. This register is exclusively dedicated to the external device and can be read or written.

## Serial Interface X

This is a bidirectional 16 -bit serial I/O which allows for simultaneous data communication in both directions.

During write operations, data is shifted serially into an input shift register. After termination of the shift operation the contents of the shift register is loaded in parallel into an input buffer register. This allows for a continous data stream transmission. A flag is generated indicating the input buffer register is full. The input port has a fully asynchronous handshake capability.

During read operation data is serially shifted out of an output shift register. After termination of the shift operation the output shift register is reloaded by an output buffer register. During a write operation it allows for a continous data stream transmission and autonomous operation. A flag is generated indicating the output buffer register is empty. The output port has a fully asynchronous handshake capability.

## Serial Interface $\mathbf{Y}$

The second serial interface $Y$ covers the same functionality as the serial interface X . In addition, the serial interface Y meets several synchronous transfer protocols such as PCM-Highway or General Communication Interface (GCI). Control registers are provided to select up to 16 data words in a frame from the synchronous data stream. A collision detection unit supports collision detection on the output data stream. It is possible to select
the bits in a data word which are considered for collison detection. If a collision occurs, an error flag will be set which can be used for interrupt processing allowing for efficient error recovery.

## General Purpose $/$ / 0 pins

Four bidirectional general purpose I/O pins are provided as an additional interface to external devices. The state of these pins is reflected in 4 bits of a control register. A write operation to this register causes the appropriate values to appear as output signals on the related pins. With a read operation the incoming signals can then be recognized.

## JTAG Interface

The processors provide a standardized test access port which is fully compatible with the IEEE 1149.1 standard. Each time the command NMI is provided to the JTAG interface, a non-maskable interrupt is generated and fed to the interrupt unit of the processor-core. A jump to a non-maskable interrupt service routine will follow as a reaction. The interface provides two I/O registers to the external controlling host. These register are also fully accessable by the processor core which allows for data exchange between an external device and an application program, or service routine.

Several commands to support testing of the device are provided by the JTAG interface, including Boundary-Scan.

## Peripheral Functions

## Power-down mode

This mode is entered by executing a specific instruction in the application program. It switches the processors into a dormant state where only a fraction of the power dissipation is needed as compared with normal operation mode. The internal clock is stopped and only some synchronization and clock registers are operating.

## Wake-up mode

The power-down mode is terminated if an I/O flag occurs and the related wake-up mode is enabled by the application program.

## Interrupts

There are 13 different internupt sources provided by the processors:

1 non-maskable interrupt initiated by a JTAG port instruction.

2 external interrupts initiated by external devices.

6 internal interrupts initiated by the processor's I/O devices.

1 internal interrupt initiated by the collision detection unit of the serial interface Y .

2 internal interrupts initiated by certain conditions in the arithmetic unit.

1 internal interrupt initiated by the event-counter.

## Event Counter

A 16-bit event counter is provided as an additional peripheral function. The counter can be loaded by the application program and will be decremented every rising edge of the external signal ECLK, indicating an event to the counter.

ECLK is synchronized to the internal processor clock and is limited to half the frequency of this clock. Each time the counter detects a zero value, a flag is generated which can be used as an interrupt source. The counter will then automatically be reloaded with the start value which is stored in a buffer register.

## Sound fader control circuit

## FEATURES

- Source selector for four stereo and one mono inputs
- Interface for noise reduction circuits
- Interface for external equalizer
- Volume, balance and fader control
- Special loudness characteristic automatically controlled in combination with volume setting
- Bass and treble control
- Mute control at audio signal zero crossing
- Fast mute control via $\mathrm{I}^{2} \mathrm{C}$-bus
- Fast mute control via pin
- $1^{2} \mathrm{C}$-bus control for all functions
- Power supply with internal power-on reset


## GENERAL DESCRIPTION

The sound fader control circuit TEA6320 is an $1^{2} \mathrm{C}$-bus controlled stereo preamplifier for car radio hi-fi sound applications.


QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Vcc	positive supply voltage		7.5	8.5	9.5	V
Icc	supply current	$\mathrm{V}_{\mathrm{CC}}=8.5 \mathrm{~V}$	-	26	-	mA
$\mathrm{V}_{\text {O(RMS }}$	maximum output voltage level	$V_{C C}=8.5 \mathrm{~V}$; THD $\leq 0.1 \%$	-	2000	-	mV
$\mathrm{G}_{\mathrm{v}}$	volume gain		-86	-	+20	dB
$\mathrm{G}_{\text {step }}$	step resolution (volume)		-	1	-	dB
$\mathrm{G}_{\mathrm{b}}$	bass control		-15	-	+15	dB
$\mathrm{G}_{\mathrm{t}}$	treble control		-12	-	+12	dB
Gstep	step resolution (bass, treble)		-	1.5	-	dB
$(S+N) / N$	signal-plus-noise to noise ratio	$\mathrm{V}_{0}=2.0 \mathrm{~V} ; \mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}$; unweighted	-	105	-	dB
$\mathrm{RR}_{100}$	ripple rejection	$\mathrm{V}_{\mathrm{r}(\mathrm{RMS})}<200 \mathrm{mV} ; \mathrm{f}=100 \mathrm{~Hz} ; \mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}$	-	75	-	dB
$\alpha_{c s}$	channel separation	$250 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} ; \mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}$	90	96	-	dB

## ORDERING INFORMATION

EXTENDED   TYPE NUMBER	PACKAGE.			
	PINS	PIN   POSITION	MATERIAL	CODE
TEA6320	32	SDIL	plastic	SOT232AG
TEA6320T	32	SO	plastic	SOT287AH


Fig. 1 Block diagram.
0Zદ9ヤヨ1


## PINNING

SYMBOL	PIN	DESCRIPTION
SDA	1	serial data input／output
GND	2	ground
OUTLR	3	output left rear
OUTLF	4	output left front
TL	5	treble control capacitor left channel or input from an   external equalizer
B2L	6	bass control capacitor left channel or output to an   external equalizer
B1L	7	bass control capacitor，left channel
IVL	8	input volume I，left control part
ILL	9	input loudness，left control part
QSL	10	output source selector，left channel
IDL	11	input D left source
MUTE	12	mute control
ICL	13	input C left source
IMO	14	input mono source
IBL	15	input B left source
IAL	16	input A left source
IAR	17	input A right source
IBR	18	input B right source
CAP	19	electronic filtering for supply
ICR	20	input C right source
V ref	21	reference voltage（0．5Vcc）
IRR	22	input D right source
QSR	23	output source selector right channel
ILR	24	input loudness right channel
IVR	25	input volume I，right control part
B1R	26	bass control capacitor right channel
B2R	27	bass control capacitor right channel or output to an   external equalizer
TR	28	treble control capacitor right channel or input from an   external equalizer
OUTRF	29	output right front
OUTRR	30	output right rear
VCC	31	supply voltage
SCL	32	serial clock input


		32 scL
		（3） $\mathrm{V}_{\mathrm{co}}$
		30 OUTRR
		29 OUTRF
TL 5		20 TR
822 6		$2^{782 R}$
812		26818
IVL 8		23 lve
以		224 ILR
ost 10		23 OSR
i0． 11		220108
mute 12		219 V ref
1 CL 13		$20^{16 R}$
1 mo 困		回 CAP
182		间188
${ }_{14} 16$		$7^{\text {lar }}$

Fig． 2 Pin configuration．

## FUNCTIONAL DESCRIPTION

The source selector selects one of 4 stereo inputs or the mono input. The maximum input signal voltage is $V_{i(R M S)}=2 \mathrm{~V}$. The outputs of the source selector and the inputs of the following volume control parts are available at pins 8 and 10 for the left channel and pins 23 and 25 for the right channel. This offers the possibility of interfacing a noise reduction system.

The volume control function is split into two sections: volume I control block and volume II control block.

The control range of volume $I$ is between +20 dB and -31 dB in steps of 1 dB . The volume II control range is between 0 dB and -55 dB in steps of 1 dB . Although the theoretical possible control range is $106 \mathrm{~dB}(+20 \mathrm{~dB}$ to $-86 \mathrm{~dB})$, in practice a range of $86 \mathrm{~dB}(+20 \mathrm{~dB}$ to -66 dB ) is recommended. The gain/attenuation setting of the volume I control blocks is common for both channels.

The volume I control blocks operate in combination with the loudness control. The filter is linear when the maximum gain for the volume 1 control ( +20 dB ) is selected. The filter characteristic increases automatically over a range of 32 dB down to a setting of -12 dB . That means the maximum filter characteristic is obtained at -12 dB setting of volume I. Further reduction of the volume does not further influence the filter characteristic (see Fig.5). The maximum selected filter characteristic is determined by external components. The proposed application gives a maximum boost of 17 dB for bass and 4.5 dB for treble. The loudness may be switched on or off via $1^{2} \mathrm{C}$-bus control (Table 7).

The volume I control block is followed by the bass control block. A single external capacitor of 33 nF for each channel in combination with internal resistors, provides the frequency response of the bass control (see Fig.3). The adjustable range is between -15 dB and +15 dB in steps of 1.5 dB at 40 Hz .

Both, loudness and bass control result in a maximum bass boost of 32 dB for low volume settings.

The treble control block offers a control range between -12 dB and +12 dB in steps of 1.5 dB at 15 kHz . The filter characteristic is determined by a single capacitor of 5.6 nF for each channel in combination with internal resistors (see Fig.4).

The basic step width of bass and treble control is 3 dB . The intermediate steps are obtained by switching 1.5 dB boost and 1.5 dB attenuation steps.

The bass and treble control functions can be switched off via $1^{2} \mathrm{C}$-bus. In this event the internal signal flow is disconnected. The connections B2L / B2R are outputs and TL / TR are inputs for inserting an external equalizer.

The last section of the circuit is the volume II block. The balance and fader functions are performed using the same control blocks. This is realized by 4 independently controllable attenuators, one for each output. The control range of these attenuators is 55 dB in steps of 1 dB with an additional mute step.

The circuit provides 3 mute modes.

1) Zero crossing mode mute via $1^{2} \mathrm{C}$-bus using 2 independent zero crossing detectors (ZCM, see Tables 2 and 9 and Fig.15). 2) Fast mute via mute pin (see Fig.9).
2) Fast mute via $I^{2} \mathrm{C}$-bus either by general mute (GMU see Tables 2 and 9) or volume II block setting (see Table 4).
The mute function is performed immediately if ZCM is cleared $(Z C M=0)$. If the bit is set (ZCM =1) the mute is activated after changing the GMU bit. The actual mute switching is delayed until the next zero crossing of the audio frequency signal. As the two audio channels (left and right) are independent, two comparators (window detectors) are required to control independent mute switches.

To avoid a large delay of the muting switching when very low frequencies are processed, the maximum delay time is limited to typically 100 ms by an integrated timing circuit and an external capacitor ( $\mathrm{C}_{\mathrm{m}}=10 \mathrm{nF}$, see Fig.9). This timing circuit is triggered by reception of a new data word for the switch function which includes the GMU bit. After a discharge and charge period of an external capacitor the muting switch follows the GMU bit if no zero crossing was detected during that time.

The mute function can also be controlled externally. If the mute pin is switched to ground all outputs are muted immediately (hardware mute). This mute request overwrites all mute controls via the $I^{2} \mathrm{C}$-bus for the time the pin is held low. The hardware mute position is not stored in the TEA6320.

For the turn on/off behaviour the following explanation is generally valid. To avoid AF output caused by the input signal coming from preceding stages, which produce output during drop of Vcc. The mute has to be set, before the Vcc will drop. This can be achieved by $I^{2} \mathrm{C}$-bus control or by grounding the mute pin.

For use where there is no mute in the application before turn off, a supply voltage drop of more than $1 \times$ VBE will result in a mute during the voltage drop.

The power supply should include a Vcc buffer capacitor, which provides a discharging time constant. If the input signal does not disappear after turn off the input will become audible after a certain time. A $4.7 \mathrm{k} \Omega$ resistor discharges the Vcc buffer capacitor, because the internal current of the IC does not discharge it completely.

The hardware mute function is favourable for use in RDS (Radio Data System) applications. The zero crossing mute avoids modulation plops. This feature is an advantage for mute during changing presets and/or sources (e. g. traffic announcement during cassette playback).

## LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {CC }}$	supply voltage		0	10	V
$\mathrm{~T}_{\text {amb }}$	operating ambient   temperature range		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature range		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {es }}$	electrostatic handling	see note 1			
$\mathrm{V}_{\mathrm{n}}$	Voltage at pins: pin 1 to 2   and 3-32 to 2		0	$\mathrm{~V}_{\text {CC }}$	V

## Note to the limiting values

1. Human body model: $C=100 \mathrm{pF} ; R=1.5 \mathrm{k} \Omega ; \mathrm{V} \geq 2 \mathrm{kV}$

Charge device model: $C=200 \mathrm{pF} ; \mathrm{R}=0 \Omega ; \mathrm{V} \geq 500 \mathrm{~V}$

## Sound fader control circuit

## CHARACTERISTICS

$V_{C C}=8.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=600 \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=2.5 \mathrm{nF}, \mathrm{AC}$ coupled; $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$; gain control $\mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB}$; bass linear; treble linear; fader off; balance in mid position; loudness off; unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Vcc	supply voltage		7.5	8.5	9.5	V
Icc	supply current		-	26	33	mA
VDC	internal DC voltage at inputs and outputs		3.83	4.25	4.68	V
$V_{\text {ref }}$	internal reference voltage at pin 21		-	4.25	-	V
$\mathrm{G}_{\mathrm{v}}$	maximum voltage gain	$\mathrm{R}_{\mathrm{S}}=0 \Omega ; \mathrm{R}_{\mathrm{L}}=\infty$	19	20	21	dB
$\mathrm{V}_{\text {O(RMS }}$	output voltage level for $P_{\text {max }}$ at the power output stage start of clipping	$\begin{aligned} & \text { THD } \leq 0.1 \% ; \text { see Fig. } 10 \\ & T H D=1 \% \\ & R_{L}=2 \mathrm{k} \Omega ; C_{L}=10 \mathrm{nF} ; \\ & T H D=1 \% \end{aligned}$	$\begin{aligned} & 2300 \\ & 2000 \end{aligned}$	$2000$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
V i(RMS)	input sensitivity	$\mathrm{V}_{0}=2000 \mathrm{mV} ; \mathrm{G}_{\mathrm{V}}=20 \mathrm{~dB}$	-	200	-	mV
B	roll-off frequencies	$\begin{aligned} & \mathrm{C}_{\mathrm{KIN}}=220 \mathrm{nF} ; \\ & \mathrm{C}_{\mathrm{KVL}}=220 \mathrm{nF} ; \\ & \mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{\mathrm{i} \text { min }} \\ & \text { low frequency }(-1 \mathrm{~dB}) \\ & \text { low frequency }(-3 \mathrm{~dB}) \\ & \text { high frequency }(-1 \mathrm{~dB}) \\ & \mathrm{C}_{\mathrm{KIN}}=470 \mathrm{nF} ; \\ & \mathrm{C}_{\mathrm{KVL}}=100 \mathrm{nF} ; \\ & \mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{\mathrm{i}} \text { typ } \\ & \text { low frequency }(-3 \mathrm{~dB}) \\ & \hline \end{aligned}$	60   30 20000 $17$			Hz   Hz   Hz   Hz
acs	channel separation	$\mathrm{V}_{\mathrm{i}}=2 \mathrm{~V}$; frequency range 250 Hz to 10 kHz	90	96	-	dB
THD	total harmonic distortion	$\begin{aligned} & \text { frequency range } \\ & 20 \mathrm{~Hz} \text { to } 12.5 \mathrm{kHz} \\ & V_{i}=100 \mathrm{mV} ; G_{v}=20 \mathrm{~dB} \\ & V_{i}=1000 \mathrm{mV} ; G_{v}=0 \mathrm{~dB} \\ & V_{i}=2000 \mathrm{mV} ; \mathrm{G}_{\mathrm{v}}=0 \mathrm{~dB} \\ & V_{i}=2000 \mathrm{mV} ; G_{v}=-10 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.05 \\ & 0.1 \\ & 0.1 \end{aligned}$	tbn	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \\ & \hline \end{aligned}$
RR	ripple rejection	$\begin{aligned} & V_{r(\mathrm{RMS})}<200 \mathrm{mV} \\ & \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{f}=40 \mathrm{~Hz} \text { to } 12.5 \mathrm{kHz} \\ & \hline \end{aligned}$	tbn	$\begin{aligned} & 76 \\ & 66 \end{aligned}$	$1-$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$(\mathrm{S}+\mathrm{N}) / \mathrm{N}$	signal-plus-noise to noise ratio	unweighted; 20 Hz to 20 kHz RMS; $\mathrm{V}_{0}=2.0 \mathrm{~V}$; see Fig. 6 CCIR 468-2 weighted; quasi peak; $\mathrm{V}_{0}=2.0 \mathrm{~V}$ $\begin{aligned} & G_{v}=0 \mathrm{~dB} \\ & \mathrm{G}_{\mathrm{v}}=12 \mathrm{~dB} \\ & \mathrm{G}_{\mathrm{v}}=20 \mathrm{~dB} \end{aligned}$		105   95   88   81		dB   dB   dB   dB


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Pno(RMS)	noise output power (RMS value) only contribution of TEA6320; power amplifier for 6 W	mute position; note 1	-	$\ldots$	10 :	nW
$\alpha_{B}$	crosstalk ( $20 \log \mathrm{~V}_{\text {bus(p-p) }} / \mathrm{V}_{0(\mathrm{RMS})}$ ) between bus inputs and signal outputs	note 2	-	110	-	dB
Source selector						
$\mathrm{Z}_{i}$	input impedance		25	35	45	$\mathrm{k} \Omega$
as	input isolation of one selected source to any other input	$\begin{aligned} & f=1 \mathrm{kHz} \\ & f=12.5 \mathrm{kHz} \end{aligned}$	-	$\begin{array}{\|l\|l} 105 \\ 95 \\ \hline \end{array}$	$\left.\right\|_{-} ^{-}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Vi(RMS)	maximum input voltage (RMS value)	$\begin{aligned} & \mathrm{THD}<0.5 \% ; \mathrm{V}_{\mathrm{CC}}=8.5 \mathrm{~V} \\ & \mathrm{THD}<0.5 \% ; \mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V} \end{aligned}$	$-$	$\begin{aligned} & 2.15 \\ & 1.8 \\ & \hline \end{aligned}$	-	$\begin{array}{\|l\|} \hline \mathrm{V} \\ \mathrm{~V} \\ \hline \end{array}$
VDC OFF	DC offset voltage at source selector out by selection of any inputs		-	-	10	mV
Zo	output impedance		-	80	120	$\Omega$
$\mathrm{R}_{\mathrm{L}}$	output load resistance		10	-	-	$\mathrm{k} \Omega$
$C_{L}$	output load capacity		0	-	2500	pF
Gv	voltage gain, source selector		-	0	-	dB
Control part (source selector disconnected; source resistance $600 \Omega$ )						
Zi	input impedance volume input		100	150	200	$\mathrm{k} \Omega$
	input impedance loudness input		25	33	40	$\mathrm{k} \Omega$
Zo	output impedance		-	80	120	$\Omega$
$\mathrm{R}_{\mathrm{L}}$	output load resistance		2	-	-	$\mathrm{k} \Omega$
$\mathrm{C}_{\mathrm{L}}$	output load capacity.		0	-	10	nF
$\mathrm{V}_{\text {i(RMS }}$	maximum input voltage (RMS value)	THD < 0.5\%	-	2.15	-	V
$\mathrm{V}_{\text {no }}$	noise output voltage	CCIR 468-2 weighted; quasi peak $\begin{aligned} & G_{v}=20 \mathrm{~dB} \\ & G_{v}=0 \mathrm{~dB} \\ & G_{v}=-66 \mathrm{~dB} \end{aligned}$   mute position	$]_{-}^{-}$	$\begin{aligned} & 110 \\ & 33 \\ & 13 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 220 \\ & 50 \\ & 22 \\ & - \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \end{aligned}$
$\mathrm{G}_{\mathrm{c}}$	total continuous control range		-	106	-	dB
	recommended control range		-	86	-	dB
$\mathrm{G}_{\text {step }}$	step resolution		-	1.	-	dB
	step error between any adjoining step		-	-	0.5	dB
$\Delta \mathrm{Ga}_{\mathrm{a}}$	attenuator set error	$\begin{aligned} & G_{\mathrm{v}}=+20 \text { to }-50 \mathrm{~dB} \\ & \mathrm{G}_{\mathrm{v}}=-51 \text { to }-66 \mathrm{~dB} \end{aligned}$	\|-	-	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\Delta G_{t}$	gain tracking error	$\mathrm{G}_{\mathrm{v}}=+20$ to -50 dB	-	-	2	dB
$\alpha_{m}$	mute attenuation	see Fig. 8	100	110	-	dB
VDC OFF	DC step offset	$\mathrm{G}_{\mathrm{v}}=0$ to -66 dB	-	0.2	10	mV
	between any adjoining step	$\mathrm{G}_{\mathrm{v}}=20$ to 0 dB	-	tbn	15	mV
	between any step to mute	$\mathrm{G}_{v}=0$ to -66 dB	-	-	10	mV

## Sound fader control circuit

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Volume I control and loudness						
$\mathrm{G}_{\mathrm{c}}$	continuous volume control range		-	51	-	dB
$\mathrm{G}_{\mathrm{v}}$	volume gain		-31	-	20	dB
$\mathrm{G}_{\text {step }}$	step resolution		-	1	-	dB
LB	maximum loudness boost	loudness on; referred to loudness off; boost is determined by external components $\begin{aligned} & f=40 \mathrm{~Hz} \\ & f=10 \mathrm{kHz} \end{aligned}$	$-$	$\begin{aligned} & 17 \\ & 4.5 \end{aligned}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Bass control						
$\mathrm{G}_{\mathrm{b}}$	bass control, maximum boost	$\mathrm{f}=40 \mathrm{~Hz}$	14	15	16	dB
	maximum attenuation	$\mathrm{f}=40 \mathrm{~Hz}$	14	15	16	dB
Gstep	step resolution (toggle switching)	$\mathrm{f}=40 \mathrm{~Hz}$	-	1.5	-	dB
	step error between any adjoining step	$\mathrm{f}=40 \mathrm{~Hz}$	-	-	0.5	dB
VDC OFF	DC step offset in any bass position		-	-	20	mV
Treble control						
$\mathrm{G}_{\mathrm{t}}$	treble control, maximum boost	$\mathrm{f}=15 \mathrm{kHz}$	11	12	13	dB
	maximum attenuation	$\mathrm{f}=15 \mathrm{kHz}$	11	12	13	dB
	maximum boost	$\mathrm{f}>15 \mathrm{kHz}$	-	-	15	dB
Gstep	step resolution (toggle switching)	$\mathrm{f}=15 \mathrm{kHz}$	-	1.5	-	dB
	step error between any adjoining step	$\mathrm{f}=15 \mathrm{kHz}$	-	-	0.5	dB
VDC OfF	DC step offset in any treble position		-	-	10	mV
Volume II, balance and fader control						
$\mathrm{G}_{\mathrm{f}}$	continuous attenuation fader and volume control range		53.5	55	56.5	dB
$\mathrm{G}_{\text {step }}$	step resolution		-	1	2	dB
	attenuation set error		-	-	1.5	dB
Mute function (see Fig.9)						
a) Hardware mute						
VSW	mute switch level ( $2 \times \mathrm{V}_{\mathrm{BE}}$ )		-	1.45	-	V
mute active:						
$V_{\text {SWLOW }}$	input level		-	-	1.0	V
ICH	input current	VSWLOW $=1 \mathrm{~V}$	$-300$	-	-	$\mu \mathrm{A}$
mute passive: level internally defined						
VSWHIGH	saturation voltage		-	-	Vcc	V
t DMU	delay until mute passive		-	-	0.5	ms
b) Zero crossing mute						
ID	discharge current		0.3	0.6	1.2	$\mu \mathrm{A}$
ICH	charge current		-300	-150	-	$\mu \mathrm{A}$
VSWDEL	delay switch level ( $3 \times \mathrm{V}_{\mathrm{BE}}$ )		-	2.2	-	V
tDEV	delay time	$\mathrm{C}_{\mathrm{m}}=10 \mathrm{nF}$	-	100	-	ms
$\mathrm{V}_{\text {wind }}$	window for audio signal zero crossing detection		-	30	40	mV


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Muting at power supply drop						
Vcc-drop	supply drop for mute active		-	$\mathrm{V}_{19}-0.7$	-	V
Power on reset (when reset is active the GMU-bit (general mute) is set and the $\mathrm{I}^{2} \mathrm{C}$-bus receiver is in reset position)						
Vcc	increasing supply voltage start of reset		-	-	2.5	V
	end of reset		5.2	6.0	6.8	V
	decreasing supply voltage start of reset		4.2	5.0	5.8	V
Digital part						
$\mathrm{I}^{2} \mathrm{C}$-bus pins; see note 3						
$\mathrm{V}_{\mathrm{H}}$	HIGH level input voltage		3	-	9.5	V
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-0.3	-	+1.5	V
lit	HIGH level input current		-10	-	+10	$\mu \mathrm{A}$
Il.	LOW level input current		-10	-	+10	$\mu \mathrm{A}$
VoL	LOW level output voltage	$\mathrm{L}=3 \mathrm{~mA}$	-	-	0.4	V

## Notes to the characteristics

1. The indicated values for output power assume a 6 W power amplifier at $4 \Omega$ with 20 dB gain and a fixed attenuator of 12 dB in front of it. Signal-to-noise ratios exclude noise contribution of the power amplifier.
2. The transmission contains: total initialization with MAD and Subaddress for volume and 8 data words, see also definition of characteristics, clock frequency $=50 \mathrm{kHz}$, repetition burst rate $=400 \mathrm{~Hz}$, maximum bus signal amplitude $=5 \mathrm{~V}$ p-p
3. The $A C$ characteristics are in accordance with the $I^{2} C$-bus specification. Full specification of $I^{2} C$-bus will be supplied on request.

## $\mathrm{I}^{2}$ C-bus PROTOCOL

$1^{2} \mathrm{C}$-bus format

S	SLAVE ADDRESS	A	SUBADDRESS	A	DATA	A	P

Where:
$S \quad=$ start condition

SLAVE ADDRESS (MAD) $=10000000$
A $\quad$ acknowledge, generated by the slave
SUBADDRESS (SAD) = see Table 1
DATA
= see Table 1
$P \quad=$ STOP condition
If more than 1 byte of DATA is transmitted, then auto-increment of the significant subaddress is performed.

## Subaddress

Table 1 Second byte after MAD


## Definition of third byte

Table 2 Third byte after MAD and SAD

FUNCTION	BIT	MSB		5	4	3	2		$\begin{gathered} \text { LSB } \\ 0 \end{gathered}$
volume/loudness	V	ZCM	LOFF	V5	V4	V3	V2	V1	Vo
fader front right	FFR	X	X	FFR5	FFR4	FFR3	FFR2	FFR1	FFRO
fader front left	FFL	X	X	FFL5	FFL4	FFL3	FFL2	FFL1	FFLO
fader rear right	FRR	X	X	FRR5	FRR4	FRR3	FRR2	FRR1	FRRO
fader rear left	FRL	X	X	FRL5	FRL4	FRL3	FRL2	FRL1	FRLO
bass	BA	X	X	X	BA4	BA3	BA2	BA1	BAO
treble	TR	X	X	X	TR4	TR3	TR2	TR1	TRO
switch	S	GMU	X	X	X	X	SC2	SC1	SCO

Function of the bits:

V0 to V5	volume control
LOFF	switch loudness on/off
FRR0 to FRR5	fader control front right
FFLO to FFL5	fader control front left
FRR0 to FRR5	fader control rear right
FRL0 to FRL5	fader control rear left
BA0 to BA4	bass control
TR0 to TR4	treble control
SC0 to SC2	source selector control
GMU	mute control for all outputs (general mute)
ZCM	zero crossing mode
$X$	don't care bits (logic 1 during testing)

Table 3 Volume setting

$\mathrm{G}_{\mathrm{v}}(\mathrm{dB})$	DATA					
	V5	V4	V3	V2	V1	V0
20	1	1	1	1	1	1
19	1	1	1	1	1	0
18	1	1	1	1	0	1
17	1	1	1	1	0	0
16	1	1	1	0	1	1
15	1	1	1	0	1	0
14	1	1	1	0	0	1
13	1	1	1	0	0	0
12	1	1	0	1	1	1
11	1	1	0	1	1	0
10	1	1	0	1	0	1
9	1	1	0	1	0	0
8	1	1	0	0	1	1
7	1	1	0	0	1	0
6	1	1	0	0	0	1
5	1	1	0	0	0	0
4	1	0	1	1	1	1
3	1	0	1	1	1	0
2	1	0	1	1	0	1
1	1	0	1	1	0	0
0	1	0	1	0	1	1
-1	1	0	1	0	1	0
-2	1.	0	1	0	0	1
-3	1	0	1	0	0	0
-4	1	0	0	1	1	1
-5	1	0	0	1	1	0
-6	1	0	0	1	0	1
-7	1	0	0	1	0	0
-8	1	0	0	0	1	1
-9	1	0	0	0	1	0
-10	1	0	0	0	0	1
-11	1	0	0	0	0	0

Loudness on: the increment of the loudness characteristic is linear at every volume step in the range from +20 dB to -11 dB .

Table 3 Volume setting (continued)

$\mathbf{G}_{\mathbf{v}}$ (dB)	VATA						
	V5	V4	V3	V1	V1		
-12	0	1	1	1	1	1	
-13	0	1	1	1	1	0	
-14	0	1	1	1	0	1	
-15	0	1	1	1	0	0	
-16	0	1	1	0	1	1	
-17	0	1	1	0	1	0	
-18	0	1	1	0	0	1	
-19	0	1	1	0	0	0	
-20	0	1	0	1	1	1	
-21	0	1	0	1	1	0	
-22	0	1	0	1	0	1	
-23	0	1	0	1	0	0	
-24	0	1	0	0	1	1	
-25	0	1	0	0	1	0	
-26	0	1	0	0	0	1	
-27	0	1	0	0	0	0	
-28	0	0	1	1	1	1	
-29	0	0	1	1	1	0	
-30	0	0	1	1	0	1	
-31	0	0	1	1	0	0	

Loudness characteristic is constant in a range from -11 dB to -31 dB .

Table 3 Volume setting (continued)

Gv (dB)	DATA					
	V5	V4	V3	V2	V1	vo
-28	0	0	1	0	1	1
-						
-31	0	0	0	0	0	0

Repetition of steps in a range from -28 dB to -31 dB .

Sound fader control circuit

Table 4 Fader setting

$\mathrm{Gv}(\mathrm{dB})$	DATA					
	FRR5	FRR4	FRR3	FRR2	FRR1	FRRO
	FRL5	FRL4	FRL3	FRL2	FRL1	FRLO
	FFL5	FFL4	FFL3	FFL2	FFL1	FFLO
	FFR5	FFR4	FFR3	FFR2	FFR1	FFRO
0	1	1	1	1	1	1
-1	1	1	1	1	1	0
-2	1	1	1	1	0	1
-3	1	1	1	1	0	0
-4	1	1	1	0	1	1
-5	1	1	1	0	1	0
-6	1	1	1	0	0	1
-7	1	1	1	0	0	0
-8	1	1	0	1	1	1
-9	1	1	0	1	1	0
-10	1	1	0	1	0	1
-11	1	1	0	1	0	0
-12	1	1	0	0	1	1
-13	1	1	0	0	1	0
-14	1	1	0	0	0	1
-15	1	1	0	0	0	0
-16	1	0	1	1	1	1
-17	1	0	1	1	1	0
-18	1	0	1	1	0	1
-19	1	0	1	1	0	0
-20	1	0	1	0	1	1
-21	1	0	1	0	1	0
-22	1	0	1	0	0	1
-23	1	0	1	0	0	0
-24	1	0	0	1	1	1
-25	1	0	0	1	1	0
-26	1	0	0	1	0	1
-27	1	0	0	1	0	0
-28	1	0	0	0	1	1
-29	1	0	0	0	1	0
-30	1	0	0	0	0	1
-31	1	0	0	0	0	0
-32	0	1	1	1	1	1
-33	0	1	1	1	1	0
-34	0	1	1	1	0	1
-35	0	1	1	1	0	0
-36	0	1	1	0	1	1
-37	0	1	1	0	1	0
-38	0	1	1	0	0	1


Gv (dB)	DATA					
	FRR5	FRR4	FRR3	FRR2	FRR1	FRR0
	FRL5	FRL4	FRL3	FRL2	FRL1	FRLO
	FFL5	FFL4	FFL3	FFL2	FFL1	FFLO
	FFR5	FFR4	FFR3	FFR2	FFR1	FFRO
-39	0	1	1	0	0	0
-40	0	1	0	1	1	1
-41	0	1	0	1	1	0
-42	0	1	0	1	0	1
-43	0	1	0	1	0	0
-44	0	1	0	0	1	0
-45	0	1	0	0	1	0
-46	0	1	0	0	0	1
-47	0	1	0	0	0	0
-48	0	0	1	1	1	1
-49	0	0	1	1	1	0
-50	0	0	1	1	0	1
-51	0	0	1	1	0	0
-52	0	0	1	0	1	1
-53	0	0	1	0	1	0
-54	0	0	1	0	0	1
-55	0	0	1	0	0	0
mute	0	0	0	1	1	1
mute	0	0	0	1	1	0
mute	0	0	0	1	0	1
mute	0	0	0	1	0	0
mute	0	0	0	0	1	1
mute	0	0	0	0	1	0
mute	0	0	0	0	0	1
mute	0	0	0	0	0	0

For a particular range the data is always the same, only the subaddress changes.

## Table 5 Bass setting

$\mathrm{G}_{\mathrm{v}}(\mathrm{dB})$	DATA				
	BA4	BA3	BA2	BA1	BAO
15	1	1	1	1	1
13.5	1	1	1	1	0
15	1	1	1	0	1
13.5	1	1	1	0	0
15	1	1	0	1	1
13.5	1	1	0	1	0
12	1	1	0	0	1
10.5	1	1	0	0	0
9	1	0	1	1	1
7.5	1	0	1	1	0
6	1	0	1	0	1
4.5	1	0	1	0	0
3	1	0	0	1	1
1.5	1	0	0	1	0
0 *	1	0	0	0	1
0 **	1	0	0	0	0
-1.5	0	1	1	1	1
-3	0	1	1	1	0
-4.5	0	1	1	0	1
-6	0	1	1	0	0
-7.5	0	1	0	1	1
-9	0	1	0	1	0
-10.5	0	1	0	0	1
-12	0	1	0	0	0
-13.5	0	0	1	1	1
-15	0	0	1	1	0
-13.5	0	0	1	0	1
-15	0	0	1	0	0
***	0	0	0	1	1
***	0	0	0	1	0
***	0	0	0	0	1
*** ****	0	0	0	0	0

* Recommended data word for step 0 dB .
** Result of 1.5 dB boost and 1.5 dB attenuation.
*** The last four bass control data words mute the bass response.
**** The last bass control and treble control data words (00000) enable the external equalizer connection.

Table 6 Treble setting

$\mathrm{G}_{\mathrm{v}}(\mathrm{dB})$	DATA				
	TR4	TR3	TR2	TR1	TRO
12	1	1	1	1	1
10.5	1	1	1	1	0
12	1	1	1	0	1
10.5	1	1	1	0	0
12	1	1	0	1	1
10.5	1	1	0	1	0
12	1	1	0	0	1
10.5	1	1	0	0	0
9	1	0	1	1	1
7.5	1	0	1	1	0
6	1	0	1	0	1
4.5	1	0	1	0	0
3	1	0	0	1	1
1.5	1	0	0	1	0
0 *	1	0	0	0	1
0**	1	0	0	0	0
-1.5	0	1	1	1	1
-3	0	1	1	1	0
-4.5	0	1	1	0	1
-6	0	1	1	0	0
-7.5	0	1	0	1	1
-9	0	1	0	1	0
-10.5	0	1	0	0	1
-12	0	1	0	0	0
***	0	0	1	1	1
***	0	0	1	1	0
***	0	0	1	0	1
***	0	0	1	0	0
***	0	0	0	1	1
***	0	0	0	1	0
***	0	0	0	0	1
*** ****	0	0	0	0	0

* Recommended data word for step 0 dB .
** Result of 1.5 dB boost and 1.5 dB attenuation.
*** The last eight treble control data words select treble cut.
**** The last treble control and bass control data words (00000) enable the external equalizer connection.

Sound fader control circuit

Table 7 Loudness setting

CHARACTERISTIC	DATA L OFF
with loudness	0
linear	1

Table 8 Selected inputs

INPUTS	DATA		
	SC2	SC1	SC0
IAL, IAR stereo	1	1	1
IBL, IBR stereo	1	1	0
ICC, ICR stereo	1	0	1
IDL, IDR stereo	1	0	0
IMO, mono	0	$X$	$X$

Table 9 Mute mode

GMU	ZCM	mode
0	0	direct mute off
0	1	mute off delayed until the next zero crossing
1	0	direct mute
1	1	mute delayed until the next zero crossing

$X=$ don't care bits (logic 1 during testing)

## Sound fader control circuit



Fig. 3 Bass control.


## Sound fader control circuit

TEA6320


Sound fader control circuit


Fig.6(a) Signal-to-noise ratio; noise weighted: CCIR468-2, quasi peak.


Fig.6(b) Signal-to-noise ratio; $V_{i}=2 \mathrm{~V} ; \mathrm{P}_{\max }=6 \mathrm{~W}$.


Fig. 7 Noise output voltage; CCIR468-2, quasi peak.

| (dB) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



Fig. 9 Mute function diagram.

## Sound fader control circuit

## If the 20 dB gain is not required for

 the maximum volume position, it will be an advantage to use the maximum boost gain and then increased attenuation in the last section, Volume II. Therefore the loudness will be at the correct place and a lower noise and offset voltage will be achieved.

Fig. 10 Level diagram.

## Sound fader control circuit



Fig. 11 Turn-on/off power supply circuit diagram.


Fig. 12 Turn-on/off behaviour.


Fig. 13 Test circuit for power supply ripple rejection (RR).


Fig. 14 Test circuit for channel separation (acs).

## Selection of input signals by using the zero crossing mute mode

A selection from input $A$ (IAL) to input $B$ (IBL) left sources produces a modulation click depending on the difference of the signal values at the time of switching.
At $t_{1}$ the maximum possible difference between signals is $7 \mathrm{~V}_{(p-p)}$ and gives a large click. Using the zero cross detector no modulation click is audible.

For example: The selection is enabled at $\mathrm{t}_{1}$, the microcontroller sets the zero cross bit ( $\mathrm{ZCM}=1$ ) and then the mute bit ( $\mathrm{GMU}=1$ ) via the $I^{2} C$-bus. The output signal follows the input A signal, until the next zero crossing occurs and then activates mute.
After a fixed delay time at $t_{2}$, the microcontroller sends the bits for input switching and mute inactive.

The output signal remains muted until the next signal zero crossing of input $B$ (IBL) occurs, and then follows that signal.
The delay time $\mathrm{t}_{2}-\mathrm{t}_{1}$ is e. g. 40 ms . Therefore is the capacity $\mathrm{CM}=3.3 \mathrm{nF}$. The zero cross function is working at the lowest frequency of 40 Hz determined by the CM capacitor.


Fig. 15 Zero cross function; only one channel shown.

## Loudness filter calculation example

Fig. 16 shows the basic loudness circuit with an external low pass filter application. $\mathbf{R}_{1}$ allows an attenuation range of 21 dB while the boost is determined by the gain stage $\mathrm{V}_{2}$. Both result in a loudness control range of +20 dB to -12 dB .
Defining freference as the frequency where the level does not change while switching loudness on/off. The external resistor $\mathrm{R}_{3}$ for freference $\rightarrow \infty$ can be calculated as
$R_{3}=R_{1} \frac{10^{G_{v} / 20}}{1-10^{G_{v} / 20}}$
with $\mathrm{G}_{\mathrm{v}}=-21 \mathrm{~dB}$ and $\mathrm{R}_{1}=33 \mathrm{k} \Omega$ $R_{3}=3.2 \mathrm{k} \Omega$ is generated.
For the low pass filter characteristic the value of the external capacitor $\mathrm{C}_{1}$ can be determined by setting a specific boost for a defined frequency and referring the gain to $G_{v}$ at $f_{\text {reference }}$ as indicated above.

$$
\left|j \omega C_{1}\right|=\frac{\left(R_{1}+R_{3}\right) \times 10^{G_{v} / 20}-R_{3}}{1-10^{G_{v} / 20}}
$$

For example: 3 dB boost at $\mathrm{f}=1 \mathrm{kHz}$
$\mathrm{G}_{\mathrm{v}}=\mathrm{G}_{\mathrm{v} \text { reference }}+3 \mathrm{~dB}=-18 \mathrm{~dB}$;
$f=1 \mathrm{kHz}$ and $\mathrm{C}_{1}=100 \mathrm{nF}$
If a loudness characteristic with additional high frequency boost is desired, an additional high pass section has to be included in the external filter circuit as indicated in the block diagram. A filter configuration that provides AC coupling avoids offset voltage problems.


Fig. 16 Basic loudness circuit.

## INTERNAL PIN CONFIGURATIONS



Pin 1: SDA ( ${ }^{2} \mathrm{C}$-bus data)


Pin 5: Treble control capacitor, left channel Pin 28: Treble control capacitor, right channel


Pin 7: Bass control capacitor input, left channel Pin 27: Bass control capacitor input, right channel


Pin 3: Output left, rear
Pin 4: Output left, front
Pin 29: Output right, front
Pin 30: Output right, rear


Pin 6: Bass control capacitor output, left channel Pin 27: Bass control capacitor output, right channel


Pin 8: Input volume 1 left, control part Pin 25: Input volume 1 right, control part

Pin equivalent circuits
MED438
$\mathrm{Vcc}=8.5 \mathrm{~V}$
(All values shown are typical DC values)
Fig.17(a) Internal circuits (continued in Fig.17(b)).


Pin 9: Input loudness left, control part Pin 24: Input loudness right, control part


Pin 11: Input $D$ left source
Pin 13: Input $C$ left source
Pin 14: Input mono source
Pin 15: Input B left source
Pin 16: Input A left source
Pin 17: Input A right source Pin 18: Input $B$ right source Pin 20: Input $C$ right source Pin 22: Input D right source


Pin 10: Output source selector, left channel Pin 23: Output source selector, right channel


Pin 12: Mute control


Pin 19: Filtering for supply
Pin 21: Reference voltage

Fig.17(b) Internal circuits (continued from Fig.17(a)).

## Sound fader control circuit



Pin 31: Supply voltage


Pin 32: SCL ( ${ }^{2} \mathrm{C}$-bus clock)

Pin equivalent circuits
$\mathrm{Vcc}=8.5 \mathrm{~V}$
(All values shown are typical DC values)
Fig.17(c) Internal circuits (continued from Fig.17(b)).

## FEATURES

- Single chip solution to all the data handling and supervisory functions
- Configuration to both AMPS and TACS
- $I^{2} \mathrm{C}$ serial bus control
- All analog interface and filtering functions fully implemented on chip
- Error handling in hardware reduces software requirements
- Robust SAT decoding and transponding circuitry
- Low current consumption
- Small physical size
- Minimum external peripheral components required.


## GENERAL DESCRIPTION

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\mathrm{DD}}$	supply voltage (pin 28)	3.0	5.0	5.5	V
$\mathrm{I}_{\mathrm{DD}}$	supply current (pin 28)   normal operation with   external clock	-	2.5	-	mA
$\mathrm{T}_{\mathrm{amb}}$	operating ambient   temperature	-30	-	+70	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

EXTENDED   TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
	28	SO28	plastic	SOT136A

The UMA1000LT is a low power CMOS LSI device incorporating the data tranceiving, data processing, and SAT functions (including on-chip filtering) for an AMPS or TACS hand-held portable cellular radio telephone.

The UMA1000T data sheet, also a data processor for cellular radio (DPROC), is available upon request. The UMA1000T has a minimum supply voltage, $\mathrm{V}_{\mathrm{DD}}$, of 4.5 V ; the UMA1000LT has a $\mathrm{V}_{\mathrm{DD}}$ of 3 V . The UMF1000T is pin-for-pin compatible with the UMA1000LT.

Fig. 1 Block diagram.

Data processor for cellular radio (DPROC)

## PINNING

SYMBOL	PIN	DESCRIPTION
$\mathrm{V}_{\text {SSA }}$	1	analog negative supply ( 0 V )
AGND	2	$\left(\mathrm{V}_{D D}-\mathrm{V}_{S S A}\right) / 2$ analog reference ground
DEMODD	3	received data signal input
DATA	4	transmitted data signal output
RACTRL	5	received audio control output
TEST	6	SCAN control input; used for power-on reset
INVRX	7	inverts sense of received data stream
RXLINE	8	received data signal output
i.c	9	internally connected; must be left open-circuit
i.c	10	internally connected; must be left open-circuit
TACTRL	11	transmitter audio control output
CLKIN	12	1.2 MHz external master clock input
BUFOUT	13	buffered output of internal clock oscillator
$\mathrm{V}_{\text {SSD }}$	14	digital ground
TXLINE	15	transmitted data signal
SYNCCLK	16	SCAN CLOCK control input; used for power-on reset
TXHOLD	17	holds off transmission of data
TXCLK	18	transmitted data clock input
BUSY	19	reverse control channel status output
TXCTRL	20	transmitter control output
INVTX	21	inverts sense of transmitted data stream
A1	22	address input 1; used for power-on reset ( ${ }^{2} \mathrm{C}$-bus)
A0	23	address input 0 ( ${ }^{2} \mathrm{C}$-bus)
SDA	24	serial data input/output ( ${ }^{2} \mathrm{C}$-bus)
SCL	25	serial clock input ( ${ }^{2} \mathrm{C}$-bus)
RESET	26	master reset input
RXCLK	27	received data clock input
$\mathrm{V}_{\mathrm{DD}}$	28	supply voltage ( +5 V )



Fig. 2 Pin configuration.

## Data processor for cellular radio (DPROC)

## LIMITING VALUES

In accordance with Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$V_{D D}$	supply voltage	-0.8	+8.0	V
$I_{D D}$	supply current	-	50	mA
$I_{1}$	DC current (any input)	-	$\pm 10$	mA
$I_{0}$	DC current (any output)	-	$\pm 10$	mA
$\mathrm{~V}_{\mathrm{I}}$	all input voltages	-0.8	$\mathrm{~V}_{\mathrm{DD}}+0.8$	V
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	300	mW
$\mathrm{P}_{\mathrm{o}}$	power dissipation per output	-	50	mW
$\mathrm{~T}_{\text {amb }}$	operating ambient temperature	-30	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$

## CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-30$ to $+70^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
$\mathrm{V}_{\mathrm{DD}}$	supply voltage		3.0	5.0	5.5	V
$\mathrm{I}_{\mathrm{DD}}$	supply current	normal operation; note 1	-	2.5	-	mA
Digital inputs (note 2)						
$\mathrm{V}_{\text {LL }}$	LOW level input voltage		-0.3	-	$0.3 \mathrm{~V}_{\text {DD }}$	V
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{C}_{1}$	input capacitance		-	-	6	pF
Digital outputs (note 2)						
$\mathrm{V}_{\mathrm{OL}}$	LOW level output voltage	$\mathrm{I}_{\text {sink }}=1 \mathrm{~mA}$	-	-	0.4	V
$\mathrm{V}_{\mathrm{OH}}$	HIGH level output voltage	$\mathrm{I}_{\text {source }}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	-	V
Open-drain outputs (note 3)						
$\mathrm{V}_{\mathrm{OL}}$	LOW level output voltage	$I_{\text {sink }}=2 \mathrm{~mA}$	-	-	0.4	V
Open-drain SDA						
$\mathrm{V}_{\mathrm{OL}}$	LOW level output voltage	$I_{\text {sink }}=3 \mathrm{~mA}$	-	-	0.4	V

## Notes

1. 1.2 MHz clock on CLKIN, SYNCCLK HIGH, outputs unloaded analog part operating.
2. All digital inputs and outputs of DPROC are compatible with standard CMOS devices and the following general characteristics apply.
3. Open-drain outputs have no internal pull-up resistors.

## FUNCTIONAL DESCRIPTION

## General

The UMA1000LT (DPROC) is a single-chip CMOS device which handles the data and supervisory functions of an AMPS or TACS subscriber set.

These functions are:

- Data reception and transmission
- Control and voice channel exchanges
- Error detection, correction, decoding and encoding
- Supervisory Audio Tone decoding and transponding
- Signalling Tone generation.

In an AMPS or TACS cellular telephone system, mobile stations communicate with a base over full duplex RF channels. A call is initially set up using one out of a number of dedicated control channels. This establishes a duplex voice connection using a pair of voice
channels. Any further transmission of control data occurs on these voice channels by briefly blanking the audio and simultaneously transmitting the data. The data burst is brief and barely noticeable by the user. A data rate of $10 \mathrm{kbits} / \mathrm{s}$ is used in the AMPS system and 8 kbits/s in TACS. The signalling formats for both Forward Channels (base to mobile) and Reverse Channels (mobile to base) are shown in Fig. 3.

A function known as Supervisory Audio Tone (SAT), a set of 3 audio tones ( 5970,6000 and 6030 Hz ), is used to indicate the presence of the mobile on the designated voice channel. This signal; which is analogous to the On-Hook signal on land lines, is sent out to the mobile by the base station on the Forward Voice Channel. The signal must be accurately recovered and transponded back to the base station to complete the 'loop'. At the base station this signal is used to
ascertain the overall quality of the communication link.

Another voice channel associated signal is Signalling Tone (ST). This tone ( 8 kHz TACS, 10 kHz AMPS) is generated by the mobile and is sent in conjunction with SAT on the Reverse Voice Channel to serve as an acknowledgement signal to a number of system orders.

The key requirements of a hand-held portable cellular set are:

- Small physical size
- Minimum number of interconnections (serial bus)
- Low power consumption
- Low cost.

The DPROC is a member of our Cellular Radio chip set, based on the $I^{2} \mathrm{C}$-bus, which meets these requirements. A cellular radio system schematic using the chip set is shown in Fig. 4.

(c)

(d)

Fig. 3 Signalling formats; (a) forward control channel; (b) forward voice channel; (c) reverse control channel; (d) reverse voice channel.
Fig. 4 Cellular radio system schematic.
HM1000LT

Data processor for cellular radio (DPROC)

## EXTERNAL PIN DESCRIPTION

Supply ( $\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\mathrm{SSA}} ; \mathrm{V}_{\mathrm{SSD}} ;$ AGND)
Both $\mathrm{V}_{\text {SSA }}$ and $\mathrm{V}_{\text {SSD }}$ must be connected to common ground.

SYMBOL	DESCRIPTION
$\mathrm{V}_{\mathrm{DD}}$	positive supply voltage for digital and analog circuitry
$\mathrm{V}_{\text {SSA }}$	negative supply voltage for analog circuitry $(0 \mathrm{~V})$
$\mathrm{V}_{\text {SSD }}$	digital ground $(0 \mathrm{~V})$
AGND	internally generated reference ground based by internal analog circuitry;   voltage level $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S A}\right) / 2 \pm 2 \%$

## System clock (CLKIN; BUFOUT)

CLKIN is a digital input for the externally generated 1.2 MHz master clock. This signal should be accurate to $100 \times 10^{-6}$ and have a worst case of $60: 40$ mark-space ratio. BUFOUT is the buffered output of the clock oscillator and provides the option of generating the clock signal on chip by connecting a 1.2 MHz crystal between BUFOUT and CLKIN.


Fig. 5 System clock timing diagram.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$T_{p}$	clock period time	833.25	833.33	833.42	ns
$t_{\text {HIGH }}$	HIGH time	$40 \%$	$50 \%$	$60 \%$	$T_{p}$
$t_{\text {LoW }}$	LOW time	-	$T_{p}-t_{\text {HIGH }}$	-	
$t_{r}$	rise time	-	50	-	ns
$t_{\mathrm{f}}$	fall time	-	-	ns	

## ${ }^{12} \mathrm{C}$ serial data link (SDA; SCL)

SDA is the bi-directional data line; SCL the clock input from an $I^{2} \mathrm{C}$ master. These constitute a typical $I^{2} \mathrm{C}$ link and conform to standard characteristics as defined in the $\mathrm{I}^{2} \mathrm{C}$-bus specification.

- Data rate: up to $100 \mathrm{kbits} / \mathrm{s}$


## Slave Address Select (AO; A1)

Selection of the device slave address is achieved by connecting $A 0$ to either $V_{S S D}$ or $V_{D D}$ and connecting A1 to either pin 16 and pin 6 or to $V_{D D}$. The slave address is defined in accordance with the $I^{2} \mathrm{C}$ specifications as shown in Fig.6.


Fig. 6 Device slave address.

## Power-up state

DPROC will not respond reliably to any inputs (including RESET) until $100 \mu$ s after the power supply has settled within the specified tolerance. The analog sections of the device will have stabilized within 5 ms . No power-on reset is provided, therefore before the device can enter normal operation TEST and SYNCCLK must be pulsed HIGH. The reset pulse on these pins must have a minimum period of $250 \mu \mathrm{~s}$ and the fall time of the negative going edge must be faster than $1 \mu \mathrm{~s}$. Pin A1 must remain HIGH during this reset period therefore if the A1 bit of the $I^{2} \mathrm{C}$ address is required to be logic 0 . A1 may be connected to TEST and SYNCCLK. If it is required to be at logic 1 then A1 may be permanently connected to $V_{D D}$. If it is required that $A 0=$ logic 1 , then a normal master reset (pin 26) sequence
must follow the power-on reset sequence to get the internal registers in the defined state.

After the power-on reset a dummy transmission should be made to initiate internal DPROC counters. This transmission should be made with arbitration (ABREN) disabled and the RF transmitter stage switched OFF. Figure 7 shows the power-on reset sequence.

## Master reset ( $\overline{\text { RESET }}$ )

RESET is an asynchronous active LOW master reset input, with a minimum active pulse width of $2 \mu \mathrm{~s}$ which may be used to reset certain logic within DPROC to a predefined state as illustrated in Tables 1 and 2. Alternatively, DPROC may be set into a known initial state be setting the $I^{2} \mathrm{C}$ control register as required. The internal reset sequence after a negative pulse on RESET takes $250 \mu \mathrm{~s}$.


Where:
t1 = time not critical
$\mathrm{t}_{\mathrm{r}}=$ reset time $=250 \mu \mathrm{~s}$ maximum
$t_{\mathrm{f}}=$ pulse fall time $=1 \mu \mathrm{~s}$ maximum
$t_{H D}=\mathrm{A} 1$ hold time $=0 \mu \mathrm{~s}$ minimum
Note
The RF transmitter is OFF during reset sequence.

Fig. 7 Power-on reset programming sequence.

Table 1 Predefined state of the digital output pins.

OUTPUT	
RXLINE	STATE
TXCTRL	HIGH
TACTRL	HIGH
RACTRL	HIGH
BUSY	HIGH

Table 2 Predefined state of $\mathrm{I}^{2} \mathrm{C}$ registers.

REGISTER		BIT							
		$\mathbf{7}$		$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Control	LOW								
SATD	LOW								
TST	LOW								

## Data Transfer Link (RXLINE; TXLINE; TXHOLD; TXCLK and RXCLK)

RXLINE, TXLINE, TXCLK and RXCLK provide a dedicated serial data link for the transfer of system data messages between DPROC and the system controller at variable rates of up to $200 \mathrm{kbits} / \mathrm{s}$. TXHOLD allows the system controller to preload the DPROC transmit register with one word without the data being transmitted. DPROC then starts transmitting the instant TXHOLD is driven LOW.

- RXCLK: clock input from system controller
- RXLINE: data output from DPROC to system controller
- TXCLK: clock input from system controller
- TXLINE: open drain data bi-directional line to the system controller
- TXHOLD: (HIGH) holds off transmission of data
- Data rate: up to 200 kbits/s


## Note

A minimum mean data transfer rate for the received data of $2.1 \mathrm{kbits} / \mathrm{s}$ (AMPS) and $1.7 \mathrm{kbits} / \mathrm{s}$ (TACS) is required to ensure contiguity of message words.
The format for received and transmitted data words is shown in Fig.15(a) and Fig.15(b) respectively. The receive and transmit data timing is illustrated in Fig.16(a) and Fig.16(b) respectively.

## Transmitter Control (TXCTRL)

TXCTRL is an open-drain output used to disable the transmitter during a Reverse Control Channel access failure.

- output level HIGH: RF enable
- output level LOW: RF disable


## Transmitter Audio Enable (TACTRL)

TACTRL is an open-drain digital output signal used to blank the audio path and enable the data path to the modulator during data bursts on the Reverse Voice Channel.

- output level HIGH: audio enabled
- output level LOW: audio muted


## Receiver Audio Enable (RACTRL)

RACTRL is an open-drain digital output used to blank the audio path to the earpiece when a sequence of dotting and word sync is detected.

RACTRL and TACTRL functions can be combined using one line.

- output level HIGH: audio enabled
- output level LOW: audio muted


## Reverse Control Channel Status (BUSY)

BUSY is a digital output giving the status of the Reverse Control Channel. This is determined by a majority decision on the result of the last 3 consecutive Busy/Idle bits and has the following logic levels:

- output level HIGH: channel busy
- output level LOW: channel idle

On a voice channel BUSY indicates channel idle.

## Invert Receive Data (INVRX)

Enables an additional inverter in the receive data path. This allows RF demodulators with high or low local oscillators to be used. The TACS and AMPS specifications define a NRZ encoded logic 1 as a LOW-to-HIGH transition in the centre of a data bit period. The polarity of the demodulated data stream into DPROC depends on the receiver local oscillator.

- input HIGH: data inverted
- input LOW: data normal


## Invert Transmit Data (INVTX)

Enables an additional inverter in the transmit data path. This allows RF modulators with high or low local oscillators to be used. The TACS and AMPS specifications define a NRZ encoded logic 1 as a LOW-to-HIGH transition in the centre of a data bit period. The polarity of the modulated data stream depends on the transmitter local oscillator.

- input HIGH: data inverted
- input LOW: data normal


## Transmitted Data Output (DATA)

Data is an analog output which provides Manchester encoded and filtered data signal SAT and signalling tone. This signal should normally be AC coupled into the Audio/Data summer.

- DC level:
- signal level:
- signal tolerance:
- minimum load capacitance:
- maximum load capacitance:
- maximum output impedance:
analog ground (AGND)
$\frac{2}{5} V_{D D} V$ ( $p-p$ ) for signalling tone; signal level with filtered data signal
$2 \%+$ supply voltage variation ( $\Delta \mathrm{V}_{\mathrm{DD}}$ )
$10 \mathrm{k} \Omega$
2 nF
$50 \Omega$


## Received Data Input (DEMODD)

Demodd inputs analog data and SAT signals from the RF demodulator. This pin should normally be AC coupled.

- DC level: analog ground (AGND)
- maximum data level:
$\frac{V_{D D}}{5} \times 1 V(\mathrm{p}-\mathrm{p})$
- nominal data level:
$\frac{V_{D D}}{5} \times 250 \mathrm{mV}(\mathrm{p}-\mathrm{p})$
- minimum data level:
- minimum SAT level:
$\frac{V_{D D}}{5} \times 200 \mathrm{mV}(\mathrm{p}-\mathrm{p})$
- input impedance:

50 mV (p-p)
$\min .1 \mathrm{M} \Omega$

## CHARACTERISTICS OF THE $I^{2}$ C-BUS

The $I^{2} \mathrm{C}$-bus is for 2-way, 2-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

## Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.

## Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

## System configuration

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

## Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse, set up and hold times must be taken into account. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

## Timing specifications

Masters generate a bus clock with a maximum frequency of 100 kHz . Detailed timing is shown in Fig. 12.

Where:


Fig. 8 Bit transfer.


Fig. 9 Definition of start and stop conditions.


Fig. 10 System configuration.


Fig. 11 Acknowledgement on the $\mathrm{I}^{2} \mathrm{C}$-bus.


All the values refer to $10 \%$ and $90 \%$ levels with a voltage swing of $V_{D D}$ to $V_{S S}$.

SYMBOL	TIMING	DESCRIPTION
$t_{\text {BUG }}$	$t \geq t_{\text {LoW(min) }}$	the minimum time the bus must be free before a new transmission can start
$t_{\text {HD; STA }}$	$t \geq t_{\text {HIGH(min) }}$	start condition hold time
$t_{\text {LOW(min) }}$	$4.7 \mu \mathrm{~s}$	clock LOW period
$t_{\text {HIGH(min) }}$	$4 \mu \mathrm{~s}$	clock HIGH period
$t_{\text {LU; STA }}$	$t \geq t_{\text {LOW(min) }}$	start condition set-up time, only valid for repeated start code
$t_{\text {HD; DAT }}$	$t \geq 0 \mu \mathrm{~s}$	data hold time
$t_{\text {LU; DAT }}$	$t \geq 250 \mathrm{~ns}$	data setup time
$t_{\mathrm{r}}$	$t \leq 1 \mu \mathrm{~S}$	rise time of both the SDA and SCL- line
$t_{\text {f }}$	$t \leq 300 \mathrm{~ns}$	fall time of both the SDA and SCL line
$t_{\text {GU; PTO }}$	$t \geq t_{\text {LOW(min) }}$	stop condition set-up time

SBA

SCL


Where:
Clock $\mathrm{t}_{\text {Low(min) }}: 4.7 \mu \mathrm{~s}$
Clock $\mathrm{t}_{\mathrm{HIGH}(\text { min })}: 4 \mu \mathrm{~s}$
The dashed line is the acknowledgement of the receiver
Maximum number of bytes: unrestricted
Premature termination of transfer: allowed by generation of STOP condition
Acknowledge clock bit: must be provided by the master.

Fig. 13 Complete data transfer.

## [2C REGISTERS

## General

The $I^{2} \mathrm{C}$ register block resides internally within the $I^{2} \mathrm{C}$ interface block and contains various items of status and control information which are transferred to and from DPROC via the $1^{2} \mathrm{C}$-bus. The block is organized into four 8-bit registers:

- Status Register: contain read only items
- Control Register: contain write only items
- SAT Programmable Phase Shift Register: contain write only items
- TEST Register


## Note

In normal operation the SAT delay register and the TEST register require programming only after a device reset.

Table 3 Register map.

REGISTER	BIT							
	7	6	5	4	3	2	1	0
Status	-	-	WYNSC	BUSY	TXABRT	TXIP	MSCC1	MSCCO
Control	-	SERV	STS	TXRST	ABREN	FVC	STEN	SATEN
SATD								


$\mathbf{S}$	DPROC ADR	R	A	STATUS	A	P

(a)

(b)

(c)

Where:
S: START condition
W: read/write bit (logic $0=$ write)
R: read/write bit (logic $1=$ read)
A: acknowledge bit
P: STOP condition
DPROC ADR: slave address of DPROC
TEST: must be programmed to logic 0 for normal operation.

Fig. $14 I^{2} \mathrm{C}$ data format; (a) read from DPROC status register; (b) write to DPROC control register; (c) write to all DPROC registers.

## Status Register

This is read only register containing DPROC status information.

MEASURED SAT COLOUR CODE (MSCC1; MSCCO)

MSCC1 and MSCC0 provide information about the current measured SAT colour code in accordance with Table 4.

TRANSMISSION IN PROGRESS (TXIP)
TXIP indicates whether DPROC is currently accessing the Reverse Control or Voice Channels.

- logic 1: data transmission in progress
- logic 0: transmission not in progress

TRANSMISSION ABORT STATUS (TXABRT)
TXABRT indicates that a Reverse
Control Channel Access Attempt has been aborted by DPROC without successful message transmission.

- logic 1: transmission attempt aborted
- logic 0: no access collision detected

Table 4 Measured SAT colour code.

MSCC1	MSCC0	SAT frequency (Hz)
0	0	5970
0	1	6000
1	0	6030
1	1	no valid SAT

REVERSE CONTROL CHANNEL STATUS (BUSY)
BUSY gives the status of the Reverse Control Channel. This is determined by a majority decision on the result of the last 3 consecutive Busy/Idle bits on the Forward Control Channel.

- logic 1: channel busy
- logic 0: channel idle

On a voice channel the BUSY bit defaults to the set state.

## Note

This signal is also routed to the BUSY output pin.

WORD SYNCHRONIZATION INDICATOR (wSYNC)

WSYNC indicates whether DPROC has acquired frame synchronization according to the Forward Control Channel format.

- logic 1: frame synchronization acquired
- logic 0: no frame synchronization


## Control Register

This is a write only register containing DPROC control information.

## SAT PATH ENABLE (SATEN)

SATEN enables the SAT transponded signal to be output on external pin DATA.

- logic 1: SAT tone enabled
- logic 0: SAT tone inhibited

SIGNALLING TONE (ST) PATH ENABLE (STEN)

STEN enables the Signalling Tone to be output on external pin DATA.

- logic 1: ST enabled
- logic 0: ST inhibited


## CHANNEL FORMAT SELECT (FVC)

FVC selects the required channel format.

- logic 1: voice channel format
- logic 0: control channel format

TRANSMISSION ABORT PERMISSION (ABREN)

ABREN indicates whether DPROC has permission to abort data transmission and disable RF on the Reverse Control Channel following the detection of a channel access attempt collision.

- logic 1: RF disable allowed
- logic 0: RF disable inhibited

MESSAGE TRANSMISSION ABORT (TXRST)
TXRST terminates a message being transmitted on the reverse channel.
It is a monostable signal which when activated causes a reset of the message transmission circuitry and causes TXABRT and TXIP ${ }^{2} \mathrm{C}$ signals to be reset.
This signal does not clear the DPROC transmit register; therefore if a word has been loaded into DPROC after a TXABRT has occured the control line TXHOLD should be held LOW to allow the word to be cleared from the DPROC input register.

- logic 1: reset active
- logic 0: reset inactive


## SYSTEM TYPE SELECT (STS)

STS selects required system format.

- logic 1: AMPS
- logic 0: TACS


## Note

Toggling this signal also resets the receive logic in DPROC.

SERVING SYSTEM SELECT (SERV)
SERV selects which of the serving system data streams ( $A$ or $B$ ) is accepted.

- logic 1: system A selected
- logic 0: system B selected

SAT PROGRAMMABLE DELAY REGISTER (SATD)
SATD programs the value of phase shift which is applied to the SAT tones in the SAT Regeneration Block. This value will be determined and programmed into the System Controller during manufacture. The recovered SAT is delayed in time by approximately $0.8 \mu \mathrm{~s} x$ value in the register which corresponds to approximately 1.8 degrees $x$ value in the register. The total phase shift is limited to 360 degrees.
The ability to adjust SAT phase angle is not necessary in current AMPS and TACS systems. Therefore this register should normally be in AMPS and TACS, this function is not necessary and should programmed to zero.

## DIGITAL CIRCUIT BLOCKS

## General

The majority of the digital circuitry within the DPROC device is identical for both AMPS and TACS. The device has little additional redundancy to implement both systems. The functions of these blocks are described in the following sections and relate to those shown in Fig. 1.

## Data Recovery

The Data Recovery Block receives wideband Manchester encoded data in sampled and sliced form from the Strobed Comparator Block, on which it performs the following functions:

- clock recovery
- Manchester decoding
- data regeneration

The Clock Recovery Block extracts an 8 or 10 kHz (TACS or AMPS) phase-locked clock signal from the Manchester encoded data stream. This is implemented using a digital-phase-locked-loop (PLL) which has an adjustable 'bandwidth' to provide both fast acquisition and low jitter.

Manchester decoding is performed by exclusive ORing the recovered Manchester encoded data with the recovered clock.

The NRZ data regeneration is performed by a digital integrate and dump circuit. This consists of an up/down counter that counts 1.2 MHz cycles during the data period. The sense of the count is determined by the result of the Manchester Decoder output. The number of counts is sampled at the end of a data period. If this number exceeds a threshold the data is latched as a 1 otherwise it is latched as a 0 .

## SAT Processing

The Supervisory Audio Tone processing consists of the following functions:

- SAT recovery
- SAT determination
- SAT regeneration


## SAT RECOVERY

The SAT Recovery Block receives a filtered and sliced SAT signal which must be recovered before being routed to the Determination and Regeneration Blocks. The recovery is performed using a digital phase-locked-loop.

## SAT DETERMINATION

The SAT Determination Block indicates which, if any, of the valid SAT tones is detected from the recovered SAT. The AMPS and TACS specifications require that a determination is made at least every 250 ms . Determination involves counting the number of cycles of the regenerated SAT in this time period. This count is then compared to a set of four known counts which define the boundaries between the SAT frequencies and the SAT not valid events. The result is then coded into the $I^{2} \mathrm{C}$ status registers MSCCO and MSCC1 as shown in Table 5.

## SAT REGENERATION

The SAT Regeneration Block generates a digital SAT stream from the recovered SAT stream for transponding back to the base station. The AMPS and TACS specifications require the SAT to be transponded with a maximum phase shift of 20 degrees between the point the modulated RF signal enters the mobile from the base station, and the point the modulated RF leaves the mobile. A variable phase compensation circuit is
provided in DPROC to shift the recovered SAT through 0 to 360 degrees before being passed to the output summing network. The degree of phase shift is determined during manufacture of the set and the required additional phase shift is stored in non-volatile RAM and programmed via $I^{2} \mathrm{C}$ at each power-on cycle. The phase correction is performed by a counter delay method using signals which are phase locked to the recovered SAT.

## Dotting Detector

The Dotting Detector Block determines whether a data inversion (dotting) pattern has been received on the Forward Voice Channel. The detection of 32 bits of data inversion indicates that the Clock Recovery Block has acquired bit synchronization and that the narrow bandwidth mode on the clock recovery phase-locked-loop is selected. This signal is also used to indicate that a data burst is expected and activates the audio mute RACTRL, after a Word Synchronization Block has been received, for the duration of the burst.

Table 5 Status registers MSCCO, MSCC1; decoded SAT frequencies.

REGISTER		SAT frequency band   $(\mathbf{H z} \pm \mathbf{2 ~ H z})$	decoded SAT   (Hz)
MSCCO	MSCC1	max. 5956	not valid
1	1	5956 to 5986	5970
0	0	5986 to 6014	6000
0	1	6014 to 6046	6030
1	0	min. 6046	not valid
1	1		

## Word Synchronization Detector

The Word Synchronization Block performs the following functions:

- Frame Synchronization
- Reverse Control Channel status ( $\mathrm{B} / \mathrm{I}$ determination)
- Valid Serving System determination

These functions are associated solely with the Forward Control Channel and have no meaning on the Forward Voice Channel.

Information in a data stream is identified by its position with respect to a unique synchronization word. This synchronization word is an 11-bit Barker code which has a low probability of simulation in an error environment, and can be easily detected. Data received is only considered valid at times when DPROC has achieved frame synchronization. In this condition the block leaves its search mode and enters its lock mode. This is indicated by bit WSYNC being set HIGH. In order to achieve this two consecutive synchronization words separated by 463 bits must be
detected. Once in lock mode, the synchronization word detector is examined every 463 bits and only loses frame synchronization after 5 consecutive unsuccessful attempts at detecting the synchronization word have been made. At this point bit WSYNC is cleared and the device is returned to its search mode. On the Forward Voice Channel detection of the synchronization word indicates that the following 40 bits are valid data. Information detailing the status of the Reverse Control Channel is given by the Busy/Idle bits. These occur at intervals of 11 bits within the frame, the first occurring immediately following the synchronization word. The status of the channel is determined by a majority decision on the last three consecutive Busy/Idle bits.

## Majority Voting Block

The Majority Voting Block performs the following functions:

- identifying position and validity of frames in the received data stream
- extracting five repeats of each word from a valid frame
- performing a bit-wise majority decision on the five repeats of the data word.

The validity of the frames is determined by setting a counter in operation which times out and resets the circuitry after 920 or 463 bit periods from detecting valid word synchronization. The time out period selected depends on whether DPROC is monitoring the Forward Voice or Control Channel respectively.

Up to five repeats of the message word are searched for and extracted by DPROC. On the forward Voice Channel DPROC will extract the first five words that occur for which a correct synchronization word is found. These words can occur in any position in the frame. A serial majority vote is performed as the fifth word is being extracted.

Data processor for cellular radio (DPROC)

## Error Correction Block

The Error Correction Block performs the following functions:

- extraction of a valid message from the Majority-Voted Word
- computation of the S1 and S3 syndromes
- correction of up to one error in the word
- communication of received data to the System Controller via the Received Data Serial Link.

Interpretation of parity of a received word is obtained from knowledge of the syndromes of the word. The syndromes are calculated using feedback shift registers with two characteristic equations:

$$
1+X+X^{6} \text { and } 1+X+X^{2}+X^{4}+X^{6}
$$

Once the syndromes of a received word are known, it is possible to determine if a correctable error is present. DPROC only corrects up to one error although the code used has a Hamming distance of five. The occurence of two or more errors is signalled by setting the BCH error flag, which is communicated to the System Controller via the Received Data Serial Link.

## Received Data Serial Link

The Received Data Serial Link transfers data and control information from DPROC to the System Controller. The data is transferred on RXLINE under control of a clock signal RXCLK, generated by the System Controller. The system controller is informed of the arrival of a decoded data word in the DPROC output register by RXLINE being driven LOW. If the system controller chooses to ignore the received data or only partially clock the data out, the DPROC will reset the receive buffer for the next word after the period RWIN (see Fig.16).

## DATA FORMAT

Each Received Data word consists of 4 bytes. The word format is shown in Fig.15(a). The sense and function of the fields is shown in Table 6.

LINK PROTOCOL
The Received Data protocol is described by the timing diagram Fig.16(a) and has the following parameters:

- maximum receive window (RWIN)

Control Channel $($ TACS $)=$ 47 ms
Control Channel (AMPS) = 37 ms

- minimum clock period $\left(\mathrm{t}_{\mathrm{CLK}(\text { min })}\right)=$ $2 \mu \mathrm{~s}$
- minimum clock hold-off $\left(\mathrm{t}_{\text {walt }}\right)=$ $100 \mu \mathrm{~s}$


## Transmit Data Serial Interface

The Transmit Data Serial Link performs reception of data from the System Controller to DPROC over a dedicated line TXLINE. The transfer of data is synchronous with a clock signal TXCLK, generated by the System Controller.

## DATA FORMAT

Each Transmit Data word consists of 5 bytes. The word format is shown in Fig.15(b). The sense and function of the fields is shown in Table 7.

## LINK PROTOCOL

Messages are normally up to 5 words in length on the Reverse Control Channel and up to 2 words in length on the Reverse Voice Channel. However, DPROC will transmit messages of any word length. These must be transmitted on the data stream without interruption. To avoid the need for large buffer areas, a flexible protocol is used to allow

DPROC to control the transfer of data words. DPROC has an on-chip buffer which can hold one complete word of a message. While new words are being loaded into DPROC, within the time period Buffer clear to end of TWIN, DPROC will maintain uninterrupted data transmission. The System Controller can abort the transmission of a message at any point activating the $I^{2} \mathrm{C}$ signal TXRST. This signal causes the interface to return to its power-up state and resets TXIP and TXABRT (see Table 3). On completion of these tasks TXRST will return to its inactive state. The Transmit Data Protocol is described by the timing diagram shown in Fig.16(b) and has the following parameters:

- maximum transmit window (TWIN) voice channel (TACS) $=60 \mathrm{~ms}$ voice channel $($ AMPS $)=48 \mathrm{~ms}$ control channel $($ TACS $)=29 \mathrm{~ms}$ control channel (AMPS) $=23 \mathrm{~ms}$
- minimum clock period $\left(\mathrm{t}_{\mathrm{cLK}(\text { min })}\right)=$ $2 \mu \mathrm{~s}$

Data processor for cellular radio (DPROC)

Table 6 Received Data word.

BIT	TITLE	SENSE	FUNCTION
31	start	LOW	identifies start of word
30	BCH error	indicates that an uncorrected BCH error is   associated with the word	
29 to 2	received data	binary data	received data word
1	RXLINE error	LOW	if detected as HIGH indicates that a transmission   error has occured on the microprocessor to DPROC   serial link
0	stop	HIGH	identifies end of the word

Table 7 Transmit data word.

BIT	TITLE	SENSE	FUNCTION
39	start	LOW	identifies start of word
38,37	DCC	binary data	digital colour code
36 to 1	transmit data	binary data	transmit data word
0	stop	HIGH	identifies end of the word


(a)

(b)

Fig. 15 Data word formats; (a) received data word; (b) transmit data word.


Where:
$\mathrm{t}_{\mathrm{HD}}=100 \mathrm{~ns}$ minimum
$\mathrm{t}_{\mathrm{su}}=0 \mathrm{~ns}$ minimum
$\mathrm{t}_{\text {WAIT }}=0 \mathrm{~ns}$ minimum
(1) The buffer busy time depends on whether the first or subsequent words are being loaded.
(2) The system controller should monitor the TXLINE during bit 0 , if the status of TXLINE does not change from a HIGH to a LOW on the rising edge of TXCLK, then a framing error has occured. This can be caused by glitches on the clock line or if an arbitration error occured while the DPROC transmit register was being loaded. The system controller should recover the situation by holding TXLINE HIGH and supplying clocks on TXCLK until TXLINE goes LOW. Then the situation should be treated as a normal channel arbitration failure as described in Reverse Control Channel Access Arbitration - Abort Procedure.

Fig. 16 Data timing diagrams; (a) DPROC to microcontroller link; receive data timing; (b) microcontroller to DPROC link; transmit data timing.

## BCH and Manchester Encoding Block

The functions performed by this circuit block include:

- reception of data from the System Controller
- parity generation
- message construction
- Manchester encoding

Each 36-bit Information Word sent on the Reverse Voice and Control Channels is coded into a 48-bit code word. The code word consists of the 36-bit word followed by 12 parity bits. These parity bits are formed by clocking the information word into a 12-bit feedback shift register with characteristic equation:
$1+X^{3}+X^{4}+X^{5}+X^{8}+X^{10}+X^{12}$
The BCH Encoder Block constructs the Reverse Voice and Control Channel data streams from the information it receives from the System Controller.
The streams are formed out of the four possible field types:

- Dotting (data inversions)
- 11-bit Synchronization Word
- Digital Colour Code
- 48-bit code word

The 2 bits of DCC received from the System Controller are coded into a 7-bit word as shown in Table 8.

The data sense for Manchester Encoding has a NRZ logic 1 encoded as a 0-to-1 transition and a NRZ logic 0 encoded as a 1-to-0 transition.

## Reverse Control Channel Access Arbitration

The AMPS and TACS specifications require a method of arbitration on the Reverse Control Channel to prevent two mobiles from transmitting on the same channel at
the same time. This function is performed by DPROC monitoring the Busy/Idle stream sent on the Forward Control Channel.

The AMPS and TACS specifications state that once the mobile has commenced transmitting on the Reverse Control Channel it must monitor the Busy/Idle stream. If this stream becomes active outside a predetermined 'window', measured from the start of the transmission of the message, the mobile must terminate its transmission and disable the transmitter immediately.
In the Cellular Radio chip-set there are two levels of control of the RF transmitter; the first is absolute control by the System Controller, the second is conditional by other devices in the set. In DPROC the conditional control of the transmitter is performed via the output TXCTRL. This line is effectively wired ANDed together, using open-drain outputs, with other devices which may wish to control the transmitter. When these devices do not wish to disable the transmitter their output is in a HIGH impedance state.

An exception to this procedure occurs when the Serving System instructs the mobile not to monitor the Busy/Idle bits. In this event the arbitration logic can be disabled by clearing $I^{2} \mathrm{C}$ register bit ABREN.

The flow of events during a Control Channel Access attempt is as follows:

## INITIAL STATE

- transmitter power off via $I^{2} \mathrm{C}$
- DPROC transmit circuitry in power-up state
- TXCTRL line HIGH

ACCESS ATTEMPT PROCEDURE

1. System Controller decides to send message (see Note to the Access Attempt Procedure).
2. System Controller drives TXCTRL LOW directly.
3. System Controller switches transmitter power-on and waits for power-up for the transmitter module (RF transmitter is still disabled by TXCTRL).
4. System Controller sets TXRST via $I^{2} \mathrm{C}$ to DPROC.
5. System Controller sets ABREN via $I^{2} \mathrm{C}$ (if required) allowing DPROC to control the transmitter.
6. System Controller determines status of Reverse Control Channel by monitoring the Busy/ldle bit. If busy, waits a random time then tries again.
7. System Controller releases TXCTRL allowing it to be pulled HIGH enabling the transmitter output.
8. System Controller transfers the first word of the message to DPROC via serial link (see Note to the Access Attempt Procedure).
9. DPROC sets $\mathrm{I}^{2} \mathrm{C}$ signal TXIP and starts sending message while monitoring Busy/Idle status.
10. If channel becomes busy before 56 bits and ABREN is set then perform Abort Procedure.
11. If channel remains idle after 104 bits and ABREN is set then perform Abort Procedure.
12. System controller loads the subsequent words of the message into DPROC when the buffer becomes clear (Fig.16b).
13. On completion of entire message DRPCO clears TXIP and 25 ms later the System Controller disables transmitter via $1^{2} \mathrm{C}$.
14. System Controller finally sends TXRST to prepare DPROC for next transmission.

## Note to the Access Attempt Procedure

At stage 1 the system controller may choose to preload DPROC with the first word of the message and hold it from transmission until stage 7 using the TXHOLD line. This gives a lower time overhead between detecting an IDLE channel and commencing the transmission. To use this feature TXHOLD must be driven HIGH before the last bit of data has been transferred into DPROC. Figure 17 illustrates the DPROC data transmission timing.

## abort procedure (see Fig.18)

1. DPROC immediately disables transmitter output by driving TXCTRL LOW.
2. DPROC sets TXABRT.
3. System Controller detects failure by monitoring TXCTRL and TXABRT.
4. System Controller disables transmitter via RF power amplifier.
5. System Controller sends TXRST to prepare DPROC for next transmission.

## Note to the Abort Procedure

If a message is loaded into DPROC after a TXABRT has occured this word will remain in the DPROC transmit register and will not be cleared to TXRST.
If this situation arises the method of clearing the buffer ready for a second access attempt is to leave TXHOLD LOW and then send a TXRST prior to setting up a new transmission after TXLINE goes HIGH; this will clear any residual data in the buffer.

## Signal Tone Generation (ST)

The 8 or 10 kHz (TACS or AMPS) tone generated from the Manchester Encoding Block is used as the Signalling Tone stream.

## ANALOG CIRCUIT BLOCKS

## General

The analog signal processing functions on DPROC are implemented using switched-capacitor techniques. The main filtering functions are operated at 300 kHz , and these circuits are 'interfaced' to the continuous time and sampled digital domains by distributed RC active filters, passive interpolators and comparators.

The distributed RC sections, the Anti-Alias Filter and the Clock Noise Filter, are non-critical and are designed to tolerate process spreads. The critical filtering in the

SAT Filter and the Output Filter, is performed by 300 kHz switched-capacitor circuitry. The Passive Interpolators increase the sampling rate from 300 kHz to 1.2 MHz. The sampled analog signals from the Passive Interpolators are converted to sampled 2 -state digital signals by the Strobed Comparators. The Gated Digital-to-Analog converters and Analog Summer blocks perform resynchronization and sub-sampling of the digitally generated DPROC output signals, and conversion to the sampled analog domain.

These analog section of the device are shown in Fig.1.

## Reference Voltage Generator

The Reference Voltage Generator generates the analog ground reference voltage (AGND) used internally within the DPROC device. To minimize noise AGND must be externally decoupled to VSSA as shown in Fig. 19.

## Anti-Alias Filter

The Anti-Alias Filter is placed before the SAT sampling block to prevent any unwanted signals or high-frequency noise present on the DEMODD pin being aliased into the pass-band by the sampling action of the switched-capacitor filter. To achieve this the Anti-Alias Filter is a continuous time-distributed RC-active low-pass filter.

Table 8 Digital Colour Code; 7-bit word.

DCC1	DCCO	Coded DCC									
0	0	0	0	0	0	0	0	0			
0	1	0	0	1	1	1	1	1			
1	0	1	1	0	0	0	1	1			
1	1	1	1	1	1	1	0	0			
		DCC1								DCC0	



Fig. 17 DPROC data transmission timing/microcontroller interface.

## SAT Input Filter

The SAT Input Filter is a switched-capacitor filter which provides band-pass filtering of the SAT signals from the DEMODD pin to improve the SAT signal-to-noise ratio prior to recovery and transponding.

## Passive Interpolator

The function of the Passive Interpolator is to increase the sampling rate at the output of the switched-capacitor filters. This reduces the coarseness of the zero-crossing information which would otherwise cause unacceptable isochronous distortion in the recovered signal.

## Strobed Comparators

The Strobed Comparators form the analog-to-digital interface for the received data and SAT signals from the DEMODD pin. These comparators act as limiting amplifiers which convert the filtered sampled analog signals into 2-state sampled digital signals containing only the zero-crossing information from the analog signal.

## Gated Digital-to-Analog and Analog Summer

The Gated Digital-to-Analog converters and Analog Summer form the interface between the digital and analog circuitry on the transmit path of DPROC. It is at this point that the three sampled digital signals, containing SAT, ST and encoded digital data, are combined to form a composite signal. The data streams are enabled by the $I^{2} \mathrm{C}$ signals STEN, SATEN and the internal signal DATAEN respectively (DATAEN disables SAT and ST when data is being transmitted). The digital-to-analog conversion and sub-sampling operation is performed by the Gated Digital-to-Analog converters and Analog Summer. The relative signal weights applied in the summer (with respect to the data path) are shown in Table 9.

## Output Filter

The Output Filter is a switched-capacitor filter which performs band-limiting of the DPROC output signals in accordance with the AMPS and TACS specifications. The required below band roll-off is achieved via external AC coupling from the DATA pin.

## Clock Noise Filter

The filter is a non-critical continuous time-distributed RC-active low-pass filter used to remove any switching transient residues from the output signal.

Table 9 Relative signal weights.

SIGNAL	RELATIVE OUTPUT LEVEL   AMPS AND TACS
ST	1.0
SAT	0.25
DATA	1.0



Fig. 18 DPROC data transmission timing/microcontroller interface during arbitration failure.

Fig. 19 DPROC application circuit.
UMA1000LT


## SOLDERING

Plastic mini-packs
By wave
During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder bath is 10 s , if allowed to cool to less than $150^{\circ} \mathrm{C}$ within 6 s . Typical dwell time is 4 s at $250^{\circ} \mathrm{C}$.

A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a
mildly-activated flux eliminates the need for removal of corrosive residues in most applications.

## By solder paste reflow

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at $45^{\circ} \mathrm{C}$.

Repairing soldered joints (by HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL)

Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to $300^{\circ} \mathrm{C}$. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and $320^{\circ} \mathrm{C}$. (Pulse-heated soldering is not recommended for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.

## DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or   more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation   of the device at these or an any other conditions above those given in the Characteristics sections of the specification   is not implied. Exposure to limiting values for extended periods may affect device reliability.   Application information   Where application information is given, it is advisory and does not form part of the specification.	

## LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

## PURCHASE OF PHILIPS ${ }^{2}$ ² COMPONENTS

Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips' $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$ system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specification defined by Philips. This specification can be ordered using the code 939835810011.

## Section 7

## Frequency Synthesizers, Pagers, and Data Receivers

INDEX
Frequency Synthesizer Selector Guide ..... 846
SA701 Divide by: 128/129-64/65 dual modulus low power ECL prescaler ..... 847
SA702 Divide by: 64/65/72 triple modulus low power ECL prescaler ..... 854
SA703 Divide by: 128/129/144 triple modulus low power ECL prescaler ..... 861
SA7025 Low-voltage 1 GHz fractional-N synthesizer ..... 868
SA8025 Low-voltage 2 GHz fractional- N synthesizer ..... 882
PCF5001T POCSAG paging decoder with EEPROM storage ..... 895
TDD1742T CMOS frequency synthesizer ..... 897
TSA6057/T Radio tuning PLL frequency synthesizer ..... 919
TSA5511 1.3GHz bi-directional I2C bus controlled synthesizer ..... 928
UAA2080T Advanced pager receiver ..... 939
UMA1005T Dual low-power frequency synthesizer ..... 955
UMA1014T Frequency synthesizer for cellular radio communication ..... 976
SCO/AN91004 Application report for the UMA1014T frequency synthesizer ..... 990
UMA1015M Low-power dual frequency synthesizer for radio communications ..... 1018
UMA1016xT Frequency synthesizer for radio communication equipment ..... 1029
JCS/ML 92150 Application note: UMA1016XT frequency synthesizer ..... 1041
UMA1017M Low-voltage frequency synthesizer for radiotelephones ..... 1064
UMA1018M Low-voltage dual frequency synthesizer for radio telephones ..... 1071
UMA1020M Low-voltage dual frequency synthesizer for radio telephones ..... 1083

## Frequency Synthesizer Selector Guide

	Vcc	Icc	Pins	Pkg	Max RF/Input Frequency	Channel Spacing	Fractional-N Didvider	Auxiliary Synthesizer	Applications
Fractional-N Frequency Synthesizers									
SA7025	2.7 to 5.5V	7mA@3V	20	DK	1.1 GHz (main) 90 MHz (aux) 30 MHz (aux)	$10-5000 \mathrm{kHz}$ (main) $40-20,000 \mathrm{kHz}$ (aux) 10-5000kHz (aux)	$V$	$V$	$\begin{aligned} & \text { NADC (IS-54), } \\ & \text { GSM } \\ & \text { digital cellular } \end{aligned}$
SA8025	2.7 to 5.5V	12mA@3V	20	DK	2.0 GHz (main) 90 MHz (aux) 30 MHz (aux)	$10-5000 \mathrm{kHz}$ (main) $40-20,000 \mathrm{kHz}$ (aux) $10-5000 \mathrm{kHz}$ (aux)	$V$	$V$	PHP digital cordless, PDC digital cellular
UMA1005T	2.9 to 5.5V	5mA@3V	20	D, DK	30 MHz (main) 90 MHz (aux) 30 MHz (aux)	$10-5000 \mathrm{kHz}$ (main) $40-20,000 \mathrm{kHz}$ (aux) $10-5000 \mathrm{kHz}$ (aux)	$V$	$\checkmark$	NADC (IS-54), PDC, GSM digital cellular

## Frequency Synthesizers

UMA1014T	4.5 to 5.5 V	13mA@5V	16	D	1.1 GHz	5-100kHz		AMPS/TACS cellular, Cordiess
UMA1015M	2.7 to 5.5V	9.6mA@3V	20	DK	1.1 GHz	$8.5-375 \mathrm{kHz}$	$\checkmark$	CT1/CT1 + cordless AMPS/TACS NMT cellular
UMA1016xT	4.5 to 5.5 V	10mA@5V	16	D	1.0 GHz	$100-1000 \mathrm{kHz}$		Cordless, Spread Spectrum
UMA1017M	2.7 to 5.5 V	8.5mA@3V	20	DK	1200 MHz (main)	$10-2000 \mathrm{kHz}$ (main)		GSM   digital cellular, Spread Spectrum
UMA1018M	2.7 to 5.5 V	8.5mA@3V	20	DK	1200 MHz (main) 300 MHz (aux)	$\begin{gathered} 10-2000 \mathrm{kHz} \text { (main) } \\ 10-1000 \text { (aux) } \\ \hline \end{gathered}$	$\checkmark$	GSM digital cellular
UMA1020M	2.7 to 5.5 V	12mA@3V	20	DK	2400 MHz (main) 300 MHz (aux)	$\begin{aligned} & 10-2000 \mathrm{kHz} \text { (main) } \\ & 10-2000 \mathrm{kHz} \text { (aux) } \end{aligned}$	$\checkmark$	DECT, digital cordless, DCS1800

## Prescalers

	Vcc	Icc	Pins	Pkg	Max Input   Frequency	Max Compare   Frequency	Input   Sensitivity	Divide   Ratio	
SA701	2.7 to 6 V	$4.5 \mathrm{mA@} @ \mathrm{~V}$	8	$\mathrm{~N}, \mathrm{D}$	1.2 GHz	$65 \mathrm{kHz} / 270 \mathrm{kHz}$	-35 dBm	$128 / 129,64 / 65$	
SA702	2.7 to 6 V	$4.5 \mathrm{mA@} @ \mathrm{~V}$	8	$\mathrm{~N}, \mathrm{D}$	1.1 GHz	1000 kHz	-35 dBm	$64 / 65 / 72$	
SA703	2.7 to 6 V	$4.5 \mathrm{mA@} @ \mathrm{~V}$	8	N, D	1.1 GHz	335 kHz	-35 dBm	$128 / 129 / 144$	

## Divide by: 128/129-64/65 dual modulus low power ECL prescaler

## DESCRIPTION

The SA701 is an advanced dual modulus (Divide By 128/129 or 64/65) low power ECL prescaler. The minimum supply voltage is 2.7 V and is compatible with the CMOS UMA1005 synthesizer from Philips and other logic circuits. The low supply current allows application in battery operated low-power equipment. Maximum input signal frequency is 1.1 GHz for cellular and other land mobile applications. There is no lower frequency limit due to a fully static design. The circuit is implemented in ECL technology on the QUBiC process. The circuit will be available in an 8-pin SO package with 150 mil package width and in 8-pin dual in-line plastic package, and is pin compatible with Fujitsu MB501, Plessey SP8704 and Motorola MC12022.

## FEATURES

- Low voltage operation
- Low current consumption
- Operation up to 1.1 GHz
- ESD hardened


## APPLICATIONS

- Cellular phones
- Cordless phones
- RF LANs
- Test and measurement
- Military radio
- VHF/UHF mobile radio
- VHF/UHF hand-held radio


## PIN CONFIGURATION



## ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
8-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA701N	0404 B
8-Pin Plastic Small Outline (SO) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA701D	0174 C

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\mathrm{CC}}$	Supply voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Voltage applied to any other pin	-0.3 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	V
$\mathrm{I}_{\mathrm{O}}$	Output current	10	mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Operating ambient temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\theta_{\mathrm{JA}}$	Thermal impedance $\quad$D package   N package	158	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Divide by: 128/129-64/65 dual modulus low power ECL prescaler

## BLOCK DIAGRAM



# Divide by: 128/129-64/65 dual modulus low power ECL prescaler 

## DC ELECTRICAL CHARACTERISTICS

The following DC specifications are valid for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=3.0 \mathrm{~V}$; unless otherwise stated. Test circuit Figure 1 .

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\mathrm{V}_{\mathrm{CC}}$	Power supply voltage range	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{GHz}$, input level $=0 \mathrm{dBm}$	2.7		6.0	V
Icc	Supply current	No load		4.5		mA
$\mathrm{V}_{\mathrm{OH}}$	Output high level	$\mathrm{l}_{\text {OUT }}=1.2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1.4$			V
$\mathrm{V}_{\mathrm{OL}}$	Output low level			$\mathrm{V}_{\mathrm{cc}}-2.6$		V
$\mathrm{V}_{\mathrm{IH}}$	MC input high threshold		2.0		$\mathrm{V}_{\text {cc }}$	V
$\mathrm{V}_{\mathrm{IL}}$	MC input low threshold		-0.3		0.8	V
$\mathrm{V}_{\mathrm{IH}}$	SW input high threshold		2.0		$\mathrm{V}_{\mathrm{cc}}$	V
$\mathrm{V}_{\text {IL }}$	SW input low threshold		-0.3		0.8	V
$\mathrm{I}_{1}$	MC input high current	$\mathrm{V}_{\mathrm{MC}}=\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$		0.1	50	$\mu \mathrm{A}$
$1 /{ }_{\text {IL }}$	MC input low current	$\mathrm{V}_{\text {MC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=6 \mathrm{~V}$	-100	-30		$\mu \mathrm{A}$
$\mathrm{I}_{1+}$	SW input high current	$\mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$		35	100	$\mu \mathrm{A}$
$1 / 1$	SW input low current	$\mathrm{V}_{\mathrm{SW}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}$	-50	-0.1		$\mu \mathrm{A}$

## AC ELECTRICAL CHARACTERISTICS

The following $A C$ specifications are valid for $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{N}}=1 \mathrm{GHz}$, input level $=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated. Test circuit Fig. 1.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\mathrm{V}_{\text {IN }}$	Input signal amplitude ${ }^{1}$	1000pF input coupling	0.05		2.0	$\mathrm{V}_{\mathrm{P} \text { - }}$
$\mathrm{f}_{\mathrm{IN}}$	Input signal frequency	Direct coupled input ${ }^{2}$	0		1.1	GHz
		1000pF input coupling			1.1	GHz
$\mathrm{R}_{\text {ID }}$	Differential input resistance	DC measurement		5		k ת
Vo	Output voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		1.6		$V_{\text {P. } P}$
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		1.2		$\mathrm{V}_{\mathrm{P} \text { - } \mathrm{P}}$
ts	Modulus set-up time ${ }^{1}$				5	ns
$\mathrm{t}_{\mathrm{H}}$	Modulus hold time ${ }^{1}$				0	ns
tpD	Propagation time			10		ns

## NOTES:

1. Maximum limit is not tested, however, it is guaranteed by design and characterization.
2. For $f_{\mathrm{IN}}<50 \mathrm{MHz}$, minimum input slew rate of $32 \mathrm{~V} / \mu \mathrm{s}$ is required.

## DESCRIPTION OF OPERATION

The SA701 comprises a frequency divider circuit implemented using a divide by 4 or 5 synchronous prescaler followed by a 5 stage synchronous counter, see BLOCK
DIAGRAM. The normal operating mode is for SW (Modulus Set Switch) input to be set low and MC (Modulus Control) input to be set high in which case the circuit comprises a divide by 128 . For divide by 129 the MC signal is forced low, causing the prescaler circuit to switch into divide by 5 operation for the last cycle of the synchronous counter. Similarly, for divide by 64 and 65 the SA701 will generate those respective moduli with the SW signal forced high, in which the fourth stage of the synchronous divider is bypassed.

A truth table for the modulus values is given below:

Table 1.

Modulus	MC	SW
128	1	0
129	0	0
64	1	1
65	0	1

For minimization of propagation delay effects, the second divider circuit is synchronous to the divide by $4 / 5$ stage output.
The prescaler input is positive edge sensitive, and the output at the final count is a falling edge with propagation delay tpD relative to
the input. The rising edge of the output occurs at the count 64 for modulus 128/129 or count 32 for modulus $64 / 65$ with delay $t_{p D}$. The SW input is not designed for synchronous switching.
The MC and SW inputs are TTL compatible threshold inputs operating at a reduced input current. CMOS and low voltage interface capability are allowed. The SW input has an internal pull-down simplifying modulus group selection. With SW open the divide by $128 / 129$ mode is selected and with SW connected to $\mathrm{V}_{\mathrm{CC}}$ divide by $64 / 65$ is selected.
The prescaler input is differential and ECL compatible. The output is single-ended ECL compatible.

Divide by: 128/129-64/65 dual modulus low power ECL prescaler

AC TIMING CHARACTERISTICS


Divide by: 128/129-64/65 dual modulus low power ECL prescaler


Figure 1. SA701 Test Circuit


Divide by: 128/129-64/65 dual modulus low power ECL prescaler


Figure 3. Minimum Input Power vs Frequency and $V_{\text {CC }}$


Figure 4. Supply Current vs Supply Voltage and Temperature With No Load

$V_{c C}=3 V$
$T_{A}=25^{\circ} \mathrm{C}$


Figure 5. Typical N Package Input Impedance


## DESCRIPTION

The SA702 triple modulus (Divide By 64/65/72) low power ECL prescaler is used in synthesizer systems to achieve low phase lock time, broad operating range, high reference frequency and small frequency step sizes. The minimum supply voltage is 2.7 V and is compatible with the CMOS UMA 1005 synthesizer from Philips and other logic circuits. The low supply current allows application in battery operated low-power equipment. Maximum input signal frequency is 1.1 GHz for cellular and other land mobile applications. There is no lower frequency limit due to a fully static design. The circuit is implemented in ECL technology on the QUBiC process. The circuit will be available in an 8 -pin SO package with 150 mil package width and in 8 -pin dual in-line plastic package.

## FEATURES

- Low voltage operation
- Low current consumption
- Operation up to 1.1 GHz
- ESD hardened


## APPLICATIONS

- Cellular phones
- Cordless phones
- RF LANs
- Test and measurement
- Military radio
- VHF/UHF mobile radio
- VHF/UHF hand-held radio


## PIN CONFIGURATION



ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
8 -Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA702N	0404 B
8-Pin Plastic Small Outline (SO) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA702D	0174 C

## ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$V_{\mathrm{CC}}$	Supply voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Voltage applied to any other pin	-0.3 to $\left(\mathrm{V}_{\mathrm{cc}}+0.3\right)$	V
$\mathrm{I}_{0}$	Output current	10	mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Operating ambient temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal impedance $\quad$D package   package	158	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## BLOCK DIAGRAM



Divide by: 64/65/72 triple modulus low power ECL prescaler

DC ELECTRICAL CHARACTERISTICS
The following DC specifications are valid for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; unless otherwise stated. Test circuit Figure 1.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\mathrm{V}_{\text {cc }}$	Power supply voltage range	$\mathrm{f}_{\mathrm{N}}=1 \mathrm{GHz}$, input level $=0 \mathrm{dBm}$	2.7		6.0	V
icc	Supply current	No load		4.5		mA
$\mathrm{V}_{\mathrm{OH}}$	Output high level	lout $=1.2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1.4$			V
$\mathrm{V}_{\mathrm{OL}}$	Output low level			$\mathrm{V}_{\mathrm{cc}}-2.6$		V
$\mathrm{V}_{\mathrm{IH}}$	MC1 input high threshold		2.0		0	V
$\mathrm{V}_{\text {IL }}$	MC1 input low threshold		-0.3		0.8	V
$\mathrm{V}_{\mathrm{H}}$	MC2 input high threshold		2.0		$\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\text {IL }}$	MC2 input low threshold		-0.3		0.8	V
$\mathrm{I}_{\text {IH }}$	MC1 input high current	$\mathrm{V}_{\mathrm{MC}_{1}}=\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$		0.1	50	$\mu \mathrm{A}$
ILL	MC1 input low current	$\mathrm{V}_{\mathrm{MC} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}$	-100	-30		$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	MC2 input high current	$\mathrm{V}_{\mathrm{MC2}}=\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$		0.1	50	$\mu \mathrm{A}$
$1 / 1$	MC2 input low current	$\mathrm{V}_{\mathrm{MC2}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}$	-100	-30		$\mu \mathrm{A}$

## AC ELECTRICAL CHARACTERISTICS

These $A C$ specifications are valid for $f_{I N}=1 \mathrm{GHz}$, input level $=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated. Test circuit Fig. 1 .

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\mathrm{V}_{\text {IN }}$	Input signal amplitude ${ }^{1}$	1000 pF input coupling	0.05		2.0	$\mathrm{V}_{\mathrm{P} \text {-P }}$
$\mathrm{f}_{\mathrm{N}}$	Input signal frequency	Direct coupled input ${ }^{2}$	0		1.1	GHz
		1000 pF input coupling			1.1	GHz
$\mathrm{R}_{1 \mathrm{D}}$	Differential input resistance	DC measurement		5		k $\Omega$
$V_{0}$	Output voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		1.6		$V_{p-p}$
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		1.2		$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
ts	Modulus set-up time ${ }^{1}$				5	ns
$\mathrm{t}_{\mathrm{H}}$	Modulus hold time ${ }^{1}$				0	ns
tpD	Propagation time			10		ns

## NOTES:

1. Maximum limit is not tested, however, it is guaranteed by design and characterization.
2. For $f_{\mathbb{N}}<50 \mathrm{MHz}$, minimum input slew rate of $32 \mathrm{~V} / \mu \mathrm{s}$ is required.

## DESCRIPTION OF OPERATION

The SA702 comprises a frequency divider circuit implemented using a divide by 4 or 5 synchronous prescaler followed by a stage synchronous counter, see BLOCK DIAGRAM. The normal operating mode is for MC1 (Modulus Control) to be set high and MC2 input to be set low in which case the circuit comprises a divide by 64. For divide by 65 the MC1 singal is forced low, causing the prescaler circuit to switch into divide by 5 operation for the last cycle of the synchronous counter. For divide by 72, MC2 is set high configuring the prescaler to divide by 4 and the counter to divide by 18. A truth table for the modulus values is given below:

Table 1.

Modulus	MC1	MC2
64	1	0
65	0	0
72	0	1
72	1	1

For minimization of propagation delay effects, the second divider circuit is synchronous to the divide by $4 / 5$ stage output.
The prescaler input is positive edge sensitive, and the output at the final count is a falling edge with propagation delay tpD relative to
the input. The rising edge of the output occurs at the count 32 with delay tpD.
The MC1 and MC2 inputs are TTL compatible threshold inputs operating at a reduced input current. CMOS and low voltage interface capability are allowed.
The prescaler input is differential and ECL compatible. The output is differential ECL compatible.

Divide by: 64/65/72 triple modulus low power ECL prescaler

## AC TIMING CHARACTERISTICS




Figure 1. SA702 Test Circuit


Figure 2. Minimum Input Power vs Frequency and Temperature

Divide by: 64/65/72 triple modulus low power ECL prescaler


Figure 3. Minimum Input Power vs Frequency and $V_{c c}$


Figure 4. Supply Current vs Supply Voltage and Temperature With No Load

## Divide by: 64/65/72 triple modulus low power ECL prescaler



VCC $=3 \mathrm{~V}$
$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$

Figure 5. Typical $\mathbf{N}$ Package Input Impedance


## DESCRIPTION

The SA703 triple modulus (Divide By 128/129/144) low power ECL prescaler is used in synthesizer systems to achieve low phase lock time, broad operating range, high reference frequency and small frequency step sizes. The minimum supply voltage is 2.7 V and is compatible with the UMA1005 synthesizer from Philips and other logic circuits. The low supply current allows application in battery operated low-power equipment. Maximum input signal frequency is 1.1 GHz for cellular and other land mobile applications. There is no lower frequency limit due to a fully static design. The circuit is implemented in ECL technology on the QUBiC process. The circuit will be available in an 8-pin SO package with 150 mil package width and in 8-pin dual in-line plastic package.

## FEATURES

- Low voltage operation
- Low current consumption
- Operation up to 1.1 GHz
- ESD hardened


## APPLICATIONS

- Cellular phones
- Cordless phones
- RF LANs
- Test and measurement
- Military radio
- VHF/UHF mobile radio
- VHF/UHF hand-held radio


## PIN CONFIGURATION

## N, D Package



## ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
8 -Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA703N	0404B
8 -Pin Plastic Small Outline (SO) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA703D	0174 C

## ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\mathrm{CC}}$	Supply voltage	-0.3 to +7.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Voltage applied to any other pin	-0.3 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	V
$\mathrm{I}_{\mathrm{O}}$	Output current	10	mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature range	-65 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Operating ambient temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\theta_{\mathrm{JA}}$	Thermal impedance $\quad$D package   N package	158	${ }^{\circ} \mathrm{C} / \mathrm{W}$



Divide by: 128/129/144 triple modulus low power ECL prescaler

DC ELECTRICAL CHARACTERISTICS
The following $D C$ specifications are valid for $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=3.0 \mathrm{~V}$; unless otherwise stated. Test circuit Figure 1.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
Vcc	Power supply voltage range	$\mathrm{f}_{\mathrm{iN}}=1 \mathrm{GHz}$, input level $=0 \mathrm{dBm}$	2.7		6.0	V
Icc	Supply current	No load		4.5		mA
$\mathrm{V}_{\mathrm{OH}}$	Output high level	lout $=1.2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}-1.4$			V
$\mathrm{V}_{\mathrm{OL}}$	Output low level			$\mathrm{V}_{\mathrm{cc} \text {-2. }}$		V
$\mathrm{V}_{\mathrm{IH}}$	MC1 input high threshold		2.0		$\mathrm{V}_{\mathrm{Cc}}$	V
$\mathrm{V}_{\text {IL }}$	MC1 input low threshold		-0.3		0.8	V
$\mathrm{V}_{\mathrm{H}}$	MC2 input high threshold		2.0		Vcc	V
$\mathrm{V}_{\text {IL }}$	MC2 input low threshold		-0,3		0.8	V
$\mathrm{IIH}^{\text {H }}$	MC1 input high current	$\mathrm{V}_{\text {MC1 }}=\mathrm{V}_{\text {CC }}=6 \mathrm{~V}$		0.1	50	$\mu \mathrm{A}$
IIL	MC1 input low current	$\mathrm{V}_{\mathrm{MC} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}$	-100	-30		$\mu \mathrm{A}$
$1{ }_{1 H}$	MC2 input high current	$\mathrm{V}_{\mathrm{MC2}}=\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$		0.1	50	$\mu \mathrm{A}$
$1 / 2$	MC2 input low current	$\mathrm{V}_{\mathrm{MC} 2}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=6 \mathrm{~V}$	-100	-30		$\mu \mathrm{A}$

## AC ELECTRICAL CHARACTERISTICS

These $A C$ specifications are valid for $V_{C C}=3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{GHz}$, input level $=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated. Test circuit Fig. 1.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\mathrm{V}_{\text {IN }}$	Input signal amplitude ${ }^{1}$	1000pF input coupling	0.05		2.0	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
$\mathrm{f}_{\mathrm{N}}$	Input signal frequency	Direct coupled input ${ }^{2}$	0		1.1	GHz
		1000pF input coupling			1.1	GHz
$\mathrm{R}_{1 \mathrm{D}}$	Differential input resistance	DC measurement		5		$\mathrm{k} \Omega$
Vo	Output voltage	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		1.6		$\mathrm{V}_{\mathrm{p} \text { - }}$
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		1.2		$\mathrm{V}_{\mathrm{P} . \mathrm{P}}$
ts	Modulus set-up time ${ }^{1}$				5	ns
${ }_{4}$	Modulus hold time ${ }^{1}$				0	ns
tpD	Propagation time			10		ns

NOTES:

1. Maximum limit is not tested, however, it is guaranteed by design and characterization.
2. For $\mathrm{f}_{\mathrm{N}}<50 \mathrm{MHz}$, minimum input slew rate of $32 \mathrm{~V} / \mu \mathrm{s}$ is required.

## DESCRIPTION OF OPERATION

The SA703 comprises a frequency divider circuit implemented using a divide by 4 or 5 synchronous prescaler followed by a 5 stage synchronous counter, see BLOCK DIAGRAM. The normal operating mode is for MC1 (Modulus Control) to be set high and MC2 input to be set low in which case the circuit comprises a divide by 128 . For divide by 129 the MC1 singal is forced low, causing the prescaler circuit to switch into divide by 5 operation for the last cycle of the synchronous counter. For divide by 144, MC2 is set high configuring the prescaler to divide by 4 and the counter to divide by 36. A
truth table for the modulus values is given below:

Table 1.

Modulus	MC1	MC2
128	1	0
129	0	0
144	0	1
144	1	1

For minimization of propagation delay effects, the second divider circuit is synchronous to the divide by $4 / 5$ stage output.

The prescaler input is positive edge sensitive, and the output at the final count is a falling edge with propagation delay tpD relative to the input. The rising edge of the output occurs at the count 64 with delay tpD.
The MC1 and MC2 inputs are TTL compatible threshold inputs operating at a reduced input current. CMOS and low voltage interface capability are allowed.
The prescaler input is differential and ECL compatible. The output is differential ECL compatible.


Divide by: 128/129/144 triple modulus low power ECL prescaler


Figure 1. SA703 Test Circuit


Figure 2. Minimum Input Power vs Frequency and Temperature

Divide by: 128/129/144 triple modulus low power ECL prescaler


Figure 3. Minimum Input Power vs Frequency and VCC


Figure 4. Supply Current vs Supply Voltage and Temperature With No Load

Divide by: 128/129/144 triple modulus low power ECL prescaler


VCC $=3 V$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 5. Typical N Package Input Impedance

$\mathbf{V C C}=3 \mathrm{~V}$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 6. Typical D Package Input Impedance

## Low-voltage 1GHz fractional-N synthesizer

## DESCRIPTION

The SA7025 is a monolithic low power, high performance dual frequency synthesizer fabricated in QUBiC BiCMOS technology. Featuring Fractional-N division with selectable modulo 5 or 8 implemented in the Main synthesizer to allow the phase detector comparison frequency to be five or eight times the channel spacing. This feature reduces the overall division ratio yielding a lower noise floor and lightning fast channel switching. The phase detectors and charge pumps are designed to achieve 10 to 5000 kHz channel spacing. A triple modulus prescaler (divide by 64/65/72) is integrated on chip with a maximum input frequency of 1.0 GHz . Programming and channel selection are realized by a high speed 3 -wire serial interface.

## FEATURES

- Operation up to 1.0 GHz
- Fast locking by "Fractional-N" divider
- Auxiliary synthesizer
- Digital phase comparator with proportional and integral charge pump output
- High speed serial input
- Low power consumption
- Programmable charge pump currents
- Supply voltage range 2.7 to 5.5 V
- Excellent input sensitivity:
$V_{R F, I N}=-20 d B m$


## APPLICATIONS

- ADC (American Digital Cellular)
- Cellular radio
- Spread-spectrum receivers
- Portable communication systems

PIN CONFIGURATION

Clock 1	20	VDD
DATA 2	19	TEST
Strobe 3	18	LOCK
$\mathrm{v}_{\text {SS }} 4$	17	RF
RFIN 5	16	RN
$\overline{\text { RFIN }} 6$	15	VDDA
$V_{\text {ccP }} 7$	14	PHP
REFIN 8	13	PHI
RA 9	12	VSSA
$A U X$ IN 10	11	PHA

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Shrink Small Outline Package (SSOP)	-40 to $+85^{\circ} \mathrm{C}$	SA7025DK	1563

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V	Supply voltage, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{CCP}}$	-0.3 to +6.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Voltage applied to any other pin	-0.3 to $\left(\mathrm{V}_{\mathrm{DD}}+0.3\right)$	V
I	DC current into any input or output	-10 to +10	mA
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Operating ambient temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$

NOTE: Thermal impedance $\left(\theta_{J A}\right)=117^{\circ} \mathrm{C} / \mathrm{W}$.

Low-voltage 1 GHz fractional- N synthesizer

## PIN DESCRIPTIONS

Symbol	Pln	Description
CLOCK	1	Serial clock input line
DATA	2	Serial data input line
STROBE	3	Serial strobe input line
$\mathrm{V}_{\text {Ss }}$	4	Digital ground
RFin	5	Prescaler positive input
$\overline{\mathrm{RF}}$ IN	6	Prescaler negative input
$\mathrm{V}_{\text {CCP }}$	7	Prescaler positive supply voltage
REFIN	8	Reference divider input
RA	9	Auxiliary current setting; resistor to V SSA
AUX $_{\text {IN }}$	10	Auxiliary divider input
PHA	11	Auxiliary phase detector output
$V_{\text {SSA }}$	12	Analog ground
PHI	13	Integral phase detector output
PHP	14	Proportional phase detector output
$V_{\text {DDA }}$	15	Analog supply voltage
RN	16	Main current setting; resistor to $\mathrm{V}_{\text {SSA }}$
RF	17	Fractional compensation current setting; resistor to $\mathrm{V}_{\text {SSA }}$
LOCK	18	Lock detector output
TEST	19	Test pin; connect to $\mathrm{V}_{\mathrm{DD}}$
$\mathrm{V}_{\mathrm{DD}}$	20	Digital supply voltage

## BLOCK DIAGRAM



## DC ELECTRICAL CHARACTERISTICS

$V_{D D}=V_{D D A}=V_{C C P}=3 V ; T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS	
			MIN	TYP	MAX		
IStandey	Standby supply currents	$\mathrm{V}_{\mathrm{RA}}=\mathrm{V}_{\mathrm{RF}}=\mathrm{V}_{\mathrm{RN}}=\mathrm{V}_{\text {DDA }}, \mathrm{EM}=\mathrm{EA}=0$		100		$\mu \mathrm{A}$	
$I_{\text {TOTAL }}$	Operational supply currents ${ }^{5}$	$E M=0, E A=1$		3.5		mA	
Imain	Operational supply currents ${ }^{5}$	$E M=1, E A=0$		3.5		mA	
IAUX	Operational supply currents ${ }^{5}$	$\mathrm{EM}=\mathrm{EA}=1$		7		mA	
Digital inputs CLK, DATA, STROBE							
$\mathrm{V}_{\mathrm{H}}$	High level input voltage range		$0.7 \times V_{D D}$		$\mathrm{V}_{\mathrm{DD}}$	V	
$\mathrm{V}_{\text {IL }}$	Low level input voltage range		0		$0.3 \times V_{D D}$	V	
Digital outputs LOCK							
$\mathrm{V}_{\mathrm{OL}}$	Output voltage LOW	$10=2 \mathrm{~mA}$			0.4	V	
$\mathrm{V}_{\mathrm{OH}}$	Output voltage HIGH	$10=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.4$			V	
Charge pump PHA							
\|lphal	Output current PHA	$\mathrm{I}_{\mathrm{RA}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHA}}=\mathrm{V}_{\mathrm{DDA}} / 2^{13}$	400	500	600	$\mu \mathrm{A}$	
\|lphal	Output current PHA	$\mathrm{I}_{\mathrm{RA}}=-25 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHA}}=\mathrm{V}_{\mathrm{DDA}} / 2$	160	200	240	$\mu \mathrm{A}$	
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{PHA}} \\ & \\| \mathrm{PHA} \end{aligned}$	Relative output current variation PHA	$\mathrm{I}_{\mathrm{RA}}=-62.5 \mu \mathrm{~A}^{2}, 13$		2	6	\%	
$\triangle{ }^{\text {P PHA }}$ M	Output current matching	$\mathrm{I}_{\mathrm{RA}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHA}}=\mathrm{V}_{\mathrm{DDA}} / 2^{12,13}$			$\pm 50$	$\mu \mathrm{A}$	
Charge pump PHP, normal mode ${ }^{1,4,6}, \mathrm{~V}_{\text {RF }}=\mathrm{V}_{\text {DDA }}$							
$\mid$ lPHP_N	Output current PHP	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DDA}} / 2^{13}$	440	550	660	$\mu \mathrm{A}$	
\|lPHP_N		Output current PHP	$\mathrm{IRN}=-25 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\text {DDA }} / 2$	175	220	265	$\mu \mathrm{A}$
$\Delta{ }^{\text {l }}$ PHP_N	Relative output current variation PHP	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A}^{2,13}$		2	6	\%	
$\Delta l_{\text {PHP N_M }}$	Output current matching	$\mathrm{I}_{\text {RN }}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\text {PHP }}=\mathrm{V}_{\text {DDA }} / 2^{12,13}$			$\pm 50$	$\mu \mathrm{A}$	
Charge pump PHP, speed-up mode ${ }^{1,4,7}, \mathrm{~V}_{\text {RF }}=\mathrm{V}_{\text {DDA }}$							
\| ${ }_{\text {PHP_S }}$ S	Output current PHP	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DDA}} / 2^{13}$	2.20	2.75	3.30	mA	
\|lPHP_S		Output current PHP	$\mathrm{I}_{\mathrm{RN}}=-25 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DDA}} / 2$	0.85	1.1	1.35	mA
$\Delta{ }^{\text {l }}$ PHP_S	Relative output current variation PHP	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ;{ }^{2,13}$		2	6	\%	
$\Delta \mathrm{IPHP}_{\text {S S M }}$	Output current matching	$\mathrm{I}_{\text {RM }}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\text {PHP }}=\mathrm{V}_{\text {DDA }} / 2^{12,13}$			$\pm 250$	$\mu \mathrm{A}$	
Charge pump PHI, speed-up mode ${ }^{1,4,8}, \mathrm{~V}_{\text {RF }}=\mathrm{V}_{\text {DDA }}$							
\| ${ }_{\text {PHII }}$	Output current PHI	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHI}}=\mathrm{V}_{\mathrm{DDA}} / 2^{13}$	4.4	5.5	6.6	mA	
\|lphil	Output current PHI	$\mathrm{I}_{\mathrm{RN}}=-25 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHI}}=\mathrm{V}_{\mathrm{DDA}} / 2$	1.75	2.2	2.65	mA	
$\Delta \mathrm{l}_{\mathrm{PHI}}$	Relative output current variation PHI	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ;{ }^{2,13}$		2	8	\%	
$\Delta_{\text {PHI_M }}$	Output current matching	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHI}}=\mathrm{V}_{\mathrm{DDA}} / 2^{12,13}$			$\pm 500$	$\mu \mathrm{A}$	
Fractional compensation PHP, normal mode ${ }^{1,9,14}, \mathrm{~V}_{\mathrm{RN}}=\mathrm{V}_{\text {DDA }}, \mathrm{V}_{\text {PHP }}=\mathrm{V}_{\text {DDA }} / 2$							
lPhP_F_N	Fractional compensation output current PHP vs $\mathrm{F}_{\mathrm{RD}}{ }^{3}$	$\mathrm{I}_{\mathrm{RF}}=-62.5 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to $7^{13}$	-675	-500	-325	nA	
IPHP_F_N	Fractional compensation output current PHP vs $\mathrm{F}_{\mathrm{RD}}{ }^{3}$	$\mathrm{I}_{\mathrm{RF}}=-25 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to 7	-270	-200	-130.	nA	
Fractional compensation PHP, speed up mode ${ }^{1,10,14}, \mathrm{~V}_{\text {PHP }}=\mathrm{V}_{\text {DDA }}, \mathrm{V}_{\text {RN }}=\mathrm{V}_{\text {DDA }}$							
lphP_F_S	Fractional compensation output current PHP vs $\mathrm{F}_{\mathrm{RD}}{ }^{3}$	$\mathrm{I}_{\mathrm{RF}}=-62.5 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to $7^{13}$	-3.35	-2.5	-1.65	$\mu \mathrm{A}$	
IPHP_F_s	Fractional compensation output current PHP vs $F_{R D}{ }^{3}$	$I_{\text {RF }}=-25 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to 7	-1.35	-1.0	-0.65	$\mu \mathrm{A}$	
Fractional compensation PHI, speed up mode ${ }^{1,11,14}, \mathrm{~V}_{\text {PHP }}=\mathrm{V}_{\mathrm{DDA}} / 2, \mathrm{~V}_{\mathrm{RN}}=\mathrm{V}_{\mathrm{DDA}}$							
lphi_f	Fractional compensation output current PHI vs $\mathrm{F}_{\mathrm{RD}}{ }^{3}$	$\mathrm{I}_{\mathrm{RF}}=-62.5 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to $7^{13}$	-5.4	-4.0	-2.6	$\mu \mathrm{A}$	
$l_{\text {PHI_F }}$	Fractional compensation output current PHI vs $\mathrm{F}_{\mathrm{RD}}{ }^{3}$	$\mathrm{I}_{\mathrm{RF}}=-25 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to 7	-2.15	-1.6	-1.05	$\mu \mathrm{A}$	

DC ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
Charge pump leakage currents, charge pump not active						
$I_{\text {PHP_L }}$	Output leakage current PHP; normal mode ${ }^{1}$	$V_{P H P}=0.7$ to $\mathrm{V}_{\mathrm{DDA}}-0.8$		10		nA
IPHLL	Output leakage current PHI; normal mode ${ }^{1}$	$V_{\text {PHI }}=0.7$ to $V_{\text {DDA }}-0.8$		10		nA
$\mathrm{IPHA}^{\text {L }}$	Output leakage current PHA	$\mathrm{V}_{\text {PHA }}=0.7$ to $\mathrm{V}_{\text {DDA }}-0.8$		10		nA

## AC ELECTRICAL CHARACTERISTICS

$V_{D D}=V_{D D A}=V_{C C P}=3 V ; T_{A}=25^{\circ} \mathrm{C} ; \mathrm{f}_{R F-\mathbb{N}}=1 \mathrm{GHz}$; input level $=-10 \mathrm{dBm}$; unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
Main divider						
$\mathrm{f}_{\mathrm{RF} \text { _ }} \mathrm{N}$	Input signal frequency	$\because \quad$ Direct coupled input ${ }^{15}$	0		1.0	GHz
		1000 pF input coupling			1.0	GHz
$\mathrm{V}_{\text {RF_IN }}$	Input sensitivity		-20		+5	dBm
Reference divider						
$f_{\text {feF_IN }}$	Input signal frequency		0		20	MHz
		$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {DDA }} \leq 5.5 \mathrm{~V}$	0		40	MHz
$\mathrm{V}_{\text {REF_IN }}$	Input signal range, AC coupled		300		$\mathrm{V}_{\mathrm{DDA}}-0.8$	$\mathrm{m} \mathrm{V}_{\text {P. }}$
ZREF_IN	Reference divider input impedance		.	100		$\mathrm{k} \Omega$
					3	pF
Auxillary divider						
faux_In	Input signal frequency PA = "0", prescaler enabled		0		50	MHz
		$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {DDA }} \leq 5.5 \mathrm{~V}$	0		150	MHz
	Input signal frequency PA = "1", prescaler disabled		0		20	MHz
		$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {DDA }} \leq 5.5 \mathrm{~V}$	0		40	MHz
$\mathrm{V}_{\text {AUX }}$ IN	Input signal range, AC coupled		200		$\mathrm{V}_{\text {DDA }}-0.8$	$\mathrm{mV}_{\mathrm{p}-\mathrm{p}}$
ZAUX_IN	Auxiliary divider input impedance	-		100		$\mathrm{k} \Omega$
			*		3	pF
Serial interface						
fclock	Clock frequency				10	MHz
$\mathrm{t}_{\text {HIGH }}$	Clock high time		30			ns
tow	Clock low time		30			ns
tsuda	DATA set up time		30			ns
thdia	DATA hold time		30			ns
tSUST	STROBE set up time		30			ns
thDST	STROBE hold time		30			ns

## NOTES:

1. When a serial input " $A$ " word is programmed, the main charge pumps on PHP and PHI are in the "speed up mode" as long as STROBE = $H$. When this is not the case, the main charge pumps are in the "normal mode".
2. The relative output current variation is defined thus:

$$
\frac{\Delta l_{\text {OUT }}}{l_{\text {OUT }}}=2 \cdot \frac{\left(l_{2}-l_{1}\right)}{\left|\left(l_{2}+l_{1}\right)\right|} ; \text { with } \mathrm{V}_{1}=0.7 \mathrm{~V}, \mathrm{~V}_{2}=\mathrm{V}_{\mathrm{DDA}}-0.8 \mathrm{~V} \text { (see Figure 6). }
$$

3. $F_{R D}$ is the value of the 3 bit fractional accumulator.
4. Monotonicity is guaranteed with $\mathrm{C}_{\mathrm{N}}=0$ to 255 .
5. Power supply current measured with $f_{\text {RF }}$ IN $=953.19 \mathrm{MHz}, \mathrm{NM} 1=48, \mathrm{NM} 2=3, \mathrm{NM} 3=7, \mathrm{NF}=5, \mathrm{FMOD}=8, \mathrm{~N}=3791+5 / 8$, main phase detector frequency $=240 \mathrm{kHz}, \mathrm{f}_{\text {REF } \mathcal{I N}}=21.36 \mathrm{MHz}, \mathrm{NR}=89, \mathrm{SM}=1, \mathrm{f}_{\mathrm{AUX}} \mathbb{N}=82.56 \mathrm{MHz}, \mathrm{NA}=86, \mathrm{SA}=2, \mathrm{PA}=0$, auxiliary phase detector frequency $=120 \mathrm{kHz}, \operatorname{IRN}=\operatorname{IRA}=\operatorname{IRF}=25 \mu \mathrm{~A}, \mathrm{CN}=160, C L=1, C K=2$, lock condition, normal mode, $\mathrm{V}_{\mathrm{DDA}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CCP}}=3 \mathrm{~V}$. Operational supply current $=I_{D D A}+I_{D D}+l_{C C P}$.
6. Typical output current: $\left|I_{\text {PHP_N }}\right|=-I_{\text {RN }} \times C N / 32$; specification condition: $\mathrm{CN}=\mathbf{2 5 5}$
7. Typical output current $\left|l_{P H P S}\right|=-I_{R N} \times C N \times\left(2^{(C L+1)}+1\right) / 32$; specifications 1) $C N=255 ; C L=1$, or 2) $C N=75$; $C L=3$
8. Typical output current $\mid$ IPHI $\mid=-I_{\text {RN }} \times C N \times 2^{(\mathrm{CL}+1)} \times \mathrm{CK} / 32$ :
1) $C N=160 ; C L=3 ; C K=1$, or
2) $C N=160 ; C L=2 ; C K=2$, or
3) $C N=160 ; C L=1 ; C K=4$, or
4) $C N=160 ; C L=1 ; C K=4, ~ o ~$
5) $C N=160 ; C L=0 ; C K=8$
9. Typical fractional compensation output current: $I_{P H P _F-N}=I_{R F} \times F_{R D} / 128$. Specification conditions: $F_{R D}=1$ to 7 .
10. Typical fractional compensation output current: IPHP_F_S $=I_{R F} \times F_{R D} \times\left(2^{(C L+1)}+1\right) / 128$. Specification conditions: $F_{R D}=1$ to $7 ; C L=1$.
11. Typical fractional compensation output current: $l_{P H I}=F=I_{R F} \times F_{R D} \times(2(C L+1) \times C K) / 128$. Specification conditions: 1) $F_{R D}=1$ to $7 ; C L=1 ; C K$ $=2$, or 2) $\mathrm{F}_{\mathrm{RD}}=1$ to $7 ; C L=2 ; C K=1$.
12. The output current matching is measured when both (positive current and negative current) sections of the output charge pumps are on.
13. Limited analog supply voltage range 4.5 to 5.5 V .
14. The compensation current specified does not include the leakage current of this output.
15. For $f_{\mathrm{f}_{\mathrm{N}}}<50 \mathrm{MHz}$, minimum input slew rate of $32 \mathrm{~V} / \mu \mathrm{s}$ is required.


## FUNCTIONAL DESCRIPTION

## Serial Input Programming

The serial input is a 3 -wire input (CLOCK, STROBE, DATA) to program all counter
ratios, DACs, selection and enable bits. The programming data is structured into 24 or 32 bit words; each word includes 1 or 4 address bits. Figure 1 shows the timing diagram of the serial input. When the STROBE $=\mathrm{L}$, the
clock driver is enabled and on the positive edges of the CLOCK the signal on DATA input is clocked into a shift register. When the STROBE $=\mathrm{H}$, the clock is disabled and the data in the shift register remains stable.

Depending on the 1 or 4 address bits the data is latched into different working registers or temporary registers. In order to fully program the synthesizer, 4 words must be sent: D, C, $B$ and $A$. Figure 2 shows the format and the contents of each word. The E word is for testing purposes only. The E (test) word is reset when programming the $D$ word. The data for CN and PR is stored by the B word in temporary registers. When the A word is loaded, the data of these temporary registers is loaded together with the $A$ word into the work registers which avoids false temporary main divider input. CN is only loaded from the temporary registers when a short 24 bit AO word is used. CN will be directly loaded by programming a long 32 bit A1 word. The flag LONG in the D word determines whether A0 (LONG = "0") or A1 (LONG = "1") format
is applicable. The A word contains new data for the main divider.

## Main Divider Synchronization

The A word is loaded only when a main divider synchronization signal is also active in order to avoid phase jumps when reporgramming the main divider. The synchronization signal is generated by the main divider. The signal is active while the NM1 divider is counting down from the programmed value. The new A word will be loaded after the NM1 divider has reached its terminal count; also, at this time a main divider output pulse will be sent to the main phase detector. The loading of the A word is disabled while the NM2 or NM3 dividers are counting up to their programmed values. Therefore, the new A word will be correctly
loaded provided that the STROBE signal has been at an active high value for at least a minimum number of VCO input cycles at RFIN or RFIN.

$$
\begin{aligned}
& t_{\text {_strobe_min }}=\frac{1}{f_{V C O}}\left(N M_{2} \cdot 65\right) \\
& \text { for } \mathrm{PR}={ }^{\prime} 01 \\
& t_{\text {_strobe_min }}= \\
& \frac{1}{f V C O}\left[N M_{2} \cdot 65+\left(N M_{3}+1\right) \cdot 72\right] \\
& \text { for } \mathrm{PR}={ }^{\prime} 10^{\prime}
\end{aligned}
$$

Programming the $\mathbf{A}$ word means also that the main charge pumps on output PHP and PHI are set into the speed-up mode as long as the STROBE is H .

## AC TIMING CHARACTERISTICS



Figure 1. Serial Input Timing Sequence


Figure 2. Serial Input Word Format

Table 1. Function Table

Symbol	Bits	Function
NM1	12	Number of main divider cycles when prescaler modulus $=64$
NM2	$\begin{aligned} & 8 \text { if } \mathrm{PR}=" 01 " \\ & 4 \text { if } \mathrm{PR}=" 10 " \end{aligned}$	Number of main divider cycles when prescaler modulus $=65$
NM3	4 if $\mathrm{PR}=$ " 10 "	Number of main divider cycles when prescaler modulus $=72$
PR	2	Prescaler type in use   $\mathrm{PR}=$ " 01 ": modulus 2 prescaler (64/65)   PR = "10": modulus 3 prescaler (64/65/72)
FB	2	Prescaler division ratio [see Table 2]
NF	3	Fractional-N increment
FMOD	1	Fractional-N modulus selection flag "1": modulo 8   "0": modulo 5
LONG	1	A word format selection flag " 0 ": 24 bit AO format   "1": 32 bit A1 format
CN	8	Binary current setting factor for main charge pumps
CL	2	Binary acceleration factor for proportional charge pump current
CK	4	Binary acceleration factor for integral charge pump current
EM	1	Main divider enable flag
EA	1	Auxiliary divider enable flag
SM	2	Reference select for main phase detector
SA	2	Reference select for auxiliary phase detector
NR	12	Reference divider ratio
NA	12	Auxiliary divider ratio
PA	1	Auxiliary prescaler mode: $\mathrm{PA}=$ "0": divide by 4 PA = "1": divide by 1
*Not including reset cycles and Fractional-N effects.		

## Auxiliary Divider

The input signal on AUX_IN is amplified to logic level by a single-ended CMOS input buffer, which accepts low level AC coupled input signals. This input stage is enabled if the serial control bit EA="1". Disabling means that all currents in the input stage are switched off. A fixed divide by 4 is enabled if PA $=$ " 0 ". This divider has been optimized to accept a high frequency ( 90 MHz at supply voltage range 4.5 to 5.5 V ) input signal. If PA $=$ " 1 ", this divider is disabled and the input signal is fed directly to the second stage, which is a 12 -bit programmable divider with standard input frequency ( 30 MHz ). The division ratio can be expressed as:

$$
\begin{aligned}
& \text { if } P A=" 0 ": N=4 \times N A \\
& \text { if } P A=" 1 ": N=N A ; \text { with } N=4 \text { to } 4095
\end{aligned}
$$

Reference Divider (Figure 3)


Figure 3. Reference Divider

## Reference Divider

The input signal on REF_IN is amplified to logic level by a single-ended CMOS input buffer, which accepts low level AC coupled input signals. This input stage is enabled by the OR function of the serial input bits EA and EM. Disabling means that all currents in the input stage are switched off. The reference divider consists of a programmable divider by NR (NR = 4 to 4095) followed by a three bit binary counter. The 2 bit SM determines which of the 4 output pulses is selected as main phase detector input. The 2 bit SA determines the selection of the auxiliary phase detector signal. To obtain the best time spacing for the main and auxiliary
reference signals, the opposite phase of the output will be used for the auxiliary phase detector, reducing the possibility of unwanted interactions. For this reason the programmable divider produces a symmetric output pulse for even ratios and a 1 input cycle asymmetric pulse for odd ratios.

## Main Divider

The differential inputs are amplified (to internal ECL logic levels) and provide excellent sensitivity ( -20 dBm at 1 GHz ) making the prescaler ideally suited to directly interface to a VCO as integrated on the SA620 RF gain stage, VCO and mixer device. The internal triple modulus prescaler
feedback loop FB controls the selection of the divide by ratios $64 / 65 / 72$, and reduces the minimum system division ratio below the typical value required by standard dual modulus devices.
This input stage is enabled when serial control bit $\mathrm{EM}={ }^{4} 1$ ". Disabling means that all currents in the prescaler are switched off.

The main divider is built up by a 12 bit counter plus a sign bit. Depending on the serial input values NM1, NM2, NM3, and the prescaler select PR, the counter will select a prescaler ratio during a number of input cycles according to Table 3.

## Table 2. Prescaler Ratio



Table 3. PR Modulus

PR	Modulus   Prescaler	Bit Capacity		
		NM1	NM2	NM3
01	2	12	8	-
10	3	12	4	4

The loading of the work registers NM1, NM2, NM3 and PR is synchronized with the state of the main counter, to avoid extra phase disturbance when switching over to another main divider ratio as is explained in the Serial Programming Input section.

At the completion of a main divider cycle, a main divider output pulse is generated which will drive the main phase comparator. Also, the fractional accumulator is incremented with NF. The accumulator works modulo Q. $Q$ is preset by the serial control bit FMOD to 8 when $\mathrm{FMOD}=" 1$ ". Each time the accumulator overflows, the feedback to the prescaler will select one cycle using prescaler ratio R2 instead of R1.

As shown above, this will increase the overall division ratio by 1 if $\mathrm{R} 2=\mathrm{R} 1+1$. The mean division ratio over $Q$ main divider will then be

$$
N Q=N+\frac{N F}{Q}
$$

Programming a fraction means the prescaler with main divider will divide by N or $\mathrm{N}+1$. The output of the main divider will be modulated with a fractional phase ripple. This phase ripple is proportional to the contents of the fractional accumulator FRD, which is used for fractional current compensation.

## Phase Detectors (Figure 4)

The auxiliary and main phase detectors are a two D-type flip-flop phase and frequency detector. The flip-flops are set by the negative edges of output signals of the dividers. The reset inputs are activated when both flop-flops have been set and when the reset enable signal is active (L). Around zero
phase error this has the effect of delaying the reset for 1 reference input cycle. This avoids non-linearity or deadband around zero phase error. The flip-flops drive on-chip charge pumps. A pull-up current from the charge pump indicates the VCO frequency will be increased; a pull-down pulse indicates the VCO frequency will be decreased.

## Current Settings

The SA7025 has 3 current setting pins: RA, RN and RF. The active charge pump currents and the fractional compensation currents are linearly dependent on the current connected between the current setting pin and $\mathrm{V}_{\text {ss }}$. The typical value R (current setting resistor) can be calculated with the formula:

$$
R=\frac{V_{D D A}-0.9-150 I_{R}{ }^{1 / 2}}{I_{R}}
$$

The current can be set to zero by connecting the corresponding pin to $\mathrm{V}_{\mathrm{DDA}}$.


Figure 4. Phase Detector Structure with Timing

## Auxiliary Output Charge Pumps

The auxiliary charge pumps on pin PHA are driven by the auxiliary phase detector and the current value is determined by the external resistor RA at pin RA. The active charge pump current is typically:

$$
\left|I_{P H A}\right|=8 \cdot I_{R A}
$$

## Main Output Charge Pumps and Fractional Compensation Currents

The main charge pumps on pin PHP and PHI are driven by the main phase detector and the current value is determined by the current at pin RN and via a number of DACs which are driven by registers of the serial input. The fractional compensation current is determined by the current at pin RF, the
contents of the fractional accumulator FRD and a number of DACs driven by registers from the serial input. The timing for the fractional compensation is derived from the reference divider. The current is on during 1 input reference cycle before and 1 cycle after the output signal to the phase comparator. Figure 5 shows the waveforms for a typical case.
When the serial input A word is loaded, the output circuits are in the "speed-up mode" as long as the STROBE is H , else the "normal mode" is active. In the "normal mode" the current output PHP is:

$$
I_{P H P_{-} N}=I_{P H P}+I_{P H P_{-} \text {comp }}
$$

where:
$\left\lvert\, I_{P H P _M}=\frac{C N \cdot I_{R N}}{32} \quad\right.$ :charge pump current
$\left\lvert\, I_{\text {PHP_compl }}=F R D \cdot \frac{I_{\text {RF }}}{128} \quad \begin{aligned} & \text { fractional comp. } \\ & \text { current }\end{aligned}\right.$
The current in PHI is zero in "normal mode".
In "speed-up mode" the current in output PHP is:

$$
\begin{aligned}
& I_{P H P_{-} S}=I_{P H P}+I_{P H P_{-} \text {comp }} \\
& I_{P H P} \left\lvert\,=\left(\frac{C N \cdot I_{R N}}{32}\right)\left(2^{C L+1}+1\right)\right. \\
& I_{P H P_{-} \text {compl }}=\left(\frac{F_{R D} \cdot I_{R F}}{128}\right)\left(2^{C L+1}+1\right)
\end{aligned}
$$



Figure 5. Waveforms for $N F=2$, Fraction $=0.4$

In "speed-up mode" the current in output PHI is:

$$
I_{P H I_{-} S}=I_{P H I}+I_{P H I_{-} \text {comp }}
$$

where:

$$
\begin{aligned}
& \left\lvert\, I_{P H I}=\left(\frac{I_{R N} C N}{32}\right)\left(2^{C L+1}\right) C K\right. \\
& I_{P H I _ \text {compl }}=\left(\frac{I_{R F} F_{R D}}{128}\right)\left(2^{C L+1}\right) C K
\end{aligned}
$$

Figure 5 shows that for a proper fractional compensation the area of the fractional compensation current pulse must be equal to the area of the charge pump ripple output. This means that the current setting on the input RN, RF must have the following ratio:

$$
\frac{I_{R N}}{I_{R F}}=\frac{\left(32 \cdot Q \cdot f_{V C O}\right)}{\left(64 \cdot C N \cdot F_{R E F_{-}(N)}\right.}
$$

where:
$Q$

$f_{V C O}=f_{R F _\mathbb{N}} \times$| ifractional- $N$ modulus |
| :--- |
| input frequency of the |
| prescaler |


$f_{\text {REF_I }} \quad$| :input frequency of the |
| :--- |
| reference divider |

## Lock Detect

The output LOCK is H when the auxiliary phase detector AND the main phase detector indicates a lock condition. The lock condition is defined as a phase difference of less than +1 cycle on the reference input REF_IN. The lock condition is also fulfilled when the relative counter is disabled ( $\mathrm{EM}={ }^{\prime} 0$ " or respectively $E A=$ " 0 ") for the main, respectively auxiliary counter.

## Test Modes

The lock output is selectable as $f_{\text {REF }}, f_{A U X}$, $f_{\text {MAIN }}$ and lock. Bits T1 and T0 of the E word control the selection (see Figures 3 and 7.

If T1 = T0 = Low, or if the E-word is not sent, the lock output is configured as the normal lock output described in the Lock Detect section.

If T1 = Low and TO = High, the lock output is configured as fREF. The signal is the buffered output of the reference divider NR and the 3-bit binary counter SM. The fREF signal appears as normally low and pulses high whenever the divider reaches terminal count from the value programmed into the NR and SM registers. The $f_{\text {REF }}$ signal can be used to verify the divide ratio of the Reference divider.

If $T 1=$ High and $T 0=$ Low, the lock output is configured as $f_{A U x}$. The signal is normally high and pulses low whenever the divider reaches terminal count from the value programmed into the NA register. The $f_{A U X}$

## Low-voltage 1 GHz fractional-N synthesizer

signal can be used to verify the divide ratio of the Auxiliary divider.

If $\mathrm{T} 1=$ High and $\mathrm{T} 0=$ High, the lock output is configured as f. MAIN. The signal is the buffered output of the MAIN divider. The fMAIN signal appears as normally high and pulses low whenever the divider reaches terminal count from the value programmed
into the NM1, NM2 or NM3 registers. The $f_{\text {MAIN }}$ signal can be used to verify the divide ratio of the MAIN divider and the prescaler.

## Test Pin

The Test pin, Pin 19, is a buffered logic input which is exclusively ORed with the output of the prescaler. The output of the XOR gate is the input to the MAIN divider. The Test pin
must be connected to $V_{D D}$ during normal operation as a synthesizer. This pin can be used as an inut for verifying the divide ratio of the MAIN divider; while in this condition the input to the prescaler, $R F_{\text {IN }}$, may be connected to $\mathrm{V}_{\mathrm{CCP}}$ through a $10 \mathrm{k} \Omega$ resistor in order to place prescaler output into a known state.


Figure 6. Relative Output Current Variation


PIN FUNCTIONS

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	PIN MNEMONIC	DC V	EQUIVALENT CIRCUIT	$\begin{aligned} & \hline \text { PIN } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { PIN } \\ \text { MNEMONIC } \\ \hline \end{array}$	DC V	EQUIVALENT CIRCUIT
1	CLOCK	-		9	RA	1.35	
2	DATA	-		16	RN	135	
3	StROBE	-					
19	TEST	-		17	RF	1.35	
5	RFin	2.1		11	PHA	-	
				13	PHI	-	
6	$\overline{\mathrm{RF}_{\text {IN }}}$	2.1		14	PHP	-	
8	REFIN	1.8		18	LOCK	-	
10	AUXIN	1.8					

## DESCRIPTION

The SA8025 is a monolithic low power, high performance dual frequency synthesizer fabricated in QUBiC BiCMOS technology. Featuring Fractional-N division with selectable modulo 5 or 8 implemented in the Main synthesizer to allow the phase detector comparison frequency to be five or eight times the channel spacing. This feature reduces the overall division ratio yielding a lower noise floor and lightning fast channel switching. The phase detectors and charge pumps are designed to achieve 10 to 5000 kHz channel spacing. A four modulus prescaler (divide by 64/65/68/73) is integrated on chip with a maximum input frequency of 2.0 GHz . Programming and channel selection are realized by a high speed 3 -wire serial interface.

## FEATURES

- Operation up to 2.0 GHz
- Fast locking by "Fractional-N" divider
- Auxiliary synthesizer
- Digital phase comparator with proportional and integral charge pump output
- High speed serial input
- Low power consumption
- Programmable charge pump currents
- Supply voltage range 2.7 to 5.5 V
- Excellent input sensitivity:

$$
\mathrm{V}_{\mathrm{RF} _\mathrm{N}}=-20 \mathrm{dBm}
$$

## APPLICATIONS

- ADC (American Digital Cellular)
- Cellular radio
- Spread-spectrum receivers
- Portable communication systems

PIN CONFIGURATION

DK Package	
clock 1	20.10
data 2	19 TEST
STROBE 3	18 LOCK
$\mathrm{V}_{\text {SS }} 4$	17 RF
RFIN 5	16 RN
$\overline{\text { RFIN }}$	15 V DDA
$V_{\text {ccp }} 7$	14 PHP
REFIN 8	13 PH
RA	$12 \mathrm{~V}_{\text {SSA }}$
$\mathrm{AUX}_{\text {IN }} 10$	11 PHA

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG\#
20-Pin Plastic Shrink Small Outline Package (SSOP)	-40 to $+85^{\circ} \mathrm{C}$	SA8025DK	1563

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V	Supply voltage, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{CCP}}$	-0.3 to +6.0	V
$\mathrm{~V}_{\text {IN }}$	Voltage applied to any other pin	-0.3 to $\left(\mathrm{V}_{\mathrm{DD}}+0.3\right)$	V
I	DC current into any input or output	-10 to +10	mA
$\mathrm{P}_{\mathrm{TOT}}$	Total power dissipation ${ }^{\text {NO TAG }}$	50	mW
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}$	Operating ambient temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\theta_{\mathrm{JA}}$	Thermal impedance $\quad$ DK package	158	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PIN DESCRIPTIONS

Symbol	PIn	Description
CLOCK	1	Serial clock input line
DATA	2	Serial data input line
STROBE	3	Serial strobe input line
$\mathrm{V}_{\text {ss }}$	4	Digital ground
RFin	5	Prescaler positive input
RFiN	6	Prescaler negative input
$\mathrm{V}_{\text {ccP }}$	7	Prescaler positive supply voltage
REFIN	8	Reference divider input
RA	9	Auxiliary current setting; resistor to V ${ }_{\text {SSA }}$
$A^{\prime} X_{\text {IN }}$	10	Auxiliary divider input
PHA	11	Auxiliary phase detector output
$V_{\text {SSA }}$	12	Analog ground
PHI	13	Integral phase detector output
PHP	14	Proportional phase detector output
$V_{\text {DDA }}$	15	Analog supply voltage
RN	16	Main current setting; resistor to $\mathrm{V}_{\text {SSA }}$
RF	17	Fractional compensation current setting; resistor to V ${ }_{\text {SSA }}$
LOCK	18	Lock detector output
TEST	19	Test pin; connect to $\mathrm{V}_{\text {D }}$
$\mathrm{V}_{\mathrm{DD}}$	20	Digital supply voltage

## BLOCK DIAGRAM



## DC ELECTRICAL CHARACTERISTICS

$V_{D D}=V_{D D A}=V_{C C P}=3 V ; T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS	
			MIN	TYP	MAX		
IDD	Operational supply current ${ }^{\text {NO }}$ TAG			12		mA	
	Standby digital supply current	$\mathrm{EM}=\mathrm{EA}=$ "0"			5	$\mu \mathrm{A}$	
	Standby analog supply currents	$\mathrm{V}_{\mathrm{RA}}=\mathrm{V}_{\mathrm{RF}}=\mathrm{V}_{\mathrm{RN}}=\mathrm{V}_{\text {DDA }}$			10	$\mu \mathrm{A}$	
Digital inputs CLK, DATA, STROBE							
$\mathrm{V}_{\mathrm{IH}}$	High level input voltage range		$0.7 \mathrm{x} \mathrm{V}_{\text {DD }}$		$V_{D D}$	V	
$\mathrm{V}_{\text {IL }}$	Low level input voltage range		0		$0.3 \times V_{D D}$	V	
Digital outputs LOCK							
VoL	Output voltage LOW	$\mathrm{l}_{0}=2 \mathrm{~mA}$			0.4	V	
$\mathrm{V}_{\mathrm{OH}}$	Output voltage HIGH	$\mathrm{l}_{0}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.4$			V	
Charge pump PHA							
\|lphal	Output current PHA	$\mathrm{I}_{\mathrm{RA}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHA}}=\mathrm{V}_{\mathrm{DDA}} / 2^{13}$	400	500	600	$\mu \mathrm{A}$	
\|lphal	Output current PHA	$\mathrm{I}_{\mathrm{RA}}=-25 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHA}}=\mathrm{V}_{\text {DDA }} / 2$	160	200	240	$\mu \mathrm{A}$	
$\begin{aligned} & \Delta^{\Delta I_{P H A}} \\ & \\|_{\text {PHAI }} \end{aligned}$	Relative output current variation PHA	$\mathrm{I}_{\mathrm{RA}}=-62.5 \mu \mathrm{~A}^{2,13}$		2	6	\%	
$\Delta{ }^{\text {P PHA_M }}$	Output current matching	$\mathrm{I}_{\mathrm{RA}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHA}}=\mathrm{V}_{\mathrm{DDA}} / 2^{12,13}$			$\pm 50$	$\mu \mathrm{A}$	
Charge pump PHP, normal mode ${ }^{1,4,6, \mathrm{~V}_{\text {RF }}=\mathrm{V}_{\mathrm{DDA}}}$							
\| 1 PHP_N		Output current PHP	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DDA}} / 2^{13}$	440	550	660	$\mu \mathrm{A}$
\| 1 PHP_N		Output current PHP	$\mathrm{I}_{\mathrm{AN}}=-25 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\text {DDA }} / 2$	175	220	265	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {PHP_N }}$	Relative output current variation PHP	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A}^{2,13}$		2	6	\%	
$\Delta \mathrm{lPHP}^{\text {a }}$, M	Output current matching	$\mathrm{I}_{\text {RN }}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\text {PHP }}=\mathrm{V}_{\mathrm{DDA}} / 2^{12,13}$			$\pm 50$	$\mu \mathrm{A}$	
Charge pump PHP, speed-up mode ${ }^{1,4,7, V_{\text {RF }}=V_{\text {DDA }}}$							
\|lPHP_S		Output current PHP	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DDA}} / 2^{13}$	2.20	2.75	3.30	mA
\|lPHP_S		Output current PHP	$\mathrm{I}_{\text {RN }}=-25 \mu \mathrm{~A} ; \mathrm{V}_{\text {PHP }}=\mathrm{V}_{\text {DDA }} / 2$	0.85	1.1	1.35	mA
$\Delta{ }^{\text {l }}$ PHP_S	Relative output current variation PHP	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ;{ }^{2,13}$		2	6	\%	
$\Delta \mathrm{lPHP}_{\text {S_S_M }}$	Output current matching	$\mathrm{I}_{\mathrm{RM}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\text {DDA }} / 2^{12,13}$			$\pm 250$	$\mu \mathrm{A}$	
Charge pump PHI, speed-up mode ${ }^{1,4,8}, \mathrm{~V}_{\text {RF }}=\mathrm{V}_{\text {DDA }}$							
\|IPHI		Output current PHI	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHI}}=\mathrm{V}_{\mathrm{DDA}} / 2^{13}$	4.4	5.5	6.6	mA
\| ${ }_{\text {PHII }}$	Output current PHI	$\mathrm{I}_{\mathrm{RN}}=-25 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHI}}=\mathrm{V}_{\mathrm{DDA}} / 2$	1.75	2.2	2.65	mA	
$\Delta^{\text {l }}{ }_{\text {PHI }}$	Relative output current variation PHI	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ; ;^{2,13}$		2	8	\%	
$\Delta \mathrm{l}_{\text {PHI_M }}$	Output current matching	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{PHI}}=\mathrm{V}_{\mathrm{DDA}} / 2^{12,13}$			$\pm 500$	$\mu \mathrm{A}$	
Fractional compensation PHP, normal mode ${ }^{1,9,14}, \mathrm{~V}_{\mathrm{RN}}=\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DDA}} / 2 \ldots$							
IPHP_F_N	Fractional compensation output current PHP vs $\mathrm{F}_{\mathrm{RD}}{ }^{3}$	$\mathrm{I}_{\mathrm{RF}}=-62.5 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to $7^{13}$	-675	-500	-325	nA	
IPHP_F_N	Fractional compensation output current PHP vs $\mathrm{F}_{\mathrm{RD}}{ }^{3}$	$I_{\text {RF }}=-25 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to 7	-270	-200	-130	nA	
Fractional compensation PHP, speed up mode ${ }^{1,10,14}, \mathrm{~V}_{\text {PHP }}=\mathrm{V}_{\text {DDA }}, \mathrm{V}_{\text {RN }}=\mathrm{V}_{\text {DDA }}$							
IPHP_F_S	Fractional compensation output current PHP vs $\mathrm{F}_{\mathrm{RD}}{ }^{3}$	$\mathrm{I}_{\mathrm{RF}}=-62.5 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to $7^{13}$	-3.35	-2.5	-1.65	$\mu \mathrm{A}$	
lphp_f_s	Fractional compensation output current PHP vs $\mathrm{F}_{\mathrm{RD}}{ }^{3}$	$\mathrm{I}_{\mathrm{RF}}=-25 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to 7	-1.35	-1.0	-0.65	$\mu \mathrm{A}$	
Fractional compensation PHI, speed up mode ${ }^{1,11,14}, \mathrm{~V}_{\text {PHP }}=\mathrm{V}_{\mathrm{DDA}} / 2, \mathrm{~V}_{\mathrm{RN}}=\mathrm{V}_{\mathrm{DDA}}$							
IPHIF	Fractional compensation output current PHI vs $\mathrm{F}_{\mathrm{RD}}{ }^{3}$	$\mathrm{I}_{\mathrm{RF}}=-62.5 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to $7^{13}$	-5.4	-4.0	-2.6	$\mu \mathrm{A}$	
IPHI_F	Fractional compensation output current PHI vs $\mathrm{F}_{\mathrm{RD}}{ }^{3}$	$\mathrm{I}_{\mathrm{RF}}=-25 \mu \mathrm{~A} ; \mathrm{F}_{\mathrm{RD}}=1$ to 7	-2.15	-1.6	-1.05	$\mu \mathrm{A}$	

DC ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
Charge pump leakage currents, charge pump not active						
IPHP_L	Output leakage current PHP; normal mode ${ }^{1}$	$\mathrm{V}_{\mathrm{PHP}}=0.7$ to $\mathrm{V}_{\text {DDA }}-0.8$		10		nA
IPHIL	Output leakage current PHI ; normal mode ${ }^{1}$	$V_{P H I}=0.7$ to $V_{\text {DDA }}-0.8$		10		nA
$\mathrm{IPHAL}^{\text {L }}$	Output leakage current PHA	$\mathrm{V}_{\text {PHA }}=0.7$ to $\mathrm{V}_{\text {DDA }}-0.8$		10		nA

## AC ELECTRICAL CHARACTERISTICS

$V_{D D}=V_{D D A}=V_{C C P}=3 V ; T_{A}=25^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{IN}}=2 \mathrm{GHz}$, input level $=-10 \mathrm{dBm}$; unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
Main divider						
$f_{\text {RF_IN }}$	Input signal frequency	Direct coupled input ${ }^{15}$	0		2.0	GHz
$\mathrm{f}_{\text {RF_IN }}$	Input signal frequency	1000pF input coupling			2.0	GHz
$\mathrm{V}_{\text {FF_IN }}$	Input sensitivity		-20		+5	dBm
Reference divider						
$\mathrm{fr}_{\text {REF_IN }}$	Input signal frequency		0		15	MHz
		$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {DDA }} \leq 5.5 \mathrm{~V}$	0		30	MHz
$\mathrm{V}_{\text {REF_IN }}$	Input signal range, AC coupled		300		$\mathrm{V}_{\mathrm{DD}}-0.8$	mV P -
$\mathrm{Z}_{\text {REF_IN }}$	Reference divider input impedance: Resistive Capacitive	$\cdots$	5		$\cdots$	$\mathrm{k} \Omega$
					5	pF
Auxiliary divider						
$\mathrm{f}_{\text {Aux_in }}$	Input signal frequency PA = "0" prescaler enabled		0		35	MHz
		$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {DDA }} \leq 5.5 \mathrm{~V}$	0		90	MHz
	Input signal frequency PA = "1" prescaler disabled		0		15	MHz
		$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DDA}} \leq 5.5 \mathrm{~V}$	0		30	MHz
$\mathrm{V}_{\text {AUX_N }}$	Input signal range, AC coupled		300		$\mathrm{V}_{\mathrm{DD}}{ }^{-0.8}$	$\mathrm{m} \mathrm{V}_{\text {P- }}$
$\mathrm{Z}_{\text {AUX }}$ IN	Auxiliary divider input impedance: Resistive Capacitive		5			$\mathrm{k} \Omega$
					5	pF
Serial interface						
fclock	Clock frequency				10	MHz
$\mathrm{t}_{\mathrm{HIGH}}$	Clock high time		30			ns
tow	Clock low time		30			ns
tsuda	DATA set up time		30			ns
thida	DATA hold time		30			ns
tsust	STROBE set up time		30			ns
thDST	STROBE hold time		30			ns

## NOTES:

1. When a serial input " A " word is programmed, the main charge pumps on PHP and PHI are in the "speed up mode" as long as $S T R O B E=H$. When this is not the case, the main charge pumps are in the "normal mode".
2. The relative output current variation is defined thus:

$$
\frac{\Delta l_{\text {OUT }}}{l_{\text {OUT }}}=2 \cdot \frac{\left(l_{2}-l_{1}\right)}{\left|\left(l_{2}+l_{1}\right)\right|} ; \text { with } \mathrm{V}_{1}=0.7 \mathrm{~V}, \mathrm{~V}_{2}=\mathrm{V}_{\mathrm{DD}}-0.8 \mathrm{~V} \text { (see Figure 6). }
$$

3. $\mathrm{F}_{\mathrm{RD}}$ is the value of the 3 bit fractional accumulator.
4. Monotonicity is guaranteed with $\mathrm{C}_{\mathrm{N}}=0$ to 255 .
5. Power supply current measured with $f_{R F} \mathbb{N}=1951.66 \mathrm{MHz}, f_{R E F} \mathbb{N}=19.44 \mathrm{MHz}$. $f_{A U X}, \mathbb{N}=71.0 \mathrm{MHz}$, main phase detector frequency $=$ 120 kHz , auxiliary phase detector frequency $=240 \mathrm{kHz}$, LOCK condition; normal mode; $\mathrm{I}_{\mathrm{RN}}=I_{\mathrm{RF}}=I_{\mathrm{RA}}=25 \mu \mathrm{~A}, \mathrm{C}_{\mathrm{N}}=255, \mathrm{P}_{\mathrm{A}}=0, \mathrm{~V}_{\mathrm{DDA}}=5 \mathrm{~V}$.
6. Typical output current: $\left|l_{\text {PHP_N }}\right|=-I_{\mathrm{RN}} \times \mathrm{CN} / 29$; specification condition: $\mathrm{CN}=255$

7. Typical output current $\left|\left.\right|_{\mathrm{PH}} I=-I_{\mathrm{RN}} \times \mathrm{CN} \times 2^{(\mathrm{CL}+1)} \times \mathrm{CK} / 29\right.$ :
1) $C N=160 ; C L=3 ; C K=1$, or
2) $\mathrm{CN}=160 ; C L=2 ; C K=2$, or
3) $C N=160 ; C L=1 ; C K=4$, or
4) $C N=160 ; C L=0 ; C K=8$
9. Typical fractional compensation output current: $I_{P H P _F N}=I_{R F} \times F_{R D} / 128$. Specification conditions: $F_{R D}=1$ to 7 .
10. Typical fractional compensation output current: $I_{P H P-F S}=I_{R F} \times F_{R D} \times\left(2^{(c L+1)}+1\right) / 128$. Specification conditions: $F_{R D}=1$ to $7 ; C L=1$.
11. Typical fractional compensation output current: $l_{P H}$ $=2$, or 2) $\mathrm{F}_{\mathrm{RD}}=1$ to $7 ; C L=2 ; C K=1$.
12. The output current matching is measured when both (positive current and negative current) sections of the output charge pumps are on.
13. Limited analog supply voltage range 4.5 to 5.5 V .
14. The compensation current specified does not include the leakage current of this output.
15. For $\mathrm{f}_{\mathrm{N}}<50 \mathrm{MHz}$, minimum input slew rate of $32 \mathrm{~V} / \mu$ s is required.

## FUNCTIONAL DESCRIPTION

## Serial Input Programming

The serial input is a 3 -wire input (CLOCK, STROBE, DATA) to program all counter ratios, DACs, selection and enable bits. The programming data is structured into 24 or 32 bit words; each word includes 1 or 4 address bits. Figure 1 shows the timing diagram of the serial input. When the STROBE $=L$, the clock driver is enabled and on the positive edges of the CLOCK the signal on DATA input is clocked into a shift register. When the STROBE $=H$, the clock is disabled and the data in the shift register remains stable. Depending on the 1 or 4 address bits the data is latched into different working registers or
temporary registers. In order to fully program the synthesizer, 4 words must be sent: D, C, $B$ and $A$. Figure 2 shows the format and the contents of each word. The E word is for testing purposes only. The E (test) word is reset when programming the $D$ word. The data for CN, NM4 and PR is stored by the B word in temporary registers. When the A word is loaded, the data of these temporary registers is loaded together with the A word into the work registers which avoids false temporary main divider input. CN is only loaded from the temporary registers when a short 24 bit AO word is used. CN will be directly loaded by programming a long 32 bit A1 word. The flag LONG in the D word determines whether AO (LONG = "0") or A1
(LONG = "1") format is applicable. The A word contains new data for the main divider. The A word is loaded only when a main divider synchronization signal is also active, to avoid phase jumps when reprogramming the main divider. The synchronization signal is generated by the main divider. It disables the loading of the A word each main divider cycle during maximum 300 main divider input cycles. To be sure that the A word will be correctly loaded the STROBE signal must be H for at least 300 main divider input cycles. Programming the A word means also that the main charge pumps on output PHP and PHI are set into the speed-up mode as long as the STROBE is H .

Low-voltage 2 GHz fractional- N synthesizer

## AC TIMING CHARACTERISTICS



Figure 1. Serial Input Timing Sequence


## Low-voltage 2 GHz fractional-N synthesizer

Table 4. Function Table

Symbol	Bits	Function
NM1	12	Number of main divider cycles when prescaler modulus $=64$
NM2	$\begin{aligned} & 8 \text { if } P R=" 01 " \\ & 4 \text { if } P R \neq " 01 " \end{aligned}$	Number of main divider cycles when prescaler modulus $=65$
NM3	4 if $\mathrm{PR}=$ " 1 x "	Number of main divider cycles when prescaler modulus $=68$
NM4	$\begin{aligned} & 4 \text { if } \mathrm{PR}=" 11 " \\ & \text { or " } 00 \text { " } \end{aligned}$	Number of main divider cycles when prescaler modulus $=73$
PR	2	Prescaler type in use   PR = "01": modulus 2 prescaler (64/65)   PR = "10": modulus 3 prescaler ( $64 / 65 / 68$ )   $\mathrm{PR}=$ " "11": modulus 4 prescaler (64/65/68/73)   PR = "00": modulus 4 prescaler (64/65/73)
FB	2	Prescaler division ratio (see Table 5)
NF	3	Fractional-N increment
FMOD	1	Fractional- N modulus selection flag "1": modulo 8   " 0 ": modulo 5
LONG	1	A word format selection flag "0": 24 bit AO format   "1": 32 bit A1 format
CN	8	Binary current setting factor for main charge pumps
CL	2	Binary acceleration factor for proportional charge pump current
CK	4	Binary acceleration factor for integral charge pump current
EM	1	Main divider enable flag
EA	1	Auxiliary divider enable flag
SM	2	Reference select for main phase detector
SA	2	Reference select for auxiliary phase detector
NR	12	Reference divider ratio
NA	12	Auxiliary divider ratio
PA	1	Auxiliary prescaler mode: PA = "0": divide by 4 PA = "1": divide by 1
*Not including reset cycles and Fractional-N effects.		

## Auxiliary Divider

The input signal on AUX_IN is amplified to an internal logic level by a single-ended CMOS input buffer, which accepts low level AC coupled input signals. This input stage is enabled if the serial control bit $E A=" 1$ ". Disabling means that all currents in the input stage are switched off. A fixed divide by 4 is enabled if $\mathrm{PA}=$ " 0 ". This divider has been optimized to accept a high frequency $(90 \mathrm{MHz}$ at supply voltage range 4.5 to 5.5 V ) input signal. If $\mathrm{PA}=$ " 1 ", this divider is disabled and the input signal is fed directly to the second stage, which is a 9 -bit programmable divider with standard input frequency ( 30 MHz ). The division ratio can be expressed as:

$$
\begin{aligned}
& \text { if } P A=\text { " } 0 \text { ": } N=4 \times N A \\
& \text { if } P A=\text { " } 1 \text { ": } N=N A \text {; with } N=4 \text { to } 4095
\end{aligned}
$$

Reference Divider (Figure
3)


Figure 3. Reference Divider

## Reference Divider

The input signal on REF_IN is amplified to logic level by a single-ended input buffer, which accepts low level AC coupled input signals. This input stage is enabled by the OR function of the serial input bits EA and EM. Disabling means that all currents in the input stage are switched off. The reference divider consists of a programmable divider by NR (NR = 4 to 4095) followed by a three bit binary counter. The 2 bit SM determines which of the 4 output pulses is selected as main phase detector input. The 2 bit SA determines the selection of the auxiliary phase detector signal. To obtain the best
time spacing for the main and auxiliary reference signals, the opposite output will be used for the auxiliary phase detector, reducing the possibility of unwanted interactions. For this reason the programmable divider produces a symmetric output pulse for even ratios and a 1 input cycle asymmetric pulse for odd ratios.

## Main Divider

The differential inputs are amplified and provide excellent sensitivity ( -20 dBm at 2 GHz ) making the prescaler ideally suited to directly interface to a VCO. The internal four modulus prescaler feedback loop FB controls
the selection of the divide by ratios 64/65/68/73, and reduces the minimum system division ratio below the typical value required by standard dual modulus devices.

This input stage is enabled when serial control bit $\mathrm{EM}=$ " 1 ". Disabling means that all currents in the comparator are switched off.
The main divider is built up by a 12 bit counter plus a sign bit. Depending on the serial input values NM1, NM2, NM3, NM4 and the prescaler select PR, the counter will select a prescaler ratio during a number of input cycles according to Table 3.

Table 5. Prescaler Ratio

Counter Status	FB	Prescaler Ratio
(-NM1-1) to 0	10	R1 $=64$
(-NM1-1) to -1	10	R1*
1 to NM2	00	R2 $=65$
0 to NM2	00	R2*
0 to NM3	01	R3 $=68$
0 to NM4	11	R4 $=73$
The total division ratio from prescaler to the phase detector may be expressed as:		
if $\mathrm{PR}=$ " 01 "	$\begin{aligned} & N=(N M \\ & N^{\prime}=(N M \end{aligned}$	2) $\times 64+\mathrm{NM} 2 \times 65$   1) $\times 64+(\mathrm{NM} 2+1) \times 65$ (*)
if PR = "10"	$\begin{aligned} & N=(N N \\ & N^{\prime}=(N N \end{aligned}$	2) $\times 64+\mathrm{NM} 2 \times 65+(\mathrm{NM} 3+1) \times 72$   1) $\times 64+(\mathrm{NM} 2+1) \times 65+(\mathrm{NM} 3+1) \times 72$ (*)
if PR = "11"	$\begin{aligned} & \mathrm{N}=(\mathrm{NN} \\ & \mathrm{N}^{\prime}=(\mathrm{N}) \end{aligned}$	2) $\times 64+\mathrm{NM} 2 \times 65+(\mathrm{NM} 3+1) \times 68+(\mathrm{NM} 4+1) \times 73$   1) $\times 64+(\mathrm{NM} 2+1) \times 65+(\mathrm{NM} 3+1) \times 68+(\mathrm{NM} 4+1) \times 73$ (*)
if PR = "00"	$\begin{aligned} & \mathrm{N}=(\mathrm{NN} \\ & \mathrm{N}^{\prime}=(\mathrm{N}) \end{aligned}$	2) $\times 64+\mathrm{NM} 2 \times 65+(\mathrm{NM} 4+1) \times 73$   1) $\times 64+(\mathrm{NM} 2+1) \times 65+(\mathrm{NM} 4+1) \times 73$ (*)
(*) When the fractional accumulator overflows the prescaler ratio $65=64+1$, the total division ratio $\mathrm{N}^{\prime}=\mathrm{N}+1$		

Table 6. PR Modulus

PR	Modulus Prescaler	Bit Capacity			
		NM1	NM2	NM3	NM4
01	2	12	8	-	-
10	3	12	4	4	4
11	4	12	4	4	4
00	4	12	4	-	4

The loading of the work registers NM1, NM2, NM3, NM4 PR is synchronized with the state of the main counter, to avoid extra phase disturbance when switching over to another main divider ratio as is explained in the Serial Programming Input section.
At the completion of a main divider cycle, a main divider output pulse is generated which will drive the main phase comparator. Also, the fractional accumulator is incremented with NF. The accumulator works modulo Q . $Q$ is preset by the serial control bit FMOD to

8 when $\mathrm{FMOD}=" 1$ ". Each time the accumulator overflows, the feedback to the prescaler will select one cycle using prescaler ratio R2 instead of R1.
As shown above, this will increase the overall division ratio by 1 if $\mathrm{R} 2=\mathrm{R} 1+1$. The mean division ratio over Q main divider will then be

$$
N Q=N+\frac{N F}{Q}
$$

Programming a fraction means the prescaler with main divider will divide by N or $\mathrm{N}+1$.

The output of the main divider will be modulated with a fractional phase ripple. This phase ripple is proportional to the contents of the fractional accumulator FRD, which is used for fractional current compensation.

## Phase Detectors (Figure 4)

The auxiliary and main phase detectors are a two D-type flip-flop phase and frequency detector. The flip-flops are set by the negative edges of output signals of the dividers. The reset inputs are activated when
both flop-flops have been set and when the reset enable signal is active (L). Around zero phase error this has the effect of delaying the reset for 1 reference input cycle. This avoids non-linearity or deadband around zero phase error. The flip-flops drive on-chip charge pumps. A pull-up current from the charge pump indicates the VCO frequency shall be
increased while a pull-down pulse indicates the VCO frequency shall be decreased.

## Current Settings

The SA8025 has 3 current setting pins; RA, RN and RF. The active charge pump currents and the fractional compensation currents are linearly dependent on the current
connected between the current setting pin and $V_{S S}$. The typical value $R$ (current setting resistor) can be calculated with the formula:

$$
R=\frac{V_{D D A}-0.5-237\left(I_{R}^{1 / 2}\right)}{I_{R}}
$$

The current can be set to zero by connecting the corresponding pin to $\mathrm{V}_{\mathrm{DDA}}$.


Figure 4. Phase Detector Structure with Timing

## Auxiliary Output Charge Pumps

The auxiliary charge pumps on pin PHA are driven by the auxiliary phase detector and the current value is determined by the external resistor RA at pin RA. The active charge pump current is typically:

$$
\|_{P H A}=8 \cdot I_{\text {RA }}
$$

## Main Output Charge Pumps and Fractional Compensation Currents

The main charge pumps on pin PHP and PHI are driven by the main phase detector and the current value is determined by the current at pin RN and via a number of DACs which
are driven by registers of the serial input. The fractional compensation current is determined by the current at pin RF, the contents of the fractional accumulator FRD and a number of DACs driven by registers from the serial input. The timing for the fractional compensation is derived from the reference divider. The current is on during 1 input reference cycle before and 1 cycle after the output signal to the phase comparator. Figure 5 shows the waveforms for a typical case.

When the serial input A word is loaded, the output circuits are in the "speed-up mode" as long as the STROBE is H , else the "normal
mode" is active. In the "normal mode" the current output PHP is:

$$
I_{\text {PHP_ } N}=I_{\text {pump } 10}+I_{\text {comp } 10}
$$

where:
$\left\lvert\, I_{\text {pumpiol }}=C N \cdot \frac{I_{\text {RN }}}{29}\right.$ :charge pump current
$\left\lvert\, I_{\text {compolo }}=F R D \cdot \frac{I_{R F}}{128}\right.$ :fractional comp.
The current in PHI is in "normal mode" zero.
In "speed-up mode" the current in output PHP is:

$$
I_{\text {PHP_S }}=I_{P H P_{-} N}+I_{\text {Pump11 }}+I_{\text {compl1 }}
$$



Figure 5. Waveforms for $\mathrm{NF}=2$, Fraction $=0.4$
where:

$$
\left|I_{\text {pump } 11}\right|=I_{\text {pump } 10} \cdot 2^{(C L+1)}
$$

:charge pump current
$I_{\text {comp11 }}=I_{\text {comp10 }} \cdot 2^{(C L+1)}$
:fractional compensation current
In "speed-up mode" the current in output PHI is:

$$
I_{\text {PHI_ }}=I_{\text {Dump21 }}+I_{\text {comp21 }}
$$

where:

$$
I_{\text {pump21 }}=I_{\text {pump } 11} \cdot C K
$$

:charge pump current
$I_{\text {comp21 }}=I_{\text {comp11 }} \cdot C K$

## fractional compensation current

Figure 5 shows that for a proper fractional compensation the area of the fractional compensation current pulse must be equal to the area of the charge pump ripple output. This means that the current setting on the input RN, RF must have the following ratio:

$$
\frac{I_{R N}}{I_{R F}}=\frac{\left(29 \cdot Q \cdot f_{V C O}\right)}{\left(64 \cdot C N \cdot F_{R E F_{-}} N\right)}
$$

where:
Q :fractional-N modulus
$f_{V C O}=f_{R F-I N} \times N$ input frequency of the prescaler
$\mathrm{f}_{\text {REF_IN }} \quad$ :input frequency of the reference divider

## Lock Detect

The output LOCK is H when the auxiliary phase detector AND the main phase detector indicates a lock condition. The lock condition is defined as a phase difference of less than +1 cycle on the reference input REF_IN. The lock condition is also fulfilled when the relative counter is disabled ( $\mathrm{EM}=$ " 0 " or respectively $E A=" 0$ ") for the main, respectively auxiliary counter.


Figure 6. Relative Output Current Variation

## DESCRIPTION

The PCF5001T is a very low power Decoder and Pager Controller specially designed for use in Radiopagers. The architecture of the PCF5001T allows for flexible application in a wide variety of Radiopager designs.

The PCF5001T is fully compatible with CCIR Radiopaging Code Number 1 (also known as the POCSAG code) operating at the 512 bps data rate, and 1200 bps data rate. 2400 bps operation is also possible. The PCF5001T also offers features which extend the basic flexibility and efficiency of this code standard.
On-chip non-volatile 114 bit EEPROM storage is provided to hold up to four user addresses, two frame numbers and the programmed decoder condifuration.

## FEATURES

- Wide operating supply voltage range (1.5 to 6.0 V )
- Extended temperature range: -40 to $+85^{\circ} \mathrm{C}$
- Very low supply current $(60 \mu \mathrm{~A}$ typ. with 76.8 kHz crystal)
- Programmable call termination conditions
- Eight different alert cadences
- Directly drives magnetic or piezoelectric beeper
- Silent call storage, up to eight different calls
- Repeat alarm facility
- Programmable duplicate call suppression
- Interfaces directly to UAA2050T and UAA2080T digital paging receivers
- Programmable receiver power control for battery economy
- On-chip voltage converter with improved drive capability
- Serial microcontroller interface for display pager applications
- Optional visual indication of received call data using a modified RS-232 format
- Level shifted microcontroller interface signals
- Alert on low battery
- Optional out-of-range indication


## APPLICATIONS

- Alert-only pagers, display pagers
- Telepoint
- Telemetry/data receivers

PIN CONFIGURATION

## D PACKAGE



## ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
28-Pin Plastic SO	0 to $+70^{\circ} \mathrm{C}$	SOT-136A

## BLOCK DIAGRAM,



## GENERAL DESCRIPTION

The TDD1742T is a low power, high-performance frequency synthesizer in local oxidation CMOS (LOCMOS) technology. The device is designed for use in channelized VHF/UHF applications especially portable and mobile radios.
The circuit incorporates many of the features of the HEF4750V (frequency synthesizer) and HEF4751 (universal divider), including a high-gain phase comparator together with an on-chip sample-and-hold capacitor and phase modulator.
A multiplexed or bus-structured programming sequence allows interface to a microcontroller or external memory (ROM/PROM); power is applied to the memory only when it is required for programming via additional on-chip circuitry.
Operation is possible with a minimum supply voltage of 7 V and a maximum input frequency of $8,5 \mathrm{MHz}$.
Encapsulation in a 28 -lead mini-pack enables the construction of small, low power consumption synthesizers with low noise performance and high side-band attenuation.

## Features

- On-chip sample-and-hold capacitor
- Low power consumption
- High-gain phase comparator with low levels of noise and spurious outputs
- Auxiliary digital phase comparator for fast locking
- On-chip phase modulator
- Simple interfacing to external memory
- Microcontroller compatible
- Power-on reset circuitry


## QUICK REFERENCE DATA

Supply voltage ranges			
pin 14	$\mathrm{V}_{\text {DD1 }}=\mathrm{V}_{14-6}$	7 to 10 V	
pin 8	$\mathrm{V}_{\text {DD2 }}=\mathrm{V}_{8-6}$	$\begin{aligned} & 4,5 \text { to } 5 \mathrm{~V} \\ & 7 \text { to } 10 \mathrm{~V} \end{aligned}$	
pin 1	$\mathrm{V}_{\text {DD3 }}=\mathrm{V}_{1-6}$		
Supply current			
$\begin{aligned} & \text { (at } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V} D D 1=\mathrm{V}_{\mathrm{DD} 3}=7,4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V} \text { ) } \\ & \text { pin } 14 \text { (phase modulator OFF) } \end{aligned}$			
pin 8	$\begin{aligned} & I_{D D 1}=I_{14} \\ & I_{D D 2} I_{8} \end{aligned}$	max. max.	$\begin{aligned} & 1,5 \mathrm{~mA} \\ & 100 \mu \mathrm{~A} \end{aligned}$

## PINNING



Fig. 2 Pinning diagram.

## Pin functions

pin no.	mnemonic	description
1	$V_{\text {DD3 }}$	Power Supply 3: analogue supply voltage (7 to 10 V ).
2	PC1	Phase Comparator 1: high-gain analogue phase comparator output which is used when the system is in-lock to give low levels of noise and spurious outputs.
3	PC2	Phase Comparator 2: low-gain digital phase comparator 3-state output which enables the achievement of fast lock times when the system is initially out-of-lock. Phase comparator 2 is inhibited when the phase is within the locking range of phase comparator 1.
4	i.c.	internally connected (must be left floating).
5	CLK	Clock: clock output.
6	$\mathrm{V}_{\text {SS }}$	Ground: circuit earth potential.
7	DIV(M)	Divider: input to the main programmable divider ( $8,5 \mathrm{MHz}$ max.) , usually from prescaler.
8	VDD2	Power Supply 2: supply voltage for TTL-compatible stages ( $+5 \mathrm{~V} \pm 10 \%$ ).
9	FB	Feedback: feedback output to control the modulus of the external prescaler.
10	OL	Out-of-lock: out-of-lock indication flag output. This output is HIGH when phase comparator 2 is in operation (when the system is out-of-lock).
11	RESET	Power-on-Reset: Following power up an initial pulse is applied to this input pin to set the internal counters.

## CMOS frequency synthesizer

## Pin functions (continued)

pin no.	mnemonic	description
12	XTAL	Crystal: output to external crystal to form the oscillator circuit in combination with the OSC input.   Alternatively this pin may be used as a buffer output.
13	OSC	Oscillator: input to reference oscillator which together with the XTAL output and an external crystal is used to generate the reference frequency. Alternatively to OSC input may be used as a buffer amplifier for an external reference oscillator.
14	VDD1	Power Supply 1: digital supply voltage ( 7 to 10 V ).
15-18	DB3-DB0	Data Bus: Data Bus inputs (TTL compatible).
19-21	AB0-AB2	Address Bus: TTL compatible bidirectional address bus. Provides address output to an external memory or input from microcontroller. The outputs are 3-state with internal pull-downs.
22 23	PE2 PE1	Program Enable 2: $\left\{\begin{array}{l}\text { TTL compatible inputs to initiate the } \\ \text { programming cycle or strobe the internal } \\ \text { data latches. }\end{array}\right.$ Program Enable 1:
24	MOD	Modulator: high impedance linear phase modulator input, which applies a voltage controlled delay to the programmable divider output to the phase comparator.
25	MEMEN	Memory Enable: mode control and memory enable bidirectional pin. If pin 25 is LOW at general reset the TDD1742T is set to the microcontroller mode; if pin 25 is HIGH at general reset the TDD1742T is set to the memory mode and the ROM/PROM is enabled.
26	BRB	Bias Resistor B: current mirror which acts as gain control for the phase modulator.
27	BRC	Bias Resistor C: current mirror pin which provides analogue biassing.
28	BRA	Bias Resistor A: current mirror pin which acts as gain control for phase comparator 1.

## FUNCTIONAL DESCRIPTION

## Reference oscillator chain

The reference oscillator chain comprises a crystal oscillator and dividers to give the required frequency to drive the phase comparators.
The oscillator stage is a single inverter connected between pin 12 (XTAL) and pin 13 (OSC). Satisfactory operation is achieved with crystals up to 9 MHz . Alternatively, the OSC input may be used as a buffer amplifier for an external reference oscillator.
The reference divider chain comprises a fixed divide by 4 -stage followed by three cascaded programmable dividers of ratios $\div 12 / 13 / 14 / 15, \div 5 / 6 / 7 / 9$ and $\div 1 / 2 / 4 / 8$. The output of the last stage is applied as one input ( $R$ ) to the two phase comparators. Thus a number of division ratios between 240 and 4320 are possible which provides all the required VHF and UHF channel spacings with reference crystals in a 1 to 9 MHz range.

## Main programmable divider

The main programmable divider is a rate feedback binary divider. As shown in figure 1 it comprises a fixed 7 -bit binary divider ( $\div 128$ ) and two rate selectors ( $\mathrm{n}_{1}$ and $\mathrm{n}_{0}$ ). One rate selector controls a 7-bit fully programmable dual modulus divider $\left(\div n_{2} / n_{2}+1\right)$ and the other controls the external dual modulus prescaler $(\div A / A+1)$.
The overall division rate $(N)$ is given by:
$N=\left(128 n_{2}+n_{1}\right) A+n_{0}$
Where:

$$
\begin{aligned}
& 0 \leqslant n_{0} \leqslant 127 \\
& 0 \leqslant n_{1} \leqslant 127 \\
& 1 \leqslant n_{2} \leqslant 127
\end{aligned}
$$

The output from the programmable divider is fed to the phase comparators via the phase modulator and the multiplexer. The phase modulator is bypassed if not selected.

## Phase comparison

The TDD1742T contains 2 phase comparators which act in close co-operation. Phase comparator 1 is the main comparator. It is designed to have a high-gain analogue output, 4500 volts/cycle at 10 kHz (typ.). This enables a low noise performance to be achieved. However, the output of phase comparator 1 will saturate at high or low levels for very small phase excursions.
Phase comparator 2 is an auxiliary comparator with a wide range, which enables faster lock times to be achieved than otherwise would be possible. This digital phase comparator has a linear $\pm 2 \pi$ radians phase range, which corresponds to a gain of $\frac{V_{D D}}{2}$ volts/cycle.
To avoid degrading the noise performance of the system by the relatively low gain of phase comparator 2, once a smail phase error has been achieved an internal switch disconnects phase comparator 2, leaving only phase comparator 1 connected. Thus the low noise properties of phase comparator 1 are obtained once phase-lock has been achieved.

## FUNCTIONAL DESCRIPTION (continued)

Phase comparator 1 (see Fig. 3)
Phase comparator 1 is comprised of a linear ramp generator and a sample and hold circuit.


Fig. 3 Simplified block diagram of phase comparator 1.
A negative-going transition at the $V_{M U X}$ input causes the hold capacitor $C_{A}$ to be discharged via switch S 1 and constant current source $\mathrm{I}_{1}$.
A positive-going transition at the $\mathrm{V}_{\mathrm{M}} \mathrm{XX}$ input causes the hold capacitor $\mathrm{C}_{\mathrm{A}}$ to be charged via switch S 2 and constant current source $\mathrm{I}_{2}$, which produces a linear ramp.
A negative-going transition at the R input terminates the linear ramp.
Capacitor $\mathrm{C}_{\mathrm{A}}$ holds the voltage that the ramp has attained, and is buffered by the voltage follower VF1. After the output of VF1 is stable ( $2 \mu \mathrm{~s}$ ), the sample switch S3 is closed for approximately $1 \mu \mathrm{~s}$ by the one-shot oscillator. This enables the capacitor $C_{C}$ to charge to the voltage level of VF1 and in turn buffered by voltage follower VF2 made available at output PC1.
The construction and small duty cycle of the sample switch S3 provides a low hold step, resulting in a minimum side-band level.
If the linear ramp terminates before a negative-going transition at the $R$ input is present, an end of ramp (EOR) signal is produced, generating in turn an out-of-lock (OL) signal. OL enables phase comparator 2 via the out-of-lock detector.

These actions are illustrated in the waveforms of Fig. 4 and Fig. 5.
The gain of phase comparator 1 as measured at PC1 is given by:
PC gain $\simeq \frac{446 \mathrm{I}_{\mathrm{BRA}}}{\mathrm{F}_{\mathrm{R}}}$
Where:
IBRA is in $\mu \mathrm{A}$
$\mathrm{F}_{\mathrm{R}}$ is the phase comparator reference frequency in kHz


Fig. 4 Waveforms of phase comparator 1 ; in-lock condition.


Fig. 5 Waveforms of phase comparator 1; out-of-lock condition.
When $\mathrm{V}_{\text {MUX }}$ leads R the output signal at pin 2 (PC1) is proportional to the phase difference (in-lock condition) or HIGH (out-of-lock condition).
When $R$ leads $V_{\text {MUX }}$ the output signal at pin 2 (PC1) remains LOW.


Fig. 6 Phase characteristic of output PC1.

FUNCTIONAL DESCRIPTION (continued)
Phase comparator 2 (see Fig. 7)


Fig. 7 Simplified block diagram of phase comparator 2.
The digital phase comparator (PC2) has three stable states:

- Reset
- $\mathrm{V}_{\text {MUX }}$ leads R
- R leads $\mathrm{V}_{\mathrm{MUX}}$

Table 1 Phase comparator 2: stable states and corresponding output levels

state	$\mathrm{V}_{\text {MUX }}$ leads R	R leads $\mathrm{V}_{\text {MUX }}$
reset	0	0
$\mathrm{~V}_{\text {MUX }}$ leads R	1	0
R leads $\mathrm{V}_{\text {MUX }}$	0	1

Transition from one state to another takes place on command of either an active $\mathrm{V}_{\text {MUX }}$-edge or an active R-edge as shown in Fig. 8.


Fig. 8 Transition of state; phase comparator 2.

The output of phase comparator 2 produces positive or negative going pulses with variable width, dependent on the phase relationship of $R$ and $V_{M U X}$.
The average output voltage is a linear function of the phase difference. Output at pin $3(\mathrm{PC} 2)$ remains in the high impedance OFF-state in the region in which phase comparator 1 operates


Fig. 9 Phase characteristic of output PC2.
To reach the reset state of phase comparator 2 it is necessary to apply:

- $2 \mathrm{~V}_{\mathrm{MUX}}+\mathrm{R}^{*}$
or
- $2 R+V_{\text {MUX }}$

Thus to achieve the $R$ leads $V_{M U X}$ state 2R must be applied; to achieve the $V_{M U X 1}$ leads $R$ state $2 \mathrm{~V}_{\text {MUX }}$ must be applied.

## Out-of-lock function

There are several situations when the system goes from the locked to the out-of-lock state (OL output goes HIGH):

- $\mathrm{V}_{\text {MUX }}$ leads R , however out of the range of phase comparator 1
- $R$ leads $V_{M U X}$
- R-pulse is missing
- $\mathrm{V}_{\text {MUX }}$-pulse is missing

In the first three situations the locked state can be reset by applying two successive cycles within the range of phase comparator 1.
In the fourth situation the locked state can be reset by applying a $\mathrm{V}_{\mathrm{M}} \cup \mathrm{X}$ pulse followed by two successive cycles within the range of phase comparator 1.

## Phase modulator (see Fig. 10)

The linear phase modulator applies a voltage controlled delay to the signal from the programmable divider to the phase comparator input. The gain of the phase modulator is adjustable via an external bias resistor ( BRB ) which is connected between pin 26 and ground.
The time delay introduced into the $V$ path to the phase modulator is:

$$
\frac{909}{I_{B R B}} \mathrm{~ns} / \text { volt of input applied to pin } 24 \text { (MOD) }
$$

When a positive-going transition appears at the $V$-input, the $D$ type flip-flop produces a $H I G H V^{\prime}$ level and causes capacitor $\mathrm{C}_{\mathrm{B}}$ to produce a positive-going ramp via switch S 1 and constant current source $I_{1}$ starting at the $\mathrm{V}_{\mathrm{SS}}$ potential. When the ramp has reached a value equal to the modulation input voltage (at MOD), the comparator resets the $D$ type flip-flop, which terminates the $V$ pulse. $C_{B}$ now discharges to $\mathrm{V}_{\mathrm{SS}}$ via switch S 1 and constant current source $\mathrm{I}_{2}$ and the circuit returns to the start position. Because the trailing edge of the $\mathrm{V}^{\prime}$ pulse is the active edge for the phase comparators, a linear phase modulation is achieved. The associated waveforms are shown in Fig. 11. The phase modulator can be switched OFF, via the programming logic, to avoid superfluous dissipation. To achieve, this the M signal must be programmed to logic 0 . The V pulse will then be connected via switch S 2 to $\mathrm{V}_{\mathrm{MUX}}$.

[^4]
## FUNCTIONAL DESCRIPTION (continued)



Fig. 10 Simplified block diagram of the phase modulator.


Fig. 11 Phase modulator waveforms; $M=1$.

## Program control

A multiplexed or bus structured sequence allows the TDD1742T to be interfaced to a microcontroller or a PROM.
The device is fully programmable in terms of:

- 6 bits to define the reference divider ratio
- 21 bits to define the main divider ratio
- 1 bit to switch the modulator
- 4 bits to determine the test status

Thus the TDD1742T is programmed with a total of 32 bits which are organized as eight 4-bit words. The address bus is 3 bits wide and the data bus is 4 bits wide. Both buses are TTL compatible.
The data words are described in detail in Tables 3 to 7.

## Microcontroller mode

If pin 25 ( $\overline{M E M E N}$ ) is LOW at general reset, the device is set to the micro-controller mode. In this mode a 7 -bit word, comprised of 3 address bits (AB0 to AB2) and 4 data bits (DB0 to DB3), may be strobed into the TDD1742T when the program enable pins PE1 and PE2 are set to opposite state (EXCLUSIVE -OR condition; see Fig. 12 and Table 2). One frame of 8 words is necessary to completely program the TDD1742T. Incoming data is not clocked into the internal counter latches until after the receipt of data corresponding to address 111 . Upon subsequent reprogramming it is not necessary to change all eight words but a reprogramming sequence must always finish with the data corresponding to address 111.

(1) Address and data valid.
(2) Address and data not valid.

Fig. 12 Waveforms for program enable function; microcontroller mode.
Table 2 Truth table for program enable function; microcontroller mode

PE1	PE2	load
0	0	NO
1	0	YES
0	1	YES
1	1	NO

## Program control (continued)

## Memory mode (PROM)

If pin 25 ( $\overline{M E M E N}$ ) is HIGH at general reset, TDD1742T is set to the memory mode and a programming cycle is initiated. Subsequent reprogramming is performed by applying a pulse to program enable PE1 (pin 23) or PE2 (pin 22). If PE1 is LOW, programming will occur on the LOW-to-HIGH transition of PE2. If PE1 is HIGH, programming will occur on the HIGH-to-LOW transition of PE2. PE1 and PE2 are interchangeable. Reprogramming will also occur by applying a pulse to RESET (pin 11).
At the start of a programming sequence pin 25 goes LOW and may be used to apply power to the memory via an external driver. After a settling time the address bus outputs 000 followed by the remaining seven addresses. During the second half of each address period data, from the memory is latched into the TDD1742T so that the access time of the PROM is not critical.

## Note

The program clock is derived from the reference divider chain and its frequency equals ${ }^{f} \mathrm{OSC} / 4 \mathrm{R}_{0}$. After the full 32 bits have been read the address returns to address 000 before going 3 -state. This step transfers data from the internal data latches to the appropriate divider latches. Pin 25 now returns to a high impedance state and power is removed from the memory. Fig. 13 shows the timing for a reset initiated programming sequence; the timing is similar for program enable initiated sequence.

(1) Delay time for PROM settling.
(2) The program clock is derived from the reference divider chain.
(3) Data is valid during the shaded period.

Fig. 13 Timing diagram for TDD1742T PROM control.

## Data memory maps

Table 3 Bit programming of the eight 4-bit words

address			data			
AB2	AB1	AB0	DB3	DB2	DB1	DB0
0	0	0		see		
0	0	1	$\mathrm{n}_{0}{ }^{3}$	$\mathrm{n}_{0} 2$	$\mathrm{n}_{0} 1$	$\mathrm{n}_{0} 0$
0	1	0	$\mathrm{R}_{0} 0$	$\mathrm{n}_{0} 6$	$\mathrm{n}_{0} 5$	$\mathrm{n}_{0} 4$
0	1	1	n 13	$\mathrm{n}_{1} 2$	$\mathrm{n}_{1} 1$	$\mathrm{n}_{1} 0$
1	0	0	$\mathrm{R}_{0} 1$	n16	n, 5	$\mathrm{n}_{1} 4$
1	0	1	$\mathrm{n}_{2} 3$	$\mathrm{n}_{2}$	$\mathrm{n}_{2} 1$	$\mathrm{n}_{2} 0$
1	1	0	M	$\mathrm{n}_{2} 6$	$\mathrm{n}_{2} 5$	$\mathrm{n}_{2}{ }^{4}$
1	1	1	$\mathrm{R}_{2} 1$	$\mathrm{R}_{2} \mathrm{O}$	$\mathrm{R}_{1} 1$	$\mathrm{R}_{1} 0$

In Table 3
$n_{0}, n_{1}$ and $n_{2}$ comprises the main programmable divider.
$\mathrm{n}_{0} 0$ is the LSB of $\mathrm{n}_{0}, \mathrm{n}_{0} 6$ the MSB and so forth.
If $M$ is 1 the modular is $O N$.
Table 4 Memory map for address 000

DB3	DB2	DB1	DB0	program clock   to output CLK	mode			
0	0	X	X	yes	idle			
0	1	0	0	no	idle			
all other combinations							not defined	not defined

## Where

X = don't care.
For optimum performance (minimum crosstalk) 0100 should be programmed into address 000.

## Memory maps (continued)

Table 5 Reference divider control; part 1

$R_{0} 1$	$R_{0} 0$	division ratio
0	0	12
0	1	13
1	0	14
1	1	15

## In Table 5:

$\mathrm{R}_{0} 0$ and $\mathrm{R}_{0} 1$ control the $\div 12 / 13 / 14 / 15$ portion of the reference divider.
Table 6 Reference divider control; part 2

$\mathrm{R}_{1} 1$	$\mathrm{R}_{1} 0$	division ratio
0	0	9
0	1	5
1	0	6
1	1	7

## In Table 6:

$R_{1} 0$ and $R_{1} 1$ control the $\div 5 / 6 / 7 / 9$ portion of the reference divider.
Table 7 Reference divider control; part 3

$R_{2} 1$	$R_{2} 0$	division ratio
0	0	1
0	1	2
1	0	4
1	1	8

In Table 7:
$\mathrm{R}_{2} 0$ and $\mathrm{R}_{2} 1$ control the $\div 1 / 2 / 4 / 8$ portion of the reference divider.

## Current biassing

Current biassing is provided by 3 external bias resistors $A, B$ and $C$.
Bias Resistor $A$ : is connected between pin 28 (BRA) and ground. The value of the resistor must be such that $I_{B R A}=20 \mu \mathrm{~A}$, which acts as gain control for analogue phase comparator 1.
Bias Resistor $B$ : is connected between pin 26 (BRB) and ground. The value of the resistor must be such that $I_{B R B}=3$ to $25 \mu \mathrm{~A}$, which acts as gain control for the phase modulator.
Bias Resistor $C$ : is connected between pin 27 (BRC) and ground. The value of the resistor must be such that $I_{B R C}=5$ to $30 \mu \mathrm{~A}$, which provides biassing for the remainder of the analogue circuitry.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)


## D.C. CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD}}=7,4 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified; for definitions see note 1 .

parameter	symbol	min.	typ.	max.	unit
Supply					
Supply voltage					
pin 8	VDD2	4,5	-	5	V
pin 1	$\mathrm{V}_{\text {DD3 }}$	7	-	10	V
Supply current					
pin 14 (phase modulator OFF)	IDD1	-	-	1,5	mA
pin 8	IDD2	-	-	100	$\mu \mathrm{A}$
pin 1 (phase modulator OFF)	IDD3	-	-	1,5	mA
Input leakage current (notes 2 and 3) logic inputs, MOD	$\pm{ }^{1} \mathrm{LI}$	-	-	300	nA
Output leakage current (notes 2 and 3) at $1 / 2 V_{D D}$					
PC2 high impedance OFF state	$\pm$ ILO	-	-	50	nA
MEMEN high impedance state	$\pm$ LO	-	-	1,6	$\mu \mathrm{A}$
I/O current $A B 0$ to $A B 2$ high impedance state	I/O	5	-	30	$\mu \mathrm{A}$
Logic input voltage LOW					
CMOS inputs; CMOS I/Os	$V_{\text {IL }}$	-	-	$0,3 V_{\text {DD1 }}$	V
TTL inputs; TTL I/Os	$V_{\text {IL }}$	-	-	0,8	V
Logic input voltage HIGH CMOS inputs; CMOS I/Os	$\mathrm{V}_{\text {IH }}$	0,7V $\mathrm{VDP}^{\text {d }}$	-	-	V
TTL inputs; TTL I/Os	$\mathrm{V}_{\text {IH }}$		-	-	V
Logic output voltage LOW (note 2) at $\mid \mathrm{IO}_{\mathrm{O}}<1 \mu \mathrm{~A}$	$\mathrm{V}_{\text {OL }}$	-	-	50	mV
Logic output voltage HIGH (note 2) at $\left\|\mathrm{O}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH}}$	$V_{D D 1}-50$	-	-	mV


parameter	symbol	min.	typ.	max.	unit	
Logic output voltage LOW (note 2)						
MEMEN at $\mathrm{IOL}^{2}=4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}}$	-	-	1	V	
PC2 at $\mathrm{IOL}=1,5 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0,5	V	
CLK; OL at $\mathrm{IOL}=1 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0,5	V	
XTAL at $\mathrm{IOL}^{\prime}=3 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0,5	$v$	
FB at $\mathrm{IOL}=1 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0,5	V	
$A B 0 ; ~ A B 1 ; ~ A B 2 ~ a t ~ I_{O L}=0,2 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0,4	$v$	
Logic output voltage HIGH (notes 2 and 3)						
$\mathrm{PC2} 2$ at $-\mathrm{IOH}=1,5 \mathrm{~mA}$	V OH	$\mathrm{V}_{\mathrm{DD1}}$-0,5	-	-	V	
CLK; OL at - $\mathrm{OH}^{\text {a }}=1 \mathrm{~mA}$	$\mathrm{V}^{\text {OH }}$	VDD1-0,5	-	-	V	
XTAL at $-\mathrm{IOH}^{\prime}=3 \mathrm{~mA}$	$\mathrm{V}^{\mathrm{OH}}$	$V_{\text {DD1 }}{ }^{-1}$	-	-	V	
FB at $-1 \mathrm{OH}=1 \mathrm{~mA}$	$\mathrm{V}^{\mathrm{OH}}$	VDD2-1	-	-	V	
$A B O ; A B 1$ at $\mathrm{IOH}^{\prime}=0,2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OH}}$	2,4	-	-	V	
$\mathrm{AB2}$ at $\mathrm{IOH}=0,8 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OH}}$	2,4	-	-	$v$	
Output PC1 sink current (notes 2, 3 and Fig. 15)	10	1	-	-		
source current (notes 2, 3 and Fig. 16)	$-10$	1	-	-	mA	
Internal resistance of phase comparator 1 (notes 2 and 3) locked state \|output swing	$<\mathbf{2 0 0} \mathbf{~ m V}$ specified output range: $0,5 V_{D D}-0,5 \vee \text { to } 0,5 V_{D D}+0,5 \mathrm{~V}$	$\mathrm{R}_{\mathrm{i}}$	-	2,0	-	$\Omega$

## A.C. CHARACTERISTICS

A dynamic specification is given for the circuit, built-up with external components as shown in Fig. 14, under the following conditions; for definitions see note $1 ; V_{D D}=7,4 \pm 0,4 \mathrm{~V} ; T_{a m b}=25^{\circ} \mathrm{C}$; input transition times $\leqslant 40 \mathrm{~ns} ; \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{B}}=\mathrm{C}_{\mathrm{C}}=10 \mathrm{nF} ; \mathrm{R}_{\mathrm{A}}$ chosen so that $I_{\mathrm{RA}}=20 \mu \mathrm{~A} \pm 1 \mu \mathrm{~A} ; \mathrm{R}_{\mathrm{B}}$ chosen so that $I_{R B}=3$ to $25 \mu A$; $R_{C}$ chosen so that $I_{R C}=5$ to $30 \mu A$; unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Main programmable divider (DIV(M); pin 7) input frequency all divider ratios (square wave input)	${ }^{\text {f }}$ DIV(M)	8,5	-	-	MHz
Reference divider input frequency all divider ratios (square wave input)	${ }^{\text {f }} \mathrm{DIV}(\mathrm{R})$	9	-	-	MHz
Oscillator frequency (OSC; pin 13)	${ }^{\text {foSC }}$	9	12	-	MHz
Input capacitance				3	
DIV(M); OSC DB0 to DB3; PE1; PE2; AB0 to AB2	$C_{1}$ $C_{1}$	-	-	5	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Propagation delay (see Fig. 17)					
Feedback output to external prescaler $\operatorname{DIV}(\mathrm{M}) \rightarrow \mathrm{FB}$ at $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$   HIGH to LOW*   LOW to HIGH*	${ }^{\text {tPHL }}$   tPLH	-	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Average power supply current (notes 3 and 4) in-lock state	$\begin{aligned} & \text { IDD1 } \\ & \text { IDD2 } \\ & \text { IDD3 } \end{aligned}$	-	$\begin{aligned} & 2 \\ & 0,15 \\ & 0,45 \end{aligned}$	-	mA   mA   mA



Fig. 14 Test circuit for measuring a.c. characteristics.

## Notes to the characteristics

1. Definitions:
${ }^{R_{A}}=$ external biassing resistor between pins BRA and $V_{S S}$.
$R_{B}=$ external biassing resistor between pins BRB and $V_{S S}$.
$\mathrm{R}_{\mathrm{C}}=$ external biassing resistor between pins BRC and $\mathrm{V}_{\mathrm{SS}}$.
$\mathrm{C}_{\mathrm{A}}=$ decoupling capacitor between pins $B R A$ and $V_{D D}$.
$C_{B}=$ decoupling capacitor between pins BRB and $V_{D D}$.
$\mathrm{C}_{\mathrm{C}}=$ decoupling capacitor between pins $B R C$ and $\mathrm{V}_{\mathrm{DD}}$.
CMOS logic inputs: RESET, OSC.
CMOS logic outputs: PC2, CLK, OL, XTAL.
CMOS logic I/O: MEMEN.
TTL logic inputs: DB0 to DB3, PE2, PE1.
TTL logic output: FB .
TTL logic I/O: ABO to AB2.
Analogue inputs: DIV(M), MOD.
Analogue output: PC1.
Analogue biassing pins: BRA, BRB, BRC.
2. All logic inputs at $V_{S S}$ or $V_{D D}$.
3. $\mathrm{R}_{\mathrm{A}}$ connected; its value chosen such that $I_{\mathrm{BRA}}=20 \mu \mathrm{~A}$.
$\mathrm{R}_{\mathrm{B}}$ connected; its value chosen such that $\mathrm{I}_{\mathrm{BRB}}=20 \mu \mathrm{~A}$.
$\mathrm{R}_{\mathrm{C}}$ connected; its value chosen such that $\mathrm{I}_{\mathrm{BRC}}=20 \mu \mathrm{~A}$.
4. Average power supply current measured at:
fosc $=5 \mathrm{MHz}$, external clock, divider ratio 420;
$f_{D I V}(M)=2 M H z$, divider ratio 168.


Fig. 15 Equivalent circuit for output PC1 sink current.
input forced HIGH by 2 preceding $\mathrm{V}_{\text {MUX }}$-pulses


281449


Fig. 16 Equivalent circuit for output PC1 source current.


Fig. 17 Waveforms showing propagation delay; $\mathrm{DIV}(\mathrm{M}) \rightarrow \mathrm{FB}$.

## APPLICATION INFORMATION

Fig. 18 shows a typical application circuit using the TDD1742T in the memory mode with the following design parameters:

Frequency range	150 to 155 MHz
VcO sensitivity	$1 \mathrm{MHz} / \mathrm{V}$
Reference frequency	$12,5 \mathrm{kHz}$
Prescaler	$\div 80 / 81$
Reference crystal frequency	$5,25 \mathrm{MHz}$
Reference divider chain	$\div 15 ; \div 7 ; 1$
Total division ratio	12000 to 12400
Loop bandwidth	300 Hz



Fig． 18 Typical application circuit using the TDD1742T in memory mode．

## GENERAL DESCRIPTION

The TSA6057/6057T is a bipolar single chip frequency synthesizer manufactured in SUBILO-N technology (components laterally separated by oxide). It performs all the tuning functions of a PLL radio tuning system. The IC is designed for application in all types of radio receivers.

## Features

- On-chip AM and FM prescalers with high input sensitivity
- On-chip high performance one input (two output) tuning voltage amplifier for the AM and FM loop filters
- On-chip 2-level current amplifier (charge pump) to adjust the loop gain
- Only one reference oscillator ( 4 MHz ) for both AM and FM
- High speed tuning due to a powerful digital memory phase detector
- 40 kHz output reference frequency for co-operation with the FM/IF system and microcomputerbased tuning interface IC (TEA6100)
- Oscillator frequency ranges of: 512 kHz to 30 MHz and 30 MHz to 150 MHz
- Three selectable reference frequencies of $1 \mathrm{kHz}, 10 \mathrm{kHz}$ or 25 kHz for both tuning ranges
- Serial 2 -wire $1^{2} \mathrm{C}$-bus interface to a microcomputer and one programmable address input
- Software controlled bandswitch output


## QUICK REFERENCE DATA

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage pin 3 pin 16		$\begin{aligned} & v_{C C 1}=v_{3-4} \\ & V_{C C 2}=v_{16-4} \end{aligned}$	$\begin{array}{\|l} 4.5 \\ V_{\mathrm{CCl}} \end{array}$	$\begin{aligned} & 5.0 \\ & 8.5 \end{aligned}$	$\begin{array}{\|l\|l} 5.5 \\ 12 \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}\right.$
Supply current pin 3 pin 16	no outputs loaded	13 $1 / 6$	$\begin{gathered} 12 \\ 0.7 \end{gathered}$	$\begin{aligned} & 20 \\ & 1.0 \end{aligned}$	28 1.3	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Max. input frequency on $A M_{1}$		$\mathrm{fi}_{\text {AM }}$	30	-	-	MHz
Min. input frequency on $A M_{1}$		$\mathrm{f}_{\mathrm{i}} \mathrm{AM}$	-	-	0.512	MHz
Max. input frequency on $F M_{1}$		$\mathrm{fiFM}^{\text {F }}$	150	-	-	MHz
Min. input frequency on $\mathrm{FM}_{1}$		$\mathrm{fiFM}^{\text {F }}$	-	-	30	MHz
Input voltage on $A M_{1}$ (RMS value)	$\mathrm{V}_{\mathrm{iFM}}=0 \mathrm{~V}$		30	-	500	mV
Input voltage on $\mathrm{FM}_{1}$ (RMS value)	$\mathrm{V}_{\text {iAM }}=0 \mathrm{~V}$	$V_{\text {iFM }}$ (rms)	20	-	300	mV
Total power dissipation		$P_{\text {tot }}$	-	0.14	-	W
Operating ambient temperature range		$T_{\text {amb }}$	-30	-	+ 85	${ }^{\circ} \mathrm{C}$

## PACKAGE OUTLINES

TSA6057: 16-lead DIL; plastic (SOT38).
TSA6057T: 16-lead minipack; plastic (SO16L; SOT162A).

Fig. 1 Block diagram.


Fig. 2 Pinning diagram.

## PINNING

1	XTAL1	reference oscillator output
2	XTAL2	reference oscillator input
3	$V_{\text {CC1 }}$	positive supply voltage
4	VEE	ground
5	FMI	FM VCO input
6	DEC	prescaler decoupling
7	$A M_{1}$	AM VCO input
8	BS	bandswitch output
9	${ }^{\text {ref }}$	40 kHz reference output
10	SDA	serial data input
11	SCL	serial clock input $1^{2} \mathrm{G}$-bus
12	AS	address select input
13	$\mathrm{FMO}_{0}$	FM output for external loop filter
14	LOOP ${ }_{1}$	tuning voltage amplifier input
15	$\mathrm{AMO}_{0}$	AM output for external loop filter
16	$\mathrm{V}_{\text {CC2 }}$	positive supply voltage

## FUNCTIONAL DESCRIPTION

The TSA6057/6057T contains the following parts and facilities:

- Separate input amplifiers for the AM and FM VCO-signals.
- A prescaler with the divisors 3:4 on AM and 15:16 on FM, a multiplexer to select AM or FM and a 4 -bit programmable swallow counter.
- A 13-bit programmable counter.
- A digital memory phase detector.
- A reference frequency channel comprised of a 4 MHz crystal oscillator followed by a reference counter. The reference frequency can be $1 \mathrm{kHz}, 10 \mathrm{kHz}$ or 25 kHz and is applied to the digital memory phase detector. The reference counter also outputs a 40 kHz reference frequency to pin 9 for co-operation with the FM/IF system and microcomputer-based tuning interface IC (TEA6100).
- A programmable current amplifier (charge pump) which consists of a $5 \mu \mathrm{~A}$ and a $450 \mu \mathrm{~A}$ current source. This allows adjustment of loop gain, thus providing high current-high speed tuning and low current-stable tuning.
- A one input - two output tuning voltage amplifier. One output is connected to the external AM loop filter and the other output to the external FM loop filter. Under software control, the AM output is switched to a high impedance state by the FM/AM switch in the FM position and the FM output is switched to a high impedance state by the AM/FM switch in the AM position. The outputs can deliver a tuning voltage of up to 10.5 V .
- An $1^{2}$ C-bus interface with data latches and control logic. The $I^{2} \mathrm{C}$-bus is intended for communication between microcontrollers and different ICs or modules. Detailed information on the $I^{2} \mathrm{C}$-bus specification is available on request.
- A software-controlled bandswitch output.


## FUNCTIONAL DESCRIPTION (continued)

## Controls

The TSA6057/6057T is controlled via the 2 -wire ${ }^{2}$ C-bus. For programming there is one module address, a logic 0 R/W bit, a subaddress byte and four data bytes. The subaddress determines which one of the four data bytes is transmitted first. The module address contains a programmable address bit (D1) which with address select input AS (pin 12) makes it possible to operate two TSA6057s in one system.
The auto increment facility of the $1^{2} \mathrm{C}$-bus allows programming of the TSA6057/6057T within one transmission (address + subaddress +4 data bytes).

- The TSA6057/6057T can also be partially programmed. Transmission must then be ended by a stop condition.
The bit organization of the 4 data bytes is shown in Fig. 3 and are described in sections (a) to (f).
(a) The bits SO to S 16 (DB0: D7-D1; DB1: D7-D0; DB2: D1-D0) together with bit FM/AM (DB2: D5) are used to set the divisor of the input frequency at inputs $A M_{1}$ (pin 7 ) or $F M_{1}$ (pin 5 ). If the system is in lock the following is valid:

FM/AM	input frequency $\left(f_{i}\right)$	input
0	$\left(S 0 \times 2^{0}+S 1 \times 2^{\prime} \ldots \ldots+S 13 \times 2^{13}+S 14 \times 2^{14}\right) \times f_{\text {ref }}$	$A M_{1}$
1	$\left(S O \times 2^{0}+S 1 \times 2^{1} \ldots \ldots+S 15 \times 2^{15}+S 16 \times 2^{16}\right) \times f_{\text {ref }}$	$F M_{1}$

## Where

The minimum dividing ratio for $A M$ mode is $2^{6}=64$
The minimum dividing ratio for FM mode is $2^{8}=\mathbf{2 5 6}$
(b) The bit CP is used to control the charge pump current (DBO: DO).

$C P$	current
0	low
1	high

(c) The bits REF1 and REF2 are used to set the reference frequency applied to the phase detector (DB2: D7-D6).

REF1	REF2	frequency $(\mathrm{kHz})$
0	0	1
0	1	10
1	0	25
1	1	none

(d) The bit $\overline{F M} / A M$ OPAMP controls the switch AM/FM; FM/AM in the tuning voltage amplifier output circuitry (DB2: D4).

FM/AM OPAMP	switch FM/AM	switch AM/FM
1	closed	open
0	open	closed

(e) The bit BS controls the open collector bandswitch output (DB2: D2).

BS	bandswitch output
1	sink current
0	floating

(f) The data byte DB3 must be set to $0 \ldots \ldots$. . It is also used for test purposes.


Examples using outo-incroment facility

S	ADDRESS	A	SUBADDRESS 02	A	DB2	A	D83	A					
s	ADDRESS	A	SUBADDRESS 00	A	D80	A	D81	A					
S	ADDRESS	A	SUBADDRESS 03	A	DB3	A	D80	A	D81	A	D82		$P$

Fig. 3 Bit organization.

## RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

parameter	symbol	min.	max.	unit
Supply voltage (pin 3)	$V_{C C 1}=V_{3-4}$	-0.3	5.5	$V$
Supply voltage (pin 16)	$V_{C C 2}=V_{16-4}$	$V_{C C 1}$	12.5	$V$
Total power dissipation	$P_{\text {tot }}$	-	0.85	W
Operating ambient temperature	$T_{\text {amb }}$	-30	+85	$o^{\circ}$
Storage temperature range	$T_{\text {stg }}$	-65	+150	$O_{C}$

## CHARACTERISTICS

$V_{C C 1}=5 V_{i} V_{C C 2}=8.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified

parameter	conditions	symbol	min.	typ.	max.	unit
Supply voltage (pin 3)		$\mathrm{V}_{\mathrm{CC}} 1$	4.5	5.0	5.5	V
Supply voltage (pin 16)		VCC2	$V_{\text {cci }}$	8.5	12	V
Supply current pin 3	no outputs loaded	${ }^{\text {ICC1 }}$	12	20	28	mA
pin 16		'CC2	0.7	1.0	1.3	mA
$1^{2} \mathrm{C}$-bus inputs (SDA; SCL)						
Input voltage HIGH		$V_{\text {IH }}$	3.0	-	5.0	$v$
Input voltage LOW		$V_{I L}$	-0.3	-	1.5	$v$
Input current HIGH		IIH	-	-	10	$\mu \mathrm{A}$
Input current LOW		IIL	-	-	10	$\mu \mathrm{A}$
SDA output	open collector					
Output voltage LOW	$\mathrm{I}^{\prime} \mathrm{L}=3.0 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	-	0.4	$v$
AS input						
Input voltage HIGH		$V_{\text {IH }}$	3.0	-	5.0	$v$
Input voltage LOW		$V_{\text {IL }}$	-0.3	-	1.0	V
Input current HIGH		I/H	-	-	10	$\mu \mathrm{A}$
Input current LOW		I/L	-	-	10	$\mu \mathrm{A}$
RF input (AM; FM)						
Max. input frequency on $A M_{1}$		$\mathrm{f}_{\mathrm{i}} \mathrm{AM}$	30	-	-	MHz
Min. input frequency on $A M_{1}$		$\mathrm{f}_{\text {IAM }}$	-	-	0.512	MHz
Max. input frequency on $F M_{1}$		$\mathrm{f}_{\text {iFM }}$	150	-	-	MHz
Min. input frequency on $F M_{1}$		$\mathrm{fiFM}^{\text {F }}$	-	-	30	MHz
Input voltage on $A M_{1}$ (RMS value)	$v_{\mathrm{iFM}}=0 v$   measured in Fig. 4	$V_{\text {iAM }}(\mathrm{rms})$	30	-	500	mV
Input impedance $A M_{1}$ resistance capacitance		$\begin{aligned} & R_{A M} \\ & \mathbf{C}_{\text {AM }} \end{aligned}$	-	$\begin{aligned} & 5.9 \\ & 2 \end{aligned}$	-	$\begin{aligned} & k \Omega \\ & p F \end{aligned}$

## Radio tuning PLL frequency synthesizer

parameter	conditions	symbol	min.	typ.	max.	unit
RF input (continued)						
Input voltage on FMI (RMS value)	$v_{i A M}=0 V$ measured in Fig. 4	$\mathrm{V}_{\text {iF }}$ ( rms )	20	-	300	mV
Input impedance FMI resistance capacitance		$\begin{aligned} & R_{F M} \\ & C_{F M} \end{aligned}$	-	3.6	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Oscillator (XTAL1; XTAL2)						
Crystal resonance resistance ( 4 MHz )	see Fig. 5	RXTAL	-	-	150	$\Omega$
Programmable charge pump						
$\begin{aligned} & \text { Output current to loop filter } \\ & \text { bit } C P=\text { logic } 0 \\ & \text { bit } C P=\text { logic } 1 \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { Ichp } \\ & I_{\text {chp }} \end{aligned}\right.$	$\begin{aligned} & 3 \\ & 400 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{5} \\ & 500 \end{aligned}\right.$	7600	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Ripple rejection	$f_{\text {ripple }}=100 \mathrm{~Hz}$					
$20 \log \Delta V_{C C} / \Delta V_{0}$   $20 \log \Delta V_{C C 2} / \Delta V_{O}$			$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	-	dB $d B$
Bandswitch output (pin 8)						
Output voltage HIGH		VOH	-	-	12	$v$
Output voltage LOW	$1 \mathrm{OL}=3 \mathrm{~mA}$	$\mathrm{VOL}^{\text {OL }}$	-	-	0.8	$v$
Output leakage current	$\mathrm{V}_{\mathrm{OH}}=12 \mathrm{~V}$	'Lo	-	-	10	$\mu \mathrm{A}$
Reference frequency output (pin 9)						
Output frequency	4 MHz crystal	${ }^{\text {ref }}$	-	40	-	kHz
Output voltage HIGH	$\mathrm{I}_{\text {source }}=5 \mu \mathrm{~A}$	VOH	1.2	1.4	1.7	V
Output voltage LOW		VOL	-	0.1	0.2	$v$
Tuning voltage amplifier outputs						
AM output (pin 15) max. output voltage	$I_{\text {source }}=0.5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{O}}$ (max)	$\mathrm{V}_{\mathrm{CC} 2}$	-	-	$v$
min. output voltage	$\mathrm{I}_{\text {sink }}=1 \mathrm{~mA}$	$V_{0}($ min $)$		-	0.8	$V$
max. output source current		Isource	0.5	-		mA
max. output sink current		'sink	1.0	-	-	mA
FM output (pin 13) max. output voltage	$I_{\text {source }}=0.5 \mathrm{~mA}$	$V_{0(\text { max })}$	$V_{\text {cce }}$	-	-	$v$
min. output voltage	$\mathrm{I}_{\text {sink }}=1 \mathrm{~mA}$	$V_{O}($ min $)$	-1.5	-	0.8	$V$
max. output source current		Isource	0.5	-	0.8	mA
max. output sink current		'sink	1.0	-	-	mA
Impedance of switched off output		$z_{0(0 f f)}$	5	-	-	$\mathrm{M} \Omega$
Input bias current (absolute value)		Ibias	-	1	5	nA

## SENSITIVITY MEASUREMENT



Fig. 4 Prescaler input sensitivity.

APPLICATION INFORMATION


Fig. 5 Crystal connection ( 4 MHz ).


Fig. 6 Application diagram

## FEATURES

- Complete 1.3 GHz single chip system
- Low power $5 \mathrm{~V}, 35 \mathrm{~mA}$
- $1^{2} \mathrm{C}$-bus programming
- In-lock flag
- Varicap drive disable
- Low radiation
- Address selection for Picture-In-Picture (PIP), DBS tuner
- Analog-to-digital converter
- 8 bus controlled ports (5 for TSA5511T), 4 open collector outputs (bi-directional)
- Power-down flag


## APPLICATIONS

- TV tuners
- VCR Tuners


## DESCRIPTION

The TSA5511 is a single chip PLL frequency synthesizer designed for TV tuning systems. Control data is entered via the $I^{2} \mathrm{C}$-bus; five serial bytes are required to address the device, select the oscillator frequency, programme the eight output ports and set the charge-pump current. Four of these ports can also be used as input ports (three general purpose I/O ports, one ADC). Digital information concerning those ports can be read out of the TSA5511 on the SDA line (one status byte) during a READ operation. A flag is set when the loop is "in-lock" and is read during a READ operation. The device has one fixed $I^{2} \mathrm{C}$-bus address and 3 programmable addresses, programmed by applying a specific voltage on Port 3. The phase comparator operates at 7.8125 kHz when a 4 MHz crystal is used.


QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\mathrm{cc}}$	supply voltage	-	5	-	V
$\mathrm{I}_{\mathrm{CC}}$	supply current	-	35	-	mA
$\Delta \mathrm{f}$	frequency range	64	-	1300	MHz
$V_{1}$	input voltage level   80 MHz to 150 MHz   150 MHz to 1 GHz   1 GHz to 1.3 GHz	$\begin{aligned} & 12 \\ & 9 \\ & 40 \end{aligned}$	1-	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	mV   mV   mV
$f_{\text {XTAL }}$	crystal oscillator	3.2	4	4.48	MHz
$\mathrm{I}_{0}$	open-collector output current	10	-	-	mA
$I_{0}$	current-limited output current	-	1	-	mA
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-10	-	80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature range (IC)	-40	-	150	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

EXTENDED   TYPE	PACKAGE			

### 1.3 GHz bi-directional $\mathrm{I}^{2} \mathrm{C}$ bus controlled synthesizer



PINNING

SYMBOL	PIN   DIL 18	PIN   SO16	PIN   SO20	DESCRIPTION
PD	1	1	1	charge-pump output
Q1	2	2	2	crystal oscillator input 1
Q2	3	3	3	crystal oscillator input 2
n.c.			4	not connected
SDA	4	4	5	serial data input/output
SCL	5	5	6	serial clock input
P7	6	6	7	port output/input (general purpose)
n.c.			8	not connected
P6	7	7	9	port output/input for general purpose ADC
P5	8	8	10	port output/input (general purpose)
P4	9	9	11	port output/input (general purpose)
P3	10	10	12	port output/input for address selection
P2	11		13	port output
n.c.		11		not connected
P1	12		14	port output
P0	13		15	port output
V $_{\text {CC }}$	14	12	16	voltage supply
RF IN1	15	13	17	UHF/VHF signal input 1
RF IN2	16	14	18	UHF/VHF signal input 2 (decoupled)
V $_{\text {EE }}$	17	15	19	GND
UD	18	16	20	drive output

## FUNCTIONAL DESCRIPTION

The TSA5511 is controlled via the two-wire $\mathrm{I}^{2} \mathrm{C}$-bus. For programming, there is one module address ( 7 bits) and the R/ $\bar{W}$ bit for selecting READ or WRITE mode.

WRITE mode : $\mathbf{R} / \bar{W}=0$ (see Table 1)

After the address transmission (first byte), data bytes can be sent to the device. Four data bytes are needed to fully program the TSA5511. The bus transceiver has an
auto-increment facility which permits the programming of the TSA5511 within one single transmission (address + 4 data bytes).

The TSA5511 can also be partially programmed on the condition that the first data byte following the address is byte 2 or byte 4 . The meaning of the bits in the data bytes is given in Table 1. The first bit of the first data byte transmitted indicates whether frequency data (first bit $=0$ ) or charge pump and port information (first bit $=1$ ) will follow. Until an $1^{2} \mathrm{C}$-bus STOP condition is sent by
the controller, additional data bytes can be entered without the need to re-address the device. This allows a smooth frequency sweep for fine tuning or AFC purpose. At power-on the ports are set to the high impedance state.

The 7.8125 kHz reference frequency is obtained by dividing the output of the 4 MHz crystal oscillator by 512 . Because the input of UHF/VHF signal is first divided by 8 the step size is 62.5 kHz . A 3.2 MHz crystal can offer step sizes of 50 kHz .

Table 1 Write data format

	MSB							LSB		
Address	1	1	0	0	0	MA1	MAO	0	A	byte 1
Programmable divider	0	N14	N13	N12	N11	N10	N9	N8	A	byte 2
Programmable divider	N7	N6	N5	N4	N3	N2	N1	NO	A	byte 3
Charge-pump and test bits	1	CP	T1	T0	1	1	1	OS	A	byte 4
Output ports control bits	P7	P6	P5	P4	P3	P2*	P1*	P0*	A	byte 5

## note

* not valid for TSA5511T.


## MA1, MAO programmable address bits (see Table 4)

A acknowledge bit
$\mathrm{N}=\mathrm{N} 14 \times 2^{14}+\mathrm{N} 13 \times 2^{13}+\ldots+\mathrm{N} 1 \times 2^{1}+\mathrm{N} 0$
$C P \quad$ charge-pump current
$C P=0 \quad 50 \mu \mathrm{~A}$
$C P=1 \quad 220 \mu \mathrm{~A}$
$P 3$ to $P 0=1 \quad$ limited-current output is active
$P 7$ to $P 4=1$ open-collector output is active
$P 7$ to $P 0=0 \quad$ output are in high impedance state
T1 $=1 \mathrm{P} 6=\mathrm{f}_{\text {ref }}, \mathrm{P} 7=\mathrm{f}_{\text {DIV }}$
TO = $1 \quad$ 3-state charge-pump
$O S=1 \quad$ operational amplifier output is switched off (varicap drive disable)

## FUNCTIONAL DESCRIPTION

 (continued)READ mode : $R / \bar{W}=1$ (see Table 2)

Data can be read out of the TSA5511 by setting the R $\bar{W}$ bit to 1. After the slave address has been recognized, the TSA5511 generates an acknowledge pulse and the first data byte (status word) is transferred on the SDA line (MSB first). Data is valid on the SDA line during a high position of the SCL clock signal.
A second data byte can be read out of the TSA5511 if the processor generates an acknowledge on the

SDA line. End of transmission will occur if no acknowledge from the processor occurs.
The TSA5511 will then release the data line to allow the processor to generate a STOP condition. When ports P3 to P7 are used as inputs, they must be programmed in their high-impedance state. The POR flag (power-on-reset) is set to 1 when $V_{c c}$ goes below 3 V and at power-on. It is reset when an end of data is detected by the TSA5511 (end of a READ sequence).
Control of the loop is made possible with the in-lock flag FL which indicates $(F L=1)$ when the loop is
phase-locked. The bits I2, I1 and 10 represent the status of the l/O ports P7, P5 and P4 respectively. A logic 0 indicates a LOW level and a logic 1 a HIGH level (TTL levels).
A built-in 5 -level ADC is available on I/O port P6. This converter can be used to feed AFC information to the controller from the IF section of the television as illustrated in the typical application circuit in Fig. 5. The relationship between bits A2, A1 and A0 and the input voltage on port P6 is given in Table 3.

Table 2 Read data format

	MSB									LSB							
Address	1	1	0	0	0	MA1	MA0	1	A	byte 1							
Status byte	POR	FL	12	11	10	A2	A1	A0	-	byte 2							

$\left.\begin{array}{ll}\text { POR } & \begin{array}{l}\text { power-on-reset } \\ \text { flag. (POR = } 1 \text { on } \\ \text { power-on) } \\ \text { in-lock flag (FL }= \\ 1 \text { when the loop is } \\ \text { phase-locked) }\end{array} \\ \text { FL } & \begin{array}{l}\text { digital information } \\ \text { for I/O ports P7, } \\ \text { P5 and P4 }\end{array} \\ \text { respectively }\end{array}\right\}$

MSB is transmitted first.

## Address selection

The module address contains programmable address bits (MA1 and MAO) which together with the I/O port P3 offers the possibility of having several synthesizers (up to 3 ) in one system. The relationship between MA1 and MAO and the input voltage I/O port P3 is given in Table 4.

Table 3 A/D converter levels

Voltage applied on the port P6	A2	A1	A0
$0.6 \mathrm{~V}_{\mathrm{CC}}$ to 13.5 V	1	0	0
$0.45 \mathrm{~V}_{\mathrm{CC}}$ to $0.6 \mathrm{~V}_{\mathrm{CC}}$	0	1	1
$0.3 \mathrm{~V}_{\mathrm{CC}}$ to $0.45 \mathrm{~V}_{\mathrm{CC}}$	0	1	0
$0.15 \mathrm{~V}_{\mathrm{CC}}$ to $0.3 \mathrm{~V}_{\mathrm{CC}}$	0	0	1
0 to 0.15 V	0	0	0

Table 4 Address selection

MA1	MA0	Voltage applied on port P3
0	0	0 to $0.1 \mathrm{~V}_{\mathrm{CC}}$
0	1	always valid
1	0	0.4 to $0.6 \mathrm{~V}_{\mathrm{CC}}$
1	1	$0.9 \mathrm{~V}_{\mathrm{CC}}$ to 13.5 V

LIMITING VALUES
In accordance with Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$\mathrm{V}_{\mathrm{CC}}$	supply voltage	-0.3	6	V
$\mathrm{~V}_{1}$	charge-pump output voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{2}$	crystal (Q1) input voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{4}$	serial data input/output	-0.3	6	V
$\mathrm{~V}_{5}$	serial clock input	-0.3	6	V
$\mathrm{~V}_{6-13}$	P7 to P1 I/O voltage	-0.3	+16	V
$\mathrm{~V}_{15}$	prescaler input	-0.3	$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{18}$	drive output voltage	-0.3	$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{I}_{6}$	P7 to P0 output current (open collector)	-1	15	mA
$\mathrm{I}_{4}$	SDA output current (open collector)	-1	5	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature range (IC)	-40	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{i}}$	maximum junction temperature		150	${ }^{\circ} \mathrm{C}$

## THERMAL RESISTANCE

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
$\mathrm{R}_{\mathrm{th} \mathrm{j} \cdot \mathrm{a}}$	from junction to ambient in free air (DIL18)	-	80	KW
	from junction to ambient in free air (SO16)	-	110	K/W
	from junction to ambient in free air (SO20)	-	80	K/W

## CHARACTERISTICS

$\mathrm{V}_{\mathrm{cC}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified
All pin numbers refer to DIL 18 version

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Functional range						
$V_{c c}$	supply voltage range		4.5	-	5.5	V
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range		-10	-	80	${ }^{\circ} \mathrm{C}$
$\mathrm{f}_{\text {CLK }}$	clock input frequency		64	-	1300	MHz
N	divider		256	-	32767	
ICC	supply current		25	35	50	mA
$\mathrm{f}_{\text {XTAL }}$	crystal oscillator		3.2	4	4.48	MHz
$\mathrm{Z}_{1}$	input impedance (pin 2)		-480	-400	-320	$\Omega$
	input level $\begin{aligned} & f=80 \text { to } 150 \mathrm{MHz} \\ & f=150 \text { to } 1000 \mathrm{MHz} \\ & f=1000 \text { to } 1300 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$ $T_{a m b}=-10 \text { to } 80^{\circ} \mathrm{C} \text {; }$   see typical sensitivity curve in Fig. 6	$\begin{aligned} & 12 /-25 \\ & 9 /-28 \\ & 40 /-15 \end{aligned}$	-	$\begin{aligned} & 300 / 2.6 \\ & 300 / 2.6 \\ & 300 / 2.6 \end{aligned}$	$\mathrm{mV} / \mathrm{dBm}$   $\mathrm{mV} / \mathrm{dBm}$   $\mathrm{mV} / \mathrm{dBm}$
R ${ }_{1}$	prescaler input resistance see SMITH chart in Fig. 7	-	-	50	-	$\Omega$
$\mathrm{C}_{1}$	input capacitance		-	2	-	pF
Output ports (current-limited) P0-P3						
$\mathrm{I}_{\text {Lo }}$	leakage current	$\mathrm{V}_{13}=13.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {sink }}$	output sink current	$\mathrm{V}_{13}=12 \mathrm{~V}$	0.7	1.0	1.5	mA

Output ports (open collector) P4-P7 (see note 1)

ILO	leakage current	$\mathrm{V}_{9}=13.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{OL}}$	output voltage LOW	$\mathrm{l}_{9}=10 \mathrm{~mA}$; note 2	-	-	0.7	V
Input P3						
IOH	input current HIGH	$\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
la	input current LOW	$\mathrm{V}_{\mathrm{OL}}=0 \mathrm{~V}$	-10	-	-	$\mu \mathrm{A}$

Input ports P4-5, P7

| $\mathrm{V}_{\mathrm{IL}}$ | input voltage LOW |  | - | - | 0.8 | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{\mathrm{IH}}$ | input voltage HIGH |  | 2.7 | - | - | V |
| $\mathrm{I}_{\mathrm{H}}$ | input current HIGH | $\mathrm{V}_{6}=13.5 \mathrm{~V}$ | - | - | 10 | $\mu \mathrm{~A}$ |
| $\mathrm{I}_{\mathrm{IL}}$ | input current LOW | $\mathrm{V}_{6}=0 \mathrm{~V}$ | -10 | - | - | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {Input port }} \mathrm{P6}$ |  | $\mathrm{~V}_{7}=13.5 \mathrm{~V}$ | - | - | 10 | $\mu \mathrm{~A}$ |
| $\mathrm{I}_{\mathrm{HH}}$ | input current HIGH | $\mathrm{V}_{7}=0 \mathrm{~V}$ | -10 | - | - | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{IL}}$ | input current LOW |  |  |  |  |  |


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
SCL and SDA inputs						
$\mathrm{V}_{\mathrm{IH}}$	input voltage HIGH		3.0	-	5.5	V
$\mathrm{V}_{\mathrm{LL}}$	input voltage LOW		-	-	1.5	V
$\mathrm{I}_{\mathrm{H}}$	input current HIGH	$\begin{aligned} & \mathrm{V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$\mid-$	$-$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
IL	input current LOW	$\begin{aligned} & \mathrm{V}_{5}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{5}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline-10 \\ -10 \\ \hline \end{array}$	$1-$	$-$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output SDA (open collector)						
ILO	leakage current	$\mathrm{V}_{4}=5.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
$\mathrm{V}_{4}$	output voltage	$\mathrm{l}_{4}=3 \mathrm{~mA}$	-	-	0.4	V
Charge-pump output PD						
$\mathrm{I}_{\mathrm{H}}$	input current HIGH (absolute value)	$C P=1$	90	220	300	$\mu \mathrm{A}$
$\mathrm{I}_{11}$	input current LOW (absolute value)	$C P=0$	22	50	75	$\mu \mathrm{A}$
Vo	output voltage	in-lock	1.5	-	2.5	V
$l_{\text {LLeak }}$	off-state leakage current	T0 = 1	-5	-	5	nA
Operational amplifier output UD (test mode : T0 = 1)						
$\mathrm{V}_{18}$	output voltage	$\mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}$	-	-	100	mV
$\mathrm{V}_{18}$	output voltage when switched-off	$\mathrm{OS}=1 ; \mathrm{V}_{\mathrm{H}}=2 \mathrm{~V}$	-	-	200	mV
G	operational amplifier current gain; $I_{18}\left(I_{1}-I_{\text {Ileak }}\right)$	$\begin{aligned} & \mathrm{OS}=0 ; \mathrm{V}_{1 \mathrm{~L}}=2 \mathrm{~V} ; \\ & \mathrm{I}_{18}=10 \mu \mathrm{~A} \end{aligned}$	2000	-	-	

## Notes to the characteristics

1. When a port is active, the collector voltage must not exceed 6 V .
2. Measured with a single open-collector port active.

Fig. 5 Typical application (DIL18)


Fig. 6 Prescaler typical input sensitivity curve; $\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=-10$ to $+80^{\circ} \mathrm{C}$.


Fig. 7 Prescaler Smith chart of typical input impedance; $V_{C C}=5 \mathrm{~V}$; reference value $=50 \Omega$.

## FLOCK FLAG DEFINITION (FL)

When the FL flag is 1 , the maximum frequency deviation ( $\Delta f$ ) from stable frequency can be expressed as follows:
$\Delta f= \pm\left(K_{V C O} / K_{0}\right) \times I_{C P} \times(C 1+C 2) /(C 1 \times C 2)$

## where:

$\mathrm{K}_{\mathrm{vco}}$	$=$	oscillator slope $(\mathrm{HzN})$
$\mathrm{I}_{\mathrm{CP}}$	$=$	charge-pump current $(\mathrm{A})$
$\mathrm{K}_{\circ}$	$=$	$4 \times 10 \mathrm{E} 6$
C 1 and C 2	$=$	loop filter capacitors



Fig. 8 Loop filter.

## FLOCK FLAG APPLICATION

- $\mathrm{K}_{\mathrm{vco}}=16 \mathrm{MHz} \mathrm{V}$ (UHF band)
- $I_{C P}=220 \mu \mathrm{~A}$
- $\mathrm{C} 1=180 \mathrm{nF}$
- $\mathrm{C} 2=39 \mathrm{nF}$
- $\Delta \mathrm{f}= \pm 27.5 \mathrm{kHz}$.

Table 5 Flock flag settings

	MIN.	MAX.	UNIT
Time span between actual phase lock and FL-flag setting	1024	1152	$\mu \mathrm{~S}$
Time span between the loop losing lock and FL-flag resetting	0	128	$\mu \mathrm{~s}$



Purchase of Philips $1^{2} \mathrm{C}$ components conveys a license under the Philips' $I^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$ system provided the system conforms to the $I^{2} \mathrm{C}$ specification defined by Philips. This specification can be ordered using the code 939835810011.

## Advanced pager receiver

## FEATURES

- Wide frequency range up to 512 MHz
- High sensitivity
- High dynamic range
- Electronically adjustable filters on chip
- Wide frequency offset range and wide deviation range
- Fully POCSAG compatible
- Power on/off mode selectable by the chip enable input
- Low supply voltage; low power consumption
- High integration level


## GENERAL DESCRIPTION

The UAA2080T is a high performance low power radio receiver circuit primarily intended for VHF and UHF ( 25 to 512 MHz ) pager receivers for wide area digital paging systems, employing direct FM non-return-to-zero (NRZ) frequency shift keying (FSK). The receiver design is based on the "direct conversion" principle where the input signal is mixed directly down to the base band by a local oscillator on the signal frequency. Two complete signal paths with signals of $90^{\circ}$ phase difference are
required to demodulate the signal. The circuit makes extensive use of on-chip capacitors to minimize the number of external components.

## QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\mathrm{P}}$	supply voltage (pin 9)		1.9	2.05	3.5	V
$\mathrm{I}_{\mathrm{P}}$	supply current (pin 9)		2.3	2.7	3.2	mA
$\mathrm{I}_{\mathrm{P} \text { off }}$	stand-by current (pin 9)		-	-	3	$\mu \mathrm{~A}$
$\mathrm{P}_{\mathrm{i} \text { ret }}$	RF input sensitivity (pin 3)	BER $<3 / 100 ;$   $\mathrm{f}_{\mathrm{i}}=470 \mathrm{MHz} ;$   $\pm 4.0 \mathrm{kHz} \mathrm{deviation;}$   data rate 1200 bits/s	-	-124.5	-121.5	dBm
$\mathrm{V}_{\mathrm{P} \text { det }}$	supply voltage threshold for   battery LOW indicator		1.95	2.05	2.15	V
$\mathrm{~T}_{\text {amb }}$	Operating ambient temperature   range		-10	-	55	${ }^{\circ} \mathrm{C}$

## ORDERING INFORMATION

EXTENDED TYPE   NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
UAA2080T	28	mini-pack	plastic	SOT136A



Fig. 1 Block, test and application diagram ( $\mathrm{f}=\mathbf{4 6 9 . 9 5 \mathrm { MHz } \text { ). }}$

## Note to the components shown in Fig. 1.

Inductances:	L1	12.5 nH	$\pm 5 \%$	$\left(Q_{\text {min }}=145\right.$ at 470 MHz$)$
	L2, L3, L6, L7	8 nH	$\pm 10 \%$	$\begin{aligned} & \left(\mathrm{Q}_{\min }=50 \text { at } 470 \mathrm{MHz} ; \mathrm{TC}=+25\right. \text { to } \\ & +125 \mathrm{ppm} / \mathrm{K}) \end{aligned}$
	L4, L5	40 nH	$\pm 10 \%$	$\begin{aligned} & \left(Q_{\min }=40 \text { at } 470 \mathrm{MHz} ; \mathrm{TC}=+25\right. \text { to } \\ & +125 \mathrm{ppm} / \mathrm{K}) \end{aligned}$
	L8	100 nH	$\pm 10 \%$	$\begin{aligned} & \left(\mathrm{Q}_{\min }=30 \text { at } 156 \mathrm{MHz} ; \text { TC }=+25\right. \text { to } \\ & +125 \mathrm{ppm} / \mathrm{K}) \end{aligned}$
	L9	560 nH	$\pm 10 \%$	$\begin{aligned} & \left(\mathrm{Q}_{\min }=40 \text { at } 78 \mathrm{MHz} ; \mathrm{TC}=+25\right. \text { to } \\ & +125 \mathrm{ppm} / \mathrm{K}) \end{aligned}$
Resistors:	R1 to R5		tolerance $\pm 2 \%$	(TC = + $50 \mathrm{ppm} / \mathrm{K}$ )
Capacitors:	C1, C2, C7, C8, C9		tolerance $\pm 5 \%$	( $\mathrm{TC}=0 \pm 30 \mathrm{ppm} / \mathrm{K} ; \tan \delta \leq 30 \times 10^{-4}$ at 1 MHz )
	C3, C6, C12		-	$\begin{aligned} & \left(\mathrm{TC}=0 \pm 200 \mathrm{ppm} / \mathrm{K} ; \tan \delta \leq 20 \times 10^{-4}\right. \\ & \text { at } 1 \mathrm{MHz}) \end{aligned}$
	$\begin{aligned} & \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 14, \mathrm{C} 18 \\ & \mathrm{C} 19 \end{aligned}$		tolerance $\pm 10 \%$	( $\mathrm{TC}=0 \pm 30 \mathrm{ppm} / \mathrm{K} ; \tan \delta \leq 10 \times 10^{-4}$ at 1 MHz )
	C10, C11		tolerance $\pm 5 \%$	$\begin{aligned} & \left(\mathrm{TC}=0 \pm 30 \mathrm{ppm} / \mathrm{K} ; \tan \delta \leq 21 \times 10^{-4}\right. \\ & \text { at } 1 \mathrm{MHz} \text { ) } \end{aligned}$
	C13		tolerance $\pm 20 \%$	
	C15		-	(TC $=0 \pm 300 \mathrm{ppm} / \mathrm{K} ; \tan \delta \leq 20 \times 10^{-4}$ at 1 MHz )
	C16		tolerance $\pm 30 \%$	(TC $=0 \pm 30 \mathrm{ppm} / \mathrm{K} ; \tan \delta \leq 26 \times 10^{-4}$ at 1 MHz )
	C17		-	$\begin{aligned} & (\mathrm{TC}=+1700 \pm 500 \mathrm{ppm} / \mathrm{K} ; \tan \delta \leq 50 \mathrm{x} \\ & \left.10^{-4} \text { at } 1 \mathrm{MHz}\right) \end{aligned}$
Crystal XTAL:	$\mathrm{f}=78.325 \mathrm{MHz}$ (crystal with 8 pF load), 3rd overtone, pullability $>2.75 \mathrm{ppm} / \mathrm{pF}$ (change in frequency between series resonance and resonance with 8 pF series capacitor at $25^{\circ} \mathrm{C}$ ), dynamic resistance $\mathrm{R} 1<30 \Omega, \Delta f= \pm 5 \mathrm{ppm}$ for -10 to $60^{\circ} \mathrm{C}$ with $25^{\circ} \mathrm{C}$ reference, calibration plus aging tolerance: -5 to +15 ppm .			

Advanced pager receiver

PINNING

SYMBOL	PIN	DESCRIPTION
TPI	1	IF test point (I-channel)
TPQ	2	IF test point (Q-channel)
VI1RF	3	pre-amplifier RF input 1
VI2RF	4	pre-amplifier RF input 2
RRFA	5	external emitter resistor of pre-amplifier
GND1	6	ground 1 (0 V)
VO2RF	7	pre-amplifier RF output 2
VO1RF	8	pre-amplifier RF output 1
V	9	positive supply voltage
VI2MI	10	l-channel mixer input 2
VI1MI	11	l-channel mixer input 1
VI1MQ	12	Q-channel mixer input 1
VI2MQ	13	Q-channel mixer input 2
GND2	14	ground 2 (0 V)
COM	15	gyrator filter resistor (common line)
RGYR	16	gyrator filter resistor
VO1MUL	17	frequency multiplier output 1
VO2MUL	18	frequency multiplier output 2
RMUL	19	external emitter resistor for frequency multiplier
TDC	20	DC test point (no external connection at normal   operation)
OSC	21	oscillator collector
GND3	22	ground 3 (0 V)
OSB	23	oscillator base (crystal input)
OSE	24	oscillator emitter
TS	25	test switch (no external connection at normal   operation)
BLI	26	battery LOW indicator output
DO	27	DATA output
RE	28	receiver enable input



Fig. 2 Pin configuration.


Fig. 3 Internal circuits.

## FUNCTIONAL DESCRIPTION

The complete circuit consists of the following functional blocks as shown in Fig.1:

## Radio Frequency Amplifier

The RF amplifier is an emitter-coupled pair driving a balanced cascode stage, which drives an external balanced tuned circuit. Its bias current is set by an external resistor R1 ( $330 \Omega$ ) to
typically $770 \mu \mathrm{~A}$. With this bias current and at UHF ( 470 MHz ) the optimum source resistance is $1 \mathrm{k} \Omega$. The capacitors C 1 and C 2 transform a $50 \Omega$ source resistance to this optimum value. The output drives a tuned circuit with capacitive divider (C7, C8 and C9) to provide maximum power transfer to the phase-splitting network and the mixers.

## Mixers

The double balanced mixers consist of common base input stages and upper switching stages driven from the frequency multiplier. The input impedance ( $300 \Omega$ ) of each mixer acts together with external components (C10, C11; L4, L5 respectively) as phase shifter/power splitter to provide a differential phase shift of 90 degrees between the I-channel and the Q-channel.

## Oscillator

The oscillator is based on a transistor in common collector configuration. It is followed by a cascode stage driving a tuned circuit which provides the signal for the frequency multiplier. The oscillator bias current (typically $250 \mu \mathrm{~A}$ ) is determind by the external resistor R5 ( $1.8 \mathrm{k} \Omega$ ). The oscillator frequency is controlled by an external 3rd overtone crystal in paraliel resonance mode. External capacitors between base and emitter (C16) and from emitter to ground (C17) make the oscillator transistor appear as having a negative resistance for small signals; this causes the oscillator to start. A parallel resonant circuit (L9 and C18) connected to the emitter of the oscillator transistor prevents oscillation at the fundamental frequency of the crystal. The resonant circuit at output pin 21 selects the second harmonic of the oscillator frequency. In other applications a different multiplication factor may be chosen.

## Frequency Multiplier

The frequency multiplier is an emitter-coupled pair driving an external balanced tuned circuit. Its
bias current is set by an external resistor $R 4$ ( $1.2 \mathrm{k} \Omega$ ) to typically $350 \mu \mathrm{~A}$. The oscillator signal is internally AC-coupled to one input of the emitter-coupled pair while the other input is internally grounded via a capacitor. The frequency multiplier output signal between pins 18 and 19 drives the upper switching stages of the mixers. The bias voltage on pins 18 and 19 is set by an external resistor R3 (820 $\Omega$ ) to allow sufficient voltage swing at the mixer outputs.

## Low Noise Amplifiers, Active Filters and Gyrator Filters

The low noise amplifiers ensure that the noise of the following stages does not affect the overall noise figure. The following active filters before the gyrator filters reduce the levels of large signals from adjacent channels. Internal AC-couplings block DC-offsets from the gyrator filter inputs.

The gyrator filters implement the transfer function of a 7th-order elliptic filter. Their cut-off frequencies are determind by the external resistor $R 2(47 \mathrm{k} \Omega)$. The gyrator filter output signals are available on IF test points TPI and TPQ (pins 1 and 2).

## Limiters

The gyrator filter output signals are amplified in the limiter amplifiers to get IF signals with removed amplitude information.

## Demodulator

The limiter amplifier output signals are fed to the demodulator. The demodulator output DO (on pin 27) is going LOW or HIGH depending upon which of the input signals leads the other one.

## Battery LOW Indicator

The battery LOW indicator senses the supply voltage and sets its output to HIGH when the supply voltage is less than $\mathrm{V}_{\mathrm{P}}$ det (typically 2.05 V ). Low battery warning is available at pin 26.

## Band Gap Reference

The whole chip can be powered-up and powered-down by enabling and disabling the band gap reference via the receiver enable pin 28.

## LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).
Ground pins 6, 14 and 22 connected together.

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$\mathrm{V}_{\mathrm{p}}$	positive supply voltage (pin 9)	-0.3	8	V
$\mathrm{T}_{\text {stg }}$	storage temperature range	-55	125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range	-10	70	${ }^{\circ} \mathrm{C}$
$V_{\text {ESD }}$	Electrostatic handling (note 1) pins 3 and 4	-	$\begin{aligned} & +2000 \\ & -1500 \end{aligned}$	V
	pin 5	-	$\begin{aligned} & +2000 \\ & -500 \end{aligned}$	V
	pins 7 and 8	-	$\begin{aligned} & +250 \\ & -2000 \end{aligned}$	V
	pin 9	-	$\left\lvert\, \begin{aligned} & +500 \\ & -1000 \end{aligned}\right.$	V
	pins 23 and 24	-	$\begin{aligned} & +1500 \\ & -500 \end{aligned}$	V
	other pins	-	$\pm 2000$	V

## Note to the Limiting Values

1. Equivalent to discharging a 100 pF capacitor through a $1.5 \mathrm{k} \Omega$ resistor.

DC CHARACTERISTICS
$V_{p}=2.05 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=-10$ to $55^{\circ} \mathrm{C}$ (typical values at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ ); measurements taken in test circuit Fig. 1 with XTAL at pin 23 disconnected unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{P}$	supply voltage range (pin 9)		1.9	2.05	3.5	$V$
$I_{P}$	supply current (pin 9)	$V_{\text {RE }}=$ HIGH	2.3	2.7	3.2	mA
$I_{P \text { of }}$	stand-by current (pin 9)	$V_{\text {RE }}=$ LOW	-	-	3	$\mu A$

Receiver enable input (pin 28)

$\mathrm{V}_{\mathrm{RE}}$	HIGH level input   voltage(receiver active)		1.4	-	$\mathrm{V}_{\mathrm{P}}$	V
	LOW level input voltage   (receiver inactive)		0	-	0.3	V
	HIGH level input current	$\mathrm{V}_{\mathrm{RE}}=\mathrm{V}_{\mathrm{P}}=3.5 \mathrm{~V}$	-	-	20	$\mu \mathrm{~A}$
	LOW level input current	$\mathrm{V}_{\mathrm{RE}}=0$	0	-	-1.0	$\mu \mathrm{~A}$

Battery LOW indicator output (pin 26)

$\mathrm{V}_{\mathrm{BLI}}$	HIGH level output voltage	$\begin{aligned} & \hline V_{P}<V_{P \text { del }} ; \\ & I_{B L I}=-10.0 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$V_{P}-0.5$	-	-	V
	LOW level output voltage	$\begin{aligned} & V_{P}<V_{P \text { de }} ; \\ & \mathrm{I}_{\mathrm{BL}}=+10 \mu \mathrm{~A} \end{aligned}$	-	-	0.5	V
$\mathrm{V}_{\mathrm{P} \text { del }}$	low battery warning threshold		1.95	2.05	2.15	V
Demodulator output (pin 27)						
$\mathrm{V}_{\mathrm{DO}}$	HIGH level output voltage	$\mathrm{l}_{\infty}=-10 \mu \mathrm{~A}$	$V_{p}-0.5$	-	-	V
	LOW level output voltage	$\mathrm{I}_{\mathrm{D}}=+10 \mu \mathrm{~A}$	-	-	0.5	V

## ÁC CHARACTERISTICS

$V_{p}=2.05 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$; test circuit Fig. $1 ; \mathrm{f}_{\mathrm{i} \mathrm{RF}}=469.95 \mathrm{MHz}$ with $\pm 4.0 \mathrm{kHz}$ deviation; 1200 baud pseudo random bit sequence modulation ( $\mathrm{t}_{\mathrm{r}}=250 \pm 25 \mu \mathrm{~s}$ measured between $10 \%$ and $90 \%$ of voltage amplitude) and 20 kHz channel spacing; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Radio frequency input						
$\mathrm{P}_{\mathrm{i} \text { ref }}$	input sensitivity ( $P_{i}$ ret is the maximum available power at the input of the test board)	BER < 3/100; note 1	-	-124.5	-121.5	dBm
		$\begin{aligned} & \mathrm{T}_{\text {amb }}=-10 \text { to } 55^{\circ} \mathrm{C} ; \\ & \text { note } 2 \end{aligned}$	-	-	-118.5	dBm
		$\mathrm{V}_{\mathrm{P}}=1.9 \mathrm{~V}$	-	-	-115.5	dBm
Mixers to demodulator						
$\alpha_{\text {a }}$	adjacent channel selectivity	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	67	70	-	dB
		$\mathrm{T}_{\text {amb }}=-10$ to $55^{\circ} \mathrm{C}$	65	-	-	dB
$\alpha_{c i}$	IF filter channel imbalance		-	-	2	dB
$\alpha_{c}$	co-channel rejection		-	4	7	dB
$\alpha_{\text {sp }}$	spurious immunity		50	60	-	dB
$\alpha_{\text {im }}$	intermodulation immunity		55	60	-	dB
$\alpha_{b l}$	blocking immunity	$\Delta f> \pm 1 \mathrm{MHz}$; note 3	75	82	-	dB
$\mathrm{f}_{\text {ofiset }}$	frequency offset range (3dB degradation in sensitivity)	deviation $f= \pm 4.0 \mathrm{kHz}$	$\pm 2$	-	-	kHz
		deviation $f= \pm 4.5 \mathrm{kHz}$	$\pm 2.5$	-	-	kHz
$\Delta f_{\text {dev }}$	deviation range ( 3 dB degradation in sensitivity)		2.5	-	7.0	kHz
$t_{\text {on }}$	receiver turn-on time	data valid after setting RE input HIGH; note 4	-	-	5	ms

## Notes to the AC Characteristics

1. The bit error rate BER is measured using the test facility shown in Fig.5.
2. Capacitor C 17 requires re-adjustment to compensate temperature drift.
3. $\Delta f$ is the frequency offset between the wanted signal and the interfering signal.
4. Turn-on time is defined as the time from RE (pin 28) going HIGH to the reception of valid data on DO output (pin 27). Turn-on time is measured using an external oscillator (turn-on time using the internal oscillator is dependent upon the oscillator circuitry).

## TEST INFORMATION

## Tuning procedure for AC tests

1. Turn on the signal generator: $f=469.954 \mathrm{MHz}$, no modulation, $V_{i \text { RF }}=1 \mathrm{mV}$ RMS.
2. Measure the IF with a counter connected to test point TPI (pin 1). Tune C 17 to set the crystal oscillator to achieve IF $=4 \mathrm{kHz}$. Change the generator frequency to $f=$ 469.946 MHz and check that IF is also 4 kHz . For a received input frequency
$f_{i R F}=469.950 \mathrm{MHz}$ the crystal frequency is $f_{\text {osc }}=78.325 \mathrm{MHz}$ (for definition of crystal frequency, see remarks to the components in Fig.1).
3. Set the signal generator to nominal frequency and turn on the modulation ( $f=469.950$ MHz , deviation $\pm 4.0 \mathrm{kHz}, 600 \mathrm{~Hz}$ square wave modulation, $\mathrm{V}_{\mathrm{i} \text { fF }}=$ 1 mV RMS). Note that the RF signal should be reduced in the following tests, as the receiver is tuned, to ensure $\mathrm{V}_{\mathrm{OIF}=}=$ 10 to 50 mV (p-p) on test point pins 1 or 2 (TPI or TPQ).
4. Tune C15 (oscillator output circuit) and C12 (frequency multiplier output) to obtain a peak audio voltage on TPI (pin 1).
5. Tune C3 and C6 (RF input and mixer input) to obtain a peak audio voltage on TPI (pin 1).
6. Check that the output signal on TPQ (pin 2) is within 3 dB in amplitude and at $90( \pm 20)$ degrees relative phase of the signal on TPI (pin 1).
7. Check that data signal appears on output DO (pin 27) and proceed with the AC test.

## AC Test Conditions

The reference signal level for the following tests is defined as the input level in dBm to give a Bit Error Rate BER $\leq$ $3 / 100$ (corresponding with 36 bit errors per second for $1200 \mathrm{bit} / \mathrm{s}$ ). The following tests are executed without load on test points TPQ and TPI.

## Definitions:

modulated test signal 1


1. Adjacent channel selectivity, Fig.4(b) $\left(f 2=f 1 \pm \Delta f_{c s}\right)$
generator 1: modulated test signal 1; $\quad P 1=P_{i \text { ref }}+3 d B$
generator 2: $\quad$ modulated test signal 2; $\quad P 2=P 1+67 d B\left(\alpha_{a \min }\right)$
2. Co-channel selectivity, Fig.4(b) ( $\mathrm{f} 2=\mathrm{f} 1 \pm$ up to 3 kHz )
generator 1: $\quad$ modulated test signal 1; $\quad P 1=P_{i \text { ref }}+3 d B$
generator 3: $\quad$ modulated test signal 2; $\quad P 2=P 1-7 d B\left(\alpha_{c \max }\right)$
3. Spurious immunity, Fig.4(b)
(f2 = 100 kHz to 2 GHz )
generator 1: modulated test signal 1; $\quad P 1=P_{i \text { ref }}+3 d B$
generator 2: $\quad$ modulated test signal 2; $\quad \mathrm{P} 2=\mathrm{P} 1+50 \mathrm{~dB}\left(\alpha_{\mathrm{sp} \text { min }}\right)$
4. Intermodulation immunity, Fig.4(c) $\quad\left(f 2=f 1 \pm \Delta f_{c s} ; f 3=f 1 \pm 2^{*} \alpha f_{c s}\right)$
generator 1: modulated test signal 1; $\quad P 1=P_{i \text { ref }}+3 d B$
generator 2: unmodulated; $\quad P 2=P 1+55 d B\left(\alpha_{\text {im min }}\right)$
generator 3: modulated test signal 2; $\quad P 3=P 2$
5. Blocking, Fig.4(b)
generator 1: modulated test signal 1; $\quad P 1=P_{i \text { ref }}+3 d B$
generator 2: $\quad$ modulated test signal 2; $\quad \mathrm{P} 2=\mathrm{P} 1+75 \mathrm{~dB}\left(\alpha_{b 1}\right.$ min $)$
6. Frequency offset range, Fig.4(a) (deviation $= \pm 4.0 \mathrm{kHz}, \mathrm{f1}=469.950 \mathrm{MHz} \pm 2 \mathrm{kHz} ; \mathrm{f}_{\text {ofset min }}$ )
generator 1: modulated test signal 1; $\quad P 1=P_{i \text { ref }}+3 d B$
7. Deviation range, Fig.4(a)
generator 1:
(deviation $= \pm 2.5$ to $\pm 7 \mathrm{kHz} ; \Delta f_{\text {dev min }}$ to $\Delta f_{\text {dev max }}$ ) modulated test signal 1; $\quad \mathrm{P} 1=\mathrm{P}_{\mathrm{i} \text { ref }}+3 \mathrm{~dB}$
8. Receiver turn-on time, Fig.4(a)
generator 1: modulated test signal 1; $\quad P 1=P_{i \text { ref }}+10 d B$.
The BER measurement is started 5 ms ( $\mathrm{t}_{\mathrm{on} \max }$ ) after RE to HIGH (pin 28); $B E R$ is then measured for 100 bits ( $B E R \leq 3 / 100$ ).


Fig. 4 Test configurations: (a) one generator, (b) two generators, (c) three generators.


Fig. 5 BER test facility.


Fig. 6 Test circuit; top layout.


Fig. 7 Test circuit; bottom layout.


Fig. 8 Test circuit; top layout with components $\left(V E E=G N D ; V C C=V_{p} ; B I=B L I\right)$.


Fig. 9 Test circuit; bottom layout with components.

# Dual Low-power Frequency Synthesizer 

## DESCRIPTION

The UMA1005 is a low power, high performance dual frequency synthesizer fabricated in CMOS technology. Fractional-N division with selectable modulo 5 or 8 is implemented in the Main synthesizer. The detectors and charge pumps are designed to achieve 10 to 50000 kHz channel spacing and using fractional-N decreases the channel spacing by a factor of 5 or 8 . Together with an external standard 2, 3 or 4 ratio prescaler the Main sysnthesizer can operate in the GHz frequency range. Channel selection and programming is realized by a high speed 3wire serial interface.

## FEATURES

- Fast locking by "Fractional-N" divider
- Auxiliary synthesizer.
- Digital phase comparator with proportional and integral charge pump output.
- High speed serial input.
- Low power consumption.
- Programmable charge pump currents
- Supply voltage range 2.9 to 5.5 V


## Applications

- Mobile telephony
- Portable battery-powered radio equipment

Package outlines
UMA1005T: 20-lead plastic mini-pack; (SSOP20, SOT266)


Fig. 1: Block diagram UMA1005T


Fig. 2: Pinning UMA1005T

## PINNING

Symbol	Pin
V	
IND 11	1
INM2	2
DATA	3
CLOCK	4
STROBE	5
INR	7
INA	8
RA	9
PHA	10
PHI	11
VSSA	12
PHP	13
VDDA	14
RN	15
RF	16
LOCK	17
FB1	18
FB2	19
VSS	20

## Serial programming input

The serial input is a 3 wire input (CLOCK, STROBE, DATA) to program all counter ratios, DAC's, selection and enable bits. The programming data is structured into 24 or 32 bit words; each word includes 1 or 4 address bits. Figure 3 shows the timing diagram of the serial input. When the STROBE $=\mathrm{L}$, the clock driver is enabled and on the positive edges of the CLOCK the signal on DATA input is clocked into a shift register. When the STROBE $=\mathrm{H}$, the clock is disabled and the data in the shift register remains stable. Depending on the 1 or 4 address bits the data is latched into different working registers or temporary registers. In order to fully program the synthesizer, 4 words must be sent: D, C, B and A. Figure 4 shows the format and the contents of each word. The E word is for testing purposes only. The E (test) word is reset when programming the D word. The data for NM4, CN, and PR is stored by the B word in temporary registers. When the A word is loaded, the data of these temporary registers is loaded together with the A word into the work registers which avoids false temporary main divider input. CN is only loaded from the temporary registers when a short 24 bit AO word is used. CN will be directly loaded by programming a long 32 bit A1 word. The flag LONG in the D word determines whether A0 (LONG = "O") or A 1 ( $\mathrm{LONG}=11$ ") format is applicable. The A word contains new data for the main divider. The A word is loaded only when a main divider synchronization signal is also active, to avoid phase jumps when reprogramming the main divider. The synchronisation signal is generated by the main divider. It disables the loading of the A word each main divider cycle during maximum 300 main divider input cycles. To be sure that the A word will be correctly loaded the STROBE signal must be H for at least 300 main divider input cycles. Programming the A word means also that the main charge pumps on output PHP and PHI are set into the speed-up mode as long as the STROBE is H .


Fig. 3 Serial Input timing sequence


Fig. 4 Serial input word format

Symbol	Bits	Function
NM1	12	number of main divider cycles when prescaler is programmed in ratio $\mathrm{R} 1(\mathrm{FB} 1=" 1 ", \mathrm{FB} 2=" 0 ")^{\star}$
NM2	$\begin{aligned} & 8 \text { if } \mathrm{PR}=" 01 " \\ & 4 \text { if } \mathrm{PR}=\mathrm{O}^{201 "} \end{aligned}$	number of main divider cycles when prescaler is programmed in ratio R2 (FB1 = " 0 ", $\mathrm{FB} 2=" 0 "$ ) ${ }^{*}$
NM3	4 if $P R=$ " 1 x "	number of main divider cycles when prescaler is programmed in ratio R3 (FB1 = "0", FB2 = "1")*
NM4	$\begin{aligned} & 4 \text { if } \mathrm{PR}=" 11 " \\ & \text { or } \mathrm{PR}=" 00 \mathrm{l} \end{aligned}$	number of main divider cycles when prescaler is programmed in ratio $\mathrm{R} 4(\mathrm{FB} 1=" 1 ", \mathrm{FB} 2=" 1 ")^{\star}$
PR	2	prescaler type in use   $\mathrm{PR}=$ " 01 ": modulus 2 prescaler   $\mathrm{PR}=$ "10": modulus 3 prescaler   $\mathrm{PR}=$ " 11 ": modulus 4 prescaler   $\mathrm{PR}=$ " 00 ": modulus 4 prescaler (inhibit ratio 3 )
NF FMOD	$3$	fractional -N increment fractional -N modulus selection flag "1" : modulo 8 " 0 " : modulo 5
LONG	1	A word format selection flag   " 0 ": 24 bit AO format   "1": 32 bit A1 format
$\begin{aligned} & \mathrm{CN} \\ & \mathrm{CL} \end{aligned}$	$\begin{aligned} & 8 \\ & 2 \end{aligned}$	binary current setting factor for main charge pumps binary acceleration factor for proportional charge pump current
CK	4	binary acceleration factor for integral charge pump current
EM	1	main divider enable flag
EA	1	auxiliary divider enable flag
SM	2	reference select for main phase detector
SA	2	reference select for aux. phase detector
NR	12	reference divider ratio
NA	12	auxiliary divider ratio
PA	1	
		PA = "0": divide by 4 PA = "1" : divide by 1

The input signal on INA is amplified to logic level by a single ended input buffer, which accepts low level AC coupled input signals. This input stage is enabled if the serial control bit EA = "1". Disabling means that all currents in the input stage are switched off. A fixed divide by 4 is enabled if EA = " 0 ". This divider has been optimised to accept a high frequency ( 70 MHz ) input signal. If $\mathrm{PA}=" 1$ " this divider is disabled and the input signal is fed directly to the second stage, which is a 12-bit programmable divider with standard input frequency ( 30 MHz ). The division ratio can be expressed as:
if $P A=" 0 ": N=4 \times N A$
If $P A=11$ " $N=N A$; with $N A=4$ to 4095
Reference variable divider (fig. 5)
The input signal on INR is amplified to logic level by a single ended input buffer, which accepts low level AC coupled input signals. This input stage is enabled by the OR function of the serial intput bits EA and EM. Disabling means that all currents in the input stage are switched off. The reference divider consists of a programmable divider by NR (NR = 4 to 4095) followed by a three bit binary counter. The 2 bit SM determines which of the 4 output pulses is selected as main phase detector input. The 2 bit SA determines the selection of the auxiliary phase detector signal. To obtain the best time spacing for the main and auxiliary reference signals, the opposite output will be used for the auxiliary phase detector, reducing the possibility of unwanted interactions. For this reason the programmable divider produces a symmetric output pulse for even ratios and a 1 input cycle asymmetric pulse for odd ratios.

## Dual low-power frequency synthesizer

UMA1005T


Fig. 5 Reference variable divider

## Main variable divider

The input signals on INM1, INM2 are amplified to a logic level by a balanced input comparator giving a common mode rejection. This input stage is enabled when serial control bit $\mathrm{EM}=11$. Disabling means that all currents in the comparator are switched off. The main divider is built up by a 12 bit counter plus a sign bit. Depending on the serial input values NM1, NM2, NM3, NM4 and the prescaler select PR, the counter will select a prescaler ratio during a number of input cycles according to the following table:

Counter Status	FB1	FB2	Prescaler ratio
$(-N M 1-1)$ to 0	1	0	$R 1$
$(-N M 1-1)$ to -1	1	0	$R 1^{*}$
1 to NM2	0	0	$R 2$
0 to NM2	0	0	$R 2^{*}$
0 to NM3	0	1	$R 3$ i $P R=" 1 X^{\prime \prime}$
0 to NM4	1	1	$R 4$ if $P R=" 11^{\prime \prime}$ or if $P R=" 00 "$

The total division ratio from prescaler to the phase detector may be expressed as:

```
if PR = "01":N = (NM1 + 2) x R1 +NM2 x R2
 N'= (NM1 + 1) x R1+ (NM2 + 1) x R2 (*)
if PR = "10":N = (NM1 + 2) x R1 +NM2 x R2 + (NM3 +1) x R3
 N'=(NM1 + 1) x R1 + (NM2 + 1) x R2 + (NM3 + 1) x R3 (*)
if PR = "11":N = (NM1 + 2) x R1 +NM2 x R2+ (NM3 + 1) x R3 + (NM4 + 1) x R4
 N'=(NM1 + 1) x R1 + (NM2 + 1) x R2 + (NM3 + 1) x R3 + (NM4 + 1) x R4 (*)
if PR = "00":N = (NM1 + 2) x R1 +NM2 x R2 + (NM4 + 1) x R4
 : N'=(NM1 + 1) x R1 + (NM2 + 1) x R2 + (NM4 + 1) x R4 (*)
```

$\left.{ }^{*}\right)$ when the fractional accumulator overflows
When the prescaler ratio $\mathrm{R} 2=\mathrm{R} 1+1$ the total division ratio $\mathrm{N}=\mathrm{N}+1$

PR	Modulus prescaler	Bit capacity			
		$\frac{\text { NM1 }}{12}$	$\frac{\text { NM2 }}{4}$	$\frac{\text { NM3 }}{-}$	$\frac{\text { NM } 4}{4}$
00	4	12	8	-	-
01	2	12	4	4	-
10	3	12	4	4	4

The loading of the work registers NM1, NM2, NM3, NM4, PR is synchronized with the state of the main counter, to avoid extra phase disturbance when switching over to another main divider ratio as is explained in the Serial Programming Input chapter.
At the completion of a main divider cycle, a main divider output pulse is generated which will drive the main phase comparator. Also the fractional accumulator is incremented with NF. The accumulator works modulo Q . Q is preset by the serial control bit FMOD to 8 when $\mathrm{FMOD}=$ "1". Each time the accumulator overilows, the feedback to the prescaler will select one cycle using prescaler ratio R2 instead of R1.

As shown above, this will increase the overall division ratio by 1 if $\mathrm{R} 2=\mathrm{R} 1+1$. The mean division ratio over Q main divider cycles will then be:
$N Q=N+N F / Q$
Programming a fraction means the prescaler with main divider will divide by N or $\mathrm{N}+1$. The output of the main divider will be modulated with a fractional phase ripple. This phase ripple is proportional to the contents of the fractional accumulator FRD, which is used for fractional current compensation.

The auxiliary and main phase detectors are a 2 D-type flipflop phase and frequency detector. The flipflops are set by the negative edges of output signals of the dividers. The reset inputs are activated when both flipflops have been set and when the reset enable signal is active (L). Around zero phase error this has the effect of delaying the reset for 1 reference input cycle. This avoids non-linearity or deadband around zero phase error. The flipflops drive on-chip charge pumps. A pull-up current from the charge pump indicates the VCO frequency shall be increased while a pull-down pulse indicates the VCO frequency shall be decreased.


Fig. 6 Phase detector structure with timing

The UMA1005 has 3 current setting pins RA, RN, and RF. The active charge pump currents and the fractional compensation currents are linearly dependent on the current in the current setting pins. This current $\mathrm{I}_{\mathrm{R}}$ can be set by an external resistor to be connected between the current setting pin and $\mathrm{V}_{\mathrm{ss}}$. The typical value R (current setting resistor) can be calculated with the formula:

$$
R=\left\{V_{D D A}-0.5-237\left(I_{R}^{1 / 2}\right)\right\} / I_{R}
$$

The current can be set to zero by connecting the corresponding pin to $V_{\text {DDA }}$.

## Auxiliary output charge pumps

The auxiliary charge pumps on pin PHA are driven by the auxiliary phase detector and the current value is determined by the external resistor RA at pin RA. The active charge pump current is typically:
$\left|l_{\text {PhA }}=8 \times\right|_{\text {RA }}$

## Main output charge pumps and fractional compensation currents

The main charge pumps on pin PHP and PHI are driven by the main phase detector and the current value is determined by the current at pin RN and via a number of DACs which are driver by registers of the serial input. The fractional compensation current is determined by the current at pin RF, the contents of the fractional accumulator FRD and a number of DACs driven by registers from the serial input. The timing for the fractional compensation is derived from the reference divider. The current is on during 1 input reference cycle before and 1 cycle after the output signal to the phase comparator. Figure 7 shows the waveforms for a typical case.

When the serial input A word is loaded, the output circuits are in the "speed-up mode" as long as the STROBE is H, else the "normal mode" is active. In the "normal mode" the current output PHP is:
$I_{\text {PHP_N }}=I_{\text {pump10 }}+I_{\text {comp10 }}$
where:

$\left\|I_{\text {pump10 }}\right\|=C N x I_{R N} / 29$	:charge pump current
$I_{\text {comp10 }}=$ FRD $\left.x\right\|_{R F} / 128$	fractional compensation current

The current in PHI is in "normal mode" zero.

In "speed-up mode" the current in output PHP is:

$$
I_{P H P_{-} S}=I_{\text {PHP_N }}+I_{\text {pump11 }}+I_{\text {comp11 }}
$$

where:

$I_{\text {pump11 }}=I_{\text {pump10 }} \times 2(C L+1)$	:charge pump current
$I_{\text {comp11 }}=I_{\text {comp10 }} \times 2(C L+1)$	fractional compensation current

In "speed-up mode" the current in output PHI is:
$I_{\text {PHI_S }}=I_{\text {pump21 }}+I_{\text {comp21 }}$
where:

$I_{\text {pump21 }}=I_{\text {pump11 }} \times$ CK	:charge pump current
$I_{\text {comp21 }}=I_{\text {comp11 }} \times$ CK	fractional compensation current

Figure 7 shows that for a proper fractional compensation the area of the fractional compensation current pulse must be equal to the area of the charge pump ripple output. This means that the current setting on the input RN, RF must have the following ratio:
$I_{R N} / I_{R F}=\left(Q \times f_{V C O}\right) /\left(2 \times C N \times f_{I N R}\right)$
where:

Q	
$\mathrm{f}_{V C O}=\mathrm{f}_{I N M} \times \mathrm{N}$	: fractional- N modulus
$\mathrm{f}_{\mathrm{INR}}$	input frequency of the prescaler
: input frequency of the reference divider	

## Lock detect

The output LOCK is H when the auxiliary phase detector AND the main phase detector indicates a lock condition. The lock condition is defined as a phase difference of less than $\pm 1$ cycle on the reference input INR. The lock condition is also fulliilled when the relative counter is disabled ( $\mathrm{EM}=$ " 0 " or respectively $\mathrm{EA}=$ " 0 ") for the main, respectively auxiliary counter.

Reference R


Main N


Detector output


Contents accum.


Fractional
compensation current


Output on PHP, PHI


Fig. 7 Waveforms for NF=2, Fraction=0.4

## LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134)

Symbol	Parameter	Min	Max	Unit
$\mathrm{V}_{\mathrm{DD}}$	supply voltage	-0.5	6.5	
$V_{1}$	voltage on any input	-0.5	$V_{D D}+0.5$	V
,	DC current into any input or output	-10	10	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation (note 5)		25	mW
$\mathrm{T}_{\text {stg }}$	storage temperature range	-65	150	${ }^{\circ} \mathrm{C}$
Tamb	operating ambient temperature range	-40	70	${ }^{\circ} \mathrm{C}$

## DC CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=2.9$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+70^{\circ} \mathrm{C}$; unless otherwise specified

$\begin{aligned} & \text { Symbol } \\ & \text { lom } \end{aligned}$	Parameter Standby digital supply current	Conditions   EM=EA="0";   inputs on $V_{D D}$ or 0	Min	Typ	Max	$\mu \mathrm{A}$
IDDOP	Operational supply current				5	A
IDDAO	Standby analog supply currents	note 5   $V_{R A}=V_{D D A} ; V_{\text {RF }}=$ $V_{\text {DDA }} \cdot V_{\text {BN }}=V_{\text {DDA }}$	-	-	10	$\mu \mathrm{A}$
IDDAOP	Operational analog supply current	note 5			0.6	mA
Digital in	CLK, DATA, STROBE					
$\mathrm{V}_{1}$	High level input voltage range		$0.7 \times V_{\text {DD }}$		$V_{D D}$	$\checkmark$
$V_{\text {IL }}$	Low level input voltage range		0		0.3xV	

Digital outputs FB1, FB2, LOCK


| Charge pu \|lphP_N| | PHP, normal mode (n output current PHP | $\begin{aligned} & 1,4,6), V_{\mathrm{RF}}= \\ & \mathrm{I}_{\mathrm{RN}}=-62.5 \mu A ; \\ & V_{\mathrm{PHP}}=V_{\mathrm{DD}} / 2 \\ & \text { note } 14 \end{aligned}$ | 440 | 550 | 660 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \|IPHP_N| | output current PHP | $\begin{aligned} & \mathrm{I}_{\mathrm{RN}}=-25 \mu \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DD}} / 2 \end{aligned}$ | 175 | 220 | 265 |
| $\Delta \mathrm{IPHP}_{\text {_ }}$ | relative output current variation PHP | $\begin{aligned} & \mathrm{R}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} \text {; } \\ & \text { note } 2 \end{aligned}$ | - | 2 | 6 |
| $\Delta$ PrHP_N_M $^{\text {a }}$ | output current matching | $\begin{aligned} & l_{\mathrm{RN}}=-62.5 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DD}} / 2 \\ & \text { note } 12,14 \end{aligned}$ | - | - | $\pm 50$ |


Charge pump \|lPHP_S		PHP, speed up mode output current PHP	- 1								
		$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A}$;	2.20	2.75	3.30	mA					
		$\begin{aligned} & V_{P H P}=V_{D D} / 2 ; \\ & \text { note } 14 \end{aligned}$									
\| PHP_S		output current PHP	$\begin{aligned} & I_{\mathrm{RN}}=-25 \mu \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DD}} / 2 \end{aligned}$	0.85	1.1	1.35	mA				
$\Delta$ PHP_S	relative output current variation PHP	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A}$;									
		note 2, 14	-	2	6	$\stackrel{\%}{\mu}$					
$\Delta$ PHP_S_M	output current matching	$\mathrm{I}_{\mathrm{RM}}=-62.5 \mu \mathrm{~A}$;	-	-	$\pm 250$						
		$\mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DD}} / 2$;									
		note 12,14									
Charge pump PHI, speed up mode (note 1, 4, 8), $\mathrm{V}_{\mathrm{RF}}=\mathrm{V}_{\mathrm{DD}}$											
\| ${ }_{\text {PHII }}$	output current PHI	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A}$;	4.4	5.5	6.6	mA					
		$V_{P H I}=V_{D D} / 2 ;$ note 14									
\|l ${ }_{\text {PHII }}$	output current PHI	$\mathrm{I}_{\mathrm{RN}}=-25 \mu \mathrm{~A}$;	1.75	2.2	2.65	mA					
		$\mathrm{V}_{\mathrm{PHI}}=\mathrm{V}_{\mathrm{DD}} / 2$									
$\Delta l_{\text {PHI }}$	relative output current variation PHI	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A}$;	-	2	8	\%					
		note 2, 14									
$\Delta l_{\text {PHI_M }}$	output current matching	$\mathrm{I}_{\mathrm{RN}}=-62.5 \mu \mathrm{~A}$;	-	-	$\pm 500$	$\mu \mathrm{A}$					
		$\mathrm{V}_{\mathrm{PH}}=\mathrm{V}_{\mathrm{DD}} / 2 ;$									
		note 12,14									
Fractional compensation PHP, normal mode (note 1, 9, 15), $\mathrm{V}_{\mathrm{RN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DD}} / 2$											
lPHP_F_N	fractional comp. output current PHP versus FRD		-675	-500	-325	nA					
		FRD $=1$ to 7 note 14									
lPHP_F_N	fractional comp. output current PHP versus FRD note 3	$\mathrm{I}_{\text {RF }}=-25 \mu \mathrm{~A}$;	-270	-200	-130	nA					
		$\mathrm{FRD}=1$ to 7									

Fractional compensation PHP, speed up mode (note 1, 10, 15), $\mathrm{V}_{\mathrm{PHP}}=\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{RN}}=\mathrm{V}_{\mathrm{DD}}$

IPHP_F_S	fractional compensation $\quad I_{R N}=-62.5 \mu \mathrm{~A}$; output current PHP versus $\mathrm{FRD}=1$ to 7 ; FRD; note 3 note 14	-3.35	-2.5	-1.65	$\mu \mathrm{A}$
lPHP_F_S	fractional compensation $I_{\mathrm{RN}}=-25 \mu \mathrm{~A}$; output current PHP versus FRD $=1$ to 7 FRD; note 3	-1.35	-1.0	-0.65	$\mu \mathrm{A}$

Fractional compensation PHI speed up mode (note 1, 11, 15),
$V_{P H P}=V_{D D} / 2, V_{R N}=V_{D D}$

$l_{\text {PHI_F }}$	fractional compensation output current PHI versus FRD; note 3	$\begin{aligned} & \text { IRN }^{2}=-62.5 \mu \mathrm{~A} \\ & \text { FRD }=1 \text { to } 7 ; \\ & \text { note } 14 \end{aligned}$	-5.4	-4.0	-2.6	$\mu \mathrm{A}$
$l_{\text {PHI_F }}$	fractional compensation output current PH versus FRD; note 3	$\begin{aligned} & \text { IRN }=-25 \mu \mathrm{~A} ; \\ & \text { FRD }=1 \text { to } 7 \end{aligned}$	-2.15	-1.6	-1.05	$\mu \mathrm{A}$

Charge Pump Leakage Currents, Charge Pump not active

IPHP_L	output leakage current PHP; normal mode; note 1	$\begin{aligned} & V_{P H P}=0.7 \text { to } \\ & V_{\text {DDA }}-0.8 \end{aligned}$		10	750	nA
\|PHI_L	output leakage current PHI; normal mode; note 1	$\begin{aligned} & V_{P H I}=0.7 \text { to } \\ & V_{D D A}-0.8 \end{aligned}$	-	10	100	nA
IPHA_L	output leakage current PH'A	$\begin{aligned} & V_{\text {PHA }}=0.7 \text { to } \\ & V_{D D A}-0.8 \end{aligned}$		10	750	nA

note 1: When a serial input "A" word is programmed, the main charge pumps on PHP and PHI are in the "speed up mode" as long as STROBE $=\mathrm{H}$. When this is not the case, the main charge pumps are in the "normal mode".
note 2: The relative output current variation is defined thus:
$\Delta_{\text {OUT }} / I_{\text {OUT }}=2 \times\left(I_{2}-I_{1}\right) /\left|\left(I_{2}+I_{1}\right)\right|$; with $\mathrm{V}_{1}=0.7 \mathrm{~V}, \mathrm{~V}_{2}=\mathrm{V}_{\text {DD }}-0.8 \mathrm{~V}$ (see fig. 8).
note 3: FRD is the value of the 3 bit fractional accumulator.
note 4: Monotonicity is guaranteed with $\mathrm{CN}=0$ to 255.
note 5: Operational conditions: main and auxiliary divider enabled ( $\mathrm{EM}=\mathrm{EA}=" 1$ ");
$N A=125 ; N R=125 ; N M 1=60 ; N M 2=63 ; f_{I N M}=f_{I N R}=15 \mathrm{MHz} ; f_{I N A}=60 \mathrm{MHz}$;
LOCK condition; normal mode (note 1); $I_{\mathrm{RN}}=I_{\mathrm{RF}}=I_{\mathrm{RA}}=25 \mu \mathrm{~A} ; \mathrm{CN}=255$;
PA = "0".
note 6: Typical output current: $\left|\|_{\text {PHP_N }}\right|=-I_{\text {RN }} \times C N / 29$; specification condition: $\mathrm{CN}=255$
note 7: Typical output current $\| I_{\text {PHP_S }} \mid=-I_{\mathrm{RN}} \times \mathrm{CN} \times(2(\mathrm{CL}+1)+1) / 29$; specification conditions:
1: $C N=255 ; C L=1$, or
2: $C N=75 ; C L=3$
note 8: Typical output current $\left\|\|_{P H I}=-I_{\mathrm{RN}} \times C N \times 2(C L+1) \times C K / 29\right.$ : specification conditions:

$$
\begin{aligned}
& \text { 1: } C N=160 ; C L=3 ; C K=1, \text { or } \\
& 2: C N=160 ; C L=2 ; C K=2, \text { or } \\
& 3: C N=160 ; C L=1 ; C K=4, \text { or } \\
& 4: C N=160 ; C L=0 ; C K=8 .
\end{aligned}
$$

note 9: Typical fractional compensation output current:
$I_{\text {PHP_F }}=I_{\text {RF }} \times$ FRD/128
specificication conditions:
FRD $=1$ to 7
note 10: Typical fractional compensation output current:
$I_{\text {PHP_F }}=I_{\text {RF }} \times$ FRD $\times(2(C L+1)+1) / 128$
specification condition:
FRD = 1 to $7 ; C L=1$
note 11: Typical fractional compensation output current: $I_{\text {PHI_F }}=I_{\text {RF }} \times$ FRD $\times 2(C L+1) \times$ CK $/ 128$
specification conditions:
1: $\mathrm{FRD}=1$ to $7 ; C L=1 ; C K=2$, or
2: $\mathrm{FRD}=1$ to $7 ; \mathrm{CL}=2 ; \mathrm{CK}=1$
note 12: The output current matching is measured when both (positive current and negative current) sections of the output charge pumps are on.
note 13: Periodically sampled; not $100 \%$ tested.
note 14: Limited supply voltage range 4.5 to 5.5 V
note 15: The compensation current specified does not include the leakage current of this output.


Fig. 8 Relative output current variation

AC CHARACTERISTICS
$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=2.9$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-40$ to $+70^{\circ} \mathrm{C}$; unless otherwise specified.
Symbol Parameter Conditions min. typ. max. unit

## Main divider

finM	Max input frequency		10	-	-	MHz
fiNM L	Max input frequency	note 14	20	-	-	MHz
VINM	Differental input signal		600	-	-	$\mathrm{mV}_{\text {pp }}$

## amplitude

$V_{\text {INM1 }}-V_{\text {INM2 }}$
$V_{C M R}$ Common mode range for $1 \quad-\quad V_{D D}-1 \quad V$
Vinm1, Vinm2
tPD $_{\text {Prop. delay from }} I_{\mathrm{NM} 1}, \mathrm{I}_{\mathrm{NM} 2} \quad-\quad$. 60 ns
$t_{P D L} \quad$ Prop. delay from $I_{N M 1}, I_{\text {NM2 }}$ note $14 \quad$ - $\quad$ - $\quad 30 \quad$ ns
to FB1, FB2
$t_{\text {MSM }} \quad$ Mark_space ratio for differential
35/65
input signal
$Z_{\text {INM }} \quad$ Minimum impedance
Resistive; note 13
Capacitive; note 13
Reference divider

fiNR	Max. input frequency		15	-	-	MHz
fiNR_L $^{\text {IN }}$	Max. input frequency	note 14	30	-	-	MHz
VINR	Input signal amplitude;		300	-	-	$\mathrm{mV}_{\text {pp }}$

$\mathrm{V}_{\mathrm{INR}} \quad$ Input signal amplitude;
AC coupled
$Z_{\text {INR }} \quad$ Min. Impedance
Resistive; note 13
Capacitive; note 13
Auxiliary divider
$\begin{array}{ll}f_{\text {INA_PE }} & \text { Max. input frequency when } \\ \text { prescaler enabled; } \mathrm{PA}=" 0 "\end{array}$
fina_PE_L Max. input frequency
note $14 \quad 70$
when prescaler disabled
$\mathrm{PA}=$ " 0 "
fINA_PD Max. input frequency
when prescaler disabled
$P A=" 1 "$
$f_{\text {INA_PD_L }}$ Max. input frequency
when prescaler disabled

$$
P A=" 1 "
$$

$\begin{array}{llll}\text { VINA } \\ \begin{array}{l}\text { Input signal amplitude; } \\ \text { AC coupled }\end{array} & 300 & - & \mathrm{mV}_{\mathrm{pp}}\end{array}$
ZInA Min. Impedance
Resistive; note 13
Capacitive; note 13
note 1430
$5 \quad-\quad-\quad \mathrm{k} \Omega$


## FEATURES

- Single chip synthesizer solution;
- Compatible with Philips Cellular Radio chipset;
- Fully programmable RF divider;
- IIC two-line serial bus interface;
- On chip crystal oscillator \TCXO buffer from 3 to 16 MHz ;
- 16 reference division ratios allowing 5 to 100 kHz channel spacing;
- Crystal frequency divide-by-8 output;
- On chip out-of-lock indication;
- Two VCO control outputs;
- Latched synthesizer alarm output;
- Status register including out-of-lock indication and power failure;
- Power down mode.

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC \& VCP	Supply voltage range	4.5	5.0	5.5	V
ICC + ICP	Supply current	-	13	-	mA
ICCpd	ICC in power down	-	2.5	-	mA
FREF	Phase comparator reference   frequency	5	-	100	KHz
RFin	RF frequency input	50	-	1100	MHz
Tamb	Operating temperature range	-40	-	85	$\circ \mathrm{C}$

## APPLICATIONS

- Cellular mobile radio (NMT, AMPS, TACS)
- Private Mobile Radio (PMR)
- Cordless telephones


## GENERAL DESCRIPTION

The UMA1014T is a low power universal synthesizer which has been designed for use in channelized radio communications. The IC is manufactured in bipolar technology and is designed to operate from 5 to 100 kHz channel spacing with an RF input of 50 to 1100 MHz . The channel is programmed via the standard IIC bus. A low power sensitive RF divider is integrated as well as a dead zone eliminated tri-state phase comparator. A low noise charge pump delivers 1 mA or $1 / 2 \mathrm{~mA}$ output current enabling better compromise between fast switching and loop bandwidth. A power down circuit allows the synthesizer to be idled.

ORDERING AND PACKAGE INFORMATION

Extended   Type   number	Package			
	Pins	Pin   Position	Material	Code
UMA1014T	16	SO16	plastic	SOT109A
UMA1014M	20	SSOP20	plastic	SOT266A



FIG. 1 Block diagram

FIG 2 PIN CONFIGURATION
PINNING


## LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

Symbol	Parameter	Min	Max	Unit
VCC	Supply voltage range	-0.3	7	V
Vi	Voltage range at pin i to ground	0	Vcc	V
Tstg	Storage temperature range	-55	+125	${ }^{\circ} \mathrm{C}$
Tamb	Operating ambient temperature range	-40	85	${ }^{\circ} \mathrm{C}$

## HANDLING

> Every pin withstands the ESD test in accordance with MIL-STD-883C class A (method $3015-2$ ). Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling Integrated Circuits.

## FUNCTIONAL DESCRIPTION

The UMA1014T is a low power frequency synthesizer for radio communications which operates in the 50 to 1100 MHz range. The device includes an oscillatorbuffer circuit, a reference divider, an RF main divider, a tri-state phase comparator, a charge pump and a control circuit which transfers the serial data into the four internal 8 bit-registers. The VCC supply feeds the logic part while VCP feeds the charge-pump only. Both supplies are +5 Volts $(+/-$ $10 \%$ ). The power down facility puts the synthesizer in the idle mode (all current supplies are switched off except in the control part). Any IIC transfer is permitted during this mode and all information in the registers is retained allowing fast power-up.

## MAIN DIVIDER.

The main divider is a fully programmable pulse swallow type counter. After a sensitive input amplifier ( $50 \mathrm{mV},-13 \mathrm{dBm}$ ), the RF signal is applied to a $31 / 32$ dual-modulus counter. The output is then used as the clock for the 5 -bit swallow counter $\mathrm{R}=(\mathrm{MD} 4, \ldots, \mathrm{MD} 0$ ) and the 13 bit main counter $\mathrm{N}=(\mathrm{MD17}, \ldots, \mathrm{MD5}$ ). The ratio is sent via the IIC bus into the registers $\mathrm{B}, \mathrm{C}$ and D. It is then buffered in a 18 -bit latch. The ratio in the divider chain is updated with this new information only after the least significant bit (D0) is received. This update is synchronized to the output of the divider in order to limit the phase error during small jumps of the synthesized frequency.

MAIN COUNTER								SWALIOW COUNTER		
: N								: R		
MD17	MD16	MD15		MD8	MD7		MD5	MD4		MD0
B1	B0	C7	...	C0	D7	...	D5	D4	...	D0
MSB										LSB

Division ratio in the main divider
The main divider can be programmed to any value between 2048 and 262143 (i.e. $2^{18-1}$ ). If a ratio X , which is less than 2048 , is sent to the divider, the ratio ( $\mathrm{X}+2048$ ) will be programmed. For switching between adjacent channels it is possible to program only register D allowing shorter IIC programming time.

## OSCILLATOR.

The oscillator is a common collector Colpitts type with external capacitive feedback. It has been designed to function also as a buffer when a TCXO or any clock is used. The oscillator has very small temperature drift and high voltage supply rejection. When acting as a buffer, no additional external components will be necessary.

## REFERENCE DIVIDER.

The reference divider is semi-programmable with 16 division ratios which are selected via the IIC bus. The programming uses bits A3 to A0 of register A as shown below. These ratios can be used with crystal frequencies from 3 to 16 MHz . All popular channel spacings can be obtained from a single crystal / TCXO frequency of 9.6 MHz .

A3	A2	A1	A0	reference	Channel spacing for
RD3	RD2	RD1	RD0	division ratio	9.6 MHz at OSCin
0	0	0	0	128	75 kHzz....
0	0	0	1	160	. 60 kHz
0	0	1	0	\%192...	\%. 50 kHz
0	0	1	1	240.	K. 40 kHz
0	1	0	0	256	\% 37.5 kHz
0	1	0	1	320	寿 30 kHz
0	1	1	0	384	¢. 25 kHz
0	1	1	1	480	20 kHz
1	0	0	0	512	18.75 kHz
1	0	0	1	640	\% 15 kHz
1	0	1	0	768	12.5 kHz
1	0	1	1	960	10 kHz
1	1	0	0	1024	9.375 kHz
1	1	0	1	\%. 1280	W. 7.5 kHz
1	1	1	0	\% 1536	W. $6,25 \mathrm{kHz} 2$
1	1	1	1	\% 1920	\%. 5 . ${ }_{\text {kHz }}$

reference divider programming

## PHASE COMPARATOR AND CHARGE PUMP.

The block diagram of the phase comparator and charge pump is shown below. The phase comparator is both a phase and frequency detector. It comprises dual flip-flops together with logic circuitry which eliminates the dead zone. When a phase error is detected, the UP or DOWN signal becomes high. It switches on the corresponding current generator which sources or sinks current as appropriate into the loop filter. When no phase error is detected, PCD goes tristate. The final tuning voltage of the VCO is provided by the loop filter. The charge pump current is programmable via the IIC bus. When bit IPCD (bit A5) is set to logic 1, the charge pump will deliver 1 mA . When IPCD is logic 0 , the charge pump will deliver 0.5 mA .

The phase comparator has a phase inverter logic input (PHI). This allows the use of inverted or non-inverted loop filter configurations. It is thus possible to use a passive loop filter which can offer high performance without an operational amplifier. The function of the phase comparator and charge pump is given in the table below and a typical transfer curve is shown overleaf.


FIG. 3 Phase comparator and charge pump

	PHI =0		(Passive loop filter)		PHI $=1$			(Active loop filter)	
	Fref<Fvar	Fref $>$ Fvar	Fref=Fvar	Fref<Fvar	Fref $>$ Fvar	Fref=Fvar			
	0	1	0	1	0	0			
DOWN	1	0	0	0	1	0			
Ipcd	-1 mA	1 mA	$<+/-5 \mathrm{nA}$	1 mA	-1 mA	$<+/-5 \mathrm{nA}$			

Operation of the phase comparator


FIG. 4 Gain of phase detector and charge pump

## OUT-OF-LOCK DETECTOR.

An out-of-lock detector using the UP and DOWN signals from the phase comparator is included on chip. Pin VCOA is an open collector output which is forced low during out-of-lock. This information is also available via the IIC bus in the status register. When the phase error (measured at the phase comparator) is greater than approximately 200 ns , an out-of-lock condition is immediately flagged. The flag is only released after 6 reference cycles of phase error less than 200 ns .


FIG. 5 Out-of-lock function

## MAIN CONTROL

The control part consists mainly of the IIC control interface and a set of four registers, A, B, C and D . The serial input data (SDA) is converted to 8 bit parallel words and stored in the appropriate registers. The data transmission to the synthesizer is executed in the burst mode with the following format:

$$
\text { //slave addr./subaddr./data1/data2/.../datan// ; n up to } 4 .
$$

Data byte 1 is written in the register indicated by the subaddress. An auto-increment circuit if enabled (AVI=1) then provides the correct addressing for the following data bytes. Since the length of the data burst is not fixed, it is possible to program the whole set of registers or just one. The registers are structured in such a way so that the burst, for normal operation, is kept as short as possible. The bits that are only programmed during the set-up (reference division ratio, power down, phase inversion and current on PCD) are stored in registers A and B.

In the slave address, six bits are fixed. The remaining two bits depend on the application.

1	1	0	0	0	1	SAAN	R/WN

Slave address
SAAN is the slave address select not. When SAA (pin 12) is high, then SAAN $=0$, and when pin 12 goes low SAAN $=1$. This allows the use of two UMA1014Ts on the same IIC bus with a different address. R/WN ( read/write not) should be set to 0 when writing to the synthesizer or set to 1 when reading the status register.

The subaddress includes the register pointer, and sets the flags related to the auto-increment (AVI) and the alarm disable (DI) :

$\mathbf{x}$	$\mathbf{x}$	$\mathbf{x}$	DI	AVI	$\mathbf{x}$	SB1	SB0

Subaddress

DI (Disable Interrupt); DI=1 disables SYA alarm
DI $=0$ allows SYA alarm
AVI (Auto Value AVI=1 enables auto-increment Increment); $\quad$ AVI $=0$ disables auto-increment SB1/SB0 point to the register where DATA1 will be written. (see table attached)
$\mathbf{x}$ means not used.

SB1	SB0	register   pointed
0	0	A
0	1	B
1	0	$C$
1	1	D

Pointer of the registers

## MAIN CONTROL (continued)

When the auto-increment is disabled ( $A V I=0$ ), the subaddress pointer will maintain the same value during the IIC bus transfer. All the databytes will then be written consecutively in the same register pointed to by the subaddress.

## STATUS REGISTER and synthesizer alarm.

When an out-of-lock condition or a power dip occurs, open collector output SYA (pin 15) is forced low and latched. The pin SYA will be only released after the status register is read via the IC bus.

The status register contains information as shown below:

0	0	0	OOL	0	LOOL	LPD	DI

where : OOL momentary out-of-lock
LOOL latched out-of-lock
LPD latched power dip
DI disable interrupt (of the last write cycle )

The IIC bus protocol to read this internal register is a single byte without subaddressing:
//slave address ( $\mathrm{R} / \mathrm{WN}=1$ )/status register (read)//

## Frequency synthesizer for cellular radio communication

## MAIN CONTROL (continued)

BIT ALLOCATION :

BIT ALLOCATION										
tegister.	pointer.	7	6	5	4	3	2	1	0	preset
A	00	PD	X	IPCD	X	RD3	RD2	RD1	RD0	00001110
B	01	1	0	1	PHI	VCOB	VCOA	MD17	MD16	10100101
C	10	MD15	MD14	MD13	MD12	MD11	MD10	MD9	MD8	00111000
D	11	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0	10000000


register	bit name	function		preset value
A	PD	power down	$\mathrm{PD}=0$ normal operation	0
	IPCD	programmable current in PCD	$\begin{gathered} \mathrm{IPCD}=1: 1 \mathrm{~mA} \\ \mathrm{IPCD}=0: 1 / 2 \mathrm{~mA} \end{gathered}$	0
	RD3...RD0	reference ratio	see table	1110; $\mathrm{r}=1536$
B	PHI	phase inverter	$\mathrm{PHI}=0$ passive loop filter	0
	VCOA	VCO switch A	set the pin 7	1
	VCOB	VCO switch B	set the pin 13	0
	MD17 MD16	bits 17 and 16	MSB of main divider ratio	01
C	MD15 ... MD8	bits $15 . .8$	main divider ratio	00111000
	MD7 ... MD0	bits $7 . . .0$	main divider ratio	$\begin{gathered} 10000000 \\ r=80000 \end{gathered}$

## Registers in UMA1014T

Frequency synthesizer for cellular radio communication

## CHARACTERISTICS

$\mathrm{Vcc}=4.5$ to $5.5 \mathrm{~V} ; 25$ deg; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit.
Supply (pins VCC \& VCP).	Supply voltage   range		4.5	-	5.5	V
VCC	Supply current		-	11.5	-	mA
ICC	Supply current	power down	-	2.5	-	mA
ICCpd	Supply voltage of   the charge pump		4.5	-	5.5	V
VCP	Supply current C-P	IPCD=0.5mA	-	1.4	-	mA
ICP	Power down	-	0.01	-	mA	
ICPpd	Supply current C-P					

RF dividers (pin RF)

FRF	Frequency range		50	-	1100	MHz
VRFrms	input voltage level	50 to 100 MHz	150	-	200	mV
		100 to 1100 MHz	50	-	150	mV
Rin	Input resistance	at 1 GHz	-	200	-	$\Omega$
		at 100 MHz	-	600	-	$\Omega$
Cin	Input Capacitance			-	2	-
RRF	Division ratios		2048	-	262143	-

* Note: Cin in parallel with Rin

Oscillator and reference divider (pins OSCin, OSCout)

FOSC	Oscillator frequency range		3	-	16	MHz
$\operatorname{VOSC}(\mathrm{rms})$	Input level sine wave		0.1	-	$\begin{gathered} \mathrm{VCC} \\ 2.8 \end{gathered}$	Vrms
$\operatorname{vosc}(p-p)$	Input level square wave		0.3	-	VCC	Vpp
Zoscout	ouqut impedance at OSCout pin		-	-	2	$\mathrm{K} \Omega$
$\mathrm{P}_{\text {REF }}$	Reference division ratio	see table	128	-	1920	-
$F$	Output frequency range		5	-	100	$\mathbf{K H z}$

Frequency synthesizer for cellular radio communication

## CHARACTERISTICS (continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit.
1/8 crystal frequency open collector output (pin FX8)						
$\mathrm{I}_{\mathrm{OL}}$	Current output low	$\mathrm{V}_{\text {LL }} \geq 0.6 \mathrm{~V}$	1	$\bullet$	-	mA
Phase comparator (pin PCD)						
$F_{P C D}$	Frequency range		5		100	$\mathbf{K H z}$
$\mathrm{I}_{P C D}$	Output current$V_{P C D}=2.5 \mathrm{~V}$	Bit $\mathrm{IPCD}=1$	0.8	1	1.3	mA
		Bit $\mathrm{PPCD}=0$	0.4	0.5	0.7	mA
$\mathrm{I}_{\text {PCDIk }}$	Ouqut leakage current		-5	+/-1	5	nA
$\mathrm{V}_{\text {PCD }}$	Output voltage		0.4		$\mathrm{V}_{C P}-0.5$	V

Serial clock input, serial data input (pins SDA, SCL)

Fclk	clock frequency		0	-	100	KHz
VIH	input voltage high		3	-	-	V
VIL	input voltage low		-	-	1.5	V
IIH	input current high		-	3	10	$\mu \mathrm{~A}$
IIL	input current low		-10	-5	-	$\mu \mathrm{A}$
CI	input capacitance		-	-	10	pF
IOL	SDA sink current	VOL $=0.4 \mathrm{~V}$	-	-	3	mA

Slave address select input (pin SAA) hardware power down input (pin HPDN)

VIH	input voltage high		3	-	-	V
VIL	input voltage low		-	-	0.4	V
IIH	input current high		-	-	0.1	$\mu \mathrm{~A}$
IIL	input current low		-10	-	-	$\mu \mathrm{A}$
VCO output switches (pins VCOA, VCOB), synthesizer alarm (pin SYA)						
VOL	output voltage low	note 1	-	-	0.4	V
IOL	sink current low		400	-	-	$\mu \mathrm{A}$

Note: 1. The pin VCOA is forced to zero state during out-of-lock

Frequency synthesizer for cellular radio communication


FIG. 6 RF Input Sensitivity


」カトロトVW

## 1. INTRODUCTION

This application note is intended as a guide to designing a phase locked loop based on the Philips UMA1014T frequency synthesizer integrated circuit. The UMA1014T is a low power single chip solution to frequency synthesis in the range 100 MHz to 1100 MHz and is primarily intended for use in analogue cellular radio applications.

The device comprises of the following functional blocks:

- $\quad$ RF dual-modulus prescaler.
- $\quad$ RF programmable divider.
- Reference oscillator.
- Reference programmable divider.
- Digital phase comparator.
- In-lock detection circuitry.
- $\quad \mathrm{I}^{2} \mathrm{C}$ serial programming interface.

In addition, the device features a power down mode for battery conservation and a XTAL/8 output for use with the Philips cellular radio chipset. The only major external component required is a voltage controlled oscillator (VCO).

This application report presents a design for a frequency synthesizer based on the UMA1014T suitable for the local oscillator for analogue cellular radio applications in the 900 MHz band. A PCB layout is suggested. For detailed device specifications of the UMA1014T refer to the data sheet (Reference 1).

## 2. FUNCTIONAL DESCRIPTION OF THE UMA1014T

The main functions are illustrated in a Phase Lock Loop (PLL) block diagram (Fig 1). A temperature controlled crystal oscillator (TCXO) provides a reference frequency to the PLL. A phase comparator uses a charge pump to send correction current pulses to a low pass filter. The filter integrates the pulses giving a voltage which controls a VCO. VCO and TCXO o/ps are divided down to a common comparison frequency to control the phase comparator. When the $\mathrm{VCO} \mathrm{o} / \mathrm{p}$ is on frequency the current pulses need only be large enough to cancel leakage currents thus maintaining the required voltage on the VCO.

### 2.1 Main Divider Chain

The UMA1014T contains a fully programmable main divider chain with an on-chip RF prescaler. The range of the main divider is from 2048 to 262143 , thus permitting all useful phase detector comparison frequencies over the full range of input frequencies.

### 2.2 Reference Divider Chain

Since current analogue systems have only a few different channel spacings, and in any system there is a restricted choice of reference crystal frequencies, the UMA1014T implements a reference divider with limited programmability. A total of 16 different division ratios can be selected which enables all the required phase detector comparison frequencies to be generated. These ratios are $128,160,192,240,256,320,384,480,512,640$, $768,960,1024,1280,1536$ and 1920.

In addition, there is one eighth of the crystal frequency available on an output for use with the Philips cellular radio chipset. This chipset uses a 1.2 MHz clock for the analogue and digital baseband circuits which is provided by the frequency synthesizer; the synthesizer thus requires the use of a 9.6 MHz crystal in this application.

### 2.3 Phase Detector

There are three requirements for the phase detector; firstly it should cover the full 360 degree phase range, secondly it should have good noise performance, and thirdly it should have good comparison frequency suppression. In order to meet these requirements, the use of a high gain digital phase comparator is beneficial. The comparator covers the complete phase range while introducing little noise owing to the high proportion of time that is spent in a high impedance state. Good reference rejection is achieved due to low leakage currents.

### 2.3.1 Digital Phase Comparator

The Digital Phase Comparator (PCD) has three states, sinking current, sourcing current and a high impedance tristate. The design is based on D type flip-flops and responds to the full 360 degree range of phase inputs. The D type flip-flops control two current sources arranged in a push pull configuration. PCD delivers a constant current while the main and reference dividers are out of phase, either sinking or sourcing (Fig 2). The current IPCD is programmed via the $I^{2} C$ interface to be either 1 mA or 0.5 mA . The phase comparator gain is hence:

$$
\begin{equation*}
P C D \operatorname{gain}=\frac{I P C D}{2 x_{\pi}} \mathrm{A} / \mathrm{rad} \tag{1}
\end{equation*}
$$

The phase comparator circuit incorporates a delay which eliminates a dead band that would otherwise be present in digital phase comparators. Dead bands are due to the finite time the current sources take to switch on. The design of the UMA1014T takes this into account by introducing the delay into the D type reset line. This gives the current sources enough time to respond. Both current sources are switched on for the duration of the delay thus cancelling each other at PCD.

## 3. INTERFACING TO THE UMA1014T

The UMA1014T provides two way communication to a controller, power down facility, programmable o/p ports, oscillator circuitry and PLL control. The UMA1014T is designed to have the minimum of external components to enable low cost, compact and reliable circuits.

### 3.1 Programming the UMA1014T

The UMA1014T is programmed via the Philips Standard I2C bus. To program information into the device registers, it is necessary to transmit first the device address, then the sub-address, and finally the data bytes for the register(s) (Reference 2). To read the status register, it is only necessary to transmit the address before reading back the value of the status register. When writing to the UMA1014T the sub-address allows writing to any single register, or a burst mode where all registers can be written in one $I^{2} \mathrm{C}$ transfer. The formats are thus:

Write to one register:


Write to several registers:


Read from status register:


The address byte, in addition to containing the R/WN bit as shown above, has one bit that reflects the inverse of the SAA pin logic level. This allows the addressing of up to two synthesizer circuits on the same $I^{2} \mathrm{C}$ bus.

The format for the address bus is as follows:
$1^{1} 1$ MSB of device address, transmitted first after START condition

The sub-address has the following format: (X means not used)
 register pointer ____auto-increment-0 (disable), 1 (enable) SYA interrupt - 1 (disable), 0 (enable)

The status register relates to the alarm of the ciruit as follows:

0	0	0	$00 L$	0	L00L	LPD	DI
Each bit is   active high.							


00 L	Momentarily out of lock,	L00L	Latched out of lock ( $\dagger$ ),
LPD	Latched power dip $(\dagger)$,	DI	Interupt disabled on SYA,

( $\dagger$ ) Reading status register clears these if the error condition has been removed.

Data is formatted as a series of registers as follows:

Reg/ ister	$\left\lvert\, \begin{array}{ll} \infty & 6 \\ \infty & \infty \\ - & 0 \end{array}\right.$	Bit Allocation								Preset
		7	6	5	4	3	2	1	0	
A	00	PD	0	IPCD	X	RD3	RD2	RD1	RD0	00001110
B	01	1	0	1	PHI	VCOB	VCOA	MD17	MD16	10101001
C	10	MD15	MD14	MD13	MD12	MD11	MD10	MD9	MD8	00111000
D	11	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0	10000000

Application report for the UMA1014T frequency synthesizer

Register map bit polarities:

0
PD Normal operation
IPCD Current in PCD $=0.5 \mathrm{~mA}$
RD3..0 Reference divider ratio MSB = RD3
PHI Passive loop (no inversion)
VCOA Set pin 7 low
VCOB Set pin 13 low
MD17.. 0 Main divider ratio MSB = MD17

1
Power down
$\mathrm{PCD}=1 \mathrm{~mA}$

Active loop (Phase inversion)
Set pin 7 high
Set pin 13 high

RD3..RD0 reference divider programming:

RD3	RD2	RD1	RD0	Reference Division Ratio
0	0	0	0	128
0	0	0	1	160
0	0	1	0	192
0	0	1	1	240
0	1	0	0	256
0	1	0	1	320
0	1	1	0	384
0	1	1	1	480
1	0	0	0	512
1	0	0	1	640
1	0	1	0	768
1	0	1	1	960
1	1	0	0	1024
1	1	0	1	1280
1	1	1	0	1536
1	1	1	1	1920

MD17..MD0 main divider value 2048 to 262143 (hex $\$ 800$ to $\$ 3 f f f f$ ).

## Application report for the UMA1014T frequency synthesizer

### 3.2 Hardware Control Inputs and Outputs

There are a number of status and control signals generated by the UMA1014T and also a hardware control input.

### 3.2.1 HPD Input

This input is used to disable the divider chains in order to save power when the synthesizer is not required to be operational. The power down state can be activated either by taking this pin low or by setting the power down bit in the $\mathrm{I}^{2} \mathrm{C}$ register to a ' 1 '. The input has an internal pull-up resistor so that normal operation will be obtained if the pin is left open circuit.

The power down state does not have any effect on the $\mathrm{I}^{2} \mathrm{C}$ circuitry, so that the device may still be addressed, and new information programmed into the registers even in the power down mode.

### 3.2.2 FX8 Output

This is an open collector output of one eighth of the crystal or TCXO input frequency. It is required for use with the Philips cellular radio chipset for AMPS and TACS systems; in this application the synthesizer should be used with a 9.6 MHz TCXO. The recommended pull-up load is 27 k Ohm .

### 3.2.3 SYA (Synthesizer Alarm) Output

This is an open collector output which is normally held high by an external 27 k Ohm load. Under error conditions, the synthesizer latches SYA low. The error conditions that set SYA low are a power dip or an out-of-lock condition. A power dip occurs when VCC supply falls below about 3.5 V . SYA is reset again by reading the status register, which contains the relevant alarm information. The SYA output can also be enabled and disabled via $\mathrm{I}^{2} \mathrm{C}$ as required.

The typical use of SYA would be to interrupt a microcontroller to warn of the error condition. As the output is open collector, it is possible to connect more than one device together directly; in this case the microcontroller would poll the relevant devices to locate the source of the error condition.

### 3.2.4 VCO0 and VCO1 Outputs

These are open collector outputs and are intended for enabling the power supply to VCOs or buffer stages so that these parts of the set can be powered down when not required to be operational. The outputs are controlled via $\mathrm{I}^{2} \mathrm{C}$. In addition, the VCO0 output is forced low during an out-of-lock condition; this output could therefore be used to disable the transmitter when this condition occurs to prevent causing interference. In this case, there may well be other parts of the circuitry also controlling the transmitter in the same way; as the VCO0 and VCO1 lines are open collector, they may be directly connected to other such controlling signals.

The VCO1 output is not affected by the hardware power down input or power down via $\mathrm{I}^{2} \mathrm{C}$. The VCO0 output will of course be forced low due to the out-of-lock condition resulting from a power down.

### 3.3 Crystal Oscillator

For analogue cellular radio applications, the UMA1014T will almost certainly be used with an external oscillator in order to provide the stability necessary to ensure operation within the specification. However, in case some other applications do not require such accuracy, provision has been made to form a crystal oscillator using the OSCIN and OSCOUT inputs (pins 1 and 2 respectively). The oscillator circuit should be of the Colpitts type and requires the addition of four capacitors to function. This is shown in Fig 3, with capacitor values suitable for operation at 9.6 MHz .

The internal biasing provides possible operation over the range 3 MHz to 16 MHz with the addition of a suitable crystal. It may be necessary to adjust the values of the capacitors slightly to guarantee oscillation under all conditions for frequencies significantly different to 9.6 MHz .

The crystal used in this circuit is parallel resonant, fundamental mode, with a load capacitance of 30 pF which is approximately the series combination of the three fixed capacitors in parallel with the trimmer capacitor.

## Application report for the UMA1014T frequency synthesizer

### 3.4 External Oscillator

When using an external oscillator such as a TCXO module, the output from the oscillator should be connected directly to the OSCin pin (pin 1). The OSCout pin (pin 2) should either be left open circuit, or could be used as a buffered version of the signal applied to OSCin.

### 3.5 RF Connection to Main Divider

The output from the VCO needs to be split between the synthesizer RF o/p and the UMA1014T main divider input. A matched splitter is used as shown in Fig 4. Ideally, the splitter should provide maximum isolation to the VCO to prevent pulling or modulation due to changes in the load impedance at the $\mathrm{RF} \mathrm{o} / \mathrm{p}$ and main divider input. The amount of isolation is limited by the required RF output power and the main divider input sensitivity. Emphasis is placed on the importance of providing sufficient isolation between the VCO and the main divider to keep spurious modulations at a minimum level.

### 3.6 Loop Filter Design

The correct design of the loop filter is of considerable importance to the optimum performance of the synthesizer. The filter should be designed so as to achieve the required compromise between noise performance and switching time. The actual circuit will therefore depend on the particular application. A procedure has been established to ensure quick and simple loop filter design. The method, based on first order approximations, provides a working solution without a need for computer simulation and modelling.

Design Procedure

For typical applications a passive loop is used thus removing the need for an operational amplifier. The following design is based on a second order low pass filter (Reference 3). Then, for applications requiring further reference breakthrough rejection, a third order is incorporated. The third order loop filter is used for circuits and measurements in this report.

## Application report for the UMA1014T frequency synthesizer

Loop parameters are first chosen, these are:

-	Radio frequency	RF
-	Comparison frequency	St
-	Switching time	MF
-	Minimum modulating frequency	Ko
-	VCO gain rad/Volt	Kd
-	Phase comparator gain Amps/rad	©
-	Phase margin	

Determine the loop bandwidth Fn from

$$
\begin{equation*}
\frac{3}{\text { switching time }}=F n \tag{2}
\end{equation*}
$$

Determine main divider ratio $N$ from $\quad N=R F / C F$
Determine angular velocity wn rads/sfrom wn $=2 \times n \times \mathrm{Fn}$

The loop filter circuit (Fig 5) has three time constants, these are:

$$
\begin{array}{ll}
\bullet & \mathrm{T} 1=\mathrm{C} 3 \times \mathrm{R} 2 \\
\bullet & \mathrm{~T} 2=\mathrm{R} 2 \times \mathrm{C} 1 \times \mathrm{C} 3 /(\mathrm{C} 3+\mathrm{C} 4) \\
\bullet & \mathrm{T} 3=\mathrm{C} 2 \times \mathrm{R} 1 \tag{6}
\end{array}
$$

The second order loop is designed by omitting R1 and C2 (T3) and uses the equations below:

$$
\begin{align*}
& T 2=\frac{1}{\frac{\operatorname{COS} \phi}{w n}-T a n \phi}  \tag{7}\\
& T 1=1 /\left(w n^{2} \times T 2\right)  \tag{8}\\
& C 3+C 1=K \sqrt{\frac{1+(w n \times T 1)^{2}}{1+(w n \times T 2)^{2}}} \tag{9}
\end{align*}
$$

$$
\begin{align*}
& w h e r e K=\frac{K d x K o}{N x w n^{2}}  \tag{10}\\
& C 1=\frac{T 2 x(C 3+C 1)}{T 1}  \tag{11}\\
& C 3=(C 3+C 1)-C 1  \tag{12}\\
& R 2=T 1 / C 3 \tag{13}
\end{align*}
$$

Measuring the reference spurs and comparing with a particular specification establishes if a third order is necessary.

If a further ' $A$ ' $d B$ of breakthrough suppression is needed to meet specification, then T 3 is included to make a third order filter. Note ' A ' should not be so large that $\mathrm{T} 3 \times 10>\mathrm{T}$. A good starting value for ' A ' is 20 dB .

$$
\begin{equation*}
T 3=\sqrt{\left(\frac{10^{(A / 20)}-1}{(2 x \Pi x F c)^{2}}\right)} \tag{14}
\end{equation*}
$$

T2 determines the loop stability and remains the same as for 2nd order loop.

A calculated value of closed loop bandwidth wnc is used. This is usually slightly less than wn so the switching time will be slightly longer than originally specified.

$$
\begin{align*}
w n c & =\frac{(T 2+T 3)}{T 2^{2}} \times \tan \phi x\left(\sqrt{1+\frac{4 \times T 2^{2}}{(2 x \tan \phi x(T 2+T 3))^{2}}}-1\right)  \tag{15}\\
T 1 & =\frac{1}{w n c^{2} x(T 2+T 3)} \tag{16}
\end{align*}
$$

$$
\begin{equation*}
C 3+C 1=K \sqrt{\frac{1+(w n c x T 1)^{2}}{\left(1-w n c^{2} \times T 2 \times T 3\right)^{2}+\frac{T 3+T 2}{T 1}}} \tag{17}
\end{equation*}
$$

## Application report for the UMA1014T frequency synthesizer

$$
\begin{aligned}
& \text { where } K=\frac{K o x K d}{N x w n c^{2}} \\
& C 1=\frac{(C 3+C 1) x T 2}{T 1} \\
& C 3=(C 3+C 1)-C 1
\end{aligned}
$$

$$
C 2=C 1 / 16
$$

$$
R 2=T 1 / C 3
$$

$$
\begin{equation*}
R 1=T 3 / C 2 \tag{23}
\end{equation*}
$$

For a successful filter it is important that $\mathrm{C} 3 \gg \mathrm{C} 1$ and $\mathrm{C} 1 \gg \mathrm{C} 2$.

### 3.6.1 Worked Example

As an example the design of the third order loop filter for the UMA1014T under the following conditions is shown below. This design on the PCAL1143-1 board suitable for ETACS transmit application. Switching time is set sightly shorter than expected to compensate for the reduction in the final loop bandwidth Fnc.

VCO frequency	$=888 \mathrm{MHz}$
VCO gain $\quad$ Ko	$=13 \mathrm{MHz} / \mathrm{V}$
Channel spacing	$=25 \mathrm{kHz}$ (with half channel offset)
Reference oscillator	$=9.6 \mathrm{MHz}$
Switching time	$=12 \mathrm{~ms}$ (for a requirement $<14 \mathrm{~ms}$ )
Min mod frequency	$=300 \mathrm{~Hz}$
Phase margin(degrees)	$=45$
Additional reference	
Rejection	$=20 \mathrm{~dB}$

In this example the phase comparator gain Kd chosen is $1 \mathrm{~mA} /$ cycle as opposed to 0.5 mA / cycle. In open environments a loop based on this is less susceptible to interference as capacitor values are higher. A comparison frequency of 12.5 kHz is chosen to allow for the half channel offset specified in ETACS.

The first order loop bandwidth Fn:

$$
\begin{equation*}
\frac{3}{12 \times 10^{3}}=250 \mathrm{~Hz} \quad \mathrm{wn}=2 x \Pi x F n=1570 \mathrm{rads} / \mathrm{s} \tag{2}
\end{equation*}
$$

The main divider ratio N :

$$
\begin{equation*}
\frac{888 \times 10^{6}}{12.5 \times 10^{3}}=71040 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
T 2=\frac{\frac{1}{\cos 45}-\tan 45}{1570}=2.64 \times 10^{-4} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\left.T 3=\sqrt{\left(\frac{10^{20 / 20}-1}{(2 x \Pi \times 12500)^{2}}\right.}\right)=3.82 \times 10^{-5} \tag{14}
\end{equation*}
$$

$$
w n c=\frac{\left(2.64 \times 10^{-4}+3.82 \times 10^{-5}\right) \times \tan 45}{\left(2.64 \times 10^{-4}\right)^{2}} x
$$

$$
\begin{equation*}
\left(\sqrt{1+\frac{4 \times\left(2.64 \times 10^{-4}\right)^{2}}{\left(2 \times \tan 45 \times\left(2.64 \times 10^{-4}+3.82 \times 10^{-5}\right)\right)^{2}}}-1\right)=1421 \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
T 1 \frac{1}{1421^{2} \times\left(2.64 \times 10^{-4}+3.82 \times 10^{-5}\right)}=1.64 \times 10^{-3} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
K=\frac{13 \times 10^{6} \times 10^{-3}}{71040 \times 1421^{2}}=9.04 \times 10^{-8} \tag{18}
\end{equation*}
$$

$$
C 1+C 3=K \sqrt{\left(1-\left(1421 \times 1.64 \times 10^{-3}\right)^{2}\right.} \frac{\left.1+1^{2} \times 2.64 \times 10^{-4} \times 3.82^{-5}\right)^{2}+\frac{3.82 \times 10^{-5}+2.64^{-4}}{1.64 \times 10^{-3}}}{}
$$

$$
=2.14 \times 10^{-7}
$$

$$
C 1=\frac{2.14 \times 10^{-7} \times 2.64 \times 10^{-4}}{1.64 \times 10^{-3}}=3.45 \times 10^{-8}
$$

$$
\begin{equation*}
C 3=2.14 \times 10^{-7}-3.45 \times 10^{-8}=1.8 \times 10^{-7} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
C 2=3.45 \times 10^{-8} / 16=2.15 \times 10^{-9} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
R 2=1.64 \times 10^{-3} / 1.8 \times 10^{-7}=9111 \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
R 1=3.82 \times 10^{-5} / 2.15 \times 10^{-9}=17767 \tag{23}
\end{equation*}
$$

Check C2 $\ll$ C1 $\ll$ C3.

Values chosen for filter components are:

$$
\begin{array}{llll}
\mathrm{C} 1=33 & \mathrm{nF} & \mathrm{R} 1=18 & \mathrm{k} \mathrm{Ohms} \\
\mathrm{C} 2=2.2 & \mathrm{nF} & \mathrm{R} 2=10 & \mathrm{k} \mathrm{Ohms} \\
\mathrm{C} 3=180 \mathrm{nF} & &
\end{array}
$$

### 3.7 PCB Layout Considerations

The circuit of the UMA1014T demonstration board (PCAL1143-1) is shown in Fig 6, with the layout shown in Fig 7. This PCB has a solid ground plane on one side (apart from isolated pads for non-grounded connections to leaded components). In addition, there are areas of ground plane on the surface mount side of the board to ensure satisfactory grounding of important components. There are a good number of plated-through holes connecting the two layers of ground plane. Normal RF design practices should of course be taken into account when laying out the circuit.

There are a number of particular points that should be borne in mind when considering the circuit and layout.

- The non-surface mount side of the board (if a 2 sided board is used) should be virtually solid ground plane to give good RF performance.
- The 5 V digital supply (VCC) should be well decoupled as close to the pin as possible, preferably with a large value capacitor (eg: 47 uF ) and in series with a small value resistor (eg: 12 Ohms ) from the 5 V line.
- The 5 V charge pump supply (VCP) should be decoupled separately from VCC but in a similar manner. Routing the 5 V supply under the IC is to be avoided.
- Incorporating a ground plane on the surface mount side of the PCB underneath the synthesizer helps isolate digital noise from the charge pump parts. This ground plane should be well connected with vias to the full ground plane.


## 4. TYPICAL PERFORMANCE

This section describes the typical performance obtainable with the UMA1014T with the circuit shown in Fig 6 and parameters listed in 3.6.1. The relevant performance criteria for a synthesizer are usually:

Close-in phase noise (ie: noise within the loop bandwidth).

Noise floor at an offset from the carrier.

Comparison breakthrough components.

Switching time.

It should be noted of course that these criteria can be traded off against each other to some extent to tailor the overall performance, and that the performance described here is only one compromise between the various criteria. In general, the choice of a low loop bandwidth will improve the comparison frequency breakthrough and will filter out more of the close-in phase noise, but will result in a longer switching time. The use of a higher order filter can improve comparison frequency breakthrough with little effect on the noise or switching time. The noise floor at offsets significantly higher than the loop bandwidth are determined completely by the VCO itself.

Plots of the close-in spectrum (span of 2 kHz ) and also a span of 50 kHz are shown in Figs 8 and 9 respectively for a carrier frequency of 888 MHz and a comparison frequency of 12.5 kHz . From Fig 8 we can see from the noise plateau that the loop bandwidth is around 270 Hz , and Fig 9 shows the spectrum analyser noise floor at offsets greater than about 15 kHz from the carrier with the first and second comparison frequency breakthrough component being visible at 12.5 kHz and 25 kHz from the carrier respectively.

Figure 10 shows switching waveforms for a frequency jump of 10 MHz . The top trace (labelled CH1) is the I 2 C transfer to the UMA1014T; the second (CH2) is the VCO control line. The third trace (CH3) is the VCOA output showing the out-of-lock condition. The fourth trace (CH4) is the RF output of the VCO mixed down to 0 Hz with a signal generator at the destination frequency. The VCO output is coupled to the mixer via an amplifier with 17 dB gain followed by a 10 dB attenuatur. This is to provide isolation to the VCO from the mixer.

The mixer output trace shows that the switching time is 13 m seconds, which is a little longer than the VCO control line trace appears to show. This is because observation of the VCO control line is not accurate due to the very high VCO gain ( $13 \mathrm{MHz} / \mathrm{V}$ ).

From Fig 10, we can see that the VCO control line has a single overshoot during switching; this shows that the loop is properly damped, so the phase margin is correct.

To summarise the performance of the circuit in Fig 6:
loop bandwidth
close-in noise $\quad-55 \mathrm{dBc} / \mathrm{Hz}$ at 200 Hz from carrier
VCO noise floor $\quad-113 \mathrm{dBc} / \mathrm{Hz}$ at 25 kHz from carrier
residual $\mathrm{fm} \quad<18 \mathrm{~Hz}$ rms, CCITT weighted
comparison frequency breakthrough - 65 dBc at 12.5 kHz
typical switching time
-82 dBc at 25 kHz
270 Hz
-
$<13 \mathrm{~m}$ seconds for 10 MHz jump to within 1 kHz of the destination frequency

## 5. CONCLUSIONS

Information regarding the use of the UMA1014T in a frequency synthesizer application has been presented. A methodology for determining the loop filter components has been described since the switching and noise performance of the complete circuit depends on a good filter design. The layout of the PCAL1143-1 demonstration board has been shown as an example PCB layout.

## 6. REFERENCES

1. UMA1014T, Initial Specification Data Sheet, September 1990.
2. N M W Oatley;

Application Information for the UMA1010T/UMA1012T, Philips Components Application Report MC090001.
3. Ulriche, L Rhode;

Digital PLL Frequency Synthesizers Theory and Design.
28/3/91.


Fig 1 PLL Circuit Block Diagram

Application report for the UMA1014T frequency synthesizer


Fig 2 Digital Phase Comparator Operation


Fig 3 Crystal Oscillator Circuit Diagram


Fig 4 RF Power Splitter Circuit Diagram


Fig 5 Loop Filter Circuit Diagram


Fig 6 Frequency Synthesizer Circuit using the UMA1014T
t00 L6NV/OOS

Application report for the UMA1014T frequency synthesizer


Fig 7 Board Layout for UMA1014T Frequency Synthesizer

Application report for the UMA1014T frequency synthesizer


Fig 8 Typical Carrier Spectrum - 2 kHzSpa -


Fig 9 Typical Carrier Spectrum - 50 kHz Span


Fig 10 Typical Switching Waveforms

## FEATURES

- Two fully programmable RF dividers up to 1.1 GHz
- Fully programmable reference divider up to 35 MHz
- $2: 1$ or $1: 1$ ratio of selectable reference frequencies
- Fast three-line serial bus interface
- Phase comparator gain adjustable via external resistor and/or software
- Programmable out-of-lock indication for both synthesizers
- On-chip voltage double
- Low current from 3 V supply
- Separate power-down mode for each synthesizer
- Up to 4 open-drain output ports.


## GENERAL DESCRIPTION

The UMA1015M is a low-power dual frequency synthesizer for radio communications which operates in the 400 to 1100 MHz frequency range. Each synthesizer consists of a fully programmable main divider, a phase and frequency detector and a charge pump. There is a fully programmable reference divider common to both synthesizers which operates up to 35 MHz . The device is programmed via a 3-wire serial bus which operates up to 10 MHz . The charge pump currents (gains) are fixed by an external resistance at pin 20 ( $\mathrm{I}_{\text {SET }}$ ). The BiCMOS device is designed to operate from 2.6 ( 3 Ni -Cd cells) to 5.5 V at low current. The charge pump supply can be provided by external source or on-chip voltage doubler. Each synthesizer can be powered-down independently via the serial bus to save current. It is also possible to power-down the device via the HPD input (pin 5).

## APPLICATIONS

- Cordless telephone
- Hand-held mobile radio.


## QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	digital supply voltage		2.6	-	5.5	V
$\mathrm{V}_{\mathrm{CC}}$	charge pump supply voltage	external supply; doubler disabled	2.6	-	5.5	V
$\mathrm{V}_{\mathrm{CCva}}$	charge pump supply from voltage doubler	doubler enabled	-	$2 \mathrm{~V}_{\mathrm{DD} 1}-0.6$	6.0	V
$\begin{aligned} & \mathrm{I}_{\mathrm{DDO} 1}+\mathrm{I}_{\mathrm{DDO} 2}+ \\ & \mathrm{I}_{\mathrm{CCO}} \end{aligned}$	operating supply current	both synthesizers ON; doubler disabled; $V_{D D 1}=5.5 \mathrm{~V}$	-	9.6	-	mA
$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{DD1pd}}+\mathrm{I}_{\mathrm{DD} 2 \mathrm{pd}}+ \\ \mathrm{I}_{\mathrm{CCpd}} \\ \hline \end{array}$	current in power-down mode per supply	doubler disabled; $V_{D D 1}=5.5 \mathrm{~V}$	-	0.01	-	mA
IDD1pd	current in power-down mode from supply $V_{D D}$	doubler enabled; $V_{D D 1}=3 V$	-	0.15	-	mA
$\mathrm{ffRA}, \mathrm{f}_{\mathrm{RI}}$	RF input frequency for each synthesizer	,	400	-	1100	MHz
$\mathrm{f}_{\text {XTALIN }}$	crystal input frequency		3	-	35	MHz
$\mathrm{f}_{\text {ref }}$	phase comparator frequency	$\begin{aligned} & \mathrm{RF}=400 \text { to } 1100 \mathrm{MHz} ; \\ & \mathrm{f}_{\mathrm{XTAL}}=3 \text { to } 35 \mathrm{MHz} \end{aligned}$	8.5	-	375	kHz
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-20	-	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb(ext) }}$	extended operating ambient temperature	$\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}<4.5 \mathrm{~V}$	-30	-	+85	${ }^{\circ} \mathrm{C}$

## Low-power dual frequency synthesizer for radio

 communicationsORDERING INFORMATION

EXTENDED TYPE   NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
UMA1015M	20	SSOP20	plastic	SOT266A



MKA407.2

Fig. 1 Block diagram.

## Low-power dual frequency synthesizer for radio communications

PINNING

SYMBOL	PIN	DESCRIPTION
P1	1	output Port 1
P2	2	output Port 2
CPA	3	charge-pump output synthesizer A
V $_{\text {DD1 }}$	4	digital supply voltage 1 (2.7 to 5.5 V)
HPD	5	hardware power-down   (input LOW = power-down)
RFA	6	RF input synthesizer A
DGND	7	digital ground
fXTALIN	8	common reference frequency input   from TCXO
P3	9	output Port 3
fXTALO 10	10 buffered output of f fXAL signal	
CLK	11	programming bus clock input
DATA	12	programming bus data input
$\overline{\text { E }}$	13	programming bus enable input (active   LOW)
V $_{\text {DD2 }}$	14	digital supply voltage 2 (2.7 to 5.5 V)
RFB	15	RF input synthesizer B
AGND	16	analog ground to charge pumps
CPB	17	charge pump output synthesizer B
VCC	18	analog supply to charge pump;   external or voltage doubler output   $(2.7$ to 5.5 V)
PO/OOL	19	Port output 0 / out-of-lock output
ISET 20	regulator pin to set charge-pump   currents	

## FUNCTIONAL DESCRIPTION

## Main dividers

Each synthesizer has a fully programmable 17-bit main divider. The RF input drives a pre-amplifier to provide the clock to the first divider bit. The pre-amplifier has a high input impedance, dominated by pin and pad capacitance. The circuit operates with signal levels from below 50 mV (RMS) up to 250 mV (RMS), and at frequencies greater than 1.1 GHz . The high frequency sections of the divider are implemented using bipolar transistors, while the slower section uses CMOS technology. The range of division ratios ( 512 to 131071) allows from 8.4 kHz phase comparison for 1.1 GHz RF, to 780 kHz phase comparison for 400 MHz RF.


## Reference divider

There is a common fully programmable 12-bit reference divider for the two synthesizers. The input fXTALIN drives a pre-amplifier to provide the clock input for the reference divider. This clock signal is also buffered and output on pin $\mathrm{f}_{\text {XTALO }}$ (open drain). An extra divide-by-2 block allows a reference frequency from synthesizer $B$ to be half that of synthesizer A. This feature is selectable using the program bit SR. If the programmed reference divider ratio is R then the ratio for each synthesizer is as given in Table 1.

The range for the division ratio R is 8 to 4095 . Opposite edges of the divider output are used to drive the phase detectors to ensure that active edges arrive at the phase detectors of each synthesizer at different times. This minimizes the potential for interference between the
charge pumps of each loop. The reference divider consists of CMOS devices operating beyond 35 MHz .

Table 1 Synthesizer ratio.

SR	SYNTHESIZER   A	SYNTHESIZER   B
0	$R$	$R$
1	$R$	$2 R$

## Phase comparators

For each synthesizer, the outputs of the main and reference dividers drive a phase comparator where a charge pump produces phase error current pulses for integration in an external loop filter. The charge pump current is set by an external resistance RSET at pin ISET, where a temperature-independent voltage of 1.2 V is generated. RSET should be between $12 \mathrm{k} \Omega$ and $60 \mathrm{k} \Omega$ (to give an $I_{\text {SET }}$ of $100 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A}$ respectively). The charge-pump current, $I_{C P}$, can be programmed to be either $\left(12 \times I_{\text {SET }}\right)$ or $\left(24 \times I_{\text {SET }}\right)$ with the maximum being 2.4 mA . The dead zone, caused by finite switching of current pulses, is cancelled by an internal delay in the phase detector thus giving improved linearity. The charge pump has a separate supply, $\mathrm{V}_{\mathrm{CC}}$, which helps to reduce the interference on the charge pump output from other parts of the circuit. Also, $\mathrm{V}_{\mathrm{CC}}$ can be higher than $\mathrm{V}_{\mathrm{DD} 1}$ if a wider range on the VCO input is required.

## Voltage doubler

If required, there is a voltage doubler on-chip to supply the charge pumps at a higher level than the nominal available supply. The doubler operates from the digital supply $\mathrm{V}_{\mathrm{DDD} 1}$, and has a maximum output of 6 V (internally limited). An external capacitor is required on pin $V_{C C}$ for smoothing, the capacitor required to develop the extra voltage is integrated on-chip. To minimize the noise being introduced to the charge pump output from the voltage doubler, the doubler clock is suppressed (provided both loops are in-lock) for the short time that the charge pumps are active. The doubler clock (RF/64) is derived from whichever main divider is operating (synthesizer A has priority). While both synthesizers are powered down (and the doubler is enabled), the doubler clock is supplied by a low-current internal oscillator. The doubler can be disabled by programming the bit VDON to logic 0 , in order to allow an external charge pump supply to be used.

## Out-of-lock indication/output ports

There is a lock detector on-chip for each synthesizer. The lock condition of each, or both loops, is output via an open-drain transistor which drives the pin P0/OOL (when out-of-lock, the transistor is turned on and therefore the output is forced LOW). The lock condition output is software selectable (see Table 4). An out-of-lock condition is flagged when the phase error is greater than $T_{00 L}$, the value of which is approximately equal to 80 cycles of the relevant RF input. The out-of-lock flag is only released after 8 consecutive reference cycles where the phase error is less than $T_{00 L}$. The out-of-lock function can be disabled, via the serial bus, and the pin PO/OOL can be used as an output port. Three other port outputs P1, P2 and P3 (open-drain transistors) are also available.

## Serial programming bus

A simple 3-line unidirectional serial bus is used to program the circuit. The 3 lines are DATA, CLK and $\bar{E}$ (enable). The data sent to the device is loaded in bursts framed by $\overline{\mathrm{E}}$. Programming clock edges are ignored until $\bar{E}$ goes active LOW. The programmed information is loaded into the addressed latch when $\bar{E}$ returns inactive HIGH. This is allowed when CLK is in either state without causing any consequences to the register data. Only the last 21 bits serially clocked into the device are retained within the programming register. Additional leading bits are ignored, and no check is made on the number of clock pulses. The fully static CMOS design uses virtually no current when the bus is inactive. It can always capture new programming data even during power-down of both synthesizers.

## Data format

Data is entered with the most significant bit first. The leading bits make up the data field, while the trailing four bits are an address field. The address bits are decoded on the rising edge of $\bar{E}$. This produces an internal load pulse to store the data in the addressed latch. To avoid erroneous divider ratios, the pulse is inhibited during the period when data is read by the frequency dividers. This condition is guaranteed by respecting a minimum $\overline{\mathrm{E}}$ pulse width after data transfer. The data format and register bit allocations are shown in Table 2.

Table 2 Bit allocation.

FIRST	REGISTER BIT ALLOCATION																			LAST
p1	p2	p3	p4	p5	p6	p7	p8	p9	p10	p11	p12	p13	p14	p15	p16	p17	p18	p19	p20	p21
dt16	dt15	dt14	dt13	dt12	DATA FIELD							dt4	dt3	dt2	dt1	dt0	ADDRESS			
X	X	VDON	PO	OLA	OLB	CRA	CRB	X	X	sPDA	sPDB	P3	P2	P1	X	X	0	0	0	1
MA16	SYNTHESIZER A MAIN DIVIDER COEFFICIENT															MA0	0	1	0	0
0	0	0	0	SR	R11	REFERENCE DIVIDER COEFFICIENT										R0	0	1	0	1
MB16	SYNTHESIZER B MAIN DIVIDER COEFFICIENT															MB0	0	1	1	0
RESERVED FOR TEST																	0	0	0	0

Table 3 Bit allocation description.

SYMBOL	DESCRIPTION
sPDA, sPDB	software power-down for synthesizers A and B (0 = power-down)
P3, P2, P1 and P0	bits output to pins $1,2,9$ and $19(1=$ high impedance $)$
VDON	voltage doubler enable $(1=$ doubler enabled $)$
OLA, OLB	out-of-lock select; Selects signal output to pin 19 (see Table 4)
CRA, CRB	charge pump A/B current to I IET ratio select (see Table 5)
SR	reference frequency ratio select (see Table 6)

Table 4 Out-of-lock select.

OLA	OLB	
0	0	PO
0	1	lock status of loop B; OOLB
1	0	lock status of loop A; OOLA AT PIN 19
1	1	logic OR function of loops A and B

Table 5 Charge pump current ratio.

CRA/CRB	CURRENT AT PUMP
0	$I_{\mathrm{CP}}=12 \times \mathrm{I}_{\text {SET }}$
1	$\mathrm{I}_{\mathrm{CP}}=24 \times \mathrm{I}_{\mathrm{SET}}$

Table 6 Reference division ratio.

SR	RATIO A	RATIO B
0	$R$	$R$
1	$R$	$2 R$

## Pow 6 fr-down modes

The device can be powered down via pin HPD (active LOW = power-down) or via the serial bus (bits SPDA and SPDB, logic $0=$ power-down). When only one synthesizer is powered down, the functions common to both will be maintained. When both synthesizers are switched off, only the voltage doubler (if enabled) will remain active drawing a reduced current. An internal oscillator will drive the doubler in this situation. If both synthesizers have been in a power-down condition, then when one or both synthesizers are reactivated, the reference and main dividers restart in such a way as to avoid large random phase errors at the phase comparator.

## LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	DC range of digital power supply voltage with respect   to DGND	-0.3	+6.0	V
$\mathrm{~V}_{\mathrm{CC}}$	DC charge pump supply voltage with respect to AGND	-0.3	+6.0	V
$\Delta \mathrm{~V}_{\mathrm{CC} \text {-DDD }}$	difference in voltage between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{DDD1} 1}, \mathrm{~V}_{\mathrm{DDD} 2}$	-0.3	+6.0	V
$\mathrm{~V}_{\mathrm{n}}$	DC voltage at pins $1,2,5,6,8$ to 15, 19 and 20 with   respect to DGND	-0.3	$\mathrm{~V}_{\mathrm{DD} 1}+0.3$	V
$\mathrm{~V}_{3,17}$	DC voltage at pins 3 and 17 with respect to AGND	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
$\Delta \mathrm{~V}_{\mathrm{GND}}$	difference in voltage between AGND and DGND   (these pins should be connected together)	-0.3	+0.3	V
$\mathrm{~T}_{\text {stg }}$	storage temperature	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature	-20	+70	${ }^{\circ} \mathrm{C}$

## HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

## Low-power dual frequency synthesizer for radio communications

## CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V ; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply; ( $\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$ and $\mathrm{V}_{\mathrm{Cc}}$ ) voltage doubler disabled, external supply on $\mathrm{V}_{\mathrm{CC}}$						
$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	digital supply voltage		2.6	-	5.5	V
$\mathrm{I}_{\mathrm{DD} 1}+\mathrm{I}_{\mathrm{DD2}}$	total digital supply current from $V_{D D 1}$ and $V_{D D 2}$	$\mathrm{f}_{\mathrm{XTAL}}=12.8 \mathrm{MHz} ;$ both synthesizers on; $V_{D D 1}=V_{D D 2}=3 \mathrm{~V}$	-	8.5	-	mA
		$\mathrm{f}_{\mathrm{XTAL}}=12.8 \mathrm{MHz}$; both synthesizers on; $\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V}$	-	-	12.5	mA
$I_{\text {DDpda }}$, lodpdb	total digital supply current from $V_{D D 1}$ and $V_{D D 2}$ with one synthesizer in power-down mode	$\mathrm{f}_{\text {XTAL }}=12.8 \mathrm{MHz}$; one synthesizer powered down; $V_{D D 1}=V_{D D 2}=3 \mathrm{~V}$	-	5.5	-	mA
		$\mathrm{f}_{\mathrm{XTAL}}=12.8 \mathrm{MHz}$; one synthesizer powered down; $\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5.5 \mathrm{~V}$	-	-	7.5	mA
$\mathrm{I}_{\mathrm{DDpd}}$	digital supply current in power-down mode	both synthesizers powered down; $\mathrm{V}_{\mathrm{HPD}}=0 \mathrm{~V}$	-	-	60	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{CC}}$	charge pump supply voltage		2.6	-	5.5	V
$I_{\text {cc }}$	charge pump supply current	both synthesizers on and in lock; $\mathrm{f}_{\text {ref }}=12.5 \mathrm{kHz}$	-	-	25	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{Ccpd}}$	charge pump supply current in power-down mode	both synthesizers powered down	-	-	25	$\mu \mathrm{A}$
Voltage doubler enabled						
$\mathrm{I}_{\mathrm{DD}}$	total digital supply current from $V_{D D 1}$ and $V_{D D 2}$	$\mathrm{f}_{\mathrm{XTAL}}=12.8 \mathrm{MHz}$; both synthesizers on and in lock; $\begin{aligned} & \mathrm{V}_{\mathrm{DD} 1}=3 \mathrm{~V} ; \\ & \mathrm{f}_{\text {doubler }}=16 \mathrm{MHz} \end{aligned}$	-	8.5	12	mA
$\mathrm{I}_{\text {DDpd }}$	total digital supply current in power-down mode from $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$	both synthesizers powered down; $\mathrm{V}_{\mathrm{DD} 1}=3 \mathrm{~V}$; $V_{\mathrm{HPD}}=0 \mathrm{~V}$	-	0.15	0.3	mA
$\mathrm{V}_{\mathrm{CC}}$	charge pump supply voltage	DC current drawn from $\mathrm{V}_{\mathrm{CC}}=50 \mu \mathrm{~A}$	$\begin{aligned} & \hline 2 V_{\mathrm{DD} 1} \\ & -1.2 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 2 V_{\mathrm{DD1} 1} \\ -0.6 \\ \hline \end{array}$	6.0	V
$\mathrm{V}_{\mathrm{DD} \text { (max) }}$	maximum digital supply voltage before internal voltage doubler limitation	DC current drawn from $V_{C C}=50 \mu \mathrm{~A}$	2.9	-	-	V
RF main divider input; RFA and RFB						
$\mathrm{f}_{\mathrm{RF}}$	RF input frequency		400	-	1100	MHz
$\mathrm{V}_{\mathrm{RF} \text { (rms) }}$	RF input signal level (RMS value) (AC coupled)	$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{S}}=50 \Omega ; \\ \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=2.6 \text { to } 3.5 \mathrm{~V} \\ \hline \end{array}$	50	-	250	mV
		$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{s}}=50 \Omega ; \\ \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.5 \text { to } 5.5 \mathrm{~V} \\ \hline \end{array}$	100	-	250	mV
$\mathrm{Z}_{1}$	input impedance (real part)	$\mathrm{f}_{\mathrm{RF}}=1 \mathrm{GHz}$; indicative, not tested	-	300	-	$\Omega$


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{C}_{1}$	typical pin input capacitance	indicative, not tested	-	1	-	pF
$\mathrm{R}_{\mathrm{pm}}$	principle main divider ratio		512	-	131071	
Reference divider input; $\mathrm{f}_{\text {XTALIN }}$						
$\mathrm{f}_{\text {ref }}$	reference input frequency from crystal		3	-	35	MHz
$\mathrm{V}_{\text {XTALIN(rms) }}$	sinusoidal input signal level (RMS value)		50	-	500	mV
$Z_{1}$	Input Impedance (real part)	$\mathrm{f}_{\text {XTALIN }}=12.8 \mathrm{MHz}$; indicative, not tested	-	10	-	$\mathrm{k} \Omega$
$\mathrm{C}_{1}$	typical pin input capacitance	indicative, not tested	-	1	-	pF
$\mathrm{R}_{\mathrm{rd}}$	reference divider ratio		8	-	4095	

Charge pump current setting resistor input; ISET

$\mathrm{V}_{\text {SET }}$	voltage output on pin ISET	RSET $=12 \mathrm{k} \Omega$ to $60 \mathrm{k} \Omega$	-	1.2	-	V
Charge pump outputs; CPA and CPB						
$\mathrm{I}_{\mathrm{CP}}$	charge pump sink or source current	$\begin{aligned} & \hline \mathrm{RSET}=15 \mathrm{k} \Omega ; \\ & \mathrm{CRA} / \mathrm{CRB}=1 ; \\ & \mathrm{I}_{\mathrm{cp}}=\mathrm{I}_{\mathrm{SET}} \times 24 ; \\ & \mathrm{V}_{\mathrm{cp}}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V} \\ & \hline \end{aligned}$	1.4	1.9	2.4	mA
		$\begin{array}{\|l} \hline \mathrm{RSET}=15 \mathrm{k} \Omega ; \\ \mathrm{CRA} / \mathrm{CRB}=0 ; \\ \mathrm{I}_{\mathrm{cp}}=\mathrm{I}_{\mathrm{SET}} \times 12 ; \\ \mathrm{V}_{\mathrm{cp}}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V} \\ \hline \end{array}$	0.7	0.96	1.2	mA
lıI	charge pump off leakage current	$\mathrm{V}_{\mathrm{cp}}=1 / 2 \mathrm{~V}_{\mathrm{Cc}}$	-5	-	+5	nA
Logic input signal levels; DATA, CLK, $\overline{\mathrm{E}}$ and HPD						
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage	at logic 1	$0.7 \mathrm{~V}_{\mathrm{DD} 1}$	-	$\mathrm{V}_{\mathrm{DD} 1}+0.3$	V
$\mathrm{V}_{\text {IL }}$	LOW level input voltage	at logic 0	-0.3	-	$0.3 \mathrm{~V}_{\text {DD1 }}$	V
$\mathrm{I}_{\text {bias }}$	input bias currents	at logic 1 or 0	-5	-	+5	$\mu \mathrm{A}$
$\mathrm{C}_{1}$	input capacitance	indicative, not tested	-	1	-	pF
Port outputs / Out-of-lock; P0/OOL, P1, P2, P3 and fxtalo - open drain outputs						
$\mathrm{V}_{\mathrm{OL}}$	LOW level output voltage	$\mathrm{I}_{\text {sink }}=0.4 \mathrm{~mA}$	-	-	0.4	V

## SERIAL BUS TIMING CHARACTERISTICS

$V_{D D D 1}=3 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Serial programming clock; CLK					
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	-	10	40	ns
$\mathrm{t}_{\mathrm{cy}}$	clock period	100	-	-	ns
Enable programming; $\overline{\mathbf{E}}$					
$\mathrm{t}_{\mathrm{dr}}$	delay to rising clock edge	40	-	-	ns
$\mathrm{t}_{\mathrm{df}}$	delay from last falling clock edge	20	-	-	ns
$\mathrm{t}_{\mathrm{W}}$	minimum inactive pulse width	2000	-	-	ns
tsu;E	enable set-up time to next clock edge	20	-	-	ns
Register serial input data; DATA					
tSU;CLK	input data to clock set-up time	20	-	-	ns
thd;CLK	input data to clock hold time	20	-	-	ns

[^5]
## Low-power dual frequency synthesizer for radio communications

APPLICATION INFORMATION


Fig. 4 Typical application block diagram.


Fig. 5 Typical CT1 application.

## Frequency synthesizer for radio communication equipment

## FEATURES

- RF input frequencies to 1 GHz
- Fully programmable RF divider
- Three-line serial bus interface
- On-chip 3 to 16 MHz crystal oscillator
- Mask programmable +2 to +31 reference divider ratio
- Up to 1 MHz channel spacing
- Crystal frequency buffered output
- Dual register architecture for fast Tx/Rx switching in TDD single synthesizer systems
- Phase detector compensated for supply and temperature variations
- Power-down mode


## APPLICATIONS

- 900 MHz cordless telephones
- Portable battery-powered radio equipment


## GENERAL DESCRIPTION

The UMA1016xT is a low power synthesizer for radio communications. Manufactured in bipolar technology, it is designed for a 70 to 1000 kHz channel spacing in the 500 to 1000 MHz band. The channel is programmed via a 3-wire serial bus. The internal dual register architecture allows a single synthesizer to be used in TDD systems. Fast switching between transmit and receive frequencies is achieved without the need for bus overhead. It also incorporates a sensitive, low power RF divider and a dead-zone-eliminated 3-state phase comparator. A power-down mode enables the circuit to be idled.

## QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
$\mathrm{V}_{\text {cc }}$	supply voltage		4.5	-	5.5	V
$\mathrm{V}_{\mathrm{DD}}$	supply voltage		4.5	-	5.5	V
$I_{C C}+I_{D D}$	supply current		-	10	-	mA
$\mathrm{l}_{\text {co-pd }}$	$\mathrm{I}_{\text {cc }}$ in power-down		-	0.8	-	mA
$\mathrm{f}_{\text {ret }}$	reference frequency		70	250	1000	kHz
$R F_{1}$	RF input frequency		500	-	1000	MHz
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range		-20	-	+70	${ }^{\circ} \mathrm{C}$

## ORDERING INFORMATION

EXTENDED   TYPE   NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
UMA1016AT	16	SO	plastic	SOT109A
UMA1016xT	16	SO	plastic	SOT109A

## Notes to the Ordering Information

1 UMA1016AT has a Reference Division Factor of 27.
2 UMA1016xT is a customized version.

Frequency synthesizer for radio communication equipment


Fig. 1 Block diagram.

## FUNCTIONAL DESCRIPTION

## General

The UMA1016xT is a low power synthesizer for radio communications in the range 500 to 1000 MHz . It includes an oscillator circuit, reference divider, RF divider, 3 -state phase and frequency comparator, charge pump and main control circuit for the transfer of serial data into two internal registers.
$V_{D D}$ supplies power to the digital circuits while $V_{C C}$ powers the charge pump. $V_{D D}$ and $V_{C C}$ are nominally 5 V but will operate in the range 4.5 V to 5.5 V .

Reduced noise coupling is facilitated by separate digital and analog ground pins which must always be externally connected to the same DC potential to prevent the flow of large currents across the die.

The synthesizer is placed in idle mode during power-down but the oscillator and buffer remain operative and may be used as a clock for system timing.

## Main Divider

The main divider is a fully programmable pulse-swallow type. Following a sensitive ( 50 mV , -13 dBm ) input amplifier, the RF signal is applied to a 13-bit divider (MD13,...MD1). The division ratio is provided via the serial bus to two 13-bit latches, corresponding to transmit and receive frequencies. The serial programming register is written to under processor control, independently of divider operation. This removes difficulty if using a low data bus transmission speed. The new ratio is transferred to the appropriate latch when the programming enable signal (EN) returns HIGH.

The last register bit (PBO) is used to determine whether the new value is loaded into the transmit ( $\mathrm{PBO}=1$ ) or receive ( $\mathrm{PBO}=0$ ) frequency latch. To avoid spurious phase changes, the divider incorporates the new ratio only at the end of the on-going reference period. The minimum division ratio is 512 . One reference cycle is required to update a new ratio. Internal power-on occurs rapidly.

## Oscillator

External capacitive feedback is applied to the common collector Colpitts oscillator which has high voltage supply rejection and negligible temperature drift. It is designed to function as an input buffer without the need for external components when a TCXO or other clock is used. A separate output buffer, which remains active during power-down (HPDN taken LOW), provides a TTL-compatible signal to drive external logic circuits (REFCK).

## Reference Divider

The reference divider has a fixed divider ratio set by metal masking between 2 and 31. For example, a 4 MHz crystal connected to the oscillator and a +16 ratio allows a channel spacing of 250 kHz . Other frequencies and ratios are possible.

## Phase Comparator

The phase comparator combines a phase and frequency detector and charge pump (Fig. 3). The charge pump current is internally fixed and determined for fast switching. It is compensated against power supply and temperature variation.
The detector is assembled from dual D-type flipflops which, together with feedback, remove the "dead" zone. Upon the detection of a phase error, either UP or DO go HIGH. This
gates the appropriate current generator to source or sink 1.75 mA at the output pin. When no phase error is detected, CP becomes 3 -state. The tuning voltage of the VCO is established from the sum of the current pulses into the loop filter.
A simple passive loop filter may be used to offer high performance without requiring an operational-amp. The phase comparator function is summarized in Table 2.

## Main Control Interface

The programming control interface permits access to two internal latches, denoted Tx and Rx. The serial input bits on DATA, entered MSB first, are converted to a parallel word and stored in the appropriate latch under the control of the last entered register bit (PBO). When this is set HIGH, data serially fed to the register is loaded into the transmit (Tx) latch; when PBO is LOW, the data is transferred to the receive latch (Rx).

The data sent to the synthesizer is loaded in bursts framed by the signal EN. Programming clock edges, together with their appropriate data bits, are ignored until EN becomes active (LOW). The internal latches are updated with the latest programming data when EN returns inactive (HIGH). Only the last 15 bits serially clocked into the device are retained within the programming register. One extra shift register bit (PB7) can be internally added via metal masking to allow direct software compatibility with a 7-bit swallow counter and a 64/65 dual-modulus prescaler. No check is made on the number of clock pulses received during the time that programming is enabled. EN going HIGH while CLOCK is still

PINNING

PIN	DESIGNATION	DESCRIPTION
1	RO1	Oscillator input or TCXO input
2	RO2	oscillator output to crystal circuit
3	V $_{\text {DD }}$	5 V supply to digital section
4	REFCK	reference crystal frequency buffered output
5	HPDN	Hardware Power-Down Not; IC operates when   pin is HIGH
6	DGND	digital ground
7	RFI	1 GHz RF signal input
8	i.c.	internally connected
9	DATA	serial data line input
10	CK	serial clock line input
11	EN	programming bus enable input (active LOW)
12	TX/RX	transmit (high)/receive (low) mode select input
13	i.c.	internally connected
14	AGND	analog ground
15	V	
16	CP	5 V supply to charge pump circuit

Fig. 2 Pin configuration.

LOW generates an active clock edge causing a shift of the data bits.

Data programmed into the register is lost during power-down (HPDN taken LOW). The maximum serial bus clock speed is specified as 5 MHz . Minimum speed is limited by the clock edge rise and fall times to ensure that no data transparency condition can exist.

Independent of any serial programming activity, the RF divider chain uses the data previously
stored within the selected latch to determine the synthesized channel frequency. The $T x / R x$ signal controls which latch is read to preload the counter bits at each division cycle. When new data is updated into the device, it is used during the cycle following latch selection by the Tx/Rx control line.

If the $T x / R x$ line is tied LOW, only data loaded into the $R x$ latch is used. In this event the serial data stream clocked into the synthesizer
must terminate with an "0". The logic diagram for the first bits of the programming interface is shown below. The other bits are processed in a similar manner by a further 9 stages of the shift register-latches-multiplexer.

The signals supplied to the circuit are described by the timing diagram. The table of values has been specified for maximum bus speed. Under slow clocking conditions, rise and fall times must not be excessively slow.

Table 1 Main divider division ratio

MAIN COUNTER							
MD1	MD2	..$\%$	MD7	MD8	....	MD12	MD13
LSB							

Table 2 Operation of phase comparator

SYMBOL	$F_{\text {ret }}<F_{\text {var }}$	$F_{\text {ret }}>F_{\text {var }}$	$F_{\text {ret }}=F_{\text {var }}$
UP	0	1	0
DO	1	0	0
$\mathrm{I}_{\text {ped }}$	-1.75 mA	+1.75 mA	$< \pm 5 \mathrm{nA}$

Table 3 Register and latch bit allocations

FIRST	REGISTER AND LATCH BIT ALLOCATIONS													LAST   IN
pb 14	pb13	pb12	pb11	pb10	pb9	pb8	pb7	pb6	pb5	pb4	pb3	pb2	pb1	pb0
md13	md12	md11	md10	md9	md8	md7	X	md6	md5	md4	md3	md2	md1	address

## Note

pb7; see section MAIN CONTROL INTERFACE.

## Frequency synthesizer for radio communication equipment



Fig. 3 Phase comparator block diagram.

Fig. 4 Simplified interface logic diagram.

Frequency synthesizer for radio communication equipment


Fig. 5 Logic interface signals.

## LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {DDD }}$	digital supply voltage range		-0.2	-	7	V
$\mathrm{~V}_{\mathrm{CCA}}$	analog supply voltage range		-0.2	-	7	V
$\mathrm{~V}_{\mathrm{i}}$	input voltage range	to ground	0	-	$\mathrm{V}_{\mathrm{DD}}$	V
$\mathrm{T}_{\text {stg }}$	storage temperature range		-55	-	125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	operating ambient temperature range		-10	-	70	${ }^{\circ} \mathrm{C}$

## Handling

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.

## TIMING CHARACTERISTICS

$V_{D D}, V_{C C}=5 \mathrm{~V} ; T_{\text {amb }}=-20$ to $70^{\circ} \mathrm{C}$ unless otherwise specified.
Typical values measured at $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Serial programming clock (pin 10)						
$\mathrm{f}_{\text {ck }}$	clock frequency		0.01	4	5	MHz
t,	rise time		-	5	50	ns
4	fall time		-	5	50	ns
$\mathrm{t}_{\text {cor }}$	clock period		0.2	-	-	ns
Enable programming (pin 11)						
$\mathrm{t}_{\text {satar }}$	delay to rising clock edge		30	-	-	ns
$\mathrm{t}_{\text {end }}$	delay from last clock edge		0	-	-	ns
$\mathrm{t}_{\text {widh }}$	minimum inactive pulse width		200	-	-	ns
$\mathrm{t}_{\text {new }}$	delay from EN inactive to new data		300	-	-	ns
Register serial input data (pin 9)						
$\mathrm{t}_{\text {su }}$	input data to CK set-up time		10	-	-	ns
tid	input data to CK hold time		10	-	-	ns

## Note to the Timing Characteristics

Minimum and maximum values are for maximum clock speed.

CHARACTERISTICS
$V_{D D}$ and $V_{C C}=5 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Power supply						
$\mathrm{V}_{\text {DDD }}$	digital voltage supply range		4.5	5	5.5	V
$V_{\text {CCA }}$	analog voltage supply range		4.5	5	5.5	V
$I_{\text {d }}$	digital supply current	$V_{D D}=5.5 \mathrm{~V}$   REFCK off	-	-	10.8	mA
$I_{c}$	analog supply current	$V_{c c}=5.5 \mathrm{~V}$   pump off	-	-	2.1	mA
$\mathrm{I}_{\mathrm{pd}}$	digital idle supply current	power-down mode	-	0.8	1.5	mA
RF divider input (RFI)						
$\mathrm{f}_{\text {veo }}$	VCO frequency range		500	-	1000	MHz
$V_{\text {H }}$	input signal voltage level (RMS)		50	-	300	mV
$\mathrm{R}_{\mathrm{H}}$	input resistance	$\mathrm{RF}=1 \mathrm{GHz}$	-	350	-	$\Omega$
$\mathrm{C}_{\mathrm{H}}$	input capacitance	indicative; not tested	-	1.5	-	pF
N	main divider division ratio		512	-	8191	
Oscillator and reference divider (RO1, RO2)						
$\mathrm{f}_{\text {ref }}$	oscillator frequency range	$R_{\text {efck }}$ used	3	-	16	MHz
$\mathrm{V}_{\text {osc }}$	sinusoidal input level at pin 1 (RMS value)		0.1	-	0.5	V
$\mathrm{C}_{01}$	parasitic capacitance at pin 1	indicative; not tested	-	5	-	pF
$Z_{\infty}$	output impedance at pin 2	indicative; not tested	-	2	-	k $\Omega$
$\mathrm{C}_{0}$	output capacitance	indicative; not tested	-	5	-	pF
Phase comparator and charge pump output (CP)						
$F_{\text {cp }}$	phase detector frequency range		70	250	1000	kHz
$-l_{\text {cp }}$	charge pump source current	$\mathrm{V}_{\mathrm{cc}}=4.5$ to 5.5 V	-2.2	-1.75	-1.3	mA
$+l_{\text {cp }}$	charge pump sink current	$\mathrm{V}_{\mathrm{cc}}=4.5$ to 5.5 V	1.3	1.75	2.2	mA
$l_{\text {leak }}$	charge pump off leakage current		-10	-	+10	nA
$\mathrm{V}_{\text {cp }}$	charge pump voltage compliance range	$I_{\text {cp }}$ within specified range	0.5	-	$\mathrm{V}_{c c}-0.5$	V


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Interface logic input signal levels (HPDN, EN, DATA, CK, Tx/Rx)						
$\mathrm{V}_{\mathrm{IH}}$	input logic HIGH level	all inputs	3	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\text {IPD }}$	input logic LOW level	HPDN	3-0.3	-	0.6	V
$\mathrm{V}_{\text {IL }}$	input logic LOW level	except HPDN	-0.3	-	1	V
$\mathrm{I}_{\text {BIA }}$	input bias current	logic 1	-	-	2	$\mu \mathrm{A}$
$\mathrm{I}_{1}$	input bias current	logic 0	-2	-	-	$\mu \mathrm{A}$
$\mathrm{C}_{1}$	pin input capacitance	indicative; not tested	-	3	-	pF
Oscillator buffered logic output signal (REFCK)						
$V_{\text {oh }}$	driven output voltage; HIGH	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	3.5	-	$V_{D D}-0.5$	V
$\mathrm{V}_{\mathrm{ol}}$	driven output voltage; LOW		0	-	0.4	V
$\mathrm{I}_{\mathrm{O}}$	output sink current	$\mathrm{V}_{\mathrm{CL}}=0.4 \mathrm{~V}$	-0.4	-	-	mA
$\mathrm{t}_{4}$	ref clock output rising edge	$\mathrm{C}_{1}=25 \mathrm{pF}$	-	50	-	ns
4	ref clock output falling edge	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	-	50	-	ns



Fig. 6 Application diagram.

## APPLICATION INFORMATION

In a typical single-synthesizer application, the circuit is connected as shown in Fig. 6. Both analog and digital supplies are decoupled to ground with HF and LF filter capacitors. Correct oscillator operation requires capacitors both to ground and to provide feedback across the amplifier. Five signals are shown fed from a microcontroller to provide serial programming, control TDD frequency selection and initiate the power-down mode. Other system logic may also be clocked by a crystal frequency output from the synthesizer.

A passive 2nd-order loop filter giving a 3rd-order system response is shown in Fig. 6. Indicated values are intended for rapid frequency switching ( $500 \mu \mathrm{~s}$ ), 200 kHz channel spacing (reference +27 ) and breakthrough levels below -60 dB. The VCO output shows a power splitter supplying both the synthesizer RF input and drive buffer for other system components (RF amplifier in transmit mode, input mixer in receive mode). The minimizing of loop filter node leakage currents requires careful board layout.

## TABLE OF CONTENTS

## 0 - SUMMARY

## 1 - INTRODUCTION

## 2 - FUNCTIONAL DESCRIPTION OF THE UMA1016XT SYNTHESIZER

2.1 - RF main divider
2.2 - Crystal oscillator/buffer
2.3 - Reference divider
2.4 - Phase comparator
2.5 - Main control interface/serial bus

## 3 - DEMONSTRATION BOARD

3.1 - Description
3.2 - Application hints

4 - APPLICATION EXAMPLE - TYPICAL RESULTS
4.1 - Loop filter design
4.2 - Measurements

## TABLE OF FIGURES

Figure 1 - P.L.L circuit block diagram
Figure 2 - Phase comparator
Figure 3 - UMA1016XT circuit block diagram
Figure 4 - Demonstration board circuit
Figure 5 - Demonstration board SMD side
Figure 6 - UMA1016XT measurement set-up
Figure 7 - Loop filter circuit diagram
Figure 8 - Reference frequency breakthrough
Figure 9 - Closed loop bandwidth
Figure 10 - Closed loop bandwidth (VIDEO AVERAGE acquisition)

Figure 11 - Noise level close to the carrier
Figure 12 - Switching time for a 895 to 905 MHz jump

Figure 13 - Switching time
for a 905 to 895 MHz jump

## SUMMARY

UMA1016XT is a single chip FREQUENCY SYNTHESIZER made in BIPOLAR technology.
It is intended for use in cordless telephones or in portable radio systems.
A brief functional description is given, followed by information and measurements covering the application circuit design and typical performance.

## 1. INTRODUCTION :

This application note is intended to describe the PHASE LOCKED LOOP (P.L.L.) based on the UMA1016XT frequency synthesizer integrated circuit. It is a low power single chip solution to generate frequencies between 500 and 1000 MHz for use in portable radiomobile applications.

The device comprises the following functional blocks : a RF PROGRAMMABLE DIVIDER, a reference BUFFER-OSCILLATOR, a variable REFERENCE DIVIDER, a digital PHASE COMPARATOR, a 3 WIRE SERIAL BUS programming INTERFACE, and a DUAL-LATCH architecture (for Transmit-Receive frequencies or for any two $F_{1}$ and $F_{2}$ frequencies).

In addition, the device features a power down mode useful in some cases. The major external component required is a VOLTAGE CONTROLLED OSCILLATOR (VCO).

The main user-defined parameters for a given application are REFERENCE and RF FREQUENCIES.

This IC is designed to give fast SWITCHING TIMES (100 to $200 \mu s$ ) between Transmit and Receive frequencies when used with a LOOP FILTER matched to the application.

## 2. FUNCTIONAL DESCRIPTION OF THE UMA1016XT SYNTHESIZER :

The main blocks are illustrated in the Phase Locked Loop diagram given in figure 1.


Figure 1
P.L.L. CIRCUIT BLOCK DIAGRAM

A CRYSTAL OSCILLATOR provides a reference frequency to the P.L.L. reference divider chain (pins 1, RO1, and 2, RO2). The PHASE COMPARATOR uses a CHARGE PUMP to send correction pulses to a LOW PASS FILTER. This latter integrates the pulses giving a steady voltage which controls the VCO. The VCO's RF output and the crystal oscillator output are divided down to a COMMON COMPARISON FREQUENCY (in the locked state, these two frequencies will be equal) to drive the phase comparator. The current pulses cancel any leakage current thus maintaining the required voltage on the VCO.

## 2.1) RF main divider :

The UMA1016XT synthesizer contains a fully programmable MAIN DIVIDER. The division ratios are provided via the serial bus to two 13 bit latches corresponding to $T x$ and $R x$ registers.

The range of the main divider ratio is from 512 to 8191.

## 2.2) Crystal oscillator/buffer :

A common collector Colpitts type oscillator has been designed to function also as an input buffer. From a 100 mV peak to peak input signal (pin 1, RO1), the buffer output (pin 4, RefCk) provides a TTL compatible signal intended to control external logic circuits.

## 2.3 ) Reference divider :

The reference divider has a fixed divider ratio set by metal masking between 2 and 31. For example, the version with ratioㅇ 27 (the UMA1O16AT), when connected to a 5.4 MHz crystal in the oscillator will generate at the phase comparator a comparison frequency equal to 200 kHz , which is also, normally, the channel spacing.

## 2.4) Phase comparator :

The phase comparator combines a PHASE AND FREQUENCY DETECTOR and a CHARGE PUMP as shown in figure 2.


The detector is built from dual D-type flip flops together with feedback to remove the dead zone. When a PHASE ERROR is detected, either UP or DOWN signal goes high. This turns on the corresponding current generator which sources or sinks 1.8 mA at CPout (pin 16). When no phase error is detected, the charge pump goes tristate. The tuning voltage of the VCO is established from the sum of the current pulses into the loop filter.

## 2.5) Control interface/serial bus :

The programming CONTROL INTERFACE permits access to the two internal latches storing two values for the main divider ratio denoted $T x$ and $R x$, but they could be for any two frequencies $F_{1}$ and $F_{2}$.

The serial input data bits (pin 9) are converted to a parallel word and stored in the appropriate LATCH under the control of the last entered register bit. When this is set low, $R x$ is loaded. When it is high, the data goes into the Tx latch.

The DATA sent to the synthesizer is loaded in bursts framed by the ENABLE signal (pin 11). Programming CLOCK edges (pin 10) and their appropriate data bits, are ignored until ENABLE becomes active (low). Only the last 15 serially clocked bits are retained within the programming register.

Data programmed in the registers is lost during power down (pin 5, HPDN taken low).
The maximum serial bus clock speed is specified as 5 MHz.


Figure 3 Circuit Block Diagram

PIN CONFIGURATION	Symbol	Pin	Description
	RO1	1	Oscillator input or TCXO input
	RO2	2	Oscillator output to crystal circuit
	VDD	3	Digital section 5 Volt supply
	REFCK	4	Reference crystal frequency buffered output
	HPDN	5	Hardware power down : IC active when pin is high
	DGND	6	Digital ground
	RFI	7	1GHz RF signal input
	DATA	9	Serial data line inpur
	CK	10	Serial clock line input
	EN	11	Programming bus enable input (active low)
	TX/RX.	12	Transmit (hi) / receive (10) mode select input
	I.C.	8,13	Internally connected (for test purposes only)
	AGND	14	Analog ground
	VCC	15	5 Volt supply to charge pump circuit
	CP	16	Charge pump output

## 3. APPLICATION BOARD :

## 3.1) Description :

In a typical synthesizer application, the circuit is connected as shown in figure 4.

Both analogue and digital supplies are decoupled to ground with HF and LF filter capacitors.

Correct operation of the oscillator requires capacitors to ground to provide feedback across the amplifier.

A passive second-order LOOP FILTER giving a third-order system response, is shown in figure 4 (elements $C_{1}, C_{2}, R_{2}$ ). Values indicated are intended for rapid frequency SWITCHING TIMES ( $100 / 200 \mu \mathrm{~s}$ ) with a reasonable BREAKTHROUGH level estimated at least 55 dBC in this particular application.

Attention is needed in layout of the synthesizer BOARD to minimise leakage currents at the loop filter node and coupling due to parasitic radiation.

The VCO output shows a power splitter which supplies both the synthesizer RF input (pin 7) and provides an output for driving other system components (RF amplifier in Transmit mode, input mixer in Receive mode).



Figure 5
Demonstration board SMD side

## 3.2) Application hints :

A UMA1016AT synthesizer is supplied on the demonstration board powered by 8 Volts DC. We assume that the Transmit and Receive frequency ratios can be introduced via the 3 wire serial bus, respectively in the $T x$ and $R x$ latches.

Power down mode not being solicited, pin 5, HPDN should be polarised to 5 volts for normal operation.

VCO output is available from a SMA connector (socket X3). It can be observed on a spectrum analyser to check the programmed frequencies.

IBM PC


Figure 6
UMA1016XT measurement set-up

### 3.2.1. If the RF signal is absent

- Check that the power supply ( $\mathrm{V}_{\mathrm{cc}}$ ) is connected and that it sends out the required value ( 8 volts on X1-1). If this is fine, check the voltages on the pins $3\left(V_{D D}\right)$ and $15\left(\mathrm{~V}_{\mathrm{cc}}\right)$ which should be equal to 5 volts.
- Check the RF cable is connected correctly.


### 3.2.2. If the signal is present

a) A signal is present not at the programmed frequency but perhaps at the limit of the VCO operating range.

As the VCO gives a RF output, this indicates that the board is powered on.

- Validate that the synthesizer has been sent the programmed configuration
- Check that the 3 wire serial bus is properly connected to the demonstration board and its interface card.
b) If during $T x-R x$ switching, only one of the two programmed frequencies is achieved, the other remaining unlocked.

The programmation has been well sent, but all the information does not reach the synthesizer.

- Resend programming information concerning the frequency which is unobtainable, paying particular attention to the destination latch (Rx or Tx , as the case dictates).
c) If the RF signal does not correspond to programmed frequency, but varies sometimes wildly in the operating range of the VCO.
- The loop filter design is inappropriate. Redesign of the loop filter elements is necessary.
- Check that pin 5 (HPDN) is connected to 5 volts for normal synthesizer operation.


### 3.2.3. Remarks

- To carry out MEASUREMENTS with maximum accuracy (noise level, reference frequency breakthrough ...), one can remove parasitic noise generated by the serial bus as follows :

Maintain ENABLE signal (pin 11) in the high state biasing its output to Vcc and then, disconnect the bus.

The programmed configuration remains unaffected as long as the ENABLE signal is held in one state.

## Application note: UMA1016XT frequency synthesizer

- Often, it is practical and useful to see the signal at the output of the charge pump or at the output of the loop filter on an oscilloscope (for example during frequency hops). The board allows probing the relevant nodes as wished, however the probe capacitance cannot always be ignored. Note also that if the probe is DC connected to the loop filter, its current drain will need to be replenished by the charge pump causing increased reference frequency breakthrough.


## 4. APPLICATION EXAMPLE - TYPICAL RESULTS :

To illustrate this note we have chosen a typical application. The main system parametres for the application are given below :

$$
\begin{aligned}
& f_{\text {nRF }}=200 \mathrm{kHz} \\
& f_{\text {out }}=900 \mathrm{MHz} \\
& \mathrm{t}_{\mathrm{z}}<150 \mu \mathrm{~s} .
\end{aligned}
$$

## 4.1) Loop filter design :

The VCO in the loop has a gain of $11 \mathrm{MHz} / \mathrm{V}$.
The basic performance of the P.L.L. is determined by only two elements of the loop filter : the resistor/capacitor series combination of $R_{2}$ and $C_{2}$.

As a target, we will try and calculate loop filter values for $C_{1}$, $R_{2}, C_{2}$ in order to obtain switching times of approximately 100 to $200 \mu \mathrm{~s}$.
As the starting point, we use the following equations derived from control theory for the closed loop P.L.L. :

$$
\begin{aligned}
& w_{n}=2 * P I * f_{n}=\left(-\frac{K_{V} K_{p}}{C_{2} N}\right)^{1 / 2} \\
& R_{2}=2 * p^{*}\binom{N}{\hdashline-N K_{p} C_{2}}^{1 / 2}
\end{aligned}
$$

with


## * $\mathrm{C}_{2}$ Calculation

The chosen value for $C_{2}$ needs to be as large as possible. However it has to be small enough for $w_{n}$ to meet the requirements for the switching time, which is given roughly by the reciprocal of the natural loop frequency ( $t_{\mathrm{a}} \approx 1 / f_{n}$ ).

Taking $t_{s}=100 \mu s$, we can deduce :

$$
C_{2}=\frac{-K_{V} K_{p}}{N w_{n}^{2}} \approx 620 \mathrm{pF}
$$

Select --> $C_{2}=560 \mathrm{pF}$ (nearest preferred value)

* $\mathrm{R}_{2}$ Calculation

To work out $R_{2}$, the DAMPING RATIO $p$ is empirically chosen to equal 9/10.

$$
\begin{aligned}
& R_{2}=2 * 0.9 *\left(\frac{4500}{11 \cdot 10^{6} \cdot 10^{-3} \cdot 560 \cdot 10^{-12}}\right)^{1 / 2}=49 \mathrm{k} \Omega \\
& -\rightarrow \text { so use } \underline{R}_{2}=47 \mathrm{k} \Omega
\end{aligned}
$$

## * $\mathrm{C}_{1}$ Calculation

The value of $C_{1}$ can be chosen to be somewhere between $1 / 10$ and $1 / 20$ that of $C_{2}$. The inclusion of $C_{1}$ greatly improves rejection of reference frequency breakthrough.

Here $C_{2} / 10$ gives $-->C_{2}=56 \mathrm{pF}$
(in fact, we used $\mathrm{C}_{1}=47 \mathrm{pF}+10 \mathrm{pF}=57 \mathrm{pF}$ ).


Figure 7
Loop filter circuit diagram

## 4.2) Measurements :

- COMPARISON FREQUENCY BREAKTHROUGH ( $f_{\text {RIFI }}$ ) Breakthrough is better than 60 dBc (figure 8).
- CLOSED LOOP BANDWIDTH

About 17 kHz (figures 9 and 10).

- NOISE LEVEL CLOSE TO THE CARRIER

1 kHz away from the carrier, this level is down by at (figure 11 ). $47 \mathrm{~dB} / 10 \mathrm{~Hz}$, which corresponds to $57 \mathrm{dBc} / \mathrm{Hz}$

- SWITCHING TIMES

For a jump of 10 MHz ( 50 channels) between Transmit and Receive frequencies, the measured switching times are about $140 \mu \mathrm{~s}$, a value which agrees with the calculation.
The measurement has been carried out on a spectrum analyser with a resolution bandwidth of 100 kHz on zero
SPAN (figures 12 and 13 ).


[^6]

Figure 9



Figure 11


## A dBm UMA1016/C1D (47+10)p 47k 560p 2AVR92 <br> 0. 0 Atten 25 dB 50n DC TG off





Figure 13

## GENERAL DESCRIPTION

The BiCMOS device integrates prescaler, programmable divider, and a phase comparator to implement a phase locked loop. It is designed to operate from $3 \mathrm{Ni}-\mathrm{Cd}$ cells in pocket phones with low current as well as nominal 5 V supplies. The synthesizer works to VCO input frequencies above 1.2 GHz . It has a fully programmable reference divider. All divider ratios are supplied via a 3 -wire serial programming bus.
Separate power and ground pins are provided to the analog and digital circuits. The ground leads should be externally shorted together otherwise large currents may flow across the die and damage it. $V_{D D}$ and $V_{D D 2}$ must be shorted as well. $V_{C C}$ may be higher than $V_{D D}$.
The phase detector uses two charge pumps; one provides normal low feedback, the other is only active during a fast mode to speed-up switching. All charge pump currents (gain) are fixed by an external resistance at pin I IET. Only passive loop filters are used; the charge pumps function within a wide voltage compliance range to improve the overall system performance.

## FEATURES

- Low current from 3V supply
- Fully programmable dividers
- Three-line serial bus interface
- Dual phase detector outputs to allow fast frequency switching


## APPLICATIONS

- 900MHz mobile telephones
- Portable battery-powered radio equipment


## PIN CONFIGURATION

## SSOP PACKAGE



## QUICK REFERENCE DATA

Symbol	Parameter	Min	Typ	Max	Units
$\mathrm{V}_{\mathrm{CC}} \& \mathrm{~V}_{\mathrm{DD}}$	Supply voltage range	2.7		5.5	V
$\mathrm{I}_{\mathrm{CC}}+\mathrm{I}_{\mathrm{DD}}$	Supply current		6.5		mA
$\mathrm{I}_{\mathrm{CCPD}}$	Current in power-down per supply		10		$\mu \mathrm{~A}$
$\mathrm{RF}_{\text {IN }}$	Principal input frequency	500		1200	MHz
FXTL	Crystal ref input frequency	3		40	MHz
$\mathrm{f}_{\text {REF }}$	Phase comparator frequency	10	200	2000	kHz
$\mathrm{T}_{\text {amb }}$	Operating temperature range	-20		70	${ }^{\circ} \mathrm{C}$

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
20-Pin Plastic Shrink Small Outline Package (SSOP)	-40 to $+85^{\circ} \mathrm{C}$	UMA1017M	SOT266A



## PIN DESCRIPTIONS

SYMBOL	PIN \#	
FAST	1	Control input to speed-up charge pump
CPF	2	Speed-up charge pump output
CP	3	Normal charge pump output
$V_{\text {DD }}$	4	Digital section power supply
$V_{\text {DD2 }}$	5	Bipolar section power supply
RF	6	RF divider input
D $_{\text {GND }}$	7	Bipolar section ground
FXTL	8	Reference frequency input from xtal oscillator
ON	9	Synthesizer power-ON input
nc	10	not connected
CK	11	Serial clock line input
DATA	12	Serial data line input
EN	13	Programming bus enable input (active low)
ISET	14	Regulator pin to set the charge pump currents
nc	15	not connected
$A_{\text {GND }}$	16	Analog ground
nc	17	not connected
$V_{\text {CC }}$	18	Supply to charge pump
$D_{\text {GND2 }}$	19	Digital section ground
LOCK	20	In-lock detect output

## Dividers

Programmable reference and main dividers drive the phase detector. Two charge pumps produce phase error current pulses for integration in an external loop filter. A
hardwire power-down input, PON, allows disabling of the dividers and phase comparator circuits.

The RF input pin drives a preamplifier to provide the clock to the first divider stage. the preamp has a high input impedance,
dominated by pin and pad capacitance. The circuit works with signal levels below 50 mV , up to 250 mV RMs, and at frequencies beyond 1.2 GHz . High frequency divider circuits use bipolar transistors, slower bits are CMOS. Divide ratios ( 512 to 131071) allow 1 MHz phase comparison with 500 MHz inputs, as well as 10 kHz at 1.2 GHz RF.

The divider outputs connect to a phase/frequency detector that controls two charge pumps. The two pumps have a common bias-setting current fixed by an external resistance. The ratio between currents in fast and normal operating modes can be programmed via the bus. The lower current pump remains active except in power-down. The high current pump is also enabled with the control input FAST. By appropriate connection to the loop filter, this provides dual bandwidth loops: short time
constant during frequency switching (FAST mode) to speed up channel changes; low bandwidth in the settled state (on frequency) to improve noise and breakthrough levels.

An open drain transistor drives the output pin Lock. The output will be a current pulse with the duration of the phase error. By appropriate external filtering and threshold comparison, this generates an out-of-lock or an in-lock flag.

## Serial Programming Bus

A simple 3 -line unidirectional serial bus is used to program the circuit. The 3 wires are: Data, Clock, and Enable (EN). The data sent to the device are loaded in bursts framed by EN. Programming clock edges and their appropriate data bits are ignored until EN goes active low. The programmed information is loaded into the addressed latch when EN
returns inactive high.
Only the last 21 bits serially clocked into the device are retained within the programming register. Additional leading bits are ignored and no check is made on the number of clock pulses. The fully static CMOS design uses virtually no current when the bus is inactive. It can always capture new programmed data even during power-down of main and auxiliary loops.

## Data Format

Data is entered with the most significant bit first. The leading bits make up the data field, while the trailing four bits are an address field. The UMA1017M uses 6 of the 16 available addresses and these are chosen to allow direct compatibility with the UAA2072M integrated front-end. The format is shown below; the first entered bit is p1, the last one p21:

Table 1. Format of Programmed Data

PROGRAMMING REGISTER BIT USAGE								
p21	p20	p19	p18	P17	p16	.. $/$.	p2	p1
addo	add1	add2	add3	data0	data1	../..	data15	data16
latch address				LSB	data coefficient			MSB

The trailing address bits are decoded upon the inactive EN edge. This produces an internal load pulse to store the data in one of the addressed latches. To avoid erroneous
divider ratios, the pulse is not allowed during data reads by the frequency dividers. This condition is guaranteed by respecting a minimum EN pulse width after data transfer.

The correspondence between data fields and addresses is provided within the following table:

Table 2. Bit Allocation

first	REGISTER BIT ALLOCATIONS																				Last
p1	p2	P3	p4	p5	p6	p7	p8	p9	p10	p11	p12	p13		p14	p15	p16	p17	p18	p19	p20	p21
dt16	dt15	dt14	dt13	dt12	data field							dt 4		dt3	dt2	dt1	dt0	address			
Test Bits																		0	0	0	0
x	x	$\times$	x	00 L	x	CR1	CRO	x	x	sON	x	x		x	x	x	x	0	0	0	1
PM16	Main Divider Coefficient																PM0	0	1	0	0
$\times$	x	x	$\times$	x	x	PR10	Ref Divider Coefficient										PRO	0	1	0	1
SON Software Power-up 1=ON																					
OOL	Out-of-Lock enable $\quad 1=0 \mathrm{~N}$																				

Table 3. Bit Allocation [continued]

CR1, CR0	CR1	CRO	ICP	$\mathbf{I C P F}$	$I_{\text {CPF }}$ : $\mathrm{ICP}^{\text {c }}$
Fast Normal Current Ratio	0	0	4* ${ }_{\text {Sp }}$	$\left.16 *\right\|_{\text {SP }}$	4:1
	0	1	4* ${ }_{\text {SP }}$	$32 *{ }_{\text {SP }}$	8:1
	1	0	2* ${ }_{\text {SP }}$	$24 *{ }_{\text {SP }}$	12:1
	1	1	2*1sp	32 * ${ }_{\text {SP }}$	16:1
The test bits must be left after power-up or programmed at 0 for normal operation.					

## Power Down Modes

The Synthesizer is ON when both soft and hardwired signals are ON.

When the synthesizer is reactivated after power-down, the main and reference dividers
are synchronized to avoid the possiblility of random phase errors on power-up.


Table 4. Programming Bus Timing Characteristics
$V_{D D}, V_{C C}=3 V ; T_{a m b}=25^{\circ} \mathrm{C}$, unless otherwise stated. Typical values measured at $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Min	Typ	Max	Units
Serial programming clock (pin CK)					
$T_{R}, T_{F}$	Input Rise and Fall times		10	40	ns
TCYC	Clock period	100			ns
Enable programming (pin EN)					
TSTART	Delay to rising clock edge	40			ns
TEND	Delay from last clock edge	100			ns
TWIDTH	Minimum inactive pulse width	2			$\mu \mathrm{s}$
$\mathrm{T}_{\text {NEW }}$	Delay from EN inactive to new data	150			ns
Register serial input data (pin DATA)					
TSU	Input data to CK set-up time	20			ns
$\mathrm{T}_{\mathrm{HL}}$	Input data to CK hold time	20			ns

Low-voltage frequency synthesizer for radiotelephones

## ELECTRICAL CHARACTERISTICS

All values refer to the typical measurement circuit conditions, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
Power supplies (pins: $\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {DD }}$ )						
$V_{D D}$	Digital positive voltage supply range		2.7		5.5	V
$V_{\text {cc }}$	Analog circuits voltage supply range	*	2.7		5.5	V
IdD MAIN	Principal synthesizer digital supply current	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$		4.5	5	mA
Icc	Charge pumps analog supply current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{R}_{\text {SET }}=12 \mathrm{k}$		2	2.2	mA
$\mathrm{IPD}^{\text {P }}$	Idle supply current per supply pin	Logic levels to 0 or $\mathrm{V}_{\text {DD }}$			25	$\mu \mathrm{A}$
RF divider Input (pin RF)						
$\mathrm{F}_{\mathrm{VCO}}$	VCO input frequency range		500		1200	MHz
$\mathrm{V}_{\text {RF }}$	Input signal level (AC-coupled)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	50		500	mV ${ }_{\text {RMS }}$
$\mathrm{R}_{\text {IN }}$	Input impedance (real part)	$\mathrm{F}_{\mathrm{RF}}=1 \mathrm{GHz}$		300		$\Omega$
$\mathrm{C}_{\text {IN }}$	Typical pin input capacitance	Indicative, not tested		2		pF
N	Principal Main divider ratio		512		131071	
Reference divider Input (pin FXTL)						
FXTL	Input frequency range from xtal		3		40	MHz
VXTL	Sinusoidal input signal level		50		500	$\mathrm{mV}_{\mathrm{RMS}}$
RINR	Input impedance (real part)	FXTL $=30 \mathrm{MHz}$		2000		$\Omega$
$\mathrm{Cinf}^{\text {a }}$	Typical pin input capacitance	Indicative, not tested		2		pF
Lp	Reference division ratio		8		2047	
Charge pump current setting resistor input (pin Isp)						
$\mathrm{R}_{\text {SP }}$	External resistor from pin to ground		12		60	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {SP }}$	Regulated voltage at pin $\mathrm{ISP}_{\text {P }}$	$\mathrm{R}_{\text {SET }}=12 \mathrm{k}$		1.2		V
Charge pump outputs (pins CP, CPF): R $_{\text {SET }}=12 \mathrm{k}$						
$\mathrm{F}_{\mathrm{CP}}$	Phase detector frequency range			200		kHz
loutcp	Charge pump current error			$\pm 20$		\%
$I_{\text {match }}$	Sink-to-Source current matching	$V_{C P}$ in range		$\begin{aligned} & \pm 5 \\ & \mathrm{tbf} \end{aligned}$		\%
ILEAKCP	Charge pump off leakage current	$\mathrm{V}_{C P}=\mathrm{V}_{C C} / 2$	-5		+5	nA
$\mathrm{V}_{\mathrm{CP}}$	CP voltage compliance range		0.4		$\mathrm{V}_{\text {cc }}-0.4$	V
Interface logic input signal levels (pins EN, DATA, CK, FAST, ON)						
$\mathrm{V}_{\mathrm{IH}}$	Input logic HIGH level ('1')		0.7 * $V_{\text {DD }}$		$V_{D D}+0.3$	V
$\mathrm{V}_{\mathrm{IL}}$	Input logic LOW level ('0')		-0.3		0.3 * $V_{D D}$	V
IN	Input bias currents	logic 1 or 0	-5		5	$\mu \mathrm{A}$
$\mathrm{C}_{1}$	Pin input capacitance	Indicative, not tested		2		pF
Lock detect output signal (pin LOCK)						
$\mathrm{V}_{\text {OUTL }}$	Output voltage compliance range		0.4		5.5	V
LOC	Active sink output current	$\mathrm{V}_{\text {OUTL }}=0.4 \mathrm{~V}$	0.4			mA
ILOCM	Maximum sink current	Externally limited			5	mA



Figure 8. Typical Application Block Diagram


Figure 9. Typical Evaluation Setting

## Low-voltage dual frequency synthesizer for radio telephones

## FEATURES

- Low current from 3 V supply
- Fully programmable RF divider
- 3-line serial interface bus
- Second synthesizer to control first IF or offset loop frequency
- Independent fully programmable reference dividers for each loop, driven from external crystal
- Dual phase detector outputs to allow fast frequency switching
- Integrated digital-to-analog converter
- Dual power-down modes.


## APPLICATIONS

- 900 MHz mobile telephones
- Portable battery-powered radio equipment.


## GENERAL DESCRIPTION

The UMA1018M BICMOS device integrates prescalers, programmable dividers, and phase comparators to implement two phase-locked loops.
The device is designed to operate from 3 NiCd cells, in pocket phones, with low current as well as nominal 5 V
supplies. The principal synthesizer operates at VCO input frequencies above 1.2 GHz , the auxiliary synthesizer operates at 300 MHz . The auxiliary loop is intended for the first IF or to transmit offset loop-frequency settings. Each synthesizer has a fully programmable reference divider. All divider ratios are supplied via a 3-wire serial programming bus.

Separate power and ground pins are provided to the analog and digital circuits. The ground leads should be externally short-circuited to prevent large currents flowing across the die and thus causing damage. $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ must also be short-circuited.

The principal synthesizer phase detector uses two charge pumps, one provides normal loop feedback, while the other is only active during fast mode to speed-up switching. The auxiliary loop has a separate phase detector. All charge pump currents (gain) are fixed by an external resistance at pin $I_{\text {SET }}$ (pin 14). Only passive loop filters are used; the charge-pumps function within a wide voltage compliance range to improve the overall system performance. An on-chip 8-bit DAC enables adjustment of an external function, such as the temperature compensation of a crystal oscillator in GSM systems (Global systems for Mobile communications).

## QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}$	supply voltage		2.7	-	5.5	V
$\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{DD}}$	supply current	auxiliary synthesizer in power-down mode	-	6.5	-	mA
$I_{C C O}, I_{\text {DDO }}$	operating supply current	principle and auxiliary synthesizer ON	-	8.5	-	mA
$\mathrm{I}_{\mathrm{CCpd}}$	current in power-down mode per supply		-	10	-	$\mu \mathrm{A}$
$\mathrm{f}_{\mathrm{PI}}$	principle input frequency		500	-	1200	MHz
$\mathrm{f}_{\mathrm{Al}}$	auxiliary input frequency		20	-	300	MHz
$\mathrm{f}_{\text {XTAL }}$	crystal reference input frequency		3	-	40	MHz
$\mathrm{f}_{\text {PPC }}$	principle phase comparator frequency		10	200	2000	kHz
$\mathrm{f}_{\text {APC }}$	auxiliary phase comparator frequency		10	-	1000	kHz
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-20	-	+70	${ }^{\circ} \mathrm{C}$

Low-voltage dual frequency synthesizer for radio

## ORDERING INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
UMA1018M	20	SSOP20	plastic	SOT266A



Fig. 1 Block diagram.

PINNING

SYMBOL	PIN	DESCRIPTION
FAST	1	control input to speed-up main   synthesizer
CPPF	2	principle synthesizer speed-up   charge-pump output
CPP	3	principle synthesizer normal   charge-pump output
V $_{\text {DD1 }}$	4	digital power supply
V $_{\text {DD2 }}$	5	bipolar power supply
PRI	6	1 GHz principle synthesizer RF   divider input
DGND	7	digital ground
fXTAL	8	common reference frequency input   from crystal oscillator
PON	9	principle synthesizer power-on input
DOUT	10	8-bit digital-to-analog output   CLK 11
DATA	12	serial clock input
$\overline{\text { serial data input }}$		
ISET	13	programming bus enable input   (active LOW)
AUX	15	regulator pin to set the charge-pump   currents
AGND	16	auxiliary synthesizer frequency input
analog ground		
AON	17	auxiliary synthesizer charge-pump   output
LOCK	20	supply for charge-pump and DAC   circuits
in-lock detect output (main PLL); test		
mode output		



MKA619.2

Fig. 2 Pin configuration.

# Low-voltage dual frequency synthesizer for radio telephones 

## FUNCTIONAL DESCRIPTION

## Principal synthesizer

Programmable reference and main dividers drive the principal PLL phase detector. Two charge pumps produce phase error current pulses for integration in an external loop filter. A hardwired power-down input PON (pin 9) ensures that the dividers and phase comparator circuits are disabled.

The PRI input (pin 6) drives a pre-amplifier to provide the clock to the first divider stage. The pre-amplifier has a high input impedance, dominated by pin and pad capacitance. The circuit operates with signal levels from below 50 mV up to 250 mV (RMS), and at frequencies greater than 1.2 GHz . The high frequency divider circuits use bipolar transistors, slower bits are CMOS. Divide ratios ( 512 to 131071 ) allow a 1 MHz phase comparison with the 500 MHz inputs, and a 10 kHz phase comparison at 1.2 GHz RF.

The reference and main divider outputs are connected to a phase/frequency detector that controls two charge pumps. The two pumps have a common bias-setting current that is set by an external resistance. The ratio between currents in fast and normal operating modes can be programmed via the 3 -wire serial bus. The low current pump remains active except in power-down. The high current pump is enabled via the control input FAST (pin 1). By appropriate connection to the loop filter, dual bandwidth loops are provided: short time constant during frequency switching (FAST mode) to speed-up channel changes and low bandwidth in the settled state (on frequency) to improve noise and breakthrough levels.

An open drain transistor drives the output pin LOCK (pin 20). The circuit can be programmed to output either the phase error in the principle or auxiliary phase detectors or the combination from both detectors (OR function). The resultant output will be a current pulse with the duration of the selected phase error. By appropriate external filtering and threshold comparison an out-of-lock or an in-lock flag is generated.

## Auxiliary synthesizer

The auxiliary synthesizer has a 14-bit main divider and an 11-bit reference divider. A separate power-down input AON (pin 19), disables currents in the auxiliary dividers, phase detector, and charge pump. The auxiliary input signal is amplified and fed to the main divider. The input buffer presents a high impedance, dominated by pin and pad capacitance. First divider stages use bipolar technology operating at input frequencies above 300 MHz ;
the slower bits are CMOS. The auxiliary loop phase detector and charge pump use similar circuits to the main loop low-current phase comparator, including dead-zone compensation feedback.

The auxiliary reference divider is clocked on the opposite edge of the main reference divider to ensure that active edges arrive at the auxiliary and principal phase detectors at different times. This minimizes the potential for interference between the charge pumps of each loop.

## Serial programming bus

A simple 3-line unidirectional serial bus is used to program the circuit. The 3 lines are DATA, CLK and $\bar{E}$ (enable). The data sent to the device is loaded in bursts framed by $\bar{E}$. Programming clock edges and their appropriate data bits are ignored until $\bar{E}$ goes active LOW. The programmed information is loaded into the addressed latch when $\bar{E}$ returns inactive HIGH. Only the last 21 bits serially clocked into the device are retained within the programming register. Additional leading bits are ignored, and no check is made on the number of clock pulses. The fully static CMOS design uses virtually no current when the bus is inactive. It can always capture new programmed data even during power-down of main and auxiliary loops.

## Data format

Data is entered with the most significant bit first. The leading bits make up the data field, while the trailing four bits are an address field. The UMA1018M uses 6 of the 16 available addresses. These are chosen to allow direct compatibility with the UAA2072M integrated front-end. The data format is shown in Table 1. The first entered bit is p1, the last bit is p21.

The trailing address bits are decoded on the inactive edge of $\overline{\mathrm{E}}$. This produces an internal load pulse to store the data in one of the addressed latches. To avoid erroneous divider ratios, the pulse is not allowed during data reads by the frequency dividers. This condition is guaranteed by respecting a minimum $\bar{E}$ pulse width after data transfer. The corresponding relationship between data fields and addresses is given in Table 2.

Table 1 Format of programmed data.

PROGRAMMING REGISTER BIT USAGE								
p21	p20	p19	p18	p17	p16	../.	p2	p1
ADD0	ADD1	ADD2	ADD3	DATAO	DATA1	../.	DATA15	DATA16
LATCH ADDRESS				LSB	DATA COEFFICIENT			MSB

Table 2 Bit allocation (note 1).

FT	REGISTER BIT ALLOCATION																			LT
p1	p2	p3	p4	p5	p6	p7	p8	p9	p10	p11	p12	p13	p14	p15	p16	p17	p18	p19	p20	p21
dt16	dt15	dt14	dt13	dt12	DATA FIELD							dt4	dt3	dt2	dt1	dt 0	ADDRESS			
TEST BITS																	0	0	0	0
X	X	X	X	OLP	OLA	CR1	CR0	X	X	sPON	sAON	X	X	X	X	X	0	0	0	1
PM16	PRINCIPLE MAIN DIVIDER COEFFICIENT															PM0	0	1	0	0
X	X	X	X	X	X	PR10	PRINCIPLE REFERENCE DIVIDER COEFFICIENT									PR 0	0	1	0	1
X	X	X	AM13	AUXILIARY MAIN DIVIDER COEFFICIENT												AM0	0	1	1	0
X	X	X	X	X	X	AR10	AUXILIARY REFERENCE DIVIDER COEFFICIENT									AR 0	0	1	1	1
X	X	X	X	X	X	X	X	X	DA7 8-BIT DAC FOR EXTERNAL								1	0	0	0

Note to Table 2

1. $\mathrm{FT}=$ first, $\mathrm{LT}=$ last; $\mathrm{sPON}=$ software power-up for principle synthesizer $(1=\mathrm{ON})$; sAON $=$ software power-up for auxiliary synthesizer $(1=\mathrm{ON})$.

Table 3 Oút-of-lock select.

OLP	OLA	OUT-OF-LOCK ON PIN 20
0	0	output disabled
0	1	auxiliary phase error
1	0	principle phase error
1	1	both auxiliary and principle

Low-voltage dual frequency synthesizer for radio telephones

Table 4 Fast normal current ratio (note 1).

CR1	CRO	$\mathbf{I}_{\text {CPA }}$	$I_{\text {CPP }}$	$I_{\text {CPPF }}$	$I_{\text {CPPF }} I_{\text {CPP }}$
0	0	$4 \times I_{\text {sp }}$	$4 \times I_{\text {sp }}$	$16 \times I_{\text {sp }}$	$4: 1$
0	1	$4 \times I_{\text {sp }}$	$4 \times I_{\text {sp }}$	$32 \times I_{\text {sp }}$	$8: 1$
1	0	$4 \times I_{\text {sp }}$	$2 \times I_{\text {sp }}$	$24 \times I_{\text {sp }}$	$12: 1$
1	1	$4 \times I_{\text {sp }}$	$2 \times I_{\text {sp }}$	$32 \times I_{\text {sp }}$	$16: 1$

## Note to Table 4

1. $I_{s p}=$ software power-down current..

The test register is not to be programmed or to be set to zeros.
Power-down modes.

AON	PON	FAST	PRINCIPLE   DIVIDERS	AUXILIARY   DIVIDERS	PUMP   CPA	PUMP   CPP	PUMP   CPPF	DAC, REFERENCE   BUFFER AND BIAS
0	0	X	OFF	OFF	OFF	OFF	OFF	OFF
0	1	0	ON	OFF	OFF	ON	OFF	ON
0	1	1	ON	OFF	OFF	ON	ON	ON
1	0	X	OFF	ON	ON	OFF	OFF	ON
1	1	0	ON	ON	ON	ON	OFF	ON
1	1	1	ON	ON	ON	ON	ON	ON

## Digital-to-analog converter

The byte loaded via the bus into the appropriate latch drives a digital-to-analog converter. The internal current is scaled by the external resistance at pin $I_{\text {SET }}$, similar to the charge pumps. The nominal full-scale current is $4 \times I_{\text {SET }}$. The output current is mirrored to produce a full scale voltage into a user-defined ground referenced resistance, thereby allowing optimum swing from power supply rails within the 2.7 to 5.5 V limits. The bandgap reference voltage at pin $\mathrm{I}_{\mathrm{SET}}$ is temperature and supply independent. The DAC signal is monotonic across the full range of digital input codes to enable fine adjustment of other system blocks. The typical settling time for full scale switching is 400 ns into a $12 \mathrm{k} \Omega / / 20 \mathrm{pF}$ load.

## Power-down modes

The action of the control inputs on $n$ the state of internal blocks is defined by Table 5.

Note that in Table 5 PON and AON can be either the software or hardware power-down signals. The dividers are ON when both hardware and software power-down signals are at logic 1.
When either synthesizer is reactivated after power-down the main and reference dividers of that synthesizer are synchronized to avoid the possibility of random phase errors on power-up.

## LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}$	DC supply voltage	-0.3	+5.5	V
$\Delta \mathrm{~V}_{\mathrm{CC}-\mathrm{DD}}$	difference in voltage between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{DD}}$	-0.3	+5.5	V
$\mathrm{~V}_{\mathrm{n}}$	voltage at pins 1, 6, 8 to 15, 19 and 20	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{2,3,17}$	voltage at pins 2, 3 and 17	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
$\Delta \mathrm{~V}_{\mathrm{GND}}$	difference in voltage between AGND and DGND   (these pins should be connected together)	-0.3	+0.3	V
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	150	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature	-20	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	maximum junction temperature	-	95	${ }^{\circ} \mathrm{C}$

## HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

THERMAL RESISTANCE

SYMBOL	PARAMETER	THERMAL RESISTANCE
$\mathrm{R}_{\mathrm{th} \mathrm{j} \text {-a }}$	from junction to ambient in free air	120 KW

Low-voltage dual frequency synthesizer for radio telephones

## CHARACTERISTICS

All values refer to the typical measurement circuit of Fig.5; unless otherwise specified.

SYMBOL	PARAMETR	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply; pins 4, 5 and 18						
$V_{\text {DD }}$	digital supply voltage		2.7	-	5.5	V
$\mathrm{V}_{\mathrm{CC}}$	analog supply voltage		2.7	-	5.5	V
IDD	principal synthesizer digital supply current	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	4.5	5	mA
	auxiliary synthesizer digital supply current	$V_{D D}=5.5 \mathrm{~V}$	-	2	2.3	mA
ICC	charge pumps and DAC analog supply current (DAC setting FFH)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \\ & \mathrm{RSET}=12 \mathrm{k} \Omega \end{aligned}$	-	2	2.2	mA
$\mathrm{I}_{\text {idle }}$	idle supply current per supply pin	logic levels 0 or $\mathrm{V}_{\mathrm{DD}}$	-	-	25	mA
RF principle main divider input; pin 6						
fvco	VCO input frequency		500	-	1200	MHz
$\mathrm{V}_{6 \text { (rms) }}$	input signal level (AC coupled) (RMS value)	$\mathrm{R}_{\mathrm{s}}=50 \Omega$	50	-	500	mV
$\mathrm{Z}_{1}$	input impedance (real part)	$\mathrm{f}_{\mathrm{RF}}=1 \mathrm{GHz}$	-	300	-	V
$\mathrm{C}_{1}$	typical pin input capacitance	indicative, not tested	-	2	-	pF
$\mathrm{R}_{\mathrm{pm}}$	principal main divider ratio		512	-	131071	
Auxiliary loop main divider input; pin 15						
$\mathrm{f}_{\text {Al }}$	input frequency		20	-	300	MHz
$\mathrm{V}_{15(\mathrm{rms})}$	input signal level (AC coupled) (RMS value)	$\mathrm{R}_{\mathrm{s}}=50 \mathrm{~V}$	50	-	500	mV
$\mathrm{Z}_{1}$	input impedance (real part)	$\mathrm{f}_{\mathrm{i}}=100 \mathrm{MHz}$	-	1000	-	$\Omega$
$\mathrm{C}_{1}$	typical pin input capacitance	Indicative, not tested	-	2	-	pF
$\mathrm{R}_{\mathrm{am}}$	auxiliary main divider ratio		64	-	16383	
Dual synthesizer reference divider input; pin 8						
$f_{\text {XTAL }}$	input frequency range from crystal		3	-	40	MHz
$\mathrm{V}_{8 \text { (rms) }}$	sinusoidal input signal level (RMS value)		50	-	500	mV
$\mathrm{Z}_{1}$	input impedance (real part)	$\mathrm{f}_{\text {XTAL }}=30 \mathrm{MHz}$	-	2000	-	$\Omega$
$\mathrm{C}_{1}$	typical pin input capacitance	indicative, not tested	-	2	-	pF
$\mathrm{R}_{\mathrm{pr}}$	principal reference division ratio		8	-	2047	
$\mathrm{R}_{\mathrm{ar}}$	auxiliary reference division ratio		8	-	2047	
Charge pump current setting resistor input; pin 14						
$\mathrm{R}_{\text {ext }}$	external resistor from pin 14 to ground		12	-	60	k $\Omega$
$\mathrm{V}_{14}$	regulated voltage at pin 14	RSET $=12 \mathrm{k} \Omega$	-	1.2	-	V

## Low-voltage dual frequency synthesizer for radio telephones

SYMBOL	PARAMETR	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Charge pump outputs; pins 17, 3 and 2; RSET = $12 \mathrm{k} \Omega$						
fPPC	phase detector frequency		-	200	-	kHz
Iocp	charge pump current error	"	-	$\pm 20$ -	-	\%
$I_{\text {match }}$	sink to source current matching	$V_{c p}$ in range	-	$\pm 5$	-	\%
\|lıl	charge pump off leakage current	$\mathrm{V}_{\mathrm{cp}}=1 / 2 \mathrm{~V}_{C C}$	-5	-	+5	nA
$\mathrm{V}_{\mathrm{cp}}$	charge pump voltage compliance		0.4	-	$\mathrm{V}_{\mathrm{CC}}-0.4$	V
Interface logic input signal levels; pins 13, 12, 11 and 1						
$\mathrm{V}_{\text {IH }}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	LOW level input voltage		-0.3	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{I}_{\text {bias }}$	input bias currents	logic 1 or 0	-5	-	+5	mA
$\mathrm{C}_{1}$	input capacitance	indicative, not tested	-	2	-	pF
DAC output signal levels; pin 10; RSET = $12 \mathrm{k} \Omega$ unless specified						
$I_{\text {DAC }}$	DAC full scale output current		$3 \times I_{\text {SET }}$	$4 \times \mathrm{I}_{\text {SET }}$	$5 \times 1$ SET	mA
$\mathrm{V}_{10}$	output voltage compliance	all codes	0	-	$\mathrm{V}_{\mathrm{DD}}-0.4$	V
$I_{\text {matd }}$	DAC current / ( $\mathrm{ISET} \times 4 \times$ ratio/256)	code $\neq 00$	-	$\pm 50$	-	\%
$l_{10 \text { min }}$	minimum DAC current	00 code	-	2	-	mA
$I_{\text {monod }}$	worst case monotonicity test: $\Delta I \times 256 / 400 \mu \mathrm{~A}$	7Fh/80h or 3Fh/40h	10	-	-	\%
Lock detect output signal; pin 20						
$\mathrm{V}_{0}$	output voltage compliance		0.4	-	5.5	V
$\mathrm{I}_{20}$	active sink output current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	0.4	-	-	mA
$\mathrm{I}_{20 \text { max }}$	maximum sink current	externally limited	-	-	5	mA

## SERIAL BUS TIMING CHARACTERISTICS

$V_{D D}=V_{C C}=3 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	\UNIT
Serial programming clock; pin 11						
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\text {f }}$	input rise and fall times		-	10	40	ns
$\mathrm{t}_{\mathrm{cy}}$	clock period		100	-	-	ns
Enable progamming; pin 13						
$\mathrm{t}_{\text {Start }}$	delay to rising clock edge		40	-	-	ns
$\mathrm{t}_{\text {END }}$	delay from last clock edge		100	-	-	ns
$t_{\text {W }}$	minimum inactive pulse width		2	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {NEW }}$	delay from $\overline{\mathrm{E}}$ inactive to new data		150	-	-	ns
Register serial input data; pin 12						
tsu;DAT	input data to clock set-up time		20	-	-	ns
$\mathrm{t}_{\text {HD; }{ }^{\text {dat }} \text { }}$	input data to clock hold time		20	-	-	ns



Fig. 3 Serial bus timing diagram.

## Low-voltage dual frequency synthesizer for radio

 telephones
## APPLICATION INFORMATION



Fig. 4 Typical application block diagram.


Fig. 5 Typical test and application diagram.

## Low-voltage dual frequency synthesizer for radio

 telephones
## FEATURES

- Low current from 3 V supply
- Fully programmable RF divider
- 3-line serial interface bus
- Second synthesizer to control first IF or offset loop frequency
- Independent fully programmable reference dividers for each loop, driven from external crystal
- Dual phase detector outputs to allow fast frequency switching
- Integrated digital-to-analog converter
- Dual power-down modes.


## APPLICATIONS

- 2 GHz mobile telephones
- Portable battery-powered radio equipment.


## GENERAL DESCRIPTION

The UMA1018M BICMOS device integrates prescalers, programmable dividers, and phase comparators to implement two phase-locked loops.
The device is designed to operate from 3 NiCd cells, in
pocket phones, with low current as well as nominal 5 V supplies. The principal synthesizer operates at VCO input frequencies above 2 GHz , the auxiliary synthesizer operates at 300 MHz . The auxiliary loop is intended for the first IF or to transmit offset loop-frequency settings. Each synthesizer has a fully programmable reference divider. All divider ratios are supplied via a 3-wire serial programming bus.

Separate power and ground pins are provided to the analog and digital circuits. The ground leads should be externally short-circuited to prevent large currents flowing across the die and thus causing damage. $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ must also be short-circuited.

The principal synthesizer phase detector uses two charge pumps, one provides normal loop feedback, while the other is only active during fast mode to speed-up switching. The auxiliary loop has a separate phase detector. All charge pump currents (gain) are fixed by an external resistance at pin $I_{\text {SET }}$ (pin 14). Only passive loop filters are used; the charge-pumps function within a wide voltage compliance range to improve the overall system performance. An on-chip 8-bit DAC enables adjustment of an external function, such as the temperature compensation of a crystal oscillator in GSM systems (Global Systems for Mobile communications).

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}$	supply voltage		2.7	-	5.5	V
$I_{C C}, l_{\text {DD }}$	supply current	auxiliary synthesizer in power-down mode	-	10	-	mA
$\mathrm{I}_{\mathrm{CCO}}, \mathrm{I}_{\text {DDO }}$	operating supply current	principle and auxiliary synthesizer ON	-	12	-	mA
$\mathrm{I}_{\mathrm{Ccpd}}$	current in power-down mode per supply		-	10	-	$\mu \mathrm{A}$
$\mathrm{f}_{\mathrm{PI}}$	principle input frequency		1000	-	2400	MHz
$\mathrm{f}_{\mathrm{Al}}$	auxiliary input frequency		20	-	300	MHz
$\mathrm{f}_{\text {XTAL }}$	crystal reference input frequency		3	-	40	MHz
$\mathrm{f}_{\text {PPC }}$	principle phase comparator frequency		10	200	2000	kHz
$\mathrm{f}_{\text {APC }}$	auxiliary phase comparator frequency		10	-	2000	kHz
$\mathrm{T}_{\text {amb }}$	operating ambient temperature		-20	-	+70	${ }^{\circ} \mathrm{C}$

Low-voltage dual frequency synthesizer for radio telephones

## ORDERING INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
UMA1020M	20	SSOP20	plastic	SOT266A



MKA64 1.2

Fig. 1 Block diagram.

Low-voltage dual frequency synthesizer for radio telephones

PINNING

SYMBOL	PIN	DESCRIPTION
FAST	1	control input to speed-up main synthesizer
CPPF	2	principle synthesizer speed-up charge-pump output
CPP	3	principle synthesizer normal charge-pump output
$\mathrm{V}_{\mathrm{DD} 1}$	4	digital power supply
$\mathrm{V}_{\mathrm{DD} 2}$	5	bipolar power supply
PRI	6	1 GHz principle synthesizer RF divider input
DGND	7	digital ground
$\mathrm{f}_{\text {XTAL }}$	8	common reference frequency input from crystal oscillator
PON	9	principle synthesizer power-on input
DOUT	10	8-bit digital-to-analog output
CLK	11.	serial clock input
DATA	12	serial data input
$\overline{\mathrm{E}}$	13	programming bus enable input (active LOW)
$\mathrm{I}_{\text {SET }}$	14	regulator pin to set the charge-pump currents
AUX	15	auxiliary synthesizer frequency input
AGND	16	analog ground
CPA	17	auxiliary synthesizer charge-pump output
$\mathrm{V}_{\mathrm{CC}}$	18	analog supply for charge-pump and DAC circuits
AON	19	auxiliary synthesizer power-on input
LOCK	20	in-lock detect output (main PLL); test mode output

Fig. 2 Pin configuration.

## FUNCTIONAL DESCRIPTION

## Principal synthesizer

Programmable reference and main dividers drive the principal PLL phase detector. Two charge pumps produce phase error current pulses for integration in an external loop filter. A hardwired power-down input PON (pin 9) ensures that the dividers and phase comparator circuits are disabled.

The PRI input (pin 6) drives a pre-amplifier to provide the clock to the first divider stage. The pre-amplifier has a high input impedance, dominated by pin and pad capacitance. The circuit operates with signal levels from below 50 mV up to 250 mV (RMS), and at frequencies greater than 2 GHz . The high frequency divider circuits use bipolar transistors, slower bits are CMOS. Divide ratios ( 512 to 131071 ) allow a 2 MHz phase comparison.
The reference and main divider outputs are connected to a phase/frequency detector that controls two charge pumps. The two pumps have a common bias-setting current that is set by an external resistance. The ratio between currents in fast and normal operating modes can be programmed via the 3 -wire serial bus. The low current pump remains active except in power-down. The high current pump is enabled via the control input FAST (pin 1). By appropriate connection to the loop filter, dual bandwidth loops are provided: short time constant during frequency switching (FAST mode) to speed-up channel changes and low bandwidth in the settled state (on frequency) to improve noise and breakthrough levels.
An open drain transistor drives the output pin LOCK (pin 20). The circuit can be programmed to output either the phase error in the principle or auxiliary phase detectors or the combination from both detectors (OR function). The resultant output will be a current pulse with the duration of the selected phase error. By appropriate external filtering and threshold comparison an out-of-lock or an in-lock flag is generated.

## Auxiliary synthesizer

The auxiliary synthesizer has a 14 -bit main divider and an 11-bit reference divider. A separate power-down input AON (pin 19), disables currents in the auxiliary dividers, phase detector, and charge pump. The auxiliary input signal is amplified and fed to the main divider.

The input buffer presents a high impedance, dominated by pin and pad capacitance. First divider stages use bipolar technology operating at input frequencies above 300 MHz ; the slower bits are CMOS. The auxiliary loop phase detector and charge pump use similar circuits to the main loop low-current phase comparator, including dead-zone compensation feedback.

The auxiliary reference divider is clocked on the opposite edge of the main reference divider to ensure that active edges arrive at the auxiliary and principal phase detectors at different times. This minimizes the potential for interference between the charge pumps of each loop.

## Serial programming bus

A simple 3 -line unidirectional serial bus is used to program the circuit. The 3 lines are DATA, CLK and $\bar{E}$ (enable). The data sent to the device is loaded in bursts framed by $\bar{E}$. Programming clock edges and their appropriate data bits are ignored until $\overline{\mathrm{E}}$ goes active LOW. The programmed information is loaded into the addressed latch when $\bar{E}$ returns inactive HIGH. Only the last 21 bits serially clocked into the device are retained within the programming register. Additional leading bits are ignored, and no check is made on the number of clock pulses. The fully static CMOS design uses virtually no current when the bus is inactive. It can always capture new programmed data even during power-down of main and auxiliary loops.

## Data format

Data is entered with the most significant bit first. The leading bits make up the data field, while the trailing four bits are an address field. The UMA1020M uses 6 of the 16 available addresses. These are chosen to allow direct compatibility with the UAA2072M integrated front-end. The data format is shown in Table 1. The first entered bit is p1, the last bit is p21.
The trailing address bits are decoded on the inactive edge of $\overline{\mathrm{E}}$. This produces an internal load pulse to store the data in one of the addressed latches. To avoid erroneous divider ratios, the pulse is not allowed during data reads by the frequency dividers. This condition is guaranteed by respecting a minimum $\overline{\bar{E}}$ pulse width after data transfer. The corresponding relationship between data fields and addresses is given in Table 2.

PROGRAMMING REGISTER BIT USAGE
Table 1 Format of programmed data.

PROGRAMMING REGISTER BIT USAGE								
p21	p20	p19	p18	p17	p16	../..	p2	p1
ADD0	ADD1	ADD2	ADD3	DATA0	DATA1	../..	DATA15	DATA16
LATCH ADDRESS				LSB	DATA COEFFICIENT			MSB

Table 2 Bit allocation (note 1).

FT	REGISTER BIT ALLOCATIONS																			LT
p1	p2	p3	p4	p5	p6	p7	p8	p9	p10	p11	p12	p13	p14	p15	p16	p17	p18	p19	p20	p21
dt16	$\mathrm{dt15}$	dt14	dt13	dt12	DATA FIELD							dt4	dt3	dt2	dt1	dt 0	ADDRESS			
TEST BITS																	0	0	0	0
X	X	X	X	OLP	OLA	CR1	CR0	X	X	sPON	sAON	X	X	X	X	X	0	0	0	1
PM 16	PRINCIPLE MAIN DIVIDER COEFFICIENT															PM0	0	1	0	0
X	X	X	X	X	X	PR10	PRINCIPLE REFERENCE DIVIDER COEFFICIENT									PR 0	0	1	0	1
X	X	X	AM 13	AUXILIARY MAIN DIVIDER COEFFICIENT												AM0	0	1	1	0
X	X	X	X	X	X	AR10	AUXILIARY REFERENCE DIVIDER COEFFICIENT									AR 0	0	1	1	1
X	X	X	X	X	X	X	X	X	DA7 8-BIT DAC FOR EXTERNAL								1	0	0	0

## Note to Table 2

1. $\mathrm{FT}=$ first, $\mathrm{LT}=$ last; $\mathrm{sPON}=$ software power-up for principle synthesizer $(1=\mathrm{ON})$; sAON $=$ software power-up for auxiliary synthesizer $(1=\mathrm{ON})$.

Table 3 Out-of-lock select.

OLP	OLA	OUT-OF-LOCK ON PIN 20
0	0	output disabled
0	1	auxiliary phase error
1	0	principle phase error
1	1	both auxiliary and principle

Low-voltage dual frequency synthesizer for radio telephones

Table 4 Fast normal current ratio (note 1).

CR1	CRO	ICPA	$I_{\text {CPP }}$	$\mathbf{I C P P F}$	$I_{\text {CPPF }}$ I ICPP
0	0	$4 \times \mathrm{l}_{\text {sp }}$	$4 \times \mathrm{I}_{\text {sp }}$	$16 \times \mathrm{I}_{\mathrm{sp}}$	4:1
0	1	$4 \times \mathrm{I}_{\text {sp }}$	$4 \times \mathrm{I}_{\text {sp }}$	$32 \times \mathrm{I}_{\mathrm{sp}}$	8:1
1	0	$4 \times \mathrm{I}_{\text {sp }}$	$2 \times \mathrm{I}_{\text {sp }}$	$24 \times I_{\text {sp }}$	12:1
1	1	$4 \times 1$ sp	$2 \times 1$ sp	$32 \times \mathrm{I}_{\text {sp }}$	16:1

## Note to Table 4

1. $I_{\mathrm{sp}}=$ software power-down current.

The test register is not to be programmed or to be set to zeros.
Table 5 Power-down modes.

AON	PON	FAST	PRINCIPLE   DIVIDERS	AUXILIARY   DIVIDERS	PUMP   CPA	PUMP   CPP	PUMP   CPPF	DAC, REFERENCE   BUFFER AND BIAS
1	1	X	OFF	OFF	OFF	OFF	OFF	OFF
1	0	0	ON	OFF	OFF	ON	OFF	ON
1	0	1	ON	OFF	OFF	ON	ON	ON
0	1	X	OFF	ON	ON	OFF	OFF	ON
0	0	0	ON	ON	ON	ON	OFF	ON
0	0	1	ON	ON	ON	ON	ON	ON

## Digital-to-analog converter

The byte loaded via the bus into the appropriate latch drives a digital-to-analog converter. The internal current is scaled by the external resistance at pin I ${ }_{\text {SET }}$, similar to the charge pumps. The nominal full-scale current is $4 \times l_{\text {SET }}$. The output current is mirrored to produce a full-scale voltage into a user-defined ground referenced resistance, thereby allowing optimum swing from power supply rails within the 2.7 to 5.5 V limits. The bandgap reference voltage at pin $\mathrm{I}_{\mathrm{SET}}$ is temperature and supply independent. The DAC signal is monotonic across the full range of digital input codes to enable fine adjustment of other system blocks. The typical settling time for full scale switching is 400 ns into a $12 \mathrm{k} \Omega / / 20 \mathrm{pF}$ load.

## Power-down modes

The action of the control inputs on the state of internal blocks is defined by Table 5.

Note that in Table 5 PON and AON can be either the software or hardware power-down signals. The dividers are ON when both hardware and software power-down signals are at logic 1.

When either synthesizer is reactivated after power-down the main and reference dividers of that synthesizer are synchronized to avoid the possibility of random phase errors on power-up.

## LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}$	supply voltage	-0.3	+5.5	V
$\Delta \mathrm{~V}_{\mathrm{CC} \text { - }}$	difference in voltage between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{DD}}$	-0.3	+5.5	V
$\mathrm{~V}_{\mathrm{n}}$	voltage at pins 1, 6, 8 to 15, 19 and 20	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{2,3,17}$	voltage at pins 2, 3 and 17	-0.3	$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
$\Delta \mathrm{~V}_{\mathrm{GND}}$	difference in voltage between AGND and DGND   (these pins should be connected together)	-0.3	+0.3	V
$\mathrm{P}_{\text {tot }}$	total power dissipation	-	150	mW
$\mathrm{~T}_{\text {stg }}$	storage temperature	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	operating ambient temperature	-20	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}}$	maximum junction temperature	-	95	${ }^{\circ} \mathrm{C}$

## HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

THERMAL RESISTANCE

SYMBOL	PARAMETER	THERMAL RESISTANCE
$\mathrm{R}_{\mathrm{th} \mathrm{j} \text {-a }}$	from junction to ambient in free air	$120 \mathrm{~K} / \mathrm{W}$

## CHARACTERISTICS

All values refer to the typical measurement circuit of Fig.5; unless otherwise specified.

SYMBOL	PARAMETR	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply: pins 4, 5 and 18						
$V_{D D}$	digital supply voltage		2.7	-	5.5	V
$\mathrm{V}_{\text {CC }}$	analog supply voltage		2.7	-	5.5	V
$\mathrm{I}_{\mathrm{DD}}$	principal synthesizer digital supply current	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	8	9	mA
	auxiliary synthesizer digital supply current	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	2	2.3	mA
ICC	charge pumps and DAC analog supply current (DAC setting FFH)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \\ & \mathrm{RSET}=12 \mathrm{k} \Omega \end{aligned}$	-	2	2.2	mA
$\mathrm{I}_{\text {idle }}$	idle supply current per supply pin	logic levels 0 or $V_{D D}$	-	-	25	mA

RF principle main divider input; pin 6

fvco	VCO input frequency range		1000	-	2400	MHz
$\mathrm{V}_{6 \text { (rms) }}$	input signal level (AC coupled) (RMS value)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	50	-	500	mV
$Z_{1}$	input impedance (real part)	$\mathrm{f}_{\mathrm{RF}}=2 \mathrm{GHz}$	-	300	-	V
$\mathrm{C}_{1}$	typical pin input capacitance	indicative, not tested	-	2	-	pF
$\mathrm{R}_{\mathrm{pm}}$	principal main divider ratio		512	-	131071	
Auxiliary loop main divider input; pin 15						
$\mathrm{f}_{\text {Al }}$	input frequency		20	-	300	MHz
$\mathrm{V}_{15(\mathrm{rms})}$	input signal level (AC coupled) (RMS value)	$\mathrm{R}_{\mathrm{S}}=50 \mathrm{~V}$	50	-	500	mV
$\mathrm{Z}_{1}$	input impedance (real part)	$\mathrm{f}_{\mathrm{i}}=100 \mathrm{MHz}$	-	1000	-	$\Omega$
$\mathrm{C}_{1}$	typical pin input capacitance	indicative, not tested	-	2	-	pF
$\mathrm{R}_{\mathrm{am}}$	auxiliary main divider ratio		64	-	16383	

Dual synthesizer reference divider input; pin 8

$\mathrm{f}_{\mathrm{XTAL}}$	input frequency range from   crystal		3	-	40	MHz
$\mathrm{V}_{8(\mathrm{rms})}$	sinusoidal input signal level   (RMS value)		50	-	500	mV
$\mathrm{Z}_{\mathrm{I}}$	input impedance (real part)	$\mathrm{f}_{\mathrm{XTAL}}=30 \mathrm{MHz}$	-	2000	-	$\Omega$
$\mathrm{C}_{\mathrm{I}}$	typical pin input capacitance	indicative, not tested	-	2	-	pF
$\mathrm{R}_{\mathrm{pr}}$	principal reference divider ratio		8	-	2047	
$\mathrm{R}_{\mathrm{ar}}$	auxiliary reference divider ratio		8	-	2047	


SYMBOL	PARAMETR	CONDITIONS	MIN.	TYP.	MAX.	UNIT

Charge pump current setting resistor input; pin 14

$\mathrm{R}_{\text {ext }}$	external resistor from pin 14 to   ground	12	-	60	$\mathrm{k} \Omega$	
$\mathrm{V}_{14}$	regulated voltage at pin 14	RSET $=12 \mathrm{k} \Omega$	-	1.2	-	V

Charge pump outputs; pins 17, 3 and 2; RSET $=12$ k $\Omega$

$\mathrm{f}_{\text {PPC }}$	principle phase comparator   frequency		-	200	2000	kHz
$\mathrm{I}_{\text {Ocp }}$	charge pump current error		-	$\pm 20$	-	$\%$
$\mathrm{I}_{\text {match }}$	sink to source current matching	$\mathrm{V}_{\mathrm{cp}}$ in range	-	$\pm 5$	-	$\%$
$\mathrm{I}_{\mathrm{LI}}$	charge pump off leakage current	$\mathrm{V}_{\mathrm{cp}}=1 / 2 \mathrm{~V}_{\mathrm{CC}}$	-5	-	+5	nA
$\mathrm{V}_{\mathrm{cp}}$	charge pump voltage compliance		0.4	-	$\mathrm{V}_{\mathrm{CC}}-0.4$	V

Interface logic input signal levels; pins 13, 12, 11 and 1

$\mathrm{V}_{\mathrm{IH}}$	HIGH level input voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	LOW level input voltage		-0.3	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{I}_{\text {bias }}$	input bias currents	logic 1 or 0	-5	-	+5	mA
$\mathrm{C}_{\mathrm{I}}$	input capacitance	indicative, not tested	-	2	-	pF

DAC output signal levels; pin 10; RSET = $12 \mathrm{k} \Omega$ unless specified

$\mathrm{I}_{\text {DAC }}$	DAC full scale output current		$3 \times 1$ SET	$4 \times l_{\text {SET }}$	$5 \times 1{ }_{\text {SET }}$	mA
$\mathrm{V}_{10}$	output voltage compliance	all codes	0	-	$\mathrm{V}_{\mathrm{DD}}-0.4$	V
$I_{\text {matd }}$	DAC current / ( $\mathrm{I}_{\text {SET }} \times 4 \times$ ratio/256)	code $\neq 00$	-	$\pm 50$	-	\%
$l_{10 \text { min }}$	minimum DAC current	00 code	-	2	-	mA
1 monod	worst case monotonicity test: $\Delta \mathrm{I} \times 256 / 400 \mu \mathrm{~A}$	7Fh/80h or 3Fh/40h	10	-	-	\%

Lock detect output signal; pin 20

$\mathrm{V}_{\mathrm{O}}$	output voltage compliance range		0.4	-	5.5	V
$\mathrm{I}_{20}$	active sink output current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	0.4	-	-	mA
$\mathrm{I}_{20 \max }$	maximum sink current	externally limited	-	-	5	mA

Low-voltage dual frequency synthesizer for radio telephones

## SERIAL BUS TIMING CHARACTERISTICS

$V_{D D}=V_{C C}=3 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Serial programming clock; pin 11						
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times		-	10	40	ns
$t_{\text {cr }}$	clock period		100	-	-	ns
Enable programming; pin 13						
$t_{\text {START }}$	delay to rising clock edge		40	-	-	ns
$t_{\text {END }}$	delay from last clock edge		100	-	-	ns
$\mathrm{t}_{\mathrm{w}}$	minimum inactive pulse width		2	-	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {NEW }}$	delay from $\overline{\mathrm{E}}$ inactive to new data		150	-	-	ns
Register serial input data; pin 12						
$\mathrm{t}_{\text {SU;DAT }}$	input data to clock set-up time		20	-	-	ns
	input data to clock hold time		20	-	-	ns



Fig. 3 Serial interface timing diagram.

## Low-voltage dual frequency synthesizer for radio telephones

## APPLICATION INFORMATION



Fig. 4 Typical application block diagram.


Fig. 5 Typical test and application diagram.

## RF/Wireless Communications <br> Section 8 <br> Transmitters

INDEX
NE/SA630 Single pole double throw (SPDT) switch ..... 1097
SA900 I/Q transmit modulator ..... 1107

## Single pole double throw (SPDT) switch

## DESCRIPTION

The NE630 is a wideband RF switch fabricated in BiCMOS technology and incorporating on-chip CMOS/TTL compatible drivers. Its primary function is to switch signals in the frequency range $\mathrm{DC}-1 \mathrm{GHz}$ from one $50 \Omega$ channel to another. The switch is activated by a CMOS/TTL compatible signal applied to the enable channel 1 pin (ENCH1).

The extremely low current consumption makes the NE/SA630 ideal for portable applications. The excellent isolation and low loss makes this a suitable replacement for PIN diodes.

The NE/SA630 is available in an 8 -pin dual in-line plastic package and an 8 -pin SO (surface mounted miniature) package.

FEATURES
-Wideband (DC-1GHz)

- Low through loss (1dB typical at 200 MHz )
- Unused input is terminated internally in $50 \Omega$
- Excellent overload capability ( 1 dB gain compression point +18 dBm at 300 MHz )
- Low DC power ( $170 \mu \mathrm{~A}$ from 5 V supply)
- Fast switching (20ns typical)
-Good isolation (off channel isolation 60 dB at 100 MHz )
- Low distortion ( $\mathrm{IP}_{3}$ intercept +33 dBm )
$\bullet$ Good $50 \Omega$ match (return loss 18 dB at 400 MHz )
-Full ESD protection
- Bidirectional operation

PIN CONFIGURATION
D and N Packages


## APPLICATIONS

-Digital transceiver front-end switch

- Antenna switch
- Filter selection
- Video switch
$\bullet$ - SK transmitter


## ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG\#
8-Pin Plastic Dual In-Line Package (DIP)	0 to $70^{\circ} \mathrm{C}$	NE630N	0404 B
8-Pin Plastic Small Outline (SO) package (Surface-mount)	0 to $70^{\circ} \mathrm{C}$	NE630D	0174 C
8 -Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA630N	0404 B
8 -Pin Plastic Small Outline (SO) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA630D	0174 C

## BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\mathrm{DD}}$	Supply voltage	-0.5 to +5.5	V
$\mathrm{P}_{\mathrm{D}}$	Power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still air) $)^{1}$   8 -Pin Plastic DIP   $8-$ Pin Plastic SO	1160   780	mW
mW			
$\mathrm{~T}_{\text {JMAX }}$	Maximum operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {MAX }}$	Maximum power input/output	+20	dBm
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

## NOTES:

1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, $\theta_{\mathrm{JA}}$ :

$$
8 \text {-Pin DIP: } \theta_{\mathrm{JA}}=108^{\circ} \mathrm{CN}
$$

$$
8 \text {-Pin SO: } \theta_{\mathrm{JA}}=158^{\circ} \mathrm{C} W
$$

## EQUIVALENT CIRCUIT



RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\mathrm{DD}}$	Supply voltage	3.0 to 5.5 V	V
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range   NE Grade   SA Grade	0 to +70   -40 to +85	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$			
$\mathrm{T}_{\mathrm{J}}$	Operating junction temperature range   NE G Grade   SA Grade	0 to +90   -40 to +105	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$			

## DC ELECTRICAL CHARACTERISTICS

$V_{D D}=+5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA630			
			MIN	TYP	MAX	
IDD	Supply current		40	170	300	$\mu \mathrm{A}$
$\mathrm{V}_{\text {T }}$	TTL/CMOS logic threshold voltage ${ }^{1}$		1.1	1.25	1.4	V
$\mathrm{V}_{\mathrm{IH}}$	Logic 1 level	Enable channel 1	2.0		$V_{D D}$	V
$\mathrm{V}_{\mathrm{IL}}$	Logic 0 level	Enable channel 2	-0.3		0.8	V
ILL	ENCH1 input current	ENCH1 $=0.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H}}$	ENCH1 input current	ENCH1 $=2.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$

NOTE:

1. The ENCH1 input must be connected to a valid Logic Level for proper operation of the NE/SA630.

## Single pole double throw (SPDT) switch

## AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ - D PACKAGE

$V_{D D}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			NE/SA630			
			MIN	TYP	MAX	
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Insertion loss (ON channel)	$\begin{gathered} \hline \mathrm{DC}-100 \mathrm{MHz} \\ 500 \mathrm{MHz} \\ 900 \mathrm{MHz} \end{gathered}$		$\begin{gathered} 1 \\ 1.4 \\ 2 \end{gathered}$	2.8	dB
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Isolation (OFF channel) ${ }^{2}$	$\begin{aligned} & 10 \mathrm{MHz} \\ & 100 \mathrm{MHz} \\ & 500 \mathrm{MHz} \\ & 900 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 70 \\ & 24 \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \\ & 50 \\ & 30 \end{aligned}$		dB
$\mathrm{S}_{11}, \mathrm{~S}_{22}$	Return loss (ON channel)	$\begin{aligned} & \mathrm{DC}-400 \mathrm{MHz} \\ & 900 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 20 \\ & 12 \end{aligned}$		dB
$\mathrm{S}_{11}, \mathrm{~S}_{22}$	Return loss (OFF channel)	$\begin{gathered} \hline \mathrm{DC}-400 \mathrm{MHz} \\ 900 \mathrm{MHz} \end{gathered}$		$\begin{aligned} & 17 \\ & 13 \end{aligned}$		dB
$t_{0}$	Switching speed (on-off delay)	50\% TTL to 90/10\% RF		20		ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\text {f }}$	Switching speeds (on-off rise/fall time)	90\%/10\% to 10\%/90\% RF		5		ns
	Switching transients			165		$m \mathrm{~V}_{\mathrm{p} \text {-p }}$
P-1dB	1 dB gain compression	DC - 1GHz		+18		dBm
$\mathrm{IP}_{3}$	Third-order intermodulation intercept	100 MHz		+33		dBm
$\mathrm{IP}_{2}$	Second-order intermodulation intercept	100 MHz		+52		dBm
NF	Noise figure ( $\left.\mathrm{Z}_{0}=50 \Omega\right)$	$\begin{aligned} & 100 \mathrm{MHz} \\ & 900 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$		dB

## NOTE:

1. All measurements include the effects of the D package NE/SA630 Evaluation Board (see Figure 1B). Measurement system impedance is $50 \Omega$.
2. The placement of the AC bypass capacitor is critical to achieve these specifications. See the applications section for more details.

## AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ - N PACKAGE

$V_{D D}=+5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; all other characteristics similar to the D-Package, unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	$\frac{\text { LIMITS }}{\text { NE/SA630 }}$			UNITS
			MIN	TYP	MAX	
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Insertion loss (ON channel)	$\begin{gathered} \hline \mathrm{DC}-100 \mathrm{MHz} \\ 500 \mathrm{MHz} \\ 900 \mathrm{MHz} \end{gathered}$		$\begin{gathered} 1 \\ 1.4 \\ 2.5 \end{gathered}$		dB
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Isolation (OFF channel)	10 MHz   100 MHz   500 MHz   900 MHz	58	68 50 37 15		dB
NF	Noise figure ( $\left.Z_{0}=50 \Omega\right)$	100 MHz 900 MHz		1.0 2.5		dB

NOTE:

1. All measurements include the effects of the N package NE/SA630 Evaluation Board (see Figure 1C). Measurement system impedance is $50 \Omega$.

## APPLICATIONS

The typical applications schematic and printed circuit board layout of the NE/SA630 evaluation board is shown in Figure 1. The layout of the board is simple, but a few cautions need to be observed. The input and output traces should be $50 \Omega$. The placement of the AC bypass capacitor is extremely
critical if a symmetric isolation between the two channels is desired. The trace from Pin 7 should be drawn back towards the package and then be routed downwards. The capacitor should be placed straight down as close to the device as practical. For better isolation between the two channels at higher frequencies, it is also advisable to run the two
output/input traces at an angle. This also minimizes any inductive coupling between the two traces. The power supply bypass capacitor should be placed close to the device. Figure 7 shows the frequency response of the NE/SA630. The loss matching between the two channels is excellent to 1.2 GHz as shown in Figure 10.

a. NE/SA Evaluation Board Schematic

b. NE/SA630 D-Package Board Layout

c. NE/SA630 N-Package Board Layout

Figure 1.

The isolation and matching of the two channels over frequency is shown in Figures 12 and 14, respectively.
The NE630 is a very versatile part and can be used in many applications. Figure 2 shows a block diagram of a typical Digital RF transceiver front-end. In this application the NE630 replaces the duplexer which is typically very bulky and lossy. Due to the low power consumption of the device, it is ideally suited for handheld applications such as in CT2 cordless telephones. The NE630 can also be used to generate Amplitude Shift Keying (ASK) or On-Off Keying (OOK) and Frequency Shift Keying (FSK) signals for digital RF communications systems. Block diagrams for these applications are shown in Figures 3 and 4, respectively.
For applications that require a higher isolation at 1 GHz than obtained from a single NE630, several NE630s can be cascaded as shown in Figure 5. The cascaded configuration will have a higher loss but greater than 35 dB of isolation at 1 GHz and greater than $65 \mathrm{~dB} @$ 500 MHz can be obtained from this configuration. By modifying the enable control, an RF multiplexer/ de-multiplexer or antenna selector can be constructed. The simplicity of NE630 coupled with its ease of use and high performance lends itself to many innovative applications.
The NE/SA630 switch terminates the OFF channel in $50 \Omega$. The $50 \Omega$ resistor is internal and is in series with the external AC bypass capacitor. Matching to impedances other than $50 \Omega$ can be achieved by adding a resistor in series with the AC bypass capacitor (e.g., $25 \Omega$ additional to match to a $75 \Omega$ environment).


Figure 2.


AMPUTUDE SHIFT KEYING (ASK) GENERATOR
Figure 3.


FREQUENCY SHIFT KEYNG (FSK) GENERATOR
Figure 4.


Figure 6. Supply Current vs. $V_{D D}$ and Temperature


Figure 8. Loss vs. Frequency and $V_{D D}$ for D-Package -Expanded Detail-


Figure 7. Loss vs. Frequency and $V_{D D}$ for D-Package


Figure 9. Loss Matching vs. Frequency for N -Package (DIP)

Single pole double throw (SPDT) switch


Figure 10. Loss Matching vs. Frequency; CH 1 vs. CH 2 for D-Pakage


Figure 12. Isolation vs. Frequency and $\mathrm{V}_{\mathrm{DD}}$ for D-Package


Figure 11. Loss vs. Frequency and Temperature for D-Package


Figure 13. Isolation Matching vs. Frequency for N-Package (DIP)


Figure 14. Isolation Matching vs. Frequency; CH1 vs. CH2 for D-Package


Figure 16. Output Match On-Channel vs. Frequency


Figure 15. Input Match On-Channel vs. Frequency and $V_{D D}$


Figure 17. OFF-Channel Match vs. Frequency and $V_{D D}$

Single pole double throw (SPDT) switch


Figure 18. OFF Channel Match vs. Frequency and Temperature


Figure 20. Intercept Points vs.VDD


Figure 19. $P_{-1} d B$ vs. Frequency and $V_{D D}$


Figure 21. Noise Figure vs. Frequency and VDD for D-Package


Figure 22. Switching Speed; $f_{I N}=100 \mathrm{MHz}$ at $-6 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

## DESCRIPTION

The SA900 is a monolithic high performance, multi-function transmit modulator for use in cellular radio applications, fabricated in QUBiC BiCMOS technology. The SA900 features both analog (AMPS) mode and complex, I/Q digital (NADC IS54) mode quadrature modulation functions, a PLL synthesizer with VCO, crystal oscillator, programmable prescalers and Gilbert cell multiplier phase detector with programmable charge pump output. The DUALTX output can be used in DUAL mode cellular phone applications with the AMPS and NADC modulation being applied to the I/Q baseband inputs. The DUALTX output also provides 6 -bit power control with 40 dB of gain control in 0.63 dB steps. In addition, buffered crystal oscillator programmable prescaler outputs are provided to support system clock reference needs. Programming of the SA900 functions are realized by a high speed 3 -wire serial interface. The SA900 can be programmed into a sleep mode (low current mode providing crystal oscillator and Master Clock functions), a standby mode (providing crystal oscillator, Master Clock, System Clock 1 and Transmit LO buffer functions), and the AMPS mode and the DUAL mode configurations.

## APPLICATIONS

- North American Digital Cellular (NADC IS-54)


## PIN CONFIGURATION

BE Package
FEATURES - On-chip crystal oscillator with 3 buffered   - $\mathrm{V}_{\mathrm{CC}}=4.8 \mathrm{~V}$ - AMPSUSs/TACS   - Tx output frequency $=900 \mathrm{MHz}$ - On-chip VCO   - Direct modulation of RF - Selective power-down   - DUAL mode, on-chip PA control - Low power AMPS/TACS mode   - I/Q modulator - Low power dual mode NADC   - Single sideband quadrature LO generation - 48-Pin TQFP package

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
48 -Pin Thin Quad Flat Pack (TQFP)	-40 to $+85^{\circ} \mathrm{C}$	SA900BE	1706 A

## BLOCK DIAGRAM



PIN DESCRIPTIONS

Pin	Description
I	Non-inverting I Mod Signal
T	Inverting I Mod Signal
TXLO_1/2	Second LO Input (differential/single-ended input)
DUALTX	RF output (850MHz) digital (DUAL) mode, complex modulated output
Q	Non-inverting Q Mod Signal
$\bar{Q}$	Inverting Q Mod Signal
CLK1	Buffered oscillator output (XO +3/+1)
MCLK	Buffered oscillator output (XO +4/+5/+1)
CLK2	Buffered oscillator output (XO $+2 /+1$ )
AMPSTX	RF output (850MHz) AMPS mode
VCC	+5V ${ }_{\text {DC }}$ power supply
GND	Ground
Data	Serial data input
Clock	Serial clock input
Strobe	Data strobe input
TXEN	AMPS and Dual Mode transmit enable
CLKSET	Program control pin for MCLK prescaler
XTAL1	Crystal oscillator base input
XTAL2	Crystal oscillator emitter output
PHSOUT	Phase comparator charge pump output
TANK_1	VCO differential tank
TANK_2	VCO differential tank
LO_1/2	Buffered differential TXLO output
lpEAK	Phase comparator current programming

## ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
$\mathrm{V}_{\mathrm{CC}}$	Supply voltage	-0.3 to +6	V
$\mathrm{~V}_{\text {IN }}$	Voltage applied to any other pin	-0.3 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	V
$\mathrm{P}_{\mathrm{D}}$	Power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still air)	600	mW
$\mathrm{~T}_{\text {JMAX }}$	Maximum operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {MAX }}$	Maximum power input/output	+10	dBm
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, $\theta_{\mathrm{JA}}$. 48 -pin TQFP: $\quad \theta_{j A}=67^{\circ} \mathrm{C} / \mathrm{W}$

## RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
$V_{C C}$	Supply voltage	4.5 to 5.1	V
$T_{A}$	Operating ambient temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$
$T_{J}$	Operating junction temperature	-40 to +105	${ }^{\circ} \mathrm{C}$

## DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=+4.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
$\mathrm{V}_{\mathrm{cc}}$	Power supply range		4.5		5.1	V
Icc	Supply current	Sleep mode		3.4		mA
		Standby mode		8.7		mA
		AMPS mode		42		mA
		DUAL mode		68		mA
1/T	In-phase differential baseband input	DC		$0.5 \mathrm{~V}_{\text {cc }}$		V
Q/可	Quadraphase differential baseband input	DC		$0.5 \mathrm{~V}_{\text {cc }}$		V
CLKSET	Divide by 4/5/1	$\div 4$		$\mathrm{V}_{\mathrm{cc}}$		V
		$\div 5$		0.5 V cc		V
		$\div 1$		0		V
$\mathrm{V}_{\mathrm{IL}}$	Clock, data, strobe, TXEN	Input low	-0.3		0.3 V cc	V
$\mathrm{V}_{\mathrm{H}}$	Clock, data, strobe, TXEN	Input high	$0.7 \mathrm{~V}_{\mathrm{cc}}$		$\mathrm{V}_{\mathrm{cc}}+0.3$	V

## AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS		
			MIN	TYP	MAX			
TXLO_1/2	Transmit LO input (AC couple) (50 2 )	Input power	-13		-10	dBm		
		VSWR (50)		2:1				
		Frequency range	900		1040	MHz		
TANK_1/2	VCO tank differential inputs	Frequency range	90		140	MHz		
PHSOUT	Phase detector charge pump output	Output level	0.5		$\mathrm{V}_{\mathrm{cc}}-0.5$	V		
Ipeak	PHSOUT programming	$\mathrm{R}_{\text {SET }}=75 \mathrm{k} \Omega, \mathrm{AD}=0$		100		$\mu \mathrm{A}$		
		$\mathrm{R}_{\text {SET }}=4.7 \mathrm{k} \Omega, \mathrm{AD}=1$		6.4		mA		
XTAL_1	XO transistor base	XO frequency	10		45	MHz		
		External drive	150		500	$\mathrm{m} \mathrm{V}_{\text {P.p }}$		
CLK1	XO divide $3 / 1$, power down SM1 $=0,50 \%$ duty cycle	Frequency range	3.33		45	MHz		
	$+3, \mathrm{X}=1,+1, \mathrm{X}=0$	Output level, 5k $\\|$ \|	7pF		1		$V_{\text {P.p }}$	
CLK2	XO divide $2 / 1$, power down SM2 $=0$	Frequency range	5		45	MHz		
	$+2, Y=1,+1, Y=0$	Output level, 5k		1		$\mathrm{V}_{\mathrm{P} . \mathrm{P}}$		
MCLK	XO divide 4/5/1, $50 \%$ duty cycle	Frequency range	2		45	MHz		
	$\begin{aligned} & +4, \text { CLKSET }=V_{c c},+5, \text { CLKSET }=0.5 V_{c c}, \\ & +1, \text { CLKSET }=0 V \end{aligned}$	Output level, 5k $\mathrm{\\|}^{\text {\| }} 7 \mathrm{pF}$		1		$\mathrm{V}_{\mathrm{P} \text {-P }}$		
CLOCK	Serial data clock input, $33 \%$ duty cycle	Max clock rate			10	MHz		
	Serial interface (CMOS levels) DATA, CLOCK, STROBE, TXEN	Logic LOW			$0.3 \mathrm{~V}_{\mathrm{cc}}$	V		
		Logic HIGH	$0.7 \mathrm{~V}_{\mathrm{cc}}$			V		
AMPSTX	AMPS output, $\mathrm{SE}=1, \mathrm{AD}=0$, TXEN $=1$ (AC couple)	Frequency range	820		860	MHz		
		VSWR		2:1				
		Output level	0	+2		dBm		
	Spurious output	863 to 894MHz		-104		dBm		
		824 to 849 MHz		-47		dBC		
		2 to 824 MHz		-41		dBC		
		849 to 869 MHz		-41		dBC		
		894 MHz to 8.49 GHz		-41		dBc		
	TXLO and harmonics			-21		dBC		
	Adjacent channel noise power	@30kHz		-95		$\mathrm{dBc} / \mathrm{Hz}$		
	Alternate channel noise power	@60kHz		-101		$\mathrm{dBc} / \mathrm{Hz}$		
	Broadband noise power	869 to 894MHz		-136		$\mathrm{dBm} / \mathrm{Hz}$		
DUALTX	DUAL output, $\mathrm{SE}=1, \mathrm{AD}=1$, TXEN $=1$ (with external matching Figure 5)	Frequency range	820		920	MHz		
		VSWR		2:1				
		Output level (avg min) (l and Q quad, OdB VGA)	0	+2		dBm		
		Gain flatness		1		dB		

AC ELECTRICAL CHARACTERISTICS (continued)


## FUNCTIONAL DESCRIPTION

## Dual Mode Operation

The SA900 transmit modulator provides direct single sideband quadrature modulation of the difference of the TXLO and VCO frequencies, while providing quadrature LO signals for the I/Q modulator. The quadrature LO signals are modulated with high linearity by the baseband inphase (I) and quadrature (Q) signals. The summed modulator output produces the lower sideband, while rejecting the upper sideband. The I and Q inputs also provide DC biasing for the modulator inputs. The summed output of the modulator goes to a variable gain amplifier (VGA) to control the output level, it has 40.0 dB of attenuation control range, with 0.63 dB steps. The power control function is programmed by means of a 6 -bit word (see Table 3). The VGA output drives the power amp output stage to provide
+2 dBm average minimum power level (at OdB power control) into $50 \Omega$, in conjunction with external matching components on DUALTX. The AD (AMPS/DUAL) and the SE (synthesizer enable) bit control the power up/down of the DUAL mode function. The transition of the TXEN, from low to high turns on the modulator. The falling edge of the TXEN signal disables the synthesizer and modulator. The TXLO is a system supplied LO signal. The SA900 buffers the TXLO signal ( $L_{0}$ 1/2) for use with the system synthesizer (such as the SA7025) to form the system LO synthesizer loop. The DUAL mode can also be used for AMPS operation. The AMPS and DUAL mode modulation is generated by the system DSP IC to provide the required I/Q baseband modulation for the SA900. The DUAL output provides low broadband noise output power (so that the receiver sensitivity is not degraded) and high
linearity to meet cellular phone system needs. Table 1 provides the VGA power control limits.

The SA900 DUALTX output is externally matched with either a shunt inductor to $\mathrm{V}_{\mathrm{Cc}}$ and a series capacitor or a shunt inductor to $V_{c c}$ and a series inductor. This matches the DUALTX output to $50 \Omega$. Values of the matching components are dependent on PCB layout, typical values are shown in Figure 5.

## Table 1. VGA Power Control Limits

Attenuation (dB)	Tolerance ${ }^{1}$
0.0 to 21.4	$\pm 0.4 \mathrm{~dB}$
22.0 to 27.7	$\pm 1.0 \mathrm{~dB}$
28.4 to 40.0	$\pm 2.0 \mathrm{~dB}$

1. Guaranteed to be monotonic.

## AMPS Mode Operation

The SA900 can be configured to operate in the AMPS mode, where FM modulation is applied to the SA900's VCO. For the AMPS mode, the VCO is configured with the proper synthesizer bandwidth to allow the application of the AMPS modulation to the VCO varactor tuned tank circuit. The modulated VCO signal is input into an image reject mixer along with the TXLO signal, where the upper sideband is rejected. This single sideband modulated signal then drives the AMPS output power amplifier. The PA provides +2 dBm power level into $50 \Omega$, with no external matching components required. The AD (AMPS/DUAL) and the SE (synthesizer enable) bit control the power up/down of the AMPS mode function. The transition of the TXEN signal from low to high turns on the modulator. The falling edge of TXEN signal disables the synthesizer and the modulator.

## Synthesizer Operation

The SA900 synthesizer is comprised of the differential VCO circuit, with external tank components, the Gilbert cell multiplier phase detector with programmable charge pump current, crystal oscillator and programmable prescalers. The charge pump output drives an external second order loop filter. The output of the loop filter is used to provide the control voltage to the VCO tuning varactor to complete the PLL synthesizer. The synthesized VCO output frequency is mixed with the TXLO signal to generate the transmit LO from the lower sideband (the difference of the VCO and TXLO frequencies). The output of VCO is fed to a programmable $/ \mathrm{N}$ prescaler with user selectable divides of 6,7 , 8 and 9 (all divides configured to provide $50 \%$ duty cycle). The output of the $/ \mathrm{N}$ divider drives the AB/1 prescaler. The A8/1 divide is selected by the AD control bit (AD=1 for /1, and $A D=0$ for $/ 8$ ). The output of the divide A $8 / 1$ is fed into one input of the phase detector. The reference input for the phase comparator is generated from the crystal oscillator (XO) output from the $\mathrm{B} 8 / 1$ prescaler. The $\mathrm{B} 8 / 1$ divide is selected by the $A D$ control bit ( $A D=0$ for $/ 8$, and $A D=1$ for $/ 1$ ). The phase detector compares the prescaled XO reference phase to the VCO prescaled phase, to generate a charge pump output current proportional to the phase error. The phase detector, a Gilbert cell multiplier type, having a linear output from 0 to $\pi(\pi / 2 \pm \pi / 2)$. The charge pump peak output current is programmable from $100 \mu \mathrm{~A}$ for the AMPS mode ( $A D=0$ ) to a maximum of 6.4 mA for the DUAL mode ( $A D=1$ ) by way of an external current setting resistor placed from I PEAK to circuit ground. The typical loop filter network

Table 2. Data Word Format

Mnemonics	Bits	Function
AO	1 (MSB)	Address bit 0 (1)
A1	2	Address bit $1 \quad$ (0)
A2	3	Address bit 2 (1)
A3	4	Address bit 4 (1)
PC0	5	Power control bit 0
PC1	6	Power control bit 1
PC2	7	Power control bit 2
PC3	8	Power control bit 3
PC4	9	Power control bit 4
PC5	10	Power control bit 5
N0	11	Divide N bit 0
N1	12	Divide N bit 1
AD	13	AMPS/DUAL mode select bit
SE	14	Synthesizer enable bit
NA	15	NA
SM1	16	Sleep mode 1 control bit
SM2	17	Sleep mode 2 control bit
X	18	Divide 3/1 control bit
Y	19	Divide 2/1 control bit
NA	20	NA
NA	21	NA
NA	22	NA
NA	23	NA
NA	24 (LSB)	NA

is shown in Figure 1. The charge pump current output is programmed by

$$
\begin{array}{ll}
A D=0 & I \text { Iour }=6 \cdot\left(\frac{1.25 V}{R_{S E T}}\right) \\
A D=1 & I_{\text {OUT }}=24 \cdot\left(\frac{1.25 V}{R_{S E T}}\right)
\end{array}
$$

where $\mathrm{R}_{\text {SET }}$ is placed between IPEAK and GROUND.

The PLL frequency is determined by

$$
V C O=X O \cdot N \cdot \frac{\left(\frac{A 8}{1}\right)}{\left(\frac{B 8}{1}\right)}
$$

where $N=6,7,8,9$ and $A 8 / 1$ and $B 8 / 1$ are controlled by the $A D$ bit ( $A D=1 A 8 / 1$ and $B 8 / 1$ are divide by $1, A D=0 \mathrm{~A} 8 / 1$ and $B 8 / 1$ are divide 8).

## VCO Operation

The VCO is designed to operate from 90 MHz to 140 MHz . The VCO tank is configured using a parallel inductor and a dual common cathode tuning varactor diodes. DC blocking capacitors are used to isolate the varactor
control voltage from the VCO tank DC bias voltages. The VCO tuning voltage is generated from the output of the PLL loop filter. The VCO tank configuration is shown in Figure 2.

## Crystal Oscillator (XO) Operation

For cellular radio applications, the SA900 will most likely utilize an external reference TCXO in order to provide the frequency stability necessary to operate to system requirements. The output of the system TCXO can be AC coupled to the XTAL_1 input. However, for applications that do not require such accuracy the XO circuit can be configured as a Colpitts type oscillator with the addition of two external capacitors along with the reference crystal and a trim capacitor as shown in Figure 3.

## Programmable Clock Outputs

The SA900 generates three buffered XO outputs used for external reference signals. The XO feeds three sets of programmable prescalers, the prescaler outputs are buffered to provide the CLK1, CLK2 and MCLK signals. The CLK1 signal is a selectable divide $3 / 1$ ( $X=1$ divide $3, X=0$ divide 1 ), $50 \%$
duty cycle, of the XO reference signal. The CLK2 signal is a selectable divide $2 / 1 \quad(Y=1$ divide 2, $Y=0$ divide 1), $50 \%$ duty cycle, of the XO reference signal. The MCLK signal is a selectable divide 4/5/1 (CLKSET = VCC divide 4, CLKSET $=\mathrm{V}_{\mathrm{CC}} / 2$ divide 5 , and CLKSET $=$ OV divide 1), $50 \%$ duty cycle, of the XO reference signal. MCLK is externally set by means of the tri-level CLKSET input to provide a default master system clock prior to programming the SA900.

## Programming Operation

The SA900 is configured by means of a 3 -wire input (CLOCK, STROBE, DATA) to program the AMPS and DUAL modes, in addition there are two power saving modes of operation, SLEEP and STANDBY. The control logic section of the SA900 is designed using low power CMOS logic. During SLEEP mode only the circuitry required to provide a master clock (MCLK) to the digital portion of the system is enabled. During the STANDBY mode of operation MCLK, CLK1 and the TXLO and buffered LO outputs are powered on, which may be the case when the system is in the receive only mode. In the AMPS or DUAL operational modes all functions of the SA900 are powered on to support receive, transmit and system clock functions. The programming of the SA900 is identical to the programming format of the SA7025 low-voltage 1 GHz fractional- N synthesizer, that can be used in conjunction with the SA900 to provide the cellular radio channel selection.

The programming data is structured as a 24 bit long serial data word; the word includes 4 address bits (dedicated 101 1) for chip select. Data bits are shifted in on the leading edge of the clock, with the least significant bit (LSB) first and the most significant bit (MSB) last. Table 2 shows data word format, the 15th and last 5 bits are not used. Figure 4 shows the chip timing diagram.

## Address

$A 0$	$A 1$	$A 2$	$\frac{A 3}{1}$

## Divide By N

N0	N1	Divide
0	0	6
1	0	7
0	1	8
1	1	9

## AMPS/DUAL Mode

The A/D mode select enables or disables that portion of the circuitry used for either the AMPS or DUAL mode of operation.

AD	Mode
0	AMPS
1	DUAL

## Synthesizer Enable

The SE bit turns on and off the synthesizer circuitry.

SE	Operation   0
1	Disabled   Enabled

Sleep Mode 1
The SM1 bit is used to power down the TXLO buffer, the divide $3 / 1$ prescaler and the CLK1 output buffer.

## SM1 0 <br> Qperation Power down Power up (STANDBY)

## Sleep Mode 2

The SM2 bit is used to power down the divide $2 / 1$ prescaler and the CLK2.

SM2	Operation   0   1
	Power down   Power up (with   SM1 $=1$ normal   Operation)

## Divide 3

$\mathbf{X}$	Operation
0	Divide 1
1	Divide 3

## Divide 2

$\mathbf{Y}$	Operation
0	Divide 1
1	Divide 2

## Table 3. Power Control

Atten (dB)	$\begin{gathered} \mathrm{PCO} \\ (0.6 \mathrm{~dB}) \end{gathered}$	$\begin{gathered} \hline \text { PC1 } \\ (1.3 \mathrm{~dB}) \end{gathered}$	$\begin{gathered} \hline \text { PC2 } \\ (2.5 \mathrm{~dB}) \end{gathered}$	$\begin{gathered} \hline \text { PC3 } \\ \text { (5.0dB) } \end{gathered}$	$\begin{gathered} \text { PC4 } \\ (10.0 \mathrm{~dB}) \end{gathered}$	$\begin{gathered} \text { PC5 } \\ (20.0 \mathrm{~dB}) \end{gathered}$
0	0	0	0	0	0	0
0.6	1	0	0	0	0	0
1.3	0	1	0	0	0	0
1.9	1	1	0	0	0	0
2.5	0	0	1	0	0	0
3.2	1	0	1	0	0	0
3.8	0	1	1	0	0	0
4.4	1	1	1	0	0	0
5.0	0	0	0	1	0	0
5.7	1	0	0	1	0	0
6.3	0	1	0	1	0	0
:						
23.3	1	0	1	0	0	1
$\vdots$						
39.7	1	1	1	1	1	1


Component   Deslgnator	DUAL Mode	AMPS Mode
	$560 \Omega$	$560 \Omega$
R 2	$1 \mathrm{k} \Omega$	$5.6 \mathrm{k} \Omega$
C 1	2.2 nF	$2.7 \mu \mathrm{~F}$
C 2	No Load	$.27 \mu \mathrm{~F}$
C 3	33 pF	6.8 nF
$\mathrm{R}_{\text {SET }}$	$15 \mathrm{k} \Omega$	$75 \mathrm{k} \Omega$

Typlcal Filter Network


Figure 1. PLL Loop Filter


Figure 2. VCO Tank Configuration


Figure 3. Crystal Oscillator Configuration



Flgure 5. DUALTX Output Matching


Figure 6. SA900 Application Circuit

## PERFORMANCE CHARACTERISTICS



## PERFORMANCE CHARACTERISTICS



PERFORMANCE CHARACTERISTICS




VGA 6-BIT WORD VALUE (LSBs)
DUALTX VGA Attenuation Profile vs. $V_{C C}\left(27^{\circ} \mathrm{C}, \mathrm{f}=836 \mathrm{MHz}, \mathrm{TXLO}=-10 \mathrm{dBm}\right)$

## RF/Wireless Communications <br> Section 9 Package Outlines

INDEX
0005D 16-Pin (157 mils wide) Plastic SO (Small Outline) Dual In-Line (D) Package ..... 1124
0006C 28-Pin ( 300 mils wide) Plastic SOL (Small Outline Large) Dual In-Line (D) Package ..... 1125
$0172 \mathrm{D} \quad 20-\mathrm{Pin}$ ( 300 mils wide) Plastic SOL (Small Outline Large) Dual In-Line (D) Package ..... 1126
0173D 24-Pin (300 mils wide) Plastic SOL (Small Outline Large) Dual In-Line (D) Package ..... 1127
0174C 8-Pin (157 mils wide) Plastic SO (Small Outline) Dual In-Line (D) Package ..... 1128
0175 D 14-Pin (157 mils wide) Plastic SO (Small Outline) Dual In-Line (D) Package ..... 1129
0404B $\quad 8$-Pin ( 300 mils wide) Plastic Dual In-Line (N) Package ..... 1130
0405B 14-Pln (300 mils wide) Plastic Dual In-Line (N) Package ..... 1131
0406C $\quad 16-\mathrm{Pin}$ ( 300 mils wide) Plastic Dual In-Line (N) Package ..... 1132
0408B 20-Pin (300 mils wide) Plastic Dual In-Line (N) Package ..... 1133
0412A 24-Pin (600 mils wide) Plastic Dual In-Line Package ..... 1134
$0413 B \quad 28-P i n$ ( 600 mils wide) Plastic Dual In-Line (N) Package ..... 1135
1563 20-Pin (170 mils wide) Plastic SSOP (Shrink Small Outline Package) (D_)Package ..... 1136
1706A 48-Pin Plastic Thin Quad Flat Pack (B) Package ..... 1137
SOT38 16-Pin Plastic Dual In-Line (N/P) Package ..... 1138
SOT97 8-Pin Plastic Dual In-Line (N/P) Package ..... 1139
SOT102 18-Pin Plastic Dual In-Line (N/P) Package with Internal Heatspreader ..... 1140
SOT108A 14-Lead Mini-Pack Plastic (SO14) ..... 1141
SOT109A 16-Pin Plastic SO (Small Outline) Dual In-Line (D/T) Package ..... 1142
SOT110B $9-$-Pin Plastic Single In-Line (U) Package ..... 1143
SOT117 28-Pin Plastic Dual In-Line (N/P) Package ..... 1144
SOT136A 28-Pin Plastic SO (Small Outline) Dual In-Line (D) Package ..... 1145
SOT162A 16-Pin Plastic SOL (Small Outline Large) Dual In-Line (D/T) Package ..... 1146
SOT163A 20-Pin Plastic SO (Small Outline) Dual In-Line (D/T) Package ..... 1147
SOT208A 64-Lead Plastic Quad Flat Pack Package ..... 1148
SOT266A 20-Lead Shrink Small Outline Package (SSOP20) ..... 1149
SOT287 32-Pin Plastic SOL (Small Outline Large) Dual In-Line (D/T) Package ..... 1150
SOT307 44-Pin Plastic Quad Flat Pack (B) Package ..... 1151


NOTES

1. Package dimensions conform to JEDEC Specification MS-012-AC for standard Small Outline (SO) package, 14 leads, 3.75 mm ( $0.150^{\text {" }}$ ) body width (Issue A, June 1985).
2. Controlling dimensions are mm . Inch dimensions in parentheses.
3. Dimensioning and tolerancing per ANSI Y14.5M-1982.
4. " $D$ " and " $E$ " are reference datums on the molded body and do not include mold flash/protrusions. Mold flash/protrusions at " D " shall not exceed $0.15 \mathrm{~mm}\left(0.006^{\prime \prime}\right)$ per side. Inter-lead flash/protrusions at " $E$ " shall not exceed $0.25 \mathrm{~mm}\left(0.010^{\prime \prime}\right)$ per side.
5. The lead width above the seating plane shall not exceed a maximum value of $0.61 \mathrm{~mm}\left(0.024^{\prime \prime}\right)$.
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#16 when viewed from top.
7. Signetics ordering code for a product packages in a plastic Small Outine (SO) package is the suffix $D$ after the product number.


Package outlines


## NOTES

1. Package dimensions conform to JEDEC Specification MS-013-AC for standard Small Outline (SO) package, 20 leads, $7.50 \mathrm{~mm}\left(0.300^{\prime \prime}\right)$ body width (Issue A, June 1985).
2. Controlling dimensions are mm . Inch dimensions in parentheses.
3. Dimensioning and tolerancing per ANSI Y14.5M-1982.
4. " $D$ " and " $E$ " are reference datums on the molded body and do not include mold flash/protrusions. Mold flash/protrusions at "D" shall not include mold flash/protrusions. Mold flash/protrusions at " $D$ " shall not exceed $0.15 \mathrm{~mm}\left(0.006^{\prime \prime}\right)$ per side. Inter-lead
shall not exceed $0.25 \mathrm{~mm}\left(0.010^{\prime \prime}\right)$ per side.
5. The lead width above the seating plane shall not exceed a maximum value of $0.61 \mathrm{~mm}\left(0.024^{\prime \prime}\right)$.
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#20 when viewed from top.
7. Signetics ordering code for a product packaged in a plastic Smal Outline (SO) package is the suffix D after the product number.


NOTES
8. Package dimensions conform to JEDEC Specification MS-013-AD for standard Small Outline (SO) package, 24 leads, 7.50 mm ( $0.300^{\prime \prime}$ ) body width (lssue A. June 1985).
9. Controlling dimensions are mm . Inch dimensions in parentheses.
10. Dimensioning and tolerancing per ANSI Y14.5M-1982.
11. " $D$ " and " $E$ " are reference datums on the molded body and do not include mold flash/protrusions. Mold flash/protrusions at " $D$ " shall not exceed 0.15 mm ( 0.006 ) per side. Inter-lead flash/protrusions at "E" shall not exceed $0.25 \mathrm{~mm}\left(0.010^{\circ}\right)$ per side.
12. The lead width above the seating plane shall not exceed a maximum value of $0.61 \mathrm{~mm}\left(0.024^{n}\right)$.
13. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#24 when viewed from top.
14. Signetics ordering code for a product packaged in a plastic Small Outline (SO) package is the suffix $D$ after the product number.



NOTES

1. Package dimensions conform to JEDEC Specification MS-012-AA for standard Small Outline (SO) package, 8 leads, 3.75 mm ( $0.150^{\prime \prime}$ ) body width (Issue A, June 1985).
2. Controlling dimensions are mm . Inch dimensions in parentheses.
3. Dimensioning and tolerancing per ANSI Y14.5M-1982.
4. " $D$ " and " $E$ " are reference datums on the molded body and do not include mold flash/protrusions. Mold flash/protrusions at " $D$ " shall not exceed $0.15 \mathrm{~mm}\left(0.006^{\text {n }}\right.$ ) per side. Inter-lead flash/protrusions at " $E$ " shall not exceed 0.25 mm ( $0.010^{\text {" }}$ ) per side.
5. The lead width above the seating plane shall not exceed a maximum The lead width above the
value of $0.61 \mathrm{~mm}\left(0.024^{\circ}\right)$.
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#8 when viewed from top.
7. Signetics ordering code for a product packages in a plastic Smal Outine (SO) package is the suffix D after the product number.



## NOTES

1. Package dimensions conform to JEDEC Specification MS-012-AB for standard Small Outline (SO) package, 14 leads, 3.75 mm ( $0.150^{\prime \prime}$ ) body width (Issue A, June 1985).
2. Controlling dimensions are mm . Inch dimensions in parentheses.
3. Dimensioning and tolerancing per ANSI Y14.5M-1982.
4. " $D$ " and " $E$ " are reference datums on the molded body and do not include mold flash/protrusions. Mold flash/protrusions at " $D$ " shal not exceed 0.15 mm ( $0.006^{\prime \prime}$ ) per side. Inter-lead flash/protrusions at " $E$ " shall not exceed 0.25 mm ( $0.010^{\prime \prime}$ ) per side.
5. The lead width above the seating plane shall not exceed a maximum value of $0.61 \mathrm{~mm}\left(0.024^{\prime \prime}\right)$.
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#14 when viewed from the top.
7. Signetics ordering code for a product packages in a plastic Small Outline (SO) package is the suffix $D$ after the product number.



## NOTES

1. Controlling dimension: Inches. Metric are shown in parentheses.
2. Package dimensions conform to JEDEC Specification MS-001-AB for standard Dual In-Line (DIP) package 0.300 inch row spacing (plastic) 8 leads (Issue B, 7/85).
3. Dimension and tolerancing per ANSI Y14, 5M-1982.
4. "T", " $D$ ", and " $E$ " are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$ on any side.
5. These dimensions measured with the leads constrained to be perpendicular to plane T .
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#8 when viewed from the top.



## NOTES

1. Controlling dimension: Inches. Metric are shown in parentheses.
2. Package dimensions conform to JEDEC Specification MS-001-AC for standard Dual In-Line (DIP) package 0.300 inch row spacing (plastic) 14 leads (Issue B, 7/85).
3. Dimension and tolerancing per ANSI Y14, 5M-1982.
4. "T", "D", and "E" are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$ on any side.
5. These dimensions measured with the leads constrained to be perpendicular to plane $T$.
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#14 when viewed from the top.





NOTES

1. Controlling dimension: Inches. Metric are shown in parentheses.
2. Package dimensions conform to JEDEC Specification MS-001-AE for standard Dual In-Line (DIP) package 0.300 inch row spacing (plastic) 20 leads (Issue B, 7/85).
3. Dimension and tolerancing per ANSI Y14, 5M-1982.
4. "T", " $D$ ", and " $E$ " are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$ on any side.
5. These dimensions measured with the leads constrained to be perpendicular to plane $T$.
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#20 when viewed from the top.



## NOTES:

1. Controlling dimension: Inches. Metric are shown in parentheses.
2. Package dimensions conform to JEDEC Specification MS-011-AA for standard Dual In-Line (DIP) package 0.600 inch row spacing (plastic) 24 leads (Issue B, 7/85).
3. Dimension and tolerancing per ANSI Y14, 5M-1982.
4. "T", "D", and "E" are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ) on any side.
5. These dimensions measured with the leads constrained to be perpendicular to plane $T$.
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#24 when viewed from the top.



## NOTES:

1. Controlling dimension: Inches. Metric are shown in parentheses.
2. Package dimensions conform to JEDEC Specification MS-011-AB for standard Dual In-Line (DIP) package 0.600 inch row spacing (plastic) 28 leads (Issue B, 7/84).
3. Dimension and tolerancing per ANSI Y14, 5M-1982.
4. "T", " $D$ ", and " $E$ " are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$ on any side.
5. These dimensions measured with the leads constrained to be perpendicular to plane $T$.
6. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#28 when viewed from the top.



## NOTES

1. Package dimensions conform to Philips Envelope Specification SOT-266/EIAJ TYPE I for Shrink Small Outine Package (SSOP), 20 leads, 4.3 mm ( 0.170 inch) body width (Issue April 1990).
2. Controlling dimensions are mm . Inch dimensions in parentheses.
3. " $T$ ", " $D$ ", and " $E$ " are reference datums on the molded body
4. Pin numbers start with Pin \#1 and continue counterclockwise to Pin \#20 when viewed from top.
5. Signetics ordering code for a product packaged in a plastic Shrink Small Outline Package (SSOP) is the suffix $D$ after the product number.


## NOTES:

1. Package dimensions conform to JEDEC registration MO-136-BE-1992. This is equivalent to Philips Euro. SQFP48 outine, SOT313-1.)
2. Controlling dimensions: millimeters. Dimensions in inches are shown in parentheses
3. Dimension and tolerancing per ANSI Y14.5M-1982
4. Datum plane " H " is located at the mold parting line and is coincident with the lead where the lead exits the plastic body at the bottom of the parting line
5. Datums "A-B" and "D" to be determined at datum plane " H ".
6. To be determined at seating plane " C ".
D Details of Pin 1 identifier are optional but must be located within the zone indicated.
7. Package body dimensions do not include mold protrusion. Allowable protrusion is 0.25 mm per side, but it includes mold mismatch.
8. Lead width does not include dambar protrusion. Allowable dambar protrusion shall be $0.08 \mathrm{~mm} / 0.003^{\prime \prime}$ total in excess of this dimension at maximum material condition. Dambar cannot be located on the lower radius or the foot


## Package outlines

## SOT38 16-PIN PLASTIC DUAL IN-LINE (N/P) PACKAGE


(1) Centre-lines of all leads are within $\pm 0.127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0.254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.
(3) Dimensions in mm .

## Package outlines

## SOT97 8-PIN PLASTIC DUAL IN-LINE (N/P) PACKAGE



## Package outlines

SOT102 18-PIN PLASTIC DUAL IN-LINE (N/P) PACKAGE WITH INTERNAL HEATSPREADER


(1) Centre-lines of all leads are within +0.127 mm of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0.254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.
(3) Dimensions in mm.

## Package outlines

## SOT108A 14-LEAD MINI-PACK PLASTIC (SO14)



## Package outlines

## SOT109A 16-PIN PLASTIC SO (SMALL OUTLINE) DUAL IN-LINE (D/T) PACKAGE



## Package outlines

## SOT110B 9-PIN PLASTIC SINGLE IN-LINE (U) PACKAGE



## Package outlines



## Package outlines

## SOT136A 28-PIN PLASTIC SO (SMALL OUTLINE) DUAL IN-LINE (D) PACKAGE



## Dimensions in mm

## Package outlines

## SOT162A 16-PIN PLASTIC SOL (SMALL OUTLINE LARGE) DUAL IN-LINE (D/T) PACKAGE


(1) Dimensions in mm .

## Package outlines

SOT163A 20-PIN PLASTIC SO (SMALL OUTLINE) DUAL IN-LINE (D/T) PACKAGE

(1) Dimensions in mm .

SOT 163A

## Package outlines

## SOT208A 64-LEAD PLASTIC QUAD FLAT PACK PACKAGE



## Package outlines

SOT266A 20-LEAD SHRINK SMALL OUTLINE PACKAGE (SSOP20)
(

## Package outlines

SOT287 32-PIN PLASTIC SOL (SMALL OUTLINE LARGE) DUAL IN-LINE (D/T) PACKAGE


Dimensions in mm.

## Package outlines



RF/Wireless Communications Section 10 Sales Offices, Representatives and Distributors

# North American Sales Offices, Representatives and Distributors 

## PHILIPS

## SEMICONDUCTORS

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, CA 94088-3409

## ALABAMA

Huntsville
Philips Semiconductors
Phone: (205) 464-0111
Elcom, Inc.
Phone: (205) 830-4001

## ARIZONA

Scottsdale
Thom Luke Sales, Inc.
Phone: (602) 451-5400

## CALIFORNIA

Calabasas
Philips Semiconductors
Phone: (818) 880-6304
Irvine
Philips Semiconductors
Phone: (714) 833-8980
(714) 752-2780

Orangevale
Webster Associates
Phone: (916) 989-0843
San Diego
Philips Semiconductors
Phone: (619) 560-0242
San Jose
B.A.E. Sales, Inc.

Phone: (408) 452-8133
Sunnyvale
Philips Semiconductors
Phone: (408) 991-3737

## COLORADO

Englewood
Philips Semiconductors
Phone: (303) 792-9011
Thom Luke Sales, Inc.
Phone: (303) 649-9717
CONNECTICUT
Wallingford
JEBCO
Phone: (203) 265-1318
FLORIDA
Oviedo
Conley and Assoc., Inc.
Phone: (407) 365-3283

## GEORGIA

Atlanta
Philips Semiconductors
Phone: (404) 594-1392

## Norcross

Elcom, Inc.
Phone: (404) 447-8200
ILLINOIS
Hoffman Estates
Micro-Tex, Inc.
Phone: (708) 765-3000

## Itasca

Philips Semiconductors
Phone: (708) 250-0050
INDIANA
Indianapolis
Mohrfield Marketing, Inc. Phone: (317) 546-6969

## Kokomo

Philips Semiconductors
Phone: (317) 459-5355

## MARYLAND

Columbia
Third Wave Solutions, Inc. Phone: (410) 290-5990

## MASSACHUSETTS

Chelmsford
JEBCO
Phone: (508) 256-5800
Westford
Philips Semiconductors
Phone: (508) 692-6211
MICHIGAN
Monroe
S-J Associates
Phone: (313) 242-0450
Novi
Philips Semiconductors
Phone: (313) 347-1700

## MINNESOTA

Bloomington
High Technology Sales Phone: (612) 844-9933

MISSOURI
Bridgeton
Centech, Inc.
Phone: (314) 291-4230
Raytown
Centech, Inc.
Phone: (816) 358-8100
NEW JERSEY
Toms River
Philips Semiconductors Phone: (908) 505-1200
NEW YORK
Ithaca
Bob Dean, Inc.
Phone: (607) 257-1111
Rockville Centre
S-J Associates
Phone: (516) 536-4242
Wappingers Falls
Philips Semiconductors Phone: (914) 297-4074

Bob Dean, Inc.
Phone: (914) 297-6406
NORTH CAROLINA
Greensboro
ADI, Inc.
Phone: (919) 273-8887
Matthews
ADI, Inc.
Phone: (704) 847-4323

Smithfield
ADI, Inc.
Phone: (919) 934-8136
OHIO
Aurora
S-J Associates, Inc.
Phone: (216) 562-2050
Columbus
S-J Associates, Inc.
Phone: (614) 885-6700

## Kettering

S-J Associates, Inc.
Phone: (513) 298-7322
Parma
S-J Associates, Inc.
Phone: (216) 888-7004
Toledo
S-J Associates, Inc.
Phone: (313) 242-0450
West Carrollton
S-J Associates, Inc.
Phone: (513) 438-1700
OREGON
Beaverton
Philips Semiconductors
Phone: (503) 627-0110
Western Technical Sales
Phone: (503) 644-8860
PENNSYLVANIA
Erie
S-J Associates, Inc.
Phone: (216) 888-7004
Hatboro
Delta Technical Sales, Inc.
Phone: (215) 957-0600
Pittsburgh
S-J Associates, Inc.
Phone: (216) 888-7004
Plymouth Meeting
Philips Semiconductors
Phone: (215) 825-4404

## TENNESSEE

Greeneville
Philips Semiconductors
Phone: (615) 639-0251
TEXAS
Austin
Philips Semiconductors
Phone: (512) 339-9945
Austin
Synergistic Sales, Inc.
Phone: (512) 346-2122
Houston
Synergistic Sales, Inc.
Phone: (713) 937-1990
Richardson
Philips Semiconductors
Phone: (214) 644-1610
Richardson
Synergistic Sales, Inc.
Phone: (214) 644-3500

UTAH
Salt Lake City
Electrodyne
Phone: (801) 264-8050
WASHINGTON
Bellevue
Western Technical Sales Phone: (206) 641-3900
Spokane
Western Technical Sales
Phone: (509) 922-7600

## WISCONSIN

Waukesha
Micro-Tex, Inc.
Phone: (414) 542-5352

## CANADA

PHILIPS
SEMICONDUCTORS
CANADA, LTD.
Calgary, Alberta
Tech-Trek, Ltd.
Phone: (403) 241-1719
Kanata, Ontario
Philips Semiconductors
Phone: (613) 599-8720
Tech-Trek, Ltd.
Phone: (613) 599-8787
Mississauga, Ontario
Tech-Trek, Ltd.
Phone: (416) 238-0366
Richmond, B.C.
Tech-Trek, Ltd.
Phone: (604) 276-8735
Ville St. Laurent, Quebec
Tech-Trek, Ltd.
Phone: (514) 337-7540
MEXICO
Anzures Section
Philips Components
Phone: 52-5-533-3858
El Paso, TX
Philips Components
Phone: (915) 775-4020

## PUERTO RICO

Santurce
Mectron Group
Phone: (809) 723-6165

## DISTRIBUTORS

## Contact one of our

local distributors:
Almac/Arrow Electronics
Anthem Electronics
Arrow/Schweber Electronics
Future Electronics
Gerber Electronics
Hamilton Hallmark
Marshall Industries
Wyle Laboratories, EMG
Zeus Electronics

## DATA HANDBOOK SYSTEM

Philips Semiconductors data handbooks contain all pertinent data available at the time of publication and each is revised and reissued regularly.

Loose data sheets are sent to subscribers to keep them up-to-date on additions or alterations made during the lifetime of a data handbook.
Catalogs are available for selected product ranges (some catalogs are also on floppy discs).

Our data handbook titles are listed here.
Integrated Circuits
Book Title
IC01 Semiconductors for Radio and Audio Systems
IC02 Semiconductors for Television and Video Systems
IC03 Semiconductors for Telecom Systems
IC04 CMOS HE4000B Logic Family
IC05 Advanced Low-power Schottky (ALS) Logic Series
IC06 High-speed CMOS Logic Family
IC08 100K ECL Logic Families

## IC10 Memories

IC11 General-purpose/Linear ICs
IC12 Display Drivers and Microcontroller Peripherals (planned)
IC13 Programmable Logic Devices (PLD)
IC14 8048-based 8-bit Microcontrollers
IC15 FAST TTL Logic Series
IC16 ICs for Clocks and Watches
IC18 Semiconductors for In-car Electronics and General Industrial Applications (planned)
IC17 RF/Wireless Communications
IC19 Semiconductors for Datacom: LANs, UARTs, Multi-protocol Controllers and Fibre Optics
IC20 80C51-based 8-bit Microcontrollers
IC21 68000-based 16-bit Microcontrollers (planned)
IC22 ICs for Multi-media Systems (planned)
IC23 QUBiC Advanced BiCMOS Bus Interface Logic ABT, MULTIBYTE ${ }^{\text {N }}$
IC24 Low Voltage CMOS \& BiCMOS Logic

## Discrete Semiconductors

Book Title
SC01 Diodes
SC02 Power Diodes
SC03 Thyristors and Triacs
SC04 Small-signal Transistors
SC05 Low-frequency Power Transistors and Hybrid IC Power Modules
SC06 High-voltage and Switching NPN Power Transistors
SC07 Small-signal Field-effect Transistors
SC08a RF Power Bipolar Transistors
SC08b RF Power MOS Transistors
SC09 RF Power Modules
SC10 Surface Mounted Semiconductors
SC13 Power MOS Transistors including TOPFETs and IGBTs

SC14 RF Wideband Transistors, Video Transistors and Modules
SC15 Microwave Transistors
SC16 Wideband Hybrid IC Modules
SC17 Semiconductor Sensors
Professional Components
PC01 High-power Klystrons and Accessories
PC06 Circulators and Isolators

## MORE INFORMATION FROM PHILIPS SEMICONDUCTORS?

For more information about Philips Semiconductors data handbooks, catalogs and subscriptions contact your nearest Philips Semiconductors national organization, select from the address list on the back cover of this handbook. Product specialists are at your service and inquiries are answered promptly.

## OVERVIEW OF PHILIPS COMPONENTS DATA HANDBOOKS

Our sister product division, Philips Components, also has a comprehensive data handbook system to support their products. Their data handbook titles are listed here.

## Display Components

Book Title
DC01 Colour Display Components
Colour TV Picture Tubes and Assemblies Colour Monitor Tube Assemblies

DC02 Monochrome Monitor Tubes and Deflection Units
DC03 Television Tuners, Coaxial Aerial Input Assemblies

DC05 Flyback Transformers, Mains Transformers and General-purpose FXC Assemblies

## Magnetic Products

MA01 Soft Ferrites
MA03 Piezoelectric Ceramics
Specialty Ferrites
MA04 Dry-reed Switches
Passive Components
PA01 Electrolytic Capacitors
PA02 Varistors, Thermistors and Sensors
PA03 Potentiometers and Switches
PA04 Variable Capacitors
PA05 Film Capacitors
PA06 Ceramic Capacitors
PA07 Quartz Crystals for Special and Industrial Applications
PA08 Fixed Resistors
PA10 Quartz Crystals for Automotive and Standard Applications
PA11 Quartz Oscillaors
Professional Components
PC04 Photo Multipliers
PC05 Plumbicon Camera Tubes and Accessories
PC07 Vidicon and Newvicon Camera Tubes and Deflection Units

PC08 Image Intensifiers
PC12 Electron Multipliers

## MORE INFORMATION FROM PHILIPS COMPONENTS?

For more information contact your nearest Philips Components national organizaiton shown in the following list.

Argentina: BUENOS AIRES, Tel. (541)541 4261, Fax. (541)786 9367.
Australla: NORTH RYDE, Tel. (02)805 4455, Fax. (02)805 4466.
Austrla: WIEN, Tel (01)60101 1820, Fax. (01)60101 1210.
Belglum: BRUXELLES, Tel. (02)741 8211, Fax. (02)735 8667.
Brazil: SÃO PAULO, Tel. (011)829 1166, Fax. (011) 8291849.
Canada: SCARBOROUGH, Tel. (416)292 5161, Fax. (416)754 6248.
Chlle: SANTIAGO, Tel. (02)773 816, Fax. (02)5602 7353594.
China (Peoples Republic of): SHANGHAI, Tel. (021)3264140, Fax. (021)3202160.
Columbla: BOGOTA, Tel. (01)249 7624, Fax. (01)261 0139.
Denmark: COPENHAGEN, Tel. (032)883 333, Fax. (031)571 949.
Finland: ESPOO, Tel. (9)0-50261, Fax. (9)0-520971.
France: SURESNES, Tel. (01)40996161, Fax. (01)4099 6431.
Germany: HAMBURG, Tel. (040)3296-0, Fax. (040)3296 216.
Greece: TAVROS, Tel. (01)489 4339/(01)489 4911, Fax. (01)4815180.
Hong Kong: KWAI CHUNG, Tel. (852)724 5121, Fax. (852)480 6960.
India: BOMBAY, Tel. (022)4938 541, Fax. (022)4938 722.
Indonesla: JAKARTA, Tel. (021)5201 122, Fax. (021)5205 189.
Ireland: DUBLIN, Tel. (01)640 203, Fax. (01)640 210.
Italy: MLLANO, Tel. (02)6752.1, Fax. (02)6752 3300.
Japan: TOKIO, Tel. (03)3740 5143, Fax. (03)3740 5035.
Korea (Republic of): SEOUL, Tel. (02)709-1412, Fax. (02)709-1415.
Malaysla: KUALA LUMPUR, Tel. (03)757 5511, Fax. (03)757 4880.
Mexico: CHI HUA HUA, Tel. (016)18-67-01/(016)18-67-02, Fax. (016)778 0551.
Netherlands: EINDHOVEN, Tel. (040)7 83749, Fax. (040)7 88399.
New Zealand: AUKLAND, Tel. (09)849-4160, Fax. (09)849-7811.
Norway: OSLO, Tel. (22)74 8000, Fax. (22)74 8341.
Pakistan: KARACHI, Tel. (021)577 032, Fax. (021)569 1832.
Philippines: MANILA, Tel. (02)810-0161, Fax. (02)817-3474.
Portugal: LISBOA, Tel. (01)388 3121, Fax. (01)388 3208.
Singapore: SINGAPORE, Tel. (65)350 2000, Fax. (65)355 1758.
South Africa: JOHANNESBURG, Tel. (011)470-5434, Fax. (011)470-5494.
Spain: BARCELONA, Tel. (93)301 6312, Fax. (93)301 4243.
Sweden: STOCKHOLM, Tel. (08)632 2000, Fax. (08)632 2745.
Switzerland: ZÜRICH, Tel. (01)488 2211, Fax. (01)481 7730.
Taiwan: TAIPEI, Tel. (2)509 7666, Fax. (2)500 5912.
Thailand: BANGKOK, Tel (2)399-3280 to 9, (2)398-2083, Fax. (2)398-2080.
Turkey: ISTANBUL, Tel. (01)279 2770, Fax. (01)269 3094.
Unlted Kingdom: LONDON, Tel. (071)580 6633, Fax. (071)636 0394.
United States: RIVIERA BEACH, Tel. (800)447-3762/(407)881-3200,
Fax. (407)881-3300.
Uruguay: MONTEVIDEO, Tel. (02)704 044, Fax. (02)920 601.
For all other countries apply to: Philips Components.
Marketing Communications, Building BAE,
P.O. Box 218,5600 MD, EINDHOVEN, The Netherlands

Telex 35000 phtenl, Fax. $+31-40-724547$.

- $2 \pi+4$


## Philips Semiconductors - a worldwide company

Argentina: IEROD, Av. Juramento 1992 - 14.b (1428) BUENOS AIRES, Tel. (541) 7867633 , Fax. (541) 7869367
Australia: 34 Waterioo Road, NORTH RYDE, NSW 2113 , Tel. (02) 8054455 , Fax. (02) 8054466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01) 60 101-1236, Fax. (01) 60 101-1211
Belgium: Postbus 90050,5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783749 , Fax. (31)40 788399
Brazil: Rua do Rocia 220 - 5 th Floor, Suite 51 CEP: 04552-903 SAO PAULO-SP, Brazil P.O. Box 7383-(01064-970), Tel. (011) 829-1166, Fax (011) 829-1849
Canada: INTEGRATED CIRCUITS: Tel. (800) 234-7381, Fax. (708) 296-8556 DISCRETE SEMICONDUCTORS: 601 Milner Ave., SCARBOROUGH, ONTARIO, M1B IM8 Tel. (0416) 292-5161 ext. 2336, Fax. (0416) 292-4477
Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02) 773816 , Fax. (02) 7776730
Colombia: Carrera 21 No. 56-17, BOGOTA, D.E., P.O. Box 77621, Tel. (571)217 4609, Fax (01) 2174549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032) 88 2636, Fax. (031) 571949
Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. (9)0 50261, Fax. (9)0 520971
France: 4 rue du Port-aux-Vins, BP317 92156 SURESNES Cedex, Tel. (01)4099 6161, Fax, (01)4099 6427
Germany: P.O. Box 106323,20095 HAMBURG, Tel. (040) 3296-0, Fax. (040) 3296213
Greece: No. 15, 25 th March Street, GR 17778 TAVROS, Tel. (01) $4894339 / 4894911$, Fax. (01) 4814240
Hong Kong: 15/F Philips Ind. Bldg, 2428 Kung Yip St., KWAI CHUNG, Tel. (0)42 45 121, Fax. (0) 4806960
India: PEICO ELECTRONICS \& ELECTRICALS Ltd., Components Dept, Shivsagar Estate, Block ' $A$ ', Dr. Annie Besant Rd., Worli, BOMBAY-400 018, Tel. (022) 4938 541, Fax. (022) 4938722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950 Tel. (021) 5201 122, Fax (021) 5205189
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 640000 , Fax. (01) 640200
Italy: Viale F. Testi, 327, 20162-MILANO, Tel. (02) 6752.1, Fax. (02) 67523350
Japan: Philips Bldg. 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. (03) 3740 5101, Fax. (03) 37400570
Korea (Republic of): Philips House, 260-199 Itaewon-dong, Yongsan-xu, SEOUL, Tel. (02) 794 5011, Fax. (02) 7988022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03) 7575511 , Fax. (03) 7574880
Mexico: Philips Components, ' 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5(800) 234-7381, Fax. (708) 296-8556
Netherlands: Postbus 90050,5600 PB EINDHOVEN, Tel. (040) 7837 49, Fax. (040) 788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09) 849-4180, Fax. (09) 849-7811

Norway: Box 1, Manglerud 0612, OSLO, Tel. (22) 74 8000, Fax (22) 748341
Pakistan: Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 577039 , Fax. (021) 5691832
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc., 106 Valero St. Salcedo Village, P.O. Box 911, MAKATI, Metro MANILA, Tel. (02) 810 0161, Fax. (02) 8173474
Portugal: Av. Eng. Duarle Pacheco 6, 1009 LISBOA Codex, Tel. (01) 683 121, Fax. (01) 658013
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65) 3502000, Fax. (65) 2516500
South Africa: 195-215 Main Road, Martindale, P.O. Box 7430 , JOHANNESBURG 2000, Tel. (011) $470-5433$, Fax. (011) 470-5494
Spain: Balmes 22, 08007 BARCELONA, Tel. (03) 301 6312, Fax. (03) 3014243
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0) 8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01) 48822 11, Fax. (01) 4817730
Taiwan: 69, Min Sheng East Road, Sec. 3, P.O. Box 22978 , TAIPEI 10446, Tel. (2) 509 7666, Fax. (2) 5005899
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. 60/14 MOO 11, Bangna - Trad Road Km. 3 Prakanong, BANGKOK 10260 Tel. (2) $399-3280$ to 9, (2) $398-2083$, Fax. (2) $398-2080$
Turkey: Talatpasa Cad. No. 5, 80640 LEVENT/ISTANBUL, Tel. (0212) 279 2770, Fax. (0212) 2693094
United Kingdom: Philips Semiconductors Limited, P.O. Box 65, Philips House, Torrington Place, LONDON WC1E 7HD, Tel. (071) 436 4144, Fax. (071) 3230342
United States: INTEGRATED CIRCUITS: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800) 234-7381, Fax. (708) 296-8556 DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd., P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404, Tel. (800) 447-3762 and (407)881-3200, Fax. (407) 881-3300
Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02) 70 4044, Fax (02) 920601.
For all other countries apply to: Philips Semiconductors, Marketing Communications, Building BAF-1,
P.O. Box 218,5600 MD EINDHOVEN, The Netherlands,

Telex 35000 phtenl, Fax $+31-40-724825$
SCD27 ©Philips Electronics N.V. 1993
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent - or industrial or intellectual property rights.

## Printed in the USA

4001L/40M/CR5/pp1160
Date of release: 12-93
Document order number: 939865260011
Document order number USA: 98-2000-290-05


[^0]:    * NOTE: This value can be reduced when a battery is the power source.

[^1]:    * NOTE: This value can be reduced when a battery is the power source.

[^2]:    C1 Bypase cap for VCC of NE5750
    C2 Bypass cap for VCC of NE5750

    ## C4 DC blocking cap for mic input

    C5 DC blocking cap for mic gain setting resistor
    C7 Used to set attack a release time of VOX
    C8 Used to AC ground the VREF pin (5750)
    C9 DC blocking cap for speaker out
    C10 filter for speaker out
    C12 Sets attack and release time of compressor
    C13 Used to AC short the DC path for the compressor
    C14 Provides AC path to the VOX circuitry
    C16 OPTIONAL Basically to filter out noise
    C17 Sets attack and release time for the expandor
    C18 Used to AC ground VREF pin (5751)
    C19 Bypass cap for VCC of NE5751
    C20 DC blocking cap for receiver input
    C21 DC blocking cap for ear amplifier output
    C22 Sets gain of VOX, internal use only
    C23 DC blocking cap for summing amp out
    C24 Bypass cap for VCC of NE5751

[^3]:    * NOTE: After rising edge of STROBE one more CLK low period completes the transfer.

[^4]:    * This means apply two successive active $\mathrm{V}_{\text {MUX }}$ edges followed by one active R edge.

[^5]:    Fig. 3 Serial bus timing diagram.

[^6]:    

