PHILIPS

Data handbook

PhIUPS Electronic components and materials

Components and materials

Book C2
 1987

Television tuners

Coaxial aerial input assemblies

DATA HANDBOOK SYSTEM

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES
 BLUE

SEMICONDUCTORS
RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS
The contents of each series are listed on pages iv to vii.
The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.
When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.
Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).
Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.
Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1 Tubes for r.f. heating
T2a Transmitting tubes for communications, glass types
T2b Transmitting tubes for communications, ceramic types
T3 Klystrons
T4 Magnetrons for microwave heating
T5 Cathode-ray tubes
Instrument tubes, monitor and display tubes, C.R. tubes for special applications
T6 Geiger-Müller tubes
T8 Colour display systems
Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
T9 Photo and electron multipliers
T10 Plumbicon camera tubes and accessories
T11 Microwave semiconductors and components
T12 Vidicon and Newvicon camera tubes
T13 Image intensifiers and infrared detectors
T15 Dry reed switches
T16 Monochrome tubes and deflection units
Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:
S1 Diodes
Small-signal silicon diodes, voltage regulator diodes ($<1,5 \mathrm{~W}$), voltage reference diodes, tuner diodes, rectifier diodes

S2a Power diodes
S2b Thyristors and triacs
S3 Small-signal transistors
S4a Low-frequency power transistors and hybrid modules
S4b High-voltage and switching power transistors
S5 Field-effect transistors

S6 R.F. power transistors and modules
S7 Surface mounted semiconductors

S8a Light-emitting diodes
S8b Devices for optoelectronics
Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components

S9 Power MOS transistors
S10 Wideband transistors and wideband hybrid IC modules
S11 Microwave transistors

S12 Surface acoustic wave devices
S13 Semiconductor sensors

S14 Liquid Crystal Displays

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of handbooks comprises:

IC01	Radio, audio and associated systems Bipolar, MOS	published 1986
IC02a/b	Video and associated systems Bipolar, MOS	published 1986
IC03	Integrated circuits for telephony Bipolar, MOS	published 1986
IC04	HE4000B logic family CMOS	published 1986
IC05N	HE4000B logic family - uncased ICs CMOS	published 1984
IC06N	High-speed CMOS; PC74HC/HCT/HCU Logic family	published 1986
IC08	ECL 10 K and 100K logic families	published 1986
IC09N	TTL logic series	published 1986
IC10	Memories MOS, TTL, ECL	new issue 1987
IC11N	Linear LSI	published 1985
Supplement to IC11N	Linear LSI	published 1986
IC12	$I^{2} \mathrm{C}$-bus compatible ICs	not yet issued
IC13	Semi-custom Programmable Logic Devices (PLD)	new issue 1987
IC14	Microcontrollers and peripherals Bipolar, MOS	new issue 1987
IC15	FAST TTL logic series	published 1986
IC16	CMOS integrated circuits for clocks and watches	published 1986
IC17	Integrated Services Digital Networks (ISDN)	not yet issued
IC18	Microprocessors and peripherals	new issue 1987

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:
C2 Television tuners, coaxial aerial input assemblies
C3 Loudspeakers
C4 Ferroxcube potcores, square cores and cross cores
C5 Ferroxcube for power, audio/video and accelerators
C6 Synchronous motors and gearboxes
C7 Variable capacitors
C8 Variable mains transformers
C9 Piezoelectric quartz devices
C11 Varistors, thermistors and sensors
C12 Potentiometers, encoders and switches
C13 Fixed resistors
C14 Electrolytic and solid capacitors
C15 Ceramic capacitors
C16 Permanent magnet materials
C17 Stepping motors and associated electronics
C18 Direct current motors
C19 Piezoelectric ceramics
C20 Wire-wound components for TVs and monitors
C22 Film capacitors

TELEVISION TUNERS

page
Selection guides
V.H.F./U.H.F. television tuners 3
V.H.F. television tuners. 6
U.H.F. television tuners. 6
Coaxial aerial input assemblies 8
Pin compatibility 9
Device specifications
Television tuners 11
Coaxial aerial input assemblies 301
Conversion list (catalogue number-to-type number) 321

SELECTION GUIDES

V.H.F./U.H.F. TUNERS

	$\begin{aligned} & \text { FE617Q } \\ & \text { FE618Q } \end{aligned}$	USF10 USF10A	$\begin{aligned} & \text { M33 } \\ & \text { M34 } \end{aligned}$	UV411 UV412	UV411HKM
System	C.C.I.R.: B,G,H	C.C.I.R.: L, ${ }^{\prime}$	R.T.M.A.: M,N	C.C.I.R.: B,G	C.C.I.R.: D
Channels v.h.f. u.h.f.	E2 to C* E5 to E12 E21 to E69	E2 to E4* M4 to E12 L21 to L69	A2 to A6 A7 to A13 A14 to A83	N21 to C M4 to E12 E21 to E69	C1 to C5 C6 to C12 C13 to C57
Frequency ranges (MHz)	46 to 110 111 to 300 470 to 861	$\begin{aligned} & 48 \text { to } 68 \\ & 128 \text { to } 306 \\ & 470 \text { to } 861 \end{aligned}$	$\begin{aligned} & 54 \text { to } 88 \\ & 174 \text { to } 216 \\ & 470 \text { to } 890 \end{aligned}$	$\begin{aligned} & 44 \text { to } 92 \\ & 162 \text { to } 230 \\ & 470 \text { to } 861 \end{aligned}$	$\begin{aligned} & 48 \text { to } 92 \\ & 167 \text { to } 224 \\ & 470 \text { to } 870 \end{aligned}$
I.F. frequency (MHz) picture sound	$\begin{aligned} & 38,9 \\ & 33,4 \end{aligned}$	$\begin{aligned} & 32,7 \\ & 39,2 \end{aligned}$	$\begin{aligned} & 45,75 \\ & 41,25 \end{aligned}$	$\begin{aligned} & 38,9 \\ & 33,4 \end{aligned}$	$\begin{aligned} & 37,0 \\ & 30,5 \end{aligned}$
Divider ratio	256 (FE618Q only)	256 (USF10A only)	$\begin{aligned} & 256 \text { or } 64 \\ & \text { (M34 only) } \end{aligned}$	256 or 64 (UV412 only)	-
Supply voltage	+ $12 \mathrm{~V} \pm 10 \%$	$+12 \mathrm{~V} \pm 1 \mathrm{~V}$	$+12 \mathrm{~V} \pm 10 \%$	+ $12 \mathrm{~V} \pm 10 \%$	+ $12 \mathrm{~V} \pm 10 \%$
Tuning voltage	$+0,8$ to +28 V	$+0,5$ to +28 V	$+0,65$ to +28 V	+1 to +28 V	+1 to +28 V
A.G.C. voltage	$+2,5 \mathrm{~V}$ to +7 V	$+8,25$ to $+0,85 \mathrm{~V}$	+10 to 0 V	$+9,2$ to $+0,85 \mathrm{~V}$	$+9,2$ to $+0,85 \mathrm{~V}$
Amplification, typical	-	20 dB	32 dB	26 dB	27 dB
Noise figure, typical	-	7 dB	8 dB	5 dB	5 dB
Overall dimensions $1 \times w \times h$ (mm)	$147 \times 20 \times 55$	$94 \times 24 \times 73$	$86 \times 23 \times 81$	$95 \times 23 \times 77$	$95 \times 23 \times 77$
Aerial input plug	IEC	coaxial female plug on cable	phono	phono or IEC	IEC
Meets Amtsblatt DBP69/1981	no	no	no	no	no
Page	25	121	39	133	149
	$\begin{array}{\|l} \text { * cable: } \\ \text { S01 to S1 } \\ \text { S2 to S20 } \end{array}$	* cable: C to Q			

UV617 UV618	UV627 UV628	UV635 UV636	UVF10 UVF10A
C.C.I.R.: B,G,H	C.C.I.R.: L, ${ }^{\prime}$	R.T.M.A.: M,N	C.C.I.R.: L,L'
E2 to C*	02 to 04	A2 to A6	A to E4
E5 to E12	05 to 10*	A7 to A13*	M4 to E12
E21 to E69	L21 to L69	A14 to A69	E21 to E69
46 to 110	55 to 64	55 to 115	41 to 68
111 to 300	128 to 297	121 to 277	162 to 230
470 to 860	470 to 861	283 to 403	470 to 861
		409 to 801	
38,9	32,7	45,75	32,7
33,4	39,2	41,25	39,2
256	256	256	256
(UV618 only)	(UV628 only)	(UV636 only)	(UVF10A only)
$+12 \mathrm{~V} \pm 10 \%$	+ $12 \mathrm{~V} \pm 10 \%$	+ $12 \mathrm{~V} \pm 10 \%$	$+12 \mathrm{~V} \pm 1 \mathrm{~V}$
$+0,8$ to +28 V	$+0,8$ to $+28 V$	$+0,8$ to +28 V	$+0,5$ to $+28 V$
$+9,2$ to $+0,85 \mathrm{~V}$	$+9,2$ to $+0,85 \mathrm{~V}$	$+9,2$ to $+0,85 \mathrm{~V}$	$+8,25$ to $+0,85 \mathrm{~V}$
40 dB	40 dB	45 dB	22 dB
6 dB	6 dB	6,5 dB	6 dB
$84 \times 20 \times 55$	$84 \times 20 \times 55$	$84 \times 20 \times 55$	$94 \times 23,5 \times 73$
IEC	IEC	phono	coaxial female, plug on cable
yes	yes	no	no
235	247	259	271
$\begin{aligned} & \text { * cable: } \\ & \text { S01 to S1 } \\ & \text { S2 to S20 } \end{aligned}$	$\begin{aligned} & \text { * cable: } \\ & \text { C to } Q \end{aligned}$	* cable: A-2 to A-1 A tol J to T U to W AA to RR SS to EEE 65 and 66	

	V.H.F. TUNERS		U.H.F. TUNERS		
	ECL3082	V431	CB112	U341(LO)/MK2	U342(LO)
System Channels	$\begin{aligned} & \text { R.T.M.A.: M,N } \\ & \text { A2 to A6 } \\ & \text { A7 to A13 } \end{aligned}$	$\begin{aligned} & \text { R.T.M.A.: M,N } \\ & \text { A2 to A6 } \\ & \text { A7 to A13 } \end{aligned}$	D2-MAC	$\begin{aligned} & \text { C.C.I.R.: G,H,I,K } \\ & \text { E21 to E69 } \end{aligned}$	$\begin{aligned} & \text { C.C.I.R.: G,H,I,K } \\ & \text { E21 to E69 } \end{aligned}$
Frequency ranges (MHz)	$\begin{aligned} & 54 \text { to } 88 \\ & 174 \text { to } 216 \end{aligned}$	$\begin{aligned} & 54 \text { to } 88 \\ & 174 \text { to } 216 \end{aligned}$	$950 \text { to } 1750$	470 to 860	470 to 860
I.F. frequency (MHz) picture sound	45,75 41,25	$45,75$ 41,25	479,5	$\begin{aligned} & 38,9(\mathrm{G}, \mathrm{H}) \\ & 39,5(\mathrm{I}, \mathrm{~K}) \\ & 33,4(\mathrm{G}, \mathrm{H}) \\ & 33,5(\mathrm{I}, \mathrm{~K}) \end{aligned}$	$\begin{aligned} & 38,9(\mathrm{G}, \mathrm{H}) \\ & 39,5(\mathrm{I}, \mathrm{~K}) \\ & 33,4(\mathrm{G}, \mathrm{H}) \\ & 33,5(\mathrm{I}, \mathrm{~K}) \end{aligned}$
Divider ratio	-	-	-	-	-
Supply voltage	$+12 \mathrm{~V} \pm 10 \%$	$+12 \mathrm{~V} \pm 10 \%$	+ $12 \mathrm{~V} \pm 5 \%$	+ $12 \mathrm{~V} \pm 10 \%$	$+12 \mathrm{~V} \pm 10 \%$
Tuning voltage	$+0,5$ to $+28 V$	+1 to +28 V	$+0,8$ to +28 V	+1 to +28 V	+1 to +28 V
A.G.C. voltage	+5 to +3 V	$+9,2$ to $+0,85 \mathrm{~V}$	-	$+9,2$ to +1 V	+9,2 to +1 V
Amplification, typical	27 dB	26 dB	-	23 dB	23 dB
Noise figure, typical	7 dB	5 dB	10 dB	6,5 dB	$6,5 \mathrm{~dB}$
Overall dimensions $1 \times w \times h(\mathrm{~mm})$ Aerial input plug	$\begin{aligned} & 99 \times 29 \times 59 \\ & \text { pin } \end{aligned}$	$95 \times 23 \times 77$ phono	$165 \times 19 \times 90$ E or IEC	$83 \times 18 \times 52$ coaxial female plug	$\begin{aligned} & 83 \times 18 \times 52 \\ & \text { p.w. pin } \end{aligned}$
Page	13	285	**	55	71

* Channels 1 to 40 according to WARC77.
** The data on this type will be issued separately.

U.H.F. TUNERS		
U343/U344	U411/U412	U743/U744
C.C.I.R.: G,H,I,K	C.C.I.R.: G,H,I,K	C.C.I.R.: I
E21 to E69	E21 to E69	E21 to E69
470 to 860	470 to 860	470 to 860
$38,9(G, H)$	$38,9(G, H)$	39,5
$39,5(I, K)$	$39,5(I, K)$	33,5
$33,4(G, H)$	$33,4(G, H)$	256
$33,5(I, K)$	256 or 64	(U744 only)
256	+12412 only)	$+12 \mathrm{~V} \pm 10 \%$
$(U 344$ only)	$+10 \%$	+1 to +28 V
$+12 \mathrm{~V} \pm 10 \%$	$+9,2$ to $+0,85 \mathrm{~V}$	$+9,2$ to +1 V
+1 to +28 V	25 dB	40 dB
$+9,2$ to +1 V	7 dB	$6,5 \mathrm{~dB}$
42 dB	$94 \times 23,5 \times 60,5$	$66 \times 20 \times 38$
$6,5 \mathrm{~dB}$	phono or IEC	phono or IEC
$83 \times 18 \times 52$	97	109

COAXIAL AERIAL INPUT ASSEMBLIES

With mains separation
Frequency range $\quad 40$ to 890 MHz

Impedance
Input connector
Safety requirements
75Ω asymmetrical
meets the demands of IEC 169.2 and DIN 45325 (dia. $9,5 \mathrm{~mm}$), and of SNIR (dia. $9,0 \mathrm{~mm}$)
IEC 65; approbation approvals have been received or sought from BSI, DEMKO, EI, FEMKO, KEMA, LCEE, NEMKO, SEMKO, SEV and VDE.

cable length mm	insertion loss		catalogue number	page
	$\begin{aligned} & \text { at frequency } \\ & \mathrm{MHz} \end{aligned}$	dB		
$\begin{array}{r} 90 \\ 145 \\ 250 \end{array}$	$\begin{array}{r} 40-700 \\ 700-890 \end{array}$	$\begin{aligned} & \leqslant 1,5 \\ & \leqslant 2 \end{aligned}$	$\begin{aligned} & 312212701240 \\ & 312212703500^{*} \\ & 312212705900 \end{aligned}$	303
-	$\begin{array}{r} 40-890 \\ 50-230 \\ 470-850 \end{array}$	$\begin{aligned} & \leqslant 1 \\ & \leqslant 1 \\ & \leqslant 1 \end{aligned}$	$\begin{aligned} & 312212710260 \\ & 312212710450 \end{aligned}$	307
-	$\begin{aligned} & 50-230 \\ & 470 \\ & 850 \end{aligned}$	$\begin{aligned} & \leqslant 1 \\ & \leqslant 1 \\ & \leqslant 1,5 \end{aligned}$	312212714730	307
-	$\begin{array}{r} 40-300 \\ 470-890 \end{array}$	$\begin{aligned} & \leqslant 1 \\ & \leqslant 1 \end{aligned}$	3122127 21300**	313
-	$\begin{array}{r} 40-230 \\ 230-300 \\ 470-890 \end{array}$	$\begin{aligned} & \leqslant 1 \\ & \leqslant 1,5 \\ & \leqslant 1,5 \end{aligned}$	312212724140	317

* These assemblies comply with the requirements of immunity from radiated interference of Amtsblatt DBP69/1981.
** This assembly complies with the requirements of immunity from radiated interference of BS905.

Pin Compatibility

All tuners of our 600-series and 700 -series, and the tuner parts of our 600 -series front-ends are pincompatible, i.e. the pins for the same function are situated at the same place. However, the position of the mounting tab at the aerial input side of the tuners in the 700 -series (MT4) is different, because these tuners are smaller. For this reason these tuners are also available with a longer aerial connector for interchangeability purposes. The front-ends have an extra mounting tab (MT3).

7295558
Fig. 6.
Terminal
A = aerial input connector
5 = a.g.c. voltage
6 = supply voltage, +12 V
7 = supply voltage, low v.h.f., +12 V
8 = supply voltage, high v.h.f., +12 V
9 = supply voltage, hyperband, +12 V
$10=$ supply voltage, u.h.f., +12 V
11 = tuning voltage
12 = supply voltage, frequency divider, +5 V
13,14 = balanced output voltage of frequency divider
15 = earth
$16=$ i.f. output
17 = i.f. output
(UV tuners)

Mounting tabs

600-series tuners
700-series tuners
MT1, MT2
600-series front ends
MT4, MT2
MT1, MT2, MT3

V.H.F. TELEVISION TUNER

QUICK REFERENCE DATA

Systems	C.C.I.R. systems M and N (R.T.M.A.)
Channels	A2 to A6 (low v.h.f. band)
	A7 to A13 (high v.h.f. band)
Intermediate frequencies	$45,75 \mathrm{MHz}$
\quad picture	$41,25 \mathrm{MHz}$

APPLICATION

Designed to cover the v.h.f. channels of C.C.I.R. systems M and N (R.T.M.A.).
Thanks to its good signal-handling properties, the tuner is especially suited for strong signal areas.

DESCRIPTION

The ELC3082 is a v.h.f. tuner with electronic tuning and band switching, covering the low v.h.f. band (frequency range 54 to 88 MHz) and the high v.h.f. band (frequency range 174 to 216 MHz).

Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The aerial connection is on one of the frame sides, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages) are made via terminals in the under side. The mounting method is shown in Figs 3 and 4.
Electrically, the tuner consists of v.h.f. and i.f. parts. The aerial signal is fed to the input filters; providing i.f. rejection and band selection. The filters are followed by a P-I-N diode attenuator, equipped with two diodes BA379. The output of the attenuator is connected to the emitter of the input transistor BF480, operating as r.f. amplifier in grounded base configuration. The same transistor also delivers the current drive for the $\mathrm{P}-\mathrm{I}-\mathrm{N}$ diode attenuator, controlled by an a.g.c. voltage fed to the transistor base. The combination of the diode attenuator with this high current transistor (I_{E} at normal gain about 10 mA) has excellent signal-handling properties within the whole a.g.c. range.

The collector load of the input transistor is formed by a double tuned circuit, transferring the signal to the emitter of the mixer transistor BF324. Good signal-handling properties of this stage are achieved by high osillator injection. The oscillator is equipped with a transistor BF324. In the low v.h.f. position, self-detection of the oscillator signal is used to back-bias the five switching diodes BA482/483/484, required for band switching between low and high v.h.f. channels. Three capacitance diodes BB809 provide tuning of the r.f. circuits. The collector of the mixer transistor is connected to a single tuned i.f. resonant circuit (about 20 MHz bandwidth), the output of which is fed to the i.f. output stage, equipped with another transistor BF324 in grounded base configuration. This stage has also been designed especially for good signal-handling properties. The collector load of the i.f. output transistor is formed by a single tuned i.f. circuit, at the low end of which the i.f. signal is capacitively coupled out of the tuner.
The tuner can be used in combination with a u.h.f. tuner. In this case the u.h.f. i.f. signal is fed to the emitter of the i.f. output transistor, which acts as i.f. amplifier for u.h.f. as well as for v.h.f.
The u.h.f. i.f. input terminal can be used as an i.f. injection point for aligning the i.f. output circuit together with the i.f. amplifier of the television receiver. For the same purpose a separate i.f. injection point has been provided at the collector of the mixer.
The tuner requires transistor supply voltages of +12 V , a switching voltage of +12 V , a.g.c. voltages, variable from +5 V (normal operating point) to about $+2,5 \mathrm{~V}$ (maximum a.g.c.) and a tuning voltage, variable from $+0,5 \mathrm{~V}$ to +28 V .
The aerial input of the tuner is asymmetrical. For use in symmetrical aerial systems, aerial transformers (baluns) are available (see ACCESSORY).

MECHANICAL DATA

Fig. 2.
Terminal 1 = u.h.f. i.f. input
$2=$ a.g.c. voltage, +5 to $+2,5 \mathrm{~V}$
$3=$ switching voltage, +12 V
$4=$ common supply voltage, +12 V
$5=$ v.h.f. supply voltage, +12 V
$6=$ tuning voltage, $+0,5$ to +28 V
7 = i.f. output
$E=$ earth

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a bracket. Information will be supplied upon request.)
The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.

Fig. 3 Piercing diagram viewed from solder side of board: $e=2,54 \mathrm{~mm}(0,1 \mathrm{in})$.

Fig. 4 Recommended fixing method of the aerial cable. Use a self-tapping screw.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$ and a supply voltage of $12 \pm 0,3 \mathrm{~V}$.
Semiconductors

P-I-N attenuator	$2 \times$ BA379
r.f. amplifier	BF480
mixer	BF324
oscillator	BF324
tuning diodes	$3 \times$ BB809
switching diodes	$5 \times$ BA482/483/484
i.f. amplifier	BF324

Ambient temperature range
operating
+5 to $+55^{\circ} \mathrm{C}$
storage
-25 to $+85^{\circ} \mathrm{C}$
Supply voltage
$+12 \mathrm{~V} \pm 10 \%$
Current drawn from +12 V supply at nominal gain
low band
$46,5 \mathrm{~mA} \pm 10 \%$
high band
$63,5 \mathrm{~mA} \pm 10 \%$
Notes - At 40 dB gain reduction the currents decrease about 5 mA .

- The supply voltage at terminal 4 should be carefully filtered to avoid hum modulation in one of the P-I-N diodes when the attenuator is biased to higher attenuation ratios. Under most unfavourable conditions a ripple voltage of $3 \mathrm{mV}(\mathrm{p}-\mathrm{p})$ may produce a disturbance which is just visible.
A.G.C. voltage (Figs 5 and 6)
low band, at nominal gain
at 40 dB gain reduction
$+5 \pm 0,2 \mathrm{~V}$ *
$+3,3 \mathrm{~V}$ (typical)
high band, at nominal gain
$+5 \pm 0,2 \mathrm{~V}$ *
at 40 dB gain reduction
$+3,3 \vee$ (typical)
A.G.C. current
at nominal gain
max. 1 mA
with a.g.c.
max. 1 mA
Tuning voltage range (Figs 7 and 8)
Current drawn from 28 V tuning voltage supply
$+0,5$ to +28 V
max. $0,5 \mu \mathrm{~A}$
Note - The source impedance of the tuning voltage, offered to terminal 6 , must be max. $100 \mathrm{k} \Omega$ at tuning voltages below 5 V .
Switching voltage
low band
open circuit
high band
$+12 \mathrm{~V} \pm 10 \%$
Note - In the low barid position the tuner produces a negative voltage (1 to 5 V) at terminal 3; this terminal must not be loaded with an external resistance below $50 \mathrm{M} \Omega$.
* This value may be increased to $5,5 \mathrm{~V}$ if a certain deterioration of signal handling is accepted. At voltages above $5,5 \mathrm{~V}$ the cross-modulation in band may deteriorate rapidly.

Fig. 5.

Fig. 7.

Fig. 6.

Fig. 8.

Frequency ranges
low band
high band

Intermediate frequencies
picture
sound
Input impedance, asymmetrical
V.S.W.R. (between picture carrier and sound carrier)
low band
high band
A.G.C. range
low band
high band
R.F. curves
bandwidth, low band
high band
tilt, low band high band
channel A2 (picture carrier $55,25 \mathrm{MHz}$) to channel A6 (picture carrier $83,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .2 \mathrm{MHz}$. channel A7 (picture carrier 175,25 MHz) to channel A13 (picture carrier $211,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .3 \mathrm{MHz}$.
$45,75 \mathrm{MHz}$
$41,25 \mathrm{MHz}$
75Ω

v.s.w.r. at nom. gain	max. v.s.w.r. during gain control
$\max .3,5$	$\max .3,5$
$\max .4$	$\max .4$

min. 40 dB (typ. 54 dB)
min. 40 dB (typ. 50 dB)
typ. 7 to 10 MHz
typ. 8 to 10 MHz
max. 3 dB
max. 3 dB
Power gain (see also MEASURING METHOD OF POWER GAIN)
low band
channel A2
channel A6
high band
channel A7
channel A13
Noise figure
low band
high band
I.F. rejection
low band, channel A2
channel A3
channels A4 to A6
high band
$\min .24 \mathrm{~dB}$
typ. 27 dB
typ. 29 dB
min. 25 dB
typ. 28 dB
typ. 31 dB
max. $9,5 \mathrm{~dB}$ (typ. 7 dB)
max. 9,5 dB (typ. 7,5 dB)
$\min .54 \mathrm{~dB}$
$\min .57 \mathrm{~dB}$
$\min .60 \mathrm{~dB}$
$\min .60 \mathrm{~dB}$

Image rejection
low band
high band
Signal handling
Minimum input signal (e.m.f.) producing
cross-modulation (1\%)
in channel
wanted signal: picture carrier frequency,
interfering signal: sound carrier frequency
in band
wanted signal: picture carrier frequency
of channel N .
interfering signal: picture carrier of
channel $\mathrm{N} \pm 2$
interfering signal: picture carrier of
channel $\geqslant \mathrm{N} \pm 3$
Minimum input signal (e.m.f.) producing overloading, at nominal gain
at maximum a.g.c.
Minimum input signal (e.m.f.) at nominal gain producing a shift of the oscillator frequency of 10 kHz , low band
high band
Detuning of the i.f. output circuit as a result of band switching and tuning
Shift of oscillator frequency at a change of the supply voltage of 5%
low band
high band
during warm-up time (measured between 5 s and 15 min after switching on)
low band
high band
$\min .56 \mathrm{~dB}$
$\min .50 \mathrm{~dB}$
$\begin{array}{l|l}\text { max. gain } & \text { with a.g.c. } \\ \hline \text { typ. } 20 \mathrm{mV} & \text { typ. }>500 \mathrm{mV} \\ \begin{array}{l}\text { typ. } 100 \mathrm{mV} \\ \text { typ. } 250 \mathrm{mV}\end{array} & \text { typ. }>500 \mathrm{mV} \\ \text { typ. }>500 \mathrm{mV}\end{array}$ ty $\left.^{\text {typ. } 50 \mathrm{mV}} \begin{array}{l}\text { typ. }>500 \mathrm{mV}\end{array}\right\}$ **
typ. 50 mV
typ. 30 mV
$\max .150 \mathrm{kHz}$
$\max .300 \mathrm{kHz}$
$\max .300 \mathrm{kHz}$
max. 150 kHz
$\max .150 \mathrm{kHz}$

* This e.m.f. (open voltage) is referred to an impedance of 75Ω.
1% cross-modulation means that 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
** This e.m.f. (open voltage) is referred to an impedance of 75Ω. Criterion of overloading: 30% compression of the synchronization pulses of a standard television signal or a noticeable deterioration of the picture quality.
© This e.m.f. (open voltage) is referred to an impedance of 75Ω.

Drift of oscillator frequency
at a change of the ambient temperature from 25 to $50^{\circ} \mathrm{C}$
25 to $50^{\circ} \mathrm{C}$
low band $\quad \max .500 \mathrm{kHz}$
high band $\quad \max .500 \mathrm{kHz}$
Oscillator radiation
The tuner is in conformity with the radiation requirements of C.I.S.P.R. Recommendation No. $\mathbf{2 4 / 2}$ and the corresponding F.C.C. rules, provided the tuner is installed in a professional manner.
Microphonics
If the tuner is installed in a professional manner, there will be no microphonics.
Surge protection
Protection against voltages max. 5 kV
Note: Three discharges of a 470 pF capacitor into the aerial terminal.

ALIGNMENT OF THE I.F. CIRCUIT

For i.f. injection the u.h.f. i.f. input (terminal 1) or the i.f. injection point at the collector of the mixer transistor (at the top of the tuner, Fig. 2) can be used.
The aligning can be done with any channel tuned. A probe as shown in Fig. 9 should be used.

Fig. 9.
The signal attenuation between the i.f. generator and the i.f. output of the tuner is about 4 dB when injection is done via the injection point, and about $8,5 \mathrm{~dB}$ in the case of injection via the u.h.f. i.f. input.
The i.f. output circuit is detuned about $+300 \mathrm{kHz}^{*}$ or $-150 \mathrm{kHz}{ }^{*}$ when injection is done via the injection point or via the u.h.f. i.f. input respectively.

MEASURING METHOD OF POWER GAIN

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 10.

Fig. 10.

The RC-circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit, which should be tuned to $43,5 \mathrm{MHz}$. The bandwidth should be approx. $4,5 \mathrm{MHz}$.

Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a 75Ω source and a 75Ω detector (or between a 50Ω source and matching pad $50 / 75 \Omega$ and a 50Ω detector).

[^0]
V.H.F./U.H.F. TELEVISION TUNER AND I.F. DEMODULATOR

QUICK REFERENCE DATA

Systems
Channels
low v.h.f.
high v.h.f.
u.h.f.

Intermediate frequencies
picture
colour
sound 1
sound 2
Video output signal
peak-to-peak voltage top sync level
Intercarrier sound output signals
$5,50 \mathrm{MHz}$
$5,74 \mathrm{MHz}$
C.C.I.R. systems B, G and H
off-air cable
E2 to C S01 to S1
E5 to E12 S2 to S20
E21 to E69
$38,90 \mathrm{MHz}$
$34,47 \mathrm{MHz}$
$33,40 \mathrm{MHz}$
$33,16 \mathrm{MHz}$
2,1 to $2,8 \mathrm{~V}$
2,2 to $2,6 \mathrm{~V}$

200 to 500 mV r.m.s.
90 to 225 mV r.m.s.

APPLICATION

Designed to cover the tuner function according to the C.C.I.R. systems B, G and H with extended v.h.f. frequency ranges, combined with a quasi split sound i.f. function to demodulate the video signal and to convert the sound signal.
The tuner part of the FE618Q(M)/256 is equipped with a frequency divider, which makes it suitable for digital tuning systems based on frequency synthesis; for the remainder it is equal to type FE6170(M).

Available versions

	aerial input connector	frequency divider (IC)	catalogue number
FE617O	IEC		t.b.f.
FE617QM	IEC		312223710170
FE618Q/256	IEC	$1: 256$	312223710030
FE618QM/256	IEC	$1: 256$	312223710020

These types comply with the requirements of radiation, signal handling capability, and immunity from radiated interference of Amtsblatt DBP69/1961, and for Finland E.I.S. bulletin T33-82, section 4, when installed professionally in an adequare TV receiver.

Fig. 1 Tuner part.
For types FE6170 and QM delete: C71, C72, C86, C87, C88, R71, R72, IC2.
For connections see Fig. 3.

DESCRIPTION

The front ends contain v.h.f./u.h.f. tuners with electronic tuning and band switching, covering the low v.h.f. band (frequency range 46 to 110 MHz), the high v.h.f. band (frequency range 111 to 300 MHz), and the u.h.f. band (frequency range 470 to 860 MHz).
Mechanically, the front ends consist of a tuner part and an i.f. part built on separate low-loss printed-
\rightarrow wiring boards, carrying all components, in a housing made of a rectangular diecast metal frame and front and rear covers (see Fig. 3). The common IEC coaxial aerial connector (75Ω) is integrated in one of the frame sides of the housing, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 4.
Electrically, the tuner part consists of v.h.f. and u.h.f. parts (see Fig. 1). They are equipped with a common aerial input and provided with r.f. MOSFET input stages. The v.h.f. mixer, v.h.f. oscillator and i.f. amplifier functions are provided by a tuner IC. This IC has terminals between mixer and i.f. amplifier to connect the i.f. preselection.
The r.f. band pass filter and oscillator circuits are tuned by 7 tuning diodes; band switching is achieved by 4 switching diodes.
The u.h.f. part of the tuner has a high-pass input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the i.f. pre-amplifier of the tuner I.C.
The r.f. band pass filter and oscillator circuits are tuned by 4 tuning diodes.
In all bands the tuner is gain-controlled via gate 2 of the input MOSFET tetrode.
A test point TP1 is provided for i.f. injection.
The electrical circuit of the FE618Q(M)256 is extended with a frequency divider (division ratio of 256), with inputs connected to the v.h.f. and u.h.f. oscillators. The symmetrical ECL outputs are connected to terminals 13 and 14.
The i.f. part is of the quasi-split sound type. It has separate ICs for video demodulation and sound conversion (see Fig. 2).
The demodulated (CVBS-) video signal is available at the video output of the front end and the converted
\rightarrow sound signal, with intercarrier frequencies of $5,50 \mathrm{MHz}$ and $5,74 \mathrm{MHz}$, is available at the sound output.
\rightarrow In the i.f. part of the QM versions a video identification signal is also generated. This can be used to mute the sound in case of "no video" and is available at the video identification output.

Terminal designations in Fig. 3

\(\left.\begin{array}{ll}A \& aerial input (IEC female 75 \Omega)

6 \& =

7 \& supply voltage, tuning part,+12 \mathrm{~V}

7 \& supply voltage, low v.h.f.,+12 \mathrm{~V}

8 \& =

10 \& supply voltage, high v.h.f.,+12 \mathrm{~V}

11 \& supply voltage, u.h.f.,+12 \mathrm{~V}

12 \& tuning voltage,+0,48 to+28 \mathrm{~V}

\& =supply voltage, frequency

\& divider,+5 \mathrm{~V}

13,14 \& =

\& balanced output voltage of

\& frequency divider(1 \mathrm{k} \Omega)\end{array}\right\}\)| only for |
| :--- |
| FE618Q/256 |
| and |
| FE618QM/256 |

Mounting

The unit may be mounted by soldering it on to a printed-wiring board (using the piercing diagram shown in Fig. 4). The construction and positioning of the 3 mounting tags is such that a 'click' indicates the correct seating of the unit on the printed-wiring board. The unit may be mounted anywhere in the receiver and there are no restrictions on orientation.

The solderability of the terminals and mounting tags is according to IEC 68-2, test $\mathrm{Ta}\left(235 \pm 5^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

Fig. 4 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

In order to withstand vibrations, shocks and bumps that could damage the solder joints of the mounting tags, the front end should be mounted and soldered without clearance between the supporting area and the printed-wiring board.

This can be achieved by:

- twisting the mounting tags $18^{\circ}\left(-3^{\circ}\right)$; or
- pressing the front end against the printed-wiring board during soldering; or
- supporting the front end at its aerial connector.

If the aerial connector is used as a direct input to the television set, it should be supported to prevent the printed-wiring board from stress.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, supply and band switching voltages of $12 \pm 0,3 \mathrm{~V}$.

General

Semiconductors, v.h.f. bands
r.f. amplifier
mixer
$\left.\begin{array}{l}\text { mixer } \\ \text { oscillator }\end{array}\right\}$
tuning diodes
switching diodes
d.c. blocking diodes

Semiconductors, u.h.f. bands
r.f. amplifier BF990
oscillator BF970
mixer 1SS99
tuning diodes $4 \times$ BB405
Frequency divider
SP4653
Semiconductors, i.f.
i.f. amplifier and demodulator TDA2541
quasi-split-sound circuit TDA2545A
synchronization circuit
TDA2577A
video output transistor
BC548
S.A.W. filter

OFW G3203
Ambient temperature range
operating
-10 to $+60^{\circ} \mathrm{C}$
storage
Relative humidity
-25 to $+85^{\circ} \mathrm{C}$

Voltages and currents

Supply voltages (tuner and i.f. part)
$+12 \mathrm{~V} \pm 10 \%$
Current drawn from +12 V supply
v.h.f. bands
u.h.f. bands
bandswitching
i.f. part
max. 50 mA
max. 45 mA
max. 15 mA
max. 200 mA , without mute 140 mA
For operation in all bands the terminals 6 and 30 are permanently connected to their voltage supplies. Additionally the supply voltage for band switching is connected to:
terminal 7 for operation in low v.h.f. band
terminal 8 for operation in high v.h.f. band
terminal 10 for operation in u.h.f. bands

FE617Q FE617QM

FE618Q/256
FE618QM/256

Tuning voltage range	$+0,8$ to +28 V
Current drawn from 28 V tuning voltage supply	
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and 60% R.H.	$\max .0,5 \mu \mathrm{~A}$
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and 95% R.H.	$\max .2 \mu \mathrm{~A}$
at $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ and 60% R.H.	$\max .2 \mu \mathrm{~A}$

Note: The source impedance of the tuning voltage offered to terminal 11 must be maximum $47 \mathrm{k} \Omega$.

Aerial input characteristics

Input impedance
75Ω
V.S.W.R. and reflection coefficient
(values between picture and sound carrier,
as well as values at picture carrier)
v.s.w.r.
v.h.f. bands
u.h.f. bands
reflection coefficient
v.h.f. bands
u.h.f. bands

Gain limited sensitivity level
v.h.f. C.C.I.R. channels and u.h.f. channels

S-channels
A.G.C. limited aerial input level
v.h.f. bands
u.h.f. bands

Oscillator voltage level (fundamental and
harmonics up to 1000 MHz) at the input
v.h.f. bands
u.h.f. bands

Surge protection

Tuning characteristics

Frequency ranges
low v.h.f. band channel E2 (picture carrier $48,25 \mathrm{MHz}$) to
high v.h.f. band
u.h.f. bands
channel S1 (picture carrier $105,25 \mathrm{MHz}$). channel S2 (picture carrier $112,25 \mathrm{MHz}$) to channel S20 (picture carrier $294,25 \mathrm{MHz}$). channel E21 (picture carrier $471,25 \mathrm{MHz}$) to channel E69 (picture carrier $855,25 \mathrm{MHz}$).

The frequency ranges remain valid under the specified operating conditions during the entire life time of the unit.
The oscillator frequency is higher than the aerial signal frequency.

Slope of tuning characteristic
low v.h.f. band, channel E2
channel S1
high v.h.f. band, channel S2
channel S20
u.h.f. bands, channel E21
channel E69
Tuning voltage range within which the divided oscillator frequency increases monotone with the tuning voltage (FE618 versions only)

Slope of tuning characteristic
low v.h.f. band
high v.h.f. band
u.h.f. bands

Tuning voltage range within which the tuning frequency increases monotone with the tuning voltage

Time constant of varicap voltage
Aerial input level causing detuning of -300 or +1000 kHz
v.h.f. bands
u.h.f. bands

Oscillator characteristics

Shift of oscillator frequency at a change of the supply voltage of 5%
v.h.f. bands
u.h.f. bands

Drift of oscillator frequency
during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after band switching)
at a change of the ambient temperature
from +25 to $+50^{\circ} \mathrm{C}$ and
from +25 to $+0^{\circ} \mathrm{C}$
v.h.f. bands
u.h.f. bands
at a change of humidity from $60 \pm 15 \%$
to $93 \pm 2 \%$, at $T_{a m b}=25 \pm 5^{\circ} \mathrm{C}$
low v.h.f. band
high v.h.f. band
u.h.f. bands
$\left.\begin{array}{r}5 \mathrm{MHz} / V \\ 1 \mathrm{MHz} / V \\ 10 \mathrm{MHz} / V \\ 2 \mathrm{MHz} / V \\ 22 \mathrm{MHz} / V \\ 5 \mathrm{MHz} / V\end{array}\right\}$ typical values

0,45 to 30 V

1 to $6 \mathrm{MHz} / \mathrm{V}$
2 to $14 \mathrm{MHz} / \mathrm{V}$
4 to $25 \mathrm{MHz} / \mathrm{V}$

0,45 to 30 V
$1,5 \mathrm{~ms}$
min. $100 \mathrm{~dB}(\mu \mathrm{~V})$
min. $90 \mathrm{~dB}(\mu \mathrm{~V})$
max. 250 kHz
max. 500 kHz
max. 250 kHz
max. 250 kHz
max. 500 kHz
max. 1000 kHz
max. 500 kHz
$\max .1000 \mathrm{kHz}$
$\max .1500 \mathrm{kHz}$

Frequency divider characteristics (FE618Q/256 and FE618QM/256 only)

Supply voltage
Current drawn from +5 V supply
Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
Output impedance
Output imbalance

A.F.C. output characteristics

Output capacitance
Output voltage, when loaded with $25 \mathrm{k} \Omega$
A.F.C. switched off
A.F.C. switched on
voltage for an aerial input of $50 \mathrm{~dB}(\mu \mathrm{~V})$
correctly tuned
detuning of +100 kHz
detuning of -100 kHz
A.F.C. output slope at $\mathrm{V}_{\mathrm{afc}}=6 \mathrm{~V}$ and
$V_{\text {aerial }}=50 \mathrm{~dB}(\mu \mathrm{~V})$
A.F.C. voltage when no aerial input
$+5 \mathrm{~V} \pm 5 \%$
max. 35 mA ; typ. 25 mA
$\min .0,5 \vee(p-p)$
typ. $1 \mathrm{k} \Omega$
$\max .0,1 \mathrm{~V}$
typ. 1,2 nF
6 V

6 V
max. $1,5 \mathrm{~V}$
min. $10,5 \mathrm{~V}$
$\min .50 \mathrm{~V} / \mathrm{MHz}$, max. $150 \mathrm{~V} / \mathrm{MHz}$
$\min .3 \mathrm{~V}, \max .8 \mathrm{~V}$

Video output characteristics

Measuring conditions: video output (terminal 28) loaded with 155Ω, decoupling of i.f. supply (terminal 30) with $220 \mu \mathrm{~F}$.
Video peak-to-peak voltage, video modulation 100%, rest carrier 10%
$\min .2,1 \mathrm{~V}$, max. $2,8 \mathrm{~V}$
Top sync level
No-signal level
Video signal expansion for a change of the aerial input signal level from $40 \mathrm{~dB}(\mu \mathrm{~V})$ to $90 \mathrm{~dB}(\mu \mathrm{~V})$
Unweighted video signal to noise ratio for an aerial input level of $50 \mathrm{~dB}(\mu \mathrm{~V})$
v.h.f. C.C.I.R. channels
typ. $36 \mathrm{~dB}, \min .33 \mathrm{~dB}$
S-channels
u.h.f. channels
typ. $34 \mathrm{~dB}, \min .31 \mathrm{~dB}$
typ. $32 \mathrm{~dB}, \min .29 \mathrm{~dB}$

Unweighted video S / N-ratio for $\mathrm{V}_{\text {aerial }}=70 \mathrm{~dB}(\mu \mathrm{~V})$
v.h.f. C.C.I.R.-channels

S-channels
u.h.f. channels

Flatness $(0,1-3,5 \mathrm{MHz})$
v.h.f./u.h.f. for $\mathrm{V}_{\text {aerial }}$ up to $70 \mathrm{~dB}(\mu \mathrm{~V})$
v.h.f. for $\mathrm{V}_{\text {aerial }}=100 \mathrm{~dB}(\mu \mathrm{~V})$
u.h.f. for $\mathrm{V}_{\text {aerial }}=90 \mathrm{~dB}(\mu \mathrm{~V})$

Group delay time deviation ($0,1-3,5 \mathrm{MHz}$)
for $V_{\text {aerial }}$ up to $70 \mathrm{~dB}(\mu \mathrm{~V})$
v.h.f., channels E3 and up; u.h.f. channels
v.h.f., channel E2 minus 1 MHz

Gain drop at colour carrier for
$V_{\text {aerial }}=70 \mathrm{~dB}(\mu \mathrm{~V}) ; 1 \mathrm{MHz}$ reference
at $4,43 \mathrm{MHz}$
at $4,00 \mathrm{MHz}$
at $4,80 \mathrm{MHz}$
Group delay time deviation
at colour carrier frequency $(4,43 \mathrm{MHz})$
2T-impulse response
top level referred
to black-white response
50\% level width
K-rating
Differential gain
Differential phase
Field time waveform distortion
Line time waveform distortion
$1,07 \mathrm{MHz}$ sound-chroma interference level conditions gain control
picture carrier/colour carrier ratio picture carrier/sound carrier ratio 40 dB interference distance at video output
typ. 46 dB
typ. 44 dB
typ. 46 dB
$\max .3 \mathrm{~dB}$
$\max .4 \mathrm{~dB}$
max. 4 dB
max. 50 ns
max. 60 ns
typ. 5 dB max. 8,5 dB
typ. 2 dB
typ. 11 dB
typ. 60 ns
typ. 105\% min. 85\% max. 125\%
min. 180 ns max. 220 ns
max. 4\%
typ. 4\% max. 10\%
typ. $2^{0} \max .10^{\circ}$
max. 10\%
max. 10\%

30 dB
16 dB
10 dB
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$

Sound carriers rejection
$5,48 \mathrm{MHz}$ to $5,52 \mathrm{MHz}$
$5,74 \mathrm{MHz}$
Level residual i.f. carrier and harmonics
Frequency divider interference distance for
$V_{\text {aerial }}=50 \mathrm{~dB}(\mu \mathrm{~V})$ (referred to 1 MHz)
Image rejection for $\mathrm{V}_{\text {aerial }}=70 \mathrm{~dB}(\mu \mathrm{~V})$ v.h.f. bands
u.h.f. bands

First repeat spot interference aerial input level
v.h.f. bands
u.h.f. bands

Unwanted aerial input level for 1% cross modulation at a wanted signal level of $50 \mathrm{~dB}(\mu \mathrm{~V})$

$\mathrm{N} \pm 1$ v.h.f.	\min.	$74 \mathrm{~dB}(\mu \mathrm{~V})$
$\mathrm{N} \pm 1$ u.h.f.	\min.	$74 \mathrm{~dB}(\mu \mathrm{~V})$
In-band v.h.f.-low, $\mathrm{N} \pm 2$	typ.	$92 \mathrm{~dB}(\mu \mathrm{~V})$
In-band v.h.f.-high, $\mathrm{N} \pm 3$	typ.	$92 \mathrm{~dB}(\mu \mathrm{~V})$
In-band u.h.f., $\mathrm{N} \pm 5$	typ.	$100 \mathrm{~dB}(\mu \mathrm{~V})$
Out-of-band	min.	$100 \mathrm{~dB}(\mu \mathrm{~V})$
Breakthroughs	typ.	$80 \mathrm{~dB}(\mu \mathrm{~V})$
Ripple susceptibility		
at pins 7,8 and 10	min.	$5 \mathrm{mV}(p-p)$
at pins 6 and 30	min.	$30 \mathrm{mV}(p-p)$

min. $\quad 50 \mathrm{~dB}$
min. $\quad 35 \mathrm{~dB}$
max. $3,5 \mathrm{mV}$
min. $\quad 40 \mathrm{~dB}$
min. $\quad 66 \mathrm{~dB}$
min. $\quad 53 \mathrm{~dB}$
min. $\quad 75 \mathrm{~dB}(\mu \mathrm{~V})$
min. $\quad 63 \mathrm{~dB}(\mu \mathrm{~V})$
min. $\quad 74 \mathrm{~dB}(\mu \mathrm{~V})$
min. $\quad 74 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $\quad 92 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $\quad 92 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $\quad 100 \mathrm{~dB}(\mu \mathrm{~V})$
min. $\quad 100 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $\quad 80 \mathrm{~dB}(\mu \mathrm{~V})$
min. $\quad 5 \mathrm{mV}(\mathrm{p}-\mathrm{p})$
min . $\quad 30 \mathrm{mV}(\mathrm{p}-\mathrm{p})$

Video identification (QM versions only)
Load impedance $100 \mathrm{k} \Omega$
Output voltage (terminal 29)
no video
video
Line frequency for guaranteed
video identification
Aerial input sensitivity level

Sound carrier output characteristics

Measuring conditions:
Sound output load impedance (via d.c. block capacitor)
Sound carrier levels related to picture carrier level:
first sound carrier ($5,50 \mathrm{MHz}$)
second sound carrier ($5,74 \mathrm{MHz}$)
Nominal r.m.s. signal level
$5,50 \mathrm{MHz}$
$5,74 \mathrm{MHz}$
D.C. voltage level (terminal 24)

Signal to noise ratio weighted according to
C.C.I.R. 468-3, determined after f.m.-detection for aerial input signal level $70 \mathrm{~dB}(\mu \mathrm{~V})$ and video contents:
black, $5,50 \mathrm{MHz}$
black, $5,74 \mathrm{MHz}$
5 kHz sine wave, $5,50 \mathrm{MHz}$
5 kHz sine wave, $5,74 \mathrm{MHz}$
250 kHz sine wave, $5,50 \mathrm{MHz}$
250 kHz sine wave, $5,74 \mathrm{MHz}$
$3 \mathrm{k} \Omega$
$\min .10 \mathrm{~V}$
$\max .0,5 \mathrm{~V}$
$\min .15,0 \mathrm{kHz} ; \max .16,2 \mathrm{kHz}$
typ. $25 \mathrm{~dB}(\mu \mathrm{~V})$
typ. -13 dB
typ. -20 dB
min. 200 mV ; max. 500 mV
min. 90 mV ; max. 225 mV
$\min .4,8 \mathrm{~V}$; max. 7 V
typ. 50 dB
typ. 55 dB
min. 42 dB ; typ. 50 dB
min. 40 dB ; typ. 50 dB
min. 42 dB ; typ. 50 dB
min. 32 dB ; typ. 34 dB

Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal

Microphonics

Within the limits of C.I.S.P.R. 13 (1975) + amendment 1 (1983), VDE0872/7.72., Amtsblatt DBP69/1981, and for Finland E.I.S., bulletin T33-82, section 4, when applying the unit in an adequate TV receiver
There will be no microphonics, provided the unit is installed in a professional manner.
\rightarrow Surge protection of aerial input against voltages
max. 5 kV
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

V.H.F./U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	R.T.M.A. systems M and N
Channels	
low v.h.f. band	A2 to A6
high v.h.f. band	A7 to A13
u.h.f. bands	A14 to A83
Intermediate frequencies	
picture	$45,75 \mathrm{MHz}$
sound	$41,25 \mathrm{MHz}$
colour	$42,17 \mathrm{MHz}$

APPLICATION

Designed to cover the v.h.f. and u.h.f. channels of R.T.M.A. systems M and N.
The tuner is provided with a frequency divider ($1: 256$ or $1: 64$), which makes it suitable for digital tuning systems based on frequency synthesis.

Available versions

tuner type	aerial input connector	frequency divider ratio	catalogue number
M33	phono	-	312212709710
M34	phono	64	312212709750
M34/256	phono	256	312223700070

DESCRIPTION

The M34 is a combined v.h.f./u.h.f. tuner with electronic tuning and band switching, covering the low v.h.f. band (frequency range 54 to 88 MHz), the high v.h.f. band (frequency range 174 to 216 MHz), and the u.h.f. bands (frequency range 470 to 890 MHz).
Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common coaxial phono aerial connector (75Ω) is on one of the frame sides. The coaxial i.f. output is at the top. All other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, prescaler outputs) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically, the tuner comprises v.h.f. and u.h.f. parts (see Fig. 1). The v.h.f. aerial signal is fed via switchable low and high v.h.f. tuned input filters to gate 1 of an input MOSFET tetrode (with internal gate protection against surge).
The input filters are provided with an i.f. and f.m. suppression circuit. The drain load of the MOSFET tetrode is formed by a double tuned switchable bandpass filter, transferring the r.f. signal to the emitter of the mixer transistor. The oscillator signal is also fed to the emitter of the mixer transistor.
The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit. The i.f. signal is coupled out via an additional i.f. amplifier. A test point (T.P.) is provided for i.f. injection to align the i.f. output circuit of the tuner together with the i.f. amplifier of the television receiver. The test point is accessible through a hole in the top of the tuner and is connected to the collector of the mixer transistor.
The single tuned input, the r.f. band pass filter and oscillator circuits are tuned by 4 tuning diodes; band switching is achieved by 5 switching diodes.
The u.h.f. part of the tuner consists of a single tuned input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the v.h.f. mixer transistor, now operating as an i.f. amplifier.
The r.f. bandpass filter and oscillator circuits are tuned by 3 tuning diodes.
In all bands the tuner is gain-controlled via gate 2 of the input MOSFET tetrode.
The electrical circuit contains a frequency divider (division ratio 256 or 64), with inputs from the v.h.f. and u.h.f. oscillators. The complementary outputs are connected to terminals 12 and 13.

Fig. 1.

Fig. 2a.

Terminal
1 = aerial
$2=$ supply voltage, u.h.f., +12 V
$3=$ a.g.c. voltage,+10 to +1 V
4 = supply voltage, low v.h.f., +12 V
5 = supply voltage, high v.h.f., +12 V
6 = earth
7 = supply voltage, v.h.f./u.h.f., +12 V
$8=$ tuning voltage, 0,65 to 28 V
9 = earth
$10=$ earth
$11,12=$ balanced output voltage of frequency divider
$13=$ supply voltage, frequency divider, +5 V
14 = i.f. output

Fig. 2b I.F. output coil.
Torque for alignment: 2 to 20 mNm .
Press-through force: $\leqslant 10 \mathrm{~N}$.
Mass approx. 125 g

Mounting

$1,14 \mathrm{~mm}$ ($0,045 \mathrm{in}$) square pins of the Molex 2161 series must be inserted in holes with a diameter of $1,5 \mathrm{~mm}$ in a printed-wiring board of which the piercing diagram is given in Fig. 3. Pins in holes marked A are to protect the tuner against reversed mounting. Height of the pins above the component side of the board should be $10 \pm 1 \mathrm{~mm}$.
The tuner can be mounted anywhere in the receiver and fixed by means of bolts and nuts, e.g. M5. There are no restrictions on orientation.

Fig. 3 Piercing diagram viewed from solder side of board.

Marking

The tuner is provided with a label, stuck on the top face, on which the following data are printed:

```
type number M34
catalogue number
letter code for origin
change code
data code (year and week), a belt number can be added.
```


ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, an air pressure of 86 to 106 kPa , a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $10 \pm 0,2 \mathrm{~V}$.

General

Semiconductors, v.h.f. bands
r.f. amplifier
mixer/i.f. amplifier
oscillator
tuning diodes
switching diodes
d.c. blocking diode

Semiconductors, u.h.f. bands
r.f. amplifier
oscillator
mixer
tuning diodes
frequency divider
Ambient temperature range
operating
storage
Relative humidity

UL/CSA requirements

All insulating material is UL and CSA recognized. All parts meet the flammability specification UL94HB.

Voltages and currents

Supply voltage (V_{B})
Current drawn from +12 V supply
v.h.f. bands
u.h.f. bands

Bandswitch voltages (V_{S})

	terminal			
band	2	4	5	7
low v.h.f.	0	+12 V	0	+12 V
high v.h.f.	0	0	+12 V	+12 V
u.h.f.	+12 V	0	0	+12 V

Ripple susceptibility of V_{B} and V_{S}
Frequency divider supply voltage

BF982
$2 \times$ BF324
BF926
$4 \times$ BB809
$3 \times$ BA482, $1 \times$ BA483, $1 \times$ BA484
1N4148 or BAS15

BF980
BF970
1SS99
$4 \times$ OF643
SP4632 $(\div 64)$, SP4653 $(\div 256)$
0 to $+60^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
max. 95\%

$$
+12 \mathrm{~V} \pm 10 \%
$$

max. 50 mA ; typ. 44 mA
max. 50 mA ; typ. 44 mA
$+12 \mathrm{~V} \pm 10 \%$, deviation
from V_{B} less than $+10 /-5 \%$
$\min .5 \mathrm{mV}$ p-p
$5 \mathrm{~V} \pm 0,5 \mathrm{~V}$
A.G.C. voltage (Figs 4 to 9) voltage range +10 to 0 V
voltage at maximum gain voltage at minimum gain
$+10 \pm 0,2 \mathrm{~V}$
voltage :
v.h.f. band at 50 dB gain reduction
u.h.f. band at 30 dB gain reduction
A.G.C. current

Slope of a.g.c. characteristic,
within channel A2 to A69
$+1 \mathrm{~V}$
+1 to +5 V
+1 to +5 V
A.G.C. time constant (when driven from a $10 \mathrm{k} \Omega$ source)
Tuning voltage range (Figs 10, 11 and 12)
Max. permissible tuning voltage
Tuning voltages
channel A2
channel A6
channel A7
channel A13
channel A14
channel A83
max. $20 \mu \mathrm{~A}$
max. $200 \mathrm{~dB} / \mathrm{V}$

Current drawn from 28 V tuning voltage supply
at $T_{a m b}=25^{\circ} \mathrm{C}$, R.H. $=60 \%$
$\max .0,5 \mu \mathrm{~A}$
at $T_{\text {amb }}=25^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H}_{\mathrm{C}}=95 \%$
$\max .2 \mu \mathrm{~A}$
at $T_{\text {amb }}=55^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H}_{\mathrm{C}}=60 \%$
$\max .2 \mu \mathrm{~A}$
The frequency divider operates at tuning voltages between 0 and 30 V .
Tuning voltage time constant*
max. 1,5 ms

Frequencies

Frequency ranges
low v.h.f.
high v.h.f.
u.h.f.

Intermediate frequencies
picture
sound
channel A2 (picture carrier $55,25 \mathrm{MHz}$) to channel A6 (picture carrier $83,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .2,75 \mathrm{MHz}$ channel A7 (picture carrier $175,25 \mathrm{MHz}$) to channel A13 (picture carrier $211,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .3,75 \mathrm{MHz}$ channel A14 (picture carrier $471,25 \mathrm{MHz}$) to channel A83 (picture carrier $885,25 \mathrm{MHz}$). Margin at channel A14: min. 3 MHz . Margin at channel A83: min. 4 MHz .
$45,75 \mathrm{MHz}$
$41,25 \mathrm{MHz}$
The oscillator frequency is higher than the aerial signal frequency.

[^1]Typical a.g.c. characteristics

Fig. 4 Channel A2.

Fig. 6 Channel A7.

Fig. 5 Channel A6.

Fig. 7 Channel A13.

Fig. 8 Channel A14.

Fig. 9 Channel A70.

Typical tuning characteristics

Fig. 10 Low v.h.f. band.

Fig. 11 High v.h.f. band.

Fig. 12 U.H.F. bands.

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
v.h.f. bands
u.h.f. band, channels A14 to A69
u.h.f. band, channels A70 to A72
I.F. rejection (measured at picture carrier frequency)
v.h.f. bands min. 60 dB
u.h.f. bands
$1 / 2$ i.f. interference
v.h.f. bands
u.h.f. bands

920 kHz beat
channels A2 to A69 (a.g.c. from 0 to 30 dB)
channels A55 to A69 (a.g.c. from 0 to 20 dB)
FM rejection
channel A6, $90,5 \mathrm{MHz}$
channel A6, 93 MHz to 100 MHz
Colour beat, channel A6
CB susceptibility
Breakthroughs
Cross modulation
(1% modulation transfer from unwanted to wanted signal).
The undesired carrier level shall be equal to or exceed the desired carrier level for all gain values between maximum gain and 40 dB (v.h.f.), 30 dB (u.h.f.) gain reduction or be:

in v.h.f. channel	$\min .70 \mathrm{~dB}(\mu \mathrm{~V})$
in u.h.f. channel	$\min .70 \mathrm{~dB}(\mu \mathrm{~V})$
in v.h.f. band $(\pm 12 \mathrm{MHz})$	$\min .78 \mathrm{~dB}(\mu \mathrm{~V})$
in u.h.f. band $(\pm 5$ channels $)$	$\min .84 \mathrm{~dB}(\mu \mathrm{~V})$

in v.h.f. channel
in u.h.f. channel
in v.h.f. band ($\pm 12 \mathrm{MHz}$)
in u.h.f. band (± 5 channels)

55 dB
min. 60 dB ; typ. 70 dB
min. 45 dB ; typ. 58 dB
min. 40 dB ; typ. 53 dB
min .60 dB
$\min .75 \mathrm{~dB}(\mu \mathrm{~V})$
$\min .65 \mathrm{~dB}(\mu \mathrm{~V})$

55 dB
min .50 dB
min .50 dB
$\min .50 \mathrm{~dB}$
$\min .108 \mathrm{~dB}(\mu \mathrm{~V})$
$\min .70 \mathrm{~dB}(\mu \mathrm{~V})$

Oscillator characteristics

Pulling

Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain
min. $74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Shift of oscillator frequency at a change of the supply voltage of 5%
v.h.f. bands
u.h.f. channels A14 to A69
u.h.f. channels A70 to A83
max. 250 kHz
$\max .400 \mathrm{kHz}$
$\max .700 \mathrm{kHz}$
Drift of oscillator frequency
during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
$\max .250 \mathrm{kHz}$
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after band switching
at a change of the ambient temperature
from +25 to $+50^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
v.h.f. bands
u.h.f. bands

Drift of oscillator frequency
at a change of humidity
from R.H. $=60 \pm 2 \%$ to R.H. $=93 \pm 2 \%$
$\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}$
low v.h.f.
high v.h.f.
u.h.f. channel A14
u.h.f. channel A83

Shift during a.g.c.
v.h.f.
u.h.f. channels A14 to A69
u.h.f. channels A70 to A83

Frequency divider characteristics

Supply voltage
Current drawn from +5 V supply
Output voltage, output loaded with 62Ω and 18 pF in series
Interference signal on the i.f. output
$\max .35 \mathrm{~mA}$; typ. 25 mA
min. 440 mV p-p
$\max .10 \mu \mathrm{~V}$

Miscellaneous

Radio interference

Oscillator radiation
low v.h.f. band,
max. $50 \mu \mathrm{~V} / \mathrm{m}$
high v.h.f. band
max. $150 \mu \mathrm{~V} / \mathrm{m}$
u.h.f. bands, any single frequency
max. $750 \mu \mathrm{~V} / \mathrm{m}$
u.h.f. bands, average of ten individual frequencies
max. $350 \mu \mathrm{~V} / \mathrm{m}$
Microphonics
There will be no microphonics, provided the tuner is installed in a professional manner.

Surge protection

Protection against voltages
max. 5 kV
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

The test point (T.P.) connected to the collector of the v.h.f. mixer transistor can be used for i.f. injection via a capacitance of $0,3 \mathrm{pF}$.
The tuner can be switched to either a v.h.f. or a u.h.f. band, with a tuning voltage of at least 5 V . Attenuation of injected signal is 20 dB .

Connection of the i.f. amplifier

No special precautions are required to load and to match the i.f. output of the tuner.

Connection of supply voltages

Fig. 13.

Method of measuring power gain

The i.f. output of the tuner should be terminated with 75Ω.

Fig. 14.
No further i.f. alignment is necessary.
Alignment of the i.f. output coil
The i.f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 14. A suitable tool is available under catalogue number 712200547680.

Fig. 15.

U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	C.C.I.R. systems I (United Kingdom), G, H and K	
Channels	E21 to E69	
	systems I and K	systems G and H
Intermediate frequencies	39.5 MHz	38.9 MHz
picture	33.5 MHz	33.4 MHz

APPLICATION

These tuners are for use in u.h.f. single-standard receivers. In combination with v.h.f. tuner V317 or V334 they can be used in v.h.f./u.h.f. receivers.
The tuners meet the special requirements of the United Kingdom.
The U341LO Mark 2 is a special version of the U341 Mark 2; an output voltage sample from the local oscillator is available for driving digital tuning systems. Apart from this the tuners are identical. The tuners are pin-compatible with tuners U341 and U341LO; the a.g.c. circuit is voltage driven.

DESCRIPTION

These are u.h.f. tuners with electronic tuning, covering the u.h.f. band from 470 to 860 MHz (channels E21 to E69). The tuner circuit is built on a printed-wiring board and enclosed in a metal housing comprising a rectangular frame and front and rear covers (see Fig.2a). The shielded aerial connection is on one of the shortest frame sides, all other connections (supply voltages, a.g.c., tuning voltage, i.f. injection, i.f. output) are made via terminals on the underside. The mounting method is shown in Figs. 3 and 4.
Tuner U341LO Mark 2 has a coaxial socket on the top of the frame for the oscillator output sample. Electrically, the tuners consist of an input circuit with a high-pass characteristic and a MOS-FET tetrode BF980. This tetrode operates at a drain current of about 10 mA , and has good noise figures and signal handling properties. It also acts as an a.g.c. device, controlled by an a.g.c. voltage fed to gate 2. This combination has good signal handling properties throughout the a.g.c. range. The drain load of the MOS-FET tetrode is formed by a double tuned circuit which transfers the signal to the mixer diode 1SS99. The selectivity of this circuit at the image frequency has been improved by special means. The mixer diode is driven by an oscillator transistor BF970. For the U341LO Mark 2 the oscillator sample is fed out of the oscillator via a resistor.
The i.f. signal, from the mixer is amplified by a transistor BF324 in grounded-base configuration. The combination of the Schottky-barrier diode 1SS99 and the i.f. transistor BF324 ensures good noise figures and signal handling properties. Three capacitance diodes OF643 tune the double tuned circuit and the oscillator.
The i.f. output circuit is single tuned with output coupling from the low impedance side. A d.c. path to earth for the collector current of the i.f. transistor BF324 must be provided outside the tuner, preferably by a choke of about $5 \mu \mathrm{H}$. Damping of the i.f. output circuit and matching to the i.f. circuit of the receiver can be achieved by connecting a series resistance and a parallel capacitance outside the tuner.
An i.f. injection point is provided at the collector of the i.f. transistor, connected to terminal 7. U341LO Mark 2 has a special connection to provide an oscillator output for driving digital tuning systems.

MECHANICAL DATA

Fig.2a The oscillator sample socket, drawn with dotted lines, applies only to tuner U341LO Mark 2.

$$
\text { Terminal } \begin{aligned}
1 & =\text { aerial connection } \\
2 & =\text { r.f. supply voltage, }+12 \mathrm{~V} \\
3 & =\text { a.g.c. voltage, }+9.2 \text { to }+1 \mathrm{~V} \\
4 & =\text { tuning voltage, }+1 \text { to }+28 \mathrm{~V} \\
6 & =\text { oscillator/i.f. supply voltage, }+12 \mathrm{~V} \\
7 & =\text { i.f. injection point } \\
10 & =\text { i.f. output }
\end{aligned}
$$

Note: When the tuner is operated together with a v.h.f. tuner, only the supply voltage at terminal 6 should be switched off during v.h.f. operation.

Mass approx. 75 g

Fig.2b I.F. output coil.
Torque for alignment: 2 to 15 mNm Press-through force: $\geqslant 10 \mathrm{~N}$

Mounting

The tuner may be mounted by soldering it on to a printed wiring board with connections as shown by the piercing diagram in Fig. 3. The tuner may also be mounted in a socket. See under accessories.
It is recommended that the tuner be installed in a cool part of the receiver cabinet and not exposed to the vibrations of the loudspeaker. There are no restrictions on orientation.

The solderability of the terminals and mounting tabs is according to $1 \mathrm{EC} 68-2$, test $\mathrm{Ta}\left(230 \pm 10{ }^{\circ} \mathrm{C}\right.$, $2 \pm 0.5 \mathrm{~s})$. The resistance to soldering heat is according to 1 EC 682 , test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

Fig. 3 Piercing diagram viewed from solder side of board
A coaxial plug has to be used for connection to the socket on the top of tuner U341LO Mark 2; type 3/250 (manufacturer: Daut und Rietz) is recommended. (See under accessories).

The aerial cable should be connected as follows:
-- strip the cable according to Fig. 4B;
.... fix the cable as indicated in Fig. 4 C and solder the inner conductor on the aerial tag;
-- insert the lugs on immunity shield under the tabs on tuner body, push the shield into position so that the locating tags snap into place in the tuner body.

Fig. 4 Fixing of the aerial cable.
Recommended cable: DAVU wire CX4004 (outer sheath diameter 5.32 mm).

ELECTRICAL DATA

The electrical values are measured on the u.h.f. tuner alone, but they are also valid for the u.h.f. tuner when used with a v.h.f. tuner V317 or V334, Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$ and an a.g.c. voltage of $9.2 \pm 0.2 \mathrm{~V}$.
Within the given tolerance range of supply voltage and a.g.c. voltage only insignificant deviations from the specified values can be expected. Under the extreme conditions of temperature and humidity as given below, the tuner will function normally, but some specified limits may be exceeded.

General

Semiconductors

r.f. amplifier	BF980
mixer diode	1 SS99
oscillator	BF970
tuning diodes	$3 \times$ OF643
i.f. amplifier	BF324
surge protection diode	BAV10

Ambient temperature range
operating
storage
Relative humidity
-10 to $+60^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$
max. 90\%

Voltages and currents

Supply voltage

$$
+12 V \pm 10 \%
$$

Note: The supply voltage at terminal 2 (input stage) should be filtered to avoid hum modulation.

Ripple susceptibility

Defined as the peak-to-peak value of a sine wave signal ($20 \mathrm{~Hz}-500 \mathrm{kHz}$) on the supply voltages causing an amplitude modulation with a modulation depth of 0.28% on the picture carrier after passing the Nyquist curve of the i.f. filter of a tv receiver.
ripple susceptibility
Current drawn from +12 V supply
r.f. amplifier, at nominal gain
r.f. amplifier, at 30 dB gain reduction
oscillator/i.f. amplifier
A.G.C. voltage (Fig.5)
voltage at nominal gain
voltage at 30 dB gain reduction
$\min .3 \mathrm{mV}$ peak-to-peak
typ. $<21 \mathrm{~mA}$
typ. $\quad 11 \mathrm{~mA}$
max. $<16 \mathrm{~mA}$

Note: A.G.C. voltages between 0 and +10 V may be applied without risk of damage.
A.G.C. current (Fig.5)
during gain control (0 to 30 dB)
at nominal gain at 30 dB gain reduction
$\begin{array}{ll}\text { max. } & +1 \mathrm{~mA} \\ \text { typ. } & +0.9 \mathrm{~mA} \\ \text { typ. } & +0.1 \mathrm{~mA}\end{array}$

Fig. 5

Fig. 6
+1 to +28 V
$\max \quad 0.15 \mu \mathrm{~A}$
$\max . \quad 0.6 \mu \mathrm{~A}$
\min.
$4 \mathrm{MHz} / \mathrm{V}$

Tuning voltage range (Fig.6)
Current drawn from +28 V tuning voltage supply at $25^{\circ} \mathrm{C}$
at $55^{\circ} \mathrm{C}$
Slope of tuning characteristic
typ. $90(\mu \mathrm{~V})$ into 75Ω
$\min .80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω $\max .105 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Note: A tuning voltage higher than +28 V will not damage the tuner and may be applied at the user's own risk. Under this condition the published reverse voltage limit of the oscillator tuning diode will be exceeded; the oscillator frequency will never decrease with increasing tuning voltage.

Frequencies

Frequency range

Intermediate frequencies
picture
sound
channel E21 (picture carrier 471.25 MHz) to channel E69 (picture carrier 855.25 MHz). Margin at the extreme channels: $\min .3 \mathrm{MHz}$.

systems $1, \mathrm{~K}$	systems G, H
39.5 MHz	38.9 MHz
33.5 MHz	33.4 MHz

The oscillator frequency is higher than the aerial signal frequency.

Note: The tuner is aligned in such a way that the i.f. frequencies of the four systems can be applied.

Wanted signal characteristics

Input impedance

asymmetrical
75Ω
Output impedance at the oscillator sample socket; only valid for U341LO Mark 2
75Ω
asymmetrical
V.S.W.R. and reflection coefficient
at picture carrier frequency, at
nominal gain and at 30 dB gain reduction
v.s.w.r.
reflection coefficient
max. 6
$\max .71 \%$
V.S.W.R. and reflection coefficient* at oscillator sample socket; only valid for U341L.O Mark 2
v.s.w.r. at fosc $80 \mathrm{MHz}-900 \mathrm{MHz}$
reflection coefficient
at $f_{\text {osc }} 80 \mathrm{MHz}-900 \mathrm{MHz} \max .56 \%$
R.F. curves, bandwidth
R.F. curves, tilt (only for i.f. $39.5 / 33.5 \mathrm{MHz}$)
A.G.C. range
max. 3.5
typ. 20 MHz
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
min. 30 dB
*Measured in operational and non-operational condition of the tuner.

Power gain (see also Measuring method of power gain)
channel E21
channel E40
channel E69
Gain difference between any two channels
Noise figure
channel E21
channel E40
channel E69
Overloading
Input signal producing 1 dB gain
compression at nominal gain
Input signal producing either a
detuning of the oscillator of +300 kHz
or -1000 kHz or stopping of the oscillations at nominal gain
1.6 MHz moiré rejection (for i.f. $39.5 / 33.5 \mathrm{MHz}$)
min. 20 dB
typ. 27 dB
typ. $\quad 25 \mathrm{~dB}$
typ. 27 dB
typ. $\quad 4 \mathrm{~dB}$
max. 10 dB
typ. $\quad 5.5 \mathrm{~dB}$
typ. 6.5 dB
typ. $\quad 7 \mathrm{~dB}$
typ. $\quad 90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Wanted signal level of a tv signal (picture to sound ratio of 7 dB and picture to chroma ratio of 16 dB), produces an unwanted i.f. component (37.8 MHz) 52 dB below the i.f. picture carrier, when the tuner is 30 dB gain controlled. I.F. output circuit should be loaded and tuned to 36.15 MHz .
tv signal (picture carrier)
Unwanted signal characteristics
Image rejection (measured at picture carrier
frequency)
at nominal gain, channels E21 to E60
at 20 dB gain reduction, channels E21 to E60
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$

Harmonic content of oscillator sample; only valid for U341LO Mark 2
Suppression of harmonics which fall into the frequency range below 1200 MHz (second harmonics of fundamentals below 600 MHz)
min. $\quad 53 \mathrm{~dB}$; typ. 60 dB
min. 50 dB ; typ. 55 dB
min. 15 dB (typ 20 dB) below oscillator fundamental
R.F. rejection at oscillator sample socket; only valid for U341LO Mark 2

Signal voltage at oscillator sample socket
(input signals of wanted frequency $70 \mathrm{~dB}(\mu \mathrm{~V})$
into 75Ω; tuner operating at nominal gain)
I.F. rejection (measured at picture carrier and colour sub-carrier frequency)
min. 20 dB (typ. 24 to 40 dB) below oscillator fundamental
min. 80 dB
I.F. rejection at oscillator sample socket; only valid for U341LO Mark 2
I.F. signals at oscillator sample socket (converted from input signals of wanted frequency $70 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; tuner operating at nominal gain $\min . \quad 20 \mathrm{~dB}$ (typ. 27 up to 35 dB) below oscillator fundamental

1st repeat spot rejection (for i.f. $39.5 / 33.5 \mathrm{MHz}$)
Defined as the input level of the picture carrier of channel $N+2$, the sound carrier of which produces an i.f. signal (35.0 MHz), which is 52 dB below the picture carrier of the wanted signal N (picture to sound ratio 7 dB ; wanted signal $60 \mathrm{~dB}(\mu \mathrm{~V})$, tuner operating at nominal gain.
interfering signal typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$
$N \pm 4$ rejection
Interference signal for an interference ratio of 53 dB referred to wanted picture carrier (picture to sound carrier ratio of 7 dB ; wanted signal $60 \mathrm{~dB}(\mu \mathrm{~V})$; tuner operating at nominal gain)

```
N+4 rejection
typ. }80\textrm{dB}(\mu\textrm{V})\mathrm{ into 75 
N-4 rejection typ. 78 dB ( }\mu\textrm{V})\mathrm{ into 75 ת
```


Cross modulation

Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency, interfering signal, sound carrier frequency)
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})) \quad$ typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 26 dB gain reduction (wanted input level $86 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $N \pm 3$ and $N \pm 5$).
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})) \quad$ typ. $92 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 26 dB gain reduction (wanted input level $86 \mathrm{~dB}(\mu \mathrm{~V}) \quad$ typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Out of band modulation, at nominal gain
v.h.f. $1 \quad \min .108 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
v.h.f. III $\min .108 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Unwanted signal handling capability

The tuner operates together with a standard tv receiver with normal A.G.C. for tuner and i.f. amplifier. Unwanted tv signal 3 channels higher or lower than wanted. Unwanted signal level adjusted for just not visible interference.

$$
\text { Unwanted picture carrier signal } \quad \text { typ. } 96 \mathrm{~dB}(\mu \mathrm{~V})
$$

Oscillator characteristic

Pulling

Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain
Shift of oscillator frequency ($\Delta \mathrm{F}$)
at a change of the supply voltage of 5%
typ. $\quad 85 \mathrm{~dB}(\mu \mathrm{~V})$ into a 75Ω
$\max . \quad 500 \mathrm{kHz}$
Drift of oscillator frequency
during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on) max. $\quad 250$ kHz
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after switching on oscillator/i.f. stage)
max. 250 kHz
at a change of the ambient temperature from +25 to $+50^{\circ} \mathrm{C}$ and $+25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ (measured after 3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
channels E21 to E69
$\max .1000 \mathrm{kHz}$
at a change of humidity from $60 \% \pm 15 \%$ to
$93 \% \pm 2 \%$ measured at $\mathrm{T}_{\mathrm{amb}} 25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$,
max. 1500 kHz

I.F. characteristics

Bandwidth of i.f. output circuit

$$
{ }^{5_{-0.5}^{+1}} \mathrm{MHz}
$$

Note: I.F. output of the tuner terminated with the circuit shown in Fig.9, tuning voltage 15 V .

Bandwidth variation of i.f. output circuit as a result of r.f. tuning $\quad \max .500 \mathrm{kHz}$

Note: I.F. output of the tuner terminated with a modified circuit of Fig.9, i.e. a 100 pF capacitor is connected in parallel with C 1 ; tuning voltage 15 V .

Detuning of the i.f. output circuit as a result of r.f. tuning
max. $\quad 500$ kHz
Note: I.F. output of the tuner terminated with a modified circuit of Fig.9, i.e. a 100 pF capacitor is connected in parallel with C 1 ; tuning voltage 15 V .

Minimum tuning range of i.f. output coil $\quad 33$ to 40 MHz
Note: I.F. output of the tuner terminated with the circuit shown in Fig.10, tuning voltage 15 V .
Attenuation between i.f. injection point and i.f. output of the tuner
typ. $23 \pm 3 \mathrm{~dB}$

Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal

Immunity from radiated interference

Microphonics

Surge protection
Protection against voltages
Within the limits of C.I.S.P.R. 13 (1975). Use is made of the relaxed limit of $3 \mathrm{mV} / \mathrm{m}$ ($70 \mathrm{~dB}(\mu \mathrm{Vm}$)).
Aerial terminal meets requirements of BS905, provided the aerial cable is connected in a professional manner.
There will be no microphonics, provided the tuner is installed in a professional manner.

Note: Ten discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

The tuner has an i.f. injection point at the collector of the i.f. transistor (coupled via a small capacitor to terminal 7). The i.f. generator can be connected directly to this point (Fig.7).
The tuner needs normal supply voltages and a tuning voltage of 15 V ; the i.f. output should be loaded with the circuit shown in Fig. 9.

Fig. 7

Connection of the i.f. amplifier

The tuner needs a d.c. path from the i.f. output terminal (10) to earth, preferably via a choke of approx. $5 \mu \mathrm{H}$ outside the tuner (Fig.8). Where the tuner is used in combination with a v.h.f. tuner, this choke can be common for both tuners; a resistor in series with the choke can inhibit the i.f. output circuit of the switched-off tuner. For damping the i.f. output circuit and matching the i.f. output impedance of the tuner to the receiver i.f. amplifier, a series resistor and a parallel capacitor as shown in Fig. 8 should be used.

* Eventually the two separate damping resistors may be replaced by a common one.

Fig. 8

Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig.9.

Fig. 9

The RC-circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit, which should be tuned to 36.5 MHz ; the bandwidth should be approx. 5 MHz (Fig. 10).

Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a 75Ω source and a 75Ω detector.

Fig. 10

Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a plastic tool, which has a cross head according to Fig. 11. A suitable tool for automatic alignment is available under catalogue number 810400411040.

Fig. 11

ACCESSORIES

Immunity shield, catalogue number 312212124910
Connector assembly for use of tuner U341 Mark 2 or U341LO Mark 2 in combination with v.h.f. tuner V317 or V334:
connector, catalogue number 311220020720
clamp holder, catalogue number 312212129260
clamp, catalogue number 311227413220

U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	C.C.I.R. systems G, H, I and K	
Channels	E21 to E69	
Intermediate frequencies	systems G and H	systems I and K
picture	$38,9 \mathrm{MHz}$	$39,5 \mathrm{MHz}$
sound	$33,4 \mathrm{MHz}$	$33,5 \mathrm{MHz}$

APPLICATION

These tuners are designed to cover the u.h.f. channels E21 to E69 of C.C.I.R. systems G, H, I and K.
In combination with a suitable v.h.f. tuner, e.g. V317 or V334, they can be used in v.h.f./u.h.f. receivers. The aerial inputs and i.f. outputs of both tuners can then be connected in parallel.
The U342LO is a special version of the U342; an output voltage from the local oscillator is made available for driving digital tuning systems. Apart from this the tuners are identical.

DESCRIPTION

The tuners are u.h.f. tuners with electronic tuning, covering the u.h.f. band from 470 to 860 MHz .
Mechanically, the tuners are built on a printed-wiring board, carrying all components, in a metal housing made of a rectangular frame, and front and rear covers (see Fig. 2a). All connections (aerial, supply voltages, a.g.c. voltage, tuning voltage, i.f. injection, i.f. output) are made via terminals on the underside. The mounting method is shown in Fig. 3. Tuner U342LO has a coaxial socket on the top of the frame for coupling out the oscillator sample.
Electrically, the tuners consist of an input circuit with a high-pass characteristic and a MOS-FET tetrode BF980. This tetrode operates at a drain current of about 10 mA , featuring good noise figures and good signal handling properties. It also acts as an a.g.c. device, controlled by an a.g.c. voltage fed to gate 2. This combination has good signal handling properties throughout the a.g.c. range. The drain load of the MOS-FET tetrode is formed by a double tuned circuit, transferring the signal to the mixer diode 1SS99. The selectivity of this circuit at the image frequency has been improved by special means. The mixer diode is driven by an oscillator, equipped with a transistor BF480. At the U342LO the oscillator sample is coupled out of the mixer via a small capacitor in series with a resistor.
The i.f. signal, originated in the mixer, is amplified by a transistor BF324 in grounded-base configuration. The combination of the Schottky-barrier diode 1SS99 and the i.f. transistor BF324 also features good noise figures and good signal handling properties. Three capacitance diodes BB405B tune the double tuned circuit and the oscillator.
The i.f. output circuit of the tuner is a single tuned one, at the low end of which the i.f. signal is coupled out of the tuner. A d.c. path to earth for the collector current of the i.f. transistor BF324 has to be provided outside the tuner, preferably by a choke of about $5 \mu \mathrm{H}$. Damping of the i.f. output circuit and matching of the i.f. output to the i.f. circuit of the receiver can be achieved by connecting a series resistance and a parallel capacitance outside the tuner.
An i.f. injection point has been provided at the collector of the i.f. transistor, connected to terminal 7.

MECHANICAL DATA

Dimensions in mm

Fig. 2a The oscillator sample socket, drawn with dotted lines, applies only to tuner U342LO.

$$
\text { Terminal } \begin{aligned}
1 & =\text { aerial } \\
2 & =\text { r.f. supply voltage, }+12 \mathrm{~V} \\
3 & =\text { a.g.c. voltage, }+9,2 \text { to }+1 \mathrm{~V} \\
4 & =\text { tuning voltage, }+1 \text { to }+28 \mathrm{~V} \\
6 & =\text { oscillator/i.f. supply voltage, }+12 \mathrm{~V} \\
7 & =\text { i.f. injection point } \\
10 & =\text { i.f. output }
\end{aligned}
$$

Note: When the tuner is operated together with a v.h.f. tuner, only the supply voltage at terminal 6 should be switched off during v.h.f. operation.

Fig. 2b I.F. output coil.
Torque for alignment: 2 to 15 mNm Press-through force: $\geqslant 10 \mathrm{~N}$

Mass
approx. 75 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piencing diagram shown in Fig. 3. (The tuner may also be mounted into a socket. Information will be supplied upon tequest.)
It is recommended that the tuner be installed in the cool part of the receiver cabinet and not exposed to the vibrations of the loudspeaker. There are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC 682 , test $T a(230 \pm 10 \mathrm{CC}$,

Fig. 3 Piercing diagram viewed from solder side of board.
For connection to the socket on the top of tuner U342L.O a coaxial plug has to be used; type 3/2-50 (manufacturer: Daut und Rietz) is recommended.

ELECTRICAL DATA

The electrical values are measured on the u.h.f. tuner alone, but they are also valid for the u.h.f. tuner in combination with a v.h.f. tuner V317 or V334. Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

Within the given tolerance range of supply voltage and a.g.c. voltage only insignificant deviations from the specified values can be expected. Under the extreme conditions of temperature and humidity as given below, the tuner will function normally, but some specified limits may be exceeded.

General

Semiconductors

r.f. amplifier	BF980 (3SK87)
mixer diode	1 SS99
oscillator	BF480
tuning diodes	$3 \times$ BB405B
i.f. amplifier	BF324
surge protection diodes	$2 \times$ BAV10
Ambient temperature range	
operating storage Relative humidity	+5 to $+55{ }^{\circ} \mathrm{C}$

Voltages and currents

Supply voltage $+12 \mathrm{~V} \pm 10 \%$
Note: The supply voltage at terminal 2 (input stage) should be filtered to avoid hum modulation.
Current drawn from +12 V supply
r.f. amplifier, at nominal gain typ. 21 mA
r.f. amplifier, at 30 dB gain reduction typ. 10 mA
oscillator/i.f. amplifier $\max .16 \mathrm{~mA}$
A.G.C. voltage (Fig. 4), at nominal gain $+9,2 \pm 0,5 \mathrm{~V}$
A.G.C. voltage, at 30 dB gain reduction min. +1 V

Note: A.G.C. voltages between 0 and +10 V may be applied without risk of damage.
A.G.C. current (Fig. 4)
during gain control (0 to 30 dB)
max. +1 mA
at nominal gain
typ. $+0,9 \mathrm{~mA}$
at 30 dB gain reduction
typ. $+0,1 \mathrm{~mA}$

Fig. 4.
Tuning voltage range (Fig. 5)
Current drawn from +28 V tuning voltage supply
at $25^{\circ} \mathrm{C}$
at $55^{\circ} \mathrm{C}$
Slope of tuning characteristic

Fig. 5.
+1 to +28 V
max. $0,15 \mu \mathrm{~A}$
max. $0,6 \mu \mathrm{~A}$
min. $\quad 4 \mathrm{MHz} / \mathrm{V}$

Note: The source impedance of the tuning voltage offered to terminal 4 must be maximum $47 \mathrm{k} \Omega$ at tuning voltages below 3 V .
Oscillator sample signal; only valid for U342LO
at +12 V supply voltage and $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$
within the given tolerance range of supply voltage and given operating temperature range, and within the tuning voltage range $+0,5$ to +30 V
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
min. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
max. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Note: A tuning voltage higher than +28 V will not be harmful for the tuner and may be applied at the user's own risk. Under this condition the published reverse voltage limit of the oscillator tuning diode will be exceeded; the oscillator frequency will never decrease with increasing tuning voltage.

Frequencies

Frequency range

Intermediate frequencies picture
sound
channel E21 (picture carrier $471,25 \mathrm{MHz}$) to channel E69 (picture carrier $855,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .3 \mathrm{MHz}$.

systems G, H	systems I, K
$38,9 \mathrm{MHz}$	$39,5 \mathrm{MHz}$
$33,4 \mathrm{MHz}$	$33,5 \mathrm{MHz}$

The oscillator frequency is higher than the aerial signal frequency.

Note: The tuner is aligned in such a way that the i.f. frequencies of the four systems can be applied.

Wanted signal characteristics

Input impedance asymmetrical
75Ω
Output impedance at the oscillator sample socket; only valid for U342LO asymmetrical
75Ω
V.S.W.R. and reflection coefficient
at picture carrier frequency, at
nominal gain and at 30 dB gain reduction
v.s.w.r.
$\max .6$
reflection coefficient
max. 71\%
V.S.W.R. and reflection coefficient* at oscillator sample socket: only valid for U342LO v.s.w.r. at $\mathrm{f}_{\mathrm{OSC}}<600 \mathrm{MHz} \max .4$ (typ. 3)
v.s.w.r. at $\mathrm{f}_{\text {osc }}>600 \mathrm{MHz}$
reflection coefficient at $\mathrm{f}_{\text {osc }}<600 \mathrm{MHz}$
reflection coefficient at $\mathrm{f}_{\mathrm{OSC}}>600 \mathrm{MHz}$
R.F. curves, bandwidth
R.F. curves, tilt (only for i.f. 38,9/33,4 MHz)
A.G.C. range
max. 4 (typ. 2)
max. 60\% (typ. 50\%)
max. 50\% (typ. 33\%)
typ. 18 MHz
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
$\min .30 \mathrm{~dB}$

[^2]Power gain (see also Measuring method of power gain)
channel E21
channel E40
channel E69
Gain difference between any two channels
Noise figure
channel E21
channel E40
channel E69
Overloading
Input signal producing 1 dB gain
compression at nominal gain
Input signal producing either a
detuning of the oscillator of +300 kHz
or -1000 kHz or stopping of the
oscillations at nominal gain

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
channels E21 to E60 min. 46 dB ; typ. 53 dB
Harmonic content of oscillator sample; only valid for U342LO
Suppression of harmonics which fall into the frequency range below 1200 MHz (second harmonics of fundamentals below 600 MHz)
min. 20 dB
typ. $\quad 25 \mathrm{~dB}$
typ. $\quad 24 \mathrm{~dB}$
typ. $\quad 27 \mathrm{~dB}$
typ. $\quad 4 \mathrm{~dB}$
max. $\quad 10 \mathrm{~dB}$
typ. $\quad 6 \mathrm{~dB}$
typ. $\quad 6 \mathrm{~dB}$
typ. $\quad 6,5 \mathrm{~dB}$
typ. $\quad 90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $\quad 100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
R.F. rejection at oscillator sample socket; only valid for U342LO

Signal voltage at oscillator sample socket
(input signals of wanted frequency $70 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; tuner operating at nominal gain)
min. $\quad 17 \mathrm{~dB}$ (typ. 24 to 34 dB) below oscillator fundamental
I.F. rejection (measured at picture carrier and colour sub-carrier frequency)
min. $\quad 60 \mathrm{~dB}$
I.F. rejection at oscillator sample socket; only valid for U342LO
I.F. signals at oscillator sample socket (converted from input signals of wanted frequency $70 \mathrm{db}(\mu \mathrm{V})$ into 75Ω; tuner operating at nominal gain)
min. $\quad 20 \mathrm{~dB}$ (typ. 35 dB) below oscillator fundamental
$N \pm 4$ rejection
Interference signal for an interference ratio of 53 dB referred to wanted picture carrier (picture to sound carrier ratio of 10 dB ; wanted signal $60 \mathrm{~dB}(\mu \mathrm{~V})$; tuner operating at nominal gain) typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Cross modulation
Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 26 dB gain reduction (wanted input level $86 \mathrm{~dB}(\mu \mathrm{~V}) \quad$ typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $N \pm 5$)
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})) \quad$ typ. $92 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 26 dB gain reduction (wanted input level $86 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Out of band cross modulation, at nominal gain
v.h.f. I
min. $108 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
v.h.f. III
$\min .108 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Oscillator characteristics

Pulling
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Shift of oscillator frequency
at a change of the supply voltage of $5 \% \quad \max .550 \mathrm{kHz}$

Drift of oscillator frequency
during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and
15 min after switching on the oscillator/i.f. stage)
at a change of the ambient temperature
from +25 to $+40^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
channels E21 to E60
channels E61 to E65
channels E66 to E69
max. 250 kHz
max. 250 kHz

U342	U342LO	
$\max .500 \mathrm{kHz}$	\max.	500 kHz
$\max .650 \mathrm{kHz}$	\max.	800 kHz
$\max .750 \mathrm{kHz}$	\max.	1000 kHz

I.F. characteristics

Bandwidth of i.f. output circuit

$$
5_{-0,5}^{+1} \mathrm{MHz}
$$

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 6; tuning voltage 15 V .

Fig. 6.

Bandwidth variation of i.f. output circuit as a result of r.f. tuning
max. 500 kHz
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 6, i.e. a 100 pF capacitor is connected in parallel with C 1 ; tuning voltage 15 V .

Detuning of the i.f. output circuit as a result
of r.f. tuning
max. 500 kHz
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 6, i.e. a 100 pF capacitor is connected in parallel with C 1 ; tuning voltage 15 V .

Minimum tuning range of i.f. output coil 33 to 40 MHz
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 6; tuning voltage 15 V .
Attenuation between i.f. injection point and i.f.
output of the tuner
typ. $23 \pm 3 \mathrm{~dB}$

Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal

Within the limits of C.I.S.P.R. 13 (1975) and VDE 0872/7.72*

Microphonics

Surge protection
Protection against voltages
There will be no microphonics, provided the tuner is installed in a professional manner.

Note: Three discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

[^3]
ADDITIONAL INFORMATION

I.F. injection

The tuner is provided with an i.f. injection point at the collector of the i.f. transistor (coupled via a small capacitor to terminal 7). The i.f. generator can be connected directly to this point (Fig. 7). The tuner needs normal supply voltages and a tuning voltage of 15 V ; the i.f. output should be loaded with the circuit shown in Fig. 6.

Fig. 7.

Connection of the i.f. amplifier

The tuner needs a d.c. path from the i.f. output terminal (10) to earth, preferably via a choke of approx. $5 \mu \mathrm{H}$ outside the tuner (Fig. 8). Where the tuner is used in combination with a v.h.f. tuner, this choke can be common for both tuners; a resistor in series with the choke can make ineffective the i.f. output circuit of the switched-off tuner. For damping the i.f. output circuit and matching the i.f. output impedance of the tuner to the i.f. amplifier, a series resistor and a parallel capacitor as shown in Fig. 8 should be used.

Fig. 8.

Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 6.

Fig. 9.

The RC-circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit, which should be tuned to $36,15 \mathrm{MHz}$; the bandwidth should be approx. 5 MHz (Fig. 9).
Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a 75Ω source and a 75Ω detector.

Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 10. A suitable tool is available under catalogue number 712200547680.

Fig. 10.

ACCESSORIES

Connector assembly for use of tuner U342 or U342LO in combination with v.h.f. tuner V317 or V334: connector, catalogue number 3112200 20720; washer, catalogue number 3112221 01220; clamp, catalogue number 311227413220.

U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	C.C.I R. systems I (United Kingdom), G and H Channels	E21 to E69 system I
		systems G and H
Intermediate frequencies	39.5 MHz	
picture	33.5 MHz	38.9 MHz
sound		33.4 MHz

APPLICATION

Tuners U343 and U344 are further developments of tuner U341 Mark 2. The U343 is identical to the U344 but without frequency divider, necessary to drive digital tuning systems.
They are meant for use in u.h.f. single standard receivers and have been designed to drive an i.f. surface acoustic wave (SAW) filter. For this purpose the tuners have been provided with a doubled tuned i.f. filter with post-amplifier to compensate for the losses of the SAW filter.
The pinning arrangements of the tuners are compatible with tuner U341 Mark 2 for pins 2, 3, 4, 6 and 10 but differ for pins 7, 8 and 9 .

SURVEY OF TYPES

tuner type	code number	aerial socket	frequency divider
U344	312212737390	phono	256
U344/IEC	312212736700	IEC	256
U343	312212737520	phono	-
U343/IEC	312212737220	IEC	-

Tuners U343/IEC and U344/IEC are identical to tuners U343 and U344 respectively, but with an IEC aerial socket which meets the IEC $169-2$ requirements. It is recommended that plugs which comply with this standard are used.

DESCRIPTION

The tuners are u.h.f. tuners with electronic tuning covering the u.h.f. band from 470 to 860 MHz (channels E21 to E69).
Mechanically the tuners are built on a printed-wiring board and enclosed in a metal housing, comprising a rectangular frame and front and rear covers (see Fig.2). The aerial connection (phono or IEC) is on one of the frame sides, the supply voltage and i.f. connections are on the bottom side and the i.f. injection point on the top side.
Electrically the tuners consist of an input circuit with a high-pass characteristic and a MOS-FET tetrode BF980. The tetrode acts as an r.f. amplifier and as an a.g.c. device controlled by an a.g.c. voltage, fed to gate 2. The drain of the MOS-FET is connected to a double tuned circuit which transfers the signal to the mixer Schottky diode 1SS99. The r.f. selectivity of this circuit at the image frequency has been improved by special means. The mixer diode is driven by an oscillator transistor BF970. The i.f. signal from the mixer is amplified by a transistor BF324, followed by a double-tuned i.f. band-pass filter and a BF370 post-amplifier.
The combination of the Schottky-barrier diode 1SS99 and the i.f. post-amplifier ensures good noise figures and signal handling properties.
Three capacitance diodes OF643 tune the r.f. band-pass filter and qscillator circuit.

MECHANICAL DATA

Dimensions in mm

M1772
Fig. 2
Terminal $1=$ aerial connection
2 = supply voltage, pre-stage, +12 V
3 = a.g.c. voltage, +9.2 to +1 V
$4=$ tuning voltage, +1 to +28 V
$6=$ oscillator/i.f. supply voltage, +12 V
$\begin{aligned} & 7 \\ & 8\end{aligned}=$ balanced frequency divider output*
$9=$ supply voltage frequency divider, +5 V *
$10=$ i.f. output
*only for U344/256 and U344/256/IEC
Mass approx. 75 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board with connections as shown by the piercing diagram in Fig.3.

It is recommended that the tuner be installed in a cool part of the receiver cabinet and not exposed to the vibrations of the loudspeaker. There are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC 68-2, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0.5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

*only for U344/256 and U344/256/IEC
Fig. 3 Piercing diagram viewed from solder side of board.
In cold chasses where no mains isolation is required the tuner is situated such that the IEC serial socket projects beyond the back plate of the cabinet. Direct access from the aerial cable to the tuner input is then possible. In that case it is advised to provide the tuner with a stress relief around the aerial socket fixed to the set frame.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0.3 \mathrm{~V}$, an a.g.c. voltage of $9.2 \pm 0.2 \mathrm{~V}$, and a divider supply voltage of $5 \pm 0.2 \mathrm{~V}$.
Within the given tolerance range of supply voltage and a.g.c. voltage only insignificant deviations from the specified values can be expected. Under the extreme conditions of temperature and humidity as given below, the tuner will function normally, but some specified limits may be exceeded.

General

Semiconductors	
r.f. amplifier	
mixer diode	BF980
oscillator	1SS99
tuning diodes	BF970
i.f. pre-amplifier	$3 \times$ OF643
i.f. post-amplifier	BF324
frequency divider	BF370
surge protection diode	SP4653
surge protection diode	BAV10

Ambient temperature range
operating
storage
Relative humidity

Voltages and currents

Supply voltage
-10 to $+60^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$
max. 90\%

$$
+12 \mathrm{~V} \pm 10 \%(+10 \%,-15 \%)
$$

Note: Supply voltages of $+12 \mathrm{~V}-15 \%$ are admissible if a deterioration of gain, noise figure, signal handling, oscillator shift and drift is accepted. In this case the min. a.g.c. voltage has to be decreased to 0.8 V to cover the specified a.g.c. range.

Ripple susceptibility

Defined as the peak-to-peak value of a sine wave signal ($20 \mathrm{~Hz}-500 \mathrm{kHz}$) on the supply voltages causing an amplitude modulation with a modulation depth of 0.28% on the picture carrier after passing the Nyquist curve of the i.f. filter of a tv receiver.
ripple susceptibility $\quad \min .3 \mathrm{mV}$ peak-to-peak
Current drawn from +12 V supply
r.f. amplifier, at nominal gain
r.f. amplifier, at 30 dB gain reduction
oscillator/i.f. amplifier

max.	21	mA
typ.	11	mA
max.	36	mA

A.G.C. voltage (Fig.4)
voltage at nominal gain
voltage at 30 dB gain reduction

$$
\begin{array}{rrr}
+9.2 \pm 0.5 & V \\
\min . & +1 & V
\end{array}
$$

Note: A.G.C. voltages between 0 and +10.5 V may be applied without risk of damage.
A.G.C. current (Fig.4)
during gain control (0 to 30 dB)
$\max \quad+15 \mu \mathrm{~A}$
at nominal gain
typ. $+11 \mu \mathrm{~A}$

Fig. 4

Tuning voltage range (Fig.5)
Current drawn from +28 V tuning voltage supply at $25^{\circ} \mathrm{C}$
at $60^{\circ} \mathrm{C}$
at $25^{\circ} \mathrm{C}$ (relative humidity 95%)
Slope of tuning characteristic

Frequencies

Frequency range

Intermediate frequencies
 picture
 sound

Fig. 5
$\max \quad 0.15 \mu \mathrm{~A}$
max. $0.6 \mu \mathrm{~A}$
$\max .0 .6 \mu \mathrm{~A}$
min. $\quad 4 \mathrm{MHz} / \mathrm{V}$
channel E21 (picture carrier 471.25 MHz) to channel E69 (picture carrier 855.25 MHz). Margin at the extreme channels: $\min .3 \mathrm{MHz}$.

system I	systems G, H
39.5 MHz	38.9 MHz
33.5 MHz	33.4 MHz

The oscillator frequency is higher than the aerial signal frequency.

Note: The tuner is aligned in such a way that the i.f. frequencies of the three systems can be applied.

Wanted signal characteristics

Input impedance
asymmetrical 75Ω
V.S.W.R. and reflection coefficient
at picture carrier frequency, at
nominal gain and at 30 dB gain reduction
v.s.w.r.
reflection coefficient
max. 6
$\max .71 \%$
R.F. bandwidth

Overall curves, tilt R.F. in - I.F. out
A.G.C. range

Voltage gain (i.f. load $=1200 \Omega$ in parallel to 15 pF)
channel E21
channel E40
channel E69
Gain difference between any two channels
Noise figure
channel E21
channel E40
channel E69
typ. 20 MHz
on any channel the amplitude difference between the top of the overall curve and the picture carrier, the sound carrier, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
min. 30 dB
min. $\quad 40 \mathrm{~dB}$
typ. $\quad 49 \mathrm{~dB}$
typ. $\quad 47 \mathrm{~dB}$
typ. $\quad 49 \mathrm{~dB}$
typ. $\quad 4 \mathrm{~dB}$
max. $\quad 10 \mathrm{~dB}$
typ. $\quad 6.0 \mathrm{~dB}$
typ. $\quad 6.5 \mathrm{~dB}$
typ. 7.5 dB

Overloading

Input signal producing 1 dB gain compression at nominal gain
typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Input signal producing either a
detuning of the oscillator of +300 kHz
or -1000 kHz or stopping of the
oscillations at nominal gain
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
1.6 MHz moiré rejection (for i.f. $39.5 / 33.5 \mathrm{MHz}$)

Wanted signal level of a tv signal (picture to sound ratio of 7 dB and picture to chroma ratio of 16 dB), which produces an unwanted i.f. component (37.8 MHz) 52 dB below the i.f. picture carrier, when the tuner is 30 dB gain controlled.
tv signal (picture carrier) typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
at nominal gain, channels E21 to E60
at 20 dB gain reduction, channels E21 to E60

$$
\begin{array}{lll}
\min . & 53 & d B ; \text { typ. } 60 \mathrm{~dB} \\
\min . & 50 & \mathrm{~dB} \text {; typ. } 55 \mathrm{~dB}
\end{array}
$$

I.F. rejection (measured at picture carrier and colour sub-carrier frequency)
min. 80 dB
1st repeat spot rejection (for i.f. $39.5 / 33.5 \mathrm{MHz}$)
Defined as the input level of the picture carrier of channel $N+2$, the sound carrier of which produces an i.f. signal $(35.0 \mathrm{MHz})$, which is 52 dB below the picture carrier of the wanted signal N (picture to sound ratio 7 dB ; wanted signal $60 \mathrm{~dB}(\mu \mathrm{~V})$, tuner operating at nominal gain.
interfering signal
typ.
$80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

$N \pm 4$ rejection

Interference signal for an interference ratio of 53 dB referred to wanted picture carrier (picture to sound carrier ratio of 7 dB ; wanted signal
$60 \mathrm{~dB}(\mu \mathrm{~V})$; tuner operating at nominal gain)
$\mathrm{N}+4$ rejection
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
$\mathrm{N}-4$ rejection typ. $78 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Cross modulation

Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.

In channel cross modulation (wanted signal: picture carrier frequency; interfering signal; sound carrier frequency)
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})) \quad$ typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 26 dB gain reduction (wanted input level $86 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $N \pm 5$).
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $\quad 92 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 26 dB gain reduction (wanted input level $86 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Out of band modulation, at nominal gain

```
v.h.f. I min. }108\textrm{dB}(\mu\textrm{V})\mathrm{ into 75 ת
v.h.f. III min. }108\textrm{dB}(\mu\textrm{V})\mathrm{ into 75 
```


Unwanted signal handling capability

The tuner operates together with a standard tv receiver with normal A.G.C. for tuner and i.f. amplifier. Unwanted tv signal 3 channels higher or lower than wanted. Unwanted signal level adjusted for just not visible interference.

Unwanted picture carrier signal
typ. $\quad 96 \mathrm{~dB}(\mu \mathrm{~V})$

Oscillator characteristic

Pulling
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain

Shift of oscillator frequency (ΔF)
at a change of the supply voltage of $5 \% \quad \max .500 \mathrm{kHz}$
Drift of oscillator frequency
during warm-up time (after the tuner has been
completely out of operation for 15 min , measured
between 5 s and 15 min after switching on)
max. 250 kHz
at a change of the ambient temperature
from +25 to $+50^{\circ} \mathrm{C}$ and $+25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ (measured
after 3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
channels E21 to E69
$\max .1000 \mathrm{kHz}$
at a change of humidity from $60 \% \pm 15 \%$ to
$93 \% \pm 2 \%$ measured at $\mathrm{T}_{\mathrm{amb}} 25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$,
typ. $85 \mathrm{~dB}(\mu \mathrm{~V})$ into a 75Ω

- 250 kHz
.
max. 1500 kHz

I.F. characteristics

Bandwidth of i.f. output circuit
typ. $\quad 11 \mathrm{MHz}$
Note: I.F. output of the tuner terminated with the circuit shown in Fig.7, tuning voltage 10 V .

IF output impedance
Attenuation from i.f. injection point to tuner i.f. output

Frequency divider characteristics

Values valid in the tuning voltage range 0.5 to 30 V
Supply voltage
Supply current
Output voltages (probe $10 \mathrm{M} \Omega / / 11 \mathrm{pF}$)
open voltage, pin 7
open voltage, pin 8
Output unbalance
Signal to interference ratio at an aerial input level of $100 \mu \mathrm{~V}$

Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal
approx. 100Ω
typ. $\quad 16 \mathrm{~dB}$

Immunity from radiated interference

Microphonics

Surge protection
Protection against voltages max. 5 kV
Note: Ten discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes min. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.
E.S.D. protection min. 2 kV

Note: acc. to MIL STD 003C

ADDITIONAL INFORMATION

I.F. injection

The tuner has an i.f. injection point at the collector of BF324 i.f. transistor located at the top side of the tuner. The i.f. generator can be connected directly to this point (Fig.6), via a 0.3 pF capacitor. The tuner needs normal supply voltages and a tuning voltage of 15 V . A probe according to Fig. 6 is available under code 762246817940.

Fig. 6

Voltage gain

Since the r.f. input and the i.f. output load impedances differ, the gain of the U343 U344 tuners are expressed in terms of voltage gain. It is defined as the ratio between the i.f. output and the corresponding r.f. input voltage.

The i.f. output of the tuner is loaded with an impedance of 1200Ω in parallel with a 15 pF capacitor representing a standard replacement of the input impedance of a SAW filter.
To be able to carry out tuner measurements with existing 75Ω equipment a matching circuit is connected to the i.f. output of the tuner. The input gives the required load to the tuner output while the output represents a source impedance suitable to connect to standard 75Ω equipment, see Fig. 7 .

Total losses of the circuit are 26 dB .

Fig. 7

U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems
Channels
Intermediate frequencies picture
sound
C.C.I.R. systems I (United Kingdom), G, H and K E21 to E69

systems G and H	systems I and K
$38,9 \mathrm{MHz}$	$39,5 \mathrm{MHz}$
$33,4 \mathrm{MHz}$	$33,5 \mathrm{MHz}$

APPLICATION

Designed to cover the u.h.f. channels of C.C.I.R. systems I, G, H and K in u.h.f. single standard receivers. They meet the special requirements of the United Kingdom. The tuners of the U412 series are equipped with a frequency divider, which makes them suitable for digital tuning systems based on frequency synthesis; for the remainder they are equal to type U411.

Available versions

	aerial input connector	frequency divider (IC)	division ratio	catalogue number
U411	phono	-		311221851790
U411/IEC	IEC	-		311221852400
U412/256	phono	8-pin	256	311221851810
U412/256/IEC	IEC	8-pin	256	311221852410
U412/64	phono	8-pin	64	31122185290
U412/64/IEC	IEC	8-pin	64	311221852420

DESCRIPTION

The U411 and U412 are u.h.f. tuners with electronic tuning. They meet the special requirements of the United Kingdom and are pin-compatible with the UV411, UV417 and the UV412 and UV418 respectively. Mechanically, the tuners are built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear covers (see Fig. 2a). The coaxial aerial connector (phono or IEC) of 75Ω is on one of the frame sides, all other connections (supply voltages, a.g.c. voltage, tuning voltage, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically (see Fig. 1), the tuners consist of a bandpass input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The selectivity of this circuit at the image frequency is such that it meets the stringent requirements of the U.K.
The i.f. signal from the mixer is amplified by an i.f. transistor connected in grounded-base configuration. The combination of Schottky barrier diode and i.f. transistor ensures good noise figures and good signal handling properties.
The double tuned circuit and the oscillator circuit are tuned by 3 BB405B capacitance diodes. The i.f. output circuit of the tuner is a single tuned circuit, at the low end of which the i.f. signal is coupled out of the tuner. A test point (terminal 4) is provided for i.f. injection to align the i.f. output circuit of the tuner together with the i.f. amplifier of the television receiver. An additional test point, which is accessible through a hole in the top of the tuner, is connected to the collector of the i.f. amplifier transistor. The tuner is gain controlled via gate 2 of the input MOSFET tetrode.
The electrical circuit of the U412 series is extended with a frequency divider (division ratio of 64 or 256) the inputs of which are connected to the oscillator. The outputs are balanced; they are connected to terminals 12 and 13.

MECHANICAL DATA

7Z85763.1

Fig. 2a.

Terminal	7	$=$ tuning voltage, +1 to +28 V
$1=$ aerial	9	$=$ i.f. output
$4=$ supply voltage, $+12 \mathrm{~V} ;$ i.f. injection	10	$=$ earth
$5=$ a.g.c. voltage, $+9,2$ to $0,85 \mathrm{~V}$	12,13	$=$ balanced output voltage of frequency
$6=$ supply voltage, +12 V		divider

Fig. 2b I.F. output coil.
Torque for alignment: 2 to 15 mNm .
Press-through force: $\geqslant 10 \mathrm{~N}$.

Mass

approx. 99 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation. However it is recommended that it is placed in the cool part of the cabinet and away from loudspeaker vibrations.
The solderability of the terminals and mounting tabs (except cut edges) is according to IEC 68-2, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}, 2 \pm 0,5 \mathrm{~s}\right)$. The resistance to soldering heat is according to IEC $68-2$, test Tb ($260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}$).

Dimensions in mm
(1) only for U412.

Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors

```
r.f. input MOSFET transistor
BF980 (3SK87)
oscillator transistor
BF970
i.f. amplifier transistor
BF324
mixer diode
1SS99
tuning diodes
surge protection diode
\(3 \times\) BB405B
frequency divider
BAV10
```

Ambient temperature range
operating
0 to $+55^{\circ} \mathrm{C}$
storage
-25 to $+70^{\circ} \mathrm{C}$
Relative humidity
max. 95\%

Voltages and currents

Supply voltage
Current drawn from +12 V supply
$+12 \mathrm{~V} \pm 10 \%$
A.G.C. voltage voltage range max. 45 mA ; typ. 34 mA
$+9,2$ to $+0,85 \mathrm{~V}$
voltage at nominal gain
$+9,2 \pm 0,5 \mathrm{~V}$
voltage at 30 dB gain reduction
min. 1 V
Note: A.G.C. voltages between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.

A.G.C. current

$\max .0,2 \mathrm{~mA}$
Slope of a.g.c. characteristic at end of specified range
typ. $50 \mathrm{~dB} / \mathrm{V}$
Tuning voltage range
+1 to +28 V
Current drawn from 28 V tuning voltage supply
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and 60% relative humidity
$\max .0,25 \mu \mathrm{~A}$
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and 95% relative humidity
at $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$ and 60% relative humidity
max. $1,0 \mu \mathrm{~A}$
$\max .1,0 \mu \mathrm{~A}$
Slope of tuning characteristic
channel E21
channel E69
typ. $22 \mathrm{MHz} / \mathrm{V}$
typ. $5 \mathrm{MHz} / \mathrm{V}$

Note: the source impedance of the tuning voltage must be maximum $47 \mathrm{k} \Omega$.

Fig. 4 Typical a.g.c. characteristics, bands IV and V.

Fig. 5 Typical tuning characteristic, bands IV and V.

Frequencies

Frequency range bands IV and V

Intermediate frequencies
picture
sound

Wanted signal characteristics

Input impedance
V.S.W.R. and reflection coefficient (values between picture and sound carrier, as well as values at picture carrier)
v.s.w.r. reflection coefficient
R.F. curves, bandwidth
R.F. curves, tilt
A.G.C. range

Power gain
Maximum gain difference between any two channels
Noise figure
Overloading:
Input signal producing 1 dB gain compression at nominal gain
Input signal producing either a detuning of the oscillator of +300 kHz or -1000 kHz or stopping of the oscillations at nominal gain

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
I.F. rejection (measured at picture carrier frequency)

Channel E21 (picture carrier $471,25 \mathrm{MHz}$) to channel E69 (picture carrier $855,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .3 \mathrm{MHz}$.
systems G and $\mathrm{H} \mid$ systems I and K

$38,9 \mathrm{MHz}$	$39,5 \mathrm{MHz}$
$33,4 \mathrm{MHz}$	33 MHz

$33,4 \mathrm{MHz}$	$33,5 \mathrm{MHz}$

The oscillator frequency is higher than the aerial signal frequency.

75Ω

at nominal gain during gain control
max. 5 max. 6
max. 66\% max. 71%
typ. 24 MHz
on any channel the amplitude difference between the top of the r.f. resonant curve and either the picture frequency, or the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
$\min .30 \mathrm{~dB}$
$\min .20 \mathrm{~dB}$
typ. 4 dB
max. 10 dB
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
min. 53 dB ; typ. 50 dB
$\min .60 \mathrm{~dB}$

$\mathrm{N} \pm 4$ rejection

Interference signal for an interference ratio of 53 dB
referred to wanted picture carrier (picture to sound carrier ratio of 7 dB ; wanted signal $60 \mathrm{~dB}(\mu \mathrm{~V})$; tuner operating at nominal gain)
interfering signal $N+4$
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
interfering signal $\mathrm{N}-4$
typ. $73 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Cross modulation:

Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal
Out of band modulation at nominal gain
v.h.f. I
v.h.f. III
typ. $108 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $108 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Oscillator characteristics

Pulling:
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain
Shift of oscillator frequency at a change of the voltage of 5\%
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Drift of oscillator frequency during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on).
max. 250 kHz
Drift of oscillator frequency at a change of the ambient temperature from +25 to $+50^{\circ} \mathrm{C}$ (measured after 3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
$\max .500 \mathrm{kHz}$

Frequency divider characteristics of the U412/64 and U412/256 versions

Supply voltage
Current drawn from +5 V supply
Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
Output impedance
Output imbalance
Interference signal on the i.f. output U412/256 U412/64
$+5 \mathrm{~V} \pm 5 \%$
max. 35 mA ; typ. 25 mA
$\min .0,7 \vee p-p$
typ. $1 \mathrm{k} \Omega$
typ. $0,1 \mathrm{~V}$
$\max .3 \mu \mathrm{~V}$
$\max .20 \mu \mathrm{~V}$

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 6.

Fig. 6.

I.F. circuit characteristics

Bandwidth of i.f. output circuit
 $5 \pm 1 \mathrm{MHz}$

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 6, tuning voltage 15 V .
Bandwidth variation of i.f. output circuit as a result of r.f. tuning; tuning voltage 15 V
max. 500 kHz

Fig. 7.

Attenuation between i.f. injection point and i.f. output of the tuner
typ. 18 dB

Miscellaneous

Radio interference:
Oscillator radiation and oscillator voltage
Within the limits of C.I.S.P.R. 13 at the aerial terminal (1975)

Immunity from radiated interference
Meets the limits of BS905 (1969) with a reserve of at least 5 dB
Microphonics
There will be no microphonics, provided the tuner is installed in a professional manner.
Surge protection:
Protection against voltages
max. 5 kV
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

Terminal 4 (supply voltage) can be used as i.f. injection point, provided the supply voltage is applied to terminal 4 via a resistor of 10Ω (see Fig. 8). The tuning voltage should be 15 V .

Fig. 8.

Connection of the i.f. amplifier

Connection to the i.f. amplifier should be either by a printed connection of minimum length or by a shielded connection such as a coaxial cable.

Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 6.

Fig. 9.

The RC-circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit, which should be tuned to $36,5 \mathrm{MHz}$; the bandwidth is approx. 5 MHz (Fig. 9). Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a 75Ω source and a 75Ω detector.

Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 10. A suitable tool is available under catalogue number 712200547680.

Fig. 10.

U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems

Channels
Intermediate frequencies picture
sound
$39,5 \mathrm{MHz}$
C.C.I.R. systems I (United Kingdom)

E21 to E 69
$33,5 \mathrm{MHz}$

APPLICATION

Tuners U743 and U744 are intended for use in u.h.f. single standard receivers and to drive an i.f. surface acoustic wave (SAW) filter. For this, the tuners have a post-amplifier to compensate for the losses of the SAW filter.
The $\cup 743$ is identical to the U744 but without frequency divider, necessary to drive digital tuning systems.
The pinning arrangements of the tuners are compatible with the tuners UV615, UV616, UV617, UV618, and the tuner part of the FE617Q(M) and FE618Q(M)/256, see page 9.

SURVEY OF TYPES

tuner type	aerial input connector	frequency divider (IC)	catalogue number
U743	IEC $(14,5 \mathrm{~mm})$	-	312223700270
U743/IEC	IEC $(32,2 \mathrm{~mm})$	-	312223700280
U743/IEC.L	phono	-	312223700290
U744/256	IEC $(14,5 \mathrm{~mm})$	$1: 256$	312223700300
U744/256/IEC	IEC $(32,2 \mathrm{~mm})$	$1: 256$	312223700310
U744/256/IEC.L	$1: 256$	312223700320	

DESCRIPTION

The tuners are u.h.f. tuners with electronic tuning covering the u.h.f. band from 470 to 860 MHz (channels E21 to E69).
Mechanically the tuners are built on a printed-wiring board and enclosed in a metal housing, comprising a rectangular frame and front and rear covers (see Fig. 2). The aerial connection (phono or IEC) is on one of the frame sides, the supply voltage and i.f. connections are on the bottom side and the i.f. injection point is accessible through a hole in the cover as shown in Fig. 2.
Electrically the tuners consist of an input circuit with a high-pass characteristic and a MOS-FET tetrode BF990. The tetrode acts as an r.f. amplifier and as an a.g.c. device controlled by an a.g.c. voltage, fed to gate 2. The drain of the MOS-FET is connected to a double tuned circuit which transfers the signal to the mixer transistor 2SC3545. The r.f. selectivity of this circuit at the image frequency has been improved by special means. The mixer transistor is driven by an oscillator transistor BF569. The i.f. signal from
\rightarrow the mixer is connected to a tuned i.f. filter and amplified by a BF370 post-amplifier, suitable to drive a surface acoustic wave filter (asymmetric), and to compensate for the SAW losses.
The combination of the r.f. MOS-FET, the 2 GHz mixer transistor and the i.f. post-amplifier ensures good noise figures and signal handling properties.
\longrightarrow Three capacitance diodes BB405 tune the r.f. band-pass filter and oscillator circuit.
The electrical circuit of type U744 is extended with a frequency divider (division ratio of 256), the input of which is connected to the oscillator. The symmetrical outputs are connected to terminals 13 and 14.

MECHANICAL DATA

Fig. 2.
Terminal
A = aerial input (phono/IEC female 75Ω)
$5=$ a.g.c. voltage, $+9,2$ to $0,85 \mathrm{~V}$
6 = supply voltage, prestage, +12 V
$10=$ supply voltage, oscillator, mixer, i.f., +12 V
$11=$ tuning voltage, +1 to +28 V
$12=$ supply voltage frequency divider, +5 V
$13,14=$ balanced frequency divider output $\}$ U744 only
$16=$ earth
17 = i.f. output

Mass
 approx. 45 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board (using the piercing diagram shown in Fig. 3) without clearance between tuner supports and board. It may be mounted anywhere in the receiver and there are no restrictions on orientation.

The solderability of the terminals and mounting tabs is according to IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10{ }^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) Only for U744
$1 \mathrm{eb}=0,025$ inch
Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$, an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$, and a divider supply voltage of $5 \pm 0,2 \mathrm{~V}$.
Within the given tolerance range of supply voltage and a.g.c. voltage only insignificant deviations from the specified values can be expected. Under the extreme conditions of temperature and humidity as given below, the tuner will function normally, but some specified limits may be exceeded.

General

Semiconductors

r.f. amplifier
mixer transistor
BF990
oscillator
tuning diodes
i.f. post-amplifier
surge protection diode
surge protection diode
Frequency divider
Ambient temperature range
operating
storage
Relative humidity
2SC3545
BF569
$3 \times$ BB405
BF370
BAVī
BZX79
SP4653
max. 100\%
-10 to $+60^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$

Voltages and currents

Supply voltage

$$
+12 \mathrm{~V} \pm 10 \% \text { (+ 10\%, }-15 \% \text {) }
$$

Note: Supply voltages of $+12 \mathrm{~V}-15 \%$ are admissible if a deterioration of gain, noise figure, signal handling, oscillator shift and drift is accepted. In this case the min. a.g.c. voltage has to be decreased to $0,8 \mathrm{~V}$ to cover the specified a.g.c. range.
Ripple susceptibility
Defined as the peak-to-peak value of a sine wave signal ($20 \mathrm{~Hz}-500 \mathrm{kHz}$) on the supply voltages causing an amplitude modulation with a modulation depth of $0,28 \%$ on the picture carrier after passing the Nyquist curve of the i.f. filter of a tv receiver.

ripple susceptibility

min .3 mV peak-to-peak
Current drawn from +12 V supply
r.f. amplifier, at nominal gain max. 21 mA
r.f. amplifier, at 30 dB gain reduction typ. 11 mA
oscillator/i.f. amplifier
max. $\quad 36 \mathrm{~mA}$
A.G.C. voltage (Fig. 4)
voltage at nominal gain
$+9,2 \pm 0,5 \mathrm{~V}$
voltage at 30 dB gain reduction
min. +1 V
Note: A.G.C. voltages between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.
A.G.C. current during gain control (0 to 30 dB) max. $+15 \mu \mathrm{~A}$
at nominal gain
typ. $+11 \mu \mathrm{~A}$

Fig. 4.
Tuning voltage range (Fig. 5)
Current drawn from +28 V tuning voltage supply at $25^{\circ} \mathrm{C}$
at $60^{\circ} \mathrm{C}$
at $25^{\circ} \mathrm{C}$ (relative humidity 95%)
Slope of tuning characteristic

Frequencies

Frequency range

Intermediate frequencies
picture
sound

Fig. 5.
+1 to +28 V
$\max .0,15 \mu \mathrm{~A}$
max. $0,6 \mu \mathrm{~A}$
max. $\quad 0,6 \mu \mathrm{~A}$
\min. $\quad 4 \mathrm{MHz} / \mathrm{V}$
channel E21 (picture carrier $471,25 \mathrm{MHz}$) to channel E69 (picture carrier $855,25 \mathrm{MHz}$). Margin at the extreme channels: min. 3 MHz .
$39,5 \mathrm{MHz}$
$33,5 \mathrm{MHz}$
The oscillator frequency is higher than the aerial signal frequency.

Wanted signal characteristics

Input impedance
asymmetrical
V.S.W.R. and reflection coefficient
at picture carrier frequency, at
nominal gain and at 30 dB gain reduction
v.s.w.r.
reflection coefficient
R.F. bandwidth

Overall curves, tilt R.F. in -I.F. out
A.G.C. range

Voltage gain (i.f. load $=1200 \Omega / / 15 \mathrm{pF}$, see Fig. 7)
channel E21
channel E40
channel E69
Gain difference between any two channels
Noise figure
channel E21
channel E40
channel E69

Overloading

Input signal producing 1 dB gain
compression at nominal gain
Input signal producing either a
detuning of the oscillator of +300 kHz
or -1000 kHz or stopping of the oscillations at nominal gain
75Ω
typ. 4
typ. 60\%
typ. 20 MHz
on any channel the amplitude difference between the top of the overall curve and the picture carrier, the sound carrier, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
min . 30 dB
min. 40 dB
typ. $\quad 40 \mathrm{~dB}$
typ. $\quad 41 \mathrm{~dB}$
typ. $\quad 42 \mathrm{~dB}$
typ. $\quad 4 \mathrm{~dB}$
max. 10 dB
typ. $6,0 \mathrm{~dB}$
typ. $6,5 \mathrm{~dB}$
typ. $7,5 \mathrm{~dB}$
typ. $85 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
$1,6 \mathrm{MHz}$ moire rejection (for i.f. $39,5 / 33,5 \mathrm{MHz}$)
Wanted signal level of a tv signal (picture to sound ratio of 7 dB and picture to chroma ratio of 16 dB), which produces an unwanted i.f. component $(37,8 \mathrm{MHz}) 52 \mathrm{~dB}$ below the i.f. picture carrier, when the tuner is 30 dB gain controlled.
tv signal (picture carrier)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
at nominal gain, channels E21 to E60
at 20 dB gain reduction, channels E21 to E60
I.F. rejection (measured at picture carrier and colour sub-carrier frequency)
min. $\quad 53 \mathrm{~dB}$; typ. 60 dB
typ. $\quad 50 \mathrm{~dB}$

1st repeat spot rejection (for i.f. $39,5 / 33,5 \mathrm{MHz}$)
Defined as the input level of the picture carrier of channel $N+2$, the sound carrier of which produces an i.f. signal $(35,0 \mathrm{MHz})$, which is 52 dB below the picture carrier of the wanted signal N (picture to sound ratio 7 dB ; wanted signal $60 \mathrm{~dB}(\mu \mathrm{~V})$, tuner operating at nominal gain.

> interfering signal
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
$\mathrm{N} \pm 4$ rejection
Interference signal for an interference ratio of 53 dB referred to wanted picture carrier (picture
to sound carrier ratio of 7 dB ; wanted signal
$60 \mathrm{~dB}(\mu \mathrm{~V})$; tuner operating at nominal gain)

$\mathrm{N}+4$ rejection	typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
$\mathrm{~N}-4$ rejection	typ. $78 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Cross modulation
Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.

In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 26 dB gain reduction (wanted input level $86 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $\quad 94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $N \pm 5$).
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 26 dB gain reduction (wanted input level $86 \mathrm{~dB}(\mu \mathrm{~V})$)
Out of band modulation, at nominal gain
typ. $92 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $\quad 95 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Unwanted signal handling capability

The tuner operates together with a standard tv receiver with normal A.G.C. for tuner and i.f. amplifier. Unwanted tv signal 3 channels higher or lower than wanted. Unwanted signal level adjusted for just not visible interference.

Unwanted picture carrier signal
typ. $\quad 96 \mathrm{~dB}(\mu \mathrm{~V})$

Oscillator characteristics

Pulling
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain
Shift of oscillator frequency
at a change of the supply voltage of 5%
typ. $\quad 85 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
max. $\quad 500 \mathrm{kHz}$
Drift of oscillator frequency
during warm-up time (after the tuner has been completely out of operation for 15 min , measured
between 5 s and 15 min after switching on)
max. $\quad 250 \mathrm{kHz}$
at a change of the ambient temperature
from +25 to $+50^{\circ} \mathrm{C}$ and $+25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ (measured
after 3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
channels E21 to E69
at a change of humidity from $60 \% \pm 15 \%$ to
$93 \% \pm 2 \%$ measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
max. $\quad 1000 \mathrm{kHz}$
max. $\quad 1500 \mathrm{kHz}$

I.F. characteristics

Bandwidth of i.f. output circuit
typ. $\quad 9 \mathrm{MHz}$
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 7, tuning voltage 10 V .
I.F. output impedance
approx. 100Ω

Frequency divider characteristics

Values valid in the tuning voltage range 0,5 to 30 V

Supply voltage

Supply current
Output voltages (probe $10 \mathrm{M} \Omega / / 11 \mathrm{pF}$)
at pin 7
at pin 8
Output unbalance
Signal to interference ratio at an aerial input level
of $100 \mu \mathrm{~V}$, measured at i.f. output

Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage
\longrightarrow at the aerial terminal
$5 \mathrm{~V} \pm 10 \%$
max. $\quad 35 \mathrm{~mA}$, typ. 25 mA
$\min \quad 0,5 \mathrm{~V}$ peak-to-peak
$\min \quad 0,5 \mathrm{~V}$ peak-to-peak
max. $\quad 0,1 \mathrm{~V}$
min. $\quad 46 \mathrm{~dB}$

Within the limits of C.I.S.P.R. 13 (1975) + amendment 1 (1983).
Use is made of the relaxed limit of $3 \mathrm{mV} / \mathrm{m}$ $(70 \mathrm{~dB}(\mu \mathrm{Vm})$).

Immunity from radiated interference

Microphonics

Surge protection
Protection against voltages

Aerial terminal meets requirements of BS905, provided the aerial cable is connected in a professional manner.

There will be no microphonics, provided the tuner is installed in a professional manner.

Note: Ten discharges of a 470 pF capacitor into the aerial terminal.
E.S.D. protection
$\min .2 \mathrm{kV}$
Note: acc. to MILSTD 003C

ADDITIONAL INFORMATION

I.F. injection

The tuner has an i.f. injection point at the collector of the mixer transistor (see Figs 1 and 2). The i.f. generator can be connected directly to this point (Fig. 6), via a $0,3 \mathrm{pF}$ capacitor. The tuner needs normal supply voltages and a tuning voltage of 10 V .

Fig. 6.

Voltage gain

Since the r.f. input and the i.f. output load impedances differ, the gain of the U743 U744 tuners are expressed in terms of voltage gain. It is defined as the ratio between the i.f. output voltage and the corresponding r.f. input voltage.
The i.f. output of the tuner is loaded with an impedance of 1200Ω in parallel with a 15 pF capacitor representing a standard replacement of the input impedance of a SAW filter.
To be able to carry out tuner measurements with existing 75Ω equipment a matching circuit is connected to the i.f. output of the tuner. The input gives the required load to the tuner output while the output represents a source impedance suitable to connect to standard 75Ω equipment, see Fig. 7. Total losses of the circuit are 26 dB .

Fig. 7.

V.H.F./U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	C.C.I.R. systems L and L'
Channels	E2 to E4
low v.h.f.	C to Q
high v.h.f.	L 21 to L 69
u.h.f.	
Intermediate frequencies	$32,7 \mathrm{MHz}$
picture	$39,2 \mathrm{MHz}$
sound	

APPLICATION

Designed to cover the v.h.f. and u.h.f. channels of C.C.I.R. systems L and L^{\prime}, with extended v.h.f. range including channels for French cable television (CCETT 12 MHz frequency plan).
The tuner USF10A is equipped with a frequency divider (1:256), which makes it suitable for digital tuning systems based on frequency synthesis; otherwise this tuner is equal to type USF10.

DESCRIPTION

The USF10 is a combined v.h.f./u.h.f. tuner with electronic tuning and band switching covering the low v.h.f. band including the European channel E4 (frequency range 48 to 68 MHz), the high v.h.f. band including the Moroccan channel M4 and the European channel E12 (frequency range 128 to 306 MHz) and the u.h.f. band (frequency range 470 to 861 MHz).

Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear covers (see Fig. 1). The common aerial connection (v.h.f. and u.h.f.) with standard coaxial termination is on one of the frame sides, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 2.
Electrically, the tuner consists of v.h.f. and u.h.f. parts. The v.h.f. aerial signal is fed via switchable v.h.f. band wideband input filters to gate 1 of an input MOSFET tetrode (with internal gate protection against surge).
The drain load of the MOSFET tetrode is formed by a double tuned switchable bandpass filter, transferring the r.f. signal to the emitter of the mixer transistor. The oscillator signal is also fed to the emitter of the mixer transistor.

The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit, at the low end of which the i.f. signal is coupled out of the tuner. A test point (terminal 4) is provided for i.f. injection to align the output circuit of the tuner together with the i.f. amplifier of the television receiver.
The input tuned circuit, the r.f. bandpass filter and oscillator circuit are tuned by 8 tuning diodes, band switching is achieved by 9 switching diodes.

The u.h.f. part of the tuner consists of a tuned input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the v.h.f. mixer transistor, now operating as an i.f. amplifier.
The input tuned circuit, the r.f. bandpass filter and oscillator circuits are tuned by 4 tuning diodes.
In all bands the tuner is gain controlled via gate 2 of the input MOSFET tetrodes.

MECHANICAL DATA

Fig. 1a.
Terminal

$$
\left.\begin{array}{rl}
1= & \text { aerial } \\
2 & =\text { supply voltage, low v.h.f., }+12 \mathrm{~V} \\
3 & =\text { supply voltage, high v.h.f., }+12 \mathrm{~V} \\
4= & \text { supply voltage, u.h.f., }+12 \mathrm{~V} ; \text { i.f. injection } \\
5= & \text { a.g.c. voltage, }+8,25 \text { to }+0,85 \mathrm{~V} \\
6= & \text { supply voltage, v.h.f. and u.h.f., }+12 \mathrm{~V} \\
7= & \text { tuning voltage, }+0,5 \text { to }+28 \mathrm{~V} \\
9= & \text { i.f. output } \\
10= & \text { earth } \\
11 / 12= & \text { balanced output voltage } \\
& \text { of frequency divider } \\
13= & \text { supply voltage, frequency } \\
& \text { divider, } 5 \mathrm{~V} \pm 5 \%
\end{array}\right\} \text { USF } 10 \mathrm{~A}
$$

Fig. 1b I.F. output coil.
Torque for alignment: 2 to 15 mNm
Press-through force: $\geqslant 10 \mathrm{~N}$.

Mass
approx. 130 g

Mounting

The tuner may be mounted by soldering it onto a printed-wiring board, using the piercing diagram shown in Fig. 2. (The tuner may also be mounted by means of a socket. Information will be supplied upon request.) The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
(1) Only for USF10A.

Dimensions in mm

Fig. 2 Piercing diagram for tuner USF10A viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5{ }^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $8,25 \pm 0,2 \mathrm{~V}$.

Voltages and currents

Supply voltage

$$
+12 \mathrm{~V} \pm 1 \mathrm{~V}
$$

Current drawn from +12 V supply
low v.h.f. band
max. 45 mA ; typ. 40 mA
high v.h.f. band
max. 80 mA ; typ. 76 mA
u.h.f. bands
max. 50 mA ; typ. 45 mA

Bandswitching

For operation in all bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 2 and -12 V to terminal 3 for operation in the low v.h.f. band
terminal 3 and -12 V to terminal 2 for operation in the high v.h.f. band
terminal 4 and -12 V to terminals 2 and 3 for operation in the u.h.f. bands.

A.G.C. voltage (Figs 3,4 and 5)

voltage range
$+8,25$ to $+0,85 \mathrm{~V}$
voltage at nominal gain
$+8,25 \pm 0,5 \mathrm{~V}$
voltage at 40 dB gain reduction
low v.h.f. band
typ. 2 V
high v.h.f. band
typ. 1,2 V
Note: A.G.C. voltages between 0 and $+10,5 \mathrm{~V}$ may be applied without risk or damage.
A.G.C. current

Tuning voltage range
Current drawn from 28 V tuning voltage supply
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
at $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$
Slope of tuning characteristics (typical values)
low v.h.f. band, channel 2
channel 4
high v.h.f. band, channel C
channel Q
u.h.f. bands, channel L21
channel L69
max. $0,3 \mu \mathrm{~A}$
$+0,5$ to +28 V
$\max .0,8 \mu \mathrm{~A}$
$\max .3 \mu \mathrm{~A}$
$2 \mathrm{MHz} / \mathrm{V}$
$1,5 \mathrm{MHz} / \mathrm{V}$
$12 \mathrm{MHz} / \mathrm{V}$
$2 \mathrm{MHz} / \mathrm{V}$
$30 \mathrm{MHz} / \mathrm{V}$
$6 \mathrm{MHz} / \mathrm{V}$

Frequencies

Frequency ranges
low v.h.f. band
channel E2 (picture carrier $48,25 \mathrm{MHz}$)
Margin: min. tuning voltage 2 V
channel E4 (picture carrier $62,25 \mathrm{MHz}$)
Margin: max. tuning voltage 22 V

Fig. 3 Typical a.g.c. characteristic, low v.h.f. band.

Fig. 5 Typical a.g.c. characteristic, u.h.f. bands.

Fig. 4 Typical a.g.c. characteristic, high v.h.f. band.

Frequencies (continued)
Frequency range
high v.h.f. band (cable)
u.h.f. bands

Intermediate frequencies
picture
sound

Wanted signal characteristics

Input impedance
V.S.W.R. and reflection coefficient
(values between picture and sound carrier, as well as values at picture carrier)
v.s.w.r.
v.h.f. bands
u.h.f. bands
reflection coefficient
v.h.f. bands
u.h.f. bands
R.F. curves, bandwidth
low v.h.f. band
high v.h.f. band
u.h.f. bands
R.F. curves, tilt
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed:
low v.h.f. band
high v.h.f. band
u.h.f. bands
A.G.C. range
v.h.f. bands
u.h.f. bands
channel C (picture carrier $128,75 \mathrm{MHz}$)
Margin: $\min .0,75 \mathrm{MHz}$
channel Q (picture carrier 296,75 MHz)
Margin: min. $1,8 \mathrm{MHz}$
channel L21 (picture carrier $471,25 \mathrm{MHz}$) to channel L69 (picture carrier $855,25 \mathrm{MHz}$)
Margin at the extreme channels: 2 MHz

$32,7 \mathrm{MHz}$

$39,2 \mathrm{MHz}$
75Ω
at nominal gain during gain control
$\max .4,5 \quad \max .4,5$
max. 5 max. 6
max. 63\% max. 63\%
max. $56 \% \quad \max .56 \%$
typ. 16 MHz
typ. 16 MHz
typ. 30 MHz
nominal gain
3 dB
3 dB
3 dB
$\min .40 \mathrm{~dB}$
min .30 dB

Wanted signal characteristics (continued)

Power gain (see also measuring method for power gain Figs 7 and 8)
v.h.f. bands
u.h.f. bands

Maximum gain difference
between any two v.h.f. channels
between any two u.h.f. channels
Noise figure
v.h.f. bands
low v.h.f. band
high v.h.f. band
u.h.f. bands
channel L21
channel L40
channel L69

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
low v.h.f. band
high v.h.f. band
u.h.f. bands
I.F. rejection (measured at picture carrier frequency)
low v.h.f. band
channel 2
channel 4
high v.h.f. band
u.h.f. bands
$\min .19 \mathrm{~dB}$
$\min .19 \mathrm{~dB}$
typ. 6 dB
typ. 6 dB
max. 9 dB , channel C: max. 10 dB
typ. 6 dB
typ. 6 dB , channel C : typ. 7 dB
max. 10 dB
typ. $5,5 \mathrm{~dB}$
typ. 6,5 dB
typ. $7,5 \mathrm{~dB}$
$\min .60 \mathrm{~dB}$
min. 55 dB , typ. 60 dB
min. 40 dB , typ. 50 dB

Cross modulation
Input signal producing 1\% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
low v.h.f. band
at nominal gain(wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})) \quad$ typ. $67 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 20 dB gain reduction
high v.h.f. band
at nominal gain
at 20 dB gain reduction
u.h.f. bands
at nominal gain typ. $70 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 20 dB gain reduction
typ. $85 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $70 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $\mathrm{N} \pm 3$ for all bands).
high v.h.f. band
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
at nominal gain
typ. $85 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Oscillator characteristics
Shift of oscillator frequency at a change
of the supply voltage of 5%
v.h.f. bands
u.h.f. bands
channel L21
channel L40
channel L69
max. 500 kHz
$\max .1000 \mathrm{kHz}$
typ. 600 kHz
typ. 100 kHz
typ. 200 kHz
Drift of oscillator frequency at a change
of the ambient temperature from +25 to $+40^{\circ} \mathrm{C}$
(measured after 3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
v.h.f. bands
max. 350 kHz
u.h.f. bands
$\max .600 \mathrm{kHz}$
I.F. circuit characteristics

Minimum tuning range of i.f. output coil
32 to 40 MHz

Miscellaneous

Oscillator voltage at the aerial terminal
Fundamental and harmonic frequencies up to 1000 MHz
v.h.f. bands
$\max .50 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands

ADDITIONAL INFORMATION

I.F. injection

Terminal 4 (supply voltage u.h.f.) can be used as i.f. injection point, provided the u.h.f. supply voltage is applied to terminal 4 via a resistor of 56Ω (see Fig. 6). The u.h.f. band should be switched on; a tuning voltage of -12 V is applied to terminal 7.

Fig. 6.

Connection of the i.f. amplifier

No special precautions are required to load and to match the i.f. output of the tuner.

Measuring method of power gain

The i.f. output of the tuner should be terminated with the circuit given in Fig. 7.

Fig. 7.
This circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit (Fig. 8).
Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and the circuit between a 75Ω source and a 75Ω detector.

Fig. 8.
Alignment of the i.f. output coil
The i.f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 9. A suitable tool is available under catalogue number 712200547680.

Fig. 9.

V.H.F./U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems
Channels
v.h.f. I
v.h.f. III
u.h.f.

Intermediate frequencies
picture
sound
C.C.I.R. systems B and G

NZ1 to C
M4 to E12
E21 to E69
$38,9 \mathrm{MHz}$
$33,4 \mathrm{MHz}$

APPLICATION

Designed to cover the v.h.f. and u.h.f. channels of C.C.I.R. systems B and G, with extended v.h.f. frequency ranges.
The tuners of the UV412 series are equipped with a frequency divider, which makes them suitable for digital tuning systems based on frequency synthesis; for the remainder they are equal to type UV411.

Available versions

	aerial input connector	frequency divider (IC)	division ratio	catalogue number
UV411	phono	-	-	312212724360
UV411/IEC	IEC	-	-	312212708870
UV412	phono	14-pin	256	312212742010
UV412/256	phono	8-pin	256	312212709060
UV412/256/IEC	IEC	8-pin	256	312212708880
UV412/64	phono	8-pin	64	312212708900
UV412/64/IEC	IEC	8-pin	64	312212708890

DESCRIPTION

The UV411 and UV412 are combined v.h.f./u.h.f. tuners with electronic tuning and band switching, covering the v.h.f. band I including the New Zealand channel 1, and the Italian channel C (frequency range 44 to 92 MHz), the v.h.f. band III including the Morocco channel M4 (frequency range 162 to 230 MHz), and the u.h.f. band (frequency range 470 to 861 MHz).
Mechanically, the tuners are built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common phono or IEC aerial connector (v.h.f. and u.h.f.) is on one of the frame sides, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.

Electrically, the tuners consist of v.h.f. and u.h.f. parts. The v.h.f. aerial signal is fed via switchable v.h.f. band I/III wide band input filters to gate 1 of an input MOSFET tetrode (with internal gate protection against surge).
The input filters are provided with an i.f. and f.m. suppression circuit. The drain load of the MOSFET tetrode is formed by a double tuned switchable bandpass filter, transferring the r.f. signal to the emitter of the mixer transistor. The oscillator signal is also fed to the emitter of the mixer transistor.
The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit, at the low end of which the i.f. signal is coupled out of the tuner. A test point (terminal 4) is provided for i.f. injection to align the i.f. output circuit of the tuner together with the i.f. amplifier of the television receiver. An additional test point, which is accessible through a hole in the top of the tuner, is connected to the collector of the mixer transistor.
The r.f. band pass filter and oscillator circuits are tuned by 3 tuning diodes; band switching is achieved by 5 switching diodes.
The u.h.f. part of the tuner consists of a high-pass input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode.
The i.f. signal from the mixer diode is amplified by the v.h.f. mixer transistor, now operating as an i.f. amplifier.
The r.f. band pass filter and oscillator circuits are tuned by 3 tuning diodes.
In all bands the tuner is gain controlled via gate 2 of the input MOSFET tetrode.
The electrical circuit of the UV412 series is extended with a frequency divider (division ratio of 64 or 256), which inputs are connected to the v.h.f. and u.h.f. oscillator. The complementary outputs are connected to terminals 12 and 13.

Fig. 1a.

Fig. 1b.

See Fig. 1c.

MECHANICAL DATA

Fig. 2a.

Terminal

1 = aerial
2 = supply voltage, v.h.f. I, +12 V
3 = supply voltage, v.h.f. III, +12 V
4 = supply voltage, u.h.f., +12 V ; i.f. injection
$5=$ a.g.c. voltage, $+9,2$ to $+0,85 \mathrm{~V}$
6 = supply voltage, v.h.f. and u.h.f., +12 V
\(\left.$$
\begin{array}{ll}7= & \text { tuning voltage, }+1 \text { to }+28 \mathrm{~V} \\
9 \quad= & \text { i.f. output } \\
10= & \text { earth } \\
12,13= & \text { balanced output voltage of } \\
& \begin{array}{l}\text { frequency divider }\end{array}
$$

14 \quad= \& supply voltage, frequency

\& divider,+5 \mathrm{~V}\end{array}\right\}\)| only for |
| :--- |
| UV412 |

Fig. 2b I.F. output coil.
Torque for alignment: 2 to 15 mNm .
Press-through force: $\geqslant 10 \mathrm{~N}$.

Mass

approx. 127 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a bracket. Information will be supplied upon request.) The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) Only for UV412.

Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors, bands I and III
r.f. amplifier BF982
mixer BF324
oscillator BF926
tuning diodes $3 \times$ BB809
switching diodes
$5 \times$ BA482/483/484
d.c. blocking diòdes
$2 \times$ BAW62
Semiconductors, bands IV and V
r.f. amplifier

BF980 (3SK87)
oscillator
BF970
mixer
1SS99
tuning diodes
surge protection diodes
frequency divider
$3 \times$ BB405B
mbient temperature range
operating
0 to $+55^{\circ} \mathrm{C}$
storage
Relative humidity
$2 \times$ BAV10
SP4653 or SP4632

Voltages and currents

Supply voltage
$+12 \mathrm{~V} \pm 10 \%$
Current drawn from +12 V supply
bands I and III
max. 55 mA ; typ. 44 mA
bands IV and V max. 50 mA ; typ. 40 mA
Bandswitching
For operation in all bands the supply voltage is permanently connected to terminal 6 . Additionally the supply voltage is connected to:
terminal 2 for operation in band I,
terminal 3 for operation in band III,
terminal 4 for operation in bands IV and V.
A.G.C. voltage (Figs 4,5 and 6)
voltage range
$+9,2$ to $+0,85 \mathrm{~V}$
voltage at nominal gain
$+9,2 \pm 0,5 \mathrm{~V}$
voltage at 40 dB gain reduction
band I
typ. 3 V
band III
typ. 1,5 V
voltage at 30 dB gain reduction typ. 2 V

Note: A.G.C. voltages between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.
A.G.C. current

Slope of a.g.c. characteristic,
at the end of the specified a.g.c. range
bands I and III
bands IV and V
max. $0,3 \mathrm{~mA}$
typ. $25 \mathrm{~dB} / \mathrm{V}$
typ. $50 \mathrm{~dB} / \mathrm{V}$

Fig. 4 Typical a.g.c. characteristic, band I.

Fig. 5 Typical a.g.c. characteristic, band III.

Fig. 6 Typical a.g.c. characteristic, bands IV and V .

Fig. 7 Typical tuning characteristic, band I.

Fig. 8 Typical tuning characteristic, band III.

Fig. 9 Typical tuning characteristic, bands IV and V.

Tuning voltage range (Figs 7, 8 and 9)
Current drawn from 28 V tuning voltage supply at $T_{a m b}=25^{\circ} \mathrm{C}$
at $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$
+1 to +28 V
$\max .0,5 \mu \mathrm{~A}$
$\max .2 \mu \mathrm{~A}$

Note: The source impedance of the tuning voltage offered to terminal 7 must be maximum $47 \mathrm{k} \Omega$.
Slope of tuning characteristic
band i, channel E2
channel E4
band III, channel E5
channel E12
bands IV and V, channel E21
channel E69

$3 \mathrm{MHz} / \mathrm{V}$	
$2 \mathrm{MHz} / \mathrm{V}$	
$7 \mathrm{MHz} / \mathrm{V}$	
$2 \mathrm{MHz} / \mathrm{V}$	typical values
$22 \mathrm{MHz} / \mathrm{V}$	
$5 \mathrm{MHz} / \mathrm{V}$	

Frequencies

Frequency ranges
band I
band III
bands IV and V

Intermediate frequencies
picture
sound
channel NZ1 (picture carrier $45,25 \mathrm{MHz}$) to channel C (picture carrier $82,25 \mathrm{MHz}$).*
Margin at the extreme channels: $\min .1,5 \mathrm{MHz}$. channel M4 (picture carrier $163,25 \mathrm{MHz}$) to channel E12 (picture carrier $224,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .2 \mathrm{MHz}$. channel E21 (picture carrier $471,25 \mathrm{MHz}$) to channel E69 (picture carrier $855,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .3 \mathrm{MHz}$.

$$
38,9 \mathrm{MHz}
$$

$33,4 \mathrm{MHz}$

The oscillator frequency is higher than the aerial signal frequency.

Wanted signal characteristics

Input impedance
75Ω
V.S.W.R. and reflection coefficient (values between picture and sound carrier, as well as values at picture carrier)

```
v.s.w.r.
    bands I and III
    bands IV and V
reflection coefficient
    bands I and III
    bands IV and V
```

R.F. curves, bandwidth
band I
band III
bands IV and V
at nominal gain
max. 4,5
$\max .5$
max. 64\%
max. 66\%
during gain control
max. 5,5
max. 7
max. 69\%
max. 75\%
typ. 11 MHz
typ. 13 MHz
typ. 20 MHz

[^4]
R.F. curves, tilt

A.G.C. range
bands I and III
bands IV and V
Power gain (see also Measuring method of power gain)
bands I and III
channel E3
channel E5
channel E12
bands IV and V
channel E21
channel E40
channel E69
Maximum gain difference
between any two v.h.f. channels
between any two u.h.f. channels
between any v.h.f. and u.h.f. channel
Noise figure
bands I and III, except channels NZ1 and M4
channels NZ1 and M4
channel E3
channel E5
channel E12
bands IV and V
channel E21
channel E40
channel E69
Overloading
Input signal producing 1 dB gain
compression at nominal gain
bands I and III
bands IV and V
Input signal producing either a detuning
of the oscillator of +300 kHz or
-1000 kHz or stopping of the
oscillations at nominal gain
bands I and III
bands IV and V

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
bands I and III, except channels C and R4
channels C and R4
bands IV and V
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
$\min .40 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$
min. 22 dB
typ. 28 dB
typ. 28 dB
typ. 28 dB
min. 20 dB
typ. 28 dB
typ. 27 dB
typ. 26 dB
typ. 2 dB
typ. 3 dB
typ. 4 dB
max. 7 dB
max. 10 dB
typ. 4 dB
typ. 4 dB
typ. 5 dB
max. 10 dB
typ. 6 dB
typ. 6 dB
typ. 7 dB
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
min. 60 dB ; typ. 70 dB
$\min .55 \mathrm{~dB}$
min. 44 dB ; typ. 53 dB

I.F. rejection (measured at picture	
carrier frequency)	
channel NZ1	
channel E2	$\min .40 \mathrm{~dB}$
channels E3 to C	$\min .45 \mathrm{~dB}$
band III	$\min .50 \mathrm{~dB}$
bands IV and V	$\min .60 \mathrm{~dB}$
	min. 60 dB

Note: At colour sub-carrier frequency maximum 6 dB less rejection.
$\mathrm{N} \pm 4$ rejection (for u.h.f. only)
Interference signal for an interference
ratio of 53 dB referred to wanted picture
carrier (picture to sound carrier ratio
of 10 dB ; wanted signal $60 \mathrm{~dB}(\mu \mathrm{~V})$; tuner operating at nominal gain)
typ. $75 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Cross modulation
Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier
frequency)
bands I and III
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
bands IV and V
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
In band cross modulation (wanted signal: picture carrier of channel N ; interfering signal: picture carrier of channel $\mathrm{N} \pm 2$ for v.h.f. I, or channel $\mathrm{N} \pm 3$ for v.h.f. III, or channel $\mathrm{N} \pm 5$ for u.h.f.)
bands I and III
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
bands IV and V
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
Out of band cross modulation at nominal gain
v.h.f. I, interfering from v.h.f. III
v.h.f. I, interfering from u.h.f.
v.h.f. III, interfering from v.h.f. I
v.h.f. III, interfering from u.h.f.
u.h.f. interfering from v.h.f. I
u.h.f. interfering from v.h.f. III
typ. $82 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $82 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Oscillator characteristics

Pulling
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain
bands I and III
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
bands IV and V
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Shift of oscillator frequency at a change of the supply voltage of 5%
bands I and III
bands IV and V
max. 200 kHz
Drift of oscillator frequency
during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after band switching)
at a change of the ambient temperature
from +25 to $+40^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
bands I and III
$\max .300 \mathrm{kHz}$
bands IV and V
$\max .500 \mathrm{kHz}$

Frequency divider characteristics of version UV412

Supply voltage
Current drawn from +5 V supply
bands I and III
bands IV and V
Output voltage

Output current
at output voltage $3,4 \mathrm{~V}$
at output voltage 5 V
Interference signal on the i.f. output
$+5 \mathrm{~V} \pm 5 \%$
max. 45 mA ; typ. 35 mA
max. 55 mA ; typ. 45 mA
3,4 to 10 V , depending on load and supply voltage
min. 1 mA
max. $1,5 \mathrm{~mA}$
max. $3 \mu \mathrm{~V}$

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10.
The output voltage is determined by the external load and the supply voltage, which is connected to this load. They should be chosen such that:

- the output-voltage rating of 10 V is not exceeded;
- the output voltage does not drop more than $1,6 \mathrm{~V}$ below 5 V (supply voltage of frequency divider);
- the output-voltage swing does not exceed 1 V .

Radiation by the output signal may be reduced by transporting the two complementary signals via twisted wires or a flat cable, even if only one signal is to be used to drive the subsequent circuit.

Frequency divider characteristics of the UV412/64 and UV412/256 versions

Supply voltage
+5 V $\pm 10 \%$
Current drawn from +5 V supply
max. 35 mA ; typ. 25 mA
Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
$\min .0,8 \vee \mathrm{p}$-p
Output impedance
typ. $1 \mathrm{k} \Omega$
Output imbalance
typ. 0,1 V
Interference signal on the i.f. output
UV412/256
max. $3 \mu \mathrm{~V}$
UV412/64
$\max .20 \mu \mathrm{~V}$
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10.

I.F. circuit characteristics

Bandwidth of i.f. output circuit
$5 \pm 1 \mathrm{MHz}$
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10; tuning voltage 2 V ; u.h.f. band switched on.

Bandwidth variation of i.f. output circuit as a result of r.f. tuning and band switching (reference: u.h.f.; tuning voltage 2 V)
$\max .650 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 10, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Fig. 10.
Detuning of the i.f. output circuit as a result of r.f. tuning and band switching
(reference: u.h.f.; tuning voltage 2 V)
$\max .500 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 10, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Minimum tuning range of i.f. output coil 33 to 40 MHz

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10.
Attenuation between i.f. injection point and i.f. output of the tuner
typ. 16 dB

Miscellaneous

Radio interference
Oscillator radiation and oscillator
voltage at the aerial terminal
Microphonics

Surge protection
Protection against voltages
Within the limits of C.I.S.P.R. 13 (1975) and VDE 0872/7.72.

Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
There will be no microphonics, provided the tuner is installed in a professional manner.

Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

Terminal 4 (supply voltage u.h.f.) can be used as i.f. injection point, provided the u.h.f. supply voltage is applied to terminal 4 via a resistor of 10Ω (see Fig. 11). The u.h.f. band should be switched on; tuning voltage should be 2 V .

Fig. 11.

Connection of the i.f. amplifier

No special precautions are required to load and to match the i.f. output of the tuner.

Connection of supply voltages

Fig. 12.

Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 10.

Fig. 13.
The RC-circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit, which should be tuned to $36,15 \mathrm{MHz}$; the bandwidth is approx. 5 MHz (Fig. 13).

Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a 75Ω source and a 75Ω detector.

Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 14. A suitable tool is available under catalogue number 712200547680.

Fig. 14.

V.H.F./U.H.F. TELEVISION TUNER

QUICK REFERENCE DATA

Systems	C.C.I.R. system D
Channels	C1 to C5
low v.h.f.	C6 to C12
high v.h.f.	C13 to C57
u.h.f.	$37,00 \mathrm{MHz}$
Intermediate frequencies picture sound	$30,50 \mathrm{MHz}$

APPLICATION

Designed to cover the v.h.f. and u.h.f. channels of C.C.I.R. system D.
A tuner UV412HKM/256/IEC with a frequency divider ($1: 256$) is available under catalogue number 312223700240 . This version is suitable for digital tuning systems based on frequency synthesis.

DESCRIPTION

The UV411 HKM/IEC is a combined v.h.f./u.h.f. tuner with electronic tuning and band switching, covering the low v.h.f. band (frequency range 48 to 92 MHz), the high v.h.f. band (frequency range 167 to 224 MHz), and the u.h.f. band (frequency range 470 to 870 MHz).
Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common IEC aerial connector (v.h.f. and u.h.f.) is on one of the frame sides, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically, the tuner consists of v.h.f. and u.h.f. parts. The v.h.f. aerial signal is fed via switchable wide band input filters to gate 1 of an input MOSFET tetrode (with internal gate protection against surge).
The input filters are provided with an i.f. and f.m. suppression circuit. The drain load of the MOSFET tetrode is formed by a double tuned switchable bandpass filter, transferring the r.f. signal to the emitter of the mixer transistor. The oscillator signal is also fed to the emitter of the mixer transistor.
The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit, at the low end of which the i.f. signal is coupled out of the tuner. A test point (terminal 4) is provided for i.f. injection to align the i.f. output circuit of the tuner together with the i.f. amplifier of the television receiver. An additional test point, which is accessible through a hole in the top of the tuner, is connected to the collector of the mixer transistor.

The r.f. band pass filter and oscillator circuits are tuned by 3 tuning diodes; band switching is achieved by 5 switching diodes.
The u.h.f. part of the tuner consists of a high-pass input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the v.h.f. mixer transistor, now operating as an i.f. amplifier.
The r.f. band pass filter and oscillator circuits are tuned by 3 tuning diodes.
In all bands the tuner is gain controlled via gate 2 of the input MOSFET tetrodes.

Fig． 1.

Fig. 2a.

Terminal

1 = aerial
$2=$ supply voltage, low v.h.f., +12 V
$3=$ supply voltage, high v.h.f., +12 V
$4=$ supply voltage, u.h.f., +12 V
$5=$ a.g.c. voltage $,+9,2$ to $+0,85 \mathrm{~V}$
$6=$ supply voltage, v.h.f. and u.h.f., +12 V
$7=$ tuning voltage,+1 to +28 V
$9=$ i.f. output
$10=$ earth

Fig. 2b I.F. output coil.
Torque for alignment: 2 to 15 mNm . Press-through force: $\geqslant 10 \mathrm{~N}$.

Mass approx. 127 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a bracket. Information will be supplied upon request.) The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5{ }^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General
Semiconductors, v.h.f. bands
r.f. amplifier BF982
mixer BF324
oscillator BF926
tuning diodes $3 \times$ BB809
switching diodes
$5 \times$ BA482/483/484
d.c. blocking diodes
$2 \times$ BAW62
Semiconductors, u.h.f. bands
r.f. amplifier

BF980
oscillator BF970
mixer $1 \mathrm{SS99}$
tuning diodes
surge protection diodes
(frequency divider
$3 \times$ BB405B
mbient temperature range
operating $2 \times$ BAV 10
SP4653 or SP4632)
storage
0 to $+55^{\circ} \mathrm{C}$
-25 to $+70^{\circ} \mathrm{C}$
Relative humidity
max. 95\%

Voltages and currents

Supply voltage $+12 \mathrm{~V} \pm 10 \%$
Current drawn from +12 V supply
v.h.f. bands
max. 55 mA ; typ. 44 mA
u.h.f. bands
max. 50 mA ; typ. 40 mA
Bandswitching
For operation in all bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 2 for operation in low v.h.f. band
terminal 3 for operation in high v.h.f. band
terminal 4 for operation in u.h.f. bands
A.G.C. voltage (Figs 4, 5 and 6)
voltage range
$+9,2$ to $+0,85 \mathrm{~V}$
voltage at nominal gain
$+9,2 \pm 0,5 \mathrm{~V}$
voltage at 40 dB gain reduction
low v.h.f. band
typ. 3 V
high v.h.f. band
typ. 1,5 V
voltage at 30 dB gain reduction
Note: A.G.C. voltages between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.
A.G.C. current

Slope of a.g.c. characteristic,
at the end of the specified a.g.c. range
v.h.f. bands
typ. $25 \mathrm{~dB} / \mathrm{V}$
u.h.f. bands
typ. $50 \mathrm{~dB} / \mathrm{V}$

Fig. 4 Typical a.g.c. characteristic, low v.h.f. band.

Fig. 6 Typical a.g.c. characteristic, u.h.f. bands.

Fig. 5 Typical a.g.c. characteristic, high v.h.f. band.

Fig. 7 Typical tuning characteristic, low v.h.f. band.

Fig. 8 Typical tuning characteristic, high v.h.f. band.

Fig. 9 Typical tuning characteristic, u.h.f. bands.

Tuning voltage range (Figs 7, 8 and 9)
Current drawn from 28 V tuning voltage supply
at $T_{a m b}=25^{\circ} \mathrm{C}$
at $T_{\mathrm{amb}}=55^{\circ} \mathrm{C}$
+1 to +28 V
$\max .0,5 \mu \mathrm{~A}$
$\max .2 \mu \mathrm{~A}$

Note: The source impedance of the tuning voltage offered to terminal 7 must be maximum $47 \mathrm{k} \Omega$.

Slope of tuning characteristic
low v.h.f. band, channel C1 channel C5
high v.h.f. band, channel C6
channel C12
u.h.f. bands, channel C13
channel C56

Frequencies
Frequency ranges
low v.h.f. band
high v.h.f. band
u.h.f. bands

Intermediate frequencies
picture
sound

Wanted signal characteristics

Input impedance
V.S.W.R. and reflection coefficient
(values between picture and sound carrier, as well as values at picture carrier)
v.s.w.r.
v.h.f. bands
u.h.f. bands reflection coefficient
v.h.f. bands
u.h.f. bands
R.F. curves, bandwidth low v.h.f. band high v.h.f. band u.h.f. bands

| $\left.\begin{array}{l}3 \mathrm{MHz} / \mathrm{V} \\ 1 \mathrm{MHz} / \mathrm{V} \\ 6 \mathrm{MHz} / \mathrm{V} \\ 3 \mathrm{MHz} / \mathrm{V} \\ 22 \mathrm{MHz} / \mathrm{V} \\ 4 \mathrm{MHz} / \mathrm{V}\end{array}\right\} \quad$ typical values |
| :--- | :--- |

channel C1 (picture carrier $49,75 \mathrm{MHz}$) to channel C5 (picture carrier $85,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .1,5 \mathrm{MHz}$. channel C6 (picture carrier $168,25 \mathrm{MHz}$) to channel C12 (picture carrier $216,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .2 \mathrm{MHz}$. channel C13 (picture carrier $471,25 \mathrm{MHz}$) to channel C57 (picture carrier $863,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .3 \mathrm{MHz}$.
$37,0 \mathrm{MHz}$
$30,5 \mathrm{MHz}$
The oscillator frequency is higher than the aerial signal frequency.
75Ω

at nominal gain	during gain control
max. 4,5	max. 5,5
max. 5	max. 7
max. 64\%	max. 69\%
max. 66\%	max. 75\%
typ. 11 MHz	
typ. 13 MHz	
typ. 20 MHz	

typ. 11 MHz
typ. 13 MHz
typ. 20 MHz
R.F. curves, tilt
A.G.C. range
v.h.f. bands
u.h.f. bands

Power gain (see also Measuring method of power gain) v.h.f. bands
channel C2
channel C7
channel C12
u.h.f. bands
channel C13
channel C27
channel C56
Maximum gain difference
between any two v.h.f. channels
between any two u.h.f. channels
between any v.h.f. and u.h.f. channel
Noise figure
v.h.f. bands
channel C2
channel C7
channel C12
u.h.f. bands
channel C13
channel C27
channel C56
Overloading
Input signal producing 1 dB gain compression at nominal gain
v.h.f. bands
u.h.f. bands

Input signal producing either a detuning
of the oscillator of +300 kHz or
-1000 kHz or stopping of the
oscillations at nominal gain
v.h.f. bands
u.h.f. bands

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency) v.h.f. bands, except channel C5 channel C5
u.h.f. bands, channels C13 up to C50 channels C51 up to C57
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
min. 40 dB
min. 30 dB
min. 22 dB
typ. 28 dB
typ. 28 dB
typ. 28 dB
min. 20 dB
typ. 28 dB
typ. 27 dB
typ. 26 dB
typ. 2 dB
typ. $\quad 3 \mathrm{~dB}$
typ. $\quad 4 \mathrm{~dB}$
max. 8 dB
typ. $4 d B$
typ. $\quad 4 \mathrm{~dB}$
typ. $\quad 5 \mathrm{~dB}$
max. 10 dB
typ. 6 dB
typ. 6 dB
typ. $\quad 7 \mathrm{~dB}$
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
$\min .60 \mathrm{~dB}$; typ. 70 dB
$\min .55 \mathrm{~dB}$; typ. 59 dB
min. 44 dB ; typ. 53 dB
$\min .40 \mathrm{~dB}$; typ. 44 dB
I.F. rejection (measured at picture carrier frequency)
low v.h.f. band
channel C1 min. 45 dB
channels C2 up to C5
$\min .50 \mathrm{~dB}$
high v.h.f. band
$\min .60 \mathrm{~dB}$
u.h.f. bands
$\min .60 \mathrm{~dB}$

Note: At colour sub-carrier frequency maximum 6 dB less rejection.

Cross modulation

Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
v.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $N \pm 2$ for low v.h.f., or channel $N \pm 3$ for high v.h.f., or channel $N \pm 5$ for u.h.f.)
v.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
Out of band cross modulation at nominal gain
low v.h.f., interfering from high v.h.f.
low v.h.f., interfering from u.h.f.
high v.h.f., interfering from low v.h.f.
high v.h.f., interfering from u.h.f.
u.h.f. interfering from low v.h.f.
u.h.f. interfering from high v.h.f.
typ. $82 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $82 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Oscillator characteristics

Pulling
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain
v.h.f. bands
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Shift of oscillator frequency at a change
of the supply voltage of 5%
v.h.f. bands
u.h.f. bands
max. 200 kHz
$\max .400 \mathrm{kHz}$
Drift of oscillator frequency during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
$\max .250 \mathrm{kHz}$
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after band switching) $\max .250 \mathrm{kHz}$
at a change of the ambient temperature
from +25 to $+40^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
v.h.f. bands
max. 300 kHz
u.h.f. bands
$\max .500 \mathrm{kHz}$

I.F. circuit characteristics

Bandwidth of i.f. output circuit

$$
5 \pm 1 \mathrm{MHz}
$$

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10; tuning voltage 2 V ; u.h.f. band switched on.

Bandwidth variation of i.f. output circuit as a result of r.f. tuning and band switching (reference: u.h.f.; tuning voltage 2 V) $\max .650 \mathrm{kHz}$

Note: I.F. output of the tuner terminated with a modified circuit of Fig. 10 , i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner. I.F. output adjusted to $33,75 \mathrm{MHz}$.

Fig. 10.

Detuning of the i.f. output circuit as a result of r.f. tuning and band switching (reference: u.h.f.; tuning voltage 2 V)
$\max .500 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 10, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Minimum tuning range of i.f. output coil 30 to 39 MHz

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10.

Attenuation between i.f. injection point and i.f. output of the tuner
typ. 16 dB

Miscellaneous

Radio interference
Oscillator radiation and oscillator
voltage at the aerial terminal

Microphonics

Surge protection
Protection against voltages
Within the limits of C.I.S.P.R. 13 (1975) and VDE 0872/7.72.

There will be no microphonics, provided the tuner is installed in a professional manner.

Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

Terminal 4 (supply voltage u.h.f.) can be used as i.f. injection point, provided the u.h.f. supply voltage is applied to terminal 4 via a resistor of 10Ω (see Fig. 11). The u.h.f. band should be switched on; tuning voltage should be 2 V .

Fig. 11.

Connection of the i.f. amplifier

No special precautions are required to load and to match the i.f. output of the tuner.

Connection of supply voltages

Fig. 12.

Measuring method of power

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 10.

Fig. 13.
The RC-circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit, which should be tuned to $33,75 \mathrm{MHz}$; the bandwidth is approx. 5 MHz (Fig. 13).

Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a 75Ω source and a 75Ω detector.

Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a plastic tool which has a cross head as shown in Fig. 14. A suitable tool for automatic alignment is available:
holder cross-head
catalogue number 712200547910 catalogue number 312213163390.

Fig. 14.

V.H.F./U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	C.C.I.R. systems B and G
Channels	
low v.h.f.	E2 to S1
high v.h.f.	S2 to S20
u.h.f.	E21 to E69
Intermediate frequencies	
picture	$38,9 \mathrm{MHz}$
sound	$33,4 \mathrm{MHz}$

APPLICATION

Designed to cover the v.h.f. and u.h.f. channels of C.C.I.R. systems B and G, with extended v.h.f. frequency ranges.
The tuner UV418 is equipped with a frequency divider, which makes it suitable for digital tuning systems based on frequency synthesis; otherwise this tuner is equal to type UV417.
Both tuners comply with the requirements of radiation, signal handling capability, and immunity from radiated interference of Amtsblatt DBP69/1981, when installed professionally in an adequate TV receiver.

Available versions

type number	aerial input connector	frequency divider (IC)	division ratio	catalogue number
UV417	phono	-	-	311221852660
UV417/IEC	IEC	-	-	311221852690
UV418/256	phono	8-pin	256	311221852720
UV418/256/IEC	IEC	8-pin	256	311221852780
UV418/64	phono	8-pin	64	311221852750
UV418/64/IEC	IEC	8-pin	64	311221852810

DESCRIPTION

The UV417 and UV418 are combined v.h.f./u.h.f. tuners with electronic tuning and band switching, covering the low v.h.f. band (frequency range 47 to 111 MHz), the high v.h.f. band (frequency range 111 to 300 MHz), and the u.h.f. band (frequency range 470 to 860 MHz).
Mechanically, the tuners are built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common phono aerial connector (v.h.f. and u.h.f.) is on one of the frame sides, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically, the tuners consist of v.h.f. and u.h.f. parts. The v.h.f. aerial signal is fed via switchable wideband low v.h.f. and high v.h.f. input filters to gate 1 of an input MOSFET tetrode (with internal gate protection against surge).
The input filters are provided with an i.f. suppression circuit. The drain load of the MOSFET tetrode is formed by a double tuned switchable bandpass filter, transferring the r.f. signal to the emitter of the mixer transistor. The oscillator signal is also fed to the emitter of the mixer transistor (T.P.1.).
The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit, where at the low impedance side the i.f. signal is coupled out of the tuner. A test point, which is accessible through a hole in the top of the frame is provided for i.f. injection to align the i.f. output circuit of the tuner together with the i.f. amplifier of the television receiver. An additional test point, which is accessible through a hole in the top of the tuner, is connected to the collector of the mixer transistor (T.P.1.).
The input, the r.f. band pass filter and oscillator circuits are tuned by 5 tuning diodes; band switching is achieved by 5 switching diodes.
The u.h.f. part of the tuner consists of a high-pass input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the v.h.f. mixer transistor, now operating as an i.f. amplifier.
The input, the r.f. bandpass filter and oscillator circuits are tuned by 4 tuning diodes.
In all bands the tuner is gain controlled via gate 2 of the input MOSFET tetrode.
The electrical circuit of the UV418 series is extended with a frequency divider (division ratio of 64 or 256), which inputs are connected to the v.h.f. and u.h.f. oscillator. The complementary outputs are connected to terminals 12 and 13.

Fig. 1 Circuit diagram. For connections see also next page.

Press-through force: $\geqslant 10 \mathrm{~N}$.

Mass approx. 127 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a bracket. Information will be supplied upon request). The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC 68-2-20, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2-20$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) Only for UV418.

Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

Marking

The tuner is provided with a label showing the following date:

- type number
- catalogue number
- code for factory of origin
- change code
- code for year and week of production

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors, v.h.f. bands
r.f. amplifier BF980
mixer BF324
oscillator BF926
tuning diodes
$4 \times$ BB909, $1 \times$ BB405
switching diodes
d.c. blocking diodes
$2 \times$ BA482, $2 \times$ BA483, $1 \times$ BA484
$2 \times$ BAW62
Semiconductors, u.h.f. bands
r.f. amplifier BF980
oscillator BF970
mixer 1SS99
tuning diodes
frequency divider $\div 256$
$4 \times$ BB405B
frequency divider $\div 64$
SP4653
Ambient temperature range
operating
0 to $+55^{\circ} \mathrm{C}$
storage
Relative humidity

$$
-25 \text { to }+70^{\circ} \mathrm{C}
$$

Voltages and currents

Supply voltage
$+12 \mathrm{~V} \pm 10 \%$
The supply voltage of band switching (terminals 2,3 and 4) may never deviate more than $+10 \% /-5 \%$ from the unswitched supply voltage (terminal 6) within the specified margin of $\pm 10 \%$.
Ripple susceptibility on supply voltages
t.b.e.

The ripple susceptibility is defined as the peak-to-peak value of a sinewave signal ($20 \mathrm{~Hz}-500 \mathrm{kHz}$) on the supply voltages causing an amplitude modulation with a modulation depth of $0,28 \%$ on the picture carrier after passing the Nyquist curve of the i.f. filter of a TV receiver.
Current drawn from +12 V supply

v.h.f. bands	$\max .42 \mathrm{~mA}$
u.h.f. bands	$\max .42 \mathrm{~mA}$
Band switching	$\max .11 \mathrm{~mA}$

For operation in all bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 2 for operation in low v.h.f. band.
terminal 3 for operation in high v.h.f. band.
terminal 4 for operation in u.h.f. bands.
A.G.C. voltage ($N o t e$: voltages between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.)
voltage range
voltage at nominal gain
$+9,2$ to $+0,85 \mathrm{~V}$
voltage at 40 dB gain reduction
low v.h.f. band
high v.h.f. band
voltage at 30 dB gain reduction
u.h.f.
$+9,2 \pm 0,5 \mathrm{~V}$
typ. 3 V
typ. 1,5 V
typ. 2 V
A.G.C. current

Slope of a.g.c. characteristic, at the end of the specified a.g.c. range v.h.f. bands u.h.f. bands

Tuning voltage range
Current drawn from 28 V tuning voltage supply
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and 60% R.H.
at $T_{\text {amb }}=25^{\circ} \mathrm{C}$ and 95% R.H.
at $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$ and 60% R.H.
$\max .0,3 \mathrm{~mA}$
typ. $25 \mathrm{~dB} / \mathrm{V}$
typ. $50 \mathrm{~dB} / \mathrm{V}$
+1 to +28 V
$\max .0,5 \mu \mathrm{~A}$
max. $2 \mu \mathrm{~A}$
max. $2 \mu \mathrm{~A}$

Note: The source impedance of the tuning voltage offered to terminal 7 is maximum $47 \mathrm{k} \Omega$.
Slope of tuning characteristic low v.h.f. band, channel E2

$5 \mathrm{MHz} / \mathrm{V}$	
$1 \mathrm{MHz} / \mathrm{V}$	
$7 \mathrm{MHz} / \mathrm{V}$	
$2 \mathrm{MHz} / \mathrm{V}$	typical values
$22 \mathrm{MHz} / \mathrm{V}$	
$5 \mathrm{MHz} / \mathrm{V}$	

Frequencies

Frequency ranges

low v.h.f. band
high v.h.f. band
u.h.f. bands

Intermediate frequencies
picture
sound

Wanted signal characteristics

Input impedance
75Ω
V.S.W.R. and reflection coefficient (values between picture and sound carrier, as well as values at picture carrier)

v.s.w.r.	at nominal gain	during gain control
v.h.f.	max. 4,5	max. 5,5
u.h.f.	max. 5	max. 7
reflection coefficient		
v.h.f.	max. 63\%	max. 69\%
u.h.f.	max. 66\%	max. 75\%

ELECTRICAL DATA (continued)

R.F. curves, bandwidth
low v.h.f. band
high v.h.f. band
u.h.f. bands
R.F. curves, tilt
A.G.C. range
v.h.f.
u.h.f.

Power gain (see also Measuring method of power gain)
v.h.f. bands (channels S2 to S4 excluded)
channels S2 and S3
channel S4
channel E3
\longrightarrow channel E5
channel E12
u.h.f. bands
channel E21
\longrightarrow channel E40
channel E69
Maximum gain difference
between any two v.h.f. channels
between any two u.h.f. channels
between any v.h.f. and u.h.f. channel
Noise figure
v.h.f. bands

E channels
S channels
channel E3
\rightarrow channel E5
channel E12
u.h.f. bands
channel E21
\rightarrow channel E40
channel E69
Overloading
Input signal producing 1 dB gain compression at nominal gain v.h.f.
u.h.f.

Input signal producing either a detuning of the oscillator of +300 kHz or -1000 kHz or stopping of the oscillations at nominal gain v.h.f.
u.h.f.
typ. 10 MHz
typ. 13 MHz
typ. 18 MHz
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
$\min .40 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$
$\min .20 \mathrm{~dB}$
$\min .17 \mathrm{~dB}$
min. 19 dB
typ. 27 dB
typ. 27 dB
typ. 27 dB
min. 16 dB
typ. 28 dB
typ. 27 dB
typ. 26 dB
typ. 8 dB
typ. 4 dB
typ. 8 dB
$\max .8 \mathrm{~dB}$
max. 10 dB
typ. 5 dB
typ. 5 dB
typ. 6 dB
$\max .13 \mathrm{~dB}$
typ. 7 dB
typ. 7 dB
typ. 8 dB
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Unwanted signal characteristics

```
Image rejection (measured at picture carrier frequency)
    v.h.f. bands
    u.h.f. bands, except channels E61 to E69
    channels E61 to E69
I.F. rejection (measured at picture carrier frequency)
    low v.h.f., except channel E2
    channel E2
    high v.h.f.
    u.h.f.
```

$\min .60 \mathrm{~dB}$; typ. 70 dB
min. 50 dB ; typ. 62 dB
$\min .44 \mathrm{~dB}$
$\min .50 \mathrm{~dB}$
$\min .45 \mathrm{~dB}$
$\min .60 \mathrm{~dB}$
$\min .60 \mathrm{~dB}$

Note: At colour sub-carrier frequency maximum 6 dB less rejection

Cross modulation

Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
v.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $84 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $84 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $N \pm 2$ for low v.h.f., or channel $N \pm 3$ for high v.h.f., or channel $N \pm 5$ for u.h.f.) v.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $92 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $92 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Out of band cross modulation at nominal gain
low v.h.f., interfering from high v.h.f.
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
low v.h.f., interfering from u.h.f.
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
high v.h.f., interfering from low v.h.f.
high v.h.f., interfering from u.h.f.
u.h.f. interfering from low v.h.f.
u.h.f. interfering from high v.h.f.
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Unwanted signal handling capability (visibility test)

For the channel combinations
v.h.f.: $N \pm 1, N \pm 5, N+11$
u.h.f.: $N \pm 1, N \pm 5, N+9$

The tuner meets the requirements of "Amtsblatt" DBP69/1981, item 5.1.2., when measured in an adequate TV receiver. The a.g.c. circuit of the TV receiver has to be adjusted with an input signal of $74 \mathrm{~dB}(\mu \mathrm{~V})$ on channel E60 in such a way, that the gain of the tuner is decreased by 10 dB .

ELECTRICAL DATA (continued)

Oscillator characteristics

Pulling
Input signal of tuned frequency producing a
shift of the oscillator frequency of 10 kHz , at nominal gain
v.h.f. bands
u.h.f. bands
typ. $85 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $85 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Shift of oscillator frequency at a change
of the supply voltage of 5%
v.h.f. bands
max. 400 kHz
u.h.f. bands
$\max .500 \mathrm{kHz}$
When using the supply circuit of Fig. 12 an additional
oscillator frequency shift will occur during a.g.c.
v.h.f. bands
u.h.f. bands

Drift of oscillator frequency
during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after band switching)
at a change of the ambient temperature
from +25 to $+40^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
v.h.f. bands
u.h.f. bands
at a change of humidity from $60 \pm 15 \%$
to $93 \pm 2 \%$, at $T_{a m b}=25 \pm 5^{\circ} \mathrm{C}$
low v.h.f.
high v.h.f.
u.h.f., channel E21
u.h.f., channel E69

Frequency divider characteristics of version UV418
Supply voltage
Current drawn from +5 V supply
Output voltage, unloaded, at terminals
12 and 13 with 820Ω load
Output imbalance
Interference signal on the i.f. output
$+5 \mathrm{~V} \pm 5 \%$
max. 35 mA ; typ. 25 mA
$\min .0,7 \vee \mathrm{p}-\mathrm{p}$
$\mathrm{min} .0,3 \vee \mathrm{p}-\mathrm{p}$
typ. $0,1 \mathrm{~V}$
max. $3 \mu \mathrm{~V}$

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10.

I.F. circuit characteristics

Bandwidth of i.f. output circuit
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 4; tuning voltage 25 V ; u.h.f. band switched on.

Bandwidth variation of i.f. output circuit as a result of r.f.
tuning and band switching (reference: u.h.f.; tuning
voltage 25 V ; a.g.c. voltage 1 V ; i.f. output circuit adjusted to $36,15 \mathrm{MHz}$) max. $500 \mathrm{kHz} \longleftarrow$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 4, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Fig. 4.

> Detuning of i.f. output circuit as a result of r.f. tuning
> and band switching (reference: u.h.f.; tuning voltage
> 25 V ; a.g.c. voltage 1 V ; i.f. output circuit adjusted to $36,15 \mathrm{MHz}$) max. 500 kHz

Note: I.F. output of the tuner terminated with a modified circuit of Fig. 4, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Minimum tuning range of i.f. output coil
33 to 40 MHz
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 4.

Attenuation between i.f. injection point and i.f. output of the tuner

Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal

Microphonics

Surge protection

Protection against voltages
typ. 16 dB

Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$

Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

An i.f. signal from a generator with an internal resistance of 50Ω or 75Ω should be connected to the i.f. injection point at the top of the tuner (see Fig. 2) via a resistor of 68Ω. The u.h.f. band should be switched on; tuning voltage should be 25 V , a.g.c. voltage 1 V .

Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 4.

Fig. 5.
The RC-circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit, which should be tuned to $36,15 \mathrm{MHz}$; the bandwidth is approx. $5,5 \mathrm{MHz}$ (Fig. 5).

Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a 75Ω source and a 75Ω detector.

Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a plastic tool which has a cross head as shown in Fig. 6. A suitable tool for automatic alignment is available under catalogue number 810400411040.

Fig. 6.

V.H.F./U.H.F. TELEVISION TUNER

QUICK REFERENCE DATA

Systems

C.C.I.R. systems M and N (R.T.M.A.)

Channels
low v.h.f. A2 to A6
high v.h.f.
A7 to A13
u.h.f.

A14 to A83
Intermediate frequencies
picture $\quad 45,75 \mathrm{MHz}$
sound
$41,25 \mathrm{MHz}$

APPLICATION

This tuner is designed to cover the v.h.f. and u.h.f. channels of C.C.I.R. systems M and N (R.T.M.A.).
It can be provided with a frequency divider, which makes this tuner suitable for digital tuning systems based on frequency synthesis.

DESCRIPTION

The UV431 is a combined v.h.f./u.h.f. tuner with electronic tuning and band switching, covering the low v.h.f. band (frequency range 55,25 to $83,25 \mathrm{MHz}$), the high v.h.f. band (frequency range 175,25 to $211,25 \mathrm{MHz}$), and the u.h.f. band (frequency range 471,25 to $885,25 \mathrm{MHz}$).
Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common phono aerial connector (v.h.f. and u.h.f.) is on one of the frame sides, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically, the tuner consists of a v.h.f. and a u.h.f. part. The v.h.f. aerial signal is fed via low pass, high pass, i.f. and f.m. suppression filters to a switchable single tuned input circuit for low and high v.h.f. operation, which is capacitively coupled to the gate 1 of a MOS-FET tetrode (with internal gate protection against surge). The drain load of the MOS-FET tetrode is formed by a double tuned, switchable bandpass filter, transferring the r.f. signal to the emitter of the mixer transistor. The oscillator signal is also fed to the emitter of the mixer transistor.

The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit, at the low end of which the i.f. signal is coupled out of the tuner. A test point (terminal 4) is provided for i.f. injection to align the i.f. output circuit of the tuner together with the i.f. amplifier of the television receiver. An additional test point, which is accessible through a hole in the top of the tuner, is connected to the collector of the mixer transistor.
The single tuned input, the r.f. band pass filter and oscillator circuits are tuned by 4 tuning diodes; band switching is achieved by 5 switching diodes.
The u.h.f. part of the tuner consists of a fixed double tuned band pass filter with a built-in protection diode against surge which is connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the v.h.f. mixer transistor, now operating as an i.f. amplifier. The r.f. band pass filter and oscillator circuits are tuned by 3 tuning diodes.
In all bands the tuner is gain controlled via gate 2 of the input MOSFET tetrodes.

Fig. 1.

Fig. 2a

Fig. 2b I.F. output coil.
Torque for alignment: 2 to 15 mNm . Press-through force: $\geqslant 10 \mathrm{~N}$.

Terminal

$$
\begin{aligned}
& 1=\text { aerial } \\
& 2 \text { = supply voltage, low v.h.f., }+12 \mathrm{~V} \\
& 3 \text { = supply voltage, high v.h.f., }+12 \mathrm{~V} \\
& 4 \text { = supply voltage, u.h.f., }+12 \mathrm{~V}, \text { i.f. injection } \\
& 5 \text { = a.g.c. voltage, }+9,2 \text { to }+0,85 \mathrm{~V} \\
& 6 \text { = supply voltage, v.h.f. and u.h.f., }+12 \mathrm{~V} \\
& 7 \text { = tuning voltage, }+1 \text { to }+28 \mathrm{~V} \\
& 9=\text { i.f. output } \\
& 10=\text { earth }
\end{aligned}
$$

Mass approx. 125 g .

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a bracket. Information will be supplied upon request.)
It is recommended that the tuner be installed in the cool part of the receiver cabinet and not exposed to the vibrations of the loudspeaker. There are no restrictions on orientation.

The solderability of the terminals and mounting tabs is according to IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

Marking

The tuner is provided with a label showing the following data:

- type number UV 431
- catalogue number 311212743630
- code for factory of origin
- change code
- code for year and week of production

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and ana.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors, v.h.f. bands

r.f. amplifier	BF982
mixer	BF324
oscillator	BF926
tuning diodes	$4 \times$ BB809
switching diodes	$5 \times$ BA482/483/484
d.c. blocking diodes	$2 \times$ BAW62

Semiconductors, u.h.f. bands
r.f. amplifier BF980
oscillator BF970
mixer 1SS99
tuning diodes $3 \times$ BB405B
surge protection diodes BAV10
Ambient temperature range
operating
0 to $+55^{\circ} \mathrm{C}$
storage
-25 to $+70^{\circ} \mathrm{C}$
Relative humidity
max. 95\%

Voltages and currents

Supply voltage + $12 \mathrm{~V} \pm 10 \%^{*}$
Current drawn from +12 V supply
low and high v.h.f.
max. 55 mA ; typ. 42 mA
u.h.f.
max. 50 mA ; typ. 42 mA
Bandswitching
For operation in all bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 2 for low v.h.f. operation
terminal 3 for high v.h.f. operation
terminal 4 for u.h.f. operation
A.G.C. voltage (Figs 4,5 and 6)
voltage range
$+9,2$ to $+0,85 \mathrm{~V}$
voltage at nominal gain
$+9 \pm 0,5 \mathrm{~V}$
voltage at 40 dB gain reduction
low v.h.f.
high v.h.f.
typ. 3,2 V
voltage at 30 dB gain reduction u.h.f.
typ. $1,5 \mathrm{~V}$

Note: A.G.C. voltages between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.
A.G.C. current
$\max .0,3 \mathrm{~mA}$
Slope of a.g.c. characteristic, at the end of the specified a.g.c. range v.h.f.
typ. $25 \mathrm{~dB} / \mathrm{V}$
u.h.f.
typ. $50 \mathrm{~dB} / \mathrm{V}$

* A tolerance of -15% on the supply voltage is admissible, if a deterioration of gain, noise figure, oscillator shift and oscillator drift is acceptable.

Typical a.g.c. characteristics

Fig. 4 Low v.h.f.

Fig. 5 High v.h.f.

Fig. 6 U.H.F.

Typical tuning characteristics

Fig. 7 Low v.h.f.

Fig. 8 High v.h.f.

Fig. 9 U.H.F.

Tuning voltage range (Figs 7, 8 and 9)

$$
+1 \text { to }+28 \mathrm{~V}
$$

Current drawn from 28 V tuning voltage supply

$$
\begin{array}{ll}
\text { at } T_{a m b}=25^{\circ} \mathrm{C} \text { and R.H. }=60 \% & \max .0,5 \mu \mathrm{~A} \\
\text { at } T_{a m b}=55^{\circ} \mathrm{C} \text { and R.H. }=60 \% & \max .2 \mu \mathrm{~A} \\
\text { at } T_{a m b}=25^{\circ} \mathrm{C} \text { and R.H. }=95 \% & \max .2 \mu \mathrm{~A}
\end{array}
$$

Note: The source impedance of the tuning voltage offered to terminal 7 must be maximum $47 \mathrm{k} \Omega$.
Slope of tuning characteristic
low v.h.f., channel A2
channel A6
high v.h.f., channel A7 channel A13
u.h.f., channel A14
channel A83

Frequencies

Frequency ranges
low v.h.f.
high v.h.f.
u.h.f.

Intermediate frequencies picture
sound

Wanted signal characteristics

Input impedance
V.S.W.R. and reflection coefficient (values between picture and sound carrier, as well as values at picture carrier)
v.s.w.r.
v.h.f.
u.h.f., channels A14 to A73
channels A74 to A83
reflection coefficient
v.h.f.
u.h.f., channels A14 to A73
channels A74 to A83
R.F. curves, bandwidth
low v.h.f.
high v.h.f.
u.h.f.
$\left.\begin{array}{l}3 \mathrm{MHz} / \mathrm{V} \\ 2 \mathrm{MHz} / \mathrm{V} \\ 6 \mathrm{MHz} / \mathrm{V} \\ 4 \mathrm{MHz} / \mathrm{V} \\ 21 \mathrm{MHz} / \mathrm{V} \\ 4 \mathrm{MHz} / \mathrm{V}\end{array}\right\}$ typical values
channel A2 (picture carrier $55,25 \mathrm{MHz}$) to channel A6 (picture carrier $83,25 \mathrm{MHz}$).* Margin at the extreme channels: $\min .1,5 \mathrm{MHz}$. channel A7 (picture carrier $175,25 \mathrm{MHz}$) to channel A13 (picture carrier $211,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .2 \mathrm{MHz}$. channel A14 (picture carrier $471,25 \mathrm{MHz}$) to channel A83 (picture carrier $885,25 \mathrm{MHz}$). Margin at the extreme channels: A13 min. 3 MHz , A83 min. 4 MHz .
$45,75 \mathrm{MHz}$
$41,25 \mathrm{MHz}$
The oscillator frequency is higher than the aerial signal frequency.
75Ω

$\frac{\text { at nominal gain }}{\max .5}$	
.5	during gain control
$\max .5$	$\max .5$
	$\max .7$
$\max .66 \%$	
$\max .66 \%$	$\max .66 \%$
$\max .66 \%$	$\max .75 \%$

typ. 10 MHz
typ. 12 MHz
typ. 24 MHz

R.F. curves, tilt

A.G.C. range
v.h.f.
u.h.f.

Power gain (see also Measuiing method of power gain)
v.h.f. bands
channel A4
channel A7
channel A13
u.h.f. bands
channel A14
channel A40
channel A83
Maximum gain difference
between any two v.h.f. channels
between any two u.h.f. channels
between any v.h.f. and u.h.f. channel
Noise figure
v.h.f. bands, except channel A6
channel A6
channel A4
channel A7
channel A13
u.h.f. bands
channel A14
channel A40
channel A83
Overloading
Input signal producing 1 dB gain
compression at nominal gain
v.h.f.
u.h.f.

Input signal producing either a detuning of the oscillator of +300 kHz or
-1000 kHz or stopping of the
oscillations at nominal gain
v.h.f.
u.h.f.

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency) v.h.f.
u.h.f.
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
$\min .40 \mathrm{~dB}$
min. 30 dB
min. 22 dB
typ. 26 dB
typ. 26 dB
typ. 27 dB
min. 20 dB
typ. 26 dB
typ. 26 dB
typ. 24 dB
typ. 4 dB
typ. 4 dB
typ. 6 dB
max. 7 dB
max. 9 dB
typ. 5 dB
typ. 5 dB
typ. 5 dB
max. 10 dB
typ. 5 dB
typ. $5,5 \mathrm{~dB}$
typ. 7 dB
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
min. 60 dB ; typ. 70 dB
min. 40 dB ; typ. 50 dB
I.F. rejection (measured at picture carrier frequency)
low v.h.f.
channel A2 min. 45 dB
channels A3 to A6 min. 50 dB
high v.h.f. min. 60 dB
u.h.f.
min. 60 dB
Note: At colour sub-carrier frequency maximum 6 dB less rejection.
F.M. rejection, low v.h.f.

Level of an f.m. signal of $91,5 \mathrm{MHz}$ which produces
an i.f. signal $(47,75 \mathrm{MHz}) 57 \mathrm{~dB}$ below the level
of the wanted picture carrier
channel A2 typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$
channel A4
channel A6
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $60 \mathrm{~dB}(\mu \mathrm{~V})$
F.M. rejection, high v.h.f.

Level of an f.m. signal between 88 and 105 MHz , which produces an i.f. interfering ($45,75 \mathrm{MHz}$) 57 dB below the level of the wanted picture carrier. Level of input picture carrier is $60 \mathrm{~dB} \mu \mathrm{~V}$
channel A8
typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$
channel A11
typ. $92 \mathrm{~dB}(\mu \mathrm{~V})$
channel A13
typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$
Channel A6 colour beat
The colour beat is an interference at 42 MHz from picture and sound carrier signals of channel A 6 with the oscillator signal (input levels of picture/sound carrier signals $54 \mathrm{~dB}(\mu \mathrm{~V})$; tuner operated at nominal gain.
Rejection below IF picture carrier of $45,75 \mathrm{MHz}$.
typ. 45 dB
$\mathrm{N} \pm 7$ rejection (for u.h.f. only)
Interference signal for an interference ratio of 53 dB referred to wanted picture carrier (wanted signal $60 \mathrm{~dB}(\mu \mathrm{~V})$; tuner operating at nominal gain)
typ. $65 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Cross modulation
Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
v.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $76 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
In band cross modulation (wanted signal: picture carrier of channel N ; interfering signal: picture carrier of channel $\mathrm{N} \pm 2$ for low v.h.f., or channel $\mathrm{N} \pm 3$ for high v.h.f., or channel $\mathrm{N} \pm 5$ for u.h.f.)
v.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
Out of band cross modulation at nominal gain
low v.h.f., interfering from high v.h.f.
low v.h.f., interfering from u.h.f.
high v.h.f., interfering from low v.h.f.
high v.h.f., interfering from u.h.f.
u.h.f. interfering from low v.h.f.
u.h.f. interfering from high v.h.f.
typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $82 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Oscillator characteristics

Pulling:
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain
low v.h.f.
high v.h.f.
u.h.f.

Shift of oscillator frequency at a charge
of the supply voltage of 5%

v.h.f. bands u.h.f bands, channels A14 to A73 channels A74 to A83	$\max .200 \mathrm{kHz}$
	$\max .400 \mathrm{kHz}$
	$\max .800 \mathrm{kHz}$

typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
max. 800 kHz

Drift of oscillator frequency during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
max. 250 kHz
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after band switching)
max. 250 kHz
at a change of the ambient temperature from
+25 to $+50^{\circ} \mathrm{C}$ (measured after 3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
max. 600 kHz
at a change of humidity from $60 \pm 15 \%$ to $93 \pm 2 \%$
(measured at $\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}$)
v.h.f. $\max .600 \mathrm{kHz}$
u.h.f.
max. 1000 kHz

I.F. circuit characteristics

Bandwidth of i.f. output circuit

$5 \pm 1 \mathrm{MHz}$
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10; tuning voltage 10 V ; u.h.f. band switched on.

Bandwidth variation of i.f. output circuit as a result
of r.f. tuning and band switching (reference: u.h.f.;
tuning voltage 10 V ; i.f. output circuit adjusted to
$43,5 \mathrm{MHz}$)
max. 650 kHz
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 10, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Fig. 10.
Detuning of the i.f. output circuit as a result of r.f.
tuning and band switching (reference: u.h.f.;
tuning voltage 10 V ; i.f. output circuit adjusted to $43,5 \mathrm{MHz}$)
max. 650 kHz
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 10, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Minimum tuning range of i.f. output coil
41 to 47 MHz
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10. The tuner is supplied with the i.f. output circuit adjusted to $43,5 \pm 1 \mathrm{MHz}$.
Attenuation between i.f. injection point
and i.f. output of the tuner
typ. 16 dB

Miscellaneous

Radio interference
Oscillator radiation and oscillator
voltage at the aerial terminal

Microphonics
Within the limits of C.I.S.P.R. 13 (1975)

There will be no microphonics, provided the tuner is installed in a professional manner.
Surge protection
Protection against voltages
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

Terminal 4 (supply voltage u.h.f.) can be used as i.f. injection point, provided the u.h.f. supply voltage is applied to terminal 4 via a resistor of 10Ω (see Fig. 11). The u.h.f. band should be switched on; tuning voltage should be 2 V .

Fig. 11.

Connection of the i.f. amplifier

- By means of a print track as short as possible.
- By means of a shielded track, e.g. a coaxial cable.

Connection of supply voltages

Fig. 12.

Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 10.

Fig. 13.
The RC-circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit which should be tuned to $43,5 \mathrm{MHz}$; the bandwidth is approx. 5 MHz (Fig. 13).

Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a 75Ω source and a 75Ω detector.

Measurement of bandwidth variation and detuning of i.f. output circuit

A sweep signal of 30 to 50 MHz from a frequency sweep generator is connected to the i.f. injection point via a capacitor of $0,5 \mathrm{pF}$. The coaxial cable is terminated with 75Ω.

Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 14. A suitable tool is available under catalogue number 712200547680.

Fig. 14.

TESTS AND REQUIREMENTS

IEC 68-2	test	procedure	requirements
Ab	cold	$-25^{\circ} \mathrm{C}, 96 \mathrm{~h}$	Checked within 10 min after
Bb	dry heat	+ $70{ }^{\circ} \mathrm{C}, 96 \mathrm{~h}$	all tests mentioned:
Db	damp heat, cyclic	$+25 \text { to }+40^{\circ} \mathrm{C}$	no catastrophic failures (in operation of 1 or more
		R.H. 90 to 100\% 21 cycles of 24 h	channels).
Ca	damp heat, steady state	$\begin{aligned} & +40^{\circ} \mathrm{C}, \text { R.H. } 93 \% \\ & 21 \text { days } \end{aligned}$	After 1 h reconditioning under normal conditions:
Na	rapid change of temperature	$3 \mathrm{~h}-25^{\circ} \mathrm{C} / 3 \mathrm{~h}+70^{\circ} \mathrm{C}$ 5 cycles	change of osc. freq. low v.h.f. $\leqslant 1,5 \mathrm{MHz}$
Fc	vibration	$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}$ 3 directions 30 min per direction	change of power gain $\leqslant 2 \mathrm{~dB}$ change of tilt r.f. curve $\leqslant 2 \mathrm{~dB}$
Eb	bump	1000 bumps, acceleration 25 g , in 6 directions	change of tuning current $\leqslant 0,5 \mu \mathrm{~A}$
Ea	shock	half sine pulse 11 ms , acceleration 50 g in 6 directions 3 times per direction	

V.H.F./U.H.F. TELEVISION TUNERS

QUCIK REFERENCE DATA

Systems	C.C.I.R. systems B and G
Channels *	
low v.h.f. band 0 to 4 high v.h.f. band 5 to 11 u.h.f. bands 28 to 63 Intermediate frequencies picture sound $38,875 \mathrm{MHz}$	$31,375 \mathrm{MHz}$

APPLICATION

Designed to cover the Australian v.h.f. and u.h.f. channels of C.C.I.R. systems B and G.
The tuners UV462 are equipped with a frequency divider, which makes them suitable for digital tuning systems based on frequency synthesis; for the remainder they are equal to type UV461.

Available versions

	aerial input connector	frequency divider (IC)	division ratio	catalogue number
UV461	phono	-	-	312212748460
UV461/IEC	IEC	-	-	312223700020
UV462/256	phono	8-pin	256	312223700030
UV462/256/IEC	IEC	8-pin	256	312223700040

[^5]
DESCRIPTION

The UV461 and UV462 are combined v.h.f./u.h.f. tuners with electronic tuning and band switching, covering the low v.h.f. band including the New Zealand channel 1, and the Italian channel C (frequency range 44 to 92 MHz), the high v.h.f. band including the Morocco channel M4 (frequency range 162 to 230 MHz), and the u.h.f. band (frequency range 470 to 861 MHz).
Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common 75Ω phono or IEC aerial connector (v.h.f. and u.h.f.) is on one of the frame sides, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically, the tuner consists of v.h.f. and u.h.f. parts. The v.h.f. aerial signal is fed via switchable low and high v.h.f. wide band input filters to gate 1 of an input MOSFET tetrode (with internal gate protection against surge).
The input filters are provided with an i.f. suppression circuit. The drain load of the MOSFET tetrode is formed by a double tuned switchable bandpass filter, transferring the r.f. signal to the emitter of the mixer transistor. The oscillator signal is also fed to the emitter of the mixer transistor.
The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit, at the low end of which the i.f. signal is coupled out of the turier. A test point (terminal 4) is provided for i.f. injection to align the i.f. output circuit of the tuner together with the i.f. amplifier of the television receiver. An additional test point, which is accessible through a hole in the top of the tuner, is connected to the collector of the mixer transistor.
The r.f. band pass filter and oscillator circuits are tuned by 5 tuning diodes; band switching is achieved by 5 switching diodes.
The u.h.f. part of the tuner consists of a high-pass input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the v.h.f. mixer transistor, now operating as an i.f. amplifier.
The r.f. band pass filter and oscillator circuits are tuned by 3 tuning diodes.
In all bands the tuner is gain controlled via gate 2 of the input MOSFET tetrodes.
The electrical circuit of the UV462 is extended with a frequency divider (division ratio of 256), which inputs are connected to the v.h.f. and u.h.f. oscillator. The complementary outputs are connected to terminals 12 and 13.

MECHANICAL DATA

Fig. 2a.

Terminal
$1=$ aerial
$2=$ supply voltage, low v.h.f., +12 V
$3=$ supply voltage, high v.h.f., +12 V
$4=$ supply voltage, u.h.f., +12 V ; i.f. injection
$5=$ a.g.c. voltage, $+9,2$ to $0,85 \mathrm{~V}$
$6=$ supply voltage, v.h.f. and u.h.f., +12 V

Fig. 2b I.F. output coil. Torque for alignment: 2 to 15 mNm . Press-through force: $\geqslant 10 \mathrm{~N}$.

Mass approx. 127 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a bracket. Information will be supplied upon request). The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.

The solderability of the terminals and mounting tabs is according to IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) Only for UV462.

Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors, v.h.f. bands
r.f. amplifier BF980
mixer BF324
oscillator BF926
tuning diodes $5 \times$ BB909B
switching diodes
d.c. blocking diodes
$5 \times$ BA482/483/484
Semiconductors, u.h.f. bands
r.f. amplifier BF980
oscillator BF970
mixer 1SS99
tuning diodes $3 \times$ OF643
surge protection diodes $1 \times$ BAV10
frequency divider SP4653
Ambient temperature range
operating
0 to $+55^{\circ} \mathrm{C}$
storage
-25 to $+70^{\circ} \mathrm{C}$
Relative humidity
max. 95%

Voltages and currents

Supply voltage

$$
+12 \mathrm{~V} \pm 10 \%
$$

Current drawn from +12 V supply
v.h.f. bands
u.h.f. bands
max. 55 mA ; typ. 39 mA
Bandswitching
For operation in all bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 2 for operation in the low v.h.f. band
terminal 3 for operation in the high v.h.f. band
terminal 4 for operation in the u.h.f. bands
A.G.C. voltage (Figs 4,5 and 6)
voltage range

$$
+9,2 \text { to }+0,85 \mathrm{~V}
$$

voltage at nominal gain
$+9,2 \pm 0,5 \mathrm{~V}$
voltage at 40 dB gain reduction
low v.h.f. band
typ. 3 V
high v.h.f. band
typ. 2 V
voltage at 30 dB gain reduction, u.h.f. bands
typ. 1,6 V
Note: A.G.C. voltages between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.

A.G.C. current

$$
\max .0,3 \mathrm{~mA}
$$

Slope of a.g.c. characteristic, at the end of the specified a.g.c. range
v.h.f. bands
typ. $25 \mathrm{~dB} / \mathrm{V}$
u.h.f. bands
typ. $50 \mathrm{~dB} / \mathrm{V}$

Fig. 4 Typical a.g.c. characteristic, low v.h.f. band.

Fig. 5 Typical a.g.c. characteristic, high v.h.f. band.

Fig. 6 Typical a.g.c. characteristic, u.h.f. bands.

Fig. 7 Typical tuning characteristic, low v.h.f. band.

Fig. 8 Typical tuning characteristic, high v.h.f. band.

Fig. 9 Typical tuning characteristic, u.h.f. bands.

Tuning voltage range (Figs 7, 8 and 9)
Current drawn from 28 V tuning voltage supply

$$
\begin{aligned}
& \text { at } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\
& \text { at } \mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}
\end{aligned}
$$

+1 to +28 V
$\max .0,5 \mu \mathrm{~A}$
$\max .2 \mu \mathrm{~A}$

Note: The source impedance of the tuning voltage offered to terminal 7 must be maximum $47 \mathrm{k} \Omega$.

Slope of tuning characteristic
low v.h.f. band, channel 0 channel 2
high v.h.f. band, channel 5A channel 11
u.h.f. bands, channel 28 channel 63
$\left.\begin{array}{r}5 \mathrm{MHz} / \mathrm{V} \\ 4 \mathrm{MHz} / \mathrm{V} \\ 8 \mathrm{MHz} / \mathrm{V} \\ 3 \mathrm{MHz} / \mathrm{V} \\ 19 \mathrm{MHz} / \mathrm{V} \\ 10 \mathrm{MHz} / \mathrm{V}\end{array}\right\}$ typical values

Frequencies

Frequency ranges low v.h.f. band
high v.h.f. band
u.h.f. bands

Intermediate frequencies picture
sound

Wanted signal characteristics

Input impedance
75Ω
V.S.W.R. and reflection coefficient (values between picture and sound carrier, as well as values at picture carrier)

v.s.w.r.

v.h.f. bands
u.h.f. bands
reflection coefficient
v.h.f. bands
u.h.f. bands
max. 60\%
max. 66\%
max. 66\%
during gain control
max. 4
max. 5
$\max .5$
max. 7
max. 75\%
R.F. curves, bandwidth
low v.h.f. band
typ. 10 MHz
high v.h.f. band
typ. 12 MHz
typ. 17 MHz

R.F. curves, tilt

A.G.C. range
v.h.f. bands
u.h.f. bands

Power gain (see also Measuring method of power gain)
v.h.f. bands
channel 0
channel 5
channel 5A
channel 11
u.h.f. bands
channel 28
channel 40
channel 63
Maximum gain difference
between any two v.h.f. channels
between any two u.h.f. channels
between any v.h.f. and u.h.f. channel
Noise figure
v.h.f. bands
channel 0
channel 5
channel 5A
channel 11
u.h.f. bands
channel 28
channel 40
channel 63
Overloading
Input signal producing 1 dB gain
compression at nominal gain
v.h.f. bands
u.h.f. bands

Input signal producing either a detuning
of the oscillator of +300 kHz or
-1000 kHz or stopping of the
oscillations at nominal gain
v.h.f. bands
u.h.f. bands
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
min. $\quad 40 \mathrm{~dB}$
min. 30 dB
min. $\quad 22 \mathrm{~dB}$
typ. $\quad 27 \mathrm{~dB}$
typ. $\quad 28 \mathrm{~dB}$
typ. $\quad 27 \mathrm{~dB}$
typ. $\quad 29 \mathrm{~dB}$
min. 20 dB
typ. $\quad 28 \mathrm{~dB}$
typ. $\quad 28 \mathrm{~dB}$
typ. 26 dB
typ. $\quad 3 \mathrm{~dB}$
typ. $\quad 3 \mathrm{~dB}$
typ. $\quad 4 \mathrm{~dB}$
$\max .8 \mathrm{~dB}$
typ. $\quad 5 \mathrm{~dB}$
typ. $\quad 4 \mathrm{~dB}$
typ. $5,5 \mathrm{~dB}$
typ. $5,5 \mathrm{~dB}$
max. 10 dB
typ. 6 dB
typ. $\quad 6 \mathrm{~dB}$
typ. $\quad 7 \mathrm{~dB}$
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
v.h.f. bands
u.h.f. bands, channels 21 to 27
channels 28 to 62 channels 63 to 69
I.F. rejection (measured at picture carrier frequency)
v.h.f. bands
u.h.f. bands
min. 60 dB
min. 60 dB ; typ. 70 dB
min. 40 dB ; typ. 46 dB
min. 44 dB ; typ. 53 dB
min. 40 dB ; typ. 46 dB
min. 60 dB

Note: At colour sub-carrier frequency maximum 6 dB less rejection.
$\mathrm{N} \pm 4$ rejection (for u.h.f. only)
Interference signal for an interference
ratio of 47 dB referred to wanted picture
carrier (picture to sound carrier ratio
of 10 dB ; wanted signal $60 \mathrm{~dB}(\mu \mathrm{~V})$; tuner
operating at nominal gain)
typ. $70 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Cross modulation
Input signal producing 1\% cross modulation, i.e. 1\% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier
frequency)
v.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 40 dB gain reduction (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})) \quad$ typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V}))$
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
In band cross modulation (wanted signal: picture carrier of channel N ; interfering signal: picture carrier of channel $\mathbf{N} \pm 2$ for low v.h.f., or channel $\mathbf{N} \pm 3$ for high v.h.f., or channel $\mathbf{N} \pm 5$ for u.h.f.) v.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
Out of band cross modulation at nominal gain low v.h.f., interfering from high v.h.f. low v.h.f., interfering from u.h.f.
high v.h.f., interfering from low v.h.f. high v.h.f., interfering from u.h.f.
u.h.f., interfering from low v.h.f.
u.h.f., interfering from high v.h.f.
typ. $82 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $82 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Oscillator characteristics

Pulling
Input signal of tuned frequency producing a
shift of the oscillator frequency of 10 kHz , at nominal gain
v.h.f. bands
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Shift of oscillator frequency at a change
of the supply voltage of 5%
v.h.f. bands
$\max .200 \mathrm{kHz}$
u.h.f. bands
$\max .400 \mathrm{kHz}$
Drift of oscillator frequency
during warm-up time (after the tuner
has been completely out of operation
for 15 min . measured between 5 s and
15 min after switching on)
max. 250 kHz
during warm-up time (after the input
stage is in operation for 15 min ,
measured between 2 s and 15 min
after band switching)
$\max .250 \mathrm{kHz}$
at a change of the ambient temperature
from +25 to $+50^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
v.h.f. bands
u.h.f. bands
max. 600 kHz
max. 1000 kHz
Frequency divider characteristics (UV462)
Supply voltage
Current drawn from +5 V supply
Output voltage, at terminals 12 and 13
unloaded
with 820Ω load
Output impedance
$+5 \mathrm{~V} \pm 10 \%$

Output imbalance
Interference signal on the i.f. output
max. 35 mA ; typ. 25 mA
min. $0,8 \mathrm{~V}$ p-p
min. 0,7 V p-p
$\min .0,3 \vee \mathrm{p}-\mathrm{p}$
typ. $1 \mathrm{k} \Omega$
typ. $0,1 \mathrm{~V}$
max. $3 \mu \mathrm{~V}$

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10.

I.F. circuit characteristics

Bandwidth of i.f. output circuit
$5 \pm 1 \mathrm{MHz}$
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10; tuning voltage 18 V ; u.h.f. band switched on.

Bandwidth variation of i.f. output circuit as a result of r.f. tuning and band switching (reference: u.h.f.; tuning voltage 18 V)
$\max .500 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 10, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Fig. 10.
Detuning of the i.f. output circuit as a result of r.f. tuning and band switching (reference: u.h.f.; tuning voltage 18 V)
$\max .500 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 10, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Minimum tuning range of i.f. output coil $\leqslant 31,5$ to $\geqslant 37,5 \mathrm{MHz}$

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 10.

Attenuation between i.f. injection point
and i.f. output of the tuner

Miscellaneous

Radio interference

Oscillator radiation and oscillator voltage at the aerial terminal

Microphonics

Surge protection

Protection against voltages
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
typ. 16 dB

In conformity with the oscillator interference limits of the Australian Standard AS1053-1973 and the limits of C.I.S.P.R. 13 (1975).

There will be no microphonics, provided the tuner is installed in a professional manner.
max. 5 kV
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$

Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

Terminal 4 (supply voltage u.h.f.) can be used as i.f. injection point, provided the u.h.f. supply voltage is applied to terminal 4 via a resistor of 10Ω (see Fig. 11). The u.h.f. band should be switched on; tuning voltage should be 18 V .

Fig. 11.

Connection of the i.f. amplifier

No special precautions are required to load and to match the i.f. output of the tuner.

Connection of supply voltages

Fig. 12.

Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 10.

Fig. 13.
The RC-circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit, which should be tuned to $36,15 \mathrm{MHz}$; the bandwidth is approx. 5 MHz (Fig. 13).

Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a 75Ω source and a 75Ω detector.

Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a plastic tool, which has a crosshead as shown in Fig. 14. A suitable tool for automatic alignment is available under catalogue number 810400411040.

Fig. 14.

V.H.F./U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	C.C.I.R. system
Channels (South African channel distribution)	4 to 13
v.h.f.	21 to 69
u.h.f.	$38,9 \mathrm{MHz}$
Intermediate frequencies picture sound $32,9 \mathrm{MHz}$ \mathbf{l}	

APPLICATION

Designed to cover the South African v.h.f. and u.h.f. channels of C.C.I.R. system I. The tuners UV472 are equipped with a frequency divider, which makes them suitable for digital tuning systems based on frequency synthesis; for the remainder they are equal to type UV471.

Available versions

	aerial input connector	frequency divider (IC)	catalogue number
UV471	phono	-	312212703310
UV472/256	phono	$1: 256$	312223700340
UV472/64	phono	$1: 64$	312223700360

DESCRIPTION

The UV471 and UV472 are combined v.h.f./u.h.f. tuners with electronic tuning and band switching, covering the television bands used in South Africa in accordance with the publications of the South African Bureau of Standards (S.A.B.S.).
Mechanically, the tuners are built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common 75Ω aerial connector (v.h.f. and u.h.f.) is on one of the frame sides, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.

Electrically, the tuners consist of v.h.f. and u.h.f. parts. The v.h.f. aerial signal is fed via a tuned input circuit to gate 1 of an input MOSFET tetrode (with internal gate protection against surge).
The drain load of the MOSFET tetrode is formed by a double tuned filter, transferring the r.f. signal to the emitter of the mixer transistor.
The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit, at the low end of which the i.f. signal is coupled out of the tuner. A test point (terminal 4) is provided for i.f. injection to align the i.f. output circuit of the tuner together with the i.f. amplifier of the television receiver.
An additional test point (T.P.), which is accessible through a hole in the top of the tuner, is connected to the collector of the mixer transistor.
The r.f. band pass filter and oscillator circuits are tuned by 4 tuning diodes.
The u.h.f. part of the tuners consist of a high-pass input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode.
The i.f. signal from the mixer diode is amplified by the v.h.f. mixer transistor, now operating as an i.f. amplifier.
The r.f. band pass filter and oscillator circuits are tuned by 3 tuning diodes.
In all bands the tuners are gain controlled via gate 2 of the input MOSFET tetrode.
\rightarrow The electrical circuit of the UV472 is extended with a frequency divider (division ratio of 256 or 64), which inputs are connected to the v.h.f. and u.h.f. oscillator. The complementary outputs are connected to terminals 12 and 13.

Fig. 2a.
Terminal
1 = aerial
3 = supply voltage, v.h.f., +12 V
4 = supply voltage, u.h.f., +12 V ; i.f. injection
$5=$ a.g.c. voltage, $+9,2$ to $+0,85 \mathrm{~V}$
$6=$ supply voltage, v.h.f. and u.h.f., +12 V
$7=$ tuning voltage, +1 to +28 V
$9=$ i.f. output
$10=$ earth

Fig. 2b I.F. output coil.
Torque for alignment: 2 to 15 mNm . Press-through force: $\geqslant 10 \mathrm{~N}$.

Mass
approx. 127 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a bracket. Information will be supplied upon request). The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) Only for UV472

Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

ELECTRICAL DATA

Unless otherwiss specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors, v.h.f. band
r.f. amplifier BF980
mixer BF324
oscillator BF926
tuning diodes $4 \times$ BB405B
switching diodes $1 \times$ BA482
Semiconductors, u.h.f. band
r.f. amplifier BF980
oscillator BF970
mixer 1SS99
tuning diodes $3 \times$ BB405B
surge protection diodes $1 \times$ BAV10
Frequency divider SP4653 or SP4632
Ambient temperature range
operating
0 to $+55^{\circ} \mathrm{C}$
storage
Relative humidity
-25 to $+70^{\circ} \mathrm{C}$

Voltages and currents
Supply voltage $+12 \mathrm{~V} \pm 10 \%$
Current drawn from +12 V supply
v.h.f. band
max. 50 mA ;typ. 31 mA
u.h.f. band
max. 50 mA ;typ. 37 mA
Bandswitching
For operation in all bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 3 for operation in the v.h.f. band
terminal 4 for operation in the u.h.f. band
A.G.C. voltage (Figs 4 and 5)
voltage range
$+9,2$ to + 0,85 V
voltage at nominal gain
$\left.\begin{array}{l}\text { voltage at } 40 \mathrm{~dB} \text { gain reduction } \\ \text { voltage at } 30 \mathrm{~dB} \text { gain reduction }\end{array}\right\}$ (v.h.f. band)
$+9,2 \pm 0,5 \mathrm{~V}$
typ. 1,5 V
typ. 2 V
Note: A.G.C. voltages between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.

A.G.C. current

$\max .0,3 \mathrm{~mA}$
Slope of a.g.c. characteristic, at the end of the specified a.g.c. range
v.h.f. band
typ. $25 \mathrm{~dB} / \mathrm{V}$
u.h.f. band
typ. $50 \mathrm{~dB} / \mathrm{V}$

Fig. 4 Typical a.g.c. characteristic, v.h.f. band.

Fig. 6 Typical tuning characteristic, v.h.f. band.

Fig. 5 Typical a.g.c. characteristic, u.h.f. band.

Fig. 7 Typical tuning characteristic, u.h.f. band.

Tuning voltage range (Figs 6 and 7)
Current drawn from 28 V tuning voltage supply

$$
\begin{aligned}
& \text { at } \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\
& \text { at } \mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}
\end{aligned}
$$

+1 to +28 V
$\max .0,5 \mu \mathrm{~A}$
max. $2 \mu \mathrm{~A}$

Note: The source impedance of the tuning voltage offered to terminal 7 must be maximum $47 \mathrm{k} \Omega$.

Slope of tuning characteristic
v.h.f. band, channel 4
channel 8
channel 13
u.h.f. band, channel 21
channel 69

$$
\begin{array}{r}
7 \mathrm{MHz} / \mathrm{V} \\
6 \mathrm{MHz} / \mathrm{V} \\
1,8 \mathrm{MHz} / \mathrm{V} \\
22 \mathrm{MHz} / \mathrm{V} \\
4 \mathrm{MHz} / \mathrm{V}
\end{array}
$$

typical values

Frequencies

Frequency ranges

v.h.f.
u.h.f. band

Intermediate frequencies picture
sound
channel 4 (picture carrier $175,25 \mathrm{MHz}$) to channel 13 (picture carrier $247,43 \mathrm{MHz}$). Margin at the extreme channels: min. 2 MHz . channel 21 (picture carrier $471,25 \mathrm{MHz}$) to channel 69 (picture carrier $855,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .3 \mathrm{MHz}$.
$38,9 \mathrm{MHz}$
$32,9 \mathrm{MHz}$
The oscillator frequency is higher than the aerial signal frequency

Wanted signal characteristics

Input impedance
75Ω
V.S.W.R. and reflection coefficient (values between picture and sound carrier, as well as values at picture carrier)
v.s.w.r.
v.h.f. band,
u.h.f. band
reflection coefficient
v.h.f. band
u.h.f. band
R.F. curves, bandwidth
v.h.f. band
u.h.f. band
R.F. curves, tilt
at nominal gain
max. 4
$\max .5$
max. 60\%
max. 66\%
typ. 10 MHz
typ. 17 MHz
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.

```
A.G.C. range
    v.h.f. band
    u.h.f. band
Power gain (see also Measuring method of power gain)
    v.h.f. band
    channel }
    channel }
    channel 10
    channel }1
    u.h.f. band
    channel }2
    channel }4
    channel }6
Maximum gain difference
    between any two v.h.f. channels
    between any two u.h.f. channels
    between any v.h.f. and u.h.f. channel
Noise figure
    v.h.f. band
    channel }
    channel }
    channel 10
    channel 13
    u.h.f. band
    channel }2
    channel }4
    channel }6
Overloading
Input signal producing 1 dB gain
    compression at nominal gain
    v.h.f. band
    u.h.f. band
Input signal producing either a detuning
    of the oscillator of + 300 kHz or
    -1000 kHz or stopping of the
    oscillations at nominal gain
    v.h.f. band
    u.h.f. band
    Unwanted signal characteristics
Image rejection (measured at picture carrier frequency)
    v.h.f. band
    u.h.f. band
I.F. rejection (measured at picture
    carrier frequency)
    v.h.f. band min. }60\textrm{dB
    u.h.f. band min. }60\textrm{dB
```

min. 40 dB
$\min .30 \mathrm{~dB}$
min. $\quad 22 \mathrm{~dB}$
typ. $\quad 31 \mathrm{~dB}$
typ. 30 dB
typ. 31 dB
typ. $\quad 31 \mathrm{~dB}$
min. 20 dB
typ. $\quad 32 \mathrm{~dB}$
typ. 31 dB
typ. $\quad 32 \mathrm{~dB}$
typ. $\quad 4 \mathrm{~dB}$
typ. $\quad 4 \mathrm{~dB}$
typ. 6 dB
$\max .8 \mathrm{~dB}$
$\max .4,5 \mathrm{~dB}$
typ. $4,5 \mathrm{~dB}$
typ. $4,5 \mathrm{~dB}$
typ. $4,5 \mathrm{~dB}$
max. 10 dB
typ. 6 dB
typ. $\quad 6 \mathrm{~dB}$
typ. $\quad 7 \mathrm{~dB}$
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
min. 60 dB ; typ. 75 dB
min. 44 dB ; typ. 53 dB
min. 60 dB
min. 60 dB
Note: At colour sub-carrier frequency maximum 6 dB less rejection.

Note: At colour sub-carrier frequency maximum 6 dB less rejection.
$\mathrm{N} \pm 4$ rejection (for u.h.f. only)
Interference signal for an interference ratio of 53 dB referred to wanted picture
carrier (picture to sound carrier ratio
of 10 dB ; wanted $60 \mathrm{~dB}(\mu \mathrm{~V})$; tuner
operating at nominal gain)
typ. $75 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Cross modulation

Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.

In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
v.h.f. band
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. band
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})) \quad$ typ. $74 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $N \mp 3$ for v.h.f. or channel $N \pm 5$ for u.h.f.)
v.h.f. band
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $82 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. band
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $82 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Out of band cross modulation at nominal gain
v.h.f. interfering from u.h.f.
u.h.f. interfering from v.h.f.
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Oscillator characteristics

Pulling
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain

v.h.f. band	typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. band	typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Shift of oscillator frequency at a change of the supply voltage of 5%
v.h.f. band
$\max .200 \mathrm{kHz}$
u.h.f. band
$\max .400 \mathrm{kHz}$
Drift of oscillator frequency
during warm-up time (after the tuner
has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
max. 250 kHz
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min
after band switching)
$\max .250 \mathrm{kHz}$

Drift of oscillator frequency
at a change of the ambient temperature
from +25 to $+50^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $+55^{\circ} \mathrm{C}$)

```
v.h.f. band max. 600 kHz
```

u.h.f. band $\max .1000 \mathrm{kHz}$

Frequency divider characteristics (UV472 only)
Division ratio
256 or 64
Supply voltage
$+5 \mathrm{~V} \pm 10 \%$
Current drawn from +5 V supply
max. 55 mA
Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
$\min . \quad 0,5 V_{p-p}$
Output impedance
typ. $1 \mathrm{k} \Omega$
Output imbalance
Interference signal on the i.f. output
max. $0,1 \mathrm{~V}$

Note: I.F. output of the tuner terminated with $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
$\max . \quad 3 \mu \mathrm{~V}$

I.F. circuit characteristics

Bandwidth of i.f. output circuit
$5 \pm 1 \mathrm{MHz}$
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 8; tuning voltage 25 V ; u.h.f. band switched on.

Bandwidth variation of i.f. output circuit as a result of r.f. tuning and band switching (reference: u.h.f.; tuning voltage 25 V)
$\max .500 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 8, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Fig. 8.
Detuning of the i.f. output circuit as a result of r.f. tuning and band switching (reference: u.h.f.; tuning voltage 25 V) $\max .500 \mathrm{kHz}$

Note: I.F. output of the tuner terminated with a modified circuit of Fig. 8, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.
Minimum tuning range of i.f. output coil 32,5 to 40 MHz
Note: I.F. output of the tuner terminated with the circuit shown in Fig. 8.
Attenuation between i.f. injection point and i.f. output of the tuner typ. 16 dB

Miscellaneous

Radio interference
Oscillator radiation and oscillator
voltage at the aerial terminal

Within the limits of C.I.S.P.R. 13 (1975) and S.A.B.S. requirements

There will be no microphonics, provided the tuner is installed in a professional manner.
Surge protection
Protection against voltages
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
max. 5 kV
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$

Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

Terminal 4 (supply voltage u.h.f.) can be used as i.f. injection point, provided the u.h.f. supply voltage is applied to terminal 4 via a resistor of 10Ω (see Fig. 9). The u.h.f. band should be switched on; tuning voltage should be 25 V .

Fig. 9.

Connection of the i.f. amplifier

No special precautions are required to load and to match the i.f. output of the tuner.

Connection of supply voltages

7287915
Fig. 10.

Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 8.

Fig. 11.
The RC-circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit, which should be tuned to $36,15 \mathrm{MHz}$; the bandwidth is approx. 5 MHz (Fig. 11).

Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a 75Ω source and a 75Ω detector.

Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a plastic tool, which has a cross head as shown in Fig. 12. A suitable tool for automatic alignment is available under catalogue number 810400411040.

Fig. 12.

V.H.F./U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	C.C.I.R. systems B, G and H	
Channels	off-air	cable
low v.h.f.	E2 to C	S01 to S1
high v.h.f.	E5 to E12	S2 to S20
hyperband		S21 to S41
u.h.f.	E21 to E69	
Intermediate frequencies		
picture	38,90 MHz	
colour	$34,47 \mathrm{MHz}$	
sound 1	$33,40 \mathrm{MHz}$	
sound 2	$33,16 \mathrm{MHz}$	

APPLICATION

Designed to cover the v.h.f. and u.h.f. channels of C.C.I.R. systems B, G and H with extended v.h.f. frequency ranges, including the hyperband.
The i.f. output is designed for direct drive of a variety of SAW filters.
The tuner UV616/256 is equipped with a frequency divider, which makes it suitable for digital tuning systems based on frequency synthesis; for the remainder it is equal to type UV615.

Available versions

	aerial input connector	frequency divider (IC)	catalogue number
UV615	IEC	-	311221853600
UV616/256	IEC	$1: 256$	311221853420

Both tuners comply with the requirements of radiation, signal handling capability, and immunity from radiated interference of Amtsblatt DBP69/1981, when installed professionally in an adequate TV receiver.

DEVELOPMENT DATA

siflen

Fig. 1 Circuit diagram.

DESCRIPTION

The UV615 and UV616/256 are combined v.h.f./u.h.f. tuners with electronic tuning and band switching, covering the low v.h.f. band (frequency range 46 to 110 MHz), the high v.h.f. band (frequency range 111 to 300 MHz), the hyperband (frequency range 300 to 470 MHz), and the u.h.f. band (frequency range 470 to 860 MHz).
Mechanically, the tuners are built on a low-loss printed-wiring board, carrying all components, in a diecast metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common IEC coaxial aerial connector (75Ω) is integrated in one of the frame sides of the housing, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically, the tuners consist of v.h.f., hyperband and u.h.f. parts (see Fig. 1). They are equipped with a common aerial input and provided with tuned r.f. MOSFET input stages. The v.h.f. mixer, v.h.f. oscillator and i.f. amplifier functions are provided by a tuner IC. This IC has terminals between mixer and i.f. amplifier to connect i.f. preselections, a $40,4 \mathrm{MHz}$ trap is provided to improve the selectivity of common SAW filters for adjacent channel N-1 (system B).
Output impedance of the symmetrical i.f. terminals is approx. 75Ω to insure sufficient triple transient suppression of the SAW filter.
The r.f. band pass filter and oscillator circuits of the v.h.f. part are tuned by 7 tuning diodes; band switching is achieved by 4 switching diodes, those of the hyperband by 4 tuning diodes and 1 switching diode respectively.
The u.h.f. part of the tuner has a high-pass input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the i.f. pre-amplifier of the tuner I.C.
The r.f. band pass filter and oscillator circuits are tuned by 4 tuning diodes.
In all bands the tuner is gain-controlled via gate 2 of the input MOSFET tetrode.
A test point TP1 is provided for i.f. injection.
The electrical circuit of the UV616/256 is extended with a frequency divider (division ratio of 256), with an input connected to the v.h.f., hyperband and u.h.f. oscillators. The symmetrical ECL outputs are connected to terminals 13 and 14.

MECHANICAL DATA

7295337

Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.
Fig. 2.

Terminal
A = aerial input (IEC female 75Ω)
$5=$ a.g.c. voltage, $+9,2$ to $+0,85 \mathrm{~V}$
6 = supply voltage, tuning part, +12 V
7 = supply voltage, low v.h.f., +12 V
$8=$ supply voltage, high v.h.f., +12 V
9 = supply voltage, hyperband, +12 V
$10=$ supply voltage, u.h.f., +12 V
$11=$ tuning voltage, $+0,8$ to +28 V
12 = supply voltage, frequency
divider, + 5 V only for
13,14 = balanced output voltage of (UV616/256 frequency divider ($1 \mathrm{k} \Omega$)
15 = earth
$\left.\begin{array}{l}16= \\ 17=\end{array}\right\}$ i.f. output, symm. (approx. 75Ω)

Mass approx. 99 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board (using the piercing diagram shown in Fig. 3) without clearance between tuner supporting surface and board. The connection pins should be bent according to Fig. 4. The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.

The solderability of the terminals and mounting tabs is according to IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) Only for UV616/256
$1 \mathrm{eb}=0,025$ inch

Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

Fig. 4.
In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors, v.h.f. bands
$\begin{array}{ll}\left.\begin{array}{l}\text { r.f. amplifier } \\ \text { mixer } \\ \text { oscillator }\end{array}\right\} & \text { BF992 } \\ \text { TDA5030 }\end{array}$
tuning diodes $7 \times$ OF633
switching diodes
d.c. blocking diodes
$4 \times$ BA482/483/484
$2 \times$ BAS15
Semiconductors, hyperband
r.f. amplifier BF990
oscillator BF569
mixer 1SS99
tuning diodes $5 \times$ OF643
switching diodes $1 \times$ BA482
d.c. blocking diodes $2 \times$ BAW62

Semiconductors, u.h.f. bands
r.f. amplifier BF990
oscillator BF970
mixer 1SS99
tuning diodes $4 \times$ OF643
Frequency divider SP4653
Ambient temperature range
operating
storage
-10 to $+60^{\circ} \mathrm{C}$

Relative humidity
-25 to $+70^{\circ} \mathrm{C}$
Relative humidity
max. 95\%

Voltages and currents

Supply voltage	$+12 \mathrm{~V} \pm 10 \%$
Current drawn from +12 V supply	
v.h.f. bands	$\max .50 \mathrm{~mA}$
u.h.f. bands	$\max .45 \mathrm{~mA}$
Bandswitching	max. 15 mA (hyperband max. 20 mA)

For operation in all bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 7 for operation in low v.h.f. band terminal 8 for operation in high v.h.f. band terminal 9 for operation in the hyperband terminal 10 for operation in u.h.f. bands
A.G.C. voltage
voltage range $\quad+9,2$ to $0,85 \mathrm{~V}(\max .30 \mu \mathrm{~A})$
voltage at nominal gain $\quad+9,2 \pm 0,5 \mathrm{~V}$
voltage at 40 dB gain reduction
low v.h.f. band
typ. 3 V
high v.h.f. band and hyperband
typ. 2 V
voltage at 30 dB gain reduction u.h.f. band
typ. 2 V
Note: A.G.C. voltage between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.
\rightarrow A.G.C. current
max. 0,03 mA
Slope of a.g.c. characteristic
at the end of the specified a.g.c. range
low v.h.f. band typ. $40 \mathrm{~dB} / \mathrm{V}$
high v.h.f. band typ. $80 \mathrm{~dB} / \mathrm{V}$
hyperband
typ. $50 \mathrm{~dB} / \mathrm{V}$
Tuning voltage range
+1 to +28 V
Current drawn from 28 V tuning voltage supply
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and 60% R.H.
at $T_{\text {amb }}=25^{\circ} \mathrm{C}$ and 95% R.H.
at $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ and 60% R.H.
max. $0,5 \mu \mathrm{~A}$
max. $2 \mu \mathrm{~A}$
max. $2 \mu \mathrm{~A}$
Note: The source impedance of the tuning voltage offered to terminal 11 must be maximum $47 \mathrm{k} \Omega$.
Slope of tuning characteristic
low v.h.f. band, channel E2 channel S1
high v.h.f. band, channel S2 channel S20
hyperband, channel H21
channel H41
u.h.f. bands, channel E21
channel E69
$\left.\begin{array}{r}5 \mathrm{MHz} / \mathrm{V} \\ 1 \mathrm{MHz} / \mathrm{V} \\ 10 \mathrm{MHz} / \mathrm{V} \\ 2 \mathrm{MHz} / \mathrm{V} \\ 8 \mathrm{MHz} / \mathrm{V} \\ 14 \mathrm{MHz} / \mathrm{V} \\ 22 \mathrm{MHz} / \mathrm{V} \\ 5 \mathrm{MHz} / \mathrm{V}\end{array}\right\}$ typical values

Frequencies

Frequency ranges
low v.h.f. band
high v.h.f. band
$\longrightarrow \quad$ hyperband
u.h.f. bands

Intermediate frequencies
picture
channel E2 (picture carrier $48,25 \mathrm{MHz}$) to channel S1 (picture carrier $105,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .2 \mathrm{MHz}$. channel S2 (picture carrier $112,25 \mathrm{MHz}$) to channel S20 (picture carrier $294,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .2 \mathrm{MHz}$. channel S21 (picture carrier $303,25 \mathrm{MHz}$) to channel S41 (picture carrier $463,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .2 \mathrm{MHz}$. channel E21 (picture carrier $471,25 \mathrm{MHz}$) to channel E69 (picture carrier $855,25 \mathrm{MHz}$).
Margin at the extreme channels: $\min .3 \mathrm{MHz}$.
colour
$38,90 \mathrm{MHz}$
sound 1
$34,47 \mathrm{MHz}$
sound 2
$33,40 \mathrm{MHz}$
$33,16 \mathrm{MHz}$
The oscillator frequency is higher than the aerial signal frequency.

Wanted signal characteristics

Input impedance
V.S.W.R. and reflection coefficient (values between picture and sound carrier, as well as values at picture carrier)
v.s.w.r.
v.h.f. bands
hyperband
u.h.f. bands
reflection coefficient
v.h.f. bands
hyperband
u.h.f. bands

Output impedance (i.f.)
Capacitance between terminals
Load impedance
R.F. curves bandwidth
low v.h.f. band
high v.h.f. band
hyperband
u.h.f. bands
R.F. curves, tilt
A.G.C. range
v.h.f. bands and hyperband
u.h.f. bands

Voltage gain
low v.h.f. band
high v.h.f. band
channels S2 to S6
channels S21 to S41
u.h.f. bands

Maximum gain difference
off. air channels
Noise figure
v.h.f. bands

E channels
S channels and hyperband channels
u.h.f. bands
75Ω
at nominal gain and during gain control
max. 4
max. 5
max. 5
max. 60\%
max. 66\%
max. 66\%
75Ω approx.
typ. 3,5 pF
min. $1 \mathrm{k} \Omega / /$ max. 22 pF
total capacitance load to be tuned to $36,15 \mathrm{MHz}$ by means of an inductance between terminals 16 and $17(\min . \mathrm{L}: 890 \mathrm{nH}) \longleftarrow$
typ. 10 MHz
typ. 10 MHz
typ. 15 MHz
typ. 15 MHz
onany channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
$\min .40 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$
$\min .40 \mathrm{~dB}$; max. 50 dB
min. 36 dB ; max. 46 dB
min. 40 dB ; max. 50 dB
$\min .40 \mathrm{~dB}$; max. 50 dB
$\max .5 \mathrm{~dB}$
typ. 5 dB ; max. 8 dB
typ. 7 dB ; max. 10 dB
typ. 8 dB ; max. 11 dB

Overloading

Input signal producing 1 dB gain compression at nominal gain
v.h.f. bands and hyperband typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
$\rightarrow \quad$ u.h.f. bands
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Input signal producing either a detuning of the oscillator of +300 kHz or -1000 kHz or stopping of the oscillations at nominal gain v.h.f. bands
u.h.f. bands and hyperband
typ. $105 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; min. $100 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; min. $90 \mathrm{~dB}(\mu \mathrm{~V})$

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
v.h.f. bands min. 66 dB ; typ. 70 dB
hyperband
\rightarrow u.h.f. bands
min. 66 dB ; typ. 70 dB
I.F. rejection (measured at picture carrier frequency) all bands
min. 53 dB ; typ. 65 dB

Note: At colour sub-carrier frequency maximum 6 dB less rejection.

Cross modulation

Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
v.h.f. bands and hyperband
$\rightarrow \quad$ at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $75 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
$\rightarrow \quad$ at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $75 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier
\longrightarrow of channel $N \pm 2$ for low v.h.f., or channel $N \pm 3$ for high v.h.f., or channel $N \pm 5$ for u.h.f. and hyperband
v.h.f. bands and hyperband at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})) \quad$ typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
$\rightarrow \quad$ at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Out of band cross modulation at nominal gain
each of the v.h.f., u.h.f. or hyperbands
interfering with any of the other bands mentioned
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Unwanted signal handling capability (visibility test)
For the channel combinations
v.h.f. and hyperband: $N \pm 1, N \pm 5, N+11$
u.h.f.: $N \pm 1, N \pm 5, N+9$

The tuner meets the requirements of "Amtsblatt" DBP/1981, item 5.1.2, when measured in an adequate TV receiver.

Oscillator characteristics

Pulling
Input signal of tuned frequency producing a
shift of the oscillator frequency of 10 kHz , at nominal gain
all bands
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Shift of oscillator frequency at a change of the supply voltage of $\pm 5 \%$
v.h.f. bands
max. 250 kHz
hyperband
max. 500 kHz
u.h.f. bands
max. 500 kHz
Drift of oscillator frequency
during warm-up time (after the tuner
has been completely out of operation
for 15 min , measured between 5 s and 15 min after switching on)
max. 250 kHz
during warm-up time (after the input
stage is in operation for 15 min , measured between 2 s and 15 min
after band switching)
max. 250 kHz
at a change of the ambient temperature
from +25 to $+50^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $0^{\circ} \mathrm{C}$)
v.h.f. bands $\quad \max .500 \mathrm{kHz}$
hyperband
u.h.f. bands
at a change of humidity from $60 \pm 15 \%$
to $93 \pm 2 \%$, at $\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}$
low v.h.f. band
high v.h.f. band
hyperband
max. 500 kHz
u.h.f. bands
max. 1000 kHz
$\max .1300 \mathrm{kHz}$
$\max .1500 \mathrm{kHz}$

Frequency divider characteristics of the UV616/256

\rightarrow

Division ratio
256
Supply voltage
Current drawn from +5 V supply
\rightarrow Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
Output impedance
Output imbalance
Interference signal on the i.f. output
Note: I.F. output of the tuner terminated with $10 \mathrm{M} \Omega / 11 \mathrm{pF}$.

Miscellaneous

Radio interference
Oscillator radiation and oscillator voltage at the aerial terminal

Microphonics

Surge protection
Protection against voltages
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
$+5 \mathrm{~V} \pm 5 \%$
max. 35 mA ; typ. 25 mA
$\min .0,5 \vee_{p-p}$
typ. $\quad 1 \mathrm{k} \Omega$
typ. $0,1 \mathrm{~V}$
max. $30 \mathrm{~dB}(\mu \mathrm{~V})$

Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

An i.f. signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the i.f. injection point TP1, accessible through a hole in the cover (see Fig. 2) via a probe (see Fig. 5).

Fig. 5.

V.H.F./U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	C.C.I.R. systems B, G and H	
Channels	off-air	cable
low v.h.f.	E2 - C5	S01 to S1
high v.h.f.	E21 - E69	S2 to S20
u.h.f.		
Intermediate frequencies	$38,90 \mathrm{MHz}$	
picture	$34,47 \mathrm{MHz}$	
colour	$33,40 \mathrm{MHz}$	
sound 1	$33,16 \mathrm{MHz}$	
sound 2		

APPLICATION

Designed to cover the v.h.f. and u.h.f. channels of C.C.I.R. systems B, G and H with extended v.h.f. frequency ranges.
The tuner UV618/256 is equipped with a frequency divider, which makes it suitable for digital tuning systems based on frequency synthesis; for the remainder it is equal to type UV617.

Available versions

	aerial input connector	frequency divider (IC)	catalogue number
UV617	IEC	-	312222300060
UV618/256	IEC	$1: 256$	312223700010

Both tuners comply with the requirements of radiation, signal handling capability, and immunity from radiated interference of Amtsblatt DBP69/1981, when installed professionally in an adequate TV receiver.

DESCRIPTION

The UV617 and UV618/256 are combined v.h.f./u.h.f. tuners with electronic tuning and band switching, covering the low v.h.f. band (frequency range 46 to 110 MHz), the high v.h.f. band (frequency range 111 to 300 MHz), and the u.h.f. band (frequency range 470 to 860 MHz).
Mechanically, the tuners are built on a low-loss printed-wiring board, carrying all components, in a diecast metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common IEC coaxial aerial connector (75Ω) is integrated in one of the frame sides of the housing, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically, the tuners consist of v.h.f. and u.h.f. parts (see Fig. 1). They are equipped with a common aerial input and provided with r.f. MOSFET input stages. The v.h.f. mixer, v.h.f. oscillator and i.f. amplifier functions are provided by a tuner IC. This IC has terminals between mixer and i.f. amplifier to connect i.f. preselections, a 40,4 trap is provided to improve the selectivity of common SAW filters for adjacent channel N-1 (system B).
Output impedance of the symmetrical i.f. terminals is approx. 75Ω to insure sufficient triple transient supression of the SAW.
The r.f. band pass filter and oscillator circuits are tuned by 7 tuning diodes; band switching is achieved by 4 switching diodes.
The u.h.f. part of the tuner has a high-pass input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the i.f. pre-amplifier of the tuner I.C..
The r.f. band pass filter and oscillator circuits are tuned by 4 tuning diodes.
In all bands the tuner is gain-controlled via gate 2 of the input MOSFET tetrode.
A test point TP1 is provided for i.f. injection.
The electrical circuit of the UV618/256 is extended with a frequency divider (division ratio of 256), with inputs connected to the v.h.f. and u.h.f. oscillator. The symmetrical ECL outputs are connected to terminals 13 and 14.

7295311

Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.
Fig. 2.

Terminal
A = aerial input (IEC female 75Ω)
$5=$ a.g.c. voltage, $+9,2$ to $+0,85 \mathrm{~V}$
$6=$ supply voltage, tuning part, +12 V
7 = supply voltage, low v.h.f. +12 V
$8=$ supply voltage, high v.h.f., +12 V
$10=$ supply voltage, u.h.f., +12 V
$11=$ tuning voltage, $+0,8$ to +28 V

$$
\left.\begin{array}{rl}
12 & =\begin{array}{l}
\text { supply voltage, frequency } \\
\\
\text { divider, }+5 \mathrm{~V}
\end{array} \\
13,14= & \text { balanced output voltage of } \\
& \text { frequency divider }(1 \mathrm{k} \Omega)
\end{array}\right\} \text { only for }
$$

Mass
approx. 95 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board (using the piercing diagram shown in Fig. 3) without clearance between tuner supporting surface and board. The connection pins should be bent according to Fig. 4. The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC 68-2, test Ta ($230 \pm 10{ }^{\circ} \mathrm{C}$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC 68-2, test $\mathrm{Tb}\left(260 \pm 5{ }^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) Only for UV618/256
$1 \mathrm{eb}=0,025$ inch
Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

Fig. 4.

In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors, v.h.f. bands

r.f. amplifier mixer oscillator	BF992
tuning diodes	TDA5030
switching diodes	$7 \times$ OF633
d.c. blocking diodes	$4 \times$ BA482/483/484
lis15	

Semiconductors, u.h.f. bands
r.f. amplifier BF990
oscillator BF970
mixer 1 SS99
tuning diodes 4×0 OF643
frequency divider SP4653
Ambient temperature range
operating
-10 to $+60{ }^{\circ} \mathrm{C}$
storage
Relative humidity
-25 to $+85{ }^{\circ} \mathrm{C}$

Voltages and currents

Supply voltage
Current drawn from +12 V supply
v.h.f. bands
u.h.f. bands

Bandswitching
$+12 \mathrm{~V} \pm 10 \%$
max. 50 mA
max. 45 mA
max. 15 mA

For operation in all bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 7 for operation in low v.h.f. band
terminal 8 for operation in high v.h.f. band
terminal 10 for operation in u.h.f. bands
A.G.C. voltage (Figs 4,5 and 6)
voltage range
$+9,2$ to $+0,85 \mathrm{~V}(\max .30 \mu \mathrm{~A})$
voltage at nominal gain
$+9,2 \pm 0,5 \mathrm{~V}$
voltage at 40 dB gain reduction
low v.h.f. band
typ. 3 V
high v.h.f. band
typ. 2 V
voltage at 30 dB gain reduction
u.h.f. band
typ. 2 V
Note: A.G.C. voltage between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.
A.G.C. current
$\max .0,03 \mathrm{~mA}$
Slope of a.g.c. characteristic,
at the end of the specified a.g.c. range
low v.h.f. bands
typ. $40 \mathrm{~dB} / \mathrm{V}$
high v.h.f. bands
typ. $80 \mathrm{~dB} / \mathrm{V}$

Tuning voltage range (Figs 7, 8 and 9)
Current drawn from 28 V tuning voltage supply
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and 60% R.H.
at $T_{a m b}=25^{\circ} \mathrm{C}$ and 95% R.H.
at $T_{a m b}=60^{\circ} \mathrm{C}$ and 60% R.H.
$+0,8$ to +28 V
\max 0,5 $\mu \mathrm{A}$
max. $2 \mu \mathrm{~A}$
$\max .2 \mu \mathrm{~A}$

Note: The source impedance of the tuning voltage offered to terminal 11 must be maximum $47 \mathrm{k} \Omega$.
Slope of tuning characteristic
low v.h.f. band, channel E2 channel S1
high v.h.f. band, channel S2 channel S20
u.h.f. bands, channel E21
channel E69

5	$\mathrm{MHz} / \mathrm{V}$	
1	$\mathrm{MHz} / \mathrm{V}$	
10	$\mathrm{MHz} / \mathrm{V}$	
2	$\mathrm{MHz} / \mathrm{V}$	typical values
22	$\mathrm{MHz} / \mathrm{V}$	
5	$\mathrm{MHz} / \mathrm{V}$	

Frequencies

Frequency ranges
low v.h.f. band
high v.h.f. band
u.h.f. bands

Intermediate frequencies
picture
colour
sound 1
sound 2
channel E2 (picture carrier $48,25 \mathrm{MHz}$) to channel S1 (picture carrier 105,25 MHz). Margin at the extreme channels:min. 2 MHz . channel S2 (picture carrier $112,25 \mathrm{MHz}$) to channel S20 (picture carrier $294,25 \mathrm{MHz}$). Margin at the extreme channels: $\min 2 \mathrm{MHz}$. channel E21 (picture carrier $471,25 \mathrm{MHz}$) to channel E69 (picture carrier $855,25 \mathrm{MHz}$). Margin at the extreme channels: $\min 3 \mathrm{MHz}$.
$38,90 \mathrm{MHz}$
$34,47 \mathrm{MHz}$
$33,40 \mathrm{MHz}$
$33,16 \mathrm{MHz}$
The oscillator frequency is higher than the aerial signal frequency.

Wanted signal characteristics

Input impedance
75Ω
V.S.W.R. and reflection coefficient
(values between picture and sound carrier, as well as values at picture carrier) v.s.w.r.
v.h.f. bands
u.h.f. bands
reflection coefficient
v.h.f. bands
u.h.f. bands

Output impedance (i.f.)
Capacitance between terminals
Load impedance

R.F. curves bandwidth

low v.h.f. band
typ. 10 MHz
high v.h.f. band
typ. 10 MHz
u.h.f. bands
R.F. curves, tilt
A.G.C. range v.h.f. bands u.h.f. bands

Voltage gain low v.h.f. band high v.h.f. band channels S2 to S6 channels S7 to S20
u.h.f. bands

Maximum gain difference
between any two v.h.f. channels
between any two u.h.f. channels
between any v.h.f. and u.h.f. channel
Noise figure
v.h.f. bands

E channels
S channels
u.h.f. bands

Overloading
Input signal producing 1 dB gain compression at nominal gain v.h.f. bands
u.h.f. bands

Input signal producing either a detuning
of the oscillator of +300 kHz or
-1000 kHz or stopping of the oscillations at nominal gain
v.h.f. bands
u.h.f. bands
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
min. 40 dB
min .30 dB
min. 40 dB ; max. 50 dB
typ. 36 dB; max. 46 dB
typ. 40 dB ; max. 50 dB
min. 40 dB ; max. 50 dB
typ. 6 dB
typ. 6 dB
typ. 6 dB
typ. 5 dB ; max. 8 dB
typ. 7 dB ; max. 10 dB
typ. 8 dB ; max. 11 dB
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; $\min .85 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; $\min .90 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $110 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; min. $100 \mathrm{~dB}(\mu \mathrm{~V})$ typ. $110 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω; min. $100 \mathrm{~dB}(\mu \mathrm{~V})$

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)
v.h.f. bands
u.h.f. bands
min. 66 dB ; typ. 70 dB
min. 53 dB ; typ. 60 dB
I.F. rejection (measured at picture carrier frequency)
low v.h.f. band $\quad \min .60 \mathrm{~dB}$
high v.h.f. band min. 60 dB
u.h.f. bands
min. 60 dB
Note: At colour sub-carrier frequency maximum 6 dB less rejection.

Cross modulation

Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)

v.h.f. bands

at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})) \quad$ typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$) typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $80 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})) \quad$ typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $N \pm 2$ for low v.h.f., or channel $N \pm 3$ for high v.h.f., or channel $N \pm 5$ for u.h.f.)

v.h.f. bands

at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Out of band cross modulation at nominal gain
low v.h.f., interfering from high v.h.f.
low v.h.f., interfering from u.h.f.
high v.h.f., interfering from low v.h.f.
high v.h.f., interfering from u.h.f.
u.h.f. interfering from low v.h.f.
u.h.f. interfering from high v.h.f.
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Unwanted signal handling capability (visibility test)

For the channel combinations
v.h.f.: $N \pm 1, N \pm 5, N+11$
u.h.f.: $N \pm 1, N \pm 5, N+9$

The tuner meets the requirements of "Amtsblatt" DBP/1981, item 5.1.2., when measured in an adequate TV receiver. The a.g.c. circuit of the receiver has to be adjusted with an input signal of $74 \mathrm{~dB}(\mu \mathrm{~V})$ on channel E60 in such a way, that the gain of the tuner is decreased by 10 dB .

Oscillator characteristics

Pulling

Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain
v.h.f. bands
u.h.f. bands

Shift of oscillator frequency at a change of the supply voltage of 5%
v.h.f. bands
u.h.f. bands

Drift of oscillator frequency
during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after band switching)
at a change of the ambient temperature
from +25 to $+40^{\circ} \mathrm{C}$ (measured after 3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
v.h.f. bands
u.h.f. bands
at a change of humidity from $60 \pm 15 \%$
to $93 \pm 2 \%$, at $T_{\text {amb }}=25 \pm 5^{\circ} \mathrm{C}$
low v.h.f. band
high v.h.f. band
u.h.f. bands
$\max .500 \mathrm{kHz}$
$\max .500 \mathrm{kHz}$
$\max .500 \mathrm{kHz}$
$\max .1000 \mathrm{kHz}$
$\max .1500 \mathrm{kHz}$

Frequency divider characteristics of the UV618/256

Division ratio
Supply voltage
256

Current drawn from +5 V supply
Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
Output impedance
$+5 \mathrm{~V} \pm 5 \%$

Output imbalance
Interference signal on the i.f. output
max. 35 mA ; typ. 25 mA
\min. 0,3 \vee_{p-p}
typ. $\quad 1 \mathrm{k} \Omega$
typ. $0,1 \mathrm{~V}$

Note: I.F. output of the tuner terminated with $10 \mathrm{M} \Omega / 11 \mathrm{pF}$

Miscellaneous

Radio interference
Oscillator radiation and oscillator
voltage at the aerial terminal

Microphonics

Surge protection
Protection against voltages
max. 5 kV
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes
Within the limits of C.I.S.P.R. 13
(1975) , VDE0872/7.72. and Amtsblatt DBP69/1981, when applying the tuner in an adequate TV receiver
There will be no microphonics, provided the tuner is installed in a professional manner.

Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

An i.f. signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the i.f. injection point TP1, accessible through a hole in the cover (see Fig. 2) via a probe (see Fig. 5).

Fig. 5.

V.H.F./U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	C.C.I.R. systems L and L^{\prime}	
Channels	off-air	cable
low v.h.f.	02 to 04	
high v.h.f.	05 to 10	C to Q
u.h.f.	L21 to L69	
Intermediate frequencies		
picture	$32,7 \mathrm{MHz}$	
sound	$39,2 \mathrm{MHz}$	
(The oscillator frequency is higher than the aerial signal frequency in the low v.h.f. band and lower		

APPLICATION

Designed to cover all channels of C.C.I.R. systems L and L^{\prime} including the cable channels C to Q for French cable television.

The i.f. output is designed for direct drive of a variety of SAW filters.
The tuner UV628/256 is equipped with a frequency divider, which makes it suitable for digital tuning systems based on frequency synthesis; for the remainder it is equal to type UV627.

Available versions

	aerial input connector	frequency divider (IC)	catalogue number
UV627	IEC	-	311126710010
UV628/256	IEC	$1: 256$	311123710030

Both tuners comply with the requirements of radiation of C.I.S.P.R. 13 (1975) including amendment 1 (1983).

FOR UV 627 (3III 267 IOOIO): DELETE POS 3091,3092,2090,2091,2092,2094,2095,7005

Fig. 1 Circuit diagram.

DESCRIPTION

The UV627 and UV628/256 are combined v.h.f./u.h.f. tuners with electronic tuning and band switching, covering the low v.h.f. band (frequency range 48 to 68 MHz), the high v.h.f. band (frequency range 128 to 304 MHz), and the u.h.f. band (frequency range 470 to 860 MHz).
Mechanically, the tuners are built on a low-loss printed-wiring board, carrying all components, in a diecast metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common SNIR (9 mm) coaxial aerial connector (75Ω) is integrated in one of the frame sides of the housing, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically, the tuners consist of v.h.f. and u.h.f. parts (see Fig. 1). They are equipped with a common aerial input and provided with tuned r.f. MOSFET input stages. The v.h.f. mixer, v.h.f. oscillator and i.f. amplifier functions are provided by a tuner IC. This IC has terminals between mixer and i.f. amplifier to connect i.f. preselections.
Output impedance of the symmetrical i.f. terminals is approx. 75Ω to insure sufficient triple transient suppression of the SAW filter.
The r.f. band pass filter and oscillator circuits of the v.h.f. part are tuned by 9 tuning diodes; band switching is achieved by 6 switching diodes.
The u.h.f. part of the tuner has a high-pass input circuit, followed by a single tuned circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the i.f. pre-amplifier of the tuner IC.
The r.f. band pass filter and oscillator circuits are tuned by 4 tuning diodes.
In all bands the tuner is gain-controlled via gate 2 of the input MOSFET tetrode.
A two-pole filter is used to comply with SCART 109 recommendation regarding i.f. selectivity.
A test point TP1 is provided for i.f. injection.
The electrical circuit of the UV628/256 is extended with a frequency divider (division ratio of 256), with an input connected to the v.h.f. and u.h.f. oscillators. The symmetrical ECL outputs are connected to terminals 13 and 14.

Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

Fig. 2.

Terminal
A = aerial input, SNIR (9 mm) female 75Ω
$5=$ a.g.c. voltage, $+9,2$ to $0,85 \mathrm{~V}$
6 = supply voltage, tuning part, +12 V
7 = supply voltage, low v.h.f., +12 V
8 = supply voltage, high v.h.f., +12 V
$10=$ supply voltage, u.h.f., +12 V
$11=$ tuning voltage $,+0,45$ to +30 V

12 = supply voltage, frequency divider, +5 V only for
13,14 = balanced output voltage of frequency divider ($1 \mathrm{k} \Omega$)
$15=$ earth
$16=$
$17=$ f
i.f. output, symm. (approx. 75Ω)

Mass approx. 95 g

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board (using the piercing diagram shown in Fig. 3) without clearance between tuner supporting surface and board. The connection pins should be bent according to Fig. 4. The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.

The solderability of the terminals and mounting tabs is according to IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5{ }^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) Only for UV628/256

$$
1 \mathrm{eb}=0,025 \text { inch }
$$

Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

Fig. 4.
In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors, v.h.f. bands

r.f. amplifier mixer oscillator tuning diodes switching diodes	BF992
TDA5030/C9	

Semiconductors, u.h.f. bands
r.f. amplifier BF996/S
oscillator BF979
mixer 15599
tuning diodes $4 \times$ OF643
Frequency divider
SP4653
Ambient temperature range
operating
-10 to $+60^{\circ} \mathrm{C}$
storage
-25 to $+85^{\circ} \mathrm{C}$
Relative humidity
max. 95\%

Voltages and currents

Supply voltage
$+12 \mathrm{~V} \pm 5 \%$
Current drawn from +12 V supply
max. 82 mA
Bandswitching
max. 20 mA
For operation in all bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 7 for operation in low v.h.f. band
terminal 8 for operation in high v.h.f. band
terminal 10 for operation in u.h.f. bands
A.G.C. voltage
voltage range $\quad+9,2$ to $+0,85 \mathrm{~V}(\max .30 \mu \mathrm{~A})$
voltage at nominal gain $\quad+9,2 \pm 0,2 \mathrm{~V}$
voltage at 40 dB gain reduction
low v.h.f. band
typ. $2,5 \mathrm{~V}$
high v.h.f. band
typ. 1,6 V
voltage at 30 dB gain reduction
u.h.f. band
typ. 1,8 V
Note: A.G.C. voltage between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.

A.G.C. current

$\max .30 \mu \mathrm{~A}$
Slope of a.g.c. characteristic
at the end of the specified a.g.c. range
v.h.f. band
typ. $40 \mathrm{~dB} / V$
u.h.f. band

Tuning voltage range
typ. $80 \mathrm{~dB} / V$

Current drawn from 28 V tuning voltage supply
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and 60% R.H.
at $T_{a m b}=25^{\circ} \mathrm{C}$ and 95% R.H.
at $T_{a m b}=60^{\circ} \mathrm{C}$ and 60% R.H.
$+0,6$ to +28 V

Note: The source impedance of the tuning voltage offered to terminal 11 must be maximum $47 \mathrm{k} \Omega$.
Slope of tuning characteristics
low v.h.f. band, channel 02 channel 04
high v.h.f. band, channel C channel Q
u.h.f. bands,
channel 21
typ. $4,1 \mathrm{MHz} / \mathrm{V}$
typ. $3,5 \mathrm{MHz} / \mathrm{V}$
typ. $\quad 15 \mathrm{MHz} / \mathrm{V}$
typ. $1,7 \mathrm{MHz} / \mathrm{V}$
typ. $28,8 \mathrm{MHz} / \mathrm{V}$
typ. $3,6 \mathrm{MHz} / \mathrm{V}$

Frequencies

Frequency ranges
low v.h.f. band
high v.h.f. band, off-air + cable
u.h.f. bands

Intermediate frequencies picture

32,7 MHz
sound
channel 02 (picture carrier $55,75 \mathrm{MHz}$) to channel 04 (picture carrier $63,75 \mathrm{MHz}$). Margin at the low end: $\min .2 \mathrm{MHz}$. channel C (picture carrier $128,75 \mathrm{MHz}$) to channel Q (picture carrier $296,75 \mathrm{MHz}$). Margin at the low end: $\min .0,75 \mathrm{MHz}$. Margin at the high end: $\min .2 \mathrm{MHz}$. channel L21 (picture carrier $\mathbf{4 7 1 , 2 5} \mathrm{MHz}$) to channel L69 (picture carrier $855,25 \mathrm{MHz}$). Margin at the extreme channels: $\min .3 \mathrm{MHz}$.

The oscillator frequency is higher than the aerial signal frequency in the low v.h.f. band and lower in all other bands.

Wanted signal characteristics

Input impedance

75Ω
V.S.W.R. and reflection coefficient
(values between picture and sound carrier, as well as values at picture carrier)

```
v.s.w.r.
    v.h.f. bands
    u.h.f. bands
reflection coefficient
    v.h.f. bands
    u.h.f. bands
```

at nominal gain and during gain control
max. 4,4
max. 4,4
max. 63\%
max. 63\%

Output impedance (i.f.)
Capacitance between terminals
Load impedance
R.F. curves bandwidth
low v.h.f. band
high v.h.f. band
u.h.f. bands
R.F. curves, tilt
A.G.C. range
v.h.f. bands
u.h.f. bands

Voltage gain
off-air channels
cable channels
gain taper off-air channels
Noise figure
v.h.f. bands, off-air
v.h.f. band, cable
u.h.f. bands

Overloading
Input signal producing 1 dB gain compression at nominal gain
v.h.f. bands
u.h.f. bands

Input signal producing either a detuning
of the oscillator of +300 kHz or
-1000 kHz or stopping of the oscillations at nominal gain
v.h.f. bands
u.h.f. bands
75Ω approx.
typ. 3,5 pF
min. $1 \mathrm{k} \Omega / / \max .22 \mathrm{pF}$
total capacitance load to be tuned to $35,95 \mathrm{MHz}$ by means of an inductance between terminals 16 and 17 (min. L:590 nH)
typ. 13 MHz
typ. 13 MHz
typ. 18 MHz
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, at 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction.
$\min .40 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$
$\min .40 \mathrm{~dB}$; max. 50 dB
$\min .40 \mathrm{~dB}$; max. 50 dB , channel C min. 38 dB $\max .6 \mathrm{~dB}$
typ. 7 dB ; max. 9 dB
typ. 5 dB ; max. 11 dB
typ. 7,5 dB; max. 11 dB
t.b.f.
t.b.f.
t.b.f.
t.b.f.

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency)	
low v.h.f. band $\min .40 \mathrm{~dB}$ high v.h.f. band $\min .60 \mathrm{~dB}$ u.h.f. bands $\min .40 \mathrm{~dB}$	

I.F. rejection (measured at picture carrier frequency)
all bands, except low v.h.f. band ($=\min .55 \mathrm{~dB}$)

$$
\min .60 \mathrm{~dB}
$$

Cross modulation

Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)

```
v.h.f. bands
```

at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
u.h.f. bands
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 30 dB gain reduction (wanted input level $90 \mathrm{~dB}(\mu \mathrm{~V})$)
$\min .70 \mathrm{~dB}(\mu \mathrm{~V})$
t.b.f.
$\min .70 \mathrm{~dB}(\mu \mathrm{~V})$
t.b.f.

In band cross modulation (wanted signal: picture carrier of channel N ; interfering signal: picture carrier of channel $\mathrm{N} \pm 2$ for low v.h.f., or channel $\mathrm{N} \pm 3$ for high v.h.f., or channel $\mathrm{N} \pm 5$ for u.h.f.).

```
v.h.f. bands
    at nominal gain (wanted input level 60 dB ( }\mu\textrm{V})\mathrm{ )
    at 40 dB gain reduction (wanted input level 100 dB ( }\mu\textrm{V})\mathrm{ )
    t.b.f.
    t.b.f.
u.h.f. bands
    at nominal gain (wanted input level }60\textrm{dB}(\mu\textrm{V})
    t.b.f.
    at 30 dB gain reduction (wanted input level 90 dB ( }\mu\textrm{V})\mathrm{ ) t.b.f.
Out of band cross modulation at nominal gain
    each of the v.h.f. or u.h.f. bands
    interfering with any of the other bands mentioned t.b.f.
```


Oscillator characteristics

Oscillator voltage at aerial input
v.h.f. bands
max. $50 \mathrm{~dB}(\mu \mathrm{~V})$
u.h.f. bands
$\max .66 \mathrm{~dB}(\mu \mathrm{~V})$
Oscillator voltage at the terminals
supply and control pins
t.b.f.
i.f. terminals for:
v.h.f.
t.b.f.
u.h.f.
t.b.f.

Pulling

Input signal of tuned frequency producing a
shift of the oscillator frequency of 10 kHz ,
at nominal gain
all bands
typ. $69 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Shift of oscillator frequency at a change
of the supply voltage of 5%

v.h.f. bands	$\max .500 \mathrm{kHz}$
u.h.f. bands	$\max .700 \mathrm{kHz}$
during a.g.c.	$\max .150 \mathrm{kHz}$

Drift of oscillator frequency during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after band switching
at a change of the ambient temperature
from +25 to $+40^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $0^{\circ} \mathrm{C}$)
v.h.f. bands
u.h.f. bands
at a change of humidity from $60 \pm 15 \%$
to $93 \pm 2 \%$, at $\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}$
low v.h.f. band
high v.h.f. band 1000 kHz
u.h.f. bands $\quad 1500 \mathrm{kHz}$

Frequency divider characteristics of the UV628/256
Division ratio 256
Supply voltage
Current drawn from +5 V supply
Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega / 11 \mathrm{pF}$
Output impedance
Output imbalance
Interference signal on the i.f. output
Note: I.F. output of the tuner terminated with $10 \mathrm{M} \Omega / 11 \mathrm{pF}$.

500 kHz
max. 500 kHz
$\max .150 \mathrm{kHz}$
$\max .300 \mathrm{kHz}$
max. 250 kHz
t.b.f.
t.b.f.
$+5 \mathrm{~V} \pm 5 \%$
max. 35 mA
$\min .0,5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
typ. $1 \mathrm{k} \Omega$
max. 0,1 V
$\max .30 \mathrm{~dB}(\mu \mathrm{~V})$

Miscellaneous

Radio interference
Oscillator radiation and oscillator
voltage at the aerial terminal

Microphonics
Within the limits of C.I.S.P.R. 13
(1975), amendment 1 (1983), when applying the tuner in an adequate TV receiver
There will be no microphonics, provided the tuner is installed in a professional manner.
Surge protection
Protection against voltages
$\max .5 \mathrm{kV}$
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes

> t.b.f.

Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

An i.f. signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the i.f. injection point TP1, accessible through a hole in the cover (see Fig. 2) via a probe (see Fig. 5).

Fig. 5.

V.H.F./U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	R.T.M.A. systems M and N	
Channels	off-air	cable
range a, low v.h.f. band	A2 to A6	
mid band		A-2 to A-1
range b, mid band		A to 1
high v.h.f. band	A7 to A13	
super band		J to T
range c, super band		U to W
hyper band		AA to RR
range d, hyper band		SS to EEE
ultra band		65 and 66
u.h.f. band	A14 to A69	
Intermediate frequencies		
picture	$45,75 \mathrm{MHz}$	
colour	$42,17 \mathrm{MHz}$	
sound	$41,25 \mathrm{MHz}$	

APPLICATION

Designed to cover the v.h.f. and u.h.f. channels of R.T.M.A. systems M and N with extended v.h.f. frequency ranges, including the mid band, super band, hyper band and ultra band CATV.
The i.f. output is designed for direct drive of a variety of SAW filters.
The tuner UV636/256 is equipped with a frequency divider, which makes it suitable for digital tuning systems based on frequency synthesis; for the remainder it is equal to type UV635.

Available versions

	aerial input connector	frequency divider (IC)	catalogue number
UV635	phono	-	t.b.f.
UV636/256	phono	$1: 256$	312223700230

Both tuners comply with the requirements of radiation, signal handling capability, and immunity from radiated interference of FCC.

Fig. 1 Circuit diagram.

DESCRIPTION

The UV635 and UV636/256 are combined v.h.f./u.h.f. tuners with electronic tuning and band switching, covering a large frequency range in four parts: range a, from $55,25 \mathrm{MHz}$ to $115,25 \mathrm{MHz}$; range \mathbf{b}, from 121,25 to $277,25 \mathrm{MHz}$; range c, from 283,25 to $403,25 \mathrm{MHz}$; range d, from 409,25 to $801,25 \mathrm{MHz}$. See also under "Frequencies".
Mechanically, the tuners are built on a low-loss printed-wiring board, carrying all components, in a diecast metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common phono coaxial aerial connector (75Ω) is situated on one of the frame sides of the housing, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically, the tuners consist of v.h.f., hyperband and u.h.f. parts (see Fig. 1). They are equipped with a common aerial input and provided with tuned r.f. MOSFET input stages. The mixer and oscillator for the ranges a, b and c , and i.f. amplifier functions are provided by a tuner IC. This IC has terminals between mixer and i.f. amplifier to connect i.f. preselections, a $47,25 \mathrm{MHz}$ trap is provided to improve the selectivity of common SAW filters for adjacent channel N-1 (system B).
Output impedance of the symmetrical i.f. terminals is approx. 75Ω to insure sufficient triple transient suppression of the SAW filter.
The r.f. band pass filter and oscillator circuits of the v.h.f. part are tuned by 5 tuning diodes; band switching is achieved by 5 switching diodes, those of the hyperband by 4 tuning diodes and 3 switching diodes respectively.
The u.h.f. part of the tuner has a tuned input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schottky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the i.f. pre-amplifier of the tuner I.C.
The r.f. band pass filter and oscillator circuits are tuned by 4 tuning diodes.
In all bands the tuner is gain-controlled via gate 2 of the input MOSFET tetrode.
A test point TP1 is provided for i.f. injection.
The electrical circuit of the UV636/256 is extended with a frequency divider (division ratio of 256), with an input connected to both oscillators. The symmetrical ECL outputs are connected to terminals 13 and 14.

MECHANICAL DATA

Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.
Fig. 2.

Terminal
A = aerial input (phono 75Ω)
$5=$ a.g.c. voltage $+9,2$ to $+0,85 \mathrm{~V}$
$6=$ supply voltage, tuning part, +12 V
7 = supply voltage, range $\mathrm{a},+12 \mathrm{~V}$
8 = supply voltage, range $\mathrm{b},+12 \mathrm{~V}$
9 = supply voltage, range c, +12 V
$10=$ supply voltage, range d, + 12 V
$11=$ tuning voltage, $+0,8$ to +28 V
MT1, MT2 = mounting tabs (to be earthed)
$12=$ supply voltage, frequency divider, + 5 V
$13,14=$ balanced output voltage of frequency divider ($1 \mathrm{k} \Omega$)
only for UV636/256
$15=$ earth
$\left.\begin{array}{l}16= \\ 17=\end{array}\right\}$ i.f. output, symm. (approx. $46+j 70 \Omega$)

Mass $\quad 99 \mathrm{~g}$

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board (using the piercing diagram shown in Fig. 3) without clearance between tuner supporting surface and board. The connection pins should be bent according to Fig. 4. The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.

The solderability of the terminals and mounting tabs is according to IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

(1) Only for UV636/256
$1 \mathrm{eb}=0,025$ inch
Fig. 3 Piercing diagram viewed from solder side of board.
Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

Fig. 4.
In order to prevent any stress to the printed-wiring board, the tuner should be supported at its aerial connector.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors, ranges a and b

$\left.\begin{array}{l}\text { r.f. amplifier } \\ \text { mixer } \\ \text { oscillator }\end{array}\right\}$	BF992
	TDA5030

tuning diodes
switching diodes
coupling diodes
d.c. blocking diodes

Semiconductors, range c
r.f. amplifier BF990
oscillator
mixer
tuning diodes
switching diodes
coupling diode
Semiconductors, range d
r.f. amplifier BF990
oscillator BF970
mixer 1SS99
tuning diodes $4 \times$ OF643
Frequency divider
Ambient temperature range
operating
storage
Relative humidity

Voltages and currents

Supply voltage
Current drawn from +12 V supply
Bandswitching
4×0 O633
$2 \times$ BAS15

TDA5030
$4 \times$ OF633
$2 \times$ BA482
BB909B

SP4653
-10 to $+60^{\circ} \mathrm{C}$
-25 to $+85^{\circ} \mathrm{C}$
max. 95\%
$4 \times$ BA482/483/484
BB809 and BB809B

For operation in all bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 7 for operation in range a terminal 8 for operation in range b terminal 9 for operation in range c terminal 10 for operation in range d

A.G.C. voltage	
voltage range	
voltage at nominal gain	$+9,2$ to $0,85 \mathrm{~V}$
voltage at 45 dB gain reduction	$+9,2 \pm 0,5 \mathrm{~V}$
ranges a and b	
voltage at 30 dB gain reduction	typ. 3 V
range c	
range d	typ. 2 V
ryp. 2 V	

Note: A.G.C. voltage between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.
A.G.C. current
$\max .30 \mu \mathrm{~A}$

Slope of a.g.c. characteristic
at the end of the specified a.g.c. range
range a typ. $40 \mathrm{~dB} / \mathrm{V}$
ranges b and $c \quad$ typ. $70 \mathrm{~dB} / \mathrm{V}$
range d typ. $80 \mathrm{~dB} / \mathrm{V}$
A.G.C. time constant
max. 8 ms
A.G.C. source impedance
$\max .10 \mathrm{k} \Omega$
Tuning voltage range
$+0,8$ to +28 V
Current drawn from 28 V tuning voltage supply
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and 60% R.H.
$\max .0,5 \mu \mathrm{~A}$
at $T_{a m b}=25^{\circ} \mathrm{C}$ and 95% R.H.
$\max . \quad 2 \mu \mathrm{~A}$
at $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ and 60% R.H.
$\max . \quad 2 \mu \mathrm{~A}$
Note: The source impedance of the tuning voltage offered to terminal 11 must be maximum $47 \mathrm{k} \Omega$.
Slope of tuning characteristic

range a	1 to $6 \mathrm{MHz} / \mathrm{V}$
range b	2 to $14 \mathrm{MHz} / \mathrm{V}$
range c	3 to $20 \mathrm{MHz} / \mathrm{V}$
range d	4 to $25 \mathrm{MHz} / \mathrm{V}$

The tuner has a built-in current limitation ($\leqslant 100 \mu \mathrm{~A}$ per varicap diode) for tuning voltages up to +35 V , which can be applied during search tuning.

Frequencies

Frequency ranges, picture carrier
Off-air
low v.h.f. band channel A2 $(55,25 \mathrm{MHz})$ to
channel A6 ($83,25 \mathrm{MHz}$).
Margin at the extreme channels: $\min .2 \mathrm{MHz}$.
channel A7 (175,25 MHz) to
channel A13 ($211,25 \mathrm{MHz}$).
Margin at the extreme channels: $\min .2 \mathrm{MHz}$.
u.h.f. band
channel A14 $(471,25 \mathrm{MHz})$ to
channel A69 $(801,25 \mathrm{MHz})$.
Margin at the extreme channels: $\min .3 \mathrm{MHz}$.

Cable (CATV)
mid band
superband
hyperband
ultra band

Intermediate frequencies
picture
colour
sound
The oscillator frequency is higher than the aerial signal frequency.

Wanted signal characteristics

Input impedance
V.S.W.R. and reflection coefficient
(values between picture and sound carrier, as well as values at picture carrier)
v.s.w.r.
ranges a and b
range c
range d
reflection coefficient
ranges a and b
range c
range d
Output impedance (i.f.)
Capacitance between terminals
Load impedance
R.F. curves bandwidth
range a
range b
range c
range d
channel A-2 $(109,25 \mathrm{MHz})$ to channel I ($169,25 \mathrm{MHz}$)
Margin at the extreme channels: $\min .3 \mathrm{MHz}$. channel J $(217,25 \mathrm{MHz})$ to channel W $(295,25 \mathrm{MHz})$
Margin at the extreme channels: $\min .3 \mathrm{MHz}$. channel AA $(301,75 \mathrm{MHz})$ to
channel EEE $(463,25 \mathrm{MHz})$.
Margin at the extreme channels: $\min .3 \mathrm{MHz}$. channel $65(469,25 \mathrm{MHz})$ and channel $66(475,25 \mathrm{MHz})$
Margin at the extreme channels: $\min .3 \mathrm{MHz}$.
$45,75 \mathrm{MHz}$
$42,17 \mathrm{MHz}$
$41,25 \mathrm{MHz}$
75Ω
at nominal gain and during gain control
max. 4
max. 4
max. 5
max. 60\%
max. 60\%
max. 66\%
$46+\mathrm{j} 70 \Omega$
typ. 3,5 pF
$\min .1 \mathrm{k} \Omega$ in parallel with max. 22 pF
total capacitance load to be tuned to
$43,5 \mathrm{MHz}$ by means of an inductance
between terminals 16 and $17(\min . \mathrm{L}: 610 \mathrm{nH})$
typ. 10 MHz
typ. 13 MHz
typ. 9 MHz
typ. 14 MHz

Overall response, tilt
A.G.C. range ranges a and b range c range d

Voltage gain
Maximum gain difference
between any two v.h.f. channels
between any two u.h.f. channels between any v.h.f. and u.h.f. channel
Noise figure
ranges a and b
range c
range d

Overloading

Input signal producing 1 dB gain
compression at nominal gain
ranges a and b
ranges c and d
Input signal producing either a detuning
of the oscillator of +300 kHz or
-1000 kHz or stopping of the
oscillations at nominal gain
ranges a and $\mathrm{b} \quad \min .100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
ranges c and d
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency will not exceed 3 dB , between the top of the r.f. resonant curve and the sound frequency 5 dB at nominal gain, and in the a.g.c. range between nominal gain and 20 dB gain reduction.
$\min .45 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$
$\min .40 \mathrm{~dB}, \max .50 \mathrm{~dB}$
typ. 6 dB
typ. 6 dB
typ. 6 dB
max. 8 dB , typ. 6 dB
$\max .10 \mathrm{~dB}$, typ. $6,5 \mathrm{~dB}$
max. 10 dB , typ. $8,5 \mathrm{~dB}$

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency) ranges a and b
min. 60 dB , typ. 70 dB
range c
min. 60 dB , typ. 65 dB
min. 45 dB , typ. 55 dB
I.F. rejection (measured at picture carrier frequency) all bands
min. 60 dB

Note: At colour sub-carrier frequency maximum 6 dB less rejection.

FM rejection
at channel A6 $(90,5 \mathrm{MHz}$, aerial input level $60 \mathrm{~dB}(\mu \mathrm{~V}))$
$\min .50 \mathrm{~dB}$
at channel A6 (93 to 100 MHz ,
aerial input level $90 \mathrm{~dB}(\mu \mathrm{~V}))$
$\min .50 \mathrm{~dB}$

Cross modulation

An undesired carrier level producing 1% cross modulation on the desired carrier will be equal to or exceeds the desired carrier level for all gain values between nominal gain and 20 dB gain reduction or will be:
in channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
ranges a, b, c and d
min. $70 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
in band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $\mathrm{N} \pm 2$)
ranges a, b and c
$\min .78 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
in band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $N \pm 5$)
range d
$\min .84 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Oscillator characteristics

Pulling

Input signal of tuned frequency producing a
shift of the oscillator frequency of 10 kHz ,
at nominal gain
all bands
Shift of oscillator frequency at a change
of the supply voltage of 5%
ranges a and b
$\max .250 \mathrm{kHz}$
range c
range d
during a.g.c., all ranges
Drift of oscillator frequency
during warm-up time (after the tuner
has been completely out of operation
for 15 min , measured between 5 s and
15 min after switching on)
during warm-up time (after the input
stage is in operation for 15 min , measured between 2 s and 15 min
after band switching)
at a change of the ambient temperature
from +25 to $+50^{\circ} \mathrm{C}$ (measured after
3 cycles from +25 to $0^{\circ} \mathrm{C}$) ranges a, b and c
range d
max. 250 kHz
$\max .250 \mathrm{kHz}$
$\max .500 \mathrm{kHz}$
$\max .500 \mathrm{kHz}$
max. 150 kHz

$\max .500 \mathrm{kHz}$
max. 1000 kHz

```
at a change of humidity from 60 \pm 15%
to 93\pm2%, at Tamb}=25\pm\mp@subsup{5}{}{\circ}\textrm{C
    range a max. 500 kHz
    range b max. 1000 kHz
    range c max. 1500 kHz
    range d max. 1500 kHz
```


Frequency divider characteristics of the UV636/256

Division ratio 256
Supply voltage
Current drawn from +5 V supply
$+5 \mathrm{~V} \pm 10 \%$

Output voltage, unloaded, measured with probe $10 \mathrm{M} \Omega$ in parallel with 11 pF
max. 35 mA

Output impedance
min. $0,5 \mathrm{~V}(\mathrm{p}-\mathrm{p})$
typ. $1 \mathrm{k} \Omega$
Output imbalance
max. 0,1 V
Interference signal on the i.f. output
max. $30 \mathrm{~dB}(\mu \mathrm{~V})$
Note: I.F. output of the tuner terminated with $10 \mathrm{M} \Omega$ in parallel with 11 pF

Miscellaneous

Microphonics

Surge protection
Protection against voltages
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.
Protection against flashes

There will be no microphonics, provided the tuner is installed in a professional manner.
max. 5 kV
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$

Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

An i.f. signal from a generator (internal resistance 50Ω or 75Ω) should be connected to the i.f. injection point TP1, accessible through a hole in the cover (see Fig. 2) via a probe (see Fig. 5).

Fig. 5.

V.H.F./U.H.F. TELEVISION TUNERS

QUICK REFERENCE DATA

Systems	C.C.I.R. systems L and L^{\prime}
Channels	A to E4, including A to C
v.h.f. I	M4 to E12, including 1 to 6
v.h.f. III	E21 to E69
u.h.f.	$32,7 \mathrm{MHz}$
Intermediate frequencies picture sound	$39,2 \mathrm{MHz}$

APPLICATION

Designed to cover the v.h.f. and u.h.f. channels of C.C.I.R. systems L and L^{\prime}.
The tuner UVF10A is equipped with a frequency divider ($1: 256$), which makes it suitable for digital tuning systems based on frequency synthesis; otherwise this tuner is equal to type UVF10.

DESCRIPTION

The UVF10 is a combined v.h.f./u.h.f. tuner with electronic tuning and band switching covering the v.h.f. band I including the European channel E4 (frequency range 41 to 68 MHz), the v.h.f. band III including the Moroccan channel M4 and the European channel E12 (frequency range 162 to 230 MHz) and the u.h.f. band (frequency range 470 to 861 MHz).

Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear covers (see Fig. 2). The common aerial connection (v.h.f. and u.h.f.) with standard coaxial termination is on one of the frame sides, all other connections (supply voltages, a.g.c. voltage, tuning and switching voltages, i.f. output) are made via terminals in the underside. The mounting method is shown in Fig. 3.
Electrically, the tuner consists of v.h.f. and u.h.f. parts. The v.h.f. aerial signal is fed via switchable v.h.f. band I/III wideband input filters to gate 1 of an input MOSFET tetrode (with internal gate protection against surge).
The drain load of the MOSFET tetrode is formed by a double tuned switchable bandpass filter, transferring the r.f. signal to the emitter of the mixer transistor. The oscillator signal is also fed to the emitter of the mixer transistor.
The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit, at the low end of which the i.f. signal is coupled out of the tuner. A test point (terminal 4) is provided for i.f. injection to align the output circuit of the tuner together with the i.f. amplifier of the television receiver.
The input tuned circuit, the r.f. bandpass filter and oscillator circuit are tuned by 4 tuning diodes, band switching is achieved by 8 switching diodes.

The u.h.f. part of the tuner consists of a tuned input circuit connected to gate 1 of an input MOSFET tetrode (with internal gate protection against surge). The drain load of this MOSFET tetrode is formed by a double tuned circuit transferring the r.f. signal to the Schotttky barrier mixer diode. The i.f. signal from the mixer diode is amplified by the v.h.f. mixer transistor, now operating as an i.f. amplifier.
The input tuned circuit, the r.f. bandpass filter and oscillator circuits are tuned by 4 tuning diodes. In all bands the tuner is gain controlled via gate 2 of the input MOSFET tetrodes.

Fig. 1 Circuit diagram of tuner UVF10.

MECHANICAL DATA

Fig. 2a. UVF10.

Terminal $1=$ aerial
$2=$ supply voltage, v.h.f. $\mathrm{I},+12 \mathrm{~V}$
$3=$ supply voltage, v.h.f. III, +12 V
$4=$ supply voltage, u.h.f., +12 V ; i.f. injection
$5=$ a.g.c. voltage, $+8,25$ to $+0,85 \mathrm{~V}$
$6=$ supply voltage, v.h.f. and u.h.f., +12 V
$7=$ tuning voltage, $+0,5$ to +28 V
9 = i.f. output
$10=$ earth

M0363
.

Fig. 2b I.F. output coil.
Torque for alignment: 2 to 15 mNm
Press-through force: $\geqslant 10 \mathrm{~N}$.

Mass

 approx. 130 g
Mounting

The tuner may be mounted by soldering it onto a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a socket. Information will be supplied upon request.) The tuner may be mounted anywhere in the receiver and there are no restrictions on orientation.

Dimensions in mm

Fig. 3 Piercing diagram for tuner UVF10 viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $8,25 \pm 0,2 \mathrm{~V}$.

Voltages and currents

Supply voltage $+12 \mathrm{~V} \pm 1 \mathrm{~V}$
Current drawn from +12 V supply
band I
max. 45 mA ; typ. 40 mA
band III
max. 60 mA ; typ. 55 mA
bands IV and V
max. 50 mA ; typ. 45 mA

Bandswitching

For operation in all bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 2 and -12 V to terminal 3 for operation in band I
terminal 3 and -12 V to terminal 2 for operation in band II
terminal 4 and -12 V to terminals 2 and 3 for operation in bands IV and V .
A.G.C. voltage (Figs 4,5 and 6)
voltage range
$+8,25$ to $+0,85 \mathrm{~V}$
voltage at nominal gain
$+8,25 \pm 0,5 \mathrm{~V}$
voltage at 40 dB gain reduction
band I
typ. 2 V
band III
typ. 1,2 V
Note: A.G.C. voltages between 0 and $+10,5 \mathrm{~V}$ may be applied without risk or damage.
A.G.C. current

Tuning voltage range (Figs 7, 8 and 9)
Current drawn from 28 V tuning voltage supply
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
at $\mathrm{T}_{\mathrm{amb}}=55^{\circ} \mathrm{C}$
Slope of tuning characteristics (typical values)
band I, channel A
band I, channel C
band III, channel 1
band III, channel 6
bands IV and V, channel 21
bands IV and V, channel 69

Frequencies

Frequency ranges
band I channel A (picture carrier $47,75 \mathrm{MHz}$) Margin: min. tuning voltage $0,5 \mathrm{~V}$ channel E4 (picture carrier $62,25 \mathrm{MHz}$) Margin: min. 800 kHz

Fig. 4 Typical a.g.c. characteristic, band I.

Fig. 6 Typical a.g.c. characteristic, bands IV and V.

Fig. 7 Typical tuning characteristic, band I.

Fig. 8 Typical tuning characteristic, band III.

Fig. 9 Typical tuning characteristic, bands IV and V .

Frequencies (continued)

Frequency range
band III
bands IV and V

Intermediate frequencies
picture
sound

Wanted signal characteristics

Input impedance
V.S.W.R. and reflection coefficient (values between picture and sound carrier, as well as values at picture carrier)
v.s.w.r.
bands I and III
bands IV and V
reflection coefficient
bands I and III
bands IV and V
R.F. curves, bandwidth band I
band III
bands IV and V
R.F. curves, tilt
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed:
band I
band III
bands IV and V
A.G.C. range
bands I and III
bands IV and V
channel M 4 (picture carrier $163,25 \mathrm{MHz}$)
Margin: min. 2 MHz
channel E12 (picture carrier $224,25 \mathrm{MHz}$)
Margin: min. $1,8 \mathrm{MHz}$
channel E21 (picture carrier $471,25 \mathrm{MHz}$) to channel E69 (picture carrier $855,25 \mathrm{MHz}$) Margin at the extreme channels: 2 MHz
$32,7 \mathrm{MHz}$
$39,2 \mathrm{MHz}$
75Ω
at nominal gain during gain control
$\max .4$
max. 5
max. 6
max. 63\%
max. 63\%
max. 56\%
max. 56\%
typ. 16 MHz
typ. 16 MHz
typ. 30 MHz
nominal gain
3 dB
3 dB
3 dB
min. 40 dB
$\min .30 \mathrm{~dB}$
in the first 20 dB of the a.g.c. range
4 dB
$4,5 \mathrm{~dB}$
4 dB

Wanted signal characteristics (continued)

Power gain (see also measuring method for power gain Figs 11 and 12)
bands I and III
bands IV and V
Maximum gain difference
between any two v.h.f. channels
between any two u.h.f. channels
Noise figure
bands I and III
band I
band III
bands IV and V
channel E21
channel E40
channel E69
Unwanted signal characteristics
Image rejection (measured at picture carrier frequency)
band I
band III
bands IV and V
I.F. rejection (measured at picture carrier frequency)
band I
channel A
channel B
channel C
band III
bands IV and V
$\min .22 \mathrm{~dB}$
$\min .19 \mathrm{~dB}$
typ. 4 dB
typ. 6 dB
$\max .7,5 \mathrm{~dB}$
typ. 6 dB
typ. 5 dB
max. 10 dB
typ. $5,5 \mathrm{~dB}$
typ. 6,5 dB
typ. 7,5 dB
$\min .60 \mathrm{~dB}$
$\min .40 \mathrm{~dB}$
$\min .40 \mathrm{~dB}$
$\min .12 \mathrm{~dB}$
$\min .20 \mathrm{~dB}$
$\min .30 \mathrm{~dB}$
$\min .60 \mathrm{~dB}$
$\min .60 \mathrm{~dB}$

Cross modulation
Input signal producing 1% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
band I
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $67 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 20 dB gain reduction
typ. $85 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
band III
at nominal gain
typ. $70 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 20 dB gain reduction
bands IV and V
at nominal gain
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
at 20 dB gain reduction
typ. $70 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $\mathrm{N} \pm 3$ for bands I, III, IV and V).
band III
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
bands IV and V
at nominal gain
typ. $85 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
Oscillator characteristics
Shift of oscillator frequency at a change
of the supply voltage 5%
bands I and III max. 200 kHz
bands IV and V
channel 21
channel 40
channel 69
$\max .1000 \mathrm{kHz}$
typ. 600 kHz
typ. 100 kHz

Drift of oscillator frequency at a change
of the ambient temperature from +25 to $+40^{\circ} \mathrm{C}$
(measured after 3 cycles from +25 to $+55^{\circ} \mathrm{C}$)
bands I and III
$\max .350 \mathrm{kHz}$
bands IV and V
$\max .600 \mathrm{kHz}$
I.F. circuit characteristics

Minimum tuning range of i.f. output coil
32 to 40 MHz

Miscellaneous

Oscillator voltage at the aerial terminal
Fundamental and harmonic frequencies up to 1000 MHz bands I and III
max. $50 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
bands IV and V
max. $66 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

ADDITIONAL INFORMATION

I.F. injection

Terminal 4 (supply voltage u.h.f.) can be used as i.f. injection point, provided the u.h.f. supply voltage is applied to terminal 4 via a resistor of 56Ω (see Fig. 10). The u.h.f. band should be switched on; a tuning voltage of -12 V is applied to terminal 7 .

Fig. 10.

Connection of the i.f. amplifier

No special precautions are required to load and to match the i.f. output of the tuner.

Measuring method of power gain

The i.f. output of the tuner should be terminated with the circuit given in Fig. 11.

Fig. 11.

This circuit roughly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit (Fig. 12).
Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and the circuit between a 75Ω source and a 75Ω detector.

Fig. 12.

Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 13. A suitable tool is available under catalogue number 712200547680.

Fig. 13.

V.H.F. TELEVISION TUNER

QUICK REFERENCE DATA

Systems
Channels
low v.h.f.
high v.h.f.
Intermediate frequencies
picture
sound
C.C.I.R. systems M and N (R.T.M.A.)

A2 to A6
A7 to A13
$45,75 \mathrm{MHz}$
$41,25 \mathrm{MHz}$

APPLICATION

This tuner is designed to cover the v.h.f. channels of C.C.I.R. systems M and N (R.T.M.A.).
It can be provided with a frequency divider, which makes this tuner suitable for digital tuning systems based on frequency synthesis.

DESCRIPTION

This v.h.f. tuner has electronic tuning and band switching, covering the low v.h.f. band channels A2 to A6 (frequency range 54 to 88 MHz) and the high v.h.f. band channels A7 to A13 (frequency range 174 to 216 MHz).
Mechanically, the tuner is built on a low-loss printed-wiring board, carrying all components, in a metal housing made of a rectangular frame and front and rear cover (see Fig. 2a). All connections (supply voltage, a.g.c. voltage, tuning voltage, band switching, i.f. output) are made via terminals on the underside, except the coaxial aerial connection of 75Ω which is on one of the frame sides. The mounting method is shown in Fig. 3.
Electrically the v.h.f. aerial signal is fed via low pass, high pass, i.f. and f.m. suppression filters to a switchable single tuned input circuit for low and high v.h.f. operation, which is capacitively coupled to the gate 1 of a MOS-FET tetrode (with internal gate protection against surge). The drain load of the MOS-FET tetrode is formed by a double tuned, switchable bandpass filter, transferring the r.f. signal to the emitter of the mixer transistor. The oscillator signal is also fed to the emitter of the mixer transistor.
The collector circuit of the mixer transistor is a single tuned i.f. resonant circuit, where the i.f. signal is coupled out at the low impedance side.
A test point (terminal 4) is provided for i.f. injection to adjust the i.f. output circuit of the tuner together with the i.f. amplifier of a television receiver. An additional test point, which is accessible through a hole in the top of the frame, is connected with the collector of the v.h.f. mixer transistor.
The single tuned input, the r.f. bandpass filter and oscillator circuits are tuned by 4 varicap diodes, band switching is achieved by switching diodes.
The tuner is gain controlled via gate 2 of the input MOS-FET tetrode.

(to be established)
Fig. 2a.

Fig. 2b I.F. output coil.
Torque for alignment: 2 to 15 mNm Press-through force: $\geqslant 10 \mathrm{~N}$

Terminal
1 = aerial
2 = supply voltage, v.h.f. $\mathrm{I},+12 \mathrm{~V}$
3 = supply voltage, v.h.f. III, + 12 V
4 = i.f. injection
5 = a.g.c. voltage, $+9,2$ to $+0,85 \mathrm{~V}$
6 = supply voltage, +12 V
7 = tuning voltage, +1 to +28 V
9 = i.f. output
10 = earth

Mass approx. 125 g .

Mounting

The tuner may be mounted by soldering it on to a printed-wiring board, using the piercing diagram shown in Fig. 3. (The tuner may also be mounted by means of a bracket. Information will be supplied upon request.)
It is recommended that the tuner be installed in the cool part of the receiver cabinet and not exposed to the vibrations of the loudspeaker. There are no restrictions on orientation.
The solderability of the terminals and mounting tabs is according to IEC $68-2$, test $\mathrm{Ta}\left(230 \pm 10^{\circ} \mathrm{C}\right.$, $2 \pm 0,5 \mathrm{~s})$. The resistance to soldering heat is according to IEC $68-2$, test $\mathrm{Tb}\left(260 \pm 5^{\circ} \mathrm{C}, 10 \pm 1 \mathrm{~s}\right)$.

Fig. 3 Piercing diagram viewed from solder side of board. Unless otherwise stated the tolerance is $\pm 0,05 \mathrm{~mm}$.

Marking

The tuner is provided with a label showing the following data:

- type number V431
- catalogue number 311221851830
-- code for factory of origin
- change code
- code for year and week of production

ELECTRICAL DATA

Unless otherwise specified all electrical values apply at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$, a relative humidity of $60 \pm 15 \%$, a supply voltage of $12 \pm 0,3 \mathrm{~V}$ and an a.g.c. voltage of $9,2 \pm 0,2 \mathrm{~V}$.

General

Semiconductors
r.f. amplifier BF982
mixer BF324
oscillator BF926
tuning diodes $4 \times$ BB809
switching diodes
$4 \times$ BA482/483/484
d.c. blocking diodes
$3 \times$ BAW62
Ambient temperature range
operating
0 to $+60^{\circ} \mathrm{C}$
storage
-25 to $+70^{\circ} \mathrm{C}$
Relative humidity
max. 95\%

Voltage and currents

Supply voltage
$+12 \mathrm{~V} \pm 10 \%^{*}$
Current drawn from +12 V supply
low v.h.f.
max. 52 mA ; typ. 39 mA
high v.h.f. max. 52 mA ; typ. 39 mA
Bandswitching
For operation in both bands the supply voltage is permanently connected to terminal 6. Additionally the supply voltage is connected to:
terminal 2 for operation in the low v.h.f. band, terminal 3 for operation in the high v.h.f. band, terminal 4 for i.f. injection

```
A.G.C. voltage
    voltage range +9,2 to +0,85 V
    voltage at nominal gain
    +9\pm0,5 V
    voltage at 40 dB gain reduction
    low v.h.f.
    typ. 3,2 V
    high v.h.f.
    typ. 1,5 V
```

Note: A.G.C. voltages between 0 and $+10,5 \mathrm{~V}$ may be applied without risk of damage.
A.G.C. current

Slope of a.g.c. characteristic, at the end of the specified a.g.c. range
max. $0,1 \mathrm{~mA}$
typ. $25 \mathrm{~dB} / \mathrm{V}$

[^6]Tuning voltage range (Figs 4 and 5)
Current drawn from 28 V tuning voltage supply

$$
\begin{aligned}
& \text { at } T_{a m b}=25^{\circ} \mathrm{C} \text { and R.H. }=60 \% \\
& \text { at } T_{a m b}=25^{\circ} \mathrm{C} \text { and R.H. }=95 \% \\
& \text { at } T_{a m b}=55^{\circ} \mathrm{C} \text { and R.H. }=60 \%
\end{aligned}
$$

+1 to +28 V
$\max .0,3 \mu \mathrm{~A}$
$\max .1 \mu \mathrm{~A}$
$\max .1 \mu \mathrm{~A}$

Note: The source impedance of the tuning voltage offered to terminal 7 must be maximum $47 \mathrm{k} \Omega$.
Slope of tuning characteristic
low v.h.f. channel A2 channel A6
high v.h.f. channel A7 channel A13

$3 \mathrm{MHz} / \mathrm{V}$	
$2 \mathrm{MHz} / \mathrm{V}$	typical values
$6 \mathrm{MHz} / \mathrm{V}$	typical values
$4 \mathrm{MHz} / \mathrm{V}$	

Frequencies

Frequency ranges
low v.h.f.
high v.h.f.

Intermediate frequencies
picture
sound

Wanted signal characteristics

Input impedance
V.S.W.R. and reflection coefficient
(values between picture and sound carrier, as well as values at picture carrier)

```
v.s.w.r.
```

all channels except A6
channel A6
reflection coefficient
all channels except A6
channel A6
R.F. curves, bandwidth
low v.h.f.
high v.h.f.
channel A2 (picture carrier $55,25 \mathrm{MHz}$) to channel A6 picture carrier $83,25 \mathrm{MHz}$).* Margin at the extreme channels: $\min .1,5 \mathrm{MHz}$. channel A7 (picture carrier $175,25 \mathrm{MHz}$) to channel A13 (picture carrier $211,25 \mathrm{MHz}$). Margin at the extreme channels min. 2 MHz .
$45,75 \mathrm{MHz}$
$41,25 \mathrm{MHz}$
The oscillator frequency is higher than the aerial signal frequency.
75Ω
at nominal gain during gain control
max. 4
$\max .5$
max. 60\%
max. 66\%
max. 66\%
max. 66\%
typ. 10 MHz
typ. 12 MHz
on any channel the amplitude difference between the top of the r.f. resonant curve and the picture frequency, the sound frequency, or any frequency between them will not exceed 3 dB at nominal gain, and 4 dB in the a.g.c. range between nominal gain and 20 dB gain reduction, except for channel A6.
A.G.C. range (Figs 6 and 7)
$\min .40 \mathrm{~dB}$
Power gain (see also Measuring method of power gain)
$\min .22 \mathrm{~dB}$
channel A4
typ. 26 dB
channel A7 typ. 26 dB
channel A13
typ. 27 dB
Maximum gain difference
between any two v.h.f. channels
typ. 4 dB
Noise figure
all channels except A6
max. 7 dB
channel A6
max. 9 dB
channel A4
typ. 5 dB
channel A7
typ. 5 dB
channel A13
typ. 5 dB

Overloading:

Input signal producing 1 dB gain compression at nominal gain
Input signal producing either a detuning of the oscillator of +300 kHz or -1000 kHz or stopping of the oscillations at nominal gain
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Unwanted signal characteristics

Image rejection (measured at picture carrier frequency) min. 60 dB ; typ. 70 dB
I.F. rejection (measured at picture carrier frequency)
low v.h.f. channel A2
low v.h.f. channels A3 to A6
high v.h.f.
min. 45 dB
min .50 dB
min .60 dB

Note: At colour sub-carrier frequency maximum 6 dB less rejection.

Fig. 4 Typical tuning characteristic, low v.h.f.

Fig. 6 Typical a.g.c. characteristic, low v.h.f.

Fig. 5 Typical tuning characteristic, high v.h.f.

Fig. 7 Typical a.g.c. characteristic, high v.h.f.
F.M. rejection, low v.h.f.

Level of an f.m. signal of $91,5 \mathrm{MHz}$ which produces
an i.f. signal $(47,75 \mathrm{MHz}) 57 \mathrm{~dB}$ below the level
of the wanted picture carrier
channel A2 typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$
channel A4 typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$
channel A6
typ. $60 \mathrm{~dB}(\mu \mathrm{~V})$
F.M. rejection, high v.h.f.

Level of an f.m. signal between 88 and 105 MHz , which produces an i.f. interfering ($45,75 \mathrm{MHz}$) 57 dB below the level of the wanted picture carrier. Level of input picture carrier is $60 \mathrm{~dB} \mu \mathrm{~V}$
channel A8
channel A11
channel A13
typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $92 \mathrm{~dB}(\mu \mathrm{~V})$
typ. $95 \mathrm{~dB}(\mu \mathrm{~V})$

Cross modulation:
Input signal producing 1\% cross modulation, i.e. 1% of the modulation depth of the interfering signal is transferred to the wanted signal.
In channel cross modulation (wanted signal: picture carrier frequency; interfering signal: sound carrier frequency)
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
typ. $76 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $94 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

In band cross modulation (wanted signal: picture carrier of channel N; interfering signal: picture carrier of channel $\mathrm{N} \pm 2$ for low v.h.f. or channel $\mathrm{N} \pm 3$ for high v.h.f.
at nominal gain (wanted input level $60 \mathrm{~dB}(\mu \mathrm{~V})$)
at 40 dB gain reduction (wanted input level $100 \mathrm{~dB}(\mu \mathrm{~V})$)
Out of band cross modulation at nominal gain
low v.h.f., interfering from high v.h.f.
high v.h.f., interfering from low v.h.f.
typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $100 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $90 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω

Oscillator characteristics

Pulling:
Input signal of tuned frequency producing a shift of the oscillator frequency of 10 kHz , at nominal gain low v.h.f.
high v.h.f.
Shift of oscillator frequency at a change of the supply voltage of 5%
When using supply circuit of Fig. 10 additional shift

Drift of oscillator frequency during warm-up time (after the tuner has been completely out of operation for 15 min , measured between 5 s and 15 min after switching on)
typ. $88 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
typ. $86 \mathrm{~dB}(\mu \mathrm{~V})$ into 75Ω
max. 200 kHz
during warm-up time (after the input stage is in operation for 15 min , measured between 2 s and 15 min after band switching)
at a change of the ambient temperature from
+25 to $+50^{\circ} \mathrm{C}$ (measured after 3 cycles
from +25 to $+55^{\circ} \mathrm{C}$)
$\max .600 \mathrm{kHz}$
at a change of humidity from $60 \pm 15 \%$ to $93 \pm 2 \%$
(measured at $\mathrm{T}_{\mathrm{amb}}=25 \pm 5^{\circ} \mathrm{C}$)
low v.h.f.
$\max .500 \mathrm{kHz}$
high v.h.f.
max. 1000 kHz

I.F. circuit characteristics

Bandwidth of i.f. output circuit $5 \pm 0,5 \mathrm{MHz}$

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 8; tuning voltage 15 V , high v.h.f. band switched on.

Bandwidth variation of i.f. output circuit as a result of r.f. tuning and band switching (reference: high v.h.f., tuning voltage 15 V ; i.f. output circuit adjusted to $43,5 \mathrm{MHz}$)
max. 650 kHz
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 8, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Fig. 8.
Detuning of the i.f. output circuit as a result of r.f. tuning and band switching (reference: high v.h.f. tuning voltage 15 V ; i.f. output circuit adjusted to $43,5 \mathrm{MHz}$)
$\max .300 \mathrm{kHz}$
Note: I.F. output of the tuner terminated with a modified circuit of Fig. 8, i.e. a 100 pF capacitor is connected in parallel with the i.f. output of the tuner.

Minimum tuning range of i.f. output coil
 41 to 47 MHz

Note: I.F. output of the tuner terminated with the circuit shown in Fig. 8. The tuner is supplied with the i.f. output circuit adjusted to $43,5 \pm 1 \mathrm{MHz}$.

Attenuation between i.f. injection point

 and i.f. output of the tunertyp. 16 dB

Miscellaneous

Radio interference:
Oscillator radiation and oscillator voltage
at the aerial terminal
Within the limits of C.I.S.P.R. 13 (1975)
Microphonics
There will be no microphonics, provided the turner is installed in a professional manner.

Surge protection:
Protection against voltages
max. 5 kV
Note: 10 discharges of a 470 pF capacitor into the aerial terminal.

Protection against flashes
max. $30 \mathrm{kV}, 400 \mathrm{mWs}$
Note: A flashover circuit producing flashes with frequencies of 1 to 20 Hz for 30 s is connected to the aerial terminal.

ADDITIONAL INFORMATION

I.F. injection

Terminal 4 can be used as i.f. injection point. The i.f. generator is connected according to Fig. 9. High v.h.f. should be switched on; tuning voltage should be 15 V .

Fig. 9.

Connection of the i.f. amplifier

- By means of a print track as short as possible.
- By means of a shielded track, e.g. a coaxial cable.

Connection of supply voltages

Fig. 10.

Measuring method of power gain

The i.f. output of the tuner should be terminated with the RC-circuit given in Fig. 8.

Fig. 11.

The RC-circuit rouighly matches the i.f. output impedance to 75Ω at the resonant frequency of the i.f. output circuit which should be tuned to $43,5 \mathrm{MHz}$; the bandwidth is approx. 5 MHz (Fig. 11). Because the input and output impedances of the tuner are now 75Ω, the power gain can be measured in the conventional manner by inserting tuner and RC-circuit between a 75Ω source and a 75Ω detector.

Alignment of the i.f. output coil

The i.f. output coil should be adjusted with a brass tool with a blade as shown in Fig. 12. A suitable tool is available under catalogue number 712200547680.

Fig. 12.

TESTS AND REQUIREMENTS

IEC 68-2	test	procedure	requirements
Ab	cold	$-25^{\circ} \mathrm{C}, 96 \mathrm{~h}$	Checked within 10 min after
Bb	dry heat	$+70^{\circ} \mathrm{C}, 96 \mathrm{~h}$	all tests mentioned:
Db	damp heat, cyclic	$\begin{aligned} & +25 \text { to }+40^{\circ} \mathrm{C} \\ & \text { R.H. } 90 \text { to } 100 \% \\ & 21 \text { cycles of } 24 \mathrm{~h} \end{aligned}$	(in operation of 1 or more channels).
Ca	damp heat, steady state	$-40^{\circ} \mathrm{C}, \text { R.H. } 93 \%$ $21 \text { days }$	After 1 h reconditioning under normal conditions:
Na	rapid change of temperature	$\begin{aligned} & 3 \mathrm{~h}-25{ }^{\circ} \mathrm{C} / 3 \mathrm{~h}+70^{\circ} \mathrm{C} \\ & 5 \text { cycles } \end{aligned}$	change of osc. freq. band I $\leqslant 1,5 \mathrm{MHz}$ band III $\leqslant 2 \mathrm{MHz}$
Fc	vibration	$10-55-10 \mathrm{~Hz}$, amplitude $0,35 \mathrm{~mm}$ 3 directions, 30 min per direction	change of power gain $\leqslant 2 \mathrm{~dB}$ change of tilt r.f. curve $\leqslant 2 \mathrm{~dB}$
Eb	bump	1000 bumps, acceleration 25 g , in 6 directions	change of tuning current $\leqslant 0,5 \mu \mathrm{~A}$
Ea	shock	half sine pulse 11 ms , acceleration 50 g in 6 directions 3 times per direction	

COAXIAL AERIAL INPUT ASSEMBLIES

COAXIAL AERIAL INPUT ASSEMBLY

QUICK REFERENCE DATA

Frequency range	40 to 890 MHz
Impedance	75Ω asymmetrical

APPLICATION

This coaxial aerial input assembly has been developed for application in TV sets without mains separation and provided with a television tuner of the UV400 family. Thanks to the use of safety capacitors in the assembly, the chassis of the TV set is separated from the aerial input. The input connector of the assembly meets the demands of IEC 169.2 and DIN 45325 (diameter $9,5 \mathrm{~mm}$).
The coaxial aerial input assembly complies with the requirements of immunity from radiated interference of Amtsblatt DBP69/1981. It meets the safety requirements of IEC 65; approbation approval has been sought from VDE.

DESCRIPTION

The assembly is provided with safety capacitors, which are moulded in thermo-setting insulation material, thus forming capacitor blocks. These capacitor blocks are built in a metal housing with cover, and are connected to the housing, coaxial cable and the output plug (see Fig. 1). The coaxial cable is a double insulated, screened 75Ω cable, which leads to the female input connector on a plastic plate. The output connector (phono) is mounted on the housing and fits the aerial input of the tuner (see Fig. 2).
The assembly can be supplied with three cable lengths:

free cable iength	catalogue number
90 mm	312212701240
145 mm	312212703500
250 mm	312212705900

Fig. 1 Ferrite bead $=\phi 8 \times \phi 3 \times 10 \mathrm{~mm}$.

$$
\begin{aligned}
& \mathrm{C}_{1}=390 \mathrm{pF} \\
& \mathrm{C}_{2}=1000 \mathrm{pF} \\
& \mathrm{C}_{3}=1000 \mathrm{pF}
\end{aligned}
$$

ELECTRICAL DATA

The electrical values are measured at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$ and a relative humidity of $60 \pm 15 \%$.
Impedance of input connector
Impedance of output plug
Frequency range
Reflection at the input connector, output plug
matched with phono connector 312212874660
and 75Ω and 75Ω

$$
40 \text { to } 470 \mathrm{MHz}
$$

$$
470 \text { to } 700 \mathrm{MHz}
$$

$$
700 \text { to } 890 \mathrm{MHz}
$$

Reflection at the output plug, input connector matched with IEC plug and 75Ω
40 to 470 MHz
470 to 700 MHz
700 to 890 MHz
nsertion loss
40 to 700 MHz
7.00 to 890 MHz

Contact resistance of input connector
inner conductor
outer conductor
Contact resistance of output plug
inner conductor
outer conductor
Insulation resistance
Immunity from radiated interference

Safety

ENVIRONMENTAL CONDITIONS
Operating temperature range
Storage temperature range
Relative humidity
Maximum bump acceleration
Maximum shock acceleration
Maximum vibration amplitude
75Ω, asymmetric
75Ω, asymmetric
40 to 890 MHz
$\leqslant 25 \%$
$\leqslant 35 \%$
$\leqslant 45 \%$
$\leqslant 25 \%$
$\leqslant 35 \%$
$\leqslant 45 \%$
max. $1,5 \mathrm{~dB}$, typ. $0,6 \mathrm{~dB}$
$\max .2,0 \mathrm{~dB}$, typ. $1,4 \mathrm{~dB}$
$\leqslant 10 \mathrm{~m} \Omega$
$\leqslant 5 \mathrm{~m} \Omega$
$\leqslant 10 \mathrm{~m} \Omega$
$\leqslant 10 \mathrm{~m} \Omega$
$\leqslant 500 \mathrm{M} \Omega$
in conformity with requirements of Amtsblatt DBP69/1981 provided the unit is connected to a television tuner of the UV400 family in the right way.
the unit meets the requirements of IEC 65, 4th edition, clause 14.2. Approbation approval has been sought from VDE. Quality assessment in production centres is according to the rules of VDE.

0 to $+55^{\circ} \mathrm{C}$
-40 to $+70^{\circ} \mathrm{C}$
$\leqslant 95 \%$
$245 \mathrm{~m} / \mathrm{s}^{2}(25 \mathrm{~g})$
$490 \mathrm{~m} / \mathrm{s}^{2}(50 \mathrm{~g})$
$0,35 \mathrm{~mm}$

Fig. 2.

Mass 50 g approximately

MOUNTING

The metal housing is connected to the television tuner of the UV400 family by inserting the phono plug into the aerial input plug of the tuner. The plastic plate with input connector can be fixed by means of two M3 screws (13 mm) or by using a snap-in holder.
It is advised not to use aluminium plugs.
Insertion force
input connector max. 50 N
inner conductor of output plug max. 30 N
Pull-out force
input connector
inner conductor of output plug
Tensile strength to cable connections at both sides
10 to 50 N
$\min .3 \mathrm{~N}$
$\max .100 \mathrm{~N}$

TESTS AND REQUIREMENTS

IEC publicati		name of test	procedure	requirements
IEC 68-2-1	Ab	cold	$-40^{\circ} \mathrm{C}, 96 \mathrm{~h}$	
IEC 68-2-2	Bb	dry heat	$+70{ }^{\circ} \mathrm{C}, 96 \mathrm{~h}$	
IEC 68-2-30	Db	damp heat, cyclic	$+25 /+40^{\circ} \mathrm{C}, 90 / 100 \%$ R.H., 21 cycles of 24 h	
IEC 68-2-3	Ca	damp heat, steady state	+40 ${ }^{\circ} \mathrm{C}, 93 \%$ R.H.; 21 days	mentioned under
IEC 68-2-14	Na	rapid change of temperature	$\begin{aligned} & 3 \mathrm{~h}-40^{\circ} \mathrm{C} / 3 \mathrm{~h}+70^{\circ} \mathrm{C}, \\ & 5 \text { cycles } \end{aligned}$	electrical and mechanical data
IEC 68-2-6	Fc	vibration	$10-55-10 \mathrm{~Hz}$, sinusoidal, amplitude $0,35 \mathrm{~mm}$, 3 directions, 30 min per direction	must be met, except the insulation resistance which must be min. $300 \mathrm{M} \Omega$
IEC 68-2-29	Eb	bump	1000 bumps, 25 g , 6 directions	
IEC 68-2-27	Ea	shock	half sinewaves of 11 ms , accel. $50 \mathrm{~g}, 6$ directions, 3 shocks per direction	

MARKING

Moulded in the front side of the plastic plate (see Fig. 2):

- PHILIPS
- 7106 (safety code)
- 250 V ; 390 pF 1x, 1000 pF 2 x

PACKING

The assemblies are supplied in cardboard boxes of $490 \times 295 \times 153 \mathrm{~mm}, 64$ pieces per box.

COAXIAL AERIAL INPUT ASSEMBLY

APPLICATION

These coaxial aerial input assemblies have been developed for application in television sets with 75 ohm input impedance, for use in v.h.f. as well as in u.h.f. ($40-890 \mathrm{MHz}$). The connectors meet the demands of both the IEC standards (diameter $9,5 \mathrm{~mm}$) and the French standards (diameter $9,0 \mathrm{~mm}$). They have to be used with plugs complying with the properties mentioned in DIN 45325, IEC $169-2$ (diameter $9,5 \mathrm{~mm}$) and SNIR (diameter $9,0 \mathrm{~mm}$). The units meet the safety requirements of IEC 65.

AVAILABLE TYPES

Coaxial aerial input assembly 75Ω
Attenuation $\quad: \leq 1 \mathrm{~dB}$
Reflection, v.h.f. : $\leq 15 \%$
u.h.f. : $\leq 25 \%$

Catalogue number : 312212710260

Dimensions in mm

Recommended fixing of the aerial cable Soldering conditions: $370 \pm 5{ }^{\circ} \mathrm{C} ; 3,5 \pm 0,5 \mathrm{~s}$

Cable diameter $\geq 5 \mathrm{~mm}$

Cable diameter $<5 \mathrm{~mm}$

Coaxial aerial input assembly 75Ω, with filter
Reflection, v.h.f.

$$
\begin{aligned}
& \leq 25 \% \\
& \leq 30 \%
\end{aligned}
$$

u.h.f.

Frequency characteristic

v.h.f.,	50 to 230 MHz
	470 MHz
	700 MHz
u.h.f.,	470 to 850 MHz
	230 MHz
	100 MHz

Catalogue number

$$
\begin{aligned}
& \leq 1 \mathrm{~dB} \\
& \geq 13 \mathrm{~dB} \\
& 23 \mathrm{~dB} \text { (typical value) } \\
& \leq 1 \mathrm{~dB} \\
& \geq 15 \mathrm{~dB} \\
& \quad 40 \mathrm{~dB} \text { (typical value) }
\end{aligned}
$$

312212710450

Dimensions in mm

Recommended fixing of the aerial cable
Soldering conditions: $370 \pm 5^{\circ} \mathrm{C} ; 3,5 \pm 0,5 \mathrm{~s}$

Cable diameter $\geq 5 \mathrm{~mm}$

Cable diameter $<5 \mathrm{~mm}$

Coaxial aerial input assembly 75Ω, with high-pass filter

Attenuation at $1 \mathrm{MHz}: \quad 60 \mathrm{~dB}$ (typical value)	
$5 \mathrm{MHz}: 40 \mathrm{~dB}$ (typical value)	
$10 \mathrm{MHz}: \geq 25 \mathrm{~dB}$	
	$50 \mathrm{MHz}: \leq 1 \mathrm{~dB}$
	$230 \mathrm{MHz}: \leq 1 \mathrm{~dB}$
	$470 \mathrm{MHz}: \leq 1 \mathrm{~dB}$
	$850 \mathrm{MHz}: \leq 1,5 \mathrm{~dB}$
Reflection,	v.h.f. I $: \leq 35 \%$
	v.h.f. III $: \leq 15 \%$
	u.h.f. $: \leq 35 \%$

Catalogue number : 312212714730

Dimensions in mm

solder wires into place after P has been bent around the cable

Recommended fixing of the aerial cable
Soldering conditions: $370 \pm 5{ }^{\circ} \mathrm{C} ; 3,5 \pm 0,5 \mathrm{~s}$

Cable diameter $\geq 5 \mathrm{~mm}$

Cable diameter $<5 \mathrm{~mm}$

COAXIAL AERIAL INPUT ASSEMBLY

APPLICATION

This coaxial aerial input assembly has been developed for application in TV sets with 75Ω input impedance, for use in v.h.f. as well as in u.h.f. bands. Thanks to the use of safety capacitors in the assembly, the chassis of the TV set is separated from the aerial input. The connector for the aerial input meets the demands of the IEC standards (diameter $9,5 \mathrm{~mm}$) and the French standards (diameter $9,0 \mathrm{~mm}$).
The coaxial aerial input assembly complies with the requirements of immunity from radiated interference of BS 905 . It meets the safety requirements of IEC 65; approbation approvals have been sought from KEMA, VDE, SEV, BSI, DEMKO, NEMKO, SEMKO, EI and LCEE.

DESCRIPTION

The assembly is provided with safety capacitors, which are moulded in thermo-setting insulation material, thus forming a capacitor block. This capacitor block is built in a metal housing, with lid, which is carried by a plastic fixing plate. All points to the safety capacitors are press contacts, achieved by the metal housing. The housing has an outlet for the coaxial cable to the television tuner.

ELECTRICAL DATA

The electrical values are measured at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$ and a relative humidity of $60 \pm 15 \%$.

Input impedance of connector
Frequency ranges

$$
\text { v.h.f. } 40 \text { to } 300 \mathrm{MHz}
$$

u.h.f.

Reflection
v.h.f. $\leqslant 15 \%$
u.h.f.

Insertion loss
v.h.f. $\leqslant 1 \mathrm{~dB}$; typ. 0,2 dB
u.h.f. $\leqslant 1 \mathrm{~dB}$; typ. $0,4 \mathrm{~dB}$

Contact resistance of connector after 1 plug insertion
inner bush $\leqslant 10 \mathrm{~m} \Omega$
outer bush $\leqslant 5 \mathrm{~m} \Omega$
Insulation resistance
Immunity from radiated interference

470 to 890 MHz
$\leqslant 25 \%$
75Ω, asymmetrical
$>500 \mathrm{M} \Omega$
in conformity with requirements of BS 905, provided the assembly is installed in a professional manner, and a proper coaxial cable is used.

Fig. 1.

ENVIRONMENTAL DATA

Operating temperature range
Storage temperature range
Relative humidity

0 to $+55^{\circ} \mathrm{C}$
-40 to $+85^{\circ} \mathrm{C}$
$\leqslant 95 \%$

Fig. 2.

MOUNTING

The assembly can be mounted to the chassis of the TV set with two self-tapping screws, $4 \mathrm{~N} \times 9,5$.
It must be connected to the tuner via a coaxial cable with a diameter of 3 mm . The inner cable conductor should be soldered to the metal plating of the capacitor block, and the cable earth sheath to the metal housing, see Fig. 3.
The soldering conditions are: $340^{\circ} \mathrm{C}, 2 \mathrm{~s}$.
Plugs to be used with the assembly have to comply with the properties mentioned in DIN 45325, IEC $69-2$ ($9,5 \mathrm{~mm}$ diameter) and SNIR (9 mm diameter).
It is advised not to use aluminium plugs.

Fig. 3 Recommended fixing of the aerial cable.

Fig. 4 Recommended cable stripping.

COAXIAL AERIAL INPUT ASSEMBLY

APPLICATION

This coaxial aerial input assembly has been developed for application in TV sets with 75Ω input impedance, for use in v.h.f. as well as in u.h.f. bands. Thanks to the use of safety capacitors in the assembly, the chassis of the TV set is separated from the aerial input. The connector for the aerial input meets the demands of the IEC standards (diameter $9,5 \mathrm{~mm}$) and the French standards (diameter $9,0 \mathrm{~mm}$).

The coaxial aerial input assembly complies with the requirements of immunity from radiated interference of BS 905. It meets the safety requirements of IEC 65; approbation approvals have been sought from KEMA, VDE, SEV, BSI, DEMKO, NEMKO, SEMKO, EI and LCEE.

DESCRIPTION

The assembly is provided with safety capacitors, which are moulded in thermo-setting insulation material, thus forming a capacitor block. This capacitor block is built in a metal housing with lid, which is carried by a plastic fixing plate. All points to the safety capacitors are press contacts, achieved by the metal housing. A printed circuit board containing a splitter for v.h.f. and u.h.f. signals is built in the housing. The housing has two outlets for coaxial cables to the television tuner.

Fig. 1 Electrical diagram.

ELECTRICAL DATA

The electrical values are measured at an ambient temperature of $25 \pm 5^{\circ} \mathrm{C}$ and a relative humidity of $60 \pm 15 \%$.
Input impedance of connector 75Ω, asymmetrical
Frequency ranges
v.h.f. 40 to 300 MHz
u.h.f.

470 to 890 MHz
Reflection
v.h.f.; u.h.f. output terminated with 75Ω
$\leqslant 30 \%$
u.h.f.; v.h.f. output terminated with 75Ω
$\leqslant 30 \%$
Insertion loss
v.h.f., $40-230 \mathrm{MHz}$
$\leqslant 1 \mathrm{~dB}$; typ. $0,7 \mathrm{~dB}$
v.h.f., $230-300 \mathrm{MHz}$, u.h.f. terminated with $75 \Omega \leqslant 1,5 \mathrm{~dB}$; typ. $1,2 \mathrm{~dB}$
u.h.f., v.h.f. terminated with $75 \Omega \quad \leqslant 1,5 \mathrm{~dB}$, typ. $0,9 \mathrm{~dB}$

Suppression
of u.h.f. frequencies at v.h.f. output
$40-230 \mathrm{MHz}$
$\geqslant 15 \mathrm{~dB}$
$230-300 \mathrm{MHz}$
$\geqslant 10 \mathrm{~dB}$
measured at
40 MHz
200 MHz
230 MHz
300 MHz
of v.h.f. frequencies at u.h.f. output
$470-890 \mathrm{MHz}$
measured at
470 MHz
700 MHz
890 MHz
Contact resistance of connector
after 1 plug insertion
inner bust:
outer bush
Insulation resistance
Immunity from radiated interference
$\leqslant 10 \mathrm{~m} \Omega$
typ. 50 dB
typ. 22 dB
typ. 18 dB
typ. 11 dB
$\geqslant 13 \mathrm{~dB}$
typ. 14 dB
typ. 21 dB
typ. 22 dB
$\leqslant 5 \mathrm{~m} \Omega$
$>500 \mathrm{M} \Omega$
in conformity with requirements of BS 905, provided the assembly is installed in a professional manner, and a proper coaxial cable is used.

Quality assessment in production centres are according to the rules of BSI and VDE.

ENVIRONMENTAL DATA

Operating temperature range
Storage temperature range
Relative humidity
Maximum bump acceleration
Maximum shock acceleration
Maximum vibration amplitude

$$
0 \text { to }+55^{\circ} \mathrm{C}
$$

-40 to $+85^{\circ} \mathrm{C}$
$\leqslant 95 \%$
25 g
50 g
$0,35 \mathrm{~mm}$

Fig. 2.
Mass
26 g approximately

Connector	
Insertion force	$\leqslant 50 \mathrm{~N}$
Pull-out force	10 to 50 N
Pull-out force of inner bush, measured with a min. gauge of 2,29 mm dia., after 5 insertions of a max. plug gauge of $2,43 \mathrm{~mm}$ dia.	$\geqslant 1 \mathrm{~N}$
Loading of inner bush in axial direction for 5 s	$\leqslant 50 \mathrm{~N}$
Pull-out force of outer bush, measured with a min. plug gauge of 9 mm dia., after 5 insertions of a max. plug gauge of $9,5 \mathrm{~mm}$ dia.	$\geqslant 1,5 \mathrm{~N}$
Loading of outer bush in 4 radial and axial directions for 5 s	$\leqslant 50 \mathrm{~N}$
Marking	
Moulded at the front of the fixing plate: - PHILIPS - 7105 (for the National Approbation Offices regarding the safety aspects) - $250 \mathrm{~V} \sim, 390$ pF 3x	
Punched into one of the side faces of the metal housing: - letter code for factory of origin - production date code (year and week)	

MOUNTING

The assembly can be mounted to the chassis of the TV set with two self-tapping screws, $4 \mathrm{~N} \times 9,5$.
It must be connected to the tuner via coaxial cables with a diameter of 3 mm stripped according to Fig. 3. The inner cable conductors should be soldered to the inputs of splitters which line up with the cable inlets, the cable earth sheaths soldered to the metal housing.
The soldering conditions are: $340^{\circ} \mathrm{C}, 2 \mathrm{~s}$.
Plugs to be used with the assembly have to comply with the properties mentioned in DIN 45325, IEC 69-2 ($9,5 \mathrm{~mm}$ diameter) and SNIR (9 mm diameter).
It is advised not to use aluminium plugs.

Fig. 3 Recommended cable stripping.
Cable length max. 150 mm .

CONVERSION LIST

CONVERSION LIST

catalogue number	type number	page
311110715670	USF10	121
311123710270	USF10A	121
311126710030	UV628/256	247
311220020720	UV627	247
	see U341/MK2	69
311221853420	see U342	84
53600	UV616/256	223
51790	UV615	223
51810	U411	97
	U412/256	97

51810
U412/256 97
51830
52290
52400
52410
52420
52660
52690
52720
52750
52780
52810
311222101220
311227413220
312212124910
29260
312212701240
03310
03500
V431 285
U412/64 97
U411/IEC 97
U412/256/IEC 97
U412/64/IEC 97
UV417 165
UV417/IEC 165
UV418/256 165
UV418/64 165
UV418/256/IEC 165
UV418/64/IEC 165
see U342 84
see U341/MK2 69
see U342 84
see U341/MK2 69
see U341/MK2 69

05900303
08870 UV411/IEC 133
08880
08890
08900
UV412/256/IEC 133
UV412/64/IEC 133
UV412/64 133
09060
UV412/256 133
09710
M33 39
09750 M34 39
$10260 \quad 307$
10450 307
14730307
19680 ELC3082 13
$21300 \quad 313$
24140 317
24360 UV411 133
25130
U342 71

CONVERSION LIST (continued)

catalogue number	type number	page
312212736700	U344/IEC	85
37220	U343/IEC	85
37390	U344	85
37520	U343	85
41492	U341/MK2	55
41510	U342LO	71
42010	UV412	133
43392	U341LO/MK2	55
43630	UV431	177
48460	UV461	193
312213163390	cross-head	163
312223700010	UV618/256	235
312223700020	UV461/IEC	193
00030	UV462/256	193
00040	UV462/256/IEC	193
00060	UV617	235
00070	M34/256	39
00200	UV411HKM/IEC	149
00230	UV636/256	259
00270	U743	109
00280	U743/IEC	109
00290	U743/IEC.L	109
00300	U744/256	109
00310	U744/256/IEC	109
00320	U744/256/IEC.L	109
00340	UV472/256	209
00360	UV472/64	209
10020	FE618QM/256	25
10030	FE618Q/256	25
10170	FE6170M	25
712200547680	adjustment tool	53
47910	holder	163
762246817940	see U343	96
810400411040	adjustment tool	96

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541 - 7141 to 7747.
Australia: PHILIPS INDUSTRIES LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 4393322.
Austria: ÖSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H., UB Bauelemente, Triester Str. 64, A-1101 WIEN, Tel. (0222) 629111-0.
Belgium: N.V. PHILIPS \& MBLE ASSOCIATED, 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel. (02) 525-61-11.
Brazil: CONSTANTA-IBRAPE; (Active Devices): Av. Brigadeiro Faria Lima, 1735-SAO PAULO-SP, Tel. (011) 211-2600,
(Passive Devices \& Materials): Av. Francisco Monteiro, 702 - RIBEIRAO PIRES-SP, Tel. (011) 459-8211.
Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. (416) 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. (02) 773816.
Colombia: IND. PHILIPS DE COLOMBIA S.A., C/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. (01) 2497624.
Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. (90) 17271.
France: RTC-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. (01) 43388000.
Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.
Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01) 4894339/4894911.
Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121.
India: PEICO ELECTRONICS \& ELECTRICALS LTD., Elcoma Dept., Band Box Building,
254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. (022) 4930311/4930590.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th FI., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 517995.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Elcoma Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355.
Italy: PHILIPS S.p.A., Div. Componenti Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 6752.1.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. (03) 448-5611. (IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.
Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 794-5011.
Malaysia: PHILIPS MALAYSIA SDN BHD, Elcoma Div., 345 Jalan Gelugor, 11700 PULAU PINANG, Tel. (04) 870044.
Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.
Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 783749.
New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. (09) 605-914.
Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. (02) 680200.
Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTAN LTD., Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 725772.
Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. (014) 326070.
Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. (02) 868951 to 59.
Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (019) 683121.
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000.
South Africa: S.A. PHILIPS (Pty) LTD., EDAC Div., 3rd Floor Rainer House, Upper Railway Rd. \& Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. (011) 402-4600/07.
Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel.(OO3) 3016312.
Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-1 1584 STOCKHOLM 27, Tel. (08) 7821000.
Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. (01) 4882211.
Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. (02) 7120500.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. (02) 233-6330-9.
Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad., No. 78-80, 80090 Ayazpasa ISTANBUL, Tel. (01) 1435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. (01) 5806633.
United States: (Active Devices \& Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000. (Passive \& Electromech. Dev.) MEPCO/CENTRALAB, INC., 2001 West Blue Heron Blvd, RIVIERA BEACH, Florida 33404, Tel. (305) 881-3200.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (408) 991-2000.
Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. (02) 985395.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.
For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, P.O. Box 218 ,
5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtenl

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.

[^0]: * Reference: normal operation with r.f. signal via aerial input.

[^1]: * When driven from a $10 \mathrm{k} \Omega$ source.

[^2]: * Measured in operational and non-operational condition of the tuner.

[^3]: * For U342LO: when the oscillator sample socket is either open or terminated with a coaxial plug (75Ω impedance, e.g. type 3/2-50, Daut und Rietz).

[^4]: * Channel R4 (picture carrier $85,25 \mathrm{MHz}$) is within the frequency range, but not specified.

[^5]: * In accordance with the publications of the Australian Broadcasting Control Board (A.B.C.B.).

[^6]: * A tolerance of -15% on the supply voltage is admissible, if a deterioration of gain, noise figure, oscillator shift and oscillator drift is acceptable.

