Electron tubes

Book T15
1986

Dry reed switches

DRY REED SWITCHES

page
General
Type selection 2
Introduction 3
Definitions 3
Characteristics 4
Application notes. 5
Quality 8
Device data 9

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES BLUE

SEMICONDUCTORS
RED

INTEGRATED CIRCUITS
PURPLE

COMPONENTS AND MATERIALS
GREEN

The contents of each series are listed on pages iv to viii.
The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.
When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.
Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).
Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.
Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:
T1 Tubes for r.f. heating
T2a Transmitting tubes for communications, glass types
T2b Transmitting tubes for communications, ceramic types
T3 Klystrons
T4 Magnetrons for microwave heating
T5 Cathode-ray tubes
Instrument tubes, monitor and display tubes, C. R. tubes for special applications
Geiger-Müller tubes
T8 Colour display systems
Colour TV picture tubes, colour data graphic display tube assemblies, deflection units

T9 Photo and electron multipliers

T10 Plumbicon camera tubes and accessories

T11 Microwave semiconductors and components
T12 Vidicon and Newvicon camera tubes
T13 Image intensifiers and infrared detectors
T15 Dry reed switches
T16 Monochrome tubes and deflection units
Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1 Diodes

Small-signal silicon diodes, voltage regulator diodes ($<1,5 \mathrm{~W}$), voltage reference diodes, tuner diodes, rectifier diodes

S2a Power diodes

S2b Thyristors and triacs

S3 Small-signal transistors
S4a Low-frequency power transistors and hybrid modules

S4b High-voltage and switching power transistors
S5 Field-effect transistors

S6 R.F. power transistors and modules
S7 Surface mounted semiconductors

S8 Devices for optoelectronics
Photosensitive diodes and transistors, light-emitting diodes, displays, photocouplers, infrared sensitive devices, photoconductive devices.

S9 Power MOS transistors

S10 Wideband transistors and wideband hybrid IC modules

S11 Microwave transistors

S12 Surface acoustic wave devices

S13 Semiconductor sensors

INT.EGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXISTING SERIES

IC1 Bipolar ICs for radio and audio equipment
Superseded by:
IC01N
$\begin{array}{ll}\text { IC2 Bipolar ICs for video equipment } & \text { ICO2Na and IC02Nb }\end{array}$
IC3 ICs for digital systems in radio, audio and video equipment ICO1N, ICO2Na and ICO2Nb
IC4 Digital integrated circuits CMOS HE4000B family

Digital integrated circuits - ECL
IC08N
ECL10000 (GX family), ECL100000 (HX family), dedicated designs
Professional analogue integrated circuits
IC7 Signetics bipolar memories
IC8 Signetics analogue circuits
IC11N
IC9 Signetics TTL logic
IC09N and IC15N
IC10 Signetics Integrated Fuse Logic (IFL) IC13N

IC11 Microprocessors, microcomputers and peripheral circuitry IC14N

NEW SERIES

IC01N	Radio, audio and associated systems Bipolar, MOS	(published 1985)
IC02Na	Video and associated systems Bipolar, MOS Types MAB8031AH to TDA1524A	(published 1985)
IC02Nb	Video and associated systems Bipolar, MOS Types TDA2501 to TEA1002	(published 1985)
IC03N	Integrated circuits for telephony	(published 1985)
IC04N	HE4000B logic family CMOS	
IC05N	$\begin{aligned} & \text { HE4000B logic family - uncased ICs } \\ & \text { CMOS } \end{aligned}$	(published 1984)
IC06N	High-speed CMOS; PC54/74HC/HCT/HCU Logic family	(published 1985)
Supplement to IC06N	t High-speed CMOS; PC74HC/HCT/HCU Logic family	(published 1985)
IC07N	High-speed CMOS; PC54/74HC/HCT/HCU - uncased ICs Logic family	
IC08N	ECL 10 K and 100 K logic families	(published 1984)
IC09N	TTL logic series	(published 1984)
IC10N	Memories MOS, TTL, ECL	
IC11N	Linear LSI	(published 1985)
IC12N S	Semi-custom gate arrays \& cell libraries ISL, ECL, CMOS	
IC13N S	Semi-custom Integrated Fuse Logic	(published 1985)
IC14N	Microprocessors, microcontrollers \& peripherals Bipolar, MOS	(published 1985)
IC15N	FAST TTL logic series	(published 1984)
Note		
Books availa	lable in the new series are shown with their date of publication	

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:
C1 Programmable controller modules PLC modules, PC20 modules

C2 Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
C3 Loudspeakers
C4 Ferroxcube potcores, square cores and cross cores
C5 Ferroxcube for power, audio/video and accelerators
C6 Synchronous motors and gearboxes
C7 Variable capacitors
C8 Variable mains transformers
C9 Piezoelectric quartz devices
C10 Connectors
C11 Varistors, thermistors and sensors
C12 Potentiometers, encoders and switches
C13 Fixed resistors
C14 Electrolytic and solid capacitors
C15 Ceramic capacitors
C16 Permanent magnet materials
C17 Stepping motors and associated electronics
C18 Direct current motors
C19 Piezoelectric ceramics
C20 Wire-wound components for TVs and monitors
C21* Assemblies for industrial use HNIL FZ/30 series, NORbits 60-, 61-, 90 -series, input devices
C22 Film capacitors

[^0]
TYPE SELECTION

series		RI-22	RI-23	RI-26	RI-27	RI-45	RI-46	
description	unit	general purpose micro-reed	general purpose micro-reed	high-inrush current micro-reed	general purpose pico-reed	switching mains voltage micro-reed	high power micro-reed	
Operate values	At	$8-70$	$8-70$	$8-32$	$10-34$	$30-65$	$12-31$	$27-77$
Release values	At	$4-32$	$4-32$	$4-22$	$4-19,5$	$10-25$	$5-19$	$9,5-26,5$
Contact resistance	$\mathrm{m} \Omega$	<90	<100	<100	<115	<90	<90	<90
Insulation resistance	Ω	$>10^{12}$	$>10^{12}$	$>10^{12}$	$>10^{12}$	$>10^{12}$	$>10^{12}$	$>10^{12}$
Switched power	W	10	10	15	10	40	30	40
Switched voltage	V	200 d.c.	200 d.c.	200 d.c.	200 d.c.		200 d.c.	200 d.c.
Switched current	mA	500	500	110 a.c.	110 a.c.	110 a.c.	110 a.c.	250 a.c.
Glass diameter	mm	$<2,8$	$<2,54$	$<2,54$	$<1,8$	$<2,8$	$<2,8$	250 a.c.
Glass length	mm	$<15,0$	$<15,0$	$<15,0$	$<13,5$	$<21,5$	$<21,5$	$<21,5$
Total length	mm	$46 \pm 0,5$						
Page		9	17	25	31	43	1000	

INTRODUCTION

DEFINITIONS (based on IEC 255-9)

A dry reed switch is an assembly containing ferromagnetic contact blades, hermetically sealed in a glass envelope and operated by an externally-generated magnetic fields, e.g. that from an actuating coil.
The must-not-operate value is the stated limit of the applied magnetic field at which the dry reed switch shall not operate.
The must-operate value is the stated limit of the applied magnetic field at which the dry reed switch shall operate (see Fig. 1).
The operate time is the time between the instant of application of a magnetic field to a dry reed switch and the instant of the first physical closing of this switch. The operate time does not include bounce time.
The must-not-release value is the stated limit of the applied magnetic field at which the operated dry reed switch shall remain physically closed (see Fig. 1).
The must-release value is the stated limit of the applied magnetic field at which the closed dry reed switch shall physically release.
The release time is the time between the instant of removal of an applied magnetic field to a dry reed switch and the instant of the first physical opening of this switch. The release time does not include bounce time.
Bounce is a momentary opening of a switch after initial closing, or a momentary closing after initial opening.
The bounce time is the interval of time between the instant of initial closing (or opening) and the instant of final closing (or opening) of the dry reed switch.
The dry reed switch contact resistance is the resistance of the dry reed switch under specified conditions of measurement.
The saturate value is the arbitrary defined value of the applied magnetic field at which the dry reed switch is unaffected by further increase of the applied magnetic field (see Fig. 1).

Fig. 1.

CHARACTERISTICS

Operate and release values

Operate and release values are dependent on the measuring coil, the rate of energization ($0,1 \mathrm{At} / \mathrm{ms}$), the detection of the operate (closing) and the release (opening) moment, the position of the measuring coil relative to the earth's magnetic field and on the environmental conditions.
If necessary, special operate and release values can be agreed upon between manufacturer and customer.

Operate and release times

The operate and release times are mostly dependent on the de-energization rate. They are proportional to the R / L time of the coil. Operate time is inversely proportional to the ratio of energization to operate value. Release time is proportional to the ratio of energization to release value.

Bounce time

The bounce time is almost independent of the energization, however, a high energization gives a somewhat shorter bounce time. The bounce time is dependent on the current to be switched; above about 100 mA the bounce time is almost zero.

Contact resistance

The contact resistance is dependent on the wire diameter, energization and contact layer. The published contact resistance is measured with an open contact voltage of 20 mV and a current through the closed contacts of 10 mA , using the 4 -point method (Kelvin method).

Breakdown voltage

The breakdown voltage depends on the gap between the contact blades, gas pressure, material of the contact layer and the availability of free electrons in the gas. The first three items are set by the design of a particular reed switch. The last one is very dependent on ambient conditions. Therefore minimum values are given in the published data.

Insulation resistance

The insulation resistance is dependent on the condition of the inside of the glass envelope and on the environment, e.g. relative humidity, conducting layers on the outside of the glass envelope.

Life expectancy

The life of a dry reed switch is influenced by the contact layer, the wire diameter, the load, the load circuit parameters and the applied magnetic field. The contact layer and the wire diameter are determined by the manufacturer. Load, load circuit parameters and magnetic field are determined by the user. The load should be within the maximum published values. The load circuit parameters, e.g. wiring capacitance and inductance, should be kept as low as possible and the applied magnetic field must be slightly stronger than necessary for obtaining the maximum most-operate value.

APPLICATION NOTES

Cutting and bending

Ensure that the glass-to-metal seals are not stressed while cutting and bending the leads. Shocks should be avoided. Cutting and bending the leads increases the must-operate value and the mustrelease value.

Coils

Most of the electrical characteristics are measured using a standard coil. Using another coil may change these characteristics. Also the measuring method e.g. speed, detection, and the position of the coil with respect to the earth's magnetic field may affect the characteristics.

Calculating the magnetic field for a dry reed switch in a coil

Fig. 4.
The magnetic field at any point x on the central axis of a coil (see Fig. 4) can be calculated by means of:
$H_{x}=\frac{N I_{c}}{2 L_{c}\left(r_{1}-r_{2}\right)}\left[\left(x+L_{c}\right) \ln \frac{\sqrt{r_{1}^{2}+\left(x+L_{c}\right)^{2}}+r_{1}}{\sqrt{r_{2}^{2}+\left(x+L_{c}\right)^{2}}+r_{2}}-x \ln \frac{\sqrt{r_{1}^{2}+x^{2}}+r_{1}}{\sqrt{r_{2}^{2}+x^{2}}+r_{2}}\right]$
The number of windings in the coil is calculated from:
$N=\frac{4 f_{s p} L_{c}\left(r_{1}-r_{2}\right)}{\pi d^{2} C u}$
Coil resistance is calculated by means of:
$R_{c}=\frac{16 f_{s p} \rho L_{c}\left(r_{1}^{2}-r_{2}{ }^{2}\right)}{\pi d^{4} C u}$
r_{1} outer radius of a coil (mm)
r_{2} inner radius of a coil (mm)
$L_{c} \quad$ length of a coil (mm)
$\mathrm{d}_{\mathrm{Cu}} \quad$ wire diameter of the copper wire used in a coil $(\mu \mathrm{m})$
$\mathrm{f}_{\mathrm{sp}} \quad$ space factor of a coil
$N \quad$ number of turns in a coil
$\mathrm{R}_{\mathrm{c}} \quad$ coil resistance (Ω)
$\mathrm{I}_{\mathrm{c}} \quad$ coil current (mA)
$\rho \quad$ specific resistance of copper ($\Omega \mathrm{cm}$)
$\mathrm{H}_{x} \quad$ magnetic field (At. m^{-1})

Contact protection

The published life-expectancy data are based on resistive loads unless stated otherwise. For inductive, capacitive or lamp loads, inrush current or reverse voltage can affect the life of a reed switch. For a maximum life-time, contact protection is advised.

Inductive loads

To reduce the high reverse voltage produced when a reed switch opens, the following contact protection can be applied.
a) D.C. voltage: a diode parallel to the load or the reed switch, see Fig. 2.

Fig. 2.
b) A.C. voltage: an RC-network parallel to the load or the reed switch, see Fig. 3.

Fig. 3.

$$
C=\frac{I^{2}}{10} \quad R=\frac{V}{10(1+50 / V)} \quad \begin{aligned}
& \mathrm{C} \text { in } \mu \mathrm{F} \text { and } \mathrm{I} \text { in } \mathrm{A} \\
& \mathrm{R} \text { in } \Omega \text { and } V \text { in } V
\end{aligned}
$$

Capacitive loads

To reduce the high inrush current when a reed switch closes, connect a resistor in series with the capacitance or the reed switch.

Lamp loads

To reduce the high inrush current when a cold incandescent lamp has to be switched by a reed switch (closing only), connect a resistor in series with the lamp or a resistor parallel to the reed switch.

Magnets

Permanent magnets are often used to operate a dry reed switch. There are several methods, e.g.:

- perpendicular movement
closes the switch once per movement
- parallel movement
closes the switch three times per movement

- rotational movement II
closes the switch twice per movement

Shielding

To shield a dry reed switch from a magnetic field, use can be made of ferromagnetic materials which shunt the magnetic field.

General

Should your specific application require further consultation, please contact us.

GENERAL

QUALITY

Adherence to detail during manufacture and a rigorous quality control procedure ensure our reed switches meet the toughest specifications in the world. It takes many steps to manufacture a reed that meets with our approval, and our quality department is involved at every one. There are no short-cuts when you are building quality into a product.
Samples of finished reed switches are subjected to extensive electrical and mechanical testing according to IEC Publication 68. Testing includes measurement of contact resistance and bounce, sensitivity, breakdown voltage, hermeticity, lead bending, and a variety of vibration, impact and temperature tests, and life testing of samples from every batch.

Extremely low contact resistance, insulation resistance $>10^{12} \Omega$ and long life make our reed switches ideal for use in Automatic Test Equipment such as circuit board testers. Price, ruggedness and ease of operation make our reed switches ideal for use in the car industry, e.g. in level detectors for screen washer and hydraulic fluid reservoirs, and in lamp-failure indicators.

DRY REED SWITCHES

Micro dry reed switch, hermetically sealed in a gas-filled glass capsule. Single-pole, single throw type, having normally open contacts, and containing two magnetically actuated reeds. The switch is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in push buttons, relays or in similar devices, in conjunction with semiconductor devices.

QUICK REFERENCE DATA

Contact
Switched power
Switched voltage
d.c.
a.c. (r.m.s.)

Switched current, d.c. or a.c. (r.m.s.)
Contact resistance (initial)
S.P.S.T. normally open
max. 10 W
max. 200 V
max. 110 V
max. 500 mA
typ. $\quad 60 \mathrm{~m} \Omega$

The RI-22 series comprises the types RI-22AAA, RI-22AA, RI-22/3A, RI-22/3B and RI-22/3C with the following basic magnetic characteristics, measured with the Standard coil.

		RI-22AAA	RI-22AA	RI-22/3A	RI-22/3B	RI-22/3C
Operate range Release range	(At)	8 to 16	46 to 23	18 to 32	28 to 52	46 to 70 16

MECHANICAL DATA

Contact arrangement
Lead finish
Resonant frequency of single reed
Net mass
Mounting position
Dimensions in mm

Fig. 1.

Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10 N).

Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions. The switches can also be supplied with cut and bent leads to customer specification.

\longrightarrow Resistance to soldering heat

The switch can withstand IEC test $68-2-20 \mathrm{~Tb}$, method 1 B : solder bath at $350 \pm 10^{\circ} \mathrm{C}$ during $3,5 \pm 0,5 \mathrm{~s}$.

\longrightarrow Solderability

Solderability is tested according to IEC 68-2-20 test Ta, method 3: solder globule $235^{\circ} \mathrm{C}$, ageing 1 b : 4 h steam.

Weldability

The leads are weldable.
The RI-22 series comprises five types: RI-22AAA, RI-22AA, RI-22/3A, RI-22/3B and RI-22/3C.

CHARACTERISTICS RI-22AAA

Not-operate

Breakdown voltage	see relevant graph			
Insulation resistance, intial	min.	10^{6}		$\mathrm{M} \Omega$ (note 1)
Capacitance, without test coil	max.	0,35		pF
		coil 1	coil II	
Must-not-operate value	max.	8	9	At
Operate				
Must-operate value	max.	16	15	At
Operate time, including bounce	typ. max.	$\begin{aligned} & 0,10(\text { note } 2) \\ & 0,25(\text { note } 2) \end{aligned}$		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
Bounce time	typ. max.	$\begin{aligned} & 0,05 \text { (note 2) } \\ & 0,15 \text { (note } 2 \text {) } \end{aligned}$		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
Contact resistance, initial	typ. max.	$\begin{aligned} & 60 \text { (note 3) } \\ & 90 \text { (note 3) } \end{aligned}$		$\begin{aligned} & \mathrm{m} \Omega \\ & \mathrm{~m} \Omega \end{aligned}$
Not-release				
Must-not-release value	min.	14	12	At
Release				
Must-release value	max.	4	4	At
Release time	max.	30 (note 2)		$\mu \mathrm{S}$

[^1]CHARACTERISTICS RI-22AA
Not-operate
Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce
Bounce time

Contact resistance, initial

Not-release

Must-not-release value

Release

Must-release value
Release time
CHARACTERISTICS RI-22/3A

Not-operate

Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce
Bounce time
Contact resistance, initial
Not-release
Must-not-release value

Release

Must-release value
Release time

see relevant graph			
min.	$\begin{array}{r} 10^{6} \\ 0,30 \end{array}$		M S^{\prime} (note 1)
max.			pF
	coil 1	coil II	
max.	14	13,5	At
max.	23	20	At
typ.	0,25 (note 2)		ms
max.	0,5 (note 2)		ms
typ.	0,15 (note 2)		ms
max.	0,3 (note 2)		ms
typ.	60 (note 3)		$\mathrm{m} \Omega$
max.	90 9note 3)		$m \Omega$
mir.	17,5	15	At
max.	7,5	7	At
max.	30 (note 2)		$\mu \mathrm{S}$

see relevant graph			
min.	$\begin{array}{r} 10^{6} \\ 0,25 \end{array}$		$\mathrm{M} \Omega$ (note 1)
max.			pF
	coil I	coil II	
max.	18	16	At
max.	32	27	At
typ. max.	$\begin{gathered} 0,25 \cdot(\text { note } 2) \\ 0,5 \text { (note 2) } \end{gathered}$		ms ms
typ. max.	$\begin{gathered} 0,15 \text { (note 2) } \\ 0,3 \text { (note 2) } \end{gathered}$		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
typ. max.	$\begin{aligned} & 60 \text { (note 4) } \\ & 90 \text { (note 4) } \end{aligned}$		$\begin{aligned} & \mathrm{m} \Omega \\ & \mathrm{~m} \Omega \end{aligned}$
min.	22	99	At
max.	8	7	At
max.	30 (note 2)	-	$\mu \mathrm{s}$

CHARACTERISTICS RI-22/3B

Not operate

Breakdown voltage
Insulation resistance
Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce

Bounce time
\rightarrow Contact resistance, initial

Not-release

Must-not-release value

Release

Must-release value
Release time
CHARACTERISTICS RI-22/3C

Not-operate

Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

Not-release

Must-not-release value

Release

Must-release value
Release time

see relevant graph			
min.	10^{6}0,25		$\mathrm{M} \Omega$ (note 1)
max.			pF
	coil 1	coil II	
max.	28	23	At
max.	52	42	At
typ.	0,25 (note 2)		ms
max.	0,5 (note 2)		ms
typ.	0,15 (note 2)		ms
max.	0,3 (note 2)		ms
typ.	60 (note 5)		$\mathrm{m} \Omega$
max.	90 (note 5)		$\mathrm{m} \Omega$
min.	29	24	At
max.	12	10	At
max.	30 (note 2)		$\mu \mathrm{s}$

see relevant graph			
min.	10^{6}		$\mathrm{M} \Omega$ (note 1)
max.	0,25		pF
	coil 1	coil II	
max.	46	37	At
max.	70	55	At
typ.	0,25 (note 2)		ms
max.	0,5 (note 2)		ms
typ.	0,15 (note 2)		ms
max.	0,3 (note 2)		ms
typ.	60 (note 5)		$\mathrm{m} \Omega$
max.	90 (note 5)		$\mathrm{m} \Omega$
min.	32	27	At
max.	16	13	At
max.	30 (note 2)		$\mu \mathrm{S}$

LIMITING VALUES

Absolute maximum rating system
Switched power

$$
\max . \quad 10 \mathrm{~W}
$$

Switched voltage
d.c.
max. 200 V
a.c. (r.m.s.)
max. 110 V
Switched current, d.c. or a.c. (r.m.s.)
max. 500 mA
Current through closed contacts, d.c. or a.c. (r.m.s.)
$\max .2 A$
max. $125{ }^{\circ} C^{*}$
Temperature, storage and operating
$\min .-55{ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY AND RELIABILITY

For life expectancy data end of life is defined as being reached when either:
(a) the contact resistance exceeds either 1Ω for no-load conditions or 2Ω for loaded conditions, measured 5 ms after energizing coil; or
(b) the release time exceeds 5 ms after de-energizing the coil (latching or contact sticking).

No-load conditions (operating frequency 50 Hz)
Life expectancy min. 10^{8} operatings with a failure rate of less than 10^{-9} with a confidence level of 90%. After each operation (a) and (b) are tested.

Loaded conditions (resistive load: $12 \mathrm{~V}, 2 \mathrm{~mA}$; operating frequency 50 Hz)
Life expectancy min. 10^{7} operations with a failure rate of less than 10^{-8} with a confidence level of 90%. After each operation points (a) and (b) are tested.

Note

Switching other loads involves different life expectancy and reliability. Consult us beforehand.

SHOCK AND VIBRATION

Shock

The switches are tested according to IEC Publication 68-2-27, test Ea (peak acceleration 150 g , half sine-wave). Such a shock will not cause an open switch (no magnetic field present) to close, nor a switch kept closed by an 80 At coil to open.

Vibration

The switches are tested according to IEC Publication 68-2-6, test Fc (acceleration 10 g , below cross-over frequency 57 to 62 Hz , amplitude $0,75 \mathrm{~mm}$, frequency range 10 to 2000 Hz , duration 90 min .). Such a vibration will not cause an open switch (no magnetic field present) to close, nor a switch kept close by an 80 At coil to open.

COILS
Coil I: Standard coil
5000 turns of 42 SWG single enamelled copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $8,75 \mathrm{~mm}$.

Coil II: Miniature coil A according to MIL-S-55433B

10000 turns of 48 SWG single enamelled copper wire on a coil former of $19,05 \mathrm{~mm}$ winding length and a core diameter of $4,32 \mathrm{~mm}$.

* Excursions up to $150^{\circ} \mathrm{C}$ may be permissible. Consult us.

Fig. 2 Breakdown voltage as a function of ampere-turns.

Fig. 3 Correlation of At operate in standard coil and MIL coil.

Fig. 4 Correlation of At release in standard coil and MIL coil.

Fig. 5 Just operate values at various overall lengths compared with standard length of 46 mm .

Fig. 6 Just release values at various overall lengths compared with standard length of 46 mm .

DRY REED SWITCHES

Micro dry reed switch hermetically sealed in a gas-filled glass capsule. Single-pole, single throw type, having normally open contacts, and containing two magnetically actuated reeds. The switch is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet ${ }^{-}$ or combinations of both. The device is intended for use in push buttons, relays or in similar devices, in conjunction with semiconductor devices.

QUICK REFERENCE DATA

Contact

Switched power
Switched voltage
d.c.
a.c. (r.m.s.)

Switched current, d.c. or a.c. (r.m.s.)
Contact resistance (initial)
S.P.S.T. normally open
max. 10 W
max. 200 V
$\max .110 \mathrm{~V}$
max. 500 mA
typ. $\quad 70 \mathrm{~m} \Omega$

The RI-23 series comprises the types RI-23AAA, RI-23AA, RI-23/3A, RI-23/3B and RI-23/3C with the following basic magnetic characteristics, measured with the Standard coil.

		RI-23AAA	RI-23AA	RI-23/3A	RI-23/3B	RI-23/3C
Operate range Release range	(At)	8 to 16	14 4 to 23	18 to 32	28 to 52	46 to 70
7,5 to 17,5	8 to 22	12 to 29	16 to 32			

MECHANICAL DATA

Contact arrangement
Lead finish
Resonant frequency of single reed
Net mass
Mounting position
Dimensions in mm

7285567
Fig. 1.

Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10 N).

Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions. The switches can also be supplied with cut and bent leads to customer specification.

\longrightarrow Resistance to soldering heat

The switch can withstand IEC test $68-2-20 \mathrm{~Tb}$, method 1 B : solder bath at $350 \pm 10^{\circ} \mathrm{C}$ during $3,5 \pm 0,5 \mathrm{~s}$.

\longrightarrow Solderability

Solderability is tested according to IEC 68-2-20 test Ta, method 3: solder globule $235^{\circ} \mathrm{C}$, ageing 1 b :
4 h steam.

Weldability

The leads are weldable.
The RI-23 series comprises four types: RI-23AAA; RI-23AA; RI-23/3A; RI-23/3B and RI-23/3C.
CHARACTERISTICS RI-23AAA
Not operate

Breakdown voltage	see relevant graph			
Insulation resistance, initial	min.	10^{6}		$\mathrm{M} \Omega$ (note 1)
Capacitance, without test coil	max.	0,30		pF
		coil 1	coil 11	
Must-not-operate value	max.	8	9	At
Operate				
Must-operate value	max.	16	15	At
Operate time, including bounce	typ. max.	$\begin{aligned} & 0,10 \text { (note 2) } \\ & 0,25 \text { (note 2) } \end{aligned}$		ms ms
Bounce time	typ. max.	$\begin{aligned} & 0,05 \text { (note 2) } \\ & 0,15 \text { (note 2) } \end{aligned}$		ms
Contact resistance, initial	typ. max.	$\begin{array}{r} 70 \text { (note 3) } \\ 100 \text { (note 3) } \end{array}$		$\begin{aligned} & \mathrm{m} \Omega \\ & \mathrm{~m} \Omega \end{aligned}$
Not-release				
Must-not-release value	\min.	14	12	At
Release				
Must-release value	max.	4	4	At
Release time	max.	70 (note 2)		$\mu \mathrm{S}$

Notes

1. Measured at a relative humidity of max. 45%.
2. Measured with 100 At.
3. Measured with 25 At, distance between measuring points: 41 mm . Wire resistance typ. $1,2 \mathrm{~m} \Omega / \mathrm{mm}$.
4. Measured with 30 At, distance between measuring points: 41 mm . Wire resistance typ. $1,2 \mathrm{~m} \Omega / \mathrm{mm}$.
5. Measured with 40 At , distance between measuring points: 41 mm . Wire resistance typ. $1,2 \mathrm{~m} \Omega / \mathrm{mm}$.

CHARACTERISTICS RI-23AA

Not-operate

Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

Not-release

Must-not-release value

Release

Must-release value
Release time
CHARACTERISTICS RI-23/3A

Not-operate

Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

Not-release

Must-not-release value

Release

Must-release value
Release time

see relevant graph			
min.	$\begin{array}{r} 10^{6} \\ 0,30 \end{array}$		$\mathrm{M} \Omega$ (note 1)
max.			pF
	coill	coil 11	
max.	14	13,5	At
max.	23	20	At
typ.	0,25 (note 2)		ms
max.	0,5 (note 2)		ms
typ.	0,15 (note 2)		ms
max.	0,3 (note 2)		ms
typ.	70 (note 3)		$\mathrm{m} \Omega$
max.	100 (note 3)		$\mathrm{m} \Omega$
min.	17,5	15	At
max.	7,5	7	At
max.	30 (note 2)		$\mu \mathrm{s}$

CHARACTERISTICS RI-23/3B

Not-operate

Breakdown voltage
Insulation resistance
Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce
Bounce time
\rightarrow Contact resistance, initial

Not-release

Must-not-release value

Release

Must-release value
Release time
CHARACTERISTICS RI-23/3C
Not-operate
Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce

Bounce time
\rightarrow Contact resistance, initial

Not-release

Must-not-release value
Release
Must-release value
Release time

see relevant graph			
min.	10^{6}		$\mathrm{M} \Omega$ (note 1)
max.	0,25		pF
	coil 1	coil II	
max.	28	23	At
max.	52	42	At
typ.	0,25 (note 2)		ms
max.	0,5 (note 2)		ms
typ.	0,15 (note 2)		ms
max.	0,3 (note 2)		ms
typ.	70 (note 5)		$\mathrm{m} \Omega$
max.	100 (note 5)		$\mathrm{m} \Omega$
min.	29	24	At
max.	12	10	At
max.	30 (note 2)		$\mu \mathrm{S}$
see relevant graph			
min.	10^{6}		$\mathrm{M} \Omega$ (note 1)
max.	0,25		pF
	coil 1	coil 11	
max.	46	37	At
max.	70	55	At
typ.	0,25 (note 2)		ms
max.	0,5 (note 2)		ms
typ.	0,15 (note 2)		ms
max.	0,3 (note 2)		ms
typ.	70 (note 5)		$\mathrm{m} \Omega$
max.	100 (note 5)		$\mathrm{m} \Omega$
min.	32	27	At
max.	16	13	At
max.	30 (note 2)		$\mu \mathrm{s}$

LIMITING VALUES

Absolute maximum rating system
Switched power max. 10 W
Switched voltage
d.c.
max. 200 V
a.c. (r.m.s.)

Switched current, d.c. or a.c. (r.m.s.)
Current through closed contacts, d.c. or a.c. (r.m.s.)
Temperature, storage and operating
max. 110 V
max. 500 mA
max. $2 A$
max. $125{ }^{\circ}{ }^{\circ}{ }^{*}$
$\min . \quad-55{ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY AND RELIABILITY

For life expectancy data end of life is defined as being reached when either:
(a) the contact resistance exceeds either 1Ω for no-load conditions or 2Ω for loaded conditions, measured 5 ms after energizing coil; or
(b) the release time exceeds 5 ms after de-energizing the coil (latching or contact sticking).

No-load conditions (operating frequency 50 Hz)
Life expectancy min. 10^{8} operatings with a failure rate of less than 10^{-9} with a confidence level of 90%. After each operation (a) and (b) are tested.

Loaded conditions (resistive load: $12 \mathrm{~V}, 2 \mathrm{~mA}$; operating frequency 50 Hz)
Life expectancy min. 10^{7} operations with a failure rate of less than 10^{-8} with a confidence level of 90%. After each operation points (a) and (b) are tested.

Note

Switching other loads involves different life expectancy and reliability. Consult us beforehand.

SHOCK AND VIBRATION

Shock

The switches are tested according to IEC Publication 68-2-27, test Ea (peak acceleration 150 g , half sine-wave). Such a shock will not cause an open switch (no magnetic field present) to close, nor a switch kept closed by an 80 At coil to open.

Vibration

The switches are tested according to IEC Publication 68-2-6, test Fc (acceleration 10 g , below cross-over frequency 57 to 62 Hz , amplitude $0,75 \mathrm{~mm}$, frequency range 10 to 2000 Hz , duration 90 min .). Such a vibration will not cause an open switch (no magnetic field present) to close, nor a switch kept close by an 80 At coil to open.

COILS

Coil I: Standard coil
5000 turns of 42 SWG single enamelled copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $8,75 \mathrm{~mm}$.

Coil II: Miniature coil A according to MIL-S-55433B

10000 turns of 48 SWG single enamelled copper wire on a coil former of $19,05 \mathrm{~mm}$ winding length and a core diameter of $4,32 \mathrm{~mm}$.

* Excursions up to $150^{\circ} \mathrm{C}$ may be permissible. Consult us.

Fig. 2 Breakdown voltage as a function of ampere-turns.

Fig. 3 Correlation of At operate in standard coil and MIL coil.

Fig. 4 Correlation of At release in standard coil and MIL coil.

Fig. 5 Just operate values at various overall lengths, compared with standard length of 46 mm .

Fig. 6 Just release values at various overall lengths, compared with standard length of 46 mm .

DRY REED SWITCHES

Micro dry reed switch hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The switch is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in high inrush current applications in relays or in similar devices, in conjunction with semiconductor devices.

QUICK REFERENCE DATA

Contact

Switched power
Switched voltage
d.c.
a.c. (r.m.s.)

Switched current, d.c. or a.c. (r.m.s.)
Contact resistance (initial)
S.P.S.T. normally open
max. 15 W
max. 200 V
max. 110 V
max. $\quad 1000 \mathrm{~mA}$
typ. $\quad 70 \mathrm{~m} \Omega$

The RI-26 series comprises the types RI-26AAA, RI-26AA and RI-26A with the following basic magnetic characteristics, measured with the Standard coil.

		RI-26AAA	RI-26AA	RI-26A
Operate range	(At)	8 to 16	14 to 23	18 to 32
Release range	(At)	4 to 14	7,5 to 17,5	8 to 22

MECHANICAL DATA

Contact arrangement
Lead finish
Resonant frequency of single reed
Net mass
Mounting position
Dimensions in mm

7285567

Fig. 1.

Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10 N).

Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions. The switches can also be supplied with cut and bend leads, to customer specification.

Resistance to soldering heat

The switch can withstand IEC test $68-2-20 \mathrm{~Tb}$, method 1 B : solder bath at $350 \pm 10^{\circ} \mathrm{C}$ during $3,5 \pm 0,5 \mathrm{~s}$.

Solderability

Solderability is tested according to IEC 68-2-20 test Ta, method 3: solder globule $235^{\circ} \mathrm{C}$, ageing 1 b : 4 h steam.

Weldability

The leads are weldable.
The RI-26 series comprises three types: RI-26AAA, RI-26AA and RI-26A.
CHARACTERISTICS RI-26AAA

Not operate

Breakdown voltage	see relevant graph			
Insulation resistance, initial	min.	10^{6}		$\mathrm{M} \Omega$ (note 1)
Capacitance, without test coil	max.	0,30		pF
		coil 1	coil 11	
Must-not-operate value	max.	8	8	At
Operate				
Must-operate value	max.	16	14,5	At
Operate time, including bounce		$\begin{aligned} & 0,25 \text { (note 2) } \\ & 0,50 \text { (note 2) } \end{aligned}$		ms ms
Bounce time		$\begin{array}{ll} 0,05 & \text { (note 2) } \\ 0,15 & \text { (note 2) } \end{array}$		ms ms
Contact resistance, initial	typ. max	$\begin{array}{r} 70 \text { (note 3) } \\ 100 \text { (note } 3) \end{array}$		$\begin{aligned} & \mathrm{m} \Omega \\ & \mathrm{~m} \Omega \end{aligned}$
Not-release				
Must-not-release value	min.	14	12,5	At
Release				
Must-release value	max.	4	4,5	At
Release time	max.	70 (note 2)		$\mu \mathrm{S}$

Notes

1. Measured at a relative humidity of max. 45%.
2. Measured with 20 At.
3. Measured with 25 At, distance between measuring points: 41 mm . Wire resistance typ. $1,2 \mathrm{~m} \Omega / \mathrm{mm}$.
4. Measured with 30 At , distance between measuring points: 41 mm . Wire resistance typ. $1,2 \mathrm{~m} \Omega / \mathrm{mm}$.
5. Measured with 29 At.
6. Measured with 40 At.

CHARACTERISTICS RI-26AA

Not-operate

Breakdown voltage

Insulation resistance, initial
Capacitance, without test coil

Must-not operate value
Operate
Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

Not-release

Must-not-release value

Release

Must-release value
Release time
CHARACTERISTICS RI-26A

Not-operate

Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not operate value

Operate

Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

Not-release

Must-not-release value

Release

Must-release value
Release time

see relevant graph			
\min. max.	$\begin{array}{r} 10^{6} \\ 0,30 \end{array}$		$\mathrm{M} \Omega$ (note 1)
			pF
	coil 1	coil 11	
max.	14	13	At
max.	23	20	At
typ.	0,25 (note 5)		ms
max.	0,5 (note 5)		ms
typ.	0,05 (note 5)		ms
max.	0,15 (note 5)		ms
typ.	70 (note 3)		$\mathrm{m} \Omega$
max.	100 (note 3)		$\mathrm{m} \Omega$
min.	17,5	15,5	At
max.	7,5	7,5	At
max.	30 (note 5)		$\mu \mathrm{s}$

	see relevant graph"	
min.	10^{6}	$\mathrm{M} \Omega$ (note 1)
\max.	0,25	pF

	coil I	coil II
max.	18	16
At		
\max.	32	27

typ.	0,25	(note 6)
max.	0,5	(note 6)

typ. 0,05 (note 6) ms
max. 0,15 (note 6) ms
typ. 70 (note 4) $\mathrm{m} \Omega$
max. 100 (note 4) . $\mathrm{m} \Omega$

19 At

7,5 At
$\mu \mathrm{s}$

LIMITING VALUES

Absolute maximum rating system
Switched power max. 15 W
Switched voltage
d.c. max. 200 V
a.c. (r.m.s.)
max. 110 V
Switched current, d.c. or a.c. (r.m.s.)
Current through closed contacts, d.c. or a.c. (r.m.s.)
Temperature, storage and operating
max. 1000 mA
max. 1,5 A.
max. $125{ }^{\circ}{ }^{\circ}{ }^{*}$
$\min . \quad-55{ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY AND RELIABILITY

For life expectancy data end of life is defined as being reached when either:
(a) the contact resistance exceeds either 1Ω measured 5 ms after enegizing coil; or
(b) the release time exceeds 5 ms after de-energizing the coil (latching or contact sticking).

No-load conditions (operating frequency 50 Hz)
Life expectancy $\mathrm{min} .10^{8}$ operatings with a failure rate of less than 10^{-9} with a confidence level of 90%. After each operation (a) and (b) are tested.

Loaded conditions (capacitive load: $100 \mathrm{~V} ; 0,8 \mathrm{~A}_{\mathrm{p}}-0,1 \mathrm{~mA}$; operating frequency 30 Hz
Life expectancy RI-26AAA: min. 10 ${ }^{6}$; RI-26AA: min. 2×10^{6} and RI-26A: 5×10^{6} operations. After each operation points (a) and (b) are tested.

Note

Switching other loads involves different life expectancy and reliability. Consult us beforehand.

SHOCK AND VIBRATION

Shock

The switches are tested according to IEC Publication 68-2-27, test Ea (peak acceleration 150 g , half sine-wave). Such a shock will not cause an open switch (no magnetic field present) to close, nor a switch kept closed by an 80 At coil to open.

Vibration

The switches are tested according to IEC Publication 68-2-6, test Fc (acceleration 10 g , below cross-over frequency 57 to 62 Hz , amplitude 0,75 mm, frequency range 10 to 2000 Hz , duration 90 min .). Such a vibration will not cause an open switch (no magnetic field present) to close, nor a switch kept close by an 80 At coil to open.

COILS

Coil I: Standard coil

5000 turns of 42 SWG single enamelled copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $8,75 \mathrm{~mm}$.

Coil II: Miniature coil A according to MIL-S-55433B

10000 turns of 48 SWG single enamelled copper wire on a coil former of $19,05 \mathrm{~mm}$ winding length and a core diameter of $4,32 \mathrm{~mm}$.

[^2]

Fig． 2 Minimum breakdown voltage as a function of ampere－turns．

Fig． 3 Correlation of At operate in standard coil and MIL coil．

Fig 4 Correlation of At release in standard coil and MIL coil．

RI-26 SERIES

Fig. 5 Just operate values at various overall lengths, compared with standard length of 46 mm .

Fig. 6 Just release values at various overall lengths, compared with standard length of 46 mm .

DRY REED SWITCHES

Pico dry reed contact unit hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact unit is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in relays or in similar devices.

QUICK REFERENCE DATA

Contact	S.P.S.T. normally open	
Switched power	max.	10 W
Switched voltage		
d.c.	\max.	200 V
a.c. (r.m.s.)	\max.	110 V
Switched current, d.c. or a.c. (r.m.s.)	max.	500 mA
Contact resistance (initial)	typ.	$90 \mathrm{~m} \Omega$

The RI-27 series comprises the types RI-27AA and RI-27A with the following basic magnetic characteristics, measured with the Standard coil.

	RI-27AA	RI-27A	
Operate range	(At)	16 to 25	20 to 34
Release range	(At)	5 to 18	7 to 19,5

MECHANICAL DATA

Contact arrangement
Lead finish
Resonant frequency of single reed
Net mass
Mounting position
normally open

Dimensions in mm

Fig. 1.

Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10 N).

Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions. The switches can also be supplied with leads cut and bent to customer specification.

\longrightarrow Resistance to soldering heat

The switch can withstand IEC test 68-2-20 Tb, method 1 B : solder bath at $350 \pm 10^{\circ} \mathrm{C}$ during $3,5 \pm 0,5 \mathrm{~s}$.

\longrightarrow Solderability

Solderability is tested according to IEC 68-2-20 test Ta, method 3: solder globule $235^{\circ} \mathrm{C}$, ageing 1 b : 4 h steam.

Weldability

The leads are weldable.
The RI-27 series comprises two types: RI-27AA and RI-27A.

CHARACTERISTICS RI-27AA

Not operate

Breakdown voltage
Insulation resistance, initial
\rightarrow Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

Not-release
\longrightarrow Must-not-release value
Release
\rightarrow Must-release value
Release time

see relevant graph			
min.	10^{6}		$\mathrm{M} \Omega$ (note 1)
max.	0,30		pF
	coil 1	coil II	
max.	16	13,5	At
max.	25	21	At
typ.	0,25 (note 2)		ms
max.	0,5 (note 2)		ms
typ.	0,05 (note 2)		ms
max.	0,15 (note 2)		ms
typ.	90 (note 3)		$\mathrm{m} \Omega$
max.	115 (note 3)		$\mathrm{m} \Omega$
min.	18	15	At
max.	5	4	At
max.	30 (note 2)		$\mu \mathrm{s}$

\rightarrow Notes

1. Measured at a relative humidity of max. 45%.
2. Measured with 29 At.
3. Measured with 25 At , distance between measuring points: 41 mm . Wire resistance typ. $1,8 \mathrm{~m} \Omega / \mathrm{mm}$.
4. Measured with 40 At.

CHARACTERISTICS RI-27A
Not-operate
Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not operate value
Operate
Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

Not release
Must-not-release value

Release

Must-release value
Release time

LIMITING VALUES

Absolute maximum rating system

Switched power	max.	10	W
Switched voltage			
d.c.	max.	200	V
a.c. (r.m.s.)	max.	110	V
Switched current, d.c. or a.c. (r.m.s.)	max.	500	mA
Current through closed contacts, d.c. or a.c. (r.m.s.)	max.	1,5	A
Temperature, storage and operating	\max.	125	${ }^{\circ} \mathrm{C}$ *
	\min.	-55	${ }^{\circ} \mathrm{C}$

* Excursions up to $150^{\circ} \mathrm{C}$ may be permissible. Consult us.

Notes: see previous page.

LIFE EXPECTANCY AND RELIABILITY

The life expectancy data mentioned below are given at a coil energization of $1,25 \times$ the published must-operate value for each group. Coil energizations above $1,25 \times$ will result in better life performance.

No-load conditions (operating frequency 100 Hz)
Life expectancy min. 2. 10^{8} operations with a failure rate of less than 10^{-9} with a confidence level of 90%.
End of life criteria: contact resistance $>1 \Omega$ after 2 ms
release time $>2 \mathrm{~ms}$

Loaded conditions

- resistive load: $5 \mathrm{~V}, 100 \mathrm{~mA}$; operating frequency 125 Hz .

Life expectancy $\min .5 .10^{7}$ operations with a failure rate of less than $0,5.10^{-8}$ with a confidence level' of 90%.
End of life criteria: contact resistance $>1 \Omega$ after $2,5 \mathrm{~ms}$ release time $>2,5 \mathrm{~ms}$

- resistive load: $16 \mathrm{~V}, 10 \mathrm{~mA}$; operating frequency 125 Hz .

Life expectancy min. 2.10^{6} operations with a failure rate of less than 10^{-7} with a confidence level of 90\%.
End of life criteria: contact resistance $>2 \Omega$ after $2,5 \mathrm{~ms}$
release time $>2,5 \mathrm{~ms}$

- resistive load: $12 \mathrm{~V}, 4 \mathrm{~mA}$; operating frequency 170 Hz .

Life expectancy average 45.10^{6} operations (tested up to 50.10^{6} operations).
End of life criteria: contact resistance $>2 \Omega$ after 4 ms
reiease time $>0,7 \mathrm{~ms}$

Note

Switching other loads involves different life expectancy and reliability. Consult us beforehand.

SHOCK AND VIBRATION

Not yet fixed.

COILS

Coil I: Standard coil
5000 turns of 42 SWG single enamelled copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $8,75 \mathrm{~mm}$.

Coil II: Miniature coil A according to MIL-S-55433B

10000 turns of 48 SWG single enamelled copper wire on a coil former of $19,05 \mathrm{~mm}$ winding length and a core diameter of $4,32 \mathrm{~mm}$.

Fig. 2 Breakdown voltage as a function of ampere-turns.

Fig. 3 Correlation of At operate in standard coil and MIL coil.

Fig. 4 Correlation of At release in standard coil and MIL coil.

Fig. 5 Just operate values at various lengths, compared with standard length of 46 mm .

Fig. 6 Just release values at various lengths, compared with standard length of 46 mm .

DRY REED SWITCHES

Pico dry reed contact unit hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact unit is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in relays or in similar devices.

QUICK REFERENCE DATA

Contact		S.P.S.T. normally open	
Switched power		max.	10 W
Switched voltage		max.	180 V
d.c.		max.	110 V
a.c. (r.m.s.)		max.	500 mA
Switched current, d.c. or a.c. (r.m.s.)	typ.	$90 \mathrm{~m} \Omega$	
Contact resistance (initial)			
Operate range	(At)	10 to 19	
Release range	(At)	4 to 16	

MECHANICAL DATA

Contact arrangement
Lead finish
Resonant frequency of single reed
Net mass
Mounting position
normally open
tinned
approx. 6700 Hz
approx. 0,1 g
any

Dimensions in mm

Fig. 1.

Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10 N).

Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions. The switches can also be supplied with leads cut and bent to customer specification.

Resistance to soldering heat

The switch can withstand IEC test $68-2-20 \mathrm{~Tb}$, method 1 B : solder bath at $350 \pm 10^{\circ} \mathrm{C}$ during $3,5 \pm 0,5 \mathrm{~s}$.

Solderability

Solderability is tested according to IEC 68-2-20 test Ta, method 3: solder globule $235^{\circ} \mathrm{C}$, ageing 1 b : 4 h steam.

Weldability

The leads are weldable.

CHARACTERISTICS RI-27AAA

Not operate

Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value

Operate

Must-operaţe value
Operating time, including bounce
Bounce time

Contact resistance, initial

Not-release
Must-not-release value
Release
Must-release value
Release time
-
see relevant graph

min.	$\begin{array}{r} 10^{6} \\ 0,30 \end{array}$		$\mathrm{M} \Omega$ (note 1)
	coil 1	coil II	
max.	10	8,5	At
max.	19	16	At
typ.	0,25 (note 2)		ms
max.	0,5 (note 2)		ms
typ.	0,05 (note 2)		ms
max.	Q,15 (note 2)		ms
typ.	90 (note 3)		$m \Omega$
max.	115 (note 3)		$\mathrm{m} \Omega$
min.	16	13,5	At
max.	4	3	At
max.	30 (note 2)		$\mu \mathrm{s}$

Notes

1. Measured at a relative humidity of max. 45%.
2. Measured with 29 At.
3. Measured with 20 At , distance between measuring points: 41 mm . Wire resistance typ. $1,8 \mathrm{~m} \Omega / \mathrm{mm}$.

LIMITING VALUES

Absolute maximum rating system

Switched power	\max.	
Switched voltage		
d.c.	\max.	180 V
a.c. (r.m.s.)	\max.	110 V
Switched current, d.c. or a.c. (r.m.s.)	\max.	500 mA
Current through closed contacts, d.c. or a.c. (r.m.s.)	\max.	$1,5 \mathrm{~A}$
Temperature, storage and operating	$\max .125{ }^{\circ} \mathrm{C} *$	
	\min.	$-55{ }^{\circ} \mathrm{C}$

LIFE EXPECTANCY AND RELIABILITY

The life expectancy data mentioned below are given at a coil energization of $1,25 \times$ the published must-operate value for each group. Coil energizations above $1,25 \times$ will result in better life performance.

No-load conditions (operating frequecny 100 Hz)

Life expectancy $\min .2 .10^{8}$ operations with a failure rate of less than 10^{-9} with a confidence level of 90%.
End of life criteria: contact resistance $>1 \Omega$ after 2 ms
release time $>2 \mathrm{~ms}$

Loaded conditions

- resistive load: $5 \mathrm{~V}, 100 \mathrm{~mA}$; operating frequency 125 Hz .

Life expectancy min. 2.10^{7} operations with a failure rate of less than 10^{-8} with a confidence level of 90%.
End of life criteria: contact resistance $>1 \Omega$ after $2,5 \mathrm{~ms}$
release time $>2,5 \mathrm{~ms}$
Note
Switching other loads involves different life expectancy and reliability. Consult us beforehand.

SHOCK AND VIBRATION

Not yet fixed.

COILS

Coil I: Standard coil
5000 turns of 42 SWG single enamelled copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $8,75 \mathrm{~mm}$.

Coil II: Miniature coil A according to MIL-S-55433B
10000 turns of 48 SWG single enamelled copper wire on a coil former of $19,05 \mathrm{~mm}$ winding length and a core diameter of $4,32 \mathrm{~mm}$.

[^3]

Fig. 2 Breakdown voltage as a function of ampere-turns.

Fig. 3 Correlation of At operate in standard coil and MIL coil.

Fig. 4 Correlation of At release in standard coil and MIL coil.

Fig. 5 Just operate values at various lengths, compared with standard length of 46 mm .

Fig. 6 Just release values at various lengths, compared with standard length of 46 mm .

DRY REED SWITCH

Micro dry reed switch hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normally open contacts, and containing two magnetically actuated reeds. The contact switch is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in relays for switching main loads.

QUICK REFERENCE DATA

Contact	S.P.S.T. normally open	
Switched power	max.	40 W
Switched voltage, a.c. (r.m.s.)	max.	250 V
Switched current, resistive a.c. (r.m.s.)	max.	1 A
Contact resistance (initial)	max.	$90 \mathrm{~m} \Omega$
Basic magnetic characteristics, measured with the Standard coil \quad Operate range Release range	30 to 65 At	

MECHANICAL DATA

Contact arrangement
Lead finish
Resonant frequency of single reed
Net mass
Mounting position
normally open
tinned
approx. 3200 Hz
approx. 0,26 g
any
Dimensions in mm

Fig. 1.

Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10N).

Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions. The switches can also be supplied with cut and bent leads to customer specification.

\longrightarrow Resistance to soldering heat

The switch can withstand IEC test $68-2-20 \mathrm{~Tb}$, method 1 B : solder bath at $350 \pm 10^{\circ} \mathrm{C}$ during $3,5 \pm 0,5 \mathrm{~s}$.

Solderability

Solderability is tested according to IEC 68-2-20 test Ta, method 3: solder globule $235^{\circ} \mathrm{C}$, ageing 1 b : 4 h steam.

Weldability

The leads are weldable.

CHARACTERISTICS

Not-operate

Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value
Operate
Must-operate value

min.	750	V
\min.	10^{6}	$\mathrm{M} \Omega$ (note 1)
\max.	0,20	pF

Operate time, including bounce
Bounce time

Contact resistance, initial

Not-release
Must-not-release value

	coil l	coil II
max.	30	25 At
max.	65	51 At

Release
Must-release value
Release time

typ.	0,35 (note 2)	ms
max.	0,5 (note 2)	ms
typ.	0,15 (note 2)	ms
max.	0,3 (note 2)	ms
typ.	60 (note 3)	$\mathrm{m} \Omega$
max.	90 (note 3)	$\mathrm{m} \Omega$
min.	25	22 At
\max.	10	$9,5 \mathrm{At}$
\max.	30 (note 2)	$\mu \mathrm{s}$

Notes

1. Measured at a relative humidity of max. 45%.
2. Measured with 80 At.
3. Measured with 40 At , distance between measuring points: 41 mm , wire resistance: typ. $1 \mathrm{M} \Omega / \mathrm{mm}$.
4. Switching higher currents is possible depending on the signature of the load.

LIMITING VALUES

Absolute maximum rating systems
Switched power

| \max. | 40 W |
| :--- | ---: | :--- |
| \max. | 250 V |
| \max. | 1 A (note 4) |
| \max. | $3,0 \mathrm{~A}$ |
| \max. | $125^{\circ} \mathrm{C}$ |
| \min. | $-55{ }^{\circ} \mathrm{C}$ |

LIFE EXPECTANCY AND RELIABILITY

Inductive loads

A. 220 V a.c. (r.m.s.); $L=3,95 \mathrm{H} ; \mathrm{R}=662 \Omega$; operating freq. 2 Hz ; min. 10^{4} operations. (No sticking allowed.) With a failure rate of max. 2.10^{-5} at 90% confidence level.
B. 220 V a.c. (r.m.s.); $L=5,5 \mathrm{H} ; R=2230 \Omega$; operating freq. $2 \mathrm{~Hz} ; \mathrm{min} .10^{5}$ operations. (No sticking allowed.) With a failure rate of max. 2.10^{-6} at 90% confidence level.
C. 220 V a.c. (r.m.s.); $L=0,28 \mathrm{H} ; R=106 \Omega$; switching on only; operating freq. $0,6 \mathrm{~Hz} \mathrm{~min} .2 .10^{4}$ operations. (No sticking allowed.) With a failure rate of max. 2.10^{-5} at 90% confidence level.

Resistive load

A. 250 V a.c. (r.m.s.); $R=1 \mathrm{M} \Omega$; operating freq. 20 Hz ; min. 2.10^{6} operations. Contact resistance max. 100Ω and no sticking allowed. With a failure rate of 10^{-7} at 90% confidence level.

Note
Switching other loads involves different life expectancy and reliability. Consult us beforehand.

SHOCK AND VIBRATION

Shock

The switches are tested according to IEC Publication 68-2-27, test Ea (peak acceleration 500g, half sine-wave). Such a shock will not cause an open switch (no magnetic field present) to close, nor a switch kept closed by an 80 At coil to open.

Vibration

The switches are tested according to IEC Publication 68-2-6, test Fc (acceleration 10 g , below cross-over frequency 57 to 62 Hz , amplitude $0,75 \mathrm{~mm}$, frequency range 10 to 2000 Hz , duration 90 min .). Such a vibration will not cause an open switch (no magnetic field present) to close, nor a switch kept close by an 80 At coil to open.

COILS

Coil I: Standard coil

5000 turns of 42 SWG single enamelled copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $8,75 \mathrm{~mm}$.

Coil II: Miniature coil A according to MIL-S-55433B

10000 turns of 48 SWG single enamelled copper wire on a coil former of $19,05 \mathrm{~mm}$ winding length and a core diameter of $4,32 \mathrm{~mm}$.

Fig. 2 Correlation at At operate in standard coil and MIL coil.

Fig. 3 Correlation of At release in standard coil and MIL coil.

Fig. 4 Just operate values at various overall lenght compared with standard lenght of 46 mm .

Fig. 5 Just release values at various overall lenght compared with standard lenght of 46 mm .

RI-46 SERIES

DRY REED SWITCHES

Micro dry reed switch hermetically sealed in a gas-filled glass capsule. Single-pole, single-throw type, having normaliy open contacts, and containing two magnetically actuated reeds. The switch is of the double-ended type and may be actuated by means of either an electromagnet or a permanent magnet or combinations of both. The device is intended for use in relays for switching power loads and high stand-off voltage applications.

QUICK REFERENCE DATA

Contact

Switched power
types RI-46AA and RI-46A
types RI-46B and RI-46C
Switched voltage
d.c.
a.c. (r.m.s.)

Switched current, resistive d.c. or a.c. (r.m.s.)
Contact resistance (initial)
S.P.S.T. normally open
$\max .30 \mathrm{~W}$
$\max .40 \mathrm{~W}$
max. 200 V
$\max .250 \mathrm{~V}$
max. 1 A
typ. $\quad 60 \mathrm{~m} \Omega$

The RI-46 series comprises the types RI-46AA, RI-46A, RI-46B and RI-46C with the following basic magnetic characteristics, measured with the Standard coil.

		RI-46AA	RI-46A	RI-46B	RI-46C
Operate range	(At)	12 to 21	17 to 31	27 to 56	51 to 77
Release range	(At)	5 to 14,5	6,5 to 19	9,5 to 24	14,5 to 26,5

MECHANICAL DATA

Contact arrangement normally open
Lead finish
Resonant frequency of single reed
Net mass
Mounting position
tinned

Dimensions in mm

7285567

Fig. 1.

Mechanical strength

The robustness of terminations is tested according to IEC publication 68-2-21, test Ua (load 10N).

Mounting

The leads should not be bent nearer than 1 mm to the glass-to-metal seals. Stress on the seals shouid be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions. The switches can also be supplied with cut and bent leads to customer specification.
\longrightarrow Resistance to soldering heat
The switch can withstand IEC test $68-2-20 \mathrm{~Tb}$, method 1 B : solder bath at $350 \pm 10^{\circ} \mathrm{C}$ during $3,5 \pm 0,5 \mathrm{~s}$.

\longrightarrow Solderability

Solderability is tested according to IEC 68-2-20 test Ta, method 3: solder globule $235^{\circ} \mathrm{C}$, ageing 1 b : 4 h steam.

Weldability

The leads are weldable.
The RI-46 series comprises four types: RI-46AA, RI-46A, RI-46B and RI-46C.

CHARACTERISTICS RI-46AA

Not-operate

Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value
Operate
Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

Not-release

Must-not-release value

Release

Must-release value
Release time
$\begin{array}{lcl} & \text { see relevant graph } \\ \text { min. } & 10^{6} & \mathrm{M} \Omega \text { (note 1) } \\ \max & 0,25 & \mathrm{pF}\end{array}$

max.	0,25		pF
	coil I	coil II	
.	12	13	

| \max | 21 |
| :--- | :--- | 19 At

typ. 0,35 (note 2) ms
max. 0,5 (note 2) ms
typ. 0,15 (note 2) $\quad \mathrm{ms}$
max. $\quad 0,3$ (note 2$) \quad \mathrm{ms}$
typ. 60 (note 3) $\quad \mathrm{m} \Omega$
max. 90 (note 3) $\mathrm{m} \Omega$
$\min .14,5$
max. 5
max. 30 (note 2) $\quad \mu \mathrm{s}$

Notes

1. Measured at a relative humidity of max. 45%.
2. Measured with 1,25 times the max. must-operate value per group.
3. Measured with 30 At , distance between measuring points: 41 mm . Wire resistance typ. $1,0 \mathrm{~m} \Omega / \mathrm{mm}$.
4. Measured with 40 At , distance between measuring points: 41 mm . Wire resistance typ. $1,0 \mathrm{~m} \Omega / \mathrm{mm}$.

CHARACTERISTICS RI-46A

Not-operate

Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value
Operate
Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

Not-release

Must-not-release value

Release

Must-release value
Release time
CHARACTERISTICS RI-46B
Not-operate
Breakdown voltage
Insulation resistance
Capacitance, without test coil

Must-not-operate value
Operate
Must-operate value
Operate time, including bounce

Bounce time

Contact resistance, initial

Not-release

Must-not-release value
Release
Must-release value
Release time

see relevant graph			
min.	10^{6}		$\mathrm{M} \Omega$ (note 1)
max.	0,20		pF
	coill	coil 11	
max.	17	16	At
max.	31	26	At
typ.	0,35 (note 2)		ms
max.	0,5 (note 2)		ms
typ.	0,15 (note 2)		ms
max.	0,3 (note 2)		ms
typ.	60 (note 3)		$\mathrm{m} \Omega$
max.	90 (note 3)		$\mathrm{m} \Omega$
min.	19	17	At
max.	6,5	7,5	At
max.	30 (note 2)		$\mu \mathrm{S}$

see relevant graph

\min. max.	$\begin{array}{r} 10^{6} \\ 0,20 \end{array}$		$\begin{aligned} & \mathrm{M} \Omega \text { (note } 1 \text {) } \\ & \mathrm{pF} \end{aligned}$
	coil 1	coil II	
max.	27	23	At
max.	56	44	At
typ.	0,35 (note 2)		ms
max.	0,5 (note 2)		ms
typ.	0,15 (note 2)		ms
max.	0,3 (note 2)		ms
typ.	60 (note 4)		$\mathrm{m} \Omega$
max.	90 (note 4)		$\mathrm{m} \Omega$
\min.	24	20,5	At
max.	9,5	9,5	At
max.	30 (note 2)		$\mu \mathrm{s}$

CHARACTERISTICS RI-46C

Not-operate

Breakdown voltage
Insulation resistance, initial
Capacitance, without test coil

Must-not-operate value

Operate

Must-operate value
Operate time, including bounce
Bounce time

Contact resistance, initial

Not-release

Must-not-release value

Release

Must-release value
Release time

LIMITING VALUES

Absolute maximum rating system
Switched power
types RI-46AA and RI-46A
types RI-46B and RI-46C
Switched voltage
d.c.
a.c. (r.m.s.)

Switched current, resistive d.c. or a.c. (r.m.s.)
Current through closed contacts
type RI-46AA
type RI-46A
type RI-46B
type RI-46C
Temperature, storage and operating

see relevant graph			
min.	$\begin{array}{r} 10^{6} \\ 0,20 \end{array}$		$\mathrm{M} \Omega$ (note 1)
max.			pF
	coill	coil II	
max.	51	40	At
max.	77	58	At
typ.	0,35 (note 2)		ms
max.	0,5 (note 2)		ms
typ.	0,15 (note 2)		ms
max.	0,3 (note 2)		ms
typ.	60 (note 4)		$m \Omega$
max.	90 (note 4)		$m \Omega$
min.	26,5	22,5	At
max.	14,5	13,0	At
max.	30 (note 2)		$\mu \mathrm{s}$

Excursions up to $150^{\circ} \mathrm{C}$ may be permissible. Consult us.

Notes

1. Measured at a relative humidity of max. 45%.
2. Measured with 100 At .
3. Measured with 30 At, distance between measuring points: 41 mm . Wire resistance typ. $1,0 \mathrm{~m} \Omega / \mathrm{mm}$.
4. Measured with 40 At , distance between measuring points: 41 mm ; Wire resistance typ. $1,0 \mathrm{~m} \Omega / \mathrm{mm}$.
5. Switching higher currents is possible depending on the signature of the load.

LIFE EXPECTANCY AND RELIABILITY

The life expectancy data mentioned below are given at a coil energization of $1,5 \times$ the published must-operate value for each group. Coil energization above $1,5 \times$ will result in better life performance.

For life expectancy data end of life is defined as being reached when either:
(a) the contact resistance exceeds either 1Ω for no-load conditions or 2Ω for loaded conditions, measured 3 ms after energizing coil; or
(b) the release time exceeds 3 ms after de-energizing the coil (latching or contact sticking).

No-load conditions (operating frequency 100 Hz)
Life expectancy min. 10^{7} operations with a failure rate of less than 10^{-9} with a confidence level of 90%. After each operation (a) and (b) are tested.

Loaded conditions (resistive load: $20 \mathrm{~V}-500 \mathrm{~mA}$, operating frequency 125 Hz
Life expectancy $\min .2,5 \times 10^{7}$ operations with a failure rate of less than 10^{-8} with a confidence level of 90%. After each operation points (a) and (b) are tested.

Note
Switching other loads involves different life expectancy and reliability. Consult us beforehand.
Currents between 50 and 200 mA may result in a reduced life expectancy.

SHOCK AND VIBRATION

Shock

The switches are tested according to IEC Publication 68-2-27, test Ea (peak acceleration 500g, half sine-wave). Such a shock will not cause an open switch (no magnetic field present) to close, nor a switch kept closed by an 80 At coil to open.

Vibration

The switches are tested according to IEC Publication 68-2-6, test Fc (acceleration 10 g , below cross-over frequency 57 to 62 Hz , amplitude $0,75 \mathrm{~mm}$, frequency range 10 to 2000 Hz , duration 90 min .). Such a vibration will not cause an open switch (no magnetic field present) to close, nor a switch kept close by an 80 At coil to open.

COILS

Coil I: Standard coil

5000 turns of 42 SWG single enamelled copper wire on a coil former of $25,4 \mathrm{~mm}$ winding length and a core diameter of $8,75 \mathrm{~mm}$.

Coil II: Miniature coil A according to MIL-S-55433B

10000 turns of 48 SWG single enamelled copper wire on a coil former of $19,05 \mathrm{~mm}$ winding length and a core diameter of $4,32 \mathrm{~mm}$.

Fig. 2 Minimum breakdown voltage with pre-ionisation as a function of ampere-turns.

Fig. 3 Minimum breakdown voltage without pre-ionisation as a function of ampere-turns.

Fig. 4 Correlation of At operate in standard coil and MIL coil.

Fig. 5 Correlation of At release in standard coil and MIL coil.

Fig. 6 Just operate values at various overall lenghts compared with standard lenght of 46 mm .

Fig. 7 Just release values at various overall lenghts compared with standard lenght of 46 mm .

Electronic components and materials

for professional, industrial and consumer uses
from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 4393322.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.
Belgium: N.V. PHILIPS \& MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400.
Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.
Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624.
Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. $33880-00$.
Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.
Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 9215111.
Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., $24-28$ Kung Yip St., KWAI CHUNG, Tel. (0)-245121.
India: PEICO ELECTRONICS \& ELECTRIGALSLTD., Elcoma Dept., Band Box Building,
254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. $4220387 / 4220311$.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Panim Bank Building, 2nd FI., JI. Jend. Sudirman, P.O. Box 223, JAKARTA, Tel. 716131.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.
Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL., Tel. 794-4202.
Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 774411.
Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.
Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050,5600 PB EINDHOVEN, Tel. (040) 793333.
New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914.
Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200.
Peru: CADESA, Av. Alfonso Ugarte 12088, LIMA 5, Tel. 326070.
Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59.
Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121.
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000.
South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. \& Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9.
Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000.
Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211.
Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. (O2)-5631717.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.
Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad. No. 78-80. ISTANBUL, Tel. 435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-5806633.
United States: (Active Devices \& Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.
(Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(Passive Devices \& Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.
Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A. Calle 6, Ed. Las Tres Jotas, App. Post 78117, CARACAS, Tel. (02) 2393931

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, Building BAE,
P.O. Box 218,5600 MD EINDHOVEN, The Netherlands, Tel. +3140723304 , Telex 35000 phtcnl

AS47
(C) Philips Export B.V 1985

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.

[^0]: * Will be issued in 1985.

[^1]: \longrightarrow Notes

 1. Measured at a relative humidity of max. 45%.
 2. Measured with 100 At .
 3. Measured with 25 At, distance between measuring points: 41 mm . Wire resistance typ. $1,0 \mathrm{~m} \Omega / \mathrm{mm}$.
 4. Measured with 30 At , distance between measuring points: 41 mm . Wire resistance typ. $1,0 \mathrm{~m} \Omega / \mathrm{mm}$.
 5. Measured with 40 At , distance between measuring points: 41 mm . Wire resistance typ. $1,0 \mathrm{~m} \Omega / \mathrm{mm}$.
[^2]: * Excursions up to $150^{\circ} \mathrm{C}$ may be permissible. Consult us.

[^3]: * Excursions up to $150^{\circ} \mathrm{C}$ may be permissible. Consult us.

