Data handbook

PhitIPS Electronic

 components and materials
Electron tubes

Book T8
1986

Colour TV picture tubes and deflection units

Colour data graphic display tube assemblies
\qquad

COLOUR DISPLAY SYSTEMS

page
Selection guide
90° colour picture tubes 2
110° colour picture tubes 4
Colour data graphic display tube assemblies 5
General
List of symbols 9
General operational recommendations 11
Type designation 17
Kelly chart 19
Device specifications
Colour TV picture tubes and deflection units 21
Colour data graphic display tube assemblies 747

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:
ELECTRON TUBES BLUE
SEMICONDUCTORS RED
INTEGRATED CIRCUTS

COMPONENTS AND MATERIALS

The contents of each series are listed on pages iv to viii.
The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.
When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).
Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.
Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:
T1 Tubes for r.f. heating

T2a Transmitting tubes for communications, glass types
T2b Transmitting tubes for communications, ceramic types
T3 Klystrons
T4 Magnetrons for microwave heating
Cathode-ray tubes
Instrument tubes, monitor and display tubes, C. R. tubes for special applications
T6 Geiger-Müller tubes
T8 Colour display systems
Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
T9 Photo and electron multipliers

T10 Plumbicon camera tubes and accessories

T11 Microwave semiconductors and components
T12 Vidicon and Newvicon camera tubes

T13 Image intensifiers and infrared detectors

T15
Dry reed switches

T16 Monochrome tubes and deflection units
Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1 Diodes

Small-signal silicon diodes, voltage regulator diodes ($<1,5 \mathrm{~W}$), voltage reference diodes, tuner diodes, rectifier diodes

S2a Power diodes
S2b Thyristors and triacs
S3 Small-signal transistors
S4a Low-frequency power transistors and hybrid modules
S4b High-voltage and switching power transistors
S5 Field-effect transistors
S6 R.F. power transistors and modules
S7 Surface mounted semiconductors
Light-emitting diodes
S8b Devices for optoelectronics
Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components

S9 Power MOS transistors
S10 Wideband transistors and wideband hybrid IC modules

S11 Microwave transistors

S12 Surface acoustic wave devices
S13 Semiconductor sensors

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXISTING SERIES
 Superseded by:

IC1 Bipolar ICs for radio and audio equipment
IC01N
IC2 Bipolar ICs for video equipment ICO2Na and ICO2Nb
IC3 ICs for digital systems in radio, audio and video equipment IC01N, ICO2Na and IC02Nb
IC4 Digital integrated circuits CMOS HE4000B family

IC5 Digital integrated circuits - ECL IC08N
ECL10000 (GX family), ECL100 000 (HX family), dedicated designs
IC6 Professional analogue integrated circuits ICO3N and Supplement to IC11N
IC7 Signetics bipolar memories
$\begin{array}{ll}\text { IC8 Signetics analogue circuits } & \text { IC11N }\end{array}$
IC9 Signetics TTL logic IC09N and IC15N
$1 C 10$. Signetics Integrated Fuse Logic (IFL) IC13N

IC11 Microprocessors, microcomputers and peripheral circuitry IC14N

NEW SERIES

IC01N	Radio, audio and associated systems Bipolar, MOS	(published 1985)
ICO2Na	Video and associated systems	(published 1985)
	Bipolar, MOS	
	Types MAB8031AH to TDA1524A	
ICO2Nb	Video and associated systems	(published 1985)
	Bipolar, MOS	
	Types TDA2501 to TEA1002	
IC03N	Integrated circuits for telephony	(published 1985)
IC04N	HE4000B logic family CMOS	
IC05N	HE4000B logic family - incased ICs	(published 1984)
	CMOS	
IC06N*	High-speed CMOS; PC74HC/HCT/HCU	(published 1986)
	Logic family	
IC07N	High-speed CMOS; PC54/74HC/HCT/HCU - uncased ICs	
	Logic family	
IC08N	ECL 10 K and 100K logic families	(published 1984)
IC09N	TTL logic series	(published 1984)
IC10N	Memories	
	MOS, TTL, ECL	
IC11N	Linear LSI	(published 1985)
Supplement to IC11N	Linear LSI	(published 1986)
IC12N	Semi-custom gate arrays \& cell libraries	
	ISL, ECL, CMOS	
IC13N	Semi-custom	(published 1985)
	Integrated Fuse Logic	
IC14N	Microprocessors, microcontrollers \& peripherals	(published 1985)
	Bipolar, MOS	
IC15N	FAST TTL logic series	(published 1984)

Note

Books available in the new series are shown with their date of publication.

[^0]
COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:
C1 Programmable controller modules
PLC modules, PC20 modules
C2 Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
C3 Loudspeakers
C4 Ferroxcube potcores, square cores and cross cores
C5 Ferroxcube for power, audio/video and accelerators
C6 Synchronous motors and gearboxes
C7 Variable capacitors
C8 Variable mains transformers
C9 Piezoelectric quartz devices
C10 Connectors
C11 Varistors, thermistors and sensors
C12 Potentiometers, encoders and switches
C13 Fixed resistors
C14 Electrolytic and solid capacitors
C15 Ceramic capacitors
C16 Permanent magnet materials
C17 Stepping motors and associated electronics
C18 Direct current motors
C19 Piezoelectric ceramics
C20 Wire-wound components for TVs and monitors
C21* Assemblies for industrial use
HNIL FZ/30 series, NORbits $60-$, 61 -, 90 -series, input devices
C22 Film capacitors

* To be issued shortly.

90° COLOUR PICTURE TUBES

* Data sheets of deflection units follow the data sheets of the relevant picture tube.

110° COLOUR PICTURE TUBES

FLAT SQUARE COLOUR PICTURE TUBES

51 cm A51EAK01X	508，0	368	29，1	6，3／310	25	31% of V_{a}	575－825	hi－bi potential	AT6020	485
$59 \mathrm{~cm}$ A59EAK00X	590，0	398	29，1	6，3／310	25	31% of V_{a}	575－825	hi－bi potential	AT6010	659
66 cm A66EAK00X	660，0	428	29，1	6，3／310	25	31% of V_{a}	575－825	hi－bi potential	AT6000／01	719

＊Data sheets of deflection units follow the data sheets of the relevant picture tube．

COLOUR DATA GRAPHIC DISPLAY TUBE ASSEMBLIES

type	min. useful screen diagonal mm	max. overall length mm	neck diameter mm	number of displayable pixels	$\begin{aligned} & \mathrm{V}_{\mathrm{f}} / \mathrm{I}_{\mathrm{f}} \\ & \mathrm{~V} / \mathrm{mA} \end{aligned}$	$\begin{aligned} & V_{a, g 4} \\ & k V \end{aligned}$	$\mathrm{V}_{\mathrm{g} 3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{g} 2} \\ & \mathrm{~V} \end{aligned}$	electron gun	screen finish	page
14 INCH											
M34EAQ00X	335,4	346,6	29,1	480×360	6,3/685	25	28\% of V_{a}	390-760	hi-bi potential	etched	749
M34EAQ10X	335,4	346,6	29,1	480×360	6,3/685	25	28\% of V_{a}	390-760	hi-bi potential	high gloss	749

GENERAL

LIST OF SYMBOLS

Symbols denoting electrodes/elements and electrode/element connections
f Heater
$k \quad$ Cathode
g Grid: Grids are distinguished by means of an additional numeral; the electrode nearest to the cathode having the lowest number.
a Anode
$m \quad$ External conductive coating
$m^{1} \quad$ Rim band
$\ell \quad$ Fluorescent screen
i.c. Tube pin which must not be connected externally
n.c. Tube pin which may be connected externally

Symbols denoting voltages

Unless otherwise stated, the reference point for electrode voltages is the cathode.
\checkmark Symbol for voltage, followed by a subscript denoting the relevant electrode/element
$V_{f} \quad$ Heater voltage
$V_{p p} \quad$ Peak-to-peak value of a voltage
$V_{p} \quad$ Peak value of a voltage
$\mathrm{V}_{\mathrm{GR}} \quad$ Grid 1 voltage for visual extinction of focused raster (grid drive service)
$\mathrm{V}_{\mathrm{KR}} \quad$ Cathode voltage for visual extinction of focused raster (cathode drive service)

Symbols denoting currents

1. Symbol for current followed by a subscript denoting the relevant electrode

If Heater current (r.m.s. value)
Note: The symbols quoted represent the average value of the current, unless otherwise stated.

Symbols denoting powers

$\mathrm{P}_{\ell} \quad$ Dissipation of the fluorescent screen
$\mathrm{P}_{\mathrm{g}} \quad$ Grid dissipation

Symbols denoting capacitances

See IEC publication 100

Symbols denoting resistances and impedances

R Symbol for resistance followed by a subscript for the relevant electrode pair. When only one subscript is given the second electrode is the cathode.
Z Symbol for impedance followed by a subscript for the relevant electrode pair. When only one subscript is given the second electrode is the cathode.

Symbols denoting various quantities

L Luminance
f Frequency
H Magnetic field strength

GENERAL OPERATIONAL RECOMMENDATIONS

INTRODUCTION

Equipment design should be based on the characteristics as stated in the data sheets. Where deviations from these general recommendations are permissible or necessary, statements to that effect will be made.

If applications are considered which are not referred to in the data sheets of the relevant tube type, extra care should be taken with circuit design to prevent the tube being overloaded due to unfavourable operating conditions.

SPREAD IN TUBE CHARACTERISTICS

The spread in tube characteristics is the difference between maximum and minimum values. Values not qualified as maximum or minimum are nominal ones. It is evident that average or nominal values, as well as spread figures, may differ according to the number of tubes of a certain type that are being checked. No guarantee is given for values of characteristics in settings substantially differing from those specified in the data sheets.

SPREAD AND VARIATION IN OPERATING CONDITIONS

The operating conditions of a tube are subject to spread and/or variation.
Spread in an operating condition is a permanent deviation from an average condition due to, e.g., component value deviations. The average condition is found from such a number individual cases taken at random that an increase of the number will have a negligible influence.
Variation in an operating condition is non-permanent (occurs as a function of time), e.g., due to supply voltage fluctuations. The average value is calculated over a period such that a prolongation of that period will have negligible influence.

LIMITING VALUES

Limiting values are in accordance with the applicable rating system as defined by IEC publication 134. Reference may be made to one of the following 3 rating systems.
Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment components spread and variation, equipment control adjustment, load variations, signal variation, environmental conditions, and spread or variations in characteristics of the device under considerations and of all other electronic devices in the equipment.

Design-maximum rating system. Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and thoughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

Design-centre rating system. Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under average conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component spread and variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations or spread in the characteristics of all electronic devices.

The equipment manufacturer shouid design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device* in equipment operating at the stated normal supply voltage.
If the tube data specify limiting values according to more than one rating system the circuit has to be designed so that none of these limiting values is exceeded under the relevant conditions.
In addition to the limiting values given in the individual data sheets the directives in the following paragraphs should be observed.

HEATER SUPPLY

For maximum cathode life and optimum performance it is recommended that the heater supply be designed at the nominal heater voltage at zero beam current. Any deviation from this heater voltage has a detrimental effect on tube performance and life, and should therefore be kept to a minimum. In any case the deviations of the heater voltage must not exceed $+5 \%$ and -10% from the nominal value at zero beam current. Such deviations may be caused by:

- mains voltage fluctuations;
- spread in the characteristics of components such as transformers, resistors, capacitors, etc.;
- spread in circuit adjustments;
- operational variations.
* A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.

CATHODE TO HEATER VOLTAGE

The voltage between cathode and heater should be as low as possible and never exceed the limiting values given in the data sheets of the individual tubes. The limiting values relate to that side of the heater where the voltage between cathode and heater is greatest. The voltage between cathode and heater may be d.c., a.c., or a combination of both. Unless otherwise stated, the maximum values quoted indicate the maximum permissible d.c. voltage. If a combination of d.c. and a.c. voltages is applied, the peak value may be twice the rated $\mathrm{V}_{\mathrm{k} f}$; however, unless otherwise stated, this peak value shall never exceed 315 V . Unless otherwise stated, the $\mathrm{V}_{\mathrm{kf}} \mathrm{max}$. holds for both polarities of the voltage; however, a positive cathode is usually the most favourable in view of insulation during life.
A d.c. connection should always be present between heater and cathode. Unless otherwise specified the maximum resistance should not exceed $1 \mathrm{M} \Omega$; the maximum impedance at mains frequency should be less than $100 \mathrm{k} \Omega$.

INTERMEDIATE ELECTRODES (between cathode and anode)

In no circumstances should the tube be operated without a d.c. connection between each electrode and the cathode. The total effective impedance between each electrode and the cathode should never exceed the published maximum value. However, no electrode should be connected directly to a high energy source. When such a connection is required, it should be made via a series resistor of not less than $1 \mathrm{k} \Omega$.

CUT-OFF VOLTAGE

Curves showing the limits of the cut-off voltage as a function of grid 2 voltage are generally included in the data. The brightness control should be so dimensioned that it can handle any tube within the limits shown, at the appropriate grid 2 voltage.
The published limits are determined at an ambient illumination level of 10 lux. Because the brightness of a spot is in general greater than that of a raster of the same current, the cut-off voltage determined with the aid of a focused spot will be more negative by about 5 V as compared with that of a focused raster.

LUMINESCENT SCREEN

To prevent permanent screen damage, care should be taken:

- not to operate the tube with a stationary picture at high beam currents for extended periods;
- not to operate the tube with a stationary or slowly moving spot except at extremely low beam currents;
- if no e.h.t. bleeder is used, to choose the time constants of the cathode, grid 1 , grid 2 , and deflection circuits, such that sufficient beam current is maintained to discharge the e.h.t. capacitance before deflection has ceased after equipment has been switched off.

EXTERNAL CONDUCTIVE COATING

The external conductive coating must be connected to the chassis. The capacitance of this coating to the final accelerating electrode may be used to provide smoothing for the e.h.t. supply.

The coating is not a perfect conductor and in order to reduce electromagnetic radiation caused by the line time base and the picture content it may be necessary to make multiple connections to the coating. See also 'Flashover'.

METAL RIMBAND

An appreciable capacitance exists between the metal rimband and the internal conductive coating of the tube; its value is quoted in the individual data sheets. To avoid electric shock, a d.c. connection should be provided between the metal band and the external conductive coating. In receivers where the chassis can be connected directly to the mains there is a risk of electric shock if access is made to the metal band. To reduce the shock to the safe limit, it is suggested that a $2 \mathrm{M} \Omega$ resistor capable of handling the peak voltages be inserted between the metal band and the point of contact with the external conductive coating. This safety arrangement will provide the necessary insulation from the mains but in the event of flashover high voltages will be induced on the metal band. It is therefore recommended that the $2 \mathrm{M} \Omega$ resistor be bypassed by a $4,7 \mathrm{nF}$ capacitor capable of withstanding the peak voltage determined by the voltage divider formed by this capacitor and the capacitance of the metal rimband to the internal conductive coating, and the anode voltage. The $4,7 \mathrm{nF}$ capacitor also serves to improve e.h.t. smoothing by adding the rimband capacitance to the capacitance of the outer conductive coating.

FLASHOVER

High electric field strengths are present between the gun electrodes of picture tubes. Voltages between gun electrodes may reach values of 20 kV over approx. 1 mm . Although the utmost precautions are taken in the design and manufacture of the tubes, there is always a chance that flashover will occur. The resulting transient currents and voltages may be of sufficient magnitude to cause damage to the tube itself and to various components on the chassis. Arcing terminates when the e.h.t. capacitor is discharged. Therefore it is of vital importance to provide protective circuits with spark gaps and series resistors, which should be connected according to Fig. 1. No other connections between the outer conductive coating and the chassis are permissible.
As our picture tubes are manufactured in Soft-Flash technology, the peak discharge currents are limited to approx. 60 A , offering higher set reliability, optimum circuit protection and component savings (see also Technical Note 039). However this limited value of 60 A is still too high for the circuitry which is directly connected to the tube socket. Therefore Soft-Flash picture tubes should also be provided with spark gaps.

Fig. 1.

IMPLOSION PROTECTION

All picture tubes employ integral implosion protection and must be replaced with a tube of the same type number or recommended replacement to assure continued safety.

HANDLING

Although all picture tubes are provided with integral implosion protection, which meets the intrinsic protection requirements stipulated in the relevant part of IEC 65, care should be taken not to scratch or knock any part of the tube. The tube assembly should never be handled by the neck, deflection unit or other neck components.
A picture tube assembly can be lifted from the edge-down position by using the two upper mounting lugs. An alternative lifting method is firmly to press the hands against the vertical sides of the rimband.
When placing a tube assembly face downwards ensure that the screen rests on a soft pad of suitable material, kept free from abrasive substances. When lifting from the face-down position the hand should be placed under the areas of the faceplate close to the mounting lugs at diagonally opposite corners of the faceplate (Fig. 2).
When lifting from the face-up position the hands should be placed under the areas of the cone close to the mounting lugs at diagonally opposite corners of the cone (Fig. 3).

Fig. 2 Lifting tube assembly from face-down position.

Fig. 3 Lifting tube assembly from face-up position.

In all handling procedures prior to insertion in the receiver cabinet there is a risk of personai injury as a result of severe accidental damage to the tube. It is therefore recommended that protective clothing should be worn, particularly eye shielding.

When suspending the tube assembly from the mounting lugs ensure that a minimum of 2 are used; UNDER NO CIRCUMSTANCES HANG THE TUBE ASSEMBLY FROM ONE LUG.

If provided the slots in the rimband of colour picture tubes are used in the mounting of the degaussing coils. It is not recommended to suspend the tube assembly from one or more of these slots as permanent deformation to the rimband can occur.

Remember when replacing or servicing the tube assembly that a residual electrical charge may be carried by the anode contact and also the external coating if not earthed. Before removing the tube assembly from the equipment, earth the external coating and short the anode contact to the coating.

PACKING

The packing provides protection against tube damage under normal conditions of shipment or handling. Observe any instructions given on the packing and handle accordingly. The tube should under no circumstances be subjected to accelerations greater than $350 \mathrm{~m} / \mathrm{s}^{2}$.

MOUNTING

Unless otherwise specified on the data sheets for individual tubes there are no restrictions on the position of mounting.
The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.
It is very desirable that tubes should not be exposed to strong electrostatic and magnetic fields.

DIMENSIONS

In designing the equipment the tolerances given on the dimensional drawings should be considered. Under no circumstances should the equipment be designed around dimensions taken from individual tubes.

TYPE DESIGNATION

Pro electron type designation system

Worldwide type designation system

Example of picture tube assembly:
application category

$A=T V$ tube for domestic application $M=$ display tube for monitor application minimum useful screen diagonal in cm M34EAQ10X01
 integral neck components screen phosphor category member of family code family code

KELLY CHART

COLOUR TV PICTURE TUBES AND DEFLECTION UNITS

Hi-Bri COLOUR PICTURE TUBE

- 90° deflection
- In-line, thermally stable hi-bi potential gun
- $22,5 \mathrm{~mm}$ neck diameter
- Hi-Bri technology
- Pigmented phosphors
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick heating low-power cathodes
- Soft-flash technology
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- Combined with a deflection unit of the AT1625 series, it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	90°
Minimum useful screen diagonal	34 cm
Overall-length	334 mm
Neck diameter	$22,5 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 300 \mathrm{~mA}$
Focusing voltage	28% of anode voltage

ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

OPTICAL DATA

$\left.\left.\begin{array}{ll}\text { Sçeen } & \begin{array}{l}\text { metal-backed vertical phosphor } \\ \text { stripes; phosphor lines follow glass }\end{array} \\ \text { contour }\end{array}\right\} \begin{array}{l}\text { satinized }\end{array}\right\}$

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base
Anode contact
Mounting position
Net mass
$334,4 \pm 5 \mathrm{~mm}$
$22,5_{-0,7}^{+1,4} \mathrm{~mm}$ *
max. 368 mm
max. 317 mm
max. 248 mm
JEDEC B8-288
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 6 kg

Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

[^1]MECHANICAL DATA (continued)

Notes are given after the drawings.

Dimensions in mm

AA	319 max
AB	339,4 max
AC	$200,5 \pm 4$
AD	$116,5 \pm 1$
AE	$63,5 \max$
AF	278 max
AG	$22,5_{-1,4}^{+1,7}$
AH	66
AK	$22,5 \pm 0,7$
AL	90 ± 10
AM	140 ± 3
AN	$72 \pm 3,2$
AO	$R 575$ approx.

Dimensions in mm

BA	$336 \max$
BB	$268 \max$
BC	311,4
BD	243,2
BE	$375 \max$

Dimensions in mm

CA	251 max
CB	114 min
CC	49 max

Dimensions in mm

MECHANICAL DATA (continued)

Dimensions in mm

```
EA 22,5 \pm0,2
EB 14\pm0,2
EC 29 max
ED 25
EE 14
EF 11\pm0,2
EG 7;5
EH 3 min
```

Dimensions in mm

GA	335,4
GB	280,8
GC	210,6
GD	$25 \pm 2,0$
GE	$15,3 \pm 2,0$
GF	$7,6 \pm 2,0$

Dimensions in mm

FA	335,4
FB	$35,5 \pm 1,8$
FC	2
FD	12 min

Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ($1,5 \mathrm{~mm}$ max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of $7,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $311,4 \mathrm{~mm} \times 243,2 \mathrm{~mm}$.
6. Co-ordinates for radius $R=11,6 \mathrm{~mm} ; x=126,98 \mathrm{~mm}, y=90,76 \mathrm{~mm}$.
7. Maximum dimensions in plane of lugs.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-III-2.
10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Reference line gauge; G-R90CJ10

Maximum cone contour

Dimensions in mm

sec- tion	nom. distance from reference line	distance from centre (max. values)														
		0°	10°	20°	25°	30°	$32^{\circ} 30^{\prime}$	diag. axes	$37^{\circ} 30^{\prime}$	40°	45°	50°	60°	70°	80°	90°
1	127,0	160,3	162,5	169,4	174,8	181,6	185,2	186,7	186,2	183,8	171,7	160,1	143,3	133,0	127,3	125,5
2	117,0	159,5	161,6	168,3	173,5	180,1	183,5	185,3	184,7	181,8	169,8	158,7	142,5	132,3	126,8	125,0
3	107,0	156,4	158,3	164,2	168,5	173,8	176,4	177,7	177,1	174,5	164,7	155,0	140,1	130,5	125,2	123,5
4	97,0	149,9	151,5	156,0	159,2	162,7	164,2	165,1	164,9	163,5	157,0	149,3	136,1	127,3	122,3	120,7
5	87,0	141,3	142,6	146,2	148,5	150,3	150,8	150,8	150,3	149,2	145,3	140,1	130,0	122,6	118,3	116,9
6	77,0	131,1	132,2	134,5	135,7	136,4	136,5	136,4	136,1	135,4	133,4	130,4	123,4	117,4	113,7	112,4
7	67,0	119,0	119,7	120,9	121,5	121,9	121,9	121,9	121,8	121,5	120,6	119,2	115,3	111,2	108,2	107,1
8	57,0	105,7	105,9	106,5	106,8	107,0	107,0	107,0	107,0	107,0	106,7	106,2	104,7	102,7	100,9	100,0
9	47,0	91,6	91,6	91,7	91,8	91,8	91,8	91,9	91,9	91,9	91,8	91,7	91,5	91,1	90,7	90,5
10	45,0	88,6	88,7	88,7	88,8	88,8	88,8	88,8	88,7	88,7	88,7	88,6	88,5	88,3	88,2	88,1

Base JEDEC B8-288

Dimensions in mm

pin contour

90329

KA	17,9 max
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2 max
KE	36°
KF	38°
KG	1,3 max
KH	0,8 min; 1,0 max
KK	$R 8,66 \pm 0,1$
KL	R1,0
KM	R0,25
KN	23,2 max
KO	2,7 max
KP	$15,4 \pm 0,2$
KQ	1,6 max
KR	6.85 max
KS	4,5 min
KT	$1,016 \pm 0,076$
KU	0,63 max
KV	0,4 min

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.
Anode voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off
voltage $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$
Luminance at the centre of the screen*

* Tube settings adjusted to produce white of 6500K +7 M.P.C.D. ($x=0,313, y=0,329$) focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$. The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$)
Percentage of the total anode current supplied by each gun (typical)
red gun
green gun
blue gun
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
$\mathrm{V}_{\mathrm{g} 2}$ and V_{k}
$\Delta V_{k} \quad$ lowest value $>80 \%$ of highest value
see graphs*
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$

38,3\%
35,8\%
25,9\%
$\min \quad 0,8$
average 1,1
max. $\quad 1,4$
\min. 1,1
average 1,5
max. 1,9
\min 0,5
average 0,7
max. 0,9

[^2]LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$V_{a, g 4}$	$\begin{array}{lr} \max . & 27,5 \mathrm{kV} \\ \min . & 20 \mathrm{kV} \end{array}$	$\begin{aligned} & \text { notes } 1,2,3 \\ & \text { notes } 1 \text { and } 4 \end{aligned}$
Long-term average current for three guns	I_{a}	max. $750 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max. 11 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max. 1000 V	
Cathode voltage positive	V_{k}	max. 400 V	
positive operating cut-off	V_{k}	max. 200 V	
negative	$-V_{k}$	\max. 0 V	
negative peak	$-V_{k p}$	max. 2 V	
Heater voltage	V_{f}	6,3V $+5 \%$	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode after equipment warm-up period	$V_{k f}$	max. 200 V	
heater positive with respect to cathode	$-V_{k f p}$	peak 200 V	note 1
	$-V_{k f}$	$\max \quad 0 \mathrm{~V}$ (d.c. component	value)

Notes

1. Absolute maximum rating system.
2. The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV $\left(1,5 \times V_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ($\mathrm{min} .1,5 \mathrm{k} \Omega$) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.
Additional information is available on request.

BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle 4 mm

Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle 2 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 4 mm

Spot cut-off design chart.
Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$\mathrm{V}_{\mathrm{g} 2}$ range 310 to 630 V ;
V_{k} range 100 to 125 V .
Adjustment procedure:
Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 125 V ; increase the grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

Cathode heating time after switching on, measured under typical operating conditions.

Typical cathode drive characteristics.

$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=23 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=100 \mathrm{~V}$ (curve a), $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$ (curve b).

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$V_{a, g 4}=23 \mathrm{kV}, \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 3}$ adjusted for optimum focus.
Scanned area $=280,8 \mathrm{~mm} \times 210,6 \mathrm{~mm}$; CIE co-ordinates $x=0,313, y=0,329$.

Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.
Colour co-ordinates:

	$\frac{x}{x}$		y
red	0,635		0,340
green	0,315		0,600
blue	0,150		0,060

DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm .

For proper degaussing an initial magnetomotive force (m.m.f.) of $\mathbf{6 0 0}$ ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil $(\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil

Circumference
Number of turns
Copper wire diameter
Resistance

110 V (a.c.) mains	220 V (a.c.) mains
90 cm	90 cm
60	120
$0,45 \mathrm{~mm}$	$0,3 \mathrm{~mm}$
6Ω	27Ω

Catalogue number of appropriate dual PTC thermistor

Hi-Bri COLOUR PICTURE TUBE

- 90° deflection
- In-line, thermally stable hi-bi potential A R T^{*} gun
- 22,5 mm neck diameter
- Hi-Bri technology
- Pigmented phosphors
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick heating low-power cathodes
- Soft-flash technology
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- Combined with a deflection unit of the AT1625 series, it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	90°
Minimum useful screen diagonal	34 cm
Overall-length	337 mm
Neck diameter	$22,5 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 300 \mathrm{~mA}$
Focusing voltage	31% of anode voltage

[^3]
ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

ELECTRICAL DATA

Capacitances

anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre
Light transmission of face glass at centre
unitized triple-aperture electrodes electrostatic
hi-bi-potential
magnetic
approx. 90°
approx. 780
approx. 60°
max. 1600 pF
$\min .800 \mathrm{pF}$
15 pF
4 pF
$\mathrm{C}_{\mathrm{g} 3} \quad 4 \mathrm{pF}$
indirect by a.c. or d.c.
6,3 V
300 mA
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\min .335,4 \mathrm{~mm}$
min . $280,8 \mathrm{~mm}$
min . $210,6 \mathrm{~mm}$
$\min .580 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
$0,65 \mathrm{~mm}$
68\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base
Anode contact
Mounting position
Net mass
$337,1 \pm 5 \mathrm{~mm}$
$22,5_{-0,7}^{+1,4} \mathrm{~mm}$ *
$\max .368 \mathrm{~mm}$
max. 317 mm
$\max .248 \mathrm{~mm}$
JEDEC B8-288
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 6 kg

Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

MECHANICAL DATA (continued)

Notes are given after the drawings.

Dimensions in mm

$A A$	319 max
$A B$	342,1 max
$A C$	$200,5 \pm 4$
$A D$	$118,7 \pm 1$
$A E$	$63,5 \max$
$A F$	281 max
$A G$	$22,5+1,4$
$A H$	66
$A K$	$22,5 \pm 0,7$
$A L$	90 ± 10
$A M$	140 ± 3
$A N$	$72 \pm 3,2$
$A O$	$R 575$ approx.

Dimensions in mm

BA	336 max
BB	268 max
BC	311,4
BD	243,2
BE	375 max

Dimensions in mm

CA	251 max
CB	114 min
CC	49 max

Dimensions in mm

MECHANICAL DATA (continued)

Dimensions in mm

Dimensions in mm

EA	$22,5 \pm 0,2$
EB	$14 \pm 0,2$
EC	$29 \max$
ED	25
EE	14
EF	$11 \pm 0,2$
EG	7,5
EH	3 min

GA	335,4
GB	280,8
GC	210,6
GD	$25 \pm 2,0$
GE	$15,3 \pm 2,0$
GF	$7,6 \pm 2,0$

Dimensions in mm

Notes to outline drawings in the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ($1,5 \mathrm{~mm}$ max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of $7,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $311,4 \mathrm{~mm} \times 243,2 \mathrm{~mm}$.
6. Co-ordinates for radius $R=11,6 \mathrm{~mm} ; x=126,98 \mathrm{~mm}, y=90,76 \mathrm{~mm}$.
7. Maximum dimensions in plane of lugs.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-III-2.
10. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Reference line gauge; G-R90CJ10

Maximum cone contour

Dimensions in mm

section	nom. distance from reference line	distance from centre (max. values)														
		0°	10°	20°	25°	30°	$32^{\circ} 30^{\prime}$	diag. axes	$37^{\circ} 30^{\prime}$	40°	45°	50°	60°	70°	80°	90°
1	127,0	160,3	162,5	169,4	174,8	181,6	185,2	186,7	186,2	183,8	171,7	160,1	143,3	133,0	127,3	125,5
2	117,0	159,5	161,6	168,3	173,5	180,1	183,5	185,3	184,7	181,8	169;8	158,7	142,5	132,3	126,8	125,0
3	107,0	156,4	158,3	164,2	168,5	173,8	176,4	177,7	177,1	174,5	164,7	155,0	140,1	130,5	125,2	123,5
4	97,0	149,9	151,5	156,0	159,2	162,7	164,2	165,1	164,9	163,5	157,0	149,3	136,1	127,3	122,3	120,7
5	87,0	141,3	142,6	146,2	148,5	150,3	150,8	150,8	150,3	149,2	145,3	140,1	130,0	122,6	118,3	116,9
6	77,0	131,1	132,2	134,5	135,7	136,4	136,5	136,4	136,1	135,4	133,4	130,4	123,4	117,4	113,7	112,4
7	67,0	119,0	119,7	120,9	121,5	121,9	121,9	121,9	121,8	121,5	120,6	119,2	115,3	111,2	108,2	107,1
8	57,0	105,7	105,9	106,5	106,8	107,0	107,0	107,0	107,0	107,0	106,7	106,2	104,7	102,7	100,9	100,0
9	47,0	91,6	91,6	91,7	91,8	91,8	91,8	91,9	91,9	91,9	91,8	91,7	91,5	91,1	90,7	90,5
10	45,0	88,6	88,7	88,7	88,8	88,8	88,8	88,8	88,7	88,7	88,7	88,6	88,5	88,3	88,2	88,1

Base JEDEC B8-288

Dimensions in mm

pin contour

KA	17,9 max
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2 max
KE	36°
KF	38°
KG	1,3 max
KH	0,8 min; 1,0 max
KK	$\mathrm{R8,66} \pm 0,1$
KL	R1,0
KM	R0,25
KN	23,2 max
KO	2,7 max
KP	15,4 $\pm 0,2$
KO	1,6 max
KR	6.85 max
KS	4,5 min
KT	1,016 $\pm 0,076$
KU	0,63 max
KV	0,4 min

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage

Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off
voltage $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$
Luminance at the centre of the screen*

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	23 kV
$\mathrm{V}_{\mathrm{g} 3}$	6,7 to $7,6 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	310 to 650 V
L	$165 \mathrm{~cd} / \mathrm{m}^{2}$

* Tube settings adjusted to produce white of $6500 \mathrm{~K}+7$ M.P.C.D. ($x=0,313, y=0,329$) focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	29 to 31% of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g} 2}$ and V_{k}	see cut-off design chart

To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$)
Percentage of the total anode current supplied by each gun (typical) red gun 38,3\%
green gun 35,8\%
blue gun
25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
min. $\quad 0,8$
average 1,1
max. 1,4
min. 1,1
average 1,5
max. 1,9
\min. 0,5
average 0,7
max. 0,9

* For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$V_{a, g 4}$	max. min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	I_{a}	max.	$750 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage, peak	$V_{\mathrm{g} 2 p}$	max.	1000 V	
Cathode voltage positive	V_{k}	max.	400 V	
positive operating cut-off	V_{k}	max.	200 V	
negative	$-V_{k}$	max.	0 V	
negative peak	$-V_{k p}$	max.	2 V	
Heater voltage	V_{f}	6,3 V	$+5 \%$ -10%	notes 1 and 6

Heater-cathode voltage
heater negative with respect to cathode
after equipment warm-up period
heater positive with respect to cathode

$V_{k f}$	max. 200 V
$-V_{k f p}$	peak 200 V
$-V_{k f}$	max. $\quad 0 \mathrm{~V}$
	(d.c. component value)

Notes

1. Absolute maximum rating system.
2. The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV $\left(1,5 \times \mathrm{V}_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ($\min .1,5 \mathrm{k} \Omega$) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.
Additional information is available on request.

BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction
$0,08 \mathrm{~mm}$
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle

4 mm
Centre convergence displacement between the green beam
and converged blue and red beams is contained within a circle; maximum diameter of circle

2 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

Spot cut-off design chart.
Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$\mathrm{V}_{\mathrm{g} 2}$ range 310 to 685 V ;
V_{k} range 100 to 125 V .

Adjustment procedure:

Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 125 V ; increase the grid 2 voltage ($\mathrm{V}_{\mathrm{g} 2}$) from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

Cathode heating time after switching on, measured under typical operating conditions.

Typical cathode drive characteristics.

$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=23 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=100 \mathrm{~V}$ (curve a), $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$ (curve b).

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=23 \mathrm{kV}, \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 3}$ adjusted for optimum focus.
Scanned area $=280,8 \mathrm{~mm} \times 210,6 \mathrm{~mm}$; CIE co-ordinates $x=0,313, y=0,329$.

Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:

	$\frac{x}{x}$		y
red	0,635		0,340
green	0,315		0,600
blue	0,150		0,060

DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm .

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil ($\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil	110 V (a.c.) mains	220 V (a.c.) mains
	90 cm	90 cm
Circumference	60	120
Number of turns	$0,45 \mathrm{~mm}$	$0,3 \mathrm{~mm}$
Copper wire diameter	6Ω	27Ω
Resistance	232266298013	232266298009
Catalogue number of appropriate dual PTC thermistor		

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube	
\quad gun arrangement	in line
minimum useful screen diagonal	34 cm
neck diameter	$22,5 \mathrm{~mm}$
Deflection angle	90°
Line deflection current, edge to edge at 23 kV	$2,15 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected (including additional coil)	$2,46 \mathrm{mH}$
Field deflection current, edge to edge at 23 kV	$0,38 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, series connected	$54,4 \Omega$

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A34EACOOX, with a neck diameter of $22,5 \mathrm{~mm}$. The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Outlines

The deflection unit fits a tube with a neck diameter of $22,5_{-0,7}^{+1,4} \mathrm{~mm}$.

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-25 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category $94-\mathrm{V} 1$ $1,0 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils, including additional coil
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 23 kV
Line deflection current, edge to edge, at 23 kV
Additional coil
Inductance at 1 V (r.m.s.), 1 kHz
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 23 kV
Cross talk

$$
\begin{aligned}
& 2,46 \mathrm{mH} \pm 4 \% \\
& 3,2 \Omega \pm 10 \% \\
& 5,29 \mathrm{mWb} \pm 2,5 \% \\
& 2,15 \mathrm{~A}(\mathrm{p}-\mathrm{p}) \\
& \\
& 0,15 \mathrm{mH} \pm 4 \% \\
& 110 \mathrm{mH} \pm 10 \% \\
& 54,4 \Omega \pm 7 \% \\
& 0,38 \mathrm{~A}(\mathrm{p}-\mathrm{p}) \\
& \text { a voltage of } 10 \mathrm{~V}, 15625 \mathrm{~Hz} \text { applied to } \\
& \text { the line coils causes no more than } 0,40 \mathrm{~V} \\
& \text { across the field coils (damping resistors } \\
& \text { included) } \\
& >500 \mathrm{M} \Omega \\
& >500 \mathrm{M} \Omega \\
& >10 \mathrm{M} \Omega
\end{aligned}
$$

Fig. 2 Connection diagram. $L=$ line coils; $F=$ field coils; $\mathrm{L}_{\mathrm{a}}=$ additional coil; $\mathrm{R}=4,7 \mathrm{k} \Omega$.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube	
\quad gun arrangement	in line
minimum useful screen diagonal	34 cm
neck diameter	$22,5 \mathrm{~mm}$
Deflection angle	90°
Line deflection current, edge to edge at 23 kV	$2,15 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected (including additional coil)	$2,50 \mathrm{mH}$
Field deflection current, edge to edge at 23 kV	$0,75 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, parallel connected	$13,6 \Omega$

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A34EACOOX, with a neck diameter of $22,5 \mathrm{~mm}$. The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

Outlines

The deflection unit fits a tube with a neck diameter of $22,5_{-0,7}^{+1,4} \mathrm{~mm}$.

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage 'temperature range
Flame retardent
Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat; steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-25 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,0 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils, including additional coil
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 23 kV
Line deflection current, edge to edge, at 23 kV
Additional coil
Inductance at 1 V (r.m.s.), 1 kHz
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 23 kV
Cross talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
$2,50 \mathrm{mH} \pm 4 \%$
3,3 $\Omega \pm 10 \%$
$5,38 \mathrm{mWb} \pm 2,5 \%$
2,15 A (p-p)
$0,19 \mathrm{mH} \pm 4 \%$
$27,5 \mathrm{mH} \pm 10 \%$
$13,6 \Omega \pm 7 \%$
0,75 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,20 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$

Fig. 2 Connection diagram. $L=$ line coils; $F=$ field coils; $\mathrm{L}_{\mathrm{a}}=$ additional coil; $\mathrm{R}=4,7 \mathrm{k} \Omega$.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal of vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

AT1625/30

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube	in line
gun arrangement	34 cm
minimum useful screen diagonal	$22,5 \mathrm{~mm}$
neck diameter	90°
Deflection angle	$2,07 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Line deflection current, edge to edge at 23 kV	$2,50 \mathrm{mH}$
Inductance of line coils, parallel connected	$0,38 \mathrm{~A} \mathrm{(p-p)}$
Field deflection current, edge to edge at 23 kV	$54,4 \Omega$

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A34EACOOX, with a neck diameter of $22,5 \mathrm{~mm}$. The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Outlines

The deflection unit fits a tube with a neck diameter of $22,5_{-0,7}^{+1,4} \mathrm{~mm}$.

Fig. 1.
Maximum operating temperature (average copper
temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw
$+90^{\circ} \mathrm{C}$
-25 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,0 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 23 kV
Line deflection current, edge to edge, at 23 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 23 kV
Cross talk

Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp between field coil and core clamp
$2,50 \mathrm{mH} \pm 4 \%$
3,3 $\Omega \pm 10 \%$
$5,18 \mathrm{mWb} \pm 2,5 \%$
2,07 A (p-p)
$110 \mathrm{mH} \pm 10 \%$
$54,4 \Omega \pm 7 \%$
0,38 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,4 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$

Fig. 2 Connection diagram, $L=$ Line,$F=$ Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

DEFLECTION UNIT

QUICK REFERENCE DATA

Picture tube	
\quad gun arrangement	in line
minimum useful screen diagonal	34 cm
neck diameter	$22,5 \mathrm{~mm}$
Deflection angle	90°
Line deflection current, edge to edge at 23 kV	$2,07 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	$2,50 \mathrm{mH}$
Field deflection current, edge to edge at 23 kV	$0,75 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, parallel connected	$13,6 \Omega$

APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 90° in-line colour picture tube A34EACOOX, with a neck diameter of $22,5 \mathrm{~mm}$. The unit requires no raster correction circuitry.

DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

Outlines

The deflection unit fits a tube with a neck diameter of $22,5_{-0,7}^{+1,4} \mathrm{~mm}$.

Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-25 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,0 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 23 kV
Line deflection current, edge to edge, at 23 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 23 kV
Cross talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
$2,50 \mathrm{mH} \pm 4 \%$
3,3 $\Omega \pm 10 \%$
$5,18 \mathrm{mWb} \pm 2,5 \%$
2,07 A (p-p)
$27,5 \mathrm{mH} \pm 10 \%$
$13,6 \Omega \pm 7 \%$
0,75 A(p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$

Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.

FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- 90° deflection
- In-line, hi-bi potential A R T* gun
- $22,5 \mathrm{~mm}$ neck diameter
- Shadow mask of NiFe alloy with low thermal expansion
- Hi-Bri technology
- Mask with corner suspension
- Pigmented phosphors
- Fine pitch over entire screen
- Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 625 lines system
- Internal magnetic shield
- Internal multipole
- Reinforced envelope for push-through mounting
- The tube is supplied with a deflection unit of the AT6060 series; it forms a self-converging and raster correction free assembly

QUICK REFERENCE DATA

Deflection angle	90°
Minimum useful screen diagonal	36 cm
Overall length	340 mm
Neck diameter	$22,5 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 300 \mathrm{~mA}$
Focusing voltage	31% of anode voltage

[^4]
ELECTRON-OPTICAL DATA

Electron gun system

Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

OPTICAL DATA

Screen

Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Positional accuracy of the screen with
respect to the glass contour
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre
Luminance at the centre of the screen
unitized triple-aperture electrodes; aberration reducing triode
electrostatic
hi-bi-potential
magnetic
approx. 90°
approx. 78°
approx. 60°
max. 1600 pF
min. $\quad 800 \mathrm{pF}$
15 pF
4 pF
4 pF
indirect by a.c. or d.c.
6,3 V
300 mA
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
high polish
\min. 355,6 mm
$\min .284,5 \mathrm{~mm}$
min . 213,4 mm
min. $607 \mathrm{~cm}^{2}$
see Figures on the next page
pigmented europium activated
rare earth
sulphide type
pigmented sulphide type
$0,52 \mathrm{~mm}$
65\%
$140 \mathrm{~cd} / \mathrm{m}^{2 *}$

* Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.
$A=121,70 \mathrm{~mm}$
$B=161,20 \mathrm{~mm}$
$C=87,50 \mathrm{~mm}$
$D=126,73 \mathrm{~mm}$
$E=26,83 \mathrm{~mm}$

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height

Base

Anode contact
Mounting position
Net mass
$340 \pm 4,5 \mathrm{~mm}$
$22,5_{-0,7}^{+1,4} \mathrm{~mm}$ *
max. $392,6 \mathrm{~mm}$
max. $328,4 \mathrm{~mm}$
max. $263,0 \mathrm{~mm}$
JEDEC B8-288
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 7 kg

Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

[^5]

MECHANICAL DATA (continued)
Notes are given after the drawings.

Dimensions in mm

AA	332 max
AB	$340 \pm 4,5$
AC	204 ± 4
AE	$51,5 \max$
AF	297 max
AG	$22,5+1,4$
AH	66
AK	$22,9 \pm 0,3$
AL	110 ± 10
AM	140 ± 3
AN	$75 \pm 3,2$
AO	$R 1200$ approx

Dimensions in mm

BA	346,5 max
BB	281 max
BC	326,4
BD	261

Flat square Hi -Bri colour picture tube
DEVELOPMENT DATA

Dimensions in mm

CA	267 max
CB	122,5 min
CC	49 max
CG	396,5
CK	53 max

Dimensions in mm

DA	$326,8 \pm 1,6$
DB	$261,4 \pm 1,6$
DC	$391 \pm 1,6$
DD	$284,5 \mathrm{~min}$
DE	$213,4 \mathrm{~min}$
DF	$355,6 \mathrm{~min}$
DG	R2028
DH	R2029
DK	R21,4
DL	R10078
DM	R5661
DN	RO

MECHANICAL DATA (continued)

Dimensions in mm

EA	$20,6 \pm 0,5$
EB	$11,5 \pm 0,2$
EC	$35 \max$
ED	30 ± 1
EE	R8
EG	8
EH	$3 \min$
EK	$2,25 \pm 0,3$

Dimensions in mm

GA	355,6
GB	284,5
GC	213,4
GD	$13,25 \pm 2$
GE	$8,5 \pm 2$
GF	$4,79 \pm 2$

Dimensions in mm

FA	355,6
FB	$34,5 \pm 1,5$
FC	2,5
FD	$17,5 \mathrm{~min}$
FE	15 max
FF	24 max
FG	13,1
FK	R8
FL	5°

Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ($1,5 \mathrm{~mm}$ max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of $\pm 1,5 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. corners of a rectangle of $326,4 \mathrm{~mm} \times 261 \mathrm{~mm}$.
6. Distance from point Z to any hardware.
7. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
8. Small cavity contact J1-21, IEC 67-III-2.
9. The X, Y and Z reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

coordinates		sagitta height mm
x	y	
mm	mm	
0*	106,70	4,75
10	106,70	4,79
20	106,70	4,92
30	106,70	5,13
40	106,70	5,42
50	106,70	5,80
60	106,70	6,26
70	106,70	6,80
80	106,70	7,43
90	106,70	8,15
100	106,70	8,94
110	106,70	9,83
120	106,70	10,79
130	106,70	11,84
140	106,70	12,98
142,25**	106,70	13,25
142,25	100	12,66
142,25	90	11,86
142,25	80	11,15
142,25	70	10,52
142,25	60	9,97
142,25	50	9,51
142,25	40	9,13
142,25	30	8,84
142,25	20	8,63
142,25	10	8,50
142,25 ${ }^{\text { }}$	0	8,46

$\begin{array}{ll}* & \text { Point * } \\ \text { ** } & \text { Diagonal } \\ \text { 4 } & \text { Point (D) }\end{array}$

Base JEDEC B8-288

pin contour

Reference line gauge; G-R90CJ10

Dimensions in mm

KA	$17,9 \mathrm{~mm}$
KB	15,4 max
KC	12,0
KD	$7,9 \mathrm{~min} ; 8,2$
KE	360°
KF	380°
KG	1,3 max
KH	0,8 min; 1,0 max
KK	R8,66 $\pm 0,1$
KL	$R 1,0$
KM	$R 0,25$
KN	23,2 max
KO	2,7 max
KP	$15,4 \pm 0,2$
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	$1,016 \pm 0,076$
KU	0,63 max
KV	0,4 min

Dimensions in mm

HA	$\phi 100,00$
HB	65,00
HC	$\phi 78,70$
HD	¢ 80,00
HE	9,20 $\pm 0,02$
HF	36,22 $\pm 0,02$
HG	20,00
HH	$\phi 75,48 \pm 0,02$
HK	$\phi 60,77 \pm 0,02$
HL	$\phi 23,90_{-0}^{+0,04}$
HM	R220,00
HN	R70,00
HO	50,30
HP	132,71
HQ	80,52
HR	205,85

Flat square Hi -Bri colour picture tube

Maximum cone contour

section	nom. distance from section 1	distance from centre (max. values)											
		0°							20°	diag.	50°	70°	90°
1		163,3	173,0	195,8	166,9	138,2	130,3						
2		159,1	168,5	188,0	161,1	134,5	127,2						
3		149,2	154,4	165,5	148,2	127,5	121,5						
4		133,5	136,4	140,0	131,2	117,4	113,0						
5		110,7	111,9	112,6	108,7	102,3	100,0						
6		82,2	82,7	82,7	82,0	80,8	80,2						
7	115	58,3	58,3	58,3	58,3	58,5	58,7						

TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.
Anode voltage
$V_{a, g 4}$
23 kV
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	6,7 to $7,6 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	310 to 650 V

Spot cut-off design chart.
Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$\mathrm{V}_{\mathrm{g} 2}$ range 310 to 685 V ;
V_{k} range 100 to 125 V .
Adjustment procedure:
Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 125 V ; increase the grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ from approx. 300 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$. The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage

Grid 2 voltage and cathode voltage
for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

Heater voltage

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$)
Percentage of the total anode current supplied by each gun (typical)
red gun
green gun
blue gun
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun

38,3\%
35,8\%
25,9\%
29 to 33% of anode voltage
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}} \quad$ see cut-off design chart
$\Delta V_{k} \quad$ lowest value $>80 \%$ of highest value
6,3 V at zero beam current see graphs
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$
min. $\quad 0,8$
average 1,1
max. 1,4
\min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	max. min.			notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	I_{a}	max.			note 5
Grid 3 (focusing electrode) voltage	V_{g}	max.			
Grid 2 voltage, peak	$\mathrm{V}_{\mathrm{g} 2 \mathrm{p}}$	max.	1000	V	
Cathode voltage positive	V_{k}	max.	400	V	
positive operating cut-off	V_{k}	max.	200	V	
negative	$-V_{k}$	max.		V	
negative peak	$-V_{k p}$	max.	2	V	
Heater voltage	V_{f}		v_{-10}^{+5}	\%	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode after equipment warm-up period	$V_{k f}$	max.	200	V	
heater positive with respect to cathode	$\begin{aligned} & -V_{k f p} \\ & -V_{k f} \end{aligned}$	peak max. (d.c.	$\begin{array}{r} 200 \\ 0 \\ \text { mpone } \end{array}$	$\begin{gathered} v \\ \text { v } \\ \text { ent } \end{gathered}$	note 1

Notes

1. Absolute maximum rating system.
2. The X -ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV $\left(1,5 \times V_{g 3} \max\right.$. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ($\mathrm{min} .1,5 \mathrm{k} \Omega$) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.
Additional information is available on request.

BEAM CORRECTIONS

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

Cathode heating time after switching on, measured under typical operating conditions.

Typical cathode drive characteristics.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=23 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=100 \mathrm{~V}$ (curve a), and $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$ (curve b). For optimum picture performance it is recommended that the cathodes are not driven below +1 V .

Luminance at the centre of the screen as
a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=23 \mathrm{kV}$.
Scanned area $=404,4 \mathrm{~mm} \times 303,3 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.

Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:		y
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.

Position of degaussing coil on the picture tube; dimensions are given in mm .
For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil $(\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.

Degaussing circuit using dual PTC thermistor.

Data of degaussing coil

Circumference
Number of turns
Copper wire diameter
Resistance

110 V (a.c.) mains	220 V (a.c.) mains
90 cm	90 cm
60	120
$0,45 \mathrm{~mm}$	$0,3 \mathrm{~mm}$
6Ω	27Ω
232266298013	232266298009

$36 \mathrm{~cm}, 90^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- Self-converging and raster correction free
- $36 \mathrm{~cm}, 90^{\circ}$ colour picture tube A36EAM . . X
- Hybrid saddle toroidal deflection unit of the AT6060 series

QUICK REFERENCE DATA

Deflection angle	90 o
Minimum useful screen diagonal	36 cm
Overall length	340 mm
Neck diameter	$22,5 \mathrm{~mm}$

AVAILABLE ASSEMBLIES

assembly type	assembly components
A36EAM00X01	tube A36EAM00X + deflection unit AT6060/00
A36EAM00X04	tube A36EAM00X + deflection unit AT6060/30
A36EAM00X16	tube A36EAM00X + deflection unit AT6060/42

Colour picture tube assembly A36EAM . . X . .

Deflection unit of AT6060 series.

Yoke clearance.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range
Flame retardent
Torque on neck clamp screw
$+90^{\circ} \mathrm{C}$
-25 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,0 \mathrm{Nm}$

ENVIRONMENTAL TEST SPECIFICATIONS OF DEFLECTION UNITS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

ELECTRICAL DATA OF DEFLECTION UNITS

parameter	AT6060/00	$\begin{aligned} & \text { deflection unit } \\ & \text { AT6060/30 } \end{aligned}$	AT6060/42
Line deflection coils			
inductance at 1 V (r.m.s.), 1 kHz	2,43 mH $\pm 4 \%$	2,43 mH $\pm 4 \%$	1,64 mH $\pm 4 \%$
resistance at $25{ }^{\circ} \mathrm{C}$	3,2 $\Omega \pm 10 \%$	3,2 $2 \pm 10 \%$	2,1 $\Omega \pm 10 \%$
magnetic flux	$5,14 \mathrm{mWb} \pm 2,5 \%$	$5,14 \mathrm{mWb} \pm 2,5 \%$	$4,20 \mathrm{mWb} \pm 2,5 \%$
Line deflection current, edge to edge, at 23 kV	2,11 A(p-p)	2,11 A(p-p)	2,57 A(p-p)
```Field deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at 25 '}\textrm{C```	$\begin{aligned} & 26,2 \mathrm{mH} \pm 10 \% \\ & 12,2 \Omega \pm 7 \% \end{aligned}$	$\begin{aligned} & 108 \mathrm{mH} \pm 10 \% \\ & 49 \Omega \pm 7 \% \end{aligned}$	$\begin{aligned} & 108 \mathrm{mH} \pm 10 \% \\ & 49 \Omega \pm 7 \% \end{aligned}$
Field deflection current, edge to edge, at 23 kV	0,82 A(p-p)	0,41 A(p-p)	0,41 A(p-p)
Cross-talk: voltage across the field coils when a voltage of 10 V , 15625 Hz is applied to the line coils	<0,2 V	<0,4 V	$<0,4 \mathrm{~V}$


Insulation resistance at 1 kV (d.c.)   between line and field coils	$>500 \mathrm{M} \Omega$
between line coil and core clamp	$>500 \mathrm{M} \Omega$
between field coil and core clamp	$>10 \mathrm{M} \Omega$



Connection diagram and top view of terminals of deflection unit AT6060/00. The beginning of the windings is indicated with $\bullet$.


Connection diagram and top view of terminals of deflection unit．AT6060／30．The beginning of the windings is indicated with $\bullet$


Connection diagram and top view of terminals of deflection unit AT6060／42．The beginning of the windings is indicated with $\bullet$ ．

## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line gun, electrostatic bi-potential focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal maqnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1205), it forms a self-converging assembly; dynamic convergence is not required.


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Face diagonal	37 cm
Overall length	$337,5 \mathrm{~mm}$
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 685 \mathrm{~mA}$
Focusing voltage	$20 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes focusing electrode to all other electrodes
Heating
heater voltage
heater current

$\left.C_{a(m+m}\right)$	$\max .1600 \mathrm{pF}$
$\min .800 \mathrm{pF}$	
$\mathrm{C}_{\mathrm{g} 1}$	15 pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	5 pF
$\mathrm{C}_{\mathrm{g} 3}$	6 pF
	indirect by a.c. or d.c.
$\mathrm{V}_{\mathrm{f}}$	$6,3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}$	685 mA

## OPTICAL DATA

Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre
Light transmission of face glass at centre
unitized triple-aperture electrodes electrostatic
bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$

685 mA
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\min .335,4 \mathrm{~mm}$
$\mathrm{min} .280,8 \mathrm{~mm}$
min . $210,6 \mathrm{~mm}$
$\min .580 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type

0,65 mm
68\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base
Anode contact
Mounting position
Net mass
$337,4 \pm 5 \mathrm{~mm}$
29,1 ${ }_{-0,7}^{+1,4} \mathrm{~mm}$ *
$\max .368 \mathrm{~mm}$
$\max .317 \mathrm{~mm}$
$\max .248 \mathrm{~mm}$
12-pin base JEDEC B12-262
small cavity contact J1-21, IEC 67-111-2
anode contact on top
approx. 6 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

[^6]
## MECHANICAL DATA (continued)

Notes are given after the drawings.



MECHANICAL DATA (continued)

i.c. = internally connected (not to be used)
n.c. $=$ not connected

## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. The displacement of any lug with respect to the plane through the three other lugs is max. $1,5 \mathrm{~mm}$. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of $7,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $311,4 \mathrm{~mm} \times 243,2 \mathrm{~mm}$.
6. Co-ordinates for radius $R=11,6 \mathrm{~mm}: x=126,98 \mathrm{~mm}, y=90,76 \mathrm{~mm}$.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis. The mass of the mating socket with circuitry should not be more than 150 g , maximum permissible torque is 40 mNm .
9. Small cavity contact J1-21, IEC67-III-2,

## Reference line gauge; GR90CJ4




12-pin base; JEDEC B12-262


pin contour

detail of key

## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$
Luminance at the centre of the screen *
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4} \quad 25 \mathrm{kV}$
Vg3 4,7 to $5,5 \mathrm{kV}$
V2 310 to 560 V
L
$175 \mathrm{~cd} / \mathrm{m}^{2}$

* Tube settings adjusted to produce white of $6500 \mathrm{~K}+7$ M.P.C.D. $(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.
Grid 3 (focusing electrode) voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$ see cut-off design chart *
$\Delta V_{k} \quad$ lowest value $>80 \%$ of highest value
see graphs **
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$

To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun 35,8\%
blue gun 25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
min. $\quad 0,8$
average 1,1
max. 1,4
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

* The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 130 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 300 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $V_{k}$ of the remaining guns so that the rasters of these guns also become visible.
** For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

LIMITING VALUES (Design maximum rating svstem unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	max. $\min$.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes 1, 2, 3   notes 1 and 4
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$750 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$V_{\mathrm{g} 3}$	$\max$.	7 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max.	1000 V	
Cathode voltage positive positive operating cut-off negative negative peak	$\begin{aligned} & V_{k} \\ & V_{k} \\ & -V_{k} \\ & -V_{k p} \end{aligned}$	max.   max.   max.   max.	$\begin{array}{r} 400 \mathrm{~V} \\ 200 \mathrm{~V} \\ 0 \mathrm{~V} \\ 2 \mathrm{~V} \end{array}$	
Heater voltage	$V_{f}$	6,3 V	$\begin{aligned} & +5 \% \\ & -10 \% \end{aligned}$	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode during equipment warm-up period				
not exceeding 15 s   after equipment warm-up period	$V_{k f}$ $V_{k f}$	max. max.	$\begin{aligned} & 450 \mathrm{~V} \\ & 250 \mathrm{~V} \end{aligned}$	note 1
heater positive with respect to cathode	$\begin{aligned} & -V_{k f p} \\ & -V_{k f} \end{aligned}$	peak   max.   (d.c.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \\ \text { ponent v} \end{array}$	note 1

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $8,5 \mathrm{kV}$ $\left(1,5 \times V_{g 3}\right.$ max. at $\left.V_{a, g 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle $0,08 \mathrm{~mm}$

4 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle 2 mm

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 5 mm

Hi -Bri colour picture tube
A37-573X


Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=20$ to $27,5 \mathrm{kV}$.


Typical cathode drive characteristics.
$V_{f}=6,3 \mathrm{~V}$;
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}$; curve $\mathrm{a}=$ spot cut-off $=120 \mathrm{~V}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ adjusted to provide spot cut-off for desired fixed $\mathrm{V}_{\mathrm{k}}$.

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}, \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 3}$ adjusted for optimum focus.
Scanned area $=280,8 \mathrm{~mm} \times 210,6 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$\frac{x}{x}$	
red	$\mathbf{0 , 6 3 5}$	
green	0,315	
blue	0,150	0,600
		0,060



Cathode heating time after switching on, measured under typical operating conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.


Position of degaussing coil on the picture tube; dimensions are given in mm .
For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil ( $\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.


Degaussing circuit using dual PTC thermistor.

## Data of degaussing coil

Circumference
Number of turns
Copper-wire diameter
Resistance

110 V (a.c.) mains	220 V (a.c.) mains
90 cm	90 cm
70	120
$0,45 \mathrm{~mm}$	$0,3 \mathrm{~mm}$
$6,7 \Omega$	$25,9 \Omega$

Catalogue number of appropriate dual PTC thermistor

822229873091

## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
diagonal	$37 \mathrm{~cm} \mathrm{(14} \mathrm{in)}$
neck diameter	$29,1 \mathrm{~mm}$
Deflection angle	$90^{\circ}$
Line deflection current, edge to edge at 25 kV	$3,0 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	$1,85 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$0,42 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, series connected	$50 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence, is for $90^{\circ}$ in-line colour picture tube A37-573X, with a neck diameter of $29,1 \mathrm{~mm}$.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1_{-0,7}^{+0,9} \mathrm{~mm}$.


Fig. 1.
Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature

$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils $\quad>500 \mathrm{M} \Omega$
between line coil and core clamp $>500 \mathrm{M} \Omega$
between field coil and core clamp $\quad>10 \mathrm{M} \Omega$
parallel connected
$1,85 \mathrm{mH} \pm 5 \%$
$2,0 \Omega \pm 10 \%$
3,0 A(p-p)
series connected
$109 \mathrm{mH} \pm 10 \%$
$50 \Omega \pm 7 \%$
0,42 A(p-p)
a voltage of $10 \mathrm{~V}, 15750 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## A37-590X

## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line gun, thermally stable; electrostatic hi-bi potential focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1206), it forms a self-converging and raster correction free assembly.


## QUICK REFERENCE DATA

Deflection angle	900
Face diagonal	37 cm
Overall length	342 mm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 685 \mathrm{~mA}$
Focusing voltage	$28 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current
unitized triple-aperture electrodes
electrostatic
hi-bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$

$C_{a}\left(\mathrm{~m}+\mathrm{m}^{\prime}\right)$	$\max .1600 \mathrm{pF}$
$\min .800 \mathrm{pF}$	
$\mathrm{C}_{\mathrm{g} 1}$	17 pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	5 pF
$\mathrm{C}_{\mathrm{g} 3}$	6 pF
	indirect by a.c. or d.c.   $\mathrm{V}_{\mathrm{f}}$      $\mathrm{I}_{\mathrm{f}}$
	$6,3 \mathrm{~V}$
685 mA	

metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\min .335,4 \mathrm{~mm}$
min . $280,8 \mathrm{~mm}$
min . $210,6 \mathrm{~mm}$
$\min .580 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
$0,65 \mathrm{~mm}$
68\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base
Anode contact
Mounting position
Net mass
$342,1 \pm 5 \mathrm{~mm}$
$29,1_{-0,7}^{+1,4} \mathrm{~mm}$ *
max. 368 mm
max. 317 mm
max. 248 mm
10-pin base JEDEC B10-277
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 6 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

[^7]MECHANICAL DATA (continued)
Dimensions in mm
Notes are given after the drawings.



i.c. $=$ internally connected (not to be used).

## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ( $1,5 \mathrm{~mm}$ max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of $7,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $311,4 \mathrm{~mm} \times 243,2 \mathrm{~mm}$.
6. Co-ordinates for radius $R=11,6 \mathrm{~mm}: x=126,98 \mathrm{~mm}, \mathrm{y}=90,76 \mathrm{~mm}$.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
The mass of the mating socket with circuitry should not be more than 150 g , maximum permissible torque is 40 mNm .
9. Small cavity contact J1-21, IEC67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

## Reference line gauge; GR90CJ4




10-pin base; JEDEC B10-277


## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off
voltage $V_{k}=140 \mathrm{~V}$
Luminance at the centre of the screen*
$\begin{array}{lr}V_{a, g 4} & 25 \mathrm{kV} \\ V_{g} & 6,6 \text { to } 7,5 \mathrm{kV}\end{array}$
$\mathrm{V}_{\mathrm{g} 2} 390$ to 760 V
$\mathrm{L} \quad 175 \mathrm{~cd} / \mathrm{m}^{2}$

[^8]
## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage

Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
$V_{g} 326,6$ to $29,8 \%$ of anode voltage
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$ see cut-off design chart *
$\Delta V_{k} \quad$ lowest value $>80 \%$ of
highest value
see graphs **
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$

To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
min. $\quad 0,8$
average 1,1
max. 1,4
min. $\quad 1,1$
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

* The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 150 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $V_{k}$ of the remaining guns so that the rasters of these guns also become visible.
** For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

LIMITING VALUES (Design maximum rating svstem unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	max.   min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$750 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max.	1000 V	
Cathode voltage				
positive	$V_{k}$	max.	400 V	
positive operating cut-off	$V_{k}$	max.	200 V	
negative	$-V_{k}$	max.	0 V	
negative peak	$-\mathrm{V}_{\mathrm{kp}}$	max.	2 V	
Heater voltage	$V_{f}$	6,3 V	$\begin{aligned} & +5 \% \\ & -10 \% \end{aligned}$	notes 1 and 6
heater negative with respect to cathode during equipment warm-up period				
not exceeding 15 s	$\mathrm{V}_{\mathrm{kf}}$	max.	450 V	note 1
after equipment warm-up period	$V_{k f}$	max.	250 V	
heater positive with respect to cathode	$-V_{k f p}$ $-V_{k f}$	peak	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$	note 1
		(d.c. co	monent v	

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its iimiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV $\left(1,5 \times V_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remairing circuits without arcing. Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle

4 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle

2 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 5 mm


Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=20$ to $27,5 \mathrm{kV}$,


Typical cathode drive characteristics.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{K}}=140 \mathrm{~V}$.

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}, \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 3}$ adjusted for optimum focus.
Scanned area $=280,8 \mathrm{~mm} \times 210,6 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$\frac{x}{x}$	
red	0,635	
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.


Position of degaussing coil on the picture tube; dimensions are given in mm .
For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil ( $\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.


Degaussing circuit using dual PTC thermistor.
Data of degaussing coil

## Circumference

Number of turns
Copper-wire diameter
Resistance
Catalogue number of appropriate dual PTC thermistor

110 V (a.c.) mains	220 V (a.c.) mains
90 cm	90 cm
70	120
$0,45 \mathrm{~mm}$	$0,3 \mathrm{~mm}$
$6,7 \Omega$	$25,9 \Omega$
822229873091	232266298009.

## DEFLECTION UNIT

## - Raster Correction Free

## QUICK REFERENCE DATA

Picture tube		
$\quad$ gun arrangement	in line	
diagonal	37	$\mathrm{~cm}(14 \mathrm{in})$
neck diameter	29,1	mm
Deflection angle	$90^{\circ}$	
Line deflection current, edge to edge at 25 kV	3,21	$\mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	1,78	mH
Field deflection current, edge to edge at 25 kV	0,97	$\mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, parallel connected	11	$\Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A37-590X, with a neck diameter of $29,1 \mathrm{~mm}$.
The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1_{-0,7}^{+0,9} \mathrm{~mm}$.


Maximum operating temperature (average copper
temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca )
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb )

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 25 kV
Line deflection current, edge to edge, at 25 kV
Voltage during line scan, edge to edge, at 25 kV , scan period $52,5 \mu \mathrm{~s}$
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
parallel connected
$1,78 \mathrm{mH} \pm 5 \%$
$1,80 \Omega \pm 10 \%$
$5,59 \mathrm{mWb} \pm 2,5 \%$
3,21 A (p-p)
109 V
parallel connected
$29,1 \mathrm{mH} \pm 10 \%$
$11 \Omega \pm 7 \%$
0,97 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $\mathrm{L}=$ Line, $\mathrm{F}=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## A37-591X

## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line gun, thermally stable; electrostatic hi-bi potential focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1206), it forms a self-converging and raster correction free assembly.

QufcK REFERENCE DATA	
Beflection angle	$90^{\circ}$
Face diagonal	37 cm
Overall length	$346,5 \mathrm{~mm}$
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 685 \mathrm{~mA}$
Focusing voltage	$28 \%$ of anode voltage

unitized triple-aperture electrodes electrostatic
hi-bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

OP iICAL DATA
Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre
Light transmission of face glass at centre
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\min .335,4 \mathrm{~mm}$
$\min .280,8 \mathrm{~mm}$
min . 210,6 mm
$\mathrm{min} .580 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
$0,65 \mathrm{~mm}$
68\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions diagonal width height
Base
Anode contact
Mounting position
Net mass
$346,5 \pm 5 \mathrm{~mm}$
$29,1{ }_{-0,7}^{+1,4} \mathrm{~mm}$ *
max. 368 mm
max. 317 mm
max. 248 mm
JEDEC B8-274
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 6 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

[^9]
## MECHANICAL DATA

Notes are given after the drawings.




## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ( $1,5 \mathrm{~mm}$ max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of $+1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of $7,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $311,4 \mathrm{~mm} \times 243,2 \mathrm{~mm}$.
6. Co-ordinates for radius $R=11,6 \mathrm{~mm}: x=126,98 \mathrm{~mm}, y=90,76 \mathrm{~mm}$.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
The mass of the mating socket with circuitry should not be more than 150 g , maximum permissible torque is 40 mNm .
9. Small cavity contact J1-21, IEC67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

## Reference line gauge; GR90CJ4




Base JEDEC B8-274


## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.
Anode voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$
Luminance at the centre of the screen*

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	25 kV
$\mathrm{V}_{\mathrm{g} 3}$	6,6 to $7,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	390 to 760 V
L	$175 \mathrm{~cd} / \mathrm{m}^{2}$

* Tube settings adjusted to produce white of $6500 \mathrm{~K}+7$ M.P.C.D. ( $x=0,313, y=0,329$ ) focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage
$V_{g} 3$
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$ see cut-off design chart *
$\Delta V_{k} \quad$ lowest value $>80 \%$ of highest value
see graphs **
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
26,6 to $29,8 \%$ of anode voltage

To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions

$$
x_{2}
$$

min. 0,8
average 1,1
max. 1,4
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

* The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 150 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $\mathrm{V}_{\mathrm{k}}$ of the remaining guns so that the rasters of these guns also become visible.
** For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$V_{a, g 4}$	max.   min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes 1, 2, 3   notes 1 and 4
Long-term average current for three guns	$I_{a}$	max.	$750 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max.	1000 V	
Cathode voltage				
positive	$V_{k}$	max.	400 V	
positive operating cut-off	$V_{k}$	max.	200 V	
negative	$-V_{k}$	max.	0 V	
negative peak	$-\mathrm{V}_{\mathrm{kp}}$	max.	2 V	
Heater voltage	$V_{f}$	6,3 V	$\begin{aligned} & +5 \% \\ & -10 \% \end{aligned}$	notes 1 and 6

Heater-cathode voltage
heater negative with respect to cathode
during equipment warm-up period not exceeding 15 s
after equipment warm-up period heater positive with respect to cathode

$V_{k f}$	max.	450 V	note 1
$\mathrm{~V}_{\mathrm{kf}}$	max.	250 V	
$-\mathrm{V}_{\mathrm{kfp}}$	peak	200 V	note 1
$-\mathrm{V}_{\mathrm{kf}}$	max.	0 V	

(d.c. component value)

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV $\left(1,5 \times \mathrm{V}_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle 4 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 5 mm

Hi-Bri colour picture tube
A37-591X


Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=20$ to $27,5 \mathrm{kV}$,
7283244.2


Typical cathode drive characteristics.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{K}}=140 \mathrm{~V}$.

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}, \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 3}$ adjusted for optimum focus.
Scanned area $=280,8 \mathrm{~mm} \times 210,6 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$\frac{x}{y}$	$\frac{y}{y}$
red	0,635	
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.


Position of degaussing coil on the picture tube; dimensions are given in mm .
For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil ( $\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.


Degaussing circuit using dual PTC thermistor.

## Data of degaussing coil

Circumference
Number of turns
Copper-wire diameter
Resistance

110 V (a.c.) mains	220 V (a.c.) mains
90 cm	90 cm
70	120

Catalogue number of appropriate dual PTC thermistor
$0,45 \mathrm{~mm}$
$6,7 \Omega$
$0,3 \mathrm{~mm}$
25,9 $\Omega$

232266298009

## DEFLECTION UNIT

## - Raster Correction Free

## QUICK REFERENCE DATA

Picture tube	
gun arrangement   diagonal	in line
neck diameter	$37 \mathrm{~cm}(14 \mathrm{in})$
Deflection angle	$29,1 \mathrm{~mm}$
Line deflection current, edge to edge at 25 kV	900
Inductance of line coils, parallel connected	$3,19 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Field deflection current, edge to edge at 25 kV	$1,78 \mathrm{mH}$
Resistance of field coils, parallel connected	$0,97 \mathrm{~A}(\mathrm{p}-\mathrm{p})$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tubes A37-590X and A37-591X, with a neck diameter of $29,1 \mathrm{~mm}$.
The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1 \begin{aligned} & +0,9 \\ & -0,7\end{aligned}$


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca )
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Voltage during line scan, edge to edge,
at 25 kV , scan period $52,5 \mu \mathrm{~s}$
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
parallel connected
$1,78 \mathrm{mH} \pm 5 \%$
$1,82 \Omega \pm 10 \%$
3,19 A (p-p)
108 V
parallel connected
$29,1 \mathrm{mH} \pm 10 \%$
$11 \Omega \pm 7 \%$
0,97 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
between line coil and core clamp
$>500 \mathrm{M} \Omega$
$\quad>500 \mathrm{M} \Omega$
between field coil and core clamp $>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## Hi-Bri COLOUR PICTURE TUBE ASSEMBLIES

- The tube characteristics are identical to those of type A37-590X, see the relevant data sheet.
- Assembly A37-598X0620 consists of a picture tube with a light transmission at screen centre of 68\%, and deflection unit AT1206/20.
Assembly A37-599X0620 consists of a picture tube with a light transmission at screen centre of $46 \%$, and deflection unit AT1206/20.
- Enhanced convergence is obtained by improved and refined matching method.


## CONVERGENCE AND RASTER SPECIFICATION

The maximum convergence after 15 min operation is given in Table 1 and Fig. 1.
Test conditions (all voltages are measured with respect to grid 1)

Heater voltage	$\mathrm{V}_{\mathrm{f}}$	$6,3 \mathrm{~V}$
Cathode voltage	$\mathrm{V}_{\mathrm{k}}$	to be adjusted for correct current setting   Grid 2 voltage
$\mathrm{V}_{\mathrm{g} 2}$ 585 V   Grid 3 voltage	$\mathrm{V}_{\mathrm{g} 3}$	to be adjusted for focus in half east and half west, using a cross-hatch   pattern, when the beam current (black background) is adjusted to
		$5 \mathrm{~mA}(\mathrm{p}-\mathrm{p})$ for white   25 kV
Anode voltage		
Cross-hatch pattern ( $350 \mu \mathrm{~A}(\mathrm{p}-\mathrm{p})$ for each gun)		

## Remarks

1. Misconvergence is the distance between centres of the red, green, blue lines at the screen using rectangular co-ordinates.
2. Anode and/or focusing voltage affect the static convergence performance. If the voltages are not the same as the test conditions mentioned, a minor convergence adjustment may become necessary. This can be done by readjusting the static convergence magnets.

Table 1 Maximum misconvergence after 15 min operation

location (see Fig. 1)	max. error between   any colour
A	$0,3 \mathrm{~mm}$
B, C, D, E	$0,7 \mathrm{~mm}$
F, G, H, J	$0,9 \mathrm{~mm}$
K, L, M, N	$0,8 \mathrm{~mm}$
S, T, U, V	$0,6 \mathrm{~mm}$



Fig. 1 Convergence test areas.
Diameter of test circles at measuring points $=10 \mathrm{~mm}$.


Fig. 2 Raster rotation.
Total pattern distortion, measured without east-west and north-south correction

East-west pattern distortion ( $\mathrm{H}_{1}$ and/or $\mathrm{H}_{2}$, Fig. 3)
North-south pattern distortion ( $\mathrm{V}_{1}$ and/or $\mathrm{V}_{2}$, Fig. 4)
max. 3 mm max. 2,3 mm


Fig. 4 North-south pattern distortion. $A=190 \mathrm{~mm}$.

## DEFLECTION UNIT

## - Raster Correction Free

## QUICK REFERENCE DATA

Picture tube		
gun arrangement	in line	
diagonal	37	$\mathrm{~cm}(14 \mathrm{in})$
neck diameter	29,1	mm
Deflection angle	$90^{\circ}$	
Line deflection current, edge to edge at 25 kV	$3,21, \mathrm{~A}(\mathrm{p}-\mathrm{p})$	
Inductance of line coils, parallel connected	1,78	mH
Field deflection current, edge to edge at 25 kV	0,97	$\mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, parallel connected	11	$\Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A37-590X, with a neck diameter of $29,1 \mathrm{~mm}$.
The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

## MECHANICAL DATA

Outlines
The deflection unit fits a tube with a neck diameter of $29,1 \begin{aligned} & +0,9 \\ & -0,7\end{aligned} \mathrm{~mm}$.


Fig. 1.
Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca )
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 25 kV
Line deflection current, edge to edge, at 25 kV
Voltage during line scan, edge to edge, at 25 kV , scan period $52,5 \mu \mathrm{~s}$
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk
parallel connected
$1,78 \mathrm{mH} \pm 5 \%$
$1,80 \Omega \pm 10 \%$
$5,59 \mathrm{mWb} \pm 2,5 \%$
3,21 A (p-p)
109 V
parallel connected
$29,1 \mathrm{mH} \pm 10 \%$
$11 \Omega \pm 7 \%$
0,97 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp


Fig. 2 Connection diagram, L = Line, $\mathrm{F}=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line, thermally stable hi-bi potential gun
- 22,5 mm neck diameter
- Hi-Bri technology
- Pigmented phosphors
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick heating low-power cathodes
- Soft-Flash technology
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- Combined with a deflection unit of the AT1635 series, it forms a self-converging and raster correction free assembly


## QUICK REFERENCE DATA

Deflection angle $90^{\circ}$

Minimum useful screen diagonal 38 cm
Overall-length
366 mm
Neck diameter
$22,5 \mathrm{~mm}$
Heating
6,3 V, 300 mA
Focusing voltage
$28 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Delfection angles
diagona!
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

$C_{a}\left(m+m^{\prime}\right)$	$\max .1600 \mathrm{pF}$
$\min .1000 \mathrm{pF}$	
$C_{g 1}$	15 pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	4 pF
$\mathrm{C}_{\mathrm{g} 3}$	4 pF
	indirect by a.c. or d.c.
$\mathrm{V}_{\mathrm{f}}$	$6,3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}$	300 mA

## OPTICAL DATA

Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre
unitized triple-aperture electrodes
electrostatic
hi-bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$

300 mA
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
min. $382,3 \mathrm{~mm}$
$\mathrm{min} .322,1 \mathrm{~mm}$
min . 241,6 mm
$\min .755 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type

0,70 mm
66,8\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base
Anode contact
Mounting position
Net mass
$365,9 \pm 5 \mathrm{~mm}$
$22,5_{-0,7}^{+1,4} \mathrm{~mm} *$
max. 418,8 mm
max. 360,6 mm
max. $281,8 \mathrm{~mm}$
JEDEC B8-288
small cavity contact J1-21, IEC 67-1II-2
anode contact on top
approx. 8 kg

## Handling

During shipment and handling the tube shouid not be subjected to accelerations greater than 35 g in any direction.

* In the region of 66 mm from the neck end, the maximum diameter is 23,2 mm .


## A38EAC00X

Dimensions in mm
Notes are given after the drawings


AA 365 max
AB 370,9 max
AC $\quad 232,0 \pm 4$
AD $116,5 \pm 1$
AE 69,0 max
AF 304,0 max
AG $\begin{aligned} & 22,5 \\ &+0,7\end{aligned}$
AH 66
AK $22,5 \pm 0,7$
AL $\quad 110 \pm 10$
AM $\quad 160 \pm 3$
AN $85,0 \pm 3,2$
AO R653

Dimensions in mm

BB 305 max
BC $\quad 355,8$

BD 276,7
BE 423 max


MECHANICAL DATA (continued)


Dimensions in mm
$\longrightarrow$EA 3 min   EB $14,5 \pm 0,2$   EC 33 max   ED $30 \pm 1$       EE 20   EF $14,5 \pm 0,2$   EG 11,5   EH $3,0 \mathrm{~min}$

Dimensions in mm

GA	382,3
GB	322,1
GC	241,6
GD	$28,6 \pm 2,0$
GE	$17,3 \pm 2,0$
GF	$8,4 \pm 2,0$

Dimensions in mm

FA	382,3
FB	$37,5 \pm 1,8$
FC	3
FD	16 min
FE	19,5 max
FF	25 max



## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ( $1,5 \mathrm{~mm}$ max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of $11,5 \mathrm{~mm}$ diamter drawn around the true geometrical positions, i.e. the corners of a rectangle of $355,8 \mathrm{~mm} \times 276,7 \mathrm{~mm}$.
6. Co-ordinates for radius $R=11,1 \mathrm{~mm} ; x=146,52 \mathrm{~mm}, y=104,72 \mathrm{~mm}$.
7. Maximum dimensions in plane of lugs.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Reference line gauge; G-R90CJ10


Maximum cone contour


Dimensions in mm

section	nom.   distance   from   reference   line	distance from centre (max. values)														
		$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$25^{\circ}$	$30^{\circ}$	$32^{\circ} 30^{\prime}$	diag. axes	$37^{\circ} 30^{\prime}$	$40^{\circ}$	$45^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	151,5	181,5	183,9	191,5	197,4	205,0	209,2	211,2	210,5	207,2	192,7	179,9	161,4	149,9	143,6	141,6
2	141,5	180,3	182,6	190,0	195,7	202,9	206,9	209,1	208,2	204,2	190,1	177,9	160,0	148,8	142,6	140,6
3	131,5	177,1	179,3	186,0	191,0	197,0	199,9	200,9	199,7	196,0	184,1	173,2	156,7	146,1	140,2	138,3
4	121,5	172,1	174,1	179,9	184,0	188,2	189,7	189,8	188,4	185,4	176,2	167,0	152,3	142,5	137,0	135,2
5	111,5	165,4	167,0	171,8	174,9	177,6	178,3	177,9	176,8	174,4	167,4	159,9	147,1	138,3	133,3	131,6
6	101,5	156,6	158,0	161,7	164,0	165,7	166,1	165,7	164,9	163,1	158,1	152, 1	141,3	133,6	129,1	127,6
7	91,5	146,0	147,1	150,0	151,8	153,1	153,4	153,2	152,7	151,6	148,1	143,7	134,9	128,3	124,4	123,1
8	81,5	134,6	135,5	137,7	139,0	140,0	140,2	140,2	139,9	139,3	137,2	134,3	127,8	122,4	119,1	118,0
9	71,5	123,0	123,6	125,2	126,0	126,5	126,7	126,7	126,5	126,2	125,1	123,5	119,3	115,5	113,0	112,1
10	61,5	110,9	111,3	112,0	112,4	112,6	112,6	112,6	112,6	112,4	112,0	111,3	109,4	107,4	105,8	105,2
11	51,5	97,8	97,9	98,1	98,1	98,2	98,2	98,1	98,1	98, 1	98,1	97,8	97,4	96,9	96,4	96,2
12	45,0	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,4	88,4	88,4

Base JEDEC B8-288
290329

Dimensions in mm

KA	17,9 max
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2 max
KE	$36^{\circ}$
KF	$38^{\circ}$
KG	1,3 max
KH	0,8 min; 1,0 max
KK	$\mathrm{R} 8,66 \pm 0,1$
KL	R1,0
KM	R0,25
KN	23,2 max
KO	2,7 max
KP	15,4 $\pm 0,2$
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	1,016 $\pm 0,076$
KU	0,63 max
KV	0,4 min

## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.
Anode voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$
Luminance at the centre of the screen*

$V_{a, g 4}$	23 kV
$V_{\mathrm{g} 3}$	6,1 to $6,9 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	310 to 600 V
L	$165 \mathrm{~cd} / \mathrm{m}^{2}$

* Tube settings adjusted to produce white of $6500 \mathrm{~K}+7$ M.P.C.D. $(x=0,313, y=0,329)$ focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$. The voltages are specified with respect to grid 1.
Grid 3 (focusing electrode) voltage
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}} \quad$ see cut-off design chart
$\Delta V_{k} \quad$ lowest value $>80 \%$ of highest value see graphs
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
Grid 1 current under cut-off conditions

To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
min. 0,8
average 1,1
max. 1,4
$\min$. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	$\begin{array}{lr} \max . & 27,5 \mathrm{kV} \\ \min . & 20 \mathrm{kV} \end{array}$	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	$\mathrm{l}_{\mathrm{a}}$	max. $750 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$V_{\mathrm{g} 3}$	max. 11 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max. 1000 V	
Cathode voltage positive	$\mathrm{V}_{\mathrm{k}}$	max. 400 V	
positive operating cut-off	$V_{k}$	max. 200 V	
negative	$-V_{k}$	$\max$. 0 V	
negative peak	$-V_{k p}$	max. 2 V	
Heater voltage	$\mathrm{V}_{\mathrm{f}}$	6,3V $+5 \%$	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode after equipment warm-up period	$V_{k f}$	max. 200 V	
heater positive with respect to cathode	$\begin{aligned} & -V_{k f p} \\ & -V_{k f} \end{aligned}$	peak 200 V   max. 0 V   (d.c. component	note 1   value)

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV $\left(1,5 \times \mathrm{V}_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.

Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle $\quad 4,5 \mathrm{~mm}$
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle 2,3 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 4 mm


Spot cut-off design chart.
Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$\mathrm{V}_{\mathrm{g} 2}$ range 310 to 630 V ;
$\mathrm{V}_{\mathrm{k}}$ range 100 to 125 V .

## Adjustment procedure:

Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 125 V ; increase the grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaning guns so that the other colours also become visible.


Cathode heating time after switching on, measured under typical operating conditions.

Typical cathode drive characteristics.
$V_{f}=6,3 \mathrm{~V}$;
$V_{\mathrm{a}, 94}=23 \mathrm{kV}$;

$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=100 \mathrm{~V}$ (curve a), and $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$ (curve b).


Luminance at the centre of the screen as a function of $I_{\text {total }} . \mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=23 \mathrm{kV}, \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 3}$ adjusted for optimum focus.
Scanned area $=322,1 \mathrm{~mm} \times 241,6 \mathrm{~mm}$; CIE co-ordinates $\mathrm{x}=0,313, \mathrm{y}=0,329$.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus. Colour co-ordinates:

	$\frac{x}{y}$	$\frac{y}{n}$red 0,635    green 0,315    blue 0,600     0,150 $\quad 0,060$

## DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.


Position of degaussing coil on the picture tube; dimensions are given in mm .
For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil ( $\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.


Degaussing circuit using dual PTC thermistor.

## Data of degaussing coil

Circumference
Number of turns
Copper wire diameter
Resistance

110 V (a.c.) mains	220 V (a.c.) mains
105 cm	105 cm
60	120
$0,45 \mathrm{~mm}$	$0,35 \mathrm{~mm}$
$7 \Omega$	$23 \Omega$
232266298013	232266298009

## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line, thermally stable hi-bi potential A R T* gun
- 22,5 mm neck diameter
- Hi-Bri technology
- Pigmented phosphors
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick heating low-power cathodes
- Soft-Flash technology
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- Combined with a deflection unit of the AT1635 series, it forms a self-converging and raster correction free assembly


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Minimum useful screen diagonal	38 cm
Overall-length	368 mm
Neck diameter	$22,5 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 300 \mathrm{~mA}$
Focusing voltage	$31 \%$ of anode voltage

[^10]
## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Delfection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

## OPTICAL DATA

## Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre
Light transmission of face glass at centre
unitized triple-aperture electrodes
electrostatic
hi-bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$

$\left.C_{a(m}+m^{\prime}\right)$	$\max .1600 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	15 pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	4 pF
$\mathrm{C}_{\mathrm{g} 3}$	4 pF

$V_{f} \quad 6,3 \mathrm{~V}$
$I_{f} \quad 300 \mathrm{~mA}$
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\mathrm{min} .382,3 \mathrm{~mm}$
$\mathrm{min} .322,1 \mathrm{~mm}$
min . $241,6 \mathrm{~mm}$
$\min .755 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
0,70 mm
66,8\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base
Anode contact
Mounting position
Net mass
$368,1 \pm 5 \mathrm{~mm}$
$22,5^{+1,4}-0,7 \mathrm{~mm}$ *
$\max .418,8 \mathrm{~mm}$
$\max .360,6 \mathrm{~mm}$
max. 281,8 mm
JEDEC B8-288
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 8 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

* In the region of 66 mm from the neck end, the maximum diameter is $23,2 \mathrm{~mm}$.

MECHANICAL DATA (continued)

Dimensions in mm

$A A$	$365 \max$
$A B$	373,1 max
$A C$	$232,0 \pm 4$
$A D$	$118,7 \pm 1$
$A E$	69,0 max
$A F$	$307,0 \max$
$A G$	$22,5+1,4$
$A H$	66
$A K$	$22,5 \pm 0,7$
$A L$	$110 \pm 10$
$A M$	$160 \pm 3$
$A N$	$85,0 \pm 3,2$
$A O$	$R 653$

Notes are given after the drawings


Dimensions in mm

BA	$384 \max$
BB	$305 \max$
BC	355,8
BD	276,7
BE	$423 \max$


CA	286 max
CB	126 min
CC	63 max



MECHANICAL DATA (continued)


Dimensions in mm

EA	$3 \min$
EB	$14,5 \pm 0,2$
EC	33 max
ED	$30 \pm 1$
EE	20
EF	$14,5 \pm 0,2$
EG	11,5
EH	$3,0 \mathrm{~min}$

Dimensions in mm

GA	382,3
GB	322,1
GC	241,6
GD	$28,6 \pm 2,0$
GE	$17,3 \pm 2,0$
GF	$8,4 \pm 2,0$

Dimensions in mm

FA	382,3
FB	$37,5 \pm 1,8$
FC	3 max
FD	16 min
FE	$19,5 \max$
FF	$25 \max$



## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ( $1,5 \mathrm{~mm}$ max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of $11,5 \mathrm{~mm}$ diamter drawn around the true geometrical positions, i.e. the corners of a rectangle of $355,8 \mathrm{~mm} \times 276,7 \mathrm{~mm}$.
6. Co-ordinates for radius $R=11,1 \mathrm{~mm} ; x=146,52 \mathrm{~mm}, y=104,72 \mathrm{~mm}$.
7. Maximum dimensions in plane of lugs.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Reference line gauge; G-R90CJ10

Maximum cone contour


Dimensions in mm

	nom.	distance from centre (max. values)														
tion	from reference line	$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$25^{\circ}$	$30^{\circ}$	$32^{\circ} 30^{\prime}$	diag. axes	$37^{\circ} 30^{\prime}$	$40^{\circ}$	$45^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	151,5	181,5	183,9	191,5	197,4	205,0	209,2	211,2	210,5	207,2	192,7	179,9	161,4	149,9	143,6	141,6
2	141,5	180,3	182,6	190,0	195,7	202,9	206,9	209,1	208,2	204,2	190, 1	177,9	160,0	148,8	142,6	140,6
3	131,5	177,1	179,3	186,0	191,0	197,0	199,9	200,9	199,7	196,0	184,1	173,2	156,7	146,1	140,2	138,3
4	121,5	172,1	174,1	179,9	184,0	188,2	189,7	189,8	188,4	185,4	176,2	167,0	152,3	142,5	137,0	135,2
5	111,5	165,4	167,0	171,8	174,9	177,6	178,3	177,9	176,8	174,4	167,4	159,9	147,1	138,3	133,3	131,6
6	101,5	156,6	158,0	161,7	164,0	165,7	166,1	165,7	164,9	163,1	158,1	152,1	141,3	133,6	129,1	127,6
7	91,5	146,0	147,1	150,0	151,8	153,1	153,4	153,2	152,7	151,6	148,1	143,7	134,9	128,3	124,4	123,1
8	81,5	134,6	135,5	137,7	139,0	140,0	140,2	140,2	139,9	139,3	137,2	134,3	127,8	122,4	119,1	118,0
9	71,5	123,0	123,6	125,2	126,0	126,5	126,7	126,7	126,5	126,2	125,1	123,5	119,3	115,5	113,0	112,1
10	61,5	110,9	111,3	112,0	112,4	112,6	112,6	112,6	112,6	112,4	112,0	111,3	109,4	107,4	105,8	105,2
11	51,5	97,8	97,9	98,1	98,1	98,2	98,2	98, 1	98, 1	98,1	98,1	97,8	97,4	96,9	96,4	96,2
12	45,0	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,5	88,4	88,4	88,4

## Base JEDEC B8-288


Dimensions in mm

KA	$17,9 \max$
KB	$15,4 \max$
KC	12,0
KD	$7,9 \min ; 8,2 \max$
KE	$36^{\circ}$
KF	380
KG	1,3 max
KH	0,8 min; 1,0 max
KK	$R 8,66 \pm 0,1$
KL	$R 1,0$
KM	$R 0,25$
KN	23,2 max
KO	$2,7 \max$
KP	$15,4 \pm 0,2$
KQ	1,6 max
KR	$6,85 \max$
KS	$4,5 \min$
KT	$1,016 \pm 0,076$
KU	0,63 max
KV	0,4 min

## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off
voltage $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$
Luminance at the centre of the screen*
$V_{a, g 4}$
$V_{g}$
$\mathrm{V}_{\mathrm{g} 2}$
L

23 kV
6,7 to $7,6 \mathrm{kV}$

310 to 650 V
$165 \mathrm{~cd} / \mathrm{m}^{2}$

* Tube settings adjusted to produce white of $6500 K+7$ M.P.C.D. $(x=0,313, y=0,329)$ focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	29 to $31 \%$ of anode   voltage
Grid 2 voltage and cathode voltage   for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$	see cut-off design chart
Difference in cut-off voltages between		
guns in any tube	$\Delta V_{k}$	lowest value $>80 \%$ of   highest value
Video drive characteristics		see graphs
Grid 3 (focusing electrode) current	$\operatorname{Ig}_{\mathrm{g} 3}$	-5 to $+5 \mu \mathrm{~A}$
Grid 2 current	$\operatorname{Ig}_{\mathrm{g} 2}$	-5 to $+5 \mu \mathrm{~A}$
Grid 1 current under cut-off conditions	$\operatorname{Ig}_{\mathrm{g} 1}$	-5 to $+5 \mu \mathrm{~A}$

To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun $\quad 35,8 \%$
blue gun $\quad \mathbf{2 5 , 9 \%}$
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
min. $\quad 0,8$
average 1,1
max. 1,4
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
$\max \quad 0,9$

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$V_{a, g 4}$	max. min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes 1,2,3 notes 1 and 4
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$750 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$V_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage, peak	$V_{\mathrm{g} 2 \mathrm{p}}$	max.	1000 V	
Cathode voltage positive	$\mathrm{V}_{\mathrm{k}}$	max.	400 V	
positive operating cut-off	$V_{k}$	max.	200 V	
negative	$-V_{k}$	max.	0 V	
negative peak	$-V_{k p}$	max.	2 V	
Heater voltage	$V_{f}$	6,3 V	$\begin{gathered} +5 \% \\ -10 \% \end{gathered}$	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode after equipment warm-up period	$\mathrm{V}_{\mathrm{kf}}$	max.	200 V	
heater positive with respect to cathode	$\begin{aligned} & -V_{k f p} \\ & -V_{k f} \end{aligned}$	peak   max.   (d.c.		note 1   value)

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV $\left(1,5 \times V_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.
Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle $4,5 \mathrm{~mm}$
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle 2,3 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

4 mm


Spot cut-off design chart.
Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$\mathrm{V}_{\mathrm{g} 2}$ range 310 to 685 V ;
$\mathrm{V}_{\mathrm{k}}$ range 100 to 125 V .
Adjustment procedure:
Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 125 V ; increase the grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaning guns so that the other colours also become visible.


Cathode heating time after switching on, measured under typical operating conditions.

Typical cathode drive characteristics.
$\mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}$;

$V_{a, g 4}=23 \mathrm{kV}$;
video drive voltage from spot cut - off (V)
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=100 \mathrm{~V}$ (curve a), and $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$ (curve b).


Luminance at the centre of the screen as a function of $\mathrm{I}_{\text {total }} . \mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=23 \mathrm{kV}, \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 3}$ adjusted for optimum focus.
Scanned area $=322,1 \mathrm{~mm} \times 241,6 \mathrm{~mm}$; CIE co-ordinates $\mathrm{x}=0,313, \mathrm{y}=0,329$.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus. Colour co-ordinates:

	$\frac{x}{y}$	$\frac{y}{y}$
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

## DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.


Position of degaussing coil on the picture tube; dimensions are given in mm .
For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil $(\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.


Degaussing circuit using dual PTC thermistor.
Data of degaussing coil

Circumference
Number of turns
Copper wire diameter
Resistance
Catalogue number of appropriate dual PTC thermistor

110 V (a.c.) mains	220 V (a.c.) mains
105 cm	105 cm
60	120
$0,45 \mathrm{~mm}$	$0,35 \mathrm{~mm}$
$7 \Omega$	$23 \Omega$
232266298013	232266298009

## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube
gun arrangement in line
minimum useful screen diagonal 38 cm
neck diameter $\quad 22,5 \mathrm{~mm}$
Deflection angle $90^{\circ}$
Line deflection current, edge to edge at 23 kV
Inductance of line coils, parallel connected
Field deflection current, edge to edge at 23 kV
Resistance of field coils, series connected

2,07 A (p-p)
$2,50 \mathrm{mH}$
0,78 A (p-p)
$11,8 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A38EACOOX, with a neck diameter of $22,5 \mathrm{~mm}$. The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $22,5_{-0,7}^{+1,4} \mathrm{~mm}$.


Fig. 1.
Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-25 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,0 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb )
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 23 kV
Line deflection current, edge to edge, at 23 kV

## Field coils

Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 23 kV
Cross talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
$2,50 \mathrm{mH} \pm 4 \%$
$3,3 \Omega \pm 10 \%$
$5,18 \mathrm{mWb} \pm 2,5 \%$
2,07 A (p-p)
$27,5 \mathrm{mH} \pm 10 \%$
$11,8 \Omega \pm 7 \%$
0,78 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,20 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	in line
$\quad$ gun arrangement	38 cm
minimum useful screen diagonal	$22,5 \mathrm{~mm}$
neck diameter	900
Deflection angle	$2,21 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Line deflection current, edge to edge at 23 kV	$2,50 \mathrm{mH}$
Inductance of line coils, parallel connected (including additional coil)	$0,78 \mathrm{~A} \mathrm{(p-p)}$
Field deflection current, edge to edge at 23 kV	$11,8 \Omega$
Resistance of field coils, parallel connected	

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A38EAC00X, with a neck diameter of $22,5 \mathrm{~mm}$. The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## Outlines

The deflection unit fits a tube with a neck diameter of $22,5_{-0,7}^{+1,4} \mathrm{~mm}$.


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-25 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,0 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils, including additional coil
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25{ }^{\circ} \mathrm{C}$
Magnetic flux at 23 kV
Line deflection current, edge to edge, at 23 kV
Additional coil
Inductance at 1 V (r.m.s.), 1 kHz
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 23 kV
Cross talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp

2,50 $\mathrm{mH} \pm 4 \%$
3,3 $\Omega \pm 10 \%$
$5,53 \mathrm{mWb} \pm 2,5 \%$
2,21 A (p-p)
$0,31 \mathrm{mH} \pm 4 \%$
$27,5 \mathrm{mH} \pm 10 \%$
$11,8 \Omega \pm 7 \%$
0,78 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,20 \mathrm{~V}$ across the field coils (damping resistors included)

```
\[
>500 \mathrm{M} \Omega
\]
\[
>500 \mathrm{M} \Omega
\]
\[
>10 \mathrm{M} \Omega
\]
```



Fig. 2 Connection diagram. $L=$ line coils; $F=$ field coils; $L_{a}=$ additional coil; $R=4,7 \mathrm{k} \Omega$.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal of vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	
$\quad$ gun arrangement	in line
minimum useful screen diagonal	38 cm
neck diameter	$22,5 \mathrm{~mm}$
Deflection angle	$90^{\circ}$
Line deflection current, edge to edge at 23 kV	$2,07 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	$2,50 \mathrm{mH}$
Field deflection current, edge to edge at 23 kV	$0,39 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, series connected	$47,0 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A38EACOOX, with a neck diameter of $22,5 \mathrm{~mm}$. The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## Outlines

The deflection unit fits a tube with a neck diameter of $22,5_{-0,7}^{+1,4} \mathrm{~mm}$.


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

## Storage temperature range

Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-25 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,0 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 23 kV
Line deflection current, edge to edge, at 23 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 23 kV
Cross talk

Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp between field coil and core clamp
$2,50 \mathrm{mH} \pm 4 \%$
$3,3 \Omega \pm 10 \%$
$5,18 \mathrm{mWb} \pm 2,5 \%$
2,07 A (p-p)
$110 \mathrm{mH} \pm 10 \%$
$47,0 \Omega \pm 7 \%$
0,39 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,40 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- $90^{\circ}$ deflection
- In-line, hi-bi potential A R T* gun
- 22,5 mm neck diameter
- Shadow mask of NiFe alloy with low thermal expansion
- Hi-Bri technology
- Mask with corner suspension
- Pigmented phosphors
- Fine pitch over entire screen
- Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 625 lines system
- Internal magnetic shield
- Internal multipole
- Reinforced envelope for push-through mounting
- The tube is supplied with a deflection unit of the AT6050 series; it forms a self-converging and raster correction free assembly


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Minimum useful screen diagonal	41 cm
Overall length	369 mm
Neck diameter	$22,5 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 300 \mathrm{~mA}$
Focusing voltage	$31 \%$ of anode voltage

[^11]
## A41EAM00X

## ELECTRON-OPTICAL DATA

Electron gun system

Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

## OPTICAL DATA

Screen

Screen finish
Useful screen dimensions
diagonal
horizontal axis
vertical axis area

Positional accuracy of the screen with respect to the glass contour

Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre
Luminance at the centre of the screen
unitized triple-aperture electrodes; aberration reducing triode
electrostatic
hi-bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$
max. 1600 pF
$C_{a}\left(m+m^{\prime}\right) \quad \min .1000 p F$
$\mathrm{C}_{\mathrm{g}} 1$
15 pF
4 pF
4 pF
indirect by a.c. or d.c.
6,3 V
300 mA
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
high polish
$\min .406,4 \mathrm{~mm}$
min. $325,1 \mathrm{~mm}$
$\mathrm{min} .243,8 \mathrm{~mm}$
min. $793 \mathrm{~cm}^{2}$
see Figures on the next page
pigmented europium activated
rare earth
sulphide type
pigmented sulphide type
$0,55 \mathrm{~mm}$
64\%
$140 \mathrm{~cd} / \mathrm{m}^{2}$ *

[^12]

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
$22,5_{-0,7}^{+1,4} \mathrm{~mm}^{*}$
Bulb dimensions
diagonal
width
height
Base
Anode contact
Mounting position
Net mass
max. $443,6 \mathrm{~mm}$
max. $370,8 \mathrm{~mm}$
max. $295,0 \mathrm{~mm}$
JEDEC B8-288
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 9 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

* In the region of 66 mm from the neck end, the maximum diameter is $23,2 \mathrm{~mm}$.


## A41EAMOOX

## MECHANICAL DATA (continued)

Notes are given after the drawings.


Flat square Hi -Bri colour picture tube

Dimensions in mm

CA	299 max
CB	144,5 min
CC	49 max
CG	448 max
CK	53 max

Dimensions in mm

DA	$369,2 \pm 1,6$
DB	$293,4 \pm 1,6$
DC	$442 \pm 1,6$
DD	$325,1 \mathrm{~min}$
DE	$243,8 \mathrm{~min}$
DF	$406,4 \mathrm{~min}$
DG	R2481
DH	R2163
DK	R22,4
DL	R11000
DM	R6300
DN	R0



## A41EAM00X

MECHANICAL DATA (continued)


Dimensions in mm
EA $20,4 \pm 0,5$
EB $11,5 \pm 0,2$
EC 35 max
ED $\quad 30 \pm 1$
EE R8
EG 8
EH 3 min
EK $2,25 \pm 0,3$
Dimensions in mm

GA 406,4
GB 325,1
GC 243,8
GD $\quad 16,5 \pm 2$
GE $11,0 \pm 2$
GF $6,3 \pm 2$

Dimensions in mm

FA 406,4
FB $34,8 \pm 1,5$
FC 2,5
FD $\quad 15,8 \mathrm{~min}$
FE 17,5 max
FF 24 max
FG 13,1
FK R6
FL $5^{\circ}$


## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ( $1,5 \mathrm{~mm}$ max.) from the plane of the other three lugs.

This deviation is incorporated in the tolerance of $\pm 1,5 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. corners of a rectangle of $367 \mathrm{~mm} \times 291,5 \mathrm{~mm}$.
6. Distance from point $Z$ to any hardware.
7. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
8. Small cavity contact J1-21, IEC 67-III-2.
9. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates   $\mathbf{x}$   mm	y   mm	sagittal   height   mm
$0^{*}$	162,55	10,16
10	162,55	10,20
20	162,55	10,32
30	162,55	10,52
40	162,55	10,81
50	162,55	11,18
60	162,55	11,63
70	162,55	12,17
80	162,55	12,79
90	162,55	13,50
100	162,55	14,29
110	162,55	15,17
120	162,55	16,13
$121,90^{* *}$	162,55	16,33
121,90	160	15,98
121,90	150	14,68
121,90	140	1,47
121,90	130	1,35
121,90	120	11,32
121,90	110	10,38
121,90	100	9,52
121,90	90	8,75
121,90	80	8,06
121,90	70	7,46
121,90	60	6,94


coordinates		sagittal height   mm
$\times$	$y$	
mm	mm	
121,90	50	6,51
121,90	40	6,15
121,90	30	5,88
121,90	20	5,68
121,90	10	5,57
121,90 ${ }^{\text {a }}$	0	5,53

* Point *
** Diagonal
- Point (1)


## Base JEDEC B8-288



pin contour


Reference line gauge; G-R90CJ10


## Dimensions in mm

KA	$17,9 \mathrm{~mm}$
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2
KE	$36^{\circ}$
KF	$38^{\circ}$
KG	1,3 max
KH	0,8 min; 1,0 max
KK	$\mathrm{R8,66} \pm 0,1$
KL	R1,0
KM	R0,25
KN	23,2 max
KO	2,7 max
KP	15,4 $\pm 0,2$
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	1,016 $\pm 0,076$
KU	0,63 max
KV	0,4 min

## Dimensions in mm

HA	$\phi 100,00$
HB	65,00
HC	$\phi 78,70$
HD	$\phi 80,00$
HE	$9,20 \pm 0,02$
HF	$36,22 \pm 0,02$
HG	20,00
HH	$\phi 75,48 \pm 0,02$
HK	$\phi 60,77 \pm 0,02$
HL	$\phi 23,90+0,04$
HM	$R 220,00$
HN	$R 70,00$
HO	50,30
HP	132,71
HQ	80,52
HR	205,85

Flat square Hi -Bri colour picture tube

Maximum cone contour


section	nom. distance   from   section 1	distance from centre (max. values)					
		$20^{\circ}$	diag.	$50^{\circ}$	$70^{\circ}$	$90^{\circ}$	
	0	184,3	195,1	221,0	187,3	154,9	146,1
2	20	179,7	188,7	209,5	180,0	150,4	142,2
3	40	169,8	175,2	186,7	167,5	143,2	136,2
4	60	154,8	157,5	162,9	151,8	134,2	128,7
5	80	134,0	135,7	137,7	131,8	121,7	118,3
6	100	110,2	111,4	111,1	108,5	104,9	103,6
7	120	82,9	82,3	82,8	83,0	82,7	82,2
8	140	52,6	52,7	52,7	52,7	52,7	52,7

## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	23 kV
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	6,7 to $7,6 \mathrm{kV}$
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{g} 2}$	310 to 650 V



Spot cut-off design chart.
Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$\mathrm{V}_{\mathrm{g} 2}$ range 310 to 685 V ;
$\mathrm{V}_{\mathrm{k}}$ range 100 to 125 V .
Adjustment procedure:
Set the cathode voltage ( $\mathrm{V}_{\mathrm{k}}$ ) for each gun at 125 V ; increase the grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ from approx. 300 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

Flat square Hi -Bri colour picture tube

## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage

Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

## Heater voltage

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
$V_{g 3} \quad 29$ to $33 \%$ of anode voltage
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}} \quad$ see cut-off design chart
$\Delta V_{k} \quad$ lowest value $>80 \%$ of highest value $6,3 \mathrm{~V}$ at zero beam current see graphs
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$
min. $\quad 0,8$
average 1,1
$\max \quad 1,4$
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	max.   min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes $1,2,3$   notes 1 and 4
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$750 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max.	1000 V	
Cathode voltage positive	$\mathrm{V}_{\mathrm{k}}$	max.	400 V	
positive operating cut-off, during adjustment	$\mathrm{V}_{\mathrm{k}}$	max.	200 V	
negative	$-V_{k}$	max.	0 V	
negative peak	$-V_{k p}$	max.	2 V	
Heater voltage	$\mathrm{V}_{\mathrm{f}}$		$V \begin{array}{r}+5 \% \\ -10\end{array}$	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode after equipment warm-up period	$\mathrm{V}_{\mathrm{kf}}$	max.	200 V	
heater positive with respect to cathode	$-V_{k f p}$ $-V_{k f}$	peak   max.   (d.c.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \\ \text { mponent } \end{array}$	note 1

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV $\left(1,5 \times V_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## BEAM CORRECTIONS

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 3 mm


Cathode heating time after switching on, measured under typical operating conditions.


Typical cathode drive characteristics.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=23 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=100 \mathrm{~V}$ (curve a), and $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$ (curve b). For optimum picture performance it is recommended that the cathodes are not driven below +1 V .


Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=23 \mathrm{kV}$.
CIE
CIE co-ordinates $x=0,313, y=0,329$.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	x	y
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

## DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.


Position of degaussing coil on the picture tube; dimensions are given in mm .
For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil ( $\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.


Degaussing circuit using dual PTC thermistor.
Data of degaussing coil

Circumference
Number of turns
Copper wire diameter
Resistance

110 V to 120 V (a.c.) mains	220 V (a.c.) mains
113 cm	113 cm
70	120
$0,50 \mathrm{~mm}$	$0,36 \mathrm{~mm}$
$6,8 \Omega$	$23,5 \Omega$
822229873091	232266298009

## $41 \mathrm{~cm}, 90^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- Self-converging and raster correction free
- $41 \mathrm{~cm}, 90^{\circ}$ colour picture tube A41EAM . . X
- Hybrid saddle toroidal deflection unit of the AT6050 series


## QUICK REFERENCE DATA

Deflection angle	90	0
Minimum useful screen diagonal	41	cm
Overall length	369	mm
Neck diameter	22,5	mm

## AVAILABLE ASSEMBLIES

assembly type	assembly components
A41EAM00X01	type A41EAM00X + deflection unit AT6050/00
A41EAM00X04	type A41EAM00X + deflection unit AT6050/30
A41EAM00X16	tube A41EAM00X + deflection unit AT6050/42

A41EAM..X..

MECHANICAL DATA
Dimensions in mm


Colour picture tube assembly A41EAM . . X . .


Deflection unit of AT6050 series.


Yoke clearance.

Maximum operating temperature (average copper
temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw
$+90^{\circ} \mathrm{C}$
-25 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category $94-\mathrm{V} 1$
$1,0 \mathrm{Nm}$

ENVIRONMENTAL TEST SPECIFICATIONS OF DEFLECTION UNITS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

ELECTRICAL DATA OF DEFLECTION UNITS

parameter	deflection unit		
	AT6050/00	AT6050/30	AT6050/42
Line deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at $25^{\circ} \mathrm{C}$ magnetic flux	$\begin{aligned} & 2,43 \mathrm{mH} \pm 4 \% \\ & 3,2 \Omega \pm 10 \% \\ & 5,14 \mathrm{mWb} \pm 2,5 \% \end{aligned}$	$\begin{aligned} & 2,43 \mathrm{mH} \pm 4 \% \\ & 3,2 \Omega \pm 10 \% \\ & 5,14 \mathrm{mWb} \pm 2,5 \% \end{aligned}$	$\begin{aligned} & 1,64 \mathrm{mH} \pm 4 \% \\ & 2,2 \Omega \pm 10 \% \\ & 4,21 \mathrm{mWb} \pm 2,5 \% \end{aligned}$
Line deflection current edge to edge, at 25 kV	2,11 A (p-p)	2,11 A $(p-p)$	2,57 A (p-p)
Field deflection coils inductance at 1 V (r.m.s.), 1 kHz resistance at $25^{\circ} \mathrm{C}$	$\begin{aligned} & 26,2 \mathrm{mH} \pm 10 \% \\ & 12,2 \Omega \pm 7 \% \end{aligned}$	$\begin{aligned} & 108 \mathrm{mH} \pm 10 \% \\ & 50 \Omega \pm 7 \% \end{aligned}$	$\begin{aligned} & 108 \mathrm{mH} \pm 10 \% \\ & 50 \Omega \pm 7 \% \end{aligned}$
Field deflection current, edge to edge, at 25 kV	0,82 A (p-p)	0,41 A $(p-p)$	0,41 A (p-p)
Cross-talk: voltage across the field coils when a voltage of 10 V , 15625 Hz is applied to the line coils	$<0,2 \mathrm{~V}$	$<0,4 \mathrm{~V}$	$<0,4 \mathrm{~V}$
Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp between field coil and core clamp	$\begin{aligned} & >500 \mathrm{M} \Omega \\ & >500 \mathrm{M} \Omega \\ & >\quad 10 \mathrm{M} \Omega \end{aligned}$		



Connection diagram and top view of terminals of deflection unit AT6050/00. The beginning of the windings is indicated with $\bullet$.


Connection diagram and top view of terminals of deflection unit AT6050/30. The beginning of the windings is indicated with $\bullet$


Connection diagram and top view of terminals of deflection unit AT6050/42. The beginning of the windings is indicated with $\bullet$

## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line gun, electrostatic bi-potential focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1215), it forms a self-converging assembly; dynamic convergence is not required.


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Face diagonal	42 cm
Overall length	368 mm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 685 \mathrm{~mA}$
Focusing voltage	$20 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

## OPTICAL DATA

Screen

Screen finish
Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre
unitized triple-aperture electrodes
electrostatic
bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$
max. 1600 pF
$\min .1000 \mathrm{pF}$
15 pF
5 pF
6 pF
indirect by a.c. or d.c.
6,3 V
685 mA
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\min .382,3 \mathrm{~mm}$
$\min .322,1 \mathrm{~mm}$
$\min$. $241,6 \mathrm{~mm}$
$\min .755 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
$0,70 \mathrm{~mm}$
66,8\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height

## Base

Anode contact
Mounting position
Net mass
$368,4 \pm 5 \mathrm{~mm}$
$29,1_{-0,7}^{+1,4} \mathrm{~mm}^{*}$
max. $418,8 \mathrm{~mm}$
max. 360,6 mm
max. $281,8 \mathrm{~mm}$
12-pin base JEDEC B12-262
small cavity contact J1-21, IEC 67-111-2
anode contact on top
approx. 8 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

[^13]
## MECHANICAL DATA (continued)

Dimensions in mm
Notes are given after the drawings.



MECHANICAL DATA (continued)


## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ( $1,5 \mathrm{~mm}$ max.) from the plane of the other three lugs.

This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of $7,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $355,8 \mathrm{~mm} \times 276,7 \mathrm{~mm}$.
6. Co-ordinates for radius $R=11,1 \mathrm{~mm}: x=146,52 \mathrm{~mm}, y=104,72 \mathrm{~mm}$.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC67-111-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

## Reference line gauge; GR90CJ4




	nom.   distance   from   section 1	distance from centre (max. values)														
tion		$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$25^{\circ}$	$30^{\circ}$	32030'	diag.   axes	37030'	$40^{\circ}$	450	$50^{\circ}$	600	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$

Dimensions in mm

| 1 | 0 | 179,1 | 181,5 | 189,1 | 195,0 | 202,1 | 205,7 | 208,5 | 207,8 | 203,3 | 189,6 | 177,2 | 159,0 | 147,6 | 141,3 | 139,3 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 10 | 176,1 | 178,4 | 185,4 | 190,7 | 196,9 | 199,9 | 201,9 | 200,9 | 196,4 | 183,9 | 172,5 | 155,4 | 144,4 | 138,4 | 136,5 |
| 3 | 20 | 170,8 | 172,8 | 178,7 | 182,9 | 187,5 | 189,3 | 190,0 | 188,9 | 185,4 | 175,4 | 165,5 | 150,0 | 139,9 | 134,2 | 132,4 |
| 4 | 30 | 164,1 | 165,8 | 170,8 | 174,1 | 177,2 | 178,2 | 177,9 | 176,7 | 173,9 | 166,0 | 157,8 | 144,2 | 135,1 | 129,9 | 128,2 |
| 5 | 40 | 155,6 | 157,1 | 161,4 | 164,0 | 166,1 | 166,4 | 165,6 | 164,3 | 161,9 | 155,7 | 149,1 | 137,9 | 130,0 | 125,4 | 123,9 |
| 6 | 50 | 145,1 | 146,5 | 150,1 | 152,2 | 153,6 | 153,6 | 152,8 | 151,7 | 149,9 | 145,1 | 140,1 | 131,1 | 124,5 | 120,6 | 119,3 |
| 7 | 60 | 133,6 | 134,7 | 137,4 | 138,9 | 139,9 | 140,0 | 139,5 | 138,9 | 137,8 | 134,6 | 130,9 | 123,8 | 118,6 | 115,4 | 114,3 |
| 8 | 70 | 121,8 | 122,6 | 124,4 | 125,3 | 125,9 | 125,9 | 125,8 | 125,6 | 125,1 | 123,5 | 121,3 | 116,4 | 112,2 | 109,6 | 108,7 |
| 9 | 80 | 109,5 | 110,0 | 110,9 | 111,3 | 111,6 | 111,6 | 111,6 | 111,6 | 111,5 | 110,9 | 110,1 | 107,6 | 105,0 | 103,1 | 102,4 |
| 10 | 90 | 96,5 | 96,6 | 96,8 | 96,9 | 97,0 | 97,1 | 97,1 | 97,2 | 97,2 | 97,1 | 97,0 | 96,3 | 95,4 | 94,5 | 94,1 |
| 11 | 100 | 82,2 | 82,1 | 82,1 | 82,1 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,1 |

## 12-pin base; JEDEC B12-262



pin contour

detail of key

## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

## Anode voltage

Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$
Luminance at the centre of the screen *

$V_{\mathrm{a}, \mathrm{g} 4}$	25 kV
$\mathrm{V}_{\mathrm{g} 3}$	4,5 to $5,3 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	310 to 560 V
L	$180 \mathrm{~cd} / \mathrm{m}^{2}$

* Tube settings adjusted to produce white of $6500 K+7$ M.P.C.D. $(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.
Grid 3 (focusing electrode) voltage

Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
min. 0,8
average 1,1
max. 1,4
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

* The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 120 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 300 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $V_{k}$ of the remaining guns so that the rasters of these guns also become visible.
** For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

LIMITING VALUES (Design maximum rating svstem unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	max. $\min$.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes 1, 2, 3 notes 1 and 4
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$750 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$V_{\mathrm{g} 3}$	max.	7 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max.	1000 V	
Cathode voltage positive positive operating cut-off negative negative peak	$\begin{aligned} & V_{k} \\ & V_{k} \\ & -V_{k} \\ & -V_{k p} \end{aligned}$	max.   max.   max.   max.	$\begin{array}{r} 400 \mathrm{~V} \\ 200 \mathrm{~V} \\ 0 \mathrm{~V} \\ 2 \mathrm{~V} \end{array}$	
Heater voltage	$V_{f}$	6,3 V	$\begin{aligned} & +5 \% \\ & -10 \% \end{aligned}$	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode during equipment warm-up period				
not exceeding 15 s after equipment warm-up period	$V_{k f}$   $V_{k f}$	max. max.	$\begin{aligned} & 450 \mathrm{~V} \\ & 250 \mathrm{~V} \end{aligned}$	note 1
heater positive with respect to cathode	$\begin{aligned} & -V_{k f p} \\ & -V_{k f} \end{aligned}$	peak max.   (d.c.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \\ \text { mponent } \mathrm{v} \end{array}$	note 1

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \vee$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $8,5 \mathrm{kV}$ $\left(1,5 \times V_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.
Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle $4,5 \mathrm{~mm}$

Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle 2,3 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 5 mm


Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=20$ to $27,5 \mathrm{kV}$.
7278378.1


Typical cathode drive characteristics.
$V_{f}=6,3 \mathrm{~V}$;
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}$; curve $\mathrm{a}=$ spot cut-off $=120 \mathrm{~V}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
curve $b=$ spot cut-off $=150 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{g} 2}$ adjusted to provide spot
cut-off for desired fixed $V_{k}$.

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}, \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 3}$ adjusted for optimum focus.
Scanned area $=322,1 \mathrm{~mm} \times 241,6 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	x	Y
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

A42-570X


Cathode heating time after switching on, measured under typical operating conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.


Position of degaussing coil on the picture tube; dimensions are given in mm .
For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil ( $\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.


Degaussing circuit using dual PTC thermistor.

## Data of degaussing coil

## Circumference

Number of turns
Copper-wire diameter
Resistance

110 V (a.c.) mains	220 V (a.c.) mains
105 cm	105 cm
70	120
$0,5 \mathrm{~mm}$	$0,35 \mathrm{~mm}$
$6,3 \Omega$	$22,3 \Omega$

Catalogue number of appropriate dual PTC thermistor

## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	
$\quad$ gun arrangement	in line
diagonal	$42 \mathrm{~cm}(16 \mathrm{in})$
neck diameter	$29,1 \mathrm{~mm}$
Deflection angle	$90^{\circ}$
Line deflection current, edge to edge at 25 kV	$2,75 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	$2,3 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$0,87 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, parallel connected	$12,2 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence, is for $90^{\circ}$ in-line colour picture tube A42-570X, with a neck diameter of $29,1 \mathrm{~mm}$.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1_{-0,7}^{+0,9} \mathrm{~mm}$.
For correct fitting the tube neck should be provided with adhesive tape.


Fig. 1.
Maximum operating temperature (average
copper temperature measured with
resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature


## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils $\quad>500 \mathrm{M} \Omega$
between line coil and core clamp $\quad>500 \mathrm{M} \Omega$
between field coil and core clamp
$2,3 \mathrm{mH} \pm 5 \%$
$2,25 \Omega \pm 10 \%$
2,75 A(p-p)
$23 \mathrm{mH} \pm 10 \%$
$12,2 \Omega \pm 7 \%$
0,87 A(p-p)
a voltage of $10 \mathrm{~V}, 15750 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=F$ ield.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.
- 


## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line gun, thermally stable; electrostatic hi-bi-potential focus
- $29,1 \mathrm{~mm}$ neck diameter
- Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1216 or AT1470), it forms a self-converging and raster correction free assembly.


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Face diagonal	42 cm
Overall length	374 mm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 685 \mathrm{~mA}$
Focusing voltage	$28 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

## Electron gun system

Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

## OPTICAL DATA

Screen

Screen finish
Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre
unitized triple-aperture electrodes
electrostatic
hi-bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$

$C_{a}\left(m+m^{\prime}\right)$	$\max .1600 \mathrm{pF}$
$\mathrm{min}^{\prime} 1000 \mathrm{pF}$	
$\mathrm{C}_{\mathrm{g} 1}$	17 pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	5 pF
$\mathrm{C}_{\mathrm{g} 3}$	6 pF
	indirect by a.c. or d.c.
$\mathrm{V}_{\mathrm{f}}$	$6,3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}$	685 mA

metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\min .382,3 \mathrm{~mm}$
$\mathrm{min} .322,1 \mathrm{~mm}$
$\min .241,6 \mathrm{~mm}$
$\min .755 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
$0,70 \mathrm{~mm}$
66,8\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base
Anode contact
Mounting position
Net mass
$373,6 \pm 5 \mathrm{~mm}$
$29,1_{-0,7}^{+1,4} \mathrm{~mm}$ *
max. $418,8 \mathrm{~mm}$
max. 360,6 mm
max. $281,8 \mathrm{~mm}$
10-pin base JEDEC B10-277
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 8 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

* In the region of 70 mm from the neck end, the maximum diameter is 30 mm .


## MECHANICAL DATA (continued)

## Notes are given after the drawings.




## MECHANICAL DATA (continued)



7Z95513.1


i.c. $=$ internally connected (not to be used)

## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ( $1,5 \mathrm{~mm}$ max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of $11,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $355,8 \mathrm{~mm} \times 276,7 \mathrm{~mm}$.
6. Co-ordinates for radius $R=11,1 \mathrm{~mm}: x=146,52 \mathrm{~mm}, \mathrm{y}=104,72 \mathrm{~mm}$.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Reference line gauge; GR90CJ4



	nom.	distance from centre (max. values)														
tion	from section 1	00	$10^{\circ}$	$20^{\circ}$	$25^{\circ}$	$30^{\circ}$	$32^{\circ} 30^{\prime}$	diag. axes	37030'	$40^{\circ}$	$45^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$

Dimensions in mm

| 1 | 0 | 179,1 | 181,5 | 189,1 | 195,0 | 202,1 | 205,7 | 208,5 | 207,8 | 203,3 | 189,6 | 177,2 | 159,0 | 147,6 | 141,3 | 139,3 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 10 | 176,1 | 178,4 | 185,4 | 190,7 | 196,9 | 199,9 | 201,9 | 200,9 | 196,4 | 183,9 | 172,5 | 155,4 | 144,4 | 138,4 | 136,5 |
| 3 | 20 | 170,8 | 172,8 | 178,7 | 182,9 | 187,5 | 189,3 | 190,0 | 188,9 | 185,4 | 175,4 | 165,5 | 150,0 | 139,9 | 134,2 | 132,4 |
| 4 | 30 | 164,1 | 165,8 | 170,8 | 174,1 | 177,2 | 178,2 | 177,9 | 176,7 | 173,9 | 166,0 | 157,8 | 144,2 | 135,1 | 129,9 | 128,2 |
| 5 | 40 | 155,6 | 157,1 | 161,4 | 164,0 | 166,1 | 166,4 | 165,6 | 164,3 | 161,9 | 155,7 | 149,1 | 137,9 | 130,0 | 125,4 | 123,9 |
| 6 | 50 | 145,1 | 146,5 | 150,1 | 152,2 | 153,6 | 153,6 | 152,8 | 151,7 | 149,9 | 145,1 | 140,1 | 131,1 | 124,5 | 120,6 | 119,3 |
| 7 | 60 | 133,6 | 134,7 | 137,4 | 138,9 | 139,9 | 140,0 | 139,5 | 138,9 | 137,8 | 134,6 | 130,9 | 123,8 | 118,6 | 115,4 | 114,3 |
| 8 | 70 | 121,8 | 122,6 | 124,4 | 125,3 | 125,9 | 125,9 | 125,8 | 125,6 | 125,1 | 123,5 | 121,3 | 116,4 | 112,2 | 109,6 | 108,7 |
| 9 | 80 | 109,5 | 110,0 | 110,9 | 111,3 | 111,6 | 111,6 | 111,6 | 111,6 | 111,5 | 110,9 | 110,1 | 107,6 | 105,0 | 103,1 | 102,4 |
| 10 | 90 | 96,5 | 96,6 | 96,8 | 96,9 | 97,0 | 97,1 | 97,1 | 97,2 | 97,2 | 97,1 | 97,0 | 96,3 | 95,4 | 94,5 | 94,1 |
| 11 | 100 | 82,2 | 82,1 | 82,1 | 82,1 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,1 |

10-pin base; JEDEC B10-277


## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.
Anode voltage
Grid 3 (focusing electrode) voltage
$V_{a, g 4}$
25 kV
$V_{\mathrm{g} 3}$ 6,6 to $7,5 \mathrm{kV}$
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$
Luminance at the centre of the screen*

* Tube settings adjusted to produce white of 6500K +7 M.P.C.D. $(x=0,313, y=0,329)$ focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.
Grid 3 (focusing electrode) voltage

Grid 2 voltage and cathode voltage for visual extinction of focused spot

Difference in cut-off voltages between guns in any tube
$\mathrm{V}_{\mathrm{g} 3}$
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}} \quad$ see cut-off design chart *
$\Delta \mathrm{V}_{\mathrm{k}} \quad$ lowest value $>80 \%$ of highest value
see graphs **
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$

To produce white of $6500 \mathrm{~K}+7$ M.P.C.D. (CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical) red gun

38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
min. 0,8
average 1,1
max. 1,4
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

* The common $V_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 150 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $\mathrm{V}_{\mathrm{k}}$ of the remaining guns so that the rasters of these guns also become visible.
** For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

LIMITING VALUES (Design maximum rating svstem unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	max.   min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes 1, 2, 3   notes 1 and 4
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$750 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max.	1000 V	
Cathode voltage				
positive	$V_{k}$	max.	400 V	
positive operating cut-off	$V_{k}$	max.	200 V	
negative	$-V_{k}$	max.	0 V	
negative peak	$-\mathrm{V}_{\mathrm{kp}}$	max.	2 V	
Heater voltage	$V_{f}$	6,3 V	$\begin{aligned} & +5 \% \\ & -10 \% \end{aligned}$	notes 1 and 6
heater negative with respect to cathode during equipment warm-up period				
not exceeding 15 s	$V_{k f}$	max.	450 V	note 1
after equipment warm-up period	$V_{k f}$	max.	250 V	
heater positive with respect to cathode	$\begin{aligned} & -V_{k f p} \\ & -V_{k f} \end{aligned}$	peak max.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$	note 1
		(d.c. co	mponent va	

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV $\left(1,5 \times \mathrm{V}_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle $4,5 \mathrm{~mm}$
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle $2,3 \mathrm{~mm}$
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

5 mm


Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=20$ to $27,5 \mathrm{kV}$.


Typical cathode drive characteristics.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$.

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}, \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 3}$ adjusted for optimum focus.
Scanned area $=322,1 \mathrm{~mm} \times 241,6 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$\frac{x}{c}$	$\frac{y}{0,635}$
red	0,340	
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.


Position of degaussing coil on the picture tube; dimensions are given in mm .
For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil $(\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.


## Data of degaussing coil

## Circumference

Number of turns
Copper-wire diameter
Resistance

110 V (a.c.) mains	220 V (a.c.) mains
105 cm	105 cm
70	120
$0,5 \mathrm{~mm}$	$0,35 \mathrm{~mm}$
$6,3 \Omega$	$22,3 \Omega$
822229873091	232266298009

## DEFLECTION UNIT

## - Raster Correction Free

## QUICK REFERENCE DATA

Picture tube	in line
$\quad$ gun arrangement	$42 \mathrm{~cm}(16 \mathrm{in})$
diagonal	$29,1 \mathrm{~mm}$
neck diameter	$90^{\circ}$
Deflection angle	$3,28 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Line deflection current, edge to edge at 25 kV	$1,73 \mathrm{mH}$
Inductance of line coils, parallel connected	$0,94 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Field deflection current, edge to edge at 25 kV	$11 \Omega$
Resistance of field coils, parallel connected	

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A42-592X, with a neck diameter of $29,1 \mathrm{~mm}$.
The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1 \begin{gathered}+0,9 \\ -0,7\end{gathered} \mathrm{~mm}$.


Fig. 1.
Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw
ENVIRONMENTAL TEST SPECIFICATIONS
Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge at 25 kV
Voltage during line scan, edge to edge, at 25 kV , scan period $52,5 \mu \mathrm{~s}$
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge at 25 kV
Cross-talk


Fig. 2 Connection diagram, $L=$ Line,$F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## DEFLECTION UNIT

## - Raster Correction Free

## QUICK REFERENCE DATA

Picture tube	
gun arrangement   diagonal	in line
neck diameter	$42 \mathrm{~cm}(16 \mathrm{in})$
Deflection angle	$29,1 \mathrm{~mm}$
Line deflection current, edge to edge at 25 kV	$90^{\circ}$
Inductance of line coils, parallel connected	$3,04 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Field deflection current, edge to edge at 25 kV	$1,89 \mathrm{mH}$
Resistance of field coils, parallel connected	$0,9 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
	$13,9 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A42-592X, with a neck diameter of $29,1 \mathrm{~mm}$.
The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal nonmagnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1{ }_{-0,7}^{+0,9} \mathrm{~mm}$.
For correct fitting the tube neck should be provided with adhesive tape.


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Voltage during line scan, edge to edge, at 25 kV , scan period $52,5 \mu \mathrm{~s}$

Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk
parallel connected
$1,89 \mathrm{mH} \pm 5 \%$
$2,6 \Omega \pm 10 \%$
3,04 A (p-p)
109 V
parallel connected
$29 \mathrm{mH} \pm 10 \%$
$13,9 \Omega \pm 7 \%$
0,9 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line gun, thermally stable; electrostatic hi-bi-potential focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphor featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1216 or AT1470). it forms a self-converging and raster correction free assembly.

QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Face diagonal	42 cm
Overall length	378 mm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 685 \mathrm{~mA}$
Focusing voltage	$\mathbf{2 8 \%}$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

## OPTICAL DATA

## Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre
Light transmission of face glass at centre
unitized triple-aperture electrodes electrostatic
hi-bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$

$C_{a}\left(\mathrm{~m}+\mathrm{m}^{\prime}\right)$	$\max .1600 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	$\min .1000 \mathrm{pF}$
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	5 pF
$\mathrm{C}_{\mathrm{g} 3}$	6 pF

indirect by a.c. or d.c.
6,3 V
685 mA
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\min .382,3 \mathrm{~mm}$
$\mathrm{min} .322,1 \mathrm{~mm}$
$\mathrm{min} .241,6 \mathrm{~mm}$
$\mathrm{min} .755 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
$0,70 \mathrm{~mm}$
66,8\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions diagonal
width
height
Base
Anode contact
Mounting position
Net mass
$378 \pm 5 \mathrm{~mm}$
$29,1_{-0,7}^{+1,4} \mathrm{~mm}$ *
max. $418,8 \mathrm{~mm}$
max. $360,6 \mathrm{~mm}$
max. $281,8 \mathrm{~mm}$
JEDEC B8-274
small cavity contact J1-21, IEC 67-111-2
anode contact on top
approx. 8 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

* In the region of 70 mm from the neck end, the maximum diameter is 30 mm .


## MECHANICAL DATA (continued)

Notes are given after the drawings.


Hi -Bri colour picture tube


## A42-593X

MECHANICAL DATA (continued)


## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ( $1,5 \mathrm{~mm}$ max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of $11,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle $355,8 \mathrm{~mm} \times 276,7 \mathrm{~mm}$.
6. Co-ordinates for radius $R=11,1 \mathrm{~mm}: x=146,52 \mathrm{~mm}, \mathrm{y}=104,72 \mathrm{~mm}$.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-111-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

## Reference line gauge; GR90CJ4





	nom.	distance from centre (max. values)														
tion	from section 1	$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$25^{\circ}$	$30^{\circ}$	32030'	diag. axes	$37^{\circ} 30^{\prime}$	400	450	$50^{\circ}$	$60^{\circ}$	700	$80^{\circ}$	$90^{\circ}$

Dimensions in mm

| 1 | 0 | 179,1 | 181,5 | 189,1 | 195,0 | 202,1 | 205,7 | 208,5 | 207,8 | 203,3 | 189,6 | 177,2 | 159,0 | 147,6 | 141,3 | 139,3 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 10 | 176,1 | 178,4 | 185,4 | 190,7 | 196,9 | 199,9 | 201,9 | 200,9 | 196,4 | 183,9 | 172,5 | 155,4 | 144,4 | 138,4 | 136,5 |
| 3 | 20 | 170,8 | 172,8 | 178,7 | 182,9 | 187,5 | 189,3 | 190,0 | 188,9 | 185,4 | 175,4 | 165,5 | 150,0 | 139,9 | 134,2 | 132,4 |
| 4 | 30 | 164,1 | 165,8 | 170,8 | 174,1 | 177,2 | 178,2 | 177,9 | 176,7 | 173,9 | 166,0 | 157,8 | 144,2 | 135,1 | 129,9 | 128,2 |
| 5 | 40 | 155,6 | 157,1 | 161,4 | 164,0 | 166,1 | 166,4 | 165,6 | 164,3 | 161,9 | 155,7 | 149,1 | 137,9 | 130,0 | 125,4 | 123,9 |
| 6 | 50 | 145,1 | 146,5 | 150,1 | 152,2 | 153,6 | 153,6 | 152,8 | 151,7 | 149,9 | 145,1 | 140,1 | 131,1 | 124,5 | 120,6 | 119,3 |
| 7 | 60 | 133,6 | 134,7 | 137,4 | 138,9 | 139,9 | 140,0 | 139,5 | 138,9 | 137,8 | 134,6 | 130,9 | 123,8 | 118,6 | 115,4 | 114,3 |
| 8 | 70 | 121,8 | 122,6 | 124,4 | 125,3 | 125,9 | 125,9 | 125,8 | 125,6 | 125,1 | 123,5 | 121,3 | 116,4 | 112,2 | 109,6 | 108,7 |
| 9 | 80 | 109,5 | 110,0 | 110,9 | 111,3 | 111,6 | 111,6 | 111,6 | 111,6 | 111,5 | 110,9 | 110,1 | 107,6 | 105,0 | 103,1 | 102,4 |
| 10 | 90 | 96,5 | 96,6 | 96,8 | 96,9 | 97,0 | 97,1 | 97,1 | 97,2 | 97,2 | 97,1 | 97,0 | 96,3 | 95,4 | 94,5 | 94,1 |
| 11 | 100 | 82,2 | 82,1 | 82,1 | 82,1 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,2 | 82,1 |

## Base JEDEC B8-274



## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $V_{k}=140 \mathrm{~V}$
Luminance at the centre of the screen*
$V_{a, g 4}$
25 kV
$V_{g}$ 6,6 to $7,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$ 390 to 760 V
$180 \mathrm{~cd} / \mathrm{m}^{2}$

* Tube settings adjusted to produce white of $6500 \mathrm{~K}+7$ M.P.C.D. ( $x=0,313, y=0,329$ ) focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$. The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage

Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$ see cut-off design chart *
$\Delta V_{k} \quad$ lowest value $>80 \%$ of highest value
see graphs **
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
Ig3
$I_{g} 2$
$I_{g 1}$
26,6 to $29,8 \%$ of anode voltage

	highest value   see graphs
	-5 to $+5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 3}$	-5 to $+5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	-5 to $+5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 1}$	

To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun $\quad 35,8 \%$
blue gun $\quad 25,9 \%$
Ratio of anode currents
red gun to green gun
min. 0,8
average 1,1
max. 1,4
red gun to blue gun
blue gun to green gun
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

* The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $V_{k}$, for each gun at 150 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $\mathrm{V}_{\mathrm{k}}$ of the remaining guns so that the rasters of these guns also become visible.
** For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.


## Notes

1. Absolute maximum rating system.
2. The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1000 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV $\left(1,5 \times V_{g 3}\right.$ max. at $\left.V_{a, g 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.
Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$

Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle $4,5 \mathrm{~mm}$
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle
$2,3 \mathrm{~mm}$
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

5 mm


Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=20$ to $27,5 \mathrm{kV}$.


Typical cathode drive characteristics.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$.

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}, \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 3}$ adjusted for optimum focus.
Scanned area $=322,1 \mathrm{~mm} \times 241,6 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus. Colour co-ordinates:
red
green
blue

$\frac{x}{0,635}$		$\frac{y}{0,340}$
0,315		0,600
0,150		0,060



Cathode heating time after switching on, measured under typical operating conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of one magnetic coil winding mounted on the cone of the picture tube.


Position of degaussing coil on the picture tube; dimensions are given in mm .
For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coil $(\leqslant 0,6$ ampere-turns). If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents. An example of a degaussing circuit and coil data for various mains voltages are given below.


## Data of degaussing coil

Circumference
Number of turns
Copper-wire diameter

110 V (a.c.) mains	220 V (a.c.) mains
105 cm	105 cm
70	120
$0,5 \mathrm{~mm}$	$0,35 \mathrm{~mm}$
$6,3 \Omega$	$22,3 \Omega$
822229873091	232266298009

## DEFLECTION UNIT

- Raster Correction Free


## QUICK REFERENCE DATA

Picture tube	in line
$\quad$ gun arrangement	$42 \mathrm{~cm}(16 \mathrm{in})$
diagonal	$29,1 \mathrm{~mm}$
neck diameter	$90^{\circ}$
Deflection angle	$3,28 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Line deflection current, edge to edge at 25 kV	$1,73 \mathrm{mH}$
Inductance of line coils, parallel connected	$0,47 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Field deflection current, edge to edge at 25 kV	$44 \Omega$.

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tubes A42-592X and A42-593X, with a neck diameter of $29,1 \mathrm{~mm}$.
The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1{ }_{-0,7}^{+0,9} \mathrm{~mm}$.


Fig. 1.

Maximum operating temperature (average copper
temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIROŃMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge at 25 kV
Voltage during line scan, edge to edge, at 25 kV , scan period $52,5 \mu \mathrm{~s}$
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
parallel connected
$1,73 \mathrm{mH} \pm 5 \%$
$1,79 \Omega \pm 10 \%$
3,28 A (p-p)
109 V
series connected
$116,4 \mathrm{mH} \pm 10 \%$
$44 \Omega \pm 7 \%$
0,47 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)

$$
\begin{array}{r}
>500 \mathrm{M} \Omega \\
>500 \mathrm{M} \Omega \\
>\quad 10 \mathrm{M} \Omega
\end{array}
$$



Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## DEFLECTION UNIT

## - Raster Correction Free

## QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
diagonal	$42 \mathrm{~cm}(16 \mathrm{in})$
neck diameter	$29,1 \mathrm{~mm}$
Deflection angle	$90^{\circ}$
Line deflection current, edge to edge at 25 kV	$3,04 \mathrm{~A} \mathrm{p-p}$
Inductance of line coils, parallel connected	$1,89 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$0,45 \mathrm{~A}(\mathrm{p-p})$
Resistance of field coils, series connected	$55,6 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tubes A42-592X and A42-593X, with a neck diameter of $29,1 \mathrm{~mm}$. The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal nonmagnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1 \begin{aligned} & +0,9 \\ & -0,7\end{aligned} \mathrm{~mm}$.
For correct fitting the tube neck should be provided with adhesive tape.


Fig. 1.
Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range
Flame retardent
Torque on neck clamp screw
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature


## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Voltage during line scan, edge to edge, at 25 kV , scan period $52,5 \mu \mathrm{~s}$

Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp between field coil and core clamp
parallel connected
$1,89 \mathrm{mH} \pm 5 \%$
2,6 $\Omega \pm 10 \%$
3,04 A (p-p)
109 V
series connected
$116 \mathrm{mH} \pm 10 \%$
$55,6 \Omega \pm 7 \%$
$0,45 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line, thermally stable hi-bi potential gun
- 22,5 mm neck diameter
- Hi-Bri technology
- Pigmented phosphors
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick heating low-power cathodes
- Soft-Flash technology
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- Combined with a deflection unit of the AT1645 series, it forms a self-converging and raster correction free assembly


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Minimum useful screen diagonal	48 cm
Overall-length	427 mm
Neck diameter	$22,5 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 300 \mathrm{~mA}$
Focusing voltage	$31 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes

## Heating

heater voltage
heater current

## OPTICAL DATA

## Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre
Light transmission of face glass at centre
unitized triple-aperture electrodes electrostatic
hi-bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$
max. 2300 pF
min. 1500 pF
15 pF
4 pF
4 pF
indirect by a.c. or d.c.
6,3 V
300 mA
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\min .480,0 \mathrm{~mm}$
$\mathrm{min} .404,4 \mathrm{~mm}$
min . $303,3 \mathrm{~mm}$
$\min .1190 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
$0,80 \mathrm{~mm}$
64\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base
Anode contact
Mounting position
Net mass
$426,6 \pm 5 \mathrm{~mm}$
$22,5_{-0,7}^{+1,4} \mathrm{~mm}^{*}$
max. 515,1 mm
max. $442,1 \mathrm{~mm}$
max. $343,4 \mathrm{~mm}$
JEDEC B8-288
small cavity contact J1-21, IEC 67-1II-?
anode contact on top
approx. 13 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

* In the region of 66 mm from the neck end, the maximum diameter is $23,2 \mathrm{~mm}$.

MECHANICAL DATA (continued)
Notes are given after the drawings


Dimensions in mm

AA	446 max
AB	431,6 max
AC	$288,8 \pm 4$
AD	$4 \pm 1$
AE	79 max
AF	355,5 max
AG	$22,5+1,4$
AH	66
AK	$22,5 \pm 0,7$
AL	$110 \pm 10$
AM	163
AN	$102 \pm 3,2$
AO	approx. 805
AR	455 max
AS	$150 \pm 5$
AT	$80 \pm 5$
AU	14,5 min
AV	4,8 min

Dimensions in mm

BA	$463 \max$
BB	$364 \max$
BC	434
BD	337



Dimensions in mm


Dimensions in mm

DA	$440,5 \pm 1,6$
DB	$341,8 \pm 1,6$
DC	$513,5 \pm 1,6$
DD	$404,4 \mathrm{~min}$
DE	$303,3 \mathrm{~min}$
DF	$480,0 \mathrm{~min}$
DG	R1905
DH	R1532
DK	R29,85
DL	R2597
DM	R1948
DN	R13,1

MECHANICAL DATA (continued)


Dimensions in mm

EA	$2,5 \pm 0,5$
EB	$13 \pm 0,3$
EC	$40 \max$
ED	35
EE	12
EF	$12 \pm 0,3$
EG	8
EH	$3,0 \min$

Dimensions in mm

GA	480
GB	404,4
GC	303,3
GD	$36,6 \pm 2,0$
GE	$22,2 \pm 2,0$
GF	$10,8 \pm 2,0$

Dimensions in mm

FA	480
FB	$38,5 \pm 2,5$
FC	2 max
FD	12 min
FE	24 max
FF	55 max
FG	13,4
FH	2 min
FK	R6
FL	50




## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ( 2 mm max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of $\pm 2,5 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $434 \mathrm{~mm} \times 337 \mathrm{~mm}$.
6. Co-ordinates for radius $R=13,1 \mathrm{~mm} ; x=184,58 \mathrm{~mm}, y=131,93 \mathrm{~mm}$.
7. Distance from point $Z$ to any hardware.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Reference line gauge; G-R90CJ10


Dimensions in mm

HA	$\phi 100,00$
HB	65,00
HC	$\phi 78,70$
HD	$\phi 80,00$
HE	$9,20 \pm 0,02$
HF	$36,22 \pm 0,02$
HG	20,00
HH	$\phi 75,48 \pm 0,02$
HK	$\phi 60,77 \pm 0,02$
HL	$\phi 23,90+0,04$
HM	$R 220,00$
HN	$R 70,00$
HO	50,30
HP	132,71
HO	80,52
HR	205,85

## Maximum cone contour



section	nom.   distance   from   section 1	distance from centre (max. values)														
		$0^{\circ}$	$10^{0}$	$20^{\circ}$	$25^{\circ}$	$30^{\circ}$	$32^{\circ} 30^{\prime}$	diag.   axes	$37^{\circ} 30^{\prime}$	$40^{\circ}$	450	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	0	218,7	221,9	231,2	238,5	247,5	252,2	255,9	254,6	247,7	230,1	215,1	193,0	179,2	171,5	169,0
2	20	209,8	212,4	220,3	226,0	232,5	235,3	236,5	235,0	230,2	216,9	204,4	184,9	172,3	165,3	163,0
3	40	197,5	199,4	204,7	208,1	211,1	211,9	211,4	210,0	207,0	198,6	189,5	173,9	163,2	157,1	155,1
4	60	182,2	183,2	185,8	187,1	187,7	187,4	186,4	185,3	183,3	178,2	172,1	160,7	152,4	147,4	145,8
5	80	163,2	163,5	163,9	163,7	163,1	162,4	161,4	160,6	159,3	156,3	152,9	145,8	140,1	136,6	135,4
6	100	146,1	146,1	145,7	145,1	144,2	143,6	142,8	142,2	141,4	139,5	137,5	133,3	129,7	127,3	126,5
7	120	112,3	112,3	111,9	111,7	111,3	111,1	110,9	110,7	110,5	110,0	109,5	108,6	107,8	107,3	107,1
8	141,7	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8

Base JEDEC B8-288

pin contour


## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

## Anode voltage

Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off
voltage $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$
Luminance at the centre of the screen*

Dimensions in mm

KA	17,9 max
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2
KE	360
KF	380
KG	1,3 max
KH	0,8 min; 1,0 max
KK	R8,66 $\pm 0,1$
KL	R1,0
KM	RO,25
KN	23,2 max
KO	2,7 max
KP	$15,4 \pm 0,2$
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	$1,016 \pm 0,076$
KU	0,63 max
KV	0,4 min

## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	29 to $33 \%$ of anode   voltage
Grid 2 voltage and cathode voltage   for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$	see cut-off design chart
Difference in cut-off voltages between   guns in any tube	$\Delta \mathrm{V}_{\mathrm{k}}$	lowest value $>80 \%$ of   highest value   see graphs
Video drive characteristics		-5 to $+5 \mu \mathrm{~A}$
Grid 3 (focusing electrode) current	$\mathrm{I}_{\mathrm{g} 3}$	-5 to $+5 \mu \mathrm{~A}$
Grid 2 current	$\mathrm{I}_{\mathrm{g} 2}$	-5 to $+5 \mu \mathrm{~A}$

To produce white of 6500K + 7 M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
min. 0,8
average 1,1
max. 1,4
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

		max.	$27,5 \mathrm{kV}$	notes $1,2,3$
Anode voltage				
notes 1 and 4				

## Notes

1. Absolute maximum rating system.
2. The X-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 12 kV $\left(1,5 \times V_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.
Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle 5 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a
circle; maximum diameter of circle

2,5 mm
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

5 mm


Spot cut-off design chart.
Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$\mathrm{V}_{\mathrm{g} 2}$ range 310 to 685 V ;
$\mathrm{V}_{\mathrm{k}}$ range 100 to 125 V .

## Adjustment procedure:

Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 125 V ; increase the grid 2 voltage ( $\mathrm{V}_{\mathrm{g} 2}$ ) from approx. 300 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.


Cathode heating time after switching on, measured under typical operating conditions.

Typical cathode drive characteristics.
$V_{f}=6,3 \mathrm{~V}$;

$V_{a, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=100 \mathrm{~V}$ (curve a ), and $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$ (curve b).

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$V_{a, g 4}=25 \mathrm{kV}$.
Scanned area $=404,4 \mathrm{~mm} \times 303,3 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$x$	$y$
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

## DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil shaped in the form of a figure eight, with one half on the top and the other half on the bottom cone part.
For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils $(\leqslant 0,3$ ampere-turns).
If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.
Examples of a double-coil and of a single-coil system are given below.


Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor.


## Data of each degaussing coil

Circumference
Number of turns
Copper-wire diameter
Resistance ( $\mathrm{R}_{\mathrm{C}}$ )
Catalogue number of appropriate dual PTC thermistor

double-coil system	single-coil system
117 cm	237 cm
60	60
$0,35 \mathrm{~mm}$	$0,35 \mathrm{~mm}$
$13 \Omega$	$26 \Omega$
232266298009	232266298009

## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	in line
$\quad$ gun arrangement	48 cm
minimum useful screen diagonal	$22,5 \mathrm{~mm}$
neck diameter	$90^{\circ}$
Deflection angle	$2,23 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Line deflection current, edge to edge at 25 kV	$2,50 \mathrm{mH}$
Inductance of line coils, parallel connected	$0,81 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Field deflection current, edge to edge at 25 kV	$11,8 \Omega$
Resistance of field coils, parallel connected	

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for 900 in-line colour picture tube A48EAC00X, with a neck diameter of $22,5 \mathrm{~mm}$. The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## AT1645/00

MECHANICAL DATA
Dimensions in mm

## Outlines

The deflection unit fits a tube with a neck diameter of $22,5_{-0,7}^{+1,4} \mathrm{~mm}$.


7Z85897.1

Fig. 1.
Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady stăte
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-25 to $+90{ }^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,0 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb )
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 25 kV
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
$2,50 \mathrm{mH} \pm 4 \%$
3,3 $\Omega \pm 10 \%$
$5,57 \mathrm{mWb} \pm 2,5 \%$
2,23 A (p-p)
$27,5 \mathrm{mH} \pm 10 \%$
$11,8 \Omega \pm 7 \%$
0,81 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)

```
>500 M\Omega
> 500 M\Omega
> 10M\Omega
```



Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	in line
gun arrangement	48 cm
minimum useful screen diagonal	$22,5 \mathrm{~mm}$
neck diameter	$90^{\circ}$
Deflection angle	$2,38 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Line deflection current, edge to edge at 25 kV	$2,34 \mathrm{mH}$
Inductance of line coils, parallel connected (including additional coil)	$0,81 \mathrm{~A}$ (p-p)
Field deflection current, edge to edge at 25 kV	$11,8 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A48EAC00X, with a neck diameter of $22,5 \mathrm{~mm}$. The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## Outlines

The deflection unit fits a tube with a neck diameter of $22,5_{-0,7}^{+1,4} \mathrm{~mm}$.


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90{ }^{\circ} \mathrm{C}$
-25 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,0 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb )
IEC 68-2-3 (test Ca )
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils, including additional coil
Inductance at 1 V (r.m.s.), 1 kHz
2,34 mH $\pm 4 \%$
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 25 kV
Line deflection current, edge to edge, at 25 kV
Additional coil
Inductance at 1 V (r.m.s.), 1 kHz
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
3,2 $\Omega \pm 10 \%$
$5,57 \mathrm{mWb} \pm 2,5 \%$
2,38 A (p-p)
$0,15 \mathrm{mH} \pm 4 \%$
$27,5 \mathrm{mH} \pm 10 \%$
$11,8 \Omega \pm 7 \%$
0,81 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,20 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
between line coil and core clamp
$>500 \mathrm{M} \Omega$
between field coil and core clamp


Fig. 2 Connection diagram. $L=$ line coils; $F=$ field coils;
$\mathrm{L}_{\mathrm{a}}=$ additional coil; $\mathrm{R}=4,7 \mathrm{k} \Omega$.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.



## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	in line
gun arrangement	48 cm
minimum useful screen diagonal	$22,5 \mathrm{~mm}$
neck diameter	900
Deflection angle	$2,23 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Line deflection current, edge to edge at 25 kV	$2,50 \mathrm{mH}$
Inductance of line coils, parallel connected	$0,40 \mathrm{~A}$ (p-p)
Field deflection current, edge to edge at 25 kV	$47,2 \Omega$
Resistance of field coils, series connected	

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A48EAC00X, with a neck diameter of $22,5 \mathrm{~mm}$. The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $22,5_{-0,7}^{+1,4} \mathrm{~mm}$.


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)

Storage' temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90{ }^{\circ} \mathrm{C}$
-25 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,0 \mathrm{Nm}$

IEC 68-2.6 (test Fc)
IEC 68-2-27 (test Ea)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca )
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 25 kV
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
$2,50 \mathrm{mH} \pm 4 \%$
3,3 $\Omega \pm 10 \%$
$5,57 \mathrm{mWb} \pm 2,5 \%$
2,23 A (p-p)
$110 \mathrm{mH} \pm 10 \%$
$47,2 \Omega \pm 7 \%$
0,40 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,4 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1301 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection unit and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection unit to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## 20AX COLOUR PICTURE TUBE

Replacement type A51-510X.

## 20AX Hi-Bri COLOUR PICTURE TUBE

## QUICK REFERENCE DATA

Deflection angle
Face diagonal
Overall length
Neck diameter
Envelope
Magnetic shield
Focusing
Deflection
Heating
Light transmission of face glass
Quick heating cathode
$110^{\circ}$
51 cm
35 cm
$36,5 \mathrm{~mm}$
reinforced; suitable for push-through
internal
bi-potential
magnetic
6,3 V, 720 mA
64\%
with a typical tube a legible picture will appear within approx. 5 s

Inherently self-converging system with deflection unit AT1085

## MECHANICAL DATA

## Overall length

Neck diameter
Bulb dimensions
diagonal
width
height
Useful screen dimensions
diagonal
horizontal axis
vertical axia
Base
Anode contact
$351,4 \pm 6,5 \mathrm{~mm}$
$36,5_{-0}^{+1,6} \mathrm{~mm}$
max. $515,5 \mathrm{~mm}$
max. $442,5 \mathrm{~mm}$
max. $343,8 \mathrm{~mm}$
$\min .480,0 \mathrm{~mm}$
$\min .404,4 \mathrm{~mm}$
$\mathrm{min} .303,3 \mathrm{~mm}$
12-pin base IEC 67-I-47a, type 2
small cavity contact J1-21, IEC 67-III-2


## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.
Final accelerator voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot-cut-off voltage $V_{k}=140 \mathrm{~V}$
Cathode voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=555 \mathrm{~V}$


$\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}$	25 kV
$\mathrm{V}_{\mathrm{g} 3}$	4,0 to $4,8 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	465 to 705 V
$\mathrm{~V}_{\mathrm{k}}$	110 to 165 V

## 30AX COLOUR PICTURE TUBE

- Automatic snap-in raster orientation
- Push-on axial purity positioning
- Internal magneto-static beam alignment
- Hi-Bi gun with quadrupole cathode lens
- Self-aligning, self-converging assembly with low power consumption, when combined with deflection unit AT 1850
- North-south pin-cushion distortion-free
- $110^{\circ}$ deflection
- Hi-Bri screen
- Pigmented phosphors: enhanced contrast
- Phosphor lines follow glass contour
- In-line gun
- Standard 36,5 mm neck
- Soft-Flash technology
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Quick-heating cathodes
- Internal magnetic shield
- Anti-crackle coating
- Reinforced erivelope for push-through mounting


## QUICK REFERENCE DATA

Deflection angle	$110^{\circ}$
Face diagonal	51 cm
Overall length	36 cm
Neck diameter	$36,5 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 720 \mathrm{~mA}$
Focusing voltage	$28 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances

Capacitances anode to external conductive coating	$C_{a, g 5, g 4 / m ~ m a x . ~}^{\text {min. }}$	$\begin{gathered} 1400 \mathrm{pF} \\ 900 \mathrm{pF} \end{gathered}$
anode to metal rimband	$C_{a, ~ g 5, g 4 / m ' ~}^{\text {' }}$	250 pF
grid of any gun to all other electrodes	$C_{g 1 R}, C_{g} 1 G, C_{g 1 B}$	7 pF
cathodes of all guns (connected in parallel)		
to all other electrodes	$C_{k}$	12 pF
cathode of any gun to all other electrodes	$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	4 pF
grid 3 (focusing electrode) to all other electrodes	$\mathrm{C}_{\mathrm{g} 3}$	7 pF
Resistance between rimband and external conductive coating	min.	$50 \mathrm{M} \Omega$

Heating: indirect by a.c. (preferably mains or line frequency) or d.c.
heater voltage
heater current

$V_{f}$	$6,3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}$	720 mA

## OPTICAL DATA

Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Positional accuracy of the screen with
respect to the glass contour
Phosphors
red
green
blue
in-line with separate grids electrostatic
hi-bi potential
magnetic
$110^{\circ}$
$97^{\circ}$
770
$A=170,7 \mathrm{~mm}$
$B=215,5 \mathrm{~mm}$
$C=115,1 \mathrm{~mm}$
$D=162,8 \mathrm{~mm}$
$E=31,5 \mathrm{~mm}$


Colour co-ordinates
red
green
$\frac{x}{0,635} \quad \frac{y}{0,340}$
blue
0,315 0,600
blue
$0,150 \quad 0,060$
Centre-to-centre distance of identical colour phosphor stripes
Light transmission of face glass
Luminance at the centre of the screen
approx. 0,8 mm
64\%
L $\quad 160 \mathrm{~cd} / \mathrm{m}^{2}$ *

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter

## Base

Anode contact
Mounting position
Rimband

Net mass
$361,4 \pm 6 \mathrm{~mm}$
$36,5_{-0}^{+1,3} \mathrm{~mm}$
12-pin base IEC 67-1-47a, type 2
cavity cap JEDEC J1-21, IEC 67-III-2
anode contact on top
provided with 18 slots to accommodate clips for mounting of degaussing coils approx. 12 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than $350 \mathrm{~m} / \mathrm{s}^{2}$ in any direction.

* Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## MECHANICAL DATA (continued)

Notes are given after the drawings.



Bulb dimensions at mould match line.

MECHANICAL DATA (continued)


Notes to outline drawings on the preceding pages

1. This ridge can be used as an orientation for the deflection unit.
2. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
3. To clean this area, wipe only with a soft lintless cloth.
4. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
5. Minimum space to be reserved for mounting lug.
6. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $434 \mathrm{~mm} \times 337 \mathrm{~mm}$.
7. Co-ordinates for radius $R=13,1 \mathrm{~mm}: x=184,58 \mathrm{~mm}, y=131,93 \mathrm{~mm}$.
8. Distance from point $z$ to any hardware.
9. Maximum dimensions in plane of lugs.
10. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. The bottom circumference of the base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
The mass of the mating socket with circuitry should not be more than 150 g ; maximum permissible torque is 40 mNm .
11. Minimum distance between glass and rimband in plane of centre line of apertures.
12. Centring bosses for deflection unit.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		
x   mm	mm	sagittal   heights   mm
$\mathbf{0}^{*}$	151,7	14,6
20	151,6	14,9
40	151,3	15,6
60	150,9	16,8
80	150,4	18,4
100	149,7	20,5
120	148,8	23,1
140	147,8	26,1
160	146,7	29,7
180	145,4	33,8
$195,4^{* *}$	139,5	36,4
197,9	130	35,3
198,6	120	33,9
199,7	100	31,3
200,6	80	29,3
201,4	60	27,6
201,9	40	26,5
202,2	20	25,9
202,34	0	25,5

* Point X.
** Diagonal.
- Point (y).

12-pin base, IEC 67-I-47a, type 2

7273210.1

pin contour

detail of key

Cavity cap JEDEC J1-21, IEC 67-III-2


## Maximum cone contour



distance from centre (max. values)												
sec-   tion	nom. distance from section 1	00	$10^{\circ}$	$20^{\circ}$	$30^{\circ}$	diag.	$40^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	0	222	225	236	254	258	252	217	193	178	172	170
2	20	216	217	226	240	244	238	205	185	172	165	163
3	40	195	195	200	204	205	198	180	166	156	150	148
4	60	162	158	154	148	144	141	134	128	123	121	121
5	74	98	98	98	98	98	98	98	98	98	98	98

RECOMMENDED OPERATING CONDITIONS (cathode drive)
The voltages are specified with respect to grid 1.

## Anode voltage

Grid 3 (focusing electrode) voltage

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{a}, \mathrm{~g} 5, \mathrm{~g} 4} & 25 \mathrm{kV} \\
\mathrm{~V}_{\mathrm{g} 3} & 6,5 \text { to } 7,45 \mathrm{kV}
\end{array}
$$

## A. Operation at equal spot cut-off voltage $\mathrm{V}_{\mathbf{k}}=140 \mathrm{~V}$

Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for each gun separately; $\mathrm{V}_{\mathrm{g} 2}$ range 590 to 800 V .


Spot cut-off design chart.


Typical cathode drive characteristic.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 5, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$.

## B. Operation at equal grid 2 voltage

Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=150 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage.
$\mathrm{V}_{\mathrm{g} 2}$ range 630 to 860 V .
$\mathrm{V}_{\mathrm{k}}$ range 120 to 150 V .

## Adjustment procedure:

Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 150 V ; increase the grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ from approx. 600 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.


Spot cut-off design chart.


Typical catrode drive characteristic.
$V_{f}=6,3 \mathrm{~V}$ :
$V_{a, g 5, g 4}=25 \mathrm{kV}$;
$V_{g 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$ and 150 V .

EQUIPMENT DESIGN VALUES (each gun if applicable)
The values are valid for anode voltages between 22,5 and $27,5 \mathrm{kV}$. The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage

Difference in cut-off voltage between guns in one tube

## Heater voltage

Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current at $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 3}$
$\Delta \mathrm{V}_{\mathrm{k}}$
$V_{f}$
Ig3
$I_{g 2}$
$l_{g} 1$

26 to 29,8\% of anode voltage
lowest value is min. $80 \%$ of highest value
$6,3 \mathrm{~V}$ at zero beam current
..-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu A$
-5 to $+5 \mu \mathrm{~A}$
To produce white $D, C I E$ co-ordinates $x=0,313, y=0,329$.
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun
35,8\%
blue gun
Ratio of anode current
red gun to green gun
red gun to blue gun
blue gun to green gun

## BEAM CENTRING

Maximum centring error in any direction
$4,5 \mathrm{~mm}$

## LIMITING VALUES (each gun if applicable)

Design maximum rating system unless otherwise stated.
The voltages are specified with respect to grid 1.


## Notes

1. Absolute maximum rating system.
2. The X-ray dose rate remains below the acceptable value of $36 \mathrm{pA} / \mathrm{kg}(0,5 \mathrm{mR} / \mathrm{h})$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.

6 . During adjustment on the production line max. 1500 V is permitted.
7. For maximum cathode life and optimum performance it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

High electric field strengths are present between the gun electrodes of picture tubes. Voltages between gun electrodes may reach values of 20 kV over approx. 1 mm . As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.

Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage and damage to the circuitry which is directly connected to the tube socket. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $10,5 \mathrm{kV}$, and at the other electrodes of 1,5 to 2 kV . The values of the series isolation resistors should be as high as possible (min $1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.
Additional information is available on request.



Luminance at the centre of the screen as a function of $I_{\text {total }}$. Scanned area $518 \mathrm{~mm} \times 390 \mathrm{~mm}$.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to provide white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus. Colour co-ordinates:
red
green
$\qquad$ $\frac{\mathrm{y}}{0,340}$
blue
0,315 0,600


Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts.
For proper degaussing an initial magnetomotive force (m.m.f.) of 250 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils $(\leqslant 0,25$ ampere turns).
If single-phase power rectification is employed in the TV circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.
To ease the mounting of the coils, the rimband is provided with rectangular holes. An example is given below.


Position of degaussing coils on the picture tube.


## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube gun arrangement	in line
diagonal	$51 \mathrm{~cm}(20 \mathrm{in})$
neck diameter	$36,5 \mathrm{~mm}$
Deflection angle	$110^{\circ}$
Line deflection current, edge to edge at 25 kV	$4,8 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils	$1,53 \mathrm{mH}$
Resistance of field coils   (damping resistor R1 included)	$6,2 \Omega$

## CONNECTIONS

(See also Fig. 2).


- Means winding direction.

Fig. 1.
Matching female Stocko connector MKF 804-1-0-404.
D1 to D6 = BAS11, BAX18 or BAX18A.
(1) R1 is factory adjusted and locked with adhesive.


(1) Reference plane of centring bosses.

## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube gun arrangement	in line
diagonal	$51 \mathrm{~cm}(20 \mathrm{in})$
neck diameter	$36,5 \mathrm{~mm}$
Deflection angle	$110^{\circ}$
Line deflection current, edge to edge at 25 kV	$4,8 \mathrm{~A} \mathrm{p-p}$
Inductance of line coils	$1,53 \mathrm{mH}$
Resistance of field coils	
(damping resistor R1 included)	$6,2 \Omega$

## APPLICATION

This deflection unit has been designed for use with a $110^{\circ}$ colour picture tube type A51-540X in CTV receivers in conjunction with e.g.:
diode-split line output transformer AT2076/70A
line output transistor BU208A
linearity control unit AT4042/42

## DESCRIPTION

The deflection unit consists of flangeless line and field coils, a one piece ferrite ring and a one piece coil carrier.


## Mounting

The deflection unit can simply be pushed on the neck of a picture tube.
Both on the neck of the tube and on the deflection unit, there are 3 reference surfaces to establish angular and axial positioning.
Once the unit is mounted the combination is perfectly aligned and requires no further adjustment for static convergence, colour purity and raster orientation.
The unit must be pressed against the reference surfaces on the cone of the picture tube with a force of $20 \pm 5 \mathrm{~N}$ and fixed by tightening the screw in the clamping ring at the rear with a torque of $1,0_{-0,2}^{+0,4} \mathrm{Nm}$. Maximum axial force exerted on the screw is 20 N .

## ELECTRICAL DATA

Line coils
inductance
resistance at $25^{\circ} \mathrm{C}$
Magnetic flux at 25 kV
Line deflection current edge to edge at 25 kV
Field coils
inductance
resistance at $25^{\circ} \mathrm{C}$ (damping resistance R 1 included)
Field deflection current edge to edge at 25 kV
Max. operating temperature
$1,53 \mathrm{mH} \pm 4 \%$
$1,4 \Omega \pm 10 \%$
$7,5 \mathrm{mWb} \pm 5 \%$
4,8 A p-p
$9,7 \mathrm{mH} \pm 10 \%$
$6,2 \Omega \pm 7 \%$
2,0 A p-p
$90^{\circ} \mathrm{C}$

## Connections

(See also Fig. 1).


Fig. 2.

Matching female Stocko connector MKF 804-1-0-404. D1 to D6 = BAS11, BAX18, BAX18A, BAV10 or BAW62.
$R 1=180 \Omega$.

## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line gun, electrostatic bi-potential focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphors featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moire
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1237), it forms a self-converging assembly; dynamic convergence is not required.


## QUICK REFERENCE DATA

Deflection angle	900
Face diagonal	51 cm
Overall length	424 mm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 685 \mathrm{~mA}$
Focusing voltage	$20 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical
unitized triple-aperture electrodes electrostatic
bi-potential
magnetic

LECTRICAL DATA
Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

	$\max .2300 \mathrm{pF}$
$\left.\mathrm{C}_{\mathrm{a}(\mathrm{m}}+\mathrm{m}^{\prime}\right)$	$\min .1500 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	15 pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	5 pF
$\mathrm{C}_{\mathrm{g} 3}$	6 pF
	indirect by a.c. or d.c.   $\mathrm{V}_{\mathrm{f}}$
$\mathrm{If}_{\mathrm{f}}$	$6,3 \mathrm{~V}$
	685 mA

## OPTICAL DATA

## Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre
Light transmission of face glass at centre
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\min .480,0 \mathrm{~mm}$
$\min .404,4 \mathrm{~mm}$
$\mathrm{min} .303,3 \mathrm{~mm}$
$\min .1190 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
$0,8 \mathrm{~mm}$
64\%

Hi-Bri colour picture tube

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height

## Base

Anode contact
Mounting position
Net mass
$424 \pm 5 \mathrm{~mm}$
$29,{ }^{+1,4}{ }_{-0,7} \mathrm{~mm}^{*}$
max. 515,5 mm
max. $442,5 \mathrm{~mm}$
max. 343,8 mm
12-pin base JEDEC B12-262
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 13 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

[^14]MECHANICAL DATA (continued)
Notes are given after the drawings.


i.c. = internally connected (not to be used)
n.c. $=$ not connected

## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. The displacement of any lug with respect to the plane through the three other lugs is max. $2 \mathbf{~ m m}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $434 \mathrm{~mm} \times 337 \mathrm{~mm}$.
6. Co-ordinates for radius $R=13,1 \mathrm{~mm} ; x=184,58 \mathrm{~mm}, y=131,93 \mathrm{~mm}$.
7. Maximum dimensions in plane of lugs.
8. The socket for this base should not be rigidly mounted: it should have flexible leads and be allowed to move freely. The bottom circumference of base will fall within a circle concentric with the tube axis and having a diameter of 50 mm .
9. Small cavity contact J1-21, IEC67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.
11. Minimum distance between glass and rimband in plane of centre line apertures.
12. Distance from point $z$ to any handware.

Reference line gauge; GR90CJ4


## A51-570X

## Maximum cone contour

		distance from centre (max. values)														
on	from section 1	00	$10^{\circ}$	$20^{\circ}$	$25^{\circ}$	$30^{\circ}$	$32^{\circ} 30$	diag. axes	$37^{\circ} 30$	$40^{\circ}$	$45^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	0	218,7	221,9	231,2	238,5	247,5	252,2	255,9	254,6	247,7	230,1	215,1	193,0	179,2	171,5	169,0
2	20	209,8	212,4	220,3	226,0	232,5	235,3	236,5	235,0	230,2	216,9	204,4	184,9	172,3	165,3	163,0
3	40	197,5	199,4	204,7	208, 1	211,1	211,9	211,4	210,0	207,0	198,6	189,5	173,9	163,2	157,1	155,1
4	60	182,2	183,2	185,8	187,1	187,7	187,4	186,4	185,3	183,3	178,2	172,1	160,7	152,4	147,4	145,8
5	80	163,2	163,5	163,9	163,7	163,1	162,4	161,4	160,6	159,3	156,3	152,9	145,8	140,1	136,6	135,4
6	100	146,1	146,1	145,7	145,1	144,2	143,6	142,8	142,2	141,4	139,5	137,5	133,3	129,7	127,3	126,5
7	120	112,3	112,3	111,9	111,7	111,3	111,1	110,9	110,7	110,5	110,0	109,5	108,6	107,8	107,3	107,1
8	141,7	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8

12-pin base; JEDEC B12-262

detail of key

## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.
Anode voltageor voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$
Luminance at the centre of the screen*

$V_{\mathrm{a}, \mathrm{g} 4}$	25 kV
$\mathrm{V}_{\mathrm{g} 3}$	4,7 to $5,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	310 to 560 V
L	$170 \mathrm{~cd} / \mathrm{m}^{2}$

* Tube settings adjusted to produce white of 6500K +7 M.P.C.D. $(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage $\quad V_{g 3}$
Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
$V_{g} \quad 18,8$ to $22 \%$ of anode voltage
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$ see cut-off design chart *
$\Delta V_{k} \quad$ lowest value $>80 \%$ of highest value
see graphs **
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$

To produce white of 6500K +7 M.P.C.D. (CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical)
red gun
green gun 35,8\%
blue gun
Ratio of anode current
red gun to green gun
red gun to blue gun
blue gun to green gun

38,3\%
25,9\%

min.	av.	max.
0,7	1,1	1,4
1,1	1,5	2,0
0,5	0,7	1,0

* The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 120 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 300 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $V_{k}$ of the remaining guns so that the rasters of these guns also become visible.
** For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.


## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $8,5 \mathrm{kV}$ $\left(1,5 \times V_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\min .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.
Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle 5 mm

Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle $2,5 \mathrm{~mm}$
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

5 mm


Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}$.


Typical cathode drive characteristics
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g}}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ adjusted to provide spot
cut-off for desired fixed $\mathrm{V}_{\mathrm{K}}$.
curve $a=$ spot cut-off $=120 \mathrm{~V}$;
curve $b=$ spot cut-off $=150 \mathrm{~V}$.

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}, \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 3}$ adjusted for optimum focus.
Scanned area $=404,4 \mathrm{~mm} \times 303,3 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:
red
green

$\mathbf{x}$	$\mathbf{y}$
0,635	0,340
0,315	0,600
0,150	0,060



Cathode heating time after switching on , measured under typical operating conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic, degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil shaped in the form of a figure eight, with one half on the top and the other half on the bottom cone part.

For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,3$ ampere-turns).
If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.


Degaussing circuit using dual PTC thermistor.


## Data of each degaussing coil

Circumference
Number of turns
Copper-wire diameter
Resistance ( $\mathrm{R}_{\mathrm{C}}$ )
Catalogue number of appropriate dual PTC thermistor

double-coil system	single-coil system
117 cm	237 cm
60	60
$0,35 \mathrm{~mm}$	$0,35 \mathrm{~mm}$
$12,5 \Omega$	$25,1 \Omega$
232266298009	232266298009

## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	
$\quad$ gun arrangement	in line
diagonal	$51 \mathrm{~cm}(20 \mathrm{in})$
neck diameter	$29,1 \mathrm{~mm}$
Deflection angle	$90^{\circ}$
Line deflection current, edge to edge at 25 kV	$3,25 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	$1,66 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$0,40 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, series connected	$60 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A51-570X, with a neck diameter of $29,1 \mathrm{~mm}$.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1{ }_{-0,7}^{+0,9} \mathrm{~mm}$.


Fig. 1.

Maximum operating temperature (average copper
temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC68-2-6 (test Fc)
IEC68-2-29 (test Eb; 35g)
IEC68-2-1 (test Ab)
IEC68-2-2 (test Bb)
IEC68-2-3 (test Ca)
IEC68-2-30 (test Db)
IEC68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
$1,66 \mathrm{mH} \pm 5 \%$
$1,9 \Omega \pm 10 \%$
3,25 A (p-p)
$114 \mathrm{mH} \pm 10 \%$
$60 \Omega \pm 7 \%$
0,40 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
between line coil and core clamp
$>500 \mathrm{M} \Omega$
between field coil and core clamp
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line gun, electrostatic hi-bi potential for improved focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphors featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1237), it forms a self-converging assembly; dynamic convergence is not required.


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Face diagonal	51 cm
Overall length	$431,5 \mathrm{~mm}$
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 685 \mathrm{~mA}$
Focusing voltage	$28 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

## OPTICAL DATA

## Screen

Screen finish
Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre
Light transmission of face glass at centre
unitized triple-aperture electrodes
electrostatic
hi-bi potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$
max. 2300 pF
$\mathrm{C}_{\mathrm{a}}\left(\mathrm{m}+\mathrm{m}^{\prime}\right) \quad \begin{aligned} & \max .2300 \mathrm{pF} \\ & \min .1500 \mathrm{pF}\end{aligned}$
$\mathrm{C}_{\mathrm{g} 1} \quad 17 \mathrm{pF}$
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}} \quad 5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 3}$
$V_{f}$
If
indirect by a.c. or d.c.
6,3 V
685 mA
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\mathrm{min} .480,0 \mathrm{~mm}$
$\mathrm{min} .404,4 \mathrm{~mm}$
$\mathrm{min} .303,3 \mathrm{~mm}$
$\min .1190 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type

0,8 mm
64\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base
Anode contact
Mounting position
Net mass
$431,4 \pm 5 \mathrm{~mm}$
${ }^{29,1}+\underset{-0,7}{+1,4} \mathrm{~mm}$ *
max. $515,5 \mathrm{~mm}$
max. $442,5 \mathrm{~mm}$
max. $343,8 \mathrm{~mm}$
10-pin base JEDEC B10-277
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 13 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

MECHANICAL DATA (continued)
Notes are given after the drawings.



February 1985

MECHANICAL DATA (continued)

i.c. $=$ internally connected (not to be used)

## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $434 \mathrm{~mm} \times 337 \mathrm{~mm}$.
6. Co-ordinates for radius $R=13,1 \mathrm{~mm}: x=184,58 \mathrm{~mm}, \mathrm{y}=131,93 \mathrm{~mm}$.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.
11. Minimum distance between glass and rimband in plane of centre line apertures.
12. Distance from point $z$ to any hardware.

Reference line gauge; GR90CJ4


Maximum cone contour


		distance from centre (max. values)														
tion	from section 1	00	$10^{\circ}$	$20^{\circ}$	250	$30^{\circ}$	$32^{\circ} 30^{\prime}$	diag.	37030	$40^{\circ}$	450	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	0	218,7	221,9	231,2	238,5	247,5	252,2	255,9	254,6	247,7	230,1	15,1	193,0	179,2	171,5	69,0
2	20	209,8	212,4	220,3	226,0	232,5	235,3	236,5	235,0	230,2	216,9	204,4	184,9	172,3	165,3	63,0
3	40	197,5	199,4	204,7	208,1	211,1	211,9	211,4	210,0	207,0	198,6	189,5	173,9	163,2	157,1	55,1
4	60	182,2	183,2	185,8	187,1	187,7	187,4	186,4	185,3	183,3	178,2	172,1	160,7	152,4	147,4	45,8
5	80	163,2	163,5	163,9	163,7	163,1	162,4	161,4	160,6	159,3	156,3	152,9	145,8	140,	136,6	35,4
6	100	146,1	146,1	145,7	145,1	144,2	143,6	142,8	142,2	141,4	139,5	137,5	133,3	129,7	127,3	126,5
7	120	112,3	112,3	111,9	111,7	111,3	111,1	110,9	110,7	110,5	110,0	109,5	108,6	107,8	107,3	107,1
8	141,7	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8

## 10-pin base; JEDEC B10-277



## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.
Anode voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$
Luminance at the centre of the screen*

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	25 kV
$\mathrm{V}_{\mathrm{g} 3}$	6,6 to $7,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	390 to 760 V
L	$.170 \mathrm{~cd} / \mathrm{m}^{2}$

* Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
To produce white D, CIE co-ordinates $\mathrm{x}=0,313, \mathrm{y}=0,329$.
Percentage of the total anode current supplied by each gun (typical)
red gun
green gun
blue gun
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$ see cut-off design chart*
$\Delta V_{k} \quad$ lowest value $>80 \%$ of highest value
see graphs**
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$

38,3\%
35,8\%
25,9\%
26,6 to $29,8 \%$ of anode voltage
$l_{\mathrm{g} 3}$
$I_{g}$
$I_{g} 1$
,
$\min$. 0,8
average 1,1
max. $\quad 1,4$
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

* The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 150 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $\mathrm{V}_{\mathrm{k}}$ of the remaining guns so that the rasters of these guns also become visible.
** For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$V_{a, g 4}$	max.   $\min$.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes 1, 2 and 3 note 4
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$1000 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$V_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max.	1000 V	
Cathode voltage				
positive	$\mathrm{V}_{\mathrm{k}}$	max.	400 V	
positive operating cut-off	$V_{k}$	max.	200 V	
negative	$-V_{k}$	max.	0 V	
negative peak	$-V_{k p}$	max.	2 V	
Heater voltage	$V_{f}$	6,3 V	$\begin{aligned} & +5 \% \\ & -10 \% \end{aligned}$	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode during equipment warm-up period				
not exceeding 15 s	$\mathrm{V}_{\mathrm{kf}}$	max.	450 V	note 1
after equipment warm-up period	$V_{k f}$	max.	250 V	
heater positive with respect to cathode	$-\hat{V}_{k f p}$		$200 \text { V }$	note 1
	$-V_{k f}$	max.	0 V	
		(d.c. c	mponent va	

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerable. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $11,5 \mathrm{kV}$ $\left(1,5 \times \mathrm{V}_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$

Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle

5 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle $2,5 \mathrm{~mm}$
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 5 mm


Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=20$ to $27,5 \mathrm{kV}$.


Typical cathode drive characteristics
$V_{f}=6,3 \mathrm{~V}$
$V_{a, g 4}=25 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus
$\mathrm{V}_{\mathrm{g} 2}$ adjusted to provide spot
cut-off for $\mathrm{V}_{\mathrm{K}}=140 \mathrm{~V}$

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$V_{a, g 4}=25 \mathrm{kV}$.
Scanned area $=404,4 \mathrm{~mm} \times 303,3 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.
Colour co-ordinates:

red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil shaped in the form of a figure eight, with one half on the top and the other half on the bottom cone part.
For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,3$ ampere-turns).
If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.


Position of degaussing coils on the picture tube.


## Data of each degaussing coil

Circumference
Number of turns
Copper-wire diameter
Resistance ( $\mathrm{R}_{\mathrm{C}}$ )
Catalogue number of
appropriate dual PTC thermistor

double-coil system	single-coil system
117 cm	237 cm
60	60
$0,35 \mathrm{~mm}$	$0,35 \mathrm{~mm}$
$12,5 \Omega$	$25,1 \Omega$
232266298009	232266298009

## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube, gun arrangement	in line
diagonal	$51 \mathrm{~cm}(20 \mathrm{in})$
neck diameter	$29,1 \mathrm{~mm}$
Deflection angle	$90^{\circ}$
Line deflection current, edge to edge at 25 kV	$2,75 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	$2,3 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$0,86 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, parallel connected	$12,4 \Omega$

## APPLICATION

This deflection unit is designed for $90^{\circ}$ in-line colour picture tube A51-580X, with a neck diameter of $29,1 \mathrm{~mm}$, to operate in conjunction with devices for colour purity and static convergence.

## DESCRIPTION

The deflection unit consists of saddle-shaped horizontal coils and toroidal wound vertical coils, thus forming a hybrid yoke. The unit is provided with a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1{ }_{-0,7}^{+0,9} \mathrm{~mm}$.


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC68-2-6 (test Fc)
IEC68-2-29 (test Eb; 35g)
IEC68-2-1 (test Ab)
IEC68-2-2 (test Bb)
IEC68-2-3 (test Ca)
IEC68-2-30 (test Db)
IEC68-2-14 (test Nb)

## ELECTRICAL DATA

Horizontal coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Vertical coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Typical currents with Ea $=25 \mathrm{kV}$ and full scan
Horizontal $I_{H}$
Vertical IV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between horizontal and vertical coils
between horizontal coil and core clamp
between vertical coil and core clamp

2,3 mH $\pm 5 \%$
$2,25 \Omega \pm 10 \%$
$23,0 \mathrm{mH} \pm 10 \%$
$12,4 \Omega \pm 7 \%$

2,75 A (p-p)
0,86 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to horizontal coils causes no more than $0,2 \mathrm{~V}$ across the vertical coils (damping resistors included)

$$
\begin{aligned}
& >500 \mathrm{M} \Omega \\
& >500 \mathrm{M} \Omega \\
& >10 \mathrm{M} \Omega
\end{aligned}
$$



Fig. 2 Connection diagram. L = Line, F = Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube, gun arrangement	in line
diagonal	$51 \mathrm{~cm}(20 \mathrm{in})$
neck diameter	$29,1 \mathrm{~mm}$
Deflection angle	$90^{\circ}$
Line deflection current, edge to edge at 25 kV	$3,25 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	$1,63 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$0,80 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, parallel connected	$15 \Omega$

## APPLICATION

This deflection unit is designed for $90^{\circ}$ in-line colour picture tube A51-580X, with a neck diameter of $29,1 \mathrm{~mm}$, to operate in conjunction with devices for colour purity and static convergence.

## DESCRIPTION

The deflection unit consists of saddle-shaped horizontal coils and toroidal wound vertical coils, thus forming a hybrid yoke. The unit is provided with a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1 \begin{gathered}+0,9 \\ -0,7\end{gathered}$


Fig. 1.

Maximum operating temperature (average copper
temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

## Vibration

Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1 $1,4 \mathrm{Nm}$

IEC68-2-6 (test Fc)
IEC68-2-29 (test Eb; 35g)
IEC68-2-1 (test Ab)
IEC68-2-2 (test Bb)
IEC68-2-3 (test Ca)
IEC68-2-30 (test Db)
IEC68-2-14 (test Nb)

## ELECTRICAL DATA

Horizontal coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Vertical coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Typical currents with Ea $=25 \mathrm{kV}$ and full scan
Horizontal $I_{H}$
Vertical IV
Cross-talk

## Insulation resistance at 1 kV (d.c.)

between horizontal and vertical coils
between horizontal coil and core clamp
between vertical coil and core clamp

$$
\begin{aligned}
& 1,63 \mathrm{mH} \pm 5 \% \\
& 1,9 \Omega \pm 10 \% \\
& 28,5 \mathrm{mH} \pm 10 \% \\
& 15 \Omega \pm 7 \%
\end{aligned}
$$

$$
3,25 A(p-p)
$$

$$
0,80 A(p-p)
$$

a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to horizontal coils causes no more than $0,2 \mathrm{~V}$ across the vertical coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges has to be cemented on to the picture tube.


## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	in line
gun arrangement	$51 \mathrm{~cm}(20 \mathrm{in})$
diagonal	$29,1 \mathrm{~mm}$
neck diameter	$90^{\circ}$
Deflection angle	$2,75 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Line deflection current, edge to edge at 25 kV	$2,3 \mathrm{mH}$
Inductance of line coils, parallel connected	$0,9 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Field deflection current, edge to edge at 25 kV	$12,4 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tubes A51-570X and A51-580X, with a neck diameter of 29,1 mm.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1_{-0,7}^{+0,9} \mathrm{~mm}$.


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca )
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), $1 \mathrm{kHz} \quad 2,3 \mathrm{mH} \pm 5 \%$
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross talk


Fig. 2 Connection diagram. L = Line, $\mathrm{F}=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	
gun arrangement   diagonal	in line
neck diameter	$51 \mathrm{~cm}(20 \mathrm{in})$
Deflection angle	$29,1 \mathrm{~mm}$
Line deflection current, edge to edge at 25 kV	$90^{\circ}$
Inductance of line coils, parallel connected	$3,15 \mathrm{~A} \mathrm{(p-p)}$
Field deflection current, edge to edge at 25 kV	$1,76 \mathrm{mH}$
Resistance of field coils, series connected	$0,88 \mathrm{~A} \mathrm{(p-p)}$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tubes A51-570X and A51-580X, with a neck diameter of $29,1 \mathrm{~mm}$.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1 \begin{gathered}+0,7 \\ +0,9 \\ \mathrm{~mm}\end{gathered}$.


Fig. 1.
Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
Shock
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC68-2-3 (test Ca)
IEC68-2-30 (test Db)
IEC 68-2-14 (Na)
IEC 68-2-27 (Ea)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp between field coil and core clamp
$1,76 \mathrm{mH} \pm 5 \%$
$1,9 \Omega \pm 10 \%$
3,15 A (p-p)
$24 \mathrm{mH} \pm 10 \%$
$12,4 \Omega \pm 7 \%$
0,88 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	in line
gun arrangement	$51 \mathrm{~cm}(20 \mathrm{in})$
diagonal	$29,1 \mathrm{~mm}$
neck diameter	$90^{\circ}$
Deflection angle	$3,25 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Line deflection current, edge to edge at 25 kV	$1,66 \mathrm{mH}$
Inductance of line coils, parallel connected	$0,80 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Field deflection current, edge to edge at 25 kV	$15 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tubes A51-570X and A51-580X, with a neck diameter of $29,1 \mathrm{~mm}$.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1_{-0,7}^{+0,9} \mathrm{~mm}$.


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca )
IEC 68-2-30 (test Db)
IEC 68-2-14 (Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), $1 \mathrm{kHz} \quad 1,66 \mathrm{mH} \pm 5 \%$
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$1,9 \Omega \pm 10 \%$
3,25 A (p-p)
$28,5 \mathrm{mH} \pm 10 \%$
$15 \Omega \pm 7 \%$
0,80 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	
$\quad$ gun arrangement	in line
diagonal	$51 \mathrm{~cm}(20 \mathrm{in})$
neck diameter	$29,1 \mathrm{~mm}$
Deflection angle	$90^{\circ}$
Line deflection current, edge to edge at 25 kV	$3,25 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	$1,66 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$0,40 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, series connected	$60 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tubes A51-570X and A51-580X, with a neck diameter of $29,1 \mathrm{~mm}$.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils and toroidal wound field deflection coils, thus forming a hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube. With the deflection unit positioned axially for optimum purity, a clearance is available at the front which permits adjustment of convergence by tilting the unit in the vertical and/or horizontal plane. Wedges are recommended to secure the deflection unit in the chosen position.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1 \begin{aligned} & +0,9 \\ & -0,7\end{aligned} \mathrm{~mm}$.


Fig. 1.

Maximum operating temperature (average copper
temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca )
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV

## Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
$1,66 \mathrm{mH} \pm 5 \%$
$1,7 \Omega \pm 10 \%$
3,25 A (p-p)
$114 \mathrm{mH} \pm 10 \%$
$60 \Omega \pm 7 \%$
0,40 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)

```
> 500 M\Omega
> 500 M\Omega
> 10M\Omega
```



Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line gun, thermally stable; electrostatic hi-bi potential for improved focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphors featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1236 or AT1480), it forms a self-converging and raster correction free assembly.


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Face diagonal	51 cm
Overall length	$431,5 \mathrm{~mm}$
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 685 \mathrm{~mA}$
Focusing voltage	$28 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

## Electron gun system

Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

## OPTICAL DATA

Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre
Light transmission of face glass at centre
unitized triple-aperture electrodes
electrostatic
hi-bi potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$
max. 2300 pF
$C_{a}\left(m+m^{\prime}\right)$
$\min .1500 \mathrm{pF}$
17 pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}} 5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 3} \quad 6 \mathrm{pF}$
indirect by a.c. or d.c.
6,3 V
685 mA
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\mathrm{min} .480,0 \mathrm{~mm}$
$\mathrm{min} .404,4 \mathrm{~mm}$
$\mathrm{min} .303,3 \mathrm{~mm}$
$\mathrm{min} .1190 \mathrm{~cm}^{2}$
pigmented europium activated
rare earth
sulphide type
pigmented sulphide type
$0,8 \mathrm{~mm}$
64\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height

## Base

Anode contact
Mounting position
Net mass
$431,4 \pm 5 \mathrm{~mm}$
$29,1_{-0,7}^{+1,4} \mathrm{~mm}^{*}$
max. $515,1 \mathrm{~mm}$
max. $442,1 \mathrm{~mm}$
max. $343,4 \mathrm{~mm}$
10-pin base JEDEC B10-277
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 13 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

* In the region of 70 mm from the neck end, the maximum diameter is 30 mm .

MECHANICAL DATA (continued)
Notes are given after the drawings.



February 1985

MECHANICAL DATA (continued)

i.c. $=$ internally connected (not to be used).

## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .

This deviation is incorporated in the tolerance of $\pm 2,5 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $434 \mathrm{~mm} \times 337 \mathrm{~mm}$.
6. Co-ordinates for radius $R=13,1 \mathrm{~mm}: x=184,58 \mathrm{~mm}, y=131,93 \mathrm{~mm}$.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.
11. Minimum distance between glass and rimband in plane of centre line apertures.
12. Distance from point $z$ to any hardware.

## Reference line gauge; GR90CJ4



## Maximum cone contour



	nom.	distance from centre (max. values)														
tion	from section 1	$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	250	$30^{\circ}$	$32^{\circ} 30$	diag.   axes	37030	$40^{\circ}$	$45^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	0	218,7	221,9	231,2	238,5	247,5	252,2	255,9	254,6	247,7	230,1	215,1	193,0	179,2	171,5	169,0
2	20	209,8	212,4	220,3	226,0	232,5	235,3	236,5	235,0	230,2	216,9	204,4	184,9	172,3	165,3	163,0
3	40	197,5	199,4	204,7	208,1	211,1	211,9	211,4	210,0	207,0	198,6	189,5	173,9	163,2	157,1	155,1
4	60	182,2	183,2	185,8	187,1	187,7	187,4	186,4	185,3	183,3	178,2	172,1	160,7	152,	147,4	145,8
5	80	163,2	163,5	163,9	163,7	163,1	162,4	161,4	160,6	159,3	156,3	152,9	145,8	140,	136,6	135,4
6	100	146,1	146,1	145,7	145,1	144,2	143,6	142,8	142,2	141,4	139,5	137,5	133,3	129,7	127,3	126,5
7	120	112,3	112,3	111,9	111,7	111,3	111,1	110,9	110,7	110,5	110,0	109,5	108,6	107,	107,3	107,1
8	141,7	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8

## 10-pin base; JEDEC B10-277



## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

## Anode voltage

Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$
Luminance at the centre of the screen*

$V_{a, g 4}$	25 kV
$\mathrm{V}_{\mathrm{g} 3}$	6,6 to $7,5 \mathrm{kV}$

$\mathrm{V}_{\mathrm{g} 2} \quad 390$ to 760 V
L $170 \mathrm{~cd} / \mathrm{m}^{2}$

* Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.
Grid 3 (focusing electrode) voltage

Grid 2 voltage and cathode voltage for visual extinction of focused spot

Difference in cut-off voltages between guns in any tube

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions

$\mathrm{V}_{\mathrm{g} 3}$	26,6 to $29,8 \%$ of   anode voltage
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$	see cut-off design chart*
$\Delta \mathrm{V}_{\mathrm{k}}$	lowest value $>80 \%$ of   highest value   see graphs**
	-5 to $+5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 3}$	-5 to $+5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	-5 to $+5 \mu \mathrm{~A}$

To produce white D, CIE co-ordinates $x=0,313, y=0,329$.
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents

red gun to green gun	min.	0,8
	average	1,1
red gun to blue gun	max.	1,4
	min.	1,1
	average	1,5
blue gun to green gun	max.	1,9
	min.	0,5
	average	0,7
	max.	0,9

* The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 150 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $V_{k}$ of the remaining guns so that the rasters of these guns also become visible.
** For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$V_{a, g 4}$	max. min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes 1,2 and 3 note 4
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$1000 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$V_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max.	1000 V	
Cathode voltage positive	$\mathrm{V}_{\mathrm{k}}$	max.	400 V	
positive operating cut-off	$v_{k}$	max.	200 V	
negative	$-\mathrm{V}_{\mathrm{k}}$	max.	0 V	
negative peak	$-\mathrm{V}_{\mathrm{kp}}$	max.	2 V	
Heater voltage	$\mathrm{V}_{\mathrm{f}}$	6,3 V	$\begin{gathered} +5 \% \\ -10 \% \end{gathered}$	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode during equipment warm-up period				
not exceeding 15 s	$\mathrm{V}_{\mathrm{kf}}$	max.	450 V	note 1
after equipment warm-up period	$V_{\text {kf }}$	max.	250 V	
heater positive with respect to cathode	$\begin{aligned} & -V_{k f p} \\ & -V_{k f} \end{aligned}$	peak max.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$	note 1

## Notes

1. Absolute maximum rating system.
2. The X -ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerable. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode $(\mathrm{g} 3)$ of $11,5 \mathrm{kV}$ $\left(1,5 \times \mathrm{V}_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$
Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle

5 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle
$2,5 \mathrm{~mm}$
Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position

[^15]Hi-Bri colour picture tube


Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=20$ to $27,5 \mathrm{kV}$.

7Z83244.2


Typical cathode drive characteristics
$V_{f}=6,3 \mathrm{~V}$
$V_{a, g 4}=25 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus
$\mathrm{V}_{\mathrm{g} 2}$ adjusted to provide spot
cut-off for $\mathrm{V}_{\mathrm{K}}=140 \mathrm{~V}$

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$V_{a, g 4}=25 \mathrm{kV}$.
Scanned area $=404,4 \mathrm{~mm} \times 303,3 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$x$	$y$
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil shaped in the form of a figure eight, with one half on the top and the other half on the bottom cone part.
For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,3$ ampere-turns).
If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.


Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor.


Data of each degaussing coil

Circumference
Number of turns
Copper-wire diameter
Resistance ( $\mathrm{R}_{\mathrm{C}}$ )
Catalogue number of
appropriate dual PTC thermistor

double-coil system	single-coil system
117 cm	237 cm
60	60
$0,35 \mathrm{~mm}$	$0,35 \mathrm{~mm}$
$12,5 \Omega$	$25,1 \Omega$
232266298009	232266298009

## DEFLECTION UNIT

## - Raster Correction Free

## QUICK REFERENCE DATA

Picture tube	
$\quad$ gun arrangement	in line
diagonal	$51 \mathrm{~cm}(20 \mathrm{in})$
neck diameter	$29,1 \mathrm{~mm}$
Deflection angle	$90^{\circ}$
Line deflection current, edge to edge at 25 kV	$3,0 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	$1,91 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$0,895 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, parallel connected	$13,2 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A51-590X, with a neck diameter of $29,1 \mathrm{~mm}$.
The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1_{-0,7}^{+0,9} \mathrm{~mm}$.


Fig. 1.
Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 66-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
$\quad$ Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Voltage during line scan, edge to edge, at 25 kV , scan period $52,5 \mu \mathrm{~s}$

Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
parallel connected
$1,91 \mathrm{mH} \pm 5 \%$
$1,75 \Omega \pm 10 \%$
3,0 A (p-p)
109 V
parallel connected
$27,6 \mathrm{mH} \pm 10 \%$
$13,2 \Omega \pm 7 \%$
0,895 A(p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)

$$
\begin{aligned}
& >500 \mathrm{M} \Omega \\
& >500 \mathrm{M} \Omega \\
& >\quad 10 \mathrm{M} \Omega
\end{aligned}
$$



Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges places between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## DEFLECTION UNIT

## - Raster Correction Free

## QUICK REFERENCE DATA

Picture tube	
$\quad$ gun arrangement	in line
diagonal	$51 \mathrm{~cm}(20 \mathrm{in})$
neck diameter	$29,1 \mathrm{~mm}$
Deflection angle	$90^{\circ}$
Line deflection current, edge to edge at 25 kV	$3,04 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected (including additional coil)	$2,07 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$0,895 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, parallel connected	$13,2 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A51-590X, with a neck diameter of $29,1 \mathrm{~mm}$.
The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1_{-0,7}^{+0,9} \mathrm{~mm}$.


Fig. 1.
Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea; 35g)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils, including additional coil
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Voltage during line scan, edge to edge, at 25 kV , scan period 52,5 $\mu \mathrm{s}$
Additional coil
Inductance at 1 V (r.m.s.), 1 kHz
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
parallel connected
$2,07 \mathrm{mH} \pm 5 \%$
2,06 $\Omega \pm 10 \%$
3,04 A (p-p)
120 V
$0,19 \mathrm{mH} \pm 4 \%$
parallel connected
$27,6 \mathrm{mH} \pm 10 \%$
$13,2 \Omega \pm 7 \%$
0,895 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram. $L=$ line coils; $F=$ field coils; $L_{a}=$ additional coil; $R=4,7 \mathrm{k} \Omega$.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges places between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## DEFLECTION UNIT

- Raster Correction Free


## QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
diagonal	$51 \mathrm{~cm}(20 \mathrm{in})$
neck diameter	$29,1 \mathrm{~mm}$
Deflection angle	900
Line deflection current, edge to edge at 25 kV	$3,1 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	$1,9 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$0,86 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, parallel connected	$13,6 \Omega$

## APPLICATION

This deflection unit, in conjunction which devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tube A51-590X, with a neck diameter of $29,1 \mathrm{~mm}$.
The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal nonmagnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1{ }_{-0,7}^{0,9} \mathrm{~mm}$.
For correct fitting the tube neck should be provided with adhesive tape.


Fig. 1.
Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature


## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils $\quad>500 \mathrm{M} \Omega$
between line coil and core clamp $\quad>500 \mathrm{M} \Omega$
between field coil and core clamp
$1,9 \mathrm{mH} \pm 5 \%$
$2,2 \Omega \pm 10 \%$
3,1 A(p-p)
$29 \mathrm{mH} \pm 10 \%$
$13,6 \Omega \pm 7 \%$
0,86 A(p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## Hi-Bri COLOUR PICTURE TUBE

- $90^{\circ}$ deflection
- In-line gun, thermally stable; electrostatic hi-bi potential for improved focus
- 29,1 mm neck diameter
- Hi-Bri screen with pigmented phosphors featuring high brightness and increased contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Phosphor lines follow glass contaur
- Quick-heating cathodes
- Internal magnetic shield
- Reinforced envelope for push-through mounting
- When combined with an appropriate hybrid saddle toroidal deflection unit (e.g. AT1236 or AT1480), it forms a self-converging and raster correction free assembly.


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Face diagonal	51 cm
Overall length	436 mm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 685 \mathrm{~mA}$
Focusing voltage	$28 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

## OPTICAL DATA

Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre
Light transmision face glass at
unitized triple-aperture electrodes
electrostatic
hi-bi potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$

	$\max .2300 \mathrm{pF}$
$\left.\mathrm{C}_{\mathrm{a}(\mathrm{m}}+\mathrm{m}^{\prime}\right)$	$\min .1500 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	17 pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	5 pF
$\mathrm{C}_{\mathrm{g} 3}$	6 pF
	indirect by a.c. or d.c.   $\mathrm{V}_{\mathrm{f}}$
$\mathrm{I}_{\mathrm{f}}$	$6,3 \mathrm{~V}$
	685 mA

metal-backed vertical phosphor stripes; phosphor lines follow glass contour
satinized
$\min .480,0 \mathrm{~mm}$
$\mathrm{min} .404,4 \mathrm{~mm}$
$\mathrm{min} .303,3 \mathrm{~mm}$
$\min .1190 \mathrm{~cm}^{2}$
pigmented europium activated rare earth
sulphide type
pigmented sulphide type

0,8 mm
64\%

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base
Anode contact
Mounting position
Net mass
$436 \pm 5 \mathrm{~mm}$
$29,1+0,7{ }_{-0,7}^{+1,4}$ *
max. $515,1 \mathrm{~mm}$
max. $442,1 \mathrm{~mm}$
max. $343,4 \mathrm{~mm}$
JEDEC B8-274
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 13 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

[^16]MECHANICAL DATA (continued)
Dimensions in mm
Notes are given after the drawings.



MECHANICAL DATA (continued)


## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .

This deviation is incorporated in the tolerance of $\pm 2,5 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $434 \mathrm{~mm} \times 337 \mathrm{~mm}$.
6. Co-ordinates for radius $R=13,1 \mathrm{~mm}: x=184,58 \mathrm{~mm}, y=131,93 \mathrm{~mm}$.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.
11. Minimum distance between glass and rimband in plane of centre line apertures.
12. Distance from point $z$ to any hardware.

Reference line gauge; GR90CJ4


## A51-591X

## Maximum cone contour



		distance from centre (max. values)														
tion	from section 1	$0^{0}$	$10^{\circ}$	$20^{\circ}$	$25^{\circ}$	$30^{\circ}$	$32^{\circ} 30^{\prime}$	diag. axes	37030	$40^{\circ}$	$45^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	0	218,7	221,9	231,2	238,5	247,5	252,2	255,9	254,6	247,7	230,1	215,1	193,0	179,2	1,5	69,0
2	20	209,8	212,4	220,3	226,0	232,5	235,3	236,5	235,0	230,2	216,9	204,4	184,9	172,3	165,3	163,0
3	40	197,5	199,4	204,7	208,1	211,1	211,9	211,4	210,0	207,0	198,6	189,5	173,9	163,2	157,1	155,1
4	60	182,2	183,2	185,8	187,1	187,7	187,4	186,4	185,3	183,3	178,2	172,1	160,7	152,4	147,4	145,8
5	80	163,2	163,5	163,9	163,7	163,1	162,4	161,4	160,6	159,3	156,3	152,9	145,8	140,1	136,6	135,4
6	100	146,1	146,1	145,7	145,1	144,2	143,6	142,8	142,2	141,4	139,5	137,5	133,3	129,7	127,3	126,5
7	120	112,3	112,3	111,9	111,7	1.11,3	111,1	110,9	110,7	110,5	110,0	109,5	108,6	107,8	107,3	107,1
8	141,7	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8	79,8

## Base JEDEC B8-274



## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$
Luminance at the centre of the screen*
$V_{a, g 4}$
25 kV
$V_{\mathrm{g} 3}$
$V_{g 2}$
390 to 760 V
$170 \mathrm{~cd} / \mathrm{m}^{2}$

* Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$. The voltages are specified with respect to grid 1.
Grid 3 (focusing electrode) voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions

$\mathrm{V}_{\mathrm{g} 3}$	26,6 to $29,8 \%$ of   anode voltage
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$	see cut-off design chart*
$\Delta \mathrm{V}_{\mathrm{k}}$	lowest value $>80 \%$ of   highest value   see graphs**
	-5 to $+5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 3}$	-5 to $+5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	-5 to $+5 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 1}$	

To produce white D, CIE co-ordinates $\mathrm{x}=0,313, \mathrm{y}=0,329$.
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun

min.	0,8
average	1,1
max.	1,4
min.	1,1
average	1,5
max.	1,9
min.	0,5
average	0,7
max.	0,9

* The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 150 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 400 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $V_{k}$ of the remaining guns so that the rasters of these guns also become visible.
** For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$V_{a, g 4}$	max. min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes 1, 2 and 3 note 4
Long-term average current for three guns	$l_{\text {a }}$	max.	$1000 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max.	1000 V	
Cathode voltage positive positive operating cut-off negative negative peak	$\begin{aligned} & V_{k} \\ & V_{k} \\ & -V_{k} \\ & -V_{k p} \end{aligned}$	max.   max.   max.   max.	$\begin{array}{r} 400 \mathrm{~V} \\ 200 \mathrm{~V} \\ 0 \mathrm{~V} \\ 2 \mathrm{~V} \end{array}$	
Heater voltage	$V_{f}$	6,3 V	$\begin{aligned} & +5 \% \\ & -10 \% \end{aligned}$	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode during equipment warm-up period				
not exceeding 15 s	$\mathrm{V}_{\mathrm{kf}}$	max.	450 V	note 1
after equipment warm-up period	$V_{k f}$	max.	250 V	
heater positive with respect to cathode	$\begin{aligned} & -V_{k f p} \\ & -V_{k f} \end{aligned}$	peak max. (d.c.	$\begin{array}{r} 200 \text { V } \\ 0 \text { V } \end{array}$   mponent va	note 1   lue)

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerable. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $11,5 \mathrm{kV}$ $\left(1,5 \times V_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## BEAM CORRECTIONS

Maximum required correction for register, as measured at the centre of the screen in any direction $0,08 \mathrm{~mm}$

Centre convergence displacement of the blue and red beams is contained within a circle; max. diameter of circle

5 mm
Centre convergence displacement between the green beam and converged blue and red beams is contained within a circle; maximum diameter of circle $2,5 \mathrm{~mm}$

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 5 mm


Spot cut-off design chart (cathode drive), $\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus, $\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=20$ to $27,5 \mathrm{kV}$.

7Z83244.2


Typical cathode drive characteristics
$V_{f}=6,3 \mathrm{~V}$
$V_{a, g 4}=25 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus
$\mathrm{V}_{\mathrm{g} 2}$ adjusted to provide spot
cut-off for $\mathrm{V}_{\mathrm{K}}=140 \mathrm{~V}$

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$V_{a, g 4}=25 \mathrm{kV}$.
Scanned area $=404,4 \mathrm{~mm} \times 303,3 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	x	y
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil shaped in the form of a figure eight, with one half on the top and the other half on the bottom cone part.
For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,3$ ampere-turns).
If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.


Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor.


## Data of each degaussing coil

Circumference
Number of turns
Copper-wire diameter
Resistance ( $\mathrm{R}_{\mathrm{C}}$ )
Catalogue number of appropriate dual PTC thermistor

double-coil system	single-coil system
117 cm	237 cm
60	60
$0,35 \mathrm{~mm}$	$0,35 \mathrm{~mm}$
$12,5 \Omega$	$25,1 \Omega$
232266298009	232266298009

## DEFLECTION UNIT

## - Raster Correction Free

## QUICK REFERENCE DATA

Picture tube
gun arrangement
in line
diagonal
neck diameter
51 cm (20 in)
neck diameter
$29,1 \mathrm{~mm}$
Deflection angle
$90^{\circ}$
Line deflection current, edge to edge at 25 kV
Inductance of line coils, parallel connected
Field deflection current, edge to edge at 25 kV
Resistance of field coils, series connected
3,0 A(p-p)

Relan
$1,91 \mathrm{mH}$

APPLICATION
This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tubes A51-590X and A51-591X, with a neck diameter of $29,1 \mathrm{~mm}$. The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

## AT1236/25

## MECHANICAL DATA

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1_{-0,7}^{+0,9} \mathrm{~mm}$.


Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category 94-V1
$1,4 \mathrm{Nm}$

IEC 68-2-6 (test Fc)
IEC 66-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca )
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Voltage during line scan, edge to edge, at 25 kV , scan period $52,5 \mu \mathrm{~s}$
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils
between line coil and core clamp
between field coil and core clamp
parallel connected
$1,91 \mathrm{mH} \pm 5 \%$
$1,75 \Omega \pm 10 \%$
3,0 A (p-p)
109 V
series connected
$110 \mathrm{mH} \pm 10 \%$
$52,8 \Omega \pm 7 \%$
0,447 A(p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Fig. 2 Connection diagram, $L=$ Line, $F=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges places between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.




## DEFLECTION UNIT

## - Raster Correction Free

## QUICK REFERENCE DATA

Picture tube	
gun arrangement	in line
diagonal	$51 \mathrm{~cm}(20 \mathrm{in})$
neck diameter	$29,1 \mathrm{~mm}$
Deflection angle	900
Line deflection current, edge to edge at 25 kV	$3,23 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils, parallel connected	$1,7 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$0,82 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils, parallel connected	$13,6 \Omega$

## APPLICATION

This deflection unit, in conjunction with devices for colour purity and static convergence is for $90^{\circ}$ in-line colour picture tubes A51-590X and A51-591X, with a neck diameter of 29,1 mm.
The unit requires no raster correction circuitry.

## DESCRIPTION

The deflection unit consists of saddle-shaped line deflection coils, toroidal wound field deflection coils, and metal fins, thus forming a raster correction free hybrid yoke. The unit has a metal non-magnetic clamping ring at the rear, to fix the deflection unit on the neck of the picture tube.

## Outlines

The deflection unit fits a tube with a neck diameter of $29,1$| $+0,9$ |
| :---: |
|  |
| 0,7 |



Fig. 1.

Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
Torque on neck clamp screw

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL 1413, category $94-\mathrm{V} 1$
$1,4 \mathrm{Nm}$

IEC68-2-6 (test Fc)
IEC 66-2-29 (test Eb; 35g)
IEC 68-2-1 (test Ab)
IEC 68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb )

## ELECTRICAL DATA

Line coils parallel connected
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Line deflection current, edge to edge, at 25 kV
Voltage during line scan, edge to edge, at 25 kV , scan period $52,5 \mu \mathrm{~s}$

Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils $\quad>500 \mathrm{M} \Omega$
between line coil and core clamp $\quad>500 \mathrm{M} \Omega$
between field coil and core clamp $>10 \mathrm{M} \Omega$
$1,7 \mathrm{mH} \pm 5 \%$
$1,8 \Omega \pm 10 \%$
3,23 A (p-p)
105 V
parallel connected
$29 \mathrm{mH} \pm 10 \%$
$13,6 \Omega \pm 7 \%$
0,82 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)


Fig. 2 Connection diagram, $\mathrm{L}=$ Line, $\mathrm{F}=$ Field.

## ADJUSTMENT

- Adjust the static convergence with the four and six-pole magnets of the multipole unit AT1052 for the relative movement of the beams under influence of a four or six-pole magnet.
- Adjust colour purity by axial movement of the deflection yoke and adjustment of the two-pole magnets for centring of the beams.
- Tighten the screw of the clamping ring on the deflection yoke to secure the axial position of the unit on the picture tube.
- Readjust, if necessary, the convergence with the four and six-pole magnets.
- Tilt the unit in either horizontal or vertical direction, or in both directions so that blue, green and red lines converge at the end of the horizontal and vertical axis.
- This position of the unit has to be secured by three rubber wedges placed between the picture tube and the deflection unit. These wedges have to be cemented on to the picture tube.


## FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- $110^{\circ}$ deflection
- Shadow mask of NiFe alloy with low thermal expansion
- In-line, hi-bi potential A R T* gun with quadrupole cathode leñs
- 29,1 mm neck diameter
- Mask with corner suspension
- Hi-Bri technology
- Pigmented phosphors
- Quick-heating low-power cathodes
- Soft-flash
- Slotted shadow mask optimized for minimum moire at 625 lines systems
- Internal magnetic shield
- Internal multipole
- Reinforced envelope for push-through mounting
- Anti-crackle coating


## QUICK REFERENCE DATA

Deflection angle	$110^{\circ}$
Minimum useful screen diagonal	51 cm
Overall length	36 cm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 310 \mathrm{~mA}$
Focusing voltage	$31 \%$ of anode voltage

[^17]
## ELECTRON-OPTICAL DATA

Electron gun system

Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external conductive coating
anode to metal rimband
cathodes of all guns (connected in paraliel)
to all other electrodes
cathode of any gun to all other electrodes
grid 3 (focusing electrode) to all other electrodes
grid 1 to all other electrodes
grid 2 to all other electrodes
Resistance between rimband and external conductive coating
unitized triple-aperture electrodes; aberration reducing triode electrostatic
hi-bi-potential
magnetic
$110^{\circ}$
970
770

Heating: indirect by a.c. (preferably mains or line frequency) or d.c.
heater voltage $V_{f}$
heater current
$I_{f}$ 310 mA

## OPTICAL DATA

Screen

Screen finish
Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Positional accuracy of the screen with
respect to the glass contour
Phosphors
red
green
blue
Persistence
metal-backed vertical phosphor stripes, phosphor lines follow glass contour
high gloss
$\min .508,0 \mathrm{~mm}$
$\min .411,4 \mathrm{~mm}$
$\mathrm{min} .310,8 \mathrm{~mm}$
$\mathrm{min} .1265 \mathrm{~cm}^{2}$
see Figure on the next page
pigmented europium activated
rare earth
sulphide type
pigmented sulphide type
medium short
$A=171,7 \mathrm{~mm}$
$B=223,7 \mathrm{~mm}$
$C=115,6 \mathrm{~mm}$
$D=173,9 \mathrm{~mm}$
$E=23,5 \mathrm{~mm}$



Colour co-ordinates
red
green

$x$	$y$
0,635	0,340
0,315	0,600
0,150	0,060

Centre-to-centre distance of identical colour phosphor stripes
Light transmission of face glass at screen centre approx. 0,6 mm

Luminance at the centre of the screen

52\%
L $\quad 130 \mathrm{~cd} / \mathrm{m}^{2 *}$

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter

## Base

Anode contact
Mounting position
Implosion protection

Net mass
$362 \pm 6 \mathrm{~mm}$
$29,1_{-0,7}^{+1,4} \mathrm{~mm}$
JEDEC B10-277
small cavity contact J1-21, IEC 67-1II-2
anode contact on top
rimband provided with facilities to accommodate clips for mounting of degaussing coils approx. 15 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

* Tube setting adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

MECHANICAL DATA (continued)
Dimensions in mm
Notes are given
after the drawings.


Flat square Hi -Bri colour picture tube


DEVELOPMENT DATA



Notes to outline drawings on the preceding pages

1. The displacement of any lug with respect to the plane through the three other lugs is max. $1,5 \mathrm{~mm}$.
2. Minimum space to be reserved for mounting lug.
3. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $449 \mathrm{~mm} \times 354 \mathrm{~mm}$.
4. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		sagittal
$\begin{gathered} x \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{y} \\ \mathrm{~mm} \end{gathered}$	height mm
0*	155,4	9,0
20	155,4	9,1
40	155,3	9,4
60	155,1	10,1
80	154,9	11,0
100	154,7	12,2
120	154,4	13,7
140	153,9	15,4
160	153,5	17,5
180	153,0	19,9
200	152,5	22,7
203,2**	152,4	23,2
203,3	150	22,9
203,6	140	21,8
204,2	120	19,9
204,6	100	18,4
205,0	80	17,2
205,3	60	16,3
205,5	40	15,6
205,7	20	15,8
205,7 ${ }^{\text { }}$	0	15,0

[^18]** Diagonal.

- Point $y$

10-pin base; JEDEC B10-277


Cavity cap JEDEC J1-21, IEC 67-III-2


Flat square Hi -Bri colour picture tube

## Maximum cone contour

## DEVELOPMENT DATA



sec-	nom. distance	distance from centre										
	section 1	$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$30^{\circ}$	36,870	$40^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	0,00	225,8	229,0	239,2	257,7	272,0	267,4	228,1	203,2	188,0	179,7	177,1
2	10,00	224,2	227,4	237,5	255,9	270,0	264,8	226,3	201,7	186,6	178,4	175,8
3	20,00	220,0	223,2	233,1	250,9	263,1	257,1	220,7	196,8	182,1	174,1	171,5
4	30,00	214,0	217,0	226,4	242,8	252,1	246,3	212,9	190,2	176,2	168,5	166,1
5	40,00	206,4	209,2	217,5	231,1	235,3	230,1	202,1	181,4	168,4	161,3	159,0
6	50,00	196,7	198,9	205,4	212,9	211,5	207,4	187,2	169,7	158,2	151,8	149,8
7	60,00	182,2	183,8	187,5	189,1	185,3	182,1	167,9	154,3	144,7	139,2	137,4
8	70,00	158,0	159,1	161,0	160,7	157,7	155,4	146,0	136,2	128,7	124,2	122,7
9	80,00	127,9	128,6	129,8	129,6	128,0	126,8	121,6	115,6	110,4	107,0	105,8
10	90,00	95,2	95,4	95,6	95,1	94,3	93,9	92,0	89,7	87,6	86,0	85,4
11	94,6	75,9	75,8	75,7	75,4	75,1	75,0	74,6	74,2	73,8	73,6	73,5

## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	25 kV
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	7,25 to $8,25 \mathrm{kV}$
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{g} 2}$	see below
Heater voltage under operating conditions	$\mathrm{V}_{\mathrm{f}}$	$6,3 \mathrm{~V}$



Spot cut-off design chart.
Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$\mathrm{V}_{\mathrm{g} 2}$ range 575 to 825 V ;
$\mathrm{V}_{\mathrm{k}}$ range 105 to 130 V .
Adjustment procedure:
Set the cathode voltage ( $\mathrm{V}_{\mathrm{k}}$ ) for each gun at 130 V ; increase the grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ from approx. 550 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$. The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot

Difference in cut-off voltages between guns in any tube

Heater voltage
$V_{\mathrm{g} 3}$
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$ see spot cut-off design chart
$\Delta V_{k} \quad$ lowest value $>80 \%$ of highest value
$6,3 \mathrm{~V}$ at zero beam current see graphs*
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$

To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.

$$
\text { (CIE co-ordinates } x=0,313, y=0,329 \text { ) }
$$

Percentage of the total anode current supplied by each gun (typical) red gun

38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun

Insulation resistance between each cathode
and grid 1 and heater
min. $\quad 0,8$
average 1,1
max. $\quad 1,4$
$\min$. 1,1
average 1,5
max. 1,9
min. $\quad 0,5$
average $\quad 0,7$
max. 1,0
$\min . \quad 50 \mathrm{M} \Omega$

[^19]

Typical cathode drive characteristic.
$V_{f}=6,3 \mathrm{~V}$;
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=105 \mathrm{~V}$ (curve a) and $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$ (curve b).

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$V_{a, g 4}$	max.   min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	$\begin{aligned} & 1,2,3 \\ & 1,4 \end{aligned}$
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$1000 \mu \mathrm{~A}$	5
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	max.	1200 V	6
Cathode voltage				
positive	$V_{k}$	max.	400 V	
positive operating cut-off	$V_{k}$	max.	200 V	
negative	$-V_{k}$	max.	0 V	
negative peak	$-\mathrm{V}_{\mathrm{kp}}$	max.	2 V	
Cathode to heater voltage				
positive	$V_{k f}$	max.	250 V	
positive peak	$V_{\text {kfp }}$	max.	300 V	1
negative	$-V_{k f}$	max.	135 V	
negative peak	$-V_{k f p}$	max.	180 V	1
Heater voltage	$V_{f}$	6,3	$V^{+5 \%}$	1,7
LIMITING CIRCUIT VALUES				
Grid 3 circuit resistance	$\mathrm{R}_{\mathrm{g} 3}$	max.	$70 \mathrm{M} \Omega$	
Grid 1 to cathode circuit resistance (each gun)	$\mathrm{R}_{\mathrm{g} 1 \mathrm{k}}$	max.	0,75 M	

## BEAM CENTRING

Maximum centring error in any direction
3 mm

## Notes

1. Absolute maximum rating system.
2. The X-ray dose rate remains below the acceptable value of $36 \mathrm{pA} / \mathrm{kg}(0,5 \mathrm{mR} / \mathrm{h})$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operating of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. During adjustment on the production line max. 1500 V is permitted.
7. For maximum cathode life it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## A51EAK01X



Simultaneously excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus. Colour co-ordinates
red
green blue
$\frac{x}{0,635} \quad \frac{y}{0,340}$
0,315 0,600
$0,150 \quad 0,060$

## $110^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- $51 \mathrm{~cm}, 110^{\circ}$ colour picture tube A51EAK01X
- Double saddle deflection unit AT6020


## QUICK REFERENCE DATA

Deflection angle	$110^{0}$
Minimum useful screen diagonal	51 cm
Overall length	36 cm
Neck diameter	$29,1 \mathrm{~mm}$

## MECHANICAL DATA

Dimensions in mm


Net mass of tube assembly: 16 kg


Yoke clearance.

## ELECTRICAL DATA OF DEFLECTION UNIT

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV


Electrical diagram.
The beginning of the windings is
indicated with $\bullet$.
$\mathrm{R} 1=\mathrm{R} 2=100 \Omega, 0,25 \mathrm{~W}$.
Matching Stocko connector MKF 806-1-0-606.
parallel connected
$1,85 \mathrm{mH}$
1,85 $\Omega$
$7,6 \mathrm{mWb} \pm 5 \%$
4.1 A (p-p)
series connected
11 mH
6,5 $\Omega$
1,7 A (p-p)

TOP


Terminal location.

## $110^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- $51 \mathrm{~cm}, 110^{\circ}$ colour picture tube A51EAK01X
- Double saddle deflection unit AT6020


## QUICK REFERENCE DATA

Deflection angle	$110^{0}$
Minimum useful screen diagonal	51 cm
Overall length	36 cm
Neck diameter	$29,1 \mathrm{~mm}$

## MECHANICAL DATA



Net mass of tube assembly: 16 kg .


Yoke clearance.

## ELECTRICAL DATA OF DEFLECTION UNIT

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV


Electrical diagram.
The beginning of the windings is
indicated with $\bullet$.
$\mathrm{R} 1=\mathrm{R} 2=100 \Omega, 0,25 \mathrm{~W}$.
Matching Stocko connector MKF806-1-0-606.
parallel connected
$1,85 \mathrm{mH}$
$1,85 \Omega$
$7,6 \mathrm{mWb} \pm 5 \%$
4,1 A (p-p)
series connected
11 mH
6,5 $\Omega$
1,7 A (p-p)


Terminal location.

## FLAT SQUARE Hi-Bri COLOUR PICTURE TUBES

- Flat and square screen
- $90^{\circ}$ deflection
- In-line, hi-bi potential A R T* gun
- 29,1 mm neck diameter
- Mask with corner suspension
- Hi-Bri technology
- Pigmented phosphors
- Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 625 lines system
- Internal magnetic shield
- Internal multipole
- Reinforced envelope for push-through mounting
- The tube is supplied with a matched hybrid saddle toroidal deflection unit of the AT6035 series; it forms a self-converging and raster correction free assembly


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 310 \mathrm{~mA}$
Focusing voltage	$31 \%$ of anode voltage

Type A51EAL10X is identical to type A51EAL00X, except for the base: JEDEC B8-274; see the relevant paragraph of "Mechanical Data".

Type A51EAL20X is identical to type A51EAL00X, except for the rimband, see dimensional drawings of "Mechanical Data".
Type A51EAL30X is identical to type A51EAL00X, except for the light transmission of face glass at centre: $52 \%$.

[^20]
## ELECTRON-OPTICAL DATA

Electron gun system

Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

## OPTICAL DATA

Screen

Screen finish
Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Positional accuracy of the screen with respect to the glass contour

Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre
A51EAL00X, A51EAL10X, A51EAL20X A51EAL30X

Luminance at the centre of the screen
A51EAL00X, A51EAL10X, A51EAL20X A51EAL30X
unitized triple-aperture electrodes; aberration reducing triode
electrostatic
hi-bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$
max. 2200 pF
$C_{a}\left(m+m^{\prime}\right) \quad \min .1600 p F$
$\mathrm{C}_{\mathrm{g} 1} \quad 17 \mathrm{pF}$
$C_{k R}, C_{k G}, C_{k B} 5 \mathrm{pF}$
$\begin{array}{l:l}\mathrm{C} 3 & 6 \mathrm{pF}\end{array}$
indirect by a.c. or d.c.
$V_{f} \quad 6,3 \mathrm{~V}$
If $\quad 310 \mathrm{~mA}$
metal-backed vertical phosphor stripes, phosphor lines follow glass contour
high gloss
min. 508,0 mm
$\min .411,4 \mathrm{~mm}$
$\mathrm{min} .310,8 \mathrm{~mm}$
$\min .1265 \mathrm{~cm}^{2}$
see Figure on the next page
pigmented europium activated
rare earth
sulphide type
pigmented sulphide type
approx. $0,75 \mathrm{~mm}$

64,4\%
52,3\%
$165 \mathrm{~cd} / \mathrm{m}^{2 *}$
$130 \mathrm{~cd} / \mathrm{m}^{2 *}$

* Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.
$A=171,7 \mathrm{~mm}$
$B=223,7 \mathrm{~mm}$
$C=115,6 \mathrm{~mm}$
$D=173,9 \mathrm{~mm}$
$E=23,5 \mathrm{~mm}$


MECHANICAL DATA (see also the figures on the following pages)
Overall length

A51EAL00X, A51EAL20X, A51EAL30X A51EAL10X

Neck diameter

Bulb dimensions
diagonal
width
height
Base
A51EAL00X, A51EAL20X, A51EAL30X
A51EAL10X
Anode contact
Mounting position
$443,7 \pm 5 \mathrm{~mm}$
$448,3 \pm 5 \mathrm{~mm}$
$29,1_{-0,7}+1,4 \mathrm{~mm}^{*}$
max. 546,1 mm
max. $455,6 \mathrm{~mm}$
max. 359,6 mm

JEDEC B10-277
JEDEC B 8-274
small cavity contact J1-21, IEC 67-III-2
anode contact on top

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

* In the region of $78,5 \mathrm{~mm}$ from the neck end, the maximum diameter is 30 mm .


## MECHANICAL DATA (continued)

Notes are given after the drawings
(Applicable to A51EALO0X, A51EAL10X, A51EAL30X)


Note: Tube A51EAL10X has an overall length of $448,3 \pm 5 \mathrm{~mm}$.

* For A51EAL10X : 390,6 max.


Flat square Hi -Bri colour picture tubes


## MECHANICAL DATA (continued)

(Applicable to A51EAL20X)


7296276


(Applicable to A51EAL20X)
(Applicable to A51EAL00X, A51EAL10X, A51EAL30X)


## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. The displacement of any lug with respect to the plane through the three other lugs is max. $1,3 \mathrm{~mm}$. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $354 \times 449 \mathrm{~mm}$.
6. Not applicable.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. $50 \mathrm{~mm}(1,968 \mathrm{in})$, concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-1II-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		
x		
mm	y	
mm	sagittal   height   mm	
$0^{*}$	155,4	9,0
20	155,4	9,1
40	155,3	9,4
60	155,1	10,1
80	154,9	11,0
100	154,7	12,2
120	154,4	13,7
140	153,9	15,4
160	153,5	17,5
180	153,0	19,9
200	152,5	22,7
$203,2 * *$	152,4	23,2
203,3	150	22,9
203,6	140	21,8
204,2	120	19,9
204,6	100	18,4
205,0	80	17,2
205,3	60	16,3
205,5	40	15,6
205,7	20	15,8
$205,7 \Delta$	0	15,0

[^21]10-pin base; JEDEC B10-277
(Applicable to A51EAL00X, A51EAL20X
and A51EAL30X)


Flat square Hi -Bri colour picture tubes

Base JEDEC B8-274
(Applicable to A51EAL10X)



Cavity cap JEDEC J1-21, IEC 67-III-2


## Maximum cone contour



sec-   tion	nom.   distance   from section 1	max. distance from centre										
		00	$10^{\circ}$	200	300	diag.	$40^{\circ}$	$50^{\circ}$	600	700	800	$90^{\circ}$
1	0	225,7	228,9	239,1	257,6	271,8	267,2	227,9	203,1	187,9	179,6	177,0
2	10	224,6	227,7	237,7	255,9	270,0	265,3	226,7	201,9	186,8	178,6	175,9
3	20	221,8	224,8	234,3	251,1	264,3	259,6	222,9	198,9	184,2	176,1	173,5
4	30	218,1	220,9	229,6	244,5	254,7	250,6	217,9	195,1	180,9	173,1	170,6
5	40	213,8	216,4	224,1	236,5	243,1	239,6	212,0	190,9	177,3	169,9	167,5
6	50	208,7	211,0	217,7	227,5	231,3	228,4	205,6	186,3	173,6	166,5	164,2
7	60	202,6	204,5	210,0	217,5	219,5	217,0	198,5	181,0	169,3	162,6	160,5
8	70	195,1	196,8	201,3	206,9	207,6	205,4	190,3	175,1	164,4	158,3	156,3
9	80	186,2	187,6	191,4	195,6	195,4	193,5	181,3	168,4	158,9	153,3	151,5
10	90	175,6	176,9	180,	183,3	182,8	181,1	171,4	160,7	152,5	147,6	146,0
11	100	163,6	164,6	167,4	169,9	169,2	167,9	160,4	151,9	145,2	141,0	139,6
12	110	150,3	151,3	153,8	155,7	154,7	153,6	147,9	141,7	136,6	133,4	132,3
13	120	136,4	137.3	139,3	140,4	139,5	138,6	134,5	130,3	126,8	124,6	123,9
14	130	122,1	122,8	124,4	124,9	124,0	123,3	120,7	118,2	116,1	114,7	114,3
15	140	107,5	107,7	108,2	108,6	108,4	108,2	107,0	105,7	104,5	103,8	103,5
16	150	92,6	92,3	92,3	92,6	92,8	92,9	92,9	92,6	92,1	91,6	91,4
17	159,5	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1

## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

## Anode voltage

$V_{a, g 4}$	25 kV
$\mathrm{V}_{\mathrm{g} 3}$	7,25 to $8,25 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	see below
$\mathrm{V}_{\mathrm{f}}$	$6,3 \mathrm{~V}$



Spot cut-off design chart.
Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$\mathrm{V}_{\mathrm{g} 2}$ range 575 to 825 V ;
$\mathrm{V}_{\mathrm{k}}$ range 105 to 130 V .

## Adjustment procedure:

Set the cathode voltage ( $\mathrm{V}_{\mathrm{k}}$ ) for each gun at 130 V ; increase the grid 2 voltage ( $\mathrm{V}_{\mathrm{g} 2}$ ) from approx. 550 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

## EOUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$. The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage

Grid 2 voltage and cathode voltage for visual extinction of focused spot

Difference in cut-off voltages between guns in any tube

Heater voltage
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$ $\Delta V_{k}$ $V_{f}$

Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
To produce white of 6500K + 7 M.P.C.D. (CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode curernt supplied by each gun (typical) red gun
green gun
blue gun
Ratio of anode currents red gun to green gun
red gun to blue gun
blue gun to green gun

Insulation resistance between each cathode and grid 1 and heater

38,3\%
35,8\%
25,9\%
29 to $33 \%$ of anode voltage
see cut-off design chart
lowest value $>80 \%$ of highest value $6,3 \mathrm{~V}$ at zero beam current see graphs*
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$
min. 0,8
average 1,1
max. 1,4
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9
$\min . \quad 100 \mathrm{M} \Omega$

[^22]Flat square Hi -Bri colour picture tubes
A51EAL00X A51EAL10X A51EAL20X A51EAL30X


Typical cathode drive characteristic.
$\mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}$;
$V_{a, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=105 \mathrm{~V}$ (curve a ) and $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$ (curve b).

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.
notes

## Anode voltage

Long-term average current for three guns
Grid 3 (focusing electrode) voltage
Grid 2 voltage, peak
Cathode voltage
positive
positive operating cut-off
negative
negative peak
$V_{a, g 4}$
$\max \quad 27,5 \mathrm{kV}$ 1,2,3
min. $\quad 20 \mathrm{kV}$ 1,4
max. $1000 \mu \mathrm{~A} 5$
$I_{a}$
$V_{\mathrm{g} 3}$
max. 11 kV
$V_{g 2 p}$
max. 1200 V 6
$\mathrm{V}_{\mathrm{k}} \quad \max .400 \mathrm{~V}$
$\mathrm{V}_{\mathrm{k}} \quad \max .200 \mathrm{~V}$

Cathode to heater voltage
positive
positive peak
negative
negative peak
Heater voltage
$-V_{k}$
$\max . \quad 0 \mathrm{~V}$
$-V_{k p}$
$\max .2 \mathrm{~V}$
$V_{k f} \quad$ max. 250 V
$V_{k f p} \quad$ max: $300 \mathrm{~V} \quad 1$
$-V_{k f} \quad$ max. 135 V
$-\mathrm{V}_{\mathrm{kfp}} \max .180 \mathrm{~V} 1$
$V_{f} \quad 6,3 V_{-10}^{+5} \% \quad 1,7$

## LIMITING CIRCUIT VALUES

Grid 3 circuit resistance
Grid 1 to cathode circuit resistance (each gun)

$R_{g} 3$	max.	70	$M \Omega$
$R_{g} 1 k$	max.	0,75	$M \Omega$

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $36 \mathrm{pA} / \mathrm{kg}(0,5 \mathrm{mR} / \mathrm{h})$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. During adjustment on the production line max. 1500 V is permitted.
7. For maximum cathode life it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $11,5 \mathrm{kV}$ $\left(1,5 \times V_{g 3}\right.$ max. at $\left.V_{a, g 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\min .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## BEAM CORRECTIONS

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 4 mm


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$x$	$y$
red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060



Cathode heating time after switching on, measured under typical operating conditions.

## DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.

For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns* is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,3$ ampere-turns**).
If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.


Position of degaussing coils on the picture tube.

Degaussing circuit using dual
PTC thermistor 2322662 98009;
$\mathrm{C}=100 \mathrm{nF}$, for double-coil system, optional for single-coil system.


## Data of degaussing coil

Circumference

double-coil system	singie-coil system
125 cm	139 cm
60	140
$0,4 \mathrm{~mm}$	$0,4 \mathrm{~mm}$
$0,5 \mathrm{~mm}$	$0,5 \mathrm{~mm}$
$22 \Omega$ (two coils	$27 \Omega$
in series)	

* 300 ampere-turns for double-coil system; 700 ampere-turns for single-coil system.
** $\leqslant 0,3$ ampere-turns for double-coil system; $\leqslant 0,6$ ampere-turns for single-coil system.


## $90^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- Self-converging and raster correction free
- $51 \mathrm{~cm}, 90^{\circ}$ colour picture tube A51EAL . . X
- Hybrid saddle toroidal deflection unit of the AT6035 series


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	$29,1 \mathrm{~mm}$

AVAILABLE ASSEMBLIES

assembly type	assembly components
A51EAL00X01	tube A51EAL00X + deflection unit AT6035/04
A51EAL00X02	tube A51EAL00X + deflection unit AT6035/02
A51EAL00X03	tube A51EAL00X + deflection unit AT6035/03
A51EAL00X11	tube A51EAL00X + deflection unit AT6035/11
A51EAL10X01	tube A51EAL10X + deflection unit AT6035/04
A51EAL10X30	tube A51EAL10X + deflection unit AT6035/30
A51EAL20X01	tube A51EAL20X + deflection unit AT6035/04
A51EAL30X01	tube A51EAL30X + deflection unit AT6035/04



Assemblies A51EAL00X. ., A51EAL10X. . and A51EAL30X. .
Assembly A51EAL10X . . has an overall length of $448,3 \pm 5 \mathrm{~mm}$.


Assembly A51EAL20X. .

ELECTRICAL DATA OF DEFLECTION UNITS

parameter	unit	deflection unit AT6035/ . .				
		04	02*	03**	11*	304
Line deflection coils						
inductance at 1 V (r.m.s.), 1 kHz	$\mathrm{mH} \pm 4 \%$	2,0	2,0	2,0	1,7	2,0
resistance at $25^{\circ} \mathrm{C}$	$\Omega \pm 10 \%$	2,35	2,35	2,35	2,00	2,35
magnetic flux	$\mathrm{mWb} \pm 2,5 \%$	5,70	5,70	5,70	5,25	5,70
Line deflection current, edge to edge, at 25 kV	A (p-p)	2,85	2,85	2,85	3,09	2,85
Field deflection coils						
inductance at 1 V (r.m.s.), 1 kHz resistance at $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{mH} \pm 10 \% \\ & \Omega \pm 7 \% \end{aligned}$	$\begin{array}{r} 19,5 \\ 9,7 \end{array}$	19,5 9,7	$\begin{array}{r} 19,5 \\ 9,7 \end{array}$	19,5 9,7	78 38,8
Field deflection current, edge to edge, at 25 kV	A (p-p)	1,09	1,09	1,09	1,09	0,55

Cross-talk

Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp $\quad>500 \mathrm{M} \Omega$ between field coil and core clamp
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)

$\rightarrow$ Connection diagram and top view of terminals of deflection unit AT6035/04. The beginning of the windings is indicated with $\bullet$

* Deflection unit has been provided with a connector.
** Deflection unit has been provided with two connectors.
- Field coils in series.


Connection diagram and top view of terminals of deflection units AT6035／02 and AT6035／11．The beginning of the windings is indicated with $\bullet$


Connection diagram and top view of terminals of deflection unit AT6035／03．The beginning of the windings is indicated with $\bullet$ ．


Connection diagram and top view of terminals of deflection units AT6035／30．The beginning of the windings is indicated with $\bullet$ ．

## FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- $90^{\circ}$ deflection
- In-line, hi-bi potential A R T* gun
- 22,5 mm neck diameter
- Shadow mask of NiFe alloy with low thermal expansion
- Hi-Bri technology
- Mask with corner suspension
- Pigmented phosphors
- Fine pitch over entire screen
- Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 625 lines system
- Internal magnetic shield
- Internal multipole
- Reinforced envelope for push-through mounting
- The tube is supplied with a deflection unit of the AT6040 series; it forms a self-converging and raster correction free assembly


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Minimum useful screen diagonal	51 cm
Overall length	430 mm
Neck diameter	$22,5 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 300 \mathrm{~mA}$
Focusing voltage	$31 \%$ of anode voltage

[^23]
## ELECTRON-OPTICAL DATA

Electron gun system

Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

Capacitances
anode to external
conductive coating including rimband
grid 1 to all other electrodes
cathode of each gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current
unitized triple-aperture electrodes; aberration reducing triode
electrostatic
hi-bi-potential
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$
max. 2200 pF
min. 1500 pF
15 pF
4 pF
4 pF
indirect by a.c. or d.c.
6,3 V
300 mA

## OPTICAL DATA

Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Positional accuracy of the screen with
respect to the glass contour
Phosphors
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre
Light transmission of face glass at centre
Luminance at the centre of the screen
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
high polish
$\min$. $508,0 \mathrm{~mm}$
$\mathrm{min} .406,4 \mathrm{~mm}$
$\mathrm{min} .304,8 \mathrm{~mm}$
$\min .1240 \mathrm{~cm}^{2}$
see Figures on the next page
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
$0,60 \mathrm{~mm}$
64\%
$160 \mathrm{~cd} / \mathrm{m}^{2}$ *

* Tube settings adjusted to produce white $D(x=0.313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

```
A = 171,67 mm
B = 223,70 mm
C = 115,63 mm
D = 173,89 mm
E = 23,50 mm
```



7293407

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter

$$
\begin{aligned}
& 430,4 \pm 4,5 \mathrm{~mm} \\
& 22,5_{-0,7}^{+1,4} \mathrm{~mm}^{*}
\end{aligned}
$$

Bulb dimensions
diagonal
width
height

## Base

Anode contact
Mounting position
Net mass
max. 546,1 mm
max. 455,6 mm
max. 359,6 mm
JEDEC B8-288
small cavity contact J1-21, IEC 67-III-2
anode contact on top
approx. 14 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

[^24]MECHANICAL DATA (continued)
Notes are given after the drawings.


Flat square Hi -Bri colour picture tube
A51EAM00X

Dimensions in mm


CA	$363,5 \max$
CB	188 min
CC	42 max
CG	550 max
CK	53 max



Dimensions in mm

DA	$454,0 \pm 1,6$
DB	$358,0 \pm 1,6$
DC	$544,5 \pm 1,6$
DD	$406,4 \mathrm{~min}$
DE	$304,8 \mathrm{~min}$
DF	$508,0 \mathrm{~min}$
DG	R3365
DH	R2586
DK	R24,4
DL	R14000
DM	R8000
DN	RO

MECHANICAL DATA (continued)


Dimensions in mm

EA	$21,6 \pm 0,5$
EB	$12 \pm 0,2$
EC	$40 \max$
ED	$35 \pm 1$
EE	R12
EF	$12 \pm 0,2$
EG	8
EH	$3 \min$
EK	$3 \pm 0,5$

## Dimensions in mm

GA	508,0
GB	406,4
GC	304,8
GD	$23,16 \pm 2,0$
GE	$14,64 \pm 2,0$
GF	$8,59 \pm 2,0$

Dimensions in mm

FA	508,0
FB	$38,5 \pm 1,8$
FC	3
FD	20 min
FE	17 max
FF	$25 \max$
FG	13,4
FK	R8
FL	50




Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different, but will contain the contact areas as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate ( $1,3 \mathrm{~mm}$ max.) from the plane of the other three lugs. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. corners of a rectangle of $354 \mathrm{~mm} \times 449 \mathrm{~mm}$.
6. Distance from point $Z$ to any hardware.
7. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.
8. Small cavity contact J1-21, IEC 67-III-2.
9. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate at the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen


coordinates		
x   mm	y   mm	sagittal   height   mm
203,2	120	19,9
203,2	110	19,0
203,2	100	18,2
203,2	90	17,5
203,2	80	16,9
203,2	70	16,4
203,2	60	15,9
203,2	50	15,5
203,2	40	15,2
203,2	30	15,0
203,2	20	14,8
203,2	10	14,7
$203,2 \mathbf{2}$	0	14,6

$$
\begin{array}{ll}
\text { * } & \text { Point © } \\
\text { ** } & \text { Diagonal } \\
\triangle & \text { Point (y) }
\end{array}
$$

## A51EAM00X

## Base JEDEC B8-288


pin contour


Reference line gauge; G-R90CJ10


Dimensions in mm

KA	$17,9 \mathrm{~mm}$
KB	15,4 max
KC	12,0
KD	7,9 min; 8,2
KE	$36^{\circ}$
KF	$38^{\circ}$
KG	1,3 max
KH	0,8 min; 1,0 max
KK	R8,66 $\pm 0,1$
KL	R1,0
KM	R0,25
KN	23,2 max
KO	2,7 max
KP	15,4 $\pm 0,2$
KQ	1,6 max
KR	6,85 max
KS	4,5 min
KT	1,016 $\pm 0,076$
KU	0,63 max
KV	0,4 min

## Dimensions in mm

HA	$\phi 100,00$
HB	65,00
HC	$\phi 78,70$
HD	$\phi 80,00$
HE	$9,20 \pm 0,02$
HF	$36,22 \pm 0,02$
HG	20,00
HH	$\phi 75,48 \pm 0,02$
HK	$\phi 60,77 \pm 0,02$
HL	$\phi 23,90 \pm 0,04$
HM	$R 220,00$
HN	R70,00
HO	50,30
HP	132,71
HQ	80,52
HR	205,85

Flat square Hi -Bri colour picture tube
A51EAMO0X

## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

## Anode voltage

Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $V_{k}=120 \mathrm{~V}$

$V_{\mathrm{a}, \mathrm{g} 4}$	25 kV
$\mathrm{V}_{\mathrm{g} 3}$	7,25 to $8,25 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	310 to 650 V



Spot cut-off design chart.
Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$\mathrm{V}_{\mathrm{g} 2}$ range 310 to 685 V ;
$V_{k}$ range 100 to 125 V .
Adjustment procedure:
Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 125 V ; increase the grid 2 voltage ( $\mathrm{V}_{\mathrm{g} 2}$ ) from approx. 300 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$. The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	29 to $33 \%$ of anode   voltage		
Grid 2 voltage and cathode voltage   for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$	see cut-off design chart		Difference in cut-off voltages between
:---				
guns in any tube	$\quad \Delta \mathrm{V}_{\mathrm{k}} \quad$	lowest value $>80 \%$ of		
:---				
highest value				

To produce white of 6500K + 7 M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical) red gun

38,3\%
green gun 35,8\%
blue gun 25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun
$\min . \quad 0,8$
average 1,1
max. 1,4
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 0,9

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	max.   min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	notes 1, 2, 3   notes 1 and 4
Long-term average current for three guns	$1{ }^{\text {a }}$	max.	$1000 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$V_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage, peak	$V_{g 2 p}$	max.	1000 V	
Cathode voltage positive	$V_{k}$	max.	400 V	
positive operating cut-off, during adjustment	$\mathrm{V}_{\mathrm{k}}$	max.	200 V	
negative	$-V_{k}$	max.	0 V	
negative peak	$-V_{k p}$	max.	2 V	
Heater voltage	$V_{f}$		$V^{+5}+5$	notes 1 and 6
Heater-cathode voltage heater negative with respect to cathode after equipment warm-up period	$\mathrm{V}_{\mathrm{kf}}$	max.	200 V	
heater positive with respect to cathode	$\begin{aligned} & -V_{k f p} \\ & -V_{k f} \end{aligned}$	peak   max.   (d.c. c	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \\ \text { omponent } \end{array}$	note 1

## Notes

1. Absolute maximum rating system.
2. The $X$-ray dose rate remains below the acceptable value of $0,5 \mathrm{mR} / \mathrm{h}$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $12,5 \mathrm{kV}$ $\left(1,5 \times \mathrm{V}_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## BEAM CORRECTIONS

Maximum centring errc: in any direction after colour purity, static convergence, an:d horizontal centre line correction, measured with deflectiol. coils in nominal position 3 mm


Cathode heating time after switching on, measured under typical operating conditions.


Typical cathode drive characteristics.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=100 \mathrm{~V}$ (curve a), and $\mathrm{V}_{\mathrm{k}}=125 \mathrm{~V}$ (curve b).
For optimum picture performance it is recommended that the cathodes are not driven below +1 V .


Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}$.
Scanned area $=406,4 \mathrm{~mm} \times 304,8 \mathrm{~mm}$;
CIE co-ordinates $x=0,313, y=0,329$.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.
Colour co-ordinates:

red	0,635	0,340
green	0,315	0,600
blue	0,150	0,060

## DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.
For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns* is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,3$ ampere-turns**).
If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.
Examples of a double-coil and of a single-coil system are given below.


Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor 2322662 98009; $\mathrm{C}=100 \mathrm{nF}$, for double-coil system, optional for single-coil system.


## Data of degaussing coil

Circumference
Number of turns
Copper-wire diameter
Aluminium-wire diameter
Resistance

double-coil system	single-coil system
125 cm	139 cm
60	140
$0,4 \mathrm{~mm}$	$0,4 \mathrm{~mm}$
$0,5 \mathrm{~mm}$	$0,5 \mathrm{~mm}$
$22 \Omega$ (two coils	$27 \Omega$
in series)	

[^25]
## FLAT SQUARE HIBRICON COLOUR PICTURE TUBES

- Flat and square screen
- 900 deflection
- In-line, hi-bi potential A R T* gun
- 29,1 mm neck diameter
- Mask with corner suspension
- Hibricon screen with pigmented phosphors featuring high brightness and increased contrast performance
- Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 525 lines system
- Internal magnetic shield
- Internal multipole
- Rimband type implosion protection
- The tube is supplied with a matched hybrid saddle toroidal deflection unit of the AT6030 series; it forms a self-converging and raster correction free assembly


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 310 \mathrm{~mA}$
Focusing voltage	$31 \%$ of anode voltage

Types A51EBD00X and A51EBD10X are identical, except for the light transmission of the face glass at centre: 64,5\% for A51EBD00X, and 52,3\% for A51EBD10X.

[^26]GENERAL DATA

## 1. ELECTRICAL

Electron guns

Heating
heater voltage
heater current
Focusing method
Focus lens
Convergence method
Deflection method
Deflection angles (approx.)
diagonal
horizontal
vertical
Direct interelectrode capacitances (approx.)
grid 1 to all other electrodes all cathodes to all other electrodes
each cathode to all other electrodes
grid 3 to all other electrodes
grid 2 to all other electrodes
anode to external conductive coating, including rim band
Resistance between rimband and external conductive coating

## 2. OPTICAL

Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Positional accuracy of the screen with
respect to the glass contour
Phosphors
red
green
blue
Persistence
Colour co-ordinates
red
green
blue
unitized triple-aperture electrodes; aberration reducing triode
$V_{f} \quad 6,3 \mathrm{~V}$

If
310 mA
electrostatic
hi-bi-potential
magnetic
magnetic

	90 deg
	78 deg
	60 deg
$\mathrm{C}_{\mathrm{g} 1}$	17 pF
$\mathrm{C}_{\mathrm{k}}$	15 pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{k} G}, \mathrm{C}_{\mathrm{k} B}$	5 pF
$\mathrm{C}_{\mathrm{g} 3}$	6 pF
$\mathrm{C}_{\mathrm{g} 2}$	$4,5 \mathrm{pF}$
	< 2200 pF
$C_{a}\left(\mathrm{~m}+\mathrm{m}^{\prime}\right)$	$>1600 \mathrm{pF}$
	$\geqslant 50 \mathrm{M} \Omega$

metal-backed vertical phosphor stripes; phosphor lines follow glass contour
high polish
$\min .510,0 \mathrm{~mm}(20,08 \mathrm{in})$
$\mathrm{min} .409,3 \mathrm{~mm}(16,11 \mathrm{in})$
$\mathrm{min} .309,6 \mathrm{~mm}(12,19 \mathrm{in})$
$\min .1253 \mathrm{~cm}^{2}\left(194,22 \mathrm{in}^{2}\right)$
see Figure on the next page
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
medium short
$\frac{x}{0,635} \quad \frac{y}{0,340}$
0,315 0,600
$0,150 \quad 0,060$
$A=171,7 \mathrm{~mm}(6,76 \mathrm{in})$
$B=224,7 \mathrm{~mm}(8,85 \mathrm{in})$
$C=115,6 \mathrm{~mm}(4,55 \mathrm{in})$
$D=174,9 \mathrm{~mm}(6,89 \mathrm{in})$
$E=23,5 \mathrm{~mm}(0,93 \mathrm{in})$


Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

## A51EBD00X

 A51EBD10X3. MECHANICAL (see also the figures on pages 12, 13 and 14)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base designation
Anode contact designation

Bulb
funnel
panel
Implosion protection
Mass
Mounting position
approx. $0,69 \mathrm{~mm}(0,027 \mathrm{in})$

64,5\%
52,3\%
$443,7 \pm 5 \mathrm{~mm}(17,47 \pm 0,20 \mathrm{in})$
$29,{ }_{-0,7}^{+1,4} \mathrm{~mm}(1,15+0,06 \mathrm{in})_{-0,03}{ }_{-0,}$
$\max .546,1 \mathrm{~mm}(21,5 \mathrm{in})$
max. $455,6 \mathrm{~mm}(17,9 \mathrm{in})$
$\max .359,6 \mathrm{~mm}(14,16 \mathrm{in})$
JEDEC B10-277
recessed small cavity cap
(JEDEC no. J1-21; IEC 67-III-2)

EIAJJJ540F 1
to be established
shrink system, UL approved
15 kg ( 33 lbs )
anode contact on top

* In the region of $78,5 \mathrm{~mm}(3,09 \mathrm{in})$ from the neck end, the maximum diameter is $30 \mathrm{~mm}(1,18 \mathrm{in})$.


## RATINGS AND ELECTRICAL DATA

1. LIMITING VALUES (Design maximum rating system unless otherwise stated)

Unless otherwise specified, voltage values are for each gun and values are positive with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	max.   $\min$.	$\begin{aligned} & 30 \mathrm{kV} \\ & 20 \mathrm{kV} \end{aligned}$	notes 1 and 2 note 3
Long-term average current for three guns	$l_{\text {a }}$	max.	$1000 \mu \mathrm{~A}$	note 4
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage	$V_{\mathrm{g} 2}$	max.	1200 V	note 5
Cathode voltage				
positive	$V_{k}$	max.	400 V	
positive operating cut-off	$V_{k}$	max.	200 V	
negative	$-V_{k}$	max.	0 V	
negative peak	$-\mathrm{V}_{\mathrm{kp}}$	max.	2 V	
Cathode to heater voltage				
positive	$V_{k f}$	max.	250 V	
positive peak	$V_{\text {kfp }}$	max.	300 V	note 1
negative	$-V_{k f}$	max.	135 V	
negative peak	$-V_{k f p}$	max.	180 V	note 1
Heater voltage	$V_{f}$		$\begin{aligned} & +5 \% \\ & -10 \% \end{aligned}$	notes 1 and 6

## Notes

1. Absolute maximum rating system.
2. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
3. Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
4. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
5. During adjustment on the production line max. 1500 V is permitted.
6. For maximum cathode life it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## 2. EQUIPMENT DESIGN RANGES

Unless otherwise specified, values are for each gun and voltage values are positive with respect to grid 1.

For anode voltages between 20 kV and 30 kV :
Grid 3 (focusing electrode) voltage $\quad V_{g 3} \quad 29 \%$ to $33 \%$ of anode voltage
Grid 2 voltage and cathode voltage for visual extinction of undeflected focused spot
$\mathrm{V}_{\mathrm{g} 2}, \mathrm{~V}_{\mathrm{k}}$ see cut-off design chart, page 19 ; note 1
Maximum ratio of cathode voltage highest gun to lowest gun in any tube
Video drive characteristics
Grid 3 current
Grid 2 current
Grid 1 current, under cut-off condition

To produce white of the following CIE co-ordinates

Percentage of total anode current supplied by each gun (typical)

Ratio of anode current
red to blue
red to green
blue to green

$$
1,25
$$

see graphs on page 20; note 2

$\lg 3$	-2 to $+2 \mu \mathrm{~A}$
$\lg 2$	-2 to $+2 \mu \mathrm{~A}$
$\lg 1$	-2 to $+2 \mu \mathrm{~A}$

white D

white D	
6500K + 7 M.P.C.D	$9300 \mathrm{~K}+27$ M.P.C.D.
$\mathrm{x} \quad 0,313$	0,281
$\mathrm{y} \quad 0,329$	0,311


red	green	blue	red	green	blue
38,3	35,8	$25,9 \%$	27,9	39,1	$33,0 \%$
min.	typ.	max.	min.	typ.	max.
1,1	1,5	1,9	0,6	0,9	1,2
0,8	1,1	1,4	0,5	0,7	1,0
0,5	0,7	1,0	0,6	0,9	1,2

## Notes

1. The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 130 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 575 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $\mathrm{V}_{\mathrm{k}}$ of the remaining guns so that the rasters of these guns also become visible.
2. For optimum picture performance it is recommended that the cathodes are not driven below +1 V .

## 3. EXAMPLE OF USE OF DESIGN RANGES

Unless otherwise specified, voltage values are for each gun and are positive with respect to grid 1.
Anode voltage
Grid 3 (focusing electrode) voltage

$$
\begin{array}{lr}
\mathrm{V}_{\mathrm{a}, \mathrm{~g} 4} & 27,5 \mathrm{kV} \\
\mathrm{~V}_{\mathrm{g} 3} & 8,0 \text { to } 9,1 \mathrm{kV}
\end{array}
$$

Grid 2 voltage when circuit design utilizes cathode voltage of 130 V for visual extinction of focused spot
Heater voltage, under operating conditions
$\mathrm{V}_{\mathrm{g} 2} \quad 575$ to 825 V
$\mathrm{V}_{\mathrm{f}} \quad 6,3 \mathrm{~V}$ note 1

	A51EBD00X	A51EBD10X
L	$204 \mathrm{~cd} / \mathrm{m}^{2}$	$165 \mathrm{~cd} / \mathrm{m}^{2}$
	(59,64 foot lambert)	(48,24 foot lambert)
	$198 \mathrm{~cd} / \mathrm{m}^{2}$	$160 \mathrm{~cd} / \mathrm{m}^{2}$
	(57,89 foot lambert)	(46,78 foot lambert)

## 4. BEAM CORRECTIONS

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position
$4 \mathrm{~mm}(0,16 \mathrm{in})$
5. LIMITING CIRCUIT VALUES

## High voltage circuits

To minimize the possibility of damage to the circuit caused by a momentary internal arc, it is recommended that the high-voltage power supply and the grid 3 power supply be of the limited energy type.
Grid 3 circuit resistance
Grid 1 to cathode circuit resistance (each gun)

$R_{g} 3$	max.	$70 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1 \mathrm{k}}$	max.	$0,75 \mathrm{M} \Omega$

## Notes

1. The tube has quick-heating cathodes; if standby conditions are still required operate at $5,0 \mathrm{~V}$.
2. Tube settings adjusted to produce white of $9300 \mathrm{~K}+27$ M.P.C.D. $(x=0,281, y=0,311)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.
3, Tube settings adjusted to produce white of 6500K +7 M.P.C.D. $(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

## 6. DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.
For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns* is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,3$ ampere-turns**).
If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.
Examples of a double-coil and of a single-coil system are given below.


Position of degaussing coils on the picture tube.

Degaussing circuit using dual
PTC thermistor 2322662 98009; $\mathrm{C}=100 \mathrm{nF}$, for double-coil system, optional for single-coil system.


## Data of degaussing coil

## Circumference

Number of turns
Copper-wire diameter
Aluminium-wire diameter
Resistance

double-coil system	single-coil system
$125 \mathrm{~cm}(49 \mathrm{in})$	$139 \mathrm{~cm}(54 \mathrm{in})$
60	140
$0,4 \mathrm{~mm}(0,016 \mathrm{in})$	$0,4 \mathrm{~mm}(0,016 \mathrm{in})$
$0,5 \mathrm{~mm}(0,02 \mathrm{in})$	$0,5 \mathrm{~mm}(0,02 \mathrm{in})$
$22 \Omega$ (two coils	$27 \Omega$
in series)	

* For double-coil system; 700 ampere-turns for single-coil system.
** For double-coil system; $\leqslant 0,6$ ampere-turns for single-coil system.


## 7. FLASHOVER PROTECTION

With the high voltage used with this tube (max. 30 kV ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $13,5 \mathrm{kV}\left(1,5 \times \mathrm{V}_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=27,5 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## X-RADIATION LIMIT

Maximum anode voltage at which the $X$-radiation emitted will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ at an anode current of $300 \mu \mathrm{~A}$
entire tube $35,5 \mathrm{kV}$ *
face-plate only 37 kV

## Warning:

If the value for the tube face only is used as design criterion, adequate shielding must be provided in the receiver for the anode contact and/or certain portions of the tube funnel and panel skirt to insure that the $X$-radiation from the receiver is attenuated to a value equal to or lower than that specified for the face of the tube.

Maximum voltage difference between anode and focus electrode at which the X -radiation will not exceed 0,5 mR/h

## Warning:

If the voltage value above can be exceeded in the receiver, additional attenuation of the X -radiation through the tube neck may be required.

The $X$-radiation emitted from this picture tube, as measured in accordance with the procedure of JEDEC Publication No. 64D, will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ throughout the useful tube life when operated within the 'Design maximum ratings'.

The tube should not be operated beyond its 'Design maximum ratings' stated above, but its X-radiation will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ for anode voltage and current combinations given by the isoexposure-rate limits characteristics shown on the next page.

Operation above the values shown by the curve may result in failure of the television receiver to comply with the Federal Performance Standard of the U.S. for Television Receivers, Section 1020-10 of Part 1020 of Title 21, Code of Federal Regulation (PL90-602) as published in the Federal Register Volume 38, No. 198, Monday, October 15, 1973.
Maximum X-radiation as a function of anode voltage at $300 \mu \mathrm{~A}$ anode current is shown by the curve on the next page. X-radiation at a constant anode voltage varies linearly with anode current.

[^27]
$0,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curve.


X-radiation limit curve at a constant anode current of $300 \mu \mathrm{~A}$.

## WARNINGS

## X-radiation

Operation of this colour picture tube at abnormal conditions which exceed the $0,5 \mathrm{mR} / \mathrm{h}$ iso-dose rate curve shown on the preceding page may produce soft $X$-rays which may constitute a health hazard on prolonged exposure at close range unless adequate external screening is provided. Precautions must therefore be exercised during servicing of TV receivers employing this tube to assure that the anode voltage and other tube voltages are adjusted to the recommended values so that the 'Design maximum ratings' will not be exceeded.

## Tube replacement

This picture tube employs integral X-radiation and implosion protection and must be replaced with a tube of the same type number or a recommended replacement to assure continued safety.

## Shock hazard

The high voltage at which the tube is operated may be very dangerous. The design of the TV receiver should include safeguards to prevent the userfrom coming in contact with the high voltage. Extreme care should be taken in the servicing or adjustment of any high-voltage circuit.
Caution must be exercised during the replacement or servicing of the picture tube since a residual electrical charge may be contained on the high-voltage capacitor formed by the external and internal conductive coatings of the picture tube funnel. To remove any residual high-voltage charges from the picture tube, 'bleed-off the charge by shorting the anode contact button, located in the funnel of the picture tube, to the external conductive coating before handling the tube. Discharging the high voltage to isolated metal parts such as cabinets and control brackets may produce a shock hazard.

## Tube handling

Picture tubes should be kept in the shipping box or similar protective container until just prior to installation. Wear heavy protective clothing, including gloves and safety goggles with side shields, in areas containing unpacked and unprotected tubes to prevent possible injury from flying glass in the event a tube breaks. Handle the picture tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal area.

The receiver mounting system should incorporate sufficient cushioning so that under normal conditions of shipment or handling an impact acceleration of more than 35 g is never applied to the tube.

## MECHANICAL DATA

The dimensions are given in mm, and in inches between brackets.
Notes are on page 15.



MECHANICAL DATA (continued)

i.c. $=$ internally connected (not to be used)

## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. The displacement of any lug with respect to the plane through the three other lugs is max. $1,3 \mathrm{~mm}$ $(0,05 \mathrm{in})$. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}(0,07 \mathrm{in})$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $354 \mathrm{~mm}(13,94 \mathrm{in}) \times$ 449 mm (17,68 in).
6. Not applicable.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. $50 \mathrm{~mm}(1,968 \mathrm{in})$, concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-1II-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate $3,2 \mathrm{~mm}$ ( $0,13 \mathrm{in}$ ) beyond the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		sagittal
$x$		
mm	y	ym   height
0	154,8	8,9
20	154,8	9,0
40	154,8	9,3
60	154,7	10,0
80	154,6	10,9
100	154,5	12,1
120	154,4	13,6
140	154,2	15,4
160	154,1	17,5
180	153,9	20,0
200	153,7	22,8
203,5	153,6	23,4
203,6	150	23,0
203,7	140	21,9
204,0	120	20,0
204,2	100	18,4
204,4	80	17,1
204,5	60	16,1
204,6	40	15,4
204,6	20	15,0
204,7	0	14,9


| coordinates |  |
| :--- | :---: | :--- |
| x |  |
| inch |  |\(\left.\quad \begin{array}{c}y <br>

inch\end{array} \quad $$
\begin{array}{l}\text { sagittal } \\
\text { height } \\
\text { inch }\end{array}
$$\right]\)

## Maximum cone contour



Dimensions in mm

		max. distance from centre										
O	from section 1	00	100	200	300	diag.	400	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	800	$90^{\circ}$
1	0	225,7	228,9	239,1	257,6	271,8	267,2	227,9	203,1	187,9	179,6	177,0
2	10	224,6	227,7	237,7	255,9	270,0	265,3	226,7	201,9	186,8	178,6	175,9
3	20	221,8	224,8	234,3	251,1	264,3	259,6	222,9	198,9	184,2	176,1	173,5
4	30	218,1	220,9	229,6	244,5	254,7	250,6	217,9	195,1	180,9	173,1	170,6
5	40	213,8	216,4	224,1	236,5	243,1	239,6	212,0	190,9	177,3	169,9	167,5
6	50	208,7	211,0	217,7	227,5	231,3	228,4	205,6	186,3	173,6	166,5	164,2
7	60	202,6	204,5	210,0	217,5	219,5	217,0	198,5	181,0	169,3	162,6	160,5
8	70	195,1	196,8	201,3	206,9	207,6	205,4	190,3	175,1	164,4	158,3	156,3
9	80	186,2	187,6	191,4	195,6	195,4	193,5	181,3	168,4	158,9	153,3	151,5
10	90	175,6	176,9	180,1	183,3	182,8	181,1	171,4	160,7	152,5	147,6	146,0
11	100	163,6	164,6	167,4	169,9	169,2	167,9	160,4	151,9	145,2	141,0	139,6
12	110	150,3	151,3	153,8	155,7	154,7	153,6	147,9	141,7	136,6	133,4	132,3
13	120	136,4	137,3	139,3	140,4	139,5	138,6	134,5	130,3	126,8	124,6	123,9
14	130	122,1	122,8	124,4	124,9	124,0	123,3	120,7	118,2	116,1	114,7	114,3
15	140	107,5	107,7	108,2	108,6	108,4	108,2	107,0	105,7	104,5	103,8	103,5
16	150	92,6	92,3	92,3	92,6	92,8	92,9	92,9	92,6	92,1	91,6	91,4
17	159,5	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1

Flat square Hibricon colour picture tubes

Dimensions in inches

sec-   tion	nom.   distance   from section 1	00	100	200	300	diag.	400	500	600	700	800	900
	0	8,89	9,01	9,41	10,14	10,70	10,52	8,97	8,00	7,40	7,07	6,97
2	0,39	8,84	8,96	9,36	10,07	10,63	10,44	8,93	7,95	7,35	7,03	6,93
3	0,79	8,73	8,85	9,22	9,89	10,41	10,22	8,78	7,83	7,25	6,93	6,83
4	1,18	8,59	8,70	9,04	9,63	10,03	9,87	8,58	7,68	7,12	6,81	6,72
5	1,57	8,42	8,52	8,82	9,31	9,57	9,43	8,35	7,52	6,98	6,69	6,59
6	1,97	8,22	8,31	8,57	8,96	9,11	8,99	8,09	7,33	6,83	6,56	6,46
7	2,36	7,98	8,05	8,27	8,56	8,64	8,54	7,81	7,13	6,67	6,40	6,32
8	2,76	7,68	7,75	7,93	8,15	8,17	8,09	7,49	6,89	6,47	6,23	6,15
9	3,15	7,33	7,39	7,54	7,70	7,69	7,62	7,14	6,63	6,26	6,04	5,96
10	3,54	6,91	6,96	7,09	7,22	7,20	7,13	6,75	6,33	6,00	5,81	5,75
11	3,94	6,44	6,48	6,59	6,69	6,66	6,61	6,31	5,98	5,72	5,55	5,50
12	4,33	5,92	5,96	6,06	6,13	6,09	6,05	5,82	5,58	5,38	5,25	5,21
13	4,72	5,37	5,41	5,48	5,53	5,49	5,46	5,30	5,13	4,99	4,91	4,88
14	5,12	4,81	4,83	4,90	4,92	4,88	4,85	4,75	4,65	4,57	4,52	4,50
15	5,51	4,23	4,24	4,26	4,28	4,27	4,26	4,21	4,16	4,11	4,09	4,07
16	5,91	3,65	3,63	3,63	3,65	3,65	3,66	3,66	3,65	3,63	3,61	3,60
17	6,28	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07

Cavity cap JEDEC J1-21, IEC 67-III-2



10-PIN BASE JEDEC B10-277



Spot cut-off design chart.


Cathode heating time to attain a certain percentage
of the cathode current at equilibrium conditions.


Typical cathode drive characteristic.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=30 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=105 \mathrm{~V}$ (curve a) and $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$ (curve b).



A51EBD00X

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$V_{a, g 4}=30 \mathrm{kV} ; \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V} ; \mathrm{V}_{\mathrm{g} 3}$ adjusted for optimum focus.
White-light output $=9300 \mathrm{~K}+27$ M.P.C.D.;
CIE co-ordinates $x=0,281, y=0,311$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
$\left(16,11 \times 12,19 \mathrm{in}^{2}\right)$.


Luminance at the centre of the screen as a .
function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=30 \mathrm{kV} ; \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V} ; \mathrm{V}_{\mathrm{g} 3}$ adjusted for optimum focus.
White-light output $=9300 \mathrm{~K}+27$ M.P.C.D.;
CIE co-ordinates $x=0,281, y=0,311$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
$\left(16,11 \times 12,19 \mathrm{in}^{2}\right)$.

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=30 \mathrm{kV} ; \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V} ; \mathrm{V}_{\mathrm{g} 3}$ adjusted for optimum focus.
White-light output $=6500 \mathrm{~K}+7$ M.P.C.D.;
CIE co-ordinates $x=0,313, y=0,329$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
( $16,11 \times 12,19 \mathrm{in}^{2}$ ).


## A51EBD10X

Luminance at the centre of the screen as a function of $I_{\text {total }}$
$V_{a, g 4}=30 \mathrm{kV} ; \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V} ; \mathrm{V}_{\mathrm{g}} 3$ adjusted for optimum focus.
White-light output $=6500 \mathrm{~K}+7$ M.P.C.D.;
CIE co-ordinates $x=0,313, y=0,329$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
(16,11 $\times 12,19$ in 2 ).


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,281, y=0,311$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$x$		$y$
	0,635		0,340
red	0,315		0,600
green	0,150	0,060	

## $90^{\circ}$ FLAT SQUARE COLOUR PICTIJRE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- Self-conver ging and raster correction free
- $51 \mathrm{~cm}, 90^{\circ}$ colour picture tube A51EBD . . X
- Hybrid saddle toroidal deflection unit of the AT6030 series

QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	$29,1 \mathrm{~mm}$

## AVAILABLE ASSEMBLIES

assembly type	assembly components
A51EBD00X40	tube A51EBD00X + deflection unit AT6030, type 1   tube A51EBD10X + deflection unit AT6030, type 1




## ELECTRICAL DATA OF DEFLECTION UNIT

Line deflection coils
inductance at 1 V (r.m.s.), 1 kHz
resistance at $25{ }^{\circ} \mathrm{C}$
magnetic flux
Line deflection current, edge to edge, at 25 kV

Field deflection coils
inductance at 1 V (r.m.s.), 1 kHz resistance at $25{ }^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV

Cross-talk

Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp between field coil and core clamp
$2,0 \mathrm{mH} \pm 4 \%$
2,35 $\Omega \pm 10 \%$
$5,70 \mathrm{mWb} \pm 2,5 \%$

2,85 A (p-p)
$19,5 \mathrm{mH} \pm 10 \%$
$9,7 \Omega \pm 7 \%$

1,09 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)

$$
\begin{aligned}
& >500 \mathrm{M} \Omega \\
& >500 \mathrm{M} \Omega \\
& >10 \mathrm{M} \Omega
\end{aligned}
$$



Connection diagram and top view of terminals of deflection unit AT6030, type 1. The beginning of the windings is indicated with $\bullet$.

## FLAT SQUARE HIBRICON COLOUR PICTURE TUBES

- Flat and square screen
- $90^{\circ}$ deflection
- In-line, hi-bi potential A R T* gun
- 29,1 mm neck diameter
- Mask with corner suspension
- Hibricon screen with pigmented phosphors featuring high brightness and increased contrast performance
- Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 525 lines system
- Internal magnetic shield
- Internal multipole
- Reinforced envelope for push-through mounting
- The tube is supplied with a matched hybrid saddle toroidal deflection unit of the AT6030 series; it forms a self-converging and raster correction free assembly


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 310 \mathrm{~mA}$
Focusing voltage	$31 \%$ of anode voltage

Types A51EBS00X and A51EBS10X are identical, except for the light transmission of the face glass at centre: $64,5 \%$ for A51EBS00X, and 52,3\% for A51EBS10X.

[^28]
## GENERAL DATA

## 1. ELECTRICAL

Electron guns

Heating
heater voltage
heater current
Focusing method
Focus lens
Convergence method
Deflection method
Deflection angles (approx.)
diagonal
horizontal
vertical
Direct interelectrode capacitances (approx.)
grid 1 to all other electrodes
all cathodes to all other electrodes
each cathode to all other electrodes
grid 3 to all other electrodes
grid 2 to all other electrodes
anode to external conductive coating, including rim band
Resistance between rimband and external conductive coating
unitized triple-aperture electrodes; aberration reducing triode

$V_{f}$	$6,3 \mathrm{~V}$
If	310 mA
electrostatic	
hi-bi-potential	
magnetic	
magnetic	

90 deg
78 deg
60 deg

$\mathrm{C}_{\mathrm{g} 1}$	17 pF
$\mathrm{C}_{\mathrm{k}}$	15 pF
$\mathrm{C}_{k R}, \mathrm{C}_{k G}, \mathrm{C}_{k B}$	5 pF
$\mathrm{C}_{\mathrm{g} 3}$	6 pF
$\mathrm{C}_{\mathrm{g} 2}$	$4,5 \mathrm{pF}$
$\left.\mathrm{C}_{\mathrm{a}(\mathrm{m}}+\mathrm{m}^{\prime}\right)$	$<2200 \mathrm{pF}$
	$>1600 \mathrm{pF}$
	$\geqslant 50 \mathrm{M} \Omega$

2. OPTICAL

## Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Positional accuracy of the screen with respect to the glass contour

Phosphors
red
green
blue

## Persistence

Colour co-ordinates red
green
blue
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
high polish
$\min .510,0 \mathrm{~mm}(20,08 \mathrm{in})$
$\mathrm{min} .409,3 \mathrm{~mm}(16,11 \mathrm{in})$
min . 309,6 mm (12,19 in)
$\min .1253 \mathrm{~cm}^{2}\left(194,22 \mathrm{in}^{2}\right)$
see Figure on the next page
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
medium short
$\begin{array}{cc}\frac{\mathrm{x}}{0,635} & \frac{y}{0,340} \\ 0,315 & 0,600 \\ 0,150 & 0,060\end{array}$
$A=171,7 \mathrm{~mm}(6,76 \mathrm{in})$
$B=223,7 \mathrm{~mm}(8,81 \mathrm{in})$
$C=115,6 \mathrm{~mm}(4,55 \mathrm{in})$
$D=173,9 \mathrm{~mm}(6,85 \mathrm{in})$
$E=23,5 \mathrm{~mm}(0,93 \mathrm{in})$


7293407
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre $\begin{array}{ll}\text { A51EBS00X } & 64,5 \% \\ \text { A51EBS10X } & 52,3 \%\end{array}$
3. MECHANICAL (see also the figures on pages 12, 13 and 14)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base designation
Anode contact designation

Bulb
funnel
panel
Implosion protection
Mass
Mounting position
approx. $0,69 \mathrm{~mm}(0,027 \mathrm{in})$
$443,7 \pm 5 \mathrm{~mm}(17,47 \pm 0,20 \mathrm{in})$
$\left.\begin{array}{c}29,1 \\ -0,7 \\ \text { 1,4 } \\ \mathrm{mm}(1,15\end{array}{ }_{-0,03}^{+0,06} \mathrm{in}\right)$ *
max. $546,1 \mathrm{~mm}(21,5 \mathrm{in})$
max. $455,6 \mathrm{~mm}(17,9 \mathrm{in})$
max. $359,6 \mathrm{~mm}(14,16 \mathrm{in})$
JEDEC B10-277
recessed small cavity cap
(JEDEC no. J1-21; IEC 67-III-2)

EIAJ-J540F 1
to be established
reinforced envelope for push-through 15 kg (33 lbs)
anode contact on top

[^29]
## RATINGS AND ELECTRICAL DATA

1. LIMITING VALUES (Design maximum rating system unless otherwise stated)

Unless otherwise specified, voltage values are for each gun and values are positive with respect to grid 1.

Anode voltage	$V_{a, g 4}$	max. $\min$.	$\begin{aligned} & 30 \mathrm{kV} \\ & 20 \mathrm{kV} \end{aligned}$	notes 1 and 2 note 3
Long-term average current for three guns	$l_{\text {a }}$	max.	$1000 \mu \mathrm{~A}$	note 4
Grid 3 (focusing electrode) voltage	$V_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	max.	1200 V	note 5
Cathode voltage positive positive operating cut-off negative negative peak	$\begin{aligned} & V_{k} \\ & V_{k} \\ & -V_{k} \\ & -V_{k p} \end{aligned}$	$\max$.   max.   max.   max.	$\begin{array}{r} 400 \mathrm{~V} \\ 200 \mathrm{~V} \\ 0 \mathrm{~V} \\ 2 \mathrm{~V} \end{array}$	
Cathode to heater voltage positive positive peak negative negative peak	$V_{k f}$   $V_{k f p}$   $-V_{k f}$   $-V_{k f p}$	max. max.   max. max.	$\begin{aligned} & 250 \mathrm{~V} \\ & 300 \mathrm{~V} \\ & 135 \mathrm{~V} \\ & 180 \mathrm{~V} \end{aligned}$	note 1 note 1
Heater voltage	$V_{f}$		$\begin{gathered} +5 \% \\ -10 \% \end{gathered}$	notes 1 and 6

## Notes

1. Absolute maximum rating system.
2. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
3. Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
4. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
5. During adjustment on the production line max. 1500 V is permitted.
6. For maximum cathode life it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## 2. EQUIPMENT DESIGN RANGES

Unless otherwise specified, values are for each gun and voltage values are positive with respect to grid 1.

For anode voltages between 20 kV and 30 kV :
Grid 3 (focusing electrode) voltage
Grid 2 voltage and cathode voltage for visual
extinction of undeflected focused spot
Maximum ratio of cathode voltage
highest gun to lowest gun in any tube
Video drive characteristics
Grid 3 current
Grid 2 current
Grid 1 current, under cut-off condition
To produce white of the following
CIE co-ordinates
Percentage of total anode current supplied
by each gun (typical)
Ratio of anode current
red to blue
red to green
blue to green
$\mathrm{V}_{\mathrm{g} 3} \quad 29 \%$ to $33 \%$ of anode voltage
$\mathrm{V}_{\mathrm{g} 2}, \mathrm{~V}_{\mathrm{k}}$ see cut-off design chart, page 19 ; note 1

$$
1,25
$$

see graphs on page 20 ; note 2
$\begin{array}{ll}\lg 3 & -2 \text { to }+2 \mu \mathrm{~A} \\ \lg 2 & -2 \text { to }+2 \mu \mathrm{~A} \\ \lg 1 & -2 \text { to }+2 \mu \mathrm{~A}\end{array}$

6500K + 7 M.P.C.D			9300K + 27 M.P.C.D.		
x	0,31			0,281	
Y	0,32			0,311	
red	green	blue	red	green	blue
38,3	35,8	25,9\%	27,9	39,1	33,0\%
min.	typ.	max.	min.	typ.	max.
1,1	1,5	1,9	0,6	0,9	1,2
0,8	1,1	1,4	0,5	0,7	1,0
0,5	0,7	1,0	0,6	0,9	1,2

## Notes

1. The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 130 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 575 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $\mathrm{V}_{\mathrm{k}}$ of the remaining guns so that the rasters of these guns also become visible.
2. For optimum picture performance it is recommended that the cathodes are not driven below +1 V .
3. EXAMPLE OF USE OF DESIGN RANGES

Unless otherwise specified, voltage values are for each gun and are positive with respect to grid 1.

4. BEAM CORRECTIONS

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position 4 mm ( $0,16 \mathrm{in}$ )
5. LIMITING CIRCUIT VALUES

## High voltage circuits

To minimize the possibility of damage to the circuit caused by a momentary internal arc, it is recommended that the high-voltage power supply and the grid 3 power supply be of the limited energy type.

| Grid 3 circuit resistance | $R_{\mathrm{g} 3}$ | $\max$ | $70 \mathrm{M} \Omega$ |
| :--- | :--- | :--- | ---: | ---: |
| Grid 1 to cathode circuit resistance (each gun) | $\mathrm{R}_{\mathrm{g} 1 \mathrm{k}}$ | $\max$. | $0,75 \mathrm{M} \Omega$ |

## Notes

1. The tube has quick-heating cathodes; if standby conditions are still required operate at $5,0 \mathrm{~V}$.
2. Tube settings adjusted to produce white of $9300 \mathrm{~K}+27$ M.P.C.D. $(x=0,281, y=0,311)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.
3. Tube settings adjusted to produce white of $6500 \mathrm{~K}+7$ M.P.C.D. $(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

## 6. DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.
For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns* is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,3$ ampere-turns**).
If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.

Examples of a double-coil and of a single-coil system are given below.


Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor 2322662 98009; C $=100 \mathrm{nF}$, for double-coil system, optional for single-coil system.

## Data of degaussing coil

Circumference
Number of turns
Copper-wire diameter
Aluminium-wire diameter
Resistance


7 Z95546

	double-coil system	single-coil system
	$125 \mathrm{~cm}(49 \mathrm{in})$	$139 \mathrm{~cm}(54 \mathrm{in})$
Circumference	60	140
Number of turns	$0,4 \mathrm{~mm}(0,016 \mathrm{in})$	$0,4 \mathrm{~mm}(0,016 \mathrm{in})$
Copper-wire diameter	$0,5 \mathrm{~mm}(0,02 \mathrm{in})$	$0,5 \mathrm{~mm}(0,02 \mathrm{in})$
Aluminium-wire diameter	$22 \Omega$ (two coils	$27 \Omega$
Resistance	in series)	

* For double-coil system; 700 ampere-turns for single-coil system.
** For double-coil system; $\leqslant 0,6$ ampere-turns for single-coil system.


## 7. FLASHOVER PROTECTION

With the high voltage used with this tube (max. 30 kV ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode ( g 3 ) of $13,5 \mathrm{kV}\left(1,5 \times \mathrm{V}_{\mathrm{g}}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=27,5 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## X-RADIATION LIMIT

Maximum anode voltage at which the $X$-radiation emitted will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ at an anode current of $300 \mu \mathrm{~A}$
entire tube $\quad 35,5 \mathrm{kV}$ *
face-plate only 37 kV

## Warning:

If the value for the tube face only is used as design criterion, adequate shielding must be provided in the receiver for the anode contact and/or certain portions of the tube funnel and panel skirt to insure that the X -radiation from the receiver is attenuated to a value equal to or lower than that specified for the face of the tube.

Maximum voltage difference between anode and focus electrode at which the X -radiation will not exceed $0,5 \mathrm{mR} / \mathrm{h}$

## Warning:

If the voltage value above can be exceeded in the receiver, additional attenuation of the X -radiation through the tube neck may be required.
The X -radiation emitted from this picture tube, as measured in accordance with the procedure of JEDEC Publication No. 64D, will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ throughout the useful tube life when operated within the 'Design maximum ratings'.

The tube should not be operated beyond its 'Design maximum ratings' stated above, but its X-radiation will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ for anode voltage and current combinations given by the isoexposure-rate limits characteristics shown on the next page.
Operation above the values shown by the curve may result in failure of the television receiver to comply with the Federal Performance Standard of the U.S. for Television Receivers, Section 1020-10 of Part 1020 of Title 21, Code of Federal Regulation (PL90-602) as published in the Federal Register Volume 38, No. 198, Monday, October 15, 1973.

Maximum X-radiation as a function of anode voltage at $300 \mu \mathrm{~A}$ anode current is shown by the curve on the next page. X-radiation at a constant anode voltage varies linearly with anode current.

[^30]
$0,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curve.


X-radiation limit curve at a constant anode current of $300 \mu \mathrm{~A}$.

## WARNINGS

## X-radiation

Operation of this colour picture tube at abnormal conditions which exceed the $0,5 \mathrm{mR} / \mathrm{h}$ iso-dose rate curve shown on the preceding page may produce soft X -rays which may constitute a health hazard on prolonged exposure at close range unless adequate external screening is provided. Precautions must therefore be exercised during servicing of TV receivers employing this tube to assure that the anode voltage and other tube voltages are adjusted to the recommended values so that the 'Design maximum ratings' will not be exceeded.

## Tube replacement

This picture tube employs integral X-radiation and implosion protection and must be replaced with a tube of the same type number or a recommended replacement to assure continued safety.

## Shock hazard

The high voltage at which the tube is operated may be very dangerous. The design of the TV receiver should include safeguards to prevent the userfrom coming in contact with the high voltage. Extreme care should be taken in the servicing or adjustment of any high-voltage circuit.

Caution must be exercised during the replacement or servicing of the picture tube since a residual electrical charge may be contained on the high-voltage capacitor formed by the external and internal conductive coatings of the picture tube funnel. To remove any residual high-voltage charges from the picture tube, 'bleed-off the charge by shorting the anode contact button, located in the funnel of the picture tube, to the external conductive coating before handling the tube. Discharging the high voltage to isolated metal parts such as cabinets and control brackets may produce a shock hazard.

## Tube handling

Picture tubes should be kept in the shipping box or similar protective container until just prior to installation. Wear heavy protective clothing, including gloves and safety goggles with side shields, in areas containing unpacked and unprotected tubes to prevent possible injury from flying glass in the event a tube breaks. Handle the picture tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal area.
The receiver mounting system should incorporate sufficient cushioning so that under normal conditions of shipment or handling an impact acceleration of more than 35 g is never applied to the tube.

## MECHANICAL DATA

The dimensions are given in mm , and in inches between brackets.
Notes are on page 15.


Flat square Hibricon colour picture tubes
A51EBS00X A51EBS10X


## A51EBS00X

 A51EBS10X
## MECHANICAL DATA (continued)


i.c. $=$ internally connected (not to be used)

## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. The displacement of any lug with respect to the plane through the three other lugs is max. $1,3 \mathrm{~mm}$ ( $0,05 \mathrm{in}$ ). This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}(0,07 \mathrm{in})$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $354 \mathrm{~mm}(13,94 \mathrm{in}) \times$ 449 mm (17,68 in).
6. Not applicable.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. $50 \mathrm{~mm}(1,968 \mathrm{in})$, concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate $3,2 \mathrm{~mm}$ ( $0,13 \mathrm{in}$ ) beyond the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		
$x$	y   $m m$	sagittal   height   $m m$
0	154,8	8,9
20	154,8	9,0
40	154,8	9,3
60	154,7	10,0
80	154,6	10,9
100	154,5	12,1
120	154,4	13,6
140	154,2	15,4
160	154,1	17,5
180	153,9	20,0
200	153,7	22,8
203,5	153,6	23,4
203,6	150	23,0
203,7	140	21,9
204,0	120	20,0
204,2	100	18,4
204,4	80	17,1
204,5	60	16,1
204,6	40	15,4
204,6	20	15,0
204,7	0	14,9


coordinates		
r   inch	y   inch	sagittal   height   inch
0	6,09	0,35
0,79	6,09	0,35
1,57	6,09	0,37
2,36	6,09	0,39
3,15	6,09	0,43
3,94	6,08	0,48
4,72	6,08	0,54
5,51	6,07	0,61
6,30	6,07	0,69
7,09	6,06	0,79
7,87	6,05	0,90
8,01	6,05	0,92
8,02	5,91	0,91
8,02	5,51	0,86
8,03	4,72	0,79
8,04	3,94	0,72
8,05	3,15	0,67
8,05	2,36	0,63
8,06	1,57	0,61
8,06	0,79	0,59
8,06	0	0,59

A51EBS00X A51EBS10X

## Maximum cone contour



Dimensions in mm

sec-   tion   tion   distance   from section 1	00	100	200	300	diag.	400	500	600	700	800	900	
	0	225,7	228,9	239,1	257,6	271,8	267,2	227,9	203,1	187,9	179,6	177,0
2	10	224,6	227,7	237,7	255,9	270,0	265,3	226,7	201,9	186,8	178,6	175,9
3	20	221,8	224,8	234,3	251,1	264,3	259,6	222,9	198,9	184,2	176,1	173,5
4	30	218,1	220,9	229,6	244,5	254,7	250,6	217,9	195,1	180,9	173,1	170,6
5	40	213,8	216,4	224,1	236,5	243,1	239,6	212,0	190,9	177,3	169,9	167,5
6	50	208,7	211,0	217,7	227,5	231,3	228,4	205,6	186,3	173,6	166,5	164,2
7	60	202,6	204,5	210,0	217,5	219,5	217,0	198,5	181,0	169,3	162,6	160,5
8	70	195,1	196,8	201,3	206,9	207,6	205,4	190,3	175,1	164,4	158,3	156,3
9	80	186,2	187,6	191,4	195,6	195,4	193,5	181,3	168,4	158,9	153,3	151,5
10	90	175,6	176,9	180,1	183,3	182,8	181,1	171,4	160,7	152,5	147,6	146,0
11	100	163,6	164,6	167,4	169,9	169,2	167,9	160,4	151,9	145,2	141,0	139,6
12	110	150,3	151,3	153,8	155,7	154,7	153,6	147,9	141,7	136,6	133,4	132,3
13	120	136,4	137,3	139,3	140,4	139,5	138,6	134,5	130,3	126,8	124,6	123,9
14	130	122,1	122,8	124,4	124,9	124,0	123,3	120,7	118,2	116,1	114,7	114,3
15	140	107,5	107,7	108,2	108,6	108,4	108,2	107,0	105,7	104,5	103,8	103,5
16	150	92,6	92,3	92,3	92,6	92,8	92,9	92,9	92,6	92,1	91,6	91,4
17	159,5	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1	78,1

Dimensions in inches

		max. distance from centre										
on	from section 1	00	100	200	$30^{\circ}$	diag.	$40^{\circ}$	500	600	700	800	900
1	0	8,89	9,01	9,41	10,14	10,70	10,52	8,97	8,00	7,40	7,07	6,97
2	0,39	8,84	8,96	9,36	10,07	10,63	10,44	8,93	7,95	7,35	7,03	6,93
3	0,79	8,73	8,85	9,22	9,89	10,41	10,22	8,78	7,83	7,25	6,93	6,83
4	1,18	8,59	8,70	9,04	9,63	10,03	9,87	8,58	7,68	7,12	6,81	6,72
5	1,57	8,42	8,52	8,82	9,31	9,57	9,43	8,35	7,52	6,98	6,69	6,59
6	1,97	8,22	8,31	8,57	8,96	9,11	8,99	8,09	7,33	6,83	6,56	6,46
7	2,36	7,98	8,05	8,27	8,56	8,64	8,54	7,81	7,13	6,67	6,40	6,32
8	2,76	7,68	7,75	7,93	8,15	8,17	8,09	7,49	6,89	6,47	6,23	6,15
9	3,15	7,33	7,39	7,54	7,70	7,69	7,62	7,14	6,63	6,26	6,04	5,96
10	3,54	6,91	6,96	7,09	7,22	7,20	7,13	6,75	6,33	6,00	5,81	5,75
11	3,94	6,44	6,48	6,59	6,69	6,66	6,61	6,31	5,98	5,72	5,55	5,50
12	4,33	5,92	5,96	6,06	6,13	6,09	6,05	5,82	5,58	5,38	5,25	5,21
13	4,72	5,37	5,41	5,48	5,53	5,49	5,46	5,30	5,13	4,99	4,91	4,88
14	5,12	4,81	4,83	4,90	4,92	4,88	4,85	4,75	4,65	4,57	4,52	4,50
15	5,51	4,23	4,24	4,26	4,28	4,27	4,26	4,21	4,16	4,11	4,09	4,07
16	5,91	3,65	3,63	3,63	3,65	3,65	3,66	3,66	3,65	3,63	3,61	3,60
17	6,28	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07

Cavity cap JEDEC J1-21, IEC 67-III-2


REFERENCE LINE GAUGE GR90CJ4


10-PIN BASE JEDEC B10-277



Spot cut-off design chart.


Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.


Typical cathode drive characteristic.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=30 \mathrm{kV}$;
$V_{g} 3$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=105 \mathrm{~V}$ (curve a) and $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$ (curve b).



A51EBS00X

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=30 \mathrm{kV} ; \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V} ; \mathrm{V}_{\mathrm{g} 3}$ adjusted for optimum focus.
White-light output $=9300 \mathrm{~K}+27$ M.P.C.D.;
CIE co-ordinates $x=0,281, y=0,311$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
$\left(16,11 \times 12,19 \mathrm{in}^{2}\right)$.


Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=30 \mathrm{kV} ; \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V} ; \mathrm{V}_{\mathrm{g} 3}$ adjusted for optimum focus.
White-light output $=6500 \mathrm{~K}+7$ M.P.C.D.;
CIE co-ordinates $x=0,313, y=0,329$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
$\left(16,11 \times 12,19 \mathrm{in}^{2}\right)$.


## A51EBS10X

Luminance at the centre of the screen as a function of $\mathrm{I}_{\text {total }}$.
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=30 \mathrm{kV} ; \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V} ; \mathrm{V}_{\mathrm{g} 3}$ adjusted for optimum focus.
White-light output $=9300 \mathrm{~K}+27$ M.P.C.D.;
CIE co-ordinates $x=0,281, y=0,311$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
(16,11×12,19 $\mathrm{in}^{2}$ ).

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$V_{a, g 4}=30 \mathrm{kV} ; \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V} ; \mathrm{V}_{\mathrm{g} 3}$ adjusted for optimum focus.
White-light output $=6500 \mathrm{~K}+7$ M.P.C.D.;
CIE co-ordinates $x=0,313, y=0,329$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
$\left(16,11 \times 12,19 \mathrm{in}^{2}\right)$.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,281, y=0,311$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$\frac{x}{y}$		$y$
	0,635		0,340
red	0,315		0,600
green	0,150		0,060

## $90^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- Self-conver ging and raster correction free
- $51 \mathrm{~cm}, 90^{\circ}$ colour picture tube A51EBS . . X
- Hybrid saddle toroidal deflection unit of the AT6030 series


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	$29,1 \mathrm{~mm}$

## AVAILABLE ASSEMBLIES

assembly type	assembly components
A51EBS00X40	tube A51EBS00X + deflection unit AT6030, type 1
A51EBS10X40	tube A51EBS10X + deflection unit AT6030, type 1




## ELECTRICAL DATA OF DEFLECTION UNIT

Line deflection coils
inductance at 1 V (r.m.s.), 1 kHz
resistance at $25{ }^{\circ} \mathrm{C}$
magnetic flux
Line deflection current,
edge to edge, at 25 kV
Field deflection coils
inductance at 1 V (r.m.s.), 1 kHz
resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance at 1 kV (d.c.) between line and field coils between line coil and core clamp between field coil and core clamp
$2,0 \mathrm{mH} \pm 4 \%$
$2,35 \Omega \pm 10 \%$
$5,70 \mathrm{mWb} \pm 2,5 \%$

2,85 A(p-p)
$19,5 \mathrm{mH} \pm 10 \%$
$9,7 \Omega \pm 7 \%$

1,09 A (p-p)
a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)
$>500 \mathrm{M} \Omega$
$>500 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$


Connection diagram and top view of terminals of deflection unit AT6030, type 1. The beginning of the windings is indicated with

## FLAT SQUARE HIBRICON COLOUR PICTURE TUBES

- Flat and square screen
- $90^{\circ}$ deflection
- In-line, hi-bi potential A R T* gun
- 29,1 mm neck diameter
- Mask with corner suspension
- Hibricon screen with pigmented phosphors featuring high brightness and increased contrast performance
- Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 525 lines system
- Internal magnetic shield
- Internal multipole
- Reinforced envelope for push-through mounting
- The tube is supplied with a matched hybrid saddle toroidal deflection unit of the AT6030 series; it forms a self-converging and raster correction free assembly


## QUICK REFERENCE DATA

Deflection angle	900
Minimum useful screen diagonal	51 cm
Overall length	444 mm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 310 \mathrm{~mA}$
Focusing voltage	$31 \%$ of anode voltage

Types A51EBS20X and A51EBS30X are identical, except for the light transmission of the face glass at centre: 64,5\% for A51EBS20X, and 52,3\% for A51EBS30X.

[^31]
## GENERAL DATA

1. ELECTRICAL
Electron guns
Heating
heater voltage
heater current
Focusing method
Focus lens
Convergence method
Deflection method
Deflection angles (approx.)
diagonal
horizontal
vertical
Direct interelectrode capacitances (approx.)
grid 1 to all other electrodes
all cathodes to all other electrodes
each cathode to all other electrodes
grid 3 to all other electrodes
grid 2 to all other electrodes
anode to external conductive coating, including rim band

Resistance between rimband and external conductive coating
unitized triple-aperture electrodes; aberration reducing triode

$\mathrm{V}_{\mathrm{f}}$	$6,3 \mathrm{~V}$
$\mathrm{If}_{\mathrm{f}}$	310 mA
electrostatic	
hi-bi-potential	
magnetic	
magnetic	


2. OPTICAL

Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Positional accuracy of the screen with respect to the glass contour
Phosphors
red
green
blue
Persistence
Colour co-ordinates
red
green
blue
metal-backed vertical phosphor stripes; phosphor lines follow glass contour
high polish
$\min .510,0 \mathrm{~mm}(20,08 \mathrm{in})$
$\mathrm{min} .409,3 \mathrm{~mm}(16,11 \mathrm{in})$
min . 309,6 mm (12,19 in)
$\min .1253 \mathrm{~cm}^{2}\left(194,22 \mathrm{in}^{2}\right)$
see Figure on the next page
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
medium short

$\frac{x}{0,635}$		$\frac{y}{0,340}$
0,315		0,600
0,150	0,060	

$A=171,7 \mathrm{~mm}(6,76 \mathrm{in})$
$B=223,7 \mathrm{~mm}(8,81 \mathrm{in})$
$C=115,6 \mathrm{~mm}(4,55 \mathrm{in})$
$D=173,9 \mathrm{~mm}(6,85 \mathrm{in})$
$E=23,5 \mathrm{~mm}(0,93 \mathrm{in})$


Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre

Light transmission of face glass at centre

## A51EBS20X

A51EBS30X
3. MECHANICAL (see also the figures on pages 12, 13 and 14)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Base designation
Anode contact designation
Bulb
funnel
panel
Implosion protection
Mass
Mounting position
approx. $0,69 \mathrm{~mm}(0,027 \mathrm{in})$

64,5\%
52,3\%
$443,7 \pm 5 \mathrm{~mm}(17,47 \pm 0,20 \mathrm{in})$
$29,{ }_{-0,7}^{+1,4} \mathrm{~mm}(1,15+0,06 \mathrm{in})_{-0,03}{ }_{-0,}$
$\max .546,1 \mathrm{~mm}(21,5 \mathrm{in})$
max. $455,6 \mathrm{~mm}(17,9 \mathrm{in})$
$\max .359,6 \mathrm{~mm}(14,16 \mathrm{in})$
JEDEC B10-277
recessed small cavity cap
(JEDEC no. J1-21; IEC 67-111-2)
EIAJ-J540F 1
to be established
reinforced envelope for push-through 15 kg ( 33 lbs )
anode contact on top

[^32]
## RATINGS AND ELECTRICAL DATA

1. LIMITING VALUES (Design maximum rating system unless otherwise stated)

Unless otherwise specified, voltage values are for each gun and values are positive with respect to grid 1.


## Notes

1. Absolute maximum rating system.
2. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
3. Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
4. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
5. During adjustment on the production line max. 1500 V is permitted.
6. For maximum cathode life it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## 2. EQUIPMENT DESIGN RANGES

Unless otherwise specified, values are for each gun and voltage values are positive with respect to grid 1.
For anode voltages between 20 kV and 30 kV :
Grid 3 (focusing electrode) voltage
Grid 2 voltage and cathode voltage for visual extinction of undeflected focused spot
Maximum ratio of cathode voltage
highest gun to lowest gun in any tube
Video drive characteristics
Grid 3 current
Grid 2 current
Grid 1 current, under cut-off condition

To produce white of the following
CIE co-ordinates

Percentage of total anode current supplied by each gun (typical)

Ratio of anode current
red to blue
red to green
blue to green
$V_{\mathrm{g} 3} \quad 29 \%$ to $33 \%$ of anode voltage
$\mathrm{V}_{\mathrm{g} 2}, \mathrm{~V}_{\mathrm{k}}$ see cut-off design chart, page 19 ; note 1
1,25
see graphs on page 20; note 2
$\begin{array}{ll}\lg 3 & -2 \text { to }+2 \mu \mathrm{~A} \\ \lg 2 & -2 \text { to }+2 \mu \mathrm{~A} \\ \lg 1 & -2 \text { to }+2 \mu \mathrm{~A}\end{array}$

$65001$	$\begin{aligned} & \text { hite D } \\ & +7 \mathrm{M} . \end{aligned}$	P.C.D	$9300 \mathrm{~K}+27 \mathrm{M}$. P.C.D.		
x	0,313		0,281		
y	0,329		0,311		
red	green	blue	red	green	blue
38,3	35,8	25,9\%	27,9	39,1	33,0\%
min.	typ.	max.	min.	typ.	max.
1,1	1,5	1,9	0,6	0,9	1,2
0,8	1,1	1,4	0,5	0,7	1,0
0,5	0,7	1,0	0,6	0,9	1,2

## Notes

1. The common $\mathrm{V}_{\mathrm{g} 2}$ should be adjusted as follows:

Set the cathode voltage, $\mathrm{V}_{\mathrm{k}}$, for each gun at 130 V . Increase the $\mathrm{V}_{\mathrm{g} 2}$ from about 575 V to the value at which the raster of one of the guns becomes just visible. Now decrease the $V_{k}$ of the remaining guns so that the rasters of these guns also become visible.
2. For optimum picture performance it is recommended that the cathodes are not driven below +1 V .
3. EXAMPLE OF USE OF DESIGN RANGES

Unless otherwise specified, voltage values are for each gun and are positive with respect to grid 1.
Anode voltage
Grid 3 (focusing electrode) voltage

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	$27,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 3}$	8,0 to $9,1 \mathrm{kV}$

Grid 2 voltage when circuit design utilizes cathode voltage of 130 V for visual extinction of focused spot
Heater voltage, under operating conditions


## 4. BEAM CORRECTIONS

Maximum centring error in any direction after colour purity, static convergence, and horizontal centre line correction, measured with deflection coils in nominal position
5. LIMITING CIRCUIT VALUES

## High voltage circuits

To minimize the possibility of damage to the circuit caused by a momentary internal arc, it is recommended that the high-voltage power supply and the grid 3 power supply be of the limited energy type.
Grid 3 circuit resistance
Grid 1 to cathode circuit resistance (each gun)

$R_{g} 3$	max.	$70 \mathrm{M} \Omega$
$\mathrm{R}_{\mathrm{g} 1 \mathrm{k}}$	$\max$.	$0,75 \mathrm{M} \Omega$

## Notes

1. The tube has quick-heating cathodes; if standby conditions are still required operate at $5,0 \mathrm{~V}$.
2. Tube settings adjusted to produce white of $9300 \mathrm{~K}+27$ M.P.C.D. $(x=0,281, y=0,311)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.
3. Tube settings adjusted to produce white of $6500 \mathrm{~K}+7$ M.P.C.D. $(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

## 6. DEGAUSSING

The picture tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.
For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns* is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate degaussing circuitry. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,3$ ampere-turns**).
If single-phase power rectification is employed in the t.v. circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.
Examples of a double-coil and of a single-coil system are given below.


Position of degaussing coils on the picture tube.

Degaussing circuit using dual
PTC thermistor 2322662 98009;
$\mathrm{C}=100 \mathrm{nF}$, for double-coil system, optional for single-coil system.


7295546

## Data of degaussing coil

	double-coil system	single-coil system
	$125 \mathrm{~cm}(49 \mathrm{in})$	$139 \mathrm{~cm}(54 \mathrm{in})$
Cumber of turns	60	140
Copper-wire diameter	$0,4 \mathrm{~mm}(0,016 \mathrm{in})$	$0,4 \mathrm{~mm}(0,016 \mathrm{in})$
Aluminium-wire diameter	$0,5 \mathrm{~mm}(0,02 \mathrm{in})$	$0,5 \mathrm{~mm}(0,02 \mathrm{in})$
Resistance	$22 \Omega$ (two coils	$27 \Omega$
	in series)	

* For double-coil system; 700 ampere-turns for single-coil system.
** For double-coil system; $\leqslant 0,6$ ampere-turns for single-coil system.


## 7. FLASHOVER PROTECTION

With the high voltage used with this tube (max. 30 kV ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $13,5 \mathrm{kV}\left(1,5 \times \mathrm{V}_{\mathrm{g} 3}\right.$ max. at $\left.\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=27,5 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


## X-RADIATION LIMIT

Maximum anode voltage at which the X -radiation emitted will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ at an anode current of $300 \mu \mathrm{~A}$


#### Abstract

entire tube


## Warning:

If the value for the tube face only is used as design criterion, adequate shielding must be provided in the receiver for the anode contact and/or certain portions of the tube funnel and panel skirt to insure that the X -radiation from the receiver is attenuated to a value equal to or lower than that specified for the face of the tube.

Maximum voltage difference between anode and focus electrode at which the X -radiation will not exceed $0,5 \mathrm{mR} / \mathrm{h}$

## Warning:

If the voltage value above can be exceeded in the receiver, additional attenuation of the X -radiation through the tube neck may be required.

The X-radiation emitted from this picture tube, as measured in accordance with the procedure of JEDEC Publication No. 64D, will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ throughout the useful tube life when operated within the 'Design maximum ratings'.
The tube should not be operated beyond its 'Design maximum ratings' stated above, but its X-radiation will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ for anode voltage and current combinations given by the isoexposure-rate limits characteristics shown on the next page.
Operation above the values shown by the curve may result in failure of the television receiver to comply with the Federal Performance Standard of the U.S. for Television Receivers, Section 1020-10 of Part 1020 of Title 21, Code of Federal Regulation (PL90-602) as published in the Federal Register Volume 38, No. 198, Monday, October 15, 1973.

Maximum X-radiation as a function of anode voltage at $300 \mu \mathrm{~A}$ anode current is shown by the curve on the next page. X-radiation at a constant anode voltage varies linearly with anode current.

[^33]
$0,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curve.


X-radiation limit curve at a constant anode current of $300 \mu \mathrm{~A}$.

## WARNINGS

## X-radiation

Operation of this colour picture tube at abnormal conditions which exceed the $0,5 \mathrm{mR} / \mathrm{h}$ iso-dose rate curve shown on the preceding page may produce soft X -rays which may constitute a health hazard on prolonged exposure at close range unless adequate external screening is provided. Precautions must therefore be exercised during servicing of TV receivers employing this tube to assure that the anode voltage and other tube voltages are adjusted to the recommended values so that the 'Design maximum ratings' will not be exceeded.

## Tube replacement

This picture tube employs integral X-radiation and implosion protection and must be replaced with a tube of the same type number or a recommended replacement to assure continued safety.

## Shock hazard

The high voltage at which the tube is operated may be very dangerous. The design of the TV receiver should include safeguards to prevent the user from coming in contact with the high voltage. Extreme care should be taken in the servicing or adjustment of any high-voltage circuit.
Caution must be exercised during the replacement or servicing of the picture tube since a residual electrical charge may be contained on the high-voltage capacitor formed by the external and internal conductive coatings of the picture tube funnel. To remove any residual high-voltage charges from the picture tube, 'bleed-off the charge by shorting the anode contact button, located in the funnel of the picture tube, to the external conductive coating before handling the tube. Discharging the high voltage to isolated metal parts such as cabinets and control brackets may produce a shock hazard.

## Tube handling

Picture tubes should be kept in the shipping box or similar protective container until just prior to installation. Wear heavy protective clothing, including gloves and safety goggles with side shields, in areas containing unpacked and unprotected tubes to prevent possible injury from flying glass in the event a tube breaks. Handle the picture tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal area.
The receiver mounting system should incorporate sufficient cushioning so that under normal conditions of shipment or handling an impact acceleration of more than 35 g is never applied to the tube.

## MECHANICAL DATA

The dimensions are given in mm , and in inches between brackets.
Notes are on page 15.



## MECHANICAL DATA (continued)


i.c. $=$ internally connected (not to be used)

## Notes to outline drawings on the preceding pages

1. Configuration of outer conductive coating may be different but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. The displacement of any lug with respect to the plane through the three other lugs is max. $1,3 \mathrm{~mm}$ $(0,05 \mathrm{in})$. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}(0,07 \mathrm{in})$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of 354 mm ( $13,94 \mathrm{in}$ ) x $449 \mathrm{~mm}(17,68 \mathrm{in})$.
6. Not applicable.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. $50 \mathrm{~mm}(1,968 \mathrm{in})$, concentric with an imaginary tube axis.
9. Small cavity contact J1-21, IEC 67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate $3,2 \mathrm{~mm}$ ( $0,13 \mathrm{in}$ ) beyond the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		sagittal
$\begin{gathered} \mathrm{x} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{y} \\ \mathrm{~mm} \end{gathered}$	height mm
0	154,8	8,9
20	154,8	9,0
40	154,8	9,3
60	154,7	10,0
80	154,6	10,9
100	154,5	12,1
120	154,4	13,6
140	154,2	15,4
160	154,1	17,5
180	153,9	20,0
200	153,7	22,8
203,5	153,6	23,4
203,6	150	23,0
203,7	140	21,9
204,0	120	20,0
204,2	100	18,4
204,4	80	17,1
204,5	60	16,1
204,6	40	15,4
204,6	20	15,0
204,7	0	14,9


coordinates		
x   inch	y   inch	sagittal   height   inch
0	6,09	0,35
0,79	6,09	0,35
1,57	6,09	0,37
2,36	6,09	0,39
3,15	6,09	0,43
3,94	6,08	0,48
4,72	6,08	0,54
5,51	6,07	0,61
6,30	6,07	0,69
7,09	6,06	0,79
7,87	6,05	0,90
8,01	6,05	0,92
8,02	5,91	0,91
8,02	5,51	0,86
8,03	4,72	0,79
8,04	3,94	0,72
8,05	3,15	0,67
8,05	2,36	0,63
8,06	1,57	0,61
8,06	0,79	0,59
8,06	0	0,59

## Maximum cone contour



Dimensions in mm

| sec- <br> tion <br> nom. <br> distance <br> from section 1 <br>   <br>  | 0 | 00 | 100 | 200 | 300 | diag. | 400 | 500 | 600 | 700 | 800 | 900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 225,7 | 228,9 | 239,1 | 257,6 | 271,8 | 267,2 | 227,9 | 203,1 | 187,9 | 179,6 | 177,0 |
| 3 | 20 | 224,6 | 227,7 | 237,7 | 255,9 | 270,0 | 265,3 | 226,7 | 201,9 | 186,8 | 178,6 | 175,9 |
| 4 | 30 | 218,1 | 220,9 | 229,6 | 244,5 | 254,7 | 250,6 | 217,9 | 195,1 | 180,9 | 173,1 | 170,6 |
| 5 | 40 | 213,8 | 216,4 | 224,1 | 236,5 | 243,1 | 239,6 | 212,0 | 190,9 | 177,3 | 169,9 | 167,5 |
| 6 | 50 | 208,7 | 211,0 | 217,7 | 227,5 | 231,3 | 228,4 | 205,6 | 186,3 | 173,6 | 166,5 | 164,2 |
| 7 | 60 | 202,6 | 204,5 | 210,0 | 217,5 | 219,5 | 217,0 | 198,5 | 181,0 | 169,3 | 162,6 | 160,5 |
| 8 | 70 | 195,1 | 196,8 | 201,3 | 206,9 | 207,6 | 205,4 | 190,3 | 175,1 | 164,4 | 158,3 | 156,3 |
| 9 | 80 | 186,2 | 187,6 | 191,4 | 195,6 | 195,4 | 193,5 | 181,3 | 168,4 | 158,9 | 153,3 | 151,5 |
| 10 | 90 | 175,6 | 176,9 | 180,1 | 183,3 | 182,8 | 181,1 | 171,4 | 160,7 | 152,5 | 147,6 | 146,0 |
| 11 | 100 | 163,6 | 164,6 | 167,4 | 169,9 | 169,2 | 167,9 | 160,4 | 151,9 | 145,2 | 141,0 | 139,6 |
| 12 | 110 | 150,3 | 151,3 | 153,8 | 155,7 | 154,7 | 153,6 | 147,9 | 141,7 | 136,6 | 133,4 | 132,3 |
| 13 | 120 | 136,4 | 137,3 | 139,3 | 140,4 | 139,5 | 138,6 | 134,5 | 130,3 | 126,8 | 124,6 | 123,9 |
| 14 | 130 | 122,1 | 122,8 | 124,4 | 124,9 | 124,0 | 123,3 | 120,7 | 118,2 | 116,1 | 114,7 | 114,3 |
| 15 | 140 | 107,5 | 107,7 | 108,2 | 108,6 | 108,4 | 108,2 | 107,0 | 105,7 | 104,5 | 103,8 | 103,5 |
| 16 | 150 | 92,6 | 92,3 | 92,3 | 92,6 | 92,8 | 92,9 | 92,9 | 92,6 | 92,1 | 91,6 | 91,4 |
| 17 | 159,5 | 78,1 | 78,1 | 78,1 | 78,1 | 78,1 | 78,1 | 78,1 | 78,1 | 78,1 | 78,1 | 78,1 |

Flat square Hibricon colour picture tubes
A51EBS20X A51EBS30X

Dimensions in inches

sec-   tion	nom.   distance   from section 1	max. distance from centre											
	0	8,89	9,01	9,41	10,14	10,70	10,52	8,97	8,00	7,40	7,07	6,97	
2	0,39	8,84	8,96	9,36	10,07	10,63	10,44	8,93	7,95	7,35	7,03	6,93	
3	0,79	8,73	8,85	9,22	9,89	10,41	10,22	8,78	7,83	7,25	6,93	6,83	
4	1,18	8,59	8,70	9,04	9,63	10,03	9,87	8,58	7,68	7,12	6,81	6,72	
5	1,57	8,42	8,52	8,82	9,31	9,57	9,43	8,35	7,52	6,98	6,69	6,59	
6	1,97	8,22	8,31	8,57	8,96	9,11	8,99	8,09	7,33	6,83	6,56	6,46	
7	2,36	7,98	8,05	8,27	8,56	8,64	8,54	7,81	7,13	6,67	6,40	6,32	
8	2,76	7,68	7,75	7,93	8,15	8,17	8,09	7,49	6,89	6,47	6,23	6,15	
9	3,15	7,33	7,39	7,54	7,70	7,69	7,62	7,14	6,63	6,26	6,04	5,96	
10	3,54	6,91	6,96	7,09	7,22	7,20	7,13	6,75	6,33	6,00	5,81	5,75	
11	3,94	6,44	6,48	6,59	6,69	6,66	6,61	6,31	5,98	5,72	5,55	5,50	
12	4,33	5,92	5,96	6,06	6,13	6,09	6,05	5,82	5,58	5,38	5,25	5,21	
13	4,72	5,37	5,41	5,48	5,53	5,49	5,46	5,30	5,13	4,99	4,91	4,88	
14	5,12	4,81	4,83	4,90	4,92	4,88	4,85	4,75	4,65	4,57	4,52	4,50	
15	5,51	4,23	4,24	4,26	4,28	4,27	4,26	4,21	4,16	4,11	4,09	4,07	
16	5,91	3,65	3,63	3,63	3,65	3,65	3,66	3,66	3,65	3,63	3,61	3,60	
17	6,28	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07	

Cavity cap JEDEC J1-21, IEC 67-III-2



10-PIN BASE JEDEC B10-277



Spot cut-off design chart.


Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.


Typical cathode drive characteristic.
$V_{f}=6,3 \mathrm{~V}$;
$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}=30 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=105 \mathrm{~V}$ (curve a) and $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$ (curve b).



A51EBS20X

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$V_{a, g 4}=30 \mathrm{kV} ; \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V} ; \mathrm{V}_{\mathrm{g} 3}$ adjusted for optimum focus.
White-light output $=9300 \mathrm{~K}+27$ M.P.C.D.;
CIE co-ordinates $x=0,281, y=0,311$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
$\left(16,11 \times 12,19 \mathrm{in}^{2}\right)$.


Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$V_{a, g 4}=30 \mathrm{kV} ; V_{f}=6,3 \mathrm{~V} ; V_{g} 3$ adjusted for optimum focus.
White-light output $=6500 \mathrm{~K}+7$ M.P.C.D.;
CIE co-ordinates $x=0,313, y=0,329$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
$\left(16,11 \times 12,19\right.$ in $\left.^{2}\right)$.


## A51EBS30X

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$V_{a, g 4}=30 \mathrm{kV} ; \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V} ; \mathrm{V}_{\mathrm{g} 3}$ adjusted for optimum focus.
White-light output $=9300 \mathrm{~K}+27$ M.P.C.D.;
CIE co-ordinates $x=0,281, y=0,311$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
$\left(16,11 \times 12,19 \mathrm{in}^{2}\right)$.

Luminance at the centre of the screen as a function of $I_{\text {total }}$.
$V_{a, g 4}=30 \mathrm{kV} ; \mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V} ; \mathrm{V}_{\mathrm{g} 3}$ adjusted for optimum focus.
White-light output $=6500 \mathrm{~K}+7$ M.P.C.D.;
CIE co-ordinates $x=0,313, y=0,329$.
Raster size $=409,3 \times 309,6 \mathrm{~mm}^{2}$
$\left(16,11 \times 12,19 \mathrm{in}^{2}\right)$.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,281, y=0,311$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$\frac{x}{l}$		$y$
	0,635		0,340
red	0,315	0,600	
green	0,150		0,060

## $90^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLIES

- Factory preset tube/coil assemblies
- Self-converging and raster correction free
- $51 \mathrm{~cm}, 90^{\circ}$ colour picture tube A51EBS . . X
- Hybrid saddle toroidal deflection unit of the AT6030 series


## QUICK REFERENCE DATA

Deflection angle
Minimum useful screen diagonal
Overall length
Neck diameter
AVAILABLE ASSEMBLIES
assembly type assembly components   A51EBS20X40 tube A51EBS20X + deflection unit AT6030, type 1   tube A51EBS30X + deflection unit AT6030, type 1




## ELECTRICAL DATA OF DEFLECTION UNIT

Line deflection coils inductance at 1 V (r.m.s.), 1 kHz
resistance at $25^{\circ} \mathrm{C}$ magnetic flux

Line deflection current, edge to edge, at 25 kV
Field deflection coils
inductance at 1 V (r.m.s.), 1 kHz
resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV

## Cross-talk

Insulation resistance at 1 kV (d.c.)
between line and field coils between line coil and core clamp between field coil and core clamp
$2,0 \mathrm{mH} \pm 4 \%$
$2,35 \Omega \pm 10 \%$
$5,70 \mathrm{mWb} \pm 2,5 \%$

2,85 A (p-p)
$19,5 \mathrm{mH} \pm 10 \%$
$9,7 \Omega \pm 7 \%$

## 1,09 A (p-p)

a voltage of $10 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to the line coils causes no more than $0,2 \mathrm{~V}$ across the field coils (damping resistors included)

$$
\begin{array}{r}
>500 \mathrm{M} \Omega \\
>500 \mathrm{M} \Omega \\
>10 \mathrm{M} \Omega
\end{array}
$$



Connection diagram and top view of terminals of deflection unit AT6030, type 1. The beginning of the windings is indicated with $\bullet$

## COLOUR PICTURE TUBE

## QUICK REFERENCE DATA

Temperature compensated shadow-mask designed for minimum moiré
High white luminance at unity current ratio

Face diagonal	56 cm
Deflection angle	$110^{\circ}$

Deflection angle $110^{\circ}$
Neck diameter
$36,5 \mathrm{~mm}$
Envelope
Magnetic shield
Focusing
Deflection
Convergence
Heating
Light transmission of face glass
Quick heating cathode
reinforced; suitable for push-through
internal
bi-potential
magnetic
magnetic
$6,3 \mathrm{~V}, 730 \mathrm{~mA}$
$\qquad$
54,5 \%
with a typical tube a legible picture
will appear within approx. 5 s

## MECHANICAL DATA

Overall length
Neck diameter
Diagonal
Horizontal axis of bulb
Vertical axis
Useful screen
diagonal min. 533 mm
horizontal axis
vertical axis
Base
Anode contact

387,3 to $400,3 \mathrm{~mm}$
$36,5 \mathrm{~mm}$
max. $566,2 \mathrm{~mm}$
max. $486,3 \mathrm{~mm}$
max. $381,8 \mathrm{~mm}$
min. 447 mm
min. 337 mm
12 pin base IEC 67-I-47a, type 2
Small cavity contact J1-21, IEC 67-III-2


## TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off at $\mathrm{V}_{\mathrm{g} 1}=-105 \mathrm{~V}$
Grid 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=300 \mathrm{~V}$

$V_{a, g 5, g 4}$	25 kV
$\mathrm{V}_{\mathrm{g} 3}$	4,2 to 5 kV
$\mathrm{V}_{\mathrm{g} 2}$	212 to 495 V
$\mathrm{~V}_{\mathrm{g} 1}$	-70 to -140 V

## 20AX COLOUR PICTURE TUBE

Replacement type A56-510X.

## 20AX Hi-Bri COLOUR PICTURE TUBE

## QUICK REFERENCE DATA

Deflection angle
$110^{\circ}$
Face diagonal
56 cm
Overall length
37 cm
Neck diameter
Envelope
Magnetic shield
$36,5 \mathrm{~mm}$

Focusing
Deflection
reinforced; suitable for push-through
internal

Heating
bi-potential

Light transmission of face glass
Quick heating cathode
magnetic
$6,3 \mathrm{~V}, 720 \mathrm{~mA}$
68\%
with a typical tube a legible picture will appear within approx. 5 s
Inherently self-converging system with deflection unit AT1083/01

## MECHANICAL DATA

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Useful screen dimensions
diagonal horizontal axis
vertical axis
Base
Anode contact
$373,8 \pm 6,5 \mathrm{~mm}$
$36,5_{-0}^{+1,6} \mathrm{~mm}$
max. $566,2 \mathrm{~mm}$
max. $486,3 \mathrm{~mm}$
max. $381,8 \mathrm{~mm}$
$\min .530,6 \mathrm{~mm}$
$\min .444,2 \mathrm{~mm}$
min . $334,2 \mathrm{~mm}$
12-pin base IEC 67-1-47a, type 2
small cavity contact J1-21, IEC 67-III-2


## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.
Final accelerator voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot-cut-off voltage $V_{k}=140 \mathrm{~V}$
Cathode voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=555 \mathrm{~V}$

## 30AX COLOUR PICTURE TUBE

- Automatic snap-in raster orientation
- Push-on axial purity positioning
- Internal magneto-static beam alignment
- Hi-Bi gun with quadrupole cathode lens
- Self-aligning, self-converging assembly with low power consumption, when combined with deflection unit AT 1860
- North-south pin-cushion distortion-free
- $110^{\circ}$ deflection
- Hi-Bri screen
- Pigmented phosphors: enhanced contrast
- Phosphor lines follow glass contour
- In-line gun
- Standard $36,5 \mathrm{~mm}$ neck
- Soft-Flash technology
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Quick-heating cathodes
- Internal magnetic shield
- Anti-crackle coating
- Reinforced envelope for push-through mounting


## QUICK REFERENCE DATA

Deflection angle	$110^{\circ}$
Face diagonal	56 cm
Overall length	38 cm
Neck diameter	$36,5 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 720 \mathrm{~mA}$
Focusing voltage	$28 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Deflection method
Deflection angles
diagonal
horizontal
vertical

## ELECTRICAL DATA

## Capacitances

anode to external conductive coating
anode to metal rimband
grid of any gun to all other electrodes
cathodes of all guns (connected in parallel)
to all other electrodes
cathode of any gun to all other electrodes
grid 3 (focusing electrode) to all other electrodes
Resistance between rimband and external
conductive coating
Heating: indirect by a.c. (preferably mains or line frequency) or d.c.

> heater voltage
heater current
in line with separate grids electrostatic
hi-bi potential
magnetic
$110^{\circ}$
970
770

## OPTICAL DATA

Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Positional accuracy of the screen with
respect to the glass contour
Phosphors
red
green
blue
metal-backed vertical phosphor stripes; phosphor lines follow glass contour satinized
$\min .530,6 \mathrm{~mm}$
$\min .444,2 \mathrm{~mm}$
$\mathrm{min} .334,2 \mathrm{~mm}$
$\min .1458 \mathrm{~cm}^{2}$
see Figure on the next page
pigmented europium activated

## rare earth

sulphide type
pigmented sulphide type
$A=180,3 \mathrm{~mm}$
$B=237,0 \mathrm{~mm}$
C $=123,0 \mathrm{~mm}$
$D=179,6 \mathrm{~mm}$
$E=30,8 \mathrm{~mm}$


Colour co-ordinates
red
$\frac{x}{0,635} \quad \frac{y}{0,340}$
green
0,315 0,600
blue
$0,150 \quad 0,060$
Centre-to-centre distance of identical colour phosphor stripes
Light transmission of face glass
Luminance at the centre of the screen
approx. $0,8 \mathrm{~mm}$
64\%
L $\quad 160 \mathrm{~cd} / \mathrm{m}^{2}$ *

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Base
Anode contact
Mounting position
Rimband

Net mass
$383,8 \pm 6 \mathrm{~mm}$
$36,5_{-0}^{+1,3} \mathrm{~mm}$
12-pin base IEC 67-I-47a, type 2
cavity cap JEDEC J1-21, IEC 67-III-2
anode contact on top
provided with 18 slots to accommodate clips for mounting of degaussing coils approx. $14,5 \mathrm{~kg}$

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than $350 \mathrm{~m} / \mathrm{s}^{2}$ in any direction.

* Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

MECHANICAL DATA (continued)
Notes are given after the drawings.



## MECHANICAL DATA (continued)





Notes to outline drawings on the preceding pages

1. This ridge can be used as an orientation for the deflection unit.
2. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
3. To clean this area wipe only with a soft lintless cloth.
4. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
5. Minimum space to be reserved for mounting lug.
6. The position of the mounting screw in the cabinet must be within a circle of $9,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $476,5 \mathrm{~mm} \times 370 \mathrm{~mm}$.
7. Co-ordinates for radius $R=14,8 \mathrm{~mm}: x=203,9 \mathrm{~mm}, y=145,5 \mathrm{~mm}$.
8. Distance from point $z$ to any hardware.
9. Maximum dimensions in plane of lugs.
10. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. Bottom circumference of the base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
The mass of the mating socket with circuitry should not be more than 150 g ; maximum permissible torque is 40 mNm .
11. Minimum distance between glass and rimband in plane of centre line of the apertures.
12. Centring bosses for deflection unit.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		
x   mm	y   mm	sagittal   height   mm
$0^{*}$	166,9	16,1
20	166,9	16,3
40	166,7	16,9
60	166,3	18,0
80	165,9	19,4
100	165,3	21,3
120	164,5	23,6
140	163,7	26,4
160	162,7	29,6
180	161,6	33,3
200	160,3	37,5
$215,9 * *$	153,8	40,2
216,0	140	37,7
217,6	120	35,0
219,9	100	32,8
220,0	80	31,0
220,8	60	29,6
221,4	40	28,6
221,8	20	28,0
221,94	0	27,0

* Point $x$.
** Diagonal.
- Point (y).

12-pin base, IEC 67-I-47a, type 2

pin contour

Cavity cap JEDEC J1-21, IEC 67-III-2


Maximum cone contour


section	distance from centre (max. values)															
	nom. distance from section 1	$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$25^{\circ}$	$30^{\circ}$	$33^{\circ} 30^{\prime}$	diag.	37030	$40^{\circ}$	$45^{\circ}$	$50^{\circ}$	$60^{\circ}$	700	$80^{\circ}$	$90^{\circ}$
1		248,0	251,2	261,3	269,3	279,5	286,8	288,0	286,8	281,7	262,3	245,9	222,0	207,0	198,7	196,0
2	8	244,4	247,6	257,6	265,4	275,3	282,3	283,3	282,0	276,8	257,8	241,6	218,0	203,2	195,0	192,4
3	18	240,5	243,6	252,9	259,6	267,0	271,2	271,3	269,7	265,3	250,6	236,6	214,2	199,6	191,4	188,8
4	28	235,0	237,8	245,5	250,2	254,4	255,7	255,0	253,3	249,9	239,5	228,3	208,6	194,8	186,9	184,3
5	38	227,7	229,9	235,2	237,8	239,1	238,7	237,6	236,0	233,3	225,8	217,3	201,0	188,8	181,6	179,2
6	48	218,2	219,6	222,2	222,9	222,3	220,8	219,6	218,1	215,8	210,1	203,6	190,9	180,9	174,7	172,6
7	58	206,4	206,8	206,8	205,9	204,0	202,2	200,9	199,5	197,5	193,2	188,4	179,2	171,6	166,8	165,2
8	68	191,6	190,9	188,5	186,6	184,1	182,2	181,0	179,8	178,2	175,0	171,7	165,7	160,8	157,7	156,6
9	78	172,5	170,9	166,8	164,4	161,9	160,1	159,1	158,2	157,0	154,8	152,9	149,7	145,6	146,5	146,2
10	88	147,0	144,8	140,5	138,3	136,3	135,0	134,3	133,6	132,9	131,7	130,8	130,0	130,3	131,3	132,0
11	97,1	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0

## RECOMMENDED OPERATING CONDITIONS (cathode drive)

The voltages are specified with respect to grid 1.
Anode voltage
Grid 3 (focusing electrode) voltage

$$
\begin{array}{ll}
V_{a, g} 5, \mathrm{~g} 4 & 25 \mathrm{kV} \\
\mathrm{~V}_{\mathrm{g} 3} & 6,5 \text { to } 7,45 \mathrm{kV}
\end{array}
$$

## A. Operation at equal spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$

Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for each gun separately; $\mathrm{V}_{\mathrm{g} 2}$ range 590 to 800 V .


Spot cut-off design chart.


Typical cathode drive characteristic.
$\mathrm{V}_{\mathrm{f}}=6,3 \mathrm{~V}$;
$V_{a, g 5, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$.

## B. Operation at equal grid 2 voltage

Grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=150 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage.
$\mathrm{V}_{\mathrm{g} 2}$ range 630 to 860 V .
$V_{k}$ range 120 to 150 V .
Adjustment procedure:
Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 150 V ; increase the grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ from approx. 600 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.


Spot cut-off design chart.


Typical cathode drive characteristic.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 5, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for forus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$ and 150 V .

EQUIPMENT DESIGN VALUES (each gun if applicable)
The values are valid for anode voltages between 22,5 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.
Grid 3 (focusing electrode) voltage $\quad V_{g 3} \quad 26$ to $29,8 \%$ of
Difference in cut-off voltage between
guns in one tube
$\Delta \mathrm{V}_{\mathrm{k}}$
$V_{f}$
Ig3
$I_{g} 2$
Ig1
To produce white $\mathrm{D}, \mathrm{CIE}$ co-ordinates $\mathrm{x}=0,313, \mathrm{y}=0,329$.
Percentage of the total anode current supplied by each gun (typical)
red gun
green gun
blue gun
Ratio of anode current
red gun to green gun
red gun to blue gun
blue gun to green gun

## BEAM CENTRING

Maximum centring error in any direction
anode voltage
lowest value is $\min$. $80 \%$ of highest value

6,3 V at zero beam current
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$
-5 to $+5 \mu \mathrm{~A}$

38,3\%
35,8\%
25,9\%

min.	av.	max.
0,7	1,1	1,4
1,1	1,5	2,0
0,5	0,7	1,0

$4,5 \mathrm{~mm}$

LIMITING VALUES (each gun if applicable)
Design maximum rating system unless otherwise stated.
The voltages are specified with respect to grid 1.

Anode voltage	$V_{a, g 5, g 4}$	max.   $\min$.	$\begin{aligned} & 27,5 \mathrm{kV} \\ & 22,5 \mathrm{kV} \end{aligned}$	$\begin{aligned} & \text { notes } 1,2,3 \\ & \text { note } 4 \end{aligned}$
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$1000 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	9 kV	
Grid 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	$\max$.	1200 V	note 6
Cathode voltage positive positive operating cut-off negative negative peak	$\begin{aligned} & V_{k} \\ & V_{k} \\ & -V_{k} \\ & -V_{k p} \end{aligned}$	max.   max.   max.   max.	$\begin{array}{r} 400 \mathrm{~V} \\ 200 \mathrm{~V} \\ 0 \mathrm{~V} \\ 2 \mathrm{~V} \end{array}$	
Cathode to heater voltage positive positive peak negative negative peak	$V_{k f}$   $V_{k f p}$   $-V_{k f}$   $-V_{k f p}$	max.   max.   max.   max.	$\begin{aligned} & 250 \mathrm{~V} \\ & 300 \mathrm{~V} \\ & 135 \mathrm{~V} \\ & 180 \mathrm{~V} \end{aligned}$	note 1 note 1
Heater voltage	$V_{f}$		$\begin{array}{r} +5 \% \\ -10 \% \end{array}$	notes 1, 7

## Notes

1. Absolute maximum rating system.
2. The X-ray dose rate remains below the acceptable value of $36 \mathrm{pA} / \mathrm{kg}(0,5 \mathrm{mR} / \mathrm{h})$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. During adjustment on the production line max. 1500 V is permitted.
7. For maximum cathode life and optimum performance it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

High electric field strengths are present between the gun electrodes of picture tubes. Voltages between gun electrodes may reach values of 20 kV over approx. 1 mm . As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage and damage to the circuitry which is directly connected to the tube socket. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $10,5 \mathrm{kV}$, and at the other electrodes of 1,5 to 2 kV . The values of the series isolation resistors should be as high as possible ( $\min .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.
Additional information is available on request.


Luminance at the centre of the screen as a function of $I_{\text {total }}$. Scanned area $444,2 \mathrm{~mm} \times 334,2 \mathrm{~mm}$.



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$\frac{x}{0,635}$	$\frac{y}{0,340}$
red	0,315	0,600
green	0,150	0,060



Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts.
For proper degaussing an initial magnetomotive force (m.m.f.) of 250 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,25$ ampere-turns).
If single-phase power rectification is employed in the TV circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.
To ease the mounting of the coils, the rimband is provided with rectangular holes. An example is given below.


Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor
 232266298009.

Data of each degaussing coil
Circumference
Number of turns
120 cm
Copper-wire diameter 50

Aluminium-wire diameter Resistance
$0,35 \mathrm{~mm}$
$0,45 \mathrm{~mm}$.
$11 \Omega$

## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	A56-540X
gun arrangement	in line
diagonal	$56 \mathrm{~cm}(22 \mathrm{in})$
neck diameter	$36,5 \mathrm{~mm}$
Deflection angle	$110^{\circ}$
Line deflection current, edge to edge at 25 kV	$5,0 \mathrm{~A}(\mathrm{p-p})$
Inductance of line coils	$1,5 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$1,95 \mathrm{~A}(\mathrm{p-p})$
Resistance of field coils	$5,9 \Omega$
$\quad$ (potentiometer R1 included)	

## CONNECTIONS

(See also Fig. 2).


Fig. 1.

## Notes:

- Contacts 1 and 1 a must be connected to the live side of the line circuitry, contacts 3 and 3 a must be connected to the life side of the field circuitry.
- Matching female Stocko connector: MKF 804-1-0-404.
- D1 to D6 = BAS11, BAX18, BAX18A, BAV10 or BAW62.
- $\mathrm{R} 1=180 \Omega$.

AT1260/10

Dimensions in mm


MECHANICAL DATA
Outlines
Fig. 2 Maximum dimensions.

## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	A56-540X
gun arrangement	in line
diagonal	$56 \mathrm{~cm}(22 \mathrm{in})$
neck diameter	$36,5 \mathrm{~mm}$
Deflection angle	$110^{\circ}$
Line deflection current, edge to edge at 25 kV	$5,0 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils	$1,5 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$1,95 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils   (potentiometer R1 included)	$5,9 \Omega$

## APPLICATION

This deflection unit is for use with $110^{\circ}$ in-line colour picture tube A56-540X, in conjunction with e.g.: diode-split line output transformer AT2076/70A and linearity control unit AT4042/42 or AT4042/30.

## DESCRIPTION

The deflection unit consists of flangeless line and field deflection coils, a one piece ferrite ring and a one piece coil carrier.
Connection to the deflection coils can be made via a connector (contact pins 1 to 4) or solder tags 1 a to 4 a , see Fig. 1 .


Fig. 1 Maximum dimensions.

Fig. 1b. Front view.


The deflection unit fits a tube with a neck diameter of $36,5_{-0}^{+1,3} \mathrm{~mm}$.
Maximum operating temperature (average copper temperature measured with resistance method)

Storage temperature range
Flame retardent
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL1413, category 94, V-1

## Mounting

The deflection unit can simply be pushed on the neck of a picture tube.
Both on the neck of the tube and on the deflection unit, there are 3 reference surfaces to establish angular and axial positioning.

Once the unit is mounted the combination is perfectly aligned and requires no further adjustment for static convergence, colour purity and raster orientation.

The unit must be pressed against the reference surfaces on the cone of the picture tube with a force of $20 \pm 5 \mathrm{~N}$ and fixed by tightening teh screw in the clamping ring at the rear with a torque of $1,0_{-0,2}^{+0,4} \mathrm{Nm}$.
Maximum axial force exerted on the screw is 20 N .

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature

IEC 68-2-6 (test Fc)
IEC68-2-27 (test Ea; 35g)
IEC 68-2-29 (test Eb; 25g)
IEC 68-2-1 (test Ab)
IEC68-2-2 (test Bb)
IEC68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$ (potentiometer R1 included)
Field deflection current, edge to edge, at 25 kV
Cross-talk

Insulation resistance
between line and field coils, at 3 kV (d.c.)
between field coils and ferrite ring, at 300 V (d.c.)
$1,5 \mathrm{mH} \pm 4 \%$
$1,3 \Omega \pm 10 \%$
$7,6 \mathrm{mWb} \pm 5 \%$
5,0 A(p-p)
$10,0 \mathrm{mH} \pm 10 \%$
$5,9 \Omega \pm 7 \%$
1,95 A(p-p)
a voltage of $1 \mathrm{~V}, 15 \mathrm{kHz}$ applied to the line coils causes no more than 20 mV across the field coils
$>10 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$

## Connections

(See also Fig. 1).


Fig. 2.

## Notes:

- Contacts 1 and 1a must be connected to the live side of the line circuitry, contacts 3 and 3a must be connected to the live side of the field circuitry.
- Matching female Stocko connector: MKF 804-1-0-404.
- D1 to D6 = BAS11, BAX18, BAX18A, BAV10 or BAW62.
- $\mathrm{R} 1=180 \Omega$.


## FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- $110^{\circ}$ deflection
- In-line, hi-bi potential A R T* gun with quadrupole cathode lens
- 29,1 mm neck diameter
- Mask with corner suspension
- Hi-Bri technology
- Pigmented phosphors
- Quick-heating low-power cathodes
- Soft-flash
- Slotted shadow mask optimized for minimum moiré at 625 lines systems
- Internal magnetic shield
- Internal multipole
- Reinforced envelope for push-through mounting
- Anti-crackle coating


## QUICK REFERENCE DATA

Deflection angle	$110^{0}$
Minimum useful screen diagonal	59 cm
Overall length	39 cm
Neck diameter	$29,1 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 310 \mathrm{~mA}$
Focusing voltage	$31 \%$ of anode voltage

[^34]
## ELECTRON-OPTICAL DATA

Electron gun system unitized triple-aperture electrodes; aberration reducing triode

Focusing method
electrostatic
Focus lens
Deflection method
Deflection angles
diagonal
hi-bi-potential
magnetic
horizontal
$110^{\circ}$
vertical
770

## ELECTRICAL DATA

Capacitances
anode to external conductive coating
anode to metal rimband
cathodes of all guns (connected in parallel)
to all other electrodes
cathode of any gun to all other electrodes
grid 3 (focusing electrode) to all other electrodes
grid 1 to all other electrodes
grid 2 to all other electrodes
Resistance between rimband and external conductive coating

$C_{a, g}, g 4 / m$	max.   $\min$.	2000 pF   1600 pF   $C_{a, g}, g 4 / \mathrm{m}^{\prime}$
		300 pF

Heating: indirect by a.c. (preferably mains or line frequency) or d.c.
heater voltage
heater current
$V_{f}$
$I_{f}$
$\min$.
$50 \mathrm{M} \Omega$

## OPTICAL DATA

Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Positional accuracy of the screen with
respect to the glass contour
Phosphors
red
green
blue
Persistence
metal-backed vertical phosphor stripes; phosphor lines follow glass contour satinized
min. 590 mm
min .478 mm
min. 363 mm
$\min .1722 \mathrm{~cm}^{2}$
see Figure on the next page
pigmented europium activated rare earth sulphide type pigmented sulphide type medium short
$A=180,3 \mathrm{~mm}$
$B=257,7 \mathrm{~mm}$
$C=123,0 \mathrm{~mm}$
$D=200,2 \mathrm{~mm}$
$E=25,2 \mathrm{~mm}$


7293407

## Colour co-ordinates

red
green
blue

x	y
0,635	0,340
0,315	0,600
0,150	0,060

Centre-to-centre distance of identical colour phosphor stripes
Light transmission of face glass at screen centre
approx. $0,8 \mathrm{~mm}$

Luminance at the centre of the screen

67\%
L $\quad 165 \mathrm{~cd} / \mathrm{m}^{2}$ *

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter

## Base

Anode contact
Mounting position
Implosion protection

Net mass
$392 \pm 6 \mathrm{~mm}$
$29,1_{-0,7}^{+1,4} \mathrm{~mm}$
JEDEC B10-277
small cavity contact J1-21, IEC 67-III-2
anode contact on top
rimband provided with skirt and slots to accommodate clips for mounting of degaussing coils approx. 19 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

* Tube setting adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

MECHANICAL DATA (continued)





## Notes to outline drawings on the preceding pages

1. The displacement of any lug with respect to the plane through the three other lugs is max. $1,5 \mathrm{~mm}$.
2. Minimum space to be reserved for mounting lug.
3. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $524 \mathrm{~mm} \times 406,5 \mathrm{~mm}$.
4. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		sagittal height mm
$\begin{gathered} x \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{y} \\ \mathrm{~mm} \end{gathered}$	
0 *	181,5	10,3
20	181,5	10,4
40	181,4	10,8
60	181,3	11,5
80	181,2	12,5
100	181,0	13,5
120	180,8	14,9
140	180,6	16,6
160	180,3	18,5
180	180,0	20,7
200	179,6	23,2
220	179,3	26,0
235,9**	177, 1	28,2
237,3	160	26,5
237,7	140	24,5
238,0	120	22,8
238,3	100	21,4
238,6	80	20,3
238,8	60	19,4
238,9	40	18,7
239,0	20	18,3
239,04	0	18,2

[^35]10-pin base; JEDEC B10-277


Cavity cap JEDEC J-21, IEC 67-III-2


Flat square Hi-Bri colour picture tube
A59EAK00X

## Maximum cone contour



sec-	nom. distance	distance from centre										
	section 1	$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$30^{\circ}$	36,870	$40^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	0,00	257,6	261,5	273,7	296,3	314,1	307,9	260,3	231,0	213,3	203,7	200,6
2	10,00	256,9	260,7	272,8	294,9	311,7	305,1	258,6	229,7	212,1	202,6	199,6
3	20,00	254,8	258,5	270,2	291,3	304,7	297,9	254,5	226,3	209,2	199,8	196,9
4	30,00	250,9	254,5	265,5	284,7	293,0	286,6	248,0	221,0	204,5	195,5	192,6
5	40,00	245,1	248,4	258,5	274,1	277,4	271,6	239,0	213,9	198,3	189,7	187,0
6	50,00	237,0	239,9	248,7	260,3	260,0	254,9	228,1	205,4	190,7	182,7	180,1
7	60,00	225,8	228,3	235,6	243,3	241,1	236,7	214,8	194,8	181,5	174,0	171,7
8	70,00	210,7	212,9	218,6	223,2	220,3	216,6	199,0	181,9	170,0	163,2	161,1
9	80,00	191,7	193,4	197,8	200,5	197,6	194,6	180,4	166,1	155,8	149,8	147,9
10	90,00	170,1	171,5	174,6	175,9	173,0	170,4	159,1	147,5	138,8	133,6	131,9
11	100,00	145,8	146,7	148,5	148,4	145,6	143,5	135,0	126,2	119,3	115,1	113,7
12	110,00	115,2	115,8	116,7	116,2	114,4	113,3	108,4	103,0	98,4	95,5	94,4
13	120,00	79,9	80,1	80,3	80,1	79,8	79,6	78,7	77,5	76,4	75,5	75,1
14	121,4	74,4	74,5	74,5	74,5	74,4	74,3	73,9	73,4	72,9	72,5	72,3

## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.
Anode voltage
$V_{a, 94}$
25 kV
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$
Heater voltage under operating conditions
$V_{\mathrm{g} 3}$
7,25 to $8,25 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$ see below
$V_{f}$

Spot cut-off design chart.
Grid 2 voltage ( $\mathrm{V}_{\mathrm{g} 2}$ ) adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$\mathrm{V}_{\mathrm{g} 2}$ range 575 to 825 V ;
$\mathrm{V}_{\mathrm{k}}$ range 105 to 130 V .
Adjustment procedure:
Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 130 V ; increase the grid 2 voltage $\left(\mathrm{V}_{\mathrm{g} 2}\right)$ from approx. 550 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.

Grid 3 (focusing electrode) voltage
$V_{g}$
$V_{g 2}$ and $V_{k}$ $\Delta V_{k}$
$V_{f}$
Heater voltage
Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

29 to $33 \%$ of anode voltage

To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE-co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical)
red gun
38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents

Insulation resistance between each cathode
see cut off design chart
lowest value $>80 \%$ of highest value
$6,3 \mathrm{~V}$ at zero beam current see graphs*
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$
red gun to green gun
red gun to blue gun
blue gun to green gun and grid 1 and heater
and grid 1 and heater
min. $\quad 0,8$
average 1,1
$\max \quad 1,4$
min. 1,1
average 1,5
max. 1,9
min. $\quad 0,5$
average 0,7
$\max \quad 1,0$
min. $\quad 50 \mathrm{M} \Omega$

* For optimum picture performance it is recommended that the cathodes are not driven below +1 V .


Typical cathode drive characteristic.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=105 \mathrm{~V}$ (curve a) and $\mathrm{V}_{\mathrm{k}} 130 \mathrm{~V}$ (curve b).

LIMITING VALUES (Design maximum rating system unless otherwise stated)
notes
The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	max. $\min$.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	$\begin{aligned} & 1,2,3 \\ & 1,4 \end{aligned}$
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$1000 \mu \mathrm{~A}$	5
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	max.	1200 V	6
Cathode voltage positive positive operating cut-off negative negative peak	$\begin{aligned} & V_{k} \\ & V_{k} \\ & -V_{k} \\ & -V_{k p} \end{aligned}$	max.   max.   max.   max.	$\begin{array}{r} 400 \mathrm{~V} \\ 200 \mathrm{~V} \\ 0 \mathrm{~V} \\ 2 \mathrm{~V} \end{array}$	
Cathode to heater voltage positive positive peak negative negative peak	$V_{k f}$   $V_{k f p}$   $-V_{k f}$   $-\mathrm{V}_{\mathrm{kfp}}$	max.   max.   max.   max.	$\begin{aligned} & 250 \mathrm{~V} \\ & 300 \mathrm{~V} \\ & 135 \mathrm{~V} \\ & 180 \mathrm{~V} \end{aligned}$	1 1
Heater voltage	$V_{f}$	6,3	$+5 \%$ $-10 \%$	1,7
LIMITING CIRCUIT VALUES				
Grid 3 circuit resistance	$\mathrm{R}_{\mathrm{g} 3}$	max.	$70 \mathrm{M} \Omega$	
Grid 1 to cathode circuit resistance (each gun)	$\mathrm{R}_{\mathrm{g} 1 \mathrm{k}}$	max.	0,75 M	
BEAM CENTRING				
Maximum centring error in any direction			4 mm	

## Notes

1. Absolute maximum rating system
2. The X-ray dose rate remains below the acceptable value of $36 \mathrm{pA} / \mathrm{kg}(0,5 \mathrm{mR} / \mathrm{h})$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation withoutput picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. During adjustment on the production line max. 1500 V is permitted.
7. For maximum cathode life it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.
Colour co-ordinates:
red
$\frac{\mathrm{x}}{0,635}$

$y$
0,340
0,600
0,060

blue
0,150

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or one large coil.
For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,15$ ampere-turns).
If single-phase power rectification is employed in the TV circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.
To ease the mounting of the coils, the rimband is provided with rectangular holes.

length of degaussing coil : 1,35m
Double-coil system.

length of degaussing coil : $2,77 \mathrm{~m}$

Single-coil system.
7291928

Degaussing circuit using
dual PTC thermistor 2322662 98009; $C=100 \mathrm{nF}$.


## Data of each degaussing coil

Circumference
Number of turns
Copper-wire diameter
Aluminium-wire diameter
Resistance

double-coil system	single-coil system
135 cm	277 cm
60	60
$0,4 \mathrm{~mm}$	$0,4 \mathrm{~mm}$
$0,5 \mathrm{~mm}$	$0,5 \mathrm{~mm}$
$11 \Omega$	$22 \Omega$

## $110^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- $59 \mathrm{~cm}, 110^{\circ}$ colour picture tube A59EAK00X
- Double saddle deflection unit AT6010


## QUICK REFERENCE DATA

Deflection angle	$110^{\circ}$
Minimum useful screen diagonal	59 cm
Overall length	39 cm
Neck diameter	$29,1 \mathrm{~mm}$

MECHANICAL DATA


Net mass of tube assembly: 20 kg


## ELECTRICAL DATA OF DEFLECTION UNIT

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
parallel connected
$1,85 \mathrm{mH}$
1,85 $\Omega$
$7,6 \mathrm{mWb} \pm 5 \%$
4,1 A (p-p)
series connected
11 mH
6,5 $\Omega$
1,7 A (p-p)


Electrical diagram.
The beginning of the windings is indicated with $\bullet$.
$R 1=R 2=100 \Omega, 0,25 \mathrm{~W}$.
Matching Stocko connector MKF 806-1-0-606.

## $110^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- $59 \mathrm{~cm}, 110^{\circ}$ colour picture tube A59EAK00X
- Double saddle deflection unit AT6010

QUICK REFERENCE DATA

Deflection angle	$110^{\circ}$
Minimum useful screen diagonal	59 cm
Overall length	39 cm
Neck diameter	$29,1 \mathrm{~mm}$

## MECHANICAL DATA



Net mass of tube assembly: 20 kg .


Yoke clearance.

## ELECTRICAL DATA OF DEFLECTION UNIT

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
parallel connected
$1,85 \mathrm{mH}$
$1,85 \Omega$
$7,6 \mathrm{mWb} \pm 5 \%$
4,1 A (p-p)
series connected
11 mH
6,5 $\Omega$
1,7 A (p-p)


Electrical diagram.
The beginning of the windings
is indicated with $\bullet$
$\mathrm{R} 1=\mathrm{R} 2=100 \Omega, 0,25 \mathrm{~W}$.
Matching Stocko connector MKF806-1-0-606.
Terminal location.

## $110^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- $59 \mathrm{~cm}, 110^{\circ}$ colour picture tube A59EAK00X
- Double saddle deflection unit AT6010/11

QUICK REFERENCE DATA

Deflection angle	$110^{\circ}$
Minimum useful screen diagonal	59 cm
Overall length	39 cm
Neck diameter	$29,1 \mathrm{~mm}$

MECHANICAL DATA
Dimensions in mm


Net mass of tube assembly: 20 kg


Yoke clearance.

## ELECTRICAL DATA OF DEFLECTION UNIT

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
parallel connected
$1,85 \mathrm{mH}$
1,85 $\Omega$
$7,6 \mathrm{mWb} \pm 5 \%$
4,1 A (p-p)
series connected
11 mH
6,5 $\Omega$
1,7 A (p-p)

Electrical diagram.
The beginning of the windings is indicated with $\bullet$.
$\mathrm{R} 1=\mathrm{R} 2=100 \Omega, 0,25 \mathrm{~W}$.
Matching connectors: 572201340 (field) 572201370 (line).


## COLOUR PICTURE TUBE

## QUICK REFERENCE DATA

Temperature compensated shadow-mask designed for minimum moiré
High white luminance at unity current ratio

Face diagonal
Deflection angle
Neck diameter
Envelope
Magnetic shield
Focusing
Deflection
Convergence
Heating
Light transmission of face glass
Quick heating cathode

66 cm
$110^{\circ}$
36,5 mm
reinforced; suitable for push-through
internal
bi-potential
magnetic
magnetic
$6,3 \mathrm{~V}, 730 \mathrm{~mA}$
52,5 \%
with a typical tube a legible picture will appear within approx. 5 s

## MECHANICAL DATA

Overall length		425,1 to 438,1 mm
Neck diameter		$36,5 \mathrm{~mm}$
Diagonal		max. $657,6 \mathrm{~mm}$
Horizontal axis	of bulb	max. 556,4 mm
Vertical axis		max. 435,3 mm
Useful screen		
diagonal		min. $617,8 \mathrm{~mm}$
horizontal axis		min .518 mm
vertical axis		min. 390 mm
Base		12 pin base JEDEC B12-246
Anode contact		Small cavity contact J1-21, IEC 67-III-2


$90^{\circ}$

-     - 



## TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot cut-off at $\mathrm{V}_{\mathrm{g} 1}=-105 \mathrm{~V}$
Grid 1 voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=300 \mathrm{~V}$

$V_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}$	25 kV
$\mathrm{V}_{\mathrm{g}}$	4,2 to 5 kV
$\mathrm{V}_{\mathrm{g} 2}$	212 to 495 V
$\mathrm{~V}_{\mathrm{g} 1}$	-70 to -140 V

## 20AX COLOUR PICTURE TUBE

Replacement type A66-510X.

Replaces A66-500X

## 20AX Hi-Bri COLOUR PICTURE TUBE

## QUICK REFERENCE DATA

Deflection angle
Face diagonal
Overall length
Neck diameter
Envelope
Magnetic shield
Focusing
Deflection
Heating
Light transmission of face glass
Quick heating cathode

## $110^{\circ}$

66 cm
41 cm
$36,5 \mathrm{~mm}$
reinforced; suitable for push-through
internal
bi-potential
magnetic
6,3 V, 720 mA
68\%
with a typical tube a legible picture will appear within approx. 5 s

Inherently self-converging system with deflection unit AT1080

## MECHANICAL DATA

Overall length
Neck diameter
Bulb dimensions
diagonal
width height
Useful screen dimensions diagonal
horizontal axis
vertical axis
Base
Anode contact
$411,6 \pm 6,5 \mathrm{~mm}$
$36,5_{-0}^{+1,6} \mathrm{~mm}$
max. $657,6 \mathrm{~mm}$
max. $556,4 \mathrm{~mm}$
max. $435,3 \mathrm{~mm}$
min. $617,8 \mathrm{~mm}$
$\mathrm{min} .518,0 \mathrm{~mm}$
$\mathrm{min} .390,0 \mathrm{~mm}$
12-pin base IEC 67-I-47a, type 2
small cavity contact J1-21, IEC 67-III-2


## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Final accelerator voltage
Grid 3 (focusing electrode) voltage
Grid 2 voltage for a spot-cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$
Cathode voltage for spot cut-off at $\mathrm{V}_{\mathrm{g} 2}=555 \mathrm{~V}$

$\mathrm{V}_{\mathrm{a}, \mathrm{g} 5, \mathrm{~g} 4}$	25 kV
$\mathrm{V}_{\mathrm{g} 3}$	4,0 to $4,8 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	465 to 705 V
$\mathrm{~V}_{\mathrm{k}}$	110 to 165 V

## 30AX COLOUR PICTURE TUBE

- Automatic snap-in raster orientation
- Push-on axial purity positioning
- Internal magneto-static beam alignment
- Hi-Bi gun with quadrupole cathode lens
- Self-aligning, self-converging assembly with low power consumption, when combined with deflection unit AT 1870
- $110^{0}$ deflection
- Hi-Bri screen
- Pigmented phosphors: enhanced contrast
- Phosphor lines follow glass contour
- In-line gun
- Standard 36,5 mm neck
- Soft-Flash technology
- Slotted shadow mask optimized for minimum moiré
- Fine pitch over entire screen
- Quick-heating cathodes
- Internal magnetic shield
- Anti-crackle coating
- Reinforced envelope for push-through mounting


## QUICK REFERENCE DATA

Deflection angle	$110^{0}$
Face diagonal	66 cm
Overall length	42 cm
Neck diameter	$36,5 \mathrm{~mm}$
Heating	$6,3 \mathrm{~V}, 720 \mathrm{~mA}$
Focusing voltage	$28 \%$ of anode voltage

## ELECTRON-OPTICAL DATA

Electron gun system	in-line with separate grids
Focusing method	electrostatic
Focus lens	hi-bi potential
Deflection method	magnetic
Deflection angles	
$\quad$ diagonal	$110^{\circ}$
horizontal	970
vertical	770

## ELECTRICAL DATA

Capacitances
anode to external conductive coating
anode to metal rimband
grid of any gun to all other electrodes
cathodes of all guns (connected in parallel)
to all other electrodes
cathode of any gun to all other electrodes
grid 3 (focusing electrode) to all other electrodes
Resistance between rimband and external conductive coating

	max. 2000 pF	
$C_{a, g}, g 4 / m$	$\min$.	1500 pF
$C_{a, g}, g 4 / \mathrm{m}^{\prime}$		300 pF
$\mathrm{C}_{\mathrm{g}} 1 \mathrm{R}, \mathrm{C}_{\mathrm{g} 1 \mathrm{G}}, \mathrm{C}_{\mathrm{g}} 1 \mathrm{~B}$	7 pF	

$\mathrm{C}_{\mathrm{k}} \quad 12 \mathrm{pF}$
$C_{k R}, C_{k G}, C_{k B} \quad 4 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 3} \quad 7 \mathrm{pF}$

Heating: indirect by a.c. (preferably mains or line frequency) or d.c.
heater voltage
heater current

$V_{f}$	$6,3 \mathrm{~V}$
$\mathrm{I}_{\mathrm{f}}$	720 mA

## OPTICAL DATA

Screen

## Screen finish

Useful screen dimensions
diagonal
horizontal axis
vertical axis
Positional accuracy of the screen with
respect to the glass contour
Phosphors
red
green
blue
metal-backed vertical phosphor stripes;
phosphor lines follow glass contour
satinized
$\min .617,8 \mathrm{~mm}$
min .518 mm
min .390 mm
see Figure on the next page
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
$A=203,2 \mathrm{~mm}$
$B=274,2 \mathrm{~mm}$
$C=140,2 \mathrm{~mm}$
$D=208,3 \mathrm{~mm}$
$E=30,9 \mathrm{~mm}$


Colour co-ordinates
red
$\begin{array}{cc}\mathbf{x} & \frac{y}{0,635} \\ 0,340 \\ 0,315 & 0,600 \\ 0,150 & 0,060\end{array}$
blue
Centre-to-centre distance of identical colour phosphor stripes
Light transmission of face glass
approx. 0,8 mm
69\%
Luminance at the centre of the screen
L $\quad 170 \mathrm{~cd} / \mathrm{m}^{2}$ *
MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Base
Anode contact
Mounting position
Rimband
$421,6 \pm 6 \mathrm{~mm}$ $36,5_{-0}^{+1,3 \mathrm{~mm}}$
12-pin base IEC 67-I-47a, type 2
cavity cap JEDEC J1-21, IEC 67-III-2
anode contact on top
provided with 18 slots to accommodate clips for mounting of degaussing coils approx. 20 kg

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than $350 \mathrm{~m} / \mathrm{s}^{2}$ in any direction.

* Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

MECHANICAL DATA (continued)
Notes are given after the drawings.



MECHANICAL DATA (continued)


## Notes to outline drawings on the preceding pages

1. This ridge can be used as an orientation for the deflection unit.
2. Configuration of outer conductive coating may be different, but will contain the contact area as shown in the drawing.
3. To clean this area, wipe only with a soft lintless cloth.
4. The displacement of any lug with respect to the plane through the three other lugs is max. 2 mm .
5. Minimum space to be reserved for mounting lug.
6. The position of the mounting screw in the cabinet must be within a circle of $9,5 \mathrm{~mm}$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $549 \mathrm{~mm} \times 422 \mathrm{~mm}$.
7. Co-ordinates for radius $R=18,2 \mathrm{~mm}: x=236,6 \mathrm{~mm}, \mathrm{y}=168,9 \mathrm{~mm}$.
8. Distance from point $z$ to any hardware.
9. Maximum dimensions in plane of lugs.
10. The socket for this base should not be rigidly mounted; it should have flexible leads and be aliowed to move freely. Bottom circumference of the base will fall within a circle concentric with the tube axis and having a diameter of 55 mm .
The mass of the mating sock et with circuitry should not be more than 150 g ; maximum permissible torque is 40 mNm .
11. Minimum distance between glass and rimband in plane of the apertures.
12. Centring bosses for deflection unit.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		sagittal
$\begin{gathered} \mathrm{x} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{y} \\ \mathrm{~mm} \end{gathered}$	height mm
0*	195,0	18,7
20	194,9	18,9
40	194,8	19,4
60	194,5	20,3
80	194,1	21,6
100	193,6	23,3
120	193,0	25,3
140	192,2	27,7
160	191,4	30,5
180	190,5	33,6
200	189,4	27,2
220	188,2	41,2
230	187,6	43,4
251,4**	179,5	47,1
255,3	160	44,7
256,1	140	41,8
256,9	120	39,3
257,5	100	37,3
258,1	80	35,6
258,6	60	34,2
258,8	40	33,3
258,9	20	32,7
259,04	0	32,5

[^36]12-pin base, IEC 67-I-47a, type 2


pin contour

detail of key

Cavity cap JEDEC J1-21, IEC 67-III-2


Maximum cone contour


$\begin{aligned} & \text { sec- } \\ & \text { tion } \end{aligned}$	distance from centre (max. values)															
	nominal distance from section 1	$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$25^{\circ}$	$30^{\circ}$	$32^{\circ} 30$ '	diag.	$37{ }^{\circ} 30^{\prime}$	$40^{\circ}$	$45^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	0	279,0	283,0	295,4	305,2	318,0	325,4	329,0	327,5	320,7	296,5	276,7	248,3	230,7	221.1	218,0
2	7,5	276,4	280,3	292,5	302,0	313,8	320,4	323,1	321,3	314,8	292,5	273,5	245,6	228,1	218,5	215,5
3	17,5	273,4	277,1	288,2	296,2	304,8	308,7	309,2	307,0	301,9	285,1	268,8	242,5	225,3	215,8	212,8
4	27,5	268,8	272,1	281,5	287,4	292,7	294,3	293,4	291,3	287,1	274,6	261,1	237,5	221,3	212,1	209,1
5	37,5	262,3	265,1	272,0	275,7	277,9	278,0	276,4	274,4	270,9	261,4	250,5	230,4	215,7	207,2	204,3
6	47,5	254,0	255,9	260,0	261,4	261,2	260,2	258,1	256,2	253,2	245,8	237,4	221,1	208,5	201,0	198,4
7	57,5	243,5	244,5	245,3	244,6	242,7	241,2	238,8	237,0	234,4	228,5	222,1	209,6	199,7	193,4	191,3
8	67,5	230,1	229,8	227,8	225,7	222,8	221,0	218,6	217,0	214,8	210,1	205,3	196,2	188,9	184,3	184,6
9	77,5	213,3	211,9	207,8	204,9	201,7	199,9	197,7	196,3	194,5	190,9	187,4	181,2	176,4	173,4	172,4
10	87,5	194,0	191,4	185,6	182,3	178,9	177,3	175,4	174,2	172,8	170,1	167,8	164,3	162,1	161,1	161,0
11	97,5	172,8	168,1	161,4	158,0	154,9	153,5	152,0	151,1	150,0	148,2	146,9	145,7	146,0	147,3	148,2
12	107,5	142,1	139,1	133,9	131,5	129,4	128,4	127,5	126,9	126,3	125,4	124,9	125,2	126,9	129,5	131,1
13	117,5	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0

## RECOMMENDED OPERATING CONDITIONS (cathode drive)

The voltages are specified with respect to grid 1.

Anode voltage
Grid 3 (focusing electrode) voltage

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{a}, \mathrm{~g} 5, \mathrm{~g} 4} & 25 \mathrm{kV} \\
\mathrm{~V}_{\mathrm{g} 3} & 6,5 \text { to } 7,45 \mathrm{kV}
\end{array}
$$

## A. Operation at equal spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$

Grid 2 voltage ( $\mathrm{V}_{\mathrm{g} 2}$ ) adjusted for each gun separately; $\mathrm{V}_{\mathrm{g} 2}$ range 590 to 800 V .


Spot cut-off design chart.


Typical cathode drive characteristic.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g}, g 4=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$.

## B. Operation at equal grid 2 voltage

Grid 2 voltage ( $\mathrm{V}_{\mathrm{g} 2}$ ) adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=150 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage.
$\mathrm{V}_{\mathrm{g} 2}$ range 630 to 860 V .
$\mathrm{V}_{\mathrm{k}}$ range 120 to 150 V .

## Adjustment procedure:

Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 150 V ; increase the grid 2 voltage ( $\mathrm{V}_{\mathrm{g} 2}$ ) from approx. 600 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.


Spot cut-off design chart.


Typical cathode drive characteristic.
$V_{f}=6,3 \mathrm{~V}$;
$V_{a, g 5, g 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=120 \mathrm{~V}$ and 150 V .

## EQUIPMENT DESIGN VALUES (each gun if applicable)

The values are valid for anode voltages between 22,5 and $27,5 \mathrm{kV}$.
The voltages are specified with respect to grid 1.
Grid 3 (focusing electrode) voltage

Difference in cut-off voltage between guns in one tube

Heater voltage
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current at $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$
$V_{g 3} 26$ to $29,8 \%$ of anode voltage

To produce white $D$, CIE co-ordinates $x=0,313, y=0,329$.
Percentage of the total anode current supplied by each gun (typ.) red gun

38,3\%
green gun
35,8\%
blue gun
Ratio of anode current
red gun to green gun
red gun to blue gun
blue gun to green gun
25,9\%

## BEAM CENTRING

Maximum centring error in any direction

min.	av.	max.
0,7	1,1	1,4
1,1	1,5	2,0
0,5	0,7	1,0

5 mm

LIMITING VALUES (each gun if applicable)
Design maximum rating system unless otherwise stated.
The voltages are specified with respect to grid 1.

Anode voltage	$V_{a, g 5, g 4}$	max. min.	$\begin{aligned} & 27,5 \mathrm{kV} \\ & 22,5 \mathrm{kV} \end{aligned}$	notes 1, 2, 3 note 4
Long-term average current for three guns	$\mathrm{l}_{\mathrm{a}}$	max.	$1000 \mu \mathrm{~A}$	note 5
Grid 3 (focusing electrode) voltage	$V_{\mathrm{g} 3}$	max.	9 kV	
Grid 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	max.	1200 V	note 6
Cathode voltage				
positive	$\mathrm{V}_{\mathrm{k}}$	max.	400 V	
positive operating cut-off	$V_{k}$	max.	200 V	
negative	$-V_{k}$	max.	0 V	
negative peal	$-V_{k p}$	max.	2 V	
Cathode to heater voltage				
positive	$\mathrm{V}_{\mathrm{kf}}$	max.	250 V	
positive peak	$V_{\text {kfp }}$	max.	300 V	note 1
negative	$-\mathrm{V}_{\mathrm{kf}}$	max.	135 V	
negative peak	$-V_{k f p}$	max.	180 V	note 1
Heater voltage	$V_{f}$	6,3 V	$\begin{gathered} +5 \% \\ -10 \% \end{gathered}$	notes 1,7

## Notes

1. Absolute maximum rating system.
2. The X-ray dose rate remains below the acceptable value of $36 \mathrm{pA} / \mathrm{kg}(0,5 \mathrm{mR} / \mathrm{h})$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. During adjustment on the production line max. 1500 V is permitted.
7. For maximum cathode life and optimum performance it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.

## FLASHOVER PROTECTION

High electric field strengths are present between the gun electrodes of picture tubes. Voltages between gun electrodes may reach values of 20 kV over approx. 1 mm . As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage and damage to the circuitry which is directly connected to the tube socket. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of $10,5 \mathrm{kV}$, and at the other electrodes of 1,5 to 2 kV . The values of the series isolation resistors should be as high as possible ( $\mathrm{min} 1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing.
Additional information is available on request.


7277407



Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus.

Colour co-ordinates:	$\frac{x}{y}$	$\frac{y}{0,340}$
red	0,635	0,30
green	0,315	0,600
blue	0,150	0,060



Cathode heating time to attain a certain percentage of the cathode current at equilibrium conditions.

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts.
For proper degaussing an intial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,3$ ampere-turns).
If single-phase power rectification is employed in the TV circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.
To ease the mounting of the coils, the rimband is provided with rectangular holes. An example is given below.


Position of degaussing coils on the picture tube.

Degaussing circuit using dual PTC thermistor 232266298009.


## Data of each degaussing coil

Circumference	135 cm
Number of turns	60
Copper-wire diameter	$0,4 \mathrm{~mm}$
Aluminium-wire diameter	$0,5 \mathrm{~mm}$
Resistance	$11 \Omega$

Replaced by AT1870

## DEFLECTION UNIT

## QUICK REFERENCE DATA

## Picture tube

gun arrangement
diagonal
neck diameter
Deflection angle
Line deflection current, edge to edge at 25 kV
Inductance of line coils
Field deflection current, edge to edge at 25 kV
Resistance of field coils
(potentiometer R1 included)

A66-540X
in line
66 cm (26 in)
$36,5 \mathrm{~mm}$
$110^{\circ}$
5,1 A(p-p)
$1,5 \mathrm{mH}$
2,0 A(p-p)
$5,85 \Omega$

## CONNECTIONS

(See also Fig. 2).


Fig. 1.
Notes:

- Contacts 1 and 1a must be connected to the live side of the line circuitry, contacts 3 and 3a must be connected to the live side of the field circuitry.
- Matching female Stocko connector: MKF 804-1-0-404.
- D1 to D6 = BAS11, BAX18, BAX18A, BAV10 or BAW62.
- $\mathrm{R} 1=180 \Omega$.



## DEFLECTION UNIT

## QUICK REFERENCE DATA

Picture tube	A66-540X
$\quad$ gun arrangement	in line
diagonal	$66 \mathrm{~cm}(26 \mathrm{in})$
neck diameter	$36,5 \mathrm{~mm}$
Deflection angle	$110^{\circ}$
Line deflection current, edge to edge at 25 kV	$5,1 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Inductance of line coils	$1,5 \mathrm{mH}$
Field deflection current, edge to edge at 25 kV	$2,0 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Resistance of field coils	
(potentiometer R1 included)	$5,85 \Omega$

## APPLICATION

This deflection unit is for use with $110^{\circ}$ in-line colour picture tube A66-540X, in conjunction with e.g.: diode-split line output transformer AT2076/70A and linearity control unit AT4042/42 or AT4042/30.

## DESCRIPTION

The deflection unit consists of flangeless line and field deflection coils, a one piece ferrite ring and a one piece coil carrier.

Connection to the deflection coils can be made via a connector (contact pins 1 to 4 ) or solder tags 1 a to $4 a$, see Fig. 1.

AT1870


Fig. 1 Maximum dimensions.

The deflection unit fits a tube with a neck diameter of $36,5_{-0}^{+1,3} \mathrm{~mm}$.
Maximum operating temperature (average copper temperature measured with resistance method)
Storage temperature range
Flame retardent
$+90^{\circ} \mathrm{C}$
-20 to $+90^{\circ} \mathrm{C}$
according to UL1413, category 94, V-1

## Mounting

The deflection unit can simply be pushed on the neck of a picture tube.
Both on the neck of the tube and on the deflection unit, there are 3 reference surfaces to establish angular and axial positioning.
Once the unit is mounted the combination is perfectly aligned and requires no further adjustment for static convergence, colour purity and raster orientation.
The unit must be pressed against the reference surfaces on the cone of the picture tube with a force of $20 \pm 5 \mathrm{~N}$ and fixed by tightening the screw in the clamping ring at the rear with a torque of $1,0_{-0,2}^{+0,4} \mathrm{Nm}$.
Maximum axial force exerted on the screw is 20 N .

## ENVIRONMENTAL TEST SPECIFICATIONS

Vibration
Shock
Bump
Cold
Dry heat
Damp heat, steady state
Cyclic damp heat
Change of temperature

IEC 68-2-6 (test Fc)
IEC 68-2-27 (test Ea; 35g)
IEC 68-2-29 (test Eb; 25g)
IEC68-2-1 (test Ab)
IEC68-2-2 (test Bb)
IEC 68-2-3 (test Ca)
IEC 68-2-30 (test Db)
IEC 68-2-14 (test Nb)

## ELECTRICAL DATA

Line coils

Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$ (potentiometer R1 included)
Field deflection current, edge to edge, at 25 kV
Cross-talk

## Insulation resistance

between line and field coils; at 3 kV (d.c.)
between field coils and ferrite ring, at 300 V (d.c.)
$1,5 \mathrm{mH} \pm 4 \%$
$1,3 \Omega \pm 10 \%$
$7,6 \mathrm{mWb} \pm 5 \%$
5,1 A(p-p)
$9,7 \mathrm{mH} \pm 10 \%$
$5,85 \Omega \pm 7 \%$
2,0 A(p-p)
a voltage of $1 \mathrm{~V}, 15 \mathrm{kHz}$ applied to the line coils causes no more than 20 mV across the field coils
$>10 \mathrm{M} \Omega$
$>10 \mathrm{M} \Omega$

## Connections

(See also Fig. 1).


Fig. 2.

## Notes:

- Contacts 1 and 1a must be connected to the live side of the line circuitry, contacts 3 and 3a must be connected to the live side of the field circuitry.
- Matching female Stocko connector: MKF 804-1-0-404.
- D1 to D6 = BAS11, BAX18, BAX18A, BAV10 or BAW62.
- $\mathrm{R} 1=180 \Omega$.


## FLAT SQUARE Hi-Bri COLOUR PICTURE TUBE

- Flat and square screen
- $110^{\circ}$ deflection
- In-line, hi-bi potential A R T* gun with quadrupole cathode lens
- 29,1 mm neck diameter
- Mask with corner suspension
- Hi-Bri technology
- Pigmented phosphors
- Quick-heating low-power cathodes
- Soft flash
- Slotted shadow mask optimized for minimum moiré at 625 lines systems
- Internal magnetic shield
- Internal multipole
- Reinforced envelope for push-through mounting
- Anti-crackle coating


## QUICK REFERENCE DATA

Deflection angle $110^{\circ}$
Minimum useful screen diagonal
66 cm
Overall length
42 cm
Neck diameter
Heating
Focusing voltage
$29,1 \mathrm{~mm}$
$6,3 \mathrm{~V}, 310 \mathrm{~mA}$
$31 \%$ of anode voltage

[^37]
## ELECTRON-OPTICAL DATA

Electron gun system

Focusing method
Focus lens
Deflection method
Deflection angles diagonal
horizontal $97^{\circ}$
vertical

## ELECTRICAL DATA

Capacitances
anode to external conductive coating
anode to metal rimband
cathodes of all guns (connected in parallel)
to all other electrodes
cathode of any gun to all other electrodes
grid 3 (focusing electrode) to all other electrodes
grid 1 to all other electrodes
grid 2 to all other electrodes
Resistance between rimband and external conductive coating
Heating: indirect by a.c. (preferably mains or line frequency) or d.c.
heater voltage
heater current

## OPTICAL DATA

## Screen

Screen finish
Useful screen dimensions
diagonal
horizontal axis
vertical axis
area
Positional accuracy of the screen with
respect to the glass contour
Phosphors
red
green
blue
Persistence
$110^{\circ}$
$77^{\circ}$
$V_{f}$
6,3 V
$I_{f}$
$\min . \quad 50 \mathrm{M} \Omega$

$C_{a, g 5, g 4 / m}$	$\begin{array}{ll} \max . & 2200 \mathrm{pF} \\ \min . & 1800 \mathrm{pF} \end{array}$
$C_{\text {a, }} \mathrm{g} 5, \mathrm{~g} 4 / \mathrm{m}^{\prime}$	300 pF
$\mathrm{C}_{\mathrm{k}}$	15 pF
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}}$	5 pF
$\mathrm{C}_{\mathrm{g} 3}$	6 pF
$\mathrm{C}_{\mathrm{g} 1}$	17 pF
$\mathrm{C}_{\mathrm{g} 2}$	4,5 pF

unitized triple-aperture electrodes; aberration reducing triode electrostatic
hi-bi-potential
magnetic
metal-backed vertical phosphor stripes;
phosphor lines follow glass contour
satinized
min. 660 mm
min . $534,5 \mathrm{~mm}$
min . 406 mm
$\min .2152 \mathrm{~cm}^{2}$
see Figure on the next page
pigmented europium activated rare earth
sulphide type
pigmented sulphide type
medium short
$A=203,2 \mathrm{~mm}$
$B=287,0 \mathrm{~mm}$
$C=140,2 \mathrm{~mm}$
$D=222,6 \mathrm{~mm}$
$E=25,6 \mathrm{~mm}$


7293407

$x$	$y$
$\mathbf{0 , 6 3 5}$	$\overline{0,340}$
0,315	0,600
0,150	0,060

approx. 0,8 mm

65\%
L $\quad 160 \mathrm{~cd} / \mathrm{m}^{2}$ *

Colour co-ordinates
blue colour phosphor stripes

Light transmission of face glass at screen centre
Luminance at the centre of the screen
MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Base
Anode contact
Mounting position
Implosion protection

Net mass
$422 \pm 6 \mathrm{~mm}$ $29,1_{-0,7}^{+1,4} \mathrm{~mm}$
JEDEC B10-277
small cavity contact J1-21, IEC 67-III-2 anode contact on top
rimband provided with skirt and slots to accommodate clips for mounting of degaussing coils
approx. $24,5 \mathrm{~kg}$

## Handling

During shipment and handling the tube should not be subjected to accelerations greater than 35 g in any direction.

* Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

MECHANICAL DATA (continued)
Notes are given



Flat square Hi -Bri colour picture tube



Notes to outline drawings on the preceding pages

1. The displacement of any lug with respect to the plane through the three other lugs is max. $1,5 \mathrm{~mm}$.
2. Minimum space to be reserved for mounting lug.
3. The position of the mounting screw in the cabinet must be within a circle of 8 mm diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $581,5 \mathrm{~mm} \times 450 \mathrm{~mm}$.
4. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. 50 mm , concentric with an imaginary tube axis.

Sagittal heights with reference to screen centre at the edge of the minimum useful screen

coordinates		
x   mm	y   mm	sagittal   height   mm
$0^{*}$	203,0	12,5
20	203,0	12,6
40	202,9	13,0
60	202,8	13,6
80	202,7	14,5
100	202,6	15,6
120	202,4	16,9
140	202,1	18,5
160	201,9	20,4
180	201,6	22,5
200	201,2	24,9
220	200,9	27,5
240	200,4	30,3
260	200,0	33,5
$264,0^{* *}$	198,0	33,9
265,3	180	31,9
265,7	160	29,8
266,1	140	28,0
266,4	120	26,4
266,7	100	25,1
266,9	80	23,9
267,1	60	23,1
267,2	40	22,5
267,2	20	22,1
$267,2 \mathbf{2 4}$	0	22,0

* Point $\times$.
** Diagonal.
- Point (y).


## A66EAK00X

10-pin base; JEDEC B10-277


## Cavity cap JEDEC J1-21, IEC 67-III-2



Maximum cone contour


sec-	nom. distance	distance from centre										
	section 1	$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$30^{\circ}$	36,870	$40^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
1	0,00	287,2	291,4	304,9	329,6	349,8	341,6	289,2	257,0	237,4	226,8	223,5
2	10,00	286,6	290,8	304,2	328,8	348,1	339,9	288,4	256,2	236,7	226,1	222,8
3	20,00	285,0	289,2	302,4	326,4	342,6	334,6	285,6	253,8	234,5	224,1	220,8
4	30,00	282,1	286,1	298,9	321,2	332,5	324,7	279,7	249,2	230,5	220,3	217,1
5	40,00	277,7	281,5	293,5	313,3	319,6	312,1	271,7	242,7	224,8	215,1	212,0
6	50,00	271,6	275,2	286,3	302,8	305,1	298,2	262,4	235,2	218,2	208,9	205,9
7	60,00	263,8	267,1	276,9	287,8	289,2	283,0	252,1	227,0	211,0	202,1	199,3
8	70,00	253,9	256,8	265,2	274,3	271,9	266,6	240,6	217,8	202,9	194,6	192,0
9	80,00	241,4	243,9	250,9	257,0	253,7	249,1	227,2	207,0	193,2	185,6	183,1
10	90,00	225,6	227,8	233,6	237,8	234,3	230,2	211,4	193,4	180,9	173,9	171,6
11	100,00	207,1	209,1	214,0	217,4	213,8	210,0	192,9	176,7	165,4	159,0	157,0
12	110,00	186,8	188,4	192,6	195,1	191,4	187,7	172,1	157,5	147,5	141,8	139,9
13	120,00	163,7	165,0	168,0	169,0	165,3	162,1	149,2	137,1	128,6	123,7	122,1
14	130,00	126,3	126,7	126,8	125,3	123,2	121,9	117,1	112,0	107,7	104,7	103,7
15	137,12	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4	88,4

## TYPICAL OPERATING CONDITIONS

The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	25 kV
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	7,25 to $8,25 \mathrm{kV}$
Grid 2 voltage for a spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{g} 2}$	see below
Heater voltage under operating conditions	$\mathrm{V}_{\mathrm{f}}$	$6,3 \mathrm{~V}$



Spot cut-off design chart.
Grid 2 voltage ( $\mathrm{V}_{\mathrm{g} 2}$ ) adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage
$V_{g 2}$ range 575 to 825 V ;
$\mathrm{V}_{\mathrm{k}}$ range 105 to 130 V .
Adjustment procedure:
Set the cathode voltage $\left(\mathrm{V}_{\mathrm{k}}\right)$ for each gun at 130 V ; increase the grid 2 voltage ( $\mathrm{V}_{\mathrm{g} 2}$ ) from approx. 550 V to the value at which one of the colours become just visible. Now decrease the cathode voltage of the remaning guns so that the other colours also become visible.

Flat square Hi -Bri colour picture tube

## EQUIPMENT DESIGN VALUES

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$. The voltages are specified with respect to grid 1.
Grid 3 (focusing electrode) voltage
Grid 2 voltage and cathode voltage for visual extinction of focused spot
Difference in cut-off voltages between guns in any tube

Heater voltage
Video drive characteristics
Grid 3 (focusing electrode) current
Grid 2 current
Grid 1 current under cut-off conditions
To produce white of $6500 \mathrm{~K}+7$ M.P.C.D.
(CIE co-ordinates $x=0,313, y=0,329$ )
Percentage of the total anode current supplied by each gun (typical) red gun

38,3\%
green gun
35,8\%
blue gun
25,9\%
Ratio of anode currents
red gun to green gun
red gun to blue gun
blue gun to green gun

Insulation resistance between each cathode and grid 1 and heater

V ${ }^{\prime} 3$
$\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}} \quad$ see spot cut-off design chart
$\Delta V_{k} \quad$ lowest value $>80 \%$ of
$I_{g}$
$I_{g 1}$
highest value
$6,3 \mathrm{~V}$ at zero beam current see graphs*
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$
-2 to $+2 \mu \mathrm{~A}$
29 to $33 \%$ of anode voltage
,
$\min . \quad 0,8$ average 1,1
max. 1,4
min. 1,1
average 1,5
max. 1,9
min. 0,5
average 0,7
max. 1,0
$\min . \quad 50 \mathrm{M} \Omega$

[^38]

Typical cathode drive characteristic.
$V_{f}=6,3 \mathrm{~V}$;
$V_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}$;
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus;
$\mathrm{V}_{\mathrm{g} 2}$ (each gun) adjusted to provide spot cut-off for $\mathrm{V}_{\mathrm{k}}=105 \mathrm{~V}$ (curve a) and $\mathrm{V}_{\mathrm{k}}=130 \mathrm{~V}$ (curve b).

Flat square Hi -Bri colour picture tube

LIMITING VALUES (Design maximum rating system unless otherwise stated)
The voltages are specified with respect to grid 1.
notes

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	max. min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	$\begin{aligned} & 1,2,3 \\ & 1,4 \end{aligned}$
Long-term average current for three guns	$\mathrm{I}_{\mathrm{a}}$	max.	$1000 \mu \mathrm{~A}$	5
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	11 kV	
Grid 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	max.	1200 V	6
Cathode voltage positive positive operating cut-off negative negative peak	$\begin{aligned} & V_{k} \\ & V_{k} \\ & -V_{k} \\ & -V_{k p} \end{aligned}$	max.   max.   max.   max.	$\begin{array}{r} 400 \mathrm{~V} \\ 200 \mathrm{~V} \\ 0 \mathrm{~V} \\ 2 \mathrm{~V} \end{array}$	
Cathode to heater voltage positive positive peak negative negative peak	$V_{k f}$   $V_{k f p}$   $-V_{k f}$   $-V_{k f p}$	max.   max.   max.   max.	$\begin{aligned} & 250 \mathrm{~V} \\ & 300 \mathrm{~V} \\ & 135 \mathrm{~V} \\ & 180 \mathrm{~V} \end{aligned}$	1 1
Heater voltage	$V_{f}$		$+5 \%$ $-10 \%$	1,7
LIMITING CIRCUIT VALUES				
Grid 3 circuit resistance	$\mathrm{R}_{\mathrm{g} 3}$	max.	70 MS	
Grid 1 to cathode circuit resistance (each gun)	$\mathrm{R}_{\mathrm{g} 1 \mathrm{k}}$	max.	$0,75 \mathrm{M} \Omega$	
BEAM CENTRING				
Maximum centring error in any direction			4 mm	

## Notes

1. Absolute maximum rating system.
2. The X-ray dose rate remains below the acceptable value of $36 \mathrm{pA} / \mathrm{kg}(0,5 \mathrm{mR} / \mathrm{h})$, measured with ionization chamber when the tube is used within its limiting values.
3. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended to first make the necessary adjustments for normal operation without picture tube.
4. Operation of the tube at lower voltages impairs the luminance and resolution, and could impair convergence.
5. The short-term average anode current should be limited by circuitry to $1500 \mu \mathrm{~A}$.
6. During adjustment on the production line max. 1500 V is permitted.
7. For maximum cathode life it is recommended that the heater supply be designed for $6,3 \mathrm{~V}$ at zero beam current.


Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,313, y=0,329$. Exact shape of the peaks depends on the resolution of the measuring apparatus. Colour co-ordinates:
red
green
blue

$\frac{x}{0,635}$	$\frac{y}{0,340}$
0,315	0,600
0,150	0,060

## DEGAUSSING

The picture tube is provided with an internal magnetic shield. This shield and the shadow mask with its suspension system may be provided with an automatic degaussing system, consisting of two coils covering top and bottom cone parts, or on large coil.
For proper degaussing an initial magnetomotive force (m.m.f.) of 300 ampere-turns is required in each of the coils. This m.m.f. has to be gradually decreased by appropriate circuitry. To prevent beam landing disturbances by line-frequency currents induced in the degaussing coils, these coils should be shunted by a capacitor of sufficiently high value. In the steady state, no significant m.m.f. should remain in the coils ( $\leqslant 0,15$ ampere-turns).
If single-phase power rectification is employed in the TV circuitry, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.
To ease the mounting of the coils, the rimband is provided with rectangular holes.

length of degaussing coil : $1,48 \mathrm{~m}$
Double-coil system.

length of degaussing coil : 3,13m
Single-coil system.
7291928

Degaussing circuit using
dual PTC thermistor 2322662 98009; $C=100 n F$.


## Data of each degaussing coil

Circumference
Number of turns
Copper-wire diameter
Aluminium-wire diameter
Resistance

double-coil system	single-coil system
148 cm	313 cm
60	60
$0,4 \mathrm{~mm}$	$0,4 \mathrm{~mm}$
$0,5 \mathrm{~mm}$	$0,5 \mathrm{~mm}$
$12 \Omega$	$25 \Omega$

## $110^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- $66 \mathrm{~cm}, 110^{\circ}$ colour picture tube A66EAK00X
- Double saddle deflection unit AT6000/01


## QUICK REFERENCE DATA

Deflection angle	$110^{\circ}$
Minimum useful screen diagonal	66 cm
Overall length	42 cm
Neck diameter	$29,1 \mathrm{~mm}$



Net mass of tube assembly: $25,5 \mathrm{~kg}$.


Yoke clearance.

## ELECTRICAL DATA OF DEFLECTION UNIT

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
parallel connected $1,85 \mathrm{mH}$
1,85 $\Omega$
$7,6 \mathrm{mWb} \pm 5 \%$
4,1 A (p-p)
series connected
11 mH
6,5 $\Omega$
1,7 A (p-p)


Electrical diagram.
The beginning of the windings is indicated with $\bullet$.
$R 1=R 2=100 \Omega, 0,25 \mathrm{~W}$.
Matching Stocko connector MKF806-1-0-606.

## $110^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- $66 \mathrm{~cm}, 110^{\circ}$ colour picture tube A66EAK00X
- Double saddle deflection unit AT6000/01


## QUICK REFERENCE DATA

Deflection angle	$110^{\circ}$
Minimum useful screen diagonal	66 cm
Overall length	42 cm
Neck diameter	$29,1 \mathrm{~mm}$

## MECHANICAL DATA

Dimensions in mm


Net mass of tube assembly: $25,5 \mathrm{~kg}$


Yoke clearance.

## ELECTRICAL DATA OF DEFLECTION UNIT

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV


Electrical diagram.
The beginning of the windings is indicated with $\bullet$. $\mathrm{R} 1=\mathrm{R} 2=100 \Omega, 0,25 \mathrm{~W}$.
Matching Stocko connector MKF806-1-0-606.
parallel connected
$1,85 \mathrm{mH}$
1,85 $\Omega$
$7,6 \mathrm{mWb} \pm 5 \%$
4,1 A (p-p)
series connected
11 mH
6,5 $\Omega$
1,7 A (p-p)


Terminal location.

## $110^{\circ}$ FLAT SQUARE COLOUR PICTURE TUBE ASSEMBLY

- Factory preset tube/coil assembly
- Self-converging and north-south raster correction free
- $66 \mathrm{~cm}, 110^{\circ}$ colour picture tube A66EAK00X
- Double saddle deflection unit AT6000/11


## QUICK REFERENCE DATA

Deflection angle
$110^{\circ}$
Minimum useful screen diagonal
66 cm
Overall length
42 cm
Neck diameter
$29,1 \mathrm{~mm}$


Net mass of tube assembly: $25,5 \mathrm{~kg}$.


Yoke clearance.

## ELECTRICAL DATA OF DEFLECTION UNIT

Line coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Magnetic flux
Line deflection current, edge to edge, at 25 kV
Field coils
Inductance at 1 V (r.m.s.), 1 kHz
Resistance at $25^{\circ} \mathrm{C}$
Field deflection current, edge to edge, at 25 kV
parallel connected
$1,85 \mathrm{mH}$
1,85 $\Omega$
$7,6 \mathrm{mWb} \pm 5 \%$
4,1 A (p-p)
series connected
11 mH
6,5 $\Omega$
1,7 A (p-p)

Electrical diagram.
The beginning of the windings is indicated with $\bullet$.
$\mathrm{R} 1=\mathrm{R} 2=100 \Omega, 0,25 \mathrm{~W}$.
Matching connectors: 572201340 (field) 572201370 (line).


## MEDIUM RESOLUTION COLOUR DISPLAY TUBE ASSEMBLIES

- $90^{\circ}$ deflection angle
- In-line gun, thermally stable; electrostatic hi-bi-potential for improved focus
- 29,1 mm neck diameter
- Pigmented phosphors
- Dark glass featuring extra high contrast performance
- Soft-Flash technology offering improved set reliability
- Slotted shadow mask optimized for minimum moiré
- 0,42 mm phosphor pitch
- Phosphor lines follow glass contour
- Quick-heating cathodes
- Internal magnetic shield
- Rimband type implosion protection
- Supplied as a pre-aligned, self-converging and raster correction free tube-coil assembly; dynamic convergence is not required
- M34EAQ00X . . assembly with display tube with etched screen
- M34EAQ10X . .: assembly with display tube with high gloss screen


## QUICK REFERENCE DATA

Deflection angle	$90^{\circ}$
Face diagonal	$37 \mathrm{~cm}(14 \mathrm{inch})$
Overall length	$341,5 \mathrm{~mm}$
Neck diameter	$29,1 \mathrm{~mm}$
Resolution: number of displayable pixels*	$480 \times 360$
Heating	$6,3 \mathrm{~V}, 685 \mathrm{~mA}$
Focusing voltage	$28 \%$ of anode voltage

[^39]
## ELECTRON-OPTICAL DATA

Electron gun system
Focusing method
Focus lens
Convergence method
Deflection method

## Deflection angles

diagonal
horizontal
vertical

## ELECTRICAL DATA

## Tube

## Capacitances

anode to external
conductive coating including rimband
grid 1 of any gun to all other electrodes
cathodes of all guns, connected in parallel, to all other electrodes
cathode of any gun to all other electrodes
focusing electrode to all other electrodes
Heating
heater voltage
heater current

## Deflection unit

Line deflection coils, Fig. 1
inductance
resistance
Line deflection current, edge to edge, at 25 kV
Field deflection coils, Fig. 2
inductance
resistance
Field deflection current, edge to edge, at 25 kV
unitized in-line
electrostatic
bi-potential
magnetic
magnetic
approx. $90^{\circ}$
approx. $78^{\circ}$
approx. $60^{\circ}$
$\mathrm{C}_{\mathrm{a}}\left(\mathrm{m}+\mathrm{m}^{\prime}\right) \quad \max .1600 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1} \quad 17 \mathrm{pF}$
$\mathrm{C}_{\mathrm{k}} \quad 15 \mathrm{pF}$
$\mathrm{C}_{\mathrm{kR}}, \mathrm{C}_{\mathrm{kG}}, \mathrm{C}_{\mathrm{kB}} \quad 5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 3} \quad 6 \mathrm{pF}$
$V_{f} \quad 6,3 \mathrm{~V}$
$I_{f}$
685 mA

Maximum permissible voltage

## between line and field coils

between field coils and core
Insulation resistance
between line and field coils, at 1 kV (d.c.)
between line coil and core clamping ring, at $500 \vee$ (d.c.)
between field coil and core clamping ring, at 1000 V (d.c.)
Cross-talk

```
3000 V (d.c.)
300 V (d.c.)
```

$500 \mathrm{M} \Omega$
$30 \mathrm{M} \Omega$
$100 \mathrm{M} \Omega$
a voltage of $1 \mathrm{~V}, 15625 \mathrm{~Hz}$ applied to : the line coils causes no more than 20 mV across the field coils


Fig. 1 Line coils.


Fig. 2 Field coils.


Fig. 3 Terminal location of deflection coils.

## OPTICAL DATA

Screen

## Screen finish M34EAO00X M34EAQ10X

Useful screen dimensions diagonal horizontal axis vertical axis area
metal-backed phosphor stripes;
phosphor lines follow glass contour
etched
high gloss
min. $335,4 \mathrm{~mm}(13,20 \mathrm{in})$
$\mathrm{min} .280,8 \mathrm{~mm}(11,06 \mathrm{in})$
$\mathrm{min} .210,6 \mathrm{~mm}(8,29 \mathrm{in})$
$\min .580 \mathrm{~cm}^{2}\left(89,90 \mathrm{in}^{2}\right)$

Recommended useful screen dimensions for alphanumeric display
diagonal
horizontal axis
vertical axis
Phosphors
red
green
blue
Phosphor colour co-ordinates
red
green
blue
Centre-to-centre distance of vertical identical colour phosphor stripes, at screen centre
Light transmission of face glass at centre
Number of displayable pixels

307 mm ( $12,09 \mathrm{in}$ )
244 mm ( $9,61 \mathrm{in}$ )
186 mm (7,32 in)
rare earth, europium activated, pigmented sulphide type
sulphide type, pigmented
$x=0,635 ; y=0,340$
$x=0,315 ; y=0,600$
$x=0,150 ; y=0,060$
$0,42 \mathrm{~mm}(0,016 \mathrm{in})$
46\%
$480 \times 360$

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Bulb dimensions
diagonal
width
height
Bulb
funnel
panel
Implosion protection
Anode contact designation
Base designation
Basing designation
Mass
Mounting position
$341,6 \pm 5 \mathrm{~mm}(13,45 \pm 0,20 \mathrm{in})$
$29,1 \mathrm{~mm}(1,15 \mathrm{in})$
$\max .368 \mathrm{~mm}$ (max. $14,49 \mathrm{in})$
max. 317 mm (max. $12,48 \mathrm{in}$ )
max. 248 mm (max. 9,76 in)

EIAJ-J370AG1/JEDEC J365C18 EIAJ-J370CF1 shrink type (UL approved)
JEDEC J1-21; IEC 67-III-2
10-pin base JEDEC B10-277
see Fig. 10
approx. $6 \mathrm{~kg}(13,2 \mathrm{lbs})$
anode contact on top

## Notes to outline drawings on the following pages

1. Configuration of outer conductive coating may be different but will contain the contact area as shown in the drawing.
2. To clean this area, wipe only with a soft lintless cloth.
3. One of the four mounting lugs may deviate $1 \mathrm{~mm}(0,04 \mathrm{in})$ max. from the plane of the other three lugs. This deviation is incorporated in the tolerance of $\pm 1,8 \mathrm{~mm}(0,07 \mathrm{in})$.
4. Minimum space to be reserved for mounting lug.
5. The position of the mounting screw in the cabinet must be within a circle of $9,5 \mathrm{~mm}(0,37 \mathrm{in})$ diameter drawn around the true geometrical positions, i.e. the corners of a rectangle of $311,4 \times$ $243,2 \mathrm{~mm}(12,26 \times 9,57 \mathrm{in})$.
6. Co-ordinates for radius $R=11,6 \mathrm{~mm}(0,46 \mathrm{in}) ; x=126,98 \mathrm{~mm}(4,999 \mathrm{in}) ; y=90,76 \mathrm{~mm}(3,573 \mathrm{in})$.
7. Not applicable.
8. The socket for this base should not be rigidly mounted; it should have flexible leads and be allowed to move freely. After mounting of the tube in the cabinet note that the position of the base can fall within a circle, having a diameter of max. $50 \mathrm{~mm}(1,968 \mathrm{in})$, concentric with an imaginary tube axis.
The mass of the mating socket with circuitry should not be more than 150 g , maximum permissible torque is 40 mNm .
9. Small cavity contact J1-21, IEC 67-III-2.
10. The $X, Y$ and $Z$ reference points are located on the outside surface of the face plate $3,2 \mathrm{~mm}$ ( $0,13 \mathrm{in}$ ) beyond the intersection of the minor, major and diagonal screen axis respectively, with the minimum published screen.

## M34EAQ00X

 M34EAQ10X SERIES
## MECHANICAL DATA (continued)

The dimensions are given in mm , and in inches between brackets.
Notes are on the preceding page.


Fig. 4a.


Fig. 4b.

Fig. 4c.


MECHANICAL DATA (continued)


Fig. 6.


Fig. 7.


Fig. 8.


Fig. 9.


Fig. 10 i.c. $=$ internally connected (not to be used).

## Medium resolution colour display tube assemblies

M34EAQ00X
M34EAQ10X
SERIES

## Maximum cone contour



Fig. 11.

$\begin{aligned} & \text { sec- } \\ & \text { tion } \end{aligned}$	nom.   distance from section 1	distance from centre (max. values)														
		$0^{\circ}$	$10^{\circ}$	$20^{\circ}$	$25^{\circ}$	$30^{\circ}$	$32^{\circ} 30^{\prime}$	diag.   axes	$37^{\circ} 30^{\prime}$	$40^{\circ}$	$45^{\circ}$	$50^{\circ}$	$60^{\circ}$	$70^{\circ}$	$80^{\circ}$	$90^{\circ}$
Dimensions in mm																
1	0	157,2	159,4	166,3	171,7	178,2	181,2	183,6	183,3	180,0	167,9	156,5	140,0	129,8	124,2	122,4
2	10	154,7	156,9	163,5	168,5	174,1	176,6	178,1	177,7	174,8	164,4	153,7	137,8	127,9	122,4	120,7
3	20	148,8	150,7	156,3	160,0	163,5	164,6	165,0	164,4	162,6	156,0	147,7	133,6	124,4	119,3	117,7
4	30	140,4	142,1	146,2	148,6	150,5	151,0	151,1	150,7	149,6	145,6	140,0	128,6	120,3	115,7	114,2
5	40	130,3	131,3	134,0	135,4	136,5	136,8	136,8	136,6	136,1	134,1	130,8	122,7	115,9	111,7	110,3
6	50	118,2	118,8	120,1	120,9	121,6	121,8	122,0	122,0	121,9	121,2	119,8	115,4	110,5	107,0	105,8
7	60	104,9	104,7	105,1	105,5	106,0	106,2	106,5	106,7	106,9	107,1	107,0	105,6	103, 1	100,8	99,8
8	70	90,6	89,9	89,8	90,0	90,4	90,6	90,9	91,1	91,4	91,9	92,3	92,5	91,7	90,4	89,7
9	77	79,9	79,1	79,0	79,1	79,4	79,6	79,9	80,1	80,4	80,9	81,4	81,8	81,4	80,5	79,9

Dimensions in inches

1	0	6,19	6,28	6,55	6,76	7,02	7,13	7,23	7,22	7,09	6,61	6,16	5,51	5,11	4,89	4,82
2	0,39	6,09	6,18	6,44	6,63	6,85	6,95	7,01	7,00	6,88	6,47	6,05	5,43	5,04	4,82	4,75
3	0,79	5,86	5,93	6,15	6,29	6,44	6,48	6,50	6,47	6,40	6,14	5,81	5,26	4,90	4,70	4,63
4	1,18	5,53	5,59	5,76	5,85	5,92	5,94	5,95	5,93	5,89	5,73	5,51	5,06	4,74	4,56	4,50
5	1,57	5,13	5,17	5,28	5,33	5,37	5,39	5,39	5,38	5,36	5,27	5,15	4,83	4,56	4,40	4,34
6	1,97	4,65	4,68	4,73	4,76	4,79	4,80	4,80	4,80	4,80	4,77	4,72	4,54	4,35	4,21	4,17
7	2,36	4,13	4,12	4,14	4,15	4,17	4,18	4,19	4,20	4,21	4,22	4,21	4,16	4,06	3,97	3,94
8	2,76	3,57	3,54	3,54	3,54	3,56	3,57	3,58	3,59	3,60	3,62	3,63	3,64	3,61	3,56	3,53
9	3,03	3,15	3,11	3,11	3,11	3,13	3,13	3,15	3,15	3,17	3,19	3,20	3,22	3,20	3,17	3,15



Fig. 12.
10-PIN BASE JEDEC B10-277


Fig. 13.

RECOMMENDED OPERATING CONDITIONS (cathode drive)
The voltages are specified with respect to grid 1.

Anode voltage	$\mathrm{V}_{\mathrm{a}, \mathrm{g} 4}$	25 kV
Grid 3 (focusing electrode) voltage	$\mathrm{V}_{\mathrm{g} 3}$	6,6 to $7,5 \mathrm{kV}$
Grid 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	see Fig .14
Luminance at the centre of the screen*	L	$80 \mathrm{~cd} / \mathrm{m}^{2}(23,2$ foot lambert $)$



Fig. 14 Spot cut-off design chart.
Grid 2 voltage ( $\mathrm{V}_{\mathrm{g} 2}$ ) adjusted for highest gun spot cut-off voltage $\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$.
Remaining guns adjusted for spot cut-off by means of cathode voltage.
$\mathrm{V}_{\mathrm{g} 2}$ range 390 to 760 V
$\mathrm{V}_{\mathrm{k}}$ range 110 to 140 V .
Adjustment procedure:
Set the cathode voltage ( $\mathrm{V}_{\mathrm{k}}$ ) for each gun at 140 V ; increase the grid 2 voltage ( $\mathrm{V}_{\mathrm{g} 2}$ ) from approx. 400 V to the value at which one of the colours becomes just visible. Now decrease the cathode voltage of the remaining guns so that the other colours also become visible.

* Tube setting adjusted to produce white of $9300 \mathrm{~K}+27 \mathrm{M}$. P.C.D. $(x=0,281, y=0,311)$, focused
raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.


## EQUIPMENT DESIGN VALUES (each gun if applicable)

The values are valid for anode voltages between 20 and $27,5 \mathrm{kV}$. The voltages are specified with respect to grid 1.

| Grid 3 (focusing electrode) voltage   <br> Grid 2 voltage and cathode voltage <br> for visual extinction of focused spot $\mathrm{V}_{\mathrm{g} 3}$ 26,6 to $29,8 \%$ of anode voltage <br> Difference in cut-off voltages between <br> guns in any tube $\mathrm{V}_{\mathrm{g} 2}$ and $\mathrm{V}_{\mathrm{k}}$ see Fig. 14 <br> Cathode drive characteristic $\Delta \mathrm{V}_{\mathrm{k}}$ lowest value $\geqslant 80 \%$ of highest value <br> Grid 3 (focusing electrode) current  see Fig. 15 <br> Grid 2 current $\mathrm{I}_{\mathrm{g} 3}$ -5 to $+5 \mu \mathrm{~A}$ <br> Grid 1 current at $V_{k}=100 \mathrm{~V}$ $\mathrm{I}_{\mathrm{g} 2}$ -5 to $+5 \mu \mathrm{~A}$$\quad$$\mathrm{I}_{\mathrm{g} 1}$ | -5 to $+5 \mu \mathrm{~A}$ |
| :--- | :--- | :--- |

To produce white of $9300 K+2700$ M.P.C.D. (CIE co-ordinates $x=0,281, y=0,311$ ): percentage of total anode current supplied by each gun
red gun 27,9\%
green gun
39,1\%
blue gun
ratio of anode currents
red gun to green gun
red gun to blue gun
33,0\%
blue gun to green gun

min.	av.	max.
0,5	0,7	1,0
0,6	0,9	1,2
0,6	0,9	1,2



Fig. 15 Typical cathode drive characteristics.
$\mathrm{V}_{\mathrm{g} 2}$ adjusted to provide spot
cut-off for
$\mathrm{V}_{\mathrm{k}}=90 \mathrm{~V}$ (curve a),
$\mathrm{V}_{\mathrm{k}}=110 \mathrm{~V}$ (curve b ),
$\mathrm{V}_{\mathrm{k}}=140 \mathrm{~V}$ (curve c).
$V_{f}=6,3 \mathrm{~V}$.
$V_{g 4}=25 \mathrm{kV}$.
$\mathrm{V}_{\mathrm{g} 3}$ adjusted for focus.

## LIMITING VALUES (each gun if applicable)

Tube
Design maximum rating system unless otherwise stated.
The voltages are specified with respect to grid 1.

			notes
$V_{a, g 4}$	max.   min.	$\begin{array}{r} 27,5 \mathrm{kV} \\ 20 \mathrm{kV} \end{array}$	$\begin{aligned} & 1 \text { and } 2 \\ & 3 \end{aligned}$
1 lap	max.	$400 \mu \mathrm{~A}$	
$l_{a}$	max.	$200 \mu \mathrm{~A}$	
$\mathrm{l}_{\mathrm{a}}$	max.	$450 \mu \mathrm{~A}$	4
$V_{\mathrm{g}}$	max.	11 kV	
$V_{\mathrm{g} 2 \mathrm{p}}$	max.	1000 V	
$\mathrm{V}_{\mathrm{k}}$	max.	400 V	
$V_{k}$	max.	200 V	
$-V_{k}$	max.	0 V	
$-V_{k p}$	max.	2 V	
$V_{k f}$	max.	250 V	
$V_{k f p}$	max.	300 V	1
$-V_{k f}$	max.	0 V	
$-V_{k f p}$	max.	200 V	1
$V_{f}$		6,3 $\mathrm{V}^{+5 \%}$	1 and 5

## Deflection unit

Maximum operating temperature

## LIMITING CIRCUIT VALUES

Grid 3 circuit resistance
Grid 1 to cathode circuit resistance (each gun)

$R_{g 3}$	$\max$.	$30 \mathrm{M} \Omega$
$R_{g 1 k}$	$\max$.	$0,75 \mathrm{M} \Omega$

## Notes

1. Absolute Maximum rating system.
2. During adjustment on the production line this value is likely to be surpassed considerably. It is therefore strongly recommended first to make the necessary adjustments for normal operation.
3. Operation of the tube at lower voltages impairs the luminance and resolution.
4. The short term average anode current should be limited by circuitry to $600 \mu \mathrm{~A}$.
5. For maximum cathode life and optimum performance, it is recommended that the heater supply be designed for 6,3 V at zero beam current.

## FLASHOVER PROTECTION

With the high voltage used with this tube (max. $27,5 \mathrm{kV}$ ) internal flashovers may occur. As a result of the Soft-Flash technology these flashover currents are limited to approx. 60 A offering higher set reliability, optimum circuit protection and component savings.
Primary protective circuitry using properly grounded spark gaps and series isolation resistors (preferably carbon composition) is still necessary to prevent tube damage. The spark gaps should be connected to all picture tube electrodes at the socket according to the figure below; they are not required on the heater pins. No other connections between the outer conductive coating and the chassis are permissible. The spark gaps should be designed for a breakdown voltage at the focusing electrode (g3) of 11 kV $\left(1,5 \times V_{g 3}\right.$ max. at $\left.V_{\mathrm{a}, \mathrm{g} 4}=25 \mathrm{kV}\right)$, and at the other electrodes of 1,5 to 2 kV .
The values of the series isolation resistors should be as high as possible ( $\mathrm{min} .1,5 \mathrm{k} \Omega$ ) without causing deterioration of the circuit performance. The resistors should be able to withstand an instantaneous surge of 20 kV for the focusing circuit and 12 kV for the remaining circuits without arcing. Additional information is available on request.


Fig. 16.

## X-RADIATION LIMIT

Maximum anode voltage at which the X -radiation emitted will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ at an anode current of $300 \mu \mathrm{~A}$

entire tube	$31 \mathrm{kV} *$
face-plate only	33 kV

## Warning:

If the value for the tube face only is used as design criterion, adequate shielding must be provided in the monitor for the anode contact and/or certain portions of the tube funnel and panel skirt to insure that the X -radiation from the monitor is attenuated to a value equal to or lower than that specified for the face of the tube.
Maximum voltage difference between anode and focus electrode at which the $X$-radiation will not exceed $0,5 \mathrm{mR} / \mathrm{h}$

## Warning:

If the voltage value above can be exceeded in the monitor additional attenuation of the X -radiation through the tube neck may be required.
The X-radiation emitted from this display tube, as measured in accordance with the procedure of JEDEC Publication No. 64D, will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ throughout the useful tube life when operated within the 'Design maximum ratings'.
The tube should not be operated beyond its 'Design maximum ratings' stated above, but its X -radiation will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ for anode voltage and current combinations given by the isoexposure-rate limits characteristics shown on the next page.
Operation above the values shown by the curve may result in failure of the monitor to comply with the Federal Performance Standard of the U.S. for Television Receivers, Section 1020. 10 of Part 1020 of Title 21, Code of Federal Regulation (PL90-602) as published in the Federal Register Volume 38, No. 198, Monday, October 15, 1973.
Maximum X-radiation as a function of anode voltage at $300 \mu \mathrm{~A}$ anode current is shown by the curve on the next page. X -radiation at a constant anode voltage varies linearly with anode current.

[^40]

Fig. $170,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curve.


Fig. 18 X -radiation limit curve at a constant anode current of $300 \mu \mathrm{~A}$.

## WARNINGS

## X-radiation

Operation of this colour display tube under abnormal conditions which exceed the $0,5 \mathrm{mR} / \mathrm{h}$ iso-dose rate curve shown on the preceding page may produce soft X -rays which may constitute a health hazard on prolonged exposure at close range unless adequate external screening is provided. Precautions must therefore be exercised during servicing of monitors using this tube to ensure that the anode voltage and other tube voltages are adjusted to the recommended values so that the 'Design maximum ratings' are not exceeded.

## Replacement

This display tube incorporates integral X-radiation and implosion protection and must be replaced with a tube of the same type number or a recommended replacement to assure continued safety.

## Shock hazard

The high voltage at which the tube is operated may be very dangerous. The monitor should include safeguards to prevent the user from coming in contact with the high voltage. Extreme care should be taken in servicing or adjustment of any high-voltage circuit.
Caution must be exercised during the replacement or servicing of the display tube since a residual electrical charge may be held by the high-voltage capacitor formed by the external and internal conductive coatings of the display tube funnel. To remove any residual charge, short the anode contact button, located in the funnel of the tube, to the external conductive coating before handling the tube. Discharging the high voltage to isolated metal parts such as cabinets and control brackets may produce a shock hazard.

## Handling

Assemblies should be kept in the shipping box or similar protective container will just prior to installation. Wear heavy protective clothing, including gloves and safety goggles with side shields, in areas containing unpacked and unprotected tubes to prevent possible injury from flying glass in the event a tube breaks. Handle the tube with extreme care. Do not strike, scratch or subject the tube to more than moderate pressure. Particular care should be taken to prevent damage to the seal area.
The packing should incorporate sufficient cushioning so that under normal conditions of shipment or handling an impact acceleration of more than 35 g is never applied to the tube.


Fig. 19 Simultaneous excitation of red, green and blue phosphor, measured in a tube, to produce white of $x=0,281, y=0,311$. Exact shape of the peaks depends on the resolution of the measuring apparatus. Colour co-ordinates:
red
green
blue
x
$\overline{0,635}$
0,315
0,150
$y$
$\overline{0,340}$
0,600
0,060

## DEGAUSSING

The display tube has an internal magnetic shield. This shield and the shadow mask with its suspension system may be automatically degaussed by a coil mounted on the cone of the picture tube as shown in Fig. 20.


Fig. 20 Position of degaussing coil on the display tube; dimensions are given in mm , and in inches between brackets.

For proper degaussing an initial magnetomotive force (m.m.f.) of 600 ampere-turns is required in the coil. This m.m.f. has to be gradually decreased. In the steady state, no significant m.m.f. should remain in the coil ( $\leqslant 0,6$ ampere-turns).
If single-phase power rectification is used, provision should be included to prevent asymmetric distortion of the a.c. voltage applied to the degaussing circuit due to high d.c. inrush currents.
An example of a degaussing circuit and coil data for various mains voltages are given below.


Fig. 21 Degaussing circuit using dual PTC thermistor.

## Data of degaussing coil

Circumference
Number of turns
Copper-wire diameter
Resistance
Catalogue number of dual PTC thermistor

110 to 120 V (a.c.)	220 V (a.c.)
$90 \mathrm{~cm}(35,4 \mathrm{in})$	$90 \mathrm{~cm}(35,4 \mathrm{in})$
70	120
$0,45 \mathrm{~mm}(0,018 \mathrm{in})$	$0,3 \mathrm{~mm}(0,012 \mathrm{in})$
$6,7 \Omega$	$25,9 \Omega$
822229873091	232266298009

## CONVERGENCE AND RASTER SPECIFICATION

The maximum misconvergence after 15 min operation is given in Table 1.
Test conditions (all voltages are measured with respect to grid 1)

Heater voltage	$\mathrm{V}_{\mathrm{f}}$	$6,3 \mathrm{~V}$
Grid 2 voltage	$\mathrm{V}_{\mathrm{g} 2}$	525 V
Grid 3 voltage	$\mathrm{V}_{\mathrm{g} 3}$	to be adjusted for focus at screen centre, using cross-hatch pattern   or characters H, at anode current of $300 \mathrm{\mu}$ (peak) per gun
Anode voltage	$\mathrm{V}_{\mathrm{a}}$	25 kV   cross-hatch pattern
Test pattern		
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	$25 \pm 5^{\circ} \mathrm{C}$

## Notes

1. Misconvergence is the distance between centres of the red, green, blue lines at the screen using rectangular co-ordinates.
2. Anode and/or focusing voltage and terrestrial magnetism affect the static convergence performance.

Table 1 Maximum misconvergence after 15 min operation

location (see Fig. below)	type or error	max. error between   any colour
centre	red-green-blue line separation in either	$0,3 \mathrm{~mm}$
area A	the horizontal or vertical direction	$0,5 \mathrm{~mm}$
area B		$0,8 \mathrm{~mm}$



Fig. 22 Convergence test areas.

## Raster centring

horizontal
vertical
Raster rotation

7285967


max.	4 mm
$\max$.	4 mm
$\max$.	0,40

Fig. 23 Raster rotation.

Pattern distortion, measured without east-west and north-south correction

## $\rightarrow$ east-west

H
V
max. $\quad 3,0 \mathrm{~mm}$
max. $\quad 2,1 \mathrm{~mm}$


Fig. 24 Pattern distortion.


# Electronic components and materials <br> for professional, industrial and consumer uses <br> from the world-wide Philips Group of Companies 

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 4393322.
Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111-0.
Belgium: N.V. PHILIPS \& MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400.
Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.
Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624.
Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: RTC-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 43388000.
Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.
Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, 54, Syngru Av., ATHENS 11742, Tel. 9215311/319.
Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121.
India: PEICO ELECTRONICS \& ELECTRICALS LTD., Elcoma Dept., Band Box Building,
254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. 4930311/4930590.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan,
JAKARTA - Selatan, Tel. 512572.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.
Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. $794-5011$.
Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 774411.
Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.
Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050,5600 PB EINDHOVEN, Tel. (040) 793333.
New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt . Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914.
Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200.
Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070.
Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59.
Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel, 683121.
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000.
South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. \& Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9.
Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000.
Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211.
Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. 7120500.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.
Turkey: TURK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad, No. 78-80, P.K.504, 80074 ISTANBUL, Tel. 435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-5806633.
United States: (Active Devices \& Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) $762-9000$.
(Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(Passive Devices \& Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 991-2000.
Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, P.O. Box 218 ,
5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtenl

AS52
(C) Philips Export B.V. 1986

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.


[^0]:    * Supersedes the IC06N 1985 edition and the Supplement to IC06N issued Autumn 1985.

[^1]:    * In the region of 66 mm from the neck end, the maximum diameter is $23,2 \mathrm{~mm}$.

[^2]:    * For optimum picture performance it is recommended that the cathodes are not driven below +10 V .

[^3]:    * Aberration Reducing Triode.

[^4]:    * Aberration Reducing Triode.

[^5]:    * In the region of 66 mm from the neck end, the maximum diameter is 23,2 mm .

[^6]:    * In the region of 70 mm from the neck end, the maximum diameter is 30 mm .

[^7]:    * In the region of 70 mm from the neck end, the maximum diameter is 30 mm .

[^8]:    * Tube settings adjusted to produce white of $6500 \mathrm{~K}+7$ M.P.C.D. $(x=0,313, y=0,329)$ focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

[^9]:    * In the region of 70 mm from the neck end, the maximum diameter is 30 mm .

[^10]:    * Aberration reducing triode.

[^11]:    * Aberration Reducing Triode.

[^12]:    * Tube settings adjusted to produce white $D(x=0,313, y=0,329)$, focused raster, current density $0,4 \mu \mathrm{~A} / \mathrm{cm}^{2}$.

[^13]:    *. In the region of 70 mm from the neck end, the maximum diameter is 30 mm .

[^14]:    * In the region of 70 mm from the neck end, the maximum diameter is 30 mm .

[^15]:    5 mm

[^16]:    * In the reqion of 70 mm from the neck end, the maximum diameter is 30 mm .

[^17]:    * Aberration Reducing Triode.

[^18]:    * Point $x$

[^19]:    * For optimum picture performance it is recommended that the cathodes are not driven below +1 V .

[^20]:    * Aberration Reducing Triode.

[^21]:    * Point
    ** Diagonal.
    - Point

[^22]:    * For optimum picture performance it is recommended that the cathodes are not driven below +1 V .

[^23]:    * Aberration Reducing Triode.

[^24]:    * In the region of 66 mm from the neck end, the maximum diameter is $23,2 \mathrm{~mm}$.

[^25]:    * 300 ampere-turns for double-coil system; 700 ampere-turns for single-coil system.
    ${ }^{* *} \leqslant 0,3$ ampere-turns for double-coil system; $\leqslant 0,6$ ampere-turns for single-coil system.

[^26]:    * Aberration Reducing Triode.

[^27]:    * This rating applies only if the anode connector used by the set maker provides the necessary attenuation to reduce the X -radiation from the anode contact by a factor equal to the difference between the anode button isoexposure-rate limit curve and the isoexposure-rate limit curve for the entire tube.

[^28]:    * Aberration Reducing Triode.

[^29]:    * In the region of $78,5 \mathrm{~mm}(3,09 \mathrm{in})$ from the neck end, the maximum diameter is $30 \mathrm{~mm}(1,18 \mathrm{in})$.

[^30]:    * This rating applies only if the anode connector used by the set maker provides the necessary attenuation to reduce the X -radiation from the anode contact by a factor equal to the difference between the anode button isoexposure-rate limit curve and the isoexposure-rate limit curve for the entire tube.

[^31]:    * Aberration Reducing Triode.

[^32]:    * In the region of $78,5 \mathrm{~mm}(3,09 \mathrm{in})$ from the neck end, the maximum diameter is $30 \mathrm{~mm}(1,18 \mathrm{in})$.

[^33]:    * This rating applies only if the anode connector used by the set maker provides the necessary attenuation to reduce the X -radiation from the anode contact by a factor equal to the difference between the anode button isoexposure-rate limit curve and the isoexposure-rate limit curve for the entire tube.

[^34]:    * Aberration Reducing Triode.

[^35]:    * Point X
    ** Diagonal.
    - Point

[^36]:    * Point (x. ** Diagonal.

    4 Point (y).

[^37]:    * Aberration Reducing Triode.

[^38]:    * For optimum picture performance it is recommended that the cathodes are not driven below + 1 V .

[^39]:    * Pixel = picture element.

[^40]:    * This rating applies only if the anode connector used by the set maker provides the necessary attenuation to reduce the X -radiation from the anode contact by a factor equal to the difference between the anode button isoexposure-rate limit curve and the isoexposure-rate limit curve for the entire tube.

