Data handbook

Philus Electronic
components and materials

Electron tubes

Book T5
1986

Cathode-ray tubes

CATHODE-RAY TUBES

page
Selection guide
Monoaccelerator tubes 2
Post-deflection accelerator tubes 3
Direct-view storage tubes 3
Monitor and display tubes 4
Flying spot scanner tube 4
General
List of symbols 7
Operational recommendations 9
Photometric units 15
Type designation 17
Screen types 19
Device data
Instrument tubes 51
Survey of types 52
Monitor and display tubes 325
Survey of types 326
Flying spot scanner tube 393
Accessories 401

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES BLUE

SEMICONDUCTORS RED

INTEGRATED CIRCUITS
PURPLE

COMPONENTS AND MATERIALS

The contents of each series are listed on pages iv to viii.
The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.
When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).
Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.
Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1 Tubes for r.f. heating

T2a Transmitting tubes for communications, glass types
T2b Transmitting tubes for communications, ceramic types
T3 Klystrons
T4 Magnetrons for microwave heating
T5 Cathode-ray tubes
Instrument tubes, monitor and display tubes, C.R. tubes for special applications
T6 Geiger-Müller tubes

T8 Colour display systems
Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
T9 Photo and electron multipliers
T10 Plumbicon camera tubes and accessories

T11 Microwave semiconductors and components
T12 Vidicon and Newvicon camera tubes

T13 Image intensifiers and infrared detectors

T15 Dry reed switches
T16 Monochrome tubes and deflection units
Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:
S1 Diodes
Small-signal silicon diodes, voltage regulator diodes ($<1,5 \mathrm{~W}$), voltage reference diodes, tuner diodes, rectifier diodes

S2a Power diodes

S2b Thyristors and triacs
S3 Small-signal transistors
S4a Low-frequency power transistors and hybrid modules
S4b High-voltage and switching power transistors
S5 Field-effect transistors

S6 R.F. power transistors and modules

S7 Surface mounted semiconductors

S8 Devices for optoelectronics
Photosensitive diodes and transistors, light-emitting diodes, displays, photocouplers, infrared sensitive devices, photoconductive devices.

S9 Power MOS transistors

S10 Wideband transistors and wideband hybrid IC modules

S11 Microwave transistors

S12 Surface acoustic wave devices

S13 Semiconductor sensors

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXISTING SERIES

Superseded by:
IC1 Bipolar ICs for radio and audio equipment
IC01N

IC2 Bipolar ICs for video equipment
ICO2Na and 1 CO 2 Nb
IC3 ICs for digital systems in radio, audio and video equipment IC01N, IC02Na and IC02Nb

IC4 Digital integrated circuits

 CMOS HE4000B familyIC5 Digital integrated circuits - ECL IC08N
ECL10000 (GX family), ECL100 000 (HX family), dedicated designs
IC6 Professional analogue integrated circuits
IC7 Signetics bipolar memories
IC8 Signetics analogue circuits IC11N
IC9 Signetics TTL logic ICO9N and IC15N
IC10 Signetics Integrated Fuse Logic (IFL) IC13N
IC11 Microprocessors, microcomputers and peripheral circuitry IC14N

NEW SERIES

IC01N Radio, audio and associated systems
(published 1985)
Bipolar, MOS
IC02Na Video and associated systems
(published 1985)
Bipolar, MOS
Types MAB8031AH to TDA1524A

IC02Nb Video and associated systems (published 1985)
Bipolar, MOS
Types TDA2501 to TEA1002
IC03N Integrated circuits for telephony
IC04N HE4000B logic family CMOS

IC05N HE4000B logic family - uncased ICs (published 1984)
CMOS

IC06N* High-speed CMOS; PC74HC/HCT/HCU
(published 1986)
Logic family
IC07N High-speed CMOS; PC54/74HC/HCT/HCU - uncased ICs Logic family

IC08N ECL 10K and 100K logic families (published 1984)
IC09N TTL logic series (published 1984)
IC10N Memories
MOS, TTL, ECL

IC11N Linear LSI
(published 1985)

IC12N Semi-custom gate arrays \& cell libraries ISL, ECL, CMOS

IC13N Semi-custom (published 1985)
Integrated Fuse Logic
IC14N Microprocessors, microcontrollers \& peripherals (published 1985) Bipolar, MOS

IC15N FAST TTL logic series
(published 1984)

Note

Books available in the new series are shown with their date of publication.

[^0]
COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:
C1 Programmable controller modules
PLC modules, PC20 modules
C2 Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
C3 Loudspeakers
C4 Ferroxcube potcores, square cores and cross cores
C5 Ferroxcube for power, audio/video and accelerators
C6 Synchronous motors and gearboxes
C7 Variable capacitors
C8 Variable mains transformers
C9 Piezoelectric quartz devices
C10 Connectors
C11 Non-linear resistors
C12 Potentiometers, encoders and switches
C13 Fixed resistors
C14 Electrolytic and solid capacitors
C15 Ceramic capacitors
C16 Permanent magnet materials
C17 Stepping motors and associated electronics
C18 Direct current motors
C19 Piezoelectric ceramics
C20 Wire-wound components for TVs and monitors
C21* Assemblies for industrial use
HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input devices
C22 Film capacitors

* To be issued shortly

N 2 0 0 0 0 0 0 0 0 0 0 0	SELECTION GUIDE CATHODE-RAY TUBES preferred types											
	Monoaccelerator tubes											
	type*	standard phosphor	display area mm^{2}	accelerator voltage V	deflec coeffi hor.	tion cient m vert.	line width mm	max. bandwidth MHz	heater current at $6,3 \mathrm{~V}$ mA	max. overall length mm	special features	
	D7-221.	GY	60×36	1000	12,5	20	0,28	10	100**	225	low profile screen, reversed x and y plates	
	D7-222. .	GY	60×36	1000	12,5	20	0,28	10	240	225	low profile screen, reversed x and y plates	
	D10-180. .	GY	70×56	2000	36	23	0,2	25	240	240	dynamic deflection defocusing correction, internal magnetic correction	
	D10-181. .	GY	70×56	2000	36	23	0,2	25	100**	240	dynamic deflection defocusing corréction, internal magnetic correction	
	D12-130. ./119	GY	80×64	2000	32	21	0,2	25	100**	257	internal magnetic correction	
	D14-363. ./93	GY	100×80	2000	19	11,5	0,30	25	100**	333	vertical scan magnification, internal magnetic correction	
	D14-364. ./93	GY	100×80	2000	19	11,5	0,30	25	240	333	vertical scan magnification, internal magnetic correction	
	* For the blanks in the type numbers insert phosphor code. ** Low-power heater.											

type＊	standard phosphor	display area mm^{2}	first accelerator voltage kV	final accelerator voltage kV	defle coeff V／c hor．	tion cient vert．	line width mm	max． bandwidth MHz	heater current at $6,3 \mathrm{~V}$ mA	max． overall length mm	special features
D12－150．．／119	GH	80×64	1，5	10	5，8	3，0	0，25	75	100＊＊	299	internal magnetic correction
D14－262．．	GH	100×80	2	4	19，5	10，5	0，35	30	240	333	
D14－371．．／123	GH	100×80	2	10	8，0	4，0	0，33	75	100＊＊	338	internal magnetic correction
D14－372．／123	GH	100×80	2	10	8，0	4，0	0，33	75	240	338	internal magnetic correction
D14－381．．／123	GH	100×80	2，2	16，5	8，3	4，0	0，33	150	100＊＊	338	internal magnetic correction
D14－382．．／123	GH	100×80	2，2	16，5	8，3	4，0	0，33	150	240	338	internal magnetic correction
D14－400．．／123	GH	100×80	3	24	7，3	2，9	0，37	500	240	419	helical y－deflection，internal magnetic correction

＊For the blanks in the type numbers insert the phosphor code．
＊＊Low－power heater．

Direct－view storage tubes

| type | display
 area
 mm^{2} | final
 accelerator
 voltage
 kV | writing
 speed
 $\mathrm{div} / \mu \mathrm{s}$ | storage
 viewing
 time
 s | deflection
 coefficient
 V / cm
 hor． | line width | hert． | heater
 current
 at $6,3 \mathrm{~V}$
 mA | max．
 overall
 length
 mm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | special features |
| :--- |

＊In fast storage mode．

Monitor and display tubes

	type*	standard phosphor	display area mm^{2}	minimum resolution	deflection angle	neck diameter mm	heater current at $6,3 \mathrm{~V}$ mA	max. overall length mm	special features
	M17-142. . M17-143. .	WE	124×93	1050 lines	70°	28	240	234	electrostatic focusing
		WE	124×93	1050 lines	70°	28	240	240	electrostatic focusing, bonded faceplate, metal-mounting band
	M17-144. .	WE	124×93	1050 lines	70°	28	240	234	electrostatic focusing, special version for photography
	M17-145. .	WE	124×93	1050 lines	70°	28	240	240	electrostatic focusing, bonded faceplate, metal-mounting band special version for photography
	M38-201. . *	WA, WE	200×270	$\begin{aligned} & 1728 \times 2288 \\ & \text { pixels } \end{aligned}$	70°	37	190	484,5	electrostatic focusing, very high resolution
	* For the blanks in the type numbers insert the phosphor code. ** Includes adjusted deflection coil AT1991. Flying spot scanner tube								
	type*	standard phosphor	useful screen diameter mm	accelerator voltage kV	resolution	deflection angle		heater current at $6,3 \mathrm{~V}$ mA	special features
	Q13-110.	GU	108	25	1000	40°			magnetic deflection and focusing

* For the blanks in the type number insert the phosphor code.

LIST OF SYMBOLS

Symbols denoting electrodes and electrode connections

f	Heater
k	Cathode
g	Grid Grids are distinguished by means of an additional numeral; the electrode nearest to the cathode having the lowest number
$\mathrm{x}_{1}, \mathrm{x}_{2}$	Deflection plates intended for deflection in horizontal direction
$\mathrm{y}_{1}, \mathrm{y}_{2}$	Deflection plates intended for deflection in vertical direction Sectioned deflection plates are indicated by an additional decimal e.g. Y1 . 1 Y1 . 2 and Y2 . 1 Y2 . 2
m	External conductive coating
ℓ	Fluorescent screen
i.c.	Tube pin which must not be connected externally
n.c.	Tube pin which may be connected externally
	Symbols denoting voltages
V	Symbol for voltage, followed by an index denoting the relevant electrode
V_{f}	Heater voltage (r.m.s. value)
V_{p}	Peak value of a voltage
$V_{(p-p)}$	Peak-to-peak value of a voltage
	Symbols denoting currents
I	Symbol for current followed by an index denoting the relevant electrode
If_{f}	Heater current (r.m.s. value)
	Symbols denoting powers
W_{ℓ}	Dissipation of the fluorescent screen
W_{g}	Grid dissipation

Symbols denoting capacitances

See IEC Publication 100.

Symbols denoting resistances

R
Symbol for resistance followed by an index for the relevant electrode pair. When only one index is given the second electrode is the cathode
When R is replaced by Z the "resistance" should read "impedance"

Symbols denoting various quantities

L	Luminance
f	Frequency
H	Magnetic field strength
M	Deflection coefficient
$M_{\text {sc }}$	Scan magnification
B	Bandwidth
I.w.	Line width
e	Eccentricity
t_{p}	Pulse duration

OPERATIONAL RECOMMENDATIONS

GENERAL

Unless otherwise stated the published data are typical values.

TYPICAL OPERATION

Under this heading in the data sheets, the conditions are given which result in the specified performance. This performance represents the best compromise for the intended applications of the tube.

LIMITING VALUES

Unless otherwise stated the tubes are rated according to the absolute maximum rating system.
Limiting values are in accordance with the applicable rating system as defined by IEC publication 134. Reference may be made to one of the following 3 rating systems.

Abstract

Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions. These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment. The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment components spread and variation, equipment control adjustment, load variations, signal variation, environmental conditions, and spread or variations in characteristics of the device under considerations and of all other electronic devices in the equipment. Design-maximum rating system. Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions. These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration. The equipment manufacturer should design so that, initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

[^1]Design-centre rating system. Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under average conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component spread and variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations or spread in the characteristics of all electronic devices.
The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device* in equipment operating at the stated normal supply voltage.
If the tube data specify limiting values according to more than one rating system the circuit has to be designed so that none of these limiting values is exceeded under the relevant conditions.
In addition to the limiting values given in the individual data sheets the directives in the following paragraphs should be observed.

HEATER SUPPLY

The heater voltage must be within $\pm 7 \%$ of the nominal value when the supply voltage is at its nominal value, and when a tube having the published heater characteristics is employed. This figure is permissible only if the voltage variation is dependent upon more than one factor. In these circumstances the total tolerance may be taken as the square root of the sum of the squares of the individual deviations arising from the effect of the tolerances of the separate factors, providing none of these deviations exceeds $\pm 5 \%$. Should the voltage variation depend on one factor only, the voltage variation must not exceed $\pm 5 \%$.
For maximum cathode life it is recommended that the heater supply be stabilized at the nominal heater voltage. Any deviation from this heater voltage has a detrimental effect on tube performance and life, and should therefore be kept to a minimum. Such deviations may be caused by:

- mains voltage fluctuations;
- spread in the characteristics of components such as transformers, resistors, capacitors, etc.;
- spread in circuit adjustments;
- operational variations.

Cathode-ray tubes with a quick-heating cathode should not be used in series with other tubes.

CATHODE TO HEATER VOLTAGE

The voltage between cathode and heater should be as low as possible and never exceed the limiting values given in the data sheets of the individual tubes. Operation with the heater positive with respect to the cathode is not recommended.
In order to avoid excessive hum the a.c. component of the heater to cathode voltage should be as low as possible and never exceed 20 V r.m.s. (mains frequency). A d.c. connection should always be present between heater and cathode. Unless otherwise specified the maximum resistance should not exceed $1 \mathrm{M} \Omega$; the maximum impedance at mains frequency should be less than $100 \mathrm{k} \Omega$.

INTERMEDIATE ELECTRODES (between cathode and final accelerator)

In no circumstances should the tube be operated without a d.c. connection between each electrode and the cathode. The total effective impedance between each electrode and the cathode should be as low as possible and never exceed the published maximum value.

* A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.

ELECTRODE VOLTAGES

The reference point for electrode voltages is the cathode. For cathode drive service the reference point is grid 1.

Grid cut-off voltages

Values are given for the limits of grid cut-off voltage at the specified first accelerator voltage. The brightness control voltage should be arranged so that it can handle any tube within the limits shown, at the appropriate first accelerator voltage.

First accelerator voltage

The first accelerator electrode of a so-called unipotential lens provides independent focus and brightness controls by applying a fixed voltage. Care should be taken not to exceed the maximum and minimum limits for reasons of reliability and performance.

Focusing voltage

The focusing voltage ($\mathrm{V}_{\mathrm{g} 3}$) should be adjusted to optimum spot size; the voltage may depend on the beam current.
For automatic pre-adjustment (autofocus) of oscilloscope tubes, $\Delta \mathrm{V}_{\mathrm{g} 3}$ should be derived from the grid drive.

Astigmatism control voltage

To achieve optimum performance under all conditions it is desirable to apply a voltage for control of astigmatism (a difference in potential of this electrode and the y plates). The required range to cover any tube is given in the relevant data.

Deflection plate shield voltage

It is essential that the deflection plate shield voltage equals the mean y plate voltage.

Geometry control voltage

By varying the potential of the geometry control electrode, the necessary range of which is given in the relevant data, the occurrence of pin-cushion and barrel-pattern distortion can be controlled.

Deflection voltages

For optimum performance it is essential that true symmetrical voltages are applied. It should further be noted that the mean x and y-plate potentials must be equal. Moreover the deflection plate shield voltage, the mean astigmatism control voltage, if applicable the mean beam centring voltage and the geometry control voltage should also be equal to the mean x and y-plate potentials. If use is made of the full deflection capabilities of the tube, the deflection plates will intercept part of the electron beam near the edge of the scan. Therefore a low impedance deflection plate drive is necessary. (See also ELECTRODE CURRENTS AND CIRCUIT IMPEDANCES on the next page.)

Raster distortion and its determination

Limits of raster distortion are given for most tubes.

A graticule, consisting of concentric rectangles is aligned with the electrical x-axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
Measuring procedure:

- Shift the x-trace to the centre of the graticule.
- Align horizontal centre line of graticule with the centre line of the x-trace.
- Shift x-trace vertically between upper and lower horizontal lines of graticule; the centre of the x-trace now will not fall outside the area bounded by the horizontal graticule lines.
- Without moving the graticule, switch to a vertical trace and shift this trace horizontally (left and right) between the pairs of vertical lines of the graticule; the centre of the y-trace will not fall outside the area bounded by the vertical graticule lines.
- Focus and astigmatism will be adjusted for optimum performance.
- Pattern geometry correction will be adjusted for optimum performance in the sense of minimizing simultaneously the deviation of the centre of x and y-trace respectively.

Linearity

Unless otherwise stated the linearity is defined as the sensitivity at a deflection of 75% of the useful scan with respect to deviations from the sensitivity at a deflection of 25% of the useful scan. These sensitivities will not differ by more than the indicated value.

Post deflection shield voltage

In order to optimize contrast in mesh tubes a fixed negative voltage with respect to the geometry control voltage should be applied. The range is given in the data.

Final accelerator voltage

\rightarrow Tubes with PDA are designed for a given range of final accelerator voltage to first accelerator voltage ratio. Operation at higher or lower ratios may result in changes in deflection uniformity, pattern distortion and useful scan.

High tension supply

In order to avoid damage to the screen it is important that a deflection voltage, e.g. the time base voltage, is applied prior to the high tension.

ELECTRODE CURRENTS AND CIRCUIT IMPEDANCES

In each electrode currents caused by interception of a part of the electron beam, leakage or secondary emission, may occur in both directions. For oscilloscope tubes currents up to $10 \mu \mathrm{~A}$ can be expected in the focusing electrode and the deflection plates. In addition, if use is made of the full deflection capabilities, each deflection plate may intercept up to 50% of the beam current.
For oscilloscope tubes with beam-limiting apertures, the grid 2 and/or grid 4 circuit impedance should be less than $10 \mathrm{k} \Omega$.
For all tubes the control grid circuit resistance should be less than $1 \mathrm{M} \Omega$.

CAPACITANCES

Unless otherwise stated the values given are nominal values measured at the contacts of a cold tube. The contacts and measuring leads are screened.

LINE WIDTH

The line width is measured with the shrinking raster method. Focusing and astigmatism voltages should be adjusted to minimize the horizontal and vertical trace widths simultaneously at the screen centre. The raster width should be reduced until the line structure is just discernible. This raster width, divided by the number of lines in the display, is the measure of the line width.

USEFUL SCREEN AREA

This is the area on the inner side of the faceplate which is provided with phosphor; it may remain uncovered and thus visible from the outside.

USEFUL SCAN AREA

This is the part of the useful screen area in which the specified performance applies.

LUMINESCENT SCREEN

To prevent permanent screen damage, care should be taken:

- not to operate the tube with a stationary picture at high beam currents for extended periods;
- not to operate the tube with a stationary or slowly moving spot except at extremely low beam currents.

MOUNTING

Unless otherwise stated the tubes can be mounted in any position. However, a tube should not be supported by the base alone or near the base region, and under no circumstances should the socket be allowed to support the tube.
The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The mass of the mating socket with circuitry should not be more than 100 g ; maximum permissible torque is 40 mNm .

Shielding

Oscilloscope tubes need a magnetic shielding for proper operation. Especially for types with an internal permanent magnetic lens system (IMC), a magnetic induction at the tube neck greater than 0,02 T (200 gauss), which corresponds to a magnetic field strength of $1,6 \times 10^{4} \mathrm{~A} / \mathrm{m}$, must be avoided.

HANDLING

Handling (or destroying) tubes should be done by qualified personnel.
The tubes are evacuated, which implies that mechanical damage must be avoided; care should be taken not to scratch or knock any part of the tube.
Remember when replacing or servicing a tube that a residual electrical charge may be carried by the final accelerator contact and also the external coating if not earthed. Before removing the tube from the equipment, earth the external coating and short the final accelerator contact to the coating.

PHOTOMETRIC UNITS

S.I. photometric units

quantity	symbol	S.I. unit	remarks
luminous intensity	I	cd (candela)	
luminous flux	ϕ	Im (lumen)	
quantity of light	Q	$\mathrm{Im} \cdot \mathrm{s}$	
luminance	L	$\mathrm{cd} / \mathrm{m}^{2}$	$1 \mathrm{~cd} / \mathrm{m}^{2}=1 \mathrm{nit}$
luminous exitance	M	$\mathrm{Im} / \mathrm{m}^{2}$	formerly luminous emittance
illuminance	E	Ix (lux)	formerly illumination

Other photometric units; conversion factors
1 stilb $\quad=1 \mathrm{~cd} / \mathrm{cm}^{2}=10^{4} \mathrm{~cd} / \mathrm{m}^{2}=4 \pi$ lumen $/ \mathrm{cm}^{2}$
1 lambert $\quad=\frac{1}{\pi} \mathrm{~cd} / \mathrm{cm}^{2}=\frac{10^{4}}{\pi} \mathrm{~cd} / \mathrm{m}^{2}=4$ lumen $/ \mathrm{cm}^{2}$
1 foot lambert $=\frac{1}{\pi} \mathrm{~cd} / \mathrm{ft}^{2}=3,426 \mathrm{~cd} / \mathrm{m}^{2}$
1 foot candle $=10,764$ lux

TYPE DESIGNATION

Pro Electron type designation code

The CRT type number begins with a single letter followed by two sets of digits, and ends with one or two letters.
The first letter indicates the prime application of the tube:
D : Oscilloscope tube, single trace
E : Oscilloscope tube, multiple trace
F: Radar display tube, direct view
L: Storage display tube
M : TV display tube for professional application, direct view
P : Display tube for professional application, projection
Q : Flying spot scanner tube
The first group of digits indicates the diameter or diagonal of the screen in cm .
The second group of digits is a two or three-figure serial number indicating a particular design or development.
The final group of letters indicates the properties of the phosphor screen (see section "Screen types").
For CRTs with internal graticule a suffix consisting of two or more figures follows the type designation, separated from it by an oblique stroke.
Example:

SCREEN TYPES

new system	old system	fluorescent colour	phosphorescent colour	persistence	equivalent JEDEC designation
BA	C	purplish-blue	-	very short	-
BE	B	blue	blue	medium short	P11
BF	U	purplish-blue	-	medium short	-
GH	H	green	green	medium short	P31
GK	G	yellowish-green	yellowish-green	medium	-
GM	P	purplish-blue	yellowish-green	long	P7
GP	-	bluish-green	green	medium short	P2
GR	-	green	green	long	P39
GU	-	white	white	very short	-
GY	-	green	green	medium	P43
KC	-	yellow-green	yellow-green	medium short	-
W	w	white	-	-	P4
WA	-	white	-	-	
WE	-	white	white	medium short	P45
X	X	tri-colour screen	-	-	-
YA	Y	yellowish-orange	yellowish-orange	medium	-

The phosphor information given in this section is based in general upon the original phosphor registration (TEPAC and/or PRO ELECTRON) and can be used as a selection guide. Slight differences may occur between the actual phosphor properties and the registered data.

Survey of applications and persistence of screens

application	phosphor	conditions (display: spot)				persistence relative level of luminance 10%		remark
		screen voltage	screen current (peak value)	pulse width	repetition time			
						10\%	1\%	
oscilloscope tubes	BE GH GM	$\begin{aligned} & 4 \mathrm{kV} \\ & 4 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$	$\begin{aligned} 20 & \mu \mathrm{~A} \\ 20 & \mu \mathrm{~A} \\ 2 & \mu \mathrm{~A} \end{aligned}$	$\left\|\begin{array}{r} 2 \mu \mathrm{~s} \\ 2 \mu \mathrm{~s} \end{array}\right\|$	10 ms $10 \mathrm{~ms}$ witched off 5 s	$\begin{array}{cc} 34 & \mu \mathrm{~s} \\ 38 & \mu \mathrm{~s} \\ 0,4 \mathrm{~s} \end{array}$	$\begin{gathered} 220 \mu \mathrm{~s} \\ 250 \mu \mathrm{~s} \\ 3 \mathrm{~s} \end{gathered}$	yellow filter
	$\begin{aligned} & \text { GP } \\ & \text { GY } \end{aligned}$	$\begin{aligned} & 4 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$	$\begin{aligned} 2 & \mu \mathrm{~A} \\ 20 & \mu \mathrm{~A} \end{aligned}$	$\left\lvert\, \begin{gathered} 100 \mu \mathrm{~s} \\ 2 \mu \mathrm{~s} \end{gathered}\right.$	$\begin{gathered} \text { single shot } \\ 10 \mathrm{~ms} \end{gathered}$	$\begin{array}{r} 100 \mu \mathrm{~s} \\ 1,5 \mathrm{~ms} \end{array}$	$3 \mathrm{~ms}$	
monitor tubes	GR W WA WE KC	see relevant curves for persistence						
projection tubes	$\begin{aligned} & \mathrm{BF} \\ & \mathrm{YA} \end{aligned}$	see relevant curves for persistence						
fiying-spot scanner tubes	BA GU	see relevant curves for persistence						

7204507

BE

 SCREEN

Screen voltage	4 kV
Screen current	$20 \mu \mathrm{~A}$
Pulse width	$2 \mu \mathrm{~s}$
Repetition time	10 ms

Screen voltage	4 kV
Screen current	$20 \mu \mathrm{~A}$
Pulse width	$2 \mu \mathrm{~s}$
Repetition time	10 ms

At lower screen voltage, lower screen loading or longer excitation time, the decay time will be longer.

GM SCREEN

Screen voltage	4 kV
Screen current	2 mA
Raster	$2 \mathrm{~cm} \times 2 \mathrm{~cm}$
Scanning time	5 s
Yellow filter	GG495

GP SCREEN

W
 SCREEN

Measured with defocused spot; pulse duration: $5 \mathrm{~ms}, \mathrm{~V}_{\text {screen }}: 5 \mathrm{kV}, \mathrm{I}_{\text {screen }}=5 \mu \mathrm{~A}$.

INSTRUMENT TUBES

SURVEY OF INSTRUMENT TUBES

	monoaccelerator tubes	post-deflection accelerator tubes	large bandwidth tubes	direct-view storage tubes
PREFERRED TYPES: recommended for new design				
	 D7-221GY D12-150GH/119 D14-400GH/123 L14-131GH/55 D7-222GY D14-261GH L14-140GH/95 D10-180GY D14-262GH L14-150GH/95 D10-181GY D14-371GH/123 D12-130GY/119 D14-372GH/123 D14-363GY/93 D14-381GH/123 D14-364GY/93 D14-382GH/123			

MAINTENANCE TYPES: no longer recommended for equipment production

D7-190..	D12-120GH $/ 115$			
D7-191..	D14-120GH			
	D10-160..	D14-121GH		
D10-161..	D14-292GH			
	D13-480..	D14-302GH/93		
	D13-481..	D14-370GH/93		
	D14-361..	D14-380GH/93		
	D14-361../93	D18-120..		
	D14-362..			
	D14-362../93			

OBSOLESCENT TYPES: available until present stocks are exhausted.

	D14-251GH	D14-162GH/09	D13-500GH/01	L14-111GH/55
	D14-252GH	E14-100GH	D14-240GH/37	
	D14-360..			

INSTRUMENT CATHODE-RAY TUBE

7 cm diameter flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and monitoring devices.

QUICK REFERENCE DATA					
Accelerator voltage		$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5, \ell}$	1000		
Display area		V			
Deflection coefficient, horizontal	M_{X}	60×50	$\mathrm{~mm}^{2}$		
	vertical	M_{y}	29		
		$\mathrm{~V} / \mathrm{cm}$			
			11.5		
	$\mathrm{~V} / \mathrm{cm}$				

SCREEN

	colour	persistence
D7-190GH	green	medium short D7-190GM
yellowish green		

Useful screen diameter min. 64 mm
Useful scan

horizontal	\min.	60	mm
vertical	min.	50	mm

The useful scan may be shifted vertically to a maximum of 4 mm with respect to the geometric centre of the faceplate.

HEATING: Indirect by A.C. or D.C.; parallel supply
Heater voltage

Heater current

V_{f}	6.3	V
I_{f}	300	mA

MECHANICAL DATA (Dimensions in mm)

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing

Overall length	\max.	225	mm
Face diameter	\max.	77	mm

Base 14 pin all glass

Net weight
Accessories
Socket (supplied with tube)
Mu-metal shield
type
55566
approx. 260 g
type 55534

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
yl to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}

$\mathrm{C}_{\mathrm{x} 1}(\mathrm{x} 2)$	4	pF
$\left.\mathrm{C}_{\mathrm{x} 2(\mathrm{xl})}\right)$	4	pF
$\mathrm{C}_{\mathrm{y} 1}(\mathrm{y} 2)$	3.5	pF
$\left.\mathrm{C}_{\mathrm{y} 2(\mathrm{yl})}\right)$	3	pF
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	1.6	pF
$\mathrm{C}_{\mathrm{yl} 1 \mathrm{y} 2}$	1.1	pF
$\mathrm{C}_{\mathrm{g} 1}$	5.5	pF
C_{k}	4.0	pF

FOCUSING electrostatic
DEFLECTION 3) double electrostatic
x plates symmetrical
y plates symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam, hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

$$
90 \pm 1^{0}
$$

LINE WIDTH 3)

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A} .1$) Line width
1.w.
0.28 mm

[^2]
TYPICAL OPERATING CONDITIONS 3)

Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot
Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection coefficient, horizontal
vertical

Geometry distortion
Useful scan, horizontal
vertical
LIMITING VALUES (Absolute max. rating system)

Accelerator	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g}, \ell}$	max. min.	$\begin{array}{r} 2200 \mathrm{~V} \\ 900 \mathrm{~V} \end{array}$
Focusing electrode voltage	$V_{\mathrm{g} 3}$	max.	2200 V
Control grid voltage, negative	$-\mathrm{V}_{\mathrm{g} 1}$	max. min.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
Cathode to heater voltage	$\begin{aligned} & V_{k f} \\ & -V_{k f} \end{aligned}$	max. max.	$\begin{aligned} & 125 \mathrm{~V} \\ & 125 \mathrm{~V} \end{aligned}$
Grid drive, average		max.	20 V
Screen dissipation	W_{ℓ}	max.	$3 \mathrm{~mW} / \mathrm{cm}^{2}$
Control grid circuit resistance	$\mathrm{R}_{\mathrm{g} 1}$	max.	$1 \mathrm{M} \Omega$

$V_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5, \ell}$		1000 V
$\Delta V_{g 2, g 4, g 5, \ell}$		$\pm 25 \mathrm{~V}$ 1)
$\mathrm{V}_{\mathrm{g} 3}$	100 to 180 V	
$\mathrm{V}_{\mathrm{g} 1}$	max. approx.	$\begin{array}{r} -35 \mathrm{~V} \\ 10 \mathrm{~V} \end{array}$
M_{x}	max.	$\begin{aligned} & 29 \mathrm{~V} / \mathrm{cm} \\ & 31 \mathrm{~V} / \mathrm{cm} \end{aligned}$
M_{y}	max.	$11,5 \mathrm{~V} / \mathrm{cm}$ $12,5 \mathrm{~V} / \mathrm{cm}$
	max. see note	$1 \% 2)$
	min .	60 mm
	min.	50 mm

1) All that will be necessary when putting the tube into operation is to adjust the astigmatism control voltage once for optimum spot shape in the screen centre. The control voltage will always be in the range stated, provided the mean \times plate and certainly the mean y plate potential was made equal to $V_{g 2, g 4, g 5, \ell}$ with zero astigmatism correction.
2) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
3) The mean x and certainly the mean y plate potential should be equal to $V_{g 2, g 4, g 5, \ell}$ with astigmatism adjustment set to zero.
4) A graticule, consisting of concentric rectangles of $40 \mathrm{~mm} \times 50 \mathrm{~mm}$ and $39,2 \mathrm{~mm} \times 49 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. The edges of a raster will fall between these rectangles.

INSTRUMENT CATHODE-RAY TUBE

7 cm diameter flat-faced monoaccelerator oscilloscope tube with low heater consumption.
QUICK REFERENCE DATA

Accelerator voltage	$V_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5}(\ell)$	1000 V
Display area		$60 \times 50 \mathrm{~mm}^{2}$
Deflection coefficient horizontal vertical	$\begin{aligned} & M_{x} \\ & M_{y} \end{aligned}$	$\begin{array}{r} 29 \mathrm{~V} / \mathrm{cm} \\ 11,5 \mathrm{~V} / \mathrm{cm} \end{array}$

The D7-191 is equivalent to the type D7-190.. except for the following.

HEATING

Indirect by a.c. or d.c.; parallel supply.

Heater voltage
Heater current
LIMITING VALUES (Absolute maximum rating system)
Cathode to heater voltage
positive
negative

CAPACITANCES

Cathode to all other elements
Cathode to all
$\mathrm{V}_{\mathrm{f}} \quad 6,3 \mathrm{~V}$
$I_{f} \quad 95 \mathrm{~mA}$
$\begin{array}{llr}V_{k / f} & \text { max. } & 100 \mathrm{~V} \\ -V_{k / f} & \max . & 15 \mathrm{~V}\end{array}$
C_{k}
2,3 pF

INSTRUMENT CATHODE-RAY TUBE

7 cm diagonal, rectangular flat faced mono accelerator oscilloscope tube primarily for use in inexpensive oscilloscopes and monitors. This tube features a low heater power consumption.

QUICK REFERENCE DATA

Accelerator voltage	$V_{g 2, g 4, g 5(\ell)}$	1000 V
Display area		$60 \mathrm{~mm} \times 36 \mathrm{~mm}$
Deflection coefficient horizontal vertical	M_{x}	$12,5 \mathrm{~V} / \mathrm{cm}$

The D7-221GY is equivalent to the type D7-222GY except for the following.

HEATING

Indirect by a.c. or d.c. *

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	$0,1 \mathrm{~A}$

LIMITING VALUES (Absolute maximum rating system)
Cathode to heater voltage
positive
negative
$\begin{array}{llr}V_{k f} & \max & 100 \mathrm{~V} \\ -\mathrm{V}_{\mathrm{kf}} & \max & 15 \mathrm{~V}\end{array}$

CAPACITANCES

Cathode to all other elements
C_{k}
3 pF

[^3]
INSTRUMENT CATHODE-RAY TUBE

7 cm diagonal, rectangular flat faced mono accelerator oscilloscope tube primarily for use in inexpensive oscilloscopes and monitors. This tube features a $1,5 \mathrm{~W}$ cathode with short warm-up time (quick-heating cathode).

QUICK REFERENCE DATA

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$	1000 V			
Display area			\quad	$60 \mathrm{~mm} \times 36 \mathrm{~mm}$	
:---:	---:				
Deflection coefficient horizontal vertical	M_{x}				

OPTICAL DATA

Screen

phosphor type GY, colour green
persistence
Useful screen dimensions
Useful scan
horizontal
vertical
Spot eccentricity in horizontal
and vertical directions

HEATING

Indirect by a.c. or d.c. *
Heater voltage
Heater current medium
$\geqslant 60 \mathrm{~mm} \times 36 \mathrm{~mm}$
$\geqslant \quad 60 \mathrm{~mm}$
$\geqslant \quad 36 \mathrm{~mm}$
$<\quad 5 \mathrm{~mm}$

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Net mass

Base

approx. 350 g
12-pin all glass; JEDEC B12-246

[^4]
Dimensions and connections

See also outline drawing

Overall length	\leqslant	225 mm
Faceplate dimensions	\leqslant	$72,5 \times 49 \mathrm{~mm}$

Accessories

Socket, supplied with tube
type 55589/55594
Mu-metal shield
type 55535

FOCUSING

electrostatic

DEFLECTION

x-plates
y-plates
Angle between x and y-traces
double electrostatic

Angle between x-trace and horizontal axis of the face
symmetrical
symmetrical
90 ± 10
$\leqslant 30$ *

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
V_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$C_{x 1(x 2)}$	3 pF
$C_{x 2(x 1)}$	3 pF
$C_{y 1}(y 2)$	4 pF
$C_{y 2}(y 1)$	4 pF
$C_{x 1 x 2}$	$1,5 \mathrm{pF}$
$C_{y 1 y 2}$	$1,8 \mathrm{pF}$
$C_{g 1}$	$5,5 \mathrm{pF}$
C_{k}	3 pF

[^5]
DIMENSIONS AND CONNECTIONS

(1) The bulge at the frit seal does not exceed the maximum dimensions.
(2) The coil is fixed to the envelope by means of adhesive tape.
(3) The length of the connecting leads of the rotation coil is min .350 mm .

TYPICAL OPERATION

Conditions (note 1)

Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Cut-off voltage for visual extinction of focused spot

$V_{g 2, g 4}, g 5(\ell)$	1000 V	
$\Delta V_{g 2}, g 4, g 5(\ell)$	$\pm 50 \mathrm{~V}$	(note 2)
$V_{g} 3$	100 to 180 V	
$V_{g} 1$	11 to 35 V	

Performance				
Useful scan				
horizontal $\quad>\quad 60 \mathrm{~mm}$				
vertical		>	36 mm	
Deflection coefficient				
horizontal	M_{x}		12,5 V/	
		$<$	13,8 V/	
vertical	M_{y}		20 V	
		$<$	$22 \mathrm{~V} /$	
Line width	I.w.		0,28 mm	(note 3)
Deviation of linearity of deflection		$<$	2 \%	(note 4)
Grid drive for $10 \mu \mathrm{~A}$ screen current	V_{d}	\approx		
Geometry distortion				

NOTES

1. The mean x-plate potential and the mean y-plate potential should be equal to $V_{g 2, g 4, g 5(l) \text { (with }}$ astigmatism control voltage set to zero).
2. When putting the tube into operation the astigmatism control voltage should be adjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 1 are adhered to.
3. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows.
a) Under typical operating conditions, apply a small raster display (no overscan), adjust $\mathrm{V}_{\mathrm{g} 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, g} \mathrm{~g}(\mathrm{\ell})$ for optimum spot quality at the centre of the screen.
b) Under these conditions, but without raster, the deflection plate voltages should be changed to: $\mathrm{V}_{\mathrm{x} 1}=\mathrm{V}_{\mathrm{x} 2}=1000 \mathrm{~V} ; \mathrm{V}_{\mathrm{y} 1}=300 \mathrm{~V} ; \mathrm{V}_{\mathrm{y} 2}=700 \mathrm{~V}$, thus directing the total beam current to y_{2}. Measure the current on y_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{y} 2}=10 \mu \mathrm{~A}$.
c) Set again for the conditions under a), without touching the $\mathrm{V}_{\mathrm{g} 1}$ control. The screen current of the resulting raster display is now $10 \mu \mathrm{~A}$.
d) Focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule, consisting of concentric rectangles of $57,0 \mathrm{~mm} \times 33,0 \mathrm{~mm}$ and $56 \mathrm{~mm} \times 31,6 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. The edges of a raster will fall between these rectangles.

LIMITING VALUES (Absolute maximum rating system)

Accelerator voltage
Focusing electrode voltage
Control grid voltage
Cathode to heater voltage positive negative
Grid drive, averaged over 1 ms
Screen dissipation
Control grid circuit resistance

$V_{g 2, g 4, g} 5(\ell)$	\max.	2200 V
$V_{g} 3$	\max.	2200 V
$-V_{g 1}$	\max.	200 V
	min.	0 V

$V_{k f}$
$-V_{k f}$
V_{d}
W_{l}
$R_{g 1}$
max. 125 V
max. 125 V
max. $\quad 20 \mathrm{~V}$
max. $\quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$
$\max . \quad 1 \mathrm{M} \Omega$

INSTRUMENT CATHODE-RAY TUBE

10 cm diameter flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

QUICK REFERENCE DATA				
Accelerator voltage		$\mathrm{V}_{2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}(\ell)$	1500	
Display area		V		
Deflection coefficient,	horizontal	M_{X}	80×60	
	$\mathrm{~mm}^{2}$			
	vertical	M_{y}	32	
		$\mathrm{~V} / \mathrm{cm}$		
		13.7	$\mathrm{~V} / \mathrm{cm}$	

SCREEN

	colour	persistence
D10-160GH D10-160GM	green yellowish green	medium short long

Useful screen diameter min. 85 mm
Useful scan

horizontal	min.	80	mm
vertical	min.	60	mm

The useful scan may be shifted vertically to a max. of 5 mm with respect to the geometric centre of the faceplate.

HEATING: Indirect by A.C. or D.C.; parallel supply

| Heater voltage | V_{f} | 6.3 | V |
| :--- | :--- | :--- | :--- | :--- |
| Heater current | If_{f} | 300 | mA |

MECHANICAL DATA (Dimensions in mm)

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing
Overall length
Face diameter
$\underline{\text { Base } \quad 14 \text { pin all glass }}$

Net weight

Accessories
Socket (supplied with tube)
Mu metal shield
type 55566
max. 260 mm
\max. 102 mm
approx. 400 g
type 55547

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
Y_{1} to Y_{2}
Control grid to all other elements

$C_{x 1(x 2)}$	4 pF
$C_{x 2(x 1)}$	4 pF
$C_{y 1(y 2)}$	$3,5 \mathrm{pF}$
$C_{y 2(y 1)}$	3 pF
$C_{x 1 x 2}$	$1,6 \mathrm{pF}$
$C_{y 1 y 2}$	$1,1 \mathrm{pF}$
$C_{g 1}$	$5,5 \mathrm{pF}$
C_{k}	4 pF

Cathode to all other elements

FOCUSING electrostatic

DEFLECTION (note 1) double electrostatic
x plates symmetrical
y plates symmetrical)
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam, hence a low impedance deflection plate drive is desirable.
Angle between x and y traces

$$
90 \pm 10
$$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$. (note 2)
Line width l.w. $0,27 \mathrm{~mm}$

Notes

1. The mean x and certainly the mean y plate potentials should be equal to $V_{g 2, g 4, g 5, \ell \text { with }}$ astigmatism adjustment set to zero.
2. As the construction of this tube does not permit a direct measurement of the beam current, this current should be determined as follows:
a) under typical operating conditions, apply a small raster display (no overscan), adjust V_{g} for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g}} \mathrm{~g}, \mathrm{~g} 5$, 凤 for optimum spot quality at the centre of the screen.
b) under these conditions, but no raster, the deflection plate voltages should be changed to: $\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=1500 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 1}=800 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 2}=1200 \mathrm{~V}$, thus directing the total beam current to x_{2}. Measure the current on x_{2} and adjust $V_{g 1}$ for $I_{x 2}=10 \mu \mathrm{~A}$ (being the beam current I_{ℓ}).
c) set again for the conditions under a), without touching the $\mathrm{V}_{\mathrm{g} 1}$ control. Now a raster display with a true $10 \mu \mathrm{~A}$ screen current is achieved.
d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.

TYPICAL OPERATING CONDITIONS ${ }^{3}$)

Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot
Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection coefficient, horizontal
vertical
Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal vertical
$V_{g 2, g 4, g 5, \ell}$
$\Delta V_{g 2, g 4, g 5, \ell}$
$V_{g} 3$
$V_{g 1}$
M_{X}
M_{y}

1500	V
± 30	$\mathrm{~V}^{1}$)
140 to 275	V

$\max \quad-50 \quad \mathrm{~V}$
approx. 10 V
$32 \mathrm{~V} / \mathrm{cm}$
$\max . \quad 34 \mathrm{~V} / \mathrm{cm}$
$13.7 \mathrm{~V} / \mathrm{cm}$
$\max .14 .5 \mathrm{~V} / \mathrm{cm}$
$\max \quad 1 \quad \% 2$)
see note 4
min. 80 mm
min. $60^{\circ} \mathrm{mm}$
LIMITING VALUES (Absolute max. rating system)
Accelerator voltage
$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5, \ell}$
$\mathrm{~V}_{\mathrm{g} 3}$
$-\mathrm{V}_{\mathrm{g} 1}$
$\mathrm{~V}_{\mathrm{kf}}$
$-\mathrm{V}_{\mathrm{kf}}$
$\mathrm{W} \ell$
$\mathrm{R}_{\mathrm{g} 1}$

1) All that will be necessary when putting the tube into operation is to adjust the astigmatismcontrol voltage once for optimum spot shape in the screen centre. The control voltage will always be in the range stated, provided the mean x plate and centainly the mean y plate potential was made equal to $\mathrm{V}_{2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}$, ℓ with zero astigmatism correction.
2) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
${ }^{3}$) The mean x and certainly the mean y plate potentials should be equal to $V_{g 2, g 4, g 5, \ell}$ with astigmatism adjustment set to zero.
${ }^{4}$) A graticule, consisting of concentric rectangles of $50 \mathrm{~mm} \times 60 \mathrm{~mm}$ and 49 mm $x 58.6 \mathrm{~mm}$ is aligned with the electrical x -axis of the tube. The edges of a raster will fall between these rectangles.

INSTRUMENT CATHODE-RAY TUBE

10 cm diameter flat-faced monoaccelerator oscilloscope tube with low heater consumption.

QUICK REFERENCE DATA		
Accelerator voltage	$V_{g 2, g 4, g 5(\ell)} 1500 \mathrm{~V}$	
Display area		$80 \times 60 \mathrm{~mm}^{2}$
Deflection coefficient horizontal vertical	M_{x}	$32 \mathrm{~V} / \mathrm{cm}$

The D10-161.. is equivalent to the type D10-160.. except for the following.

HEATING

Indirect by a.c. or d.c.; parallel supply

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	95 mA

LIMITING VALUES (Absolute maximum rating system)
Cathode to heater voltage
positive
$\mathrm{V}+\mathrm{k} / \mathrm{f}-\max . \quad 100 \mathrm{~V}$
negative
$\mathrm{V}-\mathrm{k} / \mathrm{f}+\max . \quad 15 \mathrm{~V}$

CAPACITANCES

Cathode to all other elements
C_{k}
$2,3 \mathrm{pF}$

INSTRUMENT CATHODE-RAY TUBE

- mono accelerator
- 10 cm diagonal rectangular flat face
- dynamic deflection defocusing correction
- internal magnetic correction for astigmatism and vertical eccentricity
- quick-heating cathode
- for portable oscilloscopes with up to 25 MHz bandwidth, and read-out devices

QUICK REFERENCE DATA

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2(\ell)}$	2000 V
Minimum useful scan area		$70 \times 56 \mathrm{~mm}$
Deflection coefficient horizontal M_{x} $36 \mathrm{~V} / \mathrm{cm}$ vertical M_{y} $23 \mathrm{~V} / \mathrm{cm}$ \mathbf{l}		

OPTICAL DATA

Screen
type
persistence
Useful screen area
Useful scan area
Spot eccentricity
in horizontal direction
in vertical direction

HEATING

Indirect by a.c. or d.c.*
Heater voltage
Heater current
Heating time to attain 10% of the cathode current at equilibrium conditions
Heater voltage

GY, colour green
medium
$\geqslant \quad 70 \times 56 \mathrm{~mm}$
$\geqslant \quad 70 \times 56 \mathrm{~mm}$
$\leqslant \quad 6 \mathrm{~mm}$
$\leqslant \quad 3 \mathrm{~mm}$
note 2, last page
V_{f}
6,3 V
I_{f}
0,24 A
approx.
5 s

[^6]
MECHANICAL DATA

Dimensions and connections (see also outline drawing)
Overall length (socket included)
$\leqslant 240 \mathrm{~mm}$
Faceplate dimensions
$82 \pm 1 \mathrm{~mm} \times 69 \pm 1 \mathrm{~mm}$
Net mass
approx. 450 g

Base

12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the base alone or near the base region and under no circumstances should the socket be allowed to support the tube.

Accessories

Socket with solder tags type 55589/55594
Socket with printed-wiring pins
type 55595
FOCUSING
DEFLECTION
x-plates
y-plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

DYNAMIC DEFLECTION DEFOCUSING CORRECTION

The tube has a special electrode, positioned between the x and y -plates, for dynamic correction of deflection defocusing, to improve the uniformity of the extremely good line width up to the screen edges. If use is made of this dynamic correction, a negative voltage proportional to, and approx. 50% of, the negative horizontal deflection plate voltage should be applied to this electrode (grid 6).
The correction-circuit impedance must be $\leqslant 100 \mathrm{k} \Omega$. To prevent distortion, the output impedances of the x-amplifiers should be $\leqslant 10 \mathrm{k} \Omega$.
If no correction is required, grid 6 should be connected to mean x-plate potential $\left(V_{g 2}(\ell)\right.$.

Angle between x and y-traces
Angle between x-trace and x-axis of the face plate
CAPACITANCES (approx. values)
x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$C_{x 1(x 2)}$	$4,5 \mathrm{pF}$
$C_{x 2(x 1)}$	$4,5 \mathrm{pF}$
$C_{y 1}(y 2)$	$3,5 \mathrm{pF}$
$C_{y 2}(y 1)$	$3,5 \mathrm{pF}$
$C_{x 1 \times 2}$	2 pF
$C_{y 1 y 2}$	1 pF
$C_{g 1}$	6 pF
C_{k}	$2,7 \mathrm{pF}$

[^7]

Fig. 1 Outlines; for notes see bottom of opposite page.

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Electrode configuration.

Notes to the drawing on opposite page.

1. Dimensions of face plate only. The complete assembly of face plate and cone (frit seal included) will pass through an opening of $85 \mathrm{~mm} \times 72 \mathrm{~mm}$ (diagonal 107 mm).
2. The coil is fixed to the envelope with resin and adhesive tape.
3. The length of the connecting leads of the rotation coil is $\mathbf{m i n} .350 \mathrm{~mm}$.
4. Reference points on face plate for screen alignment.

TYPICAL OPERATION*

Conditions (note 1)
Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Cut-off voltage for visual extinction of focused spot

$V_{g 2}(\ell)$	2000 V	
$\Delta V_{g 2}(\ell)$	0 V	note 2
$V_{g 3}$	220 to 360 V	
$-V_{g 1}$	22 to 65 V	

Performance

Useful scan
horizontal
vertical
Deflection coefficient
horizontal
vertical
Line width at $10 \mu \mathrm{~A}$ beam current
Deviation of linearity of deflection
Geometry distortion
Grid drive for $10 \mu \mathrm{~A}$ screen current
LIMITING VALUES (Absolute maximum rating system)
Accelerator voltage
Focusing electrode voltage
Voltage between accelerator electrode and grid 6
Voltage between accelerator electrode and any deflection plate

Control grid voltage
Cathode to heater voltage positive negative

Grid drive, averaged over 1 ms
Screen dissipation
Control grid circuit resistance
$V_{g 2(\ell)}$
$V_{\mathrm{g} 3}$
$\mathrm{V}_{\mathrm{g} 2 / \mathrm{g} 6} \max . \pm 500 \mathrm{~V}$
$\mathrm{V}_{\mathrm{g} 2 / \mathrm{x} / \mathrm{y}} \max \pm 500 \mathrm{~V}$
$-V_{g 1}$
V_{k}
$-V_{k f}$
V_{d}
W_{ℓ}
$R_{g 1}$
max. 2200 V
max. 2200 V
max. 200 V
\min. 0 V
max. 125 V
max. 125 V
max. 20 V
max. $\quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$
max. $\quad 1 \mathrm{M} \Omega$
$\begin{array}{ll}\geqslant & 70 \mathrm{~mm} \\ \geqslant & 56 \mathrm{~mm}\end{array}$
$36 \mathrm{~V} / \mathrm{cm}$
$\leqslant \quad 39 \mathrm{~V} / \mathrm{cm}$
$23 \mathrm{~V} / \mathrm{cm}$
$\leqslant \quad 25,5 \mathrm{~V} / \mathrm{cm}$
$\approx \quad 0,2 \mathrm{~mm}$ note 3
$\leqslant \quad 2 \% \quad$ note 4
see note 5
$\mathrm{V}_{\mathrm{d}} \quad \approx \quad 10 \mathrm{~V}$

[^8]
NOTES

1. The mean x-plate potential and the mean y-plate potential should be equal to $\mathrm{V}_{\mathrm{g} 2}(\ell)$.
2. The tube features internal magnetic correction for spot shaping (astigmatism) and vertical eccentricity calibration. Correction is obtained at $\mathrm{V}_{\mathrm{g} 2}=1800$ to 2200 V ; optimum at $\mathrm{V}_{\mathrm{g} 2}=2000 \mathrm{~V}$.
3. Measured with the shrinking raster method within the useful scan under typical operating conditions, adjusted for optimum focus and dynamic correction applied.
As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:
a) Under typical operating conditions, apply a small raster display (no overscan), adjust $\mathrm{V}_{\mathrm{g} 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ for smallest spot size at the centre of the screen. When measuring the beam current, grid 6 should be connected to g2-potential and the diodes should be disconnected from the x-plates.
b) Under these conditions, but without raster, the deflection plate voltages should be changed to: $V_{y 1}=V_{y 2}=2000 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 1}=1300 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 2}=1700 \mathrm{~V}$, thus directing the total beam current to x_{2}. Measure the current on x_{2} and adjust $V_{g 1}$ for $I_{x 2}=10 \mu A$.
c) Set again for the conditions under a), without touching the $\mathrm{V}_{\mathrm{g} 1}$ control. The screen current of the resulting raster display is now $10 \mu \mathrm{~A}$.
Adjust $\mathrm{V}_{\mathrm{g} 3}$ for optimum focus in the centre of the screen and apply dynamic correction to grid 6 for optimum vertical line width.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule consisting of concentric rectangles of $70 \mathrm{~mm} \times 56 \mathrm{~mm}$ and $68,4 \mathrm{~mm} \times 54,4 \mathrm{~mm}$ is aligned with the face plate (using the reference points). With optimum trace rotation correction, horizontal and vertical lines will fall between these rectangles.

INSTRUMENT CATHODE-RAY TUBE

- mono accelerator
- 10 cm diagonal rectangular flat face
- dynamic deflection defocusing correction
- internal magnetic correction for astigmatism and vertical eccentricity
- low heater power consumption
- for portable oscilloscopes with up to 25 MHz bandwidth, and read-out devices

QUICK REFERENCE DATA

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}(\ell)$	2000	V
Minimum useful scan area		70×56	mm
Deflection coefficient horizontal vertical	$\begin{aligned} & M_{x} \\ & M_{y} \end{aligned}$	36 23	V / cm V / cm

The D10-181GY is equivalent to type D10-180GY except for the following.

HEATING

Indirect by a.c. or d.c.*

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	0,1	A

LIMITING VALUES (Absolute maximum rating system)
Cathode to heater voltage

positive	$V_{k f}$	\max.	100	V
negative	$-V_{k f}$	\max.	15	V

[^9]
INSTRUMENT CATHODE-RAY TUBE

12 cm diagonal rectangular flat-faced oscilloscope tubes with mesh and metal-backed screen with internal graticule. For use in compact oscilloscopes.

QUICK REFERENCE DATA

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 8(\ell)}$	10 kV
Minimum useful scan area	$80 \mathrm{~mm} \times 64 \mathrm{~mm}$	
Deflection coefficient		
horizontal vertical	$\mathrm{M}_{\mathbf{x}}$	$15,6 \mathrm{~V} / \mathrm{div}$

OPTICAL DATA

Screen	metal-backed phosphor
\quad type	GH, colour green
\quad persistence	medium short
Useful screen area	$\geqslant 80 \mathrm{~mm} \times 64 \mathrm{~mm}$
Useful scan area	$\geqslant 80 \mathrm{~mm} \times 64 \mathrm{~mm}$
Spot eccentricity in horizontal and vertical directions	$\leqslant 0,6$ div
Internal graticule	type 115 ; see Fig. 5

HEATING

Indirect by a.c. or d.c.*
Heater voltage
Heater current

V $\quad 6,3 \mathrm{~V}$

* Not to be connected in series with other tubes.

MECHANICAL DATA

Dimensions and connections (see also outline drawing)
Overall length (socket included)
$\leqslant 335 \mathrm{~mm}$
Faceplate dimensions $\quad 86 \pm 2 \mathrm{~mm} \times 98 \pm 2 \mathrm{~mm}$

Net mass

approx. 700 g

Base

Mounting

The tube can be mounted in any position. It should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Accessories

Socket, supplied with tube
Side contact connector (5 required)
Final accelerator contact connector
FOCUSING
DEFLECTION
x-plates
y-plates
Angle between x and y-traces
Angle between x-trace and x-axis of the internal graticule
type 55566
type 55561
type 55563A
electrostatic
double electrostatic
symmetrical
symmetrical
90 ± 10
$\leqslant 50$ *

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$C_{x 1(x 2)}$	$5,3 \mathrm{pF}$
$C_{x 2(x 1)}$	$5,3 \mathrm{pF}$
$C_{y 1(y 2)}$	$3,6 \mathrm{pF}$
$C_{y 2(y 1)}$	$3,6 \mathrm{pF}$
$C_{x 1 \times 2}$	$2,1 \mathrm{pF}$
$C_{y 1 y 2}$	$1,7 \mathrm{pF}$
$C_{g 1}$	$5,5 \mathrm{pF}$
C_{k}	$4,5 \mathrm{pF}$

[^10]

Fig. 1 Outlines.

1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than $2,8 \mathrm{~mm}$.
2. The coil is fixed to the envelope by means of adhesive tape.
3. Connection cable, comprising two wires for connection of the rotation coil, and one green wire for earthing the outer conductive coating. Minimum cable length is 120 mm .
4. The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.

DIMENSIONS AND CONNECTIONS (continued)

Fig. 3 Side-contact arrangement; bottom view.

Fig. 4 Electrode configuration.

Fig. 5 Internal graticule.
Line width $=0,15 \mathrm{~mm}$; dot diameter $=0,32 \mathrm{~mm}$.

TYPICAL OPERATION (for notes see page 6)

Conditions

Final accelerator voltage
Geometry control electrode voltage
Post deflection shield and interplate shield voltage
Background illumination control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control electrode voltage
Cut-off voltage for visual extinction of focused spot

Performance

Useful scan

 horizontal verticalDeflection coefficient
horizontal
vertical

Line width

Grid drive for $10 \mu \mathrm{~A}$ screen current
Geometry distortion
Deviation of deflection linearity

$V_{g 8(\ell)}$	10 kV
$V_{g 7}$	$1500 \pm 100 \mathrm{~V}$ (note 1)
$V_{g 6}$	1500 V
$\Delta V_{g 6}$	0 to -15 V (note 1)
$V_{g 5}$	1500 V (note 2)
$V_{g 3}$	250 to 350 V
$V_{g 2, g 4}$	1500 V
$\Delta V_{g 2, g 4}$	$\pm 50 \mathrm{~V}$ (note 3)
$-V_{g 1}$	18 to 60 V

$\left.\begin{array}{llr} & \geqslant & 80 \mathrm{~mm} \\ & \geqslant & 64 \mathrm{~mm}\end{array}\right)$

LIMITING VALUES (Absolute maximum rating system)
Final accelerator voltage
Geometry control electrode voltage
Post deflection shield and inter-plate shield voltage

Deflection plate shield voltage
Focusing electrode voltage
First accelerator and astigmatism voltage

Control grid voltage
Cathode to heater voltage
positive
negative
Voltage between astigmatism control electrode and any deflection plate

Grid drive, averaged over 1 ms
Screen dissipation
Control grid circuit resistance

$V_{\mathrm{g} 8}(\mathrm{l})$	max.	11 kV
$V_{\mathrm{g} 7}$	max.	2200 V
$V_{g 6}$	max.	2200 V
$\mathrm{V}_{\mathrm{g} 5}$	max.	2200 V
$V_{\mathrm{g} 3}$	max.	2200 V
$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	max. min.	$\begin{aligned} & 2200 \mathrm{~V} \\ & 1350 \mathrm{~V} \end{aligned}$
$-V_{g 1}$	max. \min.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$

$V_{k f}$	\max	100 V
$-\mathrm{V}_{\mathrm{kf}}$	\max.	15 V

$V_{g 4 / x}$	max.	500 V
$V_{g 4 / y}$	\max.	500 V
V_{d}	\max.	20 V
$\mathrm{~W}_{\ell}$	\max.	$8 \mathrm{~mW} / \mathrm{cm}^{2}$
$R_{g 1}$	\max.	$1 \mathrm{M} \Omega$

Notes

1. The tube is designed for optimum performance when operating at a ratio $V_{g 8(\ell)} / V_{g 2, g 4}=6,7$. The geometry control electrode voltage $\mathrm{V}_{\mathrm{g} 7}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
A negative control voltage $\mathrm{V}_{\mathrm{g} 6}$ (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light, a positive control voltage will give some barrel distortion, and a slight increase of background light. By the use of the two voltages $\mathrm{V}_{\mathrm{g} 6}$ and $\mathrm{V}_{\mathrm{g} 7}$, the best compromise between background light and raster distortion can be found.
2. The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality.
3. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4. Measured with the shrinking raster method in the centre of the screen, under typical operating conditions, adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$.
5. A graticule consisting of concentric rectangles of $80 \mathrm{~mm} \times 64 \mathrm{~mm}$ and $78,2 \mathrm{~mm} \times 62,6 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.
6. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

INSTRUMENT CATHODE-RAY TUBE

- mono accelerator
- 12 cm diagonal rectangular flat face
- dynamic deflection defocusing correction
- internal magnetic correction for astigmatism, vertical eccentricity and orthogonality
- low heater power consumption
- for portable oscilloscopes with up to 25 MHz bandwidth, and read-out devices

QUICK REFERENCE DATA

Accelerator voltage	$V_{g 2, g 4, g 5(\ell)}$	2000	V
Minimum useful scan area		$80 \mathrm{~mm} \times 64$	mm
Deflection coefficient horizontal vertical	$\begin{aligned} & M_{x} \\ & M_{y} \end{aligned}$	$\begin{aligned} & 32 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{cm} \\ & \mathrm{~V} / \mathrm{cm} \end{aligned}$

OPTICAL DATA

Screen

type
persistence
Useful screen area
Useful scan area
Internal graticule

HEATING

Indirect by a.c. or d.c.*
Heater voltage
Heater current

V_{f}	$6,3 \mathrm{~V}$
If_{f}	$0,1 \mathrm{~A}$

Heating time to attain 10% of the cathode current at equilibrium conditions

GY, colour green medium
$\geqslant 82 \mathrm{~mm} \times 66 \mathrm{~mm}$; note 1
$\geqslant 80 \mathrm{~mm} \times 64 \mathrm{~mm}$
type 119; see Fig. 4
approx. 7 s

[^11]
MECHANICAL DATA

Dimensions and connections (see also outline drawing)
Overall length (socket included)
Faceplate dimensions
$\leqslant 257 \mathrm{~mm}$

Net mass

$98 \pm 0,5 \mathrm{~mm} \times 82 \pm 0,5 \mathrm{~mm}$

Base

approx. $0,7 \mathrm{~kg}$
12-pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 4) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Socket with solder tags
type 55594
Socket with printed-wiring pins
type 55595

FOCUSING

electrostatic

DEFLECTION
double electrostatic
x-plates
symmetrical
y-plates
symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

DYNAMIC DEFLECTION DEFOCUSING CORRECTION

The tube has a special electrode, positioned between the x and y-plates, for dynamic correction of deflection defocusing, to improve the uniformity of the extremely good line width up to the screen edges. If use is made of this dynamic correction, a negative voltage proportional to, and approx. 50% of, the negative horizontal deflection plate voltage should be applied to this electrode (grid 6).
The correction-circuit impedance must be $\leqslant 100 \mathrm{k} \Omega$. To prevent distortion, the output impedances of the x-amplifiers should be $\leqslant 10 \mathrm{k} \Omega$.
If no correction is required, grid 6 should be connected to mean x-plate potential $\left(\mathrm{V}_{\mathrm{g} 2(\ell)}\right)$.
CAPACITANCES (approx. values)
x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
V_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
V_{1} to Y_{2}
Control grid to all other elements
Cathode to all other elements
Grid 6 to all other elements

$C_{x 1(x 2)}$	$4,5 \mathrm{pF}$
$C_{x 2(x 1)}$	$4,5 \mathrm{pF}$
$C_{y 1}(\mathrm{y} 2)$	$3,5 \mathrm{pF}$
$C_{y 2(y 1)}$	$3,5 \mathrm{pF}$
$C_{x 1 \times 2}$	2 pF
$C_{y 1 y 2}$	1 pF
$C_{g 1}$	6 pF
C_{k}	$2,7 \mathrm{pF}$
$C_{g 6}$	11 pF

Fig. 1 Outlines.
(1) Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $101 \mathrm{~mm} \times 85 \mathrm{~mm}$.
(2) The coil is fixed to the envelope with resin and adhesive tape.
(3) The length of the connecting leads of the rotation coil is min. 350 mm .
(4) Reference points on faceplate for graticule alignment (see Fig. 4).

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Electrode configuration.

Internal graticule

The internal graticule is aligned with the faceplate by using the faceplate reference points, see Fig. 4. See also note 1.

Fig. 4 Front view of tube with internal graticule, type 119.
Line thickness $=0,2 \mathrm{~mm}$;
dot diameter $=0,4 \mathrm{~mm}$;
colour: red.

TYPICAL OPERATION (voltages with respect to cathode)

Conditions					note 2
Accelerator voltage	$V_{g 2, g 4, g 5,(\ell)}$		2000	V	
Astigmatism control voltage	$\Delta \mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5,(\mathrm{l})}$		0	V	note 3
Focusing voltage	$\mathrm{V}_{\mathrm{g} 3}$		220 to 360	V	note 4
Cut-off voltage for visual extinction of focused spot	$-V_{g 1}$		22 to 65	V	note 5
Performance					
Deflection coefficient horizontal	M_{x}	\leqslant	32	V / cm V / cm	
vertical	M_{y}	\leqslant	21	V / cm V / cm	
Deviation of deflection linearity		\leqslant	2	\%	note 6
Geometry distortion			note 7		
Eccentricity of undeflected spot with respect to internal graticule horizontal vertical		\leqslant	4 2	mm mm	note 3 note 3
Angle between x and y-traces			90°		note 3
Angle between x-trace and x-axis of the internal graticule		\leqslant	50		note 8
Grid drive voltage for $10 \mu \mathrm{~A}$ screen current	V_{d}	\approx	11	V	note 5
Line width	I.w.	\approx	0,2	mm	note 9

LIMITING VALUES (Absolute maximum rating system)

Accelerator voltage	$V_{g 2, g 4, g 5,(\ell)}$	max.	2200	V
Focusing voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	2200	V
Voltage between accelerator electrode and grid 6	$\mathrm{V}_{\mathrm{g} 2 / \mathrm{g} 6}$	max.	± 500	V
Voltage between accelerator electrode and any deflection plate	$\mathrm{V}_{\mathrm{g} 2 / \mathrm{x} / \mathrm{y}}$	max.	± 500	V
Control grid voltage	$-V_{g 1}$	max. min.	200	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Cathode to heater voltage positive negative	$\begin{aligned} & V_{k f} \\ & -V_{k f} \end{aligned}$	max.	125	V
Heater voltage	V_{f}	max. \min.	$\begin{aligned} & 6,6 \\ & 6,0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Grid drive voltage, averaged over 1 ms	V_{d}	max.	20	V
Screen dissipation	W_{ℓ}	max.	3	$\mathrm{mW} / \mathrm{cm}^{2}$
Control grid circuit resistance	$\mathrm{R}_{\mathrm{g} 1}$	max.	1	$\mathrm{M} \Omega$

NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $82 \mathrm{~mm} \times 66 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 4).
2. The mean x-plate potential and the mean y-plate potential should be equal to $V_{g 2, g 4, g 5(\ell)}$.
3. The tube features internal magnetic correction for astigmatism, orthogonality and eccentricity calibration. Optimum spot is obtained if $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$ is equal to mean y-potential.
4. An actual focus range of approx. 50 V should be provided on the front panel. $\mathrm{V}_{\mathrm{g} 3}$ decreases with increasing grid drive (see also Fig. 5).
5. Intensity control on the front panel should be limited to the maximum useful screen current (approx. $80 \mu \mathrm{~A}$; see also Fig. 5). It is to be adjusted either by the grid drive (up to 30 V) or for maximum acceptable line width. The corresponding cathode current or $\operatorname{Ig}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5}$ (up to $500 \mu \mathrm{~A}$) depend on the cut-off voltage and cannot be used for control settings.
6. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
7. A graticule consisting of concentric rectangles of $80 \mathrm{~mm} \times 64 \mathrm{~mm}$ and $78,3 \mathrm{~mm} \times 62,3 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
8. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of $180 \pm 25 \Omega$ at $20^{\circ} \mathrm{C}$, which increases by $0,4 \% / \mathrm{K}$ for rising temperature. Approx. 6 mA causes 10 trace rotation. Thus maximum required voltage is approx. 12 V for tube tolerances ($\pm 5^{\circ}$) and earth magnetic field with reasonable shielding ($\pm 2^{\circ}$).
9. Measured with the shrinking raster method within the useful scan under typical operating conditions, adjusted for optimum focus and dynamic correction applied.
As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:
a) Under typical operating conditions, apply a small raster display (no overscan), adjust $\mathrm{V}_{\mathrm{g} 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ for smallest spot size at the centre of the screen. When measuring the beam current, grid 6 should be connected to g2-potential and the diodes should be disconnected from the x-plates.
b) Under these conditions, but without raster, the deflection plate voltages should be changed to: $\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=2000 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 1}=1300 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 2}=1700 \mathrm{~V}$, thus directing the total beam current to x_{2}. Measure the current on x_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{x} 2}=10 \mu \mathrm{~A}$.
c) Set again for the conditions under a), without touching the $\mathrm{V}_{\mathrm{g} 1}$ control. The screen current of the resulting raster display is now $10 \mu \mathrm{~A}$.
Adjust $\mathrm{V}_{\mathrm{g} 3}$ for optimum focus in the centre of the screen and apply dynamic correction to grid 6 for optimum vertical line width.

Fig. 5 Screen current ($I_{\text {screen }}$) and focusing voltage $\left(\mathrm{V}_{\mathrm{g} 3}\right)$ as a function of grid drive voltage $\left(\mathrm{V}_{\mathrm{d}}\right)$; typical curves.

INSTRUMENT CATHODE-RAY TUBE

- 12 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- low heater power consumption
- internal graticule
- high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 75 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage
First accelerator voltage
Minimum useful scan area
Deflection coefficient horizontal $\quad \mathrm{M}_{\mathrm{X}}$ vertical M_{y}
$V_{g 7(\ell)}$
$\mathrm{V}_{\mathrm{g} 4}$ 10 $16,5 \mathrm{kV}$
$1,5 \quad 2,2 \mathrm{kV}$
$80 \mathrm{~mm} \times 64 \mathrm{~mm}$
x
5,8
8,3 V/div
3,0
4,3 V/div

OPTICAL DATA

Screen
type
colour
persistence
Useful screen area
Useful scan area
Internal graticule

HEATING

Indirect by a.c. or d.c.*
Heater voltage

Heating time to attain 10\% of the cathode current at equilibrium conditions

V_{f}	$6,3 \mathrm{~V}$
I_{f}	$0,1 \mathrm{~A}$

metal-backed phosphor
GH
green
medium short
$\geqslant 82 \mathrm{~mm} \times 66 \mathrm{~mm}$; note 1 (last page but one)
$\geqslant 80 \mathrm{~mm} \times 64 \mathrm{~mm}$
type 119; see Fig. 4
approx. 7 s

[^12]
MECHANICAL DATA

Dimensions and connections (see also outline drawings)

Overall length (socket included)
Faceplate dimensions
Net mass
Base
$\leqslant 299 \mathrm{~mm}$
$98 \pm 0,5 \mathrm{~mm} \times 82 \pm 0,5 \mathrm{~mm}$
approx. 750 g
12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 4) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)
Socket with solder tags
Socket with printed-wiring pins
Final accelerator contact connector
Mu-metal shield

FOCUSING

DEFLECTION
x-plates
y-plates
supplied with tube
type 55594
type 55595
type 55569/55597
to be established
electrostatic
double electrostatic
symmetrical
symmetrical

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
Focusing electrode to all other elements
Final accelerator electrode to all other elements

$C_{x 1(x 2)}$	$4,8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	$3,6 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	$3,0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	$3,0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	$3,3 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	$1,4 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	$6,5 \mathrm{pF}$
C_{k}	$3,2 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 3}$	$8,0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 7}$	140 pF

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Fig. 1.

1. Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $101 \mathrm{~mm} \times 85 \mathrm{~mm}$ (diagonal 125 mm).
2. The coil is fixed to the envelope with resin and adhesive tape.
3. The length of the connecting leads of the rotation coil is min. 350 mm .
4. Reference points on faceplate for graticule alignment (see Fig. 4).
5. The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the indicated position.

DIMENSIONS AND CONNECTIONS (continued)

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Electrode configuration.

Fig. 4 Front view of tube with internal graticule, type 119 (final accelerator contact at right-hand side). The faceplate reference points are used for aligning the graticule with the faceplate.
Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$; colour: red.

TYPICAL OPERATION (voltages with respect to cathode)*

Conditions

Final accelerator voltage
Mean deflection plate potential
Shield voltage for optimum geometry
First accelerator and astigmatism control voltage
Focusing voltage
Grid 2 voltage
Cut-off voltage for visual extinction of focused spot

$\mathrm{V}_{\mathrm{g} 7}(\ell)$	10	$16,5 \mathrm{kV}$	
	1,5	$2,2 \mathrm{kV}$	note 2
$\mathrm{V}_{\mathrm{g} 5}$	1,5	$2,2 \mathrm{kV}$	note 3
$\mathrm{V}_{\mathrm{g} 4}$	1,5	$2,2 \mathrm{kV}$	note 3
$\mathrm{V}_{\mathrm{g} 3}$	$0,19 \times \mathrm{V}_{\mathrm{g} 4}$ to $0,26 \times \mathrm{V}_{\mathrm{g} 4}$		
$\mathrm{~V}_{\mathrm{g} 2}$	1,5	$2,2 \mathrm{kV}$	
$-\mathrm{V}_{\mathrm{g} 1}$	34 to 68	50 to 100 V	

Outer conductive coating (m) and mu-metal shield to be earthed.

Performance

Horizontal deflection coefficient	$M_{\text {x }}$	5,8	8,3 V/div $\pm 10 \%$	
Vertical deflection coefficient	M_{y}	3,0	4,3 V/d	
Deviation of deflection linearity		$\leqslant 2 \%$		note 4
Geometry distortion				note 5
Eccentricity of undeflected spot in horizontal direction in vertical direction		$\leqslant 4 \mathrm{~mm}$ $\leqslant 2 \mathrm{~mm}$		
Angle between x - and y-traces		90°		note 2
Angle between x-trace and x-axis of internal graticule		$\leqslant 50$		note 6
Luminance reduction with respect to screen centre x-axis, outer graticule line y-axis, outer graticule line any corner		$\begin{aligned} & \leqslant 30 \% \\ & \leqslant 30 \% \\ & \leqslant 50 \% \end{aligned}$		
Grid drive for $10 \mu \mathrm{~A}$ screen current	V_{d}	approx.	20 V	
Line width	I.w.	approx.	$0,25 \mathrm{~mm}$	note 7

[^13]LIMITING VALUES (Absolute maximum rating system)
Final accelerator voltage
Shield voltage
First accelerator and astigmatism control voltage

Focusing electrode voltage
Grid 2 voltage
Control grid voltage
Cathode to heater voltage positive negative

Heater voltage
Voltage between g2 and g4
Voltage between $\mathrm{g} 4, \mathrm{~g} 5$ and any deflection plate
Grid drive, averaged over 1 ms
DEVELOPMENT DATA
$V_{g 7}(\ell)$
$V_{g 5}$
$V_{g 4}$
V_{g}
$\mathrm{V}_{\mathrm{g} 2}$
$-V_{g 1}$
$\mathrm{V}_{\mathrm{kf}} \quad \max .125 \mathrm{~V}$
$-V_{k f} \quad \max .125 \mathrm{~V}$
v_{f}
$\Delta \mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$
$\Delta V_{g 4, g 5, x, y}$
V_{d}
W_{ℓ}
$\mathrm{R}_{\mathrm{g} 1}$
$\max . \quad 3,3 \mathrm{kV}$
max. $\quad 3,3 \mathrm{kV}$
max. $2,5 \mathrm{kV}$
max. $2,5 \mathrm{kV}$
max. 200 V
min. 0 V
max. 6,6 V
min. 6,0 V
max. 2 kV
max. 500 V
max. 25 V
max. $\quad 8 \mathrm{~mW} / \mathrm{cm}^{2}$
$\max . \quad 1 \mathrm{M} \Omega$
max, 18 kV note 8

NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $82 \mathrm{~mm} \times 66 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 4).
2. The deflection plates must be operated symmetrically; floating mean x - or y-potentials will result into non-uniform line width and geometry distortion. The mean x - and y-potentials should be equal; under this condition the tube will be within the specification without corrections for astigmatism and geometry. A range of $\Delta \mathrm{V}_{\mathrm{g} 5}=-50$ to +50 V may be applied for pincushion/barrel correction. The tube features internal magnetic correction for orthogonality between x - and y-traces, spot shaping (astigmatism) and eccentricity calibration.
3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case $\mathrm{V}_{\mathrm{g} 5}$ must be made equal to mean x-potential, and a range of 0 to -25 V with respect to mean y-potential will be required on g 4 for astigmatism correction. The circuit resistance for $\mathrm{V}_{\mathrm{g} 4}$ should be $\leqslant 10 \mathrm{k} \Omega$.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule consisting of concentric rectangles of $80 \mathrm{~mm} \times 64 \mathrm{~mm}$ and $78,4 \mathrm{~mm} \times 62,4 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
6. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of $185 \pm 25 \Omega$ at $20^{\circ} \mathrm{C}$, which increases by approx. $0,4 \% / \mathrm{K}$ for rising temperature. At typical operation $\left(\mathrm{V}_{\mathrm{g} 5}=2200 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 7}=16,5 \mathrm{kV}\right)$ approx. $6,5 \mathrm{~mA}$ causes 1° trace rotation. Thus maximum required voltage is approx. 13 V for tube tolerances ($\pm 5^{\circ}$) and earth magnetic field with reasonable shielding ($\pm 2^{\circ}$).
The required current for 1^{0} trace rotation is related to approx. $\sqrt{\mathrm{V}_{\mathrm{g} 5}}$.
7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
8. The X-ray dose rate remains below the acceptable value of $36 \mathrm{pA} / \mathrm{kg}(0,5 \mathrm{mR} / \mathrm{h})$, when the tube is used within its limiting values (beam current $I_{\ell} \leqslant 100 \mu \mathrm{~A}$).

Fig. 5 Beam current ($I_{b x}$) and focusing voltage $\left(\mathrm{V}_{\mathrm{g} 3}\right)$ as a function of grid drive voltage $\left(\mathrm{V}_{\mathrm{d}}\right)$ at $\mathrm{V}_{\mathrm{g} 7}=16,5 \mathrm{kV}, \mathrm{V}_{\mathrm{g} 5}=2,2 \mathrm{kV}$; typical curves.
$I_{b x}$ is the beam current, without scan, measured on $x 2$, when the deflection plate potentials have been adjusted to $\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=2200 \mathrm{~V}, \mathrm{~V}_{\mathrm{x} 1}=1500 \mathrm{~V}, \mathrm{~V}_{\mathrm{x} 2}=1900 \mathrm{~V}$, thus directing the total beam current to $\times 2$.

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

QUICK REFERENCE DATA			
Accelerator voltage	$\mathrm{V}_{\mathrm{g}_{2}}, \mathrm{~g}_{4}, \mathrm{~g}_{5}(\ell)$	2000	V
Display area		100×80	$\mathrm{~mm}^{2}$
Deflection coefficient, horizontal	M_{x}	31.3	$\mathrm{~V} / \mathrm{cm}$
	vertical	M_{y}	14.4
		$\mathrm{~V} / \mathrm{cm}$	

SCREEN

	colour	persistence
D13-480GH D13-480GM	green yellowish green	medium short long

Useful screen diameter min. 114 mm
Useful scan

horizontal	\min.	100	mm
vertical	\min.	80	mm

The useful scan may be shifted vertically to a max. of 6 mm with respect to the geometric centre of the faceplate.

HEATING: Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

V_{f}	6.3	V
If_{f}	300	mA

MECHANICAL DATA (Dimensions in mm)

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing

Overall length
Face diameter
Base
Net weight
Accessories

Socket (supplied with tube)	type	55566
Mu-metal shield	type	55580

$\max \quad 310 \quad \mathrm{~mm}$
max. 135 mm
4 pin all glass

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x} 1(\mathrm{x} 2)}$	4	pF
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	4	pF
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	3.5	pF
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	3	pF
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	1.6	pF
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	1.1	pF
C_{gl}	5.5	pF
C_{k}	4	pF

FOCUSING electrostatic
DEFLECTION double electrostatic
x plates symmetrical
y plates symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam, hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

$$
90 \pm 1^{\circ}
$$

LINE WIDTH 3)
Measured with the shrinking rastermethod in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\ell}=10 \mu \mathrm{~A} .1$)

Line width
l.w. 0.30 mm
${ }^{1}$) As the construction of this tube does not permit a direct measurement of the beam current, this current should be determined as follows:
a) under typical operating conditions, apply a small raster display (no overscan), adjust V_{gl} for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5, \ell}$ for optimum spot quality at the centre of the screen.
b) under these conditions, but no raster, the deflection plate voltages should be changed to
$\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=2000 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 1}=1300 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 2}=1700 \mathrm{~V}$, thus directing the total beam current to x 2 .
Measure the current on x_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{x} 2}=10 \mu \mathrm{~A}$ (being the beam current I)
c) set again for the conditions under a), without touching the V_{gl} control. Now a raster display with a true $10 \mu \mathrm{~A}$ screen current is achieved.
d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
${ }^{3}$) See next page.

TYPICAL OPERATING CONDITIONS ${ }^{3}$)

Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

$\mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}, \ell}$	2000	V
$\Delta \mathrm{V}_{\mathrm{g}_{2}, g_{4}, g_{5}, \ell}$	± 50	V^{1})
V_{3}	220 to 370	V
$\mathrm{V}_{\mathrm{g}_{1}}$	max. -65	V

Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection coefficient, horizontal
vertical
Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal
vertical
LIMITING VALUES (Absolute max. rating system)

Accelerator voltage
Focusing electrode voltage
Control grid voltage, negative
Cathode to heater voltage

Grid drive, average
Screen dissipation
Control grid circuit resistance

$\mathrm{Vg}_{2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}, \ell$	$\begin{aligned} & \max .2200 \\ & \min . \\ & 1500 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
V_{3}	max. 2200	V
$-\mathrm{V}_{\mathrm{g}}$	$\begin{array}{lr} \operatorname{max.} & 200 \\ \min . & 0 \end{array}$	V
V_{kf}	max. 125	V
$-\mathrm{V}_{\mathrm{kf}}$	max. 125	V
	max. 20	V
W_{ℓ}	max.	$\mathrm{mW} / \mathrm{cm}^{2}$
Rg1	max.	M Ω

[^14]
INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat-faced monoaccelerator oscilloscope tube with low heater consumption.

QUICK REFERENCE DATA

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$	2000 V
Display area		$100 \times 80 \mathrm{~mm}^{2}$
Deflection coefficient		
horizontal M_{x} vertical M_{y}	$31,3 \mathrm{~V} / \mathrm{cm}$	

The D13-481.. is equivalent to the type D13-480.. except for the following.

HEATING

Indirect by a.c. or d.c.; parallel

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	95 mA

LIMITING VALUES (Absolute maximum rating system)
Cathode to heater voltage positive
negative

$$
\begin{array}{lr}
V+k / f-\max . & 100 \mathrm{~V} \\
V-k / f+\max . & 15 \mathrm{~V}
\end{array}
$$

CAPACITANCES

Cathode to all other elements
C_{k}
$2,3 \mathrm{pF}$

INSTRUMENT CATHODE-RAY TUBE

TheD13-500GH/01 is a wide-band oscilloscope tube designed for observation and measurement of high frequency phenomena.
This tube has a rectangular 13 cm diagonal flat face with aluminized screen and internal graticule, post-deflection accelerator with mesh, vertical deflection by means of a symmetrical helix system, scan magnification in the vertical direction by means of an electrostatic quadrupole lens and correction coils for trace alignment, vertical shift of the display area and correction of the orthogonality of traces.

QUICK REFERENCE DATA			
Final accelerator voltage		15	kV
Display area	100×60		mm^{2}
Deflection coefficient, horizontal	M_{x}	13.5	V / cm
vertical	M_{y}	1.7	V / cm
Bandwidth of the vertical deflection system	B	800	MHz

SCREEN

	colour	persistence
D13-500GH/01	green	medium short

Useful screen dimensions
\min. $\quad 100 \times 60 \mathrm{~mm}^{2}$
Useful scan at $\mathrm{V}_{\mathrm{g}_{13}(\ell)} / \mathrm{V}_{\mathrm{g} 2}=6$
horizontal
vertical

min.	100	mm
min.	60	mm

Eccentricity in horizontal direction
\max.
7 mm
Eccentricity in vertical direction
max.
6 mm
The scanned raster can be shifted in vertical direction and aligned with the internal graticule by means of correction coils mounted on the tube (see "Correction coils").
For illumination of the internal graticule see last page.

DESCRIPTION

General
The D13-500GH/01 has been primarily designed for wide-band high-frequency applications. It combines high brightness, high deflection sensitivity and a large bandwidth of the vertical deflection system.
In order to obtain the high sensitivity, the post-deflection acceleration system embodies a mesh. The sensitivity in the vertical direction has been further increased by means of an electrostatic quadrupole lens that has been inserted between the vertical deflection system and the horizontal deflection plates. The large bandwidth has been obtained by using, for the vertical deflection, a delay-line system instead of deflection plates. With the typical operating conditions, 2500 V first accelerator voltage and 15000 V final accelerator voltage, the vertical and the horizontal deflection factors are about $2 \mathrm{~V} / \mathrm{cm}$ and $15 \mathrm{~V} / \mathrm{cm}$ respectively, with a $10 \times 6 \mathrm{~cm}^{2}$ display area.

The bulb has a rectangular face and the screen is aluminized. To eliminate parallax errors, an internal graticule is incorporated. Correction coils have been provided to permit image rotation, correction of the orthogonality of traces and the adjust ment of the vertical useful scan with respect to the graticule.

Fig. 1
Rise time of the display \boldsymbol{T} as a function of the rise time of the input signal $\boldsymbol{\tau}_{2}$

The vertical deflection system

For the vertical deflection, a delay-line system is used so that transit-time effects are practically eliminated. The system consists of two flattened helices to which a symmetrical deflection signal should be applied. Under these conditions, the characteristic impedance of each helix is 150Ω. The input and output terminals are brought out on opposite sides of the neck on the same plane. The input terminals are connected to the beginning of the helices by means of a matched, internal two wire transmission line. The output of the deflection system should be properly terminated in order to avoid signal reflections.

With the typical operating conditions, the band-width of the deflection system, i.e. the frequency at which the sensitivity is 3 dB below its value at D.C., is about 800 MHz . Even above this frequency, the response decreases only gradually so that, for narrow -band applications, the tube can be used with reduced vertical sensitivity up to about 2000 MHz .

The rise time $\boldsymbol{\tau}_{1}$, i.e. the time interval during which the display of an ideal stepfunction signal applied to the input goes from 10% to 90% of its final value, is about 0.45 ns . If the input signal has the rise-time τ_{2}, the rise-time $\boldsymbol{\tau}$ of the display is approximately given by

$$
\tau=\sqrt{\tau_{1}^{2}+\tau_{2}^{2}}
$$

In Fig. $1, \tau^{\prime}$ has been plotted as a function of τ_{2}, with $\tau_{1}=0.45 \mathrm{~ns}$. If, for example, the tube is used in combination with an amplifier and the rise-time of the display is to be 1.4 ns (corresponding with 250 MHz band-width), the rise-time of the amplifier should be 1.33 ns . It can be seen that in this region the rise-time of the display is almost equal to the amplifier rise-time, without a significant contribution of the cathode-ray tube.

If the tube is to be used without an amplifier in order to make use of its full bandwidth capabilities, care should be taken to ensure good symmetry of the input signal.
Fig. 2 shows how the tube can be connected to a 50Ω coaxial input. A matched power divider is used which delivers two identical output signals. One of these is inverted by means of a pulse inverter. An additional length of 50Ω cable should be inserted into the path of the non-inverted signal having the same delay time as the pulse inverter so that the two signals arrive at the input of the deflection system at the same time. The 75Ω shunt resistors serve to obtain a correct termination of the 50Ω lines. Since each branch of the power divider has 6 dB attenuation, the sensitivity, measured at the 50Ω input, is also $2 \mathrm{~V} / \mathrm{cm}$.

Fig. 2
Connection to an asymmetrical 50Ω input

A: Power divider	$\mathrm{R}_{1}, \mathrm{R}_{2}:$ Resistors 75Ω
B: Inverter	$\mathrm{R}_{3}, \mathrm{R}_{4}:$ Resistors 150Ω
C: Cable	$\mathrm{D}, \mathrm{D}^{\prime}:$ Deflection system

Note: Delay of inverter B and cable C are equal.

Scan magnifier and focusing system

As already mentioned, an electrostatic quadrupole lens, i.e. an electron lens which has two mutually perpendicular planes of symmetry, divergent in one plane and convergent in the other, is used for the magnification of the vertical deflection. This lens is inserted between the vertical deflection system and the horizontal deflection plates, with its plane of divergence in the direction of the vertical deflection.
Therefore, it magnifies the vertical deflection without affecting the horizontal deflection.

Because of the astigmatic properties of this quadrupole lens, a conventional, rotationally symmetrical focusing lens cannot be used. Instead of this, two more electrostatic quadrupole lenses are incorporated so that focusing is accomplished by means of three quadrupole lenses, with alternating orientation of their planes of convergence and divergence. The focusing action is schematically shown in Fig. 3. The strength of the scan-magnifier lens is controlled by applying to the electrode g_{9} a negative voltage with respect to g_{2}. Within a certain range of this voltage, cor responding to a scan-magnification factor Msc, i.e. the ratio of the deviations on the screen with and without scan magnification respectively, between 1.8 and 2 the combined effect of the three lenses will yield an approximately circular spot at moderate beam currents. (At high beam currents, when space-charge repulsion causes an increase of spot size, the width of the vertical lines will be smaller than that of the horizontal lines).

D13-500GH/OI

In this range, line-width at a fixed value of screen current, and screen current at a fixed value of grid No. 1 voltage, are increasing functions of the scan-magnification factor. Figs. 4 and 5 show the average relative change with respect to the values at Msc $=1.9$ which, generally, is the most suitable compromise.
For minimum defocusing of vertical lines near the upper and lower edge of the display area, the electrode g_{8} should be kept at a positive voltage with respect to g_{2} (about 200 V with 2500 V first accelerator voltage). As this voltage also has some effect on the scan-magnification factor, both g_{8} and g_{9} should be connected to g_{2} when the deviation without scan magnification is being measured.

Line-width as a function of the scan-magnification factor (approximately) Line-width at $\mathrm{M}_{\mathrm{SC}}=1.9$ is $100 \%, \mathrm{I}_{\text {Screen }}=$ const.

Screen current as a function of the scan-magnification factor (approximately)
Screen current at $\mathrm{M}_{\mathrm{SC}}=1.9$ is $100 \%, \mathrm{~V}_{\mathrm{g}_{1}}=$ const.

For the adjustment of the scan-magnification factor the following procedure is recommended:
a. Set V_{8} and V_{9} to 0 with respect to g_{2}.
b. Display a time-base line and adjust $\mathrm{V}_{\mathrm{g}_{6}}$ so that the line appears sharply focused.
c. Apply a square wave signal to the vertical deflection system (the vertical parts of the trace will be out of focus but this is immaterial) and adjust the amplitude so that the height of the display has a convenient value, e.g. 30 mm .
d. Set V_{g} and $\mathrm{V}_{\mathrm{g} 9}$ to the appropriate values and readjust $\mathrm{V}_{\mathrm{g}_{6}}$ so that the horizontal parts of the trace are again in focus.
e. Check the height of the display (e.g. for $M_{S C}=1.9$ this height should now be 57 mm).
f. If necessary, readjust $\mathrm{V}_{\mathrm{g} 9}$ until the desired value of M_{sc} has been obtained.
Focusing is controlled by means of the electrode voltage V_{4} and $\mathrm{V}_{\mathrm{g}_{6}}$. The electrodes g_{5} and g_{7} can be used to centre the beam with respect to the vertical and horizontal deflection systems.
The voltages of the focusing and correction electrodes can be adjusted as follows:
a. Display a square-wave signal on the screen so that both horizontal and vertical traces are visible.
b. Adjust V_{g} so that the horizontal parts of the display are in focus. The vertical parts will, in general, be out of focus.
c. Adjust V_{g} so that the vertical traces are brought into focus. Now the horizontal parts of the display will be out of focus again.
d. Repeat b) and c) successively until both vertical and horizontal traces are simultaneously in focus.
e. Adjust $\mathrm{V}_{\mathrm{g}_{3}}$ for minimum width of a horizontal line. If necessary, readjust focusing voltages Vg_{4} and V_{6}.
f. Adjust V_{g} for equal brightness at the left-hand and right-hand edges of the display area. If necessary, readjust the focus by means of $\mathrm{V}_{\mathrm{g}_{6}}$.
g. Adjust $\mathrm{V}_{\mathrm{g}_{5}}$ so that the position of a horizontal trace not deflected in the vertical direction is at the centre of the vertical useful scan. If necessary, readjust the focus by means of $\mathrm{V}_{\mathrm{g}_{4}}$.
If the graticule is not fully covered by the scanned area the image should be shifted by adjusting the correction coil current (see last page) before the adjustment of $\mathrm{V}_{\mathrm{g}_{5}}$ is made.

The procedure for the adjustment of the scan-magnification factor and for focusing, as described above, seems to be rather complicated.
However, in practice it will be sufficient to adjust V_{g} to its nominal value without determining the scan-magnification factor for each individual tube. As to focusing, the user can, with some experience, achieve the best setting with very few adjustments.

Post-deflection acceleration

The use of a p.d.a. shield (mesh) ensures a high deflection sensitivity. A geometry control electrode, g_{11}, serves for the correction of pin cushion or barrel distortion of the pattern. In order to suppress background illumination due to secondary electrons originating from the p.d.a. shield g_{12}, this shield should be kept 12 V negative with respect to g_{11} whereas the voltage of the interplate shield, g_{10} should be equal to the mean x-plate potential.

HEATING: Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

V_{f}	6.3	V
I_{f}	300 mA	

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
x_{1} to x_{2}
Control grid to all other elements
Cathode to all other elements
External conductive coating to all other elements

$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$	4.5	pF
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	4.5	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	2.7	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	6	pF
C_{k}	5	pF
C_{m}	1500	pF

MECHANICAL DATA

The external conductive coating must be earthed.

detail of side contact

MECHANICAL DATA (continued)

${ }^{1}$) The centre of the contact is located within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing
Overall length (socket and front glass plate inclusive) max. 492 mm
Face dimensions
$\max . \quad 124 \times 92 \mathrm{~mm}^{2}$
Net weight
approx. $\quad 1300 \mathrm{~g}$
Base 14-pin all glass
Accessories
Socket
type 55566
Final accelerator contact connector
type 55563A
Side contact connector
type 55561
Mu-metal screen type 55582

In order to avoid damage to the side contacts the narrower end of the mu-metal screen should have an internal diameter of not less than 65 mm .

FOCUSING electrostatic 1)

DEFLECTION double electrostatic
x plates
symmetrical
The y deflection system consists of a symmetrical delay line system.
$\left.\begin{array}{lrl}\text { Characteristic impedance } & 2 \times 150 & \Omega \\ \text { Bandwidth }(-3 \mathrm{~dB}) & 800 & \left.\mathrm{MHz}{ }^{2}\right) \\ \text { Rise time } & <0.45 & \mathrm{~ns}\end{array}{ }^{3}\right)$

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam: hence a low impedance deflection plate drive is desirable.

Angle between x and y traces
$90^{\circ} 4$) (see "Correction coils")

1) Because of the applications of a quadrupole lens for the magnification of the vertical deflection, two more quadrupole lenses are used for focusing. Therefore, controls for two voltages have to be provided.
${ }^{2}$) The band-width is defined as the frequency at which the vertical deflection sensitivity is 3 dB lower than at D.C.
${ }^{3}$) The rise-time is defined as the time interval between 10% and 90% of the final value of deflection when an ideal step-function signal is applied to the vertical deflection system. If the actual signal has an appreciable rise-time τ_{2}, the risetime of the tube can be determined from

$$
\tau_{1}=\sqrt{\tau^{2}-\tau_{2}{ }^{2}}
$$

where τ is the rise-time observed on the display.
This should be measured after the angle between the x-traces and y-traces has been corrected by means of the correction coils, otherwise two measurements have to be taken (using either a different polarity of the vertical deflection signal or different direction of the time-base sweep) and the true value of τ has to be calculated as the arithmetic mean of the two results.
${ }^{4}$) Deviations from the orthogonality of traces can be eliminated by means of correction coils.

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical oper ating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\ell}=10 \mu \mathrm{~A}$ and a screen magnification factor $\mathrm{M}_{\mathrm{Sc}}=1.9$. See also note 3 on page with "Notes".

Line width
TYPICAL OPERATING CONDITIONS
Final accelerator
Post deflection shield voltage (with respect to g_{11})
Geometry control electrode voltage
Interplate shield voltage
Scan magnifier electrode voltage (with respect to g_{2})
Correction electrode voltage (with respect to g_{2})
Horizontal beam centering electrode voltage

Vertical beam centering electrode voltage

Focusing electrode voltages
(with respect to g_{2})

Spot correction electrode voltage
First accelerator voltage
Control grid voltage for visual extinction of a focused spot

Deflection coefficient, horizontal
vertical
Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal
vertical
1.w. approx. $0,35 \mathrm{~mm}$
$\mathrm{V}_{\mathrm{gl} 3(\ell)} \quad 15 \quad \mathrm{kV}$

$\mathrm{V}_{12}-\mathrm{g}_{11}$	-9 to -15	V	
$\mathrm{~V}_{\mathrm{g}_{11}}$	2500 ± 100	V	$1)$
$\mathrm{V}_{\mathrm{g} 10}$	2500	V	$\left.{ }^{2}\right)$

$\mathrm{V}_{\mathrm{g} 9}-\mathrm{g}_{2} \quad-250$ to $-375 \quad \mathrm{~V} \quad{ }^{3}$)
$\left.\mathrm{V}_{8}-\mathrm{g}_{2} \quad+200 \quad \mathrm{~V} \quad{ }^{4}\right)$

| V_{7} | $2500 \pm 70 \quad \mathrm{~V}$ | |
| :---: | :---: | :---: | :---: |

$\mathrm{V}_{\mathrm{g} 5}$

$\mathrm{V}_{\mathrm{g}_{6}}-\mathrm{g}_{2}$	-450 to -650	V	$\left.{ }^{7}\right)$
$\mathrm{V}_{\mathrm{g}_{4}-\mathrm{g}_{2}}$	-650 to -850	V	${ }^{7}$)
V_{3}	2500 ± 70	V	${ }^{8}$)
$\mathrm{V}_{\mathrm{g} 2}$	2500	V	

		-75	to
$\mathrm{V}_{\mathrm{g} 1}$	-150	V	
	typ.	13.5	$\mathrm{~V} / \mathrm{cm}$
M_{X}	max.	15.0	$\mathrm{~V} / \mathrm{cm}$
	typ.	1.7	$\mathrm{~V} / \mathrm{cm}$
	$9)$		
M_{y}	max.	2.0	$\mathrm{~V} / \mathrm{cm}$
		2	$\%$

see note 11
100 mm
60 mm

[^15]LIMITING VALUES (absolute max. rating system)

Final accelerator voltage	$\mathrm{Vg}_{13}(\ell)$	\max. \min.	$\begin{array}{r} 18000 \\ 9000 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { v } \end{aligned}$
Post-deflection shield voltage	$\mathrm{V}_{\mathrm{g}_{12}}$	max.	3100	V
Geometry control electrode voltage	$\mathrm{V}_{\mathrm{g} 11}$	max.	3100	V
Interplate shield voltage	$\mathrm{V}_{\mathrm{g} 10}$	max.	3100	V
Scan-magnifier electrode voltage	$\mathrm{V}_{\mathrm{g}} 9$	max.	3000	V
Correction electrode voltage	V_{g}	max.	3200	V
Focusing electrode voltages	V_{6}	max.	3000	V
	$-\mathrm{V}_{\mathrm{g}_{6}-\mathrm{g}_{2}}$	max.	1000	V
	$\mathrm{V}_{\mathrm{g}}^{4}$	max.	3000	V
	$-\mathrm{V}_{\mathrm{g}_{4}-\mathrm{g}_{2}}$	max.	1000	V
Beam centering electrode voltages	V_{g}	max.	3100	V
	V_{g}	max.	3100	V
Spot correction electrode voltage	V_{g}	max.	3100	V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	$\begin{aligned} & \max . \\ & \text { min. } \end{aligned}$	$\begin{aligned} & 3000 \\ & 2000 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Control grid voltage, negative	$-\mathrm{V}_{\mathrm{g}}$	max.	200	V
positive	V_{g}	max.	0	V
Cathode to heater voltage				
cathode positive	V_{kf}	max.	125	V
cathode negative	$-\mathrm{V}_{\mathrm{kf}}$	max.	125	V
Voltage between first accelerator and any deflection electrode	$\begin{aligned} & \mathrm{vg}_{2} \mathrm{x} \\ & \mathrm{v}_{\mathrm{g} 2 \mathrm{y}} \end{aligned}$	\max. \max.	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Screen dissipation	w_{ℓ}	max.	3	$\mathrm{mW} / \mathrm{cm}^{2}$
Average cathode current	I_{k}	max.	300	$\mu \mathrm{A}$
Control grid circuit resistance	$\mathrm{R}_{\mathrm{g} 1}$	max.	1	M 2

Notes to page 11

${ }^{1}$) This voltage should be adjusted for optimum pattern geometry.
2) This voltage should be equal to the mean x-plate potential.
3) The range indicated corresponds to a scan magnification factor, $M_{S c}$, i. e. the ratio by which the vertical deviation on the screen is increased, in the approximate range $1.8<\mathrm{M}_{\mathrm{sc}}<2.0$, and the tube should not be operated outside this range. Within this range, line width and screen current at a fixed value of the control grid voltage are increasing functions of M_{Sc}. The best compromise between brightness and line width is usually found at $\mathrm{M}_{\mathrm{Sc}} \approx 1.9$ which corresponds to $\mathrm{V}_{\mathrm{g} 9-\mathrm{g} 2} \approx 310 \mathrm{~V}$.
4) For minimum defocusing of vertical lines near the upper and lower edges of the scanned area this voltage should be adjusted approximately to the value indicated. Since the value $\mathrm{V}_{\mathrm{g} 8-\mathrm{g} 2}$ has some effect on the scan magnification factor both $\mathrm{V}_{\mathrm{g} 8}$ and $\mathrm{V}_{\mathrm{g} 9}$ should be connected to g_{2} when the deviation without scan magnification is to be measured.
5) This voltage should be adjusted for equal brightness in the x-direction with respect to the electrical centre of the tube.
7) These voltages should be stabilized to within 1 V .
8) This voltage should be adjusted for minimum width of a horizontal line.
9) For a scan magnification factor $\mathrm{M}_{\mathrm{Sc}}=1.9$. In the above mentioned range of $\mathrm{V}_{\mathrm{g} 9-\mathrm{g} 2}$ the vertical deflection factor will vary approximately $\pm 5 \%$.
10) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
11) A ractangle of $98 \mathrm{~mm} \times 58.2 \mathrm{~mm}$ is concentrically aligned with the internal graticule of the tube. With optimum corrections applied, the edges of a raster will fall between this rectangle and the boundary lines of the internal graticule.

CORRECTIONS COILS

The tube is provided with a coil unit consisting of:

1. A pair of coils (No. 1 and 2), with approx. 220Ω resistance per coil, for
a) correction of the orthogonality of the x-and y-traces so that the angle between these traces at the centre of the screen can be made exactly 90°.
b) vertical shift of the scanned area.
2. A single coil (No.3) with approx. 550Ω resistance, for image rotation (alignment of the x-trace with the x-lines of the graticule).

Orthogonality and shift

The change in the angle between the traces and the shift of the scanned area will be proportional to the algebraic sum and the algebraic difference of the currents in the coils No. 1 and 2.
Under typical operating conditions and with the coil unit closely surrounded by a mu-metal shield, the currents required are max. 5 mA per degree of angle correction and max. 2 mA per millimeter shift. The supply circuit for these coils should be so designed that in each coil a maximum current of 20 mA , with either polarity, can be produced.

If a wider mu-metal shield is used the above-mentioned values have to be multiplied by a factor $K(1<K<2)$ the value of which depends on the dimensions of the shield and approaches 2 for the case no shield is present.

Image rotation

Under typical operating conditions, a current of max. 45 mA will be required for the alignment.

Fig. 1
With the above circuit almost independent control for shift and angle correction is achieved. This facilitates the correct adjustment to a great extent.
The dissipation in the potentiometers can be reduced considerably if the requirement of independent controls is dropped.

P_{1}, P_{2} potentiometers $220 \Omega, 1$ watt: ganged
P_{3}, P_{4} potentiometers $220 \Omega, 1$ watt: ganged
A further reduction of the dissipation can be obtained by providing a commutator for each coil (see circuit fig.3).
The procedure of adjustment will then become more complicated but it should be kept in mind that a readjustment is necessary only when the tube has to be replaced.

Fig. 3
P_{1}, P_{2} potentiometers 220Ω, 1 watt
S_{1}, S_{2} commutators
A suitable circuit for the image rotating coil is given in fig. 4 .

Fig. 4
P_{5}, P_{6} potentiometers $500 \Omega, 3$ watt: ganged

The following procedure of adjustment is recommended
a. Align the x-trace with the graticule by means of the image rotating coil.
b. With the tube fully scanned in the vertical direction, the image has to be shifted so that the graticule is fully covered. With the circuit according to fig. 1 this is done by means of the ganged potentiometers P_{1} and P_{4}.
c. Adjustment of orthogonality by means of the ganged potentiometers P_{2} and P_{3}. A slight readjustment of P_{1} and P_{4} may be necessary afterwards.
d. Readjustment of the image rotation if necessary.

With a circuit according to fig. 2 or 3 these corrections have to be performed by means of successive adjustments of the currents in the coils.

The most convenient deflection signal is a square wave form permitting an easy and fairly accurate visual check of orthogonality.

ILLUMINATION OF THE GRATICULE

To illuminate the internal graticule a light conductor (e.g. of perspex) should be used. In order to achieve the most efficient light conductance, the holes for the lamps and the edge adjacent to the tube should be polished, and the distance between the perspex plate and the tube should be as small as possible. It is advisable to apply reflective material to the outer circumference and, if possible, also to the upper and lower faces of the light conductor. The thickness of the conductor should not exceed 3 mm , and its position relative to the frontplate of the tube should be adjusted for optimum illumination of the graticule lines.

INSTUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced oscilloscope tube with mesh and metal backed screen.

QUICK REFERENCE DATA							
Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7(\ell)}$	10	kV				
Display area		100×80	$\mathrm{~mm}^{2}$				
Deflection coefficient, horizontal	$\mathrm{M}_{\mathbf{x}}$	15,5	$\mathrm{~V} / \mathrm{cm}$				
	vertical	M_{y}	4,2				

SCREEN: Metal backed phosphor

	Colour	Persistence
D14-120GH	green	medium short

	$>$	100×80	$\mathrm{~mm}^{2}$	
Useful screen area	$>$	100	mm	
Useful scan at $\mathrm{V}_{\mathrm{g} 7(\ell)} / \mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}=6,7$, horizontal	vertical	$>$	80
		mm		
Spot eccentricity in horizontal and vertical directions	$<$	6	mm	

HEATING : Indirect by a.c. or d.c.; parallel supply
Heater voltage
Heater current

V_{f}	6,3	V
I_{f}	300	mA

MECHANICAL DATA

Dimensions and connections
See also outline drawing

Overall length (socket included)	$<$	385	mm
Face dimensions	$<100 \times 120$	mm	
Net mass	approx. 900	g	
Base			

(1) The centre of the contact is located within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.
(2) The bulge at the frit seal may increase the indicated maximum dimensions by not more than $\mathbf{2 ~ m m}$.

Mounting position any

The tube should not be supported by the base alone; under no circumstances should the socket be allowed to support the tube.

Accessories

Socket (supplied with tube)
Final accelerator contact connector
Mu-metal shield
type 55566
type 55563A
type 55581

FOCUSING

DEFLECTION

x plates
y plates
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $\quad 90^{\circ} \pm 1^{\circ}$
Angle between x trace and the horizontal axis of the face $<5^{\circ}{ }^{1}$).

LINE WIDTH

Measured with the shrinking raster method under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.

Line width at the centre of the screen over the whole screen area

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y1 to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
l.w. $\quad 0,40 \quad \mathrm{~mm}$
l.w. av. $<\quad 0,45 \mathrm{~mm}$

$\mathrm{C}_{\mathrm{x} 1(\mathrm{x} 2)}$	6,5	pF
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	6,5	pF
$\mathrm{C}_{\mathrm{yl}(\mathrm{y} 2)}$	5,0	pF
$\mathrm{C}_{\mathrm{y} 2(\mathrm{yl})}$	5,0	pF
$\mathrm{C}_{\mathrm{xlx} 2}$	2,2	pF
$\mathrm{C}_{\mathrm{yl} 1 \mathrm{y} 2}$	1,7	pF
$\mathrm{C}_{\mathrm{g} 1}$	5,5	pF
C_{k}	4,5	pF

[^16]
TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Interplate shield voltage
Geomrty control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage
Control voltage for visual extinction of focused spot
Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection coefficient, horizontal
vertical

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal vertical

LIMITING VALUES (Absolute max. rating system)
Final accelerator voltage
Interplate shield voltage and geometry control electrode voltage

Deflection plate shield voltage
Focusing electrode voltage
First accelerator and astigmatism control electrode voltage
Control grid voltage
Cathode to heater voltage

Voltage between astigmatism control electrode and any deflection plate

Grid drive, average
Screen dissipation
Ratio $\mathrm{V}_{\mathrm{g} 7(\ell)} / \mathrm{V}_{\mathrm{g} 2}, \mathrm{~g} 4$
Control grid circuit resistance

Notes see next page.

$\mathrm{V}_{\mathrm{g}} 7(\ell)$		10	kV
$\mathrm{V}_{\mathrm{g} 6}$		1500	V
$\Delta \mathrm{V}_{\mathrm{g6}}$		± 15	V 1)
$\mathrm{V}_{\mathrm{g} 5}$		1500	V ${ }^{2}$)
$\mathrm{V}_{\mathrm{g}} 3$	250 to	350	V
$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$		1500 ± 50	V V
$\mathrm{V}_{\mathrm{g} 1}$	-20 to	-60	V
	approx.	12	V
M_{x}	<	15,5	V / cm
		16	V / cm
M_{y}	$<$	4,2	V / cm
		4, 6	V / cm
	$<$	2	\% 4)
	See note 5		
	>	100	mm
	>	80	mm
$\mathrm{V}_{\mathrm{g} 7(\ell)}$	max. min.	11	kV
		9	kV
$\mathrm{V}_{\mathrm{g} 6}$	\max.	2200	V
Vg5	max.	2200	V
V_{g}	max.	2200	V
$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	max.	2200	V
	min.	1350	V
$-\mathrm{V}_{\mathrm{g} 1}$	max.	200	V
	min.	0	V
$\begin{gathered} \mathrm{V}_{\mathrm{kf}} \\ -\mathrm{V}_{\mathrm{kf}} \end{gathered}$	max.	125	V
	max.	125	V
$\begin{aligned} & \mathrm{V}_{\mathrm{g} 4 / \mathrm{x}} \\ & \mathrm{~V}_{\mathrm{g} 4 / \mathrm{y}} \end{aligned}$	max.	500	V
	max.	500	V
	max.	20	V
W_{ℓ}	max.	8	$\mathrm{mW} / \mathrm{cm}^{2}$
$\mathrm{V}_{\mathrm{g} 7(\ell)} / \mathrm{V}_{\mathrm{g} 4}$	max.	6,7	
Rg 1	max.	1	M 2

Notes

1. This tube is designed for optimum performance when operating at a ratio $V_{g 7}(\ell) / V_{g 2, g 4}=6,7$. The geometry electrode voltage should be adjusted within the indicated range (values with respect to the mean x-plate potential). A negative control voltage will cause some pincushion distortion and less background light, a positive control voltage will give some barrel distortion and a slight increase of background light.
2. The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality.
3. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule, consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times 73,6 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat-faced oscilloscope tube with mesh and metal backed screen. The tube has side connections to the x - and y-plates, and is intended for use in transistorized oscilloscopes up to a frequency of 50 MHz .

QUICK REFERENCE DATA						
Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 8}(\ell)$	10	kV			
Display area	100×80	$\mathrm{~mm}^{2}$				
Deflection coefficient, horizontal	M_{x}	15,5	$\mathrm{~V} / \mathrm{cm}$			
vertical	M_{y}	4,2	$\mathrm{~V} / \mathrm{cm}$			

SCREEN : Metal backed phosphor

	Colour	Persistence
D14-121GH	green	medium short

Useful screen area	$>100 \times 80$		mm ${ }^{2}$
Useful scan at $\mathrm{V}_{\mathrm{g} 8(\ell)} / \mathrm{V}_{\mathrm{g}} 2, \mathrm{~g} 4=6,7$, horizontal	>	100	mm
vertical	>	80	mm
Spot eccentricity in horizontal and vertical directions	<	6	mm
HEATING			
Indirect by a.c. or d.c.; parallel supply			
Heater voltage	V_{f}	6,3	V
Heater current	$\mathrm{If}_{\text {f }}$	300	mA

MECHANICAL DATA

Dimensions in mm

(1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .

* The centre of the contact is located within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing

Overall length (socket included)
Face dimensions
Net mass
Base

Accessories

Socket (supplied with tube)	type	55566
Final accelerator contact connector	type	55563 A
Mu-metal shield	type	55581 A

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x 1 to x 2
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
FOCUSING electrostatic

DEFLECTION
x plates
y plates
double electrostatic
symmetrical
symmetrical

$<$	385	mm
$<$	100×120	mm
approx.	900	g
14-pin all glass		

type 55566
type 55581 A

$\mathrm{C}_{\mathrm{x} 1(\mathrm{x} 2)}$	5,5	pF
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	5,5	pF
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	4	pF
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	4	pF
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	2,2	pF
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	1,7	pF
$\mathrm{C}_{\mathrm{g} 1}$	5,5	pF
C_{k}	4,5	pF

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

$$
90 \pm 1^{0}
$$

Anglr between x trace and the horizontal axis of the face

LINE WIDTH

Measured with the shrinking raster method under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
Line width at screen centre
l.w. $0,40 \quad \mathrm{~mm}$
l.w. av. $<0,45$

Notes see last page.

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	$\mathrm{V}_{88}(\ell)$
Geometry-control electrode voltage	$\mathrm{V}_{\mathrm{g}} 7$
Post deflection and interplate shield voltage	$\mathrm{V}_{\mathrm{g} 6}$
Background illumination control voltage	$\Delta \mathrm{Vg}_{6}$
Deflection plate shield voltage	$\mathrm{V}_{\mathrm{g}}{ }^{\text {b }}$
Focusing electrode voltage	V_{g}
First accelerator voltage	V_{g},
Astigmatism control voltage	$\Delta \mathrm{V}_{\mathrm{g} 2}, \mathrm{~g}_{4}$
Control grid voltage for extinction of focused spot	v_{g}
Grid drive for $10 \mu \mathrm{~A}$ screen current	
Deflection coefficient, horizontal	M_{X}
vertical	M_{y}

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal
vertical

LIMITING VALUES (Absolute max. rating system)

For notes see next page.

NOTES

1) In order to align the x-trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will have 50 amp . turns for the indicated max. rotation of 5° and should be positioned as indicated on the drawing.
2) This tube is designed for optimum performance when operating at a ratio
$\mathrm{V}_{\mathrm{g}_{8}(\ell)} / \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}=6,7$
The geometry control voltage $\mathrm{V}_{\mathrm{g}_{7}}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
A negative control voltage on g_{6} (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light.
By the use of the two voltages, $\mathrm{V}_{\mathrm{g}_{6}}$ and V_{g}, it is possible to find the best com promise between background light and raster distortion.
3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x - and y-plate potentials should be equal for optimum spot quality.
4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
6) A graticule, consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times$ $73,6 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.
${ }^{7}$) To avoid damage to the side contacts the narrower end of the Mu-metal shield should have an internal diameter of not less than 64 mm .

INSTRUMENT CATHODE-RAY TUBE

This type is equivalent with type D14-120GH but provided with a rotation coil as indicated in note 1 of D14-120GH.

COIL

Number of turns

Resistance of coils

$$
\begin{aligned}
& 1-2 \\
& 1^{\prime}-2^{\prime} \\
& 1-2 \\
& 1^{\prime}-2^{\prime}
\end{aligned}
$$

INSTRUMENT CATHODE-RAY TUBE

This type is equivalent with type D14-121GH but provided with a rotation coil as indicated in note 1 of D14-121GH.

COIL

Number of turns	$1-2$	850 turns
Resistance of coils	$1^{\prime}-2^{\prime}$	850 turns
	$1-2$	$360 \Omega(\pm 10 \%)$
	$1^{\prime}-2^{\prime}$	$375 \Omega(\pm 10 \%)$

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced oscilloscope tube with mesh and metal-backed screen. The tube has side connections to the x and y-plates and an internal graticule.

QUICK REFERENCE DATA								
Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 8(\ell)}$	10	kV					
Display area		100×80	$\mathrm{~mm}^{2}$					
Deflection coefficient, horizontal	M_{X}	15,2	$\mathrm{~V} / \mathrm{cm}$					
	vertical	M_{y}	4,1					
		$\mathrm{~V} / \mathrm{cm}$						

SCREEN : Metal-backed phosphor

	Colour	Persistence
D14-162GH/09	green	medium-short

Useful screen area	$>$	100×80	$\mathrm{~mm}^{2}$
Useful scan at $V_{\mathrm{g} 8(\ell)} / V_{\mathrm{g} 2, \mathrm{~g} 4}=6,7$, horizontal	$>$	100	mm
vertical	$>$	80	mm
Spot eccentricity in horizontal direction	$<$	6	mm

The x-trace can be aligned with the x-lines of the graticule by means of correction coils fitted around the tube by the manufacturer (see last page but one).

HEATING: Indirect by a.c. or d.c.; parallel supply
Heater voltage
Heater current

V_{f}	6,3	V
I_{f}	300	mA

MECHANICAL DATA

Dimensions and connections
See also outline drawing
Overall length (socket included)
Face dimensions
Net mass

$<$	407,5	mm
$<$	100×120	mm
approx.	1200	g

(1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .

* The centre of the contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.

Base

14 pin all glass
Mounting position : any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Accessories

Socket (supplied with tube) type 55566
Final accelerator contact connector type 55563A
Mu-metal shield type 55585

FOCUSING electrostatic

DEFLECTION double electrostatic
x -plates symmetrical
y -plates symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y-traces 900 ± 10
Angle between x-trace and the horizontal axis of the face 0^{0} See "Correction Coils".

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
Line width at the centre of the screen
1.w.
$0,3 \mathrm{~mm}$

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x} 1(\mathrm{x} 2)}$	5,5	pF
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	5,5	pF
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 1)}$	3,5	pF
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	3,5	pF
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	2	pF
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	1,6	pF
$\mathrm{C}_{\mathrm{g} 1}$	5,5	pF
C_{k}	4	pF

[^17]
TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Post deflection and interplate shield voltage
Background illumination control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage

$\mathrm{V}_{\mathrm{g} 8(\ell)}$	10	kV		
$\mathrm{V}_{\mathrm{g} 7}$	1500 ± 100	V	2	
$\mathrm{~V}_{\mathrm{g} 6}$	1500	V		
$\Delta \mathrm{~V}_{\mathrm{g} 6}$	0 to -15	V	$2)$	
$\mathrm{V}_{\mathrm{g} 5}$	1500	V	$3)$	
$\mathrm{V}_{\mathrm{g} 3}$	450 to 550	V		
$\mathrm{~V}_{\mathrm{g} 2, \mathrm{~g} 4}$	1500	V		
$\Delta \mathrm{~V}_{\mathrm{g} 2, \mathrm{~g} 4}$	± 50	V	$4)$	
$\mathrm{V}_{\mathrm{g} 1}$	-30 to	-70	V	
	approx.	20	V	
M_{X}		15,2	$\mathrm{~V} / \mathrm{cm}$	
	$<$	16	$\mathrm{~V} / \mathrm{cm}$	
M_{y}		4,1	$\mathrm{~V} / \mathrm{cm}$	
	$<$	4,4	$\mathrm{~V} / \mathrm{cm}$	
	$<$	2	$\%$	$5)$

Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal
vertical

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 8(\ell)}$	\max. min.	12 9	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
Post deflection and interplate shield voltage and geometry control electrode voltage	$\mathrm{V}_{\mathrm{g} 7}, \mathrm{~V}_{\mathrm{g} 6}$	max.	2200	V
Deflection plate shield voltage	$\mathrm{V}_{\mathrm{g}} 5$	\max.	2200	V
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}} 3$	max.	2200	V
First accelerator and astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	\max. \min.	2200 1350	V
Control grid voltage	$-\mathrm{V}_{\mathrm{g} 1}$	\max. min.	200 0	V
Cathode to heater voltage	$\begin{array}{r} \mathrm{V}_{\mathrm{kf}} \\ -\mathrm{V}_{\mathrm{kf}} \end{array}$	\max. max.	125 125	V
Voltage between astigmatism control electrode and any deflection plate	$V_{g} 4 / \mathrm{x}$ $V_{g 4 / y}$	\max. \max.	500 500	V V
Grid drive, average		max.	30	V
Screen dissipation	W_{ℓ}	max.	8	$\mathrm{mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{V}_{\mathrm{g} 8}(\ell) / \mathrm{Vg} 2, \mathrm{~g} 4$	$\mathrm{V}_{\mathrm{g} 8(\ell)} / \mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	max.	6,7	
Control grid circuit resistance	R_{gl}	max.	1	$\mathrm{M} \Omega$

[^18]
NOTES

1) To avoid damage to the side contacts the narrower end of the mu-metal shield should have an internal diameter of not less than 64 mm .
2) This tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{\mathrm{g} 8(\ell)} / \mathrm{V}_{\mathrm{g} 2 \mathrm{~g} 4}$ $\mathrm{V}_{\mathrm{g} 8(\ell)} / \mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}=6,7$.
The geometry control voltage $\mathrm{V}_{\mathrm{g}} 7$ should be adjusted within the indicated range (values with respect to the mean x -plate potential).
A negative control voltage on g_{6} (with respect to the mean x -plate potential) will cause some pincushion distortion and less background light.
By the use of two voltages, $\mathrm{V}_{\mathrm{g} 6}$ and $\mathrm{V}_{\mathrm{g} 7}$, it is possible to find the best compromise between background light and raster distortion.
If a fixed voltage on $\mathrm{V}_{\mathrm{g}} 6$ is required this voltage should be 10 V lower than the mean x-plate potential.
3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x and y-plate potentials should be equal for optimum spot quality.
${ }^{4}$) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{5}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
4) A graticule, consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times 73,6$ mm is aligned with the electrical x -axis of the tube. With optimum corrections applied a a raster will fall between these rectangles.

CORRECTION COILS

General

The D14-1626H/09 is provided with a pair of coils L1 and L2 for image rotation which enable the alignment of the x-trace with the x-lines of the graticule.

The image rotation coils are wound concentrically around the tube neck.
Under typical operating conditions 50 ampere-turns are required for the maximum rotation of 5°. Both coils have 850 turns. This means that a current of $<30 \mathrm{~mA}$ per coil is required which can be obtained by using a 24 V supply when the coils are connected in series, or a 12 V supply when they are in parallel.

Connecting the coils
The coils have been connected to the 4 soldering tags as follows:

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed post-deflection acceleration mesh, sectioned y-plates, and metal-backed screen with internal graticule.

QUICK REFERENCE DATA										
Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 9}(\ell)$		20	kV						
Display area		100	x	80	$\mathrm{~mm}^{2}$					
Deflection coefficient, horizontal	M_{X}			9	$\mathrm{~V} / \mathrm{cm}$					
	M_{y}			3	$\mathrm{~V} / \mathrm{cm}$					

SCREEN

Metal-backed phosphor

	colour	persistence
D14-240GH/37	green	medium short

Useful screen dimensions
$>100 \times 80 \mathrm{~mm}$
Spot eccentricity in horizontal
and vertical directions $<6 \mathrm{~mm}$

HEATING

Indirect by a.c. or d.c.; parallel supply

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	300	mA

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.
Dimensions and connections
See also outline drawing
Overall length (socket included) $<385 \mathrm{~mm}$
Face dimensions
$<120 \times 100 \mathrm{~mm}$

MECHANICAL DATA (continued)

Net mass

Base

Accessories

Socket (supplied with tube) type 55566
Side contact connector (12 required)
Final accelerator contact connector
Mu-metal shield

FOCUSING

DEFLECTION

x -plates
y-plates
Angle between x and y traces
Angle between x-trace and x-axis of the internal graticule
$\approx \quad 900 \mathrm{~g}$
14 pin, all glass
type 55561
note ${ }^{1}$)
note ${ }^{2}$)
electrostatic
double electrostatic
symmetrical
symmetrical
90°

See also "Correction coils"
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
$y_{1.1}$ to all other elements except $y_{2.1}$
y2.1 to all other elements except $\mathrm{y}_{1} .1$
x_{1} to x_{2}
$\mathrm{y}_{1.1}$ to $\mathrm{y}_{2.1}$
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}$	4,5	pF
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	4,5	pF
$\left.\mathrm{C}_{\mathrm{y}_{1.1}(\mathrm{y} 2.1}\right)$	1,3	pF
$\mathrm{C}_{\mathrm{y}_{2.1}\left(\mathrm{y}_{1.1}\right)}$	1,3	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	3	pF
$\mathrm{C}_{\mathrm{y}_{1.1}} \mathrm{y}_{2.1}$	0,7	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5,5	pF
C_{k}	4,5	pF

[^19]DIMENSIONS AND CONNECTIONS

detail of side contact

line width $0,15 \mathrm{~mm}$
dot diameter $0,3 \mathrm{~mm}$
(1) Recommended position of correction coils.
(2) See page 2.
(3) Length of cable approx. 460 mm .
(4) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .

TYPICAL OPERATION

Conditions

Final accelerator voltage
Post deflection accelerator mesh electrode voltage
Geometry control electrode voltage
Interplate shield voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage for visual extinction
of focused spot
Voltage on outer conductive coating

Performance

Useful scan, horizontal vertical		$>$	$\begin{array}{r} 100 \\ 80 \end{array}$	$\underset{\mathrm{mm}}{\mathrm{~mm}}{ }^{5}$
Deflection coefficient, horizontal	M_{x}	<	$\begin{array}{r} 9 \\ 9,9 \end{array}$	$\begin{aligned} & \mathrm{V} / \mathrm{cm} \\ & \mathrm{~V} / \mathrm{cm} \end{aligned}$
vertical	M_{y}	$<$	3 3,3	$\begin{aligned} & \mathrm{V} / \mathrm{cm} \\ & \mathrm{~V} / \mathrm{cm} \end{aligned}$
Line width		\approx	0, 45	$\mathrm{mm}{ }^{6}$)
Writing speed		$>$	1,5	$\mathrm{cm} / \mathrm{ns}^{7}$)
Deviation of linearity of deflection			note 8	\%
Geometry distortion			note 9	
Grid drive for $10 \mu \mathrm{~A}$ screen current		\approx	20	V

1) The geometry control electrode voltage $\mathrm{V}_{\mathrm{g} 7}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
2) The interplate shield voltage should be equal to the mean x-plate potential.
3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum performance.
${ }^{4}$) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{5}$) If the tube is operated at a ratio $\mathrm{V}_{\mathrm{g} 9}(\ell) / \mathrm{V}_{\mathrm{g} 5}<10$, the useful scan may be smaller than $100 \mathrm{~mm} \times 80 \mathrm{~mm}$.
The scanned raster can be shifted and aligned with the internal graticule by means of correction coils fitted around the tube.

LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}} 9(\ell)$	max. min.	$\begin{aligned} & 21 \mathrm{kV} \\ & 15 \mathrm{kV} \end{aligned}$
Post deflection acceleration mesh electrode voltage	$\mathrm{V}_{\mathrm{g} 8}$	max.	2200 V
Geometry control electrode voltage	$V_{\mathrm{g} 7}$	max.	2400 V
Interplate shield voltage	$V_{\mathrm{g} 6}$	max.	2200 V
Deflection plate shield voltage	$V_{g 5}$	max.	2200 V
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g} 4}$	max. min.	$\begin{aligned} & 2300 \mathrm{~V} \\ & 1800 \mathrm{~V} \end{aligned}$
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	2200 V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	max. min.	$\begin{aligned} & 2200 \mathrm{~V} \\ & 1900 \mathrm{~V} \end{aligned}$
Control grid voltage	$-V_{g 1}$	max. min.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
Cathode to heater voltage positive negative	$\begin{aligned} & V_{k f} \\ & -V_{k f} \end{aligned}$	max. max.	$\begin{aligned} & 125 \mathrm{~V} \\ & 125 \mathrm{~V} \end{aligned}$
Voltage between astigmatism control electrode and any deflection plate	$\begin{aligned} & V_{g 4 / x} \\ & V_{g 4 / y} \end{aligned}$	max. max.	$\begin{aligned} & 500 \mathrm{~V} \\ & 500 \mathrm{~V} \end{aligned}$
Grid drive, average		max.	30 V
Screen dissipation	W_{l}	max.	$8 \mathrm{~mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{V}_{\mathrm{g} 9} / \mathrm{V}_{\mathrm{g} 5}$	$\mathrm{V}_{\mathrm{g} 9} / \mathrm{V}_{\mathrm{g} 5}$	max. \min.	$\begin{array}{r} 10 \\ 8 \end{array}$
Control grid circuit resistance	$\mathrm{R}_{\mathrm{g} 1}$	max.	$1 \mathrm{M} \Omega$

6. Measured with the shrinking raster method in the centre of the screen, with corrections adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$.
7. Writing speed measuring conditions:
$\begin{array}{ll}\text { Film } & \text { Polaroid } 410(10000 \mathrm{ASA}) \\ \text { Lens } & \mathrm{F} 1 / 1,2 \\ \text { Object to image ratio } & 1 / 0,5 \\ \text { Modulation } & \Delta \mathrm{V}_{\mathrm{g} 1}=55 \mathrm{~V}\end{array}$
8. The deflection coefficient over each division will not differ more than 5% from that over any other division; all these deflection coefficients being measured per division along the axes.
9. A graticule consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times 73,6 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

CORRECTION COILS

On request a correction coil unit can be made available consisting of

1. a pair of coils L1 and L2 which enable the angle between the x and y traces at the centre of the sceen to be made exactly 90° (orthogonality correction).
2. a pair of coils L3 and L4 which enable the scanned area to be shifted up and down (vertical shift).
3. a coil $L 5$ for image rotation which enables the alignment of the x trace with the x lines of the graticule.

Orthogonality (coils L1 and L2)
The current required under typical operating conditions with mu-metal shield being used is $<8 \mathrm{~mA}$ for complete correction of orthogonality.
The resistance of each coil is $\approx 160 \Omega$.

Shift (coils L3 and L4)

The current required under typical operating conditions with mu-metal shield being used is $<12 \mathrm{~mA}$ for a maximum shift of 5 mm .
The resistance of each coil is $\approx 160 \Omega$.

Image rotation (coil L5)
The image rotation coil is wound concentrically around the tube neck. Under typical operating conditions 27 ampere-turns are required for the maximum rotation of 5°. The coil has 1560 turns. This means that a current of $<18 \mathrm{~mA}$ is required. The resistance of the coil is $\approx 185 \Omega$.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced monoaccelerator oscilloscope tube primarily for use in inexpensive oscilloscopes and read-out devices. This tube features a low heater power consumption.

QUICK REFERENCE DATA

Accelerator voltage	$V_{g 2, g 4, g 5(\ell)}$	2000 V
Display area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Deflection coefficient horizontal vertical	M_{x}	$23 \mathrm{~V} / \mathrm{cm}$

The D14-251GH is equivalent to the type D14-252GH except for the following.

heating

Indirect by a.c. or d.c. *

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	$0,1 \mathrm{~A}$

LIMITING VALUES (Absolute maximum rating system)
Cathode to heater voltage positive negative

$V_{k f}$	max.	100 V
$-V_{k f}$	\max	15 V

CAPACITANCES

Cathode to all other elements $\quad \mathrm{C}_{\mathrm{k}} \quad 2,5 \mathrm{pF}$

[^20]
INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced monoaccelerator oscilloscope tube primarily for use in inexpensive oscilloscopes and read-out devices. This tube features a $1,5 \mathrm{~W}$ cathode with short warm-up time (quick-heating cathode).

QUICK REFERENCE DATA

Accelerator voltage	$V_{g 2, g 4, g 5(\ell)} 2000 \mathrm{~V}$	
Display area Deflection coefficient horizontal vertical		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$

OPTICAL DATA

Screen
phosphor type GH, colour green
persistence medium short
Useful screen dimensions
$\geqslant 100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Useful scan
horizontal
$\geqslant \quad 100 \mathrm{~mm}$
vertical
$\geqslant \quad 80 \mathrm{~mm}$
Spot eccentricity in horizontal
and vertical directions
$<\quad 7 \mathrm{~mm}$

HEATING

Indirect by a.c. or d.c. *
Heater voltage
V_{f}
6,3 V
Heater current
I_{f}
0,24 A

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Net mass

Base

approx. 1 kg
14-pin all glass

[^21]
Dimensions and connections

See also outline drawing
Overall length (socket included)
$\leqslant \quad 333 \mathrm{~mm}$
Face dimensions
$\leqslant \quad 121 \times 100 \mathrm{~mm}$

Accessories

Socket (supplied with tube)
type 55566
Mu-metal shield
type 55590
FOCUSING
electrostatic

DEFLECTION

x-plates
y-plates
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y-traces
Angle between x-trace and horizontal axis of the face
CAPACITANCES
x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$$
90^{\circ} \pm 10
$$

see footnote

$C_{x 1(x 2)}$	$4,5 \mathrm{pF}$
$C_{x 2(x 1)}$	$4,5 \mathrm{pF}$
$C_{y 1(y 2)}$	$3,5 \mathrm{pF}$
$C_{y 2(y 1)}$	3 pF
$C_{x 1 \times 2}$	2 pF
$C_{y 1 y 2}$	$1,1 \mathrm{pF}$
$C_{g 1}$	6 pF
C_{k}	$2,7 \mathrm{pF}$

[^22]DIMENSIONS AND CONNECTIONS

(1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .
(2) The coil is fixed to the envelope by means of adhesive tape.
(3) The length of the connecting leads of the rotation coil is min. 350 mm .

TYPICAL OPERATION

Conditions (note 1)

Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

$V_{g 2, g 4, g 5}(\ell)$	2000 V	
$\Delta V_{g 2}, g 4, g 5(\ell)$	$\pm 50 \mathrm{~V}$	(note 2)
$V_{g 3}$	220 to 370 V	
$V_{g 1}$	\leqslant	-65 V

Performance

Useful scan horizontal vertical

Deflection coefficient
horizontal
vertical

Line width

Deviation of linearity of deflection
Geometry distortion
Grid drive for $10 \mu \mathrm{~A}$ screen current

NOTES

1. The mean x-plate potential and the mean y-plate potential should be equal to $V_{g 2, g 4, g 5(\ell)}$ (with astigmatism control voltage set to zero).
2. When putting the tube into operation the astigmatism control voltage should be adjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 1 are adhered to.
3. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.

As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:
a) under typical operating conditions, apply a small raster display (no overscan), adjust $\mathrm{V}_{\mathrm{g} 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, g 4, g 5(\ell)}$ for optimum spot quality at the centre of the screen.
b) under these conditions, but without raster, the deflection plate voltages should be changed to: $\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=2000 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 1}=1300 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 2}=1700 \mathrm{~V}$, thus directing the total beam current to x_{2}. Measure the current on x_{2} and adjust $V_{g 1}$ for $I_{x 2}=10 \mu \mathrm{~A}$.
c) set again for the conditions under a), without touching the $V_{g 1}$ control. The screen current of the resulting raster display is now $10 \mu \mathrm{~A}$.
d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times 73 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.

LIMITING VALUES (Absolute maximum rating system)
Accelerator voltage
Focusing electrode voltage
Control grid voltage
$V_{g 2, g 4, g 5(\ell)}$
max. 2200 V
$V_{\mathrm{g} 3}$
$-V_{g 1}$
Cathode to heater voltage positive negative

Grid drive, average
Screen dissipation
Control grid circuit resistance
$V_{k f}$
$-V_{k f}$
W_{ℓ}
$R_{g 1}$
min. 1500 V
max. 2200 V
max. 200 V
min. $\quad 0 \mathrm{~V}$
max. 125 V
max. 125 V
$\max .20 \mathrm{~V}$
max. $\quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$
$\max . \quad 1 \mathrm{M} \Omega$

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced oscilloscope tube with post-deflection acceleration mesh, primarily for use in compact oscilloscopes with 15 to 20 MHz bandwidth. This tube features a low heater consumption.

QUICK REFERENCE DATA

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7}(\ell)$	4 kV
Display area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Deflection coefficient horizontal vertical	M_{x}	$19,5 \mathrm{~V} / \mathrm{cm}$

The D14-261GH is equivalent to the type D14-262GH except for the following.

HEATING

Indirect by a.c. or d.c. *

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	$0,1 \mathrm{~A}$

LIMITING VALUES (Absolute maximum rating system)
Cathode to heater voltage positive
negative

$V_{k f}$	\max	100 V
$-V_{k f}$	\max.	15 V

[^23]
INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat-faced oscilloscope tube with post-deflection acceleration mesh, primarily for use in compact oscilloscopes with 15 to 20 MHz bandwidth. This tube features a $1,5 \mathrm{~W}$ cathode with short warm-up time (quick-heating cathode).

QUICK REFERENCE DATA

Final accelerator voltage	$V_{g 7}(\ell)$	4 kV
Display area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Deflection coefficient horizontal vertical	M_{x}	$19,5 \mathrm{~V} / \mathrm{cm}$

OPTICAL DATA

Screen

phosphor type	GH, colour green persistence medium short	
Useful screen dimensions	\geqslant	$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Useful scan horizontal vertical	\geqslant	100 mm
fot eccentricity in horizontal and vertical directions	\geqslant	80 mm

heating

Indirect by a.c. or d.c.*
Heater voltage
Heater current

V_{f}	$6,3 \mathrm{~V}$
I_{f}	$0,24 \mathrm{~A}$

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Net mass

Base

Final accelerator contact

approx. 1 kg
14-pin, all glass
small ball

[^24]
Dimensions and connections

See also outline drawing
Overall length $\leqslant \quad 333 \mathrm{~mm}$

Face dimensions
$\leqslant \quad 100 \times 120 \mathrm{~mm}^{2}$

Accessories

Socket, supplied with tube
type 55566
Mu-metal shield
type 55591
Final accelerator contact connector
type 55569

FOCUSING

DEFLECTION

x-plates
y-plates
Angle between x and y-traces
Angle between x-trace and horizontal axis of the face
electrostatic
double electrostatic
symmetrical
symmetrical

\leqslant| 90 ± 10 |
| ---: |
| $50 \quad *$ |

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}

$C_{x 1(x 2)}$	7 pF
$C_{x 2(x 1)}$	$6,5 \mathrm{pF}$
$C_{y 1}(y 2)$	4 pF
$C_{y 2}(y 1)$	$3,5 \mathrm{pF}$
$C_{x 1 x 2}$	$2,2 \mathrm{pF}$
$C_{y 1 y 2}$	$1,1 \mathrm{pF}$
$C_{g 1}$	$6,1 \mathrm{pF}$
C_{k}	$2,7 \mathrm{pF}$

* The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of max. 400Ω. Under typical operating conditions, max. 30 ampere-turns are required for the max. rotation of 5^{0}. This means the required current is max. 30 mA at a required voltage of max. 12 V .

Notes to the drawings on opposite page.

1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .
2. The coil is fixed to the envelope by means of adhesive tape.
3. The centre of the contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.
4. The length of the connecting leads of the rotation coil is $\mathbf{m i n} .350 \mathrm{~mm}$.

DIMENSIONS AND CONNECTIONS

Dimensions in mm
For notes to the drawings see bottom of opposite page.

bottom view

bottom view

TYPICAL OPERATION

Conditions

Final accelerator voltage
Post deflection accelerator mesh electrode voltage
Interplate shield voltage
First accelerator voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Cut-off voltage for visual extinction
of focused spot

$V_{g 7}(\ell)$	4 kV	
$\mathrm{V}_{\mathrm{g} 6}$	2000 V	
$\mathrm{~V}_{\mathrm{g}}$	2000 V	(note 1)
$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	2000 V	
$\Delta \mathrm{~V}_{\mathrm{g} 2, \mathrm{~g} 4}$	$\pm 50 \mathrm{~V}$	(note 2)
$\mathrm{V}_{\mathrm{g} 3}$	300 to 480 V	
$-V_{g 1}$	30 to 70 V	

Performance

Useful scan horizontal vertical		$\begin{aligned} & \geqslant \\ & \geqslant \end{aligned}$	$\begin{array}{r} 100 \mathrm{~mm} \\ 80 \mathrm{~mm} \end{array}$	(note 3)
Deflection coefficient horizontal	$M_{\text {x }}$	\leqslant	$19,5 \mathrm{~V} / \mathrm{cm}$ $21,5 \mathrm{~V} / \mathrm{cm}$	
vertical	M_{y}	\leqslant	$10,5 \mathrm{~V} / \mathrm{cm}$ $11,6 \mathrm{~V} / \mathrm{cm}$	
Line width	I.w.	\approx	$0,35 \mathrm{~mm}$	(note 4)
Deviation of deflection linearity		\leqslant	2 \%	(note 5)
Grid drive for $10 \mu \mathrm{~A}$ screen current	V_{d}	\approx	20 V	
Geometry distortion	see n			

NOTES

1. The interplate shield voltage should be equal to the mean x-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality.
2. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
3. The tube is designed for optimum performance when operating at a ratio $V_{g 7}(\ell) / V_{g 2, g 4}=2$. If this ratio is smaller than 2, the useful scan may be smaller than $100 \mathrm{~mm} \times 80 \mathrm{~mm}$.
4. Measured with the shrinking raster method in the centre of the screen with corrections adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$.
5. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
6. A graticule consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times 73 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage
Post deflection accelerator mesh electrode voltage
Interplate shield voltage
First accelerator and astigmatism control electrode voltage

Focusing electrode voltage
Control grid voltage
Cathode to heater voltage
positive
negative
Grid drive, averaged over 1 ms
Screen dissipation
Control grid circuit resistance

$\mathrm{V}_{\mathrm{g} 7}(\ell)$	max.	$4,4 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 6}$	\max.	2200 V
$\mathrm{~V}_{\mathrm{g} 5}$	\max.	2200 V
	max.	2200 V
$\mathrm{~V}_{\mathrm{g} 2, \mathrm{~g} 4}$	\min.	1500 V
$\mathrm{~V}_{\mathrm{g} 3}$	max.	2200 V
$-\mathrm{V}_{\mathrm{g} 1}$	\max.	200 V
	\min.	0 V

$\begin{array}{lll}\mathrm{V}_{\mathrm{kf}} & \max . & 125 \mathrm{~V} \\ -\mathrm{V}_{\mathrm{kf}} & \max . & 125 \mathrm{~V}\end{array}$
$V_{d} \quad \max .20 \mathrm{~V}$
$\mathrm{W}_{\ell} \quad \max . \quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathrm{R}_{\mathrm{g} 1} \quad \max \quad 1 \mathrm{M} \Omega$

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed post-deflection acceleration mesh and metal-backed screen, primarily for use in compact oscilloscopes with 25 to 50 MHz bandwidth. This tube features a $1,5 \mathrm{~W}$ cathode with short warm-up time (quick-heating cathode).

QUICK REFERENCE DATA

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 8(\ell)}$	10 kV
Display area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Deflection coefficient horizontal vertical	M_{x}	$12,8 \mathrm{~V} / \mathrm{cm}$

OPTICAL DATA

Screen metal-backed phosphor
phosphor type
persistence
Useful screen dimensions
Useful scan
horizontal
vertical
Spot eccentricity in horizontal
and vertical directions
$\leqslant \quad 6,5 \mathrm{~mm}$

HEATING

Indirect by a.c. or d.c.*
Heater voltage
Heater current

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.
Net mass approx. 1 kg

Base
14 pin, all glass
Final accelerator contact
small ball

* Not to be connected in series with other tubes.

Dimensions and connections

See also outline drawing

Overall length	\leqslant	343 mm
Face dimensions	\leqslant	$100 \times 120 \mathrm{~mm}^{2}$ (note 1)

Accessories

Socket, supplied with tube type 55566
Mu-metal shield type 55592
Final accelerator contact connector

FOCUSING

DEFLECTION

x-plates
y-plates
Angle between x and y-traces
Angle between x-trace and horizontal axis of the face

$$
\text { type } 55569
$$

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$C_{x 1(x 2)}$	7 pF
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	7 pF
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	4 pF
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	4 pF
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	$2,2 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	$1,3 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	6 pF
C_{k}	$2,7 \mathrm{pF}$

[^25]
Notes to the drawings on opposite page.

1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .
2. The coil is fixed to the envelope by means of adhesive tape.
3. The centre of the contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.
4. The length of the connecting leads of the rotation coil is $\mathbf{m i n} .350 \mathrm{~mm}$.

DIMENSIONS AND CONNECTIONS

For notes to the drawings see bottom of opposite page.

TYPICAL OPERATION

Conditions

Final accelerator voltage
Post deflection accelerator mesh electrode voltage
Geometry control electrode voltage
Interplate shield voltage
First accelerator voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Cut-off voltage for visual extinction of focused spot

Performance

Useful scan				
horizontal vertical		\geqslant	$\begin{gathered} 100 \mathrm{~mm} \\ 80 \mathrm{~mm} \end{gathered}$	(note 4)
Deflection coefficient horizontal	M_{x}	\leqslant	12;8 V/cm $14 \mathrm{~V} / \mathrm{cm}$	
vertical	M_{y}	\leqslant	$\begin{array}{r} 6,3 \mathrm{~V} / \mathrm{cm} \\ 7 \mathrm{~V} / \mathrm{cm} \end{array}$	
Line width	I.w.	\approx	0,38 mm	(note 5)
Deviation of deflection linearity		\leqslant	2 \%	(note 6)
Grid drive for $10 \mu \mathrm{~A}$ screen current	V_{d}	\approx	20 V	
Geometry distortion				

NOTES

1. The geometry control electrode voltage $\mathrm{V}_{\mathrm{g} 6}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
2. The interplate shield voltage should be equal to the mean x-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality.
3. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4. The tube is designed for optimum performance when operating at a ratio $V_{g 8(\ell)} / V_{g 2, g 4}=5$. If this ratio is smaller than 5 , the useful scan may be smaller than $100 \mathrm{~mm} \times 80 \mathrm{~mm}$.
5. Measured with the shrinking raster method in the centre of the screen with corrections adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$.
6. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
7. A graticule consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times 73 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage
Post deflection accelerator mesh electrode voltage
Geometry control electrode voltage
Interplate shield voltage
Accelerator voltage
Focusing electrode voltage
Control grid voltage
Cathode to heater voltage positive
negative
Grid drive, averaged over 1 ms
Screen dissipation
Voltage between astigmatism control electrode and any deflection plate

Control grid circuit resistance
$V_{g 8}(\ell)$ max. 12 kV
$V_{g 7}$ max. 2200 V
$\mathrm{V}_{\mathrm{g} 6}$ max. 2200 V
$\mathrm{V}_{\mathrm{g} 5}$ max. 2200 V
$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$ min. 2200 V
$\mathrm{V}_{\mathrm{g} 3} \max .2200 \mathrm{~V}$
$\begin{array}{lrr} & \left.V_{\mathrm{g} 1} \quad \begin{array}{lr}\text { max. } & 200 \mathrm{~V} \\ \text { min. } & 0 . V\end{array}\right)\end{array}$
$V_{k f}$ max. 125 V
$-V_{k f} \max .125 \mathrm{~V}$
$V_{d} \quad \max \quad 20 \mathrm{~V}$
$\mathrm{W}_{\ell} \quad$ max. $\quad 8 \mathrm{~mW} / \mathrm{cm}^{2}$
$V_{g 4 / x} \max .500 \mathrm{~V}$
$V_{g 4 / y} \max .500 \mathrm{~V}$
$\mathrm{R}_{\mathrm{g} 1} \max . \quad 1 \mathrm{M} \Omega$

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed mesh and metal-backed screen with internal graticule. The tube has side connections to the x and y-plates, and is intended for use in compact oscilloscopes with up to 150 MHz bandwidth. This tube features a $1,5 \mathrm{~W}$ cathode with short warm-up time (quick-heating cathode).

QUICK REFERENCE DATA

Final accelerator voltage	$V_{\mathrm{g}} \mathrm{f}(\mathrm{\ell})$	$16,5 \mathrm{kV}$
Display area		$100 \times 80 \mathrm{~mm}^{2}$
Deflection coefficient horizontal vertical	$\begin{aligned} & M_{x} \\ & M_{y} \end{aligned}$	$\begin{aligned} & 8,7 \mathrm{~V} / \mathrm{cm} \\ & 4,7 \mathrm{~V} / \mathrm{cm} \end{aligned}$
OPTICAL DATA		
Screen type persistence	metal-backed phosphor GH , colour green medium short	
Useful screen dimensions	\geqslant	$100 \times 80 \mathrm{~mm}^{2}$
Useful scan horizontal vertical	$\begin{aligned} & \geqslant \\ & \geqslant \end{aligned}$	$\begin{aligned} & 100 \mathrm{~mm} \\ & 80 \mathrm{~mm} \end{aligned}$
Spot eccentricity in horizontal and vertical directions	\leqslant	6,5 mm
HEATING		
Indirect by a.c. or d.c.; parallel supply		
Heater voltage	V_{f}	6,3 V
Heater current	If_{f}	0,24 A

MECHANICAL DATA

Dimensions and connections

See outline drawings

Overall length (socket included)
Face dimensions
Net mass

Base
$\leqslant 397 \mathrm{~mm}$
$\leqslant 100 \times 120 \mathrm{~mm}^{2}$
approx. 1 kg
14 pin, all glass

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Accessories

Socket, supplied with tube
Side contact connector (7 required)
Final accelerator contact connector

FOCUSING

DEFLECTION

x-plates
y-plates
Angle between x and y -traces
Angle between y-trace and y-axis of the internal graticuie
type 55572
type 55561
connection to final accelerator electrode is made via an EHT cable attached to the tube
electrostatic
double electrostatic
symmetrical
symmetrical
90 ± 10
$\leqslant 5^{\circ}$ *

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

* The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the y-trace with the mechanical y-axis of the screen. The coil has 2000 turns and a maximum resistance of 650Ω. Under typical operating conditions, a maximum of 40 ampere-turns are required for the maximum rotation of 5°. This means the required current is 20 mA maximum at a required voltage of 13 V .

CAPACITANCES

x_{1} to all other elements except x_{2}	$C_{x 1}(x 2)$	5 pF
x_{2} to all other elements except x_{1}	$C_{x 2}(x 1)$	5 pF
y_{1} to all other elements except y_{2}	$C_{y} 1(y 2)$	$1,7 \mathrm{pF}$
y_{2} to all other elements except y_{1}	$C_{y 2}(y 1)$	2 pF
x_{1} to x_{2}	$C_{x 1 \times 2}$	3 pF
y_{1} to y_{2}	$C_{y} 1 y_{2}$	$1,6 \mathrm{pF}$
Control grid to all other elements	$C_{g 1}$	6 pF
Cathode to all other elements	C_{k}	$2,7 \mathrm{pF}$
Focusing electrode to all other electrodes	$C_{g 3}$	5 pF

Fig. 1 Outlines; for notes see next page.

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Side-contact arrangement; bottom view.

Fig. 4 Electrode configuration.

Fig. 5 Internal graticule. Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$.

Notes to the drawing on opposite page.

1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .
2. The coil is fixed to the envelope by means of adhesive tape.
3. EHT cable; minimum length is 530 mm .
4. Connection cable, comprising two wires for connection of the rotation coil, and one green wire for earthing the outer conductive coating. Minimum cable length is 400 mm .
5. The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.

TYPICAL OPERATION

Conditions

Final accelerator voltage
Post deflection accelerator mesh electrode voltage
Geometry control electrode voltage
Interplate shield voltage
First accelerator voltage
Astigmatism control electrode voltage
Focusing electrode voltage
Cut-off voltage for visual extinction of focused spot

$V_{g 8}(\ell)$	$16,5 \mathrm{kV}$	
$\mathrm{V}_{\mathrm{g} 7}$	2200 V	
$\mathrm{~V}_{\mathrm{g} 6}$	$2200 \pm 100 \mathrm{~V}$	(note 1)
$\mathrm{V}_{\mathrm{g} 5}$	2200 V	(note 2)
$\mathrm{V}_{\mathrm{g} 2}$	2200 V	
$\mathrm{~V}_{\mathrm{g} 4}$	$2200 \pm 50 \mathrm{~V}$	(note 3)
$\mathrm{V}_{\mathrm{g} 3}$	620 to 800 V	
$\mathrm{~V}_{\mathrm{g} 1}$	60 to 110 V	

Performance

Useful scan horizontal
vertical
Deflection coefficient
horizontal
vertical

Line width

Grid drive for $10 \mu \mathrm{~A}$ screen current
Geometry distortion
Deviation of deflection linearity

NOTES

1. The geometry control electrode voltage $\mathrm{V}_{\mathrm{g} 6}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
2. The interplate shield voltage should be equal to the mean x-plate and y-plate potentials for optimum spot quality.
3. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4. The tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{\mathrm{g} 8}(\ell) / \mathrm{V}_{\mathrm{g} 2}=7,5$. If this ratio is smaller, the useful scan may be smaller than $100 \mathrm{~mm} \times 80 \mathrm{~mm}$.
5. Measured with the shrinking raster method in the centre of the screen with corrections adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$.
6. A graticule consisting of horizontal and vertical line pairs according to Fig. 6, is aligned with the electrical x-axis of the tube. With optimum corrections applied (including orthogonality correction), any horizontal or vertical trace will fall between these line pairs.
7. Deviation of linearity is defined as the proportional deviation of the deflection coefficient over any division on the x-axis and y-axis from the average values over the central eight (horizontal) and central six (vertical) divisions respectively.

Fig. 6 Quarter of graticule with horizontal and vertical line pairs, see note 6 on opposite page.

LIMITING VALUES (Absolute maximum rating system)
Final accelerator voltage
Post deflection accelerator mesh electrode voltage
Geometry control electrode voltage
Interplate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage
Cathode to heater voltage
positive
negative
Voltage between astigmatism control electrode and any deflection plate

Grid drive, averaged over 1 ms
Screen dissipation
Control grid circuit resistance

$V_{\mathrm{g} 8 \text { (})}$	max.		kV
$V_{\mathrm{g} 7}$	max.	2500	V
$V_{g 6}$	max.	2500	V
$V_{\mathrm{g} 5}$	max.	2500	V
$V_{g 4}$	max.	2500	V
V_{g}	max.	2500	V
$\mathrm{V}_{\mathrm{g} 2}$	max.	2500	V
$-\mathrm{V}_{\mathrm{g} 1}$	max. min.	200	$\begin{aligned} & v \\ & v \end{aligned}$
V_{kf}	max.	125	V
$-\mathrm{V}_{\mathrm{kf}}$	max.	125	V
$V_{g 4 / x}$	max.	500	V
$V_{\text {g } 4 / y ~}^{\text {l }}$	max.	500	V
v_{d}	max.	20	V
$\mathrm{W}_{\text {l }}$	max.		m
$\mathrm{R}_{\mathrm{g} 1}$	max.		M

INSTRUMENT CATHODE-RAY TUBES

- mono accelerator
- 14 cm diagonal rectangular flat face
- internal magnetic lens system for vertical scan magnification (1,2x), orthogonality, astigmatism and eccentricity correction
- quick-heating cathode
- with or without internal graticule
- for inexpensive oscilloscopes and read-out devices

QUICK REFERENCE DATA

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2,(\ell)}$	2000 V
Minimum useful scan area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Deflection coefficient horizontal vertical	M_{x}	$22 \mathrm{~V} / \mathrm{cm}$

OPTICAL DATA

Screen	type	colour	persistence
	GH GY GM	green yellowish-green yellowish-green	medium short medium short long
Useful screen area		$\geqslant 102 \mathrm{~mm} \times 82 \mathrm{~mm}$ note 1 ; (last page)	
Useful scan area		$\geqslant 100 \mathrm{~mm} \times 80 \mathrm{~mm}$	
Internal graticule		type 93; see Fig. 4	
HEATING			
Indirect by a.c. or d.c.*			
Heater voltage		V_{f}	6,3 V
Heater current		I_{f}	0,24 A
Heating time to attain 10% of the cathode current at equilibrium conditions			5 s

[^26]
MECHANICAL DATA

Dimensions and connections (see also outline drawing)
Overall length (socket included)
Faceplate dimensions

Net mass

Base

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 5) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)
Socket with solder tags
Socket with printed-wiring pins
Mu-metal shield
FOCUSING
DEFLECTION*
x-plates
y-plates
supplied with tube
type 55589/55594
type 55595
to be established
electrostatic
double electrostatic
symmetrical
symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

Angle between x and y-traces	90°	note 2
Angle between x-trace and x-axis of the internal graticule	$\leqslant 50$	note 3
Eccentricity of undeflected spot with respect to internal graticule horizontal vertical	$\leqslant 4 \mathrm{~mm}$	
	$\leqslant 2 \mathrm{~mm}$	note 2

$\leqslant 333 \mathrm{~mm}$
$118 \pm 1 \mathrm{~mm} \times 98 \pm 1 \mathrm{~mm}$
approx. 1 kg
12 pin, all glass, JEDEC B12-246

Instrument cathode-ray tubes

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
V_{1} to V_{2}
Control grid to all other elements
Cathode to all other elements

$C_{x 1(x 2)}$	$4,5 \mathrm{pF}$
$C_{x 2(x 1)}$	$4,5 \mathrm{pF}$
$C_{y 1(y 2)}$	$3,5 \mathrm{pF}$
$C_{y 2(y 1)}$	$3,5 \mathrm{pF}$
$C_{x 1 x 2}$	2 pF
$C_{y 1 y 2}$	1 pF
$C_{g 1}$	6 pF
C_{k}	3 pF

DIMENSIONS AND CONNECTIONS

Fig. 1 Outlines.
(1) Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $122 \mathrm{~mm} \times 102 \mathrm{~mm}$ (diagonal 153 mm).
(2) The coil is fixed to the envelope with resin and adhesive tape.
(3) The length of the connecting leads of the rotation coil is min .350 mm .
(4) Reference points on faceplate for graticule alignment (see Fig. 4).

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Electrode configuration.

Internal graticule

The internal graticule is aligned with the faceplate by using the faceplate reference points, see Fig. 4. See also note 1.

Fig. 4 Front view of tube with internal graticule, type 93. Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$; colour: red.

TYPICAL OPERATION (voltages with respect to cathode)*

Conditions (note 4)

Accelerator voltage
 Astigmatism control voltage

Focusing voltage
Cut-off voltage for visual extinction of focused spot

Performance

Useful scan
horizontal vertical
Deflection coefficient horizontal vertical

Line width
Deviation of deflection linearity
Geometry distortion
Grid drive for $10 \mu \mathrm{~A}$ screen current

$V_{g 2}(\ell)$	2000 V
$\Delta V_{g 2(\ell)}$	0 V
$V_{g} 3$	220 to 370 V
$-V_{g 1}$	22 to 65 V

$V_{g 2,(\ell)}$
$\Delta V^{2}(\ell)$
$-V_{g 1}$

| \geqslant | 100 mm |
| :--- | ---: | ---: |
| \geqslant | 80 mm |

$\mathrm{M}_{\mathrm{X}} \quad 22 \mathrm{~V} / \mathrm{cm}$
$<\quad 24 \mathrm{~V} / \mathrm{cm}$
$11,5 \mathrm{~V} / \mathrm{cm}$
$\begin{array}{rr}< & 12 \mathrm{~V} / \mathrm{cm} \\ \approx & 0.35 \mathrm{~mm}\end{array}$
$\approx \quad 0,35 \mathrm{~mm}$
note 6
$\leqslant \quad 2 \%$
see note 8
$\mathrm{V}_{\mathrm{d}} \quad \approx \quad 10 \mathrm{~V}$
notes 2, 5
note 7

LIMITING VALUES (Absolute maximum rating system)

Accelerator voltage
Focusing electrode voltage
Control grid voltage
Cathode to heater voltage positive negative

Heater voltage
Grid drive, averaged over 1 ms
Screen dissipation
Control grid circuit resistance
$V_{g 2,(\ell)}$
$V_{g 3}$
$-V_{g 1}$
$V_{k f} \quad \max .125 \mathrm{~V}$
$-V_{k f}$
V_{f}
V_{d}
W_{ℓ}
$R_{g 1}$
max. 2200 V
max. 2200 V
max. 200 V
$\min \quad 0 \mathrm{~V}$
max. 125 V
max. 125 V
max. $6,6 \mathrm{~V}$
min. $\quad 6,0 \mathrm{~V}$
max. 20 V
max. $\quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$
$\max . \quad 1 \mathrm{M} \Omega$

NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $102 \mathrm{~mm} \times 82 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 4).
2. The tube features internal magnetic correction for orthogonality between x - and y-traces, spot shaping (astigmatism) and vertical eccentricity calibration. Correction is obtained at $\mathrm{V}_{\mathrm{g} 2}=1800$ to 2200 V ; optimum at $\mathrm{V}_{\mathrm{g} 2}=2000 \mathrm{~V}$.
3. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of 180Ω at $20^{\circ} \mathrm{C}$ (max. 270Ω at $80^{\circ} \mathrm{C}$). Approx. 5 mA causes 1° trace rotation. Thus maximum required voltage is approx. 11 V for tube tolerances ($\pm 5^{\circ}$) and earth magnetic field with reasonable shielding ($\pm 2^{\circ}$).
4. The mean x-plate potential should be equal to $\mathrm{V}_{\mathrm{g} 2}$. A deviation may lead to raster distortion beyond the indicated range (see note 8).
5. Deviation of mean y-plate potential with respect to $\mathrm{V}_{\mathrm{g} 2}$ will introduce astigmatism (as without internal magnetic correction). The grid 2 impedance should be less than $10 \mathrm{k} \Omega$.
6. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
7. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
8. A graticule consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times 73 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.

INSTRUMENT CATHODE-RAY TUBES

- mono accelerator
- 14 cm diagonal rectangular flat face
- internal magnetic lens system for vertical scan magnification, orthogonality, astigmatism and eccentricity correction
- low heater consumption
- with or without internal graticule
- flat screen edges facilitate graticule illumination
- reference points on faceplate for graticule alignment
- for inexpensive oscilloscopes and read-out devices

QUICK REFERENCE DATA

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	2000 V
Minimum useful scan area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Deflection coefficient horizontal vertical	M_{x}	

The D14-361. . is equivalent to the type D14-362. . except for the following.

HEATING

Indirect by a.c. or d.c.*

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	$0,1 \mathrm{~A}$
Heating time to attain 10% of the cathode current at equilibrium conditions		

[^27]
INSTRUMENT CATHODE-RAY TUBES

- mono accelerator
- 14 cm diagonal rectangular flat face
- internal magnetic lens system for vertical scan magnification, orthogonality, astigmatism and eccentricity correction
- quick-heating cathode
- with or without internal graticule
- flat screen edges facilitate graticule illumination
- reference points on faceplate for graticule alignment
- for inexpensive oscilloscopes and read-out devices

QUICK REFERENCE DATA

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	2000 V
Minimum useful scan area Deflection coefficient horizontal vertical		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$

OPTICAL DATA

Screen

Useful screen area

Useful scan area
Internal graticule

type	colour	persistence
GH	green	medium short
GY	yellowish-green	medium
GM	yellowish-green	long
	$\geqslant 102 \mathrm{~mm} \times 82 \mathrm{~mm} ;$ note 1 (last page	
	$\geqslant 100 \mathrm{~mm} \times 80 \mathrm{~mm}$	but one)
	type $93 ;$ see Fig. 4	

HEATING

Indirect by a.c. or d.c.*

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	$0,24 \mathrm{~A}$
Heating time to attain 10% of		
the cathode current at equilibrium conditions		approx. 5 s

[^28]
MECHANICAL DATA

Dimensions and connections (see also outline drawing)

Overall length (socket included)
Faceplate dimensions

Net mass

Base

$\leqslant 333 \mathrm{~mm}$
$118 \pm 0,5 \mathrm{~mm} \times 98 \pm 0,5 \mathrm{~mm}$
approx. 1 kg
12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 4) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)
Socket with solder tags
Socket with printed-wiring pins
Mu-metal shield
FOCUSING
DEFLECTION
x-plates
y-plates
supplied with tube
type 55594
type 55595
55598
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance delfection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
V_{2} to all other elements except Y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$C_{x 1(x 2)}$	$5,7 \mathrm{pF}$
$C_{x 2(x 1)}$	5 pF
$C_{y 1(y 2)}$	4 pF
$C_{y 2(y 1)}$	4 pF
$C_{x 1 \times 2}$	$2,3 \mu F$
$C_{y 1 y 2}$	1 pF
$C_{g 1}$	6 pF
C_{k}	3 pF

Fig. 1 Outlines.
(1) Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $122 \mathrm{~mm} \times 102 \mathrm{~mm}$.
(2) The coil is fixed to the envelope with resin and adhesive tape.
(3) The length of the connecting leads of the rotation coil is $\mathbf{m i n} .350 \mathrm{~mm}$.
(4) Reference points on faceplate for graticule alignment (see Fig. 4).

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Electrode configuration.

Internal graticule

The internal graticule is aligned with the faceplate by using the faceplate reference points, see Fig. 4. See also note 1.

Fig. 4 Front view of tube with internal graticule, type 93. Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$; colour: red.

TYPICAL OPERATION (voltages with respect to cathode)*

Conditions

Mean deflection plate potential
Shield voltage for optimum geometry
Accelerator and astigmatism control voltage
Focusing voltage

	2000 V	note 2
$\mathrm{V}_{\mathrm{g} 5,(\ell)}$	2000 V	note 3
$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	2000 V	note 4
$\mathrm{V}_{\mathrm{g} 3}$	220 to 370 V	note 5
$-\mathrm{V}_{\mathrm{g} 1}$	22 to 65 V	note 6

Performance

LIMITING VALUES (Absolute maximum rating system)

Accelerator voltage
Shield voltage
Focusing electrode voltage
Control grid voltage
Cathode to heater voltage
positive
negative
Heater voltage
Grid drive voltage, averaged over 1 ms
Screen dissipation
Control grid circuit resistance

$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	max. 2200 V
$\mathrm{~V}_{\mathrm{g} 5(\mathrm{l})}$	$\max .2200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{g} 3}$	$\max .2200 \mathrm{~V}$
$-\mathrm{V}_{\mathrm{g} 1}$	max. 200 V
	min. 0 V

$V_{k f} \quad \max .125 \mathrm{~V}$
$-V_{k f} \quad \max .125 \mathrm{~V}$
max. 6,6 V
min. $6,0 \vee$
max. 20 V
max. $\quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$
$\max . \quad 1 \mathrm{M} \Omega$

[^29]
NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $102 \mathrm{~mm} \times 82 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 4).
2. The deflection plates must be operated symmetrically; asymmetric drive introduces trace distortion. It is recommended that the tube be operated with equal mean x - and y-potentials, in order to minimize tube adjustments. Under this condition g_{5} can be connected to $\mathrm{g}_{2}, \mathrm{~g}_{4}$, and made equal to mean y-potential for optimum spot (see also notes 3 and 4).
A difference between mean x - and y-potentials up to 75 V is permissible, however this may influence the specified deflection coefficients, and a separate voltage on g_{5} (equal to mean x-potential) may be required.
3. The tube meets the geometry specification (see note 8) if $\mathrm{V}_{\mathrm{g} 5}$ is equal to mean x-potential. A range of $\pm 50 \mathrm{~V}$ around mean x-potential may be applied for further correction.
4. Optimum spot is obtained with $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$ equal to mean y-potential (see note 2). In general a tolerance of $\pm 4 \mathrm{~V}$ has no visible effect; $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$ tends to be lower with $\mathrm{V}_{\mathrm{g} 5}$ more positive. The circuit impedance $R_{g 2, g 4}$ should be less than $10 \mathrm{k} \Omega$.
5. An actual focus range of 30 V should be provided on the front panel. $\mathrm{V}_{\mathrm{g} 3}$ decreases with increasing grid drive (see also Fig. 5).
6. Intensity control on the front panel should be limited to the maximum useful screen current (approx. $50 \mu \mathrm{~A}$; see also Fig. 5). It is to be adjusted either by the grid drive (up to 22 V) or for maximum acceptable line width. The corresponding cathode current or $\mathrm{I}_{\mathrm{g} 2, \mathrm{~g} 4}$ (up to $500 \mu \mathrm{~A}$) depend on the cut-off voltage and cannot be used for control settings.
7. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
8. A graticule consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 78 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
9. The tube features internal magnetic correction for orthogonality between x - and y-traces, spot shaping (astigmatism) and eccentricity calibration.
10. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a resistance of $185 \pm 25 \Omega$ at $20^{\circ} \mathrm{C}$, which increases by approx. $0,4 \% / \mathrm{K}$ for rising temperature. Approx. 5 mA causes 10 trace rotation. Thus maximum required voltage is approx. 11 V for tube tolerances $\left(\pm 5^{\circ}\right)$ and earth magnetic field with reasonable shielding ($\pm 2^{\circ}$).
11. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.

Fig. 5 Screen current ($l_{\text {screen }}$) and focusing voltage ($\mathrm{V}_{\mathrm{g} 3}$) as a function of grid drive voltage $\left(\mathrm{V}_{\mathrm{d}}\right)$; typical curves.

INSTRUMENT CATHODE-RAY TUBE

mono accelerator
14 cm diagonal rectangular flat face
internal magnetic lens system for vertical scan magnification, orthogonality, astigmatism and
eccentricity correction
low heater consumption
with or without internal graticule
flat screen edges facilitate graticule illumination
reference points on faceplate for graticule alignment
for inexpensive oscilloscopes and read-out devices

QUICK REFERENCE DATA

Accelerator voltage Minimum useful scan area	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	2000 V
Deflection coefficient horizontal vertical	M_{x}	$100 \mathrm{~mm} \times 80 \mathrm{~mm}$

The D14-363GY/93 is equivalent to the type D14-364GY/93 except for the following.

HEATING

Indirect by a.c. or d.c.*

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	$0,1 \mathrm{~A}$
Heating time to attain 10% of the cathode current at equilibrium conditions		
		approx.

[^30]
INSTRUMENT CATHODE-RAY TUBE

- mono accelerator
- 14 cm diagonal rectangular flat face
- internal magnetic lens system for vertical scan magnification, orthogonality, astigmatism and eccentricity correction
- quick-heating cathode
- with or without internal graticule
- flat screen edges facilitate graticule illumination
- reference points on faceplate for graticule alignment
- for inexpensive oscilloscopes and read-out devices

QUICK REFERENCE DATA

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	2000 V
Minimum useful scan area Deflection coefficient horizontal vertical		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$

OPTICAL DATA

Screen
type GY
colour
persistence
Useful screen area
Useful scan area
Internal graticule

HEATING

Indirect by a.c. or d.c.*

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	$0,24 \mathrm{~A}$

Heating time to attain 10% of the cathode current at equilibrium conditions approx. 5 s

[^31]
MECHANICAL DATA

Dimensions and connections (see also outline drawing)

Overall length (socket included)
Faceplate dimensions
$\leqslant 333 \mathrm{~mm}$
$118 \pm 0,5 \mathrm{~mm} \times 98 \pm 0,5 \mathrm{~mm}$

Net mass

Base
approx. 1 kg
12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 4) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)
Socket with solder tags
Socket with printed-wiring pins
Mu-metal shield
FOCUSING
DEFLECTION
x-plates
y-plates
supplied with tube
type 55594
type 55595
55598
electrostatic
double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
V_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$C_{x 1(x 2)}$	$4,8 \mathrm{pF}$
$C_{x 2(x 1)}$	4 pF
$C_{y 1(y 2)}$	$3,4 \mathrm{pF}$
$C_{y 2(y 1)}$	$3,4 \mathrm{pF}$
$C_{x 1 x 2}$	$3,3 \mathrm{pF}$
$C_{y 1 y 2}$	1 pF
$C_{g 1}$	6 pF
C_{k}	3 pF

Fig. 1 Outlines.
(1) Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $122 \mathrm{~mm} \times 102 \mathrm{~mm}$.
(2) The coil is fixed to the envelope with resin and adhesive tape.
(3) The length of the connecting leads of the rotation coil is min. 350 mm .
(4) Reference points on faceplate for graticule alignment (see Fig. 4).

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Electrode configuration.

Internal graticule

The internal graticule is aligned with the faceplate by using the faceplate reference points, see Fig. 4. See also note 1.

Fig. 4 Front view of tube with internal graticule, type 93.
Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$; colour: red.

TYPICAL OPERATION (voltages with respect to cathode)*
Conditions

Mean deflection plate potential
Shield voltage for optimum geometry
Accelerator and astigmatism control voltage
Focusing voltage
Cut-off voltage for visual extinction of focused spot

Performance

Deflection coefficient horizontal vertical

Deviation of deflection linearity
Geometry distortion
Luminance reduction at the edges of the useful scan ($100 \mathrm{~mm} \times 80 \mathrm{~mm}$), with respect to screen centre
Eccentricity of undeflected spot with respect to internal graticule horizontal
vertical
Angle between x and y-traces
Angle between x-trace and x-axis of the internal graticule
Grid drive voltage for $10 \mu \mathrm{~A}$ screen current
Line width

LIMITING VALUES (Absolute maximum rating system)

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	\max.	2200 V
Shield voltage	$\mathrm{V}_{\mathrm{g} 5(\mathrm{l})}$	\max.	2200 V
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$	\max.	2200 V
Control grid voltage	$-\mathrm{V}_{\mathrm{g} 1}$	\max.	200 V
min.	0 V		
Cathode to heater voltage			
\quad positive	V_{kf}	\max.	125 V
negative	$-\mathrm{V}_{\mathrm{kf}}$	\max.	125 V
Heater voltage	V_{f}	\max.	$6,6 \mathrm{~V}$
Grid drive voltage, averaged over 1 ms	$\mathrm{~V}_{\mathrm{d}}$	\min.	$6,0 \mathrm{~V}$
Screen dissipation	W_{ℓ}	\max.	20 V
Control grid circuit resistance	$\mathrm{R}_{\mathrm{g} 1}$	\max.	$1 \mathrm{~mW} / \mathrm{cm}^{2}$

[^32]note 2
note 3
note 4
note 5
note 6
$19 \mathrm{~V} / \mathrm{cm}$
$<\quad 21 \mathrm{~V} / \mathrm{cm}$
$11,5 \mathrm{~V} / \mathrm{cm}$
$<\quad 12 \mathrm{~V} / \mathrm{cm}$
$\leqslant \quad 2 \% \quad$ note 7
see note 8
$\leqslant \quad 30 \%$
$\leqslant \quad 4 \mathrm{~mm} \quad$ note 9
$90^{\circ} \quad$ note 9
$\leqslant \quad 5^{0} \quad$ note 10
$\approx \quad 10 \mathrm{~V} \quad$ note 6
$\approx \quad 0,3 \mathrm{~mm}$

NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $102 \mathrm{~mm} \times 82 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 4).
2. The deflection plates must be operated symmetrically; asymmetric drive introduces trace distortion. It is recommended that the tube be operated with equal mean x - and y-potentials, in order to minimize tube adjustments. Under this condition g5 can be connected to $\mathrm{g} 2, \mathrm{~g} 4$, and made equal to mean y-potential for optimum spot (see also notes 3 and 4).
A difference between mean x - and y-potentials up to 75 V is permissible, however this may influence the specified deflection coefficients, and a separate voltage on g_{5} (equal to mean x-potential) may be required.
3. The tube meets the geometry specification (see note 8) if $\mathrm{V}_{\mathrm{g} 5}$ is equal to mean x-potential. A range of $\pm 30 \mathrm{~V}$ around mean x-potential may be applied for further correction.
4. Optimum spot is obtained with $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$ equal to mean y-potential (see note 2). In general a tolerance of $\pm 4 \mathrm{~V}$ has no visible effect; $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$ tends to be lower with $\mathrm{V}_{\mathrm{g} 5}$ more positive. The circuit impedance $R_{g 2, g 4}$ should be less than $10 \mathrm{k} \Omega$.
5. An actual focus range of 30 V should be provided on the front panel. $\mathrm{V}_{\mathrm{g} 3}$ decreases with increasing grid drive (see also Fig. 5).
6. Intensity control on the front panel should be limited to the maximum useful screen current (approx. $50 \mu \mathrm{~A}$; see also Fig. 5). It is to be adjusted either by the grid drive (up to 22 V) or for maximum acceptable line width. The corresponding cathode current or $\mathrm{I}_{\mathrm{g} 2, \mathrm{~g} 4}$ (up to $500 \mu \mathrm{~A}$) depend on the cut-off voltage and cannot be used for control settings.
7. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
8. A graticule consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 78 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
9. The tube features internal magnetic correction for orthogonality between x - and y-traces, spot shaping (astigmatism) and eccentricity calibration.
10. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a resistance of $185 \pm 25 \Omega$ at $20^{\circ} \mathrm{C}$, which increases by approx. $0,4 \% / \mathrm{K}$ for rising temperature. Approx. 5 mA causes 1^{0} trace rotation. Thus maximum required voltage is approx. 11 V for tube tolerances $\left(\pm 5^{\circ}\right)$ and earth magnetic field with reasonable shielding $\left(\pm 2^{\circ}\right)$.
11. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.

Fig. 5 Screen current ($I_{\text {screen }}$) and focusing voltage ($\mathrm{V}_{\mathrm{g} 3}$) as a function of grid drive voltage (V_{d}); typical curves.

INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- quick-heating cathode
- internal graticule
- high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 75 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7(\ell)}$	10	$16,5 \mathrm{kV}$
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 4}$	2	$2,2 \mathrm{kV}$
Minimum useful scan area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$	
Deflection coefficient horizontal	M_{x}	8	$8,3 \mathrm{~V} / \mathrm{cm}$
\quad vertical	M_{y}	4	$4 \mathrm{~V} / \mathrm{cm}$

OPTICAL DATA

Screen	metal-backed phosphor
\quad type	GH
\quad colour	green
\quad persistence	medium short
Useful screen area	$\geqslant 102 \mathrm{~mm} \times 82 \mathrm{~mm} ;$ note 1 (last page)
Useful scan area	$\geqslant 100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Internal graticule	type $93 ;$ see Fig. 4

HEATING

Indirect by a.c. or d.c.*
Heater voltage
$V_{f} \quad 6,3 \mathrm{~V}$
Heater current
Heating time to attain 10% of the cathode current at equilibrium conditions approx. 5 s

[^33]
MECHANICAL DATA

Dimensions and connections (see also outline drawings)

Overall length (socket included)
Faceplate dimensions

Net mass

Base

$\leqslant 338 \mathrm{~mm}$
$118 \pm 0,5 \mathrm{~mm} \times 98 \pm 0,5 \mathrm{~mm}$
approx. 1 kg

12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 4) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)
Socket with solder tags
Socket with printed-wiring pins
Final accelerator contact connector
Mu-metal shield

FOCUSING

DEFLECTION
x-plates
y-plates
supplied with tube
type 55594
type 55595
type 55569/55597
55599
electrostatic
double electrostatic
symmetrical
symmetrical

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
Y_{2} to all other elements except Y_{1}
x_{1} to x_{2}
Y_{1} to Y_{2}
Control grid to all other elements
Cathode to all other elements
Focusing electrode to all other elements

$C_{x 1(x 2)}$	$4,2 \mathrm{pF}$
$C_{x 2(x 1)}$	$4,2 \mathrm{pF}$
$C_{y 1(y 2)}$	$3,1 \mathrm{pF}$
$C_{y 2(y 1)}$	$3,1 \mathrm{pF}$
$C_{x 1 \times 2}$	2 pF
$C_{y 1 y 2}$	$1,6 \mathrm{pF}$
$C_{g 1}$	6 pF
C_{k}	$3,2 \mathrm{pF}$
$C_{g 3}$	5 pF

1. Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $122 \mathrm{~mm} \times 102 \mathrm{~mm}$ (diagonal 153 mm).
2. The coil is fixed to the envelope with resin and adhesive tape.
3. The length of the connecting leads of the rotation coil is min .350 mm .
4. Reference points on faceplate for graticule alignment (see Fig. 4).
5. The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the indicated position.

DIMENSIONS AND CONNECTIONS (continued)

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Electrode configuration.

Fig. 4 Front view of tube with internal graticule, type 93. The faceplate reference points are used for aligning the graticule with the faceplate.
Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$; colour: red.

TYPICAL OPERATION (voltages with respect to cathode) *

Conditions

Final accelerator voltage
Mean deflection plate potential

Outer conductive coating (m) and mu-metal shield to be earthed.

Performance

Horizontal deflection coefficient	M_{x}	8		$\mathrm{V} / \mathrm{cm} \pm 10 \%$
Vertical deflection coefficient	M_{y}	4,0	4,0	$\mathrm{V} / \mathrm{cm} \pm 5 \%$
Deviation of deflection linearity		$\leqslant 2 \%$		note 4
Geometry distortion				note 5
Eccentricity of undeflected spot in horizontal direction		$\leqslant 4 \mathrm{~mm}$		
in vertical direction		$\leqslant 2 \mathrm{~mm}$		
Angle between x - and y-traces		90°		note 2
Angle between x-trace and x-axis of internal graticule		$\leqslant 5^{\circ}$		note 6
Luminance reduction with respect to screen centre x-axis, outer graticule line		$\leqslant 30 \%$		
y-axis, outer graticule line		$\leqslant 30 \%$		
any corner		$\leqslant 50 \%$		
Grid drive for $10 \mu \mathrm{~A}$ screen current	V_{d}	approx.	20	\checkmark
Line width	I.w.	approx.		mm note 7

[^34]LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage
Shield voltage
First accelerator and astigmatism control voltage
Focusing electrode voltage
Grid 2 voltage
Control grid voltage

Cathode to heater voltage positive
negative
Heater voltage
Voltage between g2 and g4
Voltage between $\mathrm{g} 4, \mathrm{~g} 5$ and any deflection plate

Grid drive, averaged over 1 ms
Screen dissipation
Control grid circuit resistance

$V_{g 7(\ell)}$	max.	18 kV note 8
$\mathrm{~V}_{\mathrm{g} 5}$	max.	$3,3 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 4}$	max.	$3,3 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 3}$	max.	$2,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	max.	$2,5 \mathrm{kV}$
$-\mathrm{V}_{\mathrm{g} 1}$	max.	200 V
	min.	0 V

$\mathrm{V}_{\mathrm{kf}} \quad \max .125 \mathrm{~V}$
$-V_{k f} \quad \max .125 \mathrm{~V}$
$\mathrm{V}_{\mathrm{f}} \quad \max$. 6,6 V
$\Delta V_{g 2, g 4} \quad \max . \quad 2 k V$
$\Delta V_{g 4, g 5, x, y} \max . \quad 500 V$
$V_{d} \quad \max \quad 25 \mathrm{~V}$
$W_{\ell} \quad \max . \quad 8 \mathrm{~mW} / \mathrm{cm}^{2}$
$R_{g 1} \quad \max . \quad 1 \mathrm{M} \Omega$

NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $102 \mathrm{~mm} \times 82 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 4).
2. The deflection plates must be operated symmetrically; floating mean x - or y-potentials will result into non-uniform line width and geometry distortion. The mean x - and y-potentials should be equal; under this condition the tube will be within the specification without corrections for astigmatism and geometry.

The tube features internal magnetic correction for orthogonality between x - and y-traces, spot shaping (astigmatism) and eccentricity calibration.
3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case $\mathrm{V}_{\mathrm{g} 5}$ must be made equal to mean x-potential, and a range of 0 to --25 V with respect to mean y-potential will be required on $g 4$ for astigmatism correction. The circuit resistance for $\mathrm{V}_{\mathrm{g} 4}$ should be $\leqslant 10 \mathrm{k} \Omega$.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 78 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
6. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of $185 \pm 25 \Omega$ at $0^{\circ} \mathrm{C}$, which increases by approx. $0,4 \% / \mathrm{K}$ for rising temperature. Approx. 6,5 mA causes 10 trace rotation. Thus maximum required voltage is approx. 13 V for tube tolerances $\left(\pm 5^{\circ}\right)$ and earth magnetic field with reasonable shielding $\left(\pm 2^{\circ}\right)$.
7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
8. The X-ray dose rate remains below the acceptable value of $36 \mathrm{pA} / \mathrm{kg}(0,5 \mathrm{mR} / \mathrm{h})$, when the tube is used within its limiting values (beam current $I_{\ell} \leqslant 100 \mu \mathrm{~A}$).

INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- low heater consumption
- internal graticule
- high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 75 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7(\ell)}$	10	$16,5 \mathrm{kV}$
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 4}$	2	$2,2 \mathrm{kV}$
Minimum useful scan area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$	
Deflection coefficient horizontal vertical	M_{x}	8	$8,3 \mathrm{~V} / \mathrm{cm}$

The D14-371GH/123 is equivalent to the type D14-372GH/123 except for the following.

HEATING

Indirect by a.c. or d.c.*

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	$0,1 \mathrm{~A}$

Heating time to attain 10% of
the cathode current at equilibrium conditions approx. 7 s

[^35]
INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- quick-heating cathode
- internal graticule
- high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 75 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage
First accelerator voltage
Minimum useful scan area
Deflection coefficient horizontal
vertical

$\mathrm{V}_{\mathrm{g} 7(\ell)}$	10	$16,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 4}$	2	$2,2 \mathrm{kV}$
	$100 \mathrm{~mm} \times 80 \mathrm{~mm}$	
M_{x}	8	$8,3 \mathrm{~V} / \mathrm{cm}$
M_{y}	4	$4 \mathrm{~V} / \mathrm{cm}$

OPTICAL DATA

[^36]
MECHANICAL DATA

Dimensions and connections (see also outline drawings)
Overall length (socket included)
Faceplate dimensions

Net mass

Base

$\leqslant 338 \mathrm{~mm}$
$118 \pm 0,5 \mathrm{~mm} \times 98 \pm 0,5 \mathrm{~mm}$
approx. 1 kg
12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 4) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)
Socket with solder tags
Socket with printed-wiring pins
Final accelerator contact connector
Mu-metal shield
FOCUSING
DEFLECTION
x-plates
y-plates
supplied with tube
type 55594
type 55595
type 55569/55597
55599
electrostatic
double electrostatic
symmetrical
symmetrical

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
Focusing electrode to all other elements
Final accelerator electrode to all other elements

$C_{x 1(x 2)}$	$4,8 \mathrm{pF}$
$C_{x 2(x 1)}$	$3,6 \mathrm{pF}$
$C_{y 1}(y 2)$	$3,0 \mathrm{pF}$
$C_{y 2(y 1)}$	$3,0 \mathrm{pF}$
$C_{x 1 \times 2}$	$3,3 \mathrm{pF}$
$C_{y 1 y 2}$	$1,4 \mathrm{pF}$
$C_{g 1}$	$6,5 \mathrm{pF}$
C_{k}	$3,2 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 3}$	8 pF
$C_{g 7}$	480 pF

DIMENSIONS AND CONNECTIONS

Fig. 1.

1. Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $122 \mathrm{~mm} \times 102 \mathrm{~mm}$ (diagonal 153 mm).
2. The coil is fixed to the envelope with resin and adhesive tape.
3. The length of the connecting leads of the rotation coil is min .350 mm .
4. Reference points on faceplate for graticule alignment (see Fig. 4).
5. The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the indicated position.

DIMENSIONS AND CONNECTIONS (continued)

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Electrode configuration.

Fig. 4 Front view of tube with internal graticule, type 123. The faceplate reference points are used for aligning the graticule with the faceplate.
Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$; colour: red.

TYPICAL OPERATION (voltages with respect to cathode)*

Conditions

Final accelerator voltage	$V_{\mathrm{g}} \mathrm{l}(\mathrm{l})$	10	$16,5 \mathrm{kV}$	
Mean deflection plate potential		2	2,2 kV	note 2
Shield voltage for optimum geometry	$\mathrm{V}_{\mathrm{g} 5}$	2	2,2 kV	note 3
First accelerator and astigmatism control voltage	$V_{g 4}$	2	2,2 kV	note 3
Focusing voltage	$V_{\mathrm{g} 3}$	$0,19 \times \mathrm{V}_{\mathrm{g} 4}$ to $0,26 \times \mathrm{V}_{\mathrm{g} 4}$		
Grid 2 voltage	$V_{\mathrm{g} 2}$	2	2,2 kV	
Cut-off voltage for visual extinction of focused spot	$-V_{g 1}$	45 to 90	50 to 100 V	

Outer conductive coating (m) and mu-metal shield to be earthed.

Performance

Horizontal deflection coefficient	M_{x}	8		$\mathrm{V} / \mathrm{cm} \pm 10 \%$
Vertical deflection coefficient	M_{y}	4,0		$\mathrm{V} / \mathrm{cm} \pm 5 \%$
Deviation of deflection linearity		$\leqslant 2 \%$		note 4
Geometry distortion				note 5
Eccentricity of undeflected spot in horizontal direction in vertical direction		$\begin{aligned} & \leqslant 4 \mathrm{~mm} \\ & \leqslant 2 \mathrm{~mm} \end{aligned}$		
Angle between x - and y-traces		90°		note 2
Angle between x-trace and x -axis of internal graticule		$\leqslant 5^{\circ}$		note 6
Luminance reduction with respect to screen centre x-axis, outer graticule line y-axis, outer graticule line any corner		$\begin{aligned} & \leqslant 30 \% \\ & \leqslant 30 \% \\ & \leqslant 50 \% \end{aligned}$		
Grid drive for $10 \mu \mathrm{~A}$ screen current	V_{d}	approx.		V
Line width	I.w.	approx.	0,33	mm note 7

[^37]LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage
Shield voltage
First accelerator and astigmatism control voltage
Focusing electrode voltage
Grid 2 voltage
Control grid voltage
Cathode to heater voltage positive
negative
Heater voltage
Voltage between g2 and g4
Voltage between g4,g5 and any deflection plate
Grid drive, averaged over 1 ms
Screen dissipation
Control grid circuit resistance

NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $102 \mathrm{~mm} \times 82 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 4).
2. The deflection plates must be operated symmetrically; floating mean x - or y-potentials will result into non-uniform line width and geometry distortion. The mean x - and y-potentials should be equal; under this condition the tube will be within the specification without corrections for astigmatism and geometry. A range of $\Delta \mathrm{V}_{\mathrm{g} 5}=-50$ to +50 V may be applied for pincushion/barrel correction. The tube features internal magnetic correction for orthogonality between x - and y-traces, spot shaping (astigmatism) and eccentricity calibration.
3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case $\mathrm{V}_{\mathrm{g} 5}$ must be made equal to mean x-potential, and a range of 0 to -25 V with respect to mean y-potential will be required on $g 4$ for astigmatism correction. The circuit resistance for $\mathrm{V}_{\mathrm{g} 4}$ should be $\leqslant 10 \mathrm{k} \Omega$.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 78 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
6. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of $185 \pm 25 \Omega$ at $20^{\circ} \mathrm{C}$, which increases by approx. $0,4 \% / \mathrm{K}$ for rising temperature. At typical operation ($\mathrm{V}_{\mathrm{g} 5}=2200 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 7}=16,5 \mathrm{kV}$) approx. $6,5 \mathrm{~mA}$ causes 10 trace rotation. Thus maximum required voltage is approx. 13 V for tube tolerances ($\pm 5^{\circ}$) and earth magnetic field with reasonable shielding ($\pm 2^{\circ}$).
The required current for 10 trace rotation is related to approx. $\sqrt{V}_{g 5}$.
7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.

Fig. 5 Beam current (I_{bx}) and focusing voltage ($\mathrm{V}_{\mathrm{g} 3}$) as a function of grid drive voltage (V_{d}) at $\mathrm{V}_{\mathrm{g} 7}=16,5 \mathrm{kV}, \mathrm{V}_{\mathrm{g} 5}=2,2 \mathrm{kV}$; typical curves.
$I_{b x}$ is the beam current, without scan, measured on $\times 2$, when the deflection plate potentials have been adjusted to $\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=2200 \mathrm{~V}, \mathrm{~V}_{\mathrm{x} 1}=1500 \mathrm{~V}, \mathrm{~V}_{\mathrm{x} 2}=1900 \mathrm{~V}$, thus directing the total beam current to $\times 2$.

Fig. $60,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curve, measured according to TEPAC104.

INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- quick-heating cathode
- side contacts to deflection plates
- internal graticule
- high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 150 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7}(\ell)$	$16,5 \mathrm{kV}$
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 4}$	$2,2 \mathrm{kV}$
Minimum useful scan area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Deflection coefficient horizontal vertical	$\mathrm{M}_{\mathbf{x}}$	$8,3 \mathrm{~V} / \mathrm{cm}$
Photographic writing speed	M_{y}	$4 \mathrm{~V} / \mathrm{cm}(\mathrm{max} .4,2 \mathrm{~V} / \mathrm{cm})$

OPTICAL DATA

Screen
type
colour
persistence
Useful screen area
metal-backed phosphor
GH
green

Useful scan area
Internal graticule
medium short
$\geqslant 102 \mathrm{~mm} \times 82 \mathrm{~mm}$; note 1 (last page)
$\geqslant 100 \mathrm{~mm} \times 80 \mathrm{~mm}$
type 93; see Fig. 5

HEATING

Indirect by a.c. or d.c. *

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	$0,24 \mathrm{~A}$

Heating time to attain 10% of the cathode current at equilibrium conditions
approx. 5 s

[^38]
MECHANICAL DATA

Dimensions and connections (see also outline drawings)

Overall length (socket included)
Faceplate dimensions

Net mass

Base

$\leqslant 338 \mathrm{~mm}$
$118 \pm 0,5 \mathrm{~mm} \times 98 \pm 0,5 \mathrm{~mm}$
approx. 1 kg
12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 5) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)
Socket with solder tags
Socket with printed-wiring pins
Side contact connector for $\phi 0,6 \mathrm{~mm}$ pin (4 required)
Final accelerator contact connector
Mu-metal shield

FOCUSING

DEFLECTION

x-plates
y-plates
supplied with tube
type 55594
type 55595
type 55596 (AMP87313)
type 55569/55597
55599
electrostatic
double electrostatic
symmetrical
symmetrical

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
Focusing electrode to all other elements

$C_{x 1(x 2)}$	$2,4 \mathrm{pF}$
$C_{x 2(x 1)}$	$2,4 \mathrm{pF}$
$C_{y 1(y 2)}$	$1,9 \mathrm{pF}$
$C_{y 2(y 1)}$	$1,9 \mathrm{pF}$
$C_{x 1 x 2}$	$1,8 \mathrm{pF}$
$C_{y 1 y 2}$	$1,5 \mathrm{pF}$
$C_{g 1}$	6 pF
C_{k}	$3,2 \mathrm{pF}$
$C_{g 3}$	5 pF

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Fig. 1 Outlines.

1. Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $122 \times 102 \mathrm{~mm}$ (diagonal 153 mm).
2. The coil is fixed to the envelope with resin and adhesive tape.
3. The length of the connecting leads of the rotation coil is $\mathbf{m i n} .350 \mathrm{~mm}$.
4. Reference points on faceplate for graticule alignment (see Fig. 5).
5. The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the indicated position.

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Side-contact arrangement bottom view.

Fig. 4 Electrode configuration.

Fig. 5 Front view of tube with internal graticule, type 93. The faceplate reference points are used for aligning the graticule with the faceplate.
Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$; colour: red.

TYPICAL OPERATION (voltages with respect to cathode)*

Conditions

Final accelerator voltage
Mean deflection plate potential
Shield voltage for optimum geometry
First accelerator and astigmatism control voltage
Focusing voltage
Grid 2 voltage
Cut-off voltage for visual extinction of focused spot

	$16,5 \mathrm{kV}$	
$\mathrm{V} 7(\ell)$	$2,2 \mathrm{kV}$	note 2
	$2,2 \mathrm{kV}$	note 3
$\mathrm{~V}_{\mathrm{g} 5}$	$2,2 \mathrm{kV}$	note 3
$\mathrm{~V}_{\mathrm{g} 4}$	400 to 800 V	
$\mathrm{~V}_{\mathrm{g} 3}$	$2,2 \mathrm{kV}$	
$\mathrm{V}_{\mathrm{g} 2}$	50 to 100 V	
$-V_{\mathrm{g} 1}$		

Outer conductive coating (m) and mu-metal shield to be earthed.

Performance

Horizontal deflection coefficient
Vertical deflection coefficient
Deviation of deflection linearity
Geometry distortion
Eccentricity of undeflected spot
in horizontal direction
in vertical direction
Angle between x - and y-traces
Angle between x-trace and x-axis of internal graticule
Luminance reduction with respect to screen centre x-axis, outer graticule line
y-axis, outer graticule line
any corner
Grid drive for $10 \mu \mathrm{~A}$ screen current
Line width
Photographic writing speed $\left(\mathrm{V}_{\mathrm{d}}=50 \mathrm{~V}\right.$;
Polaroid 612 film; GH phosphor;
$\mathrm{F}=1,2$; magnification 0,5)
M_{x}
M_{y}
r
$8,3 \mathrm{~V} / \mathrm{cm} \pm 10 \%$
$4,0 \mathrm{~V} / \mathrm{cm} \pm 5 \%$
$\leqslant 2 \%$ note 4
note 5
$\leqslant 4 \mathrm{~mm}$
$\leqslant 2 \mathrm{~mm}$
90° note 2
$\leqslant 50$ note 6
$\leqslant 30 \%$
$\leqslant 30 \%$
$\leqslant 50 \%$
V_{d} approx. 20 V
I.w. approx. $0,35 \mathrm{~mm}$ note 7
p.w.s.

[^39]LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage
Shield voltage
First accelerator and astigmatism control voltage
Focusing electrode voltage
Grid 2 voltage
Control grid voltage
Cathode to heater voltage positive
negative
Heater voltage
Voltage between g2 and g4
Voltage between g4,g5 and any deflection plate

Grid drive, averaged over 1 ms
Screen dissipation
Control grid circuit resistance
$\mathrm{V}_{\mathrm{g} 7}(\ell) \quad \max . \quad 18 \mathrm{kV}$ note 8
$V_{g 5} \max .3,3 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 4} \max$ $3,3 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 3} \max$ 2,5 kV
$\mathrm{V}_{\mathrm{g} 2} \max .2,5 \mathrm{kV}$
$-V_{g 1} \quad \max \quad 200 \mathrm{~V}$
\min. 0 V
$V_{k f} \max \quad 125 \mathrm{~V}$
$-V_{k f} \quad \max \quad 125 \mathrm{~V}$
$\mathrm{V}_{\mathrm{f}} \quad \max$ 6,6 V
min. 6,0 V
$\Delta V_{g 2, g 4}$
max. $\quad 2 \mathrm{kV}$
$\Delta V_{g 4, g 5, x, y} \max . \quad 500 \mathrm{~V}$
$V_{d} \quad \max \quad 25 \mathrm{~V}$
$W_{l} \quad \max . \quad 8 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathrm{R}_{\mathrm{g} 1} \quad \max . \quad 1 \mathrm{M} \Omega$

NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $102 \mathrm{~mm} \times 82 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 5).
2. The deflection plates must be operated symmetrically; floating mean x - or y-potentials will result into non-uniform line width and geometry distortion. The mean x - and y-potentials should be equal; under this condition the tube will be within the specification without corrections for astigmatism and geometry.

The tube features internal magnetic correction for orthogonality between x - and y-traces, spot shaping (astigmatism) and eccentricity calibration.
3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case $\mathrm{V}_{\mathrm{g} 5}$ must be made equal to mean x-potential, and a range of 0 to -25 V with respect to mean y-potential will be required on $g 4$ for astigmatism correction. The circuit resistance for $\mathrm{V}_{\mathrm{g} 4}$ should be $\leqslant 10 \mathrm{k} \Omega$.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 78 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
6. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of $185 \pm 25 \Omega$ at $20^{\circ} \mathrm{C}$, which increases by approx. $0,4 \% / \mathrm{K}$ for rising temperature. Approx. $6,5 \mathrm{~mA}$ causes 10 trace rotation. Thus maximum required voltage is approx. 13 V for tube tolerances $\left(\pm 5^{\circ}\right)$ and earth magnetic field with reasonable shielding ($\pm 2^{\circ}$).
7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
8. The X-ray dose rate remains below the acceptable value of $36 \mathrm{pA} / \mathrm{kg}(0,5 \mathrm{mR} / \mathrm{h})$, when the tube is used within its limiting values (beam current $I_{\ell} \leqslant 100 \mu \mathrm{~A}$).

INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- low heater consumption
- side contacts to deflection plates
- internal graticule
- high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 150 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7(\ell)}$	$16,5 \mathrm{kV}$
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 4}$	$2,2 \mathrm{kV}$
Minimum useful scan area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Deflection coefficient horizontal vertical	M_{x}	$8,3 \mathrm{~V} / \mathrm{cm}$
Photographic writing speed	M_{y}	$4 \mathrm{~V} / \mathrm{cm}(\max .4,2 \mathrm{~V} / \mathrm{cm})$

The D14-381GH/123 is equivalent to the type D14-382GH/123 except for the following.

HEATING

Indirect by a.c. or d.c.*
Heater voltage
Heater current
$V_{f} \quad 6,3 \mathrm{~V}$

Heating time to attain 10% of the cathode current at equilibrium conditions approx. 7 s

[^40]
INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- quick-heating cathode
- side contacts to deflection plates
- internal graticule
- high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 150 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7}(\ell)$	$16,5 \mathrm{kV}$
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 4}$	$2,2 \mathrm{kV}$
Minimum useful scan area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Deflection coefficient horizontal vertical	M_{x}	$8,3 \mathrm{~V} / \mathrm{cm}$
Photographic writing speed	M_{y}	$4 \mathrm{~V} / \mathrm{cm}(\max .4,2 \mathrm{~V} / \mathrm{cm})$

OPTICAL DATA

Screen
type
colour
persistence
Useful screen area
metal-backed phosphor
GH
green
medium short

Useful scan area
Internal graticule
$\geqslant 102 \mathrm{~mm} \times 82 \mathrm{~mm}$; note 1 (last page
$\geqslant 100 \mathrm{~mm} \times 80 \mathrm{~mm} \quad$ but one)
type 123; see Fig. 5

HEATING

Indirect by a.c. or d.c.*
Heater voltage
Heater current
Heating time to attain 10% of the cathode current at equilibrium conditions

V_{f}	$6,3 \mathrm{~V}$
I_{f}	$0,24 \mathrm{~A}$

approx. 5 s

[^41]
MECHANICAL DATA

Dimensions and connections (see also outline drawings)

Overall length (socket included)
Faceplate dimensions

Net mass

Base

$$
\leqslant 338 \mathrm{~mm}
$$

$$
118 \pm 0,5 \mathrm{~mm} \times 98 \pm 0,5 \mathrm{~mm}
$$

approx. 1 kg
12 pin, all glass, JEDEC B 12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 5) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)
Socket with solder tags
Socket with printed-wiring pins
Side contact connector for $\phi 0,65 \mathrm{~mm}$ pin (4 required)
Final accelerator contact connector
Mu-metal shield
FOCUSING

DEFLECTION
x-plates
y-plates
supplied with tube
type 55594
type 55595
type 55596 (AMP87313)
type 55569/55597
55599
electrostatic
double electrostatic
symmetrical
symmetrical

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
Focusing electrode to all other elements
Final accelerator electrode to all other elements

$C_{x 1(x 2)}$	$2,2 \mathrm{pF}$
$C_{x 2(x 1)}$	$2,3 \mathrm{pF}$
$C_{y 1(y 2)}$	$1,7 \mathrm{pF}$
$C_{y 2(y 1)}$	$1,8 \mathrm{pF}$
$C_{x 1 \times 2}$	3 pF
$C_{y 1 y 2}$	$1,3 \mathrm{pF}$
$C_{g 1}$	$6,5 \mathrm{pF}$
C_{k}	$3,2 \mathrm{pF}$
$C_{g 3}$	8 pF
$C_{g 7}$	480 pF

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Fig. 1 Outlines.

1. Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $122 \times 102 \mathrm{~mm}$ (diagonal 153 mm).
2. The coil is fixed to the envelope with resin and adhesive tape.
3. The length of the connecting leads of the rotation coil is min. 350 mm .
4. Reference points on faceplate for graticule alignment (see Fig. 5).
5. The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the indicated position.

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Side-contact arrangement bottom view.

Fig. 4 Electrode configuration.

Fig. 5 Front view of tube with internal graticule, type 123. The faceplate reference points are used for aligning the graticule with the faceplate.
Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$; colour: red.

TYPICAL OPERATION (voltages with respect to cathode)*

Conditions

Final accelerator voltage	$V_{\mathrm{g} 7}(\ell)$	$16,5 \mathrm{kV}$	
Mean deflection plate potential		2,2 kV	note 2
Shield voltage for optimum geometry	$V_{\mathrm{g} 5}$	2,2 kV	note 3
First accelerator and astigmatism control voltage	$V_{\mathrm{g}} 4$	2,2 kV	note 3
Focusing voltage	$V_{\mathrm{g} 3}$	$0,19 \times \mathrm{V}_{\mathrm{g} 4}$ to $0,26 \times \mathrm{V}_{\mathrm{g} 4}$	
Grid 2 voltage	$V_{\mathrm{g} 2}$	2,2 kV	
Cut-off voltage for visual extinction of focused spot	$-V_{g 1}$	50 to 100 V	

Outer conductive coating (m) and mu-metal shield to be earthed.

Performance

Horizontal deflection coefficient
Vertical deflection coefficient
Deviation of deflection linearity
Geometry distortion
Eccentricity of undeflected spot in horizontal direction in vertical direction

Angle between x - and y-traces
Angle between x-trace and x-axis of internal graticule
Luminance reduction with respect to screen centre x-axis, outer graticule line
y-axis, outer graticule line any corner

Grid drive for $10 \mu \mathrm{~A}$ screen current
Line width
V_{d}
I.w.

Photographic writing speed $\left(\mathrm{V}_{\mathrm{d}}=50 \mathrm{~V}\right.$;
Polaroid 612 film; GH phosphor;
$F=1,2$; magnification 0,5)
p.w.s.
M_{X}
M_{y}
\leqslant
\leqslant
90° note 2
$\leqslant \quad 50 \quad$ note 6
$\leqslant \quad 30 \%$
$\leqslant \quad 30 \%$
$\leqslant \quad 50 \%$
approx. 20 V
approx. $0,33 \mathrm{~mm}$ note 7
$2,0 \mathrm{~cm} / \mathrm{ns}$

[^42]LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage
Shield voltage
First accelerator and astigmatism control voltage
Focusing electrode voltage
Grid 2 voltage
Control grid voltage
Cathode to heater voltage
positive
negative
Heater voltage
Voltage between g 2 and g 4
Voltage between $\mathrm{g} 4, \mathrm{~g} 5$ and any deflection plate
Grid drive, averaged over 1 ms
Screen dissipation
Control grid circuit resistance

$V_{\mathrm{g} 7}(\ell)$	max.	18 kV Fig. 7
$V_{\mathrm{g} 5}$	max.	3,3 kV
$V_{\mathrm{g} 4}$	max.	$3,3 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 3}$	max.	$2,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	max.	$2,5 \mathrm{kV}$
$-V_{g 1}$	max. min.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
$V_{k f}$	max.	125 V
$-V_{k f}$	max.	125 V
V_{f}	max. min.	$\begin{aligned} & 6,6 \mathrm{~V} \\ & 6,0 \mathrm{~V} \end{aligned}$
$\Delta V_{g 2, g 4}$	max.	2 kV
$\Delta V_{g 4, g 5, x, y}$	max.	500 V
V_{d}	max.	25 V
W_{ℓ}	max.	$8 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathrm{R}_{\mathrm{g} 1}$	max.	$1 \mathrm{M} \Omega$

NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $102 \mathrm{~mm} \times 82 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 5).
2. The deflection plates must be operated symmetrically; floating mean x - or y-potentials will result into non-uniform line width and geometry distortion. The mean x - and y-potentials should be equal; under this condition the tube will be within the specification without corrections for astigmatism and geometry. A range of $\Delta \mathrm{V}_{\mathrm{g} 5}=-50$ to +50 V may be applied for pincushion/barrel correction. The tube features internal magnetic correction for orthogonality between x - and y-traces, spot shaping (astigmatism) and eccentricity calibration.
3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case $\mathrm{V}_{\mathrm{g} 5}$ must be made equal to mean x -potential, and a range of 0 to -25 V with respect to mean y-potential will be required on $g 4$ for astigmatism correction. The circuit resistance for $\mathrm{V}_{\mathrm{g} 4}$ should be $\leqslant 10 \mathrm{k} \Omega$.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 78 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
6. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of $185 \pm 25 \Omega$ at $20^{\circ} \mathrm{C}$, which increases by approx. $0,4 \% / \mathrm{K}$ for rising temperature. At typical operation ($\mathrm{V}_{\mathrm{g} 5}=2200 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 7}=16,5 \mathrm{kV}$) approx. $6,5 \mathrm{~mA}$ causes 10 trace rotation. Thus maximum required voltage is approx. 13 V for tube tolerances ($\pm 5^{\circ}$) and earth magnetic field with reasonable shielding ($\pm 2^{\circ}$).
The required current for 10 trace rotation is related to approx. $\sqrt{\mathrm{V}}_{\mathrm{g} 5}$.
7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\ell}=10 \mu \mathrm{~A}$.

Fig. 6 Beam current (l_{bx}) and focusing voltage $\left(\mathrm{V}_{\mathrm{g} 3}\right)$ as a function of grid drive voltage $\left(\mathrm{V}_{\mathrm{d}}\right)$; typical curves.
$I_{b x}$ is the boam current, without scan, measured on $\times 2$, when the deflection plate potentials have boen adjusted to $\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=2200 \mathrm{~V}, \mathrm{~V}_{\mathrm{x} 1}=1500 \mathrm{~V}, \mathrm{~V}_{\mathrm{x} 2}=1900 \mathrm{~V}$, thus directing the total begm current to $\times 2$.

Fig. $70,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curve, measured according to TEPAC104.

INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- symmetrical helix system for vertical deflection
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- quick-heating cathode
- side contacts to deflection plates
- internal graticule
- high sensitivity and high brightness
- for oscilloscopes with up to 500 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage
First accelerator voltage
Minimum useful scan area
Deflection coefficient horizontal vertical
Photographic writing speed
$V_{g 7}(\ell) \quad 24 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2} \quad 3 \mathrm{kV}$
$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
$\mathrm{M}_{\mathrm{X}} \quad 7,3 \mathrm{~V} / \mathrm{cm}$ (max. $8,0 \mathrm{~V} / \mathrm{cm}$)
$\mathrm{M}_{\mathrm{y}} \quad 2,9 \mathrm{~V} / \mathrm{cm}(\max .3,0 \mathrm{~V} / \mathrm{cm})$
p.w.s. min. $3 \mathrm{~cm} / \mathrm{ns}$

OPTICAL DATA

Screen	metal-backed phosphor
type	GH
colour	green
\quad persistence	medium short
Useful screen area	$\geqslant 102 \mathrm{~mm} \times 82 \mathrm{~mm} ;$ note 1 (last page)
Useful scan area	$\geqslant 100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Internal graticule	type $123 ;$ see Fig. 5

HEATING

Indirect by a.c. or d.c.*
Heater voltage
Heater current
$V_{f} \quad 6,3 \vee$

Heating time to attain 10% of the cathode current at equilibrium conditions

[^43]
MECHANICAL DATA

Dimensions and connections (see also outline drawings)
Overall length (socket included)
Faceplate dimensions

Net mass

Base
$\leqslant 419 \mathrm{~mm}$
$118 \pm 1,0 \mathrm{~mm} \times 98 \pm 1,0 \mathrm{~mm}$
approx. 1,2 kg

12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 5) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)
Side pin protection band
Socket with solder tags
Socket with printed-wiring pins
Side contact connector for $\phi 0,65 \mathrm{~mm}$ pin (2 required)
Side contact connector for $\phi 0,45 \mathrm{~mm}$ pin (4 required)
Final accelerator contact connector

Mu-metal shield

FOCUSING
DEFLECTION
x-plates
y-platès
Characteristic impedance of helix system
Bandwidth of helix system (-3 dB)
supplied with tube
332202710200
type 55594
type 55595
type 55596 (cat. no. 9390299 90002)
to be established
connection to final accelerator electrode is made via an EHT cable attached to the tube
to be established
electrostatic
double electrostatic
symmetrical
symmetrical (helix system)
$(2 \times 165 \Omega) \pm 3 \%$
approx. 1000 MHz

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
x_{1} to x_{2}
x_{1} to y_{1}
x_{2} to y_{1}
x_{1} to y_{2}
x_{2} to y_{2}
Control grid to all other elements
Cathode to all other elements
Focusing electrode to all other elements

$C_{x 1(x 2)}$	$3,2 \mathrm{pF}$
$C_{x 2(x 1)}$	$3,2 \mathrm{pF}$
$C_{x 1 \times 2}$	$3,0 \mathrm{pF}$
$C_{x 1 y 1}$	$<0,2 \mathrm{pF}$
$C_{x 2 \mathrm{y} 1}$	$<0,2 \mathrm{pF}$
$C_{x 1 y 2}$	$<0,2 \mathrm{pF}$
$C_{x 2 y 2}$	$<0,2 \mathrm{pF}$
$C_{g 1}$	$6,2 \mathrm{pF}$
C_{k}	$3,8 \mathrm{pF}$
C_{g}	$7,6 \mathrm{pF}$

DIMENSIONS AND CONNECTIONS

Dimensions in mm

Fig. 2 Electrode configuration.

Fig. 1 Outlines.
(1) Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $122 \times 102 \mathrm{~mm}$ (diagonal 153 mm).
(2) The coil is fixed to the envelope with resin and adhesive tape.
(3) The length of the connecting leads of the rotation coil is min .350 mm .
(4) Reference points on faceplate for graticule alignment (see Fig. 5).
(5) The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the indicated position.
(6) The length of the E.H.T. cable is min. 900 mm .

Fig. 4 Side-contact arrangement, bottom view.

Fig. 5 Front view of tube with internal graticule, type 123 (final accelerator contact at left-hand side). The faceplate reference points are used for aligning the graticule with the faceplate.

Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$; colour: red.

TYPICAL OPERATION (voltages with respect to cathode)*

Conditions

Final accelerator voltage
First accelerator voltage
Second accelerator voltage
Focusing voltage
Astigmatism control voltage
Shield voltage for optimum geometry
Deviation of mean y-plate potential from $\mathrm{V}_{\mathrm{g} 2-1}$
Cut-off voltage for visual extinction of focused spot

$V_{g 7}(\ell)$	24 kV	
$V_{g 2}$	3 kV	
$V_{g 2-1}$	3 kV	
$V_{g 3}$	700 to 1100 V	Fig. 6
$V_{g 4}$	3 kV	note 2
$V_{g 5}$	3 kV	note 3
V_{y}	max. $0,5 \mathrm{~V}$	note 4
$V_{g 1}$	80 to 130 V	

Outer conductive coating (m) and mu-metal shield to be earthed.
Grid $g 5$ has two connections; the socket connection to be used for applying shield voltage $V_{g 5}$, the side pin connection to be used for proper earthing of g5 via a spark gap.

Performance

Horizontal deflection coefficient

M_{X}

Vertical deflection coefficient

Deviation of deflection linearity
Geometry distortion
Eccentricity of undeflected spot with respect to internal graticule in horizontal direction
$\leqslant \quad 4 \mathrm{~mm}$
in vertical direction
Angle between x - and y-traces
Angle between x-trace and x-axis of internal graticule
Luminance reduction with respect to screen centre
x-axis, at a scan of $\pm 50 \mathrm{~mm}$ y-axis, at a scan of $\pm 40 \mathrm{~mm}$ any corner
Grid drive for $10 \mu \mathrm{~A}$ screen current
Line width
V_{d} approx. 20 V

Photographic writing speed $\left(\mathrm{V}_{\mathrm{d}}=75 \mathrm{~V}\right.$;
Polaroid 612 film; GH phosphor;
$F=1,2$; magnification 0,5$) \quad$ p.w.s. \min. $3,0 \mathrm{~cm} / \mathrm{ns}$

[^44]LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage
First accelerator voltage
Focusing electrode voltage
Control grid voltage
Cathode to heater voltage positive negative

Heater voltage

Voltage between $\mathrm{g} 4, \mathrm{~g} 5$ and any deflection plate
Grid drive, averaged over 1 ms
Screen dissipation
Control grid circuit resistance

$V_{\mathrm{g} 7}(\ell)$	max.	26 kV Fig. 7
$V_{\mathrm{g} 2}$	max.	$3,4 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 3}$	max.	$3,4 \mathrm{kV}$
$-\mathrm{V}_{\mathrm{g} 1}$	max. min.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
$V_{k f}$	max.	125 V
$-\mathrm{V}_{\mathrm{kf}}$	max.	125 V
V_{f}	max. min.	$\begin{aligned} & 6,6 \mathrm{~V} \\ & 6,0 \mathrm{~V} \end{aligned}$
$\Delta V_{g 4, g 5, x, y}$	max.	500 V
V_{d}	max.	30 V
W_{l}	max.	$8 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathrm{R}_{\mathrm{g} 1}$	max.	$1 \mathrm{M} \Omega$

Fig. 6 Focusing voltage ($\mathrm{V}_{\mathrm{g} 3}$) as a function of grid drive voltage (V_{d}); typical curve.

Fig. $70,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curve, measured according to EIA standard RS-502 (formerly TEPAC104).

NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $102 \mathrm{~mm} \times 82 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 5).
2. The tube features internal magnetic correction for orthogonality between x - and y-traces, spot shaping (astigmatism) and eccentricity calibration. Correction is obtained at $\mathrm{V}_{\mathrm{g} 2-1, \mathrm{~g} 4}=2500$ to 3300 V ; optimum at $\mathrm{V}_{\mathrm{g} 2-1, \mathrm{~g} 4}=3000 \mathrm{~V}$.
3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case $\mathrm{V}_{\mathrm{g} 5}$ must be made equal to mean x-potential, and a range of 0 to -50 V with respect to mean y-potential will be required on g 4 for astigmatism correction. The circuit resistance for $\mathrm{V}_{\mathrm{g} 4}$ should be $\leqslant 10 \mathrm{k} \Omega$.
4. Deviation of mean y-plate potential with respect to $\mathrm{V}_{\mathrm{g} 2-1}$ will introduce spot distortion.
5. Deviation of linearity is defined as the proportional deviation of the deflection coefficient over any division on the x-axis and y-axis from the average values over the central eight (horizontal) and central six (vertical) divisions respectively.
6. A graticule consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 78 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
7. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a resistance of $185 \pm 20 \Omega$ at $20^{\circ} \mathrm{C}$, which increases by approx. $0,4 \% / \mathrm{K}$ for rising temperature. Approx. 6,7 mA causes 10 trace rotation.
8. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.

INSTRUMENT CATHODE-RAY TUBE

18 cm diagonal, rectangular flat faced oscilloscope tube with mesh and metal backed screen.

	QUICK REFERENCE DATA		
Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7(\ell)}$	10	kV
Display area		120×100	$\mathrm{~mm}^{2}$
Deflection factor, horizontal	M_{X}	15,5	$\mathrm{~V} / \mathrm{cm}$
	vertical	M_{y}	4,5

SCREEN : Metal backed phosphor

	colour	persistence
D18-120GH	green	medium short

Useful screen area
Useful scan at $\mathrm{V}_{\mathrm{g} 7(\ell)} / \mathrm{V}_{\mathrm{g}_{2}} \mathrm{~g}_{4}=5$
horizontal
vertical
Spot eccentricity in horizontal direction
in vertical direction
HEATING: Indirect by a.c. or d.c.; parallel supply
Heater voltage
Heater current
min. $120 \times 100 \mathrm{~mm}^{2}$
min. $\quad 120 \mathrm{~mm}$
min. $\quad 100 \mathrm{~mm}$
$\begin{array}{ll} \pm 8 & \mathrm{~mm} \\ \pm & \mathrm{mm}\end{array}$

| V_{f} | $6,3 \mathrm{~V}$ |
| :--- | :--- | :--- |
| I_{f} | 300 mA |

MECHANICAL DATA

Dimensions in mm

* The centre of the contact is located within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing

Overall length (socket included)
Face dimensions
Net weight
Base

Accessories

Socket (supplied with tube)
Final accelerator contact connector
Mu-metal shield

max.	454	mm
max.	146×121	$\mathrm{~mm}^{2}$
approx.	1300	g

14 pin all glass
type 55566
type 55563A
type 55584

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}$	6,5	pF
$\mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}$	6,5	pF
$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}$	5	pF
$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}$	5	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	2,2	pF
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$	1,7	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5,5	pF
C_{k}	4,5	pF

FOCUSING electrostatic
DEFLECTION double electrostatic
x plates
y plates
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will in tercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

```
90 \pm10
```

Angle between x trace and the horizontal axis of the face max. $5^{\circ} 1$)

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
$\begin{array}{cllll}\text { Line width, at screen centre } & \text { l.w. } & 0,50 & \mathrm{~mm} \\ \text { in corner area } & 1 . \mathrm{w} . & \text { approx. } & 0,60 & \mathrm{~mm}\end{array}$

[^45]
TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Interplate shield voltage
Geometry control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage
Control grid voltage for visual extinction of focused spot Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection factor, horizontal
vertical
Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal vertical

$\mathrm{V}_{\mathrm{g7}}(\ell)$		10000	V
$\mathrm{V}_{\mathrm{g} 6}$		2000	V
$\Delta \mathrm{V}_{\mathrm{g} 6}$		± 20	V ${ }^{2}$)
V_{55}		2000	V ${ }^{3}$)
$\mathrm{V}_{\mathrm{g} 3}$		350 to 500	V
$\mathrm{V}_{\mathrm{g} 2}{ }^{\prime} \mathrm{g}_{4}$		2000	V
$\Delta V_{g_{2}}, \mathrm{~g}_{4}$		± 50	V ${ }^{4}$)
$\mathrm{V}_{\mathrm{g} 1}$		-25 to -80	V
	approx	12	V
$M_{\text {x }}$	av.	15,5	V / cm
	max.	17	V / cm
M_{y}	av.	4,5	V / cm
	max.		V / cm
	max.	2	\% ${ }^{5}$)
	See not		
	min.	120	mm
	min.	100	mm

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage
Interplate shield voltage and geometry control electrode voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator and astigmatism control electrode voltage

Control grid voltage
Cathode to heater voltage
Voltage between astigmatism control electrode and any deflection plate

Grid drive, average
Screen dissipation
Ratio $\mathrm{V}_{\mathrm{g}}{ }^{(\ell)} / \mathrm{V}_{\mathrm{g} 2}, \mathrm{~g}_{4}$
Control grid circuit resistance

$\mathrm{V}_{\mathrm{g}}^{7}(\mathrm{\ell})$	max. min.	$\begin{array}{r} 11000 \\ 9000 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{g} 6}$	max.	2200	V
$\mathrm{V}_{\mathrm{g}}{ }^{6}$	max.	2200	V
$\mathrm{V}_{\mathrm{g} 3}$	max.	2200	V
	max.	2200	V
$\mathrm{g}_{2}, \mathrm{~g}_{4}$	min.	1350	V
$-\mathrm{V}_{1}$	max.	200	V
g_{1}	min.	0	V
V_{kf}	max.	125	V
$-\mathrm{V}_{\mathrm{kf}}$	min.	125	V
$\mathrm{V}_{\mathrm{g} 4 / \mathrm{x}}$	max.	500	V
$\mathrm{V}_{\mathrm{g} 4} / \mathrm{y}$	max.	500	V
	max.	20	V
W_{ℓ}	max.	8	$\mathrm{mW} / \mathrm{cm}^{2}$
$\mathrm{V}_{\mathrm{g} 7}(\ell) / \mathrm{V}_{\mathrm{g} 2}, \mathrm{~g}_{4}$	max.	6,7	
Rg 1	max.	1	M 2

[^46]
NOTES

1) In order to align the x-trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will have 50 amp. furns for the indicated max. rotation of 5° and should be positioned as indicated in the drawing.
2) This tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{\mathrm{g}_{7}} / V_{\mathrm{g}_{9}, g_{4}}=5$.
 with reipect to the mean x-plate potential).
A negative controi voltage will cause some pincushion distortion andiess background light, a positive control voltage will give some barrel distortion and a slight increaso of background light.
3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x - and y-plate potentials should be equal for optimum spot quality.
4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range,
5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a dellection of 25% of the useful scan by more than the indicated value.
6) A graticule, consisting of concentric rectangles of $115 \mathrm{~mm} \times 95 \mathrm{~mm}$ and $112,2 \mathrm{~mm} \times 93.0 \mathrm{~mm}$ is aligned with the electrical x -axis of the tube, with optimum correction potentials applied, a raster will fall between these rectangles.

INSTUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced, split-beam oscilloscope tube with mesin and metal-backed screen.

QUICK REFERENCE DATA						
Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7(\ell)}$	10	kV			
Display area		100×80	$\mathrm{~mm}^{2}$			
Deflection coefficient, horizontal	M_{x}	13,5	$\mathrm{~V} / \mathrm{cm}$			
	vertical	M_{y}	9			
	$\mathrm{M}_{\mathrm{y}}{ }^{\prime \prime}$	9	$\mathrm{~V} / \mathrm{cm}$			
		100	$\%$			

SCREEN : Metal-backed phosphor

	Colour	Persistence
E14-100GH	green	medium short

Useful screen dimensions	min.	100×80	$\mathrm{~mm}^{2}$
Useful scan at $\mathrm{V}_{\mathrm{g} 7(\ell)} / \mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}=6,7$			
horizontal	min.	100	mm
vertical (each system)	min.	80	mm
overlap		100	$\%$
Spot eccentricity in horizontal direction	max.	7	mm
in vertical direction	\max.	10	mm

HEATING : indirect by A. C. or D. C. ; parallel supply
Heater voltage
Heater current

V_{f}	6,3	V
I_{f}	300	mA

(1) The external conductive coating should be earthed.
(2) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .

* The centre of the contact is located within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

MECHANICAL DATA (continued)
Dimensions and connections
See also outline drawing.
Overall length (socket included)
Face dimensions

\max.	$425 \mathrm{~mm}^{2}$
\max.	$120 \times 100 \mathrm{~mm}^{2}$

Net weight
Base
14-pin all glass
Accessories
Socket (supplied with tube) \quad type 55566
Final accelerator contact connector type 55563A

FOCUSING Electrostatic
DEFLECTION Double electrostatic
x-plates symmetrical
y-plates symmetrical
If the full deflection capacity of the tube is used, part of the beam is intercepted by the deflection plates; hence a low-impedance deflection plate drive is desirable.

LINE WIDTH

Measured with the shrinking raster method under typical operating conditions, and adjusted for optimum spot size at a beam current of 5μ A per system.

Line width at screen centre
l. w approx. $0,35 \mathrm{~mm}$

CAPACITANCES

x_{1} to all other elements except x_{2}	$\mathrm{C}_{\mathrm{X}_{1}}\left(\mathrm{x}_{2}\right)$	8 pF
x_{2} to all other elements except x_{1}	$\mathrm{C}_{\mathrm{X} 2}\left(\mathrm{x}_{1}\right)$	8 pF
$\mathrm{y}_{1}{ }^{\prime}$ to all other elements except $\mathrm{y}_{2}{ }^{\prime}$	$\left.\mathrm{C}_{\mathrm{y} 11^{\prime}(\mathrm{y} 2}{ }^{\prime}\right)$	4 pF
$\mathrm{y}_{2}{ }^{\prime}$ to all other elements except $\mathrm{y}_{1}{ }^{\prime}$	$\mathrm{C}_{\mathrm{y} 2}{ }^{\prime}\left(\mathrm{y}_{1}{ }^{\prime}\right)$	$5,5 \mathrm{pF}$
$\mathrm{y}_{1}{ }^{\prime \prime}$ to all other elements except $y_{2}{ }^{\prime \prime}$	$\mathrm{C}_{\mathrm{y}_{1} "\left(\mathrm{y}_{2}{ }^{\prime \prime}\right)}$	5 pF
y_{2} " to all other elements except y_{1} "	$\mathrm{C}_{\mathrm{y}_{2}}{ }^{\prime \prime}\left(\mathrm{y}_{1}{ }^{\prime \prime}\right)$	4 pF
External conductive coating to all other elements	C_{m}	800 pF

CAPACITANCES (continued)

x_{1} to x_{2}	$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	3 pF
$\mathrm{y}_{1}{ }^{\prime}$ to $\mathrm{y}_{2}{ }^{\prime}$	$\mathrm{C}_{\mathrm{y}_{1}{ }^{\prime} \mathrm{y}_{2}{ }^{\prime}}$	1 pF
$\mathrm{y}_{1}{ }^{\prime \prime}$ to $\mathrm{y}_{2}{ }^{\prime \prime}$	$\mathrm{C}_{\mathrm{y}_{1}{ }^{\prime \prime} \mathrm{y}_{2}{ }^{\prime \prime}}$	$\mathrm{C}_{\mathrm{C}_{1}}$
Control grid to all other elements	$\mathrm{C}_{\mathrm{kf} / \mathrm{R}}$	6 pF
Cathode and heater to all other elements		3 pF

NOTES

${ }^{1}$) This tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{\mathrm{g} 7(\ell)} / \mathrm{V}_{\mathrm{g} 2, \mathrm{~g}_{4}}=6,7$.
The geometry coutrol voltage V_{g} should be adjusted within the indicated range (values with respect to the mean x -plate potential).
${ }^{2}$) A negative control voltage on g_{5} (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light. By varying the two voltages V_{5} and V_{6} it is possible to find the best compromise between background light and raster distortion.
${ }^{3}$) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{4}$) The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5) A graticule, consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and $96 \mathrm{~mm} \times$ 77 mm is aligned with the electrical x -axis of the tube. With optimum correction potentials applied a raster of each system will fall between these rectangles.

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
$\mathrm{V}_{\mathrm{g} 7}(\ell)$
$\mathrm{V}_{\mathrm{g} 6}$
$\mathrm{~V}_{\mathrm{g} 5}$
$\Delta \mathrm{~V}_{\mathrm{g}_{5}}$
$\mathrm{~V}_{\mathrm{g} 3}$
$\mathrm{~V}_{\mathrm{g}_{2}}, \mathrm{~g}_{4}$
$\Delta \mathrm{~V}_{2}, \mathrm{~g}_{4}$

Astigmatism control voltage
Control grid voltage for extinction of focused spot

Deflection coefficient, horizontal
vertical
Deviation of deflection li
Geometry distortion
Useful scan, horizontal
vertical

Overlap of the two systems, horizontal vertical
LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage
Geometry control electrode voltage
Interplate shield voltage
Focusing electrode voltage
First accelerator and astigmatism control electrode voltage

Control grid voltage
Voltage between astigmatism control electrode and any deflection plate
Grid drive average
Screen dissipation
Ratio $\mathrm{Vg}_{7}(\ell) / \mathrm{Vg}_{2}, \mathrm{~g}_{4}$
Control grid circuit resistance
$\mathrm{V}_{\mathrm{g} 7}(\ell)$
$\mathrm{V}_{\mathrm{g} 6}$
V_{5}
$\mathrm{V}_{\mathrm{g} 3}$
$\mathrm{V}_{\mathrm{g}}, \mathrm{g}_{4}$
$-\mathrm{V}_{1}$
$V_{g 4} / x$
$V_{g 4} / \mathrm{y}$
W_{ℓ}
$\mathrm{Vg} 7(\ell) / \mathrm{V}_{\mathrm{g} 2}, \mathrm{~g} 4$
$\mathrm{R}_{\mathrm{g} 1}$

10	kV	
1500 ± 100	V	${ }^{1}$)
1500	V	
0 to -15	V	${ }^{2}$)
350 to 650	V	
1500	V	
± 75	V	$\left.3^{3}\right)$

$\left.\begin{array}{lll}-20 \text { to }-70 & \mathrm{~V} \\ & 12,5 & \mathrm{~V} / \mathrm{cm} \\ < & 14 & \mathrm{~V} / \mathrm{cm} \\ & 9 & \mathrm{~V} / \mathrm{cm} \\ < & 10 & \mathrm{~V} / \mathrm{cm} \\ & 9 & \mathrm{~V} / \mathrm{cm} \\ & & \\ < & 10 & \mathrm{~V} / \mathrm{cm} \\ < & 2 & \%\end{array} 4^{4}\right)$
see note ${ }^{5}$)
$>100 \mathrm{~mm}$
$>80 \mathrm{~mm}$
100 \%
100 \%

\max.	12	kV
\min.	9	kV
\max.	2200	V
\max.	2200	V
\max.	2200	V
\max.	2200	V
\min.	1350	V
\max.	200	V
\min.	0	V
\max.	500	V
\max.	500	V
\max.	30	V
\max.	8	$\mathrm{~mW} / \mathrm{cm}^{2}$
\max.	6,7	
\max.	1	$\mathrm{M} \Omega$

E14-100GH

CORRECTION COILS

General

The E14-100GH is provided with a pair of coils for image rotation which enable the alignment of the x-trace with the x-lines of the graticule.

The image rotating coils are wound concentrically around the tube neck. Under typical operating conditions 50 A turns are required for the maximum rotation of 5°. Both coils have 850 turns. This means that a current of max. 30 mA per coil is required which can be obtained by using a 24 V supply when the coils are connected in series, or a 12 V supply when they are in parallel.

Connecting the coils

The coils have been connected to the 4 soldering tags as follows:

BEAM CENTRING MAGNET

Inherent to the split-beam system a slight difference between the two beam currents can occur after splitting, resulting in different intensities of the two traces. In order to equalize the beam currents, a beam centring magnet should be mounted near the base of the gun and adjusted for the required field direction and field strength.

INSTRUMENT CATHODE-RAY TUBE

The E14-101GH is equivalent to the E14-100GH but has no rotating coil.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat-faced direct-view storage tube with variable persistence and internal graticule, intended for oscilloscope applications.

QUICK REFERENCE DATA

Final accelerator voltage	$V_{g 10}(\mathrm{l})$	8,5	kV
Display area (10 $\times 8$ divisions of 9 mm$)$		90×72	$\mathrm{~mm}^{2}$
Deflection coefficient	M_{x}	9,5	$\mathrm{~V} / \mathrm{div}$
horizontal	M_{y}	4,1	$\mathrm{~V} / \mathrm{div}$
\quad vertical		2,5	$\mathrm{div} / \mu \mathrm{s}$

OPTICAL DATA

Screen type persistence, non-store mode persistence, store mode	metal backed phosphor GH, colour green medium-short variable		
Useful screen dimensions	min.	90×72	mm
Useful scan horizontal vertical	min. min.	$\begin{aligned} & 90 \\ & 72 \end{aligned}$	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$
Spot eccentricity in horizontal and vertical directions	max.	6	mm

The scanned raster can be shifted and aligned with the internal graticule by means of correction coils fitted around the tube by the manufacturer.

heating

Writing section

Indirect by a.c. or d.c.; parallel supply

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	300	mA

Viewing section

Indirect by d.c.; parallel supply

Heater voltage	$\mathrm{V}_{f^{\prime}}$	6,3	V
Heater current	I^{\prime}		300
Heater voltage	$\mathrm{V}_{f^{\prime \prime}}$	mA	
Heater"current	$\mathrm{I}_{f^{\prime \prime}}$	6,3	V
		300	mA

MECHANICAL DATA

Mounting position any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube. The tags near the screen should not be subjected to mechanical stress.

Net mass

Base

Dimensions and connections
See also outline drawing
Overall length (socket included)
Face dimensions

Accessories

Socket (supplied with tube)
Side contact connector (14 required)
Small ball contact connector (3 required)

FOCUSING

DEFLECTION
x-plates
y-plates
Angle between x and y-traces
Angle between x-trace and x-axis of the internal graticule
approx. 1,1 kg
14 pin, all glass
max. 445 mm
\max. $100 \times 120 \mathrm{~mm}$
type 55566
type 55561
type 402210221590
electrostatic
double electrostatic
symmetrical
symmetrical
90°

See also Correction coils

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
g_{1} to all other elements
$\mathrm{g} 1^{\prime}$ to all other elements
g_{1} " to all other elements
k to all other elements
k^{\prime} to all other elements
$k^{\prime \prime}$ to all other elements
g_{7} to all other elements
gg to all other elements

$\mathrm{C}_{x 1}(x 2)$	6,5	pF
$\mathrm{C}_{x 2(x 1)}$	6,5	pF
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	3	pF
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	3	pF
$\mathrm{C}_{x 1 \times 2}$	2,5	pF
$\mathrm{C}_{y 1 \mathrm{y} 2}$	2	pF
$\mathrm{C}_{\mathrm{g} 1}$	5,5	pF
$\mathrm{C}_{\mathrm{g} 1^{\prime}}$	5,5	pF
$\mathrm{C}_{\mathrm{g} 1^{\prime \prime}}$	5,5	pF
C_{k}	4,5	pF
$\mathrm{C}_{\mathrm{k}^{\prime}}$	5	pF
$\mathrm{C}_{\mathrm{k}^{\prime \prime}}$	5	pF
$\mathrm{C}_{\mathrm{g} 7}$	40	pF
$\mathrm{C}_{\mathrm{g} 9}$	75	pF

Fig. 1 Outlines.
(1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 3 mm .
(2) Minimum length of cable: 420 mm .

Fig. 2 Bottom view and side-contact arrangement.

Fig. 4 Electrode configuration.

detail of side contact
Fig. 6 Detail of side contact

Fig. 3 Top view.

Fig. 5 Pin arrangement; bottom view.

Fig. 7 Internal graticule colour of graticule: brown-black;
line width $: 0,15 \mathrm{~mm}$;
dot diameter $: 0,3 \mathrm{~mm}$.

TYPICAL OPERATION (for notes see page 284)

Conditions

Writing section (voltages with respect to writing gun cathode k)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10}(\mathrm{l})$	8500	V	note 1
Geometry control electrode voltage	$\mathrm{V}_{\mathrm{g} 6}$	1500 ± 100	V	
Deflection plate shield voltage	$\mathrm{V}_{\mathrm{g} 5}$	1500	V	note 2
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g} 4}$	1500 ± 50	V	
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$	400 to 600	V	
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	1500	V	
Control grid voltage for visual extinction	$\mathrm{V}_{\mathrm{g} 1}$	-40 to -80	V	

Viewing section (voltages with respect to viewing gun cathodes k^{\prime} and $\mathrm{k}^{\prime \prime}$)
Final accelerator voltage
$\mathrm{V}_{\mathrm{g} 10}(\ell) \quad 7050$
Backing electrode voltage, storage operation non-storage operation
Collector voltage
Collimator voltage
First accelerator voltage
Control grid voltage for cut-off
Cathode current (each viewing gun)

$\mathrm{V}_{\mathrm{g} 9}$	0 to 5	V
$\mathrm{~V}_{\mathrm{g} 9}$	-35	V
$\mathrm{~V}_{\mathrm{g} 8}$	150	V
$\mathrm{~V}_{\mathrm{g} 7}$	30 to 120	V
$\mathrm{~V}_{\mathrm{g} 2^{\prime}}, \mathrm{V}_{\mathrm{g} 2^{\prime \prime}}$	50	V
$\mathrm{~V}_{\mathrm{g} 1^{\prime}}, \mathrm{V}_{\mathrm{g} 1^{\prime \prime}}$	-30 to -70	V
$\mathrm{I}_{\mathrm{k}^{\prime}, \mathrm{I}_{\mathrm{k}^{\prime \prime}}}$	0,4	mA

Performance

Useful scan
horizontal
vertical
Deflection coefficient
horizontal M_{X}
vertical
Line width at the centre of the screen
Writing speed in store mode
Storage time
Deviation of linearity of deflection
Geometry distortion
Grid drive for $10 \mu \mathrm{~A}$ beam current
min. 90 mm
min. 72 mm
$\begin{aligned} & \text { M }\end{aligned} \quad 9,5 \quad$ V/div
max. 10,5 V/div
4,1 V/div
max. $4,4 \quad \mathrm{~V} / \mathrm{div}$
I.w.
greater than $\mathbf{2 5 0} \mathrm{div} / \mathrm{ms}$ note 6 greater than $1,5 \quad \min \quad$ note 7 max. 2% note 8 see note 9 $\approx 25 \quad \mathrm{~V}$

LIMITING VALUES (Absolute maximum rating system)
Writing section (voltages with respect to writing gun cathode k)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10}(\ell)$	max. min.	$\begin{aligned} & 9500 \\ & 7000 \end{aligned}$	v
Geometry control electrode voltage	$V_{\mathrm{g} 6}$	max.	2100	V
Deflection plate shield voltage	$\mathrm{V}_{\mathrm{g} 5}$	max.	2000	V
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g} 4}$	max. min.	$\begin{aligned} & 2100 \\ & 1200 \end{aligned}$	v
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	1000	V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	max. min.	$\begin{aligned} & 2000 \\ & 1250 \end{aligned}$	v
Control grid voltage positive negative	$\begin{aligned} & \mathrm{V}_{\mathrm{g} 1} \\ & -\mathrm{V}_{\mathrm{g} 1} \end{aligned}$	max. max.	0 200	V
Cathode to heater voltage positive negative	$\begin{aligned} & V_{k f} \\ & -V_{k f} \end{aligned}$	max. max.	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	V
Voltage between astigmatism control electrode and any deflection plate	$\begin{aligned} & V_{g 4 / x} \\ & V_{g 4 / y} \end{aligned}$	max. max.	500 500	V
Average grid drive		max.	30	V

Viewing section (voltages with respect to viewing gun cathodes k^{\prime} and $k^{\prime \prime}$ unless otherwise specified)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10^{(\ell)}}$	max. \min.	$\begin{aligned} & 8000 \\ & 5500 \end{aligned}$
Backing electrode voltage, storage operation	$\mathrm{V}_{\mathrm{g} 9}$	max. \min.	5 0
non-storage operation	$-V_{\mathrm{g}} 9$	max. min.	50 25
Collector voltage	$\mathrm{V}_{\mathrm{g} 8}$	max. min.	$\begin{aligned} & 180 \\ & 120 \end{aligned}$
Collimator voltage	$V_{\mathrm{g} 7}$	max. min.	200
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}{ }^{\prime}, \mathrm{V}_{\mathrm{g} 2}{ }^{\prime \prime}$	max. min.	60 40
Cathode to heater voltage positive negative	$\begin{aligned} & V_{k^{\prime} f^{\prime},}, V_{k^{\prime \prime} f^{\prime \prime}} \\ & -V_{k^{\prime}} f^{\prime},-V_{k^{\prime} \prime^{\prime}} f^{\prime \prime} \end{aligned}$	max. max.	$\begin{aligned} & 125 \\ & 125 \end{aligned}$
Control grid voltage positive negative	$\begin{aligned} & V_{g 1^{\prime}}, V_{g 1^{\prime \prime}} \\ & -V_{g 1^{\prime}},-V_{g 1^{\prime \prime}} \end{aligned}$	max. \max.	0 200

NOTES

1. These values are valid at cut-off of both flood guns and the writing gun. The H.T. unit must be capable of supplying $0,5 \mathrm{~mA}$. To protect the tube against excessive surge current during erasure, an adequately dimensioned RC-network must be connected in series with the screen terminal lead (Fig. 8).

Fig. 8.
2. This voltage should be equal to the mean y-plate potential. The mean x and y-plate potentials should be equal for optimum spot quality.
3. The collimator electrode voltage should be adjusted for optimum uniformity of background illumination.
4. The voltage $\mathrm{V}_{\mathrm{g} 2}{ }^{\prime}, \mathrm{V}_{\mathrm{g} 2}{ }^{\prime \prime}$ should be equal to the mean x-plate potential.
5. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{b}=10 \mu \mathrm{~A}$ (measured against x-plates).
6. The writing speed is defined as the maximum speed at which a written trace is just visible, starting from a background which is just black. The indicated value is guaranteed for the total graticule area, with the exception of maximum 5% in each corner. The writing speed can be increased to approx. $2,5 \mathrm{div} / \mu \mathrm{s}$ if some background is tolerated.
7. The storage time is defined as the time required for the brightness of the unwritten background to rise from just zero brightness (viewing-beam cut-off) to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased.
8. The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
9. A graticule, consisting of concentric rectangles of $88 \mathrm{~mm} \times 70 \mathrm{~mm}$ and $86 \mathrm{~mm} \times 68,5 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles.

CORRECTION COILS

General

The L14-111GH/55 is provided with a coil unit (see Fig. 9) consisting of:

- a pair of coils L3 and L4 which enable the angle between the x and y-traces at the centre of the screen to the made exactly 90° (orthogonality correction);
- a pair of coils L1 and L2 for image rotation which enable the alignment of the x-trace with the x-lines of the graticule.

Fig. 9 Diagram of coil unit.
Orthogonality (coils L3 and L4)
The current required under typical operating conditions without a mu-metal shield being used is max. 20 mA for complete correction of orthogonality. It will be 30% to 50% lower with shield, depending on the shield diameter. The resistance of the coil is approx. 225Ω.

Image rotation (coils L1 and L2)

The image rotation coils are wound concentrically around the tube neck. Under typical operating conditions 22 ampere-turns are required for maximum rotation of 5°. Both coils have 850 turns. This means that a current of max. $12,5 \mathrm{~mA}$ per coil is required which can be obtained by using a 12 V supply when the coils are connected in series or a 6 V supply when they are in parallel.

Connecting the coils

The coils have been connected to 8 solder tags according to Fig. 10.

Fig. 10 Bottom view.
With L3 and L4 connected in series according to Fig. 11 a current in the direction indicated will produce a clockwise rotation of the vertical trace and an anti-clockwise rotation of the horizontal trace.

Fig. 11.

OPERATING NOTES

Modes of operation

Store mode
a. Dynamic erasure (variable persistence)

Dynamic erasure can be achïeved by applying erasing pulses of positive polarity to the backing electrode. The pulse amplitude required is approximately $9 \mathrm{~V}(<15 \mathrm{~V})$ and the persistence of a stored display can be controlled by varying the duty factor of these pulses.
b. Static erasure.

If no dynamic erasing pulses are applied, the storage time is limited by the potential shift of the storage layer due to landing of positive ions. In order to erase a stored display, the backing electrode should first be connected to the collector electrode voltage and then returned to its original potential for about 100 ms ; after that, an erasing pulse of positive polarity and a duration of not less than 300 ms should be applied. For the adjustment of the amplitude of this pulse see Procedure of adjustment.

Non-store mode

For non-store operation, it is sufficient to make the backing electrode about 35 V negative with respect to the viewing gun cathodes. The viewing guns should not be switched off in this mode of 1)peration since slight variations in raster geometry and deflection sensitivity might otherwise be caused. Care should be taken, especially when switching from store mode to non-store mode, that excessive writing beam current is avoided, as otherwise the storage layer may be damaged.

Procedure of adjustment

a. Adjust the cathode current of each viewing gun to $0,4 \mathrm{~mA}$ by means of its control grid voltage.
b. Adjustment of the erasing pulse amplitude (static erasure)

The pulse amplitude should be just sufficient to suppress any background illumination at the centre of the display area (this adjustment should be done under low ambient light conditions). Data on storage time and maximum writing speed are based on erasure to "just black". A larger pulse amplitude (erasure to "blacker than black") yields a longer storage time at the expense of maximum writing speed. On the other hand, writing speed can be increased if some background illumination is tolerated. To erase to "just black" the amplitude of this pulse is approximately 9 V .
c. Adjustment of the collimator voltage

With dynamic erasing pulses applied and a persistence control setting that yields a convenient background illumination intensity, the collimator voltage is adjusted for optimum background uniformity. This voltage will be approximately 80 V with respect to the viewing gun cathode potential. If this voltage is too high or too low, there is a decrease of intensity at the four corners or at the centres of the vertical edges of the display area respectively. For a good erasure of the display, the collimator voltage should be as low as possible.

INSTRUMENT CATHODE-RAY TUBE

14 cm -diagonal rectangular flat-faced direct-view storage tube with split-beam writing gun, variable persistence and internal graticule, intended for oscilloscope applications.

QUICK REFERENCE DATA

Final accelerator voltage	$V_{\mathrm{g} 10}(\ell)$	$8,5 \mathrm{kV}$
Useful scan (10×8 divisions of 9 mm)		$90 \times 72 \mathrm{~mm}$
Deflection coefficient		
horizontal	M_{x}	9,5 V/div
vertical, system 1	My^{\prime}	8,5 V/div
vertical, system 2	$\mathrm{My}^{\prime \prime}$	8,5 V/div
Overlap of the systems		100 \%
Writing speed		1,25 div/ $/ \mathrm{s}$

OPTICAL DATA

Screen type persistence, non-store mode persistence, store mode	metal-backed phosphor GH, colour green medium short variable	
Useful screen dimensions	min.	$90 \times 72 \mathrm{~mm}$
Useful scan horizontal vertical (each system) overlap	min. min.	$\begin{array}{r} 90 \mathrm{~mm} \\ 72 \mathrm{~mm} \\ 100 \% \end{array}$
Spot eccentricity in horizontal direction in vertical direction	max. max.	6 mm 9 mm

The scanned raster can be aligned with the internal graticule by means of correction coils fitted around the tube by the manufacturer.

HEATING

Writing section

Indirect by a.c. or d.c.; parallel supply
Heater voltage
$\begin{array}{ll}V_{f} & 6,3 \mathrm{~V} \\ \mathrm{I}_{\mathrm{f}} & 300 \mathrm{~mA}\end{array}$
Viewing section
Indirect by d.c.; parallel supply
Heater voltage
Heater current
Heater voltage
Heater current

$V_{f^{\prime}}$	$6,3 \mathrm{~V}$
$I_{f^{\prime}}$	300 mA
$V_{f^{\prime \prime}}$	$6,3 \mathrm{~V}$
$I_{f}^{\prime \prime}$	300 mA

MECHANICAL DATA

Mounting position

any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube. The tags near the screen should not be subjected to mechanical stress.

Net mass	approx. $\quad 1,1 \mathrm{~kg}$
Base	14 pin, all glass
Dimensions and connections	
See also outline drawing	
Overall length (socket included)	max. 445 mm
Face dimensions	max. $100 \times 120 \mathrm{~mm}$
Accessories	
Socket (supplied with tube)	type 55566
Side contact connector (16 required)	type 55561
Small ball contact connector (3 required)	type 402210221590
FOCUSING	electrostatic
DEFLECTION	double electrostatic
x-plates	symmetrical
y-plates	symmetrical

If use is made of the full deflection capabilities of the tube, the deflection plates will block part of the electron beams, hence a low impedance deflection plate drive is desirable.
Angle between x and y traces, each beam 90°
Angle between x-trace and x-axis of the internal graticule 0°
Angle between corresponding y-traces at the centre of the screen 45'

CAPACITANCES

Writing section

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
$y_{1}{ }^{\prime}$ to all other elements except $y_{2}{ }^{\prime}$
$\mathrm{Y}_{2}{ }^{\prime}$ to all other elements except $\mathrm{V}_{1}{ }^{\prime \prime}$
$\mathrm{V}_{1}{ }^{\prime \prime}$ to all other elements except $\mathrm{y}_{2}{ }^{\prime \prime}$
$\mathrm{y}_{2}{ }^{\prime \prime}$ to all other elements except $\mathrm{y}_{1}{ }^{\prime \prime}$
x_{1} to x_{2}
$y_{1}{ }^{\prime}$ to $y_{2}{ }^{\prime}$
$\mathrm{Y}_{1}{ }^{\prime \prime}$ to $\mathrm{Y}_{2}{ }^{\prime \prime}$
g 1 to all other elements
k to all other elements

$\mathrm{C}_{\mathrm{x} 1(\mathrm{x} 2)}$	6,5 pF
$\mathrm{C}_{x} 2(x 1)$	6,5 pF
Cy1'(y2')	5 pF
$\mathrm{C}_{\mathrm{y}}{ }^{\prime}\left(\mathrm{y} 1^{\prime}\right)$	6 pF
Cy1''(y2')	6 pF
Cy2'(y1')	5 pF
$\mathrm{C}_{\mathrm{x} 1 \times 2}$	2,5 pF
Cy1'y2'	0,6 pF
Cy1'y2''	0,6 pF
$\mathrm{C}_{\mathrm{g} 1}$	$5,5 \mathrm{pF}$
C_{k}	4,5 pF

Viewing section

g_{1} ' to all other elements
g1" to all other elements
k^{\prime} to all other elements
$k^{\prime \prime}$ to all other elements
g7 to all other elements
g9 to all other elements

$\mathrm{C}_{\mathrm{g} 1^{\prime}}$	$5,5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1^{\prime \prime}}$	$5,5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{k}^{\prime}}$	5 pF
$\mathrm{C}_{\mathrm{k}^{\prime \prime}}$	5 pF
$\mathrm{C}_{\mathrm{g} 7}$	45 pF
$\mathrm{C}_{\mathrm{g} 9}$	75 pF

Fig. 1 Outlines.
(1) The bulge at the frit seal may increase the indicated maximum dimensions (Fig. 3) by not more than 3 mm .
(2) Minimum length of cable: 420 mm .

Fig. 2 Bottom view and side-contact arrangement.

Fig. 4 Electrode configuration.

detail of side contact
Fig. 6 Detail of side contact.

Fig. 3 Top view.

Fig. 5 Pin arrangement; bottom view.

Fig. 7 Internal graticule.
Colour: brown-black;
line width: $0,15 \mathrm{~mm}$;
dot diameter: $0,3 \mathrm{~mm}$.

TYPICAL OPERATION (for notes see page 294)

Conditions

Writing section (voltages with respect to writing gun cathode k)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10^{(l)}}$	8500 V	note 1
Geometry control electrode voltage	$V_{\mathrm{g} 6}$	$1500 \pm 100 \mathrm{~V}$	
Deflection plate shield voltage	$V_{\mathrm{g} 5}$	1500 V	note 2
Astignatism control electrode voltage	$V_{\mathrm{g} 4}$	$1500 \pm 75 \mathrm{~V}$	
Focusing electrode voltage	$V_{\mathrm{g} 3}$	400 to 650 V	
First accelerator voltage	$V_{\mathrm{g} 2}$	1500 V	
Control grid voltage for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g} 1}$	-40 to -80 V	

Viewing section (voltages with respect to viewing gun cathode k^{\prime} and $\mathrm{k}^{\prime \prime}$)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10^{\prime}(\ell)}$	7050 V	note 1
Backing electrode voltage, storage operation	$\mathrm{V}_{\mathrm{g} 9}$	1 V	
non-storage operation $\mathrm{V}_{\mathrm{g} 9}$	-35 V		
Collector voltage	$\mathrm{V}_{\mathrm{g} 8}$	150 V	
Collimator voltage	$\mathrm{V}_{\mathrm{g} 7}$	30 to 120 V	note 3
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2^{\prime}}, \mathrm{V}_{\mathrm{g} 2^{\prime \prime}}$	50 V	note 4
Control grid voltage for cut-off	$\mathrm{V}_{\mathrm{g} 1^{\prime}}, \mathrm{V}_{\mathrm{g} 1^{\prime \prime}}$	-30 to -70 V	
Cathode current (each viewing gun)	$\mathrm{I}_{\mathrm{k}^{\prime}, \mathrm{I}_{\mathrm{k}^{\prime \prime}}}$	$0,4 \mathrm{~mA}$	

Performance

Useful scan
horizontal
vertical
Deflection coefficient horizontal
vertical, system 1
vertical, system 2
Line width at the centre of the screen
Writing speed in store mode
Storage time
Deviation of linearity of deflection
Geometry distortion
Grid drive for $5 \mu \mathrm{~A}$ beam current, per system
min. $\quad 90 \mathrm{~mm}$
min. $\quad 72 \mathrm{~mm}$

$M^{\prime}{ }^{\prime}$
$\mathrm{My}^{\prime \prime}$
I.w.

9,5 V/div
max. 10,5 V/div
8,5 $\mathrm{V} / \mathrm{div}$
max. $\quad 9,5 \mathrm{~V} / \mathrm{div}$
8,5 V/div
max. 9,5 V/div
$0,40 \mathrm{~mm}$ note 5
greater than $125 \mathrm{div} / \mathrm{ms}$ note 6
greater than $1,5 \mathrm{~min}$ note 7
max. 2% note 8
see note 9
approx. 30 V

LIMITING VALUES (Absolute maximum rating system)
Writing section (voltages with respect to writing gun cathode k)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10}(\ell)$	max. min.	$\begin{aligned} & 9500 \mathrm{~V} \\ & 7000 \mathrm{~V} \end{aligned}$
Geometry control electrode voltage	$V_{\mathrm{g} 6}$	max.	2100 V
Deflection plate shield voltage	$V_{g 5}$	max.	2000 V
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g} 4}$	max. min.	$\begin{aligned} & 2100 \mathrm{~V} \\ & 1200 \mathrm{~V} \end{aligned}$
Focusing electrode voltage	V ${ }_{\text {g }}$	max.	1000 V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	max. min.	$\begin{aligned} & 2000 \mathrm{~V} \\ & 1250 \mathrm{~V} \end{aligned}$
Control grid voltage positive negative	$\begin{aligned} & V_{g 1} \\ & -V_{g 1} \end{aligned}$	max. max.	0 V 200 V
Cathode to heater voltage positive negative	$\begin{aligned} & V_{k f} \\ & -V_{k f} \end{aligned}$	max. max.	$\begin{aligned} & 125 \mathrm{~V} \\ & 125 \mathrm{~V} \end{aligned}$
Voltage between astigmatism control electrode and any deflection plate	$\begin{aligned} & V_{g 4 / x} \\ & V_{g 4 / y} \end{aligned}$	max. max.	$\begin{aligned} & 500 \mathrm{~V} \\ & 500 \mathrm{~V} \end{aligned}$
Average grid drive		max.	30 V

Viewing section (voltages with respect to viewing gun cathodes k^{\prime} and $k^{\prime \prime}$ unless otherwise specified)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10^{(\ell)}}$	max. \min.	$\begin{aligned} & 8000 \mathrm{~V} \\ & 5500 \mathrm{~V} \end{aligned}$
Backing electrode voltage, storage operation	$\mathrm{V}_{\mathrm{g}} 9$	max. \min.	$\begin{aligned} & 5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$
non-storage operation	$-\mathrm{V}_{\mathrm{g}} 9$	max. \min.	$\begin{aligned} & 50 \mathrm{~V} \\ & 25 \mathrm{~V} \end{aligned}$
Collector voltage	$\mathrm{V}_{\mathrm{g} 8}$	max. min.	$\begin{aligned} & 180 \mathrm{~V} \\ & 120 \mathrm{~V} \end{aligned}$
Collimator voltage	$V_{g 7}$	max. min.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}{ }^{\prime}, \mathrm{V}_{\mathrm{g} 2}{ }^{\prime \prime}$	max. \min.	$\begin{aligned} & 60 \mathrm{~V} \\ & 40 \mathrm{~V} \end{aligned}$
Cathode to heater voltage positive	$V_{k^{\prime} f^{\prime},}, V_{k}{ }^{\prime \prime} f^{\prime \prime}$	max.	125 V
negative	$-V_{k^{\prime} f^{\prime},}-V_{k}^{\prime \prime} f^{\prime \prime}$	max.	125 V
Control grid voltage positive	$\mathrm{V}_{\mathrm{g} 1^{\prime},} \mathrm{V}_{\mathrm{g} 1^{\prime \prime}}$	max.	0 V
negative	$-\mathrm{V}_{\mathrm{g} 1}{ }^{\prime},-\mathrm{V}_{\mathrm{g} 1}{ }^{\prime \prime}$	max.	200 V

NOTES

1. These values are valid at cut-off of both viewing (flood) guns and the writing gun. The H.T. unit must be capable of supplying $0,5 \mathrm{~mA}$. To protect the tube against excessive surge current during erasure, an adequately dimensioned RC-network must be connected in series with the screen terminal lead (Fig. 8).

Fig. 8.
2. This voltage should be equal to the mean y-plate potential. The mean x and y-plate potentials should be equal for optimum spot quality.
3. The collimator electrode voltage should be adjusted for optimum uniformity of background ilfumination.
4. The voltage $\mathrm{V}_{\mathrm{g} 2^{\prime}}, \mathrm{V}_{\mathrm{g} 2^{\prime \prime}}$ should be equal to the mean x-plate potential.
5. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{b}=5 \mu \mathrm{~A}$ per system (measured against x-plates).
6. The writing speed is defined as the maximum speed at which a written trace is just visible, starting from a background which is just black. The indicated value is guaranteed for the total graticule area, with the exception of maximum 5% in each corner. The writing speed can be increased to approx. $1,25 \mathrm{div} / \mu \mathrm{s}$ if some background is tolerated.
7. The storage time is defined as the time required for the brightness of the unwritten background to rise from just zero brightness (viewing-beam cut-off) to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased.
8. The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
9. A graticule, consisting of concentric rectangles of $88 \mathrm{~mm} \times 70 \mathrm{~mm}$ and $84,8 \mathrm{~mm} \times 67,6 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles.

CORRECTION COILS

General

The L14-131GH/55 is provided with a coil unit (see Fig. 9) consisting of:

1. A pair of coils L3 and L4 which enable the angle between the x and y-traces at the centre of the screen to be made exactly 90° (orthogonality correction).
2. A pair of coils L1 and L2 for image rotation which enable the alignment of the x-trace with the x-lines of the graticule.

Fig. 9 Diagram of coil unit.

Orthogonality (coils L3 and L4)

The current required under typical operating conditions without a mu-metal shield being used is max. 20 mA for complete correction of orthogonality. It will be 30% to 50% lower with shield, depending on the shield diameter. The resistance of the coil is approx. 225Ω.

Image rotation (coils L1 and L2)

The image rotation coils are wound concentrically around to the tube neck. Under typical operating conditions 22 ampere-turns are required for maximum rotation of 5°. Both coils have 850 turns. This means that a current of max. $12,5 \mathrm{~mA}$ per coil is required which can be obtained by using a 12 V supply when the coils are connected in series or a 6 V supply when they are in parallel.

Connecting the coils

The coils have been connected to 8 solder tags according to Fig. 10.

Fig. 10 Bottom view.
With L3 and L4 connected in series according to Fig. 11 a current in the direction indicated will produce a clockwise rotation of the vertical trace and an anti-clockwise rotation of the horizontal trace.

Fig. 11.

BEAM CENTRING MAGNET

Inherent to the split-beam system a slight difference between the two beam currents can occur after splitting, resulting in different intensities of the two traces. In order to equalize the beam currents, a beam centring magnet should be mounted near the base of the gun and adjusted for the required field direction and field strength.

OPERATING NOTES

Modes of operation

Store mode
a. Dynamic erasure (variable persistence).

Dynamic erasure can be achieved by applying erasing pulses of positive polarity to the backing electrode. The pulse amplitude required is approximately $9 \mathrm{~V}(<15 \mathrm{~V})$ and the persistence of a stored display can be controlled by varying the duty factor of these pulses.
b. Static erasure.

If no dynamic erasing pulses are applied, the storage time is limited by the potential shift of the storage layer due to landing of positive ions. In order to erase a stored display, the backing electrode should first be connected to the collector electrode voltage and then returned to its original potential for about 100 ms ; after that, an erasing pulse of positive polarity and a duration of not less than 300 ms should be applied. For the adjustment of the amplitude of this pulse see Procedure of adjustment.

Non-store mode

For non-store operation, it is sufficient to make the backing electrode about 35 V negative with respect to the viewing gun cathodes. The viewing guns should not be switched off in this mode of operation since slight variations in raster geometry and deflection sensitivity might otherwise be caused. Care should be taken, especially when switching from store mode to non-store mode, that excessive writing beam current is avoided, as otherwise the storage layer may be damaged.

Procedure of adjustment

a. Adjust the cathode current of each viewing gun to $0,4 \mathrm{~mA}$ by means of its control grid voltage.
b. Adjustment of the erasing pulse amplitude (static erasure)

The pulse amplitude should be just sufficient to suppress any background illumination at the centre of the display area (this adjustment should be done under low ambient light conditions). Data on storage time and maximum writing speed are based on erasure to "just black". A larger pulse amplitude (erasure to "blacker than black") yields a longer storage time at the expense of maximum writing speed. On the other hand, writing speed can be increased if some background illumination is tolerated. To erase to "just black" the amplitude of this pulse is approximately 9 V .
c. Adjustment of the collimator voltage.

With dynamic erasing pulses applied and a persistence control setting that yields a convenient background illumination intensity, the collimator voltage is adjusted for optimum background uniformity. This voltage will be approximately 80 V with respect to the viewing gun cathode potential. If this voltage will be approximately 80 V with respect to the viewing gun cathode potential. If this voltage is too high or too low, there is a decrease of intensity at the four corners or at the centres of the vertical edges of the display area respectively.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat-faced direct-view charge transfer storage tube with internal graticule. The tube has vertical scan-magnification with 3 quadrupole lenses and is for wide-band (100 MHz) oscilloscopy with fast store mode and variable persistence.

QUICK REFERENCE DATA

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 13}(\ell)$	10 kV
Minimum useful scan area		$90 \mathrm{~mm} \times 72 \mathrm{~mm}$
Deflection coefficient	M_{\times}	$18,5 \mathrm{~V} / \mathrm{div}$
\quad horizontal	M_{V}	$4,8 \mathrm{~V} / \mathrm{div}$
\quad vertical		$1 \mathrm{div} / \mathrm{ns}$
Writing speed		

OPTICAL DATA

Screen
type
persistence, non-store mode
persistence, store mode
Useful screen area
Useful scan area
Spot eccentricity
in horizontal direction
in vertical direction
Internal graticule

HEATING

Writing section

Indirect by a.c. or d.c.*
Heater voltage
Heater current
Heating time to attain 10\% of the cathode current at equilibrium conditions

Viewing section

Indirect by d.c.*
Heater voltage
Heater current
Heating time to attain 10% of the cathode current at equilibrium conditions

* Not to be connected in series with other tubes.
metal backed phosphor
GH, colour green
medium-short
variable
$\min .90 \mathrm{~mm} \times 72 \mathrm{~mm}$
$\min .90 \mathrm{~min} \times 72 \mathrm{~mm}$
$\max . \quad 6 \mathrm{~mm}$
type 95; see Fig. 6

V_{f}	$6,3 \mathrm{~V}$
I_{f}	240 mA

approx. 5 s
$\begin{array}{lr}\text { VFGf } & 12,6 \mathrm{~V} \\ \text { IFGf } & 240 \mathrm{~mA}\end{array}$
approx. 5 s

MECHANICAL DATA

Mounting position

The tube can be mounted in any position. It should not be supported by the base alone or near the base region, and under no circumstances should the socket be allowed to support the tube. The tags near the screen should not be subjected to mechanical stress. Avoid any force on the side contacts.

Net mass	approx.	$1,3 \mathrm{~kg}$
Base	14 pin, all glass	
Dimensions and connections (see also outline drawing)		
Overall length (socket included)	max.	454 mm
Faceplate dimensions	$118 \pm 0,5 \mathrm{~mm} \times 98 \pm 0,5 \mathrm{~mm}$	

Accessories

Socket (supplied with tube)	type	55572
Side contact connector (8 required)	type	55561
Small ball contact connected (6 required)	type	402210221590

FOCUSING

DEFLECTION

x-plates
electrostatic note 1
y-plates
double electrostatic
symmetrical

Angle between x and y -traces
symmetrical

Angle between y-trace and y-axis of
the internal graticule $\quad \leqslant 5^{0}$ note 2

NOTES

1. Because of the use of a quadrupole lens for the magnification of the vertical deflection, two more quadrupole lenses are used for focusing. Therefore, controls for two voltages have to be provided.
2. The tube has a rotation coil, concentrically wound around the tube neck, to allow alignment of the y-trace with the mechanical y-axis of the screen. The coil has 2000 turns and a maximum resistance of 650Ω. Under typical operating conditions, a maximum of 30 ampere-turns is required for the maximum rotation of 5°. This means the required supply is 15 mA maximum at 12 V maximum.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
g_{1} to all other elements
k to all other elements
g_{11} to all other elements
g 12 to all other elements
g 13 to all other elements
g3 to all other elements
G5 to all other elements
g9-1 to all other elements
g9-2 to all other elements
g9-3 to all other elements
FGA to all other elements
$k^{\prime}, k^{\prime \prime}$ to all other elements

$\mathrm{C}_{\mathrm{x} 1(\mathrm{x} 2)}$	$5,5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	$5,5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	$2,7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	$2,7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x} 1 \times 2}$	3 pF
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	$1,7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	7 pF
C_{k}	5 pF
$\mathrm{C}_{\mathrm{g} 11}$	80 pF
$\mathrm{C}_{\mathrm{g} 12}$	70 pF
$\mathrm{C}_{\mathrm{g} 13}$	85 pF
$\mathrm{C}_{\mathrm{g} 3}$	17 pF
C_{g}	17 pF
$\mathrm{C}_{\mathrm{g}} 9-1$	30 pF
$\mathrm{C}_{\mathrm{g}} 9-2$	70 pF
$\mathrm{C}_{\mathrm{g}} 9-3$	60 pF
$\mathrm{C}_{\mathrm{FGA}}$	20 pF
$\mathrm{C}_{\mathrm{k}}{ }^{\prime}, \mathrm{k}^{\prime \prime}$	12 pF

Fig. 1 Outlines
(1) Dimensions of faceplate only. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 3 mm .
(2) Minimum length of cable: 350 mm .

Fig. 2 Bottom view and side-contact arrangement.

Fig. 3 Top view. For note (1) see opposite page.

Fig. 5 Pin arrangement; bottom view.

Fig. 6 Internal graticule colour of graticule: brown-black;
line width $\quad: 0,2 \mathrm{~mm}$; dot diameter $: 0,4 \mathrm{~mm}$.

TYPICAL OPERATION (for notes see next pages)

Conditions

Writing section (voltages with respect to writing gun cathode k, unless otherwise stated for optimum scan magnification $\approx 1,8$).

Final accelerator voltage
Geometry control voltage
Scan magnifier electrode voltage (with respect to g_{2})
Horizontal alignment electrode voltage (with respect to g_{2})

Vertical focusing electrode voltage (with respect to g_{2})

$V_{\text {g13(I) }}$	10000 V	note 1
$\mathrm{V}_{\mathrm{g} 8}$	$3000 \pm 100 \mathrm{~V}$	
$V_{\mathrm{g} 7}$	$-600 \mathrm{~V}$	
$V_{\mathrm{g} 6}$	$\pm 100 \mathrm{~V}$	note 2
$V_{g 5}$	-860 to -1100 V	
$\mathrm{V}_{\mathrm{g} 4}$	200 V	note 3
$V_{g} 3$	-1300 to -1650 V	
$V_{\mathrm{g} 2}$	3000 V	
$-\mathrm{V}_{\mathrm{g} 1}$	75 to 130 V	

Correction electrode voltage (with respect to g_{2})

Horizontal focusing electrode voltage (with respect to g_{2})
First accelerator voltage
Cut-off voltage for visual extinction of focused spot
$-V_{g 1}$
75 to 130 V
Viewing section (voltages with respect to viewing gun cathode FGK, Fig. 4)

Final accelerator voltage (with respect to first accelerator FGA)

Backing electrode voltages (d.c.)
front mesh
fast mesh
Collector mesh voltage (d.c.)
Collimator voltage (d.c.)
C3
C2
C1
First accelerator voltage (d.c.)
Flood gun cathode voltage (d.c.)

	non- store mode	variable persistance mode	faststore mode	
$V_{\text {g13(I) }}$	7000 V	7000 V	7000 V	note 1
$V_{\mathrm{g} 12}$	$-50 \mathrm{~V}$			
$V_{g 11}$	140 V	140 V	140 V	
$V_{\mathrm{g} 10}$	130 V	130 V	130 V	
$\mathrm{V}_{\mathrm{g}} 9-3$	65 V	65 V	65 V	note 4
$V_{g 9-2}$	$\approx 65 \mathrm{~V}$	65 V	65 V	
$V_{g 9-1}$	30 V	30 V	30 V	
$V_{\text {FGA }}$	20 V	20 V	20 V	
$V_{\text {FGK }}$	0 V	0 V	0 V	

The first accelerator voltage should be equal to the mean x-plate potential.

Performance

Useful scan area
Deflection coefficient horizontal vertical
$\min .90 \mathrm{~mm} \times 72 \mathrm{~mm}$

	typ.	$18,5 \mathrm{~V} / \mathrm{div}$
M_{x}	max.	$20,5 \mathrm{~V} / \mathrm{div}$
	typ.	$4,8 \mathrm{~V} / \mathrm{div}$
M_{Y}	max.	$5,5 \mathrm{~V} / \mathrm{div}$

Deviation of deflection linearity
Geometry distortion
Grid drive for $10 \mu \mathrm{~A}$ beam current
Grid drive for specified writing speed
Line width at the centre of the screen
max. 2% note 5 see note 6
V_{d} approx. 20 V
V_{d} max. 80 V
l.w. $\quad 0,4 \mathrm{~mm}$ note 7

Writing speed (note 8)

Variable persistence mode
just black: $\geqslant 250 \mathrm{div} / \mathrm{ms}$
max. write: $\geqslant 2,5 \mathrm{div} / \mu \mathrm{s}$
Fast-store mode
max. write: $\geqslant 1$ div/ns

Storage viewing time (note 9)

Variable persistence mode
just black: $\geqslant 60 \mathrm{~s}$
max. write: $\geqslant 15 \mathrm{~s}$
Fast-store mode
max. write: $\geqslant 15 \mathrm{~s}$

NOTES

1. These values are valid at cut-off of both flood guns and the writing gun. The H.T. unit must be capable of supplying $0,5 \mathrm{~mA}$. To protect the tube against excessive surge current during erasure, an RC-network as shown in Fig. 7 must be connected in series with the screen terminal lead; the resistance of 15 to $20 \mathrm{M} \Omega$ includes the internal resistance of the H.T. supply.

Fig. 7.
2. This voltage should be adjusted for equal brightness in the x-direction with respect to the electrical centre of the tube.
3. For minimum defocusing of vertical lines near the upper and lower edges of the scanned area this voltage should be the value indicated.
4. The indicated values concern the d.c. levels; during the erasing, preparing and transfering operation these electrodes are pulsed.
5. The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
6. A graticule, consisting of concentric rectangles of $90 \mathrm{~mm} \times 72 \mathrm{~mm}$ and $87,8 \mathrm{~mm} \times 70,5 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles.
7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\mathrm{b}}=10 \mu \mathrm{~A}$ (measured against x-plates).

NOTES (continued)

8. The writing speed is defined as the maximum speed at which a written trace is just visible starting from a background which is just black. The indicated value is guaranteed for the central 80% of the minimum screen area, except the outmost 3 mm of the screen. However, in any corner not more than 4 square divisions fall outside the guaranteed area. The writing speed can be increased, if some background is tolerated. Within the same area, a trace, written with the indicated value of max. write, remains just visible within the indicated storage time of max. write.
The writing speed in max. write, with background, is defined as the maximum speed at which the written trace remains just visible within the indicated storage time.
9. The storage time in just black mode is defined as the time required for the brightness of the unwritten background to rise from zero brightness (viewing beam cut-off) to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased. The storage time in max. write and fast is related to the writing speed.

LIMITING VALUES (absolute maximum rating system)
Writing section (Voltages with respect to writing gun cathode k, unless otherwise stated)

Final accelerator voltage	$V_{\mathrm{g} 13(1)}$	max. min.	$\begin{array}{r} 10500 \mathrm{~V} \\ 8500 \mathrm{~V} \end{array}$
Geometry control voltage (with respect to g_{2})	$V_{\mathrm{g} 8}$	max. min.	$\begin{array}{r} 500 \mathrm{~V} \\ -500 \mathrm{~V} \end{array}$
Scan magnifier electrode voltage (with respect to g_{2})	$\mathrm{V}_{\mathrm{g} 7}$	max. min.	$\begin{array}{r} 550 \mathrm{~V} \\ -700 \mathrm{~V} \end{array}$
Horizontal alignment electrode voltage (with respect to g_{2})	$\mathrm{V}_{\mathrm{g} 6}$	max. min.	$\begin{array}{r} 500 \mathrm{~V} \\ -500 \mathrm{~V} \end{array}$
Vertical focusing electrode voltage (with respect to g_{2})	$\mathrm{V}_{\mathrm{g} 5}$	max. min.	$\begin{array}{r} -750 \mathrm{~V} \\ -1200 \mathrm{~V} \end{array}$
Correction electrode voltage (with respect to g_{2})	$\mathrm{V}_{\mathrm{g} 4}$	max. min.	$\begin{array}{r} 500 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
Horizontal focusing electrode voltage (with respect to g_{2})	$\mathrm{V}_{\mathrm{g} 3}$	max. \min.	$\begin{aligned} & -1200 \mathrm{~V} \\ & -1800 \mathrm{~V} \end{aligned}$
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	max. min.	$\begin{aligned} & 3500 \mathrm{~V} \\ & 2500 \mathrm{~V} \end{aligned}$
Control grid voltage positive negative	$\begin{aligned} & V_{g 1} \\ & -V_{g 1} \end{aligned}$	max. max.	0 200 V
Cathode to heater voltage positive negative	$\begin{aligned} & V_{k f} \\ & -V_{k f} \end{aligned}$	max. max.	$\begin{aligned} & 125 \mathrm{~V} \\ & 125 \mathrm{~V} \end{aligned}$
Voltage between correction electrode and any deflection plate	$\begin{aligned} & V_{g 4 / x} \\ & V_{g 4 / y} \end{aligned}$	max. max.	$\begin{aligned} & 500 \mathrm{~V} \\ & 500 \mathrm{~V} \end{aligned}$
Grid drive, averaged over 1 ms	V_{d}	max.	30 V

Viewing section (voltages with respect to viewing gun cathode FGK)

Screen voltage	$V_{g 13(1)}$	max. \min.	$\begin{aligned} & 7500 \mathrm{~V} \\ & 5500 \mathrm{~V} \end{aligned}$
Backing electrode voltage (d.c.) front mesh	$V_{g 12}$	max. min.	$\begin{array}{r} 600 \mathrm{~V} \\ -50 \mathrm{~V} \end{array}$
fast mesh	$V_{g 11}$	max. \min.	$\begin{array}{r} 200 \mathrm{~V} \\ -50 \mathrm{~V} \end{array}$
Collector mesh voltage (d.c./a.c.)	$V_{g 10}$	max. \min.	$\begin{aligned} & 200 \mathrm{~V} \\ & 100 \mathrm{~V} \end{aligned}$
Collimator voltages (d.c./a.c.)	$\mathrm{V}_{\mathrm{g} 9-1 ; 9-2 ; 9-3}$	max. \min.	$\begin{array}{r} 150 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
First accelerator voltage	$V_{\text {FGA }}$	max. min.	$\begin{array}{r} 100 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
Cathode to heater voltage	$\mathrm{V}_{\mathrm{k}^{\prime} \mathrm{FG}^{\prime}}, \mathrm{V}_{\mathrm{k}^{\prime \prime}{ }^{\prime} \mathrm{FGf}^{\prime}}$ $-V_{k^{\prime}}{ }^{\prime}{ }^{\prime} \mathrm{V}_{\mathrm{k}},-\mathrm{V}_{\mathrm{k}^{\prime \prime}}{ }^{\prime} \mathrm{FGf}$	max. max.	$\begin{aligned} & 125 \mathrm{~V} \\ & 125 \mathrm{~V} \end{aligned}$

OPERATING NOTES

Scan magnifier

A scan magnification $M_{S C} \approx 1,8$ is the best compromise between line width and sensitivity. This is obtained with $V_{g 7}=-600 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{g} 4}=200 \mathrm{~V}$. Performance is tested and specified under this condition and no adjustment will be necessary for individual tubes.

Focusing is separate for horizontal and vertical directions with $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 5}$ respectively. Both focus settings may depend on beam current with different steepness. Although both electrodes are positive with respect to cathode, reverse current may result from secondary electrons leaving grid 3 (max. $5 \mu \mathrm{~A}$) and grid 5 (max. $50 \mu \mathrm{~A}$).
Normal current direction from beam interception is to be expected on the horizontal correction electrode g_{6} (up to $500 \mu \mathrm{~A}$) and, as usual, on g_{2} and deflection plates.

Modes of operations

Non-store mode

For non-store operation the front mesh $\mathrm{V}_{\mathrm{g} 12}$ is set to -50 V with respect to FGK.
The viewing guns should not be switched off in this mode of operation since slight variations in raster geometry and deflection sensitivity might otherwise be caused. Care should be taken, especially when switching from store mode to non-store mode, that excessive writing beam current is avoided, as otherwise the storage layer may be damaged.

Variable persistence mode

The fast mesh is switched off for this operation and used as collector by setting $\mathrm{V}_{\mathrm{g} 11}=140 \mathrm{~V}$.
a. Static erasure

If no dynamic erasing pulses are applied the storage time is limited by the potential shift of the storage layer due to landing of positive ions.

In order to erase a stored display, $\mathrm{V}_{\mathrm{g} 12}$ is increased to 500 V for 100 ms and than returned to its original potential for about 500 ms ; after that, an erasing pulse of positive polarity (max. 20 V) and a duration of 600 ms should be applied.
While the erasing pulse amplitude is to be adjusted with zero d.c. level for "just black", the background illumination can be changed - even with a stored signal - by varying the d.c. level for optimum contrast or maximum writing speed.

Background egality can be optimized by balancing the viewing gun cathodes by means of a potentiometer of $2,2 \mathrm{k} \Omega$, proper collimator adjustment, and by increasing $V_{F G A} \cdot V_{g 9-1}$ and $V_{g 9-3}$ in positive direction during erasure.

Before first installation, depending on transport conditions, demagnetization of the tube face region may be necessary.
b. Dynamic erasure

Dynamic erasure can be achieved by applying extra erasing pulses of positive polarity to the backing electrode of the front mesh $\left(g_{12}\right)$. The amplitude of these extra pulses is equal to that of the original erasing pulse, the frequency is 120 Hz and the persistence of the display can be controlled by varying the duty factor.

Fast-store mode

For erasure in the fast mode the front mesh has to be erased first in the same way as in the variable persistence mode but separate adjustments should be foreseen.
The fast mesh is to be prepared by reducing $\mathrm{V}_{\mathrm{g} 11}$ from 140 V to the stabilizing level (0 to max. 20 V) during the erasing pulse on the front mesh.
After writing, at the end of the unblanking pulse, a transfer pulse ($500 \mathrm{~V}, 100 \mathrm{~ms}$) is to be applied on the front mesh.
During the transfer pulse, $\mathrm{V}_{\mathrm{g} 11}$ is further reduced about 1 V for enhanced transmission during transfer. This reduction has to be carefully adjusted for optimum contrast and writing speed.
During the whole cycle, $\mathrm{FGA}, \mathrm{V}_{\mathrm{g}} 9-1$ and $\mathrm{V}_{\mathrm{g}} 9-3$ may be increased for more viewing gun current. Details on the adjustment procedure and the voltage range to be provided for can be made available.

INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- direct - view storage tube
- internal graticule
- for oscilloscope applications

QUICK REFERENCE DATA

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10^{(\ell)}}$	$8,5 \mathrm{kV}$
Minimum useful scan area		$90 \mathrm{~mm} \times 72 \mathrm{~mm}$
Deflection coefficient horizontal vertical	M_{x}	$9,5 \mathrm{~V} / \mathrm{div}$
Writing speed	M_{y}	$4,1 \mathrm{~V} / \mathrm{div}$

OPTICAL DATA

\(\left.$$
\begin{array}{ll}\text { Screen } & \begin{array}{l}\text { metal-backed phosphor } \\
\text { type } \\
\text { persistence, non-store mode } \\
\text { persistence, store mode }\end{array} \\
\begin{array}{ll}\text { Useful screen area } & \text { medium-short }\end{array}
$$

Useful scan area \& variable\end{array}\right]\)| Spot eccentricity in horizontal $90 \mathrm{~mm} \times 72 \mathrm{~mm}$ | |
| :--- | :--- |
| and vertical directions | $\mathrm{min} .90 \mathrm{~mm} \times 72 \mathrm{~mm}$ |
| Internal graticule | max. 6 mm |

HEATING

Writing section

Indirect by a.c. or d.c.*

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	240 mA

Heating time to attain 10% of the cathode current at equilibrium conditions

Viewing section

Indirect by d.c.*
Heater voltage
Heater current
$V_{F G f} \quad 12,6 \mathrm{~V}$

Heating time to attain 10% of the cathode current at equilibrium conditions

* Not to be connected in series with other tubes.
approx. 5 s

IFGf 240 mA
approx. 5 s
metal-backed phosphor
GH, colour green
medium-short
variable
$\min .90 \mathrm{~mm} \times 72 \mathrm{~mm}$
$\min .90 \mathrm{~mm} \times 72 \mathrm{~mm}$
max. 6 mm
typ. 95; see Fig. 6

240 mA

MECHANICAL DATA

Dimensions and connections (see also outline drawings)

Overall length (socket included)
$\leqslant 452 \mathrm{~mm}$
$118 \pm 0,5 \mathrm{~mm} \times 98 \pm 0,5 \mathrm{~mm}$
Faceplate dimensions (final accelerator contact excluded)

Net mass

Mase

14 pin, all glass

Mounting position

The tube can be mounted in any position. It should not be supported by the base alone or near the base region, and under no circumstances should the socket be allowed to support the tube. The tags near the screen should not be subjected to mechanical stress. Avoid any force on the side contacts.

Accessories

Socket (supplied with tube)
Side contact connector (7 required)
Small ball contact connector (5 required)

FOCUSING

DEFLECTION

x-plates
y-plates
Angle between x and y-traces
Angle between x-trace and x-axis of the internal graticule
type 55566
type 55561
type 402210221590
electrostatic
double electrostatic
symmetrical
symmetrical
90 ± 1^{0}
$\leqslant 5^{\circ}$ *

* The tube has a rotation coil, concentrically wound around the tube neck, to allow alignment of the x-träce with the mechanical x-axis of the screen. The coil has 2000 turns and a maximum resistance of 650Ω. Under typical operating conditions, a maximum of 20 ampere-turns is required for the maximum rotation of 5°. This means the required supply is 10 mA maximum at 8 V maximum.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
g_{1} to all other elements
k to all other elements
g_{3} to all other elements
g7-1 to all other elements
97-2 to all other elements
g7-3 to all other elements
gg to all other elements
g_{10} to all other elements
FGA to all other elements
FGK' to all other elements
FGK' to all other elements

$\mathrm{C}_{\mathrm{x} 1(\mathrm{x} 2)}$	5,5 pF
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	5,5 pF
$\mathrm{C}_{\mathrm{y} 1}(\mathrm{y} 2)$	3,5 pF
$\mathrm{C}_{\mathrm{y} 2}(\mathrm{y} 1)$	3,5 pF
$\mathrm{C}_{\times 1 \times 2}$	2,5 pF
Cy1y2	2 pF
$\mathrm{C}_{\mathrm{g} 1}$	6 pF
C_{k}	3,5 pF
$\mathrm{C}_{\mathrm{g} 3}$	4,5 pF
$\mathrm{C}_{\mathrm{g} 7-1}$	30 pF
$\mathrm{C}_{\mathrm{g} 7-2}$	65 pF
$\mathrm{C}_{\mathrm{g} 7-3}$	60 pF
$\mathrm{C}_{\mathrm{g} 9}$	60 pF
$\mathrm{C}_{\mathrm{g} 10}$	80 pF
CFGA	15 pF
CFGK'	8 pF
CFGK'	8 pF

Fig. 1 Outlines.
(1) Minimum cable length is 420 mm .
(2) Minimum length of connecting leads is 350 mm .
(3) Dimensions of faceplate only. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 3 mm .

Fig. 2 Bottom view and side-contact arrangement.

Fig. 3 Top view. For note (3) see opposite page.

Fig. 4 Electrode configuration.

Fig. 5 Pin arrangement; bottom view.

Fig. 6 Internal graticule colour of graticule: black;
line width: 0,2 mm; dot diameter: 0,4 mm.

INTERNAL GRATICULE ALIGNMENT

The internal graticule is aligned with the faceplate by using the faceplate reference points A1, A2 and A3, see Fig. 7.

Fig. 7 Front view of tube with internal graticule. $|a 1-a 2| \leqslant 0,3 \mathrm{~mm}$.

TYPICAL OPERATION (for notes see last page but one).

Conditions

Writing section (voltages with respect to writing gun cathode k)

Final accelerator voltage
Geometry control electrode voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage
Cut-off voltage for visual extinction of focused spot

$\mathrm{V}_{\mathrm{g} 10^{(l)}}$	8500 V	note 1
$V_{\mathrm{g} 6}$	$1500 \pm 100 \mathrm{~V}$	
$V_{\mathrm{g} 5}$	1500 V	note 2
$V_{\mathrm{g} 4}$	$1500 \pm 50 \mathrm{~V}$	note 3
$V_{\mathrm{g} 3}$	400 to 600 V	
$\mathrm{V}_{\mathrm{g} 2}$	1500 V	
$-\mathrm{V}_{\mathrm{g} 1}$	45 to 85 V	

Viewing section (voltages with respect to viewing gun cathode FGK, Fig. 8)

See Fig. 9.
Note: The d.c. voltage on the first accelerator of the flood guns (FGA) should be equal to the mean x-plate potential.

Fig. 8.

Fig. 9 Diagram of non-storage and storage operation.
(1) With respect to FGA.

Performance
Useful scan
horizontal
vertical
Deflection coefficient horizontal
vertical
Line width at the centre of the screen
Writing speed in storage operation just black max. write

Storage viewing time just black
max. write
Deviation of deflection linearity
Geometry distortion
Grid drive for $10 \mu \mathrm{~A}$ beam current
Grid drive for specified writing speed
Total cathode current of both viewing guns
at $\mathrm{FGA}=28 \mathrm{~V}$
at $\mathrm{FGA}=50 \mathrm{~V}$
min. $\quad 90 \mathrm{~mm}$
min. $\quad 72 \mathrm{~mm}$
$\begin{array}{lrr} & \left.\begin{array}{lll}9,5 \mathrm{~V} / \mathrm{div} & \\ \text { max. } & 10,5 \mathrm{~V} / \mathrm{div} & \\ & 4,1 \mathrm{~V} / \mathrm{div} & \\ \text { max. } & 4,4 \mathrm{~V} / \mathrm{div} & \\ & 0,35 \mathrm{~mm} & \text { note } 5 \\ & & \\ \geqslant & 250 \mathrm{div} / \mathrm{ms} \\ \geqslant & 2,5 \mathrm{div} / \mu \mathrm{s}\end{array}\right\} \text { note } 6\end{array}$
$\left.\begin{array}{ll}\geqslant & 90 \mathrm{~s} \\ \geqslant & 15 \mathrm{~s}\end{array}\right\}$ note 7
max. 2 \% note 8
see note 9
V_{d} approx. 25 V
V_{d} max. 45 V
approx. 1 mA
approx. 2 mA

LIMITING VALUES (Absolute maximum rating system)
Writing section (voltages with respect to writing gun cathode k)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10}(\ell)$	max. \min.	$\begin{aligned} & 9000 \\ & 7000 \end{aligned}$
Geometry control electrode voltage	$V_{\mathrm{g} 6}$	max.	2100 V
Deflection plate shield voltage	$\mathrm{V}_{\mathrm{g} 5}$	max.	2000 V
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g} 4}$	max. min.	$\begin{aligned} & 2100 \\ & 1200 \end{aligned}$
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	1000 V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	max. \min.	$\begin{aligned} & 2000 \\ & 1250 \end{aligned}$
Control grid voltage positive negative	$\begin{aligned} & V_{g 1} \\ & -V_{g 1} \end{aligned}$	max. max.	$\begin{array}{r} 0 \\ 200 \end{array}$
Cathode to heater voltage positive negative	$\begin{aligned} & V_{k f} \\ & -V_{k f} \end{aligned}$	max. max.	125 V 125 V
Voltage between astigmatism control electrode and any deflection plate	$\begin{aligned} & V_{g 4 / x} \\ & V_{g 4 / y} \end{aligned}$	\max. \max.	500 V
Grid drive, averaged over 1 ms	V_{d}	max.	30 V
Screen dissipation	W^{\prime}	max.	8 m

Viewing section (voltages with respect to viewing gun cathode FGK)

Final accelerator voltage	$V_{\mathrm{g} 10}(\ell)$	max. \min.	$\begin{aligned} & 7500 \mathrm{~V} \\ & 5500 \mathrm{~V} \end{aligned}$
Backing electrode voltage storage operation	$\mathrm{V}_{\mathrm{g} 9}$	max. min.	$\begin{array}{r} +150 \mathrm{~V} \\ -5 \mathrm{~V} \end{array}$
non-storage operation	$-V_{\mathrm{g}} 9$	max. min.	$\begin{aligned} & 50 \mathrm{~V} \\ & 25 \mathrm{~V} \end{aligned}$
Collector voltage	$V_{\mathrm{g} 8}$	max. \min.	$\begin{aligned} & 180 \mathrm{~V} \\ & 120 \mathrm{~V} \end{aligned}$
Collimator voltage	$\mathrm{V}_{\mathrm{g} 7-1}, \mathrm{~V}_{\mathrm{g} 7-2}, \mathrm{~V}_{\mathrm{g} 7-3}$	max. \min.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
First accelerator voltage	$V_{\text {FGA }}$	max. \min.	$\begin{array}{r} 60 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
Cathode to heater voltage positive negative	$\begin{aligned} & V_{k^{\prime}} F G f, V_{k^{\prime \prime}} F G f \\ & -V_{k^{\prime}} F G f,-V_{k^{\prime \prime}} F G f \end{aligned}$	max. max.	$\begin{aligned} & 125 \mathrm{~V} \\ & 125 \mathrm{~V} \end{aligned}$

NOTES

1. These values are valid at cut-off of both flood guns and the writing gun. The H.T. unit must be capable of supplying $0,5 \mathrm{~mA}$. To protect the tube against excessive surge current during erasure, an RC network as shown in Fig. 10 must be connected in series with the screen terminal lead; the resistance of 15 to $20 \mathrm{M} \Omega$ includes the internal resistance of the H.T. supply.

Fig. 10.
2. This voltage should be equal to the mean y-plate potential. The mean x and y-plate potentials should be equal for optimum spot quality.
3. When putting the tube into operation, the astigmatism control voltage should be adjusted only once for optimum spot size in the screen centre. The control voltage will be within the stated range, provided the conditions of note 2 are adhered to.
4. The collimator electrode voltage $\mathrm{V}_{\mathrm{g} 7-2}$ and $\mathrm{V}_{\mathrm{g} 7-3}$ should be adjusted for optimum uniformity of background illumination.
5. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\mathrm{b}}=10 \mu \mathrm{~A}$ (measured on x -plates).
6. The writing speed is defined as the maximum speed at which a written trace is just visible starting from a background which is just black. The indicated value is guaranteed for the central 75% of the minimum screen area, except the outmost 4 mm of the screen. However, in any corner not more than 4 square divisions fall outside the guaranteed area. The writing speed can be increased, if some background is tolerated. Within the same area, a trace, written with the indicated value of max. write, remains just visible within the indicated storage time of max. write.
The writing speed in max. write, with background, is defined as the maximum speed at which the written trace remains just visible within the indicated storage time.
7. The storage time in just black mode is defined as the time required for the brightness of the unwritten background to rise from zero brightness to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased.

The storage time in max. write is related to the writing speed.
8. The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
9. A graticule, consisting of concentric rectangles of $72 \mathrm{~mm} \times 54 \mathrm{~mm}$ and $69,8 \mathrm{~mm} \times 52,5 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles.

OPERATING NOTES

Modes of operations

Non-storage mode
For non-storage operation the front mesh $\mathrm{V}_{\mathrm{g} 9}$ is set to -50 V with respect to FGK .
The viewing guns should not be switched off in this mode of operation since slight variations in raster geometry and deflection sensitivity might otherwise be caused.

Variable persistence mode

a. Dynamic erasure

Dynamic erasure can be achieved by applying extra erasing pulses of positive polarity to the backing electrode $\mathrm{V}_{\mathrm{g} 9}$. The amplitude of these extra pulses is equal to that of the original erasing pulse, the frequency is 120 Hz and the persistence of the display can be controlled by varying the duty factor.
b. Static erasure (Fig. 9)

If no dynamic erasing pulses are applied the storage time is limited by the potential shift of the storage layer due to landing of positive ions.
In order to erase a stored display, $\mathrm{V}_{\mathrm{g} 9}$ is increased to 150 V for 100 ms and than returned to its original potential for about 500 ms ; after that, an erasing pulse of positive polarity (max. 15 V) and a duration of 600 ms should be applied.
While the erasing pulse amplitude is to be adjusted with zero d.c. level for "just black", the background illumination can be changed - even with a stored signal - by varying the d.c. level for optimum contrast or maximum writing speed.
Back ground egality can be optimized by balancing the viewing gun cathodes by means of a potentiometer of $2,2 \mathrm{k} \Omega$, proper collimator adjustment, and by increasing $V_{F G A} \cdot V_{g 7-1}, V_{g 7-2}$ and $V_{g 7-3}$ in positive direction during erasure.
Before first installation, depending on transport conditions, demagnetization of the tube face region may be necessary.

SURVEY OF MONITOR AND DISPLAY TUBES

PREFERRED TYPES: recommended for new design.
M17-1.42WE
M17-143WE
M17-144WE
M17-145WE
M38-200
MAINTENANCE TYPES: no longer recommended for equipment production.
M24-100W
M24-101W
M31-130W
M31-131W

OBSOLESCENT TYPES: available until present stocks are exhausted.
M17-140W
M17-141W
M38-120W
M38-121W

SCREENS

Although WA and WE are the standard screens certain applications require screens of a different persistence and/or colour (e.g. GH, GR, GM). Tubes with such screens are supplied to special order.

BONDED FACEPLATES

Tubes with bonded faceplates are supplied to special order.

MONITOR TUBE

17 cm diagonal rectangular flat face monitor tube primarily for use as a viewfinder in television cameras. This tube has been replaced by type M17-142WE, which features a $1,5 \mathrm{~W}$ cathode $(6,3 \mathrm{~V} / 240 \mathrm{~mA})$ with short warm-up time (quick-heating cathode), and an improved phosphor, type WE. The data of M17-140W are equivalent to those of type M17-142WE, except for the following.

HEATING
Indirect by a.c. or d.c.*

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	300 mA

SCREEN

$\begin{array}{ll}\text { Phosphor type } & \text { W } \\ \text { fluorescent colour } & \text { white }\end{array}$

* Not to be connected in series with other tubes.

MONITOR TUBE

17 cm diagonal rectangular flat face monitor tube primarily for use as a viewfinder in television cameras. It has a bonded face plate and a metal mounting band. This tube has been replaced by type M17-143WE, which features a $1,5 \mathrm{~W}$ cathode ($6,3 \mathrm{~V} / 240 \mathrm{~mA}$) with short warm-up time (quick-heating cathode), and an improved phosphor, type WE.

The data of M17-141W are equivalent to those of type M17-143WE, except for the following.

HEATING

Indirect by a.c. or d.c.*

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	300 mA

SCREEN

Phosphor type
W
fluorescent colour
white

* Not to be connected in series with other tubes.

MONITOR TUBES

- 17 cm diagonal rectangular flat face
- 70° deflection angle
- high resolution
- quick heating cathode
- M17-142WE: for use in precision monitors and as a viewfinder in television cameras

M17-144WE: for use in photographic equipment (see Optical Data)

QUICK REFERENCE DATA

Deflection angle, diagonal	700
Face diagonal	17 cm
Neck diameter	28 mm
Overall length	$\max .234 \mathrm{~mm}$
Screen dimensions	min. $124 \mathrm{~mm} \times 93 \mathrm{~mm}$
Resolution	min. 1050 lines

ELECTRICAL DATA

Capacitances

final accelerator to external conductive coating cathode to all other elements grid 1 to all other elements

Focusing method
Deflection method
Deflection angle, diagonal
Heating
heater voltage
heater current
Heating time to attain 10% of the cathode current at equilibrium conditions

$\mathrm{C}_{\mathrm{g} 3, \mathrm{~g} 5(\ell) / \mathrm{m}}$	300 pF
C_{k}	$3,6 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	7 pF

electrostatic
magnetic*
70°
indirect by a.c. or d.c. **
$\mathrm{V}_{\mathrm{f}} \quad 6,3 \mathrm{~V}$
$I_{f} \quad 240 \mathrm{~mA}$

OPTICAL DATA
Screen
Phosphor type
fluorescent colour
persistence
Useful screen dimensions
diagonal
horizontal axis
vertical axis
Light transmission of screen
$\min .155 \mathrm{~mm}$
metal-backed phosphor
WE ${ }^{\wedge}$
white
medium short
$\min .124 \mathrm{~mm}$
min . 93 mm
approx. 92\%

Note: The M17-144WE has an improved screen blemish specification, to meet the extreme requirements of photographic recording equipment.

* To obtain the best tube performance, deflection unit AT1071/07 should be used.
** Not to be connected in series with other tubes.
^ Other phosphors available to special order.

MECHANICAL DATA (see also the figures on the next page)

Overall length
Neck diameter
Base
Final accelerator contact
Net mass
$227 \pm 7 \mathrm{~mm}$
min . $27,8 \mathrm{~mm}$
neo eightar, B 8 H ; IEC67-I-31a
cavity contact, CT8; IEC67-III-2
approx. $0,7 \mathrm{~kg}$

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone.

Accessories

Final accelerator contact connector
55563A

(1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
(2) The maximum dimension is determined by the reference line gauge.

Reference line gauge

RECOMMENDED OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Cut-off voltage for visual extinction of focused spot

RESOLUTION

Resolution at screen centre, measured with shrinking raster method (non-interlaced raster), and with beam centring magnet**

$$
\begin{aligned}
& \text { at } V_{\mathrm{g} 3, \mathrm{~g} 5(\ell)}=14 \mathrm{kV}, \mathrm{~V}_{\mathrm{g} 2}=400 \mathrm{~V}, \\
& I_{\ell}=20 \mu \mathrm{~A}, \text { luminance }=400 \mathrm{~cd} / \mathrm{m}^{2}
\end{aligned}
$$

LIMITING VALUES

Final accelerator voltage

Focusing electrode voltage
First accelerator voltage
Control grid voltage
negative
positive
positive peak
Cathode to heater voltage
positive
negative

$V_{g 3, g 5(\ell)}$	14 kV
V_{g}	0 to $400 \mathrm{~V}^{*}$
$V_{g 2}$	400 V
$-V_{g 1}$	30 to 62 V

min. 1050 lines

$V_{\mathrm{g} 3, \mathrm{~g} 5}(\ell)$	max. \min.	$\begin{aligned} & 16 \mathrm{kV} \\ & 12 \mathrm{kV} \end{aligned}$
$\mathrm{V}_{\mathrm{g} 4}$	max.	1 kV
$-V_{g 4}$	max.	0,5 kV
V	max.	800 V
g2	\min.	300 V
$-V_{g 1}$	max.	150 V
$\mathrm{V}_{\mathrm{g} 1}$	max.	0 V
$V_{\text {gip }}$	max.	2 V
V_{kf}	max.	125 V
$-V_{k f}$	max.	125 V

* For optimum focus at a beam-current of $50 \mu \mathrm{~A}$.

** Catalogue number 3322142 11401; supplied with directions for use with each tube.

- Luminance is measured with a photocell, of which the spectral response curve is identical to that of the human eye, on a 312 -lines raster with dimensions $70 \mathrm{~mm} \times 70 \mathrm{~mm}$.

X-radiation limit curves, at a constant anode current of $250 \mu \mathrm{~A}$, measured according to TEPAC103A.

$0,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curves, measured according to TEPAC103A.

Product safety

X-ray shielding of the cone is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 14 kV .

FLASHOVER PROTECTION

With the high voltage used with this tube internal flashovers may occur. These may destroy the cathode of the tube. Therefore it is necessary to provide protective circuits, using spark gaps. The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.

MONITOR TUBES

- 17 cm diagonal rectangular flat face
- 70° deflection angle
- high resolution
- quick heating cathode
- bonded face plate
- metal band for mounting
- M17-143WE: for use in precision monitors and as a viewfinder in television cameras M17-145WE: for use in photographic equipment (see Optical Data)

QUICK REFERENCE DATA

Deflection angle, diagonal	700
Face diagonal	17 cm
Neck diameter	28 mm
Overall length	$\max .240 \mathrm{~mm}$
Screen dimensions	$\min .124 \mathrm{~mm} \times 93 \mathrm{~mm}$
Resolution	$\min .1050$ lines

ELECTRICAL DATA

Capacitances
final accelerator to metal band
final accelerator to external conductive coating
cathode to all other elements
grid 1 to all other elements
Focusing method
Deflection method
Deflection angle, diagonal
Heating
heater voltage
heater current
Heating time to attain 10% of the cathode current at equilibrium conditions

OPTICAL DATA

Screen
Phosphor type
fluorescent colour
persistence
Useful screen dimensions
diagonal
horizontal axis
vertical axis
Light transmission of screen

$\mathrm{C}_{\mathrm{g} 3, \mathrm{~g} 5(\mathrm{l})} / \mathrm{m}^{\prime}$	135 pF
$\mathrm{G}_{\mathrm{g} 3, \mathrm{~g} 5(\ell) / \mathrm{m}}$	240 pF
C_{k}	$3,6 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	7 pF

electrostatic
magnetic*
70°
indirect by a.c. or d.c.**
$\mathrm{V}_{\mathrm{f}} \quad 6,3 \mathrm{~V}$
$I_{f} \quad 240 \mathrm{~mA}$
approx.
5 s
metal-backed phosphor
WE ${ }^{\wedge}$
white
medium short
$\min .155$ min.
$\min .124 \mathrm{~min}$.
$\min .93 \mathrm{~min}$.
approx. 88\%

Note: The M17-145WE has an improved screen blemish specification, to meet the extreme requirements of photographic recording equipment.

* To obtain the best tube performance, deflection unit AT1071/07 should be used.
** Not to be connected in series with other tubes.
4 Other phosphors available to special order.

MECHANICAL DATA (see also the figures on the next page)

Overall length

Neck diameter
Base
Final accelerator contact
Implosion protection
Net mass
$232 \pm 8 \mathrm{~mm}$
$\mathrm{min} .27,8 \mathrm{~mm}$
neo eightar, B 8 H ; IEC 67-I-31a
cavity contact, CT8; IEC 67-III-2
bonded face plate
approx. 1 kg

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone.

Accessories

Final accelerator contact connector
55563 A

detail
(1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
(2) The maximum dimension is determined by the reference line gauge.

Reference line gauge

RECOMMENDED OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Cut-off voltage for visual extinction of focused spot

$V_{g 3, g 5}(\ell)$	14	16 kV
$V_{g 4}$	0 to 400^{*}	0 to $400 \mathrm{~V}^{*}$
$V_{g 2}$	400	600 V
$-V_{g 1}$	30 to 62	40 to 90 V

RESOLUTION

Resolution at screen centre, measured with shrinking raster method (non-interlaced raster), and with beam centring magnet**

$$
\begin{array}{lll}
\text { at } V_{\mathrm{g} 3}, \mathrm{~g} 5(\ell) & =14 \mathrm{kV}, \mathrm{~V}_{\mathrm{g} 2}=400 \mathrm{~V}, \\
I_{\ell}=20 \mu \mathrm{~A}, \text { luminance }=400 \mathrm{~cd} / / \mathrm{m}^{2} & \mathrm{~min} . & 1050 \text { lines } \\
\text { at } \mathrm{V}_{\mathrm{g} 3, g 5(\ell)}=16 \mathrm{kV}, \mathrm{~V}_{\mathrm{g} 2}=600 \mathrm{~V}, & & \\
I_{\ell}=20 \mu \mathrm{~A}, \text { luminance }=500 \mathrm{~cd} / \mathrm{m}^{2} \Delta & \mathrm{~min} . & 1250 \text { lines }
\end{array}
$$

LIMITING VALUES
Final accelerator voltage

Focusing electrode voltage

First accelerator voltage

$V_{g 3, g 5}(\ell)$	max. \min.	$\begin{aligned} & 18 \mathrm{kV} \\ & 12 \mathrm{kV} \end{aligned}$
Vg4	max.	1 kV
$-\mathrm{V}_{\mathrm{g} 4}$	max.	$0,5 \mathrm{kV}$
$\mathrm{V}_{\mathrm{g} 2}$	max. \min.	$\begin{aligned} & 800 \mathrm{~V} \\ & 300 \mathrm{~V} \end{aligned}$
$-V_{g 1}$	max.	150 V
$V_{\mathrm{g} 1}$	max.	0 V
$V_{g 1 p}$	max.	2 V
$V_{k f}$	max.	125 V
$-V_{k f}$	max.	125 V

* For optimum focus at a beam current of $50 \mu \mathrm{~A}$.
** Catalogue number 3322142 11401; supplied with directions for use with each tube.
- Luminance is measured with a photocell, of which the spectral response curve is identical to that of the human eye, on a 312 -lines raster with dimensions $70 \mathrm{~mm} \times 70 \mathrm{~mm}$.

X-RADIATION LIMIT

X-radiation limit curves, at a constant anode current of $250 \mu \mathrm{~A}$, measured according to TEPAC103A.

$0,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curves, measured according to TEPAC103A.

Product safety

X-ray shielding of the cone is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 14 kV .

FLASHOVER PROTECTION

With the high voltage used with this tube internal flashovers may occur. These may destroy the cathode of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.

MONITOR TUBE

The M24-100W is a 24 cm -diagonal rectangular television tube with metal-backed screen primarily intended for use as a monitor or display tube.

QUICK REFERENCE DATA	
Deflection angle	90°
Focusing	electrostatic
Resolution	900 lines
Overall lengti	$\max .260 \mathrm{~mm}$

SCREEN

Metal-backed phosphor
Luminescence

Light transmission of face glass	52	$\%$
Useful diagonal	\min.	225
Useful width	\min.	mm
Useful height	\min.	mm

HEATING

Indirect by a.c. or d.c.; parallel supply

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	300	mA

CAPACITANCES

Final accelerator to external conductive coating

Cathode to all other elements
Control grid to all other elements
$\mathrm{C}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell) / \mathrm{m}}$
C_{k}
$\mathrm{C}_{\mathrm{g}_{1}}$

420 pF
5
pF
7
pF
FOCUSING
electrostatic
For focusing voltage providing optimum focus at a beam current of $100 \mu \mathrm{~A}$ see under
"Typical operating conditions".

DEFLECTION ${ }^{3}$)
Diagonal deflection angle
magnetic
90°
Dimensions in mm

MECHANICAL DATA

4)

[^47]
MECHANICAL DATA (continued)

Mounting position : any, except vertical with the screen downward and the axis of the tube making an angle of less than 20° with the vertical.

Base

Cavity contact
Accessories
Socket
Final accelerator contact connector

Neo eightar (B8H)

CT8

$$
\begin{aligned}
& 242250106001 \\
& \text { type } 55563 \mathrm{~A}
\end{aligned}
$$

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe). Adjustment of the centring magnet should not be such that a general reduction in brightness or shading of the raster occurs.

NOTES

1) The reference line is determined by the plane of the upper edge of the of the flange of reference line gauge when the gauge is resting on the cone.
${ }^{2}$) The maximum dimension is determined by the reference line gauge.
${ }^{3}$) Deflection coil AT1071/03 is recommended. If another coil is considered, it is advisable to contact the local tube supplier.
${ }^{4}$) The bulge at the spliceline seal may increase the indicated maximum values for envelope width, diagonal and height by not more than $6,4 \mathrm{~mm}$, but at any point around the seal the bulge will not protrude more than $3,2 \mathrm{~mm}$ beyond the envelope surface.

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage

$\mathrm{V}_{3}, \mathrm{~g}_{5}(\ell)$			l 6	kV
V_{4}	0	to	400	V
$\mathrm{~V}_{2}$			600	V
$\mathrm{~V}_{\mathrm{g}}$	-32	to	-85	V

RESOLUTION

Resolution at screen centre measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, at a beam current of $50 \mu \mathrm{~A}\left(200 \mathrm{~cd} / \mathrm{m}^{2}=200 \mathrm{nit}\right)$ The resolution can be improved by the use of beam centring magnet catalogue number 3322142 11401, supplied on request.

900 lines
LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell)}$	max. min.	18 10	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}}^{4}$	max.	1	kV
	$-\mathrm{V}_{\mathrm{g}}^{4}$	\max.	0,5	kV
First accelerator voltage	V_{g}	max. \min.	800 300	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Grid no. 1 voltage, negative		max.	150	V
positive	V_{g}	max.	0	V
positive peak	$\mathrm{V}_{\mathrm{g}}^{\mathrm{p}} \mathrm{l}$	max.	2	V
Cathode to heater voltage, positive	V_{kf}	max.	250	V
positive peak	$\mathrm{V}_{\mathrm{kf}}{ }_{\mathrm{p}}$	max.	300	V 1)
negative	$-\mathrm{V}_{\mathrm{kf}} \mathrm{p}$	max.	135	V
negative peak	-Vkfp	max.	180	V

REFERENCE LINE GAUGE

[^48]
MONITOR TUBE

The M24-101W is a 24 cm -diagonal rectangular television tube with integral protection primarily intended for use as a monitor or display tube.

QUICK REFERENCE DATA				
Deflection angle		90°		
Focusing		electrostatic		
Resolution	\leq	900		
Overall length		260		

SCREEN

Metal backed phosphor
Luminescence white
Light transmission of face glass
Useful diagonal
Useful width
$52 \quad \%$

Useful height
≥ 190
mm
$\geq \quad 140$
mm

HEATING

Indirect by a.c. or d.c.; parallel supply
Heater voltage
Heater current

FOCUSING

V_{f}	6,3	V
I_{f}	300	mA

For focusing voltage providing optimum focus at a beam current of $100 \mu \mathrm{~A}$ see under "Typical operating conditions".

DEFLECTION

 magneticDiagonal deflection angle
90°
Horizontal deflection angle
80°
Vertical deflection angle 65°

Deflection coil AT1071/03 is recommended.

MECHANICAL DATA
Dimensions in mm

Notes see page 350.

Notes see next page.

MECHANICAL DATA (continued)

Mounting position : any

Base
Cavity contact
Accessories
Socket

Neo eightar (B8H), IEC 67-I-31a
CT8, IEC67-III-2

242250106001

Final accelerator contact connector

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe). Adjustment of the centring magnet should not cause a general reduction in brightness or shading of the raster.

NOTES TO OUTLINE DRAWINGS

${ }^{1}$) The reference line is determined by the plane of the upper edge of the flange of the reference line gauge with the gauge resting on the cone.
2) The maximum dimension is determined by the reference line gauge.
${ }^{3}$) This tube has an external conductive coating (m), which must be earthed.
The capacitance of this coating to the final accelerator is used for smoothing the EHT. The tube marking and warning labels are on the side of the cone opposite the final accelerator contact, and this side should not be used for making contact to the conductive coating.
4) This area must be kept clean.
5) Minimum space to be reserved for mounting lugs.
6) The mounting screws in the cabinet must be situated within a circle with a diameter of 4 mm drawn around the true geometrical position (corners of a rectangle of $207,4 \mathrm{~mm}$ $\mathrm{x} 158,5 \mathrm{~mm}$).
${ }^{7}$) The maximum displacement of any lug with respect to the plane through the other three lugs is 2 mm .
8) The metal rim-band must be earthed. The hole of $2,5 \mathrm{~mm}$ diameter in each lug is provided for this purpose.
${ }^{9}$) The bulge at the spliceline seal may increase the indicated maximum values for envelope width, diagonal and height by not more than $6,4 \mathrm{~mm}$, but at any point around the seal the bulge will not protrude more than $3,2 \mathrm{~mm}$ beyond the envelope surface.

CAPACITANCES

Final accelerator to external conductive coating

Final accelerator to metal band
Cathode to all other elements
Control grid to all other elements

$\mathrm{C}_{\mathrm{g}_{3}}, \mathrm{~g}_{5}(\ell) / \mathrm{m}$	420	pF
$\mathrm{C}_{\mathrm{g} 3}, \mathrm{~g}_{5}(\ell) / \mathrm{m}^{\prime}$	200	pF
C_{k}	5	pF
$\mathrm{C}_{\mathrm{g} 1}$	7	pF

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	$\mathrm{Vg}_{3}, \mathrm{~g}_{5}(\ell)$			16	kV
Focusing electrode voltage	Vg_{4}	0	to	400	V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$			600	V
Grid 1 voltage for extinction of focused raster	V_{g}	-32	to	-85	V

RESOLUTION

Resolution at screen centre measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, and at a beam current of $50 \mu \mathrm{~A}$: 900 lines (luminance $\approx 200 \mathrm{~cd} / \mathrm{m}^{2}$).
If necessary, the picture quality can be improved by using a beam centring magnet. This magnet, catalogue number 332214211401 , can be supplied on request.

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{3}, \mathrm{~g}_{5}(\ell)$	\max. \min.	18 10	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
Focusing electrode voltage, positive negative	$\begin{aligned} & \mathrm{V}_{\mathrm{g}_{4}} \\ & -\mathrm{V}_{4} \end{aligned}$	\max. \max.	$\begin{array}{r} 1000 \\ 500 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	\max. \min.	$\begin{aligned} & 800 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Grid 1 voltage, negative positive positive peak	$\begin{aligned} & -\mathrm{V}_{\mathrm{g}_{1}} \\ & \mathrm{~V}_{\mathrm{g}_{1}} \\ & \mathrm{~V}_{\mathrm{g} 1_{\mathrm{p}}} \end{aligned}$	\max. max. max.	150 0 2	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Cathode to heater voltage, positive positive peak negative negative peak	V_{kf} V_{kf} $-\mathrm{V}_{\mathrm{kf}}$ $-\mathrm{V}_{\mathrm{kf}}$	\max. \max. \max. max.	$\begin{aligned} & 250 \\ & 300 \\ & 135 \\ & 180 \end{aligned}$	$\begin{array}{lr} \mathrm{V} & \\ \mathrm{~V} & 1 \\ \mathrm{~V} & \\ \mathrm{~V} & \end{array}$

[^49]

MONITOR TUBE

The M31-130W is a 31 cm -diagonal rectangular television tube with metal-backed screen primarily intended for use as a monitor or display tube.

	QUICK REFERENCE DATA		
Deflection angle		90°	
Focusing		electrostatic	
Resolution	900	lines	
Overall length	max.	310	mm

SCREEN

Metal-backed phosphor
Luminescence white
Light transmission of face glass
approx. 50 \%
Useful diagonal
min. 295 mm
Useful width
min. 257 mm
Useful height
min. 195 mm

HEATING

Indirect by a.c. or d.c.; parallel supply
Heater voltage
Heater current

V_{f}	6,3	V
I_{f}	300	mA

FOCUSING

electrostatic
For focusing voltage providing optimum focus at a beam current of $100 \mu \mathrm{~A}$ see under "Typical operating conditions".

DEFLECTION

magnetic
Diagonal deflection angle
90°
Deflection coil AT1071/03 is recommended.

MECHANICAL DATA (continued)

Mounting position: any, except vertical with the screen down and the axis of the tube making an angle of less than 20° with the vertical.

Base
Cavity contact
Accessories
Socket
Final accelerator contact connector

CAPACITANCES

Final accelerator to external conductive coating
Cathode to all other elements
Control grid to all other elements

Neo eightar (B8H), IEC67-I-31a
CT8, IEC67-III-2

242250106001
type 55563A

$\mathrm{C}_{\mathrm{g} 3}, \mathrm{~g} 5(\ell) / \mathrm{m}$	1100	pF
C_{k}	5	pF
C_{g}	7	pF

[^50]
TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage

$\mathrm{V}_{\mathrm{g} 3, \mathrm{~g} 5(\ell)}$	16	kV
V_{4}	0 to 400	V
$\mathrm{~V}_{\mathrm{g} 2}$	600	V

Grid no. 1 voltage for extinction of focused raster
$\mathrm{V}_{\mathrm{g}_{1}} \quad-32$ to $-85 \quad \mathrm{~V}$

RESOLUTION

Resolution at screen centre measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, and at a beam current of $50 \mu \mathrm{~A}$: 900 lines The resolution can be improved by the use of beam centring magnet, catalogue number 3322142 11401, supplied on request.
LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{Vg}_{3}, \mathrm{~g}_{5}(\ell)$	max. min.	18	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
Focusing electrode voltage, positive	$\begin{array}{r} \mathrm{V}_{\mathrm{g}} \\ -\mathrm{V}_{\mathrm{g}_{4}} \end{array}$	max. max.	$\begin{array}{r} 1000 \\ 500 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
First accelerator voltage	V_{g}	max. min.	$\begin{aligned} & 800 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Grid no. 1 voltage, negative positive positive peak	$\begin{gathered} -\mathrm{V}_{\mathrm{g}_{1}} \\ \mathrm{~V}_{\mathrm{g}_{1}} \\ \mathrm{~V}_{\mathrm{g}_{\mathrm{p}}} \end{gathered}$	\max. max. \max.	150 0 2	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Cathode to heater voltage, positive positive peak negative	$\begin{aligned} & \mathrm{V}_{\mathrm{kf}} \\ & \mathrm{~V}_{\mathrm{kf}} \mathrm{p} \\ &- \mathrm{V}_{\mathrm{kf}} \\ &- \mathrm{V}_{\mathrm{kf}} \end{aligned}$	max. max. max. max.	$\begin{aligned} & 250 \\ & 300 \\ & 135 \\ & 180 \end{aligned}$	$\begin{array}{lr} \mathrm{V} & \\ \mathrm{~V} & 1) \\ \mathrm{V} & \\ \mathrm{~V} & \end{array}$

[^51]
MONITOR TUBE

The M31-131W is a 31 cm -diagonal rertangular television tube with integral protection primarily intended for use as a monitor or display tube.

	QUICK REFERENCE DATA		
Deflection angle		90°	
Focusing		electrostatic	
Resolution	\leq	900	lines
Overall length			mm

SCREEN

Metal backed phosphor
Luminescence
white
Light transmission of face glass

approx.	50	$\%$
\geq	295	mm
\geq	257	mm
\geq	195	mm

HEATING

Indirect by a.c. or d.c.; parallel supply
Heater voltage
Heater current

V_{f}	6,3	V
I_{f}	300	mA

FOCUSING

electrostatic

For focusing voltage providing optimum focus at a beam current of $100 \mu \mathrm{~A}$ see urider 'Typical operating conditions".

DEFLECTION

 magneticDiagonal deflection angle
Deflection coil AT1071/03 is recommended.

MECHANICAL DATA
Dimensions in mm

MECHANICAL DATA (continued)

See "Notes to outline drawings".

MECHANICAL DATA (contimued)
Mounting position : any
Base
Cavity contact
Neo eightar (B8H), IEC 67-I-3la
CT8, IEC 67-III-2
Accessories
Socket
242250106001
Final accelerator contact connector
type 55563A

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe). Adjustment of the centring magnet should not cause a general reduction in brightness or shading the raster.

NOTES TO OUTLINE DRAWINGS

1) The reference line is determined by the plane of the upper edge of the flange of the reference line gauge with the gauge resting on the cone.
2) The maximum dimension is determined by the reference line gauge.
3) This tube has a external conductive coating (m), which must be earthed.

The capacitance of this coating to the final accelerator is used for smoothing the EHT. The tube marking and warning labels are on the side of the cone opposite the final accelerator contact, and this side should not be used for making contact to the conductive coating.
4) This area must be kept clean.
5) Minimum space to be reserved for mounting lugs.
6) The mounting screws in the cabinet must be situated within a circle with a diameter of 6 mm drawn around the true geometrical position (corners of a rectangle of $267,5 \mathrm{~mm}$ x 204, 4 mm).
7) The maximum displacement of any lug, with respect to the plane through the other three lugs is 2 mm .
8) The metal rim-band must be earthed. For this purpose the band is provided with a tag.
9) The bulge of the spliceline seal may increase the indicated maximum values for envelope width, diagonal, and height by not more than $6,4 \mathrm{~mm}$, but at any point around the seal the bulge will not protrude more than $3,2 \mathrm{~mm}$ beyond the envelope surface.

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal band
Cathode to all other elements
Control grid to all other elements

$\mathrm{C}_{\mathrm{g} 3}, \mathrm{~g}_{5}(\ell) / \mathrm{m}$	1200	pF
$\mathrm{C}_{\mathrm{g}_{3}}, \mathrm{~g}_{5}(\ell) / \mathrm{m}$	150	pF
C_{k}		5
Cg_{1}	pF	
C_{1}	7	pF

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	$\mathrm{V}_{3}, \mathrm{~g}_{5}(\ell)$		16	kV	
Focusing electrode voltage	V_{4}	0	to	400	V
First accelerator voltage	Vg_{2}			600	V
Grid 1 voltage for extinction of focused raster	$\mathrm{V}_{\mathrm{g}_{1}}$	-32	to	-85	V

RESOLUTION

Resolution at screen centre measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, and at a beam current of $50 \mu \mathrm{~A}$: 900 lines

If necessary, the picture quality can be improved by using a beam centring magnet.
This magnet, catalogue number 332214211401 , can be supplied on request.

LIMITING VALUES (Absolute max. rating system)				
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}, \mathrm{g}_{5}(\ell)$	max. min.	18 10	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
Focusing electrode voltage, $\begin{aligned} & \text { positive } \\ & \text { negative }\end{aligned}$	V_{4}	max.	1000	V
	$-\mathrm{Vg}_{4}$	max.	500	V
	V	max.	800	V
	g	min.	300	V
Grid voltage, $\begin{aligned} & \text { negative } \\ & \text { positive } \\ & \text { positive peak }\end{aligned}$	$-\mathrm{V}_{1}$	max.	150	V
	V_{g}	max.	0	V
	$\mathrm{V}_{\mathrm{glp}}$	max.	2	V
Cathode to heater voltage, $\begin{aligned} & \text { positive } \\ & \text { positive peak } \\ & \\ & \\ & \text { negative } \\ & \\ & \text { negative peak }\end{aligned}$	V_{kf}	max.	250	V
	V_{kf}	max.	300	
	$-\mathrm{V}_{\mathrm{kf}}^{\mathrm{p}}$	max.	135	V^{1})
	$-\mathrm{V}_{\mathrm{kf}}{ }_{\mathrm{p}}$	max.	180	V

[^52]

MONITOR TUBE

The M38-120W is a 38 cm -diagonal rectangular television tube with metal backed screcn and integral protection primarily intended for use as a monitor tube.
On request this tube can also be supplied with a WA screen phosphor.

	QUICK REFERENCE DATA		
Deflection angle	110°		
Focusing		electrostatic	
Resolution	min. 650	lines	
Overall length	$\max .279,5$	mm	

SCREEN

Metal backed phosphor

Luminescence
Light transmission of face glass
Useful diagonal
Useful width
Useful height

HEATING

Indirect by a.c. or d.c.; parallel or series supply
Heater voltage
Heater current

FOCUSING

white

50	$\%$
$\min .350$	mm
$\min .290$	mm
$\min .226$	mm

$\begin{array}{lll}\mathrm{V}_{\mathrm{f}} & 6,3 & \mathrm{~V}\end{array}$
$I_{f} \quad 300 \quad \mathrm{~mA}$ electrostatic

For focusing voltage providing optimum focus at screen centre at a beam current of $100 \mu \mathrm{~A}$ see under 'Typical operating conditions".

DEFLECTION

Diagonal deflection angle magnetic

Horizontal deflection angle
110°

Vertical deflection angle
93°

Deflection coil AT1038/40A or AT1039/. . is recommended.

MECHANICAL DATA (continued)

Mounting position: any

Base

Cavity contact
Accessories
Final accelerator contact connector Socket

Neo eightar (B8H), IEC67-I-3la
CT8, IEC67-III-2
type 55563A
242250106001

NOTES TO OUTLINE DRAWING

${ }^{1)}$ The reference line is determined by the plane of the upper edge of the flange of reference line gauge, (JEDEC 126) when the gauge is resting on the cone.
2) End of guaranteed contour. The maximum neck and cone contour is given by the Reference line gauge.
3) Bulge at splice-line seal may increase the indicated maximum value for envelope width, diagonal and height by not more than $6,4 \mathrm{~mm}$, but at any point around the seal, the bulge will not protrude more than $3,2 \mathrm{~mm}$ beyond the envelope surface at the location specified for dimensioning the envelope width, diagonal and height.
${ }^{4}$) The tube should be supported on both sides of the bulge. The mechanism used should provide clearance for the maximum dimensions of the bulge.
${ }^{5}$) The maximum dimension is determined by the reference line gauge

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 oersted). Adjustment of the centring magnet should not be such that a general reduction in brightness or shading of the raster occurs.

CAPACITANCE

Control grid to all other elements
Cathode to all other elements
Final accelerator to external conductive coating

C_{1}	6,0	pF
C_{k}	5,0	pF
$\mathrm{C}_{\mathrm{g}_{3}, \mathrm{~g}_{5}(\ell) / \mathrm{m}}$	600	pF

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid No. 1 voltage for visual
extinction of a focused raster

$\mathrm{V}_{\mathrm{g} 3}, \mathrm{~g}_{5}(\ell)$	16	kV
V_{4}	0 to 400	$\left.\mathrm{~V}^{\mathrm{l}}\right)$
$\mathrm{V}_{\mathrm{g} 2}$	400	V
$-\mathrm{V}_{\mathrm{g}}$	40 to 85	V

RESOLUTION

Resolution at screen centre, measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, a beam current of $100 \mu \mathrm{~A}$, and focusing voltage adjusted for optimum spot size min. 650 lines

LIMITING VALUES (Absolute max. rating system)
Voltages are specified with respect to cathode unless otherwise stated.

Final accelerator voltage	$\mathrm{V}_{3}, \mathrm{~g}_{5}(\ell)$	max. min.	$\begin{aligned} & 18 \\ & 13 \end{aligned}$	kV
Focusing electrode voltage	$\begin{array}{r} \mathrm{V}_{\mathrm{g}_{4}} \\ -\mathrm{V}_{\mathrm{g}} \end{array}$	\max. \max.	$\begin{aligned} & 1 \\ & 0,5 \end{aligned}$	kV
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	\max. min.	$\begin{aligned} & 550 \\ & 350 \end{aligned}$	V
Control grid voltage, negative positive positive peak	$\begin{array}{r} -\mathrm{V}_{\mathrm{g}_{1}} \\ \mathrm{~V}_{\mathrm{g}_{1}} \\ \mathrm{~V}_{\mathrm{g}_{\mathrm{p}}} \end{array}$	\max. \max. \max.	$\begin{array}{r} 150 \\ 0 \\ 2 \end{array}$	V V V
$\begin{aligned} & \text { Cathode to heater voltage, } \text { positive } \\ & \text { positive peak }\end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{kf}} \\ & \mathrm{~V}_{\mathrm{kf}} \end{aligned}$	\max. \max.	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	V
negative negative peak	$\begin{aligned} & -\mathrm{V}_{\mathrm{kf}} \\ & -\mathrm{V}_{\mathrm{kf}}^{\mathrm{p}} \end{aligned}$	\max. \max.	$\begin{aligned} & 135 \\ & 180 \end{aligned}$	V

[^53]
CIRCUIT DESIGN VALUES

Focusing electrod• current, positive
negative
Grid no. 2 current, positive
negative

$\mathrm{I}_{\mathrm{g}_{4}}$	max.	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g}_{4}}$	max.	25	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g}_{2}}$	max.	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g}_{2}}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater	R_{kf}	max.	1	$\mathrm{M} \Omega$
Impedance between cathode and heater $(\mathrm{f}=50 \mathrm{~Hz})$	Z_{kf}	\max.	500	$\mathrm{k} \Omega$
Resistance between grid no. 1 and earth	R_{g}		max.	1,5
Impedance between cathode and earth $(\mathrm{f}=50 \mathrm{~Hz})$	Z_{k}	max.	100	$\mathrm{M} \Omega$

WARNING

X-ray shielding is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 16 kV .

EXTERNAL CONDUCTIVE COATING

This tube has an external conductive coating (m), which must be earthed and capacitance of this to the final electrode is used to provide smoothing for the EHT supply. The tube marking and warning labels are on the side of the cone opposite the final electrode connector and this side should not be used for making contact to the external conductive coating.

REFERENCE LINE GAUGE

Dimensions in mm
JEDEC 126

REMARK

With the high voltage used with this tube internal flash-overs may occur. These may destroy the cathode of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible. On request the tube can be supplied with spark traps mounted in the base (ring trap base).

MONITOR TUBE

The M38-121 is a 38 cm -diagonal rectangular television tube with metai backed screen and integral protection primarily intended for use as a monitor or display tube.

	QUICK REFERENCE DATA	
Deflection angle	110°	
Focusing	electrostatic	
Resolution	min. 650	lines
Overall length	max. 279,5	mm

SCREEN

Metal backed phosphor
Luminescence white
Light transmission of face glass 50
Useful diagonal min. 350 mm
Useful width
min. 290 mm
Useful height
min. 226
mm

HEATING

Indirect by a.c. or d. c. ; parallel or series supply
Heater voltage
Heater current

V_{f}	6,3	V
I_{f}	300	mA

FOCUSING

electrostatic

For focusing voltage providing optimum focus at screen centre at a beam current of $100 \mu \mathrm{~A}$ see under "Typical operating conditions".

DEFLECTION

magnetic
Diagonal deflection angle
110°
Horizontal deflection angle
93°
Vertical deflection angle 76°
Deflection coil AT1038/40A or AT1039/. . is recommended.

MECHANICAL DATA (continued)
Dimensions in mm

MECHANICAL DATA (continued)

Mounting position: any

Base

Cavity contact
Accessories

Socket

Final accelerator contact connector

Neo eightar (B8H), IEC67-I-3la

CT8, IEC67-III-2

242250106001
type 55563

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe). Adjustment of the centring magnet should not cause a general reduction in brightness or shading of the raster.

NOTES TO OUTLINE DRAWING

${ }^{1}$) The reference line is determined by the plane of the upper edge of the flange of the reference line gauge, (JEDEC 126) when the gauge is resting on the cone.
${ }^{2}$) End of guaranteed contour. The maximum neck and cone countour is given by the reference line gauge.
${ }^{3}$) The maximum dimension is given by the reference line gauge.
${ }^{4}$) This area must be kept clean.
${ }^{5}$) Minimum space to the reserved for mounting lugs.
6) The mounting screws in the cabinet must be situated within a circle with a diameter of $7,5 \mathrm{~mm}$ drawn around the true geometrical positions (corners of a rectangle of $327 \mathrm{~mm} \times 247,7 \mathrm{~mm}$).
${ }^{7}$) The maximum displacement of any lug with respect to the plane trough the other three lugs is 2 mm .
${ }^{8}$) The metal rimband must be earthed. Holes of 3 mm diameter in each lug are provided for this purpose.
9) The bulge at the pliceline seal may increase the indicated maximum value for envelope width, diagonal and height by not more than $6,4 \mathrm{~mm}$, but at any point around the seal the bulge will not protrude more than $3,2 \mathrm{~mm}$ beyond the envelope surface.

CAPACITANCES

Final accelerator to external
conductive coating
Final accelerator to metal band
Cathode to all other elements
Control grid to all other elements

$\mathrm{C}_{\mathrm{g} 3, \mathrm{~g} 5(\ell) / \mathrm{m}}$	450 to 650	pF
$\mathrm{C}_{\mathrm{g} 3, \mathrm{~g}} 58 \ell 9 / \mathrm{m}^{\prime}$	240	pF
C_{k}	5	pF
$\mathrm{C}_{\mathrm{g} 1}$	6	pF

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Grid No. 1 voltage for visual
extinction of a focused raster

RESOLUTION

Resolution at screen centre, measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, a beam current of $100 \mu \mathrm{~A}$, and focusing voltage adjusted for optimum spot size
min. 650 line
LIMITING VALUES (Absolute max. rating system)
Voltages are specified with respect to cathode unless otherwise stated.

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 3, \mathrm{~g} 5(\ell)}$	$\begin{array}{ll} \max . & 18 \\ \min . & 13 \end{array}$	kV kV
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}} 4$	$\max .1000$	V
	$-V_{g 4}$	$\max .500$	V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	max. 550	V
	g2	min. 350	V
Control grid voltage, negative positive positive peak	$-\mathrm{V}_{\mathrm{gl}}$	max. 150	V
	$\mathrm{V}_{\mathrm{gl} 1}$	max. 0	V
	$\mathrm{V}_{\mathrm{glp}}^{\mathrm{gl}}$	\max. 2	V
Cathode to heater voltage, $\begin{aligned} & \text { positive } \\ & \text { positive peak } \\ & \text { negative } \\ & \text { negative peak }\end{aligned}$	V_{kf}	max. 250	V
	$\mathrm{V}_{\mathrm{kfp}}$	max. 300	V
	$-\mathrm{V}_{\mathrm{kf}}$	max. 135	V
	$-\mathrm{V}_{\mathrm{kfp}}$	max. 180	V

[^54]
CIRCUIT DESIGN VALUES

Focusing electrode current, positive negative

I_{g}	\max.	25	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g}}$	\max.	25	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$
$-\mathrm{I}_{\mathrm{g} 2}$	\max.	5	$\mu \mathrm{~A}$

MAXIMUM CIRCUIT VALUES

Resistance between cathode and heater	$R_{k f}$	\max.	1	$M \Omega$
Impedance between cathode and heater $(\mathrm{f}=50 \mathrm{~Hz})$	Z_{kf}	$\operatorname{max.}$	500	$\mathrm{k} \Omega$
Resistance between grid no. 1 and earth		R_{gl}	$\operatorname{max.}$	1,5
Impedance between cathode and earth	Z_{k}	\max.	100	$\mathrm{k} \Omega$

WARNING

X-ray shielding is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 16 kV .

EXTERNAL CONDUCTIVE COATING

This tube has an external conductive coating (m), wich must be earthed and capacitance of this to the final electrode is used to provide smoothing for the EHT supply. The tube marking and warning labels are on the side of the cone opposite the final electrode connector and this side should not be used for making contact to the external conductive coating.

REFERENCE LINE GAUGE

Dimensions in mm
JEDEC 126

REMARK

With the high voltage used with this tube internal flash -overs may occur. These may destroy the cathode of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.
The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.
On request the tube can be supplied with spark traps mounted in the base (ring trap base).

VERY HIGH RESOLUTION CATHODE-RAY TUBE

The M38-200 is a $38 \mathrm{~cm}, 70^{\circ}$ data graphic display tube with a resolution of more than 6,6 line pairs per mm (corresponding to 3000 TV lines). Used in conjunction with deflection unit AT1991 it is eminently suitable for full page document display.
The resolution easily meets the stringent requirements of the CCITT recommendations for digital group III, high resolution facsimile transmission, and those of graphic displays for computer-aided design.

Tubes with white (WA and WE) or green (GH) screen phosphors are standard; the WE phosphor is recommended for photographic applications. Other phosphors are available to special order. The tubes have a metal-backed screen and rim band for implosion protection.

QUICK REFERENCE DATA

Deflection angle	70°
Face diagonal	38 cm
Overall length	478 mm
Neck diameter	$36,8 \mathrm{~mm}$
Screen dimensions	$226 \mathrm{~mm} \times 291 \mathrm{~mm}$
Resolution	1728×2288 pixels* *

[^55]
ELECTRICAL DATA

Capacitances

cathode to all other electrodes
grid 1 to all other electrodes
final accelerator to external conductive coating
final accelerator to tension band
Focusing method
Deflection method
Deflection angle
Heating
heater voltage
heater current

OPTICAL DATA

Screen

```
Phosphor type
    fluorescent colour
    persistence
```


Screen dimensions

Minimum useful screen diagonal
Preferable useful scanning area
Reduction for A4 size ($297 \mathrm{~mm} \times 210 \mathrm{~mm}$)
Reduction for $11^{\prime \prime} \times 81 / 2^{\prime \prime}$ size ($279 \mathrm{~mm} \times 216 \mathrm{~mm}$)
Light transmission of screen
metal-backed phosphor

$\frac{G H}{\text { green }}$		WA	
white medium short		white medium	medium short

$226 \mathrm{~mm} \times 291 \mathrm{~mm}$
352 mm
$200 \mathrm{~mm} \times 270 \mathrm{~mm}$
9\%
7,4\%
approx. 50\%

* To obtain the best tube performance, deflection unit AT1991 should be used.
** Liable to be modified into 240 mA .

MECHANICAL DATA (see also the figures on the following pages)

Overall length
Neck diameter
Base
Final accelerator contact
Mounting position
Implosion protection
Net mass
Accessories
socket
final accelerator contact connector deflection unit
$478 \pm 6,5 \mathrm{~mm}$
$36,8 \pm 0,8 \mathrm{~mm}$
JEDEC B12-246
cavity contact, CT8; IEC 67-111-2
any
rim band
approx. 6 kg
type 55589
type 55563A
type AT1991

MECHANICAL DATA (continued)
Dimensions in mm

Fig. 1 a.

Fig. 1b.

Fig. 1c.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Notes

1. Minimum space to be reserved for mounting lugs.
2. The mounting screws in the cabinet must be situated within a circle with a diameter $7,5 \mathrm{~mm}$ drawn around the true geometrical positions (corners of a rectangle of $314,5 \mathrm{~mm} \times 247,6 \mathrm{~mm}$).

Reference line gauge, JEDEC 110

Fig. 8.
RECOMMENDED OPERATING CONDITIONS; voltages with respect to cathode
Final accelerator voltage
Focusing electrode voltage
$V_{g} 3, g 5$
18 kV

Dynamic focusing
$\mathrm{V}_{\mathrm{g} 4} \quad 5$ to 7 kV *

First accelerator voltage
Cut-off voltage for visual extinction of focused spot
Grid drive for $30 \mu \mathrm{~A}$ screen current
V_{d} approx. 20 V

RESOLUTION

With a beam current $\left(I_{\mathrm{a}}\right)$ of $30 \mu \mathrm{~A}$, the spot diameter at a brightness level of 50% is approx. $120 \mu \mathrm{~m}$ (see Fig. 9).

CIRCUIT DESIGN VALUES

Grid 4 current

positive negative	$\stackrel{\mathrm{I}_{\mathrm{g} 4}}{\mathrm{I}_{\mathrm{g} 4}}$	max. max.	$\begin{aligned} & 2,5 \mu \mathrm{~A} \\ & 2,5 \mu \mathrm{~A} \end{aligned}$
Grid 2 current positive negative	$\stackrel{\mathrm{I}}{\mathrm{g} 2}_{-\mathrm{I} 2}$	max. max.	$\begin{aligned} & 5 \mu \mathrm{~A} \\ & 5 \mu \mathrm{~A} \end{aligned}$

* For optimum focus at screen centre.
** To obtain optimum focus over the whole useful screen area, dynamic correction voltages should be applied in N-S and E-W directions; these voltages should be adjustable separately within the indicated range.

M38-200..

Fig. 9.

Fig. 10.

LIMITING VALUES (Absolute maximum rating system)
Voltages are specified with respect to cathode unless otherwise stated.
Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
Control grid voltage negative positive, non-repetitive
Cathode to heater voltage positive
positive peak
negative
negative peak

$V_{\mathrm{g} 3, \mathrm{~g} 5}(\ell)$	max.	20 kV
V ${ }_{\text {d }}$	\max.	8 kV
g4	min.	4 kV
$\mathrm{V}_{\mathrm{g} 2}$	max.	$1,2 \mathrm{kV}$
$-V_{g 1}$	max.	140 V
$V_{\mathrm{g} 1}$	max.	0 V
$V_{k f}$	max.	250 V
$V_{\text {kfp }}$	max.	300 V
$-V_{k f}$	max.	135 V
$-V_{k f p}$	max.	180 V

LIMITING CIRCUIT VALUES

Resistance between cathode and heater	$R_{k f}$	$\max . \quad 1 \mathrm{M} \Omega$
Impedance between cathode and heater $(f=50 \mathrm{~Hz})$	$Z_{k f}$	$\max .500 \mathrm{k} \Omega$
Grid 1 circuit resistance	$R_{g 1}$	$\max . \quad 1,5 \mathrm{M} \Omega$
Impedance between cathode and earth	Z_{k}	$\max .100 \mathrm{k} \Omega$

X-RADIATION

Radiation emitted will not exceed $0,5 \mathrm{mR} / \mathrm{h}$ throughout the useful life of the tube when operated within the given ratings.

FLASHOVER PROTECTION

With the high voltage used with this tube internal flashovers may occur. These may destroy the cathode of the tube. Therefore it is necessary to provide protective circuits, using spark gaps. The spark gaps must be connected as follows:

Fig. 11.
No other connections between the outer conductive coating and the chassis are permissible.

VERY HIGH RESOLUTION CATHODE-RAY TUBE/COIL ASSEMBLY

This tube/coil assembiy consists of the very high resolution tube M38-200 and the deflection unit AT1991; it is adjusted for astigmatism correction of the spot at the screen centre. For data see the data sheets of M38-200 and AT1991.

FLYING SPOT SCANNER TUBE

FLYING SPOT SCANNER TUBE

The Q13-110GU is a 13 cm diameter cathode-ray tube intended for flying spot applications.

	QUICK REFERENCE DATA	
Accelerator voltage	25 kV	
Deflection angle	40°	
Resolution	1000 lines	

SCREEN

Metal backed phosphor
Type : GU
Colour : white
Persistance : very short

Useful screen diameter
min. 108 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	300	mA

CAPACITANCES

Grid No. 1 to all other electrodes
Cathode to all other electrodes
Accelerator to outer conductive coating

C_{g}	6,5	pF
C_{k}	6,5	pF
$\mathrm{C}_{\mathrm{g}_{2}(\ell) / \mathrm{m}}$	250 to 450	pF

MECHANICAL DATA

Mounting position: any, except with screen downwards and the axis of the tube making an angle of less than 500 with the vertical.

Base Duodecal 7p.
${ }^{1}$) Reference line, determined by the plane of the upper edge of the reference line gauge when the gauge is resting on the cone.
${ }^{2}$) Insulating outer coating; should not be in close proximity to any metal part.
${ }^{3}$) Conductive outer coating; to be grounded.
4) Recessed cavity contact.
5) Spark trap; to be grounded.
6) The distance between the deflection centre and the reference line should not exceed 31 mm .
7) Distance between the centre of the magnetic length of the focusing unit and the reference line.

FOCUSING magnetic

DEFLECTION magnetic

REFERENCE LINE GAUGE

Dimensions in mmm

OPERATING CHARACTERISTICS

Accelerator voltage
Beam current
Negative grid No. 1 cut-off voltage

$\mathrm{V}_{\mathrm{g} 2}(\ell)$	25	kV
I_{ℓ}	50 to 150	$\mu \mathrm{~A}$
$-\mathrm{V}_{\mathrm{gl}}(\mathrm{I} \ell=0)$	50 to 100	V

Resolution at centre of screen better than 1000 lines

LIMITING VALUES (Absolute max. rating system)
Accelerator voltage

$$
\mathrm{Vg}_{2}(\ell)
$$

$\max .27 \mathrm{kV}$
\min. 20 kV
Grid No. 1 voltage, negative value positive value peak positive value
Cathode current
$-\mathrm{V}_{\mathrm{g}}$
$+\mathrm{V}_{\mathrm{g}}$
$+\mathrm{V}_{\mathrm{g}_{\mathrm{l}}}$
I_{k}

\max.	200	V
\max.	0	V
\max.	2	V
\max.	150	$\mu \mathrm{~A}$

Voltage between heater and cathode ${ }^{1}$)
cathode negative
cathode positive
peak value, cathode positive
External resistance between heater and cathode

External grid No. 1 resistance
External grid No. 1 impedance at a
frequency of 50 Hz
V_{kf} (kneg.) max. 125 V
V_{kf} (kpos.) max. 200 V
$\mathrm{V}_{\mathrm{kf}}^{\mathrm{p}}$ (kpos.) $\max .410 \quad \mathrm{~V}^{2}$)
$\mathrm{R}_{\mathrm{kf}} \quad \max .1 \mathrm{M} \Omega$
R_{g}
\max. $1.5 \mathrm{M} \Omega$
$\mathrm{Z}_{\mathrm{g}_{1}}(\mathrm{f}=50 \mathrm{~Hz}) \quad \max .0 .5 \mathrm{M} \Omega$

REMARKS

Measures should be taken for the beam current to be switched off immediately when one of the time-base circuits becomes defective.

An X-ray radiation shielding with an equivalent lead thickness of 0.5 mm is required to protect the observer.

[^56]

ACCESSORIES

DEFLECTION UNIT

QUICK REFERENCE DATA

Monitor tube diagonal neck diameter	$17 \mathrm{~cm}(7 \mathrm{in})$
Deflection angle	$28,6 \mathrm{~mm}$
Line deflection current, edge to edge at 15 kV	90°
Inductance of line coils	$7,6 \mathrm{~A}(\mathrm{p}-\mathrm{p})$
Field deflection current, edge to edge at 15 kV	$86,5 \mu \mathrm{H}$
Resistance of field coils (parallel connected)	$0,79 \mathrm{~A} \mathrm{(p-p)}$

APPLICATION

This deflection unit is for use with $17 \mathrm{~cm}(7 \mathrm{in}) 70^{\circ}$ monitor tube M17-142 in conjunction with:
line output transformer AT2102/02;
linearity control unit AT4036/00A;
line driver transformer AT4043/56.

DESCRIPTION

The saddle-shaped line deflection coils are moulded so that the deflection centre is well within the conical part of the monitor tube. The field deflection coils are wound on a Ferroxcube yoke ring which is flared so that the frame and line deflection centres coincide. Provisions are made for centring, and correction of pin-cushion distortion. The unit meets the self-extinguishing and non-dripping requirements of IEC 65.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the monitor tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the monitor tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position.

Fig. 1 Deflection unit AT1071/07. Facilities for fitting correction magnets:
(1) for plastic-bonded FXD magnet rods catalogue number 312210490360 ;
(2) for plastic-bonded FXD magnets, catalogue number 312210494120.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the connection diagram (Figs 2a and 2b).

ELECTRICAL DATA

Line deflection coils, parallel connected (Fig. 2a);
terminals 3 and 4
Inductance $\quad 86,5 \mu \mathrm{H}$
Resistance
$0,14 \Omega$
Field deflection coils, parallel or series connected (Fig. 2b);
terminals 1 and 2 for parallel connected coils (terminals
1 and 6 , and 2 and 5 to be interconnected); terminals
2 and 6 for series connected coils (terminals 1 and 5
to be interconnected)
Inductance (parallel connected coils) $\quad 10,4 \mathrm{mH}$
Inductance (series connected coils)
$41,6 \mathrm{mH}$
Resistance (parallel connected coils)
4,2 Ω
Resistance (series connected coils)
16,8 Ω
Maximum d.c. voltage between terminals of line and field coils
2000 V
Maximum operating temperature
$95{ }^{\circ} \mathrm{C}$

Fig. 2a Line coils.

Fig. 2b Field coils.

The beginning of the windings is indicated with \bullet
Sensitivity measured at an e.h.t. of 15 kV on a $17 \mathrm{~cm}(7 \mathrm{in}) 70^{\circ}$ reference tube.
Deflection current edge to edge
in line direction
in field direction (parallel connected coils)

7,6 A (p-p)
$0,79 \mathrm{~A}(p-p)$

Geometric distortion measured without correction and centring magnets on a $17 \mathrm{~cm}(7 \mathrm{in}) 70^{\circ}$ reference tube (dimensions in mm)
The spreads in raster geometry are tabulated below as deviations from the ideal rectangle at the points indicated. Cartesian coordinates are used to show the extent of deviation resolved along x and y areas. Points A, B, C, D, E are fixed and hence zero spreads.

Spreads (x, y) per point
F ($-0,5 \pm 2,0, \quad+1,0 \pm 1,5$)
$\mathrm{G}(+0,5 \pm 2,0, \quad+1,0 \pm 1,5)$
$H(-0,5 \pm 2,0,-1,0 \pm 1,5)$
$\mathrm{J}(+0,5 \pm 2,0,-1,0 \pm 1,5)$

Fig. 3.

CORRECTION FACILITIES

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously.
These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

Fig. 4.

For pin-cushion distortion

Pin-cushion distortion can be corrected by two Ferroxdure magnets with pole-shoebrackets, which have been mounted on the deflection unit. Limited correction of asymmetrical pin-cushion distortion can be-achieved by unequal movement of these magnets. The field strength can be adjusted by rotation of these magnets. To correct the top and bottom of the raster, two plastic-bonded Ferroxdure magnet rods* can be fitted (Fig. 1). To correct the corners of the raster, four plastic-bonded Ferroxdure magnets** (Fig. 1) can be fitted.

[^57]
DEFLECTION UNIT

- For use with very high resolution c.r.t. M38-200.

QUICK REFERENCE DATA

Associated c.r.t.	$38 \mathrm{~cm}(15 \mathrm{in})$
\quad diagonal	$36,8 \mathrm{~mm}$
neck diameter	70°
Deflection angle	$4,03 \mathrm{~A}$
Line deflection current, edge to edge, at 18 kV	$136,5 \mu \mathrm{H}$
Inductance of line coils, parallel connected	474 mA
Field deflection current, edge to edge, at 18 kV	$23,5 \Omega$
Resistance of field coils, series connected	

APPLICATION

This deflection unit is for use with $38 \mathrm{~cm}, 70^{\circ}$ cathode ray tube $\mathrm{M} 38-200$, neck diameter $36,8 \mathrm{~mm}$.

DESCRIPTION

The saddle-shaped line and field deflection coils are surrounded by a Ferroxcube yoke ring in such a way that the line and field deflection centres coincide. Provisions are made for centring correction, and astigmatism correction of the spot at the screen centre. The field coils have internal damping resistors. The unit has a non-magnetic metal clamping ring for fixing to the tube neck.
The deflection unit meets the self-extinguishing requirements of UL.

Fig. 1.
Tightening torque on clamping ring
Torque on centring magnets

1,3 to $1,5 \mathrm{Nm}$
35 to 250 mNm

Mounting

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.
The tube/coil combination is optimized for use in "portrait" scan mode, with line scan frequency up to $125 \mathrm{kHz} ; \mathrm{H}$.T. contact and top of the deflection unit upwards.
To orient the raster correctly, the unit may be manually rotated around the neck. The screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position.

ENVIRONMENTAL DATA

Maximum operating temperature (average copper temperature)	$95^{\circ} \mathrm{C}$
Storage temperature range	-25 to $+90^{\circ} \mathrm{C}$
Flame retardant	according to UL94, category V-1
Flammability	according to UL94, category V-1

ELECTRICAL DATA

Line deflection coils, parallel connected; terminals 3 and 4, and terminals 9 and 10 interconnected (Fig. 2)
inductance resistance
Line deflection current, for 225 mm scan, at 18 kV
$136,5 \mu \mathrm{H} \pm 4,5 \%$
$0,23 \Omega$
$5,9 \mathrm{~A} \pm 4 \%$
Field deflection coils, series connected; terminals 1 and 5 interconnected (Fig. 2)
inductance
23 mH
resistance
Field deflection current, for 290 mm scan, at 18 kV
Maximum voltage between line and field coils
$22,5 \Omega \pm 8 \%$
$650 \mathrm{~mA} \pm 3,5 \%$
2500 V (d.c.)

Fig. 2 Diagram of the coils. The beginning of the windings are indicated with \bullet.
Geometric distortion measured without centring magnets.

$$
\begin{aligned}
& \text { Fy: }+1,0_{-1,0}^{+1,0} \\
& F x:-1,0 \begin{array}{c}
+1,0 \\
-1,0
\end{array} \\
& \text { Gy: }+1,0+1,0 \\
& G x:+1,0_{-1,0}^{+1,0} \\
& \text { Jy : }-1,0 \begin{array}{r}
+1,0 \\
-1,0
\end{array} \\
& J x:+1,0_{-1,0}^{+1,0} \\
& H y:-1,0_{-1,0}^{+1,0} \quad H x:-1,0_{-1,0}^{+1,0}
\end{aligned}
$$

Fig. 3.

CENTRING CORRECTION

The eccentricity of the c.r.t. and the deflection unit can be corrected by two independently movable centring magnets, which are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The magnets must be adjusted so that the curvature of the horizontal and vertical axes disappears; in general the picture will be centred at the same time, otherwise this should be corrected electronically.

Fig. 4.

ASTIGMATISM CORRECTION

The astigmatism of the undeflected beam can be corrected by two independently movable quadripole magnets, which are placed next to the centring magnets. By turning the quadripole magnets with respect to each other the resulting four-pole field strength varies. The direction of the resulting four-pole field is adjusted by turning the quadripole magnets simultaneously. The astigmatism of the undeflected beam is examined during a slow variation of the focusing voltage; the beam is free of astigmatism when the size, and not the shape, of the beam changes when the focusing voltage is varied around its optimum (Figs 5 and 6).
0
a
0
b

c
$0 \quad 0$
b
0
c

Fig. 5 Beam with astigmatism.
Fig. 6 Beam free of astigmatism.
a. Focusing voltage <optimum value.
b. Focusing voltage at optimum value.
c. Focusing voltage $>$ optimum value.

MU-METAL SCREEN

Material: Mu-metal 0,35 mm thick

MU-METAL SCREEN

MU-METAL SCREEN

*) inside diameter

Material: Mu-metal, 0.35 mm thick

SIDE CONTACT CONNECTOR

FINAL ACCELERATOR CONTACT CONNECTOR

Type 55563A supersedes type 55563.

$A-A \quad 7265900$

TUBE SOCKET

- For 14-pin bases
- Synthetic resin insulating material
- 14 gold-plated fork-shaped contacts
- Catalogue number for ordering: 939001730000

FINAL ACCELERATOR CONTACT CONNECTOR

Insulating material: silicon rubber.

TUBE SOCKET

MU-METAL SCREEN

Type 55580 A with 4 mounting lugs \quad L
Type 55580 without mounting lugs L

*) inside diameter

Material: Mu-metal, 0.35 mm thick

MU-METAL SCREEN

Type 55581A with hole H
Type 55581 without hole H

Material: Mu-metal, $0,5 \mathrm{~mm}$ thick.

MU-METAL SCREEN

7285410

MU-METAL SCREEN

7285411

TUBE SOCKET

- For 12-pin all glass base, JEDEC B12-246
- Solder tags
- Tinned contact springs
- Catalogue number for ordering: 939029820008

TUBE SOCKET

- For 12-pin all glass base, JEDEC B12-246
- Printed-wiring pins; required hole diameter is $1,3 \mathrm{~mm}$
- Tinned contact springs
- Catalogue number for ordering: 939029830008

7Z86836.1

SIDE CONTACT CONNECTOR

- For ϕ 0,65 mm side contacts

7285890

FINAL ACCELERATOR CONTACT CONNECTOR

Insulating material: silicon rubber.

MU-METAL SCREEN

- Material: mu-metal, 0,35 mm thick

MU-METAL SCREEN

- Material: mu-metal, 0,35 mm thick

BEAM CENTRING MAGNET

INSTRUCTIONS FOR USE

To obtain the best performance from an electrostatically focussed tube, it is important that the axis of the beam should coincide with that of the lens. In bractice this is not always so because of small errors in geometry. By means of this magnet it is possible to adjust, if necessary, the position of the beam and so produce a true alignment in every case. The effect is illustrated in Figs lat and 16 which show enlarged views of a single element in a spot raster under the special operating conditions given in the directions for setting. With a well aligned beam, an image such as that in Fig. la can be seen. Very small errors will produce a spot as shown in Fig. lb where the brightest part of the image does not appear in the centre of the diffused area or haze. In such a case, the picture quality would be good but with only a small adjustment of the beam, so that the brightest part becomes central, a noticeable improvement can be made.

The unit has a non-magnetic ring containing a diametrically magnetized Ferroxdure core and two soft-iron pole pieces covered with plastic material to protect the glass surface.

Fig. la

Fig. 1b

The field strength can be altered by turning the core as indicated in Fig. 2, and the direction by turning the whole unit. Moving the unit along the neck of the tube will cause a small change in the position of the beam but it is most effective at about 20 mm from the cap (Fig. 3).

Fig. 2

Fig. 3

SETTING

This can best be done with a spot raster on the screen, and by observing one of the elements near the centre. A suitable raster would have, for instance, a spot duration of $1 / 6 \mu \mathrm{~s}$ with a repetition time of $6 \mu \mathrm{~s}$ and an image as in Fig. 1 can then be produced with the following conditions.

*) To avoid burning the screen, adjust slowly from -50 V to zero
Set the unit on the neck at about 20 mm from the cap and turn it until the brightest part of the image appears central in the haze.

Fig. 4

The diagrams in Fig. 4 show the process of adjusting the brightest part from its original position to the centre. The distance between the two points will be determined by the field strength, and the position of the new point along the dotted line will depend on the direction of the field.
If the magnet is under or over-correcting as in (Figs 4a and 4b), the field strength must be changed. To do this, remove the unit from the neck, push the core out sufficiently to get a finger grip and turn it towards maximum or minimum Figs 2a and $2 b$ as required. Return it to the stop in the clamp and set the unit once again on the neck.

If the means of producing a spot raster are not available, a test pattern or suitable picture can be used when setting. It is not easy with this method, however, to assess the degree of change needed in field strength or direction but if a start is made with the line on the core set at about 20° from the minimum position in Fig. 2, an improvement can be made in most cases where it is required. In others, it may be necessary to try one or two further core settings, but with a little experience it is not difficult to find an arrangement which gives the best vertical and horizontal resolution.
The unit should be sufficiently tight on the neck to prevent movement during transit but if, for some reason, this does not appear to be so, the bends on the ring should be compressed slightly.

SMALL BALL CONTACT CONNECTOR

NOTES

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 4393322.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.
Belgium: N.V. PHILIPS \& MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400.
Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.
Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624.
Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F- 75540 PARIS 11, Tel. 43388000.
Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.
Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, 54, Syngru Av., ATHENS 11742, Tel. 9215311/319.
Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-24. 2121.
India: PEICO ELECTRONICS \& ELECTRICALS LTD., Elcoma Dept., Band Box Building,
254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. 4930311/4930590.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan,
JAKARTA - Selatan, Tel. 512572.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.
Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. $794-5011$.
Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 774411.
Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.
Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 793333.
New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914.
Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200.
Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070.
Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59.
Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121.
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000.
South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. \& Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9.
Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000.
Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÖRICH, Tel. 01-4882211.
Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. 7120500.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.
Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad, No. 78-80, P.K.504, 80074 ISTANBUL, Tel. 435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-5806633.
United States: (Active Devices \& Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) $762-9000$.
(Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(Passive Devices \& Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 991-2000.
Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, Building BAE,
P.O. Box 218,5600 MD EINDHOVEN, The Netherlands, Tel. +3140723304 , Telex 35000 phtcnl

[^0]: * Supersedes the ICO6N 1985 edition and the Supplement to IC06N issued Autumn 1985.

[^1]: * A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.

[^2]: l) As the construction of this tube does not permit a direct measurement of the beam current, this current should be determined as follows:
 a) under typical operating conditions, apply a small raster display (no overscan), adjust $\mathrm{V}_{\mathrm{g} 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5, \ell}$ for optimum spot quality at the centre of the screen.
 b) under these conditions, but no raster, the deflection plate voltages should be changed to
 $\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=1000 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 1}=300 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 2}=700 \mathrm{~V}$, thus directing the total beam current to x 2 .
 Measure the current on x_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{x} 2}=10 \mu \mathrm{~A}$ (being the beam current Il)
 c) set again for the conditions under a), without touching the $\mathrm{V}_{\mathrm{g} 1}$ control. Now a raster display with a true $10 \mu \mathrm{~A}$ screen current is achieved.
 d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
 3) See next page.

[^3]: * Not to be connected in series with other tubes.

[^4]: * Not to be connected in series with other tubes.

[^5]: * The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a maximum resistance of 250Ω. Under typical operating conditions, a maximum of 10 ampere-turns are required for the maximum rotation of 3°. This means the required current is 10 mA maximum at a required voltage of $2,5 \mathrm{~V}$ maximum.

[^6]: * Not to be connected in series with other tubes.

[^7]: * The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of 165Ω at $20^{\circ} \mathrm{C}$ (max. 250Ω at $80^{\circ} \mathrm{C}$). Approx. 5 mA causes 1° trace rotation. Thus maximum required voltage is approx. 11 V for tube tolerances ($\pm 5^{\circ}$) and earth magnetic field with reasonable shielding ($\pm 2^{\circ}$).

[^8]: * Notes are on the next page.

[^9]: * Not to be connected in series with other tubes.

[^10]: * The tube has a rotation coil, concentrically wound around the tube neck, to allow alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a maximum resistance of 150Ω. Under typical operating conditions, approx. 50 ampere-turns are required for the maximum rotation of 5°.

[^11]: * Not to be connected in series with other tubes.

[^12]: * Not to be connected in series with other tubes.

[^13]: * Notes are on last page but one.

[^14]: ${ }^{1}$) All that will be necessary when putting the tube into operation is to adjust the astigmatism control voltage once for optimum spot shape in the screen centre. The control voltage will always be in the range stated, provided the mean x and certainly the mean y plate potential was made equal to $\mathrm{V}_{\mathrm{g}_{2}}, \mathrm{~g}_{4}, \mathrm{~g}_{5}, \ell$ with zero astigmatism correction.
 ${ }^{2}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
 3) The mean x and certainly the mean y plate potential should be equal to $V_{g_{2}}, g_{4}, g_{5}, \ell$ with astigmatism adjustment set to zero.
 4) A graticule, consisting of concentric rectangles of $70 \mathrm{~mm} \times 85 \mathrm{~mm}$ and 68.8 mm x 83 mm as aligned with the electrical x -axis of the tube. The edges of a raster will fall between these ractangles.

[^15]: Notes see page with "Notes".

[^16]: ${ }^{1}$) To align the x trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will, have 50 ampere turns for the indicated maximum rotation of 5° and should be positioned as indicated in the drawing.

[^17]: 1) See "Notes".
[^18]: Notes see next page.

[^19]: ${ }^{1}$) The connection to the final accelerator electrode is made by means of an EHT cable attached to the tube.
 ${ }^{2}$) The diameter of the mu-metal shield should be large enough to avoid damage to the side contacts.

[^20]: * Not to be connected in series with other tubes.

[^21]: * Not to be connected in series with other tubes.

[^22]: Note
 The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of max. 400Ω. Under typical operating conditions, max. 30 ampere-turns are required for the max. rotation of 5°. This means the required current is $\max .30 \mathrm{~mA}$ at a required voltage of max. 12 V .

[^23]: * Not to be connected in series with other tubes.

[^24]: * Not to be connected in series with other tubes.

[^25]: * The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of max. 350Ω. Under typical operating conditions, max. 35 ampere-turns are required for the max. rotation of 5°. This means the required current is max. 35 mA at a required voltage of max. 12 V .

[^26]: * Not to be connected in series with other tubes.

[^27]: * Not to be connected in series with other tubes.

[^28]: * Not to be connected in series with other tubes.

[^29]: * Notes are on next page.

[^30]: * Not to be connected in series with other tubes.

[^31]: * Not to be connected in series with other tubes.

[^32]: * Notes are on next page

[^33]: * Not to be connected in series with other tubes.

[^34]: * Notes are on last page.

[^35]: * Not to be connected in series with other tubes.

[^36]: * Not to be connected in series with other tubes.

[^37]: * Notes are on last page but one.

[^38]: * Not to be connected in series with other tubes.

[^39]: * Notes are on last page.

[^40]: * Not to be connected in series with other tubes.

[^41]: * Not to be connected in series with other tubes.

[^42]: * Notes are on last page but one.

[^43]: * Not to be connected in series with other tubes.

[^44]: * Notes are on last page.

[^45]: 1) See last page.
[^46]: Notes see next page.

[^47]: Notes see next page.

[^48]: ${ }^{1}$) During a warm-up period not exceeding 15 s the heater may be 410 V negative with respect to the cathode,

[^49]: 1) During a warm-up period not exceeding 15 s the heater may be 410 V negative with respect to the cathode.
[^50]: ${ }^{1}$) The reference line is determined by the plane of the upper edge of the flange of the reference line gauge with the gauge resting on the cone.
 ${ }^{2}$) The maximum dimension is determined by the reference line gauge.

[^51]: $\overline{1)}$ During a warm-up period not exceeding 15 s the heater may be 410 V negative with respect to the cathode.

[^52]: 1) During a warm-up period not exceeding 15 s the heater may be 410 V negative with respect to the cathode.
[^53]: ${ }^{1}$) With the small change in focus spot size with variation of focus voltage the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus, a voltage of at least -100 V to +500 V will be required.

[^54]: 1) With the small change in focus spot size with variation of focus voltage the limit of 0 to $\cdot 400 \mathrm{~V}$ is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus, a voltage range of at least -100 to +500 V will be required.
[^55]: * Pixel = picture element.

[^56]: 1) In order to avoid excessive hum, the A.C. component of the heater to cathode voltage should be as low as possible and should not exceed $20 \mathrm{~V}_{\mathrm{R} M S}$.
 ${ }^{2}$) During a heating-up period not exceeding 45 sec .
[^57]: * Available under catalogue number 312210490360.
 ** Available under catalogue number 312210494120.

