PHILIPS

 Data handbook

 Data handbook}

PHILIPS	Electronic components and materials

Integrated circuits

Supplement to Book IC11N

1986

Linear LSI

LINEAR LSI

page
Preface ix
Product status definitions x
Contents xi
Section 1 - Selection guide
Index. 1-1
SO package availability 1-3
Ordering information 1-5
Section 2 - Quality and Reliability
Quality and Reliability 2-3
Section 3 - Military
Index 3-1
Military Errata. 3-3
Section 4 - Interface/data conversion products
Index. 4-1
Section 5 - Communication
Index 5-1
Section 6 - Amplifiers
Index. 6-1
Section 7 - Professional analogue ICs
Index. 7-1
Section 8 - ApplicationsIndex.8-1
Section 9 - Package outlines
Index. 9-1
Section 10 - Forthcoming new products and alphanumeric index Index 10-1
Forthcoming new products 10-3
Alphanumeric index 10-4

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES BLUE

SEMICONDUCTORS RED

INTEGRATED CIRCUITS PURPLE

COMPONENTS AND MATERIALS
GREEN

The contents of each series are listed on pages iv to viii.
The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.
Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.
Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks comprises:

T1 Tubes for r.f. heating

T2a Transmitting tubes for communications, glass types
T2b Transmitting tubes for communications, ceramic types
T3 Klystrons
T4 Magnetrons for microwave heating

T5 Cathode-ray tubes
Instrument tubes, monitor and display tubes, C.R. tubes for special applications

T6 Geiger-Müller tubes

T8 Colour display systems
Colour TV picture tubes, colour data graphic display tube assemblies, deflection units
T9 Photo and electron multipliers
T10 Plumbicon camera tubes and accessories

T11 Microwave semiconductors and components
T12 Vidicon and Newvicon camera tubes

T13 Image intensifiers and infrared detectors

T15 Dry reed switches
T16 Monochrome tubes and deflection units
Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:
S1 Diodes
Small-signal silicon diodes, voltage regulator diodes ($<1,5 \mathrm{~W}$), voltage reference diodes, tuner diodes, rectifier diodes

S2a Power diodes
S2b Thyristors and triacs
S3 Small-signal transistors
S4a Low-frequency power transistors and hybrid modules

S4b High-voltage and switching power transistors

S5 Field-effect transistors
S6 R.F. power transistors and modules
S7 Surface mounted semiconductors

S8a Light-emitting diodes

S8b Devices for optoelectronics
Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components

S9 Power MOS transistors

S10 Wideband transistors and wideband hybrid IC modules
S11 Microwave transistors

S12 Surface acoustic wave devices
Semiconductor sensors

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXISTING SERIES
 Superseded by:

IC1 Bipolar ICs for radio and audio equipment IC01N

IC2 Bipolar ICs for video equipment ICO2Na and ICO2Nb
IC3 ICs for digital systems in radio, audio and video equipment IC01N, IC02Na and ICO2Nb
IC4 Digital integrated circuits CMOS HE4000B family

IC5 Digital integrated circuits - ECL
IC08N ECL10000 (GX family), ECL100000 (HX family), dedicated designs

Professional analogue integrated circuits
IC03N and Supplement to IC11N
IC7 Signetics bipolar memories
IC8 Signetics analogue circuits IC11N

IC9 Signetics TTL logic

IC09N and IC15N
1 S10 Signetics Integrated Fuse Logic (IFL) IC13N
IC11 Microprocessors, microcomputers and peripheral circuitry
IC14N

NEW SERIES

IC01N	Radio, audio and associated systems Bipolar, MOS	(published 1985)
ICO2Na	Video and associated systems Bipolar, MOS Types MAB8031AH to TDA1524A	(published 1985)
$1 \mathrm{CO2Nb}$	Video and associated systems Bipolar, MOS Types TDA2501 to TEA1002	(published 1985)
IC03N	Integrated circuits for telephony	(published 1985)
IC04N	HE4000B logic family CMOS	
IC05N	HE4000B logic family - incased ICs CMOS	(published 1984)
IC06N*	High-speed CMOS; PC74HC/HCT/HCU Logic family	(published 1986
IC07N	High-speed CMOS; PC54/74HC/HCT/HCU - uncased ICs Logic family	
IC08N	ECL 10K and 100K logic families	(published 1984)
IC09N	TTL logic series	(published 1984)
IC10N	Memories MOS, TTL, ECL	
IC11N	Linear LSI	(published 1985)
Supplement to IC11N	Linear LSI	(published 1986)
IC12N	Semi-custom gate arrays \& cell libraries ISL, ECL, CMOS	
IC13N	Semi-custom Integrated Fuse Logic	(published 1985)
IC14N	Microprocessors, microcontrollers \& peripherals Bipolar, MOS	(published 1985)
IC15N	FAST TTL logic series	(published 1984)
Note		
Books availab	in the new series are shown with their date of publication.	

[^0]
COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:
C1 Programmable controller modules
PLC modules, PC20 modules
C2 Television tuners, coaxial aerial input assemblies, surface acoustic wave filters
C3 Loudspeakers
C4 Ferroxcube potcores, square cores and cross cores
C5 Ferroxcube for power, audio/video and accelerators
C6 Synchronous motors and gearboxes
C7 Variable capacitors
C8 Variable mains transformers
C9 Piezoelectric quartz devices
C10 Connectors
C11 Varistors, thermistors and sensors
C12 Potentiometers, encoders and switches
C13 Fixed resistors
C14 Electrolytic and solid capacitors
C15 Ceramic capacitors
C16 Permanent magnet materials
C17 Stepping motors and associated electronics
C18 Direct current motors
C19 Piezoelectric ceramics
C20 Wire-wound components for TVs and monitors
C21* Assemblies for industrial use
HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input devices
C22 Film capacitors

* To be issued shortly.

PREFACE

The linear LSI Division, one of five Signetics divisions, is a major supplier of a broad line of linear integrated circuits ranging from high-performance designs to many of the more popular industry standard devices and custom designs.

Employing Signatics' high quality processing and screening standards, the Linear LSI Division is dedicated to providing high quality Linear products to our worldwide customers. Our full product line addresses the needs of the EDP, Automotive, Industrial, Consumer and Communication markets.
The 1986 Supplement to our Linear LSI book of 1985 provides complete technical data on our full line of interface, communication, amplifier, power conversion and control products. Among these you will find new entrants such as the NE5205 high frequency amplifier, NE5170 and NE5180/5181 octal line driver and receivers, and the DAC800 12-bit D/A Converter.

An applications section, selector guides and cross reference guides are also included in this volume.

Although every attempt has been made to insure accuracy of information in this manual, Signetics assumes no liability for inadvertent errors.

DEFINITION OF TERMS

Data Sheet Identification	Product Status	Definition
Preview	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Advance Information	Sampling or Pre-Production	This data sheet contains advance information and specifications are subject to change without notice.
Prellminary	First Production	This data sheet contains preliminary data and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains final specifications. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

CONTENTS

SECTION 1 - SELECTION GUIDE
Cross Reference Guides *
By Part number *
By Company *
Index to Applications 8-1
By Part Number 8-1
By Product Grouping 8-1
SO Package Availability 1-3
Ordering Information 1-5
SECTION 2 - QUALITY AND RELIABILITY
Quality and Reliability 2-3
SECTION 3 - MILITARY
Military Errata 3-3
SECTION 4 - INTERFACE/DATA CONVERSION PRODUCTS
Index 4-1
Data Converters 4-3
Symbols and definitions 4-3
Selector Guide 4-4
Analog to Digital Converters
SE/NE5030 10-bit High Speed Microprocessor-Compatible Analog to Digital Converter. 4-5
Digital to Analog Converters
DAC800 12-bit D/A Converter 4-10
SE/NE5018 8-bit Microprocessor-Compatible D/A Converter 4-16
SE/NE5019 8-bit Microprocessor-Compatible D/A Converter 4-21
SE/NE5020 10-bit Microprocessor-Compatible D/A Converter 4-26
NE5150/NE5151 Triple 4-bit RGB DAC 4-34
Comparators
Selection Guide $.4-40$
Drivers
Symbols and Definitions. 4-41
MC1488 Quad Line Driver. $.4-43$
MC1489/MC1489A Quad Line Receivers 4-46
NE5090 Addressable Relay Driver 4-48
NE5170 Octal Line driver 4-53
NE5180/NE5181 Octal Line Receivers 4-57
NE587 LED Decoder/Driver 4-60
Position Measurement SE/NE5521 LVDT Signal Conditioner 4-68
SECTION 5 - COMMUNICATION
Index 5-1
Audio/Stereo
SA/NE602 Double Balanced Mixer and Oscillator 5-3
SA/NE604 Low Power FM I.F. System 5-5
NE670 Low Voltage Dolby B/C Type IC 5-7
FM Radio
SA/NE602 Double Balanced Mixer and Oscillator 5-3
SA/NE604 Low Power FM I.F. System 5-5

[^1]
CONTENTS

SECTION 6 - AMPLIFIERS
Index 6-1
Video
NE5205 Wideband High Frequency Amplifier. 6-3
SECTION 7 - PROFESSIONAL ANALOGUE ICs
Index 7-1
SAA1027 Stepping Motor Drive Circuit. 7-3
SAA1029 Universal Industrial Logic and Interface Circuit 7-9
TCA520B; D Operational Amplifier 7-17
TDA1023 Proportional-Control Triac Triggering Circuit 7-23
TDA1060; A; B; T Control Circuit for SMPS 7-37
TDB1080; T I.F. Limiting Amplifier, FM Detector \& Audio Amplifier 7-53
TEA1017 13-Bit Series-Parallel Converter 7-59
TEA1039 Control Circuit for SMPS 7-67
SECTION 8 - APPLICATIONS
Index 8-1
Application Notes by Major Product Category Communications
Audio
AN198 Designing with the SA/NE602 8-3
AN199 Designing with the SA/NE604 8-7
Amplifiers
Video AmplifiersAN146 Wideband FM Composite Video Fiber Optic Link .8-17
Power Conversion and Control
Switched Mode Power Supplies (SMPS)
AN125 Progress in SMPSMagnetic Component Optimization . 8-21
Miscellaneous
AN210 SO Package Tape and Reel $.8-31$
Application Notes by Part Number
NE564 AN146 Wideband FM Composite Video Fiber Optic Link 8-17
SA/NE602 AN198 Designing with SA/NE602 8-3
SA/NE604 AN199 Designing with SA/NE604. 8-7
SE/NE5560 AN125 Progress in SMPS
Magnetic Component Optimization 8-21
SE/NE5561 AN125 Progress in SMPS
Magnetic Component Optimization $.8-21$
SE/NE5562 AN125 Progress in SMPS
Magnetic Component Optimization 8-21
SE/NE5568 AN125 Progress in SMPS
Magnetic Component Optimization $.8-21$
SG3524 AN125 Progress in SMPS
Magnetic Component Optimization 8-21
SG3526 AN125 Progress in SMPS
Magnetic Component Optimization 8-21

CONTENTS

SECTION 9 - PACKAGE INFORMATION
Index 9-1
Package Outlines for product with prefixes: ADC, AM, CA, DAC,
LF, LM, MC, NE, SA, SE, SG, $\mu \mathrm{A}$, ULN 9-3
Introduction 9-3
D SO Plastic Dual-in-Line 9-5
E Metal Headers. 9-7
F Hermetic Cerdip 9-8
G Hermetic Leadless Chip Carrier 9-10
H Metal Headers. 9-11
I Hermetic Side Braze 9-11
N Plastic Dual-in-Line 9-12
Package Outlines for product with prefixes: SAA, TCA, TDA, TDB, TEA 9-17
Introduction 9-17
SECTION 10 - FORTHCOMING NEW PRODUCTS AND ALPHANUMERIC INDEX
Index 10-1
Forthcoming new products by product group 10-3
Alphanumeric index. 10-4

Section 1 Selection Guide

INDEX

SECTION 1 - SELECTION GUIDE
SO Package Availability 1-3
Ordering Information. $1-5$

SO Availability

Part Number	SMD Package	Description
*DAC08ED	SO-16	8-Bit D/A Converter
*LF398D	SO-14	Sample and Hold Amp
LM1870D	SOL-20	Stereo Demodulator
LM2901D	SO-14	Quad Volt Comparator
LM2903D	SO-8	Dual Volt Comparator
LM311D	SO-8	Voltage Comparator
LM319D	SO-14	High Speed Dual Comparator
LM324AD	SO-14	Quad Op Amp
LM324D	SO-14	Quad Op Amp
LM339D	SO-14	Quad Volt Comparator
LM358D	SO-8	Dual Op Amp
LM393D	So-8	Dual Comparator
*MC1408-8D	SO-16	8-Bit D/A Converter
MC1458D	SO-8	Dual Op Amp
MC1488D	SO-14	Quad Line Driver
MC1489AD	SO-14	Quad Line Receiver
MC1489D	SO-14	Quad Line Receiver
MC3302D	SO-14	Quad Volt Comparator
MC3403D	SO-14	Quad Low Power Op Amp
NE4558D	SO-8	Dual Op Amp
*NE5008D	SO-16	8-Bit D/A Converter
*NE5018D	SOL-24	8-Bit D/A Converter
*NE5019D	SOL-24	8-Bit D/A Converter
*NE5036D	SO-14	6-Bit A/D Converter
NE5037D	SO-16	6-Bit A/D Converter
NE5044D	SO-16	Programmable 7-Channel Encoder
NE5045D	SO-16	7-Channel Decoder
NE5090D	SOL-16	Address Relay Driver
NE5205D	SO-8	High Frequency Amp
NE521D	SO-14	High Speed Dual Comparator
NE522D	SO-14	High Speed Dual Comparator
NE5230D	SO-8	Low Voltage Op Amp
NE527D	SO-14	High Speed Comparator
NE529D	SO-14	High Speed Comparator
NE532D	SO-8	Dual Op Amp
*NE544D	SOL-16	Servo Amp
*NE5512D	SO-8	Dual High Performance Op Amp
*NE5514D	SOL-16	Quad High Performance Op Amp
NE5517D	SO-16	Dual High Performance Amp
NE5520D	SOL-16	LVDT Signal Conditioner Circuit
*NE5532D	SOL-16	Dual Low Noise Op Amp
*NE5533D	SOL-16	Low Noise Op Amp
NE5534AD	SO-8	Low Noise Op Amp
NE5534D	SO-8	Low Noise Op Amp
*NE5537D	SO-14	Sample and Hold Amp
NE5539D	SO-14	High Frequency Wideband Amp
NE555D	SO-8	Single Timer
NE556D	SO-14	Dual Timer
NE5560D	SO-16	SMPS Control Circuit
NE5561D	SO-8	SMPS Control Circuit
NE5562D	SOL-20	SMPS Control Circuit
NE5568D	SO-8	SMPS Control Circuit

*Non-standard pinout.
(Please check 1985 Linear Data Manual for additional pinout information.)
For information regarding additional SO products released since the publication of this document, contact your local Signetics sales office.

Part Number	SMD Package	Description
NE558D	SOL-16	Quad Timer
NE5592D	SO-14	High Frequency Phase Locked Loop
NE564D	SO-16	Phase Locked Loop
*NE565D	Function Generator	
NE566D	SO-14	Tone Decoder Phase Locked Loop
NE567D	SO-8	Prograndor
NE571D	SO-8	7-Segment LED Driver (Anode)
NE572D	SOL-16	7-Segment LED Driver (Cathode)
*NE587D	SOL-16	Video Amp
*NE589D	SOL-20	Video Amp
NE592D14	SOL-20	High Gain Video Amp
NE592D8	SO-14	High Gain Video Amp
NE592HD14	SO-8	Vacuum Fluorescent Display Driver
NE592HD8	SO-14	Low Power FM IF System
*NE594D	SO-8	Double Balanced Mixer/Oscillator
NE602D	SOL-20	Low Power FM IF System
NE604D	SO-8	Compandor
NE612D	SO-16	Compandor
NE614D	SO-8	Vacuum Fluorescent Display Driver
SA571D	SO-16	Double Balanced Mixer/Oscillator
SA572D	SOL-16	Low Power FM IF System
*SA594D	SOL-16	SMPS Control Circuit
SA602D	SOL-20	Transistor Array
SA604D	SO-8	Transistor Array
SG3524D	SO-16	Voltage Regulator
ULN2003D	SO-16	Single Op Amp
ULN2004D	SO-16	Dual Op Amp
1 A723CD	SO-16	
μ A741CD	SO-14	SO-8

*Non-standard pinout.
For information regarding additional SO products released since the publication of this document, contact your local Signetics sales office.

Ordering Information

FOR PREFIXES AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

ORDERING INFORMATION

Signetics' Linear LSI integrated circuit products may be ordered by contacting either the local Signetics sales office, Signetics representatives and/or Signetics authorized distributors. A complete listing is located in the back of this manual.

Minimum Factory Order:

Commercial Product:
$\$ 1000$ per order
$\$ 250$ per line item per order
Military Product:
$\$ 250$ per line item per order

Table 1 provides part number information concerning Signetics originated products.
Table 2 is a cross reference of both the old and new package suffixes for all presently existing types, while Tables 3 and 4 provide appropriate explanations on the various prefixes employed in the part number descriptions.

As noted in Table 3, Signetics defines device operating temperature range by the appropriate prefix. It should be noted, however, that devices with a SE prefix ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) indicates only its operating temperature range and not its military qualification status. The military qualification status of any Linear LSI product can be determined by either looking in the Military Section in this manual and/or contacting your local sales office.

Table 1 PART NUMBER DESCRIPTION

PART NUMBER	CROSS REF PART NO.	PRODUCT FAMILY	PRODUCT DESCRIPTION
NE5537N	LF398 kage Descrip vice Number vice Family and	LIN Product Family s-See Table 2 mperature Range	Sample \& Hold Amp LIN Analog Products MIL Military Products

Table 2 PACKAGE DESCRIPTIONS

Table 3 SIGNETICS PREFIX AND DEVICE TEMPERATURE

PREFIX	DEVICE TEMPERATURE RANGE
N	0° to $+70^{\circ} \mathrm{C}$
S	-55° to $+125^{\circ} \mathrm{C}$
NE	0° to $+70^{\circ} \mathrm{C}$
SE	-55° to $+125^{\circ} \mathrm{C}$
SA	-40° to $+85^{\circ} \mathrm{C}$

Table 4 INDUSTRY STANDARD PREFIX

PREFIX	DEVICE FAMILY
AM	Linear Industry Standard
CA	Linear Industry Standard
DAC	Linear Industry Standard
JB	Mil Rel-Jan Qualified-
	Old Designator
JM	Mil Rel-Jan Qualified-
	New Designator
LF	Linear Industry Standard
LM	Linear Industry Standard
M	Mil ReI-Jan Processed
MC	Linear Industry Standard
NE	Linear Industry Standard
SA	Linear Industry Standard
SE	Linear Industry Standard
SG	Linear Industry Standard
uA	Linear Industry Standard
ULN	Linear Industry Standard

Section 2 Quality and Reliability

INDEX

SECTION 2 - QUALITY AND RELIABILITYQuality and Reliability2-3

Quality and Reliability

SIGNETICS LINEAR QUALITY

Signetics has put together a winning process for manufacturing linear circuits. Our standard is zero defects, and current customer quality statistics demonstrate our commitment to this goal.

The circuits produced in the Linear Division must meet rigid criteria as defined by our design rules and as evaluated with a thorough product characterization and quality process. The capabilities of our manufacturing process are measured and the results evaluated and reported through our corporate-wide QA05 data base system. The SURE (Systematic Uniform Reliability Evaluation) program monitors the performance of our product in a variety of accelerated environmental stress conditions. All of these programs and systems are intended to prevent product-related problems and to inform our customers and employees of our progress in achieving zero defects.

RELIABILITY BEGINS WITH THE DESIGN

Quality and reliability must begin with design. No amount of extra testing or inspection will produce reliable ICs from a design that is inherently unreliable. Signetics follows very strict design and layout practices with its circuits. To eliminate the possibility of metal migration, current density in any path cannot exceed 5×10 (fifth) $\mathrm{amps} / \mathrm{cm}(\mathrm{sq})$. Layout rules are followed to minimize the possibility of shorts, circuit anomalies, and SCR type latch-up effects. Numerous ground-to-substrate connections are required to ensure that the entire chip is at the same ground potential, thereby precluding internal noise problems.

PRODUCT CHARACTERIZATION

Before a new design is released, the characterization phase is completed to insure that the distribution of parameters
resulting from lot-to-lot variations is well within specified limits. Such extensive characterization data also provides a basis for identifying unique applicationrelated problems which are not part of normal data sheet guarantees.

QUALIFICATION

Formal qualification procedures are required for all new or changed products, processes and facilities. These procedures ensure the high level of product reliability our customers expect. New facilities are qualified by corporate groups as well as by the quality organizations of specific units that will operate in the facility. After qualification, products manufactured by the new facility are subjected to highly accelerated environmental stresses to ensure that they can meet rigorous failure rate requirements. New or changed processes are similarly qualified.

QA05-QUALITY DATA BASE REPORTING SYSTEM

The QA05 data reporting system collects the results of product assurance testing on all finished lots and feeds this data back to concerned organizations where appropriate action can be taken. The QA05 reports EPQ (Estimated Process Quality) and AOQ (Average Outgoing Quality) results for electrical, visual/ mechanical, hermeticity, and documentation audits. Data from this system is available on request.

THE SURE PROGRAM

The SURE (Systematic Uniform Reliability Evaluation) program audits/monitors products from all Signetics' divisions under a variety of accelerated environmental stress conditions. This program, first introduced in 1964, has evolved to suit changing product complexities and performance requirements.

The SURE program has two major functions: Long-term accelerated stress performance audit and a short-term accelerated stress monitor. Samples are selected that represent all generic product groups in all wafer fabrication and assembly locations.

THE LONG-TERM AUDIT

One-hundred devices from each generic family are subjected to each of the following stresses every four weeks:

- High Temperature Operating Life: $\mathrm{T}]=150^{\circ} \mathrm{C}, 1000$ hours, static blased operation.
- High Temperature Storage: $\mathrm{T} j=150^{\circ} \mathrm{C}, 1000$ hours
- Temperature Humidity Blased Life: $85^{\circ} \mathrm{C}, 85 \%$ relative humidity, 1000 hours, static blased

THE SHORT-TERM MONITOR

Every other week a 50 -piece sample from each generic family is run to 72 hours of pressure pot (20psig, $127^{\circ} \mathrm{C}$, 100% saturated steam) and 300 cycles of thermal shock $\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$

In addition, each Signetics assembly plant performs SURE product monitor stresses weekly on each generic family and molded package by pin count and frame type. Fifty-piece samples are run on each stress, pressure pot to 96 hours, thermal shock to 300 cycles.

SURE REPORTS

The data from these test matrices provides a basic understanding of product capability, an indication of major failure mechanisms and an estimated failure rate resulting from each stress. This data is compiled periodically and is available to customers upon request.

Many customers use this information in lieu of running their own qualification tests, thereby eliminating time-consuming and costly additional testing.

RELIABILITY ENGINEERING

In addition to the product performance monitors encompassed in the Linear SURE program, Signetics' Corporate and Division Reliability Engineering departments sustain a broad range of evaluation and qualification activities.

Included in the engineering process are:

- Evaluation and qualification of new or changed materials, assembly/wafer-fab processes and equipment, product designs, facilities and subcontractors.
- Device or generic group failure rate studies.
- Advanced environmental stress development.
- Failure mechanism characterization and corrective action/prevention reporting.

The environmental stresses utilized in the engineering programs are similar to those utilized for the SURE monitor; however, more highly-accelerated conditions and extended durations typify these engineering projects. Additional stress systems such as biased pressure pot, power-temperature cycling, and cycle-biased temperature-humidity, are also included in some evaluation programs.

FAILURE ANALYSIS

The SURE Program and the Reliability Engineering Program both include failure analysis activities and are complemented by corporate, divisional and plant failure analysis departments. These engineering units provide a service to our customers who desire detailed failure analysis support, who in turn provide Signetics with the technical understanding of the failure modes and mechanisms actually experienced in service. This information is essential in our ongoing effort to accelerate and improve our understanding of product failure mechanisms and their prevention.

ZERO DEFECTS PROGRAM

In recent years, United States industry has increasingly demanded improved product quality. We at Signetics believe that the customer has every right to expect quality products from a supplier. The benefits which are derived from quality products can be summed up in the words, lower cost of ownership.
Those of you who invest in costly test equipment and engineering to assure that incoming products meet your specifications have a special understanding of the cost of ownership. And your cost does not end there; you are also burdened with inflated inventories, lengthened lead times and more rework.

SIGNETICS UNDERSTANDS CUSTOMERS' NEEDS

Signetics has long had an organization of quality professionals, inside all operating units, coordinated by a corporate quality department. This broad decentralized organization provides leadership, feedback, and direction for achieving a high level of quality. Special programs are targeted on specific quality issues. For example, in 1978 a program to reduce electrically defective units for a major automotive manufacturer improved outgoing quality levels by an order of magnitude.
In 1980 we recognized that in order to achieve outgoing levels on the order of 100PPM (parts per million), down from an industry practice of $10,000 \mathrm{PPM}$, we needed to supplement our traditional quality programs with one that encompassed all activities and all levels of the company. Such unprecedented low defect levels could only be achieved by contributions from all employees, from the R and D laboratory to the shipping dock. In short, from a program that would effect a total cultural change within Signetics in our attitude toward quality.

QUALITY PAYS OFF FOR OUR CUSTOMERS

Signetics' dedicated programs in product quality improvement, supplemented by close working relationships with many of our customers, have improved outgoing product quality more than twenty-fold since 1980. Today, many major customers no longer test Signetics circuits. Incoming product moves directly from the receiving dock to the production line, greatly accelerating throughput and reducing inventories. Other customers have pared significantly the amount of sampling done on our products. Others are beginning to adopt these cost-saving practices.
We closely monitor the electrical, visual, and mechanical quality of all our products and review each return to find and correct the cause. Since 1981, over 90% of our customers report a significant improvement in overall quality (see Figure 1).

At Signetics, quality means more than working circuits. It means on-time delivery of the right product at the agreed upon price (see Figure 2).

ONGOING QUALITY PROGRAM

The Signetics quality improvement program steers its employees toward 'Doing it Right the First Time." The intent of this innovative program is to change the perception of Signetics' employees that somehow quality is solely a manufacturing issue where some level of defects is inevitable. This attitude has
been replaced by one of acceptance of the fact that all errors and defects are preventable, a point of view shared by all technical and administrative functions equally.
This program extends into every area of the company, and more than 40 quality improvement teams throughout the organization drive its ongoing refinement and progress.
Key components of the program are the Quality College, the "Make Certain" Program, Corrective Action Teams, and the Error Cause Removal System.

The core concepts of doing it right the first time are embodied in the four absolutes of quality:

1. The definition of quality is conformance to requirements.
2. The system to achieve quality improvement is prevention.
3. The performance standard is zero defects.
4. The measurement system is the cost of quality.

QUALITY COLLEGE

Almost continuously in session, Quality College is a prerequisite for all employees. The intensive curriculum is built around the four absolutes of quality; colleges are conducted at company facilities throughout the world.

"MAKING CERTAIN" ADMINISTRATIVE QUALITY IMPROVEMENT

Signetics' experience has shown that the largest source of errors affecting product and service quality is found in paperwork and in other administrative functions. The "Make Certain" program focuses the attention of management and administrative personnel on error prevention, beginning with each employee's own actions.
This program promotes defect prevention in three ways: by educating employees as to the impact and cost of administrative errors, by changing attitudes from accepting occasional errors to one of accepting a personal work standard of zero defects, and by providing a formal mechanism for the prevention of errors.

CORRECTIVE ACTION TEAMS

Employees with the perspective, knowledge, and necessary skills to solve a problem are formed into ad hoc groups called Corrective Action Teams. These teams, a major force within the company for quality improvement, resolve administrative, technical and manufacturing problems.

Figure 1. Signetics' Quality Progress -
Estimated Process Quality and Average Outgoing Quality

Figure 2. Performance To Schedule/On-Time Delivery - High and Low

ECR SYSTEM (ERROR CAUSE REMOVAL)

The ECR System permits employees to report to management any impediments to doing the job right the first time. Once such an impediment is reported, management is obliged to respond promptly with a corrective program. Doing it right the first time in all company activities produces lower cost of ownership through defect prevention.

PRODUCT QUALITY PROGRAM

To reduce defects in outgoing products, we created the Product Quality Program. This is managed by the Product Engineering Council, composed of the top product engineering and test professionals in the company. This group:

1. sets aggressive product quality improvement goals;
2. provides corporate-level visibility and focus on problem areas;
3. serves as a corporate resource for any group requiring assistance in quality improvement; and
4. drives quality improvement projects.

As a result of this aggressive program, every major customer who reports back to us on product performance is reporting significant progress.

VENDOR CERTIFICATION PROGRAM

Our vendors are taking ownership of their own product quality by establishing improved process control and inspection systems. They subscribe to the zero defects philosophy. Progress has been excellent. Through intensive work with vendors, we have improved our lot acceptance rate on incoming materials as shown in Figure 3. Simultaneously, waivers of incoming material have been eliminated.
Higher incoming quality material to us ensures higher outgoing quality products.

QUALITY AND RELIABILITY ORGANIZATION

Quality and reliability professionals at the divisional level are involved with all aspects of the product, from design through every step in the manufacturing process, and provide product assurance testing of outgoing product. A separate corporate-level group provides direction and common facilities.

Quality and Reliability Functions

- Manufacturing quality control
- Product assurance testing
- Laboratory facilities - failure analysis, chemical, metallurgy, thin film, oxides
- Environmental stress testing
- Quality and reliability engineering
- Customer liaison

COMMUNICATING WITH EACH OTHER

For information on Signetics' quality programs or for any question concerning product quality, the field salesperson in your area will provide you with the quickest access to answers.

We are dedicated to preventing defects. When product problems do occur, we want to know about them so we can eliminate their causes. Here are some ways we can help each other:

- Provide us with one informed contact within your organization. This will

Quality and Reliability

Figure 3. Lot Acceptance Rate From Signetics Vendors
establish continuity and build confidence levels.

- Periodic face-to-face exchanges of data and quality improvement ideas between your engineers and ours can help prevent problems before they occur.
- Test correlation data is very useful. Line-pull information and field failure reports also help us improve product performance.
- Provide us with as much specific data on the problem as soon as possible to speed analysis and enable us to take corrective action.
- An advance sample of the devices in question can start us on the problem resolution before physical return of shipment.
This team work with you will allow us to achieve our mutual goal of improved product quality.

MANUFACTURING: DOING IT

 RIGHT THE FIRST TIMEIn dealing with the standard manufacturing flows, it was recognized that significant improvement would be achieved by "doing

MATERIAL WAIVERS

1985-(0) (Goal)
1984- 0
1983- 0
1982- 2
1981-134
every job right the first time," a key concept of the quality improvement program. During the development of the program many profound changes were made. Figure 4, Linear Flow, shows the results.

The achievements resulting from the improved process flow have helped Signetics to be recognized as the leading Quality supplier of linear circuits. These achievements have also led to our participation in many Ship-toStock programs, which our customers use to eliminate incoming inspection. Such programs reduce the user cost of ownership by saving both time and money.

Quality and Reliability

Figure 4. Linear Division Linear Process Flow

Quality and Reliability

Figure 5. Linear AOQ Average Outgoing Quality

Section 3 Military

INDEX

SECTION 3 - MILITARYMilitary Errata3-3

Military Errata

Effective January 1, 1985, this section has been superseded by the 1985 Military Products Data Manual. Information regarding this manual can be obtained from the Military Division in Sacramento. (916) 925-6700.
Electrical specification herein as described for products with the "SE" prefix do not necessarily describe the performance characterization of military processed products.

Section 4 Interface Data Conversion Products

INDEX

SECTION 4 - INTERFACE/DATA CONVERSION PRODUCTS
Index 4-1
Data Converters 4-3
Symbols and Definitions. 4-3
Selector Guide 4-4
Analog to Digital Converters
SE/NE5030 10-bit High Speed Microprocessor-Compatible Analog to Digital Converter 4-5
Digital to Analog Converters
DAC800 12-bit D/A Converter 4-10
SE/NE5018 8-bit Microprocessor-Compatible D/A Converter 4-16
SE/NE5019 8-bit Microprocessor-Compatible D/A Converter 4-21
SE/NE5020 10-bit Microprocessor-Compatible D/A Converter 4-26
NE5150/NE5151 Triple 4-bit RGB DAC 4-34
Comparators
Selection Guide. $.4-40$
Drivers
Symbols and Definitions 4-41
MC1488 Quad Line Driver. 4-43
MC1489/MC1489A Quad Line Receivers 4-46
NE5090 Addressable Relay Driver 4-48
NE5170 Octal Line Driver. 4-53
NE5180/NE5181 Octal Line Receivers 4-57
NE587
Position MeasurementSE/NE5521LED Decoder/Driver4-60
LVDT Signal Conditioner 4-68

D/A and A/D Converter - Symbols and Definitions

Absolute Accuracy Error

Absolute Accuracy Error is the difference between the theoretical analog input required to produce a given output code and the actual analog input required to produce the same code. The actual input is a range and the error is the midpoint of the measured band and the theoretical band.

Absolute Maximum Ratings

The Absolute Maximum Ratings are the operating safe zones. Exceeding these limits could cause permanent damage to the device. The device is NOT guaranteed to operate at these limits.

Conversion Speed

Conversion Speed is the speed at which a converter can make repetitive conversions.

Conversion Time

Conversion time is the time required for a complete conversion cycle of an ADC. Conversion time is a function of the number of bits and the clock frequency.

Differential Non-Linearity (DNL)

Differential Non-Linearity of a DAC is the deviation of the measured output step size from the ideal step size. In an ADC it is the deviation in the range of inputs from 1 LSB that causes the output to change from one given code to the next code. Excessive DNL gives rise to non-monotonic behavior in a DAC and missing codes in an ADC.

Differential Non-Linearity Tempco

Differential Non-Linearity Tempco is the temperature coefficient of DNL and specifies how DNL changes with temperature.

Full Scale Tempco

Full Scale Tempco in a DAC is the change of full scale output with a change of temperature. In an ADC it is the change in the input required to cause full scale transistion. Expressed in ppm/degree C.

Gain Error

Gain Error is the error of the slope of the line drawn through the midpoints of the steps of the transfer function as compared to the ideal slope. It is usually measured by determining the error of the analog input voltage to cause a full scale output word with the ideal value that should cause this full scale output. This gain eirror is usually expressed in LSB or in percent of full scale range.

Hysteresis Error

Hysteresis Error is the code transition voltage dependence relative to the direction from which the transistion is approached.

Integral Non-Linearity

Integral Non-Linearity is the difference between the ideal transfer characteristic and the actual characteristic.
Least Significant Bit (LSB)
The Least Significant Bit is the lowest order bit, or the bit with the least weight.

Missing Code

A Missing Code is a code combination that does not appear in the ADC's output range.

Monotonicity

A DAC is monotonic if its output either increases or remains the same when the input code is incremented from any code to the next higher code.

Most Significant Bit (MSB)

The Most Significant Bit is the highest order bit, or the one with the most weight.

Offset Error

Offset error is the constant error or shift from the ideal transfer characteristic of a converter. In a DAC it is the output obtained when that output should be zero. In an ADC it is the difference between the input level that causes the first code transistion and what that input level should be.

Output Voltage Compliance

Output Voltage Compliance of a current output DAC is the range of acceptable voltages at the DAC output for the DAC output current to remain within its specified limits.

Power Supply Sensitivity

Power Supply Sensitivity of a DAC is the change of output current or voltage with changes in the power supply voltage. In an ADC, it is the change in the transistion points from code to code with changes in the power supply voltage.

Quantizing Error

In an A / D converter there is an infinite number of possible input levels, but only 2^{n} output codes ($n=$ number of bits). There will, therefore, be an error in the output code that could be as great as $1 / 2$ LSB because of this quantizing effect. The greatest error occurs at the transistion point where the output state changes.

Relative Accuracy

Relative Accuracy is a measure of the difference of the theoretical output value with a given input after any offset and gain errors have been nulled out.

Resolution

Resolution is the number of bits at the input or output of an ADC or DAC. It is the number of discrete steps or states at the output and is equal to 2^{n} where in is the resolution of the converter. However, n bits of resolution does not guarantee n bits of accuracy.

Setting Time

Setting Time is the delay in a DAC from the 50 percent point on the change in the input digital code to the effected change in the output signal. It is expressed in terms of how long it takes the output to settle to and remain within a certain error band around the final value and is usually specific for full scale range changes.

Transfer Characteristic

The Transfer Characteristic is the relationship of the output to the input.

NOTE:
Refer to Section 9 (Interface Circuits) for an in-depth explanation of data converters and their applications.

Converter Selector Guides

DIA CONVERTERS

DEVICE	BITS	ACC. \%	CONV. SPEED (48)	OUTPUT		INT. REF.		PACKAGE			TEMPERATURE RANGE		COMMENTS
				v	1			N	D	F	Com'l.	MII	
MC1408-7	8	0.39	0.07		X			X		X			
MC1408-8	8	0.19	0.07		X			X	X	X	X		
MC1508-8	8	0.19	0.07		X					X		X	
DAC08	8	0.19	0.07		X					X		X	
DAC08A	8	0.10	0.07		X					X		X	
DAC08C	8	0.39	0.07		X			X		X	X		
DAC08E	8	0.19	0.07		X			X	X	X	X		
DAC08H	8	0.10	0.07		X			X		X	X		
NE5018	8	0.19	0.2	X		X	X	X		X	X		
SE5018	8	0.19	0.2	X		X	X			X		X	
NE5019	8	0.10	0.2	X		X	X	X		X	X		
SE5019	8	0.10	0.2	X		X	X			X			
NE5118	8	0.19	2.3		X	X	X	X		X	X		
SE5118	8	0.19	2.3		X	X	X			X		X	
NE5119	8	0.10	2.3		X	X	X	X		X	X		
SE5119	8	0.10	2.3		X	X	X			X		X	
NE5020	10	0.10	5.0	X		X	X	X		X	X		
NE5410	10	0.05	0.25		X					X	X		$\pm 1 / 4$ LSB DNL
SE5410	10	0.05	0.25		X					x		X	$\pm 1 / 4$ LSB DNL
MC3410	10	0.05	0.25		X					x.	X		$\pm 1 / 2$ LSB DNL
MC3510	10	0.05	0.25		X					X		X	$\pm 1 / 2$ LSB DNL
AM6012	12	0.05	0.25		X					X	X		± 1 LSB DNL

A/D CONVERTERS

DEVICE	BITS	ACC.\%	CONV. SPEED ($\mu \mathrm{s}$)	INPUT		threeSTATE OUTPUT	INT. REF.	$\begin{aligned} & \text { INT. } \\ & \text { CLOCK } \end{aligned}$	PACKAGE			TEMPERATURERANGE	
				v	1				N	F	FE	Com'l.	M 1
NE5034	8	0.19	17		X	X		X		\mathbf{X}		X	
NE5036	6	0.78	23	X		X			X		X	X	
NE5037	6	0.78	9	X		X			X	X		X	
ADC0801-1	8	0.10	73	X		X		X		X		${ }^{1}$	
ADC0802-1	8	0.19	73	X		X		X		X		X^{1}	
ADC0803-1	8	0.19	73	X		X		X		X		X^{1}	
ADC0804-1	8	0.39	73	X		X		X		X		X^{1}	
ADC0805-1	8	0.39	73	X		X	X	X		X		X^{1}	

Note:

1. Automotive temperature range: $-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}$

DESCRIPTION

The SE/NE 5030 is a monolithic 10 -bit, microprocessor compatible Analog-toDigital Converter which is manufactured on a high speed bipolar process using thin film resistors. The conversion process is a new multi-step technique which combines parallel conversion and successive approximation, allowing complete 10-bit conversion in just 2.5 microseconds at the maximum 3 MHz clock rate. The fast conversion rate makes the SE/NE5030 excellent for a wide range of applications where system throughput sampling rates up to 360 KHz are required.

FEATURES

- Microprocessor compatible
- Fast conversion ($2.5 \mu \mathrm{sec}$)
- Relative accuracy 1/4 LSB typical
- 2.5 volt signal input range
- Accomodates either unipolar or bipolar input
- TTL compatible digital inputs/ outputs
- No missing codes over temp range
- Three state outputs
- High impedance analog input
- Low TC internal reference (5ppm/ ${ }^{\circ} \mathrm{C}$ typical)

APPLICATIONS

- Process control
- Test and measurement
- Machine tools
- Robotics
- Industrial monitoring
- High speed waveform digitizing
- High speed correlators

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Positive supply voltage	+8	V
Negative supply voltage	-8	V
Analog input range	± 3.5	V
Digital input voltage	-0.5 to $V_{\text {cC }}$	V
Analog common to digital common	± 1	V
$V_{\text {REF }}$ OUT short circuit to common	Indefinite	
$\mathrm{V}_{\text {REF }}$ OUT short circuit to $\mathrm{V}_{\text {CC }}$	60	seconds
$\mathrm{V}_{\text {REF IN }}$ applied voltage	0 to 5	V
Digital output pins applied voltage to logic high outputs	-0.5 to $V_{C C}$	V
Digital output sink current	10	mA
Operating temperature range NE5030 SE5030	$\begin{gathered} 0 \text { to }+70 \\ -55 \text { to }+125 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Storage temperature range	-60 to +150	${ }^{\circ} \mathrm{C}$
Power dissipation	600	mW

BLOCK DIAGRAM

10-Bit High Speed Microprocessor-Compatible Analog to Digital Converter

DC ELECTRICAL CHARACTERISTICS $V_{C C}=5 V, V_{E E}=-5 V, T_{A}=0$ to $70^{\circ} \mathrm{C}$ for NE5030, $T_{A}=-55$ to $+125^{\circ} \mathrm{C}$ for SE5030, $F_{\text {CLK }} \leqslant 3 \mathrm{MHz}$, unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Resolution		10	10	10	Bits
	Relative accuracy error ${ }^{1,2}$			$\pm 1 / 4$	$\pm 1 / 2$	LSB
DNL	Differential linearity error ${ }^{3}$				10	bits
	Code width error			$\pm 1 / 4$	$\pm 1 / 2$	LSB
Efs	Full scale gain error	$T_{A}=25^{\circ} \mathrm{C}$ over operating temp range		$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Euos	Unipolar offset error	$T_{A}=25^{\circ} \mathrm{C}$ over operating temp range			$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \hline \text { LSB } \\ & \text { LSB } \end{aligned}$
Ebos	Bipolar offset error	$T_{A}=25^{\circ} \mathrm{C}$ over operating temp range			$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	Analog input range Unipolar Bipolar	$\begin{aligned} & \text { BIPOLAR }=2.0 \mathrm{~V} \\ & \text { BIPOLAR }=0.8 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0 \\ -V_{R E F} / 2 \end{gathered}$		$\begin{array}{r} +V_{R E F} \\ +V_{R E F} / 2 \\ \hline \end{array}$	$\begin{aligned} & v \\ & v \end{aligned}$
I_{B}	Analog input bias current			1	5	$\mu \mathrm{A}$
$\mathrm{Z}_{\text {IN }}$	Analog input impedance		1	3		Megohms
$V_{\text {REF }}$	Reference voltage output	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.495	2.500	2.505	V
TC fef	Reference voltage drift ${ }^{4}$	over operating temp range		$\begin{gathered} \pm 1.25 \\ (\pm 5) \end{gathered}$	$\begin{aligned} & \pm 2.5 \\ & (\pm 10) \end{aligned}$	$\underset{\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)}{\mathrm{mV}}$
L (REF)	Reference external load		2	2.5		mA
I feF In	Reference input current	$\mathrm{V}_{\text {REF }} \mathrm{IN}=2.5 \mathrm{~V}$		2	3	mA
$\mathrm{V}_{\text {CC }}$	Pos supply operating range		4.75	5	5.25	V
V_{EE}	Neg supply operating range		-4.75	-5	-5.25	V
$\mathrm{P}_{\text {SR }}$	Power supply rejection ${ }^{5}$	$\begin{gathered} V_{C C}=4.75 \text { to } 5.25 \mathrm{~V} \\ V_{E E}=-4.75 \text { to }-5.25 \mathrm{~V} \end{gathered}$			± 0.25	LSB
ICC	Positive supply current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}$		36	45	mA
I_{EE}	Negative supply current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V}$		50	60	mA
Logic inputs						
V_{IH}	Logic 1 input voltage		2.0			V
V_{IL}	Logic 0 input voltage				0.8	V
$\mathrm{IIH}^{\text {H }}$	Logic 1 input current	$\mathrm{V}_{\mathrm{H}}=2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$, over operating temp range			$\begin{aligned} & 10 \\ & 20 \end{aligned}$	${ }_{\mu \mathrm{A}}^{\mathrm{A}}$
ILL	Logic 0 input current	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \text { over operating } \\ \text { temp range } \end{gathered}$			$\begin{aligned} & 200 \\ & 400 \end{aligned}$	${ }_{\mu \mathrm{A}}^{\mu \mathrm{A}}$
Logic outputs						
V_{OH}	Logic 1 output voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{CS}=\overline{\mathrm{CE}}=0.8 \mathrm{~V}$	2.4	3.2		V
V_{OL}	Logic 0 output voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}, \mathrm{CS}=\overline{\mathrm{OE}}=0.8 \mathrm{~V}$		0.2	0.4	V
loz	Three-state leakage	$\begin{gathered} \overline{O E}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \overline{\mathrm{CE}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V}, \\ \text { over temp } \end{gathered}$		± 10	$\begin{gathered} \pm 20 \\ \pm 100 \end{gathered}$	$\underset{\mu \mathrm{A}}{\mu \mathrm{~A}}$

NOTES:

1. Specifications given in LSB refer to the weight of the least significant bit at the 10 -bit level, which is 0.1% of the full scale voltage.
2. Relative accuracy is defined as the deviation of the actual code transition points from a straight line drawn between the first code transition point and the final code transition point.
3. Resolution for which the device is guaranteed to have no missing codes
4. Deviation of the reference voltage output over the operating temperature range from its $25^{\circ} \mathrm{C}$ value.
5. Maximum change in the final code transition point. This will also result in a linear change in all lower order codes.

10-Bit High Speed Microprocessor-Compatible Analog to Digital Converter

AC ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{CLK}}=5 \mathrm{MHz}$

	PARAMETER	то	FROM	EDGE		MIN	TYP	MAX	UNITS
FCLK	Max clock frequency					$3.0{ }^{1}$	4.0		MHz
tWCP	Pos clk pulse width					90			nS
twCN	Neg clk pulse width					90			nS
tconv	Conversion time						7.5/FCLK ${ }^{2}$		nS
tw	START pulse width					100			nS
t_{s}	Set-up time	CLK	START	HI-LOW		tbd	tbd		nS
tp (DATA)	Access time	$\begin{aligned} & \text { DB0- } \\ & \text { DB9 } \end{aligned}$	$\overline{\mathrm{OE}}$	HI-LOW			tbd	tbd	nS
tp (3-STATE)	Disable time	hi-Z	$\overline{\mathrm{OE}}$	LOW-HI			tbd	tbd	nS
$\mathrm{tp}_{\text {(EDC) }}$	Propagation delay	EOC hi	$\overline{O E}$	HI-LOW			tbd	tbd	nS

NOTES:

1. Maximum clock frequency. Subject to change before product release.
2. Frequency in MHz .

TIMING DIAGRAM

* Timing diagram shows internal logic operation for the sake of short cycle operation. Data outputs are in Hi-2 state until OE and CS are both brought to a logic low.

CIRCUIT DESCRIPTION

The SE/NE5030 is a microprocessor compatible, high speed, 10-bit Analog-to-Digital converter. The device uses a new multi-step parallel conversion scheme ${ }^{1}$ which determines two bits of the digital word in each conversion step, permitting a fast 2.5 microsecond conversion time.

Refer to the block diagram. The fullscale current of the DAC is $V_{\text {REF }} / R$. When conversion is initiated, the successive approximation register (SAR) directs the two MSB currents of the DAC (19 and 18) to \bar{O} and the remaining bit currents of the DAC (including the DAC R/ 2R termination current) to lo1. This divides the input signal range into four equal subranges. The three latched comparators determine into which of these subranges the input voltage falls. The decoded outputs of these comparators determine the two MSBs (D9 and D8), which are stored in the SAR.

In each subsequent step, the SAR controls the DAC such that the complement of the previously determined bits are directed through lo2; the bits currently being determined are directed through $\overline{\bar{l}}$, and the remainder of the bits are directed through lo1. In this manner the subrange containing the analog input voltage in the previous step is divided into four smaller subranges and two bits of the digital output are determined. At the end of five steps the SAR contains a 10bit binary code which accurately represents the input signal to within $\pm 1 / 2$ LSB.

FUNCTIONAL DESCRIPTION

With an external clock signal connected to the CLOCK IN pin, $\overline{C S}$ at a logic low, and $\overline{O E}$ at a logic high, a conversion cycle is initiated with the application of an external start pulse applied to the START pin. The SAR sequences through the conversion as described above. At the end of the conversion, the end-of-conversion flag ($\overline{E O C}$) goes low. The EOC flag can be used to interrupt a microprocessor or otherwise notify a processor or controller that a conversion is completed. $\overline{\mathrm{OE}}$ may then be forced low (while holding $\overline{\mathrm{CS}}$ low), enabling the three-state output buffers so that the converted word may be read. Bringing the $\overline{O E}$ pin low while the $\overline{C S}$ pin is low also resets the $\overline{E O C}$ flag to a logic high. It is recommended that $\overline{O E}$ be brought to a logic high prior to the application of another START pulse. If $\overline{O E}$ were to remain low during a conversion, the output buffers would be enabled and would switch states during the conversion. This switching can couple into the analog input through parasitic capaci-
tances, causing erroneous conversion results.

The application of another START pulse while a conversion is in progress will halt the conversion in progress and begin a new conversion cycle. If a START pulse is received while the $\overline{C S}$ input is at a logic high, that START pulse is ignored. The outputs will be in the high impedance state as long as either $\overline{C S}$ or the $\overline{O E}$ input is at a logic high.

LOGIC INPUTS AND OUTPUTS

All the logic inputs (BIPOLAR, CLOCK IN, $\overline{\mathrm{START}}, \overline{\mathrm{CS}}, \overline{\mathrm{OE}}$) respond to TTL level signals and present one LS TTL load to the driving source. The logic outputs are capable of driving two TTL loads. If long digital lines or a heavily loaded bus must be driven, external logic buffers are recommended.

VOLTAGE REFERENCE

The internal voltage reference ($2.5 \mathrm{~V} \pm 0.2 \%$) is of a second order-corrected design. The output voltage is trimmed at the wafer level by the "Zener zap" technique to have a temperature coefficient of less than $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (average) over the operating temperature range. $\mathrm{V}_{\text {REF OUT (pin 1) }}$ and $\mathrm{V}_{\text {REF OUT }}$ (pin 2) are not internally connected and should be connected together close to the device. The voltage reference output (pin 1) can provide up to 2 mA to an external load for other system applications. The current drawn by any external load must remain constant during a conversion.

ANALOG INPUT

The analog input voltage to ge digitized is connected between V_{IN} (pin 5) and Analog Common (pin 6). The device operates in either a unipolar mode (input range of 0 to $V_{\text {REF }}$) or in a bipolar mode (input range of $-V_{\text {REF }} / 2$ to $+V_{\text {REF }} / 2$). The TTL compatible $\overline{\text { BIPOLAR }}$ input is used to select the mode.
When the BIPOLAR input is high, the device operates in the unipolar mode. The input range is then 0 to $+V_{\text {REF }}(2.5 \mathrm{~V}$ nominal). The nominal value of the LSB is 2.44 mV . The SE/ NE5030 is designed to have a $1 / 2$ LSB offset so that the analog input exactly corresponding to a given code will fall in the center of that code's input range. Thus, the ideal input voltage to cause the first transition (from 00 00000000 to 0000000001) will occur for an input voltage of 1.22 mV , and the final transition (from 1111111110 to 111111 1111) will ideally occur for an input voltage of
2496.34 mV , or 1.5 LSB below the 2.5 V reference.

For bipolar operation, the BIPOLAR input is set to a logic low. This shifts the transfer curve of the A / D by $V_{\text {REF }} / 2$ so that the input voltage range is now $-\left(\mathrm{V}_{\mathrm{REF}} / 2\right)$ to $+\left(\mathrm{V}_{\mathrm{REF}} /\right.$ $2)$, or (-1.25 V to +1.25 V nominal). The ideal transition of code from 0000000000 to 00 00000001 occurs at an input of -1248.78 mV , and the final code transition (11 11111110 to 1111111111 occurs at 1246.34 mV .

The high input impedance of the SE/NE5030 analog input simplifies the requirements of the signal source driving the SE/NE5030, eliminating the need for specialized drive circuitry.

POWER SUPPLY DECOUPLING AND LAYOUT CONSIDERATIONS

Since one LSB of the SE/NE5030 input is just 2.44 mV , good layout and grounding techniques are crucial to attaining optimum performance.
The power supplies should be filtered, well regulated, and free of high frequency noise. Use of noisy supplies will cause unstable output codes to be generated. The power supplies should be bypassed to Analog Common with tantalum or electrolytic capacitors in parallel with a small, high frequency bypass. Suitable bypasses would be $22 \mu \mathrm{~F}$ electrolytic capacitors with $0.1 \mu \mathrm{~F}$ ceramic capacitors in parallel with them. These capacitors should be located close to the device.

Analog Common and Digital Common are not connected internally and should be connected together as close to the device as possible. Low impedance analog and digital common returns are important for optimum performance. The power supply returns should be connected to the Digital Common of the device. The Analog Common is the ground reference point for the internal voltage and should be connected directly to the Analog Common reference point of the system.
Coupling between the digital lines and the Analog Input should be minimized by careful printed circuit board layout. The layout should attempt to locate the analog circuitry and their interconnections as far from the logic circuitry as is possible. Use of wire wrap techniques or plug-in type boards is not recommended.

NOTE:

1. M. Kolluri: 'A Multi-Step Paraliel 10 -Bit 1.5μ Sec ADC," ISSCC Digest of Technical Papers , p 60-61; Feb 1984.

DESCRIPTION

The DAC800 is a single-chip converter with 12-bit linearity, obtained without trimming. It is pin compatible with the industry standard DAC80 (no external reference can be used) and has a faster settling time. This converter has thin film application resistors, a low temperature coefficient bandgap reference, and an output amplifier (V models).

The DAC800 provides for both bipolar and unipolar outputs. The V models allow output ranges of $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, $\pm 10 \mathrm{~V}, 0$ to +5 V , or 0 to +10 V . The current models have an output range of either $\pm 1 \mathrm{~mA}$ or 0 to -2 mA .

The DAC800 has a maximum nonlinearity error of $\pm 1 / 2$ LSB over the full temperature range, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Additionally, the DAC800 offers maximum total error over the full temperature range of $\pm 0.15 \%$ of full-scale for unipolar operation and $\pm 0.12 \%$ of full-scale for bipolar operation. The total error includes the effects of gain, offset, and linearity drift with gain and offset errors adjusted to zero at $25^{\circ} \mathrm{C}$.

FEATURES

- Maximum Nonlinearity $\pm 1 / 2$ LSB
- Guaranteed Monotonicity $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Current or Voltage Output Models
- Internal Reference
- Unipolar and Bipolar Operation
- Compatible with TTL/LSTTLICMOS
- No Laser Trimming
- Excellent Power Supply Rejection

APPLICATIONS

- Data Acquisition and Control Systems
- Analog-to-Digital Converter Systems
- Automatic Test Equipment
- Robotics
- Waveform Generation

PIN CONFIGURATIONS

12-Bit D/A Converter

AC ELECTRICAL CHARACTERISTICS $\quad \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ (Unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
V_{IH}	Logic Input High		2		16.5	V
V_{IL}	Logic Input Low		0		0.8	V
I_{H}	Logic High Input Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Logic Low Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-20			$\mu \mathrm{A}$
	Power Supply Sensitivity $V_{C C}, V_{E E}, V_{D D}$			± 0.0005	± 0.001	\% of FSR/\%V
	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {EE }}$		± 13.5	± 15	± 16.5	V
	$V_{D D}{ }^{5}$		4.5	5	16.5	V
	$l_{\text {cc }}$			11	14	mA
	$\mathrm{I}_{\text {EE }}$		-20.	-17		mA
	${ }_{\text {D }}$			6.5	8	mA

NOTES:

1. Adjustable to zero with external trim potentiometer.
2. To maintain drift specs internal resistors must be used on current output model.
3. FSR means full-scale range and is 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for $\pm 5 \mathrm{~V}$ range, etc.
4. Includes the effects of gain, offset, and linearity drift. Gain and offset errors are adjusted to zero at $25^{\circ} \mathrm{C}$.
5. Power dissipation is an additional 20 mW when $\mathrm{V}_{D D}$ is operated at +15 V .
6. $R_{L}=2 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for V models only.
7. $C_{L}=10 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for 1 models.
8. Typical operating conditions for Amplifier Duration Output Short Circuit to Ground is indefinite at this time.

POWER SUPPLY CONNECTIONS

Any nolse present on the power supply pins of the DAC800 creates additional error. For optimum performance this nolse should be limited as much as possible. This can be accomplished by bypassing the power supply pins with appropriate capacitors. Decoupling capacitors on the order of $1 \mu \mathrm{~F}$ are recommended with the best types being tantalum or electrolytic. Electrolytic capacitors have poor high frequency characteristics and, if used, should be paralleled with a $0.01 \mu \mathrm{~F}$ ceramic capacitor.

LOGIC INPUTS

The logic inputs of the DAC800 are compatible with TTL, LSTTL, and CMOS over the operating range of $V_{D D}(5 \mathrm{~V}$ to 15 V$)$ as well as over temperature $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$. The input switching threshoid is TTL (about 1.4 V) and is independent of the supply voltage, V_{DD}.
Logic input coding for the DAC800 is complementary. The specific code will be complementary straight binary (CSB) for unipolar output connections and complementary offset binary (COB) for blpolar output connections. For bipolar output connections, compiementary two's complement (CTC) can be realized by inverting the MSB with an external inverter. The relationship between the digital input and analog output for the three codes is shown in Table 1.

VOLTAGE REFERENCE

The DAC800 has an internal 6.3 V reference
with a $\pm 1 \%$ tolerance. The reference is connected internally to the converter and to the bipolar offset resistor and to pin 16 which does not allow the use of an external reference. The reference is brought out on pin 24 for external use, if needed, and can typically supply 2.5 mA . If the external load varies, an external buffer is recommended in order to isolate the reference from load variations.

EXTERNAL GAIN/OFFSET
 ADJUSTMENTS

The gain and offset of the DAC800 can be adjusted with external potentiometers. The potentiometer configuration required for gain adjustment is shown in Figure 1. The 10M2 resistor should have a tolerance of $\mathbf{2 0 \%}$ or less and the potentiometer and 10 M g resistor should have a temperature coefficient of $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less.
The potentiometer configuration required for offset adjustment is shown in Figure 2 and its equivalent circult in Figure 3. From the equivalent circuit it can be seen that this configuration adds/subtracts a current from the converter output current. The 3.9 MQ resistor should have a tolerance of $\mathbf{2 0 \%}$ or less and the potentiometer and 3.8 M e resistor should have a temperature coefficient of $200 \mathrm{ppm} /$ ${ }^{\circ} \mathrm{C}$ or less. Both adjustment circuits should be located close to the DAC800 to prevent noise pickup. If full-scale accuracy is not required, then the gain adjust pin may be grounded to minimize noise pick-up.

The effects of gain and offset adjustment are shown in Figures 4 and 5 . Figure 4 shows that gain adjustment rotates the transfer function about the origin and has no impact on the origin. Figure 5 shows that offset adjustment translates the transfer function along the ANALOG OUTPUT axis. Note that this changes the output for full-scale. The objective of the adjustment procedure is to fix the end points of the transfer function at the ideal points. For this reason the adjustment sequence must be to first adjust the offset and then the gain. Offset adjustment is accomplished by setting all logic inputs to a logic high ("1") and adjusting the offset so that the output corresponds to lts most negative value (zero for unipolar outputs and -full-scale for bipolar outputs). Gain adjustment is accomplished by setting all logic inputs to a logic low (" 0 ") and adjusting the gain such that the output corresponds to its most positive value (fullscale -1LSB).

VOLTAGE MODEL OUTPUT CONNECTIONS

The DAC800 voltage models have internal scaling resistors which provide output ranges of 0 to $+5 \mathrm{~V}, 0$ to $+10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. The use of the internal resistors minimizes gain and offset drift since excellent thermal tracking with other on-chip components limits this effect. Figures 6a, b and c show the different output conflgurations.

Table 1. Coding Relationships

DIGITAL INPUT	ANALOG OUTPUT		
	CSB	COB	CTC
MSB			
000000000000	+Full-Scale -1 LSB	+Full-Scale -1 LSB	-1 LSB
011111111111	+1/2 Full-Scale	Zero	- Full-Scale
100000000000	+1/2 Full-Scale -1 LSB	-1 LSB	+Full-Scale -1 LSB
111111111111	Zero	- Full-Scale	Zero

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

PARAMETER	RATING	UNIT
Temperature Range Operating Storage		
Power Supply	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
V_{DD}		
Logic Levels	± 16.5	V
High	+16.5	V
Low		

NOTE:

1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device rellability.

DC ELECTRICAL CHARACTERISTICS $\quad \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ (Unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ	Max	
	Resolution		12			Bits
	Monotonicity		12			Bits
NL	Nonlinearity				$\pm 1 / 2$	LSB
DNL	Differential Nonlinearity			$\pm 1 / 2$	± 1	LSB
	Gain Error ${ }^{1}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 0.1	± 0.2	\% of FSR
	Gain Tempco			± 10	± 30	ppm $/{ }^{\circ} \mathrm{C}$
	Offset Error ${ }^{1}$			± 0.05	± 0.15	\% of FSR^{3}
	Offset Tempco ${ }^{2}$	Unipolar Connection		± 1	± 3	ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$
	Offset Tempco ${ }^{2}$	Bipolar Connection		± 7	± 15	ppm of FSR/ $/{ }^{\circ} \mathrm{C}$
	Bipolar Drift	Full-Scale Drift for Bipolar Connection		± 10	± 25	ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$
	Total Error ${ }^{4}$	Unipolar Connection		± 0.06	± 0.15	\% of FSR
	Total Error ${ }^{4}$	Bipolar Connection		± 0.05	± 0.12	\% of FSR
t_{s}	Settling Time to 0.01\% of FSR ${ }^{6}$	20 V Range		3	5	$\mu \mathrm{s}$
$\mathrm{t}_{\text {S }}$	Settling Time to 0.01\% of FSR ${ }^{6}$	10 V Range		2.5	4	$\mu \mathrm{s}$
$\mathrm{t}_{\text {S }}$	Settling Time to 0.01\% of FSR ${ }^{6}$	1LSB Change, Major Carry		1.5		$\mu \mathrm{s}$
$\mathrm{t}_{\text {s }}$	Settling Time to 0.01\% of FSR ${ }^{7}$	10 to 1008 Load		300		ns
t_{s}	Settling Time to 0.01\% of FSR ${ }^{7}$	1ks Load		1		$\mu \mathrm{S}$
	Full-Scale Current	I Model Only	1.7	2	2.3	mA
	Converter Output Impedance	I Model Only		10		MQ
	Converter Output Compliance	I Model Only	-2.5		+2.5	V
	Amplifier Slew Rate ${ }^{6}$		10	15		$\mathrm{V} / \mu \mathrm{s}$
	Amplifier Output Current	V Model Only	± 5			mA
	Amplifier DC Output Impedance	V Model Only		0.05		Ω
	Amplifier Duration Output Short Circuit to Ground ${ }^{8}$	V Model Only				
$\mathrm{V}_{\text {REF }}$	Reference Voltage Output		6.23	6.30	6.37	V
	Reference Voltage Tempco			± 10	± 30	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Reference Output Source Current		1.5	2.5		mA

Figure 1. Gain Adjust Circult

Figure 2. Offset Adjust Circult

Figure 3. Offset Adjust Equivalent CIrcuit

Figure 4. Gain Adjust Effects

Figure 5. Offset Adjust Effects

*Connect pin 17 to pin 20 for $\pm 2.5 \mathrm{~V}$ Range and to ground for 0 to 5 V Range
a. Connections for 0 to 5 V Range and $\pm 2.5 \mathrm{~V}$ Range (V model)

Connect pin 17 to pin 20 for $\pm 5 \mathrm{~V}$ Range and to ground for 0 to 10 V Range
b. Connections for 0 to 10 V Range and $\pm 5 \mathrm{~V}$ Range (V model)

c. Connectlons for $\pm 10 \mathrm{~V}$ Range (V model)

Figure 6.

a. Connections for 0 to $\mathbf{- 2 V}$ Range (I model)

b. Connections for +1V Range (I model)

Flgure 7.

CURRENT MODEL OUTPUT CONNECTIONS

Internal resistors are provided for the current models which can be used with an external op amp or configured as a resistive load for output ranges of 0 to -2 V or $\pm 1 \mathrm{~V}$. Use of these internal resistors is required to maintain gain and bipolar offset drift specifications.
Output ranges of 0 to -2 V and $\pm 1 \mathrm{~V}$ are obtainable with the addition of a single external resistor (excluding the gain and offset adjustment components). Figures 7 a and b show the necessary connections for these output ranges. The internal resistors of the DAC800 have wide tolerances and the external resistor, $R_{\text {ext }}$ will have to be selected for each unit. Nominal values will be 32Ω for the unipolar connection and 0Ω for the bipolar connection.
The current output can also be used to drive the summing junction of an external op amp used as a voltage to current converter. This has the advantage of faster settling time than the voltage model. Figure 8 shows the general configuration and Table 2 lists the available output ranges and required connections.

Table 2. Current Model Connection for Various Output Ranges

OUTPUT RANGE	CONNECT		
	OUT TO	19 TO	17 TO
$\pm 10 \mathrm{~V}$	19	Out	15
$\pm 5 \mathrm{~V}$	18	NC	15
$\pm 2.5 \mathrm{~V}$	18	15	15
0 to +10 V	18	NC	GND
0 to +5 V	18	15	GND

DESCRIPTION

The NE5018 is a complete 8 -bit digital to analog converter subsystem on one monolithic chip. The data inputs have input latches, controlled by a latch enable pin. The data and latch enable inputs are ultralow loading for easy interfacing with all logic systems. The latches appear transparent when the $\overline{L E}$ input is in the low state. When $\overline{L E}$ goes high, the input data present at the moment of transition is latched and retained until $\overline{L E}$ again goes low. This feature allows easy compatibility with most micro-processors.

The chip also comprises a stable voltage reference (5 V nominal) and a high slew rate buffer amplifier. The voltage reference may be externally trimmed with a potentiometer for easy adjustment of full scale, while maintaining a low temperature co-efficient.
The output of the buffer amplifier may be offset so as to provide bipolar as well as unipolar operation.

FEATURES

- 8-bit resolution
- Input latches
- Low-loading data inputs
- On-chip voltage reference
- Output buffer amplifier
- Accurate to $\pm 1 / 2$ LSB (.19\%)
- Monotonic to 8 bits
- Amplifier and reference both shortcircuit protected
- Compatible with 8085, 6800 and many other μ P's

APPLICATIONS

- Precision 8-bit D / A converters
- A/D converters
- Programmable power supplies
- Test equipment
- Measuring instruments
- Analog-digital multiplication

BLOCK DIAGRAM

PIN CONFIGURATION

NOTES

1. SOL-Released in Large SO package only
2. SOL and non-standard pinout

3 SO and non-standard pinouts

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
$\mathrm{V}_{\mathrm{CC}}{ }^{+}$	Positive supply voltage	18	V
$\mathrm{V}_{\mathrm{CC}}{ }^{-}$	Negative supply voltage	-18	V
$V_{\text {IN }}$	Logic input voltage	0 to 18	V
$V_{\text {REF }}$ IN	Voltage at $V_{\text {REF }}$ input	12	V
$V_{\text {REFADJ }}$	Voltage at VREF adjust	0 to $V_{\text {REF }}$	V
$V_{\text {SUM }}$	Voltage at sum node	12	V
IREFSC	Short-circuit current		
IOUTSC	to ground at VREF OUT Short-circuit current to ground or either supply at VOUT	Continuous Continuous	
$\mathrm{PD}_{\text {D }}$	Power dissipation*		
	-N package	800	mW
	-F package	1000	mW
T_{A}	Operating temperature range		
	SE5018	-55 to +125	${ }^{\circ} \mathrm{C}$
	NE5018	0 to +70	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
TSOLD	Lead soldering temperature (10 seconds)	300	${ }^{\circ} \mathrm{C}$

- NOTES

For N package, derate at $120^{\circ} \mathrm{C}, \mathrm{W}$ above $35^{\circ} \mathrm{C}$
For F package, derate at $75^{\circ} \mathrm{C}$ W above $75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $V_{C_{C}+}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}^{-}}=-15 \mathrm{~V}$, SE50 $18 .-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$.
NE5018. $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ unless otherwise specified.!
Typical values are specified at $25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	SE5018			NE5018			UNIT	
		Min	Typ	Max	Min	Typ	Max			
	Resolution Monotonicity Relative accuracy			8	8	$\begin{gathered} 8 \\ 8 \\ +0.19 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{gathered} 8 \\ 8 \\ +0.19 \end{gathered}$	Bits Bits $\%$ FS
$\begin{aligned} & v_{\mathrm{CC}^{+}} \\ & \mathrm{v}_{\mathrm{CC}^{-}} \end{aligned}$	Positive supply voltage Negative supply voltage		$\begin{gathered} 11.4 \\ -11.4 \end{gathered}$	$\begin{gathered} 15 \\ -15 \end{gathered}$		$\begin{gathered} 11.4 \\ -11.4 \end{gathered}$	$\begin{gathered} 15 \\ -15 \end{gathered}$		$\begin{aligned} & v \\ & v \end{aligned}$	
$V_{I N}(1)$ $V_{I N}(0)$	Logic " 1 " input voltage Logic " 0 " input voltage	$\begin{aligned} & \operatorname{Pin} 1=O V \\ & \operatorname{Pin} 1=O V \end{aligned}$	2.0		0.8	2.0		0.8	$\begin{aligned} & v \\ & v \end{aligned}$	
$\begin{aligned} & \operatorname{liN}(1) \\ & \operatorname{IN}(0) \end{aligned}$	Logic " 1 " input current Logic " 0 " input current	$\begin{gathered} P_{\text {in }} 1=0 V, 2 V<V_{\mathbb{N}}<18 V \\ P_{\text {in }} 1=0 V,-5 V<V_{\mathbb{N}}<0.8 V \end{gathered}$		$\begin{gathered} 0.1 \\ -2.0 \end{gathered}$	$\begin{array}{r} 10 \\ -10 \end{array}$		$\begin{gathered} 0.1 \\ -2.0 \end{gathered}$	$\begin{gathered} 10 \\ -10 \end{gathered}$	$\begin{array}{r} \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \hline \end{array}$	
$\begin{aligned} & V_{F S} \\ & V_{F S} \\ & V_{Z S} \end{aligned}$	Full scale output voltage Full scale output voltage Zero scale voltage	Unipolar operation $V_{\text {REF }} \mathbb{N}=5.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Bipolar operation $V_{\text {REF }} \mathbb{N}=5.000 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} 9.50 \\ 4.5 \\ -5.04 \\ -30 \end{gathered}$	$\begin{array}{\|c\|} \hline 9.961 \\ +4.961 \\ -5.000 \\ 5 \end{array}$	$\begin{array}{\|c\|} \hline 10.50 \\ \\ 5.5 \\ -4.960 \\ +30 \end{array}$	$\begin{gathered} 9.50 \\ 4.5 \\ 5.04 \\ -30 \end{gathered}$	$\begin{array}{\|c\|} \hline 9.961 \\ +4.961 \\ -5.000 \\ 5 \end{array}$	$\begin{gathered} 10.50 \\ 5.5 \\ 4.960 \\ +30 \end{gathered}$	$\begin{gathered} v \\ v \\ m v \end{gathered}$	
IOS	Output short circuit current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & V_{\text {OUT }}=O V \end{aligned}$		15	40		15	40	mA	
$\begin{aligned} & \text { PSR }+ \text { (out) } \\ & \text { PSR- (out) } \end{aligned}$	Output power supply rejection (+) Output power supply rejection (-)	$\begin{gathered} V-=-15 \mathrm{~V}, 13.5 \mathrm{~V} \leq \mathrm{V}+\leq 16.5 \mathrm{~V} \\ \text { external } V_{R E F} \mathbb{N}=5.000 \mathrm{~V} \\ \mathrm{~V}+=15 \mathrm{~V},-13.5 \mathrm{~V} \leq \mathrm{V}-\leq-16.5 \mathrm{~V} \\ \text { external } \mathrm{V}_{\mathrm{REF}} \mathbb{N}=5.000 \mathrm{~V} \end{gathered}$		$\begin{aligned} & .001 \\ & .001 \end{aligned}$	01 01		$\begin{aligned} & .001 \\ & .001 \end{aligned}$	01 .01	$\begin{gathered} \because F S \\ \therefore V S \\ \because F S \\ \therefore V S \end{gathered}$	
$\begin{aligned} & \mathrm{TC}_{\mathrm{FS}} \\ & \mathrm{TC} \end{aligned}$	Full scale temperature coefficient Zero scale temperature coefficient	$\mathrm{V}_{\text {REF }}$ IN $=5.000 \mathrm{~V}$		20 5			20 5		$\begin{aligned} & \text { ppm }{ }^{\circ} \mathrm{C} \\ & \text { ppm }{ }^{\circ} \mathrm{C} \end{aligned}$	

DC ELECTRICAL CHARACTERISTICS (Cont'd) $V_{C C^{+}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}{ }^{-}=-15 \mathrm{~V}$, SE5018. $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, NE5018. $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ unless otherwise specified.'
Typical values are specified at $25^{\circ} \mathrm{C}$

note

1. Reter to Figure 2.

AC ELECTRICAL CHARACTERISTICS ${ }^{2} V_{C C}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

PARAMETER		TO	FROM	TEST CONDITIONS	SE/NE5018			UNIT	
		Min			Typ	Max			
TSLH TSHL	Settling time Settling time		$\begin{aligned} & \pm 1 / 2 \text { LSB } \\ & \pm 1 / 2 \text { LSB } \end{aligned}$	Input Input	All bits low to high ${ }^{3}$ All bits high to low ${ }^{4}$		$\begin{aligned} & 1.8 \\ & 2.3 \end{aligned}$		$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~s} \end{aligned}$
tplh ${ }^{t} \mathrm{phl}$ tplsb ${ }^{t} \mathrm{plh}$ ${ }^{t}$ phl	Propagation delay Propagation delay Propagation delay Propagation delay Propagation delay	Output Output Output Output Output	Input Input Input LE $\overline{L E}$	All bits switched low to high ${ }^{3}$ All bits switched high to low ${ }^{4}$ 1 LSB change ${ }^{3,4}$ low to high transition 5 high to low transition 6		$\begin{aligned} & 300 \\ & 150 \\ & 150 \\ & 300 \\ & 150 \end{aligned}$			
$\begin{aligned} & t_{s} \\ & t_{h} \\ & t_{p w} \end{aligned}$	Set-up time Hold time Latch enable pulse width	$\overline{\mathrm{LE}}$ Input	$\frac{\text { Input }}{\overline{L E}}$	$\begin{aligned} & 2,7 \\ & 2,7 \\ & 2,7 \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 150 \end{gathered}$			ns ns ns	

NOTES
2. Reter to Figure 3.
3. See Figure 6
4. See Figure 7
5. See Figure 8.
6. See Figure 9.
7. See Figure 10.
8. For reference currents $>3 \mathrm{~mA}$, use of an external buffer is required

Figure 2

SETTLING TIME AND PROPAGATION DELAY, LOW TO HIGH DATA

Figure 6

AC PARAMETRIC TEST CONFIGUTATION

Figure 3

Figure 7

LATCH ENABLE PULSE WIDTH, SET-UP AND HOLD TIMES

Figure 10

DESCRIPTION

The NE5019 is a complete 8 -bit digital to analog converter subsystem on one monolithic chip. The data inputs have input latches, controlled by a latch enable pin. The data and latch enable inputs are ultralow loading for easy interfacing with all logic systems. The latches appear transparent when the $\overline{L E}$ input is in the low state. When $\overline{\mathrm{LE}}$ goes high, the input data present at the moment of transition is latched and retained until $\overline{\mathrm{LE}}$ again goes low. This feature allows easy compatibility with most micro-processors.

The chip also comprises a stable voltage reference (5 V nominal) and a high slew rate buffer amplifier. The voltage reference may be externally trimmed with a potentiometer for easy adjustment of full scale, while maintaining a low temperature co-efficient.

The output of the buffer amplifier may be offset so as to provide bipolar as well as unipolar operation.

FEATURES

- 8-bit resolution
- Input latches
- Low-loading data inputs
- On-chip voltage reference
- Output buffer amplifier
- Accurate to $\pm 1 / 4$ LSB (.1\%)
- Monotonic to 8 bits
- Amplifier and reference both shortcircult protected
- Compatible with 8085, 6800 and many other μ P's

APPLICATIONS

- Precision 8-bit D/A converters
- A/D converters
- Programmable power supplies
- Test equipment
- Measuring instruments
- Analog-digital multiplication

PIN CONFIGURATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

	PARAMETER	RATING	UNIT
$\mathrm{V}_{\mathrm{CC}}{ }^{+}$	Positive supply voltage	18	V
$\mathrm{V}_{\text {cc }}{ }^{-}$	Negative supply voltage	-18	V
V_{IN}	Logic input voltage	0 to 18	V
VREFIN	Voltage at VREF input	12	V
$V_{\text {REFADJ }}$	Voltage at $\mathrm{V}_{\text {REF }}$ adjust	0 to $\mathrm{V}_{\text {REF }}$	V
$V_{\text {Sum }}$	Voltage at sum node	12	\checkmark
Irefsc	Short-circuit current to ground at $\mathrm{V}_{\text {REF }}$ OUT	Continuous	
loutse	Short-circuit current to ground or either supply at VOUT	Continuous	
PD	Power dissipation ${ }^{\text {- }}$ - N package	800	mW
	-F package	1000	mW
$\mathrm{T}_{\text {A }}$	Operating temperature range SE5019	-55 to +125	${ }^{\circ} \mathrm{C}$
	NE5019	0 to +70	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { TSTG } \\ & \text { TSOLD } \end{aligned}$	Storage temperature range Lead soldering temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

- NOTES

For N package, derate at $120^{\circ} \mathrm{C} / \mathrm{W}$ above $35^{\circ} \mathrm{C}$
For F package, derate at $75^{\circ} \mathrm{C} / \mathrm{W}$ above $75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}^{+}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}^{-}}=-15 \mathrm{~V}$, SE5019. $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$,
NE50 19. $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ unless otherwise specified.
Typical values are specified at $25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	SE5019			NE5019			UNIT	
		Min	Typ	Max	Min	Typ	Max			
	Resolution Monotonicity Relative accuracy			8	8	$\begin{gathered} 8 \\ 8 \\ \pm 0.1 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{gathered} 8 \\ 8 \\ \pm 0.1 \end{gathered}$	$\begin{aligned} & \text { Bits } \\ & \text { Bits } \\ & \% \text { FS } \end{aligned}$
$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}+ \\ & \mathrm{v}_{\mathrm{CC}} \end{aligned}$	Positive supply voltage Negative supply voltage		$\begin{gathered} 11.4 \\ -11.4 \end{gathered}$	$\begin{gathered} 15 \\ -15 \end{gathered}$		$\begin{array}{\|c\|} \hline 11.4 \\ -11.4 \end{array}$	$\begin{gathered} 15 \\ -15 \end{gathered}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	
$\begin{aligned} & V_{I N(1)} \\ & V_{I N(0)} \end{aligned}$	Logic " 1 " input voltage Logic "0" input voltage	$\begin{aligned} & \operatorname{Pin} 1=O V \\ & \operatorname{Pin} 1=O V \end{aligned}$	2.0		0.8	2.0		0.8	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	
$\begin{aligned} & \operatorname{liN}(1) \\ & \operatorname{liN}(0) \end{aligned}$	Logic " 1 " input current Logic " 0 " input current	$\begin{gathered} \text { Pin } 1=0 \mathrm{~V}, 2 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<18 \mathrm{~V} \\ \text { Pin } 1=0 \mathrm{~V},-5 \mathrm{~V}<\mathrm{V}_{\mathbb{I N}}<0.8 \mathrm{~V} \end{gathered}$		$\begin{gathered} 0.1 \\ -2.0 \end{gathered}$	$\begin{gathered} 10 \\ -10 \end{gathered}$		$\begin{gathered} 0.1 \\ -2.0 \end{gathered}$	$\begin{gathered} 10 \\ -10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	
$\begin{aligned} & \mathrm{v}_{\mathrm{FS}} \\ & \mathrm{v}_{\mathrm{FS}} \\ & \mathrm{v}_{\mathrm{ZS}} \end{aligned}$	Full scale output voltage Full scale output voltage Zero scale voltage	Unipolar operation $V_{\text {REF }}$ IN $=5.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Bipolar operation $V_{\text {REF }} \mathbb{N}=5.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{array}{\|c\|} \hline 9.50 \\ \\ 4.5 \\ -5.040 \\ -30 \end{array}$	$\begin{array}{\|c\|} \hline 9.961 \\ \\ +4.961 \\ -5.000 \\ 5 \end{array}$	$\begin{array}{\|c} \hline 10.50 \\ 5.5 \\ -4.960 \\ +30 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 9.50 \\ \\ 4.5 \\ -5.040 \\ -30 \end{array}$	$\begin{array}{\|c\|} \hline 9.961 \\ +4.961 \\ -5.000 \\ 5 \end{array}$	$\begin{array}{\|c\|} \hline 10.50 \\ \\ 5.5 \\ -4.960 \\ +30 \\ \hline \end{array}$	V v mV	
los	Output short circuit current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{OV} \end{aligned}$		15	40		15	40	mA	
$\begin{aligned} & \text { PSR }+ \text { (out) } \\ & \text { PSR-(out) } \end{aligned}$	Output power supply rejection (+) Output power supply rejection (-)	$\begin{gathered} V-=-15 \mathrm{~V}, 13.5 \mathrm{~V} \leq \mathrm{V}+\leq 16.5 \mathrm{~V} \\ \text { external } \mathrm{V}_{\text {REF }} \mathbb{N}=5.000 \mathrm{~V} \\ \mathrm{~V}+=15 \mathrm{~V},-13.5 \mathrm{~V} \leq \mathrm{V}-\leq-16.5 \mathrm{~V}, \\ \text { external } \mathrm{V}_{\text {REF }} \mathbb{N}=5.000 \mathrm{~V} \end{gathered}$		$\begin{aligned} & .001 \\ & .001 \end{aligned}$.01 .01		$\begin{aligned} & .001 \\ & .001 \end{aligned}$.01 .01	$\begin{aligned} & \text { \%FS/ } \\ & \text { \%VS } \\ & \text { \%FS/ } \\ & \text { \%VS } \end{aligned}$	
$\begin{aligned} & \mathrm{TC}_{\mathrm{FS}} \\ & \mathrm{TC}_{\mathrm{ZS}} \end{aligned}$	Full scale temperature coefficient Zero scale temperature coefficient	$\mathrm{V}_{\text {REF }} \mathrm{N}=5.000 \mathrm{~V}$		$\begin{gathered} 20 \\ 5 \end{gathered}$			$\begin{gathered} 20 \\ 5 \end{gathered}$		$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	

note

1. Refer to Figure 2.

8-Bit Microprocessor-Compatible D/A Converter

DC ELECTRICAL CHARACTERISTICS (Cont'd) $V_{C C}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-=-15 \mathrm{~V}$, SE5019. $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$, NE5019. $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ unless otherwise specified.' Typical values are specified at $25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	SE 5019			NE5019			UNIT
			Min	Typ	Max	Min	Typ	Max	
IREF IREFSC	Reference output current Reference short circuit current	$\begin{gathered} \text { Note } 8 \\ T_{A}=25^{\circ} \mathrm{C} \\ V_{\text {REF }} \text { OUT }=0 \mathrm{O} \end{gathered}$		15	$\begin{gathered} 3 \\ 30 \end{gathered}$		15	$\begin{gathered} 3 \\ 30 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
PSR+REF	Reference power supply rejection (+)	$\begin{gathered} \mathrm{V}-=-15 \mathrm{~V}, 13.5 \mathrm{~V} \leq \mathrm{V}+\leq 16.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{REF}}=1.0 \mathrm{~mA} \end{gathered}$. 003	. 01		. 003	. 01	$\begin{gathered} \hline \% \text { VR/ } \\ \% \text { VV } \end{gathered}$
PSR-REF	Reference power supply rejection (-)	$V+=15 \mathrm{~V},-13.5 \mathrm{~V} \leq \mathrm{V}-\leq 16.5 \mathrm{~V}$,		. 003	. 01		. 003	. 01	$\begin{aligned} & \text { \%VR/ } \\ & \text { \%VS } \end{aligned}$
$V_{\text {REF }}$ TCREF	Reference voltage Reference voltage temperature coefficient	$\begin{aligned} & I_{\text {REF }}=1.0 \mathrm{~mA} \\ & I_{\text {REF }}=1.0 \mathrm{~mA}^{\top} \mathrm{A}=25^{\circ} \mathrm{C} \end{aligned}$	4.9	$\begin{aligned} & 5.0 \\ & 60 \end{aligned}$	5.25	4.9	$\begin{aligned} & 5.0 \\ & 60 \end{aligned}$	5.25	ppm $/{ }^{\circ} \mathrm{C}$
ZIN	DAC V REFIN $^{\text {input }}$ impedance	$\begin{aligned} & \mathrm{I}_{\mathrm{REF}}=1.0 \mathrm{~mA} \\ & \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$	4.15	5.0	5.85	4.15	5.0	5.85	K Ω
Icc+	Positive supply current	$\mathrm{V}_{\mathrm{CC}}+=15 \mathrm{~V}$		7	14		7	14	mA
${ }^{\text {I CC- }}$	Negative supply current	$\mathrm{V}_{\mathrm{CC}}{ }^{-}=-15 \mathrm{~V}$		-10	-15		-10	-15	mA
PD	Power dissipation	${ }^{1} \mathrm{REF}=1.0 \mathrm{~mA}, V_{C C}= \pm 15 \mathrm{~V}$		255	435		255	435	mW

NOTE

1. Reter to Figure 2.

AC ELECTRICAL CHARACTERISTICS ${ }^{2} V_{C C}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

PARAMETER		TO	FROM	TEST CONDITIONS	SE/NE5019			UNIT	
		Min			Typ	Max			
TSLH TSHL	Settling time Settling time		$\begin{aligned} & \pm 1 / 2 \text { LSB } \\ & \pm 1 / 2 \text { LSB } \end{aligned}$	Input Input	All bits low to high ${ }^{3}$ All bits high to low ${ }^{4}$		$\begin{aligned} & 1.8 \\ & 2.3 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
tplh tphl tplsb ${ }^{\text {t }}$ plh ${ }^{t} \mathrm{phl}$	Propagation delay Propagation delay Propagation delay Propagation delay Propagation delay	Output Output Output Output Output	Input Input Input $\overline{L E}$ LE	All bits switched low to high ${ }^{3}$ All bits switched high to low ${ }^{4}$ 1 LSB change ${ }^{3,4}$ low to high transition 5 high to low transition 6		$\begin{array}{r} 300 \\ 150 \\ 150 \\ 300 \\ 150 \end{array}$			
$\begin{aligned} & t_{s} \\ & t_{\mathrm{h}} \\ & t_{\mathrm{pw}} \end{aligned}$	Set-up time Hold time Latch enable pulse width	$\overline{L E}$ Input	Input $\overline{\text { LE }}$	$\begin{aligned} & 2,7 \\ & 2,7 \\ & 2,7 \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 150 \end{gathered}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ ns	

NOTES
2. Refer to Figure 3.
3. See Figure 6
4. See Figure 7.
5. See Figure 8.
6. See Figure 9.
7. See Figure 10.
8. For reference currente $>3 \mathrm{~mA}$, use of an external buffer is required.

Figure 2

FULL/ZERO SCALE ADJUST-UNIPOLAR OUTPUT (0-10V)

SETtLING TIME AND PROPAGATON DELAY,
LOW TO HIGH DATA

Figure 6

AC PARAMETRIC TEST CONFIGUTATION

Figure 3

Figure 7

LATCH ENABLE PULSE WIDTH, SET-UP AND HOLD TIMES

Figure 10

DESCRIPTION

The NE5020 is a microprocessor-compatible monolithic 10 -bit digital to analog converter subsystem. This device offers 10-bit resolution and $\pm 0.1 \%$ accuracy and monotonicity guaranteed over full operating temperature range.

Low loading latches, adjustable logic thresholds and addressing capability allow the NE5020 to directly interface with most microprocessor and logic controlled systems.

The NE5020 contains internal voltage reference, DAC switches and resistor ladder. Also, the input buffer and output summing amplifier are included. In addition, the matched application resistors for scaling either unipolar or bipolar output values are included on a single monolithic chip.
The result is a near minimum component count 10 -bit resolution DAC system.

FEATURES

- 10-bit resolution
- Guaranteed monotonicity over operating range
- $\pm \mathbf{0 . 1 \%}$ relative accuracy
- Unipolar (OV to +10V) and Bipolar ($\pm 5 \mathrm{~V}$) output range
- Logic bus compatible
- 5μ sec settling time

APPLICATIONS

- Precision 10-bit D/A converters
- 10-bit Analog to Digital converters
- Programmable power supplies
- Test equipment
- Measurement instruments

PIN CONFIGURATION

BLOCK DIAGRAM

10-Bit Microprocessor-Compatible D/A Converter

ABSOLUTE MAXIMUM RATINGS

- NOTES

For N package, derate at $120^{\circ} \mathrm{C} / \mathrm{W}$ above $35^{\circ} \mathrm{C}$
For F package, derate at $75^{\circ} \mathrm{C} / \mathrm{W}$ above $75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $\quad V_{C C}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}-=-15 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ unless otherwise specified. ${ }^{1}$
Typical values are specified at $25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	NE5020			UNIT	
		Min	Typ	Max			
	Resolution Monotonicity Relative accuracy					$\begin{gathered} 10 \\ 10 \\ \pm 0.1 \end{gathered}$	Bits Bits \%FS
$\begin{aligned} & \mathrm{v}_{\mathrm{CC}^{+}} \\ & \mathrm{v}_{\mathrm{CC}} \end{aligned}$	Positive supply voltage Negative supply voltage		$\begin{gathered} 11.4 \\ -11.4 \end{gathered}$	$\begin{gathered} 15 \\ -15 \end{gathered}$	$\begin{gathered} 16.5 \\ -16.5 \end{gathered}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	
$\mathrm{V}_{\mathrm{IN}(1)}$ $\mathrm{V}_{\mathrm{IN}(0)}$	Logic " 1 " input voltage Logic " 0 " input voltage	Pin $1=0 V$ Pin $1=0 V$	2.0		0.8	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	
$\begin{aligned} & \operatorname{lin}(1) \\ & \ln (0) \end{aligned}$	Logic " 1 " input current Logic " 0 " input current	$\begin{aligned} & \text { Pin } 1=0 V, 2 V<V_{I N}<18 V \\ & \text { Pin } 1=0 V,-5 V<V_{I N}<0.8 V \end{aligned}$		$\begin{gathered} 0.1 \\ -2.0 \end{gathered}$	$\begin{gathered} 10 \\ -10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	
$\begin{aligned} & v_{F S} \\ & v_{F S} \\ & v_{Z S} \end{aligned}$	Full scale output voltage Full scale output voltage Zero scale voltage	Unipolar operation $\mathrm{V}_{\text {REF IN }}=5.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Bipolar operation VREF $I N=5.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unipolar operation	$\begin{gathered} \hline 9.5 \\ 4.5 \\ -5.040 \\ -30 \end{gathered}$	$\begin{gathered} 9.9902 \\ 4.9902 \\ -5.000 \\ 5 \end{gathered}$	$\begin{gathered} 10.5 \\ \\ 5.5 \\ -4.960 \\ +30 \end{gathered}$	v V mV	
Ios	Output short circuit current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & V_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$		± 15	± 40	mA	
$\begin{aligned} & \text { PSR }+ \text { (out) } \\ & \text { PSR-(out) } \end{aligned}$	Output power supply rejection (+) Output power supply rejection (-)	$\begin{gathered} V-=-15 \mathrm{~V}, 13.5 \mathrm{~V} \leq \mathrm{V}+\leq 16.5 \mathrm{~V} \\ \text { external } V_{\text {REF }} \mathbb{N}=5.000 \mathrm{~V} \\ \mathrm{~V}+=15 \mathrm{~V},-13.5 \mathrm{~V} \leq \mathrm{V}-\leq-16.5 \mathrm{~V} \\ \text { external } V_{\text {REF }} \mathbb{N}=5.000 \mathrm{~V} \end{gathered}$		$\begin{aligned} & .001 \\ & .001 \end{aligned}$	$\begin{aligned} & .01 \\ & .01 \end{aligned}$	\%FS / \%VS \%FS / \%VS	
$\begin{aligned} & \mathrm{TC} \mathrm{C}_{\mathrm{FS}} \\ & \mathrm{TC}_{\mathrm{ZS}} \end{aligned}$	Full scale temperature coefficient Zero scale temperature coefficient	$\mathrm{V}_{\text {REF }} \mathrm{IN}=5.000 \mathrm{~V}$		$\begin{gathered} 20 \\ 5 \end{gathered}$		$\begin{gathered} \mathrm{ppmFS} \\ 1^{\circ} \mathrm{C} \\ \mathrm{ppmFS} \\ 1{ }^{\circ} \mathrm{C} \end{gathered}$	

NOTE

1. Reter to Figure 2.

10-Bit Microprocessor-Compatible D/A Converter

DC ELECTRICAL CHARACTERISTICS (Cont'd) $V_{C C^{+}}=+15 \mathrm{~V}, V_{C C^{-}}=-15 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ unless otherwise specified. ${ }^{1}$ Typical values are specified at $25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	NE5020			UNIT	
		Min	Typ	Max			
$\begin{aligned} & \text { 'REF }^{2} \\ & \text { IREF SC } \end{aligned}$	Reference output current Reference short circuit current		$\begin{gathered} T_{A}=25^{\circ} \mathrm{C} \\ V_{\text {REF OUT }}=0 \mathrm{~V} \end{gathered}$		15	$\begin{gathered} 3 \\ 30 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
PSR+REF	Reference power supply rejection (+)	$\begin{gathered} V-=-15 \mathrm{~V}, 13.5 \mathrm{~V} \leq \mathrm{V}+\leq 16.5 \mathrm{~V} \\ \text { /REF }=1.0 \mathrm{~mA} \end{gathered}$. 003	. 01	$\% \text { VR/ }$	
PSR-REF	Reference power supply rejection (-)	$\mathrm{V}+=15 \mathrm{~V},-13.5 \mathrm{~V} \leq \mathrm{V}-\leq 16.5 \mathrm{~V}$,		. 003	. 01	$\begin{aligned} & \text { \%VR/ } \\ & \text { \%Vs } \end{aligned}$	
$V_{\text {REF }}$	Reference voltage	$l_{\text {REF }}=1.0 \mathrm{~mA}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	4.9	5.0	5.25		
TC REF	Reference voltage temperature coefficient	$I_{\text {REF }}=1.0 \mathrm{~mA}$		60		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
ZiN	DAC $V_{\text {REF }}{ }^{N}$ input impedance	$I_{\text {REF }}=1.0 \mathrm{~mA}$		5.0		k Ω	
ICC^{+}	Positive supply current	$\mathrm{V}_{\mathrm{CC}}{ }^{+}=15 \mathrm{~V}$		7	14	mA	
${ }^{\text {I CO }}$	Negative supply current	$\mathrm{v}_{\mathrm{CC}}{ }^{-}=-15 \mathrm{~V}$		-10	-15	mA	
PD	Power dissipation	$l_{\text {REF }}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}= \pm 15 \mathrm{~V}$		255	435	mW	

NOTE

1. Refer to Figure 2.
2. For $I_{\text {REF }}$ OUT greater than 3 mA , an external buffer is required.

AC ELECTRICAL CHARACTERISTICS ${ }^{3} \mathrm{~V}_{C C}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TO	FROM	TEST CONDITIONS	NE5020			UNIT	
		Min			Typ	Max			
TSLH	Settling time		$\pm 1 / 2$ LSB	Input	All bits low to high ${ }^{4}$		5		$\mu \mathrm{s}$
TSHL	Settling time	$\pm 1 / 2$ LSB	Input	All bits high to low 5		5		$\mu \mathrm{s}$	
${ }^{\text {tplh }}$	Propagation delay	Output	Input	All bits switched low to high ${ }^{4}$		300		ns	
tphl	Propagation delay	Output	Input	All bits switched high to low ${ }^{5}$		150		ns	
tpisb	Propagation delay	Output	Input	1 LSB change ${ }^{4,5}$		150		ns	
$t_{\text {plh }}$	Propagation delay	Output	$\overline{L E}$	low to high transition 6		300		ns	
tphi	Propagation delay	Output	[E	high to low transition ${ }^{7}$		150		ns	
t_{s}	Set-up time	LE	Input	3, 8	100			ns	
$t_{\text {h }}$	Hold time	Input	LE	3, 8	50			ns	
$t^{\text {pw }}$	Latch enable pulse width			3.8	150			ns	

NOTES
3. Refer to Figure 3.
4. See Figure 6.
5. See Figure 7.
6. See Figure 8.
7. See Figure 9.
8. See Figure 10.

LATCH ENABLE PULSE WIDTH, SET-UP AND HOLD TIMES

Figure 10
(

CIRCUIT DESCRIPTION

The NE5020 provides ten data latches, an internal voltage reference, application resistors, and a scaled output voltage, in addition to the basic DAC components (see block diagram, figure 1).

Latch Circuit

Digital interface with the NE5O20 is readily accomplished through the use of two latch enable ports ($\overline{L E}_{1}$ and $\overline{L E}_{2}$) and ten data input latches. $\overline{L E} \bar{E}_{2}$ controls the two most significant bits of data (DB_{9} and DB_{8}) while $\overline{L E}_{1}$ controls the eight lesser significant bits (DB_{7} through DB_{ϕ}). Both the latch enable ports ($\overline{L E}$) and the data inputs are static and threshold sensitive. When the latch enable ports ($\overline{L E}$) are high (Logic ' 1 ') the data inputs become very high impedances and essentially disappear from the data bus. Addressing the $\overline{L E}$ with a low (Logic ' 0 ') the latches become active and adapt the logic states present on the data bus. During this state, the output of the DAC will change to the value proportional to the data bus value. When the latch enable returns to a high state, the selected set of data inputs (i.e., depending on which $\overline{\mathrm{LE}}$ goes high) 'memorize' the data bus logic states and the output changes to the unique output value corresponding to the binary word in the latch.

The data inputs are inactive and high impedance (typically requiring $-2 \mu \mathrm{~A}$ for low (. 8 V max) or $0.1 \mu \mathrm{~A}$ for high (2.0 V min)) when the $\overline{\mathrm{LE}}$ is high. Any changes on the data bus with $\overline{L E}$ high will have no effect on the DAC output.

The digital logic inputs ($\overline{L E}$ and $D B$) for the NE5020 utilize a differential input logic system with a threshold level of +1.4 volts with respect to the voltage level on the digital ground pin (Pin 1). Figure 11 details several bias schemes used to provide the proper threshold voltage levels for various logic families.

To be compatible with a bus orientated system the DAC should respond in as short a period as possible to insure full utilization of the microprocessor, controller and $1 / O$ control lines. Figure 10 shows the typical timing requirements of the latch and data lines. This figure indicates that data on the data bus should be stable for at least $50 n s e c$ after $\overline{L E}$ is changed to a high state.
The independent $\overline{L E}\left(\overline{L E}_{1}\right.$ and $\overline{L E}_{2}$) lines allow for direct interface from an 8 bit data bus (see figure 12). Data for the two MSB's is supplied and stored when $\overline{\mathrm{E}}_{2}$ is activated low and returned high according to the NE5020 timing requirements. Then $\overline{L E}_{1}$ is activated low and the remaining eight LSB's of data are transferred into the DAC. With
$\overline{L E}_{1}$ returning high the loading of ten bit data word from an eight bit data bus is complete.

Occasionally the analog output must change to its data value within one data address operation. This is no problem using the NE5020 on a 16 bit bus or any other data bus with 10 or greater data bits.

This can be accomplished from an 8 bit data bus by utilizing an external latch circuit to preload the two MSB data values. Figure 13 shows the circuit configuration.
After preloading (via $\overline{L E}$ pre-load) the external latch with the two MSB values, $\overline{L E}_{2}$ is activated low and the eight LSB's and the

Figure 12

two MSB's are concurrently loaded into the DAC in one address operation. This permits the DAC output to make its appropriate change at one time.

Reference Interface

The NE5020 contains an internal bandgap voltage reference which is designed to have a very low temperature coefficient and excellent long term stability characteristics.

The internal bandgap reference (1.23 V) is buffered and amplified to provide the 5 volt reference output. Providing a $V_{\text {REF }} A D J$ (pin 14) allows trimming of the reference output. Utilization of the adjust circuit shown in figure 16 performs not only $V_{\text {REF }}$ adjustment but also full scale output adjust. Notice that the $V_{\text {REF }} A D J$ pin is essentially the sum node of an op amp and is sensitive to excessive node capacitance. Any capacitance on the node can be minimized by placing the external resistors as close as possible to the $\mathrm{V}_{\text {REFAD }}$ AD pin and observing good layout practices.

The $V_{\text {REF }}$ out node can drive loads greater than the DAC VREF input requirements and can be used as an excellent system voltage reference. However, to minimize load effects on the DAC system accuracy, it is recommended that a buffer amplifier is used.

Input Amplifier

The DAC reference amplifier is a high gain internally compensated op amp used to convert the input reference voltage to a precision bias current for the DAC ladder network.
Figure 1 details the input reference amplifier and current ladder. The voltage to current converter of the DAC amp will generate a 1 mA reference current through Q_{R} with a 5 volt $V_{\text {REF }}$. This current sets the input bias to the ladder network. Data bit 9 (DBg_{g}) (Q_{g}), when turned on, will mirror this current and will contribute 1 mA to the output. $\mathrm{DB}_{8}\left(Q_{8}\right)$ will contribute $1 / 2$ of that value or 0.5 mA and so on. These current values act as current sinks and will add at the sum node to produce a DAC ladder to sum node function of:

$$
\begin{array}{r}
\text { IOUT }^{=}=\frac{2 V_{\text {REF }}}{R_{\text {REF }}}\left(\frac{D B 9}{2}+\frac{D B 8}{4}+\frac{D B 7}{8}+\right. \\
\frac{\text { DB6 }}{16}+\frac{\text { DB5 }}{32}+\frac{D B 4}{64}+\frac{D B 3}{128}+
\end{array}
$$

$$
\left.\frac{\mathrm{DB} 2}{256}+\frac{\mathrm{DB} 1}{512}+\frac{\mathrm{DBO}}{1024}\right)
$$

Because of the fixed internal compensation of the reference amp, the slew rate is limited to typically $0.7 \mathrm{~V} / \mu \mathrm{sec}$ and source impedances at the $V_{\text {REF INPUT }}$ greater than $5 k \Omega$ should be avoided to maintain stability.

The - VREF INPUT pin is uncommitted to allow utilization of negative polarity reference voltages. In this mode $+V_{\text {REF }}$ INPUT is grounded and the negative reference is tied directly to the $-V_{\text {REF }}$ INPUT. The $-V_{\text {REF }}$ INPUT Contains a $5 \mathrm{k} \Omega$ resistor that matches a like resistor in the $+V_{\text {REF INPUT }}$ to reduce voltage offset caused by op amp input bias currents.

Output Amplifier and Interface

The NE5020 provides an on chip output op amp to eliminate the need for additional external active circuits. Its two stage design with feed forward compensation allows it to slew at $15 \mathrm{~V} / \mu \mathrm{sec}$ and settle to within $\pm 1 / 2$ LSB in $5 \mu \mathrm{sec}$. These times are typical when driving the rated loads of $R_{L} \geq 5 k$ and $C_{L} \leq 50 \mathrm{pF}$ with recommended values of $C_{F F}=1 \mathrm{nF}$ and $\mathrm{C}_{\mathrm{FB}}=30 \mathrm{pF}$. Typical input offset voltages of 5 mV and 50 k open loop gain insure an accurate current to voltage conversion is performed when using the on chip RFB resistor. RFB is matched to RREF and $R_{\text {BIP }}$ to maintain accurate voltage gain over operating conditions. The diode shown from ground to sum node prevents the DAC current switches from saturating the op amp during large signal transitions which would otherwise increase the settling time.

The output op amp also incorporates output short circuit protection for both positive and negative excursions. During this fault condition IOUT will limit at $\pm 15 \mathrm{~mA}$ typical. Recovery from this condition to rated accuracy will be determined by duration of short circuit and die temperature stabilization.

Bipolar Output Voltage

The NE5020 includes a thermally matched resistor, R RIP, to offset the output voltage by 5 volts to obtain -5 V to +5 V output voltage range operation. This is accomplished by shorting pins 18 and 22 (see figure 14). This connection produces a current equal to ($\mathrm{V}_{\text {REF IN }}-\mathrm{V}_{\text {sum node }}$) \div R $_{\text {BIP, }}(1 \mathrm{~mA}$ nominal), which is injected into the sum node. Since full scale current out is approximately $2 m A(1.9980 m A),(2 m A-1 m A) 5 k=5 V$ will appear at the output. For zero DAC output currents, 1 mA is still injected into sum mode and $\mathrm{V}_{\text {OUT }}=-(5 \mathrm{k})(1 \mathrm{~mA})=-5 \mathrm{~V}$. Zero scale adjust and full scale adjust are performed as described below, noting that full scale voltage is now approximately +5 volts, zero scale adjust may be used to trim $\mathrm{V}_{\text {OUT }}=$ 0.00 with the MSB high or $\mathrm{V}_{\text {OUT }}=-5.0 \mathrm{~V}$ with all bits off.

Zero Scale Adjustment

The method of trimming the small offset error that may exist when all data bits are low is shown in figure 15. The trim is the result of injecting a current from resistor R_{2} that counteracts the error current. Adjusting potentiometer R_{1} until $V_{\text {OUT }}$ equals 0.000 volts in the unipolar mode or -5.000 volts in the bipolar mode (see bipolar section) accomplishes this trim.

Full Scale Adjustment

A recommended full scale adjustment circuit when using the internal voltage reference is shown in figure 16. Potentiometer R_{3} is adjusted until VOUT equals 9.99023 V . In many applications where the absolute accu-

10-Bit Microprocessor-Compatible D/A Converter

racy of full scale is of low importance when compared to the other system accuracy factors, then this adjustment circuit is optional.

As resistors $R_{\text {REF }}, R_{\text {fb }}$ and $R_{\text {BIP }}$ shown in figure 1 are integrated in close proximity,
they match and track in value closely over wide ambient temperature variations. Typical matching is less than $\pm 0.3 \%$ which implies that typical full scale (or gain) error is less than $\pm 0.3 \%$ of ideal full scale value.

DESCRIPTION

The NE5150/5151 are triple 4-bit DAC's intended for use in graphic display systems. They are a high performance yet cost effective - means of interfacing digital memory and a CRT. The NE5150 is a single integrated circuit chip containing special input buffers, an ECL static RAM, high-speed latches, and three 4-bit DAC's. The input buffers are user selectable as either ECL or TTL. compatible. The RAM is organized as 16×12, so that 16 "color words" can be down loaded from the pixel memory into the chip memory. Each 12-bit word represents 4 bits of red, 4 bits of green and 4 bits of blue information. This system gives 4096 possible colors. The RAM is fast enough to completely reload during the horizontal retrace time. The latches resynchronize the digital data to the DAC's to prevent glitches. The DAC's include all the composite video functions to make the output waveforms meet RS170 and RS343 standards, and produce 1VPP into 75 ohms. The composite functions (reference white, bright, blank, and sync) are latched to prevent screen-edge distortions generally found on "video DAC's." External components are kept to an absolute minimum (bypass capacitors only as needed) by including all reference generation circuitry and termination resistors on chip, by building in high-frequency PSRR
(eliminating separate V_{EE} 's and costly power supplies and filtering), and by using a single-ended clock. The guaranteed maximum operating frequency is 80 MHz over the commercial temperature range. The device is housed in a standard 24-pin package and consumes less than 1W of power.
The NE5151 is a simplified version of the NE5150, including all functions except the memory. Maximum operating frequency is 150 MHz .

FEATURES

- Single chip
- On-board ECL static RAM
- 4096 colors
- ECL and TTL compatible
- 80MHz update rate (NE5150)
- Low power and cost
- Drives 75 -ohm cable directly
- Internal reference
- 40dB PSRR
- No external components necessary

APPLICATIONS

- Bit-Map graphics
- Super high-speed DAC
- Home computers
- Raster-Scan displays

PIN CONFIGURATIONS

BLOCK DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Temperature range	0 to 70	
Operating	-65 to 150	${ }^{\circ} \mathrm{C}$
Storage		${ }^{\circ} \mathrm{C}$
Power supply		
V_{CC}	7.0	V
$\mathrm{~V}_{\mathrm{EE}}$	-7.0	V
Logic levels		
TTL-high	5.5	V
TTL-low	-0.5	V
ECL-high	0.0	V
ECL-low	0 to V_{EE}	V

DC ELECTRICAL CHARACTERISTICS $V_{C C}=5 \mathrm{~V}$ (TTL), $O V$ ($E C L$), $V_{E E}=-5 \mathrm{~V}, \quad 0^{\circ} \mathrm{C}<T_{A}<70^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
	Resolution	4			bits
	Monotonicity	4			bits
NL	Nonlinearity		$\pm 1 / 16$	$\pm 1 / 2$	LSB
DNL	Differential nonlinearity		$\pm 1 / 8$	± 1	LSB
	Offset error ($25^{\circ} \mathrm{C}$) [1111] (BRT = 1)		$\pm 1 / 2$	± 1	LSB
	Gain error ($25^{\circ} \mathrm{C}$) [0000] (BRT $=1$)		$\pm 1 / 2$	± 1	LSB
V_{cc}	Positive power supply (TTL mode) (ECL mode)	$\begin{gathered} 4.5 \\ -0.1 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$\mathrm{V}_{\text {EE }}$	Negative power supply (TTL or ECL mode)	-4.75	-5.0	-5.5	V
ICC	Positive supply current		15	25	mA
I_{EE}	Negative supply current (NE5150) (NE5151)		$\begin{aligned} & 175 \\ & 145 \end{aligned}$	210	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	Analog voltage range (ZS to FS)		603		mV
	Gain tracking (any two channels)			$\pm 1 / 4$	LSB
	Least significant bit		40.2		mV
EWH	Enhanced white level absolute ($25^{\circ} \mathrm{C}$)		0		mV
BS	Bright shift ($25^{\circ} \mathrm{C}$) (0 to 1)		71.4		mV
EBL	Enhanced blanking level absolute ($25^{\circ} \mathrm{C}$)		-674		mV
ESY	Enhanced sync level absolute ($25^{\circ} \mathrm{C}$)		-960		mV
R_{O}	Output resistance ($25^{\circ} \mathrm{C}$)	67.5	75.0	82.5	Ω
$\mathrm{V}_{\text {IH }}$	TTL logic input high	2.0			V
V_{IL}	TTL logic input low			0.8	V
I_{H}	TTL logic high input current ($\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$)			20	$\mu \mathrm{A}$
11.	TTL logic low input current ($\mathrm{V}_{1 /}=0.4 \mathrm{~V}$)			-1.6	mA
$\mathrm{V}_{\text {IH }}$	ECL logic input high	-1.13			V
V_{IL}	ECL logic input low			-1.48	V
$\mathrm{I}_{\text {IH }}$	ECL logic high input current ($\mathrm{V}_{\mathbb{I N}}=-0.8 \mathrm{~V}$)			-1.0	mA
ILI	ECL logic low input current ($\mathrm{V}_{\text {IN }}=-1.8 \mathrm{~V}$)			-1.0	mA

TEMPERATURE CHARACTERISTICS $V_{C C}=5 \mathrm{~V}$ (TTL), $O \mathrm{~V}$ (ECL), $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}, 0^{\circ} \mathrm{C}<T_{A}<70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER		LIMITS		UNIT
		Min	Typ	Max	
	Offset TC				
	Gain TC				
	Gain tracking TC (any two channels)			± 100	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Enhanced white level TC ${ }^{1}$		± 200	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
	Bright shift TC			± 50	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Enhanced blanking level TC			± 100	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Enhanced sync level TC			± 200	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Output resistance TC		± 300	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	

NOTE:

1. Normalized to full scale $(\mathbf{6 0 3 m V})$.

AC ELECTRICAL CHARACTERISTICS $V_{C C}=5 \mathrm{~V}$ (TTL), $O V(E C L), V_{E E}=-5 \mathrm{~V}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Typ	Max	
$f_{\text {MAX }}$	Maximum operating frequency (NE5150)	80			MHz
$t_{\text {WAS }}$	Write address setup (NE5150)		6		nsec
$t_{\text {WAH }}$	Write address hold (NE5150)		0		nsec
$t_{\text {WDS }}$	Write data setup (NE5150)		6		nsec
$t_{\text {WDH }}$	Write data hold (NE5150)		0		nsec
$t_{\text {WEW }}$	Write enable pulse width (NE5150)		6		nsec
$t_{\text {RCS }}$	Read composite ${ }^{1}$ setup (NE5150)		4		nsec
$\mathrm{t}_{\mathrm{RCH}}$	Read composite ${ }^{1}$ hold (NE5150)		2		nsec
$\mathrm{t}_{\text {RAS }}$	Read address setup (NE5150)		8		nsec
$t_{\text {RAH }}$	Read address hold (NE5150)		0		nisec
$t_{\text {RSW }}$	Read strobe pulse width (NE5150)		8		nsec
$t_{\text {RDD }}$	Read DAC delay (NE5150)		8		nsec
$\mathrm{f}_{\text {MAX }}$	Maximum operating frequency (NE5151)	150			MHz
$t_{\text {cS }}$	Composite ${ }^{1}$ hold (NE5151)		4		nsec
${ }^{\text {t }} \mathrm{CH}$	Composite ${ }^{1}$ setup (NE5151)		2		nsec
$t_{\text {DS }}$	Data-bits setup (NE5151)		4		nsec
$t_{\text {DH }}$	Data-bits hold (NE5151)		2		nsec
$t_{\text {SW }}$	Strobe pulse width (NE5151)		4		nsec
$t_{\text {D }}$	DAC delay (NE5151)		8		nsec
$t_{\text {R }}$	DAC rise time (10-90\%)		3		nsec
t_{s}	DAC full-scale settling time ${ }^{2}$		10		nsec
$\mathrm{C}_{\text {OUT }}$	Output capacitance (each DAC)		10		pF
S_{R}	Slew rate		200		$\mathrm{V} / \mu \mathrm{sec}$
G_{E}	Glitch energy			30	pV -sec
PSRR	Power supply rejection ratio (to red, green or blue outputs) $\begin{aligned} & V_{\text {EE }} \text { at } 1 \mathrm{kHz} \\ & V_{\mathrm{EE}} \text { at } 10 \mathrm{MHz} \\ & V_{\mathrm{EE}} \text { at } 50 \mathrm{MHz} \\ & V_{\mathrm{CC}} \text { at } 1 \mathrm{kHz} \\ & V_{\mathrm{CC}} \text { at } 10 \mathrm{MHz} \\ & V_{\mathrm{CC}} \text { at } 50 \mathrm{MHz} \end{aligned}$		43 28 14 80 50 36		dB dB dB dB dB dB

NOTES:

1. Composite implies any of the WHITE, BRIGHT, BLANK or SYNC signals.
2. Settling to $\pm 1 / 2$ LSB, measured from STROBE 50% point (rising edge). This time includes the delay through the strobe input buffer and latch.

PIN DESCRIPTION - NE5150

Write enable inputs use negative-true logic while all other inputs are positive-true. All inputs operate synchronously with the positive edge-triggered strobe input. When $V_{C C}$ is taken high (5 V), all inputs are TTL compatible. When $V_{C C}$ is grounded, all inputs are ECL compatible. All DAC's are complementary, so that all ones is the highest absolute voltage and all zeroes is the lowest. All ones is called zero scale (ZS) and all zeroes is called fullscale (FS). The analog output voltage is approximately $0 V(Z S)$ to -1 V (SYNC).

Pins 1, 24, 23, 22: DATA bits DO (MSB) through D3, used to input digital information to the memory during the write phase. During this phase, the data bits are presented to the internal latches (noninverted) and the DAC's will output the analog equivalent of the stored word, unless overridden by WHITE, BLANK or SYNC.
Pins 5, 4, 3, 2: ADDRESS lines AO (MSB) through A3, used for selecting a memory address to write to or read from.
Pin 7: WHITE command. Presets the latches to all ones [1111] and outputs OV absolute on all DAC's. Can be modified to -71 mV absolute when BRIGHT is taken low. Will be overridden by either a BLANK or SYNC command.

Pin 8: BRIGHT command. A low input here turns on an additional -71 mV (10 IRE unit)
switch, shifting all other levels downward. Not overridden by any other input.

Pin 9: BLANK command. Presets the latches to all zeroes [0000] and turns on an additional -71 mV (10 IRE unit) switch. Absolute output is -671 mV . Can be modified another -71 mV to -742 mV absolute when BRIGHT is taken low. Will override WHITE, and will be overridden by SYNC.
Pin 10: SYNC command. Presets the latches to all zeroes [0000] and turns on the BLANK switch. Additionally turns on a -286 mV (40 IRE unit) switch in the green channel only. Absolute output is -671 mV for the red and blue channels, and -957 mV for the green channel. All levels can be shifted -71 mV by taking BRIGHT low. Overrides WHITE and BLANK.

Pins 11, 13, 15: GREEN, RED, BLUE. Analog outputs with 75 -ohm internal termination resistors. Can directly drive 75 -ohm cable and should be terminated at the display end of the line with 75 ohms. Output voltage range is approximately OV to -1 V independent of whether the digital inputs are ECL or TTL compatible. All outputs are simultaneously affected by the WHITE, BLANK, or BRIGHT commands. Only the GREEN channel carries SYNC information.

NOTE:
There are 100 IRE units from WHITE to BLANK One IRE unit is approximately 7.1 mV . Full scale is 90 IRE units and 10 IRE units is $1 / 9$ of fullscale (e.g., BRIGHT function).

Pins 19, 20, 21: $\overline{\text { WRITE }}_{\mathrm{B}}, \overline{\text { WRITE }}_{\text {R }}, \overline{\text { WRITE }}_{\text {G }}$. Write enable commands for each of the three 16×4 memories. When all write commands are high, then the READ operation is selected. This is the normal display mode. To write data into memory, the write enable pin is taken low. Data D0-D3 will be written into address A0-A3 of each memory when its corresponding write enable pin goes low.

Pin 17: STROBE. The strobe signal is the main system clock and is used for resynchronizing digital signals to the DAC's. Preventing data skew eliminates glitches which would otherwise become visible colordistortions on a CRT display. The strobe command has no special drive requirements and is TTL or ECL compatible.

Pins 12, 16: $\mathbf{A}_{\mathbf{G N D}}, \mathbf{D}_{\mathbf{G N D}}$. Both Analog and Digital ground carry a maximum of approximately 100 mA of DC current. For proper operation, the difference voltage between $A_{G N D}$ and $D_{G N D}$ should be no greater than 50 mV , preferably less.

Pin 14: \mathbf{V}_{EE}. The negative power supply is the main chip power source. $V_{C C}$ is only used for the TTL input buffers. As is usual, good bypassing techniques should be used. The chip itself has a good deal of power supply rejection - well up into the VHF frequency range - so no elaborate power supply filtering is necessary.
Pin 18: N/C. This unused pin should be tied high or low.

NE5150 TIMING DIAGRAMS

NE5151 PIN DESCRIPTIONS AND TIMING DIAGRAM
The eleven digital inputs DO-D3, AO-A3, $\overline{\text { WRITE }}$ G/R/B, and the unused pin 18 of the NE5150 are replaced in the NE5151 with the three 4-bit DAC digital inputs G0-G3, R0-R3, and B0-B3. All other pin functions (e.g., composite functions, power supplies, strobe, etc.) are identical to the NE5150.

4

NE5150/NE5151 LOGIC TABLE

SYNC	BLANK	WHITE	BRIGHT	DATA	ADDRESS	OUTPUT	CONDITION
1	X	X	0	X	X	-1031 mV	SYNC 1
1	X	X	1	X	X	-960 mV	Enhanced SYNC 1
0	1	X	0	X	X	-746 mV	BLANK
0	1	X	1	X	X	-674 mV	Enhanced BLANK
0	0	1	0	X	X	-71 mV	WHITE
0	0	1	1	X	-0 mV	Enhanced WHITE	
0	0	0	0	$[0000]$	Note 2	-674 mV	BLACK (FS)
0	0	0	1	$[0000]$	Note 2	-603 mV	Enhanced BLACK (EFS)
0	0	0	0	$[111]$	Note 2	-71 mV	WHITE (ZS)
0	0	0	1	$[111]$	Note 2	-0 mV	Enhanced WHITE (EZS)

NOTES

1. Green channel output only. RED and BLUE will output BLANK or Enhanced BLANK under these conditions.
2. For the NE5150 the DATA column represents the memory data accessed by the specific address. For the NE5151, the DATA is the direct digital inputs.

COMPOSITE VIDEO WAVEFORM

Selector Guide

COMPARATORS

DEVICE	COMPLEXITY	TEMP. RANGE*	MAX. INP. OFFSET VOLT (mV)	MAX. INP. CURRENT		SUPPLY voltage (V)	RESPONSE TIME (Typ.) (ns)	```COMMON MODE VOLTAGE RANGE (V)```	OUTPUT VOLTAGE		OUTPUT STRUCTURE	VOLTAGE GAIN (Typ.) V / mV	TTL FANOUT	MAX. DIFF. INPUT VOLTAGE (V)
				$\begin{gathered} \text { BIAS } \\ (\mu \mathrm{A}) \end{gathered}$	OFFSET ($\mu \mathrm{A}$)				V_{OL} Max. (V)	$\mathrm{V}_{\mathrm{OH}} \mathrm{Min}$. (V)				
LM111 ${ }^{1}$	Single	M	4.00	0.15	0.02	± 15	200	± 14	0.4		O.C	200	5	± 30
LM211	Single	1	4.00	0.15	0.02	to	200	± 14	0.4		O.	200	5	± 30
LM311	Single	C	10.0	0.30	0.07	+ 5 and GND	200	± 14	0.4		O. C	200	5	± 30
NE527 ${ }^{2}$	Single	C	10.0	4.00	1.0	± 5 to ± 10	16	± 5	0.5	2.7	TTL		5	± 5
SE527	Single	M	6.00	4.00	1.00	and GND	16	± 5	0.5	2.5	TTL		5	± 5
NE529 ${ }^{5}$	Single	C	10.0	50.0	15.0	± 5 to ± 10	12	± 5	0.5	27	TTL		5	± 5
SE529	Single	M	6.00	36.0	9.00	and GND	12	± 5	0.5	25	TTL		5	± 5
LM119 ${ }^{3}$	Dual	M	7.00	1.00	0.10	± 15	80	± 13	04		O.	40	2	± 5
LM219	Dual	1	7.00	1.00	0.10	10	80	± 13	0.4		O. ${ }^{\text {c }}$	40	2	± 5
LM319	Dual	C	10.0	1.20	0.30	± 5 and GND	80	± 13	0.4		O.	40	2	± 5
LM193 ${ }^{3}$	Dual	M	9.00	0.30	0.10	± 1 to ± 18	1300	0 to $\mathrm{V}_{5}-2$	07		OC	200	2	± 6
LM293	Dual	1	9.00	0.40	0.15	or	1300	0 to $V_{S}-2$	0.7		OC	200	2	36
LM393	Dual	C	9.00	0.40	0.15	+2 to +36GND	1300	0 to $\mathrm{V}_{S}-2$	0.7		O.C	200	2	36
LM2903 ${ }^{\text {SE/NE5214 }}$	Dual	I M/C	15.0 $15 / 10.0$	0.50 400	0.20 120		1300	0 to $\mathrm{V}_{S}-2$	0.7		O.C	100	2	36
SE/NE5214	Dual	M/C	15/10.0	40.0	12.0	+ 5, -5, GND	8	± 3	0.5	2.7	TTL		12	± 6
SE/NE522 LM 139	Dual	M/C M	$15 / 10.0$ 9.00	40.0 0.30	12.0 0.10	+5. -5. GND	10 +300	$0{ }_{0}^{ \pm} \mathrm{V}^{3}$	05		O.C.		12	± 6
LM139 LM239	Quad	M 1	9.00 9.00	0.30 0.40	0.10 0.15	± 1 to ± 18 or	1300	0 to $\mathrm{V}_{S}-2$	07 07		$\bigcirc \mathrm{OC}$	200	2	36
LM339	Quad	C	9.00	0.40	0.15	+2 to +36	1300	0 to $\mathrm{V}_{S}-2$	07		OC	200	2	36 36
LM2901	Quad	,	15.0	0.50	0.20		1300	0 to $\mathrm{V}_{\mathrm{S}}-2$	07		O.C	100	2	36
MC3302 ${ }^{3}$	Quad	1	40.0	1.00	0.30	+2 to +28GND	2000	0 to $\mathrm{V}_{S}-2$	07		O.C	100	2	28

Notes:

1. With strobe, will work from single supply.
2. Complementary output gates with individ:'al strobes
3. Will operate from single or dual supplies.

- Temperature Range

4. IJltra-high speed
$C=$ Industria
$C=$ Commercia
$M=$ Military

Symbols and Definitions

Absolute Maximum Rating

Operating safe zones. Exceeding these limits could cause permanent damage to the device and are not meant to imply that devices can operate at these limits.
BCD
Binary Coded Decimal.

$\overline{B I / R B O}$

Blanking Input or Ripple Blanking Output.
CE
Chip Enable.

CLR

Clear. Clear command will preset all internal circuits to a predetermined state.

Duty Cycle

Ratio of time on to time off. Generally expressed in percentage.
$F_{\text {max }}$
The maximum clock frequency: the maximum input frequency at a clock input for the predictable performance. Above this frequency the device may cease to function.
I_{B}
Input Bias Current. Current into an analog circuit input, specified at a particular voltage level.
$I_{c c}\left(-I_{c c}\right)$
Supply Current. The current flowing into the $+\mathrm{V}_{\mathrm{CC}}\left(-\mathrm{V}_{C C}\right)$ sup. ply terminal of the circuit with specified input conditions and open outputs. Input conditions are chosen to guarantee worst case operation unless specified.

Icex

Output Leakage Current. The current flowing out of or into a disabled (off) output with a specified High output voltage applied.
$I_{I H}$
Input High Current. The current flowing into or out of an input when a specified High level voltage is applied to that input.
IL
Input Low Current. The current flowing out of an input when a specified Low level voltage is applied to that input.
I_{OH}
Output Current Source the device can supply while maintaining a specified voltage output level.
lol
Output Low Current. The current flowing into an output when it is in the Low State.

los

Output Short-Circuit Current. The current flowing out of an output which is in the High state when that output is shorted to ground.
I_{s}
Source Current. Current flowing into the V_{S} supply terminal of the device with specified operating conditions.
$I_{\text {seg }}$
Segment Current. The amount of current supplied to each segment as a display. Current ratios are generally compared to segment ' b '.

LED

Light Emitting Diode.

Package Type Designation

See full package designations in Appendix.

Power Dissipation

The power that the device can safely handle at $15^{\circ} \mathrm{C}$. The dissipation must be derated as indicated for the individual package type.

$\overline{\text { RBI }}$

Ripple Blanking Input.

Segment Identification

T_{A}
Ambient temperature range. Allowable range of the surrounding environment of the operating device.
t_{n}
Hold Time. The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its continued recognition. A negative hold time indirates that the current logic level may be released prior to the active transition of the timing pulse and still be recognized.

T_{J}

Junction Temperature. The maximum temperature of the device. $150^{\circ} \mathrm{C}$ is standard for silicon devices.
$t_{\text {PHL }}$
Propagation Delay Times. The time between the specified reference points on the input and output waveforms with the output changing from the defined HIGH level to the defined LOW level.
$t_{\text {PLH }}$
Propagation Delay Time. The time between the specified reference points on the input and output waveforms with the output changing from the defined LOW level to the defined HIGH level.
$t_{\text {rec }}$
Recovery Time. The time between the reference point on the trailing edge of an asynchronous input control pulse and the reference point on the activating edge of a synchronous (clock) pulse input such that the device will respond to the synchronous input.
t_{s}
Setup Time. The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its recognition. A negative setup time indicates that the correct logic level may be initiated sometime after the active transition of the timing pulse and still be recognized.

Symbols and Definitions

DISPLAY DRIVER DEFINITIONS
 (Cont'd)

Truth Tables

0 is logic level low
1 is logic level high
X - don't care condition - has no effect under circuit conditions listed.

Typical Value

The typical value of a particular parameter at $25^{\circ} \mathrm{C}$ determined by characterization of the device or sampling. Usually indicates that the particular device is not 100% tested for the parameter because it does not vary or can be determined by design and other tested variables. Occasionally typical values are given rather than min-max values because 100% testing would raise the cost of the product to a prohibitive level. If a typical value must be guaranteed to ensure specific operation, custom testing can often be provided at an additional cost to the user.

$V_{B R}$

Output Breakdown Voltage. Maximum voltage applied to a disabled (off) output to ensure a leakage current less than the specified value.
$V_{c c}\left(-V_{c c}\right)$
Suppiy Voltage. The range of power supply voltage over which the device will operate safely.
V_{F}
Forward voltage drop of a device at a specified current level.
$\mathbf{V}_{\mathbf{I H}}$
Input High Voltage. The range of input voltages recognized by the device as a logic high.
$\mathbf{V}_{\mathbf{I L}}$
Input Low Voltage. The range of input voltages recognized by the device as a logic low.
$V_{\text {IN }}$
The range of voltage on any input which the device can safely handle or a specified input voltage to the device.
V_{OH}
Output High Voltage. The minimum guaranteed High voltage at an output terminal for the specified output current I_{OH} and at the minimum V_{CC} value.
$\mathrm{V}_{\text {OL }}$
Output Low Voltage. The maximum guaranteed low voltage at an output terminal sinking the specified load current Iol.
$V_{\text {OUT }}$
The range of voltage on any output which the device can safely handle or a specified output voltage to the device.
V_{s}
Source Voltage. A separate V_{CC} line depending on part type. $\overline{\mathrm{XX}}$

Negate Bar - when it appears over a function indicates that the "true" or valid condition of that function is a logic low level.
i.e. $L E$ - would require a logic high level to cause a latch enable $\overline{L E}$ - would require a logic low level to cause a latch enable.

DESCRIPTION

The MC1488 is a quad line driver which converts standard DTL/TTL input logic levels through one stage of inversion to output levels which meet EIA Standard No. RS232C and CCITT Recommendation V. 24.

FEATURES

- Current limited output: $\pm 10 \mathrm{~mA}$ Typ
- Power-off source impedance: 300S2 Min
- Simple slew rate control with external capacitor
- Flexible operating supply range
- Inputs are DTL/TTL compatible

APPLICATIONS

- Computer port driver
- Digital transmission over long lines
- Slew rate control
- TTLIDTL to MOS translation

PIN CONFIGURATION

CIRCUIT SCHEMATIC

DC ELECTRICAL CHARACTERISTICS $\mathrm{V}+=+9.0 \mathrm{~V} \pm 1 \%, \mathrm{~V}-=-9.0 \mathrm{~V} \pm 1 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified. All typicals are for $\mathrm{V}+=9.0 \mathrm{~V}, \mathrm{~V}-=-9.0 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.*

PARAMETER	TEST CONDITIONS		LIMITS			UNIT
			Min	Typ	Max	
Logic " 0 " input current Logic "1" input current	$\begin{aligned} & V_{I N}=0 \mathrm{~V} \\ & V_{I N}=+5.0 \mathrm{~V} \end{aligned}$			$\begin{gathered} -1.0 \\ .005 \end{gathered}$	$\begin{array}{r} -1.6 \\ 10.0 \\ \hline \end{array}$	$\underset{\mu \mathrm{A}}{\mathrm{~mA}}$
High level output voltage	$\begin{aligned} & R_{\mathrm{L}}=3.0 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}+=9.0 \mathrm{~V} \\ & \mathrm{~V}-=-9.0 \mathrm{~V} \\ & \mathrm{~V}+=13.2 \mathrm{~V} \\ & \mathrm{~V}-=-13.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 6.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} 7.0 \\ 10.5 \end{gathered}$		$\begin{aligned} & v \\ & v \end{aligned}$
Low level output voltage	$\begin{aligned} & R_{\mathrm{L}}=3.0 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{IN}}=1.9 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}+=9.0 \mathrm{~V} \\ & \mathrm{~V}-=-9.0 \mathrm{~V} \\ & \mathrm{~V}+=13.2 \mathrm{~V} \\ & \mathrm{~V}-=-13.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -6.0 \\ & -9.0 \end{aligned}$	$\begin{gathered} -6.8 \\ -10.5 \end{gathered}$		$\begin{aligned} & v \\ & v \end{aligned}$
High level output Short-circuit current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & V_{\text {IN }}=0.8 \mathrm{~V} \end{aligned}$		-6.0	-10.0	-12.0	mA
Low level output Short-circuit current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=1.9 \mathrm{~V} \end{aligned}$		5.0	10.0	12.0	mA
Output resistance	$\begin{aligned} & \mathrm{V}+=\mathrm{V}-=0 \mathrm{~V} \\ & \text { VOUT }= \pm 2 \mathrm{~V} \end{aligned}$		300			Ω
Positive supply current (output open)	$\mathrm{V}_{\mathrm{IN}}=1.9 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}+=9.0 \mathrm{~V}, \mathrm{~V}-=-9.0 \mathrm{~V} \\ & \mathrm{~V}+=12 \mathrm{~V}, \mathrm{~V}-=-12 \mathrm{~V} \\ & \mathrm{~V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 15.0 \\ & 19.0 \\ & 25.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 25.0 \\ & 34.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}+=9.0 \mathrm{~V}, \mathrm{~V}-=-9.0 \mathrm{~V} \\ & \mathrm{~V}+=12 \mathrm{~V}, \mathrm{~V}-=-12 \mathrm{~V} \\ & \mathrm{~V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 6.0 \\ 7.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Negative supply current (output open)	$\mathrm{V}_{\mathrm{IN}}=1.9 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}+=9.0 \mathrm{~V}, \mathrm{~V}-=-9.0 \mathrm{~V} \\ & \mathrm{~V}+=12 \mathrm{~V}, \mathrm{~V}-=-12 \mathrm{~V} \\ & \mathrm{~V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -13.0 \\ & -18.0 \\ & -25.0 \end{aligned}$	$\begin{aligned} & -17.0 \\ & -23.0 \\ & -34.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}+=9.0 \mathrm{~V}, \mathrm{~V}-=-9.0 \mathrm{~V} \\ & \mathrm{~V}+=12 \mathrm{~V}, \mathrm{~V}-=-12 \mathrm{~V} \\ & \mathrm{~V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{aligned}$		$\begin{gathered} -1 \\ -1 \\ -.01 \end{gathered}$	$\begin{array}{r} -15 \\ -15 \\ -2.5 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mathrm{~mA} \end{aligned}$
Power dissipation Propagation delay to " 1 " (tpd1) Propagation delay to " 0 " (tpdo) Rise time (t_{r}) Fall time (t_{f}).	$\begin{aligned} & \mathrm{V}+=9.0 \mathrm{~V}, \mathrm{~V}-=-9.0 \mathrm{~V} \\ & \mathrm{~V}+=12 \mathrm{~V}, \mathrm{~V}-=-12 \mathrm{~V} \\ & R_{L}=3.0 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, T_{A}=25^{\circ} \mathrm{C} \\ & R_{L}=3.0 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, T_{A}=25^{\circ} \mathrm{C} \\ & R_{L}=3.0 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, T_{A}=25^{\circ} \mathrm{C} \\ & R_{L}=3.0 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 252 \\ & 444 \\ & 275 \\ & 70 \\ & 75 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline 333 \\ & 576 \\ & 560 \\ & 175 \\ & 100 \\ & 75 \end{aligned}$	mW mW ns ns ns ns

note
*Voltage values shown are with respect to network ground terminal. Positive current is defined as current into the referenced pin.

TYPICAL PERFORMANCE CHARACTERISTICS

AC LOAD CIRCUIT

SWITCHING WAVEFORMS

4

APPLICATIONS

By connecting a capacitor to each driver output the slew rate can be controlled utilizing the output current limiting characteristics of the MC1488. For a set slew rate the appropriate capacitor value may be calculated using the following relationship

$$
C=\operatorname{Isc}(\Delta T / \Delta V)
$$

where C is the required capacitor, ISC is the short circuit current value, and $\Delta V / \Delta T$ is the slew rate.

RS232C specifies that the output slew rate must not exceed 30 V per microsecond. Using the worst case output short circuit current of 12 mA in the above equation, calculations result in a required capacitor of 400 pF connected to each output.

TYPICAL APPLICATIONS

DTL/TTL-TO-HTL TRANSLATOR

DESCRIPTION

The MC1489/MC1489A are quad line receivers designed to interface data terminal equipment with data communications equipment. They are constructed on a single monolithic silicon chip. These devices satisfy the specifications of EIA standard No. RS232C.

FEATURES

- Four totally separate receivers per package
- Programmable threshold
- Built-in input threshold hysteresis
- "Fail safe" operating mode
- Inputs withstand $\pm \mathbf{3 0 V}$

APPLICATIONS

- Computer port inputs
- Modems
- Eliminating noise in digital circuitry
- MOS to TTL/DTL translation

PIN CONFIGURATION

VOLTAGE WAVEFORMS

EQUIVALENT SCHEMATIC

[^2]MC1489A: $\mathrm{RF}_{\mathrm{F}}=2 \mathrm{k}$

AC TEST CIRCUIT

DC ELECTRICAL CHARACTERISTICS

$V_{C C}=5.0 \mathrm{~V} \pm 1 \%, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$ unless otherwise specified.1.2

PARAMETER	TEST CONDITIONS	MC1489			MC1489A			UNIT
		Min	Typ	Max	Min	Typ	Max	
Input high threshold voltage	$\begin{gathered} T_{A}=25^{\circ} \mathrm{C}, \text { VOUT } \leq 0.45 \mathrm{~V}, \\ \text { IOUT }=10 \mathrm{~mA} \end{gathered}$			1.5	1.75		2.25	V
Input low threshold voltage	$\begin{gathered} T_{A}=25^{\circ} \mathrm{C}, \text { Vout } \leq 2.5 \mathrm{~V}, \\ \text { IOUT }=-0.5 \mathrm{~mA} \end{gathered}$	0.75		1.25	0.75		1.25	v
	$\begin{aligned} & V_{\text {IN }}=+25 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=-25 \mathrm{~V} \end{aligned}$	$+3.6$	$+5.6$	$\begin{aligned} & +8.3 \\ & -8.3 \end{aligned}$	$+3.6$	$\begin{aligned} & +5.6 \\ & -5.6 \end{aligned}$	$\begin{aligned} & +8.3 \\ & -8.3 \end{aligned}$	mA
Input current	$\begin{aligned} & V_{\text {IN }}=+3 V \\ & V_{\text {IN }}=-3 V \end{aligned}$	$\begin{aligned} & +0.43 \\ & -0.43 \end{aligned}$	$\begin{aligned} & +0.53 \\ & -0.53 \end{aligned}$		$\begin{aligned} & +0.43 \\ & -0.43 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.53 \\ & -0.53 \end{aligned}$		mA
Output high voltage Output low voltage		$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{gathered} \hline 3.8 \\ 3.8 \\ 0.33 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.0 \\ 5.0 \\ 0.45 \\ \hline \end{gathered}$	$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{gathered} \hline 3.8 \\ 3.8 \\ 0.33 \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ 5.0 \\ 0.45 \\ \hline \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Output short circuit current Supply current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0.75 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=5.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3.0 \\ & 20 \end{aligned}$	26		$\begin{aligned} & 3.0 \\ & 20 \\ & \hline \end{aligned}$	26	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Power dissipation	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$		100	130		100	130	mW

NOTES

1. Voltage values shown are with respect to network ground terminal. Positive current is
defined as current into the referenced pin.
2. These specifications apply for response control pin $=$ open.

AC ELECTRICAL CHARACTERISTICS $V_{C C}=5.0 \mathrm{~V} \pm 1 \%, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. 1,2

PARAMETER	TEST CONDITIONS	MC1489			MC1489A			UNIT
		Min	Typ	Max	Min	Typ	Max	
Input to output "high"	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$ (AC test circuit)		25	85		25	85	ns
Input to output "low" Propagation delay (t_{pa})	$\mathrm{R}_{\mathrm{L}}=390 \Omega$ (AC test circuit)		20	50		20	50	ns
Output rise time	$R \mathrm{~L}=3.9 \mathrm{k} \Omega$ (AC test circuit)		110	175		110	175	ns
Output fall time	$\mathrm{R}_{\mathrm{L}}=390 \Omega$ (AC test circuit)		9	20		9	20	ns

NOTES

1. Voltage values shown are with respect to network ground terminal. Positive current is
defined as current into the referenced pin.
2. These specifications apply for response control pin $=$ open.

TYPICAL APPLICATIONS

DESCRIPTION

The NE5090 addressable relay driver is a high current latched driver, similar in function to the 9934 address decoder. The device has 8 open collector Darlington power outputs, each capable of 150 mA load current. The outputs are turned on or off by respectively loading a logic " 1 " or logic " 0 " into the device data input. The required output is defined by a 3 bit address. The device must be enabled by a $\overline{C E}$ input line which also serves the function of further address decoding. A common clear input, $\overline{\mathrm{CLR}}$, turns all outputs off when a logic " 0 " is applied. The device is packaged in a 16 pin plastic or CERDIP package.

FEATURES

- 8 high current outputs
- Low-loading bus compatible inputs
- Power-on clear ensures safe operation
- Will operate in addressable or demultiplex mode
- Allows random (addressed) data entry
- Easily expandable
- Pin compatible with 9334

APPLICATIONS

- Relay driver
- Indicator lamp driver
- Triac trigger
- LED display digit driver
- Stepper motor driver

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS
$T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {cc }}$ Supply voltage	-0.5 to + 7	V
$V_{\text {IN }}$ Input voltage	-0.5 to +15	V
$V_{\text {OUT }}$ Output voltage	0 to +30	V
IGND Ground current	500	mA
Iout Output current Each output	200	mA
$\mathrm{P}_{\mathrm{D}} \quad$ Power dissipation'	1	W
Ambient temperature range		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$ NE5090	0 to +70	
T_{J} Junction	150	
$\mathrm{T}_{\text {STG }}$ Storage	-65 to +150	
$\mathrm{T}_{\text {sold }}$ Lead soldering temperature (10 sec max)	300	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

NOTES:

1. SOL - Released in Large SO package only
2. SOL and non-standard pinout.
3. SO and non-standard pinouts.

PIN DESIGNATION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1-3$	AO-A2	A 3-bit binary address on these pins defines which of the 8 output latches is to receive the data. The 8 device outputs. The data input. When the chip is enabled, this data bit is transferred to the defined output such that: "1"" turns output switch "ON" "0" turns output switch "OFF"
The chip enable. When this input is low, the output latches will accept data. When CE goes high, all		
outputs will retain their existing state, regardless of address of data input conditions.		
The clear input. When CLR goes low all output switches are turned "OFF". The high data input will		
override the clear function on the addressed latch.		

TRUTH TABLE

INPUTS						OUTPUTS								MODE
CLR	CE	D	A_{0}	A_{1}	A_{2}	Q_{0}		O_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}		
L	H	X	X	X	x	H	H	H	H	H	H	H	H	Clear
L	L	L	L	L	L		H	H	H	H	H	H	H	
L	L	H	L	L	L	L	H	H	H	H	H	H	H	
L	L	L	H	L	L		H	H	H	H	H	H	H	Demultiplex
L	L	H	H	L	L		L		H	H	H	H	H	
L	L	L	H	H	H		H		H	H	H	H	H	
L	L	H	H	H	H	H	H	H	H	H	H	H	L	
H	H	X	x	X	x	QN	1						\rightarrow	Memory
H	L	L	L.	L	L	H	Q	-1-	-		-	-		
H	L	H	L	L	L	L	Q	N-1	-					
H	L	L	H	L	L	QN	1	O	Q_{N-1}	-				
H	L	H	H	L	L	Q	1	Q	$\mathrm{Q}_{\mathrm{N}-1}$					Addressable
H	L	L	H	H	H	Q_{N}	$1-$					\rightarrow	H	Latch
H	L	H	H	H	H	QN	1	,	-	-	-	\rightarrow	L	

$X=$ Don't care condition
$Q_{N-1=}=$ Previous output state
$\mathrm{L}=$ Low voitage level/"ON" output state
$H=$ High voltage level/"OFF" output state
DC ELECTRICAL CHARACTERISTICS $V_{C C}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ unless otherwise specified (NE5090) ${ }^{2}$.

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		Min	Typ	Max			
$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	Input voltage High Low			2.0		0.8	V
V_{OL}	Output voltage Low	$\mathrm{l}_{\mathrm{OL}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over temperature		1.05	$\begin{aligned} & 1.30 \\ & 1.50 \end{aligned}$	V	
$\begin{aligned} & I_{I H} \\ & I_{I L} \\ & \hline \end{aligned}$	Input current High Low	$\begin{aligned} & V_{I N}=V_{C C} \\ & V_{I N}=0 V \end{aligned}$		$\begin{aligned} & <1.0 \\ & -3.0 \end{aligned}$	$\begin{array}{r} 10 \\ -250 \end{array}$	$\mu \mathrm{A}$	
l_{OH}	Leakage current	$\mathrm{V}_{\text {Out }}=28 \mathrm{~V}$,		5	250	$\mu \mathrm{A}$	
$\begin{aligned} & \mathrm{I}_{\mathrm{CCL}} \\ & \mathrm{I}_{\mathrm{CCH}} \end{aligned}$	Supply current All outputs low All outputs high	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ NE5090		$\begin{aligned} & 35 \\ & 22 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	mA	

NOTES

1. Derate power dissipation as indicated above threshold ambient temperature NE5090 N at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $85^{\circ} \mathrm{C}$ NE5090 F at $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $65^{\circ} \mathrm{C}$
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SWITCHING CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=2.0 \mathrm{~V}$

PARAMETER		TO	FROM	Min	Typ	Max	UNIT
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay time Low to high ${ }^{1}$ High to low ${ }^{1}$	Output	$\overline{C E}$		$\begin{aligned} & 900 \\ & 130 \\ & \hline \end{aligned}$	$\begin{array}{r} 1800 \\ 260 \\ \hline \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Low to high ${ }^{2}$ High to low ${ }^{2}$	Output	Data		$\begin{aligned} & 920 \\ & 130 \end{aligned}$	$\begin{array}{r} 1850 \\ 260 \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Low to high ${ }^{3}$ High to low ${ }^{3}$	Output	Address		$\begin{aligned} & 900 \\ & 130 \end{aligned}$	$\begin{array}{r} 1800 \\ 260 \end{array}$	ns
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \end{aligned}$	Low to high ${ }^{4}$ High to low ${ }^{4}$	Output	$\overline{C L R}$		920	1850	ns
SWITCHING SETUP REQUIREMENTS							
$\begin{aligned} & \mathrm{t}_{\mathrm{s}(H)^{5}} \\ & \mathrm{t}_{\mathrm{s}(\mathrm{~L})^{5}} \end{aligned}$		Chip enable Chip enable	High data Low data	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{s}(\mathrm{A})}{ }^{6}$		Chip enable	Address	0	20		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}(\mathrm{H})}{ }^{5} \\ & \mathrm{t}_{\mathrm{H}(L)}{ }^{5} \end{aligned}$		Chip enable Chip enable	High data Low data	$\begin{aligned} & +10 \\ & +10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{pw}(\mathrm{E})}{ }^{1}$	Chip enable pulse width ${ }^{1}$			0	20		ns

NOTES

1. See Turn-On and Turn-Off Delays, Enable to Output and Enable Pulse Width timing diagram.
2. See Turn-On and Turn-Off Delays, Data to Output timing diagram.
3. See Turn-On and Turn-Off Delays, Address to Output timing diagram.
4. See Turn-Off Delay, Clear to Output timing diagram.
5. See Setup and Hold Time, Data to Enable timing diagram.
6. See Setup Time, Address to Enable timing diagram.

TIMING DIAGRAMS

TURN.ON AND TURN.OFF DELAYS, ADDRESS TO OUTPUT

TURN.ON AND TURN.OFF DELAYS, DATA TO OUTPUT

Other Inputs: $\overline{C E}=L, \quad \overline{C L R}=H, \quad A=$ Stable

TURN-OFF DELAY, CLEAR TO OUTPUT

Other Inputs: $\overline{C E}: H$.

TIMING DIAGRAMS (Cont'd)

TYPICAL APPLICATIONS

TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT VOLTAGE VS LOAD CURRENT

DESCRIPTION

The NE5170 is an octal line driver which is designed for digital communications with data rates up to $100 \mathrm{~Kb} / \mathrm{s}$. This device meets all the requirements of EIA standards RS232C/RS423A and CCITT recommendations V.10/X.26. Three programmable features, (1) output slew rate (2) output voltage level, and (3) threestate control (high impedance) are provided so that output characteristics may be modified to meet the requirements of specific applications.

FEATURES

- Meets EIA RS232C/423A and CCITT V.10/X. 26
- Simple slew rate programming with a single external resistor
- 0.1 to $10 \mathrm{~V} / \mu \mathrm{s}$ slew rate range
- High/low programmable voltage output modes
- TTL compatible inputs

APPLICATIONS

- High speed modems
- High speed parallel communications
- Computer I/O ports
- Logic level translation

FUNCTION TABLE

ENABLE	LOGIC INPUT	OUTPUT VOLTAGE (V)		
		RS423A ${ }^{1}$	RS232C	
			Low Output Mode ${ }^{1}$	High Output Mode ${ }^{2}$
L	L	5 to 6V	5 to 6V	$\geq 9 \mathrm{~V}$
L	H	-5 to -6 V	-5 to -6 V	$\leq-9 \mathrm{~V}$
H	X	High Z	High Z	High Z

NOTES:

1. $\mathrm{V}_{\mathrm{CC}}=+10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-10 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=3 \mathrm{~K} \Omega$
2. $V_{C C}=+12 V$ and $V_{E E}=-12 V ; R_{L}=3 K \Omega$

PIN CONFIGURATION

Octal Line Driver

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNITS
Supply Voltage V_{CC}	15	V
Supply Voltage V_{EE}	-15	V
Output Current 1	± 150	mA
Input Voltage (Enable, Data) $_{\text {Output Voltage }^{2}}$	-1.5 to +7	V
Minimum Slew Resistor 3	+15	V
Power Dissipation	1 K	Ω

DC ELECTRICAL CHARACTERISTICS $V_{C C}$ (see notes 4,5), $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNITS
			Min	Max	
V_{OH}	Output high voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=3 K \Omega^{4} \end{aligned}$	5	6	V
		$\mathrm{R}_{\mathrm{L}}=450 \Omega^{4}$	4.5	6	
		$\mathrm{R}_{\mathrm{L}}=3 \mathrm{~K} \Omega^{5}, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$	$\mathrm{V}_{\mathrm{cc}}-3$		
V_{OL}	Output low voltage	$\begin{aligned} & V_{I N}=2.4 V \\ & R_{L}=3 K \Omega^{4} \end{aligned}$	-6	-5	V
		$\mathrm{R}_{\mathrm{L}}=450 \mathrm{~N}^{4}$	-6	-4.5	
		$\mathrm{R}_{\mathrm{L}}=3 \mathrm{~K} \Omega^{5}, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$		$\mathrm{V}_{\mathrm{EE}}+3$	
	Output unbalance voltage	$V_{C C}=\left\|V_{E E}\right\|, R_{L}=450 \Omega^{4}$		0.4	V
$I_{\text {cex }}$	Output leakage current	$\left\|\mathrm{V}_{\mathrm{O}}\right\|=6 \mathrm{~V}, \mathrm{ENABLE}=2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-100	100	$\mu \mathrm{A}$
V_{IH}	Input high voltage		2.0		V
$\mathrm{V}_{\text {IL }}$	Input low voltage			0.8	V
IIL	Logic "0" input current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	-400	0	$\mu \mathrm{A}$
I_{H}	Logic " 1 " input current	$\mathrm{V}_{\text {IV }}=2.4 \mathrm{~V}$	0	40	$\mu \mathrm{A}$
los	Output short circuit current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-150	150	$\mu \mathrm{A}$
V_{CL}	Input clamp voltage	$\mathrm{I}_{\mathrm{iN}}=-15 \mathrm{~mA}$	-1.5		V
$l_{\text {cc }}$	Supply current	NO LOAD		40	mA
$\mathrm{I}_{\text {EE }}$		NO LOAD	-40		mA

NOTES:

1. Maximum current per driver. Do not exceed maximum power dissipation if more than one output is on.
2. High impedance mode.
3. Minimum value of the resistor used to set the slew rate.
4. $V_{O H}, V_{O L}$ at $R_{L}=450 \Omega$ will be $\geq 90 \%$ of $V_{O H}, V_{O L}$ at $R_{L}=\infty$.
5. High Output Mode; + MODE pin $=\mathrm{V}_{\mathrm{CC}} ;-\mathrm{MODE}$ pin $=\mathrm{V}_{\mathrm{EE}} ; 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 13 \mathrm{~V} ;-9 \mathrm{~V} \geq \mathrm{V}_{\mathrm{EE}} \geq-13 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS $V_{C C}=+10 \mathrm{~V} ; \mathrm{V}_{E E}=-10 \mathrm{~V}$; $\mathrm{Mode}=\mathrm{GND}, 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNITS
			Min	Max	
$t_{\text {PHZ }}$	Propagation delay output high to high impedance	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=450, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { or } \\ \mathrm{R}_{\mathrm{L}}=3 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF} \end{gathered}$		5	$\mu \mathrm{S}$
$t_{\text {PLZ }}$	Propagation delay output low to high impedance	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=450, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { or } \\ \mathrm{R}_{\mathrm{L}}=3 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF} \end{gathered}$		5	$\mu \mathrm{S}$
$t_{\text {PZH }}$	Propagation delay high impedance to high output	$\begin{gathered} \mathrm{R}_{\mathrm{SL}}=200 \mathrm{~K} \\ \mathrm{R}_{\mathrm{L}}=450, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \text { or } \\ \mathrm{R}_{\mathrm{L}}=3 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF} \end{gathered}$		150	$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{PZL}}$	Propagation delay high impedance to low output	$\begin{gathered} R_{S L}=200 \mathrm{~K} \\ R_{L}=450, C_{L}=50 p F \\ \text { or } \\ R_{L}=3 K, C_{L}=2500 \mathrm{pF} \end{gathered}$		150	$\mu \mathrm{S}$
SR	Ouput slew rate ${ }^{1}$	$\mathrm{R}_{\text {SL }}=2 \mathrm{~K}_{ \pm} 1 \%$	8	12	$\mathrm{V} / \mu \mathrm{S}$
		$\mathrm{R}_{\mathrm{SL}}=20 \mathrm{~K} \pm 1 \%$	0.8	1.2	
		$\mathrm{R}_{\text {SL }}=200 \mathrm{~K} \pm 1 \%$	0.073	0.127	

NOTE:

1. SR: Load condition. (A) For $R_{S L}<4 K \Omega$ use $R_{L}=450 \Omega ; C_{L}=50 p F$; (B) For $R_{S L}>4 K \Omega$ use either $R_{L}=450 \Omega, C_{L}=50 p F$ or $R_{L}=3 K \Omega, C_{L}=2500 p F$.

SLEW RATE PROGRAMMING

Slew rate for the NE5170 is set using a single external resistor connected between the $R_{S L}$ pin and ground. Adjustment is made according to the formula:
$R_{S L}$ (in kilohms) $=\frac{20}{\text { Slew Rate }}$
where the slew rate is in $\mathrm{V} / \mu \mathrm{s}$. The slew resistor can vary between 2 and 200 kilohms which gives a slew rate range of 10 to $0.1 \mathrm{~V} / \mu \mathrm{s}$. This adjustment of the slew rate allows tailoring output characteristics to recommendations for cable length and data rate found in EIA
standard RS423A. Approximations for cable length and data rate are given by:

Max. data rate $($ in Kb/s $)=300 / \mathrm{t}$
Cable length $($ in feet $)=100 \times t$
where t is the rise time in microseconds. The absolute maximum data rate is $100 \mathrm{~Kb} / \mathrm{s}$ and the absolute maximum cable length is 4000 feet.

OUTPUT MODE PROGRAMMING

The NE5170 has two programmable output modes which provide different output voltage
levels. The low output mode meets the specifications of EIA standards RS423A and RS232C. The high output mode meets the specifications of RS232C only since higher output voltages result from programming this mode. The high output mode provides the greater output voltages where higher attenuation levels must be tolerated. Programming the high output mode is accomplished by connecting the + MODE pin to $V_{C C}$ and the - MODE pin to $V_{E E}$. The low output mode results when both of these pins are connected to ground.

APPLICATIONS

Octal Line Driver

AC PARAMETER TEST CIRCUIT AND WAVEFORMS

NOTES: 1) See AC electrical characteristics table for values of $R_{S L}, R_{L}$ and C_{L}. 2) V_{IN} pulse: Frequency $=1 \mathrm{kHz}$, duty cycle $=50 \%, \mathrm{Z}_{\mathrm{OUT}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$.

DESCRIPTION

The NE5180 and NE5181 are octal line receivers designed to interface data terminal equipment with data communications equipment. These devices meet the requirements of EIA standards RS232C, RS423A, RS422A, and CCITT V.10, V.11, V.28, X 26 and X.27. The NE5180 is intended for use where the data transmission rate is up to $200 \mathrm{~Kb} / \mathrm{s}$. The NE5181 covers the entire range of data rates up to $10 \mathrm{Mb} / \mathrm{s}$. The difference in data rates for the two devices results from the input filtering of the NE5180. These devices also provide a failsafe feature which protects against certain input fault conditions.

FEATURES

- Meets EIA RS232C/423A/422A and CCITT V.10, V.11, V. 28
- Single +5V supply - TTL compatible outputs
- Differential inputs withstand $\pm \mathbf{2 5 V}$
- Failsafe feature
- Input noise filter (NE5180 only)
- Internal hysteresis

APPLICATIONS

- High speed modems
- High speed parallel communications
- Computer I/O ports
- Logic level translation

FUNCTION TABLE

INPUT	FAILSAFE INPUT	LOGIC OUTPUT
$\mathrm{V}_{\text {ID }}>200 \mathrm{mV}^{1}$	X	H
$\mathrm{V}_{\text {ID }}<-200 \mathrm{mV}^{1}$	X	L

NOTE:

1. $V_{I D}$ is defined as the non-inverting terminal input voltage minus the inverting terminal input voltage.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNITS
Power Dissipation	800	mW
Supply Voltage $\left(\mathrm{V}_{\mathrm{cC}}\right)$	7	V
Common Mode Range	± 15	V
Differential Input Voltage $\left(\mathrm{V}_{\mathrm{ID}}\right)$	± 25	V
Output Sink Current	50	mA
Failsafe Voltage	-0.3 to V_{Cc}	V
Output Short Circuit Time	1	sec

DC ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, input common mode range $\pm 7 \mathrm{~V}$

NOTES:

1. R_{S} is a resistor in series with each input.
2. Measured after 100 ms warm up (at $0^{\circ} \mathrm{C}$).
3. Only 1 output may be shorted at a time and then only for a maximum of $1 \mathbf{s e c}$.
4. See Figure 1 for threshold and hysteresis definitions.

Figure 1. $\mathbf{V}_{\mathbf{t}}, \mathbf{V}_{\mathbf{t h}}, \mathbf{V}_{\mathrm{H}}$ Definition

AC ELECTRICAL CHARACTERISTICS $V_{C C}=5 \mathrm{~V} \pm 5 \%, 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TEST CONDITIONS	NE5180		NE5181		UNITS
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation delay - low to high	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}= \pm 1 \mathrm{~V}$		300		70	ns
$t_{\text {PHL }}$	Propagation delay - high to low	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}= \pm 1 \mathrm{~V}$		300		70	ns
f_{a}	Acceptable input frequency	Unused input grounded, $\mathrm{V}_{\text {IN }}= \pm 200 \mathrm{mV}$		0.1		5.0	MHz
f_{r}	Rejectable input frequency	Unused input grounded, $\mathrm{V}_{\text {IN }}= \pm 500 \mathrm{mV}$	5.5		NA		MHz

FAILSAFE OPERATION

These devices provide a failsafe operating mode to guard against input fault conditions as defined in RS422A and RS423A standards. These fault conditions are (1) driver in power-off condition, (2) receiver not interconnected with driver, (3) open-circuited interconnecting cable, and (4) short-circuited interconnecting cable. If one of these four fault conditions occurs at the inputs of a receiver, then the output of that receiver is driven to a
known logic level. The receiver is programmed by connecting the failsafe input to $V_{C C}$ or ground. A connection to $V_{C C}$ provides a logic " 1 " output under fault conditions, while a connection to ground provides a logic " 0 ". There are two failsafe pins ($F_{S 1}$ and $F_{S 2}$) on the NE5180 or NE5181 where each provides common failsafe control for four receivers.

INPUT FILTERING (NE5180)

The NE5180 has input filtering for additional noise rejection. This filtering is a function of both signal level and frequency. For the specified input (5.5 MHz at $\pm 500 \mathrm{mV}$) the input stage filter attenuates the signal such that the output stage threshold levels are not exceeded and no change of state occurs at the output. As the signal amplitude decreases (increases) the rejected frequency decreases (increases).

APPLICATIONS

AC TEST CIRCUIT

4-59
VOLTAGE WAVEFORMS

DESCRIPTION

The NE587 is a latch/decoder/driver for 7 segment common anode LED displays. The NE587 has a programmable current output up to 50 mA which is essentially independent of output voltage, power supply voltage, and temperature. The data (BCD) inputs and $\overline{L E}$ (latch enable) input are low-loading so that they are compatible with any data bus system. The 7 -segment decoding is implemented with a ROM so that alternative fonts can be made available.

FEATURES

- Latched BCD inputs
- Low loading bus-compatible inputs
- Ripple-blanking on leading and/or trailing edge zeros

APPLICATIONS

- Digital panel meters
- Measuring instruments
- Test equipment
- Digital clocks
- Digital bus monitoring

ABSOLUTE MAXIMUM RATINGS $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7	V
V IN	Input voltage $\left(D_{0}-D_{3}, \overline{L E}, \overline{R B I}\right)$	-0.5 to +15	V
VOUT	Output voltage (a-g, RBO)	-0.5 to +7	V
P_{D}	Power dissipation ($25^{\circ} \mathrm{C}$)	1000	mW
$\mathrm{T}_{\text {A }}$	Ambient temperature range	0 to 70	${ }^{\circ} \mathrm{C}$
TJ	Junction temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
TSOLD	Soldering temperature (10 sec. max)	300	${ }^{\circ} \mathrm{C}$

NOTE

Derate power dissipation as indicated
N package $\cdot 95^{\circ} \mathrm{C}$ / watt above $55^{\circ} \mathrm{C}$
F package - $100^{\circ} \mathrm{C} /$ watt above $50^{\circ} \mathrm{C}$

BLOCK DIAGRAM

1. SOL - Released in Large SO package only.
2. SOL and non-standard pinout.
3. SO and non-standard pinouts.

NOTES:

DC ELECTRICAL CHARACTERISTICS $V_{C C}=4.75$ to $5.25 \mathrm{~V}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$.
Typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, R_{P}=1 \mathrm{k} \Omega(\pm 1 \%)$ unless otherwise stated.

PARAMETER		TEST CONDITIONS	NE587			UNIT	
		Min	Typ	Max			
$\mathrm{v}_{\text {cc }}$	Operating supply voltage			4.75	5.00	5.25	V
$\mathrm{V}_{\mathbf{I H}}$	Input high voltage	All Inputs except $\overline{\mathrm{BI}}$ BI	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 15 \\ & 5.5 \end{aligned}$	V	
$\mathrm{V}_{\text {IL }}$	Input low voltage				0.8	v	
$V_{\text {IC }}$	Input clamp voltage	$1 \mathrm{~N}=-12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-1.5	\checkmark	
IIH	Input high current	$\begin{gathered} \text { Inputs } D_{0}-D_{3}, \overline{\text { LE }}, \overline{\mathrm{RBI}} \\ V_{I N}=2.4 \mathrm{~V} \\ V_{I N}=15 \mathrm{~V} \\ \text { Input } \overline{B I}(\text { pin } 4) \\ \overline{R B I}=H \\ V_{I N}=V_{C C}=5.25 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{aligned} & 1.0 \\ & 15 \\ & 10 \end{aligned}$	$\begin{gathered} 10 \\ 15 \\ 100 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	
IIL	Input low current	$V_{\mathbb{I N}}=0.4 \mathrm{~V} \text {, Inputs } \mathrm{D}_{\mathrm{O}}-\mathrm{D}_{3}$		$\begin{gathered} -5 \\ -200 \\ \hline \end{gathered}$		$\mu \mathrm{A}$	
		$\begin{gathered} \text { Input } \overline{\mathrm{BI}} \\ \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ \mathrm{RBI}=\mathrm{H}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \end{gathered}$		-0.7		mA	
VOL	Output low voltage	$\begin{gathered} \text { Output } \overline{\mathrm{RBO}} \\ \mathrm{I}_{\text {out }}=3.0 \mathrm{~mA} \end{gathered}$. 2	. 5	V	
V_{OH}	Output high voltage	$\begin{gathered} \text { Output } \overline{\text { RBO }} \\ \text { IOUT }=-50 \mu \mathrm{~A} \\ \overline{\mathrm{RBI}}=\mathrm{H} \end{gathered}$	3.5	4.5		v	
Iout	Output segment "ON" current	$\begin{gathered} \text { Outputs "a" thru " } \mathrm{g} \text { " } \\ \text { V OUT }^{2}=2.0 \mathrm{~V} \end{gathered}$	20	25	30	mA	
SIOUT	Output current ratio (all outputs ON)	With reference to "b" segment $V_{\text {OUT }}=2.0 \mathrm{~V}$	0.90	1.00	1.10		
IOFF	Output segment "OFF" current	$\begin{aligned} & \text { Outputs "a" thru "g" } \\ & \text { V OUT }^{2}=5.0 \mathrm{~V} \\ & \hline \end{aligned}$		20	250	$\mu \mathrm{A}$	
Icco	Supply current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ All outputs "ON" $V_{\text {OUT }}>1 \mathrm{~V}$		33	55	mA	
ICCl	Supply current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ All outputs blanked		50	70	mA	

NOTE

NE587 PROGRAMMING

The NE587 output current can be programmed, provided a program resistor, Rp, be connected between Ip (pin 8) and Ground (pin 9). The voltage at lp (pin 8) is constant $\left(\approx 1.3 V\right.$). Thus, a current through $R p$ is $I p \approx \frac{1.3 V}{R p}$, as shown in Figure 5. $\frac{10}{1 p}$ is 20 in the 15 to 50 mA output current range.

AC ELECTRICAL CHARACTERISTICS $\quad V_{C C}=5 V T_{A}=25^{\circ} \mathrm{C} . R_{L}=130 \Omega, C_{L}=30 \mathrm{pF}$ including probe capacity.

PARAMETER		TEST CONDITIONS	NE587			UNIT	
		Min	Typ	Max			
${ }^{t} \mathrm{D}_{\mathrm{av}}$.	Propagation delay Figure 2		From data to output		135		ns
${ }^{\text {t }} \mathrm{av}$.	Propagation delay Figure 3	From $\overline{\text { LE }}$ to output		135		ns	
tw	Latch enable pulse width Figure 4		30			ns	
ts	Latch enable setup time Figure 4	From data to $\overline{\text { LE }}$	20			ns	
${ }^{\text {H }} \mathrm{H}$	Latch enable hold time Figure 4	From $\overline{L E}$ to data	0			ns	

NOTE
${ }^{t^{D}} \mathrm{Dav}=1 / 2\left(\mathrm{I}_{\mathrm{HL}}+\mathrm{t}_{\mathrm{LH}}\right)$
TRUTH TABLE

BINARY INPUT	INPUTS						OUTPUTS								DISPLAY
	$\overline{L E}$	$\overline{\mathrm{RBI}}$	D_{3}	D_{2}	D_{1}	D_{0}	a	b	c	d	-	1	g	$\overline{\text { RBO }}$	
-	H	-	X	x	x	x	Stable							-•	STABLE
0	L	L	L	L	L	L	H	H	H	H	H	H	H	L	BLANK
0	L	H	L	L	L	L	L	L	L	L	L	L	H	H	0
1	L	x	L	L	L	H	H	L	L	H	H	H	H	H	1
2	L	x	L	L	H	L	L	L	H	L	L	H	L	H	2
3	L	x	L	L	H	H	L	L	L	L	H	H	L	H	3
4	L	x	L	H	L	L	H	L	L	H	H	L	L	H	4
5	L	X	L	H	L	H	L	H	L	L	H	L	L	H	5
6	L	x	L	H	H	L	L	H	L	L	L	L	L	H	6
7	L	X	L	H	H	H	L	L	L	H	H	H	H	H	7
8	L	X	H	L	L	L	L	L	L	L	L	L	L	H	8
9	L	X	H	L	L	H	L	L	L	L	H	L	L	H	9
10	L	x	H	L	H	L	H	H	H	H	H	H	L	H	-
11	L	x	H	L	H	H	L	H	H	L	L	L	L	H	E
12	L	x	H	H	L	L	H	L	L	H	L	L	L	H	H
13	L	x	H	H	L	H	H	H	H	L	L	L	H	H	L
14	L	X	H	H	H	L	L	L	H	H	L	L	L	H	P
15	L	x	H	H	H	H	H	H	H	H	H	H	H	H	blank
$\cdots \mathrm{BI}$	x	X	x	X	X	X	H	H	H	H	H	H	H	L*	blank

NOTES
$H=$ HIGH voltage level, output is "OFF"
$\mathrm{L}=\mathrm{LOW}$ voltage level, output is "ON"
X = Don't care

- The $\overline{\text { RBI }}$ will blank the display only if a binary zero is stored in the latches.
- $\overline{\mathrm{RBO} / \mathrm{BI}}$ used as an input overrides all other input conditions.

NE587 PROGRAMMING

NE587 output current can be programmed by using a programming resistor, Rp, connected between $r_{p}(p i n 8)$ and Gnd (pin 9). The voltage at $r_{p}(p i n 8)$ is constant ($\approx 1.40 \mathrm{~V}$). A partial schematic of the voltage reference used in the NE587 is shown in figure 1.

Output current to program current ratio, $\mathrm{I}_{\mathrm{O}} / \mathrm{IP}$, is 20 in the 15 mA to 50 mA range. Note that I_{p} must be derived from a resistor (Rp), and not from a high impedance source such as an IOUT DAC used to control display brightness.

Figure 1

TIMING DIAGRAMS

Figure 2

Figure 3

POWER DISSIPATION CONSIDERATIONS

LED displays are power-hungry devices, and inevitably somewhat inefficient in their use of the power supply necessary to drive them. Duty cycle control does afford one way of improving display efficiency, provided that the LEDS are not driven too far into saturation, but the improvement is marginal. Operation at higher peak currents has the added advantage of giving much better matching of light output, both from segment-to-segment and digit-to-digit.
An output current of 10 to 50 mA was chosen so that it would be suitable for multiplexed operation of large size LED digits. When designing a display system, particular care must be taken to minimize power dissipation within the IC display driver. Since the output is a constant current source, all the remaining supply voltage, which is not dropped across the LED (and the digit driver, if used), will appear across the output. Thus, the power dissipation will go up sharply if the display power supply voltage rises. Clearly, then, it is good design practice to keep the display supply voltage as low as possible consistent with proper operation of the supply output current sources. Inserting a resistor or diode in series with the display supply is a good way of reducing the power dissipation within the integrated circuit segment driver, although, of course, total system power remains the same.
Power dissipation may be calculated as follows. Referring to figure 6, the two system power supplies are $V_{C C}$ and V_{S}. In many cases, these will be the same voltage. Necessary parameters are:
$V_{C C}$, Supply voltage to driver
V_{S}, Supply voltage to display
ICC, Quiescent supply current of driver
ISEG. LED segment current
V_{F}, LED segment forward voltage at
KDC, $\quad \begin{aligned} & \text { Iseg } \\ & \text { \% Duty cycle }\end{aligned}$
V_{F}, the forward LED drop, depends upon the type of LED material (hence the color) and the forward current. The actual forward voltage drops should be obtained from the LED display manufacturer's literature for the peak segment current selected; however, approximate voltages at nominal rated currents are:

Red	1.6 to 2.0 V
Orange	2.0 to 2.5 V
Yellow	2.2 to 3.5 V
Green	2.5 to 3.5 V

TIMING DIAGRAMS (Cont'd)

These voltages are all for single diode displays. Some early red displays had 2 series LEDS per segment; hence the forward voltage drop was around 3.5 V .
Thus a maximum power dissipation calculation when all segments are on, is:
$P_{d}=V_{C C} \times I_{C C}+\left(V_{S}-V_{F}\right) \times 7 \times I_{s e g} \times K_{D C}$ mW

Assuming $V_{S}=V_{C C}=5.25 \mathrm{~V}$
$V_{F}=2.0 \mathrm{~V}$
$K_{D C}=100 \%$
$P_{\text {d max }}=5.25 \times 50+3.25 \times 7 \times 30 \mathrm{~mW}$
$=945 \mathrm{~mW}$

TYPICAL PERFORMANCE CURVES

SUPPLY CURRENT VS SUPPLY VOLTAGE NE587

NORMALIZED OUTPUT CURRENT VS SUPPLY VOLTAGE

$$
V_{0}=2 V
$$

$$
T_{A}=25^{\circ} \mathrm{C}
$$

OUTPUT CURRENT VS OUTPUT VOLTAGE NE587 $R_{p}=1$ Kohms

MAXIMUM POWER DISSIPATION VS TEMPERATURE

NORMALIZED OUTPUT CURRENT VS TEMPERATURE $V_{C C}=5.0 \mathrm{~V}$

OUTPUT CURRENT VS PROGRAM RESISTOR

TYPICAL APPLICATIONS

Figure 6

However, the average power dissipation will be considerably less than this. Assuming 5 segments are on (the average for all output code combinations), then
$\begin{aligned} P_{d \text { av }} & =5.0 \times 30+3.00 \times 5 \times 25 \mathrm{~mW} \\ & =525 \mathrm{~mW}\end{aligned}$ $=525 \mathrm{~mW}$

Operating temperature range limitations can be deduced from the power dissipation graph. (See Typical Performance Characteristics).

However, a major portion of this power dissipation (P_{d} max) is because the current source output is operating with 3.25 V across it. In practice, the outputs operate satisfactorily down to 0.5 V , and so the extra voltage may be dropped external to the integrated circuit.

Suppose the worst case $V_{C C} / V_{S}$ supply is 4.75 to 5.25 V , and that the maximum V_{E} for the LED display is 2.25 V . Only 2.75 V is required to keep the display active, and hence 2.0V may be dropped externally with a resis-
tor from $V_{C C}$ to V_{S}. The value of this resistor is calculated by:
$R_{S}=\frac{2.0}{7 \times I_{\text {seg }}} \simeq 10 \Omega(1 / 2 \mathrm{~W}$ rating)
assuming worst case $\mathrm{I}_{\text {seg }}$ of 30 mA
Hence now $P_{d \text { max }}=V_{C C} \times I_{C C}+\left(V_{S}-V_{V}-\right.$
$\left.\mathrm{R}_{\times} \times 7 \times \mathrm{I}_{\text {seg }}\right) \times 7 \times \times \mathrm{I}_{\text {seg }}$
$\times K_{D C}$
$=5.25 \times 50+1.25 \times 7 \times 30$
mW
$=525 \mathrm{~mW}$
and $P_{d \text { av }}=5.0 \times 30+1.25 \times 5 \times 25$

$$
=306 \mathrm{~mW}
$$

If a diode (or 2) is used to reduce voltage to the display, then the voltage appearing across the display driver will be independent of the number of "ON" segments and will be equal to

$$
V_{S}-V_{F}-n V_{d}, V_{D}=0.8 V
$$

Where n is the number of diodes used, pow er dissipation can be calculated in a similiar manner.

In a multiplexed display system, the voltage drop across the digit driver must also be considered in computing device power dissipation. It may even be an advantage to use a digit driver which drops an appreciable voltage, rather than the saturating PNP transistors shown in figure 9. For example a darlington PNP or NPN emitter follower may be preferable. Figure 8 shows the NE591 as the digit driver in a multiplexed display system. The NE591 output drops about 1.8V which means that the power dissipation is evenly distributed between the two integrated circuits.

Where V_{S} and $V_{C C}$ are two different supplies, the V_{S} supply may be optimized for minimum system power dissipation and/or cost. Clearly, good regulation in the V_{S} supply is totally unnecessary, and so this supply can be made much cheaper than the regulated 5 V supply used in the rest of the system. In fact a simple unsmoothed full-wave rectified sine wave works extremely well if a slight loss in brightness can be tolerated. A transformer voltage of about $3-4.5 \mathrm{~V}$ rms works well in most LED display systems. Waveforms are shown below:

The duty cycle for this system depends upon V_{S}, V_{F} and the output characteristics of the display driver.

With

$$
\begin{aligned}
& V_{\mathrm{S}}=4.9 \mathrm{~V} \mathrm{pk} . \\
& V_{\mathrm{F}}=2.0 \mathrm{~V}
\end{aligned}
$$

The duty cycle is approximately 60%.

TYPICAL APPLICATIONS (Cont'd)

TYPICAL APPLICATIONS (Cont'd)

For additional information, refer to the Applications Section.

DESCRIPTION

The SE/NE5521 is a signal conditioning circuit for use with Linear Variable Differential Transformers (LVDT's) and Rotary Variable Differential Transformers (RVDT's). The chip includes a low distortion, amplitude stable sine wave oscillator with programmable frequency to drive the primary of the LVDT/RVDT, a synchronous demodulator to convert the LVDT/RVDT output amplitude and phase to position information, and an output amplifier to provide amplification and filtering of the demodulated signal.

FEATURES

- Low distortion
- Single supply 5V to $\mathbf{2 0 V}$, or dual supply $\pm 2.5 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$
- Oscillator frequency $\mathbf{1 k H z}$ to $\mathbf{2 0 k H z}$
- Capable of ratiometric operation
- Low power consumption (182mW typ)

APPLICATIONS

- LVDT signal conditioning
- RVDT signal conditioning
- LPDT signal conditioning
- Bridge circuits

BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Supply voltage	+20	V
Split supply voltage	± 10	V
Operating temperature range	$0 \mathrm{TO}+70$	${ }^{\circ} \mathrm{C}$
NE5521	$-40 \mathrm{TO}+85$	${ }^{\circ} \mathrm{C}$
SA5521	$-55 \mathrm{TO}+125$	${ }^{\circ} \mathrm{C}$
SE5521	$-65 \mathrm{TO}+150$	${ }^{\circ} \mathrm{C}$
Storage temperature range	840	mW
Power dissipation		

PIN CONFIGURATION

F,N PACKAGE	
AMP OUT 1	$18 \mathrm{v}{ }^{+}$
+iN 2	$17 . C_{T}$
- 103	$16 \mathrm{~V}_{\text {REF }}$
LVDTIN 4	15 feedback
DEMOD OUT 5	14. osc
sync 6	13 OSC
GND 7	12] $\mathrm{V}_{\mathrm{REF} / 2}$
N.C. 8	$11 \mathrm{R}_{T}$
N.C. 9	10 N.C.
TOP VIEW	

PIN DEFINITIONS

ELECTRICAL CHARACTERISTICS $\mathrm{V}^{+}=\mathrm{V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ for NE5521, $\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$ for SE5521,
$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$ for SA5521, Frequency $=1 \mathrm{kHz}$, unless otherwise noted.

PARAMETER	CONDITIONS	NE5521			SA/SE5521			UNITS
		Min	Typ	Max	Min	Typ	Max	
Supply current			12.9	20		12.9	18	mA
Reference current			5.3	8		5.3	${ }^{+}$	mA
Reference voltage range		5		v^{+}	5		v^{+}	V
Power dissipation			182	280		182	260	mW

Oscillator Section

Oscillator Output	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$		$\frac{\mathrm{~V}_{\text {REF }}}{8.8}$			$\frac{\mathrm{~V}_{\text {REF }}}{8.8}$		$\mathrm{~V}_{\text {rms }}$
Sine wave distortion	No Load		1.5			1.5		$\%$
Initial amplitude error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.4	± 3		0.4	± 3	$\%$
Tempco of amplitude			0.005	0.01		0.005	0.01	$\% /{ }^{\circ} \mathrm{C}$
Init. accuracy of oscillator freq.	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 0.9	± 5		± 0.9	± 5	$\%$
Temperature coeff. of frequency ${ }^{1}$			0.05			0.05		$\% /{ }^{\circ} \mathrm{C}$
Voltage coeff. of frequency			2.5			3.3		$\% / \mathrm{V}\left(\mathrm{V}_{\mathrm{REF}}\right)$
Min OSC to $(\overline{\mathrm{OSC}})^{\text {Load }}{ }^{2}$		300	170		300	170		$\Omega \Omega$

Demodulator Section

Linearity error	$5 \mathrm{~V}_{\mathrm{p} \text {-p }}$ input		± 0.05	± 0.1		± 0.05	± 0.1	$\% \mathrm{FS}$
Maximum demodulator input			$\frac{V_{\text {REF }}}{2}$			$\frac{V_{\text {REF }}}{2}$		$\mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
Demodulator offset voltage			± 1.4	± 5		± 1.4	± 5	mV
Demodulator offset voltage drift			5	25		5	25	$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Demodulator input current		-600	-234		-500	-234		nA
$\mathrm{V}_{\mathrm{R}} / 2$ accuracy			± 0.1	± 1		± 0.1	± 1	$\%$

Auxiliary Output Amplifier

Input offset voltage			± 0.5	± 5		± 0.5	± 5	mV
Input offset drift			± 2	± 25		± 2	± 25	$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Input bias current		-600	-210		-500	-210		nA
Input offset current			9	50		9	50	nA
Gain		100	385		100	385		$\mathrm{~V} / \mathrm{mV}$
Slew rate			1.3			1.3		$\mathrm{~V} / \mu \mathrm{Sec}$
Unity gain bandwidth product	$\mathrm{A}_{\mathrm{V}}=1$		1.6			1.6		MHz
Output voltage swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$	7	8.2		7	8.2		V
Output short circuit current to ground or to V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		42	100		42	100	mA

NOTES

1. This is temperature coefficient of frequency for the device only. It is assumed that C_{T} and R_{T} are fixed in value and C_{T} leakage is fixed over the operating temperature range.
2. Minimum load impedance for which distortion is guaranteed to be less than 5%.

EXPLANATION OF TERMS

Oscillator Output	rms value of the AC voitage available at the oscillator output pin. This output is referenced to $\mathrm{V}_{\text {REF }} / 2$ and is a function of $\mathrm{V}_{\text {REF }}$ -
Sine Wave Distortion	The Total Harmonic Distortion (THD) of the oscillator output with no load. This is not a critical specification in LVDT/RVDT system. This figure could be 15% or more without affecting system performance.
Initial Amplitude Error	A measure of the interchangeability of SE/NE5521 parts. NOT a characteristic of any one part. It is the degree to which the oscillator output of a number of SE/NE5521 samples will vary from the median of that sample.
Initial Accuracy of Oscillator Frequency	Another measure of the interchangeability of individua! SE/NE5521 parts This is the tagroe to which the nerillator frequency of a number of SE/NE5521 samples will vary from the median of that sample with a given timing capacitor.
Tempco of Oscillator Amplitude	A measure of how the oscillator amplitude varies with ambient temperature as that temperature deviates from a $25^{\circ} \mathrm{C}$ ambient.
Tempco of Oscillator Frequency	A measure of how the oscillator frequency varies with ambient temperature as that temperature deviates from a $25^{\circ} \mathrm{C}$ ambient.
Voltage Coeffecient of Oscillator Frequency	The degree to which the oscillator frequency will vary as the reference voltage ($\mathrm{V}_{\text {REF }}$) deviates from +10 volts.
Linearity Error	The degree to which the DC output of the demodulator/amplifier combination matches a change in the AC signal at the demodulator input. It is measured as the worst case nonlinearity from a straight line drawn between positive and negative full scale end points.
Maximum Demodulator Input	The maximum signal that can be applied to the demodulator input without exceeding the specified linearity error.

APPLICATION INFORMATION

OSC frequency $=\frac{V_{\text {REF }}-1.3 \mathrm{~V}}{V_{\text {REF }}\left(R_{T}+1.5 K\right) C_{T}}$

Section 5 Communication

INDEX

SECTION 5 - COMMUNICATION
Index 5-1
Audio/Stereo SA/NE602 Double Balanced Mixer and Oscillator 5-3
SA/NE604 Low Power FM I.F. System 5-5
NE670 Low Voltage Dolby B/C Type IC 5-7
FM RadioSA/NE602SA/NE604
Double Balanced Mixer and Oscillator 5-3
Low Power FM I.F. System 5-5

DESCRIPTION

The SA/NE602 is a monolithic Double Balanced Mixer with on-board oscillator and voltage regulator. The oscillator can be used as a buffer for external injection. The design is optimized for frequency conversion applications up to 200 MHz and has excellent noise and 3 rd order intermodulation performance. The SA/NE602 is available in a 8 lead dual in line plastic package and 8 lead SO (Surtace mounted miniature package).

FEATURES

- Low current consumption: 2.4 mA typical
- High input and oscillator frequency operation up to 200 MHz
- High third order intercept point: - 15 dBm referred to matched input
- Excellent noise figure: 5.0 dB typical at 45 MHz
- Low external count; suitable for crystal/ceramic filters

APPLICATIONS

- HF and VHF frequency conversion
- Cellular radio mixer/oscillator
- Communication receivers
- Instrumentation frequency converters
- VHF walkie talkie

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Maximum operating voltage	9	$\mathrm{~V}^{\circ}$
Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating temperature		
NE602	0 to +70	
SA602	-40 to +85	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

Double Balanced Mixer and Oscillator

DC ELECTRICAL CHARACTERISTICS: $T_{A}=25^{\circ} \mathrm{C}, V_{C C}=6 \mathrm{~V}$.

SYMBOL AND PARAMETER	SA/NE602			UNIT
	Min	Typ	Max	
Power supply voltage range	4.5	-	8.0	V
D.C. current drain	-	2.4	2.7	mA
Input signal frequency	-	-	200	MHz
Oscillator frequency	-	-	200	MHz
Noise figure @ 45MHz	-	5.0	6	dB
Third order intercept point	-	-15	-17	dBm
Mixer input resistance	1.5	-	-	$\mathrm{k} \Omega$
Mixer input capacitance	-	3	3.5	pF
Mixer output resistance ${ }^{\dagger}$	-	2×15	-	$\mathrm{k} \Omega$

NOTE:

1. Each output pin is internally connected to V_{CC} through a 1.5 (nominal) k Ω resistor.

CIRCUIT DESCRIPTION

The NE602 utilizes an active double balanced mixer. The RF input port (pins 1 and 2) can be used in either a symmetrical or an asymmetrical configuration. The RF input port has a resistance of $1.5 \mathrm{~K} \Omega$ shunted by 3.0 pF . In order to be used as an asymmetrical configuration, one of the two input pins (1 or 2) must be bypassed to ground with a capacitor. The RF
input port does not need any external bias and should not be DC grounded. An external DC path between pins 1 and 2 is allowed.

The local oscillator is an emmitter-follower circuit and is capable of many types of oscillator configurations. Pin 6 (oscillator base) and pin 7 (oscillator emitter) do not need any external bias circuitry, but only pin 6 may have a DC
path to $V_{C C}$. Pin 6 can be used for external oscillator or for frequency synthesizer injection.

The NE602 output pins can be used in a singleended or push-pull configuration. There are internal $1.5 \mathrm{~K} \Omega$ resistors connected to V_{CC} for each output pin (4 and 5); therefore no external bias is needed. Pins 4 and/or 5 may have a DC path to $V_{C C}$.

TYPICAL APPLICATION

DESCRIPTION

The SAINE604 is a monolithic low power FM IF system incorporating two limiting intermediate frequency amplifiers, quadrature detector, muting, logarithmic signal strength indicator, and voltage regulator. The SA/NE604 is available in a 16 lead dual-in-line plastic package and 16 lead SO (surface mounted miniature package)

FEATURES

- Low power consumption: 2.3mA typical
- Logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 90 dB
- Separate data output
- Audio output with muting
- Low external count; suitable for crystal/ceramic filters
- Excellent sensitivity: $1.5 \mu \mathrm{~V}$ across input pins ($0.27 \mu \mathrm{~V}$ into 50Ω matching network) for 12 dB SINAD (Signal to Noise and Distortion ratio) at 455 kHz

APPLICATIONS

- Cellular Radio FM IF
- Communications receivers
- Intermediate frequency amplification and detection up to 10.7 MHz
- RF level meter
- Spectrum analyzer

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

SYMBOL AND PARAMETER	RATING	UNIT
Maximum operating voltage	9	V
Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating temperature	0 to +70	
NE604	-40 to +85	${ }^{\circ} \mathrm{C}$
SA604	${ }^{\circ} \mathrm{C}$	

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=+6$ volts, unless otherwise stated.

SYMBOL AND PARAMETER	SA/NE 604			UNITS
	Min	Typ	Max	
Power supply voltage range	4.5	-	8.0	V
D.C. current drain	-	2.3	2.7	mA
I.F. frequency	-	-	10.7	MHz
RSSI range	TBD	90	-	dB
RSSI accuracy	-	± 1.5	-	dB
I.F. input impedance	1.5	-	-	k Ω
I.F. output impedance	1.0	-	-	kS2
Limiter input impedance	1.5	-	-	k Ω
Quadrature detector data output impedance	50	-	-	k Ω
Muted audio out impedance	-	50	-	k Ω
Mute - switch input threshold (on) (off)	1.7	-	1.0	$\begin{aligned} & v \\ & v \end{aligned}$

TYPICAL APPLICATION

CIRCUIT DESCRIPTION

The SA/NE604's IF amplifier has a gain of 30 dB , bandwidth of 15 MHz , with an input impedance of $1.5 \mathrm{~K} \Omega$ and an output impedance of $1.0 \mathrm{~K} \Omega$. The limiter has a gain of 60 dB . bandwidth of 15 MHz , and an input impedance of $1.5 \mathrm{~K} \Omega$. An interstage filter between the IF Amplifier and Limiter is recommended to reduce wideband noise. The quadrature detector input (pin 8) impedance is $40 \mathrm{~K} \Omega$.

The data (unmuted output) and audio (muted output) both have $50 \mathrm{~K} \Omega$ output impedance and their detected signals are 180 degrees out of phase with each other. The mute input (pin 3) has a very high impedance and is compatible with three and five volt CMOS and TTL levels. Little or no DC level shift occurs after muting when the quadrature detector is adjusted to the IF center frequency. Muting will attenuate the audio signal by more than 60 dB and no voltage spikes will be generated by muting
The logarithmic signal strength indicator is a current source output with maximum source current of 50 microamps. The signal strength indicator's transfer function is approximately 10 microamp per 20 dB and is independent of IF frequency. The interstage filter must have a 6 dB insertion loss to optimize slope linearity.
Pins 1, 16, 15, 14, 12, 11, 10, 9, and 8 do not need external bias and should not have a DC path.

DESCRIPTION

The NE670 is a monolithic IC intended for use in low voltage Dolby* B \& C type noise reduction applications. This IC design features both record and playback mode with all internal electronic switching.

FEATURES

- B and C type noise reduction
- Low voltage operation $1.8-8 \mathrm{~V}$
- Playback and record modes
- OdB (Dolby level) $=100 \mathrm{mV}$
- Record input sensitivity 50 mV
- Playback sensitivity $\mathbf{2 0 m V}$
- All electronic switching

APPLICATION

- Portable tape recorders/players

*Available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, from whom licensing and application information must be obtained.
Dolby is a registered trademark of Dolby Laboratories Licensing Corporation, San Francisco, California.

PIN CONFIGURATION

D PACKAGE

TOP VIEW
Order Numbers NE670D

Pin Function

1. Test point
2. Internal switch
3. High-level stage side chain input
4. High-level stage high pass
5. High-level stage D-amp output
6. High-level stage rectifier input
7. High-level stage attack
8. High-level stage decay
9. Internal switch
10. High-level stage output
11. Low-level side chain input
12. Low-level stage high pass
13. Low-level stage D -amp output
14. Low-level stage rectifier input
15. Low-level stage attack
16. Low-level stage decay
17. Record output
18. $V_{C C}$
19. $V_{\text {REF }}$
20. Anti-saturation network capacitor
21. Mode switch
22. Playback record switch
23. Play input
24. Ground
25. Record input
26. Compensation capacitor
27. Line output
28. Spectral skewing network

BLOCK DIAGRAM

Low Voltage Dolby B/C Type IC

ABSOLUTE MAXIMUM RATINGS

SYMBOL \& PARAMETER	RATING	UNIT	
$\mathrm{V}_{\text {CC }}$	Supply Voltage	8	V
	Temperature T_{A}	Operating	0 to +70
$\mathrm{~T}_{\text {STG }}$	Storage	${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS Standard Conditions: $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
All levels referenced to $0 \mathrm{~dB}=100 \mathrm{mV}$ at test point (TP).

NOTE:
$R=$ record mode
$\mathrm{P}=$ play mode

Low Voltage Dolby B/C Type IC

Figure 1. Test Circuit

Section 6 Amplifiers

INDEX

SECTION 6 - AMPLIFIERS
Index 6-1
VideoNE5205 Wideband High Frequency Amplifier. 6-3

 fher with a fued ineattion gain of 20 d . The gain is that to ± 0.5 fD from DC to ASOMHT, and the $-3 d A$ bandwitth is areater than commin. The pormmames mates bo methfar ideat for rante th aहpllatho: Tharksta onoman wit:

 bybud sotheme of the armplemetres prohems moet of these solutions requined have citc that the desightr hat
 gair stages those incurgs figh fay 位 consumpum farge corggoment chate transformets, large tackeges wh heak sinks, and high pat coet. The wes205 solver thess problems by mocrporating
 hatbo chip.
The part is well matoned to 50 a 75 ohers imput and orthut heneramess. Hhes Standing Wave thies in 50 and 75 chm? systems do not arcest 1.5 on aiphot the input of chiput ove the smide te to sounhtiz onemaing mange.
Sires the port is a emoll monolithie If. die, problems sum as stay Gatromence are minmated. The dio sizg is asall anough io fitme ary reat offorlive Spin smathoutho (so) Beckage to brther reduce farestio bfrects. A TO 4b metal can is also available that has a case connection for RF grounding which increases the -3 d 8 frequency to 650 MH . The metal can is hermetically sealed, and can operate over the full -55 to $+125^{\circ} \mathrm{C}$ range .

No external components are needed other than AC coupling capacitors because the NE5205 is internally compensated and metched to 50 and 75 cimis. The amplifier has very good dictontion sponfications, with socond and

160ntra

The device is ideally suited for 75 ohm cable television applications such as decoder bores, satellite receiver/ deooders, and front-end amplifiers for Ty begeivers. It is also useful for ampli.

tha tat thatched well for 50 ohm test womsumbt stom as signal generators, 4-strmarar, wemuncy counters and Wh tints af sual notyars. Other appl Gutus a 500^{\prime} hem heduce mobile radio,

 eदnthel, whyht ab degradation in

FEATURES:

- 58 mathta bancuvichity

 (20:500)
e 40 awterng ramponerfs reapined
 manthecy a $50 / 6595$ sy

- Eyceflame ghempmance in coble Ty Fhos systema

Appuranons

- 75Ω cunth TV decomer fonxes

- Amplified splitters
- Signar generators
- Frequency counters
- Oscilloscopes
- Signal analyzers
- Broadband LaN's
- Fiiber optics
- Madems
- Mobile radio
* Cs radio
- Telscommenvicomidns

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNITS
Supply Voltage	9	V
AC Input Voltage	5	V-PP
Operating Temperature	-55 to +85	${ }^{\circ} \mathrm{C}$
SO package air-mount	-55 to +125	${ }^{\circ} \mathrm{C}$
TO package air-mount		

EQUIVALENT SCHEMATIC

Wideband High Frequency Amplifier

DC ELECTRICAL CHARACTERISTICS at $\mathrm{V}_{C C}=6 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0}=50 \Omega$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$, in SO package unless otherwise specified.

PARAMETER	TEST CONDITIONS	Min	Typ	Max	UNIT
Operating supply voltage range		5		8	V
Supply current		20	24	30	mA
Insertion gain - 221	$f=100 \mathrm{MHz}$	17	19	21	dB
Input return loss - S11	$f=100 \mathrm{MHz} \mathrm{SO} \mathrm{pkg}$		25		dB
	DC - 550MHz	12			dB
Input return loss - S11	$f=100 \mathrm{MHz}$ TO pkg		23		dB
	DC -600 MHz	10			dB
Output return loss - S22	$f=100 \mathrm{MHz}$ SO pkg		27		dB
	DC - 550MHz	12			dB
Output return loss - S22	$\mathrm{f}=100 \mathrm{MHz}$ TO pkg		26		dB
	DC -600 MHz	10			dB
Isolation - S12 (SO, TO)	$f=100 \mathrm{MHz}$		-25		dB
	DC -550 MHz	-18			dB
Bandwidth-SO	$\pm 0.5 \mathrm{~dB}$		450		MHz
Bandwidth-SO	-3dB	550	600		MHz
Bandwidth-TO	-3dB	600	650		MHz
Noise figure (758)	$\mathrm{f}=100 \mathrm{MHz}$		4.8		dB
Noise figure (508)	$\mathrm{f}=100 \mathrm{MHz}$		6.0		dB
Saturated output power	$f=100 \mathrm{MHz}$		+ 7.0		dBm
1 dB gain compression	$f=100 \mathrm{MHz}$		+4.0		dBm
Third-order intermodulation intercept (output)	$\mathrm{f}-100 \mathrm{MHz}$		+ 17		dBm
Second-order intermodulation intercept (output)	$\mathrm{f}=100 \mathrm{MHz}$		+24		dBm

Figure 1. Supply Current vs Supply Voltage

Figure 2. Noise Figure vs. Frequency

Figure 3. insertion Gain vs Frequency $\left(\mathbf{S}_{\mathbf{2 1}}\right)$

Figura 5. Saturated Output Power va Frequency

Figure 4. Insertion Gain vs Frequency $\left(S_{21}\right)$

Fighe d. ads hain Comprossion va Frequency

Figure 7. Second-Order Output Intercept vs Supply Voltage

Figure 9. Input VSWR vs Frequency

Figure 8. Third-Order Intercept vs Supply Voltage

Figure 10. Output VSWR vs Frequency

Figure 11. Input (\mathbf{S}_{11}) and Output ($\mathbf{S}_{\mathbf{2 2}}$) Return Loss vs Frequency

Figure 13. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

Figure 12. Isolation vs Frequency ($\mathbf{S}_{\mathbf{1 2}}$)

Figure 14. Insertion Gain vs Frequency $\left(\mathbf{S}_{\mathbf{2 1}}\right)$

THEORY OF OPERATION

The design is based on the use of multiple feedback loops to provide wideband gain together with good noise figure and terminal impedance matches. Referring to the circuit schematic in Figure 15, the gain is set primarily by the equation:
$\frac{V_{\text {OUT }}}{V_{I N}}=\left(R_{F 1}+R_{E_{1}}\right) / R_{E_{1}}$
which is series-shunt feedback. There is also shunt-series feedback due to $R_{F 2}$ and $R_{E 2}$ which aids in producing wideband terminal impedances without the need for low value input shunting resistors that would degrade the noise figure. For optimum noise performance, $R_{E 1}$ and the base resistance of Q_{1} are kept as low as possible while $R_{F 2}$ is maximized.

The noise figure for 50 and 75 ohm systems is given by the following equation:
$N F=10 \log \left\{1+\frac{\left|r_{b}+R_{E_{1}}+\frac{K T}{2 q l_{C_{1}}}\right|}{R_{0}}\right\} d B$
where $I_{C 1}=5.5 \mathrm{~mA}, \quad R_{E 1}=12 \Omega, \quad r_{b}=130 \Omega$, $\mathrm{KT} / \mathrm{q}=26 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$ and $\mathrm{R}_{0}=50$ for a 50Ω system and 75 for a 75Ω system.

The DC input voltage level $\mathrm{V}_{\mathbb{I N}}$ can be determined by the equation:
$V_{I N}=V_{B E 1}+\left(I_{C 1}+I_{C 3}\right) R_{E 1}$
where $R_{E 1}=12 \Omega, V_{B E}=0.8 \mathrm{~V}, I_{C 1}=5 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{C} 3}=7 \mathrm{~mA}$ (currents rated at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$).
Under the above conditions, $\mathrm{V}_{\mathbb{N}}$ is approximately equal to 1 V .

Level shifting is achieved by emitter follower Q_{3} and diode Q_{4} which provide shunt feedback to the emitter of Q_{1} via $R_{F 1}$. The use of an emitter-follower buffer in this feedback loop essentially eliminates problems of shunt feedback loading on the output. The value of $R_{F 1}=140$ ohms is chosen to give the desired nominal gain. The DC output voltage $V_{\text {OUT }}$ can be determined by:
$V_{\text {OUT }}=V_{C C}-\left(I_{C 2}+I_{C 6}\right) R_{2}$,
where $V_{C C}=6 V, R_{2}=225 \Omega, l_{C 2}=7 \mathrm{~mA}$ and $I_{C 6}=5 \mathrm{~mA}$.

From here it can be seen that the output voltage is approximately 3.3 V to give relatively equal positive and negative output swings. Diode Q_{5} is included for bias purposes to allow direct coupling of $R_{F 2}$ to the base of Q_{1}. The dual feedback loops stabilize the DC operating point of the amplifier.

The output stage is a Darlington pair $\left(Q_{6}\right.$ and Q_{2}) which increases the DC bias voltage on
the input stage $\left(Q_{1}\right)$ to a more desirable value, and also increases the feedback loop gain. Resistor R_{0} optimizes the output VSWR (Voltage Standing Wave Ratio). Inductors L_{1} and L_{2} are bondwire and lead inductances which are roughly 3 nH . These improve the high frequency impedance matches at input and output by partially resonating with 0.5 pF of pad and package capacitance.

POWER DISSIPATION CONSIDERATIONS

When using the part at elevated temperature, the engineer should consider the power dissipation capabilities of each package. Signetics does not recommend operation at die temperatures above $110^{\circ} \mathrm{C}$ in the SO package. With this in mind, the following equation can be used to estimate the die temperature:

$$
T_{j}=T_{A}+\left(P_{d} \times \theta_{j A}\right)
$$

where $T_{A}=$ Ambient Temperature, $T_{j}=D i e$ Temperature, $\mathrm{P}_{\mathrm{d}}=$ Power Dissipation $=I_{\mathrm{CC}} \times$ $\mathrm{V}_{\mathrm{CC}}, \theta_{\mathrm{jA}}=$ Package Thermal Resistance, and $\theta_{j A}=270^{\circ} \mathrm{C} /$ watt for SO-8, $\theta_{j A}=100^{\circ} \mathrm{C} /$ watt for TO-46.

At the nominal supply voltage of 6 volts, the typical supply current is 25 mA (30 mA Max). For operation at supply voltages other than 6 volts, see Figure 1 for $I_{C C}$ versus $V_{C C}$ curves. The supply current is inversely proportional to temperature and varies no more than 1 mA between $25^{\circ} \mathrm{C}$ and either tempera-

Figure 15. Schematic Diagram
ture extreme. The change is 0.1% per ${ }^{\circ} \mathrm{C}$ over the range.
The recommended operating temperature ranges are air-mount specifications. Better heat sinking benefits can be realized by mounting the SO and TO-46 package body against the PC board plane. Operation at higher temperatures is possible but may result in lower MTBF (Mean Time Between Failures). This lower MTBF should be considered before operating beyond $110^{\circ} \mathrm{C}$ die temperature because of the overall reliability degradation.

PC BOARD MOUNTING

In order to realize satisfactory mounting of the NE5205 to a PC board, certain techniques need to be utilized. The board must be double-sided with copper and all pins must be soldered to their respective areas (i.e., all GND and $V_{C C}$ pins on the SO package). In addition, if the TO-46 package is used, the case should be soldered to the ground plane. The power supply should be decoupled with a capacitor as close to the $V_{C C}$ pins as possible and an RF choke should be inserted between the supply and the device. Caution should be exercised in the connection of input and output pins. Standard microstrip should be observed wherever possible. There should be no solder bumps or burrs or any obstructions in the signal path to cause launching problems. The path should be as straight as possible and lead lengths as short as possible from the part to the cable connection. Another important consideration is that the input and output should be AC coupled. This is because at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, the input is approximately at 1 V while the output is at 3.3 V . The output must be decoupled into a low impedance system or the DC bias on the output of the amplifier will be loaded down causing loss of output power. The easiest way to decouple the entire amplifier is by soldering a high frequency chip capacitor directly to the input and output pins of the device. This circuit is shown in Figure 16. Follow these recommendations to get the best frequency response and noise immunity. The board design is as important as the integrated circuit design itself.
Both of the evaluation boards that will be discussed next do not have input an output capacitors because it is assumed the user will use AC coupled test systems. Chip or foil capacitors can easily be inserted between the part and connector if the board trace is removed.

50 OHM EVALUATION BOARD

The evaluation board layout shown in Figure 17 produces excellent results. The board is to scale and is for the SO package but can be

Figure 17. BC Board Layout for NE5205 Evaluation

Wideband High Frequency Amplifier

used for the TO-46 package as well. Both top and bottom are copper clad and the ground planes are bonded together through 50 ohm SMA cable connectors. These are solder mounted on the sides of the board so that the signal traces line up straight to the connector signal pins.
Solid copper tubing is soldered through the flange holes between the two connectors for increased strength and grounding characteristics. Two or four hole flanges can be used. A flat round decoupling capacitor is placed in the board's round hole and soldered between the bottom $V_{C C}$ plane and the top side ground. The capacitor is as thin or thinner than the PC board thickness and has insulation around its side to isolate $V_{C C}$ and ground. The square hole is for the SO package which is put in upside down through the bottom of
the board so that the leads are kept in position for soldering. Both holes are just slightly larger than the capacitor and IC to provide for a tight fit.

This board should be tested in a system with 50 ohm input and output impedance for correct operation.

75 OHM EVALUATION BOARD

Another evaluation board is shown in Figure 18. This system uses the same PC board as presented in Figure 17, but makes use of 75 ohm female N-type connectors. The board is mounted in a nickel plated box* that is used to support the N -type connectors. This is an excellent way to test the part for cable TV applications. Again, the board
should be tested in a system with 75 ohm input and output impedance for correct operation.

- The box and connectors are available as a "MODPACK SYSTEM" from the ANZAC division of ADAMS-RUSSELL CO., INC., 80 Cambridge Street, Burlington, MA 01803.

SCATTERING PARAMETERS

The primary specifications for the NE5205 are listed as S-parameters. S-parameters are measurements of incident and reflected currents and voltages between the source, amplifier and load as well as transmission losses. The parameters for a two-port network are defined in Figure 19.

Figure 18. 75 -Ohm N -Type Connector System

Figure 19a. Two-Port Network Defined
S_{11} - INPUT RETURN LOSS
$S_{11} \equiv \sqrt{\begin{array}{c}\text { POWER REFLECTED } \\ \text { FROM INPUT PORT }\end{array}}$
S_{12} - REVERSE TRANSMISSION LOSS
or isolation
$\mathrm{s}_{12} \equiv \sqrt{\begin{array}{c}\text { REVERSE TRANSDUCER } \\ \text { POWER GAIN }\end{array} \quad \text { Fi }}$
S_{21} - FORWARD TRANSMISSION LOSS OR INSERTION GAIN
$S_{21} \equiv \sqrt{\text { TRANSDUCER POWER GAIN }}$
S_{22} - OUTPUT RETURN LOSS

$\mathrm{S}_{22} \equiv \sqrt{$| $\begin{array}{c}\text { POWER REFLECTED } \\ \text { FROM OUTPUT PORT }\end{array}$ |
| :---: |
| $\begin{array}{c}\text { POWER AVAILABLE FROM } \\ \text { GENERATOR AT OUTPUT PORT }\end{array}$ |
| 19 b |$}$

Actual S-parameter measurements using an H.P. network analyzer (model 8505A) and an H.P. S-parameter tester (models 8503A/B) are shown in Figure 20. These were obtained with the device mounted in a PC board as described in Figures 17 and 18.
For 50 ohm system measurements, SMA connectors were used. The 75 ohm data was obtained using N -connectors.

Values for the figures below are measured and specified in the data sheet to ease adap-

Figure A. Insertion Gain vs Frequency ($\mathbf{S}_{\mathbf{2 1}}$)

Figure C. Isolation vs Frequency (\mathbf{S}_{12})

Figure E . Input ($\mathrm{S}_{\mathbf{1 1}}$) and Output ($\mathrm{S}_{\mathbf{2 2}}$) Return Loss vs Frequency

Figure B. Insertion Gain vs Frequency $\left(\mathbf{S}_{\mathbf{2 1}}\right)$

Figure D. \mathbf{S}_{12} Isolation vs Frequency

Figure $\mathrm{F}^{\text {. Input }}\left(\mathbf{S}_{11}\right)$ and Output ($\mathbf{S}_{\mathbf{2 2}}$) Return Loss vs Frequency

Figure 20
tation and comparison of the NE5205 to other high frequency amplifiers. The most important parameter is S_{21}. It is defined as the square root of the power gain, and, in decibels, is equal to voltage gain as shown below:
$Z_{D}=Z_{\text {IN }}=Z_{\text {OUT }}$ for the NE5205
$P_{I N}=\frac{V_{I N}^{2} O}{Z_{D}-\sqrt{N E 5205}} \begin{gathered}Z_{O} \\ Z_{\text {OUT }}\end{gathered}=\frac{V_{O U T}{ }^{2}}{z_{D}}$

$P_{1}=V_{1}{ }^{2}$
$P_{1}=$ Insertion Power Gain
$V_{1}=$ Insertion Voltage Gain
Measured value for the
NE5205 $=\left|\mathrm{S}_{21}\right|^{2}=100$
$\therefore P_{1}=\frac{P_{\text {OUT }}}{P_{\text {IN }}}=\left|\mathrm{S}_{21}\right|^{2}=100$
and $V_{1}=\frac{V_{\text {OUT }}}{V_{I N}}=\sqrt{P_{1}}=S_{21}=10$
In decibels:
$P_{l(d B)}=10 \log \left|S_{21}\right|^{2}=20 \mathrm{~dB}$
$V_{1(d B)}=20 \log S_{21}=20 d B$
$\therefore P_{1(d B)}=V_{1(d B)}=S_{21(d B)}=20 d B$

Also measured on the same system are the respective voltage standing wave ratios. These are shown in Figure 21. The VSWR can be seen to be below 1.5 across the entire operational frequency range.

Relationships exist between the input and output return losses and the voltage standing wave ratios. These relationships are as follows:

$$
\begin{aligned}
& \text { INPUT RETURN LOSS }=\mathrm{S}_{11} \mathrm{~dB} \\
& \qquad \mathrm{~S}_{11} \mathrm{~dB}=20 \text { Log }\left|\mathrm{S}_{11}\right|
\end{aligned}
$$

$$
\text { OUTPUT RETURN LOSS }=\mathrm{S}_{22} \mathrm{~dB}
$$

$$
\mathrm{S}_{22} \mathrm{~dB}=20 \log \left|\mathrm{~S}_{22}\right|
$$

$$
\text { INPUT VSWR }=\frac{\left|1+S_{11}\right|}{\left|1-S_{11}\right|} \leq 1.5
$$

$$
\text { OUTPUT VSWR }=\frac{\left|1+\mathrm{S}_{22}\right|}{\left|1-\mathrm{S}_{22}\right|} \leq 1.5
$$

1dB GAIN COMPRESSION AND SATURATED OUTPUT POWER

The 1 dB gain compression is a measurement of the output power level where the smallsignal insertion gain magnitude decreases 1 dB from its low power value. The decrease is due to nonlinearities in the amplifier, an indication of the point of transition between smallsignal operation and the large signal mode.

The saturated output power is a measure of the amplifier's ability to deliver power into an external load. It is the value of the amplifier's output power when the input is heavily overdriven. This includes the sum of the power in all harmonics.

INTERMODULATION INTERCEPT TESTS

The intermodulation intercept is an expression of the low level linearity of the amplifier. The intermodulation ratio is the difference in dB between the fundamental output signal level and the generated distortion product level. The relationship between intercept and intermodulation ratio is illustrated in Figure 22, which shows product output levels plotted versus the level of the fundamental output for two equal strength output signals at different frequencies. The upper line shows the fundamental output plotted against itself with a 1 dB to 1 dB slope. The second and third order products lie below the fundamentals and exhibit a $2: 1$ and $3: 1$ slope respectively.

The intercept point for either product is the intersection of the extensions of the product curve with the fundamental output.

The intercept point is determined by measuring the intermodulation ratio at a single output level and projecting along the appropriate product slope to the point of intersection with the fundamental. When the intercept point is known, the intermodulation ratio can be determined by the reverse process. The second order IMR is equal to the difference between the second order intercept and the fundamental output level. The third order IMR is equal to twice the difference between the third order intercept and the fundamental output level. These are expressed as:

$$
\begin{gathered}
\mathrm{IP}_{2}=\mathrm{P}_{\mathrm{OUT}}+\mathrm{IMR}_{2} \\
\mathrm{IP}_{3}=\mathrm{P}_{\mathrm{OUT}}+\mathrm{IMR}_{3} / 2
\end{gathered}
$$

Figure A. Input VSWR vs Frequency

Figure B. Output VSWR vs Frequency

Figure 21. Input/Output VSWR Versus Frequency
where $\mathrm{P}_{\text {OUT }}$ is the power level in dBm of each of a pair of equal level fundamental output signals, IP_{2} and $I P_{3}$ are the second and third order output intercepts in dBm , and IMR_{2} and IMR_{3} are the second and third order intermodulation ratios in dB . The intermodulation intercept is an indicator of intermodulation performance only in the small signal operating range of the amplifier. Above some output level which is below the 1 dB compression point, the active device moves into large signal operation. At this point the intermodulation products no longer follow the straight line output slopes, and the intercept description is no longer valid. It is therefore important to measure $I P_{2}$ and $I P_{3}$ at output levels well below 1 dB compression. One must be careful, however, not to select too low levels because the test equipment may not be able to recover the signal from the noise. For the NE5205 we have chosen an output level of -10.5 dBm with fundamental frequencies of 100.000 and 100.01 MHz , respectively.

ADDITIONAL READING ON SCATTERING PARAMETERS

For more information regarding S-parameters, please refer to High-Frequency Amplifiers by Ralph S. Carson of the University of Missouri, Rolla, Copyright 1985; published by John Wiley \& Sons, Inc.
S-Parameter Techniques for Faster, More Accurate Network Design, H.P. App Note 95-1, Richard W. Anderson, 1967, HP Journal.
S-Parameter Design, H.P. App Note 154, 1972.

Figure 22

Section 7
 Professional Analogue ICs

INDEX

SECTION 7 - PROFESSIONAL ANALOGUE ICs
Index 7-1
SAA1027 Stepping Motor Drive Circuit $7-3$
SAA1029 Universal Industrial Logic and Interface Circuit. 7-9
TCA520B; D Operational Amplifier 7-17
TDA1023 Proportional-Control Triac Triggering Circuit 7-23
TDA1060; A; B; T Control Circuit for SMPS 7-37
TDB1080; T I.F. Limiting amplifier, FM Detector \& Audio Amplifier 7-53
TEA1017 13-Bit Series-Parallel Converter 7-59
TEA1039 Control Circuit for SMPS 7-67

MAINTENANCE TYPE LIST

The types listed below are not included in this handbook. Detailed information will be supplied on requested.
CA3046
TBA673
TBA915G
TCA210; T
TCA220
TCA240; D
TCA280A
TCA770A; D
TCA980G
TDA1024
TDA3081
TDA3083; D
TEA1010; T
TEA1016
TEA1058; T

STEPPING MOTOR DRIVE CIRCUIT

GENERAL DESCRIPTION

The SAA1027 is a bipolar integrated circuit intended for driving a four-phase two-stator motor. The circuit consists of a bidirectional four-state counter and a code converter to drive the four outputs in the sequence required for driving a stepping motor.

Features

- high noise immunity inputs
- clockwise and counter-clockwise operation
- reset facility
- high output current
- outputs protected against damage by overshoot.

QUICK REFERENCE DATA

Supply voltage range	V_{CC}	9,5 to 18 V	
Supply current, unloaded	I_{CC}	typ.	$4,5 \mathrm{~mA}$
Input voltage, all inputs HIGH			
LOW	V_{IH}	min.	$7,5 \mathrm{~V}$
Input current, all inputs, LOW	V_{IL}	max.	$4,5 \mathrm{~V}$
Output current LOW	I_{IL}	typ.	$30 \mu \mathrm{~A}$
Operating ambient temperature range	I_{OL}	max.	500 mA

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38A).

SAA1027

Fig. 1 Block diagram. The blocks marked HNIL/CML are high noise immunity input stages, the block marked CTR2 is a bidirectional synchronous 2-bit (4-state) counter and the block marked X / Y is a code converter. C is the count input, M the mode input to select forward or reverse counting and R is the reset input which resets the counter to content zero.

PINNING

1	n.c.	not connected
2	R	reset input
3	M	mode input
4	RX	external resistor
5	$\mathrm{~V}_{\mathrm{EE} 1}$	ground
6	Q 1	output 1
7	n.c.	not connected
8	Q2	output 2
9	Q3	output 3
10	n.c.	not connected
11	Q4	output 4
12	$V_{E E 2}$	ground
13	$V_{C C 2}$	positive supply
14	$V_{C C 1}$	positive supply
15	C	count input
16	n.c.	not connected

FUNCTIONAL DESCRIPTION

Count input C (pin 15)

The outputs change state after each L to H signal transition at the count input.
Mode input M (pin 3)
With the mode input the sequence of output signals, and hence the direction of rotation of the stepping motor, can be chosen, as shown in the following table.

$*$ counting sequence	$M=L$					$M=H$			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
0	L	H	L.	H	L	H	L	H	
1	H	L	L	H	L	H	H	L	
2	H	L	H	L	H	L	H	L	
3	L	H	H	L	H	L	L	H	
0	L	H	L	H	L	H	L	H	

Reset input R (pin 2)

A LOW level at the R input resets the counter to content zero. The outputs take on the levels shown in the upper and lower line of the table above.

If this facility is not used the R input should be connected to the supply.

External resistor pin RX (pin 4)

The external resistor $R 4$ connected to $R X$ sets the base current of the output transistors. Its value has to be chosen in accordance with the required output current (see Fig. 5).

Outputs Q1 to Q4 (pins 6, 8, 9 and 11)
The circuit has open-collector outputs. To prevent damage by an overshooting output voltage the outputs are protected by diodes connected to $V_{C C 2}$, pin 13 . High output currents mainly determine the total power dissipation, see Fig. 3.

SAA1027

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage, d.c.
Input voltage, all inputs
Current into pin 4
Output current
Power dissipation
Storage temperature range
Operating ambient temperature range

		18 V
$\mathrm{~V}_{\mathrm{CC} 1} ; \mathrm{V}_{\mathrm{CC} 2}$	max.	18 V
$\mathrm{~V}_{1}$	max.	120 mA
I_{RX}	max.	120 mA
I_{OL}	max.	500 ma
$\mathrm{P}_{\text {tot }}$	see Fig. 4	
$\mathrm{~T}_{\text {stg }}$	-40 to $+125{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	-20 to $+70{ }^{\circ} \mathrm{C}$	

CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=9,5$ to $18 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-20$ to $70^{\circ} \mathrm{C}$ unless otherwise specified.

parameter	symbol	min .	typ.	max.	unit
Supply $\mathrm{V}_{\mathrm{CC} 1}$ and $\mathrm{V}_{\text {CC2 }}$ (pins 14 and 13)					
Supply current at $\mathrm{V}_{\mathrm{CC} 1}=12 \mathrm{~V}$; unloaded; all inputs HIGH; pin 4 open	ICC	2	4,5	6,5	mA
Inputs C, M and R (pins 15, 3 and 2)					
Input voltage HIGH	$\mathrm{V}_{\text {IH }}$	7,5	-	-	V
LOW	$V_{\text {IL }}$	-	-	4,5	v
Input current					
HIGH	$l_{\text {IH }}$	-	1	-	$\mu \mathrm{A}$
LOW	$-\mathrm{IL}$	-	30	-	$\mu \mathrm{A}$
External resistor pin RX (pin 4)					
$\begin{aligned} & \text { Voltage at } R X \text { at } V C C=12 V \pm 15 \% ; \\ & R 4=130 \Omega \pm 5 \% \end{aligned}$	$V_{\text {RX }}$	3	-	4,5	V
Outputs Q1 to Q4					
Output voltage LOW at $I_{O L}=350 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	500	1000	mV
at $\mathrm{I}_{\mathrm{OL}}=500 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$	-	700	-	mV
Output current					
LOW	${ }^{\text {IOL }}$	--	-	500*	mA
HIGH at $\mathrm{V}_{\mathrm{Q}}=18 \mathrm{~V}$	${ }^{-1} \mathrm{OH}$	-	-	50	$\mu \mathrm{A}$

[^3]

Fig. 3 Total power dissipation $\mathrm{P}_{\text {tot }}$ as a function of output current ${ }^{1}$ OL.

Fig. 4 Power derating curve.

Fig. 5 Current I_{RX} into RX and voltage V_{RX} on RX as a function of required output current I_{OL}.

Fig. 6 Typical application of the SAA1027 as a stepping motor driver.

UNIVERSAL INDUSTRIAL LOGIC AND INTERFACE CIRCUIT

GENERAL DESCRIPTION

The SAA1029 is a universal bipolar logic and interface IC with high noise immunity and operational stability for industrial control applications. The most fundamental industrial control functions can be accomplished with only one SAA1029 IC. Figure 1 shows the logic configuration.
The IC comprises,
(1) Gate 1:4-input AND gate with 1 inverted input,
(2) Gate 2:3-input AND gate with 1 inverted input and adjustable propagation delay,
(3) Gate 3: 2-input AND gate with 1 inverted input.

The SAA1029 can be used as direct interface with LOCMOS (CMOS) ICs for realizing more complex functions. Therefore, the output signal can be limited to the voltage level of the common output clamping pin Z .
The propagation delay of NAND gate 2 is adjustable from microseconds to seconds by using an external capacitor at pin C. This makes it possible to adapt the control frequency limits to the system, so the optimum dynamic noise immunity can be achieved.
All the static and dynamic circuit values (including the output voltage) are independent of the supply voltage over a wide operating range. This allows the use of a simple unstabilized power supply.
The output is held to the LOW state automatically during switching on the power supply, so a special reset pulse can be omitted.

Features

- Simple realization of the basic industrial control functions (logic functions, timing functions, memory functions).
- High dynamic and static noise immunity.
- High operation stability.
- Short-circuit protection of inputs and outputs to both V_{EE} and V_{CC}.
- Wide supply voltage range, so a simple power supply can be used.
- Wire interruption results in a safe input LOW state.
- LOCMOS (CMOS) compatible.

QUICK REFERENCE DATA

Supply voltage range	V_{CC}	14 to $31,2 \mathrm{~V}$
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-30 to $+85{ }^{\circ} \mathrm{C}$
Input voltage HIGH	V_{IH}	6,5 to 44 V
Output voltage HIGH (without clamping)	V_{OH}	13 to 30 V
Output voltage HIGH (with clamping at pin Z)	V_{OH}	2,0 to $\left(\mathrm{V}_{\mathrm{CC}}-0,7\right) \mathrm{V}$
Input current	I_{I}	max.
Quiescent supply current	I_{CC}	typ.

PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

SAA1029

Fig. 1 Logic diagram.

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range
Input voltage (independent of V_{CC})
Output clamping voltage (pin 14)
Voltage at any output (pins 12, 13 and 15)
pin $14(Z)$ open
pin $14(Z)$ at V_{Z}
Current into any input

$$
\begin{aligned}
& \text { d.c. } \\
& \mathrm{t}_{\mathrm{p}}=0,5 \mu \mathrm{~s} ; \delta=0,1 \% \text { (peak value) }
\end{aligned}
$$

Sum of input currents

$$
\begin{aligned}
& \text { d.c. } \\
& \mathrm{t}_{\mathrm{p}}=0,5 \mu \mathrm{~s} ; \delta=0,1 \% \text { (peak value) }
\end{aligned}
$$

External applied current at any output (pins 12, 13 and 15) pin $14(Z)$ open
d.c.
$\mathrm{t}_{\mathrm{p}}=0,5 \mu \mathrm{~s} ; \delta=0,1 \%$ (peak value)
External applied current at any output (pins 12, 13 and 15) pin $14(Z)$ at V_{Z}
d.c.
$\mathrm{t}_{\mathrm{p}}=0,5 \mu \mathrm{~s} ; \delta=0,1 \%$ (peak value)
Voltage at pin 7 (C)
External capacitor at pin 7 (C)
Short-circuit of outputs (pins 12, 13 and 15)
pin $14(Z)$ open
at $\mathrm{V}_{\mathrm{Z}}<\mathrm{V}_{\mathrm{CC}}$
Total power dissipation (see also Fig. 3)
at $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$; continuous
at $T_{a m b}=65^{\circ} \mathrm{C}$; max. 1000 hours
Storage temperature range

IO $\quad-30$ to +10 mA
$10 \quad-500$ to +100 mA
V_{C}
any value
allowed to V_{CC} and $\mathrm{V}_{\mathrm{EE}}(0 \mathrm{~V})$
allowed only to $\mathrm{V}_{\mathrm{EE}}(\mathrm{O} \mathrm{V})$

$P_{\text {tot }}$	max.	1100 mW
$P_{\text {tot }}$	max.	1100 mW
$\mathrm{~T}_{\text {stg }}$		-40 to $+150 \mathrm{ol}^{\circ} \mathrm{C}$

Fig. 3 Power derating curves; $R_{\text {th } j-a}=70 \mathrm{~K} / \mathrm{W}$.

HIGH	V_{OH} V_{OH} $\mathrm{VOH}_{\mathrm{OH}}$	$\begin{aligned} & \left(V_{Z}-0,475\right) \\ & \left(V_{Z}-0,455\right) \\ & \left(V_{Z}-0,41\right) \end{aligned}$	-	$\begin{aligned} & \left(V_{Z}+0,225\right) \\ & \left(V_{Z}+0,12\right) \\ & \left(V_{Z}+0,055\right) \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \\ & -\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} \\ & -\mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA} \end{aligned}$
Output short-circuit current* LOW-signal	IOscL	2,95	-	9,6	mA	output at V_{CC}
HIGH-signal	$-\mathrm{OscH}$	10,1	-	21,9	mA	output at $\mathrm{V}_{\mathrm{EE}}(0 \mathrm{~V})$
Capacitor charging current*	${ }^{\prime} \mathrm{C}$	-	30	-	$\mu \mathrm{A}$	
Propagation delays* gates 1, 2 and 3 HIGH to LOW	tPHL	-	3,5	-	$\mu \mathrm{S}$	$1 \mathrm{C}=0$ (at gat
LOW to HIGH	tPLH	-	3,5	-	$\mu \mathrm{S}$	$1 \mathrm{c}=0$ at
gate 2 HIGH to LOW	tPHL	1,85	-	5,2	ms	$\mathrm{C}=47 \mathrm{nF} \pm 1 \%$
LOW to HIGH	tPLH	7,5	-	14	ms	$\mathrm{R}_{\text {insulation }}>100 \mathrm{M} \Omega$

$\stackrel{\nu}{\omega}$

* At $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$; unless otherwise specified.

Note
V_{CC} rising from 0 to 14 V ; all inputs open; internally it is guaranteed that the input threshold voltage $\mathrm{V}_{1 \mathrm{~L}}>\mathrm{V}_{\mathrm{OL}}$.

SAA1029

APPLICATION INFORMATION

The following figures (Figs 4 to 11) give some examples of the basic industrial control functions.

Fig. 4 OR function.

Fig. 8 Monostable flip-flop; for $C=4,7 \mu \mathrm{~F}$, 1 s no reaction.

Fig. 5 EXCLUSIVE-OR function.

Fig. 6 Delayed memory; reset is dominating.

Fig. 7 Delayed memory; set is dominating.

Fig. 10 Decay delay function.

Fig. 11 Square-wave oscillator.

OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The TCA520 is a bipolar integrated operational amplifier primarily intended for low-power, low-voltage applications and as a comparator in digital systems.

Features

- wide supply voltage range
- low supply voltage operation
- low power consumption
- low input bias current
- offset compensation facility
- frequency compensation facility
- high slew rate
- large output voltage swing
- TTL compatible output

QUICK REFERENCE DATA

Supply voltage range	$V_{C C}$		2 to 20 V
Supply current	$I_{C C}$	typ.	$0,8 \mathrm{~mA}$
Input bias current	I_{IB}	typ.	60 nA
Output voltage range	V_{Q}	0,1 to $\mathrm{V}_{\mathrm{CC}}-0,1 \mathrm{~V}$	
D.C. differential voltage amplification	A_{VD}	typ.	15000
Slew rate	$\mathrm{S}_{\mathrm{VOAV}}$	typ.	$25 \mathrm{~V} / \mu \mathrm{s}$
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$		-25 to $+85{ }^{\circ} \mathrm{C}$

PACKAGE OUTLINES

TCA520B : 8-lead DIL; plastic (SOT-97A).
TCA520D: 8-lead mini-pack; plastic (SO-8; SOT-96A).

TCA520B/TCA520D

Fig. 1 Circuit diagram.

PINNING

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage, d.c.
Input voltage
Differential input voltage
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$
Storage temperature range
Operating ambient temperature range

$V_{\text {CC }}$	max.	22 V
$\mathrm{~V}_{\mathrm{I}}$	max.	$\mathrm{V}_{\mathrm{CC}} \mathrm{V}$
$-\mathrm{V}_{\mathrm{I}}$	max.	0 V
$\pm \mathrm{V}_{\text {ID }}$	max.	7 V
$\mathrm{P}_{\text {tot }}$	max.	200 mW
$\mathrm{~T}_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {amb }}$	-25 to $+85^{\circ} \mathrm{C}$	

CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{L}}$ from Q to V_{CC} unless otherwise specified

parameter	symbol	min .	typ.	max.	unit
Supply V_{CC}; pin 7					
Inputs I+ and I-; pins 3 and 2					
Input voltage	V_{1}	0,9	-	$\mathrm{V}_{\mathrm{CC}}-0,5$	V
Input bias current	$\mathrm{I}_{\text {IB }}$	-	60	250	nA
Input offset voltage	V_{10}	-	1	6	mV
Variation with temperature	$\Delta \mathrm{V}_{10}$	-	5	-	$\mu \mathrm{V} / \mathrm{K}$
Input offset current	IIO	-	10	75	nA
Common-mode rejection ratio	${ }^{\mathrm{k}} \mathrm{CMR}$	70	100	-	dB
Input noise voltage at $\mathrm{f}=1 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{n}}(\mathrm{rms})$	-	15	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input noise current at $f=1 \mathrm{kHz}$	In (rms)	-	0,4	-	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Output Q; pin 6					
Output voltage range at $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	V_{Q}	0,1	-	$\mathrm{V}_{\mathrm{CC}}-0,1$	v
Output current HIGH at $\mathrm{V}_{\mathrm{Q}}=\mathrm{V}_{\mathrm{CC}}-0,4 \mathrm{~V}$	${ }^{-1} \mathrm{OH}$	100	200	-	$\mu \mathrm{A}$
LOW at $\mathrm{V}_{\mathrm{Q}}=0,4 \mathrm{~V}$	${ }^{\text {IOL }}$	6	12	-	mA
D.C. voltage amplification at $R_{L}=5 \mathrm{k} \Omega$	$A_{\text {V }}$	10000	15000	-	
A.C. voltage amplification at $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{C}_{\mathrm{FC}}=100 \mathrm{pF}$	$A_{\text {vd }}$	-	58	-	dB
Slew rate (average rate of change of the output voltage) at $R_{L}=1 \mathrm{k} \Omega$ $\mathrm{C}_{\mathrm{FC}}=0 \mathrm{pF}$	SVoAV	-	25	-	$\mathrm{V} / \mu \mathrm{s}$
$C_{\text {FC }}=100 \mathrm{pF}$	SVOAV	-	500	-	$\mathrm{mV} / \mu \mathrm{s}$

TCA520B/TCA520D

Fig. 3 Typical values of the open-loop voltage amplification as a function of frequency.

Fig. 4 Typical values of the open-loop voltage amplification as a function of supply voltage.

Fig. 5 Typical frequency response and slew rate for various closed-loop gains.

Fig. 6 Typical values of the input bias current as a function of supply voltage, with ambient temperature as a parameter.

Fig. 7 Output current LOW as a function of output voltage, with supply voltage as a parameter.

TCA520B/TCA520D

Fig. 8 Output current HIGH as a function of output voltage, with supply voltage as a parameter.

Fig. 10 Typical arrangement of the TCA520 with frequency and offset compensation.

Fig. 9 Minimum values of the output voltage swing as a function of supply voltage for $R_{L}=1 \mathrm{k} \Omega$.

Fig. 11 Typical application of the TCA520 as a comparator.

PROPORTIONAL-CONTROL TRIAC TRIGGERING CIRCUIT

GENERAL DESCRIPTION

The TDA1023 is a bipolar integrated circuit for controlling triacs in the time proportional or burst firing mode. It permits very precise temperature control of heating equipment and is especially suited for the control of panel heaters. The circuit generates positive-going trigger pulses and complies with the regulations on radio interference and mains distortion.

Special features are:

- adjustable proportional range width
- adjustable hysteresis
- adjustable trigger pulse width
- adjustable firing burst repetition time
- control range translation facility
- failsafe operation
- supplied from the mains
- provides supply for external temperature bridge

QUICK REFERENCE DATA

Supply voltage (derived from mains voltage)	V_{CC}	typ.	$13,7 \mathrm{~V}$
Stabilized supply voltage for temperature bridge	V_{Z}	typ.	8 V
Supply current (average value)	$\mathrm{I}_{16(\mathrm{AV})}$	typ.	10 mA
Trigger pulse width	t_{w}	typ.	$200 \mu \mathrm{~s}$
Firing burst repetition time at $\mathrm{C}_{\mathrm{T}}=68 \mu \mathrm{~F}$	$\mathrm{~T}_{\mathrm{b}}$	typ.	41 s
Output current	$-\mathrm{I}_{\mathrm{OH}}{ }^{*}$	max. 150 mA	
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-20 to $+75{ }^{\circ} \mathrm{C}$	

[^4]
PACKAGE OUTLINE

16-lead DIL; plastic (SOT-38).

Fig. 1 Block diagram.

Fig. 2 Pinning diagram.

PINNING

1	$R_{\text {pd }}$	internal pull-down resistor connection
2	n.c.	not connected
3	Q	output
4	HYS	hysteresis control input
5	PR	proportional range control input
6	CI	Control input
7	UR	unbuffered reference input
8	QR	output of reference buffer
9	BR	buffered reference input
10	PW	pulse width control input
11	VZ	reference supply output
12	TB	firing burst repetition time control input
13	VEE	ground connection
14	VCC	positive supply connection
15	n.c.	not connected
16	RX	external resistor connection

FUNCTIONAL DESCRIPTION

The TDA1023 generates pulses to trigger a triac. These trigger pulses coincide with the zero crossings of the mains voltage. This minimizes r.f. interference and transients on the mains supply. The trigger pulses come in bursts, with the net effect that the load is periodically switched on and off. This further minimizes mains pollution. The average power in the load is varied by varying the duration of the trigger pulse burst, in accordance with the voltage difference between the control input Cl and the reference input, either UR or BR.

Power supply: $\mathbf{V}_{\mathbf{C}}, \mathbf{R X}$ and $\mathrm{V}_{\mathbf{Z}}$ (pins 14,16 and 11)
The TDA1023 is supplied from the a.c. mains via a resistor R_{D} to the $R X$ connection (pin 16); the $\mathrm{V}_{\text {EE }}$ connection (pin 13) is connected to the neutral line (see Fig. 4a). A smoothing capacitor C_{S} has to be connected between the V_{CC} and $\mathrm{V}_{\text {EE }}$ connections.
The circuit contains a string of stabilizer diodes between the $R X$ and $V_{E E}$ connections that limit the d.c. supply voltage, and a rectifier diode between the $R X$ and $V_{C C}$ connections (see Fig. 3).

At pin 11 the device provides a stabilized reference voltage V_{Z} for an external temperature sensing bridge.
The operation of the supply arrangement is as follows. During the positive half of the mains cycles the current through external voltage dropping resistor R_{D} charges the external smoothing capacitor C_{S} until $R X$ reaches the stabilizing voltage of the internal stabilizer diodes. R_{D} should be chosen such that it can supply the current $I_{C C}$ for the TDA1023 itself plus the average output current I_{3} (AV) plus the current required from the V_{Z} connection for an external temperature bridge, and recharge the smoothing capacitor C_{S} (see Figs 9 to 12). Any excess current is bypassed by the internal stabilizer diodes. Note that the maximum rated supply current must not be exceeded.
During the negative half of the mains cycles external smoothing capacitor C_{5}, has to supply the sum of the currents mentioned above. Its capacitance must be high enough to maintain the supply voltage above the minimum specified limit.

FUNCTIONAL DESCRIPTION (continued)

Dissipation in resistor R_{D} is halved by connecting a diode in series (see Fig. $4 b$ and 9 to 12).
A further reduction of dissipation is possible by using a high-quality voltage dropping capacitor C_{D} in series with a resistor RSD (see Figs 4c and 14). Asuitable VDR connected across the mains provides protection of the TDA1023 and of the triac against mains-borne transients.

Control and reference inputs CI, BR and UR (pins 6, 9 and 7)

For room temperature control ($5^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$) the best performance is obtained by using the translation circuit. The buffered reference input BR ($\operatorname{pin} 9$) is used as a reference input, and the output of the reference buffer QR ($\operatorname{pin} 8$) is connected to the unbuffered reference input UR (pin 7). In this arrangement the translation circuit ensures that most of the potentiometer rotation can be used to cover the room temperature range. This provides an accurate temperature setting and a linear temperature scale.
If the translation circuit is not required, the unbuffered reference input UR (pin 7) is used as a reference input. The buffered reference input $B R$ ($\operatorname{pin} 9$) must be connected to the reference supply output V_{Z} (pin 11).

For proportional power control the unbuffered reference input UR (pin 7) must be connected to the firing burst repetition time control input TB (pin 12) and the buffered reference input BR (pin 9), which is inactive now, must be connected to the reference supply output V_{Z} (pin 11).
In all arrangements the train of output pulses becomes longer when the voltage at the control input Cl (pin 6) becomes lower.

Proportional range control input PR (pin 5)
With the proportional range control input PR open the output duty factor changes from 0\% to 100% by a variation of 80 mV at the control input Cl (pin 6). For temperature control this corresponds with a temperature difference of only 1 K .

This range may be increased to 400 mV , i.e. 5 K , by connecting the proportional range control input PR (pin 5) to ground. Intermediate values are obtained by connecting the PR input to ground via a resistor R5, see Table 1.

Hysteresis control input HYS (pin 4)

With the hysteresis control input HYS (pin 4) open the device has a built-in hysteresis of 20 mV . For temperature control this corresponds with $0,25 \mathrm{~K}$.

Hysteresis is increased to 320 mV , corresponding with 4 K , by grounding HYS (pin 4). Intermediate values are obtained by connecting pin 4 to ground via a resistor R4. See Table 1 for a set of values for R4 and R5 giving a fixed ratio between hysteresis and proportional range.

Trigger pulse width control input PW (pin 10)

The trigger pulse width may be adjusted to the value required for the triac by choosing the value of the external synchronization resistor Rs between the trigger pulse width control input PW (pin 10) and the a.c. mains. The pulse width is inversely proportional to the input current (see Fig. 13).

Output Q (pin 3)

Since the circuit has an open-emitter output, it is capable of sourcing current, i.e. supplying a current out of the output. Therefore it is especially suited for generating positive-going trigger pulses. The output is current-limited and protected against short-circuits. The maximum output current is 150 mA and the output pulses are stabilized at 10 V for output currents up to that value.

Proportional-control triac triggering circuit

FUNCTIONAL DESCRIPTION (continued)

A gate resistor R_{G} must be connected between the output Q and the triac gate to limit the output current to the minimum required by the triac (see Figs 5 to 8). This minimizes the total supply current and the power dissipation.

Pull-down resistor $\mathbf{R}_{\mathbf{p d}}$ (pin 1)

The TDA1023 includes a $1,5 \mathrm{k} \Omega$ pull-down resistor R_{pd} between pins 1 and $13\left(\mathrm{~V}_{\mathrm{EE}}\right.$, ground connection), intended for use with sensitive triacs.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage, d.c.
Supply current

average

repetitive peak
non-repetitive peak
Input voltage, all inputs
Input current, CI, UR, BR, PW input
Voltage on R_{pd} connection
Output voltage, $\mathrm{Q}, \mathrm{QR}, \mathrm{V}_{\mathrm{Z}}$ output
Output current
average
peak, max. $300 \mu \mathrm{~s}$
Total power dissipation
Storage temperature range
Operating ambient temperature range

	max.	16 V
$\mathrm{~V}_{\mathrm{CC}}$		
$\mathrm{I}_{16(\mathrm{AV})}$	max.	30 mA
$\mathrm{I}_{16(\mathrm{RM})}$	max.	100 mA
$\mathrm{I}_{16(\mathrm{SM})}$	max.	2 A
$\mathrm{~V}_{\mathrm{I}}$	max.	16 V
$\mathrm{I}_{6 ; 7 ; 9 ; 10}$	max.	10 mA
$\mathrm{~V}_{1}$	max.	16 V
$\mathrm{~V}_{3 ; 8 ; 11}$	max.	16 V
$-\mathrm{I}_{\mathrm{OH}(\mathrm{AV})}$	max.	30 mA
$-\mathrm{I}_{\mathrm{OH}(\mathrm{M})}$	max.	700 mA
$\mathrm{P}_{\text {tot }}$	max.	500 mW
$\mathrm{~T}_{\text {stg }}$	$-55 \mathrm{to}+150{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	-20 to $+75{ }^{\circ} \mathrm{C}$	

CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=11$ to $16 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=-20$ to $+75^{\circ} \mathrm{C}$ unless otherwise specified

	symbol	min.	typ.	max.	unit
Supply: $\mathrm{VCC}_{\text {c }}$ and RX (pins 14 and 16)					
Internally stabilized supply voltage at $I_{16}=10 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }}$	12	13,7	15	V
Variation with I_{16}	$\Delta \mathrm{V}_{\mathrm{CC}} / \Delta \mathrm{l}_{16}$	-	30	-	$\mathrm{mV} / \mathrm{mA}$
Supply current at $\mathrm{V}_{16-13}=11$ to 16 V ; $\mathrm{I}_{10}=1 \mathrm{~mA}$; $\mathrm{f}=50 \mathrm{~Hz}$; pin 11 open; $\mathrm{V}_{6-13}>\mathrm{V}_{7-13}$; pins 4 and 5 open	116	-	-	6	mA
pins 4 and 5 grounded	l_{16}	-	-	7,1	mA
Reference supply output $\mathbf{V}_{\mathbf{Z}}$ (pin 11) for external temperature bridge					
Output voltage	V_{11-13}	-	8	-	V
Output current	$-l_{11}$	-	-	1	mA
Control and reference inputs CI, BR and UR (pins 6, 9 and 7)					
Input voltage to inhibit the output	V_{6-13}	-	7,6	-	V
Input current at $\mathrm{V}_{\mathrm{I}}=4 \mathrm{~V}$	16; 7; 9	-	-	2	$\mu \mathrm{A}$
Hysteresis control input HYS (pin 4)					
Hysteresis, pin 4 open	$\Delta \mathrm{V}_{6}$	9	20	40	mV
pin 4 grounded	$\Delta \mathrm{V}_{6}$	-	320	-	mV
Proportional range control input PR (pin 5)					
Proportional range, pin 5 open	$\Delta \mathrm{V}_{6}$	50	80	130	mV
pin 5 grounded	ΔV_{6}	-	400	-	mv
Pulse width control input PW (pin 10)					
Pulse width at $\mathrm{I}_{10}(\mathrm{RMS})=1 \mathrm{~mA} ; \mathrm{f}=50 \mathrm{~Hz}$	t_{w}	100	200	300	$\mu \mathrm{s}$
Firing burst repetition time control input TB (pin 12)					
Firing burst repetition time, ratio to capacitor $\mathrm{C}_{\boldsymbol{T}}$	T_{b} / C_{T}	320	600	960	$\mathrm{ms} / \mu \mathrm{F}$
Output of reference buffer QR (pin 8)					
Output voltage at input voltage $\mathrm{V}_{9-13}=1,6 \mathrm{~V}$	V_{8-13}	-	3,2	-	V
$\mathrm{V}_{9-13}=4,8 \mathrm{~V}$	V_{8-13}	-	4,8	-	V
$\mathrm{V}_{9-13}=8 \mathrm{~V}$	V_{8-13}	-	6,4	-	V

	symbol	min.	typ.	max.	unit
Output Q (pin 3)					
Output voltage HIGH at $-\mathrm{I}_{\mathrm{OH}}=150 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OH}}$	10	-	-	V
Output current HIGH	-IOH	-	-	150	mA
Internal pull-down resistor $\mathrm{R}_{\text {pd }}$ (pin 1) Resistance to V_{EE}	R_{pd}	1	1,5	3	$\mathrm{k} \Omega$

Table 1. Adjustment of proportional range and hysteresis.
Combinations of resistor values giving hysteresis > $1 / 4$ proportional range.

proportional range	proportional range resistor $R 5$ $\mathrm{k} \Omega$	minimum hysteresis	maximum hysteresis resistor $R 4$ $\mathrm{k} \Omega$
80	open	20	open
160	3,3	40	9,1
240	1,1	60	4,3
320	0,43	80	2,7
400	0	100	1,8

Table 2. Timing capacitor C_{T} values.

effective d.c. value $\mu \mathrm{F}$	marked a.c. specification		catalogue number*	
	$\mu \mathrm{F}$	V		
68	47	25	222201690129	
47	33	40	-	
33	22	25	-01590131	
22	15	40	-	
15	10	25	-90101	
10	6,8	40	-	

[^5]

Fig. 3 Internal supply connections.

Fig. 4 Alternative supply arrangements.

Fig. 5.

Fig. 7.

Fig. 6.

Fig. 8.

TDA1023

Fig. 9.

Fig. 10.

Fig. 13 Synchronization resistor R_{S} as a function of required trigger pulse width t_{w} with mains voltage V_{S} as a parameter.

Fig. 14 Nominal value of voltage dropping capacitor C_{D} and power $P_{\text {RSD }}$ dissipated in voltage dropping resistor R_{SD} as a function of the average supply current $\mathrm{I}_{16}(\mathrm{AV})$ with the mains supply voltage V_{S} as a parameter.

TDA1023

APPLICATION INFORMATION

Fig. 15 The TDA1023 used in a 1200 to 2000 W heater with triac BT139. For component values see Table 3.

Conditions

Mains supply: $\mathrm{V}_{\mathrm{S}}=220 \mathrm{~V}$
Temperature range $=5$ to $30^{\circ} \mathrm{C}$
BT139 data: $\mathrm{V}_{\mathrm{GT}}<1,5 \mathrm{~V}$

$$
\left.\begin{array}{l}
\mathrm{I}_{\mathrm{GT}}>70 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{L}} \quad<60 \mathrm{~mA}
\end{array}\right\} \text { at } \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}
$$

Table 3. Temperature controller component values (see Fig. 15).

parameter	symbol	value	remarks
Trigger pulse width	t_{w}	$75 \mu \mathrm{~s}$	see BT139 data sheet
Synchronization resistor	R_{S}	$180 \mathrm{k} \Omega$	see Fig. 13
Gate resistor	R_{G}	110Ω	see Fig. 6
Max. average gate current	$\mathrm{I}_{3}(\mathrm{AV}$)	4,1 mA	see Fig. 8
Hysteresis resistor	R4	n.c.	see Table 1
Proportional band resistor	R5	n.c.	see Table 1
Min. required supply current	116 (AV)	$11,1 \mathrm{~mA}$	
Mains dropping resistor	$R_{\text {D }}$	$6,2 \mathrm{k} \Omega$	see Fig. 10
Power dissipated in R_{D}	$\mathrm{P}_{\text {RD }}$	4,6 W	see Fig. 10
Timing capacitor (eff. value)	C_{T}	$68 \mu \mathrm{~F}$	see Table 2
Voltage dependent resistor	VDR	250 V a.c.	cat. no. 232259362512
Rectifier diode	D1	BYW56	
Resistor to pin 11	R1	$18,7 \mathrm{k} \Omega$	1\% tolerance
NTC thermistor (at $25^{\circ} \mathrm{C}$)	$\mathrm{R}_{\text {NTC }}$	$22 \mathrm{k} \Omega$	$\begin{aligned} & B=4200 \mathrm{~K} \\ & \text { cat. no. } 232264212223 \end{aligned}$
Potentiometer	R_{p}	$22 \mathrm{k} \Omega$	
Capacitor between pins 6 and 9	C1	47 nF	
Smoothing capacitor	C_{S}	$220 \mu \mathrm{~F}$; 16 V	

If R_{D} and $D 1$ are replaced by C_{D} and $R_{S D}$

Mains dropping capacitor	C_{D}	470 nF	
Series dropping resistor	$R_{S D}$	390Ω	see Fig. 14
Power dissipated in R RD		PRSD	$0,6 \mathrm{~W}$
Voltage dependent resistor	VDR	$250 \mathrm{Va.c}$.	cat. no. 232259462512

Notes

1. ON/OFF control: pin 12 connected to pin 13.
2. If translation circuit is not required: slider of R_{p} to $\operatorname{pin} 7 ; \operatorname{pin} 8$ open; $\operatorname{pin} 9$ connected to $\operatorname{pin} 11$.

APPLICATION INFORMATION SUPPLIED ON REQUEST

TDA1060;A;B;T

CONTROL CIRCUIT FOR SWITCHED-MODE POWER SUPPLY

GENERAL DESCRIPTION

The TDA 1060 is a bipolar integrated circuit intended for the control of a switched-mode power supply. It incorporates all the control functions likely to be required in switched-mode power supplies for professional equipment.
The circuit features:

- Suitability for a wide range of supply voltages
- Built-in stabilized power supply for external circuitry
- Built-in temperature-compensated voltage reference
- Adjustable frequency
- Adjustable control loop sensitivity
- Adjustable pulse width
- Adjustable maximum duty factor
- Adjustable overcurrent protection limit
- Low supply voltage protection with hysteresis
- Loop fault protection
- Slow-start facility
- Feed-forward facility
- Core saturation protection facility
- Overvoltage protection facility
- Remote ON/OFF switching facility

QUICK REFERENCE DATA

Supply voltage (voltage source)	V_{CC}	max.	18	V
Supply current (current source)	ICC	max.	30	
Output current	$-1 / 4 ; 115$	max.	40	
Stabilized voltage	V_{Z}	typ.	8,4	V
Reference voltage	$V_{\text {ref }}$	typ.	3,72	V
Output pulse repetition frequency range	f_{O}	50 Hz to 100 kHz		
Operating ambient temperature range				
TDA1060; T	Tamb	-25 to	125	
TDA1060A	Tamb		$+70$	
TDA1060B	$\mathrm{T}_{\mathrm{amb}}$	-55 to	150	

PACKAGE OUTLINES

TDA1060, TDA1060A: 16-lead DIL; plastic (SOT-38).
TDA1060B: 16 -lead DIL ceramic (cerdip) (SOT-74A, B, C).
TDA1060T: 16-lead mini-pack; plastic (SO-16; SOT-109A).

TDA1060;A;B;T

Fig. 1 Block diagram.

Fig. 2 Pinning diagram.

PINNING
$1 V_{C C}$
$2 \mathrm{~V} Z$
3 FB
4 GA
5 MOD
6 DFM
7 RX
8
9 SYN
10
11
$12 \mathrm{~V}_{\mathrm{EE}}$
13 SAT

14
15 O
16 FW feed-forward input
positive supply connection
stabilized voltage output
feedback input
gain adjustment output
modulation input
maximum duty factor input
external resistor connection
external capacitor connection
synchronization input
ENABLE input
overcurrent protection input common input
emitter output
collector output
core saturation and overvoltage protection

FUNCTIONAL DESCRIPTION

The TDA1060 contains the control loop for a fixed-frequency pulse-duration regulated SMPS. The device works as follows. The output voltage V_{O} of the SMPS is sensed via a feedback network and compared with an internal reference voltage $\mathrm{V}_{\text {ref }}$. Any difference between V_{O} and $\mathrm{V}_{\text {ref }}$ is amplified and fed to a pulse-width modulator (PWM), where it is compared with the instantaneous level of a ramp waveform (sawtooth) from an oscillator. The output from the PWM is a rectangular waveform synchronized with the oscillator waveform; its duty factor depends on the difference between V_{O} and $\mathrm{V}_{\text {ref. }}$. This signal drives the base of the SMPS power switching transistor so that its conduction period and hence the amount of energy transferred from the input to the output of the SMPS is controlled, resulting in a constant output voltage.

Stabilized power supply: $\mathrm{V}_{\mathbf{C C}}$ and $\mathrm{V}_{\mathbf{Z}}$ (pins 1 and 2)

The circuit contains a voltage/current regulator and may be supplied either by a current source (e.g. a series resistor connected to the high voltage input of the SMPS), or a voltage source (e.g. a 12 V battery).
The stabilized voltage, typically $8,4 \mathrm{~V}$, is also available at V_{Z}, pin 2 for supplying external circuitry, e.g. a potentiometer to adjust the maximum duty factor. This supply output is protected against shortcircuits. The current drawn from this output increases the total IC supply current by the same amount.
When the supply voltage V_{CC} becomes too low, i.e. $\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{Z}}+0,2 \mathrm{~V}$, the circuit is automatically switched off. As soon as the supply voltage exceeds this threshold value by more than $0,2 \mathrm{~V}$ the circuit starts the SMPS via the slow start procedure.

Operating frequency: RX and CX (pins 7 and 8)

The frequency of the sawtooth generator, and hence of the output pulses, is set by an external resistor R7 at RX, pin 7, and an external capacitor C8 at CX, pin 8 (see Fig. 7). The frequency may be set between 50 Hz and 100 kHz and is virtually independent of the supply voltage.

Maximum duty factor and slow start: DFM (pin 6)

The maximum duty factor is set by the voltage on the duty factor input DFM (see Fig. 4). This voltage usually is derived from the stabilized power supply V_{Z}, pin 2 , by an external voltage divider, see Fig. 8 . As the upper and lower levels of the sawtooth waveform are set by an internal voltage divider, the accuracy of the maximum duty factor setting is determined by resistor ratios rather than by absolute values.
In case of a short-circuited feedback loop (V_{3-12} less than typ. 600 mV) the duty factor input is internally biased to the lower level of the sawtooth waveform via a resistor of typ. $1 \mathrm{k} \Omega$. The maximum duty factor permitted in that case sets a maximum limit to the impedance level of the external voltage divider at pin 6.
During the flyback of the sawtooth the output pulse is inhibited. For a 1 nF capacitor C 8 at pin 8 this flyback time is $1 \mu \mathrm{~s}$. This sets a natural limit to the duty factor.
The time constant for the slow start is determined by an external capacitor connected between the maximum duty factor input DFM and V_{EE}, pin 12 , together with the impedance of the voltage divider at pin 6. This capacitor also determines the dead time before the slow start procedure for remote ON/OFF or when the current sensing voltage has exceeded 600 mV , see below.
If the DFM input is note used it should be connected to V_{Z} via a resistor of $5 \mathrm{k} \Omega$.

FUNCTIONAL DESCRIPTION (continued)

Control loop sensitivity, stability, and feedback loop fault protection, FB and GA (pins 3 and 4)
The device contains a control loop error amplifier, i.e. a differential amplifier that compares the voltage on the feedback input FB, pin 3, with the internal reference voltage. This reference voltage is a temperature-compensated voltage source based on the band-gap energy of silicon.

The control loop sensitivity is determined by the closed-loop gain A_{f} of the error amplifier. Normally the cutput from the SMPS is connected to the feedback input FB via a voltage divider and a series resistor. The closed-loop gain of the error amplifier is set by applying feedback from the gain adjustment output GA, pin 4, to the feedback input FB by a resistor R3-4, see Fig. 8.
To avoid instability a capacitor should be connected between the gain output GA and $V_{E E}$, pin 12. A 22 nF capacitor will cause the frequency response to fall off above 600 Hz .
The feedback input FB is internally biased to the HIGH level, this gives a protection against a feedback loop fault: an open feedback loop will make the duty factor zero.

A shorted feedback loop (feedback voltage less than typ. 600 mV) causes the maximum duty factor input DFM to be internally biased to the lower level of the sawtooth waveform via a resistor of typ. $1 \mathrm{k} \Omega$, thus substantially reducing the maximum duty factor. This duty factor will then be determined by the impedance of the external voltage divider at DFM, pin 6, and the internal biasing resistor.

Overcurrent protection input CM (pin 11)

There are two current limits, corresponding with voltages on the overcurrent protection input CM of typ. 480 mV and 600 mV . As soon as the voltage on this input exceeds 480 mV , the running output pulse is immediately terminated; the next pulse starts normally at the next period. If the voltage exceeds 600 mV , the output pulses are inhibited for a certain dead time, during which the slow start capacitor at pin 6 is unloaded. After this the circuit starts again with the slow start procedure.
If the overcurrent protection input $C M$ is not used, it should be connected to $V_{E E}$, pin 12.

Feed-forward input FW (pin 16)

The feed-forward input FW can be connected to an external voltage divider from the input voltage of the SMPS, see Fig. 8. It has the effect of varying the supply voltage of the sawtooth generator with respect to the stabilized voltage. When the voltage on the feed-forward input increases, the upper level of the sawtooth is also increased. Since neither the voltage level that sets the maximum duty factor nor the feedback voltage are influenced by the feed-forward, the duty factor reduces (see Fig. 6). This can therefore compensate for mains voltage variations.
If feed-forward is not required the feed-forward input FW should be connected to $V_{E E}$, pin 12.

Synchronization input SYN (pin 9)

The frequency of the sawtooth waveform, and hence of the output pulses, can be synchronized via the TTL compatible synchronization input SYN. The synchronizing frequency must be lower than the oscillator free-running frequency. When the synchronization input is LOW the sawtooth generator is stopped; it starts again when the input goes HIGH. Synchronization pulses do not influence the slope of the sawtooth, and hence not the width of the output pulses, they only change their separation in time.

For free-running operation it is advisable to connect the synchronization input $S Y N$ to $V_{Z}, p i n 2$.

Core saturation and overvoltage protection input SAT (pin 13)

To obtain a protection against core saturation, especially during transient conditions, the output transformer of the SMPS has to be fitted with a winding serving as a current sensor. Its output voltage is rectified and fed to the SAT input.
This core saturation protection may be combined with an overvoltage protection. To this end a portion of the SMPS output voltage is also fed to the SAT input either via a voltage divider or via a suitable regulator diode (zener diode). The output pulses are inhibited as long as the voltage on this input exceeds the threshold voltage, typ. 600 mV .
The voltage at the SAT input does not influence the frequency of the sawtooth generator and hence not of the output pulses.
If none of these protection facilities are used, the SAT input should be connected to $V_{E E}$, pin 12.

Remote ON/OFF switching: ENABLE input EN (pin 10)

The output pulses can be switched on and off by applying logic levels to the TTL compatible ENABLE input. A LOW level causes immediate inhibition of the output pulses, a subsequent HIGH level switches the circuit on with the slow-start procedure.
If this facility is not required, $E N$ should be connected to $V_{Z}, \operatorname{pin} 2$.

Modulation input MOD (pin 5)

The duty factor of the output pulses may be reduced below the value resulting from the voltages on the maximum duty factor input DFM and the gain adjust output GA by applying a lower voltage to the modulation input MOD. This input may be used with an external control loop, e.g. for constantcurrent control, or to obtain a fold-back characteristic.
If the modulation input is not used, it should be connected to V_{Z}, pin 2.

Output QC and QE (pins 13 and 14)

To avoid double pulses that might occur at an excessively low mains voltage or an excessively high output current the output is preceded by a latch. The two outputs offer a choice of output current polarity, QC giving a positive current, i.e. a current flowing into the output, and QE giving a negative current, a current flowing out of the output. The two connections have the additional advantage that the relatively large output currents do not flow through the V_{CC} and V_{EE} connections, where they could induce noise.

TDA1060;A;B;T

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage range (voltage source)
Supply current (current source)
Feed-forward input voltage range $\mathrm{V}_{\mathrm{CC}}<24 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CC}}>24 \mathrm{~V}$
Input voltage range (all other inputs)
Emitter output voltage range
Collector output voltage range
Output current
d.c. (see Figs 3a, c and e)
peak; $\mathrm{t}=$ max. $1 \mu \mathrm{~s}$; duty factor $\mathrm{d}<10 \%$
Storage temperature range
TDA1060; T
TDA1060A
TDA1060B
Operating ambient temperature range
TDA1060; T
TDA1060A
TDA1060B
Power dissipation (see Figs 3b, d and f)
V_{CC}
ICC
V_{16-12}
$\mathrm{V}_{16 \text {-12 }}$
V_{1}
V_{14-12}
V_{15-12}
${ }^{-1} 1_{14} l_{15} \quad$ max. $\quad 40 \mathrm{~mA}$
$-1_{14} l_{15}$ max. 200 mA
$\mathrm{T}_{\text {stg }} \quad-55$ to $+150{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }} \quad-55$ to $+150{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$
Tamb
Tamb
Tamb
$P_{\text {tot }}$
$-0,5$ to +18 V
max. $\quad 30 \mathrm{~mA}$

0 to $V_{C C} V$
0 to 24 V
0 to $\mathrm{V}_{\mathrm{Z}} \mathrm{V}$
0 to 5 V
0 to $\mathrm{V}_{\mathrm{CC}} \mathrm{V}$
-55 to $+150{ }^{\circ} \mathrm{C}$
-55 to $+150{ }^{\circ} \mathrm{C}$
-55 to $+150{ }^{\circ} \mathrm{C}$
-25 to $+125{ }^{\circ} \mathrm{C}$
0 to $+70{ }^{\circ} \mathrm{C}$
-55 to $+150{ }^{\circ} \mathrm{C}$
max. 1 W

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 3 Output current and power dissipation derating curves.

TDA1060;A;B;T

CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=$ operating ambient temperature range, unless otherwise specified.

parameter	symbol	min.	typ.	max.	unit
Operating ambient temperature range					
TDA1060; T	Tamb	-25	-	125	${ }^{\circ} \mathrm{C}$
TDA1060A	Tamb	0	-	70	${ }^{\circ} \mathrm{C}$
TDA1060B	Tamb	-55	-	150	${ }^{\circ} \mathrm{C}$
Supply V $\mathrm{CC}^{\text {(pin } 1)}$					
Supply voltage at $\mathrm{I} C \mathrm{C}=15 \mathrm{~mA}$					
TDA1060A	VCC	18,5	23	27	V
TDA1060B	$\mathrm{V}_{\text {CC }}$	18	23	27,5	v
$\begin{aligned} & \text { at } \mathrm{I} C \mathrm{C}=30 \mathrm{~mA} \\ & \text { TDA1060; } \mathrm{T} \end{aligned}$	V_{Cc}	19,5	24	29	V
TDA1060A	$V_{\text {CC }}$	19,5	24	29	V
TDA1060B	$V_{C C}$	19	24	29,5	V
Supply current; R7 $=25 \mathrm{k} \Omega$; duty factor $\delta=50 \% ; \mathrm{I}_{\mathrm{Z}}=0$;					
over ambient temperature range	${ }^{\text {I CC }}$	2,5	-	15	mA
Threshold voltage of low supply voltage protection at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$V_{C C}$	8,85	-	10,8	V
Variation with temperature	$-\Delta \mathrm{V}_{\mathrm{CC}} / \Delta \mathrm{T}$	-	7,5	-	mV / K
Hysteresis of low supply voltage protection	$\Delta \mathrm{V}_{\text {CC }}$	-	500	-	mV
Stabilized supply output $\mathbf{V}_{\mathbf{Z}}$ (pin 2)					
Output voltage at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	V_{Z}	7,5	8,4	9	\checkmark
Variation with temperature	$\Delta V_{Z} / \Delta T$	-1,5	-	+1,5	mV / K
Output current	$-I_{z}$	-	-	5	mA
Feedback input FB (pin 3)					
Input voltage, feedback operation	V_{3-12}	2	-	$\mathrm{V}_{\mathrm{z}}-1$	V
Input current at $\mathrm{V}_{3-12}=2 \mathrm{~V}$	-1_{3}	1,5	12	35	$\mu \mathrm{A}$
Internal reference voltage, measured at pin 3 ; pins 3 and 4 interconnected and grounded via a 100 nF capacitor; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {ref }}$	3,42	3,72	4,03	V
Variation with temperature	$\frac{\Delta \mathrm{V}_{\text {ref }} / \mathrm{V}_{\text {ref }}}{\Delta \mathrm{T}}$	-	0,01	-	\%/K
Variation with supply voltage	$\frac{\Delta \mathrm{V}_{\mathrm{ref}}}{\Delta \mathrm{~V}_{\mathrm{CC}}}$	-	0,8	-	mV / V

parameter	symbol	min.	typ.	max.	unit
Long-term variation with time	$\pm \Delta \mathrm{V}_{\text {ref }} / \Delta \mathrm{t}$	-	2	-	$\mu \mathrm{V} / \mathrm{h}$
Threshold voltage of feedback loop short-circuit protection at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	V_{3-12}	470	600	720	mV
Variation with temperature	$\frac{\Delta V_{3-12} / V_{3-12}}{\Delta T}$	-	0,01	-	\%/K
Gain adjustment output GA (pin 4)					
Open-loop gain, pin 3 to pin 4	A_{0}	-	60	-	dB
External feedback resistance	R_{3-4}	10	-	-	k Ω
Modulator input MOD (pin 5)					
$\begin{aligned} & \text { Input current at } \mathrm{V}_{5-12}=2 \mathrm{~V} \text {; } \\ & \mathrm{V}_{4 ; 6-12}>2 \mathrm{~V} \end{aligned}$	-15	-	-	5	$\mu \mathrm{A}$
Maximum duty factor input DFM (pin 6)					
Input voltage for limiting the duty factor to $50 \% ; f_{\mathrm{o}}=20$ to $50 \mathrm{kHz} ; \mathrm{V}_{16-12}=0 \mathrm{~V}$	V_{6-12}	-	$0,42 \mathrm{~V}$ Z	-	V
Input current at $\mathrm{V}_{6-12}=2 \mathrm{~V}$	-1_{6}	-		6	$\mu \mathrm{A}$
Capacitor discharge current during fault condition	${ }^{1} 6$	2,5	-	-	mA
Minimum output OFF time at $\mathrm{C} 7=1,8 \mathrm{nF}$	$t_{\text {off }}$	-	1	-	$\mu \mathrm{S}$
Variation of max. duty factor with temperature at $\mathrm{f}_{\mathrm{O}}=20 \mathrm{kHz}$ and $\delta_{\text {max }}=50 \%$	$\Delta \delta_{\text {max }} / \Delta T$	-	0,02	-	\%/K
Internal biasing resistor to V_{EE} at $v_{3-12}=0 \mathrm{~V}$	R6-12	0,75	1	1,25	k Ω
Synchronization input SYN (pin 9)					
Input voltage, sawtooth ON	$\mathrm{V}_{\text {IH }}$	2	-	V_{Z}	V
sawtooth OFF: TDA1060; TDA1060A; TDA1060T	$V_{\text {IL }}$	0	-	0,8	V
TDA1060B	$V_{\text {IL }}$	0	-	0,6	V
Input current at $\mathrm{V}_{9-12}=0 \mathrm{~V}$	$-^{\text {IIL }}$	20	-	120	$\mu \mathrm{A}$
External resistor connection RX (pin 7)					
External frequency adjustment resistor	R7	5	-	40	k Ω
External capacitor connection CX (pin 8)					
Sawtooth, upper level at $\mathrm{V}_{16-12}=0 \mathrm{~V}$	V_{8-12}	-	5,7	-	V
lower level	V_{8-12}	-	1,3	-	v
Oscillator frequency $\mathrm{R} 7=6,4 \mathrm{k} \Omega, \mathrm{C} 8=6,4 \mathrm{nF}$	$\mathrm{f}_{\text {osc }}$	-	30,5	-	kHz
Output pulse repetition frequency range	f_{0}	0,05	-	100	kHz
Variation with temperature	$\frac{\Delta \mathrm{f}_{\mathrm{o}} / \mathrm{fo}_{\mathrm{o}}}{\Delta \mathrm{~T}}$	-	0,03	-	\%/K

TDA1060;A;B;T

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit	
Feed-forward input FW (pin 16)						
Input voltage for $\mathrm{V}_{\mathrm{CC}}<24 \mathrm{~V}$	V_{16-12}	0	-	$\mathrm{V}_{\text {cc }}$	V	
for $\mathrm{V}_{\mathrm{CC}}>24 \mathrm{~V}$	V_{16-12}	0	-	24	V	
$\begin{aligned} & \text { Input current at } V_{16-12}=16 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	${ }^{1} 16$	-	-	5	$\mu \mathrm{A}$	
Frequency variation with input voltage at $\mathrm{V}_{16-12}>8 \mathrm{~V}$	$\frac{\Delta f_{\mathrm{o}} / \mathrm{f}_{\mathrm{o}}}{\Delta \mathrm{~V}_{16-12}}$	-	1	-	\%/V	
Overcurrent protection input CM (pin 11) Input voltage	V_{11-12}	0	-	V_{Z}	V	
Input threshold voltage for single pulse inhibit (current limit mode); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{T} 1}$	400	-	500	mV	
Ratio of threshold voltages for shot down/ slow start and for single pulse inhibit	$\mathrm{V}_{\mathrm{T} 2} / \mathrm{V}_{\mathrm{T} 1}$	-	1,25	-		
Threshold variation with temperature	$\Delta \mathrm{V} / \Delta \mathrm{T}$	-	125	-	$\mu \mathrm{V} / \mathrm{K}$	
Input current at $\mathrm{V}_{11-12}=250 \mathrm{mV}$	$-l_{11}$	-	-	10	$\mu \mathrm{A}$	
$\begin{aligned} & \text { Turn-off delay, } I_{15}=40 \mathrm{~mA} ; \\ & V_{11-12}=1,2 \times V_{T 1} \end{aligned}$	t_{d}	-	-	1,0	$\mu \mathrm{s}$	
Core saturation and overvoltage protection input SAT (pin 13)						
Input voltage	V_{13-12}	0	-	V_{Z}	V	
Input threshold voltage at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$	V_{13-12}	470	600	720	mV	
Threshold variation with temperature	$\Delta \mathrm{V} / \Delta \mathrm{T}$	-	125	-	$\mu \mathrm{V} / \mathrm{K}$	
Input current at $\mathrm{V}_{13-12}=250 \mathrm{mV}$	${ }^{-1} 13$	-	-	7	$\mu \mathrm{A}$	
ENABLE input EN (pin 10)						
Input voltage ON	$\mathrm{V}_{\text {IN }}$	2	-	V_{z}	V	
OFF: TDA1060; TDA 1060A; TDA 1060 T	$V_{\text {IL }}$	0	-	0,8	V	
TDA1060B	$V_{\text {IL }}$	0	-	0,6	V	
Input current at $\mathrm{V}_{10-12}=0 \mathrm{~V}$	-IIL	20	-	120	$\mu \mathrm{A}$	
Outputs QC and QE (pins 14 and 15)						
Output current	$-1_{14} \\|_{15}$	40	-	-	mA	
Emitter output voltage	V_{14-12}	-	-	5	V	
Collector output voltage at $\mathrm{V}_{14-12}=0 \mathrm{~V}$; $I_{15}=40 \mathrm{~mA}$	V_{15-14}	-	-	500	mV	

Fig. 4 Maximum duty factor $\delta_{\text {max }}$ as a function of the voltage divider ratio at the duty factor input DFM.

Fig. 6 Feed-forward regulation characteristic. Duty factor δ as a function of the voltage V_{16-12} on the feed-forward input FW. δ_{O} is the duty factor for $\mathrm{V}_{\text {16-12 }} \leqslant \mathrm{V}_{\mathrm{Z}}$.

Fig. 5 Soft-start minimum duty factor $\left(\delta_{0}\right)$ as a function of R_{6-2} and R_{6-12}.

Fig. 7 Typical frequency as a function of C8 (R7 as parameter).

TDA1060;A;B;T

APPLICATION INFORMATION

Fig. 8 Connections to the TDA1060 in a switched-mode power supply.

Fig. 9 Application of the TDA 1060 in a $24 \mathrm{~V}, 12 \mathrm{~W}$ SMPS with flyback converter.

TDA1060;A;B;T

Fig. 10 Application of the TDA1060 in a $24 \mathrm{~V}, 240 \mathrm{~W}$ SMPS with forward converter.

Fig. 11 Application of the TDA1060 in a $5 \mathrm{~V}, 30 \mathrm{~W}$ SMPS with forward converter and with an optocoupler CNY62 for voltage separation.

I.F. LIMITING AMPLIFIER, FM DETECTOR \& AUDIO AMPLIFIER

GENERAL DESCRIPTION

The TDB1080 is a bipolar integrated circuit comprising a limiting amplifier, a balanced FM detector and a class-B audio amplifier. It is intended for frequencies up to 500 kHz with either narrow-band or wide-band FM. The circuit is especially suited for use in portophone sets, where a low supply voltage, a low supply current and a high sensitivity are of paramount importance.

QUICK REFERENCE DATA

Supply voltage range			
I.F. part	$\mathrm{V}_{\mathrm{CC} 1}$	2,3 to 3,5 V	
A.F. part	$V_{\text {CC2 }}$	2,3 to 10 V	
Supply current at $\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=2,5 \mathrm{~V}$, no signal	$\mathrm{I}_{\mathrm{CC} 1}+\mathrm{I}_{\mathrm{CC} 2}$	typ.	3 mA
Input voltage at onset of limiting	V11lim(rms)	typ.	$30 \mu \mathrm{~V}$
$A M$ rejection at $V_{i}=1 \mathrm{mV}$	kAMR	typ.	50 dB
Open-loop voltage amplification of audio amplifier	$\mathrm{A}_{\text {vd }}$	typ.	200
Output power of audio amplifier at $\mathrm{V}_{\mathrm{CC} 2}=9 \mathrm{~V}$	P_{0}	typ.	65 mW
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-20 t	$+70{ }^{\circ} \mathrm{C}$

PACKAGE OUTLINES

TDB1080: 16-lead DIL; plastic (SOT-38WE-2).
TDB1080T: 16-lead mini-pack; plastic (SO-16; SOT-109A).

PINNING

1	VCC1	positive supply, limiting amplifier
2	I1	limiting amplifier input
3	REF	reference input, limiting amplifier
4	BIAS	input biasing output
5	RCX1	external RC network
6	RCX2	external RC network
7	RCX3	external RC network
8	RCX4	external RC network
9	QD	FM detector output
10	I2-	out-of-phase input, audio amplifier
11	12+	in-phase input, audio amplifier
12	CX	external capacitor
13	BS	bootstrap
14	V EE	ground
15	QA	audio amplifier output
16	VCC2	positive supply, audio amplifier

Fig. 2 Pinning diagram.

FUNCTIONAL DESCRIPTION

The TDB1080 consists of two parts that may be used independently, viz. a limiting i.f. amplifier with balanced FM detector, and a class-B audio amplifier.

Supply

The two parts of the circuit have a common-ground pin V_{EE} but separate supply pins V_{CC} and V_{CC}. The limiting amplifier and detector may be used with a supply voltage up to $3,5 \mathrm{~V}$, the audio amplifier up to 10 V . The circuit is built to a large extent on the basis of long-tailed pairs with current sources in their tails. Thanks to the stabilizer diodes (D7, D8 and D9) the supply current of the audio amplifier varies little with the supply voltage. This permits the circuit to be used over a wide supply voltage range without an excessive battery drain as a result.

Limiting amplifier inputs 11 and REF and biasing output BIAS (pins 2, 3 and 4)

The limiting amplifier has differential inputs 11 and REF. 11 is intended to be used as an input; it should be biased externally by connecting it to the input biasing output BIAS via a resistor or an inductor. The reference input REF is biased internally; it should be decoupled by connecting a capacitor from REF to ground.
The onset of limiting is specified as the input voltage giving 3 dB gain reduction.

External RC network pins RCX1 to RCX4 (pins 4 to 8)

The TDB1080 contains a quadrature detector which requires an RC phase shifting network. This has to be connected to RCX1, RCX2, RCX3 and RCX4 as shown in Fig. 4. The component values have to be chosen in accordance with the i.f. centre frequency.

Audio amplifier inputs $\mathbf{1 2}+$ and 12 - (pins 11 and 10)
The audio amplifier has differential inputs $12+$ and 12 - which are biased internally.

TDB1080/TDB1080T

FUNCTIONAL DESCRIPTION (continued)

External capacitor pin CX (pin 12)

The internal biasing network for input $12+$ should be decoupled by connecting an external capacitor between CX and ground.

Audio amplifier output QA and bootstrap pin BS (pins 15 and 13)
The audio amplifier has a class-B output stage. The maximum output voltage swing is obtained by connecting a capacitor between the bootstrap pin BS and the output QA and the load from BS to V_{CC} (see Fig. 4).
The maximum output power varies from typ. 15 mW at $\mathrm{V}_{\mathrm{CC} 2}=2,5 \mathrm{~V}$ to typ. 65 mW at $\mathrm{V}_{\mathrm{CC} 2}=9 \mathrm{~V}$.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltages, d.c.

Supply current
Total power dissipation
Storage temperature range
Operating ambient temperature range

$V_{C C 1}$	max.	5 V
$V_{\mathrm{CC} 2}$	max.	10 V
$I_{\mathrm{CC} 1}+I_{\mathrm{CC}}$	max.	50 mA
$P_{\text {tot }}$	see Fig. 3	
$T_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$	
$T_{\text {amb }}$	-20 to $+70^{\circ} \mathrm{C}$	

Fig. 3 Power derating curve.

CHARACTERISTICS

$V_{C C 1}=V_{C C 2}=2,5 V_{i} f_{i}=95 \mathrm{kHz} ; \Delta f= \pm 50 \mathrm{kHz} ; f_{m}=1 \mathrm{kHz} ; T_{a m b}=25^{\circ} \mathrm{C}$ unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supplies V_{CC} and V_{CC} (pins 1 and 16) Supply voltages					
	$\mathrm{V}_{\mathrm{CC} 1}$	2,3	2,5	3,5	V
	$\mathrm{V}_{\mathrm{CC} 2}$	2,3	2,5	10	V
Supply currents at $V_{\mathrm{CC} 1}=2,5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC} 2}=2,5 \mathrm{~V}$, no signal at $\mathrm{V}_{\mathrm{CC} 2}=9 \mathrm{~V}$, no signal					
	${ }^{1} \mathrm{CCO}$	-	1,5	2	mA
	${ }^{1} \mathrm{CC2}$	-	1,5	2	mA
	${ }^{\text {I CC2 }}$	-	3,5	-	mA
Limiting amplifier input 11 (pin 2)					
Input impedance	$\left\|z_{i d}\right\|$	15	-	-	k Ω
Input voltage for onset of limiting (3 dB gain reduction)	$V_{11 \mathrm{lim} \text { (rms) }}$	-	30	-	$\mu \mathrm{V}$
Source impedance (between 11 and REF)	$\left\|Z_{S}\right\|$	-	-	5	$k \Omega$
$\begin{aligned} & \text { A.M. suppression } \\ & \text { at } \Delta f_{i}=70 \mathrm{~Hz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{m}=0,3 \text {; } \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$					
at $\mathrm{V}_{11}(\mathrm{rms})=300 \mu \mathrm{~V}$	${ }^{\text {k AMR }}$	-	40	-	dB
at $\mathrm{V}_{11}(\mathrm{rms})=1 \mathrm{mV}$	${ }^{k} A M R$	-	50	-	dB
at $V_{11(\mathrm{rms})}=10 \mathrm{mV}$	$k_{\text {AMR }}$	-	50	-	dB
$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega \\ & \text { at } \mathrm{V}_{11(\mathrm{rms})}=300 \mu \mathrm{~V} \end{aligned}$	$k_{\text {AMR }}$	-	30	-	dB
at $V_{11(\mathrm{rms})}=1 \mathrm{mV}$	$k_{\text {AMR }}$	-	40	-	dB
at $V_{11}(\mathrm{rms})=10 \mathrm{mV}$	$k_{\text {k }}{ }^{\text {ma }}$	-	50	-	dB
FM Detector output OD (pin 9)					
$\begin{aligned} & \text { Output voltage at } d_{\text {tot }}=0,5 \% ; \\ & \text { at } f_{i}=95 \mathrm{kHz} ; \Delta f= \pm 50 \mathrm{kHz} \end{aligned}$	$\mathrm{V}_{\text {OD }}$ (rms)	100	-	-	mV
at $\mathrm{f}_{\mathrm{i}}=250 \mathrm{kHz} ; \Delta \mathrm{f}= \pm 50 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{OD}(\mathrm{rms})}$	100	-	-	mV
Signal-to-noise ratio $\text { at } f_{i}=95 \mathrm{kHz} ; \Delta f= \pm 50 \mathrm{kHz}$	S/N	70	-	-	dB
at $\mathrm{f}_{\mathrm{i}}=250 \mathrm{kHz} ; \Delta \mathrm{f}= \pm 50 \mathrm{kHz}$	S / N	70	-	-	dB

TDB1080/TDB1080T

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Audio amplifier					
Open-loop voltage amplification	$A_{\text {vd }}$	-	200	-	
variation with frequency, $\mathrm{f}=50 \mathrm{~Hz}$ to 15 kHz	$\Delta \mathrm{A}_{\mathrm{vd}}$	-1,5	-	+1,5	dB
Load resistance	R_{L}	24	-	600	Ω
Output voltage at $\mathrm{R}_{\mathrm{L}}=24 \Omega$; $d_{\text {tot }}=1 \%$	$\mathrm{V}_{\mathrm{QA}}(\mathrm{rms})$	-	600	-	mV
$\begin{aligned} & \text { Total distortion at } R_{\mathrm{L}}=24 \Omega \text {; } \\ & \mathrm{V}_{\mathrm{QA}(\mathrm{rms})}=500 \mathrm{mV} \end{aligned}$	$\mathrm{d}_{\text {tot }}$	-	0,5	1	\%
Output power at $\mathrm{V}_{\mathrm{CC} 2}=9 \mathrm{~V}$; $R_{\mathrm{L}}=115 \Omega ; \mathrm{d}_{\mathrm{tot}}=5 \%$	${ }^{\text {PQA }}$	-	65	-	mW
Signal-to-noise ratio at $R_{L}=115 \Omega$; $\mathrm{V}_{\mathrm{O}}=600 \mathrm{mV} ; \mathrm{f}=0,5$ to 11 kHz ; 80 dB /octave cut-off filter	S/N	70	-	-	dB

(1) If $\mathrm{V}_{\mathrm{CC} 2}$ is equal to $\mathrm{V}_{\mathrm{CC} 1}$ pin 16 can be connected to pin 1 and the capacitor to pin 16 can be omitted.

Fig. 4 Test circuit and typical application of the TDB1080. For $f_{i}=95 \mathrm{kHz} R=100 \mathrm{k} \Omega$ and $\mathrm{C}=82 \mathrm{pF}$, for $\mathrm{f}_{\mathrm{i}}=250 \mathrm{kHz} \mathrm{R}=33 \mathrm{k} \Omega$ and $\mathrm{C}=47 \mathrm{pF}$.

13-BIT SERIES-PARALLEL CONVERTER

GENERAL DESCRIPTION

The TEA1017 is a bipolar integrated circuit intended to drive displays, triacs and relays and small stepper motors. The data is serially shifted into the device and is stored in 13 latches that drive the outputs.

Features

- TTL and CMOS compatible inputs
- Outputs drive load in both directions
- Power-on reset makes outputs floating
- Wide supply voltage range

QUICK REFERENCE DATA

Supply voltage range	V_{CC}		4,5 to 18 V
Output current, each output	${ }^{1} \mathrm{OL} ;-\mathrm{OH}$	max.	80 mA
Clock frequency	${ }^{\text {f CLK }}$	max.	50 kHz
Operating ambient temperature range	Tamb		0 to $+80{ }^{\circ} \mathrm{C}$

PACKAGE OUTLINE

18-lead DIL; plastic (SOT-102CS, HE, KE, ME)

TEA1017

Fig. 1 Block diagram.

FUNCTIONAL DESCRIPTION

The control logic performs a key function in this device. It checks whether the input information has the correct format: a DLEN signal that has been HIGH during 14 clock pulses, and a DATA signal with its first bit LOW.
When the format is found to be correct, the 15 th clock pulse makes the control logic generate a signal that loads the content of the first 13 bits of the shift register into 13 latches. These drive the output stages.

"Acknowledge" (pin 4)

After the 15th clock pulse an acknowledge signal drives the DATA pin to LOW. To use this information the DATA should be programmed HIGH and an open collector-device, or a series resistor should be used on the DATA-input. This signal is valid till the next clock pulse, LOW-to-HIGH transition, see Fig. 3.

Supply VCC (pin 7)

The supply current of the TEA1017 is regulated internally. This permits the circuit to be used over a very wide range of supply voltages, viz. 4,5 to 18 V , with little variation of supply current.
The circuit has a power-on reset arrangement that resets the circuit and sets the outputs to a high-impedance state. It requires a rise-time of the supply larger than $3 \mathrm{us} / \mathrm{V}$.

DATA input (pin 4)

The circuit requires input information on the DATA input consisting of 14 bits, the first bit being LOW. This information should be synchronous with the clock pulse.
Data is loaded into the shift register at HIGH-to-LOW transitions of the clock pulse.

Data line enable input DLEN (pin 5)

A HIGH level on the DLEN input enables the shift register. This HIGH level should have a duration of 14 clock pulses (see Fig. 3).
After the DLEN input has returned to LOW the subsequent (15th) clock pulse transfers the contents of the shift register to the latches and then to the outputs.

Clock input CLK (pin 6)

The shift register shifts at the HIGH-to-LOW transitions of the clock pulse. The clock signal may be a continuously running clock or a clock burst of 15 clock pulses.

Outputs Q1 to $\mathbf{Q 1 3}$

The outputs are capable of supplying a load current in both directions, i.e. they can drive a load to the supply (V_{C}) or to ground (V_{EE}).

TEA1017

Fig. 2 Pinning diagram.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Input voltage range, all inputs
Output current, all outputs HIGH
LOW
Total power dissipation *
Storage temperature range
\rightarrow Operating ambient temperature range

VCC	max. 18 V
V_{1}	$-0,3$ to $V_{C C}+0,3 \mathrm{~V}$
$-\mathrm{OH}$	max. $\quad 150 \mathrm{~mA}$
IOL	max. $\quad 150 \mathrm{~mA}$
$P_{\text {tot }}$	max. 1,4 W
$\mathrm{T}_{\text {stg }}$	-40 to $+150{ }^{\circ} \mathrm{C}$
Tamb	0 to +80

* See derating curve Fig. 4.

CHARACTERISTICS

$\mathrm{VCC}=4,5$ to $18 \mathrm{~V} ; \mathrm{VEE}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply (pin 7)					
Supply current					
during normal operation, unloaded at $\mathrm{VCC}=4,5 \mathrm{~V}$	ICC	-	45	60	mA
at $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$	ICC	-	50	70	mA
during power-on blanking, unloaded at $V_{C C}=4,5 \mathrm{~V}$	ICC	-	1,5	2	mA
at $\mathrm{V}_{\mathrm{CC}}=18 \mathrm{~V}$	ICC	-	5	7	mA
Supply voltage rise time to ensure power on reset		3	-	-	$\mu \mathrm{s} / \mathrm{V}$
Clock input CLK (pin 6)					
Input voltage					
HIGH	$\mathrm{V}_{\text {IH }}$	2	-	-	V
LOW	VIL	-	-	0,8	V
Input current					
HIGH at $\mathrm{V}_{\text {CLKH }}=2 \mathrm{~V}$	IIH	-	-	10	$\mu \mathrm{A}$
LOW at $\mathrm{V}_{\text {CLKL }}=0,4 \mathrm{~V}$	-IIL	-	-	10	$\mu \mathrm{A}$
Clock pulse duration					
HIGH	twh	8	-	-	$\mu \mathrm{s}$
LOW	twL	10	-	-	$\mu \mathrm{s}$
DATA input (pin 4)					
Input voltage					
HIGH	$\mathrm{V}_{\text {IH }}$	2	-	-	V
LOW	VIL	-	-	0,8	V
Input current					
HIGH at $\mathrm{V}_{\text {IH }}=2 \mathrm{~V}$	IIH	-	-	10	$\mu \mathrm{A}$
LOW at $\mathrm{V}_{\text {IL }}=0,4 \mathrm{~V}$	-IIL	-	-	10	$\mu \mathrm{A}$
DATA input in sink current ACK $=$ TRUE	IDACK	1	-	-	mA
Data line enable input DLEN (pin 5)					
Input voltage					
HIGH	$V_{\text {IH }}$	2	-	-	V
LOW	VIL	-	-	0,8	V
Input current					
HIGH at $\mathrm{V}_{5-3}=2 \mathrm{~V}$	IIH	-	-	10	$\mu \mathrm{A}$
LOW at $\mathrm{V}_{5-3}=0,4 \mathrm{~V}$	-IIL	-	-	10	$\mu \mathrm{A}$

TEA1017

CHARACTERISTICS (continued)

parameter	symbol	min.	typ.	max.	unit
Outputs 01 to 013					
Output voltage during normal operation HIGH at $-\mathrm{I}_{\mathrm{OH}}=80 \mathrm{~mA}$ LOW at $\mathrm{IOL}=80 \mathrm{~mA}$	VOH VOL	$\mathrm{V}_{\mathrm{CC}}-1,5$	-	- 1	V
Output current during power-on reset HIGH LOW	$\begin{aligned} & -\mathrm{IOH} \\ & \mathrm{IOL} \end{aligned}$	-	-	10 10	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Rise and fall times: no maximum					
Minimum times as $\mathrm{V}_{\mathrm{CC}}=4,5$ volts (see Fig. 3)					
Set-up time ENABLE	tSUDL	2,8	-	-	$\mu \mathrm{s}$
Hold time ENABLE	${ }^{\text {t HDL }}$	5,0	-	-	$\mu \mathrm{S}$
Set-up time DATA	tSDA	0	-	-	$\mu \mathrm{s}$
Hold time DATA	thDA	2,8	-	-	$\mu \mathrm{S}$
Set-up time LOAD	tslo	1,4	-	-	$\mu \mathrm{s}$
Pulse width LOW	twL	10	-	-	$\mu \mathrm{s}$
Pulse width HIGH	twh	8	-	-	$\mu \mathrm{s}$
Max. clock input frequency $=1 /(\mathrm{t} W H+\mathrm{twL})$	$f_{\text {max }}$	-	-	50	kHz
Propagation delay clock to outputs		-	-	8,5	$\mu \mathrm{s}$
acknowledge	tpCA	-	-	6	$\mu \mathrm{s}$
acknowledge release	tPCAR	-	-	6	$\mu \mathrm{s}$

Fig. 3 Bus timing characteristics.

Fig. 4 Derating curve.

TEA1017

APPLICATION INFORMATION

1. From the buffer-capacitors C1 of the power supply the supply connections to the TEA1017 and the loads should be separated. An extra capacitor of $10 \mu \mathrm{~F}$ with good high-frequency characteristics should be mounted across the VCC and VEE connections as close as possible to the TEA1017.
2. If no use is made of the acknowledge information it is advised to program the data-output from the controller to LOW during the time ACK is valid. To use the acknowledge information the data-output has to be programmed HIGH. When a push-pull controller device is used a series resistor has to be connected in the data-line between the controller and TEA1017.
The ACK may be sensed on the TEA1017-side of this resistor. See Fig. 5.
Note. ACK is removed from the data-line after the next LOW-to-HIGH transition of the clock-line with a maximum delay of $6 \mu \mathrm{~s}$. (tpCA maximum).

Fig. 5 TEA 1017 with 3 loads to $V_{C C} Q=0$ and 3 loads to $V_{E E} Q=1$.

CONTROL CIRCUIT FOR SWITCHED-MODE POWER SUPPLY

GENERAL DESCRIPTION

The TEA1039 is a bipolar integrated circuit intended for the control of a switched-mode power supply. Together with an external error amplifier and a voltage regulator (e.g. a regulator diode) it forms a complete control system. The circuit is capable of directly driving the SMPS power transistor in small SMPS systems.
It has the following features:

- Suited for frequency and duty factor regulation.
- Suited for flyback converters and forward converters.
- Wide frequency range.
- Adjustable input sensitivity.
- Adjustable minimum frequency or maximum duty factor limit.
- Adjustable overcurrent protection limit.
- Supply voltage out-of-range protection.
- Slow-start facility.

QUICK REFERENCE DATA

Supply voltage	V_{CC}	nom.	14 V
Supply current	I_{CC}	max.	13 mA
Output pulse repetition frequency range	f_{O}	1 Hz to 100 kHz	
Output current LOW	I_{OL}	max.	
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-25 to $+125 \mathrm{ol}^{\circ} \mathrm{C}$	

PACKAGE OUTLINE

9-lead SIL; plastic (SOT-110B).

Fig. 1 Block diagram.

Fig. 2 Pinning diagram.

FUNCTIONAL DESCRIPTION

The TEA1039 produces pulses to drive the transistor in a switched-mode power supply. These pulses may be varied either in frequency (frequency regulation mode) or in width (duty factor regulation mode).
The usual arrangement is such that the transistor in the SMPS is ON when the output of the TEA1039 is HIGH, i.e. when the open-collector output transistor is OFF. The duty factor of the SMPS is the time that the output of the TEA1039 is HIGH divided by the pulse repetition time.

Supply V_{CC} (pin 9)

The circuit is usually supplied from the SMPS that it regulates. It may be supplied either from its primary d.c. voltage or from its output voltage. In the latter case an auxiliary starting supply is necessary.
The circuit has an internal V_{CC} out-of-range protection. In the frequency regulation mode the oscillator is stopped; in the duty factor regulation mode the duty factor is made zero. When the supply voltage returns within its range, the circuit is started with the slow-start procedure.
When the circuit is supplied from the SMPS itself, the out-of-range protection also provides an effective protection against any interruption in the feedback loop.

Mode input M (pin 6)

The circuit works in the frequency regulation mode when the mode input M is connected to ground ($\mathrm{V}_{\mathrm{EE}}, \mathrm{pin} 7$). In this mode the circuit produces output pulses of a constant width but with a variable pulse repetition time.
The circuit works in the duty factor regulation mode when the mode input M is left open. In this mode the circuit produces output pulses with a variable width but with a constant pulse repetition time.

TEA1039

FUNCTIONAL DESCRIPTION (continued)

Oscillator resistor and capacitor connections RX and CX (pins 4 and 5)

The output pulse repetition frequency is set by an oscillator whose frequency is determined by an external capacitor $C 5$ connected between the $C X$ connection (pin 5) and ground ($V_{E E}, \operatorname{pin} 7$), and an external resistor R_{4} connected between the RX connection (pin 4) and ground. The capacitor C5 is charged by an internal current source, whose current level is determined by the resistor R4. In the frequency regulation mode these two external components determine the minimum frequency; in the duty factor regulation mode they determine the working frequency (see Fig. 4). The output pulse repetition frequency varies less than 1% with the supply voltage over the supply voltage range.
In the frequency regulation mode the output is LOW from the start of the cycle until the voltage on the capacitor reaches 2 V . The capacitor is further charged until its voltage reaches the voltage on either the feedback input FB or the limit setting input LIM, provided it has exceeded 2,2 V. As soon as the capacitor voltage reaches $5,9 \mathrm{~V}$ the capacitor is discharged rapidly to $1,3 \mathrm{~V}$ and a new cycle is initiated (see Figs 5 and 6).
For voltages on the FB and LIM inputs lower than $2,2 \mathrm{~V}$, the capacitor is charged until this voltage is reached; this sets an internal maximum frequency limit.

In the duty factor regulation mode the capacitor is charged from $1,3 \mathrm{~V}$ to $5,9 \mathrm{~V}$ and discharged again at a constant rate. The output is HIGH until the voltage on the capacitor exceeds the voltage on the feedback input FB; it becomes HIGH again after discharge of the capacitor (see Figs 7 and 8). An internal maximum limit is set to the duty factor of the SMPS by the discharging time of the capacitor.

Feedback input FB (pin 3)

The feedback input compares the input current with an internal current source whose current level is set by the external resistor R4. In the frequency regulation mode, the higher the voltage on the FB input, the longer the external capacitor C5 is charged, and the lower the frequency will be. In the duty factor regulation mode external capacitor C5 is charged and discharged at a constant rate, the voltage on the FB input now determines the moment that the output will become LOW. The higher the voltage on the FB input, the longer the output remains HIGH, and the higher the duty factor of the SMPS.

Limit setting input LIM (pin 2)

In the frequency regulation mode this input sets the minimum frequency, in the duty factor regulation mode it sets the maximum duty factor of the SMPS. The limit is set by an external resistor R2 connected from the LIM input to ground (pin 7) and by an internal current source, whose current level is determined by external resistor R4.

A slow-start procedure is obtained by connecting a capacitor between the LIM input and ground. In the frequency regulation mode the frequency slowly decreases from $f_{\text {max }}$ to the working frequency. In the duty factor regulation mode the duty factor slowly increases from zero to the working duty factor.

Overcurrent protection input CM (pin 1)

A voltage on the CM input exceeding $0,37 \mathrm{~V}$ causes an immediate termination of the output pulse. In the duty factor regulation mode the circuit starts again with the slow-start procedure.

Output Q (pin 8)

The output is an open-collector n-p-n transistor, only capable of sinking current. It requires an external resistor to drive an n-p-n transistor in the SMPS (see Figs 9 and 10).
The output is protected by two diodes, one to ground and one to the supply.
At high output currents the dissipation in the output transistor may necessitate a heatsink. See the power derating curve (Fig. 3).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage range, voltage source
Supply current range, current source

$$
\text { ICC } \quad-30 \text { to }+30 \mathrm{~mA}
$$

Input voltage range, all inputs
Input current range, all inputs
Output voltage range
$V_{C C}$

$$
-0,3 \text { to }+20 \mathrm{~V}
$$

$\mathrm{V}_{1}-0,3$ to +6 V

Output current range output transistor ON
output transistor OFF

Operating ambient temperature range (see Fig. 3)
II -5 to +5 mA
$\mathrm{V}_{8-7}-0,3$ to +20 V

Storage temperature range

Power dissipation (see Fig. 3)

I8 0 to 1 A
I8 -100 to +50 mA
$\mathrm{T}_{\mathrm{stg}} \quad-55$ to $+150{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }} \quad-25$ to $+125{ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$ max. 2 W

Fig. 3 Power derating curve.

TEA1039

CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

	symbol	min.	typ.	max.	unit
Supply $\mathrm{V}_{\text {CC }}$ (pin 9$)$					
Supply voltage, operating	$\mathrm{V}_{\text {CC }}$	11	14	20	v
Supply current at $\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}$	ICC	-	7,5	11	mA
at $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$	${ }^{\text {ICC }}$	--	9	12	mA
variation with temperature	$\frac{\Delta l^{\text {CC }} / \mathrm{l} \mathrm{CC}}{\Delta \mathrm{T}}$	-	-0,3	-	\%/K
Supply voltage, internally limited at ${ }^{\circ} \mathrm{CC}=30 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }}$	23,5	-	28,5	V
variation with temperature	$\Delta \mathrm{V}_{\mathrm{CC}} / \Delta \mathrm{T}$	-	18	-	mV / K
Low supply threshold voitage	$V_{\text {CCmin }}$	9	10	11	V
variation with temperature	$\Delta \mathrm{V}_{\mathrm{CC}} / \Delta \mathrm{T}$	-	-5	-	mV / K
High supply threshold voltage	$\mathrm{V}_{\text {CCmax }}$	21	23	24,6	V
variation with temperature	$\Delta \mathrm{V}_{\mathrm{CC}} / \Delta \mathrm{T}$	-	10	-	mV / K
Feedback input FB (pin 3)					
Input voltage for duty factor $=0$; M input open	V_{3-7}	0	-	0,3	V
Internal reference current	$-1_{\text {FB }}$	-	0,5 I_{RX}	X -	mA
Internal resistor R_{g}	R_{g}	-	130	-	k Ω
Limit setting input LIM (pin 2)					
Threshold voltage	V_{2-7}	-	1	-	V
Internal reference current	${ }^{-1}$ LIM	-	$0,25{ }^{\text {R }}$ K	-	mA
Overcurrent protection input CM (pin 1)					
Threshold voltage	V_{1-7}	300	370	420	mV
variation with temperature	$\Delta \mathrm{V}_{1-7} / \Delta \mathrm{T}$	-	0,2	-	mV / K
Propagation delay, CM input to output	tPHL	-	500	-	ns

CHARACTERISTICS (continued)

	symbol	min.	typ.	max.	unit
Oscillator connections RX and CX (pins 4 and 5)					
Voltage at $R X$ connection at $-1_{4}=0,15$ to 1 mA variation with temperature	V_{4-7}	6,2	7,2	8,1	V
	$\Delta \mathrm{V}_{4-7} / \Delta \mathrm{T}$	-	2,1	-	mV / K
Lower sawtooth level	$V_{\text {LS }}$	-	1,3	-	V
Threshold voltage for output H to L transition in F mode	V_{FT}	-	2	-	v
Threshold voltage for maximum frequency in F mode	$V_{\text {FM }}$	-	2,2	-	V
Higher sawtooth level	V_{HS}	-	5,9	-	v
Internal capacitor charging current, CX connection	${ }^{-1} \mathrm{Cx}$	-	0,25 IRX	X -	mA
Oscillator frequency (output pulse repetition frequency)	f_{0}	1	-	10^{5}	Hz
Minimum frequency in F mode, initial deviation	$\Delta \mathrm{f} / \mathrm{f}$	-10	-	10	\%
variation with temperature	$\frac{\Delta f / f}{\Delta T}$	-	0,034	-	\%/K
Maximum frequency in F mode, initial deviation	$\Delta \mathrm{f} / \mathrm{f}$	-20	-	+20	\%
variation with temperature	$\frac{\Delta f / f}{\Delta T}$	-	-0,16	-	\%/K
Output LOW time in F mode, initial deviation	$\Delta t / t$	-25	-	+25	\%
variation with temperature	$\frac{\Delta t / t}{\Delta T}$	-	0,2	-	\%/K
Pulse repetition frequency in D mode, initial deviation	$\Delta \mathrm{f} / \mathrm{f}$	-10	-	10	\%
variation with temperature	$\frac{\Delta f / f}{\Delta T}$	-	0,034	-	\%/K
Minimum output LOW time in D mode at $\mathrm{C}_{5}=3,6 \mathrm{nF}$	tolmin	-	1	-	$\mu \mathrm{s}$
variation with temperature	$\frac{\Delta t / t}{\Delta T}$	-	0,2	-	\%/K
Output Q (pin 8)					
Output voltage LOW at $\mathrm{I}_{8}=100 \mathrm{~mA}$	V_{8-7}	-	0,8	1,2	\checkmark
variation with temperature	$\Delta \mathrm{V}_{8-7} / \Delta T$	-	1,5	-	mV / K
Output voltage LOW at $\mathrm{I}_{8}=1 \mathrm{~A}$	V_{8-7}	-	1,7	2,1	\checkmark
variation with temperature	$\Delta \mathrm{V}_{8-7} / \Delta \mathrm{T}$	-	-1,4	-	mV / K

Fig. 4 Minimum pulse repetition frequency in the frequency regulation mode, and working pulse repetition frequency in the duty factor regulation mode, as a function of external resistor R4 connected between RX and ground with external capacitor C5 connected between CX and ground as a parameter.

Fig. 5 Timing diagram for the frequency regulation mode showing the voltage on external capacitor C5 connected between $C X$ and ground and the output voltage as a function of time for three combinations of input signals. a: The voltages on inputs FB or LIM are between $2,2 \mathrm{~V}$ and $5,9 \mathrm{~V}$. The circuit is in its normal regulation mode. b : The voltage on input FB or input LIM is lower than 2,2 V. The circuit works at its maximum frequency. c: The voltages on inputs FB and LIM are higher than $5,9 \mathrm{~V}$. The circuit works at its minimum frequency.

Fig. 6 Minimum output pulse repetition time $T_{\text {min }}$ (curves a) and minimum output LOW time ${ }^{t}$ OLmin (curves b) in the frequency regulation mode as a function of external resistor R4 connected between RX and ground with external capacitor C5 connected between CX and ground as a parameter.

TEA1039

Fig. 7 Timing diagram for the duty factor regulation mode showing the voltage on external capacitor $C 5$ connected between $C X$ and ground and the output voltage as a function of time for two combinations of input signals. a: The voltages on inputs FB or LIM are below $5,9 \mathrm{~V}$. The circuit is in its normal regulation range. b : The voltages on inputs $F B$ and LIM are higher than $5,9 \mathrm{~V}$. The circuit produces its minimum output LOW time, giving the maximum duty factor of the SMPS.

Fig. 8 Minimum output LOW time tOLmin in the duty factor regulation mode as a function of external capacitor $C 5$ connected between $C X$ and ground. In this mode the minimum output LOW time is independent of R4 for values of R4 between $4 \mathrm{k} \Omega$ and $80 \mathrm{k} \Omega$.

Fig. 9 Typical application of the TEA1039 in a variable-frequency flyback converter switched-mode power supply. An optocoupler CNX62 is used for voltage separation.

APPLICATION INFORMATION SUPPLIED ON REQUEST

Fig. 10 Typical application of the TEA1039 in a fixed-frequency, variable duty factor forward converter switched-mode power supply. An optocoupler CNX62 is used for voltage separation.

Section 8 Applications

INDEX

SECTION 8 - APPLICATIONS
Index 8-1
Application Notes by Major Product Category Communications
AudioAN198 Designing with the SA/NE602 . 8-3
AN199 Designing with the SA/NE604 8-7
Amplifiers
Video AmplifiersAN146 Wideband FM Composite Video Fiber Optic Link8-17
Power Conversion and ControlSwitched Mode Power Supplies (SMPS)
AN125 Progress in SMPS
Magnetic Component Optimization 8-21
Miscellaneous
AN210 SO Package Tape and Reel 8-31
Application Notes by Part Number
NE564 AN146 Wideband FM Composite Video Fiber Optic Link 8-17
SA/NE602 AN198 Designing with SA/NE602. 8-3
SA/NE604 AN199 Designing with SA/NE604. $8-7$
SE/NE5560 AN125 Progress in SMPS
Magnetic Component Optimization 8-21
SE/NE5561 AN125 Progress in SMPS Magnetic Component Optimization 8-21
SE/NE5562 AN125 Progress in SMPS Magnetic Component Optimization 8-21
SE/NE5568 AN125 Progress in SMPS
Magnetic Component Optimization 8-21
SG3524 AN125 Progress in SMPS
Magnetic Component Optimization 8-21
SG3526 AN125 Progress in SMPS
Magnetic Component Optimization 8-21

INTRODUCTION

The SA/NE602 represents a new industry standard for low power, doublebalanced mixers. This device also includes an on-board local oscillator and voltage regulator. Typical power supply requirements are 2.5 mA at 6 volts for a conversion gain of 20 dB and a noise figure of 5 dB with operation up to 200 MHz . The SA/NE602 is available in either an eight pin DIP or a surface mount package. These specifications render this device an ideal choice for portable bat-tery-operated applications.

CIRCUIT CONFIGURATIONS

Figure 1 shows a simplified block diagram of the SA/NE602. A multiplier "Gilbert Cell" is used as the mixer portion of the device with the input differential amplifier providing most of the conversion gain. This differential amplifier also serves as an input balun which helps reduce the second-order distortion products.
Figure 2 shows some possible balanced and unbalanced input and output circuits while Table 1 summarizes these configurations' relative advantages and disadvantages.
Figure 3 shows the internal circuitry adjacent to the device pins. The oscillator can be configured with a crystal, a tank, or as a buffer/driver for an external oscillator. When used as a buffer amplifier, optimum performance will be achieved when pin 6 is driven with a 200 to 300 mV RMS signal.

This LO amplitude tolerance becomes more critical as the LO frequency approaches the 200 MHz maximum. Figure 4 shows a typical test circuit for the SA/ NE602. For this circuit it is important to specify the parallel mode crystal frequency and use a crystal with a loading capacitance of 5 pF .

DESIGN DATA

Figure 6 shows typical intermodulation and compression point performance of the SA/NE602. The compression point defines the upper limit of the effective mixer dynamic range at about -25 dBm . This level is mainly a function of the circuit insertion loss prior to the 602 input. The input third order intercept point is shown here at the minimum value of -15 dBm , and, as such, can be considered a worst case condition.
The remaining charts show various mixer parameters over temperature and supply voltage variation. The overall optimum supply voltage is 6 volts, and this value is thus recommended. Unless specifically indicated, Figure 4 was the test circuit used to produce the data. The frequency schemes used here are typical of those found in cellular radio applications employing a 455 kHz 2nd IF. All of the major specifications are nearly constant over the 200 MHz frequency range with the exception of the LO drive level tolerance and device impedances.

OSCILLATOR ALIGNMENT

The objective in measuring the crystal oscillator frequency in a production environment is to read the data without loading the circuit. This can be accomplished by using one of two methods. The first uses a small inductive loop placed near the oscillator circuit. The loop feeds a suitable amplifier which drives a counter. The second method takes advantage of LO leakage into the output. Again, with the oscillator running and no RF input signal present, the 602 output is connected to an amplifier and counter. The single-ended output configuration will provide more LO leakage and the mixer itself will act as a buffer.

Written by: Bob Zavrel

Figure 1. SA/NE602 Functional Diagram

ABLE 1		ADVANTAGES	DISADVANTAGES
Input Pins $1 \& 2$	Singleended	No sacrifice in 3rd order performance, simplified circuit	Increase in 2nd order products
	Balanced	Reduce 2nd order products	Impedance match more difficult to achieve
Output Pins $4 \& 5$	Singleended	Simple interface to filters	3 dB reduction in output, less RF and LO isolation
	Balanced	3dB improvement in output, better LO and RF isolation at the output	more complex circuitry required

Figure 3. SA/NE602 Equiv Circuit

Figure 4. Typical Application

INTRODUCTION

The SA/NE604 represents a new standard of performance in low power FM IF integrated circuits. Originally designed for cellular radio applications, the 604 is also well suited to other radio frequency circuits where good performance and low power consumption are the important design considerations. When used with its companion double-balanced mixer, the SA/NE602, a low power system solution for the cellular radio and other RF applications is realized. (Reference 1).

Figures 1 and 2 show the device pin-out and a functional diagram of the 604. The device provides an IF amplifier, quadrature detector, received signal strength indicator (RSSI), and mute circuit. Two detector outputs are provided for audio and data information with the audio output being controlled by the mute circuit.

CIRCUIT OVERVIEW

The IF amplifier consists of five differential stages with a total gain of about 90 dB . Provision is made for an external inter-stage filter to reduce broadband noise and increase receiver selectivity. The differential input to the first IF section appears at pins 15 and 16. One pin is usually AC-coupled to ground (pin 15) with pin 16 used as the "high"' input. The first IF section has a typical gain of 40 dB with its output appearing on pin 14. Similar to the first IF section, the second section uses a differential input appearing at pins 12 and 11, with pin 11 usually AC-coupled to ground. The five stages are identical and any one may go into limiting, depending on the RF input level.

The interstage filter can be ceramic, crystal, or an LC circuit. RSSI tracking is optimized when the filter circuit loss is 6 dB . The output impedance of both amplifier sections (pins 14 and 9) is about 1 K ohms. For convenience, an " L " pad circuit showing 6 dB loss is shown in Figure 3. This circuit allows observation of the RSSI response without using a filter.

The quadrature detector multiplies two IF signals to produce the audio output. One of the IF signals is differentially phase shifted by an external quadrature tank or discriminator circuit connected between pins 8 and 9 (Figure 4). The second IF signal is fed to the other detector input internally. Figure 5 shows the desired phase/frequency response of the quadrature-tuned circuit. A detailed mathematical explanation of detector operation can be found in Reference 2. The detected audio
appears at the data terminal (pin 7) and, via the mute circuit, at the audio (pin 6) terminal.

The cellular radio specifications call for a logarithmic signal strength indicator accurate within 3dB over an 80dB dynamic range. The 604 meets this requirement with an effective technique. A sample current corresponding to the output of each IF stage is fed to a summing amplifier. The output of this amplifier provides a current source which is reflected by a current mirror. The current mirror output that appears on pin 5 provides the logarithmic RSSI information. It is usable over a 90 dB dynamic range with 1.5 dB accuracy. Typically, a 100 K ohm resistor is used to convert the RSSI current to a voltage which is logarithmically proportional to the received signal strength.

PACKAGING

Both the SA/NE604 and its companion double balanced mixer, the SA/NE602, are available in either the plastic dual-in-line 'DIP' or surface mounted 'SO' packages. The NE prefix specifies a 0 to $+70^{\circ} \mathrm{C}$ operating temperature range while SA specifies-40 to $+85^{\circ} \mathrm{C}$ operation. The extensive temperature data presented in this application note pertain to both the SA and NE devices.

TYPICAL APPLICATIONS

Figure 6 is a simplified schematic diagram of the 604 which details the internal circuitry adjacent to the device's pins. This should help the designer match impedances to external circuitry. Figure 7 shows the schematic diagram of a typical test circuit using the 604 and 602.

The quadrature tuned circuit (F3) shifts the phase of the IF signal as shown in Figure 5. Low distortion demodulation is obtained if the IF signal deviation is restricted to the linear portion of the S-curve. There are three variables affecting quadrature linearity: circuit Q, deviation, and IF frequency. If the deviation is increased, the Q must be decreased for a given degree of linearity. The circuit Q will also affect the demodulated signal level. A higher Q will yield a higher audio output from the quadrature detector since the phase shift will be greater for a given deviation. The quadrature Q must be optimized for a given frequency deviation, IF frequency, and desired linearity. A loaded Q of about 20 is
typical for narrow band FM applications using a 455 kHz IF.

The supply voltage for the 602/604 pair can range from 4.5 to 8 volts. Optimum overall performance is realized at 6.0 volts for the device pair. Several operation parameters are plotted for supply voltage as well as temperature.

Quadrature detector linearity can be affected by temperature variations. LC circuit resonances will drift as the coil and capacitor values change with temperature. This effect becomes more critical with increased circuit Q. If wide temperature variations are expected, careful choice of circuit components can minimize this effect. Most inductors have positive temperature coefficients (increase of inductance with increase of temperature). If a negative coefficient capacitor is chosen to compensate the inductor, the resonant frequency will track over temperature.

Since a bipolar current source is used to provide the RSSI function, the current will change with temperature. An increase in temperature will result in an increase in RSSI indication (Figure 8, uncorrected response). The circuit shown in Figure 9 will ' $s m o o t h '$ ' the response over temperature by dropping the load impedance presented to pin 5 as temperature increases (Figure 8, corrected response).

All the major performance parameters of the 604 are shown in Figure 10. Figure 11 illustrates a typical test set-up for measuring many of the discussed parameters. Figures 12 to 25 provide a comprehensive guide to 604 performance over temperature and other variables.

USE AS A FIELD STRENGTH/ RF VOLTMETER

As stated earlier the RSSI function is usable over a 90 dB dynamic range. This function taken alone can provide a useful RF voltmeter function. The circuit in Figure 26 can be used as a field strength or RF voltmeter application. A linear readout device can be calibrated directly in decibels or logarithmically for power, current, or volts.

USE AS AN AM SYNCHRONOUS DETECTOR

The 604 can also be used as an AM envelope detector. The IF signal is fed to both the 604,

Designing With The SA/NE604

as in the FM application, and to an additional linear IF amplifier (Figure 27). The linear amplifier then feeds the quadrature detector which mixes with the AM limited carrier and demodulates the envelope. 1% THD is obtainable with this technique with a 90% AM modulated signal.

USE AS A PRODUCT DETECTOR

Figure 28 shows how the 604 can be used as a product detector for SSB or DSB. In this case the LO is applied to the 604 IF amplifier and an external linear IF amplifier is used for
the SSB or DSB signal. The 604 quadrature detector then acts as the product detector. With the addition of a simple switching array, a single 604 can be used for FM, AM, or SSB detection in a communications receiver!

REFERENCES

1. Zavrel, R.: Signetics AN198 Designing With the SA/NE 602, December, 1984.
2. Hayward, W.: Introduction to Radio Frequency Design, 1982, Prentice-Hall.

Written by Bob Zavrel

Figure 1. Pin Configuration

Figure 2. Block Diagram

Designing With The SA/NE604

Figure 3. 6dB 'L' Pad

Figure 4. Quadrature Network

Figure 5.

Figure 6. Application Demonstration Board

Designing With The SA/NE604

Figure 7. Application Test Board Parts

Figure 8. RSSI vs. Signal Strength

Figure 9. Temperature Compensated RSSI Circuit

Figure 10. NE602/604 System Performance

Figure 11. SA/NE602/SA/NE604 Applications Board

Figure 12. SA/NE604 Indicated Gain vs Temperature and Voltage

Figure 14. SA/NE604 AM Rejection vs Temperature

Figure 16. SA/NE604 Data Output vs Temperature

Figure 13. SA/NE604 Signal-To-Nolse Ratio vs Temperature

Figure 15. SA/NE604 Audio Output vs Temperature

Figure 17. RSSI vs Temperature

Figure 18. SA/NE 604 Muting vs Temperature

Figure 20. SA/NE604 Large Signal Uncompensated RSSI Voltage vs Temperature

Figure 19. SA/NE604 Limiting RF Level vs Temperature

Figure 21. SA/NE604 Total Harmonic Distortion vs Temperature

Figure 23. Small Signal RSSI vs Temperature and Voltage

Figure 24. SA/NE604 SINAD vs Temperature and Vcc
Figure 25. SA604 Supply Current vs Temperature

Figure 28. Product Detector

INTRODUCTION

A low cost yet high performance, color, composite video fiber optic link for short-haul applications can easily be built using readily available off-the-shelf I.C.'s and optoelectronic devices. Also, all the necessary tools and hardware for interfacing the fiber to the electronics are available in kit form. This adds further simplicity and lower cost to the construction of the finished design and cancels the need to obtain factory installed terminations.

OPERATION

Starting at the transmitter end (Figure 1), the system begins with an NE592 differential video amplifier. The amplifier receives the composite video signal and then differentially drives the voltage controlled oscillator (VCO) of an NE564 phase locked loop (PLL). This is done through the output pins of the PLL phase comparator. The VCO is driven directly to avoid the input limiter and phase detector of the NE564. This method of operation opens up a number of applications for the NE564 that were previously impossible. The loop, in this case, is configured as a frequency modulator with a center of 30 MHz and a deviation of $\pm 10 \mathrm{MHz}$. From here, the modulated signal is fed to an NE522 high speed comparator with an open collector output. The comparator boosts the signal in order to drive a high power aluminum gallium arsenide infrared ($810 \mu \mathrm{~m}$) LED which has a typical rise time of 3 ns .
The composite video is essentially sent at a $60 \mathrm{Mb} / \mathrm{s}$ data rate over the fiber and is received by an AIGaAs PIN photodiode. The light is converted to a current by the diode and is amplified and changed to a voltage by the NE5539 op
amp in a transimpedance configuration. The very high speed response ($600 \mathrm{~V} / \mu \mathrm{S}$) and wide bandwidth (350 MHz unity gain) makes this device ideally suited for high performance optical links. Compensation components and their values are also shown in Figure 1 to make the NE5539 unconditionally stable because it is not internally compensated. The second NE5539 is a voltage gain stage and is optional depending upon the attenuation in the fiber or its length. Immediately following is another NE564 PLL set up as an FM demodulator which is AC coupled to the last NE5539 op amp. This third NE5539 acts as an amplifier and buffer that drives 75 ohm cable to a video monitor.

TEST

Tests using 30 meters of $125 \mu \mathrm{~m}$ glass fiber show the chrominance S / N ratio of an EIA color bar test signal to be approximately 40 dB . This S / N ratio can be improved if an additional filter is added to the circuit. The primary noise source is the 30 MHz modulation frequency. To attenuate this noise and other high frequencies effectively, a third order low pass Chebyshev filter with a cutoff of 3.58 MHz is constructed around the last NE5539 (Figure 2). This increases the S / N ratio significantly. Comparison photos taken from a spectrum analyzer are shown in Figure 3.
Caution should be exercised so as not to roll off too much of the 3.58 MHz chrominance signal. A tradeoff between noise and color signal should be considered. Higher order filters using the NE5539 will sharpen the roll off considerably so that the color amplitude will not be affected. A comparison of input and output using the EIA color bar test
signal is shown in Figure 4. As can be seen, there is excellent reproduction of the original signal and little overall phase shift in the vector plot. Also, using a 5 step staircase signal, differential gain and phase error measurements of the entire system are 1% and 0.5° respectively.

SYNOPSIS

The main intent is to show how to build a color video transmission system. But it may be possible to transmit other analog or digital signals along with the video since the circuit shown only utilizes the 20 to 40 MHz band. These signals can be sent using the lower frequencies (i.e., data via FSK, voice channels, etc.). Additional circuitry can be used to multiplex the signals electronically after the first PLL, and bandpass filters utilized before the second PLL, on the receiver side, to separate and then demodulate them.

The circuit in Figure 1 can be made very inexpensively. The tools and connectors as well as instructions for constructing a very reliable fiber link are from Amp Inc. kit number 227385. The fiber used is ITT number T-3000, and the IR LED and photodiode are Motorola part numbers MFOE1202 and MFOD1100 respectively.
The circuits should be laid out on a double sided copper clad PC board with all power supply pins decoupled as shown. Care should be exercised in shielding both the PIN photodiode and the first NE5539 in the receiver end to avoid pick up and amplification of unwanted noise. The RF chokes are Ferroxcube part number VK200-10-3B. The I.C.'s are all available from Signetics.

Written by: Thomas DeLurio

Figure 1. Fiber Optic Video System

L. P. M. BRACKE

The last ten years have seen considerable progress in the development of the switched-mode power supply. Both design methods and associated hardware have been refined by experience and intensive development. These improvements, especially in the understanding of the influence of magnetic material and winding-conductor properties on SMPS operation, are reflected in the more straightforward and complete design routines now available. The better understanding that made for the improved design routines has also resulted in improved core designs: the ETD range of ferrite cores. Furthermore, lessons learned from experience in wound-component production have been applied to the design of the associated hardware, especially the coil former. The improved core and coil former, together with specially-developed assembly hardware, form the ETD system.

IMPROVED DESIGN ROUTINES

References 1 to 4 form a series of publications that presents complete design routines for the magnetic components of all common versions of SMPS. Part 1 of the Series (Ref.1) covers most aspects of SMPS design, with emphasis on the interaction between the electronic and magnetic aspects. The basic electrical relationships are given for forward, push-pull and flyback converters. Practical formulae are given for inductance and effective-current values. Auxiliary outputs and other special features are included in the coverage, as are related control aspects. All treatments are related to the magnetic design.

The data derived from Ref. 1 are used in Part 2 of the Series (Ref.2) to select a suitable ferrite core for the transformer. Here, the magnetic and thermal properties of ferrite cores are considered as they affect their suitability for a given application. Initial selection of a suitable core is by
means of charts showing the limits of performance to be expected at various frequencies. The optimum working conditions for cores in various transformer types are discussed, and a further chart enables this optimum to be determined. Wound transformer thermal characteristics are discussed, and formulae given for the losses in the core itself. Together with expressions for the number of turns required, Ref. 2 allows the design of an SMPS transformer to progress from the electrical requirements set forth in Ref. 1 to the mechanical design of the windings themselves discussed in Ref.3.

SELECTING THE CORRECT CORE

Most SMPS requirements can be satisfied by the range of cores currently available (Ref.5). The preferred grade of material for such high-frequency power applications is Ferroxcube 3C8.

Core selection charts

Due to the wide variation in application conditions, the selection charts have been designed to indicate the range of operation of the cores. This is done by using areas of throughput power as a function of frequency as shown in Fig.1. These are effectively areas of good design, since both boundaries represent the performance of a well-designed transformer.

The upper boundary of each area corresponds to a transformer design operating at optimum flux density sweep, with maximum use of the winding window, and Litz-wire windings, for minimum a.c. resistance. The lower boundary corresponds to a transformer design that also operates at optimum flux density, but has optimised solid-wire windings
incorporating 8 mm creepage distance for IEC 435 mains isolation, and with a demagnetising winding occupying one third of the winding space.

Selection charts are given for push-pull, forward and flyback converter SMPS. However, the flyback converter charts are mainly intended as a cross-check on the design obtained by the method given in Ref. 4 for chokes.

Fig. 1 In the core selection charts given in Part 2 of the SMPS transformer design series (Ref.2), the power-handing capability of each core is plotted as a shaded area extending from 10 kHz to 100 kHz . The vertical boundaries of this area are the upper and lower limits of throughput power capacity achievable by good design but depending on conductor type and insulation requirements

Operating conditions

Converter type has the largest influence on throughput power obtainable, but other factors also influence performance, principally

- flux-density sweep
- winding configuration (simple or split, for example) and
- the presence of sensor or demagnetising windings
- the type of conductor used in the windings
- the number of output windings required
- mains insulation requirements.

Generally, the selection charts assume worst-case conditions. Operation at ambient temperatures lower than the $60^{\circ} \mathrm{C}$ assumed, the use of feed-forward to ease the restriction on peak flux density ($1 / 1.72$ of saturation to allow for transient conditions), or heatsinking or potting to reduce thermal resistance, will all increase transformer power capacity.

Flyback transformers and chokes

Flyback converter transformers and output chokes are magnetically much the same: the main design requirement is stored energy, $1 / 2 I^{2} L$. This is the basis of a separate design routine that includes winding design (Ref.4). This routine, using specially-developed design charts, leads directly to spacer thickness and number of turns.

OPERATING FLUX DENSITY

For chokes and flyback-converter transformers (which operate as chokes), stored energy is the basis of the design (subject to the core not being driven into saturation). With forward and push-pull converter transformers, the operating flux density (both a.c. and d.c. components) is set at the beginning of the design process.

Forward and push-pull converters

The operating flux density in forward and push-pull converter transformers strongly influences the overall volume of the transformer. Thus, it is set at the beginning of the design process to as high a level as practicable. For forward converter transformers, this level is determined by transient protection requirements or permissible core loss only. With push-pull converters, however, considerations of symmetry may dominate the choice.

Both forward and push-pull converter transformers must be designed to accommodate rapid changes of load. This is done by introducing a transient factor, usual symbol α, related to the range of input voltage for which the power supply is designed. A common value of α is 1.72 . This is suitable for mains-fed supplies (215 V to 370 V or 200 V to 340 V), telephone supplies (40 V to 70 V), and mobile supplies (9 V to 15.5 V).

Considerations of symmetry usually result in the value of α being multiplied by a further factor ϵ for push-pull converter transformers. Asymmetry leads to core saturation, which in turn results in destruction of power switches. Principal causes of asymmetry are unbalanced flux linkage in windings (Ref.3) and unequal conduction times in switches. Where care has been taken to achieve balanced transformer windings, and protection circuitry is incorporated to ensure equal conduction times, the value of ϵ may be 1.15 ; that is, α is increased from 1.72 to 2 for a typical core. Where unbalance is accepted, however, the value of ϵ should be 2 . (A list of the symbols used in this article, together with their definitions, is given as Table 1).

The use of feedforward (Ref.1) can considerably reduce the value of α required but at the expense of reduced transient response.

In forward-converter transformers core remanence should also be taken into consideration. However, the introduction of a small airgap in the core, and the use of a slow-rise capacitor (Ref.1) allows the whole first quadrant of the core hysteresis loop to be used.

	TABLE 1 List of symbols	
B_{ac}	T	flux-density sweep; half the peak-to-peak flux density excursion
B_{CF}	mm	coil former breadth
f	Hz	operating frequency the frequency at which the number of turns on the lowest-voltage transformer winding becomes unity
f_{1}	Hz	

Figure 2 shows the maximum transformer flux-density sweeps for various converter types, and Table 2 gives the value of transient factors α and ϵ under various conditions.

Optimum flux-density sweeps

Manipulation of the expression (Ref.6) for the throughput power of an SMPS transformer shows that power reaches a maximum at a combination of operating frequency and flux density such that core loss is 44% of total loss. That is, when

$$
0.44 \frac{\Delta T}{R_{t h}}=16.7 \mathrm{f}^{1.3} \mathrm{Bacem}_{\mathrm{ac}}^{2.5}
$$

Here, the right-hand part of the expression is the typical hysteresis loss of Ferroxcube 3C8 ferrite. Since eddy-current loss is neglected, this expression applies only up to about 100 kHz .

TABLE 2
Maximum values of flux-density sweep for various converter types and control circuits

boundary conditions	flux-density sweep $\mathrm{B}_{\mathrm{ac} \mathrm{cp}}(\mathrm{T})$	
	forward	push-pull
maximum sweep for FXC 3C8 $\left(100^{\circ} \mathrm{C}\right)$ 0.16 0.32 at transient factor α $\frac{0.32}{2 \alpha}$ 0.32 with unbalance factor ϵ^{*} - $\frac{0.32}{\epsilon \alpha}$ with x\% feedforward $\frac{0.32}{2(1+\mathrm{x} / 100)}$ $\frac{0.32}{(1+\mathrm{x} / 100)}$ with unbalance factor ϵ and - $\frac{0.32}{\epsilon(1+\mathrm{x} / 100)}$ x\% feedforward		

* ϵ is the ratio of peak flux density in a balanced converter to the peak flux density in an unbalanced converter.

Fig. 2 Flux-density excursions and corresponding flux-density sweeps for (a) push-pull, (b) forward converter transformers (with slow-rise capacitor) or ringing choke, and (c) flyback converter chokes

Using this expression, curves of $\mathrm{Bacem}_{\mathrm{ac}}$, the peak fluxdensity sweep, have been derived for all Philips' SMPS transformer cores (See Fig.3).

THERMAL RESISTANCE AND TEMPERATURE RISE

The maximum permissible dissipation of a transformer or choke is set by its maximum operating temperature; ambient temperature and thermal resistance depend on core size, mounting method and attitude, the type of conductor in the winding and the amount of insulation incorporated. Due to the insulating effect of the interleaving where 8 mm creepage distance is allowed for in the windings, two values are quoted for thermal resistance in Ref.2: with and without creepage allowance.

Measurement methods are discussed in Ref. 2 and 7. Results given in Ref. 7 confirm that transformer temperature rise can be accurately calculated from the product of total transformer dissipation and thermal resistance for any ratio of core to winding loss.

Fig. 3 Optimum, peak, centre-pole flux-density sweeps Baccp for a variety of cores for SMPS applications. Horizontal lines indicate the limits for various converter types ($\alpha=1.72$). The curves were calculated for a peak temperature rise of 40 K

THE EFFECT OF OPERATING FREQUENCY

Winding properties

Depending on frequency, the windings of an SMPS transformer fall into one of three categories. At low frequencies, the available winding-window height will be insufficient to accommodate minimum-loss (ideal) windings. At some higher frequency, f_{L}, the height of minimum-loss windings becomes less than that of the winding window. Finally, at some higher frequency, f_{1}, the number of turns required for the lowest-voltage winding becomes unity.

It is shown in Ref. 8 that, where the winding height is insufficient for minimum-loss windings, winding loss is inversely proportional to the squares of both flux-density sweep and operating frequency. At frequencies above f_{L} winding loss becomes inversely proportional to operating frequency.

Flux density sweep

From the considerations given earlier, it is apparent that at lower frequencies, operating flux density is limited by core saturation rather than loss. Above some frequency f_{T}, the optimum operating flux density (for maximum power) becomes less than the saturation-related maximum, and the flux-density sweep is limited by the requirement that (for Ferroxcube 3C8) core loss $\mathrm{P}_{\mathrm{c}}=0.44 \mathrm{P}_{\text {tot }}$, where $\mathrm{P}_{\text {tot }}$ is the total permissible dissipation.

Throughput power

In Ref.8, these various effects of operating frequency are combined to explain the observed variation of SMPS transformer throughput power with operating frequency for Ferroxcube 3C8 cores. Figure 4(a) shows the division between core and winding loss for an SMPS transformer as a function of operating frequency. Frequencies f_{L}, f_{T} and f_{1}, are marked. (Note that f_{L} may, in fact, be higher than f_{T} for some cores. This does not alter the main argument.) In Region I, operating flux density is limited by saturation considerations only, so that throughput power is roughly proportional to frequency. Operation remains saturation limited into Region II, but here power increases roughly as the root of the frequency. (This relationship is complicated by the fact that average turn length decreases as idealwinding height decreases.) Region III begins at f_{T}, where core operating flux density becomes limited by core loss to the optimum value for that frequency. The shape of the throughput power curve in the region depends on core material characteristics: the Steinmetz coefficient and its associated flux-density and frequency exponents. For Ferroxcube 3C8, flux density is inversely proportional to the root of frequency. Then, winding resistance decreases slightly with frequency so that, since winding loss is constant, throughput power is also about constant.

Progress in SMPS Magnetic Component Optimization

Fig. 4 (a) Division of transformer loss between core loss and winding loss as a function of frequency, showing the various boundary frequencies. (b) Relation between flux density and frequency for maximum throughput power. (c) The corresponding throughput power characteristic

Region IV begins where frequency increases to the point where the number of turns required on the lowest-voltage winding falls to unity. (Contours of number of turns N as a function of frequency for various voltages are indicated in Fig.4(a)). When this happens, flux density must then decrease
with frequency. The rate of this decrease is greater than that required for optimum core loss, so that throughput power decreases. The effect is accentuated by the increasing contribution of eddy-current losses at high frequencies.

In practice, other factors, such as eddy-currents, parasitic capacitance and rounding of numbers of turns, cause the transitions from one Region to another to become blurred so that, as Fig.4(c) shows, the thoughput power characteristic is more rounded. Calculated values for real cores, Fig.5, shows that the general characteristics remain, however: there is always a frequency, close to the core transition frequency, above which no useful increase in throughput power can be obtained.

Fig. 5 Calcurated throughput powers (5 V forward converters) with frequency for EC52 and E42/21/20 core show the same general characteristics: there is a frequency (from Fig.3) above which no useful increase in throughput power can be obtained. For the EC52 core this is 100 kHz , for the E42 core it is 52 kHz

EFFECT OF CORE DESIGN

The more complete understanding of the factors that influence throughput power obtainable has made it possible to examine established core designs with a view to improving the designs available. Electrical, magnetic and mechanical considerations can now be combined so that the core can be made as effective as possible.

Existing core designs

Analysis of existing core designs ($\mathrm{E}, \mathrm{EC}, \mathrm{PM}, \mathrm{PQ}$ and RM cores, Ref.8) shows that performance agrees well with values of f_{T}. The performance of the smaller cores is found to be relatively poor at 50 kHz due to lack of sufficient windingwindow height for ideal windings.

The effectiveness of the use of core materials is another important consideration, since it directly affects the weight of an SMPS. Constant cross-section E cores generally have the best power-to-weight ratios.

SWITCHED-MODE POWER SUPPLIES

The essential difference between switched-mode and conventional (mains) power supplies is operating frequency. Whereas conventional power supplies operate at mains frequencies, 50 Hz or 60 Hz , switched-mode power supplies (SMPS) operate at frequencies of the order of 50 kHz . The complications associated with operation at these high frequencies are more than compensated for by the savings in weight and volume, especially of transformers and smoothing components.

Voltage conversion and control in SMPS is achieved by chopping the incoming supply voltage with a high-speed switch such as a transistor. The chopped voltage is applied to a transformer which performs voltage conversion and provides isolation. This transformer is generally wound on a ferrite core, and is much smaller and lighter than a 50 Hz unit of comparable power capacity. Fine control of output voltage is obtained by varying the duty cycle of the switch.

Most SMPS converters require a d.c. input and provide a d.c. output. For operation from the mains, therefore, a rectifier and smoothing circuit generally precedes the converter itself, Fig.A.

SMPS converters

There are three basic SMPS converter arrangements; they and their variants are discussed in detail in Ref. 1.

In the forward converter, Fig.B, power is transferred directly to the load while the switch is closed; the energy stored in the inductor is transferred to the load while the switch is open. The switch may be transformer coupled to the inductor for input/output isolation.

In the flyback converter, Fig.C, power is stored in the inductor while the switch is closed and transferred to the load while the switch is open. The functions of transformer and inductor may be combined where voltage transformation is required.

The push-pull converter is, effectively, a forward converter in which the output choke is driven by any push-pull arrangement of power transistors, including a full bridge, Fig.D. Operation after the transformer is similar to that of a forward converter, but with twice the effective switching frequency.

Transformer and choke requirements

There are two main boundary conditions for the power transformer: it must not saturate (otherwise the power transistors will be damaged) and it must not overheat. In addition to these boundary conditions, the output choke should be capable of storing sufficient energy to deliver one output cycle so that ripple will be low and regulation good.

Saturation is prevented by designing for worst probable combinations of load change and input voltage fluctuation. In forward converters, provision must be made for removing energy stored in the transformer at the end of the ON period of the switch. In push-pull converters, the degree of symmetry achievable in both power switches and transformer windings determines the unbalance allowance.

Overheating of the transformer and choke is prevented by calculation of total power dissipation: core hysteresis and eddy current losses, and winding losses.

C

Mechanical design is of great importance since this influences manufacturing cost and transformer production cost. The core should be cheap to manufacture. Enclosed cores, such as pot cores and their variants (RM, PQ, PM cores) are more expensive to make than E cores for a given power capacity. However, round centre legs make for easier winding, with less leakage inductance - especially for strip. For all but the smallest transformers, E cores result in more compact design than U cores. Finally, due to their symmetry, E cores require some 20% less core material for a given power capacity than U cores, with a consequent reduction in eddy-current losses. This last point is of especial importance at higher operating frequencies.

Core design requirements

From this theoretical and practical background the requirements for a new core design are clear. The range of cores should be optimised for frequencies appropriate to their power handling capacity: 50 kHz for $300 \mathrm{~W}, 100 \mathrm{kHz}$ for 100 W , for example. This requires proper choice of f_{L} and f T. Optimisation should be aimed at forward-converter applications (the cores will then also be suitable for unbalanced push-pull converters).

The design of the associated coil formers is also critically important. They should be suitable for automatic handling. A large number of pins is required, both for flexibility of layout and to accommodate multiple secondaries.

The core and wound coil former should be quick and easy to assemble. The combination should be designed for horizontal mounting on p.c. boards to minimise height and make termination of strip windings easier.

THE ETD SYSTEM

The cores

These criteria have been adopted in the design of the ETD cores (Ref.8). They are constant cross-section E cores in Ferroxcube 3C8 ferrite with round centre legs, photo and Fig.6, and are designed for

- minimum throughput powers in the range 100 W to 300 W
- economical manufacture
- minimum weight of ferrite
- operating frequencies in the range 50 kHz to 150 kHz
- high throughput power density
- mains isolation
- minimum transformer volume and p.c. board areas.

Magnetic properties are given in Table 3.
The ETD cores are compared with existing core designs for power per unit weight in Fig.7. Throughput power areas as a function of frequency for ETD cores are given in Fig.8, and the optimum flux density sweep in Fig.9.

TABLE 3
Magnetic dimensions of ETD system cores

core type	$\mathbf{A}_{\mathrm{cp} \text { min }}$ $\left(\mathrm{mm}^{2}\right)$	A_{e} $\left(\mathrm{mm}^{2}\right)$	V_{e} $\left(\mathrm{mm}^{3}\right)$	l_{e} (mm)
ETD 34	87	97.1	7640	78.6
ETD 39	117	125	11500	92.2
ETD 44	167	173	17800	103
ETD 49	204	211	24000	114

core type	mid-limit dimensions (mm)						mass (g) (core half
	a	d_{2}	d_{3}	h_{1}	h_{2}	b	
ETD 34	34.2	26.3	10.8	17.3	12.1	10.8	20
ETD 39	39.1	30.1	12.5	19.8	14.6	12.5	30
ETD 44	44.0	33.3	14.9	22.3	16.5	14.9	47
ETD 49	48.7	37.0	16.4	24.7	18.1	16.4	62

Fig. 6 Outline drawing and dimensions of the new ETD core range

Fig. 7 The throughput power per unit weight of core material for ETD cores compared with that of other popular core types at two operating frequencies: 50 kHz (shaded areas) and 100 kHz (open areas). Forward-converter operation is assumed

These ETD system components provide OEMs with the most efficient and economical route to SMPS transformers

Fig. 8 Throughput power as a function of frequency for ETD cores in forward-converter transformers

Fig. 9 Optimum flux-density sweeps for ETD cores

The coil former and assembly hardware

Simple, rapid winding and assembly of ETD-system based transformers and chokes is made possible by the coil former of Fig.10, together with the associated snap-on stainlesssteel assembly clips.

Principal features of the design are indicated in Fig.10:

- the length and number of slots gives a wide choice of lead-out position
- there is at least 8 mm creepage distance from the pins to the ferrite core
- the pegs between the slots allow wire to be run from any one slot or pin to any other
- the four support legs provide 8 mm creepage distance between the windings and the p.c. board
- the hood over the pins provides 8 mm creepage distance between leadouts and assembly clips
- a separate earthing clip for the core is to be available.

The coil former itself is moulded in polybutylene terephthalate, a high-grade, flame retardant (UL 94-VO), thermoplastic. Windings dimensions are given in Table 4.

TABLE 4
Winding dimensions of ETD-system coil formers

type	B_{CF} (mm)	H_{CF} (mm)	$\mathrm{Q}_{\text {av }}$ (mm)
ETD 34	20.9	5.9	61
ETD 39	25.7	6.9	69
ETD 44	29.5	7.3	78
ETD 49	32.7	8.4	86

ETD system components provide OEMs with the most efficient electrical, magnetic and mechanical route to full, economical, automated production of SMPS transformers.

Fig. 10 Coil former design for the ETD system, intended for automatic winding

REFERENCES

1. Bracke, L.P.M. and Geerlings, F.C. 1982. High-frequency ferrite power transformer and choke design. Part 1: Switched-mode power supply magnetic component requirements. Philips' ordering code: 939892320011.
2. Bracke, L. P. M. 1982. High-frequency ferrite power transformer and choke design. Part 2: Switched-mode power supply magnetic considerations and core selection. Philips' ordering code: 939892330011.
3. Jongsma J. 1982. High-frequency ferrite power transformer and choke design. Part 3: Transformer winding design. Philips’ ordering code: 939892340011.
4. Bracke, L. P. M. and Jongsma, J. 1982. High-frequency ferrite power transformer and choke design. Part 4: Improved method of power-choke design. Philips' ordering code 939892350011.
5. Philips' Data Handbook, Vol.C5. Ordering code 939892350011.
6. Jansson, L. E. 1976. Power capacity of ferrite-cored transformers and chokes in switched-mode power supplies. E.A.B. 34, $20-47$ (No. 1).
7. Bracke, L. P. M. 1982. Optimizing the power density of ferrite-cored transformers. Proc. PCI/Motorcon, Geneva. Intertech Communications, Inc., Oxnard, California.
8. Bracke, L. P. M. 1982. Optimizing the configuration of ferrite-cored transformers for advanced switched-mode magnetics, Proc. Powercon 9, Washington. Power Concepts, Inc., Ventura, California.

Integrated Clrcuits packaged and shipped in Tape and Reel will significantly alter the production methods of the US electronics industry. SO packages are now available in $12 \mathrm{~mm}, 16 \mathrm{~mm}$, and 24 mm tapes depending on the size of the package.
Tape and Reel will enable manufacturers to use very high speed automatic placement equipment. With reels containing 1000 or 2000 components each, this equipment can run at high speed for longer periods without stopping the machine to replace empty tubes. Further, the components packaged in Tape and Reel require much less storage space than those in the traditional tubes. For example, the SMD Technology Center in Milwaukee, WI saved over 90% in storage area for $5,000,000$ SMDs in Tape and Reel vs. the space it would have required for the traditional axial leaded parts in tubes and/or reels.

SPECIFICATIONS

Tape and Reel specifications conform to Electronic Industries Association (EIA) Proposed Specification \#RS-481 A, "Taping of Surface Mounted Components for Automated Placement".
The carrier tape material is PVC with a carbon filler and the cover tape is polyester. The reel material is cardboard.
Signetics' SO packages will be loaded onto reels in the quantities indicated in Table 1.

Components packaged in Tape and Reel are protected against damage due to electrostatic discharge. The carrier tape is conductive, as shown in Table 2. Resistivity measurements are in accordance with ASTM-D-991.
The cover tape is heat sealed to the carrier tape along the outer edges of the cover tape. The seal releases when

Table 1.

PACKAGE TYPE	TAPE		PARTS	REEL	
	WIDTH	PITCH		DIAMETER	WIDTH
SO-8	12 mm	8 mm	2000	330 mm	18.4 mm
SO-14	16 mm	8 mm	2000	330 mm	22.4 mm
SO-16	16 mm	8 mm	2000	330 mm	22.4 mm
SO-16L	24 mm	12 mm	1000	330 mm	22.4 mm
SO-20	24 mm	12 mm	1000	330 mm	30.4 mm
SO-24	24 mm	12 mm	1000	330 mm	30.4 mm
SO-28	24 mm	12 mm	1000	330 mm	30.4 mm

Table 2. SURFACE RESISTIVITY

ITEM	RESISTIVITY RANGE	RESISTIVITY VALUES	SPECIFICATION
Carrier Tape	CONDUCTIVE	$<1 \times 10^{5} \Omega / \mathrm{sq}$	$<1 \times 10^{5} \Omega / \mathrm{sq}$
Cover Tape	ANTISTATIC	$>10^{9}$ to $>10^{14} \Omega / \mathrm{sq}$	None
Reel	ANTISTATIC	$>10^{9}$ to $>10^{14} \Omega / \mathrm{sq}$	None

pulled with a peelback force (Z) of 15 grams (min.) to 65 grams (max.). The peelback force must be exerted at an angle of $180-175^{\circ}$ with respect to the carrier tape direction. Peel speed is $120 \pm 5 \mathrm{~mm} / \mathrm{min}$.
Components are loaded with pin \#1 on the side nearest the sprocket holes. The carrier tape, cover tape, and reels are designed to withstand normal conditions seen in the industrial environment without changes in dimensions or other physical properties. COMPONENTS ARE FULLY PROTECTED FROM LEAD DAMAGE ONCE THEY ARE LOADED INTO THE TAPE.

BOXES

Taped components will be shipped in foil lined packing boxes approximately $16^{\prime \prime} \times 16^{\prime \prime} \times 11 / 2^{\prime \prime}$ which will in turn be placed in shipping boxes that are $16^{\prime \prime} \times 16^{\prime \prime} \times 10^{\prime \prime}$. The shipping boxes can hold up to 5 packing boxes.

ORDERING

To order Tape and Reel, simply indicate with the letter ' R ' after the part number (example: N74LSOODR). This SPC code identifies to the factory that this is a Tape and Reel order. Orders for Tape and Reel MUST BE FOR WHOLE REELS, i.e. 2000 units of SO-8, SO-14 and SO-16, and 1000 units of SO-16L, SO-20, SO-24 and SO-28. NO PARTIAL REELS WILL BE SHIPPED.

SAMPLES

Full reels of dummy parts will be available through Logic Division for purchase by customers who would like to use dummies to check out their automatic pick-and-place machines.

To Get...
DUMMY-SO-8
DUMMY-SO-14
DUMMY-SO-16
DUMMY-SO-16L DUMMY-SO-20
DUMMY-SO-24
DUMMY-SO-28

Order...
M1511DE R
M1511DH R
M1511DJ R M1511DJA R M1511DLAR
M1511DNA R
M1511DQA R
-

	ITEM	FOR ALL COMPONENTS			VALUE BY COMPONENT						
		SYMBOL	SPECIFICATIONS		SO-8	SO-14	SO-16	SO-16L	SO-20L	SO-24L	SO-28L
			Value	Tolerance							
Carrier Tape	Width	W		± 0.30	12	16	16	16	24	24	24
	Film Thickness	t	0.40	Max.							
	Total Thickness	K		Max.	2.4	2.4	2.4	3.2	3.2	3.2	3.2
	Camber	δ	0.3	Max.							
Compartments	Length, Inside	A_{0}		± 0.1	6.33	6.35	6.35	10.8	10.8	10.8	10.8
	Width, Inside	B_{0}		± 0.1	5.15	8.90	10.15	10.65	13.15	15.75	18.25
	Depth, Inside	K_{0}		± 0.1	1.9	1.9	1.9	2.80	2.80	2.80	2.80
	Width, Outside	B_{1}		Max.	8.2	12.1	12.1	12.1	20.1	20.1	20.1
	Length, Outside										
	Depth, Outside										
	Radius	$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$	0.3	Max.							
	Pitch	P		± 0.1	8	8	8	12	12	12	12
	Wall Angle	a	6°	± 1.0							
	Ref. Plane	H_{0}	0.3	$+0.10-0.05$							
	Center Line Distance, Width	P_{2}	2.0	± 0.05	Compartment to Sprocket Hole						
	Center Line Distance, Length	F		± 0.05	5.5	7.5	7.5	7.5	11.5	11.5	11.5
	Hole Diameter	D_{1}	1.5	Min. $\oplus 1 \phi 0.2$							
Sprocket Hole	Diameter	D	1.55	± 0.05							
	Pitch	P_{0}	4.0	± 0.1							
	10-Pitch	-	40.0	± 0.2							
	Distance to Edge	E	1.75	± 0.1							

NOTES:

1. All feature dimensions in millimeters.
2. A_{0} and B_{0} dimensions are measured at a plane defined as H_{0} distance up from the inside compartment bottom and parallel to the bottom. K_{0} is measured from the same plane to the top surface of the tape.
3. Camber to be no more than 1.0 mm per 250 mm length measure per semi specification \#G10-83-(Camber),
4. Pin \#1 to be nearest sprocket holes. Top side of the package will be up.

Figure 1. Embossed Carrler Tape Specifications

ITEM		FOR ALL COMPONENTS			VALUE BY COMPONENT							
		SYMBOL	SPECIFICATIONS		SO-8	SO-14	SO-16	SO-16	SO-20	SO-24	SO-28	
		Value	Tolerance									
Cover Tape	Width		W_{1}		-0.5	9.0	13.0	13.0	13.0	21.0	21.0	21.0
	Thickness	T	0.1	Max.								
	Break Force	-	1.0KG	Min.								

Figure 2. Cover Tape Specifications

NOTES:

1. All feature dimensions in millimefers.
2. A clearance of 0.1 mm to 2.2 mm max. will be maintained between the carrier tape and the reel at the hub. This clearance will be measured at the hub O.D.
3. Dimension T and G will be measured at the hub O.D.

Figure 3. Reel Specifications

Section 9 Package Outlines

INDEX

SECTION 9 - PACKAGE INFORMATION
Index 9-1
Package Outlines for product with prefixes: ADC, AM, CA, DAC,
LF, LM, MC, NE, SA, SE, SG, $\mu \mathrm{A}$, ULN 9-3
Introduction. 9-3
D SO Plastic Dual-in-Line. 9-5
E Metal Headers. 9-7
F Hermetic Cerdip 9-8
G Hermetic Leadless Chip Carrier 9-10
H Metal Headers. 9-11
I Hermetic Side Braze. 9-11
$N \quad$ Plastic Dual-in-Line 9-12
Package Outlines for product with prefixes: SAA, TCA, TDA, TDB, TEA 9-17
Introduction 9-17

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

INTRODUCTION

The following information applies to all packages unless otherwise specified on individual package outline drawings.

Cenoral

1. Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).
2. Lead spacing shall be measured within this zone.
a. Shoulder and lead tip dimensions are to centerline of leads.
3. Tolerances non-cumulative.
4. Thermal resistance values are determined by utlizing the linear temperature dependence of the forward voltage drop across the substrate diode in a digital device to monitor the junction temperature rise during known power application across $V_{c c}$ and ground. The values are based upon 120 mils square die for plastic packages and a 90 mils square die in the smallest available cavity for hermetic packages. All units were solder mounted to P.C. boards, with standard stand-off, for measurement.

PLASTIC ONLY

5. Lead material: Alloy 42 (Nickel/Iron Alloy) Olin 194 (Copper Alloy) or equivalents, solder dipped.
6. Body material: Plastic (Epoxy)
7. Round hole in top corner denotes lead No. 1.
8. Body dimensions do not include molding flash.
9. SO Packages-microminlature packages.
a. Lead material: Alloy-42.
b. Body material: Plastic (Epoxy).

HERMETIC ONLY

10. Lead material
a. ASTM alloy F-15 (KOVAR) or equivalent-gold plated, tin plated, or solder dipped.
b. ASTM alloy F.30 (Alloy 42) or equivalent-tin plated, gold plated or solder dipped.
c. ASTM alloy F. 15 (KOVAR) or equivalent-gold plated.
11. Body Material
a. Eyelet, ASTM alloy F-15 or equiva-lent-gold or tin plated, glass body.
b. Ceramic with glass seal at leads.
c. BeO ceramic with glass seal at leads.
d. Ceramic with ASTM alloy F-30 or equivalent.
12. Lid Material
a. Nickel or tin plated nickel, weld seal.
b. Ceramic, glass seal.
c. ASTM alloy F-15 or equivalent, gold plated, alloy seal.
d. BeO Ceramic with glass seal.
13. Signetics symbol, angle cut, or lead tab denotes Lead No. 1.
14. Recommended minimum offset before lead bend.
15. Maximum glass climb .010 inches.
16. Maximum glass climb or lid skew is .010 inches.
17. Typical four places.
18. Dimension also applies to seating plane.

PACKAGE OUTLINES

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

PLASTIC PACKAGES			
	PACKAGE CODE	$\theta_{j p} / \theta_{j c}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	DESCRIPTION
Standard Dual-in-Line Packages			
8 -Fin	N	$99 / 50$	
14.Pin	N	86/48	TO-116/MO.001
16-Pin	N	83/42	MO.001
18.Pin	N	63/29	
20-Pin	N	61/24	
22-Pin	N	51/23	
24-Pin	N	52/23	MO.015
28-Pin	N	52/23	MO-015
Metal Headers			
4-Pin	E	100/20	TO-46 Header
4.Pin	E	150/25	TO.72 Header
8 -Pin	H	150/25	TO. 5 Header
10-Pin	H	150/25	TO 5/TO-100 Header, Short Can
10-Pin	H	150/25	TO.5/TO-100 Header, Tall Can
Cerdip Family			
8 -Pin	FE	110/30	Dual-in-Line Ceramic
14-Pin	F	110/30	Dual-in-Line Ceramic
16 -Pin	F	100/30	Dual-in-Line Ceramic
18-Pin	F	93/27	Dual-in-Line Ceramic
20-Pin	F	90/25	Dual-in-Line Ceramic
22-Pin	F	75/27	Dual-in-Line Ceramic
24-Pin	F	60/26	Dual-in-Line Ceramic
28-Pin	F	$57 / 27$	Dual-in-Line Ceramic
Laminated Ceramic, Side Brazed Lead			
16.Pin	1	90/25	Dip Laminate

SO Package Thermal Data

Package Type	Package Mounting Technique ${ }^{\circ}$	Max. Allowable Power Diss. (mW) at $25^{\circ} \mathrm{C}$	Max. Allowable Thermal ResistancePower Diss.$\left(\theta_{J A}{ }^{\circ} \mathrm{C} /\right.$ Watt $)$		
			(mW) at $70^{\circ} \mathrm{C}$	Average	Maximum
SO. 14	PCB Ceramic Ceramic w/H.S.	$\begin{array}{r} 658 \\ 962 \\ 1471 \\ \hline \end{array}$	$\begin{aligned} & 421 \\ & 615 \\ & 941 \\ & \hline \end{aligned}$	$\begin{array}{r} 190 \\ +\quad 130 \\ \hline \quad 85 \\ \hline \end{array}$	$\begin{aligned} & 225 \\ & 165 \\ & 110 \\ & \hline \end{aligned}$
SO-16	PCB Ceramic Ceramic w/H.S.	$\begin{array}{r} 862 \\ 1250 \\ 1923 \\ \hline \end{array}$	$\begin{array}{r} 551 \\ 800 \\ 1231 \\ \hline \end{array}$	$\begin{array}{r} 145 \\ 100 \\ 65 \\ \hline \end{array}$	$\begin{array}{r} 170 \\ 125 \\ 85 \\ \hline \end{array}$
SO-16L	PCB Ceramic Ceramic w/H.S.	$\begin{aligned} & 1250 \\ & 1743 \\ & 2500 \\ & \hline \end{aligned}$	$\begin{array}{r} 800 \\ 1143 \\ 1600 \\ \hline \end{array}$	$\begin{array}{r} 100 \\ 70 \\ 50 \\ \hline \end{array}$	$\begin{array}{r} 140 \\ 100 \\ 65 \\ \hline \end{array}$
SO-20	PCB Ceramic Ceramic w/H.S.	$\begin{aligned} & 1471 \\ & 2273 \\ & 3572 \\ & \hline \end{aligned}$	$\begin{array}{r} 941 \\ 1454 \\ 2286 \\ \hline \end{array}$	$\begin{aligned} & 85 \\ & 55 \\ & 35 \\ & \hline \end{aligned}$	$\begin{array}{r} 115 \\ 85 \\ 55 \\ \hline \end{array}$
SO-24	PCB Ceramic Ceramic w/H.S.	$\begin{aligned} & 1503 \\ & 2000 \\ & 4167 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 1600 \\ & 2067 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 50 \\ & 30 \\ & \hline \end{aligned}$	$\begin{array}{r} 110 \\ 80 \\ 50 \\ \hline \end{array}$

[^6]Ceramic = Ceramic substrate
Ceramic w/H.S = Ceramic substrate with heat sink and/or thermal compound

- Alr gap is 0.006 inches unless thermal compound is used

Package Outlines

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).

Package Outlines

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

Package Outlines

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

Package Outlines

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

8

Note:

Package Outlines

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

Package Outlines

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

응

Package Outlines

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

Package Outlines

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

Note:
Dimensions shown are metric units (millimeters), except those in parentheses which are English units (inches).

Package Outlines

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, μA, ULN

Package Outlines

FOR PREFIXES: ADC, AM, CA, DAC, LF, LM, MC, NE, SA, SE, SG, $\mu \mathrm{A}$, ULN

PACKAGE OUTLINES

For prefixes: SAA, TCA, TDA, TDB, TEA

Introduction

The package information for each type number is given below:

type number	description and package code	page
SAA1027	16-lead dual in-line; plastic (SOT-38A)	$9-19$
SAA1029	16-lead dual in-line; plastic (SOT-38)	$9-18$
TCA520B	8-lead dual in-line; plastic (SOT-97A)	$9-23$
TCA520D	8-lead mini-pack; plastic (SO-8; SOT-96A)	$9-22$
TDA1023	16-lead dual in-line; plastic (SOT-38)	$9-18$
TDA1060	16-lead dual in-line; plastic (SOT-38)	$9-18$
TDA1060A	16-lead dual in-line; plastic (SOT-38)	$9-18$
TDA1060B	16-lead dual in-line; ceramic (cerdip) (SOT-74A, B, C)	$9-21$
TDA1060T	16-lead mini-pack; plastic (SO-16; SOT-109A)	$9-25$
TDB1080	16-lead dual in-line; plastic (SOT-38WE-2)	$9-20$
TDB1080T	16-lead mini-pack; plastic (SO-16; SOT-109A)	$9-25$
TEA1017	18-lead dual in-line; plastic (SOT-102CS, HE, KE, ME)	$9-24$
TEA1039	$9-l e a d ~ s i n g l e ~ i n-l i n e ; ~ p l a s t i c ~(S O T-110 B) ~$	$9-26$

Package Outlines

16-LEAD DUAL IN-LINE; PLASTIC (SOT-38)

Dimensions in $\mathbf{m m}$

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16-LEAD DUAL IN-LINE; PLASTIC (SOT-38A)

top view

Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.

Dimensions in mm

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it).
If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16-LEAD DUAL IN-LINE; PLASTIC WITH INTERNAL HEAT SPREADER (SOT-38WE-2)

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16-LEAD DUAL IN-LINE; CERAMIC (CERDIP) (SOT-74A,B,C)

\bigoplus Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case,

Package Outlines

8-LEAD MINI-PACK; PLASTIC (SO-8; SOT-96A)

Dimensions in mm

\bigoplus Positional accuracy.
(M) Maximum Material Condition.

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.
Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to $230{ }^{\circ} \mathrm{C}$ when a mild flux is used.

For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to $105 \mu \mathrm{~m}$ is used for which the emulsion thickness should be about $50 \mu \mathrm{~m}$. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact area.
The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid.
After soldering, the substrate must be cleaned of any remaining flux.

8-LEAD DUAL IN-LINE; PLASTIC (SOT-97A)

Dimensions in mm

θ Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.
(3) Only for devices with asymmetrical end-leads.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it).
If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.

2. By dip or wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

Package Outlines

18-LEAD DUAL IN-LINE; PLASTIC (SOT-102CS,HE,KE,ME)

\bigoplus Positional accuracy.
(M) Maximum Material Condition.
(1) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
(2) Lead spacing tolerances apply from seating plane to the line indicated.

Dimensions in mm

16-LEAD MINI-PACK; PLASTIC (SO-16; SOT-109A)

SOLDERING

The reflow solder technique

The preferred technique for mounting miniature components on hybrid thick or thin-film circuits is reflow soldering. Solder is applied to the required areas on the substrate by dipping in a solder bath or, more usually, by screen printing a solder paste. Components are put in place and the solder is reflowed by heating.

Solder pastes consist of very finely powdered solder and flux suspended in an organic liquid binder. They are available in various forms depending on the specification of the solder and the type of binder used. For hybrid circuit use, a tin-lead solder with 2 to 4% silver is recommended. The working temperature of this paste is about 220 to $230^{\circ} \mathrm{C}$ when a mild flux is used.
For printing the paste onto the substrate a stainless steel screen with a mesh of 80 to $105 \mu \mathrm{~m}$ is used for which the emulsion thickness should be about $50 \mu \mathrm{~m}$. To ensure that sufficient solder paste is applied to the substrate, the screen aperture should be slightly larger than the corresponding contact. area.

The contact pins are positioned on the substrate, the slight adhesive force of the solder paste being sufficient to keep them in place. The substrate is heated to the solder working temperature preferably by means of a controlled hot plate. The soldering process should be kept as short as possible: 10 to 15 seconds is sufficient to ensure good solder joints and evaporation of the binder fluid.
After soldering, the substrate must be cleaned of any remaining flux.

Package Outlines

9-LEAD SINGLE IN-LINE; PLASTIC (SOT-110B)

top view

Dimensions in mm

Positional accuracy.
(M) Maximum Material Condition.

A Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.

B Lead spacing tolerances apply from seating plane to the line indicated.

Forthcoming New Products and Alphanumeric Index

INDEX

SECTION 10 - FORTHCOMING NEW PRODUCTS AND ALPHANUMERIC INDEX
Index10-1
Forthcoming new products by product group 10-3
Alphanumeric index. 10-4

FORTHCOMING NEW PRODUCTS BY PRODUCT GROUP

Amplifiers	
NE5260	Voltage controlled amplifier
NE5212	Fiber optic preamplifier
Communications	150 MHz phase locked loop
NE568	Low voltage compandor
NE575	Power line modem
NE5050	FM IC processor
MC3361	
Interface/Data Conversion	8-bit high speed CMOS A/D converter
ADC0820	12-bit accuracy sample and hold amplifier
NE5060	Ethernet transceiver for local area network
NE5082	12-bit accuracy comparator
NE5105	
Power Conversion and Control	
SG1524C/2524C/3524C	SMPS
SG1525/2525/3525	SMPS
SG1527/2527/3527	SMPS
SE/NE5563	SMPS - Improved NE5560

ALPHANUMERIC INDEX

Device	Section/Page
AN125	$8-21$
AN146	$8-17$
AN198	$8-3$
AN199	$8-7$
AN210	$8-31$
DAC800	$4-10$
MC1488	$4-43$
MC1489/MC1489A	$4-46$
NE5020	$4-26$
NE5090	$4-48$
NE5150	$4-34$
NE5170	$4-53$
NE5180/NE5181	$4-57$
NE5205	$6-3$
NE587	$4-60$
NE670	$5-7$
SAA1027	$7-3$
SAA1029	$7-9$
SA/NE602	$5-3$
SA/NE604	$5-5$
SE/NE5018	$4-16$
SE/NE5019	$4-21$
SE/NE5030	$4-5$
TCA520B; D	$7-17$
TDA1023	$7-23$
TDA1060; A; B; T	$7-37$
TDB1080; T	$7-53$
TEA1017	$7-59$
TEA1039	$7-65$

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 4393322.
Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.
Belgium: N.V. PHILIPS \& MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400.
Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.
Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624.
Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F- 75540 PARIS 11, Tel. 43388000.
Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.
Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, 54, Syngru Av., ATHENS 11742, Tel. 9215311/319.
Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121.
India: PEICO ELECTRONICS \& ELECTRICALS LTD., Elcoma Dept., Band Box Building,
254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. $4930311 / 4930590$.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th FI., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA - Selatan, Tel. 512572.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa BIdg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.
Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. 794-5011.
Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 774411.
Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.
Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 793333.
New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt . Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914.
Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200.
Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070.
Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59.
Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121.
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000.
South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. \& Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9.
Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000.
Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211.
Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. 7120500.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.
Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad, No. 78-80, P.K.504, 80074 ISTANBUL, Tel. 435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-5806633.
United States: (Active Devices \& Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.
(Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(Passive Devices \& Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 991-2000.
Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, Building BAE, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Tel. +3140723304 , Telex 35000 phtcnl

[^0]: * Supersedes the ICO6N 1985 edition and the Supplement to ICO6N issued Autumn 1985.

[^1]: * For up-to-date cross reference information contact your local sales office.

[^2]: MC1489: $R_{F}=10 \mathrm{k}$

[^3]: * See Figs 3 and 4.

[^4]: * Negative current is defined as conventional current flow out of a device. A negative output current is suited for positive triac triggering.

[^5]: * Special electrolytic capacitors recommended for use with TDA1023.

[^6]: PCB $=$ Printed circuit board

